1 /* 2 * Copyright(c) 2015, 2016 Intel Corporation. 3 * 4 * This file is provided under a dual BSD/GPLv2 license. When using or 5 * redistributing this file, you may do so under either license. 6 * 7 * GPL LICENSE SUMMARY 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of version 2 of the GNU General Public License as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, but 14 * WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 16 * General Public License for more details. 17 * 18 * BSD LICENSE 19 * 20 * Redistribution and use in source and binary forms, with or without 21 * modification, are permitted provided that the following conditions 22 * are met: 23 * 24 * - Redistributions of source code must retain the above copyright 25 * notice, this list of conditions and the following disclaimer. 26 * - Redistributions in binary form must reproduce the above copyright 27 * notice, this list of conditions and the following disclaimer in 28 * the documentation and/or other materials provided with the 29 * distribution. 30 * - Neither the name of Intel Corporation nor the names of its 31 * contributors may be used to endorse or promote products derived 32 * from this software without specific prior written permission. 33 * 34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 35 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 36 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 37 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 38 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 39 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 40 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 41 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 42 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 44 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 45 * 46 */ 47 48 /* 49 * This file contains all of the code that is specific to the HFI chip 50 */ 51 52 #include <linux/pci.h> 53 #include <linux/delay.h> 54 #include <linux/interrupt.h> 55 #include <linux/module.h> 56 57 #include "hfi.h" 58 #include "trace.h" 59 #include "mad.h" 60 #include "pio.h" 61 #include "sdma.h" 62 #include "eprom.h" 63 #include "efivar.h" 64 #include "platform.h" 65 #include "aspm.h" 66 #include "affinity.h" 67 68 #define NUM_IB_PORTS 1 69 70 uint kdeth_qp; 71 module_param_named(kdeth_qp, kdeth_qp, uint, S_IRUGO); 72 MODULE_PARM_DESC(kdeth_qp, "Set the KDETH queue pair prefix"); 73 74 uint num_vls = HFI1_MAX_VLS_SUPPORTED; 75 module_param(num_vls, uint, S_IRUGO); 76 MODULE_PARM_DESC(num_vls, "Set number of Virtual Lanes to use (1-8)"); 77 78 /* 79 * Default time to aggregate two 10K packets from the idle state 80 * (timer not running). The timer starts at the end of the first packet, 81 * so only the time for one 10K packet and header plus a bit extra is needed. 82 * 10 * 1024 + 64 header byte = 10304 byte 83 * 10304 byte / 12.5 GB/s = 824.32ns 84 */ 85 uint rcv_intr_timeout = (824 + 16); /* 16 is for coalescing interrupt */ 86 module_param(rcv_intr_timeout, uint, S_IRUGO); 87 MODULE_PARM_DESC(rcv_intr_timeout, "Receive interrupt mitigation timeout in ns"); 88 89 uint rcv_intr_count = 16; /* same as qib */ 90 module_param(rcv_intr_count, uint, S_IRUGO); 91 MODULE_PARM_DESC(rcv_intr_count, "Receive interrupt mitigation count"); 92 93 ushort link_crc_mask = SUPPORTED_CRCS; 94 module_param(link_crc_mask, ushort, S_IRUGO); 95 MODULE_PARM_DESC(link_crc_mask, "CRCs to use on the link"); 96 97 uint loopback; 98 module_param_named(loopback, loopback, uint, S_IRUGO); 99 MODULE_PARM_DESC(loopback, "Put into loopback mode (1 = serdes, 3 = external cable"); 100 101 /* Other driver tunables */ 102 uint rcv_intr_dynamic = 1; /* enable dynamic mode for rcv int mitigation*/ 103 static ushort crc_14b_sideband = 1; 104 static uint use_flr = 1; 105 uint quick_linkup; /* skip LNI */ 106 107 struct flag_table { 108 u64 flag; /* the flag */ 109 char *str; /* description string */ 110 u16 extra; /* extra information */ 111 u16 unused0; 112 u32 unused1; 113 }; 114 115 /* str must be a string constant */ 116 #define FLAG_ENTRY(str, extra, flag) {flag, str, extra} 117 #define FLAG_ENTRY0(str, flag) {flag, str, 0} 118 119 /* Send Error Consequences */ 120 #define SEC_WRITE_DROPPED 0x1 121 #define SEC_PACKET_DROPPED 0x2 122 #define SEC_SC_HALTED 0x4 /* per-context only */ 123 #define SEC_SPC_FREEZE 0x8 /* per-HFI only */ 124 125 #define DEFAULT_KRCVQS 2 126 #define MIN_KERNEL_KCTXTS 2 127 #define FIRST_KERNEL_KCTXT 1 128 /* sizes for both the QP and RSM map tables */ 129 #define NUM_MAP_ENTRIES 256 130 #define NUM_MAP_REGS 32 131 132 /* Bit offset into the GUID which carries HFI id information */ 133 #define GUID_HFI_INDEX_SHIFT 39 134 135 /* extract the emulation revision */ 136 #define emulator_rev(dd) ((dd)->irev >> 8) 137 /* parallel and serial emulation versions are 3 and 4 respectively */ 138 #define is_emulator_p(dd) ((((dd)->irev) & 0xf) == 3) 139 #define is_emulator_s(dd) ((((dd)->irev) & 0xf) == 4) 140 141 /* RSM fields */ 142 143 /* packet type */ 144 #define IB_PACKET_TYPE 2ull 145 #define QW_SHIFT 6ull 146 /* QPN[7..1] */ 147 #define QPN_WIDTH 7ull 148 149 /* LRH.BTH: QW 0, OFFSET 48 - for match */ 150 #define LRH_BTH_QW 0ull 151 #define LRH_BTH_BIT_OFFSET 48ull 152 #define LRH_BTH_OFFSET(off) ((LRH_BTH_QW << QW_SHIFT) | (off)) 153 #define LRH_BTH_MATCH_OFFSET LRH_BTH_OFFSET(LRH_BTH_BIT_OFFSET) 154 #define LRH_BTH_SELECT 155 #define LRH_BTH_MASK 3ull 156 #define LRH_BTH_VALUE 2ull 157 158 /* LRH.SC[3..0] QW 0, OFFSET 56 - for match */ 159 #define LRH_SC_QW 0ull 160 #define LRH_SC_BIT_OFFSET 56ull 161 #define LRH_SC_OFFSET(off) ((LRH_SC_QW << QW_SHIFT) | (off)) 162 #define LRH_SC_MATCH_OFFSET LRH_SC_OFFSET(LRH_SC_BIT_OFFSET) 163 #define LRH_SC_MASK 128ull 164 #define LRH_SC_VALUE 0ull 165 166 /* SC[n..0] QW 0, OFFSET 60 - for select */ 167 #define LRH_SC_SELECT_OFFSET ((LRH_SC_QW << QW_SHIFT) | (60ull)) 168 169 /* QPN[m+n:1] QW 1, OFFSET 1 */ 170 #define QPN_SELECT_OFFSET ((1ull << QW_SHIFT) | (1ull)) 171 172 /* defines to build power on SC2VL table */ 173 #define SC2VL_VAL( \ 174 num, \ 175 sc0, sc0val, \ 176 sc1, sc1val, \ 177 sc2, sc2val, \ 178 sc3, sc3val, \ 179 sc4, sc4val, \ 180 sc5, sc5val, \ 181 sc6, sc6val, \ 182 sc7, sc7val) \ 183 ( \ 184 ((u64)(sc0val) << SEND_SC2VLT##num##_SC##sc0##_SHIFT) | \ 185 ((u64)(sc1val) << SEND_SC2VLT##num##_SC##sc1##_SHIFT) | \ 186 ((u64)(sc2val) << SEND_SC2VLT##num##_SC##sc2##_SHIFT) | \ 187 ((u64)(sc3val) << SEND_SC2VLT##num##_SC##sc3##_SHIFT) | \ 188 ((u64)(sc4val) << SEND_SC2VLT##num##_SC##sc4##_SHIFT) | \ 189 ((u64)(sc5val) << SEND_SC2VLT##num##_SC##sc5##_SHIFT) | \ 190 ((u64)(sc6val) << SEND_SC2VLT##num##_SC##sc6##_SHIFT) | \ 191 ((u64)(sc7val) << SEND_SC2VLT##num##_SC##sc7##_SHIFT) \ 192 ) 193 194 #define DC_SC_VL_VAL( \ 195 range, \ 196 e0, e0val, \ 197 e1, e1val, \ 198 e2, e2val, \ 199 e3, e3val, \ 200 e4, e4val, \ 201 e5, e5val, \ 202 e6, e6val, \ 203 e7, e7val, \ 204 e8, e8val, \ 205 e9, e9val, \ 206 e10, e10val, \ 207 e11, e11val, \ 208 e12, e12val, \ 209 e13, e13val, \ 210 e14, e14val, \ 211 e15, e15val) \ 212 ( \ 213 ((u64)(e0val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e0##_SHIFT) | \ 214 ((u64)(e1val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e1##_SHIFT) | \ 215 ((u64)(e2val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e2##_SHIFT) | \ 216 ((u64)(e3val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e3##_SHIFT) | \ 217 ((u64)(e4val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e4##_SHIFT) | \ 218 ((u64)(e5val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e5##_SHIFT) | \ 219 ((u64)(e6val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e6##_SHIFT) | \ 220 ((u64)(e7val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e7##_SHIFT) | \ 221 ((u64)(e8val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e8##_SHIFT) | \ 222 ((u64)(e9val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e9##_SHIFT) | \ 223 ((u64)(e10val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e10##_SHIFT) | \ 224 ((u64)(e11val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e11##_SHIFT) | \ 225 ((u64)(e12val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e12##_SHIFT) | \ 226 ((u64)(e13val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e13##_SHIFT) | \ 227 ((u64)(e14val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e14##_SHIFT) | \ 228 ((u64)(e15val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e15##_SHIFT) \ 229 ) 230 231 /* all CceStatus sub-block freeze bits */ 232 #define ALL_FROZE (CCE_STATUS_SDMA_FROZE_SMASK \ 233 | CCE_STATUS_RXE_FROZE_SMASK \ 234 | CCE_STATUS_TXE_FROZE_SMASK \ 235 | CCE_STATUS_TXE_PIO_FROZE_SMASK) 236 /* all CceStatus sub-block TXE pause bits */ 237 #define ALL_TXE_PAUSE (CCE_STATUS_TXE_PIO_PAUSED_SMASK \ 238 | CCE_STATUS_TXE_PAUSED_SMASK \ 239 | CCE_STATUS_SDMA_PAUSED_SMASK) 240 /* all CceStatus sub-block RXE pause bits */ 241 #define ALL_RXE_PAUSE CCE_STATUS_RXE_PAUSED_SMASK 242 243 #define CNTR_MAX 0xFFFFFFFFFFFFFFFFULL 244 #define CNTR_32BIT_MAX 0x00000000FFFFFFFF 245 246 /* 247 * CCE Error flags. 248 */ 249 static struct flag_table cce_err_status_flags[] = { 250 /* 0*/ FLAG_ENTRY0("CceCsrParityErr", 251 CCE_ERR_STATUS_CCE_CSR_PARITY_ERR_SMASK), 252 /* 1*/ FLAG_ENTRY0("CceCsrReadBadAddrErr", 253 CCE_ERR_STATUS_CCE_CSR_READ_BAD_ADDR_ERR_SMASK), 254 /* 2*/ FLAG_ENTRY0("CceCsrWriteBadAddrErr", 255 CCE_ERR_STATUS_CCE_CSR_WRITE_BAD_ADDR_ERR_SMASK), 256 /* 3*/ FLAG_ENTRY0("CceTrgtAsyncFifoParityErr", 257 CCE_ERR_STATUS_CCE_TRGT_ASYNC_FIFO_PARITY_ERR_SMASK), 258 /* 4*/ FLAG_ENTRY0("CceTrgtAccessErr", 259 CCE_ERR_STATUS_CCE_TRGT_ACCESS_ERR_SMASK), 260 /* 5*/ FLAG_ENTRY0("CceRspdDataParityErr", 261 CCE_ERR_STATUS_CCE_RSPD_DATA_PARITY_ERR_SMASK), 262 /* 6*/ FLAG_ENTRY0("CceCli0AsyncFifoParityErr", 263 CCE_ERR_STATUS_CCE_CLI0_ASYNC_FIFO_PARITY_ERR_SMASK), 264 /* 7*/ FLAG_ENTRY0("CceCsrCfgBusParityErr", 265 CCE_ERR_STATUS_CCE_CSR_CFG_BUS_PARITY_ERR_SMASK), 266 /* 8*/ FLAG_ENTRY0("CceCli2AsyncFifoParityErr", 267 CCE_ERR_STATUS_CCE_CLI2_ASYNC_FIFO_PARITY_ERR_SMASK), 268 /* 9*/ FLAG_ENTRY0("CceCli1AsyncFifoPioCrdtParityErr", 269 CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_PIO_CRDT_PARITY_ERR_SMASK), 270 /*10*/ FLAG_ENTRY0("CceCli1AsyncFifoPioCrdtParityErr", 271 CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_SDMA_HD_PARITY_ERR_SMASK), 272 /*11*/ FLAG_ENTRY0("CceCli1AsyncFifoRxdmaParityError", 273 CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_RXDMA_PARITY_ERROR_SMASK), 274 /*12*/ FLAG_ENTRY0("CceCli1AsyncFifoDbgParityError", 275 CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_DBG_PARITY_ERROR_SMASK), 276 /*13*/ FLAG_ENTRY0("PcicRetryMemCorErr", 277 CCE_ERR_STATUS_PCIC_RETRY_MEM_COR_ERR_SMASK), 278 /*14*/ FLAG_ENTRY0("PcicRetryMemCorErr", 279 CCE_ERR_STATUS_PCIC_RETRY_SOT_MEM_COR_ERR_SMASK), 280 /*15*/ FLAG_ENTRY0("PcicPostHdQCorErr", 281 CCE_ERR_STATUS_PCIC_POST_HD_QCOR_ERR_SMASK), 282 /*16*/ FLAG_ENTRY0("PcicPostHdQCorErr", 283 CCE_ERR_STATUS_PCIC_POST_DAT_QCOR_ERR_SMASK), 284 /*17*/ FLAG_ENTRY0("PcicPostHdQCorErr", 285 CCE_ERR_STATUS_PCIC_CPL_HD_QCOR_ERR_SMASK), 286 /*18*/ FLAG_ENTRY0("PcicCplDatQCorErr", 287 CCE_ERR_STATUS_PCIC_CPL_DAT_QCOR_ERR_SMASK), 288 /*19*/ FLAG_ENTRY0("PcicNPostHQParityErr", 289 CCE_ERR_STATUS_PCIC_NPOST_HQ_PARITY_ERR_SMASK), 290 /*20*/ FLAG_ENTRY0("PcicNPostDatQParityErr", 291 CCE_ERR_STATUS_PCIC_NPOST_DAT_QPARITY_ERR_SMASK), 292 /*21*/ FLAG_ENTRY0("PcicRetryMemUncErr", 293 CCE_ERR_STATUS_PCIC_RETRY_MEM_UNC_ERR_SMASK), 294 /*22*/ FLAG_ENTRY0("PcicRetrySotMemUncErr", 295 CCE_ERR_STATUS_PCIC_RETRY_SOT_MEM_UNC_ERR_SMASK), 296 /*23*/ FLAG_ENTRY0("PcicPostHdQUncErr", 297 CCE_ERR_STATUS_PCIC_POST_HD_QUNC_ERR_SMASK), 298 /*24*/ FLAG_ENTRY0("PcicPostDatQUncErr", 299 CCE_ERR_STATUS_PCIC_POST_DAT_QUNC_ERR_SMASK), 300 /*25*/ FLAG_ENTRY0("PcicCplHdQUncErr", 301 CCE_ERR_STATUS_PCIC_CPL_HD_QUNC_ERR_SMASK), 302 /*26*/ FLAG_ENTRY0("PcicCplDatQUncErr", 303 CCE_ERR_STATUS_PCIC_CPL_DAT_QUNC_ERR_SMASK), 304 /*27*/ FLAG_ENTRY0("PcicTransmitFrontParityErr", 305 CCE_ERR_STATUS_PCIC_TRANSMIT_FRONT_PARITY_ERR_SMASK), 306 /*28*/ FLAG_ENTRY0("PcicTransmitBackParityErr", 307 CCE_ERR_STATUS_PCIC_TRANSMIT_BACK_PARITY_ERR_SMASK), 308 /*29*/ FLAG_ENTRY0("PcicReceiveParityErr", 309 CCE_ERR_STATUS_PCIC_RECEIVE_PARITY_ERR_SMASK), 310 /*30*/ FLAG_ENTRY0("CceTrgtCplTimeoutErr", 311 CCE_ERR_STATUS_CCE_TRGT_CPL_TIMEOUT_ERR_SMASK), 312 /*31*/ FLAG_ENTRY0("LATriggered", 313 CCE_ERR_STATUS_LA_TRIGGERED_SMASK), 314 /*32*/ FLAG_ENTRY0("CceSegReadBadAddrErr", 315 CCE_ERR_STATUS_CCE_SEG_READ_BAD_ADDR_ERR_SMASK), 316 /*33*/ FLAG_ENTRY0("CceSegWriteBadAddrErr", 317 CCE_ERR_STATUS_CCE_SEG_WRITE_BAD_ADDR_ERR_SMASK), 318 /*34*/ FLAG_ENTRY0("CceRcplAsyncFifoParityErr", 319 CCE_ERR_STATUS_CCE_RCPL_ASYNC_FIFO_PARITY_ERR_SMASK), 320 /*35*/ FLAG_ENTRY0("CceRxdmaConvFifoParityErr", 321 CCE_ERR_STATUS_CCE_RXDMA_CONV_FIFO_PARITY_ERR_SMASK), 322 /*36*/ FLAG_ENTRY0("CceMsixTableCorErr", 323 CCE_ERR_STATUS_CCE_MSIX_TABLE_COR_ERR_SMASK), 324 /*37*/ FLAG_ENTRY0("CceMsixTableUncErr", 325 CCE_ERR_STATUS_CCE_MSIX_TABLE_UNC_ERR_SMASK), 326 /*38*/ FLAG_ENTRY0("CceIntMapCorErr", 327 CCE_ERR_STATUS_CCE_INT_MAP_COR_ERR_SMASK), 328 /*39*/ FLAG_ENTRY0("CceIntMapUncErr", 329 CCE_ERR_STATUS_CCE_INT_MAP_UNC_ERR_SMASK), 330 /*40*/ FLAG_ENTRY0("CceMsixCsrParityErr", 331 CCE_ERR_STATUS_CCE_MSIX_CSR_PARITY_ERR_SMASK), 332 /*41-63 reserved*/ 333 }; 334 335 /* 336 * Misc Error flags 337 */ 338 #define MES(text) MISC_ERR_STATUS_MISC_##text##_ERR_SMASK 339 static struct flag_table misc_err_status_flags[] = { 340 /* 0*/ FLAG_ENTRY0("CSR_PARITY", MES(CSR_PARITY)), 341 /* 1*/ FLAG_ENTRY0("CSR_READ_BAD_ADDR", MES(CSR_READ_BAD_ADDR)), 342 /* 2*/ FLAG_ENTRY0("CSR_WRITE_BAD_ADDR", MES(CSR_WRITE_BAD_ADDR)), 343 /* 3*/ FLAG_ENTRY0("SBUS_WRITE_FAILED", MES(SBUS_WRITE_FAILED)), 344 /* 4*/ FLAG_ENTRY0("KEY_MISMATCH", MES(KEY_MISMATCH)), 345 /* 5*/ FLAG_ENTRY0("FW_AUTH_FAILED", MES(FW_AUTH_FAILED)), 346 /* 6*/ FLAG_ENTRY0("EFUSE_CSR_PARITY", MES(EFUSE_CSR_PARITY)), 347 /* 7*/ FLAG_ENTRY0("EFUSE_READ_BAD_ADDR", MES(EFUSE_READ_BAD_ADDR)), 348 /* 8*/ FLAG_ENTRY0("EFUSE_WRITE", MES(EFUSE_WRITE)), 349 /* 9*/ FLAG_ENTRY0("EFUSE_DONE_PARITY", MES(EFUSE_DONE_PARITY)), 350 /*10*/ FLAG_ENTRY0("INVALID_EEP_CMD", MES(INVALID_EEP_CMD)), 351 /*11*/ FLAG_ENTRY0("MBIST_FAIL", MES(MBIST_FAIL)), 352 /*12*/ FLAG_ENTRY0("PLL_LOCK_FAIL", MES(PLL_LOCK_FAIL)) 353 }; 354 355 /* 356 * TXE PIO Error flags and consequences 357 */ 358 static struct flag_table pio_err_status_flags[] = { 359 /* 0*/ FLAG_ENTRY("PioWriteBadCtxt", 360 SEC_WRITE_DROPPED, 361 SEND_PIO_ERR_STATUS_PIO_WRITE_BAD_CTXT_ERR_SMASK), 362 /* 1*/ FLAG_ENTRY("PioWriteAddrParity", 363 SEC_SPC_FREEZE, 364 SEND_PIO_ERR_STATUS_PIO_WRITE_ADDR_PARITY_ERR_SMASK), 365 /* 2*/ FLAG_ENTRY("PioCsrParity", 366 SEC_SPC_FREEZE, 367 SEND_PIO_ERR_STATUS_PIO_CSR_PARITY_ERR_SMASK), 368 /* 3*/ FLAG_ENTRY("PioSbMemFifo0", 369 SEC_SPC_FREEZE, 370 SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO0_ERR_SMASK), 371 /* 4*/ FLAG_ENTRY("PioSbMemFifo1", 372 SEC_SPC_FREEZE, 373 SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO1_ERR_SMASK), 374 /* 5*/ FLAG_ENTRY("PioPccFifoParity", 375 SEC_SPC_FREEZE, 376 SEND_PIO_ERR_STATUS_PIO_PCC_FIFO_PARITY_ERR_SMASK), 377 /* 6*/ FLAG_ENTRY("PioPecFifoParity", 378 SEC_SPC_FREEZE, 379 SEND_PIO_ERR_STATUS_PIO_PEC_FIFO_PARITY_ERR_SMASK), 380 /* 7*/ FLAG_ENTRY("PioSbrdctlCrrelParity", 381 SEC_SPC_FREEZE, 382 SEND_PIO_ERR_STATUS_PIO_SBRDCTL_CRREL_PARITY_ERR_SMASK), 383 /* 8*/ FLAG_ENTRY("PioSbrdctrlCrrelFifoParity", 384 SEC_SPC_FREEZE, 385 SEND_PIO_ERR_STATUS_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR_SMASK), 386 /* 9*/ FLAG_ENTRY("PioPktEvictFifoParityErr", 387 SEC_SPC_FREEZE, 388 SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_FIFO_PARITY_ERR_SMASK), 389 /*10*/ FLAG_ENTRY("PioSmPktResetParity", 390 SEC_SPC_FREEZE, 391 SEND_PIO_ERR_STATUS_PIO_SM_PKT_RESET_PARITY_ERR_SMASK), 392 /*11*/ FLAG_ENTRY("PioVlLenMemBank0Unc", 393 SEC_SPC_FREEZE, 394 SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_UNC_ERR_SMASK), 395 /*12*/ FLAG_ENTRY("PioVlLenMemBank1Unc", 396 SEC_SPC_FREEZE, 397 SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_UNC_ERR_SMASK), 398 /*13*/ FLAG_ENTRY("PioVlLenMemBank0Cor", 399 0, 400 SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_COR_ERR_SMASK), 401 /*14*/ FLAG_ENTRY("PioVlLenMemBank1Cor", 402 0, 403 SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_COR_ERR_SMASK), 404 /*15*/ FLAG_ENTRY("PioCreditRetFifoParity", 405 SEC_SPC_FREEZE, 406 SEND_PIO_ERR_STATUS_PIO_CREDIT_RET_FIFO_PARITY_ERR_SMASK), 407 /*16*/ FLAG_ENTRY("PioPpmcPblFifo", 408 SEC_SPC_FREEZE, 409 SEND_PIO_ERR_STATUS_PIO_PPMC_PBL_FIFO_ERR_SMASK), 410 /*17*/ FLAG_ENTRY("PioInitSmIn", 411 0, 412 SEND_PIO_ERR_STATUS_PIO_INIT_SM_IN_ERR_SMASK), 413 /*18*/ FLAG_ENTRY("PioPktEvictSmOrArbSm", 414 SEC_SPC_FREEZE, 415 SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_SM_OR_ARB_SM_ERR_SMASK), 416 /*19*/ FLAG_ENTRY("PioHostAddrMemUnc", 417 SEC_SPC_FREEZE, 418 SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_UNC_ERR_SMASK), 419 /*20*/ FLAG_ENTRY("PioHostAddrMemCor", 420 0, 421 SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_COR_ERR_SMASK), 422 /*21*/ FLAG_ENTRY("PioWriteDataParity", 423 SEC_SPC_FREEZE, 424 SEND_PIO_ERR_STATUS_PIO_WRITE_DATA_PARITY_ERR_SMASK), 425 /*22*/ FLAG_ENTRY("PioStateMachine", 426 SEC_SPC_FREEZE, 427 SEND_PIO_ERR_STATUS_PIO_STATE_MACHINE_ERR_SMASK), 428 /*23*/ FLAG_ENTRY("PioWriteQwValidParity", 429 SEC_WRITE_DROPPED | SEC_SPC_FREEZE, 430 SEND_PIO_ERR_STATUS_PIO_WRITE_QW_VALID_PARITY_ERR_SMASK), 431 /*24*/ FLAG_ENTRY("PioBlockQwCountParity", 432 SEC_WRITE_DROPPED | SEC_SPC_FREEZE, 433 SEND_PIO_ERR_STATUS_PIO_BLOCK_QW_COUNT_PARITY_ERR_SMASK), 434 /*25*/ FLAG_ENTRY("PioVlfVlLenParity", 435 SEC_SPC_FREEZE, 436 SEND_PIO_ERR_STATUS_PIO_VLF_VL_LEN_PARITY_ERR_SMASK), 437 /*26*/ FLAG_ENTRY("PioVlfSopParity", 438 SEC_SPC_FREEZE, 439 SEND_PIO_ERR_STATUS_PIO_VLF_SOP_PARITY_ERR_SMASK), 440 /*27*/ FLAG_ENTRY("PioVlFifoParity", 441 SEC_SPC_FREEZE, 442 SEND_PIO_ERR_STATUS_PIO_VL_FIFO_PARITY_ERR_SMASK), 443 /*28*/ FLAG_ENTRY("PioPpmcBqcMemParity", 444 SEC_SPC_FREEZE, 445 SEND_PIO_ERR_STATUS_PIO_PPMC_BQC_MEM_PARITY_ERR_SMASK), 446 /*29*/ FLAG_ENTRY("PioPpmcSopLen", 447 SEC_SPC_FREEZE, 448 SEND_PIO_ERR_STATUS_PIO_PPMC_SOP_LEN_ERR_SMASK), 449 /*30-31 reserved*/ 450 /*32*/ FLAG_ENTRY("PioCurrentFreeCntParity", 451 SEC_SPC_FREEZE, 452 SEND_PIO_ERR_STATUS_PIO_CURRENT_FREE_CNT_PARITY_ERR_SMASK), 453 /*33*/ FLAG_ENTRY("PioLastReturnedCntParity", 454 SEC_SPC_FREEZE, 455 SEND_PIO_ERR_STATUS_PIO_LAST_RETURNED_CNT_PARITY_ERR_SMASK), 456 /*34*/ FLAG_ENTRY("PioPccSopHeadParity", 457 SEC_SPC_FREEZE, 458 SEND_PIO_ERR_STATUS_PIO_PCC_SOP_HEAD_PARITY_ERR_SMASK), 459 /*35*/ FLAG_ENTRY("PioPecSopHeadParityErr", 460 SEC_SPC_FREEZE, 461 SEND_PIO_ERR_STATUS_PIO_PEC_SOP_HEAD_PARITY_ERR_SMASK), 462 /*36-63 reserved*/ 463 }; 464 465 /* TXE PIO errors that cause an SPC freeze */ 466 #define ALL_PIO_FREEZE_ERR \ 467 (SEND_PIO_ERR_STATUS_PIO_WRITE_ADDR_PARITY_ERR_SMASK \ 468 | SEND_PIO_ERR_STATUS_PIO_CSR_PARITY_ERR_SMASK \ 469 | SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO0_ERR_SMASK \ 470 | SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO1_ERR_SMASK \ 471 | SEND_PIO_ERR_STATUS_PIO_PCC_FIFO_PARITY_ERR_SMASK \ 472 | SEND_PIO_ERR_STATUS_PIO_PEC_FIFO_PARITY_ERR_SMASK \ 473 | SEND_PIO_ERR_STATUS_PIO_SBRDCTL_CRREL_PARITY_ERR_SMASK \ 474 | SEND_PIO_ERR_STATUS_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR_SMASK \ 475 | SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_FIFO_PARITY_ERR_SMASK \ 476 | SEND_PIO_ERR_STATUS_PIO_SM_PKT_RESET_PARITY_ERR_SMASK \ 477 | SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_UNC_ERR_SMASK \ 478 | SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_UNC_ERR_SMASK \ 479 | SEND_PIO_ERR_STATUS_PIO_CREDIT_RET_FIFO_PARITY_ERR_SMASK \ 480 | SEND_PIO_ERR_STATUS_PIO_PPMC_PBL_FIFO_ERR_SMASK \ 481 | SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_SM_OR_ARB_SM_ERR_SMASK \ 482 | SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_UNC_ERR_SMASK \ 483 | SEND_PIO_ERR_STATUS_PIO_WRITE_DATA_PARITY_ERR_SMASK \ 484 | SEND_PIO_ERR_STATUS_PIO_STATE_MACHINE_ERR_SMASK \ 485 | SEND_PIO_ERR_STATUS_PIO_WRITE_QW_VALID_PARITY_ERR_SMASK \ 486 | SEND_PIO_ERR_STATUS_PIO_BLOCK_QW_COUNT_PARITY_ERR_SMASK \ 487 | SEND_PIO_ERR_STATUS_PIO_VLF_VL_LEN_PARITY_ERR_SMASK \ 488 | SEND_PIO_ERR_STATUS_PIO_VLF_SOP_PARITY_ERR_SMASK \ 489 | SEND_PIO_ERR_STATUS_PIO_VL_FIFO_PARITY_ERR_SMASK \ 490 | SEND_PIO_ERR_STATUS_PIO_PPMC_BQC_MEM_PARITY_ERR_SMASK \ 491 | SEND_PIO_ERR_STATUS_PIO_PPMC_SOP_LEN_ERR_SMASK \ 492 | SEND_PIO_ERR_STATUS_PIO_CURRENT_FREE_CNT_PARITY_ERR_SMASK \ 493 | SEND_PIO_ERR_STATUS_PIO_LAST_RETURNED_CNT_PARITY_ERR_SMASK \ 494 | SEND_PIO_ERR_STATUS_PIO_PCC_SOP_HEAD_PARITY_ERR_SMASK \ 495 | SEND_PIO_ERR_STATUS_PIO_PEC_SOP_HEAD_PARITY_ERR_SMASK) 496 497 /* 498 * TXE SDMA Error flags 499 */ 500 static struct flag_table sdma_err_status_flags[] = { 501 /* 0*/ FLAG_ENTRY0("SDmaRpyTagErr", 502 SEND_DMA_ERR_STATUS_SDMA_RPY_TAG_ERR_SMASK), 503 /* 1*/ FLAG_ENTRY0("SDmaCsrParityErr", 504 SEND_DMA_ERR_STATUS_SDMA_CSR_PARITY_ERR_SMASK), 505 /* 2*/ FLAG_ENTRY0("SDmaPcieReqTrackingUncErr", 506 SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_UNC_ERR_SMASK), 507 /* 3*/ FLAG_ENTRY0("SDmaPcieReqTrackingCorErr", 508 SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_COR_ERR_SMASK), 509 /*04-63 reserved*/ 510 }; 511 512 /* TXE SDMA errors that cause an SPC freeze */ 513 #define ALL_SDMA_FREEZE_ERR \ 514 (SEND_DMA_ERR_STATUS_SDMA_RPY_TAG_ERR_SMASK \ 515 | SEND_DMA_ERR_STATUS_SDMA_CSR_PARITY_ERR_SMASK \ 516 | SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_UNC_ERR_SMASK) 517 518 /* SendEgressErrInfo bits that correspond to a PortXmitDiscard counter */ 519 #define PORT_DISCARD_EGRESS_ERRS \ 520 (SEND_EGRESS_ERR_INFO_TOO_LONG_IB_PACKET_ERR_SMASK \ 521 | SEND_EGRESS_ERR_INFO_VL_MAPPING_ERR_SMASK \ 522 | SEND_EGRESS_ERR_INFO_VL_ERR_SMASK) 523 524 /* 525 * TXE Egress Error flags 526 */ 527 #define SEES(text) SEND_EGRESS_ERR_STATUS_##text##_ERR_SMASK 528 static struct flag_table egress_err_status_flags[] = { 529 /* 0*/ FLAG_ENTRY0("TxPktIntegrityMemCorErr", SEES(TX_PKT_INTEGRITY_MEM_COR)), 530 /* 1*/ FLAG_ENTRY0("TxPktIntegrityMemUncErr", SEES(TX_PKT_INTEGRITY_MEM_UNC)), 531 /* 2 reserved */ 532 /* 3*/ FLAG_ENTRY0("TxEgressFifoUnderrunOrParityErr", 533 SEES(TX_EGRESS_FIFO_UNDERRUN_OR_PARITY)), 534 /* 4*/ FLAG_ENTRY0("TxLinkdownErr", SEES(TX_LINKDOWN)), 535 /* 5*/ FLAG_ENTRY0("TxIncorrectLinkStateErr", SEES(TX_INCORRECT_LINK_STATE)), 536 /* 6 reserved */ 537 /* 7*/ FLAG_ENTRY0("TxPioLaunchIntfParityErr", 538 SEES(TX_PIO_LAUNCH_INTF_PARITY)), 539 /* 8*/ FLAG_ENTRY0("TxSdmaLaunchIntfParityErr", 540 SEES(TX_SDMA_LAUNCH_INTF_PARITY)), 541 /* 9-10 reserved */ 542 /*11*/ FLAG_ENTRY0("TxSbrdCtlStateMachineParityErr", 543 SEES(TX_SBRD_CTL_STATE_MACHINE_PARITY)), 544 /*12*/ FLAG_ENTRY0("TxIllegalVLErr", SEES(TX_ILLEGAL_VL)), 545 /*13*/ FLAG_ENTRY0("TxLaunchCsrParityErr", SEES(TX_LAUNCH_CSR_PARITY)), 546 /*14*/ FLAG_ENTRY0("TxSbrdCtlCsrParityErr", SEES(TX_SBRD_CTL_CSR_PARITY)), 547 /*15*/ FLAG_ENTRY0("TxConfigParityErr", SEES(TX_CONFIG_PARITY)), 548 /*16*/ FLAG_ENTRY0("TxSdma0DisallowedPacketErr", 549 SEES(TX_SDMA0_DISALLOWED_PACKET)), 550 /*17*/ FLAG_ENTRY0("TxSdma1DisallowedPacketErr", 551 SEES(TX_SDMA1_DISALLOWED_PACKET)), 552 /*18*/ FLAG_ENTRY0("TxSdma2DisallowedPacketErr", 553 SEES(TX_SDMA2_DISALLOWED_PACKET)), 554 /*19*/ FLAG_ENTRY0("TxSdma3DisallowedPacketErr", 555 SEES(TX_SDMA3_DISALLOWED_PACKET)), 556 /*20*/ FLAG_ENTRY0("TxSdma4DisallowedPacketErr", 557 SEES(TX_SDMA4_DISALLOWED_PACKET)), 558 /*21*/ FLAG_ENTRY0("TxSdma5DisallowedPacketErr", 559 SEES(TX_SDMA5_DISALLOWED_PACKET)), 560 /*22*/ FLAG_ENTRY0("TxSdma6DisallowedPacketErr", 561 SEES(TX_SDMA6_DISALLOWED_PACKET)), 562 /*23*/ FLAG_ENTRY0("TxSdma7DisallowedPacketErr", 563 SEES(TX_SDMA7_DISALLOWED_PACKET)), 564 /*24*/ FLAG_ENTRY0("TxSdma8DisallowedPacketErr", 565 SEES(TX_SDMA8_DISALLOWED_PACKET)), 566 /*25*/ FLAG_ENTRY0("TxSdma9DisallowedPacketErr", 567 SEES(TX_SDMA9_DISALLOWED_PACKET)), 568 /*26*/ FLAG_ENTRY0("TxSdma10DisallowedPacketErr", 569 SEES(TX_SDMA10_DISALLOWED_PACKET)), 570 /*27*/ FLAG_ENTRY0("TxSdma11DisallowedPacketErr", 571 SEES(TX_SDMA11_DISALLOWED_PACKET)), 572 /*28*/ FLAG_ENTRY0("TxSdma12DisallowedPacketErr", 573 SEES(TX_SDMA12_DISALLOWED_PACKET)), 574 /*29*/ FLAG_ENTRY0("TxSdma13DisallowedPacketErr", 575 SEES(TX_SDMA13_DISALLOWED_PACKET)), 576 /*30*/ FLAG_ENTRY0("TxSdma14DisallowedPacketErr", 577 SEES(TX_SDMA14_DISALLOWED_PACKET)), 578 /*31*/ FLAG_ENTRY0("TxSdma15DisallowedPacketErr", 579 SEES(TX_SDMA15_DISALLOWED_PACKET)), 580 /*32*/ FLAG_ENTRY0("TxLaunchFifo0UncOrParityErr", 581 SEES(TX_LAUNCH_FIFO0_UNC_OR_PARITY)), 582 /*33*/ FLAG_ENTRY0("TxLaunchFifo1UncOrParityErr", 583 SEES(TX_LAUNCH_FIFO1_UNC_OR_PARITY)), 584 /*34*/ FLAG_ENTRY0("TxLaunchFifo2UncOrParityErr", 585 SEES(TX_LAUNCH_FIFO2_UNC_OR_PARITY)), 586 /*35*/ FLAG_ENTRY0("TxLaunchFifo3UncOrParityErr", 587 SEES(TX_LAUNCH_FIFO3_UNC_OR_PARITY)), 588 /*36*/ FLAG_ENTRY0("TxLaunchFifo4UncOrParityErr", 589 SEES(TX_LAUNCH_FIFO4_UNC_OR_PARITY)), 590 /*37*/ FLAG_ENTRY0("TxLaunchFifo5UncOrParityErr", 591 SEES(TX_LAUNCH_FIFO5_UNC_OR_PARITY)), 592 /*38*/ FLAG_ENTRY0("TxLaunchFifo6UncOrParityErr", 593 SEES(TX_LAUNCH_FIFO6_UNC_OR_PARITY)), 594 /*39*/ FLAG_ENTRY0("TxLaunchFifo7UncOrParityErr", 595 SEES(TX_LAUNCH_FIFO7_UNC_OR_PARITY)), 596 /*40*/ FLAG_ENTRY0("TxLaunchFifo8UncOrParityErr", 597 SEES(TX_LAUNCH_FIFO8_UNC_OR_PARITY)), 598 /*41*/ FLAG_ENTRY0("TxCreditReturnParityErr", SEES(TX_CREDIT_RETURN_PARITY)), 599 /*42*/ FLAG_ENTRY0("TxSbHdrUncErr", SEES(TX_SB_HDR_UNC)), 600 /*43*/ FLAG_ENTRY0("TxReadSdmaMemoryUncErr", SEES(TX_READ_SDMA_MEMORY_UNC)), 601 /*44*/ FLAG_ENTRY0("TxReadPioMemoryUncErr", SEES(TX_READ_PIO_MEMORY_UNC)), 602 /*45*/ FLAG_ENTRY0("TxEgressFifoUncErr", SEES(TX_EGRESS_FIFO_UNC)), 603 /*46*/ FLAG_ENTRY0("TxHcrcInsertionErr", SEES(TX_HCRC_INSERTION)), 604 /*47*/ FLAG_ENTRY0("TxCreditReturnVLErr", SEES(TX_CREDIT_RETURN_VL)), 605 /*48*/ FLAG_ENTRY0("TxLaunchFifo0CorErr", SEES(TX_LAUNCH_FIFO0_COR)), 606 /*49*/ FLAG_ENTRY0("TxLaunchFifo1CorErr", SEES(TX_LAUNCH_FIFO1_COR)), 607 /*50*/ FLAG_ENTRY0("TxLaunchFifo2CorErr", SEES(TX_LAUNCH_FIFO2_COR)), 608 /*51*/ FLAG_ENTRY0("TxLaunchFifo3CorErr", SEES(TX_LAUNCH_FIFO3_COR)), 609 /*52*/ FLAG_ENTRY0("TxLaunchFifo4CorErr", SEES(TX_LAUNCH_FIFO4_COR)), 610 /*53*/ FLAG_ENTRY0("TxLaunchFifo5CorErr", SEES(TX_LAUNCH_FIFO5_COR)), 611 /*54*/ FLAG_ENTRY0("TxLaunchFifo6CorErr", SEES(TX_LAUNCH_FIFO6_COR)), 612 /*55*/ FLAG_ENTRY0("TxLaunchFifo7CorErr", SEES(TX_LAUNCH_FIFO7_COR)), 613 /*56*/ FLAG_ENTRY0("TxLaunchFifo8CorErr", SEES(TX_LAUNCH_FIFO8_COR)), 614 /*57*/ FLAG_ENTRY0("TxCreditOverrunErr", SEES(TX_CREDIT_OVERRUN)), 615 /*58*/ FLAG_ENTRY0("TxSbHdrCorErr", SEES(TX_SB_HDR_COR)), 616 /*59*/ FLAG_ENTRY0("TxReadSdmaMemoryCorErr", SEES(TX_READ_SDMA_MEMORY_COR)), 617 /*60*/ FLAG_ENTRY0("TxReadPioMemoryCorErr", SEES(TX_READ_PIO_MEMORY_COR)), 618 /*61*/ FLAG_ENTRY0("TxEgressFifoCorErr", SEES(TX_EGRESS_FIFO_COR)), 619 /*62*/ FLAG_ENTRY0("TxReadSdmaMemoryCsrUncErr", 620 SEES(TX_READ_SDMA_MEMORY_CSR_UNC)), 621 /*63*/ FLAG_ENTRY0("TxReadPioMemoryCsrUncErr", 622 SEES(TX_READ_PIO_MEMORY_CSR_UNC)), 623 }; 624 625 /* 626 * TXE Egress Error Info flags 627 */ 628 #define SEEI(text) SEND_EGRESS_ERR_INFO_##text##_ERR_SMASK 629 static struct flag_table egress_err_info_flags[] = { 630 /* 0*/ FLAG_ENTRY0("Reserved", 0ull), 631 /* 1*/ FLAG_ENTRY0("VLErr", SEEI(VL)), 632 /* 2*/ FLAG_ENTRY0("JobKeyErr", SEEI(JOB_KEY)), 633 /* 3*/ FLAG_ENTRY0("JobKeyErr", SEEI(JOB_KEY)), 634 /* 4*/ FLAG_ENTRY0("PartitionKeyErr", SEEI(PARTITION_KEY)), 635 /* 5*/ FLAG_ENTRY0("SLIDErr", SEEI(SLID)), 636 /* 6*/ FLAG_ENTRY0("OpcodeErr", SEEI(OPCODE)), 637 /* 7*/ FLAG_ENTRY0("VLMappingErr", SEEI(VL_MAPPING)), 638 /* 8*/ FLAG_ENTRY0("RawErr", SEEI(RAW)), 639 /* 9*/ FLAG_ENTRY0("RawIPv6Err", SEEI(RAW_IPV6)), 640 /*10*/ FLAG_ENTRY0("GRHErr", SEEI(GRH)), 641 /*11*/ FLAG_ENTRY0("BypassErr", SEEI(BYPASS)), 642 /*12*/ FLAG_ENTRY0("KDETHPacketsErr", SEEI(KDETH_PACKETS)), 643 /*13*/ FLAG_ENTRY0("NonKDETHPacketsErr", SEEI(NON_KDETH_PACKETS)), 644 /*14*/ FLAG_ENTRY0("TooSmallIBPacketsErr", SEEI(TOO_SMALL_IB_PACKETS)), 645 /*15*/ FLAG_ENTRY0("TooSmallBypassPacketsErr", SEEI(TOO_SMALL_BYPASS_PACKETS)), 646 /*16*/ FLAG_ENTRY0("PbcTestErr", SEEI(PBC_TEST)), 647 /*17*/ FLAG_ENTRY0("BadPktLenErr", SEEI(BAD_PKT_LEN)), 648 /*18*/ FLAG_ENTRY0("TooLongIBPacketErr", SEEI(TOO_LONG_IB_PACKET)), 649 /*19*/ FLAG_ENTRY0("TooLongBypassPacketsErr", SEEI(TOO_LONG_BYPASS_PACKETS)), 650 /*20*/ FLAG_ENTRY0("PbcStaticRateControlErr", SEEI(PBC_STATIC_RATE_CONTROL)), 651 /*21*/ FLAG_ENTRY0("BypassBadPktLenErr", SEEI(BAD_PKT_LEN)), 652 }; 653 654 /* TXE Egress errors that cause an SPC freeze */ 655 #define ALL_TXE_EGRESS_FREEZE_ERR \ 656 (SEES(TX_EGRESS_FIFO_UNDERRUN_OR_PARITY) \ 657 | SEES(TX_PIO_LAUNCH_INTF_PARITY) \ 658 | SEES(TX_SDMA_LAUNCH_INTF_PARITY) \ 659 | SEES(TX_SBRD_CTL_STATE_MACHINE_PARITY) \ 660 | SEES(TX_LAUNCH_CSR_PARITY) \ 661 | SEES(TX_SBRD_CTL_CSR_PARITY) \ 662 | SEES(TX_CONFIG_PARITY) \ 663 | SEES(TX_LAUNCH_FIFO0_UNC_OR_PARITY) \ 664 | SEES(TX_LAUNCH_FIFO1_UNC_OR_PARITY) \ 665 | SEES(TX_LAUNCH_FIFO2_UNC_OR_PARITY) \ 666 | SEES(TX_LAUNCH_FIFO3_UNC_OR_PARITY) \ 667 | SEES(TX_LAUNCH_FIFO4_UNC_OR_PARITY) \ 668 | SEES(TX_LAUNCH_FIFO5_UNC_OR_PARITY) \ 669 | SEES(TX_LAUNCH_FIFO6_UNC_OR_PARITY) \ 670 | SEES(TX_LAUNCH_FIFO7_UNC_OR_PARITY) \ 671 | SEES(TX_LAUNCH_FIFO8_UNC_OR_PARITY) \ 672 | SEES(TX_CREDIT_RETURN_PARITY)) 673 674 /* 675 * TXE Send error flags 676 */ 677 #define SES(name) SEND_ERR_STATUS_SEND_##name##_ERR_SMASK 678 static struct flag_table send_err_status_flags[] = { 679 /* 0*/ FLAG_ENTRY0("SendCsrParityErr", SES(CSR_PARITY)), 680 /* 1*/ FLAG_ENTRY0("SendCsrReadBadAddrErr", SES(CSR_READ_BAD_ADDR)), 681 /* 2*/ FLAG_ENTRY0("SendCsrWriteBadAddrErr", SES(CSR_WRITE_BAD_ADDR)) 682 }; 683 684 /* 685 * TXE Send Context Error flags and consequences 686 */ 687 static struct flag_table sc_err_status_flags[] = { 688 /* 0*/ FLAG_ENTRY("InconsistentSop", 689 SEC_PACKET_DROPPED | SEC_SC_HALTED, 690 SEND_CTXT_ERR_STATUS_PIO_INCONSISTENT_SOP_ERR_SMASK), 691 /* 1*/ FLAG_ENTRY("DisallowedPacket", 692 SEC_PACKET_DROPPED | SEC_SC_HALTED, 693 SEND_CTXT_ERR_STATUS_PIO_DISALLOWED_PACKET_ERR_SMASK), 694 /* 2*/ FLAG_ENTRY("WriteCrossesBoundary", 695 SEC_WRITE_DROPPED | SEC_SC_HALTED, 696 SEND_CTXT_ERR_STATUS_PIO_WRITE_CROSSES_BOUNDARY_ERR_SMASK), 697 /* 3*/ FLAG_ENTRY("WriteOverflow", 698 SEC_WRITE_DROPPED | SEC_SC_HALTED, 699 SEND_CTXT_ERR_STATUS_PIO_WRITE_OVERFLOW_ERR_SMASK), 700 /* 4*/ FLAG_ENTRY("WriteOutOfBounds", 701 SEC_WRITE_DROPPED | SEC_SC_HALTED, 702 SEND_CTXT_ERR_STATUS_PIO_WRITE_OUT_OF_BOUNDS_ERR_SMASK), 703 /* 5-63 reserved*/ 704 }; 705 706 /* 707 * RXE Receive Error flags 708 */ 709 #define RXES(name) RCV_ERR_STATUS_RX_##name##_ERR_SMASK 710 static struct flag_table rxe_err_status_flags[] = { 711 /* 0*/ FLAG_ENTRY0("RxDmaCsrCorErr", RXES(DMA_CSR_COR)), 712 /* 1*/ FLAG_ENTRY0("RxDcIntfParityErr", RXES(DC_INTF_PARITY)), 713 /* 2*/ FLAG_ENTRY0("RxRcvHdrUncErr", RXES(RCV_HDR_UNC)), 714 /* 3*/ FLAG_ENTRY0("RxRcvHdrCorErr", RXES(RCV_HDR_COR)), 715 /* 4*/ FLAG_ENTRY0("RxRcvDataUncErr", RXES(RCV_DATA_UNC)), 716 /* 5*/ FLAG_ENTRY0("RxRcvDataCorErr", RXES(RCV_DATA_COR)), 717 /* 6*/ FLAG_ENTRY0("RxRcvQpMapTableUncErr", RXES(RCV_QP_MAP_TABLE_UNC)), 718 /* 7*/ FLAG_ENTRY0("RxRcvQpMapTableCorErr", RXES(RCV_QP_MAP_TABLE_COR)), 719 /* 8*/ FLAG_ENTRY0("RxRcvCsrParityErr", RXES(RCV_CSR_PARITY)), 720 /* 9*/ FLAG_ENTRY0("RxDcSopEopParityErr", RXES(DC_SOP_EOP_PARITY)), 721 /*10*/ FLAG_ENTRY0("RxDmaFlagUncErr", RXES(DMA_FLAG_UNC)), 722 /*11*/ FLAG_ENTRY0("RxDmaFlagCorErr", RXES(DMA_FLAG_COR)), 723 /*12*/ FLAG_ENTRY0("RxRcvFsmEncodingErr", RXES(RCV_FSM_ENCODING)), 724 /*13*/ FLAG_ENTRY0("RxRbufFreeListUncErr", RXES(RBUF_FREE_LIST_UNC)), 725 /*14*/ FLAG_ENTRY0("RxRbufFreeListCorErr", RXES(RBUF_FREE_LIST_COR)), 726 /*15*/ FLAG_ENTRY0("RxRbufLookupDesRegUncErr", RXES(RBUF_LOOKUP_DES_REG_UNC)), 727 /*16*/ FLAG_ENTRY0("RxRbufLookupDesRegUncCorErr", 728 RXES(RBUF_LOOKUP_DES_REG_UNC_COR)), 729 /*17*/ FLAG_ENTRY0("RxRbufLookupDesUncErr", RXES(RBUF_LOOKUP_DES_UNC)), 730 /*18*/ FLAG_ENTRY0("RxRbufLookupDesCorErr", RXES(RBUF_LOOKUP_DES_COR)), 731 /*19*/ FLAG_ENTRY0("RxRbufBlockListReadUncErr", 732 RXES(RBUF_BLOCK_LIST_READ_UNC)), 733 /*20*/ FLAG_ENTRY0("RxRbufBlockListReadCorErr", 734 RXES(RBUF_BLOCK_LIST_READ_COR)), 735 /*21*/ FLAG_ENTRY0("RxRbufCsrQHeadBufNumParityErr", 736 RXES(RBUF_CSR_QHEAD_BUF_NUM_PARITY)), 737 /*22*/ FLAG_ENTRY0("RxRbufCsrQEntCntParityErr", 738 RXES(RBUF_CSR_QENT_CNT_PARITY)), 739 /*23*/ FLAG_ENTRY0("RxRbufCsrQNextBufParityErr", 740 RXES(RBUF_CSR_QNEXT_BUF_PARITY)), 741 /*24*/ FLAG_ENTRY0("RxRbufCsrQVldBitParityErr", 742 RXES(RBUF_CSR_QVLD_BIT_PARITY)), 743 /*25*/ FLAG_ENTRY0("RxRbufCsrQHdPtrParityErr", RXES(RBUF_CSR_QHD_PTR_PARITY)), 744 /*26*/ FLAG_ENTRY0("RxRbufCsrQTlPtrParityErr", RXES(RBUF_CSR_QTL_PTR_PARITY)), 745 /*27*/ FLAG_ENTRY0("RxRbufCsrQNumOfPktParityErr", 746 RXES(RBUF_CSR_QNUM_OF_PKT_PARITY)), 747 /*28*/ FLAG_ENTRY0("RxRbufCsrQEOPDWParityErr", RXES(RBUF_CSR_QEOPDW_PARITY)), 748 /*29*/ FLAG_ENTRY0("RxRbufCtxIdParityErr", RXES(RBUF_CTX_ID_PARITY)), 749 /*30*/ FLAG_ENTRY0("RxRBufBadLookupErr", RXES(RBUF_BAD_LOOKUP)), 750 /*31*/ FLAG_ENTRY0("RxRbufFullErr", RXES(RBUF_FULL)), 751 /*32*/ FLAG_ENTRY0("RxRbufEmptyErr", RXES(RBUF_EMPTY)), 752 /*33*/ FLAG_ENTRY0("RxRbufFlRdAddrParityErr", RXES(RBUF_FL_RD_ADDR_PARITY)), 753 /*34*/ FLAG_ENTRY0("RxRbufFlWrAddrParityErr", RXES(RBUF_FL_WR_ADDR_PARITY)), 754 /*35*/ FLAG_ENTRY0("RxRbufFlInitdoneParityErr", 755 RXES(RBUF_FL_INITDONE_PARITY)), 756 /*36*/ FLAG_ENTRY0("RxRbufFlInitWrAddrParityErr", 757 RXES(RBUF_FL_INIT_WR_ADDR_PARITY)), 758 /*37*/ FLAG_ENTRY0("RxRbufNextFreeBufUncErr", RXES(RBUF_NEXT_FREE_BUF_UNC)), 759 /*38*/ FLAG_ENTRY0("RxRbufNextFreeBufCorErr", RXES(RBUF_NEXT_FREE_BUF_COR)), 760 /*39*/ FLAG_ENTRY0("RxLookupDesPart1UncErr", RXES(LOOKUP_DES_PART1_UNC)), 761 /*40*/ FLAG_ENTRY0("RxLookupDesPart1UncCorErr", 762 RXES(LOOKUP_DES_PART1_UNC_COR)), 763 /*41*/ FLAG_ENTRY0("RxLookupDesPart2ParityErr", 764 RXES(LOOKUP_DES_PART2_PARITY)), 765 /*42*/ FLAG_ENTRY0("RxLookupRcvArrayUncErr", RXES(LOOKUP_RCV_ARRAY_UNC)), 766 /*43*/ FLAG_ENTRY0("RxLookupRcvArrayCorErr", RXES(LOOKUP_RCV_ARRAY_COR)), 767 /*44*/ FLAG_ENTRY0("RxLookupCsrParityErr", RXES(LOOKUP_CSR_PARITY)), 768 /*45*/ FLAG_ENTRY0("RxHqIntrCsrParityErr", RXES(HQ_INTR_CSR_PARITY)), 769 /*46*/ FLAG_ENTRY0("RxHqIntrFsmErr", RXES(HQ_INTR_FSM)), 770 /*47*/ FLAG_ENTRY0("RxRbufDescPart1UncErr", RXES(RBUF_DESC_PART1_UNC)), 771 /*48*/ FLAG_ENTRY0("RxRbufDescPart1CorErr", RXES(RBUF_DESC_PART1_COR)), 772 /*49*/ FLAG_ENTRY0("RxRbufDescPart2UncErr", RXES(RBUF_DESC_PART2_UNC)), 773 /*50*/ FLAG_ENTRY0("RxRbufDescPart2CorErr", RXES(RBUF_DESC_PART2_COR)), 774 /*51*/ FLAG_ENTRY0("RxDmaHdrFifoRdUncErr", RXES(DMA_HDR_FIFO_RD_UNC)), 775 /*52*/ FLAG_ENTRY0("RxDmaHdrFifoRdCorErr", RXES(DMA_HDR_FIFO_RD_COR)), 776 /*53*/ FLAG_ENTRY0("RxDmaDataFifoRdUncErr", RXES(DMA_DATA_FIFO_RD_UNC)), 777 /*54*/ FLAG_ENTRY0("RxDmaDataFifoRdCorErr", RXES(DMA_DATA_FIFO_RD_COR)), 778 /*55*/ FLAG_ENTRY0("RxRbufDataUncErr", RXES(RBUF_DATA_UNC)), 779 /*56*/ FLAG_ENTRY0("RxRbufDataCorErr", RXES(RBUF_DATA_COR)), 780 /*57*/ FLAG_ENTRY0("RxDmaCsrParityErr", RXES(DMA_CSR_PARITY)), 781 /*58*/ FLAG_ENTRY0("RxDmaEqFsmEncodingErr", RXES(DMA_EQ_FSM_ENCODING)), 782 /*59*/ FLAG_ENTRY0("RxDmaDqFsmEncodingErr", RXES(DMA_DQ_FSM_ENCODING)), 783 /*60*/ FLAG_ENTRY0("RxDmaCsrUncErr", RXES(DMA_CSR_UNC)), 784 /*61*/ FLAG_ENTRY0("RxCsrReadBadAddrErr", RXES(CSR_READ_BAD_ADDR)), 785 /*62*/ FLAG_ENTRY0("RxCsrWriteBadAddrErr", RXES(CSR_WRITE_BAD_ADDR)), 786 /*63*/ FLAG_ENTRY0("RxCsrParityErr", RXES(CSR_PARITY)) 787 }; 788 789 /* RXE errors that will trigger an SPC freeze */ 790 #define ALL_RXE_FREEZE_ERR \ 791 (RCV_ERR_STATUS_RX_RCV_QP_MAP_TABLE_UNC_ERR_SMASK \ 792 | RCV_ERR_STATUS_RX_RCV_CSR_PARITY_ERR_SMASK \ 793 | RCV_ERR_STATUS_RX_DMA_FLAG_UNC_ERR_SMASK \ 794 | RCV_ERR_STATUS_RX_RCV_FSM_ENCODING_ERR_SMASK \ 795 | RCV_ERR_STATUS_RX_RBUF_FREE_LIST_UNC_ERR_SMASK \ 796 | RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_REG_UNC_ERR_SMASK \ 797 | RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_REG_UNC_COR_ERR_SMASK \ 798 | RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_UNC_ERR_SMASK \ 799 | RCV_ERR_STATUS_RX_RBUF_BLOCK_LIST_READ_UNC_ERR_SMASK \ 800 | RCV_ERR_STATUS_RX_RBUF_CSR_QHEAD_BUF_NUM_PARITY_ERR_SMASK \ 801 | RCV_ERR_STATUS_RX_RBUF_CSR_QENT_CNT_PARITY_ERR_SMASK \ 802 | RCV_ERR_STATUS_RX_RBUF_CSR_QNEXT_BUF_PARITY_ERR_SMASK \ 803 | RCV_ERR_STATUS_RX_RBUF_CSR_QVLD_BIT_PARITY_ERR_SMASK \ 804 | RCV_ERR_STATUS_RX_RBUF_CSR_QHD_PTR_PARITY_ERR_SMASK \ 805 | RCV_ERR_STATUS_RX_RBUF_CSR_QTL_PTR_PARITY_ERR_SMASK \ 806 | RCV_ERR_STATUS_RX_RBUF_CSR_QNUM_OF_PKT_PARITY_ERR_SMASK \ 807 | RCV_ERR_STATUS_RX_RBUF_CSR_QEOPDW_PARITY_ERR_SMASK \ 808 | RCV_ERR_STATUS_RX_RBUF_CTX_ID_PARITY_ERR_SMASK \ 809 | RCV_ERR_STATUS_RX_RBUF_BAD_LOOKUP_ERR_SMASK \ 810 | RCV_ERR_STATUS_RX_RBUF_FULL_ERR_SMASK \ 811 | RCV_ERR_STATUS_RX_RBUF_EMPTY_ERR_SMASK \ 812 | RCV_ERR_STATUS_RX_RBUF_FL_RD_ADDR_PARITY_ERR_SMASK \ 813 | RCV_ERR_STATUS_RX_RBUF_FL_WR_ADDR_PARITY_ERR_SMASK \ 814 | RCV_ERR_STATUS_RX_RBUF_FL_INITDONE_PARITY_ERR_SMASK \ 815 | RCV_ERR_STATUS_RX_RBUF_FL_INIT_WR_ADDR_PARITY_ERR_SMASK \ 816 | RCV_ERR_STATUS_RX_RBUF_NEXT_FREE_BUF_UNC_ERR_SMASK \ 817 | RCV_ERR_STATUS_RX_LOOKUP_DES_PART1_UNC_ERR_SMASK \ 818 | RCV_ERR_STATUS_RX_LOOKUP_DES_PART1_UNC_COR_ERR_SMASK \ 819 | RCV_ERR_STATUS_RX_LOOKUP_DES_PART2_PARITY_ERR_SMASK \ 820 | RCV_ERR_STATUS_RX_LOOKUP_RCV_ARRAY_UNC_ERR_SMASK \ 821 | RCV_ERR_STATUS_RX_LOOKUP_CSR_PARITY_ERR_SMASK \ 822 | RCV_ERR_STATUS_RX_HQ_INTR_CSR_PARITY_ERR_SMASK \ 823 | RCV_ERR_STATUS_RX_HQ_INTR_FSM_ERR_SMASK \ 824 | RCV_ERR_STATUS_RX_RBUF_DESC_PART1_UNC_ERR_SMASK \ 825 | RCV_ERR_STATUS_RX_RBUF_DESC_PART1_COR_ERR_SMASK \ 826 | RCV_ERR_STATUS_RX_RBUF_DESC_PART2_UNC_ERR_SMASK \ 827 | RCV_ERR_STATUS_RX_DMA_HDR_FIFO_RD_UNC_ERR_SMASK \ 828 | RCV_ERR_STATUS_RX_DMA_DATA_FIFO_RD_UNC_ERR_SMASK \ 829 | RCV_ERR_STATUS_RX_RBUF_DATA_UNC_ERR_SMASK \ 830 | RCV_ERR_STATUS_RX_DMA_CSR_PARITY_ERR_SMASK \ 831 | RCV_ERR_STATUS_RX_DMA_EQ_FSM_ENCODING_ERR_SMASK \ 832 | RCV_ERR_STATUS_RX_DMA_DQ_FSM_ENCODING_ERR_SMASK \ 833 | RCV_ERR_STATUS_RX_DMA_CSR_UNC_ERR_SMASK \ 834 | RCV_ERR_STATUS_RX_CSR_PARITY_ERR_SMASK) 835 836 #define RXE_FREEZE_ABORT_MASK \ 837 (RCV_ERR_STATUS_RX_DMA_CSR_UNC_ERR_SMASK | \ 838 RCV_ERR_STATUS_RX_DMA_HDR_FIFO_RD_UNC_ERR_SMASK | \ 839 RCV_ERR_STATUS_RX_DMA_DATA_FIFO_RD_UNC_ERR_SMASK) 840 841 /* 842 * DCC Error Flags 843 */ 844 #define DCCE(name) DCC_ERR_FLG_##name##_SMASK 845 static struct flag_table dcc_err_flags[] = { 846 FLAG_ENTRY0("bad_l2_err", DCCE(BAD_L2_ERR)), 847 FLAG_ENTRY0("bad_sc_err", DCCE(BAD_SC_ERR)), 848 FLAG_ENTRY0("bad_mid_tail_err", DCCE(BAD_MID_TAIL_ERR)), 849 FLAG_ENTRY0("bad_preemption_err", DCCE(BAD_PREEMPTION_ERR)), 850 FLAG_ENTRY0("preemption_err", DCCE(PREEMPTION_ERR)), 851 FLAG_ENTRY0("preemptionvl15_err", DCCE(PREEMPTIONVL15_ERR)), 852 FLAG_ENTRY0("bad_vl_marker_err", DCCE(BAD_VL_MARKER_ERR)), 853 FLAG_ENTRY0("bad_dlid_target_err", DCCE(BAD_DLID_TARGET_ERR)), 854 FLAG_ENTRY0("bad_lver_err", DCCE(BAD_LVER_ERR)), 855 FLAG_ENTRY0("uncorrectable_err", DCCE(UNCORRECTABLE_ERR)), 856 FLAG_ENTRY0("bad_crdt_ack_err", DCCE(BAD_CRDT_ACK_ERR)), 857 FLAG_ENTRY0("unsup_pkt_type", DCCE(UNSUP_PKT_TYPE)), 858 FLAG_ENTRY0("bad_ctrl_flit_err", DCCE(BAD_CTRL_FLIT_ERR)), 859 FLAG_ENTRY0("event_cntr_parity_err", DCCE(EVENT_CNTR_PARITY_ERR)), 860 FLAG_ENTRY0("event_cntr_rollover_err", DCCE(EVENT_CNTR_ROLLOVER_ERR)), 861 FLAG_ENTRY0("link_err", DCCE(LINK_ERR)), 862 FLAG_ENTRY0("misc_cntr_rollover_err", DCCE(MISC_CNTR_ROLLOVER_ERR)), 863 FLAG_ENTRY0("bad_ctrl_dist_err", DCCE(BAD_CTRL_DIST_ERR)), 864 FLAG_ENTRY0("bad_tail_dist_err", DCCE(BAD_TAIL_DIST_ERR)), 865 FLAG_ENTRY0("bad_head_dist_err", DCCE(BAD_HEAD_DIST_ERR)), 866 FLAG_ENTRY0("nonvl15_state_err", DCCE(NONVL15_STATE_ERR)), 867 FLAG_ENTRY0("vl15_multi_err", DCCE(VL15_MULTI_ERR)), 868 FLAG_ENTRY0("bad_pkt_length_err", DCCE(BAD_PKT_LENGTH_ERR)), 869 FLAG_ENTRY0("unsup_vl_err", DCCE(UNSUP_VL_ERR)), 870 FLAG_ENTRY0("perm_nvl15_err", DCCE(PERM_NVL15_ERR)), 871 FLAG_ENTRY0("slid_zero_err", DCCE(SLID_ZERO_ERR)), 872 FLAG_ENTRY0("dlid_zero_err", DCCE(DLID_ZERO_ERR)), 873 FLAG_ENTRY0("length_mtu_err", DCCE(LENGTH_MTU_ERR)), 874 FLAG_ENTRY0("rx_early_drop_err", DCCE(RX_EARLY_DROP_ERR)), 875 FLAG_ENTRY0("late_short_err", DCCE(LATE_SHORT_ERR)), 876 FLAG_ENTRY0("late_long_err", DCCE(LATE_LONG_ERR)), 877 FLAG_ENTRY0("late_ebp_err", DCCE(LATE_EBP_ERR)), 878 FLAG_ENTRY0("fpe_tx_fifo_ovflw_err", DCCE(FPE_TX_FIFO_OVFLW_ERR)), 879 FLAG_ENTRY0("fpe_tx_fifo_unflw_err", DCCE(FPE_TX_FIFO_UNFLW_ERR)), 880 FLAG_ENTRY0("csr_access_blocked_host", DCCE(CSR_ACCESS_BLOCKED_HOST)), 881 FLAG_ENTRY0("csr_access_blocked_uc", DCCE(CSR_ACCESS_BLOCKED_UC)), 882 FLAG_ENTRY0("tx_ctrl_parity_err", DCCE(TX_CTRL_PARITY_ERR)), 883 FLAG_ENTRY0("tx_ctrl_parity_mbe_err", DCCE(TX_CTRL_PARITY_MBE_ERR)), 884 FLAG_ENTRY0("tx_sc_parity_err", DCCE(TX_SC_PARITY_ERR)), 885 FLAG_ENTRY0("rx_ctrl_parity_mbe_err", DCCE(RX_CTRL_PARITY_MBE_ERR)), 886 FLAG_ENTRY0("csr_parity_err", DCCE(CSR_PARITY_ERR)), 887 FLAG_ENTRY0("csr_inval_addr", DCCE(CSR_INVAL_ADDR)), 888 FLAG_ENTRY0("tx_byte_shft_parity_err", DCCE(TX_BYTE_SHFT_PARITY_ERR)), 889 FLAG_ENTRY0("rx_byte_shft_parity_err", DCCE(RX_BYTE_SHFT_PARITY_ERR)), 890 FLAG_ENTRY0("fmconfig_err", DCCE(FMCONFIG_ERR)), 891 FLAG_ENTRY0("rcvport_err", DCCE(RCVPORT_ERR)), 892 }; 893 894 /* 895 * LCB error flags 896 */ 897 #define LCBE(name) DC_LCB_ERR_FLG_##name##_SMASK 898 static struct flag_table lcb_err_flags[] = { 899 /* 0*/ FLAG_ENTRY0("CSR_PARITY_ERR", LCBE(CSR_PARITY_ERR)), 900 /* 1*/ FLAG_ENTRY0("INVALID_CSR_ADDR", LCBE(INVALID_CSR_ADDR)), 901 /* 2*/ FLAG_ENTRY0("RST_FOR_FAILED_DESKEW", LCBE(RST_FOR_FAILED_DESKEW)), 902 /* 3*/ FLAG_ENTRY0("ALL_LNS_FAILED_REINIT_TEST", 903 LCBE(ALL_LNS_FAILED_REINIT_TEST)), 904 /* 4*/ FLAG_ENTRY0("LOST_REINIT_STALL_OR_TOS", LCBE(LOST_REINIT_STALL_OR_TOS)), 905 /* 5*/ FLAG_ENTRY0("TX_LESS_THAN_FOUR_LNS", LCBE(TX_LESS_THAN_FOUR_LNS)), 906 /* 6*/ FLAG_ENTRY0("RX_LESS_THAN_FOUR_LNS", LCBE(RX_LESS_THAN_FOUR_LNS)), 907 /* 7*/ FLAG_ENTRY0("SEQ_CRC_ERR", LCBE(SEQ_CRC_ERR)), 908 /* 8*/ FLAG_ENTRY0("REINIT_FROM_PEER", LCBE(REINIT_FROM_PEER)), 909 /* 9*/ FLAG_ENTRY0("REINIT_FOR_LN_DEGRADE", LCBE(REINIT_FOR_LN_DEGRADE)), 910 /*10*/ FLAG_ENTRY0("CRC_ERR_CNT_HIT_LIMIT", LCBE(CRC_ERR_CNT_HIT_LIMIT)), 911 /*11*/ FLAG_ENTRY0("RCLK_STOPPED", LCBE(RCLK_STOPPED)), 912 /*12*/ FLAG_ENTRY0("UNEXPECTED_REPLAY_MARKER", LCBE(UNEXPECTED_REPLAY_MARKER)), 913 /*13*/ FLAG_ENTRY0("UNEXPECTED_ROUND_TRIP_MARKER", 914 LCBE(UNEXPECTED_ROUND_TRIP_MARKER)), 915 /*14*/ FLAG_ENTRY0("ILLEGAL_NULL_LTP", LCBE(ILLEGAL_NULL_LTP)), 916 /*15*/ FLAG_ENTRY0("ILLEGAL_FLIT_ENCODING", LCBE(ILLEGAL_FLIT_ENCODING)), 917 /*16*/ FLAG_ENTRY0("FLIT_INPUT_BUF_OFLW", LCBE(FLIT_INPUT_BUF_OFLW)), 918 /*17*/ FLAG_ENTRY0("VL_ACK_INPUT_BUF_OFLW", LCBE(VL_ACK_INPUT_BUF_OFLW)), 919 /*18*/ FLAG_ENTRY0("VL_ACK_INPUT_PARITY_ERR", LCBE(VL_ACK_INPUT_PARITY_ERR)), 920 /*19*/ FLAG_ENTRY0("VL_ACK_INPUT_WRONG_CRC_MODE", 921 LCBE(VL_ACK_INPUT_WRONG_CRC_MODE)), 922 /*20*/ FLAG_ENTRY0("FLIT_INPUT_BUF_MBE", LCBE(FLIT_INPUT_BUF_MBE)), 923 /*21*/ FLAG_ENTRY0("FLIT_INPUT_BUF_SBE", LCBE(FLIT_INPUT_BUF_SBE)), 924 /*22*/ FLAG_ENTRY0("REPLAY_BUF_MBE", LCBE(REPLAY_BUF_MBE)), 925 /*23*/ FLAG_ENTRY0("REPLAY_BUF_SBE", LCBE(REPLAY_BUF_SBE)), 926 /*24*/ FLAG_ENTRY0("CREDIT_RETURN_FLIT_MBE", LCBE(CREDIT_RETURN_FLIT_MBE)), 927 /*25*/ FLAG_ENTRY0("RST_FOR_LINK_TIMEOUT", LCBE(RST_FOR_LINK_TIMEOUT)), 928 /*26*/ FLAG_ENTRY0("RST_FOR_INCOMPLT_RND_TRIP", 929 LCBE(RST_FOR_INCOMPLT_RND_TRIP)), 930 /*27*/ FLAG_ENTRY0("HOLD_REINIT", LCBE(HOLD_REINIT)), 931 /*28*/ FLAG_ENTRY0("NEG_EDGE_LINK_TRANSFER_ACTIVE", 932 LCBE(NEG_EDGE_LINK_TRANSFER_ACTIVE)), 933 /*29*/ FLAG_ENTRY0("REDUNDANT_FLIT_PARITY_ERR", 934 LCBE(REDUNDANT_FLIT_PARITY_ERR)) 935 }; 936 937 /* 938 * DC8051 Error Flags 939 */ 940 #define D8E(name) DC_DC8051_ERR_FLG_##name##_SMASK 941 static struct flag_table dc8051_err_flags[] = { 942 FLAG_ENTRY0("SET_BY_8051", D8E(SET_BY_8051)), 943 FLAG_ENTRY0("LOST_8051_HEART_BEAT", D8E(LOST_8051_HEART_BEAT)), 944 FLAG_ENTRY0("CRAM_MBE", D8E(CRAM_MBE)), 945 FLAG_ENTRY0("CRAM_SBE", D8E(CRAM_SBE)), 946 FLAG_ENTRY0("DRAM_MBE", D8E(DRAM_MBE)), 947 FLAG_ENTRY0("DRAM_SBE", D8E(DRAM_SBE)), 948 FLAG_ENTRY0("IRAM_MBE", D8E(IRAM_MBE)), 949 FLAG_ENTRY0("IRAM_SBE", D8E(IRAM_SBE)), 950 FLAG_ENTRY0("UNMATCHED_SECURE_MSG_ACROSS_BCC_LANES", 951 D8E(UNMATCHED_SECURE_MSG_ACROSS_BCC_LANES)), 952 FLAG_ENTRY0("INVALID_CSR_ADDR", D8E(INVALID_CSR_ADDR)), 953 }; 954 955 /* 956 * DC8051 Information Error flags 957 * 958 * Flags in DC8051_DBG_ERR_INFO_SET_BY_8051.ERROR field. 959 */ 960 static struct flag_table dc8051_info_err_flags[] = { 961 FLAG_ENTRY0("Spico ROM check failed", SPICO_ROM_FAILED), 962 FLAG_ENTRY0("Unknown frame received", UNKNOWN_FRAME), 963 FLAG_ENTRY0("Target BER not met", TARGET_BER_NOT_MET), 964 FLAG_ENTRY0("Serdes internal loopback failure", 965 FAILED_SERDES_INTERNAL_LOOPBACK), 966 FLAG_ENTRY0("Failed SerDes init", FAILED_SERDES_INIT), 967 FLAG_ENTRY0("Failed LNI(Polling)", FAILED_LNI_POLLING), 968 FLAG_ENTRY0("Failed LNI(Debounce)", FAILED_LNI_DEBOUNCE), 969 FLAG_ENTRY0("Failed LNI(EstbComm)", FAILED_LNI_ESTBCOMM), 970 FLAG_ENTRY0("Failed LNI(OptEq)", FAILED_LNI_OPTEQ), 971 FLAG_ENTRY0("Failed LNI(VerifyCap_1)", FAILED_LNI_VERIFY_CAP1), 972 FLAG_ENTRY0("Failed LNI(VerifyCap_2)", FAILED_LNI_VERIFY_CAP2), 973 FLAG_ENTRY0("Failed LNI(ConfigLT)", FAILED_LNI_CONFIGLT), 974 FLAG_ENTRY0("Host Handshake Timeout", HOST_HANDSHAKE_TIMEOUT) 975 }; 976 977 /* 978 * DC8051 Information Host Information flags 979 * 980 * Flags in DC8051_DBG_ERR_INFO_SET_BY_8051.HOST_MSG field. 981 */ 982 static struct flag_table dc8051_info_host_msg_flags[] = { 983 FLAG_ENTRY0("Host request done", 0x0001), 984 FLAG_ENTRY0("BC SMA message", 0x0002), 985 FLAG_ENTRY0("BC PWR_MGM message", 0x0004), 986 FLAG_ENTRY0("BC Unknown message (BCC)", 0x0008), 987 FLAG_ENTRY0("BC Unknown message (LCB)", 0x0010), 988 FLAG_ENTRY0("External device config request", 0x0020), 989 FLAG_ENTRY0("VerifyCap all frames received", 0x0040), 990 FLAG_ENTRY0("LinkUp achieved", 0x0080), 991 FLAG_ENTRY0("Link going down", 0x0100), 992 }; 993 994 static u32 encoded_size(u32 size); 995 static u32 chip_to_opa_lstate(struct hfi1_devdata *dd, u32 chip_lstate); 996 static int set_physical_link_state(struct hfi1_devdata *dd, u64 state); 997 static void read_vc_remote_phy(struct hfi1_devdata *dd, u8 *power_management, 998 u8 *continuous); 999 static void read_vc_remote_fabric(struct hfi1_devdata *dd, u8 *vau, u8 *z, 1000 u8 *vcu, u16 *vl15buf, u8 *crc_sizes); 1001 static void read_vc_remote_link_width(struct hfi1_devdata *dd, 1002 u8 *remote_tx_rate, u16 *link_widths); 1003 static void read_vc_local_link_width(struct hfi1_devdata *dd, u8 *misc_bits, 1004 u8 *flag_bits, u16 *link_widths); 1005 static void read_remote_device_id(struct hfi1_devdata *dd, u16 *device_id, 1006 u8 *device_rev); 1007 static void read_mgmt_allowed(struct hfi1_devdata *dd, u8 *mgmt_allowed); 1008 static void read_local_lni(struct hfi1_devdata *dd, u8 *enable_lane_rx); 1009 static int read_tx_settings(struct hfi1_devdata *dd, u8 *enable_lane_tx, 1010 u8 *tx_polarity_inversion, 1011 u8 *rx_polarity_inversion, u8 *max_rate); 1012 static void handle_sdma_eng_err(struct hfi1_devdata *dd, 1013 unsigned int context, u64 err_status); 1014 static void handle_qsfp_int(struct hfi1_devdata *dd, u32 source, u64 reg); 1015 static void handle_dcc_err(struct hfi1_devdata *dd, 1016 unsigned int context, u64 err_status); 1017 static void handle_lcb_err(struct hfi1_devdata *dd, 1018 unsigned int context, u64 err_status); 1019 static void handle_8051_interrupt(struct hfi1_devdata *dd, u32 unused, u64 reg); 1020 static void handle_cce_err(struct hfi1_devdata *dd, u32 unused, u64 reg); 1021 static void handle_rxe_err(struct hfi1_devdata *dd, u32 unused, u64 reg); 1022 static void handle_misc_err(struct hfi1_devdata *dd, u32 unused, u64 reg); 1023 static void handle_pio_err(struct hfi1_devdata *dd, u32 unused, u64 reg); 1024 static void handle_sdma_err(struct hfi1_devdata *dd, u32 unused, u64 reg); 1025 static void handle_egress_err(struct hfi1_devdata *dd, u32 unused, u64 reg); 1026 static void handle_txe_err(struct hfi1_devdata *dd, u32 unused, u64 reg); 1027 static void set_partition_keys(struct hfi1_pportdata *); 1028 static const char *link_state_name(u32 state); 1029 static const char *link_state_reason_name(struct hfi1_pportdata *ppd, 1030 u32 state); 1031 static int do_8051_command(struct hfi1_devdata *dd, u32 type, u64 in_data, 1032 u64 *out_data); 1033 static int read_idle_sma(struct hfi1_devdata *dd, u64 *data); 1034 static int thermal_init(struct hfi1_devdata *dd); 1035 1036 static int wait_logical_linkstate(struct hfi1_pportdata *ppd, u32 state, 1037 int msecs); 1038 static void read_planned_down_reason_code(struct hfi1_devdata *dd, u8 *pdrrc); 1039 static void read_link_down_reason(struct hfi1_devdata *dd, u8 *ldr); 1040 static void handle_temp_err(struct hfi1_devdata *); 1041 static void dc_shutdown(struct hfi1_devdata *); 1042 static void dc_start(struct hfi1_devdata *); 1043 static int qos_rmt_entries(struct hfi1_devdata *dd, unsigned int *mp, 1044 unsigned int *np); 1045 static void clear_full_mgmt_pkey(struct hfi1_pportdata *ppd); 1046 1047 /* 1048 * Error interrupt table entry. This is used as input to the interrupt 1049 * "clear down" routine used for all second tier error interrupt register. 1050 * Second tier interrupt registers have a single bit representing them 1051 * in the top-level CceIntStatus. 1052 */ 1053 struct err_reg_info { 1054 u32 status; /* status CSR offset */ 1055 u32 clear; /* clear CSR offset */ 1056 u32 mask; /* mask CSR offset */ 1057 void (*handler)(struct hfi1_devdata *dd, u32 source, u64 reg); 1058 const char *desc; 1059 }; 1060 1061 #define NUM_MISC_ERRS (IS_GENERAL_ERR_END - IS_GENERAL_ERR_START) 1062 #define NUM_DC_ERRS (IS_DC_END - IS_DC_START) 1063 #define NUM_VARIOUS (IS_VARIOUS_END - IS_VARIOUS_START) 1064 1065 /* 1066 * Helpers for building HFI and DC error interrupt table entries. Different 1067 * helpers are needed because of inconsistent register names. 1068 */ 1069 #define EE(reg, handler, desc) \ 1070 { reg##_STATUS, reg##_CLEAR, reg##_MASK, \ 1071 handler, desc } 1072 #define DC_EE1(reg, handler, desc) \ 1073 { reg##_FLG, reg##_FLG_CLR, reg##_FLG_EN, handler, desc } 1074 #define DC_EE2(reg, handler, desc) \ 1075 { reg##_FLG, reg##_CLR, reg##_EN, handler, desc } 1076 1077 /* 1078 * Table of the "misc" grouping of error interrupts. Each entry refers to 1079 * another register containing more information. 1080 */ 1081 static const struct err_reg_info misc_errs[NUM_MISC_ERRS] = { 1082 /* 0*/ EE(CCE_ERR, handle_cce_err, "CceErr"), 1083 /* 1*/ EE(RCV_ERR, handle_rxe_err, "RxeErr"), 1084 /* 2*/ EE(MISC_ERR, handle_misc_err, "MiscErr"), 1085 /* 3*/ { 0, 0, 0, NULL }, /* reserved */ 1086 /* 4*/ EE(SEND_PIO_ERR, handle_pio_err, "PioErr"), 1087 /* 5*/ EE(SEND_DMA_ERR, handle_sdma_err, "SDmaErr"), 1088 /* 6*/ EE(SEND_EGRESS_ERR, handle_egress_err, "EgressErr"), 1089 /* 7*/ EE(SEND_ERR, handle_txe_err, "TxeErr") 1090 /* the rest are reserved */ 1091 }; 1092 1093 /* 1094 * Index into the Various section of the interrupt sources 1095 * corresponding to the Critical Temperature interrupt. 1096 */ 1097 #define TCRIT_INT_SOURCE 4 1098 1099 /* 1100 * SDMA error interrupt entry - refers to another register containing more 1101 * information. 1102 */ 1103 static const struct err_reg_info sdma_eng_err = 1104 EE(SEND_DMA_ENG_ERR, handle_sdma_eng_err, "SDmaEngErr"); 1105 1106 static const struct err_reg_info various_err[NUM_VARIOUS] = { 1107 /* 0*/ { 0, 0, 0, NULL }, /* PbcInt */ 1108 /* 1*/ { 0, 0, 0, NULL }, /* GpioAssertInt */ 1109 /* 2*/ EE(ASIC_QSFP1, handle_qsfp_int, "QSFP1"), 1110 /* 3*/ EE(ASIC_QSFP2, handle_qsfp_int, "QSFP2"), 1111 /* 4*/ { 0, 0, 0, NULL }, /* TCritInt */ 1112 /* rest are reserved */ 1113 }; 1114 1115 /* 1116 * The DC encoding of mtu_cap for 10K MTU in the DCC_CFG_PORT_CONFIG 1117 * register can not be derived from the MTU value because 10K is not 1118 * a power of 2. Therefore, we need a constant. Everything else can 1119 * be calculated. 1120 */ 1121 #define DCC_CFG_PORT_MTU_CAP_10240 7 1122 1123 /* 1124 * Table of the DC grouping of error interrupts. Each entry refers to 1125 * another register containing more information. 1126 */ 1127 static const struct err_reg_info dc_errs[NUM_DC_ERRS] = { 1128 /* 0*/ DC_EE1(DCC_ERR, handle_dcc_err, "DCC Err"), 1129 /* 1*/ DC_EE2(DC_LCB_ERR, handle_lcb_err, "LCB Err"), 1130 /* 2*/ DC_EE2(DC_DC8051_ERR, handle_8051_interrupt, "DC8051 Interrupt"), 1131 /* 3*/ /* dc_lbm_int - special, see is_dc_int() */ 1132 /* the rest are reserved */ 1133 }; 1134 1135 struct cntr_entry { 1136 /* 1137 * counter name 1138 */ 1139 char *name; 1140 1141 /* 1142 * csr to read for name (if applicable) 1143 */ 1144 u64 csr; 1145 1146 /* 1147 * offset into dd or ppd to store the counter's value 1148 */ 1149 int offset; 1150 1151 /* 1152 * flags 1153 */ 1154 u8 flags; 1155 1156 /* 1157 * accessor for stat element, context either dd or ppd 1158 */ 1159 u64 (*rw_cntr)(const struct cntr_entry *, void *context, int vl, 1160 int mode, u64 data); 1161 }; 1162 1163 #define C_RCV_HDR_OVF_FIRST C_RCV_HDR_OVF_0 1164 #define C_RCV_HDR_OVF_LAST C_RCV_HDR_OVF_159 1165 1166 #define CNTR_ELEM(name, csr, offset, flags, accessor) \ 1167 { \ 1168 name, \ 1169 csr, \ 1170 offset, \ 1171 flags, \ 1172 accessor \ 1173 } 1174 1175 /* 32bit RXE */ 1176 #define RXE32_PORT_CNTR_ELEM(name, counter, flags) \ 1177 CNTR_ELEM(#name, \ 1178 (counter * 8 + RCV_COUNTER_ARRAY32), \ 1179 0, flags | CNTR_32BIT, \ 1180 port_access_u32_csr) 1181 1182 #define RXE32_DEV_CNTR_ELEM(name, counter, flags) \ 1183 CNTR_ELEM(#name, \ 1184 (counter * 8 + RCV_COUNTER_ARRAY32), \ 1185 0, flags | CNTR_32BIT, \ 1186 dev_access_u32_csr) 1187 1188 /* 64bit RXE */ 1189 #define RXE64_PORT_CNTR_ELEM(name, counter, flags) \ 1190 CNTR_ELEM(#name, \ 1191 (counter * 8 + RCV_COUNTER_ARRAY64), \ 1192 0, flags, \ 1193 port_access_u64_csr) 1194 1195 #define RXE64_DEV_CNTR_ELEM(name, counter, flags) \ 1196 CNTR_ELEM(#name, \ 1197 (counter * 8 + RCV_COUNTER_ARRAY64), \ 1198 0, flags, \ 1199 dev_access_u64_csr) 1200 1201 #define OVR_LBL(ctx) C_RCV_HDR_OVF_ ## ctx 1202 #define OVR_ELM(ctx) \ 1203 CNTR_ELEM("RcvHdrOvr" #ctx, \ 1204 (RCV_HDR_OVFL_CNT + ctx * 0x100), \ 1205 0, CNTR_NORMAL, port_access_u64_csr) 1206 1207 /* 32bit TXE */ 1208 #define TXE32_PORT_CNTR_ELEM(name, counter, flags) \ 1209 CNTR_ELEM(#name, \ 1210 (counter * 8 + SEND_COUNTER_ARRAY32), \ 1211 0, flags | CNTR_32BIT, \ 1212 port_access_u32_csr) 1213 1214 /* 64bit TXE */ 1215 #define TXE64_PORT_CNTR_ELEM(name, counter, flags) \ 1216 CNTR_ELEM(#name, \ 1217 (counter * 8 + SEND_COUNTER_ARRAY64), \ 1218 0, flags, \ 1219 port_access_u64_csr) 1220 1221 # define TX64_DEV_CNTR_ELEM(name, counter, flags) \ 1222 CNTR_ELEM(#name,\ 1223 counter * 8 + SEND_COUNTER_ARRAY64, \ 1224 0, \ 1225 flags, \ 1226 dev_access_u64_csr) 1227 1228 /* CCE */ 1229 #define CCE_PERF_DEV_CNTR_ELEM(name, counter, flags) \ 1230 CNTR_ELEM(#name, \ 1231 (counter * 8 + CCE_COUNTER_ARRAY32), \ 1232 0, flags | CNTR_32BIT, \ 1233 dev_access_u32_csr) 1234 1235 #define CCE_INT_DEV_CNTR_ELEM(name, counter, flags) \ 1236 CNTR_ELEM(#name, \ 1237 (counter * 8 + CCE_INT_COUNTER_ARRAY32), \ 1238 0, flags | CNTR_32BIT, \ 1239 dev_access_u32_csr) 1240 1241 /* DC */ 1242 #define DC_PERF_CNTR(name, counter, flags) \ 1243 CNTR_ELEM(#name, \ 1244 counter, \ 1245 0, \ 1246 flags, \ 1247 dev_access_u64_csr) 1248 1249 #define DC_PERF_CNTR_LCB(name, counter, flags) \ 1250 CNTR_ELEM(#name, \ 1251 counter, \ 1252 0, \ 1253 flags, \ 1254 dc_access_lcb_cntr) 1255 1256 /* ibp counters */ 1257 #define SW_IBP_CNTR(name, cntr) \ 1258 CNTR_ELEM(#name, \ 1259 0, \ 1260 0, \ 1261 CNTR_SYNTH, \ 1262 access_ibp_##cntr) 1263 1264 u64 read_csr(const struct hfi1_devdata *dd, u32 offset) 1265 { 1266 if (dd->flags & HFI1_PRESENT) { 1267 return readq((void __iomem *)dd->kregbase + offset); 1268 } 1269 return -1; 1270 } 1271 1272 void write_csr(const struct hfi1_devdata *dd, u32 offset, u64 value) 1273 { 1274 if (dd->flags & HFI1_PRESENT) 1275 writeq(value, (void __iomem *)dd->kregbase + offset); 1276 } 1277 1278 void __iomem *get_csr_addr( 1279 struct hfi1_devdata *dd, 1280 u32 offset) 1281 { 1282 return (void __iomem *)dd->kregbase + offset; 1283 } 1284 1285 static inline u64 read_write_csr(const struct hfi1_devdata *dd, u32 csr, 1286 int mode, u64 value) 1287 { 1288 u64 ret; 1289 1290 if (mode == CNTR_MODE_R) { 1291 ret = read_csr(dd, csr); 1292 } else if (mode == CNTR_MODE_W) { 1293 write_csr(dd, csr, value); 1294 ret = value; 1295 } else { 1296 dd_dev_err(dd, "Invalid cntr register access mode"); 1297 return 0; 1298 } 1299 1300 hfi1_cdbg(CNTR, "csr 0x%x val 0x%llx mode %d", csr, ret, mode); 1301 return ret; 1302 } 1303 1304 /* Dev Access */ 1305 static u64 dev_access_u32_csr(const struct cntr_entry *entry, 1306 void *context, int vl, int mode, u64 data) 1307 { 1308 struct hfi1_devdata *dd = context; 1309 u64 csr = entry->csr; 1310 1311 if (entry->flags & CNTR_SDMA) { 1312 if (vl == CNTR_INVALID_VL) 1313 return 0; 1314 csr += 0x100 * vl; 1315 } else { 1316 if (vl != CNTR_INVALID_VL) 1317 return 0; 1318 } 1319 return read_write_csr(dd, csr, mode, data); 1320 } 1321 1322 static u64 access_sde_err_cnt(const struct cntr_entry *entry, 1323 void *context, int idx, int mode, u64 data) 1324 { 1325 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1326 1327 if (dd->per_sdma && idx < dd->num_sdma) 1328 return dd->per_sdma[idx].err_cnt; 1329 return 0; 1330 } 1331 1332 static u64 access_sde_int_cnt(const struct cntr_entry *entry, 1333 void *context, int idx, int mode, u64 data) 1334 { 1335 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1336 1337 if (dd->per_sdma && idx < dd->num_sdma) 1338 return dd->per_sdma[idx].sdma_int_cnt; 1339 return 0; 1340 } 1341 1342 static u64 access_sde_idle_int_cnt(const struct cntr_entry *entry, 1343 void *context, int idx, int mode, u64 data) 1344 { 1345 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1346 1347 if (dd->per_sdma && idx < dd->num_sdma) 1348 return dd->per_sdma[idx].idle_int_cnt; 1349 return 0; 1350 } 1351 1352 static u64 access_sde_progress_int_cnt(const struct cntr_entry *entry, 1353 void *context, int idx, int mode, 1354 u64 data) 1355 { 1356 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1357 1358 if (dd->per_sdma && idx < dd->num_sdma) 1359 return dd->per_sdma[idx].progress_int_cnt; 1360 return 0; 1361 } 1362 1363 static u64 dev_access_u64_csr(const struct cntr_entry *entry, void *context, 1364 int vl, int mode, u64 data) 1365 { 1366 struct hfi1_devdata *dd = context; 1367 1368 u64 val = 0; 1369 u64 csr = entry->csr; 1370 1371 if (entry->flags & CNTR_VL) { 1372 if (vl == CNTR_INVALID_VL) 1373 return 0; 1374 csr += 8 * vl; 1375 } else { 1376 if (vl != CNTR_INVALID_VL) 1377 return 0; 1378 } 1379 1380 val = read_write_csr(dd, csr, mode, data); 1381 return val; 1382 } 1383 1384 static u64 dc_access_lcb_cntr(const struct cntr_entry *entry, void *context, 1385 int vl, int mode, u64 data) 1386 { 1387 struct hfi1_devdata *dd = context; 1388 u32 csr = entry->csr; 1389 int ret = 0; 1390 1391 if (vl != CNTR_INVALID_VL) 1392 return 0; 1393 if (mode == CNTR_MODE_R) 1394 ret = read_lcb_csr(dd, csr, &data); 1395 else if (mode == CNTR_MODE_W) 1396 ret = write_lcb_csr(dd, csr, data); 1397 1398 if (ret) { 1399 dd_dev_err(dd, "Could not acquire LCB for counter 0x%x", csr); 1400 return 0; 1401 } 1402 1403 hfi1_cdbg(CNTR, "csr 0x%x val 0x%llx mode %d", csr, data, mode); 1404 return data; 1405 } 1406 1407 /* Port Access */ 1408 static u64 port_access_u32_csr(const struct cntr_entry *entry, void *context, 1409 int vl, int mode, u64 data) 1410 { 1411 struct hfi1_pportdata *ppd = context; 1412 1413 if (vl != CNTR_INVALID_VL) 1414 return 0; 1415 return read_write_csr(ppd->dd, entry->csr, mode, data); 1416 } 1417 1418 static u64 port_access_u64_csr(const struct cntr_entry *entry, 1419 void *context, int vl, int mode, u64 data) 1420 { 1421 struct hfi1_pportdata *ppd = context; 1422 u64 val; 1423 u64 csr = entry->csr; 1424 1425 if (entry->flags & CNTR_VL) { 1426 if (vl == CNTR_INVALID_VL) 1427 return 0; 1428 csr += 8 * vl; 1429 } else { 1430 if (vl != CNTR_INVALID_VL) 1431 return 0; 1432 } 1433 val = read_write_csr(ppd->dd, csr, mode, data); 1434 return val; 1435 } 1436 1437 /* Software defined */ 1438 static inline u64 read_write_sw(struct hfi1_devdata *dd, u64 *cntr, int mode, 1439 u64 data) 1440 { 1441 u64 ret; 1442 1443 if (mode == CNTR_MODE_R) { 1444 ret = *cntr; 1445 } else if (mode == CNTR_MODE_W) { 1446 *cntr = data; 1447 ret = data; 1448 } else { 1449 dd_dev_err(dd, "Invalid cntr sw access mode"); 1450 return 0; 1451 } 1452 1453 hfi1_cdbg(CNTR, "val 0x%llx mode %d", ret, mode); 1454 1455 return ret; 1456 } 1457 1458 static u64 access_sw_link_dn_cnt(const struct cntr_entry *entry, void *context, 1459 int vl, int mode, u64 data) 1460 { 1461 struct hfi1_pportdata *ppd = context; 1462 1463 if (vl != CNTR_INVALID_VL) 1464 return 0; 1465 return read_write_sw(ppd->dd, &ppd->link_downed, mode, data); 1466 } 1467 1468 static u64 access_sw_link_up_cnt(const struct cntr_entry *entry, void *context, 1469 int vl, int mode, u64 data) 1470 { 1471 struct hfi1_pportdata *ppd = context; 1472 1473 if (vl != CNTR_INVALID_VL) 1474 return 0; 1475 return read_write_sw(ppd->dd, &ppd->link_up, mode, data); 1476 } 1477 1478 static u64 access_sw_unknown_frame_cnt(const struct cntr_entry *entry, 1479 void *context, int vl, int mode, 1480 u64 data) 1481 { 1482 struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context; 1483 1484 if (vl != CNTR_INVALID_VL) 1485 return 0; 1486 return read_write_sw(ppd->dd, &ppd->unknown_frame_count, mode, data); 1487 } 1488 1489 static u64 