xref: /openbmc/linux/drivers/infiniband/hw/hfi1/chip.c (revision e3b9f1e8)
1 /*
2  * Copyright(c) 2015 - 2017 Intel Corporation.
3  *
4  * This file is provided under a dual BSD/GPLv2 license.  When using or
5  * redistributing this file, you may do so under either license.
6  *
7  * GPL LICENSE SUMMARY
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of version 2 of the GNU General Public License as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * General Public License for more details.
17  *
18  * BSD LICENSE
19  *
20  * Redistribution and use in source and binary forms, with or without
21  * modification, are permitted provided that the following conditions
22  * are met:
23  *
24  *  - Redistributions of source code must retain the above copyright
25  *    notice, this list of conditions and the following disclaimer.
26  *  - Redistributions in binary form must reproduce the above copyright
27  *    notice, this list of conditions and the following disclaimer in
28  *    the documentation and/or other materials provided with the
29  *    distribution.
30  *  - Neither the name of Intel Corporation nor the names of its
31  *    contributors may be used to endorse or promote products derived
32  *    from this software without specific prior written permission.
33  *
34  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45  *
46  */
47 
48 /*
49  * This file contains all of the code that is specific to the HFI chip
50  */
51 
52 #include <linux/pci.h>
53 #include <linux/delay.h>
54 #include <linux/interrupt.h>
55 #include <linux/module.h>
56 
57 #include "hfi.h"
58 #include "trace.h"
59 #include "mad.h"
60 #include "pio.h"
61 #include "sdma.h"
62 #include "eprom.h"
63 #include "efivar.h"
64 #include "platform.h"
65 #include "aspm.h"
66 #include "affinity.h"
67 #include "debugfs.h"
68 
69 #define NUM_IB_PORTS 1
70 
71 uint kdeth_qp;
72 module_param_named(kdeth_qp, kdeth_qp, uint, S_IRUGO);
73 MODULE_PARM_DESC(kdeth_qp, "Set the KDETH queue pair prefix");
74 
75 uint num_vls = HFI1_MAX_VLS_SUPPORTED;
76 module_param(num_vls, uint, S_IRUGO);
77 MODULE_PARM_DESC(num_vls, "Set number of Virtual Lanes to use (1-8)");
78 
79 /*
80  * Default time to aggregate two 10K packets from the idle state
81  * (timer not running). The timer starts at the end of the first packet,
82  * so only the time for one 10K packet and header plus a bit extra is needed.
83  * 10 * 1024 + 64 header byte = 10304 byte
84  * 10304 byte / 12.5 GB/s = 824.32ns
85  */
86 uint rcv_intr_timeout = (824 + 16); /* 16 is for coalescing interrupt */
87 module_param(rcv_intr_timeout, uint, S_IRUGO);
88 MODULE_PARM_DESC(rcv_intr_timeout, "Receive interrupt mitigation timeout in ns");
89 
90 uint rcv_intr_count = 16; /* same as qib */
91 module_param(rcv_intr_count, uint, S_IRUGO);
92 MODULE_PARM_DESC(rcv_intr_count, "Receive interrupt mitigation count");
93 
94 ushort link_crc_mask = SUPPORTED_CRCS;
95 module_param(link_crc_mask, ushort, S_IRUGO);
96 MODULE_PARM_DESC(link_crc_mask, "CRCs to use on the link");
97 
98 uint loopback;
99 module_param_named(loopback, loopback, uint, S_IRUGO);
100 MODULE_PARM_DESC(loopback, "Put into loopback mode (1 = serdes, 3 = external cable");
101 
102 /* Other driver tunables */
103 uint rcv_intr_dynamic = 1; /* enable dynamic mode for rcv int mitigation*/
104 static ushort crc_14b_sideband = 1;
105 static uint use_flr = 1;
106 uint quick_linkup; /* skip LNI */
107 
108 struct flag_table {
109 	u64 flag;	/* the flag */
110 	char *str;	/* description string */
111 	u16 extra;	/* extra information */
112 	u16 unused0;
113 	u32 unused1;
114 };
115 
116 /* str must be a string constant */
117 #define FLAG_ENTRY(str, extra, flag) {flag, str, extra}
118 #define FLAG_ENTRY0(str, flag) {flag, str, 0}
119 
120 /* Send Error Consequences */
121 #define SEC_WRITE_DROPPED	0x1
122 #define SEC_PACKET_DROPPED	0x2
123 #define SEC_SC_HALTED		0x4	/* per-context only */
124 #define SEC_SPC_FREEZE		0x8	/* per-HFI only */
125 
126 #define DEFAULT_KRCVQS		  2
127 #define MIN_KERNEL_KCTXTS         2
128 #define FIRST_KERNEL_KCTXT        1
129 
130 /*
131  * RSM instance allocation
132  *   0 - Verbs
133  *   1 - User Fecn Handling
134  *   2 - Vnic
135  */
136 #define RSM_INS_VERBS             0
137 #define RSM_INS_FECN              1
138 #define RSM_INS_VNIC              2
139 
140 /* Bit offset into the GUID which carries HFI id information */
141 #define GUID_HFI_INDEX_SHIFT     39
142 
143 /* extract the emulation revision */
144 #define emulator_rev(dd) ((dd)->irev >> 8)
145 /* parallel and serial emulation versions are 3 and 4 respectively */
146 #define is_emulator_p(dd) ((((dd)->irev) & 0xf) == 3)
147 #define is_emulator_s(dd) ((((dd)->irev) & 0xf) == 4)
148 
149 /* RSM fields for Verbs */
150 /* packet type */
151 #define IB_PACKET_TYPE         2ull
152 #define QW_SHIFT               6ull
153 /* QPN[7..1] */
154 #define QPN_WIDTH              7ull
155 
156 /* LRH.BTH: QW 0, OFFSET 48 - for match */
157 #define LRH_BTH_QW             0ull
158 #define LRH_BTH_BIT_OFFSET     48ull
159 #define LRH_BTH_OFFSET(off)    ((LRH_BTH_QW << QW_SHIFT) | (off))
160 #define LRH_BTH_MATCH_OFFSET   LRH_BTH_OFFSET(LRH_BTH_BIT_OFFSET)
161 #define LRH_BTH_SELECT
162 #define LRH_BTH_MASK           3ull
163 #define LRH_BTH_VALUE          2ull
164 
165 /* LRH.SC[3..0] QW 0, OFFSET 56 - for match */
166 #define LRH_SC_QW              0ull
167 #define LRH_SC_BIT_OFFSET      56ull
168 #define LRH_SC_OFFSET(off)     ((LRH_SC_QW << QW_SHIFT) | (off))
169 #define LRH_SC_MATCH_OFFSET    LRH_SC_OFFSET(LRH_SC_BIT_OFFSET)
170 #define LRH_SC_MASK            128ull
171 #define LRH_SC_VALUE           0ull
172 
173 /* SC[n..0] QW 0, OFFSET 60 - for select */
174 #define LRH_SC_SELECT_OFFSET  ((LRH_SC_QW << QW_SHIFT) | (60ull))
175 
176 /* QPN[m+n:1] QW 1, OFFSET 1 */
177 #define QPN_SELECT_OFFSET      ((1ull << QW_SHIFT) | (1ull))
178 
179 /* RSM fields for Vnic */
180 /* L2_TYPE: QW 0, OFFSET 61 - for match */
181 #define L2_TYPE_QW             0ull
182 #define L2_TYPE_BIT_OFFSET     61ull
183 #define L2_TYPE_OFFSET(off)    ((L2_TYPE_QW << QW_SHIFT) | (off))
184 #define L2_TYPE_MATCH_OFFSET   L2_TYPE_OFFSET(L2_TYPE_BIT_OFFSET)
185 #define L2_TYPE_MASK           3ull
186 #define L2_16B_VALUE           2ull
187 
188 /* L4_TYPE QW 1, OFFSET 0 - for match */
189 #define L4_TYPE_QW              1ull
190 #define L4_TYPE_BIT_OFFSET      0ull
191 #define L4_TYPE_OFFSET(off)     ((L4_TYPE_QW << QW_SHIFT) | (off))
192 #define L4_TYPE_MATCH_OFFSET    L4_TYPE_OFFSET(L4_TYPE_BIT_OFFSET)
193 #define L4_16B_TYPE_MASK        0xFFull
194 #define L4_16B_ETH_VALUE        0x78ull
195 
196 /* 16B VESWID - for select */
197 #define L4_16B_HDR_VESWID_OFFSET  ((2 << QW_SHIFT) | (16ull))
198 /* 16B ENTROPY - for select */
199 #define L2_16B_ENTROPY_OFFSET     ((1 << QW_SHIFT) | (32ull))
200 
201 /* defines to build power on SC2VL table */
202 #define SC2VL_VAL( \
203 	num, \
204 	sc0, sc0val, \
205 	sc1, sc1val, \
206 	sc2, sc2val, \
207 	sc3, sc3val, \
208 	sc4, sc4val, \
209 	sc5, sc5val, \
210 	sc6, sc6val, \
211 	sc7, sc7val) \
212 ( \
213 	((u64)(sc0val) << SEND_SC2VLT##num##_SC##sc0##_SHIFT) | \
214 	((u64)(sc1val) << SEND_SC2VLT##num##_SC##sc1##_SHIFT) | \
215 	((u64)(sc2val) << SEND_SC2VLT##num##_SC##sc2##_SHIFT) | \
216 	((u64)(sc3val) << SEND_SC2VLT##num##_SC##sc3##_SHIFT) | \
217 	((u64)(sc4val) << SEND_SC2VLT##num##_SC##sc4##_SHIFT) | \
218 	((u64)(sc5val) << SEND_SC2VLT##num##_SC##sc5##_SHIFT) | \
219 	((u64)(sc6val) << SEND_SC2VLT##num##_SC##sc6##_SHIFT) | \
220 	((u64)(sc7val) << SEND_SC2VLT##num##_SC##sc7##_SHIFT)   \
221 )
222 
223 #define DC_SC_VL_VAL( \
224 	range, \
225 	e0, e0val, \
226 	e1, e1val, \
227 	e2, e2val, \
228 	e3, e3val, \
229 	e4, e4val, \
230 	e5, e5val, \
231 	e6, e6val, \
232 	e7, e7val, \
233 	e8, e8val, \
234 	e9, e9val, \
235 	e10, e10val, \
236 	e11, e11val, \
237 	e12, e12val, \
238 	e13, e13val, \
239 	e14, e14val, \
240 	e15, e15val) \
241 ( \
242 	((u64)(e0val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e0##_SHIFT) | \
243 	((u64)(e1val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e1##_SHIFT) | \
244 	((u64)(e2val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e2##_SHIFT) | \
245 	((u64)(e3val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e3##_SHIFT) | \
246 	((u64)(e4val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e4##_SHIFT) | \
247 	((u64)(e5val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e5##_SHIFT) | \
248 	((u64)(e6val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e6##_SHIFT) | \
249 	((u64)(e7val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e7##_SHIFT) | \
250 	((u64)(e8val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e8##_SHIFT) | \
251 	((u64)(e9val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e9##_SHIFT) | \
252 	((u64)(e10val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e10##_SHIFT) | \
253 	((u64)(e11val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e11##_SHIFT) | \
254 	((u64)(e12val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e12##_SHIFT) | \
255 	((u64)(e13val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e13##_SHIFT) | \
256 	((u64)(e14val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e14##_SHIFT) | \
257 	((u64)(e15val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e15##_SHIFT) \
258 )
259 
260 /* all CceStatus sub-block freeze bits */
261 #define ALL_FROZE (CCE_STATUS_SDMA_FROZE_SMASK \
262 			| CCE_STATUS_RXE_FROZE_SMASK \
263 			| CCE_STATUS_TXE_FROZE_SMASK \
264 			| CCE_STATUS_TXE_PIO_FROZE_SMASK)
265 /* all CceStatus sub-block TXE pause bits */
266 #define ALL_TXE_PAUSE (CCE_STATUS_TXE_PIO_PAUSED_SMASK \
267 			| CCE_STATUS_TXE_PAUSED_SMASK \
268 			| CCE_STATUS_SDMA_PAUSED_SMASK)
269 /* all CceStatus sub-block RXE pause bits */
270 #define ALL_RXE_PAUSE CCE_STATUS_RXE_PAUSED_SMASK
271 
272 #define CNTR_MAX 0xFFFFFFFFFFFFFFFFULL
273 #define CNTR_32BIT_MAX 0x00000000FFFFFFFF
274 
275 /*
276  * CCE Error flags.
277  */
278 static struct flag_table cce_err_status_flags[] = {
279 /* 0*/	FLAG_ENTRY0("CceCsrParityErr",
280 		CCE_ERR_STATUS_CCE_CSR_PARITY_ERR_SMASK),
281 /* 1*/	FLAG_ENTRY0("CceCsrReadBadAddrErr",
282 		CCE_ERR_STATUS_CCE_CSR_READ_BAD_ADDR_ERR_SMASK),
283 /* 2*/	FLAG_ENTRY0("CceCsrWriteBadAddrErr",
284 		CCE_ERR_STATUS_CCE_CSR_WRITE_BAD_ADDR_ERR_SMASK),
285 /* 3*/	FLAG_ENTRY0("CceTrgtAsyncFifoParityErr",
286 		CCE_ERR_STATUS_CCE_TRGT_ASYNC_FIFO_PARITY_ERR_SMASK),
287 /* 4*/	FLAG_ENTRY0("CceTrgtAccessErr",
288 		CCE_ERR_STATUS_CCE_TRGT_ACCESS_ERR_SMASK),
289 /* 5*/	FLAG_ENTRY0("CceRspdDataParityErr",
290 		CCE_ERR_STATUS_CCE_RSPD_DATA_PARITY_ERR_SMASK),
291 /* 6*/	FLAG_ENTRY0("CceCli0AsyncFifoParityErr",
292 		CCE_ERR_STATUS_CCE_CLI0_ASYNC_FIFO_PARITY_ERR_SMASK),
293 /* 7*/	FLAG_ENTRY0("CceCsrCfgBusParityErr",
294 		CCE_ERR_STATUS_CCE_CSR_CFG_BUS_PARITY_ERR_SMASK),
295 /* 8*/	FLAG_ENTRY0("CceCli2AsyncFifoParityErr",
296 		CCE_ERR_STATUS_CCE_CLI2_ASYNC_FIFO_PARITY_ERR_SMASK),
297 /* 9*/	FLAG_ENTRY0("CceCli1AsyncFifoPioCrdtParityErr",
298 	    CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_PIO_CRDT_PARITY_ERR_SMASK),
299 /*10*/	FLAG_ENTRY0("CceCli1AsyncFifoPioCrdtParityErr",
300 	    CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_SDMA_HD_PARITY_ERR_SMASK),
301 /*11*/	FLAG_ENTRY0("CceCli1AsyncFifoRxdmaParityError",
302 	    CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_RXDMA_PARITY_ERROR_SMASK),
303 /*12*/	FLAG_ENTRY0("CceCli1AsyncFifoDbgParityError",
304 		CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_DBG_PARITY_ERROR_SMASK),
305 /*13*/	FLAG_ENTRY0("PcicRetryMemCorErr",
306 		CCE_ERR_STATUS_PCIC_RETRY_MEM_COR_ERR_SMASK),
307 /*14*/	FLAG_ENTRY0("PcicRetryMemCorErr",
308 		CCE_ERR_STATUS_PCIC_RETRY_SOT_MEM_COR_ERR_SMASK),
309 /*15*/	FLAG_ENTRY0("PcicPostHdQCorErr",
310 		CCE_ERR_STATUS_PCIC_POST_HD_QCOR_ERR_SMASK),
311 /*16*/	FLAG_ENTRY0("PcicPostHdQCorErr",
312 		CCE_ERR_STATUS_PCIC_POST_DAT_QCOR_ERR_SMASK),
313 /*17*/	FLAG_ENTRY0("PcicPostHdQCorErr",
314 		CCE_ERR_STATUS_PCIC_CPL_HD_QCOR_ERR_SMASK),
315 /*18*/	FLAG_ENTRY0("PcicCplDatQCorErr",
316 		CCE_ERR_STATUS_PCIC_CPL_DAT_QCOR_ERR_SMASK),
317 /*19*/	FLAG_ENTRY0("PcicNPostHQParityErr",
318 		CCE_ERR_STATUS_PCIC_NPOST_HQ_PARITY_ERR_SMASK),
319 /*20*/	FLAG_ENTRY0("PcicNPostDatQParityErr",
320 		CCE_ERR_STATUS_PCIC_NPOST_DAT_QPARITY_ERR_SMASK),
321 /*21*/	FLAG_ENTRY0("PcicRetryMemUncErr",
322 		CCE_ERR_STATUS_PCIC_RETRY_MEM_UNC_ERR_SMASK),
323 /*22*/	FLAG_ENTRY0("PcicRetrySotMemUncErr",
324 		CCE_ERR_STATUS_PCIC_RETRY_SOT_MEM_UNC_ERR_SMASK),
325 /*23*/	FLAG_ENTRY0("PcicPostHdQUncErr",
326 		CCE_ERR_STATUS_PCIC_POST_HD_QUNC_ERR_SMASK),
327 /*24*/	FLAG_ENTRY0("PcicPostDatQUncErr",
328 		CCE_ERR_STATUS_PCIC_POST_DAT_QUNC_ERR_SMASK),
329 /*25*/	FLAG_ENTRY0("PcicCplHdQUncErr",
330 		CCE_ERR_STATUS_PCIC_CPL_HD_QUNC_ERR_SMASK),
331 /*26*/	FLAG_ENTRY0("PcicCplDatQUncErr",
332 		CCE_ERR_STATUS_PCIC_CPL_DAT_QUNC_ERR_SMASK),
333 /*27*/	FLAG_ENTRY0("PcicTransmitFrontParityErr",
334 		CCE_ERR_STATUS_PCIC_TRANSMIT_FRONT_PARITY_ERR_SMASK),
335 /*28*/	FLAG_ENTRY0("PcicTransmitBackParityErr",
336 		CCE_ERR_STATUS_PCIC_TRANSMIT_BACK_PARITY_ERR_SMASK),
337 /*29*/	FLAG_ENTRY0("PcicReceiveParityErr",
338 		CCE_ERR_STATUS_PCIC_RECEIVE_PARITY_ERR_SMASK),
339 /*30*/	FLAG_ENTRY0("CceTrgtCplTimeoutErr",
340 		CCE_ERR_STATUS_CCE_TRGT_CPL_TIMEOUT_ERR_SMASK),
341 /*31*/	FLAG_ENTRY0("LATriggered",
342 		CCE_ERR_STATUS_LA_TRIGGERED_SMASK),
343 /*32*/	FLAG_ENTRY0("CceSegReadBadAddrErr",
344 		CCE_ERR_STATUS_CCE_SEG_READ_BAD_ADDR_ERR_SMASK),
345 /*33*/	FLAG_ENTRY0("CceSegWriteBadAddrErr",
346 		CCE_ERR_STATUS_CCE_SEG_WRITE_BAD_ADDR_ERR_SMASK),
347 /*34*/	FLAG_ENTRY0("CceRcplAsyncFifoParityErr",
348 		CCE_ERR_STATUS_CCE_RCPL_ASYNC_FIFO_PARITY_ERR_SMASK),
349 /*35*/	FLAG_ENTRY0("CceRxdmaConvFifoParityErr",
350 		CCE_ERR_STATUS_CCE_RXDMA_CONV_FIFO_PARITY_ERR_SMASK),
351 /*36*/	FLAG_ENTRY0("CceMsixTableCorErr",
352 		CCE_ERR_STATUS_CCE_MSIX_TABLE_COR_ERR_SMASK),
353 /*37*/	FLAG_ENTRY0("CceMsixTableUncErr",
354 		CCE_ERR_STATUS_CCE_MSIX_TABLE_UNC_ERR_SMASK),
355 /*38*/	FLAG_ENTRY0("CceIntMapCorErr",
356 		CCE_ERR_STATUS_CCE_INT_MAP_COR_ERR_SMASK),
357 /*39*/	FLAG_ENTRY0("CceIntMapUncErr",
358 		CCE_ERR_STATUS_CCE_INT_MAP_UNC_ERR_SMASK),
359 /*40*/	FLAG_ENTRY0("CceMsixCsrParityErr",
360 		CCE_ERR_STATUS_CCE_MSIX_CSR_PARITY_ERR_SMASK),
361 /*41-63 reserved*/
362 };
363 
364 /*
365  * Misc Error flags
366  */
367 #define MES(text) MISC_ERR_STATUS_MISC_##text##_ERR_SMASK
368 static struct flag_table misc_err_status_flags[] = {
369 /* 0*/	FLAG_ENTRY0("CSR_PARITY", MES(CSR_PARITY)),
370 /* 1*/	FLAG_ENTRY0("CSR_READ_BAD_ADDR", MES(CSR_READ_BAD_ADDR)),
371 /* 2*/	FLAG_ENTRY0("CSR_WRITE_BAD_ADDR", MES(CSR_WRITE_BAD_ADDR)),
372 /* 3*/	FLAG_ENTRY0("SBUS_WRITE_FAILED", MES(SBUS_WRITE_FAILED)),
373 /* 4*/	FLAG_ENTRY0("KEY_MISMATCH", MES(KEY_MISMATCH)),
374 /* 5*/	FLAG_ENTRY0("FW_AUTH_FAILED", MES(FW_AUTH_FAILED)),
375 /* 6*/	FLAG_ENTRY0("EFUSE_CSR_PARITY", MES(EFUSE_CSR_PARITY)),
376 /* 7*/	FLAG_ENTRY0("EFUSE_READ_BAD_ADDR", MES(EFUSE_READ_BAD_ADDR)),
377 /* 8*/	FLAG_ENTRY0("EFUSE_WRITE", MES(EFUSE_WRITE)),
378 /* 9*/	FLAG_ENTRY0("EFUSE_DONE_PARITY", MES(EFUSE_DONE_PARITY)),
379 /*10*/	FLAG_ENTRY0("INVALID_EEP_CMD", MES(INVALID_EEP_CMD)),
380 /*11*/	FLAG_ENTRY0("MBIST_FAIL", MES(MBIST_FAIL)),
381 /*12*/	FLAG_ENTRY0("PLL_LOCK_FAIL", MES(PLL_LOCK_FAIL))
382 };
383 
384 /*
385  * TXE PIO Error flags and consequences
386  */
387 static struct flag_table pio_err_status_flags[] = {
388 /* 0*/	FLAG_ENTRY("PioWriteBadCtxt",
389 	SEC_WRITE_DROPPED,
390 	SEND_PIO_ERR_STATUS_PIO_WRITE_BAD_CTXT_ERR_SMASK),
391 /* 1*/	FLAG_ENTRY("PioWriteAddrParity",
392 	SEC_SPC_FREEZE,
393 	SEND_PIO_ERR_STATUS_PIO_WRITE_ADDR_PARITY_ERR_SMASK),
394 /* 2*/	FLAG_ENTRY("PioCsrParity",
395 	SEC_SPC_FREEZE,
396 	SEND_PIO_ERR_STATUS_PIO_CSR_PARITY_ERR_SMASK),
397 /* 3*/	FLAG_ENTRY("PioSbMemFifo0",
398 	SEC_SPC_FREEZE,
399 	SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO0_ERR_SMASK),
400 /* 4*/	FLAG_ENTRY("PioSbMemFifo1",
401 	SEC_SPC_FREEZE,
402 	SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO1_ERR_SMASK),
403 /* 5*/	FLAG_ENTRY("PioPccFifoParity",
404 	SEC_SPC_FREEZE,
405 	SEND_PIO_ERR_STATUS_PIO_PCC_FIFO_PARITY_ERR_SMASK),
406 /* 6*/	FLAG_ENTRY("PioPecFifoParity",
407 	SEC_SPC_FREEZE,
408 	SEND_PIO_ERR_STATUS_PIO_PEC_FIFO_PARITY_ERR_SMASK),
409 /* 7*/	FLAG_ENTRY("PioSbrdctlCrrelParity",
410 	SEC_SPC_FREEZE,
411 	SEND_PIO_ERR_STATUS_PIO_SBRDCTL_CRREL_PARITY_ERR_SMASK),
412 /* 8*/	FLAG_ENTRY("PioSbrdctrlCrrelFifoParity",
413 	SEC_SPC_FREEZE,
414 	SEND_PIO_ERR_STATUS_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR_SMASK),
415 /* 9*/	FLAG_ENTRY("PioPktEvictFifoParityErr",
416 	SEC_SPC_FREEZE,
417 	SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_FIFO_PARITY_ERR_SMASK),
418 /*10*/	FLAG_ENTRY("PioSmPktResetParity",
419 	SEC_SPC_FREEZE,
420 	SEND_PIO_ERR_STATUS_PIO_SM_PKT_RESET_PARITY_ERR_SMASK),
421 /*11*/	FLAG_ENTRY("PioVlLenMemBank0Unc",
422 	SEC_SPC_FREEZE,
423 	SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_UNC_ERR_SMASK),
424 /*12*/	FLAG_ENTRY("PioVlLenMemBank1Unc",
425 	SEC_SPC_FREEZE,
426 	SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_UNC_ERR_SMASK),
427 /*13*/	FLAG_ENTRY("PioVlLenMemBank0Cor",
428 	0,
429 	SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_COR_ERR_SMASK),
430 /*14*/	FLAG_ENTRY("PioVlLenMemBank1Cor",
431 	0,
432 	SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_COR_ERR_SMASK),
433 /*15*/	FLAG_ENTRY("PioCreditRetFifoParity",
434 	SEC_SPC_FREEZE,
435 	SEND_PIO_ERR_STATUS_PIO_CREDIT_RET_FIFO_PARITY_ERR_SMASK),
436 /*16*/	FLAG_ENTRY("PioPpmcPblFifo",
437 	SEC_SPC_FREEZE,
438 	SEND_PIO_ERR_STATUS_PIO_PPMC_PBL_FIFO_ERR_SMASK),
439 /*17*/	FLAG_ENTRY("PioInitSmIn",
440 	0,
441 	SEND_PIO_ERR_STATUS_PIO_INIT_SM_IN_ERR_SMASK),
442 /*18*/	FLAG_ENTRY("PioPktEvictSmOrArbSm",
443 	SEC_SPC_FREEZE,
444 	SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_SM_OR_ARB_SM_ERR_SMASK),
445 /*19*/	FLAG_ENTRY("PioHostAddrMemUnc",
446 	SEC_SPC_FREEZE,
447 	SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_UNC_ERR_SMASK),
448 /*20*/	FLAG_ENTRY("PioHostAddrMemCor",
449 	0,
450 	SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_COR_ERR_SMASK),
451 /*21*/	FLAG_ENTRY("PioWriteDataParity",
452 	SEC_SPC_FREEZE,
453 	SEND_PIO_ERR_STATUS_PIO_WRITE_DATA_PARITY_ERR_SMASK),
454 /*22*/	FLAG_ENTRY("PioStateMachine",
455 	SEC_SPC_FREEZE,
456 	SEND_PIO_ERR_STATUS_PIO_STATE_MACHINE_ERR_SMASK),
457 /*23*/	FLAG_ENTRY("PioWriteQwValidParity",
458 	SEC_WRITE_DROPPED | SEC_SPC_FREEZE,
459 	SEND_PIO_ERR_STATUS_PIO_WRITE_QW_VALID_PARITY_ERR_SMASK),
460 /*24*/	FLAG_ENTRY("PioBlockQwCountParity",
461 	SEC_WRITE_DROPPED | SEC_SPC_FREEZE,
462 	SEND_PIO_ERR_STATUS_PIO_BLOCK_QW_COUNT_PARITY_ERR_SMASK),
463 /*25*/	FLAG_ENTRY("PioVlfVlLenParity",
464 	SEC_SPC_FREEZE,
465 	SEND_PIO_ERR_STATUS_PIO_VLF_VL_LEN_PARITY_ERR_SMASK),
466 /*26*/	FLAG_ENTRY("PioVlfSopParity",
467 	SEC_SPC_FREEZE,
468 	SEND_PIO_ERR_STATUS_PIO_VLF_SOP_PARITY_ERR_SMASK),
469 /*27*/	FLAG_ENTRY("PioVlFifoParity",
470 	SEC_SPC_FREEZE,
471 	SEND_PIO_ERR_STATUS_PIO_VL_FIFO_PARITY_ERR_SMASK),
472 /*28*/	FLAG_ENTRY("PioPpmcBqcMemParity",
473 	SEC_SPC_FREEZE,
474 	SEND_PIO_ERR_STATUS_PIO_PPMC_BQC_MEM_PARITY_ERR_SMASK),
475 /*29*/	FLAG_ENTRY("PioPpmcSopLen",
476 	SEC_SPC_FREEZE,
477 	SEND_PIO_ERR_STATUS_PIO_PPMC_SOP_LEN_ERR_SMASK),
478 /*30-31 reserved*/
479 /*32*/	FLAG_ENTRY("PioCurrentFreeCntParity",
480 	SEC_SPC_FREEZE,
481 	SEND_PIO_ERR_STATUS_PIO_CURRENT_FREE_CNT_PARITY_ERR_SMASK),
482 /*33*/	FLAG_ENTRY("PioLastReturnedCntParity",
483 	SEC_SPC_FREEZE,
484 	SEND_PIO_ERR_STATUS_PIO_LAST_RETURNED_CNT_PARITY_ERR_SMASK),
485 /*34*/	FLAG_ENTRY("PioPccSopHeadParity",
486 	SEC_SPC_FREEZE,
487 	SEND_PIO_ERR_STATUS_PIO_PCC_SOP_HEAD_PARITY_ERR_SMASK),
488 /*35*/	FLAG_ENTRY("PioPecSopHeadParityErr",
489 	SEC_SPC_FREEZE,
490 	SEND_PIO_ERR_STATUS_PIO_PEC_SOP_HEAD_PARITY_ERR_SMASK),
491 /*36-63 reserved*/
492 };
493 
494 /* TXE PIO errors that cause an SPC freeze */
495 #define ALL_PIO_FREEZE_ERR \
496 	(SEND_PIO_ERR_STATUS_PIO_WRITE_ADDR_PARITY_ERR_SMASK \
497 	| SEND_PIO_ERR_STATUS_PIO_CSR_PARITY_ERR_SMASK \
498 	| SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO0_ERR_SMASK \
499 	| SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO1_ERR_SMASK \
500 	| SEND_PIO_ERR_STATUS_PIO_PCC_FIFO_PARITY_ERR_SMASK \
501 	| SEND_PIO_ERR_STATUS_PIO_PEC_FIFO_PARITY_ERR_SMASK \
502 	| SEND_PIO_ERR_STATUS_PIO_SBRDCTL_CRREL_PARITY_ERR_SMASK \
503 	| SEND_PIO_ERR_STATUS_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR_SMASK \
504 	| SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_FIFO_PARITY_ERR_SMASK \
505 	| SEND_PIO_ERR_STATUS_PIO_SM_PKT_RESET_PARITY_ERR_SMASK \
506 	| SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_UNC_ERR_SMASK \
507 	| SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_UNC_ERR_SMASK \
508 	| SEND_PIO_ERR_STATUS_PIO_CREDIT_RET_FIFO_PARITY_ERR_SMASK \
509 	| SEND_PIO_ERR_STATUS_PIO_PPMC_PBL_FIFO_ERR_SMASK \
510 	| SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_SM_OR_ARB_SM_ERR_SMASK \
511 	| SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_UNC_ERR_SMASK \
512 	| SEND_PIO_ERR_STATUS_PIO_WRITE_DATA_PARITY_ERR_SMASK \
513 	| SEND_PIO_ERR_STATUS_PIO_STATE_MACHINE_ERR_SMASK \
514 	| SEND_PIO_ERR_STATUS_PIO_WRITE_QW_VALID_PARITY_ERR_SMASK \
515 	| SEND_PIO_ERR_STATUS_PIO_BLOCK_QW_COUNT_PARITY_ERR_SMASK \
516 	| SEND_PIO_ERR_STATUS_PIO_VLF_VL_LEN_PARITY_ERR_SMASK \
517 	| SEND_PIO_ERR_STATUS_PIO_VLF_SOP_PARITY_ERR_SMASK \
518 	| SEND_PIO_ERR_STATUS_PIO_VL_FIFO_PARITY_ERR_SMASK \
519 	| SEND_PIO_ERR_STATUS_PIO_PPMC_BQC_MEM_PARITY_ERR_SMASK \
520 	| SEND_PIO_ERR_STATUS_PIO_PPMC_SOP_LEN_ERR_SMASK \
521 	| SEND_PIO_ERR_STATUS_PIO_CURRENT_FREE_CNT_PARITY_ERR_SMASK \
522 	| SEND_PIO_ERR_STATUS_PIO_LAST_RETURNED_CNT_PARITY_ERR_SMASK \
523 	| SEND_PIO_ERR_STATUS_PIO_PCC_SOP_HEAD_PARITY_ERR_SMASK \
524 	| SEND_PIO_ERR_STATUS_PIO_PEC_SOP_HEAD_PARITY_ERR_SMASK)
525 
526 /*
527  * TXE SDMA Error flags
528  */
529 static struct flag_table sdma_err_status_flags[] = {
530 /* 0*/	FLAG_ENTRY0("SDmaRpyTagErr",
531 		SEND_DMA_ERR_STATUS_SDMA_RPY_TAG_ERR_SMASK),
532 /* 1*/	FLAG_ENTRY0("SDmaCsrParityErr",
533 		SEND_DMA_ERR_STATUS_SDMA_CSR_PARITY_ERR_SMASK),
534 /* 2*/	FLAG_ENTRY0("SDmaPcieReqTrackingUncErr",
535 		SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_UNC_ERR_SMASK),
536 /* 3*/	FLAG_ENTRY0("SDmaPcieReqTrackingCorErr",
537 		SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_COR_ERR_SMASK),
538 /*04-63 reserved*/
539 };
540 
541 /* TXE SDMA errors that cause an SPC freeze */
542 #define ALL_SDMA_FREEZE_ERR  \
543 		(SEND_DMA_ERR_STATUS_SDMA_RPY_TAG_ERR_SMASK \
544 		| SEND_DMA_ERR_STATUS_SDMA_CSR_PARITY_ERR_SMASK \
545 		| SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_UNC_ERR_SMASK)
546 
547 /* SendEgressErrInfo bits that correspond to a PortXmitDiscard counter */
548 #define PORT_DISCARD_EGRESS_ERRS \
549 	(SEND_EGRESS_ERR_INFO_TOO_LONG_IB_PACKET_ERR_SMASK \
550 	| SEND_EGRESS_ERR_INFO_VL_MAPPING_ERR_SMASK \
551 	| SEND_EGRESS_ERR_INFO_VL_ERR_SMASK)
552 
553 /*
554  * TXE Egress Error flags
555  */
556 #define SEES(text) SEND_EGRESS_ERR_STATUS_##text##_ERR_SMASK
557 static struct flag_table egress_err_status_flags[] = {
558 /* 0*/	FLAG_ENTRY0("TxPktIntegrityMemCorErr", SEES(TX_PKT_INTEGRITY_MEM_COR)),
559 /* 1*/	FLAG_ENTRY0("TxPktIntegrityMemUncErr", SEES(TX_PKT_INTEGRITY_MEM_UNC)),
560 /* 2 reserved */
561 /* 3*/	FLAG_ENTRY0("TxEgressFifoUnderrunOrParityErr",
562 		SEES(TX_EGRESS_FIFO_UNDERRUN_OR_PARITY)),
563 /* 4*/	FLAG_ENTRY0("TxLinkdownErr", SEES(TX_LINKDOWN)),
564 /* 5*/	FLAG_ENTRY0("TxIncorrectLinkStateErr", SEES(TX_INCORRECT_LINK_STATE)),
565 /* 6 reserved */
566 /* 7*/	FLAG_ENTRY0("TxPioLaunchIntfParityErr",
567 		SEES(TX_PIO_LAUNCH_INTF_PARITY)),
568 /* 8*/	FLAG_ENTRY0("TxSdmaLaunchIntfParityErr",
569 		SEES(TX_SDMA_LAUNCH_INTF_PARITY)),
570 /* 9-10 reserved */
571 /*11*/	FLAG_ENTRY0("TxSbrdCtlStateMachineParityErr",
572 		SEES(TX_SBRD_CTL_STATE_MACHINE_PARITY)),
573 /*12*/	FLAG_ENTRY0("TxIllegalVLErr", SEES(TX_ILLEGAL_VL)),
574 /*13*/	FLAG_ENTRY0("TxLaunchCsrParityErr", SEES(TX_LAUNCH_CSR_PARITY)),
575 /*14*/	FLAG_ENTRY0("TxSbrdCtlCsrParityErr", SEES(TX_SBRD_CTL_CSR_PARITY)),
576 /*15*/	FLAG_ENTRY0("TxConfigParityErr", SEES(TX_CONFIG_PARITY)),
577 /*16*/	FLAG_ENTRY0("TxSdma0DisallowedPacketErr",
578 		SEES(TX_SDMA0_DISALLOWED_PACKET)),
579 /*17*/	FLAG_ENTRY0("TxSdma1DisallowedPacketErr",
580 		SEES(TX_SDMA1_DISALLOWED_PACKET)),
581 /*18*/	FLAG_ENTRY0("TxSdma2DisallowedPacketErr",
582 		SEES(TX_SDMA2_DISALLOWED_PACKET)),
583 /*19*/	FLAG_ENTRY0("TxSdma3DisallowedPacketErr",
584 		SEES(TX_SDMA3_DISALLOWED_PACKET)),
585 /*20*/	FLAG_ENTRY0("TxSdma4DisallowedPacketErr",
586 		SEES(TX_SDMA4_DISALLOWED_PACKET)),
587 /*21*/	FLAG_ENTRY0("TxSdma5DisallowedPacketErr",
588 		SEES(TX_SDMA5_DISALLOWED_PACKET)),
589 /*22*/	FLAG_ENTRY0("TxSdma6DisallowedPacketErr",
590 		SEES(TX_SDMA6_DISALLOWED_PACKET)),
591 /*23*/	FLAG_ENTRY0("TxSdma7DisallowedPacketErr",
592 		SEES(TX_SDMA7_DISALLOWED_PACKET)),
593 /*24*/	FLAG_ENTRY0("TxSdma8DisallowedPacketErr",
594 		SEES(TX_SDMA8_DISALLOWED_PACKET)),
595 /*25*/	FLAG_ENTRY0("TxSdma9DisallowedPacketErr",
596 		SEES(TX_SDMA9_DISALLOWED_PACKET)),
597 /*26*/	FLAG_ENTRY0("TxSdma10DisallowedPacketErr",
598 		SEES(TX_SDMA10_DISALLOWED_PACKET)),
599 /*27*/	FLAG_ENTRY0("TxSdma11DisallowedPacketErr",
600 		SEES(TX_SDMA11_DISALLOWED_PACKET)),
601 /*28*/	FLAG_ENTRY0("TxSdma12DisallowedPacketErr",
602 		SEES(TX_SDMA12_DISALLOWED_PACKET)),
603 /*29*/	FLAG_ENTRY0("TxSdma13DisallowedPacketErr",
604 		SEES(TX_SDMA13_DISALLOWED_PACKET)),
605 /*30*/	FLAG_ENTRY0("TxSdma14DisallowedPacketErr",
606 		SEES(TX_SDMA14_DISALLOWED_PACKET)),
607 /*31*/	FLAG_ENTRY0("TxSdma15DisallowedPacketErr",
608 		SEES(TX_SDMA15_DISALLOWED_PACKET)),
609 /*32*/	FLAG_ENTRY0("TxLaunchFifo0UncOrParityErr",
610 		SEES(TX_LAUNCH_FIFO0_UNC_OR_PARITY)),
611 /*33*/	FLAG_ENTRY0("TxLaunchFifo1UncOrParityErr",
612 		SEES(TX_LAUNCH_FIFO1_UNC_OR_PARITY)),
613 /*34*/	FLAG_ENTRY0("TxLaunchFifo2UncOrParityErr",
614 		SEES(TX_LAUNCH_FIFO2_UNC_OR_PARITY)),
615 /*35*/	FLAG_ENTRY0("TxLaunchFifo3UncOrParityErr",
616 		SEES(TX_LAUNCH_FIFO3_UNC_OR_PARITY)),
617 /*36*/	FLAG_ENTRY0("TxLaunchFifo4UncOrParityErr",
618 		SEES(TX_LAUNCH_FIFO4_UNC_OR_PARITY)),
619 /*37*/	FLAG_ENTRY0("TxLaunchFifo5UncOrParityErr",
620 		SEES(TX_LAUNCH_FIFO5_UNC_OR_PARITY)),
621 /*38*/	FLAG_ENTRY0("TxLaunchFifo6UncOrParityErr",
622 		SEES(TX_LAUNCH_FIFO6_UNC_OR_PARITY)),
623 /*39*/	FLAG_ENTRY0("TxLaunchFifo7UncOrParityErr",
624 		SEES(TX_LAUNCH_FIFO7_UNC_OR_PARITY)),
625 /*40*/	FLAG_ENTRY0("TxLaunchFifo8UncOrParityErr",
626 		SEES(TX_LAUNCH_FIFO8_UNC_OR_PARITY)),
627 /*41*/	FLAG_ENTRY0("TxCreditReturnParityErr", SEES(TX_CREDIT_RETURN_PARITY)),
628 /*42*/	FLAG_ENTRY0("TxSbHdrUncErr", SEES(TX_SB_HDR_UNC)),
629 /*43*/	FLAG_ENTRY0("TxReadSdmaMemoryUncErr", SEES(TX_READ_SDMA_MEMORY_UNC)),
630 /*44*/	FLAG_ENTRY0("TxReadPioMemoryUncErr", SEES(TX_READ_PIO_MEMORY_UNC)),
631 /*45*/	FLAG_ENTRY0("TxEgressFifoUncErr", SEES(TX_EGRESS_FIFO_UNC)),
632 /*46*/	FLAG_ENTRY0("TxHcrcInsertionErr", SEES(TX_HCRC_INSERTION)),
633 /*47*/	FLAG_ENTRY0("TxCreditReturnVLErr", SEES(TX_CREDIT_RETURN_VL)),
634 /*48*/	FLAG_ENTRY0("TxLaunchFifo0CorErr", SEES(TX_LAUNCH_FIFO0_COR)),
635 /*49*/	FLAG_ENTRY0("TxLaunchFifo1CorErr", SEES(TX_LAUNCH_FIFO1_COR)),
636 /*50*/	FLAG_ENTRY0("TxLaunchFifo2CorErr", SEES(TX_LAUNCH_FIFO2_COR)),
637 /*51*/	FLAG_ENTRY0("TxLaunchFifo3CorErr", SEES(TX_LAUNCH_FIFO3_COR)),
638 /*52*/	FLAG_ENTRY0("TxLaunchFifo4CorErr", SEES(TX_LAUNCH_FIFO4_COR)),
639 /*53*/	FLAG_ENTRY0("TxLaunchFifo5CorErr", SEES(TX_LAUNCH_FIFO5_COR)),
640 /*54*/	FLAG_ENTRY0("TxLaunchFifo6CorErr", SEES(TX_LAUNCH_FIFO6_COR)),
641 /*55*/	FLAG_ENTRY0("TxLaunchFifo7CorErr", SEES(TX_LAUNCH_FIFO7_COR)),
642 /*56*/	FLAG_ENTRY0("TxLaunchFifo8CorErr", SEES(TX_LAUNCH_FIFO8_COR)),
643 /*57*/	FLAG_ENTRY0("TxCreditOverrunErr", SEES(TX_CREDIT_OVERRUN)),
644 /*58*/	FLAG_ENTRY0("TxSbHdrCorErr", SEES(TX_SB_HDR_COR)),
645 /*59*/	FLAG_ENTRY0("TxReadSdmaMemoryCorErr", SEES(TX_READ_SDMA_MEMORY_COR)),
646 /*60*/	FLAG_ENTRY0("TxReadPioMemoryCorErr", SEES(TX_READ_PIO_MEMORY_COR)),
647 /*61*/	FLAG_ENTRY0("TxEgressFifoCorErr", SEES(TX_EGRESS_FIFO_COR)),
648 /*62*/	FLAG_ENTRY0("TxReadSdmaMemoryCsrUncErr",
649 		SEES(TX_READ_SDMA_MEMORY_CSR_UNC)),
650 /*63*/	FLAG_ENTRY0("TxReadPioMemoryCsrUncErr",
651 		SEES(TX_READ_PIO_MEMORY_CSR_UNC)),
652 };
653 
654 /*
655  * TXE Egress Error Info flags
656  */
657 #define SEEI(text) SEND_EGRESS_ERR_INFO_##text##_ERR_SMASK
658 static struct flag_table egress_err_info_flags[] = {
659 /* 0*/	FLAG_ENTRY0("Reserved", 0ull),
660 /* 1*/	FLAG_ENTRY0("VLErr", SEEI(VL)),
661 /* 2*/	FLAG_ENTRY0("JobKeyErr", SEEI(JOB_KEY)),
662 /* 3*/	FLAG_ENTRY0("JobKeyErr", SEEI(JOB_KEY)),
663 /* 4*/	FLAG_ENTRY0("PartitionKeyErr", SEEI(PARTITION_KEY)),
664 /* 5*/	FLAG_ENTRY0("SLIDErr", SEEI(SLID)),
665 /* 6*/	FLAG_ENTRY0("OpcodeErr", SEEI(OPCODE)),
666 /* 7*/	FLAG_ENTRY0("VLMappingErr", SEEI(VL_MAPPING)),
667 /* 8*/	FLAG_ENTRY0("RawErr", SEEI(RAW)),
668 /* 9*/	FLAG_ENTRY0("RawIPv6Err", SEEI(RAW_IPV6)),
669 /*10*/	FLAG_ENTRY0("GRHErr", SEEI(GRH)),
670 /*11*/	FLAG_ENTRY0("BypassErr", SEEI(BYPASS)),
671 /*12*/	FLAG_ENTRY0("KDETHPacketsErr", SEEI(KDETH_PACKETS)),
672 /*13*/	FLAG_ENTRY0("NonKDETHPacketsErr", SEEI(NON_KDETH_PACKETS)),
673 /*14*/	FLAG_ENTRY0("TooSmallIBPacketsErr", SEEI(TOO_SMALL_IB_PACKETS)),
674 /*15*/	FLAG_ENTRY0("TooSmallBypassPacketsErr", SEEI(TOO_SMALL_BYPASS_PACKETS)),
675 /*16*/	FLAG_ENTRY0("PbcTestErr", SEEI(PBC_TEST)),
676 /*17*/	FLAG_ENTRY0("BadPktLenErr", SEEI(BAD_PKT_LEN)),
677 /*18*/	FLAG_ENTRY0("TooLongIBPacketErr", SEEI(TOO_LONG_IB_PACKET)),
678 /*19*/	FLAG_ENTRY0("TooLongBypassPacketsErr", SEEI(TOO_LONG_BYPASS_PACKETS)),
679 /*20*/	FLAG_ENTRY0("PbcStaticRateControlErr", SEEI(PBC_STATIC_RATE_CONTROL)),
680 /*21*/	FLAG_ENTRY0("BypassBadPktLenErr", SEEI(BAD_PKT_LEN)),
681 };
682 
683 /* TXE Egress errors that cause an SPC freeze */
684 #define ALL_TXE_EGRESS_FREEZE_ERR \
685 	(SEES(TX_EGRESS_FIFO_UNDERRUN_OR_PARITY) \
686 	| SEES(TX_PIO_LAUNCH_INTF_PARITY) \
687 	| SEES(TX_SDMA_LAUNCH_INTF_PARITY) \
688 	| SEES(TX_SBRD_CTL_STATE_MACHINE_PARITY) \
689 	| SEES(TX_LAUNCH_CSR_PARITY) \
690 	| SEES(TX_SBRD_CTL_CSR_PARITY) \
691 	| SEES(TX_CONFIG_PARITY) \
692 	| SEES(TX_LAUNCH_FIFO0_UNC_OR_PARITY) \
693 	| SEES(TX_LAUNCH_FIFO1_UNC_OR_PARITY) \
694 	| SEES(TX_LAUNCH_FIFO2_UNC_OR_PARITY) \
695 	| SEES(TX_LAUNCH_FIFO3_UNC_OR_PARITY) \
696 	| SEES(TX_LAUNCH_FIFO4_UNC_OR_PARITY) \
697 	| SEES(TX_LAUNCH_FIFO5_UNC_OR_PARITY) \
698 	| SEES(TX_LAUNCH_FIFO6_UNC_OR_PARITY) \
699 	| SEES(TX_LAUNCH_FIFO7_UNC_OR_PARITY) \
700 	| SEES(TX_LAUNCH_FIFO8_UNC_OR_PARITY) \
701 	| SEES(TX_CREDIT_RETURN_PARITY))
702 
703 /*
704  * TXE Send error flags
705  */
706 #define SES(name) SEND_ERR_STATUS_SEND_##name##_ERR_SMASK
707 static struct flag_table send_err_status_flags[] = {
708 /* 0*/	FLAG_ENTRY0("SendCsrParityErr", SES(CSR_PARITY)),
709 /* 1*/	FLAG_ENTRY0("SendCsrReadBadAddrErr", SES(CSR_READ_BAD_ADDR)),
710 /* 2*/	FLAG_ENTRY0("SendCsrWriteBadAddrErr", SES(CSR_WRITE_BAD_ADDR))
711 };
712 
713 /*
714  * TXE Send Context Error flags and consequences
715  */
716 static struct flag_table sc_err_status_flags[] = {
717 /* 0*/	FLAG_ENTRY("InconsistentSop",
718 		SEC_PACKET_DROPPED | SEC_SC_HALTED,
719 		SEND_CTXT_ERR_STATUS_PIO_INCONSISTENT_SOP_ERR_SMASK),
720 /* 1*/	FLAG_ENTRY("DisallowedPacket",
721 		SEC_PACKET_DROPPED | SEC_SC_HALTED,
722 		SEND_CTXT_ERR_STATUS_PIO_DISALLOWED_PACKET_ERR_SMASK),
723 /* 2*/	FLAG_ENTRY("WriteCrossesBoundary",
724 		SEC_WRITE_DROPPED | SEC_SC_HALTED,
725 		SEND_CTXT_ERR_STATUS_PIO_WRITE_CROSSES_BOUNDARY_ERR_SMASK),
726 /* 3*/	FLAG_ENTRY("WriteOverflow",
727 		SEC_WRITE_DROPPED | SEC_SC_HALTED,
728 		SEND_CTXT_ERR_STATUS_PIO_WRITE_OVERFLOW_ERR_SMASK),
729 /* 4*/	FLAG_ENTRY("WriteOutOfBounds",
730 		SEC_WRITE_DROPPED | SEC_SC_HALTED,
731 		SEND_CTXT_ERR_STATUS_PIO_WRITE_OUT_OF_BOUNDS_ERR_SMASK),
732 /* 5-63 reserved*/
733 };
734 
735 /*
736  * RXE Receive Error flags
737  */
738 #define RXES(name) RCV_ERR_STATUS_RX_##name##_ERR_SMASK
739 static struct flag_table rxe_err_status_flags[] = {
740 /* 0*/	FLAG_ENTRY0("RxDmaCsrCorErr", RXES(DMA_CSR_COR)),
741 /* 1*/	FLAG_ENTRY0("RxDcIntfParityErr", RXES(DC_INTF_PARITY)),
742 /* 2*/	FLAG_ENTRY0("RxRcvHdrUncErr", RXES(RCV_HDR_UNC)),
743 /* 3*/	FLAG_ENTRY0("RxRcvHdrCorErr", RXES(RCV_HDR_COR)),
744 /* 4*/	FLAG_ENTRY0("RxRcvDataUncErr", RXES(RCV_DATA_UNC)),
745 /* 5*/	FLAG_ENTRY0("RxRcvDataCorErr", RXES(RCV_DATA_COR)),
746 /* 6*/	FLAG_ENTRY0("RxRcvQpMapTableUncErr", RXES(RCV_QP_MAP_TABLE_UNC)),
747 /* 7*/	FLAG_ENTRY0("RxRcvQpMapTableCorErr", RXES(RCV_QP_MAP_TABLE_COR)),
748 /* 8*/	FLAG_ENTRY0("RxRcvCsrParityErr", RXES(RCV_CSR_PARITY)),
749 /* 9*/	FLAG_ENTRY0("RxDcSopEopParityErr", RXES(DC_SOP_EOP_PARITY)),
750 /*10*/	FLAG_ENTRY0("RxDmaFlagUncErr", RXES(DMA_FLAG_UNC)),
751 /*11*/	FLAG_ENTRY0("RxDmaFlagCorErr", RXES(DMA_FLAG_COR)),
752 /*12*/	FLAG_ENTRY0("RxRcvFsmEncodingErr", RXES(RCV_FSM_ENCODING)),
753 /*13*/	FLAG_ENTRY0("RxRbufFreeListUncErr", RXES(RBUF_FREE_LIST_UNC)),
754 /*14*/	FLAG_ENTRY0("RxRbufFreeListCorErr", RXES(RBUF_FREE_LIST_COR)),
755 /*15*/	FLAG_ENTRY0("RxRbufLookupDesRegUncErr", RXES(RBUF_LOOKUP_DES_REG_UNC)),
756 /*16*/	FLAG_ENTRY0("RxRbufLookupDesRegUncCorErr",
757 		RXES(RBUF_LOOKUP_DES_REG_UNC_COR)),
758 /*17*/	FLAG_ENTRY0("RxRbufLookupDesUncErr", RXES(RBUF_LOOKUP_DES_UNC)),
759 /*18*/	FLAG_ENTRY0("RxRbufLookupDesCorErr", RXES(RBUF_LOOKUP_DES_COR)),
760 /*19*/	FLAG_ENTRY0("RxRbufBlockListReadUncErr",
761 		RXES(RBUF_BLOCK_LIST_READ_UNC)),
762 /*20*/	FLAG_ENTRY0("RxRbufBlockListReadCorErr",
763 		RXES(RBUF_BLOCK_LIST_READ_COR)),
764 /*21*/	FLAG_ENTRY0("RxRbufCsrQHeadBufNumParityErr",
765 		RXES(RBUF_CSR_QHEAD_BUF_NUM_PARITY)),
766 /*22*/	FLAG_ENTRY0("RxRbufCsrQEntCntParityErr",
767 		RXES(RBUF_CSR_QENT_CNT_PARITY)),
768 /*23*/	FLAG_ENTRY0("RxRbufCsrQNextBufParityErr",
769 		RXES(RBUF_CSR_QNEXT_BUF_PARITY)),
770 /*24*/	FLAG_ENTRY0("RxRbufCsrQVldBitParityErr",
771 		RXES(RBUF_CSR_QVLD_BIT_PARITY)),
772 /*25*/	FLAG_ENTRY0("RxRbufCsrQHdPtrParityErr", RXES(RBUF_CSR_QHD_PTR_PARITY)),
773 /*26*/	FLAG_ENTRY0("RxRbufCsrQTlPtrParityErr", RXES(RBUF_CSR_QTL_PTR_PARITY)),
774 /*27*/	FLAG_ENTRY0("RxRbufCsrQNumOfPktParityErr",
775 		RXES(RBUF_CSR_QNUM_OF_PKT_PARITY)),
776 /*28*/	FLAG_ENTRY0("RxRbufCsrQEOPDWParityErr", RXES(RBUF_CSR_QEOPDW_PARITY)),
777 /*29*/	FLAG_ENTRY0("RxRbufCtxIdParityErr", RXES(RBUF_CTX_ID_PARITY)),
778 /*30*/	FLAG_ENTRY0("RxRBufBadLookupErr", RXES(RBUF_BAD_LOOKUP)),
779 /*31*/	FLAG_ENTRY0("RxRbufFullErr", RXES(RBUF_FULL)),
780 /*32*/	FLAG_ENTRY0("RxRbufEmptyErr", RXES(RBUF_EMPTY)),
781 /*33*/	FLAG_ENTRY0("RxRbufFlRdAddrParityErr", RXES(RBUF_FL_RD_ADDR_PARITY)),
782 /*34*/	FLAG_ENTRY0("RxRbufFlWrAddrParityErr", RXES(RBUF_FL_WR_ADDR_PARITY)),
783 /*35*/	FLAG_ENTRY0("RxRbufFlInitdoneParityErr",
784 		RXES(RBUF_FL_INITDONE_PARITY)),
785 /*36*/	FLAG_ENTRY0("RxRbufFlInitWrAddrParityErr",
786 		RXES(RBUF_FL_INIT_WR_ADDR_PARITY)),
787 /*37*/	FLAG_ENTRY0("RxRbufNextFreeBufUncErr", RXES(RBUF_NEXT_FREE_BUF_UNC)),
788 /*38*/	FLAG_ENTRY0("RxRbufNextFreeBufCorErr", RXES(RBUF_NEXT_FREE_BUF_COR)),
789 /*39*/	FLAG_ENTRY0("RxLookupDesPart1UncErr", RXES(LOOKUP_DES_PART1_UNC)),
790 /*40*/	FLAG_ENTRY0("RxLookupDesPart1UncCorErr",
791 		RXES(LOOKUP_DES_PART1_UNC_COR)),
792 /*41*/	FLAG_ENTRY0("RxLookupDesPart2ParityErr",
793 		RXES(LOOKUP_DES_PART2_PARITY)),
794 /*42*/	FLAG_ENTRY0("RxLookupRcvArrayUncErr", RXES(LOOKUP_RCV_ARRAY_UNC)),
795 /*43*/	FLAG_ENTRY0("RxLookupRcvArrayCorErr", RXES(LOOKUP_RCV_ARRAY_COR)),
796 /*44*/	FLAG_ENTRY0("RxLookupCsrParityErr", RXES(LOOKUP_CSR_PARITY)),
797 /*45*/	FLAG_ENTRY0("RxHqIntrCsrParityErr", RXES(HQ_INTR_CSR_PARITY)),
798 /*46*/	FLAG_ENTRY0("RxHqIntrFsmErr", RXES(HQ_INTR_FSM)),
799 /*47*/	FLAG_ENTRY0("RxRbufDescPart1UncErr", RXES(RBUF_DESC_PART1_UNC)),
800 /*48*/	FLAG_ENTRY0("RxRbufDescPart1CorErr", RXES(RBUF_DESC_PART1_COR)),
801 /*49*/	FLAG_ENTRY0("RxRbufDescPart2UncErr", RXES(RBUF_DESC_PART2_UNC)),
802 /*50*/	FLAG_ENTRY0("RxRbufDescPart2CorErr", RXES(RBUF_DESC_PART2_COR)),
803 /*51*/	FLAG_ENTRY0("RxDmaHdrFifoRdUncErr", RXES(DMA_HDR_FIFO_RD_UNC)),
804 /*52*/	FLAG_ENTRY0("RxDmaHdrFifoRdCorErr", RXES(DMA_HDR_FIFO_RD_COR)),
805 /*53*/	FLAG_ENTRY0("RxDmaDataFifoRdUncErr", RXES(DMA_DATA_FIFO_RD_UNC)),
806 /*54*/	FLAG_ENTRY0("RxDmaDataFifoRdCorErr", RXES(DMA_DATA_FIFO_RD_COR)),
807 /*55*/	FLAG_ENTRY0("RxRbufDataUncErr", RXES(RBUF_DATA_UNC)),
808 /*56*/	FLAG_ENTRY0("RxRbufDataCorErr", RXES(RBUF_DATA_COR)),
809 /*57*/	FLAG_ENTRY0("RxDmaCsrParityErr", RXES(DMA_CSR_PARITY)),
810 /*58*/	FLAG_ENTRY0("RxDmaEqFsmEncodingErr", RXES(DMA_EQ_FSM_ENCODING)),
811 /*59*/	FLAG_ENTRY0("RxDmaDqFsmEncodingErr", RXES(DMA_DQ_FSM_ENCODING)),
812 /*60*/	FLAG_ENTRY0("RxDmaCsrUncErr", RXES(DMA_CSR_UNC)),
813 /*61*/	FLAG_ENTRY0("RxCsrReadBadAddrErr", RXES(CSR_READ_BAD_ADDR)),
814 /*62*/	FLAG_ENTRY0("RxCsrWriteBadAddrErr", RXES(CSR_WRITE_BAD_ADDR)),
815 /*63*/	FLAG_ENTRY0("RxCsrParityErr", RXES(CSR_PARITY))
816 };
817 
818 /* RXE errors that will trigger an SPC freeze */
819 #define ALL_RXE_FREEZE_ERR  \
820 	(RCV_ERR_STATUS_RX_RCV_QP_MAP_TABLE_UNC_ERR_SMASK \
821 	| RCV_ERR_STATUS_RX_RCV_CSR_PARITY_ERR_SMASK \
822 	| RCV_ERR_STATUS_RX_DMA_FLAG_UNC_ERR_SMASK \
823 	| RCV_ERR_STATUS_RX_RCV_FSM_ENCODING_ERR_SMASK \
824 	| RCV_ERR_STATUS_RX_RBUF_FREE_LIST_UNC_ERR_SMASK \
825 	| RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_REG_UNC_ERR_SMASK \
826 	| RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_REG_UNC_COR_ERR_SMASK \
827 	| RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_UNC_ERR_SMASK \
828 	| RCV_ERR_STATUS_RX_RBUF_BLOCK_LIST_READ_UNC_ERR_SMASK \
829 	| RCV_ERR_STATUS_RX_RBUF_CSR_QHEAD_BUF_NUM_PARITY_ERR_SMASK \
830 	| RCV_ERR_STATUS_RX_RBUF_CSR_QENT_CNT_PARITY_ERR_SMASK \
831 	| RCV_ERR_STATUS_RX_RBUF_CSR_QNEXT_BUF_PARITY_ERR_SMASK \
832 	| RCV_ERR_STATUS_RX_RBUF_CSR_QVLD_BIT_PARITY_ERR_SMASK \
833 	| RCV_ERR_STATUS_RX_RBUF_CSR_QHD_PTR_PARITY_ERR_SMASK \
834 	| RCV_ERR_STATUS_RX_RBUF_CSR_QTL_PTR_PARITY_ERR_SMASK \
835 	| RCV_ERR_STATUS_RX_RBUF_CSR_QNUM_OF_PKT_PARITY_ERR_SMASK \
836 	| RCV_ERR_STATUS_RX_RBUF_CSR_QEOPDW_PARITY_ERR_SMASK \
837 	| RCV_ERR_STATUS_RX_RBUF_CTX_ID_PARITY_ERR_SMASK \
838 	| RCV_ERR_STATUS_RX_RBUF_BAD_LOOKUP_ERR_SMASK \
839 	| RCV_ERR_STATUS_RX_RBUF_FULL_ERR_SMASK \
840 	| RCV_ERR_STATUS_RX_RBUF_EMPTY_ERR_SMASK \
841 	| RCV_ERR_STATUS_RX_RBUF_FL_RD_ADDR_PARITY_ERR_SMASK \
842 	| RCV_ERR_STATUS_RX_RBUF_FL_WR_ADDR_PARITY_ERR_SMASK \
843 	| RCV_ERR_STATUS_RX_RBUF_FL_INITDONE_PARITY_ERR_SMASK \
844 	| RCV_ERR_STATUS_RX_RBUF_FL_INIT_WR_ADDR_PARITY_ERR_SMASK \
845 	| RCV_ERR_STATUS_RX_RBUF_NEXT_FREE_BUF_UNC_ERR_SMASK \
846 	| RCV_ERR_STATUS_RX_LOOKUP_DES_PART1_UNC_ERR_SMASK \
847 	| RCV_ERR_STATUS_RX_LOOKUP_DES_PART1_UNC_COR_ERR_SMASK \
848 	| RCV_ERR_STATUS_RX_LOOKUP_DES_PART2_PARITY_ERR_SMASK \
849 	| RCV_ERR_STATUS_RX_LOOKUP_RCV_ARRAY_UNC_ERR_SMASK \
850 	| RCV_ERR_STATUS_RX_LOOKUP_CSR_PARITY_ERR_SMASK \
851 	| RCV_ERR_STATUS_RX_HQ_INTR_CSR_PARITY_ERR_SMASK \
852 	| RCV_ERR_STATUS_RX_HQ_INTR_FSM_ERR_SMASK \
853 	| RCV_ERR_STATUS_RX_RBUF_DESC_PART1_UNC_ERR_SMASK \
854 	| RCV_ERR_STATUS_RX_RBUF_DESC_PART1_COR_ERR_SMASK \
855 	| RCV_ERR_STATUS_RX_RBUF_DESC_PART2_UNC_ERR_SMASK \
856 	| RCV_ERR_STATUS_RX_DMA_HDR_FIFO_RD_UNC_ERR_SMASK \
857 	| RCV_ERR_STATUS_RX_DMA_DATA_FIFO_RD_UNC_ERR_SMASK \
858 	| RCV_ERR_STATUS_RX_RBUF_DATA_UNC_ERR_SMASK \
859 	| RCV_ERR_STATUS_RX_DMA_CSR_PARITY_ERR_SMASK \
860 	| RCV_ERR_STATUS_RX_DMA_EQ_FSM_ENCODING_ERR_SMASK \
861 	| RCV_ERR_STATUS_RX_DMA_DQ_FSM_ENCODING_ERR_SMASK \
862 	| RCV_ERR_STATUS_RX_DMA_CSR_UNC_ERR_SMASK \
863 	| RCV_ERR_STATUS_RX_CSR_PARITY_ERR_SMASK)
864 
865 #define RXE_FREEZE_ABORT_MASK \
866 	(RCV_ERR_STATUS_RX_DMA_CSR_UNC_ERR_SMASK | \
867 	RCV_ERR_STATUS_RX_DMA_HDR_FIFO_RD_UNC_ERR_SMASK | \
868 	RCV_ERR_STATUS_RX_DMA_DATA_FIFO_RD_UNC_ERR_SMASK)
869 
870 /*
871  * DCC Error Flags
872  */
873 #define DCCE(name) DCC_ERR_FLG_##name##_SMASK
874 static struct flag_table dcc_err_flags[] = {
875 	FLAG_ENTRY0("bad_l2_err", DCCE(BAD_L2_ERR)),
876 	FLAG_ENTRY0("bad_sc_err", DCCE(BAD_SC_ERR)),
877 	FLAG_ENTRY0("bad_mid_tail_err", DCCE(BAD_MID_TAIL_ERR)),
878 	FLAG_ENTRY0("bad_preemption_err", DCCE(BAD_PREEMPTION_ERR)),
879 	FLAG_ENTRY0("preemption_err", DCCE(PREEMPTION_ERR)),
880 	FLAG_ENTRY0("preemptionvl15_err", DCCE(PREEMPTIONVL15_ERR)),
881 	FLAG_ENTRY0("bad_vl_marker_err", DCCE(BAD_VL_MARKER_ERR)),
882 	FLAG_ENTRY0("bad_dlid_target_err", DCCE(BAD_DLID_TARGET_ERR)),
883 	FLAG_ENTRY0("bad_lver_err", DCCE(BAD_LVER_ERR)),
884 	FLAG_ENTRY0("uncorrectable_err", DCCE(UNCORRECTABLE_ERR)),
885 	FLAG_ENTRY0("bad_crdt_ack_err", DCCE(BAD_CRDT_ACK_ERR)),
886 	FLAG_ENTRY0("unsup_pkt_type", DCCE(UNSUP_PKT_TYPE)),
887 	FLAG_ENTRY0("bad_ctrl_flit_err", DCCE(BAD_CTRL_FLIT_ERR)),
888 	FLAG_ENTRY0("event_cntr_parity_err", DCCE(EVENT_CNTR_PARITY_ERR)),
889 	FLAG_ENTRY0("event_cntr_rollover_err", DCCE(EVENT_CNTR_ROLLOVER_ERR)),
890 	FLAG_ENTRY0("link_err", DCCE(LINK_ERR)),
891 	FLAG_ENTRY0("misc_cntr_rollover_err", DCCE(MISC_CNTR_ROLLOVER_ERR)),
892 	FLAG_ENTRY0("bad_ctrl_dist_err", DCCE(BAD_CTRL_DIST_ERR)),
893 	FLAG_ENTRY0("bad_tail_dist_err", DCCE(BAD_TAIL_DIST_ERR)),
894 	FLAG_ENTRY0("bad_head_dist_err", DCCE(BAD_HEAD_DIST_ERR)),
895 	FLAG_ENTRY0("nonvl15_state_err", DCCE(NONVL15_STATE_ERR)),
896 	FLAG_ENTRY0("vl15_multi_err", DCCE(VL15_MULTI_ERR)),
897 	FLAG_ENTRY0("bad_pkt_length_err", DCCE(BAD_PKT_LENGTH_ERR)),
898 	FLAG_ENTRY0("unsup_vl_err", DCCE(UNSUP_VL_ERR)),
899 	FLAG_ENTRY0("perm_nvl15_err", DCCE(PERM_NVL15_ERR)),
900 	FLAG_ENTRY0("slid_zero_err", DCCE(SLID_ZERO_ERR)),
901 	FLAG_ENTRY0("dlid_zero_err", DCCE(DLID_ZERO_ERR)),
902 	FLAG_ENTRY0("length_mtu_err", DCCE(LENGTH_MTU_ERR)),
903 	FLAG_ENTRY0("rx_early_drop_err", DCCE(RX_EARLY_DROP_ERR)),
904 	FLAG_ENTRY0("late_short_err", DCCE(LATE_SHORT_ERR)),
905 	FLAG_ENTRY0("late_long_err", DCCE(LATE_LONG_ERR)),
906 	FLAG_ENTRY0("late_ebp_err", DCCE(LATE_EBP_ERR)),
907 	FLAG_ENTRY0("fpe_tx_fifo_ovflw_err", DCCE(FPE_TX_FIFO_OVFLW_ERR)),
908 	FLAG_ENTRY0("fpe_tx_fifo_unflw_err", DCCE(FPE_TX_FIFO_UNFLW_ERR)),
909 	FLAG_ENTRY0("csr_access_blocked_host", DCCE(CSR_ACCESS_BLOCKED_HOST)),
910 	FLAG_ENTRY0("csr_access_blocked_uc", DCCE(CSR_ACCESS_BLOCKED_UC)),
911 	FLAG_ENTRY0("tx_ctrl_parity_err", DCCE(TX_CTRL_PARITY_ERR)),
912 	FLAG_ENTRY0("tx_ctrl_parity_mbe_err", DCCE(TX_CTRL_PARITY_MBE_ERR)),
913 	FLAG_ENTRY0("tx_sc_parity_err", DCCE(TX_SC_PARITY_ERR)),
914 	FLAG_ENTRY0("rx_ctrl_parity_mbe_err", DCCE(RX_CTRL_PARITY_MBE_ERR)),
915 	FLAG_ENTRY0("csr_parity_err", DCCE(CSR_PARITY_ERR)),
916 	FLAG_ENTRY0("csr_inval_addr", DCCE(CSR_INVAL_ADDR)),
917 	FLAG_ENTRY0("tx_byte_shft_parity_err", DCCE(TX_BYTE_SHFT_PARITY_ERR)),
918 	FLAG_ENTRY0("rx_byte_shft_parity_err", DCCE(RX_BYTE_SHFT_PARITY_ERR)),
919 	FLAG_ENTRY0("fmconfig_err", DCCE(FMCONFIG_ERR)),
920 	FLAG_ENTRY0("rcvport_err", DCCE(RCVPORT_ERR)),
921 };
922 
923 /*
924  * LCB error flags
925  */
926 #define LCBE(name) DC_LCB_ERR_FLG_##name##_SMASK
927 static struct flag_table lcb_err_flags[] = {
928 /* 0*/	FLAG_ENTRY0("CSR_PARITY_ERR", LCBE(CSR_PARITY_ERR)),
929 /* 1*/	FLAG_ENTRY0("INVALID_CSR_ADDR", LCBE(INVALID_CSR_ADDR)),
930 /* 2*/	FLAG_ENTRY0("RST_FOR_FAILED_DESKEW", LCBE(RST_FOR_FAILED_DESKEW)),
931 /* 3*/	FLAG_ENTRY0("ALL_LNS_FAILED_REINIT_TEST",
932 		LCBE(ALL_LNS_FAILED_REINIT_TEST)),
933 /* 4*/	FLAG_ENTRY0("LOST_REINIT_STALL_OR_TOS", LCBE(LOST_REINIT_STALL_OR_TOS)),
934 /* 5*/	FLAG_ENTRY0("TX_LESS_THAN_FOUR_LNS", LCBE(TX_LESS_THAN_FOUR_LNS)),
935 /* 6*/	FLAG_ENTRY0("RX_LESS_THAN_FOUR_LNS", LCBE(RX_LESS_THAN_FOUR_LNS)),
936 /* 7*/	FLAG_ENTRY0("SEQ_CRC_ERR", LCBE(SEQ_CRC_ERR)),
937 /* 8*/	FLAG_ENTRY0("REINIT_FROM_PEER", LCBE(REINIT_FROM_PEER)),
938 /* 9*/	FLAG_ENTRY0("REINIT_FOR_LN_DEGRADE", LCBE(REINIT_FOR_LN_DEGRADE)),
939 /*10*/	FLAG_ENTRY0("CRC_ERR_CNT_HIT_LIMIT", LCBE(CRC_ERR_CNT_HIT_LIMIT)),
940 /*11*/	FLAG_ENTRY0("RCLK_STOPPED", LCBE(RCLK_STOPPED)),
941 /*12*/	FLAG_ENTRY0("UNEXPECTED_REPLAY_MARKER", LCBE(UNEXPECTED_REPLAY_MARKER)),
942 /*13*/	FLAG_ENTRY0("UNEXPECTED_ROUND_TRIP_MARKER",
943 		LCBE(UNEXPECTED_ROUND_TRIP_MARKER)),
944 /*14*/	FLAG_ENTRY0("ILLEGAL_NULL_LTP", LCBE(ILLEGAL_NULL_LTP)),
945 /*15*/	FLAG_ENTRY0("ILLEGAL_FLIT_ENCODING", LCBE(ILLEGAL_FLIT_ENCODING)),
946 /*16*/	FLAG_ENTRY0("FLIT_INPUT_BUF_OFLW", LCBE(FLIT_INPUT_BUF_OFLW)),
947 /*17*/	FLAG_ENTRY0("VL_ACK_INPUT_BUF_OFLW", LCBE(VL_ACK_INPUT_BUF_OFLW)),
948 /*18*/	FLAG_ENTRY0("VL_ACK_INPUT_PARITY_ERR", LCBE(VL_ACK_INPUT_PARITY_ERR)),
949 /*19*/	FLAG_ENTRY0("VL_ACK_INPUT_WRONG_CRC_MODE",
950 		LCBE(VL_ACK_INPUT_WRONG_CRC_MODE)),
951 /*20*/	FLAG_ENTRY0("FLIT_INPUT_BUF_MBE", LCBE(FLIT_INPUT_BUF_MBE)),
952 /*21*/	FLAG_ENTRY0("FLIT_INPUT_BUF_SBE", LCBE(FLIT_INPUT_BUF_SBE)),
953 /*22*/	FLAG_ENTRY0("REPLAY_BUF_MBE", LCBE(REPLAY_BUF_MBE)),
954 /*23*/	FLAG_ENTRY0("REPLAY_BUF_SBE", LCBE(REPLAY_BUF_SBE)),
955 /*24*/	FLAG_ENTRY0("CREDIT_RETURN_FLIT_MBE", LCBE(CREDIT_RETURN_FLIT_MBE)),
956 /*25*/	FLAG_ENTRY0("RST_FOR_LINK_TIMEOUT", LCBE(RST_FOR_LINK_TIMEOUT)),
957 /*26*/	FLAG_ENTRY0("RST_FOR_INCOMPLT_RND_TRIP",
958 		LCBE(RST_FOR_INCOMPLT_RND_TRIP)),
959 /*27*/	FLAG_ENTRY0("HOLD_REINIT", LCBE(HOLD_REINIT)),
960 /*28*/	FLAG_ENTRY0("NEG_EDGE_LINK_TRANSFER_ACTIVE",
961 		LCBE(NEG_EDGE_LINK_TRANSFER_ACTIVE)),
962 /*29*/	FLAG_ENTRY0("REDUNDANT_FLIT_PARITY_ERR",
963 		LCBE(REDUNDANT_FLIT_PARITY_ERR))
964 };
965 
966 /*
967  * DC8051 Error Flags
968  */
969 #define D8E(name) DC_DC8051_ERR_FLG_##name##_SMASK
970 static struct flag_table dc8051_err_flags[] = {
971 	FLAG_ENTRY0("SET_BY_8051", D8E(SET_BY_8051)),
972 	FLAG_ENTRY0("LOST_8051_HEART_BEAT", D8E(LOST_8051_HEART_BEAT)),
973 	FLAG_ENTRY0("CRAM_MBE", D8E(CRAM_MBE)),
974 	FLAG_ENTRY0("CRAM_SBE", D8E(CRAM_SBE)),
975 	FLAG_ENTRY0("DRAM_MBE", D8E(DRAM_MBE)),
976 	FLAG_ENTRY0("DRAM_SBE", D8E(DRAM_SBE)),
977 	FLAG_ENTRY0("IRAM_MBE", D8E(IRAM_MBE)),
978 	FLAG_ENTRY0("IRAM_SBE", D8E(IRAM_SBE)),
979 	FLAG_ENTRY0("UNMATCHED_SECURE_MSG_ACROSS_BCC_LANES",
980 		    D8E(UNMATCHED_SECURE_MSG_ACROSS_BCC_LANES)),
981 	FLAG_ENTRY0("INVALID_CSR_ADDR", D8E(INVALID_CSR_ADDR)),
982 };
983 
984 /*
985  * DC8051 Information Error flags
986  *
987  * Flags in DC8051_DBG_ERR_INFO_SET_BY_8051.ERROR field.
988  */
989 static struct flag_table dc8051_info_err_flags[] = {
990 	FLAG_ENTRY0("Spico ROM check failed",  SPICO_ROM_FAILED),
991 	FLAG_ENTRY0("Unknown frame received",  UNKNOWN_FRAME),
992 	FLAG_ENTRY0("Target BER not met",      TARGET_BER_NOT_MET),
993 	FLAG_ENTRY0("Serdes internal loopback failure",
994 		    FAILED_SERDES_INTERNAL_LOOPBACK),
995 	FLAG_ENTRY0("Failed SerDes init",      FAILED_SERDES_INIT),
996 	FLAG_ENTRY0("Failed LNI(Polling)",     FAILED_LNI_POLLING),
997 	FLAG_ENTRY0("Failed LNI(Debounce)",    FAILED_LNI_DEBOUNCE),
998 	FLAG_ENTRY0("Failed LNI(EstbComm)",    FAILED_LNI_ESTBCOMM),
999 	FLAG_ENTRY0("Failed LNI(OptEq)",       FAILED_LNI_OPTEQ),
1000 	FLAG_ENTRY0("Failed LNI(VerifyCap_1)", FAILED_LNI_VERIFY_CAP1),
1001 	FLAG_ENTRY0("Failed LNI(VerifyCap_2)", FAILED_LNI_VERIFY_CAP2),
1002 	FLAG_ENTRY0("Failed LNI(ConfigLT)",    FAILED_LNI_CONFIGLT),
1003 	FLAG_ENTRY0("Host Handshake Timeout",  HOST_HANDSHAKE_TIMEOUT),
1004 	FLAG_ENTRY0("External Device Request Timeout",
1005 		    EXTERNAL_DEVICE_REQ_TIMEOUT),
1006 };
1007 
1008 /*
1009  * DC8051 Information Host Information flags
1010  *
1011  * Flags in DC8051_DBG_ERR_INFO_SET_BY_8051.HOST_MSG field.
1012  */
1013 static struct flag_table dc8051_info_host_msg_flags[] = {
1014 	FLAG_ENTRY0("Host request done", 0x0001),
1015 	FLAG_ENTRY0("BC PWR_MGM message", 0x0002),
1016 	FLAG_ENTRY0("BC SMA message", 0x0004),
1017 	FLAG_ENTRY0("BC Unknown message (BCC)", 0x0008),
1018 	FLAG_ENTRY0("BC Unknown message (LCB)", 0x0010),
1019 	FLAG_ENTRY0("External device config request", 0x0020),
1020 	FLAG_ENTRY0("VerifyCap all frames received", 0x0040),
1021 	FLAG_ENTRY0("LinkUp achieved", 0x0080),
1022 	FLAG_ENTRY0("Link going down", 0x0100),
1023 	FLAG_ENTRY0("Link width downgraded", 0x0200),
1024 };
1025 
1026 static u32 encoded_size(u32 size);
1027 static u32 chip_to_opa_lstate(struct hfi1_devdata *dd, u32 chip_lstate);
1028 static int set_physical_link_state(struct hfi1_devdata *dd, u64 state);
1029 static void read_vc_remote_phy(struct hfi1_devdata *dd, u8 *power_management,
1030 			       u8 *continuous);
1031 static void read_vc_remote_fabric(struct hfi1_devdata *dd, u8 *vau, u8 *z,
1032 				  u8 *vcu, u16 *vl15buf, u8 *crc_sizes);
1033 static void read_vc_remote_link_width(struct hfi1_devdata *dd,
1034 				      u8 *remote_tx_rate, u16 *link_widths);
1035 static void read_vc_local_link_width(struct hfi1_devdata *dd, u8 *misc_bits,
1036 				     u8 *flag_bits, u16 *link_widths);
1037 static void read_remote_device_id(struct hfi1_devdata *dd, u16 *device_id,
1038 				  u8 *device_rev);
1039 static void read_local_lni(struct hfi1_devdata *dd, u8 *enable_lane_rx);
1040 static int read_tx_settings(struct hfi1_devdata *dd, u8 *enable_lane_tx,
1041 			    u8 *tx_polarity_inversion,
1042 			    u8 *rx_polarity_inversion, u8 *max_rate);
1043 static void handle_sdma_eng_err(struct hfi1_devdata *dd,
1044 				unsigned int context, u64 err_status);
1045 static void handle_qsfp_int(struct hfi1_devdata *dd, u32 source, u64 reg);
1046 static void handle_dcc_err(struct hfi1_devdata *dd,
1047 			   unsigned int context, u64 err_status);
1048 static void handle_lcb_err(struct hfi1_devdata *dd,
1049 			   unsigned int context, u64 err_status);
1050 static void handle_8051_interrupt(struct hfi1_devdata *dd, u32 unused, u64 reg);
1051 static void handle_cce_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1052 static void handle_rxe_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1053 static void handle_misc_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1054 static void handle_pio_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1055 static void handle_sdma_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1056 static void handle_egress_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1057 static void handle_txe_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1058 static void set_partition_keys(struct hfi1_pportdata *ppd);
1059 static const char *link_state_name(u32 state);
1060 static const char *link_state_reason_name(struct hfi1_pportdata *ppd,
1061 					  u32 state);
1062 static int do_8051_command(struct hfi1_devdata *dd, u32 type, u64 in_data,
1063 			   u64 *out_data);
1064 static int read_idle_sma(struct hfi1_devdata *dd, u64 *data);
1065 static int thermal_init(struct hfi1_devdata *dd);
1066 
1067 static void update_statusp(struct hfi1_pportdata *ppd, u32 state);
1068 static int wait_phys_link_offline_substates(struct hfi1_pportdata *ppd,
1069 					    int msecs);
1070 static int wait_logical_linkstate(struct hfi1_pportdata *ppd, u32 state,
1071 				  int msecs);
1072 static void log_state_transition(struct hfi1_pportdata *ppd, u32 state);
1073 static void log_physical_state(struct hfi1_pportdata *ppd, u32 state);
1074 static int wait_physical_linkstate(struct hfi1_pportdata *ppd, u32 state,
1075 				   int msecs);
1076 static void read_planned_down_reason_code(struct hfi1_devdata *dd, u8 *pdrrc);
1077 static void read_link_down_reason(struct hfi1_devdata *dd, u8 *ldr);
1078 static void handle_temp_err(struct hfi1_devdata *dd);
1079 static void dc_shutdown(struct hfi1_devdata *dd);
1080 static void dc_start(struct hfi1_devdata *dd);
1081 static int qos_rmt_entries(struct hfi1_devdata *dd, unsigned int *mp,
1082 			   unsigned int *np);
1083 static void clear_full_mgmt_pkey(struct hfi1_pportdata *ppd);
1084 static int wait_link_transfer_active(struct hfi1_devdata *dd, int wait_ms);
1085 static void clear_rsm_rule(struct hfi1_devdata *dd, u8 rule_index);
1086 static void update_xmit_counters(struct hfi1_pportdata *ppd, u16 link_width);
1087 
1088 /*
1089  * Error interrupt table entry.  This is used as input to the interrupt
1090  * "clear down" routine used for all second tier error interrupt register.
1091  * Second tier interrupt registers have a single bit representing them
1092  * in the top-level CceIntStatus.
1093  */
1094 struct err_reg_info {
1095 	u32 status;		/* status CSR offset */
1096 	u32 clear;		/* clear CSR offset */
1097 	u32 mask;		/* mask CSR offset */
1098 	void (*handler)(struct hfi1_devdata *dd, u32 source, u64 reg);
1099 	const char *desc;
1100 };
1101 
1102 #define NUM_MISC_ERRS (IS_GENERAL_ERR_END - IS_GENERAL_ERR_START)
1103 #define NUM_DC_ERRS (IS_DC_END - IS_DC_START)
1104 #define NUM_VARIOUS (IS_VARIOUS_END - IS_VARIOUS_START)
1105 
1106 /*
1107  * Helpers for building HFI and DC error interrupt table entries.  Different
1108  * helpers are needed because of inconsistent register names.
1109  */
1110 #define EE(reg, handler, desc) \
1111 	{ reg##_STATUS, reg##_CLEAR, reg##_MASK, \
1112 		handler, desc }
1113 #define DC_EE1(reg, handler, desc) \
1114 	{ reg##_FLG, reg##_FLG_CLR, reg##_FLG_EN, handler, desc }
1115 #define DC_EE2(reg, handler, desc) \
1116 	{ reg##_FLG, reg##_CLR, reg##_EN, handler, desc }
1117 
1118 /*
1119  * Table of the "misc" grouping of error interrupts.  Each entry refers to
1120  * another register containing more information.
1121  */
1122 static const struct err_reg_info misc_errs[NUM_MISC_ERRS] = {
1123 /* 0*/	EE(CCE_ERR,		handle_cce_err,    "CceErr"),
1124 /* 1*/	EE(RCV_ERR,		handle_rxe_err,    "RxeErr"),
1125 /* 2*/	EE(MISC_ERR,	handle_misc_err,   "MiscErr"),
1126 /* 3*/	{ 0, 0, 0, NULL }, /* reserved */
1127 /* 4*/	EE(SEND_PIO_ERR,    handle_pio_err,    "PioErr"),
1128 /* 5*/	EE(SEND_DMA_ERR,    handle_sdma_err,   "SDmaErr"),
1129 /* 6*/	EE(SEND_EGRESS_ERR, handle_egress_err, "EgressErr"),
1130 /* 7*/	EE(SEND_ERR,	handle_txe_err,    "TxeErr")
1131 	/* the rest are reserved */
1132 };
1133 
1134 /*
1135  * Index into the Various section of the interrupt sources
1136  * corresponding to the Critical Temperature interrupt.
1137  */
1138 #define TCRIT_INT_SOURCE 4
1139 
1140 /*
1141  * SDMA error interrupt entry - refers to another register containing more
1142  * information.
1143  */
1144 static const struct err_reg_info sdma_eng_err =
1145 	EE(SEND_DMA_ENG_ERR, handle_sdma_eng_err, "SDmaEngErr");
1146 
1147 static const struct err_reg_info various_err[NUM_VARIOUS] = {
1148 /* 0*/	{ 0, 0, 0, NULL }, /* PbcInt */
1149 /* 1*/	{ 0, 0, 0, NULL }, /* GpioAssertInt */
1150 /* 2*/	EE(ASIC_QSFP1,	handle_qsfp_int,	"QSFP1"),
1151 /* 3*/	EE(ASIC_QSFP2,	handle_qsfp_int,	"QSFP2"),
1152 /* 4*/	{ 0, 0, 0, NULL }, /* TCritInt */
1153 	/* rest are reserved */
1154 };
1155 
1156 /*
1157  * The DC encoding of mtu_cap for 10K MTU in the DCC_CFG_PORT_CONFIG
1158  * register can not be derived from the MTU value because 10K is not
1159  * a power of 2. Therefore, we need a constant. Everything else can
1160  * be calculated.
1161  */
1162 #define DCC_CFG_PORT_MTU_CAP_10240 7
1163 
1164 /*
1165  * Table of the DC grouping of error interrupts.  Each entry refers to
1166  * another register containing more information.
