xref: /openbmc/linux/drivers/infiniband/hw/hfi1/chip.c (revision f5b06569)
1 /*
2  * Copyright(c) 2015, 2016 Intel Corporation.
3  *
4  * This file is provided under a dual BSD/GPLv2 license.  When using or
5  * redistributing this file, you may do so under either license.
6  *
7  * GPL LICENSE SUMMARY
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of version 2 of the GNU General Public License as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * General Public License for more details.
17  *
18  * BSD LICENSE
19  *
20  * Redistribution and use in source and binary forms, with or without
21  * modification, are permitted provided that the following conditions
22  * are met:
23  *
24  *  - Redistributions of source code must retain the above copyright
25  *    notice, this list of conditions and the following disclaimer.
26  *  - Redistributions in binary form must reproduce the above copyright
27  *    notice, this list of conditions and the following disclaimer in
28  *    the documentation and/or other materials provided with the
29  *    distribution.
30  *  - Neither the name of Intel Corporation nor the names of its
31  *    contributors may be used to endorse or promote products derived
32  *    from this software without specific prior written permission.
33  *
34  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45  *
46  */
47 
48 /*
49  * This file contains all of the code that is specific to the HFI chip
50  */
51 
52 #include <linux/pci.h>
53 #include <linux/delay.h>
54 #include <linux/interrupt.h>
55 #include <linux/module.h>
56 
57 #include "hfi.h"
58 #include "trace.h"
59 #include "mad.h"
60 #include "pio.h"
61 #include "sdma.h"
62 #include "eprom.h"
63 #include "efivar.h"
64 #include "platform.h"
65 #include "aspm.h"
66 #include "affinity.h"
67 
68 #define NUM_IB_PORTS 1
69 
70 uint kdeth_qp;
71 module_param_named(kdeth_qp, kdeth_qp, uint, S_IRUGO);
72 MODULE_PARM_DESC(kdeth_qp, "Set the KDETH queue pair prefix");
73 
74 uint num_vls = HFI1_MAX_VLS_SUPPORTED;
75 module_param(num_vls, uint, S_IRUGO);
76 MODULE_PARM_DESC(num_vls, "Set number of Virtual Lanes to use (1-8)");
77 
78 /*
79  * Default time to aggregate two 10K packets from the idle state
80  * (timer not running). The timer starts at the end of the first packet,
81  * so only the time for one 10K packet and header plus a bit extra is needed.
82  * 10 * 1024 + 64 header byte = 10304 byte
83  * 10304 byte / 12.5 GB/s = 824.32ns
84  */
85 uint rcv_intr_timeout = (824 + 16); /* 16 is for coalescing interrupt */
86 module_param(rcv_intr_timeout, uint, S_IRUGO);
87 MODULE_PARM_DESC(rcv_intr_timeout, "Receive interrupt mitigation timeout in ns");
88 
89 uint rcv_intr_count = 16; /* same as qib */
90 module_param(rcv_intr_count, uint, S_IRUGO);
91 MODULE_PARM_DESC(rcv_intr_count, "Receive interrupt mitigation count");
92 
93 ushort link_crc_mask = SUPPORTED_CRCS;
94 module_param(link_crc_mask, ushort, S_IRUGO);
95 MODULE_PARM_DESC(link_crc_mask, "CRCs to use on the link");
96 
97 uint loopback;
98 module_param_named(loopback, loopback, uint, S_IRUGO);
99 MODULE_PARM_DESC(loopback, "Put into loopback mode (1 = serdes, 3 = external cable");
100 
101 /* Other driver tunables */
102 uint rcv_intr_dynamic = 1; /* enable dynamic mode for rcv int mitigation*/
103 static ushort crc_14b_sideband = 1;
104 static uint use_flr = 1;
105 uint quick_linkup; /* skip LNI */
106 
107 struct flag_table {
108 	u64 flag;	/* the flag */
109 	char *str;	/* description string */
110 	u16 extra;	/* extra information */
111 	u16 unused0;
112 	u32 unused1;
113 };
114 
115 /* str must be a string constant */
116 #define FLAG_ENTRY(str, extra, flag) {flag, str, extra}
117 #define FLAG_ENTRY0(str, flag) {flag, str, 0}
118 
119 /* Send Error Consequences */
120 #define SEC_WRITE_DROPPED	0x1
121 #define SEC_PACKET_DROPPED	0x2
122 #define SEC_SC_HALTED		0x4	/* per-context only */
123 #define SEC_SPC_FREEZE		0x8	/* per-HFI only */
124 
125 #define DEFAULT_KRCVQS		  2
126 #define MIN_KERNEL_KCTXTS         2
127 #define FIRST_KERNEL_KCTXT        1
128 /* sizes for both the QP and RSM map tables */
129 #define NUM_MAP_ENTRIES		256
130 #define NUM_MAP_REGS             32
131 
132 /* Bit offset into the GUID which carries HFI id information */
133 #define GUID_HFI_INDEX_SHIFT     39
134 
135 /* extract the emulation revision */
136 #define emulator_rev(dd) ((dd)->irev >> 8)
137 /* parallel and serial emulation versions are 3 and 4 respectively */
138 #define is_emulator_p(dd) ((((dd)->irev) & 0xf) == 3)
139 #define is_emulator_s(dd) ((((dd)->irev) & 0xf) == 4)
140 
141 /* RSM fields */
142 
143 /* packet type */
144 #define IB_PACKET_TYPE         2ull
145 #define QW_SHIFT               6ull
146 /* QPN[7..1] */
147 #define QPN_WIDTH              7ull
148 
149 /* LRH.BTH: QW 0, OFFSET 48 - for match */
150 #define LRH_BTH_QW             0ull
151 #define LRH_BTH_BIT_OFFSET     48ull
152 #define LRH_BTH_OFFSET(off)    ((LRH_BTH_QW << QW_SHIFT) | (off))
153 #define LRH_BTH_MATCH_OFFSET   LRH_BTH_OFFSET(LRH_BTH_BIT_OFFSET)
154 #define LRH_BTH_SELECT
155 #define LRH_BTH_MASK           3ull
156 #define LRH_BTH_VALUE          2ull
157 
158 /* LRH.SC[3..0] QW 0, OFFSET 56 - for match */
159 #define LRH_SC_QW              0ull
160 #define LRH_SC_BIT_OFFSET      56ull
161 #define LRH_SC_OFFSET(off)     ((LRH_SC_QW << QW_SHIFT) | (off))
162 #define LRH_SC_MATCH_OFFSET    LRH_SC_OFFSET(LRH_SC_BIT_OFFSET)
163 #define LRH_SC_MASK            128ull
164 #define LRH_SC_VALUE           0ull
165 
166 /* SC[n..0] QW 0, OFFSET 60 - for select */
167 #define LRH_SC_SELECT_OFFSET  ((LRH_SC_QW << QW_SHIFT) | (60ull))
168 
169 /* QPN[m+n:1] QW 1, OFFSET 1 */
170 #define QPN_SELECT_OFFSET      ((1ull << QW_SHIFT) | (1ull))
171 
172 /* defines to build power on SC2VL table */
173 #define SC2VL_VAL( \
174 	num, \
175 	sc0, sc0val, \
176 	sc1, sc1val, \
177 	sc2, sc2val, \
178 	sc3, sc3val, \
179 	sc4, sc4val, \
180 	sc5, sc5val, \
181 	sc6, sc6val, \
182 	sc7, sc7val) \
183 ( \
184 	((u64)(sc0val) << SEND_SC2VLT##num##_SC##sc0##_SHIFT) | \
185 	((u64)(sc1val) << SEND_SC2VLT##num##_SC##sc1##_SHIFT) | \
186 	((u64)(sc2val) << SEND_SC2VLT##num##_SC##sc2##_SHIFT) | \
187 	((u64)(sc3val) << SEND_SC2VLT##num##_SC##sc3##_SHIFT) | \
188 	((u64)(sc4val) << SEND_SC2VLT##num##_SC##sc4##_SHIFT) | \
189 	((u64)(sc5val) << SEND_SC2VLT##num##_SC##sc5##_SHIFT) | \
190 	((u64)(sc6val) << SEND_SC2VLT##num##_SC##sc6##_SHIFT) | \
191 	((u64)(sc7val) << SEND_SC2VLT##num##_SC##sc7##_SHIFT)   \
192 )
193 
194 #define DC_SC_VL_VAL( \
195 	range, \
196 	e0, e0val, \
197 	e1, e1val, \
198 	e2, e2val, \
199 	e3, e3val, \
200 	e4, e4val, \
201 	e5, e5val, \
202 	e6, e6val, \
203 	e7, e7val, \
204 	e8, e8val, \
205 	e9, e9val, \
206 	e10, e10val, \
207 	e11, e11val, \
208 	e12, e12val, \
209 	e13, e13val, \
210 	e14, e14val, \
211 	e15, e15val) \
212 ( \
213 	((u64)(e0val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e0##_SHIFT) | \
214 	((u64)(e1val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e1##_SHIFT) | \
215 	((u64)(e2val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e2##_SHIFT) | \
216 	((u64)(e3val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e3##_SHIFT) | \
217 	((u64)(e4val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e4##_SHIFT) | \
218 	((u64)(e5val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e5##_SHIFT) | \
219 	((u64)(e6val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e6##_SHIFT) | \
220 	((u64)(e7val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e7##_SHIFT) | \
221 	((u64)(e8val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e8##_SHIFT) | \
222 	((u64)(e9val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e9##_SHIFT) | \
223 	((u64)(e10val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e10##_SHIFT) | \
224 	((u64)(e11val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e11##_SHIFT) | \
225 	((u64)(e12val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e12##_SHIFT) | \
226 	((u64)(e13val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e13##_SHIFT) | \
227 	((u64)(e14val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e14##_SHIFT) | \
228 	((u64)(e15val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e15##_SHIFT) \
229 )
230 
231 /* all CceStatus sub-block freeze bits */
232 #define ALL_FROZE (CCE_STATUS_SDMA_FROZE_SMASK \
233 			| CCE_STATUS_RXE_FROZE_SMASK \
234 			| CCE_STATUS_TXE_FROZE_SMASK \
235 			| CCE_STATUS_TXE_PIO_FROZE_SMASK)
236 /* all CceStatus sub-block TXE pause bits */
237 #define ALL_TXE_PAUSE (CCE_STATUS_TXE_PIO_PAUSED_SMASK \
238 			| CCE_STATUS_TXE_PAUSED_SMASK \
239 			| CCE_STATUS_SDMA_PAUSED_SMASK)
240 /* all CceStatus sub-block RXE pause bits */
241 #define ALL_RXE_PAUSE CCE_STATUS_RXE_PAUSED_SMASK
242 
243 #define CNTR_MAX 0xFFFFFFFFFFFFFFFFULL
244 #define CNTR_32BIT_MAX 0x00000000FFFFFFFF
245 
246 /*
247  * CCE Error flags.
248  */
249 static struct flag_table cce_err_status_flags[] = {
250 /* 0*/	FLAG_ENTRY0("CceCsrParityErr",
251 		CCE_ERR_STATUS_CCE_CSR_PARITY_ERR_SMASK),
252 /* 1*/	FLAG_ENTRY0("CceCsrReadBadAddrErr",
253 		CCE_ERR_STATUS_CCE_CSR_READ_BAD_ADDR_ERR_SMASK),
254 /* 2*/	FLAG_ENTRY0("CceCsrWriteBadAddrErr",
255 		CCE_ERR_STATUS_CCE_CSR_WRITE_BAD_ADDR_ERR_SMASK),
256 /* 3*/	FLAG_ENTRY0("CceTrgtAsyncFifoParityErr",
257 		CCE_ERR_STATUS_CCE_TRGT_ASYNC_FIFO_PARITY_ERR_SMASK),
258 /* 4*/	FLAG_ENTRY0("CceTrgtAccessErr",
259 		CCE_ERR_STATUS_CCE_TRGT_ACCESS_ERR_SMASK),
260 /* 5*/	FLAG_ENTRY0("CceRspdDataParityErr",
261 		CCE_ERR_STATUS_CCE_RSPD_DATA_PARITY_ERR_SMASK),
262 /* 6*/	FLAG_ENTRY0("CceCli0AsyncFifoParityErr",
263 		CCE_ERR_STATUS_CCE_CLI0_ASYNC_FIFO_PARITY_ERR_SMASK),
264 /* 7*/	FLAG_ENTRY0("CceCsrCfgBusParityErr",
265 		CCE_ERR_STATUS_CCE_CSR_CFG_BUS_PARITY_ERR_SMASK),
266 /* 8*/	FLAG_ENTRY0("CceCli2AsyncFifoParityErr",
267 		CCE_ERR_STATUS_CCE_CLI2_ASYNC_FIFO_PARITY_ERR_SMASK),
268 /* 9*/	FLAG_ENTRY0("CceCli1AsyncFifoPioCrdtParityErr",
269 	    CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_PIO_CRDT_PARITY_ERR_SMASK),
270 /*10*/	FLAG_ENTRY0("CceCli1AsyncFifoPioCrdtParityErr",
271 	    CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_SDMA_HD_PARITY_ERR_SMASK),
272 /*11*/	FLAG_ENTRY0("CceCli1AsyncFifoRxdmaParityError",
273 	    CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_RXDMA_PARITY_ERROR_SMASK),
274 /*12*/	FLAG_ENTRY0("CceCli1AsyncFifoDbgParityError",
275 		CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_DBG_PARITY_ERROR_SMASK),
276 /*13*/	FLAG_ENTRY0("PcicRetryMemCorErr",
277 		CCE_ERR_STATUS_PCIC_RETRY_MEM_COR_ERR_SMASK),
278 /*14*/	FLAG_ENTRY0("PcicRetryMemCorErr",
279 		CCE_ERR_STATUS_PCIC_RETRY_SOT_MEM_COR_ERR_SMASK),
280 /*15*/	FLAG_ENTRY0("PcicPostHdQCorErr",
281 		CCE_ERR_STATUS_PCIC_POST_HD_QCOR_ERR_SMASK),
282 /*16*/	FLAG_ENTRY0("PcicPostHdQCorErr",
283 		CCE_ERR_STATUS_PCIC_POST_DAT_QCOR_ERR_SMASK),
284 /*17*/	FLAG_ENTRY0("PcicPostHdQCorErr",
285 		CCE_ERR_STATUS_PCIC_CPL_HD_QCOR_ERR_SMASK),
286 /*18*/	FLAG_ENTRY0("PcicCplDatQCorErr",
287 		CCE_ERR_STATUS_PCIC_CPL_DAT_QCOR_ERR_SMASK),
288 /*19*/	FLAG_ENTRY0("PcicNPostHQParityErr",
289 		CCE_ERR_STATUS_PCIC_NPOST_HQ_PARITY_ERR_SMASK),
290 /*20*/	FLAG_ENTRY0("PcicNPostDatQParityErr",
291 		CCE_ERR_STATUS_PCIC_NPOST_DAT_QPARITY_ERR_SMASK),
292 /*21*/	FLAG_ENTRY0("PcicRetryMemUncErr",
293 		CCE_ERR_STATUS_PCIC_RETRY_MEM_UNC_ERR_SMASK),
294 /*22*/	FLAG_ENTRY0("PcicRetrySotMemUncErr",
295 		CCE_ERR_STATUS_PCIC_RETRY_SOT_MEM_UNC_ERR_SMASK),
296 /*23*/	FLAG_ENTRY0("PcicPostHdQUncErr",
297 		CCE_ERR_STATUS_PCIC_POST_HD_QUNC_ERR_SMASK),
298 /*24*/	FLAG_ENTRY0("PcicPostDatQUncErr",
299 		CCE_ERR_STATUS_PCIC_POST_DAT_QUNC_ERR_SMASK),
300 /*25*/	FLAG_ENTRY0("PcicCplHdQUncErr",
301 		CCE_ERR_STATUS_PCIC_CPL_HD_QUNC_ERR_SMASK),
302 /*26*/	FLAG_ENTRY0("PcicCplDatQUncErr",
303 		CCE_ERR_STATUS_PCIC_CPL_DAT_QUNC_ERR_SMASK),
304 /*27*/	FLAG_ENTRY0("PcicTransmitFrontParityErr",
305 		CCE_ERR_STATUS_PCIC_TRANSMIT_FRONT_PARITY_ERR_SMASK),
306 /*28*/	FLAG_ENTRY0("PcicTransmitBackParityErr",
307 		CCE_ERR_STATUS_PCIC_TRANSMIT_BACK_PARITY_ERR_SMASK),
308 /*29*/	FLAG_ENTRY0("PcicReceiveParityErr",
309 		CCE_ERR_STATUS_PCIC_RECEIVE_PARITY_ERR_SMASK),
310 /*30*/	FLAG_ENTRY0("CceTrgtCplTimeoutErr",
311 		CCE_ERR_STATUS_CCE_TRGT_CPL_TIMEOUT_ERR_SMASK),
312 /*31*/	FLAG_ENTRY0("LATriggered",
313 		CCE_ERR_STATUS_LA_TRIGGERED_SMASK),
314 /*32*/	FLAG_ENTRY0("CceSegReadBadAddrErr",
315 		CCE_ERR_STATUS_CCE_SEG_READ_BAD_ADDR_ERR_SMASK),
316 /*33*/	FLAG_ENTRY0("CceSegWriteBadAddrErr",
317 		CCE_ERR_STATUS_CCE_SEG_WRITE_BAD_ADDR_ERR_SMASK),
318 /*34*/	FLAG_ENTRY0("CceRcplAsyncFifoParityErr",
319 		CCE_ERR_STATUS_CCE_RCPL_ASYNC_FIFO_PARITY_ERR_SMASK),
320 /*35*/	FLAG_ENTRY0("CceRxdmaConvFifoParityErr",
321 		CCE_ERR_STATUS_CCE_RXDMA_CONV_FIFO_PARITY_ERR_SMASK),
322 /*36*/	FLAG_ENTRY0("CceMsixTableCorErr",
323 		CCE_ERR_STATUS_CCE_MSIX_TABLE_COR_ERR_SMASK),
324 /*37*/	FLAG_ENTRY0("CceMsixTableUncErr",
325 		CCE_ERR_STATUS_CCE_MSIX_TABLE_UNC_ERR_SMASK),
326 /*38*/	FLAG_ENTRY0("CceIntMapCorErr",
327 		CCE_ERR_STATUS_CCE_INT_MAP_COR_ERR_SMASK),
328 /*39*/	FLAG_ENTRY0("CceIntMapUncErr",
329 		CCE_ERR_STATUS_CCE_INT_MAP_UNC_ERR_SMASK),
330 /*40*/	FLAG_ENTRY0("CceMsixCsrParityErr",
331 		CCE_ERR_STATUS_CCE_MSIX_CSR_PARITY_ERR_SMASK),
332 /*41-63 reserved*/
333 };
334 
335 /*
336  * Misc Error flags
337  */
338 #define MES(text) MISC_ERR_STATUS_MISC_##text##_ERR_SMASK
339 static struct flag_table misc_err_status_flags[] = {
340 /* 0*/	FLAG_ENTRY0("CSR_PARITY", MES(CSR_PARITY)),
341 /* 1*/	FLAG_ENTRY0("CSR_READ_BAD_ADDR", MES(CSR_READ_BAD_ADDR)),
342 /* 2*/	FLAG_ENTRY0("CSR_WRITE_BAD_ADDR", MES(CSR_WRITE_BAD_ADDR)),
343 /* 3*/	FLAG_ENTRY0("SBUS_WRITE_FAILED", MES(SBUS_WRITE_FAILED)),
344 /* 4*/	FLAG_ENTRY0("KEY_MISMATCH", MES(KEY_MISMATCH)),
345 /* 5*/	FLAG_ENTRY0("FW_AUTH_FAILED", MES(FW_AUTH_FAILED)),
346 /* 6*/	FLAG_ENTRY0("EFUSE_CSR_PARITY", MES(EFUSE_CSR_PARITY)),
347 /* 7*/	FLAG_ENTRY0("EFUSE_READ_BAD_ADDR", MES(EFUSE_READ_BAD_ADDR)),
348 /* 8*/	FLAG_ENTRY0("EFUSE_WRITE", MES(EFUSE_WRITE)),
349 /* 9*/	FLAG_ENTRY0("EFUSE_DONE_PARITY", MES(EFUSE_DONE_PARITY)),
350 /*10*/	FLAG_ENTRY0("INVALID_EEP_CMD", MES(INVALID_EEP_CMD)),
351 /*11*/	FLAG_ENTRY0("MBIST_FAIL", MES(MBIST_FAIL)),
352 /*12*/	FLAG_ENTRY0("PLL_LOCK_FAIL", MES(PLL_LOCK_FAIL))
353 };
354 
355 /*
356  * TXE PIO Error flags and consequences
357  */
358 static struct flag_table pio_err_status_flags[] = {
359 /* 0*/	FLAG_ENTRY("PioWriteBadCtxt",
360 	SEC_WRITE_DROPPED,
361 	SEND_PIO_ERR_STATUS_PIO_WRITE_BAD_CTXT_ERR_SMASK),
362 /* 1*/	FLAG_ENTRY("PioWriteAddrParity",
363 	SEC_SPC_FREEZE,
364 	SEND_PIO_ERR_STATUS_PIO_WRITE_ADDR_PARITY_ERR_SMASK),
365 /* 2*/	FLAG_ENTRY("PioCsrParity",
366 	SEC_SPC_FREEZE,
367 	SEND_PIO_ERR_STATUS_PIO_CSR_PARITY_ERR_SMASK),
368 /* 3*/	FLAG_ENTRY("PioSbMemFifo0",
369 	SEC_SPC_FREEZE,
370 	SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO0_ERR_SMASK),
371 /* 4*/	FLAG_ENTRY("PioSbMemFifo1",
372 	SEC_SPC_FREEZE,
373 	SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO1_ERR_SMASK),
374 /* 5*/	FLAG_ENTRY("PioPccFifoParity",
375 	SEC_SPC_FREEZE,
376 	SEND_PIO_ERR_STATUS_PIO_PCC_FIFO_PARITY_ERR_SMASK),
377 /* 6*/	FLAG_ENTRY("PioPecFifoParity",
378 	SEC_SPC_FREEZE,
379 	SEND_PIO_ERR_STATUS_PIO_PEC_FIFO_PARITY_ERR_SMASK),
380 /* 7*/	FLAG_ENTRY("PioSbrdctlCrrelParity",
381 	SEC_SPC_FREEZE,
382 	SEND_PIO_ERR_STATUS_PIO_SBRDCTL_CRREL_PARITY_ERR_SMASK),
383 /* 8*/	FLAG_ENTRY("PioSbrdctrlCrrelFifoParity",
384 	SEC_SPC_FREEZE,
385 	SEND_PIO_ERR_STATUS_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR_SMASK),
386 /* 9*/	FLAG_ENTRY("PioPktEvictFifoParityErr",
387 	SEC_SPC_FREEZE,
388 	SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_FIFO_PARITY_ERR_SMASK),
389 /*10*/	FLAG_ENTRY("PioSmPktResetParity",
390 	SEC_SPC_FREEZE,
391 	SEND_PIO_ERR_STATUS_PIO_SM_PKT_RESET_PARITY_ERR_SMASK),
392 /*11*/	FLAG_ENTRY("PioVlLenMemBank0Unc",
393 	SEC_SPC_FREEZE,
394 	SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_UNC_ERR_SMASK),
395 /*12*/	FLAG_ENTRY("PioVlLenMemBank1Unc",
396 	SEC_SPC_FREEZE,
397 	SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_UNC_ERR_SMASK),
398 /*13*/	FLAG_ENTRY("PioVlLenMemBank0Cor",
399 	0,
400 	SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_COR_ERR_SMASK),
401 /*14*/	FLAG_ENTRY("PioVlLenMemBank1Cor",
402 	0,
403 	SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_COR_ERR_SMASK),
404 /*15*/	FLAG_ENTRY("PioCreditRetFifoParity",
405 	SEC_SPC_FREEZE,
406 	SEND_PIO_ERR_STATUS_PIO_CREDIT_RET_FIFO_PARITY_ERR_SMASK),
407 /*16*/	FLAG_ENTRY("PioPpmcPblFifo",
408 	SEC_SPC_FREEZE,
409 	SEND_PIO_ERR_STATUS_PIO_PPMC_PBL_FIFO_ERR_SMASK),
410 /*17*/	FLAG_ENTRY("PioInitSmIn",
411 	0,
412 	SEND_PIO_ERR_STATUS_PIO_INIT_SM_IN_ERR_SMASK),
413 /*18*/	FLAG_ENTRY("PioPktEvictSmOrArbSm",
414 	SEC_SPC_FREEZE,
415 	SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_SM_OR_ARB_SM_ERR_SMASK),
416 /*19*/	FLAG_ENTRY("PioHostAddrMemUnc",
417 	SEC_SPC_FREEZE,
418 	SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_UNC_ERR_SMASK),
419 /*20*/	FLAG_ENTRY("PioHostAddrMemCor",
420 	0,
421 	SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_COR_ERR_SMASK),
422 /*21*/	FLAG_ENTRY("PioWriteDataParity",
423 	SEC_SPC_FREEZE,
424 	SEND_PIO_ERR_STATUS_PIO_WRITE_DATA_PARITY_ERR_SMASK),
425 /*22*/	FLAG_ENTRY("PioStateMachine",
426 	SEC_SPC_FREEZE,
427 	SEND_PIO_ERR_STATUS_PIO_STATE_MACHINE_ERR_SMASK),
428 /*23*/	FLAG_ENTRY("PioWriteQwValidParity",
429 	SEC_WRITE_DROPPED | SEC_SPC_FREEZE,
430 	SEND_PIO_ERR_STATUS_PIO_WRITE_QW_VALID_PARITY_ERR_SMASK),
431 /*24*/	FLAG_ENTRY("PioBlockQwCountParity",
432 	SEC_WRITE_DROPPED | SEC_SPC_FREEZE,
433 	SEND_PIO_ERR_STATUS_PIO_BLOCK_QW_COUNT_PARITY_ERR_SMASK),
434 /*25*/	FLAG_ENTRY("PioVlfVlLenParity",
435 	SEC_SPC_FREEZE,
436 	SEND_PIO_ERR_STATUS_PIO_VLF_VL_LEN_PARITY_ERR_SMASK),
437 /*26*/	FLAG_ENTRY("PioVlfSopParity",
438 	SEC_SPC_FREEZE,
439 	SEND_PIO_ERR_STATUS_PIO_VLF_SOP_PARITY_ERR_SMASK),
440 /*27*/	FLAG_ENTRY("PioVlFifoParity",
441 	SEC_SPC_FREEZE,
442 	SEND_PIO_ERR_STATUS_PIO_VL_FIFO_PARITY_ERR_SMASK),
443 /*28*/	FLAG_ENTRY("PioPpmcBqcMemParity",
444 	SEC_SPC_FREEZE,
445 	SEND_PIO_ERR_STATUS_PIO_PPMC_BQC_MEM_PARITY_ERR_SMASK),
446 /*29*/	FLAG_ENTRY("PioPpmcSopLen",
447 	SEC_SPC_FREEZE,
448 	SEND_PIO_ERR_STATUS_PIO_PPMC_SOP_LEN_ERR_SMASK),
449 /*30-31 reserved*/
450 /*32*/	FLAG_ENTRY("PioCurrentFreeCntParity",
451 	SEC_SPC_FREEZE,
452 	SEND_PIO_ERR_STATUS_PIO_CURRENT_FREE_CNT_PARITY_ERR_SMASK),
453 /*33*/	FLAG_ENTRY("PioLastReturnedCntParity",
454 	SEC_SPC_FREEZE,
455 	SEND_PIO_ERR_STATUS_PIO_LAST_RETURNED_CNT_PARITY_ERR_SMASK),
456 /*34*/	FLAG_ENTRY("PioPccSopHeadParity",
457 	SEC_SPC_FREEZE,
458 	SEND_PIO_ERR_STATUS_PIO_PCC_SOP_HEAD_PARITY_ERR_SMASK),
459 /*35*/	FLAG_ENTRY("PioPecSopHeadParityErr",
460 	SEC_SPC_FREEZE,
461 	SEND_PIO_ERR_STATUS_PIO_PEC_SOP_HEAD_PARITY_ERR_SMASK),
462 /*36-63 reserved*/
463 };
464 
465 /* TXE PIO errors that cause an SPC freeze */
466 #define ALL_PIO_FREEZE_ERR \
467 	(SEND_PIO_ERR_STATUS_PIO_WRITE_ADDR_PARITY_ERR_SMASK \
468 	| SEND_PIO_ERR_STATUS_PIO_CSR_PARITY_ERR_SMASK \
469 	| SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO0_ERR_SMASK \
470 	| SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO1_ERR_SMASK \
471 	| SEND_PIO_ERR_STATUS_PIO_PCC_FIFO_PARITY_ERR_SMASK \
472 	| SEND_PIO_ERR_STATUS_PIO_PEC_FIFO_PARITY_ERR_SMASK \
473 	| SEND_PIO_ERR_STATUS_PIO_SBRDCTL_CRREL_PARITY_ERR_SMASK \
474 	| SEND_PIO_ERR_STATUS_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR_SMASK \
475 	| SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_FIFO_PARITY_ERR_SMASK \
476 	| SEND_PIO_ERR_STATUS_PIO_SM_PKT_RESET_PARITY_ERR_SMASK \
477 	| SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_UNC_ERR_SMASK \
478 	| SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_UNC_ERR_SMASK \
479 	| SEND_PIO_ERR_STATUS_PIO_CREDIT_RET_FIFO_PARITY_ERR_SMASK \
480 	| SEND_PIO_ERR_STATUS_PIO_PPMC_PBL_FIFO_ERR_SMASK \
481 	| SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_SM_OR_ARB_SM_ERR_SMASK \
482 	| SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_UNC_ERR_SMASK \
483 	| SEND_PIO_ERR_STATUS_PIO_WRITE_DATA_PARITY_ERR_SMASK \
484 	| SEND_PIO_ERR_STATUS_PIO_STATE_MACHINE_ERR_SMASK \
485 	| SEND_PIO_ERR_STATUS_PIO_WRITE_QW_VALID_PARITY_ERR_SMASK \
486 	| SEND_PIO_ERR_STATUS_PIO_BLOCK_QW_COUNT_PARITY_ERR_SMASK \
487 	| SEND_PIO_ERR_STATUS_PIO_VLF_VL_LEN_PARITY_ERR_SMASK \
488 	| SEND_PIO_ERR_STATUS_PIO_VLF_SOP_PARITY_ERR_SMASK \
489 	| SEND_PIO_ERR_STATUS_PIO_VL_FIFO_PARITY_ERR_SMASK \
490 	| SEND_PIO_ERR_STATUS_PIO_PPMC_BQC_MEM_PARITY_ERR_SMASK \
491 	| SEND_PIO_ERR_STATUS_PIO_PPMC_SOP_LEN_ERR_SMASK \
492 	| SEND_PIO_ERR_STATUS_PIO_CURRENT_FREE_CNT_PARITY_ERR_SMASK \
493 	| SEND_PIO_ERR_STATUS_PIO_LAST_RETURNED_CNT_PARITY_ERR_SMASK \
494 	| SEND_PIO_ERR_STATUS_PIO_PCC_SOP_HEAD_PARITY_ERR_SMASK \
495 	| SEND_PIO_ERR_STATUS_PIO_PEC_SOP_HEAD_PARITY_ERR_SMASK)
496 
497 /*
498  * TXE SDMA Error flags
499  */
500 static struct flag_table sdma_err_status_flags[] = {
501 /* 0*/	FLAG_ENTRY0("SDmaRpyTagErr",
502 		SEND_DMA_ERR_STATUS_SDMA_RPY_TAG_ERR_SMASK),
503 /* 1*/	FLAG_ENTRY0("SDmaCsrParityErr",
504 		SEND_DMA_ERR_STATUS_SDMA_CSR_PARITY_ERR_SMASK),
505 /* 2*/	FLAG_ENTRY0("SDmaPcieReqTrackingUncErr",
506 		SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_UNC_ERR_SMASK),
507 /* 3*/	FLAG_ENTRY0("SDmaPcieReqTrackingCorErr",
508 		SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_COR_ERR_SMASK),
509 /*04-63 reserved*/
510 };
511 
512 /* TXE SDMA errors that cause an SPC freeze */
513 #define ALL_SDMA_FREEZE_ERR  \
514 		(SEND_DMA_ERR_STATUS_SDMA_RPY_TAG_ERR_SMASK \
515 		| SEND_DMA_ERR_STATUS_SDMA_CSR_PARITY_ERR_SMASK \
516 		| SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_UNC_ERR_SMASK)
517 
518 /* SendEgressErrInfo bits that correspond to a PortXmitDiscard counter */
519 #define PORT_DISCARD_EGRESS_ERRS \
520 	(SEND_EGRESS_ERR_INFO_TOO_LONG_IB_PACKET_ERR_SMASK \
521 	| SEND_EGRESS_ERR_INFO_VL_MAPPING_ERR_SMASK \
522 	| SEND_EGRESS_ERR_INFO_VL_ERR_SMASK)
523 
524 /*
525  * TXE Egress Error flags
526  */
527 #define SEES(text) SEND_EGRESS_ERR_STATUS_##text##_ERR_SMASK
528 static struct flag_table egress_err_status_flags[] = {
529 /* 0*/	FLAG_ENTRY0("TxPktIntegrityMemCorErr", SEES(TX_PKT_INTEGRITY_MEM_COR)),
530 /* 1*/	FLAG_ENTRY0("TxPktIntegrityMemUncErr", SEES(TX_PKT_INTEGRITY_MEM_UNC)),
531 /* 2 reserved */
532 /* 3*/	FLAG_ENTRY0("TxEgressFifoUnderrunOrParityErr",
533 		SEES(TX_EGRESS_FIFO_UNDERRUN_OR_PARITY)),
534 /* 4*/	FLAG_ENTRY0("TxLinkdownErr", SEES(TX_LINKDOWN)),
535 /* 5*/	FLAG_ENTRY0("TxIncorrectLinkStateErr", SEES(TX_INCORRECT_LINK_STATE)),
536 /* 6 reserved */
537 /* 7*/	FLAG_ENTRY0("TxPioLaunchIntfParityErr",
538 		SEES(TX_PIO_LAUNCH_INTF_PARITY)),
539 /* 8*/	FLAG_ENTRY0("TxSdmaLaunchIntfParityErr",
540 		SEES(TX_SDMA_LAUNCH_INTF_PARITY)),
541 /* 9-10 reserved */
542 /*11*/	FLAG_ENTRY0("TxSbrdCtlStateMachineParityErr",
543 		SEES(TX_SBRD_CTL_STATE_MACHINE_PARITY)),
544 /*12*/	FLAG_ENTRY0("TxIllegalVLErr", SEES(TX_ILLEGAL_VL)),
545 /*13*/	FLAG_ENTRY0("TxLaunchCsrParityErr", SEES(TX_LAUNCH_CSR_PARITY)),
546 /*14*/	FLAG_ENTRY0("TxSbrdCtlCsrParityErr", SEES(TX_SBRD_CTL_CSR_PARITY)),
547 /*15*/	FLAG_ENTRY0("TxConfigParityErr", SEES(TX_CONFIG_PARITY)),
548 /*16*/	FLAG_ENTRY0("TxSdma0DisallowedPacketErr",
549 		SEES(TX_SDMA0_DISALLOWED_PACKET)),
550 /*17*/	FLAG_ENTRY0("TxSdma1DisallowedPacketErr",
551 		SEES(TX_SDMA1_DISALLOWED_PACKET)),
552 /*18*/	FLAG_ENTRY0("TxSdma2DisallowedPacketErr",
553 		SEES(TX_SDMA2_DISALLOWED_PACKET)),
554 /*19*/	FLAG_ENTRY0("TxSdma3DisallowedPacketErr",
555 		SEES(TX_SDMA3_DISALLOWED_PACKET)),
556 /*20*/	FLAG_ENTRY0("TxSdma4DisallowedPacketErr",
557 		SEES(TX_SDMA4_DISALLOWED_PACKET)),
558 /*21*/	FLAG_ENTRY0("TxSdma5DisallowedPacketErr",
559 		SEES(TX_SDMA5_DISALLOWED_PACKET)),
560 /*22*/	FLAG_ENTRY0("TxSdma6DisallowedPacketErr",
561 		SEES(TX_SDMA6_DISALLOWED_PACKET)),
562 /*23*/	FLAG_ENTRY0("TxSdma7DisallowedPacketErr",
563 		SEES(TX_SDMA7_DISALLOWED_PACKET)),
564 /*24*/	FLAG_ENTRY0("TxSdma8DisallowedPacketErr",
565 		SEES(TX_SDMA8_DISALLOWED_PACKET)),
566 /*25*/	FLAG_ENTRY0("TxSdma9DisallowedPacketErr",
567 		SEES(TX_SDMA9_DISALLOWED_PACKET)),
568 /*26*/	FLAG_ENTRY0("TxSdma10DisallowedPacketErr",
569 		SEES(TX_SDMA10_DISALLOWED_PACKET)),
570 /*27*/	FLAG_ENTRY0("TxSdma11DisallowedPacketErr",
571 		SEES(TX_SDMA11_DISALLOWED_PACKET)),
572 /*28*/	FLAG_ENTRY0("TxSdma12DisallowedPacketErr",
573 		SEES(TX_SDMA12_DISALLOWED_PACKET)),
574 /*29*/	FLAG_ENTRY0("TxSdma13DisallowedPacketErr",
575 		SEES(TX_SDMA13_DISALLOWED_PACKET)),
576 /*30*/	FLAG_ENTRY0("TxSdma14DisallowedPacketErr",
577 		SEES(TX_SDMA14_DISALLOWED_PACKET)),
578 /*31*/	FLAG_ENTRY0("TxSdma15DisallowedPacketErr",
579 		SEES(TX_SDMA15_DISALLOWED_PACKET)),
580 /*32*/	FLAG_ENTRY0("TxLaunchFifo0UncOrParityErr",
581 		SEES(TX_LAUNCH_FIFO0_UNC_OR_PARITY)),
582 /*33*/	FLAG_ENTRY0("TxLaunchFifo1UncOrParityErr",
583 		SEES(TX_LAUNCH_FIFO1_UNC_OR_PARITY)),
584 /*34*/	FLAG_ENTRY0("TxLaunchFifo2UncOrParityErr",
585 		SEES(TX_LAUNCH_FIFO2_UNC_OR_PARITY)),
586 /*35*/	FLAG_ENTRY0("TxLaunchFifo3UncOrParityErr",
587 		SEES(TX_LAUNCH_FIFO3_UNC_OR_PARITY)),
588 /*36*/	FLAG_ENTRY0("TxLaunchFifo4UncOrParityErr",
589 		SEES(TX_LAUNCH_FIFO4_UNC_OR_PARITY)),
590 /*37*/	FLAG_ENTRY0("TxLaunchFifo5UncOrParityErr",
591 		SEES(TX_LAUNCH_FIFO5_UNC_OR_PARITY)),
592 /*38*/	FLAG_ENTRY0("TxLaunchFifo6UncOrParityErr",
593 		SEES(TX_LAUNCH_FIFO6_UNC_OR_PARITY)),
594 /*39*/	FLAG_ENTRY0("TxLaunchFifo7UncOrParityErr",
595 		SEES(TX_LAUNCH_FIFO7_UNC_OR_PARITY)),
596 /*40*/	FLAG_ENTRY0("TxLaunchFifo8UncOrParityErr",
597 		SEES(TX_LAUNCH_FIFO8_UNC_OR_PARITY)),
598 /*41*/	FLAG_ENTRY0("TxCreditReturnParityErr", SEES(TX_CREDIT_RETURN_PARITY)),
599 /*42*/	FLAG_ENTRY0("TxSbHdrUncErr", SEES(TX_SB_HDR_UNC)),
600 /*43*/	FLAG_ENTRY0("TxReadSdmaMemoryUncErr", SEES(TX_READ_SDMA_MEMORY_UNC)),
601 /*44*/	FLAG_ENTRY0("TxReadPioMemoryUncErr", SEES(TX_READ_PIO_MEMORY_UNC)),
602 /*45*/	FLAG_ENTRY0("TxEgressFifoUncErr", SEES(TX_EGRESS_FIFO_UNC)),
603 /*46*/	FLAG_ENTRY0("TxHcrcInsertionErr", SEES(TX_HCRC_INSERTION)),
604 /*47*/	FLAG_ENTRY0("TxCreditReturnVLErr", SEES(TX_CREDIT_RETURN_VL)),
605 /*48*/	FLAG_ENTRY0("TxLaunchFifo0CorErr", SEES(TX_LAUNCH_FIFO0_COR)),
606 /*49*/	FLAG_ENTRY0("TxLaunchFifo1CorErr", SEES(TX_LAUNCH_FIFO1_COR)),
607 /*50*/	FLAG_ENTRY0("TxLaunchFifo2CorErr", SEES(TX_LAUNCH_FIFO2_COR)),
608 /*51*/	FLAG_ENTRY0("TxLaunchFifo3CorErr", SEES(TX_LAUNCH_FIFO3_COR)),
609 /*52*/	FLAG_ENTRY0("TxLaunchFifo4CorErr", SEES(TX_LAUNCH_FIFO4_COR)),
610 /*53*/	FLAG_ENTRY0("TxLaunchFifo5CorErr", SEES(TX_LAUNCH_FIFO5_COR)),
611 /*54*/	FLAG_ENTRY0("TxLaunchFifo6CorErr", SEES(TX_LAUNCH_FIFO6_COR)),
612 /*55*/	FLAG_ENTRY0("TxLaunchFifo7CorErr", SEES(TX_LAUNCH_FIFO7_COR)),
613 /*56*/	FLAG_ENTRY0("TxLaunchFifo8CorErr", SEES(TX_LAUNCH_FIFO8_COR)),
614 /*57*/	FLAG_ENTRY0("TxCreditOverrunErr", SEES(TX_CREDIT_OVERRUN)),
615 /*58*/	FLAG_ENTRY0("TxSbHdrCorErr", SEES(TX_SB_HDR_COR)),
616 /*59*/	FLAG_ENTRY0("TxReadSdmaMemoryCorErr", SEES(TX_READ_SDMA_MEMORY_COR)),
617 /*60*/	FLAG_ENTRY0("TxReadPioMemoryCorErr", SEES(TX_READ_PIO_MEMORY_COR)),
618 /*61*/	FLAG_ENTRY0("TxEgressFifoCorErr", SEES(TX_EGRESS_FIFO_COR)),
619 /*62*/	FLAG_ENTRY0("TxReadSdmaMemoryCsrUncErr",
620 		SEES(TX_READ_SDMA_MEMORY_CSR_UNC)),
621 /*63*/	FLAG_ENTRY0("TxReadPioMemoryCsrUncErr",
622 		SEES(TX_READ_PIO_MEMORY_CSR_UNC)),
623 };
624 
625 /*
626  * TXE Egress Error Info flags
627  */
628 #define SEEI(text) SEND_EGRESS_ERR_INFO_##text##_ERR_SMASK
629 static struct flag_table egress_err_info_flags[] = {
630 /* 0*/	FLAG_ENTRY0("Reserved", 0ull),
631 /* 1*/	FLAG_ENTRY0("VLErr", SEEI(VL)),
632 /* 2*/	FLAG_ENTRY0("JobKeyErr", SEEI(JOB_KEY)),
633 /* 3*/	FLAG_ENTRY0("JobKeyErr", SEEI(JOB_KEY)),
634 /* 4*/	FLAG_ENTRY0("PartitionKeyErr", SEEI(PARTITION_KEY)),
635 /* 5*/	FLAG_ENTRY0("SLIDErr", SEEI(SLID)),
636 /* 6*/	FLAG_ENTRY0("OpcodeErr", SEEI(OPCODE)),
637 /* 7*/	FLAG_ENTRY0("VLMappingErr", SEEI(VL_MAPPING)),
638 /* 8*/	FLAG_ENTRY0("RawErr", SEEI(RAW)),
639 /* 9*/	FLAG_ENTRY0("RawIPv6Err", SEEI(RAW_IPV6)),
640 /*10*/	FLAG_ENTRY0("GRHErr", SEEI(GRH)),
641 /*11*/	FLAG_ENTRY0("BypassErr", SEEI(BYPASS)),
642 /*12*/	FLAG_ENTRY0("KDETHPacketsErr", SEEI(KDETH_PACKETS)),
643 /*13*/	FLAG_ENTRY0("NonKDETHPacketsErr", SEEI(NON_KDETH_PACKETS)),
644 /*14*/	FLAG_ENTRY0("TooSmallIBPacketsErr", SEEI(TOO_SMALL_IB_PACKETS)),
645 /*15*/	FLAG_ENTRY0("TooSmallBypassPacketsErr", SEEI(TOO_SMALL_BYPASS_PACKETS)),
646 /*16*/	FLAG_ENTRY0("PbcTestErr", SEEI(PBC_TEST)),
647 /*17*/	FLAG_ENTRY0("BadPktLenErr", SEEI(BAD_PKT_LEN)),
648 /*18*/	FLAG_ENTRY0("TooLongIBPacketErr", SEEI(TOO_LONG_IB_PACKET)),
649 /*19*/	FLAG_ENTRY0("TooLongBypassPacketsErr", SEEI(TOO_LONG_BYPASS_PACKETS)),
650 /*20*/	FLAG_ENTRY0("PbcStaticRateControlErr", SEEI(PBC_STATIC_RATE_CONTROL)),
651 /*21*/	FLAG_ENTRY0("BypassBadPktLenErr", SEEI(BAD_PKT_LEN)),
652 };
653 
654 /* TXE Egress errors that cause an SPC freeze */
655 #define ALL_TXE_EGRESS_FREEZE_ERR \
656 	(SEES(TX_EGRESS_FIFO_UNDERRUN_OR_PARITY) \
657 	| SEES(TX_PIO_LAUNCH_INTF_PARITY) \
658 	| SEES(TX_SDMA_LAUNCH_INTF_PARITY) \
659 	| SEES(TX_SBRD_CTL_STATE_MACHINE_PARITY) \
660 	| SEES(TX_LAUNCH_CSR_PARITY) \
661 	| SEES(TX_SBRD_CTL_CSR_PARITY) \
662 	| SEES(TX_CONFIG_PARITY) \
663 	| SEES(TX_LAUNCH_FIFO0_UNC_OR_PARITY) \
664 	| SEES(TX_LAUNCH_FIFO1_UNC_OR_PARITY) \
665 	| SEES(TX_LAUNCH_FIFO2_UNC_OR_PARITY) \
666 	| SEES(TX_LAUNCH_FIFO3_UNC_OR_PARITY) \
667 	| SEES(TX_LAUNCH_FIFO4_UNC_OR_PARITY) \
668 	| SEES(TX_LAUNCH_FIFO5_UNC_OR_PARITY) \
669 	| SEES(TX_LAUNCH_FIFO6_UNC_OR_PARITY) \
670 	| SEES(TX_LAUNCH_FIFO7_UNC_OR_PARITY) \
671 	| SEES(TX_LAUNCH_FIFO8_UNC_OR_PARITY) \
672 	| SEES(TX_CREDIT_RETURN_PARITY))
673 
674 /*
675  * TXE Send error flags
676  */
677 #define SES(name) SEND_ERR_STATUS_SEND_##name##_ERR_SMASK
678 static struct flag_table send_err_status_flags[] = {
679 /* 0*/	FLAG_ENTRY0("SendCsrParityErr", SES(CSR_PARITY)),
680 /* 1*/	FLAG_ENTRY0("SendCsrReadBadAddrErr", SES(CSR_READ_BAD_ADDR)),
681 /* 2*/	FLAG_ENTRY0("SendCsrWriteBadAddrErr", SES(CSR_WRITE_BAD_ADDR))
682 };
683 
684 /*
685  * TXE Send Context Error flags and consequences
686  */
687 static struct flag_table sc_err_status_flags[] = {
688 /* 0*/	FLAG_ENTRY("InconsistentSop",
689 		SEC_PACKET_DROPPED | SEC_SC_HALTED,
690 		SEND_CTXT_ERR_STATUS_PIO_INCONSISTENT_SOP_ERR_SMASK),
691 /* 1*/	FLAG_ENTRY("DisallowedPacket",
692 		SEC_PACKET_DROPPED | SEC_SC_HALTED,
693 		SEND_CTXT_ERR_STATUS_PIO_DISALLOWED_PACKET_ERR_SMASK),
694 /* 2*/	FLAG_ENTRY("WriteCrossesBoundary",
695 		SEC_WRITE_DROPPED | SEC_SC_HALTED,
696 		SEND_CTXT_ERR_STATUS_PIO_WRITE_CROSSES_BOUNDARY_ERR_SMASK),
697 /* 3*/	FLAG_ENTRY("WriteOverflow",
698 		SEC_WRITE_DROPPED | SEC_SC_HALTED,
699 		SEND_CTXT_ERR_STATUS_PIO_WRITE_OVERFLOW_ERR_SMASK),
700 /* 4*/	FLAG_ENTRY("WriteOutOfBounds",
701 		SEC_WRITE_DROPPED | SEC_SC_HALTED,
702 		SEND_CTXT_ERR_STATUS_PIO_WRITE_OUT_OF_BOUNDS_ERR_SMASK),
703 /* 5-63 reserved*/
704 };
705 
706 /*
707  * RXE Receive Error flags
708  */
709 #define RXES(name) RCV_ERR_STATUS_RX_##name##_ERR_SMASK
710 static struct flag_table rxe_err_status_flags[] = {
711 /* 0*/	FLAG_ENTRY0("RxDmaCsrCorErr", RXES(DMA_CSR_COR)),
712 /* 1*/	FLAG_ENTRY0("RxDcIntfParityErr", RXES(DC_INTF_PARITY)),
713 /* 2*/	FLAG_ENTRY0("RxRcvHdrUncErr", RXES(RCV_HDR_UNC)),
714 /* 3*/	FLAG_ENTRY0("RxRcvHdrCorErr", RXES(RCV_HDR_COR)),
715 /* 4*/	FLAG_ENTRY0("RxRcvDataUncErr", RXES(RCV_DATA_UNC)),
716 /* 5*/	FLAG_ENTRY0("RxRcvDataCorErr", RXES(RCV_DATA_COR)),
717 /* 6*/	FLAG_ENTRY0("RxRcvQpMapTableUncErr", RXES(RCV_QP_MAP_TABLE_UNC)),
718 /* 7*/	FLAG_ENTRY0("RxRcvQpMapTableCorErr", RXES(RCV_QP_MAP_TABLE_COR)),
719 /* 8*/	FLAG_ENTRY0("RxRcvCsrParityErr", RXES(RCV_CSR_PARITY)),
720 /* 9*/	FLAG_ENTRY0("RxDcSopEopParityErr", RXES(DC_SOP_EOP_PARITY)),
721 /*10*/	FLAG_ENTRY0("RxDmaFlagUncErr", RXES(DMA_FLAG_UNC)),
722 /*11*/	FLAG_ENTRY0("RxDmaFlagCorErr", RXES(DMA_FLAG_COR)),
723 /*12*/	FLAG_ENTRY0("RxRcvFsmEncodingErr", RXES(RCV_FSM_ENCODING)),
724 /*13*/	FLAG_ENTRY0("RxRbufFreeListUncErr", RXES(RBUF_FREE_LIST_UNC)),
725 /*14*/	FLAG_ENTRY0("RxRbufFreeListCorErr", RXES(RBUF_FREE_LIST_COR)),
726 /*15*/	FLAG_ENTRY0("RxRbufLookupDesRegUncErr", RXES(RBUF_LOOKUP_DES_REG_UNC)),
727 /*16*/	FLAG_ENTRY0("RxRbufLookupDesRegUncCorErr",
728 		RXES(RBUF_LOOKUP_DES_REG_UNC_COR)),
729 /*17*/	FLAG_ENTRY0("RxRbufLookupDesUncErr", RXES(RBUF_LOOKUP_DES_UNC)),
730 /*18*/	FLAG_ENTRY0("RxRbufLookupDesCorErr", RXES(RBUF_LOOKUP_DES_COR)),
731 /*19*/	FLAG_ENTRY0("RxRbufBlockListReadUncErr",
732 		RXES(RBUF_BLOCK_LIST_READ_UNC)),
733 /*20*/	FLAG_ENTRY0("RxRbufBlockListReadCorErr",
734 		RXES(RBUF_BLOCK_LIST_READ_COR)),
735 /*21*/	FLAG_ENTRY0("RxRbufCsrQHeadBufNumParityErr",
736 		RXES(RBUF_CSR_QHEAD_BUF_NUM_PARITY)),
737 /*22*/	FLAG_ENTRY0("RxRbufCsrQEntCntParityErr",
738 		RXES(RBUF_CSR_QENT_CNT_PARITY)),
739 /*23*/	FLAG_ENTRY0("RxRbufCsrQNextBufParityErr",
740 		RXES(RBUF_CSR_QNEXT_BUF_PARITY)),
741 /*24*/	FLAG_ENTRY0("RxRbufCsrQVldBitParityErr",
742 		RXES(RBUF_CSR_QVLD_BIT_PARITY)),
743 /*25*/	FLAG_ENTRY0("RxRbufCsrQHdPtrParityErr", RXES(RBUF_CSR_QHD_PTR_PARITY)),
744 /*26*/	FLAG_ENTRY0("RxRbufCsrQTlPtrParityErr", RXES(RBUF_CSR_QTL_PTR_PARITY)),
745 /*27*/	FLAG_ENTRY0("RxRbufCsrQNumOfPktParityErr",
746 		RXES(RBUF_CSR_QNUM_OF_PKT_PARITY)),
747 /*28*/	FLAG_ENTRY0("RxRbufCsrQEOPDWParityErr", RXES(RBUF_CSR_QEOPDW_PARITY)),
748 /*29*/	FLAG_ENTRY0("RxRbufCtxIdParityErr", RXES(RBUF_CTX_ID_PARITY)),
749 /*30*/	FLAG_ENTRY0("RxRBufBadLookupErr", RXES(RBUF_BAD_LOOKUP)),
750 /*31*/	FLAG_ENTRY0("RxRbufFullErr", RXES(RBUF_FULL)),
751 /*32*/	FLAG_ENTRY0("RxRbufEmptyErr", RXES(RBUF_EMPTY)),
752 /*33*/	FLAG_ENTRY0("RxRbufFlRdAddrParityErr", RXES(RBUF_FL_RD_ADDR_PARITY)),
753 /*34*/	FLAG_ENTRY0("RxRbufFlWrAddrParityErr", RXES(RBUF_FL_WR_ADDR_PARITY)),
754 /*35*/	FLAG_ENTRY0("RxRbufFlInitdoneParityErr",
755 		RXES(RBUF_FL_INITDONE_PARITY)),
756 /*36*/	FLAG_ENTRY0("RxRbufFlInitWrAddrParityErr",
757 		RXES(RBUF_FL_INIT_WR_ADDR_PARITY)),
758 /*37*/	FLAG_ENTRY0("RxRbufNextFreeBufUncErr", RXES(RBUF_NEXT_FREE_BUF_UNC)),
759 /*38*/	FLAG_ENTRY0("RxRbufNextFreeBufCorErr", RXES(RBUF_NEXT_FREE_BUF_COR)),
760 /*39*/	FLAG_ENTRY0("RxLookupDesPart1UncErr", RXES(LOOKUP_DES_PART1_UNC)),
761 /*40*/	FLAG_ENTRY0("RxLookupDesPart1UncCorErr",
762 		RXES(LOOKUP_DES_PART1_UNC_COR)),
763 /*41*/	FLAG_ENTRY0("RxLookupDesPart2ParityErr",
764 		RXES(LOOKUP_DES_PART2_PARITY)),
765 /*42*/	FLAG_ENTRY0("RxLookupRcvArrayUncErr", RXES(LOOKUP_RCV_ARRAY_UNC)),
766 /*43*/	FLAG_ENTRY0("RxLookupRcvArrayCorErr", RXES(LOOKUP_RCV_ARRAY_COR)),
767 /*44*/	FLAG_ENTRY0("RxLookupCsrParityErr", RXES(LOOKUP_CSR_PARITY)),
768 /*45*/	FLAG_ENTRY0("RxHqIntrCsrParityErr", RXES(HQ_INTR_CSR_PARITY)),
769 /*46*/	FLAG_ENTRY0("RxHqIntrFsmErr", RXES(HQ_INTR_FSM)),
770 /*47*/	FLAG_ENTRY0("RxRbufDescPart1UncErr", RXES(RBUF_DESC_PART1_UNC)),
771 /*48*/	FLAG_ENTRY0("RxRbufDescPart1CorErr", RXES(RBUF_DESC_PART1_COR)),
772 /*49*/	FLAG_ENTRY0("RxRbufDescPart2UncErr", RXES(RBUF_DESC_PART2_UNC)),
773 /*50*/	FLAG_ENTRY0("RxRbufDescPart2CorErr", RXES(RBUF_DESC_PART2_COR)),
774 /*51*/	FLAG_ENTRY0("RxDmaHdrFifoRdUncErr", RXES(DMA_HDR_FIFO_RD_UNC)),
775 /*52*/	FLAG_ENTRY0("RxDmaHdrFifoRdCorErr", RXES(DMA_HDR_FIFO_RD_COR)),
776 /*53*/	FLAG_ENTRY0("RxDmaDataFifoRdUncErr", RXES(DMA_DATA_FIFO_RD_UNC)),
777 /*54*/	FLAG_ENTRY0("RxDmaDataFifoRdCorErr", RXES(DMA_DATA_FIFO_RD_COR)),
778 /*55*/	FLAG_ENTRY0("RxRbufDataUncErr", RXES(RBUF_DATA_UNC)),
779 /*56*/	FLAG_ENTRY0("RxRbufDataCorErr", RXES(RBUF_DATA_COR)),
780 /*57*/	FLAG_ENTRY0("RxDmaCsrParityErr", RXES(DMA_CSR_PARITY)),
781 /*58*/	FLAG_ENTRY0("RxDmaEqFsmEncodingErr", RXES(DMA_EQ_FSM_ENCODING)),
782 /*59*/	FLAG_ENTRY0("RxDmaDqFsmEncodingErr", RXES(DMA_DQ_FSM_ENCODING)),
783 /*60*/	FLAG_ENTRY0("RxDmaCsrUncErr", RXES(DMA_CSR_UNC)),
784 /*61*/	FLAG_ENTRY0("RxCsrReadBadAddrErr", RXES(CSR_READ_BAD_ADDR)),
785 /*62*/	FLAG_ENTRY0("RxCsrWriteBadAddrErr", RXES(CSR_WRITE_BAD_ADDR)),
786 /*63*/	FLAG_ENTRY0("RxCsrParityErr", RXES(CSR_PARITY))
787 };
788 
789 /* RXE errors that will trigger an SPC freeze */
790 #define ALL_RXE_FREEZE_ERR  \
791 	(RCV_ERR_STATUS_RX_RCV_QP_MAP_TABLE_UNC_ERR_SMASK \
792 	| RCV_ERR_STATUS_RX_RCV_CSR_PARITY_ERR_SMASK \
793 	| RCV_ERR_STATUS_RX_DMA_FLAG_UNC_ERR_SMASK \
794 	| RCV_ERR_STATUS_RX_RCV_FSM_ENCODING_ERR_SMASK \
795 	| RCV_ERR_STATUS_RX_RBUF_FREE_LIST_UNC_ERR_SMASK \
796 	| RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_REG_UNC_ERR_SMASK \
797 	| RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_REG_UNC_COR_ERR_SMASK \
798 	| RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_UNC_ERR_SMASK \
799 	| RCV_ERR_STATUS_RX_RBUF_BLOCK_LIST_READ_UNC_ERR_SMASK \
800 	| RCV_ERR_STATUS_RX_RBUF_CSR_QHEAD_BUF_NUM_PARITY_ERR_SMASK \
801 	| RCV_ERR_STATUS_RX_RBUF_CSR_QENT_CNT_PARITY_ERR_SMASK \
802 	| RCV_ERR_STATUS_RX_RBUF_CSR_QNEXT_BUF_PARITY_ERR_SMASK \
803 	| RCV_ERR_STATUS_RX_RBUF_CSR_QVLD_BIT_PARITY_ERR_SMASK \
804 	| RCV_ERR_STATUS_RX_RBUF_CSR_QHD_PTR_PARITY_ERR_SMASK \
805 	| RCV_ERR_STATUS_RX_RBUF_CSR_QTL_PTR_PARITY_ERR_SMASK \
806 	| RCV_ERR_STATUS_RX_RBUF_CSR_QNUM_OF_PKT_PARITY_ERR_SMASK \
807 	| RCV_ERR_STATUS_RX_RBUF_CSR_QEOPDW_PARITY_ERR_SMASK \
808 	| RCV_ERR_STATUS_RX_RBUF_CTX_ID_PARITY_ERR_SMASK \
809 	| RCV_ERR_STATUS_RX_RBUF_BAD_LOOKUP_ERR_SMASK \
810 	| RCV_ERR_STATUS_RX_RBUF_FULL_ERR_SMASK \
811 	| RCV_ERR_STATUS_RX_RBUF_EMPTY_ERR_SMASK \
812 	| RCV_ERR_STATUS_RX_RBUF_FL_RD_ADDR_PARITY_ERR_SMASK \
813 	| RCV_ERR_STATUS_RX_RBUF_FL_WR_ADDR_PARITY_ERR_SMASK \
814 	| RCV_ERR_STATUS_RX_RBUF_FL_INITDONE_PARITY_ERR_SMASK \
815 	| RCV_ERR_STATUS_RX_RBUF_FL_INIT_WR_ADDR_PARITY_ERR_SMASK \
816 	| RCV_ERR_STATUS_RX_RBUF_NEXT_FREE_BUF_UNC_ERR_SMASK \
817 	| RCV_ERR_STATUS_RX_LOOKUP_DES_PART1_UNC_ERR_SMASK \
818 	| RCV_ERR_STATUS_RX_LOOKUP_DES_PART1_UNC_COR_ERR_SMASK \
819 	| RCV_ERR_STATUS_RX_LOOKUP_DES_PART2_PARITY_ERR_SMASK \
820 	| RCV_ERR_STATUS_RX_LOOKUP_RCV_ARRAY_UNC_ERR_SMASK \
821 	| RCV_ERR_STATUS_RX_LOOKUP_CSR_PARITY_ERR_SMASK \
822 	| RCV_ERR_STATUS_RX_HQ_INTR_CSR_PARITY_ERR_SMASK \
823 	| RCV_ERR_STATUS_RX_HQ_INTR_FSM_ERR_SMASK \
824 	| RCV_ERR_STATUS_RX_RBUF_DESC_PART1_UNC_ERR_SMASK \
825 	| RCV_ERR_STATUS_RX_RBUF_DESC_PART1_COR_ERR_SMASK \
826 	| RCV_ERR_STATUS_RX_RBUF_DESC_PART2_UNC_ERR_SMASK \
827 	| RCV_ERR_STATUS_RX_DMA_HDR_FIFO_RD_UNC_ERR_SMASK \
828 	| RCV_ERR_STATUS_RX_DMA_DATA_FIFO_RD_UNC_ERR_SMASK \
829 	| RCV_ERR_STATUS_RX_RBUF_DATA_UNC_ERR_SMASK \
830 	| RCV_ERR_STATUS_RX_DMA_CSR_PARITY_ERR_SMASK \
831 	| RCV_ERR_STATUS_RX_DMA_EQ_FSM_ENCODING_ERR_SMASK \
832 	| RCV_ERR_STATUS_RX_DMA_DQ_FSM_ENCODING_ERR_SMASK \
833 	| RCV_ERR_STATUS_RX_DMA_CSR_UNC_ERR_SMASK \
834 	| RCV_ERR_STATUS_RX_CSR_PARITY_ERR_SMASK)
835 
836 #define RXE_FREEZE_ABORT_MASK \
837 	(RCV_ERR_STATUS_RX_DMA_CSR_UNC_ERR_SMASK | \
838 	RCV_ERR_STATUS_RX_DMA_HDR_FIFO_RD_UNC_ERR_SMASK | \
839 	RCV_ERR_STATUS_RX_DMA_DATA_FIFO_RD_UNC_ERR_SMASK)
840 
841 /*
842  * DCC Error Flags
843  */
844 #define DCCE(name) DCC_ERR_FLG_##name##_SMASK
845 static struct flag_table dcc_err_flags[] = {
846 	FLAG_ENTRY0("bad_l2_err", DCCE(BAD_L2_ERR)),
847 	FLAG_ENTRY0("bad_sc_err", DCCE(BAD_SC_ERR)),
848 	FLAG_ENTRY0("bad_mid_tail_err", DCCE(BAD_MID_TAIL_ERR)),
849 	FLAG_ENTRY0("bad_preemption_err", DCCE(BAD_PREEMPTION_ERR)),
850 	FLAG_ENTRY0("preemption_err", DCCE(PREEMPTION_ERR)),
851 	FLAG_ENTRY0("preemptionvl15_err", DCCE(PREEMPTIONVL15_ERR)),
852 	FLAG_ENTRY0("bad_vl_marker_err", DCCE(BAD_VL_MARKER_ERR)),
853 	FLAG_ENTRY0("bad_dlid_target_err", DCCE(BAD_DLID_TARGET_ERR)),
854 	FLAG_ENTRY0("bad_lver_err", DCCE(BAD_LVER_ERR)),
855 	FLAG_ENTRY0("uncorrectable_err", DCCE(UNCORRECTABLE_ERR)),
856 	FLAG_ENTRY0("bad_crdt_ack_err", DCCE(BAD_CRDT_ACK_ERR)),
857 	FLAG_ENTRY0("unsup_pkt_type", DCCE(UNSUP_PKT_TYPE)),
858 	FLAG_ENTRY0("bad_ctrl_flit_err", DCCE(BAD_CTRL_FLIT_ERR)),
859 	FLAG_ENTRY0("event_cntr_parity_err", DCCE(EVENT_CNTR_PARITY_ERR)),
860 	FLAG_ENTRY0("event_cntr_rollover_err", DCCE(EVENT_CNTR_ROLLOVER_ERR)),
861 	FLAG_ENTRY0("link_err", DCCE(LINK_ERR)),
862 	FLAG_ENTRY0("misc_cntr_rollover_err", DCCE(MISC_CNTR_ROLLOVER_ERR)),
863 	FLAG_ENTRY0("bad_ctrl_dist_err", DCCE(BAD_CTRL_DIST_ERR)),
864 	FLAG_ENTRY0("bad_tail_dist_err", DCCE(BAD_TAIL_DIST_ERR)),
865 	FLAG_ENTRY0("bad_head_dist_err", DCCE(BAD_HEAD_DIST_ERR)),
866 	FLAG_ENTRY0("nonvl15_state_err", DCCE(NONVL15_STATE_ERR)),
867 	FLAG_ENTRY0("vl15_multi_err", DCCE(VL15_MULTI_ERR)),
868 	FLAG_ENTRY0("bad_pkt_length_err", DCCE(BAD_PKT_LENGTH_ERR)),
869 	FLAG_ENTRY0("unsup_vl_err", DCCE(UNSUP_VL_ERR)),
870 	FLAG_ENTRY0("perm_nvl15_err", DCCE(PERM_NVL15_ERR)),
871 	FLAG_ENTRY0("slid_zero_err", DCCE(SLID_ZERO_ERR)),
872 	FLAG_ENTRY0("dlid_zero_err", DCCE(DLID_ZERO_ERR)),
873 	FLAG_ENTRY0("length_mtu_err", DCCE(LENGTH_MTU_ERR)),
874 	FLAG_ENTRY0("rx_early_drop_err", DCCE(RX_EARLY_DROP_ERR)),
875 	FLAG_ENTRY0("late_short_err", DCCE(LATE_SHORT_ERR)),
876 	FLAG_ENTRY0("late_long_err", DCCE(LATE_LONG_ERR)),
877 	FLAG_ENTRY0("late_ebp_err", DCCE(LATE_EBP_ERR)),
878 	FLAG_ENTRY0("fpe_tx_fifo_ovflw_err", DCCE(FPE_TX_FIFO_OVFLW_ERR)),
879 	FLAG_ENTRY0("fpe_tx_fifo_unflw_err", DCCE(FPE_TX_FIFO_UNFLW_ERR)),
880 	FLAG_ENTRY0("csr_access_blocked_host", DCCE(CSR_ACCESS_BLOCKED_HOST)),
881 	FLAG_ENTRY0("csr_access_blocked_uc", DCCE(CSR_ACCESS_BLOCKED_UC)),
882 	FLAG_ENTRY0("tx_ctrl_parity_err", DCCE(TX_CTRL_PARITY_ERR)),
883 	FLAG_ENTRY0("tx_ctrl_parity_mbe_err", DCCE(TX_CTRL_PARITY_MBE_ERR)),
884 	FLAG_ENTRY0("tx_sc_parity_err", DCCE(TX_SC_PARITY_ERR)),
885 	FLAG_ENTRY0("rx_ctrl_parity_mbe_err", DCCE(RX_CTRL_PARITY_MBE_ERR)),
886 	FLAG_ENTRY0("csr_parity_err", DCCE(CSR_PARITY_ERR)),
887 	FLAG_ENTRY0("csr_inval_addr", DCCE(CSR_INVAL_ADDR)),
888 	FLAG_ENTRY0("tx_byte_shft_parity_err", DCCE(TX_BYTE_SHFT_PARITY_ERR)),
889 	FLAG_ENTRY0("rx_byte_shft_parity_err", DCCE(RX_BYTE_SHFT_PARITY_ERR)),
890 	FLAG_ENTRY0("fmconfig_err", DCCE(FMCONFIG_ERR)),
891 	FLAG_ENTRY0("rcvport_err", DCCE(RCVPORT_ERR)),
892 };
893 
894 /*
895  * LCB error flags
896  */
897 #define LCBE(name) DC_LCB_ERR_FLG_##name##_SMASK
898 static struct flag_table lcb_err_flags[] = {
899 /* 0*/	FLAG_ENTRY0("CSR_PARITY_ERR", LCBE(CSR_PARITY_ERR)),
900 /* 1*/	FLAG_ENTRY0("INVALID_CSR_ADDR", LCBE(INVALID_CSR_ADDR)),
901 /* 2*/	FLAG_ENTRY0("RST_FOR_FAILED_DESKEW", LCBE(RST_FOR_FAILED_DESKEW)),
902 /* 3*/	FLAG_ENTRY0("ALL_LNS_FAILED_REINIT_TEST",
903 		LCBE(ALL_LNS_FAILED_REINIT_TEST)),
904 /* 4*/	FLAG_ENTRY0("LOST_REINIT_STALL_OR_TOS", LCBE(LOST_REINIT_STALL_OR_TOS)),
905 /* 5*/	FLAG_ENTRY0("TX_LESS_THAN_FOUR_LNS", LCBE(TX_LESS_THAN_FOUR_LNS)),
906 /* 6*/	FLAG_ENTRY0("RX_LESS_THAN_FOUR_LNS", LCBE(RX_LESS_THAN_FOUR_LNS)),
907 /* 7*/	FLAG_ENTRY0("SEQ_CRC_ERR", LCBE(SEQ_CRC_ERR)),
908 /* 8*/	FLAG_ENTRY0("REINIT_FROM_PEER", LCBE(REINIT_FROM_PEER)),
909 /* 9*/	FLAG_ENTRY0("REINIT_FOR_LN_DEGRADE", LCBE(REINIT_FOR_LN_DEGRADE)),
910 /*10*/	FLAG_ENTRY0("CRC_ERR_CNT_HIT_LIMIT", LCBE(CRC_ERR_CNT_HIT_LIMIT)),
911 /*11*/	FLAG_ENTRY0("RCLK_STOPPED", LCBE(RCLK_STOPPED)),
912 /*12*/	FLAG_ENTRY0("UNEXPECTED_REPLAY_MARKER", LCBE(UNEXPECTED_REPLAY_MARKER)),
913 /*13*/	FLAG_ENTRY0("UNEXPECTED_ROUND_TRIP_MARKER",
914 		LCBE(UNEXPECTED_ROUND_TRIP_MARKER)),
915 /*14*/	FLAG_ENTRY0("ILLEGAL_NULL_LTP", LCBE(ILLEGAL_NULL_LTP)),
916 /*15*/	FLAG_ENTRY0("ILLEGAL_FLIT_ENCODING", LCBE(ILLEGAL_FLIT_ENCODING)),
917 /*16*/	FLAG_ENTRY0("FLIT_INPUT_BUF_OFLW", LCBE(FLIT_INPUT_BUF_OFLW)),
918 /*17*/	FLAG_ENTRY0("VL_ACK_INPUT_BUF_OFLW", LCBE(VL_ACK_INPUT_BUF_OFLW)),
919 /*18*/	FLAG_ENTRY0("VL_ACK_INPUT_PARITY_ERR", LCBE(VL_ACK_INPUT_PARITY_ERR)),
920 /*19*/	FLAG_ENTRY0("VL_ACK_INPUT_WRONG_CRC_MODE",
921 		LCBE(VL_ACK_INPUT_WRONG_CRC_MODE)),
922 /*20*/	FLAG_ENTRY0("FLIT_INPUT_BUF_MBE", LCBE(FLIT_INPUT_BUF_MBE)),
923 /*21*/	FLAG_ENTRY0("FLIT_INPUT_BUF_SBE", LCBE(FLIT_INPUT_BUF_SBE)),
924 /*22*/	FLAG_ENTRY0("REPLAY_BUF_MBE", LCBE(REPLAY_BUF_MBE)),
925 /*23*/	FLAG_ENTRY0("REPLAY_BUF_SBE", LCBE(REPLAY_BUF_SBE)),
926 /*24*/	FLAG_ENTRY0("CREDIT_RETURN_FLIT_MBE", LCBE(CREDIT_RETURN_FLIT_MBE)),
927 /*25*/	FLAG_ENTRY0("RST_FOR_LINK_TIMEOUT", LCBE(RST_FOR_LINK_TIMEOUT)),
928 /*26*/	FLAG_ENTRY0("RST_FOR_INCOMPLT_RND_TRIP",
929 		LCBE(RST_FOR_INCOMPLT_RND_TRIP)),
930 /*27*/	FLAG_ENTRY0("HOLD_REINIT", LCBE(HOLD_REINIT)),
931 /*28*/	FLAG_ENTRY0("NEG_EDGE_LINK_TRANSFER_ACTIVE",
932 		LCBE(NEG_EDGE_LINK_TRANSFER_ACTIVE)),
933 /*29*/	FLAG_ENTRY0("REDUNDANT_FLIT_PARITY_ERR",
934 		LCBE(REDUNDANT_FLIT_PARITY_ERR))
935 };
936 
937 /*
938  * DC8051 Error Flags
939  */
940 #define D8E(name) DC_DC8051_ERR_FLG_##name##_SMASK
941 static struct flag_table dc8051_err_flags[] = {
942 	FLAG_ENTRY0("SET_BY_8051", D8E(SET_BY_8051)),
943 	FLAG_ENTRY0("LOST_8051_HEART_BEAT", D8E(LOST_8051_HEART_BEAT)),
944 	FLAG_ENTRY0("CRAM_MBE", D8E(CRAM_MBE)),
945 	FLAG_ENTRY0("CRAM_SBE", D8E(CRAM_SBE)),
946 	FLAG_ENTRY0("DRAM_MBE", D8E(DRAM_MBE)),
947 	FLAG_ENTRY0("DRAM_SBE", D8E(DRAM_SBE)),
948 	FLAG_ENTRY0("IRAM_MBE", D8E(IRAM_MBE)),
949 	FLAG_ENTRY0("IRAM_SBE", D8E(IRAM_SBE)),
950 	FLAG_ENTRY0("UNMATCHED_SECURE_MSG_ACROSS_BCC_LANES",
951 		    D8E(UNMATCHED_SECURE_MSG_ACROSS_BCC_LANES)),
952 	FLAG_ENTRY0("INVALID_CSR_ADDR", D8E(INVALID_CSR_ADDR)),
953 };
954 
955 /*
956  * DC8051 Information Error flags
957  *
958  * Flags in DC8051_DBG_ERR_INFO_SET_BY_8051.ERROR field.
959  */
960 static struct flag_table dc8051_info_err_flags[] = {
961 	FLAG_ENTRY0("Spico ROM check failed",  SPICO_ROM_FAILED),
962 	FLAG_ENTRY0("Unknown frame received",  UNKNOWN_FRAME),
963 	FLAG_ENTRY0("Target BER not met",      TARGET_BER_NOT_MET),
964 	FLAG_ENTRY0("Serdes internal loopback failure",
965 		    FAILED_SERDES_INTERNAL_LOOPBACK),
966 	FLAG_ENTRY0("Failed SerDes init",      FAILED_SERDES_INIT),
967 	FLAG_ENTRY0("Failed LNI(Polling)",     FAILED_LNI_POLLING),
968 	FLAG_ENTRY0("Failed LNI(Debounce)",    FAILED_LNI_DEBOUNCE),
969 	FLAG_ENTRY0("Failed LNI(EstbComm)",    FAILED_LNI_ESTBCOMM),
970 	FLAG_ENTRY0("Failed LNI(OptEq)",       FAILED_LNI_OPTEQ),
971 	FLAG_ENTRY0("Failed LNI(VerifyCap_1)", FAILED_LNI_VERIFY_CAP1),
972 	FLAG_ENTRY0("Failed LNI(VerifyCap_2)", FAILED_LNI_VERIFY_CAP2),
973 	FLAG_ENTRY0("Failed LNI(ConfigLT)",    FAILED_LNI_CONFIGLT),
974 	FLAG_ENTRY0("Host Handshake Timeout",  HOST_HANDSHAKE_TIMEOUT)
975 };
976 
977 /*
978  * DC8051 Information Host Information flags
979  *
980  * Flags in DC8051_DBG_ERR_INFO_SET_BY_8051.HOST_MSG field.
981  */
982 static struct flag_table dc8051_info_host_msg_flags[] = {
983 	FLAG_ENTRY0("Host request done", 0x0001),
984 	FLAG_ENTRY0("BC SMA message", 0x0002),
985 	FLAG_ENTRY0("BC PWR_MGM message", 0x0004),
986 	FLAG_ENTRY0("BC Unknown message (BCC)", 0x0008),
987 	FLAG_ENTRY0("BC Unknown message (LCB)", 0x0010),
988 	FLAG_ENTRY0("External device config request", 0x0020),
989 	FLAG_ENTRY0("VerifyCap all frames received", 0x0040),
990 	FLAG_ENTRY0("LinkUp achieved", 0x0080),
991 	FLAG_ENTRY0("Link going down", 0x0100),
992 };
993 
994 static u32 encoded_size(u32 size);
995 static u32 chip_to_opa_lstate(struct hfi1_devdata *dd, u32 chip_lstate);
996 static int set_physical_link_state(struct hfi1_devdata *dd, u64 state);
997 static void read_vc_remote_phy(struct hfi1_devdata *dd, u8 *power_management,
998 			       u8 *continuous);
999 static void read_vc_remote_fabric(struct hfi1_devdata *dd, u8 *vau, u8 *z,
1000 				  u8 *vcu, u16 *vl15buf, u8 *crc_sizes);
1001 static void read_vc_remote_link_width(struct hfi1_devdata *dd,
1002 				      u8 *remote_tx_rate, u16 *link_widths);
1003 static void read_vc_local_link_width(struct hfi1_devdata *dd, u8 *misc_bits,
1004 				     u8 *flag_bits, u16 *link_widths);
1005 static void read_remote_device_id(struct hfi1_devdata *dd, u16 *device_id,
1006 				  u8 *device_rev);
1007 static void read_mgmt_allowed(struct hfi1_devdata *dd, u8 *mgmt_allowed);
1008 static void read_local_lni(struct hfi1_devdata *dd, u8 *enable_lane_rx);
1009 static int read_tx_settings(struct hfi1_devdata *dd, u8 *enable_lane_tx,
1010 			    u8 *tx_polarity_inversion,
1011 			    u8 *rx_polarity_inversion, u8 *max_rate);
1012 static void handle_sdma_eng_err(struct hfi1_devdata *dd,
1013 				unsigned int context, u64 err_status);
1014 static void handle_qsfp_int(struct hfi1_devdata *dd, u32 source, u64 reg);
1015 static void handle_dcc_err(struct hfi1_devdata *dd,
1016 			   unsigned int context, u64 err_status);
1017 static void handle_lcb_err(struct hfi1_devdata *dd,
1018 			   unsigned int context, u64 err_status);
1019 static void handle_8051_interrupt(struct hfi1_devdata *dd, u32 unused, u64 reg);
1020 static void handle_cce_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1021 static void handle_rxe_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1022 static void handle_misc_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1023 static void handle_pio_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1024 static void handle_sdma_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1025 static void handle_egress_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1026 static void handle_txe_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1027 static void set_partition_keys(struct hfi1_pportdata *);
1028 static const char *link_state_name(u32 state);
1029 static const char *link_state_reason_name(struct hfi1_pportdata *ppd,
1030 					  u32 state);
1031 static int do_8051_command(struct hfi1_devdata *dd, u32 type, u64 in_data,
1032 			   u64 *out_data);
1033 static int read_idle_sma(struct hfi1_devdata *dd, u64 *data);
1034 static int thermal_init(struct hfi1_devdata *dd);
1035 
1036 static int wait_logical_linkstate(struct hfi1_pportdata *ppd, u32 state,
1037 				  int msecs);
1038 static void read_planned_down_reason_code(struct hfi1_devdata *dd, u8 *pdrrc);
1039 static void read_link_down_reason(struct hfi1_devdata *dd, u8 *ldr);
1040 static void handle_temp_err(struct hfi1_devdata *);
1041 static void dc_shutdown(struct hfi1_devdata *);
1042 static void dc_start(struct hfi1_devdata *);
1043 static int qos_rmt_entries(struct hfi1_devdata *dd, unsigned int *mp,
1044 			   unsigned int *np);
1045 static void clear_full_mgmt_pkey(struct hfi1_pportdata *ppd);
1046 
1047 /*
1048  * Error interrupt table entry.  This is used as input to the interrupt
1049  * "clear down" routine used for all second tier error interrupt register.
1050  * Second tier interrupt registers have a single bit representing them
1051  * in the top-level CceIntStatus.
1052  */
1053 struct err_reg_info {
1054 	u32 status;		/* status CSR offset */
1055 	u32 clear;		/* clear CSR offset */
1056 	u32 mask;		/* mask CSR offset */
1057 	void (*handler)(struct hfi1_devdata *dd, u32 source, u64 reg);
1058 	const char *desc;
1059 };
1060 
1061 #define NUM_MISC_ERRS (IS_GENERAL_ERR_END - IS_GENERAL_ERR_START)
1062 #define NUM_DC_ERRS (IS_DC_END - IS_DC_START)
1063 #define NUM_VARIOUS (IS_VARIOUS_END - IS_VARIOUS_START)
1064 
1065 /*
1066  * Helpers for building HFI and DC error interrupt table entries.  Different
1067  * helpers are needed because of inconsistent register names.
1068  */
1069 #define EE(reg, handler, desc) \
1070 	{ reg##_STATUS, reg##_CLEAR, reg##_MASK, \
1071 		handler, desc }
1072 #define DC_EE1(reg, handler, desc) \
1073 	{ reg##_FLG, reg##_FLG_CLR, reg##_FLG_EN, handler, desc }
1074 #define DC_EE2(reg, handler, desc) \
1075 	{ reg##_FLG, reg##_CLR, reg##_EN, handler, desc }
1076 
1077 /*
1078  * Table of the "misc" grouping of error interrupts.  Each entry refers to
1079  * another register containing more information.
1080  */
1081 static const struct err_reg_info misc_errs[NUM_MISC_ERRS] = {
1082 /* 0*/	EE(CCE_ERR,		handle_cce_err,    "CceErr"),
1083 /* 1*/	EE(RCV_ERR,		handle_rxe_err,    "RxeErr"),
1084 /* 2*/	EE(MISC_ERR,	handle_misc_err,   "MiscErr"),
1085 /* 3*/	{ 0, 0, 0, NULL }, /* reserved */
1086 /* 4*/	EE(SEND_PIO_ERR,    handle_pio_err,    "PioErr"),
1087 /* 5*/	EE(SEND_DMA_ERR,    handle_sdma_err,   "SDmaErr"),
1088 /* 6*/	EE(SEND_EGRESS_ERR, handle_egress_err, "EgressErr"),
1089 /* 7*/	EE(SEND_ERR,	handle_txe_err,    "TxeErr")
1090 	/* the rest are reserved */
1091 };
1092 
1093 /*
1094  * Index into the Various section of the interrupt sources
1095  * corresponding to the Critical Temperature interrupt.
1096  */
1097 #define TCRIT_INT_SOURCE 4
1098 
1099 /*
1100  * SDMA error interrupt entry - refers to another register containing more
1101  * information.
1102  */
1103 static const struct err_reg_info sdma_eng_err =
1104 	EE(SEND_DMA_ENG_ERR, handle_sdma_eng_err, "SDmaEngErr");
1105 
1106 static const struct err_reg_info various_err[NUM_VARIOUS] = {
1107 /* 0*/	{ 0, 0, 0, NULL }, /* PbcInt */
1108 /* 1*/	{ 0, 0, 0, NULL }, /* GpioAssertInt */
1109 /* 2*/	EE(ASIC_QSFP1,	handle_qsfp_int,	"QSFP1"),
1110 /* 3*/	EE(ASIC_QSFP2,	handle_qsfp_int,	"QSFP2"),
1111 /* 4*/	{ 0, 0, 0, NULL }, /* TCritInt */
1112 	/* rest are reserved */
1113 };
1114 
1115 /*
1116  * The DC encoding of mtu_cap for 10K MTU in the DCC_CFG_PORT_CONFIG
1117  * register can not be derived from the MTU value because 10K is not
1118  * a power of 2. Therefore, we need a constant. Everything else can
1119  * be calculated.
1120  */
1121 #define DCC_CFG_PORT_MTU_CAP_10240 7
1122 
1123 /*
1124  * Table of the DC grouping of error interrupts.  Each entry refers to
1125  * another register containing more information.