access_sw_xmit_discards(const struct cntr_entry *entry, 1490 void *context, int vl, int mode, u64 data) 1491 { 1492 struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context; 1493 u64 zero = 0; 1494 u64 *counter; 1495 1496 if (vl == CNTR_INVALID_VL) 1497 counter = &ppd->port_xmit_discards; 1498 else if (vl >= 0 && vl < C_VL_COUNT) 1499 counter = &ppd->port_xmit_discards_vl[vl]; 1500 else 1501 counter = &zero; 1502 1503 return read_write_sw(ppd->dd, counter, mode, data); 1504 } 1505 1506 static u64 access_xmit_constraint_errs(const struct cntr_entry *entry, 1507 void *context, int vl, int mode, 1508 u64 data) 1509 { 1510 struct hfi1_pportdata *ppd = context; 1511 1512 if (vl != CNTR_INVALID_VL) 1513 return 0; 1514 1515 return read_write_sw(ppd->dd, &ppd->port_xmit_constraint_errors, 1516 mode, data); 1517 } 1518 1519 static u64 access_rcv_constraint_errs(const struct cntr_entry *entry, 1520 void *context, int vl, int mode, u64 data) 1521 { 1522 struct hfi1_pportdata *ppd = context; 1523 1524 if (vl != CNTR_INVALID_VL) 1525 return 0; 1526 1527 return read_write_sw(ppd->dd, &ppd->port_rcv_constraint_errors, 1528 mode, data); 1529 } 1530 1531 u64 get_all_cpu_total(u64 __percpu *cntr) 1532 { 1533 int cpu; 1534 u64 counter = 0; 1535 1536 for_each_possible_cpu(cpu) 1537 counter += *per_cpu_ptr(cntr, cpu); 1538 return counter; 1539 } 1540 1541 static u64 read_write_cpu(struct hfi1_devdata *dd, u64 *z_val, 1542 u64 __percpu *cntr, 1543 int vl, int mode, u64 data) 1544 { 1545 u64 ret = 0; 1546 1547 if (vl != CNTR_INVALID_VL) 1548 return 0; 1549 1550 if (mode == CNTR_MODE_R) { 1551 ret = get_all_cpu_total(cntr) - *z_val; 1552 } else if (mode == CNTR_MODE_W) { 1553 /* A write can only zero the counter */ 1554 if (data == 0) 1555 *z_val = get_all_cpu_total(cntr); 1556 else 1557 dd_dev_err(dd, "Per CPU cntrs can only be zeroed"); 1558 } else { 1559 dd_dev_err(dd, "Invalid cntr sw cpu access mode"); 1560 return 0; 1561 } 1562 1563 return ret; 1564 } 1565 1566 static u64 access_sw_cpu_intr(const struct cntr_entry *entry, 1567 void *context, int vl, int mode, u64 data) 1568 { 1569 struct hfi1_devdata *dd = context; 1570 1571 return read_write_cpu(dd, &dd->z_int_counter, dd->int_counter, vl, 1572 mode, data); 1573 } 1574 1575 static u64 access_sw_cpu_rcv_limit(const struct cntr_entry *entry, 1576 void *context, int vl, int mode, u64 data) 1577 { 1578 struct hfi1_devdata *dd = context; 1579 1580 return read_write_cpu(dd, &dd->z_rcv_limit, dd->rcv_limit, vl, 1581 mode, data); 1582 } 1583 1584 static u64 access_sw_pio_wait(const struct cntr_entry *entry, 1585 void *context, int vl, int mode, u64 data) 1586 { 1587 struct hfi1_devdata *dd = context; 1588 1589 return dd->verbs_dev.n_piowait; 1590 } 1591 1592 static u64 access_sw_pio_drain(const struct cntr_entry *entry, 1593 void *context, int vl, int mode, u64 data) 1594 { 1595 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1596 1597 return dd->verbs_dev.n_piodrain; 1598 } 1599 1600 static u64 access_sw_vtx_wait(const struct cntr_entry *entry, 1601 void *context, int vl, int mode, u64 data) 1602 { 1603 struct hfi1_devdata *dd = context; 1604 1605 return dd->verbs_dev.n_txwait; 1606 } 1607 1608 static u64 access_sw_kmem_wait(const struct cntr_entry *entry, 1609 void *context, int vl, int mode, u64 data) 1610 { 1611 struct hfi1_devdata *dd = context; 1612 1613 return dd->verbs_dev.n_kmem_wait; 1614 } 1615 1616 static u64 access_sw_send_schedule(const struct cntr_entry *entry, 1617 void *context, int vl, int mode, u64 data) 1618 { 1619 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1620 1621 return read_write_cpu(dd, &dd->z_send_schedule, dd->send_schedule, vl, 1622 mode, data); 1623 } 1624 1625 /* Software counters for the error status bits within MISC_ERR_STATUS */ 1626 static u64 access_misc_pll_lock_fail_err_cnt(const struct cntr_entry *entry, 1627 void *context, int vl, int mode, 1628 u64 data) 1629 { 1630 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1631 1632 return dd->misc_err_status_cnt[12]; 1633 } 1634 1635 static u64 access_misc_mbist_fail_err_cnt(const struct cntr_entry *entry, 1636 void *context, int vl, int mode, 1637 u64 data) 1638 { 1639 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1640 1641 return dd->misc_err_status_cnt[11]; 1642 } 1643 1644 static u64 access_misc_invalid_eep_cmd_err_cnt(const struct cntr_entry *entry, 1645 void *context, int vl, int mode, 1646 u64 data) 1647 { 1648 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1649 1650 return dd->misc_err_status_cnt[10]; 1651 } 1652 1653 static u64 access_misc_efuse_done_parity_err_cnt(const struct cntr_entry *entry, 1654 void *context, int vl, 1655 int mode, u64 data) 1656 { 1657 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1658 1659 return dd->misc_err_status_cnt[9]; 1660 } 1661 1662 static u64 access_misc_efuse_write_err_cnt(const struct cntr_entry *entry, 1663 void *context, int vl, int mode, 1664 u64 data) 1665 { 1666 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1667 1668 return dd->misc_err_status_cnt[8]; 1669 } 1670 1671 static u64 access_misc_efuse_read_bad_addr_err_cnt( 1672 const struct cntr_entry *entry, 1673 void *context, int vl, int mode, u64 data) 1674 { 1675 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1676 1677 return dd->misc_err_status_cnt[7]; 1678 } 1679 1680 static u64 access_misc_efuse_csr_parity_err_cnt(const struct cntr_entry *entry, 1681 void *context, int vl, 1682 int mode, u64 data) 1683 { 1684 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1685 1686 return dd->misc_err_status_cnt[6]; 1687 } 1688 1689 static u64 access_misc_fw_auth_failed_err_cnt(const struct cntr_entry *entry, 1690 void *context, int vl, int mode, 1691 u64 data) 1692 { 1693 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1694 1695 return dd->misc_err_status_cnt[5]; 1696 } 1697 1698 static u64 access_misc_key_mismatch_err_cnt(const struct cntr_entry *entry, 1699 void *context, int vl, int mode, 1700 u64 data) 1701 { 1702 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1703 1704 return dd->misc_err_status_cnt[4]; 1705 } 1706 1707 static u64 access_misc_sbus_write_failed_err_cnt(const struct cntr_entry *entry, 1708 void *context, int vl, 1709 int mode, u64 data) 1710 { 1711 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1712 1713 return dd->misc_err_status_cnt[3]; 1714 } 1715 1716 static u64 access_misc_csr_write_bad_addr_err_cnt( 1717 const struct cntr_entry *entry, 1718 void *context, int vl, int mode, u64 data) 1719 { 1720 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1721 1722 return dd->misc_err_status_cnt[2]; 1723 } 1724 1725 static u64 access_misc_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry, 1726 void *context, int vl, 1727 int mode, u64 data) 1728 { 1729 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1730 1731 return dd->misc_err_status_cnt[1]; 1732 } 1733 1734 static u64 access_misc_csr_parity_err_cnt(const struct cntr_entry *entry, 1735 void *context, int vl, int mode, 1736 u64 data) 1737 { 1738 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1739 1740 return dd->misc_err_status_cnt[0]; 1741 } 1742 1743 /* 1744 * Software counter for the aggregate of 1745 * individual CceErrStatus counters 1746 */ 1747 static u64 access_sw_cce_err_status_aggregated_cnt( 1748 const struct cntr_entry *entry, 1749 void *context, int vl, int mode, u64 data) 1750 { 1751 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1752 1753 return dd->sw_cce_err_status_aggregate; 1754 } 1755 1756 /* 1757 * Software counters corresponding to each of the 1758 * error status bits within CceErrStatus 1759 */ 1760 static u64 access_cce_msix_csr_parity_err_cnt(const struct cntr_entry *entry, 1761 void *context, int vl, int mode, 1762 u64 data) 1763 { 1764 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1765 1766 return dd->cce_err_status_cnt[40]; 1767 } 1768 1769 static u64 access_cce_int_map_unc_err_cnt(const struct cntr_entry *entry, 1770 void *context, int vl, int mode, 1771 u64 data) 1772 { 1773 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1774 1775 return dd->cce_err_status_cnt[39]; 1776 } 1777 1778 static u64 access_cce_int_map_cor_err_cnt(const struct cntr_entry *entry, 1779 void *context, int vl, int mode, 1780 u64 data) 1781 { 1782 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1783 1784 return dd->cce_err_status_cnt[38]; 1785 } 1786 1787 static u64 access_cce_msix_table_unc_err_cnt(const struct cntr_entry *entry, 1788 void *context, int vl, int mode, 1789 u64 data) 1790 { 1791 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1792 1793 return dd->cce_err_status_cnt[37]; 1794 } 1795 1796 static u64 access_cce_msix_table_cor_err_cnt(const struct cntr_entry *entry, 1797 void *context, int vl, int mode, 1798 u64 data) 1799 { 1800 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1801 1802 return dd->cce_err_status_cnt[36]; 1803 } 1804 1805 static u64 access_cce_rxdma_conv_fifo_parity_err_cnt( 1806 const struct cntr_entry *entry, 1807 void *context, int vl, int mode, u64 data) 1808 { 1809 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1810 1811 return dd->cce_err_status_cnt[35]; 1812 } 1813 1814 static u64 access_cce_rcpl_async_fifo_parity_err_cnt( 1815 const struct cntr_entry *entry, 1816 void *context, int vl, int mode, u64 data) 1817 { 1818 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1819 1820 return dd->cce_err_status_cnt[34]; 1821 } 1822 1823 static u64 access_cce_seg_write_bad_addr_err_cnt(const struct cntr_entry *entry, 1824 void *context, int vl, 1825 int mode, u64 data) 1826 { 1827 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1828 1829 return dd->cce_err_status_cnt[33]; 1830 } 1831 1832 static u64 access_cce_seg_read_bad_addr_err_cnt(const struct cntr_entry *entry, 1833 void *context, int vl, int mode, 1834 u64 data) 1835 { 1836 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1837 1838 return dd->cce_err_status_cnt[32]; 1839 } 1840 1841 static u64 access_la_triggered_cnt(const struct cntr_entry *entry, 1842 void *context, int vl, int mode, u64 data) 1843 { 1844 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1845 1846 return dd->cce_err_status_cnt[31]; 1847 } 1848 1849 static u64 access_cce_trgt_cpl_timeout_err_cnt(const struct cntr_entry *entry, 1850 void *context, int vl, int mode, 1851 u64 data) 1852 { 1853 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1854 1855 return dd->cce_err_status_cnt[30]; 1856 } 1857 1858 static u64 access_pcic_receive_parity_err_cnt(const struct cntr_entry *entry, 1859 void *context, int vl, int mode, 1860 u64 data) 1861 { 1862 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1863 1864 return dd->cce_err_status_cnt[29]; 1865 } 1866 1867 static u64 access_pcic_transmit_back_parity_err_cnt( 1868 const struct cntr_entry *entry, 1869 void *context, int vl, int mode, u64 data) 1870 { 1871 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1872 1873 return dd->cce_err_status_cnt[28]; 1874 } 1875 1876 static u64 access_pcic_transmit_front_parity_err_cnt( 1877 const struct cntr_entry *entry, 1878 void *context, int vl, int mode, u64 data) 1879 { 1880 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1881 1882 return dd->cce_err_status_cnt[27]; 1883 } 1884 1885 static u64 access_pcic_cpl_dat_q_unc_err_cnt(const struct cntr_entry *entry, 1886 void *context, int vl, int mode, 1887 u64 data) 1888 { 1889 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1890 1891 return dd->cce_err_status_cnt[26]; 1892 } 1893 1894 static u64 access_pcic_cpl_hd_q_unc_err_cnt(const struct cntr_entry *entry, 1895 void *context, int vl, int mode, 1896 u64 data) 1897 { 1898 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1899 1900 return dd->cce_err_status_cnt[25]; 1901 } 1902 1903 static u64 access_pcic_post_dat_q_unc_err_cnt(const struct cntr_entry *entry, 1904 void *context, int vl, int mode, 1905 u64 data) 1906 { 1907 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1908 1909 return dd->cce_err_status_cnt[24]; 1910 } 1911 1912 static u64 access_pcic_post_hd_q_unc_err_cnt(const struct cntr_entry *entry, 1913 void *context, int vl, int mode, 1914 u64 data) 1915 { 1916 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1917 1918 return dd->cce_err_status_cnt[23]; 1919 } 1920 1921 static u64 access_pcic_retry_sot_mem_unc_err_cnt(const struct cntr_entry *entry, 1922 void *context, int vl, 1923 int mode, u64 data) 1924 { 1925 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1926 1927 return dd->cce_err_status_cnt[22]; 1928 } 1929 1930 static u64 access_pcic_retry_mem_unc_err(const struct cntr_entry *entry, 1931 void *context, int vl, int mode, 1932 u64 data) 1933 { 1934 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1935 1936 return dd->cce_err_status_cnt[21]; 1937 } 1938 1939 static u64 access_pcic_n_post_dat_q_parity_err_cnt( 1940 const struct cntr_entry *entry, 1941 void *context, int vl, int mode, u64 data) 1942 { 1943 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1944 1945 return dd->cce_err_status_cnt[20]; 1946 } 1947 1948 static u64 access_pcic_n_post_h_q_parity_err_cnt(const struct cntr_entry *entry, 1949 void *context, int vl, 1950 int mode, u64 data) 1951 { 1952 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1953 1954 return dd->cce_err_status_cnt[19]; 1955 } 1956 1957 static u64 access_pcic_cpl_dat_q_cor_err_cnt(const struct cntr_entry *entry, 1958 void *context, int vl, int mode, 1959 u64 data) 1960 { 1961 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1962 1963 return dd->cce_err_status_cnt[18]; 1964 } 1965 1966 static u64 access_pcic_cpl_hd_q_cor_err_cnt(const struct cntr_entry *entry, 1967 void *context, int vl, int mode, 1968 u64 data) 1969 { 1970 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1971 1972 return dd->cce_err_status_cnt[17]; 1973 } 1974 1975 static u64 access_pcic_post_dat_q_cor_err_cnt(const struct cntr_entry *entry, 1976 void *context, int vl, int mode, 1977 u64 data) 1978 { 1979 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1980 1981 return dd->cce_err_status_cnt[16]; 1982 } 1983 1984 static u64 access_pcic_post_hd_q_cor_err_cnt(const struct cntr_entry *entry, 1985 void *context, int vl, int mode, 1986 u64 data) 1987 { 1988 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1989 1990 return dd->cce_err_status_cnt[15]; 1991 } 1992 1993 static u64 access_pcic_retry_sot_mem_cor_err_cnt(const struct cntr_entry *entry, 1994 void *context, int vl, 1995 int mode, u64 data) 1996 { 1997 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1998 1999 return dd->cce_err_status_cnt[14]; 2000 } 2001 2002 static u64 access_pcic_retry_mem_cor_err_cnt(const struct cntr_entry *entry, 2003 void *context, int vl, int mode, 2004 u64 data) 2005 { 2006 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2007 2008 return dd->cce_err_status_cnt[13]; 2009 } 2010 2011 static u64 access_cce_cli1_async_fifo_dbg_parity_err_cnt( 2012 const struct cntr_entry *entry, 2013 void *context, int vl, int mode, u64 data) 2014 { 2015 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2016 2017 return dd->cce_err_status_cnt[12]; 2018 } 2019 2020 static u64 access_cce_cli1_async_fifo_rxdma_parity_err_cnt( 2021 const struct cntr_entry *entry, 2022 void *context, int vl, int mode, u64 data) 2023 { 2024 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2025 2026 return dd->cce_err_status_cnt[11]; 2027 } 2028 2029 static u64 access_cce_cli1_async_fifo_sdma_hd_parity_err_cnt( 2030 const struct cntr_entry *entry, 2031 void *context, int vl, int mode, u64 data) 2032 { 2033 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2034 2035 return dd->cce_err_status_cnt[10]; 2036 } 2037 2038 static u64 access_cce_cl1_async_fifo_pio_crdt_parity_err_cnt( 2039 const struct cntr_entry *entry, 2040 void *context, int vl, int mode, u64 data) 2041 { 2042 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2043 2044 return dd->cce_err_status_cnt[9]; 2045 } 2046 2047 static u64 access_cce_cli2_async_fifo_parity_err_cnt( 2048 const struct cntr_entry *entry, 2049 void *context, int vl, int mode, u64 data) 2050 { 2051 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2052 2053 return dd->cce_err_status_cnt[8]; 2054 } 2055 2056 static u64 access_cce_csr_cfg_bus_parity_err_cnt(const struct cntr_entry *entry, 2057 void *context, int vl, 2058 int mode, u64 data) 2059 { 2060 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2061 2062 return dd->cce_err_status_cnt[7]; 2063 } 2064 2065 static u64 access_cce_cli0_async_fifo_parity_err_cnt( 2066 const struct cntr_entry *entry, 2067 void *context, int vl, int mode, u64 data) 2068 { 2069 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2070 2071 return dd->cce_err_status_cnt[6]; 2072 } 2073 2074 static u64 access_cce_rspd_data_parity_err_cnt(const struct cntr_entry *entry, 2075 void *context, int vl, int mode, 2076 u64 data) 2077 { 2078 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2079 2080 return dd->cce_err_status_cnt[5]; 2081 } 2082 2083 static u64 access_cce_trgt_access_err_cnt(const struct cntr_entry *entry, 2084 void *context, int vl, int mode, 2085 u64 data) 2086 { 2087 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2088 2089 return dd->cce_err_status_cnt[4]; 2090 } 2091 2092 static u64 access_cce_trgt_async_fifo_parity_err_cnt( 2093 const struct cntr_entry *entry, 2094 void *context, int vl, int mode, u64 data) 2095 { 2096 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2097 2098 return dd->cce_err_status_cnt[3]; 2099 } 2100 2101 static u64 access_cce_csr_write_bad_addr_err_cnt(const struct cntr_entry *entry, 2102 void *context, int vl, 2103 int mode, u64 data) 2104 { 2105 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2106 2107 return dd->cce_err_status_cnt[2]; 2108 } 2109 2110 static u64 access_cce_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry, 2111 void *context, int vl, 2112 int mode, u64 data) 2113 { 2114 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2115 2116 return dd->cce_err_status_cnt[1]; 2117 } 2118 2119 static u64 access_ccs_csr_parity_err_cnt(const struct cntr_entry *entry, 2120 void *context, int vl, int mode, 2121 u64 data) 2122 { 2123 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2124 2125 return dd->cce_err_status_cnt[0]; 2126 } 2127 2128 /* 2129 * Software counters corresponding to each of the 2130 * error status bits within RcvErrStatus 2131 */ 2132 static u64 access_rx_csr_parity_err_cnt(const struct cntr_entry *entry, 2133 void *context, int vl, int mode, 2134 u64 data) 2135 { 2136 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2137 2138 return dd->rcv_err_status_cnt[63]; 2139 } 2140 2141 static u64 access_rx_csr_write_bad_addr_err_cnt(const struct cntr_entry *entry, 2142 void *context, int vl, 2143 int mode, u64 data) 2144 { 2145 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2146 2147 return dd->rcv_err_status_cnt[62]; 2148 } 2149 2150 static u64 access_rx_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry, 2151 void *context, int vl, int mode, 2152 u64 data) 2153 { 2154 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2155 2156 return dd->rcv_err_status_cnt[61]; 2157 } 2158 2159 static u64 access_rx_dma_csr_unc_err_cnt(const struct cntr_entry *entry, 2160 void *context, int vl, int mode, 2161 u64 data) 2162 { 2163 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2164 2165 return dd->rcv_err_status_cnt[60]; 2166 } 2167 2168 static u64 access_rx_dma_dq_fsm_encoding_err_cnt(const struct cntr_entry *entry, 2169 void *context, int vl, 2170 int mode, u64 data) 2171 { 2172 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2173 2174 return dd->rcv_err_status_cnt[59]; 2175 } 2176 2177 static u64 access_rx_dma_eq_fsm_encoding_err_cnt(const struct cntr_entry *entry, 2178 void *context, int vl, 2179 int mode, u64 data) 2180 { 2181 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2182 2183 return dd->rcv_err_status_cnt[58]; 2184 } 2185 2186 static u64 access_rx_dma_csr_parity_err_cnt(const struct cntr_entry *entry, 2187 void *context, int vl, int mode, 2188 u64 data) 2189 { 2190 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2191 2192 return dd->rcv_err_status_cnt[57]; 2193 } 2194 2195 static u64 access_rx_rbuf_data_cor_err_cnt(const struct cntr_entry *entry, 2196 void *context, int vl, int mode, 2197 u64 data) 2198 { 2199 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2200 2201 return dd->rcv_err_status_cnt[56]; 2202 } 2203 2204 static u64 access_rx_rbuf_data_unc_err_cnt(const struct cntr_entry *entry, 2205 void *context, int vl, int mode, 2206 u64 data) 2207 { 2208 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2209 2210 return dd->rcv_err_status_cnt[55]; 2211 } 2212 2213 static u64 access_rx_dma_data_fifo_rd_cor_err_cnt( 2214 const struct cntr_entry *entry, 2215 void *context, int vl, int mode, u64 data) 2216 { 2217 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2218 2219 return dd->rcv_err_status_cnt[54]; 2220 } 2221 2222 static u64 access_rx_dma_data_fifo_rd_unc_err_cnt( 2223 const struct cntr_entry *entry, 2224 void *context, int vl, int mode, u64 data) 2225 { 2226 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2227 2228 return dd->rcv_err_status_cnt[53]; 2229 } 2230 2231 static u64 access_rx_dma_hdr_fifo_rd_cor_err_cnt(const struct cntr_entry *entry, 2232 void *context, int vl, 2233 int mode, u64 data) 2234 { 2235 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2236 2237 return dd->rcv_err_status_cnt[52]; 2238 } 2239 2240 static u64 access_rx_dma_hdr_fifo_rd_unc_err_cnt(const struct cntr_entry *entry, 2241 void *context, int vl, 2242 int mode, u64 data) 2243 { 2244 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2245 2246 return dd->rcv_err_status_cnt[51]; 2247 } 2248 2249 static u64 access_rx_rbuf_desc_part2_cor_err_cnt(const struct cntr_entry *entry, 2250 void *context, int vl, 2251 int mode, u64 data) 2252 { 2253 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2254 2255 return dd->rcv_err_status_cnt[50]; 2256 } 2257 2258 static u64 access_rx_rbuf_desc_part2_unc_err_cnt(const struct cntr_entry *entry, 2259 void *context, int vl, 2260 int mode, u64 data) 2261 { 2262 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2263 2264 return dd->rcv_err_status_cnt[49]; 2265 } 2266 2267 static u64 access_rx_rbuf_desc_part1_cor_err_cnt(const struct cntr_entry *entry, 2268 void *context, int vl, 2269 int mode, u64 data) 2270 { 2271 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2272 2273 return dd->rcv_err_status_cnt[48]; 2274 } 2275 2276 static u64 access_rx_rbuf_desc_part1_unc_err_cnt(const struct cntr_entry *entry, 2277 void *context, int vl, 2278 int mode, u64 data) 2279 { 2280 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2281 2282 return dd->rcv_err_status_cnt[47]; 2283 } 2284 2285 static u64 access_rx_hq_intr_fsm_err_cnt(const struct cntr_entry *entry, 2286 void *context, int vl, int mode, 2287 u64 data) 2288 { 2289 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2290 2291 return dd->rcv_err_status_cnt[46]; 2292 } 2293 2294 static u64 access_rx_hq_intr_csr_parity_err_cnt( 2295 const struct cntr_entry *entry, 2296 void *context, int vl, int mode, u64 data) 2297 { 2298 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2299 2300 return dd->rcv_err_status_cnt[45]; 2301 } 2302 2303 static u64 access_rx_lookup_csr_parity_err_cnt( 2304 const struct cntr_entry *entry, 2305 void *context, int vl, int mode, u64 data) 2306 { 2307 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2308 2309 return dd->rcv_err_status_cnt[44]; 2310 } 2311 2312 static u64 access_rx_lookup_rcv_array_cor_err_cnt( 2313 const struct cntr_entry *entry, 2314 void *context, int vl, int mode, u64 data) 2315 { 2316 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2317 2318 return dd->rcv_err_status_cnt[43]; 2319 } 2320 2321 static u64 access_rx_lookup_rcv_array_unc_err_cnt( 2322 const struct cntr_entry *entry, 2323 void *context, int vl, int mode, u64 data) 2324 { 2325 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2326 2327 return dd->rcv_err_status_cnt[42]; 2328 } 2329 2330 static u64 access_rx_lookup_des_part2_parity_err_cnt( 2331 const struct cntr_entry *entry, 2332 void *context, int vl, int mode, u64 data) 2333 { 2334 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2335 2336 return dd->rcv_err_status_cnt[41]; 2337 } 2338 2339 static u64 access_rx_lookup_des_part1_unc_cor_err_cnt( 2340 const struct cntr_entry *entry, 2341 void *context, int vl, int mode, u64 data) 2342 { 2343 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2344 2345 return dd->rcv_err_status_cnt[40]; 2346 } 2347 2348 static u64 access_rx_lookup_des_part1_unc_err_cnt( 2349 const struct cntr_entry *entry, 2350 void *context, int vl, int mode, u64 data) 2351 { 2352 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2353 2354 return dd->rcv_err_status_cnt[39]; 2355 } 2356 2357 static u64 access_rx_rbuf_next_free_buf_cor_err_cnt( 2358 const struct cntr_entry *entry, 2359 void *context, int vl, int mode, u64 data) 2360 { 2361 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2362 2363 return dd->rcv_err_status_cnt[38]; 2364 } 2365 2366 static u64 access_rx_rbuf_next_free_buf_unc_err_cnt( 2367 const struct cntr_entry *entry, 2368 void *context, int vl, int mode, u64 data) 2369 { 2370 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2371 2372 return dd->rcv_err_status_cnt[37]; 2373 } 2374 2375 static u64 access_rbuf_fl_init_wr_addr_parity_err_cnt( 2376 const struct cntr_entry *entry, 2377 void *context, int vl, int mode, u64 data) 2378 { 2379 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2380 2381 return dd->rcv_err_status_cnt[36]; 2382 } 2383 2384 static u64 access_rx_rbuf_fl_initdone_parity_err_cnt( 2385 const struct cntr_entry *entry, 2386 void *context, int vl, int mode, u64 data) 2387 { 2388 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2389 2390 return dd->rcv_err_status_cnt[35]; 2391 } 2392 2393 static u64 access_rx_rbuf_fl_write_addr_parity_err_cnt( 2394 const struct cntr_entry *entry, 2395 void *context, int vl, int mode, u64 data) 2396 { 2397 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2398 2399 return dd->rcv_err_status_cnt[34]; 2400 } 2401 2402 static u64 access_rx_rbuf_fl_rd_addr_parity_err_cnt( 2403 const struct cntr_entry *entry, 2404 void *context, int vl, int mode, u64 data) 2405 { 2406 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2407 2408 return dd->rcv_err_status_cnt[33]; 2409 } 2410 2411 static u64 access_rx_rbuf_empty_err_cnt(const struct cntr_entry *entry, 2412 void *context, int vl, int mode, 2413 u64 data) 2414 { 2415 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2416 2417 return dd->rcv_err_status_cnt[32]; 2418 } 2419 2420 static u64 access_rx_rbuf_full_err_cnt(const struct cntr_entry *entry, 2421 void *context, int vl, int mode, 2422 u64 data) 2423 { 2424 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2425 2426 return dd->rcv_err_status_cnt[31]; 2427 } 2428 2429 static u64 access_rbuf_bad_lookup_err_cnt(const struct cntr_entry *entry, 2430 void *context, int vl, int mode, 2431 u64 data) 2432 { 2433 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2434 2435 return dd->rcv_err_status_cnt[30]; 2436 } 2437 2438 static u64 access_rbuf_ctx_id_parity_err_cnt(const struct cntr_entry *entry, 2439 void *context, int vl, int mode, 2440 u64 data) 2441 { 2442 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2443 2444 return dd->rcv_err_status_cnt[29]; 2445 } 2446 2447 static u64 access_rbuf_csr_qeopdw_parity_err_cnt(const struct cntr_entry *entry, 2448 void *context, int vl, 2449 int mode, u64 data) 2450 { 2451 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2452 2453 return dd->rcv_err_status_cnt[28]; 2454 } 2455 2456 static u64 access_rx_rbuf_csr_q_num_of_pkt_parity_err_cnt( 2457 const struct cntr_entry *entry, 2458 void *context, int vl, int mode, u64 data) 2459 { 2460 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2461 2462 return dd->rcv_err_status_cnt[27]; 2463 } 2464 2465 static u64 access_rx_rbuf_csr_q_t1_ptr_parity_err_cnt( 2466 const struct cntr_entry *entry, 2467 void *context, int vl, int mode, u64 data) 2468 { 2469 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2470 2471 return dd->rcv_err_status_cnt[26]; 2472 } 2473 2474 static u64 access_rx_rbuf_csr_q_hd_ptr_parity_err_cnt( 2475 const struct cntr_entry *entry, 2476 void *context, int vl, int mode, u64 data) 2477 { 2478 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2479 2480 return dd->rcv_err_status_cnt[25]; 2481 } 2482 2483 static u64 access_rx_rbuf_csr_q_vld_bit_parity_err_cnt( 2484 const struct cntr_entry *entry, 2485 void *context, int vl, int mode, u64 data) 2486 { 2487 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2488 2489 return dd->rcv_err_status_cnt[24]; 2490 } 2491 2492 static u64 access_rx_rbuf_csr_q_next_buf_parity_err_cnt( 2493 const struct cntr_entry *entry, 2494 void *context, int vl, int mode, u64 data) 2495 { 2496 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2497 2498 return dd->rcv_err_status_cnt[23]; 2499 } 2500 2501 static u64 access_rx_rbuf_csr_q_ent_cnt_parity_err_cnt( 2502 const struct cntr_entry *entry, 2503 void *context, int vl, int mode, u64 data) 2504 { 2505 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2506 2507 return dd->rcv_err_status_cnt[22]; 2508 } 2509 2510 static u64 access_rx_rbuf_csr_q_head_buf_num_parity_err_cnt( 2511 const struct cntr_entry *entry, 2512 void *context, int vl, int mode, u64 data) 2513 { 2514 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2515 2516 return dd->rcv_err_status_cnt[21]; 2517 } 2518 2519 static u64 access_rx_rbuf_block_list_read_cor_err_cnt( 2520 const struct cntr_entry *entry, 2521 void *context, int vl, int mode, u64 data) 2522 { 2523 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2524 2525 return dd->rcv_err_status_cnt[20]; 2526 } 2527 2528 static u64 access_rx_rbuf_block_list_read_unc_err_cnt( 2529 const struct cntr_entry *entry, 2530 void *context, int vl, int mode, u64 data) 2531 { 2532 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2533 2534 return dd->rcv_err_status_cnt[19]; 2535 } 2536 2537 static u64 access_rx_rbuf_lookup_des_cor_err_cnt(const struct cntr_entry *entry, 2538 void *context, int vl, 2539 int mode, u64 data) 2540 { 2541 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2542 2543 return dd->rcv_err_status_cnt[18]; 2544 } 2545 2546 static u64 access_rx_rbuf_lookup_des_unc_err_cnt(const struct cntr_entry *entry, 2547 void *context, int vl, 2548 int mode, u64 data) 2549 { 2550 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2551 2552 return dd->rcv_err_status_cnt[17]; 2553 } 2554 2555 static u64 access_rx_rbuf_lookup_des_reg_unc_cor_err_cnt( 2556 const struct cntr_entry *entry, 2557 void *context, int vl, int mode, u64 data) 2558 { 2559 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2560 2561 return dd->rcv_err_status_cnt[16]; 2562 } 2563 2564 static u64 access_rx_rbuf_lookup_des_reg_unc_err_cnt( 2565 const struct cntr_entry *entry, 2566 void *context, int vl, int mode, u64 data) 2567 { 2568 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2569 2570 return dd->rcv_err_status_cnt[15]; 2571 } 2572 2573 static u64 access_rx_rbuf_free_list_cor_err_cnt(const struct cntr_entry *entry, 2574 void *context, int vl, 2575 int mode, u64 data) 2576 { 2577 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2578 2579 return dd->rcv_err_status_cnt[14]; 2580 } 2581 2582 static u64 access_rx_rbuf_free_list_unc_err_cnt(const struct cntr_entry *entry, 2583 void *context, int vl, 2584 int mode, u64 data) 2585 { 2586 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2587 2588 return dd->rcv_err_status_cnt[13]; 2589 } 2590 2591 static u64 access_rx_rcv_fsm_encoding_err_cnt(const struct cntr_entry *entry, 2592 void *context, int vl, int mode, 2593 u64 data) 2594 { 2595 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2596 2597 return dd->rcv_err_status_cnt[12]; 2598 } 2599 2600 static u64 access_rx_dma_flag_cor_err_cnt(const struct cntr_entry *entry, 2601 void *context, int vl, int mode, 2602 u64 data) 2603 { 2604 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2605 2606 return dd->rcv_err_status_cnt[11]; 2607 } 2608 2609 static u64 access_rx_dma_flag_unc_err_cnt(const struct cntr_entry *entry, 2610 void *context, int vl, int mode, 2611 u64 data) 2612 { 2613 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2614 2615 return dd->rcv_err_status_cnt[10]; 2616 } 2617 2618 static u64 access_rx_dc_sop_eop_parity_err_cnt(const struct cntr_entry *entry, 2619 void *context, int vl, int mode, 2620 u64 data) 2621 { 2622 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2623 2624 return dd->rcv_err_status_cnt[9]; 2625 } 2626 2627 static u64 access_rx_rcv_csr_parity_err_cnt(const struct cntr_entry *entry, 2628 void *context, int vl, int mode, 2629 u64 data) 2630 { 2631 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2632 2633 return dd->rcv_err_status_cnt[8]; 2634 } 2635 2636 static u64 access_rx_rcv_qp_map_table_cor_err_cnt( 2637 const struct cntr_entry *entry, 2638 void *context, int vl, int mode, u64 data) 2639 { 2640 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2641 2642 return dd->rcv_err_status_cnt[7]; 2643 } 2644 2645 static u64 access_rx_rcv_qp_map_table_unc_err_cnt( 2646 const struct cntr_entry *entry, 2647 void *context, int vl, int mode, u64 data) 2648 { 2649 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2650 2651 return dd->rcv_err_status_cnt[6]; 2652 } 2653 2654 static u64 access_rx_rcv_data_cor_err_cnt(const struct cntr_entry *entry, 2655 void *context, int vl, int mode, 2656 u64 data) 2657 { 2658 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2659 2660 return dd->rcv_err_status_cnt[5]; 2661 } 2662 2663 static u64 access_rx_rcv_data_unc_err_cnt(const struct cntr_entry *entry, 2664 void *context, int vl, int mode, 2665 u64 data) 2666 { 2667 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2668 2669 return dd->rcv_err_status_cnt[4]; 2670 } 2671 2672 static u64 access_rx_rcv_hdr_cor_err_cnt(const struct cntr_entry *entry, 2673 void *context, int vl, int mode, 2674 u64 data) 2675 { 2676 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2677 2678 return dd->rcv_err_status_cnt[3]; 2679 } 2680 2681 static u64 access_rx_rcv_hdr_unc_err_cnt(const struct cntr_entry *entry, 2682 void *context, int vl, int mode, 2683 u64 data) 2684 { 2685 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2686 2687 return dd->rcv_err_status_cnt[2]; 2688 } 2689 2690 static u64 access_rx_dc_intf_parity_err_cnt(const struct cntr_entry *entry, 2691 void *context, int vl, int mode, 2692 u64 data) 2693 { 2694 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2695 2696 return dd->rcv_err_status_cnt[1]; 2697 } 2698 2699 static u64 access_rx_dma_csr_cor_err_cnt(const struct cntr_entry *entry, 2700 void *context, int vl, int mode, 2701 u64 data) 2702 { 2703 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2704 2705 return dd->rcv_err_status_cnt[0]; 2706 } 2707 2708 /* 2709 * Software counters corresponding to each of the 2710 * error status bits within SendPioErrStatus 2711 */ 2712 static u64 access_pio_pec_sop_head_parity_err_cnt( 2713 const struct cntr_entry *entry, 2714 void *context, int vl, int mode, u64 data) 2715 { 2716 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2717 2718 return dd->send_pio_err_status_cnt[35]; 2719 } 2720 2721 static u64 access_pio_pcc_sop_head_parity_err_cnt( 2722 const struct cntr_entry *entry, 2723 void *context, int vl, int mode, u64 data) 2724 { 2725 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2726 2727 return dd->send_pio_err_status_cnt[34]; 2728 } 2729 2730 static u64 access_pio_last_returned_cnt_parity_err_cnt( 2731 const struct cntr_entry *entry, 2732 void *context, int vl, int mode, u64 data) 2733 { 2734 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2735 2736 return dd->send_pio_err_status_cnt[33]; 2737 } 2738 2739 static u64 access_pio_current_free_cnt_parity_err_cnt( 2740 const struct cntr_entry *entry, 2741 void *context, int vl, int mode, u64 data) 2742 { 2743 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2744 2745 return dd->send_pio_err_status_cnt[32]; 2746 } 2747 2748 static u64 access_pio_reserved_31_err_cnt(const struct cntr_entry *entry, 2749 void *context, int vl, int mode, 2750 u64 data) 2751 { 2752 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2753 2754 return dd->send_pio_err_status_cnt[31]; 2755 } 2756 2757 static u64 access_pio_reserved_30_err_cnt(const struct cntr_entry *entry, 2758 void *context, int vl, int mode, 2759 u64 data) 2760 { 2761 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2762 2763 return dd->send_pio_err_status_cnt[30]; 2764 } 2765 2766 static u64 access_pio_ppmc_sop_len_err_cnt(const struct cntr_entry *entry, 2767 void *context, int vl, int mode, 2768 u64 data) 2769 { 2770 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2771 2772 return dd->send_pio_err_status_cnt[29]; 2773 } 2774 2775 static u64 access_pio_ppmc_bqc_mem_parity_err_cnt( 2776 const struct cntr_entry *entry, 2777 void *context, int vl, int mode, u64 data) 2778 { 2779 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2780 2781 return dd->send_pio_err_status_cnt[28]; 2782 } 2783 2784 static u64 access_pio_vl_fifo_parity_err_cnt(const struct cntr_entry *entry, 2785 void *context, int vl, int mode, 2786 u64 data) 2787 { 2788 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2789 2790 return dd->send_pio_err_status_cnt[27]; 2791 } 2792 2793 static u64 access_pio_vlf_sop_parity_err_cnt(const struct cntr_entry *entry, 2794 void *context, int vl, int mode, 2795 u64 data) 2796 { 2797 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2798 2799 return dd->send_pio_err_status_cnt[26]; 2800 } 2801 2802 static u64 access_pio_vlf_v1_len_parity_err_cnt(const struct cntr_entry *entry, 2803 void *context, int vl, 2804 int mode, u64 data) 2805 { 2806 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2807 2808 return dd->send_pio_err_status_cnt[25]; 2809 } 2810 2811 static u64 access_pio_block_qw_count_parity_err_cnt( 2812 const struct cntr_entry *entry, 2813 void *context, int vl, int mode, u64 data) 2814 { 2815 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2816 2817 return dd->send_pio_err_status_cnt[24]; 2818 } 2819 2820 static u64 access_pio_write_qw_valid_parity_err_cnt( 2821 const struct cntr_entry *entry, 2822 void *context, int vl, int mode, u64 data) 2823 { 2824 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2825 2826 return dd->send_pio_err_status_cnt[23]; 2827 } 2828 2829 static u64 access_pio_state_machine_err_cnt(const struct cntr_entry *entry, 2830 void *context, int vl, int mode, 2831 u64 data) 2832 { 2833 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2834 2835 return dd->send_pio_err_status_cnt[22]; 2836 } 2837 2838 static u64 access_pio_write_data_parity_err_cnt(const struct cntr_entry *entry, 2839 void *context, int vl, 2840 int mode, u64 data) 2841 { 2842 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2843 2844 return dd->send_pio_err_status_cnt[21]; 2845 } 2846 2847 static u64 access_pio_host_addr_mem_cor_err_cnt(const struct cntr_entry *entry, 2848 void *context, int vl, 2849 int mode, u64 data) 2850 { 2851 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2852 2853 return dd->send_pio_err_status_cnt[20]; 2854 } 2855 2856 static u64 access_pio_host_addr_mem_unc_err_cnt(const struct cntr_entry *entry, 2857 void *context, int vl, 2858 int mode, u64 data) 2859 { 2860 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2861 2862 return dd->send_pio_err_status_cnt[19]; 2863 } 2864 2865 static u64 access_pio_pkt_evict_sm_or_arb_sm_err_cnt( 2866 const struct cntr_entry *entry, 2867 void *context, int vl, int mode, u64 data) 2868 { 2869 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2870 2871 return dd->send_pio_err_status_cnt[18]; 2872 } 2873 2874 static u64 access_pio_init_sm_in_err_cnt(const struct cntr_entry *entry, 2875 void *context, int vl, int mode, 2876 u64 data) 2877 { 2878 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2879 2880 return dd->send_pio_err_status_cnt[17]; 2881 } 2882 2883 static u64 access_pio_ppmc_pbl_fifo_err_cnt(const struct cntr_entry *entry, 2884 void *context, int vl, int mode, 2885 u64 data) 2886 { 2887 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2888 2889 return dd->send_pio_err_status_cnt[16]; 2890 } 2891 2892 static u64 access_pio_credit_ret_fifo_parity_err_cnt( 2893 const struct cntr_entry *entry, 2894 void *context, int vl, int mode, u64 data) 2895 { 2896 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2897 2898 return dd->send_pio_err_status_cnt[15]; 2899 } 2900 2901 static u64 access_pio_v1_len_mem_bank1_cor_err_cnt( 2902 const struct cntr_entry *entry, 2903 void *context, int vl, int mode, u64 data) 2904 { 2905 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2906 2907 return dd->send_pio_err_status_cnt[14]; 2908 } 2909 2910 static u64 access_pio_v1_len_mem_bank0_cor_err_cnt( 2911 const struct cntr_entry *entry, 2912 void *context, int vl, int mode, u64 data) 2913 { 2914 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2915 2916 return dd->send_pio_err_status_cnt[13]; 2917 } 2918 2919 static u64 access_pio_v1_len_mem_bank1_unc_err_cnt( 2920 const struct cntr_entry *entry, 2921 void *context, int vl, int mode, u64 data) 2922 { 2923 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2924 2925 return dd->send_pio_err_status_cnt[12]; 2926 } 2927 2928 static u64 access_pio_v1_len_mem_bank0_unc_err_cnt( 2929 const struct cntr_entry *entry, 2930 void *context, int vl, int mode, u64 data) 2931 { 2932 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2933 2934 return dd->send_pio_err_status_cnt[11]; 2935 } 2936 2937 static u64 access_pio_sm_pkt_reset_parity_err_cnt( 2938 const struct cntr_entry *entry, 2939 void *context, int vl, int mode, u64 data) 2940 { 2941 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2942 2943 return dd->send_pio_err_status_cnt[10]; 2944 } 2945 2946 static u64 access_pio_pkt_evict_fifo_parity_err_cnt( 2947 const struct cntr_entry *entry, 2948 void *context, int vl, int mode, u64 data) 2949 { 2950 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2951 2952 return dd->send_pio_err_status_cnt[9]; 2953 } 2954 2955 static u64 access_pio_sbrdctrl_crrel_fifo_parity_err_cnt( 2956 const struct cntr_entry *entry, 2957 void *context, int vl, int mode, u64 data) 2958 { 2959 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2960 2961 return dd->send_pio_err_status_cnt[8]; 2962 } 2963 2964 static u64 access_pio_sbrdctl_crrel_parity_err_cnt( 2965 const struct cntr_entry *entry, 2966 void *context, int vl, int mode, u64 data) 2967 { 2968 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2969 2970 return dd->send_pio_err_status_cnt[7]; 2971 } 2972 2973 static u64 access_pio_pec_fifo_parity_err_cnt(const struct cntr_entry *entry, 2974 void *context, int vl, int mode, 2975 u64 data) 2976 { 2977 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2978 2979 return dd->send_pio_err_status_cnt[6]; 2980 } 2981 2982 static u64 access_pio_pcc_fifo_parity_err_cnt(const struct cntr_entry *entry, 2983 void *context, int vl, int mode, 2984 u64 data) 2985 { 2986 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2987 2988 return dd->send_pio_err_status_cnt[5]; 2989 } 2990 2991 static u64 access_pio_sb_mem_fifo1_err_cnt(const struct cntr_entry *entry, 2992 void *context, int vl, int mode, 2993 u64 data) 2994 { 2995 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2996 2997 return dd->send_pio_err_status_cnt[4]; 2998 } 2999 3000 static u64 access_pio_sb_mem_fifo0_err_cnt(const struct cntr_entry *entry, 3001 void *context, int vl, int mode, 3002 u64 data) 3003 { 3004 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3005 3006 return dd->send_pio_err_status_cnt[3]; 3007 } 3008 3009 static u64 access_pio_csr_parity_err_cnt(const struct cntr_entry *entry, 3010 void *context, int vl, int mode, 3011 u64 data) 3012 { 3013 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3014 3015 return dd->send_pio_err_status_cnt[2]; 3016 } 3017 3018 static u64 access_pio_write_addr_parity_err_cnt(const struct cntr_entry *entry, 3019 void *context, int vl, 3020 int mode, u64 data) 3021 { 3022 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3023 3024 return dd->send_pio_err_status_cnt[1]; 3025 } 3026 3027 static u64 access_pio_write_bad_ctxt_err_cnt(const struct cntr_entry *entry, 3028 void *context, int vl, int mode, 3029 u64 data) 3030 { 3031 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3032 3033 return dd->send_pio_err_status_cnt[0]; 3034 } 3035 3036 /* 3037 * Software counters corresponding to each of the 3038 * error status bits within SendDmaErrStatus 3039 */ 3040 static u64 access_sdma_pcie_req_tracking_cor_err_cnt( 3041 const struct cntr_entry *entry, 3042 void *context, int vl, int mode, u64 data) 3043 { 3044 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3045 3046 return dd->send_dma_err_status_cnt[3]; 3047 } 3048 3049 static u64 access_sdma_pcie_req_tracking_unc_err_cnt( 3050 const struct cntr_entry *entry, 3051 void *context, int vl, int mode, u64 data) 3052 { 3053 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3054 3055 return dd->send_dma_err_status_cnt[2]; 3056 } 3057 3058 static u64 access_sdma_csr_parity_err_cnt(const struct cntr_entry *entry, 3059 void *context, int vl, int mode, 3060 u64 data) 3061 { 3062 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3063 3064 return dd->send_dma_err_status_cnt[1]; 3065 } 3066 3067 static u64 access_sdma_rpy_tag_err_cnt(const struct cntr_entry *entry, 3068 void *context, int vl, int mode, 3069 u64 data) 3070 { 3071 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3072 3073 return dd->send_dma_err_status_cnt[0]; 3074 } 3075 3076 /* 3077 * Software counters corresponding to each of the 3078 * error status bits within SendEgressErrStatus 3079 */ 3080 static u64 access_tx_read_pio_memory_csr_unc_err_cnt( 3081 const struct cntr_entry *entry, 3082 void *context, int vl, int mode, u64 data) 3083 { 3084 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3085 3086 return dd->send_egress_err_status_cnt[63]; 3087 } 3088 3089 static u64 access_tx_read_sdma_memory_csr_err_cnt( 3090 const struct cntr_entry *entry, 3091 void *context, int vl, int mode, u64 data) 3092 { 3093 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3094 3095 return dd->send_egress_err_status_cnt[62]; 3096 } 3097 3098 static u64 access_tx_egress_fifo_cor_err_cnt(const struct cntr_entry *entry, 3099 void *context, int vl, int mode, 3100 u64 data) 3101 { 3102 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3103 3104 return dd->send_egress_err_status_cnt[61]; 3105 } 3106 3107 static u64 access_tx_read_pio_memory_cor_err_cnt(const struct cntr_entry *entry, 3108 void *context, int vl, 3109 int mode, u64 data) 3110 { 3111 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3112 3113 return dd->send_egress_err_status_cnt[60]; 3114 } 3115 3116 static u64 access_tx_read_sdma_memory_cor_err_cnt( 3117 const struct cntr_entry *entry, 3118 void *context, int vl, int mode, u64 data) 3119 { 3120 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3121 3122 return dd->send_egress_err_status_cnt[59]; 3123 } 3124 3125 static u64 access_tx_sb_hdr_cor_err_cnt(const struct cntr_entry *entry, 3126 void *context, int vl, int mode, 3127 u64 data) 3128 { 3129 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3130 3131 return dd->send_egress_err_status_cnt[58]; 3132 } 3133 3134 static u64 access_tx_credit_overrun_err_cnt(const struct cntr_entry *entry, 3135 void *context, int vl, int mode, 3136 u64 data) 3137 { 3138 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3139 3140 return dd->send_egress_err_status_cnt[57]; 3141 } 3142 3143 static u64 access_tx_launch_fifo8_cor_err_cnt(const struct cntr_entry *entry, 3144 void *context, int vl, int mode, 3145 u64 data) 3146 { 3147 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3148 3149 return dd->send_egress_err_status_cnt[56]; 3150 } 3151 3152 static u64 access_tx_launch_fifo7_cor_err_cnt(const struct cntr_entry *entry, 3153 void *context, int vl, int mode, 3154 u64 data) 3155 { 3156 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3157 3158 return dd->send_egress_err_status_cnt[55]; 3159 } 3160 3161 static u64 access_tx_launch_fifo6_cor_err_cnt(const struct cntr_entry *entry, 3162 void *context, int vl, int mode, 3163 u64 data) 3164 { 3165 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3166 3167 return dd->send_egress_err_status_cnt[54]; 3168 } 3169 3170 static u64 access_tx_launch_fifo5_cor_err_cnt(const struct cntr_entry *entry, 3171 void *context, int vl, int mode, 3172 u64 data) 3173 { 3174 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3175 3176 return dd->send_egress_err_status_cnt[53]; 3177 } 3178 3179 static u64 access_tx_launch_fifo4_cor_err_cnt(const struct cntr_entry *entry, 3180 void *context, int vl, int mode, 3181 u64 data) 3182 { 3183 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3184 3185 return dd->send_egress_err_status_cnt[52]; 3186 } 3187 3188 static u64 access_tx_launch_fifo3_cor_err_cnt(const struct cntr_entry *entry, 3189 void *context, int vl, int mode, 3190 u64 data) 3191 { 3192 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3193 3194 return dd->send_egress_err_status_cnt[51]; 3195 } 3196 3197 static u64 access_tx_launch_fifo2_cor_err_cnt(const struct cntr_entry *entry, 3198 void *context, int vl, int mode, 3199 u64 data) 3200 { 3201 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3202 3203 return dd->send_egress_err_status_cnt[50]; 3204 } 3205 3206 static u64 access_tx_launch_fifo1_cor_err_cnt(const struct cntr_entry *entry, 3207 void *context, int vl, int mode, 3208 u64 data) 3209 { 3210 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3211 3212 return dd->send_egress_err_status_cnt[49]; 3213 } 3214 3215 static u64 access_tx_launch_fifo0_cor_err_cnt(const struct cntr_entry *entry, 3216 void *context, int vl, int mode, 3217 u64 data) 3218 { 3219 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3220 3221 return dd->send_egress_err_status_cnt[48]; 3222 } 3223 3224 static u64 access_tx_credit_return_vl_err_cnt(const struct cntr_entry *entry, 3225 void *context, int vl, int mode, 3226 u64 data) 3227 { 3228 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3229 3230 return dd->send_egress_err_status_cnt[47]; 3231 } 3232 3233 static u64 access_tx_hcrc_insertion_err_cnt(const struct cntr_entry *entry, 3234 void *context, int vl, int mode, 3235 u64 data) 3236 { 3237 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3238 3239 return dd->send_egress_err_status_cnt[46]; 3240 } 3241 3242 static u64 access_tx_egress_fifo_unc_err_cnt(const struct cntr_entry *entry, 3243 void *context, int vl, int mode, 3244 u64 data) 3245 { 3246 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3247 3248 return dd->send_egress_err_status_cnt[45]; 3249 } 3250 3251 static u64 access_tx_read_pio_memory_unc_err_cnt(const struct cntr_entry *entry, 3252 void *context, int vl, 3253 int mode, u64 data) 3254 { 3255 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3256 3257 return dd->send_egress_err_status_cnt[44]; 3258 } 3259 3260 static u64 access_tx_read_sdma_memory_unc_err_cnt( 3261 const struct cntr_entry *entry, 3262 void *context, int vl, int mode, u64 data) 3263 { 3264 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3265 3266 return dd->send_egress_err_status_cnt[43]; 3267 } 3268 3269 static u64 access_tx_sb_hdr_unc_err_cnt(const struct cntr_entry *entry, 3270 void *context, int vl, int mode, 3271 u64 data) 3272 { 3273 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3274 3275 return dd->send_egress_err_status_cnt[42]; 3276 } 3277 3278 static u64 access_tx_credit_return_partiy_err_cnt( 3279 const struct cntr_entry *entry, 3280 void *context, int vl, int mode, u64 data) 3281 { 3282 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3283 3284 return dd->send_egress_err_status_cnt[41]; 3285 } 3286 3287 static u64 access_tx_launch_fifo8_unc_or_parity_err_cnt( 3288 const struct cntr_entry *entry, 3289 void *context, int vl, int mode, u64 data) 3290 { 3291 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3292 3293 return dd->send_egress_err_status_cnt[40]; 3294 } 3295 3296 static u64 access_tx_launch_fifo7_unc_or_parity_err_cnt( 3297 const struct cntr_entry *entry, 3298 void *context, int vl, int mode, u64 data) 3299 { 3300 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3301 3302 return dd->send_egress_err_status_cnt[39]; 3303 } 3304 3305 static u64 access_tx_launch_fifo6_unc_or_parity_err_cnt( 3306 const struct cntr_entry *entry, 3307 void *context, int vl, int mode, u64 data) 3308 { 3309 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3310 3311 return dd->send_egress_err_status_cnt[38]; 3312 } 3313 3314 static u64 access_tx_launch_fifo5_unc_or_parity_err_cnt( 3315 const struct cntr_entry *entry, 3316 void *context, int vl, int mode, u64 data) 3317 { 3318 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3319 3320 return dd->send_egress_err_status_cnt[37]; 3321 } 3322 3323 static u64 access_tx_launch_fifo4_unc_or_parity_err_cnt( 3324 const struct cntr_entry *entry, 3325 void *context, int vl, int mode, u64 data) 3326 { 3327 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3328 3329 return dd->send_egress_err_status_cnt[36]; 3330 } 3331 3332 static u64 access_tx_launch_fifo3_unc_or_parity_err_cnt( 3333 const struct cntr_entry *entry, 3334 void *context, int vl, int mode, u64 data) 3335 { 3336 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3337 3338 return dd->send_egress_err_status_cnt[35]; 3339 } 3340 3341 static u64 access_tx_launch_fifo2_unc_or_parity_err_cnt( 3342 const struct cntr_entry *entry, 3343 void *context, int vl, int mode, u64 data) 3344 { 3345 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3346 3347 return dd->send_egress_err_status_cnt[34]; 3348 } 3349 3350 static u64 access_tx_launch_fifo1_unc_or_parity_err_cnt( 3351 const struct cntr_entry *entry, 3352 void *context, int vl, int mode, u64 data) 3353 { 3354 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3355 3356 return dd->send_egress_err_status_cnt[33]; 3357 } 3358 3359 static u64 access_tx_launch_fifo0_unc_or_parity_err_cnt( 3360 const struct cntr_entry *entry, 3361 void *context, int vl, int mode, u64 data) 3362 { 3363 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3364 3365 return dd->send_egress_err_status_cnt[32]; 3366 } 3367 3368 static u64 access_tx_sdma15_disallowed_packet_err_cnt( 3369 const struct cntr_entry *entry, 3370 void *context, int vl, int mode, u64 data) 3371 { 3372 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3373 3374 return dd->send_egress_err_status_cnt[31]; 3375 } 3376 3377 static u64 access_tx_sdma14_disallowed_packet_err_cnt( 3378 const struct cntr_entry *entry, 3379 void *context, int vl, int mode, u64 data) 3380 { 3381 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3382 3383 return dd->send_egress_err_status_cnt[30]; 3384 } 3385 3386 static u64 access_tx_sdma13_disallowed_packet_err_cnt( 3387 const struct cntr_entry *entry, 3388 void *context, int vl, int mode, u64 data) 3389 { 3390 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3391 3392 return dd->send_egress_err_status_cnt[29]; 3393 } 3394 3395 static u64 access_tx_sdma12_disallowed_packet_err_cnt( 3396 const struct cntr_entry *entry, 3397 void *context, int vl, int mode, u64 data) 3398 { 3399 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3400 3401 return dd->send_egress_err_status_cnt[28]; 3402 } 3403 3404 static u64 access_tx_sdma11_disallowed_packet_err_cnt( 3405 const struct cntr_entry *entry, 3406 void *context, int vl, int mode, u64 data) 3407 { 3408 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3409 3410 return dd->send_egress_err_status_cnt[27]; 3411 } 3412 3413 static u64 access_tx_sdma10_disallowed_packet_err_cnt( 3414 const struct cntr_entry *entry, 3415 void *context, int vl, int mode, u64 data) 3416 { 3417 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3418 3419 return dd->send_egress_err_status_cnt[26]; 3420 } 3421 3422 static u64 access_tx_sdma9_disallowed_packet_err_cnt( 3423 const struct cntr_entry *entry, 3424 void *context, int vl, int mode, u64 data) 3425 { 3426 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3427 3428 return dd->send_egress_err_status_cnt[25]; 3429 } 3430 3431 static u64 access_tx_sdma8_disallowed_packet_err_cnt( 3432 const struct cntr_entry *entry, 3433 void *context, int vl, int mode, u64 data) 3434 { 3435 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3436 3437 return dd->send_egress_err_status_cnt[24]; 3438 } 3439 3440 static u64 access_tx_sdma7_disallowed_packet_err_cnt( 3441 const struct cntr_entry *entry, 3442 void *context, int vl, int mode, u64 data) 3443 { 3444 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3445 3446 return dd->send_egress_err_status_cnt[23]; 3447 } 3448 3449 static u64 access_tx_sdma6_disallowed_packet_err_cnt( 3450 const struct cntr_entry *entry, 3451 void *context, int vl, int mode, u64 data) 3452 { 3453 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3454 3455 return dd->send_egress_err_status_cnt[22]; 3456 } 3457 3458 static u64 access_tx_sdma5_disallowed_packet_err_cnt( 3459 const struct cntr_entry *entry, 3460 void *context, int vl, int mode, u64 data) 3461 { 3462 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3463 3464 return dd->send_egress_err_status_cnt[21]; 3465 } 3466 3467 static u64 access_tx_sdma4_disallowed_packet_err_cnt( 3468 const struct cntr_entry *entry, 3469 void *context, int vl, int mode, u64 data) 3470 { 3471 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3472 3473 return dd->send_egress_err_status_cnt[20]; 3474 } 3475 3476 static u64 access_tx_sdma3_disallowed_packet_err_cnt( 3477 const struct cntr_entry *entry, 3478 void *context, int vl, int mode, u64 data) 3479 { 3480 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3481 3482 return dd->send_egress_err_status_cnt[19]; 3483 } 3484 3485 static u64 access_tx_sdma2_disallowed_packet_err_cnt( 3486 const struct cntr_entry *entry, 3487 void *context, int vl, int mode, u64 data) 3488 { 3489 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3490 3491 return dd->send_egress_err_status_cnt[18]; 3492 } 3493 3494 static u64 access_tx_sdma1_disallowed_packet_err_cnt( 3495 const struct cntr_entry *entry, 3496 void *context, int vl, int mode, u64 data) 3497 { 3498 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3499 3500 return dd->send_egress_err_status_cnt[17]; 3501 } 3502 3503 static u64 access_tx_sdma0_disallowed_packet_err_cnt( 3504 const struct cntr_entry *entry, 3505 void *context, int vl, int mode, u64 data) 3506 { 3507 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3508 3509 return dd->send_egress_err_status_cnt[16]; 3510 } 3511 3512 static u64 access_tx_config_parity_err_cnt(const struct cntr_entry *entry, 3513 void *context, int vl, int mode, 3514 u64 data) 3515 { 3516 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3517 3518 return dd->send_egress_err_status_cnt[15]; 3519 } 3520 3521 static u64 access_tx_sbrd_ctl_csr_parity_err_cnt(const struct cntr_entry *entry, 3522 void *context, int vl, 3523 int mode, u64 data) 3524 { 3525 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3526 3527 return dd->send_egress_err_status_cnt[14]; 3528 } 3529 3530 static u64 access_tx_launch_csr_parity_err_cnt(const struct cntr_entry *entry, 3531 void *context, int vl, int mode, 3532 u64 data) 3533 { 3534 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3535 3536 return dd->send_egress_err_status_cnt[13]; 3537 } 3538 3539 static u64 access_tx_illegal_vl_err_cnt(const struct cntr_entry *entry, 3540 void *context, int vl, int mode, 3541 u64 data) 3542 { 3543 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3544 3545 return dd->send_egress_err_status_cnt[12]; 3546 } 3547 3548 static u64 access_tx_sbrd_ctl_state_machine_parity_err_cnt( 3549 const struct cntr_entry *entry, 3550 void *context, int vl, int mode, u64 data) 3551 { 3552 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3553 3554 return dd->send_egress_err_status_cnt[11]; 3555 } 3556 3557 static u64 access_egress_reserved_10_err_cnt(const struct cntr_entry *entry, 3558 void *context, int vl, int mode, 3559 u64 data) 3560 { 3561 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3562 3563 return dd->send_egress_err_status_cnt[10]; 3564 } 3565 3566 static u64 access_egress_reserved_9_err_cnt(const struct cntr_entry *entry, 3567 void *context, int vl, int mode, 3568 u64 data) 3569 { 3570 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3571 3572 return dd->send_egress_err_status_cnt[9]; 3573 } 3574 3575 static u64 access_tx_sdma_launch_intf_parity_err_cnt( 3576 const struct cntr_entry *entry, 3577 void *context, int vl, int mode, u64 data) 3578 { 3579 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3580 3581 return dd->send_egress_err_status_cnt[8]; 3582 } 3583 3584 static u64 access_tx_pio_launch_intf_parity_err_cnt( 3585 const struct cntr_entry *entry, 3586 void *context, int vl, int mode, u64 data) 3587 { 3588 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3589 3590 return dd->send_egress_err_status_cnt[7]; 3591 } 3592 3593 static u64 access_egress_reserved_6_err_cnt(const struct cntr_entry *entry, 3594 void *context, int vl, int mode, 3595 u64 data) 3596 { 3597 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3598 3599 return dd->send_egress_err_status_cnt[6]; 3600 } 3601 3602 static u64 access_tx_incorrect_link_state_err_cnt( 3603 const struct cntr_entry *entry, 3604 void *context, int vl, int mode, u64 data) 3605 { 3606 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3607 3608 return dd->send_egress_err_status_cnt[5]; 3609 } 3610 3611 static u64 access_tx_linkdown_err_cnt(const struct cntr_entry *entry, 3612 void *context, int vl, int mode, 3613 u64 data) 3614 { 3615 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3616 3617 return