1167  */
1168 static const struct err_reg_info dc_errs[NUM_DC_ERRS] = {
1169 /* 0*/	DC_EE1(DCC_ERR,		handle_dcc_err,	       "DCC Err"),
1170 /* 1*/	DC_EE2(DC_LCB_ERR,	handle_lcb_err,	       "LCB Err"),
1171 /* 2*/	DC_EE2(DC_DC8051_ERR,	handle_8051_interrupt, "DC8051 Interrupt"),
1172 /* 3*/	/* dc_lbm_int - special, see is_dc_int() */
1173 	/* the rest are reserved */
1174 };
1175 
1176 struct cntr_entry {
1177 	/*
1178 	 * counter name
1179 	 */
1180 	char *name;
1181 
1182 	/*
1183 	 * csr to read for name (if applicable)
1184 	 */
1185 	u64 csr;
1186 
1187 	/*
1188 	 * offset into dd or ppd to store the counter's value
1189 	 */
1190 	int offset;
1191 
1192 	/*
1193 	 * flags
1194 	 */
1195 	u8 flags;
1196 
1197 	/*
1198 	 * accessor for stat element, context either dd or ppd
1199 	 */
1200 	u64 (*rw_cntr)(const struct cntr_entry *, void *context, int vl,
1201 		       int mode, u64 data);
1202 };
1203 
1204 #define C_RCV_HDR_OVF_FIRST C_RCV_HDR_OVF_0
1205 #define C_RCV_HDR_OVF_LAST C_RCV_HDR_OVF_159
1206 
1207 #define CNTR_ELEM(name, csr, offset, flags, accessor) \
1208 { \
1209 	name, \
1210 	csr, \
1211 	offset, \
1212 	flags, \
1213 	accessor \
1214 }
1215 
1216 /* 32bit RXE */
1217 #define RXE32_PORT_CNTR_ELEM(name, counter, flags) \
1218 CNTR_ELEM(#name, \
1219 	  (counter * 8 + RCV_COUNTER_ARRAY32), \
1220 	  0, flags | CNTR_32BIT, \
1221 	  port_access_u32_csr)
1222 
1223 #define RXE32_DEV_CNTR_ELEM(name, counter, flags) \
1224 CNTR_ELEM(#name, \
1225 	  (counter * 8 + RCV_COUNTER_ARRAY32), \
1226 	  0, flags | CNTR_32BIT, \
1227 	  dev_access_u32_csr)
1228 
1229 /* 64bit RXE */
1230 #define RXE64_PORT_CNTR_ELEM(name, counter, flags) \
1231 CNTR_ELEM(#name, \
1232 	  (counter * 8 + RCV_COUNTER_ARRAY64), \
1233 	  0, flags, \
1234 	  port_access_u64_csr)
1235 
1236 #define RXE64_DEV_CNTR_ELEM(name, counter, flags) \
1237 CNTR_ELEM(#name, \
1238 	  (counter * 8 + RCV_COUNTER_ARRAY64), \
1239 	  0, flags, \
1240 	  dev_access_u64_csr)
1241 
1242 #define OVR_LBL(ctx) C_RCV_HDR_OVF_ ## ctx
1243 #define OVR_ELM(ctx) \
1244 CNTR_ELEM("RcvHdrOvr" #ctx, \
1245 	  (RCV_HDR_OVFL_CNT + ctx * 0x100), \
1246 	  0, CNTR_NORMAL, port_access_u64_csr)
1247 
1248 /* 32bit TXE */
1249 #define TXE32_PORT_CNTR_ELEM(name, counter, flags) \
1250 CNTR_ELEM(#name, \
1251 	  (counter * 8 + SEND_COUNTER_ARRAY32), \
1252 	  0, flags | CNTR_32BIT, \
1253 	  port_access_u32_csr)
1254 
1255 /* 64bit TXE */
1256 #define TXE64_PORT_CNTR_ELEM(name, counter, flags) \
1257 CNTR_ELEM(#name, \
1258 	  (counter * 8 + SEND_COUNTER_ARRAY64), \
1259 	  0, flags, \
1260 	  port_access_u64_csr)
1261 
1262 # define TX64_DEV_CNTR_ELEM(name, counter, flags) \
1263 CNTR_ELEM(#name,\
1264 	  counter * 8 + SEND_COUNTER_ARRAY64, \
1265 	  0, \
1266 	  flags, \
1267 	  dev_access_u64_csr)
1268 
1269 /* CCE */
1270 #define CCE_PERF_DEV_CNTR_ELEM(name, counter, flags) \
1271 CNTR_ELEM(#name, \
1272 	  (counter * 8 + CCE_COUNTER_ARRAY32), \
1273 	  0, flags | CNTR_32BIT, \
1274 	  dev_access_u32_csr)
1275 
1276 #define CCE_INT_DEV_CNTR_ELEM(name, counter, flags) \
1277 CNTR_ELEM(#name, \
1278 	  (counter * 8 + CCE_INT_COUNTER_ARRAY32), \
1279 	  0, flags | CNTR_32BIT, \
1280 	  dev_access_u32_csr)
1281 
1282 /* DC */
1283 #define DC_PERF_CNTR(name, counter, flags) \
1284 CNTR_ELEM(#name, \
1285 	  counter, \
1286 	  0, \
1287 	  flags, \
1288 	  dev_access_u64_csr)
1289 
1290 #define DC_PERF_CNTR_LCB(name, counter, flags) \
1291 CNTR_ELEM(#name, \
1292 	  counter, \
1293 	  0, \
1294 	  flags, \
1295 	  dc_access_lcb_cntr)
1296 
1297 /* ibp counters */
1298 #define SW_IBP_CNTR(name, cntr) \
1299 CNTR_ELEM(#name, \
1300 	  0, \
1301 	  0, \
1302 	  CNTR_SYNTH, \
1303 	  access_ibp_##cntr)
1304 
1305 /**
1306  * hfi_addr_from_offset - return addr for readq/writeq
1307  * @dd - the dd device
1308  * @offset - the offset of the CSR within bar0
1309  *
1310  * This routine selects the appropriate base address
1311  * based on the indicated offset.
1312  */
1313 static inline void __iomem *hfi1_addr_from_offset(
1314 	const struct hfi1_devdata *dd,
1315 	u32 offset)
1316 {
1317 	if (offset >= dd->base2_start)
1318 		return dd->kregbase2 + (offset - dd->base2_start);
1319 	return dd->kregbase1 + offset;
1320 }
1321 
1322 /**
1323  * read_csr - read CSR at the indicated offset
1324  * @dd - the dd device
1325  * @offset - the offset of the CSR within bar0
1326  *
1327  * Return: the value read or all FF's if there
1328  * is no mapping
1329  */
1330 u64 read_csr(const struct hfi1_devdata *dd, u32 offset)
1331 {
1332 	if (dd->flags & HFI1_PRESENT)
1333 		return readq(hfi1_addr_from_offset(dd, offset));
1334 	return -1;
1335 }
1336 
1337 /**
1338  * write_csr - write CSR at the indicated offset
1339  * @dd - the dd device
1340  * @offset - the offset of the CSR within bar0
1341  * @value - value to write
1342  */
1343 void write_csr(const struct hfi1_devdata *dd, u32 offset, u64 value)
1344 {
1345 	if (dd->flags & HFI1_PRESENT) {
1346 		void __iomem *base = hfi1_addr_from_offset(dd, offset);
1347 
1348 		/* avoid write to RcvArray */
1349 		if (WARN_ON(offset >= RCV_ARRAY && offset < dd->base2_start))
1350 			return;
1351 		writeq(value, base);
1352 	}
1353 }
1354 
1355 /**
1356  * get_csr_addr - return te iomem address for offset
1357  * @dd - the dd device
1358  * @offset - the offset of the CSR within bar0
1359  *
1360  * Return: The iomem address to use in subsequent
1361  * writeq/readq operations.
1362  */
1363 void __iomem *get_csr_addr(
1364 	const struct hfi1_devdata *dd,
1365 	u32 offset)
1366 {
1367 	if (dd->flags & HFI1_PRESENT)
1368 		return hfi1_addr_from_offset(dd, offset);
1369 	return NULL;
1370 }
1371 
1372 static inline u64 read_write_csr(const struct hfi1_devdata *dd, u32 csr,
1373 				 int mode, u64 value)
1374 {
1375 	u64 ret;
1376 
1377 	if (mode == CNTR_MODE_R) {
1378 		ret = read_csr(dd, csr);
1379 	} else if (mode == CNTR_MODE_W) {
1380 		write_csr(dd, csr, value);
1381 		ret = value;
1382 	} else {
1383 		dd_dev_err(dd, "Invalid cntr register access mode");
1384 		return 0;
1385 	}
1386 
1387 	hfi1_cdbg(CNTR, "csr 0x%x val 0x%llx mode %d", csr, ret, mode);
1388 	return ret;
1389 }
1390 
1391 /* Dev Access */
1392 static u64 dev_access_u32_csr(const struct cntr_entry *entry,
1393 			      void *context, int vl, int mode, u64 data)
1394 {
1395 	struct hfi1_devdata *dd = context;
1396 	u64 csr = entry->csr;
1397 
1398 	if (entry->flags & CNTR_SDMA) {
1399 		if (vl == CNTR_INVALID_VL)
1400 			return 0;
1401 		csr += 0x100 * vl;
1402 	} else {
1403 		if (vl != CNTR_INVALID_VL)
1404 			return 0;
1405 	}
1406 	return read_write_csr(dd, csr, mode, data);
1407 }
1408 
1409 static u64 access_sde_err_cnt(const struct cntr_entry *entry,
1410 			      void *context, int idx, int mode, u64 data)
1411 {
1412 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1413 
1414 	if (dd->per_sdma && idx < dd->num_sdma)
1415 		return dd->per_sdma[idx].err_cnt;
1416 	return 0;
1417 }
1418 
1419 static u64 access_sde_int_cnt(const struct cntr_entry *entry,
1420 			      void *context, int idx, int mode, u64 data)
1421 {
1422 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1423 
1424 	if (dd->per_sdma && idx < dd->num_sdma)
1425 		return dd->per_sdma[idx].sdma_int_cnt;
1426 	return 0;
1427 }
1428 
1429 static u64 access_sde_idle_int_cnt(const struct cntr_entry *entry,
1430 				   void *context, int idx, int mode, u64 data)
1431 {
1432 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1433 
1434 	if (dd->per_sdma && idx < dd->num_sdma)
1435 		return dd->per_sdma[idx].idle_int_cnt;
1436 	return 0;
1437 }
1438 
1439 static u64 access_sde_progress_int_cnt(const struct cntr_entry *entry,
1440 				       void *context, int idx, int mode,
1441 				       u64 data)
1442 {
1443 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1444 
1445 	if (dd->per_sdma && idx < dd->num_sdma)
1446 		return dd->per_sdma[idx].progress_int_cnt;
1447 	return 0;
1448 }
1449 
1450 static u64 dev_access_u64_csr(const struct cntr_entry *entry, void *context,
1451 			      int vl, int mode, u64 data)
1452 {
1453 	struct hfi1_devdata *dd = context;
1454 
1455 	u64 val = 0;
1456 	u64 csr = entry->csr;
1457 
1458 	if (entry->flags & CNTR_VL) {
1459 		if (vl == CNTR_INVALID_VL)
1460 			return 0;
1461 		csr += 8 * vl;
1462 	} else {
1463 		if (vl != CNTR_INVALID_VL)
1464 			return 0;
1465 	}
1466 
1467 	val = read_write_csr(dd, csr, mode, data);
1468 	return val;
1469 }
1470 
1471 static u64 dc_access_lcb_cntr(const struct cntr_entry *entry, void *context,
1472 			      int vl, int mode, u64 data)
1473 {
1474 	struct hfi1_devdata *dd = context;
1475 	u32 csr = entry->csr;
1476 	int ret = 0;
1477 
1478 	if (vl != CNTR_INVALID_VL)
1479 		return 0;
1480 	if (mode == CNTR_MODE_R)
1481 		ret = read_lcb_csr(dd, csr, &data);
1482 	else if (mode == CNTR_MODE_W)
1483 		ret = write_lcb_csr(dd, csr, data);
1484 
1485 	if (ret) {
1486 		dd_dev_err(dd, "Could not acquire LCB for counter 0x%x", csr);
1487 		return 0;
1488 	}
1489 
1490 	hfi1_cdbg(CNTR, "csr 0x%x val 0x%llx mode %d", csr, data, mode);
1491 	return data;
1492 }
1493 
1494 /* Port Access */
1495 static u64 port_access_u32_csr(const struct cntr_entry *entry, void *context,
1496 			       int vl, int mode, u64 data)
1497 {
1498 	struct hfi1_pportdata *ppd = context;
1499 
1500 	if (vl != CNTR_INVALID_VL)
1501 		return 0;
1502 	return read_write_csr(ppd->dd, entry->csr, mode, data);
1503 }
1504 
1505 static u64 port_access_u64_csr(const struct cntr_entry *entry,
1506 			       void *context, int vl, int mode, u64 data)
1507 {
1508 	struct hfi1_pportdata *ppd = context;
1509 	u64 val;
1510 	u64 csr = entry->csr;
1511 
1512 	if (entry->flags & CNTR_VL) {
1513 		if (vl == CNTR_INVALID_VL)
1514 			return 0;
1515 		csr += 8 * vl;
1516 	} else {
1517 		if (vl != CNTR_INVALID_VL)
1518 			return 0;
1519 	}
1520 	val = read_write_csr(ppd->dd, csr, mode, data);
1521 	return val;
1522 }
1523 
1524 /* Software defined */
1525 static inline u64 read_write_sw(struct hfi1_devdata *dd, u64 *cntr, int mode,
1526 				u64 data)
1527 {
1528 	u64 ret;
1529 
1530 	if (mode == CNTR_MODE_R) {
1531 		ret = *cntr;
1532 	} else if (mode == CNTR_MODE_W) {
1533 		*cntr = data;
1534 		ret = data;
1535 	} else {
1536 		dd_dev_err(dd, "Invalid cntr sw access mode");
1537 		return 0;
1538 	}
1539 
1540 	hfi1_cdbg(CNTR, "val 0x%llx mode %d", ret, mode);
1541 
1542 	return ret;
1543 }
1544 
1545 static u64 access_sw_link_dn_cnt(const struct cntr_entry *entry, void *context,
1546 				 int vl, int mode, u64 data)
1547 {
1548 	struct hfi1_pportdata *ppd = context;
1549 
1550 	if (vl != CNTR_INVALID_VL)
1551 		return 0;
1552 	return read_write_sw(ppd->dd, &ppd->link_downed, mode, data);
1553 }
1554 
1555 static u64 access_sw_link_up_cnt(const struct cntr_entry *entry, void *context,
1556 				 int vl, int mode, u64 data)
1557 {
1558 	struct hfi1_pportdata *ppd = context;
1559 
1560 	if (vl != CNTR_INVALID_VL)
1561 		return 0;
1562 	return read_write_sw(ppd->dd, &ppd->link_up, mode, data);
1563 }
1564 
1565 static u64 access_sw_unknown_frame_cnt(const struct cntr_entry *entry,
1566 				       void *context, int vl, int mode,
1567 				       u64 data)
1568 {
1569 	struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context;
1570 
1571 	if (vl != CNTR_INVALID_VL)
1572 		return 0;
1573 	return read_write_sw(ppd->dd, &ppd->unknown_frame_count, mode, data);
1574 }
1575 
1576 static u64 access_sw_xmit_discards(const struct cntr_entry *entry,
1577 				   void *context, int vl, int mode, u64 data)
1578 {
1579 	struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context;
1580 	u64 zero = 0;
1581 	u64 *counter;
1582 
1583 	if (vl == CNTR_INVALID_VL)
1584 		counter = &ppd->port_xmit_discards;
1585 	else if (vl >= 0 && vl < C_VL_COUNT)
1586 		counter = &ppd->port_xmit_discards_vl[vl];
1587 	else
1588 		counter = &zero;
1589 
1590 	return read_write_sw(ppd->dd, counter, mode, data);
1591 }
1592 
1593 static u64 access_xmit_constraint_errs(const struct cntr_entry *entry,
1594 				       void *context, int vl, int mode,
1595 				       u64 data)
1596 {
1597 	struct hfi1_pportdata *ppd = context;
1598 
1599 	if (vl != CNTR_INVALID_VL)
1600 		return 0;
1601 
1602 	return read_write_sw(ppd->dd, &ppd->port_xmit_constraint_errors,
1603 			     mode, data);
1604 }
1605 
1606 static u64 access_rcv_constraint_errs(const struct cntr_entry *entry,
1607 				      void *context, int vl, int mode, u64 data)
1608 {
1609 	struct hfi1_pportdata *ppd = context;
1610 
1611 	if (vl != CNTR_INVALID_VL)
1612 		return 0;
1613 
1614 	return read_write_sw(ppd->dd, &ppd->port_rcv_constraint_errors,
1615 			     mode, data);
1616 }
1617 
1618 u64 get_all_cpu_total(u64 __percpu *cntr)
1619 {
1620 	int cpu;
1621 	u64 counter = 0;
1622 
1623 	for_each_possible_cpu(cpu)
1624 		counter += *per_cpu_ptr(cntr, cpu);
1625 	return counter;
1626 }
1627 
1628 static u64 read_write_cpu(struct hfi1_devdata *dd, u64 *z_val,
1629 			  u64 __percpu *cntr,
1630 			  int vl, int mode, u64 data)
1631 {
1632 	u64 ret = 0;
1633 
1634 	if (vl != CNTR_INVALID_VL)
1635 		return 0;
1636 
1637 	if (mode == CNTR_MODE_R) {
1638 		ret = get_all_cpu_total(cntr) - *z_val;
1639 	} else if (mode == CNTR_MODE_W) {
1640 		/* A write can only zero the counter */
1641 		if (data == 0)
1642 			*z_val = get_all_cpu_total(cntr);
1643 		else
1644 			dd_dev_err(dd, "Per CPU cntrs can only be zeroed");
1645 	} else {
1646 		dd_dev_err(dd, "Invalid cntr sw cpu access mode");
1647 		return 0;
1648 	}
1649 
1650 	return ret;
1651 }
1652 
1653 static u64 access_sw_cpu_intr(const struct cntr_entry *entry,
1654 			      void *context, int vl, int mode, u64 data)
1655 {
1656 	struct hfi1_devdata *dd = context;
1657 
1658 	return read_write_cpu(dd, &dd->z_int_counter, dd->int_counter, vl,
1659 			      mode, data);
1660 }
1661 
1662 static u64 access_sw_cpu_rcv_limit(const struct cntr_entry *entry,
1663 				   void *context, int vl, int mode, u64 data)
1664 {
1665 	struct hfi1_devdata *dd = context;
1666 
1667 	return read_write_cpu(dd, &dd->z_rcv_limit, dd->rcv_limit, vl,
1668 			      mode, data);
1669 }
1670 
1671 static u64 access_sw_pio_wait(const struct cntr_entry *entry,
1672 			      void *context, int vl, int mode, u64 data)
1673 {
1674 	struct hfi1_devdata *dd = context;
1675 
1676 	return dd->verbs_dev.n_piowait;
1677 }
1678 
1679 static u64 access_sw_pio_drain(const struct cntr_entry *entry,
1680 			       void *context, int vl, int mode, u64 data)
1681 {
1682 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1683 
1684 	return dd->verbs_dev.n_piodrain;
1685 }
1686 
1687 static u64 access_sw_vtx_wait(const struct cntr_entry *entry,
1688 			      void *context, int vl, int mode, u64 data)
1689 {
1690 	struct hfi1_devdata *dd = context;
1691 
1692 	return dd->verbs_dev.n_txwait;
1693 }
1694 
1695 static u64 access_sw_kmem_wait(const struct cntr_entry *entry,
1696 			       void *context, int vl, int mode, u64 data)
1697 {
1698 	struct hfi1_devdata *dd = context;
1699 
1700 	return dd->verbs_dev.n_kmem_wait;
1701 }
1702 
1703 static u64 access_sw_send_schedule(const struct cntr_entry *entry,
1704 				   void *context, int vl, int mode, u64 data)
1705 {
1706 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1707 
1708 	return read_write_cpu(dd, &dd->z_send_schedule, dd->send_schedule, vl,
1709 			      mode, data);
1710 }
1711 
1712 /* Software counters for the error status bits within MISC_ERR_STATUS */
1713 static u64 access_misc_pll_lock_fail_err_cnt(const struct cntr_entry *entry,
1714 					     void *context, int vl, int mode,
1715 					     u64 data)
1716 {
1717 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1718 
1719 	return dd->misc_err_status_cnt[12];
1720 }
1721 
1722 static u64 access_misc_mbist_fail_err_cnt(const struct cntr_entry *entry,
1723 					  void *context, int vl, int mode,
1724 					  u64 data)
1725 {
1726 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1727 
1728 	return dd->misc_err_status_cnt[11];
1729 }
1730 
1731 static u64 access_misc_invalid_eep_cmd_err_cnt(const struct cntr_entry *entry,
1732 					       void *context, int vl, int mode,
1733 					       u64 data)
1734 {
1735 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1736 
1737 	return dd->misc_err_status_cnt[10];
1738 }
1739 
1740 static u64 access_misc_efuse_done_parity_err_cnt(const struct cntr_entry *entry,
1741 						 void *context, int vl,
1742 						 int mode, u64 data)
1743 {
1744 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1745 
1746 	return dd->misc_err_status_cnt[9];
1747 }
1748 
1749 static u64 access_misc_efuse_write_err_cnt(const struct cntr_entry *entry,
1750 					   void *context, int vl, int mode,
1751 					   u64 data)
1752 {
1753 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1754 
1755 	return dd->misc_err_status_cnt[8];
1756 }
1757 
1758 static u64 access_misc_efuse_read_bad_addr_err_cnt(
1759 				const struct cntr_entry *entry,
1760 				void *context, int vl, int mode, u64 data)
1761 {
1762 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1763 
1764 	return dd->misc_err_status_cnt[7];
1765 }
1766 
1767 static u64 access_misc_efuse_csr_parity_err_cnt(const struct cntr_entry *entry,
1768 						void *context, int vl,
1769 						int mode, u64 data)
1770 {
1771 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1772 
1773 	return dd->misc_err_status_cnt[6];
1774 }
1775 
1776 static u64 access_misc_fw_auth_failed_err_cnt(const struct cntr_entry *entry,
1777 					      void *context, int vl, int mode,
1778 					      u64 data)
1779 {
1780 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1781 
1782 	return dd->misc_err_status_cnt[5];
1783 }
1784 
1785 static u64 access_misc_key_mismatch_err_cnt(const struct cntr_entry *entry,
1786 					    void *context, int vl, int mode,
1787 					    u64 data)
1788 {
1789 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1790 
1791 	return dd->misc_err_status_cnt[4];
1792 }
1793 
1794 static u64 access_misc_sbus_write_failed_err_cnt(const struct cntr_entry *entry,
1795 						 void *context, int vl,
1796 						 int mode, u64 data)
1797 {
1798 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1799 
1800 	return dd->misc_err_status_cnt[3];
1801 }
1802 
1803 static u64 access_misc_csr_write_bad_addr_err_cnt(
1804 				const struct cntr_entry *entry,
1805 				void *context, int vl, int mode, u64 data)
1806 {
1807 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1808 
1809 	return dd->misc_err_status_cnt[2];
1810 }
1811 
1812 static u64 access_misc_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
1813 						 void *context, int vl,
1814 						 int mode, u64 data)
1815 {
1816 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1817 
1818 	return dd->misc_err_status_cnt[1];
1819 }
1820 
1821 static u64 access_misc_csr_parity_err_cnt(const struct cntr_entry *entry,
1822 					  void *context, int vl, int mode,
1823 					  u64 data)
1824 {
1825 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1826 
1827 	return dd->misc_err_status_cnt[0];
1828 }
1829 
1830 /*
1831  * Software counter for the aggregate of
1832  * individual CceErrStatus counters
1833  */
1834 static u64 access_sw_cce_err_status_aggregated_cnt(
1835 				const struct cntr_entry *entry,
1836 				void *context, int vl, int mode, u64 data)
1837 {
1838 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1839 
1840 	return dd->sw_cce_err_status_aggregate;
1841 }
1842 
1843 /*
1844  * Software counters corresponding to each of the
1845  * error status bits within CceErrStatus
1846  */
1847 static u64 access_cce_msix_csr_parity_err_cnt(const struct cntr_entry *entry,
1848 					      void *context, int vl, int mode,
1849 					      u64 data)
1850 {
1851 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1852 
1853 	return dd->cce_err_status_cnt[40];
1854 }
1855 
1856 static u64 access_cce_int_map_unc_err_cnt(const struct cntr_entry *entry,
1857 					  void *context, int vl, int mode,
1858 					  u64 data)
1859 {
1860 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1861 
1862 	return dd->cce_err_status_cnt[39];
1863 }
1864 
1865 static u64 access_cce_int_map_cor_err_cnt(const struct cntr_entry *entry,
1866 					  void *context, int vl, int mode,
1867 					  u64 data)
1868 {
1869 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1870 
1871 	return dd->cce_err_status_cnt[38];
1872 }
1873 
1874 static u64 access_cce_msix_table_unc_err_cnt(const struct cntr_entry *entry,
1875 					     void *context, int vl, int mode,
1876 					     u64 data)
1877 {
1878 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1879 
1880 	return dd->cce_err_status_cnt[37];
1881 }
1882 
1883 static u64 access_cce_msix_table_cor_err_cnt(const struct cntr_entry *entry,
1884 					     void *context, int vl, int mode,
1885 					     u64 data)
1886 {
1887 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1888 
1889 	return dd->cce_err_status_cnt[36];
1890 }
1891 
1892 static u64 access_cce_rxdma_conv_fifo_parity_err_cnt(
1893 				const struct cntr_entry *entry,
1894 				void *context, int vl, int mode, u64 data)
1895 {
1896 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1897 
1898 	return dd->cce_err_status_cnt[35];
1899 }
1900 
1901 static u64 access_cce_rcpl_async_fifo_parity_err_cnt(
1902 				const struct cntr_entry *entry,
1903 				void *context, int vl, int mode, u64 data)
1904 {
1905 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1906 
1907 	return dd->cce_err_status_cnt[34];
1908 }
1909 
1910 static u64 access_cce_seg_write_bad_addr_err_cnt(const struct cntr_entry *entry,
1911 						 void *context, int vl,
1912 						 int mode, u64 data)
1913 {
1914 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1915 
1916 	return dd->cce_err_status_cnt[33];
1917 }
1918 
1919 static u64 access_cce_seg_read_bad_addr_err_cnt(const struct cntr_entry *entry,
1920 						void *context, int vl, int mode,
1921 						u64 data)
1922 {
1923 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1924 
1925 	return dd->cce_err_status_cnt[32];
1926 }
1927 
1928 static u64 access_la_triggered_cnt(const struct cntr_entry *entry,
1929 				   void *context, int vl, int mode, u64 data)
1930 {
1931 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1932 
1933 	return dd->cce_err_status_cnt[31];
1934 }
1935 
1936 static u64 access_cce_trgt_cpl_timeout_err_cnt(const struct cntr_entry *entry,
1937 					       void *context, int vl, int mode,
1938 					       u64 data)
1939 {
1940 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1941 
1942 	return dd->cce_err_status_cnt[30];
1943 }
1944 
1945 static u64 access_pcic_receive_parity_err_cnt(const struct cntr_entry *entry,
1946 					      void *context, int vl, int mode,
1947 					      u64 data)
1948 {
1949 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1950 
1951 	return dd->cce_err_status_cnt[29];
1952 }
1953 
1954 static u64 access_pcic_transmit_back_parity_err_cnt(
1955 				const struct cntr_entry *entry,
1956 				void *context, int vl, int mode, u64 data)
1957 {
1958 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1959 
1960 	return dd->cce_err_status_cnt[28];
1961 }
1962 
1963 static u64 access_pcic_transmit_front_parity_err_cnt(
1964 				const struct cntr_entry *entry,
1965 				void *context, int vl, int mode, u64 data)
1966 {
1967 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1968 
1969 	return dd->cce_err_status_cnt[27];
1970 }
1971 
1972 static u64 access_pcic_cpl_dat_q_unc_err_cnt(const struct cntr_entry *entry,
1973 					     void *context, int vl, int mode,
1974 					     u64 data)
1975 {
1976 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1977 
1978 	return dd->cce_err_status_cnt[26];
1979 }
1980 
1981 static u64 access_pcic_cpl_hd_q_unc_err_cnt(const struct cntr_entry *entry,
1982 					    void *context, int vl, int mode,
1983 					    u64 data)
1984 {
1985 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1986 
1987 	return dd->cce_err_status_cnt[25];
1988 }
1989 
1990 static u64 access_pcic_post_dat_q_unc_err_cnt(const struct cntr_entry *entry,
1991 					      void *context, int vl, int mode,
1992 					      u64 data)
1993 {
1994 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1995 
1996 	return dd->cce_err_status_cnt[24];
1997 }
1998 
1999 static u64 access_pcic_post_hd_q_unc_err_cnt(const struct cntr_entry *entry,
2000 					     void *context, int vl, int mode,
2001 					     u64 data)
2002 {
2003 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2004 
2005 	return dd->cce_err_status_cnt[23];
2006 }
2007 
2008 static u64 access_pcic_retry_sot_mem_unc_err_cnt(const struct cntr_entry *entry,
2009 						 void *context, int vl,
2010 						 int mode, u64 data)
2011 {
2012 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2013 
2014 	return dd->cce_err_status_cnt[22];
2015 }
2016 
2017 static u64 access_pcic_retry_mem_unc_err(const struct cntr_entry *entry,
2018 					 void *context, int vl, int mode,
2019 					 u64 data)
2020 {
2021 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2022 
2023 	return dd->cce_err_status_cnt[21];
2024 }
2025 
2026 static u64 access_pcic_n_post_dat_q_parity_err_cnt(
2027 				const struct cntr_entry *entry,
2028 				void *context, int vl, int mode, u64 data)
2029 {
2030 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2031 
2032 	return dd->cce_err_status_cnt[20];
2033 }
2034 
2035 static u64 access_pcic_n_post_h_q_parity_err_cnt(const struct cntr_entry *entry,
2036 						 void *context, int vl,
2037 						 int mode, u64 data)
2038 {
2039 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2040 
2041 	return dd->cce_err_status_cnt[19];
2042 }
2043 
2044 static u64 access_pcic_cpl_dat_q_cor_err_cnt(const struct cntr_entry *entry,
2045 					     void *context, int vl, int mode,
2046 					     u64 data)
2047 {
2048 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2049 
2050 	return dd->cce_err_status_cnt[18];
2051 }
2052 
2053 static u64 access_pcic_cpl_hd_q_cor_err_cnt(const struct cntr_entry *entry,
2054 					    void *context, int vl, int mode,
2055 					    u64 data)
2056 {
2057 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2058 
2059 	return dd->cce_err_status_cnt[17];
2060 }
2061 
2062 static u64 access_pcic_post_dat_q_cor_err_cnt(const struct cntr_entry *entry,
2063 					      void *context, int vl, int mode,
2064 					      u64 data)
2065 {
2066 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2067 
2068 	return dd->cce_err_status_cnt[16];
2069 }
2070 
2071 static u64 access_pcic_post_hd_q_cor_err_cnt(const struct cntr_entry *entry,
2072 					     void *context, int vl, int mode,
2073 					     u64 data)
2074 {
2075 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2076 
2077 	return dd->cce_err_status_cnt[15];
2078 }
2079 
2080 static u64 access_pcic_retry_sot_mem_cor_err_cnt(const struct cntr_entry *entry,
2081 						 void *context, int vl,
2082 						 int mode, u64 data)
2083 {
2084 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2085 
2086 	return dd->cce_err_status_cnt[14];
2087 }
2088 
2089 static u64 access_pcic_retry_mem_cor_err_cnt(const struct cntr_entry *entry,
2090 					     void *context, int vl, int mode,
2091 					     u64 data)
2092 {
2093 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2094 
2095 	return dd->cce_err_status_cnt[13];
2096 }
2097 
2098 static u64 access_cce_cli1_async_fifo_dbg_parity_err_cnt(
2099 				const struct cntr_entry *entry,
2100 				void *context, int vl, int mode, u64 data)
2101 {
2102 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2103 
2104 	return dd->cce_err_status_cnt[12];
2105 }
2106 
2107 static u64 access_cce_cli1_async_fifo_rxdma_parity_err_cnt(
2108 				const struct cntr_entry *entry,
2109 				void *context, int vl, int mode, u64 data)
2110 {
2111 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2112 
2113 	return dd->cce_err_status_cnt[11];
2114 }
2115 
2116 static u64 access_cce_cli1_async_fifo_sdma_hd_parity_err_cnt(
2117 				const struct cntr_entry *entry,
2118 				void *context, int vl, int mode, u64 data)
2119 {
2120 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2121 
2122 	return dd->cce_err_status_cnt[10];
2123 }
2124 
2125 static u64 access_cce_cl1_async_fifo_pio_crdt_parity_err_cnt(
2126 				const struct cntr_entry *entry,
2127 				void *context, int vl, int mode, u64 data)
2128 {
2129 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2130 
2131 	return dd->cce_err_status_cnt[9];
2132 }
2133 
2134 static u64 access_cce_cli2_async_fifo_parity_err_cnt(
2135 				const struct cntr_entry *entry,
2136 				void *context, int vl, int mode, u64 data)
2137 {
2138 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2139 
2140 	return dd->cce_err_status_cnt[8];
2141 }
2142 
2143 static u64 access_cce_csr_cfg_bus_parity_err_cnt(const struct cntr_entry *entry,
2144 						 void *context, int vl,
2145 						 int mode, u64 data)
2146 {
2147 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2148 
2149 	return dd->cce_err_status_cnt[7];
2150 }
2151 
2152 static u64 access_cce_cli0_async_fifo_parity_err_cnt(
2153 				const struct cntr_entry *entry,
2154 				void *context, int vl, int mode, u64 data)
2155 {
2156 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2157 
2158 	return dd->cce_err_status_cnt[6];
2159 }
2160 
2161 static u64 access_cce_rspd_data_parity_err_cnt(const struct cntr_entry *entry,
2162 					       void *context, int vl, int mode,
2163 					       u64 data)
2164 {
2165 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2166 
2167 	return dd->cce_err_status_cnt[5];
2168 }
2169 
2170 static u64 access_cce_trgt_access_err_cnt(const struct cntr_entry *entry,
2171 					  void *context, int vl, int mode,
2172 					  u64 data)
2173 {
2174 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2175 
2176 	return dd->cce_err_status_cnt[4];
2177 }
2178 
2179 static u64 access_cce_trgt_async_fifo_parity_err_cnt(
2180 				const struct cntr_entry *entry,
2181 				void *context, int vl, int mode, u64 data)
2182 {
2183 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2184 
2185 	return dd->cce_err_status_cnt[3];
2186 }
2187 
2188 static u64 access_cce_csr_write_bad_addr_err_cnt(const struct cntr_entry *entry,
2189 						 void *context, int vl,
2190 						 int mode, u64 data)
2191 {
2192 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2193 
2194 	return dd->cce_err_status_cnt[2];
2195 }
2196 
2197 static u64 access_cce_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
2198 						void *context, int vl,
2199 						int mode, u64 data)
2200 {
2201 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2202 
2203 	return dd->cce_err_status_cnt[1];
2204 }
2205 
2206 static u64 access_ccs_csr_parity_err_cnt(const struct cntr_entry *entry,
2207 					 void *context, int vl, int mode,
2208 					 u64 data)
2209 {
2210 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2211 
2212 	return dd->cce_err_status_cnt[0];
2213 }
2214 
2215 /*
2216  * Software counters corresponding to each of the
2217  * error status bits within RcvErrStatus
2218  */
2219 static u64 access_rx_csr_parity_err_cnt(const struct cntr_entry *entry,
2220 					void *context, int vl, int mode,
2221 					u64 data)
2222 {
2223 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2224 
2225 	return dd->rcv_err_status_cnt[63];
2226 }
2227 
2228 static u64 access_rx_csr_write_bad_addr_err_cnt(const struct cntr_entry *entry,
2229 						void *context, int vl,
2230 						int mode, u64 data)
2231 {
2232 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2233 
2234 	return dd->rcv_err_status_cnt[62];
2235 }
2236 
2237 static u64 access_rx_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
2238 					       void *context, int vl, int mode,
2239 					       u64 data)
2240 {
2241 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2242 
2243 	return dd->rcv_err_status_cnt[61];
2244 }
2245 
2246 static u64 access_rx_dma_csr_unc_err_cnt(const struct cntr_entry *entry,
2247 					 void *context, int vl, int mode,
2248 					 u64 data)
2249 {
2250 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2251 
2252 	return dd->rcv_err_status_cnt[60];
2253 }
2254 
2255 static u64 access_rx_dma_dq_fsm_encoding_err_cnt(const struct cntr_entry *entry,
2256 						 void *context, int vl,
2257 						 int mode, u64 data)
2258 {
2259 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2260 
2261 	return dd->rcv_err_status_cnt[59];
2262 }
2263 
2264 static u64 access_rx_dma_eq_fsm_encoding_err_cnt(const struct cntr_entry *entry,
2265 						 void *context, int vl,
2266 						 int mode, u64 data)
2267 {
2268 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2269 
2270 	return dd->rcv_err_status_cnt[58];
2271 }
2272 
2273 static u64 access_rx_dma_csr_parity_err_cnt(const struct cntr_entry *entry,
2274 					    void *context, int vl, int mode,
2275 					    u64 data)
2276 {
2277 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2278 
2279 	return dd->rcv_err_status_cnt[57];
2280 }
2281 
2282 static u64 access_rx_rbuf_data_cor_err_cnt(const struct cntr_entry *entry,
2283 					   void *context, int vl, int mode,
2284 					   u64 data)
2285 {
2286 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2287 
2288 	return dd->rcv_err_status_cnt[56];
2289 }
2290 
2291 static u64 access_rx_rbuf_data_unc_err_cnt(const struct cntr_entry *entry,
2292 					   void *context, int vl, int mode,
2293 					   u64 data)
2294 {
2295 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2296 
2297 	return dd->rcv_err_status_cnt[55];
2298 }
2299 
2300 static u64 access_rx_dma_data_fifo_rd_cor_err_cnt(
2301 				const struct cntr_entry *entry,
2302 				void *context, int vl, int mode, u64 data)
2303 {
2304 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2305 
2306 	return dd->rcv_err_status_cnt[54];
2307 }
2308 
2309 static u64 access_rx_dma_data_fifo_rd_unc_err_cnt(
2310 				const struct cntr_entry *entry,
2311 				void *context, int vl, int mode, u64 data)
2312 {
2313 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2314 
2315 	return dd->rcv_err_status_cnt[53];
2316 }
2317 
2318 static u64 access_rx_dma_hdr_fifo_rd_cor_err_cnt(const struct cntr_entry *entry,
2319 						 void *context, int vl,
2320 						 int mode, u64 data)
2321 {
2322 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2323 
2324 	return dd->rcv_err_status_cnt[52];
2325 }
2326 
2327 static u64 access_rx_dma_hdr_fifo_rd_unc_err_cnt(const struct cntr_entry *entry,
2328 						 void *context, int vl,
2329 						 int mode, u64 data)
2330 {
2331 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2332 
2333 	return dd->rcv_err_status_cnt[51];
2334 }
2335 
2336 static u64 access_rx_rbuf_desc_part2_cor_err_cnt(const struct cntr_entry *entry,
2337 						 void *context, int vl,
2338 						 int mode, u64 data)
2339 {
2340 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2341 
2342 	return dd->rcv_err_status_cnt[50];
2343 }
2344 
2345 static u64 access_rx_rbuf_desc_part2_unc_err_cnt(const struct cntr_entry *entry,
2346 						 void *context, int vl,
2347 						 int mode, u64 data)
2348 {
2349 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2350 
2351 	return dd->rcv_err_status_cnt[49];
2352 }
2353 
2354 static u64 access_rx_rbuf_desc_part1_cor_err_cnt(const struct cntr_entry *entry,
2355 						 void *context, int vl,
2356 						 int mode, u64 data)
2357 {
2358 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2359 
2360 	return dd->rcv_err_status_cnt[48];
2361 }
2362 
2363 static u64 access_rx_rbuf_desc_part1_unc_err_cnt(const struct cntr_entry *entry,
2364 						 void *context, int vl,
2365 						 int mode, u64 data)
2366 {
2367 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2368 
2369 	return dd->rcv_err_status_cnt[47];
2370 }
2371 
2372 static u64 access_rx_hq_intr_fsm_err_cnt(const struct cntr_entry *entry,
2373 					 void *context, int vl, int mode,
2374 					 u64 data)
2375 {
2376 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2377 
2378 	return dd->rcv_err_status_cnt[46];
2379 }
2380 
2381 static u64 access_rx_hq_intr_csr_parity_err_cnt(
2382 				const struct cntr_entry *entry,
2383 				void *context, int vl, int mode, u64 data)
2384 {
2385 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2386 
2387 	return dd->rcv_err_status_cnt[45];
2388 }
2389 
2390 static u64 access_rx_lookup_csr_parity_err_cnt(
2391 				const struct cntr_entry *entry,
2392 				void *context, int vl, int mode, u64 data)
2393 {
2394 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2395 
2396 	return dd->rcv_err_status_cnt[44];
2397 }
2398 
2399 static u64 access_rx_lookup_rcv_array_cor_err_cnt(
2400 				const struct cntr_entry *entry,
2401 				void *context, int vl, int mode, u64 data)
2402 {
2403 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2404 
2405 	return dd->rcv_err_status_cnt[43];
2406 }
2407 
2408 static u64 access_rx_lookup_rcv_array_unc_err_cnt(
2409 				const struct cntr_entry *entry,
2410 				void *context, int vl, int mode, u64 data)
2411 {
2412 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2413 
2414 	return dd->rcv_err_status_cnt[42];
2415 }
2416 
2417 static u64 access_rx_lookup_des_part2_parity_err_cnt(
2418 				const struct cntr_entry *entry,
2419 				void *context, int vl, int mode, u64 data)
2420 {
2421 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2422 
2423 	return dd->rcv_err_status_cnt[41];
2424 }
2425 
2426 static u64 access_rx_lookup_des_part1_unc_cor_err_cnt(
2427 				const struct cntr_entry *entry,
2428 				void *context, int vl, int mode, u64 data)
2429 {
2430 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2431 
2432 	return dd->rcv_err_status_cnt[40];
2433 }
2434 
2435 static u64 access_rx_lookup_des_part1_unc_err_cnt(
2436 				const struct cntr_entry *entry,
2437 				void *context, int vl, int mode, u64 data)
2438 {
2439 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2440 
2441 	return dd->rcv_err_status_cnt[39];
2442 }
2443 
2444 static u64 access_rx_rbuf_next_free_buf_cor_err_cnt(
2445 				const struct cntr_entry *entry,
2446 				void *context, int vl, int mode, u64 data)
2447 {
2448 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2449 
2450 	return dd->rcv_err_status_cnt[38];
2451 }
2452 
2453 static u64 access_rx_rbuf_next_free_buf_unc_err_cnt(
2454 				const struct cntr_entry *entry,
2455 				void *context, int vl, int mode, u64 data)
2456 {
2457 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2458 
2459 	return dd->rcv_err_status_cnt[37];
2460 }
2461 
2462 static u64 access_rbuf_fl_init_wr_addr_parity_err_cnt(
2463 				const struct cntr_entry *entry,
2464 				void *context, int vl, int mode, u64 data)
2465 {
2466 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2467 
2468 	return dd->rcv_err_status_cnt[36];
2469 }
2470 
2471 static u64 access_rx_rbuf_fl_initdone_parity_err_cnt(
2472 				const struct cntr_entry *entry,
2473 				void *context, int vl, int mode, u64 data)
2474 {
2475 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2476 
2477 	return dd->rcv_err_status_cnt[35];
2478 }
2479 
2480 static u64 access_rx_rbuf_fl_write_addr_parity_err_cnt(
2481 				const struct cntr_entry *entry,
2482 				void *context, int vl, int mode, u64 data)
2483 {
2484 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2485 
2486 	return dd->rcv_err_status_cnt[34];
2487 }
2488 
2489 static u64 access_rx_rbuf_fl_rd_addr_parity_err_cnt(
2490 				const struct cntr_entry *entry,
2491 				void *context, int vl, int mode, u64 data)
2492 {
2493 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2494 
2495 	return dd->rcv_err_status_cnt[33];
2496 }
2497 
2498 static u64 access_rx_rbuf_empty_err_cnt(const struct cntr_entry *entry,
2499 					void *context, int vl, int mode,
2500 					u64 data)
2501 {
2502 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2503 
2504 	return dd->rcv_err_status_cnt[32];
2505 }
2506 
2507 static u64 access_rx_rbuf_full_err_cnt(const struct cntr_entry *entry,
2508 				       void *context, int vl, int mode,
2509 				       u64 data)
2510 {
2511 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2512 
2513 	return dd->rcv_err_status_cnt[31];
2514 }
2515 
2516 static u64 access_rbuf_bad_lookup_err_cnt(const struct cntr_entry *entry,
2517 					  void *context, int vl, int mode,
2518 					  u64 data)
2519 {
2520 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2521 
2522 	return dd->rcv_err_status_cnt[30];
2523 }
2524 
2525 static u64 access_rbuf_ctx_id_parity_err_cnt(const struct cntr_entry *entry,
2526 					     void *context, int vl, int mode,
2527 					     u64 data)
2528 {
2529 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2530 
2531 	return dd->rcv_err_status_cnt[29];
2532 }
2533 
2534 static u64 access_rbuf_csr_qeopdw_parity_err_cnt(const struct cntr_entry *entry,
2535 						 void *context, int vl,
2536 						 int mode, u64 data)
2537 {
2538 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2539 
2540 	return dd->rcv_err_status_cnt[28];
2541 }
2542 
2543 static u64 access_rx_rbuf_csr_q_num_of_pkt_parity_err_cnt(
2544 				const struct cntr_entry *entry,
2545 				void *context, int vl, int mode, u64 data)
2546 {
2547 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2548 
2549 	return dd->rcv_err_status_cnt[27];
2550 }
2551 
2552 static u64 access_rx_rbuf_csr_q_t1_ptr_parity_err_cnt(
2553 				const struct cntr_entry *entry,
2554 				void *context, int vl, int mode, u64 data)
2555 {
2556 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2557 
2558 	return dd->rcv_err_status_cnt[26];
2559 }
2560 
2561 static u64 access_rx_rbuf_csr_q_hd_ptr_parity_err_cnt(
2562 				const struct cntr_entry *entry,
2563 				void *context, int vl, int mode, u64 data)
2564 {
2565 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2566 
2567 	return dd->rcv_err_status_cnt[25];
2568 }
2569 
2570 static u64 access_rx_rbuf_csr_q_vld_bit_parity_err_cnt(
2571 				const struct cntr_entry *entry,
2572 				void *context, int vl, int mode, u64 data)
2573 {
2574 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2575 
2576 	return dd->rcv_err_status_cnt[24];
2577 }
2578 
2579 static u64 access_rx_rbuf_csr_q_next_buf_parity_err_cnt(
2580 				const struct cntr_entry *entry,
2581 				void *context, int vl, int mode, u64 data)
2582 {
2583 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2584 
2585 	return dd->rcv_err_status_cnt[23];
2586 }
2587 
2588 static u64 access_rx_rbuf_csr_q_ent_cnt_parity_err_cnt(
2589 				const struct cntr_entry *entry,
2590 				void *context, int vl, int mode, u64 data)
2591 {
2592 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2593 
2594 	return dd->rcv_err_status_cnt[22];
2595 }
2596 
2597 static u64 access_rx_rbuf_csr_q_head_buf_num_parity_err_cnt(
2598 				const struct cntr_entry *entry,
2599 				void *context, int vl, int mode, u64 data)
2600 {
2601 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2602 
2603 	return dd->rcv_err_status_cnt[21];
2604 }
2605 
2606 static u64 access_rx_rbuf_block_list_read_cor_err_cnt(
2607 				const struct cntr_entry *entry,
2608 				void *context, int vl, int mode, u64 data)
2609 {
2610 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2611 
2612 	return dd->rcv_err_status_cnt[20];
2613 }
2614 
2615 static u64 access_rx_rbuf_block_list_read_unc_err_cnt(
2616 				const struct cntr_entry *entry,
2617 				void *context, int vl, int mode, u64 data)
2618 {
2619 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2620 
2621 	return dd->rcv_err_status_cnt[19];
2622 }
2623 
2624 static u64 access_rx_rbuf_lookup_des_cor_err_cnt(const struct cntr_entry *entry,
2625 						 void *context, int vl,
2626 						 int mode, u64 data)
2627 {
2628 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2629 
2630 	return dd->rcv_err_status_cnt[18];
2631 }
2632 
2633 static u64 access_rx_rbuf_lookup_des_unc_err_cnt(const struct cntr_entry *entry,
2634 						 void *context, int vl,
2635 						 int mode, u64 data)
2636 {
2637 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2638 
2639 	return dd->rcv_err_status_cnt[17];
2640 }
2641 
2642 static u64 access_rx_rbuf_lookup_des_reg_unc_cor_err_cnt(
2643 				const struct cntr_entry *entry,
2644 				void *context, int vl, int mode, u64 data)
2645 {
2646 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2647 
2648 	return dd->rcv_err_status_cnt[16];
2649 }
2650 
2651 static u64 access_rx_rbuf_lookup_des_reg_unc_err_cnt(
2652 				const struct cntr_entry *entry,
2653 				void *context, int vl, int mode, u64 data)
2654 {
2655 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2656 
2657 	return dd->rcv_err_status_cnt[15];
2658 }
2659 
2660 static u64 access_rx_rbuf_free_list_cor_err_cnt(const struct cntr_entry *entry,
2661 						void *context, int vl,
2662 						int mode, u64 data)
2663 {
2664 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2665 
2666 	return dd->rcv_err_status_cnt[14];
2667 }
2668 
2669 static u64 access_rx_rbuf_free_list_unc_err_cnt(const struct cntr_entry *entry,
2670 						void *context, int vl,
2671 						int mode, u64 data)
2672 {
2673 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2674 
2675 	return dd->rcv_err_status_cnt[13];
2676 }
2677 
2678 static u64 access_rx_rcv_fsm_encoding_err_cnt(const struct cntr_entry *entry,
2679 					      void *context, int vl, int mode,
2680 					      u64 data)
2681 {
2682 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2683 
2684 	return dd->rcv_err_status_cnt[12];
2685 }
2686 
2687 static u64 access_rx_dma_flag_cor_err_cnt(const struct cntr_entry *entry,
2688 					  void *context, int vl, int mode,
2689 					  u64 data)
2690 {
2691 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2692 
2693 	return dd->rcv_err_status_cnt[11];
2694 }
2695 
2696 static u64 access_rx_dma_flag_unc_err_cnt(const struct cntr_entry *entry,
2697 					  void *context, int vl, int mode,
2698 					  u64 data)
2699 {
2700 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2701 
2702 	return dd->rcv_err_status_cnt[10];
2703 }
2704 
2705 static u64 access_rx_dc_sop_eop_parity_err_cnt(const struct cntr_entry *entry,
2706 					       void *context, int vl, int mode,
2707 					       u64 data)
2708 {
2709 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2710 
2711 	return dd->rcv_err_status_cnt[9];
2712 }
2713 
2714 static u64 access_rx_rcv_csr_parity_err_cnt(const struct cntr_entry *entry,
2715 					    void *context, int vl, int mode,
2716 					    u64 data)
2717 {
2718 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2719 
2720 	return dd->rcv_err_status_cnt[8];
2721 }
2722 
2723 static u64 access_rx_rcv_qp_map_table_cor_err_cnt(
2724 				const struct cntr_entry *entry,
2725 				void *context, int vl, int mode, u64 data)
2726 {
2727 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2728 
2729 	return dd->rcv_err_status_cnt[7];
2730 }
2731 
2732 static u64 access_rx_rcv_qp_map_table_unc_err_cnt(
2733 				const struct cntr_entry *entry,
2734 				void *context, int vl, int mode, u64 data)
2735 {
2736 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2737 
2738 	return dd->rcv_err_status_cnt[6];
2739 }
2740 
2741 static u64 access_rx_rcv_data_cor_err_cnt(const struct cntr_entry *entry,
2742 					  void *context, int vl, int mode,
2743 					  u64 data)
2744 {
2745 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2746 
2747 	return dd->rcv_err_status_cnt[5];
2748 }
2749 
2750 static u64 access_rx_rcv_data_unc_err_cnt(const struct cntr_entry *entry,
2751 					  void *context, int vl, int mode,
2752 					  u64 data)
2753 {
2754 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2755 
2756 	return dd->rcv_err_status_cnt[4];
2757 }
2758 
2759 static u64 access_rx_rcv_hdr_cor_err_cnt(const struct cntr_entry *entry,
2760 					 void *context, int vl, int mode,
2761 					 u64 data)
2762 {
2763 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2764 
2765 	return dd->rcv_err_status_cnt[3];
2766 }
2767 
2768 static u64 access_rx_rcv_hdr_unc_err_cnt(const struct cntr_entry *entry,
2769 					 void *context, int vl, int mode,
2770 					 u64 data)
2771 {
2772 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2773 
2774 	return dd->rcv_err_status_cnt[2];
2775 }
2776 
2777 static u64 access_rx_dc_intf_parity_err_cnt(const struct cntr_entry *entry,
2778 					    void *context, int vl, int mode,
2779 					    u64 data)
2780 {
2781 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2782 
2783 	return dd->rcv_err_status_cnt[1];
2784 }
2785 
2786 static u64 access_rx_dma_csr_cor_err_cnt(const struct cntr_entry *entry,
2787 					 void *context, int vl, int mode,
2788 					 u64 data)
2789 {
2790 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2791 
2792 	return dd->rcv_err_status_cnt[0];
2793 }
2794 
2795 /*
2796  * Software counters corresponding to each of the
2797  * error status bits within SendPioErrStatus
2798  */
2799 static u64 access_pio_pec_sop_head_parity_err_cnt(
2800 				const struct cntr_entry *entry,
2801 				void *context, int vl, int mode, u64 data)
2802 {
2803 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2804 
2805 	return dd->send_pio_err_status_cnt[35];
2806 }
2807 
2808 static u64 access_pio_pcc_sop_head_parity_err_cnt(
2809 				const struct cntr_entry *entry,
2810 				void *context, int vl, int mode, u64 data)
2811 {
2812 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2813 
2814 	return dd->send_pio_err_status_cnt[34];
2815 }
2816 
2817 static u64 access_pio_last_returned_cnt_parity_err_cnt(
2818 				const struct cntr_entry *entry,
2819 				void *context, int vl, int mode, u64 data)
2820 {
2821 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2822 
2823 	return dd->send_pio_err_status_cnt[33];
2824 }
2825 
2826 static u64 access_pio_current_free_cnt_parity_err_cnt(
2827 				const struct cntr_entry *entry,
2828 				void *context, int vl, int mode, u64 data)
2829 {
2830 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2831 
2832 	return dd->send_pio_err_status_cnt[32];
2833 }
2834 
2835 static u64 access_pio_reserved_31_err_cnt(const struct cntr_entry *entry,
2836 					  void *context, int vl, int mode,
2837 					  u64 data)
2838 {
2839 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2840 
2841 	return dd->send_pio_err_status_cnt[31];
2842 }
2843 
2844 static u64 access_pio_reserved_30_err_cnt(const struct cntr_entry *entry,
2845 					  void *context, int vl, int mode,
2846 					  u64 data)
2847 {
2848 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2849 
2850 	return dd->send_pio_err_status_cnt[30];
2851 }
2852 
2853 static u64 access_pio_ppmc_sop_len_err_cnt(const struct cntr_entry *entry,
2854 					   void *context, int vl, int mode,
2855 					   u64 data)
2856 {
2857 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2858 
2859 	return dd->send_pio_err_status_cnt[29];
2860 }
2861 
2862 static u64 access_pio_ppmc_bqc_mem_parity_err_cnt(
2863 				const struct cntr_entry *entry,
2864 				void *context, int vl, int mode, u64 data)
2865 {
2866 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2867 
2868 	return dd->send_pio_err_status_cnt[28];
2869 }
2870 
2871 static u64 access_pio_vl_fifo_parity_err_cnt(const struct cntr_entry *entry,
2872 					     void *context, int vl, int mode,
2873 					     u64 data)
2874 {
2875 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2876 
2877 	return dd->send_pio_err_status_cnt[27];
2878 }
2879 
2880 static u64 access_pio_vlf_sop_parity_err_cnt(const struct cntr_entry *entry,
2881 					     void *context, int vl, int mode,
2882 					     u64 data)
2883 {
2884 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2885 
2886 	return dd->send_pio_err_status_cnt[26];
2887 }
2888 
2889 static u64 access_pio_vlf_v1_len_parity_err_cnt(const struct cntr_entry *entry,
2890 						void *context, int vl,
2891 						int mode, u64 data)
2892 {
2893 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2894 
2895 	return dd->send_pio_err_status_cnt[25];
2896 }
2897 
2898 static u64 access_pio_block_qw_count_parity_err_cnt(
2899 				const struct cntr_entry *entry,
2900 				void *context, int vl, int mode, u64 data)
2901 {
2902 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2903 
2904 	return dd->send_pio_err_status_cnt[24];
2905 }
2906 
2907 static u64 access_pio_write_qw_valid_parity_err_cnt(
2908 				const struct cntr_entry *entry,
2909 				void *context, int vl, int mode, u64 data)
2910 {
2911 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2912 
2913 	return dd->send_pio_err_status_cnt[23];
2914 }
2915 
2916 static u64 access_pio_state_machine_err_cnt(const struct cntr_entry *entry,
2917 					    void *context, int vl, int mode,
2918 					    u64 data)
2919 {
2920 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2921 
2922 	return dd->send_pio_err_status_cnt[22];
2923 }
2924 
2925 static u64 access_pio_write_data_parity_err_cnt(const struct cntr_entry *entry,
2926 						void *context, int vl,
2927 						int mode, u64 data)
2928 {
2929 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2930 
2931 	return dd->send_pio_err_status_cnt[21];
2932 }
2933 
2934 static u64 access_pio_host_addr_mem_cor_err_cnt(const struct cntr_entry *entry,
2935 						void *context, int vl,
2936 						int mode, u64 data)
2937 {
2938 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2939 
2940 	return dd->send_pio_err_status_cnt[20];
2941 }
2942 
2943 static u64 access_pio_host_addr_mem_unc_err_cnt(const struct cntr_entry *entry,
2944 						void *context, int vl,
2945 						int mode, u64 data)
2946 {
2947 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2948 
2949 	return dd->send_pio_err_status_cnt[19];
2950 }
2951 
2952 static u64 access_pio_pkt_evict_sm_or_arb_sm_err_cnt(
2953 				const struct cntr_entry *entry,
2954 				void *context, int vl, int mode, u64 data)
2955 {
2956 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2957 
2958 	return dd->send_pio_err_status_cnt[18];
2959 }
2960 
2961 static u64 access_pio_init_sm_in_err_cnt(const struct cntr_entry *entry,
2962 					 void *context, int vl, int mode,
2963 					 u64 data)
2964 {
2965 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2966 
2967 	return dd->send_pio_err_status_cnt[17];
2968 }
2969 
2970 static u64 access_pio_ppmc_pbl_fifo_err_cnt(const struct cntr_entry *entry,
2971 					    void *context, int vl, int mode,
2972 					    u64 data)
2973 {
2974 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2975 
2976 	return dd->send_pio_err_status_cnt[16];
2977 }
2978 
2979 static u64 access_pio_credit_ret_fifo_parity_err_cnt(
2980 				const struct cntr_entry *entry,
2981 				void *context, int vl, int mode, u64 data)
2982 {
2983 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2984 
2985 	return dd->send_pio_err_status_cnt[15];
2986 }
2987 
2988 static u64 access_pio_v1_len_mem_bank1_cor_err_cnt(
2989 				const struct cntr_entry *entry,
2990 				void *context, int vl, int mode, u64 data)
2991 {
2992 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2993 
2994 	return dd->send_pio_err_status_cnt[14];
2995 }
2996 
2997 static u64 access_pio_v1_len_mem_bank0_cor_err_cnt(
2998 				const struct cntr_entry *entry,
2999 				void *context, int vl, int mode, u64 data)
3000 {
3001 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3002 
3003 	return dd->send_pio_err_status_cnt[13];
3004 }
3005 
3006 static u64 access_pio_v1_len_mem_bank1_unc_err_cnt(
3007 				const struct cntr_entry *entry,
3008 				void *context, int vl, int mode, u64 data)
3009 {
3010 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3011 
3012 	return dd->send_pio_err_status_cnt[12];
3013 }
3014 
3015 static u64 access_pio_v1_len_mem_bank0_unc_err_cnt(
3016 				const struct cntr_entry *entry,
3017 				void *context, int vl, int mode, u64 data)
3018 {
3019 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3020 
3021 	return dd->send_pio_err_status_cnt[11];
3022 }
3023 
3024 static u64 access_pio_sm_pkt_reset_parity_err_cnt(
3025 				const struct cntr_entry *entry,
3026 				void *context, int vl, int mode, u64 data)
3027 {
3028 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3029 
3030 	return dd->send_pio_err_status_cnt[10];
3031 }
3032 
3033 static u64 access_pio_pkt_evict_fifo_parity_err_cnt(
3034 				const struct cntr_entry *entry,
3035 				void *context, int vl, int mode, u64 data)
3036 {
3037 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3038 
3039 	return dd->send_pio_err_status_cnt[9];
3040 }
3041 
3042 static u64 access_pio_sbrdctrl_crrel_fifo_parity_err_cnt(
3043 				const struct cntr_entry *entry,
3044 				void *context, int vl, int mode, u64 data)
3045 {
3046 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3047 
3048 	return dd->send_pio_err_status_cnt[8];
3049 }
3050 
3051 static u64 access_pio_sbrdctl_crrel_parity_err_cnt(
3052 				const struct cntr_entry *entry,
3053 				void *context, int vl, int mode, u64 data)
3054 {
3055 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3056 
3057 	return dd->send_pio_err_status_cnt[7];
3058 }
3059 
3060 static u64 access_pio_pec_fifo_parity_err_cnt(const struct cntr_entry *entry,
3061 					      void *context, int vl, int mode,
3062 					      u64 data)
3063 {
3064 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3065 
3066 	return dd->send_pio_err_status_cnt[6];
3067 }
3068 
3069 static u64 access_pio_pcc_fifo_parity_err_cnt(const struct cntr_entry *entry,
3070 					      void *context, int vl, int mode,
3071 					      u64 data)
3072 {
3073 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3074 
3075 	return dd->send_pio_err_status_cnt[5];
3076 }
3077 
3078 static u64 access_pio_sb_mem_fifo1_err_cnt(const struct cntr_entry *entry,
3079 					   void *context, int vl, int mode,
3080 					   u64 data)
3081 {
3082 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3083 
3084 	return dd->send_pio_err_status_cnt[4];
3085 }
3086 
3087 static u64 access_pio_sb_mem_fifo0_err_cnt(const struct cntr_entry *entry,
3088 					   void *context, int vl, int mode,
3089 					   u64 data)
3090 {
3091 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3092 
3093 	return dd->send_pio_err_status_cnt[3];
3094 }
3095 
3096 static u64 access_pio_csr_parity_err_cnt(const struct cntr_entry *entry,
3097 					 void *context, int vl, int mode,
3098 					 u64 data)
3099 {
3100 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3101 
3102 	return dd->send_pio_err_status_cnt[2];
3103 }
3104 
3105 static u64 access_pio_write_addr_parity_err_cnt(const struct cntr_entry *entry,
3106 						void *context, int vl,
3107 						int mode, u64 data)
3108 {
3109 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3110 
3111 	return dd->send_pio_err_status_cnt[1];
3112 }
3113 
3114 static u64 access_pio_write_bad_ctxt_err_cnt(const struct cntr_entry *entry,
3115 					     void *context, int vl, int mode,
3116 					     u64 data)
3117 {
3118 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3119 
3120 	return dd->send_pio_err_status_cnt[0];
3121 }
3122 
3123 /*
3124  * Software counters corresponding to each of the
3125  * error status bits within SendDmaErrStatus
3126  */
3127 static u64 access_sdma_pcie_req_tracking_cor_err_cnt(
3128 				const struct cntr_entry *entry,
3129 				void *context, int vl, int mode, u64 data)
3130 {
3131 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3132 
3133 	return dd->send_dma_err_status_cnt[3];
3134 }
3135 
3136 static u64 access_sdma_pcie_req_tracking_unc_err_cnt(
3137 				const struct cntr_entry *entry,
3138 				void *context, int vl, int mode, u64 data)
3139 {
3140 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3141 
3142 	return dd->send_dma_err_status_cnt[2];
3143 }
3144 
3145 static u64 access_sdma_csr_parity_err_cnt(const struct cntr_entry *entry,
3146 					  void *context, int vl, int mode,
3147 					  u64 data)
3148 {
3149 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3150 
3151 	return dd->send_dma_err_status_cnt[1];
3152 }
3153 
3154 static u64 access_sdma_rpy_tag_err_cnt(const struct cntr_entry *entry,
3155 				       void *context, int vl, int mode,
3156 				       u64 data)
3157 {
3158 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3159 
3160 	return dd->send_dma_err_status_cnt[0];
3161 }
3162 
3163 /*
3164  * Software counters corresponding to each of the
3165  * error status bits within SendEgressErrStatus
3166  */
3167 static u64 access_tx_read_pio_memory_csr_unc_err_cnt(
3168 				const struct cntr_entry *entry,
3169 				void *context, int vl, int mode, u64 data)
3170 {
3171 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3172 
3173 	return dd->send_egress_err_status_cnt[63];
3174 }
3175 
3176 static u64 access_tx_read_sdma_memory_csr_err_cnt(
3177 				const struct cntr_entry *entry,
3178 				void *context, int vl, int mode, u64 data)
3179 {
3180 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3181 
3182 	return dd->send_egress_err_status_cnt[62];
3183 }
3184 
3185 static u64 access_tx_egress_fifo_cor_err_cnt(const struct cntr_entry *entry,
3186 					     void *context, int vl, int mode,
3187 					     u64 data)
3188 {
3189 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3190 
3191 	return dd->send_egress_err_status_cnt[61];
3192 }
3193 
3194 static u64 access_tx_read_pio_memory_cor_err_cnt(const struct cntr_entry *entry,
3195 						 void *context, int vl,
3196 						 int mode, u64 data)
3197 {
3198 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3199 
3200 	return dd->send_egress_err_status_cnt[60];
3201 }
3202 
3203 static u64 access_tx_read_sdma_memory_cor_err_cnt(
3204 				const struct cntr_entry *entry,
3205 				void *context, int vl, int mode, u64 data)
3206 {
3207 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3208 
3209 	return dd->send_egress_err_status_cnt[59];
3210 }
3211 
3212 static u64 access_tx_sb_hdr_cor_err_cnt(const struct cntr_entry *entry,
3213 					void *context, int vl, int mode,
3214 					u64 data)
3215 {
3216 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3217 
3218 	return dd->send_egress_err_status_cnt[58];
3219 }
3220 
3221 static u64 access_tx_credit_overrun_err_cnt(const struct cntr_entry *entry,
3222 					    void *context, int vl, int mode,
3223 					    u64 data)
3224 {
3225 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3226 
3227 	return dd->send_egress_err_status_cnt[57];
3228 }
3229 
3230 static u64 access_tx_launch_fifo8_cor_err_cnt(const struct cntr_entry *entry,
3231 					      void *context, int vl, int mode,
3232 					      u64 data)
3233 {
3234 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3235 
3236 	return dd->send_egress_err_status_cnt[56];
3237 }
3238 
3239 static u64 access_tx_launch_fifo7_cor_err_cnt(const struct cntr_entry *entry,
3240 					      void *context, int vl, int mode,
3241 					      u64 data)
3242 {
3243 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3244 
3245 	return dd->send_egress_err_status_cnt[55];
3246 }
3247 
3248 static u64 access_tx_launch_fifo6_cor_err_cnt(const struct cntr_entry *entry,
3249 					      void *context, int vl, int mode,
3250 					      u64 data)
3251 {
3252 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3253 
3254 	return dd->send_egress_err_status_cnt[54];
3255 }
3256 
3257 static u64 access_tx_launch_fifo5_cor_err_cnt(const struct cntr_entry *entry,
3258 					      void *context, int vl, int mode,
3259 					      u64 data)
3260 {
3261 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3262 
3263 	return dd->send_egress_err_status_cnt[53];
3264 }
3265 
3266 static u64 access_tx_launch_fifo4_cor_err_cnt(const struct cntr_entry *entry,
3267 					      void *context, int vl, int mode,
3268 					      u64 data)
3269 {
3270 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3271 
3272 	return dd->send_egress_err_status_cnt[52];
3273 }
3274 
3275 static u64 access_tx_launch_fifo3_cor_err_cnt(const struct cntr_entry *entry,
3276 					      void *context, int vl, int mode,
3277 					      u64 data)
3278 {
3279 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3280 
3281 	return dd->send_egress_err_status_cnt[51];
3282 }
3283 
3284 static u64 access_tx_launch_fifo2_cor_err_cnt(const struct cntr_entry *entry,
3285 					      void *context, int vl, int mode,
3286 					      u64 data)
3287 {
3288 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3289 
3290 	return dd->send_egress_err_status_cnt[50];
3291 }
3292 
3293 static u64 access_tx_launch_fifo1_cor_err_cnt(const struct cntr_entry *entry,
3294 					      void *context, int vl, int mode,
3295 					      u64 data)
3296 {
3297 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3298 
3299 	return dd->send_egress_err_status_cnt[49];
3300 }
3301 
3302 static u64 access_tx_launch_fifo0_cor_err_cnt(const struct cntr_entry *entry,
3303 					      void *context, int vl, int mode,
3304 					      u64 data)
3305 {
3306 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3307 
3308 	return dd->send_egress_err_status_cnt[48];
3309 }
3310 
3311 static u64 access_tx_credit_return_vl_err_cnt(const struct cntr_entry *entry,
3312 					      void *context, int vl, int mode,
3313 					      u64 data)
3314 {
3315 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3316 
3317 	return dd->send_egress_err_status_cnt[47];
3318 }
3319 
3320 static u64 access_tx_hcrc_insertion_err_cnt(const struct cntr_entry *entry,
3321 					    void *context, int vl, int mode,
3322 					    u64 data)
3323 {
3324 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3325 
3326 	return dd->send_egress_err_status_cnt[46];
3327 }
3328 
3329 static u64 access_tx_egress_fifo_unc_err_cnt(const struct cntr_entry *entry,
3330 					     void *context, int vl, int mode,
3331 					     u64 data)
3332 {
3333 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3334 
3335 	return dd->send_egress_err_status_cnt[45];
3336 }
3337 
3338 static u64 access_tx_read_pio_memory_unc_err_cnt(const struct cntr_entry *entry,
3339 						 void *context, int vl,
3340 						 int mode, u64 data)
3341 {
3342 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3343 
3344 	return dd->send_egress_err_status_cnt[44];
3345 }
3346 
3347 static u64 access_tx_read_sdma_memory_unc_err_cnt(
3348 				const struct cntr_entry *entry,
3349 				void *context, int vl, int mode, u64 data)
3350 {
3351 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3352 
3353 	return dd->send_egress_err_status_cnt[43];
3354 }
3355 
3356 static u64 access_tx_sb_hdr_unc_err_cnt(const struct cntr_entry *entry,
3357 					void *context, int vl, int mode,
3358 					u64 data)
3359 {
3360 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3361 
3362 	return dd->send_egress_err_status_cnt[42];
3363 }
3364 
3365 static u64 access_tx_credit_return_partiy_err_cnt(
3366 				const struct cntr_entry *entry,
3367 				void *context, int vl, int mode, u64 data)
3368 {
3369 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3370 
3371 	return dd->send_egress_err_status_cnt[41];
3372 }
3373 
3374 static u64 access_tx_launch_fifo8_unc_or_parity_err_cnt(
3375 				const struct cntr_entry *entry,
3376 				void *context, int vl, int mode, u64 data)
3377 {
3378 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3379 
3380 	return dd->send_egress_err_status_cnt[40];
3381 }
3382 
3383 static u64 access_tx_launch_fifo7_unc_or_parity_err_cnt(
3384 				const struct cntr_entry *entry,
3385 				void *context, int vl, int mode, u64 data)
3386 {
3387 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3388 
3389 	return dd->send_egress_err_status_cnt[39];
3390 }
3391 
3392 static u64 access_tx_launch_fifo6_unc_or_parity_err_cnt(
3393 				const struct cntr_entry *entry,
3394 				void *context, int vl, int mode, u64 data)
3395 {
3396 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3397 
3398 	return dd->send_egress_err_status_cnt[38];
3399 }
3400 
3401 static u64 access_tx_launch_fifo5_unc_or_parity_err_cnt(
3402 				const struct cntr_entry *entry,
3403 				void *context, int vl, int mode, u64 data)
3404 {
3405 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3406 
3407 	return dd->send_egress_err_status_cnt[37];
3408 }
3409 
3410 static u64 access_tx_launch_fifo4_unc_or_parity_err_cnt(
3411 				const struct cntr_entry *entry,
3412 				void *context, int vl, int mode, u64 data)
3413 {
3414 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3415 
3416 	return dd->send_egress_err_status_cnt[36];
3417 }
3418 
3419 static u64 access_tx_launch_fifo3_unc_or_parity_err_cnt(
3420 				const struct cntr_entry *entry,
3421 				void *context, int vl, int mode, u64 data)
3422 {
3423 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3424 
3425 	return dd->send_egress_err_status_cnt[35];
3426 }
3427 
3428 static u64 access_tx_launch_fifo2_unc_or_parity_err_cnt(
3429 				const struct cntr_entry *entry,
3430 				void *context, int vl, int mode, u64 data)
3431 {
3432 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3433 
3434 	return dd->send_egress_err_status_cnt[34];
3435 }
3436 
3437 static u64 access_tx_launch_fifo1_unc_or_parity_err_cnt(
3438 				const struct cntr_entry *entry,
3439 				void *context, int vl, int mode, u64 data)
3440 {
3441 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3442 
3443 	return dd->send_egress_err_status_cnt[33];
3444 }
3445 
3446 static u64 access_tx_launch_fifo0_unc_or_parity_err_cnt(
3447 				const struct cntr_entry *entry,
3448 				void *context, int vl, int mode, u64 data)
3449 {
3450 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3451 
3452 	return dd->send_egress_err_status_cnt[32];
3453 }
3454 
3455 static u64 access_tx_sdma15_disallowed_packet_err_cnt(
3456 				const struct cntr_entry *entry,
3457 				void *context, int vl, int mode, u64 data)
3458 {
3459 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3460 
3461 	return dd->send_egress_err_status_cnt[31];
3462 }
3463 
3464 static u64 access_tx_sdma14_disallowed_packet_err_cnt(
3465 				const struct cntr_entry *entry,
3466 				void *context, int vl, int mode, u64 data)
3467 {
3468 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3469 
3470 	return dd->send_egress_err_status_cnt[30];
3471 }
3472 
3473 static u64 access_tx_sdma13_disallowed_packet_err_cnt(
3474 				const struct cntr_entry *entry,
3475 				void *context, int vl, int mode, u64 data)
3476 {
3477 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3478 
3479 	return dd->send_egress_err_status_cnt[29];
3480 }
3481 
3482 static u64 access_tx_sdma12_disallowed_packet_err_cnt(
3483 				const struct cntr_entry *entry,
3484 				void *context, int vl, int mode, u64 data)
3485 {
3486 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3487 
3488 	return dd->send_egress_err_status_cnt[28];
3489 }
3490 
3491 static u64 access_tx_sdma11_disallowed_packet_err_cnt(
3492 				const struct cntr_entry *entry,
3493 				void *context, int vl, int mode, u64 data)
3494 {
3495 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3496 
3497 	return dd->send_egress_err_status_cnt[27];
3498 }
3499 
3500 static u64 access_tx_sdma10_disallowed_packet_err_cnt(
3501 				const struct cntr_entry *entry,
3502 				void *context, int vl, int mode, u64 data)
3503 {
3504 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3505 
3506 	return dd->send_egress_err_status_cnt[26];
3507 }
3508 
3509 static u64 access_tx_sdma9_disallowed_packet_err_cnt(
3510 				const struct cntr_entry *entry,
3511 				void *context, int vl, int mode, u64 data)
3512 {
3513 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3514 
3515 	return dd->send_egress_err_status_cnt[25];
3516 }
3517 
3518 static u64 access_tx_sdma8_disallowed_packet_err_cnt(
3519 				const struct cntr_entry *entry,
3520 				void *context, int vl, int mode, u64 data)
3521 {
3522 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3523 
3524 	return dd->send_egress_err_status_cnt[24];
3525 }
3526 
3527 static u64 access_tx_sdma7_disallowed_packet_err_cnt(
3528 				const struct cntr_entry *entry,
3529 				void *context, int vl, int mode, u64 data)
3530 {
3531 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3532 
3533 	return dd->send_egress_err_status_cnt[23];
3534 }
3535 
3536 static u64 access_tx_sdma6_disallowed_packet_err_cnt(
3537 				const struct cntr_entry *entry,
3538 				void *context, int vl, int mode, u64 data)
3539 {
3540 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3541 
3542 	return dd->send_egress_err_status_cnt[22];
3543 }
3544 
3545 static u64 access_tx_sdma5_disallowed_packet_err_cnt(
3546 				const struct cntr_entry *entry,
3547 				void *context, int vl, int mode, u64 data)
3548 {
3549 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3550 
3551 	return dd->send_egress_err_status_cnt[21];
3552 }
3553 
3554 static u64 access_tx_sdma4_disallowed_packet_err_cnt(
3555 				const struct cntr_entry *entry,
3556 				void *context, int vl, int mode, u64 data)
3557 {
3558 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3559 
3560 	return dd->send_egress_err_status_cnt[20];
3561 }
3562 
3563 static u64 access_tx_sdma3_disallowed_packet_err_cnt(
3564 				const struct cntr_entry *entry,
3565 				void *context, int vl, int mode, u64 data)
3566 {
3567 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3568 
3569 	return dd->send_egress_err_status_cnt[19];
3570 }
3571 
3572 static u64 access_tx_sdma2_disallowed_packet_err_cnt(
3573 				const struct cntr_entry *entry,
3574 				void *context, int vl, int mode, u64 data)
3575 {
3576 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3577 
3578 	return dd->send_egress_err_status_cnt[18];
3579 }
3580 
3581 static u64 access_tx_sdma1_disallowed_packet_err_cnt(
3582 				const struct cntr_entry *entry,
3583 				void *context, int vl, int mode, u64 data)
3584 {
3585 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3586 
3587 	return dd->send_egress_err_status_cnt[17];
3588 }
3589 
3590 static u64 access_tx_sdma0_disallowed_packet_err_cnt(
3591 				const struct cntr_entry *entry,
3592 				void *context, int vl, int mode, u64 data)
3593 {
3594 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3595 
3596 	return dd->send_egress_err_status_cnt[16];
3597 }
3598 
3599 static u64 access_tx_config_parity_err_cnt(const struct cntr_entry *entry,
3600 					   void *context, int vl, int mode,
3601 					   u64 data)
3602 {
3603 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3604 
3605 	return dd->send_egress_err_status_cnt[15];
3606 }
3607 
3608 static u64 access_tx_sbrd_ctl_csr_parity_err_cnt(const struct cntr_entry *entry,
3609 						 void *context, int vl,
3610 						 int mode, u64 data)
3611 {
3612 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3613 
3614 	return dd->send_egress_err_status_cnt[14];
3615 }
3616 
3617 static u64 access_tx_launch_csr_parity_err_cnt(const struct cntr_entry *entry,
3618 					       void *context, int vl, int mode,
3619 					       u64 data)
3620 {
3621 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3622 
3623 	return dd->send_egress_err_status_cnt[13];
3624 }
3625 
3626 static u64 access_tx_illegal_vl_err_cnt(const struct cntr_entry *entry,
3627 					void *context, int vl, int mode,
3628 					u64 data)
3629 {
3630 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3631 
3632 	return dd->send_egress_err_status_cnt[12];
3633 }
3634 
3635 static u64 access_tx_sbrd_ctl_state_machine_parity_err_cnt(
3636 				const struct cntr_entry *entry,
3637 				void *context, int vl, int mode, u64 data)
3638 {
3639 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3640 
3641 	return dd->send_egress_err_status_cnt[11];
3642 }
3643 
3644 static u64 access_egress_reserved_10_err_cnt(const struct cntr_entry *entry,
3645 					     void *context, int vl, int mode,
3646 					     u64 data)
3647 {
3648 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3649 
3650 	return dd->send_egress_err_status_cnt[10];
3651 }
3652 
3653 static u64 access_egress_reserved_9_err_cnt(const struct cntr_entry *entry,
3654 					    void *context, int vl, int mode,
3655 					    u64 data)
3656 {
3657 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3658 
3659 	return dd->send_egress_err_status_cnt[9];
3660 }
3661 
3662 static u64 access_tx_sdma_launch_intf_parity_err_cnt(
3663 				const struct cntr_entry *entry,
3664 				void *context, int vl, int mode, u64 data)
3665 {
3666 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3667 
3668 	return dd->send_egress_err_status_cnt[8];
3669 }
3670 
3671 static u64 access_tx_pio_launch_intf_parity_err_cnt(
3672 				const struct cntr_entry *entry,
3673 				void *context, int vl, int mode, u64 data)
3674 {
3675 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3676 
3677 	return dd->send_egress_err_status_cnt[7];
3678 }
3679 
3680 static u64 access_egress_reserved_6_err_cnt(const struct cntr_entry *entry,
3681 					    void *context, int vl, int mode,
3682 					    u64 data)
3683 {
3684 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3685 
3686 	return dd->send_egress_err_status_cnt[6];
3687 }
3688 
3689 static u64 access_tx_incorrect_link_state_err_cnt(
3690 				const struct cntr_entry *entry,
3691 				void *context, int vl, int mode, u64 data)
3692 {
3693 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3694 
3695 	return dd->send_egress_err_status_cnt[5];
3696 }
3697 
3698 static u64 access_tx_linkdown_err_cnt(const struct cntr_entry *entry,
3699 				      void *context, int vl, int mode,
3700 				      u64 data)
3701 {
3702 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3703 
3704 	return dd->send_egress_err_status_cnt[4];
3705 }
3706 
3707 static u64 access_tx_egress_fifi_underrun_or_parity_err_cnt(
3708 				const struct cntr_entry *entry,
3709 				void *context, int vl, int mode, u64 data)
3710 {
3711 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3712 
3713 	return dd->send_egress_err_status_cnt[3];
3714 }
3715 
3716 static u64 access_egress_reserved_2_err_cnt(const struct cntr_entry *entry,
3717 					    void *context, int vl, int mode,
3718 					    u64 data)
3719 {
3720 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3721 
3722 	return dd->send_egress_err_status_cnt[2];
3723 }
3724 
3725 static u64 access_tx_pkt_integrity_mem_unc_err_cnt(
3726 				const struct cntr_entry *entry,
3727 				void *context, int vl, int mode, u64 data)
3728 {
3729 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3730 
3731 	return dd->send_egress_err_status_cnt[1];
3732 }
3733 
3734 static u64 access_tx_pkt_integrity_mem_cor_err_cnt(
3735 				const struct cntr_entry *entry,
3736 				void *context, int vl, int mode, u64 data)
3737 {
3738 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3739 
3740 	return dd->send_egress_err_status_cnt[0];
3741 }
3742 
3743 /*
3744  * Software counters corresponding to each of the
3745  * error status bits within SendErrStatus
3746  */
3747 static u64 access_send_csr_write_bad_addr_err_cnt(
3748 				const struct cntr_entry *entry,
3749 				void *context, int vl, int mode, u64 data)
3750 {
3751 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3752 
3753 	return dd->send_err_status_cnt[2];
3754 }
3755 
3756 static u64 access_send_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
3757 						 void *context, int vl,
3758 						 int mode, u64 data)
3759 {
3760 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3761 
3762 	return dd->send_err_status_cnt[1];
3763 }
3764 
3765 static u64 access_send_csr_parity_cnt(const struct cntr_entry *entry,
3766 				      void *context, int vl, int mode,
3767 				      u64 data)
3768 {
3769 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3770 
3771 	return dd->send_err_status_cnt[0];
3772 }
3773 
3774 /*
3775  * Software counters corresponding to each of the
3776  * error status bits within SendCtxtErrStatus
3777  */
3778 static u64 access_pio_write_out_of_bounds_err_cnt(
3779 				const struct cntr_entry *entry,
3780 				void *context, int vl, int mode, u64 data)
3781 {
3782 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3783 
3784 	return dd->sw_ctxt_err_status_cnt[4];
3785 }
3786 
3787 static u64 access_pio_write_overflow_err_cnt(const struct cntr_entry *entry,
3788 					     void *context, int vl, int mode,
3789 					     u64 data)
3790 {
3791 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3792 
3793 	return dd->sw_ctxt_err_status_cnt[3];
3794 }
3795 
3796 static u64 access_pio_write_crosses_boundary_err_cnt(
3797 				const struct cntr_entry *entry,
3798 				void *context, int vl, int mode, u64 data)
3799 {
3800 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3801 
3802 	return dd->sw_ctxt_err_status_cnt[2];
3803 }
3804 
3805 static u64 access_pio_disallowed_packet_err_cnt(const struct cntr_entry *entry,
3806 						void *context, int vl,
3807 						int mode, u64 data)
3808 {
3809 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3810 
3811 	return dd->sw_ctxt_err_status_cnt[1];
3812 }
3813 
3814 static u64 access_pio_inconsistent_sop_err_cnt(const struct cntr_entry *entry,
3815 					       void *context, int vl, int mode,
3816 					       u64 data)
3817 {
3818 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3819 
3820 	return dd->sw_ctxt_err_status_cnt[0];
3821 }
3822 
3823 /*
3824  * Software counters corresponding to each of the
3825  * error status bits within SendDmaEngErrStatus
3826  */
3827 static u64 access_sdma_header_request_fifo_cor_err_cnt(
3828 				const struct cntr_entry *entry,
3829 				void *context, int vl, int mode, u64 data)
3830 {
3831 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3832 
3833 	return dd->sw_send_dma_eng_err_status_cnt[23];
3834 }
3835 
3836 static u64 access_sdma_header_storage_cor_err_cnt(
3837 				const struct cntr_entry *entry,
3838 				void *context, int vl, int mode, u64 data)
3839 {
3840 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3841 
3842 	return dd->sw_send_dma_eng_err_status_cnt[22];
3843 }
3844 
3845 static u64 access_sdma_packet_tracking_cor_err_cnt(
3846 				const struct cntr_entry *entry,
3847 				void *context, int vl, int mode, u64 data)
3848 {
3849 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3850 
3851 	return dd->sw_send_dma_eng_err_status_cnt[21];
3852 }
3853 
3854 static u64 access_sdma_assembly_cor_err_cnt(const struct cntr_entry *entry,
3855 					    void *context, int vl, int mode,
3856 					    u64 data)
3857 {
3858 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3859 
3860 	return dd->sw_send_dma_eng_err_status_cnt[20];
3861 }
3862 
3863 static u64 access_sdma_desc_table_cor_err_cnt(const struct cntr_entry *entry,
3864 					      void *context, int vl, int mode,
3865 					      u64 data)
3866 {
3867 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3868 
3869 	return dd->sw_send_dma_eng_err_status_cnt[19];
3870 }
3871 
3872 static u64 access_sdma_header_request_fifo_unc_err_cnt(
3873 				const struct cntr_entry *entry,
3874 				void *context, int vl, int mode, u64 data)
3875 {
3876 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3877 
3878 	return dd->sw_send_dma_eng_err_status_cnt[18];
3879 }
3880 
3881 static u64 access_sdma_header_storage_unc_err_cnt(
3882 				const struct cntr_entry *entry,
3883 				void *context, int vl, int mode, u64 data)
3884 {
3885 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3886 
3887 	return dd->sw_send_dma_eng_err_status_cnt[17];
3888 }
3889 
3890 static u64 access_sdma_packet_tracking_unc_err_cnt(
3891 				const struct cntr_entry *entry,
3892 				void *context, int vl, int mode, u64 data)
3893 {
3894 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3895 
3896 	return dd->sw_send_dma_eng_err_status_cnt[16];
3897 }
3898 
3899 static u64 access_sdma_assembly_unc_err_cnt(const struct cntr_entry *entry,
3900 					    void *context, int vl, int mode,
3901 					    u64 data)
3902 {
3903 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3904 
3905 	return dd->sw_send_dma_eng_err_status_cnt[15];
3906 }
3907 
3908 static u64 access_sdma_desc_table_unc_err_cnt(const struct cntr_entry *entry,
3909 					      void *context, int vl, int mode,
3910 					      u64 data)
3911 {
3912 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3913 
3914 	return dd->sw_send_dma_eng_err_status_cnt[14];
3915 }
3916 
3917 static u64 access_sdma_timeout_err_cnt(const struct cntr_entry *entry,
3918 				       void *context, int vl, int mode,
3919 				       u64 data)
3920 {
3921 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3922 
3923 	return dd->sw_send_dma_eng_err_status_cnt[13];
3924 }
3925 
3926 static u64 access_sdma_header_length_err_cnt(const struct cntr_entry *entry,
3927 					     void *context, int vl, int mode,
3928 					     u64 data)
3929 {
3930 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3931 
3932 	return dd->sw_send_dma_eng_err_status_cnt[12];
3933 }
3934 
3935 static u64 access_sdma_header_address_err_cnt(const struct cntr_entry *entry,
3936 					      void *context, int vl, int mode,
3937 					      u64 data)
3938 {
3939 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3940 
3941 	return dd->sw_send_dma_eng_err_status_cnt[11];
3942 }
3943 
3944 static u64 access_sdma_header_select_err_cnt(const struct cntr_entry *entry,
3945 					     void *context, int vl, int mode,
3946 					     u64 data)
3947 {
3948 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3949 
3950 	return dd->sw_send_dma_eng_err_status_cnt[10];
3951 }
3952 
3953 static u64 access_sdma_reserved_9_err_cnt(const struct cntr_entry *entry,
3954 					  void *context, int vl, int mode,
3955 					  u64 data)
3956 {
3957 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3958 
3959 	return dd->sw_send_dma_eng_err_status_cnt[9];
3960 }
3961 
3962 static u64 access_sdma_packet_desc_overflow_err_cnt(
3963 				const struct cntr_entry *entry,
3964 				void *context, int vl, int mode, u64 data)
3965 {
3966 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3967 
3968 	return dd->sw_send_dma_eng_err_status_cnt[8];
3969 }
3970 
3971 static u64 access_sdma_length_mismatch_err_cnt(const struct cntr_entry *entry,
3972 					       void *context, int vl,
3973 					       int mode, u64 data)
3974 {
3975 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3976 
3977 	return dd->sw_send_dma_eng_err_status_cnt[7];
3978 }
3979 
3980 static u64 access_sdma_halt_err_cnt(const struct cntr_entry *entry,
3981 				    void *context, int vl, int mode, u64 data)
3982 {
3983 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3984 
3985 	return dd->sw_send_dma_eng_err_status_cnt[6];
3986 }
3987 
3988 static u64 access_sdma_mem_read_err_cnt(const struct cntr_entry *entry,
3989 					void *context, int vl, int mode,
3990 					u64 data)
3991 {
3992 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3993 
3994 	return dd->sw_send_dma_eng_err_status_cnt[5];
3995 }
3996 
3997 static u64 access_sdma_first_desc_err_cnt(const struct cntr_entry *entry,
3998 					  void *context, int vl, int mode,
3999 					  u64 data)
4000 {
4001 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4002 
4003 	return dd->sw_send_dma_eng_err_status_cnt[4];
4004 }
4005 
4006 static u64 access_sdma_tail_out_of_bounds_err_cnt(
4007 				const struct cntr_entry *entry,
4008 				void *context, int vl, int mode, u64 data)
4009 {
4010 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4011 
4012 	return dd->sw_send_dma_eng_err_status_cnt[3];
4013 }
4014 
4015 static u64 access_sdma_too_long_err_cnt(const struct cntr_entry *entry,
4016 					void *context, int vl, int mode,
4017 					u64 data)
4018 {
4019 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4020 
4021 	return dd->sw_send_dma_eng_err_status_cnt[2];
4022 }
4023 
4024 static u64 access_sdma_gen_mismatch_err_cnt(const struct cntr_entry *entry,
4025 					    void *context, int vl, int mode,
4026 					    u64 data)
4027 {
4028 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4029 
4030 	return dd->sw_send_dma_eng_err_status_cnt[1];
4031 }
4032 
4033 static u64 access_sdma_wrong_dw_err_cnt(const struct cntr_entry *entry,
4034 					void *context, int vl, int mode,
4035 					u64 data)
4036 {
4037 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4038 
4039 	return dd->sw_send_dma_eng_err_status_cnt[0];
4040 }
4041 
4042 static u64 access_dc_rcv_err_cnt(const struct cntr_entry *entry,
4043 				 void *context, int vl, int mode,
4044 				 u64 data)
4045 {
4046 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4047 
4048 	u64 val = 0;
4049 	u64 csr = entry->csr;
4050 
4051 	val = read_write_csr(dd, csr, mode, data);
4052 	if (mode == CNTR_MODE_R) {
4053 		val = val > CNTR_MAX - dd->sw_rcv_bypass_packet_errors ?