1126  */
1127 static const struct err_reg_info dc_errs[NUM_DC_ERRS] = {
1128 /* 0*/	DC_EE1(DCC_ERR,		handle_dcc_err,	       "DCC Err"),
1129 /* 1*/	DC_EE2(DC_LCB_ERR,	handle_lcb_err,	       "LCB Err"),
1130 /* 2*/	DC_EE2(DC_DC8051_ERR,	handle_8051_interrupt, "DC8051 Interrupt"),
1131 /* 3*/	/* dc_lbm_int - special, see is_dc_int() */
1132 	/* the rest are reserved */
1133 };
1134 
1135 struct cntr_entry {
1136 	/*
1137 	 * counter name
1138 	 */
1139 	char *name;
1140 
1141 	/*
1142 	 * csr to read for name (if applicable)
1143 	 */
1144 	u64 csr;
1145 
1146 	/*
1147 	 * offset into dd or ppd to store the counter's value
1148 	 */
1149 	int offset;
1150 
1151 	/*
1152 	 * flags
1153 	 */
1154 	u8 flags;
1155 
1156 	/*
1157 	 * accessor for stat element, context either dd or ppd
1158 	 */
1159 	u64 (*rw_cntr)(const struct cntr_entry *, void *context, int vl,
1160 		       int mode, u64 data);
1161 };
1162 
1163 #define C_RCV_HDR_OVF_FIRST C_RCV_HDR_OVF_0
1164 #define C_RCV_HDR_OVF_LAST C_RCV_HDR_OVF_159
1165 
1166 #define CNTR_ELEM(name, csr, offset, flags, accessor) \
1167 { \
1168 	name, \
1169 	csr, \
1170 	offset, \
1171 	flags, \
1172 	accessor \
1173 }
1174 
1175 /* 32bit RXE */
1176 #define RXE32_PORT_CNTR_ELEM(name, counter, flags) \
1177 CNTR_ELEM(#name, \
1178 	  (counter * 8 + RCV_COUNTER_ARRAY32), \
1179 	  0, flags | CNTR_32BIT, \
1180 	  port_access_u32_csr)
1181 
1182 #define RXE32_DEV_CNTR_ELEM(name, counter, flags) \
1183 CNTR_ELEM(#name, \
1184 	  (counter * 8 + RCV_COUNTER_ARRAY32), \
1185 	  0, flags | CNTR_32BIT, \
1186 	  dev_access_u32_csr)
1187 
1188 /* 64bit RXE */
1189 #define RXE64_PORT_CNTR_ELEM(name, counter, flags) \
1190 CNTR_ELEM(#name, \
1191 	  (counter * 8 + RCV_COUNTER_ARRAY64), \
1192 	  0, flags, \
1193 	  port_access_u64_csr)
1194 
1195 #define RXE64_DEV_CNTR_ELEM(name, counter, flags) \
1196 CNTR_ELEM(#name, \
1197 	  (counter * 8 + RCV_COUNTER_ARRAY64), \
1198 	  0, flags, \
1199 	  dev_access_u64_csr)
1200 
1201 #define OVR_LBL(ctx) C_RCV_HDR_OVF_ ## ctx
1202 #define OVR_ELM(ctx) \
1203 CNTR_ELEM("RcvHdrOvr" #ctx, \
1204 	  (RCV_HDR_OVFL_CNT + ctx * 0x100), \
1205 	  0, CNTR_NORMAL, port_access_u64_csr)
1206 
1207 /* 32bit TXE */
1208 #define TXE32_PORT_CNTR_ELEM(name, counter, flags) \
1209 CNTR_ELEM(#name, \
1210 	  (counter * 8 + SEND_COUNTER_ARRAY32), \
1211 	  0, flags | CNTR_32BIT, \
1212 	  port_access_u32_csr)
1213 
1214 /* 64bit TXE */
1215 #define TXE64_PORT_CNTR_ELEM(name, counter, flags) \
1216 CNTR_ELEM(#name, \
1217 	  (counter * 8 + SEND_COUNTER_ARRAY64), \
1218 	  0, flags, \
1219 	  port_access_u64_csr)
1220 
1221 # define TX64_DEV_CNTR_ELEM(name, counter, flags) \
1222 CNTR_ELEM(#name,\
1223 	  counter * 8 + SEND_COUNTER_ARRAY64, \
1224 	  0, \
1225 	  flags, \
1226 	  dev_access_u64_csr)
1227 
1228 /* CCE */
1229 #define CCE_PERF_DEV_CNTR_ELEM(name, counter, flags) \
1230 CNTR_ELEM(#name, \
1231 	  (counter * 8 + CCE_COUNTER_ARRAY32), \
1232 	  0, flags | CNTR_32BIT, \
1233 	  dev_access_u32_csr)
1234 
1235 #define CCE_INT_DEV_CNTR_ELEM(name, counter, flags) \
1236 CNTR_ELEM(#name, \
1237 	  (counter * 8 + CCE_INT_COUNTER_ARRAY32), \
1238 	  0, flags | CNTR_32BIT, \
1239 	  dev_access_u32_csr)
1240 
1241 /* DC */
1242 #define DC_PERF_CNTR(name, counter, flags) \
1243 CNTR_ELEM(#name, \
1244 	  counter, \
1245 	  0, \
1246 	  flags, \
1247 	  dev_access_u64_csr)
1248 
1249 #define DC_PERF_CNTR_LCB(name, counter, flags) \
1250 CNTR_ELEM(#name, \
1251 	  counter, \
1252 	  0, \
1253 	  flags, \
1254 	  dc_access_lcb_cntr)
1255 
1256 /* ibp counters */
1257 #define SW_IBP_CNTR(name, cntr) \
1258 CNTR_ELEM(#name, \
1259 	  0, \
1260 	  0, \
1261 	  CNTR_SYNTH, \
1262 	  access_ibp_##cntr)
1263 
1264 u64 read_csr(const struct hfi1_devdata *dd, u32 offset)
1265 {
1266 	if (dd->flags & HFI1_PRESENT) {
1267 		return readq((void __iomem *)dd->kregbase + offset);
1268 	}
1269 	return -1;
1270 }
1271 
1272 void write_csr(const struct hfi1_devdata *dd, u32 offset, u64 value)
1273 {
1274 	if (dd->flags & HFI1_PRESENT)
1275 		writeq(value, (void __iomem *)dd->kregbase + offset);
1276 }
1277 
1278 void __iomem *get_csr_addr(
1279 	struct hfi1_devdata *dd,
1280 	u32 offset)
1281 {
1282 	return (void __iomem *)dd->kregbase + offset;
1283 }
1284 
1285 static inline u64 read_write_csr(const struct hfi1_devdata *dd, u32 csr,
1286 				 int mode, u64 value)
1287 {
1288 	u64 ret;
1289 
1290 	if (mode == CNTR_MODE_R) {
1291 		ret = read_csr(dd, csr);
1292 	} else if (mode == CNTR_MODE_W) {
1293 		write_csr(dd, csr, value);
1294 		ret = value;
1295 	} else {
1296 		dd_dev_err(dd, "Invalid cntr register access mode");
1297 		return 0;
1298 	}
1299 
1300 	hfi1_cdbg(CNTR, "csr 0x%x val 0x%llx mode %d", csr, ret, mode);
1301 	return ret;
1302 }
1303 
1304 /* Dev Access */
1305 static u64 dev_access_u32_csr(const struct cntr_entry *entry,
1306 			      void *context, int vl, int mode, u64 data)
1307 {
1308 	struct hfi1_devdata *dd = context;
1309 	u64 csr = entry->csr;
1310 
1311 	if (entry->flags & CNTR_SDMA) {
1312 		if (vl == CNTR_INVALID_VL)
1313 			return 0;
1314 		csr += 0x100 * vl;
1315 	} else {
1316 		if (vl != CNTR_INVALID_VL)
1317 			return 0;
1318 	}
1319 	return read_write_csr(dd, csr, mode, data);
1320 }
1321 
1322 static u64 access_sde_err_cnt(const struct cntr_entry *entry,
1323 			      void *context, int idx, int mode, u64 data)
1324 {
1325 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1326 
1327 	if (dd->per_sdma && idx < dd->num_sdma)
1328 		return dd->per_sdma[idx].err_cnt;
1329 	return 0;
1330 }
1331 
1332 static u64 access_sde_int_cnt(const struct cntr_entry *entry,
1333 			      void *context, int idx, int mode, u64 data)
1334 {
1335 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1336 
1337 	if (dd->per_sdma && idx < dd->num_sdma)
1338 		return dd->per_sdma[idx].sdma_int_cnt;
1339 	return 0;
1340 }
1341 
1342 static u64 access_sde_idle_int_cnt(const struct cntr_entry *entry,
1343 				   void *context, int idx, int mode, u64 data)
1344 {
1345 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1346 
1347 	if (dd->per_sdma && idx < dd->num_sdma)
1348 		return dd->per_sdma[idx].idle_int_cnt;
1349 	return 0;
1350 }
1351 
1352 static u64 access_sde_progress_int_cnt(const struct cntr_entry *entry,
1353 				       void *context, int idx, int mode,
1354 				       u64 data)
1355 {
1356 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1357 
1358 	if (dd->per_sdma && idx < dd->num_sdma)
1359 		return dd->per_sdma[idx].progress_int_cnt;
1360 	return 0;
1361 }
1362 
1363 static u64 dev_access_u64_csr(const struct cntr_entry *entry, void *context,
1364 			      int vl, int mode, u64 data)
1365 {
1366 	struct hfi1_devdata *dd = context;
1367 
1368 	u64 val = 0;
1369 	u64 csr = entry->csr;
1370 
1371 	if (entry->flags & CNTR_VL) {
1372 		if (vl == CNTR_INVALID_VL)
1373 			return 0;
1374 		csr += 8 * vl;
1375 	} else {
1376 		if (vl != CNTR_INVALID_VL)
1377 			return 0;
1378 	}
1379 
1380 	val = read_write_csr(dd, csr, mode, data);
1381 	return val;
1382 }
1383 
1384 static u64 dc_access_lcb_cntr(const struct cntr_entry *entry, void *context,
1385 			      int vl, int mode, u64 data)
1386 {
1387 	struct hfi1_devdata *dd = context;
1388 	u32 csr = entry->csr;
1389 	int ret = 0;
1390 
1391 	if (vl != CNTR_INVALID_VL)
1392 		return 0;
1393 	if (mode == CNTR_MODE_R)
1394 		ret = read_lcb_csr(dd, csr, &data);
1395 	else if (mode == CNTR_MODE_W)
1396 		ret = write_lcb_csr(dd, csr, data);
1397 
1398 	if (ret) {
1399 		dd_dev_err(dd, "Could not acquire LCB for counter 0x%x", csr);
1400 		return 0;
1401 	}
1402 
1403 	hfi1_cdbg(CNTR, "csr 0x%x val 0x%llx mode %d", csr, data, mode);
1404 	return data;
1405 }
1406 
1407 /* Port Access */
1408 static u64 port_access_u32_csr(const struct cntr_entry *entry, void *context,
1409 			       int vl, int mode, u64 data)
1410 {
1411 	struct hfi1_pportdata *ppd = context;
1412 
1413 	if (vl != CNTR_INVALID_VL)
1414 		return 0;
1415 	return read_write_csr(ppd->dd, entry->csr, mode, data);
1416 }
1417 
1418 static u64 port_access_u64_csr(const struct cntr_entry *entry,
1419 			       void *context, int vl, int mode, u64 data)
1420 {
1421 	struct hfi1_pportdata *ppd = context;
1422 	u64 val;
1423 	u64 csr = entry->csr;
1424 
1425 	if (entry->flags & CNTR_VL) {
1426 		if (vl == CNTR_INVALID_VL)
1427 			return 0;
1428 		csr += 8 * vl;
1429 	} else {
1430 		if (vl != CNTR_INVALID_VL)
1431 			return 0;
1432 	}
1433 	val = read_write_csr(ppd->dd, csr, mode, data);
1434 	return val;
1435 }
1436 
1437 /* Software defined */
1438 static inline u64 read_write_sw(struct hfi1_devdata *dd, u64 *cntr, int mode,
1439 				u64 data)
1440 {
1441 	u64 ret;
1442 
1443 	if (mode == CNTR_MODE_R) {
1444 		ret = *cntr;
1445 	} else if (mode == CNTR_MODE_W) {
1446 		*cntr = data;
1447 		ret = data;
1448 	} else {
1449 		dd_dev_err(dd, "Invalid cntr sw access mode");
1450 		return 0;
1451 	}
1452 
1453 	hfi1_cdbg(CNTR, "val 0x%llx mode %d", ret, mode);
1454 
1455 	return ret;
1456 }
1457 
1458 static u64 access_sw_link_dn_cnt(const struct cntr_entry *entry, void *context,
1459 				 int vl, int mode, u64 data)
1460 {
1461 	struct hfi1_pportdata *ppd = context;
1462 
1463 	if (vl != CNTR_INVALID_VL)
1464 		return 0;
1465 	return read_write_sw(ppd->dd, &ppd->link_downed, mode, data);
1466 }
1467 
1468 static u64 access_sw_link_up_cnt(const struct cntr_entry *entry, void *context,
1469 				 int vl, int mode, u64 data)
1470 {
1471 	struct hfi1_pportdata *ppd = context;
1472 
1473 	if (vl != CNTR_INVALID_VL)
1474 		return 0;
1475 	return read_write_sw(ppd->dd, &ppd->link_up, mode, data);
1476 }
1477 
1478 static u64 access_sw_unknown_frame_cnt(const struct cntr_entry *entry,
1479 				       void *context, int vl, int mode,
1480 				       u64 data)
1481 {
1482 	struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context;
1483 
1484 	if (vl != CNTR_INVALID_VL)
1485 		return 0;
1486 	return read_write_sw(ppd->dd, &ppd->unknown_frame_count, mode, data);
1487 }
1488 
1489 static u64 access_sw_xmit_discards(const struct cntr_entry *entry,
1490 				   void *context, int vl, int mode, u64 data)
1491 {
1492 	struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context;
1493 	u64 zero = 0;
1494 	u64 *counter;
1495 
1496 	if (vl == CNTR_INVALID_VL)
1497 		counter = &ppd->port_xmit_discards;
1498 	else if (vl >= 0 && vl < C_VL_COUNT)
1499 		counter = &ppd->port_xmit_discards_vl[vl];
1500 	else
1501 		counter = &zero;
1502 
1503 	return read_write_sw(ppd->dd, counter, mode, data);
1504 }
1505 
1506 static u64 access_xmit_constraint_errs(const struct cntr_entry *entry,
1507 				       void *context, int vl, int mode,
1508 				       u64 data)
1509 {
1510 	struct hfi1_pportdata *ppd = context;
1511 
1512 	if (vl != CNTR_INVALID_VL)
1513 		return 0;
1514 
1515 	return read_write_sw(ppd->dd, &ppd->port_xmit_constraint_errors,
1516 			     mode, data);
1517 }
1518 
1519 static u64 access_rcv_constraint_errs(const struct cntr_entry *entry,
1520 				      void *context, int vl, int mode, u64 data)
1521 {
1522 	struct hfi1_pportdata *ppd = context;
1523 
1524 	if (vl != CNTR_INVALID_VL)
1525 		return 0;
1526 
1527 	return read_write_sw(ppd->dd, &ppd->port_rcv_constraint_errors,
1528 			     mode, data);
1529 }
1530 
1531 u64 get_all_cpu_total(u64 __percpu *cntr)
1532 {
1533 	int cpu;
1534 	u64 counter = 0;
1535 
1536 	for_each_possible_cpu(cpu)
1537 		counter += *per_cpu_ptr(cntr, cpu);
1538 	return counter;
1539 }
1540 
1541 static u64 read_write_cpu(struct hfi1_devdata *dd, u64 *z_val,
1542 			  u64 __percpu *cntr,
1543 			  int vl, int mode, u64 data)
1544 {
1545 	u64 ret = 0;
1546 
1547 	if (vl != CNTR_INVALID_VL)
1548 		return 0;
1549 
1550 	if (mode == CNTR_MODE_R) {
1551 		ret = get_all_cpu_total(cntr) - *z_val;
1552 	} else if (mode == CNTR_MODE_W) {
1553 		/* A write can only zero the counter */
1554 		if (data == 0)
1555 			*z_val = get_all_cpu_total(cntr);
1556 		else
1557 			dd_dev_err(dd, "Per CPU cntrs can only be zeroed");
1558 	} else {
1559 		dd_dev_err(dd, "Invalid cntr sw cpu access mode");
1560 		return 0;
1561 	}
1562 
1563 	return ret;
1564 }
1565 
1566 static u64 access_sw_cpu_intr(const struct cntr_entry *entry,
1567 			      void *context, int vl, int mode, u64 data)
1568 {
1569 	struct hfi1_devdata *dd = context;
1570 
1571 	return read_write_cpu(dd, &dd->z_int_counter, dd->int_counter, vl,
1572 			      mode, data);
1573 }
1574 
1575 static u64 access_sw_cpu_rcv_limit(const struct cntr_entry *entry,
1576 				   void *context, int vl, int mode, u64 data)
1577 {
1578 	struct hfi1_devdata *dd = context;
1579 
1580 	return read_write_cpu(dd, &dd->z_rcv_limit, dd->rcv_limit, vl,
1581 			      mode, data);
1582 }
1583 
1584 static u64 access_sw_pio_wait(const struct cntr_entry *entry,
1585 			      void *context, int vl, int mode, u64 data)
1586 {
1587 	struct hfi1_devdata *dd = context;
1588 
1589 	return dd->verbs_dev.n_piowait;
1590 }
1591 
1592 static u64 access_sw_pio_drain(const struct cntr_entry *entry,
1593 			       void *context, int vl, int mode, u64 data)
1594 {
1595 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1596 
1597 	return dd->verbs_dev.n_piodrain;
1598 }
1599 
1600 static u64 access_sw_vtx_wait(const struct cntr_entry *entry,
1601 			      void *context, int vl, int mode, u64 data)
1602 {
1603 	struct hfi1_devdata *dd = context;
1604 
1605 	return dd->verbs_dev.n_txwait;
1606 }
1607 
1608 static u64 access_sw_kmem_wait(const struct cntr_entry *entry,
1609 			       void *context, int vl, int mode, u64 data)
1610 {
1611 	struct hfi1_devdata *dd = context;
1612 
1613 	return dd->verbs_dev.n_kmem_wait;
1614 }
1615 
1616 static u64 access_sw_send_schedule(const struct cntr_entry *entry,
1617 				   void *context, int vl, int mode, u64 data)
1618 {
1619 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1620 
1621 	return read_write_cpu(dd, &dd->z_send_schedule, dd->send_schedule, vl,
1622 			      mode, data);
1623 }
1624 
1625 /* Software counters for the error status bits within MISC_ERR_STATUS */
1626 static u64 access_misc_pll_lock_fail_err_cnt(const struct cntr_entry *entry,
1627 					     void *context, int vl, int mode,
1628 					     u64 data)
1629 {
1630 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1631 
1632 	return dd->misc_err_status_cnt[12];
1633 }
1634 
1635 static u64 access_misc_mbist_fail_err_cnt(const struct cntr_entry *entry,
1636 					  void *context, int vl, int mode,
1637 					  u64 data)
1638 {
1639 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1640 
1641 	return dd->misc_err_status_cnt[11];
1642 }
1643 
1644 static u64 access_misc_invalid_eep_cmd_err_cnt(const struct cntr_entry *entry,
1645 					       void *context, int vl, int mode,
1646 					       u64 data)
1647 {
1648 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1649 
1650 	return dd->misc_err_status_cnt[10];
1651 }
1652 
1653 static u64 access_misc_efuse_done_parity_err_cnt(const struct cntr_entry *entry,
1654 						 void *context, int vl,
1655 						 int mode, u64 data)
1656 {
1657 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1658 
1659 	return dd->misc_err_status_cnt[9];
1660 }
1661 
1662 static u64 access_misc_efuse_write_err_cnt(const struct cntr_entry *entry,
1663 					   void *context, int vl, int mode,
1664 					   u64 data)
1665 {
1666 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1667 
1668 	return dd->misc_err_status_cnt[8];
1669 }
1670 
1671 static u64 access_misc_efuse_read_bad_addr_err_cnt(
1672 				const struct cntr_entry *entry,
1673 				void *context, int vl, int mode, u64 data)
1674 {
1675 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1676 
1677 	return dd->misc_err_status_cnt[7];
1678 }
1679 
1680 static u64 access_misc_efuse_csr_parity_err_cnt(const struct cntr_entry *entry,
1681 						void *context, int vl,
1682 						int mode, u64 data)
1683 {
1684 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1685 
1686 	return dd->misc_err_status_cnt[6];
1687 }
1688 
1689 static u64 access_misc_fw_auth_failed_err_cnt(const struct cntr_entry *entry,
1690 					      void *context, int vl, int mode,
1691 					      u64 data)
1692 {
1693 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1694 
1695 	return dd->misc_err_status_cnt[5];
1696 }
1697 
1698 static u64 access_misc_key_mismatch_err_cnt(const struct cntr_entry *entry,
1699 					    void *context, int vl, int mode,
1700 					    u64 data)
1701 {
1702 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1703 
1704 	return dd->misc_err_status_cnt[4];
1705 }
1706 
1707 static u64 access_misc_sbus_write_failed_err_cnt(const struct cntr_entry *entry,
1708 						 void *context, int vl,
1709 						 int mode, u64 data)
1710 {
1711 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1712 
1713 	return dd->misc_err_status_cnt[3];
1714 }
1715 
1716 static u64 access_misc_csr_write_bad_addr_err_cnt(
1717 				const struct cntr_entry *entry,
1718 				void *context, int vl, int mode, u64 data)
1719 {
1720 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1721 
1722 	return dd->misc_err_status_cnt[2];
1723 }
1724 
1725 static u64 access_misc_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
1726 						 void *context, int vl,
1727 						 int mode, u64 data)
1728 {
1729 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1730 
1731 	return dd->misc_err_status_cnt[1];
1732 }
1733 
1734 static u64 access_misc_csr_parity_err_cnt(const struct cntr_entry *entry,
1735 					  void *context, int vl, int mode,
1736 					  u64 data)
1737 {
1738 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1739 
1740 	return dd->misc_err_status_cnt[0];
1741 }
1742 
1743 /*
1744  * Software counter for the aggregate of
1745  * individual CceErrStatus counters
1746  */
1747 static u64 access_sw_cce_err_status_aggregated_cnt(
1748 				const struct cntr_entry *entry,
1749 				void *context, int vl, int mode, u64 data)
1750 {
1751 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1752 
1753 	return dd->sw_cce_err_status_aggregate;
1754 }
1755 
1756 /*
1757  * Software counters corresponding to each of the
1758  * error status bits within CceErrStatus
1759  */
1760 static u64 access_cce_msix_csr_parity_err_cnt(const struct cntr_entry *entry,
1761 					      void *context, int vl, int mode,
1762 					      u64 data)
1763 {
1764 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1765 
1766 	return dd->cce_err_status_cnt[40];
1767 }
1768 
1769 static u64 access_cce_int_map_unc_err_cnt(const struct cntr_entry *entry,
1770 					  void *context, int vl, int mode,
1771 					  u64 data)
1772 {
1773 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1774 
1775 	return dd->cce_err_status_cnt[39];
1776 }
1777 
1778 static u64 access_cce_int_map_cor_err_cnt(const struct cntr_entry *entry,
1779 					  void *context, int vl, int mode,
1780 					  u64 data)
1781 {
1782 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1783 
1784 	return dd->cce_err_status_cnt[38];
1785 }
1786 
1787 static u64 access_cce_msix_table_unc_err_cnt(const struct cntr_entry *entry,
1788 					     void *context, int vl, int mode,
1789 					     u64 data)
1790 {
1791 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1792 
1793 	return dd->cce_err_status_cnt[37];
1794 }
1795 
1796 static u64 access_cce_msix_table_cor_err_cnt(const struct cntr_entry *entry,
1797 					     void *context, int vl, int mode,
1798 					     u64 data)
1799 {
1800 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1801 
1802 	return dd->cce_err_status_cnt[36];
1803 }
1804 
1805 static u64 access_cce_rxdma_conv_fifo_parity_err_cnt(
1806 				const struct cntr_entry *entry,
1807 				void *context, int vl, int mode, u64 data)
1808 {
1809 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1810 
1811 	return dd->cce_err_status_cnt[35];
1812 }
1813 
1814 static u64 access_cce_rcpl_async_fifo_parity_err_cnt(
1815 				const struct cntr_entry *entry,
1816 				void *context, int vl, int mode, u64 data)
1817 {
1818 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1819 
1820 	return dd->cce_err_status_cnt[34];
1821 }
1822 
1823 static u64 access_cce_seg_write_bad_addr_err_cnt(const struct cntr_entry *entry,
1824 						 void *context, int vl,
1825 						 int mode, u64 data)
1826 {
1827 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1828 
1829 	return dd->cce_err_status_cnt[33];
1830 }
1831 
1832 static u64 access_cce_seg_read_bad_addr_err_cnt(const struct cntr_entry *entry,
1833 						void *context, int vl, int mode,
1834 						u64 data)
1835 {
1836 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1837 
1838 	return dd->cce_err_status_cnt[32];
1839 }
1840 
1841 static u64 access_la_triggered_cnt(const struct cntr_entry *entry,
1842 				   void *context, int vl, int mode, u64 data)
1843 {
1844 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1845 
1846 	return dd->cce_err_status_cnt[31];
1847 }
1848 
1849 static u64 access_cce_trgt_cpl_timeout_err_cnt(const struct cntr_entry *entry,
1850 					       void *context, int vl, int mode,
1851 					       u64 data)
1852 {
1853 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1854 
1855 	return dd->cce_err_status_cnt[30];
1856 }
1857 
1858 static u64 access_pcic_receive_parity_err_cnt(const struct cntr_entry *entry,
1859 					      void *context, int vl, int mode,
1860 					      u64 data)
1861 {
1862 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1863 
1864 	return dd->cce_err_status_cnt[29];
1865 }
1866 
1867 static u64 access_pcic_transmit_back_parity_err_cnt(
1868 				const struct cntr_entry *entry,
1869 				void *context, int vl, int mode, u64 data)
1870 {
1871 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1872 
1873 	return dd->cce_err_status_cnt[28];
1874 }
1875 
1876 static u64 access_pcic_transmit_front_parity_err_cnt(
1877 				const struct cntr_entry *entry,
1878 				void *context, int vl, int mode, u64 data)
1879 {
1880 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1881 
1882 	return dd->cce_err_status_cnt[27];
1883 }
1884 
1885 static u64 access_pcic_cpl_dat_q_unc_err_cnt(const struct cntr_entry *entry,
1886 					     void *context, int vl, int mode,
1887 					     u64 data)
1888 {
1889 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1890 
1891 	return dd->cce_err_status_cnt[26];
1892 }
1893 
1894 static u64 access_pcic_cpl_hd_q_unc_err_cnt(const struct cntr_entry *entry,
1895 					    void *context, int vl, int mode,
1896 					    u64 data)
1897 {
1898 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1899 
1900 	return dd->cce_err_status_cnt[25];
1901 }
1902 
1903 static u64 access_pcic_post_dat_q_unc_err_cnt(const struct cntr_entry *entry,
1904 					      void *context, int vl, int mode,
1905 					      u64 data)
1906 {
1907 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1908 
1909 	return dd->cce_err_status_cnt[24];
1910 }
1911 
1912 static u64 access_pcic_post_hd_q_unc_err_cnt(const struct cntr_entry *entry,
1913 					     void *context, int vl, int mode,
1914 					     u64 data)
1915 {
1916 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1917 
1918 	return dd->cce_err_status_cnt[23];
1919 }
1920 
1921 static u64 access_pcic_retry_sot_mem_unc_err_cnt(const struct cntr_entry *entry,
1922 						 void *context, int vl,
1923 						 int mode, u64 data)
1924 {
1925 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1926 
1927 	return dd->cce_err_status_cnt[22];
1928 }
1929 
1930 static u64 access_pcic_retry_mem_unc_err(const struct cntr_entry *entry,
1931 					 void *context, int vl, int mode,
1932 					 u64 data)
1933 {
1934 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1935 
1936 	return dd->cce_err_status_cnt[21];
1937 }
1938 
1939 static u64 access_pcic_n_post_dat_q_parity_err_cnt(
1940 				const struct cntr_entry *entry,
1941 				void *context, int vl, int mode, u64 data)
1942 {
1943 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1944 
1945 	return dd->cce_err_status_cnt[20];
1946 }
1947 
1948 static u64 access_pcic_n_post_h_q_parity_err_cnt(const struct cntr_entry *entry,
1949 						 void *context, int vl,
1950 						 int mode, u64 data)
1951 {
1952 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1953 
1954 	return dd->cce_err_status_cnt[19];
1955 }
1956 
1957 static u64 access_pcic_cpl_dat_q_cor_err_cnt(const struct cntr_entry *entry,
1958 					     void *context, int vl, int mode,
1959 					     u64 data)
1960 {
1961 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1962 
1963 	return dd->cce_err_status_cnt[18];
1964 }
1965 
1966 static u64 access_pcic_cpl_hd_q_cor_err_cnt(const struct cntr_entry *entry,
1967 					    void *context, int vl, int mode,
1968 					    u64 data)
1969 {
1970 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1971 
1972 	return dd->cce_err_status_cnt[17];
1973 }
1974 
1975 static u64 access_pcic_post_dat_q_cor_err_cnt(const struct cntr_entry *entry,
1976 					      void *context, int vl, int mode,
1977 					      u64 data)
1978 {
1979 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1980 
1981 	return dd->cce_err_status_cnt[16];
1982 }
1983 
1984 static u64 access_pcic_post_hd_q_cor_err_cnt(const struct cntr_entry *entry,
1985 					     void *context, int vl, int mode,
1986 					     u64 data)
1987 {
1988 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1989 
1990 	return dd->cce_err_status_cnt[15];
1991 }
1992 
1993 static u64 access_pcic_retry_sot_mem_cor_err_cnt(const struct cntr_entry *entry,
1994 						 void *context, int vl,
1995 						 int mode, u64 data)
1996 {
1997 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1998 
1999 	return dd->cce_err_status_cnt[14];
2000 }
2001 
2002 static u64 access_pcic_retry_mem_cor_err_cnt(const struct cntr_entry *entry,
2003 					     void *context, int vl, int mode,
2004 					     u64 data)
2005 {
2006 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2007 
2008 	return dd->cce_err_status_cnt[13];
2009 }
2010 
2011 static u64 access_cce_cli1_async_fifo_dbg_parity_err_cnt(
2012 				const struct cntr_entry *entry,
2013 				void *context, int vl, int mode, u64 data)
2014 {
2015 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2016 
2017 	return dd->cce_err_status_cnt[12];
2018 }
2019 
2020 static u64 access_cce_cli1_async_fifo_rxdma_parity_err_cnt(
2021 				const struct cntr_entry *entry,
2022 				void *context, int vl, int mode, u64 data)
2023 {
2024 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2025 
2026 	return dd->cce_err_status_cnt[11];
2027 }
2028 
2029 static u64 access_cce_cli1_async_fifo_sdma_hd_parity_err_cnt(
2030 				const struct cntr_entry *entry,
2031 				void *context, int vl, int mode, u64 data)
2032 {
2033 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2034 
2035 	return dd->cce_err_status_cnt[10];
2036 }
2037 
2038 static u64 access_cce_cl1_async_fifo_pio_crdt_parity_err_cnt(
2039 				const struct cntr_entry *entry,
2040 				void *context, int vl, int mode, u64 data)
2041 {
2042 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2043 
2044 	return dd->cce_err_status_cnt[9];
2045 }
2046 
2047 static u64 access_cce_cli2_async_fifo_parity_err_cnt(
2048 				const struct cntr_entry *entry,
2049 				void *context, int vl, int mode, u64 data)
2050 {
2051 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2052 
2053 	return dd->cce_err_status_cnt[8];
2054 }
2055 
2056 static u64 access_cce_csr_cfg_bus_parity_err_cnt(const struct cntr_entry *entry,
2057 						 void *context, int vl,
2058 						 int mode, u64 data)
2059 {
2060 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2061 
2062 	return dd->cce_err_status_cnt[7];
2063 }
2064 
2065 static u64 access_cce_cli0_async_fifo_parity_err_cnt(
2066 				const struct cntr_entry *entry,
2067 				void *context, int vl, int mode, u64 data)
2068 {
2069 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2070 
2071 	return dd->cce_err_status_cnt[6];
2072 }
2073 
2074 static u64 access_cce_rspd_data_parity_err_cnt(const struct cntr_entry *entry,
2075 					       void *context, int vl, int mode,
2076 					       u64 data)
2077 {
2078 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2079 
2080 	return dd->cce_err_status_cnt[5];
2081 }
2082 
2083 static u64 access_cce_trgt_access_err_cnt(const struct cntr_entry *entry,
2084 					  void *context, int vl, int mode,
2085 					  u64 data)
2086 {
2087 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2088 
2089 	return dd->cce_err_status_cnt[4];
2090 }
2091 
2092 static u64 access_cce_trgt_async_fifo_parity_err_cnt(
2093 				const struct cntr_entry *entry,
2094 				void *context, int vl, int mode, u64 data)
2095 {
2096 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2097 
2098 	return dd->cce_err_status_cnt[3];
2099 }
2100 
2101 static u64 access_cce_csr_write_bad_addr_err_cnt(const struct cntr_entry *entry,
2102 						 void *context, int vl,
2103 						 int mode, u64 data)
2104 {
2105 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2106 
2107 	return dd->cce_err_status_cnt[2];
2108 }
2109 
2110 static u64 access_cce_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
2111 						void *context, int vl,
2112 						int mode, u64 data)
2113 {
2114 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2115 
2116 	return dd->cce_err_status_cnt[1];
2117 }
2118 
2119 static u64 access_ccs_csr_parity_err_cnt(const struct cntr_entry *entry,
2120 					 void *context, int vl, int mode,
2121 					 u64 data)
2122 {
2123 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2124 
2125 	return dd->cce_err_status_cnt[0];
2126 }
2127 
2128 /*
2129  * Software counters corresponding to each of the
2130  * error status bits within RcvErrStatus
2131  */
2132 static u64 access_rx_csr_parity_err_cnt(const struct cntr_entry *entry,
2133 					void *context, int vl, int mode,
2134 					u64 data)
2135 {
2136 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2137 
2138 	return dd->rcv_err_status_cnt[63];
2139 }
2140 
2141 static u64 access_rx_csr_write_bad_addr_err_cnt(const struct cntr_entry *entry,
2142 						void *context, int vl,
2143 						int mode, u64 data)
2144 {
2145 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2146 
2147 	return dd->rcv_err_status_cnt[62];
2148 }
2149 
2150 static u64 access_rx_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
2151 					       void *context, int vl, int mode,
2152 					       u64 data)
2153 {
2154 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2155 
2156 	return dd->rcv_err_status_cnt[61];
2157 }
2158 
2159 static u64 access_rx_dma_csr_unc_err_cnt(const struct cntr_entry *entry,
2160 					 void *context, int vl, int mode,
2161 					 u64 data)
2162 {
2163 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2164 
2165 	return dd->rcv_err_status_cnt[60];
2166 }
2167 
2168 static u64 access_rx_dma_dq_fsm_encoding_err_cnt(const struct cntr_entry *entry,
2169 						 void *context, int vl,
2170 						 int mode, u64 data)
2171 {
2172 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2173 
2174 	return dd->rcv_err_status_cnt[59];
2175 }
2176 
2177 static u64 access_rx_dma_eq_fsm_encoding_err_cnt(const struct cntr_entry *entry,
2178 						 void *context, int vl,
2179 						 int mode, u64 data)
2180 {
2181 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2182 
2183 	return dd->rcv_err_status_cnt[58];
2184 }
2185 
2186 static u64 access_rx_dma_csr_parity_err_cnt(const struct cntr_entry *entry,
2187 					    void *context, int vl, int mode,
2188 					    u64 data)
2189 {
2190 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2191 
2192 	return dd->rcv_err_status_cnt[57];
2193 }
2194 
2195 static u64 access_rx_rbuf_data_cor_err_cnt(const struct cntr_entry *entry,
2196 					   void *context, int vl, int mode,
2197 					   u64 data)
2198 {
2199 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2200 
2201 	return dd->rcv_err_status_cnt[56];
2202 }
2203 
2204 static u64 access_rx_rbuf_data_unc_err_cnt(const struct cntr_entry *entry,
2205 					   void *context, int vl, int mode,
2206 					   u64 data)
2207 {
2208 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2209 
2210 	return dd->rcv_err_status_cnt[55];
2211 }
2212 
2213 static u64 access_rx_dma_data_fifo_rd_cor_err_cnt(
2214 				const struct cntr_entry *entry,
2215 				void *context, int vl, int mode, u64 data)
2216 {
2217 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2218 
2219 	return dd->rcv_err_status_cnt[54];
2220 }
2221 
2222 static u64 access_rx_dma_data_fifo_rd_unc_err_cnt(
2223 				const struct cntr_entry *entry,
2224 				void *context, int vl, int mode, u64 data)
2225 {
2226 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2227 
2228 	return dd->rcv_err_status_cnt[53];
2229 }
2230 
2231 static u64 access_rx_dma_hdr_fifo_rd_cor_err_cnt(const struct cntr_entry *entry,
2232 						 void *context, int vl,
2233 						 int mode, u64 data)
2234 {
2235 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2236 
2237 	return dd->rcv_err_status_cnt[52];
2238 }
2239 
2240 static u64 access_rx_dma_hdr_fifo_rd_unc_err_cnt(const struct cntr_entry *entry,
2241 						 void *context, int vl,
2242 						 int mode, u64 data)
2243 {
2244 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2245 
2246 	return dd->rcv_err_status_cnt[51];
2247 }
2248 
2249 static u64 access_rx_rbuf_desc_part2_cor_err_cnt(const struct cntr_entry *entry,
2250 						 void *context, int vl,
2251 						 int mode, u64 data)
2252 {
2253 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2254 
2255 	return dd->rcv_err_status_cnt[50];
2256 }
2257 
2258 static u64 access_rx_rbuf_desc_part2_unc_err_cnt(const struct cntr_entry *entry,
2259 						 void *context, int vl,
2260 						 int mode, u64 data)
2261 {
2262 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2263 
2264 	return dd->rcv_err_status_cnt[49];
2265 }
2266 
2267 static u64 access_rx_rbuf_desc_part1_cor_err_cnt(const struct cntr_entry *entry,
2268 						 void *context, int vl,
2269 						 int mode, u64 data)
2270 {
2271 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2272 
2273 	return dd->rcv_err_status_cnt[48];
2274 }
2275 
2276 static u64 access_rx_rbuf_desc_part1_unc_err_cnt(const struct cntr_entry *entry,
2277 						 void *context, int vl,
2278 						 int mode, u64 data)
2279 {
2280 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2281 
2282 	return dd->rcv_err_status_cnt[47];
2283 }
2284 
2285 static u64 access_rx_hq_intr_fsm_err_cnt(const struct cntr_entry *entry,
2286 					 void *context, int vl, int mode,
2287 					 u64 data)
2288 {
2289 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2290 
2291 	return dd->rcv_err_status_cnt[46];
2292 }
2293 
2294 static u64 access_rx_hq_intr_csr_parity_err_cnt(
2295 				const struct cntr_entry *entry,
2296 				void *context, int vl, int mode, u64 data)
2297 {
2298 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2299 
2300 	return dd->rcv_err_status_cnt[45];
2301 }
2302 
2303 static u64 access_rx_lookup_csr_parity_err_cnt(
2304 				const struct cntr_entry *entry,
2305 				void *context, int vl, int mode, u64 data)
2306 {
2307 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2308 
2309 	return dd->rcv_err_status_cnt[44];
2310 }
2311 
2312 static u64 access_rx_lookup_rcv_array_cor_err_cnt(
2313 				const struct cntr_entry *entry,
2314 				void *context, int vl, int mode, u64 data)
2315 {
2316 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2317 
2318 	return dd->rcv_err_status_cnt[43];
2319 }
2320 
2321 static u64 access_rx_lookup_rcv_array_unc_err_cnt(
2322 				const struct cntr_entry *entry,
2323 				void *context, int vl, int mode, u64 data)
2324 {
2325 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2326 
2327 	return dd->rcv_err_status_cnt[42];
2328 }
2329 
2330 static u64 access_rx_lookup_des_part2_parity_err_cnt(
2331 				const struct cntr_entry *entry,
2332 				void *context, int vl, int mode, u64 data)
2333 {
2334 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2335 
2336 	return dd->rcv_err_status_cnt[41];
2337 }
2338 
2339 static u64 access_rx_lookup_des_part1_unc_cor_err_cnt(
2340 				const struct cntr_entry *entry,
2341 				void *context, int vl, int mode, u64 data)
2342 {
2343 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2344 
2345 	return dd->rcv_err_status_cnt[40];
2346 }
2347 
2348 static u64 access_rx_lookup_des_part1_unc_err_cnt(
2349 				const struct cntr_entry *entry,
2350 				void *context, int vl, int mode, u64 data)
2351 {
2352 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2353 
2354 	return dd->rcv_err_status_cnt[39];
2355 }
2356 
2357 static u64 access_rx_rbuf_next_free_buf_cor_err_cnt(
2358 				const struct cntr_entry *entry,
2359 				void *context, int vl, int mode, u64 data)
2360 {
2361 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2362 
2363 	return dd->rcv_err_status_cnt[38];
2364 }
2365 
2366 static u64 access_rx_rbuf_next_free_buf_unc_err_cnt(
2367 				const struct cntr_entry *entry,
2368 				void *context, int vl, int mode, u64 data)
2369 {
2370 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2371 
2372 	return dd->rcv_err_status_cnt[37];
2373 }
2374 
2375 static u64 access_rbuf_fl_init_wr_addr_parity_err_cnt(
2376 				const struct cntr_entry *entry,
2377 				void *context, int vl, int mode, u64 data)
2378 {
2379 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2380 
2381 	return dd->rcv_err_status_cnt[36];
2382 }
2383 
2384 static u64 access_rx_rbuf_fl_initdone_parity_err_cnt(
2385 				const struct cntr_entry *entry,
2386 				void *context, int vl, int mode, u64 data)
2387 {
2388 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2389 
2390 	return dd->rcv_err_status_cnt[35];
2391 }
2392 
2393 static u64 access_rx_rbuf_fl_write_addr_parity_err_cnt(
2394 				const struct cntr_entry *entry,
2395 				void *context, int vl, int mode, u64 data)
2396 {
2397 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2398 
2399 	return dd->rcv_err_status_cnt[34];
2400 }
2401 
2402 static u64 access_rx_rbuf_fl_rd_addr_parity_err_cnt(
2403 				const struct cntr_entry *entry,
2404 				void *context, int vl, int mode, u64 data)
2405 {
2406 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2407 
2408 	return dd->rcv_err_status_cnt[33];
2409 }
2410 
2411 static u64 access_rx_rbuf_empty_err_cnt(const struct cntr_entry *entry,
2412 					void *context, int vl, int mode,
2413 					u64 data)
2414 {
2415 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2416 
2417 	return dd->rcv_err_status_cnt[32];
2418 }
2419 
2420 static u64 access_rx_rbuf_full_err_cnt(const struct cntr_entry *entry,
2421 				       void *context, int vl, int mode,
2422 				       u64 data)
2423 {
2424 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2425 
2426 	return dd->rcv_err_status_cnt[31];
2427 }
2428 
2429 static u64 access_rbuf_bad_lookup_err_cnt(const struct cntr_entry *entry,
2430 					  void *context, int vl, int mode,
2431 					  u64 data)
2432 {
2433 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2434 
2435 	return dd->rcv_err_status_cnt[30];
2436 }
2437 
2438 static u64 access_rbuf_ctx_id_parity_err_cnt(const struct cntr_entry *entry,
2439 					     void *context, int vl, int mode,
2440 					     u64 data)
2441 {
2442 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2443 
2444 	return dd->rcv_err_status_cnt[29];
2445 }
2446 
2447 static u64 access_rbuf_csr_qeopdw_parity_err_cnt(const struct cntr_entry *entry,
2448 						 void *context, int vl,
2449 						 int mode, u64 data)
2450 {
2451 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2452 
2453 	return dd->rcv_err_status_cnt[28];
2454 }
2455 
2456 static u64 access_rx_rbuf_csr_q_num_of_pkt_parity_err_cnt(
2457 				const struct cntr_entry *entry,
2458 				void *context, int vl, int mode, u64 data)
2459 {
2460 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2461 
2462 	return dd->rcv_err_status_cnt[27];
2463 }
2464 
2465 static u64 access_rx_rbuf_csr_q_t1_ptr_parity_err_cnt(
2466 				const struct cntr_entry *entry,
2467 				void *context, int vl, int mode, u64 data)
2468 {
2469 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2470 
2471 	return dd->rcv_err_status_cnt[26];
2472 }
2473 
2474 static u64 access_rx_rbuf_csr_q_hd_ptr_parity_err_cnt(
2475 				const struct cntr_entry *entry,
2476 				void *context, int vl, int mode, u64 data)
2477 {
2478 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2479 
2480 	return dd->rcv_err_status_cnt[25];
2481 }
2482 
2483 static u64 access_rx_rbuf_csr_q_vld_bit_parity_err_cnt(
2484 				const struct cntr_entry *entry,
2485 				void *context, int vl, int mode, u64 data)
2486 {
2487 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2488 
2489 	return dd->rcv_err_status_cnt[24];
2490 }
2491 
2492 static u64 access_rx_rbuf_csr_q_next_buf_parity_err_cnt(
2493 				const struct cntr_entry *entry,
2494 				void *context, int vl, int mode, u64 data)
2495 {
2496 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2497 
2498 	return dd->rcv_err_status_cnt[23];
2499 }
2500 
2501 static u64 access_rx_rbuf_csr_q_ent_cnt_parity_err_cnt(
2502 				const struct cntr_entry *entry,
2503 				void *context, int vl, int mode, u64 data)
2504 {
2505 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2506 
2507 	return dd->rcv_err_status_cnt[22];
2508 }
2509 
2510 static u64 access_rx_rbuf_csr_q_head_buf_num_parity_err_cnt(
2511 				const struct cntr_entry *entry,
2512 				void *context, int vl, int mode, u64 data)
2513 {
2514 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2515 
2516 	return dd->rcv_err_status_cnt[21];
2517 }
2518 
2519 static u64 access_rx_rbuf_block_list_read_cor_err_cnt(
2520 				const struct cntr_entry *entry,
2521 				void *context, int vl, int mode, u64 data)
2522 {
2523 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2524 
2525 	return dd->rcv_err_status_cnt[20];
2526 }
2527 
2528 static u64 access_rx_rbuf_block_list_read_unc_err_cnt(
2529 				const struct cntr_entry *entry,
2530 				void *context, int vl, int mode, u64 data)
2531 {
2532 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2533 
2534 	return dd->rcv_err_status_cnt[19];
2535 }
2536 
2537 static u64 access_rx_rbuf_lookup_des_cor_err_cnt(const struct cntr_entry *entry,
2538 						 void *context, int vl,
2539 						 int mode, u64 data)
2540 {
2541 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2542 
2543 	return dd->rcv_err_status_cnt[18];
2544 }
2545 
2546 static u64 access_rx_rbuf_lookup_des_unc_err_cnt(const struct cntr_entry *entry,
2547 						 void *context, int vl,
2548 						 int mode, u64 data)
2549 {
2550 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2551 
2552 	return dd->rcv_err_status_cnt[17];
2553 }
2554 
2555 static u64 access_rx_rbuf_lookup_des_reg_unc_cor_err_cnt(
2556 				const struct cntr_entry *entry,
2557 				void *context, int vl, int mode, u64 data)
2558 {
2559 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2560 
2561 	return dd->rcv_err_status_cnt[16];
2562 }
2563 
2564 static u64 access_rx_rbuf_lookup_des_reg_unc_err_cnt(
2565 				const struct cntr_entry *entry,
2566 				void *context, int vl, int mode, u64 data)
2567 {
2568 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2569 
2570 	return dd->rcv_err_status_cnt[15];
2571 }
2572 
2573 static u64 access_rx_rbuf_free_list_cor_err_cnt(const struct cntr_entry *entry,
2574 						void *context, int vl,
2575 						int mode, u64 data)
2576 {
2577 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2578 
2579 	return dd->rcv_err_status_cnt[14];
2580 }
2581 
2582 static u64 access_rx_rbuf_free_list_unc_err_cnt(const struct cntr_entry *entry,
2583 						void *context, int vl,
2584 						int mode, u64 data)
2585 {
2586 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2587 
2588 	return dd->rcv_err_status_cnt[13];
2589 }
2590 
2591 static u64 access_rx_rcv_fsm_encoding_err_cnt(const struct cntr_entry *entry,
2592 					      void *context, int vl, int mode,
2593 					      u64 data)
2594 {
2595 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2596 
2597 	return dd->rcv_err_status_cnt[12];
2598 }
2599 
2600 static u64 access_rx_dma_flag_cor_err_cnt(const struct cntr_entry *entry,
2601 					  void *context, int vl, int mode,
2602 					  u64 data)
2603 {
2604 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2605 
2606 	return dd->rcv_err_status_cnt[11];
2607 }
2608 
2609 static u64 access_rx_dma_flag_unc_err_cnt(const struct cntr_entry *entry,
2610 					  void *context, int vl, int mode,
2611 					  u64 data)
2612 {
2613 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2614 
2615 	return dd->rcv_err_status_cnt[10];
2616 }
2617 
2618 static u64 access_rx_dc_sop_eop_parity_err_cnt(const struct cntr_entry *entry,
2619 					       void *context, int vl, int mode,
2620 					       u64 data)
2621 {
2622 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2623 
2624 	return dd->rcv_err_status_cnt[9];
2625 }
2626 
2627 static u64 access_rx_rcv_csr_parity_err_cnt(const struct cntr_entry *entry,
2628 					    void *context, int vl, int mode,
2629 					    u64 data)
2630 {
2631 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2632 
2633 	return dd->rcv_err_status_cnt[8];
2634 }
2635 
2636 static u64 access_rx_rcv_qp_map_table_cor_err_cnt(
2637 				const struct cntr_entry *entry,
2638 				void *context, int vl, int mode, u64 data)
2639 {
2640 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2641 
2642 	return dd->rcv_err_status_cnt[7];
2643 }
2644 
2645 static u64 access_rx_rcv_qp_map_table_unc_err_cnt(
2646 				const struct cntr_entry *entry,
2647 				void *context, int vl, int mode, u64 data)
2648 {
2649 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2650 
2651 	return dd->rcv_err_status_cnt[6];
2652 }
2653 
2654 static u64 access_rx_rcv_data_cor_err_cnt(const struct cntr_entry *entry,
2655 					  void *context, int vl, int mode,
2656 					  u64 data)
2657 {
2658 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2659 
2660 	return dd->rcv_err_status_cnt[5];
2661 }
2662 
2663 static u64 access_rx_rcv_data_unc_err_cnt(const struct cntr_entry *entry,
2664 					  void *context, int vl, int mode,
2665 					  u64 data)
2666 {
2667 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2668 
2669 	return dd->rcv_err_status_cnt[4];
2670 }
2671 
2672 static u64 access_rx_rcv_hdr_cor_err_cnt(const struct cntr_entry *entry,
2673 					 void *context, int vl, int mode,
2674 					 u64 data)
2675 {
2676 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2677 
2678 	return dd->rcv_err_status_cnt[3];
2679 }
2680 
2681 static u64 access_rx_rcv_hdr_unc_err_cnt(const struct cntr_entry *entry,
2682 					 void *context, int vl, int mode,
2683 					 u64 data)
2684 {
2685 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2686 
2687 	return dd->rcv_err_status_cnt[2];
2688 }
2689 
2690 static u64 access_rx_dc_intf_parity_err_cnt(const struct cntr_entry *entry,
2691 					    void *context, int vl, int mode,
2692 					    u64 data)
2693 {
2694 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2695 
2696 	return dd->rcv_err_status_cnt[1];
2697 }
2698 
2699 static u64 access_rx_dma_csr_cor_err_cnt(const struct cntr_entry *entry,
2700 					 void *context, int vl, int mode,
2701 					 u64 data)
2702 {
2703 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2704 
2705 	return dd->rcv_err_status_cnt[0];
2706 }
2707 
2708 /*
2709  * Software counters corresponding to each of the
2710  * error status bits within SendPioErrStatus
2711  */
2712 static u64 access_pio_pec_sop_head_parity_err_cnt(
2713 				const struct cntr_entry *entry,
2714 				void *context, int vl, int mode, u64 data)
2715 {
2716 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2717 
2718 	return dd->send_pio_err_status_cnt[35];
2719 }
2720 
2721 static u64 access_pio_pcc_sop_head_parity_err_cnt(
2722 				const struct cntr_entry *entry,
2723 				void *context, int vl, int mode, u64 data)
2724 {
2725 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2726 
2727 	return dd->send_pio_err_status_cnt[34];
2728 }
2729 
2730 static u64 access_pio_last_returned_cnt_parity_err_cnt(
2731 				const struct cntr_entry *entry,
2732 				void *context, int vl, int mode, u64 data)
2733 {
2734 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2735 
2736 	return dd->send_pio_err_status_cnt[33];
2737 }
2738 
2739 static u64 access_pio_current_free_cnt_parity_err_cnt(
2740 				const struct cntr_entry *entry,
2741 				void *context, int vl, int mode, u64 data)
2742 {
2743 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2744 
2745 	return dd->send_pio_err_status_cnt[32];
2746 }
2747 
2748 static u64 access_pio_reserved_31_err_cnt(const struct cntr_entry *entry,
2749 					  void *context, int vl, int mode,
2750 					  u64 data)
2751 {
2752 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2753 
2754 	return dd->send_pio_err_status_cnt[31];
2755 }
2756 
2757 static u64 access_pio_reserved_30_err_cnt(const struct cntr_entry *entry,
2758 					  void *context, int vl, int mode,
2759 					  u64 data)
2760 {
2761 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2762 
2763 	return dd->send_pio_err_status_cnt[30];
2764 }
2765 
2766 static u64 access_pio_ppmc_sop_len_err_cnt(const struct cntr_entry *entry,
2767 					   void *context, int vl, int mode,
2768 					   u64 data)
2769 {
2770 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2771 
2772 	return dd->send_pio_err_status_cnt[29];
2773 }
2774 
2775 static u64 access_pio_ppmc_bqc_mem_parity_err_cnt(
2776 				const struct cntr_entry *entry,
2777 				void *context, int vl, int mode, u64 data)
2778 {
2779 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2780 
2781 	return dd->send_pio_err_status_cnt[28];
2782 }
2783 
2784 static u64 access_pio_vl_fifo_parity_err_cnt(const struct cntr_entry *entry,
2785 					     void *context, int vl, int mode,
2786 					     u64 data)
2787 {
2788 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2789 
2790 	return dd->send_pio_err_status_cnt[27];
2791 }
2792 
2793 static u64 access_pio_vlf_sop_parity_err_cnt(const struct cntr_entry *entry,
2794 					     void *context, int vl, int mode,
2795 					     u64 data)
2796 {
2797 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2798 
2799 	return dd->send_pio_err_status_cnt[26];
2800 }
2801 
2802 static u64 access_pio_vlf_v1_len_parity_err_cnt(const struct cntr_entry *entry,
2803 						void *context, int vl,
2804 						int mode, u64 data)
2805 {
2806 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2807 
2808 	return dd->send_pio_err_status_cnt[25];
2809 }
2810 
2811 static u64 access_pio_block_qw_count_parity_err_cnt(
2812 				const struct cntr_entry *entry,
2813 				void *context, int vl, int mode, u64 data)
2814 {
2815 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2816 
2817 	return dd->send_pio_err_status_cnt[24];
2818 }
2819 
2820 static u64 access_pio_write_qw_valid_parity_err_cnt(
2821 				const struct cntr_entry *entry,
2822 				void *context, int vl, int mode, u64 data)
2823 {
2824 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2825 
2826 	return dd->send_pio_err_status_cnt[23];
2827 }
2828 
2829 static u64 access_pio_state_machine_err_cnt(const struct cntr_entry *entry,
2830 					    void *context, int vl, int mode,
2831 					    u64 data)
2832 {
2833 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2834 
2835 	return dd->send_pio_err_status_cnt[22];
2836 }
2837 
2838 static u64 access_pio_write_data_parity_err_cnt(const struct cntr_entry *entry,
2839 						void *context, int vl,
2840 						int mode, u64 data)
2841 {
2842 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2843 
2844 	return dd->send_pio_err_status_cnt[21];
2845 }
2846 
2847 static u64 access_pio_host_addr_mem_cor_err_cnt(const struct cntr_entry *entry,
2848 						void *context, int vl,
2849 						int mode, u64 data)
2850 {
2851 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2852 
2853 	return dd->send_pio_err_status_cnt[20];
2854 }
2855 
2856 static u64 access_pio_host_addr_mem_unc_err_cnt(const struct cntr_entry *entry,
2857 						void *context, int vl,
2858 						int mode, u64 data)
2859 {
2860 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2861 
2862 	return dd->send_pio_err_status_cnt[19];
2863 }
2864 
2865 static u64 access_pio_pkt_evict_sm_or_arb_sm_err_cnt(
2866 				const struct cntr_entry *entry,
2867 				void *context, int vl, int mode, u64 data)
2868 {
2869 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2870 
2871 	return dd->send_pio_err_status_cnt[18];
2872 }
2873 
2874 static u64 access_pio_init_sm_in_err_cnt(const struct cntr_entry *entry,
2875 					 void *context, int vl, int mode,
2876 					 u64 data)
2877 {
2878 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2879 
2880 	return dd->send_pio_err_status_cnt[17];
2881 }
2882 
2883 static u64 access_pio_ppmc_pbl_fifo_err_cnt(const struct cntr_entry *entry,
2884 					    void *context, int vl, int mode,
2885 					    u64 data)
2886 {
2887 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2888 
2889 	return dd->send_pio_err_status_cnt[16];
2890 }
2891 
2892 static u64 access_pio_credit_ret_fifo_parity_err_cnt(
2893 				const struct cntr_entry *entry,
2894 				void *context, int vl, int mode, u64 data)
2895 {
2896 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2897 
2898 	return dd->send_pio_err_status_cnt[15];
2899 }
2900 
2901 static u64 access_pio_v1_len_mem_bank1_cor_err_cnt(
2902 				const struct cntr_entry *entry,
2903 				void *context, int vl, int mode, u64 data)
2904 {
2905 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2906 
2907 	return dd->send_pio_err_status_cnt[14];
2908 }
2909 
2910 static u64 access_pio_v1_len_mem_bank0_cor_err_cnt(
2911 				const struct cntr_entry *entry,
2912 				void *context, int vl, int mode, u64 data)
2913 {
2914 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2915 
2916 	return dd->send_pio_err_status_cnt[13];
2917 }
2918 
2919 static u64 access_pio_v1_len_mem_bank1_unc_err_cnt(
2920 				const struct cntr_entry *entry,
2921 				void *context, int vl, int mode, u64 data)
2922 {
2923 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2924 
2925 	return dd->send_pio_err_status_cnt[12];
2926 }
2927 
2928 static u64 access_pio_v1_len_mem_bank0_unc_err_cnt(
2929 				const struct cntr_entry *entry,
2930 				void *context, int vl, int mode, u64 data)
2931 {
2932 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2933 
2934 	return dd->send_pio_err_status_cnt[11];
2935 }
2936 
2937 static u64 access_pio_sm_pkt_reset_parity_err_cnt(
2938 				const struct cntr_entry *entry,
2939 				void *context, int vl, int mode, u64 data)
2940 {
2941 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2942 
2943 	return dd->send_pio_err_status_cnt[10];
2944 }
2945 
2946 static u64 access_pio_pkt_evict_fifo_parity_err_cnt(
2947 				const struct cntr_entry *entry,
2948 				void *context, int vl, int mode, u64 data)
2949 {
2950 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2951 
2952 	return dd->send_pio_err_status_cnt[9];
2953 }
2954 
2955 static u64 access_pio_sbrdctrl_crrel_fifo_parity_err_cnt(
2956 				const struct cntr_entry *entry,
2957 				void *context, int vl, int mode, u64 data)
2958 {
2959 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2960 
2961 	return dd->send_pio_err_status_cnt[8];
2962 }
2963 
2964 static u64 access_pio_sbrdctl_crrel_parity_err_cnt(
2965 				const struct cntr_entry *entry,
2966 				void *context, int vl, int mode, u64 data)
2967 {
2968 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2969 
2970 	return dd->send_pio_err_status_cnt[7];
2971 }
2972 
2973 static u64 access_pio_pec_fifo_parity_err_cnt(const struct cntr_entry *entry,
2974 					      void *context, int vl, int mode,
2975 					      u64 data)
2976 {
2977 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2978 
2979 	return dd->send_pio_err_status_cnt[6];
2980 }
2981 
2982 static u64 access_pio_pcc_fifo_parity_err_cnt(const struct cntr_entry *entry,
2983 					      void *context, int vl, int mode,
2984 					      u64 data)
2985 {
2986 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2987 
2988 	return dd->send_pio_err_status_cnt[5];
2989 }
2990 
2991 static u64 access_pio_sb_mem_fifo1_err_cnt(const struct cntr_entry *entry,
2992 					   void *context, int vl, int mode,
2993 					   u64 data)
2994 {
2995 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2996 
2997 	return dd->send_pio_err_status_cnt[4];
2998 }
2999 
3000 static u64 access_pio_sb_mem_fifo0_err_cnt(const struct cntr_entry *entry,
3001 					   void *context, int vl, int mode,
3002 					   u64 data)
3003 {
3004 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3005 
3006 	return dd->send_pio_err_status_cnt[3];
3007 }
3008 
3009 static u64 access_pio_csr_parity_err_cnt(const struct cntr_entry *entry,
3010 					 void *context, int vl, int mode,
3011 					 u64 data)
3012 {
3013 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3014 
3015 	return dd->send_pio_err_status_cnt[2];
3016 }
3017 
3018 static u64 access_pio_write_addr_parity_err_cnt(const struct cntr_entry *entry,
3019 						void *context, int vl,
3020 						int mode, u64 data)
3021 {
3022 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3023 
3024 	return dd->send_pio_err_status_cnt[1];
3025 }
3026 
3027 static u64 access_pio_write_bad_ctxt_err_cnt(const struct cntr_entry *entry,
3028 					     void *context, int vl, int mode,
3029 					     u64 data)
3030 {
3031 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3032 
3033 	return dd->send_pio_err_status_cnt[0];
3034 }
3035 
3036 /*
3037  * Software counters corresponding to each of the
3038  * error status bits within SendDmaErrStatus
3039  */
3040 static u64 access_sdma_pcie_req_tracking_cor_err_cnt(
3041 				const struct cntr_entry *entry,
3042 				void *context, int vl, int mode, u64 data)
3043 {
3044 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3045 
3046 	return dd->send_dma_err_status_cnt[3];
3047 }
3048 
3049 static u64 access_sdma_pcie_req_tracking_unc_err_cnt(
3050 				const struct cntr_entry *entry,
3051 				void *context, int vl, int mode, u64 data)
3052 {
3053 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3054 
3055 	return dd->send_dma_err_status_cnt[2];
3056 }
3057 
3058 static u64 access_sdma_csr_parity_err_cnt(const struct cntr_entry *entry,
3059 					  void *context, int vl, int mode,
3060 					  u64 data)
3061 {
3062 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3063 
3064 	return dd->send_dma_err_status_cnt[1];
3065 }
3066 
3067 static u64 access_sdma_rpy_tag_err_cnt(const struct cntr_entry *entry,
3068 				       void *context, int vl, int mode,
3069 				       u64 data)
3070 {
3071 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3072 
3073 	return dd->send_dma_err_status_cnt[0];
3074 }
3075 
3076 /*
3077  * Software counters corresponding to each of the
3078  * error status bits within SendEgressErrStatus
3079  */
3080 static u64 access_tx_read_pio_memory_csr_unc_err_cnt(
3081 				const struct cntr_entry *entry,
3082 				void *context, int vl, int mode, u64 data)
3083 {
3084 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3085 
3086 	return dd->send_egress_err_status_cnt[63];
3087 }
3088 
3089 static u64 access_tx_read_sdma_memory_csr_err_cnt(
3090 				const struct cntr_entry *entry,
3091 				void *context, int vl, int mode, u64 data)
3092 {
3093 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3094 
3095 	return dd->send_egress_err_status_cnt[62];
3096 }
3097 
3098 static u64 access_tx_egress_fifo_cor_err_cnt(const struct cntr_entry *entry,
3099 					     void *context, int vl, int mode,
3100 					     u64 data)
3101 {
3102 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3103 
3104 	return dd->send_egress_err_status_cnt[61];
3105 }
3106 
3107 static u64 access_tx_read_pio_memory_cor_err_cnt(const struct cntr_entry *entry,
3108 						 void *context, int vl,
3109 						 int mode, u64 data)
3110 {
3111 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3112 
3113 	return dd->send_egress_err_status_cnt[60];
3114 }
3115 
3116 static u64 access_tx_read_sdma_memory_cor_err_cnt(
3117 				const struct cntr_entry *entry,
3118 				void *context, int vl, int mode, u64 data)
3119 {
3120 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3121 
3122 	return dd->send_egress_err_status_cnt[59];
3123 }
3124 
3125 static u64 access_tx_sb_hdr_cor_err_cnt(const struct cntr_entry *entry,
3126 					void *context, int vl, int mode,
3127 					u64 data)
3128 {
3129 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3130 
3131 	return dd->send_egress_err_status_cnt[58];
3132 }
3133 
3134 static u64 access_tx_credit_overrun_err_cnt(const struct cntr_entry *entry,
3135 					    void *context, int vl, int mode,
3136 					    u64 data)
3137 {
3138 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3139 
3140 	return dd->send_egress_err_status_cnt[57];
3141 }
3142 
3143 static u64 access_tx_launch_fifo8_cor_err_cnt(const struct cntr_entry *entry,
3144 					      void *context, int vl, int mode,
3145 					      u64 data)
3146 {
3147 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3148 
3149 	return dd->send_egress_err_status_cnt[56];
3150 }
3151 
3152 static u64 access_tx_launch_fifo7_cor_err_cnt(const struct cntr_entry *entry,
3153 					      void *context, int vl, int mode,
3154 					      u64 data)
3155 {
3156 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3157 
3158 	return dd->send_egress_err_status_cnt[55];
3159 }
3160 
3161 static u64 access_tx_launch_fifo6_cor_err_cnt(const struct cntr_entry *entry,
3162 					      void *context, int vl, int mode,
3163 					      u64 data)
3164 {
3165 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3166 
3167 	return dd->send_egress_err_status_cnt[54];
3168 }
3169 
3170 static u64 access_tx_launch_fifo5_cor_err_cnt(const struct cntr_entry *entry,
3171 					      void *context, int vl, int mode,
3172 					      u64 data)
3173 {
3174 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3175 
3176 	return dd->send_egress_err_status_cnt[53];
3177 }
3178 
3179 static u64 access_tx_launch_fifo4_cor_err_cnt(const struct cntr_entry *entry,
3180 					      void *context, int vl, int mode,
3181 					      u64 data)
3182 {
3183 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3184 
3185 	return dd->send_egress_err_status_cnt[52];
3186 }
3187 
3188 static u64 access_tx_launch_fifo3_cor_err_cnt(const struct cntr_entry *entry,
3189 					      void *context, int vl, int mode,
3190 					      u64 data)
3191 {
3192 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3193 
3194 	return dd->send_egress_err_status_cnt[51];
3195 }
3196 
3197 static u64 access_tx_launch_fifo2_cor_err_cnt(const struct cntr_entry *entry,
3198 					      void *context, int vl, int mode,
3199 					      u64 data)
3200 {
3201 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3202 
3203 	return dd->send_egress_err_status_cnt[50];
3204 }
3205 
3206 static u64 access_tx_launch_fifo1_cor_err_cnt(const struct cntr_entry *entry,
3207 					      void *context, int vl, int mode,
3208 					      u64 data)
3209 {
3210 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3211 
3212 	return dd->send_egress_err_status_cnt[49];
3213 }
3214 
3215 static u64 access_tx_launch_fifo0_cor_err_cnt(const struct cntr_entry *entry,
3216 					      void *context, int vl, int mode,
3217 					      u64 data)
3218 {
3219 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3220 
3221 	return dd->send_egress_err_status_cnt[48];
3222 }
3223 
3224 static u64 access_tx_credit_return_vl_err_cnt(const struct cntr_entry *entry,
3225 					      void *context, int vl, int mode,
3226 					      u64 data)
3227 {
3228 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3229 
3230 	return dd->send_egress_err_status_cnt[47];
3231 }
3232 
3233 static u64 access_tx_hcrc_insertion_err_cnt(const struct cntr_entry *entry,
3234 					    void *context, int vl, int mode,
3235 					    u64 data)
3236 {
3237 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3238 
3239 	return dd->send_egress_err_status_cnt[46];
3240 }
3241 
3242 static u64 access_tx_egress_fifo_unc_err_cnt(const struct cntr_entry *entry,
3243 					     void *context, int vl, int mode,
3244 					     u64 data)
3245 {
3246 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3247 
3248 	return dd->send_egress_err_status_cnt[45];
3249 }
3250 
3251 static u64 access_tx_read_pio_memory_unc_err_cnt(const struct cntr_entry *entry,
3252 						 void *context, int vl,
3253 						 int mode, u64 data)
3254 {
3255 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3256 
3257 	return dd->send_egress_err_status_cnt[44];
3258 }
3259 
3260 static u64 access_tx_read_sdma_memory_unc_err_cnt(
3261 				const struct cntr_entry *entry,
3262 				void *context, int vl, int mode, u64 data)
3263 {
3264 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3265 
3266 	return dd->send_egress_err_status_cnt[43];
3267 }
3268 
3269 static u64 access_tx_sb_hdr_unc_err_cnt(const struct cntr_entry *entry,
3270 					void *context, int vl, int mode,
3271 					u64 data)
3272 {
3273 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3274 
3275 	return dd->send_egress_err_status_cnt[42];
3276 }
3277 
3278 static u64 access_tx_credit_return_partiy_err_cnt(
3279 				const struct cntr_entry *entry,
3280 				void *context, int vl, int mode, u64 data)
3281 {
3282 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3283 
3284 	return dd->send_egress_err_status_cnt[41];
3285 }
3286 
3287 static u64 access_tx_launch_fifo8_unc_or_parity_err_cnt(
3288 				const struct cntr_entry *entry,
3289 				void *context, int vl, int mode, u64 data)
3290 {
3291 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3292 
3293 	return dd->send_egress_err_status_cnt[40];
3294 }
3295 
3296 static u64 access_tx_launch_fifo7_unc_or_parity_err_cnt(
3297 				const struct cntr_entry *entry,
3298 				void *context, int vl, int mode, u64 data)
3299 {
3300 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3301 
3302 	return dd->send_egress_err_status_cnt[39];
3303 }
3304 
3305 static u64 access_tx_launch_fifo6_unc_or_parity_err_cnt(
3306 				const struct cntr_entry *entry,
3307 				void *context, int vl, int mode, u64 data)
3308 {
3309 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3310 
3311 	return dd->send_egress_err_status_cnt[38];
3312 }
3313 
3314 static u64 access_tx_launch_fifo5_unc_or_parity_err_cnt(
3315 				const struct cntr_entry *entry,
3316 				void *context, int vl, int mode, u64 data)
3317 {
3318 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3319 
3320 	return dd->send_egress_err_status_cnt[37];
3321 }
3322 
3323 static u64 access_tx_launch_fifo4_unc_or_parity_err_cnt(
3324 				const struct cntr_entry *entry,
3325 				void *context, int vl, int mode, u64 data)
3326 {
3327 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3328 
3329 	return dd->send_egress_err_status_cnt[36];
3330 }
3331 
3332 static u64 access_tx_launch_fifo3_unc_or_parity_err_cnt(
3333 				const struct cntr_entry *entry,
3334 				void *context, int vl, int mode, u64 data)
3335 {
3336 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3337 
3338 	return dd->send_egress_err_status_cnt[35];
3339 }
3340 
3341 static u64 access_tx_launch_fifo2_unc_or_parity_err_cnt(
3342 				const struct cntr_entry *entry,
3343 				void *context, int vl, int mode, u64 data)
3344 {
3345 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3346 
3347 	return dd->send_egress_err_status_cnt[34];
3348 }
3349 
3350 static u64 access_tx_launch_fifo1_unc_or_parity_err_cnt(
3351 				const struct cntr_entry *entry,
3352 				void *context, int vl, int mode, u64 data)
3353 {
3354 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3355 
3356 	return dd->send_egress_err_status_cnt[33];
3357 }
3358 
3359 static u64 access_tx_launch_fifo0_unc_or_parity_err_cnt(
3360 				const struct cntr_entry *entry,
3361 				void *context, int vl, int mode, u64 data)
3362 {
3363 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3364 
3365 	return dd->send_egress_err_status_cnt[32];
3366 }
3367 
3368 static u64 access_tx_sdma15_disallowed_packet_err_cnt(
3369 				const struct cntr_entry *entry,
3370 				void *context, int vl, int mode, u64 data)
3371 {
3372 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3373 
3374 	return dd->send_egress_err_status_cnt[31];
3375 }
3376 
3377 static u64 access_tx_sdma14_disallowed_packet_err_cnt(
3378 				const struct cntr_entry *entry,
3379 				void *context, int vl, int mode, u64 data)
3380 {
3381 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3382 
3383 	return dd->send_egress_err_status_cnt[30];
3384 }
3385 
3386 static u64 access_tx_sdma13_disallowed_packet_err_cnt(
3387 				const struct cntr_entry *entry,
3388 				void *context, int vl, int mode, u64 data)
3389 {
3390 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3391 
3392 	return dd->send_egress_err_status_cnt[29];
3393 }
3394 
3395 static u64 access_tx_sdma12_disallowed_packet_err_cnt(
3396 				const struct cntr_entry *entry,
3397 				void *context, int vl, int mode, u64 data)
3398 {
3399 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3400 
3401 	return dd->send_egress_err_status_cnt[28];
3402 }
3403 
3404 static u64 access_tx_sdma11_disallowed_packet_err_cnt(
3405 				const struct cntr_entry *entry,
3406 				void *context, int vl, int mode, u64 data)
3407 {
3408 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3409 
3410 	return dd->send_egress_err_status_cnt[27];
3411 }
3412 
3413 static u64 access_tx_sdma10_disallowed_packet_err_cnt(
3414 				const struct cntr_entry *entry,
3415 				void *context, int vl, int mode, u64 data)
3416 {
3417 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3418 
3419 	return dd->send_egress_err_status_cnt[26];
3420 }
3421 
3422 static u64 access_tx_sdma9_disallowed_packet_err_cnt(
3423 				const struct cntr_entry *entry,
3424 				void *context, int vl, int mode, u64 data)
3425 {
3426 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3427 
3428 	return dd->send_egress_err_status_cnt[25];
3429 }
3430 
3431 static u64 access_tx_sdma8_disallowed_packet_err_cnt(
3432 				const struct cntr_entry *entry,
3433 				void *context, int vl, int mode, u64 data)
3434 {
3435 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3436 
3437 	return dd->send_egress_err_status_cnt[24];
3438 }
3439 
3440 static u64 access_tx_sdma7_disallowed_packet_err_cnt(
3441 				const struct cntr_entry *entry,
3442 				void *context, int vl, int mode, u64 data)
3443 {
3444 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3445 
3446 	return dd->send_egress_err_status_cnt[23];
3447 }
3448 
3449 static u64 access_tx_sdma6_disallowed_packet_err_cnt(
3450 				const struct cntr_entry *entry,
3451 				void *context, int vl, int mode, u64 data)
3452 {
3453 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3454 
3455 	return dd->send_egress_err_status_cnt[22];
3456 }
3457 
3458 static u64 access_tx_sdma5_disallowed_packet_err_cnt(
3459 				const struct cntr_entry *entry,
3460 				void *context, int vl, int mode, u64 data)
3461 {
3462 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3463 
3464 	return dd->send_egress_err_status_cnt[21];
3465 }
3466 
3467 static u64 access_tx_sdma4_disallowed_packet_err_cnt(
3468 				const struct cntr_entry *entry,
3469 				void *context, int vl, int mode, u64 data)
3470 {
3471 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3472 
3473 	return dd->send_egress_err_status_cnt[20];
3474 }
3475 
3476 static u64 access_tx_sdma3_disallowed_packet_err_cnt(
3477 				const struct cntr_entry *entry,
3478 				void *context, int vl, int mode, u64 data)
3479 {
3480 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3481 
3482 	return dd->send_egress_err_status_cnt[19];
3483 }
3484 
3485 static u64 access_tx_sdma2_disallowed_packet_err_cnt(
3486 				const struct cntr_entry *entry,
3487 				void *context, int vl, int mode, u64 data)
3488 {
3489 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3490 
3491 	return dd->send_egress_err_status_cnt[18];
3492 }
3493 
3494 static u64 access_tx_sdma1_disallowed_packet_err_cnt(
3495 				const struct cntr_entry *entry,
3496 				void *context, int vl, int mode, u64 data)
3497 {
3498 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3499 
3500 	return dd->send_egress_err_status_cnt[17];
3501 }
3502 
3503 static u64 access_tx_sdma0_disallowed_packet_err_cnt(
3504 				const struct cntr_entry *entry,
3505 				void *context, int vl, int mode, u64 data)
3506 {
3507 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3508 
3509 	return dd->send_egress_err_status_cnt[16];
3510 }
3511 
3512 static u64 access_tx_config_parity_err_cnt(const struct cntr_entry *entry,
3513 					   void *context, int vl, int mode,
3514 					   u64 data)
3515 {
3516 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3517 
3518 	return dd->send_egress_err_status_cnt[15];
3519 }
3520 
3521 static u64 access_tx_sbrd_ctl_csr_parity_err_cnt(const struct cntr_entry *entry,
3522 						 void *context, int vl,
3523 						 int mode, u64 data)
3524 {
3525 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3526 
3527 	return dd->send_egress_err_status_cnt[14];
3528 }
3529 
3530 static u64 access_tx_launch_csr_parity_err_cnt(const struct cntr_entry *entry,
3531 					       void *context, int vl, int mode,
3532 					       u64 data)
3533 {
3534 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3535 
3536 	return dd->send_egress_err_status_cnt[13];
3537 }
3538 
3539 static u64 access_tx_illegal_vl_err_cnt(const struct cntr_entry *entry,
3540 					void *context, int vl, int mode,
3541 					u64 data)
3542 {
3543 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3544 
3545 	return dd->send_egress_err_status_cnt[12];
3546 }
3547 
3548 static u64 access_tx_sbrd_ctl_state_machine_parity_err_cnt(
3549 				const struct cntr_entry *entry,
3550 				void *context, int vl, int mode, u64 data)
3551 {
3552 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3553 
3554 	return dd->send_egress_err_status_cnt[11];
3555 }
3556 
3557 static u64 access_egress_reserved_10_err_cnt(const struct cntr_entry *entry,
3558 					     void *context, int vl, int mode,
3559 					     u64 data)
3560 {
3561 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3562 
3563 	return dd->send_egress_err_status_cnt[10];
3564 }
3565 
3566 static u64 access_egress_reserved_9_err_cnt(const struct cntr_entry *entry,
3567 					    void *context, int vl, int mode,
3568 					    u64 data)
3569 {
3570 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3571 
3572 	return dd->send_egress_err_status_cnt[9];
3573 }
3574 
3575 static u64 access_tx_sdma_launch_intf_parity_err_cnt(
3576 				const struct cntr_entry *entry,
3577 				void *context, int vl, int mode, u64 data)
3578 {
3579 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3580 
3581 	return dd->send_egress_err_status_cnt[8];
3582 }
3583 
3584 static u64 access_tx_pio_launch_intf_parity_err_cnt(
3585 				const struct cntr_entry *entry,
3586 				void *context, int vl, int mode, u64 data)
3587 {
3588 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3589 
3590 	return dd->send_egress_err_status_cnt[7];
3591 }
3592 
3593 static u64 access_egress_reserved_6_err_cnt(const struct cntr_entry *entry,
3594 					    void *context, int vl, int mode,
3595 					    u64 data)
3596 {
3597 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3598 
3599 	return dd->send_egress_err_status_cnt[6];
3600 }
3601 
3602 static u64 access_tx_incorrect_link_state_err_cnt(
3603 				const struct cntr_entry *entry,
3604 				void *context, int vl, int mode, u64 data)
3605 {
3606 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3607 
3608 	return dd->send_egress_err_status_cnt[5];
3609 }
3610 
3611 static u64 access_tx_linkdown_err_cnt(const struct cntr_entry *entry,
3612 				      void *context, int vl, int mode,
3613 				      u64 data)
3614 {
3615 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3616 
3617 	return dd->send_egress_err_status_cnt[4];
3618 }
3619 
3620 static u64 access_tx_egress_fifi_underrun_or_parity_err_cnt(
3621 				const struct cntr_entry *entry,
3622 				void *context, int vl, int mode, u64 data)
3623 {
3624 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3625 
3626 	return dd->send_egress_err_status_cnt[3];
3627 }
3628 
3629 static u64 access_egress_reserved_2_err_cnt(const struct cntr_entry *entry,
3630 					    void *context, int vl, int mode,
3631 					    u64 data)
3632 {
3633 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3634 
3635 	return dd->send_egress_err_status_cnt[2];
3636 }
3637 
3638 static u64 access_tx_pkt_integrity_mem_unc_err_cnt(
3639 				const struct cntr_entry *entry,
3640 				void *context, int vl, int mode, u64 data)
3641 {
3642 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3643 
3644 	return dd->send_egress_err_status_cnt[1];
3645 }
3646 
3647 static u64 access_tx_pkt_integrity_mem_cor_err_cnt(
3648 				const struct cntr_entry *entry,
3649 				void *context, int vl, int mode, u64 data)
3650 {
3651 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3652 
3653 	return dd->send_egress_err_status_cnt[0];
3654 }
3655 
3656 /*
3657  * Software counters corresponding to each of the
3658  * error status bits within SendErrStatus
3659  */
3660 static u64 access_send_csr_write_bad_addr_err_cnt(
3661 				const struct cntr_entry *entry,
3662 				void *context, int vl, int mode, u64 data)
3663 {
3664 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3665 
3666 	return dd->send_err_status_cnt[2];
3667 }
3668 
3669 static u64 access_send_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
3670 						 void *context, int vl,
3671 						 int mode, u64 data)
3672 {
3673 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3674 
3675 	return dd->send_err_status_cnt[1];
3676 }
3677 
3678 static u64 access_send_csr_parity_cnt(const struct cntr_entry *entry,
3679 				      void *context, int vl, int mode,
3680 				      u64 data)
3681 {
3682 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3683 
3684 	return dd->send_err_status_cnt[0];
3685 }
3686 
3687 /*
3688  * Software counters corresponding to each of the
3689  * error status bits within SendCtxtErrStatus
3690  */
3691 static u64 access_pio_write_out_of_bounds_err_cnt(
3692 				const struct cntr_entry *entry,
3693 				void *context, int vl, int mode, u64 data)
3694 {
3695 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3696 
3697 	return dd->sw_ctxt_err_status_cnt[4];
3698 }
3699 
3700 static u64 access_pio_write_overflow_err_cnt(const struct cntr_entry *entry,
3701 					     void *context, int vl, int mode,
3702 					     u64 data)
3703 {
3704 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3705 
3706 	return dd->sw_ctxt_err_status_cnt[3];
3707 }
3708 
3709 static u64 access_pio_write_crosses_boundary_err_cnt(
3710 				const struct cntr_entry *entry,
3711 				void *context, int vl, int mode, u64 data)
3712 {
3713 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3714 
3715 	return dd->sw_ctxt_err_status_cnt[2];
3716 }
3717 
3718 static u64 access_pio_disallowed_packet_err_cnt(const struct cntr_entry *entry,
3719 						void *context, int vl,
3720 						int mode, u64 data)
3721 {
3722 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3723 
3724 	return dd->sw_ctxt_err_status_cnt[1];
3725 }
3726 
3727 static u64 access_pio_inconsistent_sop_err_cnt(const struct cntr_entry *entry,
3728 					       void *context, int vl, int mode,
3729 					       u64 data)
3730 {
3731 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3732 
3733 	return dd->sw_ctxt_err_status_cnt[0];
3734 }
3735 
3736 /*
3737  * Software counters corresponding to each of the
3738  * error status bits within SendDmaEngErrStatus
3739  */
3740 static u64 access_sdma_header_request_fifo_cor_err_cnt(
3741 				const struct cntr_entry *entry,
3742 				void *context, int vl, int mode, u64 data)
3743 {
3744 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3745 
3746 	return dd->sw_send_dma_eng_err_status_cnt[23];
3747 }
3748 
3749 static u64 access_sdma_header_storage_cor_err_cnt(
3750 				const struct cntr_entry *entry,
3751 				void *context, int vl, int mode, u64 data)
3752 {
3753 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3754 
3755 	return dd->sw_send_dma_eng_err_status_cnt[22];
3756 }
3757 
3758 static u64 access_sdma_packet_tracking_cor_err_cnt(
3759 				const struct cntr_entry *entry,
3760 				void *context, int vl, int mode, u64 data)
3761 {
3762 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3763 
3764 	return dd->sw_send_dma_eng_err_status_cnt[21];
3765 }
3766 
3767 static u64 access_sdma_assembly_cor_err_cnt(const struct cntr_entry *entry,
3768 					    void *context, int vl, int mode,
3769 					    u64 data)
3770 {
3771 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3772 
3773 	return dd->sw_send_dma_eng_err_status_cnt[20];
3774 }
3775 
3776 static u64 access_sdma_desc_table_cor_err_cnt(const struct cntr_entry *entry,
3777 					      void *context, int vl, int mode,
3778 					      u64 data)
3779 {
3780 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3781 
3782 	return dd->sw_send_dma_eng_err_status_cnt[19];
3783 }
3784 
3785 static u64 access_sdma_header_request_fifo_unc_err_cnt(
3786 				const struct cntr_entry *entry,
3787 				void *context, int vl, int mode, u64 data)
3788 {
3789 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3790 
3791 	return dd->sw_send_dma_eng_err_status_cnt[18];
3792 }
3793 
3794 static u64 access_sdma_header_storage_unc_err_cnt(
3795 				const struct cntr_entry *entry,
3796 				void *context, int vl, int mode, u64 data)
3797 {
3798 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3799 
3800 	return dd->sw_send_dma_eng_err_status_cnt[17];
3801 }
3802 
3803 static u64 access_sdma_packet_tracking_unc_err_cnt(
3804 				const struct cntr_entry *entry,
3805 				void *context, int vl, int mode, u64 data)
3806 {
3807 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3808 
3809 	return dd->sw_send_dma_eng_err_status_cnt[16];
3810 }
3811 
3812 static u64 access_sdma_assembly_unc_err_cnt(const struct cntr_entry *entry,
3813 					    void *context, int vl, int mode,
3814 					    u64 data)
3815 {
3816 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3817 
3818 	return dd->sw_send_dma_eng_err_status_cnt[15];
3819 }
3820 
3821 static u64 access_sdma_desc_table_unc_err_cnt(const struct cntr_entry *entry,
3822 					      void *context, int vl, int mode,
3823 					      u64 data)
3824 {
3825 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3826 
3827 	return dd->sw_send_dma_eng_err_status_cnt[14];
3828 }
3829 
3830 static u64 access_sdma_timeout_err_cnt(const struct cntr_entry *entry,
3831 				       void *context, int vl, int mode,
3832 				       u64 data)
3833 {
3834 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3835 
3836 	return dd->sw_send_dma_eng_err_status_cnt[13];
3837 }
3838 
3839 static u64 access_sdma_header_length_err_cnt(const struct cntr_entry *entry,
3840 					     void *context, int vl, int mode,
3841 					     u64 data)
3842 {
3843 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3844 
3845 	return dd->sw_send_dma_eng_err_status_cnt[12];
3846 }
3847 
3848 static u64 access_sdma_header_address_err_cnt(const struct cntr_entry *entry,
3849 					      void *context, int vl, int mode,
3850 					      u64 data)
3851 {
3852 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3853 
3854 	return dd->sw_send_dma_eng_err_status_cnt[11];
3855 }
3856 
3857 static u64 access_sdma_header_select_err_cnt(const struct cntr_entry *entry,
3858 					     void *context, int vl, int mode,
3859 					     u64 data)
3860 {
3861 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3862 
3863 	return dd->sw_send_dma_eng_err_status_cnt[10];
3864 }
3865 
3866 static u64 access_sdma_reserved_9_err_cnt(const struct cntr_entry *entry,
3867 					  void *context, int vl, int mode,
3868 					  u64 data)
3869 {
3870 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3871 
3872 	return dd->sw_send_dma_eng_err_status_cnt[9];
3873 }
3874 
3875 static u64 access_sdma_packet_desc_overflow_err_cnt(
3876 				const struct cntr_entry *entry,
3877 				void *context, int vl, int mode, u64 data)
3878 {
3879 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3880 
3881 	return dd->sw_send_dma_eng_err_status_cnt[8];
3882 }
3883 
3884 static u64 access_sdma_length_mismatch_err_cnt(const struct cntr_entry *entry,
3885 					       void *context, int vl,
3886 					       int mode, u64 data)
3887 {
3888 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3889 
3890 	return dd->sw_send_dma_eng_err_status_cnt[7];
3891 }
3892 
3893 static u64 access_sdma_halt_err_cnt(const struct cntr_entry *entry,
3894 				    void *context, int vl, int mode, u64 data)
3895 {
3896 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3897 
3898 	return dd->sw_send_dma_eng_err_status_cnt[6];
3899 }
3900 
3901 static u64 access_sdma_mem_read_err_cnt(const struct cntr_entry *entry,
3902 					void *context, int vl, int mode,
3903 					u64 data)
3904 {
3905 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3906 
3907 	return dd->sw_send_dma_eng_err_status_cnt[5];
3908 }
3909 
3910 static u64 access_sdma_first_desc_err_cnt(const struct cntr_entry *entry,
3911 					  void *context, int vl, int mode,
3912 					  u64 data)
3913 {
3914 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3915 
3916 	return dd->sw_send_dma_eng_err_status_cnt[4];
3917 }
3918 
3919 static u64 access_sdma_tail_out_of_bounds_err_cnt(
3920 				const struct cntr_entry *entry,
3921 				void *context, int vl, int mode, u64 data)
3922 {
3923 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3924 
3925 	return dd->sw_send_dma_eng_err_status_cnt[3];
3926 }
3927 
3928 static u64 access_sdma_too_long_err_cnt(const struct cntr_entry *entry,
3929 					void *context, int vl, int mode,
3930 					u64 data)
3931 {
3932 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3933 
3934 	return dd->sw_send_dma_eng_err_status_cnt[2];
3935 }
3936 
3937 static u64 access_sdma_gen_mismatch_err_cnt(const struct cntr_entry *entry,
3938 					    void *context, int vl, int mode,
3939 					    u64 data)
3940 {
3941 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3942 
3943 	return dd->sw_send_dma_eng_err_status_cnt[1];
3944 }
3945 
3946 static u64 access_sdma_wrong_dw_err_cnt(const struct cntr_entry *entry,
3947 					void *context, int vl, int mode,
3948 					u64 data)
3949 {
3950 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3951 
3952 	return dd->sw_send_dma_eng_err_status_cnt[0];
3953 }
3954 
3955 static u64 access_dc_rcv_err_cnt(const struct cntr_entry *entry,
3956 				 void *context, int vl, int mode,
3957 				 u64 data)
3958 {
3959 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3960 
3961 	u64 val = 0;
3962 	u64 csr = entry->csr;
3963 
3964 	val = read_write_csr(dd, csr, mode, data);
3965 	if (mode == CNTR_MODE_R) {
3966 		val = val > CNTR_MAX - dd->sw_rcv_bypass_packet_errors ?
