xref: /openbmc/linux/drivers/infiniband/hw/hfi1/chip.c (revision d3964221)
1 /*
2  * Copyright(c) 2015 - 2017 Intel Corporation.
3  *
4  * This file is provided under a dual BSD/GPLv2 license.  When using or
5  * redistributing this file, you may do so under either license.
6  *
7  * GPL LICENSE SUMMARY
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of version 2 of the GNU General Public License as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * General Public License for more details.
17  *
18  * BSD LICENSE
19  *
20  * Redistribution and use in source and binary forms, with or without
21  * modification, are permitted provided that the following conditions
22  * are met:
23  *
24  *  - Redistributions of source code must retain the above copyright
25  *    notice, this list of conditions and the following disclaimer.
26  *  - Redistributions in binary form must reproduce the above copyright
27  *    notice, this list of conditions and the following disclaimer in
28  *    the documentation and/or other materials provided with the
29  *    distribution.
30  *  - Neither the name of Intel Corporation nor the names of its
31  *    contributors may be used to endorse or promote products derived
32  *    from this software without specific prior written permission.
33  *
34  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45  *
46  */
47 
48 /*
49  * This file contains all of the code that is specific to the HFI chip
50  */
51 
52 #include <linux/pci.h>
53 #include <linux/delay.h>
54 #include <linux/interrupt.h>
55 #include <linux/module.h>
56 
57 #include "hfi.h"
58 #include "trace.h"
59 #include "mad.h"
60 #include "pio.h"
61 #include "sdma.h"
62 #include "eprom.h"
63 #include "efivar.h"
64 #include "platform.h"
65 #include "aspm.h"
66 #include "affinity.h"
67 #include "debugfs.h"
68 
69 #define NUM_IB_PORTS 1
70 
71 uint kdeth_qp;
72 module_param_named(kdeth_qp, kdeth_qp, uint, S_IRUGO);
73 MODULE_PARM_DESC(kdeth_qp, "Set the KDETH queue pair prefix");
74 
75 uint num_vls = HFI1_MAX_VLS_SUPPORTED;
76 module_param(num_vls, uint, S_IRUGO);
77 MODULE_PARM_DESC(num_vls, "Set number of Virtual Lanes to use (1-8)");
78 
79 /*
80  * Default time to aggregate two 10K packets from the idle state
81  * (timer not running). The timer starts at the end of the first packet,
82  * so only the time for one 10K packet and header plus a bit extra is needed.
83  * 10 * 1024 + 64 header byte = 10304 byte
84  * 10304 byte / 12.5 GB/s = 824.32ns
85  */
86 uint rcv_intr_timeout = (824 + 16); /* 16 is for coalescing interrupt */
87 module_param(rcv_intr_timeout, uint, S_IRUGO);
88 MODULE_PARM_DESC(rcv_intr_timeout, "Receive interrupt mitigation timeout in ns");
89 
90 uint rcv_intr_count = 16; /* same as qib */
91 module_param(rcv_intr_count, uint, S_IRUGO);
92 MODULE_PARM_DESC(rcv_intr_count, "Receive interrupt mitigation count");
93 
94 ushort link_crc_mask = SUPPORTED_CRCS;
95 module_param(link_crc_mask, ushort, S_IRUGO);
96 MODULE_PARM_DESC(link_crc_mask, "CRCs to use on the link");
97 
98 uint loopback;
99 module_param_named(loopback, loopback, uint, S_IRUGO);
100 MODULE_PARM_DESC(loopback, "Put into loopback mode (1 = serdes, 3 = external cable");
101 
102 /* Other driver tunables */
103 uint rcv_intr_dynamic = 1; /* enable dynamic mode for rcv int mitigation*/
104 static ushort crc_14b_sideband = 1;
105 static uint use_flr = 1;
106 uint quick_linkup; /* skip LNI */
107 
108 struct flag_table {
109 	u64 flag;	/* the flag */
110 	char *str;	/* description string */
111 	u16 extra;	/* extra information */
112 	u16 unused0;
113 	u32 unused1;
114 };
115 
116 /* str must be a string constant */
117 #define FLAG_ENTRY(str, extra, flag) {flag, str, extra}
118 #define FLAG_ENTRY0(str, flag) {flag, str, 0}
119 
120 /* Send Error Consequences */
121 #define SEC_WRITE_DROPPED	0x1
122 #define SEC_PACKET_DROPPED	0x2
123 #define SEC_SC_HALTED		0x4	/* per-context only */
124 #define SEC_SPC_FREEZE		0x8	/* per-HFI only */
125 
126 #define DEFAULT_KRCVQS		  2
127 #define MIN_KERNEL_KCTXTS         2
128 #define FIRST_KERNEL_KCTXT        1
129 
130 /*
131  * RSM instance allocation
132  *   0 - Verbs
133  *   1 - User Fecn Handling
134  *   2 - Vnic
135  */
136 #define RSM_INS_VERBS             0
137 #define RSM_INS_FECN              1
138 #define RSM_INS_VNIC              2
139 
140 /* Bit offset into the GUID which carries HFI id information */
141 #define GUID_HFI_INDEX_SHIFT     39
142 
143 /* extract the emulation revision */
144 #define emulator_rev(dd) ((dd)->irev >> 8)
145 /* parallel and serial emulation versions are 3 and 4 respectively */
146 #define is_emulator_p(dd) ((((dd)->irev) & 0xf) == 3)
147 #define is_emulator_s(dd) ((((dd)->irev) & 0xf) == 4)
148 
149 /* RSM fields for Verbs */
150 /* packet type */
151 #define IB_PACKET_TYPE         2ull
152 #define QW_SHIFT               6ull
153 /* QPN[7..1] */
154 #define QPN_WIDTH              7ull
155 
156 /* LRH.BTH: QW 0, OFFSET 48 - for match */
157 #define LRH_BTH_QW             0ull
158 #define LRH_BTH_BIT_OFFSET     48ull
159 #define LRH_BTH_OFFSET(off)    ((LRH_BTH_QW << QW_SHIFT) | (off))
160 #define LRH_BTH_MATCH_OFFSET   LRH_BTH_OFFSET(LRH_BTH_BIT_OFFSET)
161 #define LRH_BTH_SELECT
162 #define LRH_BTH_MASK           3ull
163 #define LRH_BTH_VALUE          2ull
164 
165 /* LRH.SC[3..0] QW 0, OFFSET 56 - for match */
166 #define LRH_SC_QW              0ull
167 #define LRH_SC_BIT_OFFSET      56ull
168 #define LRH_SC_OFFSET(off)     ((LRH_SC_QW << QW_SHIFT) | (off))
169 #define LRH_SC_MATCH_OFFSET    LRH_SC_OFFSET(LRH_SC_BIT_OFFSET)
170 #define LRH_SC_MASK            128ull
171 #define LRH_SC_VALUE           0ull
172 
173 /* SC[n..0] QW 0, OFFSET 60 - for select */
174 #define LRH_SC_SELECT_OFFSET  ((LRH_SC_QW << QW_SHIFT) | (60ull))
175 
176 /* QPN[m+n:1] QW 1, OFFSET 1 */
177 #define QPN_SELECT_OFFSET      ((1ull << QW_SHIFT) | (1ull))
178 
179 /* RSM fields for Vnic */
180 /* L2_TYPE: QW 0, OFFSET 61 - for match */
181 #define L2_TYPE_QW             0ull
182 #define L2_TYPE_BIT_OFFSET     61ull
183 #define L2_TYPE_OFFSET(off)    ((L2_TYPE_QW << QW_SHIFT) | (off))
184 #define L2_TYPE_MATCH_OFFSET   L2_TYPE_OFFSET(L2_TYPE_BIT_OFFSET)
185 #define L2_TYPE_MASK           3ull
186 #define L2_16B_VALUE           2ull
187 
188 /* L4_TYPE QW 1, OFFSET 0 - for match */
189 #define L4_TYPE_QW              1ull
190 #define L4_TYPE_BIT_OFFSET      0ull
191 #define L4_TYPE_OFFSET(off)     ((L4_TYPE_QW << QW_SHIFT) | (off))
192 #define L4_TYPE_MATCH_OFFSET    L4_TYPE_OFFSET(L4_TYPE_BIT_OFFSET)
193 #define L4_16B_TYPE_MASK        0xFFull
194 #define L4_16B_ETH_VALUE        0x78ull
195 
196 /* 16B VESWID - for select */
197 #define L4_16B_HDR_VESWID_OFFSET  ((2 << QW_SHIFT) | (16ull))
198 /* 16B ENTROPY - for select */
199 #define L2_16B_ENTROPY_OFFSET     ((1 << QW_SHIFT) | (32ull))
200 
201 /* defines to build power on SC2VL table */
202 #define SC2VL_VAL( \
203 	num, \
204 	sc0, sc0val, \
205 	sc1, sc1val, \
206 	sc2, sc2val, \
207 	sc3, sc3val, \
208 	sc4, sc4val, \
209 	sc5, sc5val, \
210 	sc6, sc6val, \
211 	sc7, sc7val) \
212 ( \
213 	((u64)(sc0val) << SEND_SC2VLT##num##_SC##sc0##_SHIFT) | \
214 	((u64)(sc1val) << SEND_SC2VLT##num##_SC##sc1##_SHIFT) | \
215 	((u64)(sc2val) << SEND_SC2VLT##num##_SC##sc2##_SHIFT) | \
216 	((u64)(sc3val) << SEND_SC2VLT##num##_SC##sc3##_SHIFT) | \
217 	((u64)(sc4val) << SEND_SC2VLT##num##_SC##sc4##_SHIFT) | \
218 	((u64)(sc5val) << SEND_SC2VLT##num##_SC##sc5##_SHIFT) | \
219 	((u64)(sc6val) << SEND_SC2VLT##num##_SC##sc6##_SHIFT) | \
220 	((u64)(sc7val) << SEND_SC2VLT##num##_SC##sc7##_SHIFT)   \
221 )
222 
223 #define DC_SC_VL_VAL( \
224 	range, \
225 	e0, e0val, \
226 	e1, e1val, \
227 	e2, e2val, \
228 	e3, e3val, \
229 	e4, e4val, \
230 	e5, e5val, \
231 	e6, e6val, \
232 	e7, e7val, \
233 	e8, e8val, \
234 	e9, e9val, \
235 	e10, e10val, \
236 	e11, e11val, \
237 	e12, e12val, \
238 	e13, e13val, \
239 	e14, e14val, \
240 	e15, e15val) \
241 ( \
242 	((u64)(e0val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e0##_SHIFT) | \
243 	((u64)(e1val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e1##_SHIFT) | \
244 	((u64)(e2val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e2##_SHIFT) | \
245 	((u64)(e3val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e3##_SHIFT) | \
246 	((u64)(e4val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e4##_SHIFT) | \
247 	((u64)(e5val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e5##_SHIFT) | \
248 	((u64)(e6val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e6##_SHIFT) | \
249 	((u64)(e7val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e7##_SHIFT) | \
250 	((u64)(e8val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e8##_SHIFT) | \
251 	((u64)(e9val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e9##_SHIFT) | \
252 	((u64)(e10val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e10##_SHIFT) | \
253 	((u64)(e11val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e11##_SHIFT) | \
254 	((u64)(e12val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e12##_SHIFT) | \
255 	((u64)(e13val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e13##_SHIFT) | \
256 	((u64)(e14val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e14##_SHIFT) | \
257 	((u64)(e15val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e15##_SHIFT) \
258 )
259 
260 /* all CceStatus sub-block freeze bits */
261 #define ALL_FROZE (CCE_STATUS_SDMA_FROZE_SMASK \
262 			| CCE_STATUS_RXE_FROZE_SMASK \
263 			| CCE_STATUS_TXE_FROZE_SMASK \
264 			| CCE_STATUS_TXE_PIO_FROZE_SMASK)
265 /* all CceStatus sub-block TXE pause bits */
266 #define ALL_TXE_PAUSE (CCE_STATUS_TXE_PIO_PAUSED_SMASK \
267 			| CCE_STATUS_TXE_PAUSED_SMASK \
268 			| CCE_STATUS_SDMA_PAUSED_SMASK)
269 /* all CceStatus sub-block RXE pause bits */
270 #define ALL_RXE_PAUSE CCE_STATUS_RXE_PAUSED_SMASK
271 
272 #define CNTR_MAX 0xFFFFFFFFFFFFFFFFULL
273 #define CNTR_32BIT_MAX 0x00000000FFFFFFFF
274 
275 /*
276  * CCE Error flags.