4054 			CNTR_MAX : val + dd->sw_rcv_bypass_packet_errors;
4055 	} else if (mode == CNTR_MODE_W) {
4056 		dd->sw_rcv_bypass_packet_errors = 0;
4057 	} else {
4058 		dd_dev_err(dd, "Invalid cntr register access mode");
4059 		return 0;
4060 	}
4061 	return val;
4062 }
4063 
4064 #define def_access_sw_cpu(cntr) \
4065 static u64 access_sw_cpu_##cntr(const struct cntr_entry *entry,		      \
4066 			      void *context, int vl, int mode, u64 data)      \
4067 {									      \
4068 	struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context;	      \
4069 	return read_write_cpu(ppd->dd, &ppd->ibport_data.rvp.z_ ##cntr,	      \
4070 			      ppd->ibport_data.rvp.cntr, vl,		      \
4071 			      mode, data);				      \
4072 }
4073 
4074 def_access_sw_cpu(rc_acks);
4075 def_access_sw_cpu(rc_qacks);
4076 def_access_sw_cpu(rc_delayed_comp);
4077 
4078 #define def_access_ibp_counter(cntr) \
4079 static u64 access_ibp_##cntr(const struct cntr_entry *entry,		      \
4080 				void *context, int vl, int mode, u64 data)    \
4081 {									      \
4082 	struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context;	      \
4083 									      \
4084 	if (vl != CNTR_INVALID_VL)					      \
4085 		return 0;						      \
4086 									      \
4087 	return read_write_sw(ppd->dd, &ppd->ibport_data.rvp.n_ ##cntr,	      \
4088 			     mode, data);				      \
4089 }
4090 
4091 def_access_ibp_counter(loop_pkts);
4092 def_access_ibp_counter(rc_resends);
4093 def_access_ibp_counter(rnr_naks);
4094 def_access_ibp_counter(other_naks);
4095 def_access_ibp_counter(rc_timeouts);
4096 def_access_ibp_counter(pkt_drops);
4097 def_access_ibp_counter(dmawait);
4098 def_access_ibp_counter(rc_seqnak);
4099 def_access_ibp_counter(rc_dupreq);
4100 def_access_ibp_counter(rdma_seq);
4101 def_access_ibp_counter(unaligned);
4102 def_access_ibp_counter(seq_naks);
4103 
4104 static struct cntr_entry dev_cntrs[DEV_CNTR_LAST] = {
4105 [C_RCV_OVF] = RXE32_DEV_CNTR_ELEM(RcvOverflow, RCV_BUF_OVFL_CNT, CNTR_SYNTH),
4106 [C_RX_TID_FULL] = RXE32_DEV_CNTR_ELEM(RxTIDFullEr, RCV_TID_FULL_ERR_CNT,
4107 			CNTR_NORMAL),
4108 [C_RX_TID_INVALID] = RXE32_DEV_CNTR_ELEM(RxTIDInvalid, RCV_TID_VALID_ERR_CNT,
4109 			CNTR_NORMAL),
4110 [C_RX_TID_FLGMS] = RXE32_DEV_CNTR_ELEM(RxTidFLGMs,
4111 			RCV_TID_FLOW_GEN_MISMATCH_CNT,
4112 			CNTR_NORMAL),
4113 [C_RX_CTX_EGRS] = RXE32_DEV_CNTR_ELEM(RxCtxEgrS, RCV_CONTEXT_EGR_STALL,
4114 			CNTR_NORMAL),
4115 [C_RCV_TID_FLSMS] = RXE32_DEV_CNTR_ELEM(RxTidFLSMs,
4116 			RCV_TID_FLOW_SEQ_MISMATCH_CNT, CNTR_NORMAL),
4117 [C_CCE_PCI_CR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePciCrSt,
4118 			CCE_PCIE_POSTED_CRDT_STALL_CNT, CNTR_NORMAL),
4119 [C_CCE_PCI_TR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePciTrSt, CCE_PCIE_TRGT_STALL_CNT,
4120 			CNTR_NORMAL),
4121 [C_CCE_PIO_WR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePioWrSt, CCE_PIO_WR_STALL_CNT,
4122 			CNTR_NORMAL),
4123 [C_CCE_ERR_INT] = CCE_INT_DEV_CNTR_ELEM(CceErrInt, CCE_ERR_INT_CNT,
4124 			CNTR_NORMAL),
4125 [C_CCE_SDMA_INT] = CCE_INT_DEV_CNTR_ELEM(CceSdmaInt, CCE_SDMA_INT_CNT,
4126 			CNTR_NORMAL),
4127 [C_CCE_MISC_INT] = CCE_INT_DEV_CNTR_ELEM(CceMiscInt, CCE_MISC_INT_CNT,
4128 			CNTR_NORMAL),
4129 [C_CCE_RCV_AV_INT] = CCE_INT_DEV_CNTR_ELEM(CceRcvAvInt, CCE_RCV_AVAIL_INT_CNT,
4130 			CNTR_NORMAL),
4131 [C_CCE_RCV_URG_INT] = CCE_INT_DEV_CNTR_ELEM(CceRcvUrgInt,
4132 			CCE_RCV_URGENT_INT_CNT,	CNTR_NORMAL),
4133 [C_CCE_SEND_CR_INT] = CCE_INT_DEV_CNTR_ELEM(CceSndCrInt,
4134 			CCE_SEND_CREDIT_INT_CNT, CNTR_NORMAL),
4135 [C_DC_UNC_ERR] = DC_PERF_CNTR(DcUnctblErr, DCC_ERR_UNCORRECTABLE_CNT,
4136 			      CNTR_SYNTH),
4137 [C_DC_RCV_ERR] = CNTR_ELEM("DcRecvErr", DCC_ERR_PORTRCV_ERR_CNT, 0, CNTR_SYNTH,
4138 			    access_dc_rcv_err_cnt),
4139 [C_DC_FM_CFG_ERR] = DC_PERF_CNTR(DcFmCfgErr, DCC_ERR_FMCONFIG_ERR_CNT,
4140 				 CNTR_SYNTH),
4141 [C_DC_RMT_PHY_ERR] = DC_PERF_CNTR(DcRmtPhyErr, DCC_ERR_RCVREMOTE_PHY_ERR_CNT,
4142 				  CNTR_SYNTH),
4143 [C_DC_DROPPED_PKT] = DC_PERF_CNTR(DcDroppedPkt, DCC_ERR_DROPPED_PKT_CNT,
4144 				  CNTR_SYNTH),
4145 [C_DC_MC_XMIT_PKTS] = DC_PERF_CNTR(DcMcXmitPkts,
4146 				   DCC_PRF_PORT_XMIT_MULTICAST_CNT, CNTR_SYNTH),
4147 [C_DC_MC_RCV_PKTS] = DC_PERF_CNTR(DcMcRcvPkts,
4148 				  DCC_PRF_PORT_RCV_MULTICAST_PKT_CNT,
4149 				  CNTR_SYNTH),
4150 [C_DC_XMIT_CERR] = DC_PERF_CNTR(DcXmitCorr,
4151 				DCC_PRF_PORT_XMIT_CORRECTABLE_CNT, CNTR_SYNTH),
4152 [C_DC_RCV_CERR] = DC_PERF_CNTR(DcRcvCorrCnt, DCC_PRF_PORT_RCV_CORRECTABLE_CNT,
4153 			       CNTR_SYNTH),
4154 [C_DC_RCV_FCC] = DC_PERF_CNTR(DcRxFCntl, DCC_PRF_RX_FLOW_CRTL_CNT,
4155 			      CNTR_SYNTH),
4156 [C_DC_XMIT_FCC] = DC_PERF_CNTR(DcXmitFCntl, DCC_PRF_TX_FLOW_CRTL_CNT,
4157 			       CNTR_SYNTH),
4158 [C_DC_XMIT_FLITS] = DC_PERF_CNTR(DcXmitFlits, DCC_PRF_PORT_XMIT_DATA_CNT,
4159 				 CNTR_SYNTH),
4160 [C_DC_RCV_FLITS] = DC_PERF_CNTR(DcRcvFlits, DCC_PRF_PORT_RCV_DATA_CNT,
4161 				CNTR_SYNTH),
4162 [C_DC_XMIT_PKTS] = DC_PERF_CNTR(DcXmitPkts, DCC_PRF_PORT_XMIT_PKTS_CNT,
4163 				CNTR_SYNTH),
4164 [C_DC_RCV_PKTS] = DC_PERF_CNTR(DcRcvPkts, DCC_PRF_PORT_RCV_PKTS_CNT,
4165 			       CNTR_SYNTH),
4166 [C_DC_RX_FLIT_VL] = DC_PERF_CNTR(DcRxFlitVl, DCC_PRF_PORT_VL_RCV_DATA_CNT,
4167 				 CNTR_SYNTH | CNTR_VL),
4168 [C_DC_RX_PKT_VL] = DC_PERF_CNTR(DcRxPktVl, DCC_PRF_PORT_VL_RCV_PKTS_CNT,
4169 				CNTR_SYNTH | CNTR_VL),
4170 [C_DC_RCV_FCN] = DC_PERF_CNTR(DcRcvFcn, DCC_PRF_PORT_RCV_FECN_CNT, CNTR_SYNTH),
4171 [C_DC_RCV_FCN_VL] = DC_PERF_CNTR(DcRcvFcnVl, DCC_PRF_PORT_VL_RCV_FECN_CNT,
4172 				 CNTR_SYNTH | CNTR_VL),
4173 [C_DC_RCV_BCN] = DC_PERF_CNTR(DcRcvBcn, DCC_PRF_PORT_RCV_BECN_CNT, CNTR_SYNTH),
4174 [C_DC_RCV_BCN_VL] = DC_PERF_CNTR(DcRcvBcnVl, DCC_PRF_PORT_VL_RCV_BECN_CNT,
4175 				 CNTR_SYNTH | CNTR_VL),
4176 [C_DC_RCV_BBL] = DC_PERF_CNTR(DcRcvBbl, DCC_PRF_PORT_RCV_BUBBLE_CNT,
4177 			      CNTR_SYNTH),
4178 [C_DC_RCV_BBL_VL] = DC_PERF_CNTR(DcRcvBblVl, DCC_PRF_PORT_VL_RCV_BUBBLE_CNT,
4179 				 CNTR_SYNTH | CNTR_VL),
4180 [C_DC_MARK_FECN] = DC_PERF_CNTR(DcMarkFcn, DCC_PRF_PORT_MARK_FECN_CNT,
4181 				CNTR_SYNTH),
4182 [C_DC_MARK_FECN_VL] = DC_PERF_CNTR(DcMarkFcnVl, DCC_PRF_PORT_VL_MARK_FECN_CNT,
4183 				   CNTR_SYNTH | CNTR_VL),
4184 [C_DC_TOTAL_CRC] =
4185 	DC_PERF_CNTR_LCB(DcTotCrc, DC_LCB_ERR_INFO_TOTAL_CRC_ERR,
4186 			 CNTR_SYNTH),
4187 [C_DC_CRC_LN0] = DC_PERF_CNTR_LCB(DcCrcLn0, DC_LCB_ERR_INFO_CRC_ERR_LN0,
4188 				  CNTR_SYNTH),
4189 [C_DC_CRC_LN1] = DC_PERF_CNTR_LCB(DcCrcLn1, DC_LCB_ERR_INFO_CRC_ERR_LN1,
4190 				  CNTR_SYNTH),
4191 [C_DC_CRC_LN2] = DC_PERF_CNTR_LCB(DcCrcLn2, DC_LCB_ERR_INFO_CRC_ERR_LN2,
4192 				  CNTR_SYNTH),
4193 [C_DC_CRC_LN3] = DC_PERF_CNTR_LCB(DcCrcLn3, DC_LCB_ERR_INFO_CRC_ERR_LN3,
4194 				  CNTR_SYNTH),
4195 [C_DC_CRC_MULT_LN] =
4196 	DC_PERF_CNTR_LCB(DcMultLn, DC_LCB_ERR_INFO_CRC_ERR_MULTI_LN,
4197 			 CNTR_SYNTH),
4198 [C_DC_TX_REPLAY] = DC_PERF_CNTR_LCB(DcTxReplay, DC_LCB_ERR_INFO_TX_REPLAY_CNT,
4199 				    CNTR_SYNTH),
4200 [C_DC_RX_REPLAY] = DC_PERF_CNTR_LCB(DcRxReplay, DC_LCB_ERR_INFO_RX_REPLAY_CNT,
4201 				    CNTR_SYNTH),
4202 [C_DC_SEQ_CRC_CNT] =
4203 	DC_PERF_CNTR_LCB(DcLinkSeqCrc, DC_LCB_ERR_INFO_SEQ_CRC_CNT,
4204 			 CNTR_SYNTH),
4205 [C_DC_ESC0_ONLY_CNT] =
4206 	DC_PERF_CNTR_LCB(DcEsc0, DC_LCB_ERR_INFO_ESCAPE_0_ONLY_CNT,
4207 			 CNTR_SYNTH),
4208 [C_DC_ESC0_PLUS1_CNT] =
4209 	DC_PERF_CNTR_LCB(DcEsc1, DC_LCB_ERR_INFO_ESCAPE_0_PLUS1_CNT,
4210 			 CNTR_SYNTH),
4211 [C_DC_ESC0_PLUS2_CNT] =
4212 	DC_PERF_CNTR_LCB(DcEsc0Plus2, DC_LCB_ERR_INFO_ESCAPE_0_PLUS2_CNT,
4213 			 CNTR_SYNTH),
4214 [C_DC_REINIT_FROM_PEER_CNT] =
4215 	DC_PERF_CNTR_LCB(DcReinitPeer, DC_LCB_ERR_INFO_REINIT_FROM_PEER_CNT,
4216 			 CNTR_SYNTH),
4217 [C_DC_SBE_CNT] = DC_PERF_CNTR_LCB(DcSbe, DC_LCB_ERR_INFO_SBE_CNT,
4218 				  CNTR_SYNTH),
4219 [C_DC_MISC_FLG_CNT] =
4220 	DC_PERF_CNTR_LCB(DcMiscFlg, DC_LCB_ERR_INFO_MISC_FLG_CNT,
4221 			 CNTR_SYNTH),
4222 [C_DC_PRF_GOOD_LTP_CNT] =
4223 	DC_PERF_CNTR_LCB(DcGoodLTP, DC_LCB_PRF_GOOD_LTP_CNT, CNTR_SYNTH),
4224 [C_DC_PRF_ACCEPTED_LTP_CNT] =
4225 	DC_PERF_CNTR_LCB(DcAccLTP, DC_LCB_PRF_ACCEPTED_LTP_CNT,
4226 			 CNTR_SYNTH),
4227 [C_DC_PRF_RX_FLIT_CNT] =
4228 	DC_PERF_CNTR_LCB(DcPrfRxFlit, DC_LCB_PRF_RX_FLIT_CNT, CNTR_SYNTH),
4229 [C_DC_PRF_TX_FLIT_CNT] =
4230 	DC_PERF_CNTR_LCB(DcPrfTxFlit, DC_LCB_PRF_TX_FLIT_CNT, CNTR_SYNTH),
4231 [C_DC_PRF_CLK_CNTR] =
4232 	DC_PERF_CNTR_LCB(DcPrfClk, DC_LCB_PRF_CLK_CNTR, CNTR_SYNTH),
4233 [C_DC_PG_DBG_FLIT_CRDTS_CNT] =
4234 	DC_PERF_CNTR_LCB(DcFltCrdts, DC_LCB_PG_DBG_FLIT_CRDTS_CNT, CNTR_SYNTH),
4235 [C_DC_PG_STS_PAUSE_COMPLETE_CNT] =
4236 	DC_PERF_CNTR_LCB(DcPauseComp, DC_LCB_PG_STS_PAUSE_COMPLETE_CNT,
4237 			 CNTR_SYNTH),
4238 [C_DC_PG_STS_TX_SBE_CNT] =
4239 	DC_PERF_CNTR_LCB(DcStsTxSbe, DC_LCB_PG_STS_TX_SBE_CNT, CNTR_SYNTH),
4240 [C_DC_PG_STS_TX_MBE_CNT] =
4241 	DC_PERF_CNTR_LCB(DcStsTxMbe, DC_LCB_PG_STS_TX_MBE_CNT,
4242 			 CNTR_SYNTH),
4243 [C_SW_CPU_INTR] = CNTR_ELEM("Intr", 0, 0, CNTR_NORMAL,
4244 			    access_sw_cpu_intr),
4245 [C_SW_CPU_RCV_LIM] = CNTR_ELEM("RcvLimit", 0, 0, CNTR_NORMAL,
4246 			    access_sw_cpu_rcv_limit),
4247 [C_SW_VTX_WAIT] = CNTR_ELEM("vTxWait", 0, 0, CNTR_NORMAL,
4248 			    access_sw_vtx_wait),
4249 [C_SW_PIO_WAIT] = CNTR_ELEM("PioWait", 0, 0, CNTR_NORMAL,
4250 			    access_sw_pio_wait),
4251 [C_SW_PIO_DRAIN] = CNTR_ELEM("PioDrain", 0, 0, CNTR_NORMAL,
4252 			    access_sw_pio_drain),
4253 [C_SW_KMEM_WAIT] = CNTR_ELEM("KmemWait", 0, 0, CNTR_NORMAL,
4254 			    access_sw_kmem_wait),
4255 [C_SW_SEND_SCHED] = CNTR_ELEM("SendSched", 0, 0, CNTR_NORMAL,
4256 			    access_sw_send_schedule),
4257 [C_SDMA_DESC_FETCHED_CNT] = CNTR_ELEM("SDEDscFdCn",
4258 				      SEND_DMA_DESC_FETCHED_CNT, 0,
4259 				      CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4260 				      dev_access_u32_csr),
4261 [C_SDMA_INT_CNT] = CNTR_ELEM("SDMAInt", 0, 0,
4262 			     CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4263 			     access_sde_int_cnt),
4264 [C_SDMA_ERR_CNT] = CNTR_ELEM("SDMAErrCt", 0, 0,
4265 			     CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4266 			     access_sde_err_cnt),
4267 [C_SDMA_IDLE_INT_CNT] = CNTR_ELEM("SDMAIdInt", 0, 0,
4268 				  CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4269 				  access_sde_idle_int_cnt),
4270 [C_SDMA_PROGRESS_INT_CNT] = CNTR_ELEM("SDMAPrIntCn", 0, 0,
4271 				      CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4272 				      access_sde_progress_int_cnt),
4273 /* MISC_ERR_STATUS */
4274 [C_MISC_PLL_LOCK_FAIL_ERR] = CNTR_ELEM("MISC_PLL_LOCK_FAIL_ERR", 0, 0,
4275 				CNTR_NORMAL,
4276 				access_misc_pll_lock_fail_err_cnt),
4277 [C_MISC_MBIST_FAIL_ERR] = CNTR_ELEM("MISC_MBIST_FAIL_ERR", 0, 0,
4278 				CNTR_NORMAL,
4279 				access_misc_mbist_fail_err_cnt),
4280 [C_MISC_INVALID_EEP_CMD_ERR] = CNTR_ELEM("MISC_INVALID_EEP_CMD_ERR", 0, 0,
4281 				CNTR_NORMAL,
4282 				access_misc_invalid_eep_cmd_err_cnt),
4283 [C_MISC_EFUSE_DONE_PARITY_ERR] = CNTR_ELEM("MISC_EFUSE_DONE_PARITY_ERR", 0, 0,
4284 				CNTR_NORMAL,
4285 				access_misc_efuse_done_parity_err_cnt),
4286 [C_MISC_EFUSE_WRITE_ERR] = CNTR_ELEM("MISC_EFUSE_WRITE_ERR", 0, 0,
4287 				CNTR_NORMAL,
4288 				access_misc_efuse_write_err_cnt),
4289 [C_MISC_EFUSE_READ_BAD_ADDR_ERR] = CNTR_ELEM("MISC_EFUSE_READ_BAD_ADDR_ERR", 0,
4290 				0, CNTR_NORMAL,
4291 				access_misc_efuse_read_bad_addr_err_cnt),
4292 [C_MISC_EFUSE_CSR_PARITY_ERR] = CNTR_ELEM("MISC_EFUSE_CSR_PARITY_ERR", 0, 0,
4293 				CNTR_NORMAL,
4294 				access_misc_efuse_csr_parity_err_cnt),
4295 [C_MISC_FW_AUTH_FAILED_ERR] = CNTR_ELEM("MISC_FW_AUTH_FAILED_ERR", 0, 0,
4296 				CNTR_NORMAL,
4297 				access_misc_fw_auth_failed_err_cnt),
4298 [C_MISC_KEY_MISMATCH_ERR] = CNTR_ELEM("MISC_KEY_MISMATCH_ERR", 0, 0,
4299 				CNTR_NORMAL,
4300 				access_misc_key_mismatch_err_cnt),
4301 [C_MISC_SBUS_WRITE_FAILED_ERR] = CNTR_ELEM("MISC_SBUS_WRITE_FAILED_ERR", 0, 0,
4302 				CNTR_NORMAL,
4303 				access_misc_sbus_write_failed_err_cnt),
4304 [C_MISC_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("MISC_CSR_WRITE_BAD_ADDR_ERR", 0, 0,
4305 				CNTR_NORMAL,
4306 				access_misc_csr_write_bad_addr_err_cnt),
4307 [C_MISC_CSR_READ_BAD_ADDR_ERR] = CNTR_ELEM("MISC_CSR_READ_BAD_ADDR_ERR", 0, 0,
4308 				CNTR_NORMAL,
4309 				access_misc_csr_read_bad_addr_err_cnt),
4310 [C_MISC_CSR_PARITY_ERR] = CNTR_ELEM("MISC_CSR_PARITY_ERR", 0, 0,
4311 				CNTR_NORMAL,
4312 				access_misc_csr_parity_err_cnt),
4313 /* CceErrStatus */
4314 [C_CCE_ERR_STATUS_AGGREGATED_CNT] = CNTR_ELEM("CceErrStatusAggregatedCnt", 0, 0,
4315 				CNTR_NORMAL,
4316 				access_sw_cce_err_status_aggregated_cnt),
4317 [C_CCE_MSIX_CSR_PARITY_ERR] = CNTR_ELEM("CceMsixCsrParityErr", 0, 0,
4318 				CNTR_NORMAL,
4319 				access_cce_msix_csr_parity_err_cnt),
4320 [C_CCE_INT_MAP_UNC_ERR] = CNTR_ELEM("CceIntMapUncErr", 0, 0,
4321 				CNTR_NORMAL,
4322 				access_cce_int_map_unc_err_cnt),
4323 [C_CCE_INT_MAP_COR_ERR] = CNTR_ELEM("CceIntMapCorErr", 0, 0,
4324 				CNTR_NORMAL,
4325 				access_cce_int_map_cor_err_cnt),
4326 [C_CCE_MSIX_TABLE_UNC_ERR] = CNTR_ELEM("CceMsixTableUncErr", 0, 0,
4327 				CNTR_NORMAL,
4328 				access_cce_msix_table_unc_err_cnt),
4329 [C_CCE_MSIX_TABLE_COR_ERR] = CNTR_ELEM("CceMsixTableCorErr", 0, 0,
4330 				CNTR_NORMAL,
4331 				access_cce_msix_table_cor_err_cnt),
4332 [C_CCE_RXDMA_CONV_FIFO_PARITY_ERR] = CNTR_ELEM("CceRxdmaConvFifoParityErr", 0,
4333 				0, CNTR_NORMAL,
4334 				access_cce_rxdma_conv_fifo_parity_err_cnt),
4335 [C_CCE_RCPL_ASYNC_FIFO_PARITY_ERR] = CNTR_ELEM("CceRcplAsyncFifoParityErr", 0,
4336 				0, CNTR_NORMAL,
4337 				access_cce_rcpl_async_fifo_parity_err_cnt),
4338 [C_CCE_SEG_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("CceSegWriteBadAddrErr", 0, 0,
4339 				CNTR_NORMAL,
4340 				access_cce_seg_write_bad_addr_err_cnt),
4341 [C_CCE_SEG_READ_BAD_ADDR_ERR] = CNTR_ELEM("CceSegReadBadAddrErr", 0, 0,
4342 				CNTR_NORMAL,
4343 				access_cce_seg_read_bad_addr_err_cnt),
4344 [C_LA_TRIGGERED] = CNTR_ELEM("Cce LATriggered", 0, 0,
4345 				CNTR_NORMAL,
4346 				access_la_triggered_cnt),
4347 [C_CCE_TRGT_CPL_TIMEOUT_ERR] = CNTR_ELEM("CceTrgtCplTimeoutErr", 0, 0,
4348 				CNTR_NORMAL,
4349 				access_cce_trgt_cpl_timeout_err_cnt),
4350 [C_PCIC_RECEIVE_PARITY_ERR] = CNTR_ELEM("PcicReceiveParityErr", 0, 0,
4351 				CNTR_NORMAL,
4352 				access_pcic_receive_parity_err_cnt),
4353 [C_PCIC_TRANSMIT_BACK_PARITY_ERR] = CNTR_ELEM("PcicTransmitBackParityErr", 0, 0,
4354 				CNTR_NORMAL,
4355 				access_pcic_transmit_back_parity_err_cnt),
4356 [C_PCIC_TRANSMIT_FRONT_PARITY_ERR] = CNTR_ELEM("PcicTransmitFrontParityErr", 0,
4357 				0, CNTR_NORMAL,
4358 				access_pcic_transmit_front_parity_err_cnt),
4359 [C_PCIC_CPL_DAT_Q_UNC_ERR] = CNTR_ELEM("PcicCplDatQUncErr", 0, 0,
4360 				CNTR_NORMAL,
4361 				access_pcic_cpl_dat_q_unc_err_cnt),
4362 [C_PCIC_CPL_HD_Q_UNC_ERR] = CNTR_ELEM("PcicCplHdQUncErr", 0, 0,
4363 				CNTR_NORMAL,
4364 				access_pcic_cpl_hd_q_unc_err_cnt),
4365 [C_PCIC_POST_DAT_Q_UNC_ERR] = CNTR_ELEM("PcicPostDatQUncErr", 0, 0,
4366 				CNTR_NORMAL,
4367 				access_pcic_post_dat_q_unc_err_cnt),
4368 [C_PCIC_POST_HD_Q_UNC_ERR] = CNTR_ELEM("PcicPostHdQUncErr", 0, 0,
4369 				CNTR_NORMAL,
4370 				access_pcic_post_hd_q_unc_err_cnt),
4371 [C_PCIC_RETRY_SOT_MEM_UNC_ERR] = CNTR_ELEM("PcicRetrySotMemUncErr", 0, 0,
4372 				CNTR_NORMAL,
4373 				access_pcic_retry_sot_mem_unc_err_cnt),
4374 [C_PCIC_RETRY_MEM_UNC_ERR] = CNTR_ELEM("PcicRetryMemUncErr", 0, 0,
4375 				CNTR_NORMAL,
4376 				access_pcic_retry_mem_unc_err),
4377 [C_PCIC_N_POST_DAT_Q_PARITY_ERR] = CNTR_ELEM("PcicNPostDatQParityErr", 0, 0,
4378 				CNTR_NORMAL,
4379 				access_pcic_n_post_dat_q_parity_err_cnt),
4380 [C_PCIC_N_POST_H_Q_PARITY_ERR] = CNTR_ELEM("PcicNPostHQParityErr", 0, 0,
4381 				CNTR_NORMAL,
4382 				access_pcic_n_post_h_q_parity_err_cnt),
4383 [C_PCIC_CPL_DAT_Q_COR_ERR] = CNTR_ELEM("PcicCplDatQCorErr", 0, 0,
4384 				CNTR_NORMAL,
4385 				access_pcic_cpl_dat_q_cor_err_cnt),
4386 [C_PCIC_CPL_HD_Q_COR_ERR] = CNTR_ELEM("PcicCplHdQCorErr", 0, 0,
4387 				CNTR_NORMAL,
4388 				access_pcic_cpl_hd_q_cor_err_cnt),
4389 [C_PCIC_POST_DAT_Q_COR_ERR] = CNTR_ELEM("PcicPostDatQCorErr", 0, 0,
4390 				CNTR_NORMAL,
4391 				access_pcic_post_dat_q_cor_err_cnt),
4392 [C_PCIC_POST_HD_Q_COR_ERR] = CNTR_ELEM("PcicPostHdQCorErr", 0, 0,
4393 				CNTR_NORMAL,
4394 				access_pcic_post_hd_q_cor_err_cnt),
4395 [C_PCIC_RETRY_SOT_MEM_COR_ERR] = CNTR_ELEM("PcicRetrySotMemCorErr", 0, 0,
4396 				CNTR_NORMAL,
4397 				access_pcic_retry_sot_mem_cor_err_cnt),
4398 [C_PCIC_RETRY_MEM_COR_ERR] = CNTR_ELEM("PcicRetryMemCorErr", 0, 0,
4399 				CNTR_NORMAL,
4400 				access_pcic_retry_mem_cor_err_cnt),
4401 [C_CCE_CLI1_ASYNC_FIFO_DBG_PARITY_ERR] = CNTR_ELEM(
4402 				"CceCli1AsyncFifoDbgParityError", 0, 0,
4403 				CNTR_NORMAL,
4404 				access_cce_cli1_async_fifo_dbg_parity_err_cnt),
4405 [C_CCE_CLI1_ASYNC_FIFO_RXDMA_PARITY_ERR] = CNTR_ELEM(
4406 				"CceCli1AsyncFifoRxdmaParityError", 0, 0,
4407 				CNTR_NORMAL,
4408 				access_cce_cli1_async_fifo_rxdma_parity_err_cnt
4409 				),
4410 [C_CCE_CLI1_ASYNC_FIFO_SDMA_HD_PARITY_ERR] = CNTR_ELEM(
4411 			"CceCli1AsyncFifoSdmaHdParityErr", 0, 0,
4412 			CNTR_NORMAL,
4413 			access_cce_cli1_async_fifo_sdma_hd_parity_err_cnt),
4414 [C_CCE_CLI1_ASYNC_FIFO_PIO_CRDT_PARITY_ERR] = CNTR_ELEM(
4415 			"CceCli1AsyncFifoPioCrdtParityErr", 0, 0,
4416 			CNTR_NORMAL,
4417 			access_cce_cl1_async_fifo_pio_crdt_parity_err_cnt),
4418 [C_CCE_CLI2_ASYNC_FIFO_PARITY_ERR] = CNTR_ELEM("CceCli2AsyncFifoParityErr", 0,
4419 			0, CNTR_NORMAL,
4420 			access_cce_cli2_async_fifo_parity_err_cnt),
4421 [C_CCE_CSR_CFG_BUS_PARITY_ERR] = CNTR_ELEM("CceCsrCfgBusParityErr", 0, 0,
4422 			CNTR_NORMAL,
4423 			access_cce_csr_cfg_bus_parity_err_cnt),
4424 [C_CCE_CLI0_ASYNC_FIFO_PARTIY_ERR] = CNTR_ELEM("CceCli0AsyncFifoParityErr", 0,
4425 			0, CNTR_NORMAL,
4426 			access_cce_cli0_async_fifo_parity_err_cnt),
4427 [C_CCE_RSPD_DATA_PARITY_ERR] = CNTR_ELEM("CceRspdDataParityErr", 0, 0,
4428 			CNTR_NORMAL,
4429 			access_cce_rspd_data_parity_err_cnt),
4430 [C_CCE_TRGT_ACCESS_ERR] = CNTR_ELEM("CceTrgtAccessErr", 0, 0,
4431 			CNTR_NORMAL,
4432 			access_cce_trgt_access_err_cnt),
4433 [C_CCE_TRGT_ASYNC_FIFO_PARITY_ERR] = CNTR_ELEM("CceTrgtAsyncFifoParityErr", 0,
4434 			0, CNTR_NORMAL,
4435 			access_cce_trgt_async_fifo_parity_err_cnt),
4436 [C_CCE_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("CceCsrWriteBadAddrErr", 0, 0,
4437 			CNTR_NORMAL,
4438 			access_cce_csr_write_bad_addr_err_cnt),
4439 [C_CCE_CSR_READ_BAD_ADDR_ERR] = CNTR_ELEM("CceCsrReadBadAddrErr", 0, 0,
4440 			CNTR_NORMAL,
4441 			access_cce_csr_read_bad_addr_err_cnt),
4442 [C_CCE_CSR_PARITY_ERR] = CNTR_ELEM("CceCsrParityErr", 0, 0,
4443 			CNTR_NORMAL,
4444 			access_ccs_csr_parity_err_cnt),
4445 
4446 /* RcvErrStatus */
4447 [C_RX_CSR_PARITY_ERR] = CNTR_ELEM("RxCsrParityErr", 0, 0,
4448 			CNTR_NORMAL,
4449 			access_rx_csr_parity_err_cnt),
4450 [C_RX_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("RxCsrWriteBadAddrErr", 0, 0,
4451 			CNTR_NORMAL,
4452 			access_rx_csr_write_bad_addr_err_cnt),
4453 [C_RX_CSR_READ_BAD_ADDR_ERR] = CNTR_ELEM("RxCsrReadBadAddrErr", 0, 0,
4454 			CNTR_NORMAL,
4455 			access_rx_csr_read_bad_addr_err_cnt),
4456 [C_RX_DMA_CSR_UNC_ERR] = CNTR_ELEM("RxDmaCsrUncErr", 0, 0,
4457 			CNTR_NORMAL,
4458 			access_rx_dma_csr_unc_err_cnt),
4459 [C_RX_DMA_DQ_FSM_ENCODING_ERR] = CNTR_ELEM("RxDmaDqFsmEncodingErr", 0, 0,
4460 			CNTR_NORMAL,
4461 			access_rx_dma_dq_fsm_encoding_err_cnt),
4462 [C_RX_DMA_EQ_FSM_ENCODING_ERR] = CNTR_ELEM("RxDmaEqFsmEncodingErr", 0, 0,
4463 			CNTR_NORMAL,
4464 			access_rx_dma_eq_fsm_encoding_err_cnt),
4465 [C_RX_DMA_CSR_PARITY_ERR] = CNTR_ELEM("RxDmaCsrParityErr", 0, 0,
4466 			CNTR_NORMAL,
4467 			access_rx_dma_csr_parity_err_cnt),
4468 [C_RX_RBUF_DATA_COR_ERR] = CNTR_ELEM("RxRbufDataCorErr", 0, 0,
4469 			CNTR_NORMAL,
4470 			access_rx_rbuf_data_cor_err_cnt),
4471 [C_RX_RBUF_DATA_UNC_ERR] = CNTR_ELEM("RxRbufDataUncErr", 0, 0,
4472 			CNTR_NORMAL,
4473 			access_rx_rbuf_data_unc_err_cnt),
4474 [C_RX_DMA_DATA_FIFO_RD_COR_ERR] = CNTR_ELEM("RxDmaDataFifoRdCorErr", 0, 0,
4475 			CNTR_NORMAL,
4476 			access_rx_dma_data_fifo_rd_cor_err_cnt),
4477 [C_RX_DMA_DATA_FIFO_RD_UNC_ERR] = CNTR_ELEM("RxDmaDataFifoRdUncErr", 0, 0,
4478 			CNTR_NORMAL,
4479 			access_rx_dma_data_fifo_rd_unc_err_cnt),
4480 [C_RX_DMA_HDR_FIFO_RD_COR_ERR] = CNTR_ELEM("RxDmaHdrFifoRdCorErr", 0, 0,
4481 			CNTR_NORMAL,
4482 			access_rx_dma_hdr_fifo_rd_cor_err_cnt),
4483 [C_RX_DMA_HDR_FIFO_RD_UNC_ERR] = CNTR_ELEM("RxDmaHdrFifoRdUncErr", 0, 0,
4484 			CNTR_NORMAL,
4485 			access_rx_dma_hdr_fifo_rd_unc_err_cnt),
4486 [C_RX_RBUF_DESC_PART2_COR_ERR] = CNTR_ELEM("RxRbufDescPart2CorErr", 0, 0,
4487 			CNTR_NORMAL,
4488 			access_rx_rbuf_desc_part2_cor_err_cnt),
4489 [C_RX_RBUF_DESC_PART2_UNC_ERR] = CNTR_ELEM("RxRbufDescPart2UncErr", 0, 0,
4490 			CNTR_NORMAL,
4491 			access_rx_rbuf_desc_part2_unc_err_cnt),
4492 [C_RX_RBUF_DESC_PART1_COR_ERR] = CNTR_ELEM("RxRbufDescPart1CorErr", 0, 0,
4493 			CNTR_NORMAL,
4494 			access_rx_rbuf_desc_part1_cor_err_cnt),
4495 [C_RX_RBUF_DESC_PART1_UNC_ERR] = CNTR_ELEM("RxRbufDescPart1UncErr", 0, 0,
4496 			CNTR_NORMAL,
4497 			access_rx_rbuf_desc_part1_unc_err_cnt),
4498 [C_RX_HQ_INTR_FSM_ERR] = CNTR_ELEM("RxHqIntrFsmErr", 0, 0,
4499 			CNTR_NORMAL,
4500 			access_rx_hq_intr_fsm_err_cnt),
4501 [C_RX_HQ_INTR_CSR_PARITY_ERR] = CNTR_ELEM("RxHqIntrCsrParityErr", 0, 0,
4502 			CNTR_NORMAL,
4503 			access_rx_hq_intr_csr_parity_err_cnt),
4504 [C_RX_LOOKUP_CSR_PARITY_ERR] = CNTR_ELEM("RxLookupCsrParityErr", 0, 0,
4505 			CNTR_NORMAL,
4506 			access_rx_lookup_csr_parity_err_cnt),
4507 [C_RX_LOOKUP_RCV_ARRAY_COR_ERR] = CNTR_ELEM("RxLookupRcvArrayCorErr", 0, 0,
4508 			CNTR_NORMAL,
4509 			access_rx_lookup_rcv_array_cor_err_cnt),
4510 [C_RX_LOOKUP_RCV_ARRAY_UNC_ERR] = CNTR_ELEM("RxLookupRcvArrayUncErr", 0, 0,
4511 			CNTR_NORMAL,
4512 			access_rx_lookup_rcv_array_unc_err_cnt),
4513 [C_RX_LOOKUP_DES_PART2_PARITY_ERR] = CNTR_ELEM("RxLookupDesPart2ParityErr", 0,
4514 			0, CNTR_NORMAL,
4515 			access_rx_lookup_des_part2_parity_err_cnt),
4516 [C_RX_LOOKUP_DES_PART1_UNC_COR_ERR] = CNTR_ELEM("RxLookupDesPart1UncCorErr", 0,
4517 			0, CNTR_NORMAL,
4518 			access_rx_lookup_des_part1_unc_cor_err_cnt),
4519 [C_RX_LOOKUP_DES_PART1_UNC_ERR] = CNTR_ELEM("RxLookupDesPart1UncErr", 0, 0,
4520 			CNTR_NORMAL,
4521 			access_rx_lookup_des_part1_unc_err_cnt),
4522 [C_RX_RBUF_NEXT_FREE_BUF_COR_ERR] = CNTR_ELEM("RxRbufNextFreeBufCorErr", 0, 0,
4523 			CNTR_NORMAL,
4524 			access_rx_rbuf_next_free_buf_cor_err_cnt),
4525 [C_RX_RBUF_NEXT_FREE_BUF_UNC_ERR] = CNTR_ELEM("RxRbufNextFreeBufUncErr", 0, 0,
4526 			CNTR_NORMAL,
4527 			access_rx_rbuf_next_free_buf_unc_err_cnt),
4528 [C_RX_RBUF_FL_INIT_WR_ADDR_PARITY_ERR] = CNTR_ELEM(
4529 			"RxRbufFlInitWrAddrParityErr", 0, 0,
4530 			CNTR_NORMAL,
4531 			access_rbuf_fl_init_wr_addr_parity_err_cnt),
4532 [C_RX_RBUF_FL_INITDONE_PARITY_ERR] = CNTR_ELEM("RxRbufFlInitdoneParityErr", 0,
4533 			0, CNTR_NORMAL,
4534 			access_rx_rbuf_fl_initdone_parity_err_cnt),
4535 [C_RX_RBUF_FL_WRITE_ADDR_PARITY_ERR] = CNTR_ELEM("RxRbufFlWrAddrParityErr", 0,
4536 			0, CNTR_NORMAL,
4537 			access_rx_rbuf_fl_write_addr_parity_err_cnt),
4538 [C_RX_RBUF_FL_RD_ADDR_PARITY_ERR] = CNTR_ELEM("RxRbufFlRdAddrParityErr", 0, 0,
4539 			CNTR_NORMAL,
4540 			access_rx_rbuf_fl_rd_addr_parity_err_cnt),
4541 [C_RX_RBUF_EMPTY_ERR] = CNTR_ELEM("RxRbufEmptyErr", 0, 0,
4542 			CNTR_NORMAL,
4543 			access_rx_rbuf_empty_err_cnt),
4544 [C_RX_RBUF_FULL_ERR] = CNTR_ELEM("RxRbufFullErr", 0, 0,
4545 			CNTR_NORMAL,
4546 			access_rx_rbuf_full_err_cnt),
4547 [C_RX_RBUF_BAD_LOOKUP_ERR] = CNTR_ELEM("RxRBufBadLookupErr", 0, 0,
4548 			CNTR_NORMAL,
4549 			access_rbuf_bad_lookup_err_cnt),
4550 [C_RX_RBUF_CTX_ID_PARITY_ERR] = CNTR_ELEM("RxRbufCtxIdParityErr", 0, 0,
4551 			CNTR_NORMAL,
4552 			access_rbuf_ctx_id_parity_err_cnt),
4553 [C_RX_RBUF_CSR_QEOPDW_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQEOPDWParityErr", 0, 0,
4554 			CNTR_NORMAL,
4555 			access_rbuf_csr_qeopdw_parity_err_cnt),
4556 [C_RX_RBUF_CSR_Q_NUM_OF_PKT_PARITY_ERR] = CNTR_ELEM(
4557 			"RxRbufCsrQNumOfPktParityErr", 0, 0,
4558 			CNTR_NORMAL,
4559 			access_rx_rbuf_csr_q_num_of_pkt_parity_err_cnt),
4560 [C_RX_RBUF_CSR_Q_T1_PTR_PARITY_ERR] = CNTR_ELEM(
4561 			"RxRbufCsrQTlPtrParityErr", 0, 0,
4562 			CNTR_NORMAL,
4563 			access_rx_rbuf_csr_q_t1_ptr_parity_err_cnt),
4564 [C_RX_RBUF_CSR_Q_HD_PTR_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQHdPtrParityErr", 0,
4565 			0, CNTR_NORMAL,
4566 			access_rx_rbuf_csr_q_hd_ptr_parity_err_cnt),
4567 [C_RX_RBUF_CSR_Q_VLD_BIT_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQVldBitParityErr", 0,
4568 			0, CNTR_NORMAL,
4569 			access_rx_rbuf_csr_q_vld_bit_parity_err_cnt),
4570 [C_RX_RBUF_CSR_Q_NEXT_BUF_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQNextBufParityErr",
4571 			0, 0, CNTR_NORMAL,
4572 			access_rx_rbuf_csr_q_next_buf_parity_err_cnt),
4573 [C_RX_RBUF_CSR_Q_ENT_CNT_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQEntCntParityErr", 0,
4574 			0, CNTR_NORMAL,
4575 			access_rx_rbuf_csr_q_ent_cnt_parity_err_cnt),
4576 [C_RX_RBUF_CSR_Q_HEAD_BUF_NUM_PARITY_ERR] = CNTR_ELEM(
4577 			"RxRbufCsrQHeadBufNumParityErr", 0, 0,
4578 			CNTR_NORMAL,
4579 			access_rx_rbuf_csr_q_head_buf_num_parity_err_cnt),
4580 [C_RX_RBUF_BLOCK_LIST_READ_COR_ERR] = CNTR_ELEM("RxRbufBlockListReadCorErr", 0,
4581 			0, CNTR_NORMAL,
4582 			access_rx_rbuf_block_list_read_cor_err_cnt),
4583 [C_RX_RBUF_BLOCK_LIST_READ_UNC_ERR] = CNTR_ELEM("RxRbufBlockListReadUncErr", 0,
4584 			0, CNTR_NORMAL,
4585 			access_rx_rbuf_block_list_read_unc_err_cnt),
4586 [C_RX_RBUF_LOOKUP_DES_COR_ERR] = CNTR_ELEM("RxRbufLookupDesCorErr", 0, 0,
4587 			CNTR_NORMAL,
4588 			access_rx_rbuf_lookup_des_cor_err_cnt),
4589 [C_RX_RBUF_LOOKUP_DES_UNC_ERR] = CNTR_ELEM("RxRbufLookupDesUncErr", 0, 0,
4590 			CNTR_NORMAL,
4591 			access_rx_rbuf_lookup_des_unc_err_cnt),
4592 [C_RX_RBUF_LOOKUP_DES_REG_UNC_COR_ERR] = CNTR_ELEM(
4593 			"RxRbufLookupDesRegUncCorErr", 0, 0,
4594 			CNTR_NORMAL,
4595 			access_rx_rbuf_lookup_des_reg_unc_cor_err_cnt),
4596 [C_RX_RBUF_LOOKUP_DES_REG_UNC_ERR] = CNTR_ELEM("RxRbufLookupDesRegUncErr", 0, 0,
4597 			CNTR_NORMAL,
4598 			access_rx_rbuf_lookup_des_reg_unc_err_cnt),
4599 [C_RX_RBUF_FREE_LIST_COR_ERR] = CNTR_ELEM("RxRbufFreeListCorErr", 0, 0,
4600 			CNTR_NORMAL,
4601 			access_rx_rbuf_free_list_cor_err_cnt),
4602 [C_RX_RBUF_FREE_LIST_UNC_ERR] = CNTR_ELEM("RxRbufFreeListUncErr", 0, 0,
4603 			CNTR_NORMAL,
4604 			access_rx_rbuf_free_list_unc_err_cnt),
4605 [C_RX_RCV_FSM_ENCODING_ERR] = CNTR_ELEM("RxRcvFsmEncodingErr", 0, 0,
4606 			CNTR_NORMAL,
4607 			access_rx_rcv_fsm_encoding_err_cnt),
4608 [C_RX_DMA_FLAG_COR_ERR] = CNTR_ELEM("RxDmaFlagCorErr", 0, 0,
4609 			CNTR_NORMAL,
4610 			access_rx_dma_flag_cor_err_cnt),
4611 [C_RX_DMA_FLAG_UNC_ERR] = CNTR_ELEM("RxDmaFlagUncErr", 0, 0,
4612 			CNTR_NORMAL,
4613 			access_rx_dma_flag_unc_err_cnt),
4614 [C_RX_DC_SOP_EOP_PARITY_ERR] = CNTR_ELEM("RxDcSopEopParityErr", 0, 0,
4615 			CNTR_NORMAL,
4616 			access_rx_dc_sop_eop_parity_err_cnt),
4617 [C_RX_RCV_CSR_PARITY_ERR] = CNTR_ELEM("RxRcvCsrParityErr", 0, 0,
4618 			CNTR_NORMAL,
4619 			access_rx_rcv_csr_parity_err_cnt),
4620 [C_RX_RCV_QP_MAP_TABLE_COR_ERR] = CNTR_ELEM("RxRcvQpMapTableCorErr", 0, 0,
4621 			CNTR_NORMAL,
4622 			access_rx_rcv_qp_map_table_cor_err_cnt),
4623 [C_RX_RCV_QP_MAP_TABLE_UNC_ERR] = CNTR_ELEM("RxRcvQpMapTableUncErr", 0, 0,
4624 			CNTR_NORMAL,
4625 			access_rx_rcv_qp_map_table_unc_err_cnt),
4626 [C_RX_RCV_DATA_COR_ERR] = CNTR_ELEM("RxRcvDataCorErr", 0, 0,
4627 			CNTR_NORMAL,
4628 			access_rx_rcv_data_cor_err_cnt),
4629 [C_RX_RCV_DATA_UNC_ERR] = CNTR_ELEM("RxRcvDataUncErr", 0, 0,
4630 			CNTR_NORMAL,
4631 			access_rx_rcv_data_unc_err_cnt),
4632 [C_RX_RCV_HDR_COR_ERR] = CNTR_ELEM("RxRcvHdrCorErr", 0, 0,
4633 			CNTR_NORMAL,
4634 			access_rx_rcv_hdr_cor_err_cnt),
4635 [C_RX_RCV_HDR_UNC_ERR] = CNTR_ELEM("RxRcvHdrUncErr", 0, 0,
4636 			CNTR_NORMAL,
4637 			access_rx_rcv_hdr_unc_err_cnt),
4638 [C_RX_DC_INTF_PARITY_ERR] = CNTR_ELEM("RxDcIntfParityErr", 0, 0,
4639 			CNTR_NORMAL,
4640 			access_rx_dc_intf_parity_err_cnt),
4641 [C_RX_DMA_CSR_COR_ERR] = CNTR_ELEM("RxDmaCsrCorErr", 0, 0,
4642 			CNTR_NORMAL,
4643 			access_rx_dma_csr_cor_err_cnt),
4644 /* SendPioErrStatus */
4645 [C_PIO_PEC_SOP_HEAD_PARITY_ERR] = CNTR_ELEM("PioPecSopHeadParityErr", 0, 0,
4646 			CNTR_NORMAL,
4647 			access_pio_pec_sop_head_parity_err_cnt),
4648 [C_PIO_PCC_SOP_HEAD_PARITY_ERR] = CNTR_ELEM("PioPccSopHeadParityErr", 0, 0,
4649 			CNTR_NORMAL,
4650 			access_pio_pcc_sop_head_parity_err_cnt),
4651 [C_PIO_LAST_RETURNED_CNT_PARITY_ERR] = CNTR_ELEM("PioLastReturnedCntParityErr",
4652 			0, 0, CNTR_NORMAL,
4653 			access_pio_last_returned_cnt_parity_err_cnt),
4654 [C_PIO_CURRENT_FREE_CNT_PARITY_ERR] = CNTR_ELEM("PioCurrentFreeCntParityErr", 0,
4655 			0, CNTR_NORMAL,
4656 			access_pio_current_free_cnt_parity_err_cnt),
4657 [C_PIO_RSVD_31_ERR] = CNTR_ELEM("Pio Reserved 31", 0, 0,
4658 			CNTR_NORMAL,
4659 			access_pio_reserved_31_err_cnt),
4660 [C_PIO_RSVD_30_ERR] = CNTR_ELEM("Pio Reserved 30", 0, 0,
4661 			CNTR_NORMAL,
4662 			access_pio_reserved_30_err_cnt),
4663 [C_PIO_PPMC_SOP_LEN_ERR] = CNTR_ELEM("PioPpmcSopLenErr", 0, 0,
4664 			CNTR_NORMAL,
4665 			access_pio_ppmc_sop_len_err_cnt),
4666 [C_PIO_PPMC_BQC_MEM_PARITY_ERR] = CNTR_ELEM("PioPpmcBqcMemParityErr", 0, 0,
4667 			CNTR_NORMAL,
4668 			access_pio_ppmc_bqc_mem_parity_err_cnt),
4669 [C_PIO_VL_FIFO_PARITY_ERR] = CNTR_ELEM("PioVlFifoParityErr", 0, 0,
4670 			CNTR_NORMAL,
4671 			access_pio_vl_fifo_parity_err_cnt),
4672 [C_PIO_VLF_SOP_PARITY_ERR] = CNTR_ELEM("PioVlfSopParityErr", 0, 0,
4673 			CNTR_NORMAL,
4674 			access_pio_vlf_sop_parity_err_cnt),
4675 [C_PIO_VLF_V1_LEN_PARITY_ERR] = CNTR_ELEM("PioVlfVlLenParityErr", 0, 0,
4676 			CNTR_NORMAL,
4677 			access_pio_vlf_v1_len_parity_err_cnt),
4678 [C_PIO_BLOCK_QW_COUNT_PARITY_ERR] = CNTR_ELEM("PioBlockQwCountParityErr", 0, 0,
4679 			CNTR_NORMAL,
4680 			access_pio_block_qw_count_parity_err_cnt),
4681 [C_PIO_WRITE_QW_VALID_PARITY_ERR] = CNTR_ELEM("PioWriteQwValidParityErr", 0, 0,
4682 			CNTR_NORMAL,
4683 			access_pio_write_qw_valid_parity_err_cnt),
4684 [C_PIO_STATE_MACHINE_ERR] = CNTR_ELEM("PioStateMachineErr", 0, 0,
4685 			CNTR_NORMAL,
4686 			access_pio_state_machine_err_cnt),
4687 [C_PIO_WRITE_DATA_PARITY_ERR] = CNTR_ELEM("PioWriteDataParityErr", 0, 0,
4688 			CNTR_NORMAL,
4689 			access_pio_write_data_parity_err_cnt),
4690 [C_PIO_HOST_ADDR_MEM_COR_ERR] = CNTR_ELEM("PioHostAddrMemCorErr", 0, 0,
4691 			CNTR_NORMAL,
4692 			access_pio_host_addr_mem_cor_err_cnt),
4693 [C_PIO_HOST_ADDR_MEM_UNC_ERR] = CNTR_ELEM("PioHostAddrMemUncErr", 0, 0,
4694 			CNTR_NORMAL,
4695 			access_pio_host_addr_mem_unc_err_cnt),
4696 [C_PIO_PKT_EVICT_SM_OR_ARM_SM_ERR] = CNTR_ELEM("PioPktEvictSmOrArbSmErr", 0, 0,
4697 			CNTR_NORMAL,
4698 			access_pio_pkt_evict_sm_or_arb_sm_err_cnt),
4699 [C_PIO_INIT_SM_IN_ERR] = CNTR_ELEM("PioInitSmInErr", 0, 0,
4700 			CNTR_NORMAL,
4701 			access_pio_init_sm_in_err_cnt),
4702 [C_PIO_PPMC_PBL_FIFO_ERR] = CNTR_ELEM("PioPpmcPblFifoErr", 0, 0,
4703 			CNTR_NORMAL,
4704 			access_pio_ppmc_pbl_fifo_err_cnt),
4705 [C_PIO_CREDIT_RET_FIFO_PARITY_ERR] = CNTR_ELEM("PioCreditRetFifoParityErr", 0,
4706 			0, CNTR_NORMAL,
4707 			access_pio_credit_ret_fifo_parity_err_cnt),
4708 [C_PIO_V1_LEN_MEM_BANK1_COR_ERR] = CNTR_ELEM("PioVlLenMemBank1CorErr", 0, 0,
4709 			CNTR_NORMAL,
4710 			access_pio_v1_len_mem_bank1_cor_err_cnt),
4711 [C_PIO_V1_LEN_MEM_BANK0_COR_ERR] = CNTR_ELEM("PioVlLenMemBank0CorErr", 0, 0,
4712 			CNTR_NORMAL,
4713 			access_pio_v1_len_mem_bank0_cor_err_cnt),
4714 [C_PIO_V1_LEN_MEM_BANK1_UNC_ERR] = CNTR_ELEM("PioVlLenMemBank1UncErr", 0, 0,
4715 			CNTR_NORMAL,
4716 			access_pio_v1_len_mem_bank1_unc_err_cnt),
4717 [C_PIO_V1_LEN_MEM_BANK0_UNC_ERR] = CNTR_ELEM("PioVlLenMemBank0UncErr", 0, 0,
4718 			CNTR_NORMAL,
4719 			access_pio_v1_len_mem_bank0_unc_err_cnt),
4720 [C_PIO_SM_PKT_RESET_PARITY_ERR] = CNTR_ELEM("PioSmPktResetParityErr", 0, 0,
4721 			CNTR_NORMAL,
4722 			access_pio_sm_pkt_reset_parity_err_cnt),
4723 [C_PIO_PKT_EVICT_FIFO_PARITY_ERR] = CNTR_ELEM("PioPktEvictFifoParityErr", 0, 0,
4724 			CNTR_NORMAL,
4725 			access_pio_pkt_evict_fifo_parity_err_cnt),
4726 [C_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR] = CNTR_ELEM(
4727 			"PioSbrdctrlCrrelFifoParityErr", 0, 0,
4728 			CNTR_NORMAL,
4729 			access_pio_sbrdctrl_crrel_fifo_parity_err_cnt),
4730 [C_PIO_SBRDCTL_CRREL_PARITY_ERR] = CNTR_ELEM("PioSbrdctlCrrelParityErr", 0, 0,
4731 			CNTR_NORMAL,
4732 			access_pio_sbrdctl_crrel_parity_err_cnt),
4733 [C_PIO_PEC_FIFO_PARITY_ERR] = CNTR_ELEM("PioPecFifoParityErr", 0, 0,
4734 			CNTR_NORMAL,
4735 			access_pio_pec_fifo_parity_err_cnt),
4736 [C_PIO_PCC_FIFO_PARITY_ERR] = CNTR_ELEM("PioPccFifoParityErr", 0, 0,
4737 			CNTR_NORMAL,
4738 			access_pio_pcc_fifo_parity_err_cnt),
4739 [C_PIO_SB_MEM_FIFO1_ERR] = CNTR_ELEM("PioSbMemFifo1Err", 0, 0,
4740 			CNTR_NORMAL,
4741 			access_pio_sb_mem_fifo1_err_cnt),
4742 [C_PIO_SB_MEM_FIFO0_ERR] = CNTR_ELEM("PioSbMemFifo0Err", 0, 0,
4743 			CNTR_NORMAL,
4744 			access_pio_sb_mem_fifo0_err_cnt),
4745 [C_PIO_CSR_PARITY_ERR] = CNTR_ELEM("PioCsrParityErr", 0, 0,
4746 			CNTR_NORMAL,
4747 			access_pio_csr_parity_err_cnt),
4748 [C_PIO_WRITE_ADDR_PARITY_ERR] = CNTR_ELEM("PioWriteAddrParityErr", 0, 0,
4749 			CNTR_NORMAL,
4750 			access_pio_write_addr_parity_err_cnt),
4751 [C_PIO_WRITE_BAD_CTXT_ERR] = CNTR_ELEM("PioWriteBadCtxtErr", 0, 0,
4752 			CNTR_NORMAL,
4753 			access_pio_write_bad_ctxt_err_cnt),
4754 /* SendDmaErrStatus */
4755 [C_SDMA_PCIE_REQ_TRACKING_COR_ERR] = CNTR_ELEM("SDmaPcieReqTrackingCorErr", 0,
4756 			0, CNTR_NORMAL,
4757 			access_sdma_pcie_req_tracking_cor_err_cnt),
4758 [C_SDMA_PCIE_REQ_TRACKING_UNC_ERR] = CNTR_ELEM("SDmaPcieReqTrackingUncErr", 0,
4759 			0, CNTR_NORMAL,
4760 			access_sdma_pcie_req_tracking_unc_err_cnt),
4761 [C_SDMA_CSR_PARITY_ERR] = CNTR_ELEM("SDmaCsrParityErr", 0, 0,
4762 			CNTR_NORMAL,
4763 			access_sdma_csr_parity_err_cnt),
4764 [C_SDMA_RPY_TAG_ERR] = CNTR_ELEM("SDmaRpyTagErr", 0, 0,
4765 			CNTR_NORMAL,
4766 			access_sdma_rpy_tag_err_cnt),
4767 /* SendEgressErrStatus */
4768 [C_TX_READ_PIO_MEMORY_CSR_UNC_ERR] = CNTR_ELEM("TxReadPioMemoryCsrUncErr", 0, 0,
4769 			CNTR_NORMAL,
4770 			access_tx_read_pio_memory_csr_unc_err_cnt),
4771 [C_TX_READ_SDMA_MEMORY_CSR_UNC_ERR] = CNTR_ELEM("TxReadSdmaMemoryCsrUncErr", 0,
4772 			0, CNTR_NORMAL,
4773 			access_tx_read_sdma_memory_csr_err_cnt),
4774 [C_TX_EGRESS_FIFO_COR_ERR] = CNTR_ELEM("TxEgressFifoCorErr", 0, 0,
4775 			CNTR_NORMAL,
4776 			access_tx_egress_fifo_cor_err_cnt),
4777 [C_TX_READ_PIO_MEMORY_COR_ERR] = CNTR_ELEM("TxReadPioMemoryCorErr", 0, 0,
4778 			CNTR_NORMAL,
4779 			access_tx_read_pio_memory_cor_err_cnt),
4780 [C_TX_READ_SDMA_MEMORY_COR_ERR] = CNTR_ELEM("TxReadSdmaMemoryCorErr", 0, 0,
4781 			CNTR_NORMAL,
4782 			access_tx_read_sdma_memory_cor_err_cnt),
4783 [C_TX_SB_HDR_COR_ERR] = CNTR_ELEM("TxSbHdrCorErr", 0, 0,
4784 			CNTR_NORMAL,
4785 			access_tx_sb_hdr_cor_err_cnt),
4786 [C_TX_CREDIT_OVERRUN_ERR] = CNTR_ELEM("TxCreditOverrunErr", 0, 0,
4787 			CNTR_NORMAL,
4788 			access_tx_credit_overrun_err_cnt),
4789 [C_TX_LAUNCH_FIFO8_COR_ERR] = CNTR_ELEM("TxLaunchFifo8CorErr", 0, 0,
4790 			CNTR_NORMAL,
4791 			access_tx_launch_fifo8_cor_err_cnt),
4792 [C_TX_LAUNCH_FIFO7_COR_ERR] = CNTR_ELEM("TxLaunchFifo7CorErr", 0, 0,
4793 			CNTR_NORMAL,
4794 			access_tx_launch_fifo7_cor_err_cnt),
4795 [C_TX_LAUNCH_FIFO6_COR_ERR] = CNTR_ELEM("TxLaunchFifo6CorErr", 0, 0,
4796 			CNTR_NORMAL,
4797 			access_tx_launch_fifo6_cor_err_cnt),
4798 [C_TX_LAUNCH_FIFO5_COR_ERR] = CNTR_ELEM("TxLaunchFifo5CorErr", 0, 0,
4799 			CNTR_NORMAL,
4800 			access_tx_launch_fifo5_cor_err_cnt),
4801 [C_TX_LAUNCH_FIFO4_COR_ERR] = CNTR_ELEM("TxLaunchFifo4CorErr", 0, 0,
4802 			CNTR_NORMAL,
4803 			access_tx_launch_fifo4_cor_err_cnt),
4804 [C_TX_LAUNCH_FIFO3_COR_ERR] = CNTR_ELEM("TxLaunchFifo3CorErr", 0, 0,
4805 			CNTR_NORMAL,
4806 			access_tx_launch_fifo3_cor_err_cnt),
4807 [C_TX_LAUNCH_FIFO2_COR_ERR] = CNTR_ELEM("TxLaunchFifo2CorErr", 0, 0,
4808 			CNTR_NORMAL,
4809 			access_tx_launch_fifo2_cor_err_cnt),
4810 [C_TX_LAUNCH_FIFO1_COR_ERR] = CNTR_ELEM("TxLaunchFifo1CorErr", 0, 0,
4811 			CNTR_NORMAL,
4812 			access_tx_launch_fifo1_cor_err_cnt),
4813 [C_TX_LAUNCH_FIFO0_COR_ERR] = CNTR_ELEM("TxLaunchFifo0CorErr", 0, 0,
4814 			CNTR_NORMAL,
4815 			access_tx_launch_fifo0_cor_err_cnt),
4816 [C_TX_CREDIT_RETURN_VL_ERR] = CNTR_ELEM("TxCreditReturnVLErr", 0, 0,
4817 			CNTR_NORMAL,
4818 			access_tx_credit_return_vl_err_cnt),
4819 [C_TX_HCRC_INSERTION_ERR] = CNTR_ELEM("TxHcrcInsertionErr", 0, 0,
4820 			CNTR_NORMAL,
4821 			access_tx_hcrc_insertion_err_cnt),
4822 [C_TX_EGRESS_FIFI_UNC_ERR] = CNTR_ELEM("TxEgressFifoUncErr", 0, 0,
4823 			CNTR_NORMAL,
4824 			access_tx_egress_fifo_unc_err_cnt),
4825 [C_TX_READ_PIO_MEMORY_UNC_ERR] = CNTR_ELEM("TxReadPioMemoryUncErr", 0, 0,
4826 			CNTR_NORMAL,
4827 			access_tx_read_pio_memory_unc_err_cnt),
4828 [C_TX_READ_SDMA_MEMORY_UNC_ERR] = CNTR_ELEM("TxReadSdmaMemoryUncErr", 0, 0,
4829 			CNTR_NORMAL,
4830 			access_tx_read_sdma_memory_unc_err_cnt),
4831 [C_TX_SB_HDR_UNC_ERR] = CNTR_ELEM("TxSbHdrUncErr", 0, 0,
4832 			CNTR_NORMAL,
4833 			access_tx_sb_hdr_unc_err_cnt),
4834 [C_TX_CREDIT_RETURN_PARITY_ERR] = CNTR_ELEM("TxCreditReturnParityErr", 0, 0,
4835 			CNTR_NORMAL,
4836 			access_tx_credit_return_partiy_err_cnt),
4837 [C_TX_LAUNCH_FIFO8_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo8UncOrParityErr",
4838 			0, 0, CNTR_NORMAL,
4839 			access_tx_launch_fifo8_unc_or_parity_err_cnt),
4840 [C_TX_LAUNCH_FIFO7_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo7UncOrParityErr",
4841 			0, 0, CNTR_NORMAL,
4842 			access_tx_launch_fifo7_unc_or_parity_err_cnt),
4843 [C_TX_LAUNCH_FIFO6_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo6UncOrParityErr",
4844 			0, 0, CNTR_NORMAL,
4845 			access_tx_launch_fifo6_unc_or_parity_err_cnt),
4846 [C_TX_LAUNCH_FIFO5_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo5UncOrParityErr",
4847 			0, 0, CNTR_NORMAL,
4848 			access_tx_launch_fifo5_unc_or_parity_err_cnt),
4849 [C_TX_LAUNCH_FIFO4_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo4UncOrParityErr",
4850 			0, 0, CNTR_NORMAL,
4851 			access_tx_launch_fifo4_unc_or_parity_err_cnt),
4852 [C_TX_LAUNCH_FIFO3_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo3UncOrParityErr",
4853 			0, 0, CNTR_NORMAL,
4854 			access_tx_launch_fifo3_unc_or_parity_err_cnt),
4855 [C_TX_LAUNCH_FIFO2_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo2UncOrParityErr",
4856 			0, 0, CNTR_NORMAL,
4857 			access_tx_launch_fifo2_unc_or_parity_err_cnt),
4858 [C_TX_LAUNCH_FIFO1_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo1UncOrParityErr",
4859 			0, 0, CNTR_NORMAL,
4860 			access_tx_launch_fifo1_unc_or_parity_err_cnt),
4861 [C_TX_LAUNCH_FIFO0_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo0UncOrParityErr",
4862 			0, 0, CNTR_NORMAL,
4863 			access_tx_launch_fifo0_unc_or_parity_err_cnt),
4864 [C_TX_SDMA15_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma15DisallowedPacketErr",
4865 			0, 0, CNTR_NORMAL,
4866 			access_tx_sdma15_disallowed_packet_err_cnt),
4867 [C_TX_SDMA14_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma14DisallowedPacketErr",
4868 			0, 0, CNTR_NORMAL,
4869 			access_tx_sdma14_disallowed_packet_err_cnt),
4870 [C_TX_SDMA13_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma13DisallowedPacketErr",
4871 			0, 0, CNTR_NORMAL,
4872 			access_tx_sdma13_disallowed_packet_err_cnt),
4873 [C_TX_SDMA12_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma12DisallowedPacketErr",
4874 			0, 0, CNTR_NORMAL,
4875 			access_tx_sdma12_disallowed_packet_err_cnt),
4876 [C_TX_SDMA11_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma11DisallowedPacketErr",
4877 			0, 0, CNTR_NORMAL,
4878 			access_tx_sdma11_disallowed_packet_err_cnt),
4879 [C_TX_SDMA10_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma10DisallowedPacketErr",
4880 			0, 0, CNTR_NORMAL,
4881 			access_tx_sdma10_disallowed_packet_err_cnt),
4882 [C_TX_SDMA9_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma9DisallowedPacketErr",
4883 			0, 0, CNTR_NORMAL,
4884 			access_tx_sdma9_disallowed_packet_err_cnt),
4885 [C_TX_SDMA8_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma8DisallowedPacketErr",
4886 			0, 0, CNTR_NORMAL,
4887 			access_tx_sdma8_disallowed_packet_err_cnt),
4888 [C_TX_SDMA7_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma7DisallowedPacketErr",
4889 			0, 0, CNTR_NORMAL,
4890 			access_tx_sdma7_disallowed_packet_err_cnt),
4891 [C_TX_SDMA6_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma6DisallowedPacketErr",
4892 			0, 0, CNTR_NORMAL,
4893 			access_tx_sdma6_disallowed_packet_err_cnt),
4894 [C_TX_SDMA5_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma5DisallowedPacketErr",
4895 			0, 0, CNTR_NORMAL,
4896 			access_tx_sdma5_disallowed_packet_err_cnt),
4897 [C_TX_SDMA4_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma4DisallowedPacketErr",
4898 			0, 0, CNTR_NORMAL,
4899 			access_tx_sdma4_disallowed_packet_err_cnt),
4900 [C_TX_SDMA3_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma3DisallowedPacketErr",
4901 			0, 0, CNTR_NORMAL,
4902 			access_tx_sdma3_disallowed_packet_err_cnt),
4903 [C_TX_SDMA2_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma2DisallowedPacketErr",
4904 			0, 0, CNTR_NORMAL,
4905 			access_tx_sdma2_disallowed_packet_err_cnt),
4906 [C_TX_SDMA1_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma1DisallowedPacketErr",
4907 			0, 0, CNTR_NORMAL,
4908 			access_tx_sdma1_disallowed_packet_err_cnt),
4909 [C_TX_SDMA0_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma0DisallowedPacketErr",
4910 			0, 0, CNTR_NORMAL,
4911 			access_tx_sdma0_disallowed_packet_err_cnt),
4912 [C_TX_CONFIG_PARITY_ERR] = CNTR_ELEM("TxConfigParityErr", 0, 0,
4913 			CNTR_NORMAL,
4914 			access_tx_config_parity_err_cnt),
4915 [C_TX_SBRD_CTL_CSR_PARITY_ERR] = CNTR_ELEM("TxSbrdCtlCsrParityErr", 0, 0,
4916 			CNTR_NORMAL,
4917 			access_tx_sbrd_ctl_csr_parity_err_cnt),
4918 [C_TX_LAUNCH_CSR_PARITY_ERR] = CNTR_ELEM("TxLaunchCsrParityErr", 0, 0,
4919 			CNTR_NORMAL,
4920 			access_tx_launch_csr_parity_err_cnt),
4921 [C_TX_ILLEGAL_CL_ERR] = CNTR_ELEM("TxIllegalVLErr", 0, 0,
4922 			CNTR_NORMAL,
4923 			access_tx_illegal_vl_err_cnt),
4924 [C_TX_SBRD_CTL_STATE_MACHINE_PARITY_ERR] = CNTR_ELEM(
4925 			"TxSbrdCtlStateMachineParityErr", 0, 0,
4926 			CNTR_NORMAL,
4927 			access_tx_sbrd_ctl_state_machine_parity_err_cnt),
4928 [C_TX_RESERVED_10] = CNTR_ELEM("Tx Egress Reserved 10", 0, 0,
4929 			CNTR_NORMAL,
4930 			access_egress_reserved_10_err_cnt),
4931 [C_TX_RESERVED_9] = CNTR_ELEM("Tx Egress Reserved 9", 0, 0,
4932 			CNTR_NORMAL,
4933 			access_egress_reserved_9_err_cnt),
4934 [C_TX_SDMA_LAUNCH_INTF_PARITY_ERR] = CNTR_ELEM("TxSdmaLaunchIntfParityErr",
4935 			0, 0, CNTR_NORMAL,
4936 			access_tx_sdma_launch_intf_parity_err_cnt),
4937 [C_TX_PIO_LAUNCH_INTF_PARITY_ERR] = CNTR_ELEM("TxPioLaunchIntfParityErr", 0, 0,
4938 			CNTR_NORMAL,
4939 			access_tx_pio_launch_intf_parity_err_cnt),
4940 [C_TX_RESERVED_6] = CNTR_ELEM("Tx Egress Reserved 6", 0, 0,
4941 			CNTR_NORMAL,
4942 			access_egress_reserved_6_err_cnt),
4943 [C_TX_INCORRECT_LINK_STATE_ERR] = CNTR_ELEM("TxIncorrectLinkStateErr", 0, 0,
4944 			CNTR_NORMAL,
4945 			access_tx_incorrect_link_state_err_cnt),
4946 [C_TX_LINK_DOWN_ERR] = CNTR_ELEM("TxLinkdownErr", 0, 0,
4947 			CNTR_NORMAL,
4948 			access_tx_linkdown_err_cnt),
4949 [C_TX_EGRESS_FIFO_UNDERRUN_OR_PARITY_ERR] = CNTR_ELEM(
4950 			"EgressFifoUnderrunOrParityErr", 0, 0,
4951 			CNTR_NORMAL,
4952 			access_tx_egress_fifi_underrun_or_parity_err_cnt),
4953 [C_TX_RESERVED_2] = CNTR_ELEM("Tx Egress Reserved 2", 0, 0,
4954 			CNTR_NORMAL,
4955 			access_egress_reserved_2_err_cnt),
4956 [C_TX_PKT_INTEGRITY_MEM_UNC_ERR] = CNTR_ELEM("TxPktIntegrityMemUncErr", 0, 0,
4957 			CNTR_NORMAL,
4958 			access_tx_pkt_integrity_mem_unc_err_cnt),
4959 [C_TX_PKT_INTEGRITY_MEM_COR_ERR] = CNTR_ELEM("TxPktIntegrityMemCorErr", 0, 0,
4960 			CNTR_NORMAL,
4961 			access_tx_pkt_integrity_mem_cor_err_cnt),
4962 /* SendErrStatus */
4963 [C_SEND_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("SendCsrWriteBadAddrErr", 0, 0,
4964 			CNTR_NORMAL,
4965 			access_send_csr_write_bad_addr_err_cnt),
4966 [C_SEND_CSR_READ_BAD_ADD_ERR] = CNTR_ELEM("SendCsrReadBadAddrErr", 0, 0,
4967 			CNTR_NORMAL,
4968 			access_send_csr_read_bad_addr_err_cnt),
4969 [C_SEND_CSR_PARITY_ERR] = CNTR_ELEM("SendCsrParityErr", 0, 0,
4970 			CNTR_NORMAL,
4971 			access_send_csr_parity_cnt),
4972 /* SendCtxtErrStatus */
4973 [C_PIO_WRITE_OUT_OF_BOUNDS_ERR] = CNTR_ELEM("PioWriteOutOfBoundsErr", 0, 0,
4974 			CNTR_NORMAL,
4975 			access_pio_write_out_of_bounds_err_cnt),
4976 [C_PIO_WRITE_OVERFLOW_ERR] = CNTR_ELEM("PioWriteOverflowErr", 0, 0,
4977 			CNTR_NORMAL,
4978 			access_pio_write_overflow_err_cnt),
4979 [C_PIO_WRITE_CROSSES_BOUNDARY_ERR] = CNTR_ELEM("PioWriteCrossesBoundaryErr",
4980 			0, 0, CNTR_NORMAL,
4981 			access_pio_write_crosses_boundary_err_cnt),
4982 [C_PIO_DISALLOWED_PACKET_ERR] = CNTR_ELEM("PioDisallowedPacketErr", 0, 0,
4983 			CNTR_NORMAL,
4984 			access_pio_disallowed_packet_err_cnt),
4985 [C_PIO_INCONSISTENT_SOP_ERR] = CNTR_ELEM("PioInconsistentSopErr", 0, 0,
4986 			CNTR_NORMAL,
4987 			access_pio_inconsistent_sop_err_cnt),
4988 /* SendDmaEngErrStatus */
4989 [C_SDMA_HEADER_REQUEST_FIFO_COR_ERR] = CNTR_ELEM("SDmaHeaderRequestFifoCorErr",
4990 			0, 0, CNTR_NORMAL,
4991 			access_sdma_header_request_fifo_cor_err_cnt),
4992 [C_SDMA_HEADER_STORAGE_COR_ERR] = CNTR_ELEM("SDmaHeaderStorageCorErr", 0, 0,
4993 			CNTR_NORMAL,
4994 			access_sdma_header_storage_cor_err_cnt),
4995 [C_SDMA_PACKET_TRACKING_COR_ERR] = CNTR_ELEM("SDmaPacketTrackingCorErr", 0, 0,
4996 			CNTR_NORMAL,
4997 			access_sdma_packet_tracking_cor_err_cnt),
4998 [C_SDMA_ASSEMBLY_COR_ERR] = CNTR_ELEM("SDmaAssemblyCorErr", 0, 0,
4999 			CNTR_NORMAL,
5000 			access_sdma_assembly_cor_err_cnt),
5001 [C_SDMA_DESC_TABLE_COR_ERR] = CNTR_ELEM("SDmaDescTableCorErr", 0, 0,
5002 			CNTR_NORMAL,
5003 			access_sdma_desc_table_cor_err_cnt),
5004 [C_SDMA_HEADER_REQUEST_FIFO_UNC_ERR] = CNTR_ELEM("SDmaHeaderRequestFifoUncErr",
5005 			0, 0, CNTR_NORMAL,
5006 			access_sdma_header_request_fifo_unc_err_cnt),
5007 [C_SDMA_HEADER_STORAGE_UNC_ERR] = CNTR_ELEM("SDmaHeaderStorageUncErr", 0, 0,
5008 			CNTR_NORMAL,
5009 			access_sdma_header_storage_unc_err_cnt),
5010 [C_SDMA_PACKET_TRACKING_UNC_ERR] = CNTR_ELEM("SDmaPacketTrackingUncErr", 0, 0,
5011 			CNTR_NORMAL,
5012 			access_sdma_packet_tracking_unc_err_cnt),
5013 [C_SDMA_ASSEMBLY_UNC_ERR] = CNTR_ELEM("SDmaAssemblyUncErr", 0, 0,
5014 			CNTR_NORMAL,
5015 			access_sdma_assembly_unc_err_cnt),
5016 [C_SDMA_DESC_TABLE_UNC_ERR] = CNTR_ELEM("SDmaDescTableUncErr", 0, 0,
5017 			CNTR_NORMAL,
5018 			access_sdma_desc_table_unc_err_cnt),
5019 [C_SDMA_TIMEOUT_ERR] = CNTR_ELEM("SDmaTimeoutErr", 0, 0,
5020 			CNTR_NORMAL,
5021 			access_sdma_timeout_err_cnt),
5022 [C_SDMA_HEADER_LENGTH_ERR] = CNTR_ELEM("SDmaHeaderLengthErr", 0, 0,
5023 			CNTR_NORMAL,
5024 			access_sdma_header_length_err_cnt),
5025 [C_SDMA_HEADER_ADDRESS_ERR] = CNTR_ELEM("SDmaHeaderAddressErr", 0, 0,
5026 			CNTR_NORMAL,
5027 			access_sdma_header_address_err_cnt),
5028 [C_SDMA_HEADER_SELECT_ERR] = CNTR_ELEM("SDmaHeaderSelectErr", 0, 0,
5029 			CNTR_NORMAL,
5030 			access_sdma_header_select_err_cnt),
5031 [C_SMDA_RESERVED_9] = CNTR_ELEM("SDma Reserved 9", 0, 0,
5032 			CNTR_NORMAL,
5033 			access_sdma_reserved_9_err_cnt),
5034 [C_SDMA_PACKET_DESC_OVERFLOW_ERR] = CNTR_ELEM("SDmaPacketDescOverflowErr", 0, 0,
5035 			CNTR_NORMAL,
5036 			access_sdma_packet_desc_overflow_err_cnt),
5037 [C_SDMA_LENGTH_MISMATCH_ERR] = CNTR_ELEM("SDmaLengthMismatchErr", 0, 0,
5038 			CNTR_NORMAL,
5039 			access_sdma_length_mismatch_err_cnt),
5040 [C_SDMA_HALT_ERR] = CNTR_ELEM("SDmaHaltErr", 0, 0,
5041 			CNTR_NORMAL,
5042 			access_sdma_halt_err_cnt),
5043 [C_SDMA_MEM_READ_ERR] = CNTR_ELEM("SDmaMemReadErr", 0, 0,
5044 			CNTR_NORMAL,
5045 			access_sdma_mem_read_err_cnt),
5046 [C_SDMA_FIRST_DESC_ERR] = CNTR_ELEM("SDmaFirstDescErr", 0, 0,
5047 			CNTR_NORMAL,
5048 			access_sdma_first_desc_err_cnt),
5049 [C_SDMA_TAIL_OUT_OF_BOUNDS_ERR] = CNTR_ELEM("SDmaTailOutOfBoundsErr", 0, 0,
5050 			CNTR_NORMAL,
5051 			access_sdma_tail_out_of_bounds_err_cnt),
5052 [C_SDMA_TOO_LONG_ERR] = CNTR_ELEM("SDmaTooLongErr", 0, 0,
5053 			CNTR_NORMAL,
5054 			access_sdma_too_long_err_cnt),
5055 [C_SDMA_GEN_MISMATCH_ERR] = CNTR_ELEM("SDmaGenMismatchErr", 0, 0,
5056 			CNTR_NORMAL,
5057 			access_sdma_gen_mismatch_err_cnt),
5058 [C_SDMA_WRONG_DW_ERR] = CNTR_ELEM("SDmaWrongDwErr", 0, 0,
5059 			CNTR_NORMAL,
5060 			access_sdma_wrong_dw_err_cnt),
5061 };
5062 
5063 static struct cntr_entry port_cntrs[PORT_CNTR_LAST] = {
5064 [C_TX_UNSUP_VL] = TXE32_PORT_CNTR_ELEM(TxUnVLErr, SEND_UNSUP_VL_ERR_CNT,
5065 			CNTR_NORMAL),
5066 [C_TX_INVAL_LEN] = TXE32_PORT_CNTR_ELEM(TxInvalLen, SEND_LEN_ERR_CNT,
5067 			CNTR_NORMAL),
5068 [C_TX_MM_LEN_ERR] = TXE32_PORT_CNTR_ELEM(TxMMLenErr, SEND_MAX_MIN_LEN_ERR_CNT,
5069 			CNTR_NORMAL),
5070 [C_TX_UNDERRUN] = TXE32_PORT_CNTR_ELEM(TxUnderrun, SEND_UNDERRUN_CNT,
5071 			CNTR_NORMAL),
5072 [C_TX_FLOW_STALL] = TXE32_PORT_CNTR_ELEM(TxFlowStall, SEND_FLOW_STALL_CNT,
5073 			CNTR_NORMAL),
5074 [C_TX_DROPPED] = TXE32_PORT_CNTR_ELEM(TxDropped, SEND_DROPPED_PKT_CNT,
5075 			CNTR_NORMAL),
5076 [C_TX_HDR_ERR] = TXE32_PORT_CNTR_ELEM(TxHdrErr, SEND_HEADERS_ERR_CNT,
5077 			CNTR_NORMAL),
5078 [C_TX_PKT] = TXE64_PORT_CNTR_ELEM(TxPkt, SEND_DATA_PKT_CNT, CNTR_NORMAL),
5079 [C_TX_WORDS] = TXE64_PORT_CNTR_ELEM(TxWords, SEND_DWORD_CNT, CNTR_NORMAL),
5080 [C_TX_WAIT] = TXE64_PORT_CNTR_ELEM(TxWait, SEND_WAIT_CNT, CNTR_SYNTH),
5081 [C_TX_FLIT_VL] = TXE64_PORT_CNTR_ELEM(TxFlitVL, SEND_DATA_VL0_CNT,
5082 				      CNTR_SYNTH | CNTR_VL),
5083 [C_TX_PKT_VL] = TXE64_PORT_CNTR_ELEM(TxPktVL, SEND_DATA_PKT_VL0_CNT,
5084 				     CNTR_SYNTH | CNTR_VL),
5085 [C_TX_WAIT_VL] = TXE64_PORT_CNTR_ELEM(TxWaitVL, SEND_WAIT_VL0_CNT,
5086 				      CNTR_SYNTH | CNTR_VL),
5087 [C_RX_PKT] = RXE64_PORT_CNTR_ELEM(RxPkt, RCV_DATA_PKT_CNT, CNTR_NORMAL),
5088 [C_RX_WORDS] = RXE64_PORT_CNTR_ELEM(RxWords, RCV_DWORD_CNT, CNTR_NORMAL),
5089 [C_SW_LINK_DOWN] = CNTR_ELEM("SwLinkDown", 0, 0, CNTR_SYNTH | CNTR_32BIT,
5090 			     access_sw_link_dn_cnt),
5091 [C_SW_LINK_UP] = CNTR_ELEM("SwLinkUp", 0, 0, CNTR_SYNTH | CNTR_32BIT,
5092 			   access_sw_link_up_cnt),
5093 [C_SW_UNKNOWN_FRAME] = CNTR_ELEM("UnknownFrame", 0, 0, CNTR_NORMAL,
5094 				 access_sw_unknown_frame_cnt),
5095 [C_SW_XMIT_DSCD] = CNTR_ELEM("XmitDscd", 0, 0, CNTR_SYNTH | CNTR_32BIT,
5096 			     access_sw_xmit_discards),
5097 [C_SW_XMIT_DSCD_VL] = CNTR_ELEM("XmitDscdVl", 0, 0,
5098 				CNTR_SYNTH | CNTR_32BIT | CNTR_VL,
5099 				access_sw_xmit_discards),
5100 [C_SW_XMIT_CSTR_ERR] = CNTR_ELEM("XmitCstrErr", 0, 0, CNTR_SYNTH,
5101 				 access_xmit_constraint_errs),
5102 [C_SW_RCV_CSTR_ERR] = CNTR_ELEM("RcvCstrErr", 0, 0, CNTR_SYNTH,
5103 				access_rcv_constraint_errs),
5104 [C_SW_IBP_LOOP_PKTS] = SW_IBP_CNTR(LoopPkts, loop_pkts),
5105 [C_SW_IBP_RC_RESENDS] = SW_IBP_CNTR(RcResend, rc_resends),
5106 [C_SW_IBP_RNR_NAKS] = SW_IBP_CNTR(RnrNak, rnr_naks),
5107 [C_SW_IBP_OTHER_NAKS] = SW_IBP_CNTR(OtherNak, other_naks),
5108 [C_SW_IBP_RC_TIMEOUTS] = SW_IBP_CNTR(RcTimeOut, rc_timeouts),
5109 [C_SW_IBP_PKT_DROPS] = SW_IBP_CNTR(PktDrop, pkt_drops),
5110 [C_SW_IBP_DMA_WAIT] = SW_IBP_CNTR(DmaWait, dmawait),
5111 [C_SW_IBP_RC_SEQNAK] = SW_IBP_CNTR(RcSeqNak, rc_seqnak),
5112 [C_SW_IBP_RC_DUPREQ] = SW_IBP_CNTR(RcDupRew, rc_dupreq),
5113 [C_SW_IBP_RDMA_SEQ] = SW_IBP_CNTR(RdmaSeq, rdma_seq),
5114 [C_SW_IBP_UNALIGNED] = SW_IBP_CNTR(Unaligned, unaligned),
5115 [C_SW_IBP_SEQ_NAK] = SW_IBP_CNTR(SeqNak, seq_naks),
5116 [C_SW_CPU_RC_ACKS] = CNTR_ELEM("RcAcks", 0, 0, CNTR_NORMAL,
5117 			       access_sw_cpu_rc_acks),
5118 [C_SW_CPU_RC_QACKS] = CNTR_ELEM("RcQacks", 0, 0, CNTR_NORMAL,
5119 				access_sw_cpu_rc_qacks),
5120 [C_SW_CPU_RC_DELAYED_COMP] = CNTR_ELEM("RcDelayComp", 0, 0, CNTR_NORMAL,
5121 				       access_sw_cpu_rc_delayed_comp),
5122 [OVR_LBL(0)] = OVR_ELM(0), [OVR_LBL(1)] = OVR_ELM(1),
5123 [OVR_LBL(2)] = OVR_ELM(2), [OVR_LBL(3)] = OVR_ELM(3),
5124 [OVR_LBL(4)] = OVR_ELM(4), [OVR_LBL(5)] = OVR_ELM(5),
5125 [OVR_LBL(6)] = OVR_ELM(6), [OVR_LBL(7)] = OVR_ELM(7),
5126 [OVR_LBL(8)] = OVR_ELM(8), [OVR_LBL(9)] = OVR_ELM(9),
5127 [OVR_LBL(10)] = OVR_ELM(10), [OVR_LBL(11)] = OVR_ELM(11),
5128 [OVR_LBL(12)] = OVR_ELM(12), [OVR_LBL(13)] = OVR_ELM(13),
5129 [OVR_LBL(14)] = OVR_ELM(14), [OVR_LBL(15)] = OVR_ELM(15),
5130 [OVR_LBL(16)] = OVR_ELM(16), [OVR_LBL(17)] = OVR_ELM(17),
5131 [OVR_LBL(18)] = OVR_ELM(18), [OVR_LBL(19)] = OVR_ELM(19),
5132 [OVR_LBL(20)] = OVR_ELM(20), [OVR_LBL(21)] = OVR_ELM(21),
5133 [OVR_LBL(22)] = OVR_ELM(22), [OVR_LBL(23)] = OVR_ELM(23),
5134 [OVR_LBL(24)] = OVR_ELM(24), [OVR_LBL(25)] = OVR_ELM(25),
5135 [OVR_LBL(26)] = OVR_ELM(26), [OVR_LBL(27)] = OVR_ELM(27),
5136 [OVR_LBL(28)] = OVR_ELM(28), [OVR_LBL(29)] = OVR_ELM(29),
5137 [OVR_LBL(30)] = OVR_ELM(30), [OVR_LBL(31)] = OVR_ELM(31),
5138 [OVR_LBL(32)] = OVR_ELM(32), [OVR_LBL(33)] = OVR_ELM(33),
5139 [OVR_LBL(34)] = OVR_ELM(34), [OVR_LBL(35)] = OVR_ELM(35),
5140 [OVR_LBL(36)] = OVR_ELM(36), [OVR_LBL(37)] = OVR_ELM(37),
5141 [OVR_LBL(38)] = OVR_ELM(38), [OVR_LBL(39)] = OVR_ELM(39),
5142 [OVR_LBL(40)] = OVR_ELM(40), [OVR_LBL(41)] = OVR_ELM(41),
5143 [OVR_LBL(42)] = OVR_ELM(42), [OVR_LBL(43)] = OVR_ELM(43),
5144 [OVR_LBL(44)] = OVR_ELM(44), [OVR_LBL(45)] = OVR_ELM(45),
5145 [OVR_LBL(46)] = OVR_ELM(46), [OVR_LBL(47)] = OVR_ELM(47),
5146 [OVR_LBL(48)] = OVR_ELM(48), [OVR_LBL(49)] = OVR_ELM(49),
5147 [OVR_LBL(50)] = OVR_ELM(50), [OVR_LBL(51)] = OVR_ELM(51),
5148 [OVR_LBL(52)] = OVR_ELM(52), [OVR_LBL(53)] = OVR_ELM(53),
5149 [OVR_LBL(54)] = OVR_ELM(54), [OVR_LBL(55)] = OVR_ELM(55),
5150 [OVR_LBL(56)] = OVR_ELM(56), [OVR_LBL(57)] = OVR_ELM(57),
5151 [OVR_LBL(58)] = OVR_ELM(58), [OVR_LBL(59)] = OVR_ELM(59),
5152 [OVR_LBL(60)] = OVR_ELM(60), [OVR_LBL(61)] = OVR_ELM(61),
5153 [OVR_LBL(62)] = OVR_ELM(62), [OVR_LBL(63)] = OVR_ELM(63),
5154 [OVR_LBL(64)] = OVR_ELM(64), [OVR_LBL(65)] = OVR_ELM(65),
5155 [OVR_LBL(66)] = OVR_ELM(66), [OVR_LBL(67)] = OVR_ELM(67),
5156 [OVR_LBL(68)] = OVR_ELM(68), [OVR_LBL(69)] = OVR_ELM(69),
5157 [OVR_LBL(70)] = OVR_ELM(70), [OVR_LBL(71)] = OVR_ELM(71),
5158 [OVR_LBL(72)] = OVR_ELM(72), [OVR_LBL(73)] = OVR_ELM(73),
5159 [OVR_LBL(74)] = OVR_ELM(74), [OVR_LBL(75)] = OVR_ELM(75),
5160 [OVR_LBL(76)] = OVR_ELM(76), [OVR_LBL(77)] = OVR_ELM(77),
5161 [OVR_LBL(78)] = OVR_ELM(78), [OVR_LBL(79)] = OVR_ELM(79),
5162 [OVR_LBL(80)] = OVR_ELM(80), [OVR_LBL(81)] = OVR_ELM(81),
5163 [OVR_LBL(82)] = OVR_ELM(82), [OVR_LBL(83)] = OVR_ELM(83),
5164 [OVR_LBL(84)] = OVR_ELM(84), [OVR_LBL(85)] = OVR_ELM(85),
5165 [OVR_LBL(86)] = OVR_ELM(86), [OVR_LBL(87)] = OVR_ELM(87),
5166 [OVR_LBL(88)] = OVR_ELM(88), [OVR_LBL(89)] = OVR_ELM(89),
5167 [OVR_LBL(90)] = OVR_ELM(90), [OVR_LBL(91)] = OVR_ELM(91),
5168 [OVR_LBL(92)] = OVR_ELM(92), [OVR_LBL(93)] = OVR_ELM(93),
5169 [OVR_LBL(94)] = OVR_ELM(94), [OVR_LBL(95)] = OVR_ELM(95),
5170 [OVR_LBL(96)] = OVR_ELM(96), [OVR_LBL(97)] = OVR_ELM(97),
5171 [OVR_LBL(98)] = OVR_ELM(98), [OVR_LBL(99)] = OVR_ELM(99),
5172 [OVR_LBL(100)] = OVR_ELM(100), [OVR_LBL(101)] = OVR_ELM(101),
5173 [OVR_LBL(102)] = OVR_ELM(102), [OVR_LBL(103)] = OVR_ELM(103),
5174 [OVR_LBL(104)] = OVR_ELM(104), [OVR_LBL(105)] = OVR_ELM(105),
5175 [OVR_LBL(106)] = OVR_ELM(106), [OVR_LBL(107)] = OVR_ELM(107),
5176 [OVR_LBL(108)] = OVR_ELM(108), [OVR_LBL(109)] = OVR_ELM(109),
5177 [OVR_LBL(110)] = OVR_ELM(110), [OVR_LBL(111)] = OVR_ELM(111),
5178 [OVR_LBL(112)] = OVR_ELM(112), [OVR_LBL(113)] = OVR_ELM(113),
5179 [OVR_LBL(114)] = OVR_ELM(114), [OVR_LBL(115)] = OVR_ELM(115),
5180 [OVR_LBL(116)] = OVR_ELM(116), [OVR_LBL(117)] = OVR_ELM(117),
5181 [OVR_LBL(118)] = OVR_ELM(118), [OVR_LBL(119)] = OVR_ELM(119),
5182 [OVR_LBL(120)] = OVR_ELM(120), [OVR_LBL(121)] = OVR_ELM(121),
5183 [OVR_LBL(122)] = OVR_ELM(122), [OVR_LBL(123)] = OVR_ELM(123),
5184 [OVR_LBL(124)] = OVR_ELM(124), [OVR_LBL(125)] = OVR_ELM(125),
5185 [OVR_LBL(126)] = OVR_ELM(126), [OVR_LBL(127)] = OVR_ELM(127),
5186 [OVR_LBL(128)] = OVR_ELM(128), [OVR_LBL(129)] = OVR_ELM(129),
5187 [OVR_LBL(130)] = OVR_ELM(130), [OVR_LBL(131)] = OVR_ELM(131),
5188 [OVR_LBL(132)] = OVR_ELM(132), [OVR_LBL(133)] = OVR_ELM(133),
5189 [OVR_LBL(134)] = OVR_ELM(134), [OVR_LBL(135)] = OVR_ELM(135),
5190 [OVR_LBL(136)] = OVR_ELM(136), [OVR_LBL(137)] = OVR_ELM(137),
5191 [OVR_LBL(138)] = OVR_ELM(138), [OVR_LBL(139)] = OVR_ELM(139),
5192 [OVR_LBL(140)] = OVR_ELM(140), [OVR_LBL(141)] = OVR_ELM(141),
5193 [OVR_LBL(142)] = OVR_ELM(142), [OVR_LBL(143)] = OVR_ELM(143),
5194 [OVR_LBL(144)] = OVR_ELM(144), [OVR_LBL(145)] = OVR_ELM(145),
5195 [OVR_LBL(146)] = OVR_ELM(146), [OVR_LBL(147)] = OVR_ELM(147),
5196 [OVR_LBL(148)] = OVR_ELM(148), [OVR_LBL(149)] = OVR_ELM(149),
5197 [OVR_LBL(150)] = OVR_ELM(150), [OVR_LBL(151)] = OVR_ELM(151),
5198 [OVR_LBL(152)] = OVR_ELM(152), [OVR_LBL(153)] = OVR_ELM(153),
5199 [OVR_LBL(154)] = OVR_ELM(154), [OVR_LBL(155)] = OVR_ELM(155),
5200 [OVR_LBL(156)] = OVR_ELM(156), [OVR_LBL(157)] = OVR_ELM(157),
5201 [OVR_LBL(158)] = OVR_ELM(158), [OVR_LBL(159)] = OVR_ELM(159),
5202 };
5203 
5204 /* ======================================================================== */
5205 
5206 /* return true if this is chip revision revision a */
5207 int is_ax(struct hfi1_devdata *dd)
5208 {
5209 	u8 chip_rev_minor =
5210 		dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT
5211 			& CCE_REVISION_CHIP_REV_MINOR_MASK;
5212 	return (chip_rev_minor & 0xf0) == 0;
5213 }
5214 
5215 /* return true if this is chip revision revision b */
5216 int is_bx(struct hfi1_devdata *dd)
5217 {
5218 	u8 chip_rev_minor =
5219 		dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT
5220 			& CCE_REVISION_CHIP_REV_MINOR_MASK;
5221 	return (chip_rev_minor & 0xF0) == 0x10;
5222 }
5223 
5224 /*
5225  * Append string s to buffer buf.  Arguments curp and len are the current
5226  * position and remaining length, respectively.