dd->send_egress_err_status_cnt[4]; 3618 } 3619 3620 static u64 access_tx_egress_fifi_underrun_or_parity_err_cnt( 3621 const struct cntr_entry *entry, 3622 void *context, int vl, int mode, u64 data) 3623 { 3624 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3625 3626 return dd->send_egress_err_status_cnt[3]; 3627 } 3628 3629 static u64 access_egress_reserved_2_err_cnt(const struct cntr_entry *entry, 3630 void *context, int vl, int mode, 3631 u64 data) 3632 { 3633 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3634 3635 return dd->send_egress_err_status_cnt[2]; 3636 } 3637 3638 static u64 access_tx_pkt_integrity_mem_unc_err_cnt( 3639 const struct cntr_entry *entry, 3640 void *context, int vl, int mode, u64 data) 3641 { 3642 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3643 3644 return dd->send_egress_err_status_cnt[1]; 3645 } 3646 3647 static u64 access_tx_pkt_integrity_mem_cor_err_cnt( 3648 const struct cntr_entry *entry, 3649 void *context, int vl, int mode, u64 data) 3650 { 3651 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3652 3653 return dd->send_egress_err_status_cnt[0]; 3654 } 3655 3656 /* 3657 * Software counters corresponding to each of the 3658 * error status bits within SendErrStatus 3659 */ 3660 static u64 access_send_csr_write_bad_addr_err_cnt( 3661 const struct cntr_entry *entry, 3662 void *context, int vl, int mode, u64 data) 3663 { 3664 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3665 3666 return dd->send_err_status_cnt[2]; 3667 } 3668 3669 static u64 access_send_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry, 3670 void *context, int vl, 3671 int mode, u64 data) 3672 { 3673 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3674 3675 return dd->send_err_status_cnt[1]; 3676 } 3677 3678 static u64 access_send_csr_parity_cnt(const struct cntr_entry *entry, 3679 void *context, int vl, int mode, 3680 u64 data) 3681 { 3682 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3683 3684 return dd->send_err_status_cnt[0]; 3685 } 3686 3687 /* 3688 * Software counters corresponding to each of the 3689 * error status bits within SendCtxtErrStatus 3690 */ 3691 static u64 access_pio_write_out_of_bounds_err_cnt( 3692 const struct cntr_entry *entry, 3693 void *context, int vl, int mode, u64 data) 3694 { 3695 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3696 3697 return dd->sw_ctxt_err_status_cnt[4]; 3698 } 3699 3700 static u64 access_pio_write_overflow_err_cnt(const struct cntr_entry *entry, 3701 void *context, int vl, int mode, 3702 u64 data) 3703 { 3704 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3705 3706 return dd->sw_ctxt_err_status_cnt[3]; 3707 } 3708 3709 static u64 access_pio_write_crosses_boundary_err_cnt( 3710 const struct cntr_entry *entry, 3711 void *context, int vl, int mode, u64 data) 3712 { 3713 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3714 3715 return dd->sw_ctxt_err_status_cnt[2]; 3716 } 3717 3718 static u64 access_pio_disallowed_packet_err_cnt(const struct cntr_entry *entry, 3719 void *context, int vl, 3720 int mode, u64 data) 3721 { 3722 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3723 3724 return dd->sw_ctxt_err_status_cnt[1]; 3725 } 3726 3727 static u64 access_pio_inconsistent_sop_err_cnt(const struct cntr_entry *entry, 3728 void *context, int vl, int mode, 3729 u64 data) 3730 { 3731 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3732 3733 return dd->sw_ctxt_err_status_cnt[0]; 3734 } 3735 3736 /* 3737 * Software counters corresponding to each of the 3738 * error status bits within SendDmaEngErrStatus 3739 */ 3740 static u64 access_sdma_header_request_fifo_cor_err_cnt( 3741 const struct cntr_entry *entry, 3742 void *context, int vl, int mode, u64 data) 3743 { 3744 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3745 3746 return dd->sw_send_dma_eng_err_status_cnt[23]; 3747 } 3748 3749 static u64 access_sdma_header_storage_cor_err_cnt( 3750 const struct cntr_entry *entry, 3751 void *context, int vl, int mode, u64 data) 3752 { 3753 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3754 3755 return dd->sw_send_dma_eng_err_status_cnt[22]; 3756 } 3757 3758 static u64 access_sdma_packet_tracking_cor_err_cnt( 3759 const struct cntr_entry *entry, 3760 void *context, int vl, int mode, u64 data) 3761 { 3762 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3763 3764 return dd->sw_send_dma_eng_err_status_cnt[21]; 3765 } 3766 3767 static u64 access_sdma_assembly_cor_err_cnt(const struct cntr_entry *entry, 3768 void *context, int vl, int mode, 3769 u64 data) 3770 { 3771 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3772 3773 return dd->sw_send_dma_eng_err_status_cnt[20]; 3774 } 3775 3776 static u64 access_sdma_desc_table_cor_err_cnt(const struct cntr_entry *entry, 3777 void *context, int vl, int mode, 3778 u64 data) 3779 { 3780 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3781 3782 return dd->sw_send_dma_eng_err_status_cnt[19]; 3783 } 3784 3785 static u64 access_sdma_header_request_fifo_unc_err_cnt( 3786 const struct cntr_entry *entry, 3787 void *context, int vl, int mode, u64 data) 3788 { 3789 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3790 3791 return dd->sw_send_dma_eng_err_status_cnt[18]; 3792 } 3793 3794 static u64 access_sdma_header_storage_unc_err_cnt( 3795 const struct cntr_entry *entry, 3796 void *context, int vl, int mode, u64 data) 3797 { 3798 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3799 3800 return dd->sw_send_dma_eng_err_status_cnt[17]; 3801 } 3802 3803 static u64 access_sdma_packet_tracking_unc_err_cnt( 3804 const struct cntr_entry *entry, 3805 void *context, int vl, int mode, u64 data) 3806 { 3807 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3808 3809 return dd->sw_send_dma_eng_err_status_cnt[16]; 3810 } 3811 3812 static u64 access_sdma_assembly_unc_err_cnt(const struct cntr_entry *entry, 3813 void *context, int vl, int mode, 3814 u64 data) 3815 { 3816 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3817 3818 return dd->sw_send_dma_eng_err_status_cnt[15]; 3819 } 3820 3821 static u64 access_sdma_desc_table_unc_err_cnt(const struct cntr_entry *entry, 3822 void *context, int vl, int mode, 3823 u64 data) 3824 { 3825 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3826 3827 return dd->sw_send_dma_eng_err_status_cnt[14]; 3828 } 3829 3830 static u64 access_sdma_timeout_err_cnt(const struct cntr_entry *entry, 3831 void *context, int vl, int mode, 3832 u64 data) 3833 { 3834 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3835 3836 return dd->sw_send_dma_eng_err_status_cnt[13]; 3837 } 3838 3839 static u64 access_sdma_header_length_err_cnt(const struct cntr_entry *entry, 3840 void *context, int vl, int mode, 3841 u64 data) 3842 { 3843 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3844 3845 return dd->sw_send_dma_eng_err_status_cnt[12]; 3846 } 3847 3848 static u64 access_sdma_header_address_err_cnt(const struct cntr_entry *entry, 3849 void *context, int vl, int mode, 3850 u64 data) 3851 { 3852 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3853 3854 return dd->sw_send_dma_eng_err_status_cnt[11]; 3855 } 3856 3857 static u64 access_sdma_header_select_err_cnt(const struct cntr_entry *entry, 3858 void *context, int vl, int mode, 3859 u64 data) 3860 { 3861 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3862 3863 return dd->sw_send_dma_eng_err_status_cnt[10]; 3864 } 3865 3866 static u64 access_sdma_reserved_9_err_cnt(const struct cntr_entry *entry, 3867 void *context, int vl, int mode, 3868 u64 data) 3869 { 3870 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3871 3872 return dd->sw_send_dma_eng_err_status_cnt[9]; 3873 } 3874 3875 static u64 access_sdma_packet_desc_overflow_err_cnt( 3876 const struct cntr_entry *entry, 3877 void *context, int vl, int mode, u64 data) 3878 { 3879 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3880 3881 return dd->sw_send_dma_eng_err_status_cnt[8]; 3882 } 3883 3884 static u64 access_sdma_length_mismatch_err_cnt(const struct cntr_entry *entry, 3885 void *context, int vl, 3886 int mode, u64 data) 3887 { 3888 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3889 3890 return dd->sw_send_dma_eng_err_status_cnt[7]; 3891 } 3892 3893 static u64 access_sdma_halt_err_cnt(const struct cntr_entry *entry, 3894 void *context, int vl, int mode, u64 data) 3895 { 3896 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3897 3898 return dd->sw_send_dma_eng_err_status_cnt[6]; 3899 } 3900 3901 static u64 access_sdma_mem_read_err_cnt(const struct cntr_entry *entry, 3902 void *context, int vl, int mode, 3903 u64 data) 3904 { 3905 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3906 3907 return dd->sw_send_dma_eng_err_status_cnt[5]; 3908 } 3909 3910 static u64 access_sdma_first_desc_err_cnt(const struct cntr_entry *entry, 3911 void *context, int vl, int mode, 3912 u64 data) 3913 { 3914 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3915 3916 return dd->sw_send_dma_eng_err_status_cnt[4]; 3917 } 3918 3919 static u64 access_sdma_tail_out_of_bounds_err_cnt( 3920 const struct cntr_entry *entry, 3921 void *context, int vl, int mode, u64 data) 3922 { 3923 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3924 3925 return dd->sw_send_dma_eng_err_status_cnt[3]; 3926 } 3927 3928 static u64 access_sdma_too_long_err_cnt(const struct cntr_entry *entry, 3929 void *context, int vl, int mode, 3930 u64 data) 3931 { 3932 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3933 3934 return dd->sw_send_dma_eng_err_status_cnt[2]; 3935 } 3936 3937 static u64 access_sdma_gen_mismatch_err_cnt(const struct cntr_entry *entry, 3938 void *context, int vl, int mode, 3939 u64 data) 3940 { 3941 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3942 3943 return dd->sw_send_dma_eng_err_status_cnt[1]; 3944 } 3945 3946 static u64 access_sdma_wrong_dw_err_cnt(const struct cntr_entry *entry, 3947 void *context, int vl, int mode, 3948 u64 data) 3949 { 3950 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3951 3952 return dd->sw_send_dma_eng_err_status_cnt[0]; 3953 } 3954 3955 static u64 access_dc_rcv_err_cnt(const struct cntr_entry *entry, 3956 void *context, int vl, int mode, 3957 u64 data) 3958 { 3959 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3960 3961 u64 val = 0; 3962 u64 csr = entry->csr; 3963 3964 val = read_write_csr(dd, csr, mode, data); 3965 if (mode == CNTR_MODE_R) { 3966 val = val > CNTR_MAX - dd->sw_rcv_bypass_packet_errors ? 3967 CNTR_MAX : val + dd->sw_rcv_bypass_packet_errors; 3968 } else if (mode == CNTR_MODE_W) { 3969 dd->sw_rcv_bypass_packet_errors = 0; 3970 } else { 3971 dd_dev_err(dd, "Invalid cntr register access mode"); 3972 return 0; 3973 } 3974 return val; 3975 } 3976 3977 #define def_access_sw_cpu(cntr) \ 3978 static u64 access_sw_cpu_##cntr(const struct cntr_entry *entry, \ 3979 void *context, int vl, int mode, u64 data) \ 3980 { \ 3981 struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context; \ 3982 return read_write_cpu(ppd->dd, &ppd->ibport_data.rvp.z_ ##cntr, \ 3983 ppd->ibport_data.rvp.cntr, vl, \ 3984 mode, data); \ 3985 } 3986 3987 def_access_sw_cpu(rc_acks); 3988 def_access_sw_cpu(rc_qacks); 3989 def_access_sw_cpu(rc_delayed_comp); 3990 3991 #define def_access_ibp_counter(cntr) \ 3992 static u64 access_ibp_##cntr(const struct cntr_entry *entry, \ 3993 void *context, int vl, int mode, u64 data) \ 3994 { \ 3995 struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context; \ 3996 \ 3997 if (vl != CNTR_INVALID_VL) \ 3998 return 0; \ 3999 \ 4000 return read_write_sw(ppd->dd, &ppd->ibport_data.rvp.n_ ##cntr, \ 4001 mode, data); \ 4002 } 4003 4004 def_access_ibp_counter(loop_pkts); 4005 def_access_ibp_counter(rc_resends); 4006 def_access_ibp_counter(rnr_naks); 4007 def_access_ibp_counter(other_naks); 4008 def_access_ibp_counter(rc_timeouts); 4009 def_access_ibp_counter(pkt_drops); 4010 def_access_ibp_counter(dmawait); 4011 def_access_ibp_counter(rc_seqnak); 4012 def_access_ibp_counter(rc_dupreq); 4013 def_access_ibp_counter(rdma_seq); 4014 def_access_ibp_counter(unaligned); 4015 def_access_ibp_counter(seq_naks); 4016 4017 static struct cntr_entry dev_cntrs[DEV_CNTR_LAST] = { 4018 [C_RCV_OVF] = RXE32_DEV_CNTR_ELEM(RcvOverflow, RCV_BUF_OVFL_CNT, CNTR_SYNTH), 4019 [C_RX_TID_FULL] = RXE32_DEV_CNTR_ELEM(RxTIDFullEr, RCV_TID_FULL_ERR_CNT, 4020 CNTR_NORMAL), 4021 [C_RX_TID_INVALID] = RXE32_DEV_CNTR_ELEM(RxTIDInvalid, RCV_TID_VALID_ERR_CNT, 4022 CNTR_NORMAL), 4023 [C_RX_TID_FLGMS] = RXE32_DEV_CNTR_ELEM(RxTidFLGMs, 4024 RCV_TID_FLOW_GEN_MISMATCH_CNT, 4025 CNTR_NORMAL), 4026 [C_RX_CTX_EGRS] = RXE32_DEV_CNTR_ELEM(RxCtxEgrS, RCV_CONTEXT_EGR_STALL, 4027 CNTR_NORMAL), 4028 [C_RCV_TID_FLSMS] = RXE32_DEV_CNTR_ELEM(RxTidFLSMs, 4029 RCV_TID_FLOW_SEQ_MISMATCH_CNT, CNTR_NORMAL), 4030 [C_CCE_PCI_CR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePciCrSt, 4031 CCE_PCIE_POSTED_CRDT_STALL_CNT, CNTR_NORMAL), 4032 [C_CCE_PCI_TR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePciTrSt, CCE_PCIE_TRGT_STALL_CNT, 4033 CNTR_NORMAL), 4034 [C_CCE_PIO_WR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePioWrSt, CCE_PIO_WR_STALL_CNT, 4035 CNTR_NORMAL), 4036 [C_CCE_ERR_INT] = CCE_INT_DEV_CNTR_ELEM(CceErrInt, CCE_ERR_INT_CNT, 4037 CNTR_NORMAL), 4038 [C_CCE_SDMA_INT] = CCE_INT_DEV_CNTR_ELEM(CceSdmaInt, CCE_SDMA_INT_CNT, 4039 CNTR_NORMAL), 4040 [C_CCE_MISC_INT] = CCE_INT_DEV_CNTR_ELEM(CceMiscInt, CCE_MISC_INT_CNT, 4041 CNTR_NORMAL), 4042 [C_CCE_RCV_AV_INT] = CCE_INT_DEV_CNTR_ELEM(CceRcvAvInt, CCE_RCV_AVAIL_INT_CNT, 4043 CNTR_NORMAL), 4044 [C_CCE_RCV_URG_INT] = CCE_INT_DEV_CNTR_ELEM(CceRcvUrgInt, 4045 CCE_RCV_URGENT_INT_CNT, CNTR_NORMAL), 4046 [C_CCE_SEND_CR_INT] = CCE_INT_DEV_CNTR_ELEM(CceSndCrInt, 4047 CCE_SEND_CREDIT_INT_CNT, CNTR_NORMAL), 4048 [C_DC_UNC_ERR] = DC_PERF_CNTR(DcUnctblErr, DCC_ERR_UNCORRECTABLE_CNT, 4049 CNTR_SYNTH), 4050 [C_DC_RCV_ERR] = CNTR_ELEM("DcRecvErr", DCC_ERR_PORTRCV_ERR_CNT, 0, CNTR_SYNTH, 4051 access_dc_rcv_err_cnt), 4052 [C_DC_FM_CFG_ERR] = DC_PERF_CNTR(DcFmCfgErr, DCC_ERR_FMCONFIG_ERR_CNT, 4053 CNTR_SYNTH), 4054 [C_DC_RMT_PHY_ERR] = DC_PERF_CNTR(DcRmtPhyErr, DCC_ERR_RCVREMOTE_PHY_ERR_CNT, 4055 CNTR_SYNTH), 4056 [C_DC_DROPPED_PKT] = DC_PERF_CNTR(DcDroppedPkt, DCC_ERR_DROPPED_PKT_CNT, 4057 CNTR_SYNTH), 4058 [C_DC_MC_XMIT_PKTS] = DC_PERF_CNTR(DcMcXmitPkts, 4059 DCC_PRF_PORT_XMIT_MULTICAST_CNT, CNTR_SYNTH), 4060 [C_DC_MC_RCV_PKTS] = DC_PERF_CNTR(DcMcRcvPkts, 4061 DCC_PRF_PORT_RCV_MULTICAST_PKT_CNT, 4062 CNTR_SYNTH), 4063 [C_DC_XMIT_CERR] = DC_PERF_CNTR(DcXmitCorr, 4064 DCC_PRF_PORT_XMIT_CORRECTABLE_CNT, CNTR_SYNTH), 4065 [C_DC_RCV_CERR] = DC_PERF_CNTR(DcRcvCorrCnt, DCC_PRF_PORT_RCV_CORRECTABLE_CNT, 4066 CNTR_SYNTH), 4067 [C_DC_RCV_FCC] = DC_PERF_CNTR(DcRxFCntl, DCC_PRF_RX_FLOW_CRTL_CNT, 4068 CNTR_SYNTH), 4069 [C_DC_XMIT_FCC] = DC_PERF_CNTR(DcXmitFCntl, DCC_PRF_TX_FLOW_CRTL_CNT, 4070 CNTR_SYNTH), 4071 [C_DC_XMIT_FLITS] = DC_PERF_CNTR(DcXmitFlits, DCC_PRF_PORT_XMIT_DATA_CNT, 4072 CNTR_SYNTH), 4073 [C_DC_RCV_FLITS] = DC_PERF_CNTR(DcRcvFlits, DCC_PRF_PORT_RCV_DATA_CNT, 4074 CNTR_SYNTH), 4075 [C_DC_XMIT_PKTS] = DC_PERF_CNTR(DcXmitPkts, DCC_PRF_PORT_XMIT_PKTS_CNT, 4076 CNTR_SYNTH), 4077 [C_DC_RCV_PKTS] = DC_PERF_CNTR(DcRcvPkts, DCC_PRF_PORT_RCV_PKTS_CNT, 4078 CNTR_SYNTH), 4079 [C_DC_RX_FLIT_VL] = DC_PERF_CNTR(DcRxFlitVl, DCC_PRF_PORT_VL_RCV_DATA_CNT, 4080 CNTR_SYNTH | CNTR_VL), 4081 [C_DC_RX_PKT_VL] = DC_PERF_CNTR(DcRxPktVl, DCC_PRF_PORT_VL_RCV_PKTS_CNT, 4082 CNTR_SYNTH | CNTR_VL), 4083 [C_DC_RCV_FCN] = DC_PERF_CNTR(DcRcvFcn, DCC_PRF_PORT_RCV_FECN_CNT, CNTR_SYNTH), 4084 [C_DC_RCV_FCN_VL] = DC_PERF_CNTR(DcRcvFcnVl, DCC_PRF_PORT_VL_RCV_FECN_CNT, 4085 CNTR_SYNTH | CNTR_VL), 4086 [C_DC_RCV_BCN] = DC_PERF_CNTR(DcRcvBcn, DCC_PRF_PORT_RCV_BECN_CNT, CNTR_SYNTH), 4087 [C_DC_RCV_BCN_VL] = DC_PERF_CNTR(DcRcvBcnVl, DCC_PRF_PORT_VL_RCV_BECN_CNT, 4088 CNTR_SYNTH | CNTR_VL), 4089 [C_DC_RCV_BBL] = DC_PERF_CNTR(DcRcvBbl, DCC_PRF_PORT_RCV_BUBBLE_CNT, 4090 CNTR_SYNTH), 4091 [C_DC_RCV_BBL_VL] = DC_PERF_CNTR(DcRcvBblVl, DCC_PRF_PORT_VL_RCV_BUBBLE_CNT, 4092 CNTR_SYNTH | CNTR_VL), 4093 [C_DC_MARK_FECN] = DC_PERF_CNTR(DcMarkFcn, DCC_PRF_PORT_MARK_FECN_CNT, 4094 CNTR_SYNTH), 4095 [C_DC_MARK_FECN_VL] = DC_PERF_CNTR(DcMarkFcnVl, DCC_PRF_PORT_VL_MARK_FECN_CNT, 4096 CNTR_SYNTH | CNTR_VL), 4097 [C_DC_TOTAL_CRC] = 4098 DC_PERF_CNTR_LCB(DcTotCrc, DC_LCB_ERR_INFO_TOTAL_CRC_ERR, 4099 CNTR_SYNTH), 4100 [C_DC_CRC_LN0] = DC_PERF_CNTR_LCB(DcCrcLn0, DC_LCB_ERR_INFO_CRC_ERR_LN0, 4101 CNTR_SYNTH), 4102 [C_DC_CRC_LN1] = DC_PERF_CNTR_LCB(DcCrcLn1, DC_LCB_ERR_INFO_CRC_ERR_LN1, 4103 CNTR_SYNTH), 4104 [C_DC_CRC_LN2] = DC_PERF_CNTR_LCB(DcCrcLn2, DC_LCB_ERR_INFO_CRC_ERR_LN2, 4105 CNTR_SYNTH), 4106 [C_DC_CRC_LN3] = DC_PERF_CNTR_LCB(DcCrcLn3, DC_LCB_ERR_INFO_CRC_ERR_LN3, 4107 CNTR_SYNTH), 4108 [C_DC_CRC_MULT_LN] = 4109 DC_PERF_CNTR_LCB(DcMultLn, DC_LCB_ERR_INFO_CRC_ERR_MULTI_LN, 4110 CNTR_SYNTH), 4111 [C_DC_TX_REPLAY] = DC_PERF_CNTR_LCB(DcTxReplay, DC_LCB_ERR_INFO_TX_REPLAY_CNT, 4112 CNTR_SYNTH), 4113 [C_DC_RX_REPLAY] = DC_PERF_CNTR_LCB(DcRxReplay, DC_LCB_ERR_INFO_RX_REPLAY_CNT, 4114 CNTR_SYNTH), 4115 [C_DC_SEQ_CRC_CNT] = 4116 DC_PERF_CNTR_LCB(DcLinkSeqCrc, DC_LCB_ERR_INFO_SEQ_CRC_CNT, 4117 CNTR_SYNTH), 4118 [C_DC_ESC0_ONLY_CNT] = 4119 DC_PERF_CNTR_LCB(DcEsc0, DC_LCB_ERR_INFO_ESCAPE_0_ONLY_CNT, 4120 CNTR_SYNTH), 4121 [C_DC_ESC0_PLUS1_CNT] = 4122 DC_PERF_CNTR_LCB(DcEsc1, DC_LCB_ERR_INFO_ESCAPE_0_PLUS1_CNT, 4123 CNTR_SYNTH), 4124 [C_DC_ESC0_PLUS2_CNT] = 4125 DC_PERF_CNTR_LCB(DcEsc0Plus2, DC_LCB_ERR_INFO_ESCAPE_0_PLUS2_CNT, 4126 CNTR_SYNTH), 4127 [C_DC_REINIT_FROM_PEER_CNT] = 4128 DC_PERF_CNTR_LCB(DcReinitPeer, DC_LCB_ERR_INFO_REINIT_FROM_PEER_CNT, 4129 CNTR_SYNTH), 4130 [C_DC_SBE_CNT] = DC_PERF_CNTR_LCB(DcSbe, DC_LCB_ERR_INFO_SBE_CNT, 4131 CNTR_SYNTH), 4132 [C_DC_MISC_FLG_CNT] = 4133 DC_PERF_CNTR_LCB(DcMiscFlg, DC_LCB_ERR_INFO_MISC_FLG_CNT, 4134 CNTR_SYNTH), 4135 [C_DC_PRF_GOOD_LTP_CNT] = 4136 DC_PERF_CNTR_LCB(DcGoodLTP, DC_LCB_PRF_GOOD_LTP_CNT, CNTR_SYNTH), 4137 [C_DC_PRF_ACCEPTED_LTP_CNT] = 4138 DC_PERF_CNTR_LCB(DcAccLTP, DC_LCB_PRF_ACCEPTED_LTP_CNT, 4139 CNTR_SYNTH), 4140 [C_DC_PRF_RX_FLIT_CNT] = 4141 DC_PERF_CNTR_LCB(DcPrfRxFlit, DC_LCB_PRF_RX_FLIT_CNT, CNTR_SYNTH), 4142 [C_DC_PRF_TX_FLIT_CNT] = 4143 DC_PERF_CNTR_LCB(DcPrfTxFlit, DC_LCB_PRF_TX_FLIT_CNT, CNTR_SYNTH), 4144 [C_DC_PRF_CLK_CNTR] = 4145 DC_PERF_CNTR_LCB(DcPrfClk, DC_LCB_PRF_CLK_CNTR, CNTR_SYNTH), 4146 [C_DC_PG_DBG_FLIT_CRDTS_CNT] = 4147 DC_PERF_CNTR_LCB(DcFltCrdts, DC_LCB_PG_DBG_FLIT_CRDTS_CNT, CNTR_SYNTH), 4148 [C_DC_PG_STS_PAUSE_COMPLETE_CNT] = 4149 DC_PERF_CNTR_LCB(DcPauseComp, DC_LCB_PG_STS_PAUSE_COMPLETE_CNT, 4150 CNTR_SYNTH), 4151 [C_DC_PG_STS_TX_SBE_CNT] = 4152 DC_PERF_CNTR_LCB(DcStsTxSbe, DC_LCB_PG_STS_TX_SBE_CNT, CNTR_SYNTH), 4153 [C_DC_PG_STS_TX_MBE_CNT] = 4154 DC_PERF_CNTR_LCB(DcStsTxMbe, DC_LCB_PG_STS_TX_MBE_CNT, 4155 CNTR_SYNTH), 4156 [C_SW_CPU_INTR] = CNTR_ELEM("Intr", 0, 0, CNTR_NORMAL, 4157 access_sw_cpu_intr), 4158 [C_SW_CPU_RCV_LIM] = CNTR_ELEM("RcvLimit", 0, 0, CNTR_NORMAL, 4159 access_sw_cpu_rcv_limit), 4160 [C_SW_VTX_WAIT] = CNTR_ELEM("vTxWait", 0, 0, CNTR_NORMAL, 4161 access_sw_vtx_wait), 4162 [C_SW_PIO_WAIT] = CNTR_ELEM("PioWait", 0, 0, CNTR_NORMAL, 4163 access_sw_pio_wait), 4164 [C_SW_PIO_DRAIN] = CNTR_ELEM("PioDrain", 0, 0, CNTR_NORMAL, 4165 access_sw_pio_drain), 4166 [C_SW_KMEM_WAIT] = CNTR_ELEM("KmemWait", 0, 0, CNTR_NORMAL, 4167 access_sw_kmem_wait), 4168 [C_SW_SEND_SCHED] = CNTR_ELEM("SendSched", 0, 0, CNTR_NORMAL, 4169 access_sw_send_schedule), 4170 [C_SDMA_DESC_FETCHED_CNT] = CNTR_ELEM("SDEDscFdCn", 4171 SEND_DMA_DESC_FETCHED_CNT, 0, 4172 CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA, 4173 dev_access_u32_csr), 4174 [C_SDMA_INT_CNT] = CNTR_ELEM("SDMAInt", 0, 0, 4175 CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA, 4176 access_sde_int_cnt), 4177 [C_SDMA_ERR_CNT] = CNTR_ELEM("SDMAErrCt", 0, 0, 4178 CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA, 4179 access_sde_err_cnt), 4180 [C_SDMA_IDLE_INT_CNT] = CNTR_ELEM("SDMAIdInt", 0, 0, 4181 CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA, 4182 access_sde_idle_int_cnt), 4183 [C_SDMA_PROGRESS_INT_CNT] = CNTR_ELEM("SDMAPrIntCn", 0, 0, 4184 CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA, 4185 access_sde_progress_int_cnt), 4186 /* MISC_ERR_STATUS */ 4187 [C_MISC_PLL_LOCK_FAIL_ERR] = CNTR_ELEM("MISC_PLL_LOCK_FAIL_ERR", 0, 0, 4188 CNTR_NORMAL, 4189 access_misc_pll_lock_fail_err_cnt), 4190 [C_MISC_MBIST_FAIL_ERR] = CNTR_ELEM("MISC_MBIST_FAIL_ERR", 0, 0, 4191 CNTR_NORMAL, 4192 access_misc_mbist_fail_err_cnt), 4193 [C_MISC_INVALID_EEP_CMD_ERR] = CNTR_ELEM("MISC_INVALID_EEP_CMD_ERR", 0, 0, 4194 CNTR_NORMAL, 4195 access_misc_invalid_eep_cmd_err_cnt), 4196 [C_MISC_EFUSE_DONE_PARITY_ERR] = CNTR_ELEM("MISC_EFUSE_DONE_PARITY_ERR", 0, 0, 4197 CNTR_NORMAL, 4198 access_misc_efuse_done_parity_err_cnt), 4199 [C_MISC_EFUSE_WRITE_ERR] = CNTR_ELEM("MISC_EFUSE_WRITE_ERR", 0, 0, 4200 CNTR_NORMAL, 4201 access_misc_efuse_write_err_cnt), 4202 [C_MISC_EFUSE_READ_BAD_ADDR_ERR] = CNTR_ELEM("MISC_EFUSE_READ_BAD_ADDR_ERR", 0, 4203 0, CNTR_NORMAL, 4204 access_misc_efuse_read_bad_addr_err_cnt), 4205 [C_MISC_EFUSE_CSR_PARITY_ERR] = CNTR_ELEM("MISC_EFUSE_CSR_PARITY_ERR", 0, 0, 4206 CNTR_NORMAL, 4207 access_misc_efuse_csr_parity_err_cnt), 4208 [C_MISC_FW_AUTH_FAILED_ERR] = CNTR_ELEM("MISC_FW_AUTH_FAILED_ERR", 0, 0, 4209 CNTR_NORMAL, 4210 access_misc_fw_auth_failed_err_cnt), 4211 [C_MISC_KEY_MISMATCH_ERR] = CNTR_ELEM("MISC_KEY_MISMATCH_ERR", 0, 0, 4212 CNTR_NORMAL, 4213 access_misc_key_mismatch_err_cnt), 4214 [C_MISC_SBUS_WRITE_FAILED_ERR] = CNTR_ELEM("MISC_SBUS_WRITE_FAILED_ERR", 0, 0, 4215 CNTR_NORMAL, 4216 access_misc_sbus_write_failed_err_cnt), 4217 [C_MISC_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("MISC_CSR_WRITE_BAD_ADDR_ERR", 0, 0, 4218 CNTR_NORMAL, 4219 access_misc_csr_write_bad_addr_err_cnt), 4220 [C_MISC_CSR_READ_BAD_ADDR_ERR] = CNTR_ELEM("MISC_CSR_READ_BAD_ADDR_ERR", 0, 0, 4221 CNTR_NORMAL, 4222 access_misc_csr_read_bad_addr_err_cnt), 4223 [C_MISC_CSR_PARITY_ERR] = CNTR_ELEM("MISC_CSR_PARITY_ERR", 0, 0, 4224 CNTR_NORMAL, 4225 access_misc_csr_parity_err_cnt), 4226 /* CceErrStatus */ 4227 [C_CCE_ERR_STATUS_AGGREGATED_CNT] = CNTR_ELEM("CceErrStatusAggregatedCnt", 0, 0, 4228 CNTR_NORMAL, 4229 access_sw_cce_err_status_aggregated_cnt), 4230 [C_CCE_MSIX_CSR_PARITY_ERR] = CNTR_ELEM("CceMsixCsrParityErr", 0, 0, 4231 CNTR_NORMAL, 4232 access_cce_msix_csr_parity_err_cnt), 4233 [C_CCE_INT_MAP_UNC_ERR] = CNTR_ELEM("CceIntMapUncErr", 0, 0, 4234 CNTR_NORMAL, 4235 access_cce_int_map_unc_err_cnt), 4236 [C_CCE_INT_MAP_COR_ERR] = CNTR_ELEM("CceIntMapCorErr", 0, 0, 4237 CNTR_NORMAL, 4238 access_cce_int_map_cor_err_cnt), 4239 [C_CCE_MSIX_TABLE_UNC_ERR] = CNTR_ELEM("CceMsixTableUncErr", 0, 0, 4240 CNTR_NORMAL, 4241 access_cce_msix_table_unc_err_cnt), 4242 [C_CCE_MSIX_TABLE_COR_ERR] = CNTR_ELEM("CceMsixTableCorErr", 0, 0, 4243 CNTR_NORMAL, 4244 access_cce_msix_table_cor_err_cnt), 4245 [C_CCE_RXDMA_CONV_FIFO_PARITY_ERR] = CNTR_ELEM("CceRxdmaConvFifoParityErr", 0, 4246 0, CNTR_NORMAL, 4247 access_cce_rxdma_conv_fifo_parity_err_cnt), 4248 [C_CCE_RCPL_ASYNC_FIFO_PARITY_ERR] = CNTR_ELEM("CceRcplAsyncFifoParityErr", 0, 4249 0, CNTR_NORMAL, 4250 access_cce_rcpl_async_fifo_parity_err_cnt), 4251 [C_CCE_SEG_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("CceSegWriteBadAddrErr", 0, 0, 4252 CNTR_NORMAL, 4253 access_cce_seg_write_bad_addr_err_cnt), 4254 [C_CCE_SEG_READ_BAD_ADDR_ERR] = CNTR_ELEM("CceSegReadBadAddrErr", 0, 0, 4255 CNTR_NORMAL, 4256 access_cce_seg_read_bad_addr_err_cnt), 4257 [C_LA_TRIGGERED] = CNTR_ELEM("Cce LATriggered", 0, 0, 4258 CNTR_NORMAL, 4259 access_la_triggered_cnt), 4260 [C_CCE_TRGT_CPL_TIMEOUT_ERR] = CNTR_ELEM("CceTrgtCplTimeoutErr", 0, 0, 4261 CNTR_NORMAL, 4262 access_cce_trgt_cpl_timeout_err_cnt), 4263 [C_PCIC_RECEIVE_PARITY_ERR] = CNTR_ELEM("PcicReceiveParityErr", 0, 0, 4264 CNTR_NORMAL, 4265 access_pcic_receive_parity_err_cnt), 4266 [C_PCIC_TRANSMIT_BACK_PARITY_ERR] = CNTR_ELEM("PcicTransmitBackParityErr", 0, 0, 4267 CNTR_NORMAL, 4268 access_pcic_transmit_back_parity_err_cnt), 4269 [C_PCIC_TRANSMIT_FRONT_PARITY_ERR] = CNTR_ELEM("PcicTransmitFrontParityErr", 0, 4270 0, CNTR_NORMAL, 4271 access_pcic_transmit_front_parity_err_cnt), 4272 [C_PCIC_CPL_DAT_Q_UNC_ERR] = CNTR_ELEM("PcicCplDatQUncErr", 0, 0, 4273 CNTR_NORMAL, 4274 access_pcic_cpl_dat_q_unc_err_cnt), 4275 [C_PCIC_CPL_HD_Q_UNC_ERR] = CNTR_ELEM("PcicCplHdQUncErr", 0, 0, 4276 CNTR_NORMAL, 4277 access_pcic_cpl_hd_q_unc_err_cnt), 4278 [C_PCIC_POST_DAT_Q_UNC_ERR] = CNTR_ELEM("PcicPostDatQUncErr", 0, 0, 4279 CNTR_NORMAL, 4280 access_pcic_post_dat_q_unc_err_cnt), 4281 [C_PCIC_POST_HD_Q_UNC_ERR] = CNTR_ELEM("PcicPostHdQUncErr", 0, 0, 4282 CNTR_NORMAL, 4283 access_pcic_post_hd_q_unc_err_cnt), 4284 [C_PCIC_RETRY_SOT_MEM_UNC_ERR] = CNTR_ELEM("PcicRetrySotMemUncErr", 0, 0, 4285 CNTR_NORMAL, 4286 access_pcic_retry_sot_mem_unc_err_cnt), 4287 [C_PCIC_RETRY_MEM_UNC_ERR] = CNTR_ELEM("PcicRetryMemUncErr", 0, 0, 4288 CNTR_NORMAL, 4289 access_pcic_retry_mem_unc_err), 4290 [C_PCIC_N_POST_DAT_Q_PARITY_ERR] = CNTR_ELEM("PcicNPostDatQParityErr", 0, 0, 4291 CNTR_NORMAL, 4292 access_pcic_n_post_dat_q_parity_err_cnt), 4293 [C_PCIC_N_POST_H_Q_PARITY_ERR] = CNTR_ELEM("PcicNPostHQParityErr", 0, 0, 4294 CNTR_NORMAL, 4295 access_pcic_n_post_h_q_parity_err_cnt), 4296 [C_PCIC_CPL_DAT_Q_COR_ERR] = CNTR_ELEM("PcicCplDatQCorErr", 0, 0, 4297 CNTR_NORMAL, 4298 access_pcic_cpl_dat_q_cor_err_cnt), 4299 [C_PCIC_CPL_HD_Q_COR_ERR] = CNTR_ELEM("PcicCplHdQCorErr", 0, 0, 4300 CNTR_NORMAL, 4301 access_pcic_cpl_hd_q_cor_err_cnt), 4302 [C_PCIC_POST_DAT_Q_COR_ERR] = CNTR_ELEM("PcicPostDatQCorErr", 0, 0, 4303 CNTR_NORMAL, 4304 access_pcic_post_dat_q_cor_err_cnt), 4305 [C_PCIC_POST_HD_Q_COR_ERR] = CNTR_ELEM("PcicPostHdQCorErr", 0, 0, 4306 CNTR_NORMAL, 4307 access_pcic_post_hd_q_cor_err_cnt), 4308 [C_PCIC_RETRY_SOT_MEM_COR_ERR] = CNTR_ELEM("PcicRetrySotMemCorErr", 0, 0, 4309 CNTR_NORMAL, 4310 access_pcic_retry_sot_mem_cor_err_cnt), 4311 [C_PCIC_RETRY_MEM_COR_ERR] = CNTR_ELEM("PcicRetryMemCorErr", 0, 0, 4312 CNTR_NORMAL, 4313 access_pcic_retry_mem_cor_err_cnt), 4314 [C_CCE_CLI1_ASYNC_FIFO_DBG_PARITY_ERR] = CNTR_ELEM( 4315 "CceCli1AsyncFifoDbgParityError", 0, 0, 4316 CNTR_NORMAL, 4317 access_cce_cli1_async_fifo_dbg_parity_err_cnt), 4318 [C_CCE_CLI1_ASYNC_FIFO_RXDMA_PARITY_ERR] = CNTR_ELEM( 4319 "CceCli1AsyncFifoRxdmaParityError", 0, 0, 4320 CNTR_NORMAL, 4321 access_cce_cli1_async_fifo_rxdma_parity_err_cnt 4322 ), 4323 [C_CCE_CLI1_ASYNC_FIFO_SDMA_HD_PARITY_ERR] = CNTR_ELEM( 4324 "CceCli1AsyncFifoSdmaHdParityErr", 0, 0, 4325 CNTR_NORMAL, 4326 access_cce_cli1_async_fifo_sdma_hd_parity_err_cnt), 4327 [C_CCE_CLI1_ASYNC_FIFO_PIO_CRDT_PARITY_ERR] = CNTR_ELEM( 4328 "CceCli1AsyncFifoPioCrdtParityErr", 0, 0, 4329 CNTR_NORMAL, 4330 access_cce_cl1_async_fifo_pio_crdt_parity_err_cnt), 4331 [C_CCE_CLI2_ASYNC_FIFO_PARITY_ERR] = CNTR_ELEM("CceCli2AsyncFifoParityErr", 0, 4332 0, CNTR_NORMAL, 4333 access_cce_cli2_async_fifo_parity_err_cnt), 4334 [C_CCE_CSR_CFG_BUS_PARITY_ERR] = CNTR_ELEM("CceCsrCfgBusParityErr", 0, 0, 4335 CNTR_NORMAL, 4336 access_cce_csr_cfg_bus_parity_err_cnt), 4337 [C_CCE_CLI0_ASYNC_FIFO_PARTIY_ERR] = CNTR_ELEM("CceCli0AsyncFifoParityErr", 0, 4338 0, CNTR_NORMAL, 4339 access_cce_cli0_async_fifo_parity_err_cnt), 4340 [C_CCE_RSPD_DATA_PARITY_ERR] = CNTR_ELEM("CceRspdDataParityErr", 0, 0, 4341 CNTR_NORMAL, 4342 access_cce_rspd_data_parity_err_cnt), 4343 [C_CCE_TRGT_ACCESS_ERR] = CNTR_ELEM("CceTrgtAccessErr", 0, 0, 4344 CNTR_NORMAL, 4345 access_cce_trgt_access_err_cnt), 4346 [C_CCE_TRGT_ASYNC_FIFO_PARITY_ERR] = CNTR_ELEM("CceTrgtAsyncFifoParityErr", 0, 4347 0, CNTR_NORMAL, 4348 access_cce_trgt_async_fifo_parity_err_cnt), 4349 [C_CCE_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("CceCsrWriteBadAddrErr", 0, 0, 4350 CNTR_NORMAL, 4351 access_cce_csr_write_bad_addr_err_cnt), 4352 [C_CCE_CSR_READ_BAD_ADDR_ERR] = CNTR_ELEM("CceCsrReadBadAddrErr", 0, 0, 4353 CNTR_NORMAL, 4354 access_cce_csr_read_bad_addr_err_cnt), 4355 [C_CCE_CSR_PARITY_ERR] = CNTR_ELEM("CceCsrParityErr", 0, 0, 4356 CNTR_NORMAL, 4357 access_ccs_csr_parity_err_cnt), 4358 4359 /* RcvErrStatus */ 4360 [C_RX_CSR_PARITY_ERR] = CNTR_ELEM("RxCsrParityErr", 0, 0, 4361 CNTR_NORMAL, 4362 access_rx_csr_parity_err_cnt), 4363 [C_RX_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("RxCsrWriteBadAddrErr", 0, 0, 4364 CNTR_NORMAL, 4365 access_rx_csr_write_bad_addr_err_cnt), 4366 [C_RX_CSR_READ_BAD_ADDR_ERR] = CNTR_ELEM("RxCsrReadBadAddrErr", 0, 0, 4367 CNTR_NORMAL, 4368 access_rx_csr_read_bad_addr_err_cnt), 4369 [C_RX_DMA_CSR_UNC_ERR] = CNTR_ELEM("RxDmaCsrUncErr", 0, 0, 4370 CNTR_NORMAL, 4371 access_rx_dma_csr_unc_err_cnt), 4372 [C_RX_DMA_DQ_FSM_ENCODING_ERR] = CNTR_ELEM("RxDmaDqFsmEncodingErr", 0, 0, 4373 CNTR_NORMAL, 4374 access_rx_dma_dq_fsm_encoding_err_cnt), 4375 [C_RX_DMA_EQ_FSM_ENCODING_ERR] = CNTR_ELEM("RxDmaEqFsmEncodingErr", 0, 0, 4376 CNTR_NORMAL, 4377 access_rx_dma_eq_fsm_encoding_err_cnt), 4378 [C_RX_DMA_CSR_PARITY_ERR] = CNTR_ELEM("RxDmaCsrParityErr", 0, 0, 4379 CNTR_NORMAL, 4380 access_rx_dma_csr_parity_err_cnt), 4381 [C_RX_RBUF_DATA_COR_ERR] = CNTR_ELEM("RxRbufDataCorErr", 0, 0, 4382 CNTR_NORMAL, 4383 access_rx_rbuf_data_cor_err_cnt), 4384 [C_RX_RBUF_DATA_UNC_ERR] = CNTR_ELEM("RxRbufDataUncErr", 0, 0, 4385 CNTR_NORMAL, 4386 access_rx_rbuf_data_unc_err_cnt), 4387 [C_RX_DMA_DATA_FIFO_RD_COR_ERR] = CNTR_ELEM("RxDmaDataFifoRdCorErr", 0, 0, 4388 CNTR_NORMAL, 4389 access_rx_dma_data_fifo_rd_cor_err_cnt), 4390 [C_RX_DMA_DATA_FIFO_RD_UNC_ERR] = CNTR_ELEM("RxDmaDataFifoRdUncErr", 0, 0, 4391 CNTR_NORMAL, 4392 access_rx_dma_data_fifo_rd_unc_err_cnt), 4393 [C_RX_DMA_HDR_FIFO_RD_COR_ERR] = CNTR_ELEM("RxDmaHdrFifoRdCorErr", 0, 0, 4394 CNTR_NORMAL, 4395 access_rx_dma_hdr_fifo_rd_cor_err_cnt), 4396 [C_RX_DMA_HDR_FIFO_RD_UNC_ERR] = CNTR_ELEM("RxDmaHdrFifoRdUncErr", 0, 0, 4397 CNTR_NORMAL, 4398 access_rx_dma_hdr_fifo_rd_unc_err_cnt), 4399 [C_RX_RBUF_DESC_PART2_COR_ERR] = CNTR_ELEM("RxRbufDescPart2CorErr", 0, 0, 4400 CNTR_NORMAL, 4401 access_rx_rbuf_desc_part2_cor_err_cnt), 4402 [C_RX_RBUF_DESC_PART2_UNC_ERR] = CNTR_ELEM("RxRbufDescPart2UncErr", 0, 0, 4403 CNTR_NORMAL, 4404 access_rx_rbuf_desc_part2_unc_err_cnt), 4405 [C_RX_RBUF_DESC_PART1_COR_ERR] = CNTR_ELEM("RxRbufDescPart1CorErr", 0, 0, 4406 CNTR_NORMAL, 4407 access_rx_rbuf_desc_part1_cor_err_cnt), 4408 [C_RX_RBUF_DESC_PART1_UNC_ERR] = CNTR_ELEM("RxRbufDescPart1UncErr", 0, 0, 4409 CNTR_NORMAL, 4410 access_rx_rbuf_desc_part1_unc_err_cnt), 4411 [C_RX_HQ_INTR_FSM_ERR] = CNTR_ELEM("RxHqIntrFsmErr", 0, 0, 4412 CNTR_NORMAL, 4413 access_rx_hq_intr_fsm_err_cnt), 4414 [C_RX_HQ_INTR_CSR_PARITY_ERR] = CNTR_ELEM("RxHqIntrCsrParityErr", 0, 0, 4415 CNTR_NORMAL, 4416 access_rx_hq_intr_csr_parity_err_cnt), 4417 [C_RX_LOOKUP_CSR_PARITY_ERR] = CNTR_ELEM("RxLookupCsrParityErr", 0, 0, 4418 CNTR_NORMAL, 4419 access_rx_lookup_csr_parity_err_cnt), 4420 [C_RX_LOOKUP_RCV_ARRAY_COR_ERR] = CNTR_ELEM("RxLookupRcvArrayCorErr", 0, 0, 4421 CNTR_NORMAL, 4422 access_rx_lookup_rcv_array_cor_err_cnt), 4423 [C_RX_LOOKUP_RCV_ARRAY_UNC_ERR] = CNTR_ELEM("RxLookupRcvArrayUncErr", 0, 0, 4424 CNTR_NORMAL, 4425 access_rx_lookup_rcv_array_unc_err_cnt), 4426 [C_RX_LOOKUP_DES_PART2_PARITY_ERR] = CNTR_ELEM("RxLookupDesPart2ParityErr", 0, 4427 0, CNTR_NORMAL, 4428 access_rx_lookup_des_part2_parity_err_cnt), 4429 [C_RX_LOOKUP_DES_PART1_UNC_COR_ERR] = CNTR_ELEM("RxLookupDesPart1UncCorErr", 0, 4430 0, CNTR_NORMAL, 4431 access_rx_lookup_des_part1_unc_cor_err_cnt), 4432 [C_RX_LOOKUP_DES_PART1_UNC_ERR] = CNTR_ELEM("RxLookupDesPart1UncErr", 0, 0, 4433 CNTR_NORMAL, 4434 access_rx_lookup_des_part1_unc_err_cnt), 4435 [C_RX_RBUF_NEXT_FREE_BUF_COR_ERR] = CNTR_ELEM("RxRbufNextFreeBufCorErr", 0, 0, 4436 CNTR_NORMAL, 4437 access_rx_rbuf_next_free_buf_cor_err_cnt), 4438 [C_RX_RBUF_NEXT_FREE_BUF_UNC_ERR] = CNTR_ELEM("RxRbufNextFreeBufUncErr", 0, 0, 4439 CNTR_NORMAL, 4440 access_rx_rbuf_next_free_buf_unc_err_cnt), 4441 [C_RX_RBUF_FL_INIT_WR_ADDR_PARITY_ERR] = CNTR_ELEM( 4442 "RxRbufFlInitWrAddrParityErr", 0, 0, 4443 CNTR_NORMAL, 4444 access_rbuf_fl_init_wr_addr_parity_err_cnt), 4445 [C_RX_RBUF_FL_INITDONE_PARITY_ERR] = CNTR_ELEM("RxRbufFlInitdoneParityErr", 0, 4446 0, CNTR_NORMAL, 4447 access_rx_rbuf_fl_initdone_parity_err_cnt), 4448 [C_RX_RBUF_FL_WRITE_ADDR_PARITY_ERR] = CNTR_ELEM("RxRbufFlWrAddrParityErr", 0, 4449 0, CNTR_NORMAL, 4450 access_rx_rbuf_fl_write_addr_parity_err_cnt), 4451 [C_RX_RBUF_FL_RD_ADDR_PARITY_ERR] = CNTR_ELEM("RxRbufFlRdAddrParityErr", 0, 0, 4452 CNTR_NORMAL, 4453 access_rx_rbuf_fl_rd_addr_parity_err_cnt), 4454 [C_RX_RBUF_EMPTY_ERR] = CNTR_ELEM("RxRbufEmptyErr", 0, 0, 4455 CNTR_NORMAL, 4456 access_rx_rbuf_empty_err_cnt), 4457 [C_RX_RBUF_FULL_ERR] = CNTR_ELEM("RxRbufFullErr", 0, 0, 4458 CNTR_NORMAL, 4459 access_rx_rbuf_full_err_cnt), 4460 [C_RX_RBUF_BAD_LOOKUP_ERR] = CNTR_ELEM("RxRBufBadLookupErr", 0, 0, 4461 CNTR_NORMAL, 4462 access_rbuf_bad_lookup_err_cnt), 4463 [C_RX_RBUF_CTX_ID_PARITY_ERR] = CNTR_ELEM("RxRbufCtxIdParityErr", 0, 0, 4464 CNTR_NORMAL, 4465 access_rbuf_ctx_id_parity_err_cnt), 4466 [C_RX_RBUF_CSR_QEOPDW_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQEOPDWParityErr", 0, 0, 4467 CNTR_NORMAL, 4468 access_rbuf_csr_qeopdw_parity_err_cnt), 4469 [C_RX_RBUF_CSR_Q_NUM_OF_PKT_PARITY_ERR] = CNTR_ELEM( 4470 "RxRbufCsrQNumOfPktParityErr", 0, 0, 4471 CNTR_NORMAL, 4472 access_rx_rbuf_csr_q_num_of_pkt_parity_err_cnt), 4473 [C_RX_RBUF_CSR_Q_T1_PTR_PARITY_ERR] = CNTR_ELEM( 4474 "RxRbufCsrQTlPtrParityErr", 0, 0, 4475 CNTR_NORMAL, 4476 access_rx_rbuf_csr_q_t1_ptr_parity_err_cnt), 4477 [C_RX_RBUF_CSR_Q_HD_PTR_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQHdPtrParityErr", 0, 4478 0, CNTR_NORMAL, 4479 access_rx_rbuf_csr_q_hd_ptr_parity_err_cnt), 4480 [C_RX_RBUF_CSR_Q_VLD_BIT_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQVldBitParityErr", 0, 4481 0, CNTR_NORMAL, 4482 access_rx_rbuf_csr_q_vld_bit_parity_err_cnt), 4483 [C_RX_RBUF_CSR_Q_NEXT_BUF_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQNextBufParityErr", 4484 0, 0, CNTR_NORMAL, 4485 access_rx_rbuf_csr_q_next_buf_parity_err_cnt), 4486 [C_RX_RBUF_CSR_Q_ENT_CNT_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQEntCntParityErr", 0, 4487 0, CNTR_NORMAL, 4488 access_rx_rbuf_csr_q_ent_cnt_parity_err_cnt), 4489 [C_RX_RBUF_CSR_Q_HEAD_BUF_NUM_PARITY_ERR] = CNTR_ELEM( 4490 "RxRbufCsrQHeadBufNumParityErr", 0, 0, 4491 CNTR_NORMAL, 4492 access_rx_rbuf_csr_q_head_buf_num_parity_err_cnt), 4493 [C_RX_RBUF_BLOCK_LIST_READ_COR_ERR] = CNTR_ELEM("RxRbufBlockListReadCorErr", 0, 4494 0, CNTR_NORMAL, 4495 access_rx_rbuf_block_list_read_cor_err_cnt), 4496 [C_RX_RBUF_BLOCK_LIST_READ_UNC_ERR] = CNTR_ELEM("RxRbufBlockListReadUncErr", 0, 4497 0, CNTR_NORMAL, 4498 access_rx_rbuf_block_list_read_unc_err_cnt), 4499 [C_RX_RBUF_LOOKUP_DES_COR_ERR] = CNTR_ELEM("RxRbufLookupDesCorErr", 0, 0, 4500 CNTR_NORMAL, 4501 access_rx_rbuf_lookup_des_cor_err_cnt), 4502 [C_RX_RBUF_LOOKUP_DES_UNC_ERR] = CNTR_ELEM("RxRbufLookupDesUncErr", 0, 0, 4503 CNTR_NORMAL, 4504 access_rx_rbuf_lookup_des_unc_err_cnt), 4505 [C_RX_RBUF_LOOKUP_DES_REG_UNC_COR_ERR] = CNTR_ELEM( 4506 "RxRbufLookupDesRegUncCorErr", 0, 0, 4507 CNTR_NORMAL, 4508 access_rx_rbuf_lookup_des_reg_unc_cor_err_cnt), 4509 [C_RX_RBUF_LOOKUP_DES_REG_UNC_ERR] = CNTR_ELEM("RxRbufLookupDesRegUncErr", 0, 0, 4510 CNTR_NORMAL, 4511 access_rx_rbuf_lookup_des_reg_unc_err_cnt), 4512 [C_RX_RBUF_FREE_LIST_COR_ERR] = CNTR_ELEM("RxRbufFreeListCorErr", 0, 0, 4513 CNTR_NORMAL, 4514 access_rx_rbuf_free_list_cor_err_cnt), 4515 [C_RX_RBUF_FREE_LIST_UNC_ERR] = CNTR_ELEM("RxRbufFreeListUncErr", 0, 0, 4516 CNTR_NORMAL, 4517 access_rx_rbuf_free_list_unc_err_cnt), 4518 [C_RX_RCV_FSM_ENCODING_ERR] = CNTR_ELEM("RxRcvFsmEncodingErr", 0, 0, 4519 CNTR_NORMAL, 4520 access_rx_rcv_fsm_encoding_err_cnt), 4521 [C_RX_DMA_FLAG_COR_ERR] = CNTR_ELEM("RxDmaFlagCorErr", 0, 0, 4522 CNTR_NORMAL, 4523 access_rx_dma_flag_cor_err_cnt), 4524 [C_RX_DMA_FLAG_UNC_ERR] = CNTR_ELEM("RxDmaFlagUncErr", 0, 0, 4525 CNTR_NORMAL, 4526 access_rx_dma_flag_unc_err_cnt), 4527 [C_RX_DC_SOP_EOP_PARITY_ERR] = CNTR_ELEM("RxDcSopEopParityErr", 0, 0, 4528 CNTR_NORMAL, 4529 access_rx_dc_sop_eop_parity_err_cnt), 4530 [C_RX_RCV_CSR_PARITY_ERR] = CNTR_ELEM("RxRcvCsrParityErr", 0, 0, 4531 CNTR_NORMAL, 4532 access_rx_rcv_csr_parity_err_cnt), 4533 [C_RX_RCV_QP_MAP_TABLE_COR_ERR] = CNTR_ELEM("RxRcvQpMapTableCorErr", 0, 0, 4534 CNTR_NORMAL, 4535 access_rx_rcv_qp_map_table_cor_err_cnt), 4536 [C_RX_RCV_QP_MAP_TABLE_UNC_ERR] = CNTR_ELEM("RxRcvQpMapTableUncErr", 0, 0, 4537 CNTR_NORMAL, 4538 access_rx_rcv_qp_map_table_unc_err_cnt), 4539 [C_RX_RCV_DATA_COR_ERR] = CNTR_ELEM("RxRcvDataCorErr", 0, 0, 4540 CNTR_NORMAL, 4541 access_rx_rcv_data_cor_err_cnt), 4542 [C_RX_RCV_DATA_UNC_ERR] = CNTR_ELEM("RxRcvDataUncErr", 0, 0, 4543 CNTR_NORMAL, 4544 access_rx_rcv_data_unc_err_cnt), 4545 [C_RX_RCV_HDR_COR_ERR] = CNTR_ELEM("RxRcvHdrCorErr", 0, 0, 4546 CNTR_NORMAL, 4547 access_rx_rcv_hdr_cor_err_cnt), 4548 [C_RX_RCV_HDR_UNC_ERR] = CNTR_ELEM("RxRcvHdrUncErr", 0, 0, 4549 CNTR_NORMAL, 4550 access_rx_rcv_hdr_unc_err_cnt), 4551 [C_RX_DC_INTF_PARITY_ERR] = CNTR_ELEM("RxDcIntfParityErr", 0, 0, 4552 CNTR_NORMAL, 4553 access_rx_dc_intf_parity_err_cnt), 4554 [C_RX_DMA_CSR_COR_ERR] = CNTR_ELEM("RxDmaCsrCorErr", 0, 0, 4555 CNTR_NORMAL, 4556 access_rx_dma_csr_cor_err_cnt), 4557 /* SendPioErrStatus */ 4558 [C_PIO_PEC_SOP_HEAD_PARITY_ERR] = CNTR_ELEM("PioPecSopHeadParityErr", 0, 0, 4559 CNTR_NORMAL, 4560 access_pio_pec_sop_head_parity_err_cnt), 4561 [C_PIO_PCC_SOP_HEAD_PARITY_ERR] = CNTR_ELEM("PioPccSopHeadParityErr", 0, 0, 4562 CNTR_NORMAL, 4563 access_pio_pcc_sop_head_parity_err_cnt), 4564 [C_PIO_LAST_RETURNED_CNT_PARITY_ERR] = CNTR_ELEM("PioLastReturnedCntParityErr", 4565 0, 0, CNTR_NORMAL, 4566 access_pio_last_returned_cnt_parity_err_cnt), 4567 [C_PIO_CURRENT_FREE_CNT_PARITY_ERR] = CNTR_ELEM("PioCurrentFreeCntParityErr", 0, 4568 0, CNTR_NORMAL, 4569 access_pio_current_free_cnt_parity_err_cnt), 4570 [C_PIO_RSVD_31_ERR] = CNTR_ELEM("Pio Reserved 31", 0, 0, 4571 CNTR_NORMAL, 4572 access_pio_reserved_31_err_cnt), 4573 [C_PIO_RSVD_30_ERR] = CNTR_ELEM("Pio Reserved 30", 0, 0, 4574 CNTR_NORMAL, 4575 access_pio_reserved_30_err_cnt), 4576 [C_PIO_PPMC_SOP_LEN_ERR] = CNTR_ELEM("PioPpmcSopLenErr", 0, 0, 4577 CNTR_NORMAL, 4578 access_pio_ppmc_sop_len_err_cnt), 4579 [C_PIO_PPMC_BQC_MEM_PARITY_ERR] = CNTR_ELEM("PioPpmcBqcMemParityErr", 0, 0, 4580 CNTR_NORMAL, 4581 access_pio_ppmc_bqc_mem_parity_err_cnt), 4582 [C_PIO_VL_FIFO_PARITY_ERR] = CNTR_ELEM("PioVlFifoParityErr", 0, 0, 4583 CNTR_NORMAL, 4584 access_pio_vl_fifo_parity_err_cnt), 4585 [C_PIO_VLF_SOP_PARITY_ERR] = CNTR_ELEM("PioVlfSopParityErr", 0, 0, 4586 CNTR_NORMAL, 4587 access_pio_vlf_sop_parity_err_cnt), 4588 [C_PIO_VLF_V1_LEN_PARITY_ERR] = CNTR_ELEM("PioVlfVlLenParityErr", 0, 0, 4589 CNTR_NORMAL, 4590 access_pio_vlf_v1_len_parity_err_cnt), 4591 [C_PIO_BLOCK_QW_COUNT_PARITY_ERR] = CNTR_ELEM("PioBlockQwCountParityErr", 0, 0, 4592 CNTR_NORMAL, 4593 access_pio_block_qw_count_parity_err_cnt), 4594 [C_PIO_WRITE_QW_VALID_PARITY_ERR] = CNTR_ELEM("PioWriteQwValidParityErr", 0, 0, 4595 CNTR_NORMAL, 4596 access_pio_write_qw_valid_parity_err_cnt), 4597 [C_PIO_STATE_MACHINE_ERR] = CNTR_ELEM("PioStateMachineErr", 0, 0, 4598 CNTR_NORMAL, 4599 access_pio_state_machine_err_cnt), 4600 [C_PIO_WRITE_DATA_PARITY_ERR] = CNTR_ELEM("PioWriteDataParityErr", 0, 0, 4601 CNTR_NORMAL, 4602 access_pio_write_data_parity_err_cnt), 4603 [C_PIO_HOST_ADDR_MEM_COR_ERR] = CNTR_ELEM("PioHostAddrMemCorErr", 0, 0, 4604 CNTR_NORMAL, 4605 access_pio_host_addr_mem_cor_err_cnt), 4606 [C_PIO_HOST_ADDR_MEM_UNC_ERR] = CNTR_ELEM("PioHostAddrMemUncErr", 0, 0, 4607 CNTR_NORMAL, 4608 access_pio_host_addr_mem_unc_err_cnt), 4609 [C_PIO_PKT_EVICT_SM_OR_ARM_SM_ERR] = CNTR_ELEM("PioPktEvictSmOrArbSmErr", 0, 0, 4610 CNTR_NORMAL, 4611 access_pio_pkt_evict_sm_or_arb_sm_err_cnt), 4612 [C_PIO_INIT_SM_IN_ERR] = CNTR_ELEM("PioInitSmInErr", 0, 0, 4613 CNTR_NORMAL, 4614 access_pio_init_sm_in_err_cnt), 4615 [C_PIO_PPMC_PBL_FIFO_ERR] = CNTR_ELEM("PioPpmcPblFifoErr", 0, 0, 4616 CNTR_NORMAL, 4617 access_pio_ppmc_pbl_fifo_err_cnt), 4618 [C_PIO_CREDIT_RET_FIFO_PARITY_ERR] = CNTR_ELEM("PioCreditRetFifoParityErr", 0, 4619 0, CNTR_NORMAL, 4620 access_pio_credit_ret_fifo_parity_err_cnt), 4621 [C_PIO_V1_LEN_MEM_BANK1_COR_ERR] = CNTR_ELEM("PioVlLenMemBank1CorErr", 0, 0, 4622 CNTR_NORMAL, 4623 access_pio_v1_len_mem_bank1_cor_err_cnt), 4624 [C_PIO_V1_LEN_MEM_BANK0_COR_ERR] = CNTR_ELEM("PioVlLenMemBank0CorErr", 0, 0, 4625 CNTR_NORMAL, 4626 access_pio_v1_len_mem_bank0_cor_err_cnt), 4627 [C_PIO_V1_LEN_MEM_BANK1_UNC_ERR] = CNTR_ELEM("PioVlLenMemBank1UncErr", 0, 0, 4628 CNTR_NORMAL, 4629 access_pio_v1_len_mem_bank1_unc_err_cnt), 4630 [C_PIO_V1_LEN_MEM_BANK0_UNC_ERR] = CNTR_ELEM("PioVlLenMemBank0UncErr", 0, 0, 4631 CNTR_NORMAL, 4632 access_pio_v1_len_mem_bank0_unc_err_cnt), 4633 [C_PIO_SM_PKT_RESET_PARITY_ERR] = CNTR_ELEM("PioSmPktResetParityErr", 0, 0, 4634 CNTR_NORMAL, 4635 access_pio_sm_pkt_reset_parity_err_cnt), 4636 [C_PIO_PKT_EVICT_FIFO_PARITY_ERR] = CNTR_ELEM("PioPktEvictFifoParityErr", 0, 0, 4637 CNTR_NORMAL, 4638 access_pio_pkt_evict_fifo_parity_err_cnt), 4639 [C_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR] = CNTR_ELEM( 4640 "PioSbrdctrlCrrelFifoParityErr", 0, 0, 4641 CNTR_NORMAL, 4642 access_pio_sbrdctrl_crrel_fifo_parity_err_cnt), 4643 [C_PIO_SBRDCTL_CRREL_PARITY_ERR] = CNTR_ELEM("PioSbrdctlCrrelParityErr", 0, 0, 4644 CNTR_NORMAL, 4645 access_pio_sbrdctl_crrel_parity_err_cnt), 4646 [C_PIO_PEC_FIFO_PARITY_ERR] = CNTR_ELEM("PioPecFifoParityErr", 0, 0, 4647 CNTR_NORMAL, 4648 access_pio_pec_fifo_parity_err_cnt), 4649 [C_PIO_PCC_FIFO_PARITY_ERR] = CNTR_ELEM("PioPccFifoParityErr", 0, 0, 4650 CNTR_NORMAL, 4651 access_pio_pcc_fifo_parity_err_cnt), 4652 [C_PIO_SB_MEM_FIFO1_ERR] = CNTR_ELEM("PioSbMemFifo1Err", 0, 0, 4653 CNTR_NORMAL, 4654 access_pio_sb_mem_fifo1_err_cnt), 4655 [C_PIO_SB_MEM_FIFO0_ERR] = CNTR_ELEM("PioSbMemFifo0Err", 0, 0, 4656 CNTR_NORMAL, 4657 access_pio_sb_mem_fifo0_err_cnt), 4658 [C_PIO_CSR_PARITY_ERR] = CNTR_ELEM("PioCsrParityErr", 0, 0, 4659 CNTR_NORMAL, 4660 access_pio_csr_parity_err_cnt), 4661 [C_PIO_WRITE_ADDR_PARITY_ERR] = CNTR_ELEM("PioWriteAddrParityErr", 0, 0, 4662 CNTR_NORMAL, 4663 access_pio_write_addr_parity_err_cnt), 4664 [C_PIO_WRITE_BAD_CTXT_ERR] = CNTR_ELEM("PioWriteBadCtxtErr", 0, 0, 4665 CNTR_NORMAL, 4666 access_pio_write_bad_ctxt_err_cnt), 4667 /* SendDmaErrStatus */ 4668 [C_SDMA_PCIE_REQ_TRACKING_COR_ERR] = CNTR_ELEM("SDmaPcieReqTrackingCorErr", 0, 4669 0, CNTR_NORMAL, 4670 access_sdma_pcie_req_tracking_cor_err_cnt), 4671 [C_SDMA_PCIE_REQ_TRACKING_UNC_ERR] = CNTR_ELEM("SDmaPcieReqTrackingUncErr", 0, 4672 0, CNTR_NORMAL, 4673 access_sdma_pcie_req_tracking_unc_err_cnt), 4674 [C_SDMA_CSR_PARITY_ERR] = CNTR_ELEM("SDmaCsrParityErr", 0, 0, 4675 CNTR_NORMAL, 4676 access_sdma_csr_parity_err_cnt), 4677 [C_SDMA_RPY_TAG_ERR] = CNTR_ELEM("SDmaRpyTagErr", 0, 0, 4678 CNTR_NORMAL, 4679 access_sdma_rpy_tag_err_cnt), 4680 /* SendEgressErrStatus */ 4681 [C_TX_READ_PIO_MEMORY_CSR_UNC_ERR] = CNTR_ELEM("TxReadPioMemoryCsrUncErr", 0, 0, 4682 CNTR_NORMAL, 4683 access_tx_read_pio_memory_csr_unc_err_cnt), 4684 [C_TX_READ_SDMA_MEMORY_CSR_UNC_ERR] = CNTR_ELEM("TxReadSdmaMemoryCsrUncErr", 0, 4685 0, CNTR_NORMAL, 4686 access_tx_read_sdma_memory_csr_err_cnt), 4687 [C_TX_EGRESS_FIFO_COR_ERR] = CNTR_ELEM("TxEgressFifoCorErr", 0, 0, 4688 CNTR_NORMAL, 4689 access_tx_egress_fifo_cor_err_cnt), 4690 [C_TX_READ_PIO_MEMORY_COR_ERR] = CNTR_ELEM("TxReadPioMemoryCorErr", 0, 0, 4691 CNTR_NORMAL, 4692 access_tx_read_pio_memory_cor_err_cnt), 4693 [C_TX_READ_SDMA_MEMORY_COR_ERR] = CNTR_ELEM("TxReadSdmaMemoryCorErr", 0, 0, 4694 CNTR_NORMAL, 4695 access_tx_read_sdma_memory_cor_err_cnt), 4696 [C_TX_SB_HDR_COR_ERR] = CNTR_ELEM("TxSbHdrCorErr", 0, 0, 4697 CNTR_NORMAL, 4698 access_tx_sb_hdr_cor_err_cnt), 4699 [C_TX_CREDIT_OVERRUN_ERR] = CNTR_ELEM("TxCreditOverrunErr", 0, 0, 4700 CNTR_NORMAL, 4701 access_tx_credit_overrun_err_cnt), 4702 [C_TX_LAUNCH_FIFO8_COR_ERR] = CNTR_ELEM("TxLaunchFifo8CorErr", 0, 0, 4703 CNTR_NORMAL, 4704 access_tx_launch_fifo8_cor_err_cnt), 4705 [C_TX_LAUNCH_FIFO7_COR_ERR] = CNTR_ELEM("TxLaunchFifo7CorErr", 0, 0, 4706 CNTR_NORMAL, 4707 access_tx_launch_fifo7_cor_err_cnt), 4708 [C_TX_LAUNCH_FIFO6_COR_ERR] = CNTR_ELEM("TxLaunchFifo6CorErr", 0, 0, 4709 CNTR_NORMAL, 4710 access_tx_launch_fifo6_cor_err_cnt), 4711 [C_TX_LAUNCH_FIFO5_COR_ERR] = CNTR_ELEM("TxLaunchFifo5CorErr", 0, 0, 4712 CNTR_NORMAL, 4713 access_tx_launch_fifo5_cor_err_cnt), 4714 [C_TX_LAUNCH_FIFO4_COR_ERR] = CNTR_ELEM("TxLaunchFifo4CorErr", 0, 0, 4715 CNTR_NORMAL, 4716 access_tx_launch_fifo4_cor_err_cnt), 4717 [C_TX_LAUNCH_FIFO3_COR_ERR] = CNTR_ELEM("TxLaunchFifo3CorErr", 0, 0, 4718 CNTR_NORMAL, 4719 access_tx_launch_fifo3_cor_err_cnt), 4720 [C_TX_LAUNCH_FIFO2_COR_ERR] = CNTR_ELEM("TxLaunchFifo2CorErr", 0, 0, 4721 CNTR_NORMAL, 4722 access_tx_launch_fifo2_cor_err_cnt), 4723 [C_TX_LAUNCH_FIFO1_COR_ERR] = CNTR_ELEM("TxLaunchFifo1CorErr", 0, 0, 4724 CNTR_NORMAL, 4725 access_tx_launch_fifo1_cor_err_cnt), 4726 [C_TX_LAUNCH_FIFO0_COR_ERR] = CNTR_ELEM("TxLaunchFifo0CorErr", 0, 0, 4727 CNTR_NORMAL, 4728 access_tx_launch_fifo0_cor_err_cnt), 4729 [C_TX_CREDIT_RETURN_VL_ERR] = CNTR_ELEM("TxCreditReturnVLErr", 0, 0, 4730 CNTR_NORMAL, 4731 access_tx_credit_return_vl_err_cnt), 4732 [C_TX_HCRC_INSERTION_ERR] = CNTR_ELEM("TxHcrcInsertionErr", 0, 0, 4733 CNTR_NORMAL, 4734 access_tx_hcrc_insertion_err_cnt), 4735 [C_TX_EGRESS_FIFI_UNC_ERR] = CNTR_ELEM("TxEgressFifoUncErr", 0, 0, 4736 CNTR_NORMAL, 4737 access_tx_egress_fifo_unc_err_cnt), 4738 [C_TX_READ_PIO_MEMORY_UNC_ERR] = CNTR_ELEM("TxReadPioMemoryUncErr", 0, 0, 4739 CNTR_NORMAL, 4740 access_tx_read_pio_memory_unc_err_cnt), 4741 [C_TX_READ_SDMA_MEMORY_UNC_ERR] = CNTR_ELEM("TxReadSdmaMemoryUncErr", 0, 0, 4742 CNTR_NORMAL, 4743 access_tx_read_sdma_memory_unc_err_cnt), 4744 [C_TX_SB_HDR_UNC_ERR] = CNTR_ELEM("TxSbHdrUncErr", 0, 0, 4745 CNTR_NORMAL, 4746 access_tx_sb_hdr_unc_err_cnt), 4747 [C_TX_CREDIT_RETURN_PARITY_ERR] = CNTR_ELEM("TxCreditReturnParityErr", 0, 0, 4748 CNTR_NORMAL, 4749 access_tx_credit_return_partiy_err_cnt), 4750 [C_TX_LAUNCH_FIFO8_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo8UncOrParityErr", 4751 0, 0, CNTR_NORMAL, 4752 access_tx_launch_fifo8_unc_or_parity_err_cnt), 4753 [C_TX_LAUNCH_FIFO7_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo7UncOrParityErr", 4754 0, 0, CNTR_NORMAL, 4755 access_tx_launch_fifo7_unc_or_parity_err_cnt), 4756 [C_TX_LAUNCH_FIFO6_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo6UncOrParityErr", 4757 0, 0, CNTR_NORMAL, 4758 access_tx_launch_fifo6_unc_or_parity_err_cnt), 4759 [C_TX_LAUNCH_FIFO5_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo5UncOrParityErr", 4760 0, 0, CNTR_NORMAL, 4761 access_tx_launch_fifo5_unc_or_parity_err_cnt), 4762 [C_TX_LAUNCH_FIFO4_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo4UncOrParityErr", 4763 0, 0, CNTR_NORMAL, 4764 access_tx_launch_fifo4_unc_or_parity_err_cnt), 4765 [C_TX_LAUNCH_FIFO3_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo3UncOrParityErr", 4766 0, 0, CNTR_NORMAL, 4767 access_tx_launch_fifo3_unc_or_parity_err_cnt), 4768 [C_TX_LAUNCH_FIFO2_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo2UncOrParityErr", 4769 0, 0, CNTR_NORMAL, 4770 access_tx_launch_fifo2_unc_or_parity_err_cnt), 4771 [C_TX_LAUNCH_FIFO1_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo1UncOrParityErr", 4772 0, 0, CNTR_NORMAL, 4773 access_tx_launch_fifo1_unc_or_parity_err_cnt), 4774 [C_TX_LAUNCH_FIFO0_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo0UncOrParityErr", 4775 0, 0, CNTR_NORMAL, 4776 access_tx_launch_fifo0_unc_or_parity_err_cnt), 4777 [C_TX_SDMA15_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma15DisallowedPacketErr", 4778 0, 0, CNTR_NORMAL, 4779 access_tx_sdma15_disallowed_packet_err_cnt), 4780 [C_TX_SDMA14_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma14DisallowedPacketErr", 4781 0, 0, CNTR_NORMAL, 4782 access_tx_sdma14_disallowed_packet_err_cnt), 4783 [C_TX_SDMA13_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma13DisallowedPacketErr", 4784 0, 0, CNTR_NORMAL, 4785 access_tx_sdma13_disallowed_packet_err_cnt), 4786 [C_TX_SDMA12_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma12DisallowedPacketErr", 4787 0, 0, CNTR_NORMAL, 4788 access_tx_sdma12_disallowed_packet_err_cnt), 4789 [C_TX_SDMA11_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma11DisallowedPacketErr", 4790 0, 0, CNTR_NORMAL, 4791 access_tx_sdma11_disallowed_packet_err_cnt), 4792 [C_TX_SDMA10_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma10DisallowedPacketErr", 4793 0, 0, CNTR_NORMAL, 4794 access_tx_sdma10_disallowed_packet_err_cnt), 4795 [C_TX_SDMA9_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma9DisallowedPacketErr", 4796 0, 0, CNTR_NORMAL, 4797 access_tx_sdma9_disallowed_packet_err_cnt), 4798 [C_TX_SDMA8_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma8DisallowedPacketErr", 4799 0, 0, CNTR_NORMAL, 4800 access_tx_sdma8_disallowed_packet_err_cnt), 4801 [C_TX_SDMA7_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma7DisallowedPacketErr", 4802 0, 0, CNTR_NORMAL, 4803 access_tx_sdma7_disallowed_packet_err_cnt), 4804 [C_TX_SDMA6_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma6DisallowedPacketErr", 4805 0, 0, CNTR_NORMAL, 4806 access_tx_sdma6_disallowed_packet_err_cnt), 4807 [C_TX_SDMA5_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma5DisallowedPacketErr", 4808 0, 0, CNTR_NORMAL, 4809 access_tx_sdma5_disallowed_packet_err_cnt), 4810 [C_TX_SDMA4_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma4DisallowedPacketErr", 4811 0, 0, CNTR_NORMAL, 4812 access_tx_sdma4_disallowed_packet_err_cnt), 4813 [C_TX_SDMA3_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma3DisallowedPacketErr", 4814 0, 0, CNTR_NORMAL, 4815 access_tx_sdma3_disallowed_packet_err_cnt), 4816 [C_TX_SDMA2_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma2DisallowedPacketErr", 4817 0, 0, CNTR_NORMAL, 4818 access_tx_sdma2_disallowed_packet_err_cnt), 4819 [C_TX_SDMA1_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma1DisallowedPacketErr", 4820 0, 0, CNTR_NORMAL, 4821 access_tx_sdma1_disallowed_packet_err_cnt), 4822 [C_TX_SDMA0_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma0DisallowedPacketErr", 4823 0, 0, CNTR_NORMAL, 4824 access_tx_sdma0_disallowed_packet_err_cnt), 4825 [C_TX_CONFIG_PARITY_ERR] = CNTR_ELEM("TxConfigParityErr", 0, 0, 4826 CNTR_NORMAL, 4827 access_tx_config_parity_err_cnt), 4828 [C_TX_SBRD_CTL_CSR_PARITY_ERR] = CNTR_ELEM("TxSbrdCtlCsrParityErr", 0, 0, 4829 CNTR_NORMAL, 4830 access_tx_sbrd_ctl_csr_parity_err_cnt), 4831 [C_TX_LAUNCH_CSR_PARITY_ERR] = CNTR_ELEM("TxLaunchCsrParityErr", 0, 0, 4832 CNTR_NORMAL, 4833 access_tx_launch_csr_parity_err_cnt), 4834 [C_TX_ILLEGAL_CL_ERR] = CNTR_ELEM("TxIllegalVLErr", 0, 0, 4835 CNTR_NORMAL, 4836 access_tx_illegal_vl_err_cnt), 4837 [C_TX_SBRD_CTL_STATE_MACHINE_PARITY_ERR] = CNTR_ELEM( 4838 "TxSbrdCtlStateMachineParityErr", 0, 0, 4839 CNTR_NORMAL, 4840 access_tx_sbrd_ctl_state_machine_parity_err_cnt), 4841 [C_TX_RESERVED_10] = CNTR_ELEM("Tx Egress Reserved 10", 0, 0, 4842 CNTR_NORMAL, 4843 access_egress_reserved_10_err_cnt), 4844 [C_TX_RESERVED_9] = CNTR_ELEM("Tx Egress Reserved 9", 0, 0, 4845 CNTR_NORMAL, 4846 access_egress_reserved_9_err_cnt), 4847 [C_TX_SDMA_LAUNCH_INTF_PARITY_ERR] = CNTR_ELEM("TxSdmaLaunchIntfParityErr", 4848 0, 0, CNTR_NORMAL, 4849 access_tx_sdma_launch_intf_parity_err_cnt), 4850 [C_TX_PIO_LAUNCH_INTF_PARITY_ERR] = CNTR_ELEM("TxPioLaunchIntfParityErr", 0, 0, 4851 CNTR_NORMAL, 4852 access_tx_pio_launch_intf_parity_err_cnt), 4853 [C_TX_RESERVED_6] = CNTR_ELEM("Tx Egress Reserved 6", 0, 0, 4854 CNTR_NORMAL, 4855 access_egress_reserved_6_err_cnt), 4856 [C_TX_INCORRECT_LINK_STATE_ERR] = CNTR_ELEM("TxIncorrectLinkStateErr", 0, 0, 4857 CNTR_NORMAL, 4858 access_tx_incorrect_link_state_err_cnt), 4859 [C_TX_LINK_DOWN_ERR] = CNTR_ELEM("TxLinkdownErr", 0, 0, 4860 CNTR_NORMAL, 4861 access_tx_linkdown_err_cnt), 4862 [C_TX_EGRESS_FIFO_UNDERRUN_OR_PARITY_ERR] = CNTR_ELEM( 4863 "EgressFifoUnderrunOrParityErr", 0, 0, 4864 CNTR_NORMAL, 4865 access_tx_egress_fifi_underrun_or_parity_err_cnt), 4866 [C_TX_RESERVED_2] = CNTR_ELEM("Tx Egress Reserved 2", 0, 0, 4867 CNTR_NORMAL, 4868 access_egress_reserved_2_err_cnt), 4869 [C_TX_PKT_INTEGRITY_MEM_UNC_ERR] = CNTR_ELEM("TxPktIntegrityMemUncErr", 0, 0, 4870 CNTR_NORMAL, 4871 access_tx_pkt_integrity_mem_unc_err_cnt), 4872 [C_TX_PKT_INTEGRITY_MEM_COR_ERR] = CNTR_ELEM("TxPktIntegrityMemCorErr", 0, 0, 4873 CNTR_NORMAL, 4874 access_tx_pkt_integrity_mem_cor_err_cnt), 4875 /* SendErrStatus */ 4876 [C_SEND_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("SendCsrWriteBadAddrErr", 0, 0, 4877 CNTR_NORMAL, 4878 access_send_csr_write_bad_addr_err_cnt), 4879 [C_SEND_CSR_READ_BAD_ADD_ERR] = CNTR_ELEM("SendCsrReadBadAddrErr", 0, 0, 4880 CNTR_NORMAL, 4881 access_send_csr_read_bad_addr_err_cnt), 4882 [C_SEND_CSR_PARITY_ERR] = CNTR_ELEM("SendCsrParityErr", 0, 0, 4883 CNTR_NORMAL, 4884 access_send_csr_parity_cnt), 4885 /* SendCtxtErrStatus */ 4886 [C_PIO_WRITE_OUT_OF_BOUNDS_ERR] = CNTR_ELEM("PioWriteOutOfBoundsErr", 0, 0, 4887 CNTR_NORMAL, 4888 access_pio_write_out_of_bounds_err_cnt), 4889 [C_PIO_WRITE_OVERFLOW_ERR] = CNTR_ELEM("PioWriteOverflowErr", 0, 0, 4890 CNTR_NORMAL, 4891 access_pio_write_overflow_err_cnt), 4892 [C_PIO_WRITE_CROSSES_BOUNDARY_ERR] = CNTR_ELEM("PioWriteCrossesBoundaryErr", 4893 0, 0, CNTR_NORMAL, 4894 access_pio_write_crosses_boundary_err_cnt), 4895 [C_PIO_DISALLOWED_PACKET_ERR] = CNTR_ELEM("PioDisallowedPacketErr", 0, 0, 4896 CNTR_NORMAL, 4897 access_pio_disallowed_packet_err_cnt), 4898 [C_PIO_INCONSISTENT_SOP_ERR] = CNTR_ELEM("PioInconsistentSopErr", 0, 0, 4899 CNTR_NORMAL, 4900 access_pio_inconsistent_sop_err_cnt), 4901 /* SendDmaEngErrStatus */ 4902 [C_SDMA_HEADER_REQUEST_FIFO_COR_ERR] = CNTR_ELEM("SDmaHeaderRequestFifoCorErr", 4903 0, 0, CNTR_NORMAL, 4904 access_sdma_header_request_fifo_cor_err_cnt), 4905 [C_SDMA_HEADER_STORAGE_COR_ERR] = CNTR_ELEM("SDmaHeaderStorageCorErr", 0, 0, 4906 CNTR_NORMAL, 4907 access_sdma_header_storage_cor_err_cnt), 4908 [C_SDMA_PACKET_TRACKING_COR_ERR] = CNTR_ELEM("SDmaPacketTrackingCorErr", 0, 0, 4909 CNTR_NORMAL, 4910 access_sdma_packet_tracking_cor_err_cnt), 4911 [C_SDMA_ASSEMBLY_COR_ERR] = CNTR_ELEM("SDmaAssemblyCorErr", 0, 0, 4912 CNTR_NORMAL, 4913 access_sdma_assembly_cor_err_cnt), 4914 [C_SDMA_DESC_TABLE_COR_ERR] = CNTR_ELEM("SDmaDescTableCorErr", 0, 0, 4915 CNTR_NORMAL, 4916 access_sdma_desc_table_cor_err_cnt), 4917 [C_SDMA_HEADER_REQUEST_FIFO_UNC_ERR] = CNTR_ELEM("SDmaHeaderRequestFifoUncErr", 4918 0, 0, CNTR_NORMAL, 4919 access_sdma_header_request_fifo_unc_err_cnt), 4920 [C_SDMA_HEADER_STORAGE_UNC_ERR] = CNTR_ELEM("SDmaHeaderStorageUncErr", 0, 0, 4921 CNTR_NORMAL, 4922 access_sdma_header_storage_unc_err_cnt), 4923 [C_SDMA_PACKET_TRACKING_UNC_ERR] = CNTR_ELEM("SDmaPacketTrackingUncErr", 0, 0, 4924 CNTR_NORMAL, 4925 access_sdma_packet_tracking_unc_err_cnt), 4926 [C_SDMA_ASSEMBLY_UNC_ERR] = CNTR_ELEM("SDmaAssemblyUncErr", 0, 0, 4927 CNTR_NORMAL, 4928 access_sdma_assembly_unc_err_cnt), 4929 [C_SDMA_DESC_TABLE_UNC_ERR] = CNTR_ELEM("SDmaDescTableUncErr", 0, 0, 4930 CNTR_NORMAL, 4931 access_sdma_desc_table_unc_err_cnt), 4932 [C_SDMA_TIMEOUT_ERR] = CNTR_ELEM("SDmaTimeoutErr", 0, 0, 4933 CNTR_NORMAL, 4934 access_sdma_timeout_err_cnt), 4935 [C_SDMA_HEADER_LENGTH_ERR] = CNTR_ELEM("SDmaHeaderLengthErr", 0, 0, 4936 CNTR_NORMAL, 4937 access_sdma_header_length_err_cnt), 4938 [C_SDMA_HEADER_ADDRESS_ERR] = CNTR_ELEM("SDmaHeaderAddressErr", 0, 0, 4939 CNTR_NORMAL, 4940 access_sdma_header_address_err_cnt), 4941 [C_SDMA_HEADER_SELECT_ERR] = CNTR_ELEM("SDmaHeaderSelectErr", 0, 0, 4942 CNTR_NORMAL, 4943 access_sdma_header_select_err_cnt), 4944 [C_SMDA_RESERVED_9] = CNTR_ELEM("SDma Reserved 9", 0, 0, 4945 CNTR_NORMAL, 4946 access_sdma_reserved_9_err_cnt), 4947 [C_SDMA_PACKET_DESC_OVERFLOW_ERR] = CNTR_ELEM("SDmaPacketDescOverflowErr", 0, 0, 4948 CNTR_NORMAL, 4949 access_sdma_packet_desc_overflow_err_cnt), 4950 [C_SDMA_LENGTH_MISMATCH_ERR] = CNTR_ELEM("SDmaLengthMismatchErr", 0, 0, 4951 CNTR_NORMAL, 4952 access_sdma_length_mismatch_err_cnt), 4953 [C_SDMA_HALT_ERR] = CNTR_ELEM("SDmaHaltErr", 0, 0, 4954 CNTR_NORMAL, 4955 access_sdma_halt_err_cnt), 4956 [C_SDMA_MEM_READ_ERR] = CNTR_ELEM("SDmaMemReadErr", 0, 0, 4957 CNTR_NORMAL, 4958 access_sdma_mem_read_err_cnt), 4959 [C_SDMA_FIRST_DESC_ERR] = CNTR_ELEM("SDmaFirstDescErr", 0, 0, 4960 CNTR_NORMAL, 4961 access_sdma_first_desc_err_cnt), 4962 [C_SDMA_TAIL_OUT_OF_BOUNDS_ERR] = CNTR_ELEM("SDmaTailOutOfBoundsErr", 0, 0, 4963 CNTR_NORMAL, 4964 access_sdma_tail_out_of_bounds_err_cnt), 4965 [C_SDMA_TOO_LONG_ERR] = CNTR_ELEM("SDmaTooLongErr", 0, 0, 4966 CNTR_NORMAL, 4967 access_sdma_too_long_err_cnt), 4968 [C_SDMA_GEN_MISMATCH_ERR] = CNTR_ELEM("SDmaGenMismatchErr", 0, 0, 4969 CNTR_NORMAL, 4970 access_sdma_gen_mismatch_err_cnt), 4971 [C_SDMA_WRONG_DW_ERR] = CNTR_ELEM("SDmaWrongDwErr", 0, 0, 4972 CNTR_NORMAL, 4973 access_sdma_wrong_dw_err_cnt), 4974 }; 4975 4976 static struct cntr_entry port_cntrs[PORT_CNTR_LAST] = { 4977 [C_TX_UNSUP_VL] = TXE32_PORT_CNTR_ELEM(TxUnVLErr, SEND_UNSUP_VL_ERR_CNT, 4978 CNTR_NORMAL), 4979 [C_TX_INVAL_LEN] = TXE32_PORT_CNTR_ELEM(TxInvalLen, SEND_LEN_ERR_CNT, 4980 CNTR_NORMAL), 4981 [C_TX_MM_LEN_ERR] = TXE32_PORT_CNTR_ELEM(TxMMLenErr, SEND_MAX_MIN_LEN_ERR_CNT, 4982 CNTR_NORMAL), 4983 [C_TX_UNDERRUN] = TXE32_PORT_CNTR_ELEM(TxUnderrun, SEND_UNDERRUN_CNT, 4984 CNTR_NORMAL), 4985 [C_TX_FLOW_STALL] = TXE32_PORT_CNTR_ELEM(TxFlowStall, SEND_FLOW_STALL_CNT, 4986 CNTR_NORMAL), 4987 [C_TX_DROPPED] = TXE32_PORT_CNTR_ELEM(TxDropped, SEND_DROPPED_PKT_CNT, 4988 CNTR_NORMAL), 4989 [C_TX_HDR_ERR] = TXE32_PORT_CNTR_ELEM(TxHdrErr, SEND_HEADERS_ERR_CNT, 4990 CNTR_NORMAL), 4991 [C_TX_PKT] = TXE64_PORT_CNTR_ELEM(TxPkt, SEND_DATA_PKT_CNT, CNTR_NORMAL), 4992 [C_TX_WORDS] = TXE64_PORT_CNTR_ELEM(TxWords, SEND_DWORD_CNT, CNTR_NORMAL), 4993 [C_TX_WAIT] = TXE64_PORT_CNTR_ELEM(TxWait, SEND_WAIT_CNT, CNTR_SYNTH), 4994 [C_TX_FLIT_VL] = TXE64_PORT_CNTR_ELEM(TxFlitVL, SEND_DATA_VL0_CNT, 4995 CNTR_SYNTH | CNTR_VL), 4996 [C_TX_PKT_VL] = TXE64_PORT_CNTR_ELEM(TxPktVL, SEND_DATA_PKT_VL0_CNT, 4997 CNTR_SYNTH | CNTR_VL), 4998 [C_TX_WAIT_VL] = TXE64_PORT_CNTR_ELEM(TxWaitVL, SEND_WAIT_VL0_CNT, 4999 CNTR_SYNTH | CNTR_VL), 5000 [C_RX_PKT] = RXE64_PORT_CNTR_ELEM(RxPkt, RCV_DATA_PKT_CNT, CNTR_NORMAL), 5001 [C_RX_WORDS] = RXE64_PORT_CNTR_ELEM(RxWords, RCV_DWORD_CNT, CNTR_NORMAL), 5002 [C_SW_LINK_DOWN] = CNTR_ELEM("SwLinkDown", 0, 0, CNTR_SYNTH | CNTR_32BIT, 5003 access_sw_link_dn_cnt), 5004 [C_SW_LINK_UP] = CNTR_ELEM("SwLinkUp", 0, 0, CNTR_SYNTH | CNTR_32BIT, 5005 access_sw_link_up_cnt), 5006 [C_SW_UNKNOWN_FRAME] = CNTR_ELEM("UnknownFrame", 0, 0, CNTR_NORMAL, 5007 access_sw_unknown_frame_cnt), 5008 [C_SW_XMIT_DSCD] = CNTR_ELEM("XmitDscd", 0, 0, CNTR_SYNTH | CNTR_32BIT, 5009 access_sw_xmit_discards), 5010 [C_SW_XMIT_DSCD_VL] = CNTR_ELEM("XmitDscdVl", 0, 0, 5011 CNTR_SYNTH | CNTR_32BIT | CNTR_VL, 5012 access_sw_xmit_discards), 5013 [C_SW_XMIT_CSTR_ERR] = CNTR_ELEM("XmitCstrErr", 0, 0, CNTR_SYNTH, 5014 access_xmit_constraint_errs), 5015 [C_SW_RCV_CSTR_ERR] = CNTR_ELEM("RcvCstrErr", 0, 0, CNTR_SYNTH, 5016 access_rcv_constraint_errs), 5017 [C_SW_IBP_LOOP_PKTS] = SW_IBP_CNTR(LoopPkts, loop_pkts), 5018 [C_SW_IBP_RC_RESENDS] = SW_IBP_CNTR(RcResend, rc_resends), 5019 [C_SW_IBP_RNR_NAKS] = SW_IBP_CNTR(RnrNak, rnr_naks), 5020 [C_SW_IBP_OTHER_NAKS] = SW_IBP_CNTR(OtherNak, other_naks), 5021 [C_SW_IBP_RC_TIMEOUTS] = SW_IBP_CNTR(RcTimeOut, rc_timeouts), 5022 [C_SW_IBP_PKT_DROPS] = SW_IBP_CNTR(PktDrop, pkt_drops), 5023 [C_SW_IBP_DMA_WAIT] = SW_IBP_CNTR(DmaWait, dmawait), 5024 [C_SW_IBP_RC_SEQNAK] = SW_IBP_CNTR(RcSeqNak, rc_seqnak), 5025 [C_SW_IBP_RC_DUPREQ] = SW_IBP_CNTR(RcDupRew, rc_dupreq), 5026 [C_SW_IBP_RDMA_SEQ] = SW_IBP_CNTR(RdmaSeq, rdma_seq), 5027 [C_SW_IBP_UNALIGNED] = SW_IBP_CNTR(Unaligned, unaligned), 5028 [C_SW_IBP_SEQ_NAK] = SW_IBP_CNTR(SeqNak, seq_naks), 5029 [C_SW_CPU_RC_ACKS] = CNTR_ELEM("RcAcks", 0, 0, CNTR_NORMAL, 5030 access_sw_cpu_rc_acks), 5031 [C_SW_CPU_RC_QACKS] = CNTR_ELEM("RcQacks", 0, 0, CNTR_NORMAL, 5032 access_sw_cpu_rc_qacks), 5033 [C_SW_CPU_RC_DELAYED_COMP] = CNTR_ELEM("RcDelayComp", 0, 0, CNTR_NORMAL, 5034 access_sw_cpu_rc_delayed_comp), 5035 [OVR_LBL(0)] = OVR_ELM(0), [OVR_LBL(1)] = OVR_ELM(1), 5036 [OVR_LBL(2)] = OVR_ELM(2), [OVR_LBL(3)] = OVR_ELM(3), 5037 [OVR_LBL(4)] = OVR_ELM(4), [OVR_LBL(5)] = OVR_ELM(5), 5038 [OVR_LBL(6)] = OVR_ELM(6), [OVR_LBL(7)] = OVR_ELM(7), 5039 [OVR_LBL(8)] = OVR_ELM(8), [OVR_LBL(9)] = OVR_ELM(9), 5040 [OVR_LBL(10)] = OVR_ELM(10), [OVR_LBL(11)] = OVR_ELM(11), 5041 [OVR_LBL(12)] = OVR_ELM(12), [OVR_LBL(13)] = OVR_ELM(13), 5042 [OVR_LBL(14)] = OVR_ELM(14), [OVR_LBL(15)] = OVR_ELM(15), 5043 [OVR_LBL(16)] = OVR_ELM(16), [OVR_LBL(17)] = OVR_ELM(17), 5044 [OVR_LBL(18)] = OVR_ELM(18), [OVR_LBL(19)] = OVR_ELM(19), 5045 [OVR_LBL(20)] = OVR_ELM(20), [OVR_LBL(21)] = OVR_ELM(21), 5046 [OVR_LBL(22)] = OVR_ELM(22), [OVR_LBL(23)] = OVR_ELM(23), 5047 [OVR_LBL(24)] = OVR_ELM(24), [OVR_LBL(25)] = OVR_ELM(25), 5048 [OVR_LBL(26)] = OVR_ELM(26), [OVR_LBL(27)] = OVR_ELM(27), 5049 [OVR_LBL(28)] = OVR_ELM(28), [OVR_LBL(29)] = OVR_ELM(29), 5050 [OVR_LBL(30)] = OVR_ELM(30), [OVR_LBL(31)] = OVR_ELM(31), 5051 [OVR_LBL(32)] = OVR_ELM(32), [OVR_LBL(33)] = OVR_ELM(33), 5052 [OVR_LBL(34)] = OVR_ELM(34), [OVR_LBL(35)] = OVR_ELM(35), 5053 [OVR_LBL(36)] = OVR_ELM(36), [OVR_LBL(37)] = OVR_ELM(37), 5054 [OVR_LBL(38)] = OVR_ELM(38), [OVR_LBL(39)] = OVR_ELM(39), 5055 [OVR_LBL(40)] = OVR_ELM(40), [OVR_LBL(41)] = OVR_ELM(41), 5056 [OVR_LBL(42)] = OVR_ELM(42), [OVR_LBL(43)] = OVR_ELM(43), 5057 [OVR_LBL(44)] = OVR_ELM(44), [OVR_LBL(45)] = OVR_ELM(45), 5058 [OVR_LBL(46)] = OVR_ELM(46), [OVR_LBL(47)] = OVR_ELM(47), 5059 [OVR_LBL(48)] = OVR_ELM(48), [OVR_LBL(49)] = OVR_ELM(49), 5060 [OVR_LBL(50)] = OVR_ELM(50), [OVR_LBL(51)] = OVR_ELM(51), 5061 [OVR_LBL(52)] = OVR_ELM(52), [OVR_LBL(53)] = OVR_ELM(53), 5062 [OVR_LBL(54)] = OVR_ELM(54), [OVR_LBL(55)] = OVR_ELM(55), 5063 [OVR_LBL(56)] = OVR_ELM(56), [OVR_LBL(57)] = OVR_ELM(57), 5064 [OVR_LBL(58)] = OVR_ELM(58), [OVR_LBL(59)] = OVR_ELM(59), 5065 [OVR_LBL(60)] = OVR_ELM(60), [OVR_LBL(61)] = OVR_ELM(61), 5066 [OVR_LBL(62)] = OVR_ELM(62), [OVR_LBL(63)] = OVR_ELM(63), 5067 [OVR_LBL(64)] = OVR_ELM(64), [OVR_LBL(65)] = OVR_ELM(65), 5068 [OVR_LBL(66)] = OVR_ELM(66), [OVR_LBL(67)] = OVR_ELM(67), 5069 [OVR_LBL(68)] = OVR_ELM(68), [OVR_LBL(69)] = OVR_ELM(69), 5070 [OVR_LBL(70)] = OVR_ELM(70), [OVR_LBL(71)] = OVR_ELM(71), 5071 [OVR_LBL(72)] = OVR_ELM(72), [OVR_LBL(73)] = OVR_ELM(73), 5072 [OVR_LBL(74)] = OVR_ELM(74), [OVR_LBL(75)] = OVR_ELM(75), 5073 [OVR_LBL(76)] = OVR_ELM(76), [OVR_LBL(77)] = OVR_ELM(77), 5074 [OVR_LBL(78)] = OVR_ELM(78), [OVR_LBL(79)] = OVR_ELM(79), 5075 [OVR_LBL(80)] = OVR_ELM(80), [OVR_LBL(81)] = OVR_ELM(81), 5076 [OVR_LBL(82)] = OVR_ELM(82), [OVR_LBL(83)] = OVR_ELM(83), 5077 [OVR_LBL(84)] = OVR_ELM(84), [OVR_LBL(85)] = OVR_ELM(85), 5078 [OVR_LBL(86)] = OVR_ELM(86), [OVR_LBL(87)] = OVR_ELM(87), 5079 [OVR_LBL(88)] = OVR_ELM(88), [OVR_LBL(89)] = OVR_ELM(89), 5080 [OVR_LBL(90)] = OVR_ELM(90), [OVR_LBL(91)] = OVR_ELM(91), 5081 [OVR_LBL(92)] = OVR_ELM(92), [OVR_LBL(93)] = OVR_ELM(93), 5082 [OVR_LBL(94)] = OVR_ELM(94), [OVR_LBL(95)] = OVR_ELM(95), 5083 [OVR_LBL(96)] = OVR_ELM(96), [OVR_LBL(97)] = OVR_ELM(97), 5084 [OVR_LBL(98)] = OVR_ELM(98), [OVR_LBL(99)] = OVR_ELM(99), 5085 [OVR_LBL(100)] = OVR_ELM(100), [OVR_LBL(101)] = OVR_ELM(101), 5086 [OVR_LBL(102)] = OVR_ELM(102), [OVR_LBL(103)] = OVR_ELM(103), 5087 [OVR_LBL(104)] = OVR_ELM(104), [OVR_LBL(105)] = OVR_ELM(105), 5088 [OVR_LBL(106)] = OVR_ELM(106), [OVR_LBL(107)] = OVR_ELM(107), 5089 [OVR_LBL(108)] = OVR_ELM(108), [OVR_LBL(109)] = OVR_ELM(109), 5090 [OVR_LBL(110)] = OVR_ELM(110), [OVR_LBL(111)] = OVR_ELM(111), 5091 [OVR_LBL(112)] = OVR_ELM(112), [OVR_LBL(113)] = OVR_ELM(113), 5092 [OVR_LBL(114)] = OVR_ELM(114), [OVR_LBL(115)] = OVR_ELM(115), 5093 [OVR_LBL(116)] = OVR_ELM(116), [OVR_LBL(117)] = OVR_ELM(117), 5094 [OVR_LBL(118)] = OVR_ELM(118), [OVR_LBL(119)] = OVR_ELM(119), 5095 [OVR_LBL(120)] = OVR_ELM(120), [OVR_LBL(121)] = OVR_ELM(121), 5096 [OVR_LBL(122)] = OVR_ELM(122), [OVR_LBL(123)] = OVR_ELM(123), 5097 [OVR_LBL(124)] = OVR_ELM(124), [OVR_LBL(125)] = OVR_ELM(125), 5098 [OVR_LBL(126)] = OVR_ELM(126), [OVR_LBL(127)] = OVR_ELM(127), 5099 [OVR_LBL(128)] = OVR_ELM(128), [OVR_LBL(129)] = OVR_ELM(129), 5100 [OVR_LBL(130)] = OVR_ELM(130), [OVR_LBL(131)] = OVR_ELM(131), 5101 [OVR_LBL(132)] = OVR_ELM(132), [OVR_LBL(133)] = OVR_ELM(133), 5102 [OVR_LBL(134)] = OVR_ELM(134), [OVR_LBL(135)] = OVR_ELM(135), 5103 [OVR_LBL(136)] = OVR_ELM(136), [OVR_LBL(137)] = OVR_ELM(137), 5104 [OVR_LBL(138)] = OVR_ELM(138), [OVR_LBL(139)] = OVR_ELM(139), 5105 [OVR_LBL(140)] = OVR_ELM(140), [OVR_LBL(141)] = OVR_ELM(141), 5106 [OVR_LBL(142)] = OVR_ELM(142), [OVR_LBL(143)] = OVR_ELM(143), 5107 [OVR_LBL(144)] = OVR_ELM(144), [OVR_LBL(145)] = OVR_ELM(145), 5108 [OVR_LBL(146)] = OVR_ELM(146), [OVR_LBL(147)] = OVR_ELM(147), 5109 [OVR_LBL(148)] = OVR_ELM(148), [OVR_LBL(149)] = OVR_ELM(149), 5110 [OVR_LBL(150)] = OVR_ELM(150), [OVR_LBL(151)] = OVR_ELM(151), 5111 [OVR_LBL(152)] = OVR_ELM(152), [OVR_LBL(153)] = OVR_ELM(153), 5112 [OVR_LBL(154)] = OVR_ELM(154), [OVR_LBL(155)] = OVR_ELM(155), 5113 [OVR_LBL(156)] = OVR_ELM(156), [OVR_LBL(157)] = OVR_ELM(157), 5114 [OVR_LBL(158)] = OVR_ELM(158), [OVR_LBL(159)] = OVR_ELM(159), 5115 }; 5116 5117 /* ======================================================================== */ 5118 5119 /* return true if this is chip revision revision a */ 5120 int is_ax(struct hfi1_devdata *dd) 5121 { 5122 u8 chip_rev_minor = 5123 dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT 5124 & CCE_REVISION_CHIP_REV_MINOR_MASK; 5125 return (chip_rev_minor & 0xf0) == 0; 5126 } 5127 5128 /* return true if this is chip revision revision b */ 5129 int is_bx(struct hfi1_devdata *dd) 5130 { 5131 u8 chip_rev_minor = 5132 dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT 5133 & CCE_REVISION_CHIP_REV_MINOR_MASK; 5134 return (chip_rev_minor & 0xF0) == 0x10; 5135 } 5136 5137 /* 5138 * Append string s to buffer buf. Arguments curp and len are the current 5139 * position and remaining length, respectively. 