1 // SPDX-License-Identifier: GPL-2.0 or BSD-3-Clause 2 /* 3 * Copyright(c) 2015-2020 Intel Corporation. 4 */ 5 6 #include <linux/spinlock.h> 7 #include <linux/pci.h> 8 #include <linux/io.h> 9 #include <linux/delay.h> 10 #include <linux/netdevice.h> 11 #include <linux/vmalloc.h> 12 #include <linux/module.h> 13 #include <linux/prefetch.h> 14 #include <rdma/ib_verbs.h> 15 #include <linux/etherdevice.h> 16 17 #include "hfi.h" 18 #include "trace.h" 19 #include "qp.h" 20 #include "sdma.h" 21 #include "debugfs.h" 22 #include "vnic.h" 23 #include "fault.h" 24 25 #include "ipoib.h" 26 #include "netdev.h" 27 28 #undef pr_fmt 29 #define pr_fmt(fmt) DRIVER_NAME ": " fmt 30 31 /* 32 * The size has to be longer than this string, so we can append 33 * board/chip information to it in the initialization code. 34 */ 35 const char ib_hfi1_version[] = HFI1_DRIVER_VERSION "\n"; 36 37 DEFINE_MUTEX(hfi1_mutex); /* general driver use */ 38 39 unsigned int hfi1_max_mtu = HFI1_DEFAULT_MAX_MTU; 40 module_param_named(max_mtu, hfi1_max_mtu, uint, S_IRUGO); 41 MODULE_PARM_DESC(max_mtu, "Set max MTU bytes, default is " __stringify( 42 HFI1_DEFAULT_MAX_MTU)); 43 44 unsigned int hfi1_cu = 1; 45 module_param_named(cu, hfi1_cu, uint, S_IRUGO); 46 MODULE_PARM_DESC(cu, "Credit return units"); 47 48 unsigned long hfi1_cap_mask = HFI1_CAP_MASK_DEFAULT; 49 static int hfi1_caps_set(const char *val, const struct kernel_param *kp); 50 static int hfi1_caps_get(char *buffer, const struct kernel_param *kp); 51 static const struct kernel_param_ops cap_ops = { 52 .set = hfi1_caps_set, 53 .get = hfi1_caps_get 54 }; 55 module_param_cb(cap_mask, &cap_ops, &hfi1_cap_mask, S_IWUSR | S_IRUGO); 56 MODULE_PARM_DESC(cap_mask, "Bit mask of enabled/disabled HW features"); 57 58 MODULE_LICENSE("Dual BSD/GPL"); 59 MODULE_DESCRIPTION("Intel Omni-Path Architecture driver"); 60 61 /* 62 * MAX_PKT_RCV is the max # if packets processed per receive interrupt. 63 */ 64 #define MAX_PKT_RECV 64 65 /* 66 * MAX_PKT_THREAD_RCV is the max # of packets processed before 67 * the qp_wait_list queue is flushed. 68 */ 69 #define MAX_PKT_RECV_THREAD (MAX_PKT_RECV * 4) 70 #define EGR_HEAD_UPDATE_THRESHOLD 16 71 72 struct hfi1_ib_stats hfi1_stats; 73 74 static int hfi1_caps_set(const char *val, const struct kernel_param *kp) 75 { 76 int ret = 0; 77 unsigned long *cap_mask_ptr = (unsigned long *)kp->arg, 78 cap_mask = *cap_mask_ptr, value, diff, 79 write_mask = ((HFI1_CAP_WRITABLE_MASK << HFI1_CAP_USER_SHIFT) | 80 HFI1_CAP_WRITABLE_MASK); 81 82 ret = kstrtoul(val, 0, &value); 83 if (ret) { 84 pr_warn("Invalid module parameter value for 'cap_mask'\n"); 85 goto done; 86 } 87 /* Get the changed bits (except the locked bit) */ 88 diff = value ^ (cap_mask & ~HFI1_CAP_LOCKED_SMASK); 89 90 /* Remove any bits that are not allowed to change after driver load */ 91 if (HFI1_CAP_LOCKED() && (diff & ~write_mask)) { 92 pr_warn("Ignoring non-writable capability bits %#lx\n", 93 diff & ~write_mask); 94 diff &= write_mask; 95 } 96 97 /* Mask off any reserved bits */ 98 diff &= ~HFI1_CAP_RESERVED_MASK; 99 /* Clear any previously set and changing bits */ 100 cap_mask &= ~diff; 101 /* Update the bits with the new capability */ 102 cap_mask |= (value & diff); 103 /* Check for any kernel/user restrictions */ 104 diff = (cap_mask & (HFI1_CAP_MUST_HAVE_KERN << HFI1_CAP_USER_SHIFT)) ^ 105 ((cap_mask & HFI1_CAP_MUST_HAVE_KERN) << HFI1_CAP_USER_SHIFT); 106 cap_mask &= ~diff; 107 /* Set the bitmask to the final set */ 108 *cap_mask_ptr = cap_mask; 109 done: 110 return ret; 111 } 112 113 static int hfi1_caps_get(char *buffer, const struct kernel_param *kp) 114 { 115 unsigned long cap_mask = *(unsigned long *)kp->arg; 116 117 cap_mask &= ~HFI1_CAP_LOCKED_SMASK; 118 cap_mask |= ((cap_mask & HFI1_CAP_K2U) << HFI1_CAP_USER_SHIFT); 119 120 return scnprintf(buffer, PAGE_SIZE, "0x%lx", cap_mask); 121 } 122 123 struct pci_dev *get_pci_dev(struct rvt_dev_info *rdi) 124 { 125 struct hfi1_ibdev *ibdev = container_of(rdi, struct hfi1_ibdev, rdi); 126 struct hfi1_devdata *dd = container_of(ibdev, 127 struct hfi1_devdata, verbs_dev); 128 return dd->pcidev; 129 } 130 131 /* 132 * Return count of units with at least one port ACTIVE. 133 */ 134 int hfi1_count_active_units(void) 135 { 136 struct hfi1_devdata *dd; 137 struct hfi1_pportdata *ppd; 138 unsigned long index, flags; 139 int pidx, nunits_active = 0; 140 141 xa_lock_irqsave(&hfi1_dev_table, flags); 142 xa_for_each(&hfi1_dev_table, index, dd) { 143 if (!(dd->flags & HFI1_PRESENT) || !dd->kregbase1) 144 continue; 145 for (pidx = 0; pidx < dd->num_pports; ++pidx) { 146 ppd = dd->pport + pidx; 147 if (ppd->lid && ppd->linkup) { 148 nunits_active++; 149 break; 150 } 151 } 152 } 153 xa_unlock_irqrestore(&hfi1_dev_table, flags); 154 return nunits_active; 155 } 156 157 /* 158 * Get address of eager buffer from it's index (allocated in chunks, not 159 * contiguous). 160 */ 161 static inline void *get_egrbuf(const struct hfi1_ctxtdata *rcd, u64 rhf, 162 u8 *update) 163 { 164 u32 idx = rhf_egr_index(rhf), offset = rhf_egr_buf_offset(rhf); 165 166 *update |= !(idx & (rcd->egrbufs.threshold - 1)) && !offset; 167 return (void *)(((u64)(rcd->egrbufs.rcvtids[idx].addr)) + 168 (offset * RCV_BUF_BLOCK_SIZE)); 169 } 170 171 static inline void *hfi1_get_header(struct hfi1_ctxtdata *rcd, 172 __le32 *rhf_addr) 173 { 174 u32 offset = rhf_hdrq_offset(rhf_to_cpu(rhf_addr)); 175 176 return (void *)(rhf_addr - rcd->rhf_offset + offset); 177 } 178 179 static inline struct ib_header *hfi1_get_msgheader(struct hfi1_ctxtdata *rcd, 180 __le32 *rhf_addr) 181 { 182 return (struct ib_header *)hfi1_get_header(rcd, rhf_addr); 183 } 184 185 static inline struct hfi1_16b_header 186 *hfi1_get_16B_header(struct hfi1_ctxtdata *rcd, 187 __le32 *rhf_addr) 188 { 189 return (struct hfi1_16b_header *)hfi1_get_header(rcd, rhf_addr); 190 } 191 192 /* 193 * Validate and encode the a given RcvArray Buffer size. 194 * The function will check whether the given size falls within 195 * allowed size ranges for the respective type and, optionally, 196 * return the proper encoding. 