5227  *
5228  * return 0 on success, 1 on out of room
5229  */
5230 static int append_str(char *buf, char **curp, int *lenp, const char *s)
5231 {
5232 	char *p = *curp;
5233 	int len = *lenp;
5234 	int result = 0; /* success */
5235 	char c;
5236 
5237 	/* add a comma, if first in the buffer */
5238 	if (p != buf) {
5239 		if (len == 0) {
5240 			result = 1; /* out of room */
5241 			goto done;
5242 		}
5243 		*p++ = ',';
5244 		len--;
5245 	}
5246 
5247 	/* copy the string */
5248 	while ((c = *s++) != 0) {
5249 		if (len == 0) {
5250 			result = 1; /* out of room */
5251 			goto done;
5252 		}
5253 		*p++ = c;
5254 		len--;
5255 	}
5256 
5257 done:
5258 	/* write return values */
5259 	*curp = p;
5260 	*lenp = len;
5261 
5262 	return result;
5263 }
5264 
5265 /*
5266  * Using the given flag table, print a comma separated string into
5267  * the buffer.  End in '*' if the buffer is too short.
5268  */
5269 static char *flag_string(char *buf, int buf_len, u64 flags,
5270 			 struct flag_table *table, int table_size)
5271 {
5272 	char extra[32];
5273 	char *p = buf;
5274 	int len = buf_len;
5275 	int no_room = 0;
5276 	int i;
5277 
5278 	/* make sure there is at least 2 so we can form "*" */
5279 	if (len < 2)
5280 		return "";
5281 
5282 	len--;	/* leave room for a nul */
5283 	for (i = 0; i < table_size; i++) {
5284 		if (flags & table[i].flag) {
5285 			no_room = append_str(buf, &p, &len, table[i].str);
5286 			if (no_room)
5287 				break;
5288 			flags &= ~table[i].flag;
5289 		}
5290 	}
5291 
5292 	/* any undocumented bits left? */
5293 	if (!no_room && flags) {
5294 		snprintf(extra, sizeof(extra), "bits 0x%llx", flags);
5295 		no_room = append_str(buf, &p, &len, extra);
5296 	}
5297 
5298 	/* add * if ran out of room */
5299 	if (no_room) {
5300 		/* may need to back up to add space for a '*' */
5301 		if (len == 0)
5302 			--p;
5303 		*p++ = '*';
5304 	}
5305 
5306 	/* add final nul - space already allocated above */
5307 	*p = 0;
5308 	return buf;
5309 }
5310 
5311 /* first 8 CCE error interrupt source names */
5312 static const char * const cce_misc_names[] = {
5313 	"CceErrInt",		/* 0 */
5314 	"RxeErrInt",		/* 1 */
5315 	"MiscErrInt",		/* 2 */
5316 	"Reserved3",		/* 3 */
5317 	"PioErrInt",		/* 4 */
5318 	"SDmaErrInt",		/* 5 */
5319 	"EgressErrInt",		/* 6 */
5320 	"TxeErrInt"		/* 7 */
5321 };
5322 
5323 /*
5324  * Return the miscellaneous error interrupt name.
5325  */
5326 static char *is_misc_err_name(char *buf, size_t bsize, unsigned int source)
5327 {
5328 	if (source < ARRAY_SIZE(cce_misc_names))
5329 		strncpy(buf, cce_misc_names[source], bsize);
5330 	else
5331 		snprintf(buf, bsize, "Reserved%u",
5332 			 source + IS_GENERAL_ERR_START);
5333 
5334 	return buf;
5335 }
5336 
5337 /*
5338  * Return the SDMA engine error interrupt name.
5339  */
5340 static char *is_sdma_eng_err_name(char *buf, size_t bsize, unsigned int source)
5341 {
5342 	snprintf(buf, bsize, "SDmaEngErrInt%u", source);
5343 	return buf;
5344 }
5345 
5346 /*
5347  * Return the send context error interrupt name.
5348  */
5349 static char *is_sendctxt_err_name(char *buf, size_t bsize, unsigned int source)
5350 {
5351 	snprintf(buf, bsize, "SendCtxtErrInt%u", source);
5352 	return buf;
5353 }
5354 
5355 static const char * const various_names[] = {
5356 	"PbcInt",
5357 	"GpioAssertInt",
5358 	"Qsfp1Int",
5359 	"Qsfp2Int",
5360 	"TCritInt"
5361 };
5362 
5363 /*
5364  * Return the various interrupt name.
5365  */
5366 static char *is_various_name(char *buf, size_t bsize, unsigned int source)
5367 {
5368 	if (source < ARRAY_SIZE(various_names))
5369 		strncpy(buf, various_names[source], bsize);
5370 	else
5371 		snprintf(buf, bsize, "Reserved%u", source + IS_VARIOUS_START);
5372 	return buf;
5373 }
5374 
5375 /*
5376  * Return the DC interrupt name.
5377  */
5378 static char *is_dc_name(char *buf, size_t bsize, unsigned int source)
5379 {
5380 	static const char * const dc_int_names[] = {
5381 		"common",
5382 		"lcb",
5383 		"8051",
5384 		"lbm"	/* local block merge */
5385 	};
5386 
5387 	if (source < ARRAY_SIZE(dc_int_names))
5388 		snprintf(buf, bsize, "dc_%s_int", dc_int_names[source]);
5389 	else
5390 		snprintf(buf, bsize, "DCInt%u", source);
5391 	return buf;
5392 }
5393 
5394 static const char * const sdma_int_names[] = {
5395 	"SDmaInt",
5396 	"SdmaIdleInt",
5397 	"SdmaProgressInt",
5398 };
5399 
5400 /*
5401  * Return the SDMA engine interrupt name.
5402  */
5403 static char *is_sdma_eng_name(char *buf, size_t bsize, unsigned int source)
5404 {
5405 	/* what interrupt */
5406 	unsigned int what  = source / TXE_NUM_SDMA_ENGINES;
5407 	/* which engine */
5408 	unsigned int which = source % TXE_NUM_SDMA_ENGINES;
5409 
5410 	if (likely(what < 3))
5411 		snprintf(buf, bsize, "%s%u", sdma_int_names[what], which);
5412 	else
5413 		snprintf(buf, bsize, "Invalid SDMA interrupt %u", source);
5414 	return buf;
5415 }
5416 
5417 /*
5418  * Return the receive available interrupt name.
5419  */
5420 static char *is_rcv_avail_name(char *buf, size_t bsize, unsigned int source)
5421 {
5422 	snprintf(buf, bsize, "RcvAvailInt%u", source);
5423 	return buf;
5424 }
5425 
5426 /*
5427  * Return the receive urgent interrupt name.
5428  */
5429 static char *is_rcv_urgent_name(char *buf, size_t bsize, unsigned int source)
5430 {
5431 	snprintf(buf, bsize, "RcvUrgentInt%u", source);
5432 	return buf;
5433 }
5434 
5435 /*
5436  * Return the send credit interrupt name.
5437  */
5438 static char *is_send_credit_name(char *buf, size_t bsize, unsigned int source)
5439 {
5440 	snprintf(buf, bsize, "SendCreditInt%u", source);
5441 	return buf;
5442 }
5443 
5444 /*
5445  * Return the reserved interrupt name.
5446  */
5447 static char *is_reserved_name(char *buf, size_t bsize, unsigned int source)
5448 {
5449 	snprintf(buf, bsize, "Reserved%u", source + IS_RESERVED_START);
5450 	return buf;
5451 }
5452 
5453 static char *cce_err_status_string(char *buf, int buf_len, u64 flags)
5454 {
5455 	return flag_string(buf, buf_len, flags,
5456 			   cce_err_status_flags,
5457 			   ARRAY_SIZE(cce_err_status_flags));
5458 }
5459 
5460 static char *rxe_err_status_string(char *buf, int buf_len, u64 flags)
5461 {
5462 	return flag_string(buf, buf_len, flags,
5463 			   rxe_err_status_flags,
5464 			   ARRAY_SIZE(rxe_err_status_flags));
5465 }
5466 
5467 static char *misc_err_status_string(char *buf, int buf_len, u64 flags)
5468 {
5469 	return flag_string(buf, buf_len, flags, misc_err_status_flags,
5470 			   ARRAY_SIZE(misc_err_status_flags));
5471 }
5472 
5473 static char *pio_err_status_string(char *buf, int buf_len, u64 flags)
5474 {
5475 	return flag_string(buf, buf_len, flags,
5476 			   pio_err_status_flags,
5477 			   ARRAY_SIZE(pio_err_status_flags));
5478 }
5479 
5480 static char *sdma_err_status_string(char *buf, int buf_len, u64 flags)
5481 {
5482 	return flag_string(buf, buf_len, flags,
5483 			   sdma_err_status_flags,
5484 			   ARRAY_SIZE(sdma_err_status_flags));
5485 }
5486 
5487 static char *egress_err_status_string(char *buf, int buf_len, u64 flags)
5488 {
5489 	return flag_string(buf, buf_len, flags,
5490 			   egress_err_status_flags,
5491 			   ARRAY_SIZE(egress_err_status_flags));
5492 }
5493 
5494 static char *egress_err_info_string(char *buf, int buf_len, u64 flags)
5495 {
5496 	return flag_string(buf, buf_len, flags,
5497 			   egress_err_info_flags,
5498 			   ARRAY_SIZE(egress_err_info_flags));
5499 }
5500 
5501 static char *send_err_status_string(char *buf, int buf_len, u64 flags)
5502 {
5503 	return flag_string(buf, buf_len, flags,
5504 			   send_err_status_flags,
5505 			   ARRAY_SIZE(send_err_status_flags));
5506 }
5507 
5508 static void handle_cce_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5509 {
5510 	char buf[96];
5511 	int i = 0;
5512 
5513 	/*
5514 	 * For most these errors, there is nothing that can be done except
5515 	 * report or record it.
5516 	 */
5517 	dd_dev_info(dd, "CCE Error: %s\n",
5518 		    cce_err_status_string(buf, sizeof(buf), reg));
5519 
5520 	if ((reg & CCE_ERR_STATUS_CCE_CLI2_ASYNC_FIFO_PARITY_ERR_SMASK) &&
5521 	    is_ax(dd) && (dd->icode != ICODE_FUNCTIONAL_SIMULATOR)) {
5522 		/* this error requires a manual drop into SPC freeze mode */
5523 		/* then a fix up */
5524 		start_freeze_handling(dd->pport, FREEZE_SELF);
5525 	}
5526 
5527 	for (i = 0; i < NUM_CCE_ERR_STATUS_COUNTERS; i++) {
5528 		if (reg & (1ull << i)) {
5529 			incr_cntr64(&dd->cce_err_status_cnt[i]);
5530 			/* maintain a counter over all cce_err_status errors */
5531 			incr_cntr64(&dd->sw_cce_err_status_aggregate);
5532 		}
5533 	}
5534 }
5535 
5536 /*
5537  * Check counters for receive errors that do not have an interrupt
5538  * associated with them.
5539  */
5540 #define RCVERR_CHECK_TIME 10
5541 static void update_rcverr_timer(struct timer_list *t)
5542 {
5543 	struct hfi1_devdata *dd = from_timer(dd, t, rcverr_timer);
5544 	struct hfi1_pportdata *ppd = dd->pport;
5545 	u32 cur_ovfl_cnt = read_dev_cntr(dd, C_RCV_OVF, CNTR_INVALID_VL);
5546 
5547 	if (dd->rcv_ovfl_cnt < cur_ovfl_cnt &&
5548 	    ppd->port_error_action & OPA_PI_MASK_EX_BUFFER_OVERRUN) {
5549 		dd_dev_info(dd, "%s: PortErrorAction bounce\n", __func__);
5550 		set_link_down_reason(
5551 		ppd, OPA_LINKDOWN_REASON_EXCESSIVE_BUFFER_OVERRUN, 0,
5552 		OPA_LINKDOWN_REASON_EXCESSIVE_BUFFER_OVERRUN);
5553 		queue_work(ppd->link_wq, &ppd->link_bounce_work);
5554 	}
5555 	dd->rcv_ovfl_cnt = (u32)cur_ovfl_cnt;
5556 
5557 	mod_timer(&dd->rcverr_timer, jiffies + HZ * RCVERR_CHECK_TIME);
5558 }
5559 
5560 static int init_rcverr(struct hfi1_devdata *dd)
5561 {
5562 	timer_setup(&dd->rcverr_timer, update_rcverr_timer, 0);
5563 	/* Assume the hardware counter has been reset */
5564 	dd->rcv_ovfl_cnt = 0;
5565 	return mod_timer(&dd->rcverr_timer, jiffies + HZ * RCVERR_CHECK_TIME);
5566 }
5567 
5568 static void free_rcverr(struct hfi1_devdata *dd)
5569 {
5570 	if (dd->rcverr_timer.function)
5571 		del_timer_sync(&dd->rcverr_timer);
5572 }
5573 
5574 static void handle_rxe_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5575 {
5576 	char buf[96];
5577 	int i = 0;
5578 
5579 	dd_dev_info(dd, "Receive Error: %s\n",
5580 		    rxe_err_status_string(buf, sizeof(buf), reg));
5581 
5582 	if (reg & ALL_RXE_FREEZE_ERR) {
5583 		int flags = 0;
5584 
5585 		/*
5586 		 * Freeze mode recovery is disabled for the errors
5587 		 * in RXE_FREEZE_ABORT_MASK
5588 		 */
5589 		if (is_ax(dd) && (reg & RXE_FREEZE_ABORT_MASK))
5590 			flags = FREEZE_ABORT;
5591 
5592 		start_freeze_handling(dd->pport, flags);
5593 	}
5594 
5595 	for (i = 0; i < NUM_RCV_ERR_STATUS_COUNTERS; i++) {
5596 		if (reg & (1ull << i))
5597 			incr_cntr64(&dd->rcv_err_status_cnt[i]);
5598 	}
5599 }
5600 
5601 static void handle_misc_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5602 {
5603 	char buf[96];
5604 	int i = 0;
5605 
5606 	dd_dev_info(dd, "Misc Error: %s",
5607 		    misc_err_status_string(buf, sizeof(buf), reg));
5608 	for (i = 0; i < NUM_MISC_ERR_STATUS_COUNTERS; i++) {
5609 		if (reg & (1ull << i))
5610 			incr_cntr64(&dd->misc_err_status_cnt[i]);
5611 	}
5612 }
5613 
5614 static void handle_pio_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5615 {
5616 	char buf[96];
5617 	int i = 0;
5618 
5619 	dd_dev_info(dd, "PIO Error: %s\n",
5620 		    pio_err_status_string(buf, sizeof(buf), reg));
5621 
5622 	if (reg & ALL_PIO_FREEZE_ERR)
5623 		start_freeze_handling(dd->pport, 0);
5624 
5625 	for (i = 0; i < NUM_SEND_PIO_ERR_STATUS_COUNTERS; i++) {
5626 		if (reg & (1ull << i))
5627 			incr_cntr64(&dd->send_pio_err_status_cnt[i]);
5628 	}
5629 }
5630 
5631 static void handle_sdma_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5632 {
5633 	char buf[96];
5634 	int i = 0;
5635 
5636 	dd_dev_info(dd, "SDMA Error: %s\n",
5637 		    sdma_err_status_string(buf, sizeof(buf), reg));
5638 
5639 	if (reg & ALL_SDMA_FREEZE_ERR)
5640 		start_freeze_handling(dd->pport, 0);
5641 
5642 	for (i = 0; i < NUM_SEND_DMA_ERR_STATUS_COUNTERS; i++) {
5643 		if (reg & (1ull << i))
5644 			incr_cntr64(&dd->send_dma_err_status_cnt[i]);
5645 	}
5646 }
5647 
5648 static inline void __count_port_discards(struct hfi1_pportdata *ppd)
5649 {
5650 	incr_cntr64(&ppd->port_xmit_discards);
5651 }
5652 
5653 static void count_port_inactive(struct hfi1_devdata *dd)
5654 {
5655 	__count_port_discards(dd->pport);
5656 }
5657 
5658 /*
5659  * We have had a "disallowed packet" error during egress. Determine the
5660  * integrity check which failed, and update relevant error counter, etc.
5661  *
5662  * Note that the SEND_EGRESS_ERR_INFO register has only a single
5663  * bit of state per integrity check, and so we can miss the reason for an
5664  * egress error if more than one packet fails the same integrity check
5665  * since we cleared the corresponding bit in SEND_EGRESS_ERR_INFO.
5666  */
5667 static void handle_send_egress_err_info(struct hfi1_devdata *dd,
5668 					int vl)
5669 {
5670 	struct hfi1_pportdata *ppd = dd->pport;
5671 	u64 src = read_csr(dd, SEND_EGRESS_ERR_SOURCE); /* read first */
5672 	u64 info = read_csr(dd, SEND_EGRESS_ERR_INFO);
5673 	char buf[96];
5674 
5675 	/* clear down all observed info as quickly as possible after read */
5676 	write_csr(dd, SEND_EGRESS_ERR_INFO, info);
5677 
5678 	dd_dev_info(dd,
5679 		    "Egress Error Info: 0x%llx, %s Egress Error Src 0x%llx\n",
5680 		    info, egress_err_info_string(buf, sizeof(buf), info), src);
5681 
5682 	/* Eventually add other counters for each bit */
5683 	if (info & PORT_DISCARD_EGRESS_ERRS) {
5684 		int weight, i;
5685 
5686 		/*
5687 		 * Count all applicable bits as individual errors and
5688 		 * attribute them to the packet that triggered this handler.
5689 		 * This may not be completely accurate due to limitations
5690 		 * on the available hardware error information.  There is
5691 		 * a single information register and any number of error
5692 		 * packets may have occurred and contributed to it before
5693 		 * this routine is called.  This means that:
5694 		 * a) If multiple packets with the same error occur before
5695 		 *    this routine is called, earlier packets are missed.
5696 		 *    There is only a single bit for each error type.
5697 		 * b) Errors may not be attributed to the correct VL.
5698 		 *    The driver is attributing all bits in the info register
5699 		 *    to the packet that triggered this call, but bits
5700 		 *    could be an accumulation of different packets with
5701 		 *    different VLs.
5702 		 * c) A single error packet may have multiple counts attached
5703 		 *    to it.  There is no way for the driver to know if
5704 		 *    multiple bits set in the info register are due to a
5705 		 *    single packet or multiple packets.  The driver assumes
5706 		 *    multiple packets.
5707 		 */
5708 		weight = hweight64(info & PORT_DISCARD_EGRESS_ERRS);
5709 		for (i = 0; i < weight; i++) {
5710 			__count_port_discards(ppd);
5711 			if (vl >= 0 && vl < TXE_NUM_DATA_VL)
5712 				incr_cntr64(&ppd->port_xmit_discards_vl[vl]);
5713 			else if (vl == 15)
5714 				incr_cntr64(&ppd->port_xmit_discards_vl
5715 					    [C_VL_15]);
5716 		}
5717 	}
5718 }
5719 
5720 /*
5721  * Input value is a bit position within the SEND_EGRESS_ERR_STATUS
5722  * register. Does it represent a 'port inactive' error?
5723  */
5724 static inline int port_inactive_err(u64 posn)
5725 {
5726 	return (posn >= SEES(TX_LINKDOWN) &&
5727 		posn <= SEES(TX_INCORRECT_LINK_STATE));
5728 }
5729 
5730 /*
5731  * Input value is a bit position within the SEND_EGRESS_ERR_STATUS
5732  * register. Does it represent a 'disallowed packet' error?
5733  */
5734 static inline int disallowed_pkt_err(int posn)
5735 {
5736 	return (posn >= SEES(TX_SDMA0_DISALLOWED_PACKET) &&
5737 		posn <= SEES(TX_SDMA15_DISALLOWED_PACKET));
5738 }
5739 
5740 /*
5741  * Input value is a bit position of one of the SDMA engine disallowed
5742  * packet errors.  Return which engine.  Use of this must be guarded by
5743  * disallowed_pkt_err().
5744  */
5745 static inline int disallowed_pkt_engine(int posn)
5746 {
5747 	return posn - SEES(TX_SDMA0_DISALLOWED_PACKET);
5748 }
5749 
5750 /*
5751  * Translate an SDMA engine to a VL.  Return -1 if the tranlation cannot
5752  * be done.
5753  */
5754 static int engine_to_vl(struct hfi1_devdata *dd, int engine)
5755 {
5756 	struct sdma_vl_map *m;
5757 	int vl;
5758 
5759 	/* range check */
5760 	if (engine < 0 || engine >= TXE_NUM_SDMA_ENGINES)
5761 		return -1;
5762 
5763 	rcu_read_lock();
5764 	m = rcu_dereference(dd->sdma_map);
5765 	vl = m->engine_to_vl[engine];
5766 	rcu_read_unlock();
5767 
5768 	return vl;
5769 }
5770 
5771 /*
5772  * Translate the send context (sofware index) into a VL.  Return -1 if the
5773  * translation cannot be done.
5774  */
5775 static int sc_to_vl(struct hfi1_devdata *dd, int sw_index)
5776 {
5777 	struct send_context_info *sci;
5778 	struct send_context *sc;
5779 	int i;
5780 
5781 	sci = &dd->send_contexts[sw_index];
5782 
5783 	/* there is no information for user (PSM) and ack contexts */
5784 	if ((sci->type != SC_KERNEL) && (sci->type != SC_VL15))
5785 		return -1;
5786 
5787 	sc = sci->sc;
5788 	if (!sc)
5789 		return -1;
5790 	if (dd->vld[15].sc == sc)
5791 		return 15;
5792 	for (i = 0; i < num_vls; i++)
5793 		if (dd->vld[i].sc == sc)
5794 			return i;
5795 
5796 	return -1;
5797 }
5798 
5799 static void handle_egress_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5800 {
5801 	u64 reg_copy = reg, handled = 0;
5802 	char buf[96];
5803 	int i = 0;
5804 
5805 	if (reg & ALL_TXE_EGRESS_FREEZE_ERR)
5806 		start_freeze_handling(dd->pport, 0);
5807 	else if (is_ax(dd) &&
5808 		 (reg & SEND_EGRESS_ERR_STATUS_TX_CREDIT_RETURN_VL_ERR_SMASK) &&
5809 		 (dd->icode != ICODE_FUNCTIONAL_SIMULATOR))
5810 		start_freeze_handling(dd->pport, 0);
5811 
5812 	while (reg_copy) {
5813 		int posn = fls64(reg_copy);
5814 		/* fls64() returns a 1-based offset, we want it zero based */
5815 		int shift = posn - 1;
5816 		u64 mask = 1ULL << shift;
5817 
5818 		if (port_inactive_err(shift)) {
5819 			count_port_inactive(dd);
5820 			handled |= mask;
5821 		} else if (disallowed_pkt_err(shift)) {
5822 			int vl = engine_to_vl(dd, disallowed_pkt_engine(shift));
5823 
5824 			handle_send_egress_err_info(dd, vl);
5825 			handled |= mask;
5826 		}
5827 		reg_copy &= ~mask;
5828 	}
5829 
5830 	reg &= ~handled;
5831 
5832 	if (reg)
5833 		dd_dev_info(dd, "Egress Error: %s\n",
5834 			    egress_err_status_string(buf, sizeof(buf), reg));
5835 
5836 	for (i = 0; i < NUM_SEND_EGRESS_ERR_STATUS_COUNTERS; i++) {
5837 		if (reg & (1ull << i))
5838 			incr_cntr64(&dd->send_egress_err_status_cnt[i]);
5839 	}
5840 }
5841 
5842 static void handle_txe_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5843 {
5844 	char buf[96];
5845 	int i = 0;
5846 
5847 	dd_dev_info(dd, "Send Error: %s\n",
5848 		    send_err_status_string(buf, sizeof(buf), reg));
5849 
5850 	for (i = 0; i < NUM_SEND_ERR_STATUS_COUNTERS; i++) {
5851 		if (reg & (1ull << i))
5852 			incr_cntr64(&dd->send_err_status_cnt[i]);
5853 	}
5854 }
5855 
5856 /*
5857  * The maximum number of times the error clear down will loop before
5858  * blocking a repeating error.  This value is arbitrary.
5859  */
5860 #define MAX_CLEAR_COUNT 20
5861 
5862 /*
5863  * Clear and handle an error register.  All error interrupts are funneled
5864  * through here to have a central location to correctly handle single-
5865  * or multi-shot errors.
5866  *
5867  * For non per-context registers, call this routine with a context value
5868  * of 0 so the per-context offset is zero.
5869  *
5870  * If the handler loops too many times, assume that something is wrong
5871  * and can't be fixed, so mask the error bits.
5872  */
5873 static void interrupt_clear_down(struct hfi1_devdata *dd,
5874 				 u32 context,
5875 				 const struct err_reg_info *eri)
5876 {
5877 	u64 reg;
5878 	u32 count;
5879 
5880 	/* read in a loop until no more errors are seen */
5881 	count = 0;
5882 	while (1) {
5883 		reg = read_kctxt_csr(dd, context, eri->status);
5884 		if (reg == 0)
5885 			break;
5886 		write_kctxt_csr(dd, context, eri->clear, reg);
5887 		if (likely(eri->handler))
5888 			eri->handler(dd, context, reg);
5889 		count++;
5890 		if (count > MAX_CLEAR_COUNT) {
5891 			u64 mask;
5892 
5893 			dd_dev_err(dd, "Repeating %s bits 0x%llx - masking\n",
5894 				   eri->desc, reg);
5895 			/*
5896 			 * Read-modify-write so any other masked bits
5897 			 * remain masked.
5898 			 */
5899 			mask = read_kctxt_csr(dd, context, eri->mask);
5900 			mask &= ~reg;
5901 			write_kctxt_csr(dd, context, eri->mask, mask);
5902 			break;
5903 		}
5904 	}
5905 }
5906 
5907 /*
5908  * CCE block "misc" interrupt.  Source is < 16.
5909  */
5910 static void is_misc_err_int(struct hfi1_devdata *dd, unsigned int source)
5911 {
5912 	const struct err_reg_info *eri = &misc_errs[source];
5913 
5914 	if (eri->handler) {
5915 		interrupt_clear_down(dd, 0, eri);
5916 	} else {
5917 		dd_dev_err(dd, "Unexpected misc interrupt (%u) - reserved\n",
5918 			   source);
5919 	}
5920 }
5921 
5922 static char *send_context_err_status_string(char *buf, int buf_len, u64 flags)
5923 {
5924 	return flag_string(buf, buf_len, flags,
5925 			   sc_err_status_flags,
5926 			   ARRAY_SIZE(sc_err_status_flags));
5927 }
5928 
5929 /*
5930  * Send context error interrupt.  Source (hw_context) is < 160.
5931  *
5932  * All send context errors cause the send context to halt.  The normal
5933  * clear-down mechanism cannot be used because we cannot clear the
5934  * error bits until several other long-running items are done first.
5935  * This is OK because with the context halted, nothing else is going
5936  * to happen on it anyway.
5937  */
5938 static void is_sendctxt_err_int(struct hfi1_devdata *dd,
5939 				unsigned int hw_context)
5940 {
5941 	struct send_context_info *sci;
5942 	struct send_context *sc;
5943 	char flags[96];
5944 	u64 status;
5945 	u32 sw_index;
5946 	int i = 0;
5947 
5948 	sw_index = dd->hw_to_sw[hw_context];
5949 	if (sw_index >= dd->num_send_contexts) {
5950 		dd_dev_err(dd,
5951 			   "out of range sw index %u for send context %u\n",
5952 			   sw_index, hw_context);
5953 		return;
5954 	}
5955 	sci = &dd->send_contexts[sw_index];
5956 	sc = sci->sc;
5957 	if (!sc) {
5958 		dd_dev_err(dd, "%s: context %u(%u): no sc?\n", __func__,
5959 			   sw_index, hw_context);
5960 		return;
5961 	}
5962 
5963 	/* tell the software that a halt has begun */
5964 	sc_stop(sc, SCF_HALTED);
5965 
5966 	status = read_kctxt_csr(dd, hw_context, SEND_CTXT_ERR_STATUS);
5967 
5968 	dd_dev_info(dd, "Send Context %u(%u) Error: %s\n", sw_index, hw_context,
5969 		    send_context_err_status_string(flags, sizeof(flags),
5970 						   status));
5971 
5972 	if (status & SEND_CTXT_ERR_STATUS_PIO_DISALLOWED_PACKET_ERR_SMASK)
5973 		handle_send_egress_err_info(dd, sc_to_vl(dd, sw_index));
5974 
5975 	/*
5976 	 * Automatically restart halted kernel contexts out of interrupt
5977 	 * context.  User contexts must ask the driver to restart the context.
5978 	 */
5979 	if (sc->type != SC_USER)
5980 		queue_work(dd->pport->hfi1_wq, &sc->halt_work);
5981 
5982 	/*
5983 	 * Update the counters for the corresponding status bits.
5984 	 * Note that these particular counters are aggregated over all
5985 	 * 160 contexts.
5986 	 */
5987 	for (i = 0; i < NUM_SEND_CTXT_ERR_STATUS_COUNTERS; i++) {
5988 		if (status & (1ull << i))
5989 			incr_cntr64(&dd->sw_ctxt_err_status_cnt[i]);
5990 	}
5991 }
5992 
5993 static void handle_sdma_eng_err(struct hfi1_devdata *dd,
5994 				unsigned int source, u64 status)
5995 {
5996 	struct sdma_engine *sde;
5997 	int i = 0;
5998 
5999 	sde = &dd->per_sdma[source];
6000 #ifdef CONFIG_SDMA_VERBOSITY
6001 	dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
6002 		   slashstrip(__FILE__), __LINE__, __func__);
6003 	dd_dev_err(sde->dd, "CONFIG SDMA(%u) source: %u status 0x%llx\n",
6004 		   sde->this_idx, source, (unsigned long long)status);
6005 #endif
6006 	sde->err_cnt++;
6007 	sdma_engine_error(sde, status);
6008 
6009 	/*
6010 	* Update the counters for the corresponding status bits.
6011 	* Note that these particular counters are aggregated over
6012 	* all 16 DMA engines.
6013 	*/
6014 	for (i = 0; i < NUM_SEND_DMA_ENG_ERR_STATUS_COUNTERS; i++) {
6015 		if (status & (1ull << i))
6016 			incr_cntr64(&dd->sw_send_dma_eng_err_status_cnt[i]);
6017 	}
6018 }
6019 
6020 /*
6021  * CCE block SDMA error interrupt.  Source is < 16.
6022  */
6023 static void is_sdma_eng_err_int(struct hfi1_devdata *dd, unsigned int source)
6024 {
6025 #ifdef CONFIG_SDMA_VERBOSITY
6026 	struct sdma_engine *sde = &dd->per_sdma[source];
6027 
6028 	dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
6029 		   slashstrip(__FILE__), __LINE__, __func__);
6030 	dd_dev_err(dd, "CONFIG SDMA(%u) source: %u\n", sde->this_idx,
6031 		   source);
6032 	sdma_dumpstate(sde);
6033 #endif
6034 	interrupt_clear_down(dd, source, &sdma_eng_err);
6035 }
6036 
6037 /*
6038  * CCE block "various" interrupt.  Source is < 8.
6039  */
6040 static void is_various_int(struct hfi1_devdata *dd, unsigned int source)
6041 {
6042 	const struct err_reg_info *eri = &various_err[source];
6043 
6044 	/*
6045 	 * TCritInt cannot go through interrupt_clear_down()
6046 	 * because it is not a second tier interrupt. The handler
6047 	 * should be called directly.
6048 	 */
6049 	if (source == TCRIT_INT_SOURCE)
6050 		handle_temp_err(dd);
6051 	else if (eri->handler)
6052 		interrupt_clear_down(dd, 0, eri);
6053 	else
6054 		dd_dev_info(dd,
6055 			    "%s: Unimplemented/reserved interrupt %d\n",
6056 			    __func__, source);
6057 }
6058 
6059 static void handle_qsfp_int(struct hfi1_devdata *dd, u32 src_ctx, u64 reg)
6060 {
6061 	/* src_ctx is always zero */
6062 	struct hfi1_pportdata *ppd = dd->pport;
6063 	unsigned long flags;
6064 	u64 qsfp_int_mgmt = (u64)(QSFP_HFI0_INT_N | QSFP_HFI0_MODPRST_N);
6065 
6066 	if (reg & QSFP_HFI0_MODPRST_N) {
6067 		if (!qsfp_mod_present(ppd)) {
6068 			dd_dev_info(dd, "%s: QSFP module removed\n",
6069 				    __func__);
6070 
6071 			ppd->driver_link_ready = 0;
6072 			/*
6073 			 * Cable removed, reset all our information about the
6074 			 * cache and cable capabilities
6075 			 */
6076 
6077 			spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
6078 			/*
6079 			 * We don't set cache_refresh_required here as we expect
6080 			 * an interrupt when a cable is inserted
6081 			 */
6082 			ppd->qsfp_info.cache_valid = 0;
6083 			ppd->qsfp_info.reset_needed = 0;
6084 			ppd->qsfp_info.limiting_active = 0;
6085 			spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock,
6086 					       flags);
6087 			/* Invert the ModPresent pin now to detect plug-in */
6088 			write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_INVERT :
6089 				  ASIC_QSFP1_INVERT, qsfp_int_mgmt);
6090 
6091 			if ((ppd->offline_disabled_reason >
6092 			  HFI1_ODR_MASK(
6093 			  OPA_LINKDOWN_REASON_LOCAL_MEDIA_NOT_INSTALLED)) ||
6094 			  (ppd->offline_disabled_reason ==
6095 			  HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE)))
6096 				ppd->offline_disabled_reason =
6097 				HFI1_ODR_MASK(
6098 				OPA_LINKDOWN_REASON_LOCAL_MEDIA_NOT_INSTALLED);
6099 
6100 			if (ppd->host_link_state == HLS_DN_POLL) {
6101 				/*
6102 				 * The link is still in POLL. This means
6103 				 * that the normal link down processing
6104 				 * will not happen. We have to do it here
6105 				 * before turning the DC off.
6106 				 */
6107 				queue_work(ppd->link_wq, &ppd->link_down_work);
6108 			}
6109 		} else {
6110 			dd_dev_info(dd, "%s: QSFP module inserted\n",
6111 				    __func__);
6112 
6113 			spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
6114 			ppd->qsfp_info.cache_valid = 0;
6115 			ppd->qsfp_info.cache_refresh_required = 1;
6116 			spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock,
6117 					       flags);
6118 
6119 			/*
6120 			 * Stop inversion of ModPresent pin to detect
6121 			 * removal of the cable
6122 			 */
6123 			qsfp_int_mgmt &= ~(u64)QSFP_HFI0_MODPRST_N;
6124 			write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_INVERT :
6125 				  ASIC_QSFP1_INVERT, qsfp_int_mgmt);
6126 
6127 			ppd->offline_disabled_reason =
6128 				HFI1_ODR_MASK(OPA_LINKDOWN_REASON_TRANSIENT);
6129 		}
6130 	}
6131 
6132 	if (reg & QSFP_HFI0_INT_N) {
6133 		dd_dev_info(dd, "%s: Interrupt received from QSFP module\n",
6134 			    __func__);
6135 		spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
6136 		ppd->qsfp_info.check_interrupt_flags = 1;
6137 		spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock, flags);
6138 	}
6139 
6140 	/* Schedule the QSFP work only if there is a cable attached. */
6141 	if (qsfp_mod_present(ppd))
6142 		queue_work(ppd->link_wq, &ppd->qsfp_info.qsfp_work);
6143 }
6144 
6145 static int request_host_lcb_access(struct hfi1_devdata *dd)
6146 {
6147 	int ret;
6148 
6149 	ret = do_8051_command(dd, HCMD_MISC,
6150 			      (u64)HCMD_MISC_REQUEST_LCB_ACCESS <<
6151 			      LOAD_DATA_FIELD_ID_SHIFT, NULL);
6152 	if (ret != HCMD_SUCCESS) {
6153 		dd_dev_err(dd, "%s: command failed with error %d\n",
6154 			   __func__, ret);
6155 	}
6156 	return ret == HCMD_SUCCESS ? 0 : -EBUSY;
6157 }
6158 
6159 static int request_8051_lcb_access(struct hfi1_devdata *dd)
6160 {
6161 	int ret;
6162 
6163 	ret = do_8051_command(dd, HCMD_MISC,
6164 			      (u64)HCMD_MISC_GRANT_LCB_ACCESS <<
6165 			      LOAD_DATA_FIELD_ID_SHIFT, NULL);
6166 	if (ret != HCMD_SUCCESS) {
6167 		dd_dev_err(dd, "%s: command failed with error %d\n",
6168 			   __func__, ret);
6169 	}
6170 	return ret == HCMD_SUCCESS ? 0 : -EBUSY;
6171 }
6172 
6173 /*
6174  * Set the LCB selector - allow host access.  The DCC selector always
6175  * points to the host.
6176  */
6177 static inline void set_host_lcb_access(struct hfi1_devdata *dd)
6178 {
6179 	write_csr(dd, DC_DC8051_CFG_CSR_ACCESS_SEL,
6180 		  DC_DC8051_CFG_CSR_ACCESS_SEL_DCC_SMASK |
6181 		  DC_DC8051_CFG_CSR_ACCESS_SEL_LCB_SMASK);
6182 }
6183 
6184 /*
6185  * Clear the LCB selector - allow 8051 access.  The DCC selector always
6186  * points to the host.
6187  */
6188 static inline void set_8051_lcb_access(struct hfi1_devdata *dd)
6189 {
6190 	write_csr(dd, DC_DC8051_CFG_CSR_ACCESS_SEL,
6191 		  DC_DC8051_CFG_CSR_ACCESS_SEL_DCC_SMASK);
6192 }
6193 
6194 /*
6195  * Acquire LCB access from the 8051.  If the host already has access,
6196  * just increment a counter.  Otherwise, inform the 8051 that the
6197  * host is taking access.
6198  *
6199  * Returns:
6200  *	0 on success
6201  *	-EBUSY if the 8051 has control and cannot be disturbed
6202  *	-errno if unable to acquire access from the 8051
6203  */
6204 int acquire_lcb_access(struct hfi1_devdata *dd, int sleep_ok)
6205 {
6206 	struct hfi1_pportdata *ppd = dd->pport;
6207 	int ret = 0;
6208 
6209 	/*
6210 	 * Use the host link state lock so the operation of this routine
6211 	 * { link state check, selector change, count increment } can occur
6212 	 * as a unit against a link state change.  Otherwise there is a
6213 	 * race between the state change and the count increment.
6214 	 */
6215 	if (sleep_ok) {
6216 		mutex_lock(&ppd->hls_lock);
6217 	} else {
6218 		while (!mutex_trylock(&ppd->hls_lock))
6219 			udelay(1);
6220 	}
6221 
6222 	/* this access is valid only when the link is up */
6223 	if (ppd->host_link_state & HLS_DOWN) {
6224 		dd_dev_info(dd, "%s: link state %s not up\n",
6225 			    __func__, link_state_name(ppd->host_link_state));
6226 		ret = -EBUSY;
6227 		goto done;
6228 	}
6229 
6230 	if (dd->lcb_access_count == 0) {
6231 		ret = request_host_lcb_access(dd);
6232 		if (ret) {
6233 			dd_dev_err(dd,
6234 				   "%s: unable to acquire LCB access, err %d\n",
6235 				   __func__, ret);
6236 			goto done;
6237 		}
6238 		set_host_lcb_access(dd);
6239 	}
6240 	dd->lcb_access_count++;
6241 done:
6242 	mutex_unlock(&ppd->hls_lock);
6243 	return ret;
6244 }
6245 
6246 /*
6247  * Release LCB access by decrementing the use count.  If the count is moving
6248  * from 1 to 0, inform 8051 that it has control back.
6249  *
6250  * Returns:
6251  *	0 on success
6252  *	-errno if unable to release access to the 8051
6253  */
6254 int release_lcb_access(struct hfi1_devdata *dd, int sleep_ok)
6255 {
6256 	int ret = 0;
6257 
6258 	/*
6259 	 * Use the host link state lock because the acquire needed it.
6260 	 * Here, we only need to keep { selector change, count decrement }
6261 	 * as a unit.
6262 	 */
6263 	if (sleep_ok) {
6264 		mutex_lock(&dd->pport->hls_lock);
6265 	} else {
6266 		while (!mutex_trylock(&dd->pport->hls_lock))
6267 			udelay(1);
6268 	}
6269 
6270 	if (dd->lcb_access_count == 0) {
6271 		dd_dev_err(dd, "%s: LCB access count is zero.  Skipping.\n",
6272 			   __func__);
6273 		goto done;
6274 	}
6275 
6276 	if (dd->lcb_access_count == 1) {
6277 		set_8051_lcb_access(dd);
6278 		ret = request_8051_lcb_access(dd);
6279 		if (ret) {
6280 			dd_dev_err(dd,
6281 				   "%s: unable to release LCB access, err %d\n",
6282 				   __func__, ret);
6283 			/* restore host access if the grant didn't work */
6284 			set_host_lcb_access(dd);
6285 			goto done;
6286 		}
6287 	}
6288 	dd->lcb_access_count--;
6289 done:
6290 	mutex_unlock(&dd->pport->hls_lock);
6291 	return ret;
6292 }
6293 
6294 /*
6295  * Initialize LCB access variables and state.  Called during driver load,
6296  * after most of the initialization is finished.
6297  *
6298  * The DC default is LCB access on for the host.  The driver defaults to
6299  * leaving access to the 8051.  Assign access now - this constrains the call
6300  * to this routine to be after all LCB set-up is done.  In particular, after
6301  * hf1_init_dd() -> set_up_interrupts() -> clear_all_interrupts()
6302  */
6303 static void init_lcb_access(struct hfi1_devdata *dd)
6304 {
6305 	dd->lcb_access_count = 0;
6306 }
6307 
6308 /*
6309  * Write a response back to a 8051 request.
6310  */
6311 static void hreq_response(struct hfi1_devdata *dd, u8 return_code, u16 rsp_data)
6312 {
6313 	write_csr(dd, DC_DC8051_CFG_EXT_DEV_0,
6314 		  DC_DC8051_CFG_EXT_DEV_0_COMPLETED_SMASK |
6315 		  (u64)return_code <<
6316 		  DC_DC8051_CFG_EXT_DEV_0_RETURN_CODE_SHIFT |
6317 		  (u64)rsp_data << DC_DC8051_CFG_EXT_DEV_0_RSP_DATA_SHIFT);
6318 }
6319 
6320 /*
6321  * Handle host requests from the 8051.
6322  */
6323 static void handle_8051_request(struct hfi1_pportdata *ppd)
6324 {
6325 	struct hfi1_devdata *dd = ppd->dd;
6326 	u64 reg;
6327 	u16 data = 0;
6328 	u8 type;
6329 
6330 	reg = read_csr(dd, DC_DC8051_CFG_EXT_DEV_1);
6331 	if ((reg & DC_DC8051_CFG_EXT_DEV_1_REQ_NEW_SMASK) == 0)
6332 		return;	/* no request */
6333 
6334 	/* zero out COMPLETED so the response is seen */
6335 	write_csr(dd, DC_DC8051_CFG_EXT_DEV_0, 0);
6336 
6337 	/* extract request details */
6338 	type = (reg >> DC_DC8051_CFG_EXT_DEV_1_REQ_TYPE_SHIFT)
6339 			& DC_DC8051_CFG_EXT_DEV_1_REQ_TYPE_MASK;
6340 	data = (reg >> DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SHIFT)
6341 			& DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_MASK;
6342 
6343 	switch (type) {
6344 	case HREQ_LOAD_CONFIG:
6345 	case HREQ_SAVE_CONFIG:
6346 	case HREQ_READ_CONFIG:
6347 	case HREQ_SET_TX_EQ_ABS:
6348 	case HREQ_SET_TX_EQ_REL:
6349 	case HREQ_ENABLE:
6350 		dd_dev_info(dd, "8051 request: request 0x%x not supported\n",
6351 			    type);
6352 		hreq_response(dd, HREQ_NOT_SUPPORTED, 0);
6353 		break;
6354 	case HREQ_CONFIG_DONE:
6355 		hreq_response(dd, HREQ_SUCCESS, 0);
6356 		break;
6357 
6358 	case HREQ_INTERFACE_TEST:
6359 		hreq_response(dd, HREQ_SUCCESS, data);
6360 		break;
6361 	default:
6362 		dd_dev_err(dd, "8051 request: unknown request 0x%x\n", type);
6363 		hreq_response(dd, HREQ_NOT_SUPPORTED, 0);
6364 		break;
6365 	}
6366 }
6367 
6368 /*
6369  * Set up allocation unit vaulue.
6370  */
6371 void set_up_vau(struct hfi1_devdata *dd, u8 vau)
6372 {
6373 	u64 reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
6374 
6375 	/* do not modify other values in the register */
6376 	reg &= ~SEND_CM_GLOBAL_CREDIT_AU_SMASK;
6377 	reg |= (u64)vau << SEND_CM_GLOBAL_CREDIT_AU_SHIFT;
6378 	write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg);
6379 }
6380 
6381 /*
6382  * Set up initial VL15 credits of the remote.  Assumes the rest of
6383  * the CM credit registers are zero from a previous global or credit reset.
6384  * Shared limit for VL15 will always be 0.
6385  */
6386 void set_up_vl15(struct hfi1_devdata *dd, u16 vl15buf)
6387 {
6388 	u64 reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
6389 
6390 	/* set initial values for total and shared credit limit */
6391 	reg &= ~(SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SMASK |
6392 		 SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SMASK);
6393 
6394 	/*
6395 	 * Set total limit to be equal to VL15 credits.
6396 	 * Leave shared limit at 0.
6397 	 */
6398 	reg |= (u64)vl15buf << SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT;
6399 	write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg);
6400 
6401 	write_csr(dd, SEND_CM_CREDIT_VL15, (u64)vl15buf
6402 		  << SEND_CM_CREDIT_VL15_DEDICATED_LIMIT_VL_SHIFT);
6403 }
6404 
6405 /*
6406  * Zero all credit details from the previous connection and
6407  * reset the CM manager's internal counters.
6408  */
6409 void reset_link_credits(struct hfi1_devdata *dd)
6410 {
6411 	int i;
6412 
6413 	/* remove all previous VL credit limits */
6414 	for (i = 0; i < TXE_NUM_DATA_VL; i++)
6415 		write_csr(dd, SEND_CM_CREDIT_VL + (8 * i), 0);
6416 	write_csr(dd, SEND_CM_CREDIT_VL15, 0);
6417 	write_csr(dd, SEND_CM_GLOBAL_CREDIT, 0);
6418 	/* reset the CM block */
6419 	pio_send_control(dd, PSC_CM_RESET);
6420 	/* reset cached value */
6421 	dd->vl15buf_cached = 0;
6422 }
6423 
6424 /* convert a vCU to a CU */
6425 static u32 vcu_to_cu(u8 vcu)
6426 {
6427 	return 1 << vcu;
6428 }
6429 
6430 /* convert a CU to a vCU */
6431 static u8 cu_to_vcu(u32 cu)
6432 {
6433 	return ilog2(cu);
6434 }
6435 
6436 /* convert a vAU to an AU */
6437 static u32 vau_to_au(u8 vau)
6438 {
6439 	return 8 * (1 << vau);
6440 }
6441 
6442 static void set_linkup_defaults(struct hfi1_pportdata *ppd)
6443 {
6444 	ppd->sm_trap_qp = 0x0;
6445 	ppd->sa_qp = 0x1;
6446 }
6447 
6448 /*
6449  * Graceful LCB shutdown.  This leaves the LCB FIFOs in reset.
6450  */
6451 static void lcb_shutdown(struct hfi1_devdata *dd, int abort)
6452 {
6453 	u64 reg;
6454 
6455 	/* clear lcb run: LCB_CFG_RUN.EN = 0 */
6456 	write_csr(dd, DC_LCB_CFG_RUN, 0);
6457 	/* set tx fifo reset: LCB_CFG_TX_FIFOS_RESET.VAL = 1 */
6458 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET,
6459 		  1ull << DC_LCB_CFG_TX_FIFOS_RESET_VAL_SHIFT);
6460 	/* set dcc reset csr: DCC_CFG_RESET.{reset_lcb,reset_rx_fpe} = 1 */
6461 	dd->lcb_err_en = read_csr(dd, DC_LCB_ERR_EN);
6462 	reg = read_csr(dd, DCC_CFG_RESET);
6463 	write_csr(dd, DCC_CFG_RESET, reg |
6464 		  (1ull << DCC_CFG_RESET_RESET_LCB_SHIFT) |
6465 		  (1ull << DCC_CFG_RESET_RESET_RX_FPE_SHIFT));
6466 	(void)read_csr(dd, DCC_CFG_RESET); /* make sure the write completed */
6467 	if (!abort) {
6468 		udelay(1);    /* must hold for the longer of 16cclks or 20ns */
6469 		write_csr(dd, DCC_CFG_RESET, reg);
6470 		write_csr(dd, DC_LCB_ERR_EN, dd->lcb_err_en);
6471 	}
6472 }
6473 
6474 /*
6475  * This routine should be called after the link has been transitioned to
6476  * OFFLINE (OFFLINE state has the side effect of putting the SerDes into
6477  * reset).
6478  *
6479  * The expectation is that the caller of this routine would have taken
6480  * care of properly transitioning the link into the correct state.
6481  * NOTE: the caller needs to acquire the dd->dc8051_lock lock
6482  *       before calling this function.
6483  */
6484 static void _dc_shutdown(struct hfi1_devdata *dd)
6485 {
6486 	lockdep_assert_held(&dd->dc8051_lock);
6487 
6488 	if (dd->dc_shutdown)
6489 		return;
6490 
6491 	dd->dc_shutdown = 1;
6492 	/* Shutdown the LCB */
6493 	lcb_shutdown(dd, 1);
6494 	/*
6495 	 * Going to OFFLINE would have causes the 8051 to put the
6496 	 * SerDes into reset already. Just need to shut down the 8051,
6497 	 * itself.
6498 	 */
6499 	write_csr(dd, DC_DC8051_CFG_RST, 0x1);
6500 }
6501 
6502 static void dc_shutdown(struct hfi1_devdata *dd)
6503 {
6504 	mutex_lock(&dd->dc8051_lock);
6505 	_dc_shutdown(dd);
6506 	mutex_unlock(&dd->dc8051_lock);
6507 }
6508 
6509 /*
6510  * Calling this after the DC has been brought out of reset should not
6511  * do any damage.
6512  * NOTE: the caller needs to acquire the dd->dc8051_lock lock
6513  *       before calling this function.
6514  */
6515 static void _dc_start(struct hfi1_devdata *dd)
6516 {
6517 	lockdep_assert_held(&dd->dc8051_lock);
6518 
6519 	if (!dd->dc_shutdown)
6520 		return;
6521 
6522 	/* Take the 8051 out of reset */
6523 	write_csr(dd, DC_DC8051_CFG_RST, 0ull);
6524 	/* Wait until 8051 is ready */
6525 	if (wait_fm_ready(dd, TIMEOUT_8051_START))
6526 		dd_dev_err(dd, "%s: timeout starting 8051 firmware\n",
6527 			   __func__);
6528 
6529 	/* Take away reset for LCB and RX FPE (set in lcb_shutdown). */
6530 	write_csr(dd, DCC_CFG_RESET, 0x10);
6531 	/* lcb_shutdown() with abort=1 does not restore these */
6532 	write_csr(dd, DC_LCB_ERR_EN, dd->lcb_err_en);
6533 	dd->dc_shutdown = 0;
6534 }
6535 
6536 static void dc_start(struct hfi1_devdata *dd)
6537 {
6538 	mutex_lock(&dd->dc8051_lock);
6539 	_dc_start(dd);
6540 	mutex_unlock(&dd->dc8051_lock);
6541 }
6542 
6543 /*
6544  * These LCB adjustments are for the Aurora SerDes core in the FPGA.
6545  */
6546 static void adjust_lcb_for_fpga_serdes(struct hfi1_devdata *dd)
6547 {
6548 	u64 rx_radr, tx_radr;
6549 	u32 version;
6550 
6551 	if (dd->icode != ICODE_FPGA_EMULATION)
6552 		return;
6553 
6554 	/*
6555 	 * These LCB defaults on emulator _s are good, nothing to do here:
6556 	 *	LCB_CFG_TX_FIFOS_RADR
6557 	 *	LCB_CFG_RX_FIFOS_RADR
6558 	 *	LCB_CFG_LN_DCLK
6559 	 *	LCB_CFG_IGNORE_LOST_RCLK
6560 	 */
6561 	if (is_emulator_s(dd))
6562 		return;
6563 	/* else this is _p */
6564 
6565 	version = emulator_rev(dd);
6566 	if (!is_ax(dd))
6567 		version = 0x2d;	/* all B0 use 0x2d or higher settings */
6568 
6569 	if (version <= 0x12) {
6570 		/* release 0x12 and below */
6571 
6572 		/*
6573 		 * LCB_CFG_RX_FIFOS_RADR.RST_VAL = 0x9
6574 		 * LCB_CFG_RX_FIFOS_RADR.OK_TO_JUMP_VAL = 0x9
6575 		 * LCB_CFG_RX_FIFOS_RADR.DO_NOT_JUMP_VAL = 0xa
6576 		 */
6577 		rx_radr =
6578 		      0xaull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6579 		    | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6580 		    | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6581 		/*
6582 		 * LCB_CFG_TX_FIFOS_RADR.ON_REINIT = 0 (default)
6583 		 * LCB_CFG_TX_FIFOS_RADR.RST_VAL = 6
6584 		 */
6585 		tx_radr = 6ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6586 	} else if (version <= 0x18) {
6587 		/* release 0x13 up to 0x18 */
6588 		/* LCB_CFG_RX_FIFOS_RADR = 0x988 */
6589 		rx_radr =
6590 		      0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6591 		    | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6592 		    | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6593 		tx_radr = 7ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6594 	} else if (version == 0x19) {
6595 		/* release 0x19 */
6596 		/* LCB_CFG_RX_FIFOS_RADR = 0xa99 */
6597 		rx_radr =
6598 		      0xAull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6599 		    | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6600 		    | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6601 		tx_radr = 3ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6602 	} else if (version == 0x1a) {
6603 		/* release 0x1a */
6604 		/* LCB_CFG_RX_FIFOS_RADR = 0x988 */
6605 		rx_radr =
6606 		      0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6607 		    | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6608 		    | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6609 		tx_radr = 7ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6610 		write_csr(dd, DC_LCB_CFG_LN_DCLK, 1ull);
6611 	} else {
6612 		/* release 0x1b and higher */
6613 		/* LCB_CFG_RX_FIFOS_RADR = 0x877 */
6614 		rx_radr =
6615 		      0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6616 		    | 0x7ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6617 		    | 0x7ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6618 		tx_radr = 3ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6619 	}
6620 
6621 	write_csr(dd, DC_LCB_CFG_RX_FIFOS_RADR, rx_radr);
6622 	/* LCB_CFG_IGNORE_LOST_RCLK.EN = 1 */
6623 	write_csr(dd, DC_LCB_CFG_IGNORE_LOST_RCLK,
6624 		  DC_LCB_CFG_IGNORE_LOST_RCLK_EN_SMASK);
6625 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RADR, tx_radr);
6626 }
6627 
6628 /*
6629  * Handle a SMA idle message
6630  *
6631  * This is a work-queue function outside of the interrupt.
6632  */
6633 void handle_sma_message(struct work_struct *work)
6634 {
6635 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
6636 							sma_message_work);
6637 	struct hfi1_devdata *dd = ppd->dd;
6638 	u64 msg;
6639 	int ret;
6640 
6641 	/*
6642 	 * msg is bytes 1-4 of the 40-bit idle message - the command code
6643 	 * is stripped off
6644 	 */
6645 	ret = read_idle_sma(dd, &msg);
6646 	if (ret)
6647 		return;
6648 	dd_dev_info(dd, "%s: SMA message 0x%llx\n", __func__, msg);
6649 	/*
6650 	 * React to the SMA message.  Byte[1] (0 for us) is the command.
6651 	 */
6652 	switch (msg & 0xff) {
6653 	case SMA_IDLE_ARM:
6654 		/*
6655 		 * See OPAv1 table 9-14 - HFI and External Switch Ports Key
6656 		 * State Transitions
6657 		 *
6658 		 * Only expected in INIT or ARMED, discard otherwise.
6659 		 */
6660 		if (ppd->host_link_state & (HLS_UP_INIT | HLS_UP_ARMED))
6661 			ppd->neighbor_normal = 1;
6662 		break;
6663 	case SMA_IDLE_ACTIVE:
6664 		/*
6665 		 * See OPAv1 table 9-14 - HFI and External Switch Ports Key
6666 		 * State Transitions
6667 		 *
6668 		 * Can activate the node.  Discard otherwise.
6669 		 */
6670 		if (ppd->host_link_state == HLS_UP_ARMED &&
6671 		    ppd->is_active_optimize_enabled) {
6672 			ppd->neighbor_normal = 1;
6673 			ret = set_link_state(ppd, HLS_UP_ACTIVE);
6674 			if (ret)
6675 				dd_dev_err(
6676 					dd,
6677 					"%s: received Active SMA idle message, couldn't set link to Active\n",
6678 					__func__);
6679 		}
6680 		break;
6681 	default:
6682 		dd_dev_err(dd,
6683 			   "%s: received unexpected SMA idle message 0x%llx\n",
6684 			   __func__, msg);
6685 		break;
6686 	}
6687 }
6688 
6689 static void adjust_rcvctrl(struct hfi1_devdata *dd, u64 add, u64 clear)
6690 {
6691 	u64 rcvctrl;
6692 	unsigned long flags;
6693 
6694 	spin_lock_irqsave(&dd->rcvctrl_lock, flags);
6695 	rcvctrl = read_csr(dd, RCV_CTRL);
6696 	rcvctrl |= add;
6697 	rcvctrl &= ~clear;
6698 	write_csr(dd, RCV_CTRL, rcvctrl);
6699 	spin_unlock_irqrestore(&dd->rcvctrl_lock, flags);
6700 }
6701 
6702 static inline void add_rcvctrl(struct hfi1_devdata *dd, u64 add)
6703 {
6704 	adjust_rcvctrl(dd, add, 0);
6705 }
6706 
6707 static inline void clear_rcvctrl(struct hfi1_devdata *dd, u64 clear)
6708 {
6709 	adjust_rcvctrl(dd, 0, clear);
6710 }
6711 
6712 /*
6713  * Called from all interrupt handlers to start handling an SPC freeze.
6714  */
6715 void start_freeze_handling(struct hfi1_pportdata *ppd, int flags)
6716 {
6717 	struct hfi1_devdata *dd = ppd->dd;
6718 	struct send_context *sc;
6719 	int i;
6720 
6721 	if (flags & FREEZE_SELF)
6722 		write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_FREEZE_SMASK);
6723 
6724 	/* enter frozen mode */
6725 	dd->flags |= HFI1_FROZEN;
6726 
6727 	/* notify all SDMA engines that they are going into a freeze */
6728 	sdma_freeze_notify(dd, !!(flags & FREEZE_LINK_DOWN));
6729 
6730 	/* do halt pre-handling on all enabled send contexts */
6731 	for (i = 0; i < dd->num_send_contexts; i++) {
6732 		sc = dd->send_contexts[i].sc;
6733 		if (sc && (sc->flags & SCF_ENABLED))
6734 			sc_stop(sc, SCF_FROZEN | SCF_HALTED);
6735 	}
6736 
6737 	/* Send context are frozen. Notify user space */
6738 	hfi1_set_uevent_bits(ppd, _HFI1_EVENT_FROZEN_BIT);
6739 
6740 	if (flags & FREEZE_ABORT) {
6741 		dd_dev_err(dd,
6742 			   "Aborted freeze recovery. Please REBOOT system\n");
6743 		return;
6744 	}
6745 	/* queue non-interrupt handler */
6746 	queue_work(ppd->hfi1_wq, &ppd->freeze_work);
6747 }
6748 
6749 /*
6750  * Wait until all 4 sub-blocks indicate that they have frozen or unfrozen,
6751  * depending on the "freeze" parameter.
6752  *
6753  * No need to return an error if it times out, our only option
6754  * is to proceed anyway.
6755  */
6756 static void wait_for_freeze_status(struct hfi1_devdata *dd, int freeze)
6757 {
6758 	unsigned long timeout;
6759 	u64 reg;
6760 
6761 	timeout = jiffies + msecs_to_jiffies(FREEZE_STATUS_TIMEOUT);
6762 	while (1) {
6763 		reg = read_csr(dd, CCE_STATUS);
6764 		if (freeze) {
6765 			/* waiting until all indicators are set */
6766 			if ((reg & ALL_FROZE) == ALL_FROZE)
6767 				return;	/* all done */
6768 		} else {
6769 			/* waiting until all indicators are clear */
6770 			if ((reg & ALL_FROZE) == 0)
6771 				return; /* all done */
6772 		}
6773 
6774 		if (time_after(jiffies, timeout)) {
6775 			dd_dev_err(dd,
6776 				   "Time out waiting for SPC %sfreeze, bits 0x%llx, expecting 0x%llx, continuing",
6777 				   freeze ? "" : "un", reg & ALL_FROZE,
6778 				   freeze ? ALL_FROZE : 0ull);
6779 			return;
6780 		}
6781 		usleep_range(80, 120);
6782 	}
6783 }
6784 
6785 /*
6786  * Do all freeze handling for the RXE block.
6787  */
6788 static void rxe_freeze(struct hfi1_devdata *dd)
6789 {
6790 	int i;
6791 	struct hfi1_ctxtdata *rcd;
6792 
6793 	/* disable port */
6794 	clear_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
6795 
6796 	/* disable all receive contexts */
6797 	for (i = 0; i < dd->num_rcv_contexts; i++) {
6798 		rcd = hfi1_rcd_get_by_index(dd, i);
6799 		hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_DIS, rcd);
6800 		hfi1_rcd_put(rcd);
6801 	}
6802 }
6803 
6804 /*
6805  * Unfreeze handling for the RXE block - kernel contexts only.
6806  * This will also enable the port.  User contexts will do unfreeze
6807  * handling on a per-context basis as they call into the driver.
6808  *
6809  */
6810 static void rxe_kernel_unfreeze(struct hfi1_devdata *dd)
6811 {
6812 	u32 rcvmask;
6813 	u16 i;
6814 	struct hfi1_ctxtdata *rcd;
6815 
6816 	/* enable all kernel contexts */
6817 	for (i = 0; i < dd->num_rcv_contexts; i++) {
6818 		rcd = hfi1_rcd_get_by_index(dd, i);
6819 
6820 		/* Ensure all non-user contexts(including vnic) are enabled */
6821 		if (!rcd ||
6822 		    (i >= dd->first_dyn_alloc_ctxt && !rcd->is_vnic)) {
6823 			hfi1_rcd_put(rcd);
6824 			continue;
6825 		}
6826 		rcvmask = HFI1_RCVCTRL_CTXT_ENB;
6827 		/* HFI1_RCVCTRL_TAILUPD_[ENB|DIS] needs to be set explicitly */
6828 		rcvmask |= HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL) ?
6829 			HFI1_RCVCTRL_TAILUPD_ENB : HFI1_RCVCTRL_TAILUPD_DIS;
6830 		hfi1_rcvctrl(dd, rcvmask, rcd);
6831 		hfi1_rcd_put(rcd);
6832 	}
6833 
6834 	/* enable port */
6835 	add_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
6836 }
6837 
6838 /*
6839  * Non-interrupt SPC freeze handling.
6840  *
6841  * This is a work-queue function outside of the triggering interrupt.
6842  */
6843 void handle_freeze(struct work_struct *work)
6844 {
6845 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
6846 								freeze_work);
6847 	struct hfi1_devdata *dd = ppd->dd;
6848 
6849 	/* wait for freeze indicators on all affected blocks */
6850 	wait_for_freeze_status(dd, 1);
6851 
6852 	/* SPC is now frozen */
6853 
6854 	/* do send PIO freeze steps */
6855 	pio_freeze(dd);
6856 
6857 	/* do send DMA freeze steps */
6858 	sdma_freeze(dd);
6859 
6860 	/* do send egress freeze steps - nothing to do */
6861 
6862 	/* do receive freeze steps */
6863 	rxe_freeze(dd);
6864 
6865 	/*
6866 	 * Unfreeze the hardware - clear the freeze, wait for each
6867 	 * block's frozen bit to clear, then clear the frozen flag.
6868 	 */
6869 	write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_UNFREEZE_SMASK);
6870 	wait_for_freeze_status(dd, 0);
6871 
6872 	if (is_ax(dd)) {
6873 		write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_FREEZE_SMASK);
6874 		wait_for_freeze_status(dd, 1);
6875 		write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_UNFREEZE_SMASK);
6876 		wait_for_freeze_status(dd, 0);
6877 	}
6878 
6879 	/* do send PIO unfreeze steps for kernel contexts */
6880 	pio_kernel_unfreeze(dd);
6881 
6882 	/* do send DMA unfreeze steps */
6883 	sdma_unfreeze(dd);
6884 
6885 	/* do send egress unfreeze steps - nothing to do */
6886 
6887 	/* do receive unfreeze steps for kernel contexts */
6888 	rxe_kernel_unfreeze(dd);
6889 
6890 	/*
6891 	 * The unfreeze procedure touches global device registers when
6892 	 * it disables and re-enables RXE. Mark the device unfrozen
6893 	 * after all that is done so other parts of the driver waiting
6894 	 * for the device to unfreeze don't do things out of order.
6895 	 *
6896 	 * The above implies that the meaning of HFI1_FROZEN flag is
6897 	 * "Device has gone into freeze mode and freeze mode handling
6898 	 * is still in progress."
6899 	 *
6900 	 * The flag will be removed when freeze mode processing has
6901 	 * completed.
6902 	 */
6903 	dd->flags &= ~HFI1_FROZEN;
6904 	wake_up(&dd->event_queue);
6905 
6906 	/* no longer frozen */
6907 }
6908 
6909 /**
6910  * update_xmit_counters - update PortXmitWait/PortVlXmitWait
6911  * counters.
6912  * @ppd: info of physical Hfi port
6913  * @link_width: new link width after link up or downgrade
6914  *
6915  * Update the PortXmitWait and PortVlXmitWait counters after
6916  * a link up or downgrade event to reflect a link width change.
6917  */
6918 static void update_xmit_counters(struct hfi1_pportdata *ppd, u16 link_width)
6919 {
6920 	int i;
6921 	u16 tx_width;
6922 	u16 link_speed;
6923 
6924 	tx_width = tx_link_width(link_width);
6925 	link_speed = get_link_speed(ppd->link_speed_active);
6926 
6927 	/*
6928 	 * There are C_VL_COUNT number of PortVLXmitWait counters.
6929 	 * Adding 1 to C_VL_COUNT to include the PortXmitWait counter.
6930 	 */
6931 	for (i = 0; i < C_VL_COUNT + 1; i++)
6932 		get_xmit_wait_counters(ppd, tx_width, link_speed, i);
6933 }
6934 
6935 /*
6936  * Handle a link up interrupt from the 8051.
6937  *
6938  * This is a work-queue function outside of the interrupt.
6939  */
6940 void handle_link_up(struct work_struct *work)
6941 {
6942 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
6943 						  link_up_work);
6944 	struct hfi1_devdata *dd = ppd->dd;
6945 
6946 	set_link_state(ppd, HLS_UP_INIT);
6947 
6948 	/* cache the read of DC_LCB_STS_ROUND_TRIP_LTP_CNT */
6949 	read_ltp_rtt(dd);
6950 	/*
6951 	 * OPA specifies that certain counters are cleared on a transition
6952 	 * to link up, so do that.
6953 	 */
6954 	clear_linkup_counters(dd);
6955 	/*
6956 	 * And (re)set link up default values.
6957 	 */
6958 	set_linkup_defaults(ppd);
6959 
6960 	/*
6961 	 * Set VL15 credits. Use cached value from verify cap interrupt.
6962 	 * In case of quick linkup or simulator, vl15 value will be set by
6963 	 * handle_linkup_change. VerifyCap interrupt handler will not be
6964 	 * called in those scenarios.
6965 	 */
6966 	if (!(quick_linkup || dd->icode == ICODE_FUNCTIONAL_SIMULATOR))
6967 		set_up_vl15(dd, dd->vl15buf_cached);
6968 
6969 	/* enforce link speed enabled */
6970 	if ((ppd->link_speed_active & ppd->link_speed_enabled) == 0) {
6971 		/* oops - current speed is not enabled, bounce */
6972 		dd_dev_err(dd,
6973 			   "Link speed active 0x%x is outside enabled 0x%x, downing link\n",
6974 			   ppd->link_speed_active, ppd->link_speed_enabled);
6975 		set_link_down_reason(ppd, OPA_LINKDOWN_REASON_SPEED_POLICY, 0,
6976 				     OPA_LINKDOWN_REASON_SPEED_POLICY);
6977 		set_link_state(ppd, HLS_DN_OFFLINE);
6978 		start_link(ppd);
6979 	}
6980 }
6981 
6982 /*
6983  * Several pieces of LNI information were cached for SMA in ppd.
6984  * Reset these on link down
6985  */
6986 static void reset_neighbor_info(struct hfi1_pportdata *ppd)
6987 {
6988 	ppd->neighbor_guid = 0;
6989 	ppd->neighbor_port_number = 0;
6990 	ppd->neighbor_type = 0;
6991 	ppd->neighbor_fm_security = 0;
6992 }
6993 
6994 static const char * const link_down_reason_strs[] = {
6995 	[OPA_LINKDOWN_REASON_NONE] = "None",
6996 	[OPA_LINKDOWN_REASON_RCV_ERROR_0] = "Receive error 0",
6997 	[OPA_LINKDOWN_REASON_BAD_PKT_LEN] = "Bad packet length",
6998 	[OPA_LINKDOWN_REASON_PKT_TOO_LONG] = "Packet too long",
6999 	[OPA_LINKDOWN_REASON_PKT_TOO_SHORT] = "Packet too short",
7000 	[OPA_LINKDOWN_REASON_BAD_SLID] = "Bad SLID",
7001 	[OPA_LINKDOWN_REASON_BAD_DLID] = "Bad DLID",
7002 	[OPA_LINKDOWN_REASON_BAD_L2] = "Bad L2",
7003 	[OPA_LINKDOWN_REASON_BAD_SC] = "Bad SC",
7004 	[OPA_LINKDOWN_REASON_RCV_ERROR_8] = "Receive error 8",
7005 	[OPA_LINKDOWN_REASON_BAD_MID_TAIL] = "Bad mid tail",
7006 	[OPA_LINKDOWN_REASON_RCV_ERROR_10] = "Receive error 10",
7007 	[OPA_LINKDOWN_REASON_PREEMPT_ERROR] = "Preempt error",
7008 	[OPA_LINKDOWN_REASON_PREEMPT_VL15] = "Preempt vl15",
7009 	[OPA_LINKDOWN_REASON_BAD_VL_MARKER] = "Bad VL marker",
7010 	[OPA_LINKDOWN_REASON_RCV_ERROR_14] = "Receive error 14",
7011 	[OPA_LINKDOWN_REASON_RCV_ERROR_15] = "Receive error 15",
7012 	[OPA_LINKDOWN_REASON_BAD_HEAD_DIST] = "Bad head distance",
7013 	[OPA_LINKDOWN_REASON_BAD_TAIL_DIST] = "Bad tail distance",
7014 	[OPA_LINKDOWN_REASON_BAD_CTRL_DIST] = "Bad control distance",
7015 	[OPA_LINKDOWN_REASON_BAD_CREDIT_ACK] = "Bad credit ack",
7016 	[OPA_LINKDOWN_REASON_UNSUPPORTED_VL_MARKER] = "Unsupported VL marker",
7017 	[OPA_LINKDOWN_REASON_BAD_PREEMPT] = "Bad preempt",
7018 	[OPA_LINKDOWN_REASON_BAD_CONTROL_FLIT] = "Bad control flit",
7019 	[OPA_LINKDOWN_REASON_EXCEED_MULTICAST_LIMIT] = "Exceed multicast limit",
7020 	[OPA_LINKDOWN_REASON_RCV_ERROR_24] = "Receive error 24",
7021 	[OPA_LINKDOWN_REASON_RCV_ERROR_25] = "Receive error 25",
7022 	[OPA_LINKDOWN_REASON_RCV_ERROR_26] = "Receive error 26",
7023 	[OPA_LINKDOWN_REASON_RCV_ERROR_27] = "Receive error 27",
7024 	[OPA_LINKDOWN_REASON_RCV_ERROR_28] = "Receive error 28",
7025 	[OPA_LINKDOWN_REASON_RCV_ERROR_29] = "Receive error 29",
7026 	[OPA_LINKDOWN_REASON_RCV_ERROR_30] = "Receive error 30",
7027 	[OPA_LINKDOWN_REASON_EXCESSIVE_BUFFER_OVERRUN] =
7028 					"Excessive buffer overrun",
7029 	[OPA_LINKDOWN_REASON_UNKNOWN] = "Unknown",
7030 	[OPA_LINKDOWN_REASON_REBOOT] = "Reboot",
7031 	[OPA_LINKDOWN_REASON_NEIGHBOR_UNKNOWN] = "Neighbor unknown",
7032 	[OPA_LINKDOWN_REASON_FM_BOUNCE] = "FM bounce",
7033 	[OPA_LINKDOWN_REASON_SPEED_POLICY] = "Speed policy",
7034 	[OPA_LINKDOWN_REASON_WIDTH_POLICY] = "Width policy",
7035 	[OPA_LINKDOWN_REASON_DISCONNECTED] = "Disconnected",
7036 	[OPA_LINKDOWN_REASON_LOCAL_MEDIA_NOT_INSTALLED] =
7037 					"Local media not installed",
7038 	[OPA_LINKDOWN_REASON_NOT_INSTALLED] = "Not installed",
7039 	[OPA_LINKDOWN_REASON_CHASSIS_CONFIG] = "Chassis config",
7040 	[OPA_LINKDOWN_REASON_END_TO_END_NOT_INSTALLED] =
7041 					"End to end not installed",
7042 	[OPA_LINKDOWN_REASON_POWER_POLICY] = "Power policy",
7043 	[OPA_LINKDOWN_REASON_LINKSPEED_POLICY] = "Link speed policy",
7044 	[OPA_LINKDOWN_REASON_LINKWIDTH_POLICY] = "Link width policy",
7045 	[OPA_LINKDOWN_REASON_SWITCH_MGMT] = "Switch management",
7046 	[OPA_LINKDOWN_REASON_SMA_DISABLED] = "SMA disabled",
7047 	[OPA_LINKDOWN_REASON_TRANSIENT] = "Transient"
7048 };
7049 
7050 /* return the neighbor link down reason string */
7051 static const char *link_down_reason_str(u8 reason)
7052 {
7053 	const char *str = NULL;
7054 
7055 	if (reason < ARRAY_SIZE(link_down_reason_strs))
7056 		str = link_down_reason_strs[reason];
7057 	if (!str)
7058 		str = "(invalid)";
7059 
7060 	return str;
7061 }
7062 
7063 /*
7064  * Handle a link down interrupt from the 8051.
7065  *
7066  * This is a work-queue function outside of the interrupt.
7067  */
7068 void handle_link_down(struct work_struct *work)
7069 {
7070 	u8 lcl_reason, neigh_reason = 0;
7071 	u8 link_down_reason;
7072 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
7073 						  link_down_work);
7074 	int was_up;
7075 	static const char ldr_str[] = "Link down reason: ";
7076 
7077 	if ((ppd->host_link_state &
7078 	     (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) &&
7079 	     ppd->port_type == PORT_TYPE_FIXED)
7080 		ppd->offline_disabled_reason =
7081 			HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NOT_INSTALLED);
7082 
7083 	/* Go offline first, then deal with reading/writing through 8051 */
7084 	was_up = !!(ppd->host_link_state & HLS_UP);
7085 	set_link_state(ppd, HLS_DN_OFFLINE);
7086 	xchg(&ppd->is_link_down_queued, 0);
7087 
7088 	if (was_up) {
7089 		lcl_reason = 0;
7090 		/* link down reason is only valid if the link was up */
7091 		read_link_down_reason(ppd->dd, &link_down_reason);
7092 		switch (link_down_reason) {
7093 		case LDR_LINK_TRANSFER_ACTIVE_LOW:
7094 			/* the link went down, no idle message reason */
7095 			dd_dev_info(ppd->dd, "%sUnexpected link down\n",
7096 				    ldr_str);
7097 			break;
7098 		case LDR_RECEIVED_LINKDOWN_IDLE_MSG:
7099 			/*
7100 			 * The neighbor reason is only valid if an idle message
7101 			 * was received for it.
7102 			 */
7103 			read_planned_down_reason_code(ppd->dd, &neigh_reason);
7104 			dd_dev_info(ppd->dd,
7105 				    "%sNeighbor link down message %d, %s\n",
7106 				    ldr_str, neigh_reason,
7107 				    link_down_reason_str(neigh_reason));
7108 			break;
7109 		case LDR_RECEIVED_HOST_OFFLINE_REQ:
7110 			dd_dev_info(ppd->dd,
7111 				    "%sHost requested link to go offline\n",
7112 				    ldr_str);
7113 			break;
7114 		default:
7115 			dd_dev_info(ppd->dd, "%sUnknown reason 0x%x\n",
7116 				    ldr_str, link_down_reason);
7117 			break;
7118 		}
7119 
7120 		/*
7121 		 * If no reason, assume peer-initiated but missed
7122 		 * LinkGoingDown idle flits.
7123 		 */
7124 		if (neigh_reason == 0)
7125 			lcl_reason = OPA_LINKDOWN_REASON_NEIGHBOR_UNKNOWN;
7126 	} else {
7127 		/* went down while polling or going up */
7128 		lcl_reason = OPA_LINKDOWN_REASON_TRANSIENT;
7129 	}
7130 
7131 	set_link_down_reason(ppd, lcl_reason, neigh_reason, 0);
7132 
7133 	/* inform the SMA when the link transitions from up to down */
7134 	if (was_up && ppd->local_link_down_reason.sma == 0 &&
7135 	    ppd->neigh_link_down_reason.sma == 0) {
7136 		ppd->local_link_down_reason.sma =
7137 					ppd->local_link_down_reason.latest;
7138 		ppd->neigh_link_down_reason.sma =
7139 					ppd->neigh_link_down_reason.latest;
7140 	}
7141 
7142 	reset_neighbor_info(ppd);
7143 
7144 	/* disable the port */
7145 	clear_rcvctrl(ppd->dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
7146 
7147 	/*
7148 	 * If there is no cable attached, turn the DC off. Otherwise,
7149 	 * start the link bring up.
7150 	 */
7151 	if (ppd->port_type == PORT_TYPE_QSFP && !qsfp_mod_present(ppd))
7152 		dc_shutdown(ppd->dd);
7153 	else
7154 		start_link(ppd);
7155 }
7156 
7157 void handle_link_bounce(struct work_struct *work)
7158 {
7159 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
7160 							link_bounce_work);
7161 
7162 	/*
7163 	 * Only do something if the link is currently up.
7164 	 */
7165 	if (ppd->host_link_state & HLS_UP) {
7166 		set_link_state(ppd, HLS_DN_OFFLINE);
7167 		start_link(ppd);
7168 	} else {
7169 		dd_dev_info(ppd->dd, "%s: link not up (%s), nothing to do\n",
7170 			    __func__, link_state_name(ppd->host_link_state));
7171 	}
7172 }
7173 
7174 /*
7175  * Mask conversion: Capability exchange to Port LTP.  The capability
7176  * exchange has an implicit 16b CRC that is mandatory.
7177  */
7178 static int cap_to_port_ltp(int cap)
7179 {
7180 	int port_ltp = PORT_LTP_CRC_MODE_16; /* this mode is mandatory */
7181 
7182 	if (cap & CAP_CRC_14B)
7183 		port_ltp |= PORT_LTP_CRC_MODE_14;
7184 	if (cap & CAP_CRC_48B)
7185 		port_ltp |= PORT_LTP_CRC_MODE_48;
7186 	if (cap & CAP_CRC_12B_16B_PER_LANE)
7187 		port_ltp |= PORT_LTP_CRC_MODE_PER_LANE;
7188 
7189 	return port_ltp;
7190 }
7191 
7192 /*
7193  * Convert an OPA Port LTP mask to capability mask
7194  */
7195 int port_ltp_to_cap(int port_ltp)
7196 {
7197 	int cap_mask = 0;
7198 
7199 	if (port_ltp & PORT_LTP_CRC_MODE_14)
7200 		cap_mask |= CAP_CRC_14B;
7201 	if (port_ltp & PORT_LTP_CRC_MODE_48)
7202 		cap_mask |= CAP_CRC_48B;
7203 	if (port_ltp & PORT_LTP_CRC_MODE_PER_LANE)
7204 		cap_mask |= CAP_CRC_12B_16B_PER_LANE;
7205 
7206 	return cap_mask;
7207 }
7208 
7209 /*
7210  * Convert a single DC LCB CRC mode to an OPA Port LTP mask.
7211  */
7212 static int lcb_to_port_ltp(int lcb_crc)
7213 {
7214 	int port_ltp = 0;
7215 
7216 	if (lcb_crc == LCB_CRC_12B_16B_PER_LANE)
7217 		port_ltp = PORT_LTP_CRC_MODE_PER_LANE;
7218 	else if (lcb_crc == LCB_CRC_48B)
7219 		port_ltp = PORT_LTP_CRC_MODE_48;
7220 	else if (lcb_crc == LCB_CRC_14B)
7221 		port_ltp = PORT_LTP_CRC_MODE_14;
7222 	else
7223 		port_ltp = PORT_LTP_CRC_MODE_16;
7224 
7225 	return port_ltp;
7226 }
7227 
7228 static void clear_full_mgmt_pkey(struct hfi1_pportdata *ppd)
7229 {
7230 	if (ppd->pkeys[2] != 0) {
7231 		ppd->pkeys[2] = 0;
7232 		(void)hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_PKEYS, 0);
7233 		hfi1_event_pkey_change(ppd->dd, ppd->port);
7234 	}
7235 }
7236 
7237 /*
7238  * Convert the given link width to the OPA link width bitmask.
7239  */
7240 static u16 link_width_to_bits(struct hfi1_devdata *dd, u16 width)
7241 {
7242 	switch (width) {
7243 	case 0:
7244 		/*
7245 		 * Simulator and quick linkup do not set the width.
7246 		 * Just set it to 4x without complaint.