277  */
278 static struct flag_table cce_err_status_flags[] = {
279 /* 0*/	FLAG_ENTRY0("CceCsrParityErr",
280 		CCE_ERR_STATUS_CCE_CSR_PARITY_ERR_SMASK),
281 /* 1*/	FLAG_ENTRY0("CceCsrReadBadAddrErr",
282 		CCE_ERR_STATUS_CCE_CSR_READ_BAD_ADDR_ERR_SMASK),
283 /* 2*/	FLAG_ENTRY0("CceCsrWriteBadAddrErr",
284 		CCE_ERR_STATUS_CCE_CSR_WRITE_BAD_ADDR_ERR_SMASK),
285 /* 3*/	FLAG_ENTRY0("CceTrgtAsyncFifoParityErr",
286 		CCE_ERR_STATUS_CCE_TRGT_ASYNC_FIFO_PARITY_ERR_SMASK),
287 /* 4*/	FLAG_ENTRY0("CceTrgtAccessErr",
288 		CCE_ERR_STATUS_CCE_TRGT_ACCESS_ERR_SMASK),
289 /* 5*/	FLAG_ENTRY0("CceRspdDataParityErr",
290 		CCE_ERR_STATUS_CCE_RSPD_DATA_PARITY_ERR_SMASK),
291 /* 6*/	FLAG_ENTRY0("CceCli0AsyncFifoParityErr",
292 		CCE_ERR_STATUS_CCE_CLI0_ASYNC_FIFO_PARITY_ERR_SMASK),
293 /* 7*/	FLAG_ENTRY0("CceCsrCfgBusParityErr",
294 		CCE_ERR_STATUS_CCE_CSR_CFG_BUS_PARITY_ERR_SMASK),
295 /* 8*/	FLAG_ENTRY0("CceCli2AsyncFifoParityErr",
296 		CCE_ERR_STATUS_CCE_CLI2_ASYNC_FIFO_PARITY_ERR_SMASK),
297 /* 9*/	FLAG_ENTRY0("CceCli1AsyncFifoPioCrdtParityErr",
298 	    CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_PIO_CRDT_PARITY_ERR_SMASK),
299 /*10*/	FLAG_ENTRY0("CceCli1AsyncFifoPioCrdtParityErr",
300 	    CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_SDMA_HD_PARITY_ERR_SMASK),
301 /*11*/	FLAG_ENTRY0("CceCli1AsyncFifoRxdmaParityError",
302 	    CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_RXDMA_PARITY_ERROR_SMASK),
303 /*12*/	FLAG_ENTRY0("CceCli1AsyncFifoDbgParityError",
304 		CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_DBG_PARITY_ERROR_SMASK),
305 /*13*/	FLAG_ENTRY0("PcicRetryMemCorErr",
306 		CCE_ERR_STATUS_PCIC_RETRY_MEM_COR_ERR_SMASK),
307 /*14*/	FLAG_ENTRY0("PcicRetryMemCorErr",
308 		CCE_ERR_STATUS_PCIC_RETRY_SOT_MEM_COR_ERR_SMASK),
309 /*15*/	FLAG_ENTRY0("PcicPostHdQCorErr",
310 		CCE_ERR_STATUS_PCIC_POST_HD_QCOR_ERR_SMASK),
311 /*16*/	FLAG_ENTRY0("PcicPostHdQCorErr",
312 		CCE_ERR_STATUS_PCIC_POST_DAT_QCOR_ERR_SMASK),
313 /*17*/	FLAG_ENTRY0("PcicPostHdQCorErr",
314 		CCE_ERR_STATUS_PCIC_CPL_HD_QCOR_ERR_SMASK),
315 /*18*/	FLAG_ENTRY0("PcicCplDatQCorErr",
316 		CCE_ERR_STATUS_PCIC_CPL_DAT_QCOR_ERR_SMASK),
317 /*19*/	FLAG_ENTRY0("PcicNPostHQParityErr",
318 		CCE_ERR_STATUS_PCIC_NPOST_HQ_PARITY_ERR_SMASK),
319 /*20*/	FLAG_ENTRY0("PcicNPostDatQParityErr",
320 		CCE_ERR_STATUS_PCIC_NPOST_DAT_QPARITY_ERR_SMASK),
321 /*21*/	FLAG_ENTRY0("PcicRetryMemUncErr",
322 		CCE_ERR_STATUS_PCIC_RETRY_MEM_UNC_ERR_SMASK),
323 /*22*/	FLAG_ENTRY0("PcicRetrySotMemUncErr",
324 		CCE_ERR_STATUS_PCIC_RETRY_SOT_MEM_UNC_ERR_SMASK),
325 /*23*/	FLAG_ENTRY0("PcicPostHdQUncErr",
326 		CCE_ERR_STATUS_PCIC_POST_HD_QUNC_ERR_SMASK),
327 /*24*/	FLAG_ENTRY0("PcicPostDatQUncErr",
328 		CCE_ERR_STATUS_PCIC_POST_DAT_QUNC_ERR_SMASK),
329 /*25*/	FLAG_ENTRY0("PcicCplHdQUncErr",
330 		CCE_ERR_STATUS_PCIC_CPL_HD_QUNC_ERR_SMASK),
331 /*26*/	FLAG_ENTRY0("PcicCplDatQUncErr",
332 		CCE_ERR_STATUS_PCIC_CPL_DAT_QUNC_ERR_SMASK),
333 /*27*/	FLAG_ENTRY0("PcicTransmitFrontParityErr",
334 		CCE_ERR_STATUS_PCIC_TRANSMIT_FRONT_PARITY_ERR_SMASK),
335 /*28*/	FLAG_ENTRY0("PcicTransmitBackParityErr",
336 		CCE_ERR_STATUS_PCIC_TRANSMIT_BACK_PARITY_ERR_SMASK),
337 /*29*/	FLAG_ENTRY0("PcicReceiveParityErr",
338 		CCE_ERR_STATUS_PCIC_RECEIVE_PARITY_ERR_SMASK),
339 /*30*/	FLAG_ENTRY0("CceTrgtCplTimeoutErr",
340 		CCE_ERR_STATUS_CCE_TRGT_CPL_TIMEOUT_ERR_SMASK),
341 /*31*/	FLAG_ENTRY0("LATriggered",
342 		CCE_ERR_STATUS_LA_TRIGGERED_SMASK),
343 /*32*/	FLAG_ENTRY0("CceSegReadBadAddrErr",
344 		CCE_ERR_STATUS_CCE_SEG_READ_BAD_ADDR_ERR_SMASK),
345 /*33*/	FLAG_ENTRY0("CceSegWriteBadAddrErr",
346 		CCE_ERR_STATUS_CCE_SEG_WRITE_BAD_ADDR_ERR_SMASK),
347 /*34*/	FLAG_ENTRY0("CceRcplAsyncFifoParityErr",
348 		CCE_ERR_STATUS_CCE_RCPL_ASYNC_FIFO_PARITY_ERR_SMASK),
349 /*35*/	FLAG_ENTRY0("CceRxdmaConvFifoParityErr",
350 		CCE_ERR_STATUS_CCE_RXDMA_CONV_FIFO_PARITY_ERR_SMASK),
351 /*36*/	FLAG_ENTRY0("CceMsixTableCorErr",
352 		CCE_ERR_STATUS_CCE_MSIX_TABLE_COR_ERR_SMASK),
353 /*37*/	FLAG_ENTRY0("CceMsixTableUncErr",
354 		CCE_ERR_STATUS_CCE_MSIX_TABLE_UNC_ERR_SMASK),
355 /*38*/	FLAG_ENTRY0("CceIntMapCorErr",
356 		CCE_ERR_STATUS_CCE_INT_MAP_COR_ERR_SMASK),
357 /*39*/	FLAG_ENTRY0("CceIntMapUncErr",
358 		CCE_ERR_STATUS_CCE_INT_MAP_UNC_ERR_SMASK),
359 /*40*/	FLAG_ENTRY0("CceMsixCsrParityErr",
360 		CCE_ERR_STATUS_CCE_MSIX_CSR_PARITY_ERR_SMASK),
361 /*41-63 reserved*/
362 };
363 
364 /*
365  * Misc Error flags
366  */
367 #define MES(text) MISC_ERR_STATUS_MISC_##text##_ERR_SMASK
368 static struct flag_table misc_err_status_flags[] = {
369 /* 0*/	FLAG_ENTRY0("CSR_PARITY", MES(CSR_PARITY)),
370 /* 1*/	FLAG_ENTRY0("CSR_READ_BAD_ADDR", MES(CSR_READ_BAD_ADDR)),
371 /* 2*/	FLAG_ENTRY0("CSR_WRITE_BAD_ADDR", MES(CSR_WRITE_BAD_ADDR)),
372 /* 3*/	FLAG_ENTRY0("SBUS_WRITE_FAILED", MES(SBUS_WRITE_FAILED)),
373 /* 4*/	FLAG_ENTRY0("KEY_MISMATCH", MES(KEY_MISMATCH)),
374 /* 5*/	FLAG_ENTRY0("FW_AUTH_FAILED", MES(FW_AUTH_FAILED)),
375 /* 6*/	FLAG_ENTRY0("EFUSE_CSR_PARITY", MES(EFUSE_CSR_PARITY)),
376 /* 7*/	FLAG_ENTRY0("EFUSE_READ_BAD_ADDR", MES(EFUSE_READ_BAD_ADDR)),