5140 * 5141 * return 0 on success, 1 on out of room 5142 */ 5143 static int append_str(char *buf, char **curp, int *lenp, const char *s) 5144 { 5145 char *p = *curp; 5146 int len = *lenp; 5147 int result = 0; /* success */ 5148 char c; 5149 5150 /* add a comma, if first in the buffer */ 5151 if (p != buf) { 5152 if (len == 0) { 5153 result = 1; /* out of room */ 5154 goto done; 5155 } 5156 *p++ = ','; 5157 len--; 5158 } 5159 5160 /* copy the string */ 5161 while ((c = *s++) != 0) { 5162 if (len == 0) { 5163 result = 1; /* out of room */ 5164 goto done; 5165 } 5166 *p++ = c; 5167 len--; 5168 } 5169 5170 done: 5171 /* write return values */ 5172 *curp = p; 5173 *lenp = len; 5174 5175 return result; 5176 } 5177 5178 /* 5179 * Using the given flag table, print a comma separated string into 5180 * the buffer. End in '*' if the buffer is too short. 5181 */ 5182 static char *flag_string(char *buf, int buf_len, u64 flags, 5183 struct flag_table *table, int table_size) 5184 { 5185 char extra[32]; 5186 char *p = buf; 5187 int len = buf_len; 5188 int no_room = 0; 5189 int i; 5190 5191 /* make sure there is at least 2 so we can form "*" */ 5192 if (len < 2) 5193 return ""; 5194 5195 len--; /* leave room for a nul */ 5196 for (i = 0; i < table_size; i++) { 5197 if (flags & table[i].flag) { 5198 no_room = append_str(buf, &p, &len, table[i].str); 5199 if (no_room) 5200 break; 5201 flags &= ~table[i].flag; 5202 } 5203 } 5204 5205 /* any undocumented bits left? */ 5206 if (!no_room && flags) { 5207 snprintf(extra, sizeof(extra), "bits 0x%llx", flags); 5208 no_room = append_str(buf, &p, &len, extra); 5209 } 5210 5211 /* add * if ran out of room */ 5212 if (no_room) { 5213 /* may need to back up to add space for a '*' */ 5214 if (len == 0) 5215 --p; 5216 *p++ = '*'; 5217 } 5218 5219 /* add final nul - space already allocated above */ 5220 *p = 0; 5221 return buf; 5222 } 5223 5224 /* first 8 CCE error interrupt source names */ 5225 static const char * const cce_misc_names[] = { 5226 "CceErrInt", /* 0 */ 5227 "RxeErrInt", /* 1 */ 5228 "MiscErrInt", /* 2 */ 5229 "Reserved3", /* 3 */ 5230 "PioErrInt", /* 4 */ 5231 "SDmaErrInt", /* 5 */ 5232 "EgressErrInt", /* 6 */ 5233 "TxeErrInt" /* 7 */ 5234 }; 5235 5236 /* 5237 * Return the miscellaneous error interrupt name. 5238 */ 5239 static char *is_misc_err_name(char *buf, size_t bsize, unsigned int source) 5240 { 5241 if (source < ARRAY_SIZE(cce_misc_names)) 5242 strncpy(buf, cce_misc_names[source], bsize); 5243 else 5244 snprintf(buf, bsize, "Reserved%u", 5245 source + IS_GENERAL_ERR_START); 5246 5247 return buf; 5248 } 5249 5250 /* 5251 * Return the SDMA engine error interrupt name. 5252 */ 5253 static char *is_sdma_eng_err_name(char *buf, size_t bsize, unsigned int source) 5254 { 5255 snprintf(buf, bsize, "SDmaEngErrInt%u", source); 5256 return buf; 5257 } 5258 5259 /* 5260 * Return the send context error interrupt name. 5261 */ 5262 static char *is_sendctxt_err_name(char *buf, size_t bsize, unsigned int source) 5263 { 5264 snprintf(buf, bsize, "SendCtxtErrInt%u", source); 5265 return buf; 5266 } 5267 5268 static const char * const various_names[] = { 5269 "PbcInt", 5270 "GpioAssertInt", 5271 "Qsfp1Int", 5272 "Qsfp2Int", 5273 "TCritInt" 5274 }; 5275 5276 /* 5277 * Return the various interrupt name. 5278 */ 5279 static char *is_various_name(char *buf, size_t bsize, unsigned int source) 5280 { 5281 if (source < ARRAY_SIZE(various_names)) 5282 strncpy(buf, various_names[source], bsize); 5283 else 5284 snprintf(buf, bsize, "Reserved%u", source + IS_VARIOUS_START); 5285 return buf; 5286 } 5287 5288 /* 5289 * Return the DC interrupt name. 5290 */ 5291 static char *is_dc_name(char *buf, size_t bsize, unsigned int source) 5292 { 5293 static const char * const dc_int_names[] = { 5294 "common", 5295 "lcb", 5296 "8051", 5297 "lbm" /* local block merge */ 5298 }; 5299 5300 if (source < ARRAY_SIZE(dc_int_names)) 5301 snprintf(buf, bsize, "dc_%s_int", dc_int_names[source]); 5302 else 5303 snprintf(buf, bsize, "DCInt%u", source); 5304 return buf; 5305 } 5306 5307 static const char * const sdma_int_names[] = { 5308 "SDmaInt", 5309 "SdmaIdleInt", 5310 "SdmaProgressInt", 5311 }; 5312 5313 /* 5314 * Return the SDMA engine interrupt name. 5315 */ 5316 static char *is_sdma_eng_name(char *buf, size_t bsize, unsigned int source) 5317 { 5318 /* what interrupt */ 5319 unsigned int what = source / TXE_NUM_SDMA_ENGINES; 5320 /* which engine */ 5321 unsigned int which = source % TXE_NUM_SDMA_ENGINES; 5322 5323 if (likely(what < 3)) 5324 snprintf(buf, bsize, "%s%u", sdma_int_names[what], which); 5325 else 5326 snprintf(buf, bsize, "Invalid SDMA interrupt %u", source); 5327 return buf; 5328 } 5329 5330 /* 5331 * Return the receive available interrupt name. 5332 */ 5333 static char *is_rcv_avail_name(char *buf, size_t bsize, unsigned int source) 5334 { 5335 snprintf(buf, bsize, "RcvAvailInt%u", source); 5336 return buf; 5337 } 5338 5339 /* 5340 * Return the receive urgent interrupt name. 5341 */ 5342 static char *is_rcv_urgent_name(char *buf, size_t bsize, unsigned int source) 5343 { 5344 snprintf(buf, bsize, "RcvUrgentInt%u", source); 5345 return buf; 5346 } 5347 5348 /* 5349 * Return the send credit interrupt name. 5350 */ 5351 static char *is_send_credit_name(char *buf, size_t bsize, unsigned int source) 5352 { 5353 snprintf(buf, bsize, "SendCreditInt%u", source); 5354 return buf; 5355 } 5356 5357 /* 5358 * Return the reserved interrupt name. 5359 */ 5360 static char *is_reserved_name(char *buf, size_t bsize, unsigned int source) 5361 { 5362 snprintf(buf, bsize, "Reserved%u", source + IS_RESERVED_START); 5363 return buf; 5364 } 5365 5366 static char *cce_err_status_string(char *buf, int buf_len, u64 flags) 5367 { 5368 return flag_string(buf, buf_len, flags, 5369 cce_err_status_flags, 5370 ARRAY_SIZE(cce_err_status_flags)); 5371 } 5372 5373 static char *rxe_err_status_string(char *buf, int buf_len, u64 flags) 5374 { 5375 return flag_string(buf, buf_len, flags, 5376 rxe_err_status_flags, 5377 ARRAY_SIZE(rxe_err_status_flags)); 5378 } 5379 5380 static char *misc_err_status_string(char *buf, int buf_len, u64 flags) 5381 { 5382 return flag_string(buf, buf_len, flags, misc_err_status_flags, 5383 ARRAY_SIZE(misc_err_status_flags)); 5384 } 5385 5386 static char *pio_err_status_string(char *buf, int buf_len, u64 flags) 5387 { 5388 return flag_string(buf, buf_len, flags, 5389 pio_err_status_flags, 5390 ARRAY_SIZE(pio_err_status_flags)); 5391 } 5392 5393 static char *sdma_err_status_string(char *buf, int buf_len, u64 flags) 5394 { 5395 return flag_string(buf, buf_len, flags, 5396 sdma_err_status_flags, 5397 ARRAY_SIZE(sdma_err_status_flags)); 5398 } 5399 5400 static char *egress_err_status_string(char *buf, int buf_len, u64 flags) 5401 { 5402 return flag_string(buf, buf_len, flags, 5403 egress_err_status_flags, 5404 ARRAY_SIZE(egress_err_status_flags)); 5405 } 5406 5407 static char *egress_err_info_string(char *buf, int buf_len, u64 flags) 5408 { 5409 return flag_string(buf, buf_len, flags, 5410 egress_err_info_flags, 5411 ARRAY_SIZE(egress_err_info_flags)); 5412 } 5413 5414 static char *send_err_status_string(char *buf, int buf_len, u64 flags) 5415 { 5416 return flag_string(buf, buf_len, flags, 5417 send_err_status_flags, 5418 ARRAY_SIZE(send_err_status_flags)); 5419 } 5420 5421 static void handle_cce_err(struct hfi1_devdata *dd, u32 unused, u64 reg) 5422 { 5423 char buf[96]; 5424 int i = 0; 5425 5426 /* 5427 * For most these errors, there is nothing that can be done except 5428 * report or record it. 5429 */ 5430 dd_dev_info(dd, "CCE Error: %s\n", 5431 cce_err_status_string(buf, sizeof(buf), reg)); 5432 5433 if ((reg & CCE_ERR_STATUS_CCE_CLI2_ASYNC_FIFO_PARITY_ERR_SMASK) && 5434 is_ax(dd) && (dd->icode != ICODE_FUNCTIONAL_SIMULATOR)) { 5435 /* this error requires a manual drop into SPC freeze mode */ 5436 /* then a fix up */ 5437 start_freeze_handling(dd->pport, FREEZE_SELF); 5438 } 5439 5440 for (i = 0; i < NUM_CCE_ERR_STATUS_COUNTERS; i++) { 5441 if (reg & (1ull << i)) { 5442 incr_cntr64(&dd->cce_err_status_cnt[i]); 5443 /* maintain a counter over all cce_err_status errors */ 5444 incr_cntr64(&dd->sw_cce_err_status_aggregate); 5445 } 5446 } 5447 } 5448 5449 /* 5450 * Check counters for receive errors that do not have an interrupt 5451 * associated with them. 5452 */ 5453 #define RCVERR_CHECK_TIME 10 5454 static void update_rcverr_timer(unsigned long opaque) 5455 { 5456 struct hfi1_devdata *dd = (struct hfi1_devdata *)opaque; 5457 struct hfi1_pportdata *ppd = dd->pport; 5458 u32 cur_ovfl_cnt = read_dev_cntr(dd, C_RCV_OVF, CNTR_INVALID_VL); 5459 5460 if (dd->rcv_ovfl_cnt < cur_ovfl_cnt && 5461 ppd->port_error_action & OPA_PI_MASK_EX_BUFFER_OVERRUN) { 5462 dd_dev_info(dd, "%s: PortErrorAction bounce\n", __func__); 5463 set_link_down_reason( 5464 ppd, OPA_LINKDOWN_REASON_EXCESSIVE_BUFFER_OVERRUN, 0, 5465 OPA_LINKDOWN_REASON_EXCESSIVE_BUFFER_OVERRUN); 5466 queue_work(ppd->hfi1_wq, &ppd->link_bounce_work); 5467 } 5468 dd->rcv_ovfl_cnt = (u32)cur_ovfl_cnt; 5469 5470 mod_timer(&dd->rcverr_timer, jiffies + HZ * RCVERR_CHECK_TIME); 5471 } 5472 5473 static int init_rcverr(struct hfi1_devdata *dd) 5474 { 5475 setup_timer(&dd->rcverr_timer, update_rcverr_timer, (unsigned long)dd); 5476 /* Assume the hardware counter has been reset */ 5477 dd->rcv_ovfl_cnt = 0; 5478 return mod_timer(&dd->rcverr_timer, jiffies + HZ * RCVERR_CHECK_TIME); 5479 } 5480 5481 static void free_rcverr(struct hfi1_devdata *dd) 5482 { 5483 if (dd->rcverr_timer.data) 5484 del_timer_sync(&dd->rcverr_timer); 5485 dd->rcverr_timer.data = 0; 5486 } 5487 5488 static void handle_rxe_err(struct hfi1_devdata *dd, u32 unused, u64 reg) 5489 { 5490 char buf[96]; 5491 int i = 0; 5492 5493 dd_dev_info(dd, "Receive Error: %s\n", 5494 rxe_err_status_string(buf, sizeof(buf), reg)); 5495 5496 if (reg & ALL_RXE_FREEZE_ERR) { 5497 int flags = 0; 5498 5499 /* 5500 * Freeze mode recovery is disabled for the errors 5501 * in RXE_FREEZE_ABORT_MASK 5502 */ 5503 if (is_ax(dd) && (reg & RXE_FREEZE_ABORT_MASK)) 5504 flags = FREEZE_ABORT; 5505 5506 start_freeze_handling(dd->pport, flags); 5507 } 5508 5509 for (i = 0; i < NUM_RCV_ERR_STATUS_COUNTERS; i++) { 5510 if (reg & (1ull << i)) 5511 incr_cntr64(&dd->rcv_err_status_cnt[i]); 5512 } 5513 } 5514 5515 static void handle_misc_err(struct hfi1_devdata *dd, u32 unused, u64 reg) 5516 { 5517 char buf[96]; 5518 int i = 0; 5519 5520 dd_dev_info(dd, "Misc Error: %s", 5521 misc_err_status_string(buf, sizeof(buf), reg)); 5522 for (i = 0; i < NUM_MISC_ERR_STATUS_COUNTERS; i++) { 5523 if (reg & (1ull << i)) 5524 incr_cntr64(&dd->misc_err_status_cnt[i]); 5525 } 5526 } 5527 5528 static void handle_pio_err(struct hfi1_devdata *dd, u32 unused, u64 reg) 5529 { 5530 char buf[96]; 5531 int i = 0; 5532 5533 dd_dev_info(dd, "PIO Error: %s\n", 5534 pio_err_status_string(buf, sizeof(buf), reg)); 5535 5536 if (reg & ALL_PIO_FREEZE_ERR) 5537 start_freeze_handling(dd->pport, 0); 5538 5539 for (i = 0; i < NUM_SEND_PIO_ERR_STATUS_COUNTERS; i++) { 5540 if (reg & (1ull << i)) 5541 incr_cntr64(&dd->send_pio_err_status_cnt[i]); 5542 } 5543 } 5544 5545 static void handle_sdma_err(struct hfi1_devdata *dd, u32 unused, u64 reg) 5546 { 5547 char buf[96]; 5548 int i = 0; 5549 5550 dd_dev_info(dd, "SDMA Error: %s\n", 5551 sdma_err_status_string(buf, sizeof(buf), reg)); 5552 5553 if (reg & ALL_SDMA_FREEZE_ERR) 5554 start_freeze_handling(dd->pport, 0); 5555 5556 for (i = 0; i < NUM_SEND_DMA_ERR_STATUS_COUNTERS; i++) { 5557 if (reg & (1ull << i)) 5558 incr_cntr64(&dd->send_dma_err_status_cnt[i]); 5559 } 5560 } 5561 5562 static inline void __count_port_discards(struct hfi1_pportdata *ppd) 5563 { 5564 incr_cntr64(&ppd->port_xmit_discards); 5565 } 5566 5567 static void count_port_inactive(struct hfi1_devdata *dd) 5568 { 5569 __count_port_discards(dd->pport); 5570 } 5571 5572 /* 5573 * We have had a "disallowed packet" error during egress. Determine the 5574 * integrity check which failed, and update relevant error counter, etc. 5575 * 5576 * Note that the SEND_EGRESS_ERR_INFO register has only a single 5577 * bit of state per integrity check, and so we can miss the reason for an 5578 * egress error if more than one packet fails the same integrity check 5579 * since we cleared the corresponding bit in SEND_EGRESS_ERR_INFO. 5580 */ 5581 static void handle_send_egress_err_info(struct hfi1_devdata *dd, 5582 int vl) 5583 { 5584 struct hfi1_pportdata *ppd = dd->pport; 5585 u64 src = read_csr(dd, SEND_EGRESS_ERR_SOURCE); /* read first */ 5586 u64 info = read_csr(dd, SEND_EGRESS_ERR_INFO); 5587 char buf[96]; 5588 5589 /* clear down all observed info as quickly as possible after read */ 5590 write_csr(dd, SEND_EGRESS_ERR_INFO, info); 5591 5592 dd_dev_info(dd, 5593 "Egress Error Info: 0x%llx, %s Egress Error Src 0x%llx\n", 5594 info, egress_err_info_string(buf, sizeof(buf), info), src); 5595 5596 /* Eventually add other counters for each bit */ 5597 if (info & PORT_DISCARD_EGRESS_ERRS) { 5598 int weight, i; 5599 5600 /* 5601 * Count all applicable bits as individual errors and 5602 * attribute them to the packet that triggered this handler. 5603 * This may not be completely accurate due to limitations 5604 * on the available hardware error information. There is 5605 * a single information register and any number of error 5606 * packets may have occurred and contributed to it before 5607 * this routine is called. This means that: 5608 * a) If multiple packets with the same error occur before 5609 * this routine is called, earlier packets are missed. 5610 * There is only a single bit for each error type. 5611 * b) Errors may not be attributed to the correct VL. 5612 * The driver is attributing all bits in the info register 5613 * to the packet that triggered this call, but bits 5614 * could be an accumulation of different packets with 5615 * different VLs. 5616 * c) A single error packet may have multiple counts attached 5617 * to it. There is no way for the driver to know if 5618 * multiple bits set in the info register are due to a 5619 * single packet or multiple packets. The driver assumes 5620 * multiple packets. 5621 */ 5622 weight = hweight64(info & PORT_DISCARD_EGRESS_ERRS); 5623 for (i = 0; i < weight; i++) { 5624 __count_port_discards(ppd); 5625 if (vl >= 0 && vl < TXE_NUM_DATA_VL) 5626 incr_cntr64(&ppd->port_xmit_discards_vl[vl]); 5627 else if (vl == 15) 5628 incr_cntr64(&ppd->port_xmit_discards_vl 5629 [C_VL_15]); 5630 } 5631 } 5632 } 5633 5634 /* 5635 * Input value is a bit position within the SEND_EGRESS_ERR_STATUS 5636 * register. Does it represent a 'port inactive' error? 5637 */ 5638 static inline int port_inactive_err(u64 posn) 5639 { 5640 return (posn >= SEES(TX_LINKDOWN) && 5641 posn <= SEES(TX_INCORRECT_LINK_STATE)); 5642 } 5643 5644 /* 5645 * Input value is a bit position within the SEND_EGRESS_ERR_STATUS 5646 * register. Does it represent a 'disallowed packet' error? 5647 */ 5648 static inline int disallowed_pkt_err(int posn) 5649 { 5650 return (posn >= SEES(TX_SDMA0_DISALLOWED_PACKET) && 5651 posn <= SEES(TX_SDMA15_DISALLOWED_PACKET)); 5652 } 5653 5654 /* 5655 * Input value is a bit position of one of the SDMA engine disallowed 5656 * packet errors. Return which engine. Use of this must be guarded by 5657 * disallowed_pkt_err(). 5658 */ 5659 static inline int disallowed_pkt_engine(int posn) 5660 { 5661 return posn - SEES(TX_SDMA0_DISALLOWED_PACKET); 5662 } 5663 5664 /* 5665 * Translate an SDMA engine to a VL. Return -1 if the tranlation cannot 5666 * be done. 5667 */ 5668 static int engine_to_vl(struct hfi1_devdata *dd, int engine) 5669 { 5670 struct sdma_vl_map *m; 5671 int vl; 5672 5673 /* range check */ 5674 if (engine < 0 || engine >= TXE_NUM_SDMA_ENGINES) 5675 return -1; 5676 5677 rcu_read_lock(); 5678 m = rcu_dereference(dd->sdma_map); 5679 vl = m->engine_to_vl[engine]; 5680 rcu_read_unlock(); 5681 5682 return vl; 5683 } 5684 5685 /* 5686 * Translate the send context (sofware index) into a VL. Return -1 if the 5687 * translation cannot be done. 5688 */ 5689 static int sc_to_vl(struct hfi1_devdata *dd, int sw_index) 5690 { 5691 struct send_context_info *sci; 5692 struct send_context *sc; 5693 int i; 5694 5695 sci = &dd->send_contexts[sw_index]; 5696 5697 /* there is no information for user (PSM) and ack contexts */ 5698 if ((sci->type != SC_KERNEL) && (sci->type != SC_VL15)) 5699 return -1; 5700 5701 sc = sci->sc; 5702 if (!sc) 5703 return -1; 5704 if (dd->vld[15].sc == sc) 5705 return 15; 5706 for (i = 0; i < num_vls; i++) 5707 if (dd->vld[i].sc == sc) 5708 return i; 5709 5710 return -1; 5711 } 5712 5713 static void handle_egress_err(struct hfi1_devdata *dd, u32 unused, u64 reg) 5714 { 5715 u64 reg_copy = reg, handled = 0; 5716 char buf[96]; 5717 int i = 0; 5718 5719 if (reg & ALL_TXE_EGRESS_FREEZE_ERR) 5720 start_freeze_handling(dd->pport, 0); 5721 else if (is_ax(dd) && 5722 (reg & SEND_EGRESS_ERR_STATUS_TX_CREDIT_RETURN_VL_ERR_SMASK) && 5723 (dd->icode != ICODE_FUNCTIONAL_SIMULATOR)) 5724 start_freeze_handling(dd->pport, 0); 5725 5726 while (reg_copy) { 5727 int posn = fls64(reg_copy); 5728 /* fls64() returns a 1-based offset, we want it zero based */ 5729 int shift = posn - 1; 5730 u64 mask = 1ULL << shift; 5731 5732 if (port_inactive_err(shift)) { 5733 count_port_inactive(dd); 5734 handled |= mask; 5735 } else if (disallowed_pkt_err(shift)) { 5736 int vl = engine_to_vl(dd, disallowed_pkt_engine(shift)); 5737 5738 handle_send_egress_err_info(dd, vl); 5739 handled |= mask; 5740 } 5741 reg_copy &= ~mask; 5742 } 5743 5744 reg &= ~handled; 5745 5746 if (reg) 5747 dd_dev_info(dd, "Egress Error: %s\n", 5748 egress_err_status_string(buf, sizeof(buf), reg)); 5749 5750 for (i = 0; i < NUM_SEND_EGRESS_ERR_STATUS_COUNTERS; i++) { 5751 if (reg & (1ull << i)) 5752 incr_cntr64(&dd->send_egress_err_status_cnt[i]); 5753 } 5754 } 5755 5756 static void handle_txe_err(struct hfi1_devdata *dd, u32 unused, u64 reg) 5757 { 5758 char buf[96]; 5759 int i = 0; 5760 5761 dd_dev_info(dd, "Send Error: %s\n", 5762 send_err_status_string(buf, sizeof(buf), reg)); 5763 5764 for (i = 0; i < NUM_SEND_ERR_STATUS_COUNTERS; i++) { 5765 if (reg & (1ull << i)) 5766 incr_cntr64(&dd->send_err_status_cnt[i]); 5767 } 5768 } 5769 5770 /* 5771 * The maximum number of times the error clear down will loop before 5772 * blocking a repeating error. This value is arbitrary. 5773 */ 5774 #define MAX_CLEAR_COUNT 20 5775 5776 /* 5777 * Clear and handle an error register. All error interrupts are funneled 5778 * through here to have a central location to correctly handle single- 5779 * or multi-shot errors. 5780 * 5781 * For non per-context registers, call this routine with a context value 5782 * of 0 so the per-context offset is zero. 5783 * 5784 * If the handler loops too many times, assume that something is wrong 5785 * and can't be fixed, so mask the error bits. 5786 */ 5787 static void interrupt_clear_down(struct hfi1_devdata *dd, 5788 u32 context, 5789 const struct err_reg_info *eri) 5790 { 5791 u64 reg; 5792 u32 count; 5793 5794 /* read in a loop until no more errors are seen */ 5795 count = 0; 5796 while (1) { 5797 reg = read_kctxt_csr(dd, context, eri->status); 5798 if (reg == 0) 5799 break; 5800 write_kctxt_csr(dd, context, eri->clear, reg); 5801 if (likely(eri->handler)) 5802 eri->handler(dd, context, reg); 5803 count++; 5804 if (count > MAX_CLEAR_COUNT) { 5805 u64 mask; 5806 5807 dd_dev_err(dd, "Repeating %s bits 0x%llx - masking\n", 5808 eri->desc, reg); 5809 /* 5810 * Read-modify-write so any other masked bits 5811 * remain masked. 5812 */ 5813 mask = read_kctxt_csr(dd, context, eri->mask); 5814 mask &= ~reg; 5815 write_kctxt_csr(dd, context, eri->mask, mask); 5816 break; 5817 } 5818 } 5819 } 5820 5821 /* 5822 * CCE block "misc" interrupt. Source is < 16. 5823 */ 5824 static void is_misc_err_int(struct hfi1_devdata *dd, unsigned int source) 5825 { 5826 const struct err_reg_info *eri = &misc_errs[source]; 5827 5828 if (eri->handler) { 5829 interrupt_clear_down(dd, 0, eri); 5830 } else { 5831 dd_dev_err(dd, "Unexpected misc interrupt (%u) - reserved\n", 5832 source); 5833 } 5834 } 5835 5836 static char *send_context_err_status_string(char *buf, int buf_len, u64 flags) 5837 { 5838 return flag_string(buf, buf_len, flags, 5839 sc_err_status_flags, 5840 ARRAY_SIZE(sc_err_status_flags)); 5841 } 5842 5843 /* 5844 * Send context error interrupt. Source (hw_context) is < 160. 5845 * 5846 * All send context errors cause the send context to halt. The normal 5847 * clear-down mechanism cannot be used because we cannot clear the 5848 * error bits until several other long-running items are done first. 5849 * This is OK because with the context halted, nothing else is going 5850 * to happen on it anyway. 5851 */ 5852 static void is_sendctxt_err_int(struct hfi1_devdata *dd, 5853 unsigned int hw_context) 5854 { 5855 struct send_context_info *sci; 5856 struct send_context *sc; 5857 char flags[96]; 5858 u64 status; 5859 u32 sw_index; 5860 int i = 0; 5861 5862 sw_index = dd->hw_to_sw[hw_context]; 5863 if (sw_index >= dd->num_send_contexts) { 5864 dd_dev_err(dd, 5865 "out of range sw index %u for send context %u\n", 5866 sw_index, hw_context); 5867 return; 5868 } 5869 sci = &dd->send_contexts[sw_index]; 5870 sc = sci->sc; 5871 if (!sc) { 5872 dd_dev_err(dd, "%s: context %u(%u): no sc?\n", __func__, 5873 sw_index, hw_context); 5874 return; 5875 } 5876 5877 /* tell the software that a halt has begun */ 5878 sc_stop(sc, SCF_HALTED); 5879 5880 status = read_kctxt_csr(dd, hw_context, SEND_CTXT_ERR_STATUS); 5881 5882 dd_dev_info(dd, "Send Context %u(%u) Error: %s\n", sw_index, hw_context, 5883 send_context_err_status_string(flags, sizeof(flags), 5884 status)); 5885 5886 if (status & SEND_CTXT_ERR_STATUS_PIO_DISALLOWED_PACKET_ERR_SMASK) 5887 handle_send_egress_err_info(dd, sc_to_vl(dd, sw_index)); 5888 5889 /* 5890 * Automatically restart halted kernel contexts out of interrupt 5891 * context. User contexts must ask the driver to restart the context. 5892 */ 5893 if (sc->type != SC_USER) 5894 queue_work(dd->pport->hfi1_wq, &sc->halt_work); 5895 5896 /* 5897 * Update the counters for the corresponding status bits. 5898 * Note that these particular counters are aggregated over all 5899 * 160 contexts. 5900 */ 5901 for (i = 0; i < NUM_SEND_CTXT_ERR_STATUS_COUNTERS; i++) { 5902 if (status & (1ull << i)) 5903 incr_cntr64(&dd->sw_ctxt_err_status_cnt[i]); 5904 } 5905 } 5906 5907 static void handle_sdma_eng_err(struct hfi1_devdata *dd, 5908 unsigned int source, u64 status) 5909 { 5910 struct sdma_engine *sde; 5911 int i = 0; 5912 5913 sde = &dd->per_sdma[source]; 5914 #ifdef CONFIG_SDMA_VERBOSITY 5915 dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx, 5916 slashstrip(__FILE__), __LINE__, __func__); 5917 dd_dev_err(sde->dd, "CONFIG SDMA(%u) source: %u status 0x%llx\n", 5918 sde->this_idx, source, (unsigned long long)status); 5919 #endif 5920 sde->err_cnt++; 5921 sdma_engine_error(sde, status); 5922 5923 /* 5924 * Update the counters for the corresponding status bits. 5925 * Note that these particular counters are aggregated over 5926 * all 16 DMA engines. 5927 */ 5928 for (i = 0; i < NUM_SEND_DMA_ENG_ERR_STATUS_COUNTERS; i++) { 5929 if (status & (1ull << i)) 5930 incr_cntr64(&dd->sw_send_dma_eng_err_status_cnt[i]); 5931 } 5932 } 5933 5934 /* 5935 * CCE block SDMA error interrupt. Source is < 16. 5936 */ 5937 static void is_sdma_eng_err_int(struct hfi1_devdata *dd, unsigned int source) 5938 { 5939 #ifdef CONFIG_SDMA_VERBOSITY 5940 struct sdma_engine *sde = &dd->per_sdma[source]; 5941 5942 dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx, 5943 slashstrip(__FILE__), __LINE__, __func__); 5944 dd_dev_err(dd, "CONFIG SDMA(%u) source: %u\n", sde->this_idx, 5945 source); 5946 sdma_dumpstate(sde); 5947 #endif 5948 interrupt_clear_down(dd, source, &sdma_eng_err); 5949 } 5950 5951 /* 5952 * CCE block "various" interrupt. Source is < 8. 5953 */ 5954 static void is_various_int(struct hfi1_devdata *dd, unsigned int source) 5955 { 5956 const struct err_reg_info *eri = &various_err[source]; 5957 5958 /* 5959 * TCritInt cannot go through interrupt_clear_down() 5960 * because it is not a second tier interrupt. The handler 5961 * should be called directly. 5962 */ 5963 if (source == TCRIT_INT_SOURCE) 5964 handle_temp_err(dd); 5965 else if (eri->handler) 5966 interrupt_clear_down(dd, 0, eri); 5967 else 5968 dd_dev_info(dd, 5969 "%s: Unimplemented/reserved interrupt %d\n", 5970 __func__, source); 5971 } 5972 5973 static void handle_qsfp_int(struct hfi1_devdata *dd, u32 src_ctx, u64 reg) 5974 { 5975 /* src_ctx is always zero */ 5976 struct hfi1_pportdata *ppd = dd->pport; 5977 unsigned long flags; 5978 u64 qsfp_int_mgmt = (u64)(QSFP_HFI0_INT_N | QSFP_HFI0_MODPRST_N); 5979 5980 if (reg & QSFP_HFI0_MODPRST_N) { 5981 if (!qsfp_mod_present(ppd)) { 5982 dd_dev_info(dd, "%s: QSFP module removed\n", 5983 __func__); 5984 5985 ppd->driver_link_ready = 0; 5986 /* 5987 * Cable removed, reset all our information about the 5988 * cache and cable capabilities 5989 */ 5990 5991 spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags); 5992 /* 5993 * We don't set cache_refresh_required here as we expect 5994 * an interrupt when a cable is inserted 5995 */ 5996 ppd->qsfp_info.cache_valid = 0; 5997 ppd->qsfp_info.reset_needed = 0; 5998 ppd->qsfp_info.limiting_active = 0; 5999 spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock, 6000 flags); 6001 /* Invert the ModPresent pin now to detect plug-in */ 6002 write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_INVERT : 6003 ASIC_QSFP1_INVERT, qsfp_int_mgmt); 6004 6005 if ((ppd->offline_disabled_reason > 6006 HFI1_ODR_MASK( 6007 OPA_LINKDOWN_REASON_LOCAL_MEDIA_NOT_INSTALLED)) || 6008 (ppd->offline_disabled_reason == 6009 HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE))) 6010 ppd->offline_disabled_reason = 6011 HFI1_ODR_MASK( 6012 OPA_LINKDOWN_REASON_LOCAL_MEDIA_NOT_INSTALLED); 6013 6014 if (ppd->host_link_state == HLS_DN_POLL) { 6015 /* 6016 * The link is still in POLL. This means 6017 * that the normal link down processing 6018 * will not happen. We have to do it here 6019 * before turning the DC off. 6020 */ 6021 queue_work(ppd->hfi1_wq, &ppd->link_down_work); 6022 } 6023 } else { 6024 dd_dev_info(dd, "%s: QSFP module inserted\n", 6025 __func__); 6026 6027 spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags); 6028 ppd->qsfp_info.cache_valid = 0; 6029 ppd->qsfp_info.cache_refresh_required = 1; 6030 spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock, 6031 flags); 6032 6033 /* 6034 * Stop inversion of ModPresent pin to detect 6035 * removal of the cable 6036 */ 6037 qsfp_int_mgmt &= ~(u64)QSFP_HFI0_MODPRST_N; 6038 write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_INVERT : 6039 ASIC_QSFP1_INVERT, qsfp_int_mgmt); 6040 6041 ppd->offline_disabled_reason = 6042 HFI1_ODR_MASK(OPA_LINKDOWN_REASON_TRANSIENT); 6043 } 6044 } 6045 6046 if (reg & QSFP_HFI0_INT_N) { 6047 dd_dev_info(dd, "%s: Interrupt received from QSFP module\n", 6048 __func__); 6049 spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags); 6050 ppd->qsfp_info.check_interrupt_flags = 1; 6051 spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock, flags); 6052 } 6053 6054 /* Schedule the QSFP work only if there is a cable attached. */ 6055 if (qsfp_mod_present(ppd)) 6056 queue_work(ppd->hfi1_wq, &ppd->qsfp_info.qsfp_work); 6057 } 6058 6059 static int request_host_lcb_access(struct hfi1_devdata *dd) 6060 { 6061 int ret; 6062 6063 ret = do_8051_command(dd, HCMD_MISC, 6064 (u64)HCMD_MISC_REQUEST_LCB_ACCESS << 6065 LOAD_DATA_FIELD_ID_SHIFT, NULL); 6066 if (ret != HCMD_SUCCESS) { 6067 dd_dev_err(dd, "%s: command failed with error %d\n", 6068 __func__, ret); 6069 } 6070 return ret == HCMD_SUCCESS ? 0 : -EBUSY; 6071 } 6072 6073 static int request_8051_lcb_access(struct hfi1_devdata *dd) 6074 { 6075 int ret; 6076 6077 ret = do_8051_command(dd, HCMD_MISC, 6078 (u64)HCMD_MISC_GRANT_LCB_ACCESS << 6079 LOAD_DATA_FIELD_ID_SHIFT, NULL); 6080 if (ret != HCMD_SUCCESS) { 6081 dd_dev_err(dd, "%s: command failed with error %d\n", 6082 __func__, ret); 6083 } 6084 return ret == HCMD_SUCCESS ? 0 : -EBUSY; 6085 } 6086 6087 /* 6088 * Set the LCB selector - allow host access. The DCC selector always 6089 * points to the host. 6090 */ 6091 static inline void set_host_lcb_access(struct hfi1_devdata *dd) 6092 { 6093 write_csr(dd, DC_DC8051_CFG_CSR_ACCESS_SEL, 6094 DC_DC8051_CFG_CSR_ACCESS_SEL_DCC_SMASK | 6095 DC_DC8051_CFG_CSR_ACCESS_SEL_LCB_SMASK); 6096 } 6097 6098 /* 6099 * Clear the LCB selector - allow 8051 access. The DCC selector always 6100 * points to the host. 6101 */ 6102 static inline void set_8051_lcb_access(struct hfi1_devdata *dd) 6103 { 6104 write_csr(dd, DC_DC8051_CFG_CSR_ACCESS_SEL, 6105 DC_DC8051_CFG_CSR_ACCESS_SEL_DCC_SMASK); 6106 } 6107 6108 /* 6109 * Acquire LCB access from the 8051. If the host already has access, 6110 * just increment a counter. Otherwise, inform the 8051 that the 6111 * host is taking access. 6112 * 6113 * Returns: 6114 * 0 on success 6115 * -EBUSY if the 8051 has control and cannot be disturbed 6116 * -errno if unable to acquire access from the 8051 6117 */ 6118 int acquire_lcb_access(struct hfi1_devdata *dd, int sleep_ok) 6119 { 6120 struct hfi1_pportdata *ppd = dd->pport; 6121 int ret = 0; 6122 6123 /* 6124 * Use the host link state lock so the operation of this routine 6125 * { link state check, selector change, count increment } can occur 6126 * as a unit against a link state change. Otherwise there is a 6127 * race between the state change and the count increment. 6128 */ 6129 if (sleep_ok) { 6130 mutex_lock(&ppd->hls_lock); 6131 } else { 6132 while (!mutex_trylock(&ppd->hls_lock)) 6133 udelay(1); 6134 } 6135 6136 /* this access is valid only when the link is up */ 6137 if (ppd->host_link_state & HLS_DOWN) { 6138 dd_dev_info(dd, "%s: link state %s not up\n", 6139 __func__, link_state_name(ppd->host_link_state)); 6140 ret = -EBUSY; 6141 goto done; 6142 } 6143 6144 if (dd->lcb_access_count == 0) { 6145 ret = request_host_lcb_access(dd); 6146 if (ret) { 6147 dd_dev_err(dd, 6148 "%s: unable to acquire LCB access, err %d\n", 6149 __func__, ret); 6150 goto done; 6151 } 6152 set_host_lcb_access(dd); 6153 } 6154 dd->lcb_access_count++; 6155 done: 6156 mutex_unlock(&ppd->hls_lock); 6157 return ret; 6158 } 6159 6160 /* 6161 * Release LCB access by decrementing the use count. If the count is moving 6162 * from 1 to 0, inform 8051 that it has control back. 6163 * 6164 * Returns: 6165 * 0 on success 6166 * -errno if unable to release access to the 8051 6167 */ 6168 int release_lcb_access(struct hfi1_devdata *dd, int sleep_ok) 6169 { 6170 int ret = 0; 6171 6172 /* 6173 * Use the host link state lock because the acquire needed it. 6174 * Here, we only need to keep { selector change, count decrement } 6175 * as a unit. 6176 */ 6177 if (sleep_ok) { 6178 mutex_lock(&dd->pport->hls_lock); 6179 } else { 6180 while (!mutex_trylock(&dd->pport->hls_lock)) 6181 udelay(1); 6182 } 6183 6184 if (dd->lcb_access_count == 0) { 6185 dd_dev_err(dd, "%s: LCB access count is zero. Skipping.\n", 6186 __func__); 6187 goto done; 6188 } 6189 6190 if (dd->lcb_access_count == 1) { 6191 set_8051_lcb_access(dd); 6192 ret = request_8051_lcb_access(dd); 6193 if (ret) { 6194 dd_dev_err(dd, 6195 "%s: unable to release LCB access, err %d\n", 6196 __func__, ret); 6197 /* restore host access if the grant didn't work */ 6198 set_host_lcb_access(dd); 6199 goto done; 6200 } 6201 } 6202 dd->lcb_access_count--; 6203 done: 6204 mutex_unlock(&dd->pport->hls_lock); 6205 return ret; 6206 } 6207 6208 /* 6209 * Initialize LCB access variables and state. Called during driver load, 6210 * after most of the initialization is finished. 6211 * 6212 * The DC default is LCB access on for the host. The driver defaults to 6213 * leaving access to the 8051. Assign access now - this constrains the call 6214 * to this routine to be after all LCB set-up is done. In particular, after 6215 * hf1_init_dd() -> set_up_interrupts() -> clear_all_interrupts() 6216 */ 6217 static void init_lcb_access(struct hfi1_devdata *dd) 6218 { 6219 dd->lcb_access_count = 0; 6220 } 6221 6222 /* 6223 * Write a response back to a 8051 request. 6224 */ 6225 static void hreq_response(struct hfi1_devdata *dd, u8 return_code, u16 rsp_data) 6226 { 6227 write_csr(dd, DC_DC8051_CFG_EXT_DEV_0, 6228 DC_DC8051_CFG_EXT_DEV_0_COMPLETED_SMASK | 6229 (u64)return_code << 6230 DC_DC8051_CFG_EXT_DEV_0_RETURN_CODE_SHIFT | 6231 (u64)rsp_data << DC_DC8051_CFG_EXT_DEV_0_RSP_DATA_SHIFT); 6232 } 6233 6234 /* 6235 * Handle host requests from the 8051. 6236 */ 6237 static void handle_8051_request(struct hfi1_pportdata *ppd) 6238 { 6239 struct hfi1_devdata *dd = ppd->dd; 6240 u64 reg; 6241 u16 data = 0; 6242 u8 type; 6243 6244 reg = read_csr(dd, DC_DC8051_CFG_EXT_DEV_1); 6245 if ((reg & DC_DC8051_CFG_EXT_DEV_1_REQ_NEW_SMASK) == 0) 6246 return; /* no request */ 6247 6248 /* zero out COMPLETED so the response is seen */ 6249 write_csr(dd, DC_DC8051_CFG_EXT_DEV_0, 0); 6250 6251 /* extract request details */ 6252 type = (reg >> DC_DC8051_CFG_EXT_DEV_1_REQ_TYPE_SHIFT) 6253 & DC_DC8051_CFG_EXT_DEV_1_REQ_TYPE_MASK; 6254 data = (reg >> DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SHIFT) 6255 & DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_MASK; 6256 6257 switch (type) { 6258 case HREQ_LOAD_CONFIG: 6259 case HREQ_SAVE_CONFIG: 6260 case HREQ_READ_CONFIG: 6261 case HREQ_SET_TX_EQ_ABS: 6262 case HREQ_SET_TX_EQ_REL: 6263 case HREQ_ENABLE: 6264 dd_dev_info(dd, "8051 request: request 0x%x not supported\n", 6265 type); 6266 hreq_response(dd, HREQ_NOT_SUPPORTED, 0); 6267 break; 6268 case HREQ_CONFIG_DONE: 6269 hreq_response(dd, HREQ_SUCCESS, 0); 6270 break; 6271 6272 case HREQ_INTERFACE_TEST: 6273 hreq_response(dd, HREQ_SUCCESS, data); 6274 break; 6275 default: 6276 dd_dev_err(dd, "8051 request: unknown request 0x%x\n", type); 6277 hreq_response(dd, HREQ_NOT_SUPPORTED, 0); 6278 break; 6279 } 6280 } 6281 6282 static void write_global_credit(struct hfi1_devdata *dd, 6283 u8 vau, u16 total, u16 shared) 6284 { 6285 write_csr(dd, SEND_CM_GLOBAL_CREDIT, 6286 ((u64)total << 6287 SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT) | 6288 ((u64)shared << 6289 SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SHIFT) | 6290 ((u64)vau << SEND_CM_GLOBAL_CREDIT_AU_SHIFT)); 6291 } 6292 6293 /* 6294 * Set up initial VL15 credits of the remote. Assumes the rest of 6295 * the CM credit registers are zero from a previous global or credit reset . 6296 */ 6297 void set_up_vl15(struct hfi1_devdata *dd, u8 vau, u16 vl15buf) 6298 { 6299 /* leave shared count at zero for both global and VL15 */ 6300 write_global_credit(dd, vau, vl15buf, 0); 6301 6302 /* We may need some credits for another VL when sending packets 6303 * with the snoop interface. Dividing it down the middle for VL15 6304 * and VL0 should suffice. 6305 */ 6306 if (unlikely(dd->hfi1_snoop.mode_flag == HFI1_PORT_SNOOP_MODE)) { 6307 write_csr(dd, SEND_CM_CREDIT_VL15, (u64)(vl15buf >> 1) 6308 << SEND_CM_CREDIT_VL15_DEDICATED_LIMIT_VL_SHIFT); 6309 write_csr(dd, SEND_CM_CREDIT_VL, (u64)(vl15buf >> 1) 6310 << SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SHIFT); 6311 } else { 6312 write_csr(dd, SEND_CM_CREDIT_VL15, (u64)vl15buf 6313 << SEND_CM_CREDIT_VL15_DEDICATED_LIMIT_VL_SHIFT); 6314 } 6315 } 6316 6317 /* 6318 * Zero all credit details from the previous connection and 6319 * reset the CM manager's internal counters. 6320 */ 6321 void reset_link_credits(struct hfi1_devdata *dd) 6322 { 6323 int i; 6324 6325 /* remove all previous VL credit limits */ 6326 for (i = 0; i < TXE_NUM_DATA_VL; i++) 6327 write_csr(dd, SEND_CM_CREDIT_VL + (8 * i), 0); 6328 write_csr(dd, SEND_CM_CREDIT_VL15, 0); 6329 write_global_credit(dd, 0, 0, 0); 6330 /* reset the CM block */ 6331 pio_send_control(dd, PSC_CM_RESET); 6332 } 6333 6334 /* convert a vCU to a CU */ 6335 static u32 vcu_to_cu(u8 vcu) 6336 { 6337 return 1 << vcu; 6338 } 6339 6340 /* convert a CU to a vCU */ 6341 static u8 cu_to_vcu(u32 cu) 6342 { 6343 return ilog2(cu); 6344 } 6345 6346 /* convert a vAU to an AU */ 6347 static u32 vau_to_au(u8 vau) 6348 { 6349 return 8 * (1 << vau); 6350 } 6351 6352 static void set_linkup_defaults(struct hfi1_pportdata *ppd) 6353 { 6354 ppd->sm_trap_qp = 0x0; 6355 ppd->sa_qp = 0x1; 6356 } 6357 6358 /* 6359 * Graceful LCB shutdown. This leaves the LCB FIFOs in reset. 6360 */ 6361 static void lcb_shutdown(struct hfi1_devdata *dd, int abort) 6362 { 6363 u64 reg; 6364 6365 /* clear lcb run: LCB_CFG_RUN.EN = 0 */ 6366 write_csr(dd, DC_LCB_CFG_RUN, 0); 6367 /* set tx fifo reset: LCB_CFG_TX_FIFOS_RESET.VAL = 1 */ 6368 write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 6369 1ull << DC_LCB_CFG_TX_FIFOS_RESET_VAL_SHIFT); 6370 /* set dcc reset csr: DCC_CFG_RESET.{reset_lcb,reset_rx_fpe} = 1 */ 6371 dd->lcb_err_en = read_csr(dd, DC_LCB_ERR_EN); 6372 reg = read_csr(dd, DCC_CFG_RESET); 6373 write_csr(dd, DCC_CFG_RESET, reg | 6374 (1ull << DCC_CFG_RESET_RESET_LCB_SHIFT) | 6375 (1ull << DCC_CFG_RESET_RESET_RX_FPE_SHIFT)); 6376 (void)read_csr(dd, DCC_CFG_RESET); /* make sure the write completed */ 6377 if (!abort) { 6378 udelay(1); /* must hold for the longer of 16cclks or 20ns */ 6379 write_csr(dd, DCC_CFG_RESET, reg); 6380 write_csr(dd, DC_LCB_ERR_EN, dd->lcb_err_en); 6381 } 6382 } 6383 6384 /* 6385 * This routine should be called after the link has been transitioned to 6386 * OFFLINE (OFFLINE state has the side effect of putting the SerDes into 6387 * reset). 6388 * 6389 * The expectation is that the caller of this routine would have taken 6390 * care of properly transitioning the link into the correct state. 6391 */ 6392 static void dc_shutdown(struct hfi1_devdata *dd) 6393 { 6394 unsigned long flags; 6395 6396 spin_lock_irqsave(&dd->dc8051_lock, flags); 6397 if (dd->dc_shutdown) { 6398 spin_unlock_irqrestore(&dd->dc8051_lock, flags); 6399 return; 6400 } 6401 dd->dc_shutdown = 1; 6402 spin_unlock_irqrestore(&dd->dc8051_lock, flags); 6403 /* Shutdown the LCB */ 6404 lcb_shutdown(dd, 1); 6405 /* 6406 * Going to OFFLINE would have causes the 8051 to put the 6407 * SerDes into reset already. Just need to shut down the 8051, 6408 * itself. 6409 */ 6410 write_csr(dd, DC_DC8051_CFG_RST, 0x1); 6411 } 6412 6413 /* 6414 * Calling this after the DC has been brought out of reset should not 6415 * do any damage. 6416 */ 6417 static void dc_start(struct hfi1_devdata *dd) 6418 { 6419 unsigned long flags; 6420 int ret; 6421 6422 spin_lock_irqsave(&dd->dc8051_lock, flags); 6423 if (!dd->dc_shutdown) 6424 goto done; 6425 spin_unlock_irqrestore(&dd->dc8051_lock, flags); 6426 /* Take the 8051 out of reset */ 6427 write_csr(dd, DC_DC8051_CFG_RST, 0ull); 6428 /* Wait until 8051 is ready */ 6429 ret = wait_fm_ready(dd, TIMEOUT_8051_START); 6430 if (ret) { 6431 dd_dev_err(dd, "%s: timeout starting 8051 firmware\n", 6432 __func__); 6433 } 6434 /* Take away reset for LCB and RX FPE (set in lcb_shutdown). */ 6435 write_csr(dd, DCC_CFG_RESET, 0x10); 6436 /* lcb_shutdown() with abort=1 does not restore these */ 6437 write_csr(dd, DC_LCB_ERR_EN, dd->lcb_err_en); 6438 spin_lock_irqsave(&dd->dc8051_lock, flags); 6439 dd->dc_shutdown = 0; 6440 done: 6441 spin_unlock_irqrestore(&dd->dc8051_lock, flags); 6442 } 6443 6444 /* 6445 * These LCB adjustments are for the Aurora SerDes core in the FPGA. 6446 */ 6447 static void adjust_lcb_for_fpga_serdes(struct hfi1_devdata *dd) 6448 { 6449 u64 rx_radr, tx_radr; 6450 u32 version; 6451 6452 if (dd->icode != ICODE_FPGA_EMULATION) 6453 return; 6454 6455 /* 6456 * These LCB defaults on emulator _s are good, nothing to do here: 6457 * LCB_CFG_TX_FIFOS_RADR 6458 * LCB_CFG_RX_FIFOS_RADR 6459 * LCB_CFG_LN_DCLK 6460 * LCB_CFG_IGNORE_LOST_RCLK 6461 */ 6462 if (is_emulator_s(dd)) 6463 return; 6464 /* else this is _p */ 6465 6466 version = emulator_rev(dd); 6467 if (!is_ax(dd)) 6468 version = 0x2d; /* all B0 use 0x2d or higher settings */ 6469 6470 if (version <= 0x12) { 6471 /* release 0x12 and below */ 6472 6473 /* 6474 * LCB_CFG_RX_FIFOS_RADR.RST_VAL = 0x9 6475 * LCB_CFG_RX_FIFOS_RADR.OK_TO_JUMP_VAL = 0x9 6476 * LCB_CFG_RX_FIFOS_RADR.DO_NOT_JUMP_VAL = 0xa 6477 */ 6478 rx_radr = 6479 0xaull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT 6480 | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT 6481 | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT; 6482 /* 6483 * LCB_CFG_TX_FIFOS_RADR.ON_REINIT = 0 (default) 6484 * LCB_CFG_TX_FIFOS_RADR.RST_VAL = 6 6485 */ 6486 tx_radr = 6ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT; 6487 } else if (version <= 0x18) { 6488 /* release 0x13 up to 0x18 */ 6489 /* LCB_CFG_RX_FIFOS_RADR = 0x988 */ 6490 rx_radr = 6491 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT 6492 | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT 6493 | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT; 6494 tx_radr = 7ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT; 6495 } else if (version == 0x19) { 6496 /* release 0x19 */ 6497 /* LCB_CFG_RX_FIFOS_RADR = 0xa99 */ 6498 rx_radr = 6499 0xAull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT 6500 | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT 6501 | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT; 6502 tx_radr = 3ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT; 6503 } else if (version == 0x1a) { 6504 /* release 0x1a */ 6505 /* LCB_CFG_RX_FIFOS_RADR = 0x988 */ 6506 rx_radr = 6507 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT 6508 | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT 6509 | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT; 6510 tx_radr = 7ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT; 6511 write_csr(dd, DC_LCB_CFG_LN_DCLK, 1ull); 6512 } else { 6513 /* release 0x1b and higher */ 6514 /* LCB_CFG_RX_FIFOS_RADR = 0x877 */ 6515 rx_radr = 6516 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT 6517 | 0x7ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT 6518 | 0x7ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT; 6519 tx_radr = 3ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT; 6520 } 6521 6522 write_csr(dd, DC_LCB_CFG_RX_FIFOS_RADR, rx_radr); 6523 /* LCB_CFG_IGNORE_LOST_RCLK.EN = 1 */ 6524 write_csr(dd, DC_LCB_CFG_IGNORE_LOST_RCLK, 6525 DC_LCB_CFG_IGNORE_LOST_RCLK_EN_SMASK); 6526 write_csr(dd, DC_LCB_CFG_TX_FIFOS_RADR, tx_radr); 6527 } 6528 6529 /* 6530 * Handle a SMA idle message 6531 * 6532 * This is a work-queue function outside of the interrupt. 6533 */ 6534 void handle_sma_message(struct work_struct *work) 6535 { 6536 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata, 6537 sma_message_work); 6538 struct hfi1_devdata *dd = ppd->dd; 6539 u64 msg; 6540 int ret; 6541 6542 /* 6543 * msg is bytes 1-4 of the 40-bit idle message - the command code 6544 * is stripped off 6545 */ 6546 ret = read_idle_sma(dd, &msg); 6547 if (ret) 6548 return; 6549 dd_dev_info(dd, "%s: SMA message 0x%llx\n", __func__, msg); 6550 /* 6551 * React to the SMA message. Byte[1] (0 for us) is the command. 6552 */ 6553 switch (msg & 0xff) { 6554 case SMA_IDLE_ARM: 6555 /* 6556 * See OPAv1 table 9-14 - HFI and External Switch Ports Key 6557 * State Transitions 6558 * 6559 * Only expected in INIT or ARMED, discard otherwise. 6560 */ 6561 if (ppd->host_link_state & (HLS_UP_INIT | HLS_UP_ARMED)) 6562 ppd->neighbor_normal = 1; 6563 break; 6564 case SMA_IDLE_ACTIVE: 6565 /* 6566 * See OPAv1 table 9-14 - HFI and External Switch Ports Key 6567 * State Transitions 6568 * 6569 * Can activate the node. Discard otherwise. 6570 */ 6571 if (ppd->host_link_state == HLS_UP_ARMED && 6572 ppd->is_active_optimize_enabled) { 6573 ppd->neighbor_normal = 1; 6574 ret = set_link_state(ppd, HLS_UP_ACTIVE); 6575 if (ret) 6576 dd_dev_err( 6577 dd, 6578 "%s: received Active SMA idle message, couldn't set link to Active\n", 6579 __func__); 6580 } 6581 break; 6582 default: 6583 dd_dev_err(dd, 6584 "%s: received unexpected SMA idle message 0x%llx\n", 6585 __func__, msg); 6586 break; 6587 } 6588 } 6589 6590 static void adjust_rcvctrl(struct hfi1_devdata *dd, u64 add, u64 clear) 6591 { 6592 u64 rcvctrl; 6593 unsigned long flags; 6594 6595 spin_lock_irqsave(&dd->rcvctrl_lock, flags); 6596 rcvctrl = read_csr(dd, RCV_CTRL); 6597 rcvctrl |= add; 6598 rcvctrl &= ~clear; 6599 write_csr(dd, RCV_CTRL, rcvctrl); 6600 spin_unlock_irqrestore(&dd->rcvctrl_lock, flags); 6601 } 6602 6603 static inline void add_rcvctrl(struct hfi1_devdata *dd, u64 add) 6604 { 6605 adjust_rcvctrl(dd, add, 0); 6606 } 6607 6608 static inline void clear_rcvctrl(struct hfi1_devdata *dd, u64 clear) 6609 { 6610 adjust_rcvctrl(dd, 0, clear); 6611 } 6612 6613 /* 6614 * Called from all interrupt handlers to start handling an SPC freeze. 6615 */ 6616 void start_freeze_handling(struct hfi1_pportdata *ppd, int flags) 6617 { 6618 struct hfi1_devdata *dd = ppd->dd; 6619 struct send_context *sc; 6620 int i; 6621 6622 if (flags & FREEZE_SELF) 6623 write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_FREEZE_SMASK); 6624 6625 /* enter frozen mode */ 6626 dd->flags |= HFI1_FROZEN; 6627 6628 /* notify all SDMA engines that they are going into a freeze */ 6629 sdma_freeze_notify(dd, !!(flags & FREEZE_LINK_DOWN)); 6630 6631 /* do halt pre-handling on all enabled send contexts */ 6632 for (i = 0; i < dd->num_send_contexts; i++) { 6633 sc = dd->send_contexts[i].sc; 6634 if (sc && (sc->flags & SCF_ENABLED)) 6635 sc_stop(sc, SCF_FROZEN | SCF_HALTED); 6636 } 6637 6638 /* Send context are frozen. Notify user space */ 6639 hfi1_set_uevent_bits(ppd, _HFI1_EVENT_FROZEN_BIT); 6640 6641 if (flags & FREEZE_ABORT) { 6642 dd_dev_err(dd, 6643 "Aborted freeze recovery. Please REBOOT system\n"); 6644 return; 6645 } 6646 /* queue non-interrupt handler */ 6647 queue_work(ppd->hfi1_wq, &ppd->freeze_work); 6648 } 6649 6650 /* 6651 * Wait until all 4 sub-blocks indicate that they have frozen or unfrozen, 6652 * depending on the "freeze" parameter. 6653 * 6654 * No need to return an error if it times out, our only option 6655 * is to proceed anyway. 6656 */ 6657 static void wait_for_freeze_status(struct hfi1_devdata *dd, int freeze) 6658 { 6659 unsigned long timeout; 6660 u64 reg; 6661 6662 timeout = jiffies + msecs_to_jiffies(FREEZE_STATUS_TIMEOUT); 6663 while (1) { 6664 reg = read_csr(dd, CCE_STATUS); 6665 if (freeze) { 6666 /* waiting until all indicators are set */ 6667 if ((reg & ALL_FROZE) == ALL_FROZE) 6668 return; /* all done */ 6669 } else { 6670 /* waiting until all indicators are clear */ 6671 if ((reg & ALL_FROZE) == 0) 6672 return; /* all done */ 6673 } 6674 6675 if (time_after(jiffies, timeout)) { 6676 dd_dev_err(dd, 6677 "Time out waiting for SPC %sfreeze, bits 0x%llx, expecting 0x%llx, continuing", 6678 freeze ? "" : "un", reg & ALL_FROZE, 6679 freeze ? ALL_FROZE : 0ull); 6680 return; 6681 } 6682 usleep_range(80, 120); 6683 } 6684 } 6685 6686 /* 6687 * Do all freeze handling for the RXE block. 6688 */ 6689 static void rxe_freeze(struct hfi1_devdata *dd) 6690 { 6691 int i; 6692 6693 /* disable port */ 6694 clear_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK); 6695 6696 /* disable all receive contexts */ 6697 for (i = 0; i < dd->num_rcv_contexts; i++) 6698 hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_DIS, i); 6699 } 6700 6701 /* 6702 * Unfreeze handling for the RXE block - kernel contexts only. 6703 * This will also enable the port. User contexts will do unfreeze 6704 * handling on a per-context basis as they call into the driver. 6705 * 6706 */ 6707 static void rxe_kernel_unfreeze(struct hfi1_devdata *dd) 6708 { 6709 u32 rcvmask; 6710 int i; 6711 6712 /* enable all kernel contexts */ 6713 for (i = 0; i < dd->n_krcv_queues; i++) { 6714 rcvmask = HFI1_RCVCTRL_CTXT_ENB; 6715 /* HFI1_RCVCTRL_TAILUPD_[ENB|DIS] needs to be set explicitly */ 6716 rcvmask |= HFI1_CAP_KGET_MASK(dd->rcd[i]->flags, DMA_RTAIL) ? 6717 HFI1_RCVCTRL_TAILUPD_ENB : HFI1_RCVCTRL_TAILUPD_DIS; 6718 hfi1_rcvctrl(dd, rcvmask, i); 6719 } 6720 6721 /* enable port */ 6722 add_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK); 6723 } 6724 6725 /* 6726 * Non-interrupt SPC freeze handling. 6727 * 6728 * This is a work-queue function outside of the triggering interrupt. 6729 */ 6730 void handle_freeze(struct work_struct *work) 6731 { 6732 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata, 6733 freeze_work); 6734 struct hfi1_devdata *dd = ppd->dd; 6735 6736 /* wait for freeze indicators on all affected blocks */ 6737 wait_for_freeze_status(dd, 1); 6738 6739 /* SPC is now frozen */ 6740 6741 /* do send PIO freeze steps */ 6742 pio_freeze(dd); 6743 6744 /* do send DMA freeze steps */ 6745 sdma_freeze(dd); 6746 6747 /* do send egress freeze steps - nothing to do */ 6748 6749 /* do receive freeze steps */ 6750 rxe_freeze(dd); 6751 6752 /* 6753 * Unfreeze the hardware - clear the freeze, wait for each 6754 * block's frozen bit to clear, then clear the frozen flag. 6755 */ 6756 write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_UNFREEZE_SMASK); 6757 wait_for_freeze_status(dd, 0); 6758 6759 if (is_ax(dd)) { 6760 write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_FREEZE_SMASK); 6761 wait_for_freeze_status(dd, 1); 6762 write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_UNFREEZE_SMASK); 6763 wait_for_freeze_status(dd, 0); 6764 } 6765 6766 /* do send PIO unfreeze steps for kernel contexts */ 6767 pio_kernel_unfreeze(dd); 6768 6769 /* do send DMA unfreeze steps */ 6770 sdma_unfreeze(dd); 6771 6772 /* do send egress unfreeze steps - nothing to do */ 6773 6774 /* do receive unfreeze steps for kernel contexts */ 6775 rxe_kernel_unfreeze(dd); 6776 6777 /* 6778 * The unfreeze procedure touches global device registers when 6779 * it disables and re-enables RXE. Mark the device unfrozen 6780 * after all that is done so other parts of the driver waiting 6781 * for the device to unfreeze don't do things out of order. 6782 * 6783 * The above implies that the meaning of HFI1_FROZEN flag is 6784 * "Device has gone into freeze mode and freeze mode handling 6785 * is still in progress." 6786 * 6787 * The flag will be removed when freeze mode processing has 6788 * completed. 6789 */ 6790 dd->flags &= ~HFI1_FROZEN; 6791 wake_up(&dd->event_queue); 6792 6793 /* no longer frozen */ 6794 } 6795 6796 /* 6797 * Handle a link up interrupt from the 8051. 6798 * 6799 * This is a work-queue function outside of the interrupt. 6800 */ 6801 void handle_link_up(struct work_struct *work) 6802 { 6803 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata, 6804 link_up_work); 6805 set_link_state(ppd, HLS_UP_INIT); 6806 6807 /* cache the read of DC_LCB_STS_ROUND_TRIP_LTP_CNT */ 6808 read_ltp_rtt(ppd->dd); 6809 /* 6810 * OPA specifies that certain counters are cleared on a transition 6811 * to link up, so do that. 6812 */ 6813 clear_linkup_counters(ppd->dd); 6814 /* 6815 * And (re)set link up default values. 6816 */ 6817 set_linkup_defaults(ppd); 6818 6819 /* enforce link speed enabled */ 6820 if ((ppd->link_speed_active & ppd->link_speed_enabled) == 0) { 6821 /* oops - current speed is not enabled, bounce */ 6822 dd_dev_err(ppd->dd, 6823 "Link speed active 0x%x is outside enabled 0x%x, downing link\n", 6824 ppd->link_speed_active, ppd->link_speed_enabled); 6825 set_link_down_reason(ppd, OPA_LINKDOWN_REASON_SPEED_POLICY, 0, 6826 OPA_LINKDOWN_REASON_SPEED_POLICY); 6827 set_link_state(ppd, HLS_DN_OFFLINE); 6828 tune_serdes(ppd); 6829 start_link(ppd); 6830 } 6831 } 6832 6833 /* 6834 * Several pieces of LNI information were cached for SMA in ppd. 6835 * Reset these on link down 6836 */ 6837 static void reset_neighbor_info(struct hfi1_pportdata *ppd) 6838 { 6839 ppd->neighbor_guid = 0; 6840 ppd->neighbor_port_number = 0; 6841 ppd->neighbor_type = 0; 6842 ppd->neighbor_fm_security = 0; 6843 } 6844 6845 static const char * const link_down_reason_strs[] = { 6846 [OPA_LINKDOWN_REASON_NONE] = "None", 6847 [OPA_LINKDOWN_REASON_RCV_ERROR_0] = "Recive error 0", 6848 [OPA_LINKDOWN_REASON_BAD_PKT_LEN] = "Bad packet length", 6849 [OPA_LINKDOWN_REASON_PKT_TOO_LONG] = "Packet too long", 6850 [OPA_LINKDOWN_REASON_PKT_TOO_SHORT] = "Packet too short", 6851 [OPA_LINKDOWN_REASON_BAD_SLID] = "Bad SLID", 6852 [OPA_LINKDOWN_REASON_BAD_DLID] = "Bad DLID", 6853 [OPA_LINKDOWN_REASON_BAD_L2] = "Bad L2", 6854 [OPA_LINKDOWN_REASON_BAD_SC] = "Bad SC", 6855 [OPA_LINKDOWN_REASON_RCV_ERROR_8] = "Receive error 8", 6856 [OPA_LINKDOWN_REASON_BAD_MID_TAIL] = "Bad mid tail", 6857 [OPA_LINKDOWN_REASON_RCV_ERROR_10] = "Receive error 10", 6858 [OPA_LINKDOWN_REASON_PREEMPT_ERROR] = "Preempt error", 6859 [OPA_LINKDOWN_REASON_PREEMPT_VL15] = "Preempt vl15", 6860 [OPA_LINKDOWN_REASON_BAD_VL_MARKER] = "Bad VL marker", 6861 [OPA_LINKDOWN_REASON_RCV_ERROR_14] = "Receive error 14", 6862 [OPA_LINKDOWN_REASON_RCV_ERROR_15] = "Receive error 15", 6863 [OPA_LINKDOWN_REASON_BAD_HEAD_DIST] = "Bad head distance", 6864 [OPA_LINKDOWN_REASON_BAD_TAIL_DIST] = "Bad tail distance", 6865 [OPA_LINKDOWN_REASON_BAD_CTRL_DIST] = "Bad control distance", 6866 [OPA_LINKDOWN_REASON_BAD_CREDIT_ACK] = "Bad credit ack", 6867 [OPA_LINKDOWN_REASON_UNSUPPORTED_VL_MARKER] = "Unsupported VL marker", 6868 [OPA_LINKDOWN_REASON_BAD_PREEMPT] = "Bad preempt", 6869 [OPA_LINKDOWN_REASON_BAD_CONTROL_FLIT] = "Bad control flit", 6870 [OPA_LINKDOWN_REASON_EXCEED_MULTICAST_LIMIT] = "Exceed multicast limit", 6871 [OPA_LINKDOWN_REASON_RCV_ERROR_24] = "Receive error 24", 6872 [OPA_LINKDOWN_REASON_RCV_ERROR_25] = "Receive error 25", 6873 [OPA_LINKDOWN_REASON_RCV_ERROR_26] = "Receive error 26", 6874 [OPA_LINKDOWN_REASON_RCV_ERROR_27] = "Receive error 27", 6875 [OPA_LINKDOWN_REASON_RCV_ERROR_28] = "Receive error 28", 6876 [OPA_LINKDOWN_REASON_RCV_ERROR_29] = "Receive error 29", 6877 [OPA_LINKDOWN_REASON_RCV_ERROR_30] = "Receive error 30", 6878 [OPA_LINKDOWN_REASON_EXCESSIVE_BUFFER_OVERRUN] = 6879 "Excessive buffer overrun", 6880 [OPA_LINKDOWN_REASON_UNKNOWN] = "Unknown", 6881 [OPA_LINKDOWN_REASON_REBOOT] = "Reboot", 6882 [OPA_LINKDOWN_REASON_NEIGHBOR_UNKNOWN] = "Neighbor unknown", 6883 [OPA_LINKDOWN_REASON_FM_BOUNCE] = "FM bounce", 6884 [OPA_LINKDOWN_REASON_SPEED_POLICY] = "Speed policy", 6885 [OPA_LINKDOWN_REASON_WIDTH_POLICY] = "Width policy", 6886 [OPA_LINKDOWN_REASON_DISCONNECTED] = "Disconnected", 6887 [OPA_LINKDOWN_REASON_LOCAL_MEDIA_NOT_INSTALLED] = 6888 "Local media not installed", 6889 [OPA_LINKDOWN_REASON_NOT_INSTALLED] = "Not installed", 6890 [OPA_LINKDOWN_REASON_CHASSIS_CONFIG] = "Chassis config", 6891 [OPA_LINKDOWN_REASON_END_TO_END_NOT_INSTALLED] = 6892 "End to end not installed", 6893 [OPA_LINKDOWN_REASON_POWER_POLICY] = "Power policy", 6894 [OPA_LINKDOWN_REASON_LINKSPEED_POLICY] = "Link speed policy", 6895 [OPA_LINKDOWN_REASON_LINKWIDTH_POLICY] = "Link width policy", 6896 [OPA_LINKDOWN_REASON_SWITCH_MGMT] = "Switch management", 6897 [OPA_LINKDOWN_REASON_SMA_DISABLED] = "SMA disabled", 6898 [OPA_LINKDOWN_REASON_TRANSIENT] = "Transient" 6899 }; 6900 6901 /* return the neighbor link down reason string */ 6902 static const char *link_down_reason_str(u8 reason) 6903 { 6904 const char *str = NULL; 6905 6906 if (reason < ARRAY_SIZE(link_down_reason_strs)) 6907 str = link_down_reason_strs[reason]; 6908 if (!str) 6909 str = "(invalid)"; 6910 6911 return str; 6912 } 6913 6914 /* 6915 * Handle a link down interrupt from the 8051. 6916 * 6917 * This is a work-queue function outside of the interrupt. 6918 */ 6919 void handle_link_down(struct work_struct *work) 6920 { 6921 u8 lcl_reason, neigh_reason = 0; 6922 u8 link_down_reason; 6923 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata, 6924 link_down_work); 6925 int was_up; 6926 static const char ldr_str[] = "Link down reason: "; 6927 6928 if ((ppd->host_link_state & 6929 (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) && 6930 ppd->port_type == PORT_TYPE_FIXED) 6931 ppd->offline_disabled_reason = 6932 HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NOT_INSTALLED); 6933 6934 /* Go offline first, then deal with reading/writing through 8051 */ 6935 was_up = !!(ppd->host_link_state & HLS_UP); 6936 set_link_state(ppd, HLS_DN_OFFLINE); 6937 6938 if (was_up) { 6939 lcl_reason = 0; 6940 /* link down reason is only valid if the link was up */ 6941 read_link_down_reason(ppd->dd, &link_down_reason); 6942 switch (link_down_reason) { 6943 case LDR_LINK_TRANSFER_ACTIVE_LOW: 6944 /* the link went down, no idle message reason */ 6945 dd_dev_info(ppd->dd, "%sUnexpected link down\n", 6946 ldr_str); 6947 break; 6948 case LDR_RECEIVED_LINKDOWN_IDLE_MSG: 6949 /* 6950 * The neighbor reason is only valid if an idle message 6951 * was received for it. 6952 */ 6953 read_planned_down_reason_code(ppd->dd, &neigh_reason); 6954 dd_dev_info(ppd->dd, 6955 "%sNeighbor link down message %d, %s\n", 6956 ldr_str, neigh_reason, 6957 link_down_reason_str(neigh_reason)); 6958 break; 6959 case LDR_RECEIVED_HOST_OFFLINE_REQ: 6960 dd_dev_info(ppd->dd, 6961 "%sHost requested link to go offline\n", 6962 ldr_str); 6963 break; 6964 default: 6965 dd_dev_info(ppd->dd, "%sUnknown reason 0x%x\n", 6966 ldr_str, link_down_reason); 6967 break; 6968 } 6969 6970 /* 6971 * If no reason, assume peer-initiated but missed 6972 * LinkGoingDown idle flits. 6973 */ 6974 if (neigh_reason == 0) 6975 lcl_reason = OPA_LINKDOWN_REASON_NEIGHBOR_UNKNOWN; 6976 } else { 6977 /* went down while polling or going up */ 6978 lcl_reason = OPA_LINKDOWN_REASON_TRANSIENT; 6979 } 6980 6981 set_link_down_reason(ppd, lcl_reason, neigh_reason, 0); 6982 6983 /* inform the SMA when the link transitions from up to down */ 6984 if (was_up && ppd->local_link_down_reason.sma == 0 && 6985 ppd->neigh_link_down_reason.sma == 0) { 6986 ppd->local_link_down_reason.sma = 6987 ppd->local_link_down_reason.latest; 6988 ppd->neigh_link_down_reason.sma = 6989 ppd->neigh_link_down_reason.latest; 6990 } 6991 6992 reset_neighbor_info(ppd); 6993 6994 /* disable the port */ 6995 clear_rcvctrl(ppd->dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK); 6996 6997 /* 6998 * If there is no cable attached, turn the DC off. Otherwise, 6999 * start the link bring up. 7000 */ 7001 if (ppd->port_type == PORT_TYPE_QSFP && !qsfp_mod_present(ppd)) { 7002 dc_shutdown(ppd->dd); 7003 } else { 7004 tune_serdes(ppd); 7005 start_link(ppd); 7006 } 7007 } 7008 7009 void handle_link_bounce(struct work_struct *work) 7010 { 7011 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata, 7012 link_bounce_work); 7013 7014 /* 7015 * Only do something if the link is currently up. 7016 */ 7017 if (ppd->host_link_state & HLS_UP) { 7018 set_link_state(ppd, HLS_DN_OFFLINE); 7019 tune_serdes(ppd); 7020 start_link(ppd); 7021 } else { 7022 dd_dev_info(ppd->dd, "%s: link not up (%s), nothing to do\n", 7023 __func__, link_state_name(ppd->host_link_state)); 7024 } 7025 } 7026 7027 /* 7028 * Mask conversion: Capability exchange to Port LTP. The capability 7029 * exchange has an implicit 16b CRC that is mandatory. 