7247 		 */
7248 		if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR || quick_linkup)
7249 			return OPA_LINK_WIDTH_4X;
7250 		return 0; /* no lanes up */
7251 	case 1: return OPA_LINK_WIDTH_1X;
7252 	case 2: return OPA_LINK_WIDTH_2X;
7253 	case 3: return OPA_LINK_WIDTH_3X;
7254 	default:
7255 		dd_dev_info(dd, "%s: invalid width %d, using 4\n",
7256 			    __func__, width);
7257 		/* fall through */
7258 	case 4: return OPA_LINK_WIDTH_4X;
7259 	}
7260 }
7261 
7262 /*
7263  * Do a population count on the bottom nibble.
7264  */
7265 static const u8 bit_counts[16] = {
7266 	0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4
7267 };
7268 
7269 static inline u8 nibble_to_count(u8 nibble)
7270 {
7271 	return bit_counts[nibble & 0xf];
7272 }
7273 
7274 /*
7275  * Read the active lane information from the 8051 registers and return
7276  * their widths.
7277  *
7278  * Active lane information is found in these 8051 registers:
7279  *	enable_lane_tx
7280  *	enable_lane_rx
7281  */
7282 static void get_link_widths(struct hfi1_devdata *dd, u16 *tx_width,
7283 			    u16 *rx_width)
7284 {
7285 	u16 tx, rx;
7286 	u8 enable_lane_rx;
7287 	u8 enable_lane_tx;
7288 	u8 tx_polarity_inversion;
7289 	u8 rx_polarity_inversion;
7290 	u8 max_rate;
7291 
7292 	/* read the active lanes */
7293 	read_tx_settings(dd, &enable_lane_tx, &tx_polarity_inversion,
7294 			 &rx_polarity_inversion, &max_rate);
7295 	read_local_lni(dd, &enable_lane_rx);
7296 
7297 	/* convert to counts */
7298 	tx = nibble_to_count(enable_lane_tx);
7299 	rx = nibble_to_count(enable_lane_rx);
7300 
7301 	/*
7302 	 * Set link_speed_active here, overriding what was set in
7303 	 * handle_verify_cap().  The ASIC 8051 firmware does not correctly
7304 	 * set the max_rate field in handle_verify_cap until v0.19.
7305 	 */
7306 	if ((dd->icode == ICODE_RTL_SILICON) &&
7307 	    (dd->dc8051_ver < dc8051_ver(0, 19, 0))) {
7308 		/* max_rate: 0 = 12.5G, 1 = 25G */
7309 		switch (max_rate) {
7310 		case 0:
7311 			dd->pport[0].link_speed_active = OPA_LINK_SPEED_12_5G;
7312 			break;
7313 		default:
7314 			dd_dev_err(dd,
7315 				   "%s: unexpected max rate %d, using 25Gb\n",
7316 				   __func__, (int)max_rate);
7317 			/* fall through */
7318 		case 1:
7319 			dd->pport[0].link_speed_active = OPA_LINK_SPEED_25G;
7320 			break;
7321 		}
7322 	}
7323 
7324 	dd_dev_info(dd,
7325 		    "Fabric active lanes (width): tx 0x%x (%d), rx 0x%x (%d)\n",
7326 		    enable_lane_tx, tx, enable_lane_rx, rx);
7327 	*tx_width = link_width_to_bits(dd, tx);
7328 	*rx_width = link_width_to_bits(dd, rx);
7329 }
7330 
7331 /*
7332  * Read verify_cap_local_fm_link_width[1] to obtain the link widths.
7333  * Valid after the end of VerifyCap and during LinkUp.  Does not change
7334  * after link up.  I.e. look elsewhere for downgrade information.
7335  *
7336  * Bits are:
7337  *	+ bits [7:4] contain the number of active transmitters
7338  *	+ bits [3:0] contain the number of active receivers
7339  * These are numbers 1 through 4 and can be different values if the
7340  * link is asymmetric.
7341  *
7342  * verify_cap_local_fm_link_width[0] retains its original value.
7343  */
7344 static void get_linkup_widths(struct hfi1_devdata *dd, u16 *tx_width,
7345 			      u16 *rx_width)
7346 {
7347 	u16 widths, tx, rx;
7348 	u8 misc_bits, local_flags;
7349 	u16 active_tx, active_rx;
7350 
7351 	read_vc_local_link_width(dd, &misc_bits, &local_flags, &widths);
7352 	tx = widths >> 12;
7353 	rx = (widths >> 8) & 0xf;
7354 
7355 	*tx_width = link_width_to_bits(dd, tx);
7356 	*rx_width = link_width_to_bits(dd, rx);
7357 
7358 	/* print the active widths */
7359 	get_link_widths(dd, &active_tx, &active_rx);
7360 }
7361 
7362 /*
7363  * Set ppd->link_width_active and ppd->link_width_downgrade_active using
7364  * hardware information when the link first comes up.
7365  *
7366  * The link width is not available until after VerifyCap.AllFramesReceived
7367  * (the trigger for handle_verify_cap), so this is outside that routine
7368  * and should be called when the 8051 signals linkup.
7369  */
7370 void get_linkup_link_widths(struct hfi1_pportdata *ppd)
7371 {
7372 	u16 tx_width, rx_width;
7373 
7374 	/* get end-of-LNI link widths */
7375 	get_linkup_widths(ppd->dd, &tx_width, &rx_width);
7376 
7377 	/* use tx_width as the link is supposed to be symmetric on link up */
7378 	ppd->link_width_active = tx_width;
7379 	/* link width downgrade active (LWD.A) starts out matching LW.A */
7380 	ppd->link_width_downgrade_tx_active = ppd->link_width_active;
7381 	ppd->link_width_downgrade_rx_active = ppd->link_width_active;
7382 	/* per OPA spec, on link up LWD.E resets to LWD.S */
7383 	ppd->link_width_downgrade_enabled = ppd->link_width_downgrade_supported;
7384 	/* cache the active egress rate (units {10^6 bits/sec]) */
7385 	ppd->current_egress_rate = active_egress_rate(ppd);
7386 }
7387 
7388 /*
7389  * Handle a verify capabilities interrupt from the 8051.
7390  *
7391  * This is a work-queue function outside of the interrupt.
7392  */
7393 void handle_verify_cap(struct work_struct *work)
7394 {
7395 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
7396 								link_vc_work);
7397 	struct hfi1_devdata *dd = ppd->dd;
7398 	u64 reg;
7399 	u8 power_management;
7400 	u8 continuous;
7401 	u8 vcu;
7402 	u8 vau;
7403 	u8 z;
7404 	u16 vl15buf;
7405 	u16 link_widths;
7406 	u16 crc_mask;
7407 	u16 crc_val;
7408 	u16 device_id;
7409 	u16 active_tx, active_rx;
7410 	u8 partner_supported_crc;
7411 	u8 remote_tx_rate;
7412 	u8 device_rev;
7413 
7414 	set_link_state(ppd, HLS_VERIFY_CAP);
7415 
7416 	lcb_shutdown(dd, 0);
7417 	adjust_lcb_for_fpga_serdes(dd);
7418 
7419 	read_vc_remote_phy(dd, &power_management, &continuous);
7420 	read_vc_remote_fabric(dd, &vau, &z, &vcu, &vl15buf,
7421 			      &partner_supported_crc);
7422 	read_vc_remote_link_width(dd, &remote_tx_rate, &link_widths);
7423 	read_remote_device_id(dd, &device_id, &device_rev);
7424 
7425 	/* print the active widths */
7426 	get_link_widths(dd, &active_tx, &active_rx);
7427 	dd_dev_info(dd,
7428 		    "Peer PHY: power management 0x%x, continuous updates 0x%x\n",
7429 		    (int)power_management, (int)continuous);
7430 	dd_dev_info(dd,
7431 		    "Peer Fabric: vAU %d, Z %d, vCU %d, vl15 credits 0x%x, CRC sizes 0x%x\n",
7432 		    (int)vau, (int)z, (int)vcu, (int)vl15buf,
7433 		    (int)partner_supported_crc);
7434 	dd_dev_info(dd, "Peer Link Width: tx rate 0x%x, widths 0x%x\n",
7435 		    (u32)remote_tx_rate, (u32)link_widths);
7436 	dd_dev_info(dd, "Peer Device ID: 0x%04x, Revision 0x%02x\n",
7437 		    (u32)device_id, (u32)device_rev);
7438 	/*
7439 	 * The peer vAU value just read is the peer receiver value.  HFI does
7440 	 * not support a transmit vAU of 0 (AU == 8).  We advertised that
7441 	 * with Z=1 in the fabric capabilities sent to the peer.  The peer
7442 	 * will see our Z=1, and, if it advertised a vAU of 0, will move its
7443 	 * receive to vAU of 1 (AU == 16).  Do the same here.  We do not care
7444 	 * about the peer Z value - our sent vAU is 3 (hardwired) and is not
7445 	 * subject to the Z value exception.
7446 	 */
7447 	if (vau == 0)
7448 		vau = 1;
7449 	set_up_vau(dd, vau);
7450 
7451 	/*
7452 	 * Set VL15 credits to 0 in global credit register. Cache remote VL15
7453 	 * credits value and wait for link-up interrupt ot set it.
7454 	 */
7455 	set_up_vl15(dd, 0);
7456 	dd->vl15buf_cached = vl15buf;
7457 
7458 	/* set up the LCB CRC mode */
7459 	crc_mask = ppd->port_crc_mode_enabled & partner_supported_crc;
7460 
7461 	/* order is important: use the lowest bit in common */
7462 	if (crc_mask & CAP_CRC_14B)
7463 		crc_val = LCB_CRC_14B;
7464 	else if (crc_mask & CAP_CRC_48B)
7465 		crc_val = LCB_CRC_48B;
7466 	else if (crc_mask & CAP_CRC_12B_16B_PER_LANE)
7467 		crc_val = LCB_CRC_12B_16B_PER_LANE;
7468 	else
7469 		crc_val = LCB_CRC_16B;
7470 
7471 	dd_dev_info(dd, "Final LCB CRC mode: %d\n", (int)crc_val);
7472 	write_csr(dd, DC_LCB_CFG_CRC_MODE,
7473 		  (u64)crc_val << DC_LCB_CFG_CRC_MODE_TX_VAL_SHIFT);
7474 
7475 	/* set (14b only) or clear sideband credit */
7476 	reg = read_csr(dd, SEND_CM_CTRL);
7477 	if (crc_val == LCB_CRC_14B && crc_14b_sideband) {
7478 		write_csr(dd, SEND_CM_CTRL,
7479 			  reg | SEND_CM_CTRL_FORCE_CREDIT_MODE_SMASK);
7480 	} else {
7481 		write_csr(dd, SEND_CM_CTRL,
7482 			  reg & ~SEND_CM_CTRL_FORCE_CREDIT_MODE_SMASK);
7483 	}
7484 
7485 	ppd->link_speed_active = 0;	/* invalid value */
7486 	if (dd->dc8051_ver < dc8051_ver(0, 20, 0)) {
7487 		/* remote_tx_rate: 0 = 12.5G, 1 = 25G */
7488 		switch (remote_tx_rate) {
7489 		case 0:
7490 			ppd->link_speed_active = OPA_LINK_SPEED_12_5G;
7491 			break;
7492 		case 1:
7493 			ppd->link_speed_active = OPA_LINK_SPEED_25G;
7494 			break;
7495 		}
7496 	} else {
7497 		/* actual rate is highest bit of the ANDed rates */
7498 		u8 rate = remote_tx_rate & ppd->local_tx_rate;
7499 
7500 		if (rate & 2)
7501 			ppd->link_speed_active = OPA_LINK_SPEED_25G;
7502 		else if (rate & 1)
7503 			ppd->link_speed_active = OPA_LINK_SPEED_12_5G;
7504 	}
7505 	if (ppd->link_speed_active == 0) {
7506 		dd_dev_err(dd, "%s: unexpected remote tx rate %d, using 25Gb\n",
7507 			   __func__, (int)remote_tx_rate);
7508 		ppd->link_speed_active = OPA_LINK_SPEED_25G;
7509 	}
7510 
7511 	/*
7512 	 * Cache the values of the supported, enabled, and active
7513 	 * LTP CRC modes to return in 'portinfo' queries. But the bit
7514 	 * flags that are returned in the portinfo query differ from
7515 	 * what's in the link_crc_mask, crc_sizes, and crc_val
7516 	 * variables. Convert these here.
7517 	 */
7518 	ppd->port_ltp_crc_mode = cap_to_port_ltp(link_crc_mask) << 8;
7519 		/* supported crc modes */
7520 	ppd->port_ltp_crc_mode |=
7521 		cap_to_port_ltp(ppd->port_crc_mode_enabled) << 4;
7522 		/* enabled crc modes */
7523 	ppd->port_ltp_crc_mode |= lcb_to_port_ltp(crc_val);
7524 		/* active crc mode */
7525 
7526 	/* set up the remote credit return table */
7527 	assign_remote_cm_au_table(dd, vcu);
7528 
7529 	/*
7530 	 * The LCB is reset on entry to handle_verify_cap(), so this must
7531 	 * be applied on every link up.
7532 	 *
7533 	 * Adjust LCB error kill enable to kill the link if
7534 	 * these RBUF errors are seen:
7535 	 *	REPLAY_BUF_MBE_SMASK
7536 	 *	FLIT_INPUT_BUF_MBE_SMASK
7537 	 */
7538 	if (is_ax(dd)) {			/* fixed in B0 */
7539 		reg = read_csr(dd, DC_LCB_CFG_LINK_KILL_EN);
7540 		reg |= DC_LCB_CFG_LINK_KILL_EN_REPLAY_BUF_MBE_SMASK
7541 			| DC_LCB_CFG_LINK_KILL_EN_FLIT_INPUT_BUF_MBE_SMASK;
7542 		write_csr(dd, DC_LCB_CFG_LINK_KILL_EN, reg);
7543 	}
7544 
7545 	/* pull LCB fifos out of reset - all fifo clocks must be stable */
7546 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0);
7547 
7548 	/* give 8051 access to the LCB CSRs */
7549 	write_csr(dd, DC_LCB_ERR_EN, 0); /* mask LCB errors */
7550 	set_8051_lcb_access(dd);
7551 
7552 	/* tell the 8051 to go to LinkUp */
7553 	set_link_state(ppd, HLS_GOING_UP);
7554 }
7555 
7556 /**
7557  * apply_link_downgrade_policy - Apply the link width downgrade enabled
7558  * policy against the current active link widths.
7559  * @ppd: info of physical Hfi port
7560  * @refresh_widths: True indicates link downgrade event
7561  * @return: True indicates a successful link downgrade. False indicates
7562  *	    link downgrade event failed and the link will bounce back to
7563  *	    default link width.
7564  *
7565  * Called when the enabled policy changes or the active link widths
7566  * change.
7567  * Refresh_widths indicates that a link downgrade occurred. The
7568  * link_downgraded variable is set by refresh_widths and
7569  * determines the success/failure of the policy application.
7570  */
7571 bool apply_link_downgrade_policy(struct hfi1_pportdata *ppd,
7572 				 bool refresh_widths)
7573 {
7574 	int do_bounce = 0;
7575 	int tries;
7576 	u16 lwde;
7577 	u16 tx, rx;
7578 	bool link_downgraded = refresh_widths;
7579 
7580 	/* use the hls lock to avoid a race with actual link up */
7581 	tries = 0;
7582 retry:
7583 	mutex_lock(&ppd->hls_lock);
7584 	/* only apply if the link is up */
7585 	if (ppd->host_link_state & HLS_DOWN) {
7586 		/* still going up..wait and retry */
7587 		if (ppd->host_link_state & HLS_GOING_UP) {
7588 			if (++tries < 1000) {
7589 				mutex_unlock(&ppd->hls_lock);
7590 				usleep_range(100, 120); /* arbitrary */
7591 				goto retry;
7592 			}
7593 			dd_dev_err(ppd->dd,
7594 				   "%s: giving up waiting for link state change\n",
7595 				   __func__);
7596 		}
7597 		goto done;
7598 	}
7599 
7600 	lwde = ppd->link_width_downgrade_enabled;
7601 
7602 	if (refresh_widths) {
7603 		get_link_widths(ppd->dd, &tx, &rx);
7604 		ppd->link_width_downgrade_tx_active = tx;
7605 		ppd->link_width_downgrade_rx_active = rx;
7606 	}
7607 
7608 	if (ppd->link_width_downgrade_tx_active == 0 ||
7609 	    ppd->link_width_downgrade_rx_active == 0) {
7610 		/* the 8051 reported a dead link as a downgrade */
7611 		dd_dev_err(ppd->dd, "Link downgrade is really a link down, ignoring\n");
7612 		link_downgraded = false;
7613 	} else if (lwde == 0) {
7614 		/* downgrade is disabled */
7615 
7616 		/* bounce if not at starting active width */
7617 		if ((ppd->link_width_active !=
7618 		     ppd->link_width_downgrade_tx_active) ||
7619 		    (ppd->link_width_active !=
7620 		     ppd->link_width_downgrade_rx_active)) {
7621 			dd_dev_err(ppd->dd,
7622 				   "Link downgrade is disabled and link has downgraded, downing link\n");
7623 			dd_dev_err(ppd->dd,
7624 				   "  original 0x%x, tx active 0x%x, rx active 0x%x\n",
7625 				   ppd->link_width_active,
7626 				   ppd->link_width_downgrade_tx_active,
7627 				   ppd->link_width_downgrade_rx_active);
7628 			do_bounce = 1;
7629 			link_downgraded = false;
7630 		}
7631 	} else if ((lwde & ppd->link_width_downgrade_tx_active) == 0 ||
7632 		   (lwde & ppd->link_width_downgrade_rx_active) == 0) {
7633 		/* Tx or Rx is outside the enabled policy */
7634 		dd_dev_err(ppd->dd,
7635 			   "Link is outside of downgrade allowed, downing link\n");
7636 		dd_dev_err(ppd->dd,
7637 			   "  enabled 0x%x, tx active 0x%x, rx active 0x%x\n",
7638 			   lwde, ppd->link_width_downgrade_tx_active,
7639 			   ppd->link_width_downgrade_rx_active);
7640 		do_bounce = 1;
7641 		link_downgraded = false;
7642 	}
7643 
7644 done:
7645 	mutex_unlock(&ppd->hls_lock);
7646 
7647 	if (do_bounce) {
7648 		set_link_down_reason(ppd, OPA_LINKDOWN_REASON_WIDTH_POLICY, 0,
7649 				     OPA_LINKDOWN_REASON_WIDTH_POLICY);
7650 		set_link_state(ppd, HLS_DN_OFFLINE);
7651 		start_link(ppd);
7652 	}
7653 
7654 	return link_downgraded;
7655 }
7656 
7657 /*
7658  * Handle a link downgrade interrupt from the 8051.
7659  *
7660  * This is a work-queue function outside of the interrupt.
7661  */
7662 void handle_link_downgrade(struct work_struct *work)
7663 {
7664 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
7665 							link_downgrade_work);
7666 
7667 	dd_dev_info(ppd->dd, "8051: Link width downgrade\n");
7668 	if (apply_link_downgrade_policy(ppd, true))
7669 		update_xmit_counters(ppd, ppd->link_width_downgrade_tx_active);
7670 }
7671 
7672 static char *dcc_err_string(char *buf, int buf_len, u64 flags)
7673 {
7674 	return flag_string(buf, buf_len, flags, dcc_err_flags,
7675 		ARRAY_SIZE(dcc_err_flags));
7676 }
7677 
7678 static char *lcb_err_string(char *buf, int buf_len, u64 flags)
7679 {
7680 	return flag_string(buf, buf_len, flags, lcb_err_flags,
7681 		ARRAY_SIZE(lcb_err_flags));
7682 }
7683 
7684 static char *dc8051_err_string(char *buf, int buf_len, u64 flags)
7685 {
7686 	return flag_string(buf, buf_len, flags, dc8051_err_flags,
7687 		ARRAY_SIZE(dc8051_err_flags));
7688 }
7689 
7690 static char *dc8051_info_err_string(char *buf, int buf_len, u64 flags)
7691 {
7692 	return flag_string(buf, buf_len, flags, dc8051_info_err_flags,
7693 		ARRAY_SIZE(dc8051_info_err_flags));
7694 }
7695 
7696 static char *dc8051_info_host_msg_string(char *buf, int buf_len, u64 flags)
7697 {
7698 	return flag_string(buf, buf_len, flags, dc8051_info_host_msg_flags,
7699 		ARRAY_SIZE(dc8051_info_host_msg_flags));
7700 }
7701 
7702 static void handle_8051_interrupt(struct hfi1_devdata *dd, u32 unused, u64 reg)
7703 {
7704 	struct hfi1_pportdata *ppd = dd->pport;
7705 	u64 info, err, host_msg;
7706 	int queue_link_down = 0;
7707 	char buf[96];
7708 
7709 	/* look at the flags */
7710 	if (reg & DC_DC8051_ERR_FLG_SET_BY_8051_SMASK) {
7711 		/* 8051 information set by firmware */
7712 		/* read DC8051_DBG_ERR_INFO_SET_BY_8051 for details */
7713 		info = read_csr(dd, DC_DC8051_DBG_ERR_INFO_SET_BY_8051);
7714 		err = (info >> DC_DC8051_DBG_ERR_INFO_SET_BY_8051_ERROR_SHIFT)
7715 			& DC_DC8051_DBG_ERR_INFO_SET_BY_8051_ERROR_MASK;
7716 		host_msg = (info >>
7717 			DC_DC8051_DBG_ERR_INFO_SET_BY_8051_HOST_MSG_SHIFT)
7718 			& DC_DC8051_DBG_ERR_INFO_SET_BY_8051_HOST_MSG_MASK;
7719 
7720 		/*
7721 		 * Handle error flags.
7722 		 */
7723 		if (err & FAILED_LNI) {
7724 			/*
7725 			 * LNI error indications are cleared by the 8051
7726 			 * only when starting polling.  Only pay attention
7727 			 * to them when in the states that occur during
7728 			 * LNI.
7729 			 */
7730 			if (ppd->host_link_state
7731 			    & (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) {
7732 				queue_link_down = 1;
7733 				dd_dev_info(dd, "Link error: %s\n",
7734 					    dc8051_info_err_string(buf,
7735 								   sizeof(buf),
7736 								   err &
7737 								   FAILED_LNI));
7738 			}
7739 			err &= ~(u64)FAILED_LNI;
7740 		}
7741 		/* unknown frames can happen durning LNI, just count */
7742 		if (err & UNKNOWN_FRAME) {
7743 			ppd->unknown_frame_count++;
7744 			err &= ~(u64)UNKNOWN_FRAME;
7745 		}
7746 		if (err) {
7747 			/* report remaining errors, but do not do anything */
7748 			dd_dev_err(dd, "8051 info error: %s\n",
7749 				   dc8051_info_err_string(buf, sizeof(buf),
7750 							  err));
7751 		}
7752 
7753 		/*
7754 		 * Handle host message flags.
7755 		 */
7756 		if (host_msg & HOST_REQ_DONE) {
7757 			/*
7758 			 * Presently, the driver does a busy wait for
7759 			 * host requests to complete.  This is only an
7760 			 * informational message.
7761 			 * NOTE: The 8051 clears the host message
7762 			 * information *on the next 8051 command*.
7763 			 * Therefore, when linkup is achieved,
7764 			 * this flag will still be set.
7765 			 */
7766 			host_msg &= ~(u64)HOST_REQ_DONE;
7767 		}
7768 		if (host_msg & BC_SMA_MSG) {
7769 			queue_work(ppd->link_wq, &ppd->sma_message_work);
7770 			host_msg &= ~(u64)BC_SMA_MSG;
7771 		}
7772 		if (host_msg & LINKUP_ACHIEVED) {
7773 			dd_dev_info(dd, "8051: Link up\n");
7774 			queue_work(ppd->link_wq, &ppd->link_up_work);
7775 			host_msg &= ~(u64)LINKUP_ACHIEVED;
7776 		}
7777 		if (host_msg & EXT_DEVICE_CFG_REQ) {
7778 			handle_8051_request(ppd);
7779 			host_msg &= ~(u64)EXT_DEVICE_CFG_REQ;
7780 		}
7781 		if (host_msg & VERIFY_CAP_FRAME) {
7782 			queue_work(ppd->link_wq, &ppd->link_vc_work);
7783 			host_msg &= ~(u64)VERIFY_CAP_FRAME;
7784 		}
7785 		if (host_msg & LINK_GOING_DOWN) {
7786 			const char *extra = "";
7787 			/* no downgrade action needed if going down */
7788 			if (host_msg & LINK_WIDTH_DOWNGRADED) {
7789 				host_msg &= ~(u64)LINK_WIDTH_DOWNGRADED;
7790 				extra = " (ignoring downgrade)";
7791 			}
7792 			dd_dev_info(dd, "8051: Link down%s\n", extra);
7793 			queue_link_down = 1;
7794 			host_msg &= ~(u64)LINK_GOING_DOWN;
7795 		}
7796 		if (host_msg & LINK_WIDTH_DOWNGRADED) {
7797 			queue_work(ppd->link_wq, &ppd->link_downgrade_work);
7798 			host_msg &= ~(u64)LINK_WIDTH_DOWNGRADED;
7799 		}
7800 		if (host_msg) {
7801 			/* report remaining messages, but do not do anything */
7802 			dd_dev_info(dd, "8051 info host message: %s\n",
7803 				    dc8051_info_host_msg_string(buf,
7804 								sizeof(buf),
7805 								host_msg));
7806 		}
7807 
7808 		reg &= ~DC_DC8051_ERR_FLG_SET_BY_8051_SMASK;
7809 	}
7810 	if (reg & DC_DC8051_ERR_FLG_LOST_8051_HEART_BEAT_SMASK) {
7811 		/*
7812 		 * Lost the 8051 heartbeat.  If this happens, we
7813 		 * receive constant interrupts about it.  Disable
7814 		 * the interrupt after the first.
7815 		 */
7816 		dd_dev_err(dd, "Lost 8051 heartbeat\n");
7817 		write_csr(dd, DC_DC8051_ERR_EN,
7818 			  read_csr(dd, DC_DC8051_ERR_EN) &
7819 			  ~DC_DC8051_ERR_EN_LOST_8051_HEART_BEAT_SMASK);
7820 
7821 		reg &= ~DC_DC8051_ERR_FLG_LOST_8051_HEART_BEAT_SMASK;
7822 	}
7823 	if (reg) {
7824 		/* report the error, but do not do anything */
7825 		dd_dev_err(dd, "8051 error: %s\n",
7826 			   dc8051_err_string(buf, sizeof(buf), reg));
7827 	}
7828 
7829 	if (queue_link_down) {
7830 		/*
7831 		 * if the link is already going down or disabled, do not
7832 		 * queue another. If there's a link down entry already
7833 		 * queued, don't queue another one.
7834 		 */
7835 		if ((ppd->host_link_state &
7836 		    (HLS_GOING_OFFLINE | HLS_LINK_COOLDOWN)) ||
7837 		    ppd->link_enabled == 0) {
7838 			dd_dev_info(dd, "%s: not queuing link down. host_link_state %x, link_enabled %x\n",
7839 				    __func__, ppd->host_link_state,
7840 				    ppd->link_enabled);
7841 		} else {
7842 			if (xchg(&ppd->is_link_down_queued, 1) == 1)
7843 				dd_dev_info(dd,
7844 					    "%s: link down request already queued\n",
7845 					    __func__);
7846 			else
7847 				queue_work(ppd->link_wq, &ppd->link_down_work);
7848 		}
7849 	}
7850 }
7851 
7852 static const char * const fm_config_txt[] = {
7853 [0] =
7854 	"BadHeadDist: Distance violation between two head flits",
7855 [1] =
7856 	"BadTailDist: Distance violation between two tail flits",
7857 [2] =
7858 	"BadCtrlDist: Distance violation between two credit control flits",
7859 [3] =
7860 	"BadCrdAck: Credits return for unsupported VL",
7861 [4] =
7862 	"UnsupportedVLMarker: Received VL Marker",
7863 [5] =
7864 	"BadPreempt: Exceeded the preemption nesting level",
7865 [6] =
7866 	"BadControlFlit: Received unsupported control flit",
7867 /* no 7 */
7868 [8] =
7869 	"UnsupportedVLMarker: Received VL Marker for unconfigured or disabled VL",
7870 };
7871 
7872 static const char * const port_rcv_txt[] = {
7873 [1] =
7874 	"BadPktLen: Illegal PktLen",
7875 [2] =
7876 	"PktLenTooLong: Packet longer than PktLen",
7877 [3] =
7878 	"PktLenTooShort: Packet shorter than PktLen",
7879 [4] =
7880 	"BadSLID: Illegal SLID (0, using multicast as SLID, does not include security validation of SLID)",
7881 [5] =
7882 	"BadDLID: Illegal DLID (0, doesn't match HFI)",
7883 [6] =
7884 	"BadL2: Illegal L2 opcode",
7885 [7] =
7886 	"BadSC: Unsupported SC",
7887 [9] =
7888 	"BadRC: Illegal RC",
7889 [11] =
7890 	"PreemptError: Preempting with same VL",
7891 [12] =
7892 	"PreemptVL15: Preempting a VL15 packet",
7893 };
7894 
7895 #define OPA_LDR_FMCONFIG_OFFSET 16
7896 #define OPA_LDR_PORTRCV_OFFSET 0
7897 static void handle_dcc_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
7898 {
7899 	u64 info, hdr0, hdr1;
7900 	const char *extra;
7901 	char buf[96];
7902 	struct hfi1_pportdata *ppd = dd->pport;
7903 	u8 lcl_reason = 0;
7904 	int do_bounce = 0;
7905 
7906 	if (reg & DCC_ERR_FLG_UNCORRECTABLE_ERR_SMASK) {
7907 		if (!(dd->err_info_uncorrectable & OPA_EI_STATUS_SMASK)) {
7908 			info = read_csr(dd, DCC_ERR_INFO_UNCORRECTABLE);
7909 			dd->err_info_uncorrectable = info & OPA_EI_CODE_SMASK;
7910 			/* set status bit */
7911 			dd->err_info_uncorrectable |= OPA_EI_STATUS_SMASK;
7912 		}
7913 		reg &= ~DCC_ERR_FLG_UNCORRECTABLE_ERR_SMASK;
7914 	}
7915 
7916 	if (reg & DCC_ERR_FLG_LINK_ERR_SMASK) {
7917 		struct hfi1_pportdata *ppd = dd->pport;
7918 		/* this counter saturates at (2^32) - 1 */
7919 		if (ppd->link_downed < (u32)UINT_MAX)
7920 			ppd->link_downed++;
7921 		reg &= ~DCC_ERR_FLG_LINK_ERR_SMASK;
7922 	}
7923 
7924 	if (reg & DCC_ERR_FLG_FMCONFIG_ERR_SMASK) {
7925 		u8 reason_valid = 1;
7926 
7927 		info = read_csr(dd, DCC_ERR_INFO_FMCONFIG);
7928 		if (!(dd->err_info_fmconfig & OPA_EI_STATUS_SMASK)) {
7929 			dd->err_info_fmconfig = info & OPA_EI_CODE_SMASK;
7930 			/* set status bit */
7931 			dd->err_info_fmconfig |= OPA_EI_STATUS_SMASK;
7932 		}
7933 		switch (info) {
7934 		case 0:
7935 		case 1:
7936 		case 2:
7937 		case 3:
7938 		case 4:
7939 		case 5:
7940 		case 6:
7941 			extra = fm_config_txt[info];
7942 			break;
7943 		case 8:
7944 			extra = fm_config_txt[info];
7945 			if (ppd->port_error_action &
7946 			    OPA_PI_MASK_FM_CFG_UNSUPPORTED_VL_MARKER) {
7947 				do_bounce = 1;
7948 				/*
7949 				 * lcl_reason cannot be derived from info
7950 				 * for this error
7951 				 */
7952 				lcl_reason =
7953 				  OPA_LINKDOWN_REASON_UNSUPPORTED_VL_MARKER;
7954 			}
7955 			break;
7956 		default:
7957 			reason_valid = 0;
7958 			snprintf(buf, sizeof(buf), "reserved%lld", info);
7959 			extra = buf;
7960 			break;
7961 		}
7962 
7963 		if (reason_valid && !do_bounce) {
7964 			do_bounce = ppd->port_error_action &
7965 					(1 << (OPA_LDR_FMCONFIG_OFFSET + info));
7966 			lcl_reason = info + OPA_LINKDOWN_REASON_BAD_HEAD_DIST;
7967 		}
7968 
7969 		/* just report this */
7970 		dd_dev_info_ratelimited(dd, "DCC Error: fmconfig error: %s\n",
7971 					extra);
7972 		reg &= ~DCC_ERR_FLG_FMCONFIG_ERR_SMASK;
7973 	}
7974 
7975 	if (reg & DCC_ERR_FLG_RCVPORT_ERR_SMASK) {
7976 		u8 reason_valid = 1;
7977 
7978 		info = read_csr(dd, DCC_ERR_INFO_PORTRCV);
7979 		hdr0 = read_csr(dd, DCC_ERR_INFO_PORTRCV_HDR0);
7980 		hdr1 = read_csr(dd, DCC_ERR_INFO_PORTRCV_HDR1);
7981 		if (!(dd->err_info_rcvport.status_and_code &
7982 		      OPA_EI_STATUS_SMASK)) {
7983 			dd->err_info_rcvport.status_and_code =
7984 				info & OPA_EI_CODE_SMASK;
7985 			/* set status bit */
7986 			dd->err_info_rcvport.status_and_code |=
7987 				OPA_EI_STATUS_SMASK;
7988 			/*
7989 			 * save first 2 flits in the packet that caused
7990 			 * the error
7991 			 */
7992 			dd->err_info_rcvport.packet_flit1 = hdr0;
7993 			dd->err_info_rcvport.packet_flit2 = hdr1;
7994 		}
7995 		switch (info) {
7996 		case 1:
7997 		case 2:
7998 		case 3:
7999 		case 4:
8000 		case 5:
8001 		case 6:
8002 		case 7:
8003 		case 9:
8004 		case 11:
8005 		case 12:
8006 			extra = port_rcv_txt[info];
8007 			break;
8008 		default:
8009 			reason_valid = 0;
8010 			snprintf(buf, sizeof(buf), "reserved%lld", info);
8011 			extra = buf;
8012 			break;
8013 		}
8014 
8015 		if (reason_valid && !do_bounce) {
8016 			do_bounce = ppd->port_error_action &
8017 					(1 << (OPA_LDR_PORTRCV_OFFSET + info));
8018 			lcl_reason = info + OPA_LINKDOWN_REASON_RCV_ERROR_0;
8019 		}
8020 
8021 		/* just report this */
8022 		dd_dev_info_ratelimited(dd, "DCC Error: PortRcv error: %s\n"
8023 					"               hdr0 0x%llx, hdr1 0x%llx\n",
8024 					extra, hdr0, hdr1);
8025 
8026 		reg &= ~DCC_ERR_FLG_RCVPORT_ERR_SMASK;
8027 	}
8028 
8029 	if (reg & DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_UC_SMASK) {
8030 		/* informative only */
8031 		dd_dev_info_ratelimited(dd, "8051 access to LCB blocked\n");
8032 		reg &= ~DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_UC_SMASK;
8033 	}
8034 	if (reg & DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_HOST_SMASK) {
8035 		/* informative only */
8036 		dd_dev_info_ratelimited(dd, "host access to LCB blocked\n");
8037 		reg &= ~DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_HOST_SMASK;
8038 	}
8039 
8040 	if (unlikely(hfi1_dbg_fault_suppress_err(&dd->verbs_dev)))
8041 		reg &= ~DCC_ERR_FLG_LATE_EBP_ERR_SMASK;
8042 
8043 	/* report any remaining errors */
8044 	if (reg)
8045 		dd_dev_info_ratelimited(dd, "DCC Error: %s\n",
8046 					dcc_err_string(buf, sizeof(buf), reg));
8047 
8048 	if (lcl_reason == 0)
8049 		lcl_reason = OPA_LINKDOWN_REASON_UNKNOWN;
8050 
8051 	if (do_bounce) {
8052 		dd_dev_info_ratelimited(dd, "%s: PortErrorAction bounce\n",
8053 					__func__);
8054 		set_link_down_reason(ppd, lcl_reason, 0, lcl_reason);
8055 		queue_work(ppd->link_wq, &ppd->link_bounce_work);
8056 	}
8057 }
8058 
8059 static void handle_lcb_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
8060 {
8061 	char buf[96];
8062 
8063 	dd_dev_info(dd, "LCB Error: %s\n",
8064 		    lcb_err_string(buf, sizeof(buf), reg));
8065 }
8066 
8067 /*
8068  * CCE block DC interrupt.  Source is < 8.
8069  */
8070 static void is_dc_int(struct hfi1_devdata *dd, unsigned int source)
8071 {
8072 	const struct err_reg_info *eri = &dc_errs[source];
8073 
8074 	if (eri->handler) {
8075 		interrupt_clear_down(dd, 0, eri);
8076 	} else if (source == 3 /* dc_lbm_int */) {
8077 		/*
8078 		 * This indicates that a parity error has occurred on the
8079 		 * address/control lines presented to the LBM.  The error
8080 		 * is a single pulse, there is no associated error flag,
8081 		 * and it is non-maskable.  This is because if a parity
8082 		 * error occurs on the request the request is dropped.
8083 		 * This should never occur, but it is nice to know if it
8084 		 * ever does.
8085 		 */
8086 		dd_dev_err(dd, "Parity error in DC LBM block\n");
8087 	} else {
8088 		dd_dev_err(dd, "Invalid DC interrupt %u\n", source);
8089 	}
8090 }
8091 
8092 /*
8093  * TX block send credit interrupt.  Source is < 160.
8094  */
8095 static void is_send_credit_int(struct hfi1_devdata *dd, unsigned int source)
8096 {
8097 	sc_group_release_update(dd, source);
8098 }
8099 
8100 /*
8101  * TX block SDMA interrupt.  Source is < 48.
8102  *
8103  * SDMA interrupts are grouped by type:
8104  *
8105  *	 0 -  N-1 = SDma
8106  *	 N - 2N-1 = SDmaProgress
8107  *	2N - 3N-1 = SDmaIdle
8108  */
8109 static void is_sdma_eng_int(struct hfi1_devdata *dd, unsigned int source)
8110 {
8111 	/* what interrupt */
8112 	unsigned int what  = source / TXE_NUM_SDMA_ENGINES;
8113 	/* which engine */
8114 	unsigned int which = source % TXE_NUM_SDMA_ENGINES;
8115 
8116 #ifdef CONFIG_SDMA_VERBOSITY
8117 	dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", which,
8118 		   slashstrip(__FILE__), __LINE__, __func__);
8119 	sdma_dumpstate(&dd->per_sdma[which]);
8120 #endif
8121 
8122 	if (likely(what < 3 && which < dd->num_sdma)) {
8123 		sdma_engine_interrupt(&dd->per_sdma[which], 1ull << source);
8124 	} else {
8125 		/* should not happen */
8126 		dd_dev_err(dd, "Invalid SDMA interrupt 0x%x\n", source);
8127 	}
8128 }
8129 
8130 /*
8131  * RX block receive available interrupt.  Source is < 160.
8132  */
8133 static void is_rcv_avail_int(struct hfi1_devdata *dd, unsigned int source)
8134 {
8135 	struct hfi1_ctxtdata *rcd;
8136 	char *err_detail;
8137 
8138 	if (likely(source < dd->num_rcv_contexts)) {
8139 		rcd = hfi1_rcd_get_by_index(dd, source);
8140 		if (rcd) {
8141 			/* Check for non-user contexts, including vnic */
8142 			if (source < dd->first_dyn_alloc_ctxt || rcd->is_vnic)
8143 				rcd->do_interrupt(rcd, 0);
8144 			else
8145 				handle_user_interrupt(rcd);
8146 
8147 			hfi1_rcd_put(rcd);
8148 			return;	/* OK */
8149 		}
8150 		/* received an interrupt, but no rcd */
8151 		err_detail = "dataless";
8152 	} else {
8153 		/* received an interrupt, but are not using that context */
8154 		err_detail = "out of range";
8155 	}
8156 	dd_dev_err(dd, "unexpected %s receive available context interrupt %u\n",
8157 		   err_detail, source);
8158 }
8159 
8160 /*
8161  * RX block receive urgent interrupt.  Source is < 160.
8162  */
8163 static void is_rcv_urgent_int(struct hfi1_devdata *dd, unsigned int source)
8164 {
8165 	struct hfi1_ctxtdata *rcd;
8166 	char *err_detail;
8167 
8168 	if (likely(source < dd->num_rcv_contexts)) {
8169 		rcd = hfi1_rcd_get_by_index(dd, source);
8170 		if (rcd) {
8171 			/* only pay attention to user urgent interrupts */
8172 			if (source >= dd->first_dyn_alloc_ctxt &&
8173 			    !rcd->is_vnic)
8174 				handle_user_interrupt(rcd);
8175 
8176 			hfi1_rcd_put(rcd);
8177 			return;	/* OK */
8178 		}
8179 		/* received an interrupt, but no rcd */
8180 		err_detail = "dataless";
8181 	} else {
8182 		/* received an interrupt, but are not using that context */
8183 		err_detail = "out of range";
8184 	}
8185 	dd_dev_err(dd, "unexpected %s receive urgent context interrupt %u\n",
8186 		   err_detail, source);
8187 }
8188 
8189 /*
8190  * Reserved range interrupt.  Should not be called in normal operation.
8191  */
8192 static void is_reserved_int(struct hfi1_devdata *dd, unsigned int source)
8193 {
8194 	char name[64];
8195 
8196 	dd_dev_err(dd, "unexpected %s interrupt\n",
8197 		   is_reserved_name(name, sizeof(name), source));
8198 }
8199 
8200 static const struct is_table is_table[] = {
8201 /*
8202  * start		 end
8203  *				name func		interrupt func
8204  */
8205 { IS_GENERAL_ERR_START,  IS_GENERAL_ERR_END,
8206 				is_misc_err_name,	is_misc_err_int },
8207 { IS_SDMAENG_ERR_START,  IS_SDMAENG_ERR_END,
8208 				is_sdma_eng_err_name,	is_sdma_eng_err_int },
8209 { IS_SENDCTXT_ERR_START, IS_SENDCTXT_ERR_END,
8210 				is_sendctxt_err_name,	is_sendctxt_err_int },
8211 { IS_SDMA_START,	     IS_SDMA_END,
8212 				is_sdma_eng_name,	is_sdma_eng_int },
8213 { IS_VARIOUS_START,	     IS_VARIOUS_END,
8214 				is_various_name,	is_various_int },
8215 { IS_DC_START,	     IS_DC_END,
8216 				is_dc_name,		is_dc_int },
8217 { IS_RCVAVAIL_START,     IS_RCVAVAIL_END,
8218 				is_rcv_avail_name,	is_rcv_avail_int },
8219 { IS_RCVURGENT_START,    IS_RCVURGENT_END,
8220 				is_rcv_urgent_name,	is_rcv_urgent_int },
8221 { IS_SENDCREDIT_START,   IS_SENDCREDIT_END,
8222 				is_send_credit_name,	is_send_credit_int},
8223 { IS_RESERVED_START,     IS_RESERVED_END,
8224 				is_reserved_name,	is_reserved_int},
8225 };
8226 
8227 /*
8228  * Interrupt source interrupt - called when the given source has an interrupt.
8229  * Source is a bit index into an array of 64-bit integers.
8230  */
8231 static void is_interrupt(struct hfi1_devdata *dd, unsigned int source)
8232 {
8233 	const struct is_table *entry;
8234 
8235 	/* avoids a double compare by walking the table in-order */
8236 	for (entry = &is_table[0]; entry->is_name; entry++) {
8237 		if (source < entry->end) {
8238 			trace_hfi1_interrupt(dd, entry, source);
8239 			entry->is_int(dd, source - entry->start);
8240 			return;
8241 		}
8242 	}
8243 	/* fell off the end */
8244 	dd_dev_err(dd, "invalid interrupt source %u\n", source);
8245 }
8246 
8247 /*
8248  * General interrupt handler.  This is able to correctly handle
8249  * all interrupts in case INTx is used.
8250  */
8251 static irqreturn_t general_interrupt(int irq, void *data)
8252 {
8253 	struct hfi1_devdata *dd = data;
8254 	u64 regs[CCE_NUM_INT_CSRS];
8255 	u32 bit;
8256 	int i;
8257 	irqreturn_t handled = IRQ_NONE;
8258 
8259 	this_cpu_inc(*dd->int_counter);
8260 
8261 	/* phase 1: scan and clear all handled interrupts */
8262 	for (i = 0; i < CCE_NUM_INT_CSRS; i++) {
8263 		if (dd->gi_mask[i] == 0) {
8264 			regs[i] = 0;	/* used later */
8265 			continue;
8266 		}
8267 		regs[i] = read_csr(dd, CCE_INT_STATUS + (8 * i)) &
8268 				dd->gi_mask[i];
8269 		/* only clear if anything is set */
8270 		if (regs[i])
8271 			write_csr(dd, CCE_INT_CLEAR + (8 * i), regs[i]);
8272 	}
8273 
8274 	/* phase 2: call the appropriate handler */
8275 	for_each_set_bit(bit, (unsigned long *)&regs[0],
8276 			 CCE_NUM_INT_CSRS * 64) {
8277 		is_interrupt(dd, bit);
8278 		handled = IRQ_HANDLED;
8279 	}
8280 
8281 	return handled;
8282 }
8283 
8284 static irqreturn_t sdma_interrupt(int irq, void *data)
8285 {
8286 	struct sdma_engine *sde = data;
8287 	struct hfi1_devdata *dd = sde->dd;
8288 	u64 status;
8289 
8290 #ifdef CONFIG_SDMA_VERBOSITY
8291 	dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
8292 		   slashstrip(__FILE__), __LINE__, __func__);
8293 	sdma_dumpstate(sde);
8294 #endif
8295 
8296 	this_cpu_inc(*dd->int_counter);
8297 
8298 	/* This read_csr is really bad in the hot path */
8299 	status = read_csr(dd,
8300 			  CCE_INT_STATUS + (8 * (IS_SDMA_START / 64)))
8301 			  & sde->imask;
8302 	if (likely(status)) {
8303 		/* clear the interrupt(s) */
8304 		write_csr(dd,
8305 			  CCE_INT_CLEAR + (8 * (IS_SDMA_START / 64)),
8306 			  status);
8307 
8308 		/* handle the interrupt(s) */
8309 		sdma_engine_interrupt(sde, status);
8310 	} else {
8311 		dd_dev_info_ratelimited(dd, "SDMA engine %u interrupt, but no status bits set\n",
8312 					sde->this_idx);
8313 	}
8314 	return IRQ_HANDLED;
8315 }
8316 
8317 /*
8318  * Clear the receive interrupt.  Use a read of the interrupt clear CSR
8319  * to insure that the write completed.  This does NOT guarantee that
8320  * queued DMA writes to memory from the chip are pushed.
8321  */
8322 static inline void clear_recv_intr(struct hfi1_ctxtdata *rcd)
8323 {
8324 	struct hfi1_devdata *dd = rcd->dd;
8325 	u32 addr = CCE_INT_CLEAR + (8 * rcd->ireg);
8326 
8327 	mmiowb();	/* make sure everything before is written */
8328 	write_csr(dd, addr, rcd->imask);
8329 	/* force the above write on the chip and get a value back */
8330 	(void)read_csr(dd, addr);
8331 }
8332 
8333 /* force the receive interrupt */
8334 void force_recv_intr(struct hfi1_ctxtdata *rcd)
8335 {
8336 	write_csr(rcd->dd, CCE_INT_FORCE + (8 * rcd->ireg), rcd->imask);
8337 }
8338 
8339 /*
8340  * Return non-zero if a packet is present.
8341  *
8342  * This routine is called when rechecking for packets after the RcvAvail
8343  * interrupt has been cleared down.  First, do a quick check of memory for
8344  * a packet present.  If not found, use an expensive CSR read of the context
8345  * tail to determine the actual tail.  The CSR read is necessary because there
8346  * is no method to push pending DMAs to memory other than an interrupt and we
8347  * are trying to determine if we need to force an interrupt.
8348  */
8349 static inline int check_packet_present(struct hfi1_ctxtdata *rcd)
8350 {
8351 	u32 tail;
8352 	int present;
8353 
8354 	if (!HFI1_CAP_IS_KSET(DMA_RTAIL))
8355 		present = (rcd->seq_cnt ==
8356 				rhf_rcv_seq(rhf_to_cpu(get_rhf_addr(rcd))));
8357 	else /* is RDMA rtail */
8358 		present = (rcd->head != get_rcvhdrtail(rcd));
8359 
8360 	if (present)
8361 		return 1;
8362 
8363 	/* fall back to a CSR read, correct indpendent of DMA_RTAIL */
8364 	tail = (u32)read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_TAIL);
8365 	return rcd->head != tail;
8366 }
8367 
8368 /*
8369  * Receive packet IRQ handler.  This routine expects to be on its own IRQ.
8370  * This routine will try to handle packets immediately (latency), but if
8371  * it finds too many, it will invoke the thread handler (bandwitdh).  The
8372  * chip receive interrupt is *not* cleared down until this or the thread (if
8373  * invoked) is finished.  The intent is to avoid extra interrupts while we
8374  * are processing packets anyway.
8375  */
8376 static irqreturn_t receive_context_interrupt(int irq, void *data)
8377 {
8378 	struct hfi1_ctxtdata *rcd = data;
8379 	struct hfi1_devdata *dd = rcd->dd;
8380 	int disposition;
8381 	int present;
8382 
8383 	trace_hfi1_receive_interrupt(dd, rcd);
8384 	this_cpu_inc(*dd->int_counter);
8385 	aspm_ctx_disable(rcd);
8386 
8387 	/* receive interrupt remains blocked while processing packets */
8388 	disposition = rcd->do_interrupt(rcd, 0);
8389 
8390 	/*
8391 	 * Too many packets were seen while processing packets in this
8392 	 * IRQ handler.  Invoke the handler thread.  The receive interrupt
8393 	 * remains blocked.
8394 	 */
8395 	if (disposition == RCV_PKT_LIMIT)
8396 		return IRQ_WAKE_THREAD;
8397 
8398 	/*
8399 	 * The packet processor detected no more packets.  Clear the receive
8400 	 * interrupt and recheck for a packet packet that may have arrived
8401 	 * after the previous check and interrupt clear.  If a packet arrived,
8402 	 * force another interrupt.
8403 	 */
8404 	clear_recv_intr(rcd);
8405 	present = check_packet_present(rcd);
8406 	if (present)
8407 		force_recv_intr(rcd);
8408 
8409 	return IRQ_HANDLED;
8410 }
8411 
8412 /*
8413  * Receive packet thread handler.  This expects to be invoked with the
8414  * receive interrupt still blocked.
8415  */
8416 static irqreturn_t receive_context_thread(int irq, void *data)
8417 {
8418 	struct hfi1_ctxtdata *rcd = data;
8419 	int present;
8420 
8421 	/* receive interrupt is still blocked from the IRQ handler */
8422 	(void)rcd->do_interrupt(rcd, 1);
8423 
8424 	/*
8425 	 * The packet processor will only return if it detected no more
8426 	 * packets.  Hold IRQs here so we can safely clear the interrupt and
8427 	 * recheck for a packet that may have arrived after the previous
8428 	 * check and the interrupt clear.  If a packet arrived, force another
8429 	 * interrupt.
8430 	 */
8431 	local_irq_disable();
8432 	clear_recv_intr(rcd);
8433 	present = check_packet_present(rcd);
8434 	if (present)
8435 		force_recv_intr(rcd);
8436 	local_irq_enable();
8437 
8438 	return IRQ_HANDLED;
8439 }
8440 
8441 /* ========================================================================= */
8442 
8443 u32 read_physical_state(struct hfi1_devdata *dd)
8444 {
8445 	u64 reg;
8446 
8447 	reg = read_csr(dd, DC_DC8051_STS_CUR_STATE);
8448 	return (reg >> DC_DC8051_STS_CUR_STATE_PORT_SHIFT)
8449 				& DC_DC8051_STS_CUR_STATE_PORT_MASK;
8450 }
8451 
8452 u32 read_logical_state(struct hfi1_devdata *dd)
8453 {
8454 	u64 reg;
8455 
8456 	reg = read_csr(dd, DCC_CFG_PORT_CONFIG);
8457 	return (reg >> DCC_CFG_PORT_CONFIG_LINK_STATE_SHIFT)
8458 				& DCC_CFG_PORT_CONFIG_LINK_STATE_MASK;
8459 }
8460 
8461 static void set_logical_state(struct hfi1_devdata *dd, u32 chip_lstate)
8462 {
8463 	u64 reg;
8464 
8465 	reg = read_csr(dd, DCC_CFG_PORT_CONFIG);
8466 	/* clear current state, set new state */
8467 	reg &= ~DCC_CFG_PORT_CONFIG_LINK_STATE_SMASK;
8468 	reg |= (u64)chip_lstate << DCC_CFG_PORT_CONFIG_LINK_STATE_SHIFT;
8469 	write_csr(dd, DCC_CFG_PORT_CONFIG, reg);
8470 }
8471 
8472 /*
8473  * Use the 8051 to read a LCB CSR.
8474  */
8475 static int read_lcb_via_8051(struct hfi1_devdata *dd, u32 addr, u64 *data)
8476 {
8477 	u32 regno;
8478 	int ret;
8479 
8480 	if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR) {
8481 		if (acquire_lcb_access(dd, 0) == 0) {
8482 			*data = read_csr(dd, addr);
8483 			release_lcb_access(dd, 0);
8484 			return 0;
8485 		}
8486 		return -EBUSY;
8487 	}
8488 
8489 	/* register is an index of LCB registers: (offset - base) / 8 */
8490 	regno = (addr - DC_LCB_CFG_RUN) >> 3;
8491 	ret = do_8051_command(dd, HCMD_READ_LCB_CSR, regno, data);
8492 	if (ret != HCMD_SUCCESS)
8493 		return -EBUSY;
8494 	return 0;
8495 }
8496 
8497 /*
8498  * Provide a cache for some of the LCB registers in case the LCB is
8499  * unavailable.
8500  * (The LCB is unavailable in certain link states, for example.)
8501  */
8502 struct lcb_datum {
8503 	u32 off;
8504 	u64 val;
8505 };
8506 
8507 static struct lcb_datum lcb_cache[] = {
8508 	{ DC_LCB_ERR_INFO_RX_REPLAY_CNT, 0},
8509 	{ DC_LCB_ERR_INFO_SEQ_CRC_CNT, 0 },
8510 	{ DC_LCB_ERR_INFO_REINIT_FROM_PEER_CNT, 0 },
8511 };
8512 
8513 static void update_lcb_cache(struct hfi1_devdata *dd)
8514 {
8515 	int i;
8516 	int ret;
8517 	u64 val;
8518 
8519 	for (i = 0; i < ARRAY_SIZE(lcb_cache); i++) {
8520 		ret = read_lcb_csr(dd, lcb_cache[i].off, &val);
8521 
8522 		/* Update if we get good data */
8523 		if (likely(ret != -EBUSY))
8524 			lcb_cache[i].val = val;
8525 	}
8526 }
8527 
8528 static int read_lcb_cache(u32 off, u64 *val)
8529 {
8530 	int i;
8531 
8532 	for (i = 0; i < ARRAY_SIZE(lcb_cache); i++) {
8533 		if (lcb_cache[i].off == off) {
8534 			*val = lcb_cache[i].val;
8535 			return 0;
8536 		}
8537 	}
8538 
8539 	pr_warn("%s bad offset 0x%x\n", __func__, off);
8540 	return -1;
8541 }
8542 
8543 /*
8544  * Read an LCB CSR.  Access may not be in host control, so check.
8545  * Return 0 on success, -EBUSY on failure.
8546  */
8547 int read_lcb_csr(struct hfi1_devdata *dd, u32 addr, u64 *data)
8548 {
8549 	struct hfi1_pportdata *ppd = dd->pport;
8550 
8551 	/* if up, go through the 8051 for the value */
8552 	if (ppd->host_link_state & HLS_UP)
8553 		return read_lcb_via_8051(dd, addr, data);
8554 	/* if going up or down, check the cache, otherwise, no access */
8555 	if (ppd->host_link_state & (HLS_GOING_UP | HLS_GOING_OFFLINE)) {
8556 		if (read_lcb_cache(addr, data))
8557 			return -EBUSY;
8558 		return 0;
8559 	}
8560 
8561 	/* otherwise, host has access */
8562 	*data = read_csr(dd, addr);
8563 	return 0;
8564 }
8565 
8566 /*
8567  * Use the 8051 to write a LCB CSR.
8568  */
8569 static int write_lcb_via_8051(struct hfi1_devdata *dd, u32 addr, u64 data)
8570 {
8571 	u32 regno;
8572 	int ret;
8573 
8574 	if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR ||
8575 	    (dd->dc8051_ver < dc8051_ver(0, 20, 0))) {
8576 		if (acquire_lcb_access(dd, 0) == 0) {
8577 			write_csr(dd, addr, data);
8578 			release_lcb_access(dd, 0);
8579 			return 0;
8580 		}
8581 		return -EBUSY;
8582 	}
8583 
8584 	/* register is an index of LCB registers: (offset - base) / 8 */
8585 	regno = (addr - DC_LCB_CFG_RUN) >> 3;
8586 	ret = do_8051_command(dd, HCMD_WRITE_LCB_CSR, regno, &data);
8587 	if (ret != HCMD_SUCCESS)
8588 		return -EBUSY;
8589 	return 0;
8590 }
8591 
8592 /*
8593  * Write an LCB CSR.  Access may not be in host control, so check.
8594  * Return 0 on success, -EBUSY on failure.
8595  */
8596 int write_lcb_csr(struct hfi1_devdata *dd, u32 addr, u64 data)
8597 {
8598 	struct hfi1_pportdata *ppd = dd->pport;
8599 
8600 	/* if up, go through the 8051 for the value */
8601 	if (ppd->host_link_state & HLS_UP)
8602 		return write_lcb_via_8051(dd, addr, data);
8603 	/* if going up or down, no access */
8604 	if (ppd->host_link_state & (HLS_GOING_UP | HLS_GOING_OFFLINE))
8605 		return -EBUSY;
8606 	/* otherwise, host has access */
8607 	write_csr(dd, addr, data);
8608 	return 0;
8609 }
8610 
8611 /*
8612  * Returns:
8613  *	< 0 = Linux error, not able to get access
8614  *	> 0 = 8051 command RETURN_CODE
8615  */
8616 static int do_8051_command(struct hfi1_devdata *dd, u32 type, u64 in_data,
8617 			   u64 *out_data)
8618 {
8619 	u64 reg, completed;
8620 	int return_code;
8621 	unsigned long timeout;
8622 
8623 	hfi1_cdbg(DC8051, "type %d, data 0x%012llx", type, in_data);
8624 
8625 	mutex_lock(&dd->dc8051_lock);
8626 
8627 	/* We can't send any commands to the 8051 if it's in reset */
8628 	if (dd->dc_shutdown) {
8629 		return_code = -ENODEV;
8630 		goto fail;
8631 	}
8632 
8633 	/*
8634 	 * If an 8051 host command timed out previously, then the 8051 is
8635 	 * stuck.
8636 	 *
8637 	 * On first timeout, attempt to reset and restart the entire DC
8638 	 * block (including 8051). (Is this too big of a hammer?)
8639 	 *
8640 	 * If the 8051 times out a second time, the reset did not bring it
8641 	 * back to healthy life. In that case, fail any subsequent commands.
8642 	 */
8643 	if (dd->dc8051_timed_out) {
8644 		if (dd->dc8051_timed_out > 1) {
8645 			dd_dev_err(dd,
8646 				   "Previous 8051 host command timed out, skipping command %u\n",
8647 				   type);
8648 			return_code = -ENXIO;
8649 			goto fail;
8650 		}
8651 		_dc_shutdown(dd);
8652 		_dc_start(dd);
8653 	}
8654 
8655 	/*
8656 	 * If there is no timeout, then the 8051 command interface is
8657 	 * waiting for a command.
8658 	 */
8659 
8660 	/*
8661 	 * When writing a LCB CSR, out_data contains the full value to
8662 	 * to be written, while in_data contains the relative LCB
8663 	 * address in 7:0.  Do the work here, rather than the caller,
8664 	 * of distrubting the write data to where it needs to go:
8665 	 *
8666 	 * Write data
8667 	 *   39:00 -> in_data[47:8]
8668 	 *   47:40 -> DC8051_CFG_EXT_DEV_0.RETURN_CODE
8669 	 *   63:48 -> DC8051_CFG_EXT_DEV_0.RSP_DATA
8670 	 */
8671 	if (type == HCMD_WRITE_LCB_CSR) {
8672 		in_data |= ((*out_data) & 0xffffffffffull) << 8;
8673 		/* must preserve COMPLETED - it is tied to hardware */
8674 		reg = read_csr(dd, DC_DC8051_CFG_EXT_DEV_0);
8675 		reg &= DC_DC8051_CFG_EXT_DEV_0_COMPLETED_SMASK;
8676 		reg |= ((((*out_data) >> 40) & 0xff) <<
8677 				DC_DC8051_CFG_EXT_DEV_0_RETURN_CODE_SHIFT)
8678 		      | ((((*out_data) >> 48) & 0xffff) <<
8679 				DC_DC8051_CFG_EXT_DEV_0_RSP_DATA_SHIFT);
8680 		write_csr(dd, DC_DC8051_CFG_EXT_DEV_0, reg);
8681 	}
8682 
8683 	/*
8684 	 * Do two writes: the first to stabilize the type and req_data, the
8685 	 * second to activate.
8686 	 */
8687 	reg = ((u64)type & DC_DC8051_CFG_HOST_CMD_0_REQ_TYPE_MASK)
8688 			<< DC_DC8051_CFG_HOST_CMD_0_REQ_TYPE_SHIFT
8689 		| (in_data & DC_DC8051_CFG_HOST_CMD_0_REQ_DATA_MASK)
8690 			<< DC_DC8051_CFG_HOST_CMD_0_REQ_DATA_SHIFT;
8691 	write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, reg);
8692 	reg |= DC_DC8051_CFG_HOST_CMD_0_REQ_NEW_SMASK;
8693 	write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, reg);
8694 
8695 	/* wait for completion, alternate: interrupt */
8696 	timeout = jiffies + msecs_to_jiffies(DC8051_COMMAND_TIMEOUT);
8697 	while (1) {
8698 		reg = read_csr(dd, DC_DC8051_CFG_HOST_CMD_1);
8699 		completed = reg & DC_DC8051_CFG_HOST_CMD_1_COMPLETED_SMASK;
8700 		if (completed)
8701 			break;
8702 		if (time_after(jiffies, timeout)) {
8703 			dd->dc8051_timed_out++;
8704 			dd_dev_err(dd, "8051 host command %u timeout\n", type);
8705 			if (out_data)
8706 				*out_data = 0;
8707 			return_code = -ETIMEDOUT;
8708 			goto fail;
8709 		}
8710 		udelay(2);
8711 	}
8712 
8713 	if (out_data) {
8714 		*out_data = (reg >> DC_DC8051_CFG_HOST_CMD_1_RSP_DATA_SHIFT)
8715 				& DC_DC8051_CFG_HOST_CMD_1_RSP_DATA_MASK;
8716 		if (type == HCMD_READ_LCB_CSR) {
8717 			/* top 16 bits are in a different register */
8718 			*out_data |= (read_csr(dd, DC_DC8051_CFG_EXT_DEV_1)
8719 				& DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SMASK)
8720 				<< (48
8721 				    - DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SHIFT);
8722 		}
8723 	}
8724 	return_code = (reg >> DC_DC8051_CFG_HOST_CMD_1_RETURN_CODE_SHIFT)
8725 				& DC_DC8051_CFG_HOST_CMD_1_RETURN_CODE_MASK;
8726 	dd->dc8051_timed_out = 0;
8727 	/*
8728 	 * Clear command for next user.
8729 	 */
8730 	write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, 0);
8731 
8732 fail:
8733 	mutex_unlock(&dd->dc8051_lock);
8734 	return return_code;
8735 }
8736 
8737 static int set_physical_link_state(struct hfi1_devdata *dd, u64 state)
8738 {
8739 	return do_8051_command(dd, HCMD_CHANGE_PHY_STATE, state, NULL);
8740 }
8741 
8742 int load_8051_config(struct hfi1_devdata *dd, u8 field_id,
8743 		     u8 lane_id, u32 config_data)
8744 {
8745 	u64 data;
8746 	int ret;
8747 
8748 	data = (u64)field_id << LOAD_DATA_FIELD_ID_SHIFT
8749 		| (u64)lane_id << LOAD_DATA_LANE_ID_SHIFT
8750 		| (u64)config_data << LOAD_DATA_DATA_SHIFT;
8751 	ret = do_8051_command(dd, HCMD_LOAD_CONFIG_DATA, data, NULL);
8752 	if (ret != HCMD_SUCCESS) {
8753 		dd_dev_err(dd,
8754 			   "load 8051 config: field id %d, lane %d, err %d\n",
8755 			   (int)field_id, (int)lane_id, ret);
8756 	}
8757 	return ret;
8758 }
8759 
8760 /*
8761  * Read the 8051 firmware "registers".  Use the RAM directly.  Always
8762  * set the result, even on error.
8763  * Return 0 on success, -errno on failure
8764  */
8765 int read_8051_config(struct hfi1_devdata *dd, u8 field_id, u8 lane_id,
8766 		     u32 *result)
8767 {
8768 	u64 big_data;
8769 	u32 addr;
8770 	int ret;
8771 
8772 	/* address start depends on the lane_id */
8773 	if (lane_id < 4)
8774 		addr = (4 * NUM_GENERAL_FIELDS)
8775 			+ (lane_id * 4 * NUM_LANE_FIELDS);
8776 	else
8777 		addr = 0;
8778 	addr += field_id * 4;
8779 
8780 	/* read is in 8-byte chunks, hardware will truncate the address down */
8781 	ret = read_8051_data(dd, addr, 8, &big_data);
8782 
8783 	if (ret == 0) {
8784 		/* extract the 4 bytes we want */
8785 		if (addr & 0x4)
8786 			*result = (u32)(big_data >> 32);
8787 		else
8788 			*result = (u32)big_data;
8789 	} else {
8790 		*result = 0;
8791 		dd_dev_err(dd, "%s: direct read failed, lane %d, field %d!\n",
8792 			   __func__, lane_id, field_id);
8793 	}
8794 
8795 	return ret;
8796 }
8797 
8798 static int write_vc_local_phy(struct hfi1_devdata *dd, u8 power_management,
8799 			      u8 continuous)
8800 {
8801 	u32 frame;
8802 
8803 	frame = continuous << CONTINIOUS_REMOTE_UPDATE_SUPPORT_SHIFT
8804 		| power_management << POWER_MANAGEMENT_SHIFT;
8805 	return load_8051_config(dd, VERIFY_CAP_LOCAL_PHY,
8806 				GENERAL_CONFIG, frame);
8807 }
8808 
8809 static int write_vc_local_fabric(struct hfi1_devdata *dd, u8 vau, u8 z, u8 vcu,
8810 				 u16 vl15buf, u8 crc_sizes)
8811 {
8812 	u32 frame;
8813 
8814 	frame = (u32)vau << VAU_SHIFT
8815 		| (u32)z << Z_SHIFT
8816 		| (u32)vcu << VCU_SHIFT
8817 		| (u32)vl15buf << VL15BUF_SHIFT
8818 		| (u32)crc_sizes << CRC_SIZES_SHIFT;
8819 	return load_8051_config(dd, VERIFY_CAP_LOCAL_FABRIC,
8820 				GENERAL_CONFIG, frame);
8821 }
8822 
8823 static void read_vc_local_link_width(struct hfi1_devdata *dd, u8 *misc_bits,
8824 				     u8 *flag_bits, u16 *link_widths)
8825 {
8826 	u32 frame;
8827 
8828 	read_8051_config(dd, VERIFY_CAP_LOCAL_LINK_WIDTH, GENERAL_CONFIG,
8829 			 &frame);
8830 	*misc_bits = (frame >> MISC_CONFIG_BITS_SHIFT) & MISC_CONFIG_BITS_MASK;
8831 	*flag_bits = (frame >> LOCAL_FLAG_BITS_SHIFT) & LOCAL_FLAG_BITS_MASK;
8832 	*link_widths = (frame >> LINK_WIDTH_SHIFT) & LINK_WIDTH_MASK;
8833 }
8834 
8835 static int write_vc_local_link_width(struct hfi1_devdata *dd,
8836 				     u8 misc_bits,
8837 				     u8 flag_bits,
8838 				     u16 link_widths)
8839 {
8840 	u32 frame;
8841 
8842 	frame = (u32)misc_bits << MISC_CONFIG_BITS_SHIFT
8843 		| (u32)flag_bits << LOCAL_FLAG_BITS_SHIFT
8844 		| (u32)link_widths << LINK_WIDTH_SHIFT;
8845 	return load_8051_config(dd, VERIFY_CAP_LOCAL_LINK_WIDTH, GENERAL_CONFIG,
8846 		     frame);
8847 }
8848 
8849 static int write_local_device_id(struct hfi1_devdata *dd, u16 device_id,
8850 				 u8 device_rev)
8851 {
8852 	u32 frame;
8853 
8854 	frame = ((u32)device_id << LOCAL_DEVICE_ID_SHIFT)
8855 		| ((u32)device_rev << LOCAL_DEVICE_REV_SHIFT);
8856 	return load_8051_config(dd, LOCAL_DEVICE_ID, GENERAL_CONFIG, frame);
8857 }
8858 
8859 static void read_remote_device_id(struct hfi1_devdata *dd, u16 *device_id,
8860 				  u8 *device_rev)
8861 {
8862 	u32 frame;
8863 
8864 	read_8051_config(dd, REMOTE_DEVICE_ID, GENERAL_CONFIG, &frame);
8865 	*device_id = (frame >> REMOTE_DEVICE_ID_SHIFT) & REMOTE_DEVICE_ID_MASK;
8866 	*device_rev = (frame >> REMOTE_DEVICE_REV_SHIFT)
8867 			& REMOTE_DEVICE_REV_MASK;
8868 }
8869 
8870 int write_host_interface_version(struct hfi1_devdata *dd, u8 version)
8871 {
8872 	u32 frame;
8873 	u32 mask;
8874 
8875 	mask = (HOST_INTERFACE_VERSION_MASK << HOST_INTERFACE_VERSION_SHIFT);
8876 	read_8051_config(dd, RESERVED_REGISTERS, GENERAL_CONFIG, &frame);
8877 	/* Clear, then set field */
8878 	frame &= ~mask;
8879 	frame |= ((u32)version << HOST_INTERFACE_VERSION_SHIFT);
8880 	return load_8051_config(dd, RESERVED_REGISTERS, GENERAL_CONFIG,
8881 				frame);
8882 }
8883 
8884 void read_misc_status(struct hfi1_devdata *dd, u8 *ver_major, u8 *ver_minor,
8885 		      u8 *ver_patch)
8886 {
8887 	u32 frame;
8888 
8889 	read_8051_config(dd, MISC_STATUS, GENERAL_CONFIG, &frame);
8890 	*ver_major = (frame >> STS_FM_VERSION_MAJOR_SHIFT) &
8891 		STS_FM_VERSION_MAJOR_MASK;
8892 	*ver_minor = (frame >> STS_FM_VERSION_MINOR_SHIFT) &
8893 		STS_FM_VERSION_MINOR_MASK;
8894 
8895 	read_8051_config(dd, VERSION_PATCH, GENERAL_CONFIG, &frame);
8896 	*ver_patch = (frame >> STS_FM_VERSION_PATCH_SHIFT) &
8897 		STS_FM_VERSION_PATCH_MASK;
8898 }
8899 
8900 static void read_vc_remote_phy(struct hfi1_devdata *dd, u8 *power_management,
8901 			       u8 *continuous)
8902 {
8903 	u32 frame;
8904 
8905 	read_8051_config(dd, VERIFY_CAP_REMOTE_PHY, GENERAL_CONFIG, &frame);
8906 	*power_management = (frame >> POWER_MANAGEMENT_SHIFT)
8907 					& POWER_MANAGEMENT_MASK;
8908 	*continuous = (frame >> CONTINIOUS_REMOTE_UPDATE_SUPPORT_SHIFT)
8909 					& CONTINIOUS_REMOTE_UPDATE_SUPPORT_MASK;
8910 }
8911 
8912 static void read_vc_remote_fabric(struct hfi1_devdata *dd, u8 *vau, u8 *z,
8913 				  u8 *vcu, u16 *vl15buf, u8 *crc_sizes)
8914 {
8915 	u32 frame;
8916 
8917 	read_8051_config(dd, VERIFY_CAP_REMOTE_FABRIC, GENERAL_CONFIG, &frame);
8918 	*vau = (frame >> VAU_SHIFT) & VAU_MASK;
8919 	*z = (frame >> Z_SHIFT) & Z_MASK;
8920 	*vcu = (frame >> VCU_SHIFT) & VCU_MASK;
8921 	*vl15buf = (frame >> VL15BUF_SHIFT) & VL15BUF_MASK;
8922 	*crc_sizes = (frame >> CRC_SIZES_SHIFT) & CRC_SIZES_MASK;
8923 }
8924 
8925 static void read_vc_remote_link_width(struct hfi1_devdata *dd,
8926 				      u8 *remote_tx_rate,
8927 				      u16 *link_widths)
8928 {
8929 	u32 frame;
8930 
8931 	read_8051_config(dd, VERIFY_CAP_REMOTE_LINK_WIDTH, GENERAL_CONFIG,
8932 			 &frame);
8933 	*remote_tx_rate = (frame >> REMOTE_TX_RATE_SHIFT)
8934 				& REMOTE_TX_RATE_MASK;
8935 	*link_widths = (frame >> LINK_WIDTH_SHIFT) & LINK_WIDTH_MASK;
8936 }
8937 
8938 static void read_local_lni(struct hfi1_devdata *dd, u8 *enable_lane_rx)
8939 {
8940 	u32 frame;
8941 
8942 	read_8051_config(dd, LOCAL_LNI_INFO, GENERAL_CONFIG, &frame);
8943 	*enable_lane_rx = (frame >> ENABLE_LANE_RX_SHIFT) & ENABLE_LANE_RX_MASK;
8944 }
8945 
8946 static void read_last_local_state(struct hfi1_devdata *dd, u32 *lls)
8947 {
8948 	read_8051_config(dd, LAST_LOCAL_STATE_COMPLETE, GENERAL_CONFIG, lls);
8949 }
8950 
8951 static void read_last_remote_state(struct hfi1_devdata *dd, u32 *lrs)
8952 {
8953 	read_8051_config(dd, LAST_REMOTE_STATE_COMPLETE, GENERAL_CONFIG, lrs);
8954 }
8955 
8956 void hfi1_read_link_quality(struct hfi1_devdata *dd, u8 *link_quality)
8957 {
8958 	u32 frame;
8959 	int ret;
8960 
8961 	*link_quality = 0;
8962 	if (dd->pport->host_link_state & HLS_UP) {
8963 		ret = read_8051_config(dd, LINK_QUALITY_INFO, GENERAL_CONFIG,
8964 				       &frame);
8965 		if (ret == 0)
8966 			*link_quality = (frame >> LINK_QUALITY_SHIFT)
8967 						& LINK_QUALITY_MASK;
8968 	}
8969 }
8970 
8971 static void read_planned_down_reason_code(struct hfi1_devdata *dd, u8 *pdrrc)
8972 {
8973 	u32 frame;
8974 
8975 	read_8051_config(dd, LINK_QUALITY_INFO, GENERAL_CONFIG, &frame);
8976 	*pdrrc = (frame >> DOWN_REMOTE_REASON_SHIFT) & DOWN_REMOTE_REASON_MASK;
8977 }
8978 
8979 static void read_link_down_reason(struct hfi1_devdata *dd, u8 *ldr)
8980 {
8981 	u32 frame;
8982 
8983 	read_8051_config(dd, LINK_DOWN_REASON, GENERAL_CONFIG, &frame);
8984 	*ldr = (frame & 0xff);
8985 }
8986 
8987 static int read_tx_settings(struct hfi1_devdata *dd,
8988 			    u8 *enable_lane_tx,
8989 			    u8 *tx_polarity_inversion,
8990 			    u8 *rx_polarity_inversion,
8991 			    u8 *max_rate)
8992 {
8993 	u32 frame;
8994 	int ret;
8995 
8996 	ret = read_8051_config(dd, TX_SETTINGS, GENERAL_CONFIG, &frame);
8997 	*enable_lane_tx = (frame >> ENABLE_LANE_TX_SHIFT)
8998 				& ENABLE_LANE_TX_MASK;
8999 	*tx_polarity_inversion = (frame >> TX_POLARITY_INVERSION_SHIFT)
9000 				& TX_POLARITY_INVERSION_MASK;
9001 	*rx_polarity_inversion = (frame >> RX_POLARITY_INVERSION_SHIFT)
9002 				& RX_POLARITY_INVERSION_MASK;
9003 	*max_rate = (frame >> MAX_RATE_SHIFT) & MAX_RATE_MASK;
9004 	return ret;
9005 }
9006 
9007 static int write_tx_settings(struct hfi1_devdata *dd,
9008 			     u8 enable_lane_tx,
9009 			     u8 tx_polarity_inversion,
9010 			     u8 rx_polarity_inversion,
9011 			     u8 max_rate)
9012 {
9013 	u32 frame;
9014 
9015 	/* no need to mask, all variable sizes match field widths */
9016 	frame = enable_lane_tx << ENABLE_LANE_TX_SHIFT
9017 		| tx_polarity_inversion << TX_POLARITY_INVERSION_SHIFT
9018 		| rx_polarity_inversion << RX_POLARITY_INVERSION_SHIFT
9019 		| max_rate << MAX_RATE_SHIFT;
9020 	return load_8051_config(dd, TX_SETTINGS, GENERAL_CONFIG, frame);
9021 }
9022 
9023 /*
9024  * Read an idle LCB message.
9025  *
9026  * Returns 0 on success, -EINVAL on error
9027  */
9028 static int read_idle_message(struct hfi1_devdata *dd, u64 type, u64 *data_out)
9029 {
9030 	int ret;
9031 
9032 	ret = do_8051_command(dd, HCMD_READ_LCB_IDLE_MSG, type, data_out);
9033 	if (ret != HCMD_SUCCESS) {
9034 		dd_dev_err(dd, "read idle message: type %d, err %d\n",
9035 			   (u32)type, ret);
9036 		return -EINVAL;
9037 	}
9038 	dd_dev_info(dd, "%s: read idle message 0x%llx\n", __func__, *data_out);
9039 	/* return only the payload as we already know the type */
9040 	*data_out >>= IDLE_PAYLOAD_SHIFT;
9041 	return 0;
9042 }
9043 
9044 /*
9045  * Read an idle SMA message.  To be done in response to a notification from
9046  * the 8051.
9047  *
9048  * Returns 0 on success, -EINVAL on error
9049  */
9050 static int read_idle_sma(struct hfi1_devdata *dd, u64 *data)
9051 {
9052 	return read_idle_message(dd, (u64)IDLE_SMA << IDLE_MSG_TYPE_SHIFT,
9053 				 data);
9054 }
9055 
9056 /*
9057  * Send an idle LCB message.
9058  *
9059  * Returns 0 on success, -EINVAL on error
9060  */
9061 static int send_idle_message(struct hfi1_devdata *dd, u64 data)
9062 {
9063 	int ret;
9064 
9065 	dd_dev_info(dd, "%s: sending idle message 0x%llx\n", __func__, data);
9066 	ret = do_8051_command(dd, HCMD_SEND_LCB_IDLE_MSG, data, NULL);
9067 	if (ret != HCMD_SUCCESS) {
9068 		dd_dev_err(dd, "send idle message: data 0x%llx, err %d\n",
9069 			   data, ret);
9070 		return -EINVAL;
9071 	}
9072 	return 0;
9073 }
9074 
9075 /*
9076  * Send an idle SMA message.
9077  *
9078  * Returns 0 on success, -EINVAL on error
9079  */
9080 int send_idle_sma(struct hfi1_devdata *dd, u64 message)
9081 {
9082 	u64 data;
9083 
9084 	data = ((message & IDLE_PAYLOAD_MASK) << IDLE_PAYLOAD_SHIFT) |
9085 		((u64)IDLE_SMA << IDLE_MSG_TYPE_SHIFT);
9086 	return send_idle_message(dd, data);
9087 }
9088 
9089 /*
9090  * Initialize the LCB then do a quick link up.  This may or may not be
9091  * in loopback.
9092  *
9093  * return 0 on success, -errno on error
9094  */
9095 static int do_quick_linkup(struct hfi1_devdata *dd)
9096 {
9097 	int ret;
9098 
9099 	lcb_shutdown(dd, 0);
9100 
9101 	if (loopback) {
9102 		/* LCB_CFG_LOOPBACK.VAL = 2 */
9103 		/* LCB_CFG_LANE_WIDTH.VAL = 0 */
9104 		write_csr(dd, DC_LCB_CFG_LOOPBACK,
9105 			  IB_PACKET_TYPE << DC_LCB_CFG_LOOPBACK_VAL_SHIFT);
9106 		write_csr(dd, DC_LCB_CFG_LANE_WIDTH, 0);
9107 	}
9108 
9109 	/* start the LCBs */
9110 	/* LCB_CFG_TX_FIFOS_RESET.VAL = 0 */
9111 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0);
9112 
9113 	/* simulator only loopback steps */
9114 	if (loopback && dd->icode == ICODE_FUNCTIONAL_SIMULATOR) {
9115 		/* LCB_CFG_RUN.EN = 1 */
9116 		write_csr(dd, DC_LCB_CFG_RUN,
9117 			  1ull << DC_LCB_CFG_RUN_EN_SHIFT);
9118 
9119 		ret = wait_link_transfer_active(dd, 10);
9120 		if (ret)
9121 			return ret;
9122 
9123 		write_csr(dd, DC_LCB_CFG_ALLOW_LINK_UP,
9124 			  1ull << DC_LCB_CFG_ALLOW_LINK_UP_VAL_SHIFT);
9125 	}
9126 
9127 	if (!loopback) {
9128 		/*
9129 		 * When doing quick linkup and not in loopback, both
9130 		 * sides must be done with LCB set-up before either
9131 		 * starts the quick linkup.  Put a delay here so that
9132 		 * both sides can be started and have a chance to be
9133 		 * done with LCB set up before resuming.
9134 		 */
9135 		dd_dev_err(dd,
9136 			   "Pausing for peer to be finished with LCB set up\n");
9137 		msleep(5000);
9138 		dd_dev_err(dd, "Continuing with quick linkup\n");
9139 	}
9140 
9141 	write_csr(dd, DC_LCB_ERR_EN, 0); /* mask LCB errors */
9142 	set_8051_lcb_access(dd);
9143 
9144 	/*
9145 	 * State "quick" LinkUp request sets the physical link state to
9146 	 * LinkUp without a verify capability sequence.
9147 	 * This state is in simulator v37 and later.
9148 	 */
9149 	ret = set_physical_link_state(dd, PLS_QUICK_LINKUP);
9150 	if (ret != HCMD_SUCCESS) {
9151 		dd_dev_err(dd,
9152 			   "%s: set physical link state to quick LinkUp failed with return %d\n",
9153 			   __func__, ret);
9154 
9155 		set_host_lcb_access(dd);
9156 		write_csr(dd, DC_LCB_ERR_EN, ~0ull); /* watch LCB errors */
9157 
9158 		if (ret >= 0)
9159 			ret = -EINVAL;
9160 		return ret;
9161 	}
9162 
9163 	return 0; /* success */
9164 }
9165 
9166 /*
9167  * Do all special steps to set up loopback.
9168  */
9169 static int init_loopback(struct hfi1_devdata *dd)
9170 {
9171 	dd_dev_info(dd, "Entering loopback mode\n");
9172 
9173 	/* all loopbacks should disable self GUID check */
9174 	write_csr(dd, DC_DC8051_CFG_MODE,
9175 		  (read_csr(dd, DC_DC8051_CFG_MODE) | DISABLE_SELF_GUID_CHECK));
9176 
9177 	/*
9178 	 * The simulator has only one loopback option - LCB.  Switch
9179 	 * to that option, which includes quick link up.
9180 	 *
9181 	 * Accept all valid loopback values.
9182 	 */
9183 	if ((dd->icode == ICODE_FUNCTIONAL_SIMULATOR) &&
9184 	    (loopback == LOOPBACK_SERDES || loopback == LOOPBACK_LCB ||
9185 	     loopback == LOOPBACK_CABLE)) {
9186 		loopback = LOOPBACK_LCB;
9187 		quick_linkup = 1;
9188 		return 0;
9189 	}
9190 
9191 	/*
9192 	 * SerDes loopback init sequence is handled in set_local_link_attributes
9193 	 */
9194 	if (loopback == LOOPBACK_SERDES)
9195 		return 0;
9196 
9197 	/* LCB loopback - handled at poll time */
9198 	if (loopback == LOOPBACK_LCB) {
9199 		quick_linkup = 1; /* LCB is always quick linkup */
9200 
9201 		/* not supported in emulation due to emulation RTL changes */
9202 		if (dd->icode == ICODE_FPGA_EMULATION) {
9203 			dd_dev_err(dd,
9204 				   "LCB loopback not supported in emulation\n");
9205 			return -EINVAL;
9206 		}
9207 		return 0;
9208 	}
9209 
9210 	/* external cable loopback requires no extra steps */
9211 	if (loopback == LOOPBACK_CABLE)
9212 		return 0;
9213 
9214 	dd_dev_err(dd, "Invalid loopback mode %d\n", loopback);
9215 	return -EINVAL;
9216 }
9217 
9218 /*
9219  * Translate from the OPA_LINK_WIDTH handed to us by the FM to bits
9220  * used in the Verify Capability link width attribute.
9221  */
9222 static u16 opa_to_vc_link_widths(u16 opa_widths)
9223 {
9224 	int i;
9225 	u16 result = 0;
9226 
9227 	static const struct link_bits {
9228 		u16 from;
9229 		u16 to;
9230 	} opa_link_xlate[] = {
9231 		{ OPA_LINK_WIDTH_1X, 1 << (1 - 1)  },
9232 		{ OPA_LINK_WIDTH_2X, 1 << (2 - 1)  },
9233 		{ OPA_LINK_WIDTH_3X, 1 << (3 - 1)  },
9234 		{ OPA_LINK_WIDTH_4X, 1 << (4 - 1)  },
9235 	};
9236 
9237 	for (i = 0; i < ARRAY_SIZE(opa_link_xlate); i++) {
9238 		if (opa_widths & opa_link_xlate[i].from)
9239 			result |= opa_link_xlate[i].to;
9240 	}
9241 	return result;
9242 }
9243 
9244 /*
9245  * Set link attributes before moving to polling.
9246  */
9247 static int set_local_link_attributes(struct hfi1_pportdata *ppd)
9248 {
9249 	struct hfi1_devdata *dd = ppd->dd;
9250 	u8 enable_lane_tx;
9251 	u8 tx_polarity_inversion;
9252 	u8 rx_polarity_inversion;
9253 	int ret;
9254 	u32 misc_bits = 0;
9255 	/* reset our fabric serdes to clear any lingering problems */
9256 	fabric_serdes_reset(dd);
9257 
9258 	/* set the local tx rate - need to read-modify-write */
9259 	ret = read_tx_settings(dd, &enable_lane_tx, &tx_polarity_inversion,
9260 			       &rx_polarity_inversion, &ppd->local_tx_rate);
9261 	if (ret)
9262 		goto set_local_link_attributes_fail;
9263 
9264 	if (dd->dc8051_ver < dc8051_ver(0, 20, 0)) {
9265 		/* set the tx rate to the fastest enabled */
9266 		if (ppd->link_speed_enabled & OPA_LINK_SPEED_25G)
9267 			ppd->local_tx_rate = 1;
9268 		else
9269 			ppd->local_tx_rate = 0;
9270 	} else {
9271 		/* set the tx rate to all enabled */
9272 		ppd->local_tx_rate = 0;
9273 		if (ppd->link_speed_enabled & OPA_LINK_SPEED_25G)
9274 			ppd->local_tx_rate |= 2;
9275 		if (ppd->link_speed_enabled & OPA_LINK_SPEED_12_5G)
9276 			ppd->local_tx_rate |= 1;
9277 	}
9278 
9279 	enable_lane_tx = 0xF; /* enable all four lanes */
9280 	ret = write_tx_settings(dd, enable_lane_tx, tx_polarity_inversion,
9281 				rx_polarity_inversion, ppd->local_tx_rate);
9282 	if (ret != HCMD_SUCCESS)
9283 		goto set_local_link_attributes_fail;
9284 
9285 	ret = write_host_interface_version(dd, HOST_INTERFACE_VERSION);
9286 	if (ret != HCMD_SUCCESS) {
9287 		dd_dev_err(dd,
9288 			   "Failed to set host interface version, return 0x%x\n",
9289 			   ret);
9290 		goto set_local_link_attributes_fail;
9291 	}
9292 
9293 	/*
9294 	 * DC supports continuous updates.
9295 	 */
9296 	ret = write_vc_local_phy(dd,
9297 				 0 /* no power management */,
9298 				 1 /* continuous updates */);
9299 	if (ret != HCMD_SUCCESS)
9300 		goto set_local_link_attributes_fail;
9301 
9302 	/* z=1 in the next call: AU of 0 is not supported by the hardware */
9303 	ret = write_vc_local_fabric(dd, dd->vau, 1, dd->vcu, dd->vl15_init,
9304 				    ppd->port_crc_mode_enabled);
9305 	if (ret != HCMD_SUCCESS)
9306 		goto set_local_link_attributes_fail;
9307 
9308 	/*
9309 	 * SerDes loopback init sequence requires
9310 	 * setting bit 0 of MISC_CONFIG_BITS
9311 	 */
9312 	if (loopback == LOOPBACK_SERDES)
9313 		misc_bits |= 1 << LOOPBACK_SERDES_CONFIG_BIT_MASK_SHIFT;
9314 
9315 	ret = write_vc_local_link_width(dd, misc_bits, 0,
9316 					opa_to_vc_link_widths(
9317 						ppd->link_width_enabled));
9318 	if (ret != HCMD_SUCCESS)
9319 		goto set_local_link_attributes_fail;
9320 
9321 	/* let peer know who we are */
9322 	ret = write_local_device_id(dd, dd->pcidev->device, dd->minrev);
9323 	if (ret == HCMD_SUCCESS)
9324 		return 0;
9325 
9326 set_local_link_attributes_fail:
9327 	dd_dev_err(dd,
9328 		   "Failed to set local link attributes, return 0x%x\n",
9329 		   ret);
9330 	return ret;
9331 }
9332 
9333 /*
9334  * Call this to start the link.