377 /* 8*/	FLAG_ENTRY0("EFUSE_WRITE", MES(EFUSE_WRITE)),
378 /* 9*/	FLAG_ENTRY0("EFUSE_DONE_PARITY", MES(EFUSE_DONE_PARITY)),
379 /*10*/	FLAG_ENTRY0("INVALID_EEP_CMD", MES(INVALID_EEP_CMD)),
380 /*11*/	FLAG_ENTRY0("MBIST_FAIL", MES(MBIST_FAIL)),
381 /*12*/	FLAG_ENTRY0("PLL_LOCK_FAIL", MES(PLL_LOCK_FAIL))
382 };
383 
384 /*
385  * TXE PIO Error flags and consequences
386  */
387 static struct flag_table pio_err_status_flags[] = {
388 /* 0*/	FLAG_ENTRY("PioWriteBadCtxt",
389 	SEC_WRITE_DROPPED,
390 	SEND_PIO_ERR_STATUS_PIO_WRITE_BAD_CTXT_ERR_SMASK),
391 /* 1*/	FLAG_ENTRY("PioWriteAddrParity",
392 	SEC_SPC_FREEZE,
393 	SEND_PIO_ERR_STATUS_PIO_WRITE_ADDR_PARITY_ERR_SMASK),
394 /* 2*/	FLAG_ENTRY("PioCsrParity",
395 	SEC_SPC_FREEZE,
396 	SEND_PIO_ERR_STATUS_PIO_CSR_PARITY_ERR_SMASK),
397 /* 3*/	FLAG_ENTRY("PioSbMemFifo0",
398 	SEC_SPC_FREEZE,
399 	SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO0_ERR_SMASK),
400 /* 4*/	FLAG_ENTRY("PioSbMemFifo1",
401 	SEC_SPC_FREEZE,
402 	SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO1_ERR_SMASK),
403 /* 5*/	FLAG_ENTRY("PioPccFifoParity",
404 	SEC_SPC_FREEZE,
405 	SEND_PIO_ERR_STATUS_PIO_PCC_FIFO_PARITY_ERR_SMASK),
406 /* 6*/	FLAG_ENTRY("PioPecFifoParity",
407 	SEC_SPC_FREEZE,
408 	SEND_PIO_ERR_STATUS_PIO_PEC_FIFO_PARITY_ERR_SMASK),
409 /* 7*/	FLAG_ENTRY("PioSbrdctlCrrelParity",
410 	SEC_SPC_FREEZE,
411 	SEND_PIO_ERR_STATUS_PIO_SBRDCTL_CRREL_PARITY_ERR_SMASK),
412 /* 8*/	FLAG_ENTRY("PioSbrdctrlCrrelFifoParity",
413 	SEC_SPC_FREEZE,
414 	SEND_PIO_ERR_STATUS_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR_SMASK),
415 /* 9*/	FLAG_ENTRY("PioPktEvictFifoParityErr",
416 	SEC_SPC_FREEZE,
417 	SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_FIFO_PARITY_ERR_SMASK),
418 /*10*/	FLAG_ENTRY("PioSmPktResetParity",
419 	SEC_SPC_FREEZE,
420 	SEND_PIO_ERR_STATUS_PIO_SM_PKT_RESET_PARITY_ERR_SMASK),
421 /*11*/	FLAG_ENTRY("PioVlLenMemBank0Unc",
422 	SEC_SPC_FREEZE,
423 	SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_UNC_ERR_SMASK),
424 /*12*/	FLAG_ENTRY("PioVlLenMemBank1Unc",
425 	SEC_SPC_FREEZE,
426 	SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_UNC_ERR_SMASK),
427 /*13*/	FLAG_ENTRY("PioVlLenMemBank0Cor",
428 	0,
429 	SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_COR_ERR_SMASK),
430 /*14*/	FLAG_ENTRY("PioVlLenMemBank1Cor",
431 	0,
432 	SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_COR_ERR_SMASK),
433 /*15*/	FLAG_ENTRY("PioCreditRetFifoParity",
434 	SEC_SPC_FREEZE,
435 	SEND_PIO_ERR_STATUS_PIO_CREDIT_RET_FIFO_PARITY_ERR_SMASK),
436 /*16*/	FLAG_ENTRY("PioPpmcPblFifo",
437 	SEC_SPC_FREEZE,
438 	SEND_PIO_ERR_STATUS_PIO_PPMC_PBL_FIFO_ERR_SMASK),
439 /*17*/	FLAG_ENTRY("PioInitSmIn",
440 	0,
441 	SEND_PIO_ERR_STATUS_PIO_INIT_SM_IN_ERR_SMASK),
442 /*18*/	FLAG_ENTRY("PioPktEvictSmOrArbSm",
443 	SEC_SPC_FREEZE,
444 	SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_SM_OR_ARB_SM_ERR_SMASK),
445 /*19*/	FLAG_ENTRY("PioHostAddrMemUnc",
446 	SEC_SPC_FREEZE,
447 	SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_UNC_ERR_SMASK),
448 /*20*/	FLAG_ENTRY("PioHostAddrMemCor",
449 	0,
450 	SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_COR_ERR_SMASK),
451 /*21*/	FLAG_ENTRY("PioWriteDataParity",
452 	SEC_SPC_FREEZE,
453 	SEND_PIO_ERR_STATUS_PIO_WRITE_DATA_PARITY_ERR_SMASK),
454 /*22*/	FLAG_ENTRY("PioStateMachine",
455 	SEC_SPC_FREEZE,
456 	SEND_PIO_ERR_STATUS_PIO_STATE_MACHINE_ERR_SMASK),
457 /*23*/	FLAG_ENTRY("PioWriteQwValidParity",
458 	SEC_WRITE_DROPPED | SEC_SPC_FREEZE,
459 	SEND_PIO_ERR_STATUS_PIO_WRITE_QW_VALID_PARITY_ERR_SMASK),
460 /*24*/	FLAG_ENTRY("PioBlockQwCountParity",
461 	SEC_WRITE_DROPPED | SEC_SPC_FREEZE,
462 	SEND_PIO_ERR_STATUS_PIO_BLOCK_QW_COUNT_PARITY_ERR_SMASK),
463 /*25*/	FLAG_ENTRY("PioVlfVlLenParity",
464 	SEC_SPC_FREEZE,
465 	SEND_PIO_ERR_STATUS_PIO_VLF_VL_LEN_PARITY_ERR_SMASK),
466 /*26*/	FLAG_ENTRY("PioVlfSopParity",
467 	SEC_SPC_FREEZE,
468 	SEND_PIO_ERR_STATUS_PIO_VLF_SOP_PARITY_ERR_SMASK),
469 /*27*/	FLAG_ENTRY("PioVlFifoParity",
470 	SEC_SPC_FREEZE,
471 	SEND_PIO_ERR_STATUS_PIO_VL_FIFO_PARITY_ERR_SMASK),
472 /*28*/	FLAG_ENTRY("PioPpmcBqcMemParity",
473 	SEC_SPC_FREEZE,
474 	SEND_PIO_ERR_STATUS_PIO_PPMC_BQC_MEM_PARITY_ERR_SMASK),
475 /*29*/	FLAG_ENTRY("PioPpmcSopLen",
476 	SEC_SPC_FREEZE,
477 	SEND_PIO_ERR_STATUS_PIO_PPMC_SOP_LEN_ERR_SMASK),
478 /*30-31 reserved*/
479 /*32*/	FLAG_ENTRY("PioCurrentFreeCntParity",
480 	SEC_SPC_FREEZE,
481 	SEND_PIO_ERR_STATUS_PIO_CURRENT_FREE_CNT_PARITY_ERR_SMASK),
482 /*33*/	FLAG_ENTRY("PioLastReturnedCntParity",
483 	SEC_SPC_FREEZE,
484 	SEND_PIO_ERR_STATUS_PIO_LAST_RETURNED_CNT_PARITY_ERR_SMASK),
485 /*34*/	FLAG_ENTRY("PioPccSopHeadParity",
486 	SEC_SPC_FREEZE,
487 	SEND_PIO_ERR_STATUS_PIO_PCC_SOP_HEAD_PARITY_ERR_SMASK),
488 /*35*/	FLAG_ENTRY("PioPecSopHeadParityErr",
489 	SEC_SPC_FREEZE,
490 	SEND_PIO_ERR_STATUS_PIO_PEC_SOP_HEAD_PARITY_ERR_SMASK),
491 /*36-63 reserved*/
492 };
493 
494 /* TXE PIO errors that cause an SPC freeze */
495 #define ALL_PIO_FREEZE_ERR \
496 	(SEND_PIO_ERR_STATUS_PIO_WRITE_ADDR_PARITY_ERR_SMASK \
497 	| SEND_PIO_ERR_STATUS_PIO_CSR_PARITY_ERR_SMASK \
