xref: /openbmc/linux/drivers/infiniband/hw/hfi1/chip.c (revision fc772314)
1 /*
2  * Copyright(c) 2015 - 2020 Intel Corporation.
3  *
4  * This file is provided under a dual BSD/GPLv2 license.  When using or
5  * redistributing this file, you may do so under either license.
6  *
7  * GPL LICENSE SUMMARY
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of version 2 of the GNU General Public License as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * General Public License for more details.
17  *
18  * BSD LICENSE
19  *
20  * Redistribution and use in source and binary forms, with or without
21  * modification, are permitted provided that the following conditions
22  * are met:
23  *
24  *  - Redistributions of source code must retain the above copyright
25  *    notice, this list of conditions and the following disclaimer.
26  *  - Redistributions in binary form must reproduce the above copyright
27  *    notice, this list of conditions and the following disclaimer in
28  *    the documentation and/or other materials provided with the
29  *    distribution.
30  *  - Neither the name of Intel Corporation nor the names of its
31  *    contributors may be used to endorse or promote products derived
32  *    from this software without specific prior written permission.
33  *
34  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45  *
46  */
47 
48 /*
49  * This file contains all of the code that is specific to the HFI chip
50  */
51 
52 #include <linux/pci.h>
53 #include <linux/delay.h>
54 #include <linux/interrupt.h>
55 #include <linux/module.h>
56 
57 #include "hfi.h"
58 #include "trace.h"
59 #include "mad.h"
60 #include "pio.h"
61 #include "sdma.h"
62 #include "eprom.h"
63 #include "efivar.h"
64 #include "platform.h"
65 #include "aspm.h"
66 #include "affinity.h"
67 #include "debugfs.h"
68 #include "fault.h"
69 #include "netdev.h"
70 
71 uint num_vls = HFI1_MAX_VLS_SUPPORTED;
72 module_param(num_vls, uint, S_IRUGO);
73 MODULE_PARM_DESC(num_vls, "Set number of Virtual Lanes to use (1-8)");
74 
75 /*
76  * Default time to aggregate two 10K packets from the idle state
77  * (timer not running). The timer starts at the end of the first packet,
78  * so only the time for one 10K packet and header plus a bit extra is needed.
79  * 10 * 1024 + 64 header byte = 10304 byte
80  * 10304 byte / 12.5 GB/s = 824.32ns
81  */
82 uint rcv_intr_timeout = (824 + 16); /* 16 is for coalescing interrupt */
83 module_param(rcv_intr_timeout, uint, S_IRUGO);
84 MODULE_PARM_DESC(rcv_intr_timeout, "Receive interrupt mitigation timeout in ns");
85 
86 uint rcv_intr_count = 16; /* same as qib */
87 module_param(rcv_intr_count, uint, S_IRUGO);
88 MODULE_PARM_DESC(rcv_intr_count, "Receive interrupt mitigation count");
89 
90 ushort link_crc_mask = SUPPORTED_CRCS;
91 module_param(link_crc_mask, ushort, S_IRUGO);
92 MODULE_PARM_DESC(link_crc_mask, "CRCs to use on the link");
93 
94 uint loopback;
95 module_param_named(loopback, loopback, uint, S_IRUGO);
96 MODULE_PARM_DESC(loopback, "Put into loopback mode (1 = serdes, 3 = external cable");
97 
98 /* Other driver tunables */
99 uint rcv_intr_dynamic = 1; /* enable dynamic mode for rcv int mitigation*/
100 static ushort crc_14b_sideband = 1;
101 static uint use_flr = 1;
102 uint quick_linkup; /* skip LNI */
103 
104 struct flag_table {
105 	u64 flag;	/* the flag */
106 	char *str;	/* description string */
107 	u16 extra;	/* extra information */
108 	u16 unused0;
109 	u32 unused1;
110 };
111 
112 /* str must be a string constant */
113 #define FLAG_ENTRY(str, extra, flag) {flag, str, extra}
114 #define FLAG_ENTRY0(str, flag) {flag, str, 0}
115 
116 /* Send Error Consequences */
117 #define SEC_WRITE_DROPPED	0x1
118 #define SEC_PACKET_DROPPED	0x2
119 #define SEC_SC_HALTED		0x4	/* per-context only */
120 #define SEC_SPC_FREEZE		0x8	/* per-HFI only */
121 
122 #define DEFAULT_KRCVQS		  2
123 #define MIN_KERNEL_KCTXTS         2
124 #define FIRST_KERNEL_KCTXT        1
125 
126 /*
127  * RSM instance allocation
128  *   0 - User Fecn Handling
129  *   1 - Vnic
130  *   2 - AIP
131  *   3 - Verbs
132  */
133 #define RSM_INS_FECN              0
134 #define RSM_INS_VNIC              1
135 #define RSM_INS_AIP               2
136 #define RSM_INS_VERBS             3
137 
138 /* Bit offset into the GUID which carries HFI id information */
139 #define GUID_HFI_INDEX_SHIFT     39
140 
141 /* extract the emulation revision */
142 #define emulator_rev(dd) ((dd)->irev >> 8)
143 /* parallel and serial emulation versions are 3 and 4 respectively */
144 #define is_emulator_p(dd) ((((dd)->irev) & 0xf) == 3)
145 #define is_emulator_s(dd) ((((dd)->irev) & 0xf) == 4)
146 
147 /* RSM fields for Verbs */
148 /* packet type */
149 #define IB_PACKET_TYPE         2ull
150 #define QW_SHIFT               6ull
151 /* QPN[7..1] */
152 #define QPN_WIDTH              7ull
153 
154 /* LRH.BTH: QW 0, OFFSET 48 - for match */
155 #define LRH_BTH_QW             0ull
156 #define LRH_BTH_BIT_OFFSET     48ull
157 #define LRH_BTH_OFFSET(off)    ((LRH_BTH_QW << QW_SHIFT) | (off))
158 #define LRH_BTH_MATCH_OFFSET   LRH_BTH_OFFSET(LRH_BTH_BIT_OFFSET)
159 #define LRH_BTH_SELECT
160 #define LRH_BTH_MASK           3ull
161 #define LRH_BTH_VALUE          2ull
162 
163 /* LRH.SC[3..0] QW 0, OFFSET 56 - for match */
164 #define LRH_SC_QW              0ull
165 #define LRH_SC_BIT_OFFSET      56ull
166 #define LRH_SC_OFFSET(off)     ((LRH_SC_QW << QW_SHIFT) | (off))
167 #define LRH_SC_MATCH_OFFSET    LRH_SC_OFFSET(LRH_SC_BIT_OFFSET)
168 #define LRH_SC_MASK            128ull
169 #define LRH_SC_VALUE           0ull
170 
171 /* SC[n..0] QW 0, OFFSET 60 - for select */
172 #define LRH_SC_SELECT_OFFSET  ((LRH_SC_QW << QW_SHIFT) | (60ull))
173 
174 /* QPN[m+n:1] QW 1, OFFSET 1 */
175 #define QPN_SELECT_OFFSET      ((1ull << QW_SHIFT) | (1ull))
176 
177 /* RSM fields for AIP */
178 /* LRH.BTH above is reused for this rule */
179 
180 /* BTH.DESTQP: QW 1, OFFSET 16 for match */
181 #define BTH_DESTQP_QW           1ull
182 #define BTH_DESTQP_BIT_OFFSET   16ull
183 #define BTH_DESTQP_OFFSET(off) ((BTH_DESTQP_QW << QW_SHIFT) | (off))
184 #define BTH_DESTQP_MATCH_OFFSET BTH_DESTQP_OFFSET(BTH_DESTQP_BIT_OFFSET)
185 #define BTH_DESTQP_MASK         0xFFull
186 #define BTH_DESTQP_VALUE        0x81ull
187 
188 /* DETH.SQPN: QW 1 Offset 56 for select */
189 /* We use 8 most significant Soure QPN bits as entropy fpr AIP */
190 #define DETH_AIP_SQPN_QW 3ull
191 #define DETH_AIP_SQPN_BIT_OFFSET 56ull
192 #define DETH_AIP_SQPN_OFFSET(off) ((DETH_AIP_SQPN_QW << QW_SHIFT) | (off))
193 #define DETH_AIP_SQPN_SELECT_OFFSET \
194 	DETH_AIP_SQPN_OFFSET(DETH_AIP_SQPN_BIT_OFFSET)
195 
196 /* RSM fields for Vnic */
197 /* L2_TYPE: QW 0, OFFSET 61 - for match */
198 #define L2_TYPE_QW             0ull
199 #define L2_TYPE_BIT_OFFSET     61ull
200 #define L2_TYPE_OFFSET(off)    ((L2_TYPE_QW << QW_SHIFT) | (off))
201 #define L2_TYPE_MATCH_OFFSET   L2_TYPE_OFFSET(L2_TYPE_BIT_OFFSET)
202 #define L2_TYPE_MASK           3ull
203 #define L2_16B_VALUE           2ull
204 
205 /* L4_TYPE QW 1, OFFSET 0 - for match */
206 #define L4_TYPE_QW              1ull
207 #define L4_TYPE_BIT_OFFSET      0ull
208 #define L4_TYPE_OFFSET(off)     ((L4_TYPE_QW << QW_SHIFT) | (off))
209 #define L4_TYPE_MATCH_OFFSET    L4_TYPE_OFFSET(L4_TYPE_BIT_OFFSET)
210 #define L4_16B_TYPE_MASK        0xFFull
211 #define L4_16B_ETH_VALUE        0x78ull
212 
213 /* 16B VESWID - for select */
214 #define L4_16B_HDR_VESWID_OFFSET  ((2 << QW_SHIFT) | (16ull))
215 /* 16B ENTROPY - for select */
216 #define L2_16B_ENTROPY_OFFSET     ((1 << QW_SHIFT) | (32ull))
217 
218 /* defines to build power on SC2VL table */
219 #define SC2VL_VAL( \
220 	num, \
221 	sc0, sc0val, \
222 	sc1, sc1val, \
223 	sc2, sc2val, \
224 	sc3, sc3val, \
225 	sc4, sc4val, \
226 	sc5, sc5val, \
227 	sc6, sc6val, \
228 	sc7, sc7val) \
229 ( \
230 	((u64)(sc0val) << SEND_SC2VLT##num##_SC##sc0##_SHIFT) | \
231 	((u64)(sc1val) << SEND_SC2VLT##num##_SC##sc1##_SHIFT) | \
232 	((u64)(sc2val) << SEND_SC2VLT##num##_SC##sc2##_SHIFT) | \
233 	((u64)(sc3val) << SEND_SC2VLT##num##_SC##sc3##_SHIFT) | \
234 	((u64)(sc4val) << SEND_SC2VLT##num##_SC##sc4##_SHIFT) | \
235 	((u64)(sc5val) << SEND_SC2VLT##num##_SC##sc5##_SHIFT) | \
236 	((u64)(sc6val) << SEND_SC2VLT##num##_SC##sc6##_SHIFT) | \
237 	((u64)(sc7val) << SEND_SC2VLT##num##_SC##sc7##_SHIFT)   \
238 )
239 
240 #define DC_SC_VL_VAL( \
241 	range, \
242 	e0, e0val, \
243 	e1, e1val, \
244 	e2, e2val, \
245 	e3, e3val, \
246 	e4, e4val, \
247 	e5, e5val, \
248 	e6, e6val, \
249 	e7, e7val, \
250 	e8, e8val, \
251 	e9, e9val, \
252 	e10, e10val, \
253 	e11, e11val, \
254 	e12, e12val, \
255 	e13, e13val, \
256 	e14, e14val, \
257 	e15, e15val) \
258 ( \
259 	((u64)(e0val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e0##_SHIFT) | \
260 	((u64)(e1val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e1##_SHIFT) | \
261 	((u64)(e2val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e2##_SHIFT) | \
262 	((u64)(e3val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e3##_SHIFT) | \
263 	((u64)(e4val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e4##_SHIFT) | \
264 	((u64)(e5val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e5##_SHIFT) | \
265 	((u64)(e6val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e6##_SHIFT) | \
266 	((u64)(e7val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e7##_SHIFT) | \
267 	((u64)(e8val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e8##_SHIFT) | \
268 	((u64)(e9val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e9##_SHIFT) | \
269 	((u64)(e10val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e10##_SHIFT) | \
270 	((u64)(e11val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e11##_SHIFT) | \
271 	((u64)(e12val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e12##_SHIFT) | \
272 	((u64)(e13val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e13##_SHIFT) | \
273 	((u64)(e14val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e14##_SHIFT) | \
274 	((u64)(e15val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e15##_SHIFT) \
275 )
276 
277 /* all CceStatus sub-block freeze bits */
278 #define ALL_FROZE (CCE_STATUS_SDMA_FROZE_SMASK \
279 			| CCE_STATUS_RXE_FROZE_SMASK \
280 			| CCE_STATUS_TXE_FROZE_SMASK \
281 			| CCE_STATUS_TXE_PIO_FROZE_SMASK)
282 /* all CceStatus sub-block TXE pause bits */
283 #define ALL_TXE_PAUSE (CCE_STATUS_TXE_PIO_PAUSED_SMASK \
284 			| CCE_STATUS_TXE_PAUSED_SMASK \
285 			| CCE_STATUS_SDMA_PAUSED_SMASK)
286 /* all CceStatus sub-block RXE pause bits */
287 #define ALL_RXE_PAUSE CCE_STATUS_RXE_PAUSED_SMASK
288 
289 #define CNTR_MAX 0xFFFFFFFFFFFFFFFFULL
290 #define CNTR_32BIT_MAX 0x00000000FFFFFFFF
291 
292 /*
293  * CCE Error flags.
294  */
295 static struct flag_table cce_err_status_flags[] = {
296 /* 0*/	FLAG_ENTRY0("CceCsrParityErr",
297 		CCE_ERR_STATUS_CCE_CSR_PARITY_ERR_SMASK),
298 /* 1*/	FLAG_ENTRY0("CceCsrReadBadAddrErr",
299 		CCE_ERR_STATUS_CCE_CSR_READ_BAD_ADDR_ERR_SMASK),
300 /* 2*/	FLAG_ENTRY0("CceCsrWriteBadAddrErr",
301 		CCE_ERR_STATUS_CCE_CSR_WRITE_BAD_ADDR_ERR_SMASK),
302 /* 3*/	FLAG_ENTRY0("CceTrgtAsyncFifoParityErr",
303 		CCE_ERR_STATUS_CCE_TRGT_ASYNC_FIFO_PARITY_ERR_SMASK),
304 /* 4*/	FLAG_ENTRY0("CceTrgtAccessErr",
305 		CCE_ERR_STATUS_CCE_TRGT_ACCESS_ERR_SMASK),
306 /* 5*/	FLAG_ENTRY0("CceRspdDataParityErr",
307 		CCE_ERR_STATUS_CCE_RSPD_DATA_PARITY_ERR_SMASK),
308 /* 6*/	FLAG_ENTRY0("CceCli0AsyncFifoParityErr",
309 		CCE_ERR_STATUS_CCE_CLI0_ASYNC_FIFO_PARITY_ERR_SMASK),
310 /* 7*/	FLAG_ENTRY0("CceCsrCfgBusParityErr",
311 		CCE_ERR_STATUS_CCE_CSR_CFG_BUS_PARITY_ERR_SMASK),
312 /* 8*/	FLAG_ENTRY0("CceCli2AsyncFifoParityErr",
313 		CCE_ERR_STATUS_CCE_CLI2_ASYNC_FIFO_PARITY_ERR_SMASK),
314 /* 9*/	FLAG_ENTRY0("CceCli1AsyncFifoPioCrdtParityErr",
315 	    CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_PIO_CRDT_PARITY_ERR_SMASK),
316 /*10*/	FLAG_ENTRY0("CceCli1AsyncFifoPioCrdtParityErr",
317 	    CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_SDMA_HD_PARITY_ERR_SMASK),
318 /*11*/	FLAG_ENTRY0("CceCli1AsyncFifoRxdmaParityError",
319 	    CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_RXDMA_PARITY_ERROR_SMASK),
320 /*12*/	FLAG_ENTRY0("CceCli1AsyncFifoDbgParityError",
321 		CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_DBG_PARITY_ERROR_SMASK),
322 /*13*/	FLAG_ENTRY0("PcicRetryMemCorErr",
323 		CCE_ERR_STATUS_PCIC_RETRY_MEM_COR_ERR_SMASK),
324 /*14*/	FLAG_ENTRY0("PcicRetryMemCorErr",
325 		CCE_ERR_STATUS_PCIC_RETRY_SOT_MEM_COR_ERR_SMASK),
326 /*15*/	FLAG_ENTRY0("PcicPostHdQCorErr",
327 		CCE_ERR_STATUS_PCIC_POST_HD_QCOR_ERR_SMASK),
328 /*16*/	FLAG_ENTRY0("PcicPostHdQCorErr",
329 		CCE_ERR_STATUS_PCIC_POST_DAT_QCOR_ERR_SMASK),
330 /*17*/	FLAG_ENTRY0("PcicPostHdQCorErr",
331 		CCE_ERR_STATUS_PCIC_CPL_HD_QCOR_ERR_SMASK),
332 /*18*/	FLAG_ENTRY0("PcicCplDatQCorErr",
333 		CCE_ERR_STATUS_PCIC_CPL_DAT_QCOR_ERR_SMASK),
334 /*19*/	FLAG_ENTRY0("PcicNPostHQParityErr",
335 		CCE_ERR_STATUS_PCIC_NPOST_HQ_PARITY_ERR_SMASK),
336 /*20*/	FLAG_ENTRY0("PcicNPostDatQParityErr",
337 		CCE_ERR_STATUS_PCIC_NPOST_DAT_QPARITY_ERR_SMASK),
338 /*21*/	FLAG_ENTRY0("PcicRetryMemUncErr",
339 		CCE_ERR_STATUS_PCIC_RETRY_MEM_UNC_ERR_SMASK),
340 /*22*/	FLAG_ENTRY0("PcicRetrySotMemUncErr",
341 		CCE_ERR_STATUS_PCIC_RETRY_SOT_MEM_UNC_ERR_SMASK),
342 /*23*/	FLAG_ENTRY0("PcicPostHdQUncErr",
343 		CCE_ERR_STATUS_PCIC_POST_HD_QUNC_ERR_SMASK),
344 /*24*/	FLAG_ENTRY0("PcicPostDatQUncErr",
345 		CCE_ERR_STATUS_PCIC_POST_DAT_QUNC_ERR_SMASK),
346 /*25*/	FLAG_ENTRY0("PcicCplHdQUncErr",
347 		CCE_ERR_STATUS_PCIC_CPL_HD_QUNC_ERR_SMASK),
348 /*26*/	FLAG_ENTRY0("PcicCplDatQUncErr",
349 		CCE_ERR_STATUS_PCIC_CPL_DAT_QUNC_ERR_SMASK),
350 /*27*/	FLAG_ENTRY0("PcicTransmitFrontParityErr",
351 		CCE_ERR_STATUS_PCIC_TRANSMIT_FRONT_PARITY_ERR_SMASK),
352 /*28*/	FLAG_ENTRY0("PcicTransmitBackParityErr",
353 		CCE_ERR_STATUS_PCIC_TRANSMIT_BACK_PARITY_ERR_SMASK),
354 /*29*/	FLAG_ENTRY0("PcicReceiveParityErr",
355 		CCE_ERR_STATUS_PCIC_RECEIVE_PARITY_ERR_SMASK),
356 /*30*/	FLAG_ENTRY0("CceTrgtCplTimeoutErr",
357 		CCE_ERR_STATUS_CCE_TRGT_CPL_TIMEOUT_ERR_SMASK),
358 /*31*/	FLAG_ENTRY0("LATriggered",
359 		CCE_ERR_STATUS_LA_TRIGGERED_SMASK),
360 /*32*/	FLAG_ENTRY0("CceSegReadBadAddrErr",
361 		CCE_ERR_STATUS_CCE_SEG_READ_BAD_ADDR_ERR_SMASK),
362 /*33*/	FLAG_ENTRY0("CceSegWriteBadAddrErr",
363 		CCE_ERR_STATUS_CCE_SEG_WRITE_BAD_ADDR_ERR_SMASK),
364 /*34*/	FLAG_ENTRY0("CceRcplAsyncFifoParityErr",
365 		CCE_ERR_STATUS_CCE_RCPL_ASYNC_FIFO_PARITY_ERR_SMASK),
366 /*35*/	FLAG_ENTRY0("CceRxdmaConvFifoParityErr",
367 		CCE_ERR_STATUS_CCE_RXDMA_CONV_FIFO_PARITY_ERR_SMASK),
368 /*36*/	FLAG_ENTRY0("CceMsixTableCorErr",
369 		CCE_ERR_STATUS_CCE_MSIX_TABLE_COR_ERR_SMASK),
370 /*37*/	FLAG_ENTRY0("CceMsixTableUncErr",
371 		CCE_ERR_STATUS_CCE_MSIX_TABLE_UNC_ERR_SMASK),
372 /*38*/	FLAG_ENTRY0("CceIntMapCorErr",
373 		CCE_ERR_STATUS_CCE_INT_MAP_COR_ERR_SMASK),
374 /*39*/	FLAG_ENTRY0("CceIntMapUncErr",
375 		CCE_ERR_STATUS_CCE_INT_MAP_UNC_ERR_SMASK),
376 /*40*/	FLAG_ENTRY0("CceMsixCsrParityErr",
377 		CCE_ERR_STATUS_CCE_MSIX_CSR_PARITY_ERR_SMASK),
378 /*41-63 reserved*/
379 };
380 
381 /*
382  * Misc Error flags
383  */
384 #define MES(text) MISC_ERR_STATUS_MISC_##text##_ERR_SMASK
385 static struct flag_table misc_err_status_flags[] = {
386 /* 0*/	FLAG_ENTRY0("CSR_PARITY", MES(CSR_PARITY)),
387 /* 1*/	FLAG_ENTRY0("CSR_READ_BAD_ADDR", MES(CSR_READ_BAD_ADDR)),
388 /* 2*/	FLAG_ENTRY0("CSR_WRITE_BAD_ADDR", MES(CSR_WRITE_BAD_ADDR)),
389 /* 3*/	FLAG_ENTRY0("SBUS_WRITE_FAILED", MES(SBUS_WRITE_FAILED)),
390 /* 4*/	FLAG_ENTRY0("KEY_MISMATCH", MES(KEY_MISMATCH)),
391 /* 5*/	FLAG_ENTRY0("FW_AUTH_FAILED", MES(FW_AUTH_FAILED)),
392 /* 6*/	FLAG_ENTRY0("EFUSE_CSR_PARITY", MES(EFUSE_CSR_PARITY)),
393 /* 7*/	FLAG_ENTRY0("EFUSE_READ_BAD_ADDR", MES(EFUSE_READ_BAD_ADDR)),
394 /* 8*/	FLAG_ENTRY0("EFUSE_WRITE", MES(EFUSE_WRITE)),
395 /* 9*/	FLAG_ENTRY0("EFUSE_DONE_PARITY", MES(EFUSE_DONE_PARITY)),
396 /*10*/	FLAG_ENTRY0("INVALID_EEP_CMD", MES(INVALID_EEP_CMD)),
397 /*11*/	FLAG_ENTRY0("MBIST_FAIL", MES(MBIST_FAIL)),
398 /*12*/	FLAG_ENTRY0("PLL_LOCK_FAIL", MES(PLL_LOCK_FAIL))
399 };
400 
401 /*
402  * TXE PIO Error flags and consequences
403  */
404 static struct flag_table pio_err_status_flags[] = {
405 /* 0*/	FLAG_ENTRY("PioWriteBadCtxt",
406 	SEC_WRITE_DROPPED,
407 	SEND_PIO_ERR_STATUS_PIO_WRITE_BAD_CTXT_ERR_SMASK),
408 /* 1*/	FLAG_ENTRY("PioWriteAddrParity",
409 	SEC_SPC_FREEZE,
410 	SEND_PIO_ERR_STATUS_PIO_WRITE_ADDR_PARITY_ERR_SMASK),
411 /* 2*/	FLAG_ENTRY("PioCsrParity",
412 	SEC_SPC_FREEZE,
413 	SEND_PIO_ERR_STATUS_PIO_CSR_PARITY_ERR_SMASK),
414 /* 3*/	FLAG_ENTRY("PioSbMemFifo0",
415 	SEC_SPC_FREEZE,
416 	SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO0_ERR_SMASK),
417 /* 4*/	FLAG_ENTRY("PioSbMemFifo1",
418 	SEC_SPC_FREEZE,
419 	SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO1_ERR_SMASK),
420 /* 5*/	FLAG_ENTRY("PioPccFifoParity",
421 	SEC_SPC_FREEZE,
422 	SEND_PIO_ERR_STATUS_PIO_PCC_FIFO_PARITY_ERR_SMASK),
423 /* 6*/	FLAG_ENTRY("PioPecFifoParity",
424 	SEC_SPC_FREEZE,
425 	SEND_PIO_ERR_STATUS_PIO_PEC_FIFO_PARITY_ERR_SMASK),
426 /* 7*/	FLAG_ENTRY("PioSbrdctlCrrelParity",
427 	SEC_SPC_FREEZE,
428 	SEND_PIO_ERR_STATUS_PIO_SBRDCTL_CRREL_PARITY_ERR_SMASK),
429 /* 8*/	FLAG_ENTRY("PioSbrdctrlCrrelFifoParity",
430 	SEC_SPC_FREEZE,
431 	SEND_PIO_ERR_STATUS_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR_SMASK),
432 /* 9*/	FLAG_ENTRY("PioPktEvictFifoParityErr",
433 	SEC_SPC_FREEZE,
434 	SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_FIFO_PARITY_ERR_SMASK),
435 /*10*/	FLAG_ENTRY("PioSmPktResetParity",
436 	SEC_SPC_FREEZE,
437 	SEND_PIO_ERR_STATUS_PIO_SM_PKT_RESET_PARITY_ERR_SMASK),
438 /*11*/	FLAG_ENTRY("PioVlLenMemBank0Unc",
439 	SEC_SPC_FREEZE,
440 	SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_UNC_ERR_SMASK),
441 /*12*/	FLAG_ENTRY("PioVlLenMemBank1Unc",
442 	SEC_SPC_FREEZE,
443 	SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_UNC_ERR_SMASK),
444 /*13*/	FLAG_ENTRY("PioVlLenMemBank0Cor",
445 	0,
446 	SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_COR_ERR_SMASK),
447 /*14*/	FLAG_ENTRY("PioVlLenMemBank1Cor",
448 	0,
449 	SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_COR_ERR_SMASK),
450 /*15*/	FLAG_ENTRY("PioCreditRetFifoParity",
451 	SEC_SPC_FREEZE,
452 	SEND_PIO_ERR_STATUS_PIO_CREDIT_RET_FIFO_PARITY_ERR_SMASK),
453 /*16*/	FLAG_ENTRY("PioPpmcPblFifo",
454 	SEC_SPC_FREEZE,
455 	SEND_PIO_ERR_STATUS_PIO_PPMC_PBL_FIFO_ERR_SMASK),
456 /*17*/	FLAG_ENTRY("PioInitSmIn",
457 	0,
458 	SEND_PIO_ERR_STATUS_PIO_INIT_SM_IN_ERR_SMASK),
459 /*18*/	FLAG_ENTRY("PioPktEvictSmOrArbSm",
460 	SEC_SPC_FREEZE,
461 	SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_SM_OR_ARB_SM_ERR_SMASK),
462 /*19*/	FLAG_ENTRY("PioHostAddrMemUnc",
463 	SEC_SPC_FREEZE,
464 	SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_UNC_ERR_SMASK),
465 /*20*/	FLAG_ENTRY("PioHostAddrMemCor",
466 	0,
467 	SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_COR_ERR_SMASK),
468 /*21*/	FLAG_ENTRY("PioWriteDataParity",
469 	SEC_SPC_FREEZE,
470 	SEND_PIO_ERR_STATUS_PIO_WRITE_DATA_PARITY_ERR_SMASK),
471 /*22*/	FLAG_ENTRY("PioStateMachine",
472 	SEC_SPC_FREEZE,
473 	SEND_PIO_ERR_STATUS_PIO_STATE_MACHINE_ERR_SMASK),
474 /*23*/	FLAG_ENTRY("PioWriteQwValidParity",
475 	SEC_WRITE_DROPPED | SEC_SPC_FREEZE,
476 	SEND_PIO_ERR_STATUS_PIO_WRITE_QW_VALID_PARITY_ERR_SMASK),
477 /*24*/	FLAG_ENTRY("PioBlockQwCountParity",
478 	SEC_WRITE_DROPPED | SEC_SPC_FREEZE,
479 	SEND_PIO_ERR_STATUS_PIO_BLOCK_QW_COUNT_PARITY_ERR_SMASK),
480 /*25*/	FLAG_ENTRY("PioVlfVlLenParity",
481 	SEC_SPC_FREEZE,
482 	SEND_PIO_ERR_STATUS_PIO_VLF_VL_LEN_PARITY_ERR_SMASK),
483 /*26*/	FLAG_ENTRY("PioVlfSopParity",
484 	SEC_SPC_FREEZE,
485 	SEND_PIO_ERR_STATUS_PIO_VLF_SOP_PARITY_ERR_SMASK),
486 /*27*/	FLAG_ENTRY("PioVlFifoParity",
487 	SEC_SPC_FREEZE,
488 	SEND_PIO_ERR_STATUS_PIO_VL_FIFO_PARITY_ERR_SMASK),
489 /*28*/	FLAG_ENTRY("PioPpmcBqcMemParity",
490 	SEC_SPC_FREEZE,
491 	SEND_PIO_ERR_STATUS_PIO_PPMC_BQC_MEM_PARITY_ERR_SMASK),
492 /*29*/	FLAG_ENTRY("PioPpmcSopLen",
493 	SEC_SPC_FREEZE,
494 	SEND_PIO_ERR_STATUS_PIO_PPMC_SOP_LEN_ERR_SMASK),
495 /*30-31 reserved*/
496 /*32*/	FLAG_ENTRY("PioCurrentFreeCntParity",
497 	SEC_SPC_FREEZE,
498 	SEND_PIO_ERR_STATUS_PIO_CURRENT_FREE_CNT_PARITY_ERR_SMASK),
499 /*33*/	FLAG_ENTRY("PioLastReturnedCntParity",
500 	SEC_SPC_FREEZE,
501 	SEND_PIO_ERR_STATUS_PIO_LAST_RETURNED_CNT_PARITY_ERR_SMASK),
502 /*34*/	FLAG_ENTRY("PioPccSopHeadParity",
503 	SEC_SPC_FREEZE,
504 	SEND_PIO_ERR_STATUS_PIO_PCC_SOP_HEAD_PARITY_ERR_SMASK),
505 /*35*/	FLAG_ENTRY("PioPecSopHeadParityErr",
506 	SEC_SPC_FREEZE,
507 	SEND_PIO_ERR_STATUS_PIO_PEC_SOP_HEAD_PARITY_ERR_SMASK),
508 /*36-63 reserved*/
509 };
510 
511 /* TXE PIO errors that cause an SPC freeze */
512 #define ALL_PIO_FREEZE_ERR \
513 	(SEND_PIO_ERR_STATUS_PIO_WRITE_ADDR_PARITY_ERR_SMASK \
514 	| SEND_PIO_ERR_STATUS_PIO_CSR_PARITY_ERR_SMASK \
515 	| SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO0_ERR_SMASK \
516 	| SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO1_ERR_SMASK \
517 	| SEND_PIO_ERR_STATUS_PIO_PCC_FIFO_PARITY_ERR_SMASK \
518 	| SEND_PIO_ERR_STATUS_PIO_PEC_FIFO_PARITY_ERR_SMASK \
519 	| SEND_PIO_ERR_STATUS_PIO_SBRDCTL_CRREL_PARITY_ERR_SMASK \
520 	| SEND_PIO_ERR_STATUS_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR_SMASK \
521 	| SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_FIFO_PARITY_ERR_SMASK \
522 	| SEND_PIO_ERR_STATUS_PIO_SM_PKT_RESET_PARITY_ERR_SMASK \
523 	| SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_UNC_ERR_SMASK \
524 	| SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_UNC_ERR_SMASK \
525 	| SEND_PIO_ERR_STATUS_PIO_CREDIT_RET_FIFO_PARITY_ERR_SMASK \
526 	| SEND_PIO_ERR_STATUS_PIO_PPMC_PBL_FIFO_ERR_SMASK \
527 	| SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_SM_OR_ARB_SM_ERR_SMASK \
528 	| SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_UNC_ERR_SMASK \
529 	| SEND_PIO_ERR_STATUS_PIO_WRITE_DATA_PARITY_ERR_SMASK \
530 	| SEND_PIO_ERR_STATUS_PIO_STATE_MACHINE_ERR_SMASK \
531 	| SEND_PIO_ERR_STATUS_PIO_WRITE_QW_VALID_PARITY_ERR_SMASK \
532 	| SEND_PIO_ERR_STATUS_PIO_BLOCK_QW_COUNT_PARITY_ERR_SMASK \
533 	| SEND_PIO_ERR_STATUS_PIO_VLF_VL_LEN_PARITY_ERR_SMASK \
534 	| SEND_PIO_ERR_STATUS_PIO_VLF_SOP_PARITY_ERR_SMASK \
535 	| SEND_PIO_ERR_STATUS_PIO_VL_FIFO_PARITY_ERR_SMASK \
536 	| SEND_PIO_ERR_STATUS_PIO_PPMC_BQC_MEM_PARITY_ERR_SMASK \
537 	| SEND_PIO_ERR_STATUS_PIO_PPMC_SOP_LEN_ERR_SMASK \
538 	| SEND_PIO_ERR_STATUS_PIO_CURRENT_FREE_CNT_PARITY_ERR_SMASK \
539 	| SEND_PIO_ERR_STATUS_PIO_LAST_RETURNED_CNT_PARITY_ERR_SMASK \
540 	| SEND_PIO_ERR_STATUS_PIO_PCC_SOP_HEAD_PARITY_ERR_SMASK \
541 	| SEND_PIO_ERR_STATUS_PIO_PEC_SOP_HEAD_PARITY_ERR_SMASK)
542 
543 /*
544  * TXE SDMA Error flags
545  */
546 static struct flag_table sdma_err_status_flags[] = {
547 /* 0*/	FLAG_ENTRY0("SDmaRpyTagErr",
548 		SEND_DMA_ERR_STATUS_SDMA_RPY_TAG_ERR_SMASK),
549 /* 1*/	FLAG_ENTRY0("SDmaCsrParityErr",
550 		SEND_DMA_ERR_STATUS_SDMA_CSR_PARITY_ERR_SMASK),
551 /* 2*/	FLAG_ENTRY0("SDmaPcieReqTrackingUncErr",
552 		SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_UNC_ERR_SMASK),
553 /* 3*/	FLAG_ENTRY0("SDmaPcieReqTrackingCorErr",
554 		SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_COR_ERR_SMASK),
555 /*04-63 reserved*/
556 };
557 
558 /* TXE SDMA errors that cause an SPC freeze */
559 #define ALL_SDMA_FREEZE_ERR  \
560 		(SEND_DMA_ERR_STATUS_SDMA_RPY_TAG_ERR_SMASK \
561 		| SEND_DMA_ERR_STATUS_SDMA_CSR_PARITY_ERR_SMASK \
562 		| SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_UNC_ERR_SMASK)
563 
564 /* SendEgressErrInfo bits that correspond to a PortXmitDiscard counter */
565 #define PORT_DISCARD_EGRESS_ERRS \
566 	(SEND_EGRESS_ERR_INFO_TOO_LONG_IB_PACKET_ERR_SMASK \
567 	| SEND_EGRESS_ERR_INFO_VL_MAPPING_ERR_SMASK \
568 	| SEND_EGRESS_ERR_INFO_VL_ERR_SMASK)
569 
570 /*
571  * TXE Egress Error flags
572  */
573 #define SEES(text) SEND_EGRESS_ERR_STATUS_##text##_ERR_SMASK
574 static struct flag_table egress_err_status_flags[] = {
575 /* 0*/	FLAG_ENTRY0("TxPktIntegrityMemCorErr", SEES(TX_PKT_INTEGRITY_MEM_COR)),
576 /* 1*/	FLAG_ENTRY0("TxPktIntegrityMemUncErr", SEES(TX_PKT_INTEGRITY_MEM_UNC)),
577 /* 2 reserved */
578 /* 3*/	FLAG_ENTRY0("TxEgressFifoUnderrunOrParityErr",
579 		SEES(TX_EGRESS_FIFO_UNDERRUN_OR_PARITY)),
580 /* 4*/	FLAG_ENTRY0("TxLinkdownErr", SEES(TX_LINKDOWN)),
581 /* 5*/	FLAG_ENTRY0("TxIncorrectLinkStateErr", SEES(TX_INCORRECT_LINK_STATE)),
582 /* 6 reserved */
583 /* 7*/	FLAG_ENTRY0("TxPioLaunchIntfParityErr",
584 		SEES(TX_PIO_LAUNCH_INTF_PARITY)),
585 /* 8*/	FLAG_ENTRY0("TxSdmaLaunchIntfParityErr",
586 		SEES(TX_SDMA_LAUNCH_INTF_PARITY)),
587 /* 9-10 reserved */
588 /*11*/	FLAG_ENTRY0("TxSbrdCtlStateMachineParityErr",
589 		SEES(TX_SBRD_CTL_STATE_MACHINE_PARITY)),
590 /*12*/	FLAG_ENTRY0("TxIllegalVLErr", SEES(TX_ILLEGAL_VL)),
591 /*13*/	FLAG_ENTRY0("TxLaunchCsrParityErr", SEES(TX_LAUNCH_CSR_PARITY)),
592 /*14*/	FLAG_ENTRY0("TxSbrdCtlCsrParityErr", SEES(TX_SBRD_CTL_CSR_PARITY)),
593 /*15*/	FLAG_ENTRY0("TxConfigParityErr", SEES(TX_CONFIG_PARITY)),
594 /*16*/	FLAG_ENTRY0("TxSdma0DisallowedPacketErr",
595 		SEES(TX_SDMA0_DISALLOWED_PACKET)),
596 /*17*/	FLAG_ENTRY0("TxSdma1DisallowedPacketErr",
597 		SEES(TX_SDMA1_DISALLOWED_PACKET)),
598 /*18*/	FLAG_ENTRY0("TxSdma2DisallowedPacketErr",
599 		SEES(TX_SDMA2_DISALLOWED_PACKET)),
600 /*19*/	FLAG_ENTRY0("TxSdma3DisallowedPacketErr",
601 		SEES(TX_SDMA3_DISALLOWED_PACKET)),
602 /*20*/	FLAG_ENTRY0("TxSdma4DisallowedPacketErr",
603 		SEES(TX_SDMA4_DISALLOWED_PACKET)),
604 /*21*/	FLAG_ENTRY0("TxSdma5DisallowedPacketErr",
605 		SEES(TX_SDMA5_DISALLOWED_PACKET)),
606 /*22*/	FLAG_ENTRY0("TxSdma6DisallowedPacketErr",
607 		SEES(TX_SDMA6_DISALLOWED_PACKET)),
608 /*23*/	FLAG_ENTRY0("TxSdma7DisallowedPacketErr",
609 		SEES(TX_SDMA7_DISALLOWED_PACKET)),
610 /*24*/	FLAG_ENTRY0("TxSdma8DisallowedPacketErr",
611 		SEES(TX_SDMA8_DISALLOWED_PACKET)),
612 /*25*/	FLAG_ENTRY0("TxSdma9DisallowedPacketErr",
613 		SEES(TX_SDMA9_DISALLOWED_PACKET)),
614 /*26*/	FLAG_ENTRY0("TxSdma10DisallowedPacketErr",
615 		SEES(TX_SDMA10_DISALLOWED_PACKET)),
616 /*27*/	FLAG_ENTRY0("TxSdma11DisallowedPacketErr",
617 		SEES(TX_SDMA11_DISALLOWED_PACKET)),
618 /*28*/	FLAG_ENTRY0("TxSdma12DisallowedPacketErr",
619 		SEES(TX_SDMA12_DISALLOWED_PACKET)),
620 /*29*/	FLAG_ENTRY0("TxSdma13DisallowedPacketErr",
621 		SEES(TX_SDMA13_DISALLOWED_PACKET)),
622 /*30*/	FLAG_ENTRY0("TxSdma14DisallowedPacketErr",
623 		SEES(TX_SDMA14_DISALLOWED_PACKET)),
624 /*31*/	FLAG_ENTRY0("TxSdma15DisallowedPacketErr",
625 		SEES(TX_SDMA15_DISALLOWED_PACKET)),
626 /*32*/	FLAG_ENTRY0("TxLaunchFifo0UncOrParityErr",
627 		SEES(TX_LAUNCH_FIFO0_UNC_OR_PARITY)),
628 /*33*/	FLAG_ENTRY0("TxLaunchFifo1UncOrParityErr",
629 		SEES(TX_LAUNCH_FIFO1_UNC_OR_PARITY)),
630 /*34*/	FLAG_ENTRY0("TxLaunchFifo2UncOrParityErr",
631 		SEES(TX_LAUNCH_FIFO2_UNC_OR_PARITY)),
632 /*35*/	FLAG_ENTRY0("TxLaunchFifo3UncOrParityErr",
633 		SEES(TX_LAUNCH_FIFO3_UNC_OR_PARITY)),
634 /*36*/	FLAG_ENTRY0("TxLaunchFifo4UncOrParityErr",
635 		SEES(TX_LAUNCH_FIFO4_UNC_OR_PARITY)),
636 /*37*/	FLAG_ENTRY0("TxLaunchFifo5UncOrParityErr",
637 		SEES(TX_LAUNCH_FIFO5_UNC_OR_PARITY)),
638 /*38*/	FLAG_ENTRY0("TxLaunchFifo6UncOrParityErr",
639 		SEES(TX_LAUNCH_FIFO6_UNC_OR_PARITY)),
640 /*39*/	FLAG_ENTRY0("TxLaunchFifo7UncOrParityErr",
641 		SEES(TX_LAUNCH_FIFO7_UNC_OR_PARITY)),
642 /*40*/	FLAG_ENTRY0("TxLaunchFifo8UncOrParityErr",
643 		SEES(TX_LAUNCH_FIFO8_UNC_OR_PARITY)),
644 /*41*/	FLAG_ENTRY0("TxCreditReturnParityErr", SEES(TX_CREDIT_RETURN_PARITY)),
645 /*42*/	FLAG_ENTRY0("TxSbHdrUncErr", SEES(TX_SB_HDR_UNC)),
646 /*43*/	FLAG_ENTRY0("TxReadSdmaMemoryUncErr", SEES(TX_READ_SDMA_MEMORY_UNC)),
647 /*44*/	FLAG_ENTRY0("TxReadPioMemoryUncErr", SEES(TX_READ_PIO_MEMORY_UNC)),
648 /*45*/	FLAG_ENTRY0("TxEgressFifoUncErr", SEES(TX_EGRESS_FIFO_UNC)),
649 /*46*/	FLAG_ENTRY0("TxHcrcInsertionErr", SEES(TX_HCRC_INSERTION)),
650 /*47*/	FLAG_ENTRY0("TxCreditReturnVLErr", SEES(TX_CREDIT_RETURN_VL)),
651 /*48*/	FLAG_ENTRY0("TxLaunchFifo0CorErr", SEES(TX_LAUNCH_FIFO0_COR)),
652 /*49*/	FLAG_ENTRY0("TxLaunchFifo1CorErr", SEES(TX_LAUNCH_FIFO1_COR)),
653 /*50*/	FLAG_ENTRY0("TxLaunchFifo2CorErr", SEES(TX_LAUNCH_FIFO2_COR)),
654 /*51*/	FLAG_ENTRY0("TxLaunchFifo3CorErr", SEES(TX_LAUNCH_FIFO3_COR)),
655 /*52*/	FLAG_ENTRY0("TxLaunchFifo4CorErr", SEES(TX_LAUNCH_FIFO4_COR)),
656 /*53*/	FLAG_ENTRY0("TxLaunchFifo5CorErr", SEES(TX_LAUNCH_FIFO5_COR)),
657 /*54*/	FLAG_ENTRY0("TxLaunchFifo6CorErr", SEES(TX_LAUNCH_FIFO6_COR)),
658 /*55*/	FLAG_ENTRY0("TxLaunchFifo7CorErr", SEES(TX_LAUNCH_FIFO7_COR)),
659 /*56*/	FLAG_ENTRY0("TxLaunchFifo8CorErr", SEES(TX_LAUNCH_FIFO8_COR)),
660 /*57*/	FLAG_ENTRY0("TxCreditOverrunErr", SEES(TX_CREDIT_OVERRUN)),
661 /*58*/	FLAG_ENTRY0("TxSbHdrCorErr", SEES(TX_SB_HDR_COR)),
662 /*59*/	FLAG_ENTRY0("TxReadSdmaMemoryCorErr", SEES(TX_READ_SDMA_MEMORY_COR)),
663 /*60*/	FLAG_ENTRY0("TxReadPioMemoryCorErr", SEES(TX_READ_PIO_MEMORY_COR)),
664 /*61*/	FLAG_ENTRY0("TxEgressFifoCorErr", SEES(TX_EGRESS_FIFO_COR)),
665 /*62*/	FLAG_ENTRY0("TxReadSdmaMemoryCsrUncErr",
666 		SEES(TX_READ_SDMA_MEMORY_CSR_UNC)),
667 /*63*/	FLAG_ENTRY0("TxReadPioMemoryCsrUncErr",
668 		SEES(TX_READ_PIO_MEMORY_CSR_UNC)),
669 };
670 
671 /*
672  * TXE Egress Error Info flags
673  */
674 #define SEEI(text) SEND_EGRESS_ERR_INFO_##text##_ERR_SMASK
675 static struct flag_table egress_err_info_flags[] = {
676 /* 0*/	FLAG_ENTRY0("Reserved", 0ull),
677 /* 1*/	FLAG_ENTRY0("VLErr", SEEI(VL)),
678 /* 2*/	FLAG_ENTRY0("JobKeyErr", SEEI(JOB_KEY)),
679 /* 3*/	FLAG_ENTRY0("JobKeyErr", SEEI(JOB_KEY)),
680 /* 4*/	FLAG_ENTRY0("PartitionKeyErr", SEEI(PARTITION_KEY)),
681 /* 5*/	FLAG_ENTRY0("SLIDErr", SEEI(SLID)),
682 /* 6*/	FLAG_ENTRY0("OpcodeErr", SEEI(OPCODE)),
683 /* 7*/	FLAG_ENTRY0("VLMappingErr", SEEI(VL_MAPPING)),
684 /* 8*/	FLAG_ENTRY0("RawErr", SEEI(RAW)),
685 /* 9*/	FLAG_ENTRY0("RawIPv6Err", SEEI(RAW_IPV6)),
686 /*10*/	FLAG_ENTRY0("GRHErr", SEEI(GRH)),
687 /*11*/	FLAG_ENTRY0("BypassErr", SEEI(BYPASS)),
688 /*12*/	FLAG_ENTRY0("KDETHPacketsErr", SEEI(KDETH_PACKETS)),
689 /*13*/	FLAG_ENTRY0("NonKDETHPacketsErr", SEEI(NON_KDETH_PACKETS)),
690 /*14*/	FLAG_ENTRY0("TooSmallIBPacketsErr", SEEI(TOO_SMALL_IB_PACKETS)),
691 /*15*/	FLAG_ENTRY0("TooSmallBypassPacketsErr", SEEI(TOO_SMALL_BYPASS_PACKETS)),
692 /*16*/	FLAG_ENTRY0("PbcTestErr", SEEI(PBC_TEST)),
693 /*17*/	FLAG_ENTRY0("BadPktLenErr", SEEI(BAD_PKT_LEN)),
694 /*18*/	FLAG_ENTRY0("TooLongIBPacketErr", SEEI(TOO_LONG_IB_PACKET)),
695 /*19*/	FLAG_ENTRY0("TooLongBypassPacketsErr", SEEI(TOO_LONG_BYPASS_PACKETS)),
696 /*20*/	FLAG_ENTRY0("PbcStaticRateControlErr", SEEI(PBC_STATIC_RATE_CONTROL)),
697 /*21*/	FLAG_ENTRY0("BypassBadPktLenErr", SEEI(BAD_PKT_LEN)),
698 };
699 
700 /* TXE Egress errors that cause an SPC freeze */
701 #define ALL_TXE_EGRESS_FREEZE_ERR \
702 	(SEES(TX_EGRESS_FIFO_UNDERRUN_OR_PARITY) \
703 	| SEES(TX_PIO_LAUNCH_INTF_PARITY) \
704 	| SEES(TX_SDMA_LAUNCH_INTF_PARITY) \
705 	| SEES(TX_SBRD_CTL_STATE_MACHINE_PARITY) \
706 	| SEES(TX_LAUNCH_CSR_PARITY) \
707 	| SEES(TX_SBRD_CTL_CSR_PARITY) \
708 	| SEES(TX_CONFIG_PARITY) \
709 	| SEES(TX_LAUNCH_FIFO0_UNC_OR_PARITY) \
710 	| SEES(TX_LAUNCH_FIFO1_UNC_OR_PARITY) \
711 	| SEES(TX_LAUNCH_FIFO2_UNC_OR_PARITY) \
712 	| SEES(TX_LAUNCH_FIFO3_UNC_OR_PARITY) \
713 	| SEES(TX_LAUNCH_FIFO4_UNC_OR_PARITY) \
714 	| SEES(TX_LAUNCH_FIFO5_UNC_OR_PARITY) \
715 	| SEES(TX_LAUNCH_FIFO6_UNC_OR_PARITY) \
716 	| SEES(TX_LAUNCH_FIFO7_UNC_OR_PARITY) \
717 	| SEES(TX_LAUNCH_FIFO8_UNC_OR_PARITY) \
718 	| SEES(TX_CREDIT_RETURN_PARITY))
719 
720 /*
721  * TXE Send error flags
722  */
723 #define SES(name) SEND_ERR_STATUS_SEND_##name##_ERR_SMASK
724 static struct flag_table send_err_status_flags[] = {
725 /* 0*/	FLAG_ENTRY0("SendCsrParityErr", SES(CSR_PARITY)),
726 /* 1*/	FLAG_ENTRY0("SendCsrReadBadAddrErr", SES(CSR_READ_BAD_ADDR)),
727 /* 2*/	FLAG_ENTRY0("SendCsrWriteBadAddrErr", SES(CSR_WRITE_BAD_ADDR))
728 };
729 
730 /*
731  * TXE Send Context Error flags and consequences
732  */
733 static struct flag_table sc_err_status_flags[] = {
734 /* 0*/	FLAG_ENTRY("InconsistentSop",
735 		SEC_PACKET_DROPPED | SEC_SC_HALTED,
736 		SEND_CTXT_ERR_STATUS_PIO_INCONSISTENT_SOP_ERR_SMASK),
737 /* 1*/	FLAG_ENTRY("DisallowedPacket",
738 		SEC_PACKET_DROPPED | SEC_SC_HALTED,
739 		SEND_CTXT_ERR_STATUS_PIO_DISALLOWED_PACKET_ERR_SMASK),
740 /* 2*/	FLAG_ENTRY("WriteCrossesBoundary",
741 		SEC_WRITE_DROPPED | SEC_SC_HALTED,
742 		SEND_CTXT_ERR_STATUS_PIO_WRITE_CROSSES_BOUNDARY_ERR_SMASK),
743 /* 3*/	FLAG_ENTRY("WriteOverflow",
744 		SEC_WRITE_DROPPED | SEC_SC_HALTED,
745 		SEND_CTXT_ERR_STATUS_PIO_WRITE_OVERFLOW_ERR_SMASK),
746 /* 4*/	FLAG_ENTRY("WriteOutOfBounds",
747 		SEC_WRITE_DROPPED | SEC_SC_HALTED,
748 		SEND_CTXT_ERR_STATUS_PIO_WRITE_OUT_OF_BOUNDS_ERR_SMASK),
749 /* 5-63 reserved*/
750 };
751 
752 /*
753  * RXE Receive Error flags
754  */
755 #define RXES(name) RCV_ERR_STATUS_RX_##name##_ERR_SMASK
756 static struct flag_table rxe_err_status_flags[] = {
757 /* 0*/	FLAG_ENTRY0("RxDmaCsrCorErr", RXES(DMA_CSR_COR)),
758 /* 1*/	FLAG_ENTRY0("RxDcIntfParityErr", RXES(DC_INTF_PARITY)),
759 /* 2*/	FLAG_ENTRY0("RxRcvHdrUncErr", RXES(RCV_HDR_UNC)),
760 /* 3*/	FLAG_ENTRY0("RxRcvHdrCorErr", RXES(RCV_HDR_COR)),
761 /* 4*/	FLAG_ENTRY0("RxRcvDataUncErr", RXES(RCV_DATA_UNC)),
762 /* 5*/	FLAG_ENTRY0("RxRcvDataCorErr", RXES(RCV_DATA_COR)),
763 /* 6*/	FLAG_ENTRY0("RxRcvQpMapTableUncErr", RXES(RCV_QP_MAP_TABLE_UNC)),
764 /* 7*/	FLAG_ENTRY0("RxRcvQpMapTableCorErr", RXES(RCV_QP_MAP_TABLE_COR)),
765 /* 8*/	FLAG_ENTRY0("RxRcvCsrParityErr", RXES(RCV_CSR_PARITY)),
766 /* 9*/	FLAG_ENTRY0("RxDcSopEopParityErr", RXES(DC_SOP_EOP_PARITY)),
767 /*10*/	FLAG_ENTRY0("RxDmaFlagUncErr", RXES(DMA_FLAG_UNC)),
768 /*11*/	FLAG_ENTRY0("RxDmaFlagCorErr", RXES(DMA_FLAG_COR)),
769 /*12*/	FLAG_ENTRY0("RxRcvFsmEncodingErr", RXES(RCV_FSM_ENCODING)),
770 /*13*/	FLAG_ENTRY0("RxRbufFreeListUncErr", RXES(RBUF_FREE_LIST_UNC)),
771 /*14*/	FLAG_ENTRY0("RxRbufFreeListCorErr", RXES(RBUF_FREE_LIST_COR)),
772 /*15*/	FLAG_ENTRY0("RxRbufLookupDesRegUncErr", RXES(RBUF_LOOKUP_DES_REG_UNC)),
773 /*16*/	FLAG_ENTRY0("RxRbufLookupDesRegUncCorErr",
774 		RXES(RBUF_LOOKUP_DES_REG_UNC_COR)),
775 /*17*/	FLAG_ENTRY0("RxRbufLookupDesUncErr", RXES(RBUF_LOOKUP_DES_UNC)),
776 /*18*/	FLAG_ENTRY0("RxRbufLookupDesCorErr", RXES(RBUF_LOOKUP_DES_COR)),
777 /*19*/	FLAG_ENTRY0("RxRbufBlockListReadUncErr",
778 		RXES(RBUF_BLOCK_LIST_READ_UNC)),
779 /*20*/	FLAG_ENTRY0("RxRbufBlockListReadCorErr",
780 		RXES(RBUF_BLOCK_LIST_READ_COR)),
781 /*21*/	FLAG_ENTRY0("RxRbufCsrQHeadBufNumParityErr",
782 		RXES(RBUF_CSR_QHEAD_BUF_NUM_PARITY)),
783 /*22*/	FLAG_ENTRY0("RxRbufCsrQEntCntParityErr",
784 		RXES(RBUF_CSR_QENT_CNT_PARITY)),
785 /*23*/	FLAG_ENTRY0("RxRbufCsrQNextBufParityErr",
786 		RXES(RBUF_CSR_QNEXT_BUF_PARITY)),
787 /*24*/	FLAG_ENTRY0("RxRbufCsrQVldBitParityErr",
788 		RXES(RBUF_CSR_QVLD_BIT_PARITY)),
789 /*25*/	FLAG_ENTRY0("RxRbufCsrQHdPtrParityErr", RXES(RBUF_CSR_QHD_PTR_PARITY)),
790 /*26*/	FLAG_ENTRY0("RxRbufCsrQTlPtrParityErr", RXES(RBUF_CSR_QTL_PTR_PARITY)),
791 /*27*/	FLAG_ENTRY0("RxRbufCsrQNumOfPktParityErr",
792 		RXES(RBUF_CSR_QNUM_OF_PKT_PARITY)),
793 /*28*/	FLAG_ENTRY0("RxRbufCsrQEOPDWParityErr", RXES(RBUF_CSR_QEOPDW_PARITY)),
794 /*29*/	FLAG_ENTRY0("RxRbufCtxIdParityErr", RXES(RBUF_CTX_ID_PARITY)),
795 /*30*/	FLAG_ENTRY0("RxRBufBadLookupErr", RXES(RBUF_BAD_LOOKUP)),
796 /*31*/	FLAG_ENTRY0("RxRbufFullErr", RXES(RBUF_FULL)),
797 /*32*/	FLAG_ENTRY0("RxRbufEmptyErr", RXES(RBUF_EMPTY)),
798 /*33*/	FLAG_ENTRY0("RxRbufFlRdAddrParityErr", RXES(RBUF_FL_RD_ADDR_PARITY)),
799 /*34*/	FLAG_ENTRY0("RxRbufFlWrAddrParityErr", RXES(RBUF_FL_WR_ADDR_PARITY)),
800 /*35*/	FLAG_ENTRY0("RxRbufFlInitdoneParityErr",
801 		RXES(RBUF_FL_INITDONE_PARITY)),
802 /*36*/	FLAG_ENTRY0("RxRbufFlInitWrAddrParityErr",
803 		RXES(RBUF_FL_INIT_WR_ADDR_PARITY)),
804 /*37*/	FLAG_ENTRY0("RxRbufNextFreeBufUncErr", RXES(RBUF_NEXT_FREE_BUF_UNC)),
805 /*38*/	FLAG_ENTRY0("RxRbufNextFreeBufCorErr", RXES(RBUF_NEXT_FREE_BUF_COR)),
806 /*39*/	FLAG_ENTRY0("RxLookupDesPart1UncErr", RXES(LOOKUP_DES_PART1_UNC)),
807 /*40*/	FLAG_ENTRY0("RxLookupDesPart1UncCorErr",
808 		RXES(LOOKUP_DES_PART1_UNC_COR)),
809 /*41*/	FLAG_ENTRY0("RxLookupDesPart2ParityErr",
810 		RXES(LOOKUP_DES_PART2_PARITY)),
811 /*42*/	FLAG_ENTRY0("RxLookupRcvArrayUncErr", RXES(LOOKUP_RCV_ARRAY_UNC)),
812 /*43*/	FLAG_ENTRY0("RxLookupRcvArrayCorErr", RXES(LOOKUP_RCV_ARRAY_COR)),
813 /*44*/	FLAG_ENTRY0("RxLookupCsrParityErr", RXES(LOOKUP_CSR_PARITY)),
814 /*45*/	FLAG_ENTRY0("RxHqIntrCsrParityErr", RXES(HQ_INTR_CSR_PARITY)),
815 /*46*/	FLAG_ENTRY0("RxHqIntrFsmErr", RXES(HQ_INTR_FSM)),
816 /*47*/	FLAG_ENTRY0("RxRbufDescPart1UncErr", RXES(RBUF_DESC_PART1_UNC)),
817 /*48*/	FLAG_ENTRY0("RxRbufDescPart1CorErr", RXES(RBUF_DESC_PART1_COR)),
818 /*49*/	FLAG_ENTRY0("RxRbufDescPart2UncErr", RXES(RBUF_DESC_PART2_UNC)),
819 /*50*/	FLAG_ENTRY0("RxRbufDescPart2CorErr", RXES(RBUF_DESC_PART2_COR)),
820 /*51*/	FLAG_ENTRY0("RxDmaHdrFifoRdUncErr", RXES(DMA_HDR_FIFO_RD_UNC)),
821 /*52*/	FLAG_ENTRY0("RxDmaHdrFifoRdCorErr", RXES(DMA_HDR_FIFO_RD_COR)),
822 /*53*/	FLAG_ENTRY0("RxDmaDataFifoRdUncErr", RXES(DMA_DATA_FIFO_RD_UNC)),
823 /*54*/	FLAG_ENTRY0("RxDmaDataFifoRdCorErr", RXES(DMA_DATA_FIFO_RD_COR)),
824 /*55*/	FLAG_ENTRY0("RxRbufDataUncErr", RXES(RBUF_DATA_UNC)),
825 /*56*/	FLAG_ENTRY0("RxRbufDataCorErr", RXES(RBUF_DATA_COR)),
826 /*57*/	FLAG_ENTRY0("RxDmaCsrParityErr", RXES(DMA_CSR_PARITY)),
827 /*58*/	FLAG_ENTRY0("RxDmaEqFsmEncodingErr", RXES(DMA_EQ_FSM_ENCODING)),
828 /*59*/	FLAG_ENTRY0("RxDmaDqFsmEncodingErr", RXES(DMA_DQ_FSM_ENCODING)),
829 /*60*/	FLAG_ENTRY0("RxDmaCsrUncErr", RXES(DMA_CSR_UNC)),
830 /*61*/	FLAG_ENTRY0("RxCsrReadBadAddrErr", RXES(CSR_READ_BAD_ADDR)),
831 /*62*/	FLAG_ENTRY0("RxCsrWriteBadAddrErr", RXES(CSR_WRITE_BAD_ADDR)),
832 /*63*/	FLAG_ENTRY0("RxCsrParityErr", RXES(CSR_PARITY))
833 };
834 
835 /* RXE errors that will trigger an SPC freeze */
836 #define ALL_RXE_FREEZE_ERR  \
837 	(RCV_ERR_STATUS_RX_RCV_QP_MAP_TABLE_UNC_ERR_SMASK \
838 	| RCV_ERR_STATUS_RX_RCV_CSR_PARITY_ERR_SMASK \
839 	| RCV_ERR_STATUS_RX_DMA_FLAG_UNC_ERR_SMASK \
840 	| RCV_ERR_STATUS_RX_RCV_FSM_ENCODING_ERR_SMASK \
841 	| RCV_ERR_STATUS_RX_RBUF_FREE_LIST_UNC_ERR_SMASK \
842 	| RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_REG_UNC_ERR_SMASK \
843 	| RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_REG_UNC_COR_ERR_SMASK \
844 	| RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_UNC_ERR_SMASK \
845 	| RCV_ERR_STATUS_RX_RBUF_BLOCK_LIST_READ_UNC_ERR_SMASK \
846 	| RCV_ERR_STATUS_RX_RBUF_CSR_QHEAD_BUF_NUM_PARITY_ERR_SMASK \
847 	| RCV_ERR_STATUS_RX_RBUF_CSR_QENT_CNT_PARITY_ERR_SMASK \
848 	| RCV_ERR_STATUS_RX_RBUF_CSR_QNEXT_BUF_PARITY_ERR_SMASK \
849 	| RCV_ERR_STATUS_RX_RBUF_CSR_QVLD_BIT_PARITY_ERR_SMASK \
850 	| RCV_ERR_STATUS_RX_RBUF_CSR_QHD_PTR_PARITY_ERR_SMASK \
851 	| RCV_ERR_STATUS_RX_RBUF_CSR_QTL_PTR_PARITY_ERR_SMASK \
852 	| RCV_ERR_STATUS_RX_RBUF_CSR_QNUM_OF_PKT_PARITY_ERR_SMASK \
853 	| RCV_ERR_STATUS_RX_RBUF_CSR_QEOPDW_PARITY_ERR_SMASK \
854 	| RCV_ERR_STATUS_RX_RBUF_CTX_ID_PARITY_ERR_SMASK \
855 	| RCV_ERR_STATUS_RX_RBUF_BAD_LOOKUP_ERR_SMASK \
856 	| RCV_ERR_STATUS_RX_RBUF_FULL_ERR_SMASK \
857 	| RCV_ERR_STATUS_RX_RBUF_EMPTY_ERR_SMASK \
858 	| RCV_ERR_STATUS_RX_RBUF_FL_RD_ADDR_PARITY_ERR_SMASK \
859 	| RCV_ERR_STATUS_RX_RBUF_FL_WR_ADDR_PARITY_ERR_SMASK \
860 	| RCV_ERR_STATUS_RX_RBUF_FL_INITDONE_PARITY_ERR_SMASK \
861 	| RCV_ERR_STATUS_RX_RBUF_FL_INIT_WR_ADDR_PARITY_ERR_SMASK \
862 	| RCV_ERR_STATUS_RX_RBUF_NEXT_FREE_BUF_UNC_ERR_SMASK \
863 	| RCV_ERR_STATUS_RX_LOOKUP_DES_PART1_UNC_ERR_SMASK \
864 	| RCV_ERR_STATUS_RX_LOOKUP_DES_PART1_UNC_COR_ERR_SMASK \
865 	| RCV_ERR_STATUS_RX_LOOKUP_DES_PART2_PARITY_ERR_SMASK \
866 	| RCV_ERR_STATUS_RX_LOOKUP_RCV_ARRAY_UNC_ERR_SMASK \
867 	| RCV_ERR_STATUS_RX_LOOKUP_CSR_PARITY_ERR_SMASK \
868 	| RCV_ERR_STATUS_RX_HQ_INTR_CSR_PARITY_ERR_SMASK \
869 	| RCV_ERR_STATUS_RX_HQ_INTR_FSM_ERR_SMASK \
870 	| RCV_ERR_STATUS_RX_RBUF_DESC_PART1_UNC_ERR_SMASK \
871 	| RCV_ERR_STATUS_RX_RBUF_DESC_PART1_COR_ERR_SMASK \
872 	| RCV_ERR_STATUS_RX_RBUF_DESC_PART2_UNC_ERR_SMASK \
873 	| RCV_ERR_STATUS_RX_DMA_HDR_FIFO_RD_UNC_ERR_SMASK \
874 	| RCV_ERR_STATUS_RX_DMA_DATA_FIFO_RD_UNC_ERR_SMASK \
875 	| RCV_ERR_STATUS_RX_RBUF_DATA_UNC_ERR_SMASK \
876 	| RCV_ERR_STATUS_RX_DMA_CSR_PARITY_ERR_SMASK \
877 	| RCV_ERR_STATUS_RX_DMA_EQ_FSM_ENCODING_ERR_SMASK \
878 	| RCV_ERR_STATUS_RX_DMA_DQ_FSM_ENCODING_ERR_SMASK \
879 	| RCV_ERR_STATUS_RX_DMA_CSR_UNC_ERR_SMASK \
880 	| RCV_ERR_STATUS_RX_CSR_PARITY_ERR_SMASK)
881 
882 #define RXE_FREEZE_ABORT_MASK \
883 	(RCV_ERR_STATUS_RX_DMA_CSR_UNC_ERR_SMASK | \
884 	RCV_ERR_STATUS_RX_DMA_HDR_FIFO_RD_UNC_ERR_SMASK | \
885 	RCV_ERR_STATUS_RX_DMA_DATA_FIFO_RD_UNC_ERR_SMASK)
886 
887 /*
888  * DCC Error Flags
889  */
890 #define DCCE(name) DCC_ERR_FLG_##name##_SMASK
891 static struct flag_table dcc_err_flags[] = {
892 	FLAG_ENTRY0("bad_l2_err", DCCE(BAD_L2_ERR)),
893 	FLAG_ENTRY0("bad_sc_err", DCCE(BAD_SC_ERR)),
894 	FLAG_ENTRY0("bad_mid_tail_err", DCCE(BAD_MID_TAIL_ERR)),
895 	FLAG_ENTRY0("bad_preemption_err", DCCE(BAD_PREEMPTION_ERR)),
896 	FLAG_ENTRY0("preemption_err", DCCE(PREEMPTION_ERR)),
897 	FLAG_ENTRY0("preemptionvl15_err", DCCE(PREEMPTIONVL15_ERR)),
898 	FLAG_ENTRY0("bad_vl_marker_err", DCCE(BAD_VL_MARKER_ERR)),
899 	FLAG_ENTRY0("bad_dlid_target_err", DCCE(BAD_DLID_TARGET_ERR)),
900 	FLAG_ENTRY0("bad_lver_err", DCCE(BAD_LVER_ERR)),
901 	FLAG_ENTRY0("uncorrectable_err", DCCE(UNCORRECTABLE_ERR)),
902 	FLAG_ENTRY0("bad_crdt_ack_err", DCCE(BAD_CRDT_ACK_ERR)),
903 	FLAG_ENTRY0("unsup_pkt_type", DCCE(UNSUP_PKT_TYPE)),
904 	FLAG_ENTRY0("bad_ctrl_flit_err", DCCE(BAD_CTRL_FLIT_ERR)),
905 	FLAG_ENTRY0("event_cntr_parity_err", DCCE(EVENT_CNTR_PARITY_ERR)),
906 	FLAG_ENTRY0("event_cntr_rollover_err", DCCE(EVENT_CNTR_ROLLOVER_ERR)),
907 	FLAG_ENTRY0("link_err", DCCE(LINK_ERR)),
908 	FLAG_ENTRY0("misc_cntr_rollover_err", DCCE(MISC_CNTR_ROLLOVER_ERR)),
909 	FLAG_ENTRY0("bad_ctrl_dist_err", DCCE(BAD_CTRL_DIST_ERR)),
910 	FLAG_ENTRY0("bad_tail_dist_err", DCCE(BAD_TAIL_DIST_ERR)),
911 	FLAG_ENTRY0("bad_head_dist_err", DCCE(BAD_HEAD_DIST_ERR)),
912 	FLAG_ENTRY0("nonvl15_state_err", DCCE(NONVL15_STATE_ERR)),
913 	FLAG_ENTRY0("vl15_multi_err", DCCE(VL15_MULTI_ERR)),
914 	FLAG_ENTRY0("bad_pkt_length_err", DCCE(BAD_PKT_LENGTH_ERR)),
915 	FLAG_ENTRY0("unsup_vl_err", DCCE(UNSUP_VL_ERR)),
916 	FLAG_ENTRY0("perm_nvl15_err", DCCE(PERM_NVL15_ERR)),
917 	FLAG_ENTRY0("slid_zero_err", DCCE(SLID_ZERO_ERR)),
918 	FLAG_ENTRY0("dlid_zero_err", DCCE(DLID_ZERO_ERR)),
919 	FLAG_ENTRY0("length_mtu_err", DCCE(LENGTH_MTU_ERR)),
920 	FLAG_ENTRY0("rx_early_drop_err", DCCE(RX_EARLY_DROP_ERR)),
921 	FLAG_ENTRY0("late_short_err", DCCE(LATE_SHORT_ERR)),
922 	FLAG_ENTRY0("late_long_err", DCCE(LATE_LONG_ERR)),
923 	FLAG_ENTRY0("late_ebp_err", DCCE(LATE_EBP_ERR)),
924 	FLAG_ENTRY0("fpe_tx_fifo_ovflw_err", DCCE(FPE_TX_FIFO_OVFLW_ERR)),
925 	FLAG_ENTRY0("fpe_tx_fifo_unflw_err", DCCE(FPE_TX_FIFO_UNFLW_ERR)),
926 	FLAG_ENTRY0("csr_access_blocked_host", DCCE(CSR_ACCESS_BLOCKED_HOST)),
927 	FLAG_ENTRY0("csr_access_blocked_uc", DCCE(CSR_ACCESS_BLOCKED_UC)),
928 	FLAG_ENTRY0("tx_ctrl_parity_err", DCCE(TX_CTRL_PARITY_ERR)),
929 	FLAG_ENTRY0("tx_ctrl_parity_mbe_err", DCCE(TX_CTRL_PARITY_MBE_ERR)),
930 	FLAG_ENTRY0("tx_sc_parity_err", DCCE(TX_SC_PARITY_ERR)),
931 	FLAG_ENTRY0("rx_ctrl_parity_mbe_err", DCCE(RX_CTRL_PARITY_MBE_ERR)),
932 	FLAG_ENTRY0("csr_parity_err", DCCE(CSR_PARITY_ERR)),
933 	FLAG_ENTRY0("csr_inval_addr", DCCE(CSR_INVAL_ADDR)),
934 	FLAG_ENTRY0("tx_byte_shft_parity_err", DCCE(TX_BYTE_SHFT_PARITY_ERR)),
935 	FLAG_ENTRY0("rx_byte_shft_parity_err", DCCE(RX_BYTE_SHFT_PARITY_ERR)),
936 	FLAG_ENTRY0("fmconfig_err", DCCE(FMCONFIG_ERR)),
937 	FLAG_ENTRY0("rcvport_err", DCCE(RCVPORT_ERR)),
938 };
939 
940 /*
941  * LCB error flags
942  */
943 #define LCBE(name) DC_LCB_ERR_FLG_##name##_SMASK
944 static struct flag_table lcb_err_flags[] = {
945 /* 0*/	FLAG_ENTRY0("CSR_PARITY_ERR", LCBE(CSR_PARITY_ERR)),
946 /* 1*/	FLAG_ENTRY0("INVALID_CSR_ADDR", LCBE(INVALID_CSR_ADDR)),
947 /* 2*/	FLAG_ENTRY0("RST_FOR_FAILED_DESKEW", LCBE(RST_FOR_FAILED_DESKEW)),
948 /* 3*/	FLAG_ENTRY0("ALL_LNS_FAILED_REINIT_TEST",
949 		LCBE(ALL_LNS_FAILED_REINIT_TEST)),
950 /* 4*/	FLAG_ENTRY0("LOST_REINIT_STALL_OR_TOS", LCBE(LOST_REINIT_STALL_OR_TOS)),
951 /* 5*/	FLAG_ENTRY0("TX_LESS_THAN_FOUR_LNS", LCBE(TX_LESS_THAN_FOUR_LNS)),
952 /* 6*/	FLAG_ENTRY0("RX_LESS_THAN_FOUR_LNS", LCBE(RX_LESS_THAN_FOUR_LNS)),
953 /* 7*/	FLAG_ENTRY0("SEQ_CRC_ERR", LCBE(SEQ_CRC_ERR)),
954 /* 8*/	FLAG_ENTRY0("REINIT_FROM_PEER", LCBE(REINIT_FROM_PEER)),
955 /* 9*/	FLAG_ENTRY0("REINIT_FOR_LN_DEGRADE", LCBE(REINIT_FOR_LN_DEGRADE)),
956 /*10*/	FLAG_ENTRY0("CRC_ERR_CNT_HIT_LIMIT", LCBE(CRC_ERR_CNT_HIT_LIMIT)),
957 /*11*/	FLAG_ENTRY0("RCLK_STOPPED", LCBE(RCLK_STOPPED)),
958 /*12*/	FLAG_ENTRY0("UNEXPECTED_REPLAY_MARKER", LCBE(UNEXPECTED_REPLAY_MARKER)),
959 /*13*/	FLAG_ENTRY0("UNEXPECTED_ROUND_TRIP_MARKER",
960 		LCBE(UNEXPECTED_ROUND_TRIP_MARKER)),
961 /*14*/	FLAG_ENTRY0("ILLEGAL_NULL_LTP", LCBE(ILLEGAL_NULL_LTP)),
962 /*15*/	FLAG_ENTRY0("ILLEGAL_FLIT_ENCODING", LCBE(ILLEGAL_FLIT_ENCODING)),
963 /*16*/	FLAG_ENTRY0("FLIT_INPUT_BUF_OFLW", LCBE(FLIT_INPUT_BUF_OFLW)),
964 /*17*/	FLAG_ENTRY0("VL_ACK_INPUT_BUF_OFLW", LCBE(VL_ACK_INPUT_BUF_OFLW)),
965 /*18*/	FLAG_ENTRY0("VL_ACK_INPUT_PARITY_ERR", LCBE(VL_ACK_INPUT_PARITY_ERR)),
966 /*19*/	FLAG_ENTRY0("VL_ACK_INPUT_WRONG_CRC_MODE",
967 		LCBE(VL_ACK_INPUT_WRONG_CRC_MODE)),
968 /*20*/	FLAG_ENTRY0("FLIT_INPUT_BUF_MBE", LCBE(FLIT_INPUT_BUF_MBE)),
969 /*21*/	FLAG_ENTRY0("FLIT_INPUT_BUF_SBE", LCBE(FLIT_INPUT_BUF_SBE)),
970 /*22*/	FLAG_ENTRY0("REPLAY_BUF_MBE", LCBE(REPLAY_BUF_MBE)),
971 /*23*/	FLAG_ENTRY0("REPLAY_BUF_SBE", LCBE(REPLAY_BUF_SBE)),
972 /*24*/	FLAG_ENTRY0("CREDIT_RETURN_FLIT_MBE", LCBE(CREDIT_RETURN_FLIT_MBE)),
973 /*25*/	FLAG_ENTRY0("RST_FOR_LINK_TIMEOUT", LCBE(RST_FOR_LINK_TIMEOUT)),
974 /*26*/	FLAG_ENTRY0("RST_FOR_INCOMPLT_RND_TRIP",
975 		LCBE(RST_FOR_INCOMPLT_RND_TRIP)),
976 /*27*/	FLAG_ENTRY0("HOLD_REINIT", LCBE(HOLD_REINIT)),
977 /*28*/	FLAG_ENTRY0("NEG_EDGE_LINK_TRANSFER_ACTIVE",
978 		LCBE(NEG_EDGE_LINK_TRANSFER_ACTIVE)),
979 /*29*/	FLAG_ENTRY0("REDUNDANT_FLIT_PARITY_ERR",
980 		LCBE(REDUNDANT_FLIT_PARITY_ERR))
981 };
982 
983 /*
984  * DC8051 Error Flags
985  */
986 #define D8E(name) DC_DC8051_ERR_FLG_##name##_SMASK
987 static struct flag_table dc8051_err_flags[] = {
988 	FLAG_ENTRY0("SET_BY_8051", D8E(SET_BY_8051)),
989 	FLAG_ENTRY0("LOST_8051_HEART_BEAT", D8E(LOST_8051_HEART_BEAT)),
990 	FLAG_ENTRY0("CRAM_MBE", D8E(CRAM_MBE)),
991 	FLAG_ENTRY0("CRAM_SBE", D8E(CRAM_SBE)),
992 	FLAG_ENTRY0("DRAM_MBE", D8E(DRAM_MBE)),
993 	FLAG_ENTRY0("DRAM_SBE", D8E(DRAM_SBE)),
994 	FLAG_ENTRY0("IRAM_MBE", D8E(IRAM_MBE)),
995 	FLAG_ENTRY0("IRAM_SBE", D8E(IRAM_SBE)),
996 	FLAG_ENTRY0("UNMATCHED_SECURE_MSG_ACROSS_BCC_LANES",
997 		    D8E(UNMATCHED_SECURE_MSG_ACROSS_BCC_LANES)),
998 	FLAG_ENTRY0("INVALID_CSR_ADDR", D8E(INVALID_CSR_ADDR)),
999 };
1000 
1001 /*
1002  * DC8051 Information Error flags
1003  *
1004  * Flags in DC8051_DBG_ERR_INFO_SET_BY_8051.ERROR field.
1005  */
1006 static struct flag_table dc8051_info_err_flags[] = {
1007 	FLAG_ENTRY0("Spico ROM check failed",  SPICO_ROM_FAILED),
1008 	FLAG_ENTRY0("Unknown frame received",  UNKNOWN_FRAME),
1009 	FLAG_ENTRY0("Target BER not met",      TARGET_BER_NOT_MET),
1010 	FLAG_ENTRY0("Serdes internal loopback failure",
1011 		    FAILED_SERDES_INTERNAL_LOOPBACK),
1012 	FLAG_ENTRY0("Failed SerDes init",      FAILED_SERDES_INIT),
1013 	FLAG_ENTRY0("Failed LNI(Polling)",     FAILED_LNI_POLLING),
1014 	FLAG_ENTRY0("Failed LNI(Debounce)",    FAILED_LNI_DEBOUNCE),
1015 	FLAG_ENTRY0("Failed LNI(EstbComm)",    FAILED_LNI_ESTBCOMM),
1016 	FLAG_ENTRY0("Failed LNI(OptEq)",       FAILED_LNI_OPTEQ),
1017 	FLAG_ENTRY0("Failed LNI(VerifyCap_1)", FAILED_LNI_VERIFY_CAP1),
1018 	FLAG_ENTRY0("Failed LNI(VerifyCap_2)", FAILED_LNI_VERIFY_CAP2),
1019 	FLAG_ENTRY0("Failed LNI(ConfigLT)",    FAILED_LNI_CONFIGLT),
1020 	FLAG_ENTRY0("Host Handshake Timeout",  HOST_HANDSHAKE_TIMEOUT),
1021 	FLAG_ENTRY0("External Device Request Timeout",
1022 		    EXTERNAL_DEVICE_REQ_TIMEOUT),
1023 };
1024 
1025 /*
1026  * DC8051 Information Host Information flags
1027  *
1028  * Flags in DC8051_DBG_ERR_INFO_SET_BY_8051.HOST_MSG field.
1029  */
1030 static struct flag_table dc8051_info_host_msg_flags[] = {
1031 	FLAG_ENTRY0("Host request done", 0x0001),
1032 	FLAG_ENTRY0("BC PWR_MGM message", 0x0002),
1033 	FLAG_ENTRY0("BC SMA message", 0x0004),
1034 	FLAG_ENTRY0("BC Unknown message (BCC)", 0x0008),
1035 	FLAG_ENTRY0("BC Unknown message (LCB)", 0x0010),
1036 	FLAG_ENTRY0("External device config request", 0x0020),
1037 	FLAG_ENTRY0("VerifyCap all frames received", 0x0040),
1038 	FLAG_ENTRY0("LinkUp achieved", 0x0080),
1039 	FLAG_ENTRY0("Link going down", 0x0100),
1040 	FLAG_ENTRY0("Link width downgraded", 0x0200),
1041 };
1042 
1043 static u32 encoded_size(u32 size);
1044 static u32 chip_to_opa_lstate(struct hfi1_devdata *dd, u32 chip_lstate);
1045 static int set_physical_link_state(struct hfi1_devdata *dd, u64 state);
1046 static void read_vc_remote_phy(struct hfi1_devdata *dd, u8 *power_management,
1047 			       u8 *continuous);
1048 static void read_vc_remote_fabric(struct hfi1_devdata *dd, u8 *vau, u8 *z,
1049 				  u8 *vcu, u16 *vl15buf, u8 *crc_sizes);
1050 static void read_vc_remote_link_width(struct hfi1_devdata *dd,
1051 				      u8 *remote_tx_rate, u16 *link_widths);
1052 static void read_vc_local_link_mode(struct hfi1_devdata *dd, u8 *misc_bits,
1053 				    u8 *flag_bits, u16 *link_widths);
1054 static void read_remote_device_id(struct hfi1_devdata *dd, u16 *device_id,
1055 				  u8 *device_rev);
1056 static void read_local_lni(struct hfi1_devdata *dd, u8 *enable_lane_rx);
1057 static int read_tx_settings(struct hfi1_devdata *dd, u8 *enable_lane_tx,
1058 			    u8 *tx_polarity_inversion,
1059 			    u8 *rx_polarity_inversion, u8 *max_rate);
1060 static void handle_sdma_eng_err(struct hfi1_devdata *dd,
1061 				unsigned int context, u64 err_status);
1062 static void handle_qsfp_int(struct hfi1_devdata *dd, u32 source, u64 reg);
1063 static void handle_dcc_err(struct hfi1_devdata *dd,
1064 			   unsigned int context, u64 err_status);
1065 static void handle_lcb_err(struct hfi1_devdata *dd,
1066 			   unsigned int context, u64 err_status);
1067 static void handle_8051_interrupt(struct hfi1_devdata *dd, u32 unused, u64 reg);
1068 static void handle_cce_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1069 static void handle_rxe_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1070 static void handle_misc_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1071 static void handle_pio_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1072 static void handle_sdma_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1073 static void handle_egress_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1074 static void handle_txe_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1075 static void set_partition_keys(struct hfi1_pportdata *ppd);
1076 static const char *link_state_name(u32 state);
1077 static const char *link_state_reason_name(struct hfi1_pportdata *ppd,
1078 					  u32 state);
1079 static int do_8051_command(struct hfi1_devdata *dd, u32 type, u64 in_data,
1080 			   u64 *out_data);
1081 static int read_idle_sma(struct hfi1_devdata *dd, u64 *data);
1082 static int thermal_init(struct hfi1_devdata *dd);
1083 
1084 static void update_statusp(struct hfi1_pportdata *ppd, u32 state);
1085 static int wait_phys_link_offline_substates(struct hfi1_pportdata *ppd,
1086 					    int msecs);
1087 static int wait_logical_linkstate(struct hfi1_pportdata *ppd, u32 state,
1088 				  int msecs);
1089 static void log_state_transition(struct hfi1_pportdata *ppd, u32 state);
1090 static void log_physical_state(struct hfi1_pportdata *ppd, u32 state);
1091 static int wait_physical_linkstate(struct hfi1_pportdata *ppd, u32 state,
1092 				   int msecs);
1093 static int wait_phys_link_out_of_offline(struct hfi1_pportdata *ppd,
1094 					 int msecs);
1095 static void read_planned_down_reason_code(struct hfi1_devdata *dd, u8 *pdrrc);
1096 static void read_link_down_reason(struct hfi1_devdata *dd, u8 *ldr);
1097 static void handle_temp_err(struct hfi1_devdata *dd);
1098 static void dc_shutdown(struct hfi1_devdata *dd);
1099 static void dc_start(struct hfi1_devdata *dd);
1100 static int qos_rmt_entries(struct hfi1_devdata *dd, unsigned int *mp,
1101 			   unsigned int *np);
1102 static void clear_full_mgmt_pkey(struct hfi1_pportdata *ppd);
1103 static int wait_link_transfer_active(struct hfi1_devdata *dd, int wait_ms);
1104 static void clear_rsm_rule(struct hfi1_devdata *dd, u8 rule_index);
1105 static void update_xmit_counters(struct hfi1_pportdata *ppd, u16 link_width);
1106 
1107 /*
1108  * Error interrupt table entry.  This is used as input to the interrupt
1109  * "clear down" routine used for all second tier error interrupt register.
1110  * Second tier interrupt registers have a single bit representing them
1111  * in the top-level CceIntStatus.
1112  */
1113 struct err_reg_info {
1114 	u32 status;		/* status CSR offset */
1115 	u32 clear;		/* clear CSR offset */
1116 	u32 mask;		/* mask CSR offset */
1117 	void (*handler)(struct hfi1_devdata *dd, u32 source, u64 reg);
1118 	const char *desc;
1119 };
1120 
1121 #define NUM_MISC_ERRS (IS_GENERAL_ERR_END + 1 - IS_GENERAL_ERR_START)
1122 #define NUM_DC_ERRS (IS_DC_END + 1 - IS_DC_START)
1123 #define NUM_VARIOUS (IS_VARIOUS_END + 1 - IS_VARIOUS_START)
1124 
1125 /*
1126  * Helpers for building HFI and DC error interrupt table entries.  Different
1127  * helpers are needed because of inconsistent register names.
1128  */
1129 #define EE(reg, handler, desc) \
1130 	{ reg##_STATUS, reg##_CLEAR, reg##_MASK, \
1131 		handler, desc }
1132 #define DC_EE1(reg, handler, desc) \
1133 	{ reg##_FLG, reg##_FLG_CLR, reg##_FLG_EN, handler, desc }
1134 #define DC_EE2(reg, handler, desc) \
1135 	{ reg##_FLG, reg##_CLR, reg##_EN, handler, desc }
1136 
1137 /*
1138  * Table of the "misc" grouping of error interrupts.  Each entry refers to
1139  * another register containing more information.
1140  */
1141 static const struct err_reg_info misc_errs[NUM_MISC_ERRS] = {
1142 /* 0*/	EE(CCE_ERR,		handle_cce_err,    "CceErr"),
1143 /* 1*/	EE(RCV_ERR,		handle_rxe_err,    "RxeErr"),
1144 /* 2*/	EE(MISC_ERR,	handle_misc_err,   "MiscErr"),
1145 /* 3*/	{ 0, 0, 0, NULL }, /* reserved */
1146 /* 4*/	EE(SEND_PIO_ERR,    handle_pio_err,    "PioErr"),
1147 /* 5*/	EE(SEND_DMA_ERR,    handle_sdma_err,   "SDmaErr"),
1148 /* 6*/	EE(SEND_EGRESS_ERR, handle_egress_err, "EgressErr"),
1149 /* 7*/	EE(SEND_ERR,	handle_txe_err,    "TxeErr")
1150 	/* the rest are reserved */
1151 };
1152 
1153 /*
1154  * Index into the Various section of the interrupt sources
1155  * corresponding to the Critical Temperature interrupt.
1156  */
1157 #define TCRIT_INT_SOURCE 4
1158 
1159 /*
1160  * SDMA error interrupt entry - refers to another register containing more
1161  * information.
1162  */
1163 static const struct err_reg_info sdma_eng_err =
1164 	EE(SEND_DMA_ENG_ERR, handle_sdma_eng_err, "SDmaEngErr");
1165 
1166 static const struct err_reg_info various_err[NUM_VARIOUS] = {
1167 /* 0*/	{ 0, 0, 0, NULL }, /* PbcInt */
1168 /* 1*/	{ 0, 0, 0, NULL }, /* GpioAssertInt */
1169 /* 2*/	EE(ASIC_QSFP1,	handle_qsfp_int,	"QSFP1"),
1170 /* 3*/	EE(ASIC_QSFP2,	handle_qsfp_int,	"QSFP2"),
1171 /* 4*/	{ 0, 0, 0, NULL }, /* TCritInt */
1172 	/* rest are reserved */
1173 };
1174 
1175 /*
1176  * The DC encoding of mtu_cap for 10K MTU in the DCC_CFG_PORT_CONFIG
1177  * register can not be derived from the MTU value because 10K is not
1178  * a power of 2. Therefore, we need a constant. Everything else can
1179  * be calculated.
1180  */
1181 #define DCC_CFG_PORT_MTU_CAP_10240 7
1182 
1183 /*
1184  * Table of the DC grouping of error interrupts.  Each entry refers to
1185  * another register containing more information.