197 */ 198 int hfi1_rcvbuf_validate(u32 size, u8 type, u16 *encoded) 199 { 200 if (unlikely(!PAGE_ALIGNED(size))) 201 return 0; 202 if (unlikely(size < MIN_EAGER_BUFFER)) 203 return 0; 204 if (size > 205 (type == PT_EAGER ? MAX_EAGER_BUFFER : MAX_EXPECTED_BUFFER)) 206 return 0; 207 if (encoded) 208 *encoded = ilog2(size / PAGE_SIZE) + 1; 209 return 1; 210 } 211 212 static void rcv_hdrerr(struct hfi1_ctxtdata *rcd, struct hfi1_pportdata *ppd, 213 struct hfi1_packet *packet) 214 { 215 struct ib_header *rhdr = packet->hdr; 216 u32 rte = rhf_rcv_type_err(packet->rhf); 217 u32 mlid_base; 218 struct hfi1_ibport *ibp = rcd_to_iport(rcd); 219 struct hfi1_devdata *dd = ppd->dd; 220 struct hfi1_ibdev *verbs_dev = &dd->verbs_dev; 221 struct rvt_dev_info *rdi = &verbs_dev->rdi; 222 223 if ((packet->rhf & RHF_DC_ERR) && 224 hfi1_dbg_fault_suppress_err(verbs_dev)) 225 return; 226 227 if (packet->rhf & RHF_ICRC_ERR) 228 return; 229 230 if (packet->etype == RHF_RCV_TYPE_BYPASS) { 231 goto drop; 232 } else { 233 u8 lnh = ib_get_lnh(rhdr); 234 235 mlid_base = be16_to_cpu(IB_MULTICAST_LID_BASE); 236 if (lnh == HFI1_LRH_BTH) { 237 packet->ohdr = &rhdr->u.oth; 238 } else if (lnh == HFI1_LRH_GRH) { 239 packet->ohdr = &rhdr->u.l.oth; 240 packet->grh = &rhdr->u.l.grh; 241 } else { 242 goto drop; 243 } 244 } 245 246 if (packet->rhf & RHF_TID_ERR) { 247 /* For TIDERR and RC QPs preemptively schedule a NAK */ 248 u32 tlen = rhf_pkt_len(packet->rhf); /* in bytes */ 249 u32 dlid = ib_get_dlid(rhdr); 250 u32 qp_num; 251 252 /* Sanity check packet */ 253 if (tlen < 24) 254 goto drop; 255 256 /* Check for GRH */ 257 if (packet->grh) { 258 u32 vtf; 259 struct ib_grh *grh = packet->grh; 260 261 if (grh->next_hdr != IB_GRH_NEXT_HDR) 262 goto drop; 263 vtf = be32_to_cpu(grh->version_tclass_flow); 264 if ((vtf >> IB_GRH_VERSION_SHIFT) != IB_GRH_VERSION) 265 goto drop; 266 } 267 268 /* Get the destination QP number. */ 269 qp_num = ib_bth_get_qpn(packet->ohdr); 270 if (dlid < mlid_base) { 271 struct rvt_qp *qp; 272 unsigned long flags; 273 274 rcu_read_lock(); 275 qp = rvt_lookup_qpn(rdi, &ibp->rvp, qp_num); 276 if (!qp) { 277 rcu_read_unlock(); 278 goto drop; 279 } 280 281 /* 282 * Handle only RC QPs - for other QP types drop error 283 * packet. 284 */ 285 spin_lock_irqsave(&qp->r_lock, flags); 286 287 /* Check for valid receive state. */ 288 if (!(ib_rvt_state_ops[qp->state] & 289 RVT_PROCESS_RECV_OK)) { 290 ibp->rvp.n_pkt_drops++; 291 } 292 293 switch (qp->ibqp.qp_type) { 294 case IB_QPT_RC: 295 hfi1_rc_hdrerr(rcd, packet, qp); 296 break; 297 default: 298 /* For now don't handle any other QP types */ 299 break; 300 } 301 302 spin_unlock_irqrestore(&qp->r_lock, flags); 303 rcu_read_unlock(); 304 } /* Unicast QP */ 305 } /* Valid packet with TIDErr */ 306 307 /* handle "RcvTypeErr" flags */ 308 switch (rte) { 309 case RHF_RTE_ERROR_OP_CODE_ERR: 310 { 311 void *ebuf = NULL; 312 u8 opcode; 313 314 if (rhf_use_egr_bfr(packet->rhf)) 315 ebuf = packet->ebuf; 316 317 if (!ebuf) 318 goto drop; /* this should never happen */ 319 320 opcode = ib_bth_get_opcode(packet->ohdr); 321 if (opcode == IB_OPCODE_CNP) { 322 /* 323 * Only in pre-B0 h/w is the CNP_OPCODE handled 324 * via this code path. 325 */ 326 struct rvt_qp *qp = NULL; 327 u32 lqpn, rqpn; 328 u16 rlid; 329 u8 svc_type, sl, sc5; 330 331 sc5 = hfi1_9B_get_sc5(rhdr, packet->rhf); 332 sl = ibp->sc_to_sl[sc5]; 333 334 lqpn = ib_bth_get_qpn(packet->ohdr); 335 rcu_read_lock(); 336 qp = rvt_lookup_qpn(rdi, &ibp->rvp, lqpn); 337 if (!qp) { 338 rcu_read_unlock(); 339 goto drop; 340 } 341 342 switch (qp->ibqp.qp_type) { 343 case IB_QPT_UD: 344 rlid = 0; 345 rqpn = 0; 346 svc_type = IB_CC_SVCTYPE_UD; 347 break; 348 case IB_QPT_UC: 349 rlid = ib_get_slid(rhdr); 350 rqpn = qp->remote_qpn; 351 svc_type = IB_CC_SVCTYPE_UC; 352 break; 353 default: 354 rcu_read_unlock(); 355 goto drop; 356 } 357 358 process_becn(ppd, sl, rlid, lqpn, rqpn, svc_type); 359 rcu_read_unlock(); 360 } 361 362 packet->rhf &= ~RHF_RCV_TYPE_ERR_SMASK; 363 break; 364 } 365 default: 366 break; 367 } 368 369 drop: 370 return; 371 } 372 373 static inline void init_packet(struct hfi1_ctxtdata *rcd, 374 struct hfi1_packet *packet) 375 { 376 packet->rsize = get_hdrqentsize(rcd); /* words */ 377 packet->maxcnt = get_hdrq_cnt(rcd) * packet->rsize; /* words */ 378 packet->rcd = rcd; 379 packet->updegr = 0; 380 packet->etail = -1; 381 packet->rhf_addr = get_rhf_addr(rcd); 382 packet->rhf = rhf_to_cpu(packet->rhf_addr); 383 packet->rhqoff = hfi1_rcd_head(rcd); 384 packet->numpkt = 0; 385 } 386 387 /* We support only two types - 9B and 16B for now */ 388 static const hfi1_handle_cnp hfi1_handle_cnp_tbl[2] = { 389 [HFI1_PKT_TYPE_9B] = &return_cnp, 390 [HFI1_PKT_TYPE_16B] = &return_cnp_16B 391 }; 392 393 /** 394 * hfi1_process_ecn_slowpath - Process FECN or BECN bits 395 * @qp: The packet's destination QP 396 * @pkt: The packet itself. 397 * @prescan: Is the caller the RXQ prescan 398 * 399 * Process the packet's FECN or BECN bits. By now, the packet 400 * has already been evaluated whether processing of those bit should 401 * be done. 402 * The significance of the @prescan argument is that if the caller 403 * is the RXQ prescan, a CNP will be send out instead of waiting for the 404 * normal packet processing to send an ACK with BECN set (or a CNP). 405 */ 406 bool hfi1_process_ecn_slowpath(struct rvt_qp *qp, struct hfi1_packet *pkt, 407 bool prescan) 408 { 409 struct hfi1_ibport *ibp = to_iport(qp->ibqp.device, qp->port_num); 410 struct hfi1_pportdata *ppd = ppd_from_ibp(ibp); 411 struct ib_other_headers *ohdr = pkt->ohdr; 412 struct ib_grh *grh = pkt->grh; 413 u32 rqpn = 0; 414 u16 pkey; 415 u32 rlid, slid, dlid = 0; 416 u8 hdr_type, sc, svc_type, opcode; 417 bool is_mcast = false, ignore_fecn = false, do_cnp = false, 418 fecn, becn; 419 420 /* can be called from prescan */ 421 if (pkt->etype == RHF_RCV_TYPE_BYPASS) { 422 pkey = hfi1_16B_get_pkey(pkt->hdr); 423 sc = hfi1_16B_get_sc(pkt->hdr); 424 dlid = hfi1_16B_get_dlid(pkt->hdr); 425 slid = hfi1_16B_get_slid(pkt->hdr); 426 is_mcast = hfi1_is_16B_mcast(dlid); 427 opcode = ib_bth_get_opcode(ohdr); 428 hdr_type = HFI1_PKT_TYPE_16B; 429 fecn = hfi1_16B_get_fecn(pkt->hdr); 430 becn = hfi1_16B_get_becn(pkt->hdr); 431 } else { 432 pkey = ib_bth_get_pkey(ohdr); 433 sc = hfi1_9B_get_sc5(pkt->hdr, pkt->rhf); 434 dlid = qp->ibqp.qp_type != IB_QPT_UD ? ib_get_dlid(pkt->hdr) : 435 ppd->lid; 436 slid = ib_get_slid(pkt->hdr); 437 is_mcast = (dlid > be16_to_cpu(IB_MULTICAST_LID_BASE)) && 438 (dlid != be16_to_cpu(IB_LID_PERMISSIVE)); 439 opcode = ib_bth_get_opcode(ohdr); 440 hdr_type = HFI1_PKT_TYPE_9B; 441 fecn = ib_bth_get_fecn(ohdr); 442 becn = ib_bth_get_becn(ohdr); 443 } 444 445 switch (qp->ibqp.qp_type) { 446 case IB_QPT_UD: 447 rlid = slid; 448 rqpn = ib_get_sqpn(pkt->ohdr); 449 svc_type = IB_CC_SVCTYPE_UD; 450 break; 451 case IB_QPT_SMI: 452 case IB_QPT_GSI: 453 rlid = slid; 454 rqpn = ib_get_sqpn(pkt->ohdr); 455 svc_type = IB_CC_SVCTYPE_UD; 456 break; 457 case IB_QPT_UC: 458 rlid = rdma_ah_get_dlid(&qp->remote_ah_attr); 459 rqpn = qp->remote_qpn; 460 svc_type = IB_CC_SVCTYPE_UC; 461 break; 462 case IB_QPT_RC: 463 rlid = rdma_ah_get_dlid(&qp->remote_ah_attr); 464 rqpn = qp->remote_qpn; 465 svc_type = IB_CC_SVCTYPE_RC; 466 break; 467 default: 468 return false; 469 } 470 471 ignore_fecn = is_mcast || (opcode == IB_OPCODE_CNP) || 472 (opcode == IB_OPCODE_RC_ACKNOWLEDGE); 473 /* 474 * ACKNOWLEDGE packets do not get a CNP but this will be 475 * guarded by ignore_fecn above. 