3967 			CNTR_MAX : val + dd->sw_rcv_bypass_packet_errors;
3968 	} else if (mode == CNTR_MODE_W) {
3969 		dd->sw_rcv_bypass_packet_errors = 0;
3970 	} else {
3971 		dd_dev_err(dd, "Invalid cntr register access mode");
3972 		return 0;
3973 	}
3974 	return val;
3975 }
3976 
3977 #define def_access_sw_cpu(cntr) \
3978 static u64 access_sw_cpu_##cntr(const struct cntr_entry *entry,		      \
3979 			      void *context, int vl, int mode, u64 data)      \
3980 {									      \
3981 	struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context;	      \
3982 	return read_write_cpu(ppd->dd, &ppd->ibport_data.rvp.z_ ##cntr,	      \
3983 			      ppd->ibport_data.rvp.cntr, vl,		      \
3984 			      mode, data);				      \
3985 }
3986 
3987 def_access_sw_cpu(rc_acks);
3988 def_access_sw_cpu(rc_qacks);
3989 def_access_sw_cpu(rc_delayed_comp);
3990 
3991 #define def_access_ibp_counter(cntr) \
3992 static u64 access_ibp_##cntr(const struct cntr_entry *entry,		      \
3993 				void *context, int vl, int mode, u64 data)    \
3994 {									      \
3995 	struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context;	      \
3996 									      \
3997 	if (vl != CNTR_INVALID_VL)					      \
3998 		return 0;						      \
3999 									      \
4000 	return read_write_sw(ppd->dd, &ppd->ibport_data.rvp.n_ ##cntr,	      \
4001 			     mode, data);				      \
4002 }
4003 
4004 def_access_ibp_counter(loop_pkts);
4005 def_access_ibp_counter(rc_resends);
4006 def_access_ibp_counter(rnr_naks);
4007 def_access_ibp_counter(other_naks);
4008 def_access_ibp_counter(rc_timeouts);
4009 def_access_ibp_counter(pkt_drops);
4010 def_access_ibp_counter(dmawait);
4011 def_access_ibp_counter(rc_seqnak);
4012 def_access_ibp_counter(rc_dupreq);
4013 def_access_ibp_counter(rdma_seq);
4014 def_access_ibp_counter(unaligned);
4015 def_access_ibp_counter(seq_naks);
4016 
4017 static struct cntr_entry dev_cntrs[DEV_CNTR_LAST] = {
4018 [C_RCV_OVF] = RXE32_DEV_CNTR_ELEM(RcvOverflow, RCV_BUF_OVFL_CNT, CNTR_SYNTH),
4019 [C_RX_TID_FULL] = RXE32_DEV_CNTR_ELEM(RxTIDFullEr, RCV_TID_FULL_ERR_CNT,
4020 			CNTR_NORMAL),
4021 [C_RX_TID_INVALID] = RXE32_DEV_CNTR_ELEM(RxTIDInvalid, RCV_TID_VALID_ERR_CNT,
4022 			CNTR_NORMAL),
4023 [C_RX_TID_FLGMS] = RXE32_DEV_CNTR_ELEM(RxTidFLGMs,
4024 			RCV_TID_FLOW_GEN_MISMATCH_CNT,
4025 			CNTR_NORMAL),
4026 [C_RX_CTX_EGRS] = RXE32_DEV_CNTR_ELEM(RxCtxEgrS, RCV_CONTEXT_EGR_STALL,
4027 			CNTR_NORMAL),
4028 [C_RCV_TID_FLSMS] = RXE32_DEV_CNTR_ELEM(RxTidFLSMs,
4029 			RCV_TID_FLOW_SEQ_MISMATCH_CNT, CNTR_NORMAL),
4030 [C_CCE_PCI_CR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePciCrSt,
4031 			CCE_PCIE_POSTED_CRDT_STALL_CNT, CNTR_NORMAL),
4032 [C_CCE_PCI_TR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePciTrSt, CCE_PCIE_TRGT_STALL_CNT,
4033 			CNTR_NORMAL),
4034 [C_CCE_PIO_WR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePioWrSt, CCE_PIO_WR_STALL_CNT,
4035 			CNTR_NORMAL),
4036 [C_CCE_ERR_INT] = CCE_INT_DEV_CNTR_ELEM(CceErrInt, CCE_ERR_INT_CNT,
4037 			CNTR_NORMAL),
4038 [C_CCE_SDMA_INT] = CCE_INT_DEV_CNTR_ELEM(CceSdmaInt, CCE_SDMA_INT_CNT,
4039 			CNTR_NORMAL),
4040 [C_CCE_MISC_INT] = CCE_INT_DEV_CNTR_ELEM(CceMiscInt, CCE_MISC_INT_CNT,
4041 			CNTR_NORMAL),
4042 [C_CCE_RCV_AV_INT] = CCE_INT_DEV_CNTR_ELEM(CceRcvAvInt, CCE_RCV_AVAIL_INT_CNT,
4043 			CNTR_NORMAL),
4044 [C_CCE_RCV_URG_INT] = CCE_INT_DEV_CNTR_ELEM(CceRcvUrgInt,
4045 			CCE_RCV_URGENT_INT_CNT,	CNTR_NORMAL),
4046 [C_CCE_SEND_CR_INT] = CCE_INT_DEV_CNTR_ELEM(CceSndCrInt,
4047 			CCE_SEND_CREDIT_INT_CNT, CNTR_NORMAL),
4048 [C_DC_UNC_ERR] = DC_PERF_CNTR(DcUnctblErr, DCC_ERR_UNCORRECTABLE_CNT,
4049 			      CNTR_SYNTH),
4050 [C_DC_RCV_ERR] = CNTR_ELEM("DcRecvErr", DCC_ERR_PORTRCV_ERR_CNT, 0, CNTR_SYNTH,
4051 			    access_dc_rcv_err_cnt),
4052 [C_DC_FM_CFG_ERR] = DC_PERF_CNTR(DcFmCfgErr, DCC_ERR_FMCONFIG_ERR_CNT,
4053 				 CNTR_SYNTH),
4054 [C_DC_RMT_PHY_ERR] = DC_PERF_CNTR(DcRmtPhyErr, DCC_ERR_RCVREMOTE_PHY_ERR_CNT,
4055 				  CNTR_SYNTH),
4056 [C_DC_DROPPED_PKT] = DC_PERF_CNTR(DcDroppedPkt, DCC_ERR_DROPPED_PKT_CNT,
4057 				  CNTR_SYNTH),
4058 [C_DC_MC_XMIT_PKTS] = DC_PERF_CNTR(DcMcXmitPkts,
4059 				   DCC_PRF_PORT_XMIT_MULTICAST_CNT, CNTR_SYNTH),
4060 [C_DC_MC_RCV_PKTS] = DC_PERF_CNTR(DcMcRcvPkts,
4061 				  DCC_PRF_PORT_RCV_MULTICAST_PKT_CNT,
4062 				  CNTR_SYNTH),
4063 [C_DC_XMIT_CERR] = DC_PERF_CNTR(DcXmitCorr,
4064 				DCC_PRF_PORT_XMIT_CORRECTABLE_CNT, CNTR_SYNTH),
4065 [C_DC_RCV_CERR] = DC_PERF_CNTR(DcRcvCorrCnt, DCC_PRF_PORT_RCV_CORRECTABLE_CNT,
4066 			       CNTR_SYNTH),
4067 [C_DC_RCV_FCC] = DC_PERF_CNTR(DcRxFCntl, DCC_PRF_RX_FLOW_CRTL_CNT,
4068 			      CNTR_SYNTH),
4069 [C_DC_XMIT_FCC] = DC_PERF_CNTR(DcXmitFCntl, DCC_PRF_TX_FLOW_CRTL_CNT,
4070 			       CNTR_SYNTH),
4071 [C_DC_XMIT_FLITS] = DC_PERF_CNTR(DcXmitFlits, DCC_PRF_PORT_XMIT_DATA_CNT,
4072 				 CNTR_SYNTH),
4073 [C_DC_RCV_FLITS] = DC_PERF_CNTR(DcRcvFlits, DCC_PRF_PORT_RCV_DATA_CNT,
4074 				CNTR_SYNTH),
4075 [C_DC_XMIT_PKTS] = DC_PERF_CNTR(DcXmitPkts, DCC_PRF_PORT_XMIT_PKTS_CNT,
4076 				CNTR_SYNTH),
4077 [C_DC_RCV_PKTS] = DC_PERF_CNTR(DcRcvPkts, DCC_PRF_PORT_RCV_PKTS_CNT,
4078 			       CNTR_SYNTH),
4079 [C_DC_RX_FLIT_VL] = DC_PERF_CNTR(DcRxFlitVl, DCC_PRF_PORT_VL_RCV_DATA_CNT,
4080 				 CNTR_SYNTH | CNTR_VL),
4081 [C_DC_RX_PKT_VL] = DC_PERF_CNTR(DcRxPktVl, DCC_PRF_PORT_VL_RCV_PKTS_CNT,
4082 				CNTR_SYNTH | CNTR_VL),
4083 [C_DC_RCV_FCN] = DC_PERF_CNTR(DcRcvFcn, DCC_PRF_PORT_RCV_FECN_CNT, CNTR_SYNTH),
4084 [C_DC_RCV_FCN_VL] = DC_PERF_CNTR(DcRcvFcnVl, DCC_PRF_PORT_VL_RCV_FECN_CNT,
4085 				 CNTR_SYNTH | CNTR_VL),
4086 [C_DC_RCV_BCN] = DC_PERF_CNTR(DcRcvBcn, DCC_PRF_PORT_RCV_BECN_CNT, CNTR_SYNTH),
4087 [C_DC_RCV_BCN_VL] = DC_PERF_CNTR(DcRcvBcnVl, DCC_PRF_PORT_VL_RCV_BECN_CNT,
4088 				 CNTR_SYNTH | CNTR_VL),
4089 [C_DC_RCV_BBL] = DC_PERF_CNTR(DcRcvBbl, DCC_PRF_PORT_RCV_BUBBLE_CNT,
4090 			      CNTR_SYNTH),
4091 [C_DC_RCV_BBL_VL] = DC_PERF_CNTR(DcRcvBblVl, DCC_PRF_PORT_VL_RCV_BUBBLE_CNT,
4092 				 CNTR_SYNTH | CNTR_VL),
4093 [C_DC_MARK_FECN] = DC_PERF_CNTR(DcMarkFcn, DCC_PRF_PORT_MARK_FECN_CNT,
4094 				CNTR_SYNTH),
4095 [C_DC_MARK_FECN_VL] = DC_PERF_CNTR(DcMarkFcnVl, DCC_PRF_PORT_VL_MARK_FECN_CNT,
4096 				   CNTR_SYNTH | CNTR_VL),
4097 [C_DC_TOTAL_CRC] =
4098 	DC_PERF_CNTR_LCB(DcTotCrc, DC_LCB_ERR_INFO_TOTAL_CRC_ERR,
4099 			 CNTR_SYNTH),
4100 [C_DC_CRC_LN0] = DC_PERF_CNTR_LCB(DcCrcLn0, DC_LCB_ERR_INFO_CRC_ERR_LN0,
4101 				  CNTR_SYNTH),
4102 [C_DC_CRC_LN1] = DC_PERF_CNTR_LCB(DcCrcLn1, DC_LCB_ERR_INFO_CRC_ERR_LN1,
4103 				  CNTR_SYNTH),
4104 [C_DC_CRC_LN2] = DC_PERF_CNTR_LCB(DcCrcLn2, DC_LCB_ERR_INFO_CRC_ERR_LN2,
4105 				  CNTR_SYNTH),
4106 [C_DC_CRC_LN3] = DC_PERF_CNTR_LCB(DcCrcLn3, DC_LCB_ERR_INFO_CRC_ERR_LN3,
4107 				  CNTR_SYNTH),
4108 [C_DC_CRC_MULT_LN] =
4109 	DC_PERF_CNTR_LCB(DcMultLn, DC_LCB_ERR_INFO_CRC_ERR_MULTI_LN,
4110 			 CNTR_SYNTH),
4111 [C_DC_TX_REPLAY] = DC_PERF_CNTR_LCB(DcTxReplay, DC_LCB_ERR_INFO_TX_REPLAY_CNT,
4112 				    CNTR_SYNTH),
4113 [C_DC_RX_REPLAY] = DC_PERF_CNTR_LCB(DcRxReplay, DC_LCB_ERR_INFO_RX_REPLAY_CNT,
4114 				    CNTR_SYNTH),
4115 [C_DC_SEQ_CRC_CNT] =
4116 	DC_PERF_CNTR_LCB(DcLinkSeqCrc, DC_LCB_ERR_INFO_SEQ_CRC_CNT,
4117 			 CNTR_SYNTH),
4118 [C_DC_ESC0_ONLY_CNT] =
4119 	DC_PERF_CNTR_LCB(DcEsc0, DC_LCB_ERR_INFO_ESCAPE_0_ONLY_CNT,
4120 			 CNTR_SYNTH),
4121 [C_DC_ESC0_PLUS1_CNT] =
4122 	DC_PERF_CNTR_LCB(DcEsc1, DC_LCB_ERR_INFO_ESCAPE_0_PLUS1_CNT,
4123 			 CNTR_SYNTH),
4124 [C_DC_ESC0_PLUS2_CNT] =
4125 	DC_PERF_CNTR_LCB(DcEsc0Plus2, DC_LCB_ERR_INFO_ESCAPE_0_PLUS2_CNT,
4126 			 CNTR_SYNTH),
4127 [C_DC_REINIT_FROM_PEER_CNT] =
4128 	DC_PERF_CNTR_LCB(DcReinitPeer, DC_LCB_ERR_INFO_REINIT_FROM_PEER_CNT,
4129 			 CNTR_SYNTH),
4130 [C_DC_SBE_CNT] = DC_PERF_CNTR_LCB(DcSbe, DC_LCB_ERR_INFO_SBE_CNT,
4131 				  CNTR_SYNTH),
4132 [C_DC_MISC_FLG_CNT] =
4133 	DC_PERF_CNTR_LCB(DcMiscFlg, DC_LCB_ERR_INFO_MISC_FLG_CNT,
4134 			 CNTR_SYNTH),
4135 [C_DC_PRF_GOOD_LTP_CNT] =
4136 	DC_PERF_CNTR_LCB(DcGoodLTP, DC_LCB_PRF_GOOD_LTP_CNT, CNTR_SYNTH),
4137 [C_DC_PRF_ACCEPTED_LTP_CNT] =
4138 	DC_PERF_CNTR_LCB(DcAccLTP, DC_LCB_PRF_ACCEPTED_LTP_CNT,
4139 			 CNTR_SYNTH),
4140 [C_DC_PRF_RX_FLIT_CNT] =
4141 	DC_PERF_CNTR_LCB(DcPrfRxFlit, DC_LCB_PRF_RX_FLIT_CNT, CNTR_SYNTH),
4142 [C_DC_PRF_TX_FLIT_CNT] =
4143 	DC_PERF_CNTR_LCB(DcPrfTxFlit, DC_LCB_PRF_TX_FLIT_CNT, CNTR_SYNTH),
4144 [C_DC_PRF_CLK_CNTR] =
4145 	DC_PERF_CNTR_LCB(DcPrfClk, DC_LCB_PRF_CLK_CNTR, CNTR_SYNTH),
4146 [C_DC_PG_DBG_FLIT_CRDTS_CNT] =
4147 	DC_PERF_CNTR_LCB(DcFltCrdts, DC_LCB_PG_DBG_FLIT_CRDTS_CNT, CNTR_SYNTH),
4148 [C_DC_PG_STS_PAUSE_COMPLETE_CNT] =
4149 	DC_PERF_CNTR_LCB(DcPauseComp, DC_LCB_PG_STS_PAUSE_COMPLETE_CNT,
4150 			 CNTR_SYNTH),
4151 [C_DC_PG_STS_TX_SBE_CNT] =
4152 	DC_PERF_CNTR_LCB(DcStsTxSbe, DC_LCB_PG_STS_TX_SBE_CNT, CNTR_SYNTH),
4153 [C_DC_PG_STS_TX_MBE_CNT] =
4154 	DC_PERF_CNTR_LCB(DcStsTxMbe, DC_LCB_PG_STS_TX_MBE_CNT,
4155 			 CNTR_SYNTH),
4156 [C_SW_CPU_INTR] = CNTR_ELEM("Intr", 0, 0, CNTR_NORMAL,
4157 			    access_sw_cpu_intr),
4158 [C_SW_CPU_RCV_LIM] = CNTR_ELEM("RcvLimit", 0, 0, CNTR_NORMAL,
4159 			    access_sw_cpu_rcv_limit),
4160 [C_SW_VTX_WAIT] = CNTR_ELEM("vTxWait", 0, 0, CNTR_NORMAL,
4161 			    access_sw_vtx_wait),
4162 [C_SW_PIO_WAIT] = CNTR_ELEM("PioWait", 0, 0, CNTR_NORMAL,
4163 			    access_sw_pio_wait),
4164 [C_SW_PIO_DRAIN] = CNTR_ELEM("PioDrain", 0, 0, CNTR_NORMAL,
4165 			    access_sw_pio_drain),
4166 [C_SW_KMEM_WAIT] = CNTR_ELEM("KmemWait", 0, 0, CNTR_NORMAL,
4167 			    access_sw_kmem_wait),
4168 [C_SW_SEND_SCHED] = CNTR_ELEM("SendSched", 0, 0, CNTR_NORMAL,
4169 			    access_sw_send_schedule),
4170 [C_SDMA_DESC_FETCHED_CNT] = CNTR_ELEM("SDEDscFdCn",
4171 				      SEND_DMA_DESC_FETCHED_CNT, 0,
4172 				      CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4173 				      dev_access_u32_csr),
4174 [C_SDMA_INT_CNT] = CNTR_ELEM("SDMAInt", 0, 0,
4175 			     CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4176 			     access_sde_int_cnt),
4177 [C_SDMA_ERR_CNT] = CNTR_ELEM("SDMAErrCt", 0, 0,
4178 			     CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4179 			     access_sde_err_cnt),
4180 [C_SDMA_IDLE_INT_CNT] = CNTR_ELEM("SDMAIdInt", 0, 0,
4181 				  CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4182 				  access_sde_idle_int_cnt),
4183 [C_SDMA_PROGRESS_INT_CNT] = CNTR_ELEM("SDMAPrIntCn", 0, 0,
4184 				      CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4185 				      access_sde_progress_int_cnt),
4186 /* MISC_ERR_STATUS */
4187 [C_MISC_PLL_LOCK_FAIL_ERR] = CNTR_ELEM("MISC_PLL_LOCK_FAIL_ERR", 0, 0,
4188 				CNTR_NORMAL,
4189 				access_misc_pll_lock_fail_err_cnt),
4190 [C_MISC_MBIST_FAIL_ERR] = CNTR_ELEM("MISC_MBIST_FAIL_ERR", 0, 0,
4191 				CNTR_NORMAL,
4192 				access_misc_mbist_fail_err_cnt),
4193 [C_MISC_INVALID_EEP_CMD_ERR] = CNTR_ELEM("MISC_INVALID_EEP_CMD_ERR", 0, 0,
4194 				CNTR_NORMAL,
4195 				access_misc_invalid_eep_cmd_err_cnt),
4196 [C_MISC_EFUSE_DONE_PARITY_ERR] = CNTR_ELEM("MISC_EFUSE_DONE_PARITY_ERR", 0, 0,
4197 				CNTR_NORMAL,
4198 				access_misc_efuse_done_parity_err_cnt),
4199 [C_MISC_EFUSE_WRITE_ERR] = CNTR_ELEM("MISC_EFUSE_WRITE_ERR", 0, 0,
4200 				CNTR_NORMAL,
4201 				access_misc_efuse_write_err_cnt),
4202 [C_MISC_EFUSE_READ_BAD_ADDR_ERR] = CNTR_ELEM("MISC_EFUSE_READ_BAD_ADDR_ERR", 0,
4203 				0, CNTR_NORMAL,
4204 				access_misc_efuse_read_bad_addr_err_cnt),
4205 [C_MISC_EFUSE_CSR_PARITY_ERR] = CNTR_ELEM("MISC_EFUSE_CSR_PARITY_ERR", 0, 0,
4206 				CNTR_NORMAL,
4207 				access_misc_efuse_csr_parity_err_cnt),
4208 [C_MISC_FW_AUTH_FAILED_ERR] = CNTR_ELEM("MISC_FW_AUTH_FAILED_ERR", 0, 0,
4209 				CNTR_NORMAL,
4210 				access_misc_fw_auth_failed_err_cnt),
4211 [C_MISC_KEY_MISMATCH_ERR] = CNTR_ELEM("MISC_KEY_MISMATCH_ERR", 0, 0,
4212 				CNTR_NORMAL,
4213 				access_misc_key_mismatch_err_cnt),
4214 [C_MISC_SBUS_WRITE_FAILED_ERR] = CNTR_ELEM("MISC_SBUS_WRITE_FAILED_ERR", 0, 0,
4215 				CNTR_NORMAL,
4216 				access_misc_sbus_write_failed_err_cnt),
4217 [C_MISC_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("MISC_CSR_WRITE_BAD_ADDR_ERR", 0, 0,
4218 				CNTR_NORMAL,
4219 				access_misc_csr_write_bad_addr_err_cnt),
4220 [C_MISC_CSR_READ_BAD_ADDR_ERR] = CNTR_ELEM("MISC_CSR_READ_BAD_ADDR_ERR", 0, 0,
4221 				CNTR_NORMAL,
4222 				access_misc_csr_read_bad_addr_err_cnt),
4223 [C_MISC_CSR_PARITY_ERR] = CNTR_ELEM("MISC_CSR_PARITY_ERR", 0, 0,
4224 				CNTR_NORMAL,
4225 				access_misc_csr_parity_err_cnt),
4226 /* CceErrStatus */
4227 [C_CCE_ERR_STATUS_AGGREGATED_CNT] = CNTR_ELEM("CceErrStatusAggregatedCnt", 0, 0,
4228 				CNTR_NORMAL,
4229 				access_sw_cce_err_status_aggregated_cnt),
4230 [C_CCE_MSIX_CSR_PARITY_ERR] = CNTR_ELEM("CceMsixCsrParityErr", 0, 0,
4231 				CNTR_NORMAL,
4232 				access_cce_msix_csr_parity_err_cnt),
4233 [C_CCE_INT_MAP_UNC_ERR] = CNTR_ELEM("CceIntMapUncErr", 0, 0,
4234 				CNTR_NORMAL,
4235 				access_cce_int_map_unc_err_cnt),
4236 [C_CCE_INT_MAP_COR_ERR] = CNTR_ELEM("CceIntMapCorErr", 0, 0,
4237 				CNTR_NORMAL,
4238 				access_cce_int_map_cor_err_cnt),
4239 [C_CCE_MSIX_TABLE_UNC_ERR] = CNTR_ELEM("CceMsixTableUncErr", 0, 0,
4240 				CNTR_NORMAL,
4241 				access_cce_msix_table_unc_err_cnt),
4242 [C_CCE_MSIX_TABLE_COR_ERR] = CNTR_ELEM("CceMsixTableCorErr", 0, 0,
4243 				CNTR_NORMAL,
4244 				access_cce_msix_table_cor_err_cnt),
4245 [C_CCE_RXDMA_CONV_FIFO_PARITY_ERR] = CNTR_ELEM("CceRxdmaConvFifoParityErr", 0,
4246 				0, CNTR_NORMAL,
4247 				access_cce_rxdma_conv_fifo_parity_err_cnt),
4248 [C_CCE_RCPL_ASYNC_FIFO_PARITY_ERR] = CNTR_ELEM("CceRcplAsyncFifoParityErr", 0,
4249 				0, CNTR_NORMAL,
4250 				access_cce_rcpl_async_fifo_parity_err_cnt),
4251 [C_CCE_SEG_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("CceSegWriteBadAddrErr", 0, 0,
4252 				CNTR_NORMAL,
4253 				access_cce_seg_write_bad_addr_err_cnt),
4254 [C_CCE_SEG_READ_BAD_ADDR_ERR] = CNTR_ELEM("CceSegReadBadAddrErr", 0, 0,
4255 				CNTR_NORMAL,
4256 				access_cce_seg_read_bad_addr_err_cnt),
4257 [C_LA_TRIGGERED] = CNTR_ELEM("Cce LATriggered", 0, 0,
4258 				CNTR_NORMAL,
4259 				access_la_triggered_cnt),
4260 [C_CCE_TRGT_CPL_TIMEOUT_ERR] = CNTR_ELEM("CceTrgtCplTimeoutErr", 0, 0,
4261 				CNTR_NORMAL,
4262 				access_cce_trgt_cpl_timeout_err_cnt),
4263 [C_PCIC_RECEIVE_PARITY_ERR] = CNTR_ELEM("PcicReceiveParityErr", 0, 0,
4264 				CNTR_NORMAL,
4265 				access_pcic_receive_parity_err_cnt),
4266 [C_PCIC_TRANSMIT_BACK_PARITY_ERR] = CNTR_ELEM("PcicTransmitBackParityErr", 0, 0,
4267 				CNTR_NORMAL,
4268 				access_pcic_transmit_back_parity_err_cnt),
4269 [C_PCIC_TRANSMIT_FRONT_PARITY_ERR] = CNTR_ELEM("PcicTransmitFrontParityErr", 0,
4270 				0, CNTR_NORMAL,
4271 				access_pcic_transmit_front_parity_err_cnt),
4272 [C_PCIC_CPL_DAT_Q_UNC_ERR] = CNTR_ELEM("PcicCplDatQUncErr", 0, 0,
4273 				CNTR_NORMAL,
4274 				access_pcic_cpl_dat_q_unc_err_cnt),
4275 [C_PCIC_CPL_HD_Q_UNC_ERR] = CNTR_ELEM("PcicCplHdQUncErr", 0, 0,
4276 				CNTR_NORMAL,
4277 				access_pcic_cpl_hd_q_unc_err_cnt),
4278 [C_PCIC_POST_DAT_Q_UNC_ERR] = CNTR_ELEM("PcicPostDatQUncErr", 0, 0,
4279 				CNTR_NORMAL,
4280 				access_pcic_post_dat_q_unc_err_cnt),
4281 [C_PCIC_POST_HD_Q_UNC_ERR] = CNTR_ELEM("PcicPostHdQUncErr", 0, 0,
4282 				CNTR_NORMAL,
4283 				access_pcic_post_hd_q_unc_err_cnt),
4284 [C_PCIC_RETRY_SOT_MEM_UNC_ERR] = CNTR_ELEM("PcicRetrySotMemUncErr", 0, 0,
4285 				CNTR_NORMAL,
4286 				access_pcic_retry_sot_mem_unc_err_cnt),
4287 [C_PCIC_RETRY_MEM_UNC_ERR] = CNTR_ELEM("PcicRetryMemUncErr", 0, 0,
4288 				CNTR_NORMAL,
4289 				access_pcic_retry_mem_unc_err),
4290 [C_PCIC_N_POST_DAT_Q_PARITY_ERR] = CNTR_ELEM("PcicNPostDatQParityErr", 0, 0,
4291 				CNTR_NORMAL,
4292 				access_pcic_n_post_dat_q_parity_err_cnt),
4293 [C_PCIC_N_POST_H_Q_PARITY_ERR] = CNTR_ELEM("PcicNPostHQParityErr", 0, 0,
4294 				CNTR_NORMAL,
4295 				access_pcic_n_post_h_q_parity_err_cnt),
4296 [C_PCIC_CPL_DAT_Q_COR_ERR] = CNTR_ELEM("PcicCplDatQCorErr", 0, 0,
4297 				CNTR_NORMAL,
4298 				access_pcic_cpl_dat_q_cor_err_cnt),
4299 [C_PCIC_CPL_HD_Q_COR_ERR] = CNTR_ELEM("PcicCplHdQCorErr", 0, 0,
4300 				CNTR_NORMAL,
4301 				access_pcic_cpl_hd_q_cor_err_cnt),
4302 [C_PCIC_POST_DAT_Q_COR_ERR] = CNTR_ELEM("PcicPostDatQCorErr", 0, 0,
4303 				CNTR_NORMAL,
4304 				access_pcic_post_dat_q_cor_err_cnt),
4305 [C_PCIC_POST_HD_Q_COR_ERR] = CNTR_ELEM("PcicPostHdQCorErr", 0, 0,
4306 				CNTR_NORMAL,
4307 				access_pcic_post_hd_q_cor_err_cnt),
4308 [C_PCIC_RETRY_SOT_MEM_COR_ERR] = CNTR_ELEM("PcicRetrySotMemCorErr", 0, 0,
4309 				CNTR_NORMAL,
4310 				access_pcic_retry_sot_mem_cor_err_cnt),
4311 [C_PCIC_RETRY_MEM_COR_ERR] = CNTR_ELEM("PcicRetryMemCorErr", 0, 0,
4312 				CNTR_NORMAL,
4313 				access_pcic_retry_mem_cor_err_cnt),
4314 [C_CCE_CLI1_ASYNC_FIFO_DBG_PARITY_ERR] = CNTR_ELEM(
4315 				"CceCli1AsyncFifoDbgParityError", 0, 0,
4316 				CNTR_NORMAL,
4317 				access_cce_cli1_async_fifo_dbg_parity_err_cnt),
4318 [C_CCE_CLI1_ASYNC_FIFO_RXDMA_PARITY_ERR] = CNTR_ELEM(
4319 				"CceCli1AsyncFifoRxdmaParityError", 0, 0,
4320 				CNTR_NORMAL,
4321 				access_cce_cli1_async_fifo_rxdma_parity_err_cnt
4322 				),
4323 [C_CCE_CLI1_ASYNC_FIFO_SDMA_HD_PARITY_ERR] = CNTR_ELEM(
4324 			"CceCli1AsyncFifoSdmaHdParityErr", 0, 0,
4325 			CNTR_NORMAL,
4326 			access_cce_cli1_async_fifo_sdma_hd_parity_err_cnt),
4327 [C_CCE_CLI1_ASYNC_FIFO_PIO_CRDT_PARITY_ERR] = CNTR_ELEM(
4328 			"CceCli1AsyncFifoPioCrdtParityErr", 0, 0,
4329 			CNTR_NORMAL,
4330 			access_cce_cl1_async_fifo_pio_crdt_parity_err_cnt),
4331 [C_CCE_CLI2_ASYNC_FIFO_PARITY_ERR] = CNTR_ELEM("CceCli2AsyncFifoParityErr", 0,
4332 			0, CNTR_NORMAL,
4333 			access_cce_cli2_async_fifo_parity_err_cnt),
4334 [C_CCE_CSR_CFG_BUS_PARITY_ERR] = CNTR_ELEM("CceCsrCfgBusParityErr", 0, 0,
4335 			CNTR_NORMAL,
4336 			access_cce_csr_cfg_bus_parity_err_cnt),
4337 [C_CCE_CLI0_ASYNC_FIFO_PARTIY_ERR] = CNTR_ELEM("CceCli0AsyncFifoParityErr", 0,
4338 			0, CNTR_NORMAL,
4339 			access_cce_cli0_async_fifo_parity_err_cnt),
4340 [C_CCE_RSPD_DATA_PARITY_ERR] = CNTR_ELEM("CceRspdDataParityErr", 0, 0,
4341 			CNTR_NORMAL,
4342 			access_cce_rspd_data_parity_err_cnt),
4343 [C_CCE_TRGT_ACCESS_ERR] = CNTR_ELEM("CceTrgtAccessErr", 0, 0,
4344 			CNTR_NORMAL,
4345 			access_cce_trgt_access_err_cnt),
4346 [C_CCE_TRGT_ASYNC_FIFO_PARITY_ERR] = CNTR_ELEM("CceTrgtAsyncFifoParityErr", 0,
4347 			0, CNTR_NORMAL,
4348 			access_cce_trgt_async_fifo_parity_err_cnt),
4349 [C_CCE_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("CceCsrWriteBadAddrErr", 0, 0,
4350 			CNTR_NORMAL,
4351 			access_cce_csr_write_bad_addr_err_cnt),
4352 [C_CCE_CSR_READ_BAD_ADDR_ERR] = CNTR_ELEM("CceCsrReadBadAddrErr", 0, 0,
4353 			CNTR_NORMAL,
4354 			access_cce_csr_read_bad_addr_err_cnt),
4355 [C_CCE_CSR_PARITY_ERR] = CNTR_ELEM("CceCsrParityErr", 0, 0,
4356 			CNTR_NORMAL,
4357 			access_ccs_csr_parity_err_cnt),
4358 
4359 /* RcvErrStatus */
4360 [C_RX_CSR_PARITY_ERR] = CNTR_ELEM("RxCsrParityErr", 0, 0,
4361 			CNTR_NORMAL,
4362 			access_rx_csr_parity_err_cnt),
4363 [C_RX_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("RxCsrWriteBadAddrErr", 0, 0,
4364 			CNTR_NORMAL,
4365 			access_rx_csr_write_bad_addr_err_cnt),
4366 [C_RX_CSR_READ_BAD_ADDR_ERR] = CNTR_ELEM("RxCsrReadBadAddrErr", 0, 0,
4367 			CNTR_NORMAL,
4368 			access_rx_csr_read_bad_addr_err_cnt),
4369 [C_RX_DMA_CSR_UNC_ERR] = CNTR_ELEM("RxDmaCsrUncErr", 0, 0,
4370 			CNTR_NORMAL,
4371 			access_rx_dma_csr_unc_err_cnt),
4372 [C_RX_DMA_DQ_FSM_ENCODING_ERR] = CNTR_ELEM("RxDmaDqFsmEncodingErr", 0, 0,
4373 			CNTR_NORMAL,
4374 			access_rx_dma_dq_fsm_encoding_err_cnt),
4375 [C_RX_DMA_EQ_FSM_ENCODING_ERR] = CNTR_ELEM("RxDmaEqFsmEncodingErr", 0, 0,
4376 			CNTR_NORMAL,
4377 			access_rx_dma_eq_fsm_encoding_err_cnt),
4378 [C_RX_DMA_CSR_PARITY_ERR] = CNTR_ELEM("RxDmaCsrParityErr", 0, 0,
4379 			CNTR_NORMAL,
4380 			access_rx_dma_csr_parity_err_cnt),
4381 [C_RX_RBUF_DATA_COR_ERR] = CNTR_ELEM("RxRbufDataCorErr", 0, 0,
4382 			CNTR_NORMAL,
4383 			access_rx_rbuf_data_cor_err_cnt),
4384 [C_RX_RBUF_DATA_UNC_ERR] = CNTR_ELEM("RxRbufDataUncErr", 0, 0,
4385 			CNTR_NORMAL,
4386 			access_rx_rbuf_data_unc_err_cnt),
4387 [C_RX_DMA_DATA_FIFO_RD_COR_ERR] = CNTR_ELEM("RxDmaDataFifoRdCorErr", 0, 0,
4388 			CNTR_NORMAL,
4389 			access_rx_dma_data_fifo_rd_cor_err_cnt),
4390 [C_RX_DMA_DATA_FIFO_RD_UNC_ERR] = CNTR_ELEM("RxDmaDataFifoRdUncErr", 0, 0,
4391 			CNTR_NORMAL,
4392 			access_rx_dma_data_fifo_rd_unc_err_cnt),
4393 [C_RX_DMA_HDR_FIFO_RD_COR_ERR] = CNTR_ELEM("RxDmaHdrFifoRdCorErr", 0, 0,
4394 			CNTR_NORMAL,
4395 			access_rx_dma_hdr_fifo_rd_cor_err_cnt),
4396 [C_RX_DMA_HDR_FIFO_RD_UNC_ERR] = CNTR_ELEM("RxDmaHdrFifoRdUncErr", 0, 0,
4397 			CNTR_NORMAL,
4398 			access_rx_dma_hdr_fifo_rd_unc_err_cnt),
4399 [C_RX_RBUF_DESC_PART2_COR_ERR] = CNTR_ELEM("RxRbufDescPart2CorErr", 0, 0,
4400 			CNTR_NORMAL,
4401 			access_rx_rbuf_desc_part2_cor_err_cnt),
4402 [C_RX_RBUF_DESC_PART2_UNC_ERR] = CNTR_ELEM("RxRbufDescPart2UncErr", 0, 0,
4403 			CNTR_NORMAL,
4404 			access_rx_rbuf_desc_part2_unc_err_cnt),
4405 [C_RX_RBUF_DESC_PART1_COR_ERR] = CNTR_ELEM("RxRbufDescPart1CorErr", 0, 0,
4406 			CNTR_NORMAL,
4407 			access_rx_rbuf_desc_part1_cor_err_cnt),
4408 [C_RX_RBUF_DESC_PART1_UNC_ERR] = CNTR_ELEM("RxRbufDescPart1UncErr", 0, 0,
4409 			CNTR_NORMAL,
4410 			access_rx_rbuf_desc_part1_unc_err_cnt),
4411 [C_RX_HQ_INTR_FSM_ERR] = CNTR_ELEM("RxHqIntrFsmErr", 0, 0,
4412 			CNTR_NORMAL,
4413 			access_rx_hq_intr_fsm_err_cnt),
4414 [C_RX_HQ_INTR_CSR_PARITY_ERR] = CNTR_ELEM("RxHqIntrCsrParityErr", 0, 0,
4415 			CNTR_NORMAL,
4416 			access_rx_hq_intr_csr_parity_err_cnt),
4417 [C_RX_LOOKUP_CSR_PARITY_ERR] = CNTR_ELEM("RxLookupCsrParityErr", 0, 0,
4418 			CNTR_NORMAL,
4419 			access_rx_lookup_csr_parity_err_cnt),
4420 [C_RX_LOOKUP_RCV_ARRAY_COR_ERR] = CNTR_ELEM("RxLookupRcvArrayCorErr", 0, 0,
4421 			CNTR_NORMAL,
4422 			access_rx_lookup_rcv_array_cor_err_cnt),
4423 [C_RX_LOOKUP_RCV_ARRAY_UNC_ERR] = CNTR_ELEM("RxLookupRcvArrayUncErr", 0, 0,
4424 			CNTR_NORMAL,
4425 			access_rx_lookup_rcv_array_unc_err_cnt),
4426 [C_RX_LOOKUP_DES_PART2_PARITY_ERR] = CNTR_ELEM("RxLookupDesPart2ParityErr", 0,
4427 			0, CNTR_NORMAL,
4428 			access_rx_lookup_des_part2_parity_err_cnt),
4429 [C_RX_LOOKUP_DES_PART1_UNC_COR_ERR] = CNTR_ELEM("RxLookupDesPart1UncCorErr", 0,
4430 			0, CNTR_NORMAL,
4431 			access_rx_lookup_des_part1_unc_cor_err_cnt),
4432 [C_RX_LOOKUP_DES_PART1_UNC_ERR] = CNTR_ELEM("RxLookupDesPart1UncErr", 0, 0,
4433 			CNTR_NORMAL,
4434 			access_rx_lookup_des_part1_unc_err_cnt),
4435 [C_RX_RBUF_NEXT_FREE_BUF_COR_ERR] = CNTR_ELEM("RxRbufNextFreeBufCorErr", 0, 0,
4436 			CNTR_NORMAL,
4437 			access_rx_rbuf_next_free_buf_cor_err_cnt),
4438 [C_RX_RBUF_NEXT_FREE_BUF_UNC_ERR] = CNTR_ELEM("RxRbufNextFreeBufUncErr", 0, 0,
4439 			CNTR_NORMAL,
4440 			access_rx_rbuf_next_free_buf_unc_err_cnt),
4441 [C_RX_RBUF_FL_INIT_WR_ADDR_PARITY_ERR] = CNTR_ELEM(
4442 			"RxRbufFlInitWrAddrParityErr", 0, 0,
4443 			CNTR_NORMAL,
4444 			access_rbuf_fl_init_wr_addr_parity_err_cnt),
4445 [C_RX_RBUF_FL_INITDONE_PARITY_ERR] = CNTR_ELEM("RxRbufFlInitdoneParityErr", 0,
4446 			0, CNTR_NORMAL,
4447 			access_rx_rbuf_fl_initdone_parity_err_cnt),
4448 [C_RX_RBUF_FL_WRITE_ADDR_PARITY_ERR] = CNTR_ELEM("RxRbufFlWrAddrParityErr", 0,
4449 			0, CNTR_NORMAL,
4450 			access_rx_rbuf_fl_write_addr_parity_err_cnt),
4451 [C_RX_RBUF_FL_RD_ADDR_PARITY_ERR] = CNTR_ELEM("RxRbufFlRdAddrParityErr", 0, 0,
4452 			CNTR_NORMAL,
4453 			access_rx_rbuf_fl_rd_addr_parity_err_cnt),
4454 [C_RX_RBUF_EMPTY_ERR] = CNTR_ELEM("RxRbufEmptyErr", 0, 0,
4455 			CNTR_NORMAL,
4456 			access_rx_rbuf_empty_err_cnt),
4457 [C_RX_RBUF_FULL_ERR] = CNTR_ELEM("RxRbufFullErr", 0, 0,
4458 			CNTR_NORMAL,
4459 			access_rx_rbuf_full_err_cnt),
4460 [C_RX_RBUF_BAD_LOOKUP_ERR] = CNTR_ELEM("RxRBufBadLookupErr", 0, 0,
4461 			CNTR_NORMAL,
4462 			access_rbuf_bad_lookup_err_cnt),
4463 [C_RX_RBUF_CTX_ID_PARITY_ERR] = CNTR_ELEM("RxRbufCtxIdParityErr", 0, 0,
4464 			CNTR_NORMAL,
4465 			access_rbuf_ctx_id_parity_err_cnt),
4466 [C_RX_RBUF_CSR_QEOPDW_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQEOPDWParityErr", 0, 0,
4467 			CNTR_NORMAL,
4468 			access_rbuf_csr_qeopdw_parity_err_cnt),
4469 [C_RX_RBUF_CSR_Q_NUM_OF_PKT_PARITY_ERR] = CNTR_ELEM(
4470 			"RxRbufCsrQNumOfPktParityErr", 0, 0,
4471 			CNTR_NORMAL,
4472 			access_rx_rbuf_csr_q_num_of_pkt_parity_err_cnt),
4473 [C_RX_RBUF_CSR_Q_T1_PTR_PARITY_ERR] = CNTR_ELEM(
4474 			"RxRbufCsrQTlPtrParityErr", 0, 0,
4475 			CNTR_NORMAL,
4476 			access_rx_rbuf_csr_q_t1_ptr_parity_err_cnt),
4477 [C_RX_RBUF_CSR_Q_HD_PTR_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQHdPtrParityErr", 0,
4478 			0, CNTR_NORMAL,
4479 			access_rx_rbuf_csr_q_hd_ptr_parity_err_cnt),
4480 [C_RX_RBUF_CSR_Q_VLD_BIT_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQVldBitParityErr", 0,
4481 			0, CNTR_NORMAL,
4482 			access_rx_rbuf_csr_q_vld_bit_parity_err_cnt),
4483 [C_RX_RBUF_CSR_Q_NEXT_BUF_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQNextBufParityErr",
4484 			0, 0, CNTR_NORMAL,
4485 			access_rx_rbuf_csr_q_next_buf_parity_err_cnt),
4486 [C_RX_RBUF_CSR_Q_ENT_CNT_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQEntCntParityErr", 0,
4487 			0, CNTR_NORMAL,
4488 			access_rx_rbuf_csr_q_ent_cnt_parity_err_cnt),
4489 [C_RX_RBUF_CSR_Q_HEAD_BUF_NUM_PARITY_ERR] = CNTR_ELEM(
4490 			"RxRbufCsrQHeadBufNumParityErr", 0, 0,
4491 			CNTR_NORMAL,
4492 			access_rx_rbuf_csr_q_head_buf_num_parity_err_cnt),
4493 [C_RX_RBUF_BLOCK_LIST_READ_COR_ERR] = CNTR_ELEM("RxRbufBlockListReadCorErr", 0,
4494 			0, CNTR_NORMAL,
4495 			access_rx_rbuf_block_list_read_cor_err_cnt),
4496 [C_RX_RBUF_BLOCK_LIST_READ_UNC_ERR] = CNTR_ELEM("RxRbufBlockListReadUncErr", 0,
4497 			0, CNTR_NORMAL,
4498 			access_rx_rbuf_block_list_read_unc_err_cnt),
4499 [C_RX_RBUF_LOOKUP_DES_COR_ERR] = CNTR_ELEM("RxRbufLookupDesCorErr", 0, 0,
4500 			CNTR_NORMAL,
4501 			access_rx_rbuf_lookup_des_cor_err_cnt),
4502 [C_RX_RBUF_LOOKUP_DES_UNC_ERR] = CNTR_ELEM("RxRbufLookupDesUncErr", 0, 0,
4503 			CNTR_NORMAL,
4504 			access_rx_rbuf_lookup_des_unc_err_cnt),
4505 [C_RX_RBUF_LOOKUP_DES_REG_UNC_COR_ERR] = CNTR_ELEM(
4506 			"RxRbufLookupDesRegUncCorErr", 0, 0,
4507 			CNTR_NORMAL,
4508 			access_rx_rbuf_lookup_des_reg_unc_cor_err_cnt),
4509 [C_RX_RBUF_LOOKUP_DES_REG_UNC_ERR] = CNTR_ELEM("RxRbufLookupDesRegUncErr", 0, 0,
4510 			CNTR_NORMAL,
4511 			access_rx_rbuf_lookup_des_reg_unc_err_cnt),
4512 [C_RX_RBUF_FREE_LIST_COR_ERR] = CNTR_ELEM("RxRbufFreeListCorErr", 0, 0,
4513 			CNTR_NORMAL,
4514 			access_rx_rbuf_free_list_cor_err_cnt),
4515 [C_RX_RBUF_FREE_LIST_UNC_ERR] = CNTR_ELEM("RxRbufFreeListUncErr", 0, 0,
4516 			CNTR_NORMAL,
4517 			access_rx_rbuf_free_list_unc_err_cnt),
4518 [C_RX_RCV_FSM_ENCODING_ERR] = CNTR_ELEM("RxRcvFsmEncodingErr", 0, 0,
4519 			CNTR_NORMAL,
4520 			access_rx_rcv_fsm_encoding_err_cnt),
4521 [C_RX_DMA_FLAG_COR_ERR] = CNTR_ELEM("RxDmaFlagCorErr", 0, 0,
4522 			CNTR_NORMAL,
4523 			access_rx_dma_flag_cor_err_cnt),
4524 [C_RX_DMA_FLAG_UNC_ERR] = CNTR_ELEM("RxDmaFlagUncErr", 0, 0,
4525 			CNTR_NORMAL,
4526 			access_rx_dma_flag_unc_err_cnt),
4527 [C_RX_DC_SOP_EOP_PARITY_ERR] = CNTR_ELEM("RxDcSopEopParityErr", 0, 0,
4528 			CNTR_NORMAL,
4529 			access_rx_dc_sop_eop_parity_err_cnt),
4530 [C_RX_RCV_CSR_PARITY_ERR] = CNTR_ELEM("RxRcvCsrParityErr", 0, 0,
4531 			CNTR_NORMAL,
4532 			access_rx_rcv_csr_parity_err_cnt),
4533 [C_RX_RCV_QP_MAP_TABLE_COR_ERR] = CNTR_ELEM("RxRcvQpMapTableCorErr", 0, 0,
4534 			CNTR_NORMAL,
4535 			access_rx_rcv_qp_map_table_cor_err_cnt),
4536 [C_RX_RCV_QP_MAP_TABLE_UNC_ERR] = CNTR_ELEM("RxRcvQpMapTableUncErr", 0, 0,
4537 			CNTR_NORMAL,
4538 			access_rx_rcv_qp_map_table_unc_err_cnt),
4539 [C_RX_RCV_DATA_COR_ERR] = CNTR_ELEM("RxRcvDataCorErr", 0, 0,
4540 			CNTR_NORMAL,
4541 			access_rx_rcv_data_cor_err_cnt),
4542 [C_RX_RCV_DATA_UNC_ERR] = CNTR_ELEM("RxRcvDataUncErr", 0, 0,
4543 			CNTR_NORMAL,
4544 			access_rx_rcv_data_unc_err_cnt),
4545 [C_RX_RCV_HDR_COR_ERR] = CNTR_ELEM("RxRcvHdrCorErr", 0, 0,
4546 			CNTR_NORMAL,
4547 			access_rx_rcv_hdr_cor_err_cnt),
4548 [C_RX_RCV_HDR_UNC_ERR] = CNTR_ELEM("RxRcvHdrUncErr", 0, 0,
4549 			CNTR_NORMAL,
4550 			access_rx_rcv_hdr_unc_err_cnt),
4551 [C_RX_DC_INTF_PARITY_ERR] = CNTR_ELEM("RxDcIntfParityErr", 0, 0,
4552 			CNTR_NORMAL,
4553 			access_rx_dc_intf_parity_err_cnt),
4554 [C_RX_DMA_CSR_COR_ERR] = CNTR_ELEM("RxDmaCsrCorErr", 0, 0,
4555 			CNTR_NORMAL,
4556 			access_rx_dma_csr_cor_err_cnt),
4557 /* SendPioErrStatus */
4558 [C_PIO_PEC_SOP_HEAD_PARITY_ERR] = CNTR_ELEM("PioPecSopHeadParityErr", 0, 0,
4559 			CNTR_NORMAL,
4560 			access_pio_pec_sop_head_parity_err_cnt),
4561 [C_PIO_PCC_SOP_HEAD_PARITY_ERR] = CNTR_ELEM("PioPccSopHeadParityErr", 0, 0,
4562 			CNTR_NORMAL,
4563 			access_pio_pcc_sop_head_parity_err_cnt),
4564 [C_PIO_LAST_RETURNED_CNT_PARITY_ERR] = CNTR_ELEM("PioLastReturnedCntParityErr",
4565 			0, 0, CNTR_NORMAL,
4566 			access_pio_last_returned_cnt_parity_err_cnt),
4567 [C_PIO_CURRENT_FREE_CNT_PARITY_ERR] = CNTR_ELEM("PioCurrentFreeCntParityErr", 0,
4568 			0, CNTR_NORMAL,
4569 			access_pio_current_free_cnt_parity_err_cnt),
4570 [C_PIO_RSVD_31_ERR] = CNTR_ELEM("Pio Reserved 31", 0, 0,
4571 			CNTR_NORMAL,
4572 			access_pio_reserved_31_err_cnt),
4573 [C_PIO_RSVD_30_ERR] = CNTR_ELEM("Pio Reserved 30", 0, 0,
4574 			CNTR_NORMAL,
4575 			access_pio_reserved_30_err_cnt),
4576 [C_PIO_PPMC_SOP_LEN_ERR] = CNTR_ELEM("PioPpmcSopLenErr", 0, 0,
4577 			CNTR_NORMAL,
4578 			access_pio_ppmc_sop_len_err_cnt),
4579 [C_PIO_PPMC_BQC_MEM_PARITY_ERR] = CNTR_ELEM("PioPpmcBqcMemParityErr", 0, 0,
4580 			CNTR_NORMAL,
4581 			access_pio_ppmc_bqc_mem_parity_err_cnt),
4582 [C_PIO_VL_FIFO_PARITY_ERR] = CNTR_ELEM("PioVlFifoParityErr", 0, 0,
4583 			CNTR_NORMAL,
4584 			access_pio_vl_fifo_parity_err_cnt),
4585 [C_PIO_VLF_SOP_PARITY_ERR] = CNTR_ELEM("PioVlfSopParityErr", 0, 0,
4586 			CNTR_NORMAL,
4587 			access_pio_vlf_sop_parity_err_cnt),
4588 [C_PIO_VLF_V1_LEN_PARITY_ERR] = CNTR_ELEM("PioVlfVlLenParityErr", 0, 0,
4589 			CNTR_NORMAL,
4590 			access_pio_vlf_v1_len_parity_err_cnt),
4591 [C_PIO_BLOCK_QW_COUNT_PARITY_ERR] = CNTR_ELEM("PioBlockQwCountParityErr", 0, 0,
4592 			CNTR_NORMAL,
4593 			access_pio_block_qw_count_parity_err_cnt),
4594 [C_PIO_WRITE_QW_VALID_PARITY_ERR] = CNTR_ELEM("PioWriteQwValidParityErr", 0, 0,
4595 			CNTR_NORMAL,
4596 			access_pio_write_qw_valid_parity_err_cnt),
4597 [C_PIO_STATE_MACHINE_ERR] = CNTR_ELEM("PioStateMachineErr", 0, 0,
4598 			CNTR_NORMAL,
4599 			access_pio_state_machine_err_cnt),
4600 [C_PIO_WRITE_DATA_PARITY_ERR] = CNTR_ELEM("PioWriteDataParityErr", 0, 0,
4601 			CNTR_NORMAL,
4602 			access_pio_write_data_parity_err_cnt),
4603 [C_PIO_HOST_ADDR_MEM_COR_ERR] = CNTR_ELEM("PioHostAddrMemCorErr", 0, 0,
4604 			CNTR_NORMAL,
4605 			access_pio_host_addr_mem_cor_err_cnt),
4606 [C_PIO_HOST_ADDR_MEM_UNC_ERR] = CNTR_ELEM("PioHostAddrMemUncErr", 0, 0,
4607 			CNTR_NORMAL,
4608 			access_pio_host_addr_mem_unc_err_cnt),
4609 [C_PIO_PKT_EVICT_SM_OR_ARM_SM_ERR] = CNTR_ELEM("PioPktEvictSmOrArbSmErr", 0, 0,
4610 			CNTR_NORMAL,
4611 			access_pio_pkt_evict_sm_or_arb_sm_err_cnt),
4612 [C_PIO_INIT_SM_IN_ERR] = CNTR_ELEM("PioInitSmInErr", 0, 0,
4613 			CNTR_NORMAL,
4614 			access_pio_init_sm_in_err_cnt),
4615 [C_PIO_PPMC_PBL_FIFO_ERR] = CNTR_ELEM("PioPpmcPblFifoErr", 0, 0,
4616 			CNTR_NORMAL,
4617 			access_pio_ppmc_pbl_fifo_err_cnt),
4618 [C_PIO_CREDIT_RET_FIFO_PARITY_ERR] = CNTR_ELEM("PioCreditRetFifoParityErr", 0,
4619 			0, CNTR_NORMAL,
4620 			access_pio_credit_ret_fifo_parity_err_cnt),
4621 [C_PIO_V1_LEN_MEM_BANK1_COR_ERR] = CNTR_ELEM("PioVlLenMemBank1CorErr", 0, 0,
4622 			CNTR_NORMAL,
4623 			access_pio_v1_len_mem_bank1_cor_err_cnt),
4624 [C_PIO_V1_LEN_MEM_BANK0_COR_ERR] = CNTR_ELEM("PioVlLenMemBank0CorErr", 0, 0,
4625 			CNTR_NORMAL,
4626 			access_pio_v1_len_mem_bank0_cor_err_cnt),
4627 [C_PIO_V1_LEN_MEM_BANK1_UNC_ERR] = CNTR_ELEM("PioVlLenMemBank1UncErr", 0, 0,
4628 			CNTR_NORMAL,
4629 			access_pio_v1_len_mem_bank1_unc_err_cnt),
4630 [C_PIO_V1_LEN_MEM_BANK0_UNC_ERR] = CNTR_ELEM("PioVlLenMemBank0UncErr", 0, 0,
4631 			CNTR_NORMAL,
4632 			access_pio_v1_len_mem_bank0_unc_err_cnt),
4633 [C_PIO_SM_PKT_RESET_PARITY_ERR] = CNTR_ELEM("PioSmPktResetParityErr", 0, 0,
4634 			CNTR_NORMAL,
4635 			access_pio_sm_pkt_reset_parity_err_cnt),
4636 [C_PIO_PKT_EVICT_FIFO_PARITY_ERR] = CNTR_ELEM("PioPktEvictFifoParityErr", 0, 0,
4637 			CNTR_NORMAL,
4638 			access_pio_pkt_evict_fifo_parity_err_cnt),
4639 [C_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR] = CNTR_ELEM(
4640 			"PioSbrdctrlCrrelFifoParityErr", 0, 0,
4641 			CNTR_NORMAL,
4642 			access_pio_sbrdctrl_crrel_fifo_parity_err_cnt),
4643 [C_PIO_SBRDCTL_CRREL_PARITY_ERR] = CNTR_ELEM("PioSbrdctlCrrelParityErr", 0, 0,
4644 			CNTR_NORMAL,
4645 			access_pio_sbrdctl_crrel_parity_err_cnt),
4646 [C_PIO_PEC_FIFO_PARITY_ERR] = CNTR_ELEM("PioPecFifoParityErr", 0, 0,
4647 			CNTR_NORMAL,
4648 			access_pio_pec_fifo_parity_err_cnt),
4649 [C_PIO_PCC_FIFO_PARITY_ERR] = CNTR_ELEM("PioPccFifoParityErr", 0, 0,
4650 			CNTR_NORMAL,
4651 			access_pio_pcc_fifo_parity_err_cnt),
4652 [C_PIO_SB_MEM_FIFO1_ERR] = CNTR_ELEM("PioSbMemFifo1Err", 0, 0,
4653 			CNTR_NORMAL,
4654 			access_pio_sb_mem_fifo1_err_cnt),
4655 [C_PIO_SB_MEM_FIFO0_ERR] = CNTR_ELEM("PioSbMemFifo0Err", 0, 0,
4656 			CNTR_NORMAL,
4657 			access_pio_sb_mem_fifo0_err_cnt),
4658 [C_PIO_CSR_PARITY_ERR] = CNTR_ELEM("PioCsrParityErr", 0, 0,
4659 			CNTR_NORMAL,
4660 			access_pio_csr_parity_err_cnt),
4661 [C_PIO_WRITE_ADDR_PARITY_ERR] = CNTR_ELEM("PioWriteAddrParityErr", 0, 0,
4662 			CNTR_NORMAL,
4663 			access_pio_write_addr_parity_err_cnt),
4664 [C_PIO_WRITE_BAD_CTXT_ERR] = CNTR_ELEM("PioWriteBadCtxtErr", 0, 0,
4665 			CNTR_NORMAL,
4666 			access_pio_write_bad_ctxt_err_cnt),
4667 /* SendDmaErrStatus */
4668 [C_SDMA_PCIE_REQ_TRACKING_COR_ERR] = CNTR_ELEM("SDmaPcieReqTrackingCorErr", 0,
4669 			0, CNTR_NORMAL,
4670 			access_sdma_pcie_req_tracking_cor_err_cnt),
4671 [C_SDMA_PCIE_REQ_TRACKING_UNC_ERR] = CNTR_ELEM("SDmaPcieReqTrackingUncErr", 0,
4672 			0, CNTR_NORMAL,
4673 			access_sdma_pcie_req_tracking_unc_err_cnt),
4674 [C_SDMA_CSR_PARITY_ERR] = CNTR_ELEM("SDmaCsrParityErr", 0, 0,
4675 			CNTR_NORMAL,
4676 			access_sdma_csr_parity_err_cnt),
4677 [C_SDMA_RPY_TAG_ERR] = CNTR_ELEM("SDmaRpyTagErr", 0, 0,
4678 			CNTR_NORMAL,
4679 			access_sdma_rpy_tag_err_cnt),
4680 /* SendEgressErrStatus */
4681 [C_TX_READ_PIO_MEMORY_CSR_UNC_ERR] = CNTR_ELEM("TxReadPioMemoryCsrUncErr", 0, 0,
4682 			CNTR_NORMAL,
4683 			access_tx_read_pio_memory_csr_unc_err_cnt),
4684 [C_TX_READ_SDMA_MEMORY_CSR_UNC_ERR] = CNTR_ELEM("TxReadSdmaMemoryCsrUncErr", 0,
4685 			0, CNTR_NORMAL,
4686 			access_tx_read_sdma_memory_csr_err_cnt),
4687 [C_TX_EGRESS_FIFO_COR_ERR] = CNTR_ELEM("TxEgressFifoCorErr", 0, 0,
4688 			CNTR_NORMAL,
4689 			access_tx_egress_fifo_cor_err_cnt),
4690 [C_TX_READ_PIO_MEMORY_COR_ERR] = CNTR_ELEM("TxReadPioMemoryCorErr", 0, 0,
4691 			CNTR_NORMAL,
4692 			access_tx_read_pio_memory_cor_err_cnt),
4693 [C_TX_READ_SDMA_MEMORY_COR_ERR] = CNTR_ELEM("TxReadSdmaMemoryCorErr", 0, 0,
4694 			CNTR_NORMAL,
4695 			access_tx_read_sdma_memory_cor_err_cnt),
4696 [C_TX_SB_HDR_COR_ERR] = CNTR_ELEM("TxSbHdrCorErr", 0, 0,
4697 			CNTR_NORMAL,
4698 			access_tx_sb_hdr_cor_err_cnt),
4699 [C_TX_CREDIT_OVERRUN_ERR] = CNTR_ELEM("TxCreditOverrunErr", 0, 0,
4700 			CNTR_NORMAL,
4701 			access_tx_credit_overrun_err_cnt),
4702 [C_TX_LAUNCH_FIFO8_COR_ERR] = CNTR_ELEM("TxLaunchFifo8CorErr", 0, 0,
4703 			CNTR_NORMAL,
4704 			access_tx_launch_fifo8_cor_err_cnt),
4705 [C_TX_LAUNCH_FIFO7_COR_ERR] = CNTR_ELEM("TxLaunchFifo7CorErr", 0, 0,
4706 			CNTR_NORMAL,
4707 			access_tx_launch_fifo7_cor_err_cnt),
4708 [C_TX_LAUNCH_FIFO6_COR_ERR] = CNTR_ELEM("TxLaunchFifo6CorErr", 0, 0,
4709 			CNTR_NORMAL,
4710 			access_tx_launch_fifo6_cor_err_cnt),
4711 [C_TX_LAUNCH_FIFO5_COR_ERR] = CNTR_ELEM("TxLaunchFifo5CorErr", 0, 0,
4712 			CNTR_NORMAL,
4713 			access_tx_launch_fifo5_cor_err_cnt),
4714 [C_TX_LAUNCH_FIFO4_COR_ERR] = CNTR_ELEM("TxLaunchFifo4CorErr", 0, 0,
4715 			CNTR_NORMAL,
4716 			access_tx_launch_fifo4_cor_err_cnt),
4717 [C_TX_LAUNCH_FIFO3_COR_ERR] = CNTR_ELEM("TxLaunchFifo3CorErr", 0, 0,
4718 			CNTR_NORMAL,
4719 			access_tx_launch_fifo3_cor_err_cnt),
4720 [C_TX_LAUNCH_FIFO2_COR_ERR] = CNTR_ELEM("TxLaunchFifo2CorErr", 0, 0,
4721 			CNTR_NORMAL,
4722 			access_tx_launch_fifo2_cor_err_cnt),
4723 [C_TX_LAUNCH_FIFO1_COR_ERR] = CNTR_ELEM("TxLaunchFifo1CorErr", 0, 0,
4724 			CNTR_NORMAL,
4725 			access_tx_launch_fifo1_cor_err_cnt),
4726 [C_TX_LAUNCH_FIFO0_COR_ERR] = CNTR_ELEM("TxLaunchFifo0CorErr", 0, 0,
4727 			CNTR_NORMAL,
4728 			access_tx_launch_fifo0_cor_err_cnt),
4729 [C_TX_CREDIT_RETURN_VL_ERR] = CNTR_ELEM("TxCreditReturnVLErr", 0, 0,
4730 			CNTR_NORMAL,
4731 			access_tx_credit_return_vl_err_cnt),
4732 [C_TX_HCRC_INSERTION_ERR] = CNTR_ELEM("TxHcrcInsertionErr", 0, 0,
4733 			CNTR_NORMAL,
4734 			access_tx_hcrc_insertion_err_cnt),
4735 [C_TX_EGRESS_FIFI_UNC_ERR] = CNTR_ELEM("TxEgressFifoUncErr", 0, 0,
4736 			CNTR_NORMAL,
4737 			access_tx_egress_fifo_unc_err_cnt),
4738 [C_TX_READ_PIO_MEMORY_UNC_ERR] = CNTR_ELEM("TxReadPioMemoryUncErr", 0, 0,
4739 			CNTR_NORMAL,
4740 			access_tx_read_pio_memory_unc_err_cnt),
4741 [C_TX_READ_SDMA_MEMORY_UNC_ERR] = CNTR_ELEM("TxReadSdmaMemoryUncErr", 0, 0,
4742 			CNTR_NORMAL,
4743 			access_tx_read_sdma_memory_unc_err_cnt),
4744 [C_TX_SB_HDR_UNC_ERR] = CNTR_ELEM("TxSbHdrUncErr", 0, 0,
4745 			CNTR_NORMAL,
4746 			access_tx_sb_hdr_unc_err_cnt),
4747 [C_TX_CREDIT_RETURN_PARITY_ERR] = CNTR_ELEM("TxCreditReturnParityErr", 0, 0,
4748 			CNTR_NORMAL,
4749 			access_tx_credit_return_partiy_err_cnt),
4750 [C_TX_LAUNCH_FIFO8_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo8UncOrParityErr",
4751 			0, 0, CNTR_NORMAL,
4752 			access_tx_launch_fifo8_unc_or_parity_err_cnt),
4753 [C_TX_LAUNCH_FIFO7_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo7UncOrParityErr",
4754 			0, 0, CNTR_NORMAL,
4755 			access_tx_launch_fifo7_unc_or_parity_err_cnt),
4756 [C_TX_LAUNCH_FIFO6_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo6UncOrParityErr",
4757 			0, 0, CNTR_NORMAL,
4758 			access_tx_launch_fifo6_unc_or_parity_err_cnt),
4759 [C_TX_LAUNCH_FIFO5_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo5UncOrParityErr",
4760 			0, 0, CNTR_NORMAL,
4761 			access_tx_launch_fifo5_unc_or_parity_err_cnt),
4762 [C_TX_LAUNCH_FIFO4_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo4UncOrParityErr",
4763 			0, 0, CNTR_NORMAL,
4764 			access_tx_launch_fifo4_unc_or_parity_err_cnt),
4765 [C_TX_LAUNCH_FIFO3_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo3UncOrParityErr",
4766 			0, 0, CNTR_NORMAL,
4767 			access_tx_launch_fifo3_unc_or_parity_err_cnt),
4768 [C_TX_LAUNCH_FIFO2_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo2UncOrParityErr",
4769 			0, 0, CNTR_NORMAL,
4770 			access_tx_launch_fifo2_unc_or_parity_err_cnt),
4771 [C_TX_LAUNCH_FIFO1_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo1UncOrParityErr",
4772 			0, 0, CNTR_NORMAL,
4773 			access_tx_launch_fifo1_unc_or_parity_err_cnt),
4774 [C_TX_LAUNCH_FIFO0_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo0UncOrParityErr",
4775 			0, 0, CNTR_NORMAL,
4776 			access_tx_launch_fifo0_unc_or_parity_err_cnt),
4777 [C_TX_SDMA15_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma15DisallowedPacketErr",
4778 			0, 0, CNTR_NORMAL,
4779 			access_tx_sdma15_disallowed_packet_err_cnt),
4780 [C_TX_SDMA14_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma14DisallowedPacketErr",
4781 			0, 0, CNTR_NORMAL,
4782 			access_tx_sdma14_disallowed_packet_err_cnt),
4783 [C_TX_SDMA13_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma13DisallowedPacketErr",
4784 			0, 0, CNTR_NORMAL,
4785 			access_tx_sdma13_disallowed_packet_err_cnt),
4786 [C_TX_SDMA12_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma12DisallowedPacketErr",
4787 			0, 0, CNTR_NORMAL,
4788 			access_tx_sdma12_disallowed_packet_err_cnt),
4789 [C_TX_SDMA11_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma11DisallowedPacketErr",
4790 			0, 0, CNTR_NORMAL,
4791 			access_tx_sdma11_disallowed_packet_err_cnt),
4792 [C_TX_SDMA10_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma10DisallowedPacketErr",
4793 			0, 0, CNTR_NORMAL,
4794 			access_tx_sdma10_disallowed_packet_err_cnt),
4795 [C_TX_SDMA9_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma9DisallowedPacketErr",
4796 			0, 0, CNTR_NORMAL,
4797 			access_tx_sdma9_disallowed_packet_err_cnt),
4798 [C_TX_SDMA8_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma8DisallowedPacketErr",
4799 			0, 0, CNTR_NORMAL,
4800 			access_tx_sdma8_disallowed_packet_err_cnt),
4801 [C_TX_SDMA7_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma7DisallowedPacketErr",
4802 			0, 0, CNTR_NORMAL,
4803 			access_tx_sdma7_disallowed_packet_err_cnt),
4804 [C_TX_SDMA6_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma6DisallowedPacketErr",
4805 			0, 0, CNTR_NORMAL,
4806 			access_tx_sdma6_disallowed_packet_err_cnt),
4807 [C_TX_SDMA5_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma5DisallowedPacketErr",
4808 			0, 0, CNTR_NORMAL,
4809 			access_tx_sdma5_disallowed_packet_err_cnt),
4810 [C_TX_SDMA4_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma4DisallowedPacketErr",
4811 			0, 0, CNTR_NORMAL,
4812 			access_tx_sdma4_disallowed_packet_err_cnt),
4813 [C_TX_SDMA3_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma3DisallowedPacketErr",
4814 			0, 0, CNTR_NORMAL,
4815 			access_tx_sdma3_disallowed_packet_err_cnt),
4816 [C_TX_SDMA2_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma2DisallowedPacketErr",
4817 			0, 0, CNTR_NORMAL,
4818 			access_tx_sdma2_disallowed_packet_err_cnt),
4819 [C_TX_SDMA1_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma1DisallowedPacketErr",
4820 			0, 0, CNTR_NORMAL,
4821 			access_tx_sdma1_disallowed_packet_err_cnt),
4822 [C_TX_SDMA0_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma0DisallowedPacketErr",
4823 			0, 0, CNTR_NORMAL,
4824 			access_tx_sdma0_disallowed_packet_err_cnt),
4825 [C_TX_CONFIG_PARITY_ERR] = CNTR_ELEM("TxConfigParityErr", 0, 0,
4826 			CNTR_NORMAL,
4827 			access_tx_config_parity_err_cnt),
4828 [C_TX_SBRD_CTL_CSR_PARITY_ERR] = CNTR_ELEM("TxSbrdCtlCsrParityErr", 0, 0,
4829 			CNTR_NORMAL,
4830 			access_tx_sbrd_ctl_csr_parity_err_cnt),
4831 [C_TX_LAUNCH_CSR_PARITY_ERR] = CNTR_ELEM("TxLaunchCsrParityErr", 0, 0,
4832 			CNTR_NORMAL,
4833 			access_tx_launch_csr_parity_err_cnt),
4834 [C_TX_ILLEGAL_CL_ERR] = CNTR_ELEM("TxIllegalVLErr", 0, 0,
4835 			CNTR_NORMAL,
4836 			access_tx_illegal_vl_err_cnt),
4837 [C_TX_SBRD_CTL_STATE_MACHINE_PARITY_ERR] = CNTR_ELEM(
4838 			"TxSbrdCtlStateMachineParityErr", 0, 0,
4839 			CNTR_NORMAL,
4840 			access_tx_sbrd_ctl_state_machine_parity_err_cnt),
4841 [C_TX_RESERVED_10] = CNTR_ELEM("Tx Egress Reserved 10", 0, 0,
4842 			CNTR_NORMAL,
4843 			access_egress_reserved_10_err_cnt),
4844 [C_TX_RESERVED_9] = CNTR_ELEM("Tx Egress Reserved 9", 0, 0,
4845 			CNTR_NORMAL,
4846 			access_egress_reserved_9_err_cnt),
4847 [C_TX_SDMA_LAUNCH_INTF_PARITY_ERR] = CNTR_ELEM("TxSdmaLaunchIntfParityErr",
4848 			0, 0, CNTR_NORMAL,
4849 			access_tx_sdma_launch_intf_parity_err_cnt),
4850 [C_TX_PIO_LAUNCH_INTF_PARITY_ERR] = CNTR_ELEM("TxPioLaunchIntfParityErr", 0, 0,
4851 			CNTR_NORMAL,
4852 			access_tx_pio_launch_intf_parity_err_cnt),
4853 [C_TX_RESERVED_6] = CNTR_ELEM("Tx Egress Reserved 6", 0, 0,
4854 			CNTR_NORMAL,
4855 			access_egress_reserved_6_err_cnt),
4856 [C_TX_INCORRECT_LINK_STATE_ERR] = CNTR_ELEM("TxIncorrectLinkStateErr", 0, 0,
4857 			CNTR_NORMAL,
4858 			access_tx_incorrect_link_state_err_cnt),
4859 [C_TX_LINK_DOWN_ERR] = CNTR_ELEM("TxLinkdownErr", 0, 0,
4860 			CNTR_NORMAL,
4861 			access_tx_linkdown_err_cnt),
4862 [C_TX_EGRESS_FIFO_UNDERRUN_OR_PARITY_ERR] = CNTR_ELEM(
4863 			"EgressFifoUnderrunOrParityErr", 0, 0,
4864 			CNTR_NORMAL,
4865 			access_tx_egress_fifi_underrun_or_parity_err_cnt),
4866 [C_TX_RESERVED_2] = CNTR_ELEM("Tx Egress Reserved 2", 0, 0,
4867 			CNTR_NORMAL,
4868 			access_egress_reserved_2_err_cnt),
4869 [C_TX_PKT_INTEGRITY_MEM_UNC_ERR] = CNTR_ELEM("TxPktIntegrityMemUncErr", 0, 0,
4870 			CNTR_NORMAL,
4871 			access_tx_pkt_integrity_mem_unc_err_cnt),
4872 [C_TX_PKT_INTEGRITY_MEM_COR_ERR] = CNTR_ELEM("TxPktIntegrityMemCorErr", 0, 0,
4873 			CNTR_NORMAL,
4874 			access_tx_pkt_integrity_mem_cor_err_cnt),
4875 /* SendErrStatus */
4876 [C_SEND_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("SendCsrWriteBadAddrErr", 0, 0,
4877 			CNTR_NORMAL,
4878 			access_send_csr_write_bad_addr_err_cnt),
4879 [C_SEND_CSR_READ_BAD_ADD_ERR] = CNTR_ELEM("SendCsrReadBadAddrErr", 0, 0,
4880 			CNTR_NORMAL,
4881 			access_send_csr_read_bad_addr_err_cnt),
4882 [C_SEND_CSR_PARITY_ERR] = CNTR_ELEM("SendCsrParityErr", 0, 0,
4883 			CNTR_NORMAL,
4884 			access_send_csr_parity_cnt),
4885 /* SendCtxtErrStatus */
4886 [C_PIO_WRITE_OUT_OF_BOUNDS_ERR] = CNTR_ELEM("PioWriteOutOfBoundsErr", 0, 0,
4887 			CNTR_NORMAL,
4888 			access_pio_write_out_of_bounds_err_cnt),
4889 [C_PIO_WRITE_OVERFLOW_ERR] = CNTR_ELEM("PioWriteOverflowErr", 0, 0,
4890 			CNTR_NORMAL,
4891 			access_pio_write_overflow_err_cnt),
4892 [C_PIO_WRITE_CROSSES_BOUNDARY_ERR] = CNTR_ELEM("PioWriteCrossesBoundaryErr",
4893 			0, 0, CNTR_NORMAL,
4894 			access_pio_write_crosses_boundary_err_cnt),
4895 [C_PIO_DISALLOWED_PACKET_ERR] = CNTR_ELEM("PioDisallowedPacketErr", 0, 0,
4896 			CNTR_NORMAL,
4897 			access_pio_disallowed_packet_err_cnt),
4898 [C_PIO_INCONSISTENT_SOP_ERR] = CNTR_ELEM("PioInconsistentSopErr", 0, 0,
4899 			CNTR_NORMAL,
4900 			access_pio_inconsistent_sop_err_cnt),
4901 /* SendDmaEngErrStatus */
4902 [C_SDMA_HEADER_REQUEST_FIFO_COR_ERR] = CNTR_ELEM("SDmaHeaderRequestFifoCorErr",
4903 			0, 0, CNTR_NORMAL,
4904 			access_sdma_header_request_fifo_cor_err_cnt),
4905 [C_SDMA_HEADER_STORAGE_COR_ERR] = CNTR_ELEM("SDmaHeaderStorageCorErr", 0, 0,
4906 			CNTR_NORMAL,
4907 			access_sdma_header_storage_cor_err_cnt),
4908 [C_SDMA_PACKET_TRACKING_COR_ERR] = CNTR_ELEM("SDmaPacketTrackingCorErr", 0, 0,
4909 			CNTR_NORMAL,
4910 			access_sdma_packet_tracking_cor_err_cnt),
4911 [C_SDMA_ASSEMBLY_COR_ERR] = CNTR_ELEM("SDmaAssemblyCorErr", 0, 0,
4912 			CNTR_NORMAL,
4913 			access_sdma_assembly_cor_err_cnt),
4914 [C_SDMA_DESC_TABLE_COR_ERR] = CNTR_ELEM("SDmaDescTableCorErr", 0, 0,
4915 			CNTR_NORMAL,
4916 			access_sdma_desc_table_cor_err_cnt),
4917 [C_SDMA_HEADER_REQUEST_FIFO_UNC_ERR] = CNTR_ELEM("SDmaHeaderRequestFifoUncErr",
4918 			0, 0, CNTR_NORMAL,
4919 			access_sdma_header_request_fifo_unc_err_cnt),
4920 [C_SDMA_HEADER_STORAGE_UNC_ERR] = CNTR_ELEM("SDmaHeaderStorageUncErr", 0, 0,
4921 			CNTR_NORMAL,
4922 			access_sdma_header_storage_unc_err_cnt),
4923 [C_SDMA_PACKET_TRACKING_UNC_ERR] = CNTR_ELEM("SDmaPacketTrackingUncErr", 0, 0,
4924 			CNTR_NORMAL,
4925 			access_sdma_packet_tracking_unc_err_cnt),
4926 [C_SDMA_ASSEMBLY_UNC_ERR] = CNTR_ELEM("SDmaAssemblyUncErr", 0, 0,
4927 			CNTR_NORMAL,
4928 			access_sdma_assembly_unc_err_cnt),
4929 [C_SDMA_DESC_TABLE_UNC_ERR] = CNTR_ELEM("SDmaDescTableUncErr", 0, 0,
4930 			CNTR_NORMAL,
4931 			access_sdma_desc_table_unc_err_cnt),
4932 [C_SDMA_TIMEOUT_ERR] = CNTR_ELEM("SDmaTimeoutErr", 0, 0,
4933 			CNTR_NORMAL,
4934 			access_sdma_timeout_err_cnt),
4935 [C_SDMA_HEADER_LENGTH_ERR] = CNTR_ELEM("SDmaHeaderLengthErr", 0, 0,
4936 			CNTR_NORMAL,
4937 			access_sdma_header_length_err_cnt),
4938 [C_SDMA_HEADER_ADDRESS_ERR] = CNTR_ELEM("SDmaHeaderAddressErr", 0, 0,
4939 			CNTR_NORMAL,
4940 			access_sdma_header_address_err_cnt),
4941 [C_SDMA_HEADER_SELECT_ERR] = CNTR_ELEM("SDmaHeaderSelectErr", 0, 0,
4942 			CNTR_NORMAL,
4943 			access_sdma_header_select_err_cnt),
4944 [C_SMDA_RESERVED_9] = CNTR_ELEM("SDma Reserved 9", 0, 0,
4945 			CNTR_NORMAL,
4946 			access_sdma_reserved_9_err_cnt),
4947 [C_SDMA_PACKET_DESC_OVERFLOW_ERR] = CNTR_ELEM("SDmaPacketDescOverflowErr", 0, 0,
4948 			CNTR_NORMAL,
4949 			access_sdma_packet_desc_overflow_err_cnt),
4950 [C_SDMA_LENGTH_MISMATCH_ERR] = CNTR_ELEM("SDmaLengthMismatchErr", 0, 0,
4951 			CNTR_NORMAL,
4952 			access_sdma_length_mismatch_err_cnt),
4953 [C_SDMA_HALT_ERR] = CNTR_ELEM("SDmaHaltErr", 0, 0,
4954 			CNTR_NORMAL,
4955 			access_sdma_halt_err_cnt),
4956 [C_SDMA_MEM_READ_ERR] = CNTR_ELEM("SDmaMemReadErr", 0, 0,
4957 			CNTR_NORMAL,
4958 			access_sdma_mem_read_err_cnt),
4959 [C_SDMA_FIRST_DESC_ERR] = CNTR_ELEM("SDmaFirstDescErr", 0, 0,
4960 			CNTR_NORMAL,
4961 			access_sdma_first_desc_err_cnt),
4962 [C_SDMA_TAIL_OUT_OF_BOUNDS_ERR] = CNTR_ELEM("SDmaTailOutOfBoundsErr", 0, 0,
4963 			CNTR_NORMAL,
4964 			access_sdma_tail_out_of_bounds_err_cnt),
4965 [C_SDMA_TOO_LONG_ERR] = CNTR_ELEM("SDmaTooLongErr", 0, 0,
4966 			CNTR_NORMAL,
4967 			access_sdma_too_long_err_cnt),
4968 [C_SDMA_GEN_MISMATCH_ERR] = CNTR_ELEM("SDmaGenMismatchErr", 0, 0,
4969 			CNTR_NORMAL,
4970 			access_sdma_gen_mismatch_err_cnt),
4971 [C_SDMA_WRONG_DW_ERR] = CNTR_ELEM("SDmaWrongDwErr", 0, 0,
4972 			CNTR_NORMAL,
4973 			access_sdma_wrong_dw_err_cnt),
4974 };
4975 
4976 static struct cntr_entry port_cntrs[PORT_CNTR_LAST] = {
4977 [C_TX_UNSUP_VL] = TXE32_PORT_CNTR_ELEM(TxUnVLErr, SEND_UNSUP_VL_ERR_CNT,
4978 			CNTR_NORMAL),
4979 [C_TX_INVAL_LEN] = TXE32_PORT_CNTR_ELEM(TxInvalLen, SEND_LEN_ERR_CNT,
4980 			CNTR_NORMAL),
4981 [C_TX_MM_LEN_ERR] = TXE32_PORT_CNTR_ELEM(TxMMLenErr, SEND_MAX_MIN_LEN_ERR_CNT,
4982 			CNTR_NORMAL),
4983 [C_TX_UNDERRUN] = TXE32_PORT_CNTR_ELEM(TxUnderrun, SEND_UNDERRUN_CNT,
4984 			CNTR_NORMAL),
4985 [C_TX_FLOW_STALL] = TXE32_PORT_CNTR_ELEM(TxFlowStall, SEND_FLOW_STALL_CNT,
4986 			CNTR_NORMAL),
4987 [C_TX_DROPPED] = TXE32_PORT_CNTR_ELEM(TxDropped, SEND_DROPPED_PKT_CNT,
4988 			CNTR_NORMAL),
4989 [C_TX_HDR_ERR] = TXE32_PORT_CNTR_ELEM(TxHdrErr, SEND_HEADERS_ERR_CNT,
4990 			CNTR_NORMAL),
4991 [C_TX_PKT] = TXE64_PORT_CNTR_ELEM(TxPkt, SEND_DATA_PKT_CNT, CNTR_NORMAL),
4992 [C_TX_WORDS] = TXE64_PORT_CNTR_ELEM(TxWords, SEND_DWORD_CNT, CNTR_NORMAL),
4993 [C_TX_WAIT] = TXE64_PORT_CNTR_ELEM(TxWait, SEND_WAIT_CNT, CNTR_SYNTH),
4994 [C_TX_FLIT_VL] = TXE64_PORT_CNTR_ELEM(TxFlitVL, SEND_DATA_VL0_CNT,
4995 				      CNTR_SYNTH | CNTR_VL),
4996 [C_TX_PKT_VL] = TXE64_PORT_CNTR_ELEM(TxPktVL, SEND_DATA_PKT_VL0_CNT,
4997 				     CNTR_SYNTH | CNTR_VL),
4998 [C_TX_WAIT_VL] = TXE64_PORT_CNTR_ELEM(TxWaitVL, SEND_WAIT_VL0_CNT,
4999 				      CNTR_SYNTH | CNTR_VL),
5000 [C_RX_PKT] = RXE64_PORT_CNTR_ELEM(RxPkt, RCV_DATA_PKT_CNT, CNTR_NORMAL),
5001 [C_RX_WORDS] = RXE64_PORT_CNTR_ELEM(RxWords, RCV_DWORD_CNT, CNTR_NORMAL),
5002 [C_SW_LINK_DOWN] = CNTR_ELEM("SwLinkDown", 0, 0, CNTR_SYNTH | CNTR_32BIT,
5003 			     access_sw_link_dn_cnt),
5004 [C_SW_LINK_UP] = CNTR_ELEM("SwLinkUp", 0, 0, CNTR_SYNTH | CNTR_32BIT,
5005 			   access_sw_link_up_cnt),
5006 [C_SW_UNKNOWN_FRAME] = CNTR_ELEM("UnknownFrame", 0, 0, CNTR_NORMAL,
5007 				 access_sw_unknown_frame_cnt),
5008 [C_SW_XMIT_DSCD] = CNTR_ELEM("XmitDscd", 0, 0, CNTR_SYNTH | CNTR_32BIT,
5009 			     access_sw_xmit_discards),
5010 [C_SW_XMIT_DSCD_VL] = CNTR_ELEM("XmitDscdVl", 0, 0,
5011 				CNTR_SYNTH | CNTR_32BIT | CNTR_VL,
5012 				access_sw_xmit_discards),
5013 [C_SW_XMIT_CSTR_ERR] = CNTR_ELEM("XmitCstrErr", 0, 0, CNTR_SYNTH,
5014 				 access_xmit_constraint_errs),
5015 [C_SW_RCV_CSTR_ERR] = CNTR_ELEM("RcvCstrErr", 0, 0, CNTR_SYNTH,
5016 				access_rcv_constraint_errs),
5017 [C_SW_IBP_LOOP_PKTS] = SW_IBP_CNTR(LoopPkts, loop_pkts),
5018 [C_SW_IBP_RC_RESENDS] = SW_IBP_CNTR(RcResend, rc_resends),
5019 [C_SW_IBP_RNR_NAKS] = SW_IBP_CNTR(RnrNak, rnr_naks),
5020 [C_SW_IBP_OTHER_NAKS] = SW_IBP_CNTR(OtherNak, other_naks),
5021 [C_SW_IBP_RC_TIMEOUTS] = SW_IBP_CNTR(RcTimeOut, rc_timeouts),
5022 [C_SW_IBP_PKT_DROPS] = SW_IBP_CNTR(PktDrop, pkt_drops),
5023 [C_SW_IBP_DMA_WAIT] = SW_IBP_CNTR(DmaWait, dmawait),
5024 [C_SW_IBP_RC_SEQNAK] = SW_IBP_CNTR(RcSeqNak, rc_seqnak),
5025 [C_SW_IBP_RC_DUPREQ] = SW_IBP_CNTR(RcDupRew, rc_dupreq),
5026 [C_SW_IBP_RDMA_SEQ] = SW_IBP_CNTR(RdmaSeq, rdma_seq),
5027 [C_SW_IBP_UNALIGNED] = SW_IBP_CNTR(Unaligned, unaligned),
5028 [C_SW_IBP_SEQ_NAK] = SW_IBP_CNTR(SeqNak, seq_naks),
5029 [C_SW_CPU_RC_ACKS] = CNTR_ELEM("RcAcks", 0, 0, CNTR_NORMAL,
5030 			       access_sw_cpu_rc_acks),
5031 [C_SW_CPU_RC_QACKS] = CNTR_ELEM("RcQacks", 0, 0, CNTR_NORMAL,
5032 				access_sw_cpu_rc_qacks),
5033 [C_SW_CPU_RC_DELAYED_COMP] = CNTR_ELEM("RcDelayComp", 0, 0, CNTR_NORMAL,
5034 				       access_sw_cpu_rc_delayed_comp),
5035 [OVR_LBL(0)] = OVR_ELM(0), [OVR_LBL(1)] = OVR_ELM(1),
5036 [OVR_LBL(2)] = OVR_ELM(2), [OVR_LBL(3)] = OVR_ELM(3),
5037 [OVR_LBL(4)] = OVR_ELM(4), [OVR_LBL(5)] = OVR_ELM(5),
5038 [OVR_LBL(6)] = OVR_ELM(6), [OVR_LBL(7)] = OVR_ELM(7),
5039 [OVR_LBL(8)] = OVR_ELM(8), [OVR_LBL(9)] = OVR_ELM(9),
5040 [OVR_LBL(10)] = OVR_ELM(10), [OVR_LBL(11)] = OVR_ELM(11),
5041 [OVR_LBL(12)] = OVR_ELM(12), [OVR_LBL(13)] = OVR_ELM(13),
5042 [OVR_LBL(14)] = OVR_ELM(14), [OVR_LBL(15)] = OVR_ELM(15),
5043 [OVR_LBL(16)] = OVR_ELM(16), [OVR_LBL(17)] = OVR_ELM(17),
5044 [OVR_LBL(18)] = OVR_ELM(18), [OVR_LBL(19)] = OVR_ELM(19),
5045 [OVR_LBL(20)] = OVR_ELM(20), [OVR_LBL(21)] = OVR_ELM(21),
5046 [OVR_LBL(22)] = OVR_ELM(22), [OVR_LBL(23)] = OVR_ELM(23),
5047 [OVR_LBL(24)] = OVR_ELM(24), [OVR_LBL(25)] = OVR_ELM(25),
5048 [OVR_LBL(26)] = OVR_ELM(26), [OVR_LBL(27)] = OVR_ELM(27),
5049 [OVR_LBL(28)] = OVR_ELM(28), [OVR_LBL(29)] = OVR_ELM(29),
5050 [OVR_LBL(30)] = OVR_ELM(30), [OVR_LBL(31)] = OVR_ELM(31),
5051 [OVR_LBL(32)] = OVR_ELM(32), [OVR_LBL(33)] = OVR_ELM(33),
5052 [OVR_LBL(34)] = OVR_ELM(34), [OVR_LBL(35)] = OVR_ELM(35),
5053 [OVR_LBL(36)] = OVR_ELM(36), [OVR_LBL(37)] = OVR_ELM(37),
5054 [OVR_LBL(38)] = OVR_ELM(38), [OVR_LBL(39)] = OVR_ELM(39),
5055 [OVR_LBL(40)] = OVR_ELM(40), [OVR_LBL(41)] = OVR_ELM(41),
5056 [OVR_LBL(42)] = OVR_ELM(42), [OVR_LBL(43)] = OVR_ELM(43),
5057 [OVR_LBL(44)] = OVR_ELM(44), [OVR_LBL(45)] = OVR_ELM(45),
5058 [OVR_LBL(46)] = OVR_ELM(46), [OVR_LBL(47)] = OVR_ELM(47),
5059 [OVR_LBL(48)] = OVR_ELM(48), [OVR_LBL(49)] = OVR_ELM(49),
5060 [OVR_LBL(50)] = OVR_ELM(50), [OVR_LBL(51)] = OVR_ELM(51),
5061 [OVR_LBL(52)] = OVR_ELM(52), [OVR_LBL(53)] = OVR_ELM(53),
5062 [OVR_LBL(54)] = OVR_ELM(54), [OVR_LBL(55)] = OVR_ELM(55),
5063 [OVR_LBL(56)] = OVR_ELM(56), [OVR_LBL(57)] = OVR_ELM(57),
5064 [OVR_LBL(58)] = OVR_ELM(58), [OVR_LBL(59)] = OVR_ELM(59),
5065 [OVR_LBL(60)] = OVR_ELM(60), [OVR_LBL(61)] = OVR_ELM(61),
5066 [OVR_LBL(62)] = OVR_ELM(62), [OVR_LBL(63)] = OVR_ELM(63),
5067 [OVR_LBL(64)] = OVR_ELM(64), [OVR_LBL(65)] = OVR_ELM(65),
5068 [OVR_LBL(66)] = OVR_ELM(66), [OVR_LBL(67)] = OVR_ELM(67),
5069 [OVR_LBL(68)] = OVR_ELM(68), [OVR_LBL(69)] = OVR_ELM(69),
5070 [OVR_LBL(70)] = OVR_ELM(70), [OVR_LBL(71)] = OVR_ELM(71),
5071 [OVR_LBL(72)] = OVR_ELM(72), [OVR_LBL(73)] = OVR_ELM(73),
5072 [OVR_LBL(74)] = OVR_ELM(74), [OVR_LBL(75)] = OVR_ELM(75),
5073 [OVR_LBL(76)] = OVR_ELM(76), [OVR_LBL(77)] = OVR_ELM(77),
5074 [OVR_LBL(78)] = OVR_ELM(78), [OVR_LBL(79)] = OVR_ELM(79),
5075 [OVR_LBL(80)] = OVR_ELM(80), [OVR_LBL(81)] = OVR_ELM(81),
5076 [OVR_LBL(82)] = OVR_ELM(82), [OVR_LBL(83)] = OVR_ELM(83),
5077 [OVR_LBL(84)] = OVR_ELM(84), [OVR_LBL(85)] = OVR_ELM(85),
5078 [OVR_LBL(86)] = OVR_ELM(86), [OVR_LBL(87)] = OVR_ELM(87),
5079 [OVR_LBL(88)] = OVR_ELM(88), [OVR_LBL(89)] = OVR_ELM(89),
5080 [OVR_LBL(90)] = OVR_ELM(90), [OVR_LBL(91)] = OVR_ELM(91),
5081 [OVR_LBL(92)] = OVR_ELM(92), [OVR_LBL(93)] = OVR_ELM(93),
5082 [OVR_LBL(94)] = OVR_ELM(94), [OVR_LBL(95)] = OVR_ELM(95),
5083 [OVR_LBL(96)] = OVR_ELM(96), [OVR_LBL(97)] = OVR_ELM(97),
5084 [OVR_LBL(98)] = OVR_ELM(98), [OVR_LBL(99)] = OVR_ELM(99),
5085 [OVR_LBL(100)] = OVR_ELM(100), [OVR_LBL(101)] = OVR_ELM(101),
5086 [OVR_LBL(102)] = OVR_ELM(102), [OVR_LBL(103)] = OVR_ELM(103),
5087 [OVR_LBL(104)] = OVR_ELM(104), [OVR_LBL(105)] = OVR_ELM(105),
5088 [OVR_LBL(106)] = OVR_ELM(106), [OVR_LBL(107)] = OVR_ELM(107),
5089 [OVR_LBL(108)] = OVR_ELM(108), [OVR_LBL(109)] = OVR_ELM(109),
5090 [OVR_LBL(110)] = OVR_ELM(110), [OVR_LBL(111)] = OVR_ELM(111),
5091 [OVR_LBL(112)] = OVR_ELM(112), [OVR_LBL(113)] = OVR_ELM(113),
5092 [OVR_LBL(114)] = OVR_ELM(114), [OVR_LBL(115)] = OVR_ELM(115),
5093 [OVR_LBL(116)] = OVR_ELM(116), [OVR_LBL(117)] = OVR_ELM(117),
5094 [OVR_LBL(118)] = OVR_ELM(118), [OVR_LBL(119)] = OVR_ELM(119),
5095 [OVR_LBL(120)] = OVR_ELM(120), [OVR_LBL(121)] = OVR_ELM(121),
5096 [OVR_LBL(122)] = OVR_ELM(122), [OVR_LBL(123)] = OVR_ELM(123),
5097 [OVR_LBL(124)] = OVR_ELM(124), [OVR_LBL(125)] = OVR_ELM(125),
5098 [OVR_LBL(126)] = OVR_ELM(126), [OVR_LBL(127)] = OVR_ELM(127),
5099 [OVR_LBL(128)] = OVR_ELM(128), [OVR_LBL(129)] = OVR_ELM(129),
5100 [OVR_LBL(130)] = OVR_ELM(130), [OVR_LBL(131)] = OVR_ELM(131),
5101 [OVR_LBL(132)] = OVR_ELM(132), [OVR_LBL(133)] = OVR_ELM(133),
5102 [OVR_LBL(134)] = OVR_ELM(134), [OVR_LBL(135)] = OVR_ELM(135),
5103 [OVR_LBL(136)] = OVR_ELM(136), [OVR_LBL(137)] = OVR_ELM(137),
5104 [OVR_LBL(138)] = OVR_ELM(138), [OVR_LBL(139)] = OVR_ELM(139),
5105 [OVR_LBL(140)] = OVR_ELM(140), [OVR_LBL(141)] = OVR_ELM(141),
5106 [OVR_LBL(142)] = OVR_ELM(142), [OVR_LBL(143)] = OVR_ELM(143),
5107 [OVR_LBL(144)] = OVR_ELM(144), [OVR_LBL(145)] = OVR_ELM(145),
5108 [OVR_LBL(146)] = OVR_ELM(146), [OVR_LBL(147)] = OVR_ELM(147),
5109 [OVR_LBL(148)] = OVR_ELM(148), [OVR_LBL(149)] = OVR_ELM(149),
5110 [OVR_LBL(150)] = OVR_ELM(150), [OVR_LBL(151)] = OVR_ELM(151),
5111 [OVR_LBL(152)] = OVR_ELM(152), [OVR_LBL(153)] = OVR_ELM(153),
5112 [OVR_LBL(154)] = OVR_ELM(154), [OVR_LBL(155)] = OVR_ELM(155),
5113 [OVR_LBL(156)] = OVR_ELM(156), [OVR_LBL(157)] = OVR_ELM(157),
5114 [OVR_LBL(158)] = OVR_ELM(158), [OVR_LBL(159)] = OVR_ELM(159),
5115 };
5116 
5117 /* ======================================================================== */
5118 
5119 /* return true if this is chip revision revision a */
5120 int is_ax(struct hfi1_devdata *dd)
5121 {
5122 	u8 chip_rev_minor =
5123 		dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT
5124 			& CCE_REVISION_CHIP_REV_MINOR_MASK;
5125 	return (chip_rev_minor & 0xf0) == 0;
5126 }
5127 
5128 /* return true if this is chip revision revision b */
5129 int is_bx(struct hfi1_devdata *dd)
5130 {
5131 	u8 chip_rev_minor =
5132 		dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT
5133 			& CCE_REVISION_CHIP_REV_MINOR_MASK;
5134 	return (chip_rev_minor & 0xF0) == 0x10;
5135 }
5136 
5137 /*
5138  * Append string s to buffer buf.  Arguments curp and len are the current
5139  * position and remaining length, respectively.