9335  * Do not do anything if the link is disabled.
9336  * Returns 0 if link is disabled, moved to polling, or the driver is not ready.
9337  */
9338 int start_link(struct hfi1_pportdata *ppd)
9339 {
9340 	/*
9341 	 * Tune the SerDes to a ballpark setting for optimal signal and bit
9342 	 * error rate.  Needs to be done before starting the link.
9343 	 */
9344 	tune_serdes(ppd);
9345 
9346 	if (!ppd->driver_link_ready) {
9347 		dd_dev_info(ppd->dd,
9348 			    "%s: stopping link start because driver is not ready\n",
9349 			    __func__);
9350 		return 0;
9351 	}
9352 
9353 	/*
9354 	 * FULL_MGMT_P_KEY is cleared from the pkey table, so that the
9355 	 * pkey table can be configured properly if the HFI unit is connected
9356 	 * to switch port with MgmtAllowed=NO
9357 	 */
9358 	clear_full_mgmt_pkey(ppd);
9359 
9360 	return set_link_state(ppd, HLS_DN_POLL);
9361 }
9362 
9363 static void wait_for_qsfp_init(struct hfi1_pportdata *ppd)
9364 {
9365 	struct hfi1_devdata *dd = ppd->dd;
9366 	u64 mask;
9367 	unsigned long timeout;
9368 
9369 	/*
9370 	 * Some QSFP cables have a quirk that asserts the IntN line as a side
9371 	 * effect of power up on plug-in. We ignore this false positive
9372 	 * interrupt until the module has finished powering up by waiting for
9373 	 * a minimum timeout of the module inrush initialization time of
9374 	 * 500 ms (SFF 8679 Table 5-6) to ensure the voltage rails in the
9375 	 * module have stabilized.
9376 	 */
9377 	msleep(500);
9378 
9379 	/*
9380 	 * Check for QSFP interrupt for t_init (SFF 8679 Table 8-1)
9381 	 */
9382 	timeout = jiffies + msecs_to_jiffies(2000);
9383 	while (1) {
9384 		mask = read_csr(dd, dd->hfi1_id ?
9385 				ASIC_QSFP2_IN : ASIC_QSFP1_IN);
9386 		if (!(mask & QSFP_HFI0_INT_N))
9387 			break;
9388 		if (time_after(jiffies, timeout)) {
9389 			dd_dev_info(dd, "%s: No IntN detected, reset complete\n",
9390 				    __func__);
9391 			break;
9392 		}
9393 		udelay(2);
9394 	}
9395 }
9396 
9397 static void set_qsfp_int_n(struct hfi1_pportdata *ppd, u8 enable)
9398 {
9399 	struct hfi1_devdata *dd = ppd->dd;
9400 	u64 mask;
9401 
9402 	mask = read_csr(dd, dd->hfi1_id ? ASIC_QSFP2_MASK : ASIC_QSFP1_MASK);
9403 	if (enable) {
9404 		/*
9405 		 * Clear the status register to avoid an immediate interrupt
9406 		 * when we re-enable the IntN pin
9407 		 */
9408 		write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_CLEAR : ASIC_QSFP1_CLEAR,
9409 			  QSFP_HFI0_INT_N);
9410 		mask |= (u64)QSFP_HFI0_INT_N;
9411 	} else {
9412 		mask &= ~(u64)QSFP_HFI0_INT_N;
9413 	}
9414 	write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_MASK : ASIC_QSFP1_MASK, mask);
9415 }
9416 
9417 int reset_qsfp(struct hfi1_pportdata *ppd)
9418 {
9419 	struct hfi1_devdata *dd = ppd->dd;
9420 	u64 mask, qsfp_mask;
9421 
9422 	/* Disable INT_N from triggering QSFP interrupts */
9423 	set_qsfp_int_n(ppd, 0);
9424 
9425 	/* Reset the QSFP */
9426 	mask = (u64)QSFP_HFI0_RESET_N;
9427 
9428 	qsfp_mask = read_csr(dd,
9429 			     dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT);
9430 	qsfp_mask &= ~mask;
9431 	write_csr(dd,
9432 		  dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT, qsfp_mask);
9433 
9434 	udelay(10);
9435 
9436 	qsfp_mask |= mask;
9437 	write_csr(dd,
9438 		  dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT, qsfp_mask);
9439 
9440 	wait_for_qsfp_init(ppd);
9441 
9442 	/*
9443 	 * Allow INT_N to trigger the QSFP interrupt to watch
9444 	 * for alarms and warnings
9445 	 */
9446 	set_qsfp_int_n(ppd, 1);
9447 
9448 	/*
9449 	 * After the reset, AOC transmitters are enabled by default. They need
9450 	 * to be turned off to complete the QSFP setup before they can be
9451 	 * enabled again.
9452 	 */
9453 	return set_qsfp_tx(ppd, 0);
9454 }
9455 
9456 static int handle_qsfp_error_conditions(struct hfi1_pportdata *ppd,
9457 					u8 *qsfp_interrupt_status)
9458 {
9459 	struct hfi1_devdata *dd = ppd->dd;
9460 
9461 	if ((qsfp_interrupt_status[0] & QSFP_HIGH_TEMP_ALARM) ||
9462 	    (qsfp_interrupt_status[0] & QSFP_HIGH_TEMP_WARNING))
9463 		dd_dev_err(dd, "%s: QSFP cable temperature too high\n",
9464 			   __func__);
9465 
9466 	if ((qsfp_interrupt_status[0] & QSFP_LOW_TEMP_ALARM) ||
9467 	    (qsfp_interrupt_status[0] & QSFP_LOW_TEMP_WARNING))
9468 		dd_dev_err(dd, "%s: QSFP cable temperature too low\n",
9469 			   __func__);
9470 
9471 	/*
9472 	 * The remaining alarms/warnings don't matter if the link is down.
9473 	 */
9474 	if (ppd->host_link_state & HLS_DOWN)
9475 		return 0;
9476 
9477 	if ((qsfp_interrupt_status[1] & QSFP_HIGH_VCC_ALARM) ||
9478 	    (qsfp_interrupt_status[1] & QSFP_HIGH_VCC_WARNING))
9479 		dd_dev_err(dd, "%s: QSFP supply voltage too high\n",
9480 			   __func__);
9481 
9482 	if ((qsfp_interrupt_status[1] & QSFP_LOW_VCC_ALARM) ||
9483 	    (qsfp_interrupt_status[1] & QSFP_LOW_VCC_WARNING))
9484 		dd_dev_err(dd, "%s: QSFP supply voltage too low\n",
9485 			   __func__);
9486 
9487 	/* Byte 2 is vendor specific */
9488 
9489 	if ((qsfp_interrupt_status[3] & QSFP_HIGH_POWER_ALARM) ||
9490 	    (qsfp_interrupt_status[3] & QSFP_HIGH_POWER_WARNING))
9491 		dd_dev_err(dd, "%s: Cable RX channel 1/2 power too high\n",
9492 			   __func__);
9493 
9494 	if ((qsfp_interrupt_status[3] & QSFP_LOW_POWER_ALARM) ||
9495 	    (qsfp_interrupt_status[3] & QSFP_LOW_POWER_WARNING))
9496 		dd_dev_err(dd, "%s: Cable RX channel 1/2 power too low\n",
9497 			   __func__);
9498 
9499 	if ((qsfp_interrupt_status[4] & QSFP_HIGH_POWER_ALARM) ||
9500 	    (qsfp_interrupt_status[4] & QSFP_HIGH_POWER_WARNING))
9501 		dd_dev_err(dd, "%s: Cable RX channel 3/4 power too high\n",
9502 			   __func__);
9503 
9504 	if ((qsfp_interrupt_status[4] & QSFP_LOW_POWER_ALARM) ||
9505 	    (qsfp_interrupt_status[4] & QSFP_LOW_POWER_WARNING))
9506 		dd_dev_err(dd, "%s: Cable RX channel 3/4 power too low\n",
9507 			   __func__);
9508 
9509 	if ((qsfp_interrupt_status[5] & QSFP_HIGH_BIAS_ALARM) ||
9510 	    (qsfp_interrupt_status[5] & QSFP_HIGH_BIAS_WARNING))
9511 		dd_dev_err(dd, "%s: Cable TX channel 1/2 bias too high\n",
9512 			   __func__);
9513 
9514 	if ((qsfp_interrupt_status[5] & QSFP_LOW_BIAS_ALARM) ||
9515 	    (qsfp_interrupt_status[5] & QSFP_LOW_BIAS_WARNING))
9516 		dd_dev_err(dd, "%s: Cable TX channel 1/2 bias too low\n",
9517 			   __func__);
9518 
9519 	if ((qsfp_interrupt_status[6] & QSFP_HIGH_BIAS_ALARM) ||
9520 	    (qsfp_interrupt_status[6] & QSFP_HIGH_BIAS_WARNING))
9521 		dd_dev_err(dd, "%s: Cable TX channel 3/4 bias too high\n",
9522 			   __func__);
9523 
9524 	if ((qsfp_interrupt_status[6] & QSFP_LOW_BIAS_ALARM) ||
9525 	    (qsfp_interrupt_status[6] & QSFP_LOW_BIAS_WARNING))
9526 		dd_dev_err(dd, "%s: Cable TX channel 3/4 bias too low\n",
9527 			   __func__);
9528 
9529 	if ((qsfp_interrupt_status[7] & QSFP_HIGH_POWER_ALARM) ||
9530 	    (qsfp_interrupt_status[7] & QSFP_HIGH_POWER_WARNING))
9531 		dd_dev_err(dd, "%s: Cable TX channel 1/2 power too high\n",
9532 			   __func__);
9533 
9534 	if ((qsfp_interrupt_status[7] & QSFP_LOW_POWER_ALARM) ||
9535 	    (qsfp_interrupt_status[7] & QSFP_LOW_POWER_WARNING))
9536 		dd_dev_err(dd, "%s: Cable TX channel 1/2 power too low\n",
9537 			   __func__);
9538 
9539 	if ((qsfp_interrupt_status[8] & QSFP_HIGH_POWER_ALARM) ||
9540 	    (qsfp_interrupt_status[8] & QSFP_HIGH_POWER_WARNING))
9541 		dd_dev_err(dd, "%s: Cable TX channel 3/4 power too high\n",
9542 			   __func__);
9543 
9544 	if ((qsfp_interrupt_status[8] & QSFP_LOW_POWER_ALARM) ||
9545 	    (qsfp_interrupt_status[8] & QSFP_LOW_POWER_WARNING))
9546 		dd_dev_err(dd, "%s: Cable TX channel 3/4 power too low\n",
9547 			   __func__);
9548 
9549 	/* Bytes 9-10 and 11-12 are reserved */
9550 	/* Bytes 13-15 are vendor specific */
9551 
9552 	return 0;
9553 }
9554 
9555 /* This routine will only be scheduled if the QSFP module present is asserted */
9556 void qsfp_event(struct work_struct *work)
9557 {
9558 	struct qsfp_data *qd;
9559 	struct hfi1_pportdata *ppd;
9560 	struct hfi1_devdata *dd;
9561 
9562 	qd = container_of(work, struct qsfp_data, qsfp_work);
9563 	ppd = qd->ppd;
9564 	dd = ppd->dd;
9565 
9566 	/* Sanity check */
9567 	if (!qsfp_mod_present(ppd))
9568 		return;
9569 
9570 	if (ppd->host_link_state == HLS_DN_DISABLE) {
9571 		dd_dev_info(ppd->dd,
9572 			    "%s: stopping link start because link is disabled\n",
9573 			    __func__);
9574 		return;
9575 	}
9576 
9577 	/*
9578 	 * Turn DC back on after cable has been re-inserted. Up until
9579 	 * now, the DC has been in reset to save power.
9580 	 */
9581 	dc_start(dd);
9582 
9583 	if (qd->cache_refresh_required) {
9584 		set_qsfp_int_n(ppd, 0);
9585 
9586 		wait_for_qsfp_init(ppd);
9587 
9588 		/*
9589 		 * Allow INT_N to trigger the QSFP interrupt to watch
9590 		 * for alarms and warnings
9591 		 */
9592 		set_qsfp_int_n(ppd, 1);
9593 
9594 		start_link(ppd);
9595 	}
9596 
9597 	if (qd->check_interrupt_flags) {
9598 		u8 qsfp_interrupt_status[16] = {0,};
9599 
9600 		if (one_qsfp_read(ppd, dd->hfi1_id, 6,
9601 				  &qsfp_interrupt_status[0], 16) != 16) {
9602 			dd_dev_info(dd,
9603 				    "%s: Failed to read status of QSFP module\n",
9604 				    __func__);
9605 		} else {
9606 			unsigned long flags;
9607 
9608 			handle_qsfp_error_conditions(
9609 					ppd, qsfp_interrupt_status);
9610 			spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
9611 			ppd->qsfp_info.check_interrupt_flags = 0;
9612 			spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock,
9613 					       flags);
9614 		}
9615 	}
9616 }
9617 
9618 static void init_qsfp_int(struct hfi1_devdata *dd)
9619 {
9620 	struct hfi1_pportdata *ppd = dd->pport;
9621 	u64 qsfp_mask, cce_int_mask;
9622 	const int qsfp1_int_smask = QSFP1_INT % 64;
9623 	const int qsfp2_int_smask = QSFP2_INT % 64;
9624 
9625 	/*
9626 	 * disable QSFP1 interrupts for HFI1, QSFP2 interrupts for HFI0
9627 	 * Qsfp1Int and Qsfp2Int are adjacent bits in the same CSR,
9628 	 * therefore just one of QSFP1_INT/QSFP2_INT can be used to find
9629 	 * the index of the appropriate CSR in the CCEIntMask CSR array
9630 	 */
9631 	cce_int_mask = read_csr(dd, CCE_INT_MASK +
9632 				(8 * (QSFP1_INT / 64)));
9633 	if (dd->hfi1_id) {
9634 		cce_int_mask &= ~((u64)1 << qsfp1_int_smask);
9635 		write_csr(dd, CCE_INT_MASK + (8 * (QSFP1_INT / 64)),
9636 			  cce_int_mask);
9637 	} else {
9638 		cce_int_mask &= ~((u64)1 << qsfp2_int_smask);
9639 		write_csr(dd, CCE_INT_MASK + (8 * (QSFP2_INT / 64)),
9640 			  cce_int_mask);
9641 	}
9642 
9643 	qsfp_mask = (u64)(QSFP_HFI0_INT_N | QSFP_HFI0_MODPRST_N);
9644 	/* Clear current status to avoid spurious interrupts */
9645 	write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_CLEAR : ASIC_QSFP1_CLEAR,
9646 		  qsfp_mask);
9647 	write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_MASK : ASIC_QSFP1_MASK,
9648 		  qsfp_mask);
9649 
9650 	set_qsfp_int_n(ppd, 0);
9651 
9652 	/* Handle active low nature of INT_N and MODPRST_N pins */
9653 	if (qsfp_mod_present(ppd))
9654 		qsfp_mask &= ~(u64)QSFP_HFI0_MODPRST_N;
9655 	write_csr(dd,
9656 		  dd->hfi1_id ? ASIC_QSFP2_INVERT : ASIC_QSFP1_INVERT,
9657 		  qsfp_mask);
9658 }
9659 
9660 /*
9661  * Do a one-time initialize of the LCB block.
9662  */
9663 static void init_lcb(struct hfi1_devdata *dd)
9664 {
9665 	/* simulator does not correctly handle LCB cclk loopback, skip */
9666 	if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR)
9667 		return;
9668 
9669 	/* the DC has been reset earlier in the driver load */
9670 
9671 	/* set LCB for cclk loopback on the port */
9672 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0x01);
9673 	write_csr(dd, DC_LCB_CFG_LANE_WIDTH, 0x00);
9674 	write_csr(dd, DC_LCB_CFG_REINIT_AS_SLAVE, 0x00);
9675 	write_csr(dd, DC_LCB_CFG_CNT_FOR_SKIP_STALL, 0x110);
9676 	write_csr(dd, DC_LCB_CFG_CLK_CNTR, 0x08);
9677 	write_csr(dd, DC_LCB_CFG_LOOPBACK, 0x02);
9678 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0x00);
9679 }
9680 
9681 /*
9682  * Perform a test read on the QSFP.  Return 0 on success, -ERRNO
9683  * on error.
9684  */
9685 static int test_qsfp_read(struct hfi1_pportdata *ppd)
9686 {
9687 	int ret;
9688 	u8 status;
9689 
9690 	/*
9691 	 * Report success if not a QSFP or, if it is a QSFP, but the cable is
9692 	 * not present
9693 	 */
9694 	if (ppd->port_type != PORT_TYPE_QSFP || !qsfp_mod_present(ppd))
9695 		return 0;
9696 
9697 	/* read byte 2, the status byte */
9698 	ret = one_qsfp_read(ppd, ppd->dd->hfi1_id, 2, &status, 1);
9699 	if (ret < 0)
9700 		return ret;
9701 	if (ret != 1)
9702 		return -EIO;
9703 
9704 	return 0; /* success */
9705 }
9706 
9707 /*
9708  * Values for QSFP retry.
9709  *
9710  * Give up after 10s (20 x 500ms).  The overall timeout was empirically
9711  * arrived at from experience on a large cluster.
9712  */
9713 #define MAX_QSFP_RETRIES 20
9714 #define QSFP_RETRY_WAIT 500 /* msec */
9715 
9716 /*
9717  * Try a QSFP read.  If it fails, schedule a retry for later.
9718  * Called on first link activation after driver load.
9719  */
9720 static void try_start_link(struct hfi1_pportdata *ppd)
9721 {
9722 	if (test_qsfp_read(ppd)) {
9723 		/* read failed */
9724 		if (ppd->qsfp_retry_count >= MAX_QSFP_RETRIES) {
9725 			dd_dev_err(ppd->dd, "QSFP not responding, giving up\n");
9726 			return;
9727 		}
9728 		dd_dev_info(ppd->dd,
9729 			    "QSFP not responding, waiting and retrying %d\n",
9730 			    (int)ppd->qsfp_retry_count);
9731 		ppd->qsfp_retry_count++;
9732 		queue_delayed_work(ppd->link_wq, &ppd->start_link_work,
9733 				   msecs_to_jiffies(QSFP_RETRY_WAIT));
9734 		return;
9735 	}
9736 	ppd->qsfp_retry_count = 0;
9737 
9738 	start_link(ppd);
9739 }
9740 
9741 /*
9742  * Workqueue function to start the link after a delay.
9743  */
9744 void handle_start_link(struct work_struct *work)
9745 {
9746 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
9747 						  start_link_work.work);
9748 	try_start_link(ppd);
9749 }
9750 
9751 int bringup_serdes(struct hfi1_pportdata *ppd)
9752 {
9753 	struct hfi1_devdata *dd = ppd->dd;
9754 	u64 guid;
9755 	int ret;
9756 
9757 	if (HFI1_CAP_IS_KSET(EXTENDED_PSN))
9758 		add_rcvctrl(dd, RCV_CTRL_RCV_EXTENDED_PSN_ENABLE_SMASK);
9759 
9760 	guid = ppd->guids[HFI1_PORT_GUID_INDEX];
9761 	if (!guid) {
9762 		if (dd->base_guid)
9763 			guid = dd->base_guid + ppd->port - 1;
9764 		ppd->guids[HFI1_PORT_GUID_INDEX] = guid;
9765 	}
9766 
9767 	/* Set linkinit_reason on power up per OPA spec */
9768 	ppd->linkinit_reason = OPA_LINKINIT_REASON_LINKUP;
9769 
9770 	/* one-time init of the LCB */
9771 	init_lcb(dd);
9772 
9773 	if (loopback) {
9774 		ret = init_loopback(dd);
9775 		if (ret < 0)
9776 			return ret;
9777 	}
9778 
9779 	get_port_type(ppd);
9780 	if (ppd->port_type == PORT_TYPE_QSFP) {
9781 		set_qsfp_int_n(ppd, 0);
9782 		wait_for_qsfp_init(ppd);
9783 		set_qsfp_int_n(ppd, 1);
9784 	}
9785 
9786 	try_start_link(ppd);
9787 	return 0;
9788 }
9789 
9790 void hfi1_quiet_serdes(struct hfi1_pportdata *ppd)
9791 {
9792 	struct hfi1_devdata *dd = ppd->dd;
9793 
9794 	/*
9795 	 * Shut down the link and keep it down.   First turn off that the
9796 	 * driver wants to allow the link to be up (driver_link_ready).
9797 	 * Then make sure the link is not automatically restarted
9798 	 * (link_enabled).  Cancel any pending restart.  And finally
9799 	 * go offline.
9800 	 */
9801 	ppd->driver_link_ready = 0;
9802 	ppd->link_enabled = 0;
9803 
9804 	ppd->qsfp_retry_count = MAX_QSFP_RETRIES; /* prevent more retries */
9805 	flush_delayed_work(&ppd->start_link_work);
9806 	cancel_delayed_work_sync(&ppd->start_link_work);
9807 
9808 	ppd->offline_disabled_reason =
9809 			HFI1_ODR_MASK(OPA_LINKDOWN_REASON_REBOOT);
9810 	set_link_down_reason(ppd, OPA_LINKDOWN_REASON_REBOOT, 0,
9811 			     OPA_LINKDOWN_REASON_REBOOT);
9812 	set_link_state(ppd, HLS_DN_OFFLINE);
9813 
9814 	/* disable the port */
9815 	clear_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
9816 }
9817 
9818 static inline int init_cpu_counters(struct hfi1_devdata *dd)
9819 {
9820 	struct hfi1_pportdata *ppd;
9821 	int i;
9822 
9823 	ppd = (struct hfi1_pportdata *)(dd + 1);
9824 	for (i = 0; i < dd->num_pports; i++, ppd++) {
9825 		ppd->ibport_data.rvp.rc_acks = NULL;
9826 		ppd->ibport_data.rvp.rc_qacks = NULL;
9827 		ppd->ibport_data.rvp.rc_acks = alloc_percpu(u64);
9828 		ppd->ibport_data.rvp.rc_qacks = alloc_percpu(u64);
9829 		ppd->ibport_data.rvp.rc_delayed_comp = alloc_percpu(u64);
9830 		if (!ppd->ibport_data.rvp.rc_acks ||
9831 		    !ppd->ibport_data.rvp.rc_delayed_comp ||
9832 		    !ppd->ibport_data.rvp.rc_qacks)
9833 			return -ENOMEM;
9834 	}
9835 
9836 	return 0;
9837 }
9838 
9839 /*
9840  * index is the index into the receive array
9841  */
9842 void hfi1_put_tid(struct hfi1_devdata *dd, u32 index,
9843 		  u32 type, unsigned long pa, u16 order)
9844 {
9845 	u64 reg;
9846 
9847 	if (!(dd->flags & HFI1_PRESENT))
9848 		goto done;
9849 
9850 	if (type == PT_INVALID || type == PT_INVALID_FLUSH) {
9851 		pa = 0;
9852 		order = 0;
9853 	} else if (type > PT_INVALID) {
9854 		dd_dev_err(dd,
9855 			   "unexpected receive array type %u for index %u, not handled\n",
9856 			   type, index);
9857 		goto done;
9858 	}
9859 	trace_hfi1_put_tid(dd, index, type, pa, order);
9860 
9861 #define RT_ADDR_SHIFT 12	/* 4KB kernel address boundary */
9862 	reg = RCV_ARRAY_RT_WRITE_ENABLE_SMASK
9863 		| (u64)order << RCV_ARRAY_RT_BUF_SIZE_SHIFT
9864 		| ((pa >> RT_ADDR_SHIFT) & RCV_ARRAY_RT_ADDR_MASK)
9865 					<< RCV_ARRAY_RT_ADDR_SHIFT;
9866 	trace_hfi1_write_rcvarray(dd->rcvarray_wc + (index * 8), reg);
9867 	writeq(reg, dd->rcvarray_wc + (index * 8));
9868 
9869 	if (type == PT_EAGER || type == PT_INVALID_FLUSH || (index & 3) == 3)
9870 		/*
9871 		 * Eager entries are written and flushed
9872 		 *
9873 		 * Expected entries are flushed every 4 writes
9874 		 */
9875 		flush_wc();
9876 done:
9877 	return;
9878 }
9879 
9880 void hfi1_clear_tids(struct hfi1_ctxtdata *rcd)
9881 {
9882 	struct hfi1_devdata *dd = rcd->dd;
9883 	u32 i;
9884 
9885 	/* this could be optimized */
9886 	for (i = rcd->eager_base; i < rcd->eager_base +
9887 		     rcd->egrbufs.alloced; i++)
9888 		hfi1_put_tid(dd, i, PT_INVALID, 0, 0);
9889 
9890 	for (i = rcd->expected_base;
9891 			i < rcd->expected_base + rcd->expected_count; i++)
9892 		hfi1_put_tid(dd, i, PT_INVALID, 0, 0);
9893 }
9894 
9895 static const char * const ib_cfg_name_strings[] = {
9896 	"HFI1_IB_CFG_LIDLMC",
9897 	"HFI1_IB_CFG_LWID_DG_ENB",
9898 	"HFI1_IB_CFG_LWID_ENB",
9899 	"HFI1_IB_CFG_LWID",
9900 	"HFI1_IB_CFG_SPD_ENB",
9901 	"HFI1_IB_CFG_SPD",
9902 	"HFI1_IB_CFG_RXPOL_ENB",
9903 	"HFI1_IB_CFG_LREV_ENB",
9904 	"HFI1_IB_CFG_LINKLATENCY",
9905 	"HFI1_IB_CFG_HRTBT",
9906 	"HFI1_IB_CFG_OP_VLS",
9907 	"HFI1_IB_CFG_VL_HIGH_CAP",
9908 	"HFI1_IB_CFG_VL_LOW_CAP",
9909 	"HFI1_IB_CFG_OVERRUN_THRESH",
9910 	"HFI1_IB_CFG_PHYERR_THRESH",
9911 	"HFI1_IB_CFG_LINKDEFAULT",
9912 	"HFI1_IB_CFG_PKEYS",
9913 	"HFI1_IB_CFG_MTU",
9914 	"HFI1_IB_CFG_LSTATE",
9915 	"HFI1_IB_CFG_VL_HIGH_LIMIT",
9916 	"HFI1_IB_CFG_PMA_TICKS",
9917 	"HFI1_IB_CFG_PORT"
9918 };
9919 
9920 static const char *ib_cfg_name(int which)
9921 {
9922 	if (which < 0 || which >= ARRAY_SIZE(ib_cfg_name_strings))
9923 		return "invalid";
9924 	return ib_cfg_name_strings[which];
9925 }
9926 
9927 int hfi1_get_ib_cfg(struct hfi1_pportdata *ppd, int which)
9928 {
9929 	struct hfi1_devdata *dd = ppd->dd;
9930 	int val = 0;
9931 
9932 	switch (which) {
9933 	case HFI1_IB_CFG_LWID_ENB: /* allowed Link-width */
9934 		val = ppd->link_width_enabled;
9935 		break;
9936 	case HFI1_IB_CFG_LWID: /* currently active Link-width */
9937 		val = ppd->link_width_active;
9938 		break;
9939 	case HFI1_IB_CFG_SPD_ENB: /* allowed Link speeds */
9940 		val = ppd->link_speed_enabled;
9941 		break;
9942 	case HFI1_IB_CFG_SPD: /* current Link speed */
9943 		val = ppd->link_speed_active;
9944 		break;
9945 
9946 	case HFI1_IB_CFG_RXPOL_ENB: /* Auto-RX-polarity enable */
9947 	case HFI1_IB_CFG_LREV_ENB: /* Auto-Lane-reversal enable */
9948 	case HFI1_IB_CFG_LINKLATENCY:
9949 		goto unimplemented;
9950 
9951 	case HFI1_IB_CFG_OP_VLS:
9952 		val = ppd->actual_vls_operational;
9953 		break;
9954 	case HFI1_IB_CFG_VL_HIGH_CAP: /* VL arb high priority table size */
9955 		val = VL_ARB_HIGH_PRIO_TABLE_SIZE;
9956 		break;
9957 	case HFI1_IB_CFG_VL_LOW_CAP: /* VL arb low priority table size */
9958 		val = VL_ARB_LOW_PRIO_TABLE_SIZE;
9959 		break;
9960 	case HFI1_IB_CFG_OVERRUN_THRESH: /* IB overrun threshold */
9961 		val = ppd->overrun_threshold;
9962 		break;
9963 	case HFI1_IB_CFG_PHYERR_THRESH: /* IB PHY error threshold */
9964 		val = ppd->phy_error_threshold;
9965 		break;
9966 	case HFI1_IB_CFG_LINKDEFAULT: /* IB link default (sleep/poll) */
9967 		val = HLS_DEFAULT;
9968 		break;
9969 
9970 	case HFI1_IB_CFG_HRTBT: /* Heartbeat off/enable/auto */
9971 	case HFI1_IB_CFG_PMA_TICKS:
9972 	default:
9973 unimplemented:
9974 		if (HFI1_CAP_IS_KSET(PRINT_UNIMPL))
9975 			dd_dev_info(
9976 				dd,
9977 				"%s: which %s: not implemented\n",
9978 				__func__,
9979 				ib_cfg_name(which));
9980 		break;
9981 	}
9982 
9983 	return val;
9984 }
9985 
9986 /*
9987  * The largest MAD packet size.
9988  */
9989 #define MAX_MAD_PACKET 2048
9990 
9991 /*
9992  * Return the maximum header bytes that can go on the _wire_
9993  * for this device. This count includes the ICRC which is
9994  * not part of the packet held in memory but it is appended
9995  * by the HW.
9996  * This is dependent on the device's receive header entry size.
9997  * HFI allows this to be set per-receive context, but the
9998  * driver presently enforces a global value.
9999  */
10000 u32 lrh_max_header_bytes(struct hfi1_devdata *dd)
10001 {
10002 	/*
10003 	 * The maximum non-payload (MTU) bytes in LRH.PktLen are
10004 	 * the Receive Header Entry Size minus the PBC (or RHF) size
10005 	 * plus one DW for the ICRC appended by HW.
10006 	 *
10007 	 * dd->rcd[0].rcvhdrqentsize is in DW.
10008 	 * We use rcd[0] as all context will have the same value. Also,
10009 	 * the first kernel context would have been allocated by now so
10010 	 * we are guaranteed a valid value.
10011 	 */
10012 	return (dd->rcd[0]->rcvhdrqentsize - 2/*PBC/RHF*/ + 1/*ICRC*/) << 2;
10013 }
10014 
10015 /*
10016  * Set Send Length
10017  * @ppd - per port data
10018  *
10019  * Set the MTU by limiting how many DWs may be sent.  The SendLenCheck*
10020  * registers compare against LRH.PktLen, so use the max bytes included
10021  * in the LRH.
10022  *
10023  * This routine changes all VL values except VL15, which it maintains at
10024  * the same value.
10025  */
10026 static void set_send_length(struct hfi1_pportdata *ppd)
10027 {
10028 	struct hfi1_devdata *dd = ppd->dd;
10029 	u32 max_hb = lrh_max_header_bytes(dd), dcmtu;
10030 	u32 maxvlmtu = dd->vld[15].mtu;
10031 	u64 len1 = 0, len2 = (((dd->vld[15].mtu + max_hb) >> 2)
10032 			      & SEND_LEN_CHECK1_LEN_VL15_MASK) <<
10033 		SEND_LEN_CHECK1_LEN_VL15_SHIFT;
10034 	int i, j;
10035 	u32 thres;
10036 
10037 	for (i = 0; i < ppd->vls_supported; i++) {
10038 		if (dd->vld[i].mtu > maxvlmtu)
10039 			maxvlmtu = dd->vld[i].mtu;
10040 		if (i <= 3)
10041 			len1 |= (((dd->vld[i].mtu + max_hb) >> 2)
10042 				 & SEND_LEN_CHECK0_LEN_VL0_MASK) <<
10043 				((i % 4) * SEND_LEN_CHECK0_LEN_VL1_SHIFT);
10044 		else
10045 			len2 |= (((dd->vld[i].mtu + max_hb) >> 2)
10046 				 & SEND_LEN_CHECK1_LEN_VL4_MASK) <<
10047 				((i % 4) * SEND_LEN_CHECK1_LEN_VL5_SHIFT);
10048 	}
10049 	write_csr(dd, SEND_LEN_CHECK0, len1);
10050 	write_csr(dd, SEND_LEN_CHECK1, len2);
10051 	/* adjust kernel credit return thresholds based on new MTUs */
10052 	/* all kernel receive contexts have the same hdrqentsize */
10053 	for (i = 0; i < ppd->vls_supported; i++) {
10054 		thres = min(sc_percent_to_threshold(dd->vld[i].sc, 50),
10055 			    sc_mtu_to_threshold(dd->vld[i].sc,
10056 						dd->vld[i].mtu,
10057 						dd->rcd[0]->rcvhdrqentsize));
10058 		for (j = 0; j < INIT_SC_PER_VL; j++)
10059 			sc_set_cr_threshold(
10060 					pio_select_send_context_vl(dd, j, i),
10061 					    thres);
10062 	}
10063 	thres = min(sc_percent_to_threshold(dd->vld[15].sc, 50),
10064 		    sc_mtu_to_threshold(dd->vld[15].sc,
10065 					dd->vld[15].mtu,
10066 					dd->rcd[0]->rcvhdrqentsize));
10067 	sc_set_cr_threshold(dd->vld[15].sc, thres);
10068 
10069 	/* Adjust maximum MTU for the port in DC */
10070 	dcmtu = maxvlmtu == 10240 ? DCC_CFG_PORT_MTU_CAP_10240 :
10071 		(ilog2(maxvlmtu >> 8) + 1);
10072 	len1 = read_csr(ppd->dd, DCC_CFG_PORT_CONFIG);
10073 	len1 &= ~DCC_CFG_PORT_CONFIG_MTU_CAP_SMASK;
10074 	len1 |= ((u64)dcmtu & DCC_CFG_PORT_CONFIG_MTU_CAP_MASK) <<
10075 		DCC_CFG_PORT_CONFIG_MTU_CAP_SHIFT;
10076 	write_csr(ppd->dd, DCC_CFG_PORT_CONFIG, len1);
10077 }
10078 
10079 static void set_lidlmc(struct hfi1_pportdata *ppd)
10080 {
10081 	int i;
10082 	u64 sreg = 0;
10083 	struct hfi1_devdata *dd = ppd->dd;
10084 	u32 mask = ~((1U << ppd->lmc) - 1);
10085 	u64 c1 = read_csr(ppd->dd, DCC_CFG_PORT_CONFIG1);
10086 	u32 lid;
10087 
10088 	/*
10089 	 * Program 0 in CSR if port lid is extended. This prevents
10090 	 * 9B packets being sent out for large lids.
10091 	 */
10092 	lid = (ppd->lid >= be16_to_cpu(IB_MULTICAST_LID_BASE)) ? 0 : ppd->lid;
10093 	c1 &= ~(DCC_CFG_PORT_CONFIG1_TARGET_DLID_SMASK
10094 		| DCC_CFG_PORT_CONFIG1_DLID_MASK_SMASK);
10095 	c1 |= ((lid & DCC_CFG_PORT_CONFIG1_TARGET_DLID_MASK)
10096 			<< DCC_CFG_PORT_CONFIG1_TARGET_DLID_SHIFT) |
10097 	      ((mask & DCC_CFG_PORT_CONFIG1_DLID_MASK_MASK)
10098 			<< DCC_CFG_PORT_CONFIG1_DLID_MASK_SHIFT);
10099 	write_csr(ppd->dd, DCC_CFG_PORT_CONFIG1, c1);
10100 
10101 	/*
10102 	 * Iterate over all the send contexts and set their SLID check
10103 	 */
10104 	sreg = ((mask & SEND_CTXT_CHECK_SLID_MASK_MASK) <<
10105 			SEND_CTXT_CHECK_SLID_MASK_SHIFT) |
10106 	       (((lid & mask) & SEND_CTXT_CHECK_SLID_VALUE_MASK) <<
10107 			SEND_CTXT_CHECK_SLID_VALUE_SHIFT);
10108 
10109 	for (i = 0; i < dd->chip_send_contexts; i++) {
10110 		hfi1_cdbg(LINKVERB, "SendContext[%d].SLID_CHECK = 0x%x",
10111 			  i, (u32)sreg);
10112 		write_kctxt_csr(dd, i, SEND_CTXT_CHECK_SLID, sreg);
10113 	}
10114 
10115 	/* Now we have to do the same thing for the sdma engines */
10116 	sdma_update_lmc(dd, mask, lid);
10117 }
10118 
10119 static const char *state_completed_string(u32 completed)
10120 {
10121 	static const char * const state_completed[] = {
10122 		"EstablishComm",
10123 		"OptimizeEQ",
10124 		"VerifyCap"
10125 	};
10126 
10127 	if (completed < ARRAY_SIZE(state_completed))
10128 		return state_completed[completed];
10129 
10130 	return "unknown";
10131 }
10132 
10133 static const char all_lanes_dead_timeout_expired[] =
10134 	"All lanes were inactive – was the interconnect media removed?";
10135 static const char tx_out_of_policy[] =
10136 	"Passing lanes on local port do not meet the local link width policy";
10137 static const char no_state_complete[] =
10138 	"State timeout occurred before link partner completed the state";
10139 static const char * const state_complete_reasons[] = {
10140 	[0x00] = "Reason unknown",
10141 	[0x01] = "Link was halted by driver, refer to LinkDownReason",
10142 	[0x02] = "Link partner reported failure",
10143 	[0x10] = "Unable to achieve frame sync on any lane",
10144 	[0x11] =
10145 	  "Unable to find a common bit rate with the link partner",
10146 	[0x12] =
10147 	  "Unable to achieve frame sync on sufficient lanes to meet the local link width policy",
10148 	[0x13] =
10149 	  "Unable to identify preset equalization on sufficient lanes to meet the local link width policy",
10150 	[0x14] = no_state_complete,
10151 	[0x15] =
10152 	  "State timeout occurred before link partner identified equalization presets",
10153 	[0x16] =
10154 	  "Link partner completed the EstablishComm state, but the passing lanes do not meet the local link width policy",
10155 	[0x17] = tx_out_of_policy,
10156 	[0x20] = all_lanes_dead_timeout_expired,
10157 	[0x21] =
10158 	  "Unable to achieve acceptable BER on sufficient lanes to meet the local link width policy",
10159 	[0x22] = no_state_complete,
10160 	[0x23] =
10161 	  "Link partner completed the OptimizeEq state, but the passing lanes do not meet the local link width policy",
10162 	[0x24] = tx_out_of_policy,
10163 	[0x30] = all_lanes_dead_timeout_expired,
10164 	[0x31] =
10165 	  "State timeout occurred waiting for host to process received frames",
10166 	[0x32] = no_state_complete,
10167 	[0x33] =
10168 	  "Link partner completed the VerifyCap state, but the passing lanes do not meet the local link width policy",
10169 	[0x34] = tx_out_of_policy,
10170 	[0x35] = "Negotiated link width is mutually exclusive",
10171 	[0x36] =
10172 	  "Timed out before receiving verifycap frames in VerifyCap.Exchange",
10173 	[0x37] = "Unable to resolve secure data exchange",
10174 };
10175 
10176 static const char *state_complete_reason_code_string(struct hfi1_pportdata *ppd,
10177 						     u32 code)
10178 {
10179 	const char *str = NULL;
10180 
10181 	if (code < ARRAY_SIZE(state_complete_reasons))
10182 		str = state_complete_reasons[code];
10183 
10184 	if (str)
10185 		return str;
10186 	return "Reserved";
10187 }
10188 
10189 /* describe the given last state complete frame */
10190 static void decode_state_complete(struct hfi1_pportdata *ppd, u32 frame,
10191 				  const char *prefix)
10192 {
10193 	struct hfi1_devdata *dd = ppd->dd;
10194 	u32 success;
10195 	u32 state;
10196 	u32 reason;
10197 	u32 lanes;
10198 
10199 	/*
10200 	 * Decode frame:
10201 	 *  [ 0: 0] - success
10202 	 *  [ 3: 1] - state
10203 	 *  [ 7: 4] - next state timeout
10204 	 *  [15: 8] - reason code
10205 	 *  [31:16] - lanes
10206 	 */
10207 	success = frame & 0x1;
10208 	state = (frame >> 1) & 0x7;
10209 	reason = (frame >> 8) & 0xff;
10210 	lanes = (frame >> 16) & 0xffff;
10211 
10212 	dd_dev_err(dd, "Last %s LNI state complete frame 0x%08x:\n",
10213 		   prefix, frame);
10214 	dd_dev_err(dd, "    last reported state state: %s (0x%x)\n",
10215 		   state_completed_string(state), state);
10216 	dd_dev_err(dd, "    state successfully completed: %s\n",
10217 		   success ? "yes" : "no");
10218 	dd_dev_err(dd, "    fail reason 0x%x: %s\n",
10219 		   reason, state_complete_reason_code_string(ppd, reason));
10220 	dd_dev_err(dd, "    passing lane mask: 0x%x", lanes);
10221 }
10222 
10223 /*
10224  * Read the last state complete frames and explain them.  This routine
10225  * expects to be called if the link went down during link negotiation
10226  * and initialization (LNI).  That is, anywhere between polling and link up.
10227  */
10228 static void check_lni_states(struct hfi1_pportdata *ppd)
10229 {
10230 	u32 last_local_state;
10231 	u32 last_remote_state;
10232 
10233 	read_last_local_state(ppd->dd, &last_local_state);
10234 	read_last_remote_state(ppd->dd, &last_remote_state);
10235 
10236 	/*
10237 	 * Don't report anything if there is nothing to report.  A value of
10238 	 * 0 means the link was taken down while polling and there was no
10239 	 * training in-process.
10240 	 */
10241 	if (last_local_state == 0 && last_remote_state == 0)
10242 		return;
10243 
10244 	decode_state_complete(ppd, last_local_state, "transmitted");
10245 	decode_state_complete(ppd, last_remote_state, "received");
10246 }
10247 
10248 /* wait for wait_ms for LINK_TRANSFER_ACTIVE to go to 1 */
10249 static int wait_link_transfer_active(struct hfi1_devdata *dd, int wait_ms)
10250 {
10251 	u64 reg;
10252 	unsigned long timeout;
10253 
10254 	/* watch LCB_STS_LINK_TRANSFER_ACTIVE */
10255 	timeout = jiffies + msecs_to_jiffies(wait_ms);
10256 	while (1) {
10257 		reg = read_csr(dd, DC_LCB_STS_LINK_TRANSFER_ACTIVE);
10258 		if (reg)
10259 			break;
10260 		if (time_after(jiffies, timeout)) {
10261 			dd_dev_err(dd,
10262 				   "timeout waiting for LINK_TRANSFER_ACTIVE\n");
10263 			return -ETIMEDOUT;
10264 		}
10265 		udelay(2);
10266 	}
10267 	return 0;
10268 }
10269 
10270 /* called when the logical link state is not down as it should be */
10271 static void force_logical_link_state_down(struct hfi1_pportdata *ppd)
10272 {
10273 	struct hfi1_devdata *dd = ppd->dd;
10274 
10275 	/*
10276 	 * Bring link up in LCB loopback
10277 	 */
10278 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 1);
10279 	write_csr(dd, DC_LCB_CFG_IGNORE_LOST_RCLK,
10280 		  DC_LCB_CFG_IGNORE_LOST_RCLK_EN_SMASK);
10281 
10282 	write_csr(dd, DC_LCB_CFG_LANE_WIDTH, 0);
10283 	write_csr(dd, DC_LCB_CFG_REINIT_AS_SLAVE, 0);
10284 	write_csr(dd, DC_LCB_CFG_CNT_FOR_SKIP_STALL, 0x110);
10285 	write_csr(dd, DC_LCB_CFG_LOOPBACK, 0x2);
10286 
10287 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0);
10288 	(void)read_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET);
10289 	udelay(3);
10290 	write_csr(dd, DC_LCB_CFG_ALLOW_LINK_UP, 1);
10291 	write_csr(dd, DC_LCB_CFG_RUN, 1ull << DC_LCB_CFG_RUN_EN_SHIFT);
10292 
10293 	wait_link_transfer_active(dd, 100);
10294 
10295 	/*
10296 	 * Bring the link down again.
10297 	 */
10298 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 1);
10299 	write_csr(dd, DC_LCB_CFG_ALLOW_LINK_UP, 0);
10300 	write_csr(dd, DC_LCB_CFG_IGNORE_LOST_RCLK, 0);
10301 
10302 	dd_dev_info(ppd->dd, "logical state forced to LINK_DOWN\n");
10303 }
10304 
10305 /*
10306  * Helper for set_link_state().  Do not call except from that routine.
10307  * Expects ppd->hls_mutex to be held.
10308  *
10309  * @rem_reason value to be sent to the neighbor
10310  *
10311  * LinkDownReasons only set if transition succeeds.
10312  */
10313 static int goto_offline(struct hfi1_pportdata *ppd, u8 rem_reason)
10314 {
10315 	struct hfi1_devdata *dd = ppd->dd;
10316 	u32 previous_state;
10317 	int offline_state_ret;
10318 	int ret;
10319 
10320 	update_lcb_cache(dd);
10321 
10322 	previous_state = ppd->host_link_state;
10323 	ppd->host_link_state = HLS_GOING_OFFLINE;
10324 
10325 	/* start offline transition */
10326 	ret = set_physical_link_state(dd, (rem_reason << 8) | PLS_OFFLINE);
10327 
10328 	if (ret != HCMD_SUCCESS) {
10329 		dd_dev_err(dd,
10330 			   "Failed to transition to Offline link state, return %d\n",
10331 			   ret);
10332 		return -EINVAL;
10333 	}
10334 	if (ppd->offline_disabled_reason ==
10335 			HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE))
10336 		ppd->offline_disabled_reason =
10337 		HFI1_ODR_MASK(OPA_LINKDOWN_REASON_TRANSIENT);
10338 
10339 	offline_state_ret = wait_phys_link_offline_substates(ppd, 10000);
10340 	if (offline_state_ret < 0)
10341 		return offline_state_ret;
10342 
10343 	/* Disabling AOC transmitters */
10344 	if (ppd->port_type == PORT_TYPE_QSFP &&
10345 	    ppd->qsfp_info.limiting_active &&
10346 	    qsfp_mod_present(ppd)) {
10347 		int ret;
10348 
10349 		ret = acquire_chip_resource(dd, qsfp_resource(dd), QSFP_WAIT);
10350 		if (ret == 0) {
10351 			set_qsfp_tx(ppd, 0);
10352 			release_chip_resource(dd, qsfp_resource(dd));
10353 		} else {
10354 			/* not fatal, but should warn */
10355 			dd_dev_err(dd,
10356 				   "Unable to acquire lock to turn off QSFP TX\n");
10357 		}
10358 	}
10359 
10360 	/*
10361 	 * Wait for the offline.Quiet transition if it hasn't happened yet. It
10362 	 * can take a while for the link to go down.
10363 	 */
10364 	if (offline_state_ret != PLS_OFFLINE_QUIET) {
10365 		ret = wait_physical_linkstate(ppd, PLS_OFFLINE, 30000);
10366 		if (ret < 0)
10367 			return ret;
10368 	}
10369 
10370 	/*
10371 	 * Now in charge of LCB - must be after the physical state is
10372 	 * offline.quiet and before host_link_state is changed.
10373 	 */
10374 	set_host_lcb_access(dd);
10375 	write_csr(dd, DC_LCB_ERR_EN, ~0ull); /* watch LCB errors */
10376 
10377 	/* make sure the logical state is also down */
10378 	ret = wait_logical_linkstate(ppd, IB_PORT_DOWN, 1000);
10379 	if (ret)
10380 		force_logical_link_state_down(ppd);
10381 
10382 	ppd->host_link_state = HLS_LINK_COOLDOWN; /* LCB access allowed */
10383 	update_statusp(ppd, IB_PORT_DOWN);
10384 
10385 	/*
10386 	 * The LNI has a mandatory wait time after the physical state
10387 	 * moves to Offline.Quiet.  The wait time may be different
10388 	 * depending on how the link went down.  The 8051 firmware
10389 	 * will observe the needed wait time and only move to ready
10390 	 * when that is completed.  The largest of the quiet timeouts
10391 	 * is 6s, so wait that long and then at least 0.5s more for
10392 	 * other transitions, and another 0.5s for a buffer.
10393 	 */
10394 	ret = wait_fm_ready(dd, 7000);
10395 	if (ret) {
10396 		dd_dev_err(dd,
10397 			   "After going offline, timed out waiting for the 8051 to become ready to accept host requests\n");
10398 		/* state is really offline, so make it so */
10399 		ppd->host_link_state = HLS_DN_OFFLINE;
10400 		return ret;
10401 	}
10402 
10403 	/*
10404 	 * The state is now offline and the 8051 is ready to accept host
10405 	 * requests.
10406 	 *	- change our state
10407 	 *	- notify others if we were previously in a linkup state
10408 	 */
10409 	ppd->host_link_state = HLS_DN_OFFLINE;
10410 	if (previous_state & HLS_UP) {
10411 		/* went down while link was up */
10412 		handle_linkup_change(dd, 0);
10413 	} else if (previous_state
10414 			& (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) {
10415 		/* went down while attempting link up */
10416 		check_lni_states(ppd);
10417 
10418 		/* The QSFP doesn't need to be reset on LNI failure */
10419 		ppd->qsfp_info.reset_needed = 0;
10420 	}
10421 
10422 	/* the active link width (downgrade) is 0 on link down */
10423 	ppd->link_width_active = 0;
10424 	ppd->link_width_downgrade_tx_active = 0;
10425 	ppd->link_width_downgrade_rx_active = 0;
10426 	ppd->current_egress_rate = 0;
10427 	return 0;
10428 }
10429 
10430 /* return the link state name */
10431 static const char *link_state_name(u32 state)
10432 {
10433 	const char *name;
10434 	int n = ilog2(state);
10435 	static const char * const names[] = {
10436 		[__HLS_UP_INIT_BP]	 = "INIT",
10437 		[__HLS_UP_ARMED_BP]	 = "ARMED",
10438 		[__HLS_UP_ACTIVE_BP]	 = "ACTIVE",
10439 		[__HLS_DN_DOWNDEF_BP]	 = "DOWNDEF",
10440 		[__HLS_DN_POLL_BP]	 = "POLL",
10441 		[__HLS_DN_DISABLE_BP]	 = "DISABLE",
10442 		[__HLS_DN_OFFLINE_BP]	 = "OFFLINE",
10443 		[__HLS_VERIFY_CAP_BP]	 = "VERIFY_CAP",
10444 		[__HLS_GOING_UP_BP]	 = "GOING_UP",
10445 		[__HLS_GOING_OFFLINE_BP] = "GOING_OFFLINE",
10446 		[__HLS_LINK_COOLDOWN_BP] = "LINK_COOLDOWN"
10447 	};
10448 
10449 	name = n < ARRAY_SIZE(names) ? names[n] : NULL;
10450 	return name ? name : "unknown";
10451 }
10452 
10453 /* return the link state reason name */
10454 static const char *link_state_reason_name(struct hfi1_pportdata *ppd, u32 state)
10455 {
10456 	if (state == HLS_UP_INIT) {
10457 		switch (ppd->linkinit_reason) {
10458 		case OPA_LINKINIT_REASON_LINKUP:
10459 			return "(LINKUP)";
10460 		case OPA_LINKINIT_REASON_FLAPPING:
10461 			return "(FLAPPING)";
10462 		case OPA_LINKINIT_OUTSIDE_POLICY:
10463 			return "(OUTSIDE_POLICY)";
10464 		case OPA_LINKINIT_QUARANTINED:
10465 			return "(QUARANTINED)";
10466 		case OPA_LINKINIT_INSUFIC_CAPABILITY:
10467 			return "(INSUFIC_CAPABILITY)";
10468 		default:
10469 			break;
10470 		}
10471 	}
10472 	return "";
10473 }
10474 
10475 /*
10476  * driver_pstate - convert the driver's notion of a port's
10477  * state (an HLS_*) into a physical state (a {IB,OPA}_PORTPHYSSTATE_*).
10478  * Return -1 (converted to a u32) to indicate error.
10479  */
10480 u32 driver_pstate(struct hfi1_pportdata *ppd)
10481 {
10482 	switch (ppd->host_link_state) {
10483 	case HLS_UP_INIT:
10484 	case HLS_UP_ARMED:
10485 	case HLS_UP_ACTIVE:
10486 		return IB_PORTPHYSSTATE_LINKUP;
10487 	case HLS_DN_POLL:
10488 		return IB_PORTPHYSSTATE_POLLING;
10489 	case HLS_DN_DISABLE:
10490 		return IB_PORTPHYSSTATE_DISABLED;
10491 	case HLS_DN_OFFLINE:
10492 		return OPA_PORTPHYSSTATE_OFFLINE;
10493 	case HLS_VERIFY_CAP:
10494 		return IB_PORTPHYSSTATE_POLLING;
10495 	case HLS_GOING_UP:
10496 		return IB_PORTPHYSSTATE_POLLING;
10497 	case HLS_GOING_OFFLINE:
10498 		return OPA_PORTPHYSSTATE_OFFLINE;
10499 	case HLS_LINK_COOLDOWN:
10500 		return OPA_PORTPHYSSTATE_OFFLINE;
10501 	case HLS_DN_DOWNDEF:
10502 	default:
10503 		dd_dev_err(ppd->dd, "invalid host_link_state 0x%x\n",
10504 			   ppd->host_link_state);
10505 		return  -1;
10506 	}
10507 }
10508 
10509 /*
10510  * driver_lstate - convert the driver's notion of a port's
10511  * state (an HLS_*) into a logical state (a IB_PORT_*). Return -1
10512  * (converted to a u32) to indicate error.
10513  */
10514 u32 driver_lstate(struct hfi1_pportdata *ppd)
10515 {
10516 	if (ppd->host_link_state && (ppd->host_link_state & HLS_DOWN))
10517 		return IB_PORT_DOWN;
10518 
10519 	switch (ppd->host_link_state & HLS_UP) {
10520 	case HLS_UP_INIT:
10521 		return IB_PORT_INIT;
10522 	case HLS_UP_ARMED:
10523 		return IB_PORT_ARMED;
10524 	case HLS_UP_ACTIVE:
10525 		return IB_PORT_ACTIVE;
10526 	default:
10527 		dd_dev_err(ppd->dd, "invalid host_link_state 0x%x\n",
10528 			   ppd->host_link_state);
10529 	return -1;
10530 	}
10531 }
10532 
10533 void set_link_down_reason(struct hfi1_pportdata *ppd, u8 lcl_reason,
10534 			  u8 neigh_reason, u8 rem_reason)
10535 {
10536 	if (ppd->local_link_down_reason.latest == 0 &&
10537 	    ppd->neigh_link_down_reason.latest == 0) {
10538 		ppd->local_link_down_reason.latest = lcl_reason;
10539 		ppd->neigh_link_down_reason.latest = neigh_reason;
10540 		ppd->remote_link_down_reason = rem_reason;
10541 	}
10542 }
10543 
10544 /*
10545  * Verify if BCT for data VLs is non-zero.
10546  */
10547 static inline bool data_vls_operational(struct hfi1_pportdata *ppd)
10548 {
10549 	return !!ppd->actual_vls_operational;
10550 }
10551 
10552 /*
10553  * Change the physical and/or logical link state.
10554  *
10555  * Do not call this routine while inside an interrupt.  It contains
10556  * calls to routines that can take multiple seconds to finish.
10557  *
10558  * Returns 0 on success, -errno on failure.
10559  */
10560 int set_link_state(struct hfi1_pportdata *ppd, u32 state)
10561 {
10562 	struct hfi1_devdata *dd = ppd->dd;
10563 	struct ib_event event = {.device = NULL};
10564 	int ret1, ret = 0;
10565 	int orig_new_state, poll_bounce;
10566 
10567 	mutex_lock(&ppd->hls_lock);
10568 
10569 	orig_new_state = state;
10570 	if (state == HLS_DN_DOWNDEF)
10571 		state = HLS_DEFAULT;
10572 
10573 	/* interpret poll -> poll as a link bounce */
10574 	poll_bounce = ppd->host_link_state == HLS_DN_POLL &&
10575 		      state == HLS_DN_POLL;
10576 
10577 	dd_dev_info(dd, "%s: current %s, new %s %s%s\n", __func__,
10578 		    link_state_name(ppd->host_link_state),
10579 		    link_state_name(orig_new_state),
10580 		    poll_bounce ? "(bounce) " : "",
10581 		    link_state_reason_name(ppd, state));
10582 
10583 	/*
10584 	 * If we're going to a (HLS_*) link state that implies the logical
10585 	 * link state is neither of (IB_PORT_ARMED, IB_PORT_ACTIVE), then
10586 	 * reset is_sm_config_started to 0.
10587 	 */
10588 	if (!(state & (HLS_UP_ARMED | HLS_UP_ACTIVE)))
10589 		ppd->is_sm_config_started = 0;
10590 
10591 	/*
10592 	 * Do nothing if the states match.  Let a poll to poll link bounce
10593 	 * go through.
10594 	 */
10595 	if (ppd->host_link_state == state && !poll_bounce)
10596 		goto done;
10597 
10598 	switch (state) {
10599 	case HLS_UP_INIT:
10600 		if (ppd->host_link_state == HLS_DN_POLL &&
10601 		    (quick_linkup || dd->icode == ICODE_FUNCTIONAL_SIMULATOR)) {
10602 			/*
10603 			 * Quick link up jumps from polling to here.
10604 			 *
10605 			 * Whether in normal or loopback mode, the
10606 			 * simulator jumps from polling to link up.
10607 			 * Accept that here.
10608 			 */
10609 			/* OK */
10610 		} else if (ppd->host_link_state != HLS_GOING_UP) {
10611 			goto unexpected;
10612 		}
10613 
10614 		/*
10615 		 * Wait for Link_Up physical state.
10616 		 * Physical and Logical states should already be
10617 		 * be transitioned to LinkUp and LinkInit respectively.
10618 		 */
10619 		ret = wait_physical_linkstate(ppd, PLS_LINKUP, 1000);
10620 		if (ret) {
10621 			dd_dev_err(dd,
10622 				   "%s: physical state did not change to LINK-UP\n",
10623 				   __func__);
10624 			break;
10625 		}
10626 
10627 		ret = wait_logical_linkstate(ppd, IB_PORT_INIT, 1000);
10628 		if (ret) {
10629 			dd_dev_err(dd,
10630 				   "%s: logical state did not change to INIT\n",
10631 				   __func__);
10632 			break;
10633 		}
10634 
10635 		/* clear old transient LINKINIT_REASON code */
10636 		if (ppd->linkinit_reason >= OPA_LINKINIT_REASON_CLEAR)
10637 			ppd->linkinit_reason =
10638 				OPA_LINKINIT_REASON_LINKUP;
10639 
10640 		/* enable the port */
10641 		add_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
10642 
10643 		handle_linkup_change(dd, 1);
10644 
10645 		/*
10646 		 * After link up, a new link width will have been set.
10647 		 * Update the xmit counters with regards to the new
10648 		 * link width.
10649 		 */
10650 		update_xmit_counters(ppd, ppd->link_width_active);
10651 
10652 		ppd->host_link_state = HLS_UP_INIT;
10653 		update_statusp(ppd, IB_PORT_INIT);
10654 		break;
10655 	case HLS_UP_ARMED:
10656 		if (ppd->host_link_state != HLS_UP_INIT)
10657 			goto unexpected;
10658 
10659 		if (!data_vls_operational(ppd)) {
10660 			dd_dev_err(dd,
10661 				   "%s: data VLs not operational\n", __func__);
10662 			ret = -EINVAL;
10663 			break;
10664 		}
10665 
10666 		set_logical_state(dd, LSTATE_ARMED);
10667 		ret = wait_logical_linkstate(ppd, IB_PORT_ARMED, 1000);
10668 		if (ret) {
10669 			dd_dev_err(dd,
10670 				   "%s: logical state did not change to ARMED\n",
10671 				   __func__);
10672 			break;
10673 		}
10674 		ppd->host_link_state = HLS_UP_ARMED;
10675 		update_statusp(ppd, IB_PORT_ARMED);
10676 		/*
10677 		 * The simulator does not currently implement SMA messages,
10678 		 * so neighbor_normal is not set.  Set it here when we first
10679 		 * move to Armed.
10680 		 */
10681 		if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR)
10682 			ppd->neighbor_normal = 1;
10683 		break;
10684 	case HLS_UP_ACTIVE:
10685 		if (ppd->host_link_state != HLS_UP_ARMED)
10686 			goto unexpected;
10687 
10688 		set_logical_state(dd, LSTATE_ACTIVE);
10689 		ret = wait_logical_linkstate(ppd, IB_PORT_ACTIVE, 1000);
10690 		if (ret) {
10691 			dd_dev_err(dd,
10692 				   "%s: logical state did not change to ACTIVE\n",
10693 				   __func__);
10694 		} else {
10695 			/* tell all engines to go running */
10696 			sdma_all_running(dd);
10697 			ppd->host_link_state = HLS_UP_ACTIVE;
10698 			update_statusp(ppd, IB_PORT_ACTIVE);
10699 
10700 			/* Signal the IB layer that the port has went active */
10701 			event.device = &dd->verbs_dev.rdi.ibdev;
10702 			event.element.port_num = ppd->port;
10703 			event.event = IB_EVENT_PORT_ACTIVE;
10704 		}
10705 		break;
10706 	case HLS_DN_POLL:
10707 		if ((ppd->host_link_state == HLS_DN_DISABLE ||
10708 		     ppd->host_link_state == HLS_DN_OFFLINE) &&
10709 		    dd->dc_shutdown)
10710 			dc_start(dd);
10711 		/* Hand LED control to the DC */
10712 		write_csr(dd, DCC_CFG_LED_CNTRL, 0);
10713 
10714 		if (ppd->host_link_state != HLS_DN_OFFLINE) {
10715 			u8 tmp = ppd->link_enabled;
10716 
10717 			ret = goto_offline(ppd, ppd->remote_link_down_reason);
10718 			if (ret) {
10719 				ppd->link_enabled = tmp;
10720 				break;
10721 			}
10722 			ppd->remote_link_down_reason = 0;
10723 
10724 			if (ppd->driver_link_ready)
10725 				ppd->link_enabled = 1;
10726 		}
10727 
10728 		set_all_slowpath(ppd->dd);
10729 		ret = set_local_link_attributes(ppd);
10730 		if (ret)
10731 			break;
10732 
10733 		ppd->port_error_action = 0;
10734 		ppd->host_link_state = HLS_DN_POLL;
10735 
10736 		if (quick_linkup) {
10737 			/* quick linkup does not go into polling */
10738 			ret = do_quick_linkup(dd);
10739 		} else {
10740 			ret1 = set_physical_link_state(dd, PLS_POLLING);
10741 			if (ret1 != HCMD_SUCCESS) {
10742 				dd_dev_err(dd,
10743 					   "Failed to transition to Polling link state, return 0x%x\n",
10744 					   ret1);
10745 				ret = -EINVAL;
10746 			}
10747 		}
10748 		ppd->offline_disabled_reason =
10749 			HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE);
10750 		/*
10751 		 * If an error occurred above, go back to offline.  The
10752 		 * caller may reschedule another attempt.
10753 		 */
10754 		if (ret)
10755 			goto_offline(ppd, 0);
10756 		else
10757 			log_physical_state(ppd, PLS_POLLING);
10758 		break;
10759 	case HLS_DN_DISABLE:
10760 		/* link is disabled */
10761 		ppd->link_enabled = 0;
10762 
10763 		/* allow any state to transition to disabled */
10764 
10765 		/* must transition to offline first */
10766 		if (ppd->host_link_state != HLS_DN_OFFLINE) {
10767 			ret = goto_offline(ppd, ppd->remote_link_down_reason);
10768 			if (ret)
10769 				break;
10770 			ppd->remote_link_down_reason = 0;
10771 		}
10772 
10773 		if (!dd->dc_shutdown) {
10774 			ret1 = set_physical_link_state(dd, PLS_DISABLED);
10775 			if (ret1 != HCMD_SUCCESS) {
10776 				dd_dev_err(dd,
10777 					   "Failed to transition to Disabled link state, return 0x%x\n",
10778 					   ret1);
10779 				ret = -EINVAL;
10780 				break;
10781 			}
10782 			ret = wait_physical_linkstate(ppd, PLS_DISABLED, 10000);
10783 			if (ret) {
10784 				dd_dev_err(dd,
10785 					   "%s: physical state did not change to DISABLED\n",
10786 					   __func__);
10787 				break;
10788 			}
10789 			dc_shutdown(dd);
10790 		}
10791 		ppd->host_link_state = HLS_DN_DISABLE;
10792 		break;
10793 	case HLS_DN_OFFLINE:
10794 		if (ppd->host_link_state == HLS_DN_DISABLE)
10795 			dc_start(dd);
10796 
10797 		/* allow any state to transition to offline */
10798 		ret = goto_offline(ppd, ppd->remote_link_down_reason);
10799 		if (!ret)
10800 			ppd->remote_link_down_reason = 0;
10801 		break;
10802 	case HLS_VERIFY_CAP:
10803 		if (ppd->host_link_state != HLS_DN_POLL)
10804 			goto unexpected;
10805 		ppd->host_link_state = HLS_VERIFY_CAP;
10806 		log_physical_state(ppd, PLS_CONFIGPHY_VERIFYCAP);
10807 		break;
10808 	case HLS_GOING_UP:
10809 		if (ppd->host_link_state != HLS_VERIFY_CAP)
10810 			goto unexpected;
10811 
10812 		ret1 = set_physical_link_state(dd, PLS_LINKUP);
10813 		if (ret1 != HCMD_SUCCESS) {
10814 			dd_dev_err(dd,
10815 				   "Failed to transition to link up state, return 0x%x\n",
10816 				   ret1);
10817 			ret = -EINVAL;
10818 			break;
10819 		}
10820 		ppd->host_link_state = HLS_GOING_UP;
10821 		break;
10822 
10823 	case HLS_GOING_OFFLINE:		/* transient within goto_offline() */
10824 	case HLS_LINK_COOLDOWN:		/* transient within goto_offline() */
10825 	default:
10826 		dd_dev_info(dd, "%s: state 0x%x: not supported\n",
10827 			    __func__, state);
10828 		ret = -EINVAL;
10829 		break;
10830 	}
10831 
10832 	goto done;
10833 
10834 unexpected:
10835 	dd_dev_err(dd, "%s: unexpected state transition from %s to %s\n",
10836 		   __func__, link_state_name(ppd->host_link_state),
10837 		   link_state_name(state));
10838 	ret = -EINVAL;
10839 
10840 done:
10841 	mutex_unlock(&ppd->hls_lock);
10842 
10843 	if (event.device)
10844 		ib_dispatch_event(&event);
10845 
10846 	return ret;
10847 }
10848 
10849 int hfi1_set_ib_cfg(struct hfi1_pportdata *ppd, int which, u32 val)
10850 {
10851 	u64 reg;
10852 	int ret = 0;
10853 
10854 	switch (which) {
10855 	case HFI1_IB_CFG_LIDLMC:
10856 		set_lidlmc(ppd);
10857 		break;
10858 	case HFI1_IB_CFG_VL_HIGH_LIMIT:
10859 		/*
10860 		 * The VL Arbitrator high limit is sent in units of 4k
10861 		 * bytes, while HFI stores it in units of 64 bytes.
10862 		 */
10863 		val *= 4096 / 64;
10864 		reg = ((u64)val & SEND_HIGH_PRIORITY_LIMIT_LIMIT_MASK)
10865 			<< SEND_HIGH_PRIORITY_LIMIT_LIMIT_SHIFT;
10866 		write_csr(ppd->dd, SEND_HIGH_PRIORITY_LIMIT, reg);
10867 		break;
10868 	case HFI1_IB_CFG_LINKDEFAULT: /* IB link default (sleep/poll) */
10869 		/* HFI only supports POLL as the default link down state */
10870 		if (val != HLS_DN_POLL)
10871 			ret = -EINVAL;
10872 		break;
10873 	case HFI1_IB_CFG_OP_VLS:
10874 		if (ppd->vls_operational != val) {
10875 			ppd->vls_operational = val;
10876 			if (!ppd->port)
10877 				ret = -EINVAL;
10878 		}
10879 		break;
10880 	/*
10881 	 * For link width, link width downgrade, and speed enable, always AND
10882 	 * the setting with what is actually supported.  This has two benefits.
10883 	 * First, enabled can't have unsupported values, no matter what the
10884 	 * SM or FM might want.  Second, the ALL_SUPPORTED wildcards that mean
10885 	 * "fill in with your supported value" have all the bits in the
10886 	 * field set, so simply ANDing with supported has the desired result.
10887 	 */
10888 	case HFI1_IB_CFG_LWID_ENB: /* set allowed Link-width */
10889 		ppd->link_width_enabled = val & ppd->link_width_supported;
10890 		break;
10891 	case HFI1_IB_CFG_LWID_DG_ENB: /* set allowed link width downgrade */
10892 		ppd->link_width_downgrade_enabled =
10893 				val & ppd->link_width_downgrade_supported;
10894 		break;
10895 	case HFI1_IB_CFG_SPD_ENB: /* allowed Link speeds */
10896 		ppd->link_speed_enabled = val & ppd->link_speed_supported;
10897 		break;
10898 	case HFI1_IB_CFG_OVERRUN_THRESH: /* IB overrun threshold */
10899 		/*
10900 		 * HFI does not follow IB specs, save this value
10901 		 * so we can report it, if asked.
10902 		 */
10903 		ppd->overrun_threshold = val;
10904 		break;
10905 	case HFI1_IB_CFG_PHYERR_THRESH: /* IB PHY error threshold */
10906 		/*
10907 		 * HFI does not follow IB specs, save this value
10908 		 * so we can report it, if asked.
10909 		 */
10910 		ppd->phy_error_threshold = val;
10911 		break;
10912 
10913 	case HFI1_IB_CFG_MTU:
10914 		set_send_length(ppd);
10915 		break;
10916 
10917 	case HFI1_IB_CFG_PKEYS:
10918 		if (HFI1_CAP_IS_KSET(PKEY_CHECK))
10919 			set_partition_keys(ppd);
10920 		break;
10921 
10922 	default:
10923 		if (HFI1_CAP_IS_KSET(PRINT_UNIMPL))
10924 			dd_dev_info(ppd->dd,
10925 				    "%s: which %s, val 0x%x: not implemented\n",
10926 				    __func__, ib_cfg_name(which), val);
10927 		break;
10928 	}
10929 	return ret;
10930 }
10931 
10932 /* begin functions related to vl arbitration table caching */
10933 static void init_vl_arb_caches(struct hfi1_pportdata *ppd)
10934 {
10935 	int i;
10936 
10937 	BUILD_BUG_ON(VL_ARB_TABLE_SIZE !=
10938 			VL_ARB_LOW_PRIO_TABLE_SIZE);
10939 	BUILD_BUG_ON(VL_ARB_TABLE_SIZE !=
10940 			VL_ARB_HIGH_PRIO_TABLE_SIZE);
10941 
10942 	/*
10943 	 * Note that we always return values directly from the
10944 	 * 'vl_arb_cache' (and do no CSR reads) in response to a
10945 	 * 'Get(VLArbTable)'. This is obviously correct after a
10946 	 * 'Set(VLArbTable)', since the cache will then be up to
10947 	 * date. But it's also correct prior to any 'Set(VLArbTable)'
10948 	 * since then both the cache, and the relevant h/w registers
10949 	 * will be zeroed.
10950 	 */
10951 
10952 	for (i = 0; i < MAX_PRIO_TABLE; i++)
10953 		spin_lock_init(&ppd->vl_arb_cache[i].lock);
10954 }
10955 
10956 /*
10957  * vl_arb_lock_cache
10958  *
10959  * All other vl_arb_* functions should be called only after locking
10960  * the cache.
10961  */
10962 static inline struct vl_arb_cache *
10963 vl_arb_lock_cache(struct hfi1_pportdata *ppd, int idx)
10964 {
10965 	if (idx != LO_PRIO_TABLE && idx != HI_PRIO_TABLE)
10966 		return NULL;
10967 	spin_lock(&ppd->vl_arb_cache[idx].lock);
10968 	return &ppd->vl_arb_cache[idx];
10969 }
10970 
10971 static inline void vl_arb_unlock_cache(struct hfi1_pportdata *ppd, int idx)
10972 {
10973 	spin_unlock(&ppd->vl_arb_cache[idx].lock);
10974 }
10975 
10976 static void vl_arb_get_cache(struct vl_arb_cache *cache,
10977 			     struct ib_vl_weight_elem *vl)
10978 {
10979 	memcpy(vl, cache->table, VL_ARB_TABLE_SIZE * sizeof(*vl));
10980 }
10981 
10982 static void vl_arb_set_cache(struct vl_arb_cache *cache,
10983 			     struct ib_vl_weight_elem *vl)
10984 {
10985 	memcpy(cache->table, vl, VL_ARB_TABLE_SIZE * sizeof(*vl));
10986 }
10987 
10988 static int vl_arb_match_cache(struct vl_arb_cache *cache,
10989 			      struct ib_vl_weight_elem *vl)
10990 {
10991 	return !memcmp(cache->table, vl, VL_ARB_TABLE_SIZE * sizeof(*vl));
10992 }
10993 
10994 /* end functions related to vl arbitration table caching */
10995 
10996 static int set_vl_weights(struct hfi1_pportdata *ppd, u32 target,
10997 			  u32 size, struct ib_vl_weight_elem *vl)
10998 {
10999 	struct hfi1_devdata *dd = ppd->dd;
11000 	u64 reg;
11001 	unsigned int i, is_up = 0;
11002 	int drain, ret = 0;
11003 
11004 	mutex_lock(&ppd->hls_lock);
11005 
11006 	if (ppd->host_link_state & HLS_UP)
11007 		is_up = 1;
11008 
11009 	drain = !is_ax(dd) && is_up;
11010 
11011 	if (drain)
11012 		/*
11013 		 * Before adjusting VL arbitration weights, empty per-VL
11014 		 * FIFOs, otherwise a packet whose VL weight is being
11015 		 * set to 0 could get stuck in a FIFO with no chance to
11016 		 * egress.
11017 		 */
11018 		ret = stop_drain_data_vls(dd);
11019 
11020 	if (ret) {
11021 		dd_dev_err(
11022 			dd,
11023 			"%s: cannot stop/drain VLs - refusing to change VL arbitration weights\n",
11024 			__func__);
11025 		goto err;
11026 	}
11027 
11028 	for (i = 0; i < size; i++, vl++) {
11029 		/*
11030 		 * NOTE: The low priority shift and mask are used here, but
11031 		 * they are the same for both the low and high registers.
11032 		 */
11033 		reg = (((u64)vl->vl & SEND_LOW_PRIORITY_LIST_VL_MASK)
11034 				<< SEND_LOW_PRIORITY_LIST_VL_SHIFT)
11035 		      | (((u64)vl->weight
11036 				& SEND_LOW_PRIORITY_LIST_WEIGHT_MASK)
11037 				<< SEND_LOW_PRIORITY_LIST_WEIGHT_SHIFT);
11038 		write_csr(dd, target + (i * 8), reg);
11039 	}
11040 	pio_send_control(dd, PSC_GLOBAL_VLARB_ENABLE);
11041 
11042 	if (drain)
11043 		open_fill_data_vls(dd); /* reopen all VLs */
11044 
11045 err:
11046 	mutex_unlock(&ppd->hls_lock);
11047 
11048 	return ret;
11049 }
11050 
11051 /*
11052  * Read one credit merge VL register.
11053  */
11054 static void read_one_cm_vl(struct hfi1_devdata *dd, u32 csr,
11055 			   struct vl_limit *vll)
11056 {
11057 	u64 reg = read_csr(dd, csr);
11058 
11059 	vll->dedicated = cpu_to_be16(
11060 		(reg >> SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SHIFT)
11061 		& SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_MASK);
11062 	vll->shared = cpu_to_be16(
11063 		(reg >> SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SHIFT)
11064 		& SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_MASK);
11065 }
11066 
11067 /*
11068  * Read the current credit merge limits.
11069  */
11070 static int get_buffer_control(struct hfi1_devdata *dd,
11071 			      struct buffer_control *bc, u16 *overall_limit)
11072 {
11073 	u64 reg;
11074 	int i;
11075 
11076 	/* not all entries are filled in */
11077 	memset(bc, 0, sizeof(*bc));
11078 
11079 	/* OPA and HFI have a 1-1 mapping */
11080 	for (i = 0; i < TXE_NUM_DATA_VL; i++)
11081 		read_one_cm_vl(dd, SEND_CM_CREDIT_VL + (8 * i), &bc->vl[i]);
11082 
11083 	/* NOTE: assumes that VL* and VL15 CSRs are bit-wise identical */
11084 	read_one_cm_vl(dd, SEND_CM_CREDIT_VL15, &bc->vl[15]);
11085 
11086 	reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
11087 	bc->overall_shared_limit = cpu_to_be16(
11088 		(reg >> SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SHIFT)
11089 		& SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_MASK);
11090 	if (overall_limit)
11091 		*overall_limit = (reg
11092 			>> SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT)
11093 			& SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_MASK;
11094 	return sizeof(struct buffer_control);
11095 }
11096 
11097 static int get_sc2vlnt(struct hfi1_devdata *dd, struct sc2vlnt *dp)
11098 {
11099 	u64 reg;
11100 	int i;
11101 
11102 	/* each register contains 16 SC->VLnt mappings, 4 bits each */
11103 	reg = read_csr(dd, DCC_CFG_SC_VL_TABLE_15_0);
11104 	for (i = 0; i < sizeof(u64); i++) {
11105 		u8 byte = *(((u8 *)&reg) + i);
11106 
11107 		dp->vlnt[2 * i] = byte & 0xf;
11108 		dp->vlnt[(2 * i) + 1] = (byte & 0xf0) >> 4;
11109 	}
11110 
11111 	reg = read_csr(dd, DCC_CFG_SC_VL_TABLE_31_16);
11112 	for (i = 0; i < sizeof(u64); i++) {
11113 		u8 byte = *(((u8 *)&reg) + i);
11114 
11115 		dp->vlnt[16 + (2 * i)] = byte & 0xf;
11116 		dp->vlnt[16 + (2 * i) + 1] = (byte & 0xf0) >> 4;
11117 	}
11118 	return sizeof(struct sc2vlnt);
11119 }
11120 
11121 static void get_vlarb_preempt(struct hfi1_devdata *dd, u32 nelems,
11122 			      struct ib_vl_weight_elem *vl)
11123 {
11124 	unsigned int i;
11125 
11126 	for (i = 0; i < nelems; i++, vl++) {
11127 		vl->vl = 0xf;
11128 		vl->weight = 0;
11129 	}
11130 }
11131 
11132 static void set_sc2vlnt(struct hfi1_devdata *dd, struct sc2vlnt *dp)
11133 {
11134 	write_csr(dd, DCC_CFG_SC_VL_TABLE_15_0,
11135 		  DC_SC_VL_VAL(15_0,
11136 			       0, dp->vlnt[0] & 0xf,
11137 			       1, dp->vlnt[1] & 0xf,
11138 			       2, dp->vlnt[2] & 0xf,
11139 			       3, dp->vlnt[3] & 0xf,
11140 			       4, dp->vlnt[4] & 0xf,
11141 			       5, dp->vlnt[5] & 0xf,
11142 			       6, dp->vlnt[6] & 0xf,
11143 			       7, dp->vlnt[7] & 0xf,
11144 			       8, dp->vlnt[8] & 0xf,
11145 			       9, dp->vlnt[9] & 0xf,
11146 			       10, dp->vlnt[10] & 0xf,
11147 			       11, dp->vlnt[11] & 0xf,
11148 			       12, dp->vlnt[12] & 0xf,
11149 			       13, dp->vlnt[13] & 0xf,
11150 			       14, dp->vlnt[14] & 0xf,
11151 			       15, dp->vlnt[15] & 0xf));
11152 	write_csr(dd, DCC_CFG_SC_VL_TABLE_31_16,
11153 		  DC_SC_VL_VAL(31_16,
11154 			       16, dp->vlnt[16] & 0xf,
11155 			       17, dp->vlnt[17] & 0xf,
11156 			       18, dp->vlnt[18] & 0xf,
11157 			       19, dp->vlnt[19] & 0xf,
11158 			       20, dp->vlnt[20] & 0xf,
11159 			       21, dp->vlnt[21] & 0xf,
11160 			       22, dp->vlnt[22] & 0xf,
11161 			       23, dp->vlnt[23] & 0xf,
11162 			       24, dp->vlnt[24] & 0xf,
11163 			       25, dp->vlnt[25] & 0xf,
11164 			       26, dp->vlnt[26] & 0xf,
11165 			       27, dp->vlnt[27] & 0xf,
11166 			       28, dp->vlnt[28] & 0xf,
11167 			       29, dp->vlnt[29] & 0xf,
11168 			       30, dp->vlnt[30] & 0xf,
11169 			       31, dp->vlnt[31] & 0xf));
11170 }
11171 
11172 static void nonzero_msg(struct hfi1_devdata *dd, int idx, const char *what,
11173 			u16 limit)
11174 {
11175 	if (limit != 0)
11176 		dd_dev_info(dd, "Invalid %s limit %d on VL %d, ignoring\n",
11177 			    what, (int)limit, idx);
11178 }
11179 
11180 /* change only the shared limit portion of SendCmGLobalCredit */
11181 static void set_global_shared(struct hfi1_devdata *dd, u16 limit)
11182 {
11183 	u64 reg;
11184 
11185 	reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
11186 	reg &= ~SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SMASK;
11187 	reg |= (u64)limit << SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SHIFT;
11188 	write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg);
11189 }
11190 
11191 /* change only the total credit limit portion of SendCmGLobalCredit */
11192 static void set_global_limit(struct hfi1_devdata *dd, u16 limit)
11193 {
11194 	u64 reg;
11195 
11196 	reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
11197 	reg &= ~SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SMASK;
11198 	reg |= (u64)limit << SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT;
11199 	write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg);
11200 }
11201 
11202 /* set the given per-VL shared limit */
11203 static void set_vl_shared(struct hfi1_devdata *dd, int vl, u16 limit)
11204 {
11205 	u64 reg;
11206 	u32 addr;
11207 
11208 	if (vl < TXE_NUM_DATA_VL)
11209 		addr = SEND_CM_CREDIT_VL + (8 * vl);
11210 	else
11211 		addr = SEND_CM_CREDIT_VL15;
11212 
11213 	reg = read_csr(dd, addr);
11214 	reg &= ~SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SMASK;
11215 	reg |= (u64)limit << SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SHIFT;
11216 	write_csr(dd, addr, reg);
11217 }
11218 
11219 /* set the given per-VL dedicated limit */
11220 static void set_vl_dedicated(struct hfi1_devdata *dd, int vl, u16 limit)
11221 {
11222 	u64 reg;
11223 	u32 addr;
11224 
11225 	if (vl < TXE_NUM_DATA_VL)
11226 		addr = SEND_CM_CREDIT_VL + (8 * vl);
11227 	else
11228 		addr = SEND_CM_CREDIT_VL15;
11229 
11230 	reg = read_csr(dd, addr);
11231 	reg &= ~SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SMASK;
11232 	reg |= (u64)limit << SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SHIFT;
11233 	write_csr(dd, addr, reg);
11234 }
11235 
11236 /* spin until the given per-VL status mask bits clear */
11237 static void wait_for_vl_status_clear(struct hfi1_devdata *dd, u64 mask,
11238 				     const char *which)
11239 {
11240 	unsigned long timeout;
11241 	u64 reg;
11242 
11243 	timeout = jiffies + msecs_to_jiffies(VL_STATUS_CLEAR_TIMEOUT);
11244 	while (1) {
11245 		reg = read_csr(dd, SEND_CM_CREDIT_USED_STATUS) & mask;
11246 
11247 		if (reg == 0)
11248 			return;	/* success */
11249 		if (time_after(jiffies, timeout))
11250 			break;		/* timed out */
11251 		udelay(1);
11252 	}
11253 
11254 	dd_dev_err(dd,
11255 		   "%s credit change status not clearing after %dms, mask 0x%llx, not clear 0x%llx\n",
11256 		   which, VL_STATUS_CLEAR_TIMEOUT, mask, reg);
11257 	/*
11258 	 * If this occurs, it is likely there was a credit loss on the link.
11259 	 * The only recovery from that is a link bounce.
11260 	 */
11261 	dd_dev_err(dd,
11262 		   "Continuing anyway.  A credit loss may occur.  Suggest a link bounce\n");
11263 }
11264 
11265 /*
11266  * The number of credits on the VLs may be changed while everything
11267  * is "live", but the following algorithm must be followed due to
11268  * how the hardware is actually implemented.  In particular,
11269  * Return_Credit_Status[] is the only correct status check.
11270  *
11271  * if (reducing Global_Shared_Credit_Limit or any shared limit changing)
11272  *     set Global_Shared_Credit_Limit = 0
11273  *     use_all_vl = 1
11274  * mask0 = all VLs that are changing either dedicated or shared limits
11275  * set Shared_Limit[mask0] = 0
11276  * spin until Return_Credit_Status[use_all_vl ? all VL : mask0] == 0
11277  * if (changing any dedicated limit)
11278  *     mask1 = all VLs that are lowering dedicated limits
11279  *     lower Dedicated_Limit[mask1]
11280  *     spin until Return_Credit_Status[mask1] == 0
11281  *     raise Dedicated_Limits
11282  * raise Shared_Limits
11283  * raise Global_Shared_Credit_Limit
11284  *
11285  * lower = if the new limit is lower, set the limit to the new value
11286  * raise = if the new limit is higher than the current value (may be changed
11287  *	earlier in the algorithm), set the new limit to the new value
11288  */
11289 int set_buffer_control(struct hfi1_pportdata *ppd,
11290 		       struct buffer_control *new_bc)
11291 {
11292 	struct hfi1_devdata *dd = ppd->dd;
11293 	u64 changing_mask, ld_mask, stat_mask;
11294 	int change_count;
11295 	int i, use_all_mask;
11296 	int this_shared_changing;
11297 	int vl_count = 0, ret;
11298 	/*
11299 	 * A0: add the variable any_shared_limit_changing below and in the
11300 	 * algorithm above.  If removing A0 support, it can be removed.
11301 	 */
11302 	int any_shared_limit_changing;
11303 	struct buffer_control cur_bc;
11304 	u8 changing[OPA_MAX_VLS];
11305 	u8 lowering_dedicated[OPA_MAX_VLS];
11306 	u16 cur_total;
11307 	u32 new_total = 0;
11308 	const u64 all_mask =
11309 	SEND_CM_CREDIT_USED_STATUS_VL0_RETURN_CREDIT_STATUS_SMASK
11310 	 | SEND_CM_CREDIT_USED_STATUS_VL1_RETURN_CREDIT_STATUS_SMASK
11311 	 | SEND_CM_CREDIT_USED_STATUS_VL2_RETURN_CREDIT_STATUS_SMASK
11312 	 | SEND_CM_CREDIT_USED_STATUS_VL3_RETURN_CREDIT_STATUS_SMASK
11313 	 | SEND_CM_CREDIT_USED_STATUS_VL4_RETURN_CREDIT_STATUS_SMASK
11314 	 | SEND_CM_CREDIT_USED_STATUS_VL5_RETURN_CREDIT_STATUS_SMASK
11315 	 | SEND_CM_CREDIT_USED_STATUS_VL6_RETURN_CREDIT_STATUS_SMASK
11316 	 | SEND_CM_CREDIT_USED_STATUS_VL7_RETURN_CREDIT_STATUS_SMASK
11317 	 | SEND_CM_CREDIT_USED_STATUS_VL15_RETURN_CREDIT_STATUS_SMASK;
11318 
11319 #define valid_vl(idx) ((idx) < TXE_NUM_DATA_VL || (idx) == 15)
11320 #define NUM_USABLE_VLS 16	/* look at VL15 and less */
11321 
11322 	/* find the new total credits, do sanity check on unused VLs */
11323 	for (i = 0; i < OPA_MAX_VLS; i++) {
11324 		if (valid_vl(i)) {
11325 			new_total += be16_to_cpu(new_bc->vl[i].dedicated);
11326 			continue;
11327 		}
11328 		nonzero_msg(dd, i, "dedicated",
11329 			    be16_to_cpu(new_bc->vl[i].dedicated));
11330 		nonzero_msg(dd, i, "shared",
11331 			    be16_to_cpu(new_bc->vl[i].shared));
11332 		new_bc->vl[i].dedicated = 0;
11333 		new_bc->vl[i].shared = 0;
11334 	}
11335 	new_total += be16_to_cpu(new_bc->overall_shared_limit);
11336 
11337 	/* fetch the current values */
11338 	get_buffer_control(dd, &cur_bc, &cur_total);
11339 
11340 	/*
11341 	 * Create the masks we will use.
11342 	 */
11343 	memset(changing, 0, sizeof(changing));
11344 	memset(lowering_dedicated, 0, sizeof(lowering_dedicated));
11345 	/*
11346 	 * NOTE: Assumes that the individual VL bits are adjacent and in
11347 	 * increasing order
11348 	 */
11349 	stat_mask =
11350 		SEND_CM_CREDIT_USED_STATUS_VL0_RETURN_CREDIT_STATUS_SMASK;
11351 	changing_mask = 0;
11352 	ld_mask = 0;
11353 	change_count = 0;
11354 	any_shared_limit_changing = 0;
11355 	for (i = 0; i < NUM_USABLE_VLS; i++, stat_mask <<= 1) {
11356 		if (!valid_vl(i))
11357 			continue;
11358 		this_shared_changing = new_bc->vl[i].shared
11359 						!= cur_bc.vl[i].shared;
11360 		if (this_shared_changing)
11361 			any_shared_limit_changing = 1;
11362 		if (new_bc->vl[i].dedicated != cur_bc.vl[i].dedicated ||
11363 		    this_shared_changing) {
11364 			changing[i] = 1;
11365 			changing_mask |= stat_mask;
11366 			change_count++;
11367 		}
11368 		if (be16_to_cpu(new_bc->vl[i].dedicated) <
11369 					be16_to_cpu(cur_bc.vl[i].dedicated)) {
11370 			lowering_dedicated[i] = 1;
11371 			ld_mask |= stat_mask;
11372 		}
11373 	}
11374 
11375 	/* bracket the credit change with a total adjustment */
11376 	if (new_total > cur_total)
11377 		set_global_limit(dd, new_total);
11378 
11379 	/*
11380 	 * Start the credit change algorithm.