476 */ 477 do_cnp = prescan || 478 (opcode >= IB_OPCODE_RC_RDMA_READ_RESPONSE_FIRST && 479 opcode <= IB_OPCODE_RC_ATOMIC_ACKNOWLEDGE) || 480 opcode == TID_OP(READ_RESP) || 481 opcode == TID_OP(ACK); 482 483 /* Call appropriate CNP handler */ 484 if (!ignore_fecn && do_cnp && fecn) 485 hfi1_handle_cnp_tbl[hdr_type](ibp, qp, rqpn, pkey, 486 dlid, rlid, sc, grh); 487 488 if (becn) { 489 u32 lqpn = be32_to_cpu(ohdr->bth[1]) & RVT_QPN_MASK; 490 u8 sl = ibp->sc_to_sl[sc]; 491 492 process_becn(ppd, sl, rlid, lqpn, rqpn, svc_type); 493 } 494 return !ignore_fecn && fecn; 495 } 496 497 struct ps_mdata { 498 struct hfi1_ctxtdata *rcd; 499 u32 rsize; 500 u32 maxcnt; 501 u32 ps_head; 502 u32 ps_tail; 503 u32 ps_seq; 504 }; 505 506 static inline void init_ps_mdata(struct ps_mdata *mdata, 507 struct hfi1_packet *packet) 508 { 509 struct hfi1_ctxtdata *rcd = packet->rcd; 510 511 mdata->rcd = rcd; 512 mdata->rsize = packet->rsize; 513 mdata->maxcnt = packet->maxcnt; 514 mdata->ps_head = packet->rhqoff; 515 516 if (get_dma_rtail_setting(rcd)) { 517 mdata->ps_tail = get_rcvhdrtail(rcd); 518 if (rcd->ctxt == HFI1_CTRL_CTXT) 519 mdata->ps_seq = hfi1_seq_cnt(rcd); 520 else 521 mdata->ps_seq = 0; /* not used with DMA_RTAIL */ 522 } else { 523 mdata->ps_tail = 0; /* used only with DMA_RTAIL*/ 524 mdata->ps_seq = hfi1_seq_cnt(rcd); 525 } 526 } 527 528 static inline int ps_done(struct ps_mdata *mdata, u64 rhf, 529 struct hfi1_ctxtdata *rcd) 530 { 531 if (get_dma_rtail_setting(rcd)) 532 return mdata->ps_head == mdata->ps_tail; 533 return mdata->ps_seq != rhf_rcv_seq(rhf); 534 } 535 536 static inline int ps_skip(struct ps_mdata *mdata, u64 rhf, 537 struct hfi1_ctxtdata *rcd) 538 { 539 /* 540 * Control context can potentially receive an invalid rhf. 541 * Drop such packets. 542 */ 543 if ((rcd->ctxt == HFI1_CTRL_CTXT) && (mdata->ps_head != mdata->ps_tail)) 544 return mdata->ps_seq != rhf_rcv_seq(rhf); 545 546 return 0; 547 } 548 549 static inline void update_ps_mdata(struct ps_mdata *mdata, 550 struct hfi1_ctxtdata *rcd) 551 { 552 mdata->ps_head += mdata->rsize; 553 if (mdata->ps_head >= mdata->maxcnt) 554 mdata->ps_head = 0; 555 556 /* Control context must do seq counting */ 557 if (!get_dma_rtail_setting(rcd) || 558 rcd->ctxt == HFI1_CTRL_CTXT) 559 mdata->ps_seq = hfi1_seq_incr_wrap(mdata->ps_seq); 560 } 561 562 /* 563 * prescan_rxq - search through the receive queue looking for packets 564 * containing Excplicit Congestion Notifications (FECNs, or BECNs). 565 * When an ECN is found, process the Congestion Notification, and toggle 566 * it off. 567 * This is declared as a macro to allow quick checking of the port to avoid 568 * the overhead of a function call if not enabled. 569 */ 570 #define prescan_rxq(rcd, packet) \ 571 do { \ 572 if (rcd->ppd->cc_prescan) \ 573 __prescan_rxq(packet); \ 574 } while (0) 575 static void __prescan_rxq(struct hfi1_packet *packet) 576 { 577 struct hfi1_ctxtdata *rcd = packet->rcd; 578 struct ps_mdata mdata; 579 580 init_ps_mdata(&mdata, packet); 581 582 while (1) { 583 struct hfi1_ibport *ibp = rcd_to_iport(rcd); 584 __le32 *rhf_addr = (__le32 *)rcd->rcvhdrq + mdata.ps_head + 585 packet->rcd->rhf_offset; 586 struct rvt_qp *qp; 587 struct ib_header *hdr; 588 struct rvt_dev_info *rdi = &rcd->dd->verbs_dev.rdi; 589 u64 rhf = rhf_to_cpu(rhf_addr); 590 u32 etype = rhf_rcv_type(rhf), qpn, bth1; 591 u8 lnh; 592 593 if (ps_done(&mdata, rhf, rcd)) 594 break; 595 596 if (ps_skip(&mdata, rhf, rcd)) 597 goto next; 598 599 if (etype != RHF_RCV_TYPE_IB) 600 goto next; 601 602 packet->hdr = hfi1_get_msgheader(packet->rcd, rhf_addr); 603 hdr = packet->hdr; 604 lnh = ib_get_lnh(hdr); 605 606 if (lnh == HFI1_LRH_BTH) { 607 packet->ohdr = &hdr->u.oth; 608 packet->grh = NULL; 609 } else if (lnh == HFI1_LRH_GRH) { 610 packet->ohdr = &hdr->u.l.oth; 611 packet->grh = &hdr->u.l.grh; 612 } else { 613 goto next; /* just in case */ 614 } 615 616 if (!hfi1_may_ecn(packet)) 617 goto next; 618 619 bth1 = be32_to_cpu(packet->ohdr->bth[1]); 620 qpn = bth1 & RVT_QPN_MASK; 621 rcu_read_lock(); 622 qp = rvt_lookup_qpn(rdi, &ibp->rvp, qpn); 623 624 if (!qp) { 625 rcu_read_unlock(); 626 goto next; 627 } 628 629 hfi1_process_ecn_slowpath(qp, packet, true); 630 rcu_read_unlock(); 631 632 /* turn off BECN, FECN */ 633 bth1 &= ~(IB_FECN_SMASK | IB_BECN_SMASK); 634 packet->ohdr->bth[1] = cpu_to_be32(bth1); 635 next: 636 update_ps_mdata(&mdata, rcd); 637 } 638 } 639 640 static void process_rcv_qp_work(struct hfi1_packet *packet) 641 { 642 struct rvt_qp *qp, *nqp; 643 struct hfi1_ctxtdata *rcd = packet->rcd; 644 645 /* 646 * Iterate over all QPs waiting to respond. 647 * The list won't change since the IRQ is only run on one CPU. 648 */ 649 list_for_each_entry_safe(qp, nqp, &rcd->qp_wait_list, rspwait) { 650 list_del_init(&qp->rspwait); 651 if (qp->r_flags & RVT_R_RSP_NAK) { 652 qp->r_flags &= ~RVT_R_RSP_NAK; 653 packet->qp = qp; 654 hfi1_send_rc_ack(packet, 0); 655 } 656 if (qp->r_flags & RVT_R_RSP_SEND) { 657 unsigned long flags; 658 659 qp->r_flags &= ~RVT_R_RSP_SEND; 660 spin_lock_irqsave(&qp->s_lock, flags); 661 if (ib_rvt_state_ops[qp->state] & 662 RVT_PROCESS_OR_FLUSH_SEND) 663 hfi1_schedule_send(qp); 664 spin_unlock_irqrestore(&qp->s_lock, flags); 665 } 666 rvt_put_qp(qp); 667 } 668 } 669 670 static noinline int max_packet_exceeded(struct hfi1_packet *packet, int thread) 671 { 672 if (thread) { 673 if ((packet->numpkt & (MAX_PKT_RECV_THREAD - 1)) == 0) 674 /* allow defered processing */ 675 process_rcv_qp_work(packet); 676 cond_resched(); 677 return RCV_PKT_OK; 678 } else { 679 this_cpu_inc(*packet->rcd->dd->rcv_limit); 680 return RCV_PKT_LIMIT; 681 } 682 } 683 684 static inline int check_max_packet(struct hfi1_packet *packet, int thread) 685 { 686 int ret = RCV_PKT_OK; 687 688 if (unlikely((packet->numpkt & (MAX_PKT_RECV - 1)) == 0)) 689 ret = max_packet_exceeded(packet, thread); 690 return ret; 691 } 692 693 static noinline int skip_rcv_packet(struct hfi1_packet *packet, int thread) 694 { 695 int ret; 696 697 packet->rcd->dd->ctx0_seq_drop++; 698 /* Set up for the next packet */ 699 packet->rhqoff += packet->rsize; 700 if (packet->rhqoff >= packet->maxcnt) 701 packet->rhqoff = 0; 702 703 packet->numpkt++; 704 ret = check_max_packet(packet, thread); 705 706 packet->rhf_addr = (__le32 *)packet->rcd->rcvhdrq + packet->rhqoff + 707 packet->rcd->rhf_offset; 708 packet->rhf = rhf_to_cpu(packet->rhf_addr); 709 710 return ret; 711 } 712 713 static void process_rcv_packet_napi(struct hfi1_packet *packet) 714 { 715 packet->etype = rhf_rcv_type(packet->rhf); 716 717 /* total length */ 718 packet->tlen = rhf_pkt_len(packet->rhf); /* in bytes */ 719 /* retrieve eager buffer details */ 720 packet->etail = rhf_egr_index(packet->rhf); 721 packet->ebuf = get_egrbuf(packet->rcd, packet->rhf, 722 &packet->updegr); 723 /* 724 * Prefetch the contents of the eager buffer. It is 725 * OK to send a negative length to prefetch_range(). 