1186  */
1187 static const struct err_reg_info dc_errs[NUM_DC_ERRS] = {
1188 /* 0*/	DC_EE1(DCC_ERR,		handle_dcc_err,	       "DCC Err"),
1189 /* 1*/	DC_EE2(DC_LCB_ERR,	handle_lcb_err,	       "LCB Err"),
1190 /* 2*/	DC_EE2(DC_DC8051_ERR,	handle_8051_interrupt, "DC8051 Interrupt"),
1191 /* 3*/	/* dc_lbm_int - special, see is_dc_int() */
1192 	/* the rest are reserved */
1193 };
1194 
1195 struct cntr_entry {
1196 	/*
1197 	 * counter name
1198 	 */
1199 	char *name;
1200 
1201 	/*
1202 	 * csr to read for name (if applicable)
1203 	 */
1204 	u64 csr;
1205 
1206 	/*
1207 	 * offset into dd or ppd to store the counter's value
1208 	 */
1209 	int offset;
1210 
1211 	/*
1212 	 * flags
1213 	 */
1214 	u8 flags;
1215 
1216 	/*
1217 	 * accessor for stat element, context either dd or ppd
1218 	 */
1219 	u64 (*rw_cntr)(const struct cntr_entry *, void *context, int vl,
1220 		       int mode, u64 data);
1221 };
1222 
1223 #define C_RCV_HDR_OVF_FIRST C_RCV_HDR_OVF_0
1224 #define C_RCV_HDR_OVF_LAST C_RCV_HDR_OVF_159
1225 
1226 #define CNTR_ELEM(name, csr, offset, flags, accessor) \
1227 { \
1228 	name, \
1229 	csr, \
1230 	offset, \
1231 	flags, \
1232 	accessor \
1233 }
1234 
1235 /* 32bit RXE */
1236 #define RXE32_PORT_CNTR_ELEM(name, counter, flags) \
1237 CNTR_ELEM(#name, \
1238 	  (counter * 8 + RCV_COUNTER_ARRAY32), \
1239 	  0, flags | CNTR_32BIT, \
1240 	  port_access_u32_csr)
1241 
1242 #define RXE32_DEV_CNTR_ELEM(name, counter, flags) \
1243 CNTR_ELEM(#name, \
1244 	  (counter * 8 + RCV_COUNTER_ARRAY32), \
1245 	  0, flags | CNTR_32BIT, \
1246 	  dev_access_u32_csr)
1247 
1248 /* 64bit RXE */
1249 #define RXE64_PORT_CNTR_ELEM(name, counter, flags) \
1250 CNTR_ELEM(#name, \
1251 	  (counter * 8 + RCV_COUNTER_ARRAY64), \
1252 	  0, flags, \
1253 	  port_access_u64_csr)
1254 
1255 #define RXE64_DEV_CNTR_ELEM(name, counter, flags) \
1256 CNTR_ELEM(#name, \
1257 	  (counter * 8 + RCV_COUNTER_ARRAY64), \
1258 	  0, flags, \
1259 	  dev_access_u64_csr)
1260 
1261 #define OVR_LBL(ctx) C_RCV_HDR_OVF_ ## ctx
1262 #define OVR_ELM(ctx) \
1263 CNTR_ELEM("RcvHdrOvr" #ctx, \
1264 	  (RCV_HDR_OVFL_CNT + ctx * 0x100), \
1265 	  0, CNTR_NORMAL, port_access_u64_csr)
1266 
1267 /* 32bit TXE */
1268 #define TXE32_PORT_CNTR_ELEM(name, counter, flags) \
1269 CNTR_ELEM(#name, \
1270 	  (counter * 8 + SEND_COUNTER_ARRAY32), \
1271 	  0, flags | CNTR_32BIT, \
1272 	  port_access_u32_csr)
1273 
1274 /* 64bit TXE */
1275 #define TXE64_PORT_CNTR_ELEM(name, counter, flags) \
1276 CNTR_ELEM(#name, \
1277 	  (counter * 8 + SEND_COUNTER_ARRAY64), \
1278 	  0, flags, \
1279 	  port_access_u64_csr)
1280 
1281 # define TX64_DEV_CNTR_ELEM(name, counter, flags) \
1282 CNTR_ELEM(#name,\
1283 	  counter * 8 + SEND_COUNTER_ARRAY64, \
1284 	  0, \
1285 	  flags, \
1286 	  dev_access_u64_csr)
1287 
1288 /* CCE */
1289 #define CCE_PERF_DEV_CNTR_ELEM(name, counter, flags) \
1290 CNTR_ELEM(#name, \
1291 	  (counter * 8 + CCE_COUNTER_ARRAY32), \
1292 	  0, flags | CNTR_32BIT, \
1293 	  dev_access_u32_csr)
1294 
1295 #define CCE_INT_DEV_CNTR_ELEM(name, counter, flags) \
1296 CNTR_ELEM(#name, \
1297 	  (counter * 8 + CCE_INT_COUNTER_ARRAY32), \
1298 	  0, flags | CNTR_32BIT, \
1299 	  dev_access_u32_csr)
1300 
1301 /* DC */
1302 #define DC_PERF_CNTR(name, counter, flags) \
1303 CNTR_ELEM(#name, \
1304 	  counter, \
1305 	  0, \
1306 	  flags, \
1307 	  dev_access_u64_csr)
1308 
1309 #define DC_PERF_CNTR_LCB(name, counter, flags) \
1310 CNTR_ELEM(#name, \
1311 	  counter, \
1312 	  0, \
1313 	  flags, \
1314 	  dc_access_lcb_cntr)
1315 
1316 /* ibp counters */
1317 #define SW_IBP_CNTR(name, cntr) \
1318 CNTR_ELEM(#name, \
1319 	  0, \
1320 	  0, \
1321 	  CNTR_SYNTH, \
1322 	  access_ibp_##cntr)
1323 
1324 /**
1325  * hfi_addr_from_offset - return addr for readq/writeq
1326  * @dd - the dd device
1327  * @offset - the offset of the CSR within bar0
1328  *
1329  * This routine selects the appropriate base address
1330  * based on the indicated offset.
1331  */
1332 static inline void __iomem *hfi1_addr_from_offset(
1333 	const struct hfi1_devdata *dd,
1334 	u32 offset)
1335 {
1336 	if (offset >= dd->base2_start)
1337 		return dd->kregbase2 + (offset - dd->base2_start);
1338 	return dd->kregbase1 + offset;
1339 }
1340 
1341 /**
1342  * read_csr - read CSR at the indicated offset
1343  * @dd - the dd device
1344  * @offset - the offset of the CSR within bar0
1345  *
1346  * Return: the value read or all FF's if there
1347  * is no mapping
1348  */
1349 u64 read_csr(const struct hfi1_devdata *dd, u32 offset)
1350 {
1351 	if (dd->flags & HFI1_PRESENT)
1352 		return readq(hfi1_addr_from_offset(dd, offset));
1353 	return -1;
1354 }
1355 
1356 /**
1357  * write_csr - write CSR at the indicated offset
1358  * @dd - the dd device
1359  * @offset - the offset of the CSR within bar0
1360  * @value - value to write
1361  */
1362 void write_csr(const struct hfi1_devdata *dd, u32 offset, u64 value)
1363 {
1364 	if (dd->flags & HFI1_PRESENT) {
1365 		void __iomem *base = hfi1_addr_from_offset(dd, offset);
1366 
1367 		/* avoid write to RcvArray */
1368 		if (WARN_ON(offset >= RCV_ARRAY && offset < dd->base2_start))
1369 			return;
1370 		writeq(value, base);
1371 	}
1372 }
1373 
1374 /**
1375  * get_csr_addr - return te iomem address for offset
1376  * @dd - the dd device
1377  * @offset - the offset of the CSR within bar0
1378  *
1379  * Return: The iomem address to use in subsequent
1380  * writeq/readq operations.
1381  */
1382 void __iomem *get_csr_addr(
1383 	const struct hfi1_devdata *dd,
1384 	u32 offset)
1385 {
1386 	if (dd->flags & HFI1_PRESENT)
1387 		return hfi1_addr_from_offset(dd, offset);
1388 	return NULL;
1389 }
1390 
1391 static inline u64 read_write_csr(const struct hfi1_devdata *dd, u32 csr,
1392 				 int mode, u64 value)
1393 {
1394 	u64 ret;
1395 
1396 	if (mode == CNTR_MODE_R) {
1397 		ret = read_csr(dd, csr);
1398 	} else if (mode == CNTR_MODE_W) {
1399 		write_csr(dd, csr, value);
1400 		ret = value;
1401 	} else {
1402 		dd_dev_err(dd, "Invalid cntr register access mode");
1403 		return 0;
1404 	}
1405 
1406 	hfi1_cdbg(CNTR, "csr 0x%x val 0x%llx mode %d", csr, ret, mode);
1407 	return ret;
1408 }
1409 
1410 /* Dev Access */
1411 static u64 dev_access_u32_csr(const struct cntr_entry *entry,
1412 			      void *context, int vl, int mode, u64 data)
1413 {
1414 	struct hfi1_devdata *dd = context;
1415 	u64 csr = entry->csr;
1416 
1417 	if (entry->flags & CNTR_SDMA) {
1418 		if (vl == CNTR_INVALID_VL)
1419 			return 0;
1420 		csr += 0x100 * vl;
1421 	} else {
1422 		if (vl != CNTR_INVALID_VL)
1423 			return 0;
1424 	}
1425 	return read_write_csr(dd, csr, mode, data);
1426 }
1427 
1428 static u64 access_sde_err_cnt(const struct cntr_entry *entry,
1429 			      void *context, int idx, int mode, u64 data)
1430 {
1431 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1432 
1433 	if (dd->per_sdma && idx < dd->num_sdma)
1434 		return dd->per_sdma[idx].err_cnt;
1435 	return 0;
1436 }
1437 
1438 static u64 access_sde_int_cnt(const struct cntr_entry *entry,
1439 			      void *context, int idx, int mode, u64 data)
1440 {
1441 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1442 
1443 	if (dd->per_sdma && idx < dd->num_sdma)
1444 		return dd->per_sdma[idx].sdma_int_cnt;
1445 	return 0;
1446 }
1447 
1448 static u64 access_sde_idle_int_cnt(const struct cntr_entry *entry,
1449 				   void *context, int idx, int mode, u64 data)
1450 {
1451 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1452 
1453 	if (dd->per_sdma && idx < dd->num_sdma)
1454 		return dd->per_sdma[idx].idle_int_cnt;
1455 	return 0;
1456 }
1457 
1458 static u64 access_sde_progress_int_cnt(const struct cntr_entry *entry,
1459 				       void *context, int idx, int mode,
1460 				       u64 data)
1461 {
1462 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1463 
1464 	if (dd->per_sdma && idx < dd->num_sdma)
1465 		return dd->per_sdma[idx].progress_int_cnt;
1466 	return 0;
1467 }
1468 
1469 static u64 dev_access_u64_csr(const struct cntr_entry *entry, void *context,
1470 			      int vl, int mode, u64 data)
1471 {
1472 	struct hfi1_devdata *dd = context;
1473 
1474 	u64 val = 0;
1475 	u64 csr = entry->csr;
1476 
1477 	if (entry->flags & CNTR_VL) {
1478 		if (vl == CNTR_INVALID_VL)
1479 			return 0;
1480 		csr += 8 * vl;
1481 	} else {
1482 		if (vl != CNTR_INVALID_VL)
1483 			return 0;
1484 	}
1485 
1486 	val = read_write_csr(dd, csr, mode, data);
1487 	return val;
1488 }
1489 
1490 static u64 dc_access_lcb_cntr(const struct cntr_entry *entry, void *context,
1491 			      int vl, int mode, u64 data)
1492 {
1493 	struct hfi1_devdata *dd = context;
1494 	u32 csr = entry->csr;
1495 	int ret = 0;
1496 
1497 	if (vl != CNTR_INVALID_VL)
1498 		return 0;
1499 	if (mode == CNTR_MODE_R)
1500 		ret = read_lcb_csr(dd, csr, &data);
1501 	else if (mode == CNTR_MODE_W)
1502 		ret = write_lcb_csr(dd, csr, data);
1503 
1504 	if (ret) {
1505 		dd_dev_err(dd, "Could not acquire LCB for counter 0x%x", csr);
1506 		return 0;
1507 	}
1508 
1509 	hfi1_cdbg(CNTR, "csr 0x%x val 0x%llx mode %d", csr, data, mode);
1510 	return data;
1511 }
1512 
1513 /* Port Access */
1514 static u64 port_access_u32_csr(const struct cntr_entry *entry, void *context,
1515 			       int vl, int mode, u64 data)
1516 {
1517 	struct hfi1_pportdata *ppd = context;
1518 
1519 	if (vl != CNTR_INVALID_VL)
1520 		return 0;
1521 	return read_write_csr(ppd->dd, entry->csr, mode, data);
1522 }
1523 
1524 static u64 port_access_u64_csr(const struct cntr_entry *entry,
1525 			       void *context, int vl, int mode, u64 data)
1526 {
1527 	struct hfi1_pportdata *ppd = context;
1528 	u64 val;
1529 	u64 csr = entry->csr;
1530 
1531 	if (entry->flags & CNTR_VL) {
1532 		if (vl == CNTR_INVALID_VL)
1533 			return 0;
1534 		csr += 8 * vl;
1535 	} else {
1536 		if (vl != CNTR_INVALID_VL)
1537 			return 0;
1538 	}
1539 	val = read_write_csr(ppd->dd, csr, mode, data);
1540 	return val;
1541 }
1542 
1543 /* Software defined */
1544 static inline u64 read_write_sw(struct hfi1_devdata *dd, u64 *cntr, int mode,
1545 				u64 data)
1546 {
1547 	u64 ret;
1548 
1549 	if (mode == CNTR_MODE_R) {
1550 		ret = *cntr;
1551 	} else if (mode == CNTR_MODE_W) {
1552 		*cntr = data;
1553 		ret = data;
1554 	} else {
1555 		dd_dev_err(dd, "Invalid cntr sw access mode");
1556 		return 0;
1557 	}
1558 
1559 	hfi1_cdbg(CNTR, "val 0x%llx mode %d", ret, mode);
1560 
1561 	return ret;
1562 }
1563 
1564 static u64 access_sw_link_dn_cnt(const struct cntr_entry *entry, void *context,
1565 				 int vl, int mode, u64 data)
1566 {
1567 	struct hfi1_pportdata *ppd = context;
1568 
1569 	if (vl != CNTR_INVALID_VL)
1570 		return 0;
1571 	return read_write_sw(ppd->dd, &ppd->link_downed, mode, data);
1572 }
1573 
1574 static u64 access_sw_link_up_cnt(const struct cntr_entry *entry, void *context,
1575 				 int vl, int mode, u64 data)
1576 {
1577 	struct hfi1_pportdata *ppd = context;
1578 
1579 	if (vl != CNTR_INVALID_VL)
1580 		return 0;
1581 	return read_write_sw(ppd->dd, &ppd->link_up, mode, data);
1582 }
1583 
1584 static u64 access_sw_unknown_frame_cnt(const struct cntr_entry *entry,
1585 				       void *context, int vl, int mode,
1586 				       u64 data)
1587 {
1588 	struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context;
1589 
1590 	if (vl != CNTR_INVALID_VL)
1591 		return 0;
1592 	return read_write_sw(ppd->dd, &ppd->unknown_frame_count, mode, data);
1593 }
1594 
1595 static u64 access_sw_xmit_discards(const struct cntr_entry *entry,
1596 				   void *context, int vl, int mode, u64 data)
1597 {
1598 	struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context;
1599 	u64 zero = 0;
1600 	u64 *counter;
1601 
1602 	if (vl == CNTR_INVALID_VL)
1603 		counter = &ppd->port_xmit_discards;
1604 	else if (vl >= 0 && vl < C_VL_COUNT)
1605 		counter = &ppd->port_xmit_discards_vl[vl];
1606 	else
1607 		counter = &zero;
1608 
1609 	return read_write_sw(ppd->dd, counter, mode, data);
1610 }
1611 
1612 static u64 access_xmit_constraint_errs(const struct cntr_entry *entry,
1613 				       void *context, int vl, int mode,
1614 				       u64 data)
1615 {
1616 	struct hfi1_pportdata *ppd = context;
1617 
1618 	if (vl != CNTR_INVALID_VL)
1619 		return 0;
1620 
1621 	return read_write_sw(ppd->dd, &ppd->port_xmit_constraint_errors,
1622 			     mode, data);
1623 }
1624 
1625 static u64 access_rcv_constraint_errs(const struct cntr_entry *entry,
1626 				      void *context, int vl, int mode, u64 data)
1627 {
1628 	struct hfi1_pportdata *ppd = context;
1629 
1630 	if (vl != CNTR_INVALID_VL)
1631 		return 0;
1632 
1633 	return read_write_sw(ppd->dd, &ppd->port_rcv_constraint_errors,
1634 			     mode, data);
1635 }
1636 
1637 u64 get_all_cpu_total(u64 __percpu *cntr)
1638 {
1639 	int cpu;
1640 	u64 counter = 0;
1641 
1642 	for_each_possible_cpu(cpu)
1643 		counter += *per_cpu_ptr(cntr, cpu);
1644 	return counter;
1645 }
1646 
1647 static u64 read_write_cpu(struct hfi1_devdata *dd, u64 *z_val,
1648 			  u64 __percpu *cntr,
1649 			  int vl, int mode, u64 data)
1650 {
1651 	u64 ret = 0;
1652 
1653 	if (vl != CNTR_INVALID_VL)
1654 		return 0;
1655 
1656 	if (mode == CNTR_MODE_R) {
1657 		ret = get_all_cpu_total(cntr) - *z_val;
1658 	} else if (mode == CNTR_MODE_W) {
1659 		/* A write can only zero the counter */
1660 		if (data == 0)
1661 			*z_val = get_all_cpu_total(cntr);
1662 		else
1663 			dd_dev_err(dd, "Per CPU cntrs can only be zeroed");
1664 	} else {
1665 		dd_dev_err(dd, "Invalid cntr sw cpu access mode");
1666 		return 0;
1667 	}
1668 
1669 	return ret;
1670 }
1671 
1672 static u64 access_sw_cpu_intr(const struct cntr_entry *entry,
1673 			      void *context, int vl, int mode, u64 data)
1674 {
1675 	struct hfi1_devdata *dd = context;
1676 
1677 	return read_write_cpu(dd, &dd->z_int_counter, dd->int_counter, vl,
1678 			      mode, data);
1679 }
1680 
1681 static u64 access_sw_cpu_rcv_limit(const struct cntr_entry *entry,
1682 				   void *context, int vl, int mode, u64 data)
1683 {
1684 	struct hfi1_devdata *dd = context;
1685 
1686 	return read_write_cpu(dd, &dd->z_rcv_limit, dd->rcv_limit, vl,
1687 			      mode, data);
1688 }
1689 
1690 static u64 access_sw_pio_wait(const struct cntr_entry *entry,
1691 			      void *context, int vl, int mode, u64 data)
1692 {
1693 	struct hfi1_devdata *dd = context;
1694 
1695 	return dd->verbs_dev.n_piowait;
1696 }
1697 
1698 static u64 access_sw_pio_drain(const struct cntr_entry *entry,
1699 			       void *context, int vl, int mode, u64 data)
1700 {
1701 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1702 
1703 	return dd->verbs_dev.n_piodrain;
1704 }
1705 
1706 static u64 access_sw_ctx0_seq_drop(const struct cntr_entry *entry,
1707 				   void *context, int vl, int mode, u64 data)
1708 {
1709 	struct hfi1_devdata *dd = context;
1710 
1711 	return dd->ctx0_seq_drop;
1712 }
1713 
1714 static u64 access_sw_vtx_wait(const struct cntr_entry *entry,
1715 			      void *context, int vl, int mode, u64 data)
1716 {
1717 	struct hfi1_devdata *dd = context;
1718 
1719 	return dd->verbs_dev.n_txwait;
1720 }
1721 
1722 static u64 access_sw_kmem_wait(const struct cntr_entry *entry,
1723 			       void *context, int vl, int mode, u64 data)
1724 {
1725 	struct hfi1_devdata *dd = context;
1726 
1727 	return dd->verbs_dev.n_kmem_wait;
1728 }
1729 
1730 static u64 access_sw_send_schedule(const struct cntr_entry *entry,
1731 				   void *context, int vl, int mode, u64 data)
1732 {
1733 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1734 
1735 	return read_write_cpu(dd, &dd->z_send_schedule, dd->send_schedule, vl,
1736 			      mode, data);
1737 }
1738 
1739 /* Software counters for the error status bits within MISC_ERR_STATUS */
1740 static u64 access_misc_pll_lock_fail_err_cnt(const struct cntr_entry *entry,
1741 					     void *context, int vl, int mode,
1742 					     u64 data)
1743 {
1744 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1745 
1746 	return dd->misc_err_status_cnt[12];
1747 }
1748 
1749 static u64 access_misc_mbist_fail_err_cnt(const struct cntr_entry *entry,
1750 					  void *context, int vl, int mode,
1751 					  u64 data)
1752 {
1753 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1754 
1755 	return dd->misc_err_status_cnt[11];
1756 }
1757 
1758 static u64 access_misc_invalid_eep_cmd_err_cnt(const struct cntr_entry *entry,
1759 					       void *context, int vl, int mode,
1760 					       u64 data)
1761 {
1762 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1763 
1764 	return dd->misc_err_status_cnt[10];
1765 }
1766 
1767 static u64 access_misc_efuse_done_parity_err_cnt(const struct cntr_entry *entry,
1768 						 void *context, int vl,
1769 						 int mode, u64 data)
1770 {
1771 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1772 
1773 	return dd->misc_err_status_cnt[9];
1774 }
1775 
1776 static u64 access_misc_efuse_write_err_cnt(const struct cntr_entry *entry,
1777 					   void *context, int vl, int mode,
1778 					   u64 data)
1779 {
1780 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1781 
1782 	return dd->misc_err_status_cnt[8];
1783 }
1784 
1785 static u64 access_misc_efuse_read_bad_addr_err_cnt(
1786 				const struct cntr_entry *entry,
1787 				void *context, int vl, int mode, u64 data)
1788 {
1789 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1790 
1791 	return dd->misc_err_status_cnt[7];
1792 }
1793 
1794 static u64 access_misc_efuse_csr_parity_err_cnt(const struct cntr_entry *entry,
1795 						void *context, int vl,
1796 						int mode, u64 data)
1797 {
1798 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1799 
1800 	return dd->misc_err_status_cnt[6];
1801 }
1802 
1803 static u64 access_misc_fw_auth_failed_err_cnt(const struct cntr_entry *entry,
1804 					      void *context, int vl, int mode,
1805 					      u64 data)
1806 {
1807 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1808 
1809 	return dd->misc_err_status_cnt[5];
1810 }
1811 
1812 static u64 access_misc_key_mismatch_err_cnt(const struct cntr_entry *entry,
1813 					    void *context, int vl, int mode,
1814 					    u64 data)
1815 {
1816 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1817 
1818 	return dd->misc_err_status_cnt[4];
1819 }
1820 
1821 static u64 access_misc_sbus_write_failed_err_cnt(const struct cntr_entry *entry,
1822 						 void *context, int vl,
1823 						 int mode, u64 data)
1824 {
1825 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1826 
1827 	return dd->misc_err_status_cnt[3];
1828 }
1829 
1830 static u64 access_misc_csr_write_bad_addr_err_cnt(
1831 				const struct cntr_entry *entry,
1832 				void *context, int vl, int mode, u64 data)
1833 {
1834 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1835 
1836 	return dd->misc_err_status_cnt[2];
1837 }
1838 
1839 static u64 access_misc_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
1840 						 void *context, int vl,
1841 						 int mode, u64 data)
1842 {
1843 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1844 
1845 	return dd->misc_err_status_cnt[1];
1846 }
1847 
1848 static u64 access_misc_csr_parity_err_cnt(const struct cntr_entry *entry,
1849 					  void *context, int vl, int mode,
1850 					  u64 data)
1851 {
1852 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1853 
1854 	return dd->misc_err_status_cnt[0];
1855 }
1856 
1857 /*
1858  * Software counter for the aggregate of
1859  * individual CceErrStatus counters
1860  */
1861 static u64 access_sw_cce_err_status_aggregated_cnt(
1862 				const struct cntr_entry *entry,
1863 				void *context, int vl, int mode, u64 data)
1864 {
1865 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1866 
1867 	return dd->sw_cce_err_status_aggregate;
1868 }
1869 
1870 /*
1871  * Software counters corresponding to each of the
1872  * error status bits within CceErrStatus
1873  */
1874 static u64 access_cce_msix_csr_parity_err_cnt(const struct cntr_entry *entry,
1875 					      void *context, int vl, int mode,
1876 					      u64 data)
1877 {
1878 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1879 
1880 	return dd->cce_err_status_cnt[40];
1881 }
1882 
1883 static u64 access_cce_int_map_unc_err_cnt(const struct cntr_entry *entry,
1884 					  void *context, int vl, int mode,
1885 					  u64 data)
1886 {
1887 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1888 
1889 	return dd->cce_err_status_cnt[39];
1890 }
1891 
1892 static u64 access_cce_int_map_cor_err_cnt(const struct cntr_entry *entry,
1893 					  void *context, int vl, int mode,
1894 					  u64 data)
1895 {
1896 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1897 
1898 	return dd->cce_err_status_cnt[38];
1899 }
1900 
1901 static u64 access_cce_msix_table_unc_err_cnt(const struct cntr_entry *entry,
1902 					     void *context, int vl, int mode,
1903 					     u64 data)
1904 {
1905 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1906 
1907 	return dd->cce_err_status_cnt[37];
1908 }
1909 
1910 static u64 access_cce_msix_table_cor_err_cnt(const struct cntr_entry *entry,
1911 					     void *context, int vl, int mode,
1912 					     u64 data)
1913 {
1914 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1915 
1916 	return dd->cce_err_status_cnt[36];
1917 }
1918 
1919 static u64 access_cce_rxdma_conv_fifo_parity_err_cnt(
1920 				const struct cntr_entry *entry,
1921 				void *context, int vl, int mode, u64 data)
1922 {
1923 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1924 
1925 	return dd->cce_err_status_cnt[35];
1926 }
1927 
1928 static u64 access_cce_rcpl_async_fifo_parity_err_cnt(
1929 				const struct cntr_entry *entry,
1930 				void *context, int vl, int mode, u64 data)
1931 {
1932 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1933 
1934 	return dd->cce_err_status_cnt[34];
1935 }
1936 
1937 static u64 access_cce_seg_write_bad_addr_err_cnt(const struct cntr_entry *entry,
1938 						 void *context, int vl,
1939 						 int mode, u64 data)
1940 {
1941 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1942 
1943 	return dd->cce_err_status_cnt[33];
1944 }
1945 
1946 static u64 access_cce_seg_read_bad_addr_err_cnt(const struct cntr_entry *entry,
1947 						void *context, int vl, int mode,
1948 						u64 data)
1949 {
1950 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1951 
1952 	return dd->cce_err_status_cnt[32];
1953 }
1954 
1955 static u64 access_la_triggered_cnt(const struct cntr_entry *entry,
1956 				   void *context, int vl, int mode, u64 data)
1957 {
1958 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1959 
1960 	return dd->cce_err_status_cnt[31];
1961 }
1962 
1963 static u64 access_cce_trgt_cpl_timeout_err_cnt(const struct cntr_entry *entry,
1964 					       void *context, int vl, int mode,
1965 					       u64 data)
1966 {
1967 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1968 
1969 	return dd->cce_err_status_cnt[30];
1970 }
1971 
1972 static u64 access_pcic_receive_parity_err_cnt(const struct cntr_entry *entry,
1973 					      void *context, int vl, int mode,
1974 					      u64 data)
1975 {
1976 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1977 
1978 	return dd->cce_err_status_cnt[29];
1979 }
1980 
1981 static u64 access_pcic_transmit_back_parity_err_cnt(
1982 				const struct cntr_entry *entry,
1983 				void *context, int vl, int mode, u64 data)
1984 {
1985 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1986 
1987 	return dd->cce_err_status_cnt[28];
1988 }
1989 
1990 static u64 access_pcic_transmit_front_parity_err_cnt(
1991 				const struct cntr_entry *entry,
1992 				void *context, int vl, int mode, u64 data)
1993 {
1994 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1995 
1996 	return dd->cce_err_status_cnt[27];
1997 }
1998 
1999 static u64 access_pcic_cpl_dat_q_unc_err_cnt(const struct cntr_entry *entry,
2000 					     void *context, int vl, int mode,
2001 					     u64 data)
2002 {
2003 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2004 
2005 	return dd->cce_err_status_cnt[26];
2006 }
2007 
2008 static u64 access_pcic_cpl_hd_q_unc_err_cnt(const struct cntr_entry *entry,
2009 					    void *context, int vl, int mode,
2010 					    u64 data)
2011 {
2012 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2013 
2014 	return dd->cce_err_status_cnt[25];
2015 }
2016 
2017 static u64 access_pcic_post_dat_q_unc_err_cnt(const struct cntr_entry *entry,
2018 					      void *context, int vl, int mode,
2019 					      u64 data)
2020 {
2021 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2022 
2023 	return dd->cce_err_status_cnt[24];
2024 }
2025 
2026 static u64 access_pcic_post_hd_q_unc_err_cnt(const struct cntr_entry *entry,
2027 					     void *context, int vl, int mode,
2028 					     u64 data)
2029 {
2030 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2031 
2032 	return dd->cce_err_status_cnt[23];
2033 }
2034 
2035 static u64 access_pcic_retry_sot_mem_unc_err_cnt(const struct cntr_entry *entry,
2036 						 void *context, int vl,
2037 						 int mode, u64 data)
2038 {
2039 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2040 
2041 	return dd->cce_err_status_cnt[22];
2042 }
2043 
2044 static u64 access_pcic_retry_mem_unc_err(const struct cntr_entry *entry,
2045 					 void *context, int vl, int mode,
2046 					 u64 data)
2047 {
2048 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2049 
2050 	return dd->cce_err_status_cnt[21];
2051 }
2052 
2053 static u64 access_pcic_n_post_dat_q_parity_err_cnt(
2054 				const struct cntr_entry *entry,
2055 				void *context, int vl, int mode, u64 data)
2056 {
2057 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2058 
2059 	return dd->cce_err_status_cnt[20];
2060 }
2061 
2062 static u64 access_pcic_n_post_h_q_parity_err_cnt(const struct cntr_entry *entry,
2063 						 void *context, int vl,
2064 						 int mode, u64 data)
2065 {
2066 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2067 
2068 	return dd->cce_err_status_cnt[19];
2069 }
2070 
2071 static u64 access_pcic_cpl_dat_q_cor_err_cnt(const struct cntr_entry *entry,
2072 					     void *context, int vl, int mode,
2073 					     u64 data)
2074 {
2075 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2076 
2077 	return dd->cce_err_status_cnt[18];
2078 }
2079 
2080 static u64 access_pcic_cpl_hd_q_cor_err_cnt(const struct cntr_entry *entry,
2081 					    void *context, int vl, int mode,
2082 					    u64 data)
2083 {
2084 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2085 
2086 	return dd->cce_err_status_cnt[17];
2087 }
2088 
2089 static u64 access_pcic_post_dat_q_cor_err_cnt(const struct cntr_entry *entry,
2090 					      void *context, int vl, int mode,
2091 					      u64 data)
2092 {
2093 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2094 
2095 	return dd->cce_err_status_cnt[16];
2096 }
2097 
2098 static u64 access_pcic_post_hd_q_cor_err_cnt(const struct cntr_entry *entry,
2099 					     void *context, int vl, int mode,
2100 					     u64 data)
2101 {
2102 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2103 
2104 	return dd->cce_err_status_cnt[15];
2105 }
2106 
2107 static u64 access_pcic_retry_sot_mem_cor_err_cnt(const struct cntr_entry *entry,
2108 						 void *context, int vl,
2109 						 int mode, u64 data)
2110 {
2111 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2112 
2113 	return dd->cce_err_status_cnt[14];
2114 }
2115 
2116 static u64 access_pcic_retry_mem_cor_err_cnt(const struct cntr_entry *entry,
2117 					     void *context, int vl, int mode,
2118 					     u64 data)
2119 {
2120 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2121 
2122 	return dd->cce_err_status_cnt[13];
2123 }
2124 
2125 static u64 access_cce_cli1_async_fifo_dbg_parity_err_cnt(
2126 				const struct cntr_entry *entry,
2127 				void *context, int vl, int mode, u64 data)
2128 {
2129 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2130 
2131 	return dd->cce_err_status_cnt[12];
2132 }
2133 
2134 static u64 access_cce_cli1_async_fifo_rxdma_parity_err_cnt(
2135 				const struct cntr_entry *entry,
2136 				void *context, int vl, int mode, u64 data)
2137 {
2138 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2139 
2140 	return dd->cce_err_status_cnt[11];
2141 }
2142 
2143 static u64 access_cce_cli1_async_fifo_sdma_hd_parity_err_cnt(
2144 				const struct cntr_entry *entry,
2145 				void *context, int vl, int mode, u64 data)
2146 {
2147 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2148 
2149 	return dd->cce_err_status_cnt[10];
2150 }
2151 
2152 static u64 access_cce_cl1_async_fifo_pio_crdt_parity_err_cnt(
2153 				const struct cntr_entry *entry,
2154 				void *context, int vl, int mode, u64 data)
2155 {
2156 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2157 
2158 	return dd->cce_err_status_cnt[9];
2159 }
2160 
2161 static u64 access_cce_cli2_async_fifo_parity_err_cnt(
2162 				const struct cntr_entry *entry,
2163 				void *context, int vl, int mode, u64 data)
2164 {
2165 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2166 
2167 	return dd->cce_err_status_cnt[8];
2168 }
2169 
2170 static u64 access_cce_csr_cfg_bus_parity_err_cnt(const struct cntr_entry *entry,
2171 						 void *context, int vl,
2172 						 int mode, u64 data)
2173 {
2174 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2175 
2176 	return dd->cce_err_status_cnt[7];
2177 }
2178 
2179 static u64 access_cce_cli0_async_fifo_parity_err_cnt(
2180 				const struct cntr_entry *entry,
2181 				void *context, int vl, int mode, u64 data)
2182 {
2183 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2184 
2185 	return dd->cce_err_status_cnt[6];
2186 }
2187 
2188 static u64 access_cce_rspd_data_parity_err_cnt(const struct cntr_entry *entry,
2189 					       void *context, int vl, int mode,
2190 					       u64 data)
2191 {
2192 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2193 
2194 	return dd->cce_err_status_cnt[5];
2195 }
2196 
2197 static u64 access_cce_trgt_access_err_cnt(const struct cntr_entry *entry,
2198 					  void *context, int vl, int mode,
2199 					  u64 data)
2200 {
2201 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2202 
2203 	return dd->cce_err_status_cnt[4];
2204 }
2205 
2206 static u64 access_cce_trgt_async_fifo_parity_err_cnt(
2207 				const struct cntr_entry *entry,
2208 				void *context, int vl, int mode, u64 data)
2209 {
2210 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2211 
2212 	return dd->cce_err_status_cnt[3];
2213 }
2214 
2215 static u64 access_cce_csr_write_bad_addr_err_cnt(const struct cntr_entry *entry,
2216 						 void *context, int vl,
2217 						 int mode, u64 data)
2218 {
2219 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2220 
2221 	return dd->cce_err_status_cnt[2];
2222 }
2223 
2224 static u64 access_cce_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
2225 						void *context, int vl,
2226 						int mode, u64 data)
2227 {
2228 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2229 
2230 	return dd->cce_err_status_cnt[1];
2231 }
2232 
2233 static u64 access_ccs_csr_parity_err_cnt(const struct cntr_entry *entry,
2234 					 void *context, int vl, int mode,
2235 					 u64 data)
2236 {
2237 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2238 
2239 	return dd->cce_err_status_cnt[0];
2240 }
2241 
2242 /*
2243  * Software counters corresponding to each of the
2244  * error status bits within RcvErrStatus
2245  */
2246 static u64 access_rx_csr_parity_err_cnt(const struct cntr_entry *entry,
2247 					void *context, int vl, int mode,
2248 					u64 data)
2249 {
2250 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2251 
2252 	return dd->rcv_err_status_cnt[63];
2253 }
2254 
2255 static u64 access_rx_csr_write_bad_addr_err_cnt(const struct cntr_entry *entry,
2256 						void *context, int vl,
2257 						int mode, u64 data)
2258 {
2259 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2260 
2261 	return dd->rcv_err_status_cnt[62];
2262 }
2263 
2264 static u64 access_rx_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
2265 					       void *context, int vl, int mode,
2266 					       u64 data)
2267 {
2268 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2269 
2270 	return dd->rcv_err_status_cnt[61];
2271 }
2272 
2273 static u64 access_rx_dma_csr_unc_err_cnt(const struct cntr_entry *entry,
2274 					 void *context, int vl, int mode,
2275 					 u64 data)
2276 {
2277 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2278 
2279 	return dd->rcv_err_status_cnt[60];
2280 }
2281 
2282 static u64 access_rx_dma_dq_fsm_encoding_err_cnt(const struct cntr_entry *entry,
2283 						 void *context, int vl,
2284 						 int mode, u64 data)
2285 {
2286 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2287 
2288 	return dd->rcv_err_status_cnt[59];
2289 }
2290 
2291 static u64 access_rx_dma_eq_fsm_encoding_err_cnt(const struct cntr_entry *entry,
2292 						 void *context, int vl,
2293 						 int mode, u64 data)
2294 {
2295 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2296 
2297 	return dd->rcv_err_status_cnt[58];
2298 }
2299 
2300 static u64 access_rx_dma_csr_parity_err_cnt(const struct cntr_entry *entry,
2301 					    void *context, int vl, int mode,
2302 					    u64 data)
2303 {
2304 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2305 
2306 	return dd->rcv_err_status_cnt[57];
2307 }
2308 
2309 static u64 access_rx_rbuf_data_cor_err_cnt(const struct cntr_entry *entry,
2310 					   void *context, int vl, int mode,
2311 					   u64 data)
2312 {
2313 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2314 
2315 	return dd->rcv_err_status_cnt[56];
2316 }
2317 
2318 static u64 access_rx_rbuf_data_unc_err_cnt(const struct cntr_entry *entry,
2319 					   void *context, int vl, int mode,
2320 					   u64 data)
2321 {
2322 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2323 
2324 	return dd->rcv_err_status_cnt[55];
2325 }
2326 
2327 static u64 access_rx_dma_data_fifo_rd_cor_err_cnt(
2328 				const struct cntr_entry *entry,
2329 				void *context, int vl, int mode, u64 data)
2330 {
2331 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2332 
2333 	return dd->rcv_err_status_cnt[54];
2334 }
2335 
2336 static u64 access_rx_dma_data_fifo_rd_unc_err_cnt(
2337 				const struct cntr_entry *entry,
2338 				void *context, int vl, int mode, u64 data)
2339 {
2340 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2341 
2342 	return dd->rcv_err_status_cnt[53];
2343 }
2344 
2345 static u64 access_rx_dma_hdr_fifo_rd_cor_err_cnt(const struct cntr_entry *entry,
2346 						 void *context, int vl,
2347 						 int mode, u64 data)
2348 {
2349 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2350 
2351 	return dd->rcv_err_status_cnt[52];
2352 }
2353 
2354 static u64 access_rx_dma_hdr_fifo_rd_unc_err_cnt(const struct cntr_entry *entry,
2355 						 void *context, int vl,
2356 						 int mode, u64 data)
2357 {
2358 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2359 
2360 	return dd->rcv_err_status_cnt[51];
2361 }
2362 
2363 static u64 access_rx_rbuf_desc_part2_cor_err_cnt(const struct cntr_entry *entry,
2364 						 void *context, int vl,
2365 						 int mode, u64 data)
2366 {
2367 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2368 
2369 	return dd->rcv_err_status_cnt[50];
2370 }
2371 
2372 static u64 access_rx_rbuf_desc_part2_unc_err_cnt(const struct cntr_entry *entry,
2373 						 void *context, int vl,
2374 						 int mode, u64 data)
2375 {
2376 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2377 
2378 	return dd->rcv_err_status_cnt[49];
2379 }
2380 
2381 static u64 access_rx_rbuf_desc_part1_cor_err_cnt(const struct cntr_entry *entry,
2382 						 void *context, int vl,
2383 						 int mode, u64 data)
2384 {
2385 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2386 
2387 	return dd->rcv_err_status_cnt[48];
2388 }
2389 
2390 static u64 access_rx_rbuf_desc_part1_unc_err_cnt(const struct cntr_entry *entry,
2391 						 void *context, int vl,
2392 						 int mode, u64 data)
2393 {
2394 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2395 
2396 	return dd->rcv_err_status_cnt[47];
2397 }
2398 
2399 static u64 access_rx_hq_intr_fsm_err_cnt(const struct cntr_entry *entry,
2400 					 void *context, int vl, int mode,
2401 					 u64 data)
2402 {
2403 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2404 
2405 	return dd->rcv_err_status_cnt[46];
2406 }
2407 
2408 static u64 access_rx_hq_intr_csr_parity_err_cnt(
2409 				const struct cntr_entry *entry,
2410 				void *context, int vl, int mode, u64 data)
2411 {
2412 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2413 
2414 	return dd->rcv_err_status_cnt[45];
2415 }
2416 
2417 static u64 access_rx_lookup_csr_parity_err_cnt(
2418 				const struct cntr_entry *entry,
2419 				void *context, int vl, int mode, u64 data)
2420 {
2421 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2422 
2423 	return dd->rcv_err_status_cnt[44];
2424 }
2425 
2426 static u64 access_rx_lookup_rcv_array_cor_err_cnt(
2427 				const struct cntr_entry *entry,
2428 				void *context, int vl, int mode, u64 data)
2429 {
2430 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2431 
2432 	return dd->rcv_err_status_cnt[43];
2433 }
2434 
2435 static u64 access_rx_lookup_rcv_array_unc_err_cnt(
2436 				const struct cntr_entry *entry,
2437 				void *context, int vl, int mode, u64 data)
2438 {
2439 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2440 
2441 	return dd->rcv_err_status_cnt[42];
2442 }
2443 
2444 static u64 access_rx_lookup_des_part2_parity_err_cnt(
2445 				const struct cntr_entry *entry,
2446 				void *context, int vl, int mode, u64 data)
2447 {
2448 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2449 
2450 	return dd->rcv_err_status_cnt[41];
2451 }
2452 
2453 static u64 access_rx_lookup_des_part1_unc_cor_err_cnt(
2454 				const struct cntr_entry *entry,
2455 				void *context, int vl, int mode, u64 data)
2456 {
2457 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2458 
2459 	return dd->rcv_err_status_cnt[40];
2460 }
2461 
2462 static u64 access_rx_lookup_des_part1_unc_err_cnt(
2463 				const struct cntr_entry *entry,
2464 				void *context, int vl, int mode, u64 data)
2465 {
2466 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2467 
2468 	return dd->rcv_err_status_cnt[39];
2469 }
2470 
2471 static u64 access_rx_rbuf_next_free_buf_cor_err_cnt(
2472 				const struct cntr_entry *entry,
2473 				void *context, int vl, int mode, u64 data)
2474 {
2475 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2476 
2477 	return dd->rcv_err_status_cnt[38];
2478 }
2479 
2480 static u64 access_rx_rbuf_next_free_buf_unc_err_cnt(
2481 				const struct cntr_entry *entry,
2482 				void *context, int vl, int mode, u64 data)
2483 {
2484 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2485 
2486 	return dd->rcv_err_status_cnt[37];
2487 }
2488 
2489 static u64 access_rbuf_fl_init_wr_addr_parity_err_cnt(
2490 				const struct cntr_entry *entry,
2491 				void *context, int vl, int mode, u64 data)
2492 {
2493 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2494 
2495 	return dd->rcv_err_status_cnt[36];
2496 }
2497 
2498 static u64 access_rx_rbuf_fl_initdone_parity_err_cnt(
2499 				const struct cntr_entry *entry,
2500 				void *context, int vl, int mode, u64 data)
2501 {
2502 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2503 
2504 	return dd->rcv_err_status_cnt[35];
2505 }
2506 
2507 static u64 access_rx_rbuf_fl_write_addr_parity_err_cnt(
2508 				const struct cntr_entry *entry,
2509 				void *context, int vl, int mode, u64 data)
2510 {
2511 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2512 
2513 	return dd->rcv_err_status_cnt[34];
2514 }
2515 
2516 static u64 access_rx_rbuf_fl_rd_addr_parity_err_cnt(
2517 				const struct cntr_entry *entry,
2518 				void *context, int vl, int mode, u64 data)
2519 {
2520 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2521 
2522 	return dd->rcv_err_status_cnt[33];
2523 }
2524 
2525 static u64 access_rx_rbuf_empty_err_cnt(const struct cntr_entry *entry,
2526 					void *context, int vl, int mode,
2527 					u64 data)
2528 {
2529 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2530 
2531 	return dd->rcv_err_status_cnt[32];
2532 }
2533 
2534 static u64 access_rx_rbuf_full_err_cnt(const struct cntr_entry *entry,
2535 				       void *context, int vl, int mode,
2536 				       u64 data)
2537 {
2538 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2539 
2540 	return dd->rcv_err_status_cnt[31];
2541 }
2542 
2543 static u64 access_rbuf_bad_lookup_err_cnt(const struct cntr_entry *entry,
2544 					  void *context, int vl, int mode,
2545 					  u64 data)
2546 {
2547 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2548 
2549 	return dd->rcv_err_status_cnt[30];
2550 }
2551 
2552 static u64 access_rbuf_ctx_id_parity_err_cnt(const struct cntr_entry *entry,
2553 					     void *context, int vl, int mode,
2554 					     u64 data)
2555 {
2556 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2557 
2558 	return dd->rcv_err_status_cnt[29];
2559 }
2560 
2561 static u64 access_rbuf_csr_qeopdw_parity_err_cnt(const struct cntr_entry *entry,
2562 						 void *context, int vl,
2563 						 int mode, u64 data)
2564 {
2565 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2566 
2567 	return dd->rcv_err_status_cnt[28];
2568 }
2569 
2570 static u64 access_rx_rbuf_csr_q_num_of_pkt_parity_err_cnt(
2571 				const struct cntr_entry *entry,
2572 				void *context, int vl, int mode, u64 data)
2573 {
2574 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2575 
2576 	return dd->rcv_err_status_cnt[27];
2577 }
2578 
2579 static u64 access_rx_rbuf_csr_q_t1_ptr_parity_err_cnt(
2580 				const struct cntr_entry *entry,
2581 				void *context, int vl, int mode, u64 data)
2582 {
2583 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2584 
2585 	return dd->rcv_err_status_cnt[26];
2586 }
2587 
2588 static u64 access_rx_rbuf_csr_q_hd_ptr_parity_err_cnt(
2589 				const struct cntr_entry *entry,
2590 				void *context, int vl, int mode, u64 data)
2591 {
2592 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2593 
2594 	return dd->rcv_err_status_cnt[25];
2595 }
2596 
2597 static u64 access_rx_rbuf_csr_q_vld_bit_parity_err_cnt(
2598 				const struct cntr_entry *entry,
2599 				void *context, int vl, int mode, u64 data)
2600 {
2601 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2602 
2603 	return dd->rcv_err_status_cnt[24];
2604 }
2605 
2606 static u64 access_rx_rbuf_csr_q_next_buf_parity_err_cnt(
2607 				const struct cntr_entry *entry,
2608 				void *context, int vl, int mode, u64 data)
2609 {
2610 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2611 
2612 	return dd->rcv_err_status_cnt[23];
2613 }
2614 
2615 static u64 access_rx_rbuf_csr_q_ent_cnt_parity_err_cnt(
2616 				const struct cntr_entry *entry,
2617 				void *context, int vl, int mode, u64 data)
2618 {
2619 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2620 
2621 	return dd->rcv_err_status_cnt[22];
2622 }
2623 
2624 static u64 access_rx_rbuf_csr_q_head_buf_num_parity_err_cnt(
2625 				const struct cntr_entry *entry,
2626 				void *context, int vl, int mode, u64 data)
2627 {
2628 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2629 
2630 	return dd->rcv_err_status_cnt[21];
2631 }
2632 
2633 static u64 access_rx_rbuf_block_list_read_cor_err_cnt(
2634 				const struct cntr_entry *entry,
2635 				void *context, int vl, int mode, u64 data)
2636 {
2637 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2638 
2639 	return dd->rcv_err_status_cnt[20];
2640 }
2641 
2642 static u64 access_rx_rbuf_block_list_read_unc_err_cnt(
2643 				const struct cntr_entry *entry,
2644 				void *context, int vl, int mode, u64 data)
2645 {
2646 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2647 
2648 	return dd->rcv_err_status_cnt[19];
2649 }
2650 
2651 static u64 access_rx_rbuf_lookup_des_cor_err_cnt(const struct cntr_entry *entry,
2652 						 void *context, int vl,
2653 						 int mode, u64 data)
2654 {
2655 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2656 
2657 	return dd->rcv_err_status_cnt[18];
2658 }
2659 
2660 static u64 access_rx_rbuf_lookup_des_unc_err_cnt(const struct cntr_entry *entry,
2661 						 void *context, int vl,
2662 						 int mode, u64 data)
2663 {
2664 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2665 
2666 	return dd->rcv_err_status_cnt[17];
2667 }
2668 
2669 static u64 access_rx_rbuf_lookup_des_reg_unc_cor_err_cnt(
2670 				const struct cntr_entry *entry,
2671 				void *context, int vl, int mode, u64 data)
2672 {
2673 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2674 
2675 	return dd->rcv_err_status_cnt[16];
2676 }
2677 
2678 static u64 access_rx_rbuf_lookup_des_reg_unc_err_cnt(
2679 				const struct cntr_entry *entry,
2680 				void *context, int vl, int mode, u64 data)
2681 {
2682 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2683 
2684 	return dd->rcv_err_status_cnt[15];
2685 }
2686 
2687 static u64 access_rx_rbuf_free_list_cor_err_cnt(const struct cntr_entry *entry,
2688 						void *context, int vl,
2689 						int mode, u64 data)
2690 {
2691 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2692 
2693 	return dd->rcv_err_status_cnt[14];
2694 }
2695 
2696 static u64 access_rx_rbuf_free_list_unc_err_cnt(const struct cntr_entry *entry,
2697 						void *context, int vl,
2698 						int mode, u64 data)
2699 {
2700 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2701 
2702 	return dd->rcv_err_status_cnt[13];
2703 }
2704 
2705 static u64 access_rx_rcv_fsm_encoding_err_cnt(const struct cntr_entry *entry,
2706 					      void *context, int vl, int mode,
2707 					      u64 data)
2708 {
2709 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2710 
2711 	return dd->rcv_err_status_cnt[12];
2712 }
2713 
2714 static u64 access_rx_dma_flag_cor_err_cnt(const struct cntr_entry *entry,
2715 					  void *context, int vl, int mode,
2716 					  u64 data)
2717 {
2718 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2719 
2720 	return dd->rcv_err_status_cnt[11];
2721 }
2722 
2723 static u64 access_rx_dma_flag_unc_err_cnt(const struct cntr_entry *entry,
2724 					  void *context, int vl, int mode,
2725 					  u64 data)
2726 {
2727 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2728 
2729 	return dd->rcv_err_status_cnt[10];
2730 }
2731 
2732 static u64 access_rx_dc_sop_eop_parity_err_cnt(const struct cntr_entry *entry,
2733 					       void *context, int vl, int mode,
2734 					       u64 data)
2735 {
2736 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2737 
2738 	return dd->rcv_err_status_cnt[9];
2739 }
2740 
2741 static u64 access_rx_rcv_csr_parity_err_cnt(const struct cntr_entry *entry,
2742 					    void *context, int vl, int mode,
2743 					    u64 data)
2744 {
2745 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2746 
2747 	return dd->rcv_err_status_cnt[8];
2748 }
2749 
2750 static u64 access_rx_rcv_qp_map_table_cor_err_cnt(
2751 				const struct cntr_entry *entry,
2752 				void *context, int vl, int mode, u64 data)
2753 {
2754 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2755 
2756 	return dd->rcv_err_status_cnt[7];
2757 }
2758 
2759 static u64 access_rx_rcv_qp_map_table_unc_err_cnt(
2760 				const struct cntr_entry *entry,
2761 				void *context, int vl, int mode, u64 data)
2762 {
2763 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2764 
2765 	return dd->rcv_err_status_cnt[6];
2766 }
2767 
2768 static u64 access_rx_rcv_data_cor_err_cnt(const struct cntr_entry *entry,
2769 					  void *context, int vl, int mode,
2770 					  u64 data)
2771 {
2772 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2773 
2774 	return dd->rcv_err_status_cnt[5];
2775 }
2776 
2777 static u64 access_rx_rcv_data_unc_err_cnt(const struct cntr_entry *entry,
2778 					  void *context, int vl, int mode,
2779 					  u64 data)
2780 {
2781 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2782 
2783 	return dd->rcv_err_status_cnt[4];
2784 }
2785 
2786 static u64 access_rx_rcv_hdr_cor_err_cnt(const struct cntr_entry *entry,
2787 					 void *context, int vl, int mode,
2788 					 u64 data)
2789 {
2790 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2791 
2792 	return dd->rcv_err_status_cnt[3];
2793 }
2794 
2795 static u64 access_rx_rcv_hdr_unc_err_cnt(const struct cntr_entry *entry,
2796 					 void *context, int vl, int mode,
2797 					 u64 data)
2798 {
2799 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2800 
2801 	return dd->rcv_err_status_cnt[2];
2802 }
2803 
2804 static u64 access_rx_dc_intf_parity_err_cnt(const struct cntr_entry *entry,
2805 					    void *context, int vl, int mode,
2806 					    u64 data)
2807 {
2808 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2809 
2810 	return dd->rcv_err_status_cnt[1];
2811 }
2812 
2813 static u64 access_rx_dma_csr_cor_err_cnt(const struct cntr_entry *entry,
2814 					 void *context, int vl, int mode,
2815 					 u64 data)
2816 {
2817 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2818 
2819 	return dd->rcv_err_status_cnt[0];
2820 }
2821 
2822 /*
2823  * Software counters corresponding to each of the
2824  * error status bits within SendPioErrStatus
2825  */
2826 static u64 access_pio_pec_sop_head_parity_err_cnt(
2827 				const struct cntr_entry *entry,
2828 				void *context, int vl, int mode, u64 data)
2829 {
2830 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2831 
2832 	return dd->send_pio_err_status_cnt[35];
2833 }
2834 
2835 static u64 access_pio_pcc_sop_head_parity_err_cnt(
2836 				const struct cntr_entry *entry,
2837 				void *context, int vl, int mode, u64 data)
2838 {
2839 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2840 
2841 	return dd->send_pio_err_status_cnt[34];
2842 }
2843 
2844 static u64 access_pio_last_returned_cnt_parity_err_cnt(
2845 				const struct cntr_entry *entry,
2846 				void *context, int vl, int mode, u64 data)
2847 {
2848 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2849 
2850 	return dd->send_pio_err_status_cnt[33];
2851 }
2852 
2853 static u64 access_pio_current_free_cnt_parity_err_cnt(
2854 				const struct cntr_entry *entry,
2855 				void *context, int vl, int mode, u64 data)
2856 {
2857 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2858 
2859 	return dd->send_pio_err_status_cnt[32];
2860 }
2861 
2862 static u64 access_pio_reserved_31_err_cnt(const struct cntr_entry *entry,
2863 					  void *context, int vl, int mode,
2864 					  u64 data)
2865 {
2866 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2867 
2868 	return dd->send_pio_err_status_cnt[31];
2869 }
2870 
2871 static u64 access_pio_reserved_30_err_cnt(const struct cntr_entry *entry,
2872 					  void *context, int vl, int mode,
2873 					  u64 data)
2874 {
2875 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2876 
2877 	return dd->send_pio_err_status_cnt[30];
2878 }
2879 
2880 static u64 access_pio_ppmc_sop_len_err_cnt(const struct cntr_entry *entry,
2881 					   void *context, int vl, int mode,
2882 					   u64 data)
2883 {
2884 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2885 
2886 	return dd->send_pio_err_status_cnt[29];
2887 }
2888 
2889 static u64 access_pio_ppmc_bqc_mem_parity_err_cnt(
2890 				const struct cntr_entry *entry,
2891 				void *context, int vl, int mode, u64 data)
2892 {
2893 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2894 
2895 	return dd->send_pio_err_status_cnt[28];
2896 }
2897 
2898 static u64 access_pio_vl_fifo_parity_err_cnt(const struct cntr_entry *entry,
2899 					     void *context, int vl, int mode,
2900 					     u64 data)
2901 {
2902 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2903 
2904 	return dd->send_pio_err_status_cnt[27];
2905 }
2906 
2907 static u64 access_pio_vlf_sop_parity_err_cnt(const struct cntr_entry *entry,
2908 					     void *context, int vl, int mode,
2909 					     u64 data)
2910 {
2911 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2912 
2913 	return dd->send_pio_err_status_cnt[26];
2914 }
2915 
2916 static u64 access_pio_vlf_v1_len_parity_err_cnt(const struct cntr_entry *entry,
2917 						void *context, int vl,
2918 						int mode, u64 data)
2919 {
2920 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2921 
2922 	return dd->send_pio_err_status_cnt[25];
2923 }
2924 
2925 static u64 access_pio_block_qw_count_parity_err_cnt(
2926 				const struct cntr_entry *entry,
2927 				void *context, int vl, int mode, u64 data)
2928 {
2929 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2930 
2931 	return dd->send_pio_err_status_cnt[24];
2932 }
2933 
2934 static u64 access_pio_write_qw_valid_parity_err_cnt(
2935 				const struct cntr_entry *entry,
2936 				void *context, int vl, int mode, u64 data)
2937 {
2938 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2939 
2940 	return dd->send_pio_err_status_cnt[23];
2941 }
2942 
2943 static u64 access_pio_state_machine_err_cnt(const struct cntr_entry *entry,
2944 					    void *context, int vl, int mode,
2945 					    u64 data)
2946 {
2947 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2948 
2949 	return dd->send_pio_err_status_cnt[22];
2950 }
2951 
2952 static u64 access_pio_write_data_parity_err_cnt(const struct cntr_entry *entry,
2953 						void *context, int vl,
2954 						int mode, u64 data)
2955 {
2956 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2957 
2958 	return dd->send_pio_err_status_cnt[21];
2959 }
2960 
2961 static u64 access_pio_host_addr_mem_cor_err_cnt(const struct cntr_entry *entry,
2962 						void *context, int vl,
2963 						int mode, u64 data)
2964 {
2965 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2966 
2967 	return dd->send_pio_err_status_cnt[20];
2968 }
2969 
2970 static u64 access_pio_host_addr_mem_unc_err_cnt(const struct cntr_entry *entry,
2971 						void *context, int vl,
2972 						int mode, u64 data)
2973 {
2974 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2975 
2976 	return dd->send_pio_err_status_cnt[19];
2977 }
2978 
2979 static u64 access_pio_pkt_evict_sm_or_arb_sm_err_cnt(
2980 				const struct cntr_entry *entry,
2981 				void *context, int vl, int mode, u64 data)
2982 {
2983 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2984 
2985 	return dd->send_pio_err_status_cnt[18];
2986 }
2987 
2988 static u64 access_pio_init_sm_in_err_cnt(const struct cntr_entry *entry,
2989 					 void *context, int vl, int mode,
2990 					 u64 data)
2991 {
2992 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2993 
2994 	return dd->send_pio_err_status_cnt[17];
2995 }
2996 
2997 static u64 access_pio_ppmc_pbl_fifo_err_cnt(const struct cntr_entry *entry,
2998 					    void *context, int vl, int mode,
2999 					    u64 data)
3000 {
3001 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3002 
3003 	return dd->send_pio_err_status_cnt[16];
3004 }
3005 
3006 static u64 access_pio_credit_ret_fifo_parity_err_cnt(
3007 				const struct cntr_entry *entry,
3008 				void *context, int vl, int mode, u64 data)
3009 {
3010 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3011 
3012 	return dd->send_pio_err_status_cnt[15];
3013 }
3014 
3015 static u64 access_pio_v1_len_mem_bank1_cor_err_cnt(
3016 				const struct cntr_entry *entry,
3017 				void *context, int vl, int mode, u64 data)
3018 {
3019 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3020 
3021 	return dd->send_pio_err_status_cnt[14];
3022 }
3023 
3024 static u64 access_pio_v1_len_mem_bank0_cor_err_cnt(
3025 				const struct cntr_entry *entry,
3026 				void *context, int vl, int mode, u64 data)
3027 {
3028 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3029 
3030 	return dd->send_pio_err_status_cnt[13];
3031 }
3032 
3033 static u64 access_pio_v1_len_mem_bank1_unc_err_cnt(
3034 				const struct cntr_entry *entry,
3035 				void *context, int vl, int mode, u64 data)
3036 {
3037 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3038 
3039 	return dd->send_pio_err_status_cnt[12];
3040 }
3041 
3042 static u64 access_pio_v1_len_mem_bank0_unc_err_cnt(
3043 				const struct cntr_entry *entry,
3044 				void *context, int vl, int mode, u64 data)
3045 {
3046 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3047 
3048 	return dd->send_pio_err_status_cnt[11];
3049 }
3050 
3051 static u64 access_pio_sm_pkt_reset_parity_err_cnt(
3052 				const struct cntr_entry *entry,
3053 				void *context, int vl, int mode, u64 data)
3054 {
3055 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3056 
3057 	return dd->send_pio_err_status_cnt[10];
3058 }
3059 
3060 static u64 access_pio_pkt_evict_fifo_parity_err_cnt(
3061 				const struct cntr_entry *entry,
3062 				void *context, int vl, int mode, u64 data)
3063 {
3064 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3065 
3066 	return dd->send_pio_err_status_cnt[9];
3067 }
3068 
3069 static u64 access_pio_sbrdctrl_crrel_fifo_parity_err_cnt(
3070 				const struct cntr_entry *entry,
3071 				void *context, int vl, int mode, u64 data)
3072 {
3073 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3074 
3075 	return dd->send_pio_err_status_cnt[8];
3076 }
3077 
3078 static u64 access_pio_sbrdctl_crrel_parity_err_cnt(
3079 				const struct cntr_entry *entry,
3080 				void *context, int vl, int mode, u64 data)
3081 {
3082 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3083 
3084 	return dd->send_pio_err_status_cnt[7];
3085 }
3086 
3087 static u64 access_pio_pec_fifo_parity_err_cnt(const struct cntr_entry *entry,
3088 					      void *context, int vl, int mode,
3089 					      u64 data)
3090 {
3091 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3092 
3093 	return dd->send_pio_err_status_cnt[6];
3094 }
3095 
3096 static u64 access_pio_pcc_fifo_parity_err_cnt(const struct cntr_entry *entry,
3097 					      void *context, int vl, int mode,
3098 					      u64 data)
3099 {
3100 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3101 
3102 	return dd->send_pio_err_status_cnt[5];
3103 }
3104 
3105 static u64 access_pio_sb_mem_fifo1_err_cnt(const struct cntr_entry *entry,
3106 					   void *context, int vl, int mode,
3107 					   u64 data)
3108 {
3109 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3110 
3111 	return dd->send_pio_err_status_cnt[4];
3112 }
3113 
3114 static u64 access_pio_sb_mem_fifo0_err_cnt(const struct cntr_entry *entry,
3115 					   void *context, int vl, int mode,
3116 					   u64 data)
3117 {
3118 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3119 
3120 	return dd->send_pio_err_status_cnt[3];
3121 }
3122 
3123 static u64 access_pio_csr_parity_err_cnt(const struct cntr_entry *entry,
3124 					 void *context, int vl, int mode,
3125 					 u64 data)
3126 {
3127 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3128 
3129 	return dd->send_pio_err_status_cnt[2];
3130 }
3131 
3132 static u64 access_pio_write_addr_parity_err_cnt(const struct cntr_entry *entry,
3133 						void *context, int vl,
3134 						int mode, u64 data)
3135 {
3136 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3137 
3138 	return dd->send_pio_err_status_cnt[1];
3139 }
3140 
3141 static u64 access_pio_write_bad_ctxt_err_cnt(const struct cntr_entry *entry,
3142 					     void *context, int vl, int mode,
3143 					     u64 data)
3144 {
3145 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3146 
3147 	return dd->send_pio_err_status_cnt[0];
3148 }
3149 
3150 /*
3151  * Software counters corresponding to each of the
3152  * error status bits within SendDmaErrStatus
3153  */
3154 static u64 access_sdma_pcie_req_tracking_cor_err_cnt(
3155 				const struct cntr_entry *entry,
3156 				void *context, int vl, int mode, u64 data)
3157 {
3158 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3159 
3160 	return dd->send_dma_err_status_cnt[3];
3161 }
3162 
3163 static u64 access_sdma_pcie_req_tracking_unc_err_cnt(
3164 				const struct cntr_entry *entry,
3165 				void *context, int vl, int mode, u64 data)
3166 {
3167 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3168 
3169 	return dd->send_dma_err_status_cnt[2];
3170 }
3171 
3172 static u64 access_sdma_csr_parity_err_cnt(const struct cntr_entry *entry,
3173 					  void *context, int vl, int mode,
3174 					  u64 data)
3175 {
3176 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3177 
3178 	return dd->send_dma_err_status_cnt[1];
3179 }
3180 
3181 static u64 access_sdma_rpy_tag_err_cnt(const struct cntr_entry *entry,
3182 				       void *context, int vl, int mode,
3183 				       u64 data)
3184 {
3185 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3186 
3187 	return dd->send_dma_err_status_cnt[0];
3188 }
3189 
3190 /*
3191  * Software counters corresponding to each of the
3192  * error status bits within SendEgressErrStatus
3193  */
3194 static u64 access_tx_read_pio_memory_csr_unc_err_cnt(
3195 				const struct cntr_entry *entry,
3196 				void *context, int vl, int mode, u64 data)
3197 {
3198 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3199 
3200 	return dd->send_egress_err_status_cnt[63];
3201 }
3202 
3203 static u64 access_tx_read_sdma_memory_csr_err_cnt(
3204 				const struct cntr_entry *entry,
3205 				void *context, int vl, int mode, u64 data)
3206 {
3207 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3208 
3209 	return dd->send_egress_err_status_cnt[62];
3210 }
3211 
3212 static u64 access_tx_egress_fifo_cor_err_cnt(const struct cntr_entry *entry,
3213 					     void *context, int vl, int mode,
3214 					     u64 data)
3215 {
3216 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3217 
3218 	return dd->send_egress_err_status_cnt[61];
3219 }
3220 
3221 static u64 access_tx_read_pio_memory_cor_err_cnt(const struct cntr_entry *entry,
3222 						 void *context, int vl,
3223 						 int mode, u64 data)
3224 {
3225 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3226 
3227 	return dd->send_egress_err_status_cnt[60];
3228 }
3229 
3230 static u64 access_tx_read_sdma_memory_cor_err_cnt(
3231 				const struct cntr_entry *entry,
3232 				void *context, int vl, int mode, u64 data)
3233 {
3234 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3235 
3236 	return dd->send_egress_err_status_cnt[59];
3237 }
3238 
3239 static u64 access_tx_sb_hdr_cor_err_cnt(const struct cntr_entry *entry,
3240 					void *context, int vl, int mode,
3241 					u64 data)
3242 {
3243 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3244 
3245 	return dd->send_egress_err_status_cnt[58];
3246 }
3247 
3248 static u64 access_tx_credit_overrun_err_cnt(const struct cntr_entry *entry,
3249 					    void *context, int vl, int mode,
3250 					    u64 data)
3251 {
3252 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3253 
3254 	return dd->send_egress_err_status_cnt[57];
3255 }
3256 
3257 static u64 access_tx_launch_fifo8_cor_err_cnt(const struct cntr_entry *entry,
3258 					      void *context, int vl, int mode,
3259 					      u64 data)
3260 {
3261 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3262 
3263 	return dd->send_egress_err_status_cnt[56];
3264 }
3265 
3266 static u64 access_tx_launch_fifo7_cor_err_cnt(const struct cntr_entry *entry,
3267 					      void *context, int vl, int mode,
3268 					      u64 data)
3269 {
3270 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3271 
3272 	return dd->send_egress_err_status_cnt[55];
3273 }
3274 
3275 static u64 access_tx_launch_fifo6_cor_err_cnt(const struct cntr_entry *entry,
3276 					      void *context, int vl, int mode,
3277 					      u64 data)
3278 {
3279 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3280 
3281 	return dd->send_egress_err_status_cnt[54];
3282 }
3283 
3284 static u64 access_tx_launch_fifo5_cor_err_cnt(const struct cntr_entry *entry,
3285 					      void *context, int vl, int mode,
3286 					      u64 data)
3287 {
3288 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3289 
3290 	return dd->send_egress_err_status_cnt[53];
3291 }
3292 
3293 static u64 access_tx_launch_fifo4_cor_err_cnt(const struct cntr_entry *entry,
3294 					      void *context, int vl, int mode,
3295 					      u64 data)
3296 {
3297 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3298 
3299 	return dd->send_egress_err_status_cnt[52];
3300 }
3301 
3302 static u64 access_tx_launch_fifo3_cor_err_cnt(const struct cntr_entry *entry,
3303 					      void *context, int vl, int mode,
3304 					      u64 data)
3305 {
3306 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3307 
3308 	return dd->send_egress_err_status_cnt[51];
3309 }
3310 
3311 static u64 access_tx_launch_fifo2_cor_err_cnt(const struct cntr_entry *entry,
3312 					      void *context, int vl, int mode,
3313 					      u64 data)
3314 {
3315 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3316 
3317 	return dd->send_egress_err_status_cnt[50];
3318 }
3319 
3320 static u64 access_tx_launch_fifo1_cor_err_cnt(const struct cntr_entry *entry,
3321 					      void *context, int vl, int mode,
3322 					      u64 data)
3323 {
3324 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3325 
3326 	return dd->send_egress_err_status_cnt[49];
3327 }
3328 
3329 static u64 access_tx_launch_fifo0_cor_err_cnt(const struct cntr_entry *entry,
3330 					      void *context, int vl, int mode,
3331 					      u64 data)
3332 {
3333 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3334 
3335 	return dd->send_egress_err_status_cnt[48];
3336 }
3337 
3338 static u64 access_tx_credit_return_vl_err_cnt(const struct cntr_entry *entry,
3339 					      void *context, int vl, int mode,
3340 					      u64 data)
3341 {
3342 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3343 
3344 	return dd->send_egress_err_status_cnt[47];
3345 }
3346 
3347 static u64 access_tx_hcrc_insertion_err_cnt(const struct cntr_entry *entry,
3348 					    void *context, int vl, int mode,
3349 					    u64 data)
3350 {
3351 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3352 
3353 	return dd->send_egress_err_status_cnt[46];
3354 }
3355 
3356 static u64 access_tx_egress_fifo_unc_err_cnt(const struct cntr_entry *entry,
3357 					     void *context, int vl, int mode,
3358 					     u64 data)
3359 {
3360 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3361 
3362 	return dd->send_egress_err_status_cnt[45];
3363 }
3364 
3365 static u64 access_tx_read_pio_memory_unc_err_cnt(const struct cntr_entry *entry,
3366 						 void *context, int vl,
3367 						 int mode, u64 data)
3368 {
3369 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3370 
3371 	return dd->send_egress_err_status_cnt[44];
3372 }
3373 
3374 static u64 access_tx_read_sdma_memory_unc_err_cnt(
3375 				const struct cntr_entry *entry,
3376 				void *context, int vl, int mode, u64 data)
3377 {
3378 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3379 
3380 	return dd->send_egress_err_status_cnt[43];
3381 }
3382 
3383 static u64 access_tx_sb_hdr_unc_err_cnt(const struct cntr_entry *entry,
3384 					void *context, int vl, int mode,
3385 					u64 data)
3386 {
3387 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3388 
3389 	return dd->send_egress_err_status_cnt[42];
3390 }
3391 
3392 static u64 access_tx_credit_return_partiy_err_cnt(
3393 				const struct cntr_entry *entry,
3394 				void *context, int vl, int mode, u64 data)
3395 {
3396 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3397 
3398 	return dd->send_egress_err_status_cnt[41];
3399 }
3400 
3401 static u64 access_tx_launch_fifo8_unc_or_parity_err_cnt(
3402 				const struct cntr_entry *entry,
3403 				void *context, int vl, int mode, u64 data)
3404 {
3405 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3406 
3407 	return dd->send_egress_err_status_cnt[40];
3408 }
3409 
3410 static u64 access_tx_launch_fifo7_unc_or_parity_err_cnt(
3411 				const struct cntr_entry *entry,
3412 				void *context, int vl, int mode, u64 data)
3413 {
3414 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3415 
3416 	return dd->send_egress_err_status_cnt[39];
3417 }
3418 
3419 static u64 access_tx_launch_fifo6_unc_or_parity_err_cnt(
3420 				const struct cntr_entry *entry,
3421 				void *context, int vl, int mode, u64 data)
3422 {
3423 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3424 
3425 	return dd->send_egress_err_status_cnt[38];
3426 }
3427 
3428 static u64 access_tx_launch_fifo5_unc_or_parity_err_cnt(
3429 				const struct cntr_entry *entry,
3430 				void *context, int vl, int mode, u64 data)
3431 {
3432 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3433 
3434 	return dd->send_egress_err_status_cnt[37];
3435 }
3436 
3437 static u64 access_tx_launch_fifo4_unc_or_parity_err_cnt(
3438 				const struct cntr_entry *entry,
3439 				void *context, int vl, int mode, u64 data)
3440 {
3441 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3442 
3443 	return dd->send_egress_err_status_cnt[36];
3444 }
3445 
3446 static u64 access_tx_launch_fifo3_unc_or_parity_err_cnt(
3447 				const struct cntr_entry *entry,
3448 				void *context, int vl, int mode, u64 data)
3449 {
3450 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3451 
3452 	return dd->send_egress_err_status_cnt[35];
3453 }
3454 
3455 static u64 access_tx_launch_fifo2_unc_or_parity_err_cnt(
3456 				const struct cntr_entry *entry,
3457 				void *context, int vl, int mode, u64 data)
3458 {
3459 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3460 
3461 	return dd->send_egress_err_status_cnt[34];
3462 }
3463 
3464 static u64 access_tx_launch_fifo1_unc_or_parity_err_cnt(
3465 				const struct cntr_entry *entry,
3466 				void *context, int vl, int mode, u64 data)
3467 {
3468 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3469 
3470 	return dd->send_egress_err_status_cnt[33];
3471 }
3472 
3473 static u64 access_tx_launch_fifo0_unc_or_parity_err_cnt(
3474 				const struct cntr_entry *entry,
3475 				void *context, int vl, int mode, u64 data)
3476 {
3477 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3478 
3479 	return dd->send_egress_err_status_cnt[32];
3480 }
3481 
3482 static u64 access_tx_sdma15_disallowed_packet_err_cnt(
3483 				const struct cntr_entry *entry,
3484 				void *context, int vl, int mode, u64 data)
3485 {
3486 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3487 
3488 	return dd->send_egress_err_status_cnt[31];
3489 }
3490 
3491 static u64 access_tx_sdma14_disallowed_packet_err_cnt(
3492 				const struct cntr_entry *entry,
3493 				void *context, int vl, int mode, u64 data)
3494 {
3495 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3496 
3497 	return dd->send_egress_err_status_cnt[30];
3498 }
3499 
3500 static u64 access_tx_sdma13_disallowed_packet_err_cnt(
3501 				const struct cntr_entry *entry,
3502 				void *context, int vl, int mode, u64 data)
3503 {
3504 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3505 
3506 	return dd->send_egress_err_status_cnt[29];
3507 }
3508 
3509 static u64 access_tx_sdma12_disallowed_packet_err_cnt(
3510 				const struct cntr_entry *entry,
3511 				void *context, int vl, int mode, u64 data)
3512 {
3513 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3514 
3515 	return dd->send_egress_err_status_cnt[28];
3516 }
3517 
3518 static u64 access_tx_sdma11_disallowed_packet_err_cnt(
3519 				const struct cntr_entry *entry,
3520 				void *context, int vl, int mode, u64 data)
3521 {
3522 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3523 
3524 	return dd->send_egress_err_status_cnt[27];
3525 }
3526 
3527 static u64 access_tx_sdma10_disallowed_packet_err_cnt(
3528 				const struct cntr_entry *entry,
3529 				void *context, int vl, int mode, u64 data)
3530 {
3531 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3532 
3533 	return dd->send_egress_err_status_cnt[26];
3534 }
3535 
3536 static u64 access_tx_sdma9_disallowed_packet_err_cnt(
3537 				const struct cntr_entry *entry,
3538 				void *context, int vl, int mode, u64 data)
3539 {
3540 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3541 
3542 	return dd->send_egress_err_status_cnt[25];
3543 }
3544 
3545 static u64 access_tx_sdma8_disallowed_packet_err_cnt(
3546 				const struct cntr_entry *entry,
3547 				void *context, int vl, int mode, u64 data)
3548 {
3549 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3550 
3551 	return dd->send_egress_err_status_cnt[24];
3552 }
3553 
3554 static u64 access_tx_sdma7_disallowed_packet_err_cnt(
3555 				const struct cntr_entry *entry,
3556 				void *context, int vl, int mode, u64 data)
3557 {
3558 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3559 
3560 	return dd->send_egress_err_status_cnt[23];
3561 }
3562 
3563 static u64 access_tx_sdma6_disallowed_packet_err_cnt(
3564 				const struct cntr_entry *entry,
3565 				void *context, int vl, int mode, u64 data)
3566 {
3567 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3568 
3569 	return dd->send_egress_err_status_cnt[22];
3570 }
3571 
3572 static u64 access_tx_sdma5_disallowed_packet_err_cnt(
3573 				const struct cntr_entry *entry,
3574 				void *context, int vl, int mode, u64 data)
3575 {
3576 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3577 
3578 	return dd->send_egress_err_status_cnt[21];
3579 }
3580 
3581 static u64 access_tx_sdma4_disallowed_packet_err_cnt(
3582 				const struct cntr_entry *entry,
3583 				void *context, int vl, int mode, u64 data)
3584 {
3585 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3586 
3587 	return dd->send_egress_err_status_cnt[20];
3588 }
3589 
3590 static u64 access_tx_sdma3_disallowed_packet_err_cnt(
3591 				const struct cntr_entry *entry,
3592 				void *context, int vl, int mode, u64 data)
3593 {
3594 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3595 
3596 	return dd->send_egress_err_status_cnt[19];
3597 }
3598 
3599 static u64 access_tx_sdma2_disallowed_packet_err_cnt(
3600 				const struct cntr_entry *entry,
3601 				void *context, int vl, int mode, u64 data)
3602 {
3603 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3604 
3605 	return dd->send_egress_err_status_cnt[18];
3606 }
3607 
3608 static u64 access_tx_sdma1_disallowed_packet_err_cnt(
3609 				const struct cntr_entry *entry,
3610 				void *context, int vl, int mode, u64 data)
3611 {
3612 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3613 
3614 	return dd->send_egress_err_status_cnt[17];
3615 }
3616 
3617 static u64 access_tx_sdma0_disallowed_packet_err_cnt(
3618 				const struct cntr_entry *entry,
3619 				void *context, int vl, int mode, u64 data)
3620 {
3621 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3622 
3623 	return dd->send_egress_err_status_cnt[16];
3624 }
3625 
3626 static u64 access_tx_config_parity_err_cnt(const struct cntr_entry *entry,
3627 					   void *context, int vl, int mode,
3628 					   u64 data)
3629 {
3630 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3631 
3632 	return dd->send_egress_err_status_cnt[15];
3633 }
3634 
3635 static u64 access_tx_sbrd_ctl_csr_parity_err_cnt(const struct cntr_entry *entry,
3636 						 void *context, int vl,
3637 						 int mode, u64 data)
3638 {
3639 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3640 
3641 	return dd->send_egress_err_status_cnt[14];
3642 }
3643 
3644 static u64 access_tx_launch_csr_parity_err_cnt(const struct cntr_entry *entry,
3645 					       void *context, int vl, int mode,
3646 					       u64 data)
3647 {
3648 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3649 
3650 	return dd->send_egress_err_status_cnt[13];
3651 }
3652 
3653 static u64 access_tx_illegal_vl_err_cnt(const struct cntr_entry *entry,
3654 					void *context, int vl, int mode,
3655 					u64 data)
3656 {
3657 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3658 
3659 	return dd->send_egress_err_status_cnt[12];
3660 }
3661 
3662 static u64 access_tx_sbrd_ctl_state_machine_parity_err_cnt(
3663 				const struct cntr_entry *entry,
3664 				void *context, int vl, int mode, u64 data)
3665 {
3666 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3667 
3668 	return dd->send_egress_err_status_cnt[11];
3669 }
3670 
3671 static u64 access_egress_reserved_10_err_cnt(const struct cntr_entry *entry,
3672 					     void *context, int vl, int mode,
3673 					     u64 data)
3674 {
3675 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3676 
3677 	return dd->send_egress_err_status_cnt[10];
3678 }
3679 
3680 static u64 access_egress_reserved_9_err_cnt(const struct cntr_entry *entry,
3681 					    void *context, int vl, int mode,
3682 					    u64 data)
3683 {
3684 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3685 
3686 	return dd->send_egress_err_status_cnt[9];
3687 }
3688 
3689 static u64 access_tx_sdma_launch_intf_parity_err_cnt(
3690 				const struct cntr_entry *entry,
3691 				void *context, int vl, int mode, u64 data)
3692 {
3693 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3694 
3695 	return dd->send_egress_err_status_cnt[8];
3696 }
3697 
3698 static u64 access_tx_pio_launch_intf_parity_err_cnt(
3699 				const struct cntr_entry *entry,
3700 				void *context, int vl, int mode, u64 data)
3701 {
3702 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3703 
3704 	return dd->send_egress_err_status_cnt[7];
3705 }
3706 
3707 static u64 access_egress_reserved_6_err_cnt(const struct cntr_entry *entry,
3708 					    void *context, int vl, int mode,
3709 					    u64 data)
3710 {
3711 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3712 
3713 	return dd->send_egress_err_status_cnt[6];
3714 }
3715 
3716 static u64 access_tx_incorrect_link_state_err_cnt(
3717 				const struct cntr_entry *entry,
3718 				void *context, int vl, int mode, u64 data)
3719 {
3720 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3721 
3722 	return dd->send_egress_err_status_cnt[5];
3723 }
3724 
3725 static u64 access_tx_linkdown_err_cnt(const struct cntr_entry *entry,
3726 				      void *context, int vl, int mode,
3727 				      u64 data)
3728 {
3729 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3730 
3731 	return dd->send_egress_err_status_cnt[4];
3732 }
3733 
3734 static u64 access_tx_egress_fifi_underrun_or_parity_err_cnt(
3735 				const struct cntr_entry *entry,
3736 				void *context, int vl, int mode, u64 data)
3737 {
3738 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3739 
3740 	return dd->send_egress_err_status_cnt[3];
3741 }
3742 
3743 static u64 access_egress_reserved_2_err_cnt(const struct cntr_entry *entry,
3744 					    void *context, int vl, int mode,
3745 					    u64 data)
3746 {
3747 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3748 
3749 	return dd->send_egress_err_status_cnt[2];
3750 }
3751 
3752 static u64 access_tx_pkt_integrity_mem_unc_err_cnt(
3753 				const struct cntr_entry *entry,
3754 				void *context, int vl, int mode, u64 data)
3755 {
3756 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3757 
3758 	return dd->send_egress_err_status_cnt[1];
3759 }
3760 
3761 static u64 access_tx_pkt_integrity_mem_cor_err_cnt(
3762 				const struct cntr_entry *entry,
3763 				void *context, int vl, int mode, u64 data)
3764 {
3765 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3766 
3767 	return dd->send_egress_err_status_cnt[0];
3768 }
3769 
3770 /*
3771  * Software counters corresponding to each of the
3772  * error status bits within SendErrStatus
3773  */
3774 static u64 access_send_csr_write_bad_addr_err_cnt(
3775 				const struct cntr_entry *entry,
3776 				void *context, int vl, int mode, u64 data)
3777 {
3778 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3779 
3780 	return dd->send_err_status_cnt[2];
3781 }
3782 
3783 static u64 access_send_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
3784 						 void *context, int vl,
3785 						 int mode, u64 data)
3786 {
3787 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3788 
3789 	return dd->send_err_status_cnt[1];
3790 }
3791 
3792 static u64 access_send_csr_parity_cnt(const struct cntr_entry *entry,
3793 				      void *context, int vl, int mode,
3794 				      u64 data)
3795 {
3796 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3797 
3798 	return dd->send_err_status_cnt[0];
3799 }
3800 
3801 /*
3802  * Software counters corresponding to each of the
3803  * error status bits within SendCtxtErrStatus
3804  */
3805 static u64 access_pio_write_out_of_bounds_err_cnt(
3806 				const struct cntr_entry *entry,
3807 				void *context, int vl, int mode, u64 data)
3808 {
3809 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3810 
3811 	return dd->sw_ctxt_err_status_cnt[4];
3812 }
3813 
3814 static u64 access_pio_write_overflow_err_cnt(const struct cntr_entry *entry,
3815 					     void *context, int vl, int mode,
3816 					     u64 data)
3817 {
3818 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3819 
3820 	return dd->sw_ctxt_err_status_cnt[3];
3821 }
3822 
3823 static u64 access_pio_write_crosses_boundary_err_cnt(
3824 				const struct cntr_entry *entry,
3825 				void *context, int vl, int mode, u64 data)
3826 {
3827 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3828 
3829 	return dd->sw_ctxt_err_status_cnt[2];
3830 }
3831 
3832 static u64 access_pio_disallowed_packet_err_cnt(const struct cntr_entry *entry,
3833 						void *context, int vl,
3834 						int mode, u64 data)
3835 {
3836 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3837 
3838 	return dd->sw_ctxt_err_status_cnt[1];
3839 }
3840 
3841 static u64 access_pio_inconsistent_sop_err_cnt(const struct cntr_entry *entry,
3842 					       void *context, int vl, int mode,
3843 					       u64 data)
3844 {
3845 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3846 
3847 	return dd->sw_ctxt_err_status_cnt[0];
3848 }
3849 
3850 /*
3851  * Software counters corresponding to each of the
3852  * error status bits within SendDmaEngErrStatus
3853  */
3854 static u64 access_sdma_header_request_fifo_cor_err_cnt(
3855 				const struct cntr_entry *entry,
3856 				void *context, int vl, int mode, u64 data)
3857 {
3858 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3859 
3860 	return dd->sw_send_dma_eng_err_status_cnt[23];
3861 }
3862 
3863 static u64 access_sdma_header_storage_cor_err_cnt(
3864 				const struct cntr_entry *entry,
3865 				void *context, int vl, int mode, u64 data)
3866 {
3867 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3868 
3869 	return dd->sw_send_dma_eng_err_status_cnt[22];
3870 }
3871 
3872 static u64 access_sdma_packet_tracking_cor_err_cnt(
3873 				const struct cntr_entry *entry,
3874 				void *context, int vl, int mode, u64 data)
3875 {
3876 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3877 
3878 	return dd->sw_send_dma_eng_err_status_cnt[21];
3879 }
3880 
3881 static u64 access_sdma_assembly_cor_err_cnt(const struct cntr_entry *entry,
3882 					    void *context, int vl, int mode,
3883 					    u64 data)
3884 {
3885 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3886 
3887 	return dd->sw_send_dma_eng_err_status_cnt[20];
3888 }
3889 
3890 static u64 access_sdma_desc_table_cor_err_cnt(const struct cntr_entry *entry,
3891 					      void *context, int vl, int mode,
3892 					      u64 data)
3893 {
3894 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3895 
3896 	return dd->sw_send_dma_eng_err_status_cnt[19];
3897 }
3898 
3899 static u64 access_sdma_header_request_fifo_unc_err_cnt(
3900 				const struct cntr_entry *entry,
3901 				void *context, int vl, int mode, u64 data)
3902 {
3903 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3904 
3905 	return dd->sw_send_dma_eng_err_status_cnt[18];
3906 }
3907 
3908 static u64 access_sdma_header_storage_unc_err_cnt(
3909 				const struct cntr_entry *entry,
3910 				void *context, int vl, int mode, u64 data)
3911 {
3912 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3913 
3914 	return dd->sw_send_dma_eng_err_status_cnt[17];
3915 }
3916 
3917 static u64 access_sdma_packet_tracking_unc_err_cnt(
3918 				const struct cntr_entry *entry,
3919 				void *context, int vl, int mode, u64 data)
3920 {
3921 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3922 
3923 	return dd->sw_send_dma_eng_err_status_cnt[16];
3924 }
3925 
3926 static u64 access_sdma_assembly_unc_err_cnt(const struct cntr_entry *entry,
3927 					    void *context, int vl, int mode,
3928 					    u64 data)
3929 {
3930 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3931 
3932 	return dd->sw_send_dma_eng_err_status_cnt[15];
3933 }
3934 
3935 static u64 access_sdma_desc_table_unc_err_cnt(const struct cntr_entry *entry,
3936 					      void *context, int vl, int mode,
3937 					      u64 data)
3938 {
3939 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3940 
3941 	return dd->sw_send_dma_eng_err_status_cnt[14];
3942 }
3943 
3944 static u64 access_sdma_timeout_err_cnt(const struct cntr_entry *entry,
3945 				       void *context, int vl, int mode,
3946 				       u64 data)
3947 {
3948 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3949 
3950 	return dd->sw_send_dma_eng_err_status_cnt[13];
3951 }
3952 
3953 static u64 access_sdma_header_length_err_cnt(const struct cntr_entry *entry,
3954 					     void *context, int vl, int mode,
3955 					     u64 data)
3956 {
3957 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3958 
3959 	return dd->sw_send_dma_eng_err_status_cnt[12];
3960 }
3961 
3962 static u64 access_sdma_header_address_err_cnt(const struct cntr_entry *entry,
3963 					      void *context, int vl, int mode,
3964 					      u64 data)
3965 {
3966 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3967 
3968 	return dd->sw_send_dma_eng_err_status_cnt[11];
3969 }
3970 
3971 static u64 access_sdma_header_select_err_cnt(const struct cntr_entry *entry,
3972 					     void *context, int vl, int mode,
3973 					     u64 data)
3974 {
3975 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3976 
3977 	return dd->sw_send_dma_eng_err_status_cnt[10];
3978 }
3979 
3980 static u64 access_sdma_reserved_9_err_cnt(const struct cntr_entry *entry,
3981 					  void *context, int vl, int mode,
3982 					  u64 data)
3983 {
3984 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3985 
3986 	return dd->sw_send_dma_eng_err_status_cnt[9];
3987 }
3988 
3989 static u64 access_sdma_packet_desc_overflow_err_cnt(
3990 				const struct cntr_entry *entry,
3991 				void *context, int vl, int mode, u64 data)
3992 {
3993 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3994 
3995 	return dd->sw_send_dma_eng_err_status_cnt[8];
3996 }
3997 
3998 static u64 access_sdma_length_mismatch_err_cnt(const struct cntr_entry *entry,
3999 					       void *context, int vl,
4000 					       int mode, u64 data)
4001 {
4002 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4003 
4004 	return dd->sw_send_dma_eng_err_status_cnt[7];
4005 }
4006 
4007 static u64 access_sdma_halt_err_cnt(const struct cntr_entry *entry,
4008 				    void *context, int vl, int mode, u64 data)
4009 {
4010 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4011 
4012 	return dd->sw_send_dma_eng_err_status_cnt[6];
4013 }
4014 
4015 static u64 access_sdma_mem_read_err_cnt(const struct cntr_entry *entry,
4016 					void *context, int vl, int mode,
4017 					u64 data)
4018 {
4019 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4020 
4021 	return dd->sw_send_dma_eng_err_status_cnt[5];
4022 }
4023 
4024 static u64 access_sdma_first_desc_err_cnt(const struct cntr_entry *entry,
4025 					  void *context, int vl, int mode,
4026 					  u64 data)
4027 {
4028 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4029 
4030 	return dd->sw_send_dma_eng_err_status_cnt[4];
4031 }
4032 
4033 static u64 access_sdma_tail_out_of_bounds_err_cnt(
4034 				const struct cntr_entry *entry,
4035 				void *context, int vl, int mode, u64 data)
4036 {
4037 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4038 
4039 	return dd->sw_send_dma_eng_err_status_cnt[3];
4040 }
4041 
4042 static u64 access_sdma_too_long_err_cnt(const struct cntr_entry *entry,
4043 					void *context, int vl, int mode,
4044 					u64 data)
4045 {
4046 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4047 
4048 	return dd->sw_send_dma_eng_err_status_cnt[2];
4049 }
4050 
4051 static u64 access_sdma_gen_mismatch_err_cnt(const struct cntr_entry *entry,
4052 					    void *context, int vl, int mode,
4053 					    u64 data)
4054 {
4055 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4056 
4057 	return dd->sw_send_dma_eng_err_status_cnt[1];
4058 }
4059 
4060 static u64 access_sdma_wrong_dw_err_cnt(const struct cntr_entry *entry,
4061 					void *context, int vl, int mode,
4062 					u64 data)
4063 {
4064 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4065 
4066 	return dd->sw_send_dma_eng_err_status_cnt[0];
4067 }
4068 
4069 static u64 access_dc_rcv_err_cnt(const struct cntr_entry *entry,
4070 				 void *context, int vl, int mode,
4071 				 u64 data)
4072 {
4073 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4074 
4075 	u64 val = 0;
4076 	u64 csr = entry->csr;
4077 
4078 	val = read_write_csr(dd, csr, mode, data);
4079 	if (mode == CNTR_MODE_R) {
4080 		val = val > CNTR_MAX - dd->sw_rcv_bypass_packet_errors ?