498 	| SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO0_ERR_SMASK \
499 	| SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO1_ERR_SMASK \
500 	| SEND_PIO_ERR_STATUS_PIO_PCC_FIFO_PARITY_ERR_SMASK \
501 	| SEND_PIO_ERR_STATUS_PIO_PEC_FIFO_PARITY_ERR_SMASK \
502 	| SEND_PIO_ERR_STATUS_PIO_SBRDCTL_CRREL_PARITY_ERR_SMASK \
503 	| SEND_PIO_ERR_STATUS_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR_SMASK \
504 	| SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_FIFO_PARITY_ERR_SMASK \
505 	| SEND_PIO_ERR_STATUS_PIO_SM_PKT_RESET_PARITY_ERR_SMASK \
506 	| SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_UNC_ERR_SMASK \
507 	| SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_UNC_ERR_SMASK \
508 	| SEND_PIO_ERR_STATUS_PIO_CREDIT_RET_FIFO_PARITY_ERR_SMASK \
509 	| SEND_PIO_ERR_STATUS_PIO_PPMC_PBL_FIFO_ERR_SMASK \
510 	| SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_SM_OR_ARB_SM_ERR_SMASK \
511 	| SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_UNC_ERR_SMASK \
512 	| SEND_PIO_ERR_STATUS_PIO_WRITE_DATA_PARITY_ERR_SMASK \
513 	| SEND_PIO_ERR_STATUS_PIO_STATE_MACHINE_ERR_SMASK \
514 	| SEND_PIO_ERR_STATUS_PIO_WRITE_QW_VALID_PARITY_ERR_SMASK \
515 	| SEND_PIO_ERR_STATUS_PIO_BLOCK_QW_COUNT_PARITY_ERR_SMASK \
516 	| SEND_PIO_ERR_STATUS_PIO_VLF_VL_LEN_PARITY_ERR_SMASK \
517 	| SEND_PIO_ERR_STATUS_PIO_VLF_SOP_PARITY_ERR_SMASK \
518 	| SEND_PIO_ERR_STATUS_PIO_VL_FIFO_PARITY_ERR_SMASK \
519 	| SEND_PIO_ERR_STATUS_PIO_PPMC_BQC_MEM_PARITY_ERR_SMASK \
520 	| SEND_PIO_ERR_STATUS_PIO_PPMC_SOP_LEN_ERR_SMASK \
521 	| SEND_PIO_ERR_STATUS_PIO_CURRENT_FREE_CNT_PARITY_ERR_SMASK \
522 	| SEND_PIO_ERR_STATUS_PIO_LAST_RETURNED_CNT_PARITY_ERR_SMASK \
523 	| SEND_PIO_ERR_STATUS_PIO_PCC_SOP_HEAD_PARITY_ERR_SMASK \
524 	| SEND_PIO_ERR_STATUS_PIO_PEC_SOP_HEAD_PARITY_ERR_SMASK)
525 
526 /*
527  * TXE SDMA Error flags
528  */
529 static struct flag_table sdma_err_status_flags[] = {
530 /* 0*/	FLAG_ENTRY0("SDmaRpyTagErr",
531 		SEND_DMA_ERR_STATUS_SDMA_RPY_TAG_ERR_SMASK),
532 /* 1*/	FLAG_ENTRY0("SDmaCsrParityErr",
533 		SEND_DMA_ERR_STATUS_SDMA_CSR_PARITY_ERR_SMASK),
534 /* 2*/	FLAG_ENTRY0("SDmaPcieReqTrackingUncErr",
535 		SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_UNC_ERR_SMASK),
536 /* 3*/	FLAG_ENTRY0("SDmaPcieReqTrackingCorErr",
537 		SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_COR_ERR_SMASK),
538 /*04-63 reserved*/
539 };
540 
541 /* TXE SDMA errors that cause an SPC freeze */
542 #define ALL_SDMA_FREEZE_ERR  \
543 		(SEND_DMA_ERR_STATUS_SDMA_RPY_TAG_ERR_SMASK \
544 		| SEND_DMA_ERR_STATUS_SDMA_CSR_PARITY_ERR_SMASK \
545 		| SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_UNC_ERR_SMASK)
546 
547 /* SendEgressErrInfo bits that correspond to a PortXmitDiscard counter */
548 #define PORT_DISCARD_EGRESS_ERRS \
549 	(SEND_EGRESS_ERR_INFO_TOO_LONG_IB_PACKET_ERR_SMASK \
550 	| SEND_EGRESS_ERR_INFO_VL_MAPPING_ERR_SMASK \
551 	| SEND_EGRESS_ERR_INFO_VL_ERR_SMASK)
552 
553 /*
554  * TXE Egress Error flags
555  */
556 #define SEES(text) SEND_EGRESS_ERR_STATUS_##text##_ERR_SMASK
557 static struct flag_table egress_err_status_flags[] = {
558 /* 0*/	FLAG_ENTRY0("TxPktIntegrityMemCorErr", SEES(TX_PKT_INTEGRITY_MEM_COR)),
559 /* 1*/	FLAG_ENTRY0("TxPktIntegrityMemUncErr", SEES(TX_PKT_INTEGRITY_MEM_UNC)),
560 /* 2 reserved */
561 /* 3*/	FLAG_ENTRY0("TxEgressFifoUnderrunOrParityErr",
562 		SEES(TX_EGRESS_FIFO_UNDERRUN_OR_PARITY)),
563 /* 4*/	FLAG_ENTRY0("TxLinkdownErr", SEES(TX_LINKDOWN)),
564 /* 5*/	FLAG_ENTRY0("TxIncorrectLinkStateErr", SEES(TX_INCORRECT_LINK_STATE)),
565 /* 6 reserved */
566 /* 7*/	FLAG_ENTRY0("TxPioLaunchIntfParityErr",
567 		SEES(TX_PIO_LAUNCH_INTF_PARITY)),
568 /* 8*/	FLAG_ENTRY0("TxSdmaLaunchIntfParityErr",
569 		SEES(TX_SDMA_LAUNCH_INTF_PARITY)),
570 /* 9-10 reserved */
571 /*11*/	FLAG_ENTRY0("TxSbrdCtlStateMachineParityErr",
572 		SEES(TX_SBRD_CTL_STATE_MACHINE_PARITY)),
573 /*12*/	FLAG_ENTRY0("TxIllegalVLErr", SEES(TX_ILLEGAL_VL)),
574 /*13*/	FLAG_ENTRY0("TxLaunchCsrParityErr", SEES(TX_LAUNCH_CSR_PARITY)),
575 /*14*/	FLAG_ENTRY0("TxSbrdCtlCsrParityErr", SEES(TX_SBRD_CTL_CSR_PARITY)),
576 /*15*/	FLAG_ENTRY0("TxConfigParityErr", SEES(TX_CONFIG_PARITY)),
577 /*16*/	FLAG_ENTRY0("TxSdma0DisallowedPacketErr",
578 		SEES(TX_SDMA0_DISALLOWED_PACKET)),
579 /*17*/	FLAG_ENTRY0("TxSdma1DisallowedPacketErr",
580 		SEES(TX_SDMA1_DISALLOWED_PACKET)),
581 /*18*/	FLAG_ENTRY0("TxSdma2DisallowedPacketErr",
582 		SEES(TX_SDMA2_DISALLOWED_PACKET)),
583 /*19*/	FLAG_ENTRY0("TxSdma3DisallowedPacketErr",
584 		SEES(TX_SDMA3_DISALLOWED_PACKET)),
585 /*20*/	FLAG_ENTRY0("TxSdma4DisallowedPacketErr",
586 		SEES(TX_SDMA4_DISALLOWED_PACKET)),
587 /*21*/	FLAG_ENTRY0("TxSdma5DisallowedPacketErr",
588 		SEES(TX_SDMA5_DISALLOWED_PACKET)),
589 /*22*/	FLAG_ENTRY0("TxSdma6DisallowedPacketErr",
590 		SEES(TX_SDMA6_DISALLOWED_PACKET)),
591 /*23*/	FLAG_ENTRY0("TxSdma7DisallowedPacketErr",
592 		SEES(TX_SDMA7_DISALLOWED_PACKET)),
593 /*24*/	FLAG_ENTRY0("TxSdma8DisallowedPacketErr",
594 		SEES(TX_SDMA8_DISALLOWED_PACKET)),
595 /*25*/	FLAG_ENTRY0("TxSdma9DisallowedPacketErr",