5140  *
5141  * return 0 on success, 1 on out of room
5142  */
5143 static int append_str(char *buf, char **curp, int *lenp, const char *s)
5144 {
5145 	char *p = *curp;
5146 	int len = *lenp;
5147 	int result = 0; /* success */
5148 	char c;
5149 
5150 	/* add a comma, if first in the buffer */
5151 	if (p != buf) {
5152 		if (len == 0) {
5153 			result = 1; /* out of room */
5154 			goto done;
5155 		}
5156 		*p++ = ',';
5157 		len--;
5158 	}
5159 
5160 	/* copy the string */
5161 	while ((c = *s++) != 0) {
5162 		if (len == 0) {
5163 			result = 1; /* out of room */
5164 			goto done;
5165 		}
5166 		*p++ = c;
5167 		len--;
5168 	}
5169 
5170 done:
5171 	/* write return values */
5172 	*curp = p;
5173 	*lenp = len;
5174 
5175 	return result;
5176 }
5177 
5178 /*
5179  * Using the given flag table, print a comma separated string into
5180  * the buffer.  End in '*' if the buffer is too short.
5181  */
5182 static char *flag_string(char *buf, int buf_len, u64 flags,
5183 			 struct flag_table *table, int table_size)
5184 {
5185 	char extra[32];
5186 	char *p = buf;
5187 	int len = buf_len;
5188 	int no_room = 0;
5189 	int i;
5190 
5191 	/* make sure there is at least 2 so we can form "*" */
5192 	if (len < 2)
5193 		return "";
5194 
5195 	len--;	/* leave room for a nul */
5196 	for (i = 0; i < table_size; i++) {
5197 		if (flags & table[i].flag) {
5198 			no_room = append_str(buf, &p, &len, table[i].str);
5199 			if (no_room)
5200 				break;
5201 			flags &= ~table[i].flag;
5202 		}
5203 	}
5204 
5205 	/* any undocumented bits left? */
5206 	if (!no_room && flags) {
5207 		snprintf(extra, sizeof(extra), "bits 0x%llx", flags);
5208 		no_room = append_str(buf, &p, &len, extra);
5209 	}
5210 
5211 	/* add * if ran out of room */
5212 	if (no_room) {
5213 		/* may need to back up to add space for a '*' */
5214 		if (len == 0)
5215 			--p;
5216 		*p++ = '*';
5217 	}
5218 
5219 	/* add final nul - space already allocated above */
5220 	*p = 0;
5221 	return buf;
5222 }
5223 
5224 /* first 8 CCE error interrupt source names */
5225 static const char * const cce_misc_names[] = {
5226 	"CceErrInt",		/* 0 */
5227 	"RxeErrInt",		/* 1 */
5228 	"MiscErrInt",		/* 2 */
5229 	"Reserved3",		/* 3 */
5230 	"PioErrInt",		/* 4 */
5231 	"SDmaErrInt",		/* 5 */
5232 	"EgressErrInt",		/* 6 */
5233 	"TxeErrInt"		/* 7 */
5234 };
5235 
5236 /*
5237  * Return the miscellaneous error interrupt name.
5238  */
5239 static char *is_misc_err_name(char *buf, size_t bsize, unsigned int source)
5240 {
5241 	if (source < ARRAY_SIZE(cce_misc_names))
5242 		strncpy(buf, cce_misc_names[source], bsize);
5243 	else
5244 		snprintf(buf, bsize, "Reserved%u",
5245 			 source + IS_GENERAL_ERR_START);
5246 
5247 	return buf;
5248 }
5249 
5250 /*
5251  * Return the SDMA engine error interrupt name.
5252  */
5253 static char *is_sdma_eng_err_name(char *buf, size_t bsize, unsigned int source)
5254 {
5255 	snprintf(buf, bsize, "SDmaEngErrInt%u", source);
5256 	return buf;
5257 }
5258 
5259 /*
5260  * Return the send context error interrupt name.
5261  */
5262 static char *is_sendctxt_err_name(char *buf, size_t bsize, unsigned int source)
5263 {
5264 	snprintf(buf, bsize, "SendCtxtErrInt%u", source);
5265 	return buf;
5266 }
5267 
5268 static const char * const various_names[] = {
5269 	"PbcInt",
5270 	"GpioAssertInt",
5271 	"Qsfp1Int",
5272 	"Qsfp2Int",
5273 	"TCritInt"
5274 };
5275 
5276 /*
5277  * Return the various interrupt name.
5278  */
5279 static char *is_various_name(char *buf, size_t bsize, unsigned int source)
5280 {
5281 	if (source < ARRAY_SIZE(various_names))
5282 		strncpy(buf, various_names[source], bsize);
5283 	else
5284 		snprintf(buf, bsize, "Reserved%u", source + IS_VARIOUS_START);
5285 	return buf;
5286 }
5287 
5288 /*
5289  * Return the DC interrupt name.
5290  */
5291 static char *is_dc_name(char *buf, size_t bsize, unsigned int source)
5292 {
5293 	static const char * const dc_int_names[] = {
5294 		"common",
5295 		"lcb",
5296 		"8051",
5297 		"lbm"	/* local block merge */
5298 	};
5299 
5300 	if (source < ARRAY_SIZE(dc_int_names))
5301 		snprintf(buf, bsize, "dc_%s_int", dc_int_names[source]);
5302 	else
5303 		snprintf(buf, bsize, "DCInt%u", source);
5304 	return buf;
5305 }
5306 
5307 static const char * const sdma_int_names[] = {
5308 	"SDmaInt",
5309 	"SdmaIdleInt",
5310 	"SdmaProgressInt",
5311 };
5312 
5313 /*
5314  * Return the SDMA engine interrupt name.
5315  */
5316 static char *is_sdma_eng_name(char *buf, size_t bsize, unsigned int source)
5317 {
5318 	/* what interrupt */
5319 	unsigned int what  = source / TXE_NUM_SDMA_ENGINES;
5320 	/* which engine */
5321 	unsigned int which = source % TXE_NUM_SDMA_ENGINES;
5322 
5323 	if (likely(what < 3))
5324 		snprintf(buf, bsize, "%s%u", sdma_int_names[what], which);
5325 	else
5326 		snprintf(buf, bsize, "Invalid SDMA interrupt %u", source);
5327 	return buf;
5328 }
5329 
5330 /*
5331  * Return the receive available interrupt name.
5332  */
5333 static char *is_rcv_avail_name(char *buf, size_t bsize, unsigned int source)
5334 {
5335 	snprintf(buf, bsize, "RcvAvailInt%u", source);
5336 	return buf;
5337 }
5338 
5339 /*
5340  * Return the receive urgent interrupt name.
5341  */
5342 static char *is_rcv_urgent_name(char *buf, size_t bsize, unsigned int source)
5343 {
5344 	snprintf(buf, bsize, "RcvUrgentInt%u", source);
5345 	return buf;
5346 }
5347 
5348 /*
5349  * Return the send credit interrupt name.
5350  */
5351 static char *is_send_credit_name(char *buf, size_t bsize, unsigned int source)
5352 {
5353 	snprintf(buf, bsize, "SendCreditInt%u", source);
5354 	return buf;
5355 }
5356 
5357 /*
5358  * Return the reserved interrupt name.
5359  */
5360 static char *is_reserved_name(char *buf, size_t bsize, unsigned int source)
5361 {
5362 	snprintf(buf, bsize, "Reserved%u", source + IS_RESERVED_START);
5363 	return buf;
5364 }
5365 
5366 static char *cce_err_status_string(char *buf, int buf_len, u64 flags)
5367 {
5368 	return flag_string(buf, buf_len, flags,
5369 			   cce_err_status_flags,
5370 			   ARRAY_SIZE(cce_err_status_flags));
5371 }
5372 
5373 static char *rxe_err_status_string(char *buf, int buf_len, u64 flags)
5374 {
5375 	return flag_string(buf, buf_len, flags,
5376 			   rxe_err_status_flags,
5377 			   ARRAY_SIZE(rxe_err_status_flags));
5378 }
5379 
5380 static char *misc_err_status_string(char *buf, int buf_len, u64 flags)
5381 {
5382 	return flag_string(buf, buf_len, flags, misc_err_status_flags,
5383 			   ARRAY_SIZE(misc_err_status_flags));
5384 }
5385 
5386 static char *pio_err_status_string(char *buf, int buf_len, u64 flags)
5387 {
5388 	return flag_string(buf, buf_len, flags,
5389 			   pio_err_status_flags,
5390 			   ARRAY_SIZE(pio_err_status_flags));
5391 }
5392 
5393 static char *sdma_err_status_string(char *buf, int buf_len, u64 flags)
5394 {
5395 	return flag_string(buf, buf_len, flags,
5396 			   sdma_err_status_flags,
5397 			   ARRAY_SIZE(sdma_err_status_flags));
5398 }
5399 
5400 static char *egress_err_status_string(char *buf, int buf_len, u64 flags)
5401 {
5402 	return flag_string(buf, buf_len, flags,
5403 			   egress_err_status_flags,
5404 			   ARRAY_SIZE(egress_err_status_flags));
5405 }
5406 
5407 static char *egress_err_info_string(char *buf, int buf_len, u64 flags)
5408 {
5409 	return flag_string(buf, buf_len, flags,
5410 			   egress_err_info_flags,
5411 			   ARRAY_SIZE(egress_err_info_flags));
5412 }
5413 
5414 static char *send_err_status_string(char *buf, int buf_len, u64 flags)
5415 {
5416 	return flag_string(buf, buf_len, flags,
5417 			   send_err_status_flags,
5418 			   ARRAY_SIZE(send_err_status_flags));
5419 }
5420 
5421 static void handle_cce_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5422 {
5423 	char buf[96];
5424 	int i = 0;
5425 
5426 	/*
5427 	 * For most these errors, there is nothing that can be done except
5428 	 * report or record it.
5429 	 */
5430 	dd_dev_info(dd, "CCE Error: %s\n",
5431 		    cce_err_status_string(buf, sizeof(buf), reg));
5432 
5433 	if ((reg & CCE_ERR_STATUS_CCE_CLI2_ASYNC_FIFO_PARITY_ERR_SMASK) &&
5434 	    is_ax(dd) && (dd->icode != ICODE_FUNCTIONAL_SIMULATOR)) {
5435 		/* this error requires a manual drop into SPC freeze mode */
5436 		/* then a fix up */
5437 		start_freeze_handling(dd->pport, FREEZE_SELF);
5438 	}
5439 
5440 	for (i = 0; i < NUM_CCE_ERR_STATUS_COUNTERS; i++) {
5441 		if (reg & (1ull << i)) {
5442 			incr_cntr64(&dd->cce_err_status_cnt[i]);
5443 			/* maintain a counter over all cce_err_status errors */
5444 			incr_cntr64(&dd->sw_cce_err_status_aggregate);
5445 		}
5446 	}
5447 }
5448 
5449 /*
5450  * Check counters for receive errors that do not have an interrupt
5451  * associated with them.
5452  */
5453 #define RCVERR_CHECK_TIME 10
5454 static void update_rcverr_timer(unsigned long opaque)
5455 {
5456 	struct hfi1_devdata *dd = (struct hfi1_devdata *)opaque;
5457 	struct hfi1_pportdata *ppd = dd->pport;
5458 	u32 cur_ovfl_cnt = read_dev_cntr(dd, C_RCV_OVF, CNTR_INVALID_VL);
5459 
5460 	if (dd->rcv_ovfl_cnt < cur_ovfl_cnt &&
5461 	    ppd->port_error_action & OPA_PI_MASK_EX_BUFFER_OVERRUN) {
5462 		dd_dev_info(dd, "%s: PortErrorAction bounce\n", __func__);
5463 		set_link_down_reason(
5464 		ppd, OPA_LINKDOWN_REASON_EXCESSIVE_BUFFER_OVERRUN, 0,
5465 		OPA_LINKDOWN_REASON_EXCESSIVE_BUFFER_OVERRUN);
5466 		queue_work(ppd->hfi1_wq, &ppd->link_bounce_work);
5467 	}
5468 	dd->rcv_ovfl_cnt = (u32)cur_ovfl_cnt;
5469 
5470 	mod_timer(&dd->rcverr_timer, jiffies + HZ * RCVERR_CHECK_TIME);
5471 }
5472 
5473 static int init_rcverr(struct hfi1_devdata *dd)
5474 {
5475 	setup_timer(&dd->rcverr_timer, update_rcverr_timer, (unsigned long)dd);
5476 	/* Assume the hardware counter has been reset */
5477 	dd->rcv_ovfl_cnt = 0;
5478 	return mod_timer(&dd->rcverr_timer, jiffies + HZ * RCVERR_CHECK_TIME);
5479 }
5480 
5481 static void free_rcverr(struct hfi1_devdata *dd)
5482 {
5483 	if (dd->rcverr_timer.data)
5484 		del_timer_sync(&dd->rcverr_timer);
5485 	dd->rcverr_timer.data = 0;
5486 }
5487 
5488 static void handle_rxe_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5489 {
5490 	char buf[96];
5491 	int i = 0;
5492 
5493 	dd_dev_info(dd, "Receive Error: %s\n",
5494 		    rxe_err_status_string(buf, sizeof(buf), reg));
5495 
5496 	if (reg & ALL_RXE_FREEZE_ERR) {
5497 		int flags = 0;
5498 
5499 		/*
5500 		 * Freeze mode recovery is disabled for the errors
5501 		 * in RXE_FREEZE_ABORT_MASK
5502 		 */
5503 		if (is_ax(dd) && (reg & RXE_FREEZE_ABORT_MASK))
5504 			flags = FREEZE_ABORT;
5505 
5506 		start_freeze_handling(dd->pport, flags);
5507 	}
5508 
5509 	for (i = 0; i < NUM_RCV_ERR_STATUS_COUNTERS; i++) {
5510 		if (reg & (1ull << i))
5511 			incr_cntr64(&dd->rcv_err_status_cnt[i]);
5512 	}
5513 }
5514 
5515 static void handle_misc_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5516 {
5517 	char buf[96];
5518 	int i = 0;
5519 
5520 	dd_dev_info(dd, "Misc Error: %s",
5521 		    misc_err_status_string(buf, sizeof(buf), reg));
5522 	for (i = 0; i < NUM_MISC_ERR_STATUS_COUNTERS; i++) {
5523 		if (reg & (1ull << i))
5524 			incr_cntr64(&dd->misc_err_status_cnt[i]);
5525 	}
5526 }
5527 
5528 static void handle_pio_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5529 {
5530 	char buf[96];
5531 	int i = 0;
5532 
5533 	dd_dev_info(dd, "PIO Error: %s\n",
5534 		    pio_err_status_string(buf, sizeof(buf), reg));
5535 
5536 	if (reg & ALL_PIO_FREEZE_ERR)
5537 		start_freeze_handling(dd->pport, 0);
5538 
5539 	for (i = 0; i < NUM_SEND_PIO_ERR_STATUS_COUNTERS; i++) {
5540 		if (reg & (1ull << i))
5541 			incr_cntr64(&dd->send_pio_err_status_cnt[i]);
5542 	}
5543 }
5544 
5545 static void handle_sdma_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5546 {
5547 	char buf[96];
5548 	int i = 0;
5549 
5550 	dd_dev_info(dd, "SDMA Error: %s\n",
5551 		    sdma_err_status_string(buf, sizeof(buf), reg));
5552 
5553 	if (reg & ALL_SDMA_FREEZE_ERR)
5554 		start_freeze_handling(dd->pport, 0);
5555 
5556 	for (i = 0; i < NUM_SEND_DMA_ERR_STATUS_COUNTERS; i++) {
5557 		if (reg & (1ull << i))
5558 			incr_cntr64(&dd->send_dma_err_status_cnt[i]);
5559 	}
5560 }
5561 
5562 static inline void __count_port_discards(struct hfi1_pportdata *ppd)
5563 {
5564 	incr_cntr64(&ppd->port_xmit_discards);
5565 }
5566 
5567 static void count_port_inactive(struct hfi1_devdata *dd)
5568 {
5569 	__count_port_discards(dd->pport);
5570 }
5571 
5572 /*
5573  * We have had a "disallowed packet" error during egress. Determine the
5574  * integrity check which failed, and update relevant error counter, etc.
5575  *
5576  * Note that the SEND_EGRESS_ERR_INFO register has only a single
5577  * bit of state per integrity check, and so we can miss the reason for an
5578  * egress error if more than one packet fails the same integrity check
5579  * since we cleared the corresponding bit in SEND_EGRESS_ERR_INFO.
5580  */
5581 static void handle_send_egress_err_info(struct hfi1_devdata *dd,
5582 					int vl)
5583 {
5584 	struct hfi1_pportdata *ppd = dd->pport;
5585 	u64 src = read_csr(dd, SEND_EGRESS_ERR_SOURCE); /* read first */
5586 	u64 info = read_csr(dd, SEND_EGRESS_ERR_INFO);
5587 	char buf[96];
5588 
5589 	/* clear down all observed info as quickly as possible after read */
5590 	write_csr(dd, SEND_EGRESS_ERR_INFO, info);
5591 
5592 	dd_dev_info(dd,
5593 		    "Egress Error Info: 0x%llx, %s Egress Error Src 0x%llx\n",
5594 		    info, egress_err_info_string(buf, sizeof(buf), info), src);
5595 
5596 	/* Eventually add other counters for each bit */
5597 	if (info & PORT_DISCARD_EGRESS_ERRS) {
5598 		int weight, i;
5599 
5600 		/*
5601 		 * Count all applicable bits as individual errors and
5602 		 * attribute them to the packet that triggered this handler.
5603 		 * This may not be completely accurate due to limitations
5604 		 * on the available hardware error information.  There is
5605 		 * a single information register and any number of error
5606 		 * packets may have occurred and contributed to it before
5607 		 * this routine is called.  This means that:
5608 		 * a) If multiple packets with the same error occur before
5609 		 *    this routine is called, earlier packets are missed.
5610 		 *    There is only a single bit for each error type.
5611 		 * b) Errors may not be attributed to the correct VL.
5612 		 *    The driver is attributing all bits in the info register
5613 		 *    to the packet that triggered this call, but bits
5614 		 *    could be an accumulation of different packets with
5615 		 *    different VLs.
5616 		 * c) A single error packet may have multiple counts attached
5617 		 *    to it.  There is no way for the driver to know if
5618 		 *    multiple bits set in the info register are due to a
5619 		 *    single packet or multiple packets.  The driver assumes
5620 		 *    multiple packets.
5621 		 */
5622 		weight = hweight64(info & PORT_DISCARD_EGRESS_ERRS);
5623 		for (i = 0; i < weight; i++) {
5624 			__count_port_discards(ppd);
5625 			if (vl >= 0 && vl < TXE_NUM_DATA_VL)
5626 				incr_cntr64(&ppd->port_xmit_discards_vl[vl]);
5627 			else if (vl == 15)
5628 				incr_cntr64(&ppd->port_xmit_discards_vl
5629 					    [C_VL_15]);
5630 		}
5631 	}
5632 }
5633 
5634 /*
5635  * Input value is a bit position within the SEND_EGRESS_ERR_STATUS
5636  * register. Does it represent a 'port inactive' error?
5637  */
5638 static inline int port_inactive_err(u64 posn)
5639 {
5640 	return (posn >= SEES(TX_LINKDOWN) &&
5641 		posn <= SEES(TX_INCORRECT_LINK_STATE));
5642 }
5643 
5644 /*
5645  * Input value is a bit position within the SEND_EGRESS_ERR_STATUS
5646  * register. Does it represent a 'disallowed packet' error?
5647  */
5648 static inline int disallowed_pkt_err(int posn)
5649 {
5650 	return (posn >= SEES(TX_SDMA0_DISALLOWED_PACKET) &&
5651 		posn <= SEES(TX_SDMA15_DISALLOWED_PACKET));
5652 }
5653 
5654 /*
5655  * Input value is a bit position of one of the SDMA engine disallowed
5656  * packet errors.  Return which engine.  Use of this must be guarded by
5657  * disallowed_pkt_err().
5658  */
5659 static inline int disallowed_pkt_engine(int posn)
5660 {
5661 	return posn - SEES(TX_SDMA0_DISALLOWED_PACKET);
5662 }
5663 
5664 /*
5665  * Translate an SDMA engine to a VL.  Return -1 if the tranlation cannot
5666  * be done.
5667  */
5668 static int engine_to_vl(struct hfi1_devdata *dd, int engine)
5669 {
5670 	struct sdma_vl_map *m;
5671 	int vl;
5672 
5673 	/* range check */
5674 	if (engine < 0 || engine >= TXE_NUM_SDMA_ENGINES)
5675 		return -1;
5676 
5677 	rcu_read_lock();
5678 	m = rcu_dereference(dd->sdma_map);
5679 	vl = m->engine_to_vl[engine];
5680 	rcu_read_unlock();
5681 
5682 	return vl;
5683 }
5684 
5685 /*
5686  * Translate the send context (sofware index) into a VL.  Return -1 if the
5687  * translation cannot be done.
5688  */
5689 static int sc_to_vl(struct hfi1_devdata *dd, int sw_index)
5690 {
5691 	struct send_context_info *sci;
5692 	struct send_context *sc;
5693 	int i;
5694 
5695 	sci = &dd->send_contexts[sw_index];
5696 
5697 	/* there is no information for user (PSM) and ack contexts */
5698 	if ((sci->type != SC_KERNEL) && (sci->type != SC_VL15))
5699 		return -1;
5700 
5701 	sc = sci->sc;
5702 	if (!sc)
5703 		return -1;
5704 	if (dd->vld[15].sc == sc)
5705 		return 15;
5706 	for (i = 0; i < num_vls; i++)
5707 		if (dd->vld[i].sc == sc)
5708 			return i;
5709 
5710 	return -1;
5711 }
5712 
5713 static void handle_egress_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5714 {
5715 	u64 reg_copy = reg, handled = 0;
5716 	char buf[96];
5717 	int i = 0;
5718 
5719 	if (reg & ALL_TXE_EGRESS_FREEZE_ERR)
5720 		start_freeze_handling(dd->pport, 0);
5721 	else if (is_ax(dd) &&
5722 		 (reg & SEND_EGRESS_ERR_STATUS_TX_CREDIT_RETURN_VL_ERR_SMASK) &&
5723 		 (dd->icode != ICODE_FUNCTIONAL_SIMULATOR))
5724 		start_freeze_handling(dd->pport, 0);
5725 
5726 	while (reg_copy) {
5727 		int posn = fls64(reg_copy);
5728 		/* fls64() returns a 1-based offset, we want it zero based */
5729 		int shift = posn - 1;
5730 		u64 mask = 1ULL << shift;
5731 
5732 		if (port_inactive_err(shift)) {
5733 			count_port_inactive(dd);
5734 			handled |= mask;
5735 		} else if (disallowed_pkt_err(shift)) {
5736 			int vl = engine_to_vl(dd, disallowed_pkt_engine(shift));
5737 
5738 			handle_send_egress_err_info(dd, vl);
5739 			handled |= mask;
5740 		}
5741 		reg_copy &= ~mask;
5742 	}
5743 
5744 	reg &= ~handled;
5745 
5746 	if (reg)
5747 		dd_dev_info(dd, "Egress Error: %s\n",
5748 			    egress_err_status_string(buf, sizeof(buf), reg));
5749 
5750 	for (i = 0; i < NUM_SEND_EGRESS_ERR_STATUS_COUNTERS; i++) {
5751 		if (reg & (1ull << i))
5752 			incr_cntr64(&dd->send_egress_err_status_cnt[i]);
5753 	}
5754 }
5755 
5756 static void handle_txe_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5757 {
5758 	char buf[96];
5759 	int i = 0;
5760 
5761 	dd_dev_info(dd, "Send Error: %s\n",
5762 		    send_err_status_string(buf, sizeof(buf), reg));
5763 
5764 	for (i = 0; i < NUM_SEND_ERR_STATUS_COUNTERS; i++) {
5765 		if (reg & (1ull << i))
5766 			incr_cntr64(&dd->send_err_status_cnt[i]);
5767 	}
5768 }
5769 
5770 /*
5771  * The maximum number of times the error clear down will loop before
5772  * blocking a repeating error.  This value is arbitrary.
5773  */
5774 #define MAX_CLEAR_COUNT 20
5775 
5776 /*
5777  * Clear and handle an error register.  All error interrupts are funneled
5778  * through here to have a central location to correctly handle single-
5779  * or multi-shot errors.
5780  *
5781  * For non per-context registers, call this routine with a context value
5782  * of 0 so the per-context offset is zero.
5783  *
5784  * If the handler loops too many times, assume that something is wrong
5785  * and can't be fixed, so mask the error bits.
5786  */
5787 static void interrupt_clear_down(struct hfi1_devdata *dd,
5788 				 u32 context,
5789 				 const struct err_reg_info *eri)
5790 {
5791 	u64 reg;
5792 	u32 count;
5793 
5794 	/* read in a loop until no more errors are seen */
5795 	count = 0;
5796 	while (1) {
5797 		reg = read_kctxt_csr(dd, context, eri->status);
5798 		if (reg == 0)
5799 			break;
5800 		write_kctxt_csr(dd, context, eri->clear, reg);
5801 		if (likely(eri->handler))
5802 			eri->handler(dd, context, reg);
5803 		count++;
5804 		if (count > MAX_CLEAR_COUNT) {
5805 			u64 mask;
5806 
5807 			dd_dev_err(dd, "Repeating %s bits 0x%llx - masking\n",
5808 				   eri->desc, reg);
5809 			/*
5810 			 * Read-modify-write so any other masked bits
5811 			 * remain masked.
5812 			 */
5813 			mask = read_kctxt_csr(dd, context, eri->mask);
5814 			mask &= ~reg;
5815 			write_kctxt_csr(dd, context, eri->mask, mask);
5816 			break;
5817 		}
5818 	}
5819 }
5820 
5821 /*
5822  * CCE block "misc" interrupt.  Source is < 16.
5823  */
5824 static void is_misc_err_int(struct hfi1_devdata *dd, unsigned int source)
5825 {
5826 	const struct err_reg_info *eri = &misc_errs[source];
5827 
5828 	if (eri->handler) {
5829 		interrupt_clear_down(dd, 0, eri);
5830 	} else {
5831 		dd_dev_err(dd, "Unexpected misc interrupt (%u) - reserved\n",
5832 			   source);
5833 	}
5834 }
5835 
5836 static char *send_context_err_status_string(char *buf, int buf_len, u64 flags)
5837 {
5838 	return flag_string(buf, buf_len, flags,
5839 			   sc_err_status_flags,
5840 			   ARRAY_SIZE(sc_err_status_flags));
5841 }
5842 
5843 /*
5844  * Send context error interrupt.  Source (hw_context) is < 160.
5845  *
5846  * All send context errors cause the send context to halt.  The normal
5847  * clear-down mechanism cannot be used because we cannot clear the
5848  * error bits until several other long-running items are done first.
5849  * This is OK because with the context halted, nothing else is going
5850  * to happen on it anyway.
5851  */
5852 static void is_sendctxt_err_int(struct hfi1_devdata *dd,
5853 				unsigned int hw_context)
5854 {
5855 	struct send_context_info *sci;
5856 	struct send_context *sc;
5857 	char flags[96];
5858 	u64 status;
5859 	u32 sw_index;
5860 	int i = 0;
5861 
5862 	sw_index = dd->hw_to_sw[hw_context];
5863 	if (sw_index >= dd->num_send_contexts) {
5864 		dd_dev_err(dd,
5865 			   "out of range sw index %u for send context %u\n",
5866 			   sw_index, hw_context);
5867 		return;
5868 	}
5869 	sci = &dd->send_contexts[sw_index];
5870 	sc = sci->sc;
5871 	if (!sc) {
5872 		dd_dev_err(dd, "%s: context %u(%u): no sc?\n", __func__,
5873 			   sw_index, hw_context);
5874 		return;
5875 	}
5876 
5877 	/* tell the software that a halt has begun */
5878 	sc_stop(sc, SCF_HALTED);
5879 
5880 	status = read_kctxt_csr(dd, hw_context, SEND_CTXT_ERR_STATUS);
5881 
5882 	dd_dev_info(dd, "Send Context %u(%u) Error: %s\n", sw_index, hw_context,
5883 		    send_context_err_status_string(flags, sizeof(flags),
5884 						   status));
5885 
5886 	if (status & SEND_CTXT_ERR_STATUS_PIO_DISALLOWED_PACKET_ERR_SMASK)
5887 		handle_send_egress_err_info(dd, sc_to_vl(dd, sw_index));
5888 
5889 	/*
5890 	 * Automatically restart halted kernel contexts out of interrupt
5891 	 * context.  User contexts must ask the driver to restart the context.
5892 	 */
5893 	if (sc->type != SC_USER)
5894 		queue_work(dd->pport->hfi1_wq, &sc->halt_work);
5895 
5896 	/*
5897 	 * Update the counters for the corresponding status bits.
5898 	 * Note that these particular counters are aggregated over all
5899 	 * 160 contexts.
5900 	 */
5901 	for (i = 0; i < NUM_SEND_CTXT_ERR_STATUS_COUNTERS; i++) {
5902 		if (status & (1ull << i))
5903 			incr_cntr64(&dd->sw_ctxt_err_status_cnt[i]);
5904 	}
5905 }
5906 
5907 static void handle_sdma_eng_err(struct hfi1_devdata *dd,
5908 				unsigned int source, u64 status)
5909 {
5910 	struct sdma_engine *sde;
5911 	int i = 0;
5912 
5913 	sde = &dd->per_sdma[source];
5914 #ifdef CONFIG_SDMA_VERBOSITY
5915 	dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
5916 		   slashstrip(__FILE__), __LINE__, __func__);
5917 	dd_dev_err(sde->dd, "CONFIG SDMA(%u) source: %u status 0x%llx\n",
5918 		   sde->this_idx, source, (unsigned long long)status);
5919 #endif
5920 	sde->err_cnt++;
5921 	sdma_engine_error(sde, status);
5922 
5923 	/*
5924 	* Update the counters for the corresponding status bits.
5925 	* Note that these particular counters are aggregated over
5926 	* all 16 DMA engines.
5927 	*/
5928 	for (i = 0; i < NUM_SEND_DMA_ENG_ERR_STATUS_COUNTERS; i++) {
5929 		if (status & (1ull << i))
5930 			incr_cntr64(&dd->sw_send_dma_eng_err_status_cnt[i]);
5931 	}
5932 }
5933 
5934 /*
5935  * CCE block SDMA error interrupt.  Source is < 16.
5936  */
5937 static void is_sdma_eng_err_int(struct hfi1_devdata *dd, unsigned int source)
5938 {
5939 #ifdef CONFIG_SDMA_VERBOSITY
5940 	struct sdma_engine *sde = &dd->per_sdma[source];
5941 
5942 	dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
5943 		   slashstrip(__FILE__), __LINE__, __func__);
5944 	dd_dev_err(dd, "CONFIG SDMA(%u) source: %u\n", sde->this_idx,
5945 		   source);
5946 	sdma_dumpstate(sde);
5947 #endif
5948 	interrupt_clear_down(dd, source, &sdma_eng_err);
5949 }
5950 
5951 /*
5952  * CCE block "various" interrupt.  Source is < 8.
5953  */
5954 static void is_various_int(struct hfi1_devdata *dd, unsigned int source)
5955 {
5956 	const struct err_reg_info *eri = &various_err[source];
5957 
5958 	/*
5959 	 * TCritInt cannot go through interrupt_clear_down()
5960 	 * because it is not a second tier interrupt. The handler
5961 	 * should be called directly.
5962 	 */
5963 	if (source == TCRIT_INT_SOURCE)
5964 		handle_temp_err(dd);
5965 	else if (eri->handler)
5966 		interrupt_clear_down(dd, 0, eri);
5967 	else
5968 		dd_dev_info(dd,
5969 			    "%s: Unimplemented/reserved interrupt %d\n",
5970 			    __func__, source);
5971 }
5972 
5973 static void handle_qsfp_int(struct hfi1_devdata *dd, u32 src_ctx, u64 reg)
5974 {
5975 	/* src_ctx is always zero */
5976 	struct hfi1_pportdata *ppd = dd->pport;
5977 	unsigned long flags;
5978 	u64 qsfp_int_mgmt = (u64)(QSFP_HFI0_INT_N | QSFP_HFI0_MODPRST_N);
5979 
5980 	if (reg & QSFP_HFI0_MODPRST_N) {
5981 		if (!qsfp_mod_present(ppd)) {
5982 			dd_dev_info(dd, "%s: QSFP module removed\n",
5983 				    __func__);
5984 
5985 			ppd->driver_link_ready = 0;
5986 			/*
5987 			 * Cable removed, reset all our information about the
5988 			 * cache and cable capabilities
5989 			 */
5990 
5991 			spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
5992 			/*
5993 			 * We don't set cache_refresh_required here as we expect
5994 			 * an interrupt when a cable is inserted
5995 			 */
5996 			ppd->qsfp_info.cache_valid = 0;
5997 			ppd->qsfp_info.reset_needed = 0;
5998 			ppd->qsfp_info.limiting_active = 0;
5999 			spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock,
6000 					       flags);
6001 			/* Invert the ModPresent pin now to detect plug-in */
6002 			write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_INVERT :
6003 				  ASIC_QSFP1_INVERT, qsfp_int_mgmt);
6004 
6005 			if ((ppd->offline_disabled_reason >
6006 			  HFI1_ODR_MASK(
6007 			  OPA_LINKDOWN_REASON_LOCAL_MEDIA_NOT_INSTALLED)) ||
6008 			  (ppd->offline_disabled_reason ==
6009 			  HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE)))
6010 				ppd->offline_disabled_reason =
6011 				HFI1_ODR_MASK(
6012 				OPA_LINKDOWN_REASON_LOCAL_MEDIA_NOT_INSTALLED);
6013 
6014 			if (ppd->host_link_state == HLS_DN_POLL) {
6015 				/*
6016 				 * The link is still in POLL. This means
6017 				 * that the normal link down processing
6018 				 * will not happen. We have to do it here
6019 				 * before turning the DC off.
6020 				 */
6021 				queue_work(ppd->hfi1_wq, &ppd->link_down_work);
6022 			}
6023 		} else {
6024 			dd_dev_info(dd, "%s: QSFP module inserted\n",
6025 				    __func__);
6026 
6027 			spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
6028 			ppd->qsfp_info.cache_valid = 0;
6029 			ppd->qsfp_info.cache_refresh_required = 1;
6030 			spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock,
6031 					       flags);
6032 
6033 			/*
6034 			 * Stop inversion of ModPresent pin to detect
6035 			 * removal of the cable
6036 			 */
6037 			qsfp_int_mgmt &= ~(u64)QSFP_HFI0_MODPRST_N;
6038 			write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_INVERT :
6039 				  ASIC_QSFP1_INVERT, qsfp_int_mgmt);
6040 
6041 			ppd->offline_disabled_reason =
6042 				HFI1_ODR_MASK(OPA_LINKDOWN_REASON_TRANSIENT);
6043 		}
6044 	}
6045 
6046 	if (reg & QSFP_HFI0_INT_N) {
6047 		dd_dev_info(dd, "%s: Interrupt received from QSFP module\n",
6048 			    __func__);
6049 		spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
6050 		ppd->qsfp_info.check_interrupt_flags = 1;
6051 		spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock, flags);
6052 	}
6053 
6054 	/* Schedule the QSFP work only if there is a cable attached. */
6055 	if (qsfp_mod_present(ppd))
6056 		queue_work(ppd->hfi1_wq, &ppd->qsfp_info.qsfp_work);
6057 }
6058 
6059 static int request_host_lcb_access(struct hfi1_devdata *dd)
6060 {
6061 	int ret;
6062 
6063 	ret = do_8051_command(dd, HCMD_MISC,
6064 			      (u64)HCMD_MISC_REQUEST_LCB_ACCESS <<
6065 			      LOAD_DATA_FIELD_ID_SHIFT, NULL);
6066 	if (ret != HCMD_SUCCESS) {
6067 		dd_dev_err(dd, "%s: command failed with error %d\n",
6068 			   __func__, ret);
6069 	}
6070 	return ret == HCMD_SUCCESS ? 0 : -EBUSY;
6071 }
6072 
6073 static int request_8051_lcb_access(struct hfi1_devdata *dd)
6074 {
6075 	int ret;
6076 
6077 	ret = do_8051_command(dd, HCMD_MISC,
6078 			      (u64)HCMD_MISC_GRANT_LCB_ACCESS <<
6079 			      LOAD_DATA_FIELD_ID_SHIFT, NULL);
6080 	if (ret != HCMD_SUCCESS) {
6081 		dd_dev_err(dd, "%s: command failed with error %d\n",
6082 			   __func__, ret);
6083 	}
6084 	return ret == HCMD_SUCCESS ? 0 : -EBUSY;
6085 }
6086 
6087 /*
6088  * Set the LCB selector - allow host access.  The DCC selector always
6089  * points to the host.
6090  */
6091 static inline void set_host_lcb_access(struct hfi1_devdata *dd)
6092 {
6093 	write_csr(dd, DC_DC8051_CFG_CSR_ACCESS_SEL,
6094 		  DC_DC8051_CFG_CSR_ACCESS_SEL_DCC_SMASK |
6095 		  DC_DC8051_CFG_CSR_ACCESS_SEL_LCB_SMASK);
6096 }
6097 
6098 /*
6099  * Clear the LCB selector - allow 8051 access.  The DCC selector always
6100  * points to the host.
6101  */
6102 static inline void set_8051_lcb_access(struct hfi1_devdata *dd)
6103 {
6104 	write_csr(dd, DC_DC8051_CFG_CSR_ACCESS_SEL,
6105 		  DC_DC8051_CFG_CSR_ACCESS_SEL_DCC_SMASK);
6106 }
6107 
6108 /*
6109  * Acquire LCB access from the 8051.  If the host already has access,
6110  * just increment a counter.  Otherwise, inform the 8051 that the
6111  * host is taking access.
6112  *
6113  * Returns:
6114  *	0 on success
6115  *	-EBUSY if the 8051 has control and cannot be disturbed
6116  *	-errno if unable to acquire access from the 8051
6117  */
6118 int acquire_lcb_access(struct hfi1_devdata *dd, int sleep_ok)
6119 {
6120 	struct hfi1_pportdata *ppd = dd->pport;
6121 	int ret = 0;
6122 
6123 	/*
6124 	 * Use the host link state lock so the operation of this routine
6125 	 * { link state check, selector change, count increment } can occur
6126 	 * as a unit against a link state change.  Otherwise there is a
6127 	 * race between the state change and the count increment.
6128 	 */
6129 	if (sleep_ok) {
6130 		mutex_lock(&ppd->hls_lock);
6131 	} else {
6132 		while (!mutex_trylock(&ppd->hls_lock))
6133 			udelay(1);
6134 	}
6135 
6136 	/* this access is valid only when the link is up */
6137 	if (ppd->host_link_state & HLS_DOWN) {
6138 		dd_dev_info(dd, "%s: link state %s not up\n",
6139 			    __func__, link_state_name(ppd->host_link_state));
6140 		ret = -EBUSY;
6141 		goto done;
6142 	}
6143 
6144 	if (dd->lcb_access_count == 0) {
6145 		ret = request_host_lcb_access(dd);
6146 		if (ret) {
6147 			dd_dev_err(dd,
6148 				   "%s: unable to acquire LCB access, err %d\n",
6149 				   __func__, ret);
6150 			goto done;
6151 		}
6152 		set_host_lcb_access(dd);
6153 	}
6154 	dd->lcb_access_count++;
6155 done:
6156 	mutex_unlock(&ppd->hls_lock);
6157 	return ret;
6158 }
6159 
6160 /*
6161  * Release LCB access by decrementing the use count.  If the count is moving
6162  * from 1 to 0, inform 8051 that it has control back.
6163  *
6164  * Returns:
6165  *	0 on success
6166  *	-errno if unable to release access to the 8051
6167  */
6168 int release_lcb_access(struct hfi1_devdata *dd, int sleep_ok)
6169 {
6170 	int ret = 0;
6171 
6172 	/*
6173 	 * Use the host link state lock because the acquire needed it.
6174 	 * Here, we only need to keep { selector change, count decrement }
6175 	 * as a unit.
6176 	 */
6177 	if (sleep_ok) {
6178 		mutex_lock(&dd->pport->hls_lock);
6179 	} else {
6180 		while (!mutex_trylock(&dd->pport->hls_lock))
6181 			udelay(1);
6182 	}
6183 
6184 	if (dd->lcb_access_count == 0) {
6185 		dd_dev_err(dd, "%s: LCB access count is zero.  Skipping.\n",
6186 			   __func__);
6187 		goto done;
6188 	}
6189 
6190 	if (dd->lcb_access_count == 1) {
6191 		set_8051_lcb_access(dd);
6192 		ret = request_8051_lcb_access(dd);
6193 		if (ret) {
6194 			dd_dev_err(dd,
6195 				   "%s: unable to release LCB access, err %d\n",
6196 				   __func__, ret);
6197 			/* restore host access if the grant didn't work */
6198 			set_host_lcb_access(dd);
6199 			goto done;
6200 		}
6201 	}
6202 	dd->lcb_access_count--;
6203 done:
6204 	mutex_unlock(&dd->pport->hls_lock);
6205 	return ret;
6206 }
6207 
6208 /*
6209  * Initialize LCB access variables and state.  Called during driver load,
6210  * after most of the initialization is finished.
6211  *
6212  * The DC default is LCB access on for the host.  The driver defaults to
6213  * leaving access to the 8051.  Assign access now - this constrains the call
6214  * to this routine to be after all LCB set-up is done.  In particular, after
6215  * hf1_init_dd() -> set_up_interrupts() -> clear_all_interrupts()
6216  */
6217 static void init_lcb_access(struct hfi1_devdata *dd)
6218 {
6219 	dd->lcb_access_count = 0;
6220 }
6221 
6222 /*
6223  * Write a response back to a 8051 request.
6224  */
6225 static void hreq_response(struct hfi1_devdata *dd, u8 return_code, u16 rsp_data)
6226 {
6227 	write_csr(dd, DC_DC8051_CFG_EXT_DEV_0,
6228 		  DC_DC8051_CFG_EXT_DEV_0_COMPLETED_SMASK |
6229 		  (u64)return_code <<
6230 		  DC_DC8051_CFG_EXT_DEV_0_RETURN_CODE_SHIFT |
6231 		  (u64)rsp_data << DC_DC8051_CFG_EXT_DEV_0_RSP_DATA_SHIFT);
6232 }
6233 
6234 /*
6235  * Handle host requests from the 8051.
6236  */
6237 static void handle_8051_request(struct hfi1_pportdata *ppd)
6238 {
6239 	struct hfi1_devdata *dd = ppd->dd;
6240 	u64 reg;
6241 	u16 data = 0;
6242 	u8 type;
6243 
6244 	reg = read_csr(dd, DC_DC8051_CFG_EXT_DEV_1);
6245 	if ((reg & DC_DC8051_CFG_EXT_DEV_1_REQ_NEW_SMASK) == 0)
6246 		return;	/* no request */
6247 
6248 	/* zero out COMPLETED so the response is seen */
6249 	write_csr(dd, DC_DC8051_CFG_EXT_DEV_0, 0);
6250 
6251 	/* extract request details */
6252 	type = (reg >> DC_DC8051_CFG_EXT_DEV_1_REQ_TYPE_SHIFT)
6253 			& DC_DC8051_CFG_EXT_DEV_1_REQ_TYPE_MASK;
6254 	data = (reg >> DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SHIFT)
6255 			& DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_MASK;
6256 
6257 	switch (type) {
6258 	case HREQ_LOAD_CONFIG:
6259 	case HREQ_SAVE_CONFIG:
6260 	case HREQ_READ_CONFIG:
6261 	case HREQ_SET_TX_EQ_ABS:
6262 	case HREQ_SET_TX_EQ_REL:
6263 	case HREQ_ENABLE:
6264 		dd_dev_info(dd, "8051 request: request 0x%x not supported\n",
6265 			    type);
6266 		hreq_response(dd, HREQ_NOT_SUPPORTED, 0);
6267 		break;
6268 	case HREQ_CONFIG_DONE:
6269 		hreq_response(dd, HREQ_SUCCESS, 0);
6270 		break;
6271 
6272 	case HREQ_INTERFACE_TEST:
6273 		hreq_response(dd, HREQ_SUCCESS, data);
6274 		break;
6275 	default:
6276 		dd_dev_err(dd, "8051 request: unknown request 0x%x\n", type);
6277 		hreq_response(dd, HREQ_NOT_SUPPORTED, 0);
6278 		break;
6279 	}
6280 }
6281 
6282 static void write_global_credit(struct hfi1_devdata *dd,
6283 				u8 vau, u16 total, u16 shared)
6284 {
6285 	write_csr(dd, SEND_CM_GLOBAL_CREDIT,
6286 		  ((u64)total <<
6287 		   SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT) |
6288 		  ((u64)shared <<
6289 		   SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SHIFT) |
6290 		  ((u64)vau << SEND_CM_GLOBAL_CREDIT_AU_SHIFT));
6291 }
6292 
6293 /*
6294  * Set up initial VL15 credits of the remote.  Assumes the rest of
6295  * the CM credit registers are zero from a previous global or credit reset .
6296  */
6297 void set_up_vl15(struct hfi1_devdata *dd, u8 vau, u16 vl15buf)
6298 {
6299 	/* leave shared count at zero for both global and VL15 */
6300 	write_global_credit(dd, vau, vl15buf, 0);
6301 
6302 	/* We may need some credits for another VL when sending packets
6303 	 * with the snoop interface. Dividing it down the middle for VL15
6304 	 * and VL0 should suffice.
6305 	 */
6306 	if (unlikely(dd->hfi1_snoop.mode_flag == HFI1_PORT_SNOOP_MODE)) {
6307 		write_csr(dd, SEND_CM_CREDIT_VL15, (u64)(vl15buf >> 1)
6308 		    << SEND_CM_CREDIT_VL15_DEDICATED_LIMIT_VL_SHIFT);
6309 		write_csr(dd, SEND_CM_CREDIT_VL, (u64)(vl15buf >> 1)
6310 		    << SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SHIFT);
6311 	} else {
6312 		write_csr(dd, SEND_CM_CREDIT_VL15, (u64)vl15buf
6313 			<< SEND_CM_CREDIT_VL15_DEDICATED_LIMIT_VL_SHIFT);
6314 	}
6315 }
6316 
6317 /*
6318  * Zero all credit details from the previous connection and
6319  * reset the CM manager's internal counters.
6320  */
6321 void reset_link_credits(struct hfi1_devdata *dd)
6322 {
6323 	int i;
6324 
6325 	/* remove all previous VL credit limits */
6326 	for (i = 0; i < TXE_NUM_DATA_VL; i++)
6327 		write_csr(dd, SEND_CM_CREDIT_VL + (8 * i), 0);
6328 	write_csr(dd, SEND_CM_CREDIT_VL15, 0);
6329 	write_global_credit(dd, 0, 0, 0);
6330 	/* reset the CM block */
6331 	pio_send_control(dd, PSC_CM_RESET);
6332 }
6333 
6334 /* convert a vCU to a CU */
6335 static u32 vcu_to_cu(u8 vcu)
6336 {
6337 	return 1 << vcu;
6338 }
6339 
6340 /* convert a CU to a vCU */
6341 static u8 cu_to_vcu(u32 cu)
6342 {
6343 	return ilog2(cu);
6344 }
6345 
6346 /* convert a vAU to an AU */
6347 static u32 vau_to_au(u8 vau)
6348 {
6349 	return 8 * (1 << vau);
6350 }
6351 
6352 static void set_linkup_defaults(struct hfi1_pportdata *ppd)
6353 {
6354 	ppd->sm_trap_qp = 0x0;
6355 	ppd->sa_qp = 0x1;
6356 }
6357 
6358 /*
6359  * Graceful LCB shutdown.  This leaves the LCB FIFOs in reset.
6360  */
6361 static void lcb_shutdown(struct hfi1_devdata *dd, int abort)
6362 {
6363 	u64 reg;
6364 
6365 	/* clear lcb run: LCB_CFG_RUN.EN = 0 */
6366 	write_csr(dd, DC_LCB_CFG_RUN, 0);
6367 	/* set tx fifo reset: LCB_CFG_TX_FIFOS_RESET.VAL = 1 */
6368 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET,
6369 		  1ull << DC_LCB_CFG_TX_FIFOS_RESET_VAL_SHIFT);
6370 	/* set dcc reset csr: DCC_CFG_RESET.{reset_lcb,reset_rx_fpe} = 1 */
6371 	dd->lcb_err_en = read_csr(dd, DC_LCB_ERR_EN);
6372 	reg = read_csr(dd, DCC_CFG_RESET);
6373 	write_csr(dd, DCC_CFG_RESET, reg |
6374 		  (1ull << DCC_CFG_RESET_RESET_LCB_SHIFT) |
6375 		  (1ull << DCC_CFG_RESET_RESET_RX_FPE_SHIFT));
6376 	(void)read_csr(dd, DCC_CFG_RESET); /* make sure the write completed */
6377 	if (!abort) {
6378 		udelay(1);    /* must hold for the longer of 16cclks or 20ns */
6379 		write_csr(dd, DCC_CFG_RESET, reg);
6380 		write_csr(dd, DC_LCB_ERR_EN, dd->lcb_err_en);
6381 	}
6382 }
6383 
6384 /*
6385  * This routine should be called after the link has been transitioned to
6386  * OFFLINE (OFFLINE state has the side effect of putting the SerDes into
6387  * reset).
6388  *
6389  * The expectation is that the caller of this routine would have taken
6390  * care of properly transitioning the link into the correct state.
6391  */
6392 static void dc_shutdown(struct hfi1_devdata *dd)
6393 {
6394 	unsigned long flags;
6395 
6396 	spin_lock_irqsave(&dd->dc8051_lock, flags);
6397 	if (dd->dc_shutdown) {
6398 		spin_unlock_irqrestore(&dd->dc8051_lock, flags);
6399 		return;
6400 	}
6401 	dd->dc_shutdown = 1;
6402 	spin_unlock_irqrestore(&dd->dc8051_lock, flags);
6403 	/* Shutdown the LCB */
6404 	lcb_shutdown(dd, 1);
6405 	/*
6406 	 * Going to OFFLINE would have causes the 8051 to put the
6407 	 * SerDes into reset already. Just need to shut down the 8051,
6408 	 * itself.
6409 	 */
6410 	write_csr(dd, DC_DC8051_CFG_RST, 0x1);
6411 }
6412 
6413 /*
6414  * Calling this after the DC has been brought out of reset should not
6415  * do any damage.
6416  */
6417 static void dc_start(struct hfi1_devdata *dd)
6418 {
6419 	unsigned long flags;
6420 	int ret;
6421 
6422 	spin_lock_irqsave(&dd->dc8051_lock, flags);
6423 	if (!dd->dc_shutdown)
6424 		goto done;
6425 	spin_unlock_irqrestore(&dd->dc8051_lock, flags);
6426 	/* Take the 8051 out of reset */
6427 	write_csr(dd, DC_DC8051_CFG_RST, 0ull);
6428 	/* Wait until 8051 is ready */
6429 	ret = wait_fm_ready(dd, TIMEOUT_8051_START);
6430 	if (ret) {
6431 		dd_dev_err(dd, "%s: timeout starting 8051 firmware\n",
6432 			   __func__);
6433 	}
6434 	/* Take away reset for LCB and RX FPE (set in lcb_shutdown). */
6435 	write_csr(dd, DCC_CFG_RESET, 0x10);
6436 	/* lcb_shutdown() with abort=1 does not restore these */
6437 	write_csr(dd, DC_LCB_ERR_EN, dd->lcb_err_en);
6438 	spin_lock_irqsave(&dd->dc8051_lock, flags);
6439 	dd->dc_shutdown = 0;
6440 done:
6441 	spin_unlock_irqrestore(&dd->dc8051_lock, flags);
6442 }
6443 
6444 /*
6445  * These LCB adjustments are for the Aurora SerDes core in the FPGA.
6446  */
6447 static void adjust_lcb_for_fpga_serdes(struct hfi1_devdata *dd)
6448 {
6449 	u64 rx_radr, tx_radr;
6450 	u32 version;
6451 
6452 	if (dd->icode != ICODE_FPGA_EMULATION)
6453 		return;
6454 
6455 	/*
6456 	 * These LCB defaults on emulator _s are good, nothing to do here:
6457 	 *	LCB_CFG_TX_FIFOS_RADR
6458 	 *	LCB_CFG_RX_FIFOS_RADR
6459 	 *	LCB_CFG_LN_DCLK
6460 	 *	LCB_CFG_IGNORE_LOST_RCLK
6461 	 */
6462 	if (is_emulator_s(dd))
6463 		return;
6464 	/* else this is _p */
6465 
6466 	version = emulator_rev(dd);
6467 	if (!is_ax(dd))
6468 		version = 0x2d;	/* all B0 use 0x2d or higher settings */
6469 
6470 	if (version <= 0x12) {
6471 		/* release 0x12 and below */
6472 
6473 		/*
6474 		 * LCB_CFG_RX_FIFOS_RADR.RST_VAL = 0x9
6475 		 * LCB_CFG_RX_FIFOS_RADR.OK_TO_JUMP_VAL = 0x9
6476 		 * LCB_CFG_RX_FIFOS_RADR.DO_NOT_JUMP_VAL = 0xa
6477 		 */
6478 		rx_radr =
6479 		      0xaull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6480 		    | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6481 		    | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6482 		/*
6483 		 * LCB_CFG_TX_FIFOS_RADR.ON_REINIT = 0 (default)
6484 		 * LCB_CFG_TX_FIFOS_RADR.RST_VAL = 6
6485 		 */
6486 		tx_radr = 6ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6487 	} else if (version <= 0x18) {
6488 		/* release 0x13 up to 0x18 */
6489 		/* LCB_CFG_RX_FIFOS_RADR = 0x988 */
6490 		rx_radr =
6491 		      0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6492 		    | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6493 		    | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6494 		tx_radr = 7ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6495 	} else if (version == 0x19) {
6496 		/* release 0x19 */
6497 		/* LCB_CFG_RX_FIFOS_RADR = 0xa99 */
6498 		rx_radr =
6499 		      0xAull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6500 		    | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6501 		    | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6502 		tx_radr = 3ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6503 	} else if (version == 0x1a) {
6504 		/* release 0x1a */
6505 		/* LCB_CFG_RX_FIFOS_RADR = 0x988 */
6506 		rx_radr =
6507 		      0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6508 		    | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6509 		    | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6510 		tx_radr = 7ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6511 		write_csr(dd, DC_LCB_CFG_LN_DCLK, 1ull);
6512 	} else {
6513 		/* release 0x1b and higher */
6514 		/* LCB_CFG_RX_FIFOS_RADR = 0x877 */
6515 		rx_radr =
6516 		      0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6517 		    | 0x7ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6518 		    | 0x7ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6519 		tx_radr = 3ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6520 	}
6521 
6522 	write_csr(dd, DC_LCB_CFG_RX_FIFOS_RADR, rx_radr);
6523 	/* LCB_CFG_IGNORE_LOST_RCLK.EN = 1 */
6524 	write_csr(dd, DC_LCB_CFG_IGNORE_LOST_RCLK,
6525 		  DC_LCB_CFG_IGNORE_LOST_RCLK_EN_SMASK);
6526 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RADR, tx_radr);
6527 }
6528 
6529 /*
6530  * Handle a SMA idle message
6531  *
6532  * This is a work-queue function outside of the interrupt.
6533  */
6534 void handle_sma_message(struct work_struct *work)
6535 {
6536 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
6537 							sma_message_work);
6538 	struct hfi1_devdata *dd = ppd->dd;
6539 	u64 msg;
6540 	int ret;
6541 
6542 	/*
6543 	 * msg is bytes 1-4 of the 40-bit idle message - the command code
6544 	 * is stripped off
6545 	 */
6546 	ret = read_idle_sma(dd, &msg);
6547 	if (ret)
6548 		return;
6549 	dd_dev_info(dd, "%s: SMA message 0x%llx\n", __func__, msg);
6550 	/*
6551 	 * React to the SMA message.  Byte[1] (0 for us) is the command.
6552 	 */
6553 	switch (msg & 0xff) {
6554 	case SMA_IDLE_ARM:
6555 		/*
6556 		 * See OPAv1 table 9-14 - HFI and External Switch Ports Key
6557 		 * State Transitions
6558 		 *
6559 		 * Only expected in INIT or ARMED, discard otherwise.
6560 		 */
6561 		if (ppd->host_link_state & (HLS_UP_INIT | HLS_UP_ARMED))
6562 			ppd->neighbor_normal = 1;
6563 		break;
6564 	case SMA_IDLE_ACTIVE:
6565 		/*
6566 		 * See OPAv1 table 9-14 - HFI and External Switch Ports Key
6567 		 * State Transitions
6568 		 *
6569 		 * Can activate the node.  Discard otherwise.
6570 		 */
6571 		if (ppd->host_link_state == HLS_UP_ARMED &&
6572 		    ppd->is_active_optimize_enabled) {
6573 			ppd->neighbor_normal = 1;
6574 			ret = set_link_state(ppd, HLS_UP_ACTIVE);
6575 			if (ret)
6576 				dd_dev_err(
6577 					dd,
6578 					"%s: received Active SMA idle message, couldn't set link to Active\n",
6579 					__func__);
6580 		}
6581 		break;
6582 	default:
6583 		dd_dev_err(dd,
6584 			   "%s: received unexpected SMA idle message 0x%llx\n",
6585 			   __func__, msg);
6586 		break;
6587 	}
6588 }
6589 
6590 static void adjust_rcvctrl(struct hfi1_devdata *dd, u64 add, u64 clear)
6591 {
6592 	u64 rcvctrl;
6593 	unsigned long flags;
6594 
6595 	spin_lock_irqsave(&dd->rcvctrl_lock, flags);
6596 	rcvctrl = read_csr(dd, RCV_CTRL);
6597 	rcvctrl |= add;
6598 	rcvctrl &= ~clear;
6599 	write_csr(dd, RCV_CTRL, rcvctrl);
6600 	spin_unlock_irqrestore(&dd->rcvctrl_lock, flags);
6601 }
6602 
6603 static inline void add_rcvctrl(struct hfi1_devdata *dd, u64 add)
6604 {
6605 	adjust_rcvctrl(dd, add, 0);
6606 }
6607 
6608 static inline void clear_rcvctrl(struct hfi1_devdata *dd, u64 clear)
6609 {
6610 	adjust_rcvctrl(dd, 0, clear);
6611 }
6612 
6613 /*
6614  * Called from all interrupt handlers to start handling an SPC freeze.
6615  */
6616 void start_freeze_handling(struct hfi1_pportdata *ppd, int flags)
6617 {
6618 	struct hfi1_devdata *dd = ppd->dd;
6619 	struct send_context *sc;
6620 	int i;
6621 
6622 	if (flags & FREEZE_SELF)
6623 		write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_FREEZE_SMASK);
6624 
6625 	/* enter frozen mode */
6626 	dd->flags |= HFI1_FROZEN;
6627 
6628 	/* notify all SDMA engines that they are going into a freeze */
6629 	sdma_freeze_notify(dd, !!(flags & FREEZE_LINK_DOWN));
6630 
6631 	/* do halt pre-handling on all enabled send contexts */
6632 	for (i = 0; i < dd->num_send_contexts; i++) {
6633 		sc = dd->send_contexts[i].sc;
6634 		if (sc && (sc->flags & SCF_ENABLED))
6635 			sc_stop(sc, SCF_FROZEN | SCF_HALTED);
6636 	}
6637 
6638 	/* Send context are frozen. Notify user space */
6639 	hfi1_set_uevent_bits(ppd, _HFI1_EVENT_FROZEN_BIT);
6640 
6641 	if (flags & FREEZE_ABORT) {
6642 		dd_dev_err(dd,
6643 			   "Aborted freeze recovery. Please REBOOT system\n");
6644 		return;
6645 	}
6646 	/* queue non-interrupt handler */
6647 	queue_work(ppd->hfi1_wq, &ppd->freeze_work);
6648 }
6649 
6650 /*
6651  * Wait until all 4 sub-blocks indicate that they have frozen or unfrozen,
6652  * depending on the "freeze" parameter.
6653  *
6654  * No need to return an error if it times out, our only option
6655  * is to proceed anyway.
6656  */
6657 static void wait_for_freeze_status(struct hfi1_devdata *dd, int freeze)
6658 {
6659 	unsigned long timeout;
6660 	u64 reg;
6661 
6662 	timeout = jiffies + msecs_to_jiffies(FREEZE_STATUS_TIMEOUT);
6663 	while (1) {
6664 		reg = read_csr(dd, CCE_STATUS);
6665 		if (freeze) {
6666 			/* waiting until all indicators are set */
6667 			if ((reg & ALL_FROZE) == ALL_FROZE)
6668 				return;	/* all done */
6669 		} else {
6670 			/* waiting until all indicators are clear */
6671 			if ((reg & ALL_FROZE) == 0)
6672 				return; /* all done */
6673 		}
6674 
6675 		if (time_after(jiffies, timeout)) {
6676 			dd_dev_err(dd,
6677 				   "Time out waiting for SPC %sfreeze, bits 0x%llx, expecting 0x%llx, continuing",
6678 				   freeze ? "" : "un", reg & ALL_FROZE,
6679 				   freeze ? ALL_FROZE : 0ull);
6680 			return;
6681 		}
6682 		usleep_range(80, 120);
6683 	}
6684 }
6685 
6686 /*
6687  * Do all freeze handling for the RXE block.
6688  */
6689 static void rxe_freeze(struct hfi1_devdata *dd)
6690 {
6691 	int i;
6692 
6693 	/* disable port */
6694 	clear_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
6695 
6696 	/* disable all receive contexts */
6697 	for (i = 0; i < dd->num_rcv_contexts; i++)
6698 		hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_DIS, i);
6699 }
6700 
6701 /*
6702  * Unfreeze handling for the RXE block - kernel contexts only.
6703  * This will also enable the port.  User contexts will do unfreeze
6704  * handling on a per-context basis as they call into the driver.
6705  *
6706  */
6707 static void rxe_kernel_unfreeze(struct hfi1_devdata *dd)
6708 {
6709 	u32 rcvmask;
6710 	int i;
6711 
6712 	/* enable all kernel contexts */
6713 	for (i = 0; i < dd->n_krcv_queues; i++) {
6714 		rcvmask = HFI1_RCVCTRL_CTXT_ENB;
6715 		/* HFI1_RCVCTRL_TAILUPD_[ENB|DIS] needs to be set explicitly */
6716 		rcvmask |= HFI1_CAP_KGET_MASK(dd->rcd[i]->flags, DMA_RTAIL) ?
6717 			HFI1_RCVCTRL_TAILUPD_ENB : HFI1_RCVCTRL_TAILUPD_DIS;
6718 		hfi1_rcvctrl(dd, rcvmask, i);
6719 	}
6720 
6721 	/* enable port */
6722 	add_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
6723 }
6724 
6725 /*
6726  * Non-interrupt SPC freeze handling.
6727  *
6728  * This is a work-queue function outside of the triggering interrupt.
6729  */
6730 void handle_freeze(struct work_struct *work)
6731 {
6732 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
6733 								freeze_work);
6734 	struct hfi1_devdata *dd = ppd->dd;
6735 
6736 	/* wait for freeze indicators on all affected blocks */
6737 	wait_for_freeze_status(dd, 1);
6738 
6739 	/* SPC is now frozen */
6740 
6741 	/* do send PIO freeze steps */
6742 	pio_freeze(dd);
6743 
6744 	/* do send DMA freeze steps */
6745 	sdma_freeze(dd);
6746 
6747 	/* do send egress freeze steps - nothing to do */
6748 
6749 	/* do receive freeze steps */
6750 	rxe_freeze(dd);
6751 
6752 	/*
6753 	 * Unfreeze the hardware - clear the freeze, wait for each
6754 	 * block's frozen bit to clear, then clear the frozen flag.
6755 	 */
6756 	write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_UNFREEZE_SMASK);
6757 	wait_for_freeze_status(dd, 0);
6758 
6759 	if (is_ax(dd)) {
6760 		write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_FREEZE_SMASK);
6761 		wait_for_freeze_status(dd, 1);
6762 		write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_UNFREEZE_SMASK);
6763 		wait_for_freeze_status(dd, 0);
6764 	}
6765 
6766 	/* do send PIO unfreeze steps for kernel contexts */
6767 	pio_kernel_unfreeze(dd);
6768 
6769 	/* do send DMA unfreeze steps */
6770 	sdma_unfreeze(dd);
6771 
6772 	/* do send egress unfreeze steps - nothing to do */
6773 
6774 	/* do receive unfreeze steps for kernel contexts */
6775 	rxe_kernel_unfreeze(dd);
6776 
6777 	/*
6778 	 * The unfreeze procedure touches global device registers when
6779 	 * it disables and re-enables RXE. Mark the device unfrozen
6780 	 * after all that is done so other parts of the driver waiting
6781 	 * for the device to unfreeze don't do things out of order.
6782 	 *
6783 	 * The above implies that the meaning of HFI1_FROZEN flag is
6784 	 * "Device has gone into freeze mode and freeze mode handling
6785 	 * is still in progress."
6786 	 *
6787 	 * The flag will be removed when freeze mode processing has
6788 	 * completed.
6789 	 */
6790 	dd->flags &= ~HFI1_FROZEN;
6791 	wake_up(&dd->event_queue);
6792 
6793 	/* no longer frozen */
6794 }
6795 
6796 /*
6797  * Handle a link up interrupt from the 8051.
6798  *
6799  * This is a work-queue function outside of the interrupt.
6800  */
6801 void handle_link_up(struct work_struct *work)
6802 {
6803 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
6804 						  link_up_work);
6805 	set_link_state(ppd, HLS_UP_INIT);
6806 
6807 	/* cache the read of DC_LCB_STS_ROUND_TRIP_LTP_CNT */
6808 	read_ltp_rtt(ppd->dd);
6809 	/*
6810 	 * OPA specifies that certain counters are cleared on a transition
6811 	 * to link up, so do that.
6812 	 */
6813 	clear_linkup_counters(ppd->dd);
6814 	/*
6815 	 * And (re)set link up default values.
6816 	 */
6817 	set_linkup_defaults(ppd);
6818 
6819 	/* enforce link speed enabled */
6820 	if ((ppd->link_speed_active & ppd->link_speed_enabled) == 0) {
6821 		/* oops - current speed is not enabled, bounce */
6822 		dd_dev_err(ppd->dd,
6823 			   "Link speed active 0x%x is outside enabled 0x%x, downing link\n",
6824 			   ppd->link_speed_active, ppd->link_speed_enabled);
6825 		set_link_down_reason(ppd, OPA_LINKDOWN_REASON_SPEED_POLICY, 0,
6826 				     OPA_LINKDOWN_REASON_SPEED_POLICY);
6827 		set_link_state(ppd, HLS_DN_OFFLINE);
6828 		tune_serdes(ppd);
6829 		start_link(ppd);
6830 	}
6831 }
6832 
6833 /*
6834  * Several pieces of LNI information were cached for SMA in ppd.
6835  * Reset these on link down
6836  */
6837 static void reset_neighbor_info(struct hfi1_pportdata *ppd)
6838 {
6839 	ppd->neighbor_guid = 0;
6840 	ppd->neighbor_port_number = 0;
6841 	ppd->neighbor_type = 0;
6842 	ppd->neighbor_fm_security = 0;
6843 }
6844 
6845 static const char * const link_down_reason_strs[] = {
6846 	[OPA_LINKDOWN_REASON_NONE] = "None",
6847 	[OPA_LINKDOWN_REASON_RCV_ERROR_0] = "Recive error 0",
6848 	[OPA_LINKDOWN_REASON_BAD_PKT_LEN] = "Bad packet length",
6849 	[OPA_LINKDOWN_REASON_PKT_TOO_LONG] = "Packet too long",
6850 	[OPA_LINKDOWN_REASON_PKT_TOO_SHORT] = "Packet too short",
6851 	[OPA_LINKDOWN_REASON_BAD_SLID] = "Bad SLID",
6852 	[OPA_LINKDOWN_REASON_BAD_DLID] = "Bad DLID",
6853 	[OPA_LINKDOWN_REASON_BAD_L2] = "Bad L2",
6854 	[OPA_LINKDOWN_REASON_BAD_SC] = "Bad SC",
6855 	[OPA_LINKDOWN_REASON_RCV_ERROR_8] = "Receive error 8",
6856 	[OPA_LINKDOWN_REASON_BAD_MID_TAIL] = "Bad mid tail",
6857 	[OPA_LINKDOWN_REASON_RCV_ERROR_10] = "Receive error 10",
6858 	[OPA_LINKDOWN_REASON_PREEMPT_ERROR] = "Preempt error",
6859 	[OPA_LINKDOWN_REASON_PREEMPT_VL15] = "Preempt vl15",
6860 	[OPA_LINKDOWN_REASON_BAD_VL_MARKER] = "Bad VL marker",
6861 	[OPA_LINKDOWN_REASON_RCV_ERROR_14] = "Receive error 14",
6862 	[OPA_LINKDOWN_REASON_RCV_ERROR_15] = "Receive error 15",
6863 	[OPA_LINKDOWN_REASON_BAD_HEAD_DIST] = "Bad head distance",
6864 	[OPA_LINKDOWN_REASON_BAD_TAIL_DIST] = "Bad tail distance",
6865 	[OPA_LINKDOWN_REASON_BAD_CTRL_DIST] = "Bad control distance",
6866 	[OPA_LINKDOWN_REASON_BAD_CREDIT_ACK] = "Bad credit ack",
6867 	[OPA_LINKDOWN_REASON_UNSUPPORTED_VL_MARKER] = "Unsupported VL marker",
6868 	[OPA_LINKDOWN_REASON_BAD_PREEMPT] = "Bad preempt",
6869 	[OPA_LINKDOWN_REASON_BAD_CONTROL_FLIT] = "Bad control flit",
6870 	[OPA_LINKDOWN_REASON_EXCEED_MULTICAST_LIMIT] = "Exceed multicast limit",
6871 	[OPA_LINKDOWN_REASON_RCV_ERROR_24] = "Receive error 24",
6872 	[OPA_LINKDOWN_REASON_RCV_ERROR_25] = "Receive error 25",
6873 	[OPA_LINKDOWN_REASON_RCV_ERROR_26] = "Receive error 26",
6874 	[OPA_LINKDOWN_REASON_RCV_ERROR_27] = "Receive error 27",
6875 	[OPA_LINKDOWN_REASON_RCV_ERROR_28] = "Receive error 28",
6876 	[OPA_LINKDOWN_REASON_RCV_ERROR_29] = "Receive error 29",
6877 	[OPA_LINKDOWN_REASON_RCV_ERROR_30] = "Receive error 30",
6878 	[OPA_LINKDOWN_REASON_EXCESSIVE_BUFFER_OVERRUN] =
6879 					"Excessive buffer overrun",
6880 	[OPA_LINKDOWN_REASON_UNKNOWN] = "Unknown",
6881 	[OPA_LINKDOWN_REASON_REBOOT] = "Reboot",
6882 	[OPA_LINKDOWN_REASON_NEIGHBOR_UNKNOWN] = "Neighbor unknown",
6883 	[OPA_LINKDOWN_REASON_FM_BOUNCE] = "FM bounce",
6884 	[OPA_LINKDOWN_REASON_SPEED_POLICY] = "Speed policy",
6885 	[OPA_LINKDOWN_REASON_WIDTH_POLICY] = "Width policy",
6886 	[OPA_LINKDOWN_REASON_DISCONNECTED] = "Disconnected",
6887 	[OPA_LINKDOWN_REASON_LOCAL_MEDIA_NOT_INSTALLED] =
6888 					"Local media not installed",
6889 	[OPA_LINKDOWN_REASON_NOT_INSTALLED] = "Not installed",
6890 	[OPA_LINKDOWN_REASON_CHASSIS_CONFIG] = "Chassis config",
6891 	[OPA_LINKDOWN_REASON_END_TO_END_NOT_INSTALLED] =
6892 					"End to end not installed",
6893 	[OPA_LINKDOWN_REASON_POWER_POLICY] = "Power policy",
6894 	[OPA_LINKDOWN_REASON_LINKSPEED_POLICY] = "Link speed policy",
6895 	[OPA_LINKDOWN_REASON_LINKWIDTH_POLICY] = "Link width policy",
6896 	[OPA_LINKDOWN_REASON_SWITCH_MGMT] = "Switch management",
6897 	[OPA_LINKDOWN_REASON_SMA_DISABLED] = "SMA disabled",
6898 	[OPA_LINKDOWN_REASON_TRANSIENT] = "Transient"
6899 };
6900 
6901 /* return the neighbor link down reason string */
6902 static const char *link_down_reason_str(u8 reason)
6903 {
6904 	const char *str = NULL;
6905 
6906 	if (reason < ARRAY_SIZE(link_down_reason_strs))
6907 		str = link_down_reason_strs[reason];
6908 	if (!str)
6909 		str = "(invalid)";
6910 
6911 	return str;
6912 }
6913 
6914 /*
6915  * Handle a link down interrupt from the 8051.
6916  *
6917  * This is a work-queue function outside of the interrupt.