4081 			CNTR_MAX : val + dd->sw_rcv_bypass_packet_errors;
4082 	} else if (mode == CNTR_MODE_W) {
4083 		dd->sw_rcv_bypass_packet_errors = 0;
4084 	} else {
4085 		dd_dev_err(dd, "Invalid cntr register access mode");
4086 		return 0;
4087 	}
4088 	return val;
4089 }
4090 
4091 #define def_access_sw_cpu(cntr) \
4092 static u64 access_sw_cpu_##cntr(const struct cntr_entry *entry,		      \
4093 			      void *context, int vl, int mode, u64 data)      \
4094 {									      \
4095 	struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context;	      \
4096 	return read_write_cpu(ppd->dd, &ppd->ibport_data.rvp.z_ ##cntr,	      \
4097 			      ppd->ibport_data.rvp.cntr, vl,		      \
4098 			      mode, data);				      \
4099 }
4100 
4101 def_access_sw_cpu(rc_acks);
4102 def_access_sw_cpu(rc_qacks);
4103 def_access_sw_cpu(rc_delayed_comp);
4104 
4105 #define def_access_ibp_counter(cntr) \
4106 static u64 access_ibp_##cntr(const struct cntr_entry *entry,		      \
4107 				void *context, int vl, int mode, u64 data)    \
4108 {									      \
4109 	struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context;	      \
4110 									      \
4111 	if (vl != CNTR_INVALID_VL)					      \
4112 		return 0;						      \
4113 									      \
4114 	return read_write_sw(ppd->dd, &ppd->ibport_data.rvp.n_ ##cntr,	      \
4115 			     mode, data);				      \
4116 }
4117 
4118 def_access_ibp_counter(loop_pkts);
4119 def_access_ibp_counter(rc_resends);
4120 def_access_ibp_counter(rnr_naks);
4121 def_access_ibp_counter(other_naks);
4122 def_access_ibp_counter(rc_timeouts);
4123 def_access_ibp_counter(pkt_drops);
4124 def_access_ibp_counter(dmawait);
4125 def_access_ibp_counter(rc_seqnak);
4126 def_access_ibp_counter(rc_dupreq);
4127 def_access_ibp_counter(rdma_seq);
4128 def_access_ibp_counter(unaligned);
4129 def_access_ibp_counter(seq_naks);
4130 def_access_ibp_counter(rc_crwaits);
4131 
4132 static struct cntr_entry dev_cntrs[DEV_CNTR_LAST] = {
4133 [C_RCV_OVF] = RXE32_DEV_CNTR_ELEM(RcvOverflow, RCV_BUF_OVFL_CNT, CNTR_SYNTH),
4134 [C_RX_LEN_ERR] = RXE32_DEV_CNTR_ELEM(RxLenErr, RCV_LENGTH_ERR_CNT, CNTR_SYNTH),
4135 [C_RX_SHORT_ERR] = RXE32_DEV_CNTR_ELEM(RxShrErr, RCV_SHORT_ERR_CNT, CNTR_SYNTH),
4136 [C_RX_ICRC_ERR] = RXE32_DEV_CNTR_ELEM(RxICrcErr, RCV_ICRC_ERR_CNT, CNTR_SYNTH),
4137 [C_RX_EBP] = RXE32_DEV_CNTR_ELEM(RxEbpCnt, RCV_EBP_CNT, CNTR_SYNTH),
4138 [C_RX_TID_FULL] = RXE32_DEV_CNTR_ELEM(RxTIDFullEr, RCV_TID_FULL_ERR_CNT,
4139 			CNTR_NORMAL),
4140 [C_RX_TID_INVALID] = RXE32_DEV_CNTR_ELEM(RxTIDInvalid, RCV_TID_VALID_ERR_CNT,
4141 			CNTR_NORMAL),
4142 [C_RX_TID_FLGMS] = RXE32_DEV_CNTR_ELEM(RxTidFLGMs,
4143 			RCV_TID_FLOW_GEN_MISMATCH_CNT,
4144 			CNTR_NORMAL),
4145 [C_RX_CTX_EGRS] = RXE32_DEV_CNTR_ELEM(RxCtxEgrS, RCV_CONTEXT_EGR_STALL,
4146 			CNTR_NORMAL),
4147 [C_RCV_TID_FLSMS] = RXE32_DEV_CNTR_ELEM(RxTidFLSMs,
4148 			RCV_TID_FLOW_SEQ_MISMATCH_CNT, CNTR_NORMAL),
4149 [C_CCE_PCI_CR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePciCrSt,
4150 			CCE_PCIE_POSTED_CRDT_STALL_CNT, CNTR_NORMAL),
4151 [C_CCE_PCI_TR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePciTrSt, CCE_PCIE_TRGT_STALL_CNT,
4152 			CNTR_NORMAL),
4153 [C_CCE_PIO_WR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePioWrSt, CCE_PIO_WR_STALL_CNT,
4154 			CNTR_NORMAL),
4155 [C_CCE_ERR_INT] = CCE_INT_DEV_CNTR_ELEM(CceErrInt, CCE_ERR_INT_CNT,
4156 			CNTR_NORMAL),
4157 [C_CCE_SDMA_INT] = CCE_INT_DEV_CNTR_ELEM(CceSdmaInt, CCE_SDMA_INT_CNT,
4158 			CNTR_NORMAL),
4159 [C_CCE_MISC_INT] = CCE_INT_DEV_CNTR_ELEM(CceMiscInt, CCE_MISC_INT_CNT,
4160 			CNTR_NORMAL),
4161 [C_CCE_RCV_AV_INT] = CCE_INT_DEV_CNTR_ELEM(CceRcvAvInt, CCE_RCV_AVAIL_INT_CNT,
4162 			CNTR_NORMAL),
4163 [C_CCE_RCV_URG_INT] = CCE_INT_DEV_CNTR_ELEM(CceRcvUrgInt,
4164 			CCE_RCV_URGENT_INT_CNT,	CNTR_NORMAL),
4165 [C_CCE_SEND_CR_INT] = CCE_INT_DEV_CNTR_ELEM(CceSndCrInt,
4166 			CCE_SEND_CREDIT_INT_CNT, CNTR_NORMAL),
4167 [C_DC_UNC_ERR] = DC_PERF_CNTR(DcUnctblErr, DCC_ERR_UNCORRECTABLE_CNT,
4168 			      CNTR_SYNTH),
4169 [C_DC_RCV_ERR] = CNTR_ELEM("DcRecvErr", DCC_ERR_PORTRCV_ERR_CNT, 0, CNTR_SYNTH,
4170 			    access_dc_rcv_err_cnt),
4171 [C_DC_FM_CFG_ERR] = DC_PERF_CNTR(DcFmCfgErr, DCC_ERR_FMCONFIG_ERR_CNT,
4172 				 CNTR_SYNTH),
4173 [C_DC_RMT_PHY_ERR] = DC_PERF_CNTR(DcRmtPhyErr, DCC_ERR_RCVREMOTE_PHY_ERR_CNT,
4174 				  CNTR_SYNTH),
4175 [C_DC_DROPPED_PKT] = DC_PERF_CNTR(DcDroppedPkt, DCC_ERR_DROPPED_PKT_CNT,
4176 				  CNTR_SYNTH),
4177 [C_DC_MC_XMIT_PKTS] = DC_PERF_CNTR(DcMcXmitPkts,
4178 				   DCC_PRF_PORT_XMIT_MULTICAST_CNT, CNTR_SYNTH),
4179 [C_DC_MC_RCV_PKTS] = DC_PERF_CNTR(DcMcRcvPkts,
4180 				  DCC_PRF_PORT_RCV_MULTICAST_PKT_CNT,
4181 				  CNTR_SYNTH),
4182 [C_DC_XMIT_CERR] = DC_PERF_CNTR(DcXmitCorr,
4183 				DCC_PRF_PORT_XMIT_CORRECTABLE_CNT, CNTR_SYNTH),
4184 [C_DC_RCV_CERR] = DC_PERF_CNTR(DcRcvCorrCnt, DCC_PRF_PORT_RCV_CORRECTABLE_CNT,
4185 			       CNTR_SYNTH),
4186 [C_DC_RCV_FCC] = DC_PERF_CNTR(DcRxFCntl, DCC_PRF_RX_FLOW_CRTL_CNT,
4187 			      CNTR_SYNTH),
4188 [C_DC_XMIT_FCC] = DC_PERF_CNTR(DcXmitFCntl, DCC_PRF_TX_FLOW_CRTL_CNT,
4189 			       CNTR_SYNTH),
4190 [C_DC_XMIT_FLITS] = DC_PERF_CNTR(DcXmitFlits, DCC_PRF_PORT_XMIT_DATA_CNT,
4191 				 CNTR_SYNTH),
4192 [C_DC_RCV_FLITS] = DC_PERF_CNTR(DcRcvFlits, DCC_PRF_PORT_RCV_DATA_CNT,
4193 				CNTR_SYNTH),
4194 [C_DC_XMIT_PKTS] = DC_PERF_CNTR(DcXmitPkts, DCC_PRF_PORT_XMIT_PKTS_CNT,
4195 				CNTR_SYNTH),
4196 [C_DC_RCV_PKTS] = DC_PERF_CNTR(DcRcvPkts, DCC_PRF_PORT_RCV_PKTS_CNT,
4197 			       CNTR_SYNTH),
4198 [C_DC_RX_FLIT_VL] = DC_PERF_CNTR(DcRxFlitVl, DCC_PRF_PORT_VL_RCV_DATA_CNT,
4199 				 CNTR_SYNTH | CNTR_VL),
4200 [C_DC_RX_PKT_VL] = DC_PERF_CNTR(DcRxPktVl, DCC_PRF_PORT_VL_RCV_PKTS_CNT,
4201 				CNTR_SYNTH | CNTR_VL),
4202 [C_DC_RCV_FCN] = DC_PERF_CNTR(DcRcvFcn, DCC_PRF_PORT_RCV_FECN_CNT, CNTR_SYNTH),
4203 [C_DC_RCV_FCN_VL] = DC_PERF_CNTR(DcRcvFcnVl, DCC_PRF_PORT_VL_RCV_FECN_CNT,
4204 				 CNTR_SYNTH | CNTR_VL),
4205 [C_DC_RCV_BCN] = DC_PERF_CNTR(DcRcvBcn, DCC_PRF_PORT_RCV_BECN_CNT, CNTR_SYNTH),
4206 [C_DC_RCV_BCN_VL] = DC_PERF_CNTR(DcRcvBcnVl, DCC_PRF_PORT_VL_RCV_BECN_CNT,
4207 				 CNTR_SYNTH | CNTR_VL),
4208 [C_DC_RCV_BBL] = DC_PERF_CNTR(DcRcvBbl, DCC_PRF_PORT_RCV_BUBBLE_CNT,
4209 			      CNTR_SYNTH),
4210 [C_DC_RCV_BBL_VL] = DC_PERF_CNTR(DcRcvBblVl, DCC_PRF_PORT_VL_RCV_BUBBLE_CNT,
4211 				 CNTR_SYNTH | CNTR_VL),
4212 [C_DC_MARK_FECN] = DC_PERF_CNTR(DcMarkFcn, DCC_PRF_PORT_MARK_FECN_CNT,
4213 				CNTR_SYNTH),
4214 [C_DC_MARK_FECN_VL] = DC_PERF_CNTR(DcMarkFcnVl, DCC_PRF_PORT_VL_MARK_FECN_CNT,
4215 				   CNTR_SYNTH | CNTR_VL),
4216 [C_DC_TOTAL_CRC] =
4217 	DC_PERF_CNTR_LCB(DcTotCrc, DC_LCB_ERR_INFO_TOTAL_CRC_ERR,
4218 			 CNTR_SYNTH),
4219 [C_DC_CRC_LN0] = DC_PERF_CNTR_LCB(DcCrcLn0, DC_LCB_ERR_INFO_CRC_ERR_LN0,
4220 				  CNTR_SYNTH),
4221 [C_DC_CRC_LN1] = DC_PERF_CNTR_LCB(DcCrcLn1, DC_LCB_ERR_INFO_CRC_ERR_LN1,
4222 				  CNTR_SYNTH),
4223 [C_DC_CRC_LN2] = DC_PERF_CNTR_LCB(DcCrcLn2, DC_LCB_ERR_INFO_CRC_ERR_LN2,
4224 				  CNTR_SYNTH),
4225 [C_DC_CRC_LN3] = DC_PERF_CNTR_LCB(DcCrcLn3, DC_LCB_ERR_INFO_CRC_ERR_LN3,
4226 				  CNTR_SYNTH),
4227 [C_DC_CRC_MULT_LN] =
4228 	DC_PERF_CNTR_LCB(DcMultLn, DC_LCB_ERR_INFO_CRC_ERR_MULTI_LN,
4229 			 CNTR_SYNTH),
4230 [C_DC_TX_REPLAY] = DC_PERF_CNTR_LCB(DcTxReplay, DC_LCB_ERR_INFO_TX_REPLAY_CNT,
4231 				    CNTR_SYNTH),
4232 [C_DC_RX_REPLAY] = DC_PERF_CNTR_LCB(DcRxReplay, DC_LCB_ERR_INFO_RX_REPLAY_CNT,
4233 				    CNTR_SYNTH),
4234 [C_DC_SEQ_CRC_CNT] =
4235 	DC_PERF_CNTR_LCB(DcLinkSeqCrc, DC_LCB_ERR_INFO_SEQ_CRC_CNT,
4236 			 CNTR_SYNTH),
4237 [C_DC_ESC0_ONLY_CNT] =
4238 	DC_PERF_CNTR_LCB(DcEsc0, DC_LCB_ERR_INFO_ESCAPE_0_ONLY_CNT,
4239 			 CNTR_SYNTH),
4240 [C_DC_ESC0_PLUS1_CNT] =
4241 	DC_PERF_CNTR_LCB(DcEsc1, DC_LCB_ERR_INFO_ESCAPE_0_PLUS1_CNT,
4242 			 CNTR_SYNTH),
4243 [C_DC_ESC0_PLUS2_CNT] =
4244 	DC_PERF_CNTR_LCB(DcEsc0Plus2, DC_LCB_ERR_INFO_ESCAPE_0_PLUS2_CNT,
4245 			 CNTR_SYNTH),
4246 [C_DC_REINIT_FROM_PEER_CNT] =
4247 	DC_PERF_CNTR_LCB(DcReinitPeer, DC_LCB_ERR_INFO_REINIT_FROM_PEER_CNT,
4248 			 CNTR_SYNTH),
4249 [C_DC_SBE_CNT] = DC_PERF_CNTR_LCB(DcSbe, DC_LCB_ERR_INFO_SBE_CNT,
4250 				  CNTR_SYNTH),
4251 [C_DC_MISC_FLG_CNT] =
4252 	DC_PERF_CNTR_LCB(DcMiscFlg, DC_LCB_ERR_INFO_MISC_FLG_CNT,
4253 			 CNTR_SYNTH),
4254 [C_DC_PRF_GOOD_LTP_CNT] =
4255 	DC_PERF_CNTR_LCB(DcGoodLTP, DC_LCB_PRF_GOOD_LTP_CNT, CNTR_SYNTH),
4256 [C_DC_PRF_ACCEPTED_LTP_CNT] =
4257 	DC_PERF_CNTR_LCB(DcAccLTP, DC_LCB_PRF_ACCEPTED_LTP_CNT,
4258 			 CNTR_SYNTH),
4259 [C_DC_PRF_RX_FLIT_CNT] =
4260 	DC_PERF_CNTR_LCB(DcPrfRxFlit, DC_LCB_PRF_RX_FLIT_CNT, CNTR_SYNTH),
4261 [C_DC_PRF_TX_FLIT_CNT] =
4262 	DC_PERF_CNTR_LCB(DcPrfTxFlit, DC_LCB_PRF_TX_FLIT_CNT, CNTR_SYNTH),
4263 [C_DC_PRF_CLK_CNTR] =
4264 	DC_PERF_CNTR_LCB(DcPrfClk, DC_LCB_PRF_CLK_CNTR, CNTR_SYNTH),
4265 [C_DC_PG_DBG_FLIT_CRDTS_CNT] =
4266 	DC_PERF_CNTR_LCB(DcFltCrdts, DC_LCB_PG_DBG_FLIT_CRDTS_CNT, CNTR_SYNTH),
4267 [C_DC_PG_STS_PAUSE_COMPLETE_CNT] =
4268 	DC_PERF_CNTR_LCB(DcPauseComp, DC_LCB_PG_STS_PAUSE_COMPLETE_CNT,
4269 			 CNTR_SYNTH),
4270 [C_DC_PG_STS_TX_SBE_CNT] =
4271 	DC_PERF_CNTR_LCB(DcStsTxSbe, DC_LCB_PG_STS_TX_SBE_CNT, CNTR_SYNTH),
4272 [C_DC_PG_STS_TX_MBE_CNT] =
4273 	DC_PERF_CNTR_LCB(DcStsTxMbe, DC_LCB_PG_STS_TX_MBE_CNT,
4274 			 CNTR_SYNTH),
4275 [C_SW_CPU_INTR] = CNTR_ELEM("Intr", 0, 0, CNTR_NORMAL,
4276 			    access_sw_cpu_intr),
4277 [C_SW_CPU_RCV_LIM] = CNTR_ELEM("RcvLimit", 0, 0, CNTR_NORMAL,
4278 			    access_sw_cpu_rcv_limit),
4279 [C_SW_CTX0_SEQ_DROP] = CNTR_ELEM("SeqDrop0", 0, 0, CNTR_NORMAL,
4280 			    access_sw_ctx0_seq_drop),
4281 [C_SW_VTX_WAIT] = CNTR_ELEM("vTxWait", 0, 0, CNTR_NORMAL,
4282 			    access_sw_vtx_wait),
4283 [C_SW_PIO_WAIT] = CNTR_ELEM("PioWait", 0, 0, CNTR_NORMAL,
4284 			    access_sw_pio_wait),
4285 [C_SW_PIO_DRAIN] = CNTR_ELEM("PioDrain", 0, 0, CNTR_NORMAL,
4286 			    access_sw_pio_drain),
4287 [C_SW_KMEM_WAIT] = CNTR_ELEM("KmemWait", 0, 0, CNTR_NORMAL,
4288 			    access_sw_kmem_wait),
4289 [C_SW_TID_WAIT] = CNTR_ELEM("TidWait", 0, 0, CNTR_NORMAL,
4290 			    hfi1_access_sw_tid_wait),
4291 [C_SW_SEND_SCHED] = CNTR_ELEM("SendSched", 0, 0, CNTR_NORMAL,
4292 			    access_sw_send_schedule),
4293 [C_SDMA_DESC_FETCHED_CNT] = CNTR_ELEM("SDEDscFdCn",
4294 				      SEND_DMA_DESC_FETCHED_CNT, 0,
4295 				      CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4296 				      dev_access_u32_csr),
4297 [C_SDMA_INT_CNT] = CNTR_ELEM("SDMAInt", 0, 0,
4298 			     CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4299 			     access_sde_int_cnt),
4300 [C_SDMA_ERR_CNT] = CNTR_ELEM("SDMAErrCt", 0, 0,
4301 			     CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4302 			     access_sde_err_cnt),
4303 [C_SDMA_IDLE_INT_CNT] = CNTR_ELEM("SDMAIdInt", 0, 0,
4304 				  CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4305 				  access_sde_idle_int_cnt),
4306 [C_SDMA_PROGRESS_INT_CNT] = CNTR_ELEM("SDMAPrIntCn", 0, 0,
4307 				      CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4308 				      access_sde_progress_int_cnt),
4309 /* MISC_ERR_STATUS */
4310 [C_MISC_PLL_LOCK_FAIL_ERR] = CNTR_ELEM("MISC_PLL_LOCK_FAIL_ERR", 0, 0,
4311 				CNTR_NORMAL,
4312 				access_misc_pll_lock_fail_err_cnt),
4313 [C_MISC_MBIST_FAIL_ERR] = CNTR_ELEM("MISC_MBIST_FAIL_ERR", 0, 0,
4314 				CNTR_NORMAL,
4315 				access_misc_mbist_fail_err_cnt),
4316 [C_MISC_INVALID_EEP_CMD_ERR] = CNTR_ELEM("MISC_INVALID_EEP_CMD_ERR", 0, 0,
4317 				CNTR_NORMAL,
4318 				access_misc_invalid_eep_cmd_err_cnt),
4319 [C_MISC_EFUSE_DONE_PARITY_ERR] = CNTR_ELEM("MISC_EFUSE_DONE_PARITY_ERR", 0, 0,
4320 				CNTR_NORMAL,
4321 				access_misc_efuse_done_parity_err_cnt),
4322 [C_MISC_EFUSE_WRITE_ERR] = CNTR_ELEM("MISC_EFUSE_WRITE_ERR", 0, 0,
4323 				CNTR_NORMAL,
4324 				access_misc_efuse_write_err_cnt),
4325 [C_MISC_EFUSE_READ_BAD_ADDR_ERR] = CNTR_ELEM("MISC_EFUSE_READ_BAD_ADDR_ERR", 0,
4326 				0, CNTR_NORMAL,
4327 				access_misc_efuse_read_bad_addr_err_cnt),
4328 [C_MISC_EFUSE_CSR_PARITY_ERR] = CNTR_ELEM("MISC_EFUSE_CSR_PARITY_ERR", 0, 0,
4329 				CNTR_NORMAL,
4330 				access_misc_efuse_csr_parity_err_cnt),
4331 [C_MISC_FW_AUTH_FAILED_ERR] = CNTR_ELEM("MISC_FW_AUTH_FAILED_ERR", 0, 0,
4332 				CNTR_NORMAL,
4333 				access_misc_fw_auth_failed_err_cnt),
4334 [C_MISC_KEY_MISMATCH_ERR] = CNTR_ELEM("MISC_KEY_MISMATCH_ERR", 0, 0,
4335 				CNTR_NORMAL,
4336 				access_misc_key_mismatch_err_cnt),
4337 [C_MISC_SBUS_WRITE_FAILED_ERR] = CNTR_ELEM("MISC_SBUS_WRITE_FAILED_ERR", 0, 0,
4338 				CNTR_NORMAL,
4339 				access_misc_sbus_write_failed_err_cnt),
4340 [C_MISC_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("MISC_CSR_WRITE_BAD_ADDR_ERR", 0, 0,
4341 				CNTR_NORMAL,
4342 				access_misc_csr_write_bad_addr_err_cnt),
4343 [C_MISC_CSR_READ_BAD_ADDR_ERR] = CNTR_ELEM("MISC_CSR_READ_BAD_ADDR_ERR", 0, 0,
4344 				CNTR_NORMAL,
4345 				access_misc_csr_read_bad_addr_err_cnt),
4346 [C_MISC_CSR_PARITY_ERR] = CNTR_ELEM("MISC_CSR_PARITY_ERR", 0, 0,
4347 				CNTR_NORMAL,
4348 				access_misc_csr_parity_err_cnt),
4349 /* CceErrStatus */
4350 [C_CCE_ERR_STATUS_AGGREGATED_CNT] = CNTR_ELEM("CceErrStatusAggregatedCnt", 0, 0,
4351 				CNTR_NORMAL,
4352 				access_sw_cce_err_status_aggregated_cnt),
4353 [C_CCE_MSIX_CSR_PARITY_ERR] = CNTR_ELEM("CceMsixCsrParityErr", 0, 0,
4354 				CNTR_NORMAL,
4355 				access_cce_msix_csr_parity_err_cnt),
4356 [C_CCE_INT_MAP_UNC_ERR] = CNTR_ELEM("CceIntMapUncErr", 0, 0,
4357 				CNTR_NORMAL,
4358 				access_cce_int_map_unc_err_cnt),
4359 [C_CCE_INT_MAP_COR_ERR] = CNTR_ELEM("CceIntMapCorErr", 0, 0,
4360 				CNTR_NORMAL,
4361 				access_cce_int_map_cor_err_cnt),
4362 [C_CCE_MSIX_TABLE_UNC_ERR] = CNTR_ELEM("CceMsixTableUncErr", 0, 0,
4363 				CNTR_NORMAL,
4364 				access_cce_msix_table_unc_err_cnt),
4365 [C_CCE_MSIX_TABLE_COR_ERR] = CNTR_ELEM("CceMsixTableCorErr", 0, 0,
4366 				CNTR_NORMAL,
4367 				access_cce_msix_table_cor_err_cnt),
4368 [C_CCE_RXDMA_CONV_FIFO_PARITY_ERR] = CNTR_ELEM("CceRxdmaConvFifoParityErr", 0,
4369 				0, CNTR_NORMAL,
4370 				access_cce_rxdma_conv_fifo_parity_err_cnt),
4371 [C_CCE_RCPL_ASYNC_FIFO_PARITY_ERR] = CNTR_ELEM("CceRcplAsyncFifoParityErr", 0,
4372 				0, CNTR_NORMAL,
4373 				access_cce_rcpl_async_fifo_parity_err_cnt),
4374 [C_CCE_SEG_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("CceSegWriteBadAddrErr", 0, 0,
4375 				CNTR_NORMAL,
4376 				access_cce_seg_write_bad_addr_err_cnt),
4377 [C_CCE_SEG_READ_BAD_ADDR_ERR] = CNTR_ELEM("CceSegReadBadAddrErr", 0, 0,
4378 				CNTR_NORMAL,
4379 				access_cce_seg_read_bad_addr_err_cnt),
4380 [C_LA_TRIGGERED] = CNTR_ELEM("Cce LATriggered", 0, 0,
4381 				CNTR_NORMAL,
4382 				access_la_triggered_cnt),
4383 [C_CCE_TRGT_CPL_TIMEOUT_ERR] = CNTR_ELEM("CceTrgtCplTimeoutErr", 0, 0,
4384 				CNTR_NORMAL,
4385 				access_cce_trgt_cpl_timeout_err_cnt),
4386 [C_PCIC_RECEIVE_PARITY_ERR] = CNTR_ELEM("PcicReceiveParityErr", 0, 0,
4387 				CNTR_NORMAL,
4388 				access_pcic_receive_parity_err_cnt),
4389 [C_PCIC_TRANSMIT_BACK_PARITY_ERR] = CNTR_ELEM("PcicTransmitBackParityErr", 0, 0,
4390 				CNTR_NORMAL,
4391 				access_pcic_transmit_back_parity_err_cnt),
4392 [C_PCIC_TRANSMIT_FRONT_PARITY_ERR] = CNTR_ELEM("PcicTransmitFrontParityErr", 0,
4393 				0, CNTR_NORMAL,
4394 				access_pcic_transmit_front_parity_err_cnt),
4395 [C_PCIC_CPL_DAT_Q_UNC_ERR] = CNTR_ELEM("PcicCplDatQUncErr", 0, 0,
4396 				CNTR_NORMAL,
4397 				access_pcic_cpl_dat_q_unc_err_cnt),
4398 [C_PCIC_CPL_HD_Q_UNC_ERR] = CNTR_ELEM("PcicCplHdQUncErr", 0, 0,
4399 				CNTR_NORMAL,
4400 				access_pcic_cpl_hd_q_unc_err_cnt),
4401 [C_PCIC_POST_DAT_Q_UNC_ERR] = CNTR_ELEM("PcicPostDatQUncErr", 0, 0,
4402 				CNTR_NORMAL,
4403 				access_pcic_post_dat_q_unc_err_cnt),
4404 [C_PCIC_POST_HD_Q_UNC_ERR] = CNTR_ELEM("PcicPostHdQUncErr", 0, 0,
4405 				CNTR_NORMAL,
4406 				access_pcic_post_hd_q_unc_err_cnt),
4407 [C_PCIC_RETRY_SOT_MEM_UNC_ERR] = CNTR_ELEM("PcicRetrySotMemUncErr", 0, 0,
4408 				CNTR_NORMAL,
4409 				access_pcic_retry_sot_mem_unc_err_cnt),
4410 [C_PCIC_RETRY_MEM_UNC_ERR] = CNTR_ELEM("PcicRetryMemUncErr", 0, 0,
4411 				CNTR_NORMAL,
4412 				access_pcic_retry_mem_unc_err),
4413 [C_PCIC_N_POST_DAT_Q_PARITY_ERR] = CNTR_ELEM("PcicNPostDatQParityErr", 0, 0,
4414 				CNTR_NORMAL,
4415 				access_pcic_n_post_dat_q_parity_err_cnt),
4416 [C_PCIC_N_POST_H_Q_PARITY_ERR] = CNTR_ELEM("PcicNPostHQParityErr", 0, 0,
4417 				CNTR_NORMAL,
4418 				access_pcic_n_post_h_q_parity_err_cnt),
4419 [C_PCIC_CPL_DAT_Q_COR_ERR] = CNTR_ELEM("PcicCplDatQCorErr", 0, 0,
4420 				CNTR_NORMAL,
4421 				access_pcic_cpl_dat_q_cor_err_cnt),
4422 [C_PCIC_CPL_HD_Q_COR_ERR] = CNTR_ELEM("PcicCplHdQCorErr", 0, 0,
4423 				CNTR_NORMAL,
4424 				access_pcic_cpl_hd_q_cor_err_cnt),
4425 [C_PCIC_POST_DAT_Q_COR_ERR] = CNTR_ELEM("PcicPostDatQCorErr", 0, 0,
4426 				CNTR_NORMAL,
4427 				access_pcic_post_dat_q_cor_err_cnt),
4428 [C_PCIC_POST_HD_Q_COR_ERR] = CNTR_ELEM("PcicPostHdQCorErr", 0, 0,
4429 				CNTR_NORMAL,
4430 				access_pcic_post_hd_q_cor_err_cnt),
4431 [C_PCIC_RETRY_SOT_MEM_COR_ERR] = CNTR_ELEM("PcicRetrySotMemCorErr", 0, 0,
4432 				CNTR_NORMAL,
4433 				access_pcic_retry_sot_mem_cor_err_cnt),
4434 [C_PCIC_RETRY_MEM_COR_ERR] = CNTR_ELEM("PcicRetryMemCorErr", 0, 0,
4435 				CNTR_NORMAL,
4436 				access_pcic_retry_mem_cor_err_cnt),
4437 [C_CCE_CLI1_ASYNC_FIFO_DBG_PARITY_ERR] = CNTR_ELEM(
4438 				"CceCli1AsyncFifoDbgParityError", 0, 0,
4439 				CNTR_NORMAL,
4440 				access_cce_cli1_async_fifo_dbg_parity_err_cnt),
4441 [C_CCE_CLI1_ASYNC_FIFO_RXDMA_PARITY_ERR] = CNTR_ELEM(
4442 				"CceCli1AsyncFifoRxdmaParityError", 0, 0,
4443 				CNTR_NORMAL,
4444 				access_cce_cli1_async_fifo_rxdma_parity_err_cnt
4445 				),
4446 [C_CCE_CLI1_ASYNC_FIFO_SDMA_HD_PARITY_ERR] = CNTR_ELEM(
4447 			"CceCli1AsyncFifoSdmaHdParityErr", 0, 0,
4448 			CNTR_NORMAL,
4449 			access_cce_cli1_async_fifo_sdma_hd_parity_err_cnt),
4450 [C_CCE_CLI1_ASYNC_FIFO_PIO_CRDT_PARITY_ERR] = CNTR_ELEM(
4451 			"CceCli1AsyncFifoPioCrdtParityErr", 0, 0,
4452 			CNTR_NORMAL,
4453 			access_cce_cl1_async_fifo_pio_crdt_parity_err_cnt),
4454 [C_CCE_CLI2_ASYNC_FIFO_PARITY_ERR] = CNTR_ELEM("CceCli2AsyncFifoParityErr", 0,
4455 			0, CNTR_NORMAL,
4456 			access_cce_cli2_async_fifo_parity_err_cnt),
4457 [C_CCE_CSR_CFG_BUS_PARITY_ERR] = CNTR_ELEM("CceCsrCfgBusParityErr", 0, 0,
4458 			CNTR_NORMAL,
4459 			access_cce_csr_cfg_bus_parity_err_cnt),
4460 [C_CCE_CLI0_ASYNC_FIFO_PARTIY_ERR] = CNTR_ELEM("CceCli0AsyncFifoParityErr", 0,
4461 			0, CNTR_NORMAL,
4462 			access_cce_cli0_async_fifo_parity_err_cnt),
4463 [C_CCE_RSPD_DATA_PARITY_ERR] = CNTR_ELEM("CceRspdDataParityErr", 0, 0,
4464 			CNTR_NORMAL,
4465 			access_cce_rspd_data_parity_err_cnt),
4466 [C_CCE_TRGT_ACCESS_ERR] = CNTR_ELEM("CceTrgtAccessErr", 0, 0,
4467 			CNTR_NORMAL,
4468 			access_cce_trgt_access_err_cnt),
4469 [C_CCE_TRGT_ASYNC_FIFO_PARITY_ERR] = CNTR_ELEM("CceTrgtAsyncFifoParityErr", 0,
4470 			0, CNTR_NORMAL,
4471 			access_cce_trgt_async_fifo_parity_err_cnt),
4472 [C_CCE_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("CceCsrWriteBadAddrErr", 0, 0,
4473 			CNTR_NORMAL,
4474 			access_cce_csr_write_bad_addr_err_cnt),
4475 [C_CCE_CSR_READ_BAD_ADDR_ERR] = CNTR_ELEM("CceCsrReadBadAddrErr", 0, 0,
4476 			CNTR_NORMAL,
4477 			access_cce_csr_read_bad_addr_err_cnt),
4478 [C_CCE_CSR_PARITY_ERR] = CNTR_ELEM("CceCsrParityErr", 0, 0,
4479 			CNTR_NORMAL,
4480 			access_ccs_csr_parity_err_cnt),
4481 
4482 /* RcvErrStatus */
4483 [C_RX_CSR_PARITY_ERR] = CNTR_ELEM("RxCsrParityErr", 0, 0,
4484 			CNTR_NORMAL,
4485 			access_rx_csr_parity_err_cnt),
4486 [C_RX_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("RxCsrWriteBadAddrErr", 0, 0,
4487 			CNTR_NORMAL,
4488 			access_rx_csr_write_bad_addr_err_cnt),
4489 [C_RX_CSR_READ_BAD_ADDR_ERR] = CNTR_ELEM("RxCsrReadBadAddrErr", 0, 0,
4490 			CNTR_NORMAL,
4491 			access_rx_csr_read_bad_addr_err_cnt),
4492 [C_RX_DMA_CSR_UNC_ERR] = CNTR_ELEM("RxDmaCsrUncErr", 0, 0,
4493 			CNTR_NORMAL,
4494 			access_rx_dma_csr_unc_err_cnt),
4495 [C_RX_DMA_DQ_FSM_ENCODING_ERR] = CNTR_ELEM("RxDmaDqFsmEncodingErr", 0, 0,
4496 			CNTR_NORMAL,
4497 			access_rx_dma_dq_fsm_encoding_err_cnt),
4498 [C_RX_DMA_EQ_FSM_ENCODING_ERR] = CNTR_ELEM("RxDmaEqFsmEncodingErr", 0, 0,
4499 			CNTR_NORMAL,
4500 			access_rx_dma_eq_fsm_encoding_err_cnt),
4501 [C_RX_DMA_CSR_PARITY_ERR] = CNTR_ELEM("RxDmaCsrParityErr", 0, 0,
4502 			CNTR_NORMAL,
4503 			access_rx_dma_csr_parity_err_cnt),
4504 [C_RX_RBUF_DATA_COR_ERR] = CNTR_ELEM("RxRbufDataCorErr", 0, 0,
4505 			CNTR_NORMAL,
4506 			access_rx_rbuf_data_cor_err_cnt),
4507 [C_RX_RBUF_DATA_UNC_ERR] = CNTR_ELEM("RxRbufDataUncErr", 0, 0,
4508 			CNTR_NORMAL,
4509 			access_rx_rbuf_data_unc_err_cnt),
4510 [C_RX_DMA_DATA_FIFO_RD_COR_ERR] = CNTR_ELEM("RxDmaDataFifoRdCorErr", 0, 0,
4511 			CNTR_NORMAL,
4512 			access_rx_dma_data_fifo_rd_cor_err_cnt),
4513 [C_RX_DMA_DATA_FIFO_RD_UNC_ERR] = CNTR_ELEM("RxDmaDataFifoRdUncErr", 0, 0,
4514 			CNTR_NORMAL,
4515 			access_rx_dma_data_fifo_rd_unc_err_cnt),
4516 [C_RX_DMA_HDR_FIFO_RD_COR_ERR] = CNTR_ELEM("RxDmaHdrFifoRdCorErr", 0, 0,
4517 			CNTR_NORMAL,
4518 			access_rx_dma_hdr_fifo_rd_cor_err_cnt),
4519 [C_RX_DMA_HDR_FIFO_RD_UNC_ERR] = CNTR_ELEM("RxDmaHdrFifoRdUncErr", 0, 0,
4520 			CNTR_NORMAL,
4521 			access_rx_dma_hdr_fifo_rd_unc_err_cnt),
4522 [C_RX_RBUF_DESC_PART2_COR_ERR] = CNTR_ELEM("RxRbufDescPart2CorErr", 0, 0,
4523 			CNTR_NORMAL,
4524 			access_rx_rbuf_desc_part2_cor_err_cnt),
4525 [C_RX_RBUF_DESC_PART2_UNC_ERR] = CNTR_ELEM("RxRbufDescPart2UncErr", 0, 0,
4526 			CNTR_NORMAL,
4527 			access_rx_rbuf_desc_part2_unc_err_cnt),
4528 [C_RX_RBUF_DESC_PART1_COR_ERR] = CNTR_ELEM("RxRbufDescPart1CorErr", 0, 0,
4529 			CNTR_NORMAL,
4530 			access_rx_rbuf_desc_part1_cor_err_cnt),
4531 [C_RX_RBUF_DESC_PART1_UNC_ERR] = CNTR_ELEM("RxRbufDescPart1UncErr", 0, 0,
4532 			CNTR_NORMAL,
4533 			access_rx_rbuf_desc_part1_unc_err_cnt),
4534 [C_RX_HQ_INTR_FSM_ERR] = CNTR_ELEM("RxHqIntrFsmErr", 0, 0,
4535 			CNTR_NORMAL,
4536 			access_rx_hq_intr_fsm_err_cnt),
4537 [C_RX_HQ_INTR_CSR_PARITY_ERR] = CNTR_ELEM("RxHqIntrCsrParityErr", 0, 0,
4538 			CNTR_NORMAL,
4539 			access_rx_hq_intr_csr_parity_err_cnt),
4540 [C_RX_LOOKUP_CSR_PARITY_ERR] = CNTR_ELEM("RxLookupCsrParityErr", 0, 0,
4541 			CNTR_NORMAL,
4542 			access_rx_lookup_csr_parity_err_cnt),
4543 [C_RX_LOOKUP_RCV_ARRAY_COR_ERR] = CNTR_ELEM("RxLookupRcvArrayCorErr", 0, 0,
4544 			CNTR_NORMAL,
4545 			access_rx_lookup_rcv_array_cor_err_cnt),
4546 [C_RX_LOOKUP_RCV_ARRAY_UNC_ERR] = CNTR_ELEM("RxLookupRcvArrayUncErr", 0, 0,
4547 			CNTR_NORMAL,
4548 			access_rx_lookup_rcv_array_unc_err_cnt),
4549 [C_RX_LOOKUP_DES_PART2_PARITY_ERR] = CNTR_ELEM("RxLookupDesPart2ParityErr", 0,
4550 			0, CNTR_NORMAL,
4551 			access_rx_lookup_des_part2_parity_err_cnt),
4552 [C_RX_LOOKUP_DES_PART1_UNC_COR_ERR] = CNTR_ELEM("RxLookupDesPart1UncCorErr", 0,
4553 			0, CNTR_NORMAL,
4554 			access_rx_lookup_des_part1_unc_cor_err_cnt),
4555 [C_RX_LOOKUP_DES_PART1_UNC_ERR] = CNTR_ELEM("RxLookupDesPart1UncErr", 0, 0,
4556 			CNTR_NORMAL,
4557 			access_rx_lookup_des_part1_unc_err_cnt),
4558 [C_RX_RBUF_NEXT_FREE_BUF_COR_ERR] = CNTR_ELEM("RxRbufNextFreeBufCorErr", 0, 0,
4559 			CNTR_NORMAL,
4560 			access_rx_rbuf_next_free_buf_cor_err_cnt),
4561 [C_RX_RBUF_NEXT_FREE_BUF_UNC_ERR] = CNTR_ELEM("RxRbufNextFreeBufUncErr", 0, 0,
4562 			CNTR_NORMAL,
4563 			access_rx_rbuf_next_free_buf_unc_err_cnt),
4564 [C_RX_RBUF_FL_INIT_WR_ADDR_PARITY_ERR] = CNTR_ELEM(
4565 			"RxRbufFlInitWrAddrParityErr", 0, 0,
4566 			CNTR_NORMAL,
4567 			access_rbuf_fl_init_wr_addr_parity_err_cnt),
4568 [C_RX_RBUF_FL_INITDONE_PARITY_ERR] = CNTR_ELEM("RxRbufFlInitdoneParityErr", 0,
4569 			0, CNTR_NORMAL,
4570 			access_rx_rbuf_fl_initdone_parity_err_cnt),
4571 [C_RX_RBUF_FL_WRITE_ADDR_PARITY_ERR] = CNTR_ELEM("RxRbufFlWrAddrParityErr", 0,
4572 			0, CNTR_NORMAL,
4573 			access_rx_rbuf_fl_write_addr_parity_err_cnt),
4574 [C_RX_RBUF_FL_RD_ADDR_PARITY_ERR] = CNTR_ELEM("RxRbufFlRdAddrParityErr", 0, 0,
4575 			CNTR_NORMAL,
4576 			access_rx_rbuf_fl_rd_addr_parity_err_cnt),
4577 [C_RX_RBUF_EMPTY_ERR] = CNTR_ELEM("RxRbufEmptyErr", 0, 0,
4578 			CNTR_NORMAL,
4579 			access_rx_rbuf_empty_err_cnt),
4580 [C_RX_RBUF_FULL_ERR] = CNTR_ELEM("RxRbufFullErr", 0, 0,
4581 			CNTR_NORMAL,
4582 			access_rx_rbuf_full_err_cnt),
4583 [C_RX_RBUF_BAD_LOOKUP_ERR] = CNTR_ELEM("RxRBufBadLookupErr", 0, 0,
4584 			CNTR_NORMAL,
4585 			access_rbuf_bad_lookup_err_cnt),
4586 [C_RX_RBUF_CTX_ID_PARITY_ERR] = CNTR_ELEM("RxRbufCtxIdParityErr", 0, 0,
4587 			CNTR_NORMAL,
4588 			access_rbuf_ctx_id_parity_err_cnt),
4589 [C_RX_RBUF_CSR_QEOPDW_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQEOPDWParityErr", 0, 0,
4590 			CNTR_NORMAL,
4591 			access_rbuf_csr_qeopdw_parity_err_cnt),
4592 [C_RX_RBUF_CSR_Q_NUM_OF_PKT_PARITY_ERR] = CNTR_ELEM(
4593 			"RxRbufCsrQNumOfPktParityErr", 0, 0,
4594 			CNTR_NORMAL,
4595 			access_rx_rbuf_csr_q_num_of_pkt_parity_err_cnt),
4596 [C_RX_RBUF_CSR_Q_T1_PTR_PARITY_ERR] = CNTR_ELEM(
4597 			"RxRbufCsrQTlPtrParityErr", 0, 0,
4598 			CNTR_NORMAL,
4599 			access_rx_rbuf_csr_q_t1_ptr_parity_err_cnt),
4600 [C_RX_RBUF_CSR_Q_HD_PTR_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQHdPtrParityErr", 0,
4601 			0, CNTR_NORMAL,
4602 			access_rx_rbuf_csr_q_hd_ptr_parity_err_cnt),
4603 [C_RX_RBUF_CSR_Q_VLD_BIT_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQVldBitParityErr", 0,
4604 			0, CNTR_NORMAL,
4605 			access_rx_rbuf_csr_q_vld_bit_parity_err_cnt),
4606 [C_RX_RBUF_CSR_Q_NEXT_BUF_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQNextBufParityErr",
4607 			0, 0, CNTR_NORMAL,
4608 			access_rx_rbuf_csr_q_next_buf_parity_err_cnt),
4609 [C_RX_RBUF_CSR_Q_ENT_CNT_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQEntCntParityErr", 0,
4610 			0, CNTR_NORMAL,
4611 			access_rx_rbuf_csr_q_ent_cnt_parity_err_cnt),
4612 [C_RX_RBUF_CSR_Q_HEAD_BUF_NUM_PARITY_ERR] = CNTR_ELEM(
4613 			"RxRbufCsrQHeadBufNumParityErr", 0, 0,
4614 			CNTR_NORMAL,
4615 			access_rx_rbuf_csr_q_head_buf_num_parity_err_cnt),
4616 [C_RX_RBUF_BLOCK_LIST_READ_COR_ERR] = CNTR_ELEM("RxRbufBlockListReadCorErr", 0,
4617 			0, CNTR_NORMAL,
4618 			access_rx_rbuf_block_list_read_cor_err_cnt),
4619 [C_RX_RBUF_BLOCK_LIST_READ_UNC_ERR] = CNTR_ELEM("RxRbufBlockListReadUncErr", 0,
4620 			0, CNTR_NORMAL,
4621 			access_rx_rbuf_block_list_read_unc_err_cnt),
4622 [C_RX_RBUF_LOOKUP_DES_COR_ERR] = CNTR_ELEM("RxRbufLookupDesCorErr", 0, 0,
4623 			CNTR_NORMAL,
4624 			access_rx_rbuf_lookup_des_cor_err_cnt),
4625 [C_RX_RBUF_LOOKUP_DES_UNC_ERR] = CNTR_ELEM("RxRbufLookupDesUncErr", 0, 0,
4626 			CNTR_NORMAL,
4627 			access_rx_rbuf_lookup_des_unc_err_cnt),
4628 [C_RX_RBUF_LOOKUP_DES_REG_UNC_COR_ERR] = CNTR_ELEM(
4629 			"RxRbufLookupDesRegUncCorErr", 0, 0,
4630 			CNTR_NORMAL,
4631 			access_rx_rbuf_lookup_des_reg_unc_cor_err_cnt),
4632 [C_RX_RBUF_LOOKUP_DES_REG_UNC_ERR] = CNTR_ELEM("RxRbufLookupDesRegUncErr", 0, 0,
4633 			CNTR_NORMAL,
4634 			access_rx_rbuf_lookup_des_reg_unc_err_cnt),
4635 [C_RX_RBUF_FREE_LIST_COR_ERR] = CNTR_ELEM("RxRbufFreeListCorErr", 0, 0,
4636 			CNTR_NORMAL,
4637 			access_rx_rbuf_free_list_cor_err_cnt),
4638 [C_RX_RBUF_FREE_LIST_UNC_ERR] = CNTR_ELEM("RxRbufFreeListUncErr", 0, 0,
4639 			CNTR_NORMAL,
4640 			access_rx_rbuf_free_list_unc_err_cnt),
4641 [C_RX_RCV_FSM_ENCODING_ERR] = CNTR_ELEM("RxRcvFsmEncodingErr", 0, 0,
4642 			CNTR_NORMAL,
4643 			access_rx_rcv_fsm_encoding_err_cnt),
4644 [C_RX_DMA_FLAG_COR_ERR] = CNTR_ELEM("RxDmaFlagCorErr", 0, 0,
4645 			CNTR_NORMAL,
4646 			access_rx_dma_flag_cor_err_cnt),
4647 [C_RX_DMA_FLAG_UNC_ERR] = CNTR_ELEM("RxDmaFlagUncErr", 0, 0,
4648 			CNTR_NORMAL,
4649 			access_rx_dma_flag_unc_err_cnt),
4650 [C_RX_DC_SOP_EOP_PARITY_ERR] = CNTR_ELEM("RxDcSopEopParityErr", 0, 0,
4651 			CNTR_NORMAL,
4652 			access_rx_dc_sop_eop_parity_err_cnt),
4653 [C_RX_RCV_CSR_PARITY_ERR] = CNTR_ELEM("RxRcvCsrParityErr", 0, 0,
4654 			CNTR_NORMAL,
4655 			access_rx_rcv_csr_parity_err_cnt),
4656 [C_RX_RCV_QP_MAP_TABLE_COR_ERR] = CNTR_ELEM("RxRcvQpMapTableCorErr", 0, 0,
4657 			CNTR_NORMAL,
4658 			access_rx_rcv_qp_map_table_cor_err_cnt),
4659 [C_RX_RCV_QP_MAP_TABLE_UNC_ERR] = CNTR_ELEM("RxRcvQpMapTableUncErr", 0, 0,
4660 			CNTR_NORMAL,
4661 			access_rx_rcv_qp_map_table_unc_err_cnt),
4662 [C_RX_RCV_DATA_COR_ERR] = CNTR_ELEM("RxRcvDataCorErr", 0, 0,
4663 			CNTR_NORMAL,
4664 			access_rx_rcv_data_cor_err_cnt),
4665 [C_RX_RCV_DATA_UNC_ERR] = CNTR_ELEM("RxRcvDataUncErr", 0, 0,
4666 			CNTR_NORMAL,
4667 			access_rx_rcv_data_unc_err_cnt),
4668 [C_RX_RCV_HDR_COR_ERR] = CNTR_ELEM("RxRcvHdrCorErr", 0, 0,
4669 			CNTR_NORMAL,
4670 			access_rx_rcv_hdr_cor_err_cnt),
4671 [C_RX_RCV_HDR_UNC_ERR] = CNTR_ELEM("RxRcvHdrUncErr", 0, 0,
4672 			CNTR_NORMAL,
4673 			access_rx_rcv_hdr_unc_err_cnt),
4674 [C_RX_DC_INTF_PARITY_ERR] = CNTR_ELEM("RxDcIntfParityErr", 0, 0,
4675 			CNTR_NORMAL,
4676 			access_rx_dc_intf_parity_err_cnt),
4677 [C_RX_DMA_CSR_COR_ERR] = CNTR_ELEM("RxDmaCsrCorErr", 0, 0,
4678 			CNTR_NORMAL,
4679 			access_rx_dma_csr_cor_err_cnt),
4680 /* SendPioErrStatus */
4681 [C_PIO_PEC_SOP_HEAD_PARITY_ERR] = CNTR_ELEM("PioPecSopHeadParityErr", 0, 0,
4682 			CNTR_NORMAL,
4683 			access_pio_pec_sop_head_parity_err_cnt),
4684 [C_PIO_PCC_SOP_HEAD_PARITY_ERR] = CNTR_ELEM("PioPccSopHeadParityErr", 0, 0,
4685 			CNTR_NORMAL,
4686 			access_pio_pcc_sop_head_parity_err_cnt),
4687 [C_PIO_LAST_RETURNED_CNT_PARITY_ERR] = CNTR_ELEM("PioLastReturnedCntParityErr",
4688 			0, 0, CNTR_NORMAL,
4689 			access_pio_last_returned_cnt_parity_err_cnt),
4690 [C_PIO_CURRENT_FREE_CNT_PARITY_ERR] = CNTR_ELEM("PioCurrentFreeCntParityErr", 0,
4691 			0, CNTR_NORMAL,
4692 			access_pio_current_free_cnt_parity_err_cnt),
4693 [C_PIO_RSVD_31_ERR] = CNTR_ELEM("Pio Reserved 31", 0, 0,
4694 			CNTR_NORMAL,
4695 			access_pio_reserved_31_err_cnt),
4696 [C_PIO_RSVD_30_ERR] = CNTR_ELEM("Pio Reserved 30", 0, 0,
4697 			CNTR_NORMAL,
4698 			access_pio_reserved_30_err_cnt),
4699 [C_PIO_PPMC_SOP_LEN_ERR] = CNTR_ELEM("PioPpmcSopLenErr", 0, 0,
4700 			CNTR_NORMAL,
4701 			access_pio_ppmc_sop_len_err_cnt),
4702 [C_PIO_PPMC_BQC_MEM_PARITY_ERR] = CNTR_ELEM("PioPpmcBqcMemParityErr", 0, 0,
4703 			CNTR_NORMAL,
4704 			access_pio_ppmc_bqc_mem_parity_err_cnt),
4705 [C_PIO_VL_FIFO_PARITY_ERR] = CNTR_ELEM("PioVlFifoParityErr", 0, 0,
4706 			CNTR_NORMAL,
4707 			access_pio_vl_fifo_parity_err_cnt),
4708 [C_PIO_VLF_SOP_PARITY_ERR] = CNTR_ELEM("PioVlfSopParityErr", 0, 0,
4709 			CNTR_NORMAL,
4710 			access_pio_vlf_sop_parity_err_cnt),
4711 [C_PIO_VLF_V1_LEN_PARITY_ERR] = CNTR_ELEM("PioVlfVlLenParityErr", 0, 0,
4712 			CNTR_NORMAL,
4713 			access_pio_vlf_v1_len_parity_err_cnt),
4714 [C_PIO_BLOCK_QW_COUNT_PARITY_ERR] = CNTR_ELEM("PioBlockQwCountParityErr", 0, 0,
4715 			CNTR_NORMAL,
4716 			access_pio_block_qw_count_parity_err_cnt),
4717 [C_PIO_WRITE_QW_VALID_PARITY_ERR] = CNTR_ELEM("PioWriteQwValidParityErr", 0, 0,
4718 			CNTR_NORMAL,
4719 			access_pio_write_qw_valid_parity_err_cnt),
4720 [C_PIO_STATE_MACHINE_ERR] = CNTR_ELEM("PioStateMachineErr", 0, 0,
4721 			CNTR_NORMAL,
4722 			access_pio_state_machine_err_cnt),
4723 [C_PIO_WRITE_DATA_PARITY_ERR] = CNTR_ELEM("PioWriteDataParityErr", 0, 0,
4724 			CNTR_NORMAL,
4725 			access_pio_write_data_parity_err_cnt),
4726 [C_PIO_HOST_ADDR_MEM_COR_ERR] = CNTR_ELEM("PioHostAddrMemCorErr", 0, 0,
4727 			CNTR_NORMAL,
4728 			access_pio_host_addr_mem_cor_err_cnt),
4729 [C_PIO_HOST_ADDR_MEM_UNC_ERR] = CNTR_ELEM("PioHostAddrMemUncErr", 0, 0,
4730 			CNTR_NORMAL,
4731 			access_pio_host_addr_mem_unc_err_cnt),
4732 [C_PIO_PKT_EVICT_SM_OR_ARM_SM_ERR] = CNTR_ELEM("PioPktEvictSmOrArbSmErr", 0, 0,
4733 			CNTR_NORMAL,
4734 			access_pio_pkt_evict_sm_or_arb_sm_err_cnt),
4735 [C_PIO_INIT_SM_IN_ERR] = CNTR_ELEM("PioInitSmInErr", 0, 0,
4736 			CNTR_NORMAL,
4737 			access_pio_init_sm_in_err_cnt),
4738 [C_PIO_PPMC_PBL_FIFO_ERR] = CNTR_ELEM("PioPpmcPblFifoErr", 0, 0,
4739 			CNTR_NORMAL,
4740 			access_pio_ppmc_pbl_fifo_err_cnt),
4741 [C_PIO_CREDIT_RET_FIFO_PARITY_ERR] = CNTR_ELEM("PioCreditRetFifoParityErr", 0,
4742 			0, CNTR_NORMAL,
4743 			access_pio_credit_ret_fifo_parity_err_cnt),
4744 [C_PIO_V1_LEN_MEM_BANK1_COR_ERR] = CNTR_ELEM("PioVlLenMemBank1CorErr", 0, 0,
4745 			CNTR_NORMAL,
4746 			access_pio_v1_len_mem_bank1_cor_err_cnt),
4747 [C_PIO_V1_LEN_MEM_BANK0_COR_ERR] = CNTR_ELEM("PioVlLenMemBank0CorErr", 0, 0,
4748 			CNTR_NORMAL,
4749 			access_pio_v1_len_mem_bank0_cor_err_cnt),
4750 [C_PIO_V1_LEN_MEM_BANK1_UNC_ERR] = CNTR_ELEM("PioVlLenMemBank1UncErr", 0, 0,
4751 			CNTR_NORMAL,
4752 			access_pio_v1_len_mem_bank1_unc_err_cnt),
4753 [C_PIO_V1_LEN_MEM_BANK0_UNC_ERR] = CNTR_ELEM("PioVlLenMemBank0UncErr", 0, 0,
4754 			CNTR_NORMAL,
4755 			access_pio_v1_len_mem_bank0_unc_err_cnt),
4756 [C_PIO_SM_PKT_RESET_PARITY_ERR] = CNTR_ELEM("PioSmPktResetParityErr", 0, 0,
4757 			CNTR_NORMAL,
4758 			access_pio_sm_pkt_reset_parity_err_cnt),
4759 [C_PIO_PKT_EVICT_FIFO_PARITY_ERR] = CNTR_ELEM("PioPktEvictFifoParityErr", 0, 0,
4760 			CNTR_NORMAL,
4761 			access_pio_pkt_evict_fifo_parity_err_cnt),
4762 [C_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR] = CNTR_ELEM(
4763 			"PioSbrdctrlCrrelFifoParityErr", 0, 0,
4764 			CNTR_NORMAL,
4765 			access_pio_sbrdctrl_crrel_fifo_parity_err_cnt),
4766 [C_PIO_SBRDCTL_CRREL_PARITY_ERR] = CNTR_ELEM("PioSbrdctlCrrelParityErr", 0, 0,
4767 			CNTR_NORMAL,
4768 			access_pio_sbrdctl_crrel_parity_err_cnt),
4769 [C_PIO_PEC_FIFO_PARITY_ERR] = CNTR_ELEM("PioPecFifoParityErr", 0, 0,
4770 			CNTR_NORMAL,
4771 			access_pio_pec_fifo_parity_err_cnt),
4772 [C_PIO_PCC_FIFO_PARITY_ERR] = CNTR_ELEM("PioPccFifoParityErr", 0, 0,
4773 			CNTR_NORMAL,
4774 			access_pio_pcc_fifo_parity_err_cnt),
4775 [C_PIO_SB_MEM_FIFO1_ERR] = CNTR_ELEM("PioSbMemFifo1Err", 0, 0,
4776 			CNTR_NORMAL,
4777 			access_pio_sb_mem_fifo1_err_cnt),
4778 [C_PIO_SB_MEM_FIFO0_ERR] = CNTR_ELEM("PioSbMemFifo0Err", 0, 0,
4779 			CNTR_NORMAL,
4780 			access_pio_sb_mem_fifo0_err_cnt),
4781 [C_PIO_CSR_PARITY_ERR] = CNTR_ELEM("PioCsrParityErr", 0, 0,
4782 			CNTR_NORMAL,
4783 			access_pio_csr_parity_err_cnt),
4784 [C_PIO_WRITE_ADDR_PARITY_ERR] = CNTR_ELEM("PioWriteAddrParityErr", 0, 0,
4785 			CNTR_NORMAL,
4786 			access_pio_write_addr_parity_err_cnt),
4787 [C_PIO_WRITE_BAD_CTXT_ERR] = CNTR_ELEM("PioWriteBadCtxtErr", 0, 0,
4788 			CNTR_NORMAL,
4789 			access_pio_write_bad_ctxt_err_cnt),
4790 /* SendDmaErrStatus */
4791 [C_SDMA_PCIE_REQ_TRACKING_COR_ERR] = CNTR_ELEM("SDmaPcieReqTrackingCorErr", 0,
4792 			0, CNTR_NORMAL,
4793 			access_sdma_pcie_req_tracking_cor_err_cnt),
4794 [C_SDMA_PCIE_REQ_TRACKING_UNC_ERR] = CNTR_ELEM("SDmaPcieReqTrackingUncErr", 0,
4795 			0, CNTR_NORMAL,
4796 			access_sdma_pcie_req_tracking_unc_err_cnt),
4797 [C_SDMA_CSR_PARITY_ERR] = CNTR_ELEM("SDmaCsrParityErr", 0, 0,
4798 			CNTR_NORMAL,
4799 			access_sdma_csr_parity_err_cnt),
4800 [C_SDMA_RPY_TAG_ERR] = CNTR_ELEM("SDmaRpyTagErr", 0, 0,
4801 			CNTR_NORMAL,
4802 			access_sdma_rpy_tag_err_cnt),
4803 /* SendEgressErrStatus */
4804 [C_TX_READ_PIO_MEMORY_CSR_UNC_ERR] = CNTR_ELEM("TxReadPioMemoryCsrUncErr", 0, 0,
4805 			CNTR_NORMAL,
4806 			access_tx_read_pio_memory_csr_unc_err_cnt),
4807 [C_TX_READ_SDMA_MEMORY_CSR_UNC_ERR] = CNTR_ELEM("TxReadSdmaMemoryCsrUncErr", 0,
4808 			0, CNTR_NORMAL,
4809 			access_tx_read_sdma_memory_csr_err_cnt),
4810 [C_TX_EGRESS_FIFO_COR_ERR] = CNTR_ELEM("TxEgressFifoCorErr", 0, 0,
4811 			CNTR_NORMAL,
4812 			access_tx_egress_fifo_cor_err_cnt),
4813 [C_TX_READ_PIO_MEMORY_COR_ERR] = CNTR_ELEM("TxReadPioMemoryCorErr", 0, 0,
4814 			CNTR_NORMAL,
4815 			access_tx_read_pio_memory_cor_err_cnt),
4816 [C_TX_READ_SDMA_MEMORY_COR_ERR] = CNTR_ELEM("TxReadSdmaMemoryCorErr", 0, 0,
4817 			CNTR_NORMAL,
4818 			access_tx_read_sdma_memory_cor_err_cnt),
4819 [C_TX_SB_HDR_COR_ERR] = CNTR_ELEM("TxSbHdrCorErr", 0, 0,
4820 			CNTR_NORMAL,
4821 			access_tx_sb_hdr_cor_err_cnt),
4822 [C_TX_CREDIT_OVERRUN_ERR] = CNTR_ELEM("TxCreditOverrunErr", 0, 0,
4823 			CNTR_NORMAL,
4824 			access_tx_credit_overrun_err_cnt),
4825 [C_TX_LAUNCH_FIFO8_COR_ERR] = CNTR_ELEM("TxLaunchFifo8CorErr", 0, 0,
4826 			CNTR_NORMAL,
4827 			access_tx_launch_fifo8_cor_err_cnt),
4828 [C_TX_LAUNCH_FIFO7_COR_ERR] = CNTR_ELEM("TxLaunchFifo7CorErr", 0, 0,
4829 			CNTR_NORMAL,
4830 			access_tx_launch_fifo7_cor_err_cnt),
4831 [C_TX_LAUNCH_FIFO6_COR_ERR] = CNTR_ELEM("TxLaunchFifo6CorErr", 0, 0,
4832 			CNTR_NORMAL,
4833 			access_tx_launch_fifo6_cor_err_cnt),
4834 [C_TX_LAUNCH_FIFO5_COR_ERR] = CNTR_ELEM("TxLaunchFifo5CorErr", 0, 0,
4835 			CNTR_NORMAL,
4836 			access_tx_launch_fifo5_cor_err_cnt),
4837 [C_TX_LAUNCH_FIFO4_COR_ERR] = CNTR_ELEM("TxLaunchFifo4CorErr", 0, 0,
4838 			CNTR_NORMAL,
4839 			access_tx_launch_fifo4_cor_err_cnt),
4840 [C_TX_LAUNCH_FIFO3_COR_ERR] = CNTR_ELEM("TxLaunchFifo3CorErr", 0, 0,
4841 			CNTR_NORMAL,
4842 			access_tx_launch_fifo3_cor_err_cnt),
4843 [C_TX_LAUNCH_FIFO2_COR_ERR] = CNTR_ELEM("TxLaunchFifo2CorErr", 0, 0,
4844 			CNTR_NORMAL,
4845 			access_tx_launch_fifo2_cor_err_cnt),
4846 [C_TX_LAUNCH_FIFO1_COR_ERR] = CNTR_ELEM("TxLaunchFifo1CorErr", 0, 0,
4847 			CNTR_NORMAL,
4848 			access_tx_launch_fifo1_cor_err_cnt),
4849 [C_TX_LAUNCH_FIFO0_COR_ERR] = CNTR_ELEM("TxLaunchFifo0CorErr", 0, 0,
4850 			CNTR_NORMAL,
4851 			access_tx_launch_fifo0_cor_err_cnt),
4852 [C_TX_CREDIT_RETURN_VL_ERR] = CNTR_ELEM("TxCreditReturnVLErr", 0, 0,
4853 			CNTR_NORMAL,
4854 			access_tx_credit_return_vl_err_cnt),
4855 [C_TX_HCRC_INSERTION_ERR] = CNTR_ELEM("TxHcrcInsertionErr", 0, 0,
4856 			CNTR_NORMAL,
4857 			access_tx_hcrc_insertion_err_cnt),
4858 [C_TX_EGRESS_FIFI_UNC_ERR] = CNTR_ELEM("TxEgressFifoUncErr", 0, 0,
4859 			CNTR_NORMAL,
4860 			access_tx_egress_fifo_unc_err_cnt),
4861 [C_TX_READ_PIO_MEMORY_UNC_ERR] = CNTR_ELEM("TxReadPioMemoryUncErr", 0, 0,
4862 			CNTR_NORMAL,
4863 			access_tx_read_pio_memory_unc_err_cnt),
4864 [C_TX_READ_SDMA_MEMORY_UNC_ERR] = CNTR_ELEM("TxReadSdmaMemoryUncErr", 0, 0,
4865 			CNTR_NORMAL,
4866 			access_tx_read_sdma_memory_unc_err_cnt),
4867 [C_TX_SB_HDR_UNC_ERR] = CNTR_ELEM("TxSbHdrUncErr", 0, 0,
4868 			CNTR_NORMAL,
4869 			access_tx_sb_hdr_unc_err_cnt),
4870 [C_TX_CREDIT_RETURN_PARITY_ERR] = CNTR_ELEM("TxCreditReturnParityErr", 0, 0,
4871 			CNTR_NORMAL,
4872 			access_tx_credit_return_partiy_err_cnt),
4873 [C_TX_LAUNCH_FIFO8_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo8UncOrParityErr",
4874 			0, 0, CNTR_NORMAL,
4875 			access_tx_launch_fifo8_unc_or_parity_err_cnt),
4876 [C_TX_LAUNCH_FIFO7_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo7UncOrParityErr",
4877 			0, 0, CNTR_NORMAL,
4878 			access_tx_launch_fifo7_unc_or_parity_err_cnt),
4879 [C_TX_LAUNCH_FIFO6_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo6UncOrParityErr",
4880 			0, 0, CNTR_NORMAL,
4881 			access_tx_launch_fifo6_unc_or_parity_err_cnt),
4882 [C_TX_LAUNCH_FIFO5_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo5UncOrParityErr",
4883 			0, 0, CNTR_NORMAL,
4884 			access_tx_launch_fifo5_unc_or_parity_err_cnt),
4885 [C_TX_LAUNCH_FIFO4_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo4UncOrParityErr",
4886 			0, 0, CNTR_NORMAL,
4887 			access_tx_launch_fifo4_unc_or_parity_err_cnt),
4888 [C_TX_LAUNCH_FIFO3_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo3UncOrParityErr",
4889 			0, 0, CNTR_NORMAL,
4890 			access_tx_launch_fifo3_unc_or_parity_err_cnt),
4891 [C_TX_LAUNCH_FIFO2_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo2UncOrParityErr",
4892 			0, 0, CNTR_NORMAL,
4893 			access_tx_launch_fifo2_unc_or_parity_err_cnt),
4894 [C_TX_LAUNCH_FIFO1_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo1UncOrParityErr",
4895 			0, 0, CNTR_NORMAL,
4896 			access_tx_launch_fifo1_unc_or_parity_err_cnt),
4897 [C_TX_LAUNCH_FIFO0_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo0UncOrParityErr",
4898 			0, 0, CNTR_NORMAL,
4899 			access_tx_launch_fifo0_unc_or_parity_err_cnt),
4900 [C_TX_SDMA15_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma15DisallowedPacketErr",
4901 			0, 0, CNTR_NORMAL,
4902 			access_tx_sdma15_disallowed_packet_err_cnt),
4903 [C_TX_SDMA14_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma14DisallowedPacketErr",
4904 			0, 0, CNTR_NORMAL,
4905 			access_tx_sdma14_disallowed_packet_err_cnt),
4906 [C_TX_SDMA13_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma13DisallowedPacketErr",
4907 			0, 0, CNTR_NORMAL,
4908 			access_tx_sdma13_disallowed_packet_err_cnt),
4909 [C_TX_SDMA12_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma12DisallowedPacketErr",
4910 			0, 0, CNTR_NORMAL,
4911 			access_tx_sdma12_disallowed_packet_err_cnt),
4912 [C_TX_SDMA11_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma11DisallowedPacketErr",
4913 			0, 0, CNTR_NORMAL,
4914 			access_tx_sdma11_disallowed_packet_err_cnt),
4915 [C_TX_SDMA10_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma10DisallowedPacketErr",
4916 			0, 0, CNTR_NORMAL,
4917 			access_tx_sdma10_disallowed_packet_err_cnt),
4918 [C_TX_SDMA9_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma9DisallowedPacketErr",
4919 			0, 0, CNTR_NORMAL,
4920 			access_tx_sdma9_disallowed_packet_err_cnt),
4921 [C_TX_SDMA8_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma8DisallowedPacketErr",
4922 			0, 0, CNTR_NORMAL,
4923 			access_tx_sdma8_disallowed_packet_err_cnt),
4924 [C_TX_SDMA7_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma7DisallowedPacketErr",
4925 			0, 0, CNTR_NORMAL,
4926 			access_tx_sdma7_disallowed_packet_err_cnt),
4927 [C_TX_SDMA6_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma6DisallowedPacketErr",
4928 			0, 0, CNTR_NORMAL,
4929 			access_tx_sdma6_disallowed_packet_err_cnt),
4930 [C_TX_SDMA5_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma5DisallowedPacketErr",
4931 			0, 0, CNTR_NORMAL,
4932 			access_tx_sdma5_disallowed_packet_err_cnt),
4933 [C_TX_SDMA4_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma4DisallowedPacketErr",
4934 			0, 0, CNTR_NORMAL,
4935 			access_tx_sdma4_disallowed_packet_err_cnt),
4936 [C_TX_SDMA3_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma3DisallowedPacketErr",
4937 			0, 0, CNTR_NORMAL,
4938 			access_tx_sdma3_disallowed_packet_err_cnt),
4939 [C_TX_SDMA2_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma2DisallowedPacketErr",
4940 			0, 0, CNTR_NORMAL,
4941 			access_tx_sdma2_disallowed_packet_err_cnt),
4942 [C_TX_SDMA1_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma1DisallowedPacketErr",
4943 			0, 0, CNTR_NORMAL,
4944 			access_tx_sdma1_disallowed_packet_err_cnt),
4945 [C_TX_SDMA0_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma0DisallowedPacketErr",
4946 			0, 0, CNTR_NORMAL,
4947 			access_tx_sdma0_disallowed_packet_err_cnt),
4948 [C_TX_CONFIG_PARITY_ERR] = CNTR_ELEM("TxConfigParityErr", 0, 0,
4949 			CNTR_NORMAL,
4950 			access_tx_config_parity_err_cnt),
4951 [C_TX_SBRD_CTL_CSR_PARITY_ERR] = CNTR_ELEM("TxSbrdCtlCsrParityErr", 0, 0,
4952 			CNTR_NORMAL,
4953 			access_tx_sbrd_ctl_csr_parity_err_cnt),
4954 [C_TX_LAUNCH_CSR_PARITY_ERR] = CNTR_ELEM("TxLaunchCsrParityErr", 0, 0,
4955 			CNTR_NORMAL,
4956 			access_tx_launch_csr_parity_err_cnt),
4957 [C_TX_ILLEGAL_CL_ERR] = CNTR_ELEM("TxIllegalVLErr", 0, 0,
4958 			CNTR_NORMAL,
4959 			access_tx_illegal_vl_err_cnt),
4960 [C_TX_SBRD_CTL_STATE_MACHINE_PARITY_ERR] = CNTR_ELEM(
4961 			"TxSbrdCtlStateMachineParityErr", 0, 0,
4962 			CNTR_NORMAL,
4963 			access_tx_sbrd_ctl_state_machine_parity_err_cnt),
4964 [C_TX_RESERVED_10] = CNTR_ELEM("Tx Egress Reserved 10", 0, 0,
4965 			CNTR_NORMAL,
4966 			access_egress_reserved_10_err_cnt),
4967 [C_TX_RESERVED_9] = CNTR_ELEM("Tx Egress Reserved 9", 0, 0,
4968 			CNTR_NORMAL,
4969 			access_egress_reserved_9_err_cnt),
4970 [C_TX_SDMA_LAUNCH_INTF_PARITY_ERR] = CNTR_ELEM("TxSdmaLaunchIntfParityErr",
4971 			0, 0, CNTR_NORMAL,
4972 			access_tx_sdma_launch_intf_parity_err_cnt),
4973 [C_TX_PIO_LAUNCH_INTF_PARITY_ERR] = CNTR_ELEM("TxPioLaunchIntfParityErr", 0, 0,
4974 			CNTR_NORMAL,
4975 			access_tx_pio_launch_intf_parity_err_cnt),
4976 [C_TX_RESERVED_6] = CNTR_ELEM("Tx Egress Reserved 6", 0, 0,
4977 			CNTR_NORMAL,
4978 			access_egress_reserved_6_err_cnt),
4979 [C_TX_INCORRECT_LINK_STATE_ERR] = CNTR_ELEM("TxIncorrectLinkStateErr", 0, 0,
4980 			CNTR_NORMAL,
4981 			access_tx_incorrect_link_state_err_cnt),
4982 [C_TX_LINK_DOWN_ERR] = CNTR_ELEM("TxLinkdownErr", 0, 0,
4983 			CNTR_NORMAL,
4984 			access_tx_linkdown_err_cnt),
4985 [C_TX_EGRESS_FIFO_UNDERRUN_OR_PARITY_ERR] = CNTR_ELEM(
4986 			"EgressFifoUnderrunOrParityErr", 0, 0,
4987 			CNTR_NORMAL,
4988 			access_tx_egress_fifi_underrun_or_parity_err_cnt),
4989 [C_TX_RESERVED_2] = CNTR_ELEM("Tx Egress Reserved 2", 0, 0,
4990 			CNTR_NORMAL,
4991 			access_egress_reserved_2_err_cnt),
4992 [C_TX_PKT_INTEGRITY_MEM_UNC_ERR] = CNTR_ELEM("TxPktIntegrityMemUncErr", 0, 0,
4993 			CNTR_NORMAL,
4994 			access_tx_pkt_integrity_mem_unc_err_cnt),
4995 [C_TX_PKT_INTEGRITY_MEM_COR_ERR] = CNTR_ELEM("TxPktIntegrityMemCorErr", 0, 0,
4996 			CNTR_NORMAL,
4997 			access_tx_pkt_integrity_mem_cor_err_cnt),
4998 /* SendErrStatus */
4999 [C_SEND_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("SendCsrWriteBadAddrErr", 0, 0,
5000 			CNTR_NORMAL,
5001 			access_send_csr_write_bad_addr_err_cnt),
5002 [C_SEND_CSR_READ_BAD_ADD_ERR] = CNTR_ELEM("SendCsrReadBadAddrErr", 0, 0,
5003 			CNTR_NORMAL,
5004 			access_send_csr_read_bad_addr_err_cnt),
5005 [C_SEND_CSR_PARITY_ERR] = CNTR_ELEM("SendCsrParityErr", 0, 0,
5006 			CNTR_NORMAL,
5007 			access_send_csr_parity_cnt),
5008 /* SendCtxtErrStatus */
5009 [C_PIO_WRITE_OUT_OF_BOUNDS_ERR] = CNTR_ELEM("PioWriteOutOfBoundsErr", 0, 0,
5010 			CNTR_NORMAL,
5011 			access_pio_write_out_of_bounds_err_cnt),
5012 [C_PIO_WRITE_OVERFLOW_ERR] = CNTR_ELEM("PioWriteOverflowErr", 0, 0,
5013 			CNTR_NORMAL,
5014 			access_pio_write_overflow_err_cnt),
5015 [C_PIO_WRITE_CROSSES_BOUNDARY_ERR] = CNTR_ELEM("PioWriteCrossesBoundaryErr",
5016 			0, 0, CNTR_NORMAL,
5017 			access_pio_write_crosses_boundary_err_cnt),
5018 [C_PIO_DISALLOWED_PACKET_ERR] = CNTR_ELEM("PioDisallowedPacketErr", 0, 0,
5019 			CNTR_NORMAL,
5020 			access_pio_disallowed_packet_err_cnt),
5021 [C_PIO_INCONSISTENT_SOP_ERR] = CNTR_ELEM("PioInconsistentSopErr", 0, 0,
5022 			CNTR_NORMAL,
5023 			access_pio_inconsistent_sop_err_cnt),
5024 /* SendDmaEngErrStatus */
5025 [C_SDMA_HEADER_REQUEST_FIFO_COR_ERR] = CNTR_ELEM("SDmaHeaderRequestFifoCorErr",
5026 			0, 0, CNTR_NORMAL,
5027 			access_sdma_header_request_fifo_cor_err_cnt),
5028 [C_SDMA_HEADER_STORAGE_COR_ERR] = CNTR_ELEM("SDmaHeaderStorageCorErr", 0, 0,
5029 			CNTR_NORMAL,
5030 			access_sdma_header_storage_cor_err_cnt),
5031 [C_SDMA_PACKET_TRACKING_COR_ERR] = CNTR_ELEM("SDmaPacketTrackingCorErr", 0, 0,
5032 			CNTR_NORMAL,
5033 			access_sdma_packet_tracking_cor_err_cnt),
5034 [C_SDMA_ASSEMBLY_COR_ERR] = CNTR_ELEM("SDmaAssemblyCorErr", 0, 0,
5035 			CNTR_NORMAL,
5036 			access_sdma_assembly_cor_err_cnt),
5037 [C_SDMA_DESC_TABLE_COR_ERR] = CNTR_ELEM("SDmaDescTableCorErr", 0, 0,
5038 			CNTR_NORMAL,
5039 			access_sdma_desc_table_cor_err_cnt),
5040 [C_SDMA_HEADER_REQUEST_FIFO_UNC_ERR] = CNTR_ELEM("SDmaHeaderRequestFifoUncErr",
5041 			0, 0, CNTR_NORMAL,
5042 			access_sdma_header_request_fifo_unc_err_cnt),
5043 [C_SDMA_HEADER_STORAGE_UNC_ERR] = CNTR_ELEM("SDmaHeaderStorageUncErr", 0, 0,
5044 			CNTR_NORMAL,
5045 			access_sdma_header_storage_unc_err_cnt),
5046 [C_SDMA_PACKET_TRACKING_UNC_ERR] = CNTR_ELEM("SDmaPacketTrackingUncErr", 0, 0,
5047 			CNTR_NORMAL,
5048 			access_sdma_packet_tracking_unc_err_cnt),
5049 [C_SDMA_ASSEMBLY_UNC_ERR] = CNTR_ELEM("SDmaAssemblyUncErr", 0, 0,
5050 			CNTR_NORMAL,
5051 			access_sdma_assembly_unc_err_cnt),
5052 [C_SDMA_DESC_TABLE_UNC_ERR] = CNTR_ELEM("SDmaDescTableUncErr", 0, 0,
5053 			CNTR_NORMAL,
5054 			access_sdma_desc_table_unc_err_cnt),
5055 [C_SDMA_TIMEOUT_ERR] = CNTR_ELEM("SDmaTimeoutErr", 0, 0,
5056 			CNTR_NORMAL,
5057 			access_sdma_timeout_err_cnt),
5058 [C_SDMA_HEADER_LENGTH_ERR] = CNTR_ELEM("SDmaHeaderLengthErr", 0, 0,
5059 			CNTR_NORMAL,
5060 			access_sdma_header_length_err_cnt),
5061 [C_SDMA_HEADER_ADDRESS_ERR] = CNTR_ELEM("SDmaHeaderAddressErr", 0, 0,
5062 			CNTR_NORMAL,
5063 			access_sdma_header_address_err_cnt),
5064 [C_SDMA_HEADER_SELECT_ERR] = CNTR_ELEM("SDmaHeaderSelectErr", 0, 0,
5065 			CNTR_NORMAL,
5066 			access_sdma_header_select_err_cnt),
5067 [C_SMDA_RESERVED_9] = CNTR_ELEM("SDma Reserved 9", 0, 0,
5068 			CNTR_NORMAL,
5069 			access_sdma_reserved_9_err_cnt),
5070 [C_SDMA_PACKET_DESC_OVERFLOW_ERR] = CNTR_ELEM("SDmaPacketDescOverflowErr", 0, 0,
5071 			CNTR_NORMAL,
5072 			access_sdma_packet_desc_overflow_err_cnt),
5073 [C_SDMA_LENGTH_MISMATCH_ERR] = CNTR_ELEM("SDmaLengthMismatchErr", 0, 0,
5074 			CNTR_NORMAL,
5075 			access_sdma_length_mismatch_err_cnt),
5076 [C_SDMA_HALT_ERR] = CNTR_ELEM("SDmaHaltErr", 0, 0,
5077 			CNTR_NORMAL,
5078 			access_sdma_halt_err_cnt),
5079 [C_SDMA_MEM_READ_ERR] = CNTR_ELEM("SDmaMemReadErr", 0, 0,
5080 			CNTR_NORMAL,
5081 			access_sdma_mem_read_err_cnt),
5082 [C_SDMA_FIRST_DESC_ERR] = CNTR_ELEM("SDmaFirstDescErr", 0, 0,
5083 			CNTR_NORMAL,
5084 			access_sdma_first_desc_err_cnt),
5085 [C_SDMA_TAIL_OUT_OF_BOUNDS_ERR] = CNTR_ELEM("SDmaTailOutOfBoundsErr", 0, 0,
5086 			CNTR_NORMAL,
5087 			access_sdma_tail_out_of_bounds_err_cnt),
5088 [C_SDMA_TOO_LONG_ERR] = CNTR_ELEM("SDmaTooLongErr", 0, 0,
5089 			CNTR_NORMAL,
5090 			access_sdma_too_long_err_cnt),
5091 [C_SDMA_GEN_MISMATCH_ERR] = CNTR_ELEM("SDmaGenMismatchErr", 0, 0,
5092 			CNTR_NORMAL,
5093 			access_sdma_gen_mismatch_err_cnt),
5094 [C_SDMA_WRONG_DW_ERR] = CNTR_ELEM("SDmaWrongDwErr", 0, 0,
5095 			CNTR_NORMAL,
5096 			access_sdma_wrong_dw_err_cnt),
5097 };
5098 
5099 static struct cntr_entry port_cntrs[PORT_CNTR_LAST] = {
5100 [C_TX_UNSUP_VL] = TXE32_PORT_CNTR_ELEM(TxUnVLErr, SEND_UNSUP_VL_ERR_CNT,
5101 			CNTR_NORMAL),
5102 [C_TX_INVAL_LEN] = TXE32_PORT_CNTR_ELEM(TxInvalLen, SEND_LEN_ERR_CNT,
5103 			CNTR_NORMAL),
5104 [C_TX_MM_LEN_ERR] = TXE32_PORT_CNTR_ELEM(TxMMLenErr, SEND_MAX_MIN_LEN_ERR_CNT,
5105 			CNTR_NORMAL),
5106 [C_TX_UNDERRUN] = TXE32_PORT_CNTR_ELEM(TxUnderrun, SEND_UNDERRUN_CNT,
5107 			CNTR_NORMAL),
5108 [C_TX_FLOW_STALL] = TXE32_PORT_CNTR_ELEM(TxFlowStall, SEND_FLOW_STALL_CNT,
5109 			CNTR_NORMAL),
5110 [C_TX_DROPPED] = TXE32_PORT_CNTR_ELEM(TxDropped, SEND_DROPPED_PKT_CNT,
5111 			CNTR_NORMAL),
5112 [C_TX_HDR_ERR] = TXE32_PORT_CNTR_ELEM(TxHdrErr, SEND_HEADERS_ERR_CNT,
5113 			CNTR_NORMAL),
5114 [C_TX_PKT] = TXE64_PORT_CNTR_ELEM(TxPkt, SEND_DATA_PKT_CNT, CNTR_NORMAL),
5115 [C_TX_WORDS] = TXE64_PORT_CNTR_ELEM(TxWords, SEND_DWORD_CNT, CNTR_NORMAL),
5116 [C_TX_WAIT] = TXE64_PORT_CNTR_ELEM(TxWait, SEND_WAIT_CNT, CNTR_SYNTH),
5117 [C_TX_FLIT_VL] = TXE64_PORT_CNTR_ELEM(TxFlitVL, SEND_DATA_VL0_CNT,
5118 				      CNTR_SYNTH | CNTR_VL),
5119 [C_TX_PKT_VL] = TXE64_PORT_CNTR_ELEM(TxPktVL, SEND_DATA_PKT_VL0_CNT,
5120 				     CNTR_SYNTH | CNTR_VL),
5121 [C_TX_WAIT_VL] = TXE64_PORT_CNTR_ELEM(TxWaitVL, SEND_WAIT_VL0_CNT,
5122 				      CNTR_SYNTH | CNTR_VL),
5123 [C_RX_PKT] = RXE64_PORT_CNTR_ELEM(RxPkt, RCV_DATA_PKT_CNT, CNTR_NORMAL),
5124 [C_RX_WORDS] = RXE64_PORT_CNTR_ELEM(RxWords, RCV_DWORD_CNT, CNTR_NORMAL),
5125 [C_SW_LINK_DOWN] = CNTR_ELEM("SwLinkDown", 0, 0, CNTR_SYNTH | CNTR_32BIT,
5126 			     access_sw_link_dn_cnt),
5127 [C_SW_LINK_UP] = CNTR_ELEM("SwLinkUp", 0, 0, CNTR_SYNTH | CNTR_32BIT,
5128 			   access_sw_link_up_cnt),
5129 [C_SW_UNKNOWN_FRAME] = CNTR_ELEM("UnknownFrame", 0, 0, CNTR_NORMAL,
5130 				 access_sw_unknown_frame_cnt),
5131 [C_SW_XMIT_DSCD] = CNTR_ELEM("XmitDscd", 0, 0, CNTR_SYNTH | CNTR_32BIT,
5132 			     access_sw_xmit_discards),
5133 [C_SW_XMIT_DSCD_VL] = CNTR_ELEM("XmitDscdVl", 0, 0,
5134 				CNTR_SYNTH | CNTR_32BIT | CNTR_VL,
5135 				access_sw_xmit_discards),
5136 [C_SW_XMIT_CSTR_ERR] = CNTR_ELEM("XmitCstrErr", 0, 0, CNTR_SYNTH,
5137 				 access_xmit_constraint_errs),
5138 [C_SW_RCV_CSTR_ERR] = CNTR_ELEM("RcvCstrErr", 0, 0, CNTR_SYNTH,
5139 				access_rcv_constraint_errs),
5140 [C_SW_IBP_LOOP_PKTS] = SW_IBP_CNTR(LoopPkts, loop_pkts),
5141 [C_SW_IBP_RC_RESENDS] = SW_IBP_CNTR(RcResend, rc_resends),
5142 [C_SW_IBP_RNR_NAKS] = SW_IBP_CNTR(RnrNak, rnr_naks),
5143 [C_SW_IBP_OTHER_NAKS] = SW_IBP_CNTR(OtherNak, other_naks),
5144 [C_SW_IBP_RC_TIMEOUTS] = SW_IBP_CNTR(RcTimeOut, rc_timeouts),
5145 [C_SW_IBP_PKT_DROPS] = SW_IBP_CNTR(PktDrop, pkt_drops),
5146 [C_SW_IBP_DMA_WAIT] = SW_IBP_CNTR(DmaWait, dmawait),
5147 [C_SW_IBP_RC_SEQNAK] = SW_IBP_CNTR(RcSeqNak, rc_seqnak),
5148 [C_SW_IBP_RC_DUPREQ] = SW_IBP_CNTR(RcDupRew, rc_dupreq),
5149 [C_SW_IBP_RDMA_SEQ] = SW_IBP_CNTR(RdmaSeq, rdma_seq),
5150 [C_SW_IBP_UNALIGNED] = SW_IBP_CNTR(Unaligned, unaligned),
5151 [C_SW_IBP_SEQ_NAK] = SW_IBP_CNTR(SeqNak, seq_naks),
5152 [C_SW_IBP_RC_CRWAITS] = SW_IBP_CNTR(RcCrWait, rc_crwaits),
5153 [C_SW_CPU_RC_ACKS] = CNTR_ELEM("RcAcks", 0, 0, CNTR_NORMAL,
5154 			       access_sw_cpu_rc_acks),
5155 [C_SW_CPU_RC_QACKS] = CNTR_ELEM("RcQacks", 0, 0, CNTR_NORMAL,
5156 				access_sw_cpu_rc_qacks),
5157 [C_SW_CPU_RC_DELAYED_COMP] = CNTR_ELEM("RcDelayComp", 0, 0, CNTR_NORMAL,
5158 				       access_sw_cpu_rc_delayed_comp),
5159 [OVR_LBL(0)] = OVR_ELM(0), [OVR_LBL(1)] = OVR_ELM(1),
5160 [OVR_LBL(2)] = OVR_ELM(2), [OVR_LBL(3)] = OVR_ELM(3),
5161 [OVR_LBL(4)] = OVR_ELM(4), [OVR_LBL(5)] = OVR_ELM(5),
5162 [OVR_LBL(6)] = OVR_ELM(6), [OVR_LBL(7)] = OVR_ELM(7),
5163 [OVR_LBL(8)] = OVR_ELM(8), [OVR_LBL(9)] = OVR_ELM(9),
5164 [OVR_LBL(10)] = OVR_ELM(10), [OVR_LBL(11)] = OVR_ELM(11),
5165 [OVR_LBL(12)] = OVR_ELM(12), [OVR_LBL(13)] = OVR_ELM(13),
5166 [OVR_LBL(14)] = OVR_ELM(14), [OVR_LBL(15)] = OVR_ELM(15),
5167 [OVR_LBL(16)] = OVR_ELM(16), [OVR_LBL(17)] = OVR_ELM(17),
5168 [OVR_LBL(18)] = OVR_ELM(18), [OVR_LBL(19)] = OVR_ELM(19),
5169 [OVR_LBL(20)] = OVR_ELM(20), [OVR_LBL(21)] = OVR_ELM(21),
5170 [OVR_LBL(22)] = OVR_ELM(22), [OVR_LBL(23)] = OVR_ELM(23),
5171 [OVR_LBL(24)] = OVR_ELM(24), [OVR_LBL(25)] = OVR_ELM(25),
5172 [OVR_LBL(26)] = OVR_ELM(26), [OVR_LBL(27)] = OVR_ELM(27),
5173 [OVR_LBL(28)] = OVR_ELM(28), [OVR_LBL(29)] = OVR_ELM(29),
5174 [OVR_LBL(30)] = OVR_ELM(30), [OVR_LBL(31)] = OVR_ELM(31),
5175 [OVR_LBL(32)] = OVR_ELM(32), [OVR_LBL(33)] = OVR_ELM(33),
5176 [OVR_LBL(34)] = OVR_ELM(34), [OVR_LBL(35)] = OVR_ELM(35),
5177 [OVR_LBL(36)] = OVR_ELM(36), [OVR_LBL(37)] = OVR_ELM(37),
5178 [OVR_LBL(38)] = OVR_ELM(38), [OVR_LBL(39)] = OVR_ELM(39),
5179 [OVR_LBL(40)] = OVR_ELM(40), [OVR_LBL(41)] = OVR_ELM(41),
5180 [OVR_LBL(42)] = OVR_ELM(42), [OVR_LBL(43)] = OVR_ELM(43),
5181 [OVR_LBL(44)] = OVR_ELM(44), [OVR_LBL(45)] = OVR_ELM(45),
5182 [OVR_LBL(46)] = OVR_ELM(46), [OVR_LBL(47)] = OVR_ELM(47),
5183 [OVR_LBL(48)] = OVR_ELM(48), [OVR_LBL(49)] = OVR_ELM(49),
5184 [OVR_LBL(50)] = OVR_ELM(50), [OVR_LBL(51)] = OVR_ELM(51),
5185 [OVR_LBL(52)] = OVR_ELM(52), [OVR_LBL(53)] = OVR_ELM(53),
5186 [OVR_LBL(54)] = OVR_ELM(54), [OVR_LBL(55)] = OVR_ELM(55),
5187 [OVR_LBL(56)] = OVR_ELM(56), [OVR_LBL(57)] = OVR_ELM(57),
5188 [OVR_LBL(58)] = OVR_ELM(58), [OVR_LBL(59)] = OVR_ELM(59),
5189 [OVR_LBL(60)] = OVR_ELM(60), [OVR_LBL(61)] = OVR_ELM(61),
5190 [OVR_LBL(62)] = OVR_ELM(62), [OVR_LBL(63)] = OVR_ELM(63),
5191 [OVR_LBL(64)] = OVR_ELM(64), [OVR_LBL(65)] = OVR_ELM(65),
5192 [OVR_LBL(66)] = OVR_ELM(66), [OVR_LBL(67)] = OVR_ELM(67),
5193 [OVR_LBL(68)] = OVR_ELM(68), [OVR_LBL(69)] = OVR_ELM(69),
5194 [OVR_LBL(70)] = OVR_ELM(70), [OVR_LBL(71)] = OVR_ELM(71),
5195 [OVR_LBL(72)] = OVR_ELM(72), [OVR_LBL(73)] = OVR_ELM(73),
5196 [OVR_LBL(74)] = OVR_ELM(74), [OVR_LBL(75)] = OVR_ELM(75),
5197 [OVR_LBL(76)] = OVR_ELM(76), [OVR_LBL(77)] = OVR_ELM(77),
5198 [OVR_LBL(78)] = OVR_ELM(78), [OVR_LBL(79)] = OVR_ELM(79),
5199 [OVR_LBL(80)] = OVR_ELM(80), [OVR_LBL(81)] = OVR_ELM(81),
5200 [OVR_LBL(82)] = OVR_ELM(82), [OVR_LBL(83)] = OVR_ELM(83),
5201 [OVR_LBL(84)] = OVR_ELM(84), [OVR_LBL(85)] = OVR_ELM(85),
5202 [OVR_LBL(86)] = OVR_ELM(86), [OVR_LBL(87)] = OVR_ELM(87),
5203 [OVR_LBL(88)] = OVR_ELM(88), [OVR_LBL(89)] = OVR_ELM(89),
5204 [OVR_LBL(90)] = OVR_ELM(90), [OVR_LBL(91)] = OVR_ELM(91),
5205 [OVR_LBL(92)] = OVR_ELM(92), [OVR_LBL(93)] = OVR_ELM(93),
5206 [OVR_LBL(94)] = OVR_ELM(94), [OVR_LBL(95)] = OVR_ELM(95),
5207 [OVR_LBL(96)] = OVR_ELM(96), [OVR_LBL(97)] = OVR_ELM(97),
5208 [OVR_LBL(98)] = OVR_ELM(98), [OVR_LBL(99)] = OVR_ELM(99),
5209 [OVR_LBL(100)] = OVR_ELM(100), [OVR_LBL(101)] = OVR_ELM(101),
5210 [OVR_LBL(102)] = OVR_ELM(102), [OVR_LBL(103)] = OVR_ELM(103),
5211 [OVR_LBL(104)] = OVR_ELM(104), [OVR_LBL(105)] = OVR_ELM(105),
5212 [OVR_LBL(106)] = OVR_ELM(106), [OVR_LBL(107)] = OVR_ELM(107),
5213 [OVR_LBL(108)] = OVR_ELM(108), [OVR_LBL(109)] = OVR_ELM(109),
5214 [OVR_LBL(110)] = OVR_ELM(110), [OVR_LBL(111)] = OVR_ELM(111),
5215 [OVR_LBL(112)] = OVR_ELM(112), [OVR_LBL(113)] = OVR_ELM(113),
5216 [OVR_LBL(114)] = OVR_ELM(114), [OVR_LBL(115)] = OVR_ELM(115),
5217 [OVR_LBL(116)] = OVR_ELM(116), [OVR_LBL(117)] = OVR_ELM(117),
5218 [OVR_LBL(118)] = OVR_ELM(118), [OVR_LBL(119)] = OVR_ELM(119),
5219 [OVR_LBL(120)] = OVR_ELM(120), [OVR_LBL(121)] = OVR_ELM(121),
5220 [OVR_LBL(122)] = OVR_ELM(122), [OVR_LBL(123)] = OVR_ELM(123),
5221 [OVR_LBL(124)] = OVR_ELM(124), [OVR_LBL(125)] = OVR_ELM(125),
5222 [OVR_LBL(126)] = OVR_ELM(126), [OVR_LBL(127)] = OVR_ELM(127),
5223 [OVR_LBL(128)] = OVR_ELM(128), [OVR_LBL(129)] = OVR_ELM(129),
5224 [OVR_LBL(130)] = OVR_ELM(130), [OVR_LBL(131)] = OVR_ELM(131),
5225 [OVR_LBL(132)] = OVR_ELM(132), [OVR_LBL(133)] = OVR_ELM(133),
5226 [OVR_LBL(134)] = OVR_ELM(134), [OVR_LBL(135)] = OVR_ELM(135),
5227 [OVR_LBL(136)] = OVR_ELM(136), [OVR_LBL(137)] = OVR_ELM(137),
5228 [OVR_LBL(138)] = OVR_ELM(138), [OVR_LBL(139)] = OVR_ELM(139),
5229 [OVR_LBL(140)] = OVR_ELM(140), [OVR_LBL(141)] = OVR_ELM(141),
5230 [OVR_LBL(142)] = OVR_ELM(142), [OVR_LBL(143)] = OVR_ELM(143),
5231 [OVR_LBL(144)] = OVR_ELM(144), [OVR_LBL(145)] = OVR_ELM(145),
5232 [OVR_LBL(146)] = OVR_ELM(146), [OVR_LBL(147)] = OVR_ELM(147),
5233 [OVR_LBL(148)] = OVR_ELM(148), [OVR_LBL(149)] = OVR_ELM(149),
5234 [OVR_LBL(150)] = OVR_ELM(150), [OVR_LBL(151)] = OVR_ELM(151),
5235 [OVR_LBL(152)] = OVR_ELM(152), [OVR_LBL(153)] = OVR_ELM(153),
5236 [OVR_LBL(154)] = OVR_ELM(154), [OVR_LBL(155)] = OVR_ELM(155),
5237 [OVR_LBL(156)] = OVR_ELM(156), [OVR_LBL(157)] = OVR_ELM(157),
5238 [OVR_LBL(158)] = OVR_ELM(158), [OVR_LBL(159)] = OVR_ELM(159),
5239 };
5240 
5241 /* ======================================================================== */
5242 
5243 /* return true if this is chip revision revision a */
5244 int is_ax(struct hfi1_devdata *dd)
5245 {
5246 	u8 chip_rev_minor =
5247 		dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT
5248 			& CCE_REVISION_CHIP_REV_MINOR_MASK;
5249 	return (chip_rev_minor & 0xf0) == 0;
5250 }
5251 
5252 /* return true if this is chip revision revision b */
5253 int is_bx(struct hfi1_devdata *dd)
5254 {
5255 	u8 chip_rev_minor =
5256 		dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT
5257 			& CCE_REVISION_CHIP_REV_MINOR_MASK;
5258 	return (chip_rev_minor & 0xF0) == 0x10;
5259 }
5260 
5261 /* return true is kernel urg disabled for rcd */
5262 bool is_urg_masked(struct hfi1_ctxtdata *rcd)
5263 {
5264 	u64 mask;
5265 	u32 is = IS_RCVURGENT_START + rcd->ctxt;
5266 	u8 bit = is % 64;
5267 
5268 	mask = read_csr(rcd->dd, CCE_INT_MASK + (8 * (is / 64)));
5269 	return !(mask & BIT_ULL(bit));
5270 }
5271 
5272 /*
5273  * Append string s to buffer buf.  Arguments curp and len are the current
5274  * position and remaining length, respectively.