7030 */ 7031 static int cap_to_port_ltp(int cap) 7032 { 7033 int port_ltp = PORT_LTP_CRC_MODE_16; /* this mode is mandatory */ 7034 7035 if (cap & CAP_CRC_14B) 7036 port_ltp |= PORT_LTP_CRC_MODE_14; 7037 if (cap & CAP_CRC_48B) 7038 port_ltp |= PORT_LTP_CRC_MODE_48; 7039 if (cap & CAP_CRC_12B_16B_PER_LANE) 7040 port_ltp |= PORT_LTP_CRC_MODE_PER_LANE; 7041 7042 return port_ltp; 7043 } 7044 7045 /* 7046 * Convert an OPA Port LTP mask to capability mask 7047 */ 7048 int port_ltp_to_cap(int port_ltp) 7049 { 7050 int cap_mask = 0; 7051 7052 if (port_ltp & PORT_LTP_CRC_MODE_14) 7053 cap_mask |= CAP_CRC_14B; 7054 if (port_ltp & PORT_LTP_CRC_MODE_48) 7055 cap_mask |= CAP_CRC_48B; 7056 if (port_ltp & PORT_LTP_CRC_MODE_PER_LANE) 7057 cap_mask |= CAP_CRC_12B_16B_PER_LANE; 7058 7059 return cap_mask; 7060 } 7061 7062 /* 7063 * Convert a single DC LCB CRC mode to an OPA Port LTP mask. 7064 */ 7065 static int lcb_to_port_ltp(int lcb_crc) 7066 { 7067 int port_ltp = 0; 7068 7069 if (lcb_crc == LCB_CRC_12B_16B_PER_LANE) 7070 port_ltp = PORT_LTP_CRC_MODE_PER_LANE; 7071 else if (lcb_crc == LCB_CRC_48B) 7072 port_ltp = PORT_LTP_CRC_MODE_48; 7073 else if (lcb_crc == LCB_CRC_14B) 7074 port_ltp = PORT_LTP_CRC_MODE_14; 7075 else 7076 port_ltp = PORT_LTP_CRC_MODE_16; 7077 7078 return port_ltp; 7079 } 7080 7081 /* 7082 * Our neighbor has indicated that we are allowed to act as a fabric 7083 * manager, so place the full management partition key in the second 7084 * (0-based) pkey array position (see OPAv1, section 20.2.2.6.8). Note 7085 * that we should already have the limited management partition key in 7086 * array element 1, and also that the port is not yet up when 7087 * add_full_mgmt_pkey() is invoked. 7088 */ 7089 static void add_full_mgmt_pkey(struct hfi1_pportdata *ppd) 7090 { 7091 struct hfi1_devdata *dd = ppd->dd; 7092 7093 /* Sanity check - ppd->pkeys[2] should be 0, or already initalized */ 7094 if (!((ppd->pkeys[2] == 0) || (ppd->pkeys[2] == FULL_MGMT_P_KEY))) 7095 dd_dev_warn(dd, "%s pkey[2] already set to 0x%x, resetting it to 0x%x\n", 7096 __func__, ppd->pkeys[2], FULL_MGMT_P_KEY); 7097 ppd->pkeys[2] = FULL_MGMT_P_KEY; 7098 (void)hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_PKEYS, 0); 7099 hfi1_event_pkey_change(ppd->dd, ppd->port); 7100 } 7101 7102 static void clear_full_mgmt_pkey(struct hfi1_pportdata *ppd) 7103 { 7104 if (ppd->pkeys[2] != 0) { 7105 ppd->pkeys[2] = 0; 7106 (void)hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_PKEYS, 0); 7107 hfi1_event_pkey_change(ppd->dd, ppd->port); 7108 } 7109 } 7110 7111 /* 7112 * Convert the given link width to the OPA link width bitmask. 7113 */ 7114 static u16 link_width_to_bits(struct hfi1_devdata *dd, u16 width) 7115 { 7116 switch (width) { 7117 case 0: 7118 /* 7119 * Simulator and quick linkup do not set the width. 7120 * Just set it to 4x without complaint. 7121 */ 7122 if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR || quick_linkup) 7123 return OPA_LINK_WIDTH_4X; 7124 return 0; /* no lanes up */ 7125 case 1: return OPA_LINK_WIDTH_1X; 7126 case 2: return OPA_LINK_WIDTH_2X; 7127 case 3: return OPA_LINK_WIDTH_3X; 7128 default: 7129 dd_dev_info(dd, "%s: invalid width %d, using 4\n", 7130 __func__, width); 7131 /* fall through */ 7132 case 4: return OPA_LINK_WIDTH_4X; 7133 } 7134 } 7135 7136 /* 7137 * Do a population count on the bottom nibble. 7138 */ 7139 static const u8 bit_counts[16] = { 7140 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4 7141 }; 7142 7143 static inline u8 nibble_to_count(u8 nibble) 7144 { 7145 return bit_counts[nibble & 0xf]; 7146 } 7147 7148 /* 7149 * Read the active lane information from the 8051 registers and return 7150 * their widths. 7151 * 7152 * Active lane information is found in these 8051 registers: 7153 * enable_lane_tx 7154 * enable_lane_rx 7155 */ 7156 static void get_link_widths(struct hfi1_devdata *dd, u16 *tx_width, 7157 u16 *rx_width) 7158 { 7159 u16 tx, rx; 7160 u8 enable_lane_rx; 7161 u8 enable_lane_tx; 7162 u8 tx_polarity_inversion; 7163 u8 rx_polarity_inversion; 7164 u8 max_rate; 7165 7166 /* read the active lanes */ 7167 read_tx_settings(dd, &enable_lane_tx, &tx_polarity_inversion, 7168 &rx_polarity_inversion, &max_rate); 7169 read_local_lni(dd, &enable_lane_rx); 7170 7171 /* convert to counts */ 7172 tx = nibble_to_count(enable_lane_tx); 7173 rx = nibble_to_count(enable_lane_rx); 7174 7175 /* 7176 * Set link_speed_active here, overriding what was set in 7177 * handle_verify_cap(). The ASIC 8051 firmware does not correctly 7178 * set the max_rate field in handle_verify_cap until v0.19. 7179 */ 7180 if ((dd->icode == ICODE_RTL_SILICON) && 7181 (dd->dc8051_ver < dc8051_ver(0, 19))) { 7182 /* max_rate: 0 = 12.5G, 1 = 25G */ 7183 switch (max_rate) { 7184 case 0: 7185 dd->pport[0].link_speed_active = OPA_LINK_SPEED_12_5G; 7186 break; 7187 default: 7188 dd_dev_err(dd, 7189 "%s: unexpected max rate %d, using 25Gb\n", 7190 __func__, (int)max_rate); 7191 /* fall through */ 7192 case 1: 7193 dd->pport[0].link_speed_active = OPA_LINK_SPEED_25G; 7194 break; 7195 } 7196 } 7197 7198 dd_dev_info(dd, 7199 "Fabric active lanes (width): tx 0x%x (%d), rx 0x%x (%d)\n", 7200 enable_lane_tx, tx, enable_lane_rx, rx); 7201 *tx_width = link_width_to_bits(dd, tx); 7202 *rx_width = link_width_to_bits(dd, rx); 7203 } 7204 7205 /* 7206 * Read verify_cap_local_fm_link_width[1] to obtain the link widths. 7207 * Valid after the end of VerifyCap and during LinkUp. Does not change 7208 * after link up. I.e. look elsewhere for downgrade information. 7209 * 7210 * Bits are: 7211 * + bits [7:4] contain the number of active transmitters 7212 * + bits [3:0] contain the number of active receivers 7213 * These are numbers 1 through 4 and can be different values if the 7214 * link is asymmetric. 7215 * 7216 * verify_cap_local_fm_link_width[0] retains its original value. 7217 */ 7218 static void get_linkup_widths(struct hfi1_devdata *dd, u16 *tx_width, 7219 u16 *rx_width) 7220 { 7221 u16 widths, tx, rx; 7222 u8 misc_bits, local_flags; 7223 u16 active_tx, active_rx; 7224 7225 read_vc_local_link_width(dd, &misc_bits, &local_flags, &widths); 7226 tx = widths >> 12; 7227 rx = (widths >> 8) & 0xf; 7228 7229 *tx_width = link_width_to_bits(dd, tx); 7230 *rx_width = link_width_to_bits(dd, rx); 7231 7232 /* print the active widths */ 7233 get_link_widths(dd, &active_tx, &active_rx); 7234 } 7235 7236 /* 7237 * Set ppd->link_width_active and ppd->link_width_downgrade_active using 7238 * hardware information when the link first comes up. 7239 * 7240 * The link width is not available until after VerifyCap.AllFramesReceived 7241 * (the trigger for handle_verify_cap), so this is outside that routine 7242 * and should be called when the 8051 signals linkup. 7243 */ 7244 void get_linkup_link_widths(struct hfi1_pportdata *ppd) 7245 { 7246 u16 tx_width, rx_width; 7247 7248 /* get end-of-LNI link widths */ 7249 get_linkup_widths(ppd->dd, &tx_width, &rx_width); 7250 7251 /* use tx_width as the link is supposed to be symmetric on link up */ 7252 ppd->link_width_active = tx_width; 7253 /* link width downgrade active (LWD.A) starts out matching LW.A */ 7254 ppd->link_width_downgrade_tx_active = ppd->link_width_active; 7255 ppd->link_width_downgrade_rx_active = ppd->link_width_active; 7256 /* per OPA spec, on link up LWD.E resets to LWD.S */ 7257 ppd->link_width_downgrade_enabled = ppd->link_width_downgrade_supported; 7258 /* cache the active egress rate (units {10^6 bits/sec]) */ 7259 ppd->current_egress_rate = active_egress_rate(ppd); 7260 } 7261 7262 /* 7263 * Handle a verify capabilities interrupt from the 8051. 7264 * 7265 * This is a work-queue function outside of the interrupt. 7266 */ 7267 void handle_verify_cap(struct work_struct *work) 7268 { 7269 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata, 7270 link_vc_work); 7271 struct hfi1_devdata *dd = ppd->dd; 7272 u64 reg; 7273 u8 power_management; 7274 u8 continious; 7275 u8 vcu; 7276 u8 vau; 7277 u8 z; 7278 u16 vl15buf; 7279 u16 link_widths; 7280 u16 crc_mask; 7281 u16 crc_val; 7282 u16 device_id; 7283 u16 active_tx, active_rx; 7284 u8 partner_supported_crc; 7285 u8 remote_tx_rate; 7286 u8 device_rev; 7287 7288 set_link_state(ppd, HLS_VERIFY_CAP); 7289 7290 lcb_shutdown(dd, 0); 7291 adjust_lcb_for_fpga_serdes(dd); 7292 7293 /* 7294 * These are now valid: 7295 * remote VerifyCap fields in the general LNI config 7296 * CSR DC8051_STS_REMOTE_GUID 7297 * CSR DC8051_STS_REMOTE_NODE_TYPE 7298 * CSR DC8051_STS_REMOTE_FM_SECURITY 7299 * CSR DC8051_STS_REMOTE_PORT_NO 7300 */ 7301 7302 read_vc_remote_phy(dd, &power_management, &continious); 7303 read_vc_remote_fabric(dd, &vau, &z, &vcu, &vl15buf, 7304 &partner_supported_crc); 7305 read_vc_remote_link_width(dd, &remote_tx_rate, &link_widths); 7306 read_remote_device_id(dd, &device_id, &device_rev); 7307 /* 7308 * And the 'MgmtAllowed' information, which is exchanged during 7309 * LNI, is also be available at this point. 7310 */ 7311 read_mgmt_allowed(dd, &ppd->mgmt_allowed); 7312 /* print the active widths */ 7313 get_link_widths(dd, &active_tx, &active_rx); 7314 dd_dev_info(dd, 7315 "Peer PHY: power management 0x%x, continuous updates 0x%x\n", 7316 (int)power_management, (int)continious); 7317 dd_dev_info(dd, 7318 "Peer Fabric: vAU %d, Z %d, vCU %d, vl15 credits 0x%x, CRC sizes 0x%x\n", 7319 (int)vau, (int)z, (int)vcu, (int)vl15buf, 7320 (int)partner_supported_crc); 7321 dd_dev_info(dd, "Peer Link Width: tx rate 0x%x, widths 0x%x\n", 7322 (u32)remote_tx_rate, (u32)link_widths); 7323 dd_dev_info(dd, "Peer Device ID: 0x%04x, Revision 0x%02x\n", 7324 (u32)device_id, (u32)device_rev); 7325 /* 7326 * The peer vAU value just read is the peer receiver value. HFI does 7327 * not support a transmit vAU of 0 (AU == 8). We advertised that 7328 * with Z=1 in the fabric capabilities sent to the peer. The peer 7329 * will see our Z=1, and, if it advertised a vAU of 0, will move its 7330 * receive to vAU of 1 (AU == 16). Do the same here. We do not care 7331 * about the peer Z value - our sent vAU is 3 (hardwired) and is not 7332 * subject to the Z value exception. 7333 */ 7334 if (vau == 0) 7335 vau = 1; 7336 set_up_vl15(dd, vau, vl15buf); 7337 7338 /* set up the LCB CRC mode */ 7339 crc_mask = ppd->port_crc_mode_enabled & partner_supported_crc; 7340 7341 /* order is important: use the lowest bit in common */ 7342 if (crc_mask & CAP_CRC_14B) 7343 crc_val = LCB_CRC_14B; 7344 else if (crc_mask & CAP_CRC_48B) 7345 crc_val = LCB_CRC_48B; 7346 else if (crc_mask & CAP_CRC_12B_16B_PER_LANE) 7347 crc_val = LCB_CRC_12B_16B_PER_LANE; 7348 else 7349 crc_val = LCB_CRC_16B; 7350 7351 dd_dev_info(dd, "Final LCB CRC mode: %d\n", (int)crc_val); 7352 write_csr(dd, DC_LCB_CFG_CRC_MODE, 7353 (u64)crc_val << DC_LCB_CFG_CRC_MODE_TX_VAL_SHIFT); 7354 7355 /* set (14b only) or clear sideband credit */ 7356 reg = read_csr(dd, SEND_CM_CTRL); 7357 if (crc_val == LCB_CRC_14B && crc_14b_sideband) { 7358 write_csr(dd, SEND_CM_CTRL, 7359 reg | SEND_CM_CTRL_FORCE_CREDIT_MODE_SMASK); 7360 } else { 7361 write_csr(dd, SEND_CM_CTRL, 7362 reg & ~SEND_CM_CTRL_FORCE_CREDIT_MODE_SMASK); 7363 } 7364 7365 ppd->link_speed_active = 0; /* invalid value */ 7366 if (dd->dc8051_ver < dc8051_ver(0, 20)) { 7367 /* remote_tx_rate: 0 = 12.5G, 1 = 25G */ 7368 switch (remote_tx_rate) { 7369 case 0: 7370 ppd->link_speed_active = OPA_LINK_SPEED_12_5G; 7371 break; 7372 case 1: 7373 ppd->link_speed_active = OPA_LINK_SPEED_25G; 7374 break; 7375 } 7376 } else { 7377 /* actual rate is highest bit of the ANDed rates */ 7378 u8 rate = remote_tx_rate & ppd->local_tx_rate; 7379 7380 if (rate & 2) 7381 ppd->link_speed_active = OPA_LINK_SPEED_25G; 7382 else if (rate & 1) 7383 ppd->link_speed_active = OPA_LINK_SPEED_12_5G; 7384 } 7385 if (ppd->link_speed_active == 0) { 7386 dd_dev_err(dd, "%s: unexpected remote tx rate %d, using 25Gb\n", 7387 __func__, (int)remote_tx_rate); 7388 ppd->link_speed_active = OPA_LINK_SPEED_25G; 7389 } 7390 7391 /* 7392 * Cache the values of the supported, enabled, and active 7393 * LTP CRC modes to return in 'portinfo' queries. But the bit 7394 * flags that are returned in the portinfo query differ from 7395 * what's in the link_crc_mask, crc_sizes, and crc_val 7396 * variables. Convert these here. 7397 */ 7398 ppd->port_ltp_crc_mode = cap_to_port_ltp(link_crc_mask) << 8; 7399 /* supported crc modes */ 7400 ppd->port_ltp_crc_mode |= 7401 cap_to_port_ltp(ppd->port_crc_mode_enabled) << 4; 7402 /* enabled crc modes */ 7403 ppd->port_ltp_crc_mode |= lcb_to_port_ltp(crc_val); 7404 /* active crc mode */ 7405 7406 /* set up the remote credit return table */ 7407 assign_remote_cm_au_table(dd, vcu); 7408 7409 /* 7410 * The LCB is reset on entry to handle_verify_cap(), so this must 7411 * be applied on every link up. 7412 * 7413 * Adjust LCB error kill enable to kill the link if 7414 * these RBUF errors are seen: 7415 * REPLAY_BUF_MBE_SMASK 7416 * FLIT_INPUT_BUF_MBE_SMASK 7417 */ 7418 if (is_ax(dd)) { /* fixed in B0 */ 7419 reg = read_csr(dd, DC_LCB_CFG_LINK_KILL_EN); 7420 reg |= DC_LCB_CFG_LINK_KILL_EN_REPLAY_BUF_MBE_SMASK 7421 | DC_LCB_CFG_LINK_KILL_EN_FLIT_INPUT_BUF_MBE_SMASK; 7422 write_csr(dd, DC_LCB_CFG_LINK_KILL_EN, reg); 7423 } 7424 7425 /* pull LCB fifos out of reset - all fifo clocks must be stable */ 7426 write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0); 7427 7428 /* give 8051 access to the LCB CSRs */ 7429 write_csr(dd, DC_LCB_ERR_EN, 0); /* mask LCB errors */ 7430 set_8051_lcb_access(dd); 7431 7432 ppd->neighbor_guid = 7433 read_csr(dd, DC_DC8051_STS_REMOTE_GUID); 7434 ppd->neighbor_port_number = read_csr(dd, DC_DC8051_STS_REMOTE_PORT_NO) & 7435 DC_DC8051_STS_REMOTE_PORT_NO_VAL_SMASK; 7436 ppd->neighbor_type = 7437 read_csr(dd, DC_DC8051_STS_REMOTE_NODE_TYPE) & 7438 DC_DC8051_STS_REMOTE_NODE_TYPE_VAL_MASK; 7439 ppd->neighbor_fm_security = 7440 read_csr(dd, DC_DC8051_STS_REMOTE_FM_SECURITY) & 7441 DC_DC8051_STS_LOCAL_FM_SECURITY_DISABLED_MASK; 7442 dd_dev_info(dd, 7443 "Neighbor Guid: %llx Neighbor type %d MgmtAllowed %d FM security bypass %d\n", 7444 ppd->neighbor_guid, ppd->neighbor_type, 7445 ppd->mgmt_allowed, ppd->neighbor_fm_security); 7446 if (ppd->mgmt_allowed) 7447 add_full_mgmt_pkey(ppd); 7448 7449 /* tell the 8051 to go to LinkUp */ 7450 set_link_state(ppd, HLS_GOING_UP); 7451 } 7452 7453 /* 7454 * Apply the link width downgrade enabled policy against the current active 7455 * link widths. 7456 * 7457 * Called when the enabled policy changes or the active link widths change. 7458 */ 7459 void apply_link_downgrade_policy(struct hfi1_pportdata *ppd, int refresh_widths) 7460 { 7461 int do_bounce = 0; 7462 int tries; 7463 u16 lwde; 7464 u16 tx, rx; 7465 7466 /* use the hls lock to avoid a race with actual link up */ 7467 tries = 0; 7468 retry: 7469 mutex_lock(&ppd->hls_lock); 7470 /* only apply if the link is up */ 7471 if (ppd->host_link_state & HLS_DOWN) { 7472 /* still going up..wait and retry */ 7473 if (ppd->host_link_state & HLS_GOING_UP) { 7474 if (++tries < 1000) { 7475 mutex_unlock(&ppd->hls_lock); 7476 usleep_range(100, 120); /* arbitrary */ 7477 goto retry; 7478 } 7479 dd_dev_err(ppd->dd, 7480 "%s: giving up waiting for link state change\n", 7481 __func__); 7482 } 7483 goto done; 7484 } 7485 7486 lwde = ppd->link_width_downgrade_enabled; 7487 7488 if (refresh_widths) { 7489 get_link_widths(ppd->dd, &tx, &rx); 7490 ppd->link_width_downgrade_tx_active = tx; 7491 ppd->link_width_downgrade_rx_active = rx; 7492 } 7493 7494 if (ppd->link_width_downgrade_tx_active == 0 || 7495 ppd->link_width_downgrade_rx_active == 0) { 7496 /* the 8051 reported a dead link as a downgrade */ 7497 dd_dev_err(ppd->dd, "Link downgrade is really a link down, ignoring\n"); 7498 } else if (lwde == 0) { 7499 /* downgrade is disabled */ 7500 7501 /* bounce if not at starting active width */ 7502 if ((ppd->link_width_active != 7503 ppd->link_width_downgrade_tx_active) || 7504 (ppd->link_width_active != 7505 ppd->link_width_downgrade_rx_active)) { 7506 dd_dev_err(ppd->dd, 7507 "Link downgrade is disabled and link has downgraded, downing link\n"); 7508 dd_dev_err(ppd->dd, 7509 " original 0x%x, tx active 0x%x, rx active 0x%x\n", 7510 ppd->link_width_active, 7511 ppd->link_width_downgrade_tx_active, 7512 ppd->link_width_downgrade_rx_active); 7513 do_bounce = 1; 7514 } 7515 } else if ((lwde & ppd->link_width_downgrade_tx_active) == 0 || 7516 (lwde & ppd->link_width_downgrade_rx_active) == 0) { 7517 /* Tx or Rx is outside the enabled policy */ 7518 dd_dev_err(ppd->dd, 7519 "Link is outside of downgrade allowed, downing link\n"); 7520 dd_dev_err(ppd->dd, 7521 " enabled 0x%x, tx active 0x%x, rx active 0x%x\n", 7522 lwde, ppd->link_width_downgrade_tx_active, 7523 ppd->link_width_downgrade_rx_active); 7524 do_bounce = 1; 7525 } 7526 7527 done: 7528 mutex_unlock(&ppd->hls_lock); 7529 7530 if (do_bounce) { 7531 set_link_down_reason(ppd, OPA_LINKDOWN_REASON_WIDTH_POLICY, 0, 7532 OPA_LINKDOWN_REASON_WIDTH_POLICY); 7533 set_link_state(ppd, HLS_DN_OFFLINE); 7534 tune_serdes(ppd); 7535 start_link(ppd); 7536 } 7537 } 7538 7539 /* 7540 * Handle a link downgrade interrupt from the 8051. 7541 * 7542 * This is a work-queue function outside of the interrupt. 7543 */ 7544 void handle_link_downgrade(struct work_struct *work) 7545 { 7546 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata, 7547 link_downgrade_work); 7548 7549 dd_dev_info(ppd->dd, "8051: Link width downgrade\n"); 7550 apply_link_downgrade_policy(ppd, 1); 7551 } 7552 7553 static char *dcc_err_string(char *buf, int buf_len, u64 flags) 7554 { 7555 return flag_string(buf, buf_len, flags, dcc_err_flags, 7556 ARRAY_SIZE(dcc_err_flags)); 7557 } 7558 7559 static char *lcb_err_string(char *buf, int buf_len, u64 flags) 7560 { 7561 return flag_string(buf, buf_len, flags, lcb_err_flags, 7562 ARRAY_SIZE(lcb_err_flags)); 7563 } 7564 7565 static char *dc8051_err_string(char *buf, int buf_len, u64 flags) 7566 { 7567 return flag_string(buf, buf_len, flags, dc8051_err_flags, 7568 ARRAY_SIZE(dc8051_err_flags)); 7569 } 7570 7571 static char *dc8051_info_err_string(char *buf, int buf_len, u64 flags) 7572 { 7573 return flag_string(buf, buf_len, flags, dc8051_info_err_flags, 7574 ARRAY_SIZE(dc8051_info_err_flags)); 7575 } 7576 7577 static char *dc8051_info_host_msg_string(char *buf, int buf_len, u64 flags) 7578 { 7579 return flag_string(buf, buf_len, flags, dc8051_info_host_msg_flags, 7580 ARRAY_SIZE(dc8051_info_host_msg_flags)); 7581 } 7582 7583 static void handle_8051_interrupt(struct hfi1_devdata *dd, u32 unused, u64 reg) 7584 { 7585 struct hfi1_pportdata *ppd = dd->pport; 7586 u64 info, err, host_msg; 7587 int queue_link_down = 0; 7588 char buf[96]; 7589 7590 /* look at the flags */ 7591 if (reg & DC_DC8051_ERR_FLG_SET_BY_8051_SMASK) { 7592 /* 8051 information set by firmware */ 7593 /* read DC8051_DBG_ERR_INFO_SET_BY_8051 for details */ 7594 info = read_csr(dd, DC_DC8051_DBG_ERR_INFO_SET_BY_8051); 7595 err = (info >> DC_DC8051_DBG_ERR_INFO_SET_BY_8051_ERROR_SHIFT) 7596 & DC_DC8051_DBG_ERR_INFO_SET_BY_8051_ERROR_MASK; 7597 host_msg = (info >> 7598 DC_DC8051_DBG_ERR_INFO_SET_BY_8051_HOST_MSG_SHIFT) 7599 & DC_DC8051_DBG_ERR_INFO_SET_BY_8051_HOST_MSG_MASK; 7600 7601 /* 7602 * Handle error flags. 7603 */ 7604 if (err & FAILED_LNI) { 7605 /* 7606 * LNI error indications are cleared by the 8051 7607 * only when starting polling. Only pay attention 7608 * to them when in the states that occur during 7609 * LNI. 7610 */ 7611 if (ppd->host_link_state 7612 & (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) { 7613 queue_link_down = 1; 7614 dd_dev_info(dd, "Link error: %s\n", 7615 dc8051_info_err_string(buf, 7616 sizeof(buf), 7617 err & 7618 FAILED_LNI)); 7619 } 7620 err &= ~(u64)FAILED_LNI; 7621 } 7622 /* unknown frames can happen durning LNI, just count */ 7623 if (err & UNKNOWN_FRAME) { 7624 ppd->unknown_frame_count++; 7625 err &= ~(u64)UNKNOWN_FRAME; 7626 } 7627 if (err) { 7628 /* report remaining errors, but do not do anything */ 7629 dd_dev_err(dd, "8051 info error: %s\n", 7630 dc8051_info_err_string(buf, sizeof(buf), 7631 err)); 7632 } 7633 7634 /* 7635 * Handle host message flags. 7636 */ 7637 if (host_msg & HOST_REQ_DONE) { 7638 /* 7639 * Presently, the driver does a busy wait for 7640 * host requests to complete. This is only an 7641 * informational message. 7642 * NOTE: The 8051 clears the host message 7643 * information *on the next 8051 command*. 7644 * Therefore, when linkup is achieved, 7645 * this flag will still be set. 7646 */ 7647 host_msg &= ~(u64)HOST_REQ_DONE; 7648 } 7649 if (host_msg & BC_SMA_MSG) { 7650 queue_work(ppd->hfi1_wq, &ppd->sma_message_work); 7651 host_msg &= ~(u64)BC_SMA_MSG; 7652 } 7653 if (host_msg & LINKUP_ACHIEVED) { 7654 dd_dev_info(dd, "8051: Link up\n"); 7655 queue_work(ppd->hfi1_wq, &ppd->link_up_work); 7656 host_msg &= ~(u64)LINKUP_ACHIEVED; 7657 } 7658 if (host_msg & EXT_DEVICE_CFG_REQ) { 7659 handle_8051_request(ppd); 7660 host_msg &= ~(u64)EXT_DEVICE_CFG_REQ; 7661 } 7662 if (host_msg & VERIFY_CAP_FRAME) { 7663 queue_work(ppd->hfi1_wq, &ppd->link_vc_work); 7664 host_msg &= ~(u64)VERIFY_CAP_FRAME; 7665 } 7666 if (host_msg & LINK_GOING_DOWN) { 7667 const char *extra = ""; 7668 /* no downgrade action needed if going down */ 7669 if (host_msg & LINK_WIDTH_DOWNGRADED) { 7670 host_msg &= ~(u64)LINK_WIDTH_DOWNGRADED; 7671 extra = " (ignoring downgrade)"; 7672 } 7673 dd_dev_info(dd, "8051: Link down%s\n", extra); 7674 queue_link_down = 1; 7675 host_msg &= ~(u64)LINK_GOING_DOWN; 7676 } 7677 if (host_msg & LINK_WIDTH_DOWNGRADED) { 7678 queue_work(ppd->hfi1_wq, &ppd->link_downgrade_work); 7679 host_msg &= ~(u64)LINK_WIDTH_DOWNGRADED; 7680 } 7681 if (host_msg) { 7682 /* report remaining messages, but do not do anything */ 7683 dd_dev_info(dd, "8051 info host message: %s\n", 7684 dc8051_info_host_msg_string(buf, 7685 sizeof(buf), 7686 host_msg)); 7687 } 7688 7689 reg &= ~DC_DC8051_ERR_FLG_SET_BY_8051_SMASK; 7690 } 7691 if (reg & DC_DC8051_ERR_FLG_LOST_8051_HEART_BEAT_SMASK) { 7692 /* 7693 * Lost the 8051 heartbeat. If this happens, we 7694 * receive constant interrupts about it. Disable 7695 * the interrupt after the first. 7696 */ 7697 dd_dev_err(dd, "Lost 8051 heartbeat\n"); 7698 write_csr(dd, DC_DC8051_ERR_EN, 7699 read_csr(dd, DC_DC8051_ERR_EN) & 7700 ~DC_DC8051_ERR_EN_LOST_8051_HEART_BEAT_SMASK); 7701 7702 reg &= ~DC_DC8051_ERR_FLG_LOST_8051_HEART_BEAT_SMASK; 7703 } 7704 if (reg) { 7705 /* report the error, but do not do anything */ 7706 dd_dev_err(dd, "8051 error: %s\n", 7707 dc8051_err_string(buf, sizeof(buf), reg)); 7708 } 7709 7710 if (queue_link_down) { 7711 /* 7712 * if the link is already going down or disabled, do not 7713 * queue another 7714 */ 7715 if ((ppd->host_link_state & 7716 (HLS_GOING_OFFLINE | HLS_LINK_COOLDOWN)) || 7717 ppd->link_enabled == 0) { 7718 dd_dev_info(dd, "%s: not queuing link down\n", 7719 __func__); 7720 } else { 7721 queue_work(ppd->hfi1_wq, &ppd->link_down_work); 7722 } 7723 } 7724 } 7725 7726 static const char * const fm_config_txt[] = { 7727 [0] = 7728 "BadHeadDist: Distance violation between two head flits", 7729 [1] = 7730 "BadTailDist: Distance violation between two tail flits", 7731 [2] = 7732 "BadCtrlDist: Distance violation between two credit control flits", 7733 [3] = 7734 "BadCrdAck: Credits return for unsupported VL", 7735 [4] = 7736 "UnsupportedVLMarker: Received VL Marker", 7737 [5] = 7738 "BadPreempt: Exceeded the preemption nesting level", 7739 [6] = 7740 "BadControlFlit: Received unsupported control flit", 7741 /* no 7 */ 7742 [8] = 7743 "UnsupportedVLMarker: Received VL Marker for unconfigured or disabled VL", 7744 }; 7745 7746 static const char * const port_rcv_txt[] = { 7747 [1] = 7748 "BadPktLen: Illegal PktLen", 7749 [2] = 7750 "PktLenTooLong: Packet longer than PktLen", 7751 [3] = 7752 "PktLenTooShort: Packet shorter than PktLen", 7753 [4] = 7754 "BadSLID: Illegal SLID (0, using multicast as SLID, does not include security validation of SLID)", 7755 [5] = 7756 "BadDLID: Illegal DLID (0, doesn't match HFI)", 7757 [6] = 7758 "BadL2: Illegal L2 opcode", 7759 [7] = 7760 "BadSC: Unsupported SC", 7761 [9] = 7762 "BadRC: Illegal RC", 7763 [11] = 7764 "PreemptError: Preempting with same VL", 7765 [12] = 7766 "PreemptVL15: Preempting a VL15 packet", 7767 }; 7768 7769 #define OPA_LDR_FMCONFIG_OFFSET 16 7770 #define OPA_LDR_PORTRCV_OFFSET 0 7771 static void handle_dcc_err(struct hfi1_devdata *dd, u32 unused, u64 reg) 7772 { 7773 u64 info, hdr0, hdr1; 7774 const char *extra; 7775 char buf[96]; 7776 struct hfi1_pportdata *ppd = dd->pport; 7777 u8 lcl_reason = 0; 7778 int do_bounce = 0; 7779 7780 if (reg & DCC_ERR_FLG_UNCORRECTABLE_ERR_SMASK) { 7781 if (!(dd->err_info_uncorrectable & OPA_EI_STATUS_SMASK)) { 7782 info = read_csr(dd, DCC_ERR_INFO_UNCORRECTABLE); 7783 dd->err_info_uncorrectable = info & OPA_EI_CODE_SMASK; 7784 /* set status bit */ 7785 dd->err_info_uncorrectable |= OPA_EI_STATUS_SMASK; 7786 } 7787 reg &= ~DCC_ERR_FLG_UNCORRECTABLE_ERR_SMASK; 7788 } 7789 7790 if (reg & DCC_ERR_FLG_LINK_ERR_SMASK) { 7791 struct hfi1_pportdata *ppd = dd->pport; 7792 /* this counter saturates at (2^32) - 1 */ 7793 if (ppd->link_downed < (u32)UINT_MAX) 7794 ppd->link_downed++; 7795 reg &= ~DCC_ERR_FLG_LINK_ERR_SMASK; 7796 } 7797 7798 if (reg & DCC_ERR_FLG_FMCONFIG_ERR_SMASK) { 7799 u8 reason_valid = 1; 7800 7801 info = read_csr(dd, DCC_ERR_INFO_FMCONFIG); 7802 if (!(dd->err_info_fmconfig & OPA_EI_STATUS_SMASK)) { 7803 dd->err_info_fmconfig = info & OPA_EI_CODE_SMASK; 7804 /* set status bit */ 7805 dd->err_info_fmconfig |= OPA_EI_STATUS_SMASK; 7806 } 7807 switch (info) { 7808 case 0: 7809 case 1: 7810 case 2: 7811 case 3: 7812 case 4: 7813 case 5: 7814 case 6: 7815 extra = fm_config_txt[info]; 7816 break; 7817 case 8: 7818 extra = fm_config_txt[info]; 7819 if (ppd->port_error_action & 7820 OPA_PI_MASK_FM_CFG_UNSUPPORTED_VL_MARKER) { 7821 do_bounce = 1; 7822 /* 7823 * lcl_reason cannot be derived from info 7824 * for this error 7825 */ 7826 lcl_reason = 7827 OPA_LINKDOWN_REASON_UNSUPPORTED_VL_MARKER; 7828 } 7829 break; 7830 default: 7831 reason_valid = 0; 7832 snprintf(buf, sizeof(buf), "reserved%lld", info); 7833 extra = buf; 7834 break; 7835 } 7836 7837 if (reason_valid && !do_bounce) { 7838 do_bounce = ppd->port_error_action & 7839 (1 << (OPA_LDR_FMCONFIG_OFFSET + info)); 7840 lcl_reason = info + OPA_LINKDOWN_REASON_BAD_HEAD_DIST; 7841 } 7842 7843 /* just report this */ 7844 dd_dev_info(dd, "DCC Error: fmconfig error: %s\n", extra); 7845 reg &= ~DCC_ERR_FLG_FMCONFIG_ERR_SMASK; 7846 } 7847 7848 if (reg & DCC_ERR_FLG_RCVPORT_ERR_SMASK) { 7849 u8 reason_valid = 1; 7850 7851 info = read_csr(dd, DCC_ERR_INFO_PORTRCV); 7852 hdr0 = read_csr(dd, DCC_ERR_INFO_PORTRCV_HDR0); 7853 hdr1 = read_csr(dd, DCC_ERR_INFO_PORTRCV_HDR1); 7854 if (!(dd->err_info_rcvport.status_and_code & 7855 OPA_EI_STATUS_SMASK)) { 7856 dd->err_info_rcvport.status_and_code = 7857 info & OPA_EI_CODE_SMASK; 7858 /* set status bit */ 7859 dd->err_info_rcvport.status_and_code |= 7860 OPA_EI_STATUS_SMASK; 7861 /* 7862 * save first 2 flits in the packet that caused 7863 * the error 7864 */ 7865 dd->err_info_rcvport.packet_flit1 = hdr0; 7866 dd->err_info_rcvport.packet_flit2 = hdr1; 7867 } 7868 switch (info) { 7869 case 1: 7870 case 2: 7871 case 3: 7872 case 4: 7873 case 5: 7874 case 6: 7875 case 7: 7876 case 9: 7877 case 11: 7878 case 12: 7879 extra = port_rcv_txt[info]; 7880 break; 7881 default: 7882 reason_valid = 0; 7883 snprintf(buf, sizeof(buf), "reserved%lld", info); 7884 extra = buf; 7885 break; 7886 } 7887 7888 if (reason_valid && !do_bounce) { 7889 do_bounce = ppd->port_error_action & 7890 (1 << (OPA_LDR_PORTRCV_OFFSET + info)); 7891 lcl_reason = info + OPA_LINKDOWN_REASON_RCV_ERROR_0; 7892 } 7893 7894 /* just report this */ 7895 dd_dev_info(dd, "DCC Error: PortRcv error: %s\n", extra); 7896 dd_dev_info(dd, " hdr0 0x%llx, hdr1 0x%llx\n", 7897 hdr0, hdr1); 7898 7899 reg &= ~DCC_ERR_FLG_RCVPORT_ERR_SMASK; 7900 } 7901 7902 if (reg & DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_UC_SMASK) { 7903 /* informative only */ 7904 dd_dev_info(dd, "8051 access to LCB blocked\n"); 7905 reg &= ~DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_UC_SMASK; 7906 } 7907 if (reg & DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_HOST_SMASK) { 7908 /* informative only */ 7909 dd_dev_info(dd, "host access to LCB blocked\n"); 7910 reg &= ~DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_HOST_SMASK; 7911 } 7912 7913 /* report any remaining errors */ 7914 if (reg) 7915 dd_dev_info(dd, "DCC Error: %s\n", 7916 dcc_err_string(buf, sizeof(buf), reg)); 7917 7918 if (lcl_reason == 0) 7919 lcl_reason = OPA_LINKDOWN_REASON_UNKNOWN; 7920 7921 if (do_bounce) { 7922 dd_dev_info(dd, "%s: PortErrorAction bounce\n", __func__); 7923 set_link_down_reason(ppd, lcl_reason, 0, lcl_reason); 7924 queue_work(ppd->hfi1_wq, &ppd->link_bounce_work); 7925 } 7926 } 7927 7928 static void handle_lcb_err(struct hfi1_devdata *dd, u32 unused, u64 reg) 7929 { 7930 char buf[96]; 7931 7932 dd_dev_info(dd, "LCB Error: %s\n", 7933 lcb_err_string(buf, sizeof(buf), reg)); 7934 } 7935 7936 /* 7937 * CCE block DC interrupt. Source is < 8. 7938 */ 7939 static void is_dc_int(struct hfi1_devdata *dd, unsigned int source) 7940 { 7941 const struct err_reg_info *eri = &dc_errs[source]; 7942 7943 if (eri->handler) { 7944 interrupt_clear_down(dd, 0, eri); 7945 } else if (source == 3 /* dc_lbm_int */) { 7946 /* 7947 * This indicates that a parity error has occurred on the 7948 * address/control lines presented to the LBM. The error 7949 * is a single pulse, there is no associated error flag, 7950 * and it is non-maskable. This is because if a parity 7951 * error occurs on the request the request is dropped. 7952 * This should never occur, but it is nice to know if it 7953 * ever does. 7954 */ 7955 dd_dev_err(dd, "Parity error in DC LBM block\n"); 7956 } else { 7957 dd_dev_err(dd, "Invalid DC interrupt %u\n", source); 7958 } 7959 } 7960 7961 /* 7962 * TX block send credit interrupt. Source is < 160. 7963 */ 7964 static void is_send_credit_int(struct hfi1_devdata *dd, unsigned int source) 7965 { 7966 sc_group_release_update(dd, source); 7967 } 7968 7969 /* 7970 * TX block SDMA interrupt. Source is < 48. 7971 * 7972 * SDMA interrupts are grouped by type: 7973 * 7974 * 0 - N-1 = SDma 7975 * N - 2N-1 = SDmaProgress 7976 * 2N - 3N-1 = SDmaIdle 7977 */ 7978 static void is_sdma_eng_int(struct hfi1_devdata *dd, unsigned int source) 7979 { 7980 /* what interrupt */ 7981 unsigned int what = source / TXE_NUM_SDMA_ENGINES; 7982 /* which engine */ 7983 unsigned int which = source % TXE_NUM_SDMA_ENGINES; 7984 7985 #ifdef CONFIG_SDMA_VERBOSITY 7986 dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", which, 7987 slashstrip(__FILE__), __LINE__, __func__); 7988 sdma_dumpstate(&dd->per_sdma[which]); 7989 #endif 7990 7991 if (likely(what < 3 && which < dd->num_sdma)) { 7992 sdma_engine_interrupt(&dd->per_sdma[which], 1ull << source); 7993 } else { 7994 /* should not happen */ 7995 dd_dev_err(dd, "Invalid SDMA interrupt 0x%x\n", source); 7996 } 7997 } 7998 7999 /* 8000 * RX block receive available interrupt. Source is < 160. 8001 */ 8002 static void is_rcv_avail_int(struct hfi1_devdata *dd, unsigned int source) 8003 { 8004 struct hfi1_ctxtdata *rcd; 8005 char *err_detail; 8006 8007 if (likely(source < dd->num_rcv_contexts)) { 8008 rcd = dd->rcd[source]; 8009 if (rcd) { 8010 if (source < dd->first_user_ctxt) 8011 rcd->do_interrupt(rcd, 0); 8012 else 8013 handle_user_interrupt(rcd); 8014 return; /* OK */ 8015 } 8016 /* received an interrupt, but no rcd */ 8017 err_detail = "dataless"; 8018 } else { 8019 /* received an interrupt, but are not using that context */ 8020 err_detail = "out of range"; 8021 } 8022 dd_dev_err(dd, "unexpected %s receive available context interrupt %u\n", 8023 err_detail, source); 8024 } 8025 8026 /* 8027 * RX block receive urgent interrupt. Source is < 160. 8028 */ 8029 static void is_rcv_urgent_int(struct hfi1_devdata *dd, unsigned int source) 8030 { 8031 struct hfi1_ctxtdata *rcd; 8032 char *err_detail; 8033 8034 if (likely(source < dd->num_rcv_contexts)) { 8035 rcd = dd->rcd[source]; 8036 if (rcd) { 8037 /* only pay attention to user urgent interrupts */ 8038 if (source >= dd->first_user_ctxt) 8039 handle_user_interrupt(rcd); 8040 return; /* OK */ 8041 } 8042 /* received an interrupt, but no rcd */ 8043 err_detail = "dataless"; 8044 } else { 8045 /* received an interrupt, but are not using that context */ 8046 err_detail = "out of range"; 8047 } 8048 dd_dev_err(dd, "unexpected %s receive urgent context interrupt %u\n", 8049 err_detail, source); 8050 } 8051 8052 /* 8053 * Reserved range interrupt. Should not be called in normal operation. 8054 */ 8055 static void is_reserved_int(struct hfi1_devdata *dd, unsigned int source) 8056 { 8057 char name[64]; 8058 8059 dd_dev_err(dd, "unexpected %s interrupt\n", 8060 is_reserved_name(name, sizeof(name), source)); 8061 } 8062 8063 static const struct is_table is_table[] = { 8064 /* 8065 * start end 8066 * name func interrupt func 8067 */ 8068 { IS_GENERAL_ERR_START, IS_GENERAL_ERR_END, 8069 is_misc_err_name, is_misc_err_int }, 8070 { IS_SDMAENG_ERR_START, IS_SDMAENG_ERR_END, 8071 is_sdma_eng_err_name, is_sdma_eng_err_int }, 8072 { IS_SENDCTXT_ERR_START, IS_SENDCTXT_ERR_END, 8073 is_sendctxt_err_name, is_sendctxt_err_int }, 8074 { IS_SDMA_START, IS_SDMA_END, 8075 is_sdma_eng_name, is_sdma_eng_int }, 8076 { IS_VARIOUS_START, IS_VARIOUS_END, 8077 is_various_name, is_various_int }, 8078 { IS_DC_START, IS_DC_END, 8079 is_dc_name, is_dc_int }, 8080 { IS_RCVAVAIL_START, IS_RCVAVAIL_END, 8081 is_rcv_avail_name, is_rcv_avail_int }, 8082 { IS_RCVURGENT_START, IS_RCVURGENT_END, 8083 is_rcv_urgent_name, is_rcv_urgent_int }, 8084 { IS_SENDCREDIT_START, IS_SENDCREDIT_END, 8085 is_send_credit_name, is_send_credit_int}, 8086 { IS_RESERVED_START, IS_RESERVED_END, 8087 is_reserved_name, is_reserved_int}, 8088 }; 8089 8090 /* 8091 * Interrupt source interrupt - called when the given source has an interrupt. 8092 * Source is a bit index into an array of 64-bit integers. 8093 */ 8094 static void is_interrupt(struct hfi1_devdata *dd, unsigned int source) 8095 { 8096 const struct is_table *entry; 8097 8098 /* avoids a double compare by walking the table in-order */ 8099 for (entry = &is_table[0]; entry->is_name; entry++) { 8100 if (source < entry->end) { 8101 trace_hfi1_interrupt(dd, entry, source); 8102 entry->is_int(dd, source - entry->start); 8103 return; 8104 } 8105 } 8106 /* fell off the end */ 8107 dd_dev_err(dd, "invalid interrupt source %u\n", source); 8108 } 8109 8110 /* 8111 * General interrupt handler. This is able to correctly handle 8112 * all interrupts in case INTx is used. 8113 */ 8114 static irqreturn_t general_interrupt(int irq, void *data) 8115 { 8116 struct hfi1_devdata *dd = data; 8117 u64 regs[CCE_NUM_INT_CSRS]; 8118 u32 bit; 8119 int i; 8120 8121 this_cpu_inc(*dd->int_counter); 8122 8123 /* phase 1: scan and clear all handled interrupts */ 8124 for (i = 0; i < CCE_NUM_INT_CSRS; i++) { 8125 if (dd->gi_mask[i] == 0) { 8126 regs[i] = 0; /* used later */ 8127 continue; 8128 } 8129 regs[i] = read_csr(dd, CCE_INT_STATUS + (8 * i)) & 8130 dd->gi_mask[i]; 8131 /* only clear if anything is set */ 8132 if (regs[i]) 8133 write_csr(dd, CCE_INT_CLEAR + (8 * i), regs[i]); 8134 } 8135 8136 /* phase 2: call the appropriate handler */ 8137 for_each_set_bit(bit, (unsigned long *)®s[0], 8138 CCE_NUM_INT_CSRS * 64) { 8139 is_interrupt(dd, bit); 8140 } 8141 8142 return IRQ_HANDLED; 8143 } 8144 8145 static irqreturn_t sdma_interrupt(int irq, void *data) 8146 { 8147 struct sdma_engine *sde = data; 8148 struct hfi1_devdata *dd = sde->dd; 8149 u64 status; 8150 8151 #ifdef CONFIG_SDMA_VERBOSITY 8152 dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx, 8153 slashstrip(__FILE__), __LINE__, __func__); 8154 sdma_dumpstate(sde); 8155 #endif 8156 8157 this_cpu_inc(*dd->int_counter); 8158 8159 /* This read_csr is really bad in the hot path */ 8160 status = read_csr(dd, 8161 CCE_INT_STATUS + (8 * (IS_SDMA_START / 64))) 8162 & sde->imask; 8163 if (likely(status)) { 8164 /* clear the interrupt(s) */ 8165 write_csr(dd, 8166 CCE_INT_CLEAR + (8 * (IS_SDMA_START / 64)), 8167 status); 8168 8169 /* handle the interrupt(s) */ 8170 sdma_engine_interrupt(sde, status); 8171 } else 8172 dd_dev_err(dd, "SDMA engine %u interrupt, but no status bits set\n", 8173 sde->this_idx); 8174 8175 return IRQ_HANDLED; 8176 } 8177 8178 /* 8179 * Clear the receive interrupt. Use a read of the interrupt clear CSR 8180 * to insure that the write completed. This does NOT guarantee that 8181 * queued DMA writes to memory from the chip are pushed. 8182 */ 8183 static inline void clear_recv_intr(struct hfi1_ctxtdata *rcd) 8184 { 8185 struct hfi1_devdata *dd = rcd->dd; 8186 u32 addr = CCE_INT_CLEAR + (8 * rcd->ireg); 8187 8188 mmiowb(); /* make sure everything before is written */ 8189 write_csr(dd, addr, rcd->imask); 8190 /* force the above write on the chip and get a value back */ 8191 (void)read_csr(dd, addr); 8192 } 8193 8194 /* force the receive interrupt */ 8195 void force_recv_intr(struct hfi1_ctxtdata *rcd) 8196 { 8197 write_csr(rcd->dd, CCE_INT_FORCE + (8 * rcd->ireg), rcd->imask); 8198 } 8199 8200 /* 8201 * Return non-zero if a packet is present. 8202 * 8203 * This routine is called when rechecking for packets after the RcvAvail 8204 * interrupt has been cleared down. First, do a quick check of memory for 8205 * a packet present. If not found, use an expensive CSR read of the context 8206 * tail to determine the actual tail. The CSR read is necessary because there 8207 * is no method to push pending DMAs to memory other than an interrupt and we 8208 * are trying to determine if we need to force an interrupt. 8209 */ 8210 static inline int check_packet_present(struct hfi1_ctxtdata *rcd) 8211 { 8212 u32 tail; 8213 int present; 8214 8215 if (!HFI1_CAP_IS_KSET(DMA_RTAIL)) 8216 present = (rcd->seq_cnt == 8217 rhf_rcv_seq(rhf_to_cpu(get_rhf_addr(rcd)))); 8218 else /* is RDMA rtail */ 8219 present = (rcd->head != get_rcvhdrtail(rcd)); 8220 8221 if (present) 8222 return 1; 8223 8224 /* fall back to a CSR read, correct indpendent of DMA_RTAIL */ 8225 tail = (u32)read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_TAIL); 8226 return rcd->head != tail; 8227 } 8228 8229 /* 8230 * Receive packet IRQ handler. This routine expects to be on its own IRQ. 8231 * This routine will try to handle packets immediately (latency), but if 8232 * it finds too many, it will invoke the thread handler (bandwitdh). The 8233 * chip receive interrupt is *not* cleared down until this or the thread (if 8234 * invoked) is finished. The intent is to avoid extra interrupts while we 8235 * are processing packets anyway. 8236 */ 8237 static irqreturn_t receive_context_interrupt(int irq, void *data) 8238 { 8239 struct hfi1_ctxtdata *rcd = data; 8240 struct hfi1_devdata *dd = rcd->dd; 8241 int disposition; 8242 int present; 8243 8244 trace_hfi1_receive_interrupt(dd, rcd->ctxt); 8245 this_cpu_inc(*dd->int_counter); 8246 aspm_ctx_disable(rcd); 8247 8248 /* receive interrupt remains blocked while processing packets */ 8249 disposition = rcd->do_interrupt(rcd, 0); 8250 8251 /* 8252 * Too many packets were seen while processing packets in this 8253 * IRQ handler. Invoke the handler thread. The receive interrupt 8254 * remains blocked. 8255 */ 8256 if (disposition == RCV_PKT_LIMIT) 8257 return IRQ_WAKE_THREAD; 8258 8259 /* 8260 * The packet processor detected no more packets. Clear the receive 8261 * interrupt and recheck for a packet packet that may have arrived 8262 * after the previous check and interrupt clear. If a packet arrived, 8263 * force another interrupt. 8264 */ 8265 clear_recv_intr(rcd); 8266 present = check_packet_present(rcd); 8267 if (present) 8268 force_recv_intr(rcd); 8269 8270 return IRQ_HANDLED; 8271 } 8272 8273 /* 8274 * Receive packet thread handler. This expects to be invoked with the 8275 * receive interrupt still blocked. 8276 */ 8277 static irqreturn_t receive_context_thread(int irq, void *data) 8278 { 8279 struct hfi1_ctxtdata *rcd = data; 8280 int present; 8281 8282 /* receive interrupt is still blocked from the IRQ handler */ 8283 (void)rcd->do_interrupt(rcd, 1); 8284 8285 /* 8286 * The packet processor will only return if it detected no more 8287 * packets. Hold IRQs here so we can safely clear the interrupt and 8288 * recheck for a packet that may have arrived after the previous 8289 * check and the interrupt clear. If a packet arrived, force another 8290 * interrupt. 8291 */ 8292 local_irq_disable(); 8293 clear_recv_intr(rcd); 8294 present = check_packet_present(rcd); 8295 if (present) 8296 force_recv_intr(rcd); 8297 local_irq_enable(); 8298 8299 return IRQ_HANDLED; 8300 } 8301 8302 /* ========================================================================= */ 8303 8304 u32 read_physical_state(struct hfi1_devdata *dd) 8305 { 8306 u64 reg; 8307 8308 reg = read_csr(dd, DC_DC8051_STS_CUR_STATE); 8309 return (reg >> DC_DC8051_STS_CUR_STATE_PORT_SHIFT) 8310 & DC_DC8051_STS_CUR_STATE_PORT_MASK; 8311 } 8312 8313 u32 read_logical_state(struct hfi1_devdata *dd) 8314 { 8315 u64 reg; 8316 8317 reg = read_csr(dd, DCC_CFG_PORT_CONFIG); 8318 return (reg >> DCC_CFG_PORT_CONFIG_LINK_STATE_SHIFT) 8319 & DCC_CFG_PORT_CONFIG_LINK_STATE_MASK; 8320 } 8321 8322 static void set_logical_state(struct hfi1_devdata *dd, u32 chip_lstate) 8323 { 8324 u64 reg; 8325 8326 reg = read_csr(dd, DCC_CFG_PORT_CONFIG); 8327 /* clear current state, set new state */ 8328 reg &= ~DCC_CFG_PORT_CONFIG_LINK_STATE_SMASK; 8329 reg |= (u64)chip_lstate << DCC_CFG_PORT_CONFIG_LINK_STATE_SHIFT; 8330 write_csr(dd, DCC_CFG_PORT_CONFIG, reg); 8331 } 8332 8333 /* 8334 * Use the 8051 to read a LCB CSR. 8335 */ 8336 static int read_lcb_via_8051(struct hfi1_devdata *dd, u32 addr, u64 *data) 8337 { 8338 u32 regno; 8339 int ret; 8340 8341 if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR) { 8342 if (acquire_lcb_access(dd, 0) == 0) { 8343 *data = read_csr(dd, addr); 8344 release_lcb_access(dd, 0); 8345 return 0; 8346 } 8347 return -EBUSY; 8348 } 8349 8350 /* register is an index of LCB registers: (offset - base) / 8 */ 8351 regno = (addr - DC_LCB_CFG_RUN) >> 3; 8352 ret = do_8051_command(dd, HCMD_READ_LCB_CSR, regno, data); 8353 if (ret != HCMD_SUCCESS) 8354 return -EBUSY; 8355 return 0; 8356 } 8357 8358 /* 8359 * Read an LCB CSR. Access may not be in host control, so check. 8360 * Return 0 on success, -EBUSY on failure. 8361 */ 8362 int read_lcb_csr(struct hfi1_devdata *dd, u32 addr, u64 *data) 8363 { 8364 struct hfi1_pportdata *ppd = dd->pport; 8365 8366 /* if up, go through the 8051 for the value */ 8367 if (ppd->host_link_state & HLS_UP) 8368 return read_lcb_via_8051(dd, addr, data); 8369 /* if going up or down, no access */ 8370 if (ppd->host_link_state & (HLS_GOING_UP | HLS_GOING_OFFLINE)) 8371 return -EBUSY; 8372 /* otherwise, host has access */ 8373 *data = read_csr(dd, addr); 8374 return 0; 8375 } 8376 8377 /* 8378 * Use the 8051 to write a LCB CSR. 8379 */ 8380 static int write_lcb_via_8051(struct hfi1_devdata *dd, u32 addr, u64 data) 8381 { 8382 u32 regno; 8383 int ret; 8384 8385 if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR || 8386 (dd->dc8051_ver < dc8051_ver(0, 20))) { 8387 if (acquire_lcb_access(dd, 0) == 0) { 8388 write_csr(dd, addr, data); 8389 release_lcb_access(dd, 0); 8390 return 0; 8391 } 8392 return -EBUSY; 8393 } 8394 8395 /* register is an index of LCB registers: (offset - base) / 8 */ 8396 regno = (addr - DC_LCB_CFG_RUN) >> 3; 8397 ret = do_8051_command(dd, HCMD_WRITE_LCB_CSR, regno, &data); 8398 if (ret != HCMD_SUCCESS) 8399 return -EBUSY; 8400 return 0; 8401 } 8402 8403 /* 8404 * Write an LCB CSR. Access may not be in host control, so check. 8405 * Return 0 on success, -EBUSY on failure. 8406 */ 8407 int write_lcb_csr(struct hfi1_devdata *dd, u32 addr, u64 data) 8408 { 8409 struct hfi1_pportdata *ppd = dd->pport; 8410 8411 /* if up, go through the 8051 for the value */ 8412 if (ppd->host_link_state & HLS_UP) 8413 return write_lcb_via_8051(dd, addr, data); 8414 /* if going up or down, no access */ 8415 if (ppd->host_link_state & (HLS_GOING_UP | HLS_GOING_OFFLINE)) 8416 return -EBUSY; 8417 /* otherwise, host has access */ 8418 write_csr(dd, addr, data); 8419 return 0; 8420 } 8421 8422 /* 8423 * Returns: 8424 * < 0 = Linux error, not able to get access 8425 * > 0 = 8051 command RETURN_CODE 8426 */ 8427 static int do_8051_command( 8428 struct hfi1_devdata *dd, 8429 u32 type, 8430 u64 in_data, 8431 u64 *out_data) 8432 { 8433 u64 reg, completed; 8434 int return_code; 8435 unsigned long flags; 8436 unsigned long timeout; 8437 8438 hfi1_cdbg(DC8051, "type %d, data 0x%012llx", type, in_data); 8439 8440 /* 8441 * Alternative to holding the lock for a long time: 8442 * - keep busy wait - have other users bounce off 8443 */ 8444 spin_lock_irqsave(&dd->dc8051_lock, flags); 8445 8446 /* We can't send any commands to the 8051 if it's in reset */ 8447 if (dd->dc_shutdown) { 8448 return_code = -ENODEV; 8449 goto fail; 8450 } 8451 8452 /* 8453 * If an 8051 host command timed out previously, then the 8051 is 8454 * stuck. 8455 * 8456 * On first timeout, attempt to reset and restart the entire DC 8457 * block (including 8051). (Is this too big of a hammer?) 8458 * 8459 * If the 8051 times out a second time, the reset did not bring it 8460 * back to healthy life. In that case, fail any subsequent commands. 8461 */ 8462 if (dd->dc8051_timed_out) { 8463 if (dd->dc8051_timed_out > 1) { 8464 dd_dev_err(dd, 8465 "Previous 8051 host command timed out, skipping command %u\n", 8466 type); 8467 return_code = -ENXIO; 8468 goto fail; 8469 } 8470 spin_unlock_irqrestore(&dd->dc8051_lock, flags); 8471 dc_shutdown(dd); 8472 dc_start(dd); 8473 spin_lock_irqsave(&dd->dc8051_lock, flags); 8474 } 8475 8476 /* 8477 * If there is no timeout, then the 8051 command interface is 8478 * waiting for a command. 8479 */ 8480 8481 /* 8482 * When writing a LCB CSR, out_data contains the full value to 8483 * to be written, while in_data contains the relative LCB 8484 * address in 7:0. Do the work here, rather than the caller, 8485 * of distrubting the write data to where it needs to go: 8486 * 8487 * Write data 8488 * 39:00 -> in_data[47:8] 8489 * 47:40 -> DC8051_CFG_EXT_DEV_0.RETURN_CODE 8490 * 63:48 -> DC8051_CFG_EXT_DEV_0.RSP_DATA 8491 */ 8492 if (type == HCMD_WRITE_LCB_CSR) { 8493 in_data |= ((*out_data) & 0xffffffffffull) << 8; 8494 reg = ((((*out_data) >> 40) & 0xff) << 8495 DC_DC8051_CFG_EXT_DEV_0_RETURN_CODE_SHIFT) 8496 | ((((*out_data) >> 48) & 0xffff) << 8497 DC_DC8051_CFG_EXT_DEV_0_RSP_DATA_SHIFT); 8498 write_csr(dd, DC_DC8051_CFG_EXT_DEV_0, reg); 8499 } 8500 8501 /* 8502 * Do two writes: the first to stabilize the type and req_data, the 8503 * second to activate. 8504 */ 8505 reg = ((u64)type & DC_DC8051_CFG_HOST_CMD_0_REQ_TYPE_MASK) 8506 << DC_DC8051_CFG_HOST_CMD_0_REQ_TYPE_SHIFT 8507 | (in_data & DC_DC8051_CFG_HOST_CMD_0_REQ_DATA_MASK) 8508 << DC_DC8051_CFG_HOST_CMD_0_REQ_DATA_SHIFT; 8509 write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, reg); 8510 reg |= DC_DC8051_CFG_HOST_CMD_0_REQ_NEW_SMASK; 8511 write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, reg); 8512 8513 /* wait for completion, alternate: interrupt */ 8514 timeout = jiffies + msecs_to_jiffies(DC8051_COMMAND_TIMEOUT); 8515 while (1) { 8516 reg = read_csr(dd, DC_DC8051_CFG_HOST_CMD_1); 8517 completed = reg & DC_DC8051_CFG_HOST_CMD_1_COMPLETED_SMASK; 8518 if (completed) 8519 break; 8520 if (time_after(jiffies, timeout)) { 8521 dd->dc8051_timed_out++; 8522 dd_dev_err(dd, "8051 host command %u timeout\n", type); 8523 if (out_data) 8524 *out_data = 0; 8525 return_code = -ETIMEDOUT; 8526 goto fail; 8527 } 8528 udelay(2); 8529 } 8530 8531 if (out_data) { 8532 *out_data = (reg >> DC_DC8051_CFG_HOST_CMD_1_RSP_DATA_SHIFT) 8533 & DC_DC8051_CFG_HOST_CMD_1_RSP_DATA_MASK; 8534 if (type == HCMD_READ_LCB_CSR) { 8535 /* top 16 bits are in a different register */ 8536 *out_data |= (read_csr(dd, DC_DC8051_CFG_EXT_DEV_1) 8537 & DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SMASK) 8538 << (48 8539 - DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SHIFT); 8540 } 8541 } 8542 return_code = (reg >> DC_DC8051_CFG_HOST_CMD_1_RETURN_CODE_SHIFT) 8543 & DC_DC8051_CFG_HOST_CMD_1_RETURN_CODE_MASK; 8544 dd->dc8051_timed_out = 0; 8545 /* 8546 * Clear command for next user. 8547 */ 8548 write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, 0); 8549 8550 fail: 8551 spin_unlock_irqrestore(&dd->dc8051_lock, flags); 8552 8553 return return_code; 8554 } 8555 8556 static int set_physical_link_state(struct hfi1_devdata *dd, u64 state) 8557 { 8558 return do_8051_command(dd, HCMD_CHANGE_PHY_STATE, state, NULL); 8559 } 8560 8561 int load_8051_config(struct hfi1_devdata *dd, u8 field_id, 8562 u8 lane_id, u32 config_data) 8563 { 8564 u64 data; 8565 int ret; 8566 8567 data = (u64)field_id << LOAD_DATA_FIELD_ID_SHIFT 8568 | (u64)lane_id << LOAD_DATA_LANE_ID_SHIFT 8569 | (u64)config_data << LOAD_DATA_DATA_SHIFT; 8570 ret = do_8051_command(dd, HCMD_LOAD_CONFIG_DATA, data, NULL); 8571 if (ret != HCMD_SUCCESS) { 8572 dd_dev_err(dd, 8573 "load 8051 config: field id %d, lane %d, err %d\n", 8574 (int)field_id, (int)lane_id, ret); 8575 } 8576 return ret; 8577 } 8578 8579 /* 8580 * Read the 8051 firmware "registers". Use the RAM directly. Always 8581 * set the result, even on error. 8582 * Return 0 on success, -errno on failure 8583 */ 8584 int read_8051_config(struct hfi1_devdata *dd, u8 field_id, u8 lane_id, 8585 u32 *result) 8586 { 8587 u64 big_data; 8588 u32 addr; 8589 int ret; 8590 8591 /* address start depends on the lane_id */ 8592 if (lane_id < 4) 8593 addr = (4 * NUM_GENERAL_FIELDS) 8594 + (lane_id * 4 * NUM_LANE_FIELDS); 8595 else 8596 addr = 0; 8597 addr += field_id * 4; 8598 8599 /* read is in 8-byte chunks, hardware will truncate the address down */ 8600 ret = read_8051_data(dd, addr, 8, &big_data); 8601 8602 if (ret == 0) { 8603 /* extract the 4 bytes we want */ 8604 if (addr & 0x4) 8605 *result = (u32)(big_data >> 32); 8606 else 8607 *result = (u32)big_data; 8608 } else { 8609 *result = 0; 8610 dd_dev_err(dd, "%s: direct read failed, lane %d, field %d!\n", 8611 __func__, lane_id, field_id); 8612 } 8613 8614 return ret; 8615 } 8616 8617 static int write_vc_local_phy(struct hfi1_devdata *dd, u8 power_management, 8618 u8 continuous) 8619 { 8620 u32 frame; 8621 8622 frame = continuous << CONTINIOUS_REMOTE_UPDATE_SUPPORT_SHIFT 8623 | power_management << POWER_MANAGEMENT_SHIFT; 8624 return load_8051_config(dd, VERIFY_CAP_LOCAL_PHY, 8625 GENERAL_CONFIG, frame); 8626 } 8627 8628 static int write_vc_local_fabric(struct hfi1_devdata *dd, u8 vau, u8 z, u8 vcu, 8629 u16 vl15buf, u8 crc_sizes) 8630 { 8631 u32 frame; 8632 8633 frame = (u32)vau << VAU_SHIFT 8634 | (u32)z << Z_SHIFT 8635 | (u32)vcu << VCU_SHIFT 8636 | (u32)vl15buf << VL15BUF_SHIFT 8637 | (u32)crc_sizes << CRC_SIZES_SHIFT; 8638 return load_8051_config(dd, VERIFY_CAP_LOCAL_FABRIC, 8639 GENERAL_CONFIG, frame); 8640 } 8641 8642 static void read_vc_local_link_width(struct hfi1_devdata *dd, u8 *misc_bits, 8643 u8 *flag_bits, u16 *link_widths) 8644 { 8645 u32 frame; 8646 8647 read_8051_config(dd, VERIFY_CAP_LOCAL_LINK_WIDTH, GENERAL_CONFIG, 8648 &frame); 8649 *misc_bits = (frame >> MISC_CONFIG_BITS_SHIFT) & MISC_CONFIG_BITS_MASK; 8650 *flag_bits = (frame >> LOCAL_FLAG_BITS_SHIFT) & LOCAL_FLAG_BITS_MASK; 8651 *link_widths = (frame >> LINK_WIDTH_SHIFT) & LINK_WIDTH_MASK; 8652 } 8653 8654 static int write_vc_local_link_width(struct hfi1_devdata *dd, 8655 u8 misc_bits, 8656 u8 flag_bits, 8657 u16 link_widths) 8658 { 8659 u32 frame; 8660 8661 frame = (u32)misc_bits << MISC_CONFIG_BITS_SHIFT 8662 | (u32)flag_bits << LOCAL_FLAG_BITS_SHIFT 8663 | (u32)link_widths << LINK_WIDTH_SHIFT; 8664 return load_8051_config(dd, VERIFY_CAP_LOCAL_LINK_WIDTH, GENERAL_CONFIG, 8665 frame); 8666 } 8667 8668 static int write_local_device_id(struct hfi1_devdata *dd, u16 device_id, 8669 u8 device_rev) 8670 { 8671 u32 frame; 8672 8673 frame = ((u32)device_id << LOCAL_DEVICE_ID_SHIFT) 8674 | ((u32)device_rev << LOCAL_DEVICE_REV_SHIFT); 8675 return load_8051_config(dd, LOCAL_DEVICE_ID, GENERAL_CONFIG, frame); 8676 } 8677 8678 static void read_remote_device_id(struct hfi1_devdata *dd, u16 *device_id, 8679 u8 *device_rev) 8680 { 8681 u32 frame; 8682 8683 read_8051_config(dd, REMOTE_DEVICE_ID, GENERAL_CONFIG, &frame); 8684 *device_id = (frame >> REMOTE_DEVICE_ID_SHIFT) & REMOTE_DEVICE_ID_MASK; 8685 *device_rev = (frame >> REMOTE_DEVICE_REV_SHIFT) 8686 & REMOTE_DEVICE_REV_MASK; 8687 } 8688 8689 void read_misc_status(struct hfi1_devdata *dd, u8 *ver_a, u8 *ver_b) 8690 { 8691 u32 frame; 8692 8693 read_8051_config(dd, MISC_STATUS, GENERAL_CONFIG, &frame); 8694 *ver_a = (frame >> STS_FM_VERSION_A_SHIFT) & STS_FM_VERSION_A_MASK; 8695 *ver_b = (frame >> STS_FM_VERSION_B_SHIFT) & STS_FM_VERSION_B_MASK; 8696 } 8697 8698 static void read_vc_remote_phy(struct hfi1_devdata *dd, u8 *power_management, 8699 u8 *continuous) 8700 { 8701 u32 frame; 8702 8703 read_8051_config(dd, VERIFY_CAP_REMOTE_PHY, GENERAL_CONFIG, &frame); 8704 *power_management = (frame >> POWER_MANAGEMENT_SHIFT) 8705 & POWER_MANAGEMENT_MASK; 8706 *continuous = (frame >> CONTINIOUS_REMOTE_UPDATE_SUPPORT_SHIFT) 8707 & CONTINIOUS_REMOTE_UPDATE_SUPPORT_MASK; 8708 } 8709 8710 static void read_vc_remote_fabric(struct hfi1_devdata *dd, u8 *vau, u8 *z, 8711 u8 *vcu, u16 *vl15buf, u8 *crc_sizes) 8712 { 8713 u32 frame; 8714 8715 read_8051_config(dd, VERIFY_CAP_REMOTE_FABRIC, GENERAL_CONFIG, &frame); 8716 *vau = (frame >> VAU_SHIFT) & VAU_MASK; 8717 *z = (frame >> Z_SHIFT) & Z_MASK; 8718 *vcu = (frame >> VCU_SHIFT) & VCU_MASK; 8719 *vl15buf = (frame >> VL15BUF_SHIFT) & VL15BUF_MASK; 8720 *crc_sizes = (frame >> CRC_SIZES_SHIFT) & CRC_SIZES_MASK; 8721 } 8722 8723 static void read_vc_remote_link_width(struct hfi1_devdata *dd, 8724 u8 *remote_tx_rate, 8725 u16 *link_widths) 8726 { 8727 u32 frame; 8728 8729 read_8051_config(dd, VERIFY_CAP_REMOTE_LINK_WIDTH, GENERAL_CONFIG, 8730 &frame); 8731 *remote_tx_rate = (frame >> REMOTE_TX_RATE_SHIFT) 8732 & REMOTE_TX_RATE_MASK; 8733 *link_widths = (frame >> LINK_WIDTH_SHIFT) & LINK_WIDTH_MASK; 8734 } 8735 8736 static void read_local_lni(struct hfi1_devdata *dd, u8 *enable_lane_rx) 8737 { 8738 u32 frame; 8739 8740 read_8051_config(dd, LOCAL_LNI_INFO, GENERAL_CONFIG, &frame); 8741 *enable_lane_rx = (frame >> ENABLE_LANE_RX_SHIFT) & ENABLE_LANE_RX_MASK; 8742 } 8743 8744 static void read_mgmt_allowed(struct hfi1_devdata *dd, u8 *mgmt_allowed) 8745 { 8746 u32 frame; 8747 8748 read_8051_config(dd, REMOTE_LNI_INFO, GENERAL_CONFIG, &frame); 8749 *mgmt_allowed = (frame >> MGMT_ALLOWED_SHIFT) & MGMT_ALLOWED_MASK; 8750 } 8751 8752 static void read_last_local_state(struct hfi1_devdata *dd, u32 *lls) 8753 { 8754 read_8051_config(dd, LAST_LOCAL_STATE_COMPLETE, GENERAL_CONFIG, lls); 8755 } 8756 8757 static void read_last_remote_state(struct hfi1_devdata *dd, u32 *lrs) 8758 { 8759 read_8051_config(dd, LAST_REMOTE_STATE_COMPLETE, GENERAL_CONFIG, lrs); 8760 } 8761 8762 void hfi1_read_link_quality(struct hfi1_devdata *dd, u8 *link_quality) 8763 { 8764 u32 frame; 8765 int ret; 8766 8767 *link_quality = 0; 8768 if (dd->pport->host_link_state & HLS_UP) { 8769 ret = read_8051_config(dd, LINK_QUALITY_INFO, GENERAL_CONFIG, 8770 &frame); 8771 if (ret == 0) 8772 *link_quality = (frame >> LINK_QUALITY_SHIFT) 8773 & LINK_QUALITY_MASK; 8774 } 8775 } 8776 8777 static void read_planned_down_reason_code(struct hfi1_devdata *dd, u8 *pdrrc) 8778 { 8779 u32 frame; 8780 8781 read_8051_config(dd, LINK_QUALITY_INFO, GENERAL_CONFIG, &frame); 8782 *pdrrc = (frame >> DOWN_REMOTE_REASON_SHIFT) & DOWN_REMOTE_REASON_MASK; 8783 } 8784 8785 static void read_link_down_reason(struct hfi1_devdata *dd, u8 *ldr) 8786 { 8787 u32 frame; 8788 8789 read_8051_config(dd, LINK_DOWN_REASON, GENERAL_CONFIG, &frame); 8790 *ldr = (frame & 0xff); 8791 } 8792 8793 static int read_tx_settings(struct hfi1_devdata *dd, 8794 u8 *enable_lane_tx, 8795 u8 *tx_polarity_inversion, 8796 u8 *rx_polarity_inversion, 8797 u8 *max_rate) 8798 { 8799 u32 frame; 8800 int ret; 8801 8802 ret = read_8051_config(dd, TX_SETTINGS, GENERAL_CONFIG, &frame); 8803 *enable_lane_tx = (frame >> ENABLE_LANE_TX_SHIFT) 8804 & ENABLE_LANE_TX_MASK; 8805 *tx_polarity_inversion = (frame >> TX_POLARITY_INVERSION_SHIFT) 8806 & TX_POLARITY_INVERSION_MASK; 8807 *rx_polarity_inversion = (frame >> RX_POLARITY_INVERSION_SHIFT) 8808 & RX_POLARITY_INVERSION_MASK; 8809 *max_rate = (frame >> MAX_RATE_SHIFT) & MAX_RATE_MASK; 8810 return ret; 8811 } 8812 8813 static int write_tx_settings(struct hfi1_devdata *dd, 8814 u8 enable_lane_tx, 8815 u8 tx_polarity_inversion, 8816 u8 rx_polarity_inversion, 8817 u8 max_rate) 8818 { 8819 u32 frame; 8820 8821 /* no need to mask, all variable sizes match field widths */ 8822 frame = enable_lane_tx << ENABLE_LANE_TX_SHIFT 8823 | tx_polarity_inversion << TX_POLARITY_INVERSION_SHIFT 8824 | rx_polarity_inversion << RX_POLARITY_INVERSION_SHIFT 8825 | max_rate << MAX_RATE_SHIFT; 8826 return load_8051_config(dd, TX_SETTINGS, GENERAL_CONFIG, frame); 8827 } 8828 8829 /* 8830 * Read an idle LCB message. 8831 * 8832 * Returns 0 on success, -EINVAL on error 8833 */ 8834 static int read_idle_message(struct hfi1_devdata *dd, u64 type, u64 *data_out) 8835 { 8836 int ret; 8837 8838 ret = do_8051_command(dd, HCMD_READ_LCB_IDLE_MSG, type, data_out); 8839 if (ret != HCMD_SUCCESS) { 8840 dd_dev_err(dd, "read idle message: type %d, err %d\n", 8841 (u32)type, ret); 8842 return -EINVAL; 8843 } 8844 dd_dev_info(dd, "%s: read idle message 0x%llx\n", __func__, *data_out); 8845 /* return only the payload as we already know the type */ 8846 *data_out >>= IDLE_PAYLOAD_SHIFT; 8847 return 0; 8848 } 8849 8850 /* 8851 * Read an idle SMA message. To be done in response to a notification from 8852 * the 8051. 8853 * 8854 * Returns 0 on success, -EINVAL on error 8855 */ 8856 static int read_idle_sma(struct hfi1_devdata *dd, u64 *data) 8857 { 8858 return read_idle_message(dd, (u64)IDLE_SMA << IDLE_MSG_TYPE_SHIFT, 8859 data); 8860 } 8861 8862 /* 8863 * Send an idle LCB message. 8864 * 8865 * Returns 0 on success, -EINVAL on error 8866 */ 8867 static int send_idle_message(struct hfi1_devdata *dd, u64 data) 8868 { 8869 int ret; 8870 8871 dd_dev_info(dd, "%s: sending idle message 0x%llx\n", __func__, data); 8872 ret = do_8051_command(dd, HCMD_SEND_LCB_IDLE_MSG, data, NULL); 8873 if (ret != HCMD_SUCCESS) { 8874 dd_dev_err(dd, "send idle message: data 0x%llx, err %d\n", 8875 data, ret); 8876 return -EINVAL; 8877 } 8878 return 0; 8879 } 8880 8881 /* 8882 * Send an idle SMA message. 8883 * 8884 * Returns 0 on success, -EINVAL on error 8885 */ 8886 int send_idle_sma(struct hfi1_devdata *dd, u64 message) 8887 { 8888 u64 data; 8889 8890 data = ((message & IDLE_PAYLOAD_MASK) << IDLE_PAYLOAD_SHIFT) | 8891 ((u64)IDLE_SMA << IDLE_MSG_TYPE_SHIFT); 8892 return send_idle_message(dd, data); 8893 } 8894 8895 /* 8896 * Initialize the LCB then do a quick link up. This may or may not be 8897 * in loopback. 8898 * 8899 * return 0 on success, -errno on error 8900 */ 8901 static int do_quick_linkup(struct hfi1_devdata *dd) 8902 { 8903 u64 reg; 8904 unsigned long timeout; 8905 int ret; 8906 8907 lcb_shutdown(dd, 0); 8908 8909 if (loopback) { 8910 /* LCB_CFG_LOOPBACK.VAL = 2 */ 8911 /* LCB_CFG_LANE_WIDTH.VAL = 0 */ 8912 write_csr(dd, DC_LCB_CFG_LOOPBACK, 8913 IB_PACKET_TYPE << DC_LCB_CFG_LOOPBACK_VAL_SHIFT); 8914 write_csr(dd, DC_LCB_CFG_LANE_WIDTH, 0); 8915 } 8916 8917 /* start the LCBs */ 8918 /* LCB_CFG_TX_FIFOS_RESET.VAL = 0 */ 8919 write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0); 8920 8921 /* simulator only loopback steps */ 8922 if (loopback && dd->icode == ICODE_FUNCTIONAL_SIMULATOR) { 8923 /* LCB_CFG_RUN.EN = 1 */ 8924 write_csr(dd, DC_LCB_CFG_RUN, 8925 1ull << DC_LCB_CFG_RUN_EN_SHIFT); 8926 8927 /* watch LCB_STS_LINK_TRANSFER_ACTIVE */ 8928 timeout = jiffies + msecs_to_jiffies(10); 8929 while (1) { 8930 reg = read_csr(dd, DC_LCB_STS_LINK_TRANSFER_ACTIVE); 8931 if (reg) 8932 break; 8933 if (time_after(jiffies, timeout)) { 8934 dd_dev_err(dd, 8935 "timeout waiting for LINK_TRANSFER_ACTIVE\n"); 8936 return -ETIMEDOUT; 8937 } 8938 udelay(2); 8939 } 8940 8941 write_csr(dd, DC_LCB_CFG_ALLOW_LINK_UP, 8942 1ull << DC_LCB_CFG_ALLOW_LINK_UP_VAL_SHIFT); 8943 } 8944 8945 if (!loopback) { 8946 /* 8947 * When doing quick linkup and not in loopback, both 8948 * sides must be done with LCB set-up before either 8949 * starts the quick linkup. Put a delay here so that 8950 * both sides can be started and have a chance to be 8951 * done with LCB set up before resuming. 8952 */ 8953 dd_dev_err(dd, 8954 "Pausing for peer to be finished with LCB set up\n"); 8955 msleep(5000); 8956 dd_dev_err(dd, "Continuing with quick linkup\n"); 8957 } 8958 8959 write_csr(dd, DC_LCB_ERR_EN, 0); /* mask LCB errors */ 8960 set_8051_lcb_access(dd); 8961 8962 /* 8963 * State "quick" LinkUp request sets the physical link state to 8964 * LinkUp without a verify capability sequence. 8965 * This state is in simulator v37 and later. 8966 */ 8967 ret = set_physical_link_state(dd, PLS_QUICK_LINKUP); 8968 if (ret != HCMD_SUCCESS) { 8969 dd_dev_err(dd, 8970 "%s: set physical link state to quick LinkUp failed with return %d\n", 8971 __func__, ret); 8972 8973 set_host_lcb_access(dd); 8974 write_csr(dd, DC_LCB_ERR_EN, ~0ull); /* watch LCB errors */ 8975 8976 if (ret >= 0) 8977 ret = -EINVAL; 8978 return ret; 8979 } 8980 8981 return 0; /* success */ 8982 } 8983 8984 /* 8985 * Set the SerDes to internal loopback mode. 8986 * Returns 0 on success, -errno on error. 