6918  */
6919 void handle_link_down(struct work_struct *work)
6920 {
6921 	u8 lcl_reason, neigh_reason = 0;
6922 	u8 link_down_reason;
6923 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
6924 						  link_down_work);
6925 	int was_up;
6926 	static const char ldr_str[] = "Link down reason: ";
6927 
6928 	if ((ppd->host_link_state &
6929 	     (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) &&
6930 	     ppd->port_type == PORT_TYPE_FIXED)
6931 		ppd->offline_disabled_reason =
6932 			HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NOT_INSTALLED);
6933 
6934 	/* Go offline first, then deal with reading/writing through 8051 */
6935 	was_up = !!(ppd->host_link_state & HLS_UP);
6936 	set_link_state(ppd, HLS_DN_OFFLINE);
6937 
6938 	if (was_up) {
6939 		lcl_reason = 0;
6940 		/* link down reason is only valid if the link was up */
6941 		read_link_down_reason(ppd->dd, &link_down_reason);
6942 		switch (link_down_reason) {
6943 		case LDR_LINK_TRANSFER_ACTIVE_LOW:
6944 			/* the link went down, no idle message reason */
6945 			dd_dev_info(ppd->dd, "%sUnexpected link down\n",
6946 				    ldr_str);
6947 			break;
6948 		case LDR_RECEIVED_LINKDOWN_IDLE_MSG:
6949 			/*
6950 			 * The neighbor reason is only valid if an idle message
6951 			 * was received for it.
6952 			 */
6953 			read_planned_down_reason_code(ppd->dd, &neigh_reason);
6954 			dd_dev_info(ppd->dd,
6955 				    "%sNeighbor link down message %d, %s\n",
6956 				    ldr_str, neigh_reason,
6957 				    link_down_reason_str(neigh_reason));
6958 			break;
6959 		case LDR_RECEIVED_HOST_OFFLINE_REQ:
6960 			dd_dev_info(ppd->dd,
6961 				    "%sHost requested link to go offline\n",
6962 				    ldr_str);
6963 			break;
6964 		default:
6965 			dd_dev_info(ppd->dd, "%sUnknown reason 0x%x\n",
6966 				    ldr_str, link_down_reason);
6967 			break;
6968 		}
6969 
6970 		/*
6971 		 * If no reason, assume peer-initiated but missed
6972 		 * LinkGoingDown idle flits.
6973 		 */
6974 		if (neigh_reason == 0)
6975 			lcl_reason = OPA_LINKDOWN_REASON_NEIGHBOR_UNKNOWN;
6976 	} else {
6977 		/* went down while polling or going up */
6978 		lcl_reason = OPA_LINKDOWN_REASON_TRANSIENT;
6979 	}
6980 
6981 	set_link_down_reason(ppd, lcl_reason, neigh_reason, 0);
6982 
6983 	/* inform the SMA when the link transitions from up to down */
6984 	if (was_up && ppd->local_link_down_reason.sma == 0 &&
6985 	    ppd->neigh_link_down_reason.sma == 0) {
6986 		ppd->local_link_down_reason.sma =
6987 					ppd->local_link_down_reason.latest;
6988 		ppd->neigh_link_down_reason.sma =
6989 					ppd->neigh_link_down_reason.latest;
6990 	}
6991 
6992 	reset_neighbor_info(ppd);
6993 
6994 	/* disable the port */
6995 	clear_rcvctrl(ppd->dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
6996 
6997 	/*
6998 	 * If there is no cable attached, turn the DC off. Otherwise,
6999 	 * start the link bring up.
7000 	 */
7001 	if (ppd->port_type == PORT_TYPE_QSFP && !qsfp_mod_present(ppd)) {
7002 		dc_shutdown(ppd->dd);
7003 	} else {
7004 		tune_serdes(ppd);
7005 		start_link(ppd);
7006 	}
7007 }
7008 
7009 void handle_link_bounce(struct work_struct *work)
7010 {
7011 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
7012 							link_bounce_work);
7013 
7014 	/*
7015 	 * Only do something if the link is currently up.
7016 	 */
7017 	if (ppd->host_link_state & HLS_UP) {
7018 		set_link_state(ppd, HLS_DN_OFFLINE);
7019 		tune_serdes(ppd);
7020 		start_link(ppd);
7021 	} else {
7022 		dd_dev_info(ppd->dd, "%s: link not up (%s), nothing to do\n",
7023 			    __func__, link_state_name(ppd->host_link_state));
7024 	}
7025 }
7026 
7027 /*
7028  * Mask conversion: Capability exchange to Port LTP.  The capability
7029  * exchange has an implicit 16b CRC that is mandatory.
7030  */
7031 static int cap_to_port_ltp(int cap)
7032 {
7033 	int port_ltp = PORT_LTP_CRC_MODE_16; /* this mode is mandatory */
7034 
7035 	if (cap & CAP_CRC_14B)
7036 		port_ltp |= PORT_LTP_CRC_MODE_14;
7037 	if (cap & CAP_CRC_48B)
7038 		port_ltp |= PORT_LTP_CRC_MODE_48;
7039 	if (cap & CAP_CRC_12B_16B_PER_LANE)
7040 		port_ltp |= PORT_LTP_CRC_MODE_PER_LANE;
7041 
7042 	return port_ltp;
7043 }
7044 
7045 /*
7046  * Convert an OPA Port LTP mask to capability mask
7047  */
7048 int port_ltp_to_cap(int port_ltp)
7049 {
7050 	int cap_mask = 0;
7051 
7052 	if (port_ltp & PORT_LTP_CRC_MODE_14)
7053 		cap_mask |= CAP_CRC_14B;
7054 	if (port_ltp & PORT_LTP_CRC_MODE_48)
7055 		cap_mask |= CAP_CRC_48B;
7056 	if (port_ltp & PORT_LTP_CRC_MODE_PER_LANE)
7057 		cap_mask |= CAP_CRC_12B_16B_PER_LANE;
7058 
7059 	return cap_mask;
7060 }
7061 
7062 /*
7063  * Convert a single DC LCB CRC mode to an OPA Port LTP mask.
7064  */
7065 static int lcb_to_port_ltp(int lcb_crc)
7066 {
7067 	int port_ltp = 0;
7068 
7069 	if (lcb_crc == LCB_CRC_12B_16B_PER_LANE)
7070 		port_ltp = PORT_LTP_CRC_MODE_PER_LANE;
7071 	else if (lcb_crc == LCB_CRC_48B)
7072 		port_ltp = PORT_LTP_CRC_MODE_48;
7073 	else if (lcb_crc == LCB_CRC_14B)
7074 		port_ltp = PORT_LTP_CRC_MODE_14;
7075 	else
7076 		port_ltp = PORT_LTP_CRC_MODE_16;
7077 
7078 	return port_ltp;
7079 }
7080 
7081 /*
7082  * Our neighbor has indicated that we are allowed to act as a fabric
7083  * manager, so place the full management partition key in the second
7084  * (0-based) pkey array position (see OPAv1, section 20.2.2.6.8). Note
7085  * that we should already have the limited management partition key in
7086  * array element 1, and also that the port is not yet up when
7087  * add_full_mgmt_pkey() is invoked.
7088  */
7089 static void add_full_mgmt_pkey(struct hfi1_pportdata *ppd)
7090 {
7091 	struct hfi1_devdata *dd = ppd->dd;
7092 
7093 	/* Sanity check - ppd->pkeys[2] should be 0, or already initalized */
7094 	if (!((ppd->pkeys[2] == 0) || (ppd->pkeys[2] == FULL_MGMT_P_KEY)))
7095 		dd_dev_warn(dd, "%s pkey[2] already set to 0x%x, resetting it to 0x%x\n",
7096 			    __func__, ppd->pkeys[2], FULL_MGMT_P_KEY);
7097 	ppd->pkeys[2] = FULL_MGMT_P_KEY;
7098 	(void)hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_PKEYS, 0);
7099 	hfi1_event_pkey_change(ppd->dd, ppd->port);
7100 }
7101 
7102 static void clear_full_mgmt_pkey(struct hfi1_pportdata *ppd)
7103 {
7104 	if (ppd->pkeys[2] != 0) {
7105 		ppd->pkeys[2] = 0;
7106 		(void)hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_PKEYS, 0);
7107 		hfi1_event_pkey_change(ppd->dd, ppd->port);
7108 	}
7109 }
7110 
7111 /*
7112  * Convert the given link width to the OPA link width bitmask.
7113  */
7114 static u16 link_width_to_bits(struct hfi1_devdata *dd, u16 width)
7115 {
7116 	switch (width) {
7117 	case 0:
7118 		/*
7119 		 * Simulator and quick linkup do not set the width.
7120 		 * Just set it to 4x without complaint.
7121 		 */
7122 		if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR || quick_linkup)
7123 			return OPA_LINK_WIDTH_4X;
7124 		return 0; /* no lanes up */
7125 	case 1: return OPA_LINK_WIDTH_1X;
7126 	case 2: return OPA_LINK_WIDTH_2X;
7127 	case 3: return OPA_LINK_WIDTH_3X;
7128 	default:
7129 		dd_dev_info(dd, "%s: invalid width %d, using 4\n",
7130 			    __func__, width);
7131 		/* fall through */
7132 	case 4: return OPA_LINK_WIDTH_4X;
7133 	}
7134 }
7135 
7136 /*
7137  * Do a population count on the bottom nibble.
7138  */
7139 static const u8 bit_counts[16] = {
7140 	0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4
7141 };
7142 
7143 static inline u8 nibble_to_count(u8 nibble)
7144 {
7145 	return bit_counts[nibble & 0xf];
7146 }
7147 
7148 /*
7149  * Read the active lane information from the 8051 registers and return
7150  * their widths.
7151  *
7152  * Active lane information is found in these 8051 registers:
7153  *	enable_lane_tx
7154  *	enable_lane_rx
7155  */
7156 static void get_link_widths(struct hfi1_devdata *dd, u16 *tx_width,
7157 			    u16 *rx_width)
7158 {
7159 	u16 tx, rx;
7160 	u8 enable_lane_rx;
7161 	u8 enable_lane_tx;
7162 	u8 tx_polarity_inversion;
7163 	u8 rx_polarity_inversion;
7164 	u8 max_rate;
7165 
7166 	/* read the active lanes */
7167 	read_tx_settings(dd, &enable_lane_tx, &tx_polarity_inversion,
7168 			 &rx_polarity_inversion, &max_rate);
7169 	read_local_lni(dd, &enable_lane_rx);
7170 
7171 	/* convert to counts */
7172 	tx = nibble_to_count(enable_lane_tx);
7173 	rx = nibble_to_count(enable_lane_rx);
7174 
7175 	/*
7176 	 * Set link_speed_active here, overriding what was set in
7177 	 * handle_verify_cap().  The ASIC 8051 firmware does not correctly
7178 	 * set the max_rate field in handle_verify_cap until v0.19.
7179 	 */
7180 	if ((dd->icode == ICODE_RTL_SILICON) &&
7181 	    (dd->dc8051_ver < dc8051_ver(0, 19))) {
7182 		/* max_rate: 0 = 12.5G, 1 = 25G */
7183 		switch (max_rate) {
7184 		case 0:
7185 			dd->pport[0].link_speed_active = OPA_LINK_SPEED_12_5G;
7186 			break;
7187 		default:
7188 			dd_dev_err(dd,
7189 				   "%s: unexpected max rate %d, using 25Gb\n",
7190 				   __func__, (int)max_rate);
7191 			/* fall through */
7192 		case 1:
7193 			dd->pport[0].link_speed_active = OPA_LINK_SPEED_25G;
7194 			break;
7195 		}
7196 	}
7197 
7198 	dd_dev_info(dd,
7199 		    "Fabric active lanes (width): tx 0x%x (%d), rx 0x%x (%d)\n",
7200 		    enable_lane_tx, tx, enable_lane_rx, rx);
7201 	*tx_width = link_width_to_bits(dd, tx);
7202 	*rx_width = link_width_to_bits(dd, rx);
7203 }
7204 
7205 /*
7206  * Read verify_cap_local_fm_link_width[1] to obtain the link widths.
7207  * Valid after the end of VerifyCap and during LinkUp.  Does not change
7208  * after link up.  I.e. look elsewhere for downgrade information.
7209  *
7210  * Bits are:
7211  *	+ bits [7:4] contain the number of active transmitters
7212  *	+ bits [3:0] contain the number of active receivers
7213  * These are numbers 1 through 4 and can be different values if the
7214  * link is asymmetric.
7215  *
7216  * verify_cap_local_fm_link_width[0] retains its original value.
7217  */
7218 static void get_linkup_widths(struct hfi1_devdata *dd, u16 *tx_width,
7219 			      u16 *rx_width)
7220 {
7221 	u16 widths, tx, rx;
7222 	u8 misc_bits, local_flags;
7223 	u16 active_tx, active_rx;
7224 
7225 	read_vc_local_link_width(dd, &misc_bits, &local_flags, &widths);
7226 	tx = widths >> 12;
7227 	rx = (widths >> 8) & 0xf;
7228 
7229 	*tx_width = link_width_to_bits(dd, tx);
7230 	*rx_width = link_width_to_bits(dd, rx);
7231 
7232 	/* print the active widths */
7233 	get_link_widths(dd, &active_tx, &active_rx);
7234 }
7235 
7236 /*
7237  * Set ppd->link_width_active and ppd->link_width_downgrade_active using
7238  * hardware information when the link first comes up.
7239  *
7240  * The link width is not available until after VerifyCap.AllFramesReceived
7241  * (the trigger for handle_verify_cap), so this is outside that routine
7242  * and should be called when the 8051 signals linkup.
7243  */
7244 void get_linkup_link_widths(struct hfi1_pportdata *ppd)
7245 {
7246 	u16 tx_width, rx_width;
7247 
7248 	/* get end-of-LNI link widths */
7249 	get_linkup_widths(ppd->dd, &tx_width, &rx_width);
7250 
7251 	/* use tx_width as the link is supposed to be symmetric on link up */
7252 	ppd->link_width_active = tx_width;
7253 	/* link width downgrade active (LWD.A) starts out matching LW.A */
7254 	ppd->link_width_downgrade_tx_active = ppd->link_width_active;
7255 	ppd->link_width_downgrade_rx_active = ppd->link_width_active;
7256 	/* per OPA spec, on link up LWD.E resets to LWD.S */
7257 	ppd->link_width_downgrade_enabled = ppd->link_width_downgrade_supported;
7258 	/* cache the active egress rate (units {10^6 bits/sec]) */
7259 	ppd->current_egress_rate = active_egress_rate(ppd);
7260 }
7261 
7262 /*
7263  * Handle a verify capabilities interrupt from the 8051.
7264  *
7265  * This is a work-queue function outside of the interrupt.
7266  */
7267 void handle_verify_cap(struct work_struct *work)
7268 {
7269 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
7270 								link_vc_work);
7271 	struct hfi1_devdata *dd = ppd->dd;
7272 	u64 reg;
7273 	u8 power_management;
7274 	u8 continious;
7275 	u8 vcu;
7276 	u8 vau;
7277 	u8 z;
7278 	u16 vl15buf;
7279 	u16 link_widths;
7280 	u16 crc_mask;
7281 	u16 crc_val;
7282 	u16 device_id;
7283 	u16 active_tx, active_rx;
7284 	u8 partner_supported_crc;
7285 	u8 remote_tx_rate;
7286 	u8 device_rev;
7287 
7288 	set_link_state(ppd, HLS_VERIFY_CAP);
7289 
7290 	lcb_shutdown(dd, 0);
7291 	adjust_lcb_for_fpga_serdes(dd);
7292 
7293 	/*
7294 	 * These are now valid:
7295 	 *	remote VerifyCap fields in the general LNI config
7296 	 *	CSR DC8051_STS_REMOTE_GUID
7297 	 *	CSR DC8051_STS_REMOTE_NODE_TYPE
7298 	 *	CSR DC8051_STS_REMOTE_FM_SECURITY
7299 	 *	CSR DC8051_STS_REMOTE_PORT_NO
7300 	 */
7301 
7302 	read_vc_remote_phy(dd, &power_management, &continious);
7303 	read_vc_remote_fabric(dd, &vau, &z, &vcu, &vl15buf,
7304 			      &partner_supported_crc);
7305 	read_vc_remote_link_width(dd, &remote_tx_rate, &link_widths);
7306 	read_remote_device_id(dd, &device_id, &device_rev);
7307 	/*
7308 	 * And the 'MgmtAllowed' information, which is exchanged during
7309 	 * LNI, is also be available at this point.
7310 	 */
7311 	read_mgmt_allowed(dd, &ppd->mgmt_allowed);
7312 	/* print the active widths */
7313 	get_link_widths(dd, &active_tx, &active_rx);
7314 	dd_dev_info(dd,
7315 		    "Peer PHY: power management 0x%x, continuous updates 0x%x\n",
7316 		    (int)power_management, (int)continious);
7317 	dd_dev_info(dd,
7318 		    "Peer Fabric: vAU %d, Z %d, vCU %d, vl15 credits 0x%x, CRC sizes 0x%x\n",
7319 		    (int)vau, (int)z, (int)vcu, (int)vl15buf,
7320 		    (int)partner_supported_crc);
7321 	dd_dev_info(dd, "Peer Link Width: tx rate 0x%x, widths 0x%x\n",
7322 		    (u32)remote_tx_rate, (u32)link_widths);
7323 	dd_dev_info(dd, "Peer Device ID: 0x%04x, Revision 0x%02x\n",
7324 		    (u32)device_id, (u32)device_rev);
7325 	/*
7326 	 * The peer vAU value just read is the peer receiver value.  HFI does
7327 	 * not support a transmit vAU of 0 (AU == 8).  We advertised that
7328 	 * with Z=1 in the fabric capabilities sent to the peer.  The peer
7329 	 * will see our Z=1, and, if it advertised a vAU of 0, will move its
7330 	 * receive to vAU of 1 (AU == 16).  Do the same here.  We do not care
7331 	 * about the peer Z value - our sent vAU is 3 (hardwired) and is not
7332 	 * subject to the Z value exception.
7333 	 */
7334 	if (vau == 0)
7335 		vau = 1;
7336 	set_up_vl15(dd, vau, vl15buf);
7337 
7338 	/* set up the LCB CRC mode */
7339 	crc_mask = ppd->port_crc_mode_enabled & partner_supported_crc;
7340 
7341 	/* order is important: use the lowest bit in common */
7342 	if (crc_mask & CAP_CRC_14B)
7343 		crc_val = LCB_CRC_14B;
7344 	else if (crc_mask & CAP_CRC_48B)
7345 		crc_val = LCB_CRC_48B;
7346 	else if (crc_mask & CAP_CRC_12B_16B_PER_LANE)
7347 		crc_val = LCB_CRC_12B_16B_PER_LANE;
7348 	else
7349 		crc_val = LCB_CRC_16B;
7350 
7351 	dd_dev_info(dd, "Final LCB CRC mode: %d\n", (int)crc_val);
7352 	write_csr(dd, DC_LCB_CFG_CRC_MODE,
7353 		  (u64)crc_val << DC_LCB_CFG_CRC_MODE_TX_VAL_SHIFT);
7354 
7355 	/* set (14b only) or clear sideband credit */
7356 	reg = read_csr(dd, SEND_CM_CTRL);
7357 	if (crc_val == LCB_CRC_14B && crc_14b_sideband) {
7358 		write_csr(dd, SEND_CM_CTRL,
7359 			  reg | SEND_CM_CTRL_FORCE_CREDIT_MODE_SMASK);
7360 	} else {
7361 		write_csr(dd, SEND_CM_CTRL,
7362 			  reg & ~SEND_CM_CTRL_FORCE_CREDIT_MODE_SMASK);
7363 	}
7364 
7365 	ppd->link_speed_active = 0;	/* invalid value */
7366 	if (dd->dc8051_ver < dc8051_ver(0, 20)) {
7367 		/* remote_tx_rate: 0 = 12.5G, 1 = 25G */
7368 		switch (remote_tx_rate) {
7369 		case 0:
7370 			ppd->link_speed_active = OPA_LINK_SPEED_12_5G;
7371 			break;
7372 		case 1:
7373 			ppd->link_speed_active = OPA_LINK_SPEED_25G;
7374 			break;
7375 		}
7376 	} else {
7377 		/* actual rate is highest bit of the ANDed rates */
7378 		u8 rate = remote_tx_rate & ppd->local_tx_rate;
7379 
7380 		if (rate & 2)
7381 			ppd->link_speed_active = OPA_LINK_SPEED_25G;
7382 		else if (rate & 1)
7383 			ppd->link_speed_active = OPA_LINK_SPEED_12_5G;
7384 	}
7385 	if (ppd->link_speed_active == 0) {
7386 		dd_dev_err(dd, "%s: unexpected remote tx rate %d, using 25Gb\n",
7387 			   __func__, (int)remote_tx_rate);
7388 		ppd->link_speed_active = OPA_LINK_SPEED_25G;
7389 	}
7390 
7391 	/*
7392 	 * Cache the values of the supported, enabled, and active
7393 	 * LTP CRC modes to return in 'portinfo' queries. But the bit
7394 	 * flags that are returned in the portinfo query differ from
7395 	 * what's in the link_crc_mask, crc_sizes, and crc_val
7396 	 * variables. Convert these here.
7397 	 */
7398 	ppd->port_ltp_crc_mode = cap_to_port_ltp(link_crc_mask) << 8;
7399 		/* supported crc modes */
7400 	ppd->port_ltp_crc_mode |=
7401 		cap_to_port_ltp(ppd->port_crc_mode_enabled) << 4;
7402 		/* enabled crc modes */
7403 	ppd->port_ltp_crc_mode |= lcb_to_port_ltp(crc_val);
7404 		/* active crc mode */
7405 
7406 	/* set up the remote credit return table */
7407 	assign_remote_cm_au_table(dd, vcu);
7408 
7409 	/*
7410 	 * The LCB is reset on entry to handle_verify_cap(), so this must
7411 	 * be applied on every link up.
7412 	 *
7413 	 * Adjust LCB error kill enable to kill the link if
7414 	 * these RBUF errors are seen:
7415 	 *	REPLAY_BUF_MBE_SMASK
7416 	 *	FLIT_INPUT_BUF_MBE_SMASK
7417 	 */
7418 	if (is_ax(dd)) {			/* fixed in B0 */
7419 		reg = read_csr(dd, DC_LCB_CFG_LINK_KILL_EN);
7420 		reg |= DC_LCB_CFG_LINK_KILL_EN_REPLAY_BUF_MBE_SMASK
7421 			| DC_LCB_CFG_LINK_KILL_EN_FLIT_INPUT_BUF_MBE_SMASK;
7422 		write_csr(dd, DC_LCB_CFG_LINK_KILL_EN, reg);
7423 	}
7424 
7425 	/* pull LCB fifos out of reset - all fifo clocks must be stable */
7426 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0);
7427 
7428 	/* give 8051 access to the LCB CSRs */
7429 	write_csr(dd, DC_LCB_ERR_EN, 0); /* mask LCB errors */
7430 	set_8051_lcb_access(dd);
7431 
7432 	ppd->neighbor_guid =
7433 		read_csr(dd, DC_DC8051_STS_REMOTE_GUID);
7434 	ppd->neighbor_port_number = read_csr(dd, DC_DC8051_STS_REMOTE_PORT_NO) &
7435 					DC_DC8051_STS_REMOTE_PORT_NO_VAL_SMASK;
7436 	ppd->neighbor_type =
7437 		read_csr(dd, DC_DC8051_STS_REMOTE_NODE_TYPE) &
7438 		DC_DC8051_STS_REMOTE_NODE_TYPE_VAL_MASK;
7439 	ppd->neighbor_fm_security =
7440 		read_csr(dd, DC_DC8051_STS_REMOTE_FM_SECURITY) &
7441 		DC_DC8051_STS_LOCAL_FM_SECURITY_DISABLED_MASK;
7442 	dd_dev_info(dd,
7443 		    "Neighbor Guid: %llx Neighbor type %d MgmtAllowed %d FM security bypass %d\n",
7444 		    ppd->neighbor_guid, ppd->neighbor_type,
7445 		    ppd->mgmt_allowed, ppd->neighbor_fm_security);
7446 	if (ppd->mgmt_allowed)
7447 		add_full_mgmt_pkey(ppd);
7448 
7449 	/* tell the 8051 to go to LinkUp */
7450 	set_link_state(ppd, HLS_GOING_UP);
7451 }
7452 
7453 /*
7454  * Apply the link width downgrade enabled policy against the current active
7455  * link widths.
7456  *
7457  * Called when the enabled policy changes or the active link widths change.
7458  */
7459 void apply_link_downgrade_policy(struct hfi1_pportdata *ppd, int refresh_widths)
7460 {
7461 	int do_bounce = 0;
7462 	int tries;
7463 	u16 lwde;
7464 	u16 tx, rx;
7465 
7466 	/* use the hls lock to avoid a race with actual link up */
7467 	tries = 0;
7468 retry:
7469 	mutex_lock(&ppd->hls_lock);
7470 	/* only apply if the link is up */
7471 	if (ppd->host_link_state & HLS_DOWN) {
7472 		/* still going up..wait and retry */
7473 		if (ppd->host_link_state & HLS_GOING_UP) {
7474 			if (++tries < 1000) {
7475 				mutex_unlock(&ppd->hls_lock);
7476 				usleep_range(100, 120); /* arbitrary */
7477 				goto retry;
7478 			}
7479 			dd_dev_err(ppd->dd,
7480 				   "%s: giving up waiting for link state change\n",
7481 				   __func__);
7482 		}
7483 		goto done;
7484 	}
7485 
7486 	lwde = ppd->link_width_downgrade_enabled;
7487 
7488 	if (refresh_widths) {
7489 		get_link_widths(ppd->dd, &tx, &rx);
7490 		ppd->link_width_downgrade_tx_active = tx;
7491 		ppd->link_width_downgrade_rx_active = rx;
7492 	}
7493 
7494 	if (ppd->link_width_downgrade_tx_active == 0 ||
7495 	    ppd->link_width_downgrade_rx_active == 0) {
7496 		/* the 8051 reported a dead link as a downgrade */
7497 		dd_dev_err(ppd->dd, "Link downgrade is really a link down, ignoring\n");
7498 	} else if (lwde == 0) {
7499 		/* downgrade is disabled */
7500 
7501 		/* bounce if not at starting active width */
7502 		if ((ppd->link_width_active !=
7503 		     ppd->link_width_downgrade_tx_active) ||
7504 		    (ppd->link_width_active !=
7505 		     ppd->link_width_downgrade_rx_active)) {
7506 			dd_dev_err(ppd->dd,
7507 				   "Link downgrade is disabled and link has downgraded, downing link\n");
7508 			dd_dev_err(ppd->dd,
7509 				   "  original 0x%x, tx active 0x%x, rx active 0x%x\n",
7510 				   ppd->link_width_active,
7511 				   ppd->link_width_downgrade_tx_active,
7512 				   ppd->link_width_downgrade_rx_active);
7513 			do_bounce = 1;
7514 		}
7515 	} else if ((lwde & ppd->link_width_downgrade_tx_active) == 0 ||
7516 		   (lwde & ppd->link_width_downgrade_rx_active) == 0) {
7517 		/* Tx or Rx is outside the enabled policy */
7518 		dd_dev_err(ppd->dd,
7519 			   "Link is outside of downgrade allowed, downing link\n");
7520 		dd_dev_err(ppd->dd,
7521 			   "  enabled 0x%x, tx active 0x%x, rx active 0x%x\n",
7522 			   lwde, ppd->link_width_downgrade_tx_active,
7523 			   ppd->link_width_downgrade_rx_active);
7524 		do_bounce = 1;
7525 	}
7526 
7527 done:
7528 	mutex_unlock(&ppd->hls_lock);
7529 
7530 	if (do_bounce) {
7531 		set_link_down_reason(ppd, OPA_LINKDOWN_REASON_WIDTH_POLICY, 0,
7532 				     OPA_LINKDOWN_REASON_WIDTH_POLICY);
7533 		set_link_state(ppd, HLS_DN_OFFLINE);
7534 		tune_serdes(ppd);
7535 		start_link(ppd);
7536 	}
7537 }
7538 
7539 /*
7540  * Handle a link downgrade interrupt from the 8051.
7541  *
7542  * This is a work-queue function outside of the interrupt.
7543  */
7544 void handle_link_downgrade(struct work_struct *work)
7545 {
7546 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
7547 							link_downgrade_work);
7548 
7549 	dd_dev_info(ppd->dd, "8051: Link width downgrade\n");
7550 	apply_link_downgrade_policy(ppd, 1);
7551 }
7552 
7553 static char *dcc_err_string(char *buf, int buf_len, u64 flags)
7554 {
7555 	return flag_string(buf, buf_len, flags, dcc_err_flags,
7556 		ARRAY_SIZE(dcc_err_flags));
7557 }
7558 
7559 static char *lcb_err_string(char *buf, int buf_len, u64 flags)
7560 {
7561 	return flag_string(buf, buf_len, flags, lcb_err_flags,
7562 		ARRAY_SIZE(lcb_err_flags));
7563 }
7564 
7565 static char *dc8051_err_string(char *buf, int buf_len, u64 flags)
7566 {
7567 	return flag_string(buf, buf_len, flags, dc8051_err_flags,
7568 		ARRAY_SIZE(dc8051_err_flags));
7569 }
7570 
7571 static char *dc8051_info_err_string(char *buf, int buf_len, u64 flags)
7572 {
7573 	return flag_string(buf, buf_len, flags, dc8051_info_err_flags,
7574 		ARRAY_SIZE(dc8051_info_err_flags));
7575 }
7576 
7577 static char *dc8051_info_host_msg_string(char *buf, int buf_len, u64 flags)
7578 {
7579 	return flag_string(buf, buf_len, flags, dc8051_info_host_msg_flags,
7580 		ARRAY_SIZE(dc8051_info_host_msg_flags));
7581 }
7582 
7583 static void handle_8051_interrupt(struct hfi1_devdata *dd, u32 unused, u64 reg)
7584 {
7585 	struct hfi1_pportdata *ppd = dd->pport;
7586 	u64 info, err, host_msg;
7587 	int queue_link_down = 0;
7588 	char buf[96];
7589 
7590 	/* look at the flags */
7591 	if (reg & DC_DC8051_ERR_FLG_SET_BY_8051_SMASK) {
7592 		/* 8051 information set by firmware */
7593 		/* read DC8051_DBG_ERR_INFO_SET_BY_8051 for details */
7594 		info = read_csr(dd, DC_DC8051_DBG_ERR_INFO_SET_BY_8051);
7595 		err = (info >> DC_DC8051_DBG_ERR_INFO_SET_BY_8051_ERROR_SHIFT)
7596 			& DC_DC8051_DBG_ERR_INFO_SET_BY_8051_ERROR_MASK;
7597 		host_msg = (info >>
7598 			DC_DC8051_DBG_ERR_INFO_SET_BY_8051_HOST_MSG_SHIFT)
7599 			& DC_DC8051_DBG_ERR_INFO_SET_BY_8051_HOST_MSG_MASK;
7600 
7601 		/*
7602 		 * Handle error flags.
7603 		 */
7604 		if (err & FAILED_LNI) {
7605 			/*
7606 			 * LNI error indications are cleared by the 8051
7607 			 * only when starting polling.  Only pay attention
7608 			 * to them when in the states that occur during
7609 			 * LNI.
7610 			 */
7611 			if (ppd->host_link_state
7612 			    & (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) {
7613 				queue_link_down = 1;
7614 				dd_dev_info(dd, "Link error: %s\n",
7615 					    dc8051_info_err_string(buf,
7616 								   sizeof(buf),
7617 								   err &
7618 								   FAILED_LNI));
7619 			}
7620 			err &= ~(u64)FAILED_LNI;
7621 		}
7622 		/* unknown frames can happen durning LNI, just count */
7623 		if (err & UNKNOWN_FRAME) {
7624 			ppd->unknown_frame_count++;
7625 			err &= ~(u64)UNKNOWN_FRAME;
7626 		}
7627 		if (err) {
7628 			/* report remaining errors, but do not do anything */
7629 			dd_dev_err(dd, "8051 info error: %s\n",
7630 				   dc8051_info_err_string(buf, sizeof(buf),
7631 							  err));
7632 		}
7633 
7634 		/*
7635 		 * Handle host message flags.
7636 		 */
7637 		if (host_msg & HOST_REQ_DONE) {
7638 			/*
7639 			 * Presently, the driver does a busy wait for
7640 			 * host requests to complete.  This is only an
7641 			 * informational message.
7642 			 * NOTE: The 8051 clears the host message
7643 			 * information *on the next 8051 command*.
7644 			 * Therefore, when linkup is achieved,
7645 			 * this flag will still be set.
7646 			 */
7647 			host_msg &= ~(u64)HOST_REQ_DONE;
7648 		}
7649 		if (host_msg & BC_SMA_MSG) {
7650 			queue_work(ppd->hfi1_wq, &ppd->sma_message_work);
7651 			host_msg &= ~(u64)BC_SMA_MSG;
7652 		}
7653 		if (host_msg & LINKUP_ACHIEVED) {
7654 			dd_dev_info(dd, "8051: Link up\n");
7655 			queue_work(ppd->hfi1_wq, &ppd->link_up_work);
7656 			host_msg &= ~(u64)LINKUP_ACHIEVED;
7657 		}
7658 		if (host_msg & EXT_DEVICE_CFG_REQ) {
7659 			handle_8051_request(ppd);
7660 			host_msg &= ~(u64)EXT_DEVICE_CFG_REQ;
7661 		}
7662 		if (host_msg & VERIFY_CAP_FRAME) {
7663 			queue_work(ppd->hfi1_wq, &ppd->link_vc_work);
7664 			host_msg &= ~(u64)VERIFY_CAP_FRAME;
7665 		}
7666 		if (host_msg & LINK_GOING_DOWN) {
7667 			const char *extra = "";
7668 			/* no downgrade action needed if going down */
7669 			if (host_msg & LINK_WIDTH_DOWNGRADED) {
7670 				host_msg &= ~(u64)LINK_WIDTH_DOWNGRADED;
7671 				extra = " (ignoring downgrade)";
7672 			}
7673 			dd_dev_info(dd, "8051: Link down%s\n", extra);
7674 			queue_link_down = 1;
7675 			host_msg &= ~(u64)LINK_GOING_DOWN;
7676 		}
7677 		if (host_msg & LINK_WIDTH_DOWNGRADED) {
7678 			queue_work(ppd->hfi1_wq, &ppd->link_downgrade_work);
7679 			host_msg &= ~(u64)LINK_WIDTH_DOWNGRADED;
7680 		}
7681 		if (host_msg) {
7682 			/* report remaining messages, but do not do anything */
7683 			dd_dev_info(dd, "8051 info host message: %s\n",
7684 				    dc8051_info_host_msg_string(buf,
7685 								sizeof(buf),
7686 								host_msg));
7687 		}
7688 
7689 		reg &= ~DC_DC8051_ERR_FLG_SET_BY_8051_SMASK;
7690 	}
7691 	if (reg & DC_DC8051_ERR_FLG_LOST_8051_HEART_BEAT_SMASK) {
7692 		/*
7693 		 * Lost the 8051 heartbeat.  If this happens, we
7694 		 * receive constant interrupts about it.  Disable
7695 		 * the interrupt after the first.
7696 		 */
7697 		dd_dev_err(dd, "Lost 8051 heartbeat\n");
7698 		write_csr(dd, DC_DC8051_ERR_EN,
7699 			  read_csr(dd, DC_DC8051_ERR_EN) &
7700 			  ~DC_DC8051_ERR_EN_LOST_8051_HEART_BEAT_SMASK);
7701 
7702 		reg &= ~DC_DC8051_ERR_FLG_LOST_8051_HEART_BEAT_SMASK;
7703 	}
7704 	if (reg) {
7705 		/* report the error, but do not do anything */
7706 		dd_dev_err(dd, "8051 error: %s\n",
7707 			   dc8051_err_string(buf, sizeof(buf), reg));
7708 	}
7709 
7710 	if (queue_link_down) {
7711 		/*
7712 		 * if the link is already going down or disabled, do not
7713 		 * queue another
7714 		 */
7715 		if ((ppd->host_link_state &
7716 		    (HLS_GOING_OFFLINE | HLS_LINK_COOLDOWN)) ||
7717 		    ppd->link_enabled == 0) {
7718 			dd_dev_info(dd, "%s: not queuing link down\n",
7719 				    __func__);
7720 		} else {
7721 			queue_work(ppd->hfi1_wq, &ppd->link_down_work);
7722 		}
7723 	}
7724 }
7725 
7726 static const char * const fm_config_txt[] = {
7727 [0] =
7728 	"BadHeadDist: Distance violation between two head flits",
7729 [1] =
7730 	"BadTailDist: Distance violation between two tail flits",
7731 [2] =
7732 	"BadCtrlDist: Distance violation between two credit control flits",
7733 [3] =
7734 	"BadCrdAck: Credits return for unsupported VL",
7735 [4] =
7736 	"UnsupportedVLMarker: Received VL Marker",
7737 [5] =
7738 	"BadPreempt: Exceeded the preemption nesting level",
7739 [6] =
7740 	"BadControlFlit: Received unsupported control flit",
7741 /* no 7 */
7742 [8] =
7743 	"UnsupportedVLMarker: Received VL Marker for unconfigured or disabled VL",
7744 };
7745 
7746 static const char * const port_rcv_txt[] = {
7747 [1] =
7748 	"BadPktLen: Illegal PktLen",
7749 [2] =
7750 	"PktLenTooLong: Packet longer than PktLen",
7751 [3] =
7752 	"PktLenTooShort: Packet shorter than PktLen",
7753 [4] =
7754 	"BadSLID: Illegal SLID (0, using multicast as SLID, does not include security validation of SLID)",
7755 [5] =
7756 	"BadDLID: Illegal DLID (0, doesn't match HFI)",
7757 [6] =
7758 	"BadL2: Illegal L2 opcode",
7759 [7] =
7760 	"BadSC: Unsupported SC",
7761 [9] =
7762 	"BadRC: Illegal RC",
7763 [11] =
7764 	"PreemptError: Preempting with same VL",
7765 [12] =
7766 	"PreemptVL15: Preempting a VL15 packet",
7767 };
7768 
7769 #define OPA_LDR_FMCONFIG_OFFSET 16
7770 #define OPA_LDR_PORTRCV_OFFSET 0
7771 static void handle_dcc_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
7772 {
7773 	u64 info, hdr0, hdr1;
7774 	const char *extra;
7775 	char buf[96];
7776 	struct hfi1_pportdata *ppd = dd->pport;
7777 	u8 lcl_reason = 0;
7778 	int do_bounce = 0;
7779 
7780 	if (reg & DCC_ERR_FLG_UNCORRECTABLE_ERR_SMASK) {
7781 		if (!(dd->err_info_uncorrectable & OPA_EI_STATUS_SMASK)) {
7782 			info = read_csr(dd, DCC_ERR_INFO_UNCORRECTABLE);
7783 			dd->err_info_uncorrectable = info & OPA_EI_CODE_SMASK;
7784 			/* set status bit */
7785 			dd->err_info_uncorrectable |= OPA_EI_STATUS_SMASK;
7786 		}
7787 		reg &= ~DCC_ERR_FLG_UNCORRECTABLE_ERR_SMASK;
7788 	}
7789 
7790 	if (reg & DCC_ERR_FLG_LINK_ERR_SMASK) {
7791 		struct hfi1_pportdata *ppd = dd->pport;
7792 		/* this counter saturates at (2^32) - 1 */
7793 		if (ppd->link_downed < (u32)UINT_MAX)
7794 			ppd->link_downed++;
7795 		reg &= ~DCC_ERR_FLG_LINK_ERR_SMASK;
7796 	}
7797 
7798 	if (reg & DCC_ERR_FLG_FMCONFIG_ERR_SMASK) {
7799 		u8 reason_valid = 1;
7800 
7801 		info = read_csr(dd, DCC_ERR_INFO_FMCONFIG);
7802 		if (!(dd->err_info_fmconfig & OPA_EI_STATUS_SMASK)) {
7803 			dd->err_info_fmconfig = info & OPA_EI_CODE_SMASK;
7804 			/* set status bit */
7805 			dd->err_info_fmconfig |= OPA_EI_STATUS_SMASK;
7806 		}
7807 		switch (info) {
7808 		case 0:
7809 		case 1:
7810 		case 2:
7811 		case 3:
7812 		case 4:
7813 		case 5:
7814 		case 6:
7815 			extra = fm_config_txt[info];
7816 			break;
7817 		case 8:
7818 			extra = fm_config_txt[info];
7819 			if (ppd->port_error_action &
7820 			    OPA_PI_MASK_FM_CFG_UNSUPPORTED_VL_MARKER) {
7821 				do_bounce = 1;
7822 				/*
7823 				 * lcl_reason cannot be derived from info
7824 				 * for this error
7825 				 */
7826 				lcl_reason =
7827 				  OPA_LINKDOWN_REASON_UNSUPPORTED_VL_MARKER;
7828 			}
7829 			break;
7830 		default:
7831 			reason_valid = 0;
7832 			snprintf(buf, sizeof(buf), "reserved%lld", info);
7833 			extra = buf;
7834 			break;
7835 		}
7836 
7837 		if (reason_valid && !do_bounce) {
7838 			do_bounce = ppd->port_error_action &
7839 					(1 << (OPA_LDR_FMCONFIG_OFFSET + info));
7840 			lcl_reason = info + OPA_LINKDOWN_REASON_BAD_HEAD_DIST;
7841 		}
7842 
7843 		/* just report this */
7844 		dd_dev_info(dd, "DCC Error: fmconfig error: %s\n", extra);
7845 		reg &= ~DCC_ERR_FLG_FMCONFIG_ERR_SMASK;
7846 	}
7847 
7848 	if (reg & DCC_ERR_FLG_RCVPORT_ERR_SMASK) {
7849 		u8 reason_valid = 1;
7850 
7851 		info = read_csr(dd, DCC_ERR_INFO_PORTRCV);
7852 		hdr0 = read_csr(dd, DCC_ERR_INFO_PORTRCV_HDR0);
7853 		hdr1 = read_csr(dd, DCC_ERR_INFO_PORTRCV_HDR1);
7854 		if (!(dd->err_info_rcvport.status_and_code &
7855 		      OPA_EI_STATUS_SMASK)) {
7856 			dd->err_info_rcvport.status_and_code =
7857 				info & OPA_EI_CODE_SMASK;
7858 			/* set status bit */
7859 			dd->err_info_rcvport.status_and_code |=
7860 				OPA_EI_STATUS_SMASK;
7861 			/*
7862 			 * save first 2 flits in the packet that caused
7863 			 * the error
7864 			 */
7865 			dd->err_info_rcvport.packet_flit1 = hdr0;
7866 			dd->err_info_rcvport.packet_flit2 = hdr1;
7867 		}
7868 		switch (info) {
7869 		case 1:
7870 		case 2:
7871 		case 3:
7872 		case 4:
7873 		case 5:
7874 		case 6:
7875 		case 7:
7876 		case 9:
7877 		case 11:
7878 		case 12:
7879 			extra = port_rcv_txt[info];
7880 			break;
7881 		default:
7882 			reason_valid = 0;
7883 			snprintf(buf, sizeof(buf), "reserved%lld", info);
7884 			extra = buf;
7885 			break;
7886 		}
7887 
7888 		if (reason_valid && !do_bounce) {
7889 			do_bounce = ppd->port_error_action &
7890 					(1 << (OPA_LDR_PORTRCV_OFFSET + info));
7891 			lcl_reason = info + OPA_LINKDOWN_REASON_RCV_ERROR_0;
7892 		}
7893 
7894 		/* just report this */
7895 		dd_dev_info(dd, "DCC Error: PortRcv error: %s\n", extra);
7896 		dd_dev_info(dd, "           hdr0 0x%llx, hdr1 0x%llx\n",
7897 			    hdr0, hdr1);
7898 
7899 		reg &= ~DCC_ERR_FLG_RCVPORT_ERR_SMASK;
7900 	}
7901 
7902 	if (reg & DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_UC_SMASK) {
7903 		/* informative only */
7904 		dd_dev_info(dd, "8051 access to LCB blocked\n");
7905 		reg &= ~DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_UC_SMASK;
7906 	}
7907 	if (reg & DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_HOST_SMASK) {
7908 		/* informative only */
7909 		dd_dev_info(dd, "host access to LCB blocked\n");
7910 		reg &= ~DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_HOST_SMASK;
7911 	}
7912 
7913 	/* report any remaining errors */
7914 	if (reg)
7915 		dd_dev_info(dd, "DCC Error: %s\n",
7916 			    dcc_err_string(buf, sizeof(buf), reg));
7917 
7918 	if (lcl_reason == 0)
7919 		lcl_reason = OPA_LINKDOWN_REASON_UNKNOWN;
7920 
7921 	if (do_bounce) {
7922 		dd_dev_info(dd, "%s: PortErrorAction bounce\n", __func__);
7923 		set_link_down_reason(ppd, lcl_reason, 0, lcl_reason);
7924 		queue_work(ppd->hfi1_wq, &ppd->link_bounce_work);
7925 	}
7926 }
7927 
7928 static void handle_lcb_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
7929 {
7930 	char buf[96];
7931 
7932 	dd_dev_info(dd, "LCB Error: %s\n",
7933 		    lcb_err_string(buf, sizeof(buf), reg));
7934 }
7935 
7936 /*
7937  * CCE block DC interrupt.  Source is < 8.
7938  */
7939 static void is_dc_int(struct hfi1_devdata *dd, unsigned int source)
7940 {
7941 	const struct err_reg_info *eri = &dc_errs[source];
7942 
7943 	if (eri->handler) {
7944 		interrupt_clear_down(dd, 0, eri);
7945 	} else if (source == 3 /* dc_lbm_int */) {
7946 		/*
7947 		 * This indicates that a parity error has occurred on the
7948 		 * address/control lines presented to the LBM.  The error
7949 		 * is a single pulse, there is no associated error flag,
7950 		 * and it is non-maskable.  This is because if a parity
7951 		 * error occurs on the request the request is dropped.
7952 		 * This should never occur, but it is nice to know if it
7953 		 * ever does.
7954 		 */
7955 		dd_dev_err(dd, "Parity error in DC LBM block\n");
7956 	} else {
7957 		dd_dev_err(dd, "Invalid DC interrupt %u\n", source);
7958 	}
7959 }
7960 
7961 /*
7962  * TX block send credit interrupt.  Source is < 160.
7963  */
7964 static void is_send_credit_int(struct hfi1_devdata *dd, unsigned int source)
7965 {
7966 	sc_group_release_update(dd, source);
7967 }
7968 
7969 /*
7970  * TX block SDMA interrupt.  Source is < 48.
7971  *
7972  * SDMA interrupts are grouped by type:
7973  *
7974  *	 0 -  N-1 = SDma
7975  *	 N - 2N-1 = SDmaProgress
7976  *	2N - 3N-1 = SDmaIdle
7977  */
7978 static void is_sdma_eng_int(struct hfi1_devdata *dd, unsigned int source)
7979 {
7980 	/* what interrupt */
7981 	unsigned int what  = source / TXE_NUM_SDMA_ENGINES;
7982 	/* which engine */
7983 	unsigned int which = source % TXE_NUM_SDMA_ENGINES;
7984 
7985 #ifdef CONFIG_SDMA_VERBOSITY
7986 	dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", which,
7987 		   slashstrip(__FILE__), __LINE__, __func__);
7988 	sdma_dumpstate(&dd->per_sdma[which]);
7989 #endif
7990 
7991 	if (likely(what < 3 && which < dd->num_sdma)) {
7992 		sdma_engine_interrupt(&dd->per_sdma[which], 1ull << source);
7993 	} else {
7994 		/* should not happen */
7995 		dd_dev_err(dd, "Invalid SDMA interrupt 0x%x\n", source);
7996 	}
7997 }
7998 
7999 /*
8000  * RX block receive available interrupt.  Source is < 160.
8001  */
8002 static void is_rcv_avail_int(struct hfi1_devdata *dd, unsigned int source)
8003 {
8004 	struct hfi1_ctxtdata *rcd;
8005 	char *err_detail;
8006 
8007 	if (likely(source < dd->num_rcv_contexts)) {
8008 		rcd = dd->rcd[source];
8009 		if (rcd) {
8010 			if (source < dd->first_user_ctxt)
8011 				rcd->do_interrupt(rcd, 0);
8012 			else
8013 				handle_user_interrupt(rcd);
8014 			return;	/* OK */
8015 		}
8016 		/* received an interrupt, but no rcd */
8017 		err_detail = "dataless";
8018 	} else {
8019 		/* received an interrupt, but are not using that context */
8020 		err_detail = "out of range";
8021 	}
8022 	dd_dev_err(dd, "unexpected %s receive available context interrupt %u\n",
8023 		   err_detail, source);
8024 }
8025 
8026 /*
8027  * RX block receive urgent interrupt.  Source is < 160.
8028  */
8029 static void is_rcv_urgent_int(struct hfi1_devdata *dd, unsigned int source)
8030 {
8031 	struct hfi1_ctxtdata *rcd;
8032 	char *err_detail;
8033 
8034 	if (likely(source < dd->num_rcv_contexts)) {
8035 		rcd = dd->rcd[source];
8036 		if (rcd) {
8037 			/* only pay attention to user urgent interrupts */
8038 			if (source >= dd->first_user_ctxt)
8039 				handle_user_interrupt(rcd);
8040 			return;	/* OK */
8041 		}
8042 		/* received an interrupt, but no rcd */
8043 		err_detail = "dataless";
8044 	} else {
8045 		/* received an interrupt, but are not using that context */
8046 		err_detail = "out of range";
8047 	}
8048 	dd_dev_err(dd, "unexpected %s receive urgent context interrupt %u\n",
8049 		   err_detail, source);
8050 }
8051 
8052 /*
8053  * Reserved range interrupt.  Should not be called in normal operation.
8054  */
8055 static void is_reserved_int(struct hfi1_devdata *dd, unsigned int source)
8056 {
8057 	char name[64];
8058 
8059 	dd_dev_err(dd, "unexpected %s interrupt\n",
8060 		   is_reserved_name(name, sizeof(name), source));
8061 }
8062 
8063 static const struct is_table is_table[] = {
8064 /*
8065  * start		 end
8066  *				name func		interrupt func
8067  */
8068 { IS_GENERAL_ERR_START,  IS_GENERAL_ERR_END,
8069 				is_misc_err_name,	is_misc_err_int },
8070 { IS_SDMAENG_ERR_START,  IS_SDMAENG_ERR_END,
8071 				is_sdma_eng_err_name,	is_sdma_eng_err_int },
8072 { IS_SENDCTXT_ERR_START, IS_SENDCTXT_ERR_END,
8073 				is_sendctxt_err_name,	is_sendctxt_err_int },
8074 { IS_SDMA_START,	     IS_SDMA_END,
8075 				is_sdma_eng_name,	is_sdma_eng_int },
8076 { IS_VARIOUS_START,	     IS_VARIOUS_END,
8077 				is_various_name,	is_various_int },
8078 { IS_DC_START,	     IS_DC_END,
8079 				is_dc_name,		is_dc_int },
8080 { IS_RCVAVAIL_START,     IS_RCVAVAIL_END,
8081 				is_rcv_avail_name,	is_rcv_avail_int },
8082 { IS_RCVURGENT_START,    IS_RCVURGENT_END,
8083 				is_rcv_urgent_name,	is_rcv_urgent_int },
8084 { IS_SENDCREDIT_START,   IS_SENDCREDIT_END,
8085 				is_send_credit_name,	is_send_credit_int},
8086 { IS_RESERVED_START,     IS_RESERVED_END,
8087 				is_reserved_name,	is_reserved_int},
8088 };
8089 
8090 /*
8091  * Interrupt source interrupt - called when the given source has an interrupt.
8092  * Source is a bit index into an array of 64-bit integers.
8093  */
8094 static void is_interrupt(struct hfi1_devdata *dd, unsigned int source)
8095 {
8096 	const struct is_table *entry;
8097 
8098 	/* avoids a double compare by walking the table in-order */
8099 	for (entry = &is_table[0]; entry->is_name; entry++) {
8100 		if (source < entry->end) {
8101 			trace_hfi1_interrupt(dd, entry, source);
8102 			entry->is_int(dd, source - entry->start);
8103 			return;
8104 		}
8105 	}
8106 	/* fell off the end */
8107 	dd_dev_err(dd, "invalid interrupt source %u\n", source);
8108 }
8109 
8110 /*
8111  * General interrupt handler.  This is able to correctly handle
8112  * all interrupts in case INTx is used.
8113  */
8114 static irqreturn_t general_interrupt(int irq, void *data)
8115 {
8116 	struct hfi1_devdata *dd = data;
8117 	u64 regs[CCE_NUM_INT_CSRS];
8118 	u32 bit;
8119 	int i;
8120 
8121 	this_cpu_inc(*dd->int_counter);
8122 
8123 	/* phase 1: scan and clear all handled interrupts */
8124 	for (i = 0; i < CCE_NUM_INT_CSRS; i++) {
8125 		if (dd->gi_mask[i] == 0) {
8126 			regs[i] = 0;	/* used later */
8127 			continue;
8128 		}
8129 		regs[i] = read_csr(dd, CCE_INT_STATUS + (8 * i)) &
8130 				dd->gi_mask[i];
8131 		/* only clear if anything is set */
8132 		if (regs[i])
8133 			write_csr(dd, CCE_INT_CLEAR + (8 * i), regs[i]);
8134 	}
8135 
8136 	/* phase 2: call the appropriate handler */
8137 	for_each_set_bit(bit, (unsigned long *)&regs[0],
8138 			 CCE_NUM_INT_CSRS * 64) {
8139 		is_interrupt(dd, bit);
8140 	}
8141 
8142 	return IRQ_HANDLED;
8143 }
8144 
8145 static irqreturn_t sdma_interrupt(int irq, void *data)
8146 {
8147 	struct sdma_engine *sde = data;
8148 	struct hfi1_devdata *dd = sde->dd;
8149 	u64 status;
8150 
8151 #ifdef CONFIG_SDMA_VERBOSITY
8152 	dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
8153 		   slashstrip(__FILE__), __LINE__, __func__);
8154 	sdma_dumpstate(sde);
8155 #endif
8156 
8157 	this_cpu_inc(*dd->int_counter);
8158 
8159 	/* This read_csr is really bad in the hot path */
8160 	status = read_csr(dd,
8161 			  CCE_INT_STATUS + (8 * (IS_SDMA_START / 64)))
8162 			  & sde->imask;
8163 	if (likely(status)) {
8164 		/* clear the interrupt(s) */
8165 		write_csr(dd,
8166 			  CCE_INT_CLEAR + (8 * (IS_SDMA_START / 64)),
8167 			  status);
8168 
8169 		/* handle the interrupt(s) */
8170 		sdma_engine_interrupt(sde, status);
8171 	} else
8172 		dd_dev_err(dd, "SDMA engine %u interrupt, but no status bits set\n",
8173 			   sde->this_idx);
8174 
8175 	return IRQ_HANDLED;
8176 }
8177 
8178 /*
8179  * Clear the receive interrupt.  Use a read of the interrupt clear CSR
8180  * to insure that the write completed.  This does NOT guarantee that
8181  * queued DMA writes to memory from the chip are pushed.
8182  */
8183 static inline void clear_recv_intr(struct hfi1_ctxtdata *rcd)
8184 {
8185 	struct hfi1_devdata *dd = rcd->dd;
8186 	u32 addr = CCE_INT_CLEAR + (8 * rcd->ireg);
8187 
8188 	mmiowb();	/* make sure everything before is written */
8189 	write_csr(dd, addr, rcd->imask);
8190 	/* force the above write on the chip and get a value back */
8191 	(void)read_csr(dd, addr);
8192 }
8193 
8194 /* force the receive interrupt */
8195 void force_recv_intr(struct hfi1_ctxtdata *rcd)
8196 {
8197 	write_csr(rcd->dd, CCE_INT_FORCE + (8 * rcd->ireg), rcd->imask);
8198 }
8199 
8200 /*
8201  * Return non-zero if a packet is present.
8202  *
8203  * This routine is called when rechecking for packets after the RcvAvail
8204  * interrupt has been cleared down.  First, do a quick check of memory for
8205  * a packet present.  If not found, use an expensive CSR read of the context
8206  * tail to determine the actual tail.  The CSR read is necessary because there
8207  * is no method to push pending DMAs to memory other than an interrupt and we
8208  * are trying to determine if we need to force an interrupt.
8209  */
8210 static inline int check_packet_present(struct hfi1_ctxtdata *rcd)
8211 {
8212 	u32 tail;
8213 	int present;
8214 
8215 	if (!HFI1_CAP_IS_KSET(DMA_RTAIL))
8216 		present = (rcd->seq_cnt ==
8217 				rhf_rcv_seq(rhf_to_cpu(get_rhf_addr(rcd))));
8218 	else /* is RDMA rtail */
8219 		present = (rcd->head != get_rcvhdrtail(rcd));
8220 
8221 	if (present)
8222 		return 1;
8223 
8224 	/* fall back to a CSR read, correct indpendent of DMA_RTAIL */
8225 	tail = (u32)read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_TAIL);
8226 	return rcd->head != tail;
8227 }
8228 
8229 /*
8230  * Receive packet IRQ handler.  This routine expects to be on its own IRQ.
8231  * This routine will try to handle packets immediately (latency), but if
8232  * it finds too many, it will invoke the thread handler (bandwitdh).  The
8233  * chip receive interrupt is *not* cleared down until this or the thread (if
8234  * invoked) is finished.  The intent is to avoid extra interrupts while we
8235  * are processing packets anyway.
8236  */
8237 static irqreturn_t receive_context_interrupt(int irq, void *data)
8238 {
8239 	struct hfi1_ctxtdata *rcd = data;
8240 	struct hfi1_devdata *dd = rcd->dd;
8241 	int disposition;
8242 	int present;
8243 
8244 	trace_hfi1_receive_interrupt(dd, rcd->ctxt);
8245 	this_cpu_inc(*dd->int_counter);
8246 	aspm_ctx_disable(rcd);
8247 
8248 	/* receive interrupt remains blocked while processing packets */
8249 	disposition = rcd->do_interrupt(rcd, 0);
8250 
8251 	/*
8252 	 * Too many packets were seen while processing packets in this
8253 	 * IRQ handler.  Invoke the handler thread.  The receive interrupt
8254 	 * remains blocked.
8255 	 */
8256 	if (disposition == RCV_PKT_LIMIT)
8257 		return IRQ_WAKE_THREAD;
8258 
8259 	/*
8260 	 * The packet processor detected no more packets.  Clear the receive
8261 	 * interrupt and recheck for a packet packet that may have arrived
8262 	 * after the previous check and interrupt clear.  If a packet arrived,
8263 	 * force another interrupt.
8264 	 */
8265 	clear_recv_intr(rcd);
8266 	present = check_packet_present(rcd);
8267 	if (present)
8268 		force_recv_intr(rcd);
8269 
8270 	return IRQ_HANDLED;
8271 }
8272 
8273 /*
8274  * Receive packet thread handler.  This expects to be invoked with the
8275  * receive interrupt still blocked.
8276  */
8277 static irqreturn_t receive_context_thread(int irq, void *data)
8278 {
8279 	struct hfi1_ctxtdata *rcd = data;
8280 	int present;
8281 
8282 	/* receive interrupt is still blocked from the IRQ handler */
8283 	(void)rcd->do_interrupt(rcd, 1);
8284 
8285 	/*
8286 	 * The packet processor will only return if it detected no more
8287 	 * packets.  Hold IRQs here so we can safely clear the interrupt and
8288 	 * recheck for a packet that may have arrived after the previous
8289 	 * check and the interrupt clear.  If a packet arrived, force another
8290 	 * interrupt.
8291 	 */
8292 	local_irq_disable();
8293 	clear_recv_intr(rcd);
8294 	present = check_packet_present(rcd);
8295 	if (present)
8296 		force_recv_intr(rcd);
8297 	local_irq_enable();
8298 
8299 	return IRQ_HANDLED;
8300 }
8301 
8302 /* ========================================================================= */
8303 
8304 u32 read_physical_state(struct hfi1_devdata *dd)
8305 {
8306 	u64 reg;
8307 
8308 	reg = read_csr(dd, DC_DC8051_STS_CUR_STATE);
8309 	return (reg >> DC_DC8051_STS_CUR_STATE_PORT_SHIFT)
8310 				& DC_DC8051_STS_CUR_STATE_PORT_MASK;
8311 }
8312 
8313 u32 read_logical_state(struct hfi1_devdata *dd)
8314 {
8315 	u64 reg;
8316 
8317 	reg = read_csr(dd, DCC_CFG_PORT_CONFIG);
8318 	return (reg >> DCC_CFG_PORT_CONFIG_LINK_STATE_SHIFT)
8319 				& DCC_CFG_PORT_CONFIG_LINK_STATE_MASK;
8320 }
8321 
8322 static void set_logical_state(struct hfi1_devdata *dd, u32 chip_lstate)
8323 {
8324 	u64 reg;
8325 
8326 	reg = read_csr(dd, DCC_CFG_PORT_CONFIG);
8327 	/* clear current state, set new state */
8328 	reg &= ~DCC_CFG_PORT_CONFIG_LINK_STATE_SMASK;
8329 	reg |= (u64)chip_lstate << DCC_CFG_PORT_CONFIG_LINK_STATE_SHIFT;
8330 	write_csr(dd, DCC_CFG_PORT_CONFIG, reg);
8331 }
8332 
8333 /*
8334  * Use the 8051 to read a LCB CSR.
8335  */
8336 static int read_lcb_via_8051(struct hfi1_devdata *dd, u32 addr, u64 *data)
8337 {
8338 	u32 regno;
8339 	int ret;
8340 
8341 	if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR) {
8342 		if (acquire_lcb_access(dd, 0) == 0) {
8343 			*data = read_csr(dd, addr);
8344 			release_lcb_access(dd, 0);
8345 			return 0;
8346 		}
8347 		return -EBUSY;
8348 	}
8349 
8350 	/* register is an index of LCB registers: (offset - base) / 8 */
8351 	regno = (addr - DC_LCB_CFG_RUN) >> 3;
8352 	ret = do_8051_command(dd, HCMD_READ_LCB_CSR, regno, data);
8353 	if (ret != HCMD_SUCCESS)
8354 		return -EBUSY;
8355 	return 0;
8356 }
8357 
8358 /*
8359  * Read an LCB CSR.  Access may not be in host control, so check.
8360  * Return 0 on success, -EBUSY on failure.
8361  */
8362 int read_lcb_csr(struct hfi1_devdata *dd, u32 addr, u64 *data)
8363 {
8364 	struct hfi1_pportdata *ppd = dd->pport;
8365 
8366 	/* if up, go through the 8051 for the value */
8367 	if (ppd->host_link_state & HLS_UP)
8368 		return read_lcb_via_8051(dd, addr, data);
8369 	/* if going up or down, no access */
8370 	if (ppd->host_link_state & (HLS_GOING_UP | HLS_GOING_OFFLINE))
8371 		return -EBUSY;
8372 	/* otherwise, host has access */
8373 	*data = read_csr(dd, addr);
8374 	return 0;
8375 }
8376 
8377 /*
8378  * Use the 8051 to write a LCB CSR.
8379  */
8380 static int write_lcb_via_8051(struct hfi1_devdata *dd, u32 addr, u64 data)
8381 {
8382 	u32 regno;
8383 	int ret;
8384 
8385 	if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR ||
8386 	    (dd->dc8051_ver < dc8051_ver(0, 20))) {
8387 		if (acquire_lcb_access(dd, 0) == 0) {
8388 			write_csr(dd, addr, data);
8389 			release_lcb_access(dd, 0);
8390 			return 0;
8391 		}
8392 		return -EBUSY;
8393 	}
8394 
8395 	/* register is an index of LCB registers: (offset - base) / 8 */
8396 	regno = (addr - DC_LCB_CFG_RUN) >> 3;
8397 	ret = do_8051_command(dd, HCMD_WRITE_LCB_CSR, regno, &data);
8398 	if (ret != HCMD_SUCCESS)
8399 		return -EBUSY;
8400 	return 0;
8401 }
8402 
8403 /*
8404  * Write an LCB CSR.  Access may not be in host control, so check.
8405  * Return 0 on success, -EBUSY on failure.
8406  */
8407 int write_lcb_csr(struct hfi1_devdata *dd, u32 addr, u64 data)
8408 {
8409 	struct hfi1_pportdata *ppd = dd->pport;
8410 
8411 	/* if up, go through the 8051 for the value */
8412 	if (ppd->host_link_state & HLS_UP)
8413 		return write_lcb_via_8051(dd, addr, data);
8414 	/* if going up or down, no access */
8415 	if (ppd->host_link_state & (HLS_GOING_UP | HLS_GOING_OFFLINE))
8416 		return -EBUSY;
8417 	/* otherwise, host has access */
8418 	write_csr(dd, addr, data);
8419 	return 0;
8420 }
8421 
8422 /*
8423  * Returns:
8424  *	< 0 = Linux error, not able to get access
8425  *	> 0 = 8051 command RETURN_CODE
8426  */
8427 static int do_8051_command(
8428 	struct hfi1_devdata *dd,
8429 	u32 type,
8430 	u64 in_data,
8431 	u64 *out_data)
8432 {
8433 	u64 reg, completed;
8434 	int return_code;
8435 	unsigned long flags;
8436 	unsigned long timeout;
8437 
8438 	hfi1_cdbg(DC8051, "type %d, data 0x%012llx", type, in_data);
8439 
8440 	/*
8441 	 * Alternative to holding the lock for a long time:
8442 	 * - keep busy wait - have other users bounce off
8443 	 */
8444 	spin_lock_irqsave(&dd->dc8051_lock, flags);
8445 
8446 	/* We can't send any commands to the 8051 if it's in reset */
8447 	if (dd->dc_shutdown) {
8448 		return_code = -ENODEV;
8449 		goto fail;
8450 	}
8451 
8452 	/*
8453 	 * If an 8051 host command timed out previously, then the 8051 is
8454 	 * stuck.
8455 	 *
8456 	 * On first timeout, attempt to reset and restart the entire DC
8457 	 * block (including 8051). (Is this too big of a hammer?)
8458 	 *
8459 	 * If the 8051 times out a second time, the reset did not bring it
8460 	 * back to healthy life. In that case, fail any subsequent commands.
8461 	 */
8462 	if (dd->dc8051_timed_out) {
8463 		if (dd->dc8051_timed_out > 1) {
8464 			dd_dev_err(dd,
8465 				   "Previous 8051 host command timed out, skipping command %u\n",
8466 				   type);
8467 			return_code = -ENXIO;
8468 			goto fail;
8469 		}
8470 		spin_unlock_irqrestore(&dd->dc8051_lock, flags);
8471 		dc_shutdown(dd);
8472 		dc_start(dd);
8473 		spin_lock_irqsave(&dd->dc8051_lock, flags);
8474 	}
8475 
8476 	/*
8477 	 * If there is no timeout, then the 8051 command interface is
8478 	 * waiting for a command.
8479 	 */
8480 
8481 	/*
8482 	 * When writing a LCB CSR, out_data contains the full value to
8483 	 * to be written, while in_data contains the relative LCB
8484 	 * address in 7:0.  Do the work here, rather than the caller,
8485 	 * of distrubting the write data to where it needs to go:
8486 	 *
8487 	 * Write data
8488 	 *   39:00 -> in_data[47:8]
8489 	 *   47:40 -> DC8051_CFG_EXT_DEV_0.RETURN_CODE
8490 	 *   63:48 -> DC8051_CFG_EXT_DEV_0.RSP_DATA
8491 	 */
8492 	if (type == HCMD_WRITE_LCB_CSR) {
8493 		in_data |= ((*out_data) & 0xffffffffffull) << 8;
8494 		reg = ((((*out_data) >> 40) & 0xff) <<
8495 				DC_DC8051_CFG_EXT_DEV_0_RETURN_CODE_SHIFT)
8496 		      | ((((*out_data) >> 48) & 0xffff) <<
8497 				DC_DC8051_CFG_EXT_DEV_0_RSP_DATA_SHIFT);
8498 		write_csr(dd, DC_DC8051_CFG_EXT_DEV_0, reg);
8499 	}
8500 
8501 	/*
8502 	 * Do two writes: the first to stabilize the type and req_data, the
8503 	 * second to activate.
8504 	 */
8505 	reg = ((u64)type & DC_DC8051_CFG_HOST_CMD_0_REQ_TYPE_MASK)
8506 			<< DC_DC8051_CFG_HOST_CMD_0_REQ_TYPE_SHIFT
8507 		| (in_data & DC_DC8051_CFG_HOST_CMD_0_REQ_DATA_MASK)
8508 			<< DC_DC8051_CFG_HOST_CMD_0_REQ_DATA_SHIFT;
8509 	write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, reg);
8510 	reg |= DC_DC8051_CFG_HOST_CMD_0_REQ_NEW_SMASK;
8511 	write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, reg);
8512 
8513 	/* wait for completion, alternate: interrupt */
8514 	timeout = jiffies + msecs_to_jiffies(DC8051_COMMAND_TIMEOUT);
8515 	while (1) {
8516 		reg = read_csr(dd, DC_DC8051_CFG_HOST_CMD_1);
8517 		completed = reg & DC_DC8051_CFG_HOST_CMD_1_COMPLETED_SMASK;
8518 		if (completed)
8519 			break;
8520 		if (time_after(jiffies, timeout)) {
8521 			dd->dc8051_timed_out++;
8522 			dd_dev_err(dd, "8051 host command %u timeout\n", type);
8523 			if (out_data)
8524 				*out_data = 0;
8525 			return_code = -ETIMEDOUT;
8526 			goto fail;
8527 		}
8528 		udelay(2);
8529 	}
8530 
8531 	if (out_data) {
8532 		*out_data = (reg >> DC_DC8051_CFG_HOST_CMD_1_RSP_DATA_SHIFT)
8533 				& DC_DC8051_CFG_HOST_CMD_1_RSP_DATA_MASK;
8534 		if (type == HCMD_READ_LCB_CSR) {
8535 			/* top 16 bits are in a different register */
8536 			*out_data |= (read_csr(dd, DC_DC8051_CFG_EXT_DEV_1)
8537 				& DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SMASK)
8538 				<< (48
8539 				    - DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SHIFT);
8540 		}
8541 	}
8542 	return_code = (reg >> DC_DC8051_CFG_HOST_CMD_1_RETURN_CODE_SHIFT)
8543 				& DC_DC8051_CFG_HOST_CMD_1_RETURN_CODE_MASK;
8544 	dd->dc8051_timed_out = 0;
8545 	/*
8546 	 * Clear command for next user.
8547 	 */
8548 	write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, 0);
8549 
8550 fail:
8551 	spin_unlock_irqrestore(&dd->dc8051_lock, flags);
8552 
8553 	return return_code;
8554 }
8555 
8556 static int set_physical_link_state(struct hfi1_devdata *dd, u64 state)
8557 {
8558 	return do_8051_command(dd, HCMD_CHANGE_PHY_STATE, state, NULL);
8559 }
8560 
8561 int load_8051_config(struct hfi1_devdata *dd, u8 field_id,
8562 		     u8 lane_id, u32 config_data)
8563 {
8564 	u64 data;
8565 	int ret;
8566 
8567 	data = (u64)field_id << LOAD_DATA_FIELD_ID_SHIFT
8568 		| (u64)lane_id << LOAD_DATA_LANE_ID_SHIFT
8569 		| (u64)config_data << LOAD_DATA_DATA_SHIFT;
8570 	ret = do_8051_command(dd, HCMD_LOAD_CONFIG_DATA, data, NULL);
8571 	if (ret != HCMD_SUCCESS) {
8572 		dd_dev_err(dd,
8573 			   "load 8051 config: field id %d, lane %d, err %d\n",
8574 			   (int)field_id, (int)lane_id, ret);
8575 	}
8576 	return ret;
8577 }
8578 
8579 /*
8580  * Read the 8051 firmware "registers".  Use the RAM directly.  Always
8581  * set the result, even on error.
8582  * Return 0 on success, -errno on failure
8583  */
8584 int read_8051_config(struct hfi1_devdata *dd, u8 field_id, u8 lane_id,
8585 		     u32 *result)
8586 {
8587 	u64 big_data;
8588 	u32 addr;
8589 	int ret;
8590 
8591 	/* address start depends on the lane_id */
8592 	if (lane_id < 4)
8593 		addr = (4 * NUM_GENERAL_FIELDS)
8594 			+ (lane_id * 4 * NUM_LANE_FIELDS);
8595 	else
8596 		addr = 0;
8597 	addr += field_id * 4;
8598 
8599 	/* read is in 8-byte chunks, hardware will truncate the address down */
8600 	ret = read_8051_data(dd, addr, 8, &big_data);
8601 
8602 	if (ret == 0) {
8603 		/* extract the 4 bytes we want */
8604 		if (addr & 0x4)
8605 			*result = (u32)(big_data >> 32);
8606 		else
8607 			*result = (u32)big_data;
8608 	} else {
8609 		*result = 0;
8610 		dd_dev_err(dd, "%s: direct read failed, lane %d, field %d!\n",
8611 			   __func__, lane_id, field_id);
8612 	}
8613 
8614 	return ret;
8615 }
8616 
8617 static int write_vc_local_phy(struct hfi1_devdata *dd, u8 power_management,
8618 			      u8 continuous)
8619 {
8620 	u32 frame;
8621 
8622 	frame = continuous << CONTINIOUS_REMOTE_UPDATE_SUPPORT_SHIFT
8623 		| power_management << POWER_MANAGEMENT_SHIFT;
8624 	return load_8051_config(dd, VERIFY_CAP_LOCAL_PHY,
8625 				GENERAL_CONFIG, frame);
8626 }
8627 
8628 static int write_vc_local_fabric(struct hfi1_devdata *dd, u8 vau, u8 z, u8 vcu,
8629 				 u16 vl15buf, u8 crc_sizes)
8630 {
8631 	u32 frame;
8632 
8633 	frame = (u32)vau << VAU_SHIFT
8634 		| (u32)z << Z_SHIFT
8635 		| (u32)vcu << VCU_SHIFT
8636 		| (u32)vl15buf << VL15BUF_SHIFT
8637 		| (u32)crc_sizes << CRC_SIZES_SHIFT;
8638 	return load_8051_config(dd, VERIFY_CAP_LOCAL_FABRIC,
8639 				GENERAL_CONFIG, frame);
8640 }
8641 
8642 static void read_vc_local_link_width(struct hfi1_devdata *dd, u8 *misc_bits,
8643 				     u8 *flag_bits, u16 *link_widths)
8644 {
8645 	u32 frame;
8646 
8647 	read_8051_config(dd, VERIFY_CAP_LOCAL_LINK_WIDTH, GENERAL_CONFIG,
8648 			 &frame);
8649 	*misc_bits = (frame >> MISC_CONFIG_BITS_SHIFT) & MISC_CONFIG_BITS_MASK;
8650 	*flag_bits = (frame >> LOCAL_FLAG_BITS_SHIFT) & LOCAL_FLAG_BITS_MASK;
8651 	*link_widths = (frame >> LINK_WIDTH_SHIFT) & LINK_WIDTH_MASK;
8652 }
8653 
8654 static int write_vc_local_link_width(struct hfi1_devdata *dd,
8655 				     u8 misc_bits,
8656 				     u8 flag_bits,
8657 				     u16 link_widths)
8658 {
8659 	u32 frame;
8660 
8661 	frame = (u32)misc_bits << MISC_CONFIG_BITS_SHIFT
8662 		| (u32)flag_bits << LOCAL_FLAG_BITS_SHIFT
8663 		| (u32)link_widths << LINK_WIDTH_SHIFT;
8664 	return load_8051_config(dd, VERIFY_CAP_LOCAL_LINK_WIDTH, GENERAL_CONFIG,
8665 		     frame);
8666 }
8667 
8668 static int write_local_device_id(struct hfi1_devdata *dd, u16 device_id,
8669 				 u8 device_rev)
8670 {
8671 	u32 frame;
8672 
8673 	frame = ((u32)device_id << LOCAL_DEVICE_ID_SHIFT)
8674 		| ((u32)device_rev << LOCAL_DEVICE_REV_SHIFT);
8675 	return load_8051_config(dd, LOCAL_DEVICE_ID, GENERAL_CONFIG, frame);
8676 }
8677 
8678 static void read_remote_device_id(struct hfi1_devdata *dd, u16 *device_id,
8679 				  u8 *device_rev)
8680 {
8681 	u32 frame;
8682 
8683 	read_8051_config(dd, REMOTE_DEVICE_ID, GENERAL_CONFIG, &frame);
8684 	*device_id = (frame >> REMOTE_DEVICE_ID_SHIFT) & REMOTE_DEVICE_ID_MASK;
8685 	*device_rev = (frame >> REMOTE_DEVICE_REV_SHIFT)
8686 			& REMOTE_DEVICE_REV_MASK;
8687 }
8688 
8689 void read_misc_status(struct hfi1_devdata *dd, u8 *ver_a, u8 *ver_b)
8690 {
8691 	u32 frame;
8692 
8693 	read_8051_config(dd, MISC_STATUS, GENERAL_CONFIG, &frame);
8694 	*ver_a = (frame >> STS_FM_VERSION_A_SHIFT) & STS_FM_VERSION_A_MASK;
8695 	*ver_b = (frame >> STS_FM_VERSION_B_SHIFT) & STS_FM_VERSION_B_MASK;
8696 }
8697 
8698 static void read_vc_remote_phy(struct hfi1_devdata *dd, u8 *power_management,
8699 			       u8 *continuous)
8700 {
8701 	u32 frame;
8702 
8703 	read_8051_config(dd, VERIFY_CAP_REMOTE_PHY, GENERAL_CONFIG, &frame);
8704 	*power_management = (frame >> POWER_MANAGEMENT_SHIFT)
8705 					& POWER_MANAGEMENT_MASK;
8706 	*continuous = (frame >> CONTINIOUS_REMOTE_UPDATE_SUPPORT_SHIFT)
8707 					& CONTINIOUS_REMOTE_UPDATE_SUPPORT_MASK;
8708 }
8709 
8710 static void read_vc_remote_fabric(struct hfi1_devdata *dd, u8 *vau, u8 *z,
8711 				  u8 *vcu, u16 *vl15buf, u8 *crc_sizes)
8712 {
8713 	u32 frame;
8714 
8715 	read_8051_config(dd, VERIFY_CAP_REMOTE_FABRIC, GENERAL_CONFIG, &frame);
8716 	*vau = (frame >> VAU_SHIFT) & VAU_MASK;
8717 	*z = (frame >> Z_SHIFT) & Z_MASK;
8718 	*vcu = (frame >> VCU_SHIFT) & VCU_MASK;
8719 	*vl15buf = (frame >> VL15BUF_SHIFT) & VL15BUF_MASK;
8720 	*crc_sizes = (frame >> CRC_SIZES_SHIFT) & CRC_SIZES_MASK;
8721 }
8722 
8723 static void read_vc_remote_link_width(struct hfi1_devdata *dd,
8724 				      u8 *remote_tx_rate,
8725 				      u16 *link_widths)
8726 {
8727 	u32 frame;
8728 
8729 	read_8051_config(dd, VERIFY_CAP_REMOTE_LINK_WIDTH, GENERAL_CONFIG,
8730 			 &frame);
8731 	*remote_tx_rate = (frame >> REMOTE_TX_RATE_SHIFT)
8732 				& REMOTE_TX_RATE_MASK;
8733 	*link_widths = (frame >> LINK_WIDTH_SHIFT) & LINK_WIDTH_MASK;
8734 }
8735 
8736 static void read_local_lni(struct hfi1_devdata *dd, u8 *enable_lane_rx)
8737 {
8738 	u32 frame;
8739 
8740 	read_8051_config(dd, LOCAL_LNI_INFO, GENERAL_CONFIG, &frame);
8741 	*enable_lane_rx = (frame >> ENABLE_LANE_RX_SHIFT) & ENABLE_LANE_RX_MASK;
8742 }
8743 
8744 static void read_mgmt_allowed(struct hfi1_devdata *dd, u8 *mgmt_allowed)
8745 {
8746 	u32 frame;
8747 
8748 	read_8051_config(dd, REMOTE_LNI_INFO, GENERAL_CONFIG, &frame);
8749 	*mgmt_allowed = (frame >> MGMT_ALLOWED_SHIFT) & MGMT_ALLOWED_MASK;
8750 }
8751 
8752 static void read_last_local_state(struct hfi1_devdata *dd, u32 *lls)
8753 {
8754 	read_8051_config(dd, LAST_LOCAL_STATE_COMPLETE, GENERAL_CONFIG, lls);
8755 }
8756 
8757 static void read_last_remote_state(struct hfi1_devdata *dd, u32 *lrs)
8758 {
8759 	read_8051_config(dd, LAST_REMOTE_STATE_COMPLETE, GENERAL_CONFIG, lrs);
8760 }
8761 
8762 void hfi1_read_link_quality(struct hfi1_devdata *dd, u8 *link_quality)
8763 {
8764 	u32 frame;
8765 	int ret;
8766 
8767 	*link_quality = 0;
8768 	if (dd->pport->host_link_state & HLS_UP) {
8769 		ret = read_8051_config(dd, LINK_QUALITY_INFO, GENERAL_CONFIG,
8770 				       &frame);
8771 		if (ret == 0)
8772 			*link_quality = (frame >> LINK_QUALITY_SHIFT)
8773 						& LINK_QUALITY_MASK;
8774 	}
8775 }
8776 
8777 static void read_planned_down_reason_code(struct hfi1_devdata *dd, u8 *pdrrc)
8778 {
8779 	u32 frame;
8780 
8781 	read_8051_config(dd, LINK_QUALITY_INFO, GENERAL_CONFIG, &frame);
8782 	*pdrrc = (frame >> DOWN_REMOTE_REASON_SHIFT) & DOWN_REMOTE_REASON_MASK;
8783 }
8784 
8785 static void read_link_down_reason(struct hfi1_devdata *dd, u8 *ldr)
8786 {
8787 	u32 frame;
8788 
8789 	read_8051_config(dd, LINK_DOWN_REASON, GENERAL_CONFIG, &frame);
8790 	*ldr = (frame & 0xff);
8791 }
8792 
8793 static int read_tx_settings(struct hfi1_devdata *dd,
8794 			    u8 *enable_lane_tx,
8795 			    u8 *tx_polarity_inversion,
8796 			    u8 *rx_polarity_inversion,
8797 			    u8 *max_rate)
8798 {
8799 	u32 frame;
8800 	int ret;
8801 
8802 	ret = read_8051_config(dd, TX_SETTINGS, GENERAL_CONFIG, &frame);
8803 	*enable_lane_tx = (frame >> ENABLE_LANE_TX_SHIFT)
8804 				& ENABLE_LANE_TX_MASK;
8805 	*tx_polarity_inversion = (frame >> TX_POLARITY_INVERSION_SHIFT)
8806 				& TX_POLARITY_INVERSION_MASK;
8807 	*rx_polarity_inversion = (frame >> RX_POLARITY_INVERSION_SHIFT)
8808 				& RX_POLARITY_INVERSION_MASK;
8809 	*max_rate = (frame >> MAX_RATE_SHIFT) & MAX_RATE_MASK;
8810 	return ret;
8811 }
8812 
8813 static int write_tx_settings(struct hfi1_devdata *dd,
8814 			     u8 enable_lane_tx,
8815 			     u8 tx_polarity_inversion,
8816 			     u8 rx_polarity_inversion,
8817 			     u8 max_rate)
8818 {
8819 	u32 frame;
8820 
8821 	/* no need to mask, all variable sizes match field widths */
8822 	frame = enable_lane_tx << ENABLE_LANE_TX_SHIFT
8823 		| tx_polarity_inversion << TX_POLARITY_INVERSION_SHIFT
8824 		| rx_polarity_inversion << RX_POLARITY_INVERSION_SHIFT
8825 		| max_rate << MAX_RATE_SHIFT;
8826 	return load_8051_config(dd, TX_SETTINGS, GENERAL_CONFIG, frame);
8827 }
8828 
8829 /*
8830  * Read an idle LCB message.
8831  *
8832  * Returns 0 on success, -EINVAL on error
8833  */
8834 static int read_idle_message(struct hfi1_devdata *dd, u64 type, u64 *data_out)
8835 {
8836 	int ret;
8837 
8838 	ret = do_8051_command(dd, HCMD_READ_LCB_IDLE_MSG, type, data_out);
8839 	if (ret != HCMD_SUCCESS) {
8840 		dd_dev_err(dd, "read idle message: type %d, err %d\n",
8841 			   (u32)type, ret);
8842 		return -EINVAL;
8843 	}
8844 	dd_dev_info(dd, "%s: read idle message 0x%llx\n", __func__, *data_out);
8845 	/* return only the payload as we already know the type */
8846 	*data_out >>= IDLE_PAYLOAD_SHIFT;
8847 	return 0;
8848 }
8849 
8850 /*
8851  * Read an idle SMA message.  To be done in response to a notification from
8852  * the 8051.
8853  *
8854  * Returns 0 on success, -EINVAL on error
8855  */
8856 static int read_idle_sma(struct hfi1_devdata *dd, u64 *data)
8857 {
8858 	return read_idle_message(dd, (u64)IDLE_SMA << IDLE_MSG_TYPE_SHIFT,
8859 				 data);
8860 }
8861 
8862 /*
8863  * Send an idle LCB message.
8864  *
8865  * Returns 0 on success, -EINVAL on error
8866  */
8867 static int send_idle_message(struct hfi1_devdata *dd, u64 data)
8868 {
8869 	int ret;
8870 
8871 	dd_dev_info(dd, "%s: sending idle message 0x%llx\n", __func__, data);
8872 	ret = do_8051_command(dd, HCMD_SEND_LCB_IDLE_MSG, data, NULL);
8873 	if (ret != HCMD_SUCCESS) {
8874 		dd_dev_err(dd, "send idle message: data 0x%llx, err %d\n",
8875 			   data, ret);
8876 		return -EINVAL;
8877 	}
8878 	return 0;
8879 }
8880 
8881 /*
8882  * Send an idle SMA message.
8883  *
8884  * Returns 0 on success, -EINVAL on error
8885  */
8886 int send_idle_sma(struct hfi1_devdata *dd, u64 message)
8887 {
8888 	u64 data;
8889 
8890 	data = ((message & IDLE_PAYLOAD_MASK) << IDLE_PAYLOAD_SHIFT) |
8891 		((u64)IDLE_SMA << IDLE_MSG_TYPE_SHIFT);
8892 	return send_idle_message(dd, data);
8893 }
8894 
8895 /*
8896  * Initialize the LCB then do a quick link up.  This may or may not be
8897  * in loopback.