5275  *
5276  * return 0 on success, 1 on out of room
5277  */
5278 static int append_str(char *buf, char **curp, int *lenp, const char *s)
5279 {
5280 	char *p = *curp;
5281 	int len = *lenp;
5282 	int result = 0; /* success */
5283 	char c;
5284 
5285 	/* add a comma, if first in the buffer */
5286 	if (p != buf) {
5287 		if (len == 0) {
5288 			result = 1; /* out of room */
5289 			goto done;
5290 		}
5291 		*p++ = ',';
5292 		len--;
5293 	}
5294 
5295 	/* copy the string */
5296 	while ((c = *s++) != 0) {
5297 		if (len == 0) {
5298 			result = 1; /* out of room */
5299 			goto done;
5300 		}
5301 		*p++ = c;
5302 		len--;
5303 	}
5304 
5305 done:
5306 	/* write return values */
5307 	*curp = p;
5308 	*lenp = len;
5309 
5310 	return result;
5311 }
5312 
5313 /*
5314  * Using the given flag table, print a comma separated string into
5315  * the buffer.  End in '*' if the buffer is too short.
5316  */
5317 static char *flag_string(char *buf, int buf_len, u64 flags,
5318 			 struct flag_table *table, int table_size)
5319 {
5320 	char extra[32];
5321 	char *p = buf;
5322 	int len = buf_len;
5323 	int no_room = 0;
5324 	int i;
5325 
5326 	/* make sure there is at least 2 so we can form "*" */
5327 	if (len < 2)
5328 		return "";
5329 
5330 	len--;	/* leave room for a nul */
5331 	for (i = 0; i < table_size; i++) {
5332 		if (flags & table[i].flag) {
5333 			no_room = append_str(buf, &p, &len, table[i].str);
5334 			if (no_room)
5335 				break;
5336 			flags &= ~table[i].flag;
5337 		}
5338 	}
5339 
5340 	/* any undocumented bits left? */
5341 	if (!no_room && flags) {
5342 		snprintf(extra, sizeof(extra), "bits 0x%llx", flags);
5343 		no_room = append_str(buf, &p, &len, extra);
5344 	}
5345 
5346 	/* add * if ran out of room */
5347 	if (no_room) {
5348 		/* may need to back up to add space for a '*' */
5349 		if (len == 0)
5350 			--p;
5351 		*p++ = '*';
5352 	}
5353 
5354 	/* add final nul - space already allocated above */
5355 	*p = 0;
5356 	return buf;
5357 }
5358 
5359 /* first 8 CCE error interrupt source names */
5360 static const char * const cce_misc_names[] = {
5361 	"CceErrInt",		/* 0 */
5362 	"RxeErrInt",		/* 1 */
5363 	"MiscErrInt",		/* 2 */
5364 	"Reserved3",		/* 3 */
5365 	"PioErrInt",		/* 4 */
5366 	"SDmaErrInt",		/* 5 */
5367 	"EgressErrInt",		/* 6 */
5368 	"TxeErrInt"		/* 7 */
5369 };
5370 
5371 /*
5372  * Return the miscellaneous error interrupt name.
5373  */
5374 static char *is_misc_err_name(char *buf, size_t bsize, unsigned int source)
5375 {
5376 	if (source < ARRAY_SIZE(cce_misc_names))
5377 		strncpy(buf, cce_misc_names[source], bsize);
5378 	else
5379 		snprintf(buf, bsize, "Reserved%u",
5380 			 source + IS_GENERAL_ERR_START);
5381 
5382 	return buf;
5383 }
5384 
5385 /*
5386  * Return the SDMA engine error interrupt name.
5387  */
5388 static char *is_sdma_eng_err_name(char *buf, size_t bsize, unsigned int source)
5389 {
5390 	snprintf(buf, bsize, "SDmaEngErrInt%u", source);
5391 	return buf;
5392 }
5393 
5394 /*
5395  * Return the send context error interrupt name.
5396  */
5397 static char *is_sendctxt_err_name(char *buf, size_t bsize, unsigned int source)
5398 {
5399 	snprintf(buf, bsize, "SendCtxtErrInt%u", source);
5400 	return buf;
5401 }
5402 
5403 static const char * const various_names[] = {
5404 	"PbcInt",
5405 	"GpioAssertInt",
5406 	"Qsfp1Int",
5407 	"Qsfp2Int",
5408 	"TCritInt"
5409 };
5410 
5411 /*
5412  * Return the various interrupt name.
5413  */
5414 static char *is_various_name(char *buf, size_t bsize, unsigned int source)
5415 {
5416 	if (source < ARRAY_SIZE(various_names))
5417 		strncpy(buf, various_names[source], bsize);
5418 	else
5419 		snprintf(buf, bsize, "Reserved%u", source + IS_VARIOUS_START);
5420 	return buf;
5421 }
5422 
5423 /*
5424  * Return the DC interrupt name.
5425  */
5426 static char *is_dc_name(char *buf, size_t bsize, unsigned int source)
5427 {
5428 	static const char * const dc_int_names[] = {
5429 		"common",
5430 		"lcb",
5431 		"8051",
5432 		"lbm"	/* local block merge */
5433 	};
5434 
5435 	if (source < ARRAY_SIZE(dc_int_names))
5436 		snprintf(buf, bsize, "dc_%s_int", dc_int_names[source]);
5437 	else
5438 		snprintf(buf, bsize, "DCInt%u", source);
5439 	return buf;
5440 }
5441 
5442 static const char * const sdma_int_names[] = {
5443 	"SDmaInt",
5444 	"SdmaIdleInt",
5445 	"SdmaProgressInt",
5446 };
5447 
5448 /*
5449  * Return the SDMA engine interrupt name.
5450  */
5451 static char *is_sdma_eng_name(char *buf, size_t bsize, unsigned int source)
5452 {
5453 	/* what interrupt */
5454 	unsigned int what  = source / TXE_NUM_SDMA_ENGINES;
5455 	/* which engine */
5456 	unsigned int which = source % TXE_NUM_SDMA_ENGINES;
5457 
5458 	if (likely(what < 3))
5459 		snprintf(buf, bsize, "%s%u", sdma_int_names[what], which);
5460 	else
5461 		snprintf(buf, bsize, "Invalid SDMA interrupt %u", source);
5462 	return buf;
5463 }
5464 
5465 /*
5466  * Return the receive available interrupt name.
5467  */
5468 static char *is_rcv_avail_name(char *buf, size_t bsize, unsigned int source)
5469 {
5470 	snprintf(buf, bsize, "RcvAvailInt%u", source);
5471 	return buf;
5472 }
5473 
5474 /*
5475  * Return the receive urgent interrupt name.
5476  */
5477 static char *is_rcv_urgent_name(char *buf, size_t bsize, unsigned int source)
5478 {
5479 	snprintf(buf, bsize, "RcvUrgentInt%u", source);
5480 	return buf;
5481 }
5482 
5483 /*
5484  * Return the send credit interrupt name.
5485  */
5486 static char *is_send_credit_name(char *buf, size_t bsize, unsigned int source)
5487 {
5488 	snprintf(buf, bsize, "SendCreditInt%u", source);
5489 	return buf;
5490 }
5491 
5492 /*
5493  * Return the reserved interrupt name.
5494  */
5495 static char *is_reserved_name(char *buf, size_t bsize, unsigned int source)
5496 {
5497 	snprintf(buf, bsize, "Reserved%u", source + IS_RESERVED_START);
5498 	return buf;
5499 }
5500 
5501 static char *cce_err_status_string(char *buf, int buf_len, u64 flags)
5502 {
5503 	return flag_string(buf, buf_len, flags,
5504 			   cce_err_status_flags,
5505 			   ARRAY_SIZE(cce_err_status_flags));
5506 }
5507 
5508 static char *rxe_err_status_string(char *buf, int buf_len, u64 flags)
5509 {
5510 	return flag_string(buf, buf_len, flags,
5511 			   rxe_err_status_flags,
5512 			   ARRAY_SIZE(rxe_err_status_flags));
5513 }
5514 
5515 static char *misc_err_status_string(char *buf, int buf_len, u64 flags)
5516 {
5517 	return flag_string(buf, buf_len, flags, misc_err_status_flags,
5518 			   ARRAY_SIZE(misc_err_status_flags));
5519 }
5520 
5521 static char *pio_err_status_string(char *buf, int buf_len, u64 flags)
5522 {
5523 	return flag_string(buf, buf_len, flags,
5524 			   pio_err_status_flags,
5525 			   ARRAY_SIZE(pio_err_status_flags));
5526 }
5527 
5528 static char *sdma_err_status_string(char *buf, int buf_len, u64 flags)
5529 {
5530 	return flag_string(buf, buf_len, flags,
5531 			   sdma_err_status_flags,
5532 			   ARRAY_SIZE(sdma_err_status_flags));
5533 }
5534 
5535 static char *egress_err_status_string(char *buf, int buf_len, u64 flags)
5536 {
5537 	return flag_string(buf, buf_len, flags,
5538 			   egress_err_status_flags,
5539 			   ARRAY_SIZE(egress_err_status_flags));
5540 }
5541 
5542 static char *egress_err_info_string(char *buf, int buf_len, u64 flags)
5543 {
5544 	return flag_string(buf, buf_len, flags,
5545 			   egress_err_info_flags,
5546 			   ARRAY_SIZE(egress_err_info_flags));
5547 }
5548 
5549 static char *send_err_status_string(char *buf, int buf_len, u64 flags)
5550 {
5551 	return flag_string(buf, buf_len, flags,
5552 			   send_err_status_flags,
5553 			   ARRAY_SIZE(send_err_status_flags));
5554 }
5555 
5556 static void handle_cce_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5557 {
5558 	char buf[96];
5559 	int i = 0;
5560 
5561 	/*
5562 	 * For most these errors, there is nothing that can be done except
5563 	 * report or record it.
5564 	 */
5565 	dd_dev_info(dd, "CCE Error: %s\n",
5566 		    cce_err_status_string(buf, sizeof(buf), reg));
5567 
5568 	if ((reg & CCE_ERR_STATUS_CCE_CLI2_ASYNC_FIFO_PARITY_ERR_SMASK) &&
5569 	    is_ax(dd) && (dd->icode != ICODE_FUNCTIONAL_SIMULATOR)) {
5570 		/* this error requires a manual drop into SPC freeze mode */
5571 		/* then a fix up */
5572 		start_freeze_handling(dd->pport, FREEZE_SELF);
5573 	}
5574 
5575 	for (i = 0; i < NUM_CCE_ERR_STATUS_COUNTERS; i++) {
5576 		if (reg & (1ull << i)) {
5577 			incr_cntr64(&dd->cce_err_status_cnt[i]);
5578 			/* maintain a counter over all cce_err_status errors */
5579 			incr_cntr64(&dd->sw_cce_err_status_aggregate);
5580 		}
5581 	}
5582 }
5583 
5584 /*
5585  * Check counters for receive errors that do not have an interrupt
5586  * associated with them.
5587  */
5588 #define RCVERR_CHECK_TIME 10
5589 static void update_rcverr_timer(struct timer_list *t)
5590 {
5591 	struct hfi1_devdata *dd = from_timer(dd, t, rcverr_timer);
5592 	struct hfi1_pportdata *ppd = dd->pport;
5593 	u32 cur_ovfl_cnt = read_dev_cntr(dd, C_RCV_OVF, CNTR_INVALID_VL);
5594 
5595 	if (dd->rcv_ovfl_cnt < cur_ovfl_cnt &&
5596 	    ppd->port_error_action & OPA_PI_MASK_EX_BUFFER_OVERRUN) {
5597 		dd_dev_info(dd, "%s: PortErrorAction bounce\n", __func__);
5598 		set_link_down_reason(
5599 		ppd, OPA_LINKDOWN_REASON_EXCESSIVE_BUFFER_OVERRUN, 0,
5600 		OPA_LINKDOWN_REASON_EXCESSIVE_BUFFER_OVERRUN);
5601 		queue_work(ppd->link_wq, &ppd->link_bounce_work);
5602 	}
5603 	dd->rcv_ovfl_cnt = (u32)cur_ovfl_cnt;
5604 
5605 	mod_timer(&dd->rcverr_timer, jiffies + HZ * RCVERR_CHECK_TIME);
5606 }
5607 
5608 static int init_rcverr(struct hfi1_devdata *dd)
5609 {
5610 	timer_setup(&dd->rcverr_timer, update_rcverr_timer, 0);
5611 	/* Assume the hardware counter has been reset */
5612 	dd->rcv_ovfl_cnt = 0;
5613 	return mod_timer(&dd->rcverr_timer, jiffies + HZ * RCVERR_CHECK_TIME);
5614 }
5615 
5616 static void free_rcverr(struct hfi1_devdata *dd)
5617 {
5618 	if (dd->rcverr_timer.function)
5619 		del_timer_sync(&dd->rcverr_timer);
5620 }
5621 
5622 static void handle_rxe_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5623 {
5624 	char buf[96];
5625 	int i = 0;
5626 
5627 	dd_dev_info(dd, "Receive Error: %s\n",
5628 		    rxe_err_status_string(buf, sizeof(buf), reg));
5629 
5630 	if (reg & ALL_RXE_FREEZE_ERR) {
5631 		int flags = 0;
5632 
5633 		/*
5634 		 * Freeze mode recovery is disabled for the errors
5635 		 * in RXE_FREEZE_ABORT_MASK
5636 		 */
5637 		if (is_ax(dd) && (reg & RXE_FREEZE_ABORT_MASK))
5638 			flags = FREEZE_ABORT;
5639 
5640 		start_freeze_handling(dd->pport, flags);
5641 	}
5642 
5643 	for (i = 0; i < NUM_RCV_ERR_STATUS_COUNTERS; i++) {
5644 		if (reg & (1ull << i))
5645 			incr_cntr64(&dd->rcv_err_status_cnt[i]);
5646 	}
5647 }
5648 
5649 static void handle_misc_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5650 {
5651 	char buf[96];
5652 	int i = 0;
5653 
5654 	dd_dev_info(dd, "Misc Error: %s",
5655 		    misc_err_status_string(buf, sizeof(buf), reg));
5656 	for (i = 0; i < NUM_MISC_ERR_STATUS_COUNTERS; i++) {
5657 		if (reg & (1ull << i))
5658 			incr_cntr64(&dd->misc_err_status_cnt[i]);
5659 	}
5660 }
5661 
5662 static void handle_pio_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5663 {
5664 	char buf[96];
5665 	int i = 0;
5666 
5667 	dd_dev_info(dd, "PIO Error: %s\n",
5668 		    pio_err_status_string(buf, sizeof(buf), reg));
5669 
5670 	if (reg & ALL_PIO_FREEZE_ERR)
5671 		start_freeze_handling(dd->pport, 0);
5672 
5673 	for (i = 0; i < NUM_SEND_PIO_ERR_STATUS_COUNTERS; i++) {
5674 		if (reg & (1ull << i))
5675 			incr_cntr64(&dd->send_pio_err_status_cnt[i]);
5676 	}
5677 }
5678 
5679 static void handle_sdma_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5680 {
5681 	char buf[96];
5682 	int i = 0;
5683 
5684 	dd_dev_info(dd, "SDMA Error: %s\n",
5685 		    sdma_err_status_string(buf, sizeof(buf), reg));
5686 
5687 	if (reg & ALL_SDMA_FREEZE_ERR)
5688 		start_freeze_handling(dd->pport, 0);
5689 
5690 	for (i = 0; i < NUM_SEND_DMA_ERR_STATUS_COUNTERS; i++) {
5691 		if (reg & (1ull << i))
5692 			incr_cntr64(&dd->send_dma_err_status_cnt[i]);
5693 	}
5694 }
5695 
5696 static inline void __count_port_discards(struct hfi1_pportdata *ppd)
5697 {
5698 	incr_cntr64(&ppd->port_xmit_discards);
5699 }
5700 
5701 static void count_port_inactive(struct hfi1_devdata *dd)
5702 {
5703 	__count_port_discards(dd->pport);
5704 }
5705 
5706 /*
5707  * We have had a "disallowed packet" error during egress. Determine the
5708  * integrity check which failed, and update relevant error counter, etc.
5709  *
5710  * Note that the SEND_EGRESS_ERR_INFO register has only a single
5711  * bit of state per integrity check, and so we can miss the reason for an
5712  * egress error if more than one packet fails the same integrity check
5713  * since we cleared the corresponding bit in SEND_EGRESS_ERR_INFO.
5714  */
5715 static void handle_send_egress_err_info(struct hfi1_devdata *dd,
5716 					int vl)
5717 {
5718 	struct hfi1_pportdata *ppd = dd->pport;
5719 	u64 src = read_csr(dd, SEND_EGRESS_ERR_SOURCE); /* read first */
5720 	u64 info = read_csr(dd, SEND_EGRESS_ERR_INFO);
5721 	char buf[96];
5722 
5723 	/* clear down all observed info as quickly as possible after read */
5724 	write_csr(dd, SEND_EGRESS_ERR_INFO, info);
5725 
5726 	dd_dev_info(dd,
5727 		    "Egress Error Info: 0x%llx, %s Egress Error Src 0x%llx\n",
5728 		    info, egress_err_info_string(buf, sizeof(buf), info), src);
5729 
5730 	/* Eventually add other counters for each bit */
5731 	if (info & PORT_DISCARD_EGRESS_ERRS) {
5732 		int weight, i;
5733 
5734 		/*
5735 		 * Count all applicable bits as individual errors and
5736 		 * attribute them to the packet that triggered this handler.
5737 		 * This may not be completely accurate due to limitations
5738 		 * on the available hardware error information.  There is
5739 		 * a single information register and any number of error
5740 		 * packets may have occurred and contributed to it before
5741 		 * this routine is called.  This means that:
5742 		 * a) If multiple packets with the same error occur before
5743 		 *    this routine is called, earlier packets are missed.
5744 		 *    There is only a single bit for each error type.
5745 		 * b) Errors may not be attributed to the correct VL.
5746 		 *    The driver is attributing all bits in the info register
5747 		 *    to the packet that triggered this call, but bits
5748 		 *    could be an accumulation of different packets with
5749 		 *    different VLs.
5750 		 * c) A single error packet may have multiple counts attached
5751 		 *    to it.  There is no way for the driver to know if
5752 		 *    multiple bits set in the info register are due to a
5753 		 *    single packet or multiple packets.  The driver assumes
5754 		 *    multiple packets.
5755 		 */
5756 		weight = hweight64(info & PORT_DISCARD_EGRESS_ERRS);
5757 		for (i = 0; i < weight; i++) {
5758 			__count_port_discards(ppd);
5759 			if (vl >= 0 && vl < TXE_NUM_DATA_VL)
5760 				incr_cntr64(&ppd->port_xmit_discards_vl[vl]);
5761 			else if (vl == 15)
5762 				incr_cntr64(&ppd->port_xmit_discards_vl
5763 					    [C_VL_15]);
5764 		}
5765 	}
5766 }
5767 
5768 /*
5769  * Input value is a bit position within the SEND_EGRESS_ERR_STATUS
5770  * register. Does it represent a 'port inactive' error?
5771  */
5772 static inline int port_inactive_err(u64 posn)
5773 {
5774 	return (posn >= SEES(TX_LINKDOWN) &&
5775 		posn <= SEES(TX_INCORRECT_LINK_STATE));
5776 }
5777 
5778 /*
5779  * Input value is a bit position within the SEND_EGRESS_ERR_STATUS
5780  * register. Does it represent a 'disallowed packet' error?
5781  */
5782 static inline int disallowed_pkt_err(int posn)
5783 {
5784 	return (posn >= SEES(TX_SDMA0_DISALLOWED_PACKET) &&
5785 		posn <= SEES(TX_SDMA15_DISALLOWED_PACKET));
5786 }
5787 
5788 /*
5789  * Input value is a bit position of one of the SDMA engine disallowed
5790  * packet errors.  Return which engine.  Use of this must be guarded by
5791  * disallowed_pkt_err().
5792  */
5793 static inline int disallowed_pkt_engine(int posn)
5794 {
5795 	return posn - SEES(TX_SDMA0_DISALLOWED_PACKET);
5796 }
5797 
5798 /*
5799  * Translate an SDMA engine to a VL.  Return -1 if the tranlation cannot
5800  * be done.
5801  */
5802 static int engine_to_vl(struct hfi1_devdata *dd, int engine)
5803 {
5804 	struct sdma_vl_map *m;
5805 	int vl;
5806 
5807 	/* range check */
5808 	if (engine < 0 || engine >= TXE_NUM_SDMA_ENGINES)
5809 		return -1;
5810 
5811 	rcu_read_lock();
5812 	m = rcu_dereference(dd->sdma_map);
5813 	vl = m->engine_to_vl[engine];
5814 	rcu_read_unlock();
5815 
5816 	return vl;
5817 }
5818 
5819 /*
5820  * Translate the send context (sofware index) into a VL.  Return -1 if the
5821  * translation cannot be done.
5822  */
5823 static int sc_to_vl(struct hfi1_devdata *dd, int sw_index)
5824 {
5825 	struct send_context_info *sci;
5826 	struct send_context *sc;
5827 	int i;
5828 
5829 	sci = &dd->send_contexts[sw_index];
5830 
5831 	/* there is no information for user (PSM) and ack contexts */
5832 	if ((sci->type != SC_KERNEL) && (sci->type != SC_VL15))
5833 		return -1;
5834 
5835 	sc = sci->sc;
5836 	if (!sc)
5837 		return -1;
5838 	if (dd->vld[15].sc == sc)
5839 		return 15;
5840 	for (i = 0; i < num_vls; i++)
5841 		if (dd->vld[i].sc == sc)
5842 			return i;
5843 
5844 	return -1;
5845 }
5846 
5847 static void handle_egress_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5848 {
5849 	u64 reg_copy = reg, handled = 0;
5850 	char buf[96];
5851 	int i = 0;
5852 
5853 	if (reg & ALL_TXE_EGRESS_FREEZE_ERR)
5854 		start_freeze_handling(dd->pport, 0);
5855 	else if (is_ax(dd) &&
5856 		 (reg & SEND_EGRESS_ERR_STATUS_TX_CREDIT_RETURN_VL_ERR_SMASK) &&
5857 		 (dd->icode != ICODE_FUNCTIONAL_SIMULATOR))
5858 		start_freeze_handling(dd->pport, 0);
5859 
5860 	while (reg_copy) {
5861 		int posn = fls64(reg_copy);
5862 		/* fls64() returns a 1-based offset, we want it zero based */
5863 		int shift = posn - 1;
5864 		u64 mask = 1ULL << shift;
5865 
5866 		if (port_inactive_err(shift)) {
5867 			count_port_inactive(dd);
5868 			handled |= mask;
5869 		} else if (disallowed_pkt_err(shift)) {
5870 			int vl = engine_to_vl(dd, disallowed_pkt_engine(shift));
5871 
5872 			handle_send_egress_err_info(dd, vl);
5873 			handled |= mask;
5874 		}
5875 		reg_copy &= ~mask;
5876 	}
5877 
5878 	reg &= ~handled;
5879 
5880 	if (reg)
5881 		dd_dev_info(dd, "Egress Error: %s\n",
5882 			    egress_err_status_string(buf, sizeof(buf), reg));
5883 
5884 	for (i = 0; i < NUM_SEND_EGRESS_ERR_STATUS_COUNTERS; i++) {
5885 		if (reg & (1ull << i))
5886 			incr_cntr64(&dd->send_egress_err_status_cnt[i]);
5887 	}
5888 }
5889 
5890 static void handle_txe_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5891 {
5892 	char buf[96];
5893 	int i = 0;
5894 
5895 	dd_dev_info(dd, "Send Error: %s\n",
5896 		    send_err_status_string(buf, sizeof(buf), reg));
5897 
5898 	for (i = 0; i < NUM_SEND_ERR_STATUS_COUNTERS; i++) {
5899 		if (reg & (1ull << i))
5900 			incr_cntr64(&dd->send_err_status_cnt[i]);
5901 	}
5902 }
5903 
5904 /*
5905  * The maximum number of times the error clear down will loop before
5906  * blocking a repeating error.  This value is arbitrary.
5907  */
5908 #define MAX_CLEAR_COUNT 20
5909 
5910 /*
5911  * Clear and handle an error register.  All error interrupts are funneled
5912  * through here to have a central location to correctly handle single-
5913  * or multi-shot errors.
5914  *
5915  * For non per-context registers, call this routine with a context value
5916  * of 0 so the per-context offset is zero.
5917  *
5918  * If the handler loops too many times, assume that something is wrong
5919  * and can't be fixed, so mask the error bits.
5920  */
5921 static void interrupt_clear_down(struct hfi1_devdata *dd,
5922 				 u32 context,
5923 				 const struct err_reg_info *eri)
5924 {
5925 	u64 reg;
5926 	u32 count;
5927 
5928 	/* read in a loop until no more errors are seen */
5929 	count = 0;
5930 	while (1) {
5931 		reg = read_kctxt_csr(dd, context, eri->status);
5932 		if (reg == 0)
5933 			break;
5934 		write_kctxt_csr(dd, context, eri->clear, reg);
5935 		if (likely(eri->handler))
5936 			eri->handler(dd, context, reg);
5937 		count++;
5938 		if (count > MAX_CLEAR_COUNT) {
5939 			u64 mask;
5940 
5941 			dd_dev_err(dd, "Repeating %s bits 0x%llx - masking\n",
5942 				   eri->desc, reg);
5943 			/*
5944 			 * Read-modify-write so any other masked bits
5945 			 * remain masked.
5946 			 */
5947 			mask = read_kctxt_csr(dd, context, eri->mask);
5948 			mask &= ~reg;
5949 			write_kctxt_csr(dd, context, eri->mask, mask);
5950 			break;
5951 		}
5952 	}
5953 }
5954 
5955 /*
5956  * CCE block "misc" interrupt.  Source is < 16.
5957  */
5958 static void is_misc_err_int(struct hfi1_devdata *dd, unsigned int source)
5959 {
5960 	const struct err_reg_info *eri = &misc_errs[source];
5961 
5962 	if (eri->handler) {
5963 		interrupt_clear_down(dd, 0, eri);
5964 	} else {
5965 		dd_dev_err(dd, "Unexpected misc interrupt (%u) - reserved\n",
5966 			   source);
5967 	}
5968 }
5969 
5970 static char *send_context_err_status_string(char *buf, int buf_len, u64 flags)
5971 {
5972 	return flag_string(buf, buf_len, flags,
5973 			   sc_err_status_flags,
5974 			   ARRAY_SIZE(sc_err_status_flags));
5975 }
5976 
5977 /*
5978  * Send context error interrupt.  Source (hw_context) is < 160.
5979  *
5980  * All send context errors cause the send context to halt.  The normal
5981  * clear-down mechanism cannot be used because we cannot clear the
5982  * error bits until several other long-running items are done first.
5983  * This is OK because with the context halted, nothing else is going
5984  * to happen on it anyway.
5985  */
5986 static void is_sendctxt_err_int(struct hfi1_devdata *dd,
5987 				unsigned int hw_context)
5988 {
5989 	struct send_context_info *sci;
5990 	struct send_context *sc;
5991 	char flags[96];
5992 	u64 status;
5993 	u32 sw_index;
5994 	int i = 0;
5995 	unsigned long irq_flags;
5996 
5997 	sw_index = dd->hw_to_sw[hw_context];
5998 	if (sw_index >= dd->num_send_contexts) {
5999 		dd_dev_err(dd,
6000 			   "out of range sw index %u for send context %u\n",
6001 			   sw_index, hw_context);
6002 		return;
6003 	}
6004 	sci = &dd->send_contexts[sw_index];
6005 	spin_lock_irqsave(&dd->sc_lock, irq_flags);
6006 	sc = sci->sc;
6007 	if (!sc) {
6008 		dd_dev_err(dd, "%s: context %u(%u): no sc?\n", __func__,
6009 			   sw_index, hw_context);
6010 		spin_unlock_irqrestore(&dd->sc_lock, irq_flags);
6011 		return;
6012 	}
6013 
6014 	/* tell the software that a halt has begun */
6015 	sc_stop(sc, SCF_HALTED);
6016 
6017 	status = read_kctxt_csr(dd, hw_context, SEND_CTXT_ERR_STATUS);
6018 
6019 	dd_dev_info(dd, "Send Context %u(%u) Error: %s\n", sw_index, hw_context,
6020 		    send_context_err_status_string(flags, sizeof(flags),
6021 						   status));
6022 
6023 	if (status & SEND_CTXT_ERR_STATUS_PIO_DISALLOWED_PACKET_ERR_SMASK)
6024 		handle_send_egress_err_info(dd, sc_to_vl(dd, sw_index));
6025 
6026 	/*
6027 	 * Automatically restart halted kernel contexts out of interrupt
6028 	 * context.  User contexts must ask the driver to restart the context.
6029 	 */
6030 	if (sc->type != SC_USER)
6031 		queue_work(dd->pport->hfi1_wq, &sc->halt_work);
6032 	spin_unlock_irqrestore(&dd->sc_lock, irq_flags);
6033 
6034 	/*
6035 	 * Update the counters for the corresponding status bits.
6036 	 * Note that these particular counters are aggregated over all
6037 	 * 160 contexts.
6038 	 */
6039 	for (i = 0; i < NUM_SEND_CTXT_ERR_STATUS_COUNTERS; i++) {
6040 		if (status & (1ull << i))
6041 			incr_cntr64(&dd->sw_ctxt_err_status_cnt[i]);
6042 	}
6043 }
6044 
6045 static void handle_sdma_eng_err(struct hfi1_devdata *dd,
6046 				unsigned int source, u64 status)
6047 {
6048 	struct sdma_engine *sde;
6049 	int i = 0;
6050 
6051 	sde = &dd->per_sdma[source];
6052 #ifdef CONFIG_SDMA_VERBOSITY
6053 	dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
6054 		   slashstrip(__FILE__), __LINE__, __func__);
6055 	dd_dev_err(sde->dd, "CONFIG SDMA(%u) source: %u status 0x%llx\n",
6056 		   sde->this_idx, source, (unsigned long long)status);
6057 #endif
6058 	sde->err_cnt++;
6059 	sdma_engine_error(sde, status);
6060 
6061 	/*
6062 	* Update the counters for the corresponding status bits.
6063 	* Note that these particular counters are aggregated over
6064 	* all 16 DMA engines.
6065 	*/
6066 	for (i = 0; i < NUM_SEND_DMA_ENG_ERR_STATUS_COUNTERS; i++) {
6067 		if (status & (1ull << i))
6068 			incr_cntr64(&dd->sw_send_dma_eng_err_status_cnt[i]);
6069 	}
6070 }
6071 
6072 /*
6073  * CCE block SDMA error interrupt.  Source is < 16.
6074  */
6075 static void is_sdma_eng_err_int(struct hfi1_devdata *dd, unsigned int source)
6076 {
6077 #ifdef CONFIG_SDMA_VERBOSITY
6078 	struct sdma_engine *sde = &dd->per_sdma[source];
6079 
6080 	dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
6081 		   slashstrip(__FILE__), __LINE__, __func__);
6082 	dd_dev_err(dd, "CONFIG SDMA(%u) source: %u\n", sde->this_idx,
6083 		   source);
6084 	sdma_dumpstate(sde);
6085 #endif
6086 	interrupt_clear_down(dd, source, &sdma_eng_err);
6087 }
6088 
6089 /*
6090  * CCE block "various" interrupt.  Source is < 8.
6091  */
6092 static void is_various_int(struct hfi1_devdata *dd, unsigned int source)
6093 {
6094 	const struct err_reg_info *eri = &various_err[source];
6095 
6096 	/*
6097 	 * TCritInt cannot go through interrupt_clear_down()
6098 	 * because it is not a second tier interrupt. The handler
6099 	 * should be called directly.
6100 	 */
6101 	if (source == TCRIT_INT_SOURCE)
6102 		handle_temp_err(dd);
6103 	else if (eri->handler)
6104 		interrupt_clear_down(dd, 0, eri);
6105 	else
6106 		dd_dev_info(dd,
6107 			    "%s: Unimplemented/reserved interrupt %d\n",
6108 			    __func__, source);
6109 }
6110 
6111 static void handle_qsfp_int(struct hfi1_devdata *dd, u32 src_ctx, u64 reg)
6112 {
6113 	/* src_ctx is always zero */
6114 	struct hfi1_pportdata *ppd = dd->pport;
6115 	unsigned long flags;
6116 	u64 qsfp_int_mgmt = (u64)(QSFP_HFI0_INT_N | QSFP_HFI0_MODPRST_N);
6117 
6118 	if (reg & QSFP_HFI0_MODPRST_N) {
6119 		if (!qsfp_mod_present(ppd)) {
6120 			dd_dev_info(dd, "%s: QSFP module removed\n",
6121 				    __func__);
6122 
6123 			ppd->driver_link_ready = 0;
6124 			/*
6125 			 * Cable removed, reset all our information about the
6126 			 * cache and cable capabilities
6127 			 */
6128 
6129 			spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
6130 			/*
6131 			 * We don't set cache_refresh_required here as we expect
6132 			 * an interrupt when a cable is inserted
6133 			 */
6134 			ppd->qsfp_info.cache_valid = 0;
6135 			ppd->qsfp_info.reset_needed = 0;
6136 			ppd->qsfp_info.limiting_active = 0;
6137 			spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock,
6138 					       flags);
6139 			/* Invert the ModPresent pin now to detect plug-in */
6140 			write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_INVERT :
6141 				  ASIC_QSFP1_INVERT, qsfp_int_mgmt);
6142 
6143 			if ((ppd->offline_disabled_reason >
6144 			  HFI1_ODR_MASK(
6145 			  OPA_LINKDOWN_REASON_LOCAL_MEDIA_NOT_INSTALLED)) ||
6146 			  (ppd->offline_disabled_reason ==
6147 			  HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE)))
6148 				ppd->offline_disabled_reason =
6149 				HFI1_ODR_MASK(
6150 				OPA_LINKDOWN_REASON_LOCAL_MEDIA_NOT_INSTALLED);
6151 
6152 			if (ppd->host_link_state == HLS_DN_POLL) {
6153 				/*
6154 				 * The link is still in POLL. This means
6155 				 * that the normal link down processing
6156 				 * will not happen. We have to do it here
6157 				 * before turning the DC off.
6158 				 */
6159 				queue_work(ppd->link_wq, &ppd->link_down_work);
6160 			}
6161 		} else {
6162 			dd_dev_info(dd, "%s: QSFP module inserted\n",
6163 				    __func__);
6164 
6165 			spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
6166 			ppd->qsfp_info.cache_valid = 0;
6167 			ppd->qsfp_info.cache_refresh_required = 1;
6168 			spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock,
6169 					       flags);
6170 
6171 			/*
6172 			 * Stop inversion of ModPresent pin to detect
6173 			 * removal of the cable
6174 			 */
6175 			qsfp_int_mgmt &= ~(u64)QSFP_HFI0_MODPRST_N;
6176 			write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_INVERT :
6177 				  ASIC_QSFP1_INVERT, qsfp_int_mgmt);
6178 
6179 			ppd->offline_disabled_reason =
6180 				HFI1_ODR_MASK(OPA_LINKDOWN_REASON_TRANSIENT);
6181 		}
6182 	}
6183 
6184 	if (reg & QSFP_HFI0_INT_N) {
6185 		dd_dev_info(dd, "%s: Interrupt received from QSFP module\n",
6186 			    __func__);
6187 		spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
6188 		ppd->qsfp_info.check_interrupt_flags = 1;
6189 		spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock, flags);
6190 	}
6191 
6192 	/* Schedule the QSFP work only if there is a cable attached. */
6193 	if (qsfp_mod_present(ppd))
6194 		queue_work(ppd->link_wq, &ppd->qsfp_info.qsfp_work);
6195 }
6196 
6197 static int request_host_lcb_access(struct hfi1_devdata *dd)
6198 {
6199 	int ret;
6200 
6201 	ret = do_8051_command(dd, HCMD_MISC,
6202 			      (u64)HCMD_MISC_REQUEST_LCB_ACCESS <<
6203 			      LOAD_DATA_FIELD_ID_SHIFT, NULL);
6204 	if (ret != HCMD_SUCCESS) {
6205 		dd_dev_err(dd, "%s: command failed with error %d\n",
6206 			   __func__, ret);
6207 	}
6208 	return ret == HCMD_SUCCESS ? 0 : -EBUSY;
6209 }
6210 
6211 static int request_8051_lcb_access(struct hfi1_devdata *dd)
6212 {
6213 	int ret;
6214 
6215 	ret = do_8051_command(dd, HCMD_MISC,
6216 			      (u64)HCMD_MISC_GRANT_LCB_ACCESS <<
6217 			      LOAD_DATA_FIELD_ID_SHIFT, NULL);
6218 	if (ret != HCMD_SUCCESS) {
6219 		dd_dev_err(dd, "%s: command failed with error %d\n",
6220 			   __func__, ret);
6221 	}
6222 	return ret == HCMD_SUCCESS ? 0 : -EBUSY;
6223 }
6224 
6225 /*
6226  * Set the LCB selector - allow host access.  The DCC selector always
6227  * points to the host.
6228  */
6229 static inline void set_host_lcb_access(struct hfi1_devdata *dd)
6230 {
6231 	write_csr(dd, DC_DC8051_CFG_CSR_ACCESS_SEL,
6232 		  DC_DC8051_CFG_CSR_ACCESS_SEL_DCC_SMASK |
6233 		  DC_DC8051_CFG_CSR_ACCESS_SEL_LCB_SMASK);
6234 }
6235 
6236 /*
6237  * Clear the LCB selector - allow 8051 access.  The DCC selector always
6238  * points to the host.
6239  */
6240 static inline void set_8051_lcb_access(struct hfi1_devdata *dd)
6241 {
6242 	write_csr(dd, DC_DC8051_CFG_CSR_ACCESS_SEL,
6243 		  DC_DC8051_CFG_CSR_ACCESS_SEL_DCC_SMASK);
6244 }
6245 
6246 /*
6247  * Acquire LCB access from the 8051.  If the host already has access,
6248  * just increment a counter.  Otherwise, inform the 8051 that the
6249  * host is taking access.
6250  *
6251  * Returns:
6252  *	0 on success
6253  *	-EBUSY if the 8051 has control and cannot be disturbed
6254  *	-errno if unable to acquire access from the 8051
6255  */
6256 int acquire_lcb_access(struct hfi1_devdata *dd, int sleep_ok)
6257 {
6258 	struct hfi1_pportdata *ppd = dd->pport;
6259 	int ret = 0;
6260 
6261 	/*
6262 	 * Use the host link state lock so the operation of this routine
6263 	 * { link state check, selector change, count increment } can occur
6264 	 * as a unit against a link state change.  Otherwise there is a
6265 	 * race between the state change and the count increment.
6266 	 */
6267 	if (sleep_ok) {
6268 		mutex_lock(&ppd->hls_lock);
6269 	} else {
6270 		while (!mutex_trylock(&ppd->hls_lock))
6271 			udelay(1);
6272 	}
6273 
6274 	/* this access is valid only when the link is up */
6275 	if (ppd->host_link_state & HLS_DOWN) {
6276 		dd_dev_info(dd, "%s: link state %s not up\n",
6277 			    __func__, link_state_name(ppd->host_link_state));
6278 		ret = -EBUSY;
6279 		goto done;
6280 	}
6281 
6282 	if (dd->lcb_access_count == 0) {
6283 		ret = request_host_lcb_access(dd);
6284 		if (ret) {
6285 			dd_dev_err(dd,
6286 				   "%s: unable to acquire LCB access, err %d\n",
6287 				   __func__, ret);
6288 			goto done;
6289 		}
6290 		set_host_lcb_access(dd);
6291 	}
6292 	dd->lcb_access_count++;
6293 done:
6294 	mutex_unlock(&ppd->hls_lock);
6295 	return ret;
6296 }
6297 
6298 /*
6299  * Release LCB access by decrementing the use count.  If the count is moving
6300  * from 1 to 0, inform 8051 that it has control back.
6301  *
6302  * Returns:
6303  *	0 on success
6304  *	-errno if unable to release access to the 8051
6305  */
6306 int release_lcb_access(struct hfi1_devdata *dd, int sleep_ok)
6307 {
6308 	int ret = 0;
6309 
6310 	/*
6311 	 * Use the host link state lock because the acquire needed it.
6312 	 * Here, we only need to keep { selector change, count decrement }
6313 	 * as a unit.
6314 	 */
6315 	if (sleep_ok) {
6316 		mutex_lock(&dd->pport->hls_lock);
6317 	} else {
6318 		while (!mutex_trylock(&dd->pport->hls_lock))
6319 			udelay(1);
6320 	}
6321 
6322 	if (dd->lcb_access_count == 0) {
6323 		dd_dev_err(dd, "%s: LCB access count is zero.  Skipping.\n",
6324 			   __func__);
6325 		goto done;
6326 	}
6327 
6328 	if (dd->lcb_access_count == 1) {
6329 		set_8051_lcb_access(dd);
6330 		ret = request_8051_lcb_access(dd);
6331 		if (ret) {
6332 			dd_dev_err(dd,
6333 				   "%s: unable to release LCB access, err %d\n",
6334 				   __func__, ret);
6335 			/* restore host access if the grant didn't work */
6336 			set_host_lcb_access(dd);
6337 			goto done;
6338 		}
6339 	}
6340 	dd->lcb_access_count--;
6341 done:
6342 	mutex_unlock(&dd->pport->hls_lock);
6343 	return ret;
6344 }
6345 
6346 /*
6347  * Initialize LCB access variables and state.  Called during driver load,
6348  * after most of the initialization is finished.
6349  *
6350  * The DC default is LCB access on for the host.  The driver defaults to
6351  * leaving access to the 8051.  Assign access now - this constrains the call
6352  * to this routine to be after all LCB set-up is done.  In particular, after
6353  * hf1_init_dd() -> set_up_interrupts() -> clear_all_interrupts()
6354  */
6355 static void init_lcb_access(struct hfi1_devdata *dd)
6356 {
6357 	dd->lcb_access_count = 0;
6358 }
6359 
6360 /*
6361  * Write a response back to a 8051 request.
6362  */
6363 static void hreq_response(struct hfi1_devdata *dd, u8 return_code, u16 rsp_data)
6364 {
6365 	write_csr(dd, DC_DC8051_CFG_EXT_DEV_0,
6366 		  DC_DC8051_CFG_EXT_DEV_0_COMPLETED_SMASK |
6367 		  (u64)return_code <<
6368 		  DC_DC8051_CFG_EXT_DEV_0_RETURN_CODE_SHIFT |
6369 		  (u64)rsp_data << DC_DC8051_CFG_EXT_DEV_0_RSP_DATA_SHIFT);
6370 }
6371 
6372 /*
6373  * Handle host requests from the 8051.
6374  */
6375 static void handle_8051_request(struct hfi1_pportdata *ppd)
6376 {
6377 	struct hfi1_devdata *dd = ppd->dd;
6378 	u64 reg;
6379 	u16 data = 0;
6380 	u8 type;
6381 
6382 	reg = read_csr(dd, DC_DC8051_CFG_EXT_DEV_1);
6383 	if ((reg & DC_DC8051_CFG_EXT_DEV_1_REQ_NEW_SMASK) == 0)
6384 		return;	/* no request */
6385 
6386 	/* zero out COMPLETED so the response is seen */
6387 	write_csr(dd, DC_DC8051_CFG_EXT_DEV_0, 0);
6388 
6389 	/* extract request details */
6390 	type = (reg >> DC_DC8051_CFG_EXT_DEV_1_REQ_TYPE_SHIFT)
6391 			& DC_DC8051_CFG_EXT_DEV_1_REQ_TYPE_MASK;
6392 	data = (reg >> DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SHIFT)
6393 			& DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_MASK;
6394 
6395 	switch (type) {
6396 	case HREQ_LOAD_CONFIG:
6397 	case HREQ_SAVE_CONFIG:
6398 	case HREQ_READ_CONFIG:
6399 	case HREQ_SET_TX_EQ_ABS:
6400 	case HREQ_SET_TX_EQ_REL:
6401 	case HREQ_ENABLE:
6402 		dd_dev_info(dd, "8051 request: request 0x%x not supported\n",
6403 			    type);
6404 		hreq_response(dd, HREQ_NOT_SUPPORTED, 0);
6405 		break;
6406 	case HREQ_LCB_RESET:
6407 		/* Put the LCB, RX FPE and TX FPE into reset */
6408 		write_csr(dd, DCC_CFG_RESET, LCB_RX_FPE_TX_FPE_INTO_RESET);
6409 		/* Make sure the write completed */
6410 		(void)read_csr(dd, DCC_CFG_RESET);
6411 		/* Hold the reset long enough to take effect */
6412 		udelay(1);
6413 		/* Take the LCB, RX FPE and TX FPE out of reset */
6414 		write_csr(dd, DCC_CFG_RESET, LCB_RX_FPE_TX_FPE_OUT_OF_RESET);
6415 		hreq_response(dd, HREQ_SUCCESS, 0);
6416 
6417 		break;
6418 	case HREQ_CONFIG_DONE:
6419 		hreq_response(dd, HREQ_SUCCESS, 0);
6420 		break;
6421 
6422 	case HREQ_INTERFACE_TEST:
6423 		hreq_response(dd, HREQ_SUCCESS, data);
6424 		break;
6425 	default:
6426 		dd_dev_err(dd, "8051 request: unknown request 0x%x\n", type);
6427 		hreq_response(dd, HREQ_NOT_SUPPORTED, 0);
6428 		break;
6429 	}
6430 }
6431 
6432 /*
6433  * Set up allocation unit vaulue.
6434  */
6435 void set_up_vau(struct hfi1_devdata *dd, u8 vau)
6436 {
6437 	u64 reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
6438 
6439 	/* do not modify other values in the register */
6440 	reg &= ~SEND_CM_GLOBAL_CREDIT_AU_SMASK;
6441 	reg |= (u64)vau << SEND_CM_GLOBAL_CREDIT_AU_SHIFT;
6442 	write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg);
6443 }
6444 
6445 /*
6446  * Set up initial VL15 credits of the remote.  Assumes the rest of
6447  * the CM credit registers are zero from a previous global or credit reset.
6448  * Shared limit for VL15 will always be 0.
6449  */
6450 void set_up_vl15(struct hfi1_devdata *dd, u16 vl15buf)
6451 {
6452 	u64 reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
6453 
6454 	/* set initial values for total and shared credit limit */
6455 	reg &= ~(SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SMASK |
6456 		 SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SMASK);
6457 
6458 	/*
6459 	 * Set total limit to be equal to VL15 credits.
6460 	 * Leave shared limit at 0.
6461 	 */
6462 	reg |= (u64)vl15buf << SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT;
6463 	write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg);
6464 
6465 	write_csr(dd, SEND_CM_CREDIT_VL15, (u64)vl15buf
6466 		  << SEND_CM_CREDIT_VL15_DEDICATED_LIMIT_VL_SHIFT);
6467 }
6468 
6469 /*
6470  * Zero all credit details from the previous connection and
6471  * reset the CM manager's internal counters.
6472  */
6473 void reset_link_credits(struct hfi1_devdata *dd)
6474 {
6475 	int i;
6476 
6477 	/* remove all previous VL credit limits */
6478 	for (i = 0; i < TXE_NUM_DATA_VL; i++)
6479 		write_csr(dd, SEND_CM_CREDIT_VL + (8 * i), 0);
6480 	write_csr(dd, SEND_CM_CREDIT_VL15, 0);
6481 	write_csr(dd, SEND_CM_GLOBAL_CREDIT, 0);
6482 	/* reset the CM block */
6483 	pio_send_control(dd, PSC_CM_RESET);
6484 	/* reset cached value */
6485 	dd->vl15buf_cached = 0;
6486 }
6487 
6488 /* convert a vCU to a CU */
6489 static u32 vcu_to_cu(u8 vcu)
6490 {
6491 	return 1 << vcu;
6492 }
6493 
6494 /* convert a CU to a vCU */
6495 static u8 cu_to_vcu(u32 cu)
6496 {
6497 	return ilog2(cu);
6498 }
6499 
6500 /* convert a vAU to an AU */
6501 static u32 vau_to_au(u8 vau)
6502 {
6503 	return 8 * (1 << vau);
6504 }
6505 
6506 static void set_linkup_defaults(struct hfi1_pportdata *ppd)
6507 {
6508 	ppd->sm_trap_qp = 0x0;
6509 	ppd->sa_qp = 0x1;
6510 }
6511 
6512 /*
6513  * Graceful LCB shutdown.  This leaves the LCB FIFOs in reset.
6514  */
6515 static void lcb_shutdown(struct hfi1_devdata *dd, int abort)
6516 {
6517 	u64 reg;
6518 
6519 	/* clear lcb run: LCB_CFG_RUN.EN = 0 */
6520 	write_csr(dd, DC_LCB_CFG_RUN, 0);
6521 	/* set tx fifo reset: LCB_CFG_TX_FIFOS_RESET.VAL = 1 */
6522 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET,
6523 		  1ull << DC_LCB_CFG_TX_FIFOS_RESET_VAL_SHIFT);
6524 	/* set dcc reset csr: DCC_CFG_RESET.{reset_lcb,reset_rx_fpe} = 1 */
6525 	dd->lcb_err_en = read_csr(dd, DC_LCB_ERR_EN);
6526 	reg = read_csr(dd, DCC_CFG_RESET);
6527 	write_csr(dd, DCC_CFG_RESET, reg |
6528 		  DCC_CFG_RESET_RESET_LCB | DCC_CFG_RESET_RESET_RX_FPE);
6529 	(void)read_csr(dd, DCC_CFG_RESET); /* make sure the write completed */
6530 	if (!abort) {
6531 		udelay(1);    /* must hold for the longer of 16cclks or 20ns */
6532 		write_csr(dd, DCC_CFG_RESET, reg);
6533 		write_csr(dd, DC_LCB_ERR_EN, dd->lcb_err_en);
6534 	}
6535 }
6536 
6537 /*
6538  * This routine should be called after the link has been transitioned to
6539  * OFFLINE (OFFLINE state has the side effect of putting the SerDes into
6540  * reset).
6541  *
6542  * The expectation is that the caller of this routine would have taken
6543  * care of properly transitioning the link into the correct state.
6544  * NOTE: the caller needs to acquire the dd->dc8051_lock lock
6545  *       before calling this function.
6546  */
6547 static void _dc_shutdown(struct hfi1_devdata *dd)
6548 {
6549 	lockdep_assert_held(&dd->dc8051_lock);
6550 
6551 	if (dd->dc_shutdown)
6552 		return;
6553 
6554 	dd->dc_shutdown = 1;
6555 	/* Shutdown the LCB */
6556 	lcb_shutdown(dd, 1);
6557 	/*
6558 	 * Going to OFFLINE would have causes the 8051 to put the
6559 	 * SerDes into reset already. Just need to shut down the 8051,
6560 	 * itself.
6561 	 */
6562 	write_csr(dd, DC_DC8051_CFG_RST, 0x1);
6563 }
6564 
6565 static void dc_shutdown(struct hfi1_devdata *dd)
6566 {
6567 	mutex_lock(&dd->dc8051_lock);
6568 	_dc_shutdown(dd);
6569 	mutex_unlock(&dd->dc8051_lock);
6570 }
6571 
6572 /*
6573  * Calling this after the DC has been brought out of reset should not
6574  * do any damage.
6575  * NOTE: the caller needs to acquire the dd->dc8051_lock lock
6576  *       before calling this function.
6577  */
6578 static void _dc_start(struct hfi1_devdata *dd)
6579 {
6580 	lockdep_assert_held(&dd->dc8051_lock);
6581 
6582 	if (!dd->dc_shutdown)
6583 		return;
6584 
6585 	/* Take the 8051 out of reset */
6586 	write_csr(dd, DC_DC8051_CFG_RST, 0ull);
6587 	/* Wait until 8051 is ready */
6588 	if (wait_fm_ready(dd, TIMEOUT_8051_START))
6589 		dd_dev_err(dd, "%s: timeout starting 8051 firmware\n",
6590 			   __func__);
6591 
6592 	/* Take away reset for LCB and RX FPE (set in lcb_shutdown). */
6593 	write_csr(dd, DCC_CFG_RESET, LCB_RX_FPE_TX_FPE_OUT_OF_RESET);
6594 	/* lcb_shutdown() with abort=1 does not restore these */
6595 	write_csr(dd, DC_LCB_ERR_EN, dd->lcb_err_en);
6596 	dd->dc_shutdown = 0;
6597 }
6598 
6599 static void dc_start(struct hfi1_devdata *dd)
6600 {
6601 	mutex_lock(&dd->dc8051_lock);
6602 	_dc_start(dd);
6603 	mutex_unlock(&dd->dc8051_lock);
6604 }
6605 
6606 /*
6607  * These LCB adjustments are for the Aurora SerDes core in the FPGA.
6608  */
6609 static void adjust_lcb_for_fpga_serdes(struct hfi1_devdata *dd)
6610 {
6611 	u64 rx_radr, tx_radr;
6612 	u32 version;
6613 
6614 	if (dd->icode != ICODE_FPGA_EMULATION)
6615 		return;
6616 
6617 	/*
6618 	 * These LCB defaults on emulator _s are good, nothing to do here:
6619 	 *	LCB_CFG_TX_FIFOS_RADR
6620 	 *	LCB_CFG_RX_FIFOS_RADR
6621 	 *	LCB_CFG_LN_DCLK
6622 	 *	LCB_CFG_IGNORE_LOST_RCLK
6623 	 */
6624 	if (is_emulator_s(dd))
6625 		return;
6626 	/* else this is _p */
6627 
6628 	version = emulator_rev(dd);
6629 	if (!is_ax(dd))
6630 		version = 0x2d;	/* all B0 use 0x2d or higher settings */
6631 
6632 	if (version <= 0x12) {
6633 		/* release 0x12 and below */
6634 
6635 		/*
6636 		 * LCB_CFG_RX_FIFOS_RADR.RST_VAL = 0x9
6637 		 * LCB_CFG_RX_FIFOS_RADR.OK_TO_JUMP_VAL = 0x9
6638 		 * LCB_CFG_RX_FIFOS_RADR.DO_NOT_JUMP_VAL = 0xa
6639 		 */
6640 		rx_radr =
6641 		      0xaull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6642 		    | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6643 		    | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6644 		/*
6645 		 * LCB_CFG_TX_FIFOS_RADR.ON_REINIT = 0 (default)
6646 		 * LCB_CFG_TX_FIFOS_RADR.RST_VAL = 6
6647 		 */
6648 		tx_radr = 6ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6649 	} else if (version <= 0x18) {
6650 		/* release 0x13 up to 0x18 */
6651 		/* LCB_CFG_RX_FIFOS_RADR = 0x988 */
6652 		rx_radr =
6653 		      0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6654 		    | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6655 		    | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6656 		tx_radr = 7ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6657 	} else if (version == 0x19) {
6658 		/* release 0x19 */
6659 		/* LCB_CFG_RX_FIFOS_RADR = 0xa99 */
6660 		rx_radr =
6661 		      0xAull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6662 		    | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6663 		    | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6664 		tx_radr = 3ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6665 	} else if (version == 0x1a) {
6666 		/* release 0x1a */
6667 		/* LCB_CFG_RX_FIFOS_RADR = 0x988 */
6668 		rx_radr =
6669 		      0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6670 		    | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6671 		    | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6672 		tx_radr = 7ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6673 		write_csr(dd, DC_LCB_CFG_LN_DCLK, 1ull);
6674 	} else {
6675 		/* release 0x1b and higher */
6676 		/* LCB_CFG_RX_FIFOS_RADR = 0x877 */
6677 		rx_radr =
6678 		      0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6679 		    | 0x7ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6680 		    | 0x7ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6681 		tx_radr = 3ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6682 	}
6683 
6684 	write_csr(dd, DC_LCB_CFG_RX_FIFOS_RADR, rx_radr);
6685 	/* LCB_CFG_IGNORE_LOST_RCLK.EN = 1 */
6686 	write_csr(dd, DC_LCB_CFG_IGNORE_LOST_RCLK,
6687 		  DC_LCB_CFG_IGNORE_LOST_RCLK_EN_SMASK);
6688 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RADR, tx_radr);
6689 }
6690 
6691 /*
6692  * Handle a SMA idle message
6693  *
6694  * This is a work-queue function outside of the interrupt.
6695  */
6696 void handle_sma_message(struct work_struct *work)
6697 {
6698 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
6699 							sma_message_work);
6700 	struct hfi1_devdata *dd = ppd->dd;
6701 	u64 msg;
6702 	int ret;
6703 
6704 	/*
6705 	 * msg is bytes 1-4 of the 40-bit idle message - the command code
6706 	 * is stripped off
6707 	 */
6708 	ret = read_idle_sma(dd, &msg);
6709 	if (ret)
6710 		return;
6711 	dd_dev_info(dd, "%s: SMA message 0x%llx\n", __func__, msg);
6712 	/*
6713 	 * React to the SMA message.  Byte[1] (0 for us) is the command.
6714 	 */
6715 	switch (msg & 0xff) {
6716 	case SMA_IDLE_ARM:
6717 		/*
6718 		 * See OPAv1 table 9-14 - HFI and External Switch Ports Key
6719 		 * State Transitions
6720 		 *
6721 		 * Only expected in INIT or ARMED, discard otherwise.
6722 		 */
6723 		if (ppd->host_link_state & (HLS_UP_INIT | HLS_UP_ARMED))
6724 			ppd->neighbor_normal = 1;
6725 		break;
6726 	case SMA_IDLE_ACTIVE:
6727 		/*
6728 		 * See OPAv1 table 9-14 - HFI and External Switch Ports Key
6729 		 * State Transitions
6730 		 *
6731 		 * Can activate the node.  Discard otherwise.
6732 		 */
6733 		if (ppd->host_link_state == HLS_UP_ARMED &&
6734 		    ppd->is_active_optimize_enabled) {
6735 			ppd->neighbor_normal = 1;
6736 			ret = set_link_state(ppd, HLS_UP_ACTIVE);
6737 			if (ret)
6738 				dd_dev_err(
6739 					dd,
6740 					"%s: received Active SMA idle message, couldn't set link to Active\n",
6741 					__func__);
6742 		}
6743 		break;
6744 	default:
6745 		dd_dev_err(dd,
6746 			   "%s: received unexpected SMA idle message 0x%llx\n",
6747 			   __func__, msg);
6748 		break;
6749 	}
6750 }
6751 
6752 static void adjust_rcvctrl(struct hfi1_devdata *dd, u64 add, u64 clear)
6753 {
6754 	u64 rcvctrl;
6755 	unsigned long flags;
6756 
6757 	spin_lock_irqsave(&dd->rcvctrl_lock, flags);
6758 	rcvctrl = read_csr(dd, RCV_CTRL);
6759 	rcvctrl |= add;
6760 	rcvctrl &= ~clear;
6761 	write_csr(dd, RCV_CTRL, rcvctrl);
6762 	spin_unlock_irqrestore(&dd->rcvctrl_lock, flags);
6763 }
6764 
6765 static inline void add_rcvctrl(struct hfi1_devdata *dd, u64 add)
6766 {
6767 	adjust_rcvctrl(dd, add, 0);
6768 }
6769 
6770 static inline void clear_rcvctrl(struct hfi1_devdata *dd, u64 clear)
6771 {
6772 	adjust_rcvctrl(dd, 0, clear);
6773 }
6774 
6775 /*
6776  * Called from all interrupt handlers to start handling an SPC freeze.
6777  */
6778 void start_freeze_handling(struct hfi1_pportdata *ppd, int flags)
6779 {
6780 	struct hfi1_devdata *dd = ppd->dd;
6781 	struct send_context *sc;
6782 	int i;
6783 	int sc_flags;
6784 
6785 	if (flags & FREEZE_SELF)
6786 		write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_FREEZE_SMASK);
6787 
6788 	/* enter frozen mode */
6789 	dd->flags |= HFI1_FROZEN;
6790 
6791 	/* notify all SDMA engines that they are going into a freeze */
6792 	sdma_freeze_notify(dd, !!(flags & FREEZE_LINK_DOWN));
6793 
6794 	sc_flags = SCF_FROZEN | SCF_HALTED | (flags & FREEZE_LINK_DOWN ?
6795 					      SCF_LINK_DOWN : 0);
6796 	/* do halt pre-handling on all enabled send contexts */
6797 	for (i = 0; i < dd->num_send_contexts; i++) {
6798 		sc = dd->send_contexts[i].sc;
6799 		if (sc && (sc->flags & SCF_ENABLED))
6800 			sc_stop(sc, sc_flags);
6801 	}
6802 
6803 	/* Send context are frozen. Notify user space */
6804 	hfi1_set_uevent_bits(ppd, _HFI1_EVENT_FROZEN_BIT);
6805 
6806 	if (flags & FREEZE_ABORT) {
6807 		dd_dev_err(dd,
6808 			   "Aborted freeze recovery. Please REBOOT system\n");
6809 		return;
6810 	}
6811 	/* queue non-interrupt handler */
6812 	queue_work(ppd->hfi1_wq, &ppd->freeze_work);
6813 }
6814 
6815 /*
6816  * Wait until all 4 sub-blocks indicate that they have frozen or unfrozen,
6817  * depending on the "freeze" parameter.
6818  *
6819  * No need to return an error if it times out, our only option
6820  * is to proceed anyway.
6821  */
6822 static void wait_for_freeze_status(struct hfi1_devdata *dd, int freeze)
6823 {
6824 	unsigned long timeout;
6825 	u64 reg;
6826 
6827 	timeout = jiffies + msecs_to_jiffies(FREEZE_STATUS_TIMEOUT);
6828 	while (1) {
6829 		reg = read_csr(dd, CCE_STATUS);
6830 		if (freeze) {
6831 			/* waiting until all indicators are set */
6832 			if ((reg & ALL_FROZE) == ALL_FROZE)
6833 				return;	/* all done */
6834 		} else {
6835 			/* waiting until all indicators are clear */
6836 			if ((reg & ALL_FROZE) == 0)
6837 				return; /* all done */
6838 		}
6839 
6840 		if (time_after(jiffies, timeout)) {
6841 			dd_dev_err(dd,
6842 				   "Time out waiting for SPC %sfreeze, bits 0x%llx, expecting 0x%llx, continuing",
6843 				   freeze ? "" : "un", reg & ALL_FROZE,
6844 				   freeze ? ALL_FROZE : 0ull);
6845 			return;
6846 		}
6847 		usleep_range(80, 120);
6848 	}
6849 }
6850 
6851 /*
6852  * Do all freeze handling for the RXE block.
6853  */
6854 static void rxe_freeze(struct hfi1_devdata *dd)
6855 {
6856 	int i;
6857 	struct hfi1_ctxtdata *rcd;
6858 
6859 	/* disable port */
6860 	clear_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
6861 
6862 	/* disable all receive contexts */
6863 	for (i = 0; i < dd->num_rcv_contexts; i++) {
6864 		rcd = hfi1_rcd_get_by_index(dd, i);
6865 		hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_DIS, rcd);
6866 		hfi1_rcd_put(rcd);
6867 	}
6868 }
6869 
6870 /*
6871  * Unfreeze handling for the RXE block - kernel contexts only.
6872  * This will also enable the port.  User contexts will do unfreeze
6873  * handling on a per-context basis as they call into the driver.
6874  *
6875  */
6876 static void rxe_kernel_unfreeze(struct hfi1_devdata *dd)
6877 {
6878 	u32 rcvmask;
6879 	u16 i;
6880 	struct hfi1_ctxtdata *rcd;
6881 
6882 	/* enable all kernel contexts */
6883 	for (i = 0; i < dd->num_rcv_contexts; i++) {
6884 		rcd = hfi1_rcd_get_by_index(dd, i);
6885 
6886 		/* Ensure all non-user contexts(including vnic) are enabled */
6887 		if (!rcd ||
6888 		    (i >= dd->first_dyn_alloc_ctxt && !rcd->is_vnic)) {
6889 			hfi1_rcd_put(rcd);
6890 			continue;
6891 		}
6892 		rcvmask = HFI1_RCVCTRL_CTXT_ENB;
6893 		/* HFI1_RCVCTRL_TAILUPD_[ENB|DIS] needs to be set explicitly */
6894 		rcvmask |= hfi1_rcvhdrtail_kvaddr(rcd) ?
6895 			HFI1_RCVCTRL_TAILUPD_ENB : HFI1_RCVCTRL_TAILUPD_DIS;
6896 		hfi1_rcvctrl(dd, rcvmask, rcd);
6897 		hfi1_rcd_put(rcd);
6898 	}
6899 
6900 	/* enable port */
6901 	add_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
6902 }
6903 
6904 /*
6905  * Non-interrupt SPC freeze handling.
6906  *
6907  * This is a work-queue function outside of the triggering interrupt.
6908  */
6909 void handle_freeze(struct work_struct *work)
6910 {
6911 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
6912 								freeze_work);
6913 	struct hfi1_devdata *dd = ppd->dd;
6914 
6915 	/* wait for freeze indicators on all affected blocks */
6916 	wait_for_freeze_status(dd, 1);
6917 
6918 	/* SPC is now frozen */
6919 
6920 	/* do send PIO freeze steps */
6921 	pio_freeze(dd);
6922 
6923 	/* do send DMA freeze steps */
6924 	sdma_freeze(dd);
6925 
6926 	/* do send egress freeze steps - nothing to do */
6927 
6928 	/* do receive freeze steps */
6929 	rxe_freeze(dd);
6930 
6931 	/*
6932 	 * Unfreeze the hardware - clear the freeze, wait for each
6933 	 * block's frozen bit to clear, then clear the frozen flag.
6934 	 */
6935 	write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_UNFREEZE_SMASK);
6936 	wait_for_freeze_status(dd, 0);
6937 
6938 	if (is_ax(dd)) {
6939 		write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_FREEZE_SMASK);
6940 		wait_for_freeze_status(dd, 1);
6941 		write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_UNFREEZE_SMASK);
6942 		wait_for_freeze_status(dd, 0);
6943 	}
6944 
6945 	/* do send PIO unfreeze steps for kernel contexts */
6946 	pio_kernel_unfreeze(dd);
6947 
6948 	/* do send DMA unfreeze steps */
6949 	sdma_unfreeze(dd);
6950 
6951 	/* do send egress unfreeze steps - nothing to do */
6952 
6953 	/* do receive unfreeze steps for kernel contexts */
6954 	rxe_kernel_unfreeze(dd);
6955 
6956 	/*
6957 	 * The unfreeze procedure touches global device registers when
6958 	 * it disables and re-enables RXE. Mark the device unfrozen
6959 	 * after all that is done so other parts of the driver waiting
6960 	 * for the device to unfreeze don't do things out of order.
6961 	 *
6962 	 * The above implies that the meaning of HFI1_FROZEN flag is
6963 	 * "Device has gone into freeze mode and freeze mode handling
6964 	 * is still in progress."
6965 	 *
6966 	 * The flag will be removed when freeze mode processing has
6967 	 * completed.
6968 	 */
6969 	dd->flags &= ~HFI1_FROZEN;
6970 	wake_up(&dd->event_queue);
6971 
6972 	/* no longer frozen */
6973 }
6974 
6975 /**
6976  * update_xmit_counters - update PortXmitWait/PortVlXmitWait
6977  * counters.
6978  * @ppd: info of physical Hfi port
6979  * @link_width: new link width after link up or downgrade
6980  *
6981  * Update the PortXmitWait and PortVlXmitWait counters after
6982  * a link up or downgrade event to reflect a link width change.
6983  */
6984 static void update_xmit_counters(struct hfi1_pportdata *ppd, u16 link_width)
6985 {
6986 	int i;
6987 	u16 tx_width;
6988 	u16 link_speed;
6989 
6990 	tx_width = tx_link_width(link_width);
6991 	link_speed = get_link_speed(ppd->link_speed_active);
6992 
6993 	/*
6994 	 * There are C_VL_COUNT number of PortVLXmitWait counters.
6995 	 * Adding 1 to C_VL_COUNT to include the PortXmitWait counter.
6996 	 */
6997 	for (i = 0; i < C_VL_COUNT + 1; i++)
6998 		get_xmit_wait_counters(ppd, tx_width, link_speed, i);
6999 }
7000 
7001 /*
7002  * Handle a link up interrupt from the 8051.
7003  *
7004  * This is a work-queue function outside of the interrupt.
7005  */
7006 void handle_link_up(struct work_struct *work)
7007 {
7008 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
7009 						  link_up_work);
7010 	struct hfi1_devdata *dd = ppd->dd;
7011 
7012 	set_link_state(ppd, HLS_UP_INIT);
7013 
7014 	/* cache the read of DC_LCB_STS_ROUND_TRIP_LTP_CNT */
7015 	read_ltp_rtt(dd);
7016 	/*
7017 	 * OPA specifies that certain counters are cleared on a transition
7018 	 * to link up, so do that.
7019 	 */
7020 	clear_linkup_counters(dd);
7021 	/*
7022 	 * And (re)set link up default values.
7023 	 */
7024 	set_linkup_defaults(ppd);
7025 
7026 	/*
7027 	 * Set VL15 credits. Use cached value from verify cap interrupt.
7028 	 * In case of quick linkup or simulator, vl15 value will be set by
7029 	 * handle_linkup_change. VerifyCap interrupt handler will not be
7030 	 * called in those scenarios.
7031 	 */
7032 	if (!(quick_linkup || dd->icode == ICODE_FUNCTIONAL_SIMULATOR))
7033 		set_up_vl15(dd, dd->vl15buf_cached);
7034 
7035 	/* enforce link speed enabled */
7036 	if ((ppd->link_speed_active & ppd->link_speed_enabled) == 0) {
7037 		/* oops - current speed is not enabled, bounce */
7038 		dd_dev_err(dd,
7039 			   "Link speed active 0x%x is outside enabled 0x%x, downing link\n",
7040 			   ppd->link_speed_active, ppd->link_speed_enabled);
7041 		set_link_down_reason(ppd, OPA_LINKDOWN_REASON_SPEED_POLICY, 0,
7042 				     OPA_LINKDOWN_REASON_SPEED_POLICY);
7043 		set_link_state(ppd, HLS_DN_OFFLINE);
7044 		start_link(ppd);
7045 	}
7046 }
7047 
7048 /*
7049  * Several pieces of LNI information were cached for SMA in ppd.
7050  * Reset these on link down
7051  */
7052 static void reset_neighbor_info(struct hfi1_pportdata *ppd)
7053 {
7054 	ppd->neighbor_guid = 0;
7055 	ppd->neighbor_port_number = 0;
7056 	ppd->neighbor_type = 0;
7057 	ppd->neighbor_fm_security = 0;
7058 }
7059 
7060 static const char * const link_down_reason_strs[] = {
7061 	[OPA_LINKDOWN_REASON_NONE] = "None",
7062 	[OPA_LINKDOWN_REASON_RCV_ERROR_0] = "Receive error 0",
7063 	[OPA_LINKDOWN_REASON_BAD_PKT_LEN] = "Bad packet length",
7064 	[OPA_LINKDOWN_REASON_PKT_TOO_LONG] = "Packet too long",
7065 	[OPA_LINKDOWN_REASON_PKT_TOO_SHORT] = "Packet too short",
7066 	[OPA_LINKDOWN_REASON_BAD_SLID] = "Bad SLID",
7067 	[OPA_LINKDOWN_REASON_BAD_DLID] = "Bad DLID",
7068 	[OPA_LINKDOWN_REASON_BAD_L2] = "Bad L2",
7069 	[OPA_LINKDOWN_REASON_BAD_SC] = "Bad SC",
7070 	[OPA_LINKDOWN_REASON_RCV_ERROR_8] = "Receive error 8",
7071 	[OPA_LINKDOWN_REASON_BAD_MID_TAIL] = "Bad mid tail",
7072 	[OPA_LINKDOWN_REASON_RCV_ERROR_10] = "Receive error 10",
7073 	[OPA_LINKDOWN_REASON_PREEMPT_ERROR] = "Preempt error",
7074 	[OPA_LINKDOWN_REASON_PREEMPT_VL15] = "Preempt vl15",
7075 	[OPA_LINKDOWN_REASON_BAD_VL_MARKER] = "Bad VL marker",
7076 	[OPA_LINKDOWN_REASON_RCV_ERROR_14] = "Receive error 14",
7077 	[OPA_LINKDOWN_REASON_RCV_ERROR_15] = "Receive error 15",
7078 	[OPA_LINKDOWN_REASON_BAD_HEAD_DIST] = "Bad head distance",
7079 	[OPA_LINKDOWN_REASON_BAD_TAIL_DIST] = "Bad tail distance",
7080 	[OPA_LINKDOWN_REASON_BAD_CTRL_DIST] = "Bad control distance",
7081 	[OPA_LINKDOWN_REASON_BAD_CREDIT_ACK] = "Bad credit ack",
7082 	[OPA_LINKDOWN_REASON_UNSUPPORTED_VL_MARKER] = "Unsupported VL marker",
7083 	[OPA_LINKDOWN_REASON_BAD_PREEMPT] = "Bad preempt",
7084 	[OPA_LINKDOWN_REASON_BAD_CONTROL_FLIT] = "Bad control flit",
7085 	[OPA_LINKDOWN_REASON_EXCEED_MULTICAST_LIMIT] = "Exceed multicast limit",
7086 	[OPA_LINKDOWN_REASON_RCV_ERROR_24] = "Receive error 24",
7087 	[OPA_LINKDOWN_REASON_RCV_ERROR_25] = "Receive error 25",
7088 	[OPA_LINKDOWN_REASON_RCV_ERROR_26] = "Receive error 26",
7089 	[OPA_LINKDOWN_REASON_RCV_ERROR_27] = "Receive error 27",
7090 	[OPA_LINKDOWN_REASON_RCV_ERROR_28] = "Receive error 28",
7091 	[OPA_LINKDOWN_REASON_RCV_ERROR_29] = "Receive error 29",
7092 	[OPA_LINKDOWN_REASON_RCV_ERROR_30] = "Receive error 30",
7093 	[OPA_LINKDOWN_REASON_EXCESSIVE_BUFFER_OVERRUN] =
7094 					"Excessive buffer overrun",
7095 	[OPA_LINKDOWN_REASON_UNKNOWN] = "Unknown",
7096 	[OPA_LINKDOWN_REASON_REBOOT] = "Reboot",
7097 	[OPA_LINKDOWN_REASON_NEIGHBOR_UNKNOWN] = "Neighbor unknown",
7098 	[OPA_LINKDOWN_REASON_FM_BOUNCE] = "FM bounce",
7099 	[OPA_LINKDOWN_REASON_SPEED_POLICY] = "Speed policy",
7100 	[OPA_LINKDOWN_REASON_WIDTH_POLICY] = "Width policy",
7101 	[OPA_LINKDOWN_REASON_DISCONNECTED] = "Disconnected",
7102 	[OPA_LINKDOWN_REASON_LOCAL_MEDIA_NOT_INSTALLED] =
7103 					"Local media not installed",
7104 	[OPA_LINKDOWN_REASON_NOT_INSTALLED] = "Not installed",
7105 	[OPA_LINKDOWN_REASON_CHASSIS_CONFIG] = "Chassis config",
7106 	[OPA_LINKDOWN_REASON_END_TO_END_NOT_INSTALLED] =
7107 					"End to end not installed",
7108 	[OPA_LINKDOWN_REASON_POWER_POLICY] = "Power policy",
7109 	[OPA_LINKDOWN_REASON_LINKSPEED_POLICY] = "Link speed policy",
7110 	[OPA_LINKDOWN_REASON_LINKWIDTH_POLICY] = "Link width policy",
7111 	[OPA_LINKDOWN_REASON_SWITCH_MGMT] = "Switch management",
7112 	[OPA_LINKDOWN_REASON_SMA_DISABLED] = "SMA disabled",
7113 	[OPA_LINKDOWN_REASON_TRANSIENT] = "Transient"
7114 };
7115 
7116 /* return the neighbor link down reason string */
7117 static const char *link_down_reason_str(u8 reason)
7118 {
7119 	const char *str = NULL;
7120 
7121 	if (reason < ARRAY_SIZE(link_down_reason_strs))
7122 		str = link_down_reason_strs[reason];
7123 	if (!str)
7124 		str = "(invalid)";
7125 
7126 	return str;
7127 }
7128 
7129 /*
7130  * Handle a link down interrupt from the 8051.
7131  *
7132  * This is a work-queue function outside of the interrupt.
7133  */
7134 void handle_link_down(struct work_struct *work)
7135 {
7136 	u8 lcl_reason, neigh_reason = 0;
7137 	u8 link_down_reason;
7138 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
7139 						  link_down_work);
7140 	int was_up;
7141 	static const char ldr_str[] = "Link down reason: ";
7142 
7143 	if ((ppd->host_link_state &
7144 	     (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) &&
7145 	     ppd->port_type == PORT_TYPE_FIXED)
7146 		ppd->offline_disabled_reason =
7147 			HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NOT_INSTALLED);
7148 
7149 	/* Go offline first, then deal with reading/writing through 8051 */
7150 	was_up = !!(ppd->host_link_state & HLS_UP);
7151 	set_link_state(ppd, HLS_DN_OFFLINE);
7152 	xchg(&ppd->is_link_down_queued, 0);
7153 
7154 	if (was_up) {
7155 		lcl_reason = 0;
7156 		/* link down reason is only valid if the link was up */
7157 		read_link_down_reason(ppd->dd, &link_down_reason);
7158 		switch (link_down_reason) {
7159 		case LDR_LINK_TRANSFER_ACTIVE_LOW:
7160 			/* the link went down, no idle message reason */
7161 			dd_dev_info(ppd->dd, "%sUnexpected link down\n",
7162 				    ldr_str);
7163 			break;
7164 		case LDR_RECEIVED_LINKDOWN_IDLE_MSG:
7165 			/*
7166 			 * The neighbor reason is only valid if an idle message
7167 			 * was received for it.
7168 			 */
7169 			read_planned_down_reason_code(ppd->dd, &neigh_reason);
7170 			dd_dev_info(ppd->dd,
7171 				    "%sNeighbor link down message %d, %s\n",
7172 				    ldr_str, neigh_reason,
7173 				    link_down_reason_str(neigh_reason));
7174 			break;
7175 		case LDR_RECEIVED_HOST_OFFLINE_REQ:
7176 			dd_dev_info(ppd->dd,
7177 				    "%sHost requested link to go offline\n",
7178 				    ldr_str);
7179 			break;
7180 		default:
7181 			dd_dev_info(ppd->dd, "%sUnknown reason 0x%x\n",
7182 				    ldr_str, link_down_reason);
7183 			break;
7184 		}
7185 
7186 		/*
7187 		 * If no reason, assume peer-initiated but missed
7188 		 * LinkGoingDown idle flits.
7189 		 */
7190 		if (neigh_reason == 0)
7191 			lcl_reason = OPA_LINKDOWN_REASON_NEIGHBOR_UNKNOWN;
7192 	} else {
7193 		/* went down while polling or going up */
7194 		lcl_reason = OPA_LINKDOWN_REASON_TRANSIENT;
7195 	}
7196 
7197 	set_link_down_reason(ppd, lcl_reason, neigh_reason, 0);
7198 
7199 	/* inform the SMA when the link transitions from up to down */
7200 	if (was_up && ppd->local_link_down_reason.sma == 0 &&
7201 	    ppd->neigh_link_down_reason.sma == 0) {
7202 		ppd->local_link_down_reason.sma =
7203 					ppd->local_link_down_reason.latest;
7204 		ppd->neigh_link_down_reason.sma =
7205 					ppd->neigh_link_down_reason.latest;
7206 	}
7207 
7208 	reset_neighbor_info(ppd);
7209 
7210 	/* disable the port */
7211 	clear_rcvctrl(ppd->dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
7212 
7213 	/*
7214 	 * If there is no cable attached, turn the DC off. Otherwise,
7215 	 * start the link bring up.
7216 	 */
7217 	if (ppd->port_type == PORT_TYPE_QSFP && !qsfp_mod_present(ppd))
7218 		dc_shutdown(ppd->dd);
7219 	else
7220 		start_link(ppd);
7221 }
7222 
7223 void handle_link_bounce(struct work_struct *work)
7224 {
7225 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
7226 							link_bounce_work);
7227 
7228 	/*
7229 	 * Only do something if the link is currently up.
7230 	 */
7231 	if (ppd->host_link_state & HLS_UP) {
7232 		set_link_state(ppd, HLS_DN_OFFLINE);
7233 		start_link(ppd);
7234 	} else {
7235 		dd_dev_info(ppd->dd, "%s: link not up (%s), nothing to do\n",
7236 			    __func__, link_state_name(ppd->host_link_state));
7237 	}
7238 }
7239 
7240 /*
7241  * Mask conversion: Capability exchange to Port LTP.  The capability
7242  * exchange has an implicit 16b CRC that is mandatory.
7243  */
7244 static int cap_to_port_ltp(int cap)
7245 {
7246 	int port_ltp = PORT_LTP_CRC_MODE_16; /* this mode is mandatory */
7247 
7248 	if (cap & CAP_CRC_14B)
7249 		port_ltp |= PORT_LTP_CRC_MODE_14;
7250 	if (cap & CAP_CRC_48B)
7251 		port_ltp |= PORT_LTP_CRC_MODE_48;
7252 	if (cap & CAP_CRC_12B_16B_PER_LANE)
7253 		port_ltp |= PORT_LTP_CRC_MODE_PER_LANE;
7254 
7255 	return port_ltp;
7256 }
7257 
7258 /*
7259  * Convert an OPA Port LTP mask to capability mask
7260  */
7261 int port_ltp_to_cap(int port_ltp)
7262 {
7263 	int cap_mask = 0;
7264 
7265 	if (port_ltp & PORT_LTP_CRC_MODE_14)
7266 		cap_mask |= CAP_CRC_14B;
7267 	if (port_ltp & PORT_LTP_CRC_MODE_48)
7268 		cap_mask |= CAP_CRC_48B;
7269 	if (port_ltp & PORT_LTP_CRC_MODE_PER_LANE)
7270 		cap_mask |= CAP_CRC_12B_16B_PER_LANE;
7271 
7272 	return cap_mask;
7273 }
7274 
7275 /*
7276  * Convert a single DC LCB CRC mode to an OPA Port LTP mask.