11381 	 */
11382 	use_all_mask = 0;
11383 	if ((be16_to_cpu(new_bc->overall_shared_limit) <
11384 	     be16_to_cpu(cur_bc.overall_shared_limit)) ||
11385 	    (is_ax(dd) && any_shared_limit_changing)) {
11386 		set_global_shared(dd, 0);
11387 		cur_bc.overall_shared_limit = 0;
11388 		use_all_mask = 1;
11389 	}
11390 
11391 	for (i = 0; i < NUM_USABLE_VLS; i++) {
11392 		if (!valid_vl(i))
11393 			continue;
11394 
11395 		if (changing[i]) {
11396 			set_vl_shared(dd, i, 0);
11397 			cur_bc.vl[i].shared = 0;
11398 		}
11399 	}
11400 
11401 	wait_for_vl_status_clear(dd, use_all_mask ? all_mask : changing_mask,
11402 				 "shared");
11403 
11404 	if (change_count > 0) {
11405 		for (i = 0; i < NUM_USABLE_VLS; i++) {
11406 			if (!valid_vl(i))
11407 				continue;
11408 
11409 			if (lowering_dedicated[i]) {
11410 				set_vl_dedicated(dd, i,
11411 						 be16_to_cpu(new_bc->
11412 							     vl[i].dedicated));
11413 				cur_bc.vl[i].dedicated =
11414 						new_bc->vl[i].dedicated;
11415 			}
11416 		}
11417 
11418 		wait_for_vl_status_clear(dd, ld_mask, "dedicated");
11419 
11420 		/* now raise all dedicated that are going up */
11421 		for (i = 0; i < NUM_USABLE_VLS; i++) {
11422 			if (!valid_vl(i))
11423 				continue;
11424 
11425 			if (be16_to_cpu(new_bc->vl[i].dedicated) >
11426 					be16_to_cpu(cur_bc.vl[i].dedicated))
11427 				set_vl_dedicated(dd, i,
11428 						 be16_to_cpu(new_bc->
11429 							     vl[i].dedicated));
11430 		}
11431 	}
11432 
11433 	/* next raise all shared that are going up */
11434 	for (i = 0; i < NUM_USABLE_VLS; i++) {
11435 		if (!valid_vl(i))
11436 			continue;
11437 
11438 		if (be16_to_cpu(new_bc->vl[i].shared) >
11439 				be16_to_cpu(cur_bc.vl[i].shared))
11440 			set_vl_shared(dd, i, be16_to_cpu(new_bc->vl[i].shared));
11441 	}
11442 
11443 	/* finally raise the global shared */
11444 	if (be16_to_cpu(new_bc->overall_shared_limit) >
11445 	    be16_to_cpu(cur_bc.overall_shared_limit))
11446 		set_global_shared(dd,
11447 				  be16_to_cpu(new_bc->overall_shared_limit));
11448 
11449 	/* bracket the credit change with a total adjustment */
11450 	if (new_total < cur_total)
11451 		set_global_limit(dd, new_total);
11452 
11453 	/*
11454 	 * Determine the actual number of operational VLS using the number of
11455 	 * dedicated and shared credits for each VL.
11456 	 */
11457 	if (change_count > 0) {
11458 		for (i = 0; i < TXE_NUM_DATA_VL; i++)
11459 			if (be16_to_cpu(new_bc->vl[i].dedicated) > 0 ||
11460 			    be16_to_cpu(new_bc->vl[i].shared) > 0)
11461 				vl_count++;
11462 		ppd->actual_vls_operational = vl_count;
11463 		ret = sdma_map_init(dd, ppd->port - 1, vl_count ?
11464 				    ppd->actual_vls_operational :
11465 				    ppd->vls_operational,
11466 				    NULL);
11467 		if (ret == 0)
11468 			ret = pio_map_init(dd, ppd->port - 1, vl_count ?
11469 					   ppd->actual_vls_operational :
11470 					   ppd->vls_operational, NULL);
11471 		if (ret)
11472 			return ret;
11473 	}
11474 	return 0;
11475 }
11476 
11477 /*
11478  * Read the given fabric manager table. Return the size of the
11479  * table (in bytes) on success, and a negative error code on
11480  * failure.
11481  */
11482 int fm_get_table(struct hfi1_pportdata *ppd, int which, void *t)
11483 
11484 {
11485 	int size;
11486 	struct vl_arb_cache *vlc;
11487 
11488 	switch (which) {
11489 	case FM_TBL_VL_HIGH_ARB:
11490 		size = 256;
11491 		/*
11492 		 * OPA specifies 128 elements (of 2 bytes each), though
11493 		 * HFI supports only 16 elements in h/w.
11494 		 */
11495 		vlc = vl_arb_lock_cache(ppd, HI_PRIO_TABLE);
11496 		vl_arb_get_cache(vlc, t);
11497 		vl_arb_unlock_cache(ppd, HI_PRIO_TABLE);
11498 		break;
11499 	case FM_TBL_VL_LOW_ARB:
11500 		size = 256;
11501 		/*
11502 		 * OPA specifies 128 elements (of 2 bytes each), though
11503 		 * HFI supports only 16 elements in h/w.
11504 		 */
11505 		vlc = vl_arb_lock_cache(ppd, LO_PRIO_TABLE);
11506 		vl_arb_get_cache(vlc, t);
11507 		vl_arb_unlock_cache(ppd, LO_PRIO_TABLE);
11508 		break;
11509 	case FM_TBL_BUFFER_CONTROL:
11510 		size = get_buffer_control(ppd->dd, t, NULL);
11511 		break;
11512 	case FM_TBL_SC2VLNT:
11513 		size = get_sc2vlnt(ppd->dd, t);
11514 		break;
11515 	case FM_TBL_VL_PREEMPT_ELEMS:
11516 		size = 256;
11517 		/* OPA specifies 128 elements, of 2 bytes each */
11518 		get_vlarb_preempt(ppd->dd, OPA_MAX_VLS, t);
11519 		break;
11520 	case FM_TBL_VL_PREEMPT_MATRIX:
11521 		size = 256;
11522 		/*
11523 		 * OPA specifies that this is the same size as the VL
11524 		 * arbitration tables (i.e., 256 bytes).
11525 		 */
11526 		break;
11527 	default:
11528 		return -EINVAL;
11529 	}
11530 	return size;
11531 }
11532 
11533 /*
11534  * Write the given fabric manager table.
11535  */
11536 int fm_set_table(struct hfi1_pportdata *ppd, int which, void *t)
11537 {
11538 	int ret = 0;
11539 	struct vl_arb_cache *vlc;
11540 
11541 	switch (which) {
11542 	case FM_TBL_VL_HIGH_ARB:
11543 		vlc = vl_arb_lock_cache(ppd, HI_PRIO_TABLE);
11544 		if (vl_arb_match_cache(vlc, t)) {
11545 			vl_arb_unlock_cache(ppd, HI_PRIO_TABLE);
11546 			break;
11547 		}
11548 		vl_arb_set_cache(vlc, t);
11549 		vl_arb_unlock_cache(ppd, HI_PRIO_TABLE);
11550 		ret = set_vl_weights(ppd, SEND_HIGH_PRIORITY_LIST,
11551 				     VL_ARB_HIGH_PRIO_TABLE_SIZE, t);
11552 		break;
11553 	case FM_TBL_VL_LOW_ARB:
11554 		vlc = vl_arb_lock_cache(ppd, LO_PRIO_TABLE);
11555 		if (vl_arb_match_cache(vlc, t)) {
11556 			vl_arb_unlock_cache(ppd, LO_PRIO_TABLE);
11557 			break;
11558 		}
11559 		vl_arb_set_cache(vlc, t);
11560 		vl_arb_unlock_cache(ppd, LO_PRIO_TABLE);
11561 		ret = set_vl_weights(ppd, SEND_LOW_PRIORITY_LIST,
11562 				     VL_ARB_LOW_PRIO_TABLE_SIZE, t);
11563 		break;
11564 	case FM_TBL_BUFFER_CONTROL:
11565 		ret = set_buffer_control(ppd, t);
11566 		break;
11567 	case FM_TBL_SC2VLNT:
11568 		set_sc2vlnt(ppd->dd, t);
11569 		break;
11570 	default:
11571 		ret = -EINVAL;
11572 	}
11573 	return ret;
11574 }
11575 
11576 /*
11577  * Disable all data VLs.
11578  *
11579  * Return 0 if disabled, non-zero if the VLs cannot be disabled.
11580  */
11581 static int disable_data_vls(struct hfi1_devdata *dd)
11582 {
11583 	if (is_ax(dd))
11584 		return 1;
11585 
11586 	pio_send_control(dd, PSC_DATA_VL_DISABLE);
11587 
11588 	return 0;
11589 }
11590 
11591 /*
11592  * open_fill_data_vls() - the counterpart to stop_drain_data_vls().
11593  * Just re-enables all data VLs (the "fill" part happens
11594  * automatically - the name was chosen for symmetry with
11595  * stop_drain_data_vls()).
11596  *
11597  * Return 0 if successful, non-zero if the VLs cannot be enabled.
11598  */
11599 int open_fill_data_vls(struct hfi1_devdata *dd)
11600 {
11601 	if (is_ax(dd))
11602 		return 1;
11603 
11604 	pio_send_control(dd, PSC_DATA_VL_ENABLE);
11605 
11606 	return 0;
11607 }
11608 
11609 /*
11610  * drain_data_vls() - assumes that disable_data_vls() has been called,
11611  * wait for occupancy (of per-VL FIFOs) for all contexts, and SDMA
11612  * engines to drop to 0.
11613  */
11614 static void drain_data_vls(struct hfi1_devdata *dd)
11615 {
11616 	sc_wait(dd);
11617 	sdma_wait(dd);
11618 	pause_for_credit_return(dd);
11619 }
11620 
11621 /*
11622  * stop_drain_data_vls() - disable, then drain all per-VL fifos.
11623  *
11624  * Use open_fill_data_vls() to resume using data VLs.  This pair is
11625  * meant to be used like this:
11626  *
11627  * stop_drain_data_vls(dd);
11628  * // do things with per-VL resources
11629  * open_fill_data_vls(dd);
11630  */
11631 int stop_drain_data_vls(struct hfi1_devdata *dd)
11632 {
11633 	int ret;
11634 
11635 	ret = disable_data_vls(dd);
11636 	if (ret == 0)
11637 		drain_data_vls(dd);
11638 
11639 	return ret;
11640 }
11641 
11642 /*
11643  * Convert a nanosecond time to a cclock count.  No matter how slow
11644  * the cclock, a non-zero ns will always have a non-zero result.
11645  */
11646 u32 ns_to_cclock(struct hfi1_devdata *dd, u32 ns)
11647 {
11648 	u32 cclocks;
11649 
11650 	if (dd->icode == ICODE_FPGA_EMULATION)
11651 		cclocks = (ns * 1000) / FPGA_CCLOCK_PS;
11652 	else  /* simulation pretends to be ASIC */
11653 		cclocks = (ns * 1000) / ASIC_CCLOCK_PS;
11654 	if (ns && !cclocks)	/* if ns nonzero, must be at least 1 */
11655 		cclocks = 1;
11656 	return cclocks;
11657 }
11658 
11659 /*
11660  * Convert a cclock count to nanoseconds. Not matter how slow
11661  * the cclock, a non-zero cclocks will always have a non-zero result.
11662  */
11663 u32 cclock_to_ns(struct hfi1_devdata *dd, u32 cclocks)
11664 {
11665 	u32 ns;
11666 
11667 	if (dd->icode == ICODE_FPGA_EMULATION)
11668 		ns = (cclocks * FPGA_CCLOCK_PS) / 1000;
11669 	else  /* simulation pretends to be ASIC */
11670 		ns = (cclocks * ASIC_CCLOCK_PS) / 1000;
11671 	if (cclocks && !ns)
11672 		ns = 1;
11673 	return ns;
11674 }
11675 
11676 /*
11677  * Dynamically adjust the receive interrupt timeout for a context based on
11678  * incoming packet rate.
11679  *
11680  * NOTE: Dynamic adjustment does not allow rcv_intr_count to be zero.
11681  */
11682 static void adjust_rcv_timeout(struct hfi1_ctxtdata *rcd, u32 npkts)
11683 {
11684 	struct hfi1_devdata *dd = rcd->dd;
11685 	u32 timeout = rcd->rcvavail_timeout;
11686 
11687 	/*
11688 	 * This algorithm doubles or halves the timeout depending on whether
11689 	 * the number of packets received in this interrupt were less than or
11690 	 * greater equal the interrupt count.
11691 	 *
11692 	 * The calculations below do not allow a steady state to be achieved.
11693 	 * Only at the endpoints it is possible to have an unchanging
11694 	 * timeout.
11695 	 */
11696 	if (npkts < rcv_intr_count) {
11697 		/*
11698 		 * Not enough packets arrived before the timeout, adjust
11699 		 * timeout downward.
11700 		 */
11701 		if (timeout < 2) /* already at minimum? */
11702 			return;
11703 		timeout >>= 1;
11704 	} else {
11705 		/*
11706 		 * More than enough packets arrived before the timeout, adjust
11707 		 * timeout upward.
11708 		 */
11709 		if (timeout >= dd->rcv_intr_timeout_csr) /* already at max? */
11710 			return;
11711 		timeout = min(timeout << 1, dd->rcv_intr_timeout_csr);
11712 	}
11713 
11714 	rcd->rcvavail_timeout = timeout;
11715 	/*
11716 	 * timeout cannot be larger than rcv_intr_timeout_csr which has already
11717 	 * been verified to be in range
11718 	 */
11719 	write_kctxt_csr(dd, rcd->ctxt, RCV_AVAIL_TIME_OUT,
11720 			(u64)timeout <<
11721 			RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_SHIFT);
11722 }
11723 
11724 void update_usrhead(struct hfi1_ctxtdata *rcd, u32 hd, u32 updegr, u32 egrhd,
11725 		    u32 intr_adjust, u32 npkts)
11726 {
11727 	struct hfi1_devdata *dd = rcd->dd;
11728 	u64 reg;
11729 	u32 ctxt = rcd->ctxt;
11730 
11731 	/*
11732 	 * Need to write timeout register before updating RcvHdrHead to ensure
11733 	 * that a new value is used when the HW decides to restart counting.
11734 	 */
11735 	if (intr_adjust)
11736 		adjust_rcv_timeout(rcd, npkts);
11737 	if (updegr) {
11738 		reg = (egrhd & RCV_EGR_INDEX_HEAD_HEAD_MASK)
11739 			<< RCV_EGR_INDEX_HEAD_HEAD_SHIFT;
11740 		write_uctxt_csr(dd, ctxt, RCV_EGR_INDEX_HEAD, reg);
11741 	}
11742 	mmiowb();
11743 	reg = ((u64)rcv_intr_count << RCV_HDR_HEAD_COUNTER_SHIFT) |
11744 		(((u64)hd & RCV_HDR_HEAD_HEAD_MASK)
11745 			<< RCV_HDR_HEAD_HEAD_SHIFT);
11746 	write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, reg);
11747 	mmiowb();
11748 }
11749 
11750 u32 hdrqempty(struct hfi1_ctxtdata *rcd)
11751 {
11752 	u32 head, tail;
11753 
11754 	head = (read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_HEAD)
11755 		& RCV_HDR_HEAD_HEAD_SMASK) >> RCV_HDR_HEAD_HEAD_SHIFT;
11756 
11757 	if (rcd->rcvhdrtail_kvaddr)
11758 		tail = get_rcvhdrtail(rcd);
11759 	else
11760 		tail = read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_TAIL);
11761 
11762 	return head == tail;
11763 }
11764 
11765 /*
11766  * Context Control and Receive Array encoding for buffer size:
11767  *	0x0 invalid
11768  *	0x1   4 KB
11769  *	0x2   8 KB
11770  *	0x3  16 KB
11771  *	0x4  32 KB
11772  *	0x5  64 KB
11773  *	0x6 128 KB
11774  *	0x7 256 KB
11775  *	0x8 512 KB (Receive Array only)
11776  *	0x9   1 MB (Receive Array only)
11777  *	0xa   2 MB (Receive Array only)
11778  *
11779  *	0xB-0xF - reserved (Receive Array only)
11780  *
11781  *
11782  * This routine assumes that the value has already been sanity checked.
11783  */
11784 static u32 encoded_size(u32 size)
11785 {
11786 	switch (size) {
11787 	case   4 * 1024: return 0x1;
11788 	case   8 * 1024: return 0x2;
11789 	case  16 * 1024: return 0x3;
11790 	case  32 * 1024: return 0x4;
11791 	case  64 * 1024: return 0x5;
11792 	case 128 * 1024: return 0x6;
11793 	case 256 * 1024: return 0x7;
11794 	case 512 * 1024: return 0x8;
11795 	case   1 * 1024 * 1024: return 0x9;
11796 	case   2 * 1024 * 1024: return 0xa;
11797 	}
11798 	return 0x1;	/* if invalid, go with the minimum size */
11799 }
11800 
11801 void hfi1_rcvctrl(struct hfi1_devdata *dd, unsigned int op,
11802 		  struct hfi1_ctxtdata *rcd)
11803 {
11804 	u64 rcvctrl, reg;
11805 	int did_enable = 0;
11806 	u16 ctxt;
11807 
11808 	if (!rcd)
11809 		return;
11810 
11811 	ctxt = rcd->ctxt;
11812 
11813 	hfi1_cdbg(RCVCTRL, "ctxt %d op 0x%x", ctxt, op);
11814 
11815 	rcvctrl = read_kctxt_csr(dd, ctxt, RCV_CTXT_CTRL);
11816 	/* if the context already enabled, don't do the extra steps */
11817 	if ((op & HFI1_RCVCTRL_CTXT_ENB) &&
11818 	    !(rcvctrl & RCV_CTXT_CTRL_ENABLE_SMASK)) {
11819 		/* reset the tail and hdr addresses, and sequence count */
11820 		write_kctxt_csr(dd, ctxt, RCV_HDR_ADDR,
11821 				rcd->rcvhdrq_dma);
11822 		if (HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL))
11823 			write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR,
11824 					rcd->rcvhdrqtailaddr_dma);
11825 		rcd->seq_cnt = 1;
11826 
11827 		/* reset the cached receive header queue head value */
11828 		rcd->head = 0;
11829 
11830 		/*
11831 		 * Zero the receive header queue so we don't get false
11832 		 * positives when checking the sequence number.  The
11833 		 * sequence numbers could land exactly on the same spot.
11834 		 * E.g. a rcd restart before the receive header wrapped.
11835 		 */
11836 		memset(rcd->rcvhdrq, 0, rcd->rcvhdrq_size);
11837 
11838 		/* starting timeout */
11839 		rcd->rcvavail_timeout = dd->rcv_intr_timeout_csr;
11840 
11841 		/* enable the context */
11842 		rcvctrl |= RCV_CTXT_CTRL_ENABLE_SMASK;
11843 
11844 		/* clean the egr buffer size first */
11845 		rcvctrl &= ~RCV_CTXT_CTRL_EGR_BUF_SIZE_SMASK;
11846 		rcvctrl |= ((u64)encoded_size(rcd->egrbufs.rcvtid_size)
11847 				& RCV_CTXT_CTRL_EGR_BUF_SIZE_MASK)
11848 					<< RCV_CTXT_CTRL_EGR_BUF_SIZE_SHIFT;
11849 
11850 		/* zero RcvHdrHead - set RcvHdrHead.Counter after enable */
11851 		write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0);
11852 		did_enable = 1;
11853 
11854 		/* zero RcvEgrIndexHead */
11855 		write_uctxt_csr(dd, ctxt, RCV_EGR_INDEX_HEAD, 0);
11856 
11857 		/* set eager count and base index */
11858 		reg = (((u64)(rcd->egrbufs.alloced >> RCV_SHIFT)
11859 			& RCV_EGR_CTRL_EGR_CNT_MASK)
11860 		       << RCV_EGR_CTRL_EGR_CNT_SHIFT) |
11861 			(((rcd->eager_base >> RCV_SHIFT)
11862 			  & RCV_EGR_CTRL_EGR_BASE_INDEX_MASK)
11863 			 << RCV_EGR_CTRL_EGR_BASE_INDEX_SHIFT);
11864 		write_kctxt_csr(dd, ctxt, RCV_EGR_CTRL, reg);
11865 
11866 		/*
11867 		 * Set TID (expected) count and base index.
11868 		 * rcd->expected_count is set to individual RcvArray entries,
11869 		 * not pairs, and the CSR takes a pair-count in groups of
11870 		 * four, so divide by 8.
11871 		 */
11872 		reg = (((rcd->expected_count >> RCV_SHIFT)
11873 					& RCV_TID_CTRL_TID_PAIR_CNT_MASK)
11874 				<< RCV_TID_CTRL_TID_PAIR_CNT_SHIFT) |
11875 		      (((rcd->expected_base >> RCV_SHIFT)
11876 					& RCV_TID_CTRL_TID_BASE_INDEX_MASK)
11877 				<< RCV_TID_CTRL_TID_BASE_INDEX_SHIFT);
11878 		write_kctxt_csr(dd, ctxt, RCV_TID_CTRL, reg);
11879 		if (ctxt == HFI1_CTRL_CTXT)
11880 			write_csr(dd, RCV_VL15, HFI1_CTRL_CTXT);
11881 	}
11882 	if (op & HFI1_RCVCTRL_CTXT_DIS) {
11883 		write_csr(dd, RCV_VL15, 0);
11884 		/*
11885 		 * When receive context is being disabled turn on tail
11886 		 * update with a dummy tail address and then disable
11887 		 * receive context.
11888 		 */
11889 		if (dd->rcvhdrtail_dummy_dma) {
11890 			write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR,
11891 					dd->rcvhdrtail_dummy_dma);
11892 			/* Enabling RcvCtxtCtrl.TailUpd is intentional. */
11893 			rcvctrl |= RCV_CTXT_CTRL_TAIL_UPD_SMASK;
11894 		}
11895 
11896 		rcvctrl &= ~RCV_CTXT_CTRL_ENABLE_SMASK;
11897 	}
11898 	if (op & HFI1_RCVCTRL_INTRAVAIL_ENB)
11899 		rcvctrl |= RCV_CTXT_CTRL_INTR_AVAIL_SMASK;
11900 	if (op & HFI1_RCVCTRL_INTRAVAIL_DIS)
11901 		rcvctrl &= ~RCV_CTXT_CTRL_INTR_AVAIL_SMASK;
11902 	if (op & HFI1_RCVCTRL_TAILUPD_ENB && rcd->rcvhdrqtailaddr_dma)
11903 		rcvctrl |= RCV_CTXT_CTRL_TAIL_UPD_SMASK;
11904 	if (op & HFI1_RCVCTRL_TAILUPD_DIS) {
11905 		/* See comment on RcvCtxtCtrl.TailUpd above */
11906 		if (!(op & HFI1_RCVCTRL_CTXT_DIS))
11907 			rcvctrl &= ~RCV_CTXT_CTRL_TAIL_UPD_SMASK;
11908 	}
11909 	if (op & HFI1_RCVCTRL_TIDFLOW_ENB)
11910 		rcvctrl |= RCV_CTXT_CTRL_TID_FLOW_ENABLE_SMASK;
11911 	if (op & HFI1_RCVCTRL_TIDFLOW_DIS)
11912 		rcvctrl &= ~RCV_CTXT_CTRL_TID_FLOW_ENABLE_SMASK;
11913 	if (op & HFI1_RCVCTRL_ONE_PKT_EGR_ENB) {
11914 		/*
11915 		 * In one-packet-per-eager mode, the size comes from
11916 		 * the RcvArray entry.
11917 		 */
11918 		rcvctrl &= ~RCV_CTXT_CTRL_EGR_BUF_SIZE_SMASK;
11919 		rcvctrl |= RCV_CTXT_CTRL_ONE_PACKET_PER_EGR_BUFFER_SMASK;
11920 	}
11921 	if (op & HFI1_RCVCTRL_ONE_PKT_EGR_DIS)
11922 		rcvctrl &= ~RCV_CTXT_CTRL_ONE_PACKET_PER_EGR_BUFFER_SMASK;
11923 	if (op & HFI1_RCVCTRL_NO_RHQ_DROP_ENB)
11924 		rcvctrl |= RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK;
11925 	if (op & HFI1_RCVCTRL_NO_RHQ_DROP_DIS)
11926 		rcvctrl &= ~RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK;
11927 	if (op & HFI1_RCVCTRL_NO_EGR_DROP_ENB)
11928 		rcvctrl |= RCV_CTXT_CTRL_DONT_DROP_EGR_FULL_SMASK;
11929 	if (op & HFI1_RCVCTRL_NO_EGR_DROP_DIS)
11930 		rcvctrl &= ~RCV_CTXT_CTRL_DONT_DROP_EGR_FULL_SMASK;
11931 	rcd->rcvctrl = rcvctrl;
11932 	hfi1_cdbg(RCVCTRL, "ctxt %d rcvctrl 0x%llx\n", ctxt, rcvctrl);
11933 	write_kctxt_csr(dd, ctxt, RCV_CTXT_CTRL, rcd->rcvctrl);
11934 
11935 	/* work around sticky RcvCtxtStatus.BlockedRHQFull */
11936 	if (did_enable &&
11937 	    (rcvctrl & RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK)) {
11938 		reg = read_kctxt_csr(dd, ctxt, RCV_CTXT_STATUS);
11939 		if (reg != 0) {
11940 			dd_dev_info(dd, "ctxt %d status %lld (blocked)\n",
11941 				    ctxt, reg);
11942 			read_uctxt_csr(dd, ctxt, RCV_HDR_HEAD);
11943 			write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0x10);
11944 			write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0x00);
11945 			read_uctxt_csr(dd, ctxt, RCV_HDR_HEAD);
11946 			reg = read_kctxt_csr(dd, ctxt, RCV_CTXT_STATUS);
11947 			dd_dev_info(dd, "ctxt %d status %lld (%s blocked)\n",
11948 				    ctxt, reg, reg == 0 ? "not" : "still");
11949 		}
11950 	}
11951 
11952 	if (did_enable) {
11953 		/*
11954 		 * The interrupt timeout and count must be set after
11955 		 * the context is enabled to take effect.
11956 		 */
11957 		/* set interrupt timeout */
11958 		write_kctxt_csr(dd, ctxt, RCV_AVAIL_TIME_OUT,
11959 				(u64)rcd->rcvavail_timeout <<
11960 				RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_SHIFT);
11961 
11962 		/* set RcvHdrHead.Counter, zero RcvHdrHead.Head (again) */
11963 		reg = (u64)rcv_intr_count << RCV_HDR_HEAD_COUNTER_SHIFT;
11964 		write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, reg);
11965 	}
11966 
11967 	if (op & (HFI1_RCVCTRL_TAILUPD_DIS | HFI1_RCVCTRL_CTXT_DIS))
11968 		/*
11969 		 * If the context has been disabled and the Tail Update has
11970 		 * been cleared, set the RCV_HDR_TAIL_ADDR CSR to dummy address
11971 		 * so it doesn't contain an address that is invalid.
11972 		 */
11973 		write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR,
11974 				dd->rcvhdrtail_dummy_dma);
11975 }
11976 
11977 u32 hfi1_read_cntrs(struct hfi1_devdata *dd, char **namep, u64 **cntrp)
11978 {
11979 	int ret;
11980 	u64 val = 0;
11981 
11982 	if (namep) {
11983 		ret = dd->cntrnameslen;
11984 		*namep = dd->cntrnames;
11985 	} else {
11986 		const struct cntr_entry *entry;
11987 		int i, j;
11988 
11989 		ret = (dd->ndevcntrs) * sizeof(u64);
11990 
11991 		/* Get the start of the block of counters */
11992 		*cntrp = dd->cntrs;
11993 
11994 		/*
11995 		 * Now go and fill in each counter in the block.
11996 		 */
11997 		for (i = 0; i < DEV_CNTR_LAST; i++) {
11998 			entry = &dev_cntrs[i];
11999 			hfi1_cdbg(CNTR, "reading %s", entry->name);
12000 			if (entry->flags & CNTR_DISABLED) {
12001 				/* Nothing */
12002 				hfi1_cdbg(CNTR, "\tDisabled\n");
12003 			} else {
12004 				if (entry->flags & CNTR_VL) {
12005 					hfi1_cdbg(CNTR, "\tPer VL\n");
12006 					for (j = 0; j < C_VL_COUNT; j++) {
12007 						val = entry->rw_cntr(entry,
12008 								  dd, j,
12009 								  CNTR_MODE_R,
12010 								  0);
12011 						hfi1_cdbg(
12012 						   CNTR,
12013 						   "\t\tRead 0x%llx for %d\n",
12014 						   val, j);
12015 						dd->cntrs[entry->offset + j] =
12016 									    val;
12017 					}
12018 				} else if (entry->flags & CNTR_SDMA) {
12019 					hfi1_cdbg(CNTR,
12020 						  "\t Per SDMA Engine\n");
12021 					for (j = 0; j < dd->chip_sdma_engines;
12022 					     j++) {
12023 						val =
12024 						entry->rw_cntr(entry, dd, j,
12025 							       CNTR_MODE_R, 0);
12026 						hfi1_cdbg(CNTR,
12027 							  "\t\tRead 0x%llx for %d\n",
12028 							  val, j);
12029 						dd->cntrs[entry->offset + j] =
12030 									val;
12031 					}
12032 				} else {
12033 					val = entry->rw_cntr(entry, dd,
12034 							CNTR_INVALID_VL,
12035 							CNTR_MODE_R, 0);
12036 					dd->cntrs[entry->offset] = val;
12037 					hfi1_cdbg(CNTR, "\tRead 0x%llx", val);
12038 				}
12039 			}
12040 		}
12041 	}
12042 	return ret;
12043 }
12044 
12045 /*
12046  * Used by sysfs to create files for hfi stats to read
12047  */
12048 u32 hfi1_read_portcntrs(struct hfi1_pportdata *ppd, char **namep, u64 **cntrp)
12049 {
12050 	int ret;
12051 	u64 val = 0;
12052 
12053 	if (namep) {
12054 		ret = ppd->dd->portcntrnameslen;
12055 		*namep = ppd->dd->portcntrnames;
12056 	} else {
12057 		const struct cntr_entry *entry;
12058 		int i, j;
12059 
12060 		ret = ppd->dd->nportcntrs * sizeof(u64);
12061 		*cntrp = ppd->cntrs;
12062 
12063 		for (i = 0; i < PORT_CNTR_LAST; i++) {
12064 			entry = &port_cntrs[i];
12065 			hfi1_cdbg(CNTR, "reading %s", entry->name);
12066 			if (entry->flags & CNTR_DISABLED) {
12067 				/* Nothing */
12068 				hfi1_cdbg(CNTR, "\tDisabled\n");
12069 				continue;
12070 			}
12071 
12072 			if (entry->flags & CNTR_VL) {
12073 				hfi1_cdbg(CNTR, "\tPer VL");
12074 				for (j = 0; j < C_VL_COUNT; j++) {
12075 					val = entry->rw_cntr(entry, ppd, j,
12076 							       CNTR_MODE_R,
12077 							       0);
12078 					hfi1_cdbg(
12079 					   CNTR,
12080 					   "\t\tRead 0x%llx for %d",
12081 					   val, j);
12082 					ppd->cntrs[entry->offset + j] = val;
12083 				}
12084 			} else {
12085 				val = entry->rw_cntr(entry, ppd,
12086 						       CNTR_INVALID_VL,
12087 						       CNTR_MODE_R,
12088 						       0);
12089 				ppd->cntrs[entry->offset] = val;
12090 				hfi1_cdbg(CNTR, "\tRead 0x%llx", val);
12091 			}
12092 		}
12093 	}
12094 	return ret;
12095 }
12096 
12097 static void free_cntrs(struct hfi1_devdata *dd)
12098 {
12099 	struct hfi1_pportdata *ppd;
12100 	int i;
12101 
12102 	if (dd->synth_stats_timer.function)
12103 		del_timer_sync(&dd->synth_stats_timer);
12104 	ppd = (struct hfi1_pportdata *)(dd + 1);
12105 	for (i = 0; i < dd->num_pports; i++, ppd++) {
12106 		kfree(ppd->cntrs);
12107 		kfree(ppd->scntrs);
12108 		free_percpu(ppd->ibport_data.rvp.rc_acks);
12109 		free_percpu(ppd->ibport_data.rvp.rc_qacks);
12110 		free_percpu(ppd->ibport_data.rvp.rc_delayed_comp);
12111 		ppd->cntrs = NULL;
12112 		ppd->scntrs = NULL;
12113 		ppd->ibport_data.rvp.rc_acks = NULL;
12114 		ppd->ibport_data.rvp.rc_qacks = NULL;
12115 		ppd->ibport_data.rvp.rc_delayed_comp = NULL;
12116 	}
12117 	kfree(dd->portcntrnames);
12118 	dd->portcntrnames = NULL;
12119 	kfree(dd->cntrs);
12120 	dd->cntrs = NULL;
12121 	kfree(dd->scntrs);
12122 	dd->scntrs = NULL;
12123 	kfree(dd->cntrnames);
12124 	dd->cntrnames = NULL;
12125 	if (dd->update_cntr_wq) {
12126 		destroy_workqueue(dd->update_cntr_wq);
12127 		dd->update_cntr_wq = NULL;
12128 	}
12129 }
12130 
12131 static u64 read_dev_port_cntr(struct hfi1_devdata *dd, struct cntr_entry *entry,
12132 			      u64 *psval, void *context, int vl)
12133 {
12134 	u64 val;
12135 	u64 sval = *psval;
12136 
12137 	if (entry->flags & CNTR_DISABLED) {
12138 		dd_dev_err(dd, "Counter %s not enabled", entry->name);
12139 		return 0;
12140 	}
12141 
12142 	hfi1_cdbg(CNTR, "cntr: %s vl %d psval 0x%llx", entry->name, vl, *psval);
12143 
12144 	val = entry->rw_cntr(entry, context, vl, CNTR_MODE_R, 0);
12145 
12146 	/* If its a synthetic counter there is more work we need to do */
12147 	if (entry->flags & CNTR_SYNTH) {
12148 		if (sval == CNTR_MAX) {
12149 			/* No need to read already saturated */
12150 			return CNTR_MAX;
12151 		}
12152 
12153 		if (entry->flags & CNTR_32BIT) {
12154 			/* 32bit counters can wrap multiple times */
12155 			u64 upper = sval >> 32;
12156 			u64 lower = (sval << 32) >> 32;
12157 
12158 			if (lower > val) { /* hw wrapped */
12159 				if (upper == CNTR_32BIT_MAX)
12160 					val = CNTR_MAX;
12161 				else
12162 					upper++;
12163 			}
12164 
12165 			if (val != CNTR_MAX)
12166 				val = (upper << 32) | val;
12167 
12168 		} else {
12169 			/* If we rolled we are saturated */
12170 			if ((val < sval) || (val > CNTR_MAX))
12171 				val = CNTR_MAX;
12172 		}
12173 	}
12174 
12175 	*psval = val;
12176 
12177 	hfi1_cdbg(CNTR, "\tNew val=0x%llx", val);
12178 
12179 	return val;
12180 }
12181 
12182 static u64 write_dev_port_cntr(struct hfi1_devdata *dd,
12183 			       struct cntr_entry *entry,
12184 			       u64 *psval, void *context, int vl, u64 data)
12185 {
12186 	u64 val;
12187 
12188 	if (entry->flags & CNTR_DISABLED) {
12189 		dd_dev_err(dd, "Counter %s not enabled", entry->name);
12190 		return 0;
12191 	}
12192 
12193 	hfi1_cdbg(CNTR, "cntr: %s vl %d psval 0x%llx", entry->name, vl, *psval);
12194 
12195 	if (entry->flags & CNTR_SYNTH) {
12196 		*psval = data;
12197 		if (entry->flags & CNTR_32BIT) {
12198 			val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W,
12199 					     (data << 32) >> 32);
12200 			val = data; /* return the full 64bit value */
12201 		} else {
12202 			val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W,
12203 					     data);
12204 		}
12205 	} else {
12206 		val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W, data);
12207 	}
12208 
12209 	*psval = val;
12210 
12211 	hfi1_cdbg(CNTR, "\tNew val=0x%llx", val);
12212 
12213 	return val;
12214 }
12215 
12216 u64 read_dev_cntr(struct hfi1_devdata *dd, int index, int vl)
12217 {
12218 	struct cntr_entry *entry;
12219 	u64 *sval;
12220 
12221 	entry = &dev_cntrs[index];
12222 	sval = dd->scntrs + entry->offset;
12223 
12224 	if (vl != CNTR_INVALID_VL)
12225 		sval += vl;
12226 
12227 	return read_dev_port_cntr(dd, entry, sval, dd, vl);
12228 }
12229 
12230 u64 write_dev_cntr(struct hfi1_devdata *dd, int index, int vl, u64 data)
12231 {
12232 	struct cntr_entry *entry;
12233 	u64 *sval;
12234 
12235 	entry = &dev_cntrs[index];
12236 	sval = dd->scntrs + entry->offset;
12237 
12238 	if (vl != CNTR_INVALID_VL)
12239 		sval += vl;
12240 
12241 	return write_dev_port_cntr(dd, entry, sval, dd, vl, data);
12242 }
12243 
12244 u64 read_port_cntr(struct hfi1_pportdata *ppd, int index, int vl)
12245 {
12246 	struct cntr_entry *entry;
12247 	u64 *sval;
12248 
12249 	entry = &port_cntrs[index];
12250 	sval = ppd->scntrs + entry->offset;
12251 
12252 	if (vl != CNTR_INVALID_VL)
12253 		sval += vl;
12254 
12255 	if ((index >= C_RCV_HDR_OVF_FIRST + ppd->dd->num_rcv_contexts) &&
12256 	    (index <= C_RCV_HDR_OVF_LAST)) {
12257 		/* We do not want to bother for disabled contexts */
12258 		return 0;
12259 	}
12260 
12261 	return read_dev_port_cntr(ppd->dd, entry, sval, ppd, vl);
12262 }
12263 
12264 u64 write_port_cntr(struct hfi1_pportdata *ppd, int index, int vl, u64 data)
12265 {
12266 	struct cntr_entry *entry;
12267 	u64 *sval;
12268 
12269 	entry = &port_cntrs[index];
12270 	sval = ppd->scntrs + entry->offset;
12271 
12272 	if (vl != CNTR_INVALID_VL)
12273 		sval += vl;
12274 
12275 	if ((index >= C_RCV_HDR_OVF_FIRST + ppd->dd->num_rcv_contexts) &&
12276 	    (index <= C_RCV_HDR_OVF_LAST)) {
12277 		/* We do not want to bother for disabled contexts */
12278 		return 0;
12279 	}
12280 
12281 	return write_dev_port_cntr(ppd->dd, entry, sval, ppd, vl, data);
12282 }
12283 
12284 static void do_update_synth_timer(struct work_struct *work)
12285 {
12286 	u64 cur_tx;
12287 	u64 cur_rx;
12288 	u64 total_flits;
12289 	u8 update = 0;
12290 	int i, j, vl;
12291 	struct hfi1_pportdata *ppd;
12292 	struct cntr_entry *entry;
12293 	struct hfi1_devdata *dd = container_of(work, struct hfi1_devdata,
12294 					       update_cntr_work);
12295 
12296 	/*
12297 	 * Rather than keep beating on the CSRs pick a minimal set that we can
12298 	 * check to watch for potential roll over. We can do this by looking at
12299 	 * the number of flits sent/recv. If the total flits exceeds 32bits then
12300 	 * we have to iterate all the counters and update.
12301 	 */
12302 	entry = &dev_cntrs[C_DC_RCV_FLITS];
12303 	cur_rx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL, CNTR_MODE_R, 0);
12304 
12305 	entry = &dev_cntrs[C_DC_XMIT_FLITS];
12306 	cur_tx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL, CNTR_MODE_R, 0);
12307 
12308 	hfi1_cdbg(
12309 	    CNTR,
12310 	    "[%d] curr tx=0x%llx rx=0x%llx :: last tx=0x%llx rx=0x%llx\n",
12311 	    dd->unit, cur_tx, cur_rx, dd->last_tx, dd->last_rx);
12312 
12313 	if ((cur_tx < dd->last_tx) || (cur_rx < dd->last_rx)) {
12314 		/*
12315 		 * May not be strictly necessary to update but it won't hurt and
12316 		 * simplifies the logic here.
12317 		 */
12318 		update = 1;
12319 		hfi1_cdbg(CNTR, "[%d] Tripwire counter rolled, updating",
12320 			  dd->unit);
12321 	} else {
12322 		total_flits = (cur_tx - dd->last_tx) + (cur_rx - dd->last_rx);
12323 		hfi1_cdbg(CNTR,
12324 			  "[%d] total flits 0x%llx limit 0x%llx\n", dd->unit,
12325 			  total_flits, (u64)CNTR_32BIT_MAX);
12326 		if (total_flits >= CNTR_32BIT_MAX) {
12327 			hfi1_cdbg(CNTR, "[%d] 32bit limit hit, updating",
12328 				  dd->unit);
12329 			update = 1;
12330 		}
12331 	}
12332 
12333 	if (update) {
12334 		hfi1_cdbg(CNTR, "[%d] Updating dd and ppd counters", dd->unit);
12335 		for (i = 0; i < DEV_CNTR_LAST; i++) {
12336 			entry = &dev_cntrs[i];
12337 			if (entry->flags & CNTR_VL) {
12338 				for (vl = 0; vl < C_VL_COUNT; vl++)
12339 					read_dev_cntr(dd, i, vl);
12340 			} else {
12341 				read_dev_cntr(dd, i, CNTR_INVALID_VL);
12342 			}
12343 		}
12344 		ppd = (struct hfi1_pportdata *)(dd + 1);
12345 		for (i = 0; i < dd->num_pports; i++, ppd++) {
12346 			for (j = 0; j < PORT_CNTR_LAST; j++) {
12347 				entry = &port_cntrs[j];
12348 				if (entry->flags & CNTR_VL) {
12349 					for (vl = 0; vl < C_VL_COUNT; vl++)
12350 						read_port_cntr(ppd, j, vl);
12351 				} else {
12352 					read_port_cntr(ppd, j, CNTR_INVALID_VL);
12353 				}
12354 			}
12355 		}
12356 
12357 		/*
12358 		 * We want the value in the register. The goal is to keep track
12359 		 * of the number of "ticks" not the counter value. In other
12360 		 * words if the register rolls we want to notice it and go ahead
12361 		 * and force an update.
12362 		 */
12363 		entry = &dev_cntrs[C_DC_XMIT_FLITS];
12364 		dd->last_tx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL,
12365 						CNTR_MODE_R, 0);
12366 
12367 		entry = &dev_cntrs[C_DC_RCV_FLITS];
12368 		dd->last_rx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL,
12369 						CNTR_MODE_R, 0);
12370 
12371 		hfi1_cdbg(CNTR, "[%d] setting last tx/rx to 0x%llx 0x%llx",
12372 			  dd->unit, dd->last_tx, dd->last_rx);
12373 
12374 	} else {
12375 		hfi1_cdbg(CNTR, "[%d] No update necessary", dd->unit);
12376 	}
12377 }
12378 
12379 static void update_synth_timer(struct timer_list *t)
12380 {
12381 	struct hfi1_devdata *dd = from_timer(dd, t, synth_stats_timer);
12382 
12383 	queue_work(dd->update_cntr_wq, &dd->update_cntr_work);
12384 	mod_timer(&dd->synth_stats_timer, jiffies + HZ * SYNTH_CNT_TIME);
12385 }
12386 
12387 #define C_MAX_NAME 16 /* 15 chars + one for /0 */
12388 static int init_cntrs(struct hfi1_devdata *dd)
12389 {
12390 	int i, rcv_ctxts, j;
12391 	size_t sz;
12392 	char *p;
12393 	char name[C_MAX_NAME];
12394 	struct hfi1_pportdata *ppd;
12395 	const char *bit_type_32 = ",32";
12396 	const int bit_type_32_sz = strlen(bit_type_32);
12397 
12398 	/* set up the stats timer; the add_timer is done at the end */
12399 	timer_setup(&dd->synth_stats_timer, update_synth_timer, 0);
12400 
12401 	/***********************/
12402 	/* per device counters */
12403 	/***********************/
12404 
12405 	/* size names and determine how many we have*/
12406 	dd->ndevcntrs = 0;
12407 	sz = 0;
12408 
12409 	for (i = 0; i < DEV_CNTR_LAST; i++) {
12410 		if (dev_cntrs[i].flags & CNTR_DISABLED) {
12411 			hfi1_dbg_early("\tSkipping %s\n", dev_cntrs[i].name);
12412 			continue;
12413 		}
12414 
12415 		if (dev_cntrs[i].flags & CNTR_VL) {
12416 			dev_cntrs[i].offset = dd->ndevcntrs;
12417 			for (j = 0; j < C_VL_COUNT; j++) {
12418 				snprintf(name, C_MAX_NAME, "%s%d",
12419 					 dev_cntrs[i].name, vl_from_idx(j));
12420 				sz += strlen(name);
12421 				/* Add ",32" for 32-bit counters */
12422 				if (dev_cntrs[i].flags & CNTR_32BIT)
12423 					sz += bit_type_32_sz;
12424 				sz++;
12425 				dd->ndevcntrs++;
12426 			}
12427 		} else if (dev_cntrs[i].flags & CNTR_SDMA) {
12428 			dev_cntrs[i].offset = dd->ndevcntrs;
12429 			for (j = 0; j < dd->chip_sdma_engines; j++) {
12430 				snprintf(name, C_MAX_NAME, "%s%d",
12431 					 dev_cntrs[i].name, j);
12432 				sz += strlen(name);
12433 				/* Add ",32" for 32-bit counters */
12434 				if (dev_cntrs[i].flags & CNTR_32BIT)
12435 					sz += bit_type_32_sz;
12436 				sz++;
12437 				dd->ndevcntrs++;
12438 			}
12439 		} else {
12440 			/* +1 for newline. */
12441 			sz += strlen(dev_cntrs[i].name) + 1;
12442 			/* Add ",32" for 32-bit counters */
12443 			if (dev_cntrs[i].flags & CNTR_32BIT)
12444 				sz += bit_type_32_sz;
12445 			dev_cntrs[i].offset = dd->ndevcntrs;
12446 			dd->ndevcntrs++;
12447 		}
12448 	}
12449 
12450 	/* allocate space for the counter values */
12451 	dd->cntrs = kcalloc(dd->ndevcntrs, sizeof(u64), GFP_KERNEL);
12452 	if (!dd->cntrs)
12453 		goto bail;
12454 
12455 	dd->scntrs = kcalloc(dd->ndevcntrs, sizeof(u64), GFP_KERNEL);
12456 	if (!dd->scntrs)
12457 		goto bail;
12458 
12459 	/* allocate space for the counter names */
12460 	dd->cntrnameslen = sz;
12461 	dd->cntrnames = kmalloc(sz, GFP_KERNEL);
12462 	if (!dd->cntrnames)
12463 		goto bail;
12464 
12465 	/* fill in the names */
12466 	for (p = dd->cntrnames, i = 0; i < DEV_CNTR_LAST; i++) {
12467 		if (dev_cntrs[i].flags & CNTR_DISABLED) {
12468 			/* Nothing */
12469 		} else if (dev_cntrs[i].flags & CNTR_VL) {
12470 			for (j = 0; j < C_VL_COUNT; j++) {
12471 				snprintf(name, C_MAX_NAME, "%s%d",
12472 					 dev_cntrs[i].name,
12473 					 vl_from_idx(j));
12474 				memcpy(p, name, strlen(name));
12475 				p += strlen(name);
12476 
12477 				/* Counter is 32 bits */
12478 				if (dev_cntrs[i].flags & CNTR_32BIT) {
12479 					memcpy(p, bit_type_32, bit_type_32_sz);
12480 					p += bit_type_32_sz;
12481 				}
12482 
12483 				*p++ = '\n';
12484 			}
12485 		} else if (dev_cntrs[i].flags & CNTR_SDMA) {
12486 			for (j = 0; j < dd->chip_sdma_engines; j++) {
12487 				snprintf(name, C_MAX_NAME, "%s%d",
12488 					 dev_cntrs[i].name, j);
12489 				memcpy(p, name, strlen(name));
12490 				p += strlen(name);
12491 
12492 				/* Counter is 32 bits */
12493 				if (dev_cntrs[i].flags & CNTR_32BIT) {
12494 					memcpy(p, bit_type_32, bit_type_32_sz);
12495 					p += bit_type_32_sz;
12496 				}
12497 
12498 				*p++ = '\n';
12499 			}
12500 		} else {
12501 			memcpy(p, dev_cntrs[i].name, strlen(dev_cntrs[i].name));
12502 			p += strlen(dev_cntrs[i].name);
12503 
12504 			/* Counter is 32 bits */
12505 			if (dev_cntrs[i].flags & CNTR_32BIT) {
12506 				memcpy(p, bit_type_32, bit_type_32_sz);
12507 				p += bit_type_32_sz;
12508 			}
12509 
12510 			*p++ = '\n';
12511 		}
12512 	}
12513 
12514 	/*********************/
12515 	/* per port counters */
12516 	/*********************/
12517 
12518 	/*
12519 	 * Go through the counters for the overflows and disable the ones we
12520 	 * don't need. This varies based on platform so we need to do it
12521 	 * dynamically here.
12522 	 */
12523 	rcv_ctxts = dd->num_rcv_contexts;
12524 	for (i = C_RCV_HDR_OVF_FIRST + rcv_ctxts;
12525 	     i <= C_RCV_HDR_OVF_LAST; i++) {
12526 		port_cntrs[i].flags |= CNTR_DISABLED;
12527 	}
12528 
12529 	/* size port counter names and determine how many we have*/
12530 	sz = 0;
12531 	dd->nportcntrs = 0;
12532 	for (i = 0; i < PORT_CNTR_LAST; i++) {
12533 		if (port_cntrs[i].flags & CNTR_DISABLED) {
12534 			hfi1_dbg_early("\tSkipping %s\n", port_cntrs[i].name);
12535 			continue;
12536 		}
12537 
12538 		if (port_cntrs[i].flags & CNTR_VL) {
12539 			port_cntrs[i].offset = dd->nportcntrs;
12540 			for (j = 0; j < C_VL_COUNT; j++) {
12541 				snprintf(name, C_MAX_NAME, "%s%d",
12542 					 port_cntrs[i].name, vl_from_idx(j));
12543 				sz += strlen(name);
12544 				/* Add ",32" for 32-bit counters */
12545 				if (port_cntrs[i].flags & CNTR_32BIT)
12546 					sz += bit_type_32_sz;
12547 				sz++;
12548 				dd->nportcntrs++;
12549 			}
12550 		} else {
12551 			/* +1 for newline */
12552 			sz += strlen(port_cntrs[i].name) + 1;
12553 			/* Add ",32" for 32-bit counters */
12554 			if (port_cntrs[i].flags & CNTR_32BIT)
12555 				sz += bit_type_32_sz;
12556 			port_cntrs[i].offset = dd->nportcntrs;
12557 			dd->nportcntrs++;
12558 		}
12559 	}
12560 
12561 	/* allocate space for the counter names */
12562 	dd->portcntrnameslen = sz;
12563 	dd->portcntrnames = kmalloc(sz, GFP_KERNEL);
12564 	if (!dd->portcntrnames)
12565 		goto bail;
12566 
12567 	/* fill in port cntr names */
12568 	for (p = dd->portcntrnames, i = 0; i < PORT_CNTR_LAST; i++) {
12569 		if (port_cntrs[i].flags & CNTR_DISABLED)
12570 			continue;
12571 
12572 		if (port_cntrs[i].flags & CNTR_VL) {
12573 			for (j = 0; j < C_VL_COUNT; j++) {
12574 				snprintf(name, C_MAX_NAME, "%s%d",
12575 					 port_cntrs[i].name, vl_from_idx(j));
12576 				memcpy(p, name, strlen(name));
12577 				p += strlen(name);
12578 
12579 				/* Counter is 32 bits */
12580 				if (port_cntrs[i].flags & CNTR_32BIT) {
12581 					memcpy(p, bit_type_32, bit_type_32_sz);
12582 					p += bit_type_32_sz;
12583 				}
12584 
12585 				*p++ = '\n';
12586 			}
12587 		} else {
12588 			memcpy(p, port_cntrs[i].name,
12589 			       strlen(port_cntrs[i].name));
12590 			p += strlen(port_cntrs[i].name);
12591 
12592 			/* Counter is 32 bits */
12593 			if (port_cntrs[i].flags & CNTR_32BIT) {
12594 				memcpy(p, bit_type_32, bit_type_32_sz);
12595 				p += bit_type_32_sz;
12596 			}
12597 
12598 			*p++ = '\n';
12599 		}
12600 	}
12601 
12602 	/* allocate per port storage for counter values */
12603 	ppd = (struct hfi1_pportdata *)(dd + 1);
12604 	for (i = 0; i < dd->num_pports; i++, ppd++) {
12605 		ppd->cntrs = kcalloc(dd->nportcntrs, sizeof(u64), GFP_KERNEL);
12606 		if (!ppd->cntrs)
12607 			goto bail;
12608 
12609 		ppd->scntrs = kcalloc(dd->nportcntrs, sizeof(u64), GFP_KERNEL);
12610 		if (!ppd->scntrs)
12611 			goto bail;
12612 	}
12613 
12614 	/* CPU counters need to be allocated and zeroed */
12615 	if (init_cpu_counters(dd))
12616 		goto bail;
12617 
12618 	dd->update_cntr_wq = alloc_ordered_workqueue("hfi1_update_cntr_%d",
12619 						     WQ_MEM_RECLAIM, dd->unit);
12620 	if (!dd->update_cntr_wq)
12621 		goto bail;
12622 
12623 	INIT_WORK(&dd->update_cntr_work, do_update_synth_timer);
12624 
12625 	mod_timer(&dd->synth_stats_timer, jiffies + HZ * SYNTH_CNT_TIME);
12626 	return 0;
12627 bail:
12628 	free_cntrs(dd);
12629 	return -ENOMEM;
12630 }
12631 
12632 static u32 chip_to_opa_lstate(struct hfi1_devdata *dd, u32 chip_lstate)
12633 {
12634 	switch (chip_lstate) {
12635 	default:
12636 		dd_dev_err(dd,
12637 			   "Unknown logical state 0x%x, reporting IB_PORT_DOWN\n",
12638 			   chip_lstate);
12639 		/* fall through */
12640 	case LSTATE_DOWN:
12641 		return IB_PORT_DOWN;
12642 	case LSTATE_INIT:
12643 		return IB_PORT_INIT;
12644 	case LSTATE_ARMED:
12645 		return IB_PORT_ARMED;
12646 	case LSTATE_ACTIVE:
12647 		return IB_PORT_ACTIVE;
12648 	}
12649 }
12650 
12651 u32 chip_to_opa_pstate(struct hfi1_devdata *dd, u32 chip_pstate)
12652 {
12653 	/* look at the HFI meta-states only */
12654 	switch (chip_pstate & 0xf0) {
12655 	default:
12656 		dd_dev_err(dd, "Unexpected chip physical state of 0x%x\n",
12657 			   chip_pstate);
12658 		/* fall through */
12659 	case PLS_DISABLED:
12660 		return IB_PORTPHYSSTATE_DISABLED;
12661 	case PLS_OFFLINE:
12662 		return OPA_PORTPHYSSTATE_OFFLINE;
12663 	case PLS_POLLING:
12664 		return IB_PORTPHYSSTATE_POLLING;
12665 	case PLS_CONFIGPHY:
12666 		return IB_PORTPHYSSTATE_TRAINING;
12667 	case PLS_LINKUP:
12668 		return IB_PORTPHYSSTATE_LINKUP;
12669 	case PLS_PHYTEST:
12670 		return IB_PORTPHYSSTATE_PHY_TEST;
12671 	}
12672 }
12673 
12674 /* return the OPA port logical state name */
12675 const char *opa_lstate_name(u32 lstate)
12676 {
12677 	static const char * const port_logical_names[] = {
12678 		"PORT_NOP",
12679 		"PORT_DOWN",
12680 		"PORT_INIT",
12681 		"PORT_ARMED",
12682 		"PORT_ACTIVE",
12683 		"PORT_ACTIVE_DEFER",
12684 	};
12685 	if (lstate < ARRAY_SIZE(port_logical_names))
12686 		return port_logical_names[lstate];
12687 	return "unknown";
12688 }
12689 
12690 /* return the OPA port physical state name */
12691 const char *opa_pstate_name(u32 pstate)
12692 {
12693 	static const char * const port_physical_names[] = {
12694 		"PHYS_NOP",
12695 		"reserved1",
12696 		"PHYS_POLL",
12697 		"PHYS_DISABLED",
12698 		"PHYS_TRAINING",
12699 		"PHYS_LINKUP",
12700 		"PHYS_LINK_ERR_RECOVER",
12701 		"PHYS_PHY_TEST",
12702 		"reserved8",
12703 		"PHYS_OFFLINE",
12704 		"PHYS_GANGED",
12705 		"PHYS_TEST",
12706 	};
12707 	if (pstate < ARRAY_SIZE(port_physical_names))
12708 		return port_physical_names[pstate];
12709 	return "unknown";
12710 }
12711 
12712 /**
12713  * update_statusp - Update userspace status flag
12714  * @ppd: Port data structure
12715  * @state: port state information
12716  *
12717  * Actual port status is determined by the host_link_state value
12718  * in the ppd.
12719  *
12720  * host_link_state MUST be updated before updating the user space
12721  * statusp.
12722  */
12723 static void update_statusp(struct hfi1_pportdata *ppd, u32 state)
12724 {
12725 	/*
12726 	 * Set port status flags in the page mapped into userspace
12727 	 * memory. Do it here to ensure a reliable state - this is
12728 	 * the only function called by all state handling code.
12729 	 * Always set the flags due to the fact that the cache value
12730 	 * might have been changed explicitly outside of this
12731 	 * function.
12732 	 */
12733 	if (ppd->statusp) {
12734 		switch (state) {
12735 		case IB_PORT_DOWN:
12736 		case IB_PORT_INIT:
12737 			*ppd->statusp &= ~(HFI1_STATUS_IB_CONF |
12738 					   HFI1_STATUS_IB_READY);
12739 			break;
12740 		case IB_PORT_ARMED:
12741 			*ppd->statusp |= HFI1_STATUS_IB_CONF;
12742 			break;
12743 		case IB_PORT_ACTIVE:
12744 			*ppd->statusp |= HFI1_STATUS_IB_READY;
12745 			break;
12746 		}
12747 	}
12748 	dd_dev_info(ppd->dd, "logical state changed to %s (0x%x)\n",
12749 		    opa_lstate_name(state), state);
12750 }
12751 
12752 /**
12753  * wait_logical_linkstate - wait for an IB link state change to occur
12754  * @ppd: port device
12755  * @state: the state to wait for
12756  * @msecs: the number of milliseconds to wait
12757  *
12758  * Wait up to msecs milliseconds for IB link state change to occur.
12759  * For now, take the easy polling route.
12760  * Returns 0 if state reached, otherwise -ETIMEDOUT.
12761  */
12762 static int wait_logical_linkstate(struct hfi1_pportdata *ppd, u32 state,
12763 				  int msecs)
12764 {
12765 	unsigned long timeout;
12766 	u32 new_state;
12767 
12768 	timeout = jiffies + msecs_to_jiffies(msecs);
12769 	while (1) {
12770 		new_state = chip_to_opa_lstate(ppd->dd,
12771 					       read_logical_state(ppd->dd));
12772 		if (new_state == state)
12773 			break;
12774 		if (time_after(jiffies, timeout)) {
12775 			dd_dev_err(ppd->dd,
12776 				   "timeout waiting for link state 0x%x\n",
12777 				   state);
12778 			return -ETIMEDOUT;
12779 		}
12780 		msleep(20);
12781 	}
12782 
12783 	return 0;
12784 }
12785 
12786 static void log_state_transition(struct hfi1_pportdata *ppd, u32 state)
12787 {
12788 	u32 ib_pstate = chip_to_opa_pstate(ppd->dd, state);
12789 
12790 	dd_dev_info(ppd->dd,
12791 		    "physical state changed to %s (0x%x), phy 0x%x\n",
12792 		    opa_pstate_name(ib_pstate), ib_pstate, state);
12793 }
12794 
12795 /*
12796  * Read the physical hardware link state and check if it matches host
12797  * drivers anticipated state.
12798  */
12799 static void log_physical_state(struct hfi1_pportdata *ppd, u32 state)
12800 {
12801 	u32 read_state = read_physical_state(ppd->dd);
12802 
12803 	if (read_state == state) {
12804 		log_state_transition(ppd, state);
12805 	} else {
12806 		dd_dev_err(ppd->dd,
12807 			   "anticipated phy link state 0x%x, read 0x%x\n",
12808 			   state, read_state);
12809 	}
12810 }
12811 
12812 /*
12813  * wait_physical_linkstate - wait for an physical link state change to occur
12814  * @ppd: port device
12815  * @state: the state to wait for
12816  * @msecs: the number of milliseconds to wait
12817  *
12818  * Wait up to msecs milliseconds for physical link state change to occur.
12819  * Returns 0 if state reached, otherwise -ETIMEDOUT.
12820  */
12821 static int wait_physical_linkstate(struct hfi1_pportdata *ppd, u32 state,
12822 				   int msecs)
12823 {
12824 	u32 read_state;
12825 	unsigned long timeout;
12826 
12827 	timeout = jiffies + msecs_to_jiffies(msecs);
12828 	while (1) {
12829 		read_state = read_physical_state(ppd->dd);
12830 		if (read_state == state)
12831 			break;
12832 		if (time_after(jiffies, timeout)) {
12833 			dd_dev_err(ppd->dd,
12834 				   "timeout waiting for phy link state 0x%x\n",
12835 				   state);
12836 			return -ETIMEDOUT;
12837 		}
12838 		usleep_range(1950, 2050); /* sleep 2ms-ish */
12839 	}
12840 
12841 	log_state_transition(ppd, state);
12842 	return 0;
12843 }
12844 
12845 /*
12846  * wait_phys_link_offline_quiet_substates - wait for any offline substate
12847  * @ppd: port device
12848  * @msecs: the number of milliseconds to wait
12849  *
12850  * Wait up to msecs milliseconds for any offline physical link
12851  * state change to occur.
12852  * Returns 0 if at least one state is reached, otherwise -ETIMEDOUT.
12853  */
12854 static int wait_phys_link_offline_substates(struct hfi1_pportdata *ppd,
12855 					    int msecs)
12856 {
12857 	u32 read_state;
12858 	unsigned long timeout;
12859 
12860 	timeout = jiffies + msecs_to_jiffies(msecs);
12861 	while (1) {
12862 		read_state = read_physical_state(ppd->dd);
12863 		if ((read_state & 0xF0) == PLS_OFFLINE)
12864 			break;
12865 		if (time_after(jiffies, timeout)) {
12866 			dd_dev_err(ppd->dd,
12867 				   "timeout waiting for phy link offline.quiet substates. Read state 0x%x, %dms\n",
12868 				   read_state, msecs);
12869 			return -ETIMEDOUT;
12870 		}
12871 		usleep_range(1950, 2050); /* sleep 2ms-ish */
12872 	}
12873 
12874 	log_state_transition(ppd, read_state);
12875 	return read_state;
12876 }
12877 
12878 #define CLEAR_STATIC_RATE_CONTROL_SMASK(r) \
12879 (r &= ~SEND_CTXT_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK)
12880 
12881 #define SET_STATIC_RATE_CONTROL_SMASK(r) \
12882 (r |= SEND_CTXT_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK)
12883 
12884 void hfi1_init_ctxt(struct send_context *sc)
12885 {
12886 	if (sc) {
12887 		struct hfi1_devdata *dd = sc->dd;
12888 		u64 reg;
12889 		u8 set = (sc->type == SC_USER ?
12890 			  HFI1_CAP_IS_USET(STATIC_RATE_CTRL) :
12891 			  HFI1_CAP_IS_KSET(STATIC_RATE_CTRL));
12892 		reg = read_kctxt_csr(dd, sc->hw_context,
12893 				     SEND_CTXT_CHECK_ENABLE);
12894 		if (set)
12895 			CLEAR_STATIC_RATE_CONTROL_SMASK(reg);
12896 		else
12897 			SET_STATIC_RATE_CONTROL_SMASK(reg);
12898 		write_kctxt_csr(dd, sc->hw_context,
12899 				SEND_CTXT_CHECK_ENABLE, reg);
12900 	}
12901 }
12902 
12903 int hfi1_tempsense_rd(struct hfi1_devdata *dd, struct hfi1_temp *temp)
12904 {
12905 	int ret = 0;
12906 	u64 reg;
12907 
12908 	if (dd->icode != ICODE_RTL_SILICON) {
12909 		if (HFI1_CAP_IS_KSET(PRINT_UNIMPL))
12910 			dd_dev_info(dd, "%s: tempsense not supported by HW\n",
12911 				    __func__);
12912 		return -EINVAL;
12913 	}
12914 	reg = read_csr(dd, ASIC_STS_THERM);
12915 	temp->curr = ((reg >> ASIC_STS_THERM_CURR_TEMP_SHIFT) &
12916 		      ASIC_STS_THERM_CURR_TEMP_MASK);
12917 	temp->lo_lim = ((reg >> ASIC_STS_THERM_LO_TEMP_SHIFT) &
12918 			ASIC_STS_THERM_LO_TEMP_MASK);
12919 	temp->hi_lim = ((reg >> ASIC_STS_THERM_HI_TEMP_SHIFT) &
12920 			ASIC_STS_THERM_HI_TEMP_MASK);
12921 	temp->crit_lim = ((reg >> ASIC_STS_THERM_CRIT_TEMP_SHIFT) &
12922 			  ASIC_STS_THERM_CRIT_TEMP_MASK);
12923 	/* triggers is a 3-bit value - 1 bit per trigger. */
12924 	temp->triggers = (u8)((reg >> ASIC_STS_THERM_LOW_SHIFT) & 0x7);
12925 
12926 	return ret;
12927 }
12928 
12929 /**
12930  * get_int_mask - get 64 bit int mask
12931  * @dd - the devdata
12932  * @i - the csr (relative to CCE_INT_MASK)
12933  *
12934  * Returns the mask with the urgent interrupt mask
12935  * bit clear for kernel receive contexts.
12936  */
12937 static u64 get_int_mask(struct hfi1_devdata *dd, u32 i)
12938 {
12939 	u64 mask = U64_MAX; /* default to no change */
12940 
12941 	if (i >= (IS_RCVURGENT_START / 64) && i < (IS_RCVURGENT_END / 64)) {
12942 		int j = (i - (IS_RCVURGENT_START / 64)) * 64;
12943 		int k = !j ? IS_RCVURGENT_START % 64 : 0;
12944 
12945 		if (j)
12946 			j -= IS_RCVURGENT_START % 64;
12947 		/* j = 0..dd->first_dyn_alloc_ctxt - 1,k = 0..63 */
12948 		for (; j < dd->first_dyn_alloc_ctxt && k < 64; j++, k++)
12949 			/* convert to bit in mask and clear */
12950 			mask &= ~BIT_ULL(k);
12951 	}
12952 	return mask;
12953 }
12954 
12955 /* ========================================================================= */
12956 
12957 /*
12958  * Enable/disable chip from delivering interrupts.
12959  */
12960 void set_intr_state(struct hfi1_devdata *dd, u32 enable)
12961 {
12962 	int i;
12963 
12964 	/*
12965 	 * In HFI, the mask needs to be 1 to allow interrupts.
12966 	 */
12967 	if (enable) {
12968 		/* enable all interrupts but urgent on kernel contexts */
12969 		for (i = 0; i < CCE_NUM_INT_CSRS; i++) {
12970 			u64 mask = get_int_mask(dd, i);
12971 
12972 			write_csr(dd, CCE_INT_MASK + (8 * i), mask);
12973 		}
12974 
12975 		init_qsfp_int(dd);
12976 	} else {
12977 		for (i = 0; i < CCE_NUM_INT_CSRS; i++)
12978 			write_csr(dd, CCE_INT_MASK + (8 * i), 0ull);
12979 	}
12980 }
12981 
12982 /*
12983  * Clear all interrupt sources on the chip.
12984  */
12985 static void clear_all_interrupts(struct hfi1_devdata *dd)
12986 {
12987 	int i;
12988 
12989 	for (i = 0; i < CCE_NUM_INT_CSRS; i++)
12990 		write_csr(dd, CCE_INT_CLEAR + (8 * i), ~(u64)0);
12991 
12992 	write_csr(dd, CCE_ERR_CLEAR, ~(u64)0);
12993 	write_csr(dd, MISC_ERR_CLEAR, ~(u64)0);
12994 	write_csr(dd, RCV_ERR_CLEAR, ~(u64)0);
12995 	write_csr(dd, SEND_ERR_CLEAR, ~(u64)0);
12996 	write_csr(dd, SEND_PIO_ERR_CLEAR, ~(u64)0);
12997 	write_csr(dd, SEND_DMA_ERR_CLEAR, ~(u64)0);
12998 	write_csr(dd, SEND_EGRESS_ERR_CLEAR, ~(u64)0);
12999 	for (i = 0; i < dd->chip_send_contexts; i++)
13000 		write_kctxt_csr(dd, i, SEND_CTXT_ERR_CLEAR, ~(u64)0);
13001 	for (i = 0; i < dd->chip_sdma_engines; i++)
13002 		write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_CLEAR, ~(u64)0);
13003 
13004 	write_csr(dd, DCC_ERR_FLG_CLR, ~(u64)0);
13005 	write_csr(dd, DC_LCB_ERR_CLR, ~(u64)0);
13006 	write_csr(dd, DC_DC8051_ERR_CLR, ~(u64)0);
13007 }
13008 
13009 /* Move to pcie.c? */
13010 static void disable_intx(struct pci_dev *pdev)
13011 {
13012 	pci_intx(pdev, 0);
13013 }
13014 
13015 /**
13016  * hfi1_clean_up_interrupts() - Free all IRQ resources
13017  * @dd: valid device data data structure
13018  *
13019  * Free the MSI or INTx IRQs and assoicated PCI resources,
13020  * if they have been allocated.
13021  */
13022 void hfi1_clean_up_interrupts(struct hfi1_devdata *dd)
13023 {
13024 	int i;
13025 
13026 	/* remove irqs - must happen before disabling/turning off */
13027 	if (dd->num_msix_entries) {
13028 		/* MSI-X */
13029 		struct hfi1_msix_entry *me = dd->msix_entries;
13030 
13031 		for (i = 0; i < dd->num_msix_entries; i++, me++) {
13032 			if (!me->arg) /* => no irq, no affinity */
13033 				continue;
13034 			hfi1_put_irq_affinity(dd, me);
13035 			pci_free_irq(dd->pcidev, i, me->arg);
13036 		}
13037 
13038 		/* clean structures */
13039 		kfree(dd->msix_entries);
13040 		dd->msix_entries = NULL;
13041 		dd->num_msix_entries = 0;
13042 	} else {
13043 		/* INTx */
13044 		if (dd->requested_intx_irq) {
13045 			pci_free_irq(dd->pcidev, 0, dd);
13046 			dd->requested_intx_irq = 0;
13047 		}
13048 		disable_intx(dd->pcidev);
13049 	}
13050 
13051 	pci_free_irq_vectors(dd->pcidev);
13052 }
13053 
13054 /*
13055  * Remap the interrupt source from the general handler to the given MSI-X
13056  * interrupt.
13057  */
13058 static void remap_intr(struct hfi1_devdata *dd, int isrc, int msix_intr)
13059 {
13060 	u64 reg;
13061 	int m, n;
13062 
13063 	/* clear from the handled mask of the general interrupt */
13064 	m = isrc / 64;
13065 	n = isrc % 64;
13066 	if (likely(m < CCE_NUM_INT_CSRS)) {
13067 		dd->gi_mask[m] &= ~((u64)1 << n);
13068 	} else {
13069 		dd_dev_err(dd, "remap interrupt err\n");
13070 		return;
13071 	}
13072 
13073 	/* direct the chip source to the given MSI-X interrupt */
13074 	m = isrc / 8;
13075 	n = isrc % 8;
13076 	reg = read_csr(dd, CCE_INT_MAP + (8 * m));
13077 	reg &= ~((u64)0xff << (8 * n));
13078 	reg |= ((u64)msix_intr & 0xff) << (8 * n);
13079 	write_csr(dd, CCE_INT_MAP + (8 * m), reg);
13080 }
13081 
13082 static void remap_sdma_interrupts(struct hfi1_devdata *dd,
13083 				  int engine, int msix_intr)
13084 {
13085 	/*
13086 	 * SDMA engine interrupt sources grouped by type, rather than
13087 	 * engine.  Per-engine interrupts are as follows:
13088 	 *	SDMA
13089 	 *	SDMAProgress
13090 	 *	SDMAIdle
13091 	 */
13092 	remap_intr(dd, IS_SDMA_START + 0 * TXE_NUM_SDMA_ENGINES + engine,
13093 		   msix_intr);
13094 	remap_intr(dd, IS_SDMA_START + 1 * TXE_NUM_SDMA_ENGINES + engine,
13095 		   msix_intr);
13096 	remap_intr(dd, IS_SDMA_START + 2 * TXE_NUM_SDMA_ENGINES + engine,
13097 		   msix_intr);
13098 }
13099 
13100 static int request_intx_irq(struct hfi1_devdata *dd)
13101 {
13102 	int ret;
13103 
13104 	ret = pci_request_irq(dd->pcidev, 0, general_interrupt, NULL, dd,
13105 			      DRIVER_NAME "_%d", dd->unit);
13106 	if (ret)
13107 		dd_dev_err(dd, "unable to request INTx interrupt, err %d\n",
13108 			   ret);
13109 	else
13110 		dd->requested_intx_irq = 1;
13111 	return ret;
13112 }
13113 
13114 static int request_msix_irqs(struct hfi1_devdata *dd)
13115 {
13116 	int first_general, last_general;
13117 	int first_sdma, last_sdma;
13118 	int first_rx, last_rx;
13119 	int i, ret = 0;
13120 
13121 	/* calculate the ranges we are going to use */
13122 	first_general = 0;
13123 	last_general = first_general + 1;
13124 	first_sdma = last_general;
13125 	last_sdma = first_sdma + dd->num_sdma;
13126 	first_rx = last_sdma;
13127 	last_rx = first_rx + dd->n_krcv_queues + dd->num_vnic_contexts;
13128 
13129 	/* VNIC MSIx interrupts get mapped when VNIC contexts are created */
13130 	dd->first_dyn_msix_idx = first_rx + dd->n_krcv_queues;
13131 
13132 	/*
13133 	 * Sanity check - the code expects all SDMA chip source
13134 	 * interrupts to be in the same CSR, starting at bit 0.  Verify
13135 	 * that this is true by checking the bit location of the start.
13136 	 */
13137 	BUILD_BUG_ON(IS_SDMA_START % 64);
13138 
13139 	for (i = 0; i < dd->num_msix_entries; i++) {
13140 		struct hfi1_msix_entry *me = &dd->msix_entries[i];
13141 		const char *err_info;
13142 		irq_handler_t handler;
13143 		irq_handler_t thread = NULL;
13144 		void *arg = NULL;
13145 		int idx;
13146 		struct hfi1_ctxtdata *rcd = NULL;
13147 		struct sdma_engine *sde = NULL;
13148 		char name[MAX_NAME_SIZE];
13149 
13150 		/* obtain the arguments to pci_request_irq */
13151 		if (first_general <= i && i < last_general) {
13152 			idx = i - first_general;
13153 			handler = general_interrupt;
13154 			arg = dd;
13155 			snprintf(name, sizeof(name),
13156 				 DRIVER_NAME "_%d", dd->unit);
13157 			err_info = "general";
13158 			me->type = IRQ_GENERAL;
13159 		} else if (first_sdma <= i && i < last_sdma) {
13160 			idx = i - first_sdma;
13161 			sde = &dd->per_sdma[idx];
13162 			handler = sdma_interrupt;
13163 			arg = sde;
13164 			snprintf(name, sizeof(name),
13165 				 DRIVER_NAME "_%d sdma%d", dd->unit, idx);
13166 			err_info = "sdma";
13167 			remap_sdma_interrupts(dd, idx, i);
13168 			me->type = IRQ_SDMA;
13169 		} else if (first_rx <= i && i < last_rx) {
13170 			idx = i - first_rx;
13171 			rcd = hfi1_rcd_get_by_index_safe(dd, idx);
13172 			if (rcd) {
13173 				/*
13174 				 * Set the interrupt register and mask for this
13175 				 * context's interrupt.
13176 				 */
13177 				rcd->ireg = (IS_RCVAVAIL_START + idx) / 64;
13178 				rcd->imask = ((u64)1) <<
13179 					  ((IS_RCVAVAIL_START + idx) % 64);
13180 				handler = receive_context_interrupt;
13181 				thread = receive_context_thread;
13182 				arg = rcd;
13183 				snprintf(name, sizeof(name),
13184 					 DRIVER_NAME "_%d kctxt%d",
13185 					 dd->unit, idx);
13186 				err_info = "receive context";
13187 				remap_intr(dd, IS_RCVAVAIL_START + idx, i);
13188 				me->type = IRQ_RCVCTXT;
13189 				rcd->msix_intr = i;
13190 				hfi1_rcd_put(rcd);
13191 			}
13192 		} else {
13193 			/* not in our expected range - complain, then
13194 			 * ignore it
13195 			 */
13196 			dd_dev_err(dd,
13197 				   "Unexpected extra MSI-X interrupt %d\n", i);
13198 			continue;
13199 		}
13200 		/* no argument, no interrupt */
13201 		if (!arg)
13202 			continue;
13203 		/* make sure the name is terminated */
13204 		name[sizeof(name) - 1] = 0;
13205 		me->irq = pci_irq_vector(dd->pcidev, i);
13206 		ret = pci_request_irq(dd->pcidev, i, handler, thread, arg,
13207 				      name);
13208 		if (ret) {
13209 			dd_dev_err(dd,
13210 				   "unable to allocate %s interrupt, irq %d, index %d, err %d\n",
13211 				   err_info, me->irq, idx, ret);
13212 			return ret;
13213 		}
13214 		/*
13215 		 * assign arg after pci_request_irq call, so it will be
13216 		 * cleaned up
13217 		 */
13218 		me->arg = arg;
13219 
13220 		ret = hfi1_get_irq_affinity(dd, me);
13221 		if (ret)
13222 			dd_dev_err(dd, "unable to pin IRQ %d\n", ret);
13223 	}
13224 
13225 	return ret;
13226 }
13227 
13228 void hfi1_vnic_synchronize_irq(struct hfi1_devdata *dd)
13229 {
13230 	int i;
13231 
13232 	if (!dd->num_msix_entries) {
13233 		synchronize_irq(pci_irq_vector(dd->pcidev, 0));
13234 		return;
13235 	}
13236 
13237 	for (i = 0; i < dd->vnic.num_ctxt; i++) {
13238 		struct hfi1_ctxtdata *rcd = dd->vnic.ctxt[i];
13239 		struct hfi1_msix_entry *me = &dd->msix_entries[rcd->msix_intr];
13240 
13241 		synchronize_irq(me->irq);
13242 	}
13243 }
13244 
13245 void hfi1_reset_vnic_msix_info(struct hfi1_ctxtdata *rcd)
13246 {
13247 	struct hfi1_devdata *dd = rcd->dd;
13248 	struct hfi1_msix_entry *me = &dd->msix_entries[rcd->msix_intr];
13249 
13250 	if (!me->arg) /* => no irq, no affinity */
13251 		return;
13252 
13253 	hfi1_put_irq_affinity(dd, me);
13254 	pci_free_irq(dd->pcidev, rcd->msix_intr, me->arg);
13255 
13256 	me->arg = NULL;
13257 }
13258 
13259 void hfi1_set_vnic_msix_info(struct hfi1_ctxtdata *rcd)
13260 {
13261 	struct hfi1_devdata *dd = rcd->dd;
13262 	struct hfi1_msix_entry *me;
13263 	int idx = rcd->ctxt;
13264 	void *arg = rcd;
13265 	int ret;
13266 
13267 	rcd->msix_intr = dd->vnic.msix_idx++;
13268 	me = &dd->msix_entries[rcd->msix_intr];
13269 
13270 	/*
13271 	 * Set the interrupt register and mask for this
13272 	 * context's interrupt.
13273 	 */
13274 	rcd->ireg = (IS_RCVAVAIL_START + idx) / 64;
13275 	rcd->imask = ((u64)1) <<
13276 		  ((IS_RCVAVAIL_START + idx) % 64);
13277 	me->type = IRQ_RCVCTXT;
13278 	me->irq = pci_irq_vector(dd->pcidev, rcd->msix_intr);
13279 	remap_intr(dd, IS_RCVAVAIL_START + idx, rcd->msix_intr);
13280 
13281 	ret = pci_request_irq(dd->pcidev, rcd->msix_intr,
13282 			      receive_context_interrupt,
13283 			      receive_context_thread, arg,
13284 			      DRIVER_NAME "_%d kctxt%d", dd->unit, idx);
13285 	if (ret) {
13286 		dd_dev_err(dd, "vnic irq request (irq %d, idx %d) fail %d\n",
13287 			   me->irq, idx, ret);
13288 		return;
13289 	}
13290 	/*
13291 	 * assign arg after pci_request_irq call, so it will be
13292 	 * cleaned up
13293 	 */
13294 	me->arg = arg;
13295 
13296 	ret = hfi1_get_irq_affinity(dd, me);
13297 	if (ret) {
13298 		dd_dev_err(dd,
13299 			   "unable to pin IRQ %d\n", ret);
13300 		pci_free_irq(dd->pcidev, rcd->msix_intr, me->arg);
13301 	}
13302 }
13303 
13304 /*
13305  * Set the general handler to accept all interrupts, remap all
13306  * chip interrupts back to MSI-X 0.
13307  */
13308 static void reset_interrupts(struct hfi1_devdata *dd)
13309 {
13310 	int i;
13311 
13312 	/* all interrupts handled by the general handler */
13313 	for (i = 0; i < CCE_NUM_INT_CSRS; i++)
13314 		dd->gi_mask[i] = ~(u64)0;
13315 
13316 	/* all chip interrupts map to MSI-X 0 */
13317 	for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++)
13318 		write_csr(dd, CCE_INT_MAP + (8 * i), 0);
13319 }
13320 
13321 static int set_up_interrupts(struct hfi1_devdata *dd)
13322 {
13323 	u32 total;
13324 	int ret, request;
13325 	int single_interrupt = 0; /* we expect to have all the interrupts */
13326 
13327 	/*
13328 	 * Interrupt count:
13329 	 *	1 general, "slow path" interrupt (includes the SDMA engines
13330 	 *		slow source, SDMACleanupDone)
13331 	 *	N interrupts - one per used SDMA engine
13332 	 *	M interrupt - one per kernel receive context
13333 	 *	V interrupt - one for each VNIC context
13334 	 */
13335 	total = 1 + dd->num_sdma + dd->n_krcv_queues + dd->num_vnic_contexts;
13336 
13337 	/* ask for MSI-X interrupts */
13338 	request = request_msix(dd, total);
13339 	if (request < 0) {
13340 		ret = request;
13341 		goto fail;
13342 	} else if (request == 0) {
13343 		/* using INTx */
13344 		/* dd->num_msix_entries already zero */
13345 		single_interrupt = 1;
13346 		dd_dev_err(dd, "MSI-X failed, using INTx interrupts\n");
13347 	} else if (request < total) {
13348 		/* using MSI-X, with reduced interrupts */
13349 		dd_dev_err(dd, "reduced interrupt found, wanted %u, got %u\n",
13350 			   total, request);
13351 		ret = -EINVAL;
13352 		goto fail;
13353 	} else {
13354 		dd->msix_entries = kcalloc(total, sizeof(*dd->msix_entries),
13355 					   GFP_KERNEL);
13356 		if (!dd->msix_entries) {
13357 			ret = -ENOMEM;
13358 			goto fail;
13359 		}
13360 		/* using MSI-X */
13361 		dd->num_msix_entries = total;
13362 		dd_dev_info(dd, "%u MSI-X interrupts allocated\n", total);
13363 	}
13364 
13365 	/* mask all interrupts */
13366 	set_intr_state(dd, 0);
13367 	/* clear all pending interrupts */
13368 	clear_all_interrupts(dd);
13369 
13370 	/* reset general handler mask, chip MSI-X mappings */
13371 	reset_interrupts(dd);
13372 
13373 	if (single_interrupt)
13374 		ret = request_intx_irq(dd);
13375 	else
13376 		ret = request_msix_irqs(dd);
13377 	if (ret)
13378 		goto fail;
13379 
13380 	return 0;
13381 
13382 fail:
13383 	hfi1_clean_up_interrupts(dd);
13384 	return ret;
13385 }
13386 
13387 /*
13388  * Set up context values in dd.  Sets:
13389  *
13390  *	num_rcv_contexts - number of contexts being used
13391  *	n_krcv_queues - number of kernel contexts
13392  *	first_dyn_alloc_ctxt - first dynamically allocated context
13393  *                             in array of contexts
13394  *	freectxts  - number of free user contexts
13395  *	num_send_contexts - number of PIO send contexts being used
13396  *	num_vnic_contexts - number of contexts reserved for VNIC
13397  */
13398 static int set_up_context_variables(struct hfi1_devdata *dd)
13399 {
13400 	unsigned long num_kernel_contexts;
13401 	u16 num_vnic_contexts = HFI1_NUM_VNIC_CTXT;
13402 	int total_contexts;
13403 	int ret;
13404 	unsigned ngroups;
13405 	int qos_rmt_count;
13406 	int user_rmt_reduced;
13407 	u32 n_usr_ctxts;
13408 
13409 	/*
13410 	 * Kernel receive contexts:
13411 	 * - Context 0 - control context (VL15/multicast/error)
13412 	 * - Context 1 - first kernel context
13413 	 * - Context 2 - second kernel context
13414 	 * ...
13415 	 */
13416 	if (n_krcvqs)
13417 		/*
13418 		 * n_krcvqs is the sum of module parameter kernel receive
13419 		 * contexts, krcvqs[].  It does not include the control
13420 		 * context, so add that.
13421 		 */
13422 		num_kernel_contexts = n_krcvqs + 1;
13423 	else
13424 		num_kernel_contexts = DEFAULT_KRCVQS + 1;
13425 	/*
13426 	 * Every kernel receive context needs an ACK send context.
13427 	 * one send context is allocated for each VL{0-7} and VL15
13428 	 */
13429 	if (num_kernel_contexts > (dd->chip_send_contexts - num_vls - 1)) {
13430 		dd_dev_err(dd,
13431 			   "Reducing # kernel rcv contexts to: %d, from %lu\n",
13432 			   (int)(dd->chip_send_contexts - num_vls - 1),
13433 			   num_kernel_contexts);
13434 		num_kernel_contexts = dd->chip_send_contexts - num_vls - 1;
13435 	}
13436 
13437 	/* Accommodate VNIC contexts if possible */
13438 	if ((num_kernel_contexts + num_vnic_contexts) > dd->chip_rcv_contexts) {
13439 		dd_dev_err(dd, "No receive contexts available for VNIC\n");
13440 		num_vnic_contexts = 0;
13441 	}
13442 	total_contexts = num_kernel_contexts + num_vnic_contexts;
13443 
13444 	/*
13445 	 * User contexts:
13446 	 *	- default to 1 user context per real (non-HT) CPU core if
13447 	 *	  num_user_contexts is negative
13448 	 */
13449 	if (num_user_contexts < 0)
13450 		n_usr_ctxts = cpumask_weight(&node_affinity.real_cpu_mask);
13451 	else
13452 		n_usr_ctxts = num_user_contexts;
13453 	/*
13454 	 * Adjust the counts given a global max.
13455 	 */
13456 	if (total_contexts + n_usr_ctxts > dd->chip_rcv_contexts) {
13457 		dd_dev_err(dd,
13458 			   "Reducing # user receive contexts to: %d, from %u\n",
13459 			   (int)(dd->chip_rcv_contexts - total_contexts),
13460 			   n_usr_ctxts);
13461 		/* recalculate */
13462 		n_usr_ctxts = dd->chip_rcv_contexts - total_contexts;
13463 	}
13464 
13465 	/* each user context requires an entry in the RMT */
13466 	qos_rmt_count = qos_rmt_entries(dd, NULL, NULL);
13467 	if (qos_rmt_count + n_usr_ctxts > NUM_MAP_ENTRIES) {
13468 		user_rmt_reduced = NUM_MAP_ENTRIES - qos_rmt_count;
13469 		dd_dev_err(dd,
13470 			   "RMT size is reducing the number of user receive contexts from %u to %d\n",
13471 			   n_usr_ctxts,
13472 			   user_rmt_reduced);
13473 		/* recalculate */
13474 		n_usr_ctxts = user_rmt_reduced;
13475 	}
13476 
13477 	total_contexts += n_usr_ctxts;
13478 
13479 	/* the first N are kernel contexts, the rest are user/vnic contexts */
13480 	dd->num_rcv_contexts = total_contexts;
13481 	dd->n_krcv_queues = num_kernel_contexts;
13482 	dd->first_dyn_alloc_ctxt = num_kernel_contexts;
13483 	dd->num_vnic_contexts = num_vnic_contexts;
13484 	dd->num_user_contexts = n_usr_ctxts;
13485 	dd->freectxts = n_usr_ctxts;
13486 	dd_dev_info(dd,
13487 		    "rcv contexts: chip %d, used %d (kernel %d, vnic %u, user %u)\n",
13488 		    (int)dd->chip_rcv_contexts,
13489 		    (int)dd->num_rcv_contexts,
13490 		    (int)dd->n_krcv_queues,
13491 		    dd->num_vnic_contexts,
13492 		    dd->num_user_contexts);
13493 
13494 	/*
13495 	 * Receive array allocation:
13496 	 *   All RcvArray entries are divided into groups of 8. This
13497 	 *   is required by the hardware and will speed up writes to
13498 	 *   consecutive entries by using write-combining of the entire
13499 	 *   cacheline.
13500 	 *
13501 	 *   The number of groups are evenly divided among all contexts.
13502 	 *   any left over groups will be given to the first N user
13503 	 *   contexts.