596 		SEES(TX_SDMA9_DISALLOWED_PACKET)),
597 /*26*/	FLAG_ENTRY0("TxSdma10DisallowedPacketErr",
598 		SEES(TX_SDMA10_DISALLOWED_PACKET)),
599 /*27*/	FLAG_ENTRY0("TxSdma11DisallowedPacketErr",
600 		SEES(TX_SDMA11_DISALLOWED_PACKET)),
601 /*28*/	FLAG_ENTRY0("TxSdma12DisallowedPacketErr",
602 		SEES(TX_SDMA12_DISALLOWED_PACKET)),
603 /*29*/	FLAG_ENTRY0("TxSdma13DisallowedPacketErr",
604 		SEES(TX_SDMA13_DISALLOWED_PACKET)),
605 /*30*/	FLAG_ENTRY0("TxSdma14DisallowedPacketErr",
606 		SEES(TX_SDMA14_DISALLOWED_PACKET)),
607 /*31*/	FLAG_ENTRY0("TxSdma15DisallowedPacketErr",
608 		SEES(TX_SDMA15_DISALLOWED_PACKET)),
609 /*32*/	FLAG_ENTRY0("TxLaunchFifo0UncOrParityErr",
610 		SEES(TX_LAUNCH_FIFO0_UNC_OR_PARITY)),
611 /*33*/	FLAG_ENTRY0("TxLaunchFifo1UncOrParityErr",
612 		SEES(TX_LAUNCH_FIFO1_UNC_OR_PARITY)),
613 /*34*/	FLAG_ENTRY0("TxLaunchFifo2UncOrParityErr",
614 		SEES(TX_LAUNCH_FIFO2_UNC_OR_PARITY)),
615 /*35*/	FLAG_ENTRY0("TxLaunchFifo3UncOrParityErr",
616 		SEES(TX_LAUNCH_FIFO3_UNC_OR_PARITY)),
617 /*36*/	FLAG_ENTRY0("TxLaunchFifo4UncOrParityErr",
618 		SEES(TX_LAUNCH_FIFO4_UNC_OR_PARITY)),
619 /*37*/	FLAG_ENTRY0("TxLaunchFifo5UncOrParityErr",
620 		SEES(TX_LAUNCH_FIFO5_UNC_OR_PARITY)),
621 /*38*/	FLAG_ENTRY0("TxLaunchFifo6UncOrParityErr",
622 		SEES(TX_LAUNCH_FIFO6_UNC_OR_PARITY)),
623 /*39*/	FLAG_ENTRY0("TxLaunchFifo7UncOrParityErr",
624 		SEES(TX_LAUNCH_FIFO7_UNC_OR_PARITY)),
625 /*40*/	FLAG_ENTRY0("TxLaunchFifo8UncOrParityErr",
626 		SEES(TX_LAUNCH_FIFO8_UNC_OR_PARITY)),
627 /*41*/	FLAG_ENTRY0("TxCreditReturnParityErr", SEES(TX_CREDIT_RETURN_PARITY)),
628 /*42*/	FLAG_ENTRY0("TxSbHdrUncErr", SEES(TX_SB_HDR_UNC)),
629 /*43*/	FLAG_ENTRY0("TxReadSdmaMemoryUncErr", SEES(TX_READ_SDMA_MEMORY_UNC)),
630 /*44*/	FLAG_ENTRY0("TxReadPioMemoryUncErr", SEES(TX_READ_PIO_MEMORY_UNC)),
631 /*45*/	FLAG_ENTRY0("TxEgressFifoUncErr", SEES(TX_EGRESS_FIFO_UNC)),
632 /*46*/	FLAG_ENTRY0("TxHcrcInsertionErr", SEES(TX_HCRC_INSERTION)),
633 /*47*/	FLAG_ENTRY0("TxCreditReturnVLErr", SEES(TX_CREDIT_RETURN_VL)),
634 /*48*/	FLAG_ENTRY0("TxLaunchFifo0CorErr", SEES(TX_LAUNCH_FIFO0_COR)),
635 /*49*/	FLAG_ENTRY0("TxLaunchFifo1CorErr", SEES(TX_LAUNCH_FIFO1_COR)),
636 /*50*/	FLAG_ENTRY0("TxLaunchFifo2CorErr", SEES(TX_LAUNCH_FIFO2_COR)),
637 /*51*/	FLAG_ENTRY0("TxLaunchFifo3CorErr", SEES(TX_LAUNCH_FIFO3_COR)),
638 /*52*/	FLAG_ENTRY0("TxLaunchFifo4CorErr", SEES(TX_LAUNCH_FIFO4_COR)),
639 /*53*/	FLAG_ENTRY0("TxLaunchFifo5CorErr", SEES(TX_LAUNCH_FIFO5_COR)),
640 /*54*/	FLAG_ENTRY0("TxLaunchFifo6CorErr", SEES(TX_LAUNCH_FIFO6_COR)),
641 /*55*/	FLAG_ENTRY0("TxLaunchFifo7CorErr", SEES(TX_LAUNCH_FIFO7_COR)),
642 /*56*/	FLAG_ENTRY0("TxLaunchFifo8CorErr", SEES(TX_LAUNCH_FIFO8_COR)),
643 /*57*/	FLAG_ENTRY0("TxCreditOverrunErr", SEES(TX_CREDIT_OVERRUN)),
644 /*58*/	FLAG_ENTRY0("TxSbHdrCorErr", SEES(TX_SB_HDR_COR)),
645 /*59*/	FLAG_ENTRY0("TxReadSdmaMemoryCorErr", SEES(TX_READ_SDMA_MEMORY_COR)),
646 /*60*/	FLAG_ENTRY0("TxReadPioMemoryCorErr", SEES(TX_READ_PIO_MEMORY_COR)),
647 /*61*/	FLAG_ENTRY0("TxEgressFifoCorErr", SEES(TX_EGRESS_FIFO_COR)),
648 /*62*/	FLAG_ENTRY0("TxReadSdmaMemoryCsrUncErr",
649 		SEES(TX_READ_SDMA_MEMORY_CSR_UNC)),
650 /*63*/	FLAG_ENTRY0("TxReadPioMemoryCsrUncErr",
651 		SEES(TX_READ_PIO_MEMORY_CSR_UNC)),
652 };
653 
654 /*
655  * TXE Egress Error Info flags
656  */
657 #define SEEI(text) SEND_EGRESS_ERR_INFO_##text##_ERR_SMASK
658 static struct flag_table egress_err_info_flags[] = {
659 /* 0*/	FLAG_ENTRY0("Reserved", 0ull),
660 /* 1*/	FLAG_ENTRY0("VLErr", SEEI(VL)),
661 /* 2*/	FLAG_ENTRY0("JobKeyErr", SEEI(JOB_KEY)),
662 /* 3*/	FLAG_ENTRY0("JobKeyErr", SEEI(JOB_KEY)),
663 /* 4*/	FLAG_ENTRY0("PartitionKeyErr", SEEI(PARTITION_KEY)),
664 /* 5*/	FLAG_ENTRY0("SLIDErr", SEEI(SLID)),
665 /* 6*/	FLAG_ENTRY0("OpcodeErr", SEEI(OPCODE)),
666 /* 7*/	FLAG_ENTRY0("VLMappingErr", SEEI(VL_MAPPING)),
667 /* 8*/	FLAG_ENTRY0("RawErr", SEEI(RAW)),
668 /* 9*/	FLAG_ENTRY0("RawIPv6Err", SEEI(RAW_IPV6)),
669 /*10*/	FLAG_ENTRY0("GRHErr", SEEI(GRH)),
670 /*11*/	FLAG_ENTRY0("BypassErr", SEEI(BYPASS)),
671 /*12*/	FLAG_ENTRY0("KDETHPacketsErr", SEEI(KDETH_PACKETS)),
672 /*13*/	FLAG_ENTRY0("NonKDETHPacketsErr", SEEI(NON_KDETH_PACKETS)),
673 /*14*/	FLAG_ENTRY0("TooSmallIBPacketsErr", SEEI(TOO_SMALL_IB_PACKETS)),
674 /*15*/	FLAG_ENTRY0("TooSmallBypassPacketsErr", SEEI(TOO_SMALL_BYPASS_PACKETS)),
675 /*16*/	FLAG_ENTRY0("PbcTestErr", SEEI(PBC_TEST)),
676 /*17*/	FLAG_ENTRY0("BadPktLenErr", SEEI(BAD_PKT_LEN)),
677 /*18*/	FLAG_ENTRY0("TooLongIBPacketErr", SEEI(TOO_LONG_IB_PACKET)),
678 /*19*/	FLAG_ENTRY0("TooLongBypassPacketsErr", SEEI(TOO_LONG_BYPASS_PACKETS)),
679 /*20*/	FLAG_ENTRY0("PbcStaticRateControlErr", SEEI(PBC_STATIC_RATE_CONTROL)),
680 /*21*/	FLAG_ENTRY0("BypassBadPktLenErr", SEEI(BAD_PKT_LEN)),
681 };
682 
683 /* TXE Egress errors that cause an SPC freeze */
684 #define ALL_TXE_EGRESS_FREEZE_ERR \
685 	(SEES(TX_EGRESS_FIFO_UNDERRUN_OR_PARITY) \
686 	| SEES(TX_PIO_LAUNCH_INTF_PARITY) \
687 	| SEES(TX_SDMA_LAUNCH_INTF_PARITY) \
688 	| SEES(TX_SBRD_CTL_STATE_MACHINE_PARITY) \
689 	| SEES(TX_LAUNCH_CSR_PARITY) \
690 	| SEES(TX_SBRD_CTL_CSR_PARITY) \