7277  */
7278 static int lcb_to_port_ltp(int lcb_crc)
7279 {
7280 	int port_ltp = 0;
7281 
7282 	if (lcb_crc == LCB_CRC_12B_16B_PER_LANE)
7283 		port_ltp = PORT_LTP_CRC_MODE_PER_LANE;
7284 	else if (lcb_crc == LCB_CRC_48B)
7285 		port_ltp = PORT_LTP_CRC_MODE_48;
7286 	else if (lcb_crc == LCB_CRC_14B)
7287 		port_ltp = PORT_LTP_CRC_MODE_14;
7288 	else
7289 		port_ltp = PORT_LTP_CRC_MODE_16;
7290 
7291 	return port_ltp;
7292 }
7293 
7294 static void clear_full_mgmt_pkey(struct hfi1_pportdata *ppd)
7295 {
7296 	if (ppd->pkeys[2] != 0) {
7297 		ppd->pkeys[2] = 0;
7298 		(void)hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_PKEYS, 0);
7299 		hfi1_event_pkey_change(ppd->dd, ppd->port);
7300 	}
7301 }
7302 
7303 /*
7304  * Convert the given link width to the OPA link width bitmask.
7305  */
7306 static u16 link_width_to_bits(struct hfi1_devdata *dd, u16 width)
7307 {
7308 	switch (width) {
7309 	case 0:
7310 		/*
7311 		 * Simulator and quick linkup do not set the width.
7312 		 * Just set it to 4x without complaint.
7313 		 */
7314 		if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR || quick_linkup)
7315 			return OPA_LINK_WIDTH_4X;
7316 		return 0; /* no lanes up */
7317 	case 1: return OPA_LINK_WIDTH_1X;
7318 	case 2: return OPA_LINK_WIDTH_2X;
7319 	case 3: return OPA_LINK_WIDTH_3X;
7320 	case 4: return OPA_LINK_WIDTH_4X;
7321 	default:
7322 		dd_dev_info(dd, "%s: invalid width %d, using 4\n",
7323 			    __func__, width);
7324 		return OPA_LINK_WIDTH_4X;
7325 	}
7326 }
7327 
7328 /*
7329  * Do a population count on the bottom nibble.
7330  */
7331 static const u8 bit_counts[16] = {
7332 	0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4
7333 };
7334 
7335 static inline u8 nibble_to_count(u8 nibble)
7336 {
7337 	return bit_counts[nibble & 0xf];
7338 }
7339 
7340 /*
7341  * Read the active lane information from the 8051 registers and return
7342  * their widths.
7343  *
7344  * Active lane information is found in these 8051 registers:
7345  *	enable_lane_tx
7346  *	enable_lane_rx
7347  */
7348 static void get_link_widths(struct hfi1_devdata *dd, u16 *tx_width,
7349 			    u16 *rx_width)
7350 {
7351 	u16 tx, rx;
7352 	u8 enable_lane_rx;
7353 	u8 enable_lane_tx;
7354 	u8 tx_polarity_inversion;
7355 	u8 rx_polarity_inversion;
7356 	u8 max_rate;
7357 
7358 	/* read the active lanes */
7359 	read_tx_settings(dd, &enable_lane_tx, &tx_polarity_inversion,
7360 			 &rx_polarity_inversion, &max_rate);
7361 	read_local_lni(dd, &enable_lane_rx);
7362 
7363 	/* convert to counts */
7364 	tx = nibble_to_count(enable_lane_tx);
7365 	rx = nibble_to_count(enable_lane_rx);
7366 
7367 	/*
7368 	 * Set link_speed_active here, overriding what was set in
7369 	 * handle_verify_cap().  The ASIC 8051 firmware does not correctly
7370 	 * set the max_rate field in handle_verify_cap until v0.19.
7371 	 */
7372 	if ((dd->icode == ICODE_RTL_SILICON) &&
7373 	    (dd->dc8051_ver < dc8051_ver(0, 19, 0))) {
7374 		/* max_rate: 0 = 12.5G, 1 = 25G */
7375 		switch (max_rate) {
7376 		case 0:
7377 			dd->pport[0].link_speed_active = OPA_LINK_SPEED_12_5G;
7378 			break;
7379 		case 1:
7380 			dd->pport[0].link_speed_active = OPA_LINK_SPEED_25G;
7381 			break;
7382 		default:
7383 			dd_dev_err(dd,
7384 				   "%s: unexpected max rate %d, using 25Gb\n",
7385 				   __func__, (int)max_rate);
7386 			dd->pport[0].link_speed_active = OPA_LINK_SPEED_25G;
7387 			break;
7388 		}
7389 	}
7390 
7391 	dd_dev_info(dd,
7392 		    "Fabric active lanes (width): tx 0x%x (%d), rx 0x%x (%d)\n",
7393 		    enable_lane_tx, tx, enable_lane_rx, rx);
7394 	*tx_width = link_width_to_bits(dd, tx);
7395 	*rx_width = link_width_to_bits(dd, rx);
7396 }
7397 
7398 /*
7399  * Read verify_cap_local_fm_link_width[1] to obtain the link widths.
7400  * Valid after the end of VerifyCap and during LinkUp.  Does not change
7401  * after link up.  I.e. look elsewhere for downgrade information.
7402  *
7403  * Bits are:
7404  *	+ bits [7:4] contain the number of active transmitters
7405  *	+ bits [3:0] contain the number of active receivers
7406  * These are numbers 1 through 4 and can be different values if the
7407  * link is asymmetric.
7408  *
7409  * verify_cap_local_fm_link_width[0] retains its original value.
7410  */
7411 static void get_linkup_widths(struct hfi1_devdata *dd, u16 *tx_width,
7412 			      u16 *rx_width)
7413 {
7414 	u16 widths, tx, rx;
7415 	u8 misc_bits, local_flags;
7416 	u16 active_tx, active_rx;
7417 
7418 	read_vc_local_link_mode(dd, &misc_bits, &local_flags, &widths);
7419 	tx = widths >> 12;
7420 	rx = (widths >> 8) & 0xf;
7421 
7422 	*tx_width = link_width_to_bits(dd, tx);
7423 	*rx_width = link_width_to_bits(dd, rx);
7424 
7425 	/* print the active widths */
7426 	get_link_widths(dd, &active_tx, &active_rx);
7427 }
7428 
7429 /*
7430  * Set ppd->link_width_active and ppd->link_width_downgrade_active using
7431  * hardware information when the link first comes up.
7432  *
7433  * The link width is not available until after VerifyCap.AllFramesReceived
7434  * (the trigger for handle_verify_cap), so this is outside that routine
7435  * and should be called when the 8051 signals linkup.
7436  */
7437 void get_linkup_link_widths(struct hfi1_pportdata *ppd)
7438 {
7439 	u16 tx_width, rx_width;
7440 
7441 	/* get end-of-LNI link widths */
7442 	get_linkup_widths(ppd->dd, &tx_width, &rx_width);
7443 
7444 	/* use tx_width as the link is supposed to be symmetric on link up */
7445 	ppd->link_width_active = tx_width;
7446 	/* link width downgrade active (LWD.A) starts out matching LW.A */
7447 	ppd->link_width_downgrade_tx_active = ppd->link_width_active;
7448 	ppd->link_width_downgrade_rx_active = ppd->link_width_active;
7449 	/* per OPA spec, on link up LWD.E resets to LWD.S */
7450 	ppd->link_width_downgrade_enabled = ppd->link_width_downgrade_supported;
7451 	/* cache the active egress rate (units {10^6 bits/sec]) */
7452 	ppd->current_egress_rate = active_egress_rate(ppd);
7453 }
7454 
7455 /*
7456  * Handle a verify capabilities interrupt from the 8051.
7457  *
7458  * This is a work-queue function outside of the interrupt.
7459  */
7460 void handle_verify_cap(struct work_struct *work)
7461 {
7462 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
7463 								link_vc_work);
7464 	struct hfi1_devdata *dd = ppd->dd;
7465 	u64 reg;
7466 	u8 power_management;
7467 	u8 continuous;
7468 	u8 vcu;
7469 	u8 vau;
7470 	u8 z;
7471 	u16 vl15buf;
7472 	u16 link_widths;
7473 	u16 crc_mask;
7474 	u16 crc_val;
7475 	u16 device_id;
7476 	u16 active_tx, active_rx;
7477 	u8 partner_supported_crc;
7478 	u8 remote_tx_rate;
7479 	u8 device_rev;
7480 
7481 	set_link_state(ppd, HLS_VERIFY_CAP);
7482 
7483 	lcb_shutdown(dd, 0);
7484 	adjust_lcb_for_fpga_serdes(dd);
7485 
7486 	read_vc_remote_phy(dd, &power_management, &continuous);
7487 	read_vc_remote_fabric(dd, &vau, &z, &vcu, &vl15buf,
7488 			      &partner_supported_crc);
7489 	read_vc_remote_link_width(dd, &remote_tx_rate, &link_widths);
7490 	read_remote_device_id(dd, &device_id, &device_rev);
7491 
7492 	/* print the active widths */
7493 	get_link_widths(dd, &active_tx, &active_rx);
7494 	dd_dev_info(dd,
7495 		    "Peer PHY: power management 0x%x, continuous updates 0x%x\n",
7496 		    (int)power_management, (int)continuous);
7497 	dd_dev_info(dd,
7498 		    "Peer Fabric: vAU %d, Z %d, vCU %d, vl15 credits 0x%x, CRC sizes 0x%x\n",
7499 		    (int)vau, (int)z, (int)vcu, (int)vl15buf,
7500 		    (int)partner_supported_crc);
7501 	dd_dev_info(dd, "Peer Link Width: tx rate 0x%x, widths 0x%x\n",
7502 		    (u32)remote_tx_rate, (u32)link_widths);
7503 	dd_dev_info(dd, "Peer Device ID: 0x%04x, Revision 0x%02x\n",
7504 		    (u32)device_id, (u32)device_rev);
7505 	/*
7506 	 * The peer vAU value just read is the peer receiver value.  HFI does
7507 	 * not support a transmit vAU of 0 (AU == 8).  We advertised that
7508 	 * with Z=1 in the fabric capabilities sent to the peer.  The peer
7509 	 * will see our Z=1, and, if it advertised a vAU of 0, will move its
7510 	 * receive to vAU of 1 (AU == 16).  Do the same here.  We do not care
7511 	 * about the peer Z value - our sent vAU is 3 (hardwired) and is not
7512 	 * subject to the Z value exception.
7513 	 */
7514 	if (vau == 0)
7515 		vau = 1;
7516 	set_up_vau(dd, vau);
7517 
7518 	/*
7519 	 * Set VL15 credits to 0 in global credit register. Cache remote VL15
7520 	 * credits value and wait for link-up interrupt ot set it.
7521 	 */
7522 	set_up_vl15(dd, 0);
7523 	dd->vl15buf_cached = vl15buf;
7524 
7525 	/* set up the LCB CRC mode */
7526 	crc_mask = ppd->port_crc_mode_enabled & partner_supported_crc;
7527 
7528 	/* order is important: use the lowest bit in common */
7529 	if (crc_mask & CAP_CRC_14B)
7530 		crc_val = LCB_CRC_14B;
7531 	else if (crc_mask & CAP_CRC_48B)
7532 		crc_val = LCB_CRC_48B;
7533 	else if (crc_mask & CAP_CRC_12B_16B_PER_LANE)
7534 		crc_val = LCB_CRC_12B_16B_PER_LANE;
7535 	else
7536 		crc_val = LCB_CRC_16B;
7537 
7538 	dd_dev_info(dd, "Final LCB CRC mode: %d\n", (int)crc_val);
7539 	write_csr(dd, DC_LCB_CFG_CRC_MODE,
7540 		  (u64)crc_val << DC_LCB_CFG_CRC_MODE_TX_VAL_SHIFT);
7541 
7542 	/* set (14b only) or clear sideband credit */
7543 	reg = read_csr(dd, SEND_CM_CTRL);
7544 	if (crc_val == LCB_CRC_14B && crc_14b_sideband) {
7545 		write_csr(dd, SEND_CM_CTRL,
7546 			  reg | SEND_CM_CTRL_FORCE_CREDIT_MODE_SMASK);
7547 	} else {
7548 		write_csr(dd, SEND_CM_CTRL,
7549 			  reg & ~SEND_CM_CTRL_FORCE_CREDIT_MODE_SMASK);
7550 	}
7551 
7552 	ppd->link_speed_active = 0;	/* invalid value */
7553 	if (dd->dc8051_ver < dc8051_ver(0, 20, 0)) {
7554 		/* remote_tx_rate: 0 = 12.5G, 1 = 25G */
7555 		switch (remote_tx_rate) {
7556 		case 0:
7557 			ppd->link_speed_active = OPA_LINK_SPEED_12_5G;
7558 			break;
7559 		case 1:
7560 			ppd->link_speed_active = OPA_LINK_SPEED_25G;
7561 			break;
7562 		}
7563 	} else {
7564 		/* actual rate is highest bit of the ANDed rates */
7565 		u8 rate = remote_tx_rate & ppd->local_tx_rate;
7566 
7567 		if (rate & 2)
7568 			ppd->link_speed_active = OPA_LINK_SPEED_25G;
7569 		else if (rate & 1)
7570 			ppd->link_speed_active = OPA_LINK_SPEED_12_5G;
7571 	}
7572 	if (ppd->link_speed_active == 0) {
7573 		dd_dev_err(dd, "%s: unexpected remote tx rate %d, using 25Gb\n",
7574 			   __func__, (int)remote_tx_rate);
7575 		ppd->link_speed_active = OPA_LINK_SPEED_25G;
7576 	}
7577 
7578 	/*
7579 	 * Cache the values of the supported, enabled, and active
7580 	 * LTP CRC modes to return in 'portinfo' queries. But the bit
7581 	 * flags that are returned in the portinfo query differ from
7582 	 * what's in the link_crc_mask, crc_sizes, and crc_val
7583 	 * variables. Convert these here.
7584 	 */
7585 	ppd->port_ltp_crc_mode = cap_to_port_ltp(link_crc_mask) << 8;
7586 		/* supported crc modes */
7587 	ppd->port_ltp_crc_mode |=
7588 		cap_to_port_ltp(ppd->port_crc_mode_enabled) << 4;
7589 		/* enabled crc modes */
7590 	ppd->port_ltp_crc_mode |= lcb_to_port_ltp(crc_val);
7591 		/* active crc mode */
7592 
7593 	/* set up the remote credit return table */
7594 	assign_remote_cm_au_table(dd, vcu);
7595 
7596 	/*
7597 	 * The LCB is reset on entry to handle_verify_cap(), so this must
7598 	 * be applied on every link up.
7599 	 *
7600 	 * Adjust LCB error kill enable to kill the link if
7601 	 * these RBUF errors are seen:
7602 	 *	REPLAY_BUF_MBE_SMASK
7603 	 *	FLIT_INPUT_BUF_MBE_SMASK
7604 	 */
7605 	if (is_ax(dd)) {			/* fixed in B0 */
7606 		reg = read_csr(dd, DC_LCB_CFG_LINK_KILL_EN);
7607 		reg |= DC_LCB_CFG_LINK_KILL_EN_REPLAY_BUF_MBE_SMASK
7608 			| DC_LCB_CFG_LINK_KILL_EN_FLIT_INPUT_BUF_MBE_SMASK;
7609 		write_csr(dd, DC_LCB_CFG_LINK_KILL_EN, reg);
7610 	}
7611 
7612 	/* pull LCB fifos out of reset - all fifo clocks must be stable */
7613 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0);
7614 
7615 	/* give 8051 access to the LCB CSRs */
7616 	write_csr(dd, DC_LCB_ERR_EN, 0); /* mask LCB errors */
7617 	set_8051_lcb_access(dd);
7618 
7619 	/* tell the 8051 to go to LinkUp */
7620 	set_link_state(ppd, HLS_GOING_UP);
7621 }
7622 
7623 /**
7624  * apply_link_downgrade_policy - Apply the link width downgrade enabled
7625  * policy against the current active link widths.
7626  * @ppd: info of physical Hfi port
7627  * @refresh_widths: True indicates link downgrade event
7628  * @return: True indicates a successful link downgrade. False indicates
7629  *	    link downgrade event failed and the link will bounce back to
7630  *	    default link width.
7631  *
7632  * Called when the enabled policy changes or the active link widths
7633  * change.
7634  * Refresh_widths indicates that a link downgrade occurred. The
7635  * link_downgraded variable is set by refresh_widths and
7636  * determines the success/failure of the policy application.
7637  */
7638 bool apply_link_downgrade_policy(struct hfi1_pportdata *ppd,
7639 				 bool refresh_widths)
7640 {
7641 	int do_bounce = 0;
7642 	int tries;
7643 	u16 lwde;
7644 	u16 tx, rx;
7645 	bool link_downgraded = refresh_widths;
7646 
7647 	/* use the hls lock to avoid a race with actual link up */
7648 	tries = 0;
7649 retry:
7650 	mutex_lock(&ppd->hls_lock);
7651 	/* only apply if the link is up */
7652 	if (ppd->host_link_state & HLS_DOWN) {
7653 		/* still going up..wait and retry */
7654 		if (ppd->host_link_state & HLS_GOING_UP) {
7655 			if (++tries < 1000) {
7656 				mutex_unlock(&ppd->hls_lock);
7657 				usleep_range(100, 120); /* arbitrary */
7658 				goto retry;
7659 			}
7660 			dd_dev_err(ppd->dd,
7661 				   "%s: giving up waiting for link state change\n",
7662 				   __func__);
7663 		}
7664 		goto done;
7665 	}
7666 
7667 	lwde = ppd->link_width_downgrade_enabled;
7668 
7669 	if (refresh_widths) {
7670 		get_link_widths(ppd->dd, &tx, &rx);
7671 		ppd->link_width_downgrade_tx_active = tx;
7672 		ppd->link_width_downgrade_rx_active = rx;
7673 	}
7674 
7675 	if (ppd->link_width_downgrade_tx_active == 0 ||
7676 	    ppd->link_width_downgrade_rx_active == 0) {
7677 		/* the 8051 reported a dead link as a downgrade */
7678 		dd_dev_err(ppd->dd, "Link downgrade is really a link down, ignoring\n");
7679 		link_downgraded = false;
7680 	} else if (lwde == 0) {
7681 		/* downgrade is disabled */
7682 
7683 		/* bounce if not at starting active width */
7684 		if ((ppd->link_width_active !=
7685 		     ppd->link_width_downgrade_tx_active) ||
7686 		    (ppd->link_width_active !=
7687 		     ppd->link_width_downgrade_rx_active)) {
7688 			dd_dev_err(ppd->dd,
7689 				   "Link downgrade is disabled and link has downgraded, downing link\n");
7690 			dd_dev_err(ppd->dd,
7691 				   "  original 0x%x, tx active 0x%x, rx active 0x%x\n",
7692 				   ppd->link_width_active,
7693 				   ppd->link_width_downgrade_tx_active,
7694 				   ppd->link_width_downgrade_rx_active);
7695 			do_bounce = 1;
7696 			link_downgraded = false;
7697 		}
7698 	} else if ((lwde & ppd->link_width_downgrade_tx_active) == 0 ||
7699 		   (lwde & ppd->link_width_downgrade_rx_active) == 0) {
7700 		/* Tx or Rx is outside the enabled policy */
7701 		dd_dev_err(ppd->dd,
7702 			   "Link is outside of downgrade allowed, downing link\n");
7703 		dd_dev_err(ppd->dd,
7704 			   "  enabled 0x%x, tx active 0x%x, rx active 0x%x\n",
7705 			   lwde, ppd->link_width_downgrade_tx_active,
7706 			   ppd->link_width_downgrade_rx_active);
7707 		do_bounce = 1;
7708 		link_downgraded = false;
7709 	}
7710 
7711 done:
7712 	mutex_unlock(&ppd->hls_lock);
7713 
7714 	if (do_bounce) {
7715 		set_link_down_reason(ppd, OPA_LINKDOWN_REASON_WIDTH_POLICY, 0,
7716 				     OPA_LINKDOWN_REASON_WIDTH_POLICY);
7717 		set_link_state(ppd, HLS_DN_OFFLINE);
7718 		start_link(ppd);
7719 	}
7720 
7721 	return link_downgraded;
7722 }
7723 
7724 /*
7725  * Handle a link downgrade interrupt from the 8051.
7726  *
7727  * This is a work-queue function outside of the interrupt.
7728  */
7729 void handle_link_downgrade(struct work_struct *work)
7730 {
7731 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
7732 							link_downgrade_work);
7733 
7734 	dd_dev_info(ppd->dd, "8051: Link width downgrade\n");
7735 	if (apply_link_downgrade_policy(ppd, true))
7736 		update_xmit_counters(ppd, ppd->link_width_downgrade_tx_active);
7737 }
7738 
7739 static char *dcc_err_string(char *buf, int buf_len, u64 flags)
7740 {
7741 	return flag_string(buf, buf_len, flags, dcc_err_flags,
7742 		ARRAY_SIZE(dcc_err_flags));
7743 }
7744 
7745 static char *lcb_err_string(char *buf, int buf_len, u64 flags)
7746 {
7747 	return flag_string(buf, buf_len, flags, lcb_err_flags,
7748 		ARRAY_SIZE(lcb_err_flags));
7749 }
7750 
7751 static char *dc8051_err_string(char *buf, int buf_len, u64 flags)
7752 {
7753 	return flag_string(buf, buf_len, flags, dc8051_err_flags,
7754 		ARRAY_SIZE(dc8051_err_flags));
7755 }
7756 
7757 static char *dc8051_info_err_string(char *buf, int buf_len, u64 flags)
7758 {
7759 	return flag_string(buf, buf_len, flags, dc8051_info_err_flags,
7760 		ARRAY_SIZE(dc8051_info_err_flags));
7761 }
7762 
7763 static char *dc8051_info_host_msg_string(char *buf, int buf_len, u64 flags)
7764 {
7765 	return flag_string(buf, buf_len, flags, dc8051_info_host_msg_flags,
7766 		ARRAY_SIZE(dc8051_info_host_msg_flags));
7767 }
7768 
7769 static void handle_8051_interrupt(struct hfi1_devdata *dd, u32 unused, u64 reg)
7770 {
7771 	struct hfi1_pportdata *ppd = dd->pport;
7772 	u64 info, err, host_msg;
7773 	int queue_link_down = 0;
7774 	char buf[96];
7775 
7776 	/* look at the flags */
7777 	if (reg & DC_DC8051_ERR_FLG_SET_BY_8051_SMASK) {
7778 		/* 8051 information set by firmware */
7779 		/* read DC8051_DBG_ERR_INFO_SET_BY_8051 for details */
7780 		info = read_csr(dd, DC_DC8051_DBG_ERR_INFO_SET_BY_8051);
7781 		err = (info >> DC_DC8051_DBG_ERR_INFO_SET_BY_8051_ERROR_SHIFT)
7782 			& DC_DC8051_DBG_ERR_INFO_SET_BY_8051_ERROR_MASK;
7783 		host_msg = (info >>
7784 			DC_DC8051_DBG_ERR_INFO_SET_BY_8051_HOST_MSG_SHIFT)
7785 			& DC_DC8051_DBG_ERR_INFO_SET_BY_8051_HOST_MSG_MASK;
7786 
7787 		/*
7788 		 * Handle error flags.
7789 		 */
7790 		if (err & FAILED_LNI) {
7791 			/*
7792 			 * LNI error indications are cleared by the 8051
7793 			 * only when starting polling.  Only pay attention
7794 			 * to them when in the states that occur during
7795 			 * LNI.
7796 			 */
7797 			if (ppd->host_link_state
7798 			    & (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) {
7799 				queue_link_down = 1;
7800 				dd_dev_info(dd, "Link error: %s\n",
7801 					    dc8051_info_err_string(buf,
7802 								   sizeof(buf),
7803 								   err &
7804 								   FAILED_LNI));
7805 			}
7806 			err &= ~(u64)FAILED_LNI;
7807 		}
7808 		/* unknown frames can happen durning LNI, just count */
7809 		if (err & UNKNOWN_FRAME) {
7810 			ppd->unknown_frame_count++;
7811 			err &= ~(u64)UNKNOWN_FRAME;
7812 		}
7813 		if (err) {
7814 			/* report remaining errors, but do not do anything */
7815 			dd_dev_err(dd, "8051 info error: %s\n",
7816 				   dc8051_info_err_string(buf, sizeof(buf),
7817 							  err));
7818 		}
7819 
7820 		/*
7821 		 * Handle host message flags.
7822 		 */
7823 		if (host_msg & HOST_REQ_DONE) {
7824 			/*
7825 			 * Presently, the driver does a busy wait for
7826 			 * host requests to complete.  This is only an
7827 			 * informational message.
7828 			 * NOTE: The 8051 clears the host message
7829 			 * information *on the next 8051 command*.
7830 			 * Therefore, when linkup is achieved,
7831 			 * this flag will still be set.
7832 			 */
7833 			host_msg &= ~(u64)HOST_REQ_DONE;
7834 		}
7835 		if (host_msg & BC_SMA_MSG) {
7836 			queue_work(ppd->link_wq, &ppd->sma_message_work);
7837 			host_msg &= ~(u64)BC_SMA_MSG;
7838 		}
7839 		if (host_msg & LINKUP_ACHIEVED) {
7840 			dd_dev_info(dd, "8051: Link up\n");
7841 			queue_work(ppd->link_wq, &ppd->link_up_work);
7842 			host_msg &= ~(u64)LINKUP_ACHIEVED;
7843 		}
7844 		if (host_msg & EXT_DEVICE_CFG_REQ) {
7845 			handle_8051_request(ppd);
7846 			host_msg &= ~(u64)EXT_DEVICE_CFG_REQ;
7847 		}
7848 		if (host_msg & VERIFY_CAP_FRAME) {
7849 			queue_work(ppd->link_wq, &ppd->link_vc_work);
7850 			host_msg &= ~(u64)VERIFY_CAP_FRAME;
7851 		}
7852 		if (host_msg & LINK_GOING_DOWN) {
7853 			const char *extra = "";
7854 			/* no downgrade action needed if going down */
7855 			if (host_msg & LINK_WIDTH_DOWNGRADED) {
7856 				host_msg &= ~(u64)LINK_WIDTH_DOWNGRADED;
7857 				extra = " (ignoring downgrade)";
7858 			}
7859 			dd_dev_info(dd, "8051: Link down%s\n", extra);
7860 			queue_link_down = 1;
7861 			host_msg &= ~(u64)LINK_GOING_DOWN;
7862 		}
7863 		if (host_msg & LINK_WIDTH_DOWNGRADED) {
7864 			queue_work(ppd->link_wq, &ppd->link_downgrade_work);
7865 			host_msg &= ~(u64)LINK_WIDTH_DOWNGRADED;
7866 		}
7867 		if (host_msg) {
7868 			/* report remaining messages, but do not do anything */
7869 			dd_dev_info(dd, "8051 info host message: %s\n",
7870 				    dc8051_info_host_msg_string(buf,
7871 								sizeof(buf),
7872 								host_msg));
7873 		}
7874 
7875 		reg &= ~DC_DC8051_ERR_FLG_SET_BY_8051_SMASK;
7876 	}
7877 	if (reg & DC_DC8051_ERR_FLG_LOST_8051_HEART_BEAT_SMASK) {
7878 		/*
7879 		 * Lost the 8051 heartbeat.  If this happens, we
7880 		 * receive constant interrupts about it.  Disable
7881 		 * the interrupt after the first.
7882 		 */
7883 		dd_dev_err(dd, "Lost 8051 heartbeat\n");
7884 		write_csr(dd, DC_DC8051_ERR_EN,
7885 			  read_csr(dd, DC_DC8051_ERR_EN) &
7886 			  ~DC_DC8051_ERR_EN_LOST_8051_HEART_BEAT_SMASK);
7887 
7888 		reg &= ~DC_DC8051_ERR_FLG_LOST_8051_HEART_BEAT_SMASK;
7889 	}
7890 	if (reg) {
7891 		/* report the error, but do not do anything */
7892 		dd_dev_err(dd, "8051 error: %s\n",
7893 			   dc8051_err_string(buf, sizeof(buf), reg));
7894 	}
7895 
7896 	if (queue_link_down) {
7897 		/*
7898 		 * if the link is already going down or disabled, do not
7899 		 * queue another. If there's a link down entry already
7900 		 * queued, don't queue another one.
7901 		 */
7902 		if ((ppd->host_link_state &
7903 		    (HLS_GOING_OFFLINE | HLS_LINK_COOLDOWN)) ||
7904 		    ppd->link_enabled == 0) {
7905 			dd_dev_info(dd, "%s: not queuing link down. host_link_state %x, link_enabled %x\n",
7906 				    __func__, ppd->host_link_state,
7907 				    ppd->link_enabled);
7908 		} else {
7909 			if (xchg(&ppd->is_link_down_queued, 1) == 1)
7910 				dd_dev_info(dd,
7911 					    "%s: link down request already queued\n",
7912 					    __func__);
7913 			else
7914 				queue_work(ppd->link_wq, &ppd->link_down_work);
7915 		}
7916 	}
7917 }
7918 
7919 static const char * const fm_config_txt[] = {
7920 [0] =
7921 	"BadHeadDist: Distance violation between two head flits",
7922 [1] =
7923 	"BadTailDist: Distance violation between two tail flits",
7924 [2] =
7925 	"BadCtrlDist: Distance violation between two credit control flits",
7926 [3] =
7927 	"BadCrdAck: Credits return for unsupported VL",
7928 [4] =
7929 	"UnsupportedVLMarker: Received VL Marker",
7930 [5] =
7931 	"BadPreempt: Exceeded the preemption nesting level",
7932 [6] =
7933 	"BadControlFlit: Received unsupported control flit",
7934 /* no 7 */
7935 [8] =
7936 	"UnsupportedVLMarker: Received VL Marker for unconfigured or disabled VL",
7937 };
7938 
7939 static const char * const port_rcv_txt[] = {
7940 [1] =
7941 	"BadPktLen: Illegal PktLen",
7942 [2] =
7943 	"PktLenTooLong: Packet longer than PktLen",
7944 [3] =
7945 	"PktLenTooShort: Packet shorter than PktLen",
7946 [4] =
7947 	"BadSLID: Illegal SLID (0, using multicast as SLID, does not include security validation of SLID)",
7948 [5] =
7949 	"BadDLID: Illegal DLID (0, doesn't match HFI)",
7950 [6] =
7951 	"BadL2: Illegal L2 opcode",
7952 [7] =
7953 	"BadSC: Unsupported SC",
7954 [9] =
7955 	"BadRC: Illegal RC",
7956 [11] =
7957 	"PreemptError: Preempting with same VL",
7958 [12] =
7959 	"PreemptVL15: Preempting a VL15 packet",
7960 };
7961 
7962 #define OPA_LDR_FMCONFIG_OFFSET 16
7963 #define OPA_LDR_PORTRCV_OFFSET 0
7964 static void handle_dcc_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
7965 {
7966 	u64 info, hdr0, hdr1;
7967 	const char *extra;
7968 	char buf[96];
7969 	struct hfi1_pportdata *ppd = dd->pport;
7970 	u8 lcl_reason = 0;
7971 	int do_bounce = 0;
7972 
7973 	if (reg & DCC_ERR_FLG_UNCORRECTABLE_ERR_SMASK) {
7974 		if (!(dd->err_info_uncorrectable & OPA_EI_STATUS_SMASK)) {
7975 			info = read_csr(dd, DCC_ERR_INFO_UNCORRECTABLE);
7976 			dd->err_info_uncorrectable = info & OPA_EI_CODE_SMASK;
7977 			/* set status bit */
7978 			dd->err_info_uncorrectable |= OPA_EI_STATUS_SMASK;
7979 		}
7980 		reg &= ~DCC_ERR_FLG_UNCORRECTABLE_ERR_SMASK;
7981 	}
7982 
7983 	if (reg & DCC_ERR_FLG_LINK_ERR_SMASK) {
7984 		struct hfi1_pportdata *ppd = dd->pport;
7985 		/* this counter saturates at (2^32) - 1 */
7986 		if (ppd->link_downed < (u32)UINT_MAX)
7987 			ppd->link_downed++;
7988 		reg &= ~DCC_ERR_FLG_LINK_ERR_SMASK;
7989 	}
7990 
7991 	if (reg & DCC_ERR_FLG_FMCONFIG_ERR_SMASK) {
7992 		u8 reason_valid = 1;
7993 
7994 		info = read_csr(dd, DCC_ERR_INFO_FMCONFIG);
7995 		if (!(dd->err_info_fmconfig & OPA_EI_STATUS_SMASK)) {
7996 			dd->err_info_fmconfig = info & OPA_EI_CODE_SMASK;
7997 			/* set status bit */
7998 			dd->err_info_fmconfig |= OPA_EI_STATUS_SMASK;
7999 		}
8000 		switch (info) {
8001 		case 0:
8002 		case 1:
8003 		case 2:
8004 		case 3:
8005 		case 4:
8006 		case 5:
8007 		case 6:
8008 			extra = fm_config_txt[info];
8009 			break;
8010 		case 8:
8011 			extra = fm_config_txt[info];
8012 			if (ppd->port_error_action &
8013 			    OPA_PI_MASK_FM_CFG_UNSUPPORTED_VL_MARKER) {
8014 				do_bounce = 1;
8015 				/*
8016 				 * lcl_reason cannot be derived from info
8017 				 * for this error
8018 				 */
8019 				lcl_reason =
8020 				  OPA_LINKDOWN_REASON_UNSUPPORTED_VL_MARKER;
8021 			}
8022 			break;
8023 		default:
8024 			reason_valid = 0;
8025 			snprintf(buf, sizeof(buf), "reserved%lld", info);
8026 			extra = buf;
8027 			break;
8028 		}
8029 
8030 		if (reason_valid && !do_bounce) {
8031 			do_bounce = ppd->port_error_action &
8032 					(1 << (OPA_LDR_FMCONFIG_OFFSET + info));
8033 			lcl_reason = info + OPA_LINKDOWN_REASON_BAD_HEAD_DIST;
8034 		}
8035 
8036 		/* just report this */
8037 		dd_dev_info_ratelimited(dd, "DCC Error: fmconfig error: %s\n",
8038 					extra);
8039 		reg &= ~DCC_ERR_FLG_FMCONFIG_ERR_SMASK;
8040 	}
8041 
8042 	if (reg & DCC_ERR_FLG_RCVPORT_ERR_SMASK) {
8043 		u8 reason_valid = 1;
8044 
8045 		info = read_csr(dd, DCC_ERR_INFO_PORTRCV);
8046 		hdr0 = read_csr(dd, DCC_ERR_INFO_PORTRCV_HDR0);
8047 		hdr1 = read_csr(dd, DCC_ERR_INFO_PORTRCV_HDR1);
8048 		if (!(dd->err_info_rcvport.status_and_code &
8049 		      OPA_EI_STATUS_SMASK)) {
8050 			dd->err_info_rcvport.status_and_code =
8051 				info & OPA_EI_CODE_SMASK;
8052 			/* set status bit */
8053 			dd->err_info_rcvport.status_and_code |=
8054 				OPA_EI_STATUS_SMASK;
8055 			/*
8056 			 * save first 2 flits in the packet that caused
8057 			 * the error
8058 			 */
8059 			dd->err_info_rcvport.packet_flit1 = hdr0;
8060 			dd->err_info_rcvport.packet_flit2 = hdr1;
8061 		}
8062 		switch (info) {
8063 		case 1:
8064 		case 2:
8065 		case 3:
8066 		case 4:
8067 		case 5:
8068 		case 6:
8069 		case 7:
8070 		case 9:
8071 		case 11:
8072 		case 12:
8073 			extra = port_rcv_txt[info];
8074 			break;
8075 		default:
8076 			reason_valid = 0;
8077 			snprintf(buf, sizeof(buf), "reserved%lld", info);
8078 			extra = buf;
8079 			break;
8080 		}
8081 
8082 		if (reason_valid && !do_bounce) {
8083 			do_bounce = ppd->port_error_action &
8084 					(1 << (OPA_LDR_PORTRCV_OFFSET + info));
8085 			lcl_reason = info + OPA_LINKDOWN_REASON_RCV_ERROR_0;
8086 		}
8087 
8088 		/* just report this */
8089 		dd_dev_info_ratelimited(dd, "DCC Error: PortRcv error: %s\n"
8090 					"               hdr0 0x%llx, hdr1 0x%llx\n",
8091 					extra, hdr0, hdr1);
8092 
8093 		reg &= ~DCC_ERR_FLG_RCVPORT_ERR_SMASK;
8094 	}
8095 
8096 	if (reg & DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_UC_SMASK) {
8097 		/* informative only */
8098 		dd_dev_info_ratelimited(dd, "8051 access to LCB blocked\n");
8099 		reg &= ~DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_UC_SMASK;
8100 	}
8101 	if (reg & DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_HOST_SMASK) {
8102 		/* informative only */
8103 		dd_dev_info_ratelimited(dd, "host access to LCB blocked\n");
8104 		reg &= ~DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_HOST_SMASK;
8105 	}
8106 
8107 	if (unlikely(hfi1_dbg_fault_suppress_err(&dd->verbs_dev)))
8108 		reg &= ~DCC_ERR_FLG_LATE_EBP_ERR_SMASK;
8109 
8110 	/* report any remaining errors */
8111 	if (reg)
8112 		dd_dev_info_ratelimited(dd, "DCC Error: %s\n",
8113 					dcc_err_string(buf, sizeof(buf), reg));
8114 
8115 	if (lcl_reason == 0)
8116 		lcl_reason = OPA_LINKDOWN_REASON_UNKNOWN;
8117 
8118 	if (do_bounce) {
8119 		dd_dev_info_ratelimited(dd, "%s: PortErrorAction bounce\n",
8120 					__func__);
8121 		set_link_down_reason(ppd, lcl_reason, 0, lcl_reason);
8122 		queue_work(ppd->link_wq, &ppd->link_bounce_work);
8123 	}
8124 }
8125 
8126 static void handle_lcb_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
8127 {
8128 	char buf[96];
8129 
8130 	dd_dev_info(dd, "LCB Error: %s\n",
8131 		    lcb_err_string(buf, sizeof(buf), reg));
8132 }
8133 
8134 /*
8135  * CCE block DC interrupt.  Source is < 8.
8136  */
8137 static void is_dc_int(struct hfi1_devdata *dd, unsigned int source)
8138 {
8139 	const struct err_reg_info *eri = &dc_errs[source];
8140 
8141 	if (eri->handler) {
8142 		interrupt_clear_down(dd, 0, eri);
8143 	} else if (source == 3 /* dc_lbm_int */) {
8144 		/*
8145 		 * This indicates that a parity error has occurred on the
8146 		 * address/control lines presented to the LBM.  The error
8147 		 * is a single pulse, there is no associated error flag,
8148 		 * and it is non-maskable.  This is because if a parity
8149 		 * error occurs on the request the request is dropped.
8150 		 * This should never occur, but it is nice to know if it
8151 		 * ever does.
8152 		 */
8153 		dd_dev_err(dd, "Parity error in DC LBM block\n");
8154 	} else {
8155 		dd_dev_err(dd, "Invalid DC interrupt %u\n", source);
8156 	}
8157 }
8158 
8159 /*
8160  * TX block send credit interrupt.  Source is < 160.
8161  */
8162 static void is_send_credit_int(struct hfi1_devdata *dd, unsigned int source)
8163 {
8164 	sc_group_release_update(dd, source);
8165 }
8166 
8167 /*
8168  * TX block SDMA interrupt.  Source is < 48.
8169  *
8170  * SDMA interrupts are grouped by type:
8171  *
8172  *	 0 -  N-1 = SDma
8173  *	 N - 2N-1 = SDmaProgress
8174  *	2N - 3N-1 = SDmaIdle
8175  */
8176 static void is_sdma_eng_int(struct hfi1_devdata *dd, unsigned int source)
8177 {
8178 	/* what interrupt */
8179 	unsigned int what  = source / TXE_NUM_SDMA_ENGINES;
8180 	/* which engine */
8181 	unsigned int which = source % TXE_NUM_SDMA_ENGINES;
8182 
8183 #ifdef CONFIG_SDMA_VERBOSITY
8184 	dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", which,
8185 		   slashstrip(__FILE__), __LINE__, __func__);
8186 	sdma_dumpstate(&dd->per_sdma[which]);
8187 #endif
8188 
8189 	if (likely(what < 3 && which < dd->num_sdma)) {
8190 		sdma_engine_interrupt(&dd->per_sdma[which], 1ull << source);
8191 	} else {
8192 		/* should not happen */
8193 		dd_dev_err(dd, "Invalid SDMA interrupt 0x%x\n", source);
8194 	}
8195 }
8196 
8197 /**
8198  * is_rcv_avail_int() - User receive context available IRQ handler
8199  * @dd: valid dd
8200  * @source: logical IRQ source (offset from IS_RCVAVAIL_START)
8201  *
8202  * RX block receive available interrupt.  Source is < 160.
8203  *
8204  * This is the general interrupt handler for user (PSM) receive contexts,
8205  * and can only be used for non-threaded IRQs.
8206  */
8207 static void is_rcv_avail_int(struct hfi1_devdata *dd, unsigned int source)
8208 {
8209 	struct hfi1_ctxtdata *rcd;
8210 	char *err_detail;
8211 
8212 	if (likely(source < dd->num_rcv_contexts)) {
8213 		rcd = hfi1_rcd_get_by_index(dd, source);
8214 		if (rcd) {
8215 			handle_user_interrupt(rcd);
8216 			hfi1_rcd_put(rcd);
8217 			return;	/* OK */
8218 		}
8219 		/* received an interrupt, but no rcd */
8220 		err_detail = "dataless";
8221 	} else {
8222 		/* received an interrupt, but are not using that context */
8223 		err_detail = "out of range";
8224 	}
8225 	dd_dev_err(dd, "unexpected %s receive available context interrupt %u\n",
8226 		   err_detail, source);
8227 }
8228 
8229 /**
8230  * is_rcv_urgent_int() - User receive context urgent IRQ handler
8231  * @dd: valid dd
8232  * @source: logical IRQ source (offset from IS_RCVURGENT_START)
8233  *
8234  * RX block receive urgent interrupt.  Source is < 160.
8235  *
8236  * NOTE: kernel receive contexts specifically do NOT enable this IRQ.
8237  */
8238 static void is_rcv_urgent_int(struct hfi1_devdata *dd, unsigned int source)
8239 {
8240 	struct hfi1_ctxtdata *rcd;
8241 	char *err_detail;
8242 
8243 	if (likely(source < dd->num_rcv_contexts)) {
8244 		rcd = hfi1_rcd_get_by_index(dd, source);
8245 		if (rcd) {
8246 			handle_user_interrupt(rcd);
8247 			hfi1_rcd_put(rcd);
8248 			return;	/* OK */
8249 		}
8250 		/* received an interrupt, but no rcd */
8251 		err_detail = "dataless";
8252 	} else {
8253 		/* received an interrupt, but are not using that context */
8254 		err_detail = "out of range";
8255 	}
8256 	dd_dev_err(dd, "unexpected %s receive urgent context interrupt %u\n",
8257 		   err_detail, source);
8258 }
8259 
8260 /*
8261  * Reserved range interrupt.  Should not be called in normal operation.
8262  */
8263 static void is_reserved_int(struct hfi1_devdata *dd, unsigned int source)
8264 {
8265 	char name[64];
8266 
8267 	dd_dev_err(dd, "unexpected %s interrupt\n",
8268 		   is_reserved_name(name, sizeof(name), source));
8269 }
8270 
8271 static const struct is_table is_table[] = {
8272 /*
8273  * start		 end
8274  *				name func		interrupt func
8275  */
8276 { IS_GENERAL_ERR_START,  IS_GENERAL_ERR_END,
8277 				is_misc_err_name,	is_misc_err_int },
8278 { IS_SDMAENG_ERR_START,  IS_SDMAENG_ERR_END,
8279 				is_sdma_eng_err_name,	is_sdma_eng_err_int },
8280 { IS_SENDCTXT_ERR_START, IS_SENDCTXT_ERR_END,
8281 				is_sendctxt_err_name,	is_sendctxt_err_int },
8282 { IS_SDMA_START,	     IS_SDMA_IDLE_END,
8283 				is_sdma_eng_name,	is_sdma_eng_int },
8284 { IS_VARIOUS_START,	     IS_VARIOUS_END,
8285 				is_various_name,	is_various_int },
8286 { IS_DC_START,	     IS_DC_END,
8287 				is_dc_name,		is_dc_int },
8288 { IS_RCVAVAIL_START,     IS_RCVAVAIL_END,
8289 				is_rcv_avail_name,	is_rcv_avail_int },
8290 { IS_RCVURGENT_START,    IS_RCVURGENT_END,
8291 				is_rcv_urgent_name,	is_rcv_urgent_int },
8292 { IS_SENDCREDIT_START,   IS_SENDCREDIT_END,
8293 				is_send_credit_name,	is_send_credit_int},
8294 { IS_RESERVED_START,     IS_RESERVED_END,
8295 				is_reserved_name,	is_reserved_int},
8296 };
8297 
8298 /*
8299  * Interrupt source interrupt - called when the given source has an interrupt.
8300  * Source is a bit index into an array of 64-bit integers.
8301  */
8302 static void is_interrupt(struct hfi1_devdata *dd, unsigned int source)
8303 {
8304 	const struct is_table *entry;
8305 
8306 	/* avoids a double compare by walking the table in-order */
8307 	for (entry = &is_table[0]; entry->is_name; entry++) {
8308 		if (source <= entry->end) {
8309 			trace_hfi1_interrupt(dd, entry, source);
8310 			entry->is_int(dd, source - entry->start);
8311 			return;
8312 		}
8313 	}
8314 	/* fell off the end */
8315 	dd_dev_err(dd, "invalid interrupt source %u\n", source);
8316 }
8317 
8318 /**
8319  * gerneral_interrupt() -  General interrupt handler
8320  * @irq: MSIx IRQ vector
8321  * @data: hfi1 devdata
8322  *
8323  * This is able to correctly handle all non-threaded interrupts.  Receive
8324  * context DATA IRQs are threaded and are not supported by this handler.
8325  *
8326  */
8327 irqreturn_t general_interrupt(int irq, void *data)
8328 {
8329 	struct hfi1_devdata *dd = data;
8330 	u64 regs[CCE_NUM_INT_CSRS];
8331 	u32 bit;
8332 	int i;
8333 	irqreturn_t handled = IRQ_NONE;
8334 
8335 	this_cpu_inc(*dd->int_counter);
8336 
8337 	/* phase 1: scan and clear all handled interrupts */
8338 	for (i = 0; i < CCE_NUM_INT_CSRS; i++) {
8339 		if (dd->gi_mask[i] == 0) {
8340 			regs[i] = 0;	/* used later */
8341 			continue;
8342 		}
8343 		regs[i] = read_csr(dd, CCE_INT_STATUS + (8 * i)) &
8344 				dd->gi_mask[i];
8345 		/* only clear if anything is set */
8346 		if (regs[i])
8347 			write_csr(dd, CCE_INT_CLEAR + (8 * i), regs[i]);
8348 	}
8349 
8350 	/* phase 2: call the appropriate handler */
8351 	for_each_set_bit(bit, (unsigned long *)&regs[0],
8352 			 CCE_NUM_INT_CSRS * 64) {
8353 		is_interrupt(dd, bit);
8354 		handled = IRQ_HANDLED;
8355 	}
8356 
8357 	return handled;
8358 }
8359 
8360 irqreturn_t sdma_interrupt(int irq, void *data)
8361 {
8362 	struct sdma_engine *sde = data;
8363 	struct hfi1_devdata *dd = sde->dd;
8364 	u64 status;
8365 
8366 #ifdef CONFIG_SDMA_VERBOSITY
8367 	dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
8368 		   slashstrip(__FILE__), __LINE__, __func__);
8369 	sdma_dumpstate(sde);
8370 #endif
8371 
8372 	this_cpu_inc(*dd->int_counter);
8373 
8374 	/* This read_csr is really bad in the hot path */
8375 	status = read_csr(dd,
8376 			  CCE_INT_STATUS + (8 * (IS_SDMA_START / 64)))
8377 			  & sde->imask;
8378 	if (likely(status)) {
8379 		/* clear the interrupt(s) */
8380 		write_csr(dd,
8381 			  CCE_INT_CLEAR + (8 * (IS_SDMA_START / 64)),
8382 			  status);
8383 
8384 		/* handle the interrupt(s) */
8385 		sdma_engine_interrupt(sde, status);
8386 	} else {
8387 		dd_dev_info_ratelimited(dd, "SDMA engine %u interrupt, but no status bits set\n",
8388 					sde->this_idx);
8389 	}
8390 	return IRQ_HANDLED;
8391 }
8392 
8393 /*
8394  * Clear the receive interrupt.  Use a read of the interrupt clear CSR
8395  * to insure that the write completed.  This does NOT guarantee that
8396  * queued DMA writes to memory from the chip are pushed.
8397  */
8398 static inline void clear_recv_intr(struct hfi1_ctxtdata *rcd)
8399 {
8400 	struct hfi1_devdata *dd = rcd->dd;
8401 	u32 addr = CCE_INT_CLEAR + (8 * rcd->ireg);
8402 
8403 	write_csr(dd, addr, rcd->imask);
8404 	/* force the above write on the chip and get a value back */
8405 	(void)read_csr(dd, addr);
8406 }
8407 
8408 /* force the receive interrupt */
8409 void force_recv_intr(struct hfi1_ctxtdata *rcd)
8410 {
8411 	write_csr(rcd->dd, CCE_INT_FORCE + (8 * rcd->ireg), rcd->imask);
8412 }
8413 
8414 /*
8415  * Return non-zero if a packet is present.
8416  *
8417  * This routine is called when rechecking for packets after the RcvAvail
8418  * interrupt has been cleared down.  First, do a quick check of memory for
8419  * a packet present.  If not found, use an expensive CSR read of the context
8420  * tail to determine the actual tail.  The CSR read is necessary because there
8421  * is no method to push pending DMAs to memory other than an interrupt and we
8422  * are trying to determine if we need to force an interrupt.
8423  */
8424 static inline int check_packet_present(struct hfi1_ctxtdata *rcd)
8425 {
8426 	u32 tail;
8427 
8428 	if (hfi1_packet_present(rcd))
8429 		return 1;
8430 
8431 	/* fall back to a CSR read, correct indpendent of DMA_RTAIL */
8432 	tail = (u32)read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_TAIL);
8433 	return hfi1_rcd_head(rcd) != tail;
8434 }
8435 
8436 /**
8437  * Common code for receive contexts interrupt handlers.
8438  * Update traces, increment kernel IRQ counter and
8439  * setup ASPM when needed.
8440  */
8441 static void receive_interrupt_common(struct hfi1_ctxtdata *rcd)
8442 {
8443 	struct hfi1_devdata *dd = rcd->dd;
8444 
8445 	trace_hfi1_receive_interrupt(dd, rcd);
8446 	this_cpu_inc(*dd->int_counter);
8447 	aspm_ctx_disable(rcd);
8448 }
8449 
8450 /**
8451  * __hfi1_rcd_eoi_intr() - Make HW issue receive interrupt
8452  * when there are packets present in the queue. When calling
8453  * with interrupts enabled please use hfi1_rcd_eoi_intr.
8454  *
8455  * @rcd: valid receive context
8456  */
8457 static void __hfi1_rcd_eoi_intr(struct hfi1_ctxtdata *rcd)
8458 {
8459 	clear_recv_intr(rcd);
8460 	if (check_packet_present(rcd))
8461 		force_recv_intr(rcd);
8462 }
8463 
8464 /**
8465  * hfi1_rcd_eoi_intr() - End of Interrupt processing action
8466  *
8467  * @rcd: Ptr to hfi1_ctxtdata of receive context
8468  *
8469  *  Hold IRQs so we can safely clear the interrupt and
8470  *  recheck for a packet that may have arrived after the previous
8471  *  check and the interrupt clear.  If a packet arrived, force another
8472  *  interrupt. This routine can be called at the end of receive packet
8473  *  processing in interrupt service routines, interrupt service thread
8474  *  and softirqs
8475  */
8476 static void hfi1_rcd_eoi_intr(struct hfi1_ctxtdata *rcd)
8477 {
8478 	unsigned long flags;
8479 
8480 	local_irq_save(flags);
8481 	__hfi1_rcd_eoi_intr(rcd);
8482 	local_irq_restore(flags);
8483 }
8484 
8485 /**
8486  * hfi1_netdev_rx_napi - napi poll function to move eoi inline
8487  * @napi - pointer to napi object
8488  * @budget - netdev budget
8489  */
8490 int hfi1_netdev_rx_napi(struct napi_struct *napi, int budget)
8491 {
8492 	struct hfi1_netdev_rxq *rxq = container_of(napi,
8493 			struct hfi1_netdev_rxq, napi);
8494 	struct hfi1_ctxtdata *rcd = rxq->rcd;
8495 	int work_done = 0;
8496 
8497 	work_done = rcd->do_interrupt(rcd, budget);
8498 
8499 	if (work_done < budget) {
8500 		napi_complete_done(napi, work_done);
8501 		hfi1_rcd_eoi_intr(rcd);
8502 	}
8503 
8504 	return work_done;
8505 }
8506 
8507 /* Receive packet napi handler for netdevs VNIC and AIP  */
8508 irqreturn_t receive_context_interrupt_napi(int irq, void *data)
8509 {
8510 	struct hfi1_ctxtdata *rcd = data;
8511 
8512 	receive_interrupt_common(rcd);
8513 
8514 	if (likely(rcd->napi)) {
8515 		if (likely(napi_schedule_prep(rcd->napi)))
8516 			__napi_schedule_irqoff(rcd->napi);
8517 		else
8518 			__hfi1_rcd_eoi_intr(rcd);
8519 	} else {
8520 		WARN_ONCE(1, "Napi IRQ handler without napi set up ctxt=%d\n",
8521 			  rcd->ctxt);
8522 		__hfi1_rcd_eoi_intr(rcd);
8523 	}
8524 
8525 	return IRQ_HANDLED;
8526 }
8527 
8528 /*
8529  * Receive packet IRQ handler.  This routine expects to be on its own IRQ.
8530  * This routine will try to handle packets immediately (latency), but if
8531  * it finds too many, it will invoke the thread handler (bandwitdh).  The
8532  * chip receive interrupt is *not* cleared down until this or the thread (if
8533  * invoked) is finished.  The intent is to avoid extra interrupts while we
8534  * are processing packets anyway.
8535  */
8536 irqreturn_t receive_context_interrupt(int irq, void *data)
8537 {
8538 	struct hfi1_ctxtdata *rcd = data;
8539 	int disposition;
8540 
8541 	receive_interrupt_common(rcd);
8542 
8543 	/* receive interrupt remains blocked while processing packets */
8544 	disposition = rcd->do_interrupt(rcd, 0);
8545 
8546 	/*
8547 	 * Too many packets were seen while processing packets in this
8548 	 * IRQ handler.  Invoke the handler thread.  The receive interrupt
8549 	 * remains blocked.
8550 	 */
8551 	if (disposition == RCV_PKT_LIMIT)
8552 		return IRQ_WAKE_THREAD;
8553 
8554 	__hfi1_rcd_eoi_intr(rcd);
8555 	return IRQ_HANDLED;
8556 }
8557 
8558 /*
8559  * Receive packet thread handler.  This expects to be invoked with the
8560  * receive interrupt still blocked.
8561  */
8562 irqreturn_t receive_context_thread(int irq, void *data)
8563 {
8564 	struct hfi1_ctxtdata *rcd = data;
8565 
8566 	/* receive interrupt is still blocked from the IRQ handler */
8567 	(void)rcd->do_interrupt(rcd, 1);
8568 
8569 	hfi1_rcd_eoi_intr(rcd);
8570 
8571 	return IRQ_HANDLED;
8572 }
8573 
8574 /* ========================================================================= */
8575 
8576 u32 read_physical_state(struct hfi1_devdata *dd)
8577 {
8578 	u64 reg;
8579 
8580 	reg = read_csr(dd, DC_DC8051_STS_CUR_STATE);
8581 	return (reg >> DC_DC8051_STS_CUR_STATE_PORT_SHIFT)
8582 				& DC_DC8051_STS_CUR_STATE_PORT_MASK;
8583 }
8584 
8585 u32 read_logical_state(struct hfi1_devdata *dd)
8586 {
8587 	u64 reg;
8588 
8589 	reg = read_csr(dd, DCC_CFG_PORT_CONFIG);
8590 	return (reg >> DCC_CFG_PORT_CONFIG_LINK_STATE_SHIFT)
8591 				& DCC_CFG_PORT_CONFIG_LINK_STATE_MASK;
8592 }
8593 
8594 static void set_logical_state(struct hfi1_devdata *dd, u32 chip_lstate)
8595 {
8596 	u64 reg;
8597 
8598 	reg = read_csr(dd, DCC_CFG_PORT_CONFIG);
8599 	/* clear current state, set new state */
8600 	reg &= ~DCC_CFG_PORT_CONFIG_LINK_STATE_SMASK;
8601 	reg |= (u64)chip_lstate << DCC_CFG_PORT_CONFIG_LINK_STATE_SHIFT;
8602 	write_csr(dd, DCC_CFG_PORT_CONFIG, reg);
8603 }
8604 
8605 /*
8606  * Use the 8051 to read a LCB CSR.
8607  */
8608 static int read_lcb_via_8051(struct hfi1_devdata *dd, u32 addr, u64 *data)
8609 {
8610 	u32 regno;
8611 	int ret;
8612 
8613 	if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR) {
8614 		if (acquire_lcb_access(dd, 0) == 0) {
8615 			*data = read_csr(dd, addr);
8616 			release_lcb_access(dd, 0);
8617 			return 0;
8618 		}
8619 		return -EBUSY;
8620 	}
8621 
8622 	/* register is an index of LCB registers: (offset - base) / 8 */
8623 	regno = (addr - DC_LCB_CFG_RUN) >> 3;
8624 	ret = do_8051_command(dd, HCMD_READ_LCB_CSR, regno, data);
8625 	if (ret != HCMD_SUCCESS)
8626 		return -EBUSY;
8627 	return 0;
8628 }
8629 
8630 /*
8631  * Provide a cache for some of the LCB registers in case the LCB is
8632  * unavailable.
8633  * (The LCB is unavailable in certain link states, for example.)
8634  */
8635 struct lcb_datum {
8636 	u32 off;
8637 	u64 val;
8638 };
8639 
8640 static struct lcb_datum lcb_cache[] = {
8641 	{ DC_LCB_ERR_INFO_RX_REPLAY_CNT, 0},
8642 	{ DC_LCB_ERR_INFO_SEQ_CRC_CNT, 0 },
8643 	{ DC_LCB_ERR_INFO_REINIT_FROM_PEER_CNT, 0 },
8644 };
8645 
8646 static void update_lcb_cache(struct hfi1_devdata *dd)
8647 {
8648 	int i;
8649 	int ret;
8650 	u64 val;
8651 
8652 	for (i = 0; i < ARRAY_SIZE(lcb_cache); i++) {
8653 		ret = read_lcb_csr(dd, lcb_cache[i].off, &val);
8654 
8655 		/* Update if we get good data */
8656 		if (likely(ret != -EBUSY))
8657 			lcb_cache[i].val = val;
8658 	}
8659 }
8660 
8661 static int read_lcb_cache(u32 off, u64 *val)
8662 {
8663 	int i;
8664 
8665 	for (i = 0; i < ARRAY_SIZE(lcb_cache); i++) {
8666 		if (lcb_cache[i].off == off) {
8667 			*val = lcb_cache[i].val;
8668 			return 0;
8669 		}
8670 	}
8671 
8672 	pr_warn("%s bad offset 0x%x\n", __func__, off);
8673 	return -1;
8674 }
8675 
8676 /*
8677  * Read an LCB CSR.  Access may not be in host control, so check.
8678  * Return 0 on success, -EBUSY on failure.
8679  */
8680 int read_lcb_csr(struct hfi1_devdata *dd, u32 addr, u64 *data)
8681 {
8682 	struct hfi1_pportdata *ppd = dd->pport;
8683 
8684 	/* if up, go through the 8051 for the value */
8685 	if (ppd->host_link_state & HLS_UP)
8686 		return read_lcb_via_8051(dd, addr, data);
8687 	/* if going up or down, check the cache, otherwise, no access */
8688 	if (ppd->host_link_state & (HLS_GOING_UP | HLS_GOING_OFFLINE)) {
8689 		if (read_lcb_cache(addr, data))
8690 			return -EBUSY;
8691 		return 0;
8692 	}
8693 
8694 	/* otherwise, host has access */
8695 	*data = read_csr(dd, addr);
8696 	return 0;
8697 }
8698 
8699 /*
8700  * Use the 8051 to write a LCB CSR.
8701  */
8702 static int write_lcb_via_8051(struct hfi1_devdata *dd, u32 addr, u64 data)
8703 {
8704 	u32 regno;
8705 	int ret;
8706 
8707 	if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR ||
8708 	    (dd->dc8051_ver < dc8051_ver(0, 20, 0))) {
8709 		if (acquire_lcb_access(dd, 0) == 0) {
8710 			write_csr(dd, addr, data);
8711 			release_lcb_access(dd, 0);
8712 			return 0;
8713 		}
8714 		return -EBUSY;
8715 	}
8716 
8717 	/* register is an index of LCB registers: (offset - base) / 8 */
8718 	regno = (addr - DC_LCB_CFG_RUN) >> 3;
8719 	ret = do_8051_command(dd, HCMD_WRITE_LCB_CSR, regno, &data);
8720 	if (ret != HCMD_SUCCESS)
8721 		return -EBUSY;
8722 	return 0;
8723 }
8724 
8725 /*
8726  * Write an LCB CSR.  Access may not be in host control, so check.
8727  * Return 0 on success, -EBUSY on failure.
8728  */
8729 int write_lcb_csr(struct hfi1_devdata *dd, u32 addr, u64 data)
8730 {
8731 	struct hfi1_pportdata *ppd = dd->pport;
8732 
8733 	/* if up, go through the 8051 for the value */
8734 	if (ppd->host_link_state & HLS_UP)
8735 		return write_lcb_via_8051(dd, addr, data);
8736 	/* if going up or down, no access */
8737 	if (ppd->host_link_state & (HLS_GOING_UP | HLS_GOING_OFFLINE))
8738 		return -EBUSY;
8739 	/* otherwise, host has access */
8740 	write_csr(dd, addr, data);
8741 	return 0;
8742 }
8743 
8744 /*
8745  * Returns:
8746  *	< 0 = Linux error, not able to get access
8747  *	> 0 = 8051 command RETURN_CODE
8748  */
8749 static int do_8051_command(struct hfi1_devdata *dd, u32 type, u64 in_data,
8750 			   u64 *out_data)
8751 {
8752 	u64 reg, completed;
8753 	int return_code;
8754 	unsigned long timeout;
8755 
8756 	hfi1_cdbg(DC8051, "type %d, data 0x%012llx", type, in_data);
8757 
8758 	mutex_lock(&dd->dc8051_lock);
8759 
8760 	/* We can't send any commands to the 8051 if it's in reset */
8761 	if (dd->dc_shutdown) {
8762 		return_code = -ENODEV;
8763 		goto fail;
8764 	}
8765 
8766 	/*
8767 	 * If an 8051 host command timed out previously, then the 8051 is
8768 	 * stuck.
8769 	 *
8770 	 * On first timeout, attempt to reset and restart the entire DC
8771 	 * block (including 8051). (Is this too big of a hammer?)
8772 	 *
8773 	 * If the 8051 times out a second time, the reset did not bring it
8774 	 * back to healthy life. In that case, fail any subsequent commands.
8775 	 */
8776 	if (dd->dc8051_timed_out) {
8777 		if (dd->dc8051_timed_out > 1) {
8778 			dd_dev_err(dd,
8779 				   "Previous 8051 host command timed out, skipping command %u\n",
8780 				   type);
8781 			return_code = -ENXIO;
8782 			goto fail;
8783 		}
8784 		_dc_shutdown(dd);
8785 		_dc_start(dd);
8786 	}
8787 
8788 	/*
8789 	 * If there is no timeout, then the 8051 command interface is
8790 	 * waiting for a command.
8791 	 */
8792 
8793 	/*
8794 	 * When writing a LCB CSR, out_data contains the full value to
8795 	 * to be written, while in_data contains the relative LCB
8796 	 * address in 7:0.  Do the work here, rather than the caller,
8797 	 * of distrubting the write data to where it needs to go:
8798 	 *
8799 	 * Write data
8800 	 *   39:00 -> in_data[47:8]
8801 	 *   47:40 -> DC8051_CFG_EXT_DEV_0.RETURN_CODE
8802 	 *   63:48 -> DC8051_CFG_EXT_DEV_0.RSP_DATA
8803 	 */
8804 	if (type == HCMD_WRITE_LCB_CSR) {
8805 		in_data |= ((*out_data) & 0xffffffffffull) << 8;
8806 		/* must preserve COMPLETED - it is tied to hardware */
8807 		reg = read_csr(dd, DC_DC8051_CFG_EXT_DEV_0);
8808 		reg &= DC_DC8051_CFG_EXT_DEV_0_COMPLETED_SMASK;
8809 		reg |= ((((*out_data) >> 40) & 0xff) <<
8810 				DC_DC8051_CFG_EXT_DEV_0_RETURN_CODE_SHIFT)
8811 		      | ((((*out_data) >> 48) & 0xffff) <<
8812 				DC_DC8051_CFG_EXT_DEV_0_RSP_DATA_SHIFT);
8813 		write_csr(dd, DC_DC8051_CFG_EXT_DEV_0, reg);
8814 	}
8815 
8816 	/*
8817 	 * Do two writes: the first to stabilize the type and req_data, the
8818 	 * second to activate.
8819 	 */
8820 	reg = ((u64)type & DC_DC8051_CFG_HOST_CMD_0_REQ_TYPE_MASK)
8821 			<< DC_DC8051_CFG_HOST_CMD_0_REQ_TYPE_SHIFT
8822 		| (in_data & DC_DC8051_CFG_HOST_CMD_0_REQ_DATA_MASK)
8823 			<< DC_DC8051_CFG_HOST_CMD_0_REQ_DATA_SHIFT;
8824 	write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, reg);
8825 	reg |= DC_DC8051_CFG_HOST_CMD_0_REQ_NEW_SMASK;
8826 	write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, reg);
8827 
8828 	/* wait for completion, alternate: interrupt */
8829 	timeout = jiffies + msecs_to_jiffies(DC8051_COMMAND_TIMEOUT);
8830 	while (1) {
8831 		reg = read_csr(dd, DC_DC8051_CFG_HOST_CMD_1);
8832 		completed = reg & DC_DC8051_CFG_HOST_CMD_1_COMPLETED_SMASK;
8833 		if (completed)
8834 			break;
8835 		if (time_after(jiffies, timeout)) {
8836 			dd->dc8051_timed_out++;
8837 			dd_dev_err(dd, "8051 host command %u timeout\n", type);
8838 			if (out_data)
8839 				*out_data = 0;
8840 			return_code = -ETIMEDOUT;
8841 			goto fail;
8842 		}
8843 		udelay(2);
8844 	}
8845 
8846 	if (out_data) {
8847 		*out_data = (reg >> DC_DC8051_CFG_HOST_CMD_1_RSP_DATA_SHIFT)
8848 				& DC_DC8051_CFG_HOST_CMD_1_RSP_DATA_MASK;
8849 		if (type == HCMD_READ_LCB_CSR) {
8850 			/* top 16 bits are in a different register */
8851 			*out_data |= (read_csr(dd, DC_DC8051_CFG_EXT_DEV_1)
8852 				& DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SMASK)
8853 				<< (48
8854 				    - DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SHIFT);
8855 		}
8856 	}
8857 	return_code = (reg >> DC_DC8051_CFG_HOST_CMD_1_RETURN_CODE_SHIFT)
8858 				& DC_DC8051_CFG_HOST_CMD_1_RETURN_CODE_MASK;
8859 	dd->dc8051_timed_out = 0;
8860 	/*
8861 	 * Clear command for next user.
8862 	 */
8863 	write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, 0);
8864 
8865 fail:
8866 	mutex_unlock(&dd->dc8051_lock);
8867 	return return_code;
8868 }
8869 
8870 static int set_physical_link_state(struct hfi1_devdata *dd, u64 state)
8871 {
8872 	return do_8051_command(dd, HCMD_CHANGE_PHY_STATE, state, NULL);
8873 }
8874 
8875 int load_8051_config(struct hfi1_devdata *dd, u8 field_id,
8876 		     u8 lane_id, u32 config_data)
8877 {
8878 	u64 data;
8879 	int ret;
8880 
8881 	data = (u64)field_id << LOAD_DATA_FIELD_ID_SHIFT
8882 		| (u64)lane_id << LOAD_DATA_LANE_ID_SHIFT
8883 		| (u64)config_data << LOAD_DATA_DATA_SHIFT;
8884 	ret = do_8051_command(dd, HCMD_LOAD_CONFIG_DATA, data, NULL);
8885 	if (ret != HCMD_SUCCESS) {
8886 		dd_dev_err(dd,
8887 			   "load 8051 config: field id %d, lane %d, err %d\n",
8888 			   (int)field_id, (int)lane_id, ret);
8889 	}
8890 	return ret;
8891 }
8892 
8893 /*
8894  * Read the 8051 firmware "registers".  Use the RAM directly.  Always
8895  * set the result, even on error.
8896  * Return 0 on success, -errno on failure
8897  */
8898 int read_8051_config(struct hfi1_devdata *dd, u8 field_id, u8 lane_id,
8899 		     u32 *result)
8900 {
8901 	u64 big_data;
8902 	u32 addr;
8903 	int ret;
8904 
8905 	/* address start depends on the lane_id */
8906 	if (lane_id < 4)
8907 		addr = (4 * NUM_GENERAL_FIELDS)
8908 			+ (lane_id * 4 * NUM_LANE_FIELDS);
8909 	else
8910 		addr = 0;
8911 	addr += field_id * 4;
8912 
8913 	/* read is in 8-byte chunks, hardware will truncate the address down */
8914 	ret = read_8051_data(dd, addr, 8, &big_data);
8915 
8916 	if (ret == 0) {
8917 		/* extract the 4 bytes we want */
8918 		if (addr & 0x4)
8919 			*result = (u32)(big_data >> 32);
8920 		else
8921 			*result = (u32)big_data;
8922 	} else {
8923 		*result = 0;
8924 		dd_dev_err(dd, "%s: direct read failed, lane %d, field %d!\n",
8925 			   __func__, lane_id, field_id);
8926 	}
8927 
8928 	return ret;
8929 }
8930 
8931 static int write_vc_local_phy(struct hfi1_devdata *dd, u8 power_management,
8932 			      u8 continuous)
8933 {
8934 	u32 frame;
8935 
8936 	frame = continuous << CONTINIOUS_REMOTE_UPDATE_SUPPORT_SHIFT
8937 		| power_management << POWER_MANAGEMENT_SHIFT;
8938 	return load_8051_config(dd, VERIFY_CAP_LOCAL_PHY,
8939 				GENERAL_CONFIG, frame);
8940 }
8941 
8942 static int write_vc_local_fabric(struct hfi1_devdata *dd, u8 vau, u8 z, u8 vcu,
8943 				 u16 vl15buf, u8 crc_sizes)
8944 {
8945 	u32 frame;
8946 
8947 	frame = (u32)vau << VAU_SHIFT
8948 		| (u32)z << Z_SHIFT
8949 		| (u32)vcu << VCU_SHIFT
8950 		| (u32)vl15buf << VL15BUF_SHIFT
8951 		| (u32)crc_sizes << CRC_SIZES_SHIFT;
8952 	return load_8051_config(dd, VERIFY_CAP_LOCAL_FABRIC,
8953 				GENERAL_CONFIG, frame);
8954 }
8955 
8956 static void read_vc_local_link_mode(struct hfi1_devdata *dd, u8 *misc_bits,
8957 				    u8 *flag_bits, u16 *link_widths)
8958 {
8959 	u32 frame;
8960 
8961 	read_8051_config(dd, VERIFY_CAP_LOCAL_LINK_MODE, GENERAL_CONFIG,
8962 			 &frame);
8963 	*misc_bits = (frame >> MISC_CONFIG_BITS_SHIFT) & MISC_CONFIG_BITS_MASK;
8964 	*flag_bits = (frame >> LOCAL_FLAG_BITS_SHIFT) & LOCAL_FLAG_BITS_MASK;
8965 	*link_widths = (frame >> LINK_WIDTH_SHIFT) & LINK_WIDTH_MASK;
8966 }
8967 
8968 static int write_vc_local_link_mode(struct hfi1_devdata *dd,
8969 				    u8 misc_bits,
8970 				    u8 flag_bits,
8971 				    u16 link_widths)
8972 {
8973 	u32 frame;
8974 
8975 	frame = (u32)misc_bits << MISC_CONFIG_BITS_SHIFT
8976 		| (u32)flag_bits << LOCAL_FLAG_BITS_SHIFT
8977 		| (u32)link_widths << LINK_WIDTH_SHIFT;
8978 	return load_8051_config(dd, VERIFY_CAP_LOCAL_LINK_MODE, GENERAL_CONFIG,
8979 		     frame);
8980 }
8981 
8982 static int write_local_device_id(struct hfi1_devdata *dd, u16 device_id,
8983 				 u8 device_rev)
8984 {
8985 	u32 frame;
8986 
8987 	frame = ((u32)device_id << LOCAL_DEVICE_ID_SHIFT)
8988 		| ((u32)device_rev << LOCAL_DEVICE_REV_SHIFT);
8989 	return load_8051_config(dd, LOCAL_DEVICE_ID, GENERAL_CONFIG, frame);
8990 }
8991 
8992 static void read_remote_device_id(struct hfi1_devdata *dd, u16 *device_id,
8993 				  u8 *device_rev)
8994 {
8995 	u32 frame;
8996 
8997 	read_8051_config(dd, REMOTE_DEVICE_ID, GENERAL_CONFIG, &frame);
8998 	*device_id = (frame >> REMOTE_DEVICE_ID_SHIFT) & REMOTE_DEVICE_ID_MASK;
8999 	*device_rev = (frame >> REMOTE_DEVICE_REV_SHIFT)
9000 			& REMOTE_DEVICE_REV_MASK;
9001 }
9002 
9003 int write_host_interface_version(struct hfi1_devdata *dd, u8 version)
9004 {
9005 	u32 frame;
9006 	u32 mask;
9007 
9008 	mask = (HOST_INTERFACE_VERSION_MASK << HOST_INTERFACE_VERSION_SHIFT);
9009 	read_8051_config(dd, RESERVED_REGISTERS, GENERAL_CONFIG, &frame);
9010 	/* Clear, then set field */
9011 	frame &= ~mask;
9012 	frame |= ((u32)version << HOST_INTERFACE_VERSION_SHIFT);
9013 	return load_8051_config(dd, RESERVED_REGISTERS, GENERAL_CONFIG,
9014 				frame);
9015 }
9016 
9017 void read_misc_status(struct hfi1_devdata *dd, u8 *ver_major, u8 *ver_minor,
9018 		      u8 *ver_patch)
9019 {
9020 	u32 frame;
9021 
9022 	read_8051_config(dd, MISC_STATUS, GENERAL_CONFIG, &frame);
9023 	*ver_major = (frame >> STS_FM_VERSION_MAJOR_SHIFT) &
9024 		STS_FM_VERSION_MAJOR_MASK;
9025 	*ver_minor = (frame >> STS_FM_VERSION_MINOR_SHIFT) &
9026 		STS_FM_VERSION_MINOR_MASK;
9027 
9028 	read_8051_config(dd, VERSION_PATCH, GENERAL_CONFIG, &frame);
9029 	*ver_patch = (frame >> STS_FM_VERSION_PATCH_SHIFT) &
9030 		STS_FM_VERSION_PATCH_MASK;
9031 }
9032 
9033 static void read_vc_remote_phy(struct hfi1_devdata *dd, u8 *power_management,
9034 			       u8 *continuous)
9035 {
9036 	u32 frame;
9037 
9038 	read_8051_config(dd, VERIFY_CAP_REMOTE_PHY, GENERAL_CONFIG, &frame);
9039 	*power_management = (frame >> POWER_MANAGEMENT_SHIFT)
9040 					& POWER_MANAGEMENT_MASK;
9041 	*continuous = (frame >> CONTINIOUS_REMOTE_UPDATE_SUPPORT_SHIFT)
9042 					& CONTINIOUS_REMOTE_UPDATE_SUPPORT_MASK;
9043 }
9044 
9045 static void read_vc_remote_fabric(struct hfi1_devdata *dd, u8 *vau, u8 *z,
9046 				  u8 *vcu, u16 *vl15buf, u8 *crc_sizes)
9047 {
9048 	u32 frame;
9049 
9050 	read_8051_config(dd, VERIFY_CAP_REMOTE_FABRIC, GENERAL_CONFIG, &frame);
9051 	*vau = (frame >> VAU_SHIFT) & VAU_MASK;
9052 	*z = (frame >> Z_SHIFT) & Z_MASK;
9053 	*vcu = (frame >> VCU_SHIFT) & VCU_MASK;
9054 	*vl15buf = (frame >> VL15BUF_SHIFT) & VL15BUF_MASK;
9055 	*crc_sizes = (frame >> CRC_SIZES_SHIFT) & CRC_SIZES_MASK;
9056 }
9057 
9058 static void read_vc_remote_link_width(struct hfi1_devdata *dd,
9059 				      u8 *remote_tx_rate,
9060 				      u16 *link_widths)
9061 {
9062 	u32 frame;
9063 
9064 	read_8051_config(dd, VERIFY_CAP_REMOTE_LINK_WIDTH, GENERAL_CONFIG,
9065 			 &frame);
9066 	*remote_tx_rate = (frame >> REMOTE_TX_RATE_SHIFT)
9067 				& REMOTE_TX_RATE_MASK;
9068 	*link_widths = (frame >> LINK_WIDTH_SHIFT) & LINK_WIDTH_MASK;
9069 }
9070 
9071 static void read_local_lni(struct hfi1_devdata *dd, u8 *enable_lane_rx)
9072 {
9073 	u32 frame;
9074 
9075 	read_8051_config(dd, LOCAL_LNI_INFO, GENERAL_CONFIG, &frame);
9076 	*enable_lane_rx = (frame >> ENABLE_LANE_RX_SHIFT) & ENABLE_LANE_RX_MASK;
9077 }
9078 
9079 static void read_last_local_state(struct hfi1_devdata *dd, u32 *lls)
9080 {
9081 	read_8051_config(dd, LAST_LOCAL_STATE_COMPLETE, GENERAL_CONFIG, lls);
9082 }
9083 
9084 static void read_last_remote_state(struct hfi1_devdata *dd, u32 *lrs)
9085 {
9086 	read_8051_config(dd, LAST_REMOTE_STATE_COMPLETE, GENERAL_CONFIG, lrs);
9087 }
9088 
9089 void hfi1_read_link_quality(struct hfi1_devdata *dd, u8 *link_quality)
9090 {
9091 	u32 frame;
9092 	int ret;
9093 
9094 	*link_quality = 0;
9095 	if (dd->pport->host_link_state & HLS_UP) {
9096 		ret = read_8051_config(dd, LINK_QUALITY_INFO, GENERAL_CONFIG,
9097 				       &frame);
9098 		if (ret == 0)
9099 			*link_quality = (frame >> LINK_QUALITY_SHIFT)
9100 						& LINK_QUALITY_MASK;
9101 	}
9102 }
9103 
9104 static void read_planned_down_reason_code(struct hfi1_devdata *dd, u8 *pdrrc)
9105 {
9106 	u32 frame;
9107 
9108 	read_8051_config(dd, LINK_QUALITY_INFO, GENERAL_CONFIG, &frame);
9109 	*pdrrc = (frame >> DOWN_REMOTE_REASON_SHIFT) & DOWN_REMOTE_REASON_MASK;
9110 }
9111 
9112 static void read_link_down_reason(struct hfi1_devdata *dd, u8 *ldr)
9113 {
9114 	u32 frame;
9115 
9116 	read_8051_config(dd, LINK_DOWN_REASON, GENERAL_CONFIG, &frame);
9117 	*ldr = (frame & 0xff);
9118 }
9119 
9120 static int read_tx_settings(struct hfi1_devdata *dd,
9121 			    u8 *enable_lane_tx,
9122 			    u8 *tx_polarity_inversion,
9123 			    u8 *rx_polarity_inversion,
9124 			    u8 *max_rate)
9125 {
9126 	u32 frame;
9127 	int ret;
9128 
9129 	ret = read_8051_config(dd, TX_SETTINGS, GENERAL_CONFIG, &frame);
9130 	*enable_lane_tx = (frame >> ENABLE_LANE_TX_SHIFT)
9131 				& ENABLE_LANE_TX_MASK;
9132 	*tx_polarity_inversion = (frame >> TX_POLARITY_INVERSION_SHIFT)
9133 				& TX_POLARITY_INVERSION_MASK;
9134 	*rx_polarity_inversion = (frame >> RX_POLARITY_INVERSION_SHIFT)
9135 				& RX_POLARITY_INVERSION_MASK;
9136 	*max_rate = (frame >> MAX_RATE_SHIFT) & MAX_RATE_MASK;
9137 	return ret;
9138 }
9139 
9140 static int write_tx_settings(struct hfi1_devdata *dd,
9141 			     u8 enable_lane_tx,
9142 			     u8 tx_polarity_inversion,
9143 			     u8 rx_polarity_inversion,
9144 			     u8 max_rate)
9145 {
9146 	u32 frame;
9147 
9148 	/* no need to mask, all variable sizes match field widths */
9149 	frame = enable_lane_tx << ENABLE_LANE_TX_SHIFT
9150 		| tx_polarity_inversion << TX_POLARITY_INVERSION_SHIFT
9151 		| rx_polarity_inversion << RX_POLARITY_INVERSION_SHIFT
9152 		| max_rate << MAX_RATE_SHIFT;
9153 	return load_8051_config(dd, TX_SETTINGS, GENERAL_CONFIG, frame);
9154 }
9155 
9156 /*
9157  * Read an idle LCB message.
9158  *
9159  * Returns 0 on success, -EINVAL on error
9160  */
9161 static int read_idle_message(struct hfi1_devdata *dd, u64 type, u64 *data_out)
9162 {
9163 	int ret;
9164 
9165 	ret = do_8051_command(dd, HCMD_READ_LCB_IDLE_MSG, type, data_out);
9166 	if (ret != HCMD_SUCCESS) {
9167 		dd_dev_err(dd, "read idle message: type %d, err %d\n",
9168 			   (u32)type, ret);
9169 		return -EINVAL;
9170 	}
9171 	dd_dev_info(dd, "%s: read idle message 0x%llx\n", __func__, *data_out);
9172 	/* return only the payload as we already know the type */
9173 	*data_out >>= IDLE_PAYLOAD_SHIFT;
9174 	return 0;
9175 }
9176 
9177 /*
9178  * Read an idle SMA message.  To be done in response to a notification from
9179  * the 8051.
9180  *
9181  * Returns 0 on success, -EINVAL on error
9182  */
9183 static int read_idle_sma(struct hfi1_devdata *dd, u64 *data)
9184 {
9185 	return read_idle_message(dd, (u64)IDLE_SMA << IDLE_MSG_TYPE_SHIFT,
9186 				 data);
9187 }
9188 
9189 /*
9190  * Send an idle LCB message.
9191  *
9192  * Returns 0 on success, -EINVAL on error
9193  */
9194 static int send_idle_message(struct hfi1_devdata *dd, u64 data)
9195 {
9196 	int ret;
9197 
9198 	dd_dev_info(dd, "%s: sending idle message 0x%llx\n", __func__, data);
9199 	ret = do_8051_command(dd, HCMD_SEND_LCB_IDLE_MSG, data, NULL);
9200 	if (ret != HCMD_SUCCESS) {
9201 		dd_dev_err(dd, "send idle message: data 0x%llx, err %d\n",
9202 			   data, ret);
9203 		return -EINVAL;
9204 	}
9205 	return 0;
9206 }
9207 
9208 /*
9209  * Send an idle SMA message.
9210  *
9211  * Returns 0 on success, -EINVAL on error
9212  */
9213 int send_idle_sma(struct hfi1_devdata *dd, u64 message)
9214 {
9215 	u64 data;
9216 
9217 	data = ((message & IDLE_PAYLOAD_MASK) << IDLE_PAYLOAD_SHIFT) |
9218 		((u64)IDLE_SMA << IDLE_MSG_TYPE_SHIFT);
9219 	return send_idle_message(dd, data);
9220 }
9221 
9222 /*
9223  * Initialize the LCB then do a quick link up.  This may or may not be
9224  * in loopback.
9225  *
9226  * return 0 on success, -errno on error
9227  */
9228 static int do_quick_linkup(struct hfi1_devdata *dd)
9229 {
9230 	int ret;
9231 
9232 	lcb_shutdown(dd, 0);
9233 
9234 	if (loopback) {
9235 		/* LCB_CFG_LOOPBACK.VAL = 2 */
9236 		/* LCB_CFG_LANE_WIDTH.VAL = 0 */
9237 		write_csr(dd, DC_LCB_CFG_LOOPBACK,
9238 			  IB_PACKET_TYPE << DC_LCB_CFG_LOOPBACK_VAL_SHIFT);
9239 		write_csr(dd, DC_LCB_CFG_LANE_WIDTH, 0);
9240 	}
9241 
9242 	/* start the LCBs */
9243 	/* LCB_CFG_TX_FIFOS_RESET.VAL = 0 */
9244 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0);
9245 
9246 	/* simulator only loopback steps */
9247 	if (loopback && dd->icode == ICODE_FUNCTIONAL_SIMULATOR) {
9248 		/* LCB_CFG_RUN.EN = 1 */
9249 		write_csr(dd, DC_LCB_CFG_RUN,
9250 			  1ull << DC_LCB_CFG_RUN_EN_SHIFT);
9251 
9252 		ret = wait_link_transfer_active(dd, 10);
9253 		if (ret)
9254 			return ret;
9255 
9256 		write_csr(dd, DC_LCB_CFG_ALLOW_LINK_UP,
9257 			  1ull << DC_LCB_CFG_ALLOW_LINK_UP_VAL_SHIFT);
9258 	}
9259 
9260 	if (!loopback) {
9261 		/*
9262 		 * When doing quick linkup and not in loopback, both
9263 		 * sides must be done with LCB set-up before either
9264 		 * starts the quick linkup.  Put a delay here so that
9265 		 * both sides can be started and have a chance to be
9266 		 * done with LCB set up before resuming.
9267 		 */
9268 		dd_dev_err(dd,
9269 			   "Pausing for peer to be finished with LCB set up\n");
9270 		msleep(5000);
9271 		dd_dev_err(dd, "Continuing with quick linkup\n");
9272 	}
9273 
9274 	write_csr(dd, DC_LCB_ERR_EN, 0); /* mask LCB errors */
9275 	set_8051_lcb_access(dd);
9276 
9277 	/*
9278 	 * State "quick" LinkUp request sets the physical link state to
9279 	 * LinkUp without a verify capability sequence.
9280 	 * This state is in simulator v37 and later.
9281 	 */
9282 	ret = set_physical_link_state(dd, PLS_QUICK_LINKUP);
9283 	if (ret != HCMD_SUCCESS) {
9284 		dd_dev_err(dd,
9285 			   "%s: set physical link state to quick LinkUp failed with return %d\n",
9286 			   __func__, ret);
9287 
9288 		set_host_lcb_access(dd);
9289 		write_csr(dd, DC_LCB_ERR_EN, ~0ull); /* watch LCB errors */
9290 
9291 		if (ret >= 0)
9292 			ret = -EINVAL;
9293 		return ret;
9294 	}
9295 
9296 	return 0; /* success */
9297 }
9298 
9299 /*
9300  * Do all special steps to set up loopback.
9301  */
9302 static int init_loopback(struct hfi1_devdata *dd)
9303 {
9304 	dd_dev_info(dd, "Entering loopback mode\n");
9305 
9306 	/* all loopbacks should disable self GUID check */
9307 	write_csr(dd, DC_DC8051_CFG_MODE,
9308 		  (read_csr(dd, DC_DC8051_CFG_MODE) | DISABLE_SELF_GUID_CHECK));
9309 
9310 	/*
9311 	 * The simulator has only one loopback option - LCB.  Switch
9312 	 * to that option, which includes quick link up.
9313 	 *
9314 	 * Accept all valid loopback values.
9315 	 */
9316 	if ((dd->icode == ICODE_FUNCTIONAL_SIMULATOR) &&
9317 	    (loopback == LOOPBACK_SERDES || loopback == LOOPBACK_LCB ||
9318 	     loopback == LOOPBACK_CABLE)) {
9319 		loopback = LOOPBACK_LCB;
9320 		quick_linkup = 1;
9321 		return 0;
9322 	}
9323 
9324 	/*
9325 	 * SerDes loopback init sequence is handled in set_local_link_attributes
9326 	 */
9327 	if (loopback == LOOPBACK_SERDES)
9328 		return 0;
9329 
9330 	/* LCB loopback - handled at poll time */
9331 	if (loopback == LOOPBACK_LCB) {
9332 		quick_linkup = 1; /* LCB is always quick linkup */
9333 
9334 		/* not supported in emulation due to emulation RTL changes */
9335 		if (dd->icode == ICODE_FPGA_EMULATION) {
9336 			dd_dev_err(dd,
9337 				   "LCB loopback not supported in emulation\n");
9338 			return -EINVAL;
9339 		}
9340 		return 0;
9341 	}
9342 
9343 	/* external cable loopback requires no extra steps */
9344 	if (loopback == LOOPBACK_CABLE)
9345 		return 0;
9346 
9347 	dd_dev_err(dd, "Invalid loopback mode %d\n", loopback);
9348 	return -EINVAL;
9349 }
9350 
9351 /*
9352  * Translate from the OPA_LINK_WIDTH handed to us by the FM to bits
9353  * used in the Verify Capability link width attribute.
9354  */
9355 static u16 opa_to_vc_link_widths(u16 opa_widths)
9356 {
9357 	int i;
9358 	u16 result = 0;
9359 
9360 	static const struct link_bits {
9361 		u16 from;
9362 		u16 to;
9363 	} opa_link_xlate[] = {
9364 		{ OPA_LINK_WIDTH_1X, 1 << (1 - 1)  },
9365 		{ OPA_LINK_WIDTH_2X, 1 << (2 - 1)  },
9366 		{ OPA_LINK_WIDTH_3X, 1 << (3 - 1)  },
9367 		{ OPA_LINK_WIDTH_4X, 1 << (4 - 1)  },
9368 	};
9369 
9370 	for (i = 0; i < ARRAY_SIZE(opa_link_xlate); i++) {
9371 		if (opa_widths & opa_link_xlate[i].from)
9372 			result |= opa_link_xlate[i].to;
9373 	}
9374 	return result;
9375 }
9376 
9377 /*
9378  * Set link attributes before moving to polling.