8898  *
8899  * return 0 on success, -errno on error
8900  */
8901 static int do_quick_linkup(struct hfi1_devdata *dd)
8902 {
8903 	u64 reg;
8904 	unsigned long timeout;
8905 	int ret;
8906 
8907 	lcb_shutdown(dd, 0);
8908 
8909 	if (loopback) {
8910 		/* LCB_CFG_LOOPBACK.VAL = 2 */
8911 		/* LCB_CFG_LANE_WIDTH.VAL = 0 */
8912 		write_csr(dd, DC_LCB_CFG_LOOPBACK,
8913 			  IB_PACKET_TYPE << DC_LCB_CFG_LOOPBACK_VAL_SHIFT);
8914 		write_csr(dd, DC_LCB_CFG_LANE_WIDTH, 0);
8915 	}
8916 
8917 	/* start the LCBs */
8918 	/* LCB_CFG_TX_FIFOS_RESET.VAL = 0 */
8919 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0);
8920 
8921 	/* simulator only loopback steps */
8922 	if (loopback && dd->icode == ICODE_FUNCTIONAL_SIMULATOR) {
8923 		/* LCB_CFG_RUN.EN = 1 */
8924 		write_csr(dd, DC_LCB_CFG_RUN,
8925 			  1ull << DC_LCB_CFG_RUN_EN_SHIFT);
8926 
8927 		/* watch LCB_STS_LINK_TRANSFER_ACTIVE */
8928 		timeout = jiffies + msecs_to_jiffies(10);
8929 		while (1) {
8930 			reg = read_csr(dd, DC_LCB_STS_LINK_TRANSFER_ACTIVE);
8931 			if (reg)
8932 				break;
8933 			if (time_after(jiffies, timeout)) {
8934 				dd_dev_err(dd,
8935 					   "timeout waiting for LINK_TRANSFER_ACTIVE\n");
8936 				return -ETIMEDOUT;
8937 			}
8938 			udelay(2);
8939 		}
8940 
8941 		write_csr(dd, DC_LCB_CFG_ALLOW_LINK_UP,
8942 			  1ull << DC_LCB_CFG_ALLOW_LINK_UP_VAL_SHIFT);
8943 	}
8944 
8945 	if (!loopback) {
8946 		/*
8947 		 * When doing quick linkup and not in loopback, both
8948 		 * sides must be done with LCB set-up before either
8949 		 * starts the quick linkup.  Put a delay here so that
8950 		 * both sides can be started and have a chance to be
8951 		 * done with LCB set up before resuming.
8952 		 */
8953 		dd_dev_err(dd,
8954 			   "Pausing for peer to be finished with LCB set up\n");
8955 		msleep(5000);
8956 		dd_dev_err(dd, "Continuing with quick linkup\n");
8957 	}
8958 
8959 	write_csr(dd, DC_LCB_ERR_EN, 0); /* mask LCB errors */
8960 	set_8051_lcb_access(dd);
8961 
8962 	/*
8963 	 * State "quick" LinkUp request sets the physical link state to
8964 	 * LinkUp without a verify capability sequence.
8965 	 * This state is in simulator v37 and later.
8966 	 */
8967 	ret = set_physical_link_state(dd, PLS_QUICK_LINKUP);
8968 	if (ret != HCMD_SUCCESS) {
8969 		dd_dev_err(dd,
8970 			   "%s: set physical link state to quick LinkUp failed with return %d\n",
8971 			   __func__, ret);
8972 
8973 		set_host_lcb_access(dd);
8974 		write_csr(dd, DC_LCB_ERR_EN, ~0ull); /* watch LCB errors */
8975 
8976 		if (ret >= 0)
8977 			ret = -EINVAL;
8978 		return ret;
8979 	}
8980 
8981 	return 0; /* success */
8982 }
8983 
8984 /*
8985  * Set the SerDes to internal loopback mode.
8986  * Returns 0 on success, -errno on error.
8987  */
8988 static int set_serdes_loopback_mode(struct hfi1_devdata *dd)
8989 {
8990 	int ret;
8991 
8992 	ret = set_physical_link_state(dd, PLS_INTERNAL_SERDES_LOOPBACK);
8993 	if (ret == HCMD_SUCCESS)
8994 		return 0;
8995 	dd_dev_err(dd,
8996 		   "Set physical link state to SerDes Loopback failed with return %d\n",
8997 		   ret);
8998 	if (ret >= 0)
8999 		ret = -EINVAL;
9000 	return ret;
9001 }
9002 
9003 /*
9004  * Do all special steps to set up loopback.
9005  */
9006 static int init_loopback(struct hfi1_devdata *dd)
9007 {
9008 	dd_dev_info(dd, "Entering loopback mode\n");
9009 
9010 	/* all loopbacks should disable self GUID check */
9011 	write_csr(dd, DC_DC8051_CFG_MODE,
9012 		  (read_csr(dd, DC_DC8051_CFG_MODE) | DISABLE_SELF_GUID_CHECK));
9013 
9014 	/*
9015 	 * The simulator has only one loopback option - LCB.  Switch
9016 	 * to that option, which includes quick link up.
9017 	 *
9018 	 * Accept all valid loopback values.
9019 	 */
9020 	if ((dd->icode == ICODE_FUNCTIONAL_SIMULATOR) &&
9021 	    (loopback == LOOPBACK_SERDES || loopback == LOOPBACK_LCB ||
9022 	     loopback == LOOPBACK_CABLE)) {
9023 		loopback = LOOPBACK_LCB;
9024 		quick_linkup = 1;
9025 		return 0;
9026 	}
9027 
9028 	/* handle serdes loopback */
9029 	if (loopback == LOOPBACK_SERDES) {
9030 		/* internal serdes loopack needs quick linkup on RTL */
9031 		if (dd->icode == ICODE_RTL_SILICON)
9032 			quick_linkup = 1;
9033 		return set_serdes_loopback_mode(dd);
9034 	}
9035 
9036 	/* LCB loopback - handled at poll time */
9037 	if (loopback == LOOPBACK_LCB) {
9038 		quick_linkup = 1; /* LCB is always quick linkup */
9039 
9040 		/* not supported in emulation due to emulation RTL changes */
9041 		if (dd->icode == ICODE_FPGA_EMULATION) {
9042 			dd_dev_err(dd,
9043 				   "LCB loopback not supported in emulation\n");
9044 			return -EINVAL;
9045 		}
9046 		return 0;
9047 	}
9048 
9049 	/* external cable loopback requires no extra steps */
9050 	if (loopback == LOOPBACK_CABLE)
9051 		return 0;
9052 
9053 	dd_dev_err(dd, "Invalid loopback mode %d\n", loopback);
9054 	return -EINVAL;
9055 }
9056 
9057 /*
9058  * Translate from the OPA_LINK_WIDTH handed to us by the FM to bits
9059  * used in the Verify Capability link width attribute.
9060  */
9061 static u16 opa_to_vc_link_widths(u16 opa_widths)
9062 {
9063 	int i;
9064 	u16 result = 0;
9065 
9066 	static const struct link_bits {
9067 		u16 from;
9068 		u16 to;
9069 	} opa_link_xlate[] = {
9070 		{ OPA_LINK_WIDTH_1X, 1 << (1 - 1)  },
9071 		{ OPA_LINK_WIDTH_2X, 1 << (2 - 1)  },
9072 		{ OPA_LINK_WIDTH_3X, 1 << (3 - 1)  },
9073 		{ OPA_LINK_WIDTH_4X, 1 << (4 - 1)  },
9074 	};
9075 
9076 	for (i = 0; i < ARRAY_SIZE(opa_link_xlate); i++) {
9077 		if (opa_widths & opa_link_xlate[i].from)
9078 			result |= opa_link_xlate[i].to;
9079 	}
9080 	return result;
9081 }
9082 
9083 /*
9084  * Set link attributes before moving to polling.
9085  */
9086 static int set_local_link_attributes(struct hfi1_pportdata *ppd)
9087 {
9088 	struct hfi1_devdata *dd = ppd->dd;
9089 	u8 enable_lane_tx;
9090 	u8 tx_polarity_inversion;
9091 	u8 rx_polarity_inversion;
9092 	int ret;
9093 
9094 	/* reset our fabric serdes to clear any lingering problems */
9095 	fabric_serdes_reset(dd);
9096 
9097 	/* set the local tx rate - need to read-modify-write */
9098 	ret = read_tx_settings(dd, &enable_lane_tx, &tx_polarity_inversion,
9099 			       &rx_polarity_inversion, &ppd->local_tx_rate);
9100 	if (ret)
9101 		goto set_local_link_attributes_fail;
9102 
9103 	if (dd->dc8051_ver < dc8051_ver(0, 20)) {
9104 		/* set the tx rate to the fastest enabled */
9105 		if (ppd->link_speed_enabled & OPA_LINK_SPEED_25G)
9106 			ppd->local_tx_rate = 1;
9107 		else
9108 			ppd->local_tx_rate = 0;
9109 	} else {
9110 		/* set the tx rate to all enabled */
9111 		ppd->local_tx_rate = 0;
9112 		if (ppd->link_speed_enabled & OPA_LINK_SPEED_25G)
9113 			ppd->local_tx_rate |= 2;
9114 		if (ppd->link_speed_enabled & OPA_LINK_SPEED_12_5G)
9115 			ppd->local_tx_rate |= 1;
9116 	}
9117 
9118 	enable_lane_tx = 0xF; /* enable all four lanes */
9119 	ret = write_tx_settings(dd, enable_lane_tx, tx_polarity_inversion,
9120 				rx_polarity_inversion, ppd->local_tx_rate);
9121 	if (ret != HCMD_SUCCESS)
9122 		goto set_local_link_attributes_fail;
9123 
9124 	/*
9125 	 * DC supports continuous updates.
9126 	 */
9127 	ret = write_vc_local_phy(dd,
9128 				 0 /* no power management */,
9129 				 1 /* continuous updates */);
9130 	if (ret != HCMD_SUCCESS)
9131 		goto set_local_link_attributes_fail;
9132 
9133 	/* z=1 in the next call: AU of 0 is not supported by the hardware */
9134 	ret = write_vc_local_fabric(dd, dd->vau, 1, dd->vcu, dd->vl15_init,
9135 				    ppd->port_crc_mode_enabled);
9136 	if (ret != HCMD_SUCCESS)
9137 		goto set_local_link_attributes_fail;
9138 
9139 	ret = write_vc_local_link_width(dd, 0, 0,
9140 					opa_to_vc_link_widths(
9141 						ppd->link_width_enabled));
9142 	if (ret != HCMD_SUCCESS)
9143 		goto set_local_link_attributes_fail;
9144 
9145 	/* let peer know who we are */
9146 	ret = write_local_device_id(dd, dd->pcidev->device, dd->minrev);
9147 	if (ret == HCMD_SUCCESS)
9148 		return 0;
9149 
9150 set_local_link_attributes_fail:
9151 	dd_dev_err(dd,
9152 		   "Failed to set local link attributes, return 0x%x\n",
9153 		   ret);
9154 	return ret;
9155 }
9156 
9157 /*
9158  * Call this to start the link.
9159  * Do not do anything if the link is disabled.
9160  * Returns 0 if link is disabled, moved to polling, or the driver is not ready.
9161  */
9162 int start_link(struct hfi1_pportdata *ppd)
9163 {
9164 	if (!ppd->link_enabled) {
9165 		dd_dev_info(ppd->dd,
9166 			    "%s: stopping link start because link is disabled\n",
9167 			    __func__);
9168 		return 0;
9169 	}
9170 	if (!ppd->driver_link_ready) {
9171 		dd_dev_info(ppd->dd,
9172 			    "%s: stopping link start because driver is not ready\n",
9173 			    __func__);
9174 		return 0;
9175 	}
9176 
9177 	/*
9178 	 * FULL_MGMT_P_KEY is cleared from the pkey table, so that the
9179 	 * pkey table can be configured properly if the HFI unit is connected
9180 	 * to switch port with MgmtAllowed=NO
9181 	 */
9182 	clear_full_mgmt_pkey(ppd);
9183 
9184 	return set_link_state(ppd, HLS_DN_POLL);
9185 }
9186 
9187 static void wait_for_qsfp_init(struct hfi1_pportdata *ppd)
9188 {
9189 	struct hfi1_devdata *dd = ppd->dd;
9190 	u64 mask;
9191 	unsigned long timeout;
9192 
9193 	/*
9194 	 * Some QSFP cables have a quirk that asserts the IntN line as a side
9195 	 * effect of power up on plug-in. We ignore this false positive
9196 	 * interrupt until the module has finished powering up by waiting for
9197 	 * a minimum timeout of the module inrush initialization time of
9198 	 * 500 ms (SFF 8679 Table 5-6) to ensure the voltage rails in the
9199 	 * module have stabilized.
9200 	 */
9201 	msleep(500);
9202 
9203 	/*
9204 	 * Check for QSFP interrupt for t_init (SFF 8679 Table 8-1)
9205 	 */
9206 	timeout = jiffies + msecs_to_jiffies(2000);
9207 	while (1) {
9208 		mask = read_csr(dd, dd->hfi1_id ?
9209 				ASIC_QSFP2_IN : ASIC_QSFP1_IN);
9210 		if (!(mask & QSFP_HFI0_INT_N))
9211 			break;
9212 		if (time_after(jiffies, timeout)) {
9213 			dd_dev_info(dd, "%s: No IntN detected, reset complete\n",
9214 				    __func__);
9215 			break;
9216 		}
9217 		udelay(2);
9218 	}
9219 }
9220 
9221 static void set_qsfp_int_n(struct hfi1_pportdata *ppd, u8 enable)
9222 {
9223 	struct hfi1_devdata *dd = ppd->dd;
9224 	u64 mask;
9225 
9226 	mask = read_csr(dd, dd->hfi1_id ? ASIC_QSFP2_MASK : ASIC_QSFP1_MASK);
9227 	if (enable) {
9228 		/*
9229 		 * Clear the status register to avoid an immediate interrupt
9230 		 * when we re-enable the IntN pin
9231 		 */
9232 		write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_CLEAR : ASIC_QSFP1_CLEAR,
9233 			  QSFP_HFI0_INT_N);
9234 		mask |= (u64)QSFP_HFI0_INT_N;
9235 	} else {
9236 		mask &= ~(u64)QSFP_HFI0_INT_N;
9237 	}
9238 	write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_MASK : ASIC_QSFP1_MASK, mask);
9239 }
9240 
9241 void reset_qsfp(struct hfi1_pportdata *ppd)
9242 {
9243 	struct hfi1_devdata *dd = ppd->dd;
9244 	u64 mask, qsfp_mask;
9245 
9246 	/* Disable INT_N from triggering QSFP interrupts */
9247 	set_qsfp_int_n(ppd, 0);
9248 
9249 	/* Reset the QSFP */
9250 	mask = (u64)QSFP_HFI0_RESET_N;
9251 
9252 	qsfp_mask = read_csr(dd,
9253 			     dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT);
9254 	qsfp_mask &= ~mask;
9255 	write_csr(dd,
9256 		  dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT, qsfp_mask);
9257 
9258 	udelay(10);
9259 
9260 	qsfp_mask |= mask;
9261 	write_csr(dd,
9262 		  dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT, qsfp_mask);
9263 
9264 	wait_for_qsfp_init(ppd);
9265 
9266 	/*
9267 	 * Allow INT_N to trigger the QSFP interrupt to watch
9268 	 * for alarms and warnings
9269 	 */
9270 	set_qsfp_int_n(ppd, 1);
9271 }
9272 
9273 static int handle_qsfp_error_conditions(struct hfi1_pportdata *ppd,
9274 					u8 *qsfp_interrupt_status)
9275 {
9276 	struct hfi1_devdata *dd = ppd->dd;
9277 
9278 	if ((qsfp_interrupt_status[0] & QSFP_HIGH_TEMP_ALARM) ||
9279 	    (qsfp_interrupt_status[0] & QSFP_HIGH_TEMP_WARNING))
9280 		dd_dev_info(dd, "%s: QSFP cable on fire\n",
9281 			    __func__);
9282 
9283 	if ((qsfp_interrupt_status[0] & QSFP_LOW_TEMP_ALARM) ||
9284 	    (qsfp_interrupt_status[0] & QSFP_LOW_TEMP_WARNING))
9285 		dd_dev_info(dd, "%s: QSFP cable temperature too low\n",
9286 			    __func__);
9287 
9288 	/*
9289 	 * The remaining alarms/warnings don't matter if the link is down.
9290 	 */
9291 	if (ppd->host_link_state & HLS_DOWN)
9292 		return 0;
9293 
9294 	if ((qsfp_interrupt_status[1] & QSFP_HIGH_VCC_ALARM) ||
9295 	    (qsfp_interrupt_status[1] & QSFP_HIGH_VCC_WARNING))
9296 		dd_dev_info(dd, "%s: QSFP supply voltage too high\n",
9297 			    __func__);
9298 
9299 	if ((qsfp_interrupt_status[1] & QSFP_LOW_VCC_ALARM) ||
9300 	    (qsfp_interrupt_status[1] & QSFP_LOW_VCC_WARNING))
9301 		dd_dev_info(dd, "%s: QSFP supply voltage too low\n",
9302 			    __func__);
9303 
9304 	/* Byte 2 is vendor specific */
9305 
9306 	if ((qsfp_interrupt_status[3] & QSFP_HIGH_POWER_ALARM) ||
9307 	    (qsfp_interrupt_status[3] & QSFP_HIGH_POWER_WARNING))
9308 		dd_dev_info(dd, "%s: Cable RX channel 1/2 power too high\n",
9309 			    __func__);
9310 
9311 	if ((qsfp_interrupt_status[3] & QSFP_LOW_POWER_ALARM) ||
9312 	    (qsfp_interrupt_status[3] & QSFP_LOW_POWER_WARNING))
9313 		dd_dev_info(dd, "%s: Cable RX channel 1/2 power too low\n",
9314 			    __func__);
9315 
9316 	if ((qsfp_interrupt_status[4] & QSFP_HIGH_POWER_ALARM) ||
9317 	    (qsfp_interrupt_status[4] & QSFP_HIGH_POWER_WARNING))
9318 		dd_dev_info(dd, "%s: Cable RX channel 3/4 power too high\n",
9319 			    __func__);
9320 
9321 	if ((qsfp_interrupt_status[4] & QSFP_LOW_POWER_ALARM) ||
9322 	    (qsfp_interrupt_status[4] & QSFP_LOW_POWER_WARNING))
9323 		dd_dev_info(dd, "%s: Cable RX channel 3/4 power too low\n",
9324 			    __func__);
9325 
9326 	if ((qsfp_interrupt_status[5] & QSFP_HIGH_BIAS_ALARM) ||
9327 	    (qsfp_interrupt_status[5] & QSFP_HIGH_BIAS_WARNING))
9328 		dd_dev_info(dd, "%s: Cable TX channel 1/2 bias too high\n",
9329 			    __func__);
9330 
9331 	if ((qsfp_interrupt_status[5] & QSFP_LOW_BIAS_ALARM) ||
9332 	    (qsfp_interrupt_status[5] & QSFP_LOW_BIAS_WARNING))
9333 		dd_dev_info(dd, "%s: Cable TX channel 1/2 bias too low\n",
9334 			    __func__);
9335 
9336 	if ((qsfp_interrupt_status[6] & QSFP_HIGH_BIAS_ALARM) ||
9337 	    (qsfp_interrupt_status[6] & QSFP_HIGH_BIAS_WARNING))
9338 		dd_dev_info(dd, "%s: Cable TX channel 3/4 bias too high\n",
9339 			    __func__);
9340 
9341 	if ((qsfp_interrupt_status[6] & QSFP_LOW_BIAS_ALARM) ||
9342 	    (qsfp_interrupt_status[6] & QSFP_LOW_BIAS_WARNING))
9343 		dd_dev_info(dd, "%s: Cable TX channel 3/4 bias too low\n",
9344 			    __func__);
9345 
9346 	if ((qsfp_interrupt_status[7] & QSFP_HIGH_POWER_ALARM) ||
9347 	    (qsfp_interrupt_status[7] & QSFP_HIGH_POWER_WARNING))
9348 		dd_dev_info(dd, "%s: Cable TX channel 1/2 power too high\n",
9349 			    __func__);
9350 
9351 	if ((qsfp_interrupt_status[7] & QSFP_LOW_POWER_ALARM) ||
9352 	    (qsfp_interrupt_status[7] & QSFP_LOW_POWER_WARNING))
9353 		dd_dev_info(dd, "%s: Cable TX channel 1/2 power too low\n",
9354 			    __func__);
9355 
9356 	if ((qsfp_interrupt_status[8] & QSFP_HIGH_POWER_ALARM) ||
9357 	    (qsfp_interrupt_status[8] & QSFP_HIGH_POWER_WARNING))
9358 		dd_dev_info(dd, "%s: Cable TX channel 3/4 power too high\n",
9359 			    __func__);
9360 
9361 	if ((qsfp_interrupt_status[8] & QSFP_LOW_POWER_ALARM) ||
9362 	    (qsfp_interrupt_status[8] & QSFP_LOW_POWER_WARNING))
9363 		dd_dev_info(dd, "%s: Cable TX channel 3/4 power too low\n",
9364 			    __func__);
9365 
9366 	/* Bytes 9-10 and 11-12 are reserved */
9367 	/* Bytes 13-15 are vendor specific */
9368 
9369 	return 0;
9370 }
9371 
9372 /* This routine will only be scheduled if the QSFP module present is asserted */
9373 void qsfp_event(struct work_struct *work)
9374 {
9375 	struct qsfp_data *qd;
9376 	struct hfi1_pportdata *ppd;
9377 	struct hfi1_devdata *dd;
9378 
9379 	qd = container_of(work, struct qsfp_data, qsfp_work);
9380 	ppd = qd->ppd;
9381 	dd = ppd->dd;
9382 
9383 	/* Sanity check */
9384 	if (!qsfp_mod_present(ppd))
9385 		return;
9386 
9387 	/*
9388 	 * Turn DC back on after cable has been re-inserted. Up until
9389 	 * now, the DC has been in reset to save power.
9390 	 */
9391 	dc_start(dd);
9392 
9393 	if (qd->cache_refresh_required) {
9394 		set_qsfp_int_n(ppd, 0);
9395 
9396 		wait_for_qsfp_init(ppd);
9397 
9398 		/*
9399 		 * Allow INT_N to trigger the QSFP interrupt to watch
9400 		 * for alarms and warnings
9401 		 */
9402 		set_qsfp_int_n(ppd, 1);
9403 
9404 		tune_serdes(ppd);
9405 
9406 		start_link(ppd);
9407 	}
9408 
9409 	if (qd->check_interrupt_flags) {
9410 		u8 qsfp_interrupt_status[16] = {0,};
9411 
9412 		if (one_qsfp_read(ppd, dd->hfi1_id, 6,
9413 				  &qsfp_interrupt_status[0], 16) != 16) {
9414 			dd_dev_info(dd,
9415 				    "%s: Failed to read status of QSFP module\n",
9416 				    __func__);
9417 		} else {
9418 			unsigned long flags;
9419 
9420 			handle_qsfp_error_conditions(
9421 					ppd, qsfp_interrupt_status);
9422 			spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
9423 			ppd->qsfp_info.check_interrupt_flags = 0;
9424 			spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock,
9425 					       flags);
9426 		}
9427 	}
9428 }
9429 
9430 static void init_qsfp_int(struct hfi1_devdata *dd)
9431 {
9432 	struct hfi1_pportdata *ppd = dd->pport;
9433 	u64 qsfp_mask, cce_int_mask;
9434 	const int qsfp1_int_smask = QSFP1_INT % 64;
9435 	const int qsfp2_int_smask = QSFP2_INT % 64;
9436 
9437 	/*
9438 	 * disable QSFP1 interrupts for HFI1, QSFP2 interrupts for HFI0
9439 	 * Qsfp1Int and Qsfp2Int are adjacent bits in the same CSR,
9440 	 * therefore just one of QSFP1_INT/QSFP2_INT can be used to find
9441 	 * the index of the appropriate CSR in the CCEIntMask CSR array
9442 	 */
9443 	cce_int_mask = read_csr(dd, CCE_INT_MASK +
9444 				(8 * (QSFP1_INT / 64)));
9445 	if (dd->hfi1_id) {
9446 		cce_int_mask &= ~((u64)1 << qsfp1_int_smask);
9447 		write_csr(dd, CCE_INT_MASK + (8 * (QSFP1_INT / 64)),
9448 			  cce_int_mask);
9449 	} else {
9450 		cce_int_mask &= ~((u64)1 << qsfp2_int_smask);
9451 		write_csr(dd, CCE_INT_MASK + (8 * (QSFP2_INT / 64)),
9452 			  cce_int_mask);
9453 	}
9454 
9455 	qsfp_mask = (u64)(QSFP_HFI0_INT_N | QSFP_HFI0_MODPRST_N);
9456 	/* Clear current status to avoid spurious interrupts */
9457 	write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_CLEAR : ASIC_QSFP1_CLEAR,
9458 		  qsfp_mask);
9459 	write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_MASK : ASIC_QSFP1_MASK,
9460 		  qsfp_mask);
9461 
9462 	set_qsfp_int_n(ppd, 0);
9463 
9464 	/* Handle active low nature of INT_N and MODPRST_N pins */
9465 	if (qsfp_mod_present(ppd))
9466 		qsfp_mask &= ~(u64)QSFP_HFI0_MODPRST_N;
9467 	write_csr(dd,
9468 		  dd->hfi1_id ? ASIC_QSFP2_INVERT : ASIC_QSFP1_INVERT,
9469 		  qsfp_mask);
9470 }
9471 
9472 /*
9473  * Do a one-time initialize of the LCB block.
9474  */
9475 static void init_lcb(struct hfi1_devdata *dd)
9476 {
9477 	/* simulator does not correctly handle LCB cclk loopback, skip */
9478 	if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR)
9479 		return;
9480 
9481 	/* the DC has been reset earlier in the driver load */
9482 
9483 	/* set LCB for cclk loopback on the port */
9484 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0x01);
9485 	write_csr(dd, DC_LCB_CFG_LANE_WIDTH, 0x00);
9486 	write_csr(dd, DC_LCB_CFG_REINIT_AS_SLAVE, 0x00);
9487 	write_csr(dd, DC_LCB_CFG_CNT_FOR_SKIP_STALL, 0x110);
9488 	write_csr(dd, DC_LCB_CFG_CLK_CNTR, 0x08);
9489 	write_csr(dd, DC_LCB_CFG_LOOPBACK, 0x02);
9490 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0x00);
9491 }
9492 
9493 int bringup_serdes(struct hfi1_pportdata *ppd)
9494 {
9495 	struct hfi1_devdata *dd = ppd->dd;
9496 	u64 guid;
9497 	int ret;
9498 
9499 	if (HFI1_CAP_IS_KSET(EXTENDED_PSN))
9500 		add_rcvctrl(dd, RCV_CTRL_RCV_EXTENDED_PSN_ENABLE_SMASK);
9501 
9502 	guid = ppd->guid;
9503 	if (!guid) {
9504 		if (dd->base_guid)
9505 			guid = dd->base_guid + ppd->port - 1;
9506 		ppd->guid = guid;
9507 	}
9508 
9509 	/* Set linkinit_reason on power up per OPA spec */
9510 	ppd->linkinit_reason = OPA_LINKINIT_REASON_LINKUP;
9511 
9512 	/* one-time init of the LCB */
9513 	init_lcb(dd);
9514 
9515 	if (loopback) {
9516 		ret = init_loopback(dd);
9517 		if (ret < 0)
9518 			return ret;
9519 	}
9520 
9521 	get_port_type(ppd);
9522 	if (ppd->port_type == PORT_TYPE_QSFP) {
9523 		set_qsfp_int_n(ppd, 0);
9524 		wait_for_qsfp_init(ppd);
9525 		set_qsfp_int_n(ppd, 1);
9526 	}
9527 
9528 	/*
9529 	 * Tune the SerDes to a ballpark setting for
9530 	 * optimal signal and bit error rate
9531 	 * Needs to be done before starting the link
9532 	 */
9533 	tune_serdes(ppd);
9534 
9535 	return start_link(ppd);
9536 }
9537 
9538 void hfi1_quiet_serdes(struct hfi1_pportdata *ppd)
9539 {
9540 	struct hfi1_devdata *dd = ppd->dd;
9541 
9542 	/*
9543 	 * Shut down the link and keep it down.   First turn off that the
9544 	 * driver wants to allow the link to be up (driver_link_ready).
9545 	 * Then make sure the link is not automatically restarted
9546 	 * (link_enabled).  Cancel any pending restart.  And finally
9547 	 * go offline.
9548 	 */
9549 	ppd->driver_link_ready = 0;
9550 	ppd->link_enabled = 0;
9551 
9552 	ppd->offline_disabled_reason =
9553 			HFI1_ODR_MASK(OPA_LINKDOWN_REASON_SMA_DISABLED);
9554 	set_link_down_reason(ppd, OPA_LINKDOWN_REASON_SMA_DISABLED, 0,
9555 			     OPA_LINKDOWN_REASON_SMA_DISABLED);
9556 	set_link_state(ppd, HLS_DN_OFFLINE);
9557 
9558 	/* disable the port */
9559 	clear_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
9560 }
9561 
9562 static inline int init_cpu_counters(struct hfi1_devdata *dd)
9563 {
9564 	struct hfi1_pportdata *ppd;
9565 	int i;
9566 
9567 	ppd = (struct hfi1_pportdata *)(dd + 1);
9568 	for (i = 0; i < dd->num_pports; i++, ppd++) {
9569 		ppd->ibport_data.rvp.rc_acks = NULL;
9570 		ppd->ibport_data.rvp.rc_qacks = NULL;
9571 		ppd->ibport_data.rvp.rc_acks = alloc_percpu(u64);
9572 		ppd->ibport_data.rvp.rc_qacks = alloc_percpu(u64);
9573 		ppd->ibport_data.rvp.rc_delayed_comp = alloc_percpu(u64);
9574 		if (!ppd->ibport_data.rvp.rc_acks ||
9575 		    !ppd->ibport_data.rvp.rc_delayed_comp ||
9576 		    !ppd->ibport_data.rvp.rc_qacks)
9577 			return -ENOMEM;
9578 	}
9579 
9580 	return 0;
9581 }
9582 
9583 static const char * const pt_names[] = {
9584 	"expected",
9585 	"eager",
9586 	"invalid"
9587 };
9588 
9589 static const char *pt_name(u32 type)
9590 {
9591 	return type >= ARRAY_SIZE(pt_names) ? "unknown" : pt_names[type];
9592 }
9593 
9594 /*
9595  * index is the index into the receive array
9596  */
9597 void hfi1_put_tid(struct hfi1_devdata *dd, u32 index,
9598 		  u32 type, unsigned long pa, u16 order)
9599 {
9600 	u64 reg;
9601 	void __iomem *base = (dd->rcvarray_wc ? dd->rcvarray_wc :
9602 			      (dd->kregbase + RCV_ARRAY));
9603 
9604 	if (!(dd->flags & HFI1_PRESENT))
9605 		goto done;
9606 
9607 	if (type == PT_INVALID) {
9608 		pa = 0;
9609 	} else if (type > PT_INVALID) {
9610 		dd_dev_err(dd,
9611 			   "unexpected receive array type %u for index %u, not handled\n",
9612 			   type, index);
9613 		goto done;
9614 	}
9615 
9616 	hfi1_cdbg(TID, "type %s, index 0x%x, pa 0x%lx, bsize 0x%lx",
9617 		  pt_name(type), index, pa, (unsigned long)order);
9618 
9619 #define RT_ADDR_SHIFT 12	/* 4KB kernel address boundary */
9620 	reg = RCV_ARRAY_RT_WRITE_ENABLE_SMASK
9621 		| (u64)order << RCV_ARRAY_RT_BUF_SIZE_SHIFT
9622 		| ((pa >> RT_ADDR_SHIFT) & RCV_ARRAY_RT_ADDR_MASK)
9623 					<< RCV_ARRAY_RT_ADDR_SHIFT;
9624 	writeq(reg, base + (index * 8));
9625 
9626 	if (type == PT_EAGER)
9627 		/*
9628 		 * Eager entries are written one-by-one so we have to push them
9629 		 * after we write the entry.
9630 		 */
9631 		flush_wc();
9632 done:
9633 	return;
9634 }
9635 
9636 void hfi1_clear_tids(struct hfi1_ctxtdata *rcd)
9637 {
9638 	struct hfi1_devdata *dd = rcd->dd;
9639 	u32 i;
9640 
9641 	/* this could be optimized */
9642 	for (i = rcd->eager_base; i < rcd->eager_base +
9643 		     rcd->egrbufs.alloced; i++)
9644 		hfi1_put_tid(dd, i, PT_INVALID, 0, 0);
9645 
9646 	for (i = rcd->expected_base;
9647 			i < rcd->expected_base + rcd->expected_count; i++)
9648 		hfi1_put_tid(dd, i, PT_INVALID, 0, 0);
9649 }
9650 
9651 struct hfi1_message_header *hfi1_get_msgheader(
9652 				struct hfi1_devdata *dd, __le32 *rhf_addr)
9653 {
9654 	u32 offset = rhf_hdrq_offset(rhf_to_cpu(rhf_addr));
9655 
9656 	return (struct hfi1_message_header *)
9657 		(rhf_addr - dd->rhf_offset + offset);
9658 }
9659 
9660 static const char * const ib_cfg_name_strings[] = {
9661 	"HFI1_IB_CFG_LIDLMC",
9662 	"HFI1_IB_CFG_LWID_DG_ENB",
9663 	"HFI1_IB_CFG_LWID_ENB",
9664 	"HFI1_IB_CFG_LWID",
9665 	"HFI1_IB_CFG_SPD_ENB",
9666 	"HFI1_IB_CFG_SPD",
9667 	"HFI1_IB_CFG_RXPOL_ENB",
9668 	"HFI1_IB_CFG_LREV_ENB",
9669 	"HFI1_IB_CFG_LINKLATENCY",
9670 	"HFI1_IB_CFG_HRTBT",
9671 	"HFI1_IB_CFG_OP_VLS",
9672 	"HFI1_IB_CFG_VL_HIGH_CAP",
9673 	"HFI1_IB_CFG_VL_LOW_CAP",
9674 	"HFI1_IB_CFG_OVERRUN_THRESH",
9675 	"HFI1_IB_CFG_PHYERR_THRESH",
9676 	"HFI1_IB_CFG_LINKDEFAULT",
9677 	"HFI1_IB_CFG_PKEYS",
9678 	"HFI1_IB_CFG_MTU",
9679 	"HFI1_IB_CFG_LSTATE",
9680 	"HFI1_IB_CFG_VL_HIGH_LIMIT",
9681 	"HFI1_IB_CFG_PMA_TICKS",
9682 	"HFI1_IB_CFG_PORT"
9683 };
9684 
9685 static const char *ib_cfg_name(int which)
9686 {
9687 	if (which < 0 || which >= ARRAY_SIZE(ib_cfg_name_strings))
9688 		return "invalid";
9689 	return ib_cfg_name_strings[which];
9690 }
9691 
9692 int hfi1_get_ib_cfg(struct hfi1_pportdata *ppd, int which)
9693 {
9694 	struct hfi1_devdata *dd = ppd->dd;
9695 	int val = 0;
9696 
9697 	switch (which) {
9698 	case HFI1_IB_CFG_LWID_ENB: /* allowed Link-width */
9699 		val = ppd->link_width_enabled;
9700 		break;
9701 	case HFI1_IB_CFG_LWID: /* currently active Link-width */
9702 		val = ppd->link_width_active;
9703 		break;
9704 	case HFI1_IB_CFG_SPD_ENB: /* allowed Link speeds */
9705 		val = ppd->link_speed_enabled;
9706 		break;
9707 	case HFI1_IB_CFG_SPD: /* current Link speed */
9708 		val = ppd->link_speed_active;
9709 		break;
9710 
9711 	case HFI1_IB_CFG_RXPOL_ENB: /* Auto-RX-polarity enable */
9712 	case HFI1_IB_CFG_LREV_ENB: /* Auto-Lane-reversal enable */
9713 	case HFI1_IB_CFG_LINKLATENCY:
9714 		goto unimplemented;
9715 
9716 	case HFI1_IB_CFG_OP_VLS:
9717 		val = ppd->vls_operational;
9718 		break;
9719 	case HFI1_IB_CFG_VL_HIGH_CAP: /* VL arb high priority table size */
9720 		val = VL_ARB_HIGH_PRIO_TABLE_SIZE;
9721 		break;
9722 	case HFI1_IB_CFG_VL_LOW_CAP: /* VL arb low priority table size */
9723 		val = VL_ARB_LOW_PRIO_TABLE_SIZE;
9724 		break;
9725 	case HFI1_IB_CFG_OVERRUN_THRESH: /* IB overrun threshold */
9726 		val = ppd->overrun_threshold;
9727 		break;
9728 	case HFI1_IB_CFG_PHYERR_THRESH: /* IB PHY error threshold */
9729 		val = ppd->phy_error_threshold;
9730 		break;
9731 	case HFI1_IB_CFG_LINKDEFAULT: /* IB link default (sleep/poll) */
9732 		val = dd->link_default;
9733 		break;
9734 
9735 	case HFI1_IB_CFG_HRTBT: /* Heartbeat off/enable/auto */
9736 	case HFI1_IB_CFG_PMA_TICKS:
9737 	default:
9738 unimplemented:
9739 		if (HFI1_CAP_IS_KSET(PRINT_UNIMPL))
9740 			dd_dev_info(
9741 				dd,
9742 				"%s: which %s: not implemented\n",
9743 				__func__,
9744 				ib_cfg_name(which));
9745 		break;
9746 	}
9747 
9748 	return val;
9749 }
9750 
9751 /*
9752  * The largest MAD packet size.
9753  */
9754 #define MAX_MAD_PACKET 2048
9755 
9756 /*
9757  * Return the maximum header bytes that can go on the _wire_
9758  * for this device. This count includes the ICRC which is
9759  * not part of the packet held in memory but it is appended
9760  * by the HW.
9761  * This is dependent on the device's receive header entry size.
9762  * HFI allows this to be set per-receive context, but the
9763  * driver presently enforces a global value.
9764  */
9765 u32 lrh_max_header_bytes(struct hfi1_devdata *dd)
9766 {
9767 	/*
9768 	 * The maximum non-payload (MTU) bytes in LRH.PktLen are
9769 	 * the Receive Header Entry Size minus the PBC (or RHF) size
9770 	 * plus one DW for the ICRC appended by HW.
9771 	 *
9772 	 * dd->rcd[0].rcvhdrqentsize is in DW.
9773 	 * We use rcd[0] as all context will have the same value. Also,
9774 	 * the first kernel context would have been allocated by now so
9775 	 * we are guaranteed a valid value.
9776 	 */
9777 	return (dd->rcd[0]->rcvhdrqentsize - 2/*PBC/RHF*/ + 1/*ICRC*/) << 2;
9778 }
9779 
9780 /*
9781  * Set Send Length
9782  * @ppd - per port data
9783  *
9784  * Set the MTU by limiting how many DWs may be sent.  The SendLenCheck*
9785  * registers compare against LRH.PktLen, so use the max bytes included
9786  * in the LRH.
9787  *
9788  * This routine changes all VL values except VL15, which it maintains at
9789  * the same value.
9790  */
9791 static void set_send_length(struct hfi1_pportdata *ppd)
9792 {
9793 	struct hfi1_devdata *dd = ppd->dd;
9794 	u32 max_hb = lrh_max_header_bytes(dd), dcmtu;
9795 	u32 maxvlmtu = dd->vld[15].mtu;
9796 	u64 len1 = 0, len2 = (((dd->vld[15].mtu + max_hb) >> 2)
9797 			      & SEND_LEN_CHECK1_LEN_VL15_MASK) <<
9798 		SEND_LEN_CHECK1_LEN_VL15_SHIFT;
9799 	int i, j;
9800 	u32 thres;
9801 
9802 	for (i = 0; i < ppd->vls_supported; i++) {
9803 		if (dd->vld[i].mtu > maxvlmtu)
9804 			maxvlmtu = dd->vld[i].mtu;
9805 		if (i <= 3)
9806 			len1 |= (((dd->vld[i].mtu + max_hb) >> 2)
9807 				 & SEND_LEN_CHECK0_LEN_VL0_MASK) <<
9808 				((i % 4) * SEND_LEN_CHECK0_LEN_VL1_SHIFT);
9809 		else
9810 			len2 |= (((dd->vld[i].mtu + max_hb) >> 2)
9811 				 & SEND_LEN_CHECK1_LEN_VL4_MASK) <<
9812 				((i % 4) * SEND_LEN_CHECK1_LEN_VL5_SHIFT);
9813 	}
9814 	write_csr(dd, SEND_LEN_CHECK0, len1);
9815 	write_csr(dd, SEND_LEN_CHECK1, len2);
9816 	/* adjust kernel credit return thresholds based on new MTUs */
9817 	/* all kernel receive contexts have the same hdrqentsize */
9818 	for (i = 0; i < ppd->vls_supported; i++) {
9819 		thres = min(sc_percent_to_threshold(dd->vld[i].sc, 50),
9820 			    sc_mtu_to_threshold(dd->vld[i].sc,
9821 						dd->vld[i].mtu,
9822 						dd->rcd[0]->rcvhdrqentsize));
9823 		for (j = 0; j < INIT_SC_PER_VL; j++)
9824 			sc_set_cr_threshold(
9825 					pio_select_send_context_vl(dd, j, i),
9826 					    thres);
9827 	}
9828 	thres = min(sc_percent_to_threshold(dd->vld[15].sc, 50),
9829 		    sc_mtu_to_threshold(dd->vld[15].sc,
9830 					dd->vld[15].mtu,
9831 					dd->rcd[0]->rcvhdrqentsize));
9832 	sc_set_cr_threshold(dd->vld[15].sc, thres);
9833 
9834 	/* Adjust maximum MTU for the port in DC */
9835 	dcmtu = maxvlmtu == 10240 ? DCC_CFG_PORT_MTU_CAP_10240 :
9836 		(ilog2(maxvlmtu >> 8) + 1);
9837 	len1 = read_csr(ppd->dd, DCC_CFG_PORT_CONFIG);
9838 	len1 &= ~DCC_CFG_PORT_CONFIG_MTU_CAP_SMASK;
9839 	len1 |= ((u64)dcmtu & DCC_CFG_PORT_CONFIG_MTU_CAP_MASK) <<
9840 		DCC_CFG_PORT_CONFIG_MTU_CAP_SHIFT;
9841 	write_csr(ppd->dd, DCC_CFG_PORT_CONFIG, len1);
9842 }
9843 
9844 static void set_lidlmc(struct hfi1_pportdata *ppd)
9845 {
9846 	int i;
9847 	u64 sreg = 0;
9848 	struct hfi1_devdata *dd = ppd->dd;
9849 	u32 mask = ~((1U << ppd->lmc) - 1);
9850 	u64 c1 = read_csr(ppd->dd, DCC_CFG_PORT_CONFIG1);
9851 
9852 	if (dd->hfi1_snoop.mode_flag)
9853 		dd_dev_info(dd, "Set lid/lmc while snooping");
9854 
9855 	c1 &= ~(DCC_CFG_PORT_CONFIG1_TARGET_DLID_SMASK
9856 		| DCC_CFG_PORT_CONFIG1_DLID_MASK_SMASK);
9857 	c1 |= ((ppd->lid & DCC_CFG_PORT_CONFIG1_TARGET_DLID_MASK)
9858 			<< DCC_CFG_PORT_CONFIG1_TARGET_DLID_SHIFT) |
9859 	      ((mask & DCC_CFG_PORT_CONFIG1_DLID_MASK_MASK)
9860 			<< DCC_CFG_PORT_CONFIG1_DLID_MASK_SHIFT);
9861 	write_csr(ppd->dd, DCC_CFG_PORT_CONFIG1, c1);
9862 
9863 	/*
9864 	 * Iterate over all the send contexts and set their SLID check
9865 	 */
9866 	sreg = ((mask & SEND_CTXT_CHECK_SLID_MASK_MASK) <<
9867 			SEND_CTXT_CHECK_SLID_MASK_SHIFT) |
9868 	       (((ppd->lid & mask) & SEND_CTXT_CHECK_SLID_VALUE_MASK) <<
9869 			SEND_CTXT_CHECK_SLID_VALUE_SHIFT);
9870 
9871 	for (i = 0; i < dd->chip_send_contexts; i++) {
9872 		hfi1_cdbg(LINKVERB, "SendContext[%d].SLID_CHECK = 0x%x",
9873 			  i, (u32)sreg);
9874 		write_kctxt_csr(dd, i, SEND_CTXT_CHECK_SLID, sreg);
9875 	}
9876 
9877 	/* Now we have to do the same thing for the sdma engines */
9878 	sdma_update_lmc(dd, mask, ppd->lid);
9879 }
9880 
9881 static int wait_phy_linkstate(struct hfi1_devdata *dd, u32 state, u32 msecs)
9882 {
9883 	unsigned long timeout;
9884 	u32 curr_state;
9885 
9886 	timeout = jiffies + msecs_to_jiffies(msecs);
9887 	while (1) {
9888 		curr_state = read_physical_state(dd);
9889 		if (curr_state == state)
9890 			break;
9891 		if (time_after(jiffies, timeout)) {
9892 			dd_dev_err(dd,
9893 				   "timeout waiting for phy link state 0x%x, current state is 0x%x\n",
9894 				   state, curr_state);
9895 			return -ETIMEDOUT;
9896 		}
9897 		usleep_range(1950, 2050); /* sleep 2ms-ish */
9898 	}
9899 
9900 	return 0;
9901 }
9902 
9903 static const char *state_completed_string(u32 completed)
9904 {
9905 	static const char * const state_completed[] = {
9906 		"EstablishComm",
9907 		"OptimizeEQ",
9908 		"VerifyCap"
9909 	};
9910 
9911 	if (completed < ARRAY_SIZE(state_completed))
9912 		return state_completed[completed];
9913 
9914 	return "unknown";
9915 }
9916 
9917 static const char all_lanes_dead_timeout_expired[] =
9918 	"All lanes were inactive – was the interconnect media removed?";
9919 static const char tx_out_of_policy[] =
9920 	"Passing lanes on local port do not meet the local link width policy";
9921 static const char no_state_complete[] =
9922 	"State timeout occurred before link partner completed the state";
9923 static const char * const state_complete_reasons[] = {
9924 	[0x00] = "Reason unknown",
9925 	[0x01] = "Link was halted by driver, refer to LinkDownReason",
9926 	[0x02] = "Link partner reported failure",
9927 	[0x10] = "Unable to achieve frame sync on any lane",
9928 	[0x11] =
9929 	  "Unable to find a common bit rate with the link partner",
9930 	[0x12] =
9931 	  "Unable to achieve frame sync on sufficient lanes to meet the local link width policy",
9932 	[0x13] =
9933 	  "Unable to identify preset equalization on sufficient lanes to meet the local link width policy",
9934 	[0x14] = no_state_complete,
9935 	[0x15] =
9936 	  "State timeout occurred before link partner identified equalization presets",
9937 	[0x16] =
9938 	  "Link partner completed the EstablishComm state, but the passing lanes do not meet the local link width policy",
9939 	[0x17] = tx_out_of_policy,
9940 	[0x20] = all_lanes_dead_timeout_expired,
9941 	[0x21] =
9942 	  "Unable to achieve acceptable BER on sufficient lanes to meet the local link width policy",
9943 	[0x22] = no_state_complete,
9944 	[0x23] =
9945 	  "Link partner completed the OptimizeEq state, but the passing lanes do not meet the local link width policy",
9946 	[0x24] = tx_out_of_policy,
9947 	[0x30] = all_lanes_dead_timeout_expired,
9948 	[0x31] =
9949 	  "State timeout occurred waiting for host to process received frames",
9950 	[0x32] = no_state_complete,
9951 	[0x33] =
9952 	  "Link partner completed the VerifyCap state, but the passing lanes do not meet the local link width policy",
9953 	[0x34] = tx_out_of_policy,
9954 };
9955 
9956 static const char *state_complete_reason_code_string(struct hfi1_pportdata *ppd,
9957 						     u32 code)
9958 {
9959 	const char *str = NULL;
9960 
9961 	if (code < ARRAY_SIZE(state_complete_reasons))
9962 		str = state_complete_reasons[code];
9963 
9964 	if (str)
9965 		return str;
9966 	return "Reserved";
9967 }
9968 
9969 /* describe the given last state complete frame */
9970 static void decode_state_complete(struct hfi1_pportdata *ppd, u32 frame,
9971 				  const char *prefix)
9972 {
9973 	struct hfi1_devdata *dd = ppd->dd;
9974 	u32 success;
9975 	u32 state;
9976 	u32 reason;
9977 	u32 lanes;
9978 
9979 	/*
9980 	 * Decode frame:
9981 	 *  [ 0: 0] - success
9982 	 *  [ 3: 1] - state
9983 	 *  [ 7: 4] - next state timeout
9984 	 *  [15: 8] - reason code
9985 	 *  [31:16] - lanes
9986 	 */
9987 	success = frame & 0x1;
9988 	state = (frame >> 1) & 0x7;
9989 	reason = (frame >> 8) & 0xff;
9990 	lanes = (frame >> 16) & 0xffff;
9991 
9992 	dd_dev_err(dd, "Last %s LNI state complete frame 0x%08x:\n",
9993 		   prefix, frame);
9994 	dd_dev_err(dd, "    last reported state state: %s (0x%x)\n",
9995 		   state_completed_string(state), state);
9996 	dd_dev_err(dd, "    state successfully completed: %s\n",
9997 		   success ? "yes" : "no");
9998 	dd_dev_err(dd, "    fail reason 0x%x: %s\n",
9999 		   reason, state_complete_reason_code_string(ppd, reason));
10000 	dd_dev_err(dd, "    passing lane mask: 0x%x", lanes);
10001 }
10002 
10003 /*
10004  * Read the last state complete frames and explain them.  This routine
10005  * expects to be called if the link went down during link negotiation
10006  * and initialization (LNI).  That is, anywhere between polling and link up.
10007  */
10008 static void check_lni_states(struct hfi1_pportdata *ppd)
10009 {
10010 	u32 last_local_state;
10011 	u32 last_remote_state;
10012 
10013 	read_last_local_state(ppd->dd, &last_local_state);
10014 	read_last_remote_state(ppd->dd, &last_remote_state);
10015 
10016 	/*
10017 	 * Don't report anything if there is nothing to report.  A value of
10018 	 * 0 means the link was taken down while polling and there was no
10019 	 * training in-process.
10020 	 */
10021 	if (last_local_state == 0 && last_remote_state == 0)
10022 		return;
10023 
10024 	decode_state_complete(ppd, last_local_state, "transmitted");
10025 	decode_state_complete(ppd, last_remote_state, "received");
10026 }
10027 
10028 /*
10029  * Helper for set_link_state().  Do not call except from that routine.
10030  * Expects ppd->hls_mutex to be held.
10031  *
10032  * @rem_reason value to be sent to the neighbor
10033  *
10034  * LinkDownReasons only set if transition succeeds.
10035  */
10036 static int goto_offline(struct hfi1_pportdata *ppd, u8 rem_reason)
10037 {
10038 	struct hfi1_devdata *dd = ppd->dd;
10039 	u32 pstate, previous_state;
10040 	int ret;
10041 	int do_transition;
10042 	int do_wait;
10043 
10044 	previous_state = ppd->host_link_state;
10045 	ppd->host_link_state = HLS_GOING_OFFLINE;
10046 	pstate = read_physical_state(dd);
10047 	if (pstate == PLS_OFFLINE) {
10048 		do_transition = 0;	/* in right state */
10049 		do_wait = 0;		/* ...no need to wait */
10050 	} else if ((pstate & 0xff) == PLS_OFFLINE) {
10051 		do_transition = 0;	/* in an offline transient state */
10052 		do_wait = 1;		/* ...wait for it to settle */
10053 	} else {
10054 		do_transition = 1;	/* need to move to offline */
10055 		do_wait = 1;		/* ...will need to wait */
10056 	}
10057 
10058 	if (do_transition) {
10059 		ret = set_physical_link_state(dd,
10060 					      (rem_reason << 8) | PLS_OFFLINE);
10061 
10062 		if (ret != HCMD_SUCCESS) {
10063 			dd_dev_err(dd,
10064 				   "Failed to transition to Offline link state, return %d\n",
10065 				   ret);
10066 			return -EINVAL;
10067 		}
10068 		if (ppd->offline_disabled_reason ==
10069 				HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE))
10070 			ppd->offline_disabled_reason =
10071 			HFI1_ODR_MASK(OPA_LINKDOWN_REASON_TRANSIENT);
10072 	}
10073 
10074 	if (do_wait) {
10075 		/* it can take a while for the link to go down */
10076 		ret = wait_phy_linkstate(dd, PLS_OFFLINE, 10000);
10077 		if (ret < 0)
10078 			return ret;
10079 	}
10080 
10081 	/* make sure the logical state is also down */
10082 	wait_logical_linkstate(ppd, IB_PORT_DOWN, 1000);
10083 
10084 	/*
10085 	 * Now in charge of LCB - must be after the physical state is
10086 	 * offline.quiet and before host_link_state is changed.
10087 	 */
10088 	set_host_lcb_access(dd);
10089 	write_csr(dd, DC_LCB_ERR_EN, ~0ull); /* watch LCB errors */
10090 	ppd->host_link_state = HLS_LINK_COOLDOWN; /* LCB access allowed */
10091 
10092 	if (ppd->port_type == PORT_TYPE_QSFP &&
10093 	    ppd->qsfp_info.limiting_active &&
10094 	    qsfp_mod_present(ppd)) {
10095 		int ret;
10096 
10097 		ret = acquire_chip_resource(dd, qsfp_resource(dd), QSFP_WAIT);
10098 		if (ret == 0) {
10099 			set_qsfp_tx(ppd, 0);
10100 			release_chip_resource(dd, qsfp_resource(dd));
10101 		} else {
10102 			/* not fatal, but should warn */
10103 			dd_dev_err(dd,
10104 				   "Unable to acquire lock to turn off QSFP TX\n");
10105 		}
10106 	}
10107 
10108 	/*
10109 	 * The LNI has a mandatory wait time after the physical state
10110 	 * moves to Offline.Quiet.  The wait time may be different
10111 	 * depending on how the link went down.  The 8051 firmware
10112 	 * will observe the needed wait time and only move to ready
10113 	 * when that is completed.  The largest of the quiet timeouts
10114 	 * is 6s, so wait that long and then at least 0.5s more for
10115 	 * other transitions, and another 0.5s for a buffer.
10116 	 */
10117 	ret = wait_fm_ready(dd, 7000);
10118 	if (ret) {
10119 		dd_dev_err(dd,
10120 			   "After going offline, timed out waiting for the 8051 to become ready to accept host requests\n");
10121 		/* state is really offline, so make it so */
10122 		ppd->host_link_state = HLS_DN_OFFLINE;
10123 		return ret;
10124 	}
10125 
10126 	/*
10127 	 * The state is now offline and the 8051 is ready to accept host
10128 	 * requests.
10129 	 *	- change our state
10130 	 *	- notify others if we were previously in a linkup state
10131 	 */
10132 	ppd->host_link_state = HLS_DN_OFFLINE;
10133 	if (previous_state & HLS_UP) {
10134 		/* went down while link was up */
10135 		handle_linkup_change(dd, 0);
10136 	} else if (previous_state
10137 			& (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) {
10138 		/* went down while attempting link up */
10139 		check_lni_states(ppd);
10140 	}
10141 
10142 	/* the active link width (downgrade) is 0 on link down */
10143 	ppd->link_width_active = 0;
10144 	ppd->link_width_downgrade_tx_active = 0;
10145 	ppd->link_width_downgrade_rx_active = 0;
10146 	ppd->current_egress_rate = 0;
10147 	return 0;
10148 }
10149 
10150 /* return the link state name */
10151 static const char *link_state_name(u32 state)
10152 {
10153 	const char *name;
10154 	int n = ilog2(state);
10155 	static const char * const names[] = {
10156 		[__HLS_UP_INIT_BP]	 = "INIT",
10157 		[__HLS_UP_ARMED_BP]	 = "ARMED",
10158 		[__HLS_UP_ACTIVE_BP]	 = "ACTIVE",
10159 		[__HLS_DN_DOWNDEF_BP]	 = "DOWNDEF",
10160 		[__HLS_DN_POLL_BP]	 = "POLL",
10161 		[__HLS_DN_DISABLE_BP]	 = "DISABLE",
10162 		[__HLS_DN_OFFLINE_BP]	 = "OFFLINE",
10163 		[__HLS_VERIFY_CAP_BP]	 = "VERIFY_CAP",
10164 		[__HLS_GOING_UP_BP]	 = "GOING_UP",
10165 		[__HLS_GOING_OFFLINE_BP] = "GOING_OFFLINE",
10166 		[__HLS_LINK_COOLDOWN_BP] = "LINK_COOLDOWN"
10167 	};
10168 
10169 	name = n < ARRAY_SIZE(names) ? names[n] : NULL;
10170 	return name ? name : "unknown";
10171 }
10172 
10173 /* return the link state reason name */
10174 static const char *link_state_reason_name(struct hfi1_pportdata *ppd, u32 state)
10175 {
10176 	if (state == HLS_UP_INIT) {
10177 		switch (ppd->linkinit_reason) {
10178 		case OPA_LINKINIT_REASON_LINKUP:
10179 			return "(LINKUP)";
10180 		case OPA_LINKINIT_REASON_FLAPPING:
10181 			return "(FLAPPING)";
10182 		case OPA_LINKINIT_OUTSIDE_POLICY:
10183 			return "(OUTSIDE_POLICY)";
10184 		case OPA_LINKINIT_QUARANTINED:
10185 			return "(QUARANTINED)";
10186 		case OPA_LINKINIT_INSUFIC_CAPABILITY:
10187 			return "(INSUFIC_CAPABILITY)";
10188 		default:
10189 			break;
10190 		}
10191 	}
10192 	return "";
10193 }
10194 
10195 /*
10196  * driver_physical_state - convert the driver's notion of a port's
10197  * state (an HLS_*) into a physical state (a {IB,OPA}_PORTPHYSSTATE_*).
10198  * Return -1 (converted to a u32) to indicate error.
10199  */
10200 u32 driver_physical_state(struct hfi1_pportdata *ppd)
10201 {
10202 	switch (ppd->host_link_state) {
10203 	case HLS_UP_INIT:
10204 	case HLS_UP_ARMED:
10205 	case HLS_UP_ACTIVE:
10206 		return IB_PORTPHYSSTATE_LINKUP;
10207 	case HLS_DN_POLL:
10208 		return IB_PORTPHYSSTATE_POLLING;
10209 	case HLS_DN_DISABLE:
10210 		return IB_PORTPHYSSTATE_DISABLED;
10211 	case HLS_DN_OFFLINE:
10212 		return OPA_PORTPHYSSTATE_OFFLINE;
10213 	case HLS_VERIFY_CAP:
10214 		return IB_PORTPHYSSTATE_POLLING;
10215 	case HLS_GOING_UP:
10216 		return IB_PORTPHYSSTATE_POLLING;
10217 	case HLS_GOING_OFFLINE:
10218 		return OPA_PORTPHYSSTATE_OFFLINE;
10219 	case HLS_LINK_COOLDOWN:
10220 		return OPA_PORTPHYSSTATE_OFFLINE;
10221 	case HLS_DN_DOWNDEF:
10222 	default:
10223 		dd_dev_err(ppd->dd, "invalid host_link_state 0x%x\n",
10224 			   ppd->host_link_state);
10225 		return  -1;
10226 	}
10227 }
10228 
10229 /*
10230  * driver_logical_state - convert the driver's notion of a port's
10231  * state (an HLS_*) into a logical state (a IB_PORT_*). Return -1
10232  * (converted to a u32) to indicate error.
10233  */
10234 u32 driver_logical_state(struct hfi1_pportdata *ppd)
10235 {
10236 	if (ppd->host_link_state && (ppd->host_link_state & HLS_DOWN))
10237 		return IB_PORT_DOWN;
10238 
10239 	switch (ppd->host_link_state & HLS_UP) {
10240 	case HLS_UP_INIT:
10241 		return IB_PORT_INIT;
10242 	case HLS_UP_ARMED:
10243 		return IB_PORT_ARMED;
10244 	case HLS_UP_ACTIVE:
10245 		return IB_PORT_ACTIVE;
10246 	default:
10247 		dd_dev_err(ppd->dd, "invalid host_link_state 0x%x\n",
10248 			   ppd->host_link_state);
10249 	return -1;
10250 	}
10251 }
10252 
10253 void set_link_down_reason(struct hfi1_pportdata *ppd, u8 lcl_reason,
10254 			  u8 neigh_reason, u8 rem_reason)
10255 {
10256 	if (ppd->local_link_down_reason.latest == 0 &&
10257 	    ppd->neigh_link_down_reason.latest == 0) {
10258 		ppd->local_link_down_reason.latest = lcl_reason;
10259 		ppd->neigh_link_down_reason.latest = neigh_reason;
10260 		ppd->remote_link_down_reason = rem_reason;
10261 	}
10262 }
10263 
10264 /*
10265  * Change the physical and/or logical link state.
10266  *
10267  * Do not call this routine while inside an interrupt.  It contains
10268  * calls to routines that can take multiple seconds to finish.
10269  *
10270  * Returns 0 on success, -errno on failure.
10271  */
10272 int set_link_state(struct hfi1_pportdata *ppd, u32 state)
10273 {
10274 	struct hfi1_devdata *dd = ppd->dd;
10275 	struct ib_event event = {.device = NULL};
10276 	int ret1, ret = 0;
10277 	int orig_new_state, poll_bounce;
10278 
10279 	mutex_lock(&ppd->hls_lock);
10280 
10281 	orig_new_state = state;
10282 	if (state == HLS_DN_DOWNDEF)
10283 		state = dd->link_default;
10284 
10285 	/* interpret poll -> poll as a link bounce */
10286 	poll_bounce = ppd->host_link_state == HLS_DN_POLL &&
10287 		      state == HLS_DN_POLL;
10288 
10289 	dd_dev_info(dd, "%s: current %s, new %s %s%s\n", __func__,
10290 		    link_state_name(ppd->host_link_state),
10291 		    link_state_name(orig_new_state),
10292 		    poll_bounce ? "(bounce) " : "",
10293 		    link_state_reason_name(ppd, state));
10294 
10295 	/*
10296 	 * If we're going to a (HLS_*) link state that implies the logical
10297 	 * link state is neither of (IB_PORT_ARMED, IB_PORT_ACTIVE), then
10298 	 * reset is_sm_config_started to 0.
10299 	 */
10300 	if (!(state & (HLS_UP_ARMED | HLS_UP_ACTIVE)))
10301 		ppd->is_sm_config_started = 0;
10302 
10303 	/*
10304 	 * Do nothing if the states match.  Let a poll to poll link bounce
10305 	 * go through.
10306 	 */
10307 	if (ppd->host_link_state == state && !poll_bounce)
10308 		goto done;
10309 
10310 	switch (state) {
10311 	case HLS_UP_INIT:
10312 		if (ppd->host_link_state == HLS_DN_POLL &&
10313 		    (quick_linkup || dd->icode == ICODE_FUNCTIONAL_SIMULATOR)) {
10314 			/*
10315 			 * Quick link up jumps from polling to here.
10316 			 *
10317 			 * Whether in normal or loopback mode, the
10318 			 * simulator jumps from polling to link up.
10319 			 * Accept that here.
10320 			 */
10321 			/* OK */
10322 		} else if (ppd->host_link_state != HLS_GOING_UP) {
10323 			goto unexpected;
10324 		}
10325 
10326 		ppd->host_link_state = HLS_UP_INIT;
10327 		ret = wait_logical_linkstate(ppd, IB_PORT_INIT, 1000);
10328 		if (ret) {
10329 			/* logical state didn't change, stay at going_up */
10330 			ppd->host_link_state = HLS_GOING_UP;
10331 			dd_dev_err(dd,
10332 				   "%s: logical state did not change to INIT\n",
10333 				   __func__);
10334 		} else {
10335 			/* clear old transient LINKINIT_REASON code */
10336 			if (ppd->linkinit_reason >= OPA_LINKINIT_REASON_CLEAR)
10337 				ppd->linkinit_reason =
10338 					OPA_LINKINIT_REASON_LINKUP;
10339 
10340 			/* enable the port */
10341 			add_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
10342 
10343 			handle_linkup_change(dd, 1);
10344 		}
10345 		break;
10346 	case HLS_UP_ARMED:
10347 		if (ppd->host_link_state != HLS_UP_INIT)
10348 			goto unexpected;
10349 
10350 		ppd->host_link_state = HLS_UP_ARMED;
10351 		set_logical_state(dd, LSTATE_ARMED);
10352 		ret = wait_logical_linkstate(ppd, IB_PORT_ARMED, 1000);
10353 		if (ret) {
10354 			/* logical state didn't change, stay at init */
10355 			ppd->host_link_state = HLS_UP_INIT;
10356 			dd_dev_err(dd,
10357 				   "%s: logical state did not change to ARMED\n",
10358 				   __func__);
10359 		}
10360 		/*
10361 		 * The simulator does not currently implement SMA messages,
10362 		 * so neighbor_normal is not set.  Set it here when we first
10363 		 * move to Armed.
10364 		 */
10365 		if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR)
10366 			ppd->neighbor_normal = 1;
10367 		break;
10368 	case HLS_UP_ACTIVE:
10369 		if (ppd->host_link_state != HLS_UP_ARMED)
10370 			goto unexpected;
10371 
10372 		ppd->host_link_state = HLS_UP_ACTIVE;
10373 		set_logical_state(dd, LSTATE_ACTIVE);
10374 		ret = wait_logical_linkstate(ppd, IB_PORT_ACTIVE, 1000);
10375 		if (ret) {
10376 			/* logical state didn't change, stay at armed */
10377 			ppd->host_link_state = HLS_UP_ARMED;
10378 			dd_dev_err(dd,
10379 				   "%s: logical state did not change to ACTIVE\n",
10380 				   __func__);
10381 		} else {
10382 			/* tell all engines to go running */
10383 			sdma_all_running(dd);
10384 
10385 			/* Signal the IB layer that the port has went active */
10386 			event.device = &dd->verbs_dev.rdi.ibdev;
10387 			event.element.port_num = ppd->port;
10388 			event.event = IB_EVENT_PORT_ACTIVE;
10389 		}
10390 		break;
10391 	case HLS_DN_POLL:
10392 		if ((ppd->host_link_state == HLS_DN_DISABLE ||
10393 		     ppd->host_link_state == HLS_DN_OFFLINE) &&
10394 		    dd->dc_shutdown)
10395 			dc_start(dd);
10396 		/* Hand LED control to the DC */
10397 		write_csr(dd, DCC_CFG_LED_CNTRL, 0);
10398 
10399 		if (ppd->host_link_state != HLS_DN_OFFLINE) {
10400 			u8 tmp = ppd->link_enabled;
10401 
10402 			ret = goto_offline(ppd, ppd->remote_link_down_reason);
10403 			if (ret) {
10404 				ppd->link_enabled = tmp;
10405 				break;
10406 			}
10407 			ppd->remote_link_down_reason = 0;
10408 
10409 			if (ppd->driver_link_ready)
10410 				ppd->link_enabled = 1;
10411 		}
10412 
10413 		set_all_slowpath(ppd->dd);
10414 		ret = set_local_link_attributes(ppd);
10415 		if (ret)
10416 			break;
10417 
10418 		ppd->port_error_action = 0;
10419 		ppd->host_link_state = HLS_DN_POLL;
10420 
10421 		if (quick_linkup) {
10422 			/* quick linkup does not go into polling */
10423 			ret = do_quick_linkup(dd);
10424 		} else {
10425 			ret1 = set_physical_link_state(dd, PLS_POLLING);
10426 			if (ret1 != HCMD_SUCCESS) {
10427 				dd_dev_err(dd,
10428 					   "Failed to transition to Polling link state, return 0x%x\n",
10429 					   ret1);
10430 				ret = -EINVAL;
10431 			}
10432 		}
10433 		ppd->offline_disabled_reason =
10434 			HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE);
10435 		/*
10436 		 * If an error occurred above, go back to offline.  The
10437 		 * caller may reschedule another attempt.
10438 		 */
10439 		if (ret)
10440 			goto_offline(ppd, 0);
10441 		break;
10442 	case HLS_DN_DISABLE:
10443 		/* link is disabled */
10444 		ppd->link_enabled = 0;
10445 
10446 		/* allow any state to transition to disabled */
10447 
10448 		/* must transition to offline first */
10449 		if (ppd->host_link_state != HLS_DN_OFFLINE) {
10450 			ret = goto_offline(ppd, ppd->remote_link_down_reason);
10451 			if (ret)
10452 				break;
10453 			ppd->remote_link_down_reason = 0;
10454 		}
10455 
10456 		ret1 = set_physical_link_state(dd, PLS_DISABLED);
10457 		if (ret1 != HCMD_SUCCESS) {
10458 			dd_dev_err(dd,
10459 				   "Failed to transition to Disabled link state, return 0x%x\n",
10460 				   ret1);
10461 			ret = -EINVAL;
10462 			break;
10463 		}
10464 		ppd->host_link_state = HLS_DN_DISABLE;
10465 		dc_shutdown(dd);
10466 		break;
10467 	case HLS_DN_OFFLINE:
10468 		if (ppd->host_link_state == HLS_DN_DISABLE)
10469 			dc_start(dd);
10470 
10471 		/* allow any state to transition to offline */
10472 		ret = goto_offline(ppd, ppd->remote_link_down_reason);
10473 		if (!ret)
10474 			ppd->remote_link_down_reason = 0;
10475 		break;
10476 	case HLS_VERIFY_CAP:
10477 		if (ppd->host_link_state != HLS_DN_POLL)
10478 			goto unexpected;
10479 		ppd->host_link_state = HLS_VERIFY_CAP;
10480 		break;
10481 	case HLS_GOING_UP:
10482 		if (ppd->host_link_state != HLS_VERIFY_CAP)
10483 			goto unexpected;
10484 
10485 		ret1 = set_physical_link_state(dd, PLS_LINKUP);
10486 		if (ret1 != HCMD_SUCCESS) {
10487 			dd_dev_err(dd,
10488 				   "Failed to transition to link up state, return 0x%x\n",
10489 				   ret1);
10490 			ret = -EINVAL;
10491 			break;
10492 		}
10493 		ppd->host_link_state = HLS_GOING_UP;
10494 		break;
10495 
10496 	case HLS_GOING_OFFLINE:		/* transient within goto_offline() */
10497 	case HLS_LINK_COOLDOWN:		/* transient within goto_offline() */
10498 	default:
10499 		dd_dev_info(dd, "%s: state 0x%x: not supported\n",
10500 			    __func__, state);
10501 		ret = -EINVAL;
10502 		break;
10503 	}
10504 
10505 	goto done;
10506 
10507 unexpected:
10508 	dd_dev_err(dd, "%s: unexpected state transition from %s to %s\n",
10509 		   __func__, link_state_name(ppd->host_link_state),
10510 		   link_state_name(state));
10511 	ret = -EINVAL;
10512 
10513 done:
10514 	mutex_unlock(&ppd->hls_lock);
10515 
10516 	if (event.device)
10517 		ib_dispatch_event(&event);
10518 
10519 	return ret;
10520 }
10521 
10522 int hfi1_set_ib_cfg(struct hfi1_pportdata *ppd, int which, u32 val)
10523 {
10524 	u64 reg;
10525 	int ret = 0;
10526 
10527 	switch (which) {
10528 	case HFI1_IB_CFG_LIDLMC:
10529 		set_lidlmc(ppd);
10530 		break;
10531 	case HFI1_IB_CFG_VL_HIGH_LIMIT:
10532 		/*
10533 		 * The VL Arbitrator high limit is sent in units of 4k
10534 		 * bytes, while HFI stores it in units of 64 bytes.
10535 		 */
10536 		val *= 4096 / 64;
10537 		reg = ((u64)val & SEND_HIGH_PRIORITY_LIMIT_LIMIT_MASK)
10538 			<< SEND_HIGH_PRIORITY_LIMIT_LIMIT_SHIFT;
10539 		write_csr(ppd->dd, SEND_HIGH_PRIORITY_LIMIT, reg);
10540 		break;
10541 	case HFI1_IB_CFG_LINKDEFAULT: /* IB link default (sleep/poll) */
10542 		/* HFI only supports POLL as the default link down state */
10543 		if (val != HLS_DN_POLL)
10544 			ret = -EINVAL;
10545 		break;
10546 	case HFI1_IB_CFG_OP_VLS:
10547 		if (ppd->vls_operational != val) {
10548 			ppd->vls_operational = val;
10549 			if (!ppd->port)
10550 				ret = -EINVAL;
10551 		}
10552 		break;
10553 	/*
10554 	 * For link width, link width downgrade, and speed enable, always AND
10555 	 * the setting with what is actually supported.  This has two benefits.
10556 	 * First, enabled can't have unsupported values, no matter what the
10557 	 * SM or FM might want.  Second, the ALL_SUPPORTED wildcards that mean
10558 	 * "fill in with your supported value" have all the bits in the
10559 	 * field set, so simply ANDing with supported has the desired result.
10560 	 */
10561 	case HFI1_IB_CFG_LWID_ENB: /* set allowed Link-width */
10562 		ppd->link_width_enabled = val & ppd->link_width_supported;
10563 		break;
10564 	case HFI1_IB_CFG_LWID_DG_ENB: /* set allowed link width downgrade */
10565 		ppd->link_width_downgrade_enabled =
10566 				val & ppd->link_width_downgrade_supported;
10567 		break;
10568 	case HFI1_IB_CFG_SPD_ENB: /* allowed Link speeds */
10569 		ppd->link_speed_enabled = val & ppd->link_speed_supported;
10570 		break;
10571 	case HFI1_IB_CFG_OVERRUN_THRESH: /* IB overrun threshold */
10572 		/*
10573 		 * HFI does not follow IB specs, save this value
10574 		 * so we can report it, if asked.
10575 		 */
10576 		ppd->overrun_threshold = val;
10577 		break;
10578 	case HFI1_IB_CFG_PHYERR_THRESH: /* IB PHY error threshold */
10579 		/*
10580 		 * HFI does not follow IB specs, save this value
10581 		 * so we can report it, if asked.
10582 		 */
10583 		ppd->phy_error_threshold = val;
10584 		break;
10585 
10586 	case HFI1_IB_CFG_MTU:
10587 		set_send_length(ppd);
10588 		break;
10589 
10590 	case HFI1_IB_CFG_PKEYS:
10591 		if (HFI1_CAP_IS_KSET(PKEY_CHECK))
10592 			set_partition_keys(ppd);
10593 		break;
10594 
10595 	default:
10596 		if (HFI1_CAP_IS_KSET(PRINT_UNIMPL))
10597 			dd_dev_info(ppd->dd,
10598 				    "%s: which %s, val 0x%x: not implemented\n",
10599 				    __func__, ib_cfg_name(which), val);
10600 		break;
10601 	}
10602 	return ret;
10603 }
10604 
10605 /* begin functions related to vl arbitration table caching */
10606 static void init_vl_arb_caches(struct hfi1_pportdata *ppd)
10607 {
10608 	int i;
10609 
10610 	BUILD_BUG_ON(VL_ARB_TABLE_SIZE !=
10611 			VL_ARB_LOW_PRIO_TABLE_SIZE);
10612 	BUILD_BUG_ON(VL_ARB_TABLE_SIZE !=
10613 			VL_ARB_HIGH_PRIO_TABLE_SIZE);
10614 
10615 	/*
10616 	 * Note that we always return values directly from the
10617 	 * 'vl_arb_cache' (and do no CSR reads) in response to a
10618 	 * 'Get(VLArbTable)'. This is obviously correct after a
10619 	 * 'Set(VLArbTable)', since the cache will then be up to
10620 	 * date. But it's also correct prior to any 'Set(VLArbTable)'
10621 	 * since then both the cache, and the relevant h/w registers
10622 	 * will be zeroed.
10623 	 */
10624 
10625 	for (i = 0; i < MAX_PRIO_TABLE; i++)
10626 		spin_lock_init(&ppd->vl_arb_cache[i].lock);
10627 }
10628 
10629 /*
10630  * vl_arb_lock_cache
10631  *
10632  * All other vl_arb_* functions should be called only after locking
10633  * the cache.
10634  */
10635 static inline struct vl_arb_cache *
10636 vl_arb_lock_cache(struct hfi1_pportdata *ppd, int idx)
10637 {
10638 	if (idx != LO_PRIO_TABLE && idx != HI_PRIO_TABLE)
10639 		return NULL;
10640 	spin_lock(&ppd->vl_arb_cache[idx].lock);
10641 	return &ppd->vl_arb_cache[idx];
10642 }
10643 
10644 static inline void vl_arb_unlock_cache(struct hfi1_pportdata *ppd, int idx)
10645 {
10646 	spin_unlock(&ppd->vl_arb_cache[idx].lock);
10647 }
10648 
10649 static void vl_arb_get_cache(struct vl_arb_cache *cache,
10650 			     struct ib_vl_weight_elem *vl)
10651 {
10652 	memcpy(vl, cache->table, VL_ARB_TABLE_SIZE * sizeof(*vl));
10653 }
10654 
10655 static void vl_arb_set_cache(struct vl_arb_cache *cache,
10656 			     struct ib_vl_weight_elem *vl)
10657 {
10658 	memcpy(cache->table, vl, VL_ARB_TABLE_SIZE * sizeof(*vl));
10659 }
10660 
10661 static int vl_arb_match_cache(struct vl_arb_cache *cache,
10662 			      struct ib_vl_weight_elem *vl)
10663 {
10664 	return !memcmp(cache->table, vl, VL_ARB_TABLE_SIZE * sizeof(*vl));
10665 }
10666 
10667 /* end functions related to vl arbitration table caching */
10668 
10669 static int set_vl_weights(struct hfi1_pportdata *ppd, u32 target,
10670 			  u32 size, struct ib_vl_weight_elem *vl)
10671 {
10672 	struct hfi1_devdata *dd = ppd->dd;
10673 	u64 reg;
10674 	unsigned int i, is_up = 0;
10675 	int drain, ret = 0;
10676 
10677 	mutex_lock(&ppd->hls_lock);
10678 
10679 	if (ppd->host_link_state & HLS_UP)
10680 		is_up = 1;
10681 
10682 	drain = !is_ax(dd) && is_up;
10683 
10684 	if (drain)
10685 		/*
10686 		 * Before adjusting VL arbitration weights, empty per-VL
10687 		 * FIFOs, otherwise a packet whose VL weight is being
10688 		 * set to 0 could get stuck in a FIFO with no chance to
10689 		 * egress.
10690 		 */
10691 		ret = stop_drain_data_vls(dd);
10692 
10693 	if (ret) {
10694 		dd_dev_err(
10695 			dd,
10696 			"%s: cannot stop/drain VLs - refusing to change VL arbitration weights\n",
10697 			__func__);
10698 		goto err;
10699 	}
10700 
10701 	for (i = 0; i < size; i++, vl++) {
10702 		/*
10703 		 * NOTE: The low priority shift and mask are used here, but
10704 		 * they are the same for both the low and high registers.
10705 		 */
10706 		reg = (((u64)vl->vl & SEND_LOW_PRIORITY_LIST_VL_MASK)
10707 				<< SEND_LOW_PRIORITY_LIST_VL_SHIFT)
10708 		      | (((u64)vl->weight
10709 				& SEND_LOW_PRIORITY_LIST_WEIGHT_MASK)
10710 				<< SEND_LOW_PRIORITY_LIST_WEIGHT_SHIFT);
10711 		write_csr(dd, target + (i * 8), reg);
10712 	}
10713 	pio_send_control(dd, PSC_GLOBAL_VLARB_ENABLE);
10714 
10715 	if (drain)
10716 		open_fill_data_vls(dd); /* reopen all VLs */
10717 
10718 err:
10719 	mutex_unlock(&ppd->hls_lock);
10720 
10721 	return ret;
10722 }
10723 
10724 /*
10725  * Read one credit merge VL register.
10726  */
10727 static void read_one_cm_vl(struct hfi1_devdata *dd, u32 csr,
10728 			   struct vl_limit *vll)
10729 {
10730 	u64 reg = read_csr(dd, csr);
10731 
10732 	vll->dedicated = cpu_to_be16(
10733 		(reg >> SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SHIFT)
10734 		& SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_MASK);
10735 	vll->shared = cpu_to_be16(
10736 		(reg >> SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SHIFT)
10737 		& SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_MASK);
10738 }
10739 
10740 /*
10741  * Read the current credit merge limits.
10742  */
10743 static int get_buffer_control(struct hfi1_devdata *dd,
10744 			      struct buffer_control *bc, u16 *overall_limit)
10745 {
10746 	u64 reg;
10747 	int i;
10748 
10749 	/* not all entries are filled in */
10750 	memset(bc, 0, sizeof(*bc));
10751 
10752 	/* OPA and HFI have a 1-1 mapping */
10753 	for (i = 0; i < TXE_NUM_DATA_VL; i++)
10754 		read_one_cm_vl(dd, SEND_CM_CREDIT_VL + (8 * i), &bc->vl[i]);
10755 
10756 	/* NOTE: assumes that VL* and VL15 CSRs are bit-wise identical */
10757 	read_one_cm_vl(dd, SEND_CM_CREDIT_VL15, &bc->vl[15]);
10758 
10759 	reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
10760 	bc->overall_shared_limit = cpu_to_be16(
10761 		(reg >> SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SHIFT)
10762 		& SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_MASK);
10763 	if (overall_limit)
10764 		*overall_limit = (reg
10765 			>> SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT)
10766 			& SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_MASK;
10767 	return sizeof(struct buffer_control);
10768 }
10769 
10770 static int get_sc2vlnt(struct hfi1_devdata *dd, struct sc2vlnt *dp)
10771 {
10772 	u64 reg;
10773 	int i;
10774 
10775 	/* each register contains 16 SC->VLnt mappings, 4 bits each */
10776 	reg = read_csr(dd, DCC_CFG_SC_VL_TABLE_15_0);
10777 	for (i = 0; i < sizeof(u64); i++) {
10778 		u8 byte = *(((u8 *)&reg) + i);
10779 
10780 		dp->vlnt[2 * i] = byte & 0xf;
10781 		dp->vlnt[(2 * i) + 1] = (byte & 0xf0) >> 4;
10782 	}
10783 
10784 	reg = read_csr(dd, DCC_CFG_SC_VL_TABLE_31_16);
10785 	for (i = 0; i < sizeof(u64); i++) {
10786 		u8 byte = *(((u8 *)&reg) + i);
10787 
10788 		dp->vlnt[16 + (2 * i)] = byte & 0xf;
10789 		dp->vlnt[16 + (2 * i) + 1] = (byte & 0xf0) >> 4;
10790 	}
10791 	return sizeof(struct sc2vlnt);
10792 }
10793 
10794 static void get_vlarb_preempt(struct hfi1_devdata *dd, u32 nelems,
10795 			      struct ib_vl_weight_elem *vl)
10796 {
10797 	unsigned int i;
10798 
10799 	for (i = 0; i < nelems; i++, vl++) {
10800 		vl->vl = 0xf;
10801 		vl->weight = 0;
10802 	}
10803 }
10804 
10805 static void set_sc2vlnt(struct hfi1_devdata *dd, struct sc2vlnt *dp)
10806 {
10807 	write_csr(dd, DCC_CFG_SC_VL_TABLE_15_0,
10808 		  DC_SC_VL_VAL(15_0,
10809 			       0, dp->vlnt[0] & 0xf,
10810 			       1, dp->vlnt[1] & 0xf,
10811 			       2, dp->vlnt[2] & 0xf,
10812 			       3, dp->vlnt[3] & 0xf,
10813 			       4, dp->vlnt[4] & 0xf,
10814 			       5, dp->vlnt[5] & 0xf,
10815 			       6, dp->vlnt[6] & 0xf,
10816 			       7, dp->vlnt[7] & 0xf,
10817 			       8, dp->vlnt[8] & 0xf,
10818 			       9, dp->vlnt[9] & 0xf,
10819 			       10, dp->vlnt[10] & 0xf,
10820 			       11, dp->vlnt[11] & 0xf,
10821 			       12, dp->vlnt[12] & 0xf,
10822 			       13, dp->vlnt[13] & 0xf,
10823 			       14, dp->vlnt[14] & 0xf,
10824 			       15, dp->vlnt[15] & 0xf));
10825 	write_csr(dd, DCC_CFG_SC_VL_TABLE_31_16,
10826 		  DC_SC_VL_VAL(31_16,
10827 			       16, dp->vlnt[16] & 0xf,
10828 			       17, dp->vlnt[17] & 0xf,
10829 			       18, dp->vlnt[18] & 0xf,
10830 			       19, dp->vlnt[19] & 0xf,
10831 			       20, dp->vlnt[20] & 0xf,
10832 			       21, dp->vlnt[21] & 0xf,
10833 			       22, dp->vlnt[22] & 0xf,
10834 			       23, dp->vlnt[23] & 0xf,
10835 			       24, dp->vlnt[24] & 0xf,
10836 			       25, dp->vlnt[25] & 0xf,
10837 			       26, dp->vlnt[26] & 0xf,
10838 			       27, dp->vlnt[27] & 0xf,
10839 			       28, dp->vlnt[28] & 0xf,
10840 			       29, dp->vlnt[29] & 0xf,
10841 			       30, dp->vlnt[30] & 0xf,
10842 			       31, dp->vlnt[31] & 0xf));
10843 }
10844 
10845 static void nonzero_msg(struct hfi1_devdata *dd, int idx, const char *what,
10846 			u16 limit)
10847 {
10848 	if (limit != 0)
10849 		dd_dev_info(dd, "Invalid %s limit %d on VL %d, ignoring\n",
10850 			    what, (int)limit, idx);
10851 }
10852 
10853 /* change only the shared limit portion of SendCmGLobalCredit */
10854 static void set_global_shared(struct hfi1_devdata *dd, u16 limit)
10855 {
10856 	u64 reg;
10857 
10858 	reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
10859 	reg &= ~SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SMASK;
10860 	reg |= (u64)limit << SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SHIFT;
10861 	write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg);
10862 }
10863 
10864 /* change only the total credit limit portion of SendCmGLobalCredit */
10865 static void set_global_limit(struct hfi1_devdata *dd, u16 limit)
10866 {
10867 	u64 reg;
10868 
10869 	reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
10870 	reg &= ~SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SMASK;
10871 	reg |= (u64)limit << SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT;
10872 	write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg);
10873 }
10874 
10875 /* set the given per-VL shared limit */
10876 static void set_vl_shared(struct hfi1_devdata *dd, int vl, u16 limit)
10877 {
10878 	u64 reg;
10879 	u32 addr;
10880 
10881 	if (vl < TXE_NUM_DATA_VL)
10882 		addr = SEND_CM_CREDIT_VL + (8 * vl);
10883 	else
10884 		addr = SEND_CM_CREDIT_VL15;
10885 
10886 	reg = read_csr(dd, addr);
10887 	reg &= ~SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SMASK;
10888 	reg |= (u64)limit << SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SHIFT;
10889 	write_csr(dd, addr, reg);
10890 }
10891 
10892 /* set the given per-VL dedicated limit */
10893 static void set_vl_dedicated(struct hfi1_devdata *dd, int vl, u16 limit)
10894 {
10895 	u64 reg;
10896 	u32 addr;
10897 
10898 	if (vl < TXE_NUM_DATA_VL)
10899 		addr = SEND_CM_CREDIT_VL + (8 * vl);
10900 	else
10901 		addr = SEND_CM_CREDIT_VL15;
10902 
10903 	reg = read_csr(dd, addr);
10904 	reg &= ~SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SMASK;
10905 	reg |= (u64)limit << SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SHIFT;
10906 	write_csr(dd, addr, reg);
10907 }
10908 
10909 /* spin until the given per-VL status mask bits clear */
10910 static void wait_for_vl_status_clear(struct hfi1_devdata *dd, u64 mask,
10911 				     const char *which)
10912 {
10913 	unsigned long timeout;
10914 	u64 reg;
10915 
10916 	timeout = jiffies + msecs_to_jiffies(VL_STATUS_CLEAR_TIMEOUT);
10917 	while (1) {
10918 		reg = read_csr(dd, SEND_CM_CREDIT_USED_STATUS) & mask;
10919 
10920 		if (reg == 0)
10921 			return;	/* success */
10922 		if (time_after(jiffies, timeout))
10923 			break;		/* timed out */
10924 		udelay(1);
10925 	}
10926 
10927 	dd_dev_err(dd,
10928 		   "%s credit change status not clearing after %dms, mask 0x%llx, not clear 0x%llx\n",
10929 		   which, VL_STATUS_CLEAR_TIMEOUT, mask, reg);
10930 	/*
10931 	 * If this occurs, it is likely there was a credit loss on the link.