726 * The +2 is the size of the RHF. 727 */ 728 prefetch_range(packet->ebuf, 729 packet->tlen - ((packet->rcd->rcvhdrqentsize - 730 (rhf_hdrq_offset(packet->rhf) 731 + 2)) * 4)); 732 733 packet->rcd->rhf_rcv_function_map[packet->etype](packet); 734 packet->numpkt++; 735 736 /* Set up for the next packet */ 737 packet->rhqoff += packet->rsize; 738 if (packet->rhqoff >= packet->maxcnt) 739 packet->rhqoff = 0; 740 741 packet->rhf_addr = (__le32 *)packet->rcd->rcvhdrq + packet->rhqoff + 742 packet->rcd->rhf_offset; 743 packet->rhf = rhf_to_cpu(packet->rhf_addr); 744 } 745 746 static inline int process_rcv_packet(struct hfi1_packet *packet, int thread) 747 { 748 int ret; 749 750 packet->etype = rhf_rcv_type(packet->rhf); 751 752 /* total length */ 753 packet->tlen = rhf_pkt_len(packet->rhf); /* in bytes */ 754 /* retrieve eager buffer details */ 755 packet->ebuf = NULL; 756 if (rhf_use_egr_bfr(packet->rhf)) { 757 packet->etail = rhf_egr_index(packet->rhf); 758 packet->ebuf = get_egrbuf(packet->rcd, packet->rhf, 759 &packet->updegr); 760 /* 761 * Prefetch the contents of the eager buffer. It is 762 * OK to send a negative length to prefetch_range(). 763 * The +2 is the size of the RHF. 764 */ 765 prefetch_range(packet->ebuf, 766 packet->tlen - ((get_hdrqentsize(packet->rcd) - 767 (rhf_hdrq_offset(packet->rhf) 768 + 2)) * 4)); 769 } 770 771 /* 772 * Call a type specific handler for the packet. We 773 * should be able to trust that etype won't be beyond 774 * the range of valid indexes. If so something is really 775 * wrong and we can probably just let things come 776 * crashing down. There is no need to eat another 777 * comparison in this performance critical code. 778 */ 779 packet->rcd->rhf_rcv_function_map[packet->etype](packet); 780 packet->numpkt++; 781 782 /* Set up for the next packet */ 783 packet->rhqoff += packet->rsize; 784 if (packet->rhqoff >= packet->maxcnt) 785 packet->rhqoff = 0; 786 787 ret = check_max_packet(packet, thread); 788 789 packet->rhf_addr = (__le32 *)packet->rcd->rcvhdrq + packet->rhqoff + 790 packet->rcd->rhf_offset; 791 packet->rhf = rhf_to_cpu(packet->rhf_addr); 792 793 return ret; 794 } 795 796 static inline void process_rcv_update(int last, struct hfi1_packet *packet) 797 { 798 /* 799 * Update head regs etc., every 16 packets, if not last pkt, 800 * to help prevent rcvhdrq overflows, when many packets 801 * are processed and queue is nearly full. 802 * Don't request an interrupt for intermediate updates. 803 */ 804 if (!last && !(packet->numpkt & 0xf)) { 805 update_usrhead(packet->rcd, packet->rhqoff, packet->updegr, 806 packet->etail, 0, 0); 807 packet->updegr = 0; 808 } 809 packet->grh = NULL; 810 } 811 812 static inline void finish_packet(struct hfi1_packet *packet) 813 { 814 /* 815 * Nothing we need to free for the packet. 816 * 817 * The only thing we need to do is a final update and call for an 818 * interrupt 819 */ 820 update_usrhead(packet->rcd, hfi1_rcd_head(packet->rcd), packet->updegr, 821 packet->etail, rcv_intr_dynamic, packet->numpkt); 822 } 823 824 /* 825 * handle_receive_interrupt_napi_fp - receive a packet 826 * @rcd: the context 827 * @budget: polling budget 828 * 829 * Called from interrupt handler for receive interrupt. 830 * This is the fast path interrupt handler 831 * when executing napi soft irq environment. 832 */ 833 int handle_receive_interrupt_napi_fp(struct hfi1_ctxtdata *rcd, int budget) 834 { 835 struct hfi1_packet packet; 836 837 init_packet(rcd, &packet); 838 if (last_rcv_seq(rcd, rhf_rcv_seq(packet.rhf))) 839 goto bail; 840 841 while (packet.numpkt < budget) { 842 process_rcv_packet_napi(&packet); 843 if (hfi1_seq_incr(rcd, rhf_rcv_seq(packet.rhf))) 844 break; 845 846 process_rcv_update(0, &packet); 847 } 848 hfi1_set_rcd_head(rcd, packet.rhqoff); 849 bail: 850 finish_packet(&packet); 851 return packet.numpkt; 852 } 853 854 /* 855 * Handle receive interrupts when using the no dma rtail option. 856 */ 857 int handle_receive_interrupt_nodma_rtail(struct hfi1_ctxtdata *rcd, int thread) 858 { 859 int last = RCV_PKT_OK; 860 struct hfi1_packet packet; 861 862 init_packet(rcd, &packet); 863 if (last_rcv_seq(rcd, rhf_rcv_seq(packet.rhf))) { 864 last = RCV_PKT_DONE; 865 goto bail; 866 } 867 868 prescan_rxq(rcd, &packet); 869 870 while (last == RCV_PKT_OK) { 871 last = process_rcv_packet(&packet, thread); 872 if (hfi1_seq_incr(rcd, rhf_rcv_seq(packet.rhf))) 873 last = RCV_PKT_DONE; 874 process_rcv_update(last, &packet); 875 } 876 process_rcv_qp_work(&packet); 877 hfi1_set_rcd_head(rcd, packet.rhqoff); 878 bail: 879 finish_packet(&packet); 880 return last; 881 } 882 883 int handle_receive_interrupt_dma_rtail(struct hfi1_ctxtdata *rcd, int thread) 884 { 885 u32 hdrqtail; 886 int last = RCV_PKT_OK; 887 struct hfi1_packet packet; 888 889 init_packet(rcd, &packet); 890 hdrqtail = get_rcvhdrtail(rcd); 891 if (packet.rhqoff == hdrqtail) { 892 last = RCV_PKT_DONE; 893 goto bail; 894 } 895 smp_rmb(); /* prevent speculative reads of dma'ed hdrq */ 896 897 prescan_rxq(rcd, &packet); 898 899 while (last == RCV_PKT_OK) { 900 last = process_rcv_packet(&packet, thread); 901 if (packet.rhqoff == hdrqtail) 902 last = RCV_PKT_DONE; 903 process_rcv_update(last, &packet); 904 } 905 process_rcv_qp_work(&packet); 906 hfi1_set_rcd_head(rcd, packet.rhqoff); 907 bail: 908 finish_packet(&packet); 909 return last; 910 } 911 912 static void set_all_fastpath(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd) 913 { 914 u16 i; 915 916 /* 917 * For dynamically allocated kernel contexts (like vnic) switch 918 * interrupt handler only for that context. Otherwise, switch 919 * interrupt handler for all statically allocated kernel contexts. 920 */ 921 if (rcd->ctxt >= dd->first_dyn_alloc_ctxt && !rcd->is_vnic) { 922 hfi1_rcd_get(rcd); 923 hfi1_set_fast(rcd); 924 hfi1_rcd_put(rcd); 925 return; 926 } 927 928 for (i = HFI1_CTRL_CTXT + 1; i < dd->num_rcv_contexts; i++) { 929 rcd = hfi1_rcd_get_by_index(dd, i); 930 if (rcd && (i < dd->first_dyn_alloc_ctxt || rcd->is_vnic)) 931 hfi1_set_fast(rcd); 932 hfi1_rcd_put(rcd); 933 } 934 } 935 936 void set_all_slowpath(struct hfi1_devdata *dd) 937 { 938 struct hfi1_ctxtdata *rcd; 939 u16 i; 940 941 /* HFI1_CTRL_CTXT must always use the slow path interrupt handler */ 942 for (i = HFI1_CTRL_CTXT + 1; i < dd->num_rcv_contexts; i++) { 943 rcd = hfi1_rcd_get_by_index(dd, i); 944 if (!rcd) 945 continue; 946 if (i < dd->first_dyn_alloc_ctxt || rcd->is_vnic) 947 rcd->do_interrupt = rcd->slow_handler; 948 949 hfi1_rcd_put(rcd); 950 } 951 } 952 953 static bool __set_armed_to_active(struct hfi1_packet *packet) 954 { 955 u8 etype = rhf_rcv_type(packet->rhf); 956 u8 sc = SC15_PACKET; 957 958 if (etype == RHF_RCV_TYPE_IB) { 959 struct ib_header *hdr = hfi1_get_msgheader(packet->rcd, 960 packet->rhf_addr); 961 sc = hfi1_9B_get_sc5(hdr, packet->rhf); 962 } else if (etype == RHF_RCV_TYPE_BYPASS) { 963 struct hfi1_16b_header *hdr = hfi1_get_16B_header( 964 packet->rcd, 965 packet->rhf_addr); 966 sc = hfi1_16B_get_sc(hdr); 967 } 968 if (sc != SC15_PACKET) { 969 int hwstate = driver_lstate(packet->rcd->ppd); 970 struct work_struct *lsaw = 971 &packet->rcd->ppd->linkstate_active_work; 972 973 if (hwstate != IB_PORT_ACTIVE) { 974 dd_dev_info(packet->rcd->dd, 975 "Unexpected link state %s\n", 976 opa_lstate_name(hwstate)); 977 return false; 978 } 979 980 queue_work(packet->rcd->ppd->link_wq, lsaw); 981 return true; 982 } 983 return false; 984 } 985 986 /** 987 * set_armed_to_active - the fast path for armed to active 988 * @packet: the packet structure 989 * 990 * Return true if packet processing needs to bail. 991 */ 992 static bool set_armed_to_active(struct hfi1_packet *packet) 993 { 994 if (likely(packet->rcd->ppd->host_link_state != HLS_UP_ARMED)) 995 return false; 996 return __set_armed_to_active(packet); 997 } 998 999 /* 1000 * handle_receive_interrupt - receive a packet 1001 * @rcd: the context 1002 * 1003 * Called from interrupt handler for errors or receive interrupt. 