9379  */
9380 static int set_local_link_attributes(struct hfi1_pportdata *ppd)
9381 {
9382 	struct hfi1_devdata *dd = ppd->dd;
9383 	u8 enable_lane_tx;
9384 	u8 tx_polarity_inversion;
9385 	u8 rx_polarity_inversion;
9386 	int ret;
9387 	u32 misc_bits = 0;
9388 	/* reset our fabric serdes to clear any lingering problems */
9389 	fabric_serdes_reset(dd);
9390 
9391 	/* set the local tx rate - need to read-modify-write */
9392 	ret = read_tx_settings(dd, &enable_lane_tx, &tx_polarity_inversion,
9393 			       &rx_polarity_inversion, &ppd->local_tx_rate);
9394 	if (ret)
9395 		goto set_local_link_attributes_fail;
9396 
9397 	if (dd->dc8051_ver < dc8051_ver(0, 20, 0)) {
9398 		/* set the tx rate to the fastest enabled */
9399 		if (ppd->link_speed_enabled & OPA_LINK_SPEED_25G)
9400 			ppd->local_tx_rate = 1;
9401 		else
9402 			ppd->local_tx_rate = 0;
9403 	} else {
9404 		/* set the tx rate to all enabled */
9405 		ppd->local_tx_rate = 0;
9406 		if (ppd->link_speed_enabled & OPA_LINK_SPEED_25G)
9407 			ppd->local_tx_rate |= 2;
9408 		if (ppd->link_speed_enabled & OPA_LINK_SPEED_12_5G)
9409 			ppd->local_tx_rate |= 1;
9410 	}
9411 
9412 	enable_lane_tx = 0xF; /* enable all four lanes */
9413 	ret = write_tx_settings(dd, enable_lane_tx, tx_polarity_inversion,
9414 				rx_polarity_inversion, ppd->local_tx_rate);
9415 	if (ret != HCMD_SUCCESS)
9416 		goto set_local_link_attributes_fail;
9417 
9418 	ret = write_host_interface_version(dd, HOST_INTERFACE_VERSION);
9419 	if (ret != HCMD_SUCCESS) {
9420 		dd_dev_err(dd,
9421 			   "Failed to set host interface version, return 0x%x\n",
9422 			   ret);
9423 		goto set_local_link_attributes_fail;
9424 	}
9425 
9426 	/*
9427 	 * DC supports continuous updates.
9428 	 */
9429 	ret = write_vc_local_phy(dd,
9430 				 0 /* no power management */,
9431 				 1 /* continuous updates */);
9432 	if (ret != HCMD_SUCCESS)
9433 		goto set_local_link_attributes_fail;
9434 
9435 	/* z=1 in the next call: AU of 0 is not supported by the hardware */
9436 	ret = write_vc_local_fabric(dd, dd->vau, 1, dd->vcu, dd->vl15_init,
9437 				    ppd->port_crc_mode_enabled);
9438 	if (ret != HCMD_SUCCESS)
9439 		goto set_local_link_attributes_fail;
9440 
9441 	/*
9442 	 * SerDes loopback init sequence requires
9443 	 * setting bit 0 of MISC_CONFIG_BITS
9444 	 */
9445 	if (loopback == LOOPBACK_SERDES)
9446 		misc_bits |= 1 << LOOPBACK_SERDES_CONFIG_BIT_MASK_SHIFT;
9447 
9448 	/*
9449 	 * An external device configuration request is used to reset the LCB
9450 	 * to retry to obtain operational lanes when the first attempt is
9451 	 * unsuccesful.
9452 	 */
9453 	if (dd->dc8051_ver >= dc8051_ver(1, 25, 0))
9454 		misc_bits |= 1 << EXT_CFG_LCB_RESET_SUPPORTED_SHIFT;
9455 
9456 	ret = write_vc_local_link_mode(dd, misc_bits, 0,
9457 				       opa_to_vc_link_widths(
9458 						ppd->link_width_enabled));
9459 	if (ret != HCMD_SUCCESS)
9460 		goto set_local_link_attributes_fail;
9461 
9462 	/* let peer know who we are */
9463 	ret = write_local_device_id(dd, dd->pcidev->device, dd->minrev);
9464 	if (ret == HCMD_SUCCESS)
9465 		return 0;
9466 
9467 set_local_link_attributes_fail:
9468 	dd_dev_err(dd,
9469 		   "Failed to set local link attributes, return 0x%x\n",
9470 		   ret);
9471 	return ret;
9472 }
9473 
9474 /*
9475  * Call this to start the link.
9476  * Do not do anything if the link is disabled.
9477  * Returns 0 if link is disabled, moved to polling, or the driver is not ready.
9478  */
9479 int start_link(struct hfi1_pportdata *ppd)
9480 {
9481 	/*
9482 	 * Tune the SerDes to a ballpark setting for optimal signal and bit
9483 	 * error rate.  Needs to be done before starting the link.
9484 	 */
9485 	tune_serdes(ppd);
9486 
9487 	if (!ppd->driver_link_ready) {
9488 		dd_dev_info(ppd->dd,
9489 			    "%s: stopping link start because driver is not ready\n",
9490 			    __func__);
9491 		return 0;
9492 	}
9493 
9494 	/*
9495 	 * FULL_MGMT_P_KEY is cleared from the pkey table, so that the
9496 	 * pkey table can be configured properly if the HFI unit is connected
9497 	 * to switch port with MgmtAllowed=NO
9498 	 */
9499 	clear_full_mgmt_pkey(ppd);
9500 
9501 	return set_link_state(ppd, HLS_DN_POLL);
9502 }
9503 
9504 static void wait_for_qsfp_init(struct hfi1_pportdata *ppd)
9505 {
9506 	struct hfi1_devdata *dd = ppd->dd;
9507 	u64 mask;
9508 	unsigned long timeout;
9509 
9510 	/*
9511 	 * Some QSFP cables have a quirk that asserts the IntN line as a side
9512 	 * effect of power up on plug-in. We ignore this false positive
9513 	 * interrupt until the module has finished powering up by waiting for
9514 	 * a minimum timeout of the module inrush initialization time of
9515 	 * 500 ms (SFF 8679 Table 5-6) to ensure the voltage rails in the
9516 	 * module have stabilized.
9517 	 */
9518 	msleep(500);
9519 
9520 	/*
9521 	 * Check for QSFP interrupt for t_init (SFF 8679 Table 8-1)
9522 	 */
9523 	timeout = jiffies + msecs_to_jiffies(2000);
9524 	while (1) {
9525 		mask = read_csr(dd, dd->hfi1_id ?
9526 				ASIC_QSFP2_IN : ASIC_QSFP1_IN);
9527 		if (!(mask & QSFP_HFI0_INT_N))
9528 			break;
9529 		if (time_after(jiffies, timeout)) {
9530 			dd_dev_info(dd, "%s: No IntN detected, reset complete\n",
9531 				    __func__);
9532 			break;
9533 		}
9534 		udelay(2);
9535 	}
9536 }
9537 
9538 static void set_qsfp_int_n(struct hfi1_pportdata *ppd, u8 enable)
9539 {
9540 	struct hfi1_devdata *dd = ppd->dd;
9541 	u64 mask;
9542 
9543 	mask = read_csr(dd, dd->hfi1_id ? ASIC_QSFP2_MASK : ASIC_QSFP1_MASK);
9544 	if (enable) {
9545 		/*
9546 		 * Clear the status register to avoid an immediate interrupt
9547 		 * when we re-enable the IntN pin
9548 		 */
9549 		write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_CLEAR : ASIC_QSFP1_CLEAR,
9550 			  QSFP_HFI0_INT_N);
9551 		mask |= (u64)QSFP_HFI0_INT_N;
9552 	} else {
9553 		mask &= ~(u64)QSFP_HFI0_INT_N;
9554 	}
9555 	write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_MASK : ASIC_QSFP1_MASK, mask);
9556 }
9557 
9558 int reset_qsfp(struct hfi1_pportdata *ppd)
9559 {
9560 	struct hfi1_devdata *dd = ppd->dd;
9561 	u64 mask, qsfp_mask;
9562 
9563 	/* Disable INT_N from triggering QSFP interrupts */
9564 	set_qsfp_int_n(ppd, 0);
9565 
9566 	/* Reset the QSFP */
9567 	mask = (u64)QSFP_HFI0_RESET_N;
9568 
9569 	qsfp_mask = read_csr(dd,
9570 			     dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT);
9571 	qsfp_mask &= ~mask;
9572 	write_csr(dd,
9573 		  dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT, qsfp_mask);
9574 
9575 	udelay(10);
9576 
9577 	qsfp_mask |= mask;
9578 	write_csr(dd,
9579 		  dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT, qsfp_mask);
9580 
9581 	wait_for_qsfp_init(ppd);
9582 
9583 	/*
9584 	 * Allow INT_N to trigger the QSFP interrupt to watch
9585 	 * for alarms and warnings
9586 	 */
9587 	set_qsfp_int_n(ppd, 1);
9588 
9589 	/*
9590 	 * After the reset, AOC transmitters are enabled by default. They need
9591 	 * to be turned off to complete the QSFP setup before they can be
9592 	 * enabled again.
9593 	 */
9594 	return set_qsfp_tx(ppd, 0);
9595 }
9596 
9597 static int handle_qsfp_error_conditions(struct hfi1_pportdata *ppd,
9598 					u8 *qsfp_interrupt_status)
9599 {
9600 	struct hfi1_devdata *dd = ppd->dd;
9601 
9602 	if ((qsfp_interrupt_status[0] & QSFP_HIGH_TEMP_ALARM) ||
9603 	    (qsfp_interrupt_status[0] & QSFP_HIGH_TEMP_WARNING))
9604 		dd_dev_err(dd, "%s: QSFP cable temperature too high\n",
9605 			   __func__);
9606 
9607 	if ((qsfp_interrupt_status[0] & QSFP_LOW_TEMP_ALARM) ||
9608 	    (qsfp_interrupt_status[0] & QSFP_LOW_TEMP_WARNING))
9609 		dd_dev_err(dd, "%s: QSFP cable temperature too low\n",
9610 			   __func__);
9611 
9612 	/*
9613 	 * The remaining alarms/warnings don't matter if the link is down.
9614 	 */
9615 	if (ppd->host_link_state & HLS_DOWN)
9616 		return 0;
9617 
9618 	if ((qsfp_interrupt_status[1] & QSFP_HIGH_VCC_ALARM) ||
9619 	    (qsfp_interrupt_status[1] & QSFP_HIGH_VCC_WARNING))
9620 		dd_dev_err(dd, "%s: QSFP supply voltage too high\n",
9621 			   __func__);
9622 
9623 	if ((qsfp_interrupt_status[1] & QSFP_LOW_VCC_ALARM) ||
9624 	    (qsfp_interrupt_status[1] & QSFP_LOW_VCC_WARNING))
9625 		dd_dev_err(dd, "%s: QSFP supply voltage too low\n",
9626 			   __func__);
9627 
9628 	/* Byte 2 is vendor specific */
9629 
9630 	if ((qsfp_interrupt_status[3] & QSFP_HIGH_POWER_ALARM) ||
9631 	    (qsfp_interrupt_status[3] & QSFP_HIGH_POWER_WARNING))
9632 		dd_dev_err(dd, "%s: Cable RX channel 1/2 power too high\n",
9633 			   __func__);
9634 
9635 	if ((qsfp_interrupt_status[3] & QSFP_LOW_POWER_ALARM) ||
9636 	    (qsfp_interrupt_status[3] & QSFP_LOW_POWER_WARNING))
9637 		dd_dev_err(dd, "%s: Cable RX channel 1/2 power too low\n",
9638 			   __func__);
9639 
9640 	if ((qsfp_interrupt_status[4] & QSFP_HIGH_POWER_ALARM) ||
9641 	    (qsfp_interrupt_status[4] & QSFP_HIGH_POWER_WARNING))
9642 		dd_dev_err(dd, "%s: Cable RX channel 3/4 power too high\n",
9643 			   __func__);
9644 
9645 	if ((qsfp_interrupt_status[4] & QSFP_LOW_POWER_ALARM) ||
9646 	    (qsfp_interrupt_status[4] & QSFP_LOW_POWER_WARNING))
9647 		dd_dev_err(dd, "%s: Cable RX channel 3/4 power too low\n",
9648 			   __func__);
9649 
9650 	if ((qsfp_interrupt_status[5] & QSFP_HIGH_BIAS_ALARM) ||
9651 	    (qsfp_interrupt_status[5] & QSFP_HIGH_BIAS_WARNING))
9652 		dd_dev_err(dd, "%s: Cable TX channel 1/2 bias too high\n",
9653 			   __func__);
9654 
9655 	if ((qsfp_interrupt_status[5] & QSFP_LOW_BIAS_ALARM) ||
9656 	    (qsfp_interrupt_status[5] & QSFP_LOW_BIAS_WARNING))
9657 		dd_dev_err(dd, "%s: Cable TX channel 1/2 bias too low\n",
9658 			   __func__);
9659 
9660 	if ((qsfp_interrupt_status[6] & QSFP_HIGH_BIAS_ALARM) ||
9661 	    (qsfp_interrupt_status[6] & QSFP_HIGH_BIAS_WARNING))
9662 		dd_dev_err(dd, "%s: Cable TX channel 3/4 bias too high\n",
9663 			   __func__);
9664 
9665 	if ((qsfp_interrupt_status[6] & QSFP_LOW_BIAS_ALARM) ||
9666 	    (qsfp_interrupt_status[6] & QSFP_LOW_BIAS_WARNING))
9667 		dd_dev_err(dd, "%s: Cable TX channel 3/4 bias too low\n",
9668 			   __func__);
9669 
9670 	if ((qsfp_interrupt_status[7] & QSFP_HIGH_POWER_ALARM) ||
9671 	    (qsfp_interrupt_status[7] & QSFP_HIGH_POWER_WARNING))
9672 		dd_dev_err(dd, "%s: Cable TX channel 1/2 power too high\n",
9673 			   __func__);
9674 
9675 	if ((qsfp_interrupt_status[7] & QSFP_LOW_POWER_ALARM) ||
9676 	    (qsfp_interrupt_status[7] & QSFP_LOW_POWER_WARNING))
9677 		dd_dev_err(dd, "%s: Cable TX channel 1/2 power too low\n",
9678 			   __func__);
9679 
9680 	if ((qsfp_interrupt_status[8] & QSFP_HIGH_POWER_ALARM) ||
9681 	    (qsfp_interrupt_status[8] & QSFP_HIGH_POWER_WARNING))
9682 		dd_dev_err(dd, "%s: Cable TX channel 3/4 power too high\n",
9683 			   __func__);
9684 
9685 	if ((qsfp_interrupt_status[8] & QSFP_LOW_POWER_ALARM) ||
9686 	    (qsfp_interrupt_status[8] & QSFP_LOW_POWER_WARNING))
9687 		dd_dev_err(dd, "%s: Cable TX channel 3/4 power too low\n",
9688 			   __func__);
9689 
9690 	/* Bytes 9-10 and 11-12 are reserved */
9691 	/* Bytes 13-15 are vendor specific */
9692 
9693 	return 0;
9694 }
9695 
9696 /* This routine will only be scheduled if the QSFP module present is asserted */
9697 void qsfp_event(struct work_struct *work)
9698 {
9699 	struct qsfp_data *qd;
9700 	struct hfi1_pportdata *ppd;
9701 	struct hfi1_devdata *dd;
9702 
9703 	qd = container_of(work, struct qsfp_data, qsfp_work);
9704 	ppd = qd->ppd;
9705 	dd = ppd->dd;
9706 
9707 	/* Sanity check */
9708 	if (!qsfp_mod_present(ppd))
9709 		return;
9710 
9711 	if (ppd->host_link_state == HLS_DN_DISABLE) {
9712 		dd_dev_info(ppd->dd,
9713 			    "%s: stopping link start because link is disabled\n",
9714 			    __func__);
9715 		return;
9716 	}
9717 
9718 	/*
9719 	 * Turn DC back on after cable has been re-inserted. Up until
9720 	 * now, the DC has been in reset to save power.
9721 	 */
9722 	dc_start(dd);
9723 
9724 	if (qd->cache_refresh_required) {
9725 		set_qsfp_int_n(ppd, 0);
9726 
9727 		wait_for_qsfp_init(ppd);
9728 
9729 		/*
9730 		 * Allow INT_N to trigger the QSFP interrupt to watch
9731 		 * for alarms and warnings
9732 		 */
9733 		set_qsfp_int_n(ppd, 1);
9734 
9735 		start_link(ppd);
9736 	}
9737 
9738 	if (qd->check_interrupt_flags) {
9739 		u8 qsfp_interrupt_status[16] = {0,};
9740 
9741 		if (one_qsfp_read(ppd, dd->hfi1_id, 6,
9742 				  &qsfp_interrupt_status[0], 16) != 16) {
9743 			dd_dev_info(dd,
9744 				    "%s: Failed to read status of QSFP module\n",
9745 				    __func__);
9746 		} else {
9747 			unsigned long flags;
9748 
9749 			handle_qsfp_error_conditions(
9750 					ppd, qsfp_interrupt_status);
9751 			spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
9752 			ppd->qsfp_info.check_interrupt_flags = 0;
9753 			spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock,
9754 					       flags);
9755 		}
9756 	}
9757 }
9758 
9759 void init_qsfp_int(struct hfi1_devdata *dd)
9760 {
9761 	struct hfi1_pportdata *ppd = dd->pport;
9762 	u64 qsfp_mask;
9763 
9764 	qsfp_mask = (u64)(QSFP_HFI0_INT_N | QSFP_HFI0_MODPRST_N);
9765 	/* Clear current status to avoid spurious interrupts */
9766 	write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_CLEAR : ASIC_QSFP1_CLEAR,
9767 		  qsfp_mask);
9768 	write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_MASK : ASIC_QSFP1_MASK,
9769 		  qsfp_mask);
9770 
9771 	set_qsfp_int_n(ppd, 0);
9772 
9773 	/* Handle active low nature of INT_N and MODPRST_N pins */
9774 	if (qsfp_mod_present(ppd))
9775 		qsfp_mask &= ~(u64)QSFP_HFI0_MODPRST_N;
9776 	write_csr(dd,
9777 		  dd->hfi1_id ? ASIC_QSFP2_INVERT : ASIC_QSFP1_INVERT,
9778 		  qsfp_mask);
9779 
9780 	/* Enable the appropriate QSFP IRQ source */
9781 	if (!dd->hfi1_id)
9782 		set_intr_bits(dd, QSFP1_INT, QSFP1_INT, true);
9783 	else
9784 		set_intr_bits(dd, QSFP2_INT, QSFP2_INT, true);
9785 }
9786 
9787 /*
9788  * Do a one-time initialize of the LCB block.
9789  */
9790 static void init_lcb(struct hfi1_devdata *dd)
9791 {
9792 	/* simulator does not correctly handle LCB cclk loopback, skip */
9793 	if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR)
9794 		return;
9795 
9796 	/* the DC has been reset earlier in the driver load */
9797 
9798 	/* set LCB for cclk loopback on the port */
9799 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0x01);
9800 	write_csr(dd, DC_LCB_CFG_LANE_WIDTH, 0x00);
9801 	write_csr(dd, DC_LCB_CFG_REINIT_AS_SLAVE, 0x00);
9802 	write_csr(dd, DC_LCB_CFG_CNT_FOR_SKIP_STALL, 0x110);
9803 	write_csr(dd, DC_LCB_CFG_CLK_CNTR, 0x08);
9804 	write_csr(dd, DC_LCB_CFG_LOOPBACK, 0x02);
9805 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0x00);
9806 }
9807 
9808 /*
9809  * Perform a test read on the QSFP.  Return 0 on success, -ERRNO
9810  * on error.
9811  */
9812 static int test_qsfp_read(struct hfi1_pportdata *ppd)
9813 {
9814 	int ret;
9815 	u8 status;
9816 
9817 	/*
9818 	 * Report success if not a QSFP or, if it is a QSFP, but the cable is
9819 	 * not present
9820 	 */
9821 	if (ppd->port_type != PORT_TYPE_QSFP || !qsfp_mod_present(ppd))
9822 		return 0;
9823 
9824 	/* read byte 2, the status byte */
9825 	ret = one_qsfp_read(ppd, ppd->dd->hfi1_id, 2, &status, 1);
9826 	if (ret < 0)
9827 		return ret;
9828 	if (ret != 1)
9829 		return -EIO;
9830 
9831 	return 0; /* success */
9832 }
9833 
9834 /*
9835  * Values for QSFP retry.
9836  *
9837  * Give up after 10s (20 x 500ms).  The overall timeout was empirically
9838  * arrived at from experience on a large cluster.
9839  */
9840 #define MAX_QSFP_RETRIES 20
9841 #define QSFP_RETRY_WAIT 500 /* msec */
9842 
9843 /*
9844  * Try a QSFP read.  If it fails, schedule a retry for later.
9845  * Called on first link activation after driver load.
9846  */
9847 static void try_start_link(struct hfi1_pportdata *ppd)
9848 {
9849 	if (test_qsfp_read(ppd)) {
9850 		/* read failed */
9851 		if (ppd->qsfp_retry_count >= MAX_QSFP_RETRIES) {
9852 			dd_dev_err(ppd->dd, "QSFP not responding, giving up\n");
9853 			return;
9854 		}
9855 		dd_dev_info(ppd->dd,
9856 			    "QSFP not responding, waiting and retrying %d\n",
9857 			    (int)ppd->qsfp_retry_count);
9858 		ppd->qsfp_retry_count++;
9859 		queue_delayed_work(ppd->link_wq, &ppd->start_link_work,
9860 				   msecs_to_jiffies(QSFP_RETRY_WAIT));
9861 		return;
9862 	}
9863 	ppd->qsfp_retry_count = 0;
9864 
9865 	start_link(ppd);
9866 }
9867 
9868 /*
9869  * Workqueue function to start the link after a delay.
9870  */
9871 void handle_start_link(struct work_struct *work)
9872 {
9873 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
9874 						  start_link_work.work);
9875 	try_start_link(ppd);
9876 }
9877 
9878 int bringup_serdes(struct hfi1_pportdata *ppd)
9879 {
9880 	struct hfi1_devdata *dd = ppd->dd;
9881 	u64 guid;
9882 	int ret;
9883 
9884 	if (HFI1_CAP_IS_KSET(EXTENDED_PSN))
9885 		add_rcvctrl(dd, RCV_CTRL_RCV_EXTENDED_PSN_ENABLE_SMASK);
9886 
9887 	guid = ppd->guids[HFI1_PORT_GUID_INDEX];
9888 	if (!guid) {
9889 		if (dd->base_guid)
9890 			guid = dd->base_guid + ppd->port - 1;
9891 		ppd->guids[HFI1_PORT_GUID_INDEX] = guid;
9892 	}
9893 
9894 	/* Set linkinit_reason on power up per OPA spec */
9895 	ppd->linkinit_reason = OPA_LINKINIT_REASON_LINKUP;
9896 
9897 	/* one-time init of the LCB */
9898 	init_lcb(dd);
9899 
9900 	if (loopback) {
9901 		ret = init_loopback(dd);
9902 		if (ret < 0)
9903 			return ret;
9904 	}
9905 
9906 	get_port_type(ppd);
9907 	if (ppd->port_type == PORT_TYPE_QSFP) {
9908 		set_qsfp_int_n(ppd, 0);
9909 		wait_for_qsfp_init(ppd);
9910 		set_qsfp_int_n(ppd, 1);
9911 	}
9912 
9913 	try_start_link(ppd);
9914 	return 0;
9915 }
9916 
9917 void hfi1_quiet_serdes(struct hfi1_pportdata *ppd)
9918 {
9919 	struct hfi1_devdata *dd = ppd->dd;
9920 
9921 	/*
9922 	 * Shut down the link and keep it down.   First turn off that the
9923 	 * driver wants to allow the link to be up (driver_link_ready).
9924 	 * Then make sure the link is not automatically restarted
9925 	 * (link_enabled).  Cancel any pending restart.  And finally
9926 	 * go offline.
9927 	 */
9928 	ppd->driver_link_ready = 0;
9929 	ppd->link_enabled = 0;
9930 
9931 	ppd->qsfp_retry_count = MAX_QSFP_RETRIES; /* prevent more retries */
9932 	flush_delayed_work(&ppd->start_link_work);
9933 	cancel_delayed_work_sync(&ppd->start_link_work);
9934 
9935 	ppd->offline_disabled_reason =
9936 			HFI1_ODR_MASK(OPA_LINKDOWN_REASON_REBOOT);
9937 	set_link_down_reason(ppd, OPA_LINKDOWN_REASON_REBOOT, 0,
9938 			     OPA_LINKDOWN_REASON_REBOOT);
9939 	set_link_state(ppd, HLS_DN_OFFLINE);
9940 
9941 	/* disable the port */
9942 	clear_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
9943 	cancel_work_sync(&ppd->freeze_work);
9944 }
9945 
9946 static inline int init_cpu_counters(struct hfi1_devdata *dd)
9947 {
9948 	struct hfi1_pportdata *ppd;
9949 	int i;
9950 
9951 	ppd = (struct hfi1_pportdata *)(dd + 1);
9952 	for (i = 0; i < dd->num_pports; i++, ppd++) {
9953 		ppd->ibport_data.rvp.rc_acks = NULL;
9954 		ppd->ibport_data.rvp.rc_qacks = NULL;
9955 		ppd->ibport_data.rvp.rc_acks = alloc_percpu(u64);
9956 		ppd->ibport_data.rvp.rc_qacks = alloc_percpu(u64);
9957 		ppd->ibport_data.rvp.rc_delayed_comp = alloc_percpu(u64);
9958 		if (!ppd->ibport_data.rvp.rc_acks ||
9959 		    !ppd->ibport_data.rvp.rc_delayed_comp ||
9960 		    !ppd->ibport_data.rvp.rc_qacks)
9961 			return -ENOMEM;
9962 	}
9963 
9964 	return 0;
9965 }
9966 
9967 /*
9968  * index is the index into the receive array
9969  */
9970 void hfi1_put_tid(struct hfi1_devdata *dd, u32 index,
9971 		  u32 type, unsigned long pa, u16 order)
9972 {
9973 	u64 reg;
9974 
9975 	if (!(dd->flags & HFI1_PRESENT))
9976 		goto done;
9977 
9978 	if (type == PT_INVALID || type == PT_INVALID_FLUSH) {
9979 		pa = 0;
9980 		order = 0;
9981 	} else if (type > PT_INVALID) {
9982 		dd_dev_err(dd,
9983 			   "unexpected receive array type %u for index %u, not handled\n",
9984 			   type, index);
9985 		goto done;
9986 	}
9987 	trace_hfi1_put_tid(dd, index, type, pa, order);
9988 
9989 #define RT_ADDR_SHIFT 12	/* 4KB kernel address boundary */
9990 	reg = RCV_ARRAY_RT_WRITE_ENABLE_SMASK
9991 		| (u64)order << RCV_ARRAY_RT_BUF_SIZE_SHIFT
9992 		| ((pa >> RT_ADDR_SHIFT) & RCV_ARRAY_RT_ADDR_MASK)
9993 					<< RCV_ARRAY_RT_ADDR_SHIFT;
9994 	trace_hfi1_write_rcvarray(dd->rcvarray_wc + (index * 8), reg);
9995 	writeq(reg, dd->rcvarray_wc + (index * 8));
9996 
9997 	if (type == PT_EAGER || type == PT_INVALID_FLUSH || (index & 3) == 3)
9998 		/*
9999 		 * Eager entries are written and flushed
10000 		 *
10001 		 * Expected entries are flushed every 4 writes
10002 		 */
10003 		flush_wc();
10004 done:
10005 	return;
10006 }
10007 
10008 void hfi1_clear_tids(struct hfi1_ctxtdata *rcd)
10009 {
10010 	struct hfi1_devdata *dd = rcd->dd;
10011 	u32 i;
10012 
10013 	/* this could be optimized */
10014 	for (i = rcd->eager_base; i < rcd->eager_base +
10015 		     rcd->egrbufs.alloced; i++)
10016 		hfi1_put_tid(dd, i, PT_INVALID, 0, 0);
10017 
10018 	for (i = rcd->expected_base;
10019 			i < rcd->expected_base + rcd->expected_count; i++)
10020 		hfi1_put_tid(dd, i, PT_INVALID, 0, 0);
10021 }
10022 
10023 static const char * const ib_cfg_name_strings[] = {
10024 	"HFI1_IB_CFG_LIDLMC",
10025 	"HFI1_IB_CFG_LWID_DG_ENB",
10026 	"HFI1_IB_CFG_LWID_ENB",
10027 	"HFI1_IB_CFG_LWID",
10028 	"HFI1_IB_CFG_SPD_ENB",
10029 	"HFI1_IB_CFG_SPD",
10030 	"HFI1_IB_CFG_RXPOL_ENB",
10031 	"HFI1_IB_CFG_LREV_ENB",
10032 	"HFI1_IB_CFG_LINKLATENCY",
10033 	"HFI1_IB_CFG_HRTBT",
10034 	"HFI1_IB_CFG_OP_VLS",
10035 	"HFI1_IB_CFG_VL_HIGH_CAP",
10036 	"HFI1_IB_CFG_VL_LOW_CAP",
10037 	"HFI1_IB_CFG_OVERRUN_THRESH",
10038 	"HFI1_IB_CFG_PHYERR_THRESH",
10039 	"HFI1_IB_CFG_LINKDEFAULT",
10040 	"HFI1_IB_CFG_PKEYS",
10041 	"HFI1_IB_CFG_MTU",
10042 	"HFI1_IB_CFG_LSTATE",
10043 	"HFI1_IB_CFG_VL_HIGH_LIMIT",
10044 	"HFI1_IB_CFG_PMA_TICKS",
10045 	"HFI1_IB_CFG_PORT"
10046 };
10047 
10048 static const char *ib_cfg_name(int which)
10049 {
10050 	if (which < 0 || which >= ARRAY_SIZE(ib_cfg_name_strings))
10051 		return "invalid";
10052 	return ib_cfg_name_strings[which];
10053 }
10054 
10055 int hfi1_get_ib_cfg(struct hfi1_pportdata *ppd, int which)
10056 {
10057 	struct hfi1_devdata *dd = ppd->dd;
10058 	int val = 0;
10059 
10060 	switch (which) {
10061 	case HFI1_IB_CFG_LWID_ENB: /* allowed Link-width */
10062 		val = ppd->link_width_enabled;
10063 		break;
10064 	case HFI1_IB_CFG_LWID: /* currently active Link-width */
10065 		val = ppd->link_width_active;
10066 		break;
10067 	case HFI1_IB_CFG_SPD_ENB: /* allowed Link speeds */
10068 		val = ppd->link_speed_enabled;
10069 		break;
10070 	case HFI1_IB_CFG_SPD: /* current Link speed */
10071 		val = ppd->link_speed_active;
10072 		break;
10073 
10074 	case HFI1_IB_CFG_RXPOL_ENB: /* Auto-RX-polarity enable */
10075 	case HFI1_IB_CFG_LREV_ENB: /* Auto-Lane-reversal enable */
10076 	case HFI1_IB_CFG_LINKLATENCY:
10077 		goto unimplemented;
10078 
10079 	case HFI1_IB_CFG_OP_VLS:
10080 		val = ppd->actual_vls_operational;
10081 		break;
10082 	case HFI1_IB_CFG_VL_HIGH_CAP: /* VL arb high priority table size */
10083 		val = VL_ARB_HIGH_PRIO_TABLE_SIZE;
10084 		break;
10085 	case HFI1_IB_CFG_VL_LOW_CAP: /* VL arb low priority table size */
10086 		val = VL_ARB_LOW_PRIO_TABLE_SIZE;
10087 		break;
10088 	case HFI1_IB_CFG_OVERRUN_THRESH: /* IB overrun threshold */
10089 		val = ppd->overrun_threshold;
10090 		break;
10091 	case HFI1_IB_CFG_PHYERR_THRESH: /* IB PHY error threshold */
10092 		val = ppd->phy_error_threshold;
10093 		break;
10094 	case HFI1_IB_CFG_LINKDEFAULT: /* IB link default (sleep/poll) */
10095 		val = HLS_DEFAULT;
10096 		break;
10097 
10098 	case HFI1_IB_CFG_HRTBT: /* Heartbeat off/enable/auto */
10099 	case HFI1_IB_CFG_PMA_TICKS:
10100 	default:
10101 unimplemented:
10102 		if (HFI1_CAP_IS_KSET(PRINT_UNIMPL))
10103 			dd_dev_info(
10104 				dd,
10105 				"%s: which %s: not implemented\n",
10106 				__func__,
10107 				ib_cfg_name(which));
10108 		break;
10109 	}
10110 
10111 	return val;
10112 }
10113 
10114 /*
10115  * The largest MAD packet size.
10116  */
10117 #define MAX_MAD_PACKET 2048
10118 
10119 /*
10120  * Return the maximum header bytes that can go on the _wire_
10121  * for this device. This count includes the ICRC which is
10122  * not part of the packet held in memory but it is appended
10123  * by the HW.
10124  * This is dependent on the device's receive header entry size.
10125  * HFI allows this to be set per-receive context, but the
10126  * driver presently enforces a global value.
10127  */
10128 u32 lrh_max_header_bytes(struct hfi1_devdata *dd)
10129 {
10130 	/*
10131 	 * The maximum non-payload (MTU) bytes in LRH.PktLen are
10132 	 * the Receive Header Entry Size minus the PBC (or RHF) size
10133 	 * plus one DW for the ICRC appended by HW.
10134 	 *
10135 	 * dd->rcd[0].rcvhdrqentsize is in DW.
10136 	 * We use rcd[0] as all context will have the same value. Also,
10137 	 * the first kernel context would have been allocated by now so
10138 	 * we are guaranteed a valid value.
10139 	 */
10140 	return (get_hdrqentsize(dd->rcd[0]) - 2/*PBC/RHF*/ + 1/*ICRC*/) << 2;
10141 }
10142 
10143 /*
10144  * Set Send Length
10145  * @ppd - per port data
10146  *
10147  * Set the MTU by limiting how many DWs may be sent.  The SendLenCheck*
10148  * registers compare against LRH.PktLen, so use the max bytes included
10149  * in the LRH.
10150  *
10151  * This routine changes all VL values except VL15, which it maintains at
10152  * the same value.
10153  */
10154 static void set_send_length(struct hfi1_pportdata *ppd)
10155 {
10156 	struct hfi1_devdata *dd = ppd->dd;
10157 	u32 max_hb = lrh_max_header_bytes(dd), dcmtu;
10158 	u32 maxvlmtu = dd->vld[15].mtu;
10159 	u64 len1 = 0, len2 = (((dd->vld[15].mtu + max_hb) >> 2)
10160 			      & SEND_LEN_CHECK1_LEN_VL15_MASK) <<
10161 		SEND_LEN_CHECK1_LEN_VL15_SHIFT;
10162 	int i, j;
10163 	u32 thres;
10164 
10165 	for (i = 0; i < ppd->vls_supported; i++) {
10166 		if (dd->vld[i].mtu > maxvlmtu)
10167 			maxvlmtu = dd->vld[i].mtu;
10168 		if (i <= 3)
10169 			len1 |= (((dd->vld[i].mtu + max_hb) >> 2)
10170 				 & SEND_LEN_CHECK0_LEN_VL0_MASK) <<
10171 				((i % 4) * SEND_LEN_CHECK0_LEN_VL1_SHIFT);
10172 		else
10173 			len2 |= (((dd->vld[i].mtu + max_hb) >> 2)
10174 				 & SEND_LEN_CHECK1_LEN_VL4_MASK) <<
10175 				((i % 4) * SEND_LEN_CHECK1_LEN_VL5_SHIFT);
10176 	}
10177 	write_csr(dd, SEND_LEN_CHECK0, len1);
10178 	write_csr(dd, SEND_LEN_CHECK1, len2);
10179 	/* adjust kernel credit return thresholds based on new MTUs */
10180 	/* all kernel receive contexts have the same hdrqentsize */
10181 	for (i = 0; i < ppd->vls_supported; i++) {
10182 		thres = min(sc_percent_to_threshold(dd->vld[i].sc, 50),
10183 			    sc_mtu_to_threshold(dd->vld[i].sc,
10184 						dd->vld[i].mtu,
10185 						get_hdrqentsize(dd->rcd[0])));
10186 		for (j = 0; j < INIT_SC_PER_VL; j++)
10187 			sc_set_cr_threshold(
10188 					pio_select_send_context_vl(dd, j, i),
10189 					    thres);
10190 	}
10191 	thres = min(sc_percent_to_threshold(dd->vld[15].sc, 50),
10192 		    sc_mtu_to_threshold(dd->vld[15].sc,
10193 					dd->vld[15].mtu,
10194 					dd->rcd[0]->rcvhdrqentsize));
10195 	sc_set_cr_threshold(dd->vld[15].sc, thres);
10196 
10197 	/* Adjust maximum MTU for the port in DC */
10198 	dcmtu = maxvlmtu == 10240 ? DCC_CFG_PORT_MTU_CAP_10240 :
10199 		(ilog2(maxvlmtu >> 8) + 1);
10200 	len1 = read_csr(ppd->dd, DCC_CFG_PORT_CONFIG);
10201 	len1 &= ~DCC_CFG_PORT_CONFIG_MTU_CAP_SMASK;
10202 	len1 |= ((u64)dcmtu & DCC_CFG_PORT_CONFIG_MTU_CAP_MASK) <<
10203 		DCC_CFG_PORT_CONFIG_MTU_CAP_SHIFT;
10204 	write_csr(ppd->dd, DCC_CFG_PORT_CONFIG, len1);
10205 }
10206 
10207 static void set_lidlmc(struct hfi1_pportdata *ppd)
10208 {
10209 	int i;
10210 	u64 sreg = 0;
10211 	struct hfi1_devdata *dd = ppd->dd;
10212 	u32 mask = ~((1U << ppd->lmc) - 1);
10213 	u64 c1 = read_csr(ppd->dd, DCC_CFG_PORT_CONFIG1);
10214 	u32 lid;
10215 
10216 	/*
10217 	 * Program 0 in CSR if port lid is extended. This prevents
10218 	 * 9B packets being sent out for large lids.
10219 	 */
10220 	lid = (ppd->lid >= be16_to_cpu(IB_MULTICAST_LID_BASE)) ? 0 : ppd->lid;
10221 	c1 &= ~(DCC_CFG_PORT_CONFIG1_TARGET_DLID_SMASK
10222 		| DCC_CFG_PORT_CONFIG1_DLID_MASK_SMASK);
10223 	c1 |= ((lid & DCC_CFG_PORT_CONFIG1_TARGET_DLID_MASK)
10224 			<< DCC_CFG_PORT_CONFIG1_TARGET_DLID_SHIFT) |
10225 	      ((mask & DCC_CFG_PORT_CONFIG1_DLID_MASK_MASK)
10226 			<< DCC_CFG_PORT_CONFIG1_DLID_MASK_SHIFT);
10227 	write_csr(ppd->dd, DCC_CFG_PORT_CONFIG1, c1);
10228 
10229 	/*
10230 	 * Iterate over all the send contexts and set their SLID check
10231 	 */
10232 	sreg = ((mask & SEND_CTXT_CHECK_SLID_MASK_MASK) <<
10233 			SEND_CTXT_CHECK_SLID_MASK_SHIFT) |
10234 	       (((lid & mask) & SEND_CTXT_CHECK_SLID_VALUE_MASK) <<
10235 			SEND_CTXT_CHECK_SLID_VALUE_SHIFT);
10236 
10237 	for (i = 0; i < chip_send_contexts(dd); i++) {
10238 		hfi1_cdbg(LINKVERB, "SendContext[%d].SLID_CHECK = 0x%x",
10239 			  i, (u32)sreg);
10240 		write_kctxt_csr(dd, i, SEND_CTXT_CHECK_SLID, sreg);
10241 	}
10242 
10243 	/* Now we have to do the same thing for the sdma engines */
10244 	sdma_update_lmc(dd, mask, lid);
10245 }
10246 
10247 static const char *state_completed_string(u32 completed)
10248 {
10249 	static const char * const state_completed[] = {
10250 		"EstablishComm",
10251 		"OptimizeEQ",
10252 		"VerifyCap"
10253 	};
10254 
10255 	if (completed < ARRAY_SIZE(state_completed))
10256 		return state_completed[completed];
10257 
10258 	return "unknown";
10259 }
10260 
10261 static const char all_lanes_dead_timeout_expired[] =
10262 	"All lanes were inactive – was the interconnect media removed?";
10263 static const char tx_out_of_policy[] =
10264 	"Passing lanes on local port do not meet the local link width policy";
10265 static const char no_state_complete[] =
10266 	"State timeout occurred before link partner completed the state";
10267 static const char * const state_complete_reasons[] = {
10268 	[0x00] = "Reason unknown",
10269 	[0x01] = "Link was halted by driver, refer to LinkDownReason",
10270 	[0x02] = "Link partner reported failure",
10271 	[0x10] = "Unable to achieve frame sync on any lane",
10272 	[0x11] =
10273 	  "Unable to find a common bit rate with the link partner",
10274 	[0x12] =
10275 	  "Unable to achieve frame sync on sufficient lanes to meet the local link width policy",
10276 	[0x13] =
10277 	  "Unable to identify preset equalization on sufficient lanes to meet the local link width policy",
10278 	[0x14] = no_state_complete,
10279 	[0x15] =
10280 	  "State timeout occurred before link partner identified equalization presets",
10281 	[0x16] =
10282 	  "Link partner completed the EstablishComm state, but the passing lanes do not meet the local link width policy",
10283 	[0x17] = tx_out_of_policy,
10284 	[0x20] = all_lanes_dead_timeout_expired,
10285 	[0x21] =
10286 	  "Unable to achieve acceptable BER on sufficient lanes to meet the local link width policy",
10287 	[0x22] = no_state_complete,
10288 	[0x23] =
10289 	  "Link partner completed the OptimizeEq state, but the passing lanes do not meet the local link width policy",
10290 	[0x24] = tx_out_of_policy,
10291 	[0x30] = all_lanes_dead_timeout_expired,
10292 	[0x31] =
10293 	  "State timeout occurred waiting for host to process received frames",
10294 	[0x32] = no_state_complete,
10295 	[0x33] =
10296 	  "Link partner completed the VerifyCap state, but the passing lanes do not meet the local link width policy",
10297 	[0x34] = tx_out_of_policy,
10298 	[0x35] = "Negotiated link width is mutually exclusive",
10299 	[0x36] =
10300 	  "Timed out before receiving verifycap frames in VerifyCap.Exchange",
10301 	[0x37] = "Unable to resolve secure data exchange",
10302 };
10303 
10304 static const char *state_complete_reason_code_string(struct hfi1_pportdata *ppd,
10305 						     u32 code)
10306 {
10307 	const char *str = NULL;
10308 
10309 	if (code < ARRAY_SIZE(state_complete_reasons))
10310 		str = state_complete_reasons[code];
10311 
10312 	if (str)
10313 		return str;
10314 	return "Reserved";
10315 }
10316 
10317 /* describe the given last state complete frame */
10318 static void decode_state_complete(struct hfi1_pportdata *ppd, u32 frame,
10319 				  const char *prefix)
10320 {
10321 	struct hfi1_devdata *dd = ppd->dd;
10322 	u32 success;
10323 	u32 state;
10324 	u32 reason;
10325 	u32 lanes;
10326 
10327 	/*
10328 	 * Decode frame:
10329 	 *  [ 0: 0] - success
10330 	 *  [ 3: 1] - state
10331 	 *  [ 7: 4] - next state timeout
10332 	 *  [15: 8] - reason code
10333 	 *  [31:16] - lanes
10334 	 */
10335 	success = frame & 0x1;
10336 	state = (frame >> 1) & 0x7;
10337 	reason = (frame >> 8) & 0xff;
10338 	lanes = (frame >> 16) & 0xffff;
10339 
10340 	dd_dev_err(dd, "Last %s LNI state complete frame 0x%08x:\n",
10341 		   prefix, frame);
10342 	dd_dev_err(dd, "    last reported state state: %s (0x%x)\n",
10343 		   state_completed_string(state), state);
10344 	dd_dev_err(dd, "    state successfully completed: %s\n",
10345 		   success ? "yes" : "no");
10346 	dd_dev_err(dd, "    fail reason 0x%x: %s\n",
10347 		   reason, state_complete_reason_code_string(ppd, reason));
10348 	dd_dev_err(dd, "    passing lane mask: 0x%x", lanes);
10349 }
10350 
10351 /*
10352  * Read the last state complete frames and explain them.  This routine
10353  * expects to be called if the link went down during link negotiation
10354  * and initialization (LNI).  That is, anywhere between polling and link up.
10355  */
10356 static void check_lni_states(struct hfi1_pportdata *ppd)
10357 {
10358 	u32 last_local_state;
10359 	u32 last_remote_state;
10360 
10361 	read_last_local_state(ppd->dd, &last_local_state);
10362 	read_last_remote_state(ppd->dd, &last_remote_state);
10363 
10364 	/*
10365 	 * Don't report anything if there is nothing to report.  A value of
10366 	 * 0 means the link was taken down while polling and there was no
10367 	 * training in-process.
10368 	 */
10369 	if (last_local_state == 0 && last_remote_state == 0)
10370 		return;
10371 
10372 	decode_state_complete(ppd, last_local_state, "transmitted");
10373 	decode_state_complete(ppd, last_remote_state, "received");
10374 }
10375 
10376 /* wait for wait_ms for LINK_TRANSFER_ACTIVE to go to 1 */
10377 static int wait_link_transfer_active(struct hfi1_devdata *dd, int wait_ms)
10378 {
10379 	u64 reg;
10380 	unsigned long timeout;
10381 
10382 	/* watch LCB_STS_LINK_TRANSFER_ACTIVE */
10383 	timeout = jiffies + msecs_to_jiffies(wait_ms);
10384 	while (1) {
10385 		reg = read_csr(dd, DC_LCB_STS_LINK_TRANSFER_ACTIVE);
10386 		if (reg)
10387 			break;
10388 		if (time_after(jiffies, timeout)) {
10389 			dd_dev_err(dd,
10390 				   "timeout waiting for LINK_TRANSFER_ACTIVE\n");
10391 			return -ETIMEDOUT;
10392 		}
10393 		udelay(2);
10394 	}
10395 	return 0;
10396 }
10397 
10398 /* called when the logical link state is not down as it should be */
10399 static void force_logical_link_state_down(struct hfi1_pportdata *ppd)
10400 {
10401 	struct hfi1_devdata *dd = ppd->dd;
10402 
10403 	/*
10404 	 * Bring link up in LCB loopback
10405 	 */
10406 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 1);
10407 	write_csr(dd, DC_LCB_CFG_IGNORE_LOST_RCLK,
10408 		  DC_LCB_CFG_IGNORE_LOST_RCLK_EN_SMASK);
10409 
10410 	write_csr(dd, DC_LCB_CFG_LANE_WIDTH, 0);
10411 	write_csr(dd, DC_LCB_CFG_REINIT_AS_SLAVE, 0);
10412 	write_csr(dd, DC_LCB_CFG_CNT_FOR_SKIP_STALL, 0x110);
10413 	write_csr(dd, DC_LCB_CFG_LOOPBACK, 0x2);
10414 
10415 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0);
10416 	(void)read_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET);
10417 	udelay(3);
10418 	write_csr(dd, DC_LCB_CFG_ALLOW_LINK_UP, 1);
10419 	write_csr(dd, DC_LCB_CFG_RUN, 1ull << DC_LCB_CFG_RUN_EN_SHIFT);
10420 
10421 	wait_link_transfer_active(dd, 100);
10422 
10423 	/*
10424 	 * Bring the link down again.
10425 	 */
10426 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 1);
10427 	write_csr(dd, DC_LCB_CFG_ALLOW_LINK_UP, 0);
10428 	write_csr(dd, DC_LCB_CFG_IGNORE_LOST_RCLK, 0);
10429 
10430 	dd_dev_info(ppd->dd, "logical state forced to LINK_DOWN\n");
10431 }
10432 
10433 /*
10434  * Helper for set_link_state().  Do not call except from that routine.
10435  * Expects ppd->hls_mutex to be held.
10436  *
10437  * @rem_reason value to be sent to the neighbor
10438  *
10439  * LinkDownReasons only set if transition succeeds.
10440  */
10441 static int goto_offline(struct hfi1_pportdata *ppd, u8 rem_reason)
10442 {
10443 	struct hfi1_devdata *dd = ppd->dd;
10444 	u32 previous_state;
10445 	int offline_state_ret;
10446 	int ret;
10447 
10448 	update_lcb_cache(dd);
10449 
10450 	previous_state = ppd->host_link_state;
10451 	ppd->host_link_state = HLS_GOING_OFFLINE;
10452 
10453 	/* start offline transition */
10454 	ret = set_physical_link_state(dd, (rem_reason << 8) | PLS_OFFLINE);
10455 
10456 	if (ret != HCMD_SUCCESS) {
10457 		dd_dev_err(dd,
10458 			   "Failed to transition to Offline link state, return %d\n",
10459 			   ret);
10460 		return -EINVAL;
10461 	}
10462 	if (ppd->offline_disabled_reason ==
10463 			HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE))
10464 		ppd->offline_disabled_reason =
10465 		HFI1_ODR_MASK(OPA_LINKDOWN_REASON_TRANSIENT);
10466 
10467 	offline_state_ret = wait_phys_link_offline_substates(ppd, 10000);
10468 	if (offline_state_ret < 0)
10469 		return offline_state_ret;
10470 
10471 	/* Disabling AOC transmitters */
10472 	if (ppd->port_type == PORT_TYPE_QSFP &&
10473 	    ppd->qsfp_info.limiting_active &&
10474 	    qsfp_mod_present(ppd)) {
10475 		int ret;
10476 
10477 		ret = acquire_chip_resource(dd, qsfp_resource(dd), QSFP_WAIT);
10478 		if (ret == 0) {
10479 			set_qsfp_tx(ppd, 0);
10480 			release_chip_resource(dd, qsfp_resource(dd));
10481 		} else {
10482 			/* not fatal, but should warn */
10483 			dd_dev_err(dd,
10484 				   "Unable to acquire lock to turn off QSFP TX\n");
10485 		}
10486 	}
10487 
10488 	/*
10489 	 * Wait for the offline.Quiet transition if it hasn't happened yet. It
10490 	 * can take a while for the link to go down.
10491 	 */
10492 	if (offline_state_ret != PLS_OFFLINE_QUIET) {
10493 		ret = wait_physical_linkstate(ppd, PLS_OFFLINE, 30000);
10494 		if (ret < 0)
10495 			return ret;
10496 	}
10497 
10498 	/*
10499 	 * Now in charge of LCB - must be after the physical state is
10500 	 * offline.quiet and before host_link_state is changed.
10501 	 */
10502 	set_host_lcb_access(dd);
10503 	write_csr(dd, DC_LCB_ERR_EN, ~0ull); /* watch LCB errors */
10504 
10505 	/* make sure the logical state is also down */
10506 	ret = wait_logical_linkstate(ppd, IB_PORT_DOWN, 1000);
10507 	if (ret)
10508 		force_logical_link_state_down(ppd);
10509 
10510 	ppd->host_link_state = HLS_LINK_COOLDOWN; /* LCB access allowed */
10511 	update_statusp(ppd, IB_PORT_DOWN);
10512 
10513 	/*
10514 	 * The LNI has a mandatory wait time after the physical state
10515 	 * moves to Offline.Quiet.  The wait time may be different
10516 	 * depending on how the link went down.  The 8051 firmware
10517 	 * will observe the needed wait time and only move to ready
10518 	 * when that is completed.  The largest of the quiet timeouts
10519 	 * is 6s, so wait that long and then at least 0.5s more for
10520 	 * other transitions, and another 0.5s for a buffer.
10521 	 */
10522 	ret = wait_fm_ready(dd, 7000);
10523 	if (ret) {
10524 		dd_dev_err(dd,
10525 			   "After going offline, timed out waiting for the 8051 to become ready to accept host requests\n");
10526 		/* state is really offline, so make it so */
10527 		ppd->host_link_state = HLS_DN_OFFLINE;
10528 		return ret;
10529 	}
10530 
10531 	/*
10532 	 * The state is now offline and the 8051 is ready to accept host
10533 	 * requests.
10534 	 *	- change our state
10535 	 *	- notify others if we were previously in a linkup state
10536 	 */
10537 	ppd->host_link_state = HLS_DN_OFFLINE;
10538 	if (previous_state & HLS_UP) {
10539 		/* went down while link was up */
10540 		handle_linkup_change(dd, 0);
10541 	} else if (previous_state
10542 			& (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) {
10543 		/* went down while attempting link up */
10544 		check_lni_states(ppd);
10545 
10546 		/* The QSFP doesn't need to be reset on LNI failure */
10547 		ppd->qsfp_info.reset_needed = 0;
10548 	}
10549 
10550 	/* the active link width (downgrade) is 0 on link down */
10551 	ppd->link_width_active = 0;
10552 	ppd->link_width_downgrade_tx_active = 0;
10553 	ppd->link_width_downgrade_rx_active = 0;
10554 	ppd->current_egress_rate = 0;
10555 	return 0;
10556 }
10557 
10558 /* return the link state name */
10559 static const char *link_state_name(u32 state)
10560 {
10561 	const char *name;
10562 	int n = ilog2(state);
10563 	static const char * const names[] = {
10564 		[__HLS_UP_INIT_BP]	 = "INIT",
10565 		[__HLS_UP_ARMED_BP]	 = "ARMED",
10566 		[__HLS_UP_ACTIVE_BP]	 = "ACTIVE",
10567 		[__HLS_DN_DOWNDEF_BP]	 = "DOWNDEF",
10568 		[__HLS_DN_POLL_BP]	 = "POLL",
10569 		[__HLS_DN_DISABLE_BP]	 = "DISABLE",
10570 		[__HLS_DN_OFFLINE_BP]	 = "OFFLINE",
10571 		[__HLS_VERIFY_CAP_BP]	 = "VERIFY_CAP",
10572 		[__HLS_GOING_UP_BP]	 = "GOING_UP",
10573 		[__HLS_GOING_OFFLINE_BP] = "GOING_OFFLINE",
10574 		[__HLS_LINK_COOLDOWN_BP] = "LINK_COOLDOWN"
10575 	};
10576 
10577 	name = n < ARRAY_SIZE(names) ? names[n] : NULL;
10578 	return name ? name : "unknown";
10579 }
10580 
10581 /* return the link state reason name */
10582 static const char *link_state_reason_name(struct hfi1_pportdata *ppd, u32 state)
10583 {
10584 	if (state == HLS_UP_INIT) {
10585 		switch (ppd->linkinit_reason) {
10586 		case OPA_LINKINIT_REASON_LINKUP:
10587 			return "(LINKUP)";
10588 		case OPA_LINKINIT_REASON_FLAPPING:
10589 			return "(FLAPPING)";
10590 		case OPA_LINKINIT_OUTSIDE_POLICY:
10591 			return "(OUTSIDE_POLICY)";
10592 		case OPA_LINKINIT_QUARANTINED:
10593 			return "(QUARANTINED)";
10594 		case OPA_LINKINIT_INSUFIC_CAPABILITY:
10595 			return "(INSUFIC_CAPABILITY)";
10596 		default:
10597 			break;
10598 		}
10599 	}
10600 	return "";
10601 }
10602 
10603 /*
10604  * driver_pstate - convert the driver's notion of a port's
10605  * state (an HLS_*) into a physical state (a {IB,OPA}_PORTPHYSSTATE_*).
10606  * Return -1 (converted to a u32) to indicate error.
10607  */
10608 u32 driver_pstate(struct hfi1_pportdata *ppd)
10609 {
10610 	switch (ppd->host_link_state) {
10611 	case HLS_UP_INIT:
10612 	case HLS_UP_ARMED:
10613 	case HLS_UP_ACTIVE:
10614 		return IB_PORTPHYSSTATE_LINKUP;
10615 	case HLS_DN_POLL:
10616 		return IB_PORTPHYSSTATE_POLLING;
10617 	case HLS_DN_DISABLE:
10618 		return IB_PORTPHYSSTATE_DISABLED;
10619 	case HLS_DN_OFFLINE:
10620 		return OPA_PORTPHYSSTATE_OFFLINE;
10621 	case HLS_VERIFY_CAP:
10622 		return IB_PORTPHYSSTATE_TRAINING;
10623 	case HLS_GOING_UP:
10624 		return IB_PORTPHYSSTATE_TRAINING;
10625 	case HLS_GOING_OFFLINE:
10626 		return OPA_PORTPHYSSTATE_OFFLINE;
10627 	case HLS_LINK_COOLDOWN:
10628 		return OPA_PORTPHYSSTATE_OFFLINE;
10629 	case HLS_DN_DOWNDEF:
10630 	default:
10631 		dd_dev_err(ppd->dd, "invalid host_link_state 0x%x\n",
10632 			   ppd->host_link_state);
10633 		return  -1;
10634 	}
10635 }
10636 
10637 /*
10638  * driver_lstate - convert the driver's notion of a port's
10639  * state (an HLS_*) into a logical state (a IB_PORT_*). Return -1
10640  * (converted to a u32) to indicate error.
10641  */
10642 u32 driver_lstate(struct hfi1_pportdata *ppd)
10643 {
10644 	if (ppd->host_link_state && (ppd->host_link_state & HLS_DOWN))
10645 		return IB_PORT_DOWN;
10646 
10647 	switch (ppd->host_link_state & HLS_UP) {
10648 	case HLS_UP_INIT:
10649 		return IB_PORT_INIT;
10650 	case HLS_UP_ARMED:
10651 		return IB_PORT_ARMED;
10652 	case HLS_UP_ACTIVE:
10653 		return IB_PORT_ACTIVE;
10654 	default:
10655 		dd_dev_err(ppd->dd, "invalid host_link_state 0x%x\n",
10656 			   ppd->host_link_state);
10657 	return -1;
10658 	}
10659 }
10660 
10661 void set_link_down_reason(struct hfi1_pportdata *ppd, u8 lcl_reason,
10662 			  u8 neigh_reason, u8 rem_reason)
10663 {
10664 	if (ppd->local_link_down_reason.latest == 0 &&
10665 	    ppd->neigh_link_down_reason.latest == 0) {
10666 		ppd->local_link_down_reason.latest = lcl_reason;
10667 		ppd->neigh_link_down_reason.latest = neigh_reason;
10668 		ppd->remote_link_down_reason = rem_reason;
10669 	}
10670 }
10671 
10672 /**
10673  * data_vls_operational() - Verify if data VL BCT credits and MTU
10674  *			    are both set.
10675  * @ppd: pointer to hfi1_pportdata structure
10676  *
10677  * Return: true - Ok, false -otherwise.
10678  */
10679 static inline bool data_vls_operational(struct hfi1_pportdata *ppd)
10680 {
10681 	int i;
10682 	u64 reg;
10683 
10684 	if (!ppd->actual_vls_operational)
10685 		return false;
10686 
10687 	for (i = 0; i < ppd->vls_supported; i++) {
10688 		reg = read_csr(ppd->dd, SEND_CM_CREDIT_VL + (8 * i));
10689 		if ((reg && !ppd->dd->vld[i].mtu) ||
10690 		    (!reg && ppd->dd->vld[i].mtu))
10691 			return false;
10692 	}
10693 
10694 	return true;
10695 }
10696 
10697 /*
10698  * Change the physical and/or logical link state.
10699  *
10700  * Do not call this routine while inside an interrupt.  It contains
10701  * calls to routines that can take multiple seconds to finish.
10702  *
10703  * Returns 0 on success, -errno on failure.
10704  */
10705 int set_link_state(struct hfi1_pportdata *ppd, u32 state)
10706 {
10707 	struct hfi1_devdata *dd = ppd->dd;
10708 	struct ib_event event = {.device = NULL};
10709 	int ret1, ret = 0;
10710 	int orig_new_state, poll_bounce;
10711 
10712 	mutex_lock(&ppd->hls_lock);
10713 
10714 	orig_new_state = state;
10715 	if (state == HLS_DN_DOWNDEF)
10716 		state = HLS_DEFAULT;
10717 
10718 	/* interpret poll -> poll as a link bounce */
10719 	poll_bounce = ppd->host_link_state == HLS_DN_POLL &&
10720 		      state == HLS_DN_POLL;
10721 
10722 	dd_dev_info(dd, "%s: current %s, new %s %s%s\n", __func__,
10723 		    link_state_name(ppd->host_link_state),
10724 		    link_state_name(orig_new_state),
10725 		    poll_bounce ? "(bounce) " : "",
10726 		    link_state_reason_name(ppd, state));
10727 
10728 	/*
10729 	 * If we're going to a (HLS_*) link state that implies the logical
10730 	 * link state is neither of (IB_PORT_ARMED, IB_PORT_ACTIVE), then
10731 	 * reset is_sm_config_started to 0.
10732 	 */
10733 	if (!(state & (HLS_UP_ARMED | HLS_UP_ACTIVE)))
10734 		ppd->is_sm_config_started = 0;
10735 
10736 	/*
10737 	 * Do nothing if the states match.  Let a poll to poll link bounce
10738 	 * go through.
10739 	 */
10740 	if (ppd->host_link_state == state && !poll_bounce)
10741 		goto done;
10742 
10743 	switch (state) {
10744 	case HLS_UP_INIT:
10745 		if (ppd->host_link_state == HLS_DN_POLL &&
10746 		    (quick_linkup || dd->icode == ICODE_FUNCTIONAL_SIMULATOR)) {
10747 			/*
10748 			 * Quick link up jumps from polling to here.
10749 			 *
10750 			 * Whether in normal or loopback mode, the
10751 			 * simulator jumps from polling to link up.
10752 			 * Accept that here.
10753 			 */
10754 			/* OK */
10755 		} else if (ppd->host_link_state != HLS_GOING_UP) {
10756 			goto unexpected;
10757 		}
10758 
10759 		/*
10760 		 * Wait for Link_Up physical state.
10761 		 * Physical and Logical states should already be
10762 		 * be transitioned to LinkUp and LinkInit respectively.
10763 		 */
10764 		ret = wait_physical_linkstate(ppd, PLS_LINKUP, 1000);
10765 		if (ret) {
10766 			dd_dev_err(dd,
10767 				   "%s: physical state did not change to LINK-UP\n",
10768 				   __func__);
10769 			break;
10770 		}
10771 
10772 		ret = wait_logical_linkstate(ppd, IB_PORT_INIT, 1000);
10773 		if (ret) {
10774 			dd_dev_err(dd,
10775 				   "%s: logical state did not change to INIT\n",
10776 				   __func__);
10777 			break;
10778 		}
10779 
10780 		/* clear old transient LINKINIT_REASON code */
10781 		if (ppd->linkinit_reason >= OPA_LINKINIT_REASON_CLEAR)
10782 			ppd->linkinit_reason =
10783 				OPA_LINKINIT_REASON_LINKUP;
10784 
10785 		/* enable the port */
10786 		add_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
10787 
10788 		handle_linkup_change(dd, 1);
10789 		pio_kernel_linkup(dd);
10790 
10791 		/*
10792 		 * After link up, a new link width will have been set.
10793 		 * Update the xmit counters with regards to the new
10794 		 * link width.
10795 		 */
10796 		update_xmit_counters(ppd, ppd->link_width_active);
10797 
10798 		ppd->host_link_state = HLS_UP_INIT;
10799 		update_statusp(ppd, IB_PORT_INIT);
10800 		break;
10801 	case HLS_UP_ARMED:
10802 		if (ppd->host_link_state != HLS_UP_INIT)
10803 			goto unexpected;
10804 
10805 		if (!data_vls_operational(ppd)) {
10806 			dd_dev_err(dd,
10807 				   "%s: Invalid data VL credits or mtu\n",
10808 				   __func__);
10809 			ret = -EINVAL;
10810 			break;
10811 		}
10812 
10813 		set_logical_state(dd, LSTATE_ARMED);
10814 		ret = wait_logical_linkstate(ppd, IB_PORT_ARMED, 1000);
10815 		if (ret) {
10816 			dd_dev_err(dd,
10817 				   "%s: logical state did not change to ARMED\n",
10818 				   __func__);
10819 			break;
10820 		}
10821 		ppd->host_link_state = HLS_UP_ARMED;
10822 		update_statusp(ppd, IB_PORT_ARMED);
10823 		/*
10824 		 * The simulator does not currently implement SMA messages,
10825 		 * so neighbor_normal is not set.  Set it here when we first
10826 		 * move to Armed.
10827 		 */
10828 		if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR)
10829 			ppd->neighbor_normal = 1;
10830 		break;
10831 	case HLS_UP_ACTIVE:
10832 		if (ppd->host_link_state != HLS_UP_ARMED)
10833 			goto unexpected;
10834 
10835 		set_logical_state(dd, LSTATE_ACTIVE);
10836 		ret = wait_logical_linkstate(ppd, IB_PORT_ACTIVE, 1000);
10837 		if (ret) {
10838 			dd_dev_err(dd,
10839 				   "%s: logical state did not change to ACTIVE\n",
10840 				   __func__);
10841 		} else {
10842 			/* tell all engines to go running */
10843 			sdma_all_running(dd);
10844 			ppd->host_link_state = HLS_UP_ACTIVE;
10845 			update_statusp(ppd, IB_PORT_ACTIVE);
10846 
10847 			/* Signal the IB layer that the port has went active */
10848 			event.device = &dd->verbs_dev.rdi.ibdev;
10849 			event.element.port_num = ppd->port;
10850 			event.event = IB_EVENT_PORT_ACTIVE;
10851 		}
10852 		break;
10853 	case HLS_DN_POLL:
10854 		if ((ppd->host_link_state == HLS_DN_DISABLE ||
10855 		     ppd->host_link_state == HLS_DN_OFFLINE) &&
10856 		    dd->dc_shutdown)
10857 			dc_start(dd);
10858 		/* Hand LED control to the DC */
10859 		write_csr(dd, DCC_CFG_LED_CNTRL, 0);
10860 
10861 		if (ppd->host_link_state != HLS_DN_OFFLINE) {
10862 			u8 tmp = ppd->link_enabled;
10863 
10864 			ret = goto_offline(ppd, ppd->remote_link_down_reason);
10865 			if (ret) {
10866 				ppd->link_enabled = tmp;
10867 				break;
10868 			}
10869 			ppd->remote_link_down_reason = 0;
10870 
10871 			if (ppd->driver_link_ready)
10872 				ppd->link_enabled = 1;
10873 		}
10874 
10875 		set_all_slowpath(ppd->dd);
10876 		ret = set_local_link_attributes(ppd);
10877 		if (ret)
10878 			break;
10879 
10880 		ppd->port_error_action = 0;
10881 
10882 		if (quick_linkup) {
10883 			/* quick linkup does not go into polling */
10884 			ret = do_quick_linkup(dd);
10885 		} else {
10886 			ret1 = set_physical_link_state(dd, PLS_POLLING);
10887 			if (!ret1)
10888 				ret1 = wait_phys_link_out_of_offline(ppd,
10889 								     3000);
10890 			if (ret1 != HCMD_SUCCESS) {
10891 				dd_dev_err(dd,
10892 					   "Failed to transition to Polling link state, return 0x%x\n",
10893 					   ret1);
10894 				ret = -EINVAL;
10895 			}
10896 		}
10897 
10898 		/*
10899 		 * Change the host link state after requesting DC8051 to
10900 		 * change its physical state so that we can ignore any
10901 		 * interrupt with stale LNI(XX) error, which will not be
10902 		 * cleared until DC8051 transitions to Polling state.
10903 		 */
10904 		ppd->host_link_state = HLS_DN_POLL;
10905 		ppd->offline_disabled_reason =
10906 			HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE);
10907 		/*
10908 		 * If an error occurred above, go back to offline.  The
10909 		 * caller may reschedule another attempt.
10910 		 */
10911 		if (ret)
10912 			goto_offline(ppd, 0);
10913 		else
10914 			log_physical_state(ppd, PLS_POLLING);
10915 		break;
10916 	case HLS_DN_DISABLE:
10917 		/* link is disabled */
10918 		ppd->link_enabled = 0;
10919 
10920 		/* allow any state to transition to disabled */
10921 
10922 		/* must transition to offline first */
10923 		if (ppd->host_link_state != HLS_DN_OFFLINE) {
10924 			ret = goto_offline(ppd, ppd->remote_link_down_reason);
10925 			if (ret)
10926 				break;
10927 			ppd->remote_link_down_reason = 0;
10928 		}
10929 
10930 		if (!dd->dc_shutdown) {
10931 			ret1 = set_physical_link_state(dd, PLS_DISABLED);
10932 			if (ret1 != HCMD_SUCCESS) {
10933 				dd_dev_err(dd,
10934 					   "Failed to transition to Disabled link state, return 0x%x\n",
10935 					   ret1);
10936 				ret = -EINVAL;
10937 				break;
10938 			}
10939 			ret = wait_physical_linkstate(ppd, PLS_DISABLED, 10000);
10940 			if (ret) {
10941 				dd_dev_err(dd,
10942 					   "%s: physical state did not change to DISABLED\n",
10943 					   __func__);
10944 				break;
10945 			}
10946 			dc_shutdown(dd);
10947 		}
10948 		ppd->host_link_state = HLS_DN_DISABLE;
10949 		break;
10950 	case HLS_DN_OFFLINE:
10951 		if (ppd->host_link_state == HLS_DN_DISABLE)
10952 			dc_start(dd);
10953 
10954 		/* allow any state to transition to offline */
10955 		ret = goto_offline(ppd, ppd->remote_link_down_reason);
10956 		if (!ret)
10957 			ppd->remote_link_down_reason = 0;
10958 		break;
10959 	case HLS_VERIFY_CAP:
10960 		if (ppd->host_link_state != HLS_DN_POLL)
10961 			goto unexpected;
10962 		ppd->host_link_state = HLS_VERIFY_CAP;
10963 		log_physical_state(ppd, PLS_CONFIGPHY_VERIFYCAP);
10964 		break;
10965 	case HLS_GOING_UP:
10966 		if (ppd->host_link_state != HLS_VERIFY_CAP)
10967 			goto unexpected;
10968 
10969 		ret1 = set_physical_link_state(dd, PLS_LINKUP);
10970 		if (ret1 != HCMD_SUCCESS) {
10971 			dd_dev_err(dd,
10972 				   "Failed to transition to link up state, return 0x%x\n",
10973 				   ret1);
10974 			ret = -EINVAL;
10975 			break;
10976 		}
10977 		ppd->host_link_state = HLS_GOING_UP;
10978 		break;
10979 
10980 	case HLS_GOING_OFFLINE:		/* transient within goto_offline() */
10981 	case HLS_LINK_COOLDOWN:		/* transient within goto_offline() */
10982 	default:
10983 		dd_dev_info(dd, "%s: state 0x%x: not supported\n",
10984 			    __func__, state);
10985 		ret = -EINVAL;
10986 		break;
10987 	}
10988 
10989 	goto done;
10990 
10991 unexpected:
10992 	dd_dev_err(dd, "%s: unexpected state transition from %s to %s\n",
10993 		   __func__, link_state_name(ppd->host_link_state),
10994 		   link_state_name(state));
10995 	ret = -EINVAL;
10996 
10997 done:
10998 	mutex_unlock(&ppd->hls_lock);
10999 
11000 	if (event.device)
11001 		ib_dispatch_event(&event);
11002 
11003 	return ret;
11004 }
11005 
11006 int hfi1_set_ib_cfg(struct hfi1_pportdata *ppd, int which, u32 val)
11007 {
11008 	u64 reg;
11009 	int ret = 0;
11010 
11011 	switch (which) {
11012 	case HFI1_IB_CFG_LIDLMC:
11013 		set_lidlmc(ppd);
11014 		break;
11015 	case HFI1_IB_CFG_VL_HIGH_LIMIT:
11016 		/*
11017 		 * The VL Arbitrator high limit is sent in units of 4k
11018 		 * bytes, while HFI stores it in units of 64 bytes.
11019 		 */
11020 		val *= 4096 / 64;
11021 		reg = ((u64)val & SEND_HIGH_PRIORITY_LIMIT_LIMIT_MASK)
11022 			<< SEND_HIGH_PRIORITY_LIMIT_LIMIT_SHIFT;
11023 		write_csr(ppd->dd, SEND_HIGH_PRIORITY_LIMIT, reg);
11024 		break;
11025 	case HFI1_IB_CFG_LINKDEFAULT: /* IB link default (sleep/poll) */
11026 		/* HFI only supports POLL as the default link down state */
11027 		if (val != HLS_DN_POLL)
11028 			ret = -EINVAL;
11029 		break;
11030 	case HFI1_IB_CFG_OP_VLS:
11031 		if (ppd->vls_operational != val) {
11032 			ppd->vls_operational = val;
11033 			if (!ppd->port)
11034 				ret = -EINVAL;
11035 		}
11036 		break;
11037 	/*
11038 	 * For link width, link width downgrade, and speed enable, always AND
11039 	 * the setting with what is actually supported.  This has two benefits.
11040 	 * First, enabled can't have unsupported values, no matter what the
11041 	 * SM or FM might want.  Second, the ALL_SUPPORTED wildcards that mean
11042 	 * "fill in with your supported value" have all the bits in the
11043 	 * field set, so simply ANDing with supported has the desired result.
11044 	 */
11045 	case HFI1_IB_CFG_LWID_ENB: /* set allowed Link-width */
11046 		ppd->link_width_enabled = val & ppd->link_width_supported;
11047 		break;
11048 	case HFI1_IB_CFG_LWID_DG_ENB: /* set allowed link width downgrade */
11049 		ppd->link_width_downgrade_enabled =
11050 				val & ppd->link_width_downgrade_supported;
11051 		break;
11052 	case HFI1_IB_CFG_SPD_ENB: /* allowed Link speeds */
11053 		ppd->link_speed_enabled = val & ppd->link_speed_supported;
11054 		break;
11055 	case HFI1_IB_CFG_OVERRUN_THRESH: /* IB overrun threshold */
11056 		/*
11057 		 * HFI does not follow IB specs, save this value
11058 		 * so we can report it, if asked.
11059 		 */
11060 		ppd->overrun_threshold = val;
11061 		break;
11062 	case HFI1_IB_CFG_PHYERR_THRESH: /* IB PHY error threshold */
11063 		/*
11064 		 * HFI does not follow IB specs, save this value
11065 		 * so we can report it, if asked.
11066 		 */
11067 		ppd->phy_error_threshold = val;
11068 		break;
11069 
11070 	case HFI1_IB_CFG_MTU:
11071 		set_send_length(ppd);
11072 		break;
11073 
11074 	case HFI1_IB_CFG_PKEYS:
11075 		if (HFI1_CAP_IS_KSET(PKEY_CHECK))
11076 			set_partition_keys(ppd);
11077 		break;
11078 
11079 	default:
11080 		if (HFI1_CAP_IS_KSET(PRINT_UNIMPL))
11081 			dd_dev_info(ppd->dd,
11082 				    "%s: which %s, val 0x%x: not implemented\n",
11083 				    __func__, ib_cfg_name(which), val);
11084 		break;
11085 	}
11086 	return ret;
11087 }
11088 
11089 /* begin functions related to vl arbitration table caching */
11090 static void init_vl_arb_caches(struct hfi1_pportdata *ppd)
11091 {
11092 	int i;
11093 
11094 	BUILD_BUG_ON(VL_ARB_TABLE_SIZE !=
11095 			VL_ARB_LOW_PRIO_TABLE_SIZE);
11096 	BUILD_BUG_ON(VL_ARB_TABLE_SIZE !=
11097 			VL_ARB_HIGH_PRIO_TABLE_SIZE);
11098 
11099 	/*
11100 	 * Note that we always return values directly from the
11101 	 * 'vl_arb_cache' (and do no CSR reads) in response to a
11102 	 * 'Get(VLArbTable)'. This is obviously correct after a
11103 	 * 'Set(VLArbTable)', since the cache will then be up to
11104 	 * date. But it's also correct prior to any 'Set(VLArbTable)'
11105 	 * since then both the cache, and the relevant h/w registers
11106 	 * will be zeroed.
11107 	 */
11108 
11109 	for (i = 0; i < MAX_PRIO_TABLE; i++)
11110 		spin_lock_init(&ppd->vl_arb_cache[i].lock);
11111 }
11112 
11113 /*
11114  * vl_arb_lock_cache
11115  *
11116  * All other vl_arb_* functions should be called only after locking
11117  * the cache.
11118  */
11119 static inline struct vl_arb_cache *
11120 vl_arb_lock_cache(struct hfi1_pportdata *ppd, int idx)
11121 {
11122 	if (idx != LO_PRIO_TABLE && idx != HI_PRIO_TABLE)
11123 		return NULL;
11124 	spin_lock(&ppd->vl_arb_cache[idx].lock);
11125 	return &ppd->vl_arb_cache[idx];
11126 }
11127 
11128 static inline void vl_arb_unlock_cache(struct hfi1_pportdata *ppd, int idx)
11129 {
11130 	spin_unlock(&ppd->vl_arb_cache[idx].lock);
11131 }
11132 
11133 static void vl_arb_get_cache(struct vl_arb_cache *cache,
11134 			     struct ib_vl_weight_elem *vl)
11135 {
11136 	memcpy(vl, cache->table, VL_ARB_TABLE_SIZE * sizeof(*vl));
11137 }
11138 
11139 static void vl_arb_set_cache(struct vl_arb_cache *cache,
11140 			     struct ib_vl_weight_elem *vl)
11141 {
11142 	memcpy(cache->table, vl, VL_ARB_TABLE_SIZE * sizeof(*vl));
11143 }
11144 
11145 static int vl_arb_match_cache(struct vl_arb_cache *cache,
11146 			      struct ib_vl_weight_elem *vl)
11147 {
11148 	return !memcmp(cache->table, vl, VL_ARB_TABLE_SIZE * sizeof(*vl));
11149 }
11150 
11151 /* end functions related to vl arbitration table caching */
11152 
11153 static int set_vl_weights(struct hfi1_pportdata *ppd, u32 target,
11154 			  u32 size, struct ib_vl_weight_elem *vl)
11155 {
11156 	struct hfi1_devdata *dd = ppd->dd;
11157 	u64 reg;
11158 	unsigned int i, is_up = 0;
11159 	int drain, ret = 0;
11160 
11161 	mutex_lock(&ppd->hls_lock);
11162 
11163 	if (ppd->host_link_state & HLS_UP)
11164 		is_up = 1;
11165 
11166 	drain = !is_ax(dd) && is_up;
11167 
11168 	if (drain)
11169 		/*
11170 		 * Before adjusting VL arbitration weights, empty per-VL
11171 		 * FIFOs, otherwise a packet whose VL weight is being
11172 		 * set to 0 could get stuck in a FIFO with no chance to
11173 		 * egress.
11174 		 */
11175 		ret = stop_drain_data_vls(dd);
11176 
11177 	if (ret) {
11178 		dd_dev_err(
11179 			dd,
11180 			"%s: cannot stop/drain VLs - refusing to change VL arbitration weights\n",
11181 			__func__);
11182 		goto err;
11183 	}
11184 
11185 	for (i = 0; i < size; i++, vl++) {
11186 		/*
11187 		 * NOTE: The low priority shift and mask are used here, but
11188 		 * they are the same for both the low and high registers.
11189 		 */
11190 		reg = (((u64)vl->vl & SEND_LOW_PRIORITY_LIST_VL_MASK)
11191 				<< SEND_LOW_PRIORITY_LIST_VL_SHIFT)
11192 		      | (((u64)vl->weight
11193 				& SEND_LOW_PRIORITY_LIST_WEIGHT_MASK)
11194 				<< SEND_LOW_PRIORITY_LIST_WEIGHT_SHIFT);
11195 		write_csr(dd, target + (i * 8), reg);
11196 	}
11197 	pio_send_control(dd, PSC_GLOBAL_VLARB_ENABLE);
11198 
11199 	if (drain)
11200 		open_fill_data_vls(dd); /* reopen all VLs */
11201 
11202 err:
11203 	mutex_unlock(&ppd->hls_lock);
11204 
11205 	return ret;
11206 }
11207 
11208 /*
11209  * Read one credit merge VL register.
11210  */
11211 static void read_one_cm_vl(struct hfi1_devdata *dd, u32 csr,
11212 			   struct vl_limit *vll)
11213 {
11214 	u64 reg = read_csr(dd, csr);
11215 
11216 	vll->dedicated = cpu_to_be16(
11217 		(reg >> SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SHIFT)
11218 		& SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_MASK);
11219 	vll->shared = cpu_to_be16(
11220 		(reg >> SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SHIFT)
11221 		& SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_MASK);
11222 }
11223 
11224 /*
11225  * Read the current credit merge limits.
11226  */
11227 static int get_buffer_control(struct hfi1_devdata *dd,
11228 			      struct buffer_control *bc, u16 *overall_limit)
11229 {
11230 	u64 reg;
11231 	int i;
11232 
11233 	/* not all entries are filled in */
11234 	memset(bc, 0, sizeof(*bc));
11235 
11236 	/* OPA and HFI have a 1-1 mapping */
11237 	for (i = 0; i < TXE_NUM_DATA_VL; i++)
11238 		read_one_cm_vl(dd, SEND_CM_CREDIT_VL + (8 * i), &bc->vl[i]);
11239 
11240 	/* NOTE: assumes that VL* and VL15 CSRs are bit-wise identical */
11241 	read_one_cm_vl(dd, SEND_CM_CREDIT_VL15, &bc->vl[15]);
11242 
11243 	reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
11244 	bc->overall_shared_limit = cpu_to_be16(
11245 		(reg >> SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SHIFT)
11246 		& SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_MASK);
11247 	if (overall_limit)
11248 		*overall_limit = (reg
11249 			>> SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT)
11250 			& SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_MASK;
11251 	return sizeof(struct buffer_control);
11252 }
11253 
11254 static int get_sc2vlnt(struct hfi1_devdata *dd, struct sc2vlnt *dp)
11255 {
11256 	u64 reg;
11257 	int i;
11258 
11259 	/* each register contains 16 SC->VLnt mappings, 4 bits each */
11260 	reg = read_csr(dd, DCC_CFG_SC_VL_TABLE_15_0);
11261 	for (i = 0; i < sizeof(u64); i++) {
11262 		u8 byte = *(((u8 *)&reg) + i);
11263 
11264 		dp->vlnt[2 * i] = byte & 0xf;
11265 		dp->vlnt[(2 * i) + 1] = (byte & 0xf0) >> 4;
11266 	}
11267 
11268 	reg = read_csr(dd, DCC_CFG_SC_VL_TABLE_31_16);
11269 	for (i = 0; i < sizeof(u64); i++) {
11270 		u8 byte = *(((u8 *)&reg) + i);
11271 
11272 		dp->vlnt[16 + (2 * i)] = byte & 0xf;
11273 		dp->vlnt[16 + (2 * i) + 1] = (byte & 0xf0) >> 4;
11274 	}
11275 	return sizeof(struct sc2vlnt);
11276 }
11277 
11278 static void get_vlarb_preempt(struct hfi1_devdata *dd, u32 nelems,
11279 			      struct ib_vl_weight_elem *vl)
11280 {
11281 	unsigned int i;
11282 
11283 	for (i = 0; i < nelems; i++, vl++) {
11284 		vl->vl = 0xf;
11285 		vl->weight = 0;
11286 	}
11287 }
11288 
11289 static void set_sc2vlnt(struct hfi1_devdata *dd, struct sc2vlnt *dp)
11290 {
11291 	write_csr(dd, DCC_CFG_SC_VL_TABLE_15_0,
11292 		  DC_SC_VL_VAL(15_0,
11293 			       0, dp->vlnt[0] & 0xf,
11294 			       1, dp->vlnt[1] & 0xf,
11295 			       2, dp->vlnt[2] & 0xf,
11296 			       3, dp->vlnt[3] & 0xf,
11297 			       4, dp->vlnt[4] & 0xf,
11298 			       5, dp->vlnt[5] & 0xf,
11299 			       6, dp->vlnt[6] & 0xf,
11300 			       7, dp->vlnt[7] & 0xf,
11301 			       8, dp->vlnt[8] & 0xf,
11302 			       9, dp->vlnt[9] & 0xf,
11303 			       10, dp->vlnt[10] & 0xf,
11304 			       11, dp->vlnt[11] & 0xf,
11305 			       12, dp->vlnt[12] & 0xf,
11306 			       13, dp->vlnt[13] & 0xf,
11307 			       14, dp->vlnt[14] & 0xf,
11308 			       15, dp->vlnt[15] & 0xf));
11309 	write_csr(dd, DCC_CFG_SC_VL_TABLE_31_16,
11310 		  DC_SC_VL_VAL(31_16,
11311 			       16, dp->vlnt[16] & 0xf,
11312 			       17, dp->vlnt[17] & 0xf,
11313 			       18, dp->vlnt[18] & 0xf,
11314 			       19, dp->vlnt[19] & 0xf,
11315 			       20, dp->vlnt[20] & 0xf,
11316 			       21, dp->vlnt[21] & 0xf,
11317 			       22, dp->vlnt[22] & 0xf,
11318 			       23, dp->vlnt[23] & 0xf,
11319 			       24, dp->vlnt[24] & 0xf,
11320 			       25, dp->vlnt[25] & 0xf,
11321 			       26, dp->vlnt[26] & 0xf,
11322 			       27, dp->vlnt[27] & 0xf,
11323 			       28, dp->vlnt[28] & 0xf,
11324 			       29, dp->vlnt[29] & 0xf,
11325 			       30, dp->vlnt[30] & 0xf,
11326 			       31, dp->vlnt[31] & 0xf));
11327 }
11328 
11329 static void nonzero_msg(struct hfi1_devdata *dd, int idx, const char *what,
11330 			u16 limit)
11331 {
11332 	if (limit != 0)
11333 		dd_dev_info(dd, "Invalid %s limit %d on VL %d, ignoring\n",
11334 			    what, (int)limit, idx);
11335 }
11336 
11337 /* change only the shared limit portion of SendCmGLobalCredit */
11338 static void set_global_shared(struct hfi1_devdata *dd, u16 limit)
11339 {
11340 	u64 reg;
11341 
11342 	reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
11343 	reg &= ~SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SMASK;
11344 	reg |= (u64)limit << SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SHIFT;
11345 	write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg);
11346 }
11347 
11348 /* change only the total credit limit portion of SendCmGLobalCredit */
11349 static void set_global_limit(struct hfi1_devdata *dd, u16 limit)
11350 {
11351 	u64 reg;
11352 
11353 	reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
11354 	reg &= ~SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SMASK;
11355 	reg |= (u64)limit << SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT;
11356 	write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg);
11357 }
11358 
11359 /* set the given per-VL shared limit */
11360 static void set_vl_shared(struct hfi1_devdata *dd, int vl, u16 limit)
11361 {
11362 	u64 reg;
11363 	u32 addr;
11364 
11365 	if (vl < TXE_NUM_DATA_VL)
11366 		addr = SEND_CM_CREDIT_VL + (8 * vl);
11367 	else
11368 		addr = SEND_CM_CREDIT_VL15;
11369 
11370 	reg = read_csr(dd, addr);
11371 	reg &= ~SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SMASK;
11372 	reg |= (u64)limit << SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SHIFT;
11373 	write_csr(dd, addr, reg);
11374 }
11375 
11376 /* set the given per-VL dedicated limit */
11377 static void set_vl_dedicated(struct hfi1_devdata *dd, int vl, u16 limit)
11378 {
11379 	u64 reg;
11380 	u32 addr;
11381 
11382 	if (vl < TXE_NUM_DATA_VL)
11383 		addr = SEND_CM_CREDIT_VL + (8 * vl);
11384 	else
11385 		addr = SEND_CM_CREDIT_VL15;
11386 
11387 	reg = read_csr(dd, addr);
11388 	reg &= ~SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SMASK;
11389 	reg |= (u64)limit << SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SHIFT;
11390 	write_csr(dd, addr, reg);
11391 }
11392 
11393 /* spin until the given per-VL status mask bits clear */
11394 static void wait_for_vl_status_clear(struct hfi1_devdata *dd, u64 mask,
11395 				     const char *which)
11396 {
11397 	unsigned long timeout;
11398 	u64 reg;
11399 
11400 	timeout = jiffies + msecs_to_jiffies(VL_STATUS_CLEAR_TIMEOUT);
11401 	while (1) {
11402 		reg = read_csr(dd, SEND_CM_CREDIT_USED_STATUS) & mask;
11403 
11404 		if (reg == 0)
11405 			return;	/* success */
11406 		if (time_after(jiffies, timeout))
11407 			break;		/* timed out */
11408 		udelay(1);
11409 	}
11410 
11411 	dd_dev_err(dd,
11412 		   "%s credit change status not clearing after %dms, mask 0x%llx, not clear 0x%llx\n",
11413 		   which, VL_STATUS_CLEAR_TIMEOUT, mask, reg);
11414 	/*
11415 	 * If this occurs, it is likely there was a credit loss on the link.
11416 	 * The only recovery from that is a link bounce.
11417 	 */
11418 	dd_dev_err(dd,
11419 		   "Continuing anyway.  A credit loss may occur.  Suggest a link bounce\n");
11420 }
11421 
11422 /*
11423  * The number of credits on the VLs may be changed while everything
11424  * is "live", but the following algorithm must be followed due to
11425  * how the hardware is actually implemented.  In particular,
11426  * Return_Credit_Status[] is the only correct status check.
11427  *
11428  * if (reducing Global_Shared_Credit_Limit or any shared limit changing)
11429  *     set Global_Shared_Credit_Limit = 0
11430  *     use_all_vl = 1
11431  * mask0 = all VLs that are changing either dedicated or shared limits
11432  * set Shared_Limit[mask0] = 0
11433  * spin until Return_Credit_Status[use_all_vl ? all VL : mask0] == 0
11434  * if (changing any dedicated limit)
11435  *     mask1 = all VLs that are lowering dedicated limits
11436  *     lower Dedicated_Limit[mask1]
11437  *     spin until Return_Credit_Status[mask1] == 0
11438  *     raise Dedicated_Limits
11439  * raise Shared_Limits
11440  * raise Global_Shared_Credit_Limit
11441  *
11442  * lower = if the new limit is lower, set the limit to the new value
11443  * raise = if the new limit is higher than the current value (may be changed
11444  *	earlier in the algorithm), set the new limit to the new value
11445  */
11446 int set_buffer_control(struct hfi1_pportdata *ppd,
11447 		       struct buffer_control *new_bc)
11448 {
11449 	struct hfi1_devdata *dd = ppd->dd;
11450 	u64 changing_mask, ld_mask, stat_mask;
11451 	int change_count;
11452 	int i, use_all_mask;
11453 	int this_shared_changing;
11454 	int vl_count = 0, ret;
11455 	/*
11456 	 * A0: add the variable any_shared_limit_changing below and in the
11457 	 * algorithm above.  If removing A0 support, it can be removed.