8987 */ 8988 static int set_serdes_loopback_mode(struct hfi1_devdata *dd) 8989 { 8990 int ret; 8991 8992 ret = set_physical_link_state(dd, PLS_INTERNAL_SERDES_LOOPBACK); 8993 if (ret == HCMD_SUCCESS) 8994 return 0; 8995 dd_dev_err(dd, 8996 "Set physical link state to SerDes Loopback failed with return %d\n", 8997 ret); 8998 if (ret >= 0) 8999 ret = -EINVAL; 9000 return ret; 9001 } 9002 9003 /* 9004 * Do all special steps to set up loopback. 9005 */ 9006 static int init_loopback(struct hfi1_devdata *dd) 9007 { 9008 dd_dev_info(dd, "Entering loopback mode\n"); 9009 9010 /* all loopbacks should disable self GUID check */ 9011 write_csr(dd, DC_DC8051_CFG_MODE, 9012 (read_csr(dd, DC_DC8051_CFG_MODE) | DISABLE_SELF_GUID_CHECK)); 9013 9014 /* 9015 * The simulator has only one loopback option - LCB. Switch 9016 * to that option, which includes quick link up. 9017 * 9018 * Accept all valid loopback values. 9019 */ 9020 if ((dd->icode == ICODE_FUNCTIONAL_SIMULATOR) && 9021 (loopback == LOOPBACK_SERDES || loopback == LOOPBACK_LCB || 9022 loopback == LOOPBACK_CABLE)) { 9023 loopback = LOOPBACK_LCB; 9024 quick_linkup = 1; 9025 return 0; 9026 } 9027 9028 /* handle serdes loopback */ 9029 if (loopback == LOOPBACK_SERDES) { 9030 /* internal serdes loopack needs quick linkup on RTL */ 9031 if (dd->icode == ICODE_RTL_SILICON) 9032 quick_linkup = 1; 9033 return set_serdes_loopback_mode(dd); 9034 } 9035 9036 /* LCB loopback - handled at poll time */ 9037 if (loopback == LOOPBACK_LCB) { 9038 quick_linkup = 1; /* LCB is always quick linkup */ 9039 9040 /* not supported in emulation due to emulation RTL changes */ 9041 if (dd->icode == ICODE_FPGA_EMULATION) { 9042 dd_dev_err(dd, 9043 "LCB loopback not supported in emulation\n"); 9044 return -EINVAL; 9045 } 9046 return 0; 9047 } 9048 9049 /* external cable loopback requires no extra steps */ 9050 if (loopback == LOOPBACK_CABLE) 9051 return 0; 9052 9053 dd_dev_err(dd, "Invalid loopback mode %d\n", loopback); 9054 return -EINVAL; 9055 } 9056 9057 /* 9058 * Translate from the OPA_LINK_WIDTH handed to us by the FM to bits 9059 * used in the Verify Capability link width attribute. 9060 */ 9061 static u16 opa_to_vc_link_widths(u16 opa_widths) 9062 { 9063 int i; 9064 u16 result = 0; 9065 9066 static const struct link_bits { 9067 u16 from; 9068 u16 to; 9069 } opa_link_xlate[] = { 9070 { OPA_LINK_WIDTH_1X, 1 << (1 - 1) }, 9071 { OPA_LINK_WIDTH_2X, 1 << (2 - 1) }, 9072 { OPA_LINK_WIDTH_3X, 1 << (3 - 1) }, 9073 { OPA_LINK_WIDTH_4X, 1 << (4 - 1) }, 9074 }; 9075 9076 for (i = 0; i < ARRAY_SIZE(opa_link_xlate); i++) { 9077 if (opa_widths & opa_link_xlate[i].from) 9078 result |= opa_link_xlate[i].to; 9079 } 9080 return result; 9081 } 9082 9083 /* 9084 * Set link attributes before moving to polling. 9085 */ 9086 static int set_local_link_attributes(struct hfi1_pportdata *ppd) 9087 { 9088 struct hfi1_devdata *dd = ppd->dd; 9089 u8 enable_lane_tx; 9090 u8 tx_polarity_inversion; 9091 u8 rx_polarity_inversion; 9092 int ret; 9093 9094 /* reset our fabric serdes to clear any lingering problems */ 9095 fabric_serdes_reset(dd); 9096 9097 /* set the local tx rate - need to read-modify-write */ 9098 ret = read_tx_settings(dd, &enable_lane_tx, &tx_polarity_inversion, 9099 &rx_polarity_inversion, &ppd->local_tx_rate); 9100 if (ret) 9101 goto set_local_link_attributes_fail; 9102 9103 if (dd->dc8051_ver < dc8051_ver(0, 20)) { 9104 /* set the tx rate to the fastest enabled */ 9105 if (ppd->link_speed_enabled & OPA_LINK_SPEED_25G) 9106 ppd->local_tx_rate = 1; 9107 else 9108 ppd->local_tx_rate = 0; 9109 } else { 9110 /* set the tx rate to all enabled */ 9111 ppd->local_tx_rate = 0; 9112 if (ppd->link_speed_enabled & OPA_LINK_SPEED_25G) 9113 ppd->local_tx_rate |= 2; 9114 if (ppd->link_speed_enabled & OPA_LINK_SPEED_12_5G) 9115 ppd->local_tx_rate |= 1; 9116 } 9117 9118 enable_lane_tx = 0xF; /* enable all four lanes */ 9119 ret = write_tx_settings(dd, enable_lane_tx, tx_polarity_inversion, 9120 rx_polarity_inversion, ppd->local_tx_rate); 9121 if (ret != HCMD_SUCCESS) 9122 goto set_local_link_attributes_fail; 9123 9124 /* 9125 * DC supports continuous updates. 9126 */ 9127 ret = write_vc_local_phy(dd, 9128 0 /* no power management */, 9129 1 /* continuous updates */); 9130 if (ret != HCMD_SUCCESS) 9131 goto set_local_link_attributes_fail; 9132 9133 /* z=1 in the next call: AU of 0 is not supported by the hardware */ 9134 ret = write_vc_local_fabric(dd, dd->vau, 1, dd->vcu, dd->vl15_init, 9135 ppd->port_crc_mode_enabled); 9136 if (ret != HCMD_SUCCESS) 9137 goto set_local_link_attributes_fail; 9138 9139 ret = write_vc_local_link_width(dd, 0, 0, 9140 opa_to_vc_link_widths( 9141 ppd->link_width_enabled)); 9142 if (ret != HCMD_SUCCESS) 9143 goto set_local_link_attributes_fail; 9144 9145 /* let peer know who we are */ 9146 ret = write_local_device_id(dd, dd->pcidev->device, dd->minrev); 9147 if (ret == HCMD_SUCCESS) 9148 return 0; 9149 9150 set_local_link_attributes_fail: 9151 dd_dev_err(dd, 9152 "Failed to set local link attributes, return 0x%x\n", 9153 ret); 9154 return ret; 9155 } 9156 9157 /* 9158 * Call this to start the link. 9159 * Do not do anything if the link is disabled. 9160 * Returns 0 if link is disabled, moved to polling, or the driver is not ready. 9161 */ 9162 int start_link(struct hfi1_pportdata *ppd) 9163 { 9164 if (!ppd->link_enabled) { 9165 dd_dev_info(ppd->dd, 9166 "%s: stopping link start because link is disabled\n", 9167 __func__); 9168 return 0; 9169 } 9170 if (!ppd->driver_link_ready) { 9171 dd_dev_info(ppd->dd, 9172 "%s: stopping link start because driver is not ready\n", 9173 __func__); 9174 return 0; 9175 } 9176 9177 /* 9178 * FULL_MGMT_P_KEY is cleared from the pkey table, so that the 9179 * pkey table can be configured properly if the HFI unit is connected 9180 * to switch port with MgmtAllowed=NO 9181 */ 9182 clear_full_mgmt_pkey(ppd); 9183 9184 return set_link_state(ppd, HLS_DN_POLL); 9185 } 9186 9187 static void wait_for_qsfp_init(struct hfi1_pportdata *ppd) 9188 { 9189 struct hfi1_devdata *dd = ppd->dd; 9190 u64 mask; 9191 unsigned long timeout; 9192 9193 /* 9194 * Some QSFP cables have a quirk that asserts the IntN line as a side 9195 * effect of power up on plug-in. We ignore this false positive 9196 * interrupt until the module has finished powering up by waiting for 9197 * a minimum timeout of the module inrush initialization time of 9198 * 500 ms (SFF 8679 Table 5-6) to ensure the voltage rails in the 9199 * module have stabilized. 9200 */ 9201 msleep(500); 9202 9203 /* 9204 * Check for QSFP interrupt for t_init (SFF 8679 Table 8-1) 9205 */ 9206 timeout = jiffies + msecs_to_jiffies(2000); 9207 while (1) { 9208 mask = read_csr(dd, dd->hfi1_id ? 9209 ASIC_QSFP2_IN : ASIC_QSFP1_IN); 9210 if (!(mask & QSFP_HFI0_INT_N)) 9211 break; 9212 if (time_after(jiffies, timeout)) { 9213 dd_dev_info(dd, "%s: No IntN detected, reset complete\n", 9214 __func__); 9215 break; 9216 } 9217 udelay(2); 9218 } 9219 } 9220 9221 static void set_qsfp_int_n(struct hfi1_pportdata *ppd, u8 enable) 9222 { 9223 struct hfi1_devdata *dd = ppd->dd; 9224 u64 mask; 9225 9226 mask = read_csr(dd, dd->hfi1_id ? ASIC_QSFP2_MASK : ASIC_QSFP1_MASK); 9227 if (enable) { 9228 /* 9229 * Clear the status register to avoid an immediate interrupt 9230 * when we re-enable the IntN pin 9231 */ 9232 write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_CLEAR : ASIC_QSFP1_CLEAR, 9233 QSFP_HFI0_INT_N); 9234 mask |= (u64)QSFP_HFI0_INT_N; 9235 } else { 9236 mask &= ~(u64)QSFP_HFI0_INT_N; 9237 } 9238 write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_MASK : ASIC_QSFP1_MASK, mask); 9239 } 9240 9241 void reset_qsfp(struct hfi1_pportdata *ppd) 9242 { 9243 struct hfi1_devdata *dd = ppd->dd; 9244 u64 mask, qsfp_mask; 9245 9246 /* Disable INT_N from triggering QSFP interrupts */ 9247 set_qsfp_int_n(ppd, 0); 9248 9249 /* Reset the QSFP */ 9250 mask = (u64)QSFP_HFI0_RESET_N; 9251 9252 qsfp_mask = read_csr(dd, 9253 dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT); 9254 qsfp_mask &= ~mask; 9255 write_csr(dd, 9256 dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT, qsfp_mask); 9257 9258 udelay(10); 9259 9260 qsfp_mask |= mask; 9261 write_csr(dd, 9262 dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT, qsfp_mask); 9263 9264 wait_for_qsfp_init(ppd); 9265 9266 /* 9267 * Allow INT_N to trigger the QSFP interrupt to watch 9268 * for alarms and warnings 9269 */ 9270 set_qsfp_int_n(ppd, 1); 9271 } 9272 9273 static int handle_qsfp_error_conditions(struct hfi1_pportdata *ppd, 9274 u8 *qsfp_interrupt_status) 9275 { 9276 struct hfi1_devdata *dd = ppd->dd; 9277 9278 if ((qsfp_interrupt_status[0] & QSFP_HIGH_TEMP_ALARM) || 9279 (qsfp_interrupt_status[0] & QSFP_HIGH_TEMP_WARNING)) 9280 dd_dev_info(dd, "%s: QSFP cable on fire\n", 9281 __func__); 9282 9283 if ((qsfp_interrupt_status[0] & QSFP_LOW_TEMP_ALARM) || 9284 (qsfp_interrupt_status[0] & QSFP_LOW_TEMP_WARNING)) 9285 dd_dev_info(dd, "%s: QSFP cable temperature too low\n", 9286 __func__); 9287 9288 /* 9289 * The remaining alarms/warnings don't matter if the link is down. 9290 */ 9291 if (ppd->host_link_state & HLS_DOWN) 9292 return 0; 9293 9294 if ((qsfp_interrupt_status[1] & QSFP_HIGH_VCC_ALARM) || 9295 (qsfp_interrupt_status[1] & QSFP_HIGH_VCC_WARNING)) 9296 dd_dev_info(dd, "%s: QSFP supply voltage too high\n", 9297 __func__); 9298 9299 if ((qsfp_interrupt_status[1] & QSFP_LOW_VCC_ALARM) || 9300 (qsfp_interrupt_status[1] & QSFP_LOW_VCC_WARNING)) 9301 dd_dev_info(dd, "%s: QSFP supply voltage too low\n", 9302 __func__); 9303 9304 /* Byte 2 is vendor specific */ 9305 9306 if ((qsfp_interrupt_status[3] & QSFP_HIGH_POWER_ALARM) || 9307 (qsfp_interrupt_status[3] & QSFP_HIGH_POWER_WARNING)) 9308 dd_dev_info(dd, "%s: Cable RX channel 1/2 power too high\n", 9309 __func__); 9310 9311 if ((qsfp_interrupt_status[3] & QSFP_LOW_POWER_ALARM) || 9312 (qsfp_interrupt_status[3] & QSFP_LOW_POWER_WARNING)) 9313 dd_dev_info(dd, "%s: Cable RX channel 1/2 power too low\n", 9314 __func__); 9315 9316 if ((qsfp_interrupt_status[4] & QSFP_HIGH_POWER_ALARM) || 9317 (qsfp_interrupt_status[4] & QSFP_HIGH_POWER_WARNING)) 9318 dd_dev_info(dd, "%s: Cable RX channel 3/4 power too high\n", 9319 __func__); 9320 9321 if ((qsfp_interrupt_status[4] & QSFP_LOW_POWER_ALARM) || 9322 (qsfp_interrupt_status[4] & QSFP_LOW_POWER_WARNING)) 9323 dd_dev_info(dd, "%s: Cable RX channel 3/4 power too low\n", 9324 __func__); 9325 9326 if ((qsfp_interrupt_status[5] & QSFP_HIGH_BIAS_ALARM) || 9327 (qsfp_interrupt_status[5] & QSFP_HIGH_BIAS_WARNING)) 9328 dd_dev_info(dd, "%s: Cable TX channel 1/2 bias too high\n", 9329 __func__); 9330 9331 if ((qsfp_interrupt_status[5] & QSFP_LOW_BIAS_ALARM) || 9332 (qsfp_interrupt_status[5] & QSFP_LOW_BIAS_WARNING)) 9333 dd_dev_info(dd, "%s: Cable TX channel 1/2 bias too low\n", 9334 __func__); 9335 9336 if ((qsfp_interrupt_status[6] & QSFP_HIGH_BIAS_ALARM) || 9337 (qsfp_interrupt_status[6] & QSFP_HIGH_BIAS_WARNING)) 9338 dd_dev_info(dd, "%s: Cable TX channel 3/4 bias too high\n", 9339 __func__); 9340 9341 if ((qsfp_interrupt_status[6] & QSFP_LOW_BIAS_ALARM) || 9342 (qsfp_interrupt_status[6] & QSFP_LOW_BIAS_WARNING)) 9343 dd_dev_info(dd, "%s: Cable TX channel 3/4 bias too low\n", 9344 __func__); 9345 9346 if ((qsfp_interrupt_status[7] & QSFP_HIGH_POWER_ALARM) || 9347 (qsfp_interrupt_status[7] & QSFP_HIGH_POWER_WARNING)) 9348 dd_dev_info(dd, "%s: Cable TX channel 1/2 power too high\n", 9349 __func__); 9350 9351 if ((qsfp_interrupt_status[7] & QSFP_LOW_POWER_ALARM) || 9352 (qsfp_interrupt_status[7] & QSFP_LOW_POWER_WARNING)) 9353 dd_dev_info(dd, "%s: Cable TX channel 1/2 power too low\n", 9354 __func__); 9355 9356 if ((qsfp_interrupt_status[8] & QSFP_HIGH_POWER_ALARM) || 9357 (qsfp_interrupt_status[8] & QSFP_HIGH_POWER_WARNING)) 9358 dd_dev_info(dd, "%s: Cable TX channel 3/4 power too high\n", 9359 __func__); 9360 9361 if ((qsfp_interrupt_status[8] & QSFP_LOW_POWER_ALARM) || 9362 (qsfp_interrupt_status[8] & QSFP_LOW_POWER_WARNING)) 9363 dd_dev_info(dd, "%s: Cable TX channel 3/4 power too low\n", 9364 __func__); 9365 9366 /* Bytes 9-10 and 11-12 are reserved */ 9367 /* Bytes 13-15 are vendor specific */ 9368 9369 return 0; 9370 } 9371 9372 /* This routine will only be scheduled if the QSFP module present is asserted */ 9373 void qsfp_event(struct work_struct *work) 9374 { 9375 struct qsfp_data *qd; 9376 struct hfi1_pportdata *ppd; 9377 struct hfi1_devdata *dd; 9378 9379 qd = container_of(work, struct qsfp_data, qsfp_work); 9380 ppd = qd->ppd; 9381 dd = ppd->dd; 9382 9383 /* Sanity check */ 9384 if (!qsfp_mod_present(ppd)) 9385 return; 9386 9387 /* 9388 * Turn DC back on after cable has been re-inserted. Up until 9389 * now, the DC has been in reset to save power. 9390 */ 9391 dc_start(dd); 9392 9393 if (qd->cache_refresh_required) { 9394 set_qsfp_int_n(ppd, 0); 9395 9396 wait_for_qsfp_init(ppd); 9397 9398 /* 9399 * Allow INT_N to trigger the QSFP interrupt to watch 9400 * for alarms and warnings 9401 */ 9402 set_qsfp_int_n(ppd, 1); 9403 9404 tune_serdes(ppd); 9405 9406 start_link(ppd); 9407 } 9408 9409 if (qd->check_interrupt_flags) { 9410 u8 qsfp_interrupt_status[16] = {0,}; 9411 9412 if (one_qsfp_read(ppd, dd->hfi1_id, 6, 9413 &qsfp_interrupt_status[0], 16) != 16) { 9414 dd_dev_info(dd, 9415 "%s: Failed to read status of QSFP module\n", 9416 __func__); 9417 } else { 9418 unsigned long flags; 9419 9420 handle_qsfp_error_conditions( 9421 ppd, qsfp_interrupt_status); 9422 spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags); 9423 ppd->qsfp_info.check_interrupt_flags = 0; 9424 spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock, 9425 flags); 9426 } 9427 } 9428 } 9429 9430 static void init_qsfp_int(struct hfi1_devdata *dd) 9431 { 9432 struct hfi1_pportdata *ppd = dd->pport; 9433 u64 qsfp_mask, cce_int_mask; 9434 const int qsfp1_int_smask = QSFP1_INT % 64; 9435 const int qsfp2_int_smask = QSFP2_INT % 64; 9436 9437 /* 9438 * disable QSFP1 interrupts for HFI1, QSFP2 interrupts for HFI0 9439 * Qsfp1Int and Qsfp2Int are adjacent bits in the same CSR, 9440 * therefore just one of QSFP1_INT/QSFP2_INT can be used to find 9441 * the index of the appropriate CSR in the CCEIntMask CSR array 9442 */ 9443 cce_int_mask = read_csr(dd, CCE_INT_MASK + 9444 (8 * (QSFP1_INT / 64))); 9445 if (dd->hfi1_id) { 9446 cce_int_mask &= ~((u64)1 << qsfp1_int_smask); 9447 write_csr(dd, CCE_INT_MASK + (8 * (QSFP1_INT / 64)), 9448 cce_int_mask); 9449 } else { 9450 cce_int_mask &= ~((u64)1 << qsfp2_int_smask); 9451 write_csr(dd, CCE_INT_MASK + (8 * (QSFP2_INT / 64)), 9452 cce_int_mask); 9453 } 9454 9455 qsfp_mask = (u64)(QSFP_HFI0_INT_N | QSFP_HFI0_MODPRST_N); 9456 /* Clear current status to avoid spurious interrupts */ 9457 write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_CLEAR : ASIC_QSFP1_CLEAR, 9458 qsfp_mask); 9459 write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_MASK : ASIC_QSFP1_MASK, 9460 qsfp_mask); 9461 9462 set_qsfp_int_n(ppd, 0); 9463 9464 /* Handle active low nature of INT_N and MODPRST_N pins */ 9465 if (qsfp_mod_present(ppd)) 9466 qsfp_mask &= ~(u64)QSFP_HFI0_MODPRST_N; 9467 write_csr(dd, 9468 dd->hfi1_id ? ASIC_QSFP2_INVERT : ASIC_QSFP1_INVERT, 9469 qsfp_mask); 9470 } 9471 9472 /* 9473 * Do a one-time initialize of the LCB block. 9474 */ 9475 static void init_lcb(struct hfi1_devdata *dd) 9476 { 9477 /* simulator does not correctly handle LCB cclk loopback, skip */ 9478 if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR) 9479 return; 9480 9481 /* the DC has been reset earlier in the driver load */ 9482 9483 /* set LCB for cclk loopback on the port */ 9484 write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0x01); 9485 write_csr(dd, DC_LCB_CFG_LANE_WIDTH, 0x00); 9486 write_csr(dd, DC_LCB_CFG_REINIT_AS_SLAVE, 0x00); 9487 write_csr(dd, DC_LCB_CFG_CNT_FOR_SKIP_STALL, 0x110); 9488 write_csr(dd, DC_LCB_CFG_CLK_CNTR, 0x08); 9489 write_csr(dd, DC_LCB_CFG_LOOPBACK, 0x02); 9490 write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0x00); 9491 } 9492 9493 int bringup_serdes(struct hfi1_pportdata *ppd) 9494 { 9495 struct hfi1_devdata *dd = ppd->dd; 9496 u64 guid; 9497 int ret; 9498 9499 if (HFI1_CAP_IS_KSET(EXTENDED_PSN)) 9500 add_rcvctrl(dd, RCV_CTRL_RCV_EXTENDED_PSN_ENABLE_SMASK); 9501 9502 guid = ppd->guid; 9503 if (!guid) { 9504 if (dd->base_guid) 9505 guid = dd->base_guid + ppd->port - 1; 9506 ppd->guid = guid; 9507 } 9508 9509 /* Set linkinit_reason on power up per OPA spec */ 9510 ppd->linkinit_reason = OPA_LINKINIT_REASON_LINKUP; 9511 9512 /* one-time init of the LCB */ 9513 init_lcb(dd); 9514 9515 if (loopback) { 9516 ret = init_loopback(dd); 9517 if (ret < 0) 9518 return ret; 9519 } 9520 9521 get_port_type(ppd); 9522 if (ppd->port_type == PORT_TYPE_QSFP) { 9523 set_qsfp_int_n(ppd, 0); 9524 wait_for_qsfp_init(ppd); 9525 set_qsfp_int_n(ppd, 1); 9526 } 9527 9528 /* 9529 * Tune the SerDes to a ballpark setting for 9530 * optimal signal and bit error rate 9531 * Needs to be done before starting the link 9532 */ 9533 tune_serdes(ppd); 9534 9535 return start_link(ppd); 9536 } 9537 9538 void hfi1_quiet_serdes(struct hfi1_pportdata *ppd) 9539 { 9540 struct hfi1_devdata *dd = ppd->dd; 9541 9542 /* 9543 * Shut down the link and keep it down. First turn off that the 9544 * driver wants to allow the link to be up (driver_link_ready). 9545 * Then make sure the link is not automatically restarted 9546 * (link_enabled). Cancel any pending restart. And finally 9547 * go offline. 9548 */ 9549 ppd->driver_link_ready = 0; 9550 ppd->link_enabled = 0; 9551 9552 ppd->offline_disabled_reason = 9553 HFI1_ODR_MASK(OPA_LINKDOWN_REASON_SMA_DISABLED); 9554 set_link_down_reason(ppd, OPA_LINKDOWN_REASON_SMA_DISABLED, 0, 9555 OPA_LINKDOWN_REASON_SMA_DISABLED); 9556 set_link_state(ppd, HLS_DN_OFFLINE); 9557 9558 /* disable the port */ 9559 clear_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK); 9560 } 9561 9562 static inline int init_cpu_counters(struct hfi1_devdata *dd) 9563 { 9564 struct hfi1_pportdata *ppd; 9565 int i; 9566 9567 ppd = (struct hfi1_pportdata *)(dd + 1); 9568 for (i = 0; i < dd->num_pports; i++, ppd++) { 9569 ppd->ibport_data.rvp.rc_acks = NULL; 9570 ppd->ibport_data.rvp.rc_qacks = NULL; 9571 ppd->ibport_data.rvp.rc_acks = alloc_percpu(u64); 9572 ppd->ibport_data.rvp.rc_qacks = alloc_percpu(u64); 9573 ppd->ibport_data.rvp.rc_delayed_comp = alloc_percpu(u64); 9574 if (!ppd->ibport_data.rvp.rc_acks || 9575 !ppd->ibport_data.rvp.rc_delayed_comp || 9576 !ppd->ibport_data.rvp.rc_qacks) 9577 return -ENOMEM; 9578 } 9579 9580 return 0; 9581 } 9582 9583 static const char * const pt_names[] = { 9584 "expected", 9585 "eager", 9586 "invalid" 9587 }; 9588 9589 static const char *pt_name(u32 type) 9590 { 9591 return type >= ARRAY_SIZE(pt_names) ? "unknown" : pt_names[type]; 9592 } 9593 9594 /* 9595 * index is the index into the receive array 9596 */ 9597 void hfi1_put_tid(struct hfi1_devdata *dd, u32 index, 9598 u32 type, unsigned long pa, u16 order) 9599 { 9600 u64 reg; 9601 void __iomem *base = (dd->rcvarray_wc ? dd->rcvarray_wc : 9602 (dd->kregbase + RCV_ARRAY)); 9603 9604 if (!(dd->flags & HFI1_PRESENT)) 9605 goto done; 9606 9607 if (type == PT_INVALID) { 9608 pa = 0; 9609 } else if (type > PT_INVALID) { 9610 dd_dev_err(dd, 9611 "unexpected receive array type %u for index %u, not handled\n", 9612 type, index); 9613 goto done; 9614 } 9615 9616 hfi1_cdbg(TID, "type %s, index 0x%x, pa 0x%lx, bsize 0x%lx", 9617 pt_name(type), index, pa, (unsigned long)order); 9618 9619 #define RT_ADDR_SHIFT 12 /* 4KB kernel address boundary */ 9620 reg = RCV_ARRAY_RT_WRITE_ENABLE_SMASK 9621 | (u64)order << RCV_ARRAY_RT_BUF_SIZE_SHIFT 9622 | ((pa >> RT_ADDR_SHIFT) & RCV_ARRAY_RT_ADDR_MASK) 9623 << RCV_ARRAY_RT_ADDR_SHIFT; 9624 writeq(reg, base + (index * 8)); 9625 9626 if (type == PT_EAGER) 9627 /* 9628 * Eager entries are written one-by-one so we have to push them 9629 * after we write the entry. 9630 */ 9631 flush_wc(); 9632 done: 9633 return; 9634 } 9635 9636 void hfi1_clear_tids(struct hfi1_ctxtdata *rcd) 9637 { 9638 struct hfi1_devdata *dd = rcd->dd; 9639 u32 i; 9640 9641 /* this could be optimized */ 9642 for (i = rcd->eager_base; i < rcd->eager_base + 9643 rcd->egrbufs.alloced; i++) 9644 hfi1_put_tid(dd, i, PT_INVALID, 0, 0); 9645 9646 for (i = rcd->expected_base; 9647 i < rcd->expected_base + rcd->expected_count; i++) 9648 hfi1_put_tid(dd, i, PT_INVALID, 0, 0); 9649 } 9650 9651 struct hfi1_message_header *hfi1_get_msgheader( 9652 struct hfi1_devdata *dd, __le32 *rhf_addr) 9653 { 9654 u32 offset = rhf_hdrq_offset(rhf_to_cpu(rhf_addr)); 9655 9656 return (struct hfi1_message_header *) 9657 (rhf_addr - dd->rhf_offset + offset); 9658 } 9659 9660 static const char * const ib_cfg_name_strings[] = { 9661 "HFI1_IB_CFG_LIDLMC", 9662 "HFI1_IB_CFG_LWID_DG_ENB", 9663 "HFI1_IB_CFG_LWID_ENB", 9664 "HFI1_IB_CFG_LWID", 9665 "HFI1_IB_CFG_SPD_ENB", 9666 "HFI1_IB_CFG_SPD", 9667 "HFI1_IB_CFG_RXPOL_ENB", 9668 "HFI1_IB_CFG_LREV_ENB", 9669 "HFI1_IB_CFG_LINKLATENCY", 9670 "HFI1_IB_CFG_HRTBT", 9671 "HFI1_IB_CFG_OP_VLS", 9672 "HFI1_IB_CFG_VL_HIGH_CAP", 9673 "HFI1_IB_CFG_VL_LOW_CAP", 9674 "HFI1_IB_CFG_OVERRUN_THRESH", 9675 "HFI1_IB_CFG_PHYERR_THRESH", 9676 "HFI1_IB_CFG_LINKDEFAULT", 9677 "HFI1_IB_CFG_PKEYS", 9678 "HFI1_IB_CFG_MTU", 9679 "HFI1_IB_CFG_LSTATE", 9680 "HFI1_IB_CFG_VL_HIGH_LIMIT", 9681 "HFI1_IB_CFG_PMA_TICKS", 9682 "HFI1_IB_CFG_PORT" 9683 }; 9684 9685 static const char *ib_cfg_name(int which) 9686 { 9687 if (which < 0 || which >= ARRAY_SIZE(ib_cfg_name_strings)) 9688 return "invalid"; 9689 return ib_cfg_name_strings[which]; 9690 } 9691 9692 int hfi1_get_ib_cfg(struct hfi1_pportdata *ppd, int which) 9693 { 9694 struct hfi1_devdata *dd = ppd->dd; 9695 int val = 0; 9696 9697 switch (which) { 9698 case HFI1_IB_CFG_LWID_ENB: /* allowed Link-width */ 9699 val = ppd->link_width_enabled; 9700 break; 9701 case HFI1_IB_CFG_LWID: /* currently active Link-width */ 9702 val = ppd->link_width_active; 9703 break; 9704 case HFI1_IB_CFG_SPD_ENB: /* allowed Link speeds */ 9705 val = ppd->link_speed_enabled; 9706 break; 9707 case HFI1_IB_CFG_SPD: /* current Link speed */ 9708 val = ppd->link_speed_active; 9709 break; 9710 9711 case HFI1_IB_CFG_RXPOL_ENB: /* Auto-RX-polarity enable */ 9712 case HFI1_IB_CFG_LREV_ENB: /* Auto-Lane-reversal enable */ 9713 case HFI1_IB_CFG_LINKLATENCY: 9714 goto unimplemented; 9715 9716 case HFI1_IB_CFG_OP_VLS: 9717 val = ppd->vls_operational; 9718 break; 9719 case HFI1_IB_CFG_VL_HIGH_CAP: /* VL arb high priority table size */ 9720 val = VL_ARB_HIGH_PRIO_TABLE_SIZE; 9721 break; 9722 case HFI1_IB_CFG_VL_LOW_CAP: /* VL arb low priority table size */ 9723 val = VL_ARB_LOW_PRIO_TABLE_SIZE; 9724 break; 9725 case HFI1_IB_CFG_OVERRUN_THRESH: /* IB overrun threshold */ 9726 val = ppd->overrun_threshold; 9727 break; 9728 case HFI1_IB_CFG_PHYERR_THRESH: /* IB PHY error threshold */ 9729 val = ppd->phy_error_threshold; 9730 break; 9731 case HFI1_IB_CFG_LINKDEFAULT: /* IB link default (sleep/poll) */ 9732 val = dd->link_default; 9733 break; 9734 9735 case HFI1_IB_CFG_HRTBT: /* Heartbeat off/enable/auto */ 9736 case HFI1_IB_CFG_PMA_TICKS: 9737 default: 9738 unimplemented: 9739 if (HFI1_CAP_IS_KSET(PRINT_UNIMPL)) 9740 dd_dev_info( 9741 dd, 9742 "%s: which %s: not implemented\n", 9743 __func__, 9744 ib_cfg_name(which)); 9745 break; 9746 } 9747 9748 return val; 9749 } 9750 9751 /* 9752 * The largest MAD packet size. 9753 */ 9754 #define MAX_MAD_PACKET 2048 9755 9756 /* 9757 * Return the maximum header bytes that can go on the _wire_ 9758 * for this device. This count includes the ICRC which is 9759 * not part of the packet held in memory but it is appended 9760 * by the HW. 9761 * This is dependent on the device's receive header entry size. 9762 * HFI allows this to be set per-receive context, but the 9763 * driver presently enforces a global value. 9764 */ 9765 u32 lrh_max_header_bytes(struct hfi1_devdata *dd) 9766 { 9767 /* 9768 * The maximum non-payload (MTU) bytes in LRH.PktLen are 9769 * the Receive Header Entry Size minus the PBC (or RHF) size 9770 * plus one DW for the ICRC appended by HW. 9771 * 9772 * dd->rcd[0].rcvhdrqentsize is in DW. 9773 * We use rcd[0] as all context will have the same value. Also, 9774 * the first kernel context would have been allocated by now so 9775 * we are guaranteed a valid value. 9776 */ 9777 return (dd->rcd[0]->rcvhdrqentsize - 2/*PBC/RHF*/ + 1/*ICRC*/) << 2; 9778 } 9779 9780 /* 9781 * Set Send Length 9782 * @ppd - per port data 9783 * 9784 * Set the MTU by limiting how many DWs may be sent. The SendLenCheck* 9785 * registers compare against LRH.PktLen, so use the max bytes included 9786 * in the LRH. 9787 * 9788 * This routine changes all VL values except VL15, which it maintains at 9789 * the same value. 9790 */ 9791 static void set_send_length(struct hfi1_pportdata *ppd) 9792 { 9793 struct hfi1_devdata *dd = ppd->dd; 9794 u32 max_hb = lrh_max_header_bytes(dd), dcmtu; 9795 u32 maxvlmtu = dd->vld[15].mtu; 9796 u64 len1 = 0, len2 = (((dd->vld[15].mtu + max_hb) >> 2) 9797 & SEND_LEN_CHECK1_LEN_VL15_MASK) << 9798 SEND_LEN_CHECK1_LEN_VL15_SHIFT; 9799 int i, j; 9800 u32 thres; 9801 9802 for (i = 0; i < ppd->vls_supported; i++) { 9803 if (dd->vld[i].mtu > maxvlmtu) 9804 maxvlmtu = dd->vld[i].mtu; 9805 if (i <= 3) 9806 len1 |= (((dd->vld[i].mtu + max_hb) >> 2) 9807 & SEND_LEN_CHECK0_LEN_VL0_MASK) << 9808 ((i % 4) * SEND_LEN_CHECK0_LEN_VL1_SHIFT); 9809 else 9810 len2 |= (((dd->vld[i].mtu + max_hb) >> 2) 9811 & SEND_LEN_CHECK1_LEN_VL4_MASK) << 9812 ((i % 4) * SEND_LEN_CHECK1_LEN_VL5_SHIFT); 9813 } 9814 write_csr(dd, SEND_LEN_CHECK0, len1); 9815 write_csr(dd, SEND_LEN_CHECK1, len2); 9816 /* adjust kernel credit return thresholds based on new MTUs */ 9817 /* all kernel receive contexts have the same hdrqentsize */ 9818 for (i = 0; i < ppd->vls_supported; i++) { 9819 thres = min(sc_percent_to_threshold(dd->vld[i].sc, 50), 9820 sc_mtu_to_threshold(dd->vld[i].sc, 9821 dd->vld[i].mtu, 9822 dd->rcd[0]->rcvhdrqentsize)); 9823 for (j = 0; j < INIT_SC_PER_VL; j++) 9824 sc_set_cr_threshold( 9825 pio_select_send_context_vl(dd, j, i), 9826 thres); 9827 } 9828 thres = min(sc_percent_to_threshold(dd->vld[15].sc, 50), 9829 sc_mtu_to_threshold(dd->vld[15].sc, 9830 dd->vld[15].mtu, 9831 dd->rcd[0]->rcvhdrqentsize)); 9832 sc_set_cr_threshold(dd->vld[15].sc, thres); 9833 9834 /* Adjust maximum MTU for the port in DC */ 9835 dcmtu = maxvlmtu == 10240 ? DCC_CFG_PORT_MTU_CAP_10240 : 9836 (ilog2(maxvlmtu >> 8) + 1); 9837 len1 = read_csr(ppd->dd, DCC_CFG_PORT_CONFIG); 9838 len1 &= ~DCC_CFG_PORT_CONFIG_MTU_CAP_SMASK; 9839 len1 |= ((u64)dcmtu & DCC_CFG_PORT_CONFIG_MTU_CAP_MASK) << 9840 DCC_CFG_PORT_CONFIG_MTU_CAP_SHIFT; 9841 write_csr(ppd->dd, DCC_CFG_PORT_CONFIG, len1); 9842 } 9843 9844 static void set_lidlmc(struct hfi1_pportdata *ppd) 9845 { 9846 int i; 9847 u64 sreg = 0; 9848 struct hfi1_devdata *dd = ppd->dd; 9849 u32 mask = ~((1U << ppd->lmc) - 1); 9850 u64 c1 = read_csr(ppd->dd, DCC_CFG_PORT_CONFIG1); 9851 9852 if (dd->hfi1_snoop.mode_flag) 9853 dd_dev_info(dd, "Set lid/lmc while snooping"); 9854 9855 c1 &= ~(DCC_CFG_PORT_CONFIG1_TARGET_DLID_SMASK 9856 | DCC_CFG_PORT_CONFIG1_DLID_MASK_SMASK); 9857 c1 |= ((ppd->lid & DCC_CFG_PORT_CONFIG1_TARGET_DLID_MASK) 9858 << DCC_CFG_PORT_CONFIG1_TARGET_DLID_SHIFT) | 9859 ((mask & DCC_CFG_PORT_CONFIG1_DLID_MASK_MASK) 9860 << DCC_CFG_PORT_CONFIG1_DLID_MASK_SHIFT); 9861 write_csr(ppd->dd, DCC_CFG_PORT_CONFIG1, c1); 9862 9863 /* 9864 * Iterate over all the send contexts and set their SLID check 9865 */ 9866 sreg = ((mask & SEND_CTXT_CHECK_SLID_MASK_MASK) << 9867 SEND_CTXT_CHECK_SLID_MASK_SHIFT) | 9868 (((ppd->lid & mask) & SEND_CTXT_CHECK_SLID_VALUE_MASK) << 9869 SEND_CTXT_CHECK_SLID_VALUE_SHIFT); 9870 9871 for (i = 0; i < dd->chip_send_contexts; i++) { 9872 hfi1_cdbg(LINKVERB, "SendContext[%d].SLID_CHECK = 0x%x", 9873 i, (u32)sreg); 9874 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_SLID, sreg); 9875 } 9876 9877 /* Now we have to do the same thing for the sdma engines */ 9878 sdma_update_lmc(dd, mask, ppd->lid); 9879 } 9880 9881 static int wait_phy_linkstate(struct hfi1_devdata *dd, u32 state, u32 msecs) 9882 { 9883 unsigned long timeout; 9884 u32 curr_state; 9885 9886 timeout = jiffies + msecs_to_jiffies(msecs); 9887 while (1) { 9888 curr_state = read_physical_state(dd); 9889 if (curr_state == state) 9890 break; 9891 if (time_after(jiffies, timeout)) { 9892 dd_dev_err(dd, 9893 "timeout waiting for phy link state 0x%x, current state is 0x%x\n", 9894 state, curr_state); 9895 return -ETIMEDOUT; 9896 } 9897 usleep_range(1950, 2050); /* sleep 2ms-ish */ 9898 } 9899 9900 return 0; 9901 } 9902 9903 static const char *state_completed_string(u32 completed) 9904 { 9905 static const char * const state_completed[] = { 9906 "EstablishComm", 9907 "OptimizeEQ", 9908 "VerifyCap" 9909 }; 9910 9911 if (completed < ARRAY_SIZE(state_completed)) 9912 return state_completed[completed]; 9913 9914 return "unknown"; 9915 } 9916 9917 static const char all_lanes_dead_timeout_expired[] = 9918 "All lanes were inactive – was the interconnect media removed?"; 9919 static const char tx_out_of_policy[] = 9920 "Passing lanes on local port do not meet the local link width policy"; 9921 static const char no_state_complete[] = 9922 "State timeout occurred before link partner completed the state"; 9923 static const char * const state_complete_reasons[] = { 9924 [0x00] = "Reason unknown", 9925 [0x01] = "Link was halted by driver, refer to LinkDownReason", 9926 [0x02] = "Link partner reported failure", 9927 [0x10] = "Unable to achieve frame sync on any lane", 9928 [0x11] = 9929 "Unable to find a common bit rate with the link partner", 9930 [0x12] = 9931 "Unable to achieve frame sync on sufficient lanes to meet the local link width policy", 9932 [0x13] = 9933 "Unable to identify preset equalization on sufficient lanes to meet the local link width policy", 9934 [0x14] = no_state_complete, 9935 [0x15] = 9936 "State timeout occurred before link partner identified equalization presets", 9937 [0x16] = 9938 "Link partner completed the EstablishComm state, but the passing lanes do not meet the local link width policy", 9939 [0x17] = tx_out_of_policy, 9940 [0x20] = all_lanes_dead_timeout_expired, 9941 [0x21] = 9942 "Unable to achieve acceptable BER on sufficient lanes to meet the local link width policy", 9943 [0x22] = no_state_complete, 9944 [0x23] = 9945 "Link partner completed the OptimizeEq state, but the passing lanes do not meet the local link width policy", 9946 [0x24] = tx_out_of_policy, 9947 [0x30] = all_lanes_dead_timeout_expired, 9948 [0x31] = 9949 "State timeout occurred waiting for host to process received frames", 9950 [0x32] = no_state_complete, 9951 [0x33] = 9952 "Link partner completed the VerifyCap state, but the passing lanes do not meet the local link width policy", 9953 [0x34] = tx_out_of_policy, 9954 }; 9955 9956 static const char *state_complete_reason_code_string(struct hfi1_pportdata *ppd, 9957 u32 code) 9958 { 9959 const char *str = NULL; 9960 9961 if (code < ARRAY_SIZE(state_complete_reasons)) 9962 str = state_complete_reasons[code]; 9963 9964 if (str) 9965 return str; 9966 return "Reserved"; 9967 } 9968 9969 /* describe the given last state complete frame */ 9970 static void decode_state_complete(struct hfi1_pportdata *ppd, u32 frame, 9971 const char *prefix) 9972 { 9973 struct hfi1_devdata *dd = ppd->dd; 9974 u32 success; 9975 u32 state; 9976 u32 reason; 9977 u32 lanes; 9978 9979 /* 9980 * Decode frame: 9981 * [ 0: 0] - success 9982 * [ 3: 1] - state 9983 * [ 7: 4] - next state timeout 9984 * [15: 8] - reason code 9985 * [31:16] - lanes 9986 */ 9987 success = frame & 0x1; 9988 state = (frame >> 1) & 0x7; 9989 reason = (frame >> 8) & 0xff; 9990 lanes = (frame >> 16) & 0xffff; 9991 9992 dd_dev_err(dd, "Last %s LNI state complete frame 0x%08x:\n", 9993 prefix, frame); 9994 dd_dev_err(dd, " last reported state state: %s (0x%x)\n", 9995 state_completed_string(state), state); 9996 dd_dev_err(dd, " state successfully completed: %s\n", 9997 success ? "yes" : "no"); 9998 dd_dev_err(dd, " fail reason 0x%x: %s\n", 9999 reason, state_complete_reason_code_string(ppd, reason)); 10000 dd_dev_err(dd, " passing lane mask: 0x%x", lanes); 10001 } 10002 10003 /* 10004 * Read the last state complete frames and explain them. This routine 10005 * expects to be called if the link went down during link negotiation 10006 * and initialization (LNI). That is, anywhere between polling and link up. 10007 */ 10008 static void check_lni_states(struct hfi1_pportdata *ppd) 10009 { 10010 u32 last_local_state; 10011 u32 last_remote_state; 10012 10013 read_last_local_state(ppd->dd, &last_local_state); 10014 read_last_remote_state(ppd->dd, &last_remote_state); 10015 10016 /* 10017 * Don't report anything if there is nothing to report. A value of 10018 * 0 means the link was taken down while polling and there was no 10019 * training in-process. 10020 */ 10021 if (last_local_state == 0 && last_remote_state == 0) 10022 return; 10023 10024 decode_state_complete(ppd, last_local_state, "transmitted"); 10025 decode_state_complete(ppd, last_remote_state, "received"); 10026 } 10027 10028 /* 10029 * Helper for set_link_state(). Do not call except from that routine. 10030 * Expects ppd->hls_mutex to be held. 10031 * 10032 * @rem_reason value to be sent to the neighbor 10033 * 10034 * LinkDownReasons only set if transition succeeds. 10035 */ 10036 static int goto_offline(struct hfi1_pportdata *ppd, u8 rem_reason) 10037 { 10038 struct hfi1_devdata *dd = ppd->dd; 10039 u32 pstate, previous_state; 10040 int ret; 10041 int do_transition; 10042 int do_wait; 10043 10044 previous_state = ppd->host_link_state; 10045 ppd->host_link_state = HLS_GOING_OFFLINE; 10046 pstate = read_physical_state(dd); 10047 if (pstate == PLS_OFFLINE) { 10048 do_transition = 0; /* in right state */ 10049 do_wait = 0; /* ...no need to wait */ 10050 } else if ((pstate & 0xff) == PLS_OFFLINE) { 10051 do_transition = 0; /* in an offline transient state */ 10052 do_wait = 1; /* ...wait for it to settle */ 10053 } else { 10054 do_transition = 1; /* need to move to offline */ 10055 do_wait = 1; /* ...will need to wait */ 10056 } 10057 10058 if (do_transition) { 10059 ret = set_physical_link_state(dd, 10060 (rem_reason << 8) | PLS_OFFLINE); 10061 10062 if (ret != HCMD_SUCCESS) { 10063 dd_dev_err(dd, 10064 "Failed to transition to Offline link state, return %d\n", 10065 ret); 10066 return -EINVAL; 10067 } 10068 if (ppd->offline_disabled_reason == 10069 HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE)) 10070 ppd->offline_disabled_reason = 10071 HFI1_ODR_MASK(OPA_LINKDOWN_REASON_TRANSIENT); 10072 } 10073 10074 if (do_wait) { 10075 /* it can take a while for the link to go down */ 10076 ret = wait_phy_linkstate(dd, PLS_OFFLINE, 10000); 10077 if (ret < 0) 10078 return ret; 10079 } 10080 10081 /* make sure the logical state is also down */ 10082 wait_logical_linkstate(ppd, IB_PORT_DOWN, 1000); 10083 10084 /* 10085 * Now in charge of LCB - must be after the physical state is 10086 * offline.quiet and before host_link_state is changed. 10087 */ 10088 set_host_lcb_access(dd); 10089 write_csr(dd, DC_LCB_ERR_EN, ~0ull); /* watch LCB errors */ 10090 ppd->host_link_state = HLS_LINK_COOLDOWN; /* LCB access allowed */ 10091 10092 if (ppd->port_type == PORT_TYPE_QSFP && 10093 ppd->qsfp_info.limiting_active && 10094 qsfp_mod_present(ppd)) { 10095 int ret; 10096 10097 ret = acquire_chip_resource(dd, qsfp_resource(dd), QSFP_WAIT); 10098 if (ret == 0) { 10099 set_qsfp_tx(ppd, 0); 10100 release_chip_resource(dd, qsfp_resource(dd)); 10101 } else { 10102 /* not fatal, but should warn */ 10103 dd_dev_err(dd, 10104 "Unable to acquire lock to turn off QSFP TX\n"); 10105 } 10106 } 10107 10108 /* 10109 * The LNI has a mandatory wait time after the physical state 10110 * moves to Offline.Quiet. The wait time may be different 10111 * depending on how the link went down. The 8051 firmware 10112 * will observe the needed wait time and only move to ready 10113 * when that is completed. The largest of the quiet timeouts 10114 * is 6s, so wait that long and then at least 0.5s more for 10115 * other transitions, and another 0.5s for a buffer. 10116 */ 10117 ret = wait_fm_ready(dd, 7000); 10118 if (ret) { 10119 dd_dev_err(dd, 10120 "After going offline, timed out waiting for the 8051 to become ready to accept host requests\n"); 10121 /* state is really offline, so make it so */ 10122 ppd->host_link_state = HLS_DN_OFFLINE; 10123 return ret; 10124 } 10125 10126 /* 10127 * The state is now offline and the 8051 is ready to accept host 10128 * requests. 10129 * - change our state 10130 * - notify others if we were previously in a linkup state 10131 */ 10132 ppd->host_link_state = HLS_DN_OFFLINE; 10133 if (previous_state & HLS_UP) { 10134 /* went down while link was up */ 10135 handle_linkup_change(dd, 0); 10136 } else if (previous_state 10137 & (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) { 10138 /* went down while attempting link up */ 10139 check_lni_states(ppd); 10140 } 10141 10142 /* the active link width (downgrade) is 0 on link down */ 10143 ppd->link_width_active = 0; 10144 ppd->link_width_downgrade_tx_active = 0; 10145 ppd->link_width_downgrade_rx_active = 0; 10146 ppd->current_egress_rate = 0; 10147 return 0; 10148 } 10149 10150 /* return the link state name */ 10151 static const char *link_state_name(u32 state) 10152 { 10153 const char *name; 10154 int n = ilog2(state); 10155 static const char * const names[] = { 10156 [__HLS_UP_INIT_BP] = "INIT", 10157 [__HLS_UP_ARMED_BP] = "ARMED", 10158 [__HLS_UP_ACTIVE_BP] = "ACTIVE", 10159 [__HLS_DN_DOWNDEF_BP] = "DOWNDEF", 10160 [__HLS_DN_POLL_BP] = "POLL", 10161 [__HLS_DN_DISABLE_BP] = "DISABLE", 10162 [__HLS_DN_OFFLINE_BP] = "OFFLINE", 10163 [__HLS_VERIFY_CAP_BP] = "VERIFY_CAP", 10164 [__HLS_GOING_UP_BP] = "GOING_UP", 10165 [__HLS_GOING_OFFLINE_BP] = "GOING_OFFLINE", 10166 [__HLS_LINK_COOLDOWN_BP] = "LINK_COOLDOWN" 10167 }; 10168 10169 name = n < ARRAY_SIZE(names) ? names[n] : NULL; 10170 return name ? name : "unknown"; 10171 } 10172 10173 /* return the link state reason name */ 10174 static const char *link_state_reason_name(struct hfi1_pportdata *ppd, u32 state) 10175 { 10176 if (state == HLS_UP_INIT) { 10177 switch (ppd->linkinit_reason) { 10178 case OPA_LINKINIT_REASON_LINKUP: 10179 return "(LINKUP)"; 10180 case OPA_LINKINIT_REASON_FLAPPING: 10181 return "(FLAPPING)"; 10182 case OPA_LINKINIT_OUTSIDE_POLICY: 10183 return "(OUTSIDE_POLICY)"; 10184 case OPA_LINKINIT_QUARANTINED: 10185 return "(QUARANTINED)"; 10186 case OPA_LINKINIT_INSUFIC_CAPABILITY: 10187 return "(INSUFIC_CAPABILITY)"; 10188 default: 10189 break; 10190 } 10191 } 10192 return ""; 10193 } 10194 10195 /* 10196 * driver_physical_state - convert the driver's notion of a port's 10197 * state (an HLS_*) into a physical state (a {IB,OPA}_PORTPHYSSTATE_*). 10198 * Return -1 (converted to a u32) to indicate error. 10199 */ 10200 u32 driver_physical_state(struct hfi1_pportdata *ppd) 10201 { 10202 switch (ppd->host_link_state) { 10203 case HLS_UP_INIT: 10204 case HLS_UP_ARMED: 10205 case HLS_UP_ACTIVE: 10206 return IB_PORTPHYSSTATE_LINKUP; 10207 case HLS_DN_POLL: 10208 return IB_PORTPHYSSTATE_POLLING; 10209 case HLS_DN_DISABLE: 10210 return IB_PORTPHYSSTATE_DISABLED; 10211 case HLS_DN_OFFLINE: 10212 return OPA_PORTPHYSSTATE_OFFLINE; 10213 case HLS_VERIFY_CAP: 10214 return IB_PORTPHYSSTATE_POLLING; 10215 case HLS_GOING_UP: 10216 return IB_PORTPHYSSTATE_POLLING; 10217 case HLS_GOING_OFFLINE: 10218 return OPA_PORTPHYSSTATE_OFFLINE; 10219 case HLS_LINK_COOLDOWN: 10220 return OPA_PORTPHYSSTATE_OFFLINE; 10221 case HLS_DN_DOWNDEF: 10222 default: 10223 dd_dev_err(ppd->dd, "invalid host_link_state 0x%x\n", 10224 ppd->host_link_state); 10225 return -1; 10226 } 10227 } 10228 10229 /* 10230 * driver_logical_state - convert the driver's notion of a port's 10231 * state (an HLS_*) into a logical state (a IB_PORT_*). Return -1 10232 * (converted to a u32) to indicate error. 10233 */ 10234 u32 driver_logical_state(struct hfi1_pportdata *ppd) 10235 { 10236 if (ppd->host_link_state && (ppd->host_link_state & HLS_DOWN)) 10237 return IB_PORT_DOWN; 10238 10239 switch (ppd->host_link_state & HLS_UP) { 10240 case HLS_UP_INIT: 10241 return IB_PORT_INIT; 10242 case HLS_UP_ARMED: 10243 return IB_PORT_ARMED; 10244 case HLS_UP_ACTIVE: 10245 return IB_PORT_ACTIVE; 10246 default: 10247 dd_dev_err(ppd->dd, "invalid host_link_state 0x%x\n", 10248 ppd->host_link_state); 10249 return -1; 10250 } 10251 } 10252 10253 void set_link_down_reason(struct hfi1_pportdata *ppd, u8 lcl_reason, 10254 u8 neigh_reason, u8 rem_reason) 10255 { 10256 if (ppd->local_link_down_reason.latest == 0 && 10257 ppd->neigh_link_down_reason.latest == 0) { 10258 ppd->local_link_down_reason.latest = lcl_reason; 10259 ppd->neigh_link_down_reason.latest = neigh_reason; 10260 ppd->remote_link_down_reason = rem_reason; 10261 } 10262 } 10263 10264 /* 10265 * Change the physical and/or logical link state. 10266 * 10267 * Do not call this routine while inside an interrupt. It contains 10268 * calls to routines that can take multiple seconds to finish. 10269 * 10270 * Returns 0 on success, -errno on failure. 10271 */ 10272 int set_link_state(struct hfi1_pportdata *ppd, u32 state) 10273 { 10274 struct hfi1_devdata *dd = ppd->dd; 10275 struct ib_event event = {.device = NULL}; 10276 int ret1, ret = 0; 10277 int orig_new_state, poll_bounce; 10278 10279 mutex_lock(&ppd->hls_lock); 10280 10281 orig_new_state = state; 10282 if (state == HLS_DN_DOWNDEF) 10283 state = dd->link_default; 10284 10285 /* interpret poll -> poll as a link bounce */ 10286 poll_bounce = ppd->host_link_state == HLS_DN_POLL && 10287 state == HLS_DN_POLL; 10288 10289 dd_dev_info(dd, "%s: current %s, new %s %s%s\n", __func__, 10290 link_state_name(ppd->host_link_state), 10291 link_state_name(orig_new_state), 10292 poll_bounce ? "(bounce) " : "", 10293 link_state_reason_name(ppd, state)); 10294 10295 /* 10296 * If we're going to a (HLS_*) link state that implies the logical 10297 * link state is neither of (IB_PORT_ARMED, IB_PORT_ACTIVE), then 10298 * reset is_sm_config_started to 0. 10299 */ 10300 if (!(state & (HLS_UP_ARMED | HLS_UP_ACTIVE))) 10301 ppd->is_sm_config_started = 0; 10302 10303 /* 10304 * Do nothing if the states match. Let a poll to poll link bounce 10305 * go through. 10306 */ 10307 if (ppd->host_link_state == state && !poll_bounce) 10308 goto done; 10309 10310 switch (state) { 10311 case HLS_UP_INIT: 10312 if (ppd->host_link_state == HLS_DN_POLL && 10313 (quick_linkup || dd->icode == ICODE_FUNCTIONAL_SIMULATOR)) { 10314 /* 10315 * Quick link up jumps from polling to here. 10316 * 10317 * Whether in normal or loopback mode, the 10318 * simulator jumps from polling to link up. 10319 * Accept that here. 10320 */ 10321 /* OK */ 10322 } else if (ppd->host_link_state != HLS_GOING_UP) { 10323 goto unexpected; 10324 } 10325 10326 ppd->host_link_state = HLS_UP_INIT; 10327 ret = wait_logical_linkstate(ppd, IB_PORT_INIT, 1000); 10328 if (ret) { 10329 /* logical state didn't change, stay at going_up */ 10330 ppd->host_link_state = HLS_GOING_UP; 10331 dd_dev_err(dd, 10332 "%s: logical state did not change to INIT\n", 10333 __func__); 10334 } else { 10335 /* clear old transient LINKINIT_REASON code */ 10336 if (ppd->linkinit_reason >= OPA_LINKINIT_REASON_CLEAR) 10337 ppd->linkinit_reason = 10338 OPA_LINKINIT_REASON_LINKUP; 10339 10340 /* enable the port */ 10341 add_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK); 10342 10343 handle_linkup_change(dd, 1); 10344 } 10345 break; 10346 case HLS_UP_ARMED: 10347 if (ppd->host_link_state != HLS_UP_INIT) 10348 goto unexpected; 10349 10350 ppd->host_link_state = HLS_UP_ARMED; 10351 set_logical_state(dd, LSTATE_ARMED); 10352 ret = wait_logical_linkstate(ppd, IB_PORT_ARMED, 1000); 10353 if (ret) { 10354 /* logical state didn't change, stay at init */ 10355 ppd->host_link_state = HLS_UP_INIT; 10356 dd_dev_err(dd, 10357 "%s: logical state did not change to ARMED\n", 10358 __func__); 10359 } 10360 /* 10361 * The simulator does not currently implement SMA messages, 10362 * so neighbor_normal is not set. Set it here when we first 10363 * move to Armed. 10364 */ 10365 if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR) 10366 ppd->neighbor_normal = 1; 10367 break; 10368 case HLS_UP_ACTIVE: 10369 if (ppd->host_link_state != HLS_UP_ARMED) 10370 goto unexpected; 10371 10372 ppd->host_link_state = HLS_UP_ACTIVE; 10373 set_logical_state(dd, LSTATE_ACTIVE); 10374 ret = wait_logical_linkstate(ppd, IB_PORT_ACTIVE, 1000); 10375 if (ret) { 10376 /* logical state didn't change, stay at armed */ 10377 ppd->host_link_state = HLS_UP_ARMED; 10378 dd_dev_err(dd, 10379 "%s: logical state did not change to ACTIVE\n", 10380 __func__); 10381 } else { 10382 /* tell all engines to go running */ 10383 sdma_all_running(dd); 10384 10385 /* Signal the IB layer that the port has went active */ 10386 event.device = &dd->verbs_dev.rdi.ibdev; 10387 event.element.port_num = ppd->port; 10388 event.event = IB_EVENT_PORT_ACTIVE; 10389 } 10390 break; 10391 case HLS_DN_POLL: 10392 if ((ppd->host_link_state == HLS_DN_DISABLE || 10393 ppd->host_link_state == HLS_DN_OFFLINE) && 10394 dd->dc_shutdown) 10395 dc_start(dd); 10396 /* Hand LED control to the DC */ 10397 write_csr(dd, DCC_CFG_LED_CNTRL, 0); 10398 10399 if (ppd->host_link_state != HLS_DN_OFFLINE) { 10400 u8 tmp = ppd->link_enabled; 10401 10402 ret = goto_offline(ppd, ppd->remote_link_down_reason); 10403 if (ret) { 10404 ppd->link_enabled = tmp; 10405 break; 10406 } 10407 ppd->remote_link_down_reason = 0; 10408 10409 if (ppd->driver_link_ready) 10410 ppd->link_enabled = 1; 10411 } 10412 10413 set_all_slowpath(ppd->dd); 10414 ret = set_local_link_attributes(ppd); 10415 if (ret) 10416 break; 10417 10418 ppd->port_error_action = 0; 10419 ppd->host_link_state = HLS_DN_POLL; 10420 10421 if (quick_linkup) { 10422 /* quick linkup does not go into polling */ 10423 ret = do_quick_linkup(dd); 10424 } else { 10425 ret1 = set_physical_link_state(dd, PLS_POLLING); 10426 if (ret1 != HCMD_SUCCESS) { 10427 dd_dev_err(dd, 10428 "Failed to transition to Polling link state, return 0x%x\n", 10429 ret1); 10430 ret = -EINVAL; 10431 } 10432 } 10433 ppd->offline_disabled_reason = 10434 HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE); 10435 /* 10436 * If an error occurred above, go back to offline. The 10437 * caller may reschedule another attempt. 10438 */ 10439 if (ret) 10440 goto_offline(ppd, 0); 10441 break; 10442 case HLS_DN_DISABLE: 10443 /* link is disabled */ 10444 ppd->link_enabled = 0; 10445 10446 /* allow any state to transition to disabled */ 10447 10448 /* must transition to offline first */ 10449 if (ppd->host_link_state != HLS_DN_OFFLINE) { 10450 ret = goto_offline(ppd, ppd->remote_link_down_reason); 10451 if (ret) 10452 break; 10453 ppd->remote_link_down_reason = 0; 10454 } 10455 10456 ret1 = set_physical_link_state(dd, PLS_DISABLED); 10457 if (ret1 != HCMD_SUCCESS) { 10458 dd_dev_err(dd, 10459 "Failed to transition to Disabled link state, return 0x%x\n", 10460 ret1); 10461 ret = -EINVAL; 10462 break; 10463 } 10464 ppd->host_link_state = HLS_DN_DISABLE; 10465 dc_shutdown(dd); 10466 break; 10467 case HLS_DN_OFFLINE: 10468 if (ppd->host_link_state == HLS_DN_DISABLE) 10469 dc_start(dd); 10470 10471 /* allow any state to transition to offline */ 10472 ret = goto_offline(ppd, ppd->remote_link_down_reason); 10473 if (!ret) 10474 ppd->remote_link_down_reason = 0; 10475 break; 10476 case HLS_VERIFY_CAP: 10477 if (ppd->host_link_state != HLS_DN_POLL) 10478 goto unexpected; 10479 ppd->host_link_state = HLS_VERIFY_CAP; 10480 break; 10481 case HLS_GOING_UP: 10482 if (ppd->host_link_state != HLS_VERIFY_CAP) 10483 goto unexpected; 10484 10485 ret1 = set_physical_link_state(dd, PLS_LINKUP); 10486 if (ret1 != HCMD_SUCCESS) { 10487 dd_dev_err(dd, 10488 "Failed to transition to link up state, return 0x%x\n", 10489 ret1); 10490 ret = -EINVAL; 10491 break; 10492 } 10493 ppd->host_link_state = HLS_GOING_UP; 10494 break; 10495 10496 case HLS_GOING_OFFLINE: /* transient within goto_offline() */ 10497 case HLS_LINK_COOLDOWN: /* transient within goto_offline() */ 10498 default: 10499 dd_dev_info(dd, "%s: state 0x%x: not supported\n", 10500 __func__, state); 10501 ret = -EINVAL; 10502 break; 10503 } 10504 10505 goto done; 10506 10507 unexpected: 10508 dd_dev_err(dd, "%s: unexpected state transition from %s to %s\n", 10509 __func__, link_state_name(ppd->host_link_state), 10510 link_state_name(state)); 10511 ret = -EINVAL; 10512 10513 done: 10514 mutex_unlock(&ppd->hls_lock); 10515 10516 if (event.device) 10517 ib_dispatch_event(&event); 10518 10519 return ret; 10520 } 10521 10522 int hfi1_set_ib_cfg(struct hfi1_pportdata *ppd, int which, u32 val) 10523 { 10524 u64 reg; 10525 int ret = 0; 10526 10527 switch (which) { 10528 case HFI1_IB_CFG_LIDLMC: 10529 set_lidlmc(ppd); 10530 break; 10531 case HFI1_IB_CFG_VL_HIGH_LIMIT: 10532 /* 10533 * The VL Arbitrator high limit is sent in units of 4k 10534 * bytes, while HFI stores it in units of 64 bytes. 10535 */ 10536 val *= 4096 / 64; 10537 reg = ((u64)val & SEND_HIGH_PRIORITY_LIMIT_LIMIT_MASK) 10538 << SEND_HIGH_PRIORITY_LIMIT_LIMIT_SHIFT; 10539 write_csr(ppd->dd, SEND_HIGH_PRIORITY_LIMIT, reg); 10540 break; 10541 case HFI1_IB_CFG_LINKDEFAULT: /* IB link default (sleep/poll) */ 10542 /* HFI only supports POLL as the default link down state */ 10543 if (val != HLS_DN_POLL) 10544 ret = -EINVAL; 10545 break; 10546 case HFI1_IB_CFG_OP_VLS: 10547 if (ppd->vls_operational != val) { 10548 ppd->vls_operational = val; 10549 if (!ppd->port) 10550 ret = -EINVAL; 10551 } 10552 break; 10553 /* 10554 * For link width, link width downgrade, and speed enable, always AND 10555 * the setting with what is actually supported. This has two benefits. 10556 * First, enabled can't have unsupported values, no matter what the 10557 * SM or FM might want. Second, the ALL_SUPPORTED wildcards that mean 10558 * "fill in with your supported value" have all the bits in the 10559 * field set, so simply ANDing with supported has the desired result. 10560 */ 10561 case HFI1_IB_CFG_LWID_ENB: /* set allowed Link-width */ 10562 ppd->link_width_enabled = val & ppd->link_width_supported; 10563 break; 10564 case HFI1_IB_CFG_LWID_DG_ENB: /* set allowed link width downgrade */ 10565 ppd->link_width_downgrade_enabled = 10566 val & ppd->link_width_downgrade_supported; 10567 break; 10568 case HFI1_IB_CFG_SPD_ENB: /* allowed Link speeds */ 10569 ppd->link_speed_enabled = val & ppd->link_speed_supported; 10570 break; 10571 case HFI1_IB_CFG_OVERRUN_THRESH: /* IB overrun threshold */ 10572 /* 10573 * HFI does not follow IB specs, save this value 10574 * so we can report it, if asked. 10575 */ 10576 ppd->overrun_threshold = val; 10577 break; 10578 case HFI1_IB_CFG_PHYERR_THRESH: /* IB PHY error threshold */ 10579 /* 10580 * HFI does not follow IB specs, save this value 10581 * so we can report it, if asked. 10582 */ 10583 ppd->phy_error_threshold = val; 10584 break; 10585 10586 case HFI1_IB_CFG_MTU: 10587 set_send_length(ppd); 10588 break; 10589 10590 case HFI1_IB_CFG_PKEYS: 10591 if (HFI1_CAP_IS_KSET(PKEY_CHECK)) 10592 set_partition_keys(ppd); 10593 break; 10594 10595 default: 10596 if (HFI1_CAP_IS_KSET(PRINT_UNIMPL)) 10597 dd_dev_info(ppd->dd, 10598 "%s: which %s, val 0x%x: not implemented\n", 10599 __func__, ib_cfg_name(which), val); 10600 break; 10601 } 10602 return ret; 10603 } 10604 10605 /* begin functions related to vl arbitration table caching */ 10606 static void init_vl_arb_caches(struct hfi1_pportdata *ppd) 10607 { 10608 int i; 10609 10610 BUILD_BUG_ON(VL_ARB_TABLE_SIZE != 10611 VL_ARB_LOW_PRIO_TABLE_SIZE); 10612 BUILD_BUG_ON(VL_ARB_TABLE_SIZE != 10613 VL_ARB_HIGH_PRIO_TABLE_SIZE); 10614 10615 /* 10616 * Note that we always return values directly from the 10617 * 'vl_arb_cache' (and do no CSR reads) in response to a 10618 * 'Get(VLArbTable)'. This is obviously correct after a 10619 * 'Set(VLArbTable)', since the cache will then be up to 10620 * date. But it's also correct prior to any 'Set(VLArbTable)' 10621 * since then both the cache, and the relevant h/w registers 10622 * will be zeroed. 10623 */ 10624 10625 for (i = 0; i < MAX_PRIO_TABLE; i++) 10626 spin_lock_init(&ppd->vl_arb_cache[i].lock); 10627 } 10628 10629 /* 10630 * vl_arb_lock_cache 10631 * 10632 * All other vl_arb_* functions should be called only after locking 10633 * the cache. 10634 */ 10635 static inline struct vl_arb_cache * 10636 vl_arb_lock_cache(struct hfi1_pportdata *ppd, int idx) 10637 { 10638 if (idx != LO_PRIO_TABLE && idx != HI_PRIO_TABLE) 10639 return NULL; 10640 spin_lock(&ppd->vl_arb_cache[idx].lock); 10641 return &ppd->vl_arb_cache[idx]; 10642 } 10643 10644 static inline void vl_arb_unlock_cache(struct hfi1_pportdata *ppd, int idx) 10645 { 10646 spin_unlock(&ppd->vl_arb_cache[idx].lock); 10647 } 10648 10649 static void vl_arb_get_cache(struct vl_arb_cache *cache, 10650 struct ib_vl_weight_elem *vl) 10651 { 10652 memcpy(vl, cache->table, VL_ARB_TABLE_SIZE * sizeof(*vl)); 10653 } 10654 10655 static void vl_arb_set_cache(struct vl_arb_cache *cache, 10656 struct ib_vl_weight_elem *vl) 10657 { 10658 memcpy(cache->table, vl, VL_ARB_TABLE_SIZE * sizeof(*vl)); 10659 } 10660 10661 static int vl_arb_match_cache(struct vl_arb_cache *cache, 10662 struct ib_vl_weight_elem *vl) 10663 { 10664 return !memcmp(cache->table, vl, VL_ARB_TABLE_SIZE * sizeof(*vl)); 10665 } 10666 10667 /* end functions related to vl arbitration table caching */ 10668 10669 static int set_vl_weights(struct hfi1_pportdata *ppd, u32 target, 10670 u32 size, struct ib_vl_weight_elem *vl) 10671 { 10672 struct hfi1_devdata *dd = ppd->dd; 10673 u64 reg; 10674 unsigned int i, is_up = 0; 10675 int drain, ret = 0; 10676 10677 mutex_lock(&ppd->hls_lock); 10678 10679 if (ppd->host_link_state & HLS_UP) 10680 is_up = 1; 10681 10682 drain = !is_ax(dd) && is_up; 10683 10684 if (drain) 10685 /* 10686 * Before adjusting VL arbitration weights, empty per-VL 10687 * FIFOs, otherwise a packet whose VL weight is being 10688 * set to 0 could get stuck in a FIFO with no chance to 10689 * egress. 10690 */ 10691 ret = stop_drain_data_vls(dd); 10692 10693 if (ret) { 10694 dd_dev_err( 10695 dd, 10696 "%s: cannot stop/drain VLs - refusing to change VL arbitration weights\n", 10697 __func__); 10698 goto err; 10699 } 10700 10701 for (i = 0; i < size; i++, vl++) { 10702 /* 10703 * NOTE: The low priority shift and mask are used here, but 10704 * they are the same for both the low and high registers. 10705 */ 10706 reg = (((u64)vl->vl & SEND_LOW_PRIORITY_LIST_VL_MASK) 10707 << SEND_LOW_PRIORITY_LIST_VL_SHIFT) 10708 | (((u64)vl->weight 10709 & SEND_LOW_PRIORITY_LIST_WEIGHT_MASK) 10710 << SEND_LOW_PRIORITY_LIST_WEIGHT_SHIFT); 10711 write_csr(dd, target + (i * 8), reg); 10712 } 10713 pio_send_control(dd, PSC_GLOBAL_VLARB_ENABLE); 10714 10715 if (drain) 10716 open_fill_data_vls(dd); /* reopen all VLs */ 10717 10718 err: 10719 mutex_unlock(&ppd->hls_lock); 10720 10721 return ret; 10722 } 10723 10724 /* 10725 * Read one credit merge VL register. 10726 */ 10727 static void read_one_cm_vl(struct hfi1_devdata *dd, u32 csr, 10728 struct vl_limit *vll) 10729 { 10730 u64 reg = read_csr(dd, csr); 10731 10732 vll->dedicated = cpu_to_be16( 10733 (reg >> SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SHIFT) 10734 & SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_MASK); 10735 vll->shared = cpu_to_be16( 10736 (reg >> SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SHIFT) 10737 & SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_MASK); 10738 } 10739 10740 /* 10741 * Read the current credit merge limits. 10742 */ 10743 static int get_buffer_control(struct hfi1_devdata *dd, 10744 struct buffer_control *bc, u16 *overall_limit) 10745 { 10746 u64 reg; 10747 int i; 10748 10749 /* not all entries are filled in */ 10750 memset(bc, 0, sizeof(*bc)); 10751 10752 /* OPA and HFI have a 1-1 mapping */ 10753 for (i = 0; i < TXE_NUM_DATA_VL; i++) 10754 read_one_cm_vl(dd, SEND_CM_CREDIT_VL + (8 * i), &bc->vl[i]); 10755 10756 /* NOTE: assumes that VL* and VL15 CSRs are bit-wise identical */ 10757 read_one_cm_vl(dd, SEND_CM_CREDIT_VL15, &bc->vl[15]); 10758 10759 reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT); 10760 bc->overall_shared_limit = cpu_to_be16( 10761 (reg >> SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SHIFT) 10762 & SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_MASK); 10763 if (overall_limit) 10764 *overall_limit = (reg 10765 >> SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT) 10766 & SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_MASK; 10767 return sizeof(struct buffer_control); 10768 } 10769 10770 static int get_sc2vlnt(struct hfi1_devdata *dd, struct sc2vlnt *dp) 10771 { 10772 u64 reg; 10773 int i; 10774 10775 /* each register contains 16 SC->VLnt mappings, 4 bits each */ 10776 reg = read_csr(dd, DCC_CFG_SC_VL_TABLE_15_0); 10777 for (i = 0; i < sizeof(u64); i++) { 10778 u8 byte = *(((u8 *)®) + i); 10779 10780 dp->vlnt[2 * i] = byte & 0xf; 10781 dp->vlnt[(2 * i) + 1] = (byte & 0xf0) >> 4; 10782 } 10783 10784 reg = read_csr(dd, DCC_CFG_SC_VL_TABLE_31_16); 10785 for (i = 0; i < sizeof(u64); i++) { 10786 u8 byte = *(((u8 *)®) + i); 10787 10788 dp->vlnt[16 + (2 * i)] = byte & 0xf; 10789 dp->vlnt[16 + (2 * i) + 1] = (byte & 0xf0) >> 4; 10790 } 10791 return sizeof(struct sc2vlnt); 10792 } 10793 10794 static void get_vlarb_preempt(struct hfi1_devdata *dd, u32 nelems, 10795 struct ib_vl_weight_elem *vl) 10796 { 10797 unsigned int i; 10798 10799 for (i = 0; i < nelems; i++, vl++) { 10800 vl->vl = 0xf; 10801 vl->weight = 0; 10802 } 10803 } 10804 10805 static void set_sc2vlnt(struct hfi1_devdata *dd, struct sc2vlnt *dp) 10806 { 10807 write_csr(dd, DCC_CFG_SC_VL_TABLE_15_0, 10808 DC_SC_VL_VAL(15_0, 10809 0, dp->vlnt[0] & 0xf, 10810 1, dp->vlnt[1] & 0xf, 10811 2, dp->vlnt[2] & 0xf, 10812 3, dp->vlnt[3] & 0xf, 10813 4, dp->vlnt[4] & 0xf, 10814 5, dp->vlnt[5] & 0xf, 10815 6, dp->vlnt[6] & 0xf, 10816 7, dp->vlnt[7] & 0xf, 10817 8, dp->vlnt[8] & 0xf, 10818 9, dp->vlnt[9] & 0xf, 10819 10, dp->vlnt[10] & 0xf, 10820 11, dp->vlnt[11] & 0xf, 10821 12, dp->vlnt[12] & 0xf, 10822 13, dp->vlnt[13] & 0xf, 10823 14, dp->vlnt[14] & 0xf, 10824 15, dp->vlnt[15] & 0xf)); 10825 write_csr(dd, DCC_CFG_SC_VL_TABLE_31_16, 10826 DC_SC_VL_VAL(31_16, 10827 16, dp->vlnt[16] & 0xf, 10828 17, dp->vlnt[17] & 0xf, 10829 18, dp->vlnt[18] & 0xf, 10830 19, dp->vlnt[19] & 0xf, 10831 20, dp->vlnt[20] & 0xf, 10832 21, dp->vlnt[21] & 0xf, 10833 22, dp->vlnt[22] & 0xf, 10834 23, dp->vlnt[23] & 0xf, 10835 24, dp->vlnt[24] & 0xf, 10836 25, dp->vlnt[25] & 0xf, 10837 26, dp->vlnt[26] & 0xf, 10838 27, dp->vlnt[27] & 0xf, 10839 28, dp->vlnt[28] & 0xf, 10840 29, dp->vlnt[29] & 0xf, 10841 30, dp->vlnt[30] & 0xf, 10842 31, dp->vlnt[31] & 0xf)); 10843 } 10844 10845 static void nonzero_msg(struct hfi1_devdata *dd, int idx, const char *what, 10846 u16 limit) 10847 { 10848 if (limit != 0) 10849 dd_dev_info(dd, "Invalid %s limit %d on VL %d, ignoring\n", 10850 what, (int)limit, idx); 10851 } 10852 10853 /* change only the shared limit portion of SendCmGLobalCredit */ 10854 static void set_global_shared(struct hfi1_devdata *dd, u16 limit) 10855 { 10856 u64 reg; 10857 10858 reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT); 10859 reg &= ~SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SMASK; 10860 reg |= (u64)limit << SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SHIFT; 10861 write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg); 10862 } 10863 10864 /* change only the total credit limit portion of SendCmGLobalCredit */ 10865 static void set_global_limit(struct hfi1_devdata *dd, u16 limit) 10866 { 10867 u64 reg; 10868 10869 reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT); 10870 reg &= ~SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SMASK; 10871 reg |= (u64)limit << SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT; 10872 write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg); 10873 } 10874 10875 /* set the given per-VL shared limit */ 10876 static void set_vl_shared(struct hfi1_devdata *dd, int vl, u16 limit) 10877 { 10878 u64 reg; 10879 u32 addr; 10880 10881 if (vl < TXE_NUM_DATA_VL) 10882 addr = SEND_CM_CREDIT_VL + (8 * vl); 10883 else 10884 addr = SEND_CM_CREDIT_VL15; 10885 10886 reg = read_csr(dd, addr); 10887 reg &= ~SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SMASK; 10888 reg |= (u64)limit << SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SHIFT; 10889 write_csr(dd, addr, reg); 10890 } 10891 10892 /* set the given per-VL dedicated limit */ 10893 static void set_vl_dedicated(struct hfi1_devdata *dd, int vl, u16 limit) 10894 { 10895 u64 reg; 10896 u32 addr; 10897 10898 if (vl < TXE_NUM_DATA_VL) 10899 addr = SEND_CM_CREDIT_VL + (8 * vl); 10900 else 10901 addr = SEND_CM_CREDIT_VL15; 10902 10903 reg = read_csr(dd, addr); 10904 reg &= ~SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SMASK; 10905 reg |= (u64)limit << SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SHIFT; 10906 write_csr(dd, addr, reg); 10907 } 10908 10909 /* spin until the given per-VL status mask bits clear */ 10910 static void wait_for_vl_status_clear(struct hfi1_devdata *dd, u64 mask, 10911 const char *which) 10912 { 10913 unsigned long timeout; 10914 u64 reg; 10915 10916 timeout = jiffies + msecs_to_jiffies(VL_STATUS_CLEAR_TIMEOUT); 10917 while (1) { 10918 reg = read_csr(dd, SEND_CM_CREDIT_USED_STATUS) & mask; 10919 10920 if (reg == 0) 10921 return; /* success */ 10922 if (time_after(jiffies, timeout)) 10923 break; /* timed out */ 10924 udelay(1); 10925 } 10926 10927 dd_dev_err(dd, 10928 "%s credit change status not clearing after %dms, mask 0x%llx, not clear 0x%llx\n", 10929 which, VL_STATUS_CLEAR_TIMEOUT, mask, reg); 10930 /* 10931 * If this occurs, it is likely there was a credit loss on the link. 10932 * The only recovery from that is a link bounce. 10933 */ 10934 dd_dev_err(dd, 10935 "Continuing anyway. A credit loss may occur. Suggest a link bounce\n"); 10936 } 10937 10938 /* 10939 * The number of credits on the VLs may be changed while everything 10940 * is "live", but the following algorithm must be followed due to 10941 * how the hardware is actually implemented. In particular, 10942 * Return_Credit_Status[] is the only correct status check. 