1004 * This is the slow path interrupt handler. 1005 */ 1006 int handle_receive_interrupt(struct hfi1_ctxtdata *rcd, int thread) 1007 { 1008 struct hfi1_devdata *dd = rcd->dd; 1009 u32 hdrqtail; 1010 int needset, last = RCV_PKT_OK; 1011 struct hfi1_packet packet; 1012 int skip_pkt = 0; 1013 1014 /* Control context will always use the slow path interrupt handler */ 1015 needset = (rcd->ctxt == HFI1_CTRL_CTXT) ? 0 : 1; 1016 1017 init_packet(rcd, &packet); 1018 1019 if (!get_dma_rtail_setting(rcd)) { 1020 if (last_rcv_seq(rcd, rhf_rcv_seq(packet.rhf))) { 1021 last = RCV_PKT_DONE; 1022 goto bail; 1023 } 1024 hdrqtail = 0; 1025 } else { 1026 hdrqtail = get_rcvhdrtail(rcd); 1027 if (packet.rhqoff == hdrqtail) { 1028 last = RCV_PKT_DONE; 1029 goto bail; 1030 } 1031 smp_rmb(); /* prevent speculative reads of dma'ed hdrq */ 1032 1033 /* 1034 * Control context can potentially receive an invalid 1035 * rhf. Drop such packets. 1036 */ 1037 if (rcd->ctxt == HFI1_CTRL_CTXT) 1038 if (last_rcv_seq(rcd, rhf_rcv_seq(packet.rhf))) 1039 skip_pkt = 1; 1040 } 1041 1042 prescan_rxq(rcd, &packet); 1043 1044 while (last == RCV_PKT_OK) { 1045 if (hfi1_need_drop(dd)) { 1046 /* On to the next packet */ 1047 packet.rhqoff += packet.rsize; 1048 packet.rhf_addr = (__le32 *)rcd->rcvhdrq + 1049 packet.rhqoff + 1050 rcd->rhf_offset; 1051 packet.rhf = rhf_to_cpu(packet.rhf_addr); 1052 1053 } else if (skip_pkt) { 1054 last = skip_rcv_packet(&packet, thread); 1055 skip_pkt = 0; 1056 } else { 1057 if (set_armed_to_active(&packet)) 1058 goto bail; 1059 last = process_rcv_packet(&packet, thread); 1060 } 1061 1062 if (!get_dma_rtail_setting(rcd)) { 1063 if (hfi1_seq_incr(rcd, rhf_rcv_seq(packet.rhf))) 1064 last = RCV_PKT_DONE; 1065 } else { 1066 if (packet.rhqoff == hdrqtail) 1067 last = RCV_PKT_DONE; 1068 /* 1069 * Control context can potentially receive an invalid 1070 * rhf. Drop such packets. 1071 */ 1072 if (rcd->ctxt == HFI1_CTRL_CTXT) { 1073 bool lseq; 1074 1075 lseq = hfi1_seq_incr(rcd, 1076 rhf_rcv_seq(packet.rhf)); 1077 if (!last && lseq) 1078 skip_pkt = 1; 1079 } 1080 } 1081 1082 if (needset) { 1083 needset = false; 1084 set_all_fastpath(dd, rcd); 1085 } 1086 process_rcv_update(last, &packet); 1087 } 1088 1089 process_rcv_qp_work(&packet); 1090 hfi1_set_rcd_head(rcd, packet.rhqoff); 1091 1092 bail: 1093 /* 1094 * Always write head at end, and setup rcv interrupt, even 1095 * if no packets were processed. 1096 */ 1097 finish_packet(&packet); 1098 return last; 1099 } 1100 1101 /* 1102 * handle_receive_interrupt_napi_sp - receive a packet 1103 * @rcd: the context 1104 * @budget: polling budget 1105 * 1106 * Called from interrupt handler for errors or receive interrupt. 1107 * This is the slow path interrupt handler 1108 * when executing napi soft irq environment. 1109 */ 1110 int handle_receive_interrupt_napi_sp(struct hfi1_ctxtdata *rcd, int budget) 1111 { 1112 struct hfi1_devdata *dd = rcd->dd; 1113 int last = RCV_PKT_OK; 1114 bool needset = true; 1115 struct hfi1_packet packet; 1116 1117 init_packet(rcd, &packet); 1118 if (last_rcv_seq(rcd, rhf_rcv_seq(packet.rhf))) 1119 goto bail; 1120 1121 while (last != RCV_PKT_DONE && packet.numpkt < budget) { 1122 if (hfi1_need_drop(dd)) { 1123 /* On to the next packet */ 1124 packet.rhqoff += packet.rsize; 1125 packet.rhf_addr = (__le32 *)rcd->rcvhdrq + 1126 packet.rhqoff + 1127 rcd->rhf_offset; 1128 packet.rhf = rhf_to_cpu(packet.rhf_addr); 1129 1130 } else { 1131 if (set_armed_to_active(&packet)) 1132 goto bail; 1133 process_rcv_packet_napi(&packet); 1134 } 1135 1136 if (hfi1_seq_incr(rcd, rhf_rcv_seq(packet.rhf))) 1137 last = RCV_PKT_DONE; 1138 1139 if (needset) { 1140 needset = false; 1141 set_all_fastpath(dd, rcd); 1142 } 1143 1144 process_rcv_update(last, &packet); 1145 } 1146 1147 hfi1_set_rcd_head(rcd, packet.rhqoff); 1148 1149 bail: 1150 /* 1151 * Always write head at end, and setup rcv interrupt, even 1152 * if no packets were processed. 1153 */ 1154 finish_packet(&packet); 1155 return packet.numpkt; 1156 } 1157 1158 /* 1159 * We may discover in the interrupt that the hardware link state has 1160 * changed from ARMED to ACTIVE (due to the arrival of a non-SC15 packet), 1161 * and we need to update the driver's notion of the link state. We cannot 1162 * run set_link_state from interrupt context, so we queue this function on 1163 * a workqueue. 1164 * 1165 * We delay the regular interrupt processing until after the state changes 1166 * so that the link will be in the correct state by the time any application 1167 * we wake up attempts to send a reply to any message it received. 1168 * (Subsequent receive interrupts may possibly force the wakeup before we 1169 * update the link state.) 1170 * 1171 * The rcd is freed in hfi1_free_ctxtdata after hfi1_postinit_cleanup invokes 1172 * dd->f_cleanup(dd) to disable the interrupt handler and flush workqueues, 1173 * so we're safe from use-after-free of the rcd. 1174 */ 1175 void receive_interrupt_work(struct work_struct *work) 1176 { 1177 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata, 1178 linkstate_active_work); 1179 struct hfi1_devdata *dd = ppd->dd; 1180 struct hfi1_ctxtdata *rcd; 1181 u16 i; 1182 1183 /* Received non-SC15 packet implies neighbor_normal */ 1184 ppd->neighbor_normal = 1; 1185 set_link_state(ppd, HLS_UP_ACTIVE); 1186 1187 /* 1188 * Interrupt all statically allocated kernel contexts that could 1189 * have had an interrupt during auto activation. 1190 */ 1191 for (i = HFI1_CTRL_CTXT; i < dd->first_dyn_alloc_ctxt; i++) { 1192 rcd = hfi1_rcd_get_by_index(dd, i); 1193 if (rcd) 1194 force_recv_intr(rcd); 1195 hfi1_rcd_put(rcd); 1196 } 1197 } 1198 1199 /* 1200 * Convert a given MTU size to the on-wire MAD packet enumeration. 1201 * Return -1 if the size is invalid. 1202 */ 1203 int mtu_to_enum(u32 mtu, int default_if_bad) 1204 { 1205 switch (mtu) { 1206 case 0: return OPA_MTU_0; 1207 case 256: return OPA_MTU_256; 1208 case 512: return OPA_MTU_512; 1209 case 1024: return OPA_MTU_1024; 1210 case 2048: return OPA_MTU_2048; 1211 case 4096: return OPA_MTU_4096; 1212 case 8192: return OPA_MTU_8192; 1213 case 10240: return OPA_MTU_10240; 1214 } 1215 return default_if_bad; 1216 } 1217 1218 u16 enum_to_mtu(int mtu) 1219 { 1220 switch (mtu) { 1221 case OPA_MTU_0: return 0; 1222 case OPA_MTU_256: return 256; 1223 case OPA_MTU_512: return 512; 1224 case OPA_MTU_1024: return 1024; 1225 case OPA_MTU_2048: return 2048; 1226 case OPA_MTU_4096: return 4096; 1227 case OPA_MTU_8192: return 8192; 1228 case OPA_MTU_10240: return 10240; 1229 default: return 0xffff; 1230 } 1231 } 1232 1233 /* 1234 * set_mtu - set the MTU 1235 * @ppd: the per port data 1236 * 1237 * We can handle "any" incoming size, the issue here is whether we 1238 * need to restrict our outgoing size. We do not deal with what happens 1239 * to programs that are already running when the size changes. 