11458 	 */
11459 	int any_shared_limit_changing;
11460 	struct buffer_control cur_bc;
11461 	u8 changing[OPA_MAX_VLS];
11462 	u8 lowering_dedicated[OPA_MAX_VLS];
11463 	u16 cur_total;
11464 	u32 new_total = 0;
11465 	const u64 all_mask =
11466 	SEND_CM_CREDIT_USED_STATUS_VL0_RETURN_CREDIT_STATUS_SMASK
11467 	 | SEND_CM_CREDIT_USED_STATUS_VL1_RETURN_CREDIT_STATUS_SMASK
11468 	 | SEND_CM_CREDIT_USED_STATUS_VL2_RETURN_CREDIT_STATUS_SMASK
11469 	 | SEND_CM_CREDIT_USED_STATUS_VL3_RETURN_CREDIT_STATUS_SMASK
11470 	 | SEND_CM_CREDIT_USED_STATUS_VL4_RETURN_CREDIT_STATUS_SMASK
11471 	 | SEND_CM_CREDIT_USED_STATUS_VL5_RETURN_CREDIT_STATUS_SMASK
11472 	 | SEND_CM_CREDIT_USED_STATUS_VL6_RETURN_CREDIT_STATUS_SMASK
11473 	 | SEND_CM_CREDIT_USED_STATUS_VL7_RETURN_CREDIT_STATUS_SMASK
11474 	 | SEND_CM_CREDIT_USED_STATUS_VL15_RETURN_CREDIT_STATUS_SMASK;
11475 
11476 #define valid_vl(idx) ((idx) < TXE_NUM_DATA_VL || (idx) == 15)
11477 #define NUM_USABLE_VLS 16	/* look at VL15 and less */
11478 
11479 	/* find the new total credits, do sanity check on unused VLs */
11480 	for (i = 0; i < OPA_MAX_VLS; i++) {
11481 		if (valid_vl(i)) {
11482 			new_total += be16_to_cpu(new_bc->vl[i].dedicated);
11483 			continue;
11484 		}
11485 		nonzero_msg(dd, i, "dedicated",
11486 			    be16_to_cpu(new_bc->vl[i].dedicated));
11487 		nonzero_msg(dd, i, "shared",
11488 			    be16_to_cpu(new_bc->vl[i].shared));
11489 		new_bc->vl[i].dedicated = 0;
11490 		new_bc->vl[i].shared = 0;
11491 	}
11492 	new_total += be16_to_cpu(new_bc->overall_shared_limit);
11493 
11494 	/* fetch the current values */
11495 	get_buffer_control(dd, &cur_bc, &cur_total);
11496 
11497 	/*
11498 	 * Create the masks we will use.
11499 	 */
11500 	memset(changing, 0, sizeof(changing));
11501 	memset(lowering_dedicated, 0, sizeof(lowering_dedicated));
11502 	/*
11503 	 * NOTE: Assumes that the individual VL bits are adjacent and in
11504 	 * increasing order
11505 	 */
11506 	stat_mask =
11507 		SEND_CM_CREDIT_USED_STATUS_VL0_RETURN_CREDIT_STATUS_SMASK;
11508 	changing_mask = 0;
11509 	ld_mask = 0;
11510 	change_count = 0;
11511 	any_shared_limit_changing = 0;
11512 	for (i = 0; i < NUM_USABLE_VLS; i++, stat_mask <<= 1) {
11513 		if (!valid_vl(i))
11514 			continue;
11515 		this_shared_changing = new_bc->vl[i].shared
11516 						!= cur_bc.vl[i].shared;
11517 		if (this_shared_changing)
11518 			any_shared_limit_changing = 1;
11519 		if (new_bc->vl[i].dedicated != cur_bc.vl[i].dedicated ||
11520 		    this_shared_changing) {
11521 			changing[i] = 1;
11522 			changing_mask |= stat_mask;
11523 			change_count++;
11524 		}
11525 		if (be16_to_cpu(new_bc->vl[i].dedicated) <
11526 					be16_to_cpu(cur_bc.vl[i].dedicated)) {
11527 			lowering_dedicated[i] = 1;
11528 			ld_mask |= stat_mask;
11529 		}
11530 	}
11531 
11532 	/* bracket the credit change with a total adjustment */
11533 	if (new_total > cur_total)
11534 		set_global_limit(dd, new_total);
11535 
11536 	/*
11537 	 * Start the credit change algorithm.
11538 	 */
11539 	use_all_mask = 0;
11540 	if ((be16_to_cpu(new_bc->overall_shared_limit) <
11541 	     be16_to_cpu(cur_bc.overall_shared_limit)) ||
11542 	    (is_ax(dd) && any_shared_limit_changing)) {
11543 		set_global_shared(dd, 0);
11544 		cur_bc.overall_shared_limit = 0;
11545 		use_all_mask = 1;
11546 	}
11547 
11548 	for (i = 0; i < NUM_USABLE_VLS; i++) {
11549 		if (!valid_vl(i))
11550 			continue;
11551 
11552 		if (changing[i]) {
11553 			set_vl_shared(dd, i, 0);
11554 			cur_bc.vl[i].shared = 0;
11555 		}
11556 	}
11557 
11558 	wait_for_vl_status_clear(dd, use_all_mask ? all_mask : changing_mask,
11559 				 "shared");
11560 
11561 	if (change_count > 0) {
11562 		for (i = 0; i < NUM_USABLE_VLS; i++) {
11563 			if (!valid_vl(i))
11564 				continue;
11565 
11566 			if (lowering_dedicated[i]) {
11567 				set_vl_dedicated(dd, i,
11568 						 be16_to_cpu(new_bc->
11569 							     vl[i].dedicated));
11570 				cur_bc.vl[i].dedicated =
11571 						new_bc->vl[i].dedicated;
11572 			}
11573 		}
11574 
11575 		wait_for_vl_status_clear(dd, ld_mask, "dedicated");
11576 
11577 		/* now raise all dedicated that are going up */
11578 		for (i = 0; i < NUM_USABLE_VLS; i++) {
11579 			if (!valid_vl(i))
11580 				continue;
11581 
11582 			if (be16_to_cpu(new_bc->vl[i].dedicated) >
11583 					be16_to_cpu(cur_bc.vl[i].dedicated))
11584 				set_vl_dedicated(dd, i,
11585 						 be16_to_cpu(new_bc->
11586 							     vl[i].dedicated));
11587 		}
11588 	}
11589 
11590 	/* next raise all shared that are going up */
11591 	for (i = 0; i < NUM_USABLE_VLS; i++) {
11592 		if (!valid_vl(i))
11593 			continue;
11594 
11595 		if (be16_to_cpu(new_bc->vl[i].shared) >
11596 				be16_to_cpu(cur_bc.vl[i].shared))
11597 			set_vl_shared(dd, i, be16_to_cpu(new_bc->vl[i].shared));
11598 	}
11599 
11600 	/* finally raise the global shared */
11601 	if (be16_to_cpu(new_bc->overall_shared_limit) >
11602 	    be16_to_cpu(cur_bc.overall_shared_limit))
11603 		set_global_shared(dd,
11604 				  be16_to_cpu(new_bc->overall_shared_limit));
11605 
11606 	/* bracket the credit change with a total adjustment */
11607 	if (new_total < cur_total)
11608 		set_global_limit(dd, new_total);
11609 
11610 	/*
11611 	 * Determine the actual number of operational VLS using the number of
11612 	 * dedicated and shared credits for each VL.
11613 	 */
11614 	if (change_count > 0) {
11615 		for (i = 0; i < TXE_NUM_DATA_VL; i++)
11616 			if (be16_to_cpu(new_bc->vl[i].dedicated) > 0 ||
11617 			    be16_to_cpu(new_bc->vl[i].shared) > 0)
11618 				vl_count++;
11619 		ppd->actual_vls_operational = vl_count;
11620 		ret = sdma_map_init(dd, ppd->port - 1, vl_count ?
11621 				    ppd->actual_vls_operational :
11622 				    ppd->vls_operational,
11623 				    NULL);
11624 		if (ret == 0)
11625 			ret = pio_map_init(dd, ppd->port - 1, vl_count ?
11626 					   ppd->actual_vls_operational :
11627 					   ppd->vls_operational, NULL);
11628 		if (ret)
11629 			return ret;
11630 	}
11631 	return 0;
11632 }
11633 
11634 /*
11635  * Read the given fabric manager table. Return the size of the
11636  * table (in bytes) on success, and a negative error code on
11637  * failure.
11638  */
11639 int fm_get_table(struct hfi1_pportdata *ppd, int which, void *t)
11640 
11641 {
11642 	int size;
11643 	struct vl_arb_cache *vlc;
11644 
11645 	switch (which) {
11646 	case FM_TBL_VL_HIGH_ARB:
11647 		size = 256;
11648 		/*
11649 		 * OPA specifies 128 elements (of 2 bytes each), though
11650 		 * HFI supports only 16 elements in h/w.
11651 		 */
11652 		vlc = vl_arb_lock_cache(ppd, HI_PRIO_TABLE);
11653 		vl_arb_get_cache(vlc, t);
11654 		vl_arb_unlock_cache(ppd, HI_PRIO_TABLE);
11655 		break;
11656 	case FM_TBL_VL_LOW_ARB:
11657 		size = 256;
11658 		/*
11659 		 * OPA specifies 128 elements (of 2 bytes each), though
11660 		 * HFI supports only 16 elements in h/w.
11661 		 */
11662 		vlc = vl_arb_lock_cache(ppd, LO_PRIO_TABLE);
11663 		vl_arb_get_cache(vlc, t);
11664 		vl_arb_unlock_cache(ppd, LO_PRIO_TABLE);
11665 		break;
11666 	case FM_TBL_BUFFER_CONTROL:
11667 		size = get_buffer_control(ppd->dd, t, NULL);
11668 		break;
11669 	case FM_TBL_SC2VLNT:
11670 		size = get_sc2vlnt(ppd->dd, t);
11671 		break;
11672 	case FM_TBL_VL_PREEMPT_ELEMS:
11673 		size = 256;
11674 		/* OPA specifies 128 elements, of 2 bytes each */
11675 		get_vlarb_preempt(ppd->dd, OPA_MAX_VLS, t);
11676 		break;
11677 	case FM_TBL_VL_PREEMPT_MATRIX:
11678 		size = 256;
11679 		/*
11680 		 * OPA specifies that this is the same size as the VL
11681 		 * arbitration tables (i.e., 256 bytes).
11682 		 */
11683 		break;
11684 	default:
11685 		return -EINVAL;
11686 	}
11687 	return size;
11688 }
11689 
11690 /*
11691  * Write the given fabric manager table.
11692  */
11693 int fm_set_table(struct hfi1_pportdata *ppd, int which, void *t)
11694 {
11695 	int ret = 0;
11696 	struct vl_arb_cache *vlc;
11697 
11698 	switch (which) {
11699 	case FM_TBL_VL_HIGH_ARB:
11700 		vlc = vl_arb_lock_cache(ppd, HI_PRIO_TABLE);
11701 		if (vl_arb_match_cache(vlc, t)) {
11702 			vl_arb_unlock_cache(ppd, HI_PRIO_TABLE);
11703 			break;
11704 		}
11705 		vl_arb_set_cache(vlc, t);
11706 		vl_arb_unlock_cache(ppd, HI_PRIO_TABLE);
11707 		ret = set_vl_weights(ppd, SEND_HIGH_PRIORITY_LIST,
11708 				     VL_ARB_HIGH_PRIO_TABLE_SIZE, t);
11709 		break;
11710 	case FM_TBL_VL_LOW_ARB:
11711 		vlc = vl_arb_lock_cache(ppd, LO_PRIO_TABLE);
11712 		if (vl_arb_match_cache(vlc, t)) {
11713 			vl_arb_unlock_cache(ppd, LO_PRIO_TABLE);
11714 			break;
11715 		}
11716 		vl_arb_set_cache(vlc, t);
11717 		vl_arb_unlock_cache(ppd, LO_PRIO_TABLE);
11718 		ret = set_vl_weights(ppd, SEND_LOW_PRIORITY_LIST,
11719 				     VL_ARB_LOW_PRIO_TABLE_SIZE, t);
11720 		break;
11721 	case FM_TBL_BUFFER_CONTROL:
11722 		ret = set_buffer_control(ppd, t);
11723 		break;
11724 	case FM_TBL_SC2VLNT:
11725 		set_sc2vlnt(ppd->dd, t);
11726 		break;
11727 	default:
11728 		ret = -EINVAL;
11729 	}
11730 	return ret;
11731 }
11732 
11733 /*
11734  * Disable all data VLs.
11735  *
11736  * Return 0 if disabled, non-zero if the VLs cannot be disabled.
11737  */
11738 static int disable_data_vls(struct hfi1_devdata *dd)
11739 {
11740 	if (is_ax(dd))
11741 		return 1;
11742 
11743 	pio_send_control(dd, PSC_DATA_VL_DISABLE);
11744 
11745 	return 0;
11746 }
11747 
11748 /*
11749  * open_fill_data_vls() - the counterpart to stop_drain_data_vls().
11750  * Just re-enables all data VLs (the "fill" part happens
11751  * automatically - the name was chosen for symmetry with
11752  * stop_drain_data_vls()).
11753  *
11754  * Return 0 if successful, non-zero if the VLs cannot be enabled.
11755  */
11756 int open_fill_data_vls(struct hfi1_devdata *dd)
11757 {
11758 	if (is_ax(dd))
11759 		return 1;
11760 
11761 	pio_send_control(dd, PSC_DATA_VL_ENABLE);
11762 
11763 	return 0;
11764 }
11765 
11766 /*
11767  * drain_data_vls() - assumes that disable_data_vls() has been called,
11768  * wait for occupancy (of per-VL FIFOs) for all contexts, and SDMA
11769  * engines to drop to 0.
11770  */
11771 static void drain_data_vls(struct hfi1_devdata *dd)
11772 {
11773 	sc_wait(dd);
11774 	sdma_wait(dd);
11775 	pause_for_credit_return(dd);
11776 }
11777 
11778 /*
11779  * stop_drain_data_vls() - disable, then drain all per-VL fifos.
11780  *
11781  * Use open_fill_data_vls() to resume using data VLs.  This pair is
11782  * meant to be used like this:
11783  *
11784  * stop_drain_data_vls(dd);
11785  * // do things with per-VL resources
11786  * open_fill_data_vls(dd);
11787  */
11788 int stop_drain_data_vls(struct hfi1_devdata *dd)
11789 {
11790 	int ret;
11791 
11792 	ret = disable_data_vls(dd);
11793 	if (ret == 0)
11794 		drain_data_vls(dd);
11795 
11796 	return ret;
11797 }
11798 
11799 /*
11800  * Convert a nanosecond time to a cclock count.  No matter how slow
11801  * the cclock, a non-zero ns will always have a non-zero result.
11802  */
11803 u32 ns_to_cclock(struct hfi1_devdata *dd, u32 ns)
11804 {
11805 	u32 cclocks;
11806 
11807 	if (dd->icode == ICODE_FPGA_EMULATION)
11808 		cclocks = (ns * 1000) / FPGA_CCLOCK_PS;
11809 	else  /* simulation pretends to be ASIC */
11810 		cclocks = (ns * 1000) / ASIC_CCLOCK_PS;
11811 	if (ns && !cclocks)	/* if ns nonzero, must be at least 1 */
11812 		cclocks = 1;
11813 	return cclocks;
11814 }
11815 
11816 /*
11817  * Convert a cclock count to nanoseconds. Not matter how slow
11818  * the cclock, a non-zero cclocks will always have a non-zero result.
11819  */
11820 u32 cclock_to_ns(struct hfi1_devdata *dd, u32 cclocks)
11821 {
11822 	u32 ns;
11823 
11824 	if (dd->icode == ICODE_FPGA_EMULATION)
11825 		ns = (cclocks * FPGA_CCLOCK_PS) / 1000;
11826 	else  /* simulation pretends to be ASIC */
11827 		ns = (cclocks * ASIC_CCLOCK_PS) / 1000;
11828 	if (cclocks && !ns)
11829 		ns = 1;
11830 	return ns;
11831 }
11832 
11833 /*
11834  * Dynamically adjust the receive interrupt timeout for a context based on
11835  * incoming packet rate.
11836  *
11837  * NOTE: Dynamic adjustment does not allow rcv_intr_count to be zero.
11838  */
11839 static void adjust_rcv_timeout(struct hfi1_ctxtdata *rcd, u32 npkts)
11840 {
11841 	struct hfi1_devdata *dd = rcd->dd;
11842 	u32 timeout = rcd->rcvavail_timeout;
11843 
11844 	/*
11845 	 * This algorithm doubles or halves the timeout depending on whether
11846 	 * the number of packets received in this interrupt were less than or
11847 	 * greater equal the interrupt count.
11848 	 *
11849 	 * The calculations below do not allow a steady state to be achieved.
11850 	 * Only at the endpoints it is possible to have an unchanging
11851 	 * timeout.
11852 	 */
11853 	if (npkts < rcv_intr_count) {
11854 		/*
11855 		 * Not enough packets arrived before the timeout, adjust
11856 		 * timeout downward.
11857 		 */
11858 		if (timeout < 2) /* already at minimum? */
11859 			return;
11860 		timeout >>= 1;
11861 	} else {
11862 		/*
11863 		 * More than enough packets arrived before the timeout, adjust
11864 		 * timeout upward.
11865 		 */
11866 		if (timeout >= dd->rcv_intr_timeout_csr) /* already at max? */
11867 			return;
11868 		timeout = min(timeout << 1, dd->rcv_intr_timeout_csr);
11869 	}
11870 
11871 	rcd->rcvavail_timeout = timeout;
11872 	/*
11873 	 * timeout cannot be larger than rcv_intr_timeout_csr which has already
11874 	 * been verified to be in range
11875 	 */
11876 	write_kctxt_csr(dd, rcd->ctxt, RCV_AVAIL_TIME_OUT,
11877 			(u64)timeout <<
11878 			RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_SHIFT);
11879 }
11880 
11881 void update_usrhead(struct hfi1_ctxtdata *rcd, u32 hd, u32 updegr, u32 egrhd,
11882 		    u32 intr_adjust, u32 npkts)
11883 {
11884 	struct hfi1_devdata *dd = rcd->dd;
11885 	u64 reg;
11886 	u32 ctxt = rcd->ctxt;
11887 
11888 	/*
11889 	 * Need to write timeout register before updating RcvHdrHead to ensure
11890 	 * that a new value is used when the HW decides to restart counting.
11891 	 */
11892 	if (intr_adjust)
11893 		adjust_rcv_timeout(rcd, npkts);
11894 	if (updegr) {
11895 		reg = (egrhd & RCV_EGR_INDEX_HEAD_HEAD_MASK)
11896 			<< RCV_EGR_INDEX_HEAD_HEAD_SHIFT;
11897 		write_uctxt_csr(dd, ctxt, RCV_EGR_INDEX_HEAD, reg);
11898 	}
11899 	reg = ((u64)rcv_intr_count << RCV_HDR_HEAD_COUNTER_SHIFT) |
11900 		(((u64)hd & RCV_HDR_HEAD_HEAD_MASK)
11901 			<< RCV_HDR_HEAD_HEAD_SHIFT);
11902 	write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, reg);
11903 }
11904 
11905 u32 hdrqempty(struct hfi1_ctxtdata *rcd)
11906 {
11907 	u32 head, tail;
11908 
11909 	head = (read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_HEAD)
11910 		& RCV_HDR_HEAD_HEAD_SMASK) >> RCV_HDR_HEAD_HEAD_SHIFT;
11911 
11912 	if (hfi1_rcvhdrtail_kvaddr(rcd))
11913 		tail = get_rcvhdrtail(rcd);
11914 	else
11915 		tail = read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_TAIL);
11916 
11917 	return head == tail;
11918 }
11919 
11920 /*
11921  * Context Control and Receive Array encoding for buffer size:
11922  *	0x0 invalid
11923  *	0x1   4 KB
11924  *	0x2   8 KB
11925  *	0x3  16 KB
11926  *	0x4  32 KB
11927  *	0x5  64 KB
11928  *	0x6 128 KB
11929  *	0x7 256 KB
11930  *	0x8 512 KB (Receive Array only)
11931  *	0x9   1 MB (Receive Array only)
11932  *	0xa   2 MB (Receive Array only)
11933  *
11934  *	0xB-0xF - reserved (Receive Array only)
11935  *
11936  *
11937  * This routine assumes that the value has already been sanity checked.
11938  */
11939 static u32 encoded_size(u32 size)
11940 {
11941 	switch (size) {
11942 	case   4 * 1024: return 0x1;
11943 	case   8 * 1024: return 0x2;
11944 	case  16 * 1024: return 0x3;
11945 	case  32 * 1024: return 0x4;
11946 	case  64 * 1024: return 0x5;
11947 	case 128 * 1024: return 0x6;
11948 	case 256 * 1024: return 0x7;
11949 	case 512 * 1024: return 0x8;
11950 	case   1 * 1024 * 1024: return 0x9;
11951 	case   2 * 1024 * 1024: return 0xa;
11952 	}
11953 	return 0x1;	/* if invalid, go with the minimum size */
11954 }
11955 
11956 /**
11957  * encode_rcv_header_entry_size - return chip specific encoding for size
11958  * @size: size in dwords
11959  *
11960  * Convert a receive header entry size that to the encoding used in the CSR.
11961  *
11962  * Return a zero if the given size is invalid, otherwise the encoding.
11963  */
11964 u8 encode_rcv_header_entry_size(u8 size)
11965 {
11966 	/* there are only 3 valid receive header entry sizes */
11967 	if (size == 2)
11968 		return 1;
11969 	if (size == 16)
11970 		return 2;
11971 	if (size == 32)
11972 		return 4;
11973 	return 0; /* invalid */
11974 }
11975 
11976 /**
11977  * hfi1_validate_rcvhdrcnt - validate hdrcnt
11978  * @dd: the device data
11979  * @thecnt: the header count
11980  */
11981 int hfi1_validate_rcvhdrcnt(struct hfi1_devdata *dd, uint thecnt)
11982 {
11983 	if (thecnt <= HFI1_MIN_HDRQ_EGRBUF_CNT) {
11984 		dd_dev_err(dd, "Receive header queue count too small\n");
11985 		return -EINVAL;
11986 	}
11987 
11988 	if (thecnt > HFI1_MAX_HDRQ_EGRBUF_CNT) {
11989 		dd_dev_err(dd,
11990 			   "Receive header queue count cannot be greater than %u\n",
11991 			   HFI1_MAX_HDRQ_EGRBUF_CNT);
11992 		return -EINVAL;
11993 	}
11994 
11995 	if (thecnt % HDRQ_INCREMENT) {
11996 		dd_dev_err(dd, "Receive header queue count %d must be divisible by %lu\n",
11997 			   thecnt, HDRQ_INCREMENT);
11998 		return -EINVAL;
11999 	}
12000 
12001 	return 0;
12002 }
12003 
12004 /**
12005  * set_hdrq_regs - set header queue registers for context
12006  * @dd: the device data
12007  * @ctxt: the context
12008  * @entsize: the dword entry size
12009  * @hdrcnt: the number of header entries
12010  */
12011 void set_hdrq_regs(struct hfi1_devdata *dd, u8 ctxt, u8 entsize, u16 hdrcnt)
12012 {
12013 	u64 reg;
12014 
12015 	reg = (((u64)hdrcnt >> HDRQ_SIZE_SHIFT) & RCV_HDR_CNT_CNT_MASK) <<
12016 	      RCV_HDR_CNT_CNT_SHIFT;
12017 	write_kctxt_csr(dd, ctxt, RCV_HDR_CNT, reg);
12018 	reg = ((u64)encode_rcv_header_entry_size(entsize) &
12019 	       RCV_HDR_ENT_SIZE_ENT_SIZE_MASK) <<
12020 	      RCV_HDR_ENT_SIZE_ENT_SIZE_SHIFT;
12021 	write_kctxt_csr(dd, ctxt, RCV_HDR_ENT_SIZE, reg);
12022 	reg = ((u64)DEFAULT_RCVHDRSIZE & RCV_HDR_SIZE_HDR_SIZE_MASK) <<
12023 	      RCV_HDR_SIZE_HDR_SIZE_SHIFT;
12024 	write_kctxt_csr(dd, ctxt, RCV_HDR_SIZE, reg);
12025 
12026 	/*
12027 	 * Program dummy tail address for every receive context
12028 	 * before enabling any receive context
12029 	 */
12030 	write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR,
12031 			dd->rcvhdrtail_dummy_dma);
12032 }
12033 
12034 void hfi1_rcvctrl(struct hfi1_devdata *dd, unsigned int op,
12035 		  struct hfi1_ctxtdata *rcd)
12036 {
12037 	u64 rcvctrl, reg;
12038 	int did_enable = 0;
12039 	u16 ctxt;
12040 
12041 	if (!rcd)
12042 		return;
12043 
12044 	ctxt = rcd->ctxt;
12045 
12046 	hfi1_cdbg(RCVCTRL, "ctxt %d op 0x%x", ctxt, op);
12047 
12048 	rcvctrl = read_kctxt_csr(dd, ctxt, RCV_CTXT_CTRL);
12049 	/* if the context already enabled, don't do the extra steps */
12050 	if ((op & HFI1_RCVCTRL_CTXT_ENB) &&
12051 	    !(rcvctrl & RCV_CTXT_CTRL_ENABLE_SMASK)) {
12052 		/* reset the tail and hdr addresses, and sequence count */
12053 		write_kctxt_csr(dd, ctxt, RCV_HDR_ADDR,
12054 				rcd->rcvhdrq_dma);
12055 		if (hfi1_rcvhdrtail_kvaddr(rcd))
12056 			write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR,
12057 					rcd->rcvhdrqtailaddr_dma);
12058 		hfi1_set_seq_cnt(rcd, 1);
12059 
12060 		/* reset the cached receive header queue head value */
12061 		hfi1_set_rcd_head(rcd, 0);
12062 
12063 		/*
12064 		 * Zero the receive header queue so we don't get false
12065 		 * positives when checking the sequence number.  The
12066 		 * sequence numbers could land exactly on the same spot.
12067 		 * E.g. a rcd restart before the receive header wrapped.
12068 		 */
12069 		memset(rcd->rcvhdrq, 0, rcvhdrq_size(rcd));
12070 
12071 		/* starting timeout */
12072 		rcd->rcvavail_timeout = dd->rcv_intr_timeout_csr;
12073 
12074 		/* enable the context */
12075 		rcvctrl |= RCV_CTXT_CTRL_ENABLE_SMASK;
12076 
12077 		/* clean the egr buffer size first */
12078 		rcvctrl &= ~RCV_CTXT_CTRL_EGR_BUF_SIZE_SMASK;
12079 		rcvctrl |= ((u64)encoded_size(rcd->egrbufs.rcvtid_size)
12080 				& RCV_CTXT_CTRL_EGR_BUF_SIZE_MASK)
12081 					<< RCV_CTXT_CTRL_EGR_BUF_SIZE_SHIFT;
12082 
12083 		/* zero RcvHdrHead - set RcvHdrHead.Counter after enable */
12084 		write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0);
12085 		did_enable = 1;
12086 
12087 		/* zero RcvEgrIndexHead */
12088 		write_uctxt_csr(dd, ctxt, RCV_EGR_INDEX_HEAD, 0);
12089 
12090 		/* set eager count and base index */
12091 		reg = (((u64)(rcd->egrbufs.alloced >> RCV_SHIFT)
12092 			& RCV_EGR_CTRL_EGR_CNT_MASK)
12093 		       << RCV_EGR_CTRL_EGR_CNT_SHIFT) |
12094 			(((rcd->eager_base >> RCV_SHIFT)
12095 			  & RCV_EGR_CTRL_EGR_BASE_INDEX_MASK)
12096 			 << RCV_EGR_CTRL_EGR_BASE_INDEX_SHIFT);
12097 		write_kctxt_csr(dd, ctxt, RCV_EGR_CTRL, reg);
12098 
12099 		/*
12100 		 * Set TID (expected) count and base index.
12101 		 * rcd->expected_count is set to individual RcvArray entries,
12102 		 * not pairs, and the CSR takes a pair-count in groups of
12103 		 * four, so divide by 8.
12104 		 */
12105 		reg = (((rcd->expected_count >> RCV_SHIFT)
12106 					& RCV_TID_CTRL_TID_PAIR_CNT_MASK)
12107 				<< RCV_TID_CTRL_TID_PAIR_CNT_SHIFT) |
12108 		      (((rcd->expected_base >> RCV_SHIFT)
12109 					& RCV_TID_CTRL_TID_BASE_INDEX_MASK)
12110 				<< RCV_TID_CTRL_TID_BASE_INDEX_SHIFT);
12111 		write_kctxt_csr(dd, ctxt, RCV_TID_CTRL, reg);
12112 		if (ctxt == HFI1_CTRL_CTXT)
12113 			write_csr(dd, RCV_VL15, HFI1_CTRL_CTXT);
12114 	}
12115 	if (op & HFI1_RCVCTRL_CTXT_DIS) {
12116 		write_csr(dd, RCV_VL15, 0);
12117 		/*
12118 		 * When receive context is being disabled turn on tail
12119 		 * update with a dummy tail address and then disable
12120 		 * receive context.
12121 		 */
12122 		if (dd->rcvhdrtail_dummy_dma) {
12123 			write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR,
12124 					dd->rcvhdrtail_dummy_dma);
12125 			/* Enabling RcvCtxtCtrl.TailUpd is intentional. */
12126 			rcvctrl |= RCV_CTXT_CTRL_TAIL_UPD_SMASK;
12127 		}
12128 
12129 		rcvctrl &= ~RCV_CTXT_CTRL_ENABLE_SMASK;
12130 	}
12131 	if (op & HFI1_RCVCTRL_INTRAVAIL_ENB) {
12132 		set_intr_bits(dd, IS_RCVAVAIL_START + rcd->ctxt,
12133 			      IS_RCVAVAIL_START + rcd->ctxt, true);
12134 		rcvctrl |= RCV_CTXT_CTRL_INTR_AVAIL_SMASK;
12135 	}
12136 	if (op & HFI1_RCVCTRL_INTRAVAIL_DIS) {
12137 		set_intr_bits(dd, IS_RCVAVAIL_START + rcd->ctxt,
12138 			      IS_RCVAVAIL_START + rcd->ctxt, false);
12139 		rcvctrl &= ~RCV_CTXT_CTRL_INTR_AVAIL_SMASK;
12140 	}
12141 	if ((op & HFI1_RCVCTRL_TAILUPD_ENB) && hfi1_rcvhdrtail_kvaddr(rcd))
12142 		rcvctrl |= RCV_CTXT_CTRL_TAIL_UPD_SMASK;
12143 	if (op & HFI1_RCVCTRL_TAILUPD_DIS) {
12144 		/* See comment on RcvCtxtCtrl.TailUpd above */
12145 		if (!(op & HFI1_RCVCTRL_CTXT_DIS))
12146 			rcvctrl &= ~RCV_CTXT_CTRL_TAIL_UPD_SMASK;
12147 	}
12148 	if (op & HFI1_RCVCTRL_TIDFLOW_ENB)
12149 		rcvctrl |= RCV_CTXT_CTRL_TID_FLOW_ENABLE_SMASK;
12150 	if (op & HFI1_RCVCTRL_TIDFLOW_DIS)
12151 		rcvctrl &= ~RCV_CTXT_CTRL_TID_FLOW_ENABLE_SMASK;
12152 	if (op & HFI1_RCVCTRL_ONE_PKT_EGR_ENB) {
12153 		/*
12154 		 * In one-packet-per-eager mode, the size comes from
12155 		 * the RcvArray entry.
12156 		 */
12157 		rcvctrl &= ~RCV_CTXT_CTRL_EGR_BUF_SIZE_SMASK;
12158 		rcvctrl |= RCV_CTXT_CTRL_ONE_PACKET_PER_EGR_BUFFER_SMASK;
12159 	}
12160 	if (op & HFI1_RCVCTRL_ONE_PKT_EGR_DIS)
12161 		rcvctrl &= ~RCV_CTXT_CTRL_ONE_PACKET_PER_EGR_BUFFER_SMASK;
12162 	if (op & HFI1_RCVCTRL_NO_RHQ_DROP_ENB)
12163 		rcvctrl |= RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK;
12164 	if (op & HFI1_RCVCTRL_NO_RHQ_DROP_DIS)
12165 		rcvctrl &= ~RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK;
12166 	if (op & HFI1_RCVCTRL_NO_EGR_DROP_ENB)
12167 		rcvctrl |= RCV_CTXT_CTRL_DONT_DROP_EGR_FULL_SMASK;
12168 	if (op & HFI1_RCVCTRL_NO_EGR_DROP_DIS)
12169 		rcvctrl &= ~RCV_CTXT_CTRL_DONT_DROP_EGR_FULL_SMASK;
12170 	if (op & HFI1_RCVCTRL_URGENT_ENB)
12171 		set_intr_bits(dd, IS_RCVURGENT_START + rcd->ctxt,
12172 			      IS_RCVURGENT_START + rcd->ctxt, true);
12173 	if (op & HFI1_RCVCTRL_URGENT_DIS)
12174 		set_intr_bits(dd, IS_RCVURGENT_START + rcd->ctxt,
12175 			      IS_RCVURGENT_START + rcd->ctxt, false);
12176 
12177 	hfi1_cdbg(RCVCTRL, "ctxt %d rcvctrl 0x%llx\n", ctxt, rcvctrl);
12178 	write_kctxt_csr(dd, ctxt, RCV_CTXT_CTRL, rcvctrl);
12179 
12180 	/* work around sticky RcvCtxtStatus.BlockedRHQFull */
12181 	if (did_enable &&
12182 	    (rcvctrl & RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK)) {
12183 		reg = read_kctxt_csr(dd, ctxt, RCV_CTXT_STATUS);
12184 		if (reg != 0) {
12185 			dd_dev_info(dd, "ctxt %d status %lld (blocked)\n",
12186 				    ctxt, reg);
12187 			read_uctxt_csr(dd, ctxt, RCV_HDR_HEAD);
12188 			write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0x10);
12189 			write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0x00);
12190 			read_uctxt_csr(dd, ctxt, RCV_HDR_HEAD);
12191 			reg = read_kctxt_csr(dd, ctxt, RCV_CTXT_STATUS);
12192 			dd_dev_info(dd, "ctxt %d status %lld (%s blocked)\n",
12193 				    ctxt, reg, reg == 0 ? "not" : "still");
12194 		}
12195 	}
12196 
12197 	if (did_enable) {
12198 		/*
12199 		 * The interrupt timeout and count must be set after
12200 		 * the context is enabled to take effect.
12201 		 */
12202 		/* set interrupt timeout */
12203 		write_kctxt_csr(dd, ctxt, RCV_AVAIL_TIME_OUT,
12204 				(u64)rcd->rcvavail_timeout <<
12205 				RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_SHIFT);
12206 
12207 		/* set RcvHdrHead.Counter, zero RcvHdrHead.Head (again) */
12208 		reg = (u64)rcv_intr_count << RCV_HDR_HEAD_COUNTER_SHIFT;
12209 		write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, reg);
12210 	}
12211 
12212 	if (op & (HFI1_RCVCTRL_TAILUPD_DIS | HFI1_RCVCTRL_CTXT_DIS))
12213 		/*
12214 		 * If the context has been disabled and the Tail Update has
12215 		 * been cleared, set the RCV_HDR_TAIL_ADDR CSR to dummy address
12216 		 * so it doesn't contain an address that is invalid.
12217 		 */
12218 		write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR,
12219 				dd->rcvhdrtail_dummy_dma);
12220 }
12221 
12222 u32 hfi1_read_cntrs(struct hfi1_devdata *dd, char **namep, u64 **cntrp)
12223 {
12224 	int ret;
12225 	u64 val = 0;
12226 
12227 	if (namep) {
12228 		ret = dd->cntrnameslen;
12229 		*namep = dd->cntrnames;
12230 	} else {
12231 		const struct cntr_entry *entry;
12232 		int i, j;
12233 
12234 		ret = (dd->ndevcntrs) * sizeof(u64);
12235 
12236 		/* Get the start of the block of counters */
12237 		*cntrp = dd->cntrs;
12238 
12239 		/*
12240 		 * Now go and fill in each counter in the block.
12241 		 */
12242 		for (i = 0; i < DEV_CNTR_LAST; i++) {
12243 			entry = &dev_cntrs[i];
12244 			hfi1_cdbg(CNTR, "reading %s", entry->name);
12245 			if (entry->flags & CNTR_DISABLED) {
12246 				/* Nothing */
12247 				hfi1_cdbg(CNTR, "\tDisabled\n");
12248 			} else {
12249 				if (entry->flags & CNTR_VL) {
12250 					hfi1_cdbg(CNTR, "\tPer VL\n");
12251 					for (j = 0; j < C_VL_COUNT; j++) {
12252 						val = entry->rw_cntr(entry,
12253 								  dd, j,
12254 								  CNTR_MODE_R,
12255 								  0);
12256 						hfi1_cdbg(
12257 						   CNTR,
12258 						   "\t\tRead 0x%llx for %d\n",
12259 						   val, j);
12260 						dd->cntrs[entry->offset + j] =
12261 									    val;
12262 					}
12263 				} else if (entry->flags & CNTR_SDMA) {
12264 					hfi1_cdbg(CNTR,
12265 						  "\t Per SDMA Engine\n");
12266 					for (j = 0; j < chip_sdma_engines(dd);
12267 					     j++) {
12268 						val =
12269 						entry->rw_cntr(entry, dd, j,
12270 							       CNTR_MODE_R, 0);
12271 						hfi1_cdbg(CNTR,
12272 							  "\t\tRead 0x%llx for %d\n",
12273 							  val, j);
12274 						dd->cntrs[entry->offset + j] =
12275 									val;
12276 					}
12277 				} else {
12278 					val = entry->rw_cntr(entry, dd,
12279 							CNTR_INVALID_VL,
12280 							CNTR_MODE_R, 0);
12281 					dd->cntrs[entry->offset] = val;
12282 					hfi1_cdbg(CNTR, "\tRead 0x%llx", val);
12283 				}
12284 			}
12285 		}
12286 	}
12287 	return ret;
12288 }
12289 
12290 /*
12291  * Used by sysfs to create files for hfi stats to read
12292  */
12293 u32 hfi1_read_portcntrs(struct hfi1_pportdata *ppd, char **namep, u64 **cntrp)
12294 {
12295 	int ret;
12296 	u64 val = 0;
12297 
12298 	if (namep) {
12299 		ret = ppd->dd->portcntrnameslen;
12300 		*namep = ppd->dd->portcntrnames;
12301 	} else {
12302 		const struct cntr_entry *entry;
12303 		int i, j;
12304 
12305 		ret = ppd->dd->nportcntrs * sizeof(u64);
12306 		*cntrp = ppd->cntrs;
12307 
12308 		for (i = 0; i < PORT_CNTR_LAST; i++) {
12309 			entry = &port_cntrs[i];
12310 			hfi1_cdbg(CNTR, "reading %s", entry->name);
12311 			if (entry->flags & CNTR_DISABLED) {
12312 				/* Nothing */
12313 				hfi1_cdbg(CNTR, "\tDisabled\n");
12314 				continue;
12315 			}
12316 
12317 			if (entry->flags & CNTR_VL) {
12318 				hfi1_cdbg(CNTR, "\tPer VL");
12319 				for (j = 0; j < C_VL_COUNT; j++) {
12320 					val = entry->rw_cntr(entry, ppd, j,
12321 							       CNTR_MODE_R,
12322 							       0);
12323 					hfi1_cdbg(
12324 					   CNTR,
12325 					   "\t\tRead 0x%llx for %d",
12326 					   val, j);
12327 					ppd->cntrs[entry->offset + j] = val;
12328 				}
12329 			} else {
12330 				val = entry->rw_cntr(entry, ppd,
12331 						       CNTR_INVALID_VL,
12332 						       CNTR_MODE_R,
12333 						       0);
12334 				ppd->cntrs[entry->offset] = val;
12335 				hfi1_cdbg(CNTR, "\tRead 0x%llx", val);
12336 			}
12337 		}
12338 	}
12339 	return ret;
12340 }
12341 
12342 static void free_cntrs(struct hfi1_devdata *dd)
12343 {
12344 	struct hfi1_pportdata *ppd;
12345 	int i;
12346 
12347 	if (dd->synth_stats_timer.function)
12348 		del_timer_sync(&dd->synth_stats_timer);
12349 	ppd = (struct hfi1_pportdata *)(dd + 1);
12350 	for (i = 0; i < dd->num_pports; i++, ppd++) {
12351 		kfree(ppd->cntrs);
12352 		kfree(ppd->scntrs);
12353 		free_percpu(ppd->ibport_data.rvp.rc_acks);
12354 		free_percpu(ppd->ibport_data.rvp.rc_qacks);
12355 		free_percpu(ppd->ibport_data.rvp.rc_delayed_comp);
12356 		ppd->cntrs = NULL;
12357 		ppd->scntrs = NULL;
12358 		ppd->ibport_data.rvp.rc_acks = NULL;
12359 		ppd->ibport_data.rvp.rc_qacks = NULL;
12360 		ppd->ibport_data.rvp.rc_delayed_comp = NULL;
12361 	}
12362 	kfree(dd->portcntrnames);
12363 	dd->portcntrnames = NULL;
12364 	kfree(dd->cntrs);
12365 	dd->cntrs = NULL;
12366 	kfree(dd->scntrs);
12367 	dd->scntrs = NULL;
12368 	kfree(dd->cntrnames);
12369 	dd->cntrnames = NULL;
12370 	if (dd->update_cntr_wq) {
12371 		destroy_workqueue(dd->update_cntr_wq);
12372 		dd->update_cntr_wq = NULL;
12373 	}
12374 }
12375 
12376 static u64 read_dev_port_cntr(struct hfi1_devdata *dd, struct cntr_entry *entry,
12377 			      u64 *psval, void *context, int vl)
12378 {
12379 	u64 val;
12380 	u64 sval = *psval;
12381 
12382 	if (entry->flags & CNTR_DISABLED) {
12383 		dd_dev_err(dd, "Counter %s not enabled", entry->name);
12384 		return 0;
12385 	}
12386 
12387 	hfi1_cdbg(CNTR, "cntr: %s vl %d psval 0x%llx", entry->name, vl, *psval);
12388 
12389 	val = entry->rw_cntr(entry, context, vl, CNTR_MODE_R, 0);
12390 
12391 	/* If its a synthetic counter there is more work we need to do */
12392 	if (entry->flags & CNTR_SYNTH) {
12393 		if (sval == CNTR_MAX) {
12394 			/* No need to read already saturated */
12395 			return CNTR_MAX;
12396 		}
12397 
12398 		if (entry->flags & CNTR_32BIT) {
12399 			/* 32bit counters can wrap multiple times */
12400 			u64 upper = sval >> 32;
12401 			u64 lower = (sval << 32) >> 32;
12402 
12403 			if (lower > val) { /* hw wrapped */
12404 				if (upper == CNTR_32BIT_MAX)
12405 					val = CNTR_MAX;
12406 				else
12407 					upper++;
12408 			}
12409 
12410 			if (val != CNTR_MAX)
12411 				val = (upper << 32) | val;
12412 
12413 		} else {
12414 			/* If we rolled we are saturated */
12415 			if ((val < sval) || (val > CNTR_MAX))
12416 				val = CNTR_MAX;
12417 		}
12418 	}
12419 
12420 	*psval = val;
12421 
12422 	hfi1_cdbg(CNTR, "\tNew val=0x%llx", val);
12423 
12424 	return val;
12425 }
12426 
12427 static u64 write_dev_port_cntr(struct hfi1_devdata *dd,
12428 			       struct cntr_entry *entry,
12429 			       u64 *psval, void *context, int vl, u64 data)
12430 {
12431 	u64 val;
12432 
12433 	if (entry->flags & CNTR_DISABLED) {
12434 		dd_dev_err(dd, "Counter %s not enabled", entry->name);
12435 		return 0;
12436 	}
12437 
12438 	hfi1_cdbg(CNTR, "cntr: %s vl %d psval 0x%llx", entry->name, vl, *psval);
12439 
12440 	if (entry->flags & CNTR_SYNTH) {
12441 		*psval = data;
12442 		if (entry->flags & CNTR_32BIT) {
12443 			val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W,
12444 					     (data << 32) >> 32);
12445 			val = data; /* return the full 64bit value */
12446 		} else {
12447 			val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W,
12448 					     data);
12449 		}
12450 	} else {
12451 		val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W, data);
12452 	}
12453 
12454 	*psval = val;
12455 
12456 	hfi1_cdbg(CNTR, "\tNew val=0x%llx", val);
12457 
12458 	return val;
12459 }
12460 
12461 u64 read_dev_cntr(struct hfi1_devdata *dd, int index, int vl)
12462 {
12463 	struct cntr_entry *entry;
12464 	u64 *sval;
12465 
12466 	entry = &dev_cntrs[index];
12467 	sval = dd->scntrs + entry->offset;
12468 
12469 	if (vl != CNTR_INVALID_VL)
12470 		sval += vl;
12471 
12472 	return read_dev_port_cntr(dd, entry, sval, dd, vl);
12473 }
12474 
12475 u64 write_dev_cntr(struct hfi1_devdata *dd, int index, int vl, u64 data)
12476 {
12477 	struct cntr_entry *entry;
12478 	u64 *sval;
12479 
12480 	entry = &dev_cntrs[index];
12481 	sval = dd->scntrs + entry->offset;
12482 
12483 	if (vl != CNTR_INVALID_VL)
12484 		sval += vl;
12485 
12486 	return write_dev_port_cntr(dd, entry, sval, dd, vl, data);
12487 }
12488 
12489 u64 read_port_cntr(struct hfi1_pportdata *ppd, int index, int vl)
12490 {
12491 	struct cntr_entry *entry;
12492 	u64 *sval;
12493 
12494 	entry = &port_cntrs[index];
12495 	sval = ppd->scntrs + entry->offset;
12496 
12497 	if (vl != CNTR_INVALID_VL)
12498 		sval += vl;
12499 
12500 	if ((index >= C_RCV_HDR_OVF_FIRST + ppd->dd->num_rcv_contexts) &&
12501 	    (index <= C_RCV_HDR_OVF_LAST)) {
12502 		/* We do not want to bother for disabled contexts */
12503 		return 0;
12504 	}
12505 
12506 	return read_dev_port_cntr(ppd->dd, entry, sval, ppd, vl);
12507 }
12508 
12509 u64 write_port_cntr(struct hfi1_pportdata *ppd, int index, int vl, u64 data)
12510 {
12511 	struct cntr_entry *entry;
12512 	u64 *sval;
12513 
12514 	entry = &port_cntrs[index];
12515 	sval = ppd->scntrs + entry->offset;
12516 
12517 	if (vl != CNTR_INVALID_VL)
12518 		sval += vl;
12519 
12520 	if ((index >= C_RCV_HDR_OVF_FIRST + ppd->dd->num_rcv_contexts) &&
12521 	    (index <= C_RCV_HDR_OVF_LAST)) {
12522 		/* We do not want to bother for disabled contexts */
12523 		return 0;
12524 	}
12525 
12526 	return write_dev_port_cntr(ppd->dd, entry, sval, ppd, vl, data);
12527 }
12528 
12529 static void do_update_synth_timer(struct work_struct *work)
12530 {
12531 	u64 cur_tx;
12532 	u64 cur_rx;
12533 	u64 total_flits;
12534 	u8 update = 0;
12535 	int i, j, vl;
12536 	struct hfi1_pportdata *ppd;
12537 	struct cntr_entry *entry;
12538 	struct hfi1_devdata *dd = container_of(work, struct hfi1_devdata,
12539 					       update_cntr_work);
12540 
12541 	/*
12542 	 * Rather than keep beating on the CSRs pick a minimal set that we can
12543 	 * check to watch for potential roll over. We can do this by looking at
12544 	 * the number of flits sent/recv. If the total flits exceeds 32bits then
12545 	 * we have to iterate all the counters and update.
12546 	 */
12547 	entry = &dev_cntrs[C_DC_RCV_FLITS];
12548 	cur_rx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL, CNTR_MODE_R, 0);
12549 
12550 	entry = &dev_cntrs[C_DC_XMIT_FLITS];
12551 	cur_tx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL, CNTR_MODE_R, 0);
12552 
12553 	hfi1_cdbg(
12554 	    CNTR,
12555 	    "[%d] curr tx=0x%llx rx=0x%llx :: last tx=0x%llx rx=0x%llx\n",
12556 	    dd->unit, cur_tx, cur_rx, dd->last_tx, dd->last_rx);
12557 
12558 	if ((cur_tx < dd->last_tx) || (cur_rx < dd->last_rx)) {
12559 		/*
12560 		 * May not be strictly necessary to update but it won't hurt and
12561 		 * simplifies the logic here.
12562 		 */
12563 		update = 1;
12564 		hfi1_cdbg(CNTR, "[%d] Tripwire counter rolled, updating",
12565 			  dd->unit);
12566 	} else {
12567 		total_flits = (cur_tx - dd->last_tx) + (cur_rx - dd->last_rx);
12568 		hfi1_cdbg(CNTR,
12569 			  "[%d] total flits 0x%llx limit 0x%llx\n", dd->unit,
12570 			  total_flits, (u64)CNTR_32BIT_MAX);
12571 		if (total_flits >= CNTR_32BIT_MAX) {
12572 			hfi1_cdbg(CNTR, "[%d] 32bit limit hit, updating",
12573 				  dd->unit);
12574 			update = 1;
12575 		}
12576 	}
12577 
12578 	if (update) {
12579 		hfi1_cdbg(CNTR, "[%d] Updating dd and ppd counters", dd->unit);
12580 		for (i = 0; i < DEV_CNTR_LAST; i++) {
12581 			entry = &dev_cntrs[i];
12582 			if (entry->flags & CNTR_VL) {
12583 				for (vl = 0; vl < C_VL_COUNT; vl++)
12584 					read_dev_cntr(dd, i, vl);
12585 			} else {
12586 				read_dev_cntr(dd, i, CNTR_INVALID_VL);
12587 			}
12588 		}
12589 		ppd = (struct hfi1_pportdata *)(dd + 1);
12590 		for (i = 0; i < dd->num_pports; i++, ppd++) {
12591 			for (j = 0; j < PORT_CNTR_LAST; j++) {
12592 				entry = &port_cntrs[j];
12593 				if (entry->flags & CNTR_VL) {
12594 					for (vl = 0; vl < C_VL_COUNT; vl++)
12595 						read_port_cntr(ppd, j, vl);
12596 				} else {
12597 					read_port_cntr(ppd, j, CNTR_INVALID_VL);
12598 				}
12599 			}
12600 		}
12601 
12602 		/*
12603 		 * We want the value in the register. The goal is to keep track
12604 		 * of the number of "ticks" not the counter value. In other
12605 		 * words if the register rolls we want to notice it and go ahead
12606 		 * and force an update.
12607 		 */
12608 		entry = &dev_cntrs[C_DC_XMIT_FLITS];
12609 		dd->last_tx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL,
12610 						CNTR_MODE_R, 0);
12611 
12612 		entry = &dev_cntrs[C_DC_RCV_FLITS];
12613 		dd->last_rx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL,
12614 						CNTR_MODE_R, 0);
12615 
12616 		hfi1_cdbg(CNTR, "[%d] setting last tx/rx to 0x%llx 0x%llx",
12617 			  dd->unit, dd->last_tx, dd->last_rx);
12618 
12619 	} else {
12620 		hfi1_cdbg(CNTR, "[%d] No update necessary", dd->unit);
12621 	}
12622 }
12623 
12624 static void update_synth_timer(struct timer_list *t)
12625 {
12626 	struct hfi1_devdata *dd = from_timer(dd, t, synth_stats_timer);
12627 
12628 	queue_work(dd->update_cntr_wq, &dd->update_cntr_work);
12629 	mod_timer(&dd->synth_stats_timer, jiffies + HZ * SYNTH_CNT_TIME);
12630 }
12631 
12632 #define C_MAX_NAME 16 /* 15 chars + one for /0 */
12633 static int init_cntrs(struct hfi1_devdata *dd)
12634 {
12635 	int i, rcv_ctxts, j;
12636 	size_t sz;
12637 	char *p;
12638 	char name[C_MAX_NAME];
12639 	struct hfi1_pportdata *ppd;
12640 	const char *bit_type_32 = ",32";
12641 	const int bit_type_32_sz = strlen(bit_type_32);
12642 	u32 sdma_engines = chip_sdma_engines(dd);
12643 
12644 	/* set up the stats timer; the add_timer is done at the end */
12645 	timer_setup(&dd->synth_stats_timer, update_synth_timer, 0);
12646 
12647 	/***********************/
12648 	/* per device counters */
12649 	/***********************/
12650 
12651 	/* size names and determine how many we have*/
12652 	dd->ndevcntrs = 0;
12653 	sz = 0;
12654 
12655 	for (i = 0; i < DEV_CNTR_LAST; i++) {
12656 		if (dev_cntrs[i].flags & CNTR_DISABLED) {
12657 			hfi1_dbg_early("\tSkipping %s\n", dev_cntrs[i].name);
12658 			continue;
12659 		}
12660 
12661 		if (dev_cntrs[i].flags & CNTR_VL) {
12662 			dev_cntrs[i].offset = dd->ndevcntrs;
12663 			for (j = 0; j < C_VL_COUNT; j++) {
12664 				snprintf(name, C_MAX_NAME, "%s%d",
12665 					 dev_cntrs[i].name, vl_from_idx(j));
12666 				sz += strlen(name);
12667 				/* Add ",32" for 32-bit counters */
12668 				if (dev_cntrs[i].flags & CNTR_32BIT)
12669 					sz += bit_type_32_sz;
12670 				sz++;
12671 				dd->ndevcntrs++;
12672 			}
12673 		} else if (dev_cntrs[i].flags & CNTR_SDMA) {
12674 			dev_cntrs[i].offset = dd->ndevcntrs;
12675 			for (j = 0; j < sdma_engines; j++) {
12676 				snprintf(name, C_MAX_NAME, "%s%d",
12677 					 dev_cntrs[i].name, j);
12678 				sz += strlen(name);
12679 				/* Add ",32" for 32-bit counters */
12680 				if (dev_cntrs[i].flags & CNTR_32BIT)
12681 					sz += bit_type_32_sz;
12682 				sz++;
12683 				dd->ndevcntrs++;
12684 			}
12685 		} else {
12686 			/* +1 for newline. */
12687 			sz += strlen(dev_cntrs[i].name) + 1;
12688 			/* Add ",32" for 32-bit counters */
12689 			if (dev_cntrs[i].flags & CNTR_32BIT)
12690 				sz += bit_type_32_sz;
12691 			dev_cntrs[i].offset = dd->ndevcntrs;
12692 			dd->ndevcntrs++;
12693 		}
12694 	}
12695 
12696 	/* allocate space for the counter values */
12697 	dd->cntrs = kcalloc(dd->ndevcntrs + num_driver_cntrs, sizeof(u64),
12698 			    GFP_KERNEL);
12699 	if (!dd->cntrs)
12700 		goto bail;
12701 
12702 	dd->scntrs = kcalloc(dd->ndevcntrs, sizeof(u64), GFP_KERNEL);
12703 	if (!dd->scntrs)
12704 		goto bail;
12705 
12706 	/* allocate space for the counter names */
12707 	dd->cntrnameslen = sz;
12708 	dd->cntrnames = kmalloc(sz, GFP_KERNEL);
12709 	if (!dd->cntrnames)
12710 		goto bail;
12711 
12712 	/* fill in the names */
12713 	for (p = dd->cntrnames, i = 0; i < DEV_CNTR_LAST; i++) {
12714 		if (dev_cntrs[i].flags & CNTR_DISABLED) {
12715 			/* Nothing */
12716 		} else if (dev_cntrs[i].flags & CNTR_VL) {
12717 			for (j = 0; j < C_VL_COUNT; j++) {
12718 				snprintf(name, C_MAX_NAME, "%s%d",
12719 					 dev_cntrs[i].name,
12720 					 vl_from_idx(j));
12721 				memcpy(p, name, strlen(name));
12722 				p += strlen(name);
12723 
12724 				/* Counter is 32 bits */
12725 				if (dev_cntrs[i].flags & CNTR_32BIT) {
12726 					memcpy(p, bit_type_32, bit_type_32_sz);
12727 					p += bit_type_32_sz;
12728 				}
12729 
12730 				*p++ = '\n';
12731 			}
12732 		} else if (dev_cntrs[i].flags & CNTR_SDMA) {
12733 			for (j = 0; j < sdma_engines; j++) {
12734 				snprintf(name, C_MAX_NAME, "%s%d",
12735 					 dev_cntrs[i].name, j);
12736 				memcpy(p, name, strlen(name));
12737 				p += strlen(name);
12738 
12739 				/* Counter is 32 bits */
12740 				if (dev_cntrs[i].flags & CNTR_32BIT) {
12741 					memcpy(p, bit_type_32, bit_type_32_sz);
12742 					p += bit_type_32_sz;
12743 				}
12744 
12745 				*p++ = '\n';
12746 			}
12747 		} else {
12748 			memcpy(p, dev_cntrs[i].name, strlen(dev_cntrs[i].name));
12749 			p += strlen(dev_cntrs[i].name);
12750 
12751 			/* Counter is 32 bits */
12752 			if (dev_cntrs[i].flags & CNTR_32BIT) {
12753 				memcpy(p, bit_type_32, bit_type_32_sz);
12754 				p += bit_type_32_sz;
12755 			}
12756 
12757 			*p++ = '\n';
12758 		}
12759 	}
12760 
12761 	/*********************/
12762 	/* per port counters */
12763 	/*********************/
12764 
12765 	/*
12766 	 * Go through the counters for the overflows and disable the ones we
12767 	 * don't need. This varies based on platform so we need to do it
12768 	 * dynamically here.
12769 	 */
12770 	rcv_ctxts = dd->num_rcv_contexts;
12771 	for (i = C_RCV_HDR_OVF_FIRST + rcv_ctxts;
12772 	     i <= C_RCV_HDR_OVF_LAST; i++) {
12773 		port_cntrs[i].flags |= CNTR_DISABLED;
12774 	}
12775 
12776 	/* size port counter names and determine how many we have*/
12777 	sz = 0;
12778 	dd->nportcntrs = 0;
12779 	for (i = 0; i < PORT_CNTR_LAST; i++) {
12780 		if (port_cntrs[i].flags & CNTR_DISABLED) {
12781 			hfi1_dbg_early("\tSkipping %s\n", port_cntrs[i].name);
12782 			continue;
12783 		}
12784 
12785 		if (port_cntrs[i].flags & CNTR_VL) {
12786 			port_cntrs[i].offset = dd->nportcntrs;
12787 			for (j = 0; j < C_VL_COUNT; j++) {
12788 				snprintf(name, C_MAX_NAME, "%s%d",
12789 					 port_cntrs[i].name, vl_from_idx(j));
12790 				sz += strlen(name);
12791 				/* Add ",32" for 32-bit counters */
12792 				if (port_cntrs[i].flags & CNTR_32BIT)
12793 					sz += bit_type_32_sz;
12794 				sz++;
12795 				dd->nportcntrs++;
12796 			}
12797 		} else {
12798 			/* +1 for newline */
12799 			sz += strlen(port_cntrs[i].name) + 1;
12800 			/* Add ",32" for 32-bit counters */
12801 			if (port_cntrs[i].flags & CNTR_32BIT)
12802 				sz += bit_type_32_sz;
12803 			port_cntrs[i].offset = dd->nportcntrs;
12804 			dd->nportcntrs++;
12805 		}
12806 	}
12807 
12808 	/* allocate space for the counter names */
12809 	dd->portcntrnameslen = sz;
12810 	dd->portcntrnames = kmalloc(sz, GFP_KERNEL);
12811 	if (!dd->portcntrnames)
12812 		goto bail;
12813 
12814 	/* fill in port cntr names */
12815 	for (p = dd->portcntrnames, i = 0; i < PORT_CNTR_LAST; i++) {
12816 		if (port_cntrs[i].flags & CNTR_DISABLED)
12817 			continue;
12818 
12819 		if (port_cntrs[i].flags & CNTR_VL) {
12820 			for (j = 0; j < C_VL_COUNT; j++) {
12821 				snprintf(name, C_MAX_NAME, "%s%d",
12822 					 port_cntrs[i].name, vl_from_idx(j));
12823 				memcpy(p, name, strlen(name));
12824 				p += strlen(name);
12825 
12826 				/* Counter is 32 bits */
12827 				if (port_cntrs[i].flags & CNTR_32BIT) {
12828 					memcpy(p, bit_type_32, bit_type_32_sz);
12829 					p += bit_type_32_sz;
12830 				}
12831 
12832 				*p++ = '\n';
12833 			}
12834 		} else {
12835 			memcpy(p, port_cntrs[i].name,
12836 			       strlen(port_cntrs[i].name));
12837 			p += strlen(port_cntrs[i].name);
12838 
12839 			/* Counter is 32 bits */
12840 			if (port_cntrs[i].flags & CNTR_32BIT) {
12841 				memcpy(p, bit_type_32, bit_type_32_sz);
12842 				p += bit_type_32_sz;
12843 			}
12844 
12845 			*p++ = '\n';
12846 		}
12847 	}
12848 
12849 	/* allocate per port storage for counter values */
12850 	ppd = (struct hfi1_pportdata *)(dd + 1);
12851 	for (i = 0; i < dd->num_pports; i++, ppd++) {
12852 		ppd->cntrs = kcalloc(dd->nportcntrs, sizeof(u64), GFP_KERNEL);
12853 		if (!ppd->cntrs)
12854 			goto bail;
12855 
12856 		ppd->scntrs = kcalloc(dd->nportcntrs, sizeof(u64), GFP_KERNEL);
12857 		if (!ppd->scntrs)
12858 			goto bail;
12859 	}
12860 
12861 	/* CPU counters need to be allocated and zeroed */
12862 	if (init_cpu_counters(dd))
12863 		goto bail;
12864 
12865 	dd->update_cntr_wq = alloc_ordered_workqueue("hfi1_update_cntr_%d",
12866 						     WQ_MEM_RECLAIM, dd->unit);
12867 	if (!dd->update_cntr_wq)
12868 		goto bail;
12869 
12870 	INIT_WORK(&dd->update_cntr_work, do_update_synth_timer);
12871 
12872 	mod_timer(&dd->synth_stats_timer, jiffies + HZ * SYNTH_CNT_TIME);
12873 	return 0;
12874 bail:
12875 	free_cntrs(dd);
12876 	return -ENOMEM;
12877 }
12878 
12879 static u32 chip_to_opa_lstate(struct hfi1_devdata *dd, u32 chip_lstate)
12880 {
12881 	switch (chip_lstate) {
12882 	case LSTATE_DOWN:
12883 		return IB_PORT_DOWN;
12884 	case LSTATE_INIT:
12885 		return IB_PORT_INIT;
12886 	case LSTATE_ARMED:
12887 		return IB_PORT_ARMED;
12888 	case LSTATE_ACTIVE:
12889 		return IB_PORT_ACTIVE;
12890 	default:
12891 		dd_dev_err(dd,
12892 			   "Unknown logical state 0x%x, reporting IB_PORT_DOWN\n",
12893 			   chip_lstate);
12894 		return IB_PORT_DOWN;
12895 	}
12896 }
12897 
12898 u32 chip_to_opa_pstate(struct hfi1_devdata *dd, u32 chip_pstate)
12899 {
12900 	/* look at the HFI meta-states only */
12901 	switch (chip_pstate & 0xf0) {
12902 	case PLS_DISABLED:
12903 		return IB_PORTPHYSSTATE_DISABLED;
12904 	case PLS_OFFLINE:
12905 		return OPA_PORTPHYSSTATE_OFFLINE;
12906 	case PLS_POLLING:
12907 		return IB_PORTPHYSSTATE_POLLING;
12908 	case PLS_CONFIGPHY:
12909 		return IB_PORTPHYSSTATE_TRAINING;
12910 	case PLS_LINKUP:
12911 		return IB_PORTPHYSSTATE_LINKUP;
12912 	case PLS_PHYTEST:
12913 		return IB_PORTPHYSSTATE_PHY_TEST;
12914 	default:
12915 		dd_dev_err(dd, "Unexpected chip physical state of 0x%x\n",
12916 			   chip_pstate);
12917 		return IB_PORTPHYSSTATE_DISABLED;
12918 	}
12919 }
12920 
12921 /* return the OPA port logical state name */
12922 const char *opa_lstate_name(u32 lstate)
12923 {
12924 	static const char * const port_logical_names[] = {
12925 		"PORT_NOP",
12926 		"PORT_DOWN",
12927 		"PORT_INIT",
12928 		"PORT_ARMED",
12929 		"PORT_ACTIVE",
12930 		"PORT_ACTIVE_DEFER",
12931 	};
12932 	if (lstate < ARRAY_SIZE(port_logical_names))
12933 		return port_logical_names[lstate];
12934 	return "unknown";
12935 }
12936 
12937 /* return the OPA port physical state name */
12938 const char *opa_pstate_name(u32 pstate)
12939 {
12940 	static const char * const port_physical_names[] = {
12941 		"PHYS_NOP",
12942 		"reserved1",
12943 		"PHYS_POLL",
12944 		"PHYS_DISABLED",
12945 		"PHYS_TRAINING",
12946 		"PHYS_LINKUP",
12947 		"PHYS_LINK_ERR_RECOVER",
12948 		"PHYS_PHY_TEST",
12949 		"reserved8",
12950 		"PHYS_OFFLINE",
12951 		"PHYS_GANGED",
12952 		"PHYS_TEST",
12953 	};
12954 	if (pstate < ARRAY_SIZE(port_physical_names))
12955 		return port_physical_names[pstate];
12956 	return "unknown";
12957 }
12958 
12959 /**
12960  * update_statusp - Update userspace status flag
12961  * @ppd: Port data structure
12962  * @state: port state information
12963  *
12964  * Actual port status is determined by the host_link_state value
12965  * in the ppd.
12966  *
12967  * host_link_state MUST be updated before updating the user space
12968  * statusp.
12969  */
12970 static void update_statusp(struct hfi1_pportdata *ppd, u32 state)
12971 {
12972 	/*
12973 	 * Set port status flags in the page mapped into userspace
12974 	 * memory. Do it here to ensure a reliable state - this is
12975 	 * the only function called by all state handling code.
12976 	 * Always set the flags due to the fact that the cache value
12977 	 * might have been changed explicitly outside of this
12978 	 * function.
12979 	 */
12980 	if (ppd->statusp) {
12981 		switch (state) {
12982 		case IB_PORT_DOWN:
12983 		case IB_PORT_INIT:
12984 			*ppd->statusp &= ~(HFI1_STATUS_IB_CONF |
12985 					   HFI1_STATUS_IB_READY);
12986 			break;
12987 		case IB_PORT_ARMED:
12988 			*ppd->statusp |= HFI1_STATUS_IB_CONF;
12989 			break;
12990 		case IB_PORT_ACTIVE:
12991 			*ppd->statusp |= HFI1_STATUS_IB_READY;
12992 			break;
12993 		}
12994 	}
12995 	dd_dev_info(ppd->dd, "logical state changed to %s (0x%x)\n",
12996 		    opa_lstate_name(state), state);
12997 }
12998 
12999 /**
13000  * wait_logical_linkstate - wait for an IB link state change to occur
13001  * @ppd: port device
13002  * @state: the state to wait for
13003  * @msecs: the number of milliseconds to wait
13004  *
13005  * Wait up to msecs milliseconds for IB link state change to occur.
13006  * For now, take the easy polling route.
13007  * Returns 0 if state reached, otherwise -ETIMEDOUT.
13008  */
13009 static int wait_logical_linkstate(struct hfi1_pportdata *ppd, u32 state,
13010 				  int msecs)
13011 {
13012 	unsigned long timeout;
13013 	u32 new_state;
13014 
13015 	timeout = jiffies + msecs_to_jiffies(msecs);
13016 	while (1) {
13017 		new_state = chip_to_opa_lstate(ppd->dd,
13018 					       read_logical_state(ppd->dd));
13019 		if (new_state == state)
13020 			break;
13021 		if (time_after(jiffies, timeout)) {
13022 			dd_dev_err(ppd->dd,
13023 				   "timeout waiting for link state 0x%x\n",
13024 				   state);
13025 			return -ETIMEDOUT;
13026 		}
13027 		msleep(20);
13028 	}
13029 
13030 	return 0;
13031 }
13032 
13033 static void log_state_transition(struct hfi1_pportdata *ppd, u32 state)
13034 {
13035 	u32 ib_pstate = chip_to_opa_pstate(ppd->dd, state);
13036 
13037 	dd_dev_info(ppd->dd,
13038 		    "physical state changed to %s (0x%x), phy 0x%x\n",
13039 		    opa_pstate_name(ib_pstate), ib_pstate, state);
13040 }
13041 
13042 /*
13043  * Read the physical hardware link state and check if it matches host
13044  * drivers anticipated state.
13045  */
13046 static void log_physical_state(struct hfi1_pportdata *ppd, u32 state)
13047 {
13048 	u32 read_state = read_physical_state(ppd->dd);
13049 
13050 	if (read_state == state) {
13051 		log_state_transition(ppd, state);
13052 	} else {
13053 		dd_dev_err(ppd->dd,
13054 			   "anticipated phy link state 0x%x, read 0x%x\n",
13055 			   state, read_state);
13056 	}
13057 }
13058 
13059 /*
13060  * wait_physical_linkstate - wait for an physical link state change to occur
13061  * @ppd: port device
13062  * @state: the state to wait for
13063  * @msecs: the number of milliseconds to wait
13064  *
13065  * Wait up to msecs milliseconds for physical link state change to occur.
13066  * Returns 0 if state reached, otherwise -ETIMEDOUT.
13067  */
13068 static int wait_physical_linkstate(struct hfi1_pportdata *ppd, u32 state,
13069 				   int msecs)
13070 {
13071 	u32 read_state;
13072 	unsigned long timeout;
13073 
13074 	timeout = jiffies + msecs_to_jiffies(msecs);
13075 	while (1) {
13076 		read_state = read_physical_state(ppd->dd);
13077 		if (read_state == state)
13078 			break;
13079 		if (time_after(jiffies, timeout)) {
13080 			dd_dev_err(ppd->dd,
13081 				   "timeout waiting for phy link state 0x%x\n",
13082 				   state);
13083 			return -ETIMEDOUT;
13084 		}
13085 		usleep_range(1950, 2050); /* sleep 2ms-ish */
13086 	}
13087 
13088 	log_state_transition(ppd, state);
13089 	return 0;
13090 }
13091 
13092 /*
13093  * wait_phys_link_offline_quiet_substates - wait for any offline substate
13094  * @ppd: port device
13095  * @msecs: the number of milliseconds to wait
13096  *
13097  * Wait up to msecs milliseconds for any offline physical link
13098  * state change to occur.
13099  * Returns 0 if at least one state is reached, otherwise -ETIMEDOUT.
13100  */
13101 static int wait_phys_link_offline_substates(struct hfi1_pportdata *ppd,
13102 					    int msecs)
13103 {
13104 	u32 read_state;
13105 	unsigned long timeout;
13106 
13107 	timeout = jiffies + msecs_to_jiffies(msecs);
13108 	while (1) {
13109 		read_state = read_physical_state(ppd->dd);
13110 		if ((read_state & 0xF0) == PLS_OFFLINE)
13111 			break;
13112 		if (time_after(jiffies, timeout)) {
13113 			dd_dev_err(ppd->dd,
13114 				   "timeout waiting for phy link offline.quiet substates. Read state 0x%x, %dms\n",
13115 				   read_state, msecs);
13116 			return -ETIMEDOUT;
13117 		}
13118 		usleep_range(1950, 2050); /* sleep 2ms-ish */
13119 	}
13120 
13121 	log_state_transition(ppd, read_state);
13122 	return read_state;
13123 }
13124 
13125 /*
13126  * wait_phys_link_out_of_offline - wait for any out of offline state
13127  * @ppd: port device
13128  * @msecs: the number of milliseconds to wait
13129  *
13130  * Wait up to msecs milliseconds for any out of offline physical link
13131  * state change to occur.
13132  * Returns 0 if at least one state is reached, otherwise -ETIMEDOUT.
13133  */
13134 static int wait_phys_link_out_of_offline(struct hfi1_pportdata *ppd,
13135 					 int msecs)
13136 {
13137 	u32 read_state;
13138 	unsigned long timeout;
13139 
13140 	timeout = jiffies + msecs_to_jiffies(msecs);
13141 	while (1) {
13142 		read_state = read_physical_state(ppd->dd);
13143 		if ((read_state & 0xF0) != PLS_OFFLINE)
13144 			break;
13145 		if (time_after(jiffies, timeout)) {
13146 			dd_dev_err(ppd->dd,
13147 				   "timeout waiting for phy link out of offline. Read state 0x%x, %dms\n",
13148 				   read_state, msecs);
13149 			return -ETIMEDOUT;
13150 		}
13151 		usleep_range(1950, 2050); /* sleep 2ms-ish */
13152 	}
13153 
13154 	log_state_transition(ppd, read_state);
13155 	return read_state;
13156 }
13157 
13158 #define CLEAR_STATIC_RATE_CONTROL_SMASK(r) \
13159 (r &= ~SEND_CTXT_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK)
13160 
13161 #define SET_STATIC_RATE_CONTROL_SMASK(r) \
13162 (r |= SEND_CTXT_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK)
13163 
13164 void hfi1_init_ctxt(struct send_context *sc)
13165 {
13166 	if (sc) {
13167 		struct hfi1_devdata *dd = sc->dd;
13168 		u64 reg;
13169 		u8 set = (sc->type == SC_USER ?
13170 			  HFI1_CAP_IS_USET(STATIC_RATE_CTRL) :
13171 			  HFI1_CAP_IS_KSET(STATIC_RATE_CTRL));
13172 		reg = read_kctxt_csr(dd, sc->hw_context,
13173 				     SEND_CTXT_CHECK_ENABLE);
13174 		if (set)
13175 			CLEAR_STATIC_RATE_CONTROL_SMASK(reg);
13176 		else
13177 			SET_STATIC_RATE_CONTROL_SMASK(reg);
13178 		write_kctxt_csr(dd, sc->hw_context,
13179 				SEND_CTXT_CHECK_ENABLE, reg);
13180 	}
13181 }
13182 
13183 int hfi1_tempsense_rd(struct hfi1_devdata *dd, struct hfi1_temp *temp)
13184 {
13185 	int ret = 0;
13186 	u64 reg;
13187 
13188 	if (dd->icode != ICODE_RTL_SILICON) {
13189 		if (HFI1_CAP_IS_KSET(PRINT_UNIMPL))
13190 			dd_dev_info(dd, "%s: tempsense not supported by HW\n",
13191 				    __func__);
13192 		return -EINVAL;
13193 	}
13194 	reg = read_csr(dd, ASIC_STS_THERM);
13195 	temp->curr = ((reg >> ASIC_STS_THERM_CURR_TEMP_SHIFT) &
13196 		      ASIC_STS_THERM_CURR_TEMP_MASK);
13197 	temp->lo_lim = ((reg >> ASIC_STS_THERM_LO_TEMP_SHIFT) &
13198 			ASIC_STS_THERM_LO_TEMP_MASK);
13199 	temp->hi_lim = ((reg >> ASIC_STS_THERM_HI_TEMP_SHIFT) &
13200 			ASIC_STS_THERM_HI_TEMP_MASK);
13201 	temp->crit_lim = ((reg >> ASIC_STS_THERM_CRIT_TEMP_SHIFT) &
13202 			  ASIC_STS_THERM_CRIT_TEMP_MASK);
13203 	/* triggers is a 3-bit value - 1 bit per trigger. */
13204 	temp->triggers = (u8)((reg >> ASIC_STS_THERM_LOW_SHIFT) & 0x7);
13205 
13206 	return ret;
13207 }
13208 
13209 /* ========================================================================= */
13210 
13211 /**
13212  * read_mod_write() - Calculate the IRQ register index and set/clear the bits
13213  * @dd: valid devdata
13214  * @src: IRQ source to determine register index from
13215  * @bits: the bits to set or clear
13216  * @set: true == set the bits, false == clear the bits
13217  *
13218  */
13219 static void read_mod_write(struct hfi1_devdata *dd, u16 src, u64 bits,
13220 			   bool set)
13221 {
13222 	u64 reg;
13223 	u16 idx = src / BITS_PER_REGISTER;
13224 
13225 	spin_lock(&dd->irq_src_lock);
13226 	reg = read_csr(dd, CCE_INT_MASK + (8 * idx));
13227 	if (set)
13228 		reg |= bits;
13229 	else
13230 		reg &= ~bits;
13231 	write_csr(dd, CCE_INT_MASK + (8 * idx), reg);
13232 	spin_unlock(&dd->irq_src_lock);
13233 }
13234 
13235 /**
13236  * set_intr_bits() - Enable/disable a range (one or more) IRQ sources
13237  * @dd: valid devdata
13238  * @first: first IRQ source to set/clear
13239  * @last: last IRQ source (inclusive) to set/clear
13240  * @set: true == set the bits, false == clear the bits
13241  *
13242  * If first == last, set the exact source.
13243  */
13244 int set_intr_bits(struct hfi1_devdata *dd, u16 first, u16 last, bool set)
13245 {
13246 	u64 bits = 0;
13247 	u64 bit;
13248 	u16 src;
13249 
13250 	if (first > NUM_INTERRUPT_SOURCES || last > NUM_INTERRUPT_SOURCES)
13251 		return -EINVAL;
13252 
13253 	if (last < first)
13254 		return -ERANGE;
13255 
13256 	for (src = first; src <= last; src++) {
13257 		bit = src % BITS_PER_REGISTER;
13258 		/* wrapped to next register? */
13259 		if (!bit && bits) {
13260 			read_mod_write(dd, src - 1, bits, set);
13261 			bits = 0;
13262 		}
13263 		bits |= BIT_ULL(bit);
13264 	}
13265 	read_mod_write(dd, last, bits, set);
13266 
13267 	return 0;
13268 }
13269 
13270 /*
13271  * Clear all interrupt sources on the chip.
13272  */
13273 void clear_all_interrupts(struct hfi1_devdata *dd)
13274 {
13275 	int i;
13276 
13277 	for (i = 0; i < CCE_NUM_INT_CSRS; i++)
13278 		write_csr(dd, CCE_INT_CLEAR + (8 * i), ~(u64)0);
13279 
13280 	write_csr(dd, CCE_ERR_CLEAR, ~(u64)0);
13281 	write_csr(dd, MISC_ERR_CLEAR, ~(u64)0);
13282 	write_csr(dd, RCV_ERR_CLEAR, ~(u64)0);
13283 	write_csr(dd, SEND_ERR_CLEAR, ~(u64)0);
13284 	write_csr(dd, SEND_PIO_ERR_CLEAR, ~(u64)0);
13285 	write_csr(dd, SEND_DMA_ERR_CLEAR, ~(u64)0);
13286 	write_csr(dd, SEND_EGRESS_ERR_CLEAR, ~(u64)0);
13287 	for (i = 0; i < chip_send_contexts(dd); i++)
13288 		write_kctxt_csr(dd, i, SEND_CTXT_ERR_CLEAR, ~(u64)0);
13289 	for (i = 0; i < chip_sdma_engines(dd); i++)
13290 		write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_CLEAR, ~(u64)0);
13291 
13292 	write_csr(dd, DCC_ERR_FLG_CLR, ~(u64)0);
13293 	write_csr(dd, DC_LCB_ERR_CLR, ~(u64)0);
13294 	write_csr(dd, DC_DC8051_ERR_CLR, ~(u64)0);
13295 }
13296 
13297 /*
13298  * Remap the interrupt source from the general handler to the given MSI-X
13299  * interrupt.
13300  */
13301 void remap_intr(struct hfi1_devdata *dd, int isrc, int msix_intr)
13302 {
13303 	u64 reg;
13304 	int m, n;
13305 
13306 	/* clear from the handled mask of the general interrupt */
13307 	m = isrc / 64;
13308 	n = isrc % 64;
13309 	if (likely(m < CCE_NUM_INT_CSRS)) {
13310 		dd->gi_mask[m] &= ~((u64)1 << n);
13311 	} else {
13312 		dd_dev_err(dd, "remap interrupt err\n");
13313 		return;
13314 	}
13315 
13316 	/* direct the chip source to the given MSI-X interrupt */
13317 	m = isrc / 8;
13318 	n = isrc % 8;
13319 	reg = read_csr(dd, CCE_INT_MAP + (8 * m));
13320 	reg &= ~((u64)0xff << (8 * n));
13321 	reg |= ((u64)msix_intr & 0xff) << (8 * n);
13322 	write_csr(dd, CCE_INT_MAP + (8 * m), reg);
13323 }
13324 
13325 void remap_sdma_interrupts(struct hfi1_devdata *dd, int engine, int msix_intr)
13326 {
13327 	/*
13328 	 * SDMA engine interrupt sources grouped by type, rather than
13329 	 * engine.  Per-engine interrupts are as follows:
13330 	 *	SDMA
13331 	 *	SDMAProgress
13332 	 *	SDMAIdle
13333 	 */
13334 	remap_intr(dd, IS_SDMA_START + engine, msix_intr);
13335 	remap_intr(dd, IS_SDMA_PROGRESS_START + engine, msix_intr);
13336 	remap_intr(dd, IS_SDMA_IDLE_START + engine, msix_intr);
13337 }
13338 
13339 /*
13340  * Set the general handler to accept all interrupts, remap all
13341  * chip interrupts back to MSI-X 0.
13342  */
13343 void reset_interrupts(struct hfi1_devdata *dd)
13344 {
13345 	int i;
13346 
13347 	/* all interrupts handled by the general handler */
13348 	for (i = 0; i < CCE_NUM_INT_CSRS; i++)
13349 		dd->gi_mask[i] = ~(u64)0;
13350 
13351 	/* all chip interrupts map to MSI-X 0 */
13352 	for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++)
13353 		write_csr(dd, CCE_INT_MAP + (8 * i), 0);
13354 }
13355 
13356 /**
13357  * set_up_interrupts() - Initialize the IRQ resources and state
13358  * @dd: valid devdata
13359  *
13360  */
13361 static int set_up_interrupts(struct hfi1_devdata *dd)
13362 {
13363 	int ret;
13364 
13365 	/* mask all interrupts */
13366 	set_intr_bits(dd, IS_FIRST_SOURCE, IS_LAST_SOURCE, false);
13367 
13368 	/* clear all pending interrupts */
13369 	clear_all_interrupts(dd);
13370 
13371 	/* reset general handler mask, chip MSI-X mappings */
13372 	reset_interrupts(dd);
13373 
13374 	/* ask for MSI-X interrupts */
13375 	ret = msix_initialize(dd);
13376 	if (ret)
13377 		return ret;
13378 
13379 	ret = msix_request_irqs(dd);
13380 	if (ret)
13381 		msix_clean_up_interrupts(dd);
13382 
13383 	return ret;
13384 }
13385 
13386 /*
13387  * Set up context values in dd.  Sets:
13388  *
13389  *	num_rcv_contexts - number of contexts being used
13390  *	n_krcv_queues - number of kernel contexts
13391  *	first_dyn_alloc_ctxt - first dynamically allocated context
13392  *                             in array of contexts
13393  *	freectxts  - number of free user contexts
13394  *	num_send_contexts - number of PIO send contexts being used
13395  *	num_netdev_contexts - number of contexts reserved for netdev
13396  */
13397 static int set_up_context_variables(struct hfi1_devdata *dd)
13398 {
13399 	unsigned long num_kernel_contexts;
13400 	u16 num_netdev_contexts;
13401 	int ret;
13402 	unsigned ngroups;
13403 	int rmt_count;
13404 	int user_rmt_reduced;
13405 	u32 n_usr_ctxts;
13406 	u32 send_contexts = chip_send_contexts(dd);
13407 	u32 rcv_contexts = chip_rcv_contexts(dd);
13408 
13409 	/*
13410 	 * Kernel receive contexts:
13411 	 * - Context 0 - control context (VL15/multicast/error)
13412 	 * - Context 1 - first kernel context
13413 	 * - Context 2 - second kernel context
13414 	 * ...
13415 	 */
13416 	if (n_krcvqs)
13417 		/*
13418 		 * n_krcvqs is the sum of module parameter kernel receive
13419 		 * contexts, krcvqs[].  It does not include the control
13420 		 * context, so add that.
13421 		 */
13422 		num_kernel_contexts = n_krcvqs + 1;
13423 	else
13424 		num_kernel_contexts = DEFAULT_KRCVQS + 1;
13425 	/*
13426 	 * Every kernel receive context needs an ACK send context.
13427 	 * one send context is allocated for each VL{0-7} and VL15
13428 	 */
13429 	if (num_kernel_contexts > (send_contexts - num_vls - 1)) {
13430 		dd_dev_err(dd,
13431 			   "Reducing # kernel rcv contexts to: %d, from %lu\n",
13432 			   send_contexts - num_vls - 1,
13433 			   num_kernel_contexts);
13434 		num_kernel_contexts = send_contexts - num_vls - 1;
13435 	}
13436 
13437 	/*
13438 	 * User contexts:
13439 	 *	- default to 1 user context per real (non-HT) CPU core if
13440 	 *	  num_user_contexts is negative
13441 	 */
13442 	if (num_user_contexts < 0)
13443 		n_usr_ctxts = cpumask_weight(&node_affinity.real_cpu_mask);
13444 	else
13445 		n_usr_ctxts = num_user_contexts;
13446 	/*
13447 	 * Adjust the counts given a global max.
13448 	 */
13449 	if (num_kernel_contexts + n_usr_ctxts > rcv_contexts) {
13450 		dd_dev_err(dd,
13451 			   "Reducing # user receive contexts to: %u, from %u\n",
13452 			   (u32)(rcv_contexts - num_kernel_contexts),
13453 			   n_usr_ctxts);
13454 		/* recalculate */
13455 		n_usr_ctxts = rcv_contexts - num_kernel_contexts;
13456 	}
13457 
13458 	num_netdev_contexts =
13459 		hfi1_num_netdev_contexts(dd, rcv_contexts -
13460 					 (num_kernel_contexts + n_usr_ctxts),
13461 					 &node_affinity.real_cpu_mask);
13462 	/*
13463 	 * The RMT entries are currently allocated as shown below:
13464 	 * 1. QOS (0 to 128 entries);
13465 	 * 2. FECN (num_kernel_context - 1 + num_user_contexts +
13466 	 *    num_netdev_contexts);
13467 	 * 3. netdev (num_netdev_contexts).
13468 	 * It should be noted that FECN oversubscribe num_netdev_contexts
13469 	 * entries of RMT because both netdev and PSM could allocate any receive
13470 	 * context between dd->first_dyn_alloc_text and dd->num_rcv_contexts,
13471 	 * and PSM FECN must reserve an RMT entry for each possible PSM receive
13472 	 * context.
13473 	 */
13474 	rmt_count = qos_rmt_entries(dd, NULL, NULL) + (num_netdev_contexts * 2);
13475 	if (HFI1_CAP_IS_KSET(TID_RDMA))
13476 		rmt_count += num_kernel_contexts - 1;
13477 	if (rmt_count + n_usr_ctxts > NUM_MAP_ENTRIES) {
13478 		user_rmt_reduced = NUM_MAP_ENTRIES - rmt_count;
13479 		dd_dev_err(dd,
13480 			   "RMT size is reducing the number of user receive contexts from %u to %d\n",
13481 			   n_usr_ctxts,
13482 			   user_rmt_reduced);
13483 		/* recalculate */
13484 		n_usr_ctxts = user_rmt_reduced;
13485 	}
13486 
13487 	/* the first N are kernel contexts, the rest are user/netdev contexts */
13488 	dd->num_rcv_contexts =
13489 		num_kernel_contexts + n_usr_ctxts + num_netdev_contexts;
13490 	dd->n_krcv_queues = num_kernel_contexts;
13491 	dd->first_dyn_alloc_ctxt = num_kernel_contexts;
13492 	dd->num_netdev_contexts = num_netdev_contexts;
13493 	dd->num_user_contexts = n_usr_ctxts;
13494 	dd->freectxts = n_usr_ctxts;
13495 	dd_dev_info(dd,
13496 		    "rcv contexts: chip %d, used %d (kernel %d, netdev %u, user %u)\n",
13497 		    rcv_contexts,
13498 		    (int)dd->num_rcv_contexts,
13499 		    (int)dd->n_krcv_queues,
13500 		    dd->num_netdev_contexts,
13501 		    dd->num_user_contexts);
13502 
13503 	/*
13504 	 * Receive array allocation:
13505 	 *   All RcvArray entries are divided into groups of 8. This
13506 	 *   is required by the hardware and will speed up writes to
13507 	 *   consecutive entries by using write-combining of the entire
13508 	 *   cacheline.
13509 	 *
13510 	 *   The number of groups are evenly divided among all contexts.
13511 	 *   any left over groups will be given to the first N user
13512 	 *   contexts.
13513 	 */
13514 	dd->rcv_entries.group_size = RCV_INCREMENT;
13515 	ngroups = chip_rcv_array_count(dd) / dd->rcv_entries.group_size;
13516 	dd->rcv_entries.ngroups = ngroups / dd->num_rcv_contexts;
13517 	dd->rcv_entries.nctxt_extra = ngroups -
13518 		(dd->num_rcv_contexts * dd->rcv_entries.ngroups);
13519 	dd_dev_info(dd, "RcvArray groups %u, ctxts extra %u\n",
13520 		    dd->rcv_entries.ngroups,
13521 		    dd->rcv_entries.nctxt_extra);
13522 	if (dd->rcv_entries.ngroups * dd->rcv_entries.group_size >
13523 	    MAX_EAGER_ENTRIES * 2) {
13524 		dd->rcv_entries.ngroups = (MAX_EAGER_ENTRIES * 2) /
13525 			dd->rcv_entries.group_size;
13526 		dd_dev_info(dd,
13527 			    "RcvArray group count too high, change to %u\n",
13528 			    dd->rcv_entries.ngroups);
13529 		dd->rcv_entries.nctxt_extra = 0;
13530 	}
13531 	/*
13532 	 * PIO send contexts
13533 	 */
13534 	ret = init_sc_pools_and_sizes(dd);
13535 	if (ret >= 0) {	/* success */
13536 		dd->num_send_contexts = ret;
13537 		dd_dev_info(
13538 			dd,
13539 			"send contexts: chip %d, used %d (kernel %d, ack %d, user %d, vl15 %d)\n",
13540 			send_contexts,
13541 			dd->num_send_contexts,
13542 			dd->sc_sizes[SC_KERNEL].count,
13543 			dd->sc_sizes[SC_ACK].count,
13544 			dd->sc_sizes[SC_USER].count,
13545 			dd->sc_sizes[SC_VL15].count);
13546 		ret = 0;	/* success */
13547 	}
13548 
13549 	return ret;
13550 }
13551 
13552 /*
13553  * Set the device/port partition key table. The MAD code
13554  * will ensure that, at least, the partial management
13555  * partition key is present in the table.