691 	| SEES(TX_CONFIG_PARITY) \
692 	| SEES(TX_LAUNCH_FIFO0_UNC_OR_PARITY) \
693 	| SEES(TX_LAUNCH_FIFO1_UNC_OR_PARITY) \
694 	| SEES(TX_LAUNCH_FIFO2_UNC_OR_PARITY) \
695 	| SEES(TX_LAUNCH_FIFO3_UNC_OR_PARITY) \
696 	| SEES(TX_LAUNCH_FIFO4_UNC_OR_PARITY) \
697 	| SEES(TX_LAUNCH_FIFO5_UNC_OR_PARITY) \
698 	| SEES(TX_LAUNCH_FIFO6_UNC_OR_PARITY) \
699 	| SEES(TX_LAUNCH_FIFO7_UNC_OR_PARITY) \
700 	| SEES(TX_LAUNCH_FIFO8_UNC_OR_PARITY) \
701 	| SEES(TX_CREDIT_RETURN_PARITY))
702 
703 /*
704  * TXE Send error flags
705  */
706 #define SES(name) SEND_ERR_STATUS_SEND_##name##_ERR_SMASK
707 static struct flag_table send_err_status_flags[] = {
708 /* 0*/	FLAG_ENTRY0("SendCsrParityErr", SES(CSR_PARITY)),
709 /* 1*/	FLAG_ENTRY0("SendCsrReadBadAddrErr", SES(CSR_READ_BAD_ADDR)),
710 /* 2*/	FLAG_ENTRY0("SendCsrWriteBadAddrErr", SES(CSR_WRITE_BAD_ADDR))
711 };
712 
713 /*
714  * TXE Send Context Error flags and consequences
715  */
716 static struct flag_table sc_err_status_flags[] = {
717 /* 0*/	FLAG_ENTRY("InconsistentSop",
718 		SEC_PACKET_DROPPED | SEC_SC_HALTED,
719 		SEND_CTXT_ERR_STATUS_PIO_INCONSISTENT_SOP_ERR_SMASK),
720 /* 1*/	FLAG_ENTRY("DisallowedPacket",
721 		SEC_PACKET_DROPPED | SEC_SC_HALTED,
722 		SEND_CTXT_ERR_STATUS_PIO_DISALLOWED_PACKET_ERR_SMASK),
723 /* 2*/	FLAG_ENTRY("WriteCrossesBoundary",
724 		SEC_WRITE_DROPPED | SEC_SC_HALTED,
725 		SEND_CTXT_ERR_STATUS_PIO_WRITE_CROSSES_BOUNDARY_ERR_SMASK),
726 /* 3*/	FLAG_ENTRY("WriteOverflow",
727 		SEC_WRITE_DROPPED | SEC_SC_HALTED,
728 		SEND_CTXT_ERR_STATUS_PIO_WRITE_OVERFLOW_ERR_SMASK),
729 /* 4*/	FLAG_ENTRY("WriteOutOfBounds",
730 		SEC_WRITE_DROPPED | SEC_SC_HALTED,
731 		SEND_CTXT_ERR_STATUS_PIO_WRITE_OUT_OF_BOUNDS_ERR_SMASK),
732 /* 5-63 reserved*/
733 };
734 
735 /*
736  * RXE Receive Error flags
737  */
738 #define RXES(name) RCV_ERR_STATUS_RX_##name##_ERR_SMASK
739 static struct flag_table rxe_err_status_flags[] = {
740 /* 0*/	FLAG_ENTRY0("RxDmaCsrCorErr", RXES(DMA_CSR_COR)),
741 /* 1*/	FLAG_ENTRY0("RxDcIntfParityErr", RXES(DC_INTF_PARITY)),
742 /* 2*/	FLAG_ENTRY0("RxRcvHdrUncErr", RXES(RCV_HDR_UNC)),
743 /* 3*/	FLAG_ENTRY0("RxRcvHdrCorErr", RXES(RCV_HDR_COR)),
744 /* 4*/	FLAG_ENTRY0("RxRcvDataUncErr", RXES(RCV_DATA_UNC)),
745 /* 5*/	FLAG_ENTRY0("RxRcvDataCorErr", RXES(RCV_DATA_COR)),
746 /* 6*/	FLAG_ENTRY0("RxRcvQpMapTableUncErr", RXES(RCV_QP_MAP_TABLE_UNC)),
747 /* 7*/	FLAG_ENTRY0("RxRcvQpMapTableCorErr", RXES(RCV_QP_MAP_TABLE_COR)),
748 /* 8*/	FLAG_ENTRY0("RxRcvCsrParityErr", RXES(RCV_CSR_PARITY)),
749 /* 9*/	FLAG_ENTRY0("RxDcSopEopParityErr", RXES(DC_SOP_EOP_PARITY)),
750 /*10*/	FLAG_ENTRY0("RxDmaFlagUncErr", RXES(DMA_FLAG_UNC)),
751 /*11*/	FLAG_ENTRY0("RxDmaFlagCorErr", RXES(DMA_FLAG_COR)),
752 /*12*/	FLAG_ENTRY0("RxRcvFsmEncodingErr", RXES(RCV_FSM_ENCODING)),
753 /*13*/	FLAG_ENTRY0("RxRbufFreeListUncErr", RXES(RBUF_FREE_LIST_UNC)),
754 /*14*/	FLAG_ENTRY0("RxRbufFreeListCorErr", RXES(RBUF_FREE_LIST_COR)),
755 /*15*/	FLAG_ENTRY0("RxRbufLookupDesRegUncErr", RXES(RBUF_LOOKUP_DES_REG_UNC)),
756 /*16*/	FLAG_ENTRY0("RxRbufLookupDesRegUncCorErr",
757 		RXES(RBUF_LOOKUP_DES_REG_UNC_COR)),
758 /*17*/	FLAG_ENTRY0("RxRbufLookupDesUncErr", RXES(RBUF_LOOKUP_DES_UNC)),
759 /*18*/	FLAG_ENTRY0("RxRbufLookupDesCorErr", RXES(RBUF_LOOKUP_DES_COR)),
760 /*19*/	FLAG_ENTRY0("RxRbufBlockListReadUncErr",
761 		RXES(RBUF_BLOCK_LIST_READ_UNC)),
762 /*20*/	FLAG_ENTRY0("RxRbufBlockListReadCorErr",
763 		RXES(RBUF_BLOCK_LIST_READ_COR)),
764 /*21*/	FLAG_ENTRY0("RxRbufCsrQHeadBufNumParityErr",
765 		RXES(RBUF_CSR_QHEAD_BUF_NUM_PARITY)),
766 /*22*/	FLAG_ENTRY0("RxRbufCsrQEntCntParityErr",
767 		RXES(RBUF_CSR_QENT_CNT_PARITY)),
768 /*23*/	FLAG_ENTRY0("RxRbufCsrQNextBufParityErr",
769 		RXES(RBUF_CSR_QNEXT_BUF_PARITY)),
770 /*24*/	FLAG_ENTRY0("RxRbufCsrQVldBitParityErr",
771 		RXES(RBUF_CSR_QVLD_BIT_PARITY)),
772 /*25*/	FLAG_ENTRY0("RxRbufCsrQHdPtrParityErr", RXES(RBUF_CSR_QHD_PTR_PARITY)),
773 /*26*/	FLAG_ENTRY0("RxRbufCsrQTlPtrParityErr", RXES(RBUF_CSR_QTL_PTR_PARITY)),
774 /*27*/	FLAG_ENTRY0("RxRbufCsrQNumOfPktParityErr",
775 		RXES(RBUF_CSR_QNUM_OF_PKT_PARITY)),
776 /*28*/	FLAG_ENTRY0("RxRbufCsrQEOPDWParityErr", RXES(RBUF_CSR_QEOPDW_PARITY)),
777 /*29*/	FLAG_ENTRY0("RxRbufCtxIdParityErr", RXES(RBUF_CTX_ID_PARITY)),
778 /*30*/	FLAG_ENTRY0("RxRBufBadLookupErr", RXES(RBUF_BAD_LOOKUP)),
779 /*31*/	FLAG_ENTRY0("RxRbufFullErr", RXES(RBUF_FULL)),
780 /*32*/	FLAG_ENTRY0("RxRbufEmptyErr", RXES(RBUF_EMPTY)),
781 /*33*/	FLAG_ENTRY0("RxRbufFlRdAddrParityErr", RXES(RBUF_FL_RD_ADDR_PARITY)),
782 /*34*/	FLAG_ENTRY0("RxRbufFlWrAddrParityErr", RXES(RBUF_FL_WR_ADDR_PARITY)),
783 /*35*/	FLAG_ENTRY0("RxRbufFlInitdoneParityErr",
784 		RXES(RBUF_FL_INITDONE_PARITY)),
785 /*36*/	FLAG_ENTRY0("RxRbufFlInitWrAddrParityErr",
786 		RXES(RBUF_FL_INIT_WR_ADDR_PARITY)),
787 /*37*/	FLAG_ENTRY0("RxRbufNextFreeBufUncErr", RXES(RBUF_NEXT_FREE_BUF_UNC)),
788 /*38*/	FLAG_ENTRY0("RxRbufNextFreeBufCorErr", RXES(RBUF_NEXT_FREE_BUF_COR)),
789 /*39*/	FLAG_ENTRY0("RxLookupDesPart1UncErr", RXES(LOOKUP_DES_PART1_UNC)),
790 /*40*/	FLAG_ENTRY0("RxLookupDesPart1UncCorErr",
791 		RXES(LOOKUP_DES_PART1_UNC_COR)),