1240 */ 1241 int set_mtu(struct hfi1_pportdata *ppd) 1242 { 1243 struct hfi1_devdata *dd = ppd->dd; 1244 int i, drain, ret = 0, is_up = 0; 1245 1246 ppd->ibmtu = 0; 1247 for (i = 0; i < ppd->vls_supported; i++) 1248 if (ppd->ibmtu < dd->vld[i].mtu) 1249 ppd->ibmtu = dd->vld[i].mtu; 1250 ppd->ibmaxlen = ppd->ibmtu + lrh_max_header_bytes(ppd->dd); 1251 1252 mutex_lock(&ppd->hls_lock); 1253 if (ppd->host_link_state == HLS_UP_INIT || 1254 ppd->host_link_state == HLS_UP_ARMED || 1255 ppd->host_link_state == HLS_UP_ACTIVE) 1256 is_up = 1; 1257 1258 drain = !is_ax(dd) && is_up; 1259 1260 if (drain) 1261 /* 1262 * MTU is specified per-VL. To ensure that no packet gets 1263 * stuck (due, e.g., to the MTU for the packet's VL being 1264 * reduced), empty the per-VL FIFOs before adjusting MTU. 1265 */ 1266 ret = stop_drain_data_vls(dd); 1267 1268 if (ret) { 1269 dd_dev_err(dd, "%s: cannot stop/drain VLs - refusing to change per-VL MTUs\n", 1270 __func__); 1271 goto err; 1272 } 1273 1274 hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_MTU, 0); 1275 1276 if (drain) 1277 open_fill_data_vls(dd); /* reopen all VLs */ 1278 1279 err: 1280 mutex_unlock(&ppd->hls_lock); 1281 1282 return ret; 1283 } 1284 1285 int hfi1_set_lid(struct hfi1_pportdata *ppd, u32 lid, u8 lmc) 1286 { 1287 struct hfi1_devdata *dd = ppd->dd; 1288 1289 ppd->lid = lid; 1290 ppd->lmc = lmc; 1291 hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_LIDLMC, 0); 1292 1293 dd_dev_info(dd, "port %u: got a lid: 0x%x\n", ppd->port, lid); 1294 1295 return 0; 1296 } 1297 1298 void shutdown_led_override(struct hfi1_pportdata *ppd) 1299 { 1300 struct hfi1_devdata *dd = ppd->dd; 1301 1302 /* 1303 * This pairs with the memory barrier in hfi1_start_led_override to 1304 * ensure that we read the correct state of LED beaconing represented 1305 * by led_override_timer_active 1306 */ 1307 smp_rmb(); 1308 if (atomic_read(&ppd->led_override_timer_active)) { 1309 del_timer_sync(&ppd->led_override_timer); 1310 atomic_set(&ppd->led_override_timer_active, 0); 1311 /* Ensure the atomic_set is visible to all CPUs */ 1312 smp_wmb(); 1313 } 1314 1315 /* Hand control of the LED to the DC for normal operation */ 1316 write_csr(dd, DCC_CFG_LED_CNTRL, 0); 1317 } 1318 1319 static void run_led_override(struct timer_list *t) 1320 { 1321 struct hfi1_pportdata *ppd = from_timer(ppd, t, led_override_timer); 1322 struct hfi1_devdata *dd = ppd->dd; 1323 unsigned long timeout; 1324 int phase_idx; 1325 1326 if (!(dd->flags & HFI1_INITTED)) 1327 return; 1328 1329 phase_idx = ppd->led_override_phase & 1; 1330 1331 setextled(dd, phase_idx); 1332 1333 timeout = ppd->led_override_vals[phase_idx]; 1334 1335 /* Set up for next phase */ 1336 ppd->led_override_phase = !ppd->led_override_phase; 1337 1338 mod_timer(&ppd->led_override_timer, jiffies + timeout); 1339 } 1340 1341 /* 1342 * To have the LED blink in a particular pattern, provide timeon and timeoff 1343 * in milliseconds. 1344 * To turn off custom blinking and return to normal operation, use 1345 * shutdown_led_override() 1346 */ 1347 void hfi1_start_led_override(struct hfi1_pportdata *ppd, unsigned int timeon, 1348 unsigned int timeoff) 1349 { 1350 if (!(ppd->dd->flags & HFI1_INITTED)) 1351 return; 1352 1353 /* Convert to jiffies for direct use in timer */ 1354 ppd->led_override_vals[0] = msecs_to_jiffies(timeoff); 1355 ppd->led_override_vals[1] = msecs_to_jiffies(timeon); 1356 1357 /* Arbitrarily start from LED on phase */ 1358 ppd->led_override_phase = 1; 1359 1360 /* 1361 * If the timer has not already been started, do so. Use a "quick" 1362 * timeout so the handler will be called soon to look at our request. 1363 */ 1364 if (!timer_pending(&ppd->led_override_timer)) { 1365 timer_setup(&ppd->led_override_timer, run_led_override, 0); 1366 ppd->led_override_timer.expires = jiffies + 1; 1367 add_timer(&ppd->led_override_timer); 1368 atomic_set(&ppd->led_override_timer_active, 1); 1369 /* Ensure the atomic_set is visible to all CPUs */ 1370 smp_wmb(); 1371 } 1372 } 1373 1374 /** 1375 * hfi1_reset_device - reset the chip if possible 1376 * @unit: the device to reset 1377 * 1378 * Whether or not reset is successful, we attempt to re-initialize the chip 1379 * (that is, much like a driver unload/reload). We clear the INITTED flag 1380 * so that the various entry points will fail until we reinitialize. For 1381 * now, we only allow this if no user contexts are open that use chip resources 1382 */ 1383 int hfi1_reset_device(int unit) 1384 { 1385 int ret; 1386 struct hfi1_devdata *dd = hfi1_lookup(unit); 1387 struct hfi1_pportdata *ppd; 1388 int pidx; 1389 1390 if (!dd) { 1391 ret = -ENODEV; 1392 goto bail; 1393 } 1394 1395 dd_dev_info(dd, "Reset on unit %u requested\n", unit); 1396 1397 if (!dd->kregbase1 || !(dd->flags & HFI1_PRESENT)) { 1398 dd_dev_info(dd, 1399 "Invalid unit number %u or not initialized or not present\n", 1400 unit); 1401 ret = -ENXIO; 1402 goto bail; 1403 } 1404 1405 /* If there are any user/vnic contexts, we cannot reset */ 1406 mutex_lock(&hfi1_mutex); 1407 if (dd->rcd) 1408 if (hfi1_stats.sps_ctxts) { 1409 mutex_unlock(&hfi1_mutex); 1410 ret = -EBUSY; 1411 goto bail; 1412 } 1413 mutex_unlock(&hfi1_mutex); 1414 1415 for (pidx = 0; pidx < dd->num_pports; ++pidx) { 1416 ppd = dd->pport + pidx; 1417 1418 shutdown_led_override(ppd); 1419 } 1420 if (dd->flags & HFI1_HAS_SEND_DMA) 1421 sdma_exit(dd); 1422 1423 hfi1_reset_cpu_counters(dd); 1424 1425 ret = hfi1_init(dd, 1); 1426 1427 if (ret) 1428 dd_dev_err(dd, 1429 "Reinitialize unit %u after reset failed with %d\n", 1430 unit, ret); 1431 else 1432 dd_dev_info(dd, "Reinitialized unit %u after resetting\n", 1433 unit); 1434 1435 bail: 1436 return ret; 1437 } 1438 1439 static inline void hfi1_setup_ib_header(struct hfi1_packet *packet) 1440 { 1441 packet->hdr = (struct hfi1_ib_message_header *) 1442 hfi1_get_msgheader(packet->rcd, 1443 packet->rhf_addr); 1444 packet->hlen = (u8 *)packet->rhf_addr - (u8 *)packet->hdr; 1445 } 1446 1447 static int hfi1_bypass_ingress_pkt_check(struct hfi1_packet *packet) 1448 { 1449 struct hfi1_pportdata *ppd = packet->rcd->ppd; 1450 1451 /* slid and dlid cannot be 0 */ 1452 if ((!packet->slid) || (!packet->dlid)) 1453 return -EINVAL; 1454 1455 /* Compare port lid with incoming packet dlid */ 1456 if ((!