13556  */
13557 static void set_partition_keys(struct hfi1_pportdata *ppd)
13558 {
13559 	struct hfi1_devdata *dd = ppd->dd;
13560 	u64 reg = 0;
13561 	int i;
13562 
13563 	dd_dev_info(dd, "Setting partition keys\n");
13564 	for (i = 0; i < hfi1_get_npkeys(dd); i++) {
13565 		reg |= (ppd->pkeys[i] &
13566 			RCV_PARTITION_KEY_PARTITION_KEY_A_MASK) <<
13567 			((i % 4) *
13568 			 RCV_PARTITION_KEY_PARTITION_KEY_B_SHIFT);
13569 		/* Each register holds 4 PKey values. */
13570 		if ((i % 4) == 3) {
13571 			write_csr(dd, RCV_PARTITION_KEY +
13572 				  ((i - 3) * 2), reg);
13573 			reg = 0;
13574 		}
13575 	}
13576 
13577 	/* Always enable HW pkeys check when pkeys table is set */
13578 	add_rcvctrl(dd, RCV_CTRL_RCV_PARTITION_KEY_ENABLE_SMASK);
13579 }
13580 
13581 /*
13582  * These CSRs and memories are uninitialized on reset and must be
13583  * written before reading to set the ECC/parity bits.
13584  *
13585  * NOTE: All user context CSRs that are not mmaped write-only
13586  * (e.g. the TID flows) must be initialized even if the driver never
13587  * reads them.
13588  */
13589 static void write_uninitialized_csrs_and_memories(struct hfi1_devdata *dd)
13590 {
13591 	int i, j;
13592 
13593 	/* CceIntMap */
13594 	for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++)
13595 		write_csr(dd, CCE_INT_MAP + (8 * i), 0);
13596 
13597 	/* SendCtxtCreditReturnAddr */
13598 	for (i = 0; i < chip_send_contexts(dd); i++)
13599 		write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_RETURN_ADDR, 0);
13600 
13601 	/* PIO Send buffers */
13602 	/* SDMA Send buffers */
13603 	/*
13604 	 * These are not normally read, and (presently) have no method
13605 	 * to be read, so are not pre-initialized
13606 	 */
13607 
13608 	/* RcvHdrAddr */
13609 	/* RcvHdrTailAddr */
13610 	/* RcvTidFlowTable */
13611 	for (i = 0; i < chip_rcv_contexts(dd); i++) {
13612 		write_kctxt_csr(dd, i, RCV_HDR_ADDR, 0);
13613 		write_kctxt_csr(dd, i, RCV_HDR_TAIL_ADDR, 0);
13614 		for (j = 0; j < RXE_NUM_TID_FLOWS; j++)
13615 			write_uctxt_csr(dd, i, RCV_TID_FLOW_TABLE + (8 * j), 0);
13616 	}
13617 
13618 	/* RcvArray */
13619 	for (i = 0; i < chip_rcv_array_count(dd); i++)
13620 		hfi1_put_tid(dd, i, PT_INVALID_FLUSH, 0, 0);
13621 
13622 	/* RcvQPMapTable */
13623 	for (i = 0; i < 32; i++)
13624 		write_csr(dd, RCV_QP_MAP_TABLE + (8 * i), 0);
13625 }
13626 
13627 /*
13628  * Use the ctrl_bits in CceCtrl to clear the status_bits in CceStatus.
13629  */
13630 static void clear_cce_status(struct hfi1_devdata *dd, u64 status_bits,
13631 			     u64 ctrl_bits)
13632 {
13633 	unsigned long timeout;
13634 	u64 reg;
13635 
13636 	/* is the condition present? */
13637 	reg = read_csr(dd, CCE_STATUS);
13638 	if ((reg & status_bits) == 0)
13639 		return;
13640 
13641 	/* clear the condition */
13642 	write_csr(dd, CCE_CTRL, ctrl_bits);
13643 
13644 	/* wait for the condition to clear */
13645 	timeout = jiffies + msecs_to_jiffies(CCE_STATUS_TIMEOUT);
13646 	while (1) {
13647 		reg = read_csr(dd, CCE_STATUS);
13648 		if ((reg & status_bits) == 0)
13649 			return;
13650 		if (time_after(jiffies, timeout)) {
13651 			dd_dev_err(dd,
13652 				   "Timeout waiting for CceStatus to clear bits 0x%llx, remaining 0x%llx\n",
13653 				   status_bits, reg & status_bits);
13654 			return;
13655 		}
13656 		udelay(1);
13657 	}
13658 }
13659 
13660 /* set CCE CSRs to chip reset defaults */
13661 static void reset_cce_csrs(struct hfi1_devdata *dd)
13662 {
13663 	int i;
13664 
13665 	/* CCE_REVISION read-only */
13666 	/* CCE_REVISION2 read-only */
13667 	/* CCE_CTRL - bits clear automatically */
13668 	/* CCE_STATUS read-only, use CceCtrl to clear */
13669 	clear_cce_status(dd, ALL_FROZE, CCE_CTRL_SPC_UNFREEZE_SMASK);
13670 	clear_cce_status(dd, ALL_TXE_PAUSE, CCE_CTRL_TXE_RESUME_SMASK);
13671 	clear_cce_status(dd, ALL_RXE_PAUSE, CCE_CTRL_RXE_RESUME_SMASK);
13672 	for (i = 0; i < CCE_NUM_SCRATCH; i++)
13673 		write_csr(dd, CCE_SCRATCH + (8 * i), 0);
13674 	/* CCE_ERR_STATUS read-only */
13675 	write_csr(dd, CCE_ERR_MASK, 0);
13676 	write_csr(dd, CCE_ERR_CLEAR, ~0ull);
13677 	/* CCE_ERR_FORCE leave alone */
13678 	for (i = 0; i < CCE_NUM_32_BIT_COUNTERS; i++)
13679 		write_csr(dd, CCE_COUNTER_ARRAY32 + (8 * i), 0);
13680 	write_csr(dd, CCE_DC_CTRL, CCE_DC_CTRL_RESETCSR);
13681 	/* CCE_PCIE_CTRL leave alone */
13682 	for (i = 0; i < CCE_NUM_MSIX_VECTORS; i++) {
13683 		write_csr(dd, CCE_MSIX_TABLE_LOWER + (8 * i), 0);
13684 		write_csr(dd, CCE_MSIX_TABLE_UPPER + (8 * i),
13685 			  CCE_MSIX_TABLE_UPPER_RESETCSR);
13686 	}
13687 	for (i = 0; i < CCE_NUM_MSIX_PBAS; i++) {
13688 		/* CCE_MSIX_PBA read-only */
13689 		write_csr(dd, CCE_MSIX_INT_GRANTED, ~0ull);
13690 		write_csr(dd, CCE_MSIX_VEC_CLR_WITHOUT_INT, ~0ull);
13691 	}
13692 	for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++)
13693 		write_csr(dd, CCE_INT_MAP, 0);
13694 	for (i = 0; i < CCE_NUM_INT_CSRS; i++) {
13695 		/* CCE_INT_STATUS read-only */
13696 		write_csr(dd, CCE_INT_MASK + (8 * i), 0);
13697 		write_csr(dd, CCE_INT_CLEAR + (8 * i), ~0ull);
13698 		/* CCE_INT_FORCE leave alone */
13699 		/* CCE_INT_BLOCKED read-only */
13700 	}
13701 	for (i = 0; i < CCE_NUM_32_BIT_INT_COUNTERS; i++)
13702 		write_csr(dd, CCE_INT_COUNTER_ARRAY32 + (8 * i), 0);
13703 }
13704 
13705 /* set MISC CSRs to chip reset defaults */
13706 static void reset_misc_csrs(struct hfi1_devdata *dd)
13707 {
13708 	int i;
13709 
13710 	for (i = 0; i < 32; i++) {
13711 		write_csr(dd, MISC_CFG_RSA_R2 + (8 * i), 0);
13712 		write_csr(dd, MISC_CFG_RSA_SIGNATURE + (8 * i), 0);
13713 		write_csr(dd, MISC_CFG_RSA_MODULUS + (8 * i), 0);
13714 	}
13715 	/*
13716 	 * MISC_CFG_SHA_PRELOAD leave alone - always reads 0 and can
13717 	 * only be written 128-byte chunks
13718 	 */
13719 	/* init RSA engine to clear lingering errors */
13720 	write_csr(dd, MISC_CFG_RSA_CMD, 1);
13721 	write_csr(dd, MISC_CFG_RSA_MU, 0);
13722 	write_csr(dd, MISC_CFG_FW_CTRL, 0);
13723 	/* MISC_STS_8051_DIGEST read-only */
13724 	/* MISC_STS_SBM_DIGEST read-only */
13725 	/* MISC_STS_PCIE_DIGEST read-only */
13726 	/* MISC_STS_FAB_DIGEST read-only */
13727 	/* MISC_ERR_STATUS read-only */
13728 	write_csr(dd, MISC_ERR_MASK, 0);
13729 	write_csr(dd, MISC_ERR_CLEAR, ~0ull);
13730 	/* MISC_ERR_FORCE leave alone */
13731 }
13732 
13733 /* set TXE CSRs to chip reset defaults */
13734 static void reset_txe_csrs(struct hfi1_devdata *dd)
13735 {
13736 	int i;
13737 
13738 	/*
13739 	 * TXE Kernel CSRs
13740 	 */
13741 	write_csr(dd, SEND_CTRL, 0);
13742 	__cm_reset(dd, 0);	/* reset CM internal state */
13743 	/* SEND_CONTEXTS read-only */
13744 	/* SEND_DMA_ENGINES read-only */
13745 	/* SEND_PIO_MEM_SIZE read-only */
13746 	/* SEND_DMA_MEM_SIZE read-only */
13747 	write_csr(dd, SEND_HIGH_PRIORITY_LIMIT, 0);
13748 	pio_reset_all(dd);	/* SEND_PIO_INIT_CTXT */
13749 	/* SEND_PIO_ERR_STATUS read-only */
13750 	write_csr(dd, SEND_PIO_ERR_MASK, 0);
13751 	write_csr(dd, SEND_PIO_ERR_CLEAR, ~0ull);
13752 	/* SEND_PIO_ERR_FORCE leave alone */
13753 	/* SEND_DMA_ERR_STATUS read-only */
13754 	write_csr(dd, SEND_DMA_ERR_MASK, 0);
13755 	write_csr(dd, SEND_DMA_ERR_CLEAR, ~0ull);
13756 	/* SEND_DMA_ERR_FORCE leave alone */
13757 	/* SEND_EGRESS_ERR_STATUS read-only */
13758 	write_csr(dd, SEND_EGRESS_ERR_MASK, 0);
13759 	write_csr(dd, SEND_EGRESS_ERR_CLEAR, ~0ull);
13760 	/* SEND_EGRESS_ERR_FORCE leave alone */
13761 	write_csr(dd, SEND_BTH_QP, 0);
13762 	write_csr(dd, SEND_STATIC_RATE_CONTROL, 0);
13763 	write_csr(dd, SEND_SC2VLT0, 0);
13764 	write_csr(dd, SEND_SC2VLT1, 0);
13765 	write_csr(dd, SEND_SC2VLT2, 0);
13766 	write_csr(dd, SEND_SC2VLT3, 0);
13767 	write_csr(dd, SEND_LEN_CHECK0, 0);
13768 	write_csr(dd, SEND_LEN_CHECK1, 0);
13769 	/* SEND_ERR_STATUS read-only */
13770 	write_csr(dd, SEND_ERR_MASK, 0);
13771 	write_csr(dd, SEND_ERR_CLEAR, ~0ull);
13772 	/* SEND_ERR_FORCE read-only */
13773 	for (i = 0; i < VL_ARB_LOW_PRIO_TABLE_SIZE; i++)
13774 		write_csr(dd, SEND_LOW_PRIORITY_LIST + (8 * i), 0);
13775 	for (i = 0; i < VL_ARB_HIGH_PRIO_TABLE_SIZE; i++)
13776 		write_csr(dd, SEND_HIGH_PRIORITY_LIST + (8 * i), 0);
13777 	for (i = 0; i < chip_send_contexts(dd) / NUM_CONTEXTS_PER_SET; i++)
13778 		write_csr(dd, SEND_CONTEXT_SET_CTRL + (8 * i), 0);
13779 	for (i = 0; i < TXE_NUM_32_BIT_COUNTER; i++)
13780 		write_csr(dd, SEND_COUNTER_ARRAY32 + (8 * i), 0);
13781 	for (i = 0; i < TXE_NUM_64_BIT_COUNTER; i++)
13782 		write_csr(dd, SEND_COUNTER_ARRAY64 + (8 * i), 0);
13783 	write_csr(dd, SEND_CM_CTRL, SEND_CM_CTRL_RESETCSR);
13784 	write_csr(dd, SEND_CM_GLOBAL_CREDIT, SEND_CM_GLOBAL_CREDIT_RESETCSR);
13785 	/* SEND_CM_CREDIT_USED_STATUS read-only */
13786 	write_csr(dd, SEND_CM_TIMER_CTRL, 0);
13787 	write_csr(dd, SEND_CM_LOCAL_AU_TABLE0_TO3, 0);
13788 	write_csr(dd, SEND_CM_LOCAL_AU_TABLE4_TO7, 0);
13789 	write_csr(dd, SEND_CM_REMOTE_AU_TABLE0_TO3, 0);
13790 	write_csr(dd, SEND_CM_REMOTE_AU_TABLE4_TO7, 0);
13791 	for (i = 0; i < TXE_NUM_DATA_VL; i++)
13792 		write_csr(dd, SEND_CM_CREDIT_VL + (8 * i), 0);
13793 	write_csr(dd, SEND_CM_CREDIT_VL15, 0);
13794 	/* SEND_CM_CREDIT_USED_VL read-only */
13795 	/* SEND_CM_CREDIT_USED_VL15 read-only */
13796 	/* SEND_EGRESS_CTXT_STATUS read-only */
13797 	/* SEND_EGRESS_SEND_DMA_STATUS read-only */
13798 	write_csr(dd, SEND_EGRESS_ERR_INFO, ~0ull);
13799 	/* SEND_EGRESS_ERR_INFO read-only */
13800 	/* SEND_EGRESS_ERR_SOURCE read-only */
13801 
13802 	/*
13803 	 * TXE Per-Context CSRs
13804 	 */
13805 	for (i = 0; i < chip_send_contexts(dd); i++) {
13806 		write_kctxt_csr(dd, i, SEND_CTXT_CTRL, 0);
13807 		write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_CTRL, 0);
13808 		write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_RETURN_ADDR, 0);
13809 		write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_FORCE, 0);
13810 		write_kctxt_csr(dd, i, SEND_CTXT_ERR_MASK, 0);
13811 		write_kctxt_csr(dd, i, SEND_CTXT_ERR_CLEAR, ~0ull);
13812 		write_kctxt_csr(dd, i, SEND_CTXT_CHECK_ENABLE, 0);
13813 		write_kctxt_csr(dd, i, SEND_CTXT_CHECK_VL, 0);
13814 		write_kctxt_csr(dd, i, SEND_CTXT_CHECK_JOB_KEY, 0);
13815 		write_kctxt_csr(dd, i, SEND_CTXT_CHECK_PARTITION_KEY, 0);
13816 		write_kctxt_csr(dd, i, SEND_CTXT_CHECK_SLID, 0);
13817 		write_kctxt_csr(dd, i, SEND_CTXT_CHECK_OPCODE, 0);
13818 	}
13819 
13820 	/*
13821 	 * TXE Per-SDMA CSRs
13822 	 */
13823 	for (i = 0; i < chip_sdma_engines(dd); i++) {
13824 		write_kctxt_csr(dd, i, SEND_DMA_CTRL, 0);
13825 		/* SEND_DMA_STATUS read-only */
13826 		write_kctxt_csr(dd, i, SEND_DMA_BASE_ADDR, 0);
13827 		write_kctxt_csr(dd, i, SEND_DMA_LEN_GEN, 0);
13828 		write_kctxt_csr(dd, i, SEND_DMA_TAIL, 0);
13829 		/* SEND_DMA_HEAD read-only */
13830 		write_kctxt_csr(dd, i, SEND_DMA_HEAD_ADDR, 0);
13831 		write_kctxt_csr(dd, i, SEND_DMA_PRIORITY_THLD, 0);
13832 		/* SEND_DMA_IDLE_CNT read-only */
13833 		write_kctxt_csr(dd, i, SEND_DMA_RELOAD_CNT, 0);
13834 		write_kctxt_csr(dd, i, SEND_DMA_DESC_CNT, 0);
13835 		/* SEND_DMA_DESC_FETCHED_CNT read-only */
13836 		/* SEND_DMA_ENG_ERR_STATUS read-only */
13837 		write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_MASK, 0);
13838 		write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_CLEAR, ~0ull);
13839 		/* SEND_DMA_ENG_ERR_FORCE leave alone */
13840 		write_kctxt_csr(dd, i, SEND_DMA_CHECK_ENABLE, 0);
13841 		write_kctxt_csr(dd, i, SEND_DMA_CHECK_VL, 0);
13842 		write_kctxt_csr(dd, i, SEND_DMA_CHECK_JOB_KEY, 0);
13843 		write_kctxt_csr(dd, i, SEND_DMA_CHECK_PARTITION_KEY, 0);
13844 		write_kctxt_csr(dd, i, SEND_DMA_CHECK_SLID, 0);
13845 		write_kctxt_csr(dd, i, SEND_DMA_CHECK_OPCODE, 0);
13846 		write_kctxt_csr(dd, i, SEND_DMA_MEMORY, 0);
13847 	}
13848 }
13849 
13850 /*
13851  * Expect on entry:
13852  * o Packet ingress is disabled, i.e. RcvCtrl.RcvPortEnable == 0
13853  */
13854 static void init_rbufs(struct hfi1_devdata *dd)
13855 {
13856 	u64 reg;
13857 	int count;
13858 
13859 	/*
13860 	 * Wait for DMA to stop: RxRbufPktPending and RxPktInProgress are
13861 	 * clear.
13862 	 */
13863 	count = 0;
13864 	while (1) {
13865 		reg = read_csr(dd, RCV_STATUS);
13866 		if ((reg & (RCV_STATUS_RX_RBUF_PKT_PENDING_SMASK
13867 			    | RCV_STATUS_RX_PKT_IN_PROGRESS_SMASK)) == 0)
13868 			break;
13869 		/*
13870 		 * Give up after 1ms - maximum wait time.
13871 		 *
13872 		 * RBuf size is 136KiB.  Slowest possible is PCIe Gen1 x1 at
13873 		 * 250MB/s bandwidth.  Lower rate to 66% for overhead to get:
13874 		 *	136 KB / (66% * 250MB/s) = 844us
13875 		 */
13876 		if (count++ > 500) {
13877 			dd_dev_err(dd,
13878 				   "%s: in-progress DMA not clearing: RcvStatus 0x%llx, continuing\n",
13879 				   __func__, reg);
13880 			break;
13881 		}
13882 		udelay(2); /* do not busy-wait the CSR */
13883 	}
13884 
13885 	/* start the init - expect RcvCtrl to be 0 */
13886 	write_csr(dd, RCV_CTRL, RCV_CTRL_RX_RBUF_INIT_SMASK);
13887 
13888 	/*
13889 	 * Read to force the write of Rcvtrl.RxRbufInit.  There is a brief
13890 	 * period after the write before RcvStatus.RxRbufInitDone is valid.
13891 	 * The delay in the first run through the loop below is sufficient and
13892 	 * required before the first read of RcvStatus.RxRbufInintDone.
13893 	 */
13894 	read_csr(dd, RCV_CTRL);
13895 
13896 	/* wait for the init to finish */
13897 	count = 0;
13898 	while (1) {
13899 		/* delay is required first time through - see above */
13900 		udelay(2); /* do not busy-wait the CSR */
13901 		reg = read_csr(dd, RCV_STATUS);
13902 		if (reg & (RCV_STATUS_RX_RBUF_INIT_DONE_SMASK))
13903 			break;
13904 
13905 		/* give up after 100us - slowest possible at 33MHz is 73us */
13906 		if (count++ > 50) {
13907 			dd_dev_err(dd,
13908 				   "%s: RcvStatus.RxRbufInit not set, continuing\n",
13909 				   __func__);
13910 			break;
13911 		}
13912 	}
13913 }
13914 
13915 /* set RXE CSRs to chip reset defaults */
13916 static void reset_rxe_csrs(struct hfi1_devdata *dd)
13917 {
13918 	int i, j;
13919 
13920 	/*
13921 	 * RXE Kernel CSRs
13922 	 */
13923 	write_csr(dd, RCV_CTRL, 0);
13924 	init_rbufs(dd);
13925 	/* RCV_STATUS read-only */
13926 	/* RCV_CONTEXTS read-only */
13927 	/* RCV_ARRAY_CNT read-only */
13928 	/* RCV_BUF_SIZE read-only */
13929 	write_csr(dd, RCV_BTH_QP, 0);
13930 	write_csr(dd, RCV_MULTICAST, 0);
13931 	write_csr(dd, RCV_BYPASS, 0);
13932 	write_csr(dd, RCV_VL15, 0);
13933 	/* this is a clear-down */
13934 	write_csr(dd, RCV_ERR_INFO,
13935 		  RCV_ERR_INFO_RCV_EXCESS_BUFFER_OVERRUN_SMASK);
13936 	/* RCV_ERR_STATUS read-only */
13937 	write_csr(dd, RCV_ERR_MASK, 0);
13938 	write_csr(dd, RCV_ERR_CLEAR, ~0ull);
13939 	/* RCV_ERR_FORCE leave alone */
13940 	for (i = 0; i < 32; i++)
13941 		write_csr(dd, RCV_QP_MAP_TABLE + (8 * i), 0);
13942 	for (i = 0; i < 4; i++)
13943 		write_csr(dd, RCV_PARTITION_KEY + (8 * i), 0);
13944 	for (i = 0; i < RXE_NUM_32_BIT_COUNTERS; i++)
13945 		write_csr(dd, RCV_COUNTER_ARRAY32 + (8 * i), 0);
13946 	for (i = 0; i < RXE_NUM_64_BIT_COUNTERS; i++)
13947 		write_csr(dd, RCV_COUNTER_ARRAY64 + (8 * i), 0);
13948 	for (i = 0; i < RXE_NUM_RSM_INSTANCES; i++)
13949 		clear_rsm_rule(dd, i);
13950 	for (i = 0; i < 32; i++)
13951 		write_csr(dd, RCV_RSM_MAP_TABLE + (8 * i), 0);
13952 
13953 	/*
13954 	 * RXE Kernel and User Per-Context CSRs
13955 	 */
13956 	for (i = 0; i < chip_rcv_contexts(dd); i++) {
13957 		/* kernel */
13958 		write_kctxt_csr(dd, i, RCV_CTXT_CTRL, 0);
13959 		/* RCV_CTXT_STATUS read-only */
13960 		write_kctxt_csr(dd, i, RCV_EGR_CTRL, 0);
13961 		write_kctxt_csr(dd, i, RCV_TID_CTRL, 0);
13962 		write_kctxt_csr(dd, i, RCV_KEY_CTRL, 0);
13963 		write_kctxt_csr(dd, i, RCV_HDR_ADDR, 0);
13964 		write_kctxt_csr(dd, i, RCV_HDR_CNT, 0);
13965 		write_kctxt_csr(dd, i, RCV_HDR_ENT_SIZE, 0);
13966 		write_kctxt_csr(dd, i, RCV_HDR_SIZE, 0);
13967 		write_kctxt_csr(dd, i, RCV_HDR_TAIL_ADDR, 0);
13968 		write_kctxt_csr(dd, i, RCV_AVAIL_TIME_OUT, 0);
13969 		write_kctxt_csr(dd, i, RCV_HDR_OVFL_CNT, 0);
13970 
13971 		/* user */
13972 		/* RCV_HDR_TAIL read-only */
13973 		write_uctxt_csr(dd, i, RCV_HDR_HEAD, 0);
13974 		/* RCV_EGR_INDEX_TAIL read-only */
13975 		write_uctxt_csr(dd, i, RCV_EGR_INDEX_HEAD, 0);
13976 		/* RCV_EGR_OFFSET_TAIL read-only */
13977 		for (j = 0; j < RXE_NUM_TID_FLOWS; j++) {
13978 			write_uctxt_csr(dd, i,
13979 					RCV_TID_FLOW_TABLE + (8 * j), 0);
13980 		}
13981 	}
13982 }
13983 
13984 /*
13985  * Set sc2vl tables.
13986  *
13987  * They power on to zeros, so to avoid send context errors
13988  * they need to be set:
13989  *
13990  * SC 0-7 -> VL 0-7 (respectively)
13991  * SC 15  -> VL 15
13992  * otherwise
13993  *        -> VL 0
13994  */
13995 static void init_sc2vl_tables(struct hfi1_devdata *dd)
13996 {
13997 	int i;
13998 	/* init per architecture spec, constrained by hardware capability */
13999 
14000 	/* HFI maps sent packets */
14001 	write_csr(dd, SEND_SC2VLT0, SC2VL_VAL(
14002 		0,
14003 		0, 0, 1, 1,
14004 		2, 2, 3, 3,
14005 		4, 4, 5, 5,
14006 		6, 6, 7, 7));
14007 	write_csr(dd, SEND_SC2VLT1, SC2VL_VAL(
14008 		1,
14009 		8, 0, 9, 0,
14010 		10, 0, 11, 0,
14011 		12, 0, 13, 0,
14012 		14, 0, 15, 15));
14013 	write_csr(dd, SEND_SC2VLT2, SC2VL_VAL(
14014 		2,
14015 		16, 0, 17, 0,
14016 		18, 0, 19, 0,
14017 		20, 0, 21, 0,
14018 		22, 0, 23, 0));
14019 	write_csr(dd, SEND_SC2VLT3, SC2VL_VAL(
14020 		3,
14021 		24, 0, 25, 0,
14022 		26, 0, 27, 0,
14023 		28, 0, 29, 0,
14024 		30, 0, 31, 0));
14025 
14026 	/* DC maps received packets */
14027 	write_csr(dd, DCC_CFG_SC_VL_TABLE_15_0, DC_SC_VL_VAL(
14028 		15_0,
14029 		0, 0, 1, 1,  2, 2,  3, 3,  4, 4,  5, 5,  6, 6,  7,  7,
14030 		8, 0, 9, 0, 10, 0, 11, 0, 12, 0, 13, 0, 14, 0, 15, 15));
14031 	write_csr(dd, DCC_CFG_SC_VL_TABLE_31_16, DC_SC_VL_VAL(
14032 		31_16,
14033 		16, 0, 17, 0, 18, 0, 19, 0, 20, 0, 21, 0, 22, 0, 23, 0,
14034 		24, 0, 25, 0, 26, 0, 27, 0, 28, 0, 29, 0, 30, 0, 31, 0));
14035 
14036 	/* initialize the cached sc2vl values consistently with h/w */
14037 	for (i = 0; i < 32; i++) {
14038 		if (i < 8 || i == 15)
14039 			*((u8 *)(dd->sc2vl) + i) = (u8)i;
14040 		else
14041 			*((u8 *)(dd->sc2vl) + i) = 0;
14042 	}
14043 }
14044 
14045 /*
14046  * Read chip sizes and then reset parts to sane, disabled, values.  We cannot
14047  * depend on the chip going through a power-on reset - a driver may be loaded
14048  * and unloaded many times.
14049  *
14050  * Do not write any CSR values to the chip in this routine - there may be
14051  * a reset following the (possible) FLR in this routine.
14052  *
14053  */
14054 static int init_chip(struct hfi1_devdata *dd)
14055 {
14056 	int i;
14057 	int ret = 0;
14058 
14059 	/*
14060 	 * Put the HFI CSRs in a known state.
14061 	 * Combine this with a DC reset.
14062 	 *
14063 	 * Stop the device from doing anything while we do a
14064 	 * reset.  We know there are no other active users of
14065 	 * the device since we are now in charge.  Turn off
14066 	 * off all outbound and inbound traffic and make sure
14067 	 * the device does not generate any interrupts.
14068 	 */
14069 
14070 	/* disable send contexts and SDMA engines */
14071 	write_csr(dd, SEND_CTRL, 0);
14072 	for (i = 0; i < chip_send_contexts(dd); i++)
14073 		write_kctxt_csr(dd, i, SEND_CTXT_CTRL, 0);
14074 	for (i = 0; i < chip_sdma_engines(dd); i++)
14075 		write_kctxt_csr(dd, i, SEND_DMA_CTRL, 0);
14076 	/* disable port (turn off RXE inbound traffic) and contexts */
14077 	write_csr(dd, RCV_CTRL, 0);
14078 	for (i = 0; i < chip_rcv_contexts(dd); i++)
14079 		write_csr(dd, RCV_CTXT_CTRL, 0);
14080 	/* mask all interrupt sources */
14081 	for (i = 0; i < CCE_NUM_INT_CSRS; i++)
14082 		write_csr(dd, CCE_INT_MASK + (8 * i), 0ull);
14083 
14084 	/*
14085 	 * DC Reset: do a full DC reset before the register clear.
14086 	 * A recommended length of time to hold is one CSR read,
14087 	 * so reread the CceDcCtrl.  Then, hold the DC in reset
14088 	 * across the clear.
14089 	 */
14090 	write_csr(dd, CCE_DC_CTRL, CCE_DC_CTRL_DC_RESET_SMASK);
14091 	(void)read_csr(dd, CCE_DC_CTRL);
14092 
14093 	if (use_flr) {
14094 		/*
14095 		 * A FLR will reset the SPC core and part of the PCIe.
14096 		 * The parts that need to be restored have already been
14097 		 * saved.
14098 		 */
14099 		dd_dev_info(dd, "Resetting CSRs with FLR\n");
14100 
14101 		/* do the FLR, the DC reset will remain */
14102 		pcie_flr(dd->pcidev);
14103 
14104 		/* restore command and BARs */
14105 		ret = restore_pci_variables(dd);
14106 		if (ret) {
14107 			dd_dev_err(dd, "%s: Could not restore PCI variables\n",
14108 				   __func__);
14109 			return ret;
14110 		}
14111 
14112 		if (is_ax(dd)) {
14113 			dd_dev_info(dd, "Resetting CSRs with FLR\n");
14114 			pcie_flr(dd->pcidev);
14115 			ret = restore_pci_variables(dd);
14116 			if (ret) {
14117 				dd_dev_err(dd, "%s: Could not restore PCI variables\n",
14118 					   __func__);
14119 				return ret;
14120 			}
14121 		}
14122 	} else {
14123 		dd_dev_info(dd, "Resetting CSRs with writes\n");
14124 		reset_cce_csrs(dd);
14125 		reset_txe_csrs(dd);
14126 		reset_rxe_csrs(dd);
14127 		reset_misc_csrs(dd);
14128 	}
14129 	/* clear the DC reset */
14130 	write_csr(dd, CCE_DC_CTRL, 0);
14131 
14132 	/* Set the LED off */
14133 	setextled(dd, 0);
14134 
14135 	/*
14136 	 * Clear the QSFP reset.
14137 	 * An FLR enforces a 0 on all out pins. The driver does not touch
14138 	 * ASIC_QSFPn_OUT otherwise.  This leaves RESET_N low and
14139 	 * anything plugged constantly in reset, if it pays attention
14140 	 * to RESET_N.
14141 	 * Prime examples of this are optical cables. Set all pins high.
14142 	 * I2CCLK and I2CDAT will change per direction, and INT_N and
14143 	 * MODPRS_N are input only and their value is ignored.
14144 	 */
14145 	write_csr(dd, ASIC_QSFP1_OUT, 0x1f);
14146 	write_csr(dd, ASIC_QSFP2_OUT, 0x1f);
14147 	init_chip_resources(dd);
14148 	return ret;
14149 }
14150 
14151 static void init_early_variables(struct hfi1_devdata *dd)
14152 {
14153 	int i;
14154 
14155 	/* assign link credit variables */
14156 	dd->vau = CM_VAU;
14157 	dd->link_credits = CM_GLOBAL_CREDITS;
14158 	if (is_ax(dd))
14159 		dd->link_credits--;
14160 	dd->vcu = cu_to_vcu(hfi1_cu);
14161 	/* enough room for 8 MAD packets plus header - 17K */
14162 	dd->vl15_init = (8 * (2048 + 128)) / vau_to_au(dd->vau);
14163 	if (dd->vl15_init > dd->link_credits)
14164 		dd->vl15_init = dd->link_credits;
14165 
14166 	write_uninitialized_csrs_and_memories(dd);
14167 
14168 	if (HFI1_CAP_IS_KSET(PKEY_CHECK))
14169 		for (i = 0; i < dd->num_pports; i++) {
14170 			struct hfi1_pportdata *ppd = &dd->pport[i];
14171 
14172 			set_partition_keys(ppd);
14173 		}
14174 	init_sc2vl_tables(dd);
14175 }
14176 
14177 static void init_kdeth_qp(struct hfi1_devdata *dd)
14178 {
14179 	write_csr(dd, SEND_BTH_QP,
14180 		  (RVT_KDETH_QP_PREFIX & SEND_BTH_QP_KDETH_QP_MASK) <<
14181 		  SEND_BTH_QP_KDETH_QP_SHIFT);
14182 
14183 	write_csr(dd, RCV_BTH_QP,
14184 		  (RVT_KDETH_QP_PREFIX & RCV_BTH_QP_KDETH_QP_MASK) <<
14185 		  RCV_BTH_QP_KDETH_QP_SHIFT);
14186 }
14187 
14188 /**
14189  * hfi1_get_qp_map
14190  * @dd: device data
14191  * @idx: index to read
14192  */
14193 u8 hfi1_get_qp_map(struct hfi1_devdata *dd, u8 idx)
14194 {
14195 	u64 reg = read_csr(dd, RCV_QP_MAP_TABLE + (idx / 8) * 8);
14196 
14197 	reg >>= (idx % 8) * 8;
14198 	return reg;
14199 }
14200 
14201 /**
14202  * init_qpmap_table
14203  * @dd - device data
14204  * @first_ctxt - first context
14205  * @last_ctxt - first context
14206  *
14207  * This return sets the qpn mapping table that
14208  * is indexed by qpn[8:1].
14209  *
14210  * The routine will round robin the 256 settings
14211  * from first_ctxt to last_ctxt.
14212  *
14213  * The first/last looks ahead to having specialized
14214  * receive contexts for mgmt and bypass.  Normal
14215  * verbs traffic will assumed to be on a range
14216  * of receive contexts.
14217  */
14218 static void init_qpmap_table(struct hfi1_devdata *dd,
14219 			     u32 first_ctxt,
14220 			     u32 last_ctxt)
14221 {
14222 	u64 reg = 0;
14223 	u64 regno = RCV_QP_MAP_TABLE;
14224 	int i;
14225 	u64 ctxt = first_ctxt;
14226 
14227 	for (i = 0; i < 256; i++) {
14228 		reg |= ctxt << (8 * (i % 8));
14229 		ctxt++;
14230 		if (ctxt > last_ctxt)
14231 			ctxt = first_ctxt;
14232 		if (i % 8 == 7) {
14233 			write_csr(dd, regno, reg);
14234 			reg = 0;
14235 			regno += 8;
14236 		}
14237 	}
14238 
14239 	add_rcvctrl(dd, RCV_CTRL_RCV_QP_MAP_ENABLE_SMASK
14240 			| RCV_CTRL_RCV_BYPASS_ENABLE_SMASK);
14241 }
14242 
14243 struct rsm_map_table {
14244 	u64 map[NUM_MAP_REGS];
14245 	unsigned int used;
14246 };
14247 
14248 struct rsm_rule_data {
14249 	u8 offset;
14250 	u8 pkt_type;
14251 	u32 field1_off;
14252 	u32 field2_off;
14253 	u32 index1_off;
14254 	u32 index1_width;
14255 	u32 index2_off;
14256 	u32 index2_width;
14257 	u32 mask1;
14258 	u32 value1;
14259 	u32 mask2;
14260 	u32 value2;
14261 };
14262 
14263 /*
14264  * Return an initialized RMT map table for users to fill in.  OK if it
14265  * returns NULL, indicating no table.
14266  */
14267 static struct rsm_map_table *alloc_rsm_map_table(struct hfi1_devdata *dd)
14268 {
14269 	struct rsm_map_table *rmt;
14270 	u8 rxcontext = is_ax(dd) ? 0 : 0xff;  /* 0 is default if a0 ver. */
14271 
14272 	rmt = kmalloc(sizeof(*rmt), GFP_KERNEL);
14273 	if (rmt) {
14274 		memset(rmt->map, rxcontext, sizeof(rmt->map));
14275 		rmt->used = 0;
14276 	}
14277 
14278 	return rmt;
14279 }
14280 
14281 /*
14282  * Write the final RMT map table to the chip and free the table.  OK if
14283  * table is NULL.
14284  */
14285 static void complete_rsm_map_table(struct hfi1_devdata *dd,
14286 				   struct rsm_map_table *rmt)
14287 {
14288 	int i;
14289 
14290 	if (rmt) {
14291 		/* write table to chip */
14292 		for (i = 0; i < NUM_MAP_REGS; i++)
14293 			write_csr(dd, RCV_RSM_MAP_TABLE + (8 * i), rmt->map[i]);
14294 
14295 		/* enable RSM */
14296 		add_rcvctrl(dd, RCV_CTRL_RCV_RSM_ENABLE_SMASK);
14297 	}
14298 }
14299 
14300 /* Is a receive side mapping rule */
14301 static bool has_rsm_rule(struct hfi1_devdata *dd, u8 rule_index)
14302 {
14303 	return read_csr(dd, RCV_RSM_CFG + (8 * rule_index)) != 0;
14304 }
14305 
14306 /*
14307  * Add a receive side mapping rule.
14308  */
14309 static void add_rsm_rule(struct hfi1_devdata *dd, u8 rule_index,
14310 			 struct rsm_rule_data *rrd)
14311 {
14312 	write_csr(dd, RCV_RSM_CFG + (8 * rule_index),
14313 		  (u64)rrd->offset << RCV_RSM_CFG_OFFSET_SHIFT |
14314 		  1ull << rule_index | /* enable bit */
14315 		  (u64)rrd->pkt_type << RCV_RSM_CFG_PACKET_TYPE_SHIFT);
14316 	write_csr(dd, RCV_RSM_SELECT + (8 * rule_index),
14317 		  (u64)rrd->field1_off << RCV_RSM_SELECT_FIELD1_OFFSET_SHIFT |
14318 		  (u64)rrd->field2_off << RCV_RSM_SELECT_FIELD2_OFFSET_SHIFT |
14319 		  (u64)rrd->index1_off << RCV_RSM_SELECT_INDEX1_OFFSET_SHIFT |
14320 		  (u64)rrd->index1_width << RCV_RSM_SELECT_INDEX1_WIDTH_SHIFT |
14321 		  (u64)rrd->index2_off << RCV_RSM_SELECT_INDEX2_OFFSET_SHIFT |
14322 		  (u64)rrd->index2_width << RCV_RSM_SELECT_INDEX2_WIDTH_SHIFT);
14323 	write_csr(dd, RCV_RSM_MATCH + (8 * rule_index),
14324 		  (u64)rrd->mask1 << RCV_RSM_MATCH_MASK1_SHIFT |
14325 		  (u64)rrd->value1 << RCV_RSM_MATCH_VALUE1_SHIFT |
14326 		  (u64)rrd->mask2 << RCV_RSM_MATCH_MASK2_SHIFT |
14327 		  (u64)rrd->value2 << RCV_RSM_MATCH_VALUE2_SHIFT);
14328 }
14329 
14330 /*
14331  * Clear a receive side mapping rule.
14332  */
14333 static void clear_rsm_rule(struct hfi1_devdata *dd, u8 rule_index)
14334 {
14335 	write_csr(dd, RCV_RSM_CFG + (8 * rule_index), 0);
14336 	write_csr(dd, RCV_RSM_SELECT + (8 * rule_index), 0);
14337 	write_csr(dd, RCV_RSM_MATCH + (8 * rule_index), 0);
14338 }
14339 
14340 /* return the number of RSM map table entries that will be used for QOS */
14341 static int qos_rmt_entries(struct hfi1_devdata *dd, unsigned int *mp,
14342 			   unsigned int *np)
14343 {
14344 	int i;
14345 	unsigned int m, n;
14346 	u8 max_by_vl = 0;
14347 
14348 	/* is QOS active at all? */
14349 	if (dd->n_krcv_queues <= MIN_KERNEL_KCTXTS ||
14350 	    num_vls == 1 ||
14351 	    krcvqsset <= 1)
14352 		goto no_qos;
14353 
14354 	/* determine bits for qpn */
14355 	for (i = 0; i < min_t(unsigned int, num_vls, krcvqsset); i++)
14356 		if (krcvqs[i] > max_by_vl)
14357 			max_by_vl = krcvqs[i];
14358 	if (max_by_vl > 32)
14359 		goto no_qos;
14360 	m = ilog2(__roundup_pow_of_two(max_by_vl));
14361 
14362 	/* determine bits for vl */
14363 	n = ilog2(__roundup_pow_of_two(num_vls));
14364 
14365 	/* reject if too much is used */
14366 	if ((m + n) > 7)
14367 		goto no_qos;
14368 
14369 	if (mp)
14370 		*mp = m;
14371 	if (np)
14372 		*np = n;
14373 
14374 	return 1 << (m + n);
14375 
14376 no_qos:
14377 	if (mp)
14378 		*mp = 0;
14379 	if (np)
14380 		*np = 0;
14381 	return 0;
14382 }
14383 
14384 /**
14385  * init_qos - init RX qos
14386  * @dd - device data
14387  * @rmt - RSM map table
14388  *
14389  * This routine initializes Rule 0 and the RSM map table to implement
14390  * quality of service (qos).
14391  *
14392  * If all of the limit tests succeed, qos is applied based on the array
14393  * interpretation of krcvqs where entry 0 is VL0.
14394  *
14395  * The number of vl bits (n) and the number of qpn bits (m) are computed to
14396  * feed both the RSM map table and the single rule.
14397  */
14398 static void init_qos(struct hfi1_devdata *dd, struct rsm_map_table *rmt)
14399 {
14400 	struct rsm_rule_data rrd;
14401 	unsigned qpns_per_vl, ctxt, i, qpn, n = 1, m;
14402 	unsigned int rmt_entries;
14403 	u64 reg;
14404 
14405 	if (!rmt)
14406 		goto bail;
14407 	rmt_entries = qos_rmt_entries(dd, &m, &n);
14408 	if (rmt_entries == 0)
14409 		goto bail;
14410 	qpns_per_vl = 1 << m;
14411 
14412 	/* enough room in the map table? */
14413 	rmt_entries = 1 << (m + n);
14414 	if (rmt->used + rmt_entries >= NUM_MAP_ENTRIES)
14415 		goto bail;
14416 
14417 	/* add qos entries to the the RSM map table */
14418 	for (i = 0, ctxt = FIRST_KERNEL_KCTXT; i < num_vls; i++) {
14419 		unsigned tctxt;
14420 
14421 		for (qpn = 0, tctxt = ctxt;
14422 		     krcvqs[i] && qpn < qpns_per_vl; qpn++) {
14423 			unsigned idx, regoff, regidx;
14424 
14425 			/* generate the index the hardware will produce */
14426 			idx = rmt->used + ((qpn << n) ^ i);
14427 			regoff = (idx % 8) * 8;
14428 			regidx = idx / 8;
14429 			/* replace default with context number */
14430 			reg = rmt->map[regidx];
14431 			reg &= ~(RCV_RSM_MAP_TABLE_RCV_CONTEXT_A_MASK
14432 				<< regoff);
14433 			reg |= (u64)(tctxt++) << regoff;
14434 			rmt->map[regidx] = reg;
14435 			if (tctxt == ctxt + krcvqs[i])
14436 				tctxt = ctxt;
14437 		}
14438 		ctxt += krcvqs[i];
14439 	}
14440 
14441 	rrd.offset = rmt->used;
14442 	rrd.pkt_type = 2;
14443 	rrd.field1_off = LRH_BTH_MATCH_OFFSET;
14444 	rrd.field2_off = LRH_SC_MATCH_OFFSET;
14445 	rrd.index1_off = LRH_SC_SELECT_OFFSET;
14446 	rrd.index1_width = n;
14447 	rrd.index2_off = QPN_SELECT_OFFSET;
14448 	rrd.index2_width = m + n;
14449 	rrd.mask1 = LRH_BTH_MASK;
14450 	rrd.value1 = LRH_BTH_VALUE;
14451 	rrd.mask2 = LRH_SC_MASK;
14452 	rrd.value2 = LRH_SC_VALUE;
14453 
14454 	/* add rule 0 */
14455 	add_rsm_rule(dd, RSM_INS_VERBS, &rrd);
14456 
14457 	/* mark RSM map entries as used */
14458 	rmt->used += rmt_entries;
14459 	/* map everything else to the mcast/err/vl15 context */
14460 	init_qpmap_table(dd, HFI1_CTRL_CTXT, HFI1_CTRL_CTXT);
14461 	dd->qos_shift = n + 1;
14462 	return;
14463 bail:
14464 	dd->qos_shift = 1;
14465 	init_qpmap_table(dd, FIRST_KERNEL_KCTXT, dd->n_krcv_queues - 1);
14466 }
14467 
14468 static void init_fecn_handling(struct hfi1_devdata *dd,
14469 			       struct rsm_map_table *rmt)
14470 {
14471 	struct rsm_rule_data rrd;
14472 	u64 reg;
14473 	int i, idx, regoff, regidx, start;
14474 	u8 offset;
14475 	u32 total_cnt;
14476 
14477 	if (HFI1_CAP_IS_KSET(TID_RDMA))
14478 		/* Exclude context 0 */
14479 		start = 1;
14480 	else
14481 		start = dd->first_dyn_alloc_ctxt;
14482 
14483 	total_cnt = dd->num_rcv_contexts - start;
14484 
14485 	/* there needs to be enough room in the map table */
14486 	if (rmt->used + total_cnt >= NUM_MAP_ENTRIES) {
14487 		dd_dev_err(dd, "FECN handling disabled - too many contexts allocated\n");
14488 		return;
14489 	}
14490 
14491 	/*
14492 	 * RSM will extract the destination context as an index into the
14493 	 * map table.  The destination contexts are a sequential block
14494 	 * in the range start...num_rcv_contexts-1 (inclusive).
14495 	 * Map entries are accessed as offset + extracted value.  Adjust
14496 	 * the added offset so this sequence can be placed anywhere in
14497 	 * the table - as long as the entries themselves do not wrap.
14498 	 * There are only enough bits in offset for the table size, so
14499 	 * start with that to allow for a "negative" offset.
14500 	 */
14501 	offset = (u8)(NUM_MAP_ENTRIES + rmt->used - start);
14502 
14503 	for (i = start, idx = rmt->used; i < dd->num_rcv_contexts;
14504 	     i++, idx++) {
14505 		/* replace with identity mapping */
14506 		regoff = (idx % 8) * 8;
14507 		regidx = idx / 8;
14508 		reg = rmt->map[regidx];
14509 		reg &= ~(RCV_RSM_MAP_TABLE_RCV_CONTEXT_A_MASK << regoff);
14510 		reg |= (u64)i << regoff;
14511 		rmt->map[regidx] = reg;
14512 	}
14513 
14514 	/*
14515 	 * For RSM intercept of Expected FECN packets:
14516 	 * o packet type 0 - expected
14517 	 * o match on F (bit 95), using select/match 1, and
14518 	 * o match on SH (bit 133), using select/match 2.
14519 	 *
14520 	 * Use index 1 to extract the 8-bit receive context from DestQP
14521 	 * (start at bit 64).  Use that as the RSM map table index.
14522 	 */
14523 	rrd.offset = offset;
14524 	rrd.pkt_type = 0;
14525 	rrd.field1_off = 95;
14526 	rrd.field2_off = 133;
14527 	rrd.index1_off = 64;
14528 	rrd.index1_width = 8;
14529 	rrd.index2_off = 0;
14530 	rrd.index2_width = 0;
14531 	rrd.mask1 = 1;
14532 	rrd.value1 = 1;
14533 	rrd.mask2 = 1;
14534 	rrd.value2 = 1;
14535 
14536 	/* add rule 1 */
14537 	add_rsm_rule(dd, RSM_INS_FECN, &rrd);
14538 
14539 	rmt->used += total_cnt;
14540 }
14541 
14542 static inline bool hfi1_is_rmt_full(int start, int spare)
14543 {
14544 	return (start + spare) > NUM_MAP_ENTRIES;
14545 }
14546 
14547 static bool hfi1_netdev_update_rmt(struct hfi1_devdata *dd)
14548 {
14549 	u8 i, j;
14550 	u8 ctx_id = 0;
14551 	u64 reg;
14552 	u32 regoff;
14553 	int rmt_start = hfi1_netdev_get_free_rmt_idx(dd);
14554 	int ctxt_count = hfi1_netdev_ctxt_count(dd);
14555 
14556 	/* We already have contexts mapped in RMT */
14557 	if (has_rsm_rule(dd, RSM_INS_VNIC) || has_rsm_rule(dd, RSM_INS_AIP)) {
14558 		dd_dev_info(dd, "Contexts are already mapped in RMT\n");
14559 		return true;
14560 	}
14561 
14562 	if (hfi1_is_rmt_full(rmt_start, NUM_NETDEV_MAP_ENTRIES)) {
14563 		dd_dev_err(dd, "Not enough RMT entries used = %d\n",
14564 			   rmt_start);
14565 		return false;
14566 	}
14567 
14568 	dev_dbg(&(dd)->pcidev->dev, "RMT start = %d, end %d\n",
14569 		rmt_start,
14570 		rmt_start + NUM_NETDEV_MAP_ENTRIES);
14571 
14572 	/* Update RSM mapping table, 32 regs, 256 entries - 1 ctx per byte */
14573 	regoff = RCV_RSM_MAP_TABLE + (rmt_start / 8) * 8;
14574 	reg = read_csr(dd, regoff);
14575 	for (i = 0; i < NUM_NETDEV_MAP_ENTRIES; i++) {
14576 		/* Update map register with netdev context */
14577 		j = (rmt_start + i) % 8;
14578 		reg &= ~(0xffllu << (j * 8));
14579 		reg |= (u64)hfi1_netdev_get_ctxt(dd, ctx_id++)->ctxt << (j * 8);
14580 		/* Wrap up netdev ctx index */
14581 		ctx_id %= ctxt_count;
14582 		/* Write back map register */
14583 		if (j == 7 || ((i + 1) == NUM_NETDEV_MAP_ENTRIES)) {
14584 			dev_dbg(&(dd)->pcidev->dev,
14585 				"RMT[%d] =0x%llx\n",
14586 				regoff - RCV_RSM_MAP_TABLE, reg);
14587 
14588 			write_csr(dd, regoff, reg);
14589 			regoff += 8;
14590 			if (i < (NUM_NETDEV_MAP_ENTRIES - 1))
14591 				reg = read_csr(dd, regoff);
14592 		}
14593 	}
14594 
14595 	return true;
14596 }
14597 
14598 static void hfi1_enable_rsm_rule(struct hfi1_devdata *dd,
14599 				 int rule, struct rsm_rule_data *rrd)
14600 {
14601 	if (!hfi1_netdev_update_rmt(dd)) {
14602 		dd_dev_err(dd, "Failed to update RMT for RSM%d rule\n", rule);
14603 		return;
14604 	}
14605 
14606 	add_rsm_rule(dd, rule, rrd);
14607 	add_rcvctrl(dd, RCV_CTRL_RCV_RSM_ENABLE_SMASK);
14608 }
14609 
14610 void hfi1_init_aip_rsm(struct hfi1_devdata *dd)
14611 {
14612 	/*
14613 	 * go through with the initialisation only if this rule actually doesn't
14614 	 * exist yet
14615 	 */
14616 	if (atomic_fetch_inc(&dd->ipoib_rsm_usr_num) == 0) {
14617 		int rmt_start = hfi1_netdev_get_free_rmt_idx(dd);
14618 		struct rsm_rule_data rrd = {
14619 			.offset = rmt_start,
14620 			.pkt_type = IB_PACKET_TYPE,
14621 			.field1_off = LRH_BTH_MATCH_OFFSET,
14622 			.mask1 = LRH_BTH_MASK,
14623 			.value1 = LRH_BTH_VALUE,
14624 			.field2_off = BTH_DESTQP_MATCH_OFFSET,
14625 			.mask2 = BTH_DESTQP_MASK,
14626 			.value2 = BTH_DESTQP_VALUE,
14627 			.index1_off = DETH_AIP_SQPN_SELECT_OFFSET +
14628 					ilog2(NUM_NETDEV_MAP_ENTRIES),
14629 			.index1_width = ilog2(NUM_NETDEV_MAP_ENTRIES),
14630 			.index2_off = DETH_AIP_SQPN_SELECT_OFFSET,
14631 			.index2_width = ilog2(NUM_NETDEV_MAP_ENTRIES)
14632 		};
14633 
14634 		hfi1_enable_rsm_rule(dd, RSM_INS_AIP, &rrd);
14635 	}
14636 }
14637 
14638 /* Initialize RSM for VNIC */
14639 void hfi1_init_vnic_rsm(struct hfi1_devdata *dd)
14640 {
14641 	int rmt_start = hfi1_netdev_get_free_rmt_idx(dd);
14642 	struct rsm_rule_data rrd = {
14643 		/* Add rule for vnic */
14644 		.offset = rmt_start,
14645 		.pkt_type = 4,
14646 		/* Match 16B packets */
14647 		.field1_off = L2_TYPE_MATCH_OFFSET,
14648 		.mask1 = L2_TYPE_MASK,
14649 		.value1 = L2_16B_VALUE,
14650 		/* Match ETH L4 packets */
14651 		.field2_off = L4_TYPE_MATCH_OFFSET,
14652 		.mask2 = L4_16B_TYPE_MASK,
14653 		.value2 = L4_16B_ETH_VALUE,
14654 		/* Calc context from veswid and entropy */
14655 		.index1_off = L4_16B_HDR_VESWID_OFFSET,
14656 		.index1_width = ilog2(NUM_NETDEV_MAP_ENTRIES),
14657 		.index2_off = L2_16B_ENTROPY_OFFSET,
14658 		.index2_width = ilog2(NUM_NETDEV_MAP_ENTRIES)
14659 	};
14660 
14661 	hfi1_enable_rsm_rule(dd, RSM_INS_VNIC, &rrd);
14662 }
14663 
14664 void hfi1_deinit_vnic_rsm(struct hfi1_devdata *dd)
14665 {
14666 	clear_rsm_rule(dd, RSM_INS_VNIC);
14667 }
14668 
14669 void hfi1_deinit_aip_rsm(struct hfi1_devdata *dd)
14670 {
14671 	/* only actually clear the rule if it's the last user asking to do so */
14672 	if (atomic_fetch_add_unless(&dd->ipoib_rsm_usr_num, -1, 0) == 1)
14673 		clear_rsm_rule(dd, RSM_INS_AIP);
14674 }
14675 
14676 static int init_rxe(struct hfi1_devdata *dd)
14677 {
14678 	struct rsm_map_table *rmt;
14679 	u64 val;
14680 
14681 	/* enable all receive errors */
14682 	write_csr(dd, RCV_ERR_MASK, ~0ull);
14683 
14684 	rmt = alloc_rsm_map_table(dd);
14685 	if (!rmt)
14686 		return -ENOMEM;
14687 
14688 	/* set up QOS, including the QPN map table */
14689 	init_qos(dd, rmt);
14690 	init_fecn_handling(dd, rmt);
14691 	complete_rsm_map_table(dd, rmt);
14692 	/* record number of used rsm map entries for netdev */
14693 	hfi1_netdev_set_free_rmt_idx(dd, rmt->used);
14694 	kfree(rmt);
14695 
14696 	/*
14697 	 * make sure RcvCtrl.RcvWcb <= PCIe Device Control
14698 	 * Register Max_Payload_Size (PCI_EXP_DEVCTL in Linux PCIe config
14699 	 * space, PciCfgCap2.MaxPayloadSize in HFI).  There is only one
14700 	 * invalid configuration: RcvCtrl.RcvWcb set to its max of 256 and
14701 	 * Max_PayLoad_Size set to its minimum of 128.
14702 	 *
14703 	 * Presently, RcvCtrl.RcvWcb is not modified from its default of 0
14704 	 * (64 bytes).  Max_Payload_Size is possibly modified upward in
14705 	 * tune_pcie_caps() which is called after this routine.
14706 	 */
14707 
14708 	/* Have 16 bytes (4DW) of bypass header available in header queue */
14709 	val = read_csr(dd, RCV_BYPASS);
14710 	val &= ~RCV_BYPASS_HDR_SIZE_SMASK;
14711 	val |= ((4ull & RCV_BYPASS_HDR_SIZE_MASK) <<
14712 		RCV_BYPASS_HDR_SIZE_SHIFT);
14713 	write_csr(dd, RCV_BYPASS, val);
14714 	return 0;
14715 }
14716 
14717 static void init_other(struct hfi1_devdata *dd)
14718 {
14719 	/* enable all CCE errors */
14720 	write_csr(dd, CCE_ERR_MASK, ~0ull);
14721 	/* enable *some* Misc errors */
14722 	write_csr(dd, MISC_ERR_MASK, DRIVER_MISC_MASK);
14723 	/* enable all DC errors, except LCB */
14724 	write_csr(dd, DCC_ERR_FLG_EN, ~0ull);
14725 	write_csr(dd, DC_DC8051_ERR_EN, ~0ull);
14726 }
14727 
14728 /*
14729  * Fill out the given AU table using the given CU.  A CU is defined in terms
14730  * AUs.  The table is a an encoding: given the index, how many AUs does that
14731  * represent?
14732  *
14733  * NOTE: Assumes that the register layout is the same for the
14734  * local and remote tables.
14735  */
14736 static void assign_cm_au_table(struct hfi1_devdata *dd, u32 cu,
14737 			       u32 csr0to3, u32 csr4to7)
14738 {
14739 	write_csr(dd, csr0to3,
14740 		  0ull << SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE0_SHIFT |
14741 		  1ull << SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE1_SHIFT |
14742 		  2ull * cu <<
14743 		  SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE2_SHIFT |
14744 		  4ull * cu <<
14745 		  SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE3_SHIFT);
14746 	write_csr(dd, csr4to7,
14747 		  8ull * cu <<
14748 		  SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE4_SHIFT |
14749 		  16ull * cu <<
14750 		  SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE5_SHIFT |
14751 		  32ull * cu <<
14752 		  SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE6_SHIFT |
14753 		  64ull * cu <<
14754 		  SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE7_SHIFT);
14755 }
14756 
14757 static void assign_local_cm_au_table(struct hfi1_devdata *dd, u8 vcu)
14758 {
14759 	assign_cm_au_table(dd, vcu_to_cu(vcu), SEND_CM_LOCAL_AU_TABLE0_TO3,
14760 			   SEND_CM_LOCAL_AU_TABLE4_TO7);
14761 }
14762 
14763 void assign_remote_cm_au_table(struct hfi1_devdata *dd, u8 vcu)
14764 {
14765 	assign_cm_au_table(dd, vcu_to_cu(vcu), SEND_CM_REMOTE_AU_TABLE0_TO3,
14766 			   SEND_CM_REMOTE_AU_TABLE4_TO7);
14767 }
14768 
14769 static void init_txe(struct hfi1_devdata *dd)
14770 {
14771 	int i;
14772 
14773 	/* enable all PIO, SDMA, general, and Egress errors */
14774 	write_csr(dd, SEND_PIO_ERR_MASK, ~0ull);
14775 	write_csr(dd, SEND_DMA_ERR_MASK, ~0ull);
14776 	write_csr(dd, SEND_ERR_MASK, ~0ull);
14777 	write_csr(dd, SEND_EGRESS_ERR_MASK, ~0ull);
14778 
14779 	/* enable all per-context and per-SDMA engine errors */
14780 	for (i = 0; i < chip_send_contexts(dd); i++)
14781 		write_kctxt_csr(dd, i, SEND_CTXT_ERR_MASK, ~0ull);
14782 	for (i = 0; i < chip_sdma_engines(dd); i++)
14783 		write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_MASK, ~0ull);
14784 
14785 	/* set the local CU to AU mapping */
14786 	assign_local_cm_au_table(dd, dd->vcu);
14787 
14788 	/*
14789 	 * Set reasonable default for Credit Return Timer
14790 	 * Don't set on Simulator - causes it to choke.
14791 	 */
14792 	if (dd->icode != ICODE_FUNCTIONAL_SIMULATOR)
14793 		write_csr(dd, SEND_CM_TIMER_CTRL, HFI1_CREDIT_RETURN_RATE);
14794 }
14795 
14796 int hfi1_set_ctxt_jkey(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd,
14797 		       u16 jkey)
14798 {
14799 	u8 hw_ctxt;
14800 	u64 reg;
14801 
14802 	if (!rcd || !rcd->sc)
14803 		return -EINVAL;
14804 
14805 	hw_ctxt = rcd->sc->hw_context;
14806 	reg = SEND_CTXT_CHECK_JOB_KEY_MASK_SMASK | /* mask is always 1's */
14807 		((jkey & SEND_CTXT_CHECK_JOB_KEY_VALUE_MASK) <<
14808 		 SEND_CTXT_CHECK_JOB_KEY_VALUE_SHIFT);
14809 	/* JOB_KEY_ALLOW_PERMISSIVE is not allowed by default */
14810 	if (HFI1_CAP_KGET_MASK(rcd->flags, ALLOW_PERM_JKEY))
14811 		reg |= SEND_CTXT_CHECK_JOB_KEY_ALLOW_PERMISSIVE_SMASK;
14812 	write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_JOB_KEY, reg);
14813 	/*
14814 	 * Enable send-side J_KEY integrity check, unless this is A0 h/w
14815 	 */
14816 	if (!is_ax(dd)) {
14817 		reg = read_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE);
14818 		reg |= SEND_CTXT_CHECK_ENABLE_CHECK_JOB_KEY_SMASK;
14819 		write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE, reg);
14820 	}
14821 
14822 	/* Enable J_KEY check on receive context. */
14823 	reg = RCV_KEY_CTRL_JOB_KEY_ENABLE_SMASK |
14824 		((jkey & RCV_KEY_CTRL_JOB_KEY_VALUE_MASK) <<
14825 		 RCV_KEY_CTRL_JOB_KEY_VALUE_SHIFT);
14826 	write_kctxt_csr(dd, rcd->ctxt, RCV_KEY_CTRL, reg);
14827 
14828 	return 0;
14829 }
14830 
14831 int hfi1_clear_ctxt_jkey(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd)
14832 {
14833 	u8 hw_ctxt;
14834 	u64 reg;
14835 
14836 	if (!rcd || !rcd->sc)
14837 		return -EINVAL;
14838 
14839 	hw_ctxt = rcd->sc->hw_context;
14840 	write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_JOB_KEY, 0);
14841 	/*
14842 	 * Disable send-side J_KEY integrity check, unless this is A0 h/w.
14843 	 * This check would not have been enabled for A0 h/w, see
14844 	 * set_ctxt_jkey().
14845 	 */
14846 	if (!is_ax(dd)) {
14847 		reg = read_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE);
14848 		reg &= ~SEND_CTXT_CHECK_ENABLE_CHECK_JOB_KEY_SMASK;
14849 		write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE, reg);
14850 	}
14851 	/* Turn off the J_KEY on the receive side */
14852 	write_kctxt_csr(dd, rcd->ctxt, RCV_KEY_CTRL, 0);
14853 
14854 	return 0;
14855 }
14856 
14857 int hfi1_set_ctxt_pkey(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd,
14858 		       u16 pkey)
14859 {
14860 	u8 hw_ctxt;
14861 	u64 reg;
14862 
14863 	if (!rcd || !rcd->sc)
14864 		return -EINVAL;
14865 
14866 	hw_ctxt = rcd->sc->hw_context;
14867 	reg = ((u64)pkey & SEND_CTXT_CHECK_PARTITION_KEY_VALUE_MASK) <<
14868 		SEND_CTXT_CHECK_PARTITION_KEY_VALUE_SHIFT;
14869 	write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_PARTITION_KEY, reg);
14870 	reg = read_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE);
14871 	reg |= SEND_CTXT_CHECK_ENABLE_CHECK_PARTITION_KEY_SMASK;
14872 	reg &= ~SEND_CTXT_CHECK_ENABLE_DISALLOW_KDETH_PACKETS_SMASK;
14873 	write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE, reg);
14874 
14875 	return 0;
14876 }
14877 
14878 int hfi1_clear_ctxt_pkey(struct hfi1_devdata *dd, struct hfi1_ctxtdata *ctxt)
14879 {
14880 	u8 hw_ctxt;
14881 	u64 reg;
14882 
14883 	if (!ctxt || !ctxt->sc)
14884 		return -EINVAL;
14885 
14886 	hw_ctxt = ctxt->sc->hw_context;
14887 	reg = read_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE);
14888 	reg &= ~SEND_CTXT_CHECK_ENABLE_CHECK_PARTITION_KEY_SMASK;
14889 	write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE, reg);
14890 	write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_PARTITION_KEY, 0);
14891 
14892 	return 0;
14893 }
14894 
14895 /*
14896  * Start doing the clean up the the chip. Our clean up happens in multiple
14897  * stages and this is just the first.
14898  */
14899 void hfi1_start_cleanup(struct hfi1_devdata *dd)
14900 {
14901 	aspm_exit(dd);
14902 	free_cntrs(dd);
14903 	free_rcverr(dd);
14904 	finish_chip_resources(dd);
14905 }
14906 
14907 #define HFI_BASE_GUID(dev) \
14908 	((dev)->base_guid & ~(1ULL << GUID_HFI_INDEX_SHIFT))
14909 
14910 /*
14911  * Information can be shared between the two HFIs on the same ASIC
14912  * in the same OS.  This function finds the peer device and sets
14913  * up a shared structure.
14914  */
14915 static int init_asic_data(struct hfi1_devdata *dd)
14916 {
14917 	unsigned long index;
14918 	struct hfi1_devdata *peer;
14919 	struct hfi1_asic_data *asic_data;
14920 	int ret = 0;
14921 
14922 	/* pre-allocate the asic structure in case we are the first device */
14923 	asic_data = kzalloc(sizeof(*dd->asic_data), GFP_KERNEL);
14924 	if (!asic_data)
14925 		return -ENOMEM;
14926 
14927 	xa_lock_irq(&hfi1_dev_table);
14928 	/* Find our peer device */
14929 	xa_for_each(&hfi1_dev_table, index, peer) {
14930 		if ((HFI_BASE_GUID(dd) == HFI_BASE_GUID(peer)) &&
14931 		    dd->unit != peer->unit)
14932 			break;
14933 	}
14934 
14935 	if (peer) {
14936 		/* use already allocated structure */
14937 		dd->asic_data = peer->asic_data;
14938 		kfree(asic_data);
14939 	} else {
14940 		dd->asic_data = asic_data;
14941 		mutex_init(&dd->asic_data->asic_resource_mutex);
14942 	}
14943 	dd->asic_data->dds[dd->hfi1_id] = dd; /* self back-pointer */
14944 	xa_unlock_irq(&hfi1_dev_table);
14945 
14946 	/* first one through - set up i2c devices */
14947 	if (!peer)
14948 		ret = set_up_i2c(dd, dd->asic_data);
14949 
14950 	return ret;
14951 }
14952 
14953 /*
14954  * Set dd->boardname.  Use a generic name if a name is not returned from
14955  * EFI variable space.
14956  *
14957  * Return 0 on success, -ENOMEM if space could not be allocated.
14958  */
14959 static int obtain_boardname(struct hfi1_devdata *dd)
14960 {
14961 	/* generic board description */
14962 	const char generic[] =
14963 		"Intel Omni-Path Host Fabric Interface Adapter 100 Series";
14964 	unsigned long size;
14965 	int ret;
14966 
14967 	ret = read_hfi1_efi_var(dd, "description", &size,
14968 				(void **)&dd->boardname);
14969 	if (ret) {
14970 		dd_dev_info(dd, "Board description not found\n");
14971 		/* use generic description */
14972 		dd->boardname = kstrdup(generic, GFP_KERNEL);
14973 		if (!dd->boardname)
14974 			return -ENOMEM;
14975 	}
14976 	return 0;
14977 }
14978 
14979 /*
14980  * Check the interrupt registers to make sure that they are mapped correctly.
14981  * It is intended to help user identify any mismapping by VMM when the driver
14982  * is running in a VM. This function should only be called before interrupt
14983  * is set up properly.
14984  *
14985  * Return 0 on success, -EINVAL on failure.
14986  */
14987 static int check_int_registers(struct hfi1_devdata *dd)
14988 {
14989 	u64 reg;
14990 	u64 all_bits = ~(u64)0;
14991 	u64 mask;
14992 
14993 	/* Clear CceIntMask[0] to avoid raising any interrupts */
14994 	mask = read_csr(dd, CCE_INT_MASK);
14995 	write_csr(dd, CCE_INT_MASK, 0ull);
14996 	reg = read_csr(dd, CCE_INT_MASK);
14997 	if (reg)
14998 		goto err_exit;
14999 
15000 	/* Clear all interrupt status bits */
15001 	write_csr(dd, CCE_INT_CLEAR, all_bits);
15002 	reg = read_csr(dd, CCE_INT_STATUS);
15003 	if (reg)
15004 		goto err_exit;
15005 
15006 	/* Set all interrupt status bits */
15007 	write_csr(dd, CCE_INT_FORCE, all_bits);
15008 	reg = read_csr(dd, CCE_INT_STATUS);
15009 	if (reg != all_bits)
15010 		goto err_exit;
15011 
15012 	/* Restore the interrupt mask */
15013 	write_csr(dd, CCE_INT_CLEAR, all_bits);
15014 	write_csr(dd, CCE_INT_MASK, mask);
15015 
15016 	return 0;
15017 err_exit:
15018 	write_csr(dd, CCE_INT_MASK, mask);
15019 	dd_dev_err(dd, "Interrupt registers not properly mapped by VMM\n");
15020 	return -EINVAL;
15021 }
15022 
15023 /**
15024  * hfi1_init_dd() - Initialize most of the dd structure.
15025  * @dev: the pci_dev for hfi1_ib device
15026  * @ent: pci_device_id struct for this dev
15027  *
15028  * This is global, and is called directly at init to set up the
15029  * chip-specific function pointers for later use.
15030  */
15031 int hfi1_init_dd(struct hfi1_devdata *dd)
15032 {
15033 	struct pci_dev *pdev = dd->pcidev;
15034 	struct hfi1_pportdata *ppd;
15035 	u64 reg;
15036 	int i, ret;
15037 	static const char * const inames[] = { /* implementation names */
15038 		"RTL silicon",
15039 		"RTL VCS simulation",
15040 		"RTL FPGA emulation",
15041 		"Functional simulator"
15042 	};
15043 	struct pci_dev *parent = pdev->bus->self;
15044 	u32 sdma_engines = chip_sdma_engines(dd);
15045 
15046 	ppd = dd->pport;
15047 	for (i = 0; i < dd->num_pports; i++, ppd++) {
15048 		int vl;
15049 		/* init common fields */
15050 		hfi1_init_pportdata(pdev, ppd, dd, 0, 1);
15051 		/* DC supports 4 link widths */
15052 		ppd->link_width_supported =
15053 			OPA_LINK_WIDTH_1X | OPA_LINK_WIDTH_2X |
15054 			OPA_LINK_WIDTH_3X | OPA_LINK_WIDTH_4X;
15055 		ppd->link_width_downgrade_supported =
15056 			ppd->link_width_supported;
15057 		/* start out enabling only 4X */
15058 		ppd->link_width_enabled = OPA_LINK_WIDTH_4X;
15059 		ppd->link_width_downgrade_enabled =
15060 					ppd->link_width_downgrade_supported;
15061 		/* link width active is 0 when link is down */
15062 		/* link width downgrade active is 0 when link is down */
15063 
15064 		if (num_vls < HFI1_MIN_VLS_SUPPORTED ||
15065 		    num_vls > HFI1_MAX_VLS_SUPPORTED) {
15066 			dd_dev_err(dd, "Invalid num_vls %u, using %u VLs\n",
15067 				   num_vls, HFI1_MAX_VLS_SUPPORTED);
15068 			num_vls = HFI1_MAX_VLS_SUPPORTED;
15069 		}
15070 		ppd->vls_supported = num_vls;
15071 		ppd->vls_operational = ppd->vls_supported;
15072 		/* Set the default MTU. */
15073 		for (vl = 0; vl < num_vls; vl++)
15074 			dd->vld[vl].mtu = hfi1_max_mtu;
15075 		dd->vld[15].mtu = MAX_MAD_PACKET;
15076 		/*
15077 		 * Set the initial values to reasonable default, will be set
15078 		 * for real when link is up.
15079 		 */
15080 		ppd->overrun_threshold = 0x4;
15081 		ppd->phy_error_threshold = 0xf;
15082 		ppd->port_crc_mode_enabled = link_crc_mask;
15083 		/* initialize supported LTP CRC mode */
15084 		ppd->port_ltp_crc_mode = cap_to_port_ltp(link_crc_mask) << 8;
15085 		/* initialize enabled LTP CRC mode */
15086 		ppd->port_ltp_crc_mode |= cap_to_port_ltp(link_crc_mask) << 4;
15087 		/* start in offline */
15088 		ppd->host_link_state = HLS_DN_OFFLINE;
15089 		init_vl_arb_caches(ppd);
15090 	}
15091 
15092 	/*
15093 	 * Do remaining PCIe setup and save PCIe values in dd.
15094 	 * Any error printing is already done by the init code.
15095 	 * On return, we have the chip mapped.
15096 	 */
15097 	ret = hfi1_pcie_ddinit(dd, pdev);
15098 	if (ret < 0)
15099 		goto bail_free;
15100 
15101 	/* Save PCI space registers to rewrite after device reset */
15102 	ret = save_pci_variables(dd);
15103 	if (ret < 0)
15104 		goto bail_cleanup;
15105 
15106 	dd->majrev = (dd->revision >> CCE_REVISION_CHIP_REV_MAJOR_SHIFT)
15107 			& CCE_REVISION_CHIP_REV_MAJOR_MASK;
15108 	dd->minrev = (dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT)
15109 			& CCE_REVISION_CHIP_REV_MINOR_MASK;
15110 
15111 	/*
15112 	 * Check interrupt registers mapping if the driver has no access to
15113 	 * the upstream component. In this case, it is likely that the driver
15114 	 * is running in a VM.
15115 	 */
15116 	if (!parent) {
15117 		ret = check_int_registers(dd);
15118 		if (ret)
15119 			goto bail_cleanup;
15120 	}
15121 
15122 	/*
15123 	 * obtain the hardware ID - NOT related to unit, which is a
15124 	 * software enumeration
15125 	 */
15126 	reg = read_csr(dd, CCE_REVISION2);
15127 	dd->hfi1_id = (reg >> CCE_REVISION2_HFI_ID_SHIFT)
15128 					& CCE_REVISION2_HFI_ID_MASK;
15129 	/* the variable size will remove unwanted bits */
15130 	dd->icode = reg >> CCE_REVISION2_IMPL_CODE_SHIFT;
15131 	dd->irev = reg >> CCE_REVISION2_IMPL_REVISION_SHIFT;
15132 	dd_dev_info(dd, "Implementation: %s, revision 0x%x\n",
15133 		    dd->icode < ARRAY_SIZE(inames) ?
15134 		    inames[dd->icode] : "unknown", (int)dd->irev);
15135 
15136 	/* speeds the hardware can support */
15137 	dd->pport->link_speed_supported = OPA_LINK_SPEED_25G;
15138 	/* speeds allowed to run at */
15139 	dd->pport->link_speed_enabled = dd->pport->link_speed_supported;
15140 	/* give a reasonable active value, will be set on link up */
15141 	dd->pport->link_speed_active = OPA_LINK_SPEED_25G;
15142 
15143 	/* fix up link widths for emulation _p */
15144 	ppd = dd->pport;
15145 	if (dd->icode == ICODE_FPGA_EMULATION && is_emulator_p(dd)) {
15146 		ppd->link_width_supported =
15147 			ppd->link_width_enabled =
15148 			ppd->link_width_downgrade_supported =
15149 			ppd->link_width_downgrade_enabled =
15150 				OPA_LINK_WIDTH_1X;
15151 	}
15152 	/* insure num_vls isn't larger than number of sdma engines */
15153 	if (HFI1_CAP_IS_KSET(SDMA) && num_vls > sdma_engines) {
15154 		dd_dev_err(dd, "num_vls %u too large, using %u VLs\n",
15155 			   num_vls, sdma_engines);
15156 		num_vls = sdma_engines;
15157 		ppd->vls_supported = sdma_engines;
15158 		ppd->vls_operational = ppd->vls_supported;
15159 	}
15160 
15161 	/*
15162 	 * Convert the ns parameter to the 64 * cclocks used in the CSR.
15163 	 * Limit the max if larger than the field holds.  If timeout is
15164 	 * non-zero, then the calculated field will be at least 1.
15165 	 *
15166 	 * Must be after icode is set up - the cclock rate depends
15167 	 * on knowing the hardware being used.
15168 	 */
15169 	dd->rcv_intr_timeout_csr = ns_to_cclock(dd, rcv_intr_timeout) / 64;
15170 	if (dd->rcv_intr_timeout_csr >
15171 			RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_MASK)
15172 		dd->rcv_intr_timeout_csr =
15173 			RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_MASK;
15174 	else if (dd->rcv_intr_timeout_csr == 0 && rcv_intr_timeout)
15175 		dd->rcv_intr_timeout_csr = 1;
15176 
15177 	/* needs to be done before we look for the peer device */
15178 	read_guid(dd);
15179 
15180 	/* set up shared ASIC data with peer device */
15181 	ret = init_asic_data(dd);
15182 	if (ret)
15183 		goto bail_cleanup;
15184 
15185 	/* obtain chip sizes, reset chip CSRs */
15186 	ret = init_chip(dd);
15187 	if (ret)
15188 		goto bail_cleanup;
15189 
15190 	/* read in the PCIe link speed information */
15191 	ret = pcie_speeds(dd);
15192 	if (ret)
15193 		goto bail_cleanup;
15194 
15195 	/* call before get_platform_config(), after init_chip_resources() */
15196 	ret = eprom_init(dd);
15197 	if (ret)
15198 		goto bail_free_rcverr;
15199 
15200 	/* Needs to be called before hfi1_firmware_init */
15201 	get_platform_config(dd);
15202 
15203 	/* read in firmware */
15204 	ret = hfi1_firmware_init(dd);
15205 	if (ret)
15206 		goto bail_cleanup;
15207 
15208 	/*
15209 	 * In general, the PCIe Gen3 transition must occur after the
15210 	 * chip has been idled (so it won't initiate any PCIe transactions
15211 	 * e.g. an interrupt) and before the driver changes any registers
15212 	 * (the transition will reset the registers).
15213 	 *
15214 	 * In particular, place this call after:
15215 	 * - init_chip()     - the chip will not initiate any PCIe transactions
15216 	 * - pcie_speeds()   - reads the current link speed
15217 	 * - hfi1_firmware_init() - the needed firmware is ready to be
15218 	 *			    downloaded
15219 	 */
15220 	ret = do_pcie_gen3_transition(dd);
15221 	if (ret)
15222 		goto bail_cleanup;
15223 
15224 	/*
15225 	 * This should probably occur in hfi1_pcie_init(), but historically
15226 	 * occurs after the do_pcie_gen3_transition() code.
15227 	 */
15228 	tune_pcie_caps(dd);
15229 
15230 	/* start setting dd values and adjusting CSRs */
15231 	init_early_variables(dd);
15232 
15233 	parse_platform_config(dd);
15234 
15235 	ret = obtain_boardname(dd);
15236 	if (ret)
15237 		goto bail_cleanup;
15238 
15239 	snprintf(dd->boardversion, BOARD_VERS_MAX,
15240 		 "ChipABI %u.%u, ChipRev %u.%u, SW Compat %llu\n",
15241 		 HFI1_CHIP_VERS_MAJ, HFI1_CHIP_VERS_MIN,
15242 		 (u32)dd->majrev,
15243 		 (u32)dd->minrev,
15244 		 (dd->revision >> CCE_REVISION_SW_SHIFT)
15245 		    & CCE_REVISION_SW_MASK);
15246 
15247 	/* alloc netdev data */
15248 	if (hfi1_netdev_alloc(dd))
15249 		goto bail_cleanup;
15250 
15251 	ret = set_up_context_variables(dd);
15252 	if (ret)
15253 		goto bail_cleanup;
15254 
15255 	/* set initial RXE CSRs */
15256 	ret = init_rxe(dd);
15257 	if (ret)
15258 		goto bail_cleanup;
15259 
15260 	/* set initial TXE CSRs */
15261 	init_txe(dd);
15262 	/* set initial non-RXE, non-TXE CSRs */
15263 	init_other(dd);
15264 	/* set up KDETH QP prefix in both RX and TX CSRs */
15265 	init_kdeth_qp(dd);
15266 
15267 	ret = hfi1_dev_affinity_init(dd);
15268 	if (ret)
15269 		goto bail_cleanup;
15270 
15271 	/* send contexts must be set up before receive contexts */
15272 	ret = init_send_contexts(dd);
15273 	if (ret)
15274 		goto bail_cleanup;
15275 
15276 	ret = hfi1_create_kctxts(dd);
15277 	if (ret)
15278 		goto bail_cleanup;
15279 
15280 	/*
15281 	 * Initialize aspm, to be done after gen3 transition and setting up
15282 	 * contexts and before enabling interrupts
15283 	 */
15284 	aspm_init(dd);
15285 
15286 	ret = init_pervl_scs(dd);
15287 	if (ret)
15288 		goto bail_cleanup;
15289 
15290 	/* sdma init */
15291 	for (i = 0; i < dd->num_pports; ++i) {
15292 		ret = sdma_init(dd, i);
15293 		if (ret)
15294 			goto bail_cleanup;
15295 	}
15296 
15297 	/* use contexts created by hfi1_create_kctxts */
15298 	ret = set_up_interrupts(dd);
15299 	if (ret)
15300 		goto bail_cleanup;
15301 
15302 	ret = hfi1_comp_vectors_set_up(dd);
15303 	if (ret)
15304 		goto bail_clear_intr;
15305 
15306 	/* set up LCB access - must be after set_up_interrupts() */
15307 	init_lcb_access(dd);
15308 
15309 	/*
15310 	 * Serial number is created from the base guid:
15311 	 * [27:24] = base guid [38:35]
15312 	 * [23: 0] = base guid [23: 0]
15313 	 */
15314 	snprintf(dd->serial, SERIAL_MAX, "0x%08llx\n",
15315 		 (dd->base_guid & 0xFFFFFF) |
15316 		     ((dd->base_guid >> 11) & 0xF000000));
15317 
15318 	dd->oui1 = dd->base_guid >> 56 & 0xFF;
15319 	dd->oui2 = dd->base_guid >> 48 & 0xFF;
15320 	dd->oui3 = dd->base_guid >> 40 & 0xFF;
15321 
15322 	ret = load_firmware(dd); /* asymmetric with dispose_firmware() */
15323 	if (ret)
15324 		goto bail_clear_intr;
15325 
15326 	thermal_init(dd);
15327 
15328 	ret = init_cntrs(dd);
15329 	if (ret)
15330 		goto bail_clear_intr;
15331 
15332 	ret = init_rcverr(dd);
15333 	if (ret)
15334 		goto bail_free_cntrs;
15335 
15336 	init_completion(&dd->user_comp);
15337 
15338 	/* The user refcount starts with one to inidicate an active device */
15339 	atomic_set(&dd->user_refcount, 1);
15340 
15341 	goto bail;
15342 
15343 bail_free_rcverr:
15344 	free_rcverr(dd);
15345 bail_free_cntrs:
15346 	free_cntrs(dd);
15347 bail_clear_intr:
15348 	hfi1_comp_vectors_clean_up(dd);
15349 	msix_clean_up_interrupts(dd);
15350 bail_cleanup:
15351 	hfi1_netdev_free(dd);
15352 	hfi1_pcie_ddcleanup(dd);
15353 bail_free:
15354 	hfi1_free_devdata(dd);
15355 bail:
15356 	return ret;
15357 }
15358 
15359 static u16 delay_cycles(struct hfi1_pportdata *ppd, u32 desired_egress_rate,
15360 			u32 dw_len)
15361 {
15362 	u32 delta_cycles;
15363 	u32 current_egress_rate = ppd->current_egress_rate;
15364 	/* rates here are in units of 10^6 bits/sec */
15365 
15366 	if (desired_egress_rate == -1)
15367 		return 0; /* shouldn't happen */
15368 
15369 	if (desired_egress_rate >= current_egress_rate)
15370 		return 0; /* we can't help go faster, only slower */
15371 
15372 	delta_cycles = egress_cycles(dw_len * 4, desired_egress_rate) -
15373 			egress_cycles(dw_len * 4, current_egress_rate);
15374 
15375 	return (u16)delta_cycles;
15376 }
15377 
15378 /**
15379  * create_pbc - build a pbc for transmission
15380  * @flags: special case flags or-ed in built pbc
15381  * @srate: static rate
15382  * @vl: vl
15383  * @dwlen: dword length (header words + data words + pbc words)
15384  *
15385  * Create a PBC with the given flags, rate, VL, and length.
15386  *
15387  * NOTE: The PBC created will not insert any HCRC - all callers but one are
15388  * for verbs, which does not use this PSM feature.  The lone other caller
15389  * is for the diagnostic interface which calls this if the user does not
15390  * supply their own PBC.
15391  */
15392 u64 create_pbc(struct hfi1_pportdata *ppd, u64 flags, int srate_mbs, u32 vl,
15393 	       u32 dw_len)
15394 {
15395 	u64 pbc, delay = 0;
15396 
15397 	if (unlikely(srate_mbs))
15398 		delay = delay_cycles(ppd, srate_mbs, dw_len);
15399 
15400 	pbc = flags
15401 		| (delay << PBC_STATIC_RATE_CONTROL_COUNT_SHIFT)
15402 		| ((u64)PBC_IHCRC_NONE << PBC_INSERT_HCRC_SHIFT)
15403 		| (vl & PBC_VL_MASK) << PBC_VL_SHIFT
15404 		| (dw_len & PBC_LENGTH_DWS_MASK)
15405 			<< PBC_LENGTH_DWS_SHIFT;
15406 
15407 	return pbc;
15408 }
15409 
15410 #define SBUS_THERMAL    0x4f
15411 #define SBUS_THERM_MONITOR_MODE 0x1
15412 
15413 #define THERM_FAILURE(dev, ret, reason) \
15414 	dd_dev_err((dd),						\
15415 		   "Thermal sensor initialization failed: %s (%d)\n",	\
15416 		   (reason), (ret))
15417 
15418 /*
15419  * Initialize the thermal sensor.
15420  *
15421  * After initialization, enable polling of thermal sensor through
15422  * SBus interface. In order for this to work, the SBus Master
15423  * firmware has to be loaded due to the fact that the HW polling
15424  * logic uses SBus interrupts, which are not supported with
15425  * default firmware. Otherwise, no data will be returned through
15426  * the ASIC_STS_THERM CSR.
15427  */
15428 static int thermal_init(struct hfi1_devdata *dd)
15429 {
15430 	int ret = 0;
15431 
15432 	if (dd->icode != ICODE_RTL_SILICON ||
15433 	    check_chip_resource(dd, CR_THERM_INIT, NULL))
15434 		return ret;
15435 
15436 	ret = acquire_chip_resource(dd, CR_SBUS, SBUS_TIMEOUT);
15437 	if (ret) {
15438 		THERM_FAILURE(dd, ret, "Acquire SBus");
15439 		return ret;
15440 	}
15441 
15442 	dd_dev_info(dd, "Initializing thermal sensor\n");
15443 	/* Disable polling of thermal readings */
15444 	write_csr(dd, ASIC_CFG_THERM_POLL_EN, 0x0);
15445 	msleep(100);
15446 	/* Thermal Sensor Initialization */
15447 	/*    Step 1: Reset the Thermal SBus Receiver */
15448 	ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0,
15449 				RESET_SBUS_RECEIVER, 0);
15450 	if (ret) {
15451 		THERM_FAILURE(dd, ret, "Bus Reset");
15452 		goto done;
15453 	}
15454 	/*    Step 2: Set Reset bit in Thermal block */
15455 	ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0,
15456 				WRITE_SBUS_RECEIVER, 0x1);
15457 	if (ret) {
15458 		THERM_FAILURE(dd, ret, "Therm Block Reset");
15459 		goto done;
15460 	}
15461 	/*    Step 3: Write clock divider value (100MHz -> 2MHz) */
15462 	ret = sbus_request_slow(dd, SBUS_THERMAL, 0x1,
15463 				WRITE_SBUS_RECEIVER, 0x32);
15464 	if (ret) {
15465 		THERM_FAILURE(dd, ret, "Write Clock Div");
15466 		goto done;
15467 	}
15468 	/*    Step 4: Select temperature mode */
15469 	ret = sbus_request_slow(dd, SBUS_THERMAL, 0x3,
15470 				WRITE_SBUS_RECEIVER,
15471 				SBUS_THERM_MONITOR_MODE);
15472 	if (ret) {
15473 		THERM_FAILURE(dd, ret, "Write Mode Sel");
15474 		goto done;
15475 	}
15476 	/*    Step 5: De-assert block reset and start conversion */
15477 	ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0,
15478 				WRITE_SBUS_RECEIVER, 0x2);
15479 	if (ret) {
15480 		THERM_FAILURE(dd, ret, "Write Reset Deassert");
15481 		goto done;
15482 	}
15483 	/*    Step 5.1: Wait for first conversion (21.5ms per spec) */
15484 	msleep(22);
15485 
15486 	/* Enable polling of thermal readings */
15487 	write_csr(dd, ASIC_CFG_THERM_POLL_EN, 0x1);
15488 
15489 	/* Set initialized flag */
15490 	ret = acquire_chip_resource(dd, CR_THERM_INIT, 0);
15491 	if (ret)
15492 		THERM_FAILURE(dd, ret, "Unable to set thermal init flag");
15493 
15494 done:
15495 	release_chip_resource(dd, CR_SBUS);
15496 	return ret;
15497 }
15498 
15499 static void handle_temp_err(struct hfi1_devdata *dd)
15500 {
15501 	struct hfi1_pportdata *ppd = &dd->pport[0];
15502 	/*
15503 	 * Thermal Critical Interrupt
15504 	 * Put the device into forced freeze mode, take link down to
15505 	 * offline, and put DC into reset.
15506 	 */
15507 	dd_dev_emerg(dd,
15508 		     "Critical temperature reached! Forcing device into freeze mode!\n");
15509 	dd->flags |= HFI1_FORCED_FREEZE;
15510 	start_freeze_handling(ppd, FREEZE_SELF | FREEZE_ABORT);
15511 	/*
15512 	 * Shut DC down as much and as quickly as possible.
15513 	 *
15514 	 * Step 1: Take the link down to OFFLINE. This will cause the
15515 	 *         8051 to put the Serdes in reset. However, we don't want to
15516 	 *         go through the entire link state machine since we want to
15517 	 *         shutdown ASAP. Furthermore, this is not a graceful shutdown
15518 	 *         but rather an attempt to save the chip.
15519 	 *         Code below is almost the same as quiet_serdes() but avoids
15520 	 *         all the extra work and the sleeps.
15521 	 */
15522 	ppd->driver_link_ready = 0;
15523 	ppd->link_enabled = 0;
15524 	set_physical_link_state(dd, (OPA_LINKDOWN_REASON_SMA_DISABLED << 8) |
15525 				PLS_OFFLINE);
15526 	/*
15527 	 * Step 2: Shutdown LCB and 8051
15528 	 *         After shutdown, do not restore DC_CFG_RESET value.
15529 	 */
15530 	dc_shutdown(dd);
15531 }
15532