10943 * 10944 * if (reducing Global_Shared_Credit_Limit or any shared limit changing) 10945 * set Global_Shared_Credit_Limit = 0 10946 * use_all_vl = 1 10947 * mask0 = all VLs that are changing either dedicated or shared limits 10948 * set Shared_Limit[mask0] = 0 10949 * spin until Return_Credit_Status[use_all_vl ? all VL : mask0] == 0 10950 * if (changing any dedicated limit) 10951 * mask1 = all VLs that are lowering dedicated limits 10952 * lower Dedicated_Limit[mask1] 10953 * spin until Return_Credit_Status[mask1] == 0 10954 * raise Dedicated_Limits 10955 * raise Shared_Limits 10956 * raise Global_Shared_Credit_Limit 10957 * 10958 * lower = if the new limit is lower, set the limit to the new value 10959 * raise = if the new limit is higher than the current value (may be changed 10960 * earlier in the algorithm), set the new limit to the new value 10961 */ 10962 int set_buffer_control(struct hfi1_pportdata *ppd, 10963 struct buffer_control *new_bc) 10964 { 10965 struct hfi1_devdata *dd = ppd->dd; 10966 u64 changing_mask, ld_mask, stat_mask; 10967 int change_count; 10968 int i, use_all_mask; 10969 int this_shared_changing; 10970 int vl_count = 0, ret; 10971 /* 10972 * A0: add the variable any_shared_limit_changing below and in the 10973 * algorithm above. If removing A0 support, it can be removed. 10974 */ 10975 int any_shared_limit_changing; 10976 struct buffer_control cur_bc; 10977 u8 changing[OPA_MAX_VLS]; 10978 u8 lowering_dedicated[OPA_MAX_VLS]; 10979 u16 cur_total; 10980 u32 new_total = 0; 10981 const u64 all_mask = 10982 SEND_CM_CREDIT_USED_STATUS_VL0_RETURN_CREDIT_STATUS_SMASK 10983 | SEND_CM_CREDIT_USED_STATUS_VL1_RETURN_CREDIT_STATUS_SMASK 10984 | SEND_CM_CREDIT_USED_STATUS_VL2_RETURN_CREDIT_STATUS_SMASK 10985 | SEND_CM_CREDIT_USED_STATUS_VL3_RETURN_CREDIT_STATUS_SMASK 10986 | SEND_CM_CREDIT_USED_STATUS_VL4_RETURN_CREDIT_STATUS_SMASK 10987 | SEND_CM_CREDIT_USED_STATUS_VL5_RETURN_CREDIT_STATUS_SMASK 10988 | SEND_CM_CREDIT_USED_STATUS_VL6_RETURN_CREDIT_STATUS_SMASK 10989 | SEND_CM_CREDIT_USED_STATUS_VL7_RETURN_CREDIT_STATUS_SMASK 10990 | SEND_CM_CREDIT_USED_STATUS_VL15_RETURN_CREDIT_STATUS_SMASK; 10991 10992 #define valid_vl(idx) ((idx) < TXE_NUM_DATA_VL || (idx) == 15) 10993 #define NUM_USABLE_VLS 16 /* look at VL15 and less */ 10994 10995 /* find the new total credits, do sanity check on unused VLs */ 10996 for (i = 0; i < OPA_MAX_VLS; i++) { 10997 if (valid_vl(i)) { 10998 new_total += be16_to_cpu(new_bc->vl[i].dedicated); 10999 continue; 11000 } 11001 nonzero_msg(dd, i, "dedicated", 11002 be16_to_cpu(new_bc->vl[i].dedicated)); 11003 nonzero_msg(dd, i, "shared", 11004 be16_to_cpu(new_bc->vl[i].shared)); 11005 new_bc->vl[i].dedicated = 0; 11006 new_bc->vl[i].shared = 0; 11007 } 11008 new_total += be16_to_cpu(new_bc->overall_shared_limit); 11009 11010 /* fetch the current values */ 11011 get_buffer_control(dd, &cur_bc, &cur_total); 11012 11013 /* 11014 * Create the masks we will use. 11015 */ 11016 memset(changing, 0, sizeof(changing)); 11017 memset(lowering_dedicated, 0, sizeof(lowering_dedicated)); 11018 /* 11019 * NOTE: Assumes that the individual VL bits are adjacent and in 11020 * increasing order 11021 */ 11022 stat_mask = 11023 SEND_CM_CREDIT_USED_STATUS_VL0_RETURN_CREDIT_STATUS_SMASK; 11024 changing_mask = 0; 11025 ld_mask = 0; 11026 change_count = 0; 11027 any_shared_limit_changing = 0; 11028 for (i = 0; i < NUM_USABLE_VLS; i++, stat_mask <<= 1) { 11029 if (!valid_vl(i)) 11030 continue; 11031 this_shared_changing = new_bc->vl[i].shared 11032 != cur_bc.vl[i].shared; 11033 if (this_shared_changing) 11034 any_shared_limit_changing = 1; 11035 if (new_bc->vl[i].dedicated != cur_bc.vl[i].dedicated || 11036 this_shared_changing) { 11037 changing[i] = 1; 11038 changing_mask |= stat_mask; 11039 change_count++; 11040 } 11041 if (be16_to_cpu(new_bc->vl[i].dedicated) < 11042 be16_to_cpu(cur_bc.vl[i].dedicated)) { 11043 lowering_dedicated[i] = 1; 11044 ld_mask |= stat_mask; 11045 } 11046 } 11047 11048 /* bracket the credit change with a total adjustment */ 11049 if (new_total > cur_total) 11050 set_global_limit(dd, new_total); 11051 11052 /* 11053 * Start the credit change algorithm. 11054 */ 11055 use_all_mask = 0; 11056 if ((be16_to_cpu(new_bc->overall_shared_limit) < 11057 be16_to_cpu(cur_bc.overall_shared_limit)) || 11058 (is_ax(dd) && any_shared_limit_changing)) { 11059 set_global_shared(dd, 0); 11060 cur_bc.overall_shared_limit = 0; 11061 use_all_mask = 1; 11062 } 11063 11064 for (i = 0; i < NUM_USABLE_VLS; i++) { 11065 if (!valid_vl(i)) 11066 continue; 11067 11068 if (changing[i]) { 11069 set_vl_shared(dd, i, 0); 11070 cur_bc.vl[i].shared = 0; 11071 } 11072 } 11073 11074 wait_for_vl_status_clear(dd, use_all_mask ? all_mask : changing_mask, 11075 "shared"); 11076 11077 if (change_count > 0) { 11078 for (i = 0; i < NUM_USABLE_VLS; i++) { 11079 if (!valid_vl(i)) 11080 continue; 11081 11082 if (lowering_dedicated[i]) { 11083 set_vl_dedicated(dd, i, 11084 be16_to_cpu(new_bc-> 11085 vl[i].dedicated)); 11086 cur_bc.vl[i].dedicated = 11087 new_bc->vl[i].dedicated; 11088 } 11089 } 11090 11091 wait_for_vl_status_clear(dd, ld_mask, "dedicated"); 11092 11093 /* now raise all dedicated that are going up */ 11094 for (i = 0; i < NUM_USABLE_VLS; i++) { 11095 if (!valid_vl(i)) 11096 continue; 11097 11098 if (be16_to_cpu(new_bc->vl[i].dedicated) > 11099 be16_to_cpu(cur_bc.vl[i].dedicated)) 11100 set_vl_dedicated(dd, i, 11101 be16_to_cpu(new_bc-> 11102 vl[i].dedicated)); 11103 } 11104 } 11105 11106 /* next raise all shared that are going up */ 11107 for (i = 0; i < NUM_USABLE_VLS; i++) { 11108 if (!valid_vl(i)) 11109 continue; 11110 11111 if (be16_to_cpu(new_bc->vl[i].shared) > 11112 be16_to_cpu(cur_bc.vl[i].shared)) 11113 set_vl_shared(dd, i, be16_to_cpu(new_bc->vl[i].shared)); 11114 } 11115 11116 /* finally raise the global shared */ 11117 if (be16_to_cpu(new_bc->overall_shared_limit) > 11118 be16_to_cpu(cur_bc.overall_shared_limit)) 11119 set_global_shared(dd, 11120 be16_to_cpu(new_bc->overall_shared_limit)); 11121 11122 /* bracket the credit change with a total adjustment */ 11123 if (new_total < cur_total) 11124 set_global_limit(dd, new_total); 11125 11126 /* 11127 * Determine the actual number of operational VLS using the number of 11128 * dedicated and shared credits for each VL. 11129 */ 11130 if (change_count > 0) { 11131 for (i = 0; i < TXE_NUM_DATA_VL; i++) 11132 if (be16_to_cpu(new_bc->vl[i].dedicated) > 0 || 11133 be16_to_cpu(new_bc->vl[i].shared) > 0) 11134 vl_count++; 11135 ppd->actual_vls_operational = vl_count; 11136 ret = sdma_map_init(dd, ppd->port - 1, vl_count ? 11137 ppd->actual_vls_operational : 11138 ppd->vls_operational, 11139 NULL); 11140 if (ret == 0) 11141 ret = pio_map_init(dd, ppd->port - 1, vl_count ? 11142 ppd->actual_vls_operational : 11143 ppd->vls_operational, NULL); 11144 if (ret) 11145 return ret; 11146 } 11147 return 0; 11148 } 11149 11150 /* 11151 * Read the given fabric manager table. Return the size of the 11152 * table (in bytes) on success, and a negative error code on 11153 * failure. 11154 */ 11155 int fm_get_table(struct hfi1_pportdata *ppd, int which, void *t) 11156 11157 { 11158 int size; 11159 struct vl_arb_cache *vlc; 11160 11161 switch (which) { 11162 case FM_TBL_VL_HIGH_ARB: 11163 size = 256; 11164 /* 11165 * OPA specifies 128 elements (of 2 bytes each), though 11166 * HFI supports only 16 elements in h/w. 11167 */ 11168 vlc = vl_arb_lock_cache(ppd, HI_PRIO_TABLE); 11169 vl_arb_get_cache(vlc, t); 11170 vl_arb_unlock_cache(ppd, HI_PRIO_TABLE); 11171 break; 11172 case FM_TBL_VL_LOW_ARB: 11173 size = 256; 11174 /* 11175 * OPA specifies 128 elements (of 2 bytes each), though 11176 * HFI supports only 16 elements in h/w. 11177 */ 11178 vlc = vl_arb_lock_cache(ppd, LO_PRIO_TABLE); 11179 vl_arb_get_cache(vlc, t); 11180 vl_arb_unlock_cache(ppd, LO_PRIO_TABLE); 11181 break; 11182 case FM_TBL_BUFFER_CONTROL: 11183 size = get_buffer_control(ppd->dd, t, NULL); 11184 break; 11185 case FM_TBL_SC2VLNT: 11186 size = get_sc2vlnt(ppd->dd, t); 11187 break; 11188 case FM_TBL_VL_PREEMPT_ELEMS: 11189 size = 256; 11190 /* OPA specifies 128 elements, of 2 bytes each */ 11191 get_vlarb_preempt(ppd->dd, OPA_MAX_VLS, t); 11192 break; 11193 case FM_TBL_VL_PREEMPT_MATRIX: 11194 size = 256; 11195 /* 11196 * OPA specifies that this is the same size as the VL 11197 * arbitration tables (i.e., 256 bytes). 11198 */ 11199 break; 11200 default: 11201 return -EINVAL; 11202 } 11203 return size; 11204 } 11205 11206 /* 11207 * Write the given fabric manager table. 11208 */ 11209 int fm_set_table(struct hfi1_pportdata *ppd, int which, void *t) 11210 { 11211 int ret = 0; 11212 struct vl_arb_cache *vlc; 11213 11214 switch (which) { 11215 case FM_TBL_VL_HIGH_ARB: 11216 vlc = vl_arb_lock_cache(ppd, HI_PRIO_TABLE); 11217 if (vl_arb_match_cache(vlc, t)) { 11218 vl_arb_unlock_cache(ppd, HI_PRIO_TABLE); 11219 break; 11220 } 11221 vl_arb_set_cache(vlc, t); 11222 vl_arb_unlock_cache(ppd, HI_PRIO_TABLE); 11223 ret = set_vl_weights(ppd, SEND_HIGH_PRIORITY_LIST, 11224 VL_ARB_HIGH_PRIO_TABLE_SIZE, t); 11225 break; 11226 case FM_TBL_VL_LOW_ARB: 11227 vlc = vl_arb_lock_cache(ppd, LO_PRIO_TABLE); 11228 if (vl_arb_match_cache(vlc, t)) { 11229 vl_arb_unlock_cache(ppd, LO_PRIO_TABLE); 11230 break; 11231 } 11232 vl_arb_set_cache(vlc, t); 11233 vl_arb_unlock_cache(ppd, LO_PRIO_TABLE); 11234 ret = set_vl_weights(ppd, SEND_LOW_PRIORITY_LIST, 11235 VL_ARB_LOW_PRIO_TABLE_SIZE, t); 11236 break; 11237 case FM_TBL_BUFFER_CONTROL: 11238 ret = set_buffer_control(ppd, t); 11239 break; 11240 case FM_TBL_SC2VLNT: 11241 set_sc2vlnt(ppd->dd, t); 11242 break; 11243 default: 11244 ret = -EINVAL; 11245 } 11246 return ret; 11247 } 11248 11249 /* 11250 * Disable all data VLs. 11251 * 11252 * Return 0 if disabled, non-zero if the VLs cannot be disabled. 11253 */ 11254 static int disable_data_vls(struct hfi1_devdata *dd) 11255 { 11256 if (is_ax(dd)) 11257 return 1; 11258 11259 pio_send_control(dd, PSC_DATA_VL_DISABLE); 11260 11261 return 0; 11262 } 11263 11264 /* 11265 * open_fill_data_vls() - the counterpart to stop_drain_data_vls(). 11266 * Just re-enables all data VLs (the "fill" part happens 11267 * automatically - the name was chosen for symmetry with 11268 * stop_drain_data_vls()). 11269 * 11270 * Return 0 if successful, non-zero if the VLs cannot be enabled. 11271 */ 11272 int open_fill_data_vls(struct hfi1_devdata *dd) 11273 { 11274 if (is_ax(dd)) 11275 return 1; 11276 11277 pio_send_control(dd, PSC_DATA_VL_ENABLE); 11278 11279 return 0; 11280 } 11281 11282 /* 11283 * drain_data_vls() - assumes that disable_data_vls() has been called, 11284 * wait for occupancy (of per-VL FIFOs) for all contexts, and SDMA 11285 * engines to drop to 0. 11286 */ 11287 static void drain_data_vls(struct hfi1_devdata *dd) 11288 { 11289 sc_wait(dd); 11290 sdma_wait(dd); 11291 pause_for_credit_return(dd); 11292 } 11293 11294 /* 11295 * stop_drain_data_vls() - disable, then drain all per-VL fifos. 11296 * 11297 * Use open_fill_data_vls() to resume using data VLs. This pair is 11298 * meant to be used like this: 11299 * 11300 * stop_drain_data_vls(dd); 11301 * // do things with per-VL resources 11302 * open_fill_data_vls(dd); 11303 */ 11304 int stop_drain_data_vls(struct hfi1_devdata *dd) 11305 { 11306 int ret; 11307 11308 ret = disable_data_vls(dd); 11309 if (ret == 0) 11310 drain_data_vls(dd); 11311 11312 return ret; 11313 } 11314 11315 /* 11316 * Convert a nanosecond time to a cclock count. No matter how slow 11317 * the cclock, a non-zero ns will always have a non-zero result. 11318 */ 11319 u32 ns_to_cclock(struct hfi1_devdata *dd, u32 ns) 11320 { 11321 u32 cclocks; 11322 11323 if (dd->icode == ICODE_FPGA_EMULATION) 11324 cclocks = (ns * 1000) / FPGA_CCLOCK_PS; 11325 else /* simulation pretends to be ASIC */ 11326 cclocks = (ns * 1000) / ASIC_CCLOCK_PS; 11327 if (ns && !cclocks) /* if ns nonzero, must be at least 1 */ 11328 cclocks = 1; 11329 return cclocks; 11330 } 11331 11332 /* 11333 * Convert a cclock count to nanoseconds. Not matter how slow 11334 * the cclock, a non-zero cclocks will always have a non-zero result. 11335 */ 11336 u32 cclock_to_ns(struct hfi1_devdata *dd, u32 cclocks) 11337 { 11338 u32 ns; 11339 11340 if (dd->icode == ICODE_FPGA_EMULATION) 11341 ns = (cclocks * FPGA_CCLOCK_PS) / 1000; 11342 else /* simulation pretends to be ASIC */ 11343 ns = (cclocks * ASIC_CCLOCK_PS) / 1000; 11344 if (cclocks && !ns) 11345 ns = 1; 11346 return ns; 11347 } 11348 11349 /* 11350 * Dynamically adjust the receive interrupt timeout for a context based on 11351 * incoming packet rate. 11352 * 11353 * NOTE: Dynamic adjustment does not allow rcv_intr_count to be zero. 11354 */ 11355 static void adjust_rcv_timeout(struct hfi1_ctxtdata *rcd, u32 npkts) 11356 { 11357 struct hfi1_devdata *dd = rcd->dd; 11358 u32 timeout = rcd->rcvavail_timeout; 11359 11360 /* 11361 * This algorithm doubles or halves the timeout depending on whether 11362 * the number of packets received in this interrupt were less than or 11363 * greater equal the interrupt count. 11364 * 11365 * The calculations below do not allow a steady state to be achieved. 11366 * Only at the endpoints it is possible to have an unchanging 11367 * timeout. 11368 */ 11369 if (npkts < rcv_intr_count) { 11370 /* 11371 * Not enough packets arrived before the timeout, adjust 11372 * timeout downward. 11373 */ 11374 if (timeout < 2) /* already at minimum? */ 11375 return; 11376 timeout >>= 1; 11377 } else { 11378 /* 11379 * More than enough packets arrived before the timeout, adjust 11380 * timeout upward. 11381 */ 11382 if (timeout >= dd->rcv_intr_timeout_csr) /* already at max? */ 11383 return; 11384 timeout = min(timeout << 1, dd->rcv_intr_timeout_csr); 11385 } 11386 11387 rcd->rcvavail_timeout = timeout; 11388 /* 11389 * timeout cannot be larger than rcv_intr_timeout_csr which has already 11390 * been verified to be in range 11391 */ 11392 write_kctxt_csr(dd, rcd->ctxt, RCV_AVAIL_TIME_OUT, 11393 (u64)timeout << 11394 RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_SHIFT); 11395 } 11396 11397 void update_usrhead(struct hfi1_ctxtdata *rcd, u32 hd, u32 updegr, u32 egrhd, 11398 u32 intr_adjust, u32 npkts) 11399 { 11400 struct hfi1_devdata *dd = rcd->dd; 11401 u64 reg; 11402 u32 ctxt = rcd->ctxt; 11403 11404 /* 11405 * Need to write timeout register before updating RcvHdrHead to ensure 11406 * that a new value is used when the HW decides to restart counting. 11407 */ 11408 if (intr_adjust) 11409 adjust_rcv_timeout(rcd, npkts); 11410 if (updegr) { 11411 reg = (egrhd & RCV_EGR_INDEX_HEAD_HEAD_MASK) 11412 << RCV_EGR_INDEX_HEAD_HEAD_SHIFT; 11413 write_uctxt_csr(dd, ctxt, RCV_EGR_INDEX_HEAD, reg); 11414 } 11415 mmiowb(); 11416 reg = ((u64)rcv_intr_count << RCV_HDR_HEAD_COUNTER_SHIFT) | 11417 (((u64)hd & RCV_HDR_HEAD_HEAD_MASK) 11418 << RCV_HDR_HEAD_HEAD_SHIFT); 11419 write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, reg); 11420 mmiowb(); 11421 } 11422 11423 u32 hdrqempty(struct hfi1_ctxtdata *rcd) 11424 { 11425 u32 head, tail; 11426 11427 head = (read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_HEAD) 11428 & RCV_HDR_HEAD_HEAD_SMASK) >> RCV_HDR_HEAD_HEAD_SHIFT; 11429 11430 if (rcd->rcvhdrtail_kvaddr) 11431 tail = get_rcvhdrtail(rcd); 11432 else 11433 tail = read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_TAIL); 11434 11435 return head == tail; 11436 } 11437 11438 /* 11439 * Context Control and Receive Array encoding for buffer size: 11440 * 0x0 invalid 11441 * 0x1 4 KB 11442 * 0x2 8 KB 11443 * 0x3 16 KB 11444 * 0x4 32 KB 11445 * 0x5 64 KB 11446 * 0x6 128 KB 11447 * 0x7 256 KB 11448 * 0x8 512 KB (Receive Array only) 11449 * 0x9 1 MB (Receive Array only) 11450 * 0xa 2 MB (Receive Array only) 11451 * 11452 * 0xB-0xF - reserved (Receive Array only) 11453 * 11454 * 11455 * This routine assumes that the value has already been sanity checked. 11456 */ 11457 static u32 encoded_size(u32 size) 11458 { 11459 switch (size) { 11460 case 4 * 1024: return 0x1; 11461 case 8 * 1024: return 0x2; 11462 case 16 * 1024: return 0x3; 11463 case 32 * 1024: return 0x4; 11464 case 64 * 1024: return 0x5; 11465 case 128 * 1024: return 0x6; 11466 case 256 * 1024: return 0x7; 11467 case 512 * 1024: return 0x8; 11468 case 1 * 1024 * 1024: return 0x9; 11469 case 2 * 1024 * 1024: return 0xa; 11470 } 11471 return 0x1; /* if invalid, go with the minimum size */ 11472 } 11473 11474 void hfi1_rcvctrl(struct hfi1_devdata *dd, unsigned int op, int ctxt) 11475 { 11476 struct hfi1_ctxtdata *rcd; 11477 u64 rcvctrl, reg; 11478 int did_enable = 0; 11479 11480 rcd = dd->rcd[ctxt]; 11481 if (!rcd) 11482 return; 11483 11484 hfi1_cdbg(RCVCTRL, "ctxt %d op 0x%x", ctxt, op); 11485 11486 rcvctrl = read_kctxt_csr(dd, ctxt, RCV_CTXT_CTRL); 11487 /* if the context already enabled, don't do the extra steps */ 11488 if ((op & HFI1_RCVCTRL_CTXT_ENB) && 11489 !(rcvctrl & RCV_CTXT_CTRL_ENABLE_SMASK)) { 11490 /* reset the tail and hdr addresses, and sequence count */ 11491 write_kctxt_csr(dd, ctxt, RCV_HDR_ADDR, 11492 rcd->rcvhdrq_phys); 11493 if (HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL)) 11494 write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR, 11495 rcd->rcvhdrqtailaddr_phys); 11496 rcd->seq_cnt = 1; 11497 11498 /* reset the cached receive header queue head value */ 11499 rcd->head = 0; 11500 11501 /* 11502 * Zero the receive header queue so we don't get false 11503 * positives when checking the sequence number. The 11504 * sequence numbers could land exactly on the same spot. 11505 * E.g. a rcd restart before the receive header wrapped. 11506 */ 11507 memset(rcd->rcvhdrq, 0, rcd->rcvhdrq_size); 11508 11509 /* starting timeout */ 11510 rcd->rcvavail_timeout = dd->rcv_intr_timeout_csr; 11511 11512 /* enable the context */ 11513 rcvctrl |= RCV_CTXT_CTRL_ENABLE_SMASK; 11514 11515 /* clean the egr buffer size first */ 11516 rcvctrl &= ~RCV_CTXT_CTRL_EGR_BUF_SIZE_SMASK; 11517 rcvctrl |= ((u64)encoded_size(rcd->egrbufs.rcvtid_size) 11518 & RCV_CTXT_CTRL_EGR_BUF_SIZE_MASK) 11519 << RCV_CTXT_CTRL_EGR_BUF_SIZE_SHIFT; 11520 11521 /* zero RcvHdrHead - set RcvHdrHead.Counter after enable */ 11522 write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0); 11523 did_enable = 1; 11524 11525 /* zero RcvEgrIndexHead */ 11526 write_uctxt_csr(dd, ctxt, RCV_EGR_INDEX_HEAD, 0); 11527 11528 /* set eager count and base index */ 11529 reg = (((u64)(rcd->egrbufs.alloced >> RCV_SHIFT) 11530 & RCV_EGR_CTRL_EGR_CNT_MASK) 11531 << RCV_EGR_CTRL_EGR_CNT_SHIFT) | 11532 (((rcd->eager_base >> RCV_SHIFT) 11533 & RCV_EGR_CTRL_EGR_BASE_INDEX_MASK) 11534 << RCV_EGR_CTRL_EGR_BASE_INDEX_SHIFT); 11535 write_kctxt_csr(dd, ctxt, RCV_EGR_CTRL, reg); 11536 11537 /* 11538 * Set TID (expected) count and base index. 11539 * rcd->expected_count is set to individual RcvArray entries, 11540 * not pairs, and the CSR takes a pair-count in groups of 11541 * four, so divide by 8. 11542 */ 11543 reg = (((rcd->expected_count >> RCV_SHIFT) 11544 & RCV_TID_CTRL_TID_PAIR_CNT_MASK) 11545 << RCV_TID_CTRL_TID_PAIR_CNT_SHIFT) | 11546 (((rcd->expected_base >> RCV_SHIFT) 11547 & RCV_TID_CTRL_TID_BASE_INDEX_MASK) 11548 << RCV_TID_CTRL_TID_BASE_INDEX_SHIFT); 11549 write_kctxt_csr(dd, ctxt, RCV_TID_CTRL, reg); 11550 if (ctxt == HFI1_CTRL_CTXT) 11551 write_csr(dd, RCV_VL15, HFI1_CTRL_CTXT); 11552 } 11553 if (op & HFI1_RCVCTRL_CTXT_DIS) { 11554 write_csr(dd, RCV_VL15, 0); 11555 /* 11556 * When receive context is being disabled turn on tail 11557 * update with a dummy tail address and then disable 11558 * receive context. 11559 */ 11560 if (dd->rcvhdrtail_dummy_physaddr) { 11561 write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR, 11562 dd->rcvhdrtail_dummy_physaddr); 11563 /* Enabling RcvCtxtCtrl.TailUpd is intentional. */ 11564 rcvctrl |= RCV_CTXT_CTRL_TAIL_UPD_SMASK; 11565 } 11566 11567 rcvctrl &= ~RCV_CTXT_CTRL_ENABLE_SMASK; 11568 } 11569 if (op & HFI1_RCVCTRL_INTRAVAIL_ENB) 11570 rcvctrl |= RCV_CTXT_CTRL_INTR_AVAIL_SMASK; 11571 if (op & HFI1_RCVCTRL_INTRAVAIL_DIS) 11572 rcvctrl &= ~RCV_CTXT_CTRL_INTR_AVAIL_SMASK; 11573 if (op & HFI1_RCVCTRL_TAILUPD_ENB && rcd->rcvhdrqtailaddr_phys) 11574 rcvctrl |= RCV_CTXT_CTRL_TAIL_UPD_SMASK; 11575 if (op & HFI1_RCVCTRL_TAILUPD_DIS) { 11576 /* See comment on RcvCtxtCtrl.TailUpd above */ 11577 if (!(op & HFI1_RCVCTRL_CTXT_DIS)) 11578 rcvctrl &= ~RCV_CTXT_CTRL_TAIL_UPD_SMASK; 11579 } 11580 if (op & HFI1_RCVCTRL_TIDFLOW_ENB) 11581 rcvctrl |= RCV_CTXT_CTRL_TID_FLOW_ENABLE_SMASK; 11582 if (op & HFI1_RCVCTRL_TIDFLOW_DIS) 11583 rcvctrl &= ~RCV_CTXT_CTRL_TID_FLOW_ENABLE_SMASK; 11584 if (op & HFI1_RCVCTRL_ONE_PKT_EGR_ENB) { 11585 /* 11586 * In one-packet-per-eager mode, the size comes from 11587 * the RcvArray entry. 11588 */ 11589 rcvctrl &= ~RCV_CTXT_CTRL_EGR_BUF_SIZE_SMASK; 11590 rcvctrl |= RCV_CTXT_CTRL_ONE_PACKET_PER_EGR_BUFFER_SMASK; 11591 } 11592 if (op & HFI1_RCVCTRL_ONE_PKT_EGR_DIS) 11593 rcvctrl &= ~RCV_CTXT_CTRL_ONE_PACKET_PER_EGR_BUFFER_SMASK; 11594 if (op & HFI1_RCVCTRL_NO_RHQ_DROP_ENB) 11595 rcvctrl |= RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK; 11596 if (op & HFI1_RCVCTRL_NO_RHQ_DROP_DIS) 11597 rcvctrl &= ~RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK; 11598 if (op & HFI1_RCVCTRL_NO_EGR_DROP_ENB) 11599 rcvctrl |= RCV_CTXT_CTRL_DONT_DROP_EGR_FULL_SMASK; 11600 if (op & HFI1_RCVCTRL_NO_EGR_DROP_DIS) 11601 rcvctrl &= ~RCV_CTXT_CTRL_DONT_DROP_EGR_FULL_SMASK; 11602 rcd->rcvctrl = rcvctrl; 11603 hfi1_cdbg(RCVCTRL, "ctxt %d rcvctrl 0x%llx\n", ctxt, rcvctrl); 11604 write_kctxt_csr(dd, ctxt, RCV_CTXT_CTRL, rcd->rcvctrl); 11605 11606 /* work around sticky RcvCtxtStatus.BlockedRHQFull */ 11607 if (did_enable && 11608 (rcvctrl & RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK)) { 11609 reg = read_kctxt_csr(dd, ctxt, RCV_CTXT_STATUS); 11610 if (reg != 0) { 11611 dd_dev_info(dd, "ctxt %d status %lld (blocked)\n", 11612 ctxt, reg); 11613 read_uctxt_csr(dd, ctxt, RCV_HDR_HEAD); 11614 write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0x10); 11615 write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0x00); 11616 read_uctxt_csr(dd, ctxt, RCV_HDR_HEAD); 11617 reg = read_kctxt_csr(dd, ctxt, RCV_CTXT_STATUS); 11618 dd_dev_info(dd, "ctxt %d status %lld (%s blocked)\n", 11619 ctxt, reg, reg == 0 ? "not" : "still"); 11620 } 11621 } 11622 11623 if (did_enable) { 11624 /* 11625 * The interrupt timeout and count must be set after 11626 * the context is enabled to take effect. 11627 */ 11628 /* set interrupt timeout */ 11629 write_kctxt_csr(dd, ctxt, RCV_AVAIL_TIME_OUT, 11630 (u64)rcd->rcvavail_timeout << 11631 RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_SHIFT); 11632 11633 /* set RcvHdrHead.Counter, zero RcvHdrHead.Head (again) */ 11634 reg = (u64)rcv_intr_count << RCV_HDR_HEAD_COUNTER_SHIFT; 11635 write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, reg); 11636 } 11637 11638 if (op & (HFI1_RCVCTRL_TAILUPD_DIS | HFI1_RCVCTRL_CTXT_DIS)) 11639 /* 11640 * If the context has been disabled and the Tail Update has 11641 * been cleared, set the RCV_HDR_TAIL_ADDR CSR to dummy address 11642 * so it doesn't contain an address that is invalid. 11643 */ 11644 write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR, 11645 dd->rcvhdrtail_dummy_physaddr); 11646 } 11647 11648 u32 hfi1_read_cntrs(struct hfi1_devdata *dd, char **namep, u64 **cntrp) 11649 { 11650 int ret; 11651 u64 val = 0; 11652 11653 if (namep) { 11654 ret = dd->cntrnameslen; 11655 *namep = dd->cntrnames; 11656 } else { 11657 const struct cntr_entry *entry; 11658 int i, j; 11659 11660 ret = (dd->ndevcntrs) * sizeof(u64); 11661 11662 /* Get the start of the block of counters */ 11663 *cntrp = dd->cntrs; 11664 11665 /* 11666 * Now go and fill in each counter in the block. 11667 */ 11668 for (i = 0; i < DEV_CNTR_LAST; i++) { 11669 entry = &dev_cntrs[i]; 11670 hfi1_cdbg(CNTR, "reading %s", entry->name); 11671 if (entry->flags & CNTR_DISABLED) { 11672 /* Nothing */ 11673 hfi1_cdbg(CNTR, "\tDisabled\n"); 11674 } else { 11675 if (entry->flags & CNTR_VL) { 11676 hfi1_cdbg(CNTR, "\tPer VL\n"); 11677 for (j = 0; j < C_VL_COUNT; j++) { 11678 val = entry->rw_cntr(entry, 11679 dd, j, 11680 CNTR_MODE_R, 11681 0); 11682 hfi1_cdbg( 11683 CNTR, 11684 "\t\tRead 0x%llx for %d\n", 11685 val, j); 11686 dd->cntrs[entry->offset + j] = 11687 val; 11688 } 11689 } else if (entry->flags & CNTR_SDMA) { 11690 hfi1_cdbg(CNTR, 11691 "\t Per SDMA Engine\n"); 11692 for (j = 0; j < dd->chip_sdma_engines; 11693 j++) { 11694 val = 11695 entry->rw_cntr(entry, dd, j, 11696 CNTR_MODE_R, 0); 11697 hfi1_cdbg(CNTR, 11698 "\t\tRead 0x%llx for %d\n", 11699 val, j); 11700 dd->cntrs[entry->offset + j] = 11701 val; 11702 } 11703 } else { 11704 val = entry->rw_cntr(entry, dd, 11705 CNTR_INVALID_VL, 11706 CNTR_MODE_R, 0); 11707 dd->cntrs[entry->offset] = val; 11708 hfi1_cdbg(CNTR, "\tRead 0x%llx", val); 11709 } 11710 } 11711 } 11712 } 11713 return ret; 11714 } 11715 11716 /* 11717 * Used by sysfs to create files for hfi stats to read 11718 */ 11719 u32 hfi1_read_portcntrs(struct hfi1_pportdata *ppd, char **namep, u64 **cntrp) 11720 { 11721 int ret; 11722 u64 val = 0; 11723 11724 if (namep) { 11725 ret = ppd->dd->portcntrnameslen; 11726 *namep = ppd->dd->portcntrnames; 11727 } else { 11728 const struct cntr_entry *entry; 11729 int i, j; 11730 11731 ret = ppd->dd->nportcntrs * sizeof(u64); 11732 *cntrp = ppd->cntrs; 11733 11734 for (i = 0; i < PORT_CNTR_LAST; i++) { 11735 entry = &port_cntrs[i]; 11736 hfi1_cdbg(CNTR, "reading %s", entry->name); 11737 if (entry->flags & CNTR_DISABLED) { 11738 /* Nothing */ 11739 hfi1_cdbg(CNTR, "\tDisabled\n"); 11740 continue; 11741 } 11742 11743 if (entry->flags & CNTR_VL) { 11744 hfi1_cdbg(CNTR, "\tPer VL"); 11745 for (j = 0; j < C_VL_COUNT; j++) { 11746 val = entry->rw_cntr(entry, ppd, j, 11747 CNTR_MODE_R, 11748 0); 11749 hfi1_cdbg( 11750 CNTR, 11751 "\t\tRead 0x%llx for %d", 11752 val, j); 11753 ppd->cntrs[entry->offset + j] = val; 11754 } 11755 } else { 11756 val = entry->rw_cntr(entry, ppd, 11757 CNTR_INVALID_VL, 11758 CNTR_MODE_R, 11759 0); 11760 ppd->cntrs[entry->offset] = val; 11761 hfi1_cdbg(CNTR, "\tRead 0x%llx", val); 11762 } 11763 } 11764 } 11765 return ret; 11766 } 11767 11768 static void free_cntrs(struct hfi1_devdata *dd) 11769 { 11770 struct hfi1_pportdata *ppd; 11771 int i; 11772 11773 if (dd->synth_stats_timer.data) 11774 del_timer_sync(&dd->synth_stats_timer); 11775 dd->synth_stats_timer.data = 0; 11776 ppd = (struct hfi1_pportdata *)(dd + 1); 11777 for (i = 0; i < dd->num_pports; i++, ppd++) { 11778 kfree(ppd->cntrs); 11779 kfree(ppd->scntrs); 11780 free_percpu(ppd->ibport_data.rvp.rc_acks); 11781 free_percpu(ppd->ibport_data.rvp.rc_qacks); 11782 free_percpu(ppd->ibport_data.rvp.rc_delayed_comp); 11783 ppd->cntrs = NULL; 11784 ppd->scntrs = NULL; 11785 ppd->ibport_data.rvp.rc_acks = NULL; 11786 ppd->ibport_data.rvp.rc_qacks = NULL; 11787 ppd->ibport_data.rvp.rc_delayed_comp = NULL; 11788 } 11789 kfree(dd->portcntrnames); 11790 dd->portcntrnames = NULL; 11791 kfree(dd->cntrs); 11792 dd->cntrs = NULL; 11793 kfree(dd->scntrs); 11794 dd->scntrs = NULL; 11795 kfree(dd->cntrnames); 11796 dd->cntrnames = NULL; 11797 } 11798 11799 static u64 read_dev_port_cntr(struct hfi1_devdata *dd, struct cntr_entry *entry, 11800 u64 *psval, void *context, int vl) 11801 { 11802 u64 val; 11803 u64 sval = *psval; 11804 11805 if (entry->flags & CNTR_DISABLED) { 11806 dd_dev_err(dd, "Counter %s not enabled", entry->name); 11807 return 0; 11808 } 11809 11810 hfi1_cdbg(CNTR, "cntr: %s vl %d psval 0x%llx", entry->name, vl, *psval); 11811 11812 val = entry->rw_cntr(entry, context, vl, CNTR_MODE_R, 0); 11813 11814 /* If its a synthetic counter there is more work we need to do */ 11815 if (entry->flags & CNTR_SYNTH) { 11816 if (sval == CNTR_MAX) { 11817 /* No need to read already saturated */ 11818 return CNTR_MAX; 11819 } 11820 11821 if (entry->flags & CNTR_32BIT) { 11822 /* 32bit counters can wrap multiple times */ 11823 u64 upper = sval >> 32; 11824 u64 lower = (sval << 32) >> 32; 11825 11826 if (lower > val) { /* hw wrapped */ 11827 if (upper == CNTR_32BIT_MAX) 11828 val = CNTR_MAX; 11829 else 11830 upper++; 11831 } 11832 11833 if (val != CNTR_MAX) 11834 val = (upper << 32) | val; 11835 11836 } else { 11837 /* If we rolled we are saturated */ 11838 if ((val < sval) || (val > CNTR_MAX)) 11839 val = CNTR_MAX; 11840 } 11841 } 11842 11843 *psval = val; 11844 11845 hfi1_cdbg(CNTR, "\tNew val=0x%llx", val); 11846 11847 return val; 11848 } 11849 11850 static u64 write_dev_port_cntr(struct hfi1_devdata *dd, 11851 struct cntr_entry *entry, 11852 u64 *psval, void *context, int vl, u64 data) 11853 { 11854 u64 val; 11855 11856 if (entry->flags & CNTR_DISABLED) { 11857 dd_dev_err(dd, "Counter %s not enabled", entry->name); 11858 return 0; 11859 } 11860 11861 hfi1_cdbg(CNTR, "cntr: %s vl %d psval 0x%llx", entry->name, vl, *psval); 11862 11863 if (entry->flags & CNTR_SYNTH) { 11864 *psval = data; 11865 if (entry->flags & CNTR_32BIT) { 11866 val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W, 11867 (data << 32) >> 32); 11868 val = data; /* return the full 64bit value */ 11869 } else { 11870 val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W, 11871 data); 11872 } 11873 } else { 11874 val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W, data); 11875 } 11876 11877 *psval = val; 11878 11879 hfi1_cdbg(CNTR, "\tNew val=0x%llx", val); 11880 11881 return val; 11882 } 11883 11884 u64 read_dev_cntr(struct hfi1_devdata *dd, int index, int vl) 11885 { 11886 struct cntr_entry *entry; 11887 u64 *sval; 11888 11889 entry = &dev_cntrs[index]; 11890 sval = dd->scntrs + entry->offset; 11891 11892 if (vl != CNTR_INVALID_VL) 11893 sval += vl; 11894 11895 return read_dev_port_cntr(dd, entry, sval, dd, vl); 11896 } 11897 11898 u64 write_dev_cntr(struct hfi1_devdata *dd, int index, int vl, u64 data) 11899 { 11900 struct cntr_entry *entry; 11901 u64 *sval; 11902 11903 entry = &dev_cntrs[index]; 11904 sval = dd->scntrs + entry->offset; 11905 11906 if (vl != CNTR_INVALID_VL) 11907 sval += vl; 11908 11909 return write_dev_port_cntr(dd, entry, sval, dd, vl, data); 11910 } 11911 11912 u64 read_port_cntr(struct hfi1_pportdata *ppd, int index, int vl) 11913 { 11914 struct cntr_entry *entry; 11915 u64 *sval; 11916 11917 entry = &port_cntrs[index]; 11918 sval = ppd->scntrs + entry->offset; 11919 11920 if (vl != CNTR_INVALID_VL) 11921 sval += vl; 11922 11923 if ((index >= C_RCV_HDR_OVF_FIRST + ppd->dd->num_rcv_contexts) && 11924 (index <= C_RCV_HDR_OVF_LAST)) { 11925 /* We do not want to bother for disabled contexts */ 11926 return 0; 11927 } 11928 11929 return read_dev_port_cntr(ppd->dd, entry, sval, ppd, vl); 11930 } 11931 11932 u64 write_port_cntr(struct hfi1_pportdata *ppd, int index, int vl, u64 data) 11933 { 11934 struct cntr_entry *entry; 11935 u64 *sval; 11936 11937 entry = &port_cntrs[index]; 11938 sval = ppd->scntrs + entry->offset; 11939 11940 if (vl != CNTR_INVALID_VL) 11941 sval += vl; 11942 11943 if ((index >= C_RCV_HDR_OVF_FIRST + ppd->dd->num_rcv_contexts) && 11944 (index <= C_RCV_HDR_OVF_LAST)) { 11945 /* We do not want to bother for disabled contexts */ 11946 return 0; 11947 } 11948 11949 return write_dev_port_cntr(ppd->dd, entry, sval, ppd, vl, data); 11950 } 11951 11952 static void update_synth_timer(unsigned long opaque) 11953 { 11954 u64 cur_tx; 11955 u64 cur_rx; 11956 u64 total_flits; 11957 u8 update = 0; 11958 int i, j, vl; 11959 struct hfi1_pportdata *ppd; 11960 struct cntr_entry *entry; 11961 11962 struct hfi1_devdata *dd = (struct hfi1_devdata *)opaque; 11963 11964 /* 11965 * Rather than keep beating on the CSRs pick a minimal set that we can 11966 * check to watch for potential roll over. We can do this by looking at 11967 * the number of flits sent/recv. If the total flits exceeds 32bits then 11968 * we have to iterate all the counters and update. 11969 */ 11970 entry = &dev_cntrs[C_DC_RCV_FLITS]; 11971 cur_rx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL, CNTR_MODE_R, 0); 11972 11973 entry = &dev_cntrs[C_DC_XMIT_FLITS]; 11974 cur_tx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL, CNTR_MODE_R, 0); 11975 11976 hfi1_cdbg( 11977 CNTR, 11978 "[%d] curr tx=0x%llx rx=0x%llx :: last tx=0x%llx rx=0x%llx\n", 11979 dd->unit, cur_tx, cur_rx, dd->last_tx, dd->last_rx); 11980 11981 if ((cur_tx < dd->last_tx) || (cur_rx < dd->last_rx)) { 11982 /* 11983 * May not be strictly necessary to update but it won't hurt and 11984 * simplifies the logic here. 11985 */ 11986 update = 1; 11987 hfi1_cdbg(CNTR, "[%d] Tripwire counter rolled, updating", 11988 dd->unit); 11989 } else { 11990 total_flits = (cur_tx - dd->last_tx) + (cur_rx - dd->last_rx); 11991 hfi1_cdbg(CNTR, 11992 "[%d] total flits 0x%llx limit 0x%llx\n", dd->unit, 11993 total_flits, (u64)CNTR_32BIT_MAX); 11994 if (total_flits >= CNTR_32BIT_MAX) { 11995 hfi1_cdbg(CNTR, "[%d] 32bit limit hit, updating", 11996 dd->unit); 11997 update = 1; 11998 } 11999 } 12000 12001 if (update) { 12002 hfi1_cdbg(CNTR, "[%d] Updating dd and ppd counters", dd->unit); 12003 for (i = 0; i < DEV_CNTR_LAST; i++) { 12004 entry = &dev_cntrs[i]; 12005 if (entry->flags & CNTR_VL) { 12006 for (vl = 0; vl < C_VL_COUNT; vl++) 12007 read_dev_cntr(dd, i, vl); 12008 } else { 12009 read_dev_cntr(dd, i, CNTR_INVALID_VL); 12010 } 12011 } 12012 ppd = (struct hfi1_pportdata *)(dd + 1); 12013 for (i = 0; i < dd->num_pports; i++, ppd++) { 12014 for (j = 0; j < PORT_CNTR_LAST; j++) { 12015 entry = &port_cntrs[j]; 12016 if (entry->flags & CNTR_VL) { 12017 for (vl = 0; vl < C_VL_COUNT; vl++) 12018 read_port_cntr(ppd, j, vl); 12019 } else { 12020 read_port_cntr(ppd, j, CNTR_INVALID_VL); 12021 } 12022 } 12023 } 12024 12025 /* 12026 * We want the value in the register. The goal is to keep track 12027 * of the number of "ticks" not the counter value. In other 12028 * words if the register rolls we want to notice it and go ahead 12029 * and force an update. 12030 */ 12031 entry = &dev_cntrs[C_DC_XMIT_FLITS]; 12032 dd->last_tx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL, 12033 CNTR_MODE_R, 0); 12034 12035 entry = &dev_cntrs[C_DC_RCV_FLITS]; 12036 dd->last_rx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL, 12037 CNTR_MODE_R, 0); 12038 12039 hfi1_cdbg(CNTR, "[%d] setting last tx/rx to 0x%llx 0x%llx", 12040 dd->unit, dd->last_tx, dd->last_rx); 12041 12042 } else { 12043 hfi1_cdbg(CNTR, "[%d] No update necessary", dd->unit); 12044 } 12045 12046 mod_timer(&dd->synth_stats_timer, jiffies + HZ * SYNTH_CNT_TIME); 12047 } 12048 12049 #define C_MAX_NAME 13 /* 12 chars + one for /0 */ 12050 static int init_cntrs(struct hfi1_devdata *dd) 12051 { 12052 int i, rcv_ctxts, j; 12053 size_t sz; 12054 char *p; 12055 char name[C_MAX_NAME]; 12056 struct hfi1_pportdata *ppd; 12057 const char *bit_type_32 = ",32"; 12058 const int bit_type_32_sz = strlen(bit_type_32); 12059 12060 /* set up the stats timer; the add_timer is done at the end */ 12061 setup_timer(&dd->synth_stats_timer, update_synth_timer, 12062 (unsigned long)dd); 12063 12064 /***********************/ 12065 /* per device counters */ 12066 /***********************/ 12067 12068 /* size names and determine how many we have*/ 12069 dd->ndevcntrs = 0; 12070 sz = 0; 12071 12072 for (i = 0; i < DEV_CNTR_LAST; i++) { 12073 if (dev_cntrs[i].flags & CNTR_DISABLED) { 12074 hfi1_dbg_early("\tSkipping %s\n", dev_cntrs[i].name); 12075 continue; 12076 } 12077 12078 if (dev_cntrs[i].flags & CNTR_VL) { 12079 dev_cntrs[i].offset = dd->ndevcntrs; 12080 for (j = 0; j < C_VL_COUNT; j++) { 12081 snprintf(name, C_MAX_NAME, "%s%d", 12082 dev_cntrs[i].name, vl_from_idx(j)); 12083 sz += strlen(name); 12084 /* Add ",32" for 32-bit counters */ 12085 if (dev_cntrs[i].flags & CNTR_32BIT) 12086 sz += bit_type_32_sz; 12087 sz++; 12088 dd->ndevcntrs++; 12089 } 12090 } else if (dev_cntrs[i].flags & CNTR_SDMA) { 12091 dev_cntrs[i].offset = dd->ndevcntrs; 12092 for (j = 0; j < dd->chip_sdma_engines; j++) { 12093 snprintf(name, C_MAX_NAME, "%s%d", 12094 dev_cntrs[i].name, j); 12095 sz += strlen(name); 12096 /* Add ",32" for 32-bit counters */ 12097 if (dev_cntrs[i].flags & CNTR_32BIT) 12098 sz += bit_type_32_sz; 12099 sz++; 12100 dd->ndevcntrs++; 12101 } 12102 } else { 12103 /* +1 for newline. */ 12104 sz += strlen(dev_cntrs[i].name) + 1; 12105 /* Add ",32" for 32-bit counters */ 12106 if (dev_cntrs[i].flags & CNTR_32BIT) 12107 sz += bit_type_32_sz; 12108 dev_cntrs[i].offset = dd->ndevcntrs; 12109 dd->ndevcntrs++; 12110 } 12111 } 12112 12113 /* allocate space for the counter values */ 12114 dd->cntrs = kcalloc(dd->ndevcntrs, sizeof(u64), GFP_KERNEL); 12115 if (!dd->cntrs) 12116 goto bail; 12117 12118 dd->scntrs = kcalloc(dd->ndevcntrs, sizeof(u64), GFP_KERNEL); 12119 if (!dd->scntrs) 12120 goto bail; 12121 12122 /* allocate space for the counter names */ 12123 dd->cntrnameslen = sz; 12124 dd->cntrnames = kmalloc(sz, GFP_KERNEL); 12125 if (!dd->cntrnames) 12126 goto bail; 12127 12128 /* fill in the names */ 12129 for (p = dd->cntrnames, i = 0; i < DEV_CNTR_LAST; i++) { 12130 if (dev_cntrs[i].flags & CNTR_DISABLED) { 12131 /* Nothing */ 12132 } else if (dev_cntrs[i].flags & CNTR_VL) { 12133 for (j = 0; j < C_VL_COUNT; j++) { 12134 snprintf(name, C_MAX_NAME, "%s%d", 12135 dev_cntrs[i].name, 12136 vl_from_idx(j)); 12137 memcpy(p, name, strlen(name)); 12138 p += strlen(name); 12139 12140 /* Counter is 32 bits */ 12141 if (dev_cntrs[i].flags & CNTR_32BIT) { 12142 memcpy(p, bit_type_32, bit_type_32_sz); 12143 p += bit_type_32_sz; 12144 } 12145 12146 *p++ = '\n'; 12147 } 12148 } else if (dev_cntrs[i].flags & CNTR_SDMA) { 12149 for (j = 0; j < dd->chip_sdma_engines; j++) { 12150 snprintf(name, C_MAX_NAME, "%s%d", 12151 dev_cntrs[i].name, j); 12152 memcpy(p, name, strlen(name)); 12153 p += strlen(name); 12154 12155 /* Counter is 32 bits */ 12156 if (dev_cntrs[i].flags & CNTR_32BIT) { 12157 memcpy(p, bit_type_32, bit_type_32_sz); 12158 p += bit_type_32_sz; 12159 } 12160 12161 *p++ = '\n'; 12162 } 12163 } else { 12164 memcpy(p, dev_cntrs[i].name, strlen(dev_cntrs[i].name)); 12165 p += strlen(dev_cntrs[i].name); 12166 12167 /* Counter is 32 bits */ 12168 if (dev_cntrs[i].flags & CNTR_32BIT) { 12169 memcpy(p, bit_type_32, bit_type_32_sz); 12170 p += bit_type_32_sz; 12171 } 12172 12173 *p++ = '\n'; 12174 } 12175 } 12176 12177 /*********************/ 12178 /* per port counters */ 12179 /*********************/ 12180 12181 /* 12182 * Go through the counters for the overflows and disable the ones we 12183 * don't need. This varies based on platform so we need to do it 12184 * dynamically here. 12185 */ 12186 rcv_ctxts = dd->num_rcv_contexts; 12187 for (i = C_RCV_HDR_OVF_FIRST + rcv_ctxts; 12188 i <= C_RCV_HDR_OVF_LAST; i++) { 12189 port_cntrs[i].flags |= CNTR_DISABLED; 12190 } 12191 12192 /* size port counter names and determine how many we have*/ 12193 sz = 0; 12194 dd->nportcntrs = 0; 12195 for (i = 0; i < PORT_CNTR_LAST; i++) { 12196 if (port_cntrs[i].flags & CNTR_DISABLED) { 12197 hfi1_dbg_early("\tSkipping %s\n", port_cntrs[i].name); 12198 continue; 12199 } 12200 12201 if (port_cntrs[i].flags & CNTR_VL) { 12202 port_cntrs[i].offset = dd->nportcntrs; 12203 for (j = 0; j < C_VL_COUNT; j++) { 12204 snprintf(name, C_MAX_NAME, "%s%d", 12205 port_cntrs[i].name, vl_from_idx(j)); 12206 sz += strlen(name); 12207 /* Add ",32" for 32-bit counters */ 12208 if (port_cntrs[i].flags & CNTR_32BIT) 12209 sz += bit_type_32_sz; 12210 sz++; 12211 dd->nportcntrs++; 12212 } 12213 } else { 12214 /* +1 for newline */ 12215 sz += strlen(port_cntrs[i].name) + 1; 12216 /* Add ",32" for 32-bit counters */ 12217 if (port_cntrs[i].flags & CNTR_32BIT) 12218 sz += bit_type_32_sz; 12219 port_cntrs[i].offset = dd->nportcntrs; 12220 dd->nportcntrs++; 12221 } 12222 } 12223 12224 /* allocate space for the counter names */ 12225 dd->portcntrnameslen = sz; 12226 dd->portcntrnames = kmalloc(sz, GFP_KERNEL); 12227 if (!dd->portcntrnames) 12228 goto bail; 12229 12230 /* fill in port cntr names */ 12231 for (p = dd->portcntrnames, i = 0; i < PORT_CNTR_LAST; i++) { 12232 if (port_cntrs[i].flags & CNTR_DISABLED) 12233 continue; 12234 12235 if (port_cntrs[i].flags & CNTR_VL) { 12236 for (j = 0; j < C_VL_COUNT; j++) { 12237 snprintf(name, C_MAX_NAME, "%s%d", 12238 port_cntrs[i].name, vl_from_idx(j)); 12239 memcpy(p, name, strlen(name)); 12240 p += strlen(name); 12241 12242 /* Counter is 32 bits */ 12243 if (port_cntrs[i].flags & CNTR_32BIT) { 12244 memcpy(p, bit_type_32, bit_type_32_sz); 12245 p += bit_type_32_sz; 12246 } 12247 12248 *p++ = '\n'; 12249 } 12250 } else { 12251 memcpy(p, port_cntrs[i].name, 12252 strlen(port_cntrs[i].name)); 12253 p += strlen(port_cntrs[i].name); 12254 12255 /* Counter is 32 bits */ 12256 if (port_cntrs[i].flags & CNTR_32BIT) { 12257 memcpy(p, bit_type_32, bit_type_32_sz); 12258 p += bit_type_32_sz; 12259 } 12260 12261 *p++ = '\n'; 12262 } 12263 } 12264 12265 /* allocate per port storage for counter values */ 12266 ppd = (struct hfi1_pportdata *)(dd + 1); 12267 for (i = 0; i < dd->num_pports; i++, ppd++) { 12268 ppd->cntrs = kcalloc(dd->nportcntrs, sizeof(u64), GFP_KERNEL); 12269 if (!ppd->cntrs) 12270 goto bail; 12271 12272 ppd->scntrs = kcalloc(dd->nportcntrs, sizeof(u64), GFP_KERNEL); 12273 if (!ppd->scntrs) 12274 goto bail; 12275 } 12276 12277 /* CPU counters need to be allocated and zeroed */ 12278 if (init_cpu_counters(dd)) 12279 goto bail; 12280 12281 mod_timer(&dd->synth_stats_timer, jiffies + HZ * SYNTH_CNT_TIME); 12282 return 0; 12283 bail: 12284 free_cntrs(dd); 12285 return -ENOMEM; 12286 } 12287 12288 static u32 chip_to_opa_lstate(struct hfi1_devdata *dd, u32 chip_lstate) 12289 { 12290 switch (chip_lstate) { 12291 default: 12292 dd_dev_err(dd, 12293 "Unknown logical state 0x%x, reporting IB_PORT_DOWN\n", 12294 chip_lstate); 12295 /* fall through */ 12296 case LSTATE_DOWN: 12297 return IB_PORT_DOWN; 12298 case LSTATE_INIT: 12299 return IB_PORT_INIT; 12300 case LSTATE_ARMED: 12301 return IB_PORT_ARMED; 12302 case LSTATE_ACTIVE: 12303 return IB_PORT_ACTIVE; 12304 } 12305 } 12306 12307 u32 chip_to_opa_pstate(struct hfi1_devdata *dd, u32 chip_pstate) 12308 { 12309 /* look at the HFI meta-states only */ 12310 switch (chip_pstate & 0xf0) { 12311 default: 12312 dd_dev_err(dd, "Unexpected chip physical state of 0x%x\n", 12313 chip_pstate); 12314 /* fall through */ 12315 case PLS_DISABLED: 12316 return IB_PORTPHYSSTATE_DISABLED; 12317 case PLS_OFFLINE: 12318 return OPA_PORTPHYSSTATE_OFFLINE; 12319 case PLS_POLLING: 12320 return IB_PORTPHYSSTATE_POLLING; 12321 case PLS_CONFIGPHY: 12322 return IB_PORTPHYSSTATE_TRAINING; 12323 case PLS_LINKUP: 12324 return IB_PORTPHYSSTATE_LINKUP; 12325 case PLS_PHYTEST: 12326 return IB_PORTPHYSSTATE_PHY_TEST; 12327 } 12328 } 12329 12330 /* return the OPA port logical state name */ 12331 const char *opa_lstate_name(u32 lstate) 12332 { 12333 static const char * const port_logical_names[] = { 12334 "PORT_NOP", 12335 "PORT_DOWN", 12336 "PORT_INIT", 12337 "PORT_ARMED", 12338 "PORT_ACTIVE", 12339 "PORT_ACTIVE_DEFER", 12340 }; 12341 if (lstate < ARRAY_SIZE(port_logical_names)) 12342 return port_logical_names[lstate]; 12343 return "unknown"; 12344 } 12345 12346 /* return the OPA port physical state name */ 12347 const char *opa_pstate_name(u32 pstate) 12348 { 12349 static const char * const port_physical_names[] = { 12350 "PHYS_NOP", 12351 "reserved1", 12352 "PHYS_POLL", 12353 "PHYS_DISABLED", 12354 "PHYS_TRAINING", 12355 "PHYS_LINKUP", 12356 "PHYS_LINK_ERR_RECOVER", 12357 "PHYS_PHY_TEST", 12358 "reserved8", 12359 "PHYS_OFFLINE", 12360 "PHYS_GANGED", 12361 "PHYS_TEST", 12362 }; 12363 if (pstate < ARRAY_SIZE(port_physical_names)) 12364 return port_physical_names[pstate]; 12365 return "unknown"; 12366 } 12367 12368 /* 12369 * Read the hardware link state and set the driver's cached value of it. 12370 * Return the (new) current value. 12371 */ 12372 u32 get_logical_state(struct hfi1_pportdata *ppd) 12373 { 12374 u32 new_state; 12375 12376 new_state = chip_to_opa_lstate(ppd->dd, read_logical_state(ppd->dd)); 12377 if (new_state != ppd->lstate) { 12378 dd_dev_info(ppd->dd, "logical state changed to %s (0x%x)\n", 12379 opa_lstate_name(new_state), new_state); 12380 ppd->lstate = new_state; 12381 } 12382 /* 12383 * Set port status flags in the page mapped into userspace 12384 * memory. Do it here to ensure a reliable state - this is 12385 * the only function called by all state handling code. 12386 * Always set the flags due to the fact that the cache value 12387 * might have been changed explicitly outside of this 12388 * function. 12389 */ 12390 if (ppd->statusp) { 12391 switch (ppd->lstate) { 12392 case IB_PORT_DOWN: 12393 case IB_PORT_INIT: 12394 *ppd->statusp &= ~(HFI1_STATUS_IB_CONF | 12395 HFI1_STATUS_IB_READY); 12396 break; 12397 case IB_PORT_ARMED: 12398 *ppd->statusp |= HFI1_STATUS_IB_CONF; 12399 break; 12400 case IB_PORT_ACTIVE: 12401 *ppd->statusp |= HFI1_STATUS_IB_READY; 12402 break; 12403 } 12404 } 12405 return ppd->lstate; 12406 } 12407 12408 /** 12409 * wait_logical_linkstate - wait for an IB link state change to occur 12410 * @ppd: port device 12411 * @state: the state to wait for 12412 * @msecs: the number of milliseconds to wait 12413 * 12414 * Wait up to msecs milliseconds for IB link state change to occur. 12415 * For now, take the easy polling route. 12416 * Returns 0 if state reached, otherwise -ETIMEDOUT. 12417 */ 12418 static int wait_logical_linkstate(struct hfi1_pportdata *ppd, u32 state, 12419 int msecs) 12420 { 12421 unsigned long timeout; 12422 12423 timeout = jiffies + msecs_to_jiffies(msecs); 12424 while (1) { 12425 if (get_logical_state(ppd) == state) 12426 return 0; 12427 if (time_after(jiffies, timeout)) 12428 break; 12429 msleep(20); 12430 } 12431 dd_dev_err(ppd->dd, "timeout waiting for link state 0x%x\n", state); 12432 12433 return -ETIMEDOUT; 12434 } 12435 12436 u8 hfi1_ibphys_portstate(struct hfi1_pportdata *ppd) 12437 { 12438 u32 pstate; 12439 u32 ib_pstate; 12440 12441 pstate = read_physical_state(ppd->dd); 12442 ib_pstate = chip_to_opa_pstate(ppd->dd, pstate); 12443 if (ppd->last_pstate != ib_pstate) { 12444 dd_dev_info(ppd->dd, 12445 "%s: physical state changed to %s (0x%x), phy 0x%x\n", 12446 __func__, opa_pstate_name(ib_pstate), ib_pstate, 12447 pstate); 12448 ppd->last_pstate = ib_pstate; 12449 } 12450 return ib_pstate; 12451 } 12452 12453 #define CLEAR_STATIC_RATE_CONTROL_SMASK(r) \ 12454 (r &= ~SEND_CTXT_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK) 12455 12456 #define SET_STATIC_RATE_CONTROL_SMASK(r) \ 12457 (r |= SEND_CTXT_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK) 12458 12459 int hfi1_init_ctxt(struct send_context *sc) 12460 { 12461 if (sc) { 12462 struct hfi1_devdata *dd = sc->dd; 12463 u64 reg; 12464 u8 set = (sc->type == SC_USER ? 12465 HFI1_CAP_IS_USET(STATIC_RATE_CTRL) : 12466 HFI1_CAP_IS_KSET(STATIC_RATE_CTRL)); 12467 reg = read_kctxt_csr(dd, sc->hw_context, 12468 SEND_CTXT_CHECK_ENABLE); 12469 if (set) 12470 CLEAR_STATIC_RATE_CONTROL_SMASK(reg); 12471 else 12472 SET_STATIC_RATE_CONTROL_SMASK(reg); 12473 write_kctxt_csr(dd, sc->hw_context, 12474 SEND_CTXT_CHECK_ENABLE, reg); 12475 } 12476 return 0; 12477 } 12478 12479 int hfi1_tempsense_rd(struct hfi1_devdata *dd, struct hfi1_temp *temp) 12480 { 12481 int ret = 0; 12482 u64 reg; 12483 12484 if (dd->icode != ICODE_RTL_SILICON) { 12485 if (HFI1_CAP_IS_KSET(PRINT_UNIMPL)) 12486 dd_dev_info(dd, "%s: tempsense not supported by HW\n", 12487 __func__); 12488 return -EINVAL; 12489 } 12490 reg = read_csr(dd, ASIC_STS_THERM); 12491 temp->curr = ((reg >> ASIC_STS_THERM_CURR_TEMP_SHIFT) & 12492 ASIC_STS_THERM_CURR_TEMP_MASK); 12493 temp->lo_lim = ((reg >> ASIC_STS_THERM_LO_TEMP_SHIFT) & 12494 ASIC_STS_THERM_LO_TEMP_MASK); 12495 temp->hi_lim = ((reg >> ASIC_STS_THERM_HI_TEMP_SHIFT) & 12496 ASIC_STS_THERM_HI_TEMP_MASK); 12497 temp->crit_lim = ((reg >> ASIC_STS_THERM_CRIT_TEMP_SHIFT) & 12498 ASIC_STS_THERM_CRIT_TEMP_MASK); 12499 /* triggers is a 3-bit value - 1 bit per trigger. */ 12500 temp->triggers = (u8)((reg >> ASIC_STS_THERM_LOW_SHIFT) & 0x7); 12501 12502 return ret; 12503 } 12504 12505 /* ========================================================================= */ 12506 12507 /* 12508 * Enable/disable chip from delivering interrupts. 12509 */ 12510 void set_intr_state(struct hfi1_devdata *dd, u32 enable) 12511 { 12512 int i; 12513 12514 /* 12515 * In HFI, the mask needs to be 1 to allow interrupts. 12516 */ 12517 if (enable) { 12518 /* enable all interrupts */ 12519 for (i = 0; i < CCE_NUM_INT_CSRS; i++) 12520 write_csr(dd, CCE_INT_MASK + (8 * i), ~(u64)0); 12521 12522 init_qsfp_int(dd); 12523 } else { 12524 for (i = 0; i < CCE_NUM_INT_CSRS; i++) 12525 write_csr(dd, CCE_INT_MASK + (8 * i), 0ull); 12526 } 12527 } 12528 12529 /* 12530 * Clear all interrupt sources on the chip. 12531 */ 12532 static void clear_all_interrupts(struct hfi1_devdata *dd) 12533 { 12534 int i; 12535 12536 for (i = 0; i < CCE_NUM_INT_CSRS; i++) 12537 write_csr(dd, CCE_INT_CLEAR + (8 * i), ~(u64)0); 12538 12539 write_csr(dd, CCE_ERR_CLEAR, ~(u64)0); 12540 write_csr(dd, MISC_ERR_CLEAR, ~(u64)0); 12541 write_csr(dd, RCV_ERR_CLEAR, ~(u64)0); 12542 write_csr(dd, SEND_ERR_CLEAR, ~(u64)0); 12543 write_csr(dd, SEND_PIO_ERR_CLEAR, ~(u64)0); 12544 write_csr(dd, SEND_DMA_ERR_CLEAR, ~(u64)0); 12545 write_csr(dd, SEND_EGRESS_ERR_CLEAR, ~(u64)0); 12546 for (i = 0; i < dd->chip_send_contexts; i++) 12547 write_kctxt_csr(dd, i, SEND_CTXT_ERR_CLEAR, ~(u64)0); 12548 for (i = 0; i < dd->chip_sdma_engines; i++) 12549 write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_CLEAR, ~(u64)0); 12550 12551 write_csr(dd, DCC_ERR_FLG_CLR, ~(u64)0); 12552 write_csr(dd, DC_LCB_ERR_CLR, ~(u64)0); 12553 write_csr(dd, DC_DC8051_ERR_CLR, ~(u64)0); 12554 } 12555 12556 /* Move to pcie.c? */ 12557 static void disable_intx(struct pci_dev *pdev) 12558 { 12559 pci_intx(pdev, 0); 12560 } 12561 12562 static void clean_up_interrupts(struct hfi1_devdata *dd) 12563 { 12564 int i; 12565 12566 /* remove irqs - must happen before disabling/turning off */ 12567 if (dd->num_msix_entries) { 12568 /* MSI-X */ 12569 struct hfi1_msix_entry *me = dd->msix_entries; 12570 12571 for (i = 0; i < dd->num_msix_entries; i++, me++) { 12572 if (!me->arg) /* => no irq, no affinity */ 12573 continue; 12574 hfi1_put_irq_affinity(dd, &dd->msix_entries[i]); 12575 free_irq(me->msix.vector, me->arg); 12576 } 12577 } else { 12578 /* INTx */ 12579 if (dd->requested_intx_irq) { 12580 free_irq(dd->pcidev->irq, dd); 12581 dd->requested_intx_irq = 0; 12582 } 12583 } 12584 12585 /* turn off interrupts */ 12586 if (dd->num_msix_entries) { 12587 /* MSI-X */ 12588 pci_disable_msix(dd->pcidev); 12589 } else { 12590 /* INTx */ 12591 disable_intx(dd->pcidev); 12592 } 12593 12594 /* clean structures */ 12595 kfree(dd->msix_entries); 12596 dd->msix_entries = NULL; 12597 dd->num_msix_entries = 0; 12598 } 12599 12600 /* 12601 * Remap the interrupt source from the general handler to the given MSI-X 12602 * interrupt. 12603 */ 12604 static void remap_intr(struct hfi1_devdata *dd, int isrc, int msix_intr) 12605 { 12606 u64 reg; 12607 int m, n; 12608 12609 /* clear from the handled mask of the general interrupt */ 12610 m = isrc / 64; 12611 n = isrc % 64; 12612 dd->gi_mask[m] &= ~((u64)1 << n); 12613 12614 /* direct the chip source to the given MSI-X interrupt */ 12615 m = isrc / 8; 12616 n = isrc % 8; 12617 reg = read_csr(dd, CCE_INT_MAP + (8 * m)); 12618 reg &= ~((u64)0xff << (8 * n)); 12619 reg |= ((u64)msix_intr & 0xff) << (8 * n); 12620 write_csr(dd, CCE_INT_MAP + (8 * m), reg); 12621 } 12622 12623 static void remap_sdma_interrupts(struct hfi1_devdata *dd, 12624 int engine, int msix_intr) 12625 { 12626 /* 12627 * SDMA engine interrupt sources grouped by type, rather than 12628 * engine. Per-engine interrupts are as follows: 12629 * SDMA 12630 * SDMAProgress 12631 * SDMAIdle 12632 */ 12633 remap_intr(dd, IS_SDMA_START + 0 * TXE_NUM_SDMA_ENGINES + engine, 12634 msix_intr); 12635 remap_intr(dd, IS_SDMA_START + 1 * TXE_NUM_SDMA_ENGINES + engine, 12636 msix_intr); 12637 remap_intr(dd, IS_SDMA_START + 2 * TXE_NUM_SDMA_ENGINES + engine, 12638 msix_intr); 12639 } 12640 12641 static int request_intx_irq(struct hfi1_devdata *dd) 12642 { 12643 int ret; 12644 12645 snprintf(dd->intx_name, sizeof(dd->intx_name), DRIVER_NAME "_%d", 12646 dd->unit); 12647 ret = request_irq(dd->pcidev->irq, general_interrupt, 12648 IRQF_SHARED, dd->intx_name, dd); 12649 if (ret) 12650 dd_dev_err(dd, "unable to request INTx interrupt, err %d\n", 12651 ret); 12652 else 12653 dd->requested_intx_irq = 1; 12654 return ret; 12655 } 12656 12657 static int request_msix_irqs(struct hfi1_devdata *dd) 12658 { 12659 int first_general, last_general; 12660 int first_sdma, last_sdma; 12661 int first_rx, last_rx; 12662 int i, ret = 0; 12663 12664 /* calculate the ranges we are going to use */ 12665 first_general = 0; 12666 last_general = first_general + 1; 12667 first_sdma = last_general; 12668 last_sdma = first_sdma + dd->num_sdma; 12669 first_rx = last_sdma; 12670 last_rx = first_rx + dd->n_krcv_queues; 12671 12672 /* 12673 * Sanity check - the code expects all SDMA chip source 12674 * interrupts to be in the same CSR, starting at bit 0. Verify 12675 * that this is true by checking the bit location of the start. 12676 */ 12677 BUILD_BUG_ON(IS_SDMA_START % 64); 12678 12679 for (i = 0; i < dd->num_msix_entries; i++) { 12680 struct hfi1_msix_entry *me = &dd->msix_entries[i]; 12681 const char *err_info; 12682 irq_handler_t handler; 12683 irq_handler_t thread = NULL; 12684 void *arg; 12685 int idx; 12686 struct hfi1_ctxtdata *rcd = NULL; 12687 struct sdma_engine *sde = NULL; 12688 12689 /* obtain the arguments to request_irq */ 12690 if (first_general <= i && i < last_general) { 12691 idx = i - first_general; 12692 handler = general_interrupt; 12693 arg = dd; 12694 snprintf(me->name, sizeof(me->name), 12695 DRIVER_NAME "_%d", dd->unit); 12696 err_info = "general"; 12697 me->type = IRQ_GENERAL; 12698 } else if (first_sdma <= i && i < last_sdma) { 12699 idx = i - first_sdma; 12700 sde = &dd->per_sdma[idx]; 12701 handler = sdma_interrupt; 12702 arg = sde; 12703 snprintf(me->name, sizeof(me->name), 12704 DRIVER_NAME "_%d sdma%d", dd->unit, idx); 12705 err_info = "sdma"; 12706 remap_sdma_interrupts(dd, idx, i); 12707 me->type = IRQ_SDMA; 12708 } else if (first_rx <= i && i < last_rx) { 12709 idx = i - first_rx; 12710 rcd = dd->rcd[idx]; 12711 /* no interrupt if no rcd */ 12712 if (!rcd) 12713 continue; 12714 /* 12715 * Set the interrupt register and mask for this 12716 * context's interrupt. 12717 */ 12718 rcd->ireg = (IS_RCVAVAIL_START + idx) / 64; 12719 rcd->imask = ((u64)1) << 12720 ((IS_RCVAVAIL_START + idx) % 64); 12721 handler = receive_context_interrupt; 12722 thread = receive_context_thread; 12723 arg = rcd; 12724 snprintf(me->name, sizeof(me->name), 12725 DRIVER_NAME "_%d kctxt%d", dd->unit, idx); 12726 err_info = "receive context"; 12727 remap_intr(dd, IS_RCVAVAIL_START + idx, i); 12728 me->type = IRQ_RCVCTXT; 12729 } else { 12730 /* not in our expected range - complain, then 12731 * ignore it 12732 */ 12733 dd_dev_err(dd, 12734 "Unexpected extra MSI-X interrupt %d\n", i); 12735 continue; 12736 } 12737 /* no argument, no interrupt */ 12738 if (!arg) 12739 continue; 12740 /* make sure the name is terminated */ 12741 me->name[sizeof(me->name) - 1] = 0; 12742 12743 ret = request_threaded_irq(me->msix.vector, handler, thread, 0, 12744 me->name, arg); 12745 if (ret) { 12746 dd_dev_err(dd, 12747 "unable to allocate %s interrupt, vector %d, index %d, err %d\n", 12748 err_info, me->msix.vector, idx, ret); 12749 return ret; 12750 } 12751 /* 12752 * assign arg after request_irq call, so it will be 12753 * cleaned up 12754 */ 12755 me->arg = arg; 12756 12757 ret = hfi1_get_irq_affinity(dd, me); 12758 if (ret) 12759 dd_dev_err(dd, 12760 "unable to pin IRQ %d\n", ret); 12761 } 12762 12763 return ret; 12764 } 12765 12766 /* 12767 * Set the general handler to accept all interrupts, remap all 12768 * chip interrupts back to MSI-X 0. 12769 */ 12770 static void reset_interrupts(struct hfi1_devdata *dd) 12771 { 12772 int i; 12773 12774 /* all interrupts handled by the general handler */ 12775 for (i = 0; i < CCE_NUM_INT_CSRS; i++) 12776 dd->gi_mask[i] = ~(u64)0; 12777 12778 /* all chip interrupts map to MSI-X 0 */ 12779 for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++) 12780 write_csr(dd, CCE_INT_MAP + (8 * i), 0); 12781 } 12782 12783 static int set_up_interrupts(struct hfi1_devdata *dd) 12784 { 12785 struct hfi1_msix_entry *entries; 12786 u32 total, request; 12787 int i, ret; 12788 int single_interrupt = 0; /* we expect to have all the interrupts */ 12789 12790 /* 12791 * Interrupt count: 12792 * 1 general, "slow path" interrupt (includes the SDMA engines 12793 * slow source, SDMACleanupDone) 12794 * N interrupts - one per used SDMA engine 12795 * M interrupt - one per kernel receive context 12796 */ 12797 total = 1 + dd->num_sdma + dd->n_krcv_queues; 12798 12799 entries = kcalloc(total, sizeof(*entries), GFP_KERNEL); 12800 if (!entries) { 12801 ret = -ENOMEM; 12802 goto fail; 12803 } 12804 /* 1-1 MSI-X entry assignment */ 12805 for (i = 0; i < total; i++) 12806 entries[i].msix.entry = i; 12807 12808 /* ask for MSI-X interrupts */ 12809 request = total; 12810 request_msix(dd, &request, entries); 12811 12812 if (request == 0) { 12813 /* using INTx */ 12814 /* dd->num_msix_entries already zero */ 12815 kfree(entries); 12816 single_interrupt = 1; 12817 dd_dev_err(dd, "MSI-X failed, using INTx interrupts\n"); 12818 } else { 12819 /* using MSI-X */ 12820 dd->num_msix_entries = request; 12821 dd->msix_entries = entries; 12822 12823 if (request != total) { 12824 /* using MSI-X, with reduced interrupts */ 12825 dd_dev_err( 12826 dd, 12827 "cannot handle reduced interrupt case, want %u, got %u\n", 12828 total, request); 12829 ret = -EINVAL; 12830 goto fail; 12831 } 12832 dd_dev_info(dd, "%u MSI-X interrupts allocated\n", total); 12833 } 12834 12835 /* mask all interrupts */ 12836 set_intr_state(dd, 0); 12837 /* clear all pending interrupts */ 12838 clear_all_interrupts(dd); 12839 12840 /* reset general handler mask, chip MSI-X mappings */ 12841 reset_interrupts(dd); 12842 12843 if (single_interrupt) 12844 ret = request_intx_irq(dd); 12845 else 12846 ret = request_msix_irqs(dd); 12847 if (ret) 12848 goto fail; 12849 12850 return 0; 12851 12852 fail: 12853 clean_up_interrupts(dd); 12854 return ret; 12855 } 12856 12857 /* 12858 * Set up context values in dd. Sets: 12859 * 12860 * num_rcv_contexts - number of contexts being used 12861 * n_krcv_queues - number of kernel contexts 12862 * first_user_ctxt - first non-kernel context in array of contexts 12863 * freectxts - number of free user contexts 12864 * num_send_contexts - number of PIO send contexts being used 12865 */ 12866 static int set_up_context_variables(struct hfi1_devdata *dd) 12867 { 12868 int num_kernel_contexts; 12869 int total_contexts; 12870 int ret; 12871 unsigned ngroups; 12872 int qos_rmt_count; 12873 int user_rmt_reduced; 12874 12875 /* 12876 * Kernel receive contexts: 12877 * - Context 0 - control context (VL15/multicast/error) 12878 * - Context 1 - first kernel context 12879 * - Context 2 - second kernel context 12880 * ... 12881 */ 12882 if (n_krcvqs) 12883 /* 12884 * n_krcvqs is the sum of module parameter kernel receive 12885 * contexts, krcvqs[]. It does not include the control 12886 * context, so add that. 12887 */ 12888 num_kernel_contexts = n_krcvqs + 1; 12889 else 12890 num_kernel_contexts = DEFAULT_KRCVQS + 1; 12891 /* 12892 * Every kernel receive context needs an ACK send context. 12893 * one send context is allocated for each VL{0-7} and VL15 12894 */ 12895 if (num_kernel_contexts > (dd->chip_send_contexts - num_vls - 1)) { 12896 dd_dev_err(dd, 12897 "Reducing # kernel rcv contexts to: %d, from %d\n", 12898 (int)(dd->chip_send_contexts - num_vls - 1), 12899 (int)num_kernel_contexts); 12900 num_kernel_contexts = dd->chip_send_contexts - num_vls - 1; 12901 } 12902 /* 12903 * User contexts: 12904 * - default to 1 user context per real (non-HT) CPU core if 12905 * num_user_contexts is negative 12906 */ 12907 if (num_user_contexts < 0) 12908 num_user_contexts = 12909 cpumask_weight(&node_affinity.real_cpu_mask); 12910 12911 total_contexts = num_kernel_contexts + num_user_contexts; 12912 12913 /* 12914 * Adjust the counts given a global max. 12915 */ 12916 if (total_contexts > dd->chip_rcv_contexts) { 12917 dd_dev_err(dd, 12918 "Reducing # user receive contexts to: %d, from %d\n", 12919 (int)(dd->chip_rcv_contexts - num_kernel_contexts), 12920 (int)num_user_contexts); 12921 num_user_contexts = dd->chip_rcv_contexts - num_kernel_contexts; 12922 /* recalculate */ 12923 total_contexts = num_kernel_contexts + num_user_contexts; 12924 } 12925 12926 /* each user context requires an entry in the RMT */ 12927 qos_rmt_count = qos_rmt_entries(dd, NULL, NULL); 12928 if (qos_rmt_count + num_user_contexts > NUM_MAP_ENTRIES) { 12929 user_rmt_reduced = NUM_MAP_ENTRIES - qos_rmt_count; 12930 dd_dev_err(dd, 12931 "RMT size is reducing the number of user receive contexts from %d to %d\n", 12932 (int)num_user_contexts, 12933 user_rmt_reduced); 12934 /* recalculate */ 12935 num_user_contexts = user_rmt_reduced; 12936 total_contexts = num_kernel_contexts + num_user_contexts; 12937 } 12938 12939 /* the first N are kernel contexts, the rest are user contexts */ 12940 dd->num_rcv_contexts = total_contexts; 12941 dd->n_krcv_queues = num_kernel_contexts; 12942 dd->first_user_ctxt = num_kernel_contexts; 12943 dd->num_user_contexts = num_user_contexts; 12944 dd->freectxts = num_user_contexts; 12945 dd_dev_info(dd, 12946 "rcv contexts: chip %d, used %d (kernel %d, user %d)\n", 12947 (int)dd->chip_rcv_contexts, 12948 (int)dd->num_rcv_contexts, 12949 (int)dd->n_krcv_queues, 12950 (int)dd->num_rcv_contexts - dd->n_krcv_queues); 12951 12952 /* 12953 * Receive array allocation: 12954 * All RcvArray entries are divided into groups of 8. This 12955 * is required by the hardware and will speed up writes to 12956 * consecutive entries by using write-combining of the entire 12957 * cacheline. 12958 * 12959 * The number of groups are evenly divided among all contexts. 