792 /*41*/	FLAG_ENTRY0("RxLookupDesPart2ParityErr",
793 		RXES(LOOKUP_DES_PART2_PARITY)),
794 /*42*/	FLAG_ENTRY0("RxLookupRcvArrayUncErr", RXES(LOOKUP_RCV_ARRAY_UNC)),
795 /*43*/	FLAG_ENTRY0("RxLookupRcvArrayCorErr", RXES(LOOKUP_RCV_ARRAY_COR)),
796 /*44*/	FLAG_ENTRY0("RxLookupCsrParityErr", RXES(LOOKUP_CSR_PARITY)),
797 /*45*/	FLAG_ENTRY0("RxHqIntrCsrParityErr", RXES(HQ_INTR_CSR_PARITY)),
798 /*46*/	FLAG_ENTRY0("RxHqIntrFsmErr", RXES(HQ_INTR_FSM)),
799 /*47*/	FLAG_ENTRY0("RxRbufDescPart1UncErr", RXES(RBUF_DESC_PART1_UNC)),
800 /*48*/	FLAG_ENTRY0("RxRbufDescPart1CorErr", RXES(RBUF_DESC_PART1_COR)),
801 /*49*/	FLAG_ENTRY0("RxRbufDescPart2UncErr", RXES(RBUF_DESC_PART2_UNC)),
802 /*50*/	FLAG_ENTRY0("RxRbufDescPart2CorErr", RXES(RBUF_DESC_PART2_COR)),
803 /*51*/	FLAG_ENTRY0("RxDmaHdrFifoRdUncErr", RXES(DMA_HDR_FIFO_RD_UNC)),
804 /*52*/	FLAG_ENTRY0("RxDmaHdrFifoRdCorErr", RXES(DMA_HDR_FIFO_RD_COR)),
805 /*53*/	FLAG_ENTRY0("RxDmaDataFifoRdUncErr", RXES(DMA_DATA_FIFO_RD_UNC)),
806 /*54*/	FLAG_ENTRY0("RxDmaDataFifoRdCorErr", RXES(DMA_DATA_FIFO_RD_COR)),
807 /*55*/	FLAG_ENTRY0("RxRbufDataUncErr", RXES(RBUF_DATA_UNC)),
808 /*56*/	FLAG_ENTRY0("RxRbufDataCorErr", RXES(RBUF_DATA_COR)),
809 /*57*/	FLAG_ENTRY0("RxDmaCsrParityErr", RXES(DMA_CSR_PARITY)),
810 /*58*/	FLAG_ENTRY0("RxDmaEqFsmEncodingErr", RXES(DMA_EQ_FSM_ENCODING)),
811 /*59*/	FLAG_ENTRY0("RxDmaDqFsmEncodingErr", RXES(DMA_DQ_FSM_ENCODING)),
812 /*60*/	FLAG_ENTRY0("RxDmaCsrUncErr", RXES(DMA_CSR_UNC)),
813 /*61*/	FLAG_ENTRY0("RxCsrReadBadAddrErr", RXES(CSR_READ_BAD_ADDR)),
814 /*62*/	FLAG_ENTRY0("RxCsrWriteBadAddrErr", RXES(CSR_WRITE_BAD_ADDR)),
815 /*63*/	FLAG_ENTRY0("RxCsrParityErr", RXES(CSR_PARITY))
816 };
817 
818 /* RXE errors that will trigger an SPC freeze */
819 #define ALL_RXE_FREEZE_ERR  \
820 	(RCV_ERR_STATUS_RX_RCV_QP_MAP_TABLE_UNC_ERR_SMASK \
821 	| RCV_ERR_STATUS_RX_RCV_CSR_PARITY_ERR_SMASK \
822 	| RCV_ERR_STATUS_RX_DMA_FLAG_UNC_ERR_SMASK \
823 	| RCV_ERR_STATUS_RX_RCV_FSM_ENCODING_ERR_SMASK \
824 	| RCV_ERR_STATUS_RX_RBUF_FREE_LIST_UNC_ERR_SMASK \
825 	| RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_REG_UNC_ERR_SMASK \
826 	| RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_REG_UNC_COR_ERR_SMASK \
827 	| RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_UNC_ERR_SMASK \
828 	| RCV_ERR_STATUS_RX_RBUF_BLOCK_LIST_READ_UNC_ERR_SMASK \
829 	| RCV_ERR_STATUS_RX_RBUF_CSR_QHEAD_BUF_NUM_PARITY_ERR_SMASK \
830 	| RCV_ERR_STATUS_RX_RBUF_CSR_QENT_CNT_PARITY_ERR_SMASK \
831 	| RCV_ERR_STATUS_RX_RBUF_CSR_QNEXT_BUF_PARITY_ERR_SMASK \
832 	| RCV_ERR_STATUS_RX_RBUF_CSR_QVLD_BIT_PARITY_ERR_SMASK \
833 	| RCV_ERR_STATUS_RX_RBUF_CSR_QHD_PTR_PARITY_ERR_SMASK \
834 	| RCV_ERR_STATUS_RX_RBUF_CSR_QTL_PTR_PARITY_ERR_SMASK \
835 	| RCV_ERR_STATUS_RX_RBUF_CSR_QNUM_OF_PKT_PARITY_ERR_SMASK \
836 	| RCV_ERR_STATUS_RX_RBUF_CSR_QEOPDW_PARITY_ERR_SMASK \
837 	| RCV_ERR_STATUS_RX_RBUF_CTX_ID_PARITY_ERR_SMASK \
838 	| RCV_ERR_STATUS_RX_RBUF_BAD_LOOKUP_ERR_SMASK \
839 	| RCV_ERR_STATUS_RX_RBUF_FULL_ERR_SMASK \
840 	| RCV_ERR_STATUS_RX_RBUF_EMPTY_ERR_SMASK \
841 	| RCV_ERR_STATUS_RX_RBUF_FL_RD_ADDR_PARITY_ERR_SMASK \
842 	| RCV_ERR_STATUS_RX_RBUF_FL_WR_ADDR_PARITY_ERR_SMASK \
843 	| RCV_ERR_STATUS_RX_RBUF_FL_INITDONE_PARITY_ERR_SMASK \
844 	| RCV_ERR_STATUS_RX_RBUF_FL_INIT_WR_ADDR_PARITY_ERR_SMASK \
845 	| RCV_ERR_STATUS_RX_RBUF_NEXT_FREE_BUF_UNC_ERR_SMASK \
846 	| RCV_ERR_STATUS_RX_LOOKUP_DES_PART1_UNC_ERR_SMASK \
847 	| RCV_ERR_STATUS_RX_LOOKUP_DES_PART1_UNC_COR_ERR_SMASK \
848 	| RCV_ERR_STATUS_RX_LOOKUP_DES_PART2_PARITY_ERR_SMASK \
849 	| RCV_ERR_STATUS_RX_LOOKUP_RCV_ARRAY_UNC_ERR_SMASK \
850 	| RCV_ERR_STATUS_RX_LOOKUP_CSR_PARITY_ERR_SMASK \
851 	| RCV_ERR_STATUS_RX_HQ_INTR_CSR_PARITY_ERR_SMASK \
852 	| RCV_ERR_STATUS_RX_HQ_INTR_FSM_ERR_SMASK \
853 	| RCV_ERR_STATUS_RX_RBUF_DESC_PART1_UNC_ERR_SMASK \
854 	| RCV_ERR_STATUS_RX_RBUF_DESC_PART1_COR_ERR_SMASK \
855 	| RCV_ERR_STATUS_RX_RBUF_DESC_PART2_UNC_ERR_SMASK \
856 	| RCV_ERR_STATUS_RX_DMA_HDR_FIFO_RD_UNC_ERR_SMASK \
857 	| RCV_ERR_STATUS_RX_DMA_DATA_FIFO_RD_UNC_ERR_SMASK \
858 	| RCV_ERR_STATUS_RX_RBUF_DATA_UNC_ERR_SMASK \
859 	| RCV_ERR_STATUS_RX_DMA_CSR_PARITY_ERR_SMASK \
860 	| RCV_ERR_STATUS_RX_DMA_EQ_FSM_ENCODING_ERR_SMASK \
861 	| RCV_ERR_STATUS_RX_DMA_DQ_FSM_ENCODING_ERR_SMASK \
862 	| RCV_ERR_STATUS_RX_DMA_CSR_UNC_ERR_SMASK \
863 	| RCV_ERR_STATUS_RX_CSR_PARITY_ERR_SMASK)
864 
865 #define RXE_FREEZE_ABORT_MASK \
866 	(RCV_ERR_STATUS_RX_DMA_CSR_UNC_ERR_SMASK | \
867 	RCV_ERR_STATUS_RX_DMA_HDR_FIFO_RD_UNC_ERR_SMASK | \
868 	RCV_ERR_STATUS_RX_DMA_DATA_FIFO_RD_UNC_ERR_SMASK)
869 
870 /*
871  * DCC Error Flags
872  */
873 #define DCCE(name) DCC_ERR_FLG_##name##_SMASK
874 static struct flag_table dcc_err_flags[] = {
875 	FLAG_ENTRY0("bad_l2_err", DCCE(BAD_L2_ERR)),
876 	FLAG_ENTRY0("bad_sc_err", DCCE(BAD_SC_ERR)),
877 	FLAG_ENTRY0("bad_mid_tail_err", DCCE(BAD_MID_TAIL_ERR)),
878 	FLAG_ENTRY0("bad_preemption_err", DCCE(BAD_PREEMPTION_ERR)),
879 	FLAG_ENTRY0("preemption_err", DCCE(PREEMPTION_ERR)),
880 	FLAG_ENTRY0("preemptionvl15_err", DCCE(PREEMPTIONVL15_ERR)),