10932 	 * The only recovery from that is a link bounce.
10933 	 */
10934 	dd_dev_err(dd,
10935 		   "Continuing anyway.  A credit loss may occur.  Suggest a link bounce\n");
10936 }
10937 
10938 /*
10939  * The number of credits on the VLs may be changed while everything
10940  * is "live", but the following algorithm must be followed due to
10941  * how the hardware is actually implemented.  In particular,
10942  * Return_Credit_Status[] is the only correct status check.
10943  *
10944  * if (reducing Global_Shared_Credit_Limit or any shared limit changing)
10945  *     set Global_Shared_Credit_Limit = 0
10946  *     use_all_vl = 1
10947  * mask0 = all VLs that are changing either dedicated or shared limits
10948  * set Shared_Limit[mask0] = 0
10949  * spin until Return_Credit_Status[use_all_vl ? all VL : mask0] == 0
10950  * if (changing any dedicated limit)
10951  *     mask1 = all VLs that are lowering dedicated limits
10952  *     lower Dedicated_Limit[mask1]
10953  *     spin until Return_Credit_Status[mask1] == 0
10954  *     raise Dedicated_Limits
10955  * raise Shared_Limits
10956  * raise Global_Shared_Credit_Limit
10957  *
10958  * lower = if the new limit is lower, set the limit to the new value
10959  * raise = if the new limit is higher than the current value (may be changed
10960  *	earlier in the algorithm), set the new limit to the new value
10961  */
10962 int set_buffer_control(struct hfi1_pportdata *ppd,
10963 		       struct buffer_control *new_bc)
10964 {
10965 	struct hfi1_devdata *dd = ppd->dd;
10966 	u64 changing_mask, ld_mask, stat_mask;
10967 	int change_count;
10968 	int i, use_all_mask;
10969 	int this_shared_changing;
10970 	int vl_count = 0, ret;
10971 	/*
10972 	 * A0: add the variable any_shared_limit_changing below and in the
10973 	 * algorithm above.  If removing A0 support, it can be removed.
10974 	 */
10975 	int any_shared_limit_changing;
10976 	struct buffer_control cur_bc;
10977 	u8 changing[OPA_MAX_VLS];
10978 	u8 lowering_dedicated[OPA_MAX_VLS];
10979 	u16 cur_total;
10980 	u32 new_total = 0;
10981 	const u64 all_mask =
10982 	SEND_CM_CREDIT_USED_STATUS_VL0_RETURN_CREDIT_STATUS_SMASK
10983 	 | SEND_CM_CREDIT_USED_STATUS_VL1_RETURN_CREDIT_STATUS_SMASK
10984 	 | SEND_CM_CREDIT_USED_STATUS_VL2_RETURN_CREDIT_STATUS_SMASK
10985 	 | SEND_CM_CREDIT_USED_STATUS_VL3_RETURN_CREDIT_STATUS_SMASK
10986 	 | SEND_CM_CREDIT_USED_STATUS_VL4_RETURN_CREDIT_STATUS_SMASK
10987 	 | SEND_CM_CREDIT_USED_STATUS_VL5_RETURN_CREDIT_STATUS_SMASK
10988 	 | SEND_CM_CREDIT_USED_STATUS_VL6_RETURN_CREDIT_STATUS_SMASK
10989 	 | SEND_CM_CREDIT_USED_STATUS_VL7_RETURN_CREDIT_STATUS_SMASK
10990 	 | SEND_CM_CREDIT_USED_STATUS_VL15_RETURN_CREDIT_STATUS_SMASK;
10991 
10992 #define valid_vl(idx) ((idx) < TXE_NUM_DATA_VL || (idx) == 15)
10993 #define NUM_USABLE_VLS 16	/* look at VL15 and less */
10994 
10995 	/* find the new total credits, do sanity check on unused VLs */
10996 	for (i = 0; i < OPA_MAX_VLS; i++) {
10997 		if (valid_vl(i)) {
10998 			new_total += be16_to_cpu(new_bc->vl[i].dedicated);
10999 			continue;
11000 		}
11001 		nonzero_msg(dd, i, "dedicated",
11002 			    be16_to_cpu(new_bc->vl[i].dedicated));
11003 		nonzero_msg(dd, i, "shared",
11004 			    be16_to_cpu(new_bc->vl[i].shared));
11005 		new_bc->vl[i].dedicated = 0;
11006 		new_bc->vl[i].shared = 0;
11007 	}
11008 	new_total += be16_to_cpu(new_bc->overall_shared_limit);
11009 
11010 	/* fetch the current values */
11011 	get_buffer_control(dd, &cur_bc, &cur_total);
11012 
11013 	/*
11014 	 * Create the masks we will use.
11015 	 */
11016 	memset(changing, 0, sizeof(changing));
11017 	memset(lowering_dedicated, 0, sizeof(lowering_dedicated));
11018 	/*
11019 	 * NOTE: Assumes that the individual VL bits are adjacent and in
11020 	 * increasing order
11021 	 */
11022 	stat_mask =
11023 		SEND_CM_CREDIT_USED_STATUS_VL0_RETURN_CREDIT_STATUS_SMASK;
11024 	changing_mask = 0;
11025 	ld_mask = 0;
11026 	change_count = 0;
11027 	any_shared_limit_changing = 0;
11028 	for (i = 0; i < NUM_USABLE_VLS; i++, stat_mask <<= 1) {
11029 		if (!valid_vl(i))
11030 			continue;
11031 		this_shared_changing = new_bc->vl[i].shared
11032 						!= cur_bc.vl[i].shared;
11033 		if (this_shared_changing)
11034 			any_shared_limit_changing = 1;
11035 		if (new_bc->vl[i].dedicated != cur_bc.vl[i].dedicated ||
11036 		    this_shared_changing) {
11037 			changing[i] = 1;
11038 			changing_mask |= stat_mask;
11039 			change_count++;
11040 		}
11041 		if (be16_to_cpu(new_bc->vl[i].dedicated) <
11042 					be16_to_cpu(cur_bc.vl[i].dedicated)) {
11043 			lowering_dedicated[i] = 1;
11044 			ld_mask |= stat_mask;
11045 		}
11046 	}
11047 
11048 	/* bracket the credit change with a total adjustment */
11049 	if (new_total > cur_total)
11050 		set_global_limit(dd, new_total);
11051 
11052 	/*
11053 	 * Start the credit change algorithm.
11054 	 */
11055 	use_all_mask = 0;
11056 	if ((be16_to_cpu(new_bc->overall_shared_limit) <
11057 	     be16_to_cpu(cur_bc.overall_shared_limit)) ||
11058 	    (is_ax(dd) && any_shared_limit_changing)) {
11059 		set_global_shared(dd, 0);
11060 		cur_bc.overall_shared_limit = 0;
11061 		use_all_mask = 1;
11062 	}
11063 
11064 	for (i = 0; i < NUM_USABLE_VLS; i++) {
11065 		if (!valid_vl(i))
11066 			continue;
11067 
11068 		if (changing[i]) {
11069 			set_vl_shared(dd, i, 0);
11070 			cur_bc.vl[i].shared = 0;
11071 		}
11072 	}
11073 
11074 	wait_for_vl_status_clear(dd, use_all_mask ? all_mask : changing_mask,
11075 				 "shared");
11076 
11077 	if (change_count > 0) {
11078 		for (i = 0; i < NUM_USABLE_VLS; i++) {
11079 			if (!valid_vl(i))
11080 				continue;
11081 
11082 			if (lowering_dedicated[i]) {
11083 				set_vl_dedicated(dd, i,
11084 						 be16_to_cpu(new_bc->
11085 							     vl[i].dedicated));
11086 				cur_bc.vl[i].dedicated =
11087 						new_bc->vl[i].dedicated;
11088 			}
11089 		}
11090 
11091 		wait_for_vl_status_clear(dd, ld_mask, "dedicated");
11092 
11093 		/* now raise all dedicated that are going up */
11094 		for (i = 0; i < NUM_USABLE_VLS; i++) {
11095 			if (!valid_vl(i))
11096 				continue;
11097 
11098 			if (be16_to_cpu(new_bc->vl[i].dedicated) >
11099 					be16_to_cpu(cur_bc.vl[i].dedicated))
11100 				set_vl_dedicated(dd, i,
11101 						 be16_to_cpu(new_bc->
11102 							     vl[i].dedicated));
11103 		}
11104 	}
11105 
11106 	/* next raise all shared that are going up */
11107 	for (i = 0; i < NUM_USABLE_VLS; i++) {
11108 		if (!valid_vl(i))
11109 			continue;
11110 
11111 		if (be16_to_cpu(new_bc->vl[i].shared) >
11112 				be16_to_cpu(cur_bc.vl[i].shared))
11113 			set_vl_shared(dd, i, be16_to_cpu(new_bc->vl[i].shared));
11114 	}
11115 
11116 	/* finally raise the global shared */
11117 	if (be16_to_cpu(new_bc->overall_shared_limit) >
11118 	    be16_to_cpu(cur_bc.overall_shared_limit))
11119 		set_global_shared(dd,
11120 				  be16_to_cpu(new_bc->overall_shared_limit));
11121 
11122 	/* bracket the credit change with a total adjustment */
11123 	if (new_total < cur_total)
11124 		set_global_limit(dd, new_total);
11125 
11126 	/*
11127 	 * Determine the actual number of operational VLS using the number of
11128 	 * dedicated and shared credits for each VL.
11129 	 */
11130 	if (change_count > 0) {
11131 		for (i = 0; i < TXE_NUM_DATA_VL; i++)
11132 			if (be16_to_cpu(new_bc->vl[i].dedicated) > 0 ||
11133 			    be16_to_cpu(new_bc->vl[i].shared) > 0)
11134 				vl_count++;
11135 		ppd->actual_vls_operational = vl_count;
11136 		ret = sdma_map_init(dd, ppd->port - 1, vl_count ?
11137 				    ppd->actual_vls_operational :
11138 				    ppd->vls_operational,
11139 				    NULL);
11140 		if (ret == 0)
11141 			ret = pio_map_init(dd, ppd->port - 1, vl_count ?
11142 					   ppd->actual_vls_operational :
11143 					   ppd->vls_operational, NULL);
11144 		if (ret)
11145 			return ret;
11146 	}
11147 	return 0;
11148 }
11149 
11150 /*
11151  * Read the given fabric manager table. Return the size of the
11152  * table (in bytes) on success, and a negative error code on
11153  * failure.
11154  */
11155 int fm_get_table(struct hfi1_pportdata *ppd, int which, void *t)
11156 
11157 {
11158 	int size;
11159 	struct vl_arb_cache *vlc;
11160 
11161 	switch (which) {
11162 	case FM_TBL_VL_HIGH_ARB:
11163 		size = 256;
11164 		/*
11165 		 * OPA specifies 128 elements (of 2 bytes each), though
11166 		 * HFI supports only 16 elements in h/w.
11167 		 */
11168 		vlc = vl_arb_lock_cache(ppd, HI_PRIO_TABLE);
11169 		vl_arb_get_cache(vlc, t);
11170 		vl_arb_unlock_cache(ppd, HI_PRIO_TABLE);
11171 		break;
11172 	case FM_TBL_VL_LOW_ARB:
11173 		size = 256;
11174 		/*
11175 		 * OPA specifies 128 elements (of 2 bytes each), though
11176 		 * HFI supports only 16 elements in h/w.
11177 		 */
11178 		vlc = vl_arb_lock_cache(ppd, LO_PRIO_TABLE);
11179 		vl_arb_get_cache(vlc, t);
11180 		vl_arb_unlock_cache(ppd, LO_PRIO_TABLE);
11181 		break;
11182 	case FM_TBL_BUFFER_CONTROL:
11183 		size = get_buffer_control(ppd->dd, t, NULL);
11184 		break;
11185 	case FM_TBL_SC2VLNT:
11186 		size = get_sc2vlnt(ppd->dd, t);
11187 		break;
11188 	case FM_TBL_VL_PREEMPT_ELEMS:
11189 		size = 256;
11190 		/* OPA specifies 128 elements, of 2 bytes each */
11191 		get_vlarb_preempt(ppd->dd, OPA_MAX_VLS, t);
11192 		break;
11193 	case FM_TBL_VL_PREEMPT_MATRIX:
11194 		size = 256;
11195 		/*
11196 		 * OPA specifies that this is the same size as the VL
11197 		 * arbitration tables (i.e., 256 bytes).
11198 		 */
11199 		break;
11200 	default:
11201 		return -EINVAL;
11202 	}
11203 	return size;
11204 }
11205 
11206 /*
11207  * Write the given fabric manager table.
11208  */
11209 int fm_set_table(struct hfi1_pportdata *ppd, int which, void *t)
11210 {
11211 	int ret = 0;
11212 	struct vl_arb_cache *vlc;
11213 
11214 	switch (which) {
11215 	case FM_TBL_VL_HIGH_ARB:
11216 		vlc = vl_arb_lock_cache(ppd, HI_PRIO_TABLE);
11217 		if (vl_arb_match_cache(vlc, t)) {
11218 			vl_arb_unlock_cache(ppd, HI_PRIO_TABLE);
11219 			break;
11220 		}
11221 		vl_arb_set_cache(vlc, t);
11222 		vl_arb_unlock_cache(ppd, HI_PRIO_TABLE);
11223 		ret = set_vl_weights(ppd, SEND_HIGH_PRIORITY_LIST,
11224 				     VL_ARB_HIGH_PRIO_TABLE_SIZE, t);
11225 		break;
11226 	case FM_TBL_VL_LOW_ARB:
11227 		vlc = vl_arb_lock_cache(ppd, LO_PRIO_TABLE);
11228 		if (vl_arb_match_cache(vlc, t)) {
11229 			vl_arb_unlock_cache(ppd, LO_PRIO_TABLE);
11230 			break;
11231 		}
11232 		vl_arb_set_cache(vlc, t);
11233 		vl_arb_unlock_cache(ppd, LO_PRIO_TABLE);
11234 		ret = set_vl_weights(ppd, SEND_LOW_PRIORITY_LIST,
11235 				     VL_ARB_LOW_PRIO_TABLE_SIZE, t);
11236 		break;
11237 	case FM_TBL_BUFFER_CONTROL:
11238 		ret = set_buffer_control(ppd, t);
11239 		break;
11240 	case FM_TBL_SC2VLNT:
11241 		set_sc2vlnt(ppd->dd, t);
11242 		break;
11243 	default:
11244 		ret = -EINVAL;
11245 	}
11246 	return ret;
11247 }
11248 
11249 /*
11250  * Disable all data VLs.
11251  *
11252  * Return 0 if disabled, non-zero if the VLs cannot be disabled.
11253  */
11254 static int disable_data_vls(struct hfi1_devdata *dd)
11255 {
11256 	if (is_ax(dd))
11257 		return 1;
11258 
11259 	pio_send_control(dd, PSC_DATA_VL_DISABLE);
11260 
11261 	return 0;
11262 }
11263 
11264 /*
11265  * open_fill_data_vls() - the counterpart to stop_drain_data_vls().
11266  * Just re-enables all data VLs (the "fill" part happens
11267  * automatically - the name was chosen for symmetry with
11268  * stop_drain_data_vls()).
11269  *
11270  * Return 0 if successful, non-zero if the VLs cannot be enabled.
11271  */
11272 int open_fill_data_vls(struct hfi1_devdata *dd)
11273 {
11274 	if (is_ax(dd))
11275 		return 1;
11276 
11277 	pio_send_control(dd, PSC_DATA_VL_ENABLE);
11278 
11279 	return 0;
11280 }
11281 
11282 /*
11283  * drain_data_vls() - assumes that disable_data_vls() has been called,
11284  * wait for occupancy (of per-VL FIFOs) for all contexts, and SDMA
11285  * engines to drop to 0.
11286  */
11287 static void drain_data_vls(struct hfi1_devdata *dd)
11288 {
11289 	sc_wait(dd);
11290 	sdma_wait(dd);
11291 	pause_for_credit_return(dd);
11292 }
11293 
11294 /*
11295  * stop_drain_data_vls() - disable, then drain all per-VL fifos.
11296  *
11297  * Use open_fill_data_vls() to resume using data VLs.  This pair is
11298  * meant to be used like this:
11299  *
11300  * stop_drain_data_vls(dd);
11301  * // do things with per-VL resources
11302  * open_fill_data_vls(dd);
11303  */
11304 int stop_drain_data_vls(struct hfi1_devdata *dd)
11305 {
11306 	int ret;
11307 
11308 	ret = disable_data_vls(dd);
11309 	if (ret == 0)
11310 		drain_data_vls(dd);
11311 
11312 	return ret;
11313 }
11314 
11315 /*
11316  * Convert a nanosecond time to a cclock count.  No matter how slow
11317  * the cclock, a non-zero ns will always have a non-zero result.
11318  */
11319 u32 ns_to_cclock(struct hfi1_devdata *dd, u32 ns)
11320 {
11321 	u32 cclocks;
11322 
11323 	if (dd->icode == ICODE_FPGA_EMULATION)
11324 		cclocks = (ns * 1000) / FPGA_CCLOCK_PS;
11325 	else  /* simulation pretends to be ASIC */
11326 		cclocks = (ns * 1000) / ASIC_CCLOCK_PS;
11327 	if (ns && !cclocks)	/* if ns nonzero, must be at least 1 */
11328 		cclocks = 1;
11329 	return cclocks;
11330 }
11331 
11332 /*
11333  * Convert a cclock count to nanoseconds. Not matter how slow
11334  * the cclock, a non-zero cclocks will always have a non-zero result.
11335  */
11336 u32 cclock_to_ns(struct hfi1_devdata *dd, u32 cclocks)
11337 {
11338 	u32 ns;
11339 
11340 	if (dd->icode == ICODE_FPGA_EMULATION)
11341 		ns = (cclocks * FPGA_CCLOCK_PS) / 1000;
11342 	else  /* simulation pretends to be ASIC */
11343 		ns = (cclocks * ASIC_CCLOCK_PS) / 1000;
11344 	if (cclocks && !ns)
11345 		ns = 1;
11346 	return ns;
11347 }
11348 
11349 /*
11350  * Dynamically adjust the receive interrupt timeout for a context based on
11351  * incoming packet rate.
11352  *
11353  * NOTE: Dynamic adjustment does not allow rcv_intr_count to be zero.
11354  */
11355 static void adjust_rcv_timeout(struct hfi1_ctxtdata *rcd, u32 npkts)
11356 {
11357 	struct hfi1_devdata *dd = rcd->dd;
11358 	u32 timeout = rcd->rcvavail_timeout;
11359 
11360 	/*
11361 	 * This algorithm doubles or halves the timeout depending on whether
11362 	 * the number of packets received in this interrupt were less than or
11363 	 * greater equal the interrupt count.
11364 	 *
11365 	 * The calculations below do not allow a steady state to be achieved.
11366 	 * Only at the endpoints it is possible to have an unchanging
11367 	 * timeout.
11368 	 */
11369 	if (npkts < rcv_intr_count) {
11370 		/*
11371 		 * Not enough packets arrived before the timeout, adjust
11372 		 * timeout downward.
11373 		 */
11374 		if (timeout < 2) /* already at minimum? */
11375 			return;
11376 		timeout >>= 1;
11377 	} else {
11378 		/*
11379 		 * More than enough packets arrived before the timeout, adjust
11380 		 * timeout upward.
11381 		 */
11382 		if (timeout >= dd->rcv_intr_timeout_csr) /* already at max? */
11383 			return;
11384 		timeout = min(timeout << 1, dd->rcv_intr_timeout_csr);
11385 	}
11386 
11387 	rcd->rcvavail_timeout = timeout;
11388 	/*
11389 	 * timeout cannot be larger than rcv_intr_timeout_csr which has already
11390 	 * been verified to be in range
11391 	 */
11392 	write_kctxt_csr(dd, rcd->ctxt, RCV_AVAIL_TIME_OUT,
11393 			(u64)timeout <<
11394 			RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_SHIFT);
11395 }
11396 
11397 void update_usrhead(struct hfi1_ctxtdata *rcd, u32 hd, u32 updegr, u32 egrhd,
11398 		    u32 intr_adjust, u32 npkts)
11399 {
11400 	struct hfi1_devdata *dd = rcd->dd;
11401 	u64 reg;
11402 	u32 ctxt = rcd->ctxt;
11403 
11404 	/*
11405 	 * Need to write timeout register before updating RcvHdrHead to ensure
11406 	 * that a new value is used when the HW decides to restart counting.
11407 	 */
11408 	if (intr_adjust)
11409 		adjust_rcv_timeout(rcd, npkts);
11410 	if (updegr) {
11411 		reg = (egrhd & RCV_EGR_INDEX_HEAD_HEAD_MASK)
11412 			<< RCV_EGR_INDEX_HEAD_HEAD_SHIFT;
11413 		write_uctxt_csr(dd, ctxt, RCV_EGR_INDEX_HEAD, reg);
11414 	}
11415 	mmiowb();
11416 	reg = ((u64)rcv_intr_count << RCV_HDR_HEAD_COUNTER_SHIFT) |
11417 		(((u64)hd & RCV_HDR_HEAD_HEAD_MASK)
11418 			<< RCV_HDR_HEAD_HEAD_SHIFT);
11419 	write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, reg);
11420 	mmiowb();
11421 }
11422 
11423 u32 hdrqempty(struct hfi1_ctxtdata *rcd)
11424 {
11425 	u32 head, tail;
11426 
11427 	head = (read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_HEAD)
11428 		& RCV_HDR_HEAD_HEAD_SMASK) >> RCV_HDR_HEAD_HEAD_SHIFT;
11429 
11430 	if (rcd->rcvhdrtail_kvaddr)
11431 		tail = get_rcvhdrtail(rcd);
11432 	else
11433 		tail = read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_TAIL);
11434 
11435 	return head == tail;
11436 }
11437 
11438 /*
11439  * Context Control and Receive Array encoding for buffer size:
11440  *	0x0 invalid
11441  *	0x1   4 KB
11442  *	0x2   8 KB
11443  *	0x3  16 KB
11444  *	0x4  32 KB
11445  *	0x5  64 KB
11446  *	0x6 128 KB
11447  *	0x7 256 KB
11448  *	0x8 512 KB (Receive Array only)
11449  *	0x9   1 MB (Receive Array only)
11450  *	0xa   2 MB (Receive Array only)
11451  *
11452  *	0xB-0xF - reserved (Receive Array only)
11453  *
11454  *
11455  * This routine assumes that the value has already been sanity checked.
11456  */
11457 static u32 encoded_size(u32 size)
11458 {
11459 	switch (size) {
11460 	case   4 * 1024: return 0x1;
11461 	case   8 * 1024: return 0x2;
11462 	case  16 * 1024: return 0x3;
11463 	case  32 * 1024: return 0x4;
11464 	case  64 * 1024: return 0x5;
11465 	case 128 * 1024: return 0x6;
11466 	case 256 * 1024: return 0x7;
11467 	case 512 * 1024: return 0x8;
11468 	case   1 * 1024 * 1024: return 0x9;
11469 	case   2 * 1024 * 1024: return 0xa;
11470 	}
11471 	return 0x1;	/* if invalid, go with the minimum size */
11472 }
11473 
11474 void hfi1_rcvctrl(struct hfi1_devdata *dd, unsigned int op, int ctxt)
11475 {
11476 	struct hfi1_ctxtdata *rcd;
11477 	u64 rcvctrl, reg;
11478 	int did_enable = 0;
11479 
11480 	rcd = dd->rcd[ctxt];
11481 	if (!rcd)
11482 		return;
11483 
11484 	hfi1_cdbg(RCVCTRL, "ctxt %d op 0x%x", ctxt, op);
11485 
11486 	rcvctrl = read_kctxt_csr(dd, ctxt, RCV_CTXT_CTRL);
11487 	/* if the context already enabled, don't do the extra steps */
11488 	if ((op & HFI1_RCVCTRL_CTXT_ENB) &&
11489 	    !(rcvctrl & RCV_CTXT_CTRL_ENABLE_SMASK)) {
11490 		/* reset the tail and hdr addresses, and sequence count */
11491 		write_kctxt_csr(dd, ctxt, RCV_HDR_ADDR,
11492 				rcd->rcvhdrq_phys);
11493 		if (HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL))
11494 			write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR,
11495 					rcd->rcvhdrqtailaddr_phys);
11496 		rcd->seq_cnt = 1;
11497 
11498 		/* reset the cached receive header queue head value */
11499 		rcd->head = 0;
11500 
11501 		/*
11502 		 * Zero the receive header queue so we don't get false
11503 		 * positives when checking the sequence number.  The
11504 		 * sequence numbers could land exactly on the same spot.
11505 		 * E.g. a rcd restart before the receive header wrapped.
11506 		 */
11507 		memset(rcd->rcvhdrq, 0, rcd->rcvhdrq_size);
11508 
11509 		/* starting timeout */
11510 		rcd->rcvavail_timeout = dd->rcv_intr_timeout_csr;
11511 
11512 		/* enable the context */
11513 		rcvctrl |= RCV_CTXT_CTRL_ENABLE_SMASK;
11514 
11515 		/* clean the egr buffer size first */
11516 		rcvctrl &= ~RCV_CTXT_CTRL_EGR_BUF_SIZE_SMASK;
11517 		rcvctrl |= ((u64)encoded_size(rcd->egrbufs.rcvtid_size)
11518 				& RCV_CTXT_CTRL_EGR_BUF_SIZE_MASK)
11519 					<< RCV_CTXT_CTRL_EGR_BUF_SIZE_SHIFT;
11520 
11521 		/* zero RcvHdrHead - set RcvHdrHead.Counter after enable */
11522 		write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0);
11523 		did_enable = 1;
11524 
11525 		/* zero RcvEgrIndexHead */
11526 		write_uctxt_csr(dd, ctxt, RCV_EGR_INDEX_HEAD, 0);
11527 
11528 		/* set eager count and base index */
11529 		reg = (((u64)(rcd->egrbufs.alloced >> RCV_SHIFT)
11530 			& RCV_EGR_CTRL_EGR_CNT_MASK)
11531 		       << RCV_EGR_CTRL_EGR_CNT_SHIFT) |
11532 			(((rcd->eager_base >> RCV_SHIFT)
11533 			  & RCV_EGR_CTRL_EGR_BASE_INDEX_MASK)
11534 			 << RCV_EGR_CTRL_EGR_BASE_INDEX_SHIFT);
11535 		write_kctxt_csr(dd, ctxt, RCV_EGR_CTRL, reg);
11536 
11537 		/*
11538 		 * Set TID (expected) count and base index.
11539 		 * rcd->expected_count is set to individual RcvArray entries,
11540 		 * not pairs, and the CSR takes a pair-count in groups of
11541 		 * four, so divide by 8.
11542 		 */
11543 		reg = (((rcd->expected_count >> RCV_SHIFT)
11544 					& RCV_TID_CTRL_TID_PAIR_CNT_MASK)
11545 				<< RCV_TID_CTRL_TID_PAIR_CNT_SHIFT) |
11546 		      (((rcd->expected_base >> RCV_SHIFT)
11547 					& RCV_TID_CTRL_TID_BASE_INDEX_MASK)
11548 				<< RCV_TID_CTRL_TID_BASE_INDEX_SHIFT);
11549 		write_kctxt_csr(dd, ctxt, RCV_TID_CTRL, reg);
11550 		if (ctxt == HFI1_CTRL_CTXT)
11551 			write_csr(dd, RCV_VL15, HFI1_CTRL_CTXT);
11552 	}
11553 	if (op & HFI1_RCVCTRL_CTXT_DIS) {
11554 		write_csr(dd, RCV_VL15, 0);
11555 		/*
11556 		 * When receive context is being disabled turn on tail
11557 		 * update with a dummy tail address and then disable
11558 		 * receive context.
11559 		 */
11560 		if (dd->rcvhdrtail_dummy_physaddr) {
11561 			write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR,
11562 					dd->rcvhdrtail_dummy_physaddr);
11563 			/* Enabling RcvCtxtCtrl.TailUpd is intentional. */
11564 			rcvctrl |= RCV_CTXT_CTRL_TAIL_UPD_SMASK;
11565 		}
11566 
11567 		rcvctrl &= ~RCV_CTXT_CTRL_ENABLE_SMASK;
11568 	}
11569 	if (op & HFI1_RCVCTRL_INTRAVAIL_ENB)
11570 		rcvctrl |= RCV_CTXT_CTRL_INTR_AVAIL_SMASK;
11571 	if (op & HFI1_RCVCTRL_INTRAVAIL_DIS)
11572 		rcvctrl &= ~RCV_CTXT_CTRL_INTR_AVAIL_SMASK;
11573 	if (op & HFI1_RCVCTRL_TAILUPD_ENB && rcd->rcvhdrqtailaddr_phys)
11574 		rcvctrl |= RCV_CTXT_CTRL_TAIL_UPD_SMASK;
11575 	if (op & HFI1_RCVCTRL_TAILUPD_DIS) {
11576 		/* See comment on RcvCtxtCtrl.TailUpd above */
11577 		if (!(op & HFI1_RCVCTRL_CTXT_DIS))
11578 			rcvctrl &= ~RCV_CTXT_CTRL_TAIL_UPD_SMASK;
11579 	}
11580 	if (op & HFI1_RCVCTRL_TIDFLOW_ENB)
11581 		rcvctrl |= RCV_CTXT_CTRL_TID_FLOW_ENABLE_SMASK;
11582 	if (op & HFI1_RCVCTRL_TIDFLOW_DIS)
11583 		rcvctrl &= ~RCV_CTXT_CTRL_TID_FLOW_ENABLE_SMASK;
11584 	if (op & HFI1_RCVCTRL_ONE_PKT_EGR_ENB) {
11585 		/*
11586 		 * In one-packet-per-eager mode, the size comes from
11587 		 * the RcvArray entry.
11588 		 */
11589 		rcvctrl &= ~RCV_CTXT_CTRL_EGR_BUF_SIZE_SMASK;
11590 		rcvctrl |= RCV_CTXT_CTRL_ONE_PACKET_PER_EGR_BUFFER_SMASK;
11591 	}
11592 	if (op & HFI1_RCVCTRL_ONE_PKT_EGR_DIS)
11593 		rcvctrl &= ~RCV_CTXT_CTRL_ONE_PACKET_PER_EGR_BUFFER_SMASK;
11594 	if (op & HFI1_RCVCTRL_NO_RHQ_DROP_ENB)
11595 		rcvctrl |= RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK;
11596 	if (op & HFI1_RCVCTRL_NO_RHQ_DROP_DIS)
11597 		rcvctrl &= ~RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK;
11598 	if (op & HFI1_RCVCTRL_NO_EGR_DROP_ENB)
11599 		rcvctrl |= RCV_CTXT_CTRL_DONT_DROP_EGR_FULL_SMASK;
11600 	if (op & HFI1_RCVCTRL_NO_EGR_DROP_DIS)
11601 		rcvctrl &= ~RCV_CTXT_CTRL_DONT_DROP_EGR_FULL_SMASK;
11602 	rcd->rcvctrl = rcvctrl;
11603 	hfi1_cdbg(RCVCTRL, "ctxt %d rcvctrl 0x%llx\n", ctxt, rcvctrl);
11604 	write_kctxt_csr(dd, ctxt, RCV_CTXT_CTRL, rcd->rcvctrl);
11605 
11606 	/* work around sticky RcvCtxtStatus.BlockedRHQFull */
11607 	if (did_enable &&
11608 	    (rcvctrl & RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK)) {
11609 		reg = read_kctxt_csr(dd, ctxt, RCV_CTXT_STATUS);
11610 		if (reg != 0) {
11611 			dd_dev_info(dd, "ctxt %d status %lld (blocked)\n",
11612 				    ctxt, reg);
11613 			read_uctxt_csr(dd, ctxt, RCV_HDR_HEAD);
11614 			write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0x10);
11615 			write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0x00);
11616 			read_uctxt_csr(dd, ctxt, RCV_HDR_HEAD);
11617 			reg = read_kctxt_csr(dd, ctxt, RCV_CTXT_STATUS);
11618 			dd_dev_info(dd, "ctxt %d status %lld (%s blocked)\n",
11619 				    ctxt, reg, reg == 0 ? "not" : "still");
11620 		}
11621 	}
11622 
11623 	if (did_enable) {
11624 		/*
11625 		 * The interrupt timeout and count must be set after
11626 		 * the context is enabled to take effect.
11627 		 */
11628 		/* set interrupt timeout */
11629 		write_kctxt_csr(dd, ctxt, RCV_AVAIL_TIME_OUT,
11630 				(u64)rcd->rcvavail_timeout <<
11631 				RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_SHIFT);
11632 
11633 		/* set RcvHdrHead.Counter, zero RcvHdrHead.Head (again) */
11634 		reg = (u64)rcv_intr_count << RCV_HDR_HEAD_COUNTER_SHIFT;
11635 		write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, reg);
11636 	}
11637 
11638 	if (op & (HFI1_RCVCTRL_TAILUPD_DIS | HFI1_RCVCTRL_CTXT_DIS))
11639 		/*
11640 		 * If the context has been disabled and the Tail Update has
11641 		 * been cleared, set the RCV_HDR_TAIL_ADDR CSR to dummy address
11642 		 * so it doesn't contain an address that is invalid.
11643 		 */
11644 		write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR,
11645 				dd->rcvhdrtail_dummy_physaddr);
11646 }
11647 
11648 u32 hfi1_read_cntrs(struct hfi1_devdata *dd, char **namep, u64 **cntrp)
11649 {
11650 	int ret;
11651 	u64 val = 0;
11652 
11653 	if (namep) {
11654 		ret = dd->cntrnameslen;
11655 		*namep = dd->cntrnames;
11656 	} else {
11657 		const struct cntr_entry *entry;
11658 		int i, j;
11659 
11660 		ret = (dd->ndevcntrs) * sizeof(u64);
11661 
11662 		/* Get the start of the block of counters */
11663 		*cntrp = dd->cntrs;
11664 
11665 		/*
11666 		 * Now go and fill in each counter in the block.
11667 		 */
11668 		for (i = 0; i < DEV_CNTR_LAST; i++) {
11669 			entry = &dev_cntrs[i];
11670 			hfi1_cdbg(CNTR, "reading %s", entry->name);
11671 			if (entry->flags & CNTR_DISABLED) {
11672 				/* Nothing */
11673 				hfi1_cdbg(CNTR, "\tDisabled\n");
11674 			} else {
11675 				if (entry->flags & CNTR_VL) {
11676 					hfi1_cdbg(CNTR, "\tPer VL\n");
11677 					for (j = 0; j < C_VL_COUNT; j++) {
11678 						val = entry->rw_cntr(entry,
11679 								  dd, j,
11680 								  CNTR_MODE_R,
11681 								  0);
11682 						hfi1_cdbg(
11683 						   CNTR,
11684 						   "\t\tRead 0x%llx for %d\n",
11685 						   val, j);
11686 						dd->cntrs[entry->offset + j] =
11687 									    val;
11688 					}
11689 				} else if (entry->flags & CNTR_SDMA) {
11690 					hfi1_cdbg(CNTR,
11691 						  "\t Per SDMA Engine\n");
11692 					for (j = 0; j < dd->chip_sdma_engines;
11693 					     j++) {
11694 						val =
11695 						entry->rw_cntr(entry, dd, j,
11696 							       CNTR_MODE_R, 0);
11697 						hfi1_cdbg(CNTR,
11698 							  "\t\tRead 0x%llx for %d\n",
11699 							  val, j);
11700 						dd->cntrs[entry->offset + j] =
11701 									val;
11702 					}
11703 				} else {
11704 					val = entry->rw_cntr(entry, dd,
11705 							CNTR_INVALID_VL,
11706 							CNTR_MODE_R, 0);
11707 					dd->cntrs[entry->offset] = val;
11708 					hfi1_cdbg(CNTR, "\tRead 0x%llx", val);
11709 				}
11710 			}
11711 		}
11712 	}
11713 	return ret;
11714 }
11715 
11716 /*
11717  * Used by sysfs to create files for hfi stats to read
11718  */
11719 u32 hfi1_read_portcntrs(struct hfi1_pportdata *ppd, char **namep, u64 **cntrp)
11720 {
11721 	int ret;
11722 	u64 val = 0;
11723 
11724 	if (namep) {
11725 		ret = ppd->dd->portcntrnameslen;
11726 		*namep = ppd->dd->portcntrnames;
11727 	} else {
11728 		const struct cntr_entry *entry;
11729 		int i, j;
11730 
11731 		ret = ppd->dd->nportcntrs * sizeof(u64);
11732 		*cntrp = ppd->cntrs;
11733 
11734 		for (i = 0; i < PORT_CNTR_LAST; i++) {
11735 			entry = &port_cntrs[i];
11736 			hfi1_cdbg(CNTR, "reading %s", entry->name);
11737 			if (entry->flags & CNTR_DISABLED) {
11738 				/* Nothing */
11739 				hfi1_cdbg(CNTR, "\tDisabled\n");
11740 				continue;
11741 			}
11742 
11743 			if (entry->flags & CNTR_VL) {
11744 				hfi1_cdbg(CNTR, "\tPer VL");
11745 				for (j = 0; j < C_VL_COUNT; j++) {
11746 					val = entry->rw_cntr(entry, ppd, j,
11747 							       CNTR_MODE_R,
11748 							       0);
11749 					hfi1_cdbg(
11750 					   CNTR,
11751 					   "\t\tRead 0x%llx for %d",
11752 					   val, j);
11753 					ppd->cntrs[entry->offset + j] = val;
11754 				}
11755 			} else {
11756 				val = entry->rw_cntr(entry, ppd,
11757 						       CNTR_INVALID_VL,
11758 						       CNTR_MODE_R,
11759 						       0);
11760 				ppd->cntrs[entry->offset] = val;
11761 				hfi1_cdbg(CNTR, "\tRead 0x%llx", val);
11762 			}
11763 		}
11764 	}
11765 	return ret;
11766 }
11767 
11768 static void free_cntrs(struct hfi1_devdata *dd)
11769 {
11770 	struct hfi1_pportdata *ppd;
11771 	int i;
11772 
11773 	if (dd->synth_stats_timer.data)
11774 		del_timer_sync(&dd->synth_stats_timer);
11775 	dd->synth_stats_timer.data = 0;
11776 	ppd = (struct hfi1_pportdata *)(dd + 1);
11777 	for (i = 0; i < dd->num_pports; i++, ppd++) {
11778 		kfree(ppd->cntrs);
11779 		kfree(ppd->scntrs);
11780 		free_percpu(ppd->ibport_data.rvp.rc_acks);
11781 		free_percpu(ppd->ibport_data.rvp.rc_qacks);
11782 		free_percpu(ppd->ibport_data.rvp.rc_delayed_comp);
11783 		ppd->cntrs = NULL;
11784 		ppd->scntrs = NULL;
11785 		ppd->ibport_data.rvp.rc_acks = NULL;
11786 		ppd->ibport_data.rvp.rc_qacks = NULL;
11787 		ppd->ibport_data.rvp.rc_delayed_comp = NULL;
11788 	}
11789 	kfree(dd->portcntrnames);
11790 	dd->portcntrnames = NULL;
11791 	kfree(dd->cntrs);
11792 	dd->cntrs = NULL;
11793 	kfree(dd->scntrs);
11794 	dd->scntrs = NULL;
11795 	kfree(dd->cntrnames);
11796 	dd->cntrnames = NULL;
11797 }
11798 
11799 static u64 read_dev_port_cntr(struct hfi1_devdata *dd, struct cntr_entry *entry,
11800 			      u64 *psval, void *context, int vl)
11801 {
11802 	u64 val;
11803 	u64 sval = *psval;
11804 
11805 	if (entry->flags & CNTR_DISABLED) {
11806 		dd_dev_err(dd, "Counter %s not enabled", entry->name);
11807 		return 0;
11808 	}
11809 
11810 	hfi1_cdbg(CNTR, "cntr: %s vl %d psval 0x%llx", entry->name, vl, *psval);
11811 
11812 	val = entry->rw_cntr(entry, context, vl, CNTR_MODE_R, 0);
11813 
11814 	/* If its a synthetic counter there is more work we need to do */
11815 	if (entry->flags & CNTR_SYNTH) {
11816 		if (sval == CNTR_MAX) {
11817 			/* No need to read already saturated */
11818 			return CNTR_MAX;
11819 		}
11820 
11821 		if (entry->flags & CNTR_32BIT) {
11822 			/* 32bit counters can wrap multiple times */
11823 			u64 upper = sval >> 32;
11824 			u64 lower = (sval << 32) >> 32;
11825 
11826 			if (lower > val) { /* hw wrapped */
11827 				if (upper == CNTR_32BIT_MAX)
11828 					val = CNTR_MAX;
11829 				else
11830 					upper++;
11831 			}
11832 
11833 			if (val != CNTR_MAX)
11834 				val = (upper << 32) | val;
11835 
11836 		} else {
11837 			/* If we rolled we are saturated */
11838 			if ((val < sval) || (val > CNTR_MAX))
11839 				val = CNTR_MAX;
11840 		}
11841 	}
11842 
11843 	*psval = val;
11844 
11845 	hfi1_cdbg(CNTR, "\tNew val=0x%llx", val);
11846 
11847 	return val;
11848 }
11849 
11850 static u64 write_dev_port_cntr(struct hfi1_devdata *dd,
11851 			       struct cntr_entry *entry,
11852 			       u64 *psval, void *context, int vl, u64 data)
11853 {
11854 	u64 val;
11855 
11856 	if (entry->flags & CNTR_DISABLED) {
11857 		dd_dev_err(dd, "Counter %s not enabled", entry->name);
11858 		return 0;
11859 	}
11860 
11861 	hfi1_cdbg(CNTR, "cntr: %s vl %d psval 0x%llx", entry->name, vl, *psval);
11862 
11863 	if (entry->flags & CNTR_SYNTH) {
11864 		*psval = data;
11865 		if (entry->flags & CNTR_32BIT) {
11866 			val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W,
11867 					     (data << 32) >> 32);
11868 			val = data; /* return the full 64bit value */
11869 		} else {
11870 			val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W,
11871 					     data);
11872 		}
11873 	} else {
11874 		val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W, data);
11875 	}
11876 
11877 	*psval = val;
11878 
11879 	hfi1_cdbg(CNTR, "\tNew val=0x%llx", val);
11880 
11881 	return val;
11882 }
11883 
11884 u64 read_dev_cntr(struct hfi1_devdata *dd, int index, int vl)
11885 {
11886 	struct cntr_entry *entry;
11887 	u64 *sval;
11888 
11889 	entry = &dev_cntrs[index];
11890 	sval = dd->scntrs + entry->offset;
11891 
11892 	if (vl != CNTR_INVALID_VL)
11893 		sval += vl;
11894 
11895 	return read_dev_port_cntr(dd, entry, sval, dd, vl);
11896 }
11897 
11898 u64 write_dev_cntr(struct hfi1_devdata *dd, int index, int vl, u64 data)
11899 {
11900 	struct cntr_entry *entry;
11901 	u64 *sval;
11902 
11903 	entry = &dev_cntrs[index];
11904 	sval = dd->scntrs + entry->offset;
11905 
11906 	if (vl != CNTR_INVALID_VL)
11907 		sval += vl;
11908 
11909 	return write_dev_port_cntr(dd, entry, sval, dd, vl, data);
11910 }
11911 
11912 u64 read_port_cntr(struct hfi1_pportdata *ppd, int index, int vl)
11913 {
11914 	struct cntr_entry *entry;
11915 	u64 *sval;
11916 
11917 	entry = &port_cntrs[index];
11918 	sval = ppd->scntrs + entry->offset;
11919 
11920 	if (vl != CNTR_INVALID_VL)
11921 		sval += vl;
11922 
11923 	if ((index >= C_RCV_HDR_OVF_FIRST + ppd->dd->num_rcv_contexts) &&
11924 	    (index <= C_RCV_HDR_OVF_LAST)) {
11925 		/* We do not want to bother for disabled contexts */
11926 		return 0;
11927 	}
11928 
11929 	return read_dev_port_cntr(ppd->dd, entry, sval, ppd, vl);
11930 }
11931 
11932 u64 write_port_cntr(struct hfi1_pportdata *ppd, int index, int vl, u64 data)
11933 {
11934 	struct cntr_entry *entry;
11935 	u64 *sval;
11936 
11937 	entry = &port_cntrs[index];
11938 	sval = ppd->scntrs + entry->offset;
11939 
11940 	if (vl != CNTR_INVALID_VL)
11941 		sval += vl;
11942 
11943 	if ((index >= C_RCV_HDR_OVF_FIRST + ppd->dd->num_rcv_contexts) &&
11944 	    (index <= C_RCV_HDR_OVF_LAST)) {
11945 		/* We do not want to bother for disabled contexts */
11946 		return 0;
11947 	}
11948 
11949 	return write_dev_port_cntr(ppd->dd, entry, sval, ppd, vl, data);
11950 }
11951 
11952 static void update_synth_timer(unsigned long opaque)
11953 {
11954 	u64 cur_tx;
11955 	u64 cur_rx;
11956 	u64 total_flits;
11957 	u8 update = 0;
11958 	int i, j, vl;
11959 	struct hfi1_pportdata *ppd;
11960 	struct cntr_entry *entry;
11961 
11962 	struct hfi1_devdata *dd = (struct hfi1_devdata *)opaque;
11963 
11964 	/*
11965 	 * Rather than keep beating on the CSRs pick a minimal set that we can
11966 	 * check to watch for potential roll over. We can do this by looking at
11967 	 * the number of flits sent/recv. If the total flits exceeds 32bits then
11968 	 * we have to iterate all the counters and update.
11969 	 */
11970 	entry = &dev_cntrs[C_DC_RCV_FLITS];
11971 	cur_rx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL, CNTR_MODE_R, 0);
11972 
11973 	entry = &dev_cntrs[C_DC_XMIT_FLITS];
11974 	cur_tx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL, CNTR_MODE_R, 0);
11975 
11976 	hfi1_cdbg(
11977 	    CNTR,
11978 	    "[%d] curr tx=0x%llx rx=0x%llx :: last tx=0x%llx rx=0x%llx\n",
11979 	    dd->unit, cur_tx, cur_rx, dd->last_tx, dd->last_rx);
11980 
11981 	if ((cur_tx < dd->last_tx) || (cur_rx < dd->last_rx)) {
11982 		/*
11983 		 * May not be strictly necessary to update but it won't hurt and
11984 		 * simplifies the logic here.
11985 		 */
11986 		update = 1;
11987 		hfi1_cdbg(CNTR, "[%d] Tripwire counter rolled, updating",
11988 			  dd->unit);
11989 	} else {
11990 		total_flits = (cur_tx - dd->last_tx) + (cur_rx - dd->last_rx);
11991 		hfi1_cdbg(CNTR,
11992 			  "[%d] total flits 0x%llx limit 0x%llx\n", dd->unit,
11993 			  total_flits, (u64)CNTR_32BIT_MAX);
11994 		if (total_flits >= CNTR_32BIT_MAX) {
11995 			hfi1_cdbg(CNTR, "[%d] 32bit limit hit, updating",
11996 				  dd->unit);
11997 			update = 1;
11998 		}
11999 	}
12000 
12001 	if (update) {
12002 		hfi1_cdbg(CNTR, "[%d] Updating dd and ppd counters", dd->unit);
12003 		for (i = 0; i < DEV_CNTR_LAST; i++) {
12004 			entry = &dev_cntrs[i];
12005 			if (entry->flags & CNTR_VL) {
12006 				for (vl = 0; vl < C_VL_COUNT; vl++)
12007 					read_dev_cntr(dd, i, vl);
12008 			} else {
12009 				read_dev_cntr(dd, i, CNTR_INVALID_VL);
12010 			}
12011 		}
12012 		ppd = (struct hfi1_pportdata *)(dd + 1);
12013 		for (i = 0; i < dd->num_pports; i++, ppd++) {
12014 			for (j = 0; j < PORT_CNTR_LAST; j++) {
12015 				entry = &port_cntrs[j];
12016 				if (entry->flags & CNTR_VL) {
12017 					for (vl = 0; vl < C_VL_COUNT; vl++)
12018 						read_port_cntr(ppd, j, vl);
12019 				} else {
12020 					read_port_cntr(ppd, j, CNTR_INVALID_VL);
12021 				}
12022 			}
12023 		}
12024 
12025 		/*
12026 		 * We want the value in the register. The goal is to keep track
12027 		 * of the number of "ticks" not the counter value. In other
12028 		 * words if the register rolls we want to notice it and go ahead
12029 		 * and force an update.
12030 		 */
12031 		entry = &dev_cntrs[C_DC_XMIT_FLITS];
12032 		dd->last_tx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL,
12033 						CNTR_MODE_R, 0);
12034 
12035 		entry = &dev_cntrs[C_DC_RCV_FLITS];
12036 		dd->last_rx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL,
12037 						CNTR_MODE_R, 0);
12038 
12039 		hfi1_cdbg(CNTR, "[%d] setting last tx/rx to 0x%llx 0x%llx",
12040 			  dd->unit, dd->last_tx, dd->last_rx);
12041 
12042 	} else {
12043 		hfi1_cdbg(CNTR, "[%d] No update necessary", dd->unit);
12044 	}
12045 
12046 	mod_timer(&dd->synth_stats_timer, jiffies + HZ * SYNTH_CNT_TIME);
12047 }
12048 
12049 #define C_MAX_NAME 13 /* 12 chars + one for /0 */
12050 static int init_cntrs(struct hfi1_devdata *dd)
12051 {
12052 	int i, rcv_ctxts, j;
12053 	size_t sz;
12054 	char *p;
12055 	char name[C_MAX_NAME];
12056 	struct hfi1_pportdata *ppd;
12057 	const char *bit_type_32 = ",32";
12058 	const int bit_type_32_sz = strlen(bit_type_32);
12059 
12060 	/* set up the stats timer; the add_timer is done at the end */
12061 	setup_timer(&dd->synth_stats_timer, update_synth_timer,
12062 		    (unsigned long)dd);
12063 
12064 	/***********************/
12065 	/* per device counters */
12066 	/***********************/
12067 
12068 	/* size names and determine how many we have*/
12069 	dd->ndevcntrs = 0;
12070 	sz = 0;
12071 
12072 	for (i = 0; i < DEV_CNTR_LAST; i++) {
12073 		if (dev_cntrs[i].flags & CNTR_DISABLED) {
12074 			hfi1_dbg_early("\tSkipping %s\n", dev_cntrs[i].name);
12075 			continue;
12076 		}
12077 
12078 		if (dev_cntrs[i].flags & CNTR_VL) {
12079 			dev_cntrs[i].offset = dd->ndevcntrs;
12080 			for (j = 0; j < C_VL_COUNT; j++) {
12081 				snprintf(name, C_MAX_NAME, "%s%d",
12082 					 dev_cntrs[i].name, vl_from_idx(j));
12083 				sz += strlen(name);
12084 				/* Add ",32" for 32-bit counters */
12085 				if (dev_cntrs[i].flags & CNTR_32BIT)
12086 					sz += bit_type_32_sz;
12087 				sz++;
12088 				dd->ndevcntrs++;
12089 			}
12090 		} else if (dev_cntrs[i].flags & CNTR_SDMA) {
12091 			dev_cntrs[i].offset = dd->ndevcntrs;
12092 			for (j = 0; j < dd->chip_sdma_engines; j++) {
12093 				snprintf(name, C_MAX_NAME, "%s%d",
12094 					 dev_cntrs[i].name, j);
12095 				sz += strlen(name);
12096 				/* Add ",32" for 32-bit counters */
12097 				if (dev_cntrs[i].flags & CNTR_32BIT)
12098 					sz += bit_type_32_sz;
12099 				sz++;
12100 				dd->ndevcntrs++;
12101 			}
12102 		} else {
12103 			/* +1 for newline. */
12104 			sz += strlen(dev_cntrs[i].name) + 1;
12105 			/* Add ",32" for 32-bit counters */
12106 			if (dev_cntrs[i].flags & CNTR_32BIT)
12107 				sz += bit_type_32_sz;
12108 			dev_cntrs[i].offset = dd->ndevcntrs;
12109 			dd->ndevcntrs++;
12110 		}
12111 	}
12112 
12113 	/* allocate space for the counter values */
12114 	dd->cntrs = kcalloc(dd->ndevcntrs, sizeof(u64), GFP_KERNEL);
12115 	if (!dd->cntrs)
12116 		goto bail;
12117 
12118 	dd->scntrs = kcalloc(dd->ndevcntrs, sizeof(u64), GFP_KERNEL);
12119 	if (!dd->scntrs)
12120 		goto bail;
12121 
12122 	/* allocate space for the counter names */
12123 	dd->cntrnameslen = sz;
12124 	dd->cntrnames = kmalloc(sz, GFP_KERNEL);
12125 	if (!dd->cntrnames)
12126 		goto bail;
12127 
12128 	/* fill in the names */
12129 	for (p = dd->cntrnames, i = 0; i < DEV_CNTR_LAST; i++) {
12130 		if (dev_cntrs[i].flags & CNTR_DISABLED) {
12131 			/* Nothing */
12132 		} else if (dev_cntrs[i].flags & CNTR_VL) {
12133 			for (j = 0; j < C_VL_COUNT; j++) {
12134 				snprintf(name, C_MAX_NAME, "%s%d",
12135 					 dev_cntrs[i].name,
12136 					 vl_from_idx(j));
12137 				memcpy(p, name, strlen(name));
12138 				p += strlen(name);
12139 
12140 				/* Counter is 32 bits */
12141 				if (dev_cntrs[i].flags & CNTR_32BIT) {
12142 					memcpy(p, bit_type_32, bit_type_32_sz);
12143 					p += bit_type_32_sz;
12144 				}
12145 
12146 				*p++ = '\n';
12147 			}
12148 		} else if (dev_cntrs[i].flags & CNTR_SDMA) {
12149 			for (j = 0; j < dd->chip_sdma_engines; j++) {
12150 				snprintf(name, C_MAX_NAME, "%s%d",
12151 					 dev_cntrs[i].name, j);
12152 				memcpy(p, name, strlen(name));
12153 				p += strlen(name);
12154 
12155 				/* Counter is 32 bits */
12156 				if (dev_cntrs[i].flags & CNTR_32BIT) {
12157 					memcpy(p, bit_type_32, bit_type_32_sz);
12158 					p += bit_type_32_sz;
12159 				}
12160 
12161 				*p++ = '\n';
12162 			}
12163 		} else {
12164 			memcpy(p, dev_cntrs[i].name, strlen(dev_cntrs[i].name));
12165 			p += strlen(dev_cntrs[i].name);
12166 
12167 			/* Counter is 32 bits */
12168 			if (dev_cntrs[i].flags & CNTR_32BIT) {
12169 				memcpy(p, bit_type_32, bit_type_32_sz);
12170 				p += bit_type_32_sz;
12171 			}
12172 
12173 			*p++ = '\n';
12174 		}
12175 	}
12176 
12177 	/*********************/
12178 	/* per port counters */
12179 	/*********************/
12180 
12181 	/*
12182 	 * Go through the counters for the overflows and disable the ones we
12183 	 * don't need. This varies based on platform so we need to do it
12184 	 * dynamically here.
12185 	 */
12186 	rcv_ctxts = dd->num_rcv_contexts;
12187 	for (i = C_RCV_HDR_OVF_FIRST + rcv_ctxts;
12188 	     i <= C_RCV_HDR_OVF_LAST; i++) {
12189 		port_cntrs[i].flags |= CNTR_DISABLED;
12190 	}
12191 
12192 	/* size port counter names and determine how many we have*/
12193 	sz = 0;
12194 	dd->nportcntrs = 0;
12195 	for (i = 0; i < PORT_CNTR_LAST; i++) {
12196 		if (port_cntrs[i].flags & CNTR_DISABLED) {
12197 			hfi1_dbg_early("\tSkipping %s\n", port_cntrs[i].name);
12198 			continue;
12199 		}
12200 
12201 		if (port_cntrs[i].flags & CNTR_VL) {
12202 			port_cntrs[i].offset = dd->nportcntrs;
12203 			for (j = 0; j < C_VL_COUNT; j++) {
12204 				snprintf(name, C_MAX_NAME, "%s%d",
12205 					 port_cntrs[i].name, vl_from_idx(j));
12206 				sz += strlen(name);
12207 				/* Add ",32" for 32-bit counters */
12208 				if (port_cntrs[i].flags & CNTR_32BIT)
12209 					sz += bit_type_32_sz;
12210 				sz++;
12211 				dd->nportcntrs++;
12212 			}
12213 		} else {
12214 			/* +1 for newline */
12215 			sz += strlen(port_cntrs[i].name) + 1;
12216 			/* Add ",32" for 32-bit counters */
12217 			if (port_cntrs[i].flags & CNTR_32BIT)
12218 				sz += bit_type_32_sz;
12219 			port_cntrs[i].offset = dd->nportcntrs;
12220 			dd->nportcntrs++;
12221 		}
12222 	}
12223 
12224 	/* allocate space for the counter names */
12225 	dd->portcntrnameslen = sz;
12226 	dd->portcntrnames = kmalloc(sz, GFP_KERNEL);
12227 	if (!dd->portcntrnames)
12228 		goto bail;
12229 
12230 	/* fill in port cntr names */
12231 	for (p = dd->portcntrnames, i = 0; i < PORT_CNTR_LAST; i++) {
12232 		if (port_cntrs[i].flags & CNTR_DISABLED)
12233 			continue;
12234 
12235 		if (port_cntrs[i].flags & CNTR_VL) {
12236 			for (j = 0; j < C_VL_COUNT; j++) {
12237 				snprintf(name, C_MAX_NAME, "%s%d",
12238 					 port_cntrs[i].name, vl_from_idx(j));
12239 				memcpy(p, name, strlen(name));
12240 				p += strlen(name);
12241 
12242 				/* Counter is 32 bits */
12243 				if (port_cntrs[i].flags & CNTR_32BIT) {
12244 					memcpy(p, bit_type_32, bit_type_32_sz);
12245 					p += bit_type_32_sz;
12246 				}
12247 
12248 				*p++ = '\n';
12249 			}
12250 		} else {
12251 			memcpy(p, port_cntrs[i].name,
12252 			       strlen(port_cntrs[i].name));
12253 			p += strlen(port_cntrs[i].name);
12254 
12255 			/* Counter is 32 bits */
12256 			if (port_cntrs[i].flags & CNTR_32BIT) {
12257 				memcpy(p, bit_type_32, bit_type_32_sz);
12258 				p += bit_type_32_sz;
12259 			}
12260 
12261 			*p++ = '\n';
12262 		}
12263 	}
12264 
12265 	/* allocate per port storage for counter values */
12266 	ppd = (struct hfi1_pportdata *)(dd + 1);
12267 	for (i = 0; i < dd->num_pports; i++, ppd++) {
12268 		ppd->cntrs = kcalloc(dd->nportcntrs, sizeof(u64), GFP_KERNEL);
12269 		if (!ppd->cntrs)
12270 			goto bail;
12271 
12272 		ppd->scntrs = kcalloc(dd->nportcntrs, sizeof(u64), GFP_KERNEL);
12273 		if (!ppd->scntrs)
12274 			goto bail;
12275 	}
12276 
12277 	/* CPU counters need to be allocated and zeroed */
12278 	if (init_cpu_counters(dd))
12279 		goto bail;
12280 
12281 	mod_timer(&dd->synth_stats_timer, jiffies + HZ * SYNTH_CNT_TIME);
12282 	return 0;
12283 bail:
12284 	free_cntrs(dd);
12285 	return -ENOMEM;
12286 }
12287 
12288 static u32 chip_to_opa_lstate(struct hfi1_devdata *dd, u32 chip_lstate)
12289 {
12290 	switch (chip_lstate) {
12291 	default:
12292 		dd_dev_err(dd,
12293 			   "Unknown logical state 0x%x, reporting IB_PORT_DOWN\n",
12294 			   chip_lstate);
12295 		/* fall through */
12296 	case LSTATE_DOWN:
12297 		return IB_PORT_DOWN;
12298 	case LSTATE_INIT:
12299 		return IB_PORT_INIT;
12300 	case LSTATE_ARMED:
12301 		return IB_PORT_ARMED;
12302 	case LSTATE_ACTIVE:
12303 		return IB_PORT_ACTIVE;
12304 	}
12305 }
12306 
12307 u32 chip_to_opa_pstate(struct hfi1_devdata *dd, u32 chip_pstate)
12308 {
12309 	/* look at the HFI meta-states only */
12310 	switch (chip_pstate & 0xf0) {
12311 	default:
12312 		dd_dev_err(dd, "Unexpected chip physical state of 0x%x\n",
12313 			   chip_pstate);
12314 		/* fall through */
12315 	case PLS_DISABLED:
12316 		return IB_PORTPHYSSTATE_DISABLED;
12317 	case PLS_OFFLINE:
12318 		return OPA_PORTPHYSSTATE_OFFLINE;
12319 	case PLS_POLLING:
12320 		return IB_PORTPHYSSTATE_POLLING;
12321 	case PLS_CONFIGPHY:
12322 		return IB_PORTPHYSSTATE_TRAINING;
12323 	case PLS_LINKUP:
12324 		return IB_PORTPHYSSTATE_LINKUP;
12325 	case PLS_PHYTEST:
12326 		return IB_PORTPHYSSTATE_PHY_TEST;
12327 	}
12328 }
12329 
12330 /* return the OPA port logical state name */
12331 const char *opa_lstate_name(u32 lstate)
12332 {
12333 	static const char * const port_logical_names[] = {
12334 		"PORT_NOP",
12335 		"PORT_DOWN",
12336 		"PORT_INIT",
12337 		"PORT_ARMED",
12338 		"PORT_ACTIVE",
12339 		"PORT_ACTIVE_DEFER",
12340 	};
12341 	if (lstate < ARRAY_SIZE(port_logical_names))
12342 		return port_logical_names[lstate];
12343 	return "unknown";
12344 }
12345 
12346 /* return the OPA port physical state name */
12347 const char *opa_pstate_name(u32 pstate)
12348 {
12349 	static const char * const port_physical_names[] = {
12350 		"PHYS_NOP",
12351 		"reserved1",
12352 		"PHYS_POLL",
12353 		"PHYS_DISABLED",
12354 		"PHYS_TRAINING",
12355 		"PHYS_LINKUP",
12356 		"PHYS_LINK_ERR_RECOVER",
12357 		"PHYS_PHY_TEST",
12358 		"reserved8",
12359 		"PHYS_OFFLINE",
12360 		"PHYS_GANGED",
12361 		"PHYS_TEST",
12362 	};
12363 	if (pstate < ARRAY_SIZE(port_physical_names))
12364 		return port_physical_names[pstate];
12365 	return "unknown";
12366 }
12367 
12368 /*
12369  * Read the hardware link state and set the driver's cached value of it.
12370  * Return the (new) current value.
12371  */
12372 u32 get_logical_state(struct hfi1_pportdata *ppd)
12373 {
12374 	u32 new_state;
12375 
12376 	new_state = chip_to_opa_lstate(ppd->dd, read_logical_state(ppd->dd));
12377 	if (new_state != ppd->lstate) {
12378 		dd_dev_info(ppd->dd, "logical state changed to %s (0x%x)\n",
12379 			    opa_lstate_name(new_state), new_state);
12380 		ppd->lstate = new_state;
12381 	}
12382 	/*
12383 	 * Set port status flags in the page mapped into userspace
12384 	 * memory. Do it here to ensure a reliable state - this is
12385 	 * the only function called by all state handling code.
12386 	 * Always set the flags due to the fact that the cache value
12387 	 * might have been changed explicitly outside of this
12388 	 * function.
12389 	 */
12390 	if (ppd->statusp) {
12391 		switch (ppd->lstate) {
12392 		case IB_PORT_DOWN:
12393 		case IB_PORT_INIT:
12394 			*ppd->statusp &= ~(HFI1_STATUS_IB_CONF |
12395 					   HFI1_STATUS_IB_READY);
12396 			break;
12397 		case IB_PORT_ARMED:
12398 			*ppd->statusp |= HFI1_STATUS_IB_CONF;
12399 			break;
12400 		case IB_PORT_ACTIVE:
12401 			*ppd->statusp |= HFI1_STATUS_IB_READY;
12402 			break;
12403 		}
12404 	}
12405 	return ppd->lstate;
12406 }
12407 
12408 /**
12409  * wait_logical_linkstate - wait for an IB link state change to occur
12410  * @ppd: port device
12411  * @state: the state to wait for
12412  * @msecs: the number of milliseconds to wait
12413  *
12414  * Wait up to msecs milliseconds for IB link state change to occur.
12415  * For now, take the easy polling route.
12416  * Returns 0 if state reached, otherwise -ETIMEDOUT.
12417  */
12418 static int wait_logical_linkstate(struct hfi1_pportdata *ppd, u32 state,
12419 				  int msecs)
12420 {
12421 	unsigned long timeout;
12422 
12423 	timeout = jiffies + msecs_to_jiffies(msecs);
12424 	while (1) {
12425 		if (get_logical_state(ppd) == state)
12426 			return 0;
12427 		if (time_after(jiffies, timeout))
12428 			break;
12429 		msleep(20);
12430 	}
12431 	dd_dev_err(ppd->dd, "timeout waiting for link state 0x%x\n", state);
12432 
12433 	return -ETIMEDOUT;
12434 }
12435 
12436 u8 hfi1_ibphys_portstate(struct hfi1_pportdata *ppd)
12437 {
12438 	u32 pstate;
12439 	u32 ib_pstate;
12440 
12441 	pstate = read_physical_state(ppd->dd);
12442 	ib_pstate = chip_to_opa_pstate(ppd->dd, pstate);
12443 	if (ppd->last_pstate != ib_pstate) {
12444 		dd_dev_info(ppd->dd,
12445 			    "%s: physical state changed to %s (0x%x), phy 0x%x\n",
12446 			    __func__, opa_pstate_name(ib_pstate), ib_pstate,
12447 			    pstate);
12448 		ppd->last_pstate = ib_pstate;
12449 	}
12450 	return ib_pstate;
12451 }
12452 
12453 #define CLEAR_STATIC_RATE_CONTROL_SMASK(r) \
12454 (r &= ~SEND_CTXT_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK)
12455 
12456 #define SET_STATIC_RATE_CONTROL_SMASK(r) \
12457 (r |= SEND_CTXT_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK)
12458 
12459 int hfi1_init_ctxt(struct send_context *sc)
12460 {
12461 	if (sc) {
12462 		struct hfi1_devdata *dd = sc->dd;
12463 		u64 reg;
12464 		u8 set = (sc->type == SC_USER ?
12465 			  HFI1_CAP_IS_USET(STATIC_RATE_CTRL) :
12466 			  HFI1_CAP_IS_KSET(STATIC_RATE_CTRL));
12467 		reg = read_kctxt_csr(dd, sc->hw_context,
12468 				     SEND_CTXT_CHECK_ENABLE);
12469 		if (set)
12470 			CLEAR_STATIC_RATE_CONTROL_SMASK(reg);
12471 		else
12472 			SET_STATIC_RATE_CONTROL_SMASK(reg);
12473 		write_kctxt_csr(dd, sc->hw_context,
12474 				SEND_CTXT_CHECK_ENABLE, reg);
12475 	}
12476 	return 0;
12477 }
12478 
12479 int hfi1_tempsense_rd(struct hfi1_devdata *dd, struct hfi1_temp *temp)
12480 {
12481 	int ret = 0;
12482 	u64 reg;
12483 
12484 	if (dd->icode != ICODE_RTL_SILICON) {
12485 		if (HFI1_CAP_IS_KSET(PRINT_UNIMPL))
12486 			dd_dev_info(dd, "%s: tempsense not supported by HW\n",
12487 				    __func__);
12488 		return -EINVAL;
12489 	}
12490 	reg = read_csr(dd, ASIC_STS_THERM);
12491 	temp->curr = ((reg >> ASIC_STS_THERM_CURR_TEMP_SHIFT) &
12492 		      ASIC_STS_THERM_CURR_TEMP_MASK);
12493 	temp->lo_lim = ((reg >> ASIC_STS_THERM_LO_TEMP_SHIFT) &
12494 			ASIC_STS_THERM_LO_TEMP_MASK);
12495 	temp->hi_lim = ((reg >> ASIC_STS_THERM_HI_TEMP_SHIFT) &
12496 			ASIC_STS_THERM_HI_TEMP_MASK);
12497 	temp->crit_lim = ((reg >> ASIC_STS_THERM_CRIT_TEMP_SHIFT) &
12498 			  ASIC_STS_THERM_CRIT_TEMP_MASK);
12499 	/* triggers is a 3-bit value - 1 bit per trigger. */
12500 	temp->triggers = (u8)((reg >> ASIC_STS_THERM_LOW_SHIFT) & 0x7);
12501 
12502 	return ret;
12503 }
12504 
12505 /* ========================================================================= */
12506 
12507 /*
12508  * Enable/disable chip from delivering interrupts.
12509  */
12510 void set_intr_state(struct hfi1_devdata *dd, u32 enable)
12511 {
12512 	int i;
12513 
12514 	/*
12515 	 * In HFI, the mask needs to be 1 to allow interrupts.
12516 	 */
12517 	if (enable) {
12518 		/* enable all interrupts */
12519 		for (i = 0; i < CCE_NUM_INT_CSRS; i++)
12520 			write_csr(dd, CCE_INT_MASK + (8 * i), ~(u64)0);
12521 
12522 		init_qsfp_int(dd);
12523 	} else {
12524 		for (i = 0; i < CCE_NUM_INT_CSRS; i++)
12525 			write_csr(dd, CCE_INT_MASK + (8 * i), 0ull);
12526 	}
12527 }
12528 
12529 /*
12530  * Clear all interrupt sources on the chip.
12531  */
12532 static void clear_all_interrupts(struct hfi1_devdata *dd)
12533 {
12534 	int i;
12535 
12536 	for (i = 0; i < CCE_NUM_INT_CSRS; i++)
12537 		write_csr(dd, CCE_INT_CLEAR + (8 * i), ~(u64)0);
12538 
12539 	write_csr(dd, CCE_ERR_CLEAR, ~(u64)0);
12540 	write_csr(dd, MISC_ERR_CLEAR, ~(u64)0);
12541 	write_csr(dd, RCV_ERR_CLEAR, ~(u64)0);
12542 	write_csr(dd, SEND_ERR_CLEAR, ~(u64)0);
12543 	write_csr(dd, SEND_PIO_ERR_CLEAR, ~(u64)0);
12544 	write_csr(dd, SEND_DMA_ERR_CLEAR, ~(u64)0);
12545 	write_csr(dd, SEND_EGRESS_ERR_CLEAR, ~(u64)0);
12546 	for (i = 0; i < dd->chip_send_contexts; i++)
12547 		write_kctxt_csr(dd, i, SEND_CTXT_ERR_CLEAR, ~(u64)0);
12548 	for (i = 0; i < dd->chip_sdma_engines; i++)
12549 		write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_CLEAR, ~(u64)0);
12550 
12551 	write_csr(dd, DCC_ERR_FLG_CLR, ~(u64)0);
12552 	write_csr(dd, DC_LCB_ERR_CLR, ~(u64)0);
12553 	write_csr(dd, DC_DC8051_ERR_CLR, ~(u64)0);
12554 }
12555 
12556 /* Move to pcie.c? */
12557 static void disable_intx(struct pci_dev *pdev)
12558 {
12559 	pci_intx(pdev, 0);
12560 }
12561 
12562 static void clean_up_interrupts(struct hfi1_devdata *dd)
12563 {
12564 	int i;
12565 
12566 	/* remove irqs - must happen before disabling/turning off */
12567 	if (dd->num_msix_entries) {
12568 		/* MSI-X */
12569 		struct hfi1_msix_entry *me = dd->msix_entries;
12570 
12571 		for (i = 0; i < dd->num_msix_entries; i++, me++) {
12572 			if (!me->arg) /* => no irq, no affinity */
12573 				continue;
12574 			hfi1_put_irq_affinity(dd, &dd->msix_entries[i]);
12575 			free_irq(me->msix.vector, me->arg);
12576 		}
12577 	} else {
12578 		/* INTx */
12579 		if (dd->requested_intx_irq) {
12580 			free_irq(dd->pcidev->irq, dd);
12581 			dd->requested_intx_irq = 0;
12582 		}
12583 	}
12584 
12585 	/* turn off interrupts */
12586 	if (dd->num_msix_entries) {
12587 		/* MSI-X */
12588 		pci_disable_msix(dd->pcidev);
12589 	} else {
12590 		/* INTx */
12591 		disable_intx(dd->pcidev);
12592 	}
12593 
12594 	/* clean structures */
12595 	kfree(dd->msix_entries);
12596 	dd->msix_entries = NULL;
12597 	dd->num_msix_entries = 0;
12598 }
12599 
12600 /*
12601  * Remap the interrupt source from the general handler to the given MSI-X
12602  * interrupt.
12603  */
12604 static void remap_intr(struct hfi1_devdata *dd, int isrc, int msix_intr)
12605 {
12606 	u64 reg;
12607 	int m, n;
12608 
12609 	/* clear from the handled mask of the general interrupt */
12610 	m = isrc / 64;
12611 	n = isrc % 64;
12612 	dd->gi_mask[m] &= ~((u64)1 << n);
12613 
12614 	/* direct the chip source to the given MSI-X interrupt */
12615 	m = isrc / 8;
12616 	n = isrc % 8;
12617 	reg = read_csr(dd, CCE_INT_MAP + (8 * m));
12618 	reg &= ~((u64)0xff << (8 * n));
12619 	reg |= ((u64)msix_intr & 0xff) << (8 * n);
12620 	write_csr(dd, CCE_INT_MAP + (8 * m), reg);
12621 }
12622 
12623 static void remap_sdma_interrupts(struct hfi1_devdata *dd,
12624 				  int engine, int msix_intr)
12625 {
12626 	/*
12627 	 * SDMA engine interrupt sources grouped by type, rather than
12628 	 * engine.  Per-engine interrupts are as follows:
12629 	 *	SDMA
12630 	 *	SDMAProgress
12631 	 *	SDMAIdle
12632 	 */
12633 	remap_intr(dd, IS_SDMA_START + 0 * TXE_NUM_SDMA_ENGINES + engine,
12634 		   msix_intr);
12635 	remap_intr(dd, IS_SDMA_START + 1 * TXE_NUM_SDMA_ENGINES + engine,
12636 		   msix_intr);
12637 	remap_intr(dd, IS_SDMA_START + 2 * TXE_NUM_SDMA_ENGINES + engine,
12638 		   msix_intr);
12639 }
12640 
12641 static int request_intx_irq(struct hfi1_devdata *dd)
12642 {
12643 	int ret;
12644 
12645 	snprintf(dd->intx_name, sizeof(dd->intx_name), DRIVER_NAME "_%d",
12646 		 dd->unit);
12647 	ret = request_irq(dd->pcidev->irq, general_interrupt,
12648 			  IRQF_SHARED, dd->intx_name, dd);
12649 	if (ret)
12650 		dd_dev_err(dd, "unable to request INTx interrupt, err %d\n",
12651 			   ret);
12652 	else
12653 		dd->requested_intx_irq = 1;
12654 	return ret;
12655 }
12656 
12657 static int request_msix_irqs(struct hfi1_devdata *dd)
12658 {
12659 	int first_general, last_general;
12660 	int first_sdma, last_sdma;
12661 	int first_rx, last_rx;
12662 	int i, ret = 0;
12663 
12664 	/* calculate the ranges we are going to use */
12665 	first_general = 0;
12666 	last_general = first_general + 1;
12667 	first_sdma = last_general;
12668 	last_sdma = first_sdma + dd->num_sdma;
12669 	first_rx = last_sdma;
12670 	last_rx = first_rx + dd->n_krcv_queues;
12671 
12672 	/*
12673 	 * Sanity check - the code expects all SDMA chip source
12674 	 * interrupts to be in the same CSR, starting at bit 0.  Verify
12675 	 * that this is true by checking the bit location of the start.
12676 	 */
12677 	BUILD_BUG_ON(IS_SDMA_START % 64);
12678 
12679 	for (i = 0; i < dd->num_msix_entries; i++) {
12680 		struct hfi1_msix_entry *me = &dd->msix_entries[i];
12681 		const char *err_info;
12682 		irq_handler_t handler;
12683 		irq_handler_t thread = NULL;
12684 		void *arg;
12685 		int idx;
12686 		struct hfi1_ctxtdata *rcd = NULL;
12687 		struct sdma_engine *sde = NULL;
12688 
12689 		/* obtain the arguments to request_irq */
12690 		if (first_general <= i && i < last_general) {
12691 			idx = i - first_general;
12692 			handler = general_interrupt;
12693 			arg = dd;
12694 			snprintf(me->name, sizeof(me->name),
12695 				 DRIVER_NAME "_%d", dd->unit);
12696 			err_info = "general";
12697 			me->type = IRQ_GENERAL;
12698 		} else if (first_sdma <= i && i < last_sdma) {
12699 			idx = i - first_sdma;
12700 			sde = &dd->per_sdma[idx];
12701 			handler = sdma_interrupt;
12702 			arg = sde;
12703 			snprintf(me->name, sizeof(me->name),
12704 				 DRIVER_NAME "_%d sdma%d", dd->unit, idx);
12705 			err_info = "sdma";
12706 			remap_sdma_interrupts(dd, idx, i);
12707 			me->type = IRQ_SDMA;
12708 		} else if (first_rx <= i && i < last_rx) {
12709 			idx = i - first_rx;
12710 			rcd = dd->rcd[idx];
12711 			/* no interrupt if no rcd */
12712 			if (!rcd)
12713 				continue;
12714 			/*
12715 			 * Set the interrupt register and mask for this
12716 			 * context's interrupt.
12717 			 */
12718 			rcd->ireg = (IS_RCVAVAIL_START + idx) / 64;
12719 			rcd->imask = ((u64)1) <<
12720 					((IS_RCVAVAIL_START + idx) % 64);
12721 			handler = receive_context_interrupt;
12722 			thread = receive_context_thread;
12723 			arg = rcd;
12724 			snprintf(me->name, sizeof(me->name),
12725 				 DRIVER_NAME "_%d kctxt%d", dd->unit, idx);
12726 			err_info = "receive context";
12727 			remap_intr(dd, IS_RCVAVAIL_START + idx, i);
12728 			me->type = IRQ_RCVCTXT;
12729 		} else {
12730 			/* not in our expected range - complain, then
12731 			 * ignore it
12732 			 */
12733 			dd_dev_err(dd,
12734 				   "Unexpected extra MSI-X interrupt %d\n", i);
12735 			continue;
12736 		}
12737 		/* no argument, no interrupt */
12738 		if (!arg)
12739 			continue;
12740 		/* make sure the name is terminated */
12741 		me->name[sizeof(me->name) - 1] = 0;
12742 
12743 		ret = request_threaded_irq(me->msix.vector, handler, thread, 0,
12744 					   me->name, arg);
12745 		if (ret) {
12746 			dd_dev_err(dd,
12747 				   "unable to allocate %s interrupt, vector %d, index %d, err %d\n",
12748 				   err_info, me->msix.vector, idx, ret);
12749 			return ret;
12750 		}
12751 		/*
12752 		 * assign arg after request_irq call, so it will be
12753 		 * cleaned up
12754 		 */
12755 		me->arg = arg;
12756 
12757 		ret = hfi1_get_irq_affinity(dd, me);
12758 		if (ret)
12759 			dd_dev_err(dd,
12760 				   "unable to pin IRQ %d\n", ret);
12761 	}
12762 
12763 	return ret;
12764 }
12765 
12766 /*
12767  * Set the general handler to accept all interrupts, remap all
12768  * chip interrupts back to MSI-X 0.
12769  */
12770 static void reset_interrupts(struct hfi1_devdata *dd)
12771 {
12772 	int i;
12773 
12774 	/* all interrupts handled by the general handler */
12775 	for (i = 0; i < CCE_NUM_INT_CSRS; i++)
12776 		dd->gi_mask[i] = ~(u64)0;
12777 
12778 	/* all chip interrupts map to MSI-X 0 */
12779 	for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++)
12780 		write_csr(dd, CCE_INT_MAP + (8 * i), 0);
12781 }
12782 
12783 static int set_up_interrupts(struct hfi1_devdata *dd)
12784 {
12785 	struct hfi1_msix_entry *entries;
12786 	u32 total, request;
12787 	int i, ret;
12788 	int single_interrupt = 0; /* we expect to have all the interrupts */
12789 
12790 	/*
12791 	 * Interrupt count:
12792 	 *	1 general, "slow path" interrupt (includes the SDMA engines
12793 	 *		slow source, SDMACleanupDone)
12794 	 *	N interrupts - one per used SDMA engine
12795 	 *	M interrupt - one per kernel receive context
12796 	 */
12797 	total = 1 + dd->num_sdma + dd->n_krcv_queues;
12798 
12799 	entries = kcalloc(total, sizeof(*entries), GFP_KERNEL);
12800 	if (!entries) {
12801 		ret = -ENOMEM;
12802 		goto fail;
12803 	}
12804 	/* 1-1 MSI-X entry assignment */
12805 	for (i = 0; i < total; i++)
12806 		entries[i].msix.entry = i;
12807 
12808 	/* ask for MSI-X interrupts */
12809 	request = total;
12810 	request_msix(dd, &request, entries);
12811 
12812 	if (request == 0) {
12813 		/* using INTx */
12814 		/* dd->num_msix_entries already zero */
12815 		kfree(entries);
12816 		single_interrupt = 1;
12817 		dd_dev_err(dd, "MSI-X failed, using INTx interrupts\n");
12818 	} else {
12819 		/* using MSI-X */
12820 		dd->num_msix_entries = request;
12821 		dd->msix_entries = entries;
12822 
12823 		if (request != total) {
12824 			/* using MSI-X, with reduced interrupts */
12825 			dd_dev_err(
12826 				dd,
12827 				"cannot handle reduced interrupt case, want %u, got %u\n",
12828 				total, request);
12829 			ret = -EINVAL;
12830 			goto fail;
12831 		}
12832 		dd_dev_info(dd, "%u MSI-X interrupts allocated\n", total);
12833 	}
12834 
12835 	/* mask all interrupts */
12836 	set_intr_state(dd, 0);
12837 	/* clear all pending interrupts */
12838 	clear_all_interrupts(dd);
12839 
12840 	/* reset general handler mask, chip MSI-X mappings */
12841 	reset_interrupts(dd);
12842 
12843 	if (single_interrupt)
12844 		ret = request_intx_irq(dd);
12845 	else
12846 		ret = request_msix_irqs(dd);
12847 	if (ret)
12848 		goto fail;
12849 
12850 	return 0;
12851 
12852 fail:
12853 	clean_up_interrupts(dd);
12854 	return ret;
12855 }
12856 
12857 /*
12858  * Set up context values in dd.  Sets:
12859  *
12860  *	num_rcv_contexts - number of contexts being used
12861  *	n_krcv_queues - number of kernel contexts
12862  *	first_user_ctxt - first non-kernel context in array of contexts
12863  *	freectxts  - number of free user contexts
12864  *	num_send_contexts - number of PIO send contexts being used
12865  */
12866 static int set_up_context_variables(struct hfi1_devdata *dd)
12867 {
12868 	int num_kernel_contexts;
12869 	int total_contexts;
12870 	int ret;
12871 	unsigned ngroups;
12872 	int qos_rmt_count;
12873 	int user_rmt_reduced;
12874 
12875 	/*
12876 	 * Kernel receive contexts:
12877 	 * - Context 0 - control context (VL15/multicast/error)
12878 	 * - Context 1 - first kernel context
12879 	 * - Context 2 - second kernel context
12880 	 * ...
12881 	 */
12882 	if (n_krcvqs)
12883 		/*
12884 		 * n_krcvqs is the sum of module parameter kernel receive
12885 		 * contexts, krcvqs[].  It does not include the control
12886 		 * context, so add that.
12887 		 */
12888 		num_kernel_contexts = n_krcvqs + 1;
12889 	else
12890 		num_kernel_contexts = DEFAULT_KRCVQS + 1;
12891 	/*
12892 	 * Every kernel receive context needs an ACK send context.
12893 	 * one send context is allocated for each VL{0-7} and VL15
12894 	 */
12895 	if (num_kernel_contexts > (dd->chip_send_contexts - num_vls - 1)) {
12896 		dd_dev_err(dd,
12897 			   "Reducing # kernel rcv contexts to: %d, from %d\n",
12898 			   (int)(dd->chip_send_contexts - num_vls - 1),
12899 			   (int)num_kernel_contexts);
12900 		num_kernel_contexts = dd->chip_send_contexts - num_vls - 1;
12901 	}
12902 	/*
12903 	 * User contexts:
12904 	 *	- default to 1 user context per real (non-HT) CPU core if
12905 	 *	  num_user_contexts is negative
12906 	 */
12907 	if (num_user_contexts < 0)
12908 		num_user_contexts =
12909 			cpumask_weight(&node_affinity.real_cpu_mask);
12910 
12911 	total_contexts = num_kernel_contexts + num_user_contexts;
12912 
12913 	/*
12914 	 * Adjust the counts given a global max.
12915 	 */
12916 	if (total_contexts > dd->chip_rcv_contexts) {
12917 		dd_dev_err(dd,
12918 			   "Reducing # user receive contexts to: %d, from %d\n",
12919 			   (int)(dd->chip_rcv_contexts - num_kernel_contexts),
12920 			   (int)num_user_contexts);
12921 		num_user_contexts = dd->chip_rcv_contexts - num_kernel_contexts;
12922 		/* recalculate */
12923 		total_contexts = num_kernel_contexts + num_user_contexts;
12924 	}
12925 
12926 	/* each user context requires an entry in the RMT */
12927 	qos_rmt_count = qos_rmt_entries(dd, NULL, NULL);
12928 	if (qos_rmt_count + num_user_contexts > NUM_MAP_ENTRIES) {
12929 		user_rmt_reduced = NUM_MAP_ENTRIES - qos_rmt_count;
12930 		dd_dev_err(dd,
12931 			   "RMT size is reducing the number of user receive contexts from %d to %d\n",
12932 			   (int)num_user_contexts,
12933 			   user_rmt_reduced);
12934 		/* recalculate */
12935 		num_user_contexts = user_rmt_reduced;
12936 		total_contexts = num_kernel_contexts + num_user_contexts;
12937 	}
12938 
12939 	/* the first N are kernel contexts, the rest are user contexts */
12940 	dd->num_rcv_contexts = total_contexts;
12941 	dd->n_krcv_queues = num_kernel_contexts;
12942 	dd->first_user_ctxt = num_kernel_contexts;
12943 	dd->num_user_contexts = num_user_contexts;
12944 	dd->freectxts = num_user_contexts;
12945 	dd_dev_info(dd,
12946 		    "rcv contexts: chip %d, used %d (kernel %d, user %d)\n",
12947 		    (int)dd->chip_rcv_contexts,
12948 		    (int)dd->num_rcv_contexts,
12949 		    (int)dd->n_krcv_queues,
12950 		    (int)dd->num_rcv_contexts - dd->n_krcv_queues);
12951 
12952 	/*
12953 	 * Receive array allocation:
12954 	 *   All RcvArray entries are divided into groups of 8. This
12955 	 *   is required by the hardware and will speed up writes to
12956 	 *   consecutive entries by using write-combining of the entire
12957 	 *   cacheline.