(hfi1_is_16B_mcast(packet->dlid))) && 1457 (packet->dlid != 1458 opa_get_lid(be32_to_cpu(OPA_LID_PERMISSIVE), 16B))) { 1459 if ((packet->dlid & ~((1 << ppd->lmc) - 1)) != ppd->lid) 1460 return -EINVAL; 1461 } 1462 1463 /* No multicast packets with SC15 */ 1464 if ((hfi1_is_16B_mcast(packet->dlid)) && (packet->sc == 0xF)) 1465 return -EINVAL; 1466 1467 /* Packets with permissive DLID always on SC15 */ 1468 if ((packet->dlid == opa_get_lid(be32_to_cpu(OPA_LID_PERMISSIVE), 1469 16B)) && 1470 (packet->sc != 0xF)) 1471 return -EINVAL; 1472 1473 return 0; 1474 } 1475 1476 static int hfi1_setup_9B_packet(struct hfi1_packet *packet) 1477 { 1478 struct hfi1_ibport *ibp = rcd_to_iport(packet->rcd); 1479 struct ib_header *hdr; 1480 u8 lnh; 1481 1482 hfi1_setup_ib_header(packet); 1483 hdr = packet->hdr; 1484 1485 lnh = ib_get_lnh(hdr); 1486 if (lnh == HFI1_LRH_BTH) { 1487 packet->ohdr = &hdr->u.oth; 1488 packet->grh = NULL; 1489 } else if (lnh == HFI1_LRH_GRH) { 1490 u32 vtf; 1491 1492 packet->ohdr = &hdr->u.l.oth; 1493 packet->grh = &hdr->u.l.grh; 1494 if (packet->grh->next_hdr != IB_GRH_NEXT_HDR) 1495 goto drop; 1496 vtf = be32_to_cpu(packet->grh->version_tclass_flow); 1497 if ((vtf >> IB_GRH_VERSION_SHIFT) != IB_GRH_VERSION) 1498 goto drop; 1499 } else { 1500 goto drop; 1501 } 1502 1503 /* Query commonly used fields from packet header */ 1504 packet->payload = packet->ebuf; 1505 packet->opcode = ib_bth_get_opcode(packet->ohdr); 1506 packet->slid = ib_get_slid(hdr); 1507 packet->dlid = ib_get_dlid(hdr); 1508 if (unlikely((packet->dlid >= be16_to_cpu(IB_MULTICAST_LID_BASE)) && 1509 (packet->dlid != be16_to_cpu(IB_LID_PERMISSIVE)))) 1510 packet->dlid += opa_get_mcast_base(OPA_MCAST_NR) - 1511 be16_to_cpu(IB_MULTICAST_LID_BASE); 1512 packet->sl = ib_get_sl(hdr); 1513 packet->sc = hfi1_9B_get_sc5(hdr, packet->rhf); 1514 packet->pad = ib_bth_get_pad(packet->ohdr); 1515 packet->extra_byte = 0; 1516 packet->pkey = ib_bth_get_pkey(packet->ohdr); 1517 packet->migrated = ib_bth_is_migration(packet->ohdr); 1518 1519 return 0; 1520 drop: 1521 ibp->rvp.n_pkt_drops++; 1522 return -EINVAL; 1523 } 1524 1525 static int hfi1_setup_bypass_packet(struct hfi1_packet *packet) 1526 { 1527 /* 1528 * Bypass packets have a different header/payload split 1529 * compared to an IB packet. 1530 * Current split is set such that 16 bytes of the actual 1531 * header is in the header buffer and the remining is in 1532 * the eager buffer. We chose 16 since hfi1 driver only 1533 * supports 16B bypass packets and we will be able to 1534 * receive the entire LRH with such a split. 1535 */ 1536 1537 struct hfi1_ctxtdata *rcd = packet->rcd; 1538 struct hfi1_pportdata *ppd = rcd->ppd; 1539 struct hfi1_ibport *ibp = &ppd->ibport_data; 1540 u8 l4; 1541 1542 packet->hdr = (struct hfi1_16b_header *) 1543 hfi1_get_16B_header(packet->rcd, 1544 packet->rhf_addr); 1545 l4 = hfi1_16B_get_l4(packet->hdr); 1546 if (l4 == OPA_16B_L4_IB_LOCAL) { 1547 packet->ohdr = packet->ebuf; 1548 packet->grh = NULL; 1549 packet->opcode = ib_bth_get_opcode(packet->ohdr); 1550 packet->pad = hfi1_16B_bth_get_pad(packet->ohdr); 1551 /* hdr_len_by_opcode already has an IB LRH factored in */ 1552 packet->hlen = hdr_len_by_opcode[packet->opcode] + 1553 (LRH_16B_BYTES - LRH_9B_BYTES); 1554 packet->migrated = opa_bth_is_migration(packet->ohdr); 1555 } else if (l4 == OPA_16B_L4_IB_GLOBAL) { 1556 u32 vtf; 1557 u8 grh_len = sizeof(struct ib_grh); 1558 1559 packet->ohdr = packet->ebuf + grh_len; 1560 packet->grh = packet->ebuf; 1561 packet->opcode = ib_bth_get_opcode(packet->ohdr); 1562 packet->pad = hfi1_16B_bth_get_pad(packet->ohdr); 1563 /* hdr_len_by_opcode already has an IB LRH factored in */ 1564 packet->hlen = hdr_len_by_opcode[packet->opcode] + 1565 (LRH_16B_BYTES - LRH_9B_BYTES) + grh_len; 1566 packet->migrated = opa_bth_is_migration(packet->ohdr); 1567 1568 if (packet->grh->next_hdr != IB_GRH_NEXT_HDR) 1569 goto drop; 1570 vtf = be32_to_cpu(packet->grh->version_tclass_flow); 1571 if ((vtf >> IB_GRH_VERSION_SHIFT) != IB_GRH_VERSION) 1572 goto drop; 1573 } else if (l4 == OPA_16B_L4_FM) { 1574 packet->mgmt = packet->ebuf; 1575 packet->ohdr = NULL; 1576 packet->grh = NULL; 1577 packet->opcode = IB_OPCODE_UD_SEND_ONLY; 1578 packet->pad = OPA_16B_L4_FM_PAD; 1579 packet->hlen = OPA_16B_L4_FM_HLEN; 1580 packet->migrated = false; 1581 } else { 1582 goto drop; 1583 } 1584 1585 /* Query commonly used fields from packet header */ 1586 packet->payload = packet->ebuf + packet->hlen - LRH_16B_BYTES; 1587 packet->slid = hfi1_16B_get_slid(packet->hdr); 1588 packet->dlid = hfi1_16B_get_dlid(packet->hdr); 1589 if (unlikely(hfi1_is_16B_mcast(packet->dlid))) 1590 packet->dlid += opa_get_mcast_base(OPA_MCAST_NR) - 1591 opa_get_lid(opa_get_mcast_base(OPA_MCAST_NR), 1592 16B); 1593 packet->sc = hfi1_16B_get_sc(packet->hdr); 1594 packet->sl = ibp->sc_to_sl[packet->sc]; 1595 packet->extra_byte = SIZE_OF_LT; 1596 packet->pkey = hfi1_16B_get_pkey(packet->hdr); 1597 1598 if (hfi1_bypass_ingress_pkt_check(packet)) 1599 goto drop; 1600 1601 return 0; 1602 drop: 1603 hfi1_cdbg(PKT, "%s: packet dropped\n", __func__); 1604 ibp->rvp.n_pkt_drops++; 1605 return -EINVAL; 1606 } 1607 1608 static void show_eflags_errs(struct hfi1_packet *packet) 1609 { 1610 struct hfi1_ctxtdata *rcd = packet->rcd; 1611 u32 rte = rhf_rcv_type_err(packet->rhf); 1612 1613 dd_dev_err(rcd->dd, 1614 "receive context %d: rhf 0x%016llx, errs [ %s%s%s%s%s%s%s] rte 0x%x\n", 1615 rcd->ctxt, packet->rhf, 1616 packet->rhf & RHF_K_HDR_LEN_ERR ? "k_hdr_len " : "", 1617 packet->rhf & RHF_DC_UNC_ERR ? "dc_unc " : "", 1618 packet->rhf & RHF_DC_ERR ? "dc " : "", 1619 packet->rhf & RHF_TID_ERR ? "tid " : "", 1620 packet->rhf & RHF_LEN_ERR ? "len " : "", 1621 packet->rhf & RHF_ECC_ERR ? "ecc " : "", 1622 packet->rhf & RHF_ICRC_ERR ? "icrc " : "", 1623 rte); 1624 } 1625 1626 void handle_eflags(struct hfi1_packet *packet) 1627 { 1628 struct hfi1_ctxtdata *rcd = packet->rcd; 1629 1630 rcv_hdrerr(rcd, rcd->ppd, packet); 1631 if (rhf_err_flags(packet->rhf)) 1632 show_eflags_errs(packet); 1633 } 1634 1635 static void hfi1_ipoib_ib_rcv(struct hfi1_packet *packet) 1636 { 1637 struct hfi1_ibport *ibp; 1638 struct net_device *netdev; 1639 struct hfi1_ctxtdata *rcd = packet->rcd; 1640 struct napi_struct *napi = rcd->napi; 1641 struct sk_buff *skb; 1642 struct hfi1_netdev_rxq *rxq = container_of(napi, 1643 struct hfi1_netdev_rxq, napi); 1644 u32 extra_bytes; 1645 u32 tlen, qpnum; 1646 bool do_work, do_cnp; 1647 1648 trace_hfi1_rcvhdr(packet); 1649 1650 hfi1_setup_ib_header(packet); 1651 1652 packet->ohdr = &((struct ib_header *)packet->hdr)->u.oth; 1653 packet->grh = NULL; 1654 1655 if (unlikely(rhf_err_flags(packet->rhf))) { 1656 handle_eflags(packet); 1657 return; 1658 } 1659 1660 qpnum = ib_bth_get_qpn(packet->ohdr); 1661 netdev = hfi1_netdev_get_data(rcd->dd, qpnum); 1662 if (!netdev) 1663 goto drop_no_nd; 1664 1665 trace_input_ibhdr(rcd->dd, packet, !!