12960 * any left over groups will be given to the first N user 12961 * contexts. 12962 */ 12963 dd->rcv_entries.group_size = RCV_INCREMENT; 12964 ngroups = dd->chip_rcv_array_count / dd->rcv_entries.group_size; 12965 dd->rcv_entries.ngroups = ngroups / dd->num_rcv_contexts; 12966 dd->rcv_entries.nctxt_extra = ngroups - 12967 (dd->num_rcv_contexts * dd->rcv_entries.ngroups); 12968 dd_dev_info(dd, "RcvArray groups %u, ctxts extra %u\n", 12969 dd->rcv_entries.ngroups, 12970 dd->rcv_entries.nctxt_extra); 12971 if (dd->rcv_entries.ngroups * dd->rcv_entries.group_size > 12972 MAX_EAGER_ENTRIES * 2) { 12973 dd->rcv_entries.ngroups = (MAX_EAGER_ENTRIES * 2) / 12974 dd->rcv_entries.group_size; 12975 dd_dev_info(dd, 12976 "RcvArray group count too high, change to %u\n", 12977 dd->rcv_entries.ngroups); 12978 dd->rcv_entries.nctxt_extra = 0; 12979 } 12980 /* 12981 * PIO send contexts 12982 */ 12983 ret = init_sc_pools_and_sizes(dd); 12984 if (ret >= 0) { /* success */ 12985 dd->num_send_contexts = ret; 12986 dd_dev_info( 12987 dd, 12988 "send contexts: chip %d, used %d (kernel %d, ack %d, user %d, vl15 %d)\n", 12989 dd->chip_send_contexts, 12990 dd->num_send_contexts, 12991 dd->sc_sizes[SC_KERNEL].count, 12992 dd->sc_sizes[SC_ACK].count, 12993 dd->sc_sizes[SC_USER].count, 12994 dd->sc_sizes[SC_VL15].count); 12995 ret = 0; /* success */ 12996 } 12997 12998 return ret; 12999 } 13000 13001 /* 13002 * Set the device/port partition key table. The MAD code 13003 * will ensure that, at least, the partial management 13004 * partition key is present in the table. 13005 */ 13006 static void set_partition_keys(struct hfi1_pportdata *ppd) 13007 { 13008 struct hfi1_devdata *dd = ppd->dd; 13009 u64 reg = 0; 13010 int i; 13011 13012 dd_dev_info(dd, "Setting partition keys\n"); 13013 for (i = 0; i < hfi1_get_npkeys(dd); i++) { 13014 reg |= (ppd->pkeys[i] & 13015 RCV_PARTITION_KEY_PARTITION_KEY_A_MASK) << 13016 ((i % 4) * 13017 RCV_PARTITION_KEY_PARTITION_KEY_B_SHIFT); 13018 /* Each register holds 4 PKey values. */ 13019 if ((i % 4) == 3) { 13020 write_csr(dd, RCV_PARTITION_KEY + 13021 ((i - 3) * 2), reg); 13022 reg = 0; 13023 } 13024 } 13025 13026 /* Always enable HW pkeys check when pkeys table is set */ 13027 add_rcvctrl(dd, RCV_CTRL_RCV_PARTITION_KEY_ENABLE_SMASK); 13028 } 13029 13030 /* 13031 * These CSRs and memories are uninitialized on reset and must be 13032 * written before reading to set the ECC/parity bits. 13033 * 13034 * NOTE: All user context CSRs that are not mmaped write-only 13035 * (e.g. the TID flows) must be initialized even if the driver never 13036 * reads them. 13037 */ 13038 static void write_uninitialized_csrs_and_memories(struct hfi1_devdata *dd) 13039 { 13040 int i, j; 13041 13042 /* CceIntMap */ 13043 for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++) 13044 write_csr(dd, CCE_INT_MAP + (8 * i), 0); 13045 13046 /* SendCtxtCreditReturnAddr */ 13047 for (i = 0; i < dd->chip_send_contexts; i++) 13048 write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_RETURN_ADDR, 0); 13049 13050 /* PIO Send buffers */ 13051 /* SDMA Send buffers */ 13052 /* 13053 * These are not normally read, and (presently) have no method 13054 * to be read, so are not pre-initialized 13055 */ 13056 13057 /* RcvHdrAddr */ 13058 /* RcvHdrTailAddr */ 13059 /* RcvTidFlowTable */ 13060 for (i = 0; i < dd->chip_rcv_contexts; i++) { 13061 write_kctxt_csr(dd, i, RCV_HDR_ADDR, 0); 13062 write_kctxt_csr(dd, i, RCV_HDR_TAIL_ADDR, 0); 13063 for (j = 0; j < RXE_NUM_TID_FLOWS; j++) 13064 write_uctxt_csr(dd, i, RCV_TID_FLOW_TABLE + (8 * j), 0); 13065 } 13066 13067 /* RcvArray */ 13068 for (i = 0; i < dd->chip_rcv_array_count; i++) 13069 write_csr(dd, RCV_ARRAY + (8 * i), 13070 RCV_ARRAY_RT_WRITE_ENABLE_SMASK); 13071 13072 /* RcvQPMapTable */ 13073 for (i = 0; i < 32; i++) 13074 write_csr(dd, RCV_QP_MAP_TABLE + (8 * i), 0); 13075 } 13076 13077 /* 13078 * Use the ctrl_bits in CceCtrl to clear the status_bits in CceStatus. 13079 */ 13080 static void clear_cce_status(struct hfi1_devdata *dd, u64 status_bits, 13081 u64 ctrl_bits) 13082 { 13083 unsigned long timeout; 13084 u64 reg; 13085 13086 /* is the condition present? */ 13087 reg = read_csr(dd, CCE_STATUS); 13088 if ((reg & status_bits) == 0) 13089 return; 13090 13091 /* clear the condition */ 13092 write_csr(dd, CCE_CTRL, ctrl_bits); 13093 13094 /* wait for the condition to clear */ 13095 timeout = jiffies + msecs_to_jiffies(CCE_STATUS_TIMEOUT); 13096 while (1) { 13097 reg = read_csr(dd, CCE_STATUS); 13098 if ((reg & status_bits) == 0) 13099 return; 13100 if (time_after(jiffies, timeout)) { 13101 dd_dev_err(dd, 13102 "Timeout waiting for CceStatus to clear bits 0x%llx, remaining 0x%llx\n", 13103 status_bits, reg & status_bits); 13104 return; 13105 } 13106 udelay(1); 13107 } 13108 } 13109 13110 /* set CCE CSRs to chip reset defaults */ 13111 static void reset_cce_csrs(struct hfi1_devdata *dd) 13112 { 13113 int i; 13114 13115 /* CCE_REVISION read-only */ 13116 /* CCE_REVISION2 read-only */ 13117 /* CCE_CTRL - bits clear automatically */ 13118 /* CCE_STATUS read-only, use CceCtrl to clear */ 13119 clear_cce_status(dd, ALL_FROZE, CCE_CTRL_SPC_UNFREEZE_SMASK); 13120 clear_cce_status(dd, ALL_TXE_PAUSE, CCE_CTRL_TXE_RESUME_SMASK); 13121 clear_cce_status(dd, ALL_RXE_PAUSE, CCE_CTRL_RXE_RESUME_SMASK); 13122 for (i = 0; i < CCE_NUM_SCRATCH; i++) 13123 write_csr(dd, CCE_SCRATCH + (8 * i), 0); 13124 /* CCE_ERR_STATUS read-only */ 13125 write_csr(dd, CCE_ERR_MASK, 0); 13126 write_csr(dd, CCE_ERR_CLEAR, ~0ull); 13127 /* CCE_ERR_FORCE leave alone */ 13128 for (i = 0; i < CCE_NUM_32_BIT_COUNTERS; i++) 13129 write_csr(dd, CCE_COUNTER_ARRAY32 + (8 * i), 0); 13130 write_csr(dd, CCE_DC_CTRL, CCE_DC_CTRL_RESETCSR); 13131 /* CCE_PCIE_CTRL leave alone */ 13132 for (i = 0; i < CCE_NUM_MSIX_VECTORS; i++) { 13133 write_csr(dd, CCE_MSIX_TABLE_LOWER + (8 * i), 0); 13134 write_csr(dd, CCE_MSIX_TABLE_UPPER + (8 * i), 13135 CCE_MSIX_TABLE_UPPER_RESETCSR); 13136 } 13137 for (i = 0; i < CCE_NUM_MSIX_PBAS; i++) { 13138 /* CCE_MSIX_PBA read-only */ 13139 write_csr(dd, CCE_MSIX_INT_GRANTED, ~0ull); 13140 write_csr(dd, CCE_MSIX_VEC_CLR_WITHOUT_INT, ~0ull); 13141 } 13142 for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++) 13143 write_csr(dd, CCE_INT_MAP, 0); 13144 for (i = 0; i < CCE_NUM_INT_CSRS; i++) { 13145 /* CCE_INT_STATUS read-only */ 13146 write_csr(dd, CCE_INT_MASK + (8 * i), 0); 13147 write_csr(dd, CCE_INT_CLEAR + (8 * i), ~0ull); 13148 /* CCE_INT_FORCE leave alone */ 13149 /* CCE_INT_BLOCKED read-only */ 13150 } 13151 for (i = 0; i < CCE_NUM_32_BIT_INT_COUNTERS; i++) 13152 write_csr(dd, CCE_INT_COUNTER_ARRAY32 + (8 * i), 0); 13153 } 13154 13155 /* set MISC CSRs to chip reset defaults */ 13156 static void reset_misc_csrs(struct hfi1_devdata *dd) 13157 { 13158 int i; 13159 13160 for (i = 0; i < 32; i++) { 13161 write_csr(dd, MISC_CFG_RSA_R2 + (8 * i), 0); 13162 write_csr(dd, MISC_CFG_RSA_SIGNATURE + (8 * i), 0); 13163 write_csr(dd, MISC_CFG_RSA_MODULUS + (8 * i), 0); 13164 } 13165 /* 13166 * MISC_CFG_SHA_PRELOAD leave alone - always reads 0 and can 13167 * only be written 128-byte chunks 13168 */ 13169 /* init RSA engine to clear lingering errors */ 13170 write_csr(dd, MISC_CFG_RSA_CMD, 1); 13171 write_csr(dd, MISC_CFG_RSA_MU, 0); 13172 write_csr(dd, MISC_CFG_FW_CTRL, 0); 13173 /* MISC_STS_8051_DIGEST read-only */ 13174 /* MISC_STS_SBM_DIGEST read-only */ 13175 /* MISC_STS_PCIE_DIGEST read-only */ 13176 /* MISC_STS_FAB_DIGEST read-only */ 13177 /* MISC_ERR_STATUS read-only */ 13178 write_csr(dd, MISC_ERR_MASK, 0); 13179 write_csr(dd, MISC_ERR_CLEAR, ~0ull); 13180 /* MISC_ERR_FORCE leave alone */ 13181 } 13182 13183 /* set TXE CSRs to chip reset defaults */ 13184 static void reset_txe_csrs(struct hfi1_devdata *dd) 13185 { 13186 int i; 13187 13188 /* 13189 * TXE Kernel CSRs 13190 */ 13191 write_csr(dd, SEND_CTRL, 0); 13192 __cm_reset(dd, 0); /* reset CM internal state */ 13193 /* SEND_CONTEXTS read-only */ 13194 /* SEND_DMA_ENGINES read-only */ 13195 /* SEND_PIO_MEM_SIZE read-only */ 13196 /* SEND_DMA_MEM_SIZE read-only */ 13197 write_csr(dd, SEND_HIGH_PRIORITY_LIMIT, 0); 13198 pio_reset_all(dd); /* SEND_PIO_INIT_CTXT */ 13199 /* SEND_PIO_ERR_STATUS read-only */ 13200 write_csr(dd, SEND_PIO_ERR_MASK, 0); 13201 write_csr(dd, SEND_PIO_ERR_CLEAR, ~0ull); 13202 /* SEND_PIO_ERR_FORCE leave alone */ 13203 /* SEND_DMA_ERR_STATUS read-only */ 13204 write_csr(dd, SEND_DMA_ERR_MASK, 0); 13205 write_csr(dd, SEND_DMA_ERR_CLEAR, ~0ull); 13206 /* SEND_DMA_ERR_FORCE leave alone */ 13207 /* SEND_EGRESS_ERR_STATUS read-only */ 13208 write_csr(dd, SEND_EGRESS_ERR_MASK, 0); 13209 write_csr(dd, SEND_EGRESS_ERR_CLEAR, ~0ull); 13210 /* SEND_EGRESS_ERR_FORCE leave alone */ 13211 write_csr(dd, SEND_BTH_QP, 0); 13212 write_csr(dd, SEND_STATIC_RATE_CONTROL, 0); 13213 write_csr(dd, SEND_SC2VLT0, 0); 13214 write_csr(dd, SEND_SC2VLT1, 0); 13215 write_csr(dd, SEND_SC2VLT2, 0); 13216 write_csr(dd, SEND_SC2VLT3, 0); 13217 write_csr(dd, SEND_LEN_CHECK0, 0); 13218 write_csr(dd, SEND_LEN_CHECK1, 0); 13219 /* SEND_ERR_STATUS read-only */ 13220 write_csr(dd, SEND_ERR_MASK, 0); 13221 write_csr(dd, SEND_ERR_CLEAR, ~0ull); 13222 /* SEND_ERR_FORCE read-only */ 13223 for (i = 0; i < VL_ARB_LOW_PRIO_TABLE_SIZE; i++) 13224 write_csr(dd, SEND_LOW_PRIORITY_LIST + (8 * i), 0); 13225 for (i = 0; i < VL_ARB_HIGH_PRIO_TABLE_SIZE; i++) 13226 write_csr(dd, SEND_HIGH_PRIORITY_LIST + (8 * i), 0); 13227 for (i = 0; i < dd->chip_send_contexts / NUM_CONTEXTS_PER_SET; i++) 13228 write_csr(dd, SEND_CONTEXT_SET_CTRL + (8 * i), 0); 13229 for (i = 0; i < TXE_NUM_32_BIT_COUNTER; i++) 13230 write_csr(dd, SEND_COUNTER_ARRAY32 + (8 * i), 0); 13231 for (i = 0; i < TXE_NUM_64_BIT_COUNTER; i++) 13232 write_csr(dd, SEND_COUNTER_ARRAY64 + (8 * i), 0); 13233 write_csr(dd, SEND_CM_CTRL, SEND_CM_CTRL_RESETCSR); 13234 write_csr(dd, SEND_CM_GLOBAL_CREDIT, SEND_CM_GLOBAL_CREDIT_RESETCSR); 13235 /* SEND_CM_CREDIT_USED_STATUS read-only */ 13236 write_csr(dd, SEND_CM_TIMER_CTRL, 0); 13237 write_csr(dd, SEND_CM_LOCAL_AU_TABLE0_TO3, 0); 13238 write_csr(dd, SEND_CM_LOCAL_AU_TABLE4_TO7, 0); 13239 write_csr(dd, SEND_CM_REMOTE_AU_TABLE0_TO3, 0); 13240 write_csr(dd, SEND_CM_REMOTE_AU_TABLE4_TO7, 0); 13241 for (i = 0; i < TXE_NUM_DATA_VL; i++) 13242 write_csr(dd, SEND_CM_CREDIT_VL + (8 * i), 0); 13243 write_csr(dd, SEND_CM_CREDIT_VL15, 0); 13244 /* SEND_CM_CREDIT_USED_VL read-only */ 13245 /* SEND_CM_CREDIT_USED_VL15 read-only */ 13246 /* SEND_EGRESS_CTXT_STATUS read-only */ 13247 /* SEND_EGRESS_SEND_DMA_STATUS read-only */ 13248 write_csr(dd, SEND_EGRESS_ERR_INFO, ~0ull); 13249 /* SEND_EGRESS_ERR_INFO read-only */ 13250 /* SEND_EGRESS_ERR_SOURCE read-only */ 13251 13252 /* 13253 * TXE Per-Context CSRs 13254 */ 13255 for (i = 0; i < dd->chip_send_contexts; i++) { 13256 write_kctxt_csr(dd, i, SEND_CTXT_CTRL, 0); 13257 write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_CTRL, 0); 13258 write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_RETURN_ADDR, 0); 13259 write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_FORCE, 0); 13260 write_kctxt_csr(dd, i, SEND_CTXT_ERR_MASK, 0); 13261 write_kctxt_csr(dd, i, SEND_CTXT_ERR_CLEAR, ~0ull); 13262 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_ENABLE, 0); 13263 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_VL, 0); 13264 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_JOB_KEY, 0); 13265 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_PARTITION_KEY, 0); 13266 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_SLID, 0); 13267 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_OPCODE, 0); 13268 } 13269 13270 /* 13271 * TXE Per-SDMA CSRs 13272 */ 13273 for (i = 0; i < dd->chip_sdma_engines; i++) { 13274 write_kctxt_csr(dd, i, SEND_DMA_CTRL, 0); 13275 /* SEND_DMA_STATUS read-only */ 13276 write_kctxt_csr(dd, i, SEND_DMA_BASE_ADDR, 0); 13277 write_kctxt_csr(dd, i, SEND_DMA_LEN_GEN, 0); 13278 write_kctxt_csr(dd, i, SEND_DMA_TAIL, 0); 13279 /* SEND_DMA_HEAD read-only */ 13280 write_kctxt_csr(dd, i, SEND_DMA_HEAD_ADDR, 0); 13281 write_kctxt_csr(dd, i, SEND_DMA_PRIORITY_THLD, 0); 13282 /* SEND_DMA_IDLE_CNT read-only */ 13283 write_kctxt_csr(dd, i, SEND_DMA_RELOAD_CNT, 0); 13284 write_kctxt_csr(dd, i, SEND_DMA_DESC_CNT, 0); 13285 /* SEND_DMA_DESC_FETCHED_CNT read-only */ 13286 /* SEND_DMA_ENG_ERR_STATUS read-only */ 13287 write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_MASK, 0); 13288 write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_CLEAR, ~0ull); 13289 /* SEND_DMA_ENG_ERR_FORCE leave alone */ 13290 write_kctxt_csr(dd, i, SEND_DMA_CHECK_ENABLE, 0); 13291 write_kctxt_csr(dd, i, SEND_DMA_CHECK_VL, 0); 13292 write_kctxt_csr(dd, i, SEND_DMA_CHECK_JOB_KEY, 0); 13293 write_kctxt_csr(dd, i, SEND_DMA_CHECK_PARTITION_KEY, 0); 13294 write_kctxt_csr(dd, i, SEND_DMA_CHECK_SLID, 0); 13295 write_kctxt_csr(dd, i, SEND_DMA_CHECK_OPCODE, 0); 13296 write_kctxt_csr(dd, i, SEND_DMA_MEMORY, 0); 13297 } 13298 } 13299 13300 /* 13301 * Expect on entry: 13302 * o Packet ingress is disabled, i.e. RcvCtrl.RcvPortEnable == 0 13303 */ 13304 static void init_rbufs(struct hfi1_devdata *dd) 13305 { 13306 u64 reg; 13307 int count; 13308 13309 /* 13310 * Wait for DMA to stop: RxRbufPktPending and RxPktInProgress are 13311 * clear. 13312 */ 13313 count = 0; 13314 while (1) { 13315 reg = read_csr(dd, RCV_STATUS); 13316 if ((reg & (RCV_STATUS_RX_RBUF_PKT_PENDING_SMASK 13317 | RCV_STATUS_RX_PKT_IN_PROGRESS_SMASK)) == 0) 13318 break; 13319 /* 13320 * Give up after 1ms - maximum wait time. 13321 * 13322 * RBuf size is 148KiB. Slowest possible is PCIe Gen1 x1 at 13323 * 250MB/s bandwidth. Lower rate to 66% for overhead to get: 13324 * 148 KB / (66% * 250MB/s) = 920us 13325 */ 13326 if (count++ > 500) { 13327 dd_dev_err(dd, 13328 "%s: in-progress DMA not clearing: RcvStatus 0x%llx, continuing\n", 13329 __func__, reg); 13330 break; 13331 } 13332 udelay(2); /* do not busy-wait the CSR */ 13333 } 13334 13335 /* start the init - expect RcvCtrl to be 0 */ 13336 write_csr(dd, RCV_CTRL, RCV_CTRL_RX_RBUF_INIT_SMASK); 13337 13338 /* 13339 * Read to force the write of Rcvtrl.RxRbufInit. There is a brief 13340 * period after the write before RcvStatus.RxRbufInitDone is valid. 13341 * The delay in the first run through the loop below is sufficient and 13342 * required before the first read of RcvStatus.RxRbufInintDone. 13343 */ 13344 read_csr(dd, RCV_CTRL); 13345 13346 /* wait for the init to finish */ 13347 count = 0; 13348 while (1) { 13349 /* delay is required first time through - see above */ 13350 udelay(2); /* do not busy-wait the CSR */ 13351 reg = read_csr(dd, RCV_STATUS); 13352 if (reg & (RCV_STATUS_RX_RBUF_INIT_DONE_SMASK)) 13353 break; 13354 13355 /* give up after 100us - slowest possible at 33MHz is 73us */ 13356 if (count++ > 50) { 13357 dd_dev_err(dd, 13358 "%s: RcvStatus.RxRbufInit not set, continuing\n", 13359 __func__); 13360 break; 13361 } 13362 } 13363 } 13364 13365 /* set RXE CSRs to chip reset defaults */ 13366 static void reset_rxe_csrs(struct hfi1_devdata *dd) 13367 { 13368 int i, j; 13369 13370 /* 13371 * RXE Kernel CSRs 13372 */ 13373 write_csr(dd, RCV_CTRL, 0); 13374 init_rbufs(dd); 13375 /* RCV_STATUS read-only */ 13376 /* RCV_CONTEXTS read-only */ 13377 /* RCV_ARRAY_CNT read-only */ 13378 /* RCV_BUF_SIZE read-only */ 13379 write_csr(dd, RCV_BTH_QP, 0); 13380 write_csr(dd, RCV_MULTICAST, 0); 13381 write_csr(dd, RCV_BYPASS, 0); 13382 write_csr(dd, RCV_VL15, 0); 13383 /* this is a clear-down */ 13384 write_csr(dd, RCV_ERR_INFO, 13385 RCV_ERR_INFO_RCV_EXCESS_BUFFER_OVERRUN_SMASK); 13386 /* RCV_ERR_STATUS read-only */ 13387 write_csr(dd, RCV_ERR_MASK, 0); 13388 write_csr(dd, RCV_ERR_CLEAR, ~0ull); 13389 /* RCV_ERR_FORCE leave alone */ 13390 for (i = 0; i < 32; i++) 13391 write_csr(dd, RCV_QP_MAP_TABLE + (8 * i), 0); 13392 for (i = 0; i < 4; i++) 13393 write_csr(dd, RCV_PARTITION_KEY + (8 * i), 0); 13394 for (i = 0; i < RXE_NUM_32_BIT_COUNTERS; i++) 13395 write_csr(dd, RCV_COUNTER_ARRAY32 + (8 * i), 0); 13396 for (i = 0; i < RXE_NUM_64_BIT_COUNTERS; i++) 13397 write_csr(dd, RCV_COUNTER_ARRAY64 + (8 * i), 0); 13398 for (i = 0; i < RXE_NUM_RSM_INSTANCES; i++) { 13399 write_csr(dd, RCV_RSM_CFG + (8 * i), 0); 13400 write_csr(dd, RCV_RSM_SELECT + (8 * i), 0); 13401 write_csr(dd, RCV_RSM_MATCH + (8 * i), 0); 13402 } 13403 for (i = 0; i < 32; i++) 13404 write_csr(dd, RCV_RSM_MAP_TABLE + (8 * i), 0); 13405 13406 /* 13407 * RXE Kernel and User Per-Context CSRs 13408 */ 13409 for (i = 0; i < dd->chip_rcv_contexts; i++) { 13410 /* kernel */ 13411 write_kctxt_csr(dd, i, RCV_CTXT_CTRL, 0); 13412 /* RCV_CTXT_STATUS read-only */ 13413 write_kctxt_csr(dd, i, RCV_EGR_CTRL, 0); 13414 write_kctxt_csr(dd, i, RCV_TID_CTRL, 0); 13415 write_kctxt_csr(dd, i, RCV_KEY_CTRL, 0); 13416 write_kctxt_csr(dd, i, RCV_HDR_ADDR, 0); 13417 write_kctxt_csr(dd, i, RCV_HDR_CNT, 0); 13418 write_kctxt_csr(dd, i, RCV_HDR_ENT_SIZE, 0); 13419 write_kctxt_csr(dd, i, RCV_HDR_SIZE, 0); 13420 write_kctxt_csr(dd, i, RCV_HDR_TAIL_ADDR, 0); 13421 write_kctxt_csr(dd, i, RCV_AVAIL_TIME_OUT, 0); 13422 write_kctxt_csr(dd, i, RCV_HDR_OVFL_CNT, 0); 13423 13424 /* user */ 13425 /* RCV_HDR_TAIL read-only */ 13426 write_uctxt_csr(dd, i, RCV_HDR_HEAD, 0); 13427 /* RCV_EGR_INDEX_TAIL read-only */ 13428 write_uctxt_csr(dd, i, RCV_EGR_INDEX_HEAD, 0); 13429 /* RCV_EGR_OFFSET_TAIL read-only */ 13430 for (j = 0; j < RXE_NUM_TID_FLOWS; j++) { 13431 write_uctxt_csr(dd, i, 13432 RCV_TID_FLOW_TABLE + (8 * j), 0); 13433 } 13434 } 13435 } 13436 13437 /* 13438 * Set sc2vl tables. 13439 * 13440 * They power on to zeros, so to avoid send context errors 13441 * they need to be set: 13442 * 13443 * SC 0-7 -> VL 0-7 (respectively) 13444 * SC 15 -> VL 15 13445 * otherwise 13446 * -> VL 0 13447 */ 13448 static void init_sc2vl_tables(struct hfi1_devdata *dd) 13449 { 13450 int i; 13451 /* init per architecture spec, constrained by hardware capability */ 13452 13453 /* HFI maps sent packets */ 13454 write_csr(dd, SEND_SC2VLT0, SC2VL_VAL( 13455 0, 13456 0, 0, 1, 1, 13457 2, 2, 3, 3, 13458 4, 4, 5, 5, 13459 6, 6, 7, 7)); 13460 write_csr(dd, SEND_SC2VLT1, SC2VL_VAL( 13461 1, 13462 8, 0, 9, 0, 13463 10, 0, 11, 0, 13464 12, 0, 13, 0, 13465 14, 0, 15, 15)); 13466 write_csr(dd, SEND_SC2VLT2, SC2VL_VAL( 13467 2, 13468 16, 0, 17, 0, 13469 18, 0, 19, 0, 13470 20, 0, 21, 0, 13471 22, 0, 23, 0)); 13472 write_csr(dd, SEND_SC2VLT3, SC2VL_VAL( 13473 3, 13474 24, 0, 25, 0, 13475 26, 0, 27, 0, 13476 28, 0, 29, 0, 13477 30, 0, 31, 0)); 13478 13479 /* DC maps received packets */ 13480 write_csr(dd, DCC_CFG_SC_VL_TABLE_15_0, DC_SC_VL_VAL( 13481 15_0, 13482 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 13483 8, 0, 9, 0, 10, 0, 11, 0, 12, 0, 13, 0, 14, 0, 15, 15)); 13484 write_csr(dd, DCC_CFG_SC_VL_TABLE_31_16, DC_SC_VL_VAL( 13485 31_16, 13486 16, 0, 17, 0, 18, 0, 19, 0, 20, 0, 21, 0, 22, 0, 23, 0, 13487 24, 0, 25, 0, 26, 0, 27, 0, 28, 0, 29, 0, 30, 0, 31, 0)); 13488 13489 /* initialize the cached sc2vl values consistently with h/w */ 13490 for (i = 0; i < 32; i++) { 13491 if (i < 8 || i == 15) 13492 *((u8 *)(dd->sc2vl) + i) = (u8)i; 13493 else 13494 *((u8 *)(dd->sc2vl) + i) = 0; 13495 } 13496 } 13497 13498 /* 13499 * Read chip sizes and then reset parts to sane, disabled, values. We cannot 13500 * depend on the chip going through a power-on reset - a driver may be loaded 13501 * and unloaded many times. 13502 * 13503 * Do not write any CSR values to the chip in this routine - there may be 13504 * a reset following the (possible) FLR in this routine. 13505 * 13506 */ 13507 static void init_chip(struct hfi1_devdata *dd) 13508 { 13509 int i; 13510 13511 /* 13512 * Put the HFI CSRs in a known state. 13513 * Combine this with a DC reset. 13514 * 13515 * Stop the device from doing anything while we do a 13516 * reset. We know there are no other active users of 13517 * the device since we are now in charge. Turn off 13518 * off all outbound and inbound traffic and make sure 13519 * the device does not generate any interrupts. 13520 */ 13521 13522 /* disable send contexts and SDMA engines */ 13523 write_csr(dd, SEND_CTRL, 0); 13524 for (i = 0; i < dd->chip_send_contexts; i++) 13525 write_kctxt_csr(dd, i, SEND_CTXT_CTRL, 0); 13526 for (i = 0; i < dd->chip_sdma_engines; i++) 13527 write_kctxt_csr(dd, i, SEND_DMA_CTRL, 0); 13528 /* disable port (turn off RXE inbound traffic) and contexts */ 13529 write_csr(dd, RCV_CTRL, 0); 13530 for (i = 0; i < dd->chip_rcv_contexts; i++) 13531 write_csr(dd, RCV_CTXT_CTRL, 0); 13532 /* mask all interrupt sources */ 13533 for (i = 0; i < CCE_NUM_INT_CSRS; i++) 13534 write_csr(dd, CCE_INT_MASK + (8 * i), 0ull); 13535 13536 /* 13537 * DC Reset: do a full DC reset before the register clear. 13538 * A recommended length of time to hold is one CSR read, 13539 * so reread the CceDcCtrl. Then, hold the DC in reset 13540 * across the clear. 13541 */ 13542 write_csr(dd, CCE_DC_CTRL, CCE_DC_CTRL_DC_RESET_SMASK); 13543 (void)read_csr(dd, CCE_DC_CTRL); 13544 13545 if (use_flr) { 13546 /* 13547 * A FLR will reset the SPC core and part of the PCIe. 13548 * The parts that need to be restored have already been 13549 * saved. 13550 */ 13551 dd_dev_info(dd, "Resetting CSRs with FLR\n"); 13552 13553 /* do the FLR, the DC reset will remain */ 13554 hfi1_pcie_flr(dd); 13555 13556 /* restore command and BARs */ 13557 restore_pci_variables(dd); 13558 13559 if (is_ax(dd)) { 13560 dd_dev_info(dd, "Resetting CSRs with FLR\n"); 13561 hfi1_pcie_flr(dd); 13562 restore_pci_variables(dd); 13563 } 13564 } else { 13565 dd_dev_info(dd, "Resetting CSRs with writes\n"); 13566 reset_cce_csrs(dd); 13567 reset_txe_csrs(dd); 13568 reset_rxe_csrs(dd); 13569 reset_misc_csrs(dd); 13570 } 13571 /* clear the DC reset */ 13572 write_csr(dd, CCE_DC_CTRL, 0); 13573 13574 /* Set the LED off */ 13575 setextled(dd, 0); 13576 13577 /* 13578 * Clear the QSFP reset. 13579 * An FLR enforces a 0 on all out pins. The driver does not touch 13580 * ASIC_QSFPn_OUT otherwise. This leaves RESET_N low and 13581 * anything plugged constantly in reset, if it pays attention 13582 * to RESET_N. 13583 * Prime examples of this are optical cables. Set all pins high. 13584 * I2CCLK and I2CDAT will change per direction, and INT_N and 13585 * MODPRS_N are input only and their value is ignored. 13586 */ 13587 write_csr(dd, ASIC_QSFP1_OUT, 0x1f); 13588 write_csr(dd, ASIC_QSFP2_OUT, 0x1f); 13589 init_chip_resources(dd); 13590 } 13591 13592 static void init_early_variables(struct hfi1_devdata *dd) 13593 { 13594 int i; 13595 13596 /* assign link credit variables */ 13597 dd->vau = CM_VAU; 13598 dd->link_credits = CM_GLOBAL_CREDITS; 13599 if (is_ax(dd)) 13600 dd->link_credits--; 13601 dd->vcu = cu_to_vcu(hfi1_cu); 13602 /* enough room for 8 MAD packets plus header - 17K */ 13603 dd->vl15_init = (8 * (2048 + 128)) / vau_to_au(dd->vau); 13604 if (dd->vl15_init > dd->link_credits) 13605 dd->vl15_init = dd->link_credits; 13606 13607 write_uninitialized_csrs_and_memories(dd); 13608 13609 if (HFI1_CAP_IS_KSET(PKEY_CHECK)) 13610 for (i = 0; i < dd->num_pports; i++) { 13611 struct hfi1_pportdata *ppd = &dd->pport[i]; 13612 13613 set_partition_keys(ppd); 13614 } 13615 init_sc2vl_tables(dd); 13616 } 13617 13618 static void init_kdeth_qp(struct hfi1_devdata *dd) 13619 { 13620 /* user changed the KDETH_QP */ 13621 if (kdeth_qp != 0 && kdeth_qp >= 0xff) { 13622 /* out of range or illegal value */ 13623 dd_dev_err(dd, "Invalid KDETH queue pair prefix, ignoring"); 13624 kdeth_qp = 0; 13625 } 13626 if (kdeth_qp == 0) /* not set, or failed range check */ 13627 kdeth_qp = DEFAULT_KDETH_QP; 13628 13629 write_csr(dd, SEND_BTH_QP, 13630 (kdeth_qp & SEND_BTH_QP_KDETH_QP_MASK) << 13631 SEND_BTH_QP_KDETH_QP_SHIFT); 13632 13633 write_csr(dd, RCV_BTH_QP, 13634 (kdeth_qp & RCV_BTH_QP_KDETH_QP_MASK) << 13635 RCV_BTH_QP_KDETH_QP_SHIFT); 13636 } 13637 13638 /** 13639 * init_qpmap_table 13640 * @dd - device data 13641 * @first_ctxt - first context 13642 * @last_ctxt - first context 13643 * 13644 * This return sets the qpn mapping table that 13645 * is indexed by qpn[8:1]. 13646 * 13647 * The routine will round robin the 256 settings 13648 * from first_ctxt to last_ctxt. 13649 * 13650 * The first/last looks ahead to having specialized 13651 * receive contexts for mgmt and bypass. Normal 13652 * verbs traffic will assumed to be on a range 13653 * of receive contexts. 13654 */ 13655 static void init_qpmap_table(struct hfi1_devdata *dd, 13656 u32 first_ctxt, 13657 u32 last_ctxt) 13658 { 13659 u64 reg = 0; 13660 u64 regno = RCV_QP_MAP_TABLE; 13661 int i; 13662 u64 ctxt = first_ctxt; 13663 13664 for (i = 0; i < 256; i++) { 13665 reg |= ctxt << (8 * (i % 8)); 13666 ctxt++; 13667 if (ctxt > last_ctxt) 13668 ctxt = first_ctxt; 13669 if (i % 8 == 7) { 13670 write_csr(dd, regno, reg); 13671 reg = 0; 13672 regno += 8; 13673 } 13674 } 13675 13676 add_rcvctrl(dd, RCV_CTRL_RCV_QP_MAP_ENABLE_SMASK 13677 | RCV_CTRL_RCV_BYPASS_ENABLE_SMASK); 13678 } 13679 13680 struct rsm_map_table { 13681 u64 map[NUM_MAP_REGS]; 13682 unsigned int used; 13683 }; 13684 13685 struct rsm_rule_data { 13686 u8 offset; 13687 u8 pkt_type; 13688 u32 field1_off; 13689 u32 field2_off; 13690 u32 index1_off; 13691 u32 index1_width; 13692 u32 index2_off; 13693 u32 index2_width; 13694 u32 mask1; 13695 u32 value1; 13696 u32 mask2; 13697 u32 value2; 13698 }; 13699 13700 /* 13701 * Return an initialized RMT map table for users to fill in. OK if it 13702 * returns NULL, indicating no table. 13703 */ 13704 static struct rsm_map_table *alloc_rsm_map_table(struct hfi1_devdata *dd) 13705 { 13706 struct rsm_map_table *rmt; 13707 u8 rxcontext = is_ax(dd) ? 0 : 0xff; /* 0 is default if a0 ver. */ 13708 13709 rmt = kmalloc(sizeof(*rmt), GFP_KERNEL); 13710 if (rmt) { 13711 memset(rmt->map, rxcontext, sizeof(rmt->map)); 13712 rmt->used = 0; 13713 } 13714 13715 return rmt; 13716 } 13717 13718 /* 13719 * Write the final RMT map table to the chip and free the table. OK if 13720 * table is NULL. 13721 */ 13722 static void complete_rsm_map_table(struct hfi1_devdata *dd, 13723 struct rsm_map_table *rmt) 13724 { 13725 int i; 13726 13727 if (rmt) { 13728 /* write table to chip */ 13729 for (i = 0; i < NUM_MAP_REGS; i++) 13730 write_csr(dd, RCV_RSM_MAP_TABLE + (8 * i), rmt->map[i]); 13731 13732 /* enable RSM */ 13733 add_rcvctrl(dd, RCV_CTRL_RCV_RSM_ENABLE_SMASK); 13734 } 13735 } 13736 13737 /* 13738 * Add a receive side mapping rule. 13739 */ 13740 static void add_rsm_rule(struct hfi1_devdata *dd, u8 rule_index, 13741 struct rsm_rule_data *rrd) 13742 { 13743 write_csr(dd, RCV_RSM_CFG + (8 * rule_index), 13744 (u64)rrd->offset << RCV_RSM_CFG_OFFSET_SHIFT | 13745 1ull << rule_index | /* enable bit */ 13746 (u64)rrd->pkt_type << RCV_RSM_CFG_PACKET_TYPE_SHIFT); 13747 write_csr(dd, RCV_RSM_SELECT + (8 * rule_index), 13748 (u64)rrd->field1_off << RCV_RSM_SELECT_FIELD1_OFFSET_SHIFT | 13749 (u64)rrd->field2_off << RCV_RSM_SELECT_FIELD2_OFFSET_SHIFT | 13750 (u64)rrd->index1_off << RCV_RSM_SELECT_INDEX1_OFFSET_SHIFT | 13751 (u64)rrd->index1_width << RCV_RSM_SELECT_INDEX1_WIDTH_SHIFT | 13752 (u64)rrd->index2_off << RCV_RSM_SELECT_INDEX2_OFFSET_SHIFT | 13753 (u64)rrd->index2_width << RCV_RSM_SELECT_INDEX2_WIDTH_SHIFT); 13754 write_csr(dd, RCV_RSM_MATCH + (8 * rule_index), 13755 (u64)rrd->mask1 << RCV_RSM_MATCH_MASK1_SHIFT | 13756 (u64)rrd->value1 << RCV_RSM_MATCH_VALUE1_SHIFT | 13757 (u64)rrd->mask2 << RCV_RSM_MATCH_MASK2_SHIFT | 13758 (u64)rrd->value2 << RCV_RSM_MATCH_VALUE2_SHIFT); 13759 } 13760 13761 /* return the number of RSM map table entries that will be used for QOS */ 13762 static int qos_rmt_entries(struct hfi1_devdata *dd, unsigned int *mp, 13763 unsigned int *np) 13764 { 13765 int i; 13766 unsigned int m, n; 13767 u8 max_by_vl = 0; 13768 13769 /* is QOS active at all? */ 13770 if (dd->n_krcv_queues <= MIN_KERNEL_KCTXTS || 13771 num_vls == 1 || 13772 krcvqsset <= 1) 13773 goto no_qos; 13774 13775 /* determine bits for qpn */ 13776 for (i = 0; i < min_t(unsigned int, num_vls, krcvqsset); i++) 13777 if (krcvqs[i] > max_by_vl) 13778 max_by_vl = krcvqs[i]; 13779 if (max_by_vl > 32) 13780 goto no_qos; 13781 m = ilog2(__roundup_pow_of_two(max_by_vl)); 13782 13783 /* determine bits for vl */ 13784 n = ilog2(__roundup_pow_of_two(num_vls)); 13785 13786 /* reject if too much is used */ 13787 if ((m + n) > 7) 13788 goto no_qos; 13789 13790 if (mp) 13791 *mp = m; 13792 if (np) 13793 *np = n; 13794 13795 return 1 << (m + n); 13796 13797 no_qos: 13798 if (mp) 13799 *mp = 0; 13800 if (np) 13801 *np = 0; 13802 return 0; 13803 } 13804 13805 /** 13806 * init_qos - init RX qos 13807 * @dd - device data 13808 * @rmt - RSM map table 13809 * 13810 * This routine initializes Rule 0 and the RSM map table to implement 13811 * quality of service (qos). 13812 * 13813 * If all of the limit tests succeed, qos is applied based on the array 13814 * interpretation of krcvqs where entry 0 is VL0. 13815 * 13816 * The number of vl bits (n) and the number of qpn bits (m) are computed to 13817 * feed both the RSM map table and the single rule. 13818 */ 13819 static void init_qos(struct hfi1_devdata *dd, struct rsm_map_table *rmt) 13820 { 13821 struct rsm_rule_data rrd; 13822 unsigned qpns_per_vl, ctxt, i, qpn, n = 1, m; 13823 unsigned int rmt_entries; 13824 u64 reg; 13825 13826 if (!rmt) 13827 goto bail; 13828 rmt_entries = qos_rmt_entries(dd, &m, &n); 13829 if (rmt_entries == 0) 13830 goto bail; 13831 qpns_per_vl = 1 << m; 13832 13833 /* enough room in the map table? */ 13834 rmt_entries = 1 << (m + n); 13835 if (rmt->used + rmt_entries >= NUM_MAP_ENTRIES) 13836 goto bail; 13837 13838 /* add qos entries to the the RSM map table */ 13839 for (i = 0, ctxt = FIRST_KERNEL_KCTXT; i < num_vls; i++) { 13840 unsigned tctxt; 13841 13842 for (qpn = 0, tctxt = ctxt; 13843 krcvqs[i] && qpn < qpns_per_vl; qpn++) { 13844 unsigned idx, regoff, regidx; 13845 13846 /* generate the index the hardware will produce */ 13847 idx = rmt->used + ((qpn << n) ^ i); 13848 regoff = (idx % 8) * 8; 13849 regidx = idx / 8; 13850 /* replace default with context number */ 13851 reg = rmt->map[regidx]; 13852 reg &= ~(RCV_RSM_MAP_TABLE_RCV_CONTEXT_A_MASK 13853 << regoff); 13854 reg |= (u64)(tctxt++) << regoff; 13855 rmt->map[regidx] = reg; 13856 if (tctxt == ctxt + krcvqs[i]) 13857 tctxt = ctxt; 13858 } 13859 ctxt += krcvqs[i]; 13860 } 13861 13862 rrd.offset = rmt->used; 13863 rrd.pkt_type = 2; 13864 rrd.field1_off = LRH_BTH_MATCH_OFFSET; 13865 rrd.field2_off = LRH_SC_MATCH_OFFSET; 13866 rrd.index1_off = LRH_SC_SELECT_OFFSET; 13867 rrd.index1_width = n; 13868 rrd.index2_off = QPN_SELECT_OFFSET; 13869 rrd.index2_width = m + n; 13870 rrd.mask1 = LRH_BTH_MASK; 13871 rrd.value1 = LRH_BTH_VALUE; 13872 rrd.mask2 = LRH_SC_MASK; 13873 rrd.value2 = LRH_SC_VALUE; 13874 13875 /* add rule 0 */ 13876 add_rsm_rule(dd, 0, &rrd); 13877 13878 /* mark RSM map entries as used */ 13879 rmt->used += rmt_entries; 13880 /* map everything else to the mcast/err/vl15 context */ 13881 init_qpmap_table(dd, HFI1_CTRL_CTXT, HFI1_CTRL_CTXT); 13882 dd->qos_shift = n + 1; 13883 return; 13884 bail: 13885 dd->qos_shift = 1; 13886 init_qpmap_table(dd, FIRST_KERNEL_KCTXT, dd->n_krcv_queues - 1); 13887 } 13888 13889 static void init_user_fecn_handling(struct hfi1_devdata *dd, 13890 struct rsm_map_table *rmt) 13891 { 13892 struct rsm_rule_data rrd; 13893 u64 reg; 13894 int i, idx, regoff, regidx; 13895 u8 offset; 13896 13897 /* there needs to be enough room in the map table */ 13898 if (rmt->used + dd->num_user_contexts >= NUM_MAP_ENTRIES) { 13899 dd_dev_err(dd, "User FECN handling disabled - too many user contexts allocated\n"); 13900 return; 13901 } 13902 13903 /* 13904 * RSM will extract the destination context as an index into the 13905 * map table. The destination contexts are a sequential block 13906 * in the range first_user_ctxt...num_rcv_contexts-1 (inclusive). 13907 * Map entries are accessed as offset + extracted value. Adjust 13908 * the added offset so this sequence can be placed anywhere in 13909 * the table - as long as the entries themselves do not wrap. 13910 * There are only enough bits in offset for the table size, so 13911 * start with that to allow for a "negative" offset. 13912 */ 13913 offset = (u8)(NUM_MAP_ENTRIES + (int)rmt->used - 13914 (int)dd->first_user_ctxt); 13915 13916 for (i = dd->first_user_ctxt, idx = rmt->used; 13917 i < dd->num_rcv_contexts; i++, idx++) { 13918 /* replace with identity mapping */ 13919 regoff = (idx % 8) * 8; 13920 regidx = idx / 8; 13921 reg = rmt->map[regidx]; 13922 reg &= ~(RCV_RSM_MAP_TABLE_RCV_CONTEXT_A_MASK << regoff); 13923 reg |= (u64)i << regoff; 13924 rmt->map[regidx] = reg; 13925 } 13926 13927 /* 13928 * For RSM intercept of Expected FECN packets: 13929 * o packet type 0 - expected 13930 * o match on F (bit 95), using select/match 1, and 13931 * o match on SH (bit 133), using select/match 2. 13932 * 13933 * Use index 1 to extract the 8-bit receive context from DestQP 13934 * (start at bit 64). Use that as the RSM map table index. 13935 */ 13936 rrd.offset = offset; 13937 rrd.pkt_type = 0; 13938 rrd.field1_off = 95; 13939 rrd.field2_off = 133; 13940 rrd.index1_off = 64; 13941 rrd.index1_width = 8; 13942 rrd.index2_off = 0; 13943 rrd.index2_width = 0; 13944 rrd.mask1 = 1; 13945 rrd.value1 = 1; 13946 rrd.mask2 = 1; 13947 rrd.value2 = 1; 13948 13949 /* add rule 1 */ 13950 add_rsm_rule(dd, 1, &rrd); 13951 13952 rmt->used += dd->num_user_contexts; 13953 } 13954 13955 static void init_rxe(struct hfi1_devdata *dd) 13956 { 13957 struct rsm_map_table *rmt; 13958 13959 /* enable all receive errors */ 13960 write_csr(dd, RCV_ERR_MASK, ~0ull); 13961 13962 rmt = alloc_rsm_map_table(dd); 13963 /* set up QOS, including the QPN map table */ 13964 init_qos(dd, rmt); 13965 init_user_fecn_handling(dd, rmt); 13966 complete_rsm_map_table(dd, rmt); 13967 kfree(rmt); 13968 13969 /* 13970 * make sure RcvCtrl.RcvWcb <= PCIe Device Control 13971 * Register Max_Payload_Size (PCI_EXP_DEVCTL in Linux PCIe config 13972 * space, PciCfgCap2.MaxPayloadSize in HFI). There is only one 13973 * invalid configuration: RcvCtrl.RcvWcb set to its max of 256 and 13974 * Max_PayLoad_Size set to its minimum of 128. 13975 * 13976 * Presently, RcvCtrl.RcvWcb is not modified from its default of 0 13977 * (64 bytes). Max_Payload_Size is possibly modified upward in 13978 * tune_pcie_caps() which is called after this routine. 13979 */ 13980 } 13981 13982 static void init_other(struct hfi1_devdata *dd) 13983 { 13984 /* enable all CCE errors */ 13985 write_csr(dd, CCE_ERR_MASK, ~0ull); 13986 /* enable *some* Misc errors */ 13987 write_csr(dd, MISC_ERR_MASK, DRIVER_MISC_MASK); 13988 /* enable all DC errors, except LCB */ 13989 write_csr(dd, DCC_ERR_FLG_EN, ~0ull); 13990 write_csr(dd, DC_DC8051_ERR_EN, ~0ull); 13991 } 13992 13993 /* 13994 * Fill out the given AU table using the given CU. A CU is defined in terms 13995 * AUs. The table is a an encoding: given the index, how many AUs does that 13996 * represent? 13997 * 13998 * NOTE: Assumes that the register layout is the same for the 13999 * local and remote tables. 14000 */ 14001 static void assign_cm_au_table(struct hfi1_devdata *dd, u32 cu, 14002 u32 csr0to3, u32 csr4to7) 14003 { 14004 write_csr(dd, csr0to3, 14005 0ull << SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE0_SHIFT | 14006 1ull << SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE1_SHIFT | 14007 2ull * cu << 14008 SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE2_SHIFT | 14009 4ull * cu << 14010 SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE3_SHIFT); 14011 write_csr(dd, csr4to7, 14012 8ull * cu << 14013 SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE4_SHIFT | 14014 16ull * cu << 14015 SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE5_SHIFT | 14016 32ull * cu << 14017 SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE6_SHIFT | 14018 64ull * cu << 14019 SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE7_SHIFT); 14020 } 14021 14022 static void assign_local_cm_au_table(struct hfi1_devdata *dd, u8 vcu) 14023 { 14024 assign_cm_au_table(dd, vcu_to_cu(vcu), SEND_CM_LOCAL_AU_TABLE0_TO3, 14025 SEND_CM_LOCAL_AU_TABLE4_TO7); 14026 } 14027 14028 void assign_remote_cm_au_table(struct hfi1_devdata *dd, u8 vcu) 14029 { 14030 assign_cm_au_table(dd, vcu_to_cu(vcu), SEND_CM_REMOTE_AU_TABLE0_TO3, 14031 SEND_CM_REMOTE_AU_TABLE4_TO7); 14032 } 14033 14034 static void init_txe(struct hfi1_devdata *dd) 14035 { 14036 int i; 14037 14038 /* enable all PIO, SDMA, general, and Egress errors */ 14039 write_csr(dd, SEND_PIO_ERR_MASK, ~0ull); 14040 write_csr(dd, SEND_DMA_ERR_MASK, ~0ull); 14041 write_csr(dd, SEND_ERR_MASK, ~0ull); 14042 write_csr(dd, SEND_EGRESS_ERR_MASK, ~0ull); 14043 14044 /* enable all per-context and per-SDMA engine errors */ 14045 for (i = 0; i < dd->chip_send_contexts; i++) 14046 write_kctxt_csr(dd, i, SEND_CTXT_ERR_MASK, ~0ull); 14047 for (i = 0; i < dd->chip_sdma_engines; i++) 14048 write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_MASK, ~0ull); 14049 14050 /* set the local CU to AU mapping */ 14051 assign_local_cm_au_table(dd, dd->vcu); 14052 14053 /* 14054 * Set reasonable default for Credit Return Timer 14055 * Don't set on Simulator - causes it to choke. 14056 */ 14057 if (dd->icode != ICODE_FUNCTIONAL_SIMULATOR) 14058 write_csr(dd, SEND_CM_TIMER_CTRL, HFI1_CREDIT_RETURN_RATE); 14059 } 14060 14061 int hfi1_set_ctxt_jkey(struct hfi1_devdata *dd, unsigned ctxt, u16 jkey) 14062 { 14063 struct hfi1_ctxtdata *rcd = dd->rcd[ctxt]; 14064 unsigned sctxt; 14065 int ret = 0; 14066 u64 reg; 14067 14068 if (!rcd || !rcd->sc) { 14069 ret = -EINVAL; 14070 goto done; 14071 } 14072 sctxt = rcd->sc->hw_context; 14073 reg = SEND_CTXT_CHECK_JOB_KEY_MASK_SMASK | /* mask is always 1's */ 14074 ((jkey & SEND_CTXT_CHECK_JOB_KEY_VALUE_MASK) << 14075 SEND_CTXT_CHECK_JOB_KEY_VALUE_SHIFT); 14076 /* JOB_KEY_ALLOW_PERMISSIVE is not allowed by default */ 14077 if (HFI1_CAP_KGET_MASK(rcd->flags, ALLOW_PERM_JKEY)) 14078 reg |= SEND_CTXT_CHECK_JOB_KEY_ALLOW_PERMISSIVE_SMASK; 14079 write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_JOB_KEY, reg); 14080 /* 14081 * Enable send-side J_KEY integrity check, unless this is A0 h/w 14082 */ 14083 if (!is_ax(dd)) { 14084 reg = read_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE); 14085 reg |= SEND_CTXT_CHECK_ENABLE_CHECK_JOB_KEY_SMASK; 14086 write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE, reg); 14087 } 14088 14089 /* Enable J_KEY check on receive context. */ 14090 reg = RCV_KEY_CTRL_JOB_KEY_ENABLE_SMASK | 14091 ((jkey & RCV_KEY_CTRL_JOB_KEY_VALUE_MASK) << 14092 RCV_KEY_CTRL_JOB_KEY_VALUE_SHIFT); 14093 write_kctxt_csr(dd, ctxt, RCV_KEY_CTRL, reg); 14094 done: 14095 return ret; 14096 } 14097 14098 int hfi1_clear_ctxt_jkey(struct hfi1_devdata *dd, unsigned ctxt) 14099 { 14100 struct hfi1_ctxtdata *rcd = dd->rcd[ctxt]; 14101 unsigned sctxt; 14102 int ret = 0; 14103 u64 reg; 14104 14105 if (!rcd || !rcd->sc) { 14106 ret = -EINVAL; 14107 goto done; 14108 } 14109 sctxt = rcd->sc->hw_context; 14110 write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_JOB_KEY, 0); 14111 /* 14112 * Disable send-side J_KEY integrity check, unless this is A0 h/w. 14113 * This check would not have been enabled for A0 h/w, see 14114 * set_ctxt_jkey(). 14115 */ 14116 if (!is_ax(dd)) { 14117 reg = read_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE); 14118 reg &= ~SEND_CTXT_CHECK_ENABLE_CHECK_JOB_KEY_SMASK; 14119 write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE, reg); 14120 } 14121 /* Turn off the J_KEY on the receive side */ 14122 write_kctxt_csr(dd, ctxt, RCV_KEY_CTRL, 0); 14123 done: 14124 return ret; 14125 } 14126 14127 int hfi1_set_ctxt_pkey(struct hfi1_devdata *dd, unsigned ctxt, u16 pkey) 14128 { 14129 struct hfi1_ctxtdata *rcd; 14130 unsigned sctxt; 14131 int ret = 0; 14132 u64 reg; 14133 14134 if (ctxt < dd->num_rcv_contexts) { 14135 rcd = dd->rcd[ctxt]; 14136 } else { 14137 ret = -EINVAL; 14138 goto done; 14139 } 14140 if (!rcd || !rcd->sc) { 14141 ret = -EINVAL; 14142 goto done; 14143 } 14144 sctxt = rcd->sc->hw_context; 14145 reg = ((u64)pkey & SEND_CTXT_CHECK_PARTITION_KEY_VALUE_MASK) << 14146 SEND_CTXT_CHECK_PARTITION_KEY_VALUE_SHIFT; 14147 write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_PARTITION_KEY, reg); 14148 reg = read_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE); 14149 reg |= SEND_CTXT_CHECK_ENABLE_CHECK_PARTITION_KEY_SMASK; 14150 reg &= ~SEND_CTXT_CHECK_ENABLE_DISALLOW_KDETH_PACKETS_SMASK; 14151 write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE, reg); 14152 done: 14153 return ret; 14154 } 14155 14156 int hfi1_clear_ctxt_pkey(struct hfi1_devdata *dd, unsigned ctxt) 14157 { 14158 struct hfi1_ctxtdata *rcd; 14159 unsigned sctxt; 14160 int ret = 0; 14161 u64 reg; 14162 14163 if (ctxt < dd->num_rcv_contexts) { 14164 rcd = dd->rcd[ctxt]; 14165 } else { 14166 ret = -EINVAL; 14167 goto done; 14168 } 14169 if (!rcd || !rcd->sc) { 14170 ret = -EINVAL; 14171 goto done; 14172 } 14173 sctxt = rcd->sc->hw_context; 14174 reg = read_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE); 14175 reg &= ~SEND_CTXT_CHECK_ENABLE_CHECK_PARTITION_KEY_SMASK; 14176 write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE, reg); 14177 write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_PARTITION_KEY, 0); 14178 done: 14179 return ret; 14180 } 14181 14182 /* 14183 * Start doing the clean up the the chip. Our clean up happens in multiple 14184 * stages and this is just the first. 14185 */ 14186 void hfi1_start_cleanup(struct hfi1_devdata *dd) 14187 { 14188 aspm_exit(dd); 14189 free_cntrs(dd); 14190 free_rcverr(dd); 14191 clean_up_interrupts(dd); 14192 finish_chip_resources(dd); 14193 } 14194 14195 #define HFI_BASE_GUID(dev) \ 14196 ((dev)->base_guid & ~(1ULL << GUID_HFI_INDEX_SHIFT)) 14197 14198 /* 14199 * Information can be shared between the two HFIs on the same ASIC 14200 * in the same OS. This function finds the peer device and sets 14201 * up a shared structure. 14202 */ 14203 static int init_asic_data(struct hfi1_devdata *dd) 14204 { 14205 unsigned long flags; 14206 struct hfi1_devdata *tmp, *peer = NULL; 14207 struct hfi1_asic_data *asic_data; 14208 int ret = 0; 14209 14210 /* pre-allocate the asic structure in case we are the first device */ 14211 asic_data = kzalloc(sizeof(*dd->asic_data), GFP_KERNEL); 14212 if (!asic_data) 14213 return -ENOMEM; 14214 14215 spin_lock_irqsave(&hfi1_devs_lock, flags); 14216 /* Find our peer device */ 14217 list_for_each_entry(tmp, &hfi1_dev_list, list) { 14218 if ((HFI_BASE_GUID(dd) == HFI_BASE_GUID(tmp)) && 14219 dd->unit != tmp->unit) { 14220 peer = tmp; 14221 break; 14222 } 14223 } 14224 14225 if (peer) { 14226 /* use already allocated structure */ 14227 dd->asic_data = peer->asic_data; 14228 kfree(asic_data); 14229 } else { 14230 dd->asic_data = asic_data; 14231 mutex_init(&dd->asic_data->asic_resource_mutex); 14232 } 14233 dd->asic_data->dds[dd->hfi1_id] = dd; /* self back-pointer */ 14234 spin_unlock_irqrestore(&hfi1_devs_lock, flags); 14235 14236 /* first one through - set up i2c devices */ 14237 if (!peer) 14238 ret = set_up_i2c(dd, dd->asic_data); 14239 14240 return ret; 14241 } 14242 14243 /* 14244 * Set dd->boardname. Use a generic name if a name is not returned from 14245 * EFI variable space. 14246 * 14247 * Return 0 on success, -ENOMEM if space could not be allocated. 14248 */ 14249 static int obtain_boardname(struct hfi1_devdata *dd) 14250 { 14251 /* generic board description */ 14252 const char generic[] = 14253 "Intel Omni-Path Host Fabric Interface Adapter 100 Series"; 14254 unsigned long size; 14255 int ret; 14256 14257 ret = read_hfi1_efi_var(dd, "description", &size, 14258 (void **)&dd->boardname); 14259 if (ret) { 14260 dd_dev_info(dd, "Board description not found\n"); 14261 /* use generic description */ 14262 dd->boardname = kstrdup(generic, GFP_KERNEL); 14263 if (!dd->boardname) 14264 return -ENOMEM; 14265 } 14266 return 0; 14267 } 14268 14269 /* 14270 * Check the interrupt registers to make sure that they are mapped correctly. 14271 * It is intended to help user identify any mismapping by VMM when the driver 14272 * is running in a VM. This function should only be called before interrupt 14273 * is set up properly. 14274 * 14275 * Return 0 on success, -EINVAL on failure. 14276 */ 14277 static int check_int_registers(struct hfi1_devdata *dd) 14278 { 14279 u64 reg; 14280 u64 all_bits = ~(u64)0; 14281 u64 mask; 14282 14283 /* Clear CceIntMask[0] to avoid raising any interrupts */ 14284 mask = read_csr(dd, CCE_INT_MASK); 14285 write_csr(dd, CCE_INT_MASK, 0ull); 14286 reg = read_csr(dd, CCE_INT_MASK); 14287 if (reg) 14288 goto err_exit; 14289 14290 /* Clear all interrupt status bits */ 14291 write_csr(dd, CCE_INT_CLEAR, all_bits); 14292 reg = read_csr(dd, CCE_INT_STATUS); 14293 if (reg) 14294 goto err_exit; 14295 14296 /* Set all interrupt status bits */ 14297 write_csr(dd, CCE_INT_FORCE, all_bits); 14298 reg = read_csr(dd, CCE_INT_STATUS); 14299 if (reg != all_bits) 14300 goto err_exit; 14301 14302 /* Restore the interrupt mask */ 14303 write_csr(dd, CCE_INT_CLEAR, all_bits); 14304 write_csr(dd, CCE_INT_MASK, mask); 14305 14306 return 0; 14307 err_exit: 14308 write_csr(dd, CCE_INT_MASK, mask); 14309 dd_dev_err(dd, "Interrupt registers not properly mapped by VMM\n"); 14310 return -EINVAL; 14311 } 14312 14313 /** 14314 * Allocate and initialize the device structure for the hfi. 14315 * @dev: the pci_dev for hfi1_ib device 14316 * @ent: pci_device_id struct for this dev 14317 * 14318 * Also allocates, initializes, and returns the devdata struct for this 14319 * device instance 14320 * 14321 * This is global, and is called directly at init to set up the 14322 * chip-specific function pointers for later use. 14323 */ 14324 struct hfi1_devdata *hfi1_init_dd(struct pci_dev *pdev, 14325 const struct pci_device_id *ent) 14326 { 14327 struct hfi1_devdata *dd; 14328 struct hfi1_pportdata *ppd; 14329 u64 reg; 14330 int i, ret; 14331 static const char * const inames[] = { /* implementation names */ 14332 "RTL silicon", 14333 "RTL VCS simulation", 14334 "RTL FPGA emulation", 14335 "Functional simulator" 14336 }; 14337 struct pci_dev *parent = pdev->bus->self; 14338 14339 dd = hfi1_alloc_devdata(pdev, NUM_IB_PORTS * 14340 sizeof(struct hfi1_pportdata)); 14341 if (IS_ERR(dd)) 14342 goto bail; 14343 ppd = dd->pport; 14344 for (i = 0; i < dd->num_pports; i++, ppd++) { 14345 int vl; 14346 /* init common fields */ 14347 hfi1_init_pportdata(pdev, ppd, dd, 0, 1); 14348 /* DC supports 4 link widths */ 14349 ppd->link_width_supported = 14350 OPA_LINK_WIDTH_1X | OPA_LINK_WIDTH_2X | 14351 OPA_LINK_WIDTH_3X | OPA_LINK_WIDTH_4X; 14352 ppd->link_width_downgrade_supported = 14353 ppd->link_width_supported; 14354 /* start out enabling only 4X */ 14355 ppd->link_width_enabled = OPA_LINK_WIDTH_4X; 14356 ppd->link_width_downgrade_enabled = 14357 ppd->link_width_downgrade_supported; 14358 /* link width active is 0 when link is down */ 14359 /* link width downgrade active is 0 when link is down */ 14360 14361 if (num_vls < HFI1_MIN_VLS_SUPPORTED || 14362 num_vls > HFI1_MAX_VLS_SUPPORTED) { 14363 hfi1_early_err(&pdev->dev, 14364 "Invalid num_vls %u, using %u VLs\n", 14365 num_vls, HFI1_MAX_VLS_SUPPORTED); 14366 num_vls = HFI1_MAX_VLS_SUPPORTED; 14367 } 14368 ppd->vls_supported = num_vls; 14369 ppd->vls_operational = ppd->vls_supported; 14370 ppd->actual_vls_operational = ppd->vls_supported; 14371 /* Set the default MTU. */ 14372 for (vl = 0; vl < num_vls; vl++) 14373 dd->vld[vl].mtu = hfi1_max_mtu; 14374 dd->vld[15].mtu = MAX_MAD_PACKET; 14375 /* 14376 * Set the initial values to reasonable default, will be set 14377 * for real when link is up. 14378 */ 14379 ppd->lstate = IB_PORT_DOWN; 14380 ppd->overrun_threshold = 0x4; 14381 ppd->phy_error_threshold = 0xf; 14382 ppd->port_crc_mode_enabled = link_crc_mask; 14383 /* initialize supported LTP CRC mode */ 14384 ppd->port_ltp_crc_mode = cap_to_port_ltp(link_crc_mask) << 8; 14385 /* initialize enabled LTP CRC mode */ 14386 ppd->port_ltp_crc_mode |= cap_to_port_ltp(link_crc_mask) << 4; 14387 /* start in offline */ 14388 ppd->host_link_state = HLS_DN_OFFLINE; 14389 init_vl_arb_caches(ppd); 14390 ppd->last_pstate = 0xff; /* invalid value */ 14391 } 14392 14393 dd->link_default = HLS_DN_POLL; 14394 14395 /* 14396 * Do remaining PCIe setup and save PCIe values in dd. 14397 * Any error printing is already done by the init code. 14398 * On return, we have the chip mapped. 14399 */ 14400 ret = hfi1_pcie_ddinit(dd, pdev, ent); 14401 if (ret < 0) 14402 goto bail_free; 14403 14404 /* verify that reads actually work, save revision for reset check */ 14405 dd->revision = read_csr(dd, CCE_REVISION); 14406 if (dd->revision == ~(u64)0) { 14407 dd_dev_err(dd, "cannot read chip CSRs\n"); 14408 ret = -EINVAL; 14409 goto bail_cleanup; 14410 } 14411 dd->majrev = (dd->revision >> CCE_REVISION_CHIP_REV_MAJOR_SHIFT) 14412 & CCE_REVISION_CHIP_REV_MAJOR_MASK; 14413 dd->minrev = (dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT) 14414 & CCE_REVISION_CHIP_REV_MINOR_MASK; 14415 14416 /* 14417 * Check interrupt registers mapping if the driver has no access to 14418 * the upstream component. In this case, it is likely that the driver 14419 * is running in a VM. 14420 */ 14421 if (!parent) { 14422 ret = check_int_registers(dd); 14423 if (ret) 14424 goto bail_cleanup; 14425 } 14426 14427 /* 14428 * obtain the hardware ID - NOT related to unit, which is a 14429 * software enumeration 14430 */ 14431 reg = read_csr(dd, CCE_REVISION2); 14432 dd->hfi1_id = (reg >> CCE_REVISION2_HFI_ID_SHIFT) 14433 & CCE_REVISION2_HFI_ID_MASK; 14434 /* the variable size will remove unwanted bits */ 14435 dd->icode = reg >> CCE_REVISION2_IMPL_CODE_SHIFT; 14436 dd->irev = reg >> CCE_REVISION2_IMPL_REVISION_SHIFT; 14437 dd_dev_info(dd, "Implementation: %s, revision 0x%x\n", 14438 dd->icode < ARRAY_SIZE(inames) ? 14439 inames[dd->icode] : "unknown", (int)dd->irev); 14440 14441 /* speeds the hardware can support */ 14442 dd->pport->link_speed_supported = OPA_LINK_SPEED_25G; 14443 /* speeds allowed to run at */ 14444 dd->pport->link_speed_enabled = dd->pport->link_speed_supported; 14445 /* give a reasonable active value, will be set on link up */ 14446 dd->pport->link_speed_active = OPA_LINK_SPEED_25G; 14447 14448 dd->chip_rcv_contexts = read_csr(dd, RCV_CONTEXTS); 14449 dd->chip_send_contexts = read_csr(dd, SEND_CONTEXTS); 14450 dd->chip_sdma_engines = read_csr(dd, SEND_DMA_ENGINES); 14451 dd->chip_pio_mem_size = read_csr(dd, SEND_PIO_MEM_SIZE); 14452 dd->chip_sdma_mem_size = read_csr(dd, SEND_DMA_MEM_SIZE); 14453 /* fix up link widths for emulation _p */ 14454 ppd = dd->pport; 14455 if (dd->icode == ICODE_FPGA_EMULATION && is_emulator_p(dd)) { 14456 ppd->link_width_supported = 14457 ppd->link_width_enabled = 14458 ppd->link_width_downgrade_supported = 14459 ppd->link_width_downgrade_enabled = 14460 OPA_LINK_WIDTH_1X; 14461 } 14462 /* insure num_vls isn't larger than number of sdma engines */ 14463 if (HFI1_CAP_IS_KSET(SDMA) && num_vls > dd->chip_sdma_engines) { 14464 dd_dev_err(dd, "num_vls %u too large, using %u VLs\n", 14465 num_vls, dd->chip_sdma_engines); 14466 num_vls = dd->chip_sdma_engines; 14467 ppd->vls_supported = dd->chip_sdma_engines; 14468 ppd->vls_operational = ppd->vls_supported; 14469 } 14470 14471 /* 14472 * Convert the ns parameter to the 64 * cclocks used in the CSR. 14473 * Limit the max if larger than the field holds. If timeout is 14474 * non-zero, then the calculated field will be at least 1. 14475 * 14476 * Must be after icode is set up - the cclock rate depends 14477 * on knowing the hardware being used. 14478 */ 14479 dd->rcv_intr_timeout_csr = ns_to_cclock(dd, rcv_intr_timeout) / 64; 14480 if (dd->rcv_intr_timeout_csr > 14481 RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_MASK) 14482 dd->rcv_intr_timeout_csr = 14483 RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_MASK; 14484 else if (dd->rcv_intr_timeout_csr == 0 && rcv_intr_timeout) 14485 dd->rcv_intr_timeout_csr = 1; 14486 14487 /* needs to be done before we look for the peer device */ 14488 read_guid(dd); 14489 14490 /* set up shared ASIC data with peer device */ 14491 ret = init_asic_data(dd); 14492 if (ret) 14493 goto bail_cleanup; 14494 14495 /* obtain chip sizes, reset chip CSRs */ 14496 init_chip(dd); 14497 14498 /* read in the PCIe link speed information */ 14499 ret = pcie_speeds(dd); 14500 if (ret) 14501 goto bail_cleanup; 14502 14503 /* Needs to be called before hfi1_firmware_init */ 14504 get_platform_config(dd); 14505 14506 /* read in firmware */ 14507 ret = hfi1_firmware_init(dd); 14508 if (ret) 14509 goto bail_cleanup; 14510 14511 /* 14512 * In general, the PCIe Gen3 transition must occur after the 14513 * chip has been idled (so it won't initiate any PCIe transactions 14514 * e.g. an interrupt) and before the driver changes any registers 14515 * (the transition will reset the registers). 14516 * 14517 * In particular, place this call after: 14518 * - init_chip() - the chip will not initiate any PCIe transactions 14519 * - pcie_speeds() - reads the current link speed 14520 * - hfi1_firmware_init() - the needed firmware is ready to be 14521 * downloaded 14522 */ 14523 ret = do_pcie_gen3_transition(dd); 14524 if (ret) 14525 goto bail_cleanup; 14526 14527 /* start setting dd values and adjusting CSRs */ 14528 init_early_variables(dd); 14529 14530 parse_platform_config(dd); 14531 14532 ret = obtain_boardname(dd); 14533 if (ret) 14534 goto bail_cleanup; 14535 14536 snprintf(dd->boardversion, BOARD_VERS_MAX, 14537 "ChipABI %u.%u, ChipRev %u.%u, SW Compat %llu\n", 14538 HFI1_CHIP_VERS_MAJ, HFI1_CHIP_VERS_MIN, 14539 (u32)dd->majrev, 14540 (u32)dd->minrev, 14541 (dd->revision >> CCE_REVISION_SW_SHIFT) 14542 & CCE_REVISION_SW_MASK); 14543 14544 ret = set_up_context_variables(dd); 14545 if (ret) 14546 goto bail_cleanup; 14547 14548 /* set initial RXE CSRs */ 14549 init_rxe(dd); 14550 /* set initial TXE CSRs */ 14551 init_txe(dd); 14552 /* set initial non-RXE, non-TXE CSRs */ 14553 init_other(dd); 14554 /* set up KDETH QP prefix in both RX and TX CSRs */ 14555 init_kdeth_qp(dd); 14556 14557 ret = hfi1_dev_affinity_init(dd); 14558 if (ret) 14559 goto bail_cleanup; 14560 14561 /* send contexts must be set up before receive contexts */ 14562 ret = init_send_contexts(dd); 14563 if (ret) 14564 goto bail_cleanup; 14565 14566 ret = hfi1_create_ctxts(dd); 14567 if (ret) 14568 goto bail_cleanup; 14569 14570 dd->rcvhdrsize = DEFAULT_RCVHDRSIZE; 14571 /* 14572 * rcd[0] is guaranteed to be valid by this point. Also, all 14573 * context are using the same value, as per the module parameter. 14574 */ 14575 dd->rhf_offset = dd->rcd[0]->rcvhdrqentsize - sizeof(u64) / sizeof(u32); 14576 14577 ret = init_pervl_scs(dd); 14578 if (ret) 14579 goto bail_cleanup; 14580 14581 /* sdma init */ 14582 for (i = 0; i < dd->num_pports; ++i) { 14583 ret = sdma_init(dd, i); 14584 if (ret) 14585 goto bail_cleanup; 14586 } 14587 14588 /* use contexts created by hfi1_create_ctxts */ 14589 ret = set_up_interrupts(dd); 14590 if (ret) 14591 goto bail_cleanup; 14592 14593 /* set up LCB access - must be after set_up_interrupts() */ 14594 init_lcb_access(dd); 14595 14596 /* 14597 * Serial number is created from the base guid: 14598 * [27:24] = base guid [38:35] 14599 * [23: 0] = base guid [23: 0] 14600 */ 14601 snprintf(dd->serial, SERIAL_MAX, "0x%08llx\n", 14602 (dd->base_guid & 0xFFFFFF) | 14603 ((dd->base_guid >> 11) & 0xF000000)); 14604 14605 dd->oui1 = dd->base_guid >> 56 & 0xFF; 14606 dd->oui2 = dd->base_guid >> 48 & 0xFF; 14607 dd->oui3 = dd->base_guid >> 40 & 0xFF; 14608 14609 ret = load_firmware(dd); /* asymmetric with dispose_firmware() */ 14610 if (ret) 14611 goto bail_clear_intr; 14612 14613 thermal_init(dd); 14614 14615 ret = init_cntrs(dd); 14616 if (ret) 14617 goto bail_clear_intr; 14618 14619 ret = init_rcverr(dd); 14620 if (ret) 14621 goto bail_free_cntrs; 14622 14623 ret = eprom_init(dd); 14624 if (ret) 14625 goto bail_free_rcverr; 14626 14627 goto bail; 14628 14629 bail_free_rcverr: 14630 free_rcverr(dd); 14631 bail_free_cntrs: 14632 free_cntrs(dd); 14633 bail_clear_intr: 14634 clean_up_interrupts(dd); 14635 bail_cleanup: 14636 hfi1_pcie_ddcleanup(dd); 14637 bail_free: 14638 hfi1_free_devdata(dd); 14639 dd = ERR_PTR(ret); 14640 bail: 14641 return dd; 14642 } 14643 14644 static u16 delay_cycles(struct hfi1_pportdata *ppd, u32 desired_egress_rate, 14645 u32 dw_len) 14646 { 14647 u32 delta_cycles; 14648 u32 current_egress_rate = ppd->current_egress_rate; 14649 /* rates here are in units of 10^6 bits/sec */ 14650 14651 if (desired_egress_rate == -1) 14652 return 0; /* shouldn't happen */ 14653 14654 if (desired_egress_rate >= current_egress_rate) 14655 return 0; /* we can't help go faster, only slower */ 14656 14657 delta_cycles = egress_cycles(dw_len * 4, desired_egress_rate) - 14658 egress_cycles(dw_len * 4, current_egress_rate); 14659 14660 return (u16)delta_cycles; 14661 } 14662 14663 /** 14664 * create_pbc - build a pbc for transmission 14665 * @flags: special case flags or-ed in built pbc 14666 * @srate: static rate 14667 * @vl: vl 14668 * @dwlen: dword length (header words + data words + pbc words) 14669 * 14670 * Create a PBC with the given flags, rate, VL, and length. 14671 * 14672 * NOTE: The PBC created will not insert any HCRC - all callers but one are 14673 * for verbs, which does not use this PSM feature. The lone other caller 14674 * is for the diagnostic interface which calls this if the user does not 14675 * supply their own PBC. 14676 */ 14677 u64 create_pbc(struct hfi1_pportdata *ppd, u64 flags, int srate_mbs, u32 vl, 14678 u32 dw_len) 14679 { 14680 u64 pbc, delay = 0; 14681 14682 if (unlikely(srate_mbs)) 14683 delay = delay_cycles(ppd, srate_mbs, dw_len); 14684 14685 pbc = flags 14686 | (delay << PBC_STATIC_RATE_CONTROL_COUNT_SHIFT) 14687 | ((u64)PBC_IHCRC_NONE << PBC_INSERT_HCRC_SHIFT) 14688 | (vl & PBC_VL_MASK) << PBC_VL_SHIFT 14689 | (dw_len & PBC_LENGTH_DWS_MASK) 14690 << PBC_LENGTH_DWS_SHIFT; 14691 14692 return pbc; 14693 } 14694 14695 #define SBUS_THERMAL 0x4f 14696 #define SBUS_THERM_MONITOR_MODE 0x1 14697 14698 #define THERM_FAILURE(dev, ret, reason) \ 14699 dd_dev_err((dd), \ 14700 "Thermal sensor initialization failed: %s (%d)\n", \ 14701 (reason), (ret)) 14702 14703 /* 14704 * Initialize the thermal sensor. 14705 * 14706 * After initialization, enable polling of thermal sensor through 14707 * SBus interface. In order for this to work, the SBus Master 14708 * firmware has to be loaded due to the fact that the HW polling 14709 * logic uses SBus interrupts, which are not supported with 14710 * default firmware. Otherwise, no data will be returned through 14711 * the ASIC_STS_THERM CSR. 14712 */ 14713 static int thermal_init(struct hfi1_devdata *dd) 14714 { 14715 int ret = 0; 14716 14717 if (dd->icode != ICODE_RTL_SILICON || 14718 check_chip_resource(dd, CR_THERM_INIT, NULL)) 14719 return ret; 14720 14721 ret = acquire_chip_resource(dd, CR_SBUS, SBUS_TIMEOUT); 14722 if (ret) { 14723 THERM_FAILURE(dd, ret, "Acquire SBus"); 14724 return ret; 14725 } 14726 14727 dd_dev_info(dd, "Initializing thermal sensor\n"); 14728 /* Disable polling of thermal readings */ 14729 write_csr(dd, ASIC_CFG_THERM_POLL_EN, 0x0); 14730 msleep(100); 14731 /* Thermal Sensor Initialization */ 14732 /* Step 1: Reset the Thermal SBus Receiver */ 14733 ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0, 14734 RESET_SBUS_RECEIVER, 0); 14735 if (ret) { 14736 THERM_FAILURE(dd, ret, "Bus Reset"); 14737 goto done; 14738 } 14739 /* Step 2: Set Reset bit in Thermal block */ 14740 ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0, 14741 WRITE_SBUS_RECEIVER, 0x1); 14742 if (ret) { 14743 THERM_FAILURE(dd, ret, "Therm Block Reset"); 14744 goto done; 14745 } 14746 /* Step 3: Write clock divider value (100MHz -> 2MHz) */ 14747 ret = sbus_request_slow(dd, SBUS_THERMAL, 0x1, 14748 WRITE_SBUS_RECEIVER, 0x32); 14749 if (ret) { 14750 THERM_FAILURE(dd, ret, "Write Clock Div"); 14751 goto done; 14752 } 14753 /* Step 4: Select temperature mode */ 14754 ret = sbus_request_slow(dd, SBUS_THERMAL, 0x3, 14755 WRITE_SBUS_RECEIVER, 14756 SBUS_THERM_MONITOR_MODE); 14757 if (ret) { 14758 THERM_FAILURE(dd, ret, "Write Mode Sel"); 14759 goto done; 14760 } 14761 /* Step 5: De-assert block reset and start conversion */ 14762 ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0, 14763 WRITE_SBUS_RECEIVER, 0x2); 14764 if (ret) { 14765 THERM_FAILURE(dd, ret, "Write Reset Deassert"); 14766 goto done; 14767 } 14768 /* Step 5.1: Wait for first conversion (21.5ms per spec) */ 14769 msleep(22); 14770 14771 /* Enable polling of thermal readings */ 14772 write_csr(dd, ASIC_CFG_THERM_POLL_EN, 0x1); 14773 14774 /* Set initialized flag */ 14775 ret = acquire_chip_resource(dd, CR_THERM_INIT, 0); 14776 if (ret) 14777 THERM_FAILURE(dd, ret, "Unable to set thermal init flag"); 14778 14779 done: 14780 release_chip_resource(dd, CR_SBUS); 14781 return ret; 14782 } 14783 14784 static void handle_temp_err(struct hfi1_devdata *dd) 14785 { 14786 struct hfi1_pportdata *ppd = &dd->pport[0]; 14787 /* 14788 * Thermal Critical Interrupt 14789 * Put the device into forced freeze mode, take link down to 14790 * offline, and put DC into reset. 14791 */ 14792 dd_dev_emerg(dd, 14793 "Critical temperature reached! Forcing device into freeze mode!\n"); 14794 dd->flags |= HFI1_FORCED_FREEZE; 14795 start_freeze_handling(ppd, FREEZE_SELF | FREEZE_ABORT); 14796 /* 14797 * Shut DC down as much and as quickly as possible. 14798 * 14799 * Step 1: Take the link down to OFFLINE. This will cause the 14800 * 8051 to put the Serdes in reset. However, we don't want to 14801 * go through the entire link state machine since we want to 14802 * shutdown ASAP. Furthermore, this is not a graceful shutdown 14803 * but rather an attempt to save the chip. 14804 * Code below is almost the same as quiet_serdes() but avoids 14805 * all the extra work and the sleeps. 14806 */ 14807 ppd->driver_link_ready = 0; 14808 ppd->link_enabled = 0; 14809 set_physical_link_state(dd, (OPA_LINKDOWN_REASON_SMA_DISABLED << 8) | 14810 PLS_OFFLINE); 14811 /* 14812 * Step 2: Shutdown LCB and 8051 14813 * After shutdown, do not restore DC_CFG_RESET value. 14814 */ 14815 dc_shutdown(dd); 14816 } 14817