12958 	 *
12959 	 *   The number of groups are evenly divided among all contexts.
12960 	 *   any left over groups will be given to the first N user
12961 	 *   contexts.
12962 	 */
12963 	dd->rcv_entries.group_size = RCV_INCREMENT;
12964 	ngroups = dd->chip_rcv_array_count / dd->rcv_entries.group_size;
12965 	dd->rcv_entries.ngroups = ngroups / dd->num_rcv_contexts;
12966 	dd->rcv_entries.nctxt_extra = ngroups -
12967 		(dd->num_rcv_contexts * dd->rcv_entries.ngroups);
12968 	dd_dev_info(dd, "RcvArray groups %u, ctxts extra %u\n",
12969 		    dd->rcv_entries.ngroups,
12970 		    dd->rcv_entries.nctxt_extra);
12971 	if (dd->rcv_entries.ngroups * dd->rcv_entries.group_size >
12972 	    MAX_EAGER_ENTRIES * 2) {
12973 		dd->rcv_entries.ngroups = (MAX_EAGER_ENTRIES * 2) /
12974 			dd->rcv_entries.group_size;
12975 		dd_dev_info(dd,
12976 			    "RcvArray group count too high, change to %u\n",
12977 			    dd->rcv_entries.ngroups);
12978 		dd->rcv_entries.nctxt_extra = 0;
12979 	}
12980 	/*
12981 	 * PIO send contexts
12982 	 */
12983 	ret = init_sc_pools_and_sizes(dd);
12984 	if (ret >= 0) {	/* success */
12985 		dd->num_send_contexts = ret;
12986 		dd_dev_info(
12987 			dd,
12988 			"send contexts: chip %d, used %d (kernel %d, ack %d, user %d, vl15 %d)\n",
12989 			dd->chip_send_contexts,
12990 			dd->num_send_contexts,
12991 			dd->sc_sizes[SC_KERNEL].count,
12992 			dd->sc_sizes[SC_ACK].count,
12993 			dd->sc_sizes[SC_USER].count,
12994 			dd->sc_sizes[SC_VL15].count);
12995 		ret = 0;	/* success */
12996 	}
12997 
12998 	return ret;
12999 }
13000 
13001 /*
13002  * Set the device/port partition key table. The MAD code
13003  * will ensure that, at least, the partial management
13004  * partition key is present in the table.
13005  */
13006 static void set_partition_keys(struct hfi1_pportdata *ppd)
13007 {
13008 	struct hfi1_devdata *dd = ppd->dd;
13009 	u64 reg = 0;
13010 	int i;
13011 
13012 	dd_dev_info(dd, "Setting partition keys\n");
13013 	for (i = 0; i < hfi1_get_npkeys(dd); i++) {
13014 		reg |= (ppd->pkeys[i] &
13015 			RCV_PARTITION_KEY_PARTITION_KEY_A_MASK) <<
13016 			((i % 4) *
13017 			 RCV_PARTITION_KEY_PARTITION_KEY_B_SHIFT);
13018 		/* Each register holds 4 PKey values. */
13019 		if ((i % 4) == 3) {
13020 			write_csr(dd, RCV_PARTITION_KEY +
13021 				  ((i - 3) * 2), reg);
13022 			reg = 0;
13023 		}
13024 	}
13025 
13026 	/* Always enable HW pkeys check when pkeys table is set */
13027 	add_rcvctrl(dd, RCV_CTRL_RCV_PARTITION_KEY_ENABLE_SMASK);
13028 }
13029 
13030 /*
13031  * These CSRs and memories are uninitialized on reset and must be
13032  * written before reading to set the ECC/parity bits.
13033  *
13034  * NOTE: All user context CSRs that are not mmaped write-only
13035  * (e.g. the TID flows) must be initialized even if the driver never
13036  * reads them.
13037  */
13038 static void write_uninitialized_csrs_and_memories(struct hfi1_devdata *dd)
13039 {
13040 	int i, j;
13041 
13042 	/* CceIntMap */
13043 	for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++)
13044 		write_csr(dd, CCE_INT_MAP + (8 * i), 0);
13045 
13046 	/* SendCtxtCreditReturnAddr */
13047 	for (i = 0; i < dd->chip_send_contexts; i++)
13048 		write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_RETURN_ADDR, 0);
13049 
13050 	/* PIO Send buffers */
13051 	/* SDMA Send buffers */
13052 	/*
13053 	 * These are not normally read, and (presently) have no method
13054 	 * to be read, so are not pre-initialized
13055 	 */
13056 
13057 	/* RcvHdrAddr */
13058 	/* RcvHdrTailAddr */
13059 	/* RcvTidFlowTable */
13060 	for (i = 0; i < dd->chip_rcv_contexts; i++) {
13061 		write_kctxt_csr(dd, i, RCV_HDR_ADDR, 0);
13062 		write_kctxt_csr(dd, i, RCV_HDR_TAIL_ADDR, 0);
13063 		for (j = 0; j < RXE_NUM_TID_FLOWS; j++)
13064 			write_uctxt_csr(dd, i, RCV_TID_FLOW_TABLE + (8 * j), 0);
13065 	}
13066 
13067 	/* RcvArray */
13068 	for (i = 0; i < dd->chip_rcv_array_count; i++)
13069 		write_csr(dd, RCV_ARRAY + (8 * i),
13070 			  RCV_ARRAY_RT_WRITE_ENABLE_SMASK);
13071 
13072 	/* RcvQPMapTable */
13073 	for (i = 0; i < 32; i++)
13074 		write_csr(dd, RCV_QP_MAP_TABLE + (8 * i), 0);
13075 }
13076 
13077 /*
13078  * Use the ctrl_bits in CceCtrl to clear the status_bits in CceStatus.
13079  */
13080 static void clear_cce_status(struct hfi1_devdata *dd, u64 status_bits,
13081 			     u64 ctrl_bits)
13082 {
13083 	unsigned long timeout;
13084 	u64 reg;
13085 
13086 	/* is the condition present? */
13087 	reg = read_csr(dd, CCE_STATUS);
13088 	if ((reg & status_bits) == 0)
13089 		return;
13090 
13091 	/* clear the condition */
13092 	write_csr(dd, CCE_CTRL, ctrl_bits);
13093 
13094 	/* wait for the condition to clear */
13095 	timeout = jiffies + msecs_to_jiffies(CCE_STATUS_TIMEOUT);
13096 	while (1) {
13097 		reg = read_csr(dd, CCE_STATUS);
13098 		if ((reg & status_bits) == 0)
13099 			return;
13100 		if (time_after(jiffies, timeout)) {
13101 			dd_dev_err(dd,
13102 				   "Timeout waiting for CceStatus to clear bits 0x%llx, remaining 0x%llx\n",
13103 				   status_bits, reg & status_bits);
13104 			return;
13105 		}
13106 		udelay(1);
13107 	}
13108 }
13109 
13110 /* set CCE CSRs to chip reset defaults */
13111 static void reset_cce_csrs(struct hfi1_devdata *dd)
13112 {
13113 	int i;
13114 
13115 	/* CCE_REVISION read-only */
13116 	/* CCE_REVISION2 read-only */
13117 	/* CCE_CTRL - bits clear automatically */
13118 	/* CCE_STATUS read-only, use CceCtrl to clear */
13119 	clear_cce_status(dd, ALL_FROZE, CCE_CTRL_SPC_UNFREEZE_SMASK);
13120 	clear_cce_status(dd, ALL_TXE_PAUSE, CCE_CTRL_TXE_RESUME_SMASK);
13121 	clear_cce_status(dd, ALL_RXE_PAUSE, CCE_CTRL_RXE_RESUME_SMASK);
13122 	for (i = 0; i < CCE_NUM_SCRATCH; i++)
13123 		write_csr(dd, CCE_SCRATCH + (8 * i), 0);
13124 	/* CCE_ERR_STATUS read-only */
13125 	write_csr(dd, CCE_ERR_MASK, 0);
13126 	write_csr(dd, CCE_ERR_CLEAR, ~0ull);
13127 	/* CCE_ERR_FORCE leave alone */
13128 	for (i = 0; i < CCE_NUM_32_BIT_COUNTERS; i++)
13129 		write_csr(dd, CCE_COUNTER_ARRAY32 + (8 * i), 0);
13130 	write_csr(dd, CCE_DC_CTRL, CCE_DC_CTRL_RESETCSR);
13131 	/* CCE_PCIE_CTRL leave alone */
13132 	for (i = 0; i < CCE_NUM_MSIX_VECTORS; i++) {
13133 		write_csr(dd, CCE_MSIX_TABLE_LOWER + (8 * i), 0);
13134 		write_csr(dd, CCE_MSIX_TABLE_UPPER + (8 * i),
13135 			  CCE_MSIX_TABLE_UPPER_RESETCSR);
13136 	}
13137 	for (i = 0; i < CCE_NUM_MSIX_PBAS; i++) {
13138 		/* CCE_MSIX_PBA read-only */
13139 		write_csr(dd, CCE_MSIX_INT_GRANTED, ~0ull);
13140 		write_csr(dd, CCE_MSIX_VEC_CLR_WITHOUT_INT, ~0ull);
13141 	}
13142 	for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++)
13143 		write_csr(dd, CCE_INT_MAP, 0);
13144 	for (i = 0; i < CCE_NUM_INT_CSRS; i++) {
13145 		/* CCE_INT_STATUS read-only */
13146 		write_csr(dd, CCE_INT_MASK + (8 * i), 0);
13147 		write_csr(dd, CCE_INT_CLEAR + (8 * i), ~0ull);
13148 		/* CCE_INT_FORCE leave alone */
13149 		/* CCE_INT_BLOCKED read-only */
13150 	}
13151 	for (i = 0; i < CCE_NUM_32_BIT_INT_COUNTERS; i++)
13152 		write_csr(dd, CCE_INT_COUNTER_ARRAY32 + (8 * i), 0);
13153 }
13154 
13155 /* set MISC CSRs to chip reset defaults */
13156 static void reset_misc_csrs(struct hfi1_devdata *dd)
13157 {
13158 	int i;
13159 
13160 	for (i = 0; i < 32; i++) {
13161 		write_csr(dd, MISC_CFG_RSA_R2 + (8 * i), 0);
13162 		write_csr(dd, MISC_CFG_RSA_SIGNATURE + (8 * i), 0);
13163 		write_csr(dd, MISC_CFG_RSA_MODULUS + (8 * i), 0);
13164 	}
13165 	/*
13166 	 * MISC_CFG_SHA_PRELOAD leave alone - always reads 0 and can
13167 	 * only be written 128-byte chunks
13168 	 */
13169 	/* init RSA engine to clear lingering errors */
13170 	write_csr(dd, MISC_CFG_RSA_CMD, 1);
13171 	write_csr(dd, MISC_CFG_RSA_MU, 0);
13172 	write_csr(dd, MISC_CFG_FW_CTRL, 0);
13173 	/* MISC_STS_8051_DIGEST read-only */
13174 	/* MISC_STS_SBM_DIGEST read-only */
13175 	/* MISC_STS_PCIE_DIGEST read-only */
13176 	/* MISC_STS_FAB_DIGEST read-only */
13177 	/* MISC_ERR_STATUS read-only */
13178 	write_csr(dd, MISC_ERR_MASK, 0);
13179 	write_csr(dd, MISC_ERR_CLEAR, ~0ull);
13180 	/* MISC_ERR_FORCE leave alone */
13181 }
13182 
13183 /* set TXE CSRs to chip reset defaults */
13184 static void reset_txe_csrs(struct hfi1_devdata *dd)
13185 {
13186 	int i;
13187 
13188 	/*
13189 	 * TXE Kernel CSRs
13190 	 */
13191 	write_csr(dd, SEND_CTRL, 0);
13192 	__cm_reset(dd, 0);	/* reset CM internal state */
13193 	/* SEND_CONTEXTS read-only */
13194 	/* SEND_DMA_ENGINES read-only */
13195 	/* SEND_PIO_MEM_SIZE read-only */
13196 	/* SEND_DMA_MEM_SIZE read-only */
13197 	write_csr(dd, SEND_HIGH_PRIORITY_LIMIT, 0);
13198 	pio_reset_all(dd);	/* SEND_PIO_INIT_CTXT */
13199 	/* SEND_PIO_ERR_STATUS read-only */
13200 	write_csr(dd, SEND_PIO_ERR_MASK, 0);
13201 	write_csr(dd, SEND_PIO_ERR_CLEAR, ~0ull);
13202 	/* SEND_PIO_ERR_FORCE leave alone */
13203 	/* SEND_DMA_ERR_STATUS read-only */
13204 	write_csr(dd, SEND_DMA_ERR_MASK, 0);
13205 	write_csr(dd, SEND_DMA_ERR_CLEAR, ~0ull);
13206 	/* SEND_DMA_ERR_FORCE leave alone */
13207 	/* SEND_EGRESS_ERR_STATUS read-only */
13208 	write_csr(dd, SEND_EGRESS_ERR_MASK, 0);
13209 	write_csr(dd, SEND_EGRESS_ERR_CLEAR, ~0ull);
13210 	/* SEND_EGRESS_ERR_FORCE leave alone */
13211 	write_csr(dd, SEND_BTH_QP, 0);
13212 	write_csr(dd, SEND_STATIC_RATE_CONTROL, 0);
13213 	write_csr(dd, SEND_SC2VLT0, 0);
13214 	write_csr(dd, SEND_SC2VLT1, 0);
13215 	write_csr(dd, SEND_SC2VLT2, 0);
13216 	write_csr(dd, SEND_SC2VLT3, 0);
13217 	write_csr(dd, SEND_LEN_CHECK0, 0);
13218 	write_csr(dd, SEND_LEN_CHECK1, 0);
13219 	/* SEND_ERR_STATUS read-only */
13220 	write_csr(dd, SEND_ERR_MASK, 0);
13221 	write_csr(dd, SEND_ERR_CLEAR, ~0ull);
13222 	/* SEND_ERR_FORCE read-only */
13223 	for (i = 0; i < VL_ARB_LOW_PRIO_TABLE_SIZE; i++)
13224 		write_csr(dd, SEND_LOW_PRIORITY_LIST + (8 * i), 0);
13225 	for (i = 0; i < VL_ARB_HIGH_PRIO_TABLE_SIZE; i++)
13226 		write_csr(dd, SEND_HIGH_PRIORITY_LIST + (8 * i), 0);
13227 	for (i = 0; i < dd->chip_send_contexts / NUM_CONTEXTS_PER_SET; i++)
13228 		write_csr(dd, SEND_CONTEXT_SET_CTRL + (8 * i), 0);
13229 	for (i = 0; i < TXE_NUM_32_BIT_COUNTER; i++)
13230 		write_csr(dd, SEND_COUNTER_ARRAY32 + (8 * i), 0);
13231 	for (i = 0; i < TXE_NUM_64_BIT_COUNTER; i++)
13232 		write_csr(dd, SEND_COUNTER_ARRAY64 + (8 * i), 0);
13233 	write_csr(dd, SEND_CM_CTRL, SEND_CM_CTRL_RESETCSR);
13234 	write_csr(dd, SEND_CM_GLOBAL_CREDIT, SEND_CM_GLOBAL_CREDIT_RESETCSR);
13235 	/* SEND_CM_CREDIT_USED_STATUS read-only */
13236 	write_csr(dd, SEND_CM_TIMER_CTRL, 0);
13237 	write_csr(dd, SEND_CM_LOCAL_AU_TABLE0_TO3, 0);
13238 	write_csr(dd, SEND_CM_LOCAL_AU_TABLE4_TO7, 0);
13239 	write_csr(dd, SEND_CM_REMOTE_AU_TABLE0_TO3, 0);
13240 	write_csr(dd, SEND_CM_REMOTE_AU_TABLE4_TO7, 0);
13241 	for (i = 0; i < TXE_NUM_DATA_VL; i++)
13242 		write_csr(dd, SEND_CM_CREDIT_VL + (8 * i), 0);
13243 	write_csr(dd, SEND_CM_CREDIT_VL15, 0);
13244 	/* SEND_CM_CREDIT_USED_VL read-only */
13245 	/* SEND_CM_CREDIT_USED_VL15 read-only */
13246 	/* SEND_EGRESS_CTXT_STATUS read-only */
13247 	/* SEND_EGRESS_SEND_DMA_STATUS read-only */
13248 	write_csr(dd, SEND_EGRESS_ERR_INFO, ~0ull);
13249 	/* SEND_EGRESS_ERR_INFO read-only */
13250 	/* SEND_EGRESS_ERR_SOURCE read-only */
13251 
13252 	/*
13253 	 * TXE Per-Context CSRs
13254 	 */
13255 	for (i = 0; i < dd->chip_send_contexts; i++) {
13256 		write_kctxt_csr(dd, i, SEND_CTXT_CTRL, 0);
13257 		write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_CTRL, 0);
13258 		write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_RETURN_ADDR, 0);
13259 		write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_FORCE, 0);
13260 		write_kctxt_csr(dd, i, SEND_CTXT_ERR_MASK, 0);
13261 		write_kctxt_csr(dd, i, SEND_CTXT_ERR_CLEAR, ~0ull);
13262 		write_kctxt_csr(dd, i, SEND_CTXT_CHECK_ENABLE, 0);
13263 		write_kctxt_csr(dd, i, SEND_CTXT_CHECK_VL, 0);
13264 		write_kctxt_csr(dd, i, SEND_CTXT_CHECK_JOB_KEY, 0);
13265 		write_kctxt_csr(dd, i, SEND_CTXT_CHECK_PARTITION_KEY, 0);
13266 		write_kctxt_csr(dd, i, SEND_CTXT_CHECK_SLID, 0);
13267 		write_kctxt_csr(dd, i, SEND_CTXT_CHECK_OPCODE, 0);
13268 	}
13269 
13270 	/*
13271 	 * TXE Per-SDMA CSRs
13272 	 */
13273 	for (i = 0; i < dd->chip_sdma_engines; i++) {
13274 		write_kctxt_csr(dd, i, SEND_DMA_CTRL, 0);
13275 		/* SEND_DMA_STATUS read-only */
13276 		write_kctxt_csr(dd, i, SEND_DMA_BASE_ADDR, 0);
13277 		write_kctxt_csr(dd, i, SEND_DMA_LEN_GEN, 0);
13278 		write_kctxt_csr(dd, i, SEND_DMA_TAIL, 0);
13279 		/* SEND_DMA_HEAD read-only */
13280 		write_kctxt_csr(dd, i, SEND_DMA_HEAD_ADDR, 0);
13281 		write_kctxt_csr(dd, i, SEND_DMA_PRIORITY_THLD, 0);
13282 		/* SEND_DMA_IDLE_CNT read-only */
13283 		write_kctxt_csr(dd, i, SEND_DMA_RELOAD_CNT, 0);
13284 		write_kctxt_csr(dd, i, SEND_DMA_DESC_CNT, 0);
13285 		/* SEND_DMA_DESC_FETCHED_CNT read-only */
13286 		/* SEND_DMA_ENG_ERR_STATUS read-only */
13287 		write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_MASK, 0);
13288 		write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_CLEAR, ~0ull);
13289 		/* SEND_DMA_ENG_ERR_FORCE leave alone */
13290 		write_kctxt_csr(dd, i, SEND_DMA_CHECK_ENABLE, 0);
13291 		write_kctxt_csr(dd, i, SEND_DMA_CHECK_VL, 0);
13292 		write_kctxt_csr(dd, i, SEND_DMA_CHECK_JOB_KEY, 0);
13293 		write_kctxt_csr(dd, i, SEND_DMA_CHECK_PARTITION_KEY, 0);
13294 		write_kctxt_csr(dd, i, SEND_DMA_CHECK_SLID, 0);
13295 		write_kctxt_csr(dd, i, SEND_DMA_CHECK_OPCODE, 0);
13296 		write_kctxt_csr(dd, i, SEND_DMA_MEMORY, 0);
13297 	}
13298 }
13299 
13300 /*
13301  * Expect on entry:
13302  * o Packet ingress is disabled, i.e. RcvCtrl.RcvPortEnable == 0
13303  */
13304 static void init_rbufs(struct hfi1_devdata *dd)
13305 {
13306 	u64 reg;
13307 	int count;
13308 
13309 	/*
13310 	 * Wait for DMA to stop: RxRbufPktPending and RxPktInProgress are
13311 	 * clear.
13312 	 */
13313 	count = 0;
13314 	while (1) {
13315 		reg = read_csr(dd, RCV_STATUS);
13316 		if ((reg & (RCV_STATUS_RX_RBUF_PKT_PENDING_SMASK
13317 			    | RCV_STATUS_RX_PKT_IN_PROGRESS_SMASK)) == 0)
13318 			break;
13319 		/*
13320 		 * Give up after 1ms - maximum wait time.
13321 		 *
13322 		 * RBuf size is 148KiB.  Slowest possible is PCIe Gen1 x1 at
13323 		 * 250MB/s bandwidth.  Lower rate to 66% for overhead to get:
13324 		 *	148 KB / (66% * 250MB/s) = 920us
13325 		 */
13326 		if (count++ > 500) {
13327 			dd_dev_err(dd,
13328 				   "%s: in-progress DMA not clearing: RcvStatus 0x%llx, continuing\n",
13329 				   __func__, reg);
13330 			break;
13331 		}
13332 		udelay(2); /* do not busy-wait the CSR */
13333 	}
13334 
13335 	/* start the init - expect RcvCtrl to be 0 */
13336 	write_csr(dd, RCV_CTRL, RCV_CTRL_RX_RBUF_INIT_SMASK);
13337 
13338 	/*
13339 	 * Read to force the write of Rcvtrl.RxRbufInit.  There is a brief
13340 	 * period after the write before RcvStatus.RxRbufInitDone is valid.
13341 	 * The delay in the first run through the loop below is sufficient and
13342 	 * required before the first read of RcvStatus.RxRbufInintDone.
13343 	 */
13344 	read_csr(dd, RCV_CTRL);
13345 
13346 	/* wait for the init to finish */
13347 	count = 0;
13348 	while (1) {
13349 		/* delay is required first time through - see above */
13350 		udelay(2); /* do not busy-wait the CSR */
13351 		reg = read_csr(dd, RCV_STATUS);
13352 		if (reg & (RCV_STATUS_RX_RBUF_INIT_DONE_SMASK))
13353 			break;
13354 
13355 		/* give up after 100us - slowest possible at 33MHz is 73us */
13356 		if (count++ > 50) {
13357 			dd_dev_err(dd,
13358 				   "%s: RcvStatus.RxRbufInit not set, continuing\n",
13359 				   __func__);
13360 			break;
13361 		}
13362 	}
13363 }
13364 
13365 /* set RXE CSRs to chip reset defaults */
13366 static void reset_rxe_csrs(struct hfi1_devdata *dd)
13367 {
13368 	int i, j;
13369 
13370 	/*
13371 	 * RXE Kernel CSRs
13372 	 */
13373 	write_csr(dd, RCV_CTRL, 0);
13374 	init_rbufs(dd);
13375 	/* RCV_STATUS read-only */
13376 	/* RCV_CONTEXTS read-only */
13377 	/* RCV_ARRAY_CNT read-only */
13378 	/* RCV_BUF_SIZE read-only */
13379 	write_csr(dd, RCV_BTH_QP, 0);
13380 	write_csr(dd, RCV_MULTICAST, 0);
13381 	write_csr(dd, RCV_BYPASS, 0);
13382 	write_csr(dd, RCV_VL15, 0);
13383 	/* this is a clear-down */
13384 	write_csr(dd, RCV_ERR_INFO,
13385 		  RCV_ERR_INFO_RCV_EXCESS_BUFFER_OVERRUN_SMASK);
13386 	/* RCV_ERR_STATUS read-only */
13387 	write_csr(dd, RCV_ERR_MASK, 0);
13388 	write_csr(dd, RCV_ERR_CLEAR, ~0ull);
13389 	/* RCV_ERR_FORCE leave alone */
13390 	for (i = 0; i < 32; i++)
13391 		write_csr(dd, RCV_QP_MAP_TABLE + (8 * i), 0);
13392 	for (i = 0; i < 4; i++)
13393 		write_csr(dd, RCV_PARTITION_KEY + (8 * i), 0);
13394 	for (i = 0; i < RXE_NUM_32_BIT_COUNTERS; i++)
13395 		write_csr(dd, RCV_COUNTER_ARRAY32 + (8 * i), 0);
13396 	for (i = 0; i < RXE_NUM_64_BIT_COUNTERS; i++)
13397 		write_csr(dd, RCV_COUNTER_ARRAY64 + (8 * i), 0);
13398 	for (i = 0; i < RXE_NUM_RSM_INSTANCES; i++) {
13399 		write_csr(dd, RCV_RSM_CFG + (8 * i), 0);
13400 		write_csr(dd, RCV_RSM_SELECT + (8 * i), 0);
13401 		write_csr(dd, RCV_RSM_MATCH + (8 * i), 0);
13402 	}
13403 	for (i = 0; i < 32; i++)
13404 		write_csr(dd, RCV_RSM_MAP_TABLE + (8 * i), 0);
13405 
13406 	/*
13407 	 * RXE Kernel and User Per-Context CSRs
13408 	 */
13409 	for (i = 0; i < dd->chip_rcv_contexts; i++) {
13410 		/* kernel */
13411 		write_kctxt_csr(dd, i, RCV_CTXT_CTRL, 0);
13412 		/* RCV_CTXT_STATUS read-only */
13413 		write_kctxt_csr(dd, i, RCV_EGR_CTRL, 0);
13414 		write_kctxt_csr(dd, i, RCV_TID_CTRL, 0);
13415 		write_kctxt_csr(dd, i, RCV_KEY_CTRL, 0);
13416 		write_kctxt_csr(dd, i, RCV_HDR_ADDR, 0);
13417 		write_kctxt_csr(dd, i, RCV_HDR_CNT, 0);
13418 		write_kctxt_csr(dd, i, RCV_HDR_ENT_SIZE, 0);
13419 		write_kctxt_csr(dd, i, RCV_HDR_SIZE, 0);
13420 		write_kctxt_csr(dd, i, RCV_HDR_TAIL_ADDR, 0);
13421 		write_kctxt_csr(dd, i, RCV_AVAIL_TIME_OUT, 0);
13422 		write_kctxt_csr(dd, i, RCV_HDR_OVFL_CNT, 0);
13423 
13424 		/* user */
13425 		/* RCV_HDR_TAIL read-only */
13426 		write_uctxt_csr(dd, i, RCV_HDR_HEAD, 0);
13427 		/* RCV_EGR_INDEX_TAIL read-only */
13428 		write_uctxt_csr(dd, i, RCV_EGR_INDEX_HEAD, 0);
13429 		/* RCV_EGR_OFFSET_TAIL read-only */
13430 		for (j = 0; j < RXE_NUM_TID_FLOWS; j++) {
13431 			write_uctxt_csr(dd, i,
13432 					RCV_TID_FLOW_TABLE + (8 * j), 0);
13433 		}
13434 	}
13435 }
13436 
13437 /*
13438  * Set sc2vl tables.
13439  *
13440  * They power on to zeros, so to avoid send context errors
13441  * they need to be set:
13442  *
13443  * SC 0-7 -> VL 0-7 (respectively)
13444  * SC 15  -> VL 15
13445  * otherwise
13446  *        -> VL 0
13447  */
13448 static void init_sc2vl_tables(struct hfi1_devdata *dd)
13449 {
13450 	int i;
13451 	/* init per architecture spec, constrained by hardware capability */
13452 
13453 	/* HFI maps sent packets */
13454 	write_csr(dd, SEND_SC2VLT0, SC2VL_VAL(
13455 		0,
13456 		0, 0, 1, 1,
13457 		2, 2, 3, 3,
13458 		4, 4, 5, 5,
13459 		6, 6, 7, 7));
13460 	write_csr(dd, SEND_SC2VLT1, SC2VL_VAL(
13461 		1,
13462 		8, 0, 9, 0,
13463 		10, 0, 11, 0,
13464 		12, 0, 13, 0,
13465 		14, 0, 15, 15));
13466 	write_csr(dd, SEND_SC2VLT2, SC2VL_VAL(
13467 		2,
13468 		16, 0, 17, 0,
13469 		18, 0, 19, 0,
13470 		20, 0, 21, 0,
13471 		22, 0, 23, 0));
13472 	write_csr(dd, SEND_SC2VLT3, SC2VL_VAL(
13473 		3,
13474 		24, 0, 25, 0,
13475 		26, 0, 27, 0,
13476 		28, 0, 29, 0,
13477 		30, 0, 31, 0));
13478 
13479 	/* DC maps received packets */
13480 	write_csr(dd, DCC_CFG_SC_VL_TABLE_15_0, DC_SC_VL_VAL(
13481 		15_0,
13482 		0, 0, 1, 1,  2, 2,  3, 3,  4, 4,  5, 5,  6, 6,  7,  7,
13483 		8, 0, 9, 0, 10, 0, 11, 0, 12, 0, 13, 0, 14, 0, 15, 15));
13484 	write_csr(dd, DCC_CFG_SC_VL_TABLE_31_16, DC_SC_VL_VAL(
13485 		31_16,
13486 		16, 0, 17, 0, 18, 0, 19, 0, 20, 0, 21, 0, 22, 0, 23, 0,
13487 		24, 0, 25, 0, 26, 0, 27, 0, 28, 0, 29, 0, 30, 0, 31, 0));
13488 
13489 	/* initialize the cached sc2vl values consistently with h/w */
13490 	for (i = 0; i < 32; i++) {
13491 		if (i < 8 || i == 15)
13492 			*((u8 *)(dd->sc2vl) + i) = (u8)i;
13493 		else
13494 			*((u8 *)(dd->sc2vl) + i) = 0;
13495 	}
13496 }
13497 
13498 /*
13499  * Read chip sizes and then reset parts to sane, disabled, values.  We cannot
13500  * depend on the chip going through a power-on reset - a driver may be loaded
13501  * and unloaded many times.
13502  *
13503  * Do not write any CSR values to the chip in this routine - there may be
13504  * a reset following the (possible) FLR in this routine.
13505  *
13506  */
13507 static void init_chip(struct hfi1_devdata *dd)
13508 {
13509 	int i;
13510 
13511 	/*
13512 	 * Put the HFI CSRs in a known state.
13513 	 * Combine this with a DC reset.
13514 	 *
13515 	 * Stop the device from doing anything while we do a
13516 	 * reset.  We know there are no other active users of
13517 	 * the device since we are now in charge.  Turn off
13518 	 * off all outbound and inbound traffic and make sure
13519 	 * the device does not generate any interrupts.
13520 	 */
13521 
13522 	/* disable send contexts and SDMA engines */
13523 	write_csr(dd, SEND_CTRL, 0);
13524 	for (i = 0; i < dd->chip_send_contexts; i++)
13525 		write_kctxt_csr(dd, i, SEND_CTXT_CTRL, 0);
13526 	for (i = 0; i < dd->chip_sdma_engines; i++)
13527 		write_kctxt_csr(dd, i, SEND_DMA_CTRL, 0);
13528 	/* disable port (turn off RXE inbound traffic) and contexts */
13529 	write_csr(dd, RCV_CTRL, 0);
13530 	for (i = 0; i < dd->chip_rcv_contexts; i++)
13531 		write_csr(dd, RCV_CTXT_CTRL, 0);
13532 	/* mask all interrupt sources */
13533 	for (i = 0; i < CCE_NUM_INT_CSRS; i++)
13534 		write_csr(dd, CCE_INT_MASK + (8 * i), 0ull);
13535 
13536 	/*
13537 	 * DC Reset: do a full DC reset before the register clear.
13538 	 * A recommended length of time to hold is one CSR read,
13539 	 * so reread the CceDcCtrl.  Then, hold the DC in reset
13540 	 * across the clear.
13541 	 */
13542 	write_csr(dd, CCE_DC_CTRL, CCE_DC_CTRL_DC_RESET_SMASK);
13543 	(void)read_csr(dd, CCE_DC_CTRL);
13544 
13545 	if (use_flr) {
13546 		/*
13547 		 * A FLR will reset the SPC core and part of the PCIe.
13548 		 * The parts that need to be restored have already been
13549 		 * saved.
13550 		 */
13551 		dd_dev_info(dd, "Resetting CSRs with FLR\n");
13552 
13553 		/* do the FLR, the DC reset will remain */
13554 		hfi1_pcie_flr(dd);
13555 
13556 		/* restore command and BARs */
13557 		restore_pci_variables(dd);
13558 
13559 		if (is_ax(dd)) {
13560 			dd_dev_info(dd, "Resetting CSRs with FLR\n");
13561 			hfi1_pcie_flr(dd);
13562 			restore_pci_variables(dd);
13563 		}
13564 	} else {
13565 		dd_dev_info(dd, "Resetting CSRs with writes\n");
13566 		reset_cce_csrs(dd);
13567 		reset_txe_csrs(dd);
13568 		reset_rxe_csrs(dd);
13569 		reset_misc_csrs(dd);
13570 	}
13571 	/* clear the DC reset */
13572 	write_csr(dd, CCE_DC_CTRL, 0);
13573 
13574 	/* Set the LED off */
13575 	setextled(dd, 0);
13576 
13577 	/*
13578 	 * Clear the QSFP reset.
13579 	 * An FLR enforces a 0 on all out pins. The driver does not touch
13580 	 * ASIC_QSFPn_OUT otherwise.  This leaves RESET_N low and
13581 	 * anything plugged constantly in reset, if it pays attention
13582 	 * to RESET_N.
13583 	 * Prime examples of this are optical cables. Set all pins high.
13584 	 * I2CCLK and I2CDAT will change per direction, and INT_N and
13585 	 * MODPRS_N are input only and their value is ignored.
13586 	 */
13587 	write_csr(dd, ASIC_QSFP1_OUT, 0x1f);
13588 	write_csr(dd, ASIC_QSFP2_OUT, 0x1f);
13589 	init_chip_resources(dd);
13590 }
13591 
13592 static void init_early_variables(struct hfi1_devdata *dd)
13593 {
13594 	int i;
13595 
13596 	/* assign link credit variables */
13597 	dd->vau = CM_VAU;
13598 	dd->link_credits = CM_GLOBAL_CREDITS;
13599 	if (is_ax(dd))
13600 		dd->link_credits--;
13601 	dd->vcu = cu_to_vcu(hfi1_cu);
13602 	/* enough room for 8 MAD packets plus header - 17K */
13603 	dd->vl15_init = (8 * (2048 + 128)) / vau_to_au(dd->vau);
13604 	if (dd->vl15_init > dd->link_credits)
13605 		dd->vl15_init = dd->link_credits;
13606 
13607 	write_uninitialized_csrs_and_memories(dd);
13608 
13609 	if (HFI1_CAP_IS_KSET(PKEY_CHECK))
13610 		for (i = 0; i < dd->num_pports; i++) {
13611 			struct hfi1_pportdata *ppd = &dd->pport[i];
13612 
13613 			set_partition_keys(ppd);
13614 		}
13615 	init_sc2vl_tables(dd);
13616 }
13617 
13618 static void init_kdeth_qp(struct hfi1_devdata *dd)
13619 {
13620 	/* user changed the KDETH_QP */
13621 	if (kdeth_qp != 0 && kdeth_qp >= 0xff) {
13622 		/* out of range or illegal value */
13623 		dd_dev_err(dd, "Invalid KDETH queue pair prefix, ignoring");
13624 		kdeth_qp = 0;
13625 	}
13626 	if (kdeth_qp == 0)	/* not set, or failed range check */
13627 		kdeth_qp = DEFAULT_KDETH_QP;
13628 
13629 	write_csr(dd, SEND_BTH_QP,
13630 		  (kdeth_qp & SEND_BTH_QP_KDETH_QP_MASK) <<
13631 		  SEND_BTH_QP_KDETH_QP_SHIFT);
13632 
13633 	write_csr(dd, RCV_BTH_QP,
13634 		  (kdeth_qp & RCV_BTH_QP_KDETH_QP_MASK) <<
13635 		  RCV_BTH_QP_KDETH_QP_SHIFT);
13636 }
13637 
13638 /**
13639  * init_qpmap_table
13640  * @dd - device data
13641  * @first_ctxt - first context
13642  * @last_ctxt - first context
13643  *
13644  * This return sets the qpn mapping table that
13645  * is indexed by qpn[8:1].
13646  *
13647  * The routine will round robin the 256 settings
13648  * from first_ctxt to last_ctxt.
13649  *
13650  * The first/last looks ahead to having specialized
13651  * receive contexts for mgmt and bypass.  Normal
13652  * verbs traffic will assumed to be on a range
13653  * of receive contexts.
13654  */
13655 static void init_qpmap_table(struct hfi1_devdata *dd,
13656 			     u32 first_ctxt,
13657 			     u32 last_ctxt)
13658 {
13659 	u64 reg = 0;
13660 	u64 regno = RCV_QP_MAP_TABLE;
13661 	int i;
13662 	u64 ctxt = first_ctxt;
13663 
13664 	for (i = 0; i < 256; i++) {
13665 		reg |= ctxt << (8 * (i % 8));
13666 		ctxt++;
13667 		if (ctxt > last_ctxt)
13668 			ctxt = first_ctxt;
13669 		if (i % 8 == 7) {
13670 			write_csr(dd, regno, reg);
13671 			reg = 0;
13672 			regno += 8;
13673 		}
13674 	}
13675 
13676 	add_rcvctrl(dd, RCV_CTRL_RCV_QP_MAP_ENABLE_SMASK
13677 			| RCV_CTRL_RCV_BYPASS_ENABLE_SMASK);
13678 }
13679 
13680 struct rsm_map_table {
13681 	u64 map[NUM_MAP_REGS];
13682 	unsigned int used;
13683 };
13684 
13685 struct rsm_rule_data {
13686 	u8 offset;
13687 	u8 pkt_type;
13688 	u32 field1_off;
13689 	u32 field2_off;
13690 	u32 index1_off;
13691 	u32 index1_width;
13692 	u32 index2_off;
13693 	u32 index2_width;
13694 	u32 mask1;
13695 	u32 value1;
13696 	u32 mask2;
13697 	u32 value2;
13698 };
13699 
13700 /*
13701  * Return an initialized RMT map table for users to fill in.  OK if it
13702  * returns NULL, indicating no table.
13703  */
13704 static struct rsm_map_table *alloc_rsm_map_table(struct hfi1_devdata *dd)
13705 {
13706 	struct rsm_map_table *rmt;
13707 	u8 rxcontext = is_ax(dd) ? 0 : 0xff;  /* 0 is default if a0 ver. */
13708 
13709 	rmt = kmalloc(sizeof(*rmt), GFP_KERNEL);
13710 	if (rmt) {
13711 		memset(rmt->map, rxcontext, sizeof(rmt->map));
13712 		rmt->used = 0;
13713 	}
13714 
13715 	return rmt;
13716 }
13717 
13718 /*
13719  * Write the final RMT map table to the chip and free the table.  OK if
13720  * table is NULL.
13721  */
13722 static void complete_rsm_map_table(struct hfi1_devdata *dd,
13723 				   struct rsm_map_table *rmt)
13724 {
13725 	int i;
13726 
13727 	if (rmt) {
13728 		/* write table to chip */
13729 		for (i = 0; i < NUM_MAP_REGS; i++)
13730 			write_csr(dd, RCV_RSM_MAP_TABLE + (8 * i), rmt->map[i]);
13731 
13732 		/* enable RSM */
13733 		add_rcvctrl(dd, RCV_CTRL_RCV_RSM_ENABLE_SMASK);
13734 	}
13735 }
13736 
13737 /*
13738  * Add a receive side mapping rule.
13739  */
13740 static void add_rsm_rule(struct hfi1_devdata *dd, u8 rule_index,
13741 			 struct rsm_rule_data *rrd)
13742 {
13743 	write_csr(dd, RCV_RSM_CFG + (8 * rule_index),
13744 		  (u64)rrd->offset << RCV_RSM_CFG_OFFSET_SHIFT |
13745 		  1ull << rule_index | /* enable bit */
13746 		  (u64)rrd->pkt_type << RCV_RSM_CFG_PACKET_TYPE_SHIFT);
13747 	write_csr(dd, RCV_RSM_SELECT + (8 * rule_index),
13748 		  (u64)rrd->field1_off << RCV_RSM_SELECT_FIELD1_OFFSET_SHIFT |
13749 		  (u64)rrd->field2_off << RCV_RSM_SELECT_FIELD2_OFFSET_SHIFT |
13750 		  (u64)rrd->index1_off << RCV_RSM_SELECT_INDEX1_OFFSET_SHIFT |
13751 		  (u64)rrd->index1_width << RCV_RSM_SELECT_INDEX1_WIDTH_SHIFT |
13752 		  (u64)rrd->index2_off << RCV_RSM_SELECT_INDEX2_OFFSET_SHIFT |
13753 		  (u64)rrd->index2_width << RCV_RSM_SELECT_INDEX2_WIDTH_SHIFT);
13754 	write_csr(dd, RCV_RSM_MATCH + (8 * rule_index),
13755 		  (u64)rrd->mask1 << RCV_RSM_MATCH_MASK1_SHIFT |
13756 		  (u64)rrd->value1 << RCV_RSM_MATCH_VALUE1_SHIFT |
13757 		  (u64)rrd->mask2 << RCV_RSM_MATCH_MASK2_SHIFT |
13758 		  (u64)rrd->value2 << RCV_RSM_MATCH_VALUE2_SHIFT);
13759 }
13760 
13761 /* return the number of RSM map table entries that will be used for QOS */
13762 static int qos_rmt_entries(struct hfi1_devdata *dd, unsigned int *mp,
13763 			   unsigned int *np)
13764 {
13765 	int i;
13766 	unsigned int m, n;
13767 	u8 max_by_vl = 0;
13768 
13769 	/* is QOS active at all? */
13770 	if (dd->n_krcv_queues <= MIN_KERNEL_KCTXTS ||
13771 	    num_vls == 1 ||
13772 	    krcvqsset <= 1)
13773 		goto no_qos;
13774 
13775 	/* determine bits for qpn */
13776 	for (i = 0; i < min_t(unsigned int, num_vls, krcvqsset); i++)
13777 		if (krcvqs[i] > max_by_vl)
13778 			max_by_vl = krcvqs[i];
13779 	if (max_by_vl > 32)
13780 		goto no_qos;
13781 	m = ilog2(__roundup_pow_of_two(max_by_vl));
13782 
13783 	/* determine bits for vl */
13784 	n = ilog2(__roundup_pow_of_two(num_vls));
13785 
13786 	/* reject if too much is used */
13787 	if ((m + n) > 7)
13788 		goto no_qos;
13789 
13790 	if (mp)
13791 		*mp = m;
13792 	if (np)
13793 		*np = n;
13794 
13795 	return 1 << (m + n);
13796 
13797 no_qos:
13798 	if (mp)
13799 		*mp = 0;
13800 	if (np)
13801 		*np = 0;
13802 	return 0;
13803 }
13804 
13805 /**
13806  * init_qos - init RX qos
13807  * @dd - device data
13808  * @rmt - RSM map table
13809  *
13810  * This routine initializes Rule 0 and the RSM map table to implement
13811  * quality of service (qos).
13812  *
13813  * If all of the limit tests succeed, qos is applied based on the array
13814  * interpretation of krcvqs where entry 0 is VL0.
13815  *
13816  * The number of vl bits (n) and the number of qpn bits (m) are computed to
13817  * feed both the RSM map table and the single rule.
13818  */
13819 static void init_qos(struct hfi1_devdata *dd, struct rsm_map_table *rmt)
13820 {
13821 	struct rsm_rule_data rrd;
13822 	unsigned qpns_per_vl, ctxt, i, qpn, n = 1, m;
13823 	unsigned int rmt_entries;
13824 	u64 reg;
13825 
13826 	if (!rmt)
13827 		goto bail;
13828 	rmt_entries = qos_rmt_entries(dd, &m, &n);
13829 	if (rmt_entries == 0)
13830 		goto bail;
13831 	qpns_per_vl = 1 << m;
13832 
13833 	/* enough room in the map table? */
13834 	rmt_entries = 1 << (m + n);
13835 	if (rmt->used + rmt_entries >= NUM_MAP_ENTRIES)
13836 		goto bail;
13837 
13838 	/* add qos entries to the the RSM map table */
13839 	for (i = 0, ctxt = FIRST_KERNEL_KCTXT; i < num_vls; i++) {
13840 		unsigned tctxt;
13841 
13842 		for (qpn = 0, tctxt = ctxt;
13843 		     krcvqs[i] && qpn < qpns_per_vl; qpn++) {
13844 			unsigned idx, regoff, regidx;
13845 
13846 			/* generate the index the hardware will produce */
13847 			idx = rmt->used + ((qpn << n) ^ i);
13848 			regoff = (idx % 8) * 8;
13849 			regidx = idx / 8;
13850 			/* replace default with context number */
13851 			reg = rmt->map[regidx];
13852 			reg &= ~(RCV_RSM_MAP_TABLE_RCV_CONTEXT_A_MASK
13853 				<< regoff);
13854 			reg |= (u64)(tctxt++) << regoff;
13855 			rmt->map[regidx] = reg;
13856 			if (tctxt == ctxt + krcvqs[i])
13857 				tctxt = ctxt;
13858 		}
13859 		ctxt += krcvqs[i];
13860 	}
13861 
13862 	rrd.offset = rmt->used;
13863 	rrd.pkt_type = 2;
13864 	rrd.field1_off = LRH_BTH_MATCH_OFFSET;
13865 	rrd.field2_off = LRH_SC_MATCH_OFFSET;
13866 	rrd.index1_off = LRH_SC_SELECT_OFFSET;
13867 	rrd.index1_width = n;
13868 	rrd.index2_off = QPN_SELECT_OFFSET;
13869 	rrd.index2_width = m + n;
13870 	rrd.mask1 = LRH_BTH_MASK;
13871 	rrd.value1 = LRH_BTH_VALUE;
13872 	rrd.mask2 = LRH_SC_MASK;
13873 	rrd.value2 = LRH_SC_VALUE;
13874 
13875 	/* add rule 0 */
13876 	add_rsm_rule(dd, 0, &rrd);
13877 
13878 	/* mark RSM map entries as used */
13879 	rmt->used += rmt_entries;
13880 	/* map everything else to the mcast/err/vl15 context */
13881 	init_qpmap_table(dd, HFI1_CTRL_CTXT, HFI1_CTRL_CTXT);
13882 	dd->qos_shift = n + 1;
13883 	return;
13884 bail:
13885 	dd->qos_shift = 1;
13886 	init_qpmap_table(dd, FIRST_KERNEL_KCTXT, dd->n_krcv_queues - 1);
13887 }
13888 
13889 static void init_user_fecn_handling(struct hfi1_devdata *dd,
13890 				    struct rsm_map_table *rmt)
13891 {
13892 	struct rsm_rule_data rrd;
13893 	u64 reg;
13894 	int i, idx, regoff, regidx;
13895 	u8 offset;
13896 
13897 	/* there needs to be enough room in the map table */
13898 	if (rmt->used + dd->num_user_contexts >= NUM_MAP_ENTRIES) {
13899 		dd_dev_err(dd, "User FECN handling disabled - too many user contexts allocated\n");
13900 		return;
13901 	}
13902 
13903 	/*
13904 	 * RSM will extract the destination context as an index into the
13905 	 * map table.  The destination contexts are a sequential block
13906 	 * in the range first_user_ctxt...num_rcv_contexts-1 (inclusive).
13907 	 * Map entries are accessed as offset + extracted value.  Adjust
13908 	 * the added offset so this sequence can be placed anywhere in
13909 	 * the table - as long as the entries themselves do not wrap.
13910 	 * There are only enough bits in offset for the table size, so
13911 	 * start with that to allow for a "negative" offset.
13912 	 */
13913 	offset = (u8)(NUM_MAP_ENTRIES + (int)rmt->used -
13914 						(int)dd->first_user_ctxt);
13915 
13916 	for (i = dd->first_user_ctxt, idx = rmt->used;
13917 				i < dd->num_rcv_contexts; i++, idx++) {
13918 		/* replace with identity mapping */
13919 		regoff = (idx % 8) * 8;
13920 		regidx = idx / 8;
13921 		reg = rmt->map[regidx];
13922 		reg &= ~(RCV_RSM_MAP_TABLE_RCV_CONTEXT_A_MASK << regoff);
13923 		reg |= (u64)i << regoff;
13924 		rmt->map[regidx] = reg;
13925 	}
13926 
13927 	/*
13928 	 * For RSM intercept of Expected FECN packets:
13929 	 * o packet type 0 - expected
13930 	 * o match on F (bit 95), using select/match 1, and
13931 	 * o match on SH (bit 133), using select/match 2.
13932 	 *
13933 	 * Use index 1 to extract the 8-bit receive context from DestQP
13934 	 * (start at bit 64).  Use that as the RSM map table index.
13935 	 */
13936 	rrd.offset = offset;
13937 	rrd.pkt_type = 0;
13938 	rrd.field1_off = 95;
13939 	rrd.field2_off = 133;
13940 	rrd.index1_off = 64;
13941 	rrd.index1_width = 8;
13942 	rrd.index2_off = 0;
13943 	rrd.index2_width = 0;
13944 	rrd.mask1 = 1;
13945 	rrd.value1 = 1;
13946 	rrd.mask2 = 1;
13947 	rrd.value2 = 1;
13948 
13949 	/* add rule 1 */
13950 	add_rsm_rule(dd, 1, &rrd);
13951 
13952 	rmt->used += dd->num_user_contexts;
13953 }
13954 
13955 static void init_rxe(struct hfi1_devdata *dd)
13956 {
13957 	struct rsm_map_table *rmt;
13958 
13959 	/* enable all receive errors */
13960 	write_csr(dd, RCV_ERR_MASK, ~0ull);
13961 
13962 	rmt = alloc_rsm_map_table(dd);
13963 	/* set up QOS, including the QPN map table */
13964 	init_qos(dd, rmt);
13965 	init_user_fecn_handling(dd, rmt);
13966 	complete_rsm_map_table(dd, rmt);
13967 	kfree(rmt);
13968 
13969 	/*
13970 	 * make sure RcvCtrl.RcvWcb <= PCIe Device Control
13971 	 * Register Max_Payload_Size (PCI_EXP_DEVCTL in Linux PCIe config
13972 	 * space, PciCfgCap2.MaxPayloadSize in HFI).  There is only one
13973 	 * invalid configuration: RcvCtrl.RcvWcb set to its max of 256 and
13974 	 * Max_PayLoad_Size set to its minimum of 128.
13975 	 *
13976 	 * Presently, RcvCtrl.RcvWcb is not modified from its default of 0
13977 	 * (64 bytes).  Max_Payload_Size is possibly modified upward in
13978 	 * tune_pcie_caps() which is called after this routine.
13979 	 */
13980 }
13981 
13982 static void init_other(struct hfi1_devdata *dd)
13983 {
13984 	/* enable all CCE errors */
13985 	write_csr(dd, CCE_ERR_MASK, ~0ull);
13986 	/* enable *some* Misc errors */
13987 	write_csr(dd, MISC_ERR_MASK, DRIVER_MISC_MASK);
13988 	/* enable all DC errors, except LCB */
13989 	write_csr(dd, DCC_ERR_FLG_EN, ~0ull);
13990 	write_csr(dd, DC_DC8051_ERR_EN, ~0ull);
13991 }
13992 
13993 /*
13994  * Fill out the given AU table using the given CU.  A CU is defined in terms
13995  * AUs.  The table is a an encoding: given the index, how many AUs does that
13996  * represent?
13997  *
13998  * NOTE: Assumes that the register layout is the same for the
13999  * local and remote tables.
14000  */
14001 static void assign_cm_au_table(struct hfi1_devdata *dd, u32 cu,
14002 			       u32 csr0to3, u32 csr4to7)
14003 {
14004 	write_csr(dd, csr0to3,
14005 		  0ull << SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE0_SHIFT |
14006 		  1ull << SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE1_SHIFT |
14007 		  2ull * cu <<
14008 		  SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE2_SHIFT |
14009 		  4ull * cu <<
14010 		  SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE3_SHIFT);
14011 	write_csr(dd, csr4to7,
14012 		  8ull * cu <<
14013 		  SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE4_SHIFT |
14014 		  16ull * cu <<
14015 		  SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE5_SHIFT |
14016 		  32ull * cu <<
14017 		  SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE6_SHIFT |
14018 		  64ull * cu <<
14019 		  SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE7_SHIFT);
14020 }
14021 
14022 static void assign_local_cm_au_table(struct hfi1_devdata *dd, u8 vcu)
14023 {
14024 	assign_cm_au_table(dd, vcu_to_cu(vcu), SEND_CM_LOCAL_AU_TABLE0_TO3,
14025 			   SEND_CM_LOCAL_AU_TABLE4_TO7);
14026 }
14027 
14028 void assign_remote_cm_au_table(struct hfi1_devdata *dd, u8 vcu)
14029 {
14030 	assign_cm_au_table(dd, vcu_to_cu(vcu), SEND_CM_REMOTE_AU_TABLE0_TO3,
14031 			   SEND_CM_REMOTE_AU_TABLE4_TO7);
14032 }
14033 
14034 static void init_txe(struct hfi1_devdata *dd)
14035 {
14036 	int i;
14037 
14038 	/* enable all PIO, SDMA, general, and Egress errors */
14039 	write_csr(dd, SEND_PIO_ERR_MASK, ~0ull);
14040 	write_csr(dd, SEND_DMA_ERR_MASK, ~0ull);
14041 	write_csr(dd, SEND_ERR_MASK, ~0ull);
14042 	write_csr(dd, SEND_EGRESS_ERR_MASK, ~0ull);
14043 
14044 	/* enable all per-context and per-SDMA engine errors */
14045 	for (i = 0; i < dd->chip_send_contexts; i++)
14046 		write_kctxt_csr(dd, i, SEND_CTXT_ERR_MASK, ~0ull);
14047 	for (i = 0; i < dd->chip_sdma_engines; i++)
14048 		write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_MASK, ~0ull);
14049 
14050 	/* set the local CU to AU mapping */
14051 	assign_local_cm_au_table(dd, dd->vcu);
14052 
14053 	/*
14054 	 * Set reasonable default for Credit Return Timer
14055 	 * Don't set on Simulator - causes it to choke.
14056 	 */
14057 	if (dd->icode != ICODE_FUNCTIONAL_SIMULATOR)
14058 		write_csr(dd, SEND_CM_TIMER_CTRL, HFI1_CREDIT_RETURN_RATE);
14059 }
14060 
14061 int hfi1_set_ctxt_jkey(struct hfi1_devdata *dd, unsigned ctxt, u16 jkey)
14062 {
14063 	struct hfi1_ctxtdata *rcd = dd->rcd[ctxt];
14064 	unsigned sctxt;
14065 	int ret = 0;
14066 	u64 reg;
14067 
14068 	if (!rcd || !rcd->sc) {
14069 		ret = -EINVAL;
14070 		goto done;
14071 	}
14072 	sctxt = rcd->sc->hw_context;
14073 	reg = SEND_CTXT_CHECK_JOB_KEY_MASK_SMASK | /* mask is always 1's */
14074 		((jkey & SEND_CTXT_CHECK_JOB_KEY_VALUE_MASK) <<
14075 		 SEND_CTXT_CHECK_JOB_KEY_VALUE_SHIFT);
14076 	/* JOB_KEY_ALLOW_PERMISSIVE is not allowed by default */
14077 	if (HFI1_CAP_KGET_MASK(rcd->flags, ALLOW_PERM_JKEY))
14078 		reg |= SEND_CTXT_CHECK_JOB_KEY_ALLOW_PERMISSIVE_SMASK;
14079 	write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_JOB_KEY, reg);
14080 	/*
14081 	 * Enable send-side J_KEY integrity check, unless this is A0 h/w
14082 	 */
14083 	if (!is_ax(dd)) {
14084 		reg = read_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE);
14085 		reg |= SEND_CTXT_CHECK_ENABLE_CHECK_JOB_KEY_SMASK;
14086 		write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE, reg);
14087 	}
14088 
14089 	/* Enable J_KEY check on receive context. */
14090 	reg = RCV_KEY_CTRL_JOB_KEY_ENABLE_SMASK |
14091 		((jkey & RCV_KEY_CTRL_JOB_KEY_VALUE_MASK) <<
14092 		 RCV_KEY_CTRL_JOB_KEY_VALUE_SHIFT);
14093 	write_kctxt_csr(dd, ctxt, RCV_KEY_CTRL, reg);
14094 done:
14095 	return ret;
14096 }
14097 
14098 int hfi1_clear_ctxt_jkey(struct hfi1_devdata *dd, unsigned ctxt)
14099 {
14100 	struct hfi1_ctxtdata *rcd = dd->rcd[ctxt];
14101 	unsigned sctxt;
14102 	int ret = 0;
14103 	u64 reg;
14104 
14105 	if (!rcd || !rcd->sc) {
14106 		ret = -EINVAL;
14107 		goto done;
14108 	}
14109 	sctxt = rcd->sc->hw_context;
14110 	write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_JOB_KEY, 0);
14111 	/*
14112 	 * Disable send-side J_KEY integrity check, unless this is A0 h/w.
14113 	 * This check would not have been enabled for A0 h/w, see
14114 	 * set_ctxt_jkey().
14115 	 */
14116 	if (!is_ax(dd)) {
14117 		reg = read_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE);
14118 		reg &= ~SEND_CTXT_CHECK_ENABLE_CHECK_JOB_KEY_SMASK;
14119 		write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE, reg);
14120 	}
14121 	/* Turn off the J_KEY on the receive side */
14122 	write_kctxt_csr(dd, ctxt, RCV_KEY_CTRL, 0);
14123 done:
14124 	return ret;
14125 }
14126 
14127 int hfi1_set_ctxt_pkey(struct hfi1_devdata *dd, unsigned ctxt, u16 pkey)
14128 {
14129 	struct hfi1_ctxtdata *rcd;
14130 	unsigned sctxt;
14131 	int ret = 0;
14132 	u64 reg;
14133 
14134 	if (ctxt < dd->num_rcv_contexts) {
14135 		rcd = dd->rcd[ctxt];
14136 	} else {
14137 		ret = -EINVAL;
14138 		goto done;
14139 	}
14140 	if (!rcd || !rcd->sc) {
14141 		ret = -EINVAL;
14142 		goto done;
14143 	}
14144 	sctxt = rcd->sc->hw_context;
14145 	reg = ((u64)pkey & SEND_CTXT_CHECK_PARTITION_KEY_VALUE_MASK) <<
14146 		SEND_CTXT_CHECK_PARTITION_KEY_VALUE_SHIFT;
14147 	write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_PARTITION_KEY, reg);
14148 	reg = read_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE);
14149 	reg |= SEND_CTXT_CHECK_ENABLE_CHECK_PARTITION_KEY_SMASK;
14150 	reg &= ~SEND_CTXT_CHECK_ENABLE_DISALLOW_KDETH_PACKETS_SMASK;
14151 	write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE, reg);
14152 done:
14153 	return ret;
14154 }
14155 
14156 int hfi1_clear_ctxt_pkey(struct hfi1_devdata *dd, unsigned ctxt)
14157 {
14158 	struct hfi1_ctxtdata *rcd;
14159 	unsigned sctxt;
14160 	int ret = 0;
14161 	u64 reg;
14162 
14163 	if (ctxt < dd->num_rcv_contexts) {
14164 		rcd = dd->rcd[ctxt];
14165 	} else {
14166 		ret = -EINVAL;
14167 		goto done;
14168 	}
14169 	if (!rcd || !rcd->sc) {
14170 		ret = -EINVAL;
14171 		goto done;
14172 	}
14173 	sctxt = rcd->sc->hw_context;
14174 	reg = read_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE);
14175 	reg &= ~SEND_CTXT_CHECK_ENABLE_CHECK_PARTITION_KEY_SMASK;
14176 	write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE, reg);
14177 	write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_PARTITION_KEY, 0);
14178 done:
14179 	return ret;
14180 }
14181 
14182 /*
14183  * Start doing the clean up the the chip. Our clean up happens in multiple
14184  * stages and this is just the first.
14185  */
14186 void hfi1_start_cleanup(struct hfi1_devdata *dd)
14187 {
14188 	aspm_exit(dd);
14189 	free_cntrs(dd);
14190 	free_rcverr(dd);
14191 	clean_up_interrupts(dd);
14192 	finish_chip_resources(dd);
14193 }
14194 
14195 #define HFI_BASE_GUID(dev) \
14196 	((dev)->base_guid & ~(1ULL << GUID_HFI_INDEX_SHIFT))
14197 
14198 /*
14199  * Information can be shared between the two HFIs on the same ASIC
14200  * in the same OS.  This function finds the peer device and sets
14201  * up a shared structure.
14202  */
14203 static int init_asic_data(struct hfi1_devdata *dd)
14204 {
14205 	unsigned long flags;
14206 	struct hfi1_devdata *tmp, *peer = NULL;
14207 	struct hfi1_asic_data *asic_data;
14208 	int ret = 0;
14209 
14210 	/* pre-allocate the asic structure in case we are the first device */
14211 	asic_data = kzalloc(sizeof(*dd->asic_data), GFP_KERNEL);
14212 	if (!asic_data)
14213 		return -ENOMEM;
14214 
14215 	spin_lock_irqsave(&hfi1_devs_lock, flags);
14216 	/* Find our peer device */
14217 	list_for_each_entry(tmp, &hfi1_dev_list, list) {
14218 		if ((HFI_BASE_GUID(dd) == HFI_BASE_GUID(tmp)) &&
14219 		    dd->unit != tmp->unit) {
14220 			peer = tmp;
14221 			break;
14222 		}
14223 	}
14224 
14225 	if (peer) {
14226 		/* use already allocated structure */
14227 		dd->asic_data = peer->asic_data;
14228 		kfree(asic_data);
14229 	} else {
14230 		dd->asic_data = asic_data;
14231 		mutex_init(&dd->asic_data->asic_resource_mutex);
14232 	}
14233 	dd->asic_data->dds[dd->hfi1_id] = dd; /* self back-pointer */
14234 	spin_unlock_irqrestore(&hfi1_devs_lock, flags);
14235 
14236 	/* first one through - set up i2c devices */
14237 	if (!peer)
14238 		ret = set_up_i2c(dd, dd->asic_data);
14239 
14240 	return ret;
14241 }
14242 
14243 /*
14244  * Set dd->boardname.  Use a generic name if a name is not returned from
14245  * EFI variable space.
14246  *
14247  * Return 0 on success, -ENOMEM if space could not be allocated.
14248  */
14249 static int obtain_boardname(struct hfi1_devdata *dd)
14250 {
14251 	/* generic board description */
14252 	const char generic[] =
14253 		"Intel Omni-Path Host Fabric Interface Adapter 100 Series";
14254 	unsigned long size;
14255 	int ret;
14256 
14257 	ret = read_hfi1_efi_var(dd, "description", &size,
14258 				(void **)&dd->boardname);
14259 	if (ret) {
14260 		dd_dev_info(dd, "Board description not found\n");
14261 		/* use generic description */
14262 		dd->boardname = kstrdup(generic, GFP_KERNEL);
14263 		if (!dd->boardname)
14264 			return -ENOMEM;
14265 	}
14266 	return 0;
14267 }
14268 
14269 /*
14270  * Check the interrupt registers to make sure that they are mapped correctly.
14271  * It is intended to help user identify any mismapping by VMM when the driver
14272  * is running in a VM. This function should only be called before interrupt
14273  * is set up properly.
14274  *
14275  * Return 0 on success, -EINVAL on failure.
14276  */
14277 static int check_int_registers(struct hfi1_devdata *dd)
14278 {
14279 	u64 reg;
14280 	u64 all_bits = ~(u64)0;
14281 	u64 mask;
14282 
14283 	/* Clear CceIntMask[0] to avoid raising any interrupts */
14284 	mask = read_csr(dd, CCE_INT_MASK);
14285 	write_csr(dd, CCE_INT_MASK, 0ull);
14286 	reg = read_csr(dd, CCE_INT_MASK);
14287 	if (reg)
14288 		goto err_exit;
14289 
14290 	/* Clear all interrupt status bits */
14291 	write_csr(dd, CCE_INT_CLEAR, all_bits);
14292 	reg = read_csr(dd, CCE_INT_STATUS);
14293 	if (reg)
14294 		goto err_exit;
14295 
14296 	/* Set all interrupt status bits */
14297 	write_csr(dd, CCE_INT_FORCE, all_bits);
14298 	reg = read_csr(dd, CCE_INT_STATUS);
14299 	if (reg != all_bits)
14300 		goto err_exit;
14301 
14302 	/* Restore the interrupt mask */
14303 	write_csr(dd, CCE_INT_CLEAR, all_bits);
14304 	write_csr(dd, CCE_INT_MASK, mask);
14305 
14306 	return 0;
14307 err_exit:
14308 	write_csr(dd, CCE_INT_MASK, mask);
14309 	dd_dev_err(dd, "Interrupt registers not properly mapped by VMM\n");
14310 	return -EINVAL;
14311 }
14312 
14313 /**
14314  * Allocate and initialize the device structure for the hfi.
14315  * @dev: the pci_dev for hfi1_ib device
14316  * @ent: pci_device_id struct for this dev
14317  *
14318  * Also allocates, initializes, and returns the devdata struct for this
14319  * device instance
14320  *
14321  * This is global, and is called directly at init to set up the
14322  * chip-specific function pointers for later use.
14323  */
14324 struct hfi1_devdata *hfi1_init_dd(struct pci_dev *pdev,
14325 				  const struct pci_device_id *ent)
14326 {
14327 	struct hfi1_devdata *dd;
14328 	struct hfi1_pportdata *ppd;
14329 	u64 reg;
14330 	int i, ret;
14331 	static const char * const inames[] = { /* implementation names */
14332 		"RTL silicon",
14333 		"RTL VCS simulation",
14334 		"RTL FPGA emulation",
14335 		"Functional simulator"
14336 	};
14337 	struct pci_dev *parent = pdev->bus->self;
14338 
14339 	dd = hfi1_alloc_devdata(pdev, NUM_IB_PORTS *
14340 				sizeof(struct hfi1_pportdata));
14341 	if (IS_ERR(dd))
14342 		goto bail;
14343 	ppd = dd->pport;
14344 	for (i = 0; i < dd->num_pports; i++, ppd++) {
14345 		int vl;
14346 		/* init common fields */
14347 		hfi1_init_pportdata(pdev, ppd, dd, 0, 1);
14348 		/* DC supports 4 link widths */
14349 		ppd->link_width_supported =
14350 			OPA_LINK_WIDTH_1X | OPA_LINK_WIDTH_2X |
14351 			OPA_LINK_WIDTH_3X | OPA_LINK_WIDTH_4X;
14352 		ppd->link_width_downgrade_supported =
14353 			ppd->link_width_supported;
14354 		/* start out enabling only 4X */
14355 		ppd->link_width_enabled = OPA_LINK_WIDTH_4X;
14356 		ppd->link_width_downgrade_enabled =
14357 					ppd->link_width_downgrade_supported;
14358 		/* link width active is 0 when link is down */
14359 		/* link width downgrade active is 0 when link is down */
14360 
14361 		if (num_vls < HFI1_MIN_VLS_SUPPORTED ||
14362 		    num_vls > HFI1_MAX_VLS_SUPPORTED) {
14363 			hfi1_early_err(&pdev->dev,
14364 				       "Invalid num_vls %u, using %u VLs\n",
14365 				    num_vls, HFI1_MAX_VLS_SUPPORTED);
14366 			num_vls = HFI1_MAX_VLS_SUPPORTED;
14367 		}
14368 		ppd->vls_supported = num_vls;
14369 		ppd->vls_operational = ppd->vls_supported;
14370 		ppd->actual_vls_operational = ppd->vls_supported;
14371 		/* Set the default MTU. */
14372 		for (vl = 0; vl < num_vls; vl++)
14373 			dd->vld[vl].mtu = hfi1_max_mtu;
14374 		dd->vld[15].mtu = MAX_MAD_PACKET;
14375 		/*
14376 		 * Set the initial values to reasonable default, will be set
14377 		 * for real when link is up.
14378 		 */
14379 		ppd->lstate = IB_PORT_DOWN;
14380 		ppd->overrun_threshold = 0x4;
14381 		ppd->phy_error_threshold = 0xf;
14382 		ppd->port_crc_mode_enabled = link_crc_mask;
14383 		/* initialize supported LTP CRC mode */
14384 		ppd->port_ltp_crc_mode = cap_to_port_ltp(link_crc_mask) << 8;
14385 		/* initialize enabled LTP CRC mode */
14386 		ppd->port_ltp_crc_mode |= cap_to_port_ltp(link_crc_mask) << 4;
14387 		/* start in offline */
14388 		ppd->host_link_state = HLS_DN_OFFLINE;
14389 		init_vl_arb_caches(ppd);
14390 		ppd->last_pstate = 0xff; /* invalid value */
14391 	}
14392 
14393 	dd->link_default = HLS_DN_POLL;
14394 
14395 	/*
14396 	 * Do remaining PCIe setup and save PCIe values in dd.
14397 	 * Any error printing is already done by the init code.
14398 	 * On return, we have the chip mapped.
14399 	 */
14400 	ret = hfi1_pcie_ddinit(dd, pdev, ent);
14401 	if (ret < 0)
14402 		goto bail_free;
14403 
14404 	/* verify that reads actually work, save revision for reset check */
14405 	dd->revision = read_csr(dd, CCE_REVISION);
14406 	if (dd->revision == ~(u64)0) {
14407 		dd_dev_err(dd, "cannot read chip CSRs\n");
14408 		ret = -EINVAL;
14409 		goto bail_cleanup;
14410 	}
14411 	dd->majrev = (dd->revision >> CCE_REVISION_CHIP_REV_MAJOR_SHIFT)
14412 			& CCE_REVISION_CHIP_REV_MAJOR_MASK;
14413 	dd->minrev = (dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT)
14414 			& CCE_REVISION_CHIP_REV_MINOR_MASK;
14415 
14416 	/*
14417 	 * Check interrupt registers mapping if the driver has no access to
14418 	 * the upstream component. In this case, it is likely that the driver
14419 	 * is running in a VM.
14420 	 */
14421 	if (!parent) {
14422 		ret = check_int_registers(dd);
14423 		if (ret)
14424 			goto bail_cleanup;
14425 	}
14426 
14427 	/*
14428 	 * obtain the hardware ID - NOT related to unit, which is a
14429 	 * software enumeration
14430 	 */
14431 	reg = read_csr(dd, CCE_REVISION2);
14432 	dd->hfi1_id = (reg >> CCE_REVISION2_HFI_ID_SHIFT)
14433 					& CCE_REVISION2_HFI_ID_MASK;
14434 	/* the variable size will remove unwanted bits */
14435 	dd->icode = reg >> CCE_REVISION2_IMPL_CODE_SHIFT;
14436 	dd->irev = reg >> CCE_REVISION2_IMPL_REVISION_SHIFT;
14437 	dd_dev_info(dd, "Implementation: %s, revision 0x%x\n",
14438 		    dd->icode < ARRAY_SIZE(inames) ?
14439 		    inames[dd->icode] : "unknown", (int)dd->irev);
14440 
14441 	/* speeds the hardware can support */
14442 	dd->pport->link_speed_supported = OPA_LINK_SPEED_25G;
14443 	/* speeds allowed to run at */
14444 	dd->pport->link_speed_enabled = dd->pport->link_speed_supported;
14445 	/* give a reasonable active value, will be set on link up */
14446 	dd->pport->link_speed_active = OPA_LINK_SPEED_25G;
14447 
14448 	dd->chip_rcv_contexts = read_csr(dd, RCV_CONTEXTS);
14449 	dd->chip_send_contexts = read_csr(dd, SEND_CONTEXTS);
14450 	dd->chip_sdma_engines = read_csr(dd, SEND_DMA_ENGINES);
14451 	dd->chip_pio_mem_size = read_csr(dd, SEND_PIO_MEM_SIZE);
14452 	dd->chip_sdma_mem_size = read_csr(dd, SEND_DMA_MEM_SIZE);
14453 	/* fix up link widths for emulation _p */
14454 	ppd = dd->pport;
14455 	if (dd->icode == ICODE_FPGA_EMULATION && is_emulator_p(dd)) {
14456 		ppd->link_width_supported =
14457 			ppd->link_width_enabled =
14458 			ppd->link_width_downgrade_supported =
14459 			ppd->link_width_downgrade_enabled =
14460 				OPA_LINK_WIDTH_1X;
14461 	}
14462 	/* insure num_vls isn't larger than number of sdma engines */
14463 	if (HFI1_CAP_IS_KSET(SDMA) && num_vls > dd->chip_sdma_engines) {
14464 		dd_dev_err(dd, "num_vls %u too large, using %u VLs\n",
14465 			   num_vls, dd->chip_sdma_engines);
14466 		num_vls = dd->chip_sdma_engines;
14467 		ppd->vls_supported = dd->chip_sdma_engines;
14468 		ppd->vls_operational = ppd->vls_supported;
14469 	}
14470 
14471 	/*
14472 	 * Convert the ns parameter to the 64 * cclocks used in the CSR.
14473 	 * Limit the max if larger than the field holds.  If timeout is
14474 	 * non-zero, then the calculated field will be at least 1.
14475 	 *
14476 	 * Must be after icode is set up - the cclock rate depends
14477 	 * on knowing the hardware being used.
14478 	 */
14479 	dd->rcv_intr_timeout_csr = ns_to_cclock(dd, rcv_intr_timeout) / 64;
14480 	if (dd->rcv_intr_timeout_csr >
14481 			RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_MASK)
14482 		dd->rcv_intr_timeout_csr =
14483 			RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_MASK;
14484 	else if (dd->rcv_intr_timeout_csr == 0 && rcv_intr_timeout)
14485 		dd->rcv_intr_timeout_csr = 1;
14486 
14487 	/* needs to be done before we look for the peer device */
14488 	read_guid(dd);
14489 
14490 	/* set up shared ASIC data with peer device */
14491 	ret = init_asic_data(dd);
14492 	if (ret)
14493 		goto bail_cleanup;
14494 
14495 	/* obtain chip sizes, reset chip CSRs */
14496 	init_chip(dd);
14497 
14498 	/* read in the PCIe link speed information */
14499 	ret = pcie_speeds(dd);
14500 	if (ret)
14501 		goto bail_cleanup;
14502 
14503 	/* Needs to be called before hfi1_firmware_init */
14504 	get_platform_config(dd);
14505 
14506 	/* read in firmware */
14507 	ret = hfi1_firmware_init(dd);
14508 	if (ret)
14509 		goto bail_cleanup;
14510 
14511 	/*
14512 	 * In general, the PCIe Gen3 transition must occur after the
14513 	 * chip has been idled (so it won't initiate any PCIe transactions
14514 	 * e.g. an interrupt) and before the driver changes any registers
14515 	 * (the transition will reset the registers).
14516 	 *
14517 	 * In particular, place this call after:
14518 	 * - init_chip()     - the chip will not initiate any PCIe transactions
14519 	 * - pcie_speeds()   - reads the current link speed
14520 	 * - hfi1_firmware_init() - the needed firmware is ready to be
14521 	 *			    downloaded
14522 	 */
14523 	ret = do_pcie_gen3_transition(dd);
14524 	if (ret)
14525 		goto bail_cleanup;
14526 
14527 	/* start setting dd values and adjusting CSRs */
14528 	init_early_variables(dd);
14529 
14530 	parse_platform_config(dd);
14531 
14532 	ret = obtain_boardname(dd);
14533 	if (ret)
14534 		goto bail_cleanup;
14535 
14536 	snprintf(dd->boardversion, BOARD_VERS_MAX,
14537 		 "ChipABI %u.%u, ChipRev %u.%u, SW Compat %llu\n",
14538 		 HFI1_CHIP_VERS_MAJ, HFI1_CHIP_VERS_MIN,
14539 		 (u32)dd->majrev,
14540 		 (u32)dd->minrev,
14541 		 (dd->revision >> CCE_REVISION_SW_SHIFT)
14542 		    & CCE_REVISION_SW_MASK);
14543 
14544 	ret = set_up_context_variables(dd);
14545 	if (ret)
14546 		goto bail_cleanup;
14547 
14548 	/* set initial RXE CSRs */
14549 	init_rxe(dd);
14550 	/* set initial TXE CSRs */
14551 	init_txe(dd);
14552 	/* set initial non-RXE, non-TXE CSRs */
14553 	init_other(dd);
14554 	/* set up KDETH QP prefix in both RX and TX CSRs */
14555 	init_kdeth_qp(dd);
14556 
14557 	ret = hfi1_dev_affinity_init(dd);
14558 	if (ret)
14559 		goto bail_cleanup;
14560 
14561 	/* send contexts must be set up before receive contexts */
14562 	ret = init_send_contexts(dd);
14563 	if (ret)
14564 		goto bail_cleanup;
14565 
14566 	ret = hfi1_create_ctxts(dd);
14567 	if (ret)
14568 		goto bail_cleanup;
14569 
14570 	dd->rcvhdrsize = DEFAULT_RCVHDRSIZE;
14571 	/*
14572 	 * rcd[0] is guaranteed to be valid by this point. Also, all
14573 	 * context are using the same value, as per the module parameter.
14574 	 */
14575 	dd->rhf_offset = dd->rcd[0]->rcvhdrqentsize - sizeof(u64) / sizeof(u32);
14576 
14577 	ret = init_pervl_scs(dd);
14578 	if (ret)
14579 		goto bail_cleanup;
14580 
14581 	/* sdma init */
14582 	for (i = 0; i < dd->num_pports; ++i) {
14583 		ret = sdma_init(dd, i);
14584 		if (ret)
14585 			goto bail_cleanup;
14586 	}
14587 
14588 	/* use contexts created by hfi1_create_ctxts */
14589 	ret = set_up_interrupts(dd);
14590 	if (ret)
14591 		goto bail_cleanup;
14592 
14593 	/* set up LCB access - must be after set_up_interrupts() */
14594 	init_lcb_access(dd);
14595 
14596 	/*
14597 	 * Serial number is created from the base guid:
14598 	 * [27:24] = base guid [38:35]
14599 	 * [23: 0] = base guid [23: 0]
14600 	 */
14601 	snprintf(dd->serial, SERIAL_MAX, "0x%08llx\n",
14602 		 (dd->base_guid & 0xFFFFFF) |
14603 		     ((dd->base_guid >> 11) & 0xF000000));
14604 
14605 	dd->oui1 = dd->base_guid >> 56 & 0xFF;
14606 	dd->oui2 = dd->base_guid >> 48 & 0xFF;
14607 	dd->oui3 = dd->base_guid >> 40 & 0xFF;
14608 
14609 	ret = load_firmware(dd); /* asymmetric with dispose_firmware() */
14610 	if (ret)
14611 		goto bail_clear_intr;
14612 
14613 	thermal_init(dd);
14614 
14615 	ret = init_cntrs(dd);
14616 	if (ret)
14617 		goto bail_clear_intr;
14618 
14619 	ret = init_rcverr(dd);
14620 	if (ret)
14621 		goto bail_free_cntrs;
14622 
14623 	ret = eprom_init(dd);
14624 	if (ret)
14625 		goto bail_free_rcverr;
14626 
14627 	goto bail;
14628 
14629 bail_free_rcverr:
14630 	free_rcverr(dd);
14631 bail_free_cntrs:
14632 	free_cntrs(dd);
14633 bail_clear_intr:
14634 	clean_up_interrupts(dd);
14635 bail_cleanup:
14636 	hfi1_pcie_ddcleanup(dd);
14637 bail_free:
14638 	hfi1_free_devdata(dd);
14639 	dd = ERR_PTR(ret);
14640 bail:
14641 	return dd;
14642 }
14643 
14644 static u16 delay_cycles(struct hfi1_pportdata *ppd, u32 desired_egress_rate,
14645 			u32 dw_len)
14646 {
14647 	u32 delta_cycles;
14648 	u32 current_egress_rate = ppd->current_egress_rate;
14649 	/* rates here are in units of 10^6 bits/sec */
14650 
14651 	if (desired_egress_rate == -1)
14652 		return 0; /* shouldn't happen */
14653 
14654 	if (desired_egress_rate >= current_egress_rate)
14655 		return 0; /* we can't help go faster, only slower */
14656 
14657 	delta_cycles = egress_cycles(dw_len * 4, desired_egress_rate) -
14658 			egress_cycles(dw_len * 4, current_egress_rate);
14659 
14660 	return (u16)delta_cycles;
14661 }
14662 
14663 /**
14664  * create_pbc - build a pbc for transmission
14665  * @flags: special case flags or-ed in built pbc
14666  * @srate: static rate
14667  * @vl: vl
14668  * @dwlen: dword length (header words + data words + pbc words)
14669  *
14670  * Create a PBC with the given flags, rate, VL, and length.
14671  *
14672  * NOTE: The PBC created will not insert any HCRC - all callers but one are
14673  * for verbs, which does not use this PSM feature.  The lone other caller
14674  * is for the diagnostic interface which calls this if the user does not
14675  * supply their own PBC.
14676  */
14677 u64 create_pbc(struct hfi1_pportdata *ppd, u64 flags, int srate_mbs, u32 vl,
14678 	       u32 dw_len)
14679 {
14680 	u64 pbc, delay = 0;
14681 
14682 	if (unlikely(srate_mbs))
14683 		delay = delay_cycles(ppd, srate_mbs, dw_len);
14684 
14685 	pbc = flags
14686 		| (delay << PBC_STATIC_RATE_CONTROL_COUNT_SHIFT)
14687 		| ((u64)PBC_IHCRC_NONE << PBC_INSERT_HCRC_SHIFT)
14688 		| (vl & PBC_VL_MASK) << PBC_VL_SHIFT
14689 		| (dw_len & PBC_LENGTH_DWS_MASK)
14690 			<< PBC_LENGTH_DWS_SHIFT;
14691 
14692 	return pbc;
14693 }
14694 
14695 #define SBUS_THERMAL    0x4f
14696 #define SBUS_THERM_MONITOR_MODE 0x1
14697 
14698 #define THERM_FAILURE(dev, ret, reason) \
14699 	dd_dev_err((dd),						\
14700 		   "Thermal sensor initialization failed: %s (%d)\n",	\
14701 		   (reason), (ret))
14702 
14703 /*
14704  * Initialize the thermal sensor.
14705  *
14706  * After initialization, enable polling of thermal sensor through
14707  * SBus interface. In order for this to work, the SBus Master
14708  * firmware has to be loaded due to the fact that the HW polling
14709  * logic uses SBus interrupts, which are not supported with
14710  * default firmware. Otherwise, no data will be returned through
14711  * the ASIC_STS_THERM CSR.
14712  */
14713 static int thermal_init(struct hfi1_devdata *dd)
14714 {
14715 	int ret = 0;
14716 
14717 	if (dd->icode != ICODE_RTL_SILICON ||
14718 	    check_chip_resource(dd, CR_THERM_INIT, NULL))
14719 		return ret;
14720 
14721 	ret = acquire_chip_resource(dd, CR_SBUS, SBUS_TIMEOUT);
14722 	if (ret) {
14723 		THERM_FAILURE(dd, ret, "Acquire SBus");
14724 		return ret;
14725 	}
14726 
14727 	dd_dev_info(dd, "Initializing thermal sensor\n");
14728 	/* Disable polling of thermal readings */
14729 	write_csr(dd, ASIC_CFG_THERM_POLL_EN, 0x0);
14730 	msleep(100);
14731 	/* Thermal Sensor Initialization */
14732 	/*    Step 1: Reset the Thermal SBus Receiver */
14733 	ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0,
14734 				RESET_SBUS_RECEIVER, 0);
14735 	if (ret) {
14736 		THERM_FAILURE(dd, ret, "Bus Reset");
14737 		goto done;
14738 	}
14739 	/*    Step 2: Set Reset bit in Thermal block */
14740 	ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0,
14741 				WRITE_SBUS_RECEIVER, 0x1);
14742 	if (ret) {
14743 		THERM_FAILURE(dd, ret, "Therm Block Reset");
14744 		goto done;
14745 	}
14746 	/*    Step 3: Write clock divider value (100MHz -> 2MHz) */
14747 	ret = sbus_request_slow(dd, SBUS_THERMAL, 0x1,
14748 				WRITE_SBUS_RECEIVER, 0x32);
14749 	if (ret) {
14750 		THERM_FAILURE(dd, ret, "Write Clock Div");
14751 		goto done;
14752 	}
14753 	/*    Step 4: Select temperature mode */
14754 	ret = sbus_request_slow(dd, SBUS_THERMAL, 0x3,
14755 				WRITE_SBUS_RECEIVER,
14756 				SBUS_THERM_MONITOR_MODE);
14757 	if (ret) {
14758 		THERM_FAILURE(dd, ret, "Write Mode Sel");
14759 		goto done;
14760 	}
14761 	/*    Step 5: De-assert block reset and start conversion */
14762 	ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0,
14763 				WRITE_SBUS_RECEIVER, 0x2);
14764 	if (ret) {
14765 		THERM_FAILURE(dd, ret, "Write Reset Deassert");
14766 		goto done;
14767 	}
14768 	/*    Step 5.1: Wait for first conversion (21.5ms per spec) */
14769 	msleep(22);
14770 
14771 	/* Enable polling of thermal readings */
14772 	write_csr(dd, ASIC_CFG_THERM_POLL_EN, 0x1);
14773 
14774 	/* Set initialized flag */
14775 	ret = acquire_chip_resource(dd, CR_THERM_INIT, 0);
14776 	if (ret)
14777 		THERM_FAILURE(dd, ret, "Unable to set thermal init flag");
14778 
14779 done:
14780 	release_chip_resource(dd, CR_SBUS);
14781 	return ret;
14782 }
14783 
14784 static void handle_temp_err(struct hfi1_devdata *dd)
14785 {
14786 	struct hfi1_pportdata *ppd = &dd->pport[0];
14787 	/*
14788 	 * Thermal Critical Interrupt
14789 	 * Put the device into forced freeze mode, take link down to
14790 	 * offline, and put DC into reset.
14791 	 */
14792 	dd_dev_emerg(dd,
14793 		     "Critical temperature reached! Forcing device into freeze mode!\n");
14794 	dd->flags |= HFI1_FORCED_FREEZE;
14795 	start_freeze_handling(ppd, FREEZE_SELF | FREEZE_ABORT);
14796 	/*
14797 	 * Shut DC down as much and as quickly as possible.
14798 	 *
14799 	 * Step 1: Take the link down to OFFLINE. This will cause the
14800 	 *         8051 to put the Serdes in reset. However, we don't want to
14801 	 *         go through the entire link state machine since we want to
14802 	 *         shutdown ASAP. Furthermore, this is not a graceful shutdown
14803 	 *         but rather an attempt to save the chip.
14804 	 *         Code below is almost the same as quiet_serdes() but avoids
14805 	 *         all the extra work and the sleeps.
14806 	 */
14807 	ppd->driver_link_ready = 0;
14808 	ppd->link_enabled = 0;
14809 	set_physical_link_state(dd, (OPA_LINKDOWN_REASON_SMA_DISABLED << 8) |
14810 				PLS_OFFLINE);
14811 	/*
14812 	 * Step 2: Shutdown LCB and 8051
14813 	 *         After shutdown, do not restore DC_CFG_RESET value.
14814 	 */
14815 	dc_shutdown(dd);
14816 }
14817