(rhf_dc_info(packet->rhf))); 1666 trace_ctxt_rsm_hist(rcd->ctxt); 1667 1668 /* handle congestion notifications */ 1669 do_work = hfi1_may_ecn(packet); 1670 if (unlikely(do_work)) { 1671 do_cnp = (packet->opcode != IB_OPCODE_CNP); 1672 (void)hfi1_process_ecn_slowpath(hfi1_ipoib_priv(netdev)->qp, 1673 packet, do_cnp); 1674 } 1675 1676 /* 1677 * We have split point after last byte of DETH 1678 * lets strip padding and CRC and ICRC. 1679 * tlen is whole packet len so we need to 1680 * subtract header size as well. 1681 */ 1682 tlen = packet->tlen; 1683 extra_bytes = ib_bth_get_pad(packet->ohdr) + (SIZE_OF_CRC << 2) + 1684 packet->hlen; 1685 if (unlikely(tlen < extra_bytes)) 1686 goto drop; 1687 1688 tlen -= extra_bytes; 1689 1690 skb = hfi1_ipoib_prepare_skb(rxq, tlen, packet->ebuf); 1691 if (unlikely(!skb)) 1692 goto drop; 1693 1694 dev_sw_netstats_rx_add(netdev, skb->len); 1695 1696 skb->dev = netdev; 1697 skb->pkt_type = PACKET_HOST; 1698 netif_receive_skb(skb); 1699 1700 return; 1701 1702 drop: 1703 ++netdev->stats.rx_dropped; 1704 drop_no_nd: 1705 ibp = rcd_to_iport(packet->rcd); 1706 ++ibp->rvp.n_pkt_drops; 1707 } 1708 1709 /* 1710 * The following functions are called by the interrupt handler. They are type 1711 * specific handlers for each packet type. 1712 */ 1713 static void process_receive_ib(struct hfi1_packet *packet) 1714 { 1715 if (hfi1_setup_9B_packet(packet)) 1716 return; 1717 1718 if (unlikely(hfi1_dbg_should_fault_rx(packet))) 1719 return; 1720 1721 trace_hfi1_rcvhdr(packet); 1722 1723 if (unlikely(rhf_err_flags(packet->rhf))) { 1724 handle_eflags(packet); 1725 return; 1726 } 1727 1728 hfi1_ib_rcv(packet); 1729 } 1730 1731 static void process_receive_bypass(struct hfi1_packet *packet) 1732 { 1733 struct hfi1_devdata *dd = packet->rcd->dd; 1734 1735 if (hfi1_setup_bypass_packet(packet)) 1736 return; 1737 1738 trace_hfi1_rcvhdr(packet); 1739 1740 if (unlikely(rhf_err_flags(packet->rhf))) { 1741 handle_eflags(packet); 1742 return; 1743 } 1744 1745 if (hfi1_16B_get_l2(packet->hdr) == 0x2) { 1746 hfi1_16B_rcv(packet); 1747 } else { 1748 dd_dev_err(dd, 1749 "Bypass packets other than 16B are not supported in normal operation. Dropping\n"); 1750 incr_cntr64(&dd->sw_rcv_bypass_packet_errors); 1751 if (!(dd->err_info_rcvport.status_and_code & 1752 OPA_EI_STATUS_SMASK)) { 1753 u64 *flits = packet->ebuf; 1754 1755 if (flits && !(packet->rhf & RHF_LEN_ERR)) { 1756 dd->err_info_rcvport.packet_flit1 = flits[0]; 1757 dd->err_info_rcvport.packet_flit2 = 1758 packet->tlen > sizeof(flits[0]) ? 1759 flits[1] : 0; 1760 } 1761 dd->err_info_rcvport.status_and_code |= 1762 (OPA_EI_STATUS_SMASK | BAD_L2_ERR); 1763 } 1764 } 1765 } 1766 1767 static void process_receive_error(struct hfi1_packet *packet) 1768 { 1769 /* KHdrHCRCErr -- KDETH packet with a bad HCRC */ 1770 if (unlikely( 1771 hfi1_dbg_fault_suppress_err(&packet->rcd->dd->verbs_dev) && 1772 (rhf_rcv_type_err(packet->rhf) == RHF_RCV_TYPE_ERROR || 1773 packet->rhf & RHF_DC_ERR))) 1774 return; 1775 1776 hfi1_setup_ib_header(packet); 1777 handle_eflags(packet); 1778 1779 if (unlikely(rhf_err_flags(packet->rhf))) 1780 dd_dev_err(packet->rcd->dd, 1781 "Unhandled error packet received. Dropping.\n"); 1782 } 1783 1784 static void kdeth_process_expected(struct hfi1_packet *packet) 1785 { 1786 hfi1_setup_9B_packet(packet); 1787 if (unlikely(hfi1_dbg_should_fault_rx(packet))) 1788 return; 1789 1790 if (unlikely(rhf_err_flags(packet->rhf))) { 1791 struct hfi1_ctxtdata *rcd = packet->rcd; 1792 1793 if (hfi1_handle_kdeth_eflags(rcd, rcd->ppd, packet)) 1794 return; 1795 } 1796 1797 hfi1_kdeth_expected_rcv(packet); 1798 } 1799 1800 static void kdeth_process_eager(struct hfi1_packet *packet) 1801 { 1802 hfi1_setup_9B_packet(packet); 1803 if (unlikely(hfi1_dbg_should_fault_rx(packet))) 1804 return; 1805 1806 trace_hfi1_rcvhdr(packet); 1807 if (unlikely(rhf_err_flags(packet->rhf))) { 1808 struct hfi1_ctxtdata *rcd = packet->rcd; 1809 1810 show_eflags_errs(packet); 1811 if (hfi1_handle_kdeth_eflags(rcd, rcd->ppd, packet)) 1812 return; 1813 } 1814 1815 hfi1_kdeth_eager_rcv(packet); 1816 } 1817 1818 static void process_receive_invalid(struct hfi1_packet *packet) 1819 { 1820 dd_dev_err(packet->rcd->dd, "Invalid packet type %d. Dropping\n", 1821 rhf_rcv_type(packet->rhf)); 1822 } 1823 1824 #define HFI1_RCVHDR_DUMP_MAX 5 1825 1826 void seqfile_dump_rcd(struct seq_file *s, struct hfi1_ctxtdata *rcd) 1827 { 1828 struct hfi1_packet packet; 1829 struct ps_mdata mdata; 1830 int i; 1831 1832 seq_printf(s, "Rcd %u: RcvHdr cnt %u entsize %u %s ctrl 0x%08llx status 0x%08llx, head %llu tail %llu sw head %u\n", 1833 rcd->ctxt, get_hdrq_cnt(rcd), get_hdrqentsize(rcd), 1834 get_dma_rtail_setting(rcd) ? 1835 "dma_rtail" : "nodma_rtail", 1836 read_kctxt_csr(rcd->dd, rcd->ctxt, RCV_CTXT_CTRL), 1837 read_kctxt_csr(rcd->dd, rcd->ctxt, RCV_CTXT_STATUS), 1838 read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_HEAD) & 1839 RCV_HDR_HEAD_HEAD_MASK, 1840 read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_TAIL), 1841 rcd->head); 1842 1843 init_packet(rcd, &packet); 1844 init_ps_mdata(&mdata, &packet); 1845 1846 for (i = 0; i < HFI1_RCVHDR_DUMP_MAX; i++) { 1847 __le32 *rhf_addr = (__le32 *)rcd->rcvhdrq + mdata.ps_head + 1848 rcd->rhf_offset; 1849 struct ib_header *hdr; 1850 u64 rhf = rhf_to_cpu(rhf_addr); 1851 u32 etype = rhf_rcv_type(rhf), qpn; 1852 u8 opcode; 1853 u32 psn; 1854 u8 lnh; 1855 1856 if (ps_done(&mdata, rhf, rcd)) 1857 break; 1858 1859 if (ps_skip(&mdata, rhf, rcd)) 1860 goto next; 1861 1862 if (etype > RHF_RCV_TYPE_IB) 1863 goto next; 1864 1865 packet.hdr = hfi1_get_msgheader(rcd, rhf_addr); 1866 hdr = packet.hdr; 1867 1868 lnh = be16_to_cpu(hdr->lrh[0]) & 3; 1869 1870 if (lnh == HFI1_LRH_BTH) 1871 packet.ohdr = &hdr->u.oth; 1872 else if (lnh == HFI1_LRH_GRH) 1873 packet.ohdr = &hdr->u.l.oth; 1874 else 1875 goto next; /* just in case */ 1876 1877 opcode = (be32_to_cpu(packet.ohdr->bth[0]) >> 24); 1878 qpn = be32_to_cpu(packet.ohdr->bth[1]) & RVT_QPN_MASK; 1879 psn = mask_psn(be32_to_cpu(packet.ohdr->bth[2])); 1880 1881 seq_printf(s, "\tEnt %u: opcode 0x%x, qpn 0x%x, psn 0x%x\n", 1882 mdata.ps_head, opcode, qpn, psn); 1883 next: 1884 update_ps_mdata(&mdata, rcd); 1885 } 1886 } 1887 1888 const rhf_rcv_function_ptr normal_rhf_rcv_functions[] = { 1889 [RHF_RCV_TYPE_EXPECTED] = kdeth_process_expected, 1890 [RHF_RCV_TYPE_EAGER] = kdeth_process_eager, 1891 [RHF_RCV_TYPE_IB] = process_receive_ib, 1892 [RHF_RCV_TYPE_ERROR] = process_receive_error, 1893 [RHF_RCV_TYPE_BYPASS] = process_receive_bypass, 1894 [RHF_RCV_TYPE_INVALID5] = process_receive_invalid, 1895 [RHF_RCV_TYPE_INVALID6] = process_receive_invalid, 1896 [RHF_RCV_TYPE_INVALID7] = process_receive_invalid, 1897 }; 1898 1899 const rhf_rcv_function_ptr netdev_rhf_rcv_functions[] = { 1900 [RHF_RCV_TYPE_EXPECTED] = process_receive_invalid, 1901 [RHF_RCV_TYPE_EAGER] = process_receive_invalid, 1902 [RHF_RCV_TYPE_IB] = hfi1_ipoib_ib_rcv, 1903 [RHF_RCV_TYPE_ERROR] = process_receive_error, 1904 [RHF_RCV_TYPE_BYPASS] = hfi1_vnic_bypass_rcv, 1905 [RHF_RCV_TYPE_INVALID5] = process_receive_invalid, 1906 [RHF_RCV_TYPE_INVALID6] = process_receive_invalid, 1907 [RHF_RCV_TYPE_INVALID7] = process_receive_invalid, 1908 }; 1909