13504 	 */
13505 	dd->rcv_entries.group_size = RCV_INCREMENT;
13506 	ngroups = dd->chip_rcv_array_count / dd->rcv_entries.group_size;
13507 	dd->rcv_entries.ngroups = ngroups / dd->num_rcv_contexts;
13508 	dd->rcv_entries.nctxt_extra = ngroups -
13509 		(dd->num_rcv_contexts * dd->rcv_entries.ngroups);
13510 	dd_dev_info(dd, "RcvArray groups %u, ctxts extra %u\n",
13511 		    dd->rcv_entries.ngroups,
13512 		    dd->rcv_entries.nctxt_extra);
13513 	if (dd->rcv_entries.ngroups * dd->rcv_entries.group_size >
13514 	    MAX_EAGER_ENTRIES * 2) {
13515 		dd->rcv_entries.ngroups = (MAX_EAGER_ENTRIES * 2) /
13516 			dd->rcv_entries.group_size;
13517 		dd_dev_info(dd,
13518 			    "RcvArray group count too high, change to %u\n",
13519 			    dd->rcv_entries.ngroups);
13520 		dd->rcv_entries.nctxt_extra = 0;
13521 	}
13522 	/*
13523 	 * PIO send contexts
13524 	 */
13525 	ret = init_sc_pools_and_sizes(dd);
13526 	if (ret >= 0) {	/* success */
13527 		dd->num_send_contexts = ret;
13528 		dd_dev_info(
13529 			dd,
13530 			"send contexts: chip %d, used %d (kernel %d, ack %d, user %d, vl15 %d)\n",
13531 			dd->chip_send_contexts,
13532 			dd->num_send_contexts,
13533 			dd->sc_sizes[SC_KERNEL].count,
13534 			dd->sc_sizes[SC_ACK].count,
13535 			dd->sc_sizes[SC_USER].count,
13536 			dd->sc_sizes[SC_VL15].count);
13537 		ret = 0;	/* success */
13538 	}
13539 
13540 	return ret;
13541 }
13542 
13543 /*
13544  * Set the device/port partition key table. The MAD code
13545  * will ensure that, at least, the partial management
13546  * partition key is present in the table.
13547  */
13548 static void set_partition_keys(struct hfi1_pportdata *ppd)
13549 {
13550 	struct hfi1_devdata *dd = ppd->dd;
13551 	u64 reg = 0;
13552 	int i;
13553 
13554 	dd_dev_info(dd, "Setting partition keys\n");
13555 	for (i = 0; i < hfi1_get_npkeys(dd); i++) {
13556 		reg |= (ppd->pkeys[i] &
13557 			RCV_PARTITION_KEY_PARTITION_KEY_A_MASK) <<
13558 			((i % 4) *
13559 			 RCV_PARTITION_KEY_PARTITION_KEY_B_SHIFT);
13560 		/* Each register holds 4 PKey values. */
13561 		if ((i % 4) == 3) {
13562 			write_csr(dd, RCV_PARTITION_KEY +
13563 				  ((i - 3) * 2), reg);
13564 			reg = 0;
13565 		}
13566 	}
13567 
13568 	/* Always enable HW pkeys check when pkeys table is set */
13569 	add_rcvctrl(dd, RCV_CTRL_RCV_PARTITION_KEY_ENABLE_SMASK);
13570 }
13571 
13572 /*
13573  * These CSRs and memories are uninitialized on reset and must be
13574  * written before reading to set the ECC/parity bits.
13575  *
13576  * NOTE: All user context CSRs that are not mmaped write-only
13577  * (e.g. the TID flows) must be initialized even if the driver never
13578  * reads them.
13579  */
13580 static void write_uninitialized_csrs_and_memories(struct hfi1_devdata *dd)
13581 {
13582 	int i, j;
13583 
13584 	/* CceIntMap */
13585 	for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++)
13586 		write_csr(dd, CCE_INT_MAP + (8 * i), 0);
13587 
13588 	/* SendCtxtCreditReturnAddr */
13589 	for (i = 0; i < dd->chip_send_contexts; i++)
13590 		write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_RETURN_ADDR, 0);
13591 
13592 	/* PIO Send buffers */
13593 	/* SDMA Send buffers */
13594 	/*
13595 	 * These are not normally read, and (presently) have no method
13596 	 * to be read, so are not pre-initialized
13597 	 */
13598 
13599 	/* RcvHdrAddr */
13600 	/* RcvHdrTailAddr */
13601 	/* RcvTidFlowTable */
13602 	for (i = 0; i < dd->chip_rcv_contexts; i++) {
13603 		write_kctxt_csr(dd, i, RCV_HDR_ADDR, 0);
13604 		write_kctxt_csr(dd, i, RCV_HDR_TAIL_ADDR, 0);
13605 		for (j = 0; j < RXE_NUM_TID_FLOWS; j++)
13606 			write_uctxt_csr(dd, i, RCV_TID_FLOW_TABLE + (8 * j), 0);
13607 	}
13608 
13609 	/* RcvArray */
13610 	for (i = 0; i < dd->chip_rcv_array_count; i++)
13611 		hfi1_put_tid(dd, i, PT_INVALID_FLUSH, 0, 0);
13612 
13613 	/* RcvQPMapTable */
13614 	for (i = 0; i < 32; i++)
13615 		write_csr(dd, RCV_QP_MAP_TABLE + (8 * i), 0);
13616 }
13617 
13618 /*
13619  * Use the ctrl_bits in CceCtrl to clear the status_bits in CceStatus.
13620  */
13621 static void clear_cce_status(struct hfi1_devdata *dd, u64 status_bits,
13622 			     u64 ctrl_bits)
13623 {
13624 	unsigned long timeout;
13625 	u64 reg;
13626 
13627 	/* is the condition present? */
13628 	reg = read_csr(dd, CCE_STATUS);
13629 	if ((reg & status_bits) == 0)
13630 		return;
13631 
13632 	/* clear the condition */
13633 	write_csr(dd, CCE_CTRL, ctrl_bits);
13634 
13635 	/* wait for the condition to clear */
13636 	timeout = jiffies + msecs_to_jiffies(CCE_STATUS_TIMEOUT);
13637 	while (1) {
13638 		reg = read_csr(dd, CCE_STATUS);
13639 		if ((reg & status_bits) == 0)
13640 			return;
13641 		if (time_after(jiffies, timeout)) {
13642 			dd_dev_err(dd,
13643 				   "Timeout waiting for CceStatus to clear bits 0x%llx, remaining 0x%llx\n",
13644 				   status_bits, reg & status_bits);
13645 			return;
13646 		}
13647 		udelay(1);
13648 	}
13649 }
13650 
13651 /* set CCE CSRs to chip reset defaults */
13652 static void reset_cce_csrs(struct hfi1_devdata *dd)
13653 {
13654 	int i;
13655 
13656 	/* CCE_REVISION read-only */
13657 	/* CCE_REVISION2 read-only */
13658 	/* CCE_CTRL - bits clear automatically */
13659 	/* CCE_STATUS read-only, use CceCtrl to clear */
13660 	clear_cce_status(dd, ALL_FROZE, CCE_CTRL_SPC_UNFREEZE_SMASK);
13661 	clear_cce_status(dd, ALL_TXE_PAUSE, CCE_CTRL_TXE_RESUME_SMASK);
13662 	clear_cce_status(dd, ALL_RXE_PAUSE, CCE_CTRL_RXE_RESUME_SMASK);
13663 	for (i = 0; i < CCE_NUM_SCRATCH; i++)
13664 		write_csr(dd, CCE_SCRATCH + (8 * i), 0);
13665 	/* CCE_ERR_STATUS read-only */
13666 	write_csr(dd, CCE_ERR_MASK, 0);
13667 	write_csr(dd, CCE_ERR_CLEAR, ~0ull);
13668 	/* CCE_ERR_FORCE leave alone */
13669 	for (i = 0; i < CCE_NUM_32_BIT_COUNTERS; i++)
13670 		write_csr(dd, CCE_COUNTER_ARRAY32 + (8 * i), 0);
13671 	write_csr(dd, CCE_DC_CTRL, CCE_DC_CTRL_RESETCSR);
13672 	/* CCE_PCIE_CTRL leave alone */
13673 	for (i = 0; i < CCE_NUM_MSIX_VECTORS; i++) {
13674 		write_csr(dd, CCE_MSIX_TABLE_LOWER + (8 * i), 0);
13675 		write_csr(dd, CCE_MSIX_TABLE_UPPER + (8 * i),
13676 			  CCE_MSIX_TABLE_UPPER_RESETCSR);
13677 	}
13678 	for (i = 0; i < CCE_NUM_MSIX_PBAS; i++) {
13679 		/* CCE_MSIX_PBA read-only */
13680 		write_csr(dd, CCE_MSIX_INT_GRANTED, ~0ull);
13681 		write_csr(dd, CCE_MSIX_VEC_CLR_WITHOUT_INT, ~0ull);
13682 	}
13683 	for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++)
13684 		write_csr(dd, CCE_INT_MAP, 0);
13685 	for (i = 0; i < CCE_NUM_INT_CSRS; i++) {
13686 		/* CCE_INT_STATUS read-only */
13687 		write_csr(dd, CCE_INT_MASK + (8 * i), 0);
13688 		write_csr(dd, CCE_INT_CLEAR + (8 * i), ~0ull);
13689 		/* CCE_INT_FORCE leave alone */
13690 		/* CCE_INT_BLOCKED read-only */
13691 	}
13692 	for (i = 0; i < CCE_NUM_32_BIT_INT_COUNTERS; i++)
13693 		write_csr(dd, CCE_INT_COUNTER_ARRAY32 + (8 * i), 0);
13694 }
13695 
13696 /* set MISC CSRs to chip reset defaults */
13697 static void reset_misc_csrs(struct hfi1_devdata *dd)
13698 {
13699 	int i;
13700 
13701 	for (i = 0; i < 32; i++) {
13702 		write_csr(dd, MISC_CFG_RSA_R2 + (8 * i), 0);
13703 		write_csr(dd, MISC_CFG_RSA_SIGNATURE + (8 * i), 0);
13704 		write_csr(dd, MISC_CFG_RSA_MODULUS + (8 * i), 0);
13705 	}
13706 	/*
13707 	 * MISC_CFG_SHA_PRELOAD leave alone - always reads 0 and can
13708 	 * only be written 128-byte chunks
13709 	 */
13710 	/* init RSA engine to clear lingering errors */
13711 	write_csr(dd, MISC_CFG_RSA_CMD, 1);
13712 	write_csr(dd, MISC_CFG_RSA_MU, 0);
13713 	write_csr(dd, MISC_CFG_FW_CTRL, 0);
13714 	/* MISC_STS_8051_DIGEST read-only */
13715 	/* MISC_STS_SBM_DIGEST read-only */
13716 	/* MISC_STS_PCIE_DIGEST read-only */
13717 	/* MISC_STS_FAB_DIGEST read-only */
13718 	/* MISC_ERR_STATUS read-only */
13719 	write_csr(dd, MISC_ERR_MASK, 0);
13720 	write_csr(dd, MISC_ERR_CLEAR, ~0ull);
13721 	/* MISC_ERR_FORCE leave alone */
13722 }
13723 
13724 /* set TXE CSRs to chip reset defaults */
13725 static void reset_txe_csrs(struct hfi1_devdata *dd)
13726 {
13727 	int i;
13728 
13729 	/*
13730 	 * TXE Kernel CSRs
13731 	 */
13732 	write_csr(dd, SEND_CTRL, 0);
13733 	__cm_reset(dd, 0);	/* reset CM internal state */
13734 	/* SEND_CONTEXTS read-only */
13735 	/* SEND_DMA_ENGINES read-only */
13736 	/* SEND_PIO_MEM_SIZE read-only */
13737 	/* SEND_DMA_MEM_SIZE read-only */
13738 	write_csr(dd, SEND_HIGH_PRIORITY_LIMIT, 0);
13739 	pio_reset_all(dd);	/* SEND_PIO_INIT_CTXT */
13740 	/* SEND_PIO_ERR_STATUS read-only */
13741 	write_csr(dd, SEND_PIO_ERR_MASK, 0);
13742 	write_csr(dd, SEND_PIO_ERR_CLEAR, ~0ull);
13743 	/* SEND_PIO_ERR_FORCE leave alone */
13744 	/* SEND_DMA_ERR_STATUS read-only */
13745 	write_csr(dd, SEND_DMA_ERR_MASK, 0);
13746 	write_csr(dd, SEND_DMA_ERR_CLEAR, ~0ull);
13747 	/* SEND_DMA_ERR_FORCE leave alone */
13748 	/* SEND_EGRESS_ERR_STATUS read-only */
13749 	write_csr(dd, SEND_EGRESS_ERR_MASK, 0);
13750 	write_csr(dd, SEND_EGRESS_ERR_CLEAR, ~0ull);
13751 	/* SEND_EGRESS_ERR_FORCE leave alone */
13752 	write_csr(dd, SEND_BTH_QP, 0);
13753 	write_csr(dd, SEND_STATIC_RATE_CONTROL, 0);
13754 	write_csr(dd, SEND_SC2VLT0, 0);
13755 	write_csr(dd, SEND_SC2VLT1, 0);
13756 	write_csr(dd, SEND_SC2VLT2, 0);
13757 	write_csr(dd, SEND_SC2VLT3, 0);
13758 	write_csr(dd, SEND_LEN_CHECK0, 0);
13759 	write_csr(dd, SEND_LEN_CHECK1, 0);
13760 	/* SEND_ERR_STATUS read-only */
13761 	write_csr(dd, SEND_ERR_MASK, 0);
13762 	write_csr(dd, SEND_ERR_CLEAR, ~0ull);
13763 	/* SEND_ERR_FORCE read-only */
13764 	for (i = 0; i < VL_ARB_LOW_PRIO_TABLE_SIZE; i++)
13765 		write_csr(dd, SEND_LOW_PRIORITY_LIST + (8 * i), 0);
13766 	for (i = 0; i < VL_ARB_HIGH_PRIO_TABLE_SIZE; i++)
13767 		write_csr(dd, SEND_HIGH_PRIORITY_LIST + (8 * i), 0);
13768 	for (i = 0; i < dd->chip_send_contexts / NUM_CONTEXTS_PER_SET; i++)
13769 		write_csr(dd, SEND_CONTEXT_SET_CTRL + (8 * i), 0);
13770 	for (i = 0; i < TXE_NUM_32_BIT_COUNTER; i++)
13771 		write_csr(dd, SEND_COUNTER_ARRAY32 + (8 * i), 0);
13772 	for (i = 0; i < TXE_NUM_64_BIT_COUNTER; i++)
13773 		write_csr(dd, SEND_COUNTER_ARRAY64 + (8 * i), 0);
13774 	write_csr(dd, SEND_CM_CTRL, SEND_CM_CTRL_RESETCSR);
13775 	write_csr(dd, SEND_CM_GLOBAL_CREDIT, SEND_CM_GLOBAL_CREDIT_RESETCSR);
13776 	/* SEND_CM_CREDIT_USED_STATUS read-only */
13777 	write_csr(dd, SEND_CM_TIMER_CTRL, 0);
13778 	write_csr(dd, SEND_CM_LOCAL_AU_TABLE0_TO3, 0);
13779 	write_csr(dd, SEND_CM_LOCAL_AU_TABLE4_TO7, 0);
13780 	write_csr(dd, SEND_CM_REMOTE_AU_TABLE0_TO3, 0);
13781 	write_csr(dd, SEND_CM_REMOTE_AU_TABLE4_TO7, 0);
13782 	for (i = 0; i < TXE_NUM_DATA_VL; i++)
13783 		write_csr(dd, SEND_CM_CREDIT_VL + (8 * i), 0);
13784 	write_csr(dd, SEND_CM_CREDIT_VL15, 0);
13785 	/* SEND_CM_CREDIT_USED_VL read-only */
13786 	/* SEND_CM_CREDIT_USED_VL15 read-only */
13787 	/* SEND_EGRESS_CTXT_STATUS read-only */
13788 	/* SEND_EGRESS_SEND_DMA_STATUS read-only */
13789 	write_csr(dd, SEND_EGRESS_ERR_INFO, ~0ull);
13790 	/* SEND_EGRESS_ERR_INFO read-only */
13791 	/* SEND_EGRESS_ERR_SOURCE read-only */
13792 
13793 	/*
13794 	 * TXE Per-Context CSRs
13795 	 */
13796 	for (i = 0; i < dd->chip_send_contexts; i++) {
13797 		write_kctxt_csr(dd, i, SEND_CTXT_CTRL, 0);
13798 		write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_CTRL, 0);
13799 		write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_RETURN_ADDR, 0);
13800 		write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_FORCE, 0);
13801 		write_kctxt_csr(dd, i, SEND_CTXT_ERR_MASK, 0);
13802 		write_kctxt_csr(dd, i, SEND_CTXT_ERR_CLEAR, ~0ull);
13803 		write_kctxt_csr(dd, i, SEND_CTXT_CHECK_ENABLE, 0);
13804 		write_kctxt_csr(dd, i, SEND_CTXT_CHECK_VL, 0);
13805 		write_kctxt_csr(dd, i, SEND_CTXT_CHECK_JOB_KEY, 0);
13806 		write_kctxt_csr(dd, i, SEND_CTXT_CHECK_PARTITION_KEY, 0);
13807 		write_kctxt_csr(dd, i, SEND_CTXT_CHECK_SLID, 0);
13808 		write_kctxt_csr(dd, i, SEND_CTXT_CHECK_OPCODE, 0);
13809 	}
13810 
13811 	/*
13812 	 * TXE Per-SDMA CSRs
13813 	 */
13814 	for (i = 0; i < dd->chip_sdma_engines; i++) {
13815 		write_kctxt_csr(dd, i, SEND_DMA_CTRL, 0);
13816 		/* SEND_DMA_STATUS read-only */
13817 		write_kctxt_csr(dd, i, SEND_DMA_BASE_ADDR, 0);
13818 		write_kctxt_csr(dd, i, SEND_DMA_LEN_GEN, 0);
13819 		write_kctxt_csr(dd, i, SEND_DMA_TAIL, 0);
13820 		/* SEND_DMA_HEAD read-only */
13821 		write_kctxt_csr(dd, i, SEND_DMA_HEAD_ADDR, 0);
13822 		write_kctxt_csr(dd, i, SEND_DMA_PRIORITY_THLD, 0);
13823 		/* SEND_DMA_IDLE_CNT read-only */
13824 		write_kctxt_csr(dd, i, SEND_DMA_RELOAD_CNT, 0);
13825 		write_kctxt_csr(dd, i, SEND_DMA_DESC_CNT, 0);
13826 		/* SEND_DMA_DESC_FETCHED_CNT read-only */
13827 		/* SEND_DMA_ENG_ERR_STATUS read-only */
13828 		write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_MASK, 0);
13829 		write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_CLEAR, ~0ull);
13830 		/* SEND_DMA_ENG_ERR_FORCE leave alone */
13831 		write_kctxt_csr(dd, i, SEND_DMA_CHECK_ENABLE, 0);
13832 		write_kctxt_csr(dd, i, SEND_DMA_CHECK_VL, 0);
13833 		write_kctxt_csr(dd, i, SEND_DMA_CHECK_JOB_KEY, 0);
13834 		write_kctxt_csr(dd, i, SEND_DMA_CHECK_PARTITION_KEY, 0);
13835 		write_kctxt_csr(dd, i, SEND_DMA_CHECK_SLID, 0);
13836 		write_kctxt_csr(dd, i, SEND_DMA_CHECK_OPCODE, 0);
13837 		write_kctxt_csr(dd, i, SEND_DMA_MEMORY, 0);
13838 	}
13839 }
13840 
13841 /*
13842  * Expect on entry:
13843  * o Packet ingress is disabled, i.e. RcvCtrl.RcvPortEnable == 0
13844  */
13845 static void init_rbufs(struct hfi1_devdata *dd)
13846 {
13847 	u64 reg;
13848 	int count;
13849 
13850 	/*
13851 	 * Wait for DMA to stop: RxRbufPktPending and RxPktInProgress are
13852 	 * clear.
13853 	 */
13854 	count = 0;
13855 	while (1) {
13856 		reg = read_csr(dd, RCV_STATUS);
13857 		if ((reg & (RCV_STATUS_RX_RBUF_PKT_PENDING_SMASK
13858 			    | RCV_STATUS_RX_PKT_IN_PROGRESS_SMASK)) == 0)
13859 			break;
13860 		/*
13861 		 * Give up after 1ms - maximum wait time.
13862 		 *
13863 		 * RBuf size is 136KiB.  Slowest possible is PCIe Gen1 x1 at
13864 		 * 250MB/s bandwidth.  Lower rate to 66% for overhead to get:
13865 		 *	136 KB / (66% * 250MB/s) = 844us
13866 		 */
13867 		if (count++ > 500) {
13868 			dd_dev_err(dd,
13869 				   "%s: in-progress DMA not clearing: RcvStatus 0x%llx, continuing\n",
13870 				   __func__, reg);
13871 			break;
13872 		}
13873 		udelay(2); /* do not busy-wait the CSR */
13874 	}
13875 
13876 	/* start the init - expect RcvCtrl to be 0 */
13877 	write_csr(dd, RCV_CTRL, RCV_CTRL_RX_RBUF_INIT_SMASK);
13878 
13879 	/*
13880 	 * Read to force the write of Rcvtrl.RxRbufInit.  There is a brief
13881 	 * period after the write before RcvStatus.RxRbufInitDone is valid.
13882 	 * The delay in the first run through the loop below is sufficient and
13883 	 * required before the first read of RcvStatus.RxRbufInintDone.
13884 	 */
13885 	read_csr(dd, RCV_CTRL);
13886 
13887 	/* wait for the init to finish */
13888 	count = 0;
13889 	while (1) {
13890 		/* delay is required first time through - see above */
13891 		udelay(2); /* do not busy-wait the CSR */
13892 		reg = read_csr(dd, RCV_STATUS);
13893 		if (reg & (RCV_STATUS_RX_RBUF_INIT_DONE_SMASK))
13894 			break;
13895 
13896 		/* give up after 100us - slowest possible at 33MHz is 73us */
13897 		if (count++ > 50) {
13898 			dd_dev_err(dd,
13899 				   "%s: RcvStatus.RxRbufInit not set, continuing\n",
13900 				   __func__);
13901 			break;
13902 		}
13903 	}
13904 }
13905 
13906 /* set RXE CSRs to chip reset defaults */
13907 static void reset_rxe_csrs(struct hfi1_devdata *dd)
13908 {
13909 	int i, j;
13910 
13911 	/*
13912 	 * RXE Kernel CSRs
13913 	 */
13914 	write_csr(dd, RCV_CTRL, 0);
13915 	init_rbufs(dd);
13916 	/* RCV_STATUS read-only */
13917 	/* RCV_CONTEXTS read-only */
13918 	/* RCV_ARRAY_CNT read-only */
13919 	/* RCV_BUF_SIZE read-only */
13920 	write_csr(dd, RCV_BTH_QP, 0);
13921 	write_csr(dd, RCV_MULTICAST, 0);
13922 	write_csr(dd, RCV_BYPASS, 0);
13923 	write_csr(dd, RCV_VL15, 0);
13924 	/* this is a clear-down */
13925 	write_csr(dd, RCV_ERR_INFO,
13926 		  RCV_ERR_INFO_RCV_EXCESS_BUFFER_OVERRUN_SMASK);
13927 	/* RCV_ERR_STATUS read-only */
13928 	write_csr(dd, RCV_ERR_MASK, 0);
13929 	write_csr(dd, RCV_ERR_CLEAR, ~0ull);
13930 	/* RCV_ERR_FORCE leave alone */
13931 	for (i = 0; i < 32; i++)
13932 		write_csr(dd, RCV_QP_MAP_TABLE + (8 * i), 0);
13933 	for (i = 0; i < 4; i++)
13934 		write_csr(dd, RCV_PARTITION_KEY + (8 * i), 0);
13935 	for (i = 0; i < RXE_NUM_32_BIT_COUNTERS; i++)
13936 		write_csr(dd, RCV_COUNTER_ARRAY32 + (8 * i), 0);
13937 	for (i = 0; i < RXE_NUM_64_BIT_COUNTERS; i++)
13938 		write_csr(dd, RCV_COUNTER_ARRAY64 + (8 * i), 0);
13939 	for (i = 0; i < RXE_NUM_RSM_INSTANCES; i++)
13940 		clear_rsm_rule(dd, i);
13941 	for (i = 0; i < 32; i++)
13942 		write_csr(dd, RCV_RSM_MAP_TABLE + (8 * i), 0);
13943 
13944 	/*
13945 	 * RXE Kernel and User Per-Context CSRs
13946 	 */
13947 	for (i = 0; i < dd->chip_rcv_contexts; i++) {
13948 		/* kernel */
13949 		write_kctxt_csr(dd, i, RCV_CTXT_CTRL, 0);
13950 		/* RCV_CTXT_STATUS read-only */
13951 		write_kctxt_csr(dd, i, RCV_EGR_CTRL, 0);
13952 		write_kctxt_csr(dd, i, RCV_TID_CTRL, 0);
13953 		write_kctxt_csr(dd, i, RCV_KEY_CTRL, 0);
13954 		write_kctxt_csr(dd, i, RCV_HDR_ADDR, 0);
13955 		write_kctxt_csr(dd, i, RCV_HDR_CNT, 0);
13956 		write_kctxt_csr(dd, i, RCV_HDR_ENT_SIZE, 0);
13957 		write_kctxt_csr(dd, i, RCV_HDR_SIZE, 0);
13958 		write_kctxt_csr(dd, i, RCV_HDR_TAIL_ADDR, 0);
13959 		write_kctxt_csr(dd, i, RCV_AVAIL_TIME_OUT, 0);
13960 		write_kctxt_csr(dd, i, RCV_HDR_OVFL_CNT, 0);
13961 
13962 		/* user */
13963 		/* RCV_HDR_TAIL read-only */
13964 		write_uctxt_csr(dd, i, RCV_HDR_HEAD, 0);
13965 		/* RCV_EGR_INDEX_TAIL read-only */
13966 		write_uctxt_csr(dd, i, RCV_EGR_INDEX_HEAD, 0);
13967 		/* RCV_EGR_OFFSET_TAIL read-only */
13968 		for (j = 0; j < RXE_NUM_TID_FLOWS; j++) {
13969 			write_uctxt_csr(dd, i,
13970 					RCV_TID_FLOW_TABLE + (8 * j), 0);
13971 		}
13972 	}
13973 }
13974 
13975 /*
13976  * Set sc2vl tables.
13977  *
13978  * They power on to zeros, so to avoid send context errors
13979  * they need to be set:
13980  *
13981  * SC 0-7 -> VL 0-7 (respectively)
13982  * SC 15  -> VL 15
13983  * otherwise
13984  *        -> VL 0
13985  */
13986 static void init_sc2vl_tables(struct hfi1_devdata *dd)
13987 {
13988 	int i;
13989 	/* init per architecture spec, constrained by hardware capability */
13990 
13991 	/* HFI maps sent packets */
13992 	write_csr(dd, SEND_SC2VLT0, SC2VL_VAL(
13993 		0,
13994 		0, 0, 1, 1,
13995 		2, 2, 3, 3,
13996 		4, 4, 5, 5,
13997 		6, 6, 7, 7));
13998 	write_csr(dd, SEND_SC2VLT1, SC2VL_VAL(
13999 		1,
14000 		8, 0, 9, 0,
14001 		10, 0, 11, 0,
14002 		12, 0, 13, 0,
14003 		14, 0, 15, 15));
14004 	write_csr(dd, SEND_SC2VLT2, SC2VL_VAL(
14005 		2,
14006 		16, 0, 17, 0,
14007 		18, 0, 19, 0,
14008 		20, 0, 21, 0,
14009 		22, 0, 23, 0));
14010 	write_csr(dd, SEND_SC2VLT3, SC2VL_VAL(
14011 		3,
14012 		24, 0, 25, 0,
14013 		26, 0, 27, 0,
14014 		28, 0, 29, 0,
14015 		30, 0, 31, 0));
14016 
14017 	/* DC maps received packets */
14018 	write_csr(dd, DCC_CFG_SC_VL_TABLE_15_0, DC_SC_VL_VAL(
14019 		15_0,
14020 		0, 0, 1, 1,  2, 2,  3, 3,  4, 4,  5, 5,  6, 6,  7,  7,
14021 		8, 0, 9, 0, 10, 0, 11, 0, 12, 0, 13, 0, 14, 0, 15, 15));
14022 	write_csr(dd, DCC_CFG_SC_VL_TABLE_31_16, DC_SC_VL_VAL(
14023 		31_16,
14024 		16, 0, 17, 0, 18, 0, 19, 0, 20, 0, 21, 0, 22, 0, 23, 0,
14025 		24, 0, 25, 0, 26, 0, 27, 0, 28, 0, 29, 0, 30, 0, 31, 0));
14026 
14027 	/* initialize the cached sc2vl values consistently with h/w */
14028 	for (i = 0; i < 32; i++) {
14029 		if (i < 8 || i == 15)
14030 			*((u8 *)(dd->sc2vl) + i) = (u8)i;
14031 		else
14032 			*((u8 *)(dd->sc2vl) + i) = 0;
14033 	}
14034 }
14035 
14036 /*
14037  * Read chip sizes and then reset parts to sane, disabled, values.  We cannot
14038  * depend on the chip going through a power-on reset - a driver may be loaded
14039  * and unloaded many times.
14040  *
14041  * Do not write any CSR values to the chip in this routine - there may be
14042  * a reset following the (possible) FLR in this routine.
14043  *
14044  */
14045 static int init_chip(struct hfi1_devdata *dd)
14046 {
14047 	int i;
14048 	int ret = 0;
14049 
14050 	/*
14051 	 * Put the HFI CSRs in a known state.
14052 	 * Combine this with a DC reset.
14053 	 *
14054 	 * Stop the device from doing anything while we do a
14055 	 * reset.  We know there are no other active users of
14056 	 * the device since we are now in charge.  Turn off
14057 	 * off all outbound and inbound traffic and make sure
14058 	 * the device does not generate any interrupts.
14059 	 */
14060 
14061 	/* disable send contexts and SDMA engines */
14062 	write_csr(dd, SEND_CTRL, 0);
14063 	for (i = 0; i < dd->chip_send_contexts; i++)
14064 		write_kctxt_csr(dd, i, SEND_CTXT_CTRL, 0);
14065 	for (i = 0; i < dd->chip_sdma_engines; i++)
14066 		write_kctxt_csr(dd, i, SEND_DMA_CTRL, 0);
14067 	/* disable port (turn off RXE inbound traffic) and contexts */
14068 	write_csr(dd, RCV_CTRL, 0);
14069 	for (i = 0; i < dd->chip_rcv_contexts; i++)
14070 		write_csr(dd, RCV_CTXT_CTRL, 0);
14071 	/* mask all interrupt sources */
14072 	for (i = 0; i < CCE_NUM_INT_CSRS; i++)
14073 		write_csr(dd, CCE_INT_MASK + (8 * i), 0ull);
14074 
14075 	/*
14076 	 * DC Reset: do a full DC reset before the register clear.
14077 	 * A recommended length of time to hold is one CSR read,
14078 	 * so reread the CceDcCtrl.  Then, hold the DC in reset
14079 	 * across the clear.
14080 	 */
14081 	write_csr(dd, CCE_DC_CTRL, CCE_DC_CTRL_DC_RESET_SMASK);
14082 	(void)read_csr(dd, CCE_DC_CTRL);
14083 
14084 	if (use_flr) {
14085 		/*
14086 		 * A FLR will reset the SPC core and part of the PCIe.
14087 		 * The parts that need to be restored have already been
14088 		 * saved.
14089 		 */
14090 		dd_dev_info(dd, "Resetting CSRs with FLR\n");
14091 
14092 		/* do the FLR, the DC reset will remain */
14093 		pcie_flr(dd->pcidev);
14094 
14095 		/* restore command and BARs */
14096 		ret = restore_pci_variables(dd);
14097 		if (ret) {
14098 			dd_dev_err(dd, "%s: Could not restore PCI variables\n",
14099 				   __func__);
14100 			return ret;
14101 		}
14102 
14103 		if (is_ax(dd)) {
14104 			dd_dev_info(dd, "Resetting CSRs with FLR\n");
14105 			pcie_flr(dd->pcidev);
14106 			ret = restore_pci_variables(dd);
14107 			if (ret) {
14108 				dd_dev_err(dd, "%s: Could not restore PCI variables\n",
14109 					   __func__);
14110 				return ret;
14111 			}
14112 		}
14113 	} else {
14114 		dd_dev_info(dd, "Resetting CSRs with writes\n");
14115 		reset_cce_csrs(dd);
14116 		reset_txe_csrs(dd);
14117 		reset_rxe_csrs(dd);
14118 		reset_misc_csrs(dd);
14119 	}
14120 	/* clear the DC reset */
14121 	write_csr(dd, CCE_DC_CTRL, 0);
14122 
14123 	/* Set the LED off */
14124 	setextled(dd, 0);
14125 
14126 	/*
14127 	 * Clear the QSFP reset.
14128 	 * An FLR enforces a 0 on all out pins. The driver does not touch
14129 	 * ASIC_QSFPn_OUT otherwise.  This leaves RESET_N low and
14130 	 * anything plugged constantly in reset, if it pays attention
14131 	 * to RESET_N.
14132 	 * Prime examples of this are optical cables. Set all pins high.
14133 	 * I2CCLK and I2CDAT will change per direction, and INT_N and
14134 	 * MODPRS_N are input only and their value is ignored.
14135 	 */
14136 	write_csr(dd, ASIC_QSFP1_OUT, 0x1f);
14137 	write_csr(dd, ASIC_QSFP2_OUT, 0x1f);
14138 	init_chip_resources(dd);
14139 	return ret;
14140 }
14141 
14142 static void init_early_variables(struct hfi1_devdata *dd)
14143 {
14144 	int i;
14145 
14146 	/* assign link credit variables */
14147 	dd->vau = CM_VAU;
14148 	dd->link_credits = CM_GLOBAL_CREDITS;
14149 	if (is_ax(dd))
14150 		dd->link_credits--;
14151 	dd->vcu = cu_to_vcu(hfi1_cu);
14152 	/* enough room for 8 MAD packets plus header - 17K */
14153 	dd->vl15_init = (8 * (2048 + 128)) / vau_to_au(dd->vau);
14154 	if (dd->vl15_init > dd->link_credits)
14155 		dd->vl15_init = dd->link_credits;
14156 
14157 	write_uninitialized_csrs_and_memories(dd);
14158 
14159 	if (HFI1_CAP_IS_KSET(PKEY_CHECK))
14160 		for (i = 0; i < dd->num_pports; i++) {
14161 			struct hfi1_pportdata *ppd = &dd->pport[i];
14162 
14163 			set_partition_keys(ppd);
14164 		}
14165 	init_sc2vl_tables(dd);
14166 }
14167 
14168 static void init_kdeth_qp(struct hfi1_devdata *dd)
14169 {
14170 	/* user changed the KDETH_QP */
14171 	if (kdeth_qp != 0 && kdeth_qp >= 0xff) {
14172 		/* out of range or illegal value */
14173 		dd_dev_err(dd, "Invalid KDETH queue pair prefix, ignoring");
14174 		kdeth_qp = 0;
14175 	}
14176 	if (kdeth_qp == 0)	/* not set, or failed range check */
14177 		kdeth_qp = DEFAULT_KDETH_QP;
14178 
14179 	write_csr(dd, SEND_BTH_QP,
14180 		  (kdeth_qp & SEND_BTH_QP_KDETH_QP_MASK) <<
14181 		  SEND_BTH_QP_KDETH_QP_SHIFT);
14182 
14183 	write_csr(dd, RCV_BTH_QP,
14184 		  (kdeth_qp & RCV_BTH_QP_KDETH_QP_MASK) <<
14185 		  RCV_BTH_QP_KDETH_QP_SHIFT);
14186 }
14187 
14188 /**
14189  * init_qpmap_table
14190  * @dd - device data
14191  * @first_ctxt - first context
14192  * @last_ctxt - first context
14193  *
14194  * This return sets the qpn mapping table that
14195  * is indexed by qpn[8:1].
14196  *
14197  * The routine will round robin the 256 settings
14198  * from first_ctxt to last_ctxt.
14199  *
14200  * The first/last looks ahead to having specialized
14201  * receive contexts for mgmt and bypass.  Normal
14202  * verbs traffic will assumed to be on a range
14203  * of receive contexts.
14204  */
14205 static void init_qpmap_table(struct hfi1_devdata *dd,
14206 			     u32 first_ctxt,
14207 			     u32 last_ctxt)
14208 {
14209 	u64 reg = 0;
14210 	u64 regno = RCV_QP_MAP_TABLE;
14211 	int i;
14212 	u64 ctxt = first_ctxt;
14213 
14214 	for (i = 0; i < 256; i++) {
14215 		reg |= ctxt << (8 * (i % 8));
14216 		ctxt++;
14217 		if (ctxt > last_ctxt)
14218 			ctxt = first_ctxt;
14219 		if (i % 8 == 7) {
14220 			write_csr(dd, regno, reg);
14221 			reg = 0;
14222 			regno += 8;
14223 		}
14224 	}
14225 
14226 	add_rcvctrl(dd, RCV_CTRL_RCV_QP_MAP_ENABLE_SMASK
14227 			| RCV_CTRL_RCV_BYPASS_ENABLE_SMASK);
14228 }
14229 
14230 struct rsm_map_table {
14231 	u64 map[NUM_MAP_REGS];
14232 	unsigned int used;
14233 };
14234 
14235 struct rsm_rule_data {
14236 	u8 offset;
14237 	u8 pkt_type;
14238 	u32 field1_off;
14239 	u32 field2_off;
14240 	u32 index1_off;
14241 	u32 index1_width;
14242 	u32 index2_off;
14243 	u32 index2_width;
14244 	u32 mask1;
14245 	u32 value1;
14246 	u32 mask2;
14247 	u32 value2;
14248 };
14249 
14250 /*
14251  * Return an initialized RMT map table for users to fill in.  OK if it
14252  * returns NULL, indicating no table.
14253  */
14254 static struct rsm_map_table *alloc_rsm_map_table(struct hfi1_devdata *dd)
14255 {
14256 	struct rsm_map_table *rmt;
14257 	u8 rxcontext = is_ax(dd) ? 0 : 0xff;  /* 0 is default if a0 ver. */
14258 
14259 	rmt = kmalloc(sizeof(*rmt), GFP_KERNEL);
14260 	if (rmt) {
14261 		memset(rmt->map, rxcontext, sizeof(rmt->map));
14262 		rmt->used = 0;
14263 	}
14264 
14265 	return rmt;
14266 }
14267 
14268 /*
14269  * Write the final RMT map table to the chip and free the table.  OK if
14270  * table is NULL.
14271  */
14272 static void complete_rsm_map_table(struct hfi1_devdata *dd,
14273 				   struct rsm_map_table *rmt)
14274 {
14275 	int i;
14276 
14277 	if (rmt) {
14278 		/* write table to chip */
14279 		for (i = 0; i < NUM_MAP_REGS; i++)
14280 			write_csr(dd, RCV_RSM_MAP_TABLE + (8 * i), rmt->map[i]);
14281 
14282 		/* enable RSM */
14283 		add_rcvctrl(dd, RCV_CTRL_RCV_RSM_ENABLE_SMASK);
14284 	}
14285 }
14286 
14287 /*
14288  * Add a receive side mapping rule.
14289  */
14290 static void add_rsm_rule(struct hfi1_devdata *dd, u8 rule_index,
14291 			 struct rsm_rule_data *rrd)
14292 {
14293 	write_csr(dd, RCV_RSM_CFG + (8 * rule_index),
14294 		  (u64)rrd->offset << RCV_RSM_CFG_OFFSET_SHIFT |
14295 		  1ull << rule_index | /* enable bit */
14296 		  (u64)rrd->pkt_type << RCV_RSM_CFG_PACKET_TYPE_SHIFT);
14297 	write_csr(dd, RCV_RSM_SELECT + (8 * rule_index),
14298 		  (u64)rrd->field1_off << RCV_RSM_SELECT_FIELD1_OFFSET_SHIFT |
14299 		  (u64)rrd->field2_off << RCV_RSM_SELECT_FIELD2_OFFSET_SHIFT |
14300 		  (u64)rrd->index1_off << RCV_RSM_SELECT_INDEX1_OFFSET_SHIFT |
14301 		  (u64)rrd->index1_width << RCV_RSM_SELECT_INDEX1_WIDTH_SHIFT |
14302 		  (u64)rrd->index2_off << RCV_RSM_SELECT_INDEX2_OFFSET_SHIFT |
14303 		  (u64)rrd->index2_width << RCV_RSM_SELECT_INDEX2_WIDTH_SHIFT);
14304 	write_csr(dd, RCV_RSM_MATCH + (8 * rule_index),
14305 		  (u64)rrd->mask1 << RCV_RSM_MATCH_MASK1_SHIFT |
14306 		  (u64)rrd->value1 << RCV_RSM_MATCH_VALUE1_SHIFT |
14307 		  (u64)rrd->mask2 << RCV_RSM_MATCH_MASK2_SHIFT |
14308 		  (u64)rrd->value2 << RCV_RSM_MATCH_VALUE2_SHIFT);
14309 }
14310 
14311 /*
14312  * Clear a receive side mapping rule.
14313  */
14314 static void clear_rsm_rule(struct hfi1_devdata *dd, u8 rule_index)
14315 {
14316 	write_csr(dd, RCV_RSM_CFG + (8 * rule_index), 0);
14317 	write_csr(dd, RCV_RSM_SELECT + (8 * rule_index), 0);
14318 	write_csr(dd, RCV_RSM_MATCH + (8 * rule_index), 0);
14319 }
14320 
14321 /* return the number of RSM map table entries that will be used for QOS */
14322 static int qos_rmt_entries(struct hfi1_devdata *dd, unsigned int *mp,
14323 			   unsigned int *np)
14324 {
14325 	int i;
14326 	unsigned int m, n;
14327 	u8 max_by_vl = 0;
14328 
14329 	/* is QOS active at all? */
14330 	if (dd->n_krcv_queues <= MIN_KERNEL_KCTXTS ||
14331 	    num_vls == 1 ||
14332 	    krcvqsset <= 1)
14333 		goto no_qos;
14334 
14335 	/* determine bits for qpn */
14336 	for (i = 0; i < min_t(unsigned int, num_vls, krcvqsset); i++)
14337 		if (krcvqs[i] > max_by_vl)
14338 			max_by_vl = krcvqs[i];
14339 	if (max_by_vl > 32)
14340 		goto no_qos;
14341 	m = ilog2(__roundup_pow_of_two(max_by_vl));
14342 
14343 	/* determine bits for vl */
14344 	n = ilog2(__roundup_pow_of_two(num_vls));
14345 
14346 	/* reject if too much is used */
14347 	if ((m + n) > 7)
14348 		goto no_qos;
14349 
14350 	if (mp)
14351 		*mp = m;
14352 	if (np)
14353 		*np = n;
14354 
14355 	return 1 << (m + n);
14356 
14357 no_qos:
14358 	if (mp)
14359 		*mp = 0;
14360 	if (np)
14361 		*np = 0;
14362 	return 0;
14363 }
14364 
14365 /**
14366  * init_qos - init RX qos
14367  * @dd - device data
14368  * @rmt - RSM map table
14369  *
14370  * This routine initializes Rule 0 and the RSM map table to implement
14371  * quality of service (qos).
14372  *
14373  * If all of the limit tests succeed, qos is applied based on the array
14374  * interpretation of krcvqs where entry 0 is VL0.
14375  *
14376  * The number of vl bits (n) and the number of qpn bits (m) are computed to
14377  * feed both the RSM map table and the single rule.
14378  */
14379 static void init_qos(struct hfi1_devdata *dd, struct rsm_map_table *rmt)
14380 {
14381 	struct rsm_rule_data rrd;
14382 	unsigned qpns_per_vl, ctxt, i, qpn, n = 1, m;
14383 	unsigned int rmt_entries;
14384 	u64 reg;
14385 
14386 	if (!rmt)
14387 		goto bail;
14388 	rmt_entries = qos_rmt_entries(dd, &m, &n);
14389 	if (rmt_entries == 0)
14390 		goto bail;
14391 	qpns_per_vl = 1 << m;
14392 
14393 	/* enough room in the map table? */
14394 	rmt_entries = 1 << (m + n);
14395 	if (rmt->used + rmt_entries >= NUM_MAP_ENTRIES)
14396 		goto bail;
14397 
14398 	/* add qos entries to the the RSM map table */
14399 	for (i = 0, ctxt = FIRST_KERNEL_KCTXT; i < num_vls; i++) {
14400 		unsigned tctxt;
14401 
14402 		for (qpn = 0, tctxt = ctxt;
14403 		     krcvqs[i] && qpn < qpns_per_vl; qpn++) {
14404 			unsigned idx, regoff, regidx;
14405 
14406 			/* generate the index the hardware will produce */
14407 			idx = rmt->used + ((qpn << n) ^ i);
14408 			regoff = (idx % 8) * 8;
14409 			regidx = idx / 8;
14410 			/* replace default with context number */
14411 			reg = rmt->map[regidx];
14412 			reg &= ~(RCV_RSM_MAP_TABLE_RCV_CONTEXT_A_MASK
14413 				<< regoff);
14414 			reg |= (u64)(tctxt++) << regoff;
14415 			rmt->map[regidx] = reg;
14416 			if (tctxt == ctxt + krcvqs[i])
14417 				tctxt = ctxt;
14418 		}
14419 		ctxt += krcvqs[i];
14420 	}
14421 
14422 	rrd.offset = rmt->used;
14423 	rrd.pkt_type = 2;
14424 	rrd.field1_off = LRH_BTH_MATCH_OFFSET;
14425 	rrd.field2_off = LRH_SC_MATCH_OFFSET;
14426 	rrd.index1_off = LRH_SC_SELECT_OFFSET;
14427 	rrd.index1_width = n;
14428 	rrd.index2_off = QPN_SELECT_OFFSET;
14429 	rrd.index2_width = m + n;
14430 	rrd.mask1 = LRH_BTH_MASK;
14431 	rrd.value1 = LRH_BTH_VALUE;
14432 	rrd.mask2 = LRH_SC_MASK;
14433 	rrd.value2 = LRH_SC_VALUE;
14434 
14435 	/* add rule 0 */
14436 	add_rsm_rule(dd, RSM_INS_VERBS, &rrd);
14437 
14438 	/* mark RSM map entries as used */
14439 	rmt->used += rmt_entries;
14440 	/* map everything else to the mcast/err/vl15 context */
14441 	init_qpmap_table(dd, HFI1_CTRL_CTXT, HFI1_CTRL_CTXT);
14442 	dd->qos_shift = n + 1;
14443 	return;
14444 bail:
14445 	dd->qos_shift = 1;
14446 	init_qpmap_table(dd, FIRST_KERNEL_KCTXT, dd->n_krcv_queues - 1);
14447 }
14448 
14449 static void init_user_fecn_handling(struct hfi1_devdata *dd,
14450 				    struct rsm_map_table *rmt)
14451 {
14452 	struct rsm_rule_data rrd;
14453 	u64 reg;
14454 	int i, idx, regoff, regidx;
14455 	u8 offset;
14456 
14457 	/* there needs to be enough room in the map table */
14458 	if (rmt->used + dd->num_user_contexts >= NUM_MAP_ENTRIES) {
14459 		dd_dev_err(dd, "User FECN handling disabled - too many user contexts allocated\n");
14460 		return;
14461 	}
14462 
14463 	/*
14464 	 * RSM will extract the destination context as an index into the
14465 	 * map table.  The destination contexts are a sequential block
14466 	 * in the range first_dyn_alloc_ctxt...num_rcv_contexts-1 (inclusive).
14467 	 * Map entries are accessed as offset + extracted value.  Adjust
14468 	 * the added offset so this sequence can be placed anywhere in
14469 	 * the table - as long as the entries themselves do not wrap.
14470 	 * There are only enough bits in offset for the table size, so
14471 	 * start with that to allow for a "negative" offset.
14472 	 */
14473 	offset = (u8)(NUM_MAP_ENTRIES + (int)rmt->used -
14474 						(int)dd->first_dyn_alloc_ctxt);
14475 
14476 	for (i = dd->first_dyn_alloc_ctxt, idx = rmt->used;
14477 				i < dd->num_rcv_contexts; i++, idx++) {
14478 		/* replace with identity mapping */
14479 		regoff = (idx % 8) * 8;
14480 		regidx = idx / 8;
14481 		reg = rmt->map[regidx];
14482 		reg &= ~(RCV_RSM_MAP_TABLE_RCV_CONTEXT_A_MASK << regoff);
14483 		reg |= (u64)i << regoff;
14484 		rmt->map[regidx] = reg;
14485 	}
14486 
14487 	/*
14488 	 * For RSM intercept of Expected FECN packets:
14489 	 * o packet type 0 - expected
14490 	 * o match on F (bit 95), using select/match 1, and
14491 	 * o match on SH (bit 133), using select/match 2.
14492 	 *
14493 	 * Use index 1 to extract the 8-bit receive context from DestQP
14494 	 * (start at bit 64).  Use that as the RSM map table index.
14495 	 */
14496 	rrd.offset = offset;
14497 	rrd.pkt_type = 0;
14498 	rrd.field1_off = 95;
14499 	rrd.field2_off = 133;
14500 	rrd.index1_off = 64;
14501 	rrd.index1_width = 8;
14502 	rrd.index2_off = 0;
14503 	rrd.index2_width = 0;
14504 	rrd.mask1 = 1;
14505 	rrd.value1 = 1;
14506 	rrd.mask2 = 1;
14507 	rrd.value2 = 1;
14508 
14509 	/* add rule 1 */
14510 	add_rsm_rule(dd, RSM_INS_FECN, &rrd);
14511 
14512 	rmt->used += dd->num_user_contexts;
14513 }
14514 
14515 /* Initialize RSM for VNIC */
14516 void hfi1_init_vnic_rsm(struct hfi1_devdata *dd)
14517 {
14518 	u8 i, j;
14519 	u8 ctx_id = 0;
14520 	u64 reg;
14521 	u32 regoff;
14522 	struct rsm_rule_data rrd;
14523 
14524 	if (hfi1_vnic_is_rsm_full(dd, NUM_VNIC_MAP_ENTRIES)) {
14525 		dd_dev_err(dd, "Vnic RSM disabled, rmt entries used = %d\n",
14526 			   dd->vnic.rmt_start);
14527 		return;
14528 	}
14529 
14530 	dev_dbg(&(dd)->pcidev->dev, "Vnic rsm start = %d, end %d\n",
14531 		dd->vnic.rmt_start,
14532 		dd->vnic.rmt_start + NUM_VNIC_MAP_ENTRIES);
14533 
14534 	/* Update RSM mapping table, 32 regs, 256 entries - 1 ctx per byte */
14535 	regoff = RCV_RSM_MAP_TABLE + (dd->vnic.rmt_start / 8) * 8;
14536 	reg = read_csr(dd, regoff);
14537 	for (i = 0; i < NUM_VNIC_MAP_ENTRIES; i++) {
14538 		/* Update map register with vnic context */
14539 		j = (dd->vnic.rmt_start + i) % 8;
14540 		reg &= ~(0xffllu << (j * 8));
14541 		reg |= (u64)dd->vnic.ctxt[ctx_id++]->ctxt << (j * 8);
14542 		/* Wrap up vnic ctx index */
14543 		ctx_id %= dd->vnic.num_ctxt;
14544 		/* Write back map register */
14545 		if (j == 7 || ((i + 1) == NUM_VNIC_MAP_ENTRIES)) {
14546 			dev_dbg(&(dd)->pcidev->dev,
14547 				"Vnic rsm map reg[%d] =0x%llx\n",
14548 				regoff - RCV_RSM_MAP_TABLE, reg);
14549 
14550 			write_csr(dd, regoff, reg);
14551 			regoff += 8;
14552 			if (i < (NUM_VNIC_MAP_ENTRIES - 1))
14553 				reg = read_csr(dd, regoff);
14554 		}
14555 	}
14556 
14557 	/* Add rule for vnic */
14558 	rrd.offset = dd->vnic.rmt_start;
14559 	rrd.pkt_type = 4;
14560 	/* Match 16B packets */
14561 	rrd.field1_off = L2_TYPE_MATCH_OFFSET;
14562 	rrd.mask1 = L2_TYPE_MASK;
14563 	rrd.value1 = L2_16B_VALUE;
14564 	/* Match ETH L4 packets */
14565 	rrd.field2_off = L4_TYPE_MATCH_OFFSET;
14566 	rrd.mask2 = L4_16B_TYPE_MASK;
14567 	rrd.value2 = L4_16B_ETH_VALUE;
14568 	/* Calc context from veswid and entropy */
14569 	rrd.index1_off = L4_16B_HDR_VESWID_OFFSET;
14570 	rrd.index1_width = ilog2(NUM_VNIC_MAP_ENTRIES);
14571 	rrd.index2_off = L2_16B_ENTROPY_OFFSET;
14572 	rrd.index2_width = ilog2(NUM_VNIC_MAP_ENTRIES);
14573 	add_rsm_rule(dd, RSM_INS_VNIC, &rrd);
14574 
14575 	/* Enable RSM if not already enabled */
14576 	add_rcvctrl(dd, RCV_CTRL_RCV_RSM_ENABLE_SMASK);
14577 }
14578 
14579 void hfi1_deinit_vnic_rsm(struct hfi1_devdata *dd)
14580 {
14581 	clear_rsm_rule(dd, RSM_INS_VNIC);
14582 
14583 	/* Disable RSM if used only by vnic */
14584 	if (dd->vnic.rmt_start == 0)
14585 		clear_rcvctrl(dd, RCV_CTRL_RCV_RSM_ENABLE_SMASK);
14586 }
14587 
14588 static void init_rxe(struct hfi1_devdata *dd)
14589 {
14590 	struct rsm_map_table *rmt;
14591 	u64 val;
14592 
14593 	/* enable all receive errors */
14594 	write_csr(dd, RCV_ERR_MASK, ~0ull);
14595 
14596 	rmt = alloc_rsm_map_table(dd);
14597 	/* set up QOS, including the QPN map table */
14598 	init_qos(dd, rmt);
14599 	init_user_fecn_handling(dd, rmt);
14600 	complete_rsm_map_table(dd, rmt);
14601 	/* record number of used rsm map entries for vnic */
14602 	dd->vnic.rmt_start = rmt->used;
14603 	kfree(rmt);
14604 
14605 	/*
14606 	 * make sure RcvCtrl.RcvWcb <= PCIe Device Control
14607 	 * Register Max_Payload_Size (PCI_EXP_DEVCTL in Linux PCIe config
14608 	 * space, PciCfgCap2.MaxPayloadSize in HFI).  There is only one
14609 	 * invalid configuration: RcvCtrl.RcvWcb set to its max of 256 and
14610 	 * Max_PayLoad_Size set to its minimum of 128.
14611 	 *
14612 	 * Presently, RcvCtrl.RcvWcb is not modified from its default of 0
14613 	 * (64 bytes).  Max_Payload_Size is possibly modified upward in
14614 	 * tune_pcie_caps() which is called after this routine.
14615 	 */
14616 
14617 	/* Have 16 bytes (4DW) of bypass header available in header queue */
14618 	val = read_csr(dd, RCV_BYPASS);
14619 	val |= (4ull << 16);
14620 	write_csr(dd, RCV_BYPASS, val);
14621 }
14622 
14623 static void init_other(struct hfi1_devdata *dd)
14624 {
14625 	/* enable all CCE errors */
14626 	write_csr(dd, CCE_ERR_MASK, ~0ull);
14627 	/* enable *some* Misc errors */
14628 	write_csr(dd, MISC_ERR_MASK, DRIVER_MISC_MASK);
14629 	/* enable all DC errors, except LCB */
14630 	write_csr(dd, DCC_ERR_FLG_EN, ~0ull);
14631 	write_csr(dd, DC_DC8051_ERR_EN, ~0ull);
14632 }
14633 
14634 /*
14635  * Fill out the given AU table using the given CU.  A CU is defined in terms
14636  * AUs.  The table is a an encoding: given the index, how many AUs does that
14637  * represent?
14638  *
14639  * NOTE: Assumes that the register layout is the same for the
14640  * local and remote tables.
14641  */
14642 static void assign_cm_au_table(struct hfi1_devdata *dd, u32 cu,
14643 			       u32 csr0to3, u32 csr4to7)
14644 {
14645 	write_csr(dd, csr0to3,
14646 		  0ull << SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE0_SHIFT |
14647 		  1ull << SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE1_SHIFT |
14648 		  2ull * cu <<
14649 		  SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE2_SHIFT |
14650 		  4ull * cu <<
14651 		  SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE3_SHIFT);
14652 	write_csr(dd, csr4to7,
14653 		  8ull * cu <<
14654 		  SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE4_SHIFT |
14655 		  16ull * cu <<
14656 		  SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE5_SHIFT |
14657 		  32ull * cu <<
14658 		  SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE6_SHIFT |
14659 		  64ull * cu <<
14660 		  SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE7_SHIFT);
14661 }
14662 
14663 static void assign_local_cm_au_table(struct hfi1_devdata *dd, u8 vcu)
14664 {
14665 	assign_cm_au_table(dd, vcu_to_cu(vcu), SEND_CM_LOCAL_AU_TABLE0_TO3,
14666 			   SEND_CM_LOCAL_AU_TABLE4_TO7);
14667 }
14668 
14669 void assign_remote_cm_au_table(struct hfi1_devdata *dd, u8 vcu)
14670 {
14671 	assign_cm_au_table(dd, vcu_to_cu(vcu), SEND_CM_REMOTE_AU_TABLE0_TO3,
14672 			   SEND_CM_REMOTE_AU_TABLE4_TO7);
14673 }
14674 
14675 static void init_txe(struct hfi1_devdata *dd)
14676 {
14677 	int i;
14678 
14679 	/* enable all PIO, SDMA, general, and Egress errors */
14680 	write_csr(dd, SEND_PIO_ERR_MASK, ~0ull);
14681 	write_csr(dd, SEND_DMA_ERR_MASK, ~0ull);
14682 	write_csr(dd, SEND_ERR_MASK, ~0ull);
14683 	write_csr(dd, SEND_EGRESS_ERR_MASK, ~0ull);
14684 
14685 	/* enable all per-context and per-SDMA engine errors */
14686 	for (i = 0; i < dd->chip_send_contexts; i++)
14687 		write_kctxt_csr(dd, i, SEND_CTXT_ERR_MASK, ~0ull);
14688 	for (i = 0; i < dd->chip_sdma_engines; i++)
14689 		write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_MASK, ~0ull);
14690 
14691 	/* set the local CU to AU mapping */
14692 	assign_local_cm_au_table(dd, dd->vcu);
14693 
14694 	/*
14695 	 * Set reasonable default for Credit Return Timer
14696 	 * Don't set on Simulator - causes it to choke.
14697 	 */
14698 	if (dd->icode != ICODE_FUNCTIONAL_SIMULATOR)
14699 		write_csr(dd, SEND_CM_TIMER_CTRL, HFI1_CREDIT_RETURN_RATE);
14700 }
14701 
14702 int hfi1_set_ctxt_jkey(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd,
14703 		       u16 jkey)
14704 {
14705 	u8 hw_ctxt;
14706 	u64 reg;
14707 
14708 	if (!rcd || !rcd->sc)
14709 		return -EINVAL;
14710 
14711 	hw_ctxt = rcd->sc->hw_context;
14712 	reg = SEND_CTXT_CHECK_JOB_KEY_MASK_SMASK | /* mask is always 1's */
14713 		((jkey & SEND_CTXT_CHECK_JOB_KEY_VALUE_MASK) <<
14714 		 SEND_CTXT_CHECK_JOB_KEY_VALUE_SHIFT);
14715 	/* JOB_KEY_ALLOW_PERMISSIVE is not allowed by default */
14716 	if (HFI1_CAP_KGET_MASK(rcd->flags, ALLOW_PERM_JKEY))
14717 		reg |= SEND_CTXT_CHECK_JOB_KEY_ALLOW_PERMISSIVE_SMASK;
14718 	write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_JOB_KEY, reg);
14719 	/*
14720 	 * Enable send-side J_KEY integrity check, unless this is A0 h/w
14721 	 */
14722 	if (!is_ax(dd)) {
14723 		reg = read_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE);
14724 		reg |= SEND_CTXT_CHECK_ENABLE_CHECK_JOB_KEY_SMASK;
14725 		write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE, reg);
14726 	}
14727 
14728 	/* Enable J_KEY check on receive context. */
14729 	reg = RCV_KEY_CTRL_JOB_KEY_ENABLE_SMASK |
14730 		((jkey & RCV_KEY_CTRL_JOB_KEY_VALUE_MASK) <<
14731 		 RCV_KEY_CTRL_JOB_KEY_VALUE_SHIFT);
14732 	write_kctxt_csr(dd, rcd->ctxt, RCV_KEY_CTRL, reg);
14733 
14734 	return 0;
14735 }
14736 
14737 int hfi1_clear_ctxt_jkey(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd)
14738 {
14739 	u8 hw_ctxt;
14740 	u64 reg;
14741 
14742 	if (!rcd || !rcd->sc)
14743 		return -EINVAL;
14744 
14745 	hw_ctxt = rcd->sc->hw_context;
14746 	write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_JOB_KEY, 0);
14747 	/*
14748 	 * Disable send-side J_KEY integrity check, unless this is A0 h/w.
14749 	 * This check would not have been enabled for A0 h/w, see
14750 	 * set_ctxt_jkey().
14751 	 */
14752 	if (!is_ax(dd)) {
14753 		reg = read_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE);
14754 		reg &= ~SEND_CTXT_CHECK_ENABLE_CHECK_JOB_KEY_SMASK;
14755 		write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE, reg);
14756 	}
14757 	/* Turn off the J_KEY on the receive side */
14758 	write_kctxt_csr(dd, rcd->ctxt, RCV_KEY_CTRL, 0);
14759 
14760 	return 0;
14761 }
14762 
14763 int hfi1_set_ctxt_pkey(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd,
14764 		       u16 pkey)
14765 {
14766 	u8 hw_ctxt;
14767 	u64 reg;
14768 
14769 	if (!rcd || !rcd->sc)
14770 		return -EINVAL;
14771 
14772 	hw_ctxt = rcd->sc->hw_context;
14773 	reg = ((u64)pkey & SEND_CTXT_CHECK_PARTITION_KEY_VALUE_MASK) <<
14774 		SEND_CTXT_CHECK_PARTITION_KEY_VALUE_SHIFT;
14775 	write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_PARTITION_KEY, reg);
14776 	reg = read_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE);
14777 	reg |= SEND_CTXT_CHECK_ENABLE_CHECK_PARTITION_KEY_SMASK;
14778 	reg &= ~SEND_CTXT_CHECK_ENABLE_DISALLOW_KDETH_PACKETS_SMASK;
14779 	write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE, reg);
14780 
14781 	return 0;
14782 }
14783 
14784 int hfi1_clear_ctxt_pkey(struct hfi1_devdata *dd, struct hfi1_ctxtdata *ctxt)
14785 {
14786 	u8 hw_ctxt;
14787 	u64 reg;
14788 
14789 	if (!ctxt || !ctxt->sc)
14790 		return -EINVAL;
14791 
14792 	hw_ctxt = ctxt->sc->hw_context;
14793 	reg = read_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE);
14794 	reg &= ~SEND_CTXT_CHECK_ENABLE_CHECK_PARTITION_KEY_SMASK;
14795 	write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE, reg);
14796 	write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_PARTITION_KEY, 0);
14797 
14798 	return 0;
14799 }
14800 
14801 /*
14802  * Start doing the clean up the the chip. Our clean up happens in multiple
14803  * stages and this is just the first.
14804  */
14805 void hfi1_start_cleanup(struct hfi1_devdata *dd)
14806 {
14807 	aspm_exit(dd);
14808 	free_cntrs(dd);
14809 	free_rcverr(dd);
14810 	finish_chip_resources(dd);
14811 }
14812 
14813 #define HFI_BASE_GUID(dev) \
14814 	((dev)->base_guid & ~(1ULL << GUID_HFI_INDEX_SHIFT))
14815 
14816 /*
14817  * Information can be shared between the two HFIs on the same ASIC
14818  * in the same OS.  This function finds the peer device and sets
14819  * up a shared structure.
14820  */
14821 static int init_asic_data(struct hfi1_devdata *dd)
14822 {
14823 	unsigned long flags;
14824 	struct hfi1_devdata *tmp, *peer = NULL;
14825 	struct hfi1_asic_data *asic_data;
14826 	int ret = 0;
14827 
14828 	/* pre-allocate the asic structure in case we are the first device */
14829 	asic_data = kzalloc(sizeof(*dd->asic_data), GFP_KERNEL);
14830 	if (!asic_data)
14831 		return -ENOMEM;
14832 
14833 	spin_lock_irqsave(&hfi1_devs_lock, flags);
14834 	/* Find our peer device */
14835 	list_for_each_entry(tmp, &hfi1_dev_list, list) {
14836 		if ((HFI_BASE_GUID(dd) == HFI_BASE_GUID(tmp)) &&
14837 		    dd->unit != tmp->unit) {
14838 			peer = tmp;
14839 			break;
14840 		}
14841 	}
14842 
14843 	if (peer) {
14844 		/* use already allocated structure */
14845 		dd->asic_data = peer->asic_data;
14846 		kfree(asic_data);
14847 	} else {
14848 		dd->asic_data = asic_data;
14849 		mutex_init(&dd->asic_data->asic_resource_mutex);
14850 	}
14851 	dd->asic_data->dds[dd->hfi1_id] = dd; /* self back-pointer */
14852 	spin_unlock_irqrestore(&hfi1_devs_lock, flags);
14853 
14854 	/* first one through - set up i2c devices */
14855 	if (!peer)
14856 		ret = set_up_i2c(dd, dd->asic_data);
14857 
14858 	return ret;
14859 }
14860 
14861 /*
14862  * Set dd->boardname.  Use a generic name if a name is not returned from
14863  * EFI variable space.
14864  *
14865  * Return 0 on success, -ENOMEM if space could not be allocated.
14866  */
14867 static int obtain_boardname(struct hfi1_devdata *dd)
14868 {
14869 	/* generic board description */
14870 	const char generic[] =
14871 		"Intel Omni-Path Host Fabric Interface Adapter 100 Series";
14872 	unsigned long size;
14873 	int ret;
14874 
14875 	ret = read_hfi1_efi_var(dd, "description", &size,
14876 				(void **)&dd->boardname);
14877 	if (ret) {
14878 		dd_dev_info(dd, "Board description not found\n");
14879 		/* use generic description */
14880 		dd->boardname = kstrdup(generic, GFP_KERNEL);
14881 		if (!dd->boardname)
14882 			return -ENOMEM;
14883 	}
14884 	return 0;
14885 }
14886 
14887 /*
14888  * Check the interrupt registers to make sure that they are mapped correctly.
14889  * It is intended to help user identify any mismapping by VMM when the driver
14890  * is running in a VM. This function should only be called before interrupt
14891  * is set up properly.
14892  *
14893  * Return 0 on success, -EINVAL on failure.
14894  */
14895 static int check_int_registers(struct hfi1_devdata *dd)
14896 {
14897 	u64 reg;
14898 	u64 all_bits = ~(u64)0;
14899 	u64 mask;
14900 
14901 	/* Clear CceIntMask[0] to avoid raising any interrupts */
14902 	mask = read_csr(dd, CCE_INT_MASK);
14903 	write_csr(dd, CCE_INT_MASK, 0ull);
14904 	reg = read_csr(dd, CCE_INT_MASK);
14905 	if (reg)
14906 		goto err_exit;
14907 
14908 	/* Clear all interrupt status bits */
14909 	write_csr(dd, CCE_INT_CLEAR, all_bits);
14910 	reg = read_csr(dd, CCE_INT_STATUS);
14911 	if (reg)
14912 		goto err_exit;
14913 
14914 	/* Set all interrupt status bits */
14915 	write_csr(dd, CCE_INT_FORCE, all_bits);
14916 	reg = read_csr(dd, CCE_INT_STATUS);
14917 	if (reg != all_bits)
14918 		goto err_exit;
14919 
14920 	/* Restore the interrupt mask */
14921 	write_csr(dd, CCE_INT_CLEAR, all_bits);
14922 	write_csr(dd, CCE_INT_MASK, mask);
14923 
14924 	return 0;
14925 err_exit:
14926 	write_csr(dd, CCE_INT_MASK, mask);
14927 	dd_dev_err(dd, "Interrupt registers not properly mapped by VMM\n");
14928 	return -EINVAL;
14929 }
14930 
14931 /**
14932  * Allocate and initialize the device structure for the hfi.
14933  * @dev: the pci_dev for hfi1_ib device
14934  * @ent: pci_device_id struct for this dev
14935  *
14936  * Also allocates, initializes, and returns the devdata struct for this
14937  * device instance
14938  *
14939  * This is global, and is called directly at init to set up the
14940  * chip-specific function pointers for later use.
14941  */
14942 struct hfi1_devdata *hfi1_init_dd(struct pci_dev *pdev,
14943 				  const struct pci_device_id *ent)
14944 {
14945 	struct hfi1_devdata *dd;
14946 	struct hfi1_pportdata *ppd;
14947 	u64 reg;
14948 	int i, ret;
14949 	static const char * const inames[] = { /* implementation names */
14950 		"RTL silicon",
14951 		"RTL VCS simulation",
14952 		"RTL FPGA emulation",
14953 		"Functional simulator"
14954 	};
14955 	struct pci_dev *parent = pdev->bus->self;
14956 
14957 	dd = hfi1_alloc_devdata(pdev, NUM_IB_PORTS *
14958 				sizeof(struct hfi1_pportdata));
14959 	if (IS_ERR(dd))
14960 		goto bail;
14961 	ppd = dd->pport;
14962 	for (i = 0; i < dd->num_pports; i++, ppd++) {
14963 		int vl;
14964 		/* init common fields */
14965 		hfi1_init_pportdata(pdev, ppd, dd, 0, 1);
14966 		/* DC supports 4 link widths */
14967 		ppd->link_width_supported =
14968 			OPA_LINK_WIDTH_1X | OPA_LINK_WIDTH_2X |
14969 			OPA_LINK_WIDTH_3X | OPA_LINK_WIDTH_4X;
14970 		ppd->link_width_downgrade_supported =
14971 			ppd->link_width_supported;
14972 		/* start out enabling only 4X */
14973 		ppd->link_width_enabled = OPA_LINK_WIDTH_4X;
14974 		ppd->link_width_downgrade_enabled =
14975 					ppd->link_width_downgrade_supported;
14976 		/* link width active is 0 when link is down */
14977 		/* link width downgrade active is 0 when link is down */
14978 
14979 		if (num_vls < HFI1_MIN_VLS_SUPPORTED ||
14980 		    num_vls > HFI1_MAX_VLS_SUPPORTED) {
14981 			dd_dev_err(dd, "Invalid num_vls %u, using %u VLs\n",
14982 				   num_vls, HFI1_MAX_VLS_SUPPORTED);
14983 			num_vls = HFI1_MAX_VLS_SUPPORTED;
14984 		}
14985 		ppd->vls_supported = num_vls;
14986 		ppd->vls_operational = ppd->vls_supported;
14987 		/* Set the default MTU. */
14988 		for (vl = 0; vl < num_vls; vl++)
14989 			dd->vld[vl].mtu = hfi1_max_mtu;
14990 		dd->vld[15].mtu = MAX_MAD_PACKET;
14991 		/*
14992 		 * Set the initial values to reasonable default, will be set
14993 		 * for real when link is up.
14994 		 */
14995 		ppd->overrun_threshold = 0x4;
14996 		ppd->phy_error_threshold = 0xf;
14997 		ppd->port_crc_mode_enabled = link_crc_mask;
14998 		/* initialize supported LTP CRC mode */
14999 		ppd->port_ltp_crc_mode = cap_to_port_ltp(link_crc_mask) << 8;
15000 		/* initialize enabled LTP CRC mode */
15001 		ppd->port_ltp_crc_mode |= cap_to_port_ltp(link_crc_mask) << 4;
15002 		/* start in offline */
15003 		ppd->host_link_state = HLS_DN_OFFLINE;
15004 		init_vl_arb_caches(ppd);
15005 	}
15006 
15007 	/*
15008 	 * Do remaining PCIe setup and save PCIe values in dd.
15009 	 * Any error printing is already done by the init code.
15010 	 * On return, we have the chip mapped.
15011 	 */
15012 	ret = hfi1_pcie_ddinit(dd, pdev);
15013 	if (ret < 0)
15014 		goto bail_free;
15015 
15016 	/* Save PCI space registers to rewrite after device reset */
15017 	ret = save_pci_variables(dd);
15018 	if (ret < 0)
15019 		goto bail_cleanup;
15020 
15021 	/* verify that reads actually work, save revision for reset check */
15022 	dd->revision = read_csr(dd, CCE_REVISION);
15023 	if (dd->revision == ~(u64)0) {
15024 		dd_dev_err(dd, "cannot read chip CSRs\n");
15025 		ret = -EINVAL;
15026 		goto bail_cleanup;
15027 	}
15028 	dd->majrev = (dd->revision >> CCE_REVISION_CHIP_REV_MAJOR_SHIFT)
15029 			& CCE_REVISION_CHIP_REV_MAJOR_MASK;
15030 	dd->minrev = (dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT)
15031 			& CCE_REVISION_CHIP_REV_MINOR_MASK;
15032 
15033 	/*
15034 	 * Check interrupt registers mapping if the driver has no access to
15035 	 * the upstream component. In this case, it is likely that the driver
15036 	 * is running in a VM.
15037 	 */
15038 	if (!parent) {
15039 		ret = check_int_registers(dd);
15040 		if (ret)
15041 			goto bail_cleanup;
15042 	}
15043 
15044 	/*
15045 	 * obtain the hardware ID - NOT related to unit, which is a
15046 	 * software enumeration
15047 	 */
15048 	reg = read_csr(dd, CCE_REVISION2);
15049 	dd->hfi1_id = (reg >> CCE_REVISION2_HFI_ID_SHIFT)
15050 					& CCE_REVISION2_HFI_ID_MASK;
15051 	/* the variable size will remove unwanted bits */
15052 	dd->icode = reg >> CCE_REVISION2_IMPL_CODE_SHIFT;
15053 	dd->irev = reg >> CCE_REVISION2_IMPL_REVISION_SHIFT;
15054 	dd_dev_info(dd, "Implementation: %s, revision 0x%x\n",
15055 		    dd->icode < ARRAY_SIZE(inames) ?
15056 		    inames[dd->icode] : "unknown", (int)dd->irev);
15057 
15058 	/* speeds the hardware can support */
15059 	dd->pport->link_speed_supported = OPA_LINK_SPEED_25G;
15060 	/* speeds allowed to run at */
15061 	dd->pport->link_speed_enabled = dd->pport->link_speed_supported;
15062 	/* give a reasonable active value, will be set on link up */
15063 	dd->pport->link_speed_active = OPA_LINK_SPEED_25G;
15064 
15065 	dd->chip_rcv_contexts = read_csr(dd, RCV_CONTEXTS);
15066 	dd->chip_send_contexts = read_csr(dd, SEND_CONTEXTS);
15067 	dd->chip_sdma_engines = read_csr(dd, SEND_DMA_ENGINES);
15068 	dd->chip_pio_mem_size = read_csr(dd, SEND_PIO_MEM_SIZE);
15069 	dd->chip_sdma_mem_size = read_csr(dd, SEND_DMA_MEM_SIZE);
15070 	/* fix up link widths for emulation _p */
15071 	ppd = dd->pport;
15072 	if (dd->icode == ICODE_FPGA_EMULATION && is_emulator_p(dd)) {
15073 		ppd->link_width_supported =
15074 			ppd->link_width_enabled =
15075 			ppd->link_width_downgrade_supported =
15076 			ppd->link_width_downgrade_enabled =
15077 				OPA_LINK_WIDTH_1X;
15078 	}
15079 	/* insure num_vls isn't larger than number of sdma engines */
15080 	if (HFI1_CAP_IS_KSET(SDMA) && num_vls > dd->chip_sdma_engines) {
15081 		dd_dev_err(dd, "num_vls %u too large, using %u VLs\n",
15082 			   num_vls, dd->chip_sdma_engines);
15083 		num_vls = dd->chip_sdma_engines;
15084 		ppd->vls_supported = dd->chip_sdma_engines;
15085 		ppd->vls_operational = ppd->vls_supported;
15086 	}
15087 
15088 	/*
15089 	 * Convert the ns parameter to the 64 * cclocks used in the CSR.
15090 	 * Limit the max if larger than the field holds.  If timeout is
15091 	 * non-zero, then the calculated field will be at least 1.
15092 	 *
15093 	 * Must be after icode is set up - the cclock rate depends
15094 	 * on knowing the hardware being used.
15095 	 */
15096 	dd->rcv_intr_timeout_csr = ns_to_cclock(dd, rcv_intr_timeout) / 64;
15097 	if (dd->rcv_intr_timeout_csr >
15098 			RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_MASK)
15099 		dd->rcv_intr_timeout_csr =
15100 			RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_MASK;
15101 	else if (dd->rcv_intr_timeout_csr == 0 && rcv_intr_timeout)
15102 		dd->rcv_intr_timeout_csr = 1;
15103 
15104 	/* needs to be done before we look for the peer device */
15105 	read_guid(dd);
15106 
15107 	/* set up shared ASIC data with peer device */
15108 	ret = init_asic_data(dd);
15109 	if (ret)
15110 		goto bail_cleanup;
15111 
15112 	/* obtain chip sizes, reset chip CSRs */
15113 	ret = init_chip(dd);
15114 	if (ret)
15115 		goto bail_cleanup;
15116 
15117 	/* read in the PCIe link speed information */
15118 	ret = pcie_speeds(dd);
15119 	if (ret)
15120 		goto bail_cleanup;
15121 
15122 	/* call before get_platform_config(), after init_chip_resources() */
15123 	ret = eprom_init(dd);
15124 	if (ret)
15125 		goto bail_free_rcverr;
15126 
15127 	/* Needs to be called before hfi1_firmware_init */
15128 	get_platform_config(dd);
15129 
15130 	/* read in firmware */
15131 	ret = hfi1_firmware_init(dd);
15132 	if (ret)
15133 		goto bail_cleanup;
15134 
15135 	/*
15136 	 * In general, the PCIe Gen3 transition must occur after the
15137 	 * chip has been idled (so it won't initiate any PCIe transactions
15138 	 * e.g. an interrupt) and before the driver changes any registers
15139 	 * (the transition will reset the registers).
15140 	 *
15141 	 * In particular, place this call after:
15142 	 * - init_chip()     - the chip will not initiate any PCIe transactions
15143 	 * - pcie_speeds()   - reads the current link speed
15144 	 * - hfi1_firmware_init() - the needed firmware is ready to be
15145 	 *			    downloaded
15146 	 */
15147 	ret = do_pcie_gen3_transition(dd);
15148 	if (ret)
15149 		goto bail_cleanup;
15150 
15151 	/* start setting dd values and adjusting CSRs */
15152 	init_early_variables(dd);
15153 
15154 	parse_platform_config(dd);
15155 
15156 	ret = obtain_boardname(dd);
15157 	if (ret)
15158 		goto bail_cleanup;
15159 
15160 	snprintf(dd->boardversion, BOARD_VERS_MAX,
15161 		 "ChipABI %u.%u, ChipRev %u.%u, SW Compat %llu\n",
15162 		 HFI1_CHIP_VERS_MAJ, HFI1_CHIP_VERS_MIN,
15163 		 (u32)dd->majrev,
15164 		 (u32)dd->minrev,
15165 		 (dd->revision >> CCE_REVISION_SW_SHIFT)
15166 		    & CCE_REVISION_SW_MASK);
15167 
15168 	ret = set_up_context_variables(dd);
15169 	if (ret)
15170 		goto bail_cleanup;
15171 
15172 	/* set initial RXE CSRs */
15173 	init_rxe(dd);
15174 	/* set initial TXE CSRs */
15175 	init_txe(dd);
15176 	/* set initial non-RXE, non-TXE CSRs */
15177 	init_other(dd);
15178 	/* set up KDETH QP prefix in both RX and TX CSRs */
15179 	init_kdeth_qp(dd);
15180 
15181 	ret = hfi1_dev_affinity_init(dd);
15182 	if (ret)
15183 		goto bail_cleanup;
15184 
15185 	/* send contexts must be set up before receive contexts */
15186 	ret = init_send_contexts(dd);
15187 	if (ret)
15188 		goto bail_cleanup;
15189 
15190 	ret = hfi1_create_kctxts(dd);
15191 	if (ret)
15192 		goto bail_cleanup;
15193 
15194 	/*
15195 	 * Initialize aspm, to be done after gen3 transition and setting up
15196 	 * contexts and before enabling interrupts
15197 	 */
15198 	aspm_init(dd);
15199 
15200 	dd->rcvhdrsize = DEFAULT_RCVHDRSIZE;
15201 	/*
15202 	 * rcd[0] is guaranteed to be valid by this point. Also, all
15203 	 * context are using the same value, as per the module parameter.
15204 	 */
15205 	dd->rhf_offset = dd->rcd[0]->rcvhdrqentsize - sizeof(u64) / sizeof(u32);
15206 
15207 	ret = init_pervl_scs(dd);
15208 	if (ret)
15209 		goto bail_cleanup;
15210 
15211 	/* sdma init */
15212 	for (i = 0; i < dd->num_pports; ++i) {
15213 		ret = sdma_init(dd, i);
15214 		if (ret)
15215 			goto bail_cleanup;
15216 	}
15217 
15218 	/* use contexts created by hfi1_create_kctxts */
15219 	ret = set_up_interrupts(dd);
15220 	if (ret)
15221 		goto bail_cleanup;
15222 
15223 	/* set up LCB access - must be after set_up_interrupts() */
15224 	init_lcb_access(dd);
15225 
15226 	/*
15227 	 * Serial number is created from the base guid:
15228 	 * [27:24] = base guid [38:35]
15229 	 * [23: 0] = base guid [23: 0]
15230 	 */
15231 	snprintf(dd->serial, SERIAL_MAX, "0x%08llx\n",
15232 		 (dd->base_guid & 0xFFFFFF) |
15233 		     ((dd->base_guid >> 11) & 0xF000000));
15234 
15235 	dd->oui1 = dd->base_guid >> 56 & 0xFF;
15236 	dd->oui2 = dd->base_guid >> 48 & 0xFF;
15237 	dd->oui3 = dd->base_guid >> 40 & 0xFF;
15238 
15239 	ret = load_firmware(dd); /* asymmetric with dispose_firmware() */
15240 	if (ret)
15241 		goto bail_clear_intr;
15242 
15243 	thermal_init(dd);
15244 
15245 	ret = init_cntrs(dd);
15246 	if (ret)
15247 		goto bail_clear_intr;
15248 
15249 	ret = init_rcverr(dd);
15250 	if (ret)
15251 		goto bail_free_cntrs;
15252 
15253 	init_completion(&dd->user_comp);
15254 
15255 	/* The user refcount starts with one to inidicate an active device */
15256 	atomic_set(&dd->user_refcount, 1);
15257 
15258 	goto bail;
15259 
15260 bail_free_rcverr:
15261 	free_rcverr(dd);
15262 bail_free_cntrs:
15263 	free_cntrs(dd);
15264 bail_clear_intr:
15265 	hfi1_clean_up_interrupts(dd);
15266 bail_cleanup:
15267 	hfi1_pcie_ddcleanup(dd);
15268 bail_free:
15269 	hfi1_free_devdata(dd);
15270 	dd = ERR_PTR(ret);
15271 bail:
15272 	return dd;
15273 }
15274 
15275 static u16 delay_cycles(struct hfi1_pportdata *ppd, u32 desired_egress_rate,
15276 			u32 dw_len)
15277 {
15278 	u32 delta_cycles;
15279 	u32 current_egress_rate = ppd->current_egress_rate;
15280 	/* rates here are in units of 10^6 bits/sec */
15281 
15282 	if (desired_egress_rate == -1)
15283 		return 0; /* shouldn't happen */
15284 
15285 	if (desired_egress_rate >= current_egress_rate)
15286 		return 0; /* we can't help go faster, only slower */
15287 
15288 	delta_cycles = egress_cycles(dw_len * 4, desired_egress_rate) -
15289 			egress_cycles(dw_len * 4, current_egress_rate);
15290 
15291 	return (u16)delta_cycles;
15292 }
15293 
15294 /**
15295  * create_pbc - build a pbc for transmission
15296  * @flags: special case flags or-ed in built pbc
15297  * @srate: static rate
15298  * @vl: vl
15299  * @dwlen: dword length (header words + data words + pbc words)
15300  *
15301  * Create a PBC with the given flags, rate, VL, and length.
15302  *
15303  * NOTE: The PBC created will not insert any HCRC - all callers but one are
15304  * for verbs, which does not use this PSM feature.  The lone other caller
15305  * is for the diagnostic interface which calls this if the user does not
15306  * supply their own PBC.
15307  */
15308 u64 create_pbc(struct hfi1_pportdata *ppd, u64 flags, int srate_mbs, u32 vl,
15309 	       u32 dw_len)
15310 {
15311 	u64 pbc, delay = 0;
15312 
15313 	if (unlikely(srate_mbs))
15314 		delay = delay_cycles(ppd, srate_mbs, dw_len);
15315 
15316 	pbc = flags
15317 		| (delay << PBC_STATIC_RATE_CONTROL_COUNT_SHIFT)
15318 		| ((u64)PBC_IHCRC_NONE << PBC_INSERT_HCRC_SHIFT)
15319 		| (vl & PBC_VL_MASK) << PBC_VL_SHIFT
15320 		| (dw_len & PBC_LENGTH_DWS_MASK)
15321 			<< PBC_LENGTH_DWS_SHIFT;
15322 
15323 	return pbc;
15324 }
15325 
15326 #define SBUS_THERMAL    0x4f
15327 #define SBUS_THERM_MONITOR_MODE 0x1
15328 
15329 #define THERM_FAILURE(dev, ret, reason) \
15330 	dd_dev_err((dd),						\
15331 		   "Thermal sensor initialization failed: %s (%d)\n",	\
15332 		   (reason), (ret))
15333 
15334 /*
15335  * Initialize the thermal sensor.
15336  *
15337  * After initialization, enable polling of thermal sensor through
15338  * SBus interface. In order for this to work, the SBus Master
15339  * firmware has to be loaded due to the fact that the HW polling
15340  * logic uses SBus interrupts, which are not supported with
15341  * default firmware. Otherwise, no data will be returned through
15342  * the ASIC_STS_THERM CSR.
15343  */
15344 static int thermal_init(struct hfi1_devdata *dd)
15345 {
15346 	int ret = 0;
15347 
15348 	if (dd->icode != ICODE_RTL_SILICON ||
15349 	    check_chip_resource(dd, CR_THERM_INIT, NULL))
15350 		return ret;
15351 
15352 	ret = acquire_chip_resource(dd, CR_SBUS, SBUS_TIMEOUT);
15353 	if (ret) {
15354 		THERM_FAILURE(dd, ret, "Acquire SBus");
15355 		return ret;
15356 	}
15357 
15358 	dd_dev_info(dd, "Initializing thermal sensor\n");
15359 	/* Disable polling of thermal readings */
15360 	write_csr(dd, ASIC_CFG_THERM_POLL_EN, 0x0);
15361 	msleep(100);
15362 	/* Thermal Sensor Initialization */
15363 	/*    Step 1: Reset the Thermal SBus Receiver */
15364 	ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0,
15365 				RESET_SBUS_RECEIVER, 0);
15366 	if (ret) {
15367 		THERM_FAILURE(dd, ret, "Bus Reset");
15368 		goto done;
15369 	}
15370 	/*    Step 2: Set Reset bit in Thermal block */
15371 	ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0,
15372 				WRITE_SBUS_RECEIVER, 0x1);
15373 	if (ret) {
15374 		THERM_FAILURE(dd, ret, "Therm Block Reset");
15375 		goto done;
15376 	}
15377 	/*    Step 3: Write clock divider value (100MHz -> 2MHz) */
15378 	ret = sbus_request_slow(dd, SBUS_THERMAL, 0x1,
15379 				WRITE_SBUS_RECEIVER, 0x32);
15380 	if (ret) {
15381 		THERM_FAILURE(dd, ret, "Write Clock Div");
15382 		goto done;
15383 	}
15384 	/*    Step 4: Select temperature mode */
15385 	ret = sbus_request_slow(dd, SBUS_THERMAL, 0x3,
15386 				WRITE_SBUS_RECEIVER,
15387 				SBUS_THERM_MONITOR_MODE);
15388 	if (ret) {
15389 		THERM_FAILURE(dd, ret, "Write Mode Sel");
15390 		goto done;
15391 	}
15392 	/*    Step 5: De-assert block reset and start conversion */
15393 	ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0,
15394 				WRITE_SBUS_RECEIVER, 0x2);
15395 	if (ret) {
15396 		THERM_FAILURE(dd, ret, "Write Reset Deassert");
15397 		goto done;
15398 	}
15399 	/*    Step 5.1: Wait for first conversion (21.5ms per spec) */
15400 	msleep(22);
15401 
15402 	/* Enable polling of thermal readings */
15403 	write_csr(dd, ASIC_CFG_THERM_POLL_EN, 0x1);
15404 
15405 	/* Set initialized flag */
15406 	ret = acquire_chip_resource(dd, CR_THERM_INIT, 0);
15407 	if (ret)
15408 		THERM_FAILURE(dd, ret, "Unable to set thermal init flag");
15409 
15410 done:
15411 	release_chip_resource(dd, CR_SBUS);
15412 	return ret;
15413 }
15414 
15415 static void handle_temp_err(struct hfi1_devdata *dd)
15416 {
15417 	struct hfi1_pportdata *ppd = &dd->pport[0];
15418 	/*
15419 	 * Thermal Critical Interrupt
15420 	 * Put the device into forced freeze mode, take link down to
15421 	 * offline, and put DC into reset.
15422 	 */
15423 	dd_dev_emerg(dd,
15424 		     "Critical temperature reached! Forcing device into freeze mode!\n");
15425 	dd->flags |= HFI1_FORCED_FREEZE;
15426 	start_freeze_handling(ppd, FREEZE_SELF | FREEZE_ABORT);
15427 	/*
15428 	 * Shut DC down as much and as quickly as possible.
15429 	 *
15430 	 * Step 1: Take the link down to OFFLINE. This will cause the
15431 	 *         8051 to put the Serdes in reset. However, we don't want to
15432 	 *         go through the entire link state machine since we want to
15433 	 *         shutdown ASAP. Furthermore, this is not a graceful shutdown
15434 	 *         but rather an attempt to save the chip.
15435 	 *         Code below is almost the same as quiet_serdes() but avoids
15436 	 *         all the extra work and the sleeps.
15437 	 */
15438 	ppd->driver_link_ready = 0;
15439 	ppd->link_enabled = 0;
15440 	set_physical_link_state(dd, (OPA_LINKDOWN_REASON_SMA_DISABLED << 8) |
15441 				PLS_OFFLINE);
15442 	/*
15443 	 * Step 2: Shutdown LCB and 8051
15444 	 *         After shutdown, do not restore DC_CFG_RESET value.
15445 	 */
15446 	dc_shutdown(dd);
15447 }
15448