881 	FLAG_ENTRY0("bad_vl_marker_err", DCCE(BAD_VL_MARKER_ERR)),
882 	FLAG_ENTRY0("bad_dlid_target_err", DCCE(BAD_DLID_TARGET_ERR)),
883 	FLAG_ENTRY0("bad_lver_err", DCCE(BAD_LVER_ERR)),
884 	FLAG_ENTRY0("uncorrectable_err", DCCE(UNCORRECTABLE_ERR)),
885 	FLAG_ENTRY0("bad_crdt_ack_err", DCCE(BAD_CRDT_ACK_ERR)),
886 	FLAG_ENTRY0("unsup_pkt_type", DCCE(UNSUP_PKT_TYPE)),
887 	FLAG_ENTRY0("bad_ctrl_flit_err", DCCE(BAD_CTRL_FLIT_ERR)),
888 	FLAG_ENTRY0("event_cntr_parity_err", DCCE(EVENT_CNTR_PARITY_ERR)),
889 	FLAG_ENTRY0("event_cntr_rollover_err", DCCE(EVENT_CNTR_ROLLOVER_ERR)),
890 	FLAG_ENTRY0("link_err", DCCE(LINK_ERR)),
891 	FLAG_ENTRY0("misc_cntr_rollover_err", DCCE(MISC_CNTR_ROLLOVER_ERR)),
892 	FLAG_ENTRY0("bad_ctrl_dist_err", DCCE(BAD_CTRL_DIST_ERR)),
893 	FLAG_ENTRY0("bad_tail_dist_err", DCCE(BAD_TAIL_DIST_ERR)),
894 	FLAG_ENTRY0("bad_head_dist_err", DCCE(BAD_HEAD_DIST_ERR)),
895 	FLAG_ENTRY0("nonvl15_state_err", DCCE(NONVL15_STATE_ERR)),
896 	FLAG_ENTRY0("vl15_multi_err", DCCE(VL15_MULTI_ERR)),
897 	FLAG_ENTRY0("bad_pkt_length_err", DCCE(BAD_PKT_LENGTH_ERR)),
898 	FLAG_ENTRY0("unsup_vl_err", DCCE(UNSUP_VL_ERR)),
899 	FLAG_ENTRY0("perm_nvl15_err", DCCE(PERM_NVL15_ERR)),
900 	FLAG_ENTRY0("slid_zero_err", DCCE(SLID_ZERO_ERR)),
901 	FLAG_ENTRY0("dlid_zero_err", DCCE(DLID_ZERO_ERR)),
902 	FLAG_ENTRY0("length_mtu_err", DCCE(LENGTH_MTU_ERR)),
903 	FLAG_ENTRY0("rx_early_drop_err", DCCE(RX_EARLY_DROP_ERR)),
904 	FLAG_ENTRY0("late_short_err", DCCE(LATE_SHORT_ERR)),
905 	FLAG_ENTRY0("late_long_err", DCCE(LATE_LONG_ERR)),
906 	FLAG_ENTRY0("late_ebp_err", DCCE(LATE_EBP_ERR)),
907 	FLAG_ENTRY0("fpe_tx_fifo_ovflw_err", DCCE(FPE_TX_FIFO_OVFLW_ERR)),
908 	FLAG_ENTRY0("fpe_tx_fifo_unflw_err", DCCE(FPE_TX_FIFO_UNFLW_ERR)),
909 	FLAG_ENTRY0("csr_access_blocked_host", DCCE(CSR_ACCESS_BLOCKED_HOST)),
910 	FLAG_ENTRY0("csr_access_blocked_uc", DCCE(CSR_ACCESS_BLOCKED_UC)),
911 	FLAG_ENTRY0("tx_ctrl_parity_err", DCCE(TX_CTRL_PARITY_ERR)),
912 	FLAG_ENTRY0("tx_ctrl_parity_mbe_err", DCCE(TX_CTRL_PARITY_MBE_ERR)),
913 	FLAG_ENTRY0("tx_sc_parity_err", DCCE(TX_SC_PARITY_ERR)),
914 	FLAG_ENTRY0("rx_ctrl_parity_mbe_err", DCCE(RX_CTRL_PARITY_MBE_ERR)),
915 	FLAG_ENTRY0("csr_parity_err", DCCE(CSR_PARITY_ERR)),
916 	FLAG_ENTRY0("csr_inval_addr", DCCE(CSR_INVAL_ADDR)),
917 	FLAG_ENTRY0("tx_byte_shft_parity_err", DCCE(TX_BYTE_SHFT_PARITY_ERR)),
918 	FLAG_ENTRY0("rx_byte_shft_parity_err", DCCE(RX_BYTE_SHFT_PARITY_ERR)),
919 	FLAG_ENTRY0("fmconfig_err", DCCE(FMCONFIG_ERR)),
920 	FLAG_ENTRY0("rcvport_err", DCCE(RCVPORT_ERR)),
921 };
922 
923 /*
924  * LCB error flags
925  */
926 #define LCBE(name) DC_LCB_ERR_FLG_##name##_SMASK
927 static struct flag_table lcb_err_flags[] = {
928 /* 0*/	FLAG_ENTRY0("CSR_PARITY_ERR", LCBE(CSR_PARITY_ERR)),
929 /* 1*/	FLAG_ENTRY0("INVALID_CSR_ADDR", LCBE(INVALID_CSR_ADDR)),
930 /* 2*/	FLAG_ENTRY0("RST_FOR_FAILED_DESKEW", LCBE(RST_FOR_FAILED_DESKEW)),
931 /* 3*/	FLAG_ENTRY0("ALL_LNS_FAILED_REINIT_TEST",
932 		LCBE(ALL_LNS_FAILED_REINIT_TEST)),
933 /* 4*/	FLAG_ENTRY0("LOST_REINIT_STALL_OR_TOS", LCBE(LOST_REINIT_STALL_OR_TOS)),
934 /* 5*/	FLAG_ENTRY0("TX_LESS_THAN_FOUR_LNS", LCBE(TX_LESS_THAN_FOUR_LNS)),
935 /* 6*/	FLAG_ENTRY0("RX_LESS_THAN_FOUR_LNS", LCBE(RX_LESS_THAN_FOUR_LNS)),
936 /* 7*/	FLAG_ENTRY0("SEQ_CRC_ERR", LCBE(SEQ_CRC_ERR)),
937 /* 8*/	FLAG_ENTRY0("REINIT_FROM_PEER", LCBE(REINIT_FROM_PEER)),
938 /* 9*/	FLAG_ENTRY0("REINIT_FOR_LN_DEGRADE", LCBE(REINIT_FOR_LN_DEGRADE)),
939 /*10*/	FLAG_ENTRY0("CRC_ERR_CNT_HIT_LIMIT", LCBE(CRC_ERR_CNT_HIT_LIMIT)),
940 /*11*/	FLAG_ENTRY0("RCLK_STOPPED", LCBE(RCLK_STOPPED)),
941 /*12*/	FLAG_ENTRY0("UNEXPECTED_REPLAY_MARKER", LCBE(UNEXPECTED_REPLAY_MARKER)),
942 /*13*/	FLAG_ENTRY0("UNEXPECTED_ROUND_TRIP_MARKER",
943 		LCBE(UNEXPECTED_ROUND_TRIP_MARKER)),
944 /*14*/	FLAG_ENTRY0("ILLEGAL_NULL_LTP", LCBE(ILLEGAL_NULL_LTP)),
945 /*15*/	FLAG_ENTRY0("ILLEGAL_FLIT_ENCODING", LCBE(ILLEGAL_FLIT_ENCODING)),
946 /*16*/	FLAG_ENTRY0("FLIT_INPUT_BUF_OFLW", LCBE(FLIT_INPUT_BUF_OFLW)),
947 /*17*/	FLAG_ENTRY0("VL_ACK_INPUT_BUF_OFLW", LCBE(VL_ACK_INPUT_BUF_OFLW)),
948 /*18*/	FLAG_ENTRY0("VL_ACK_INPUT_PARITY_ERR", LCBE(VL_ACK_INPUT_PARITY_ERR)),
949 /*19*/	FLAG_ENTRY0("VL_ACK_INPUT_WRONG_CRC_MODE",
950 		LCBE(VL_ACK_INPUT_WRONG_CRC_MODE)),
951 /*20*/	FLAG_ENTRY0("FLIT_INPUT_BUF_MBE", LCBE(FLIT_INPUT_BUF_MBE)),
952 /*21*/	FLAG_ENTRY0("FLIT_INPUT_BUF_SBE", LCBE(FLIT_INPUT_BUF_SBE)),
953 /*22*/	FLAG_ENTRY0("REPLAY_BUF_MBE", LCBE(REPLAY_BUF_MBE)),
954 /*23*/	FLAG_ENTRY0("REPLAY_BUF_SBE", LCBE(REPLAY_BUF_SBE)),
955 /*24*/	FLAG_ENTRY0("CREDIT_RETURN_FLIT_MBE", LCBE(CREDIT_RETURN_FLIT_MBE)),
956 /*25*/	FLAG_ENTRY0("RST_FOR_LINK_TIMEOUT", LCBE(RST_FOR_LINK_TIMEOUT)),
957 /*26*/	FLAG_ENTRY0("RST_FOR_INCOMPLT_RND_TRIP",
958 		LCBE(RST_FOR_INCOMPLT_RND_TRIP)),
959 /*27*/	FLAG_ENTRY0("HOLD_REINIT", LCBE(HOLD_REINIT)),
960 /*28*/	FLAG_ENTRY0("NEG_EDGE_LINK_TRANSFER_ACTIVE",
961 		LCBE(NEG_EDGE_LINK_TRANSFER_ACTIVE)),
962 /*29*/	FLAG_ENTRY0("REDUNDANT_FLIT_PARITY_ERR",
963 		LCBE(REDUNDANT_FLIT_PARITY_ERR))
964 };
965 
966 /*
967  * DC8051 Error Flags
968  */
969 #define D8E(name) DC_DC8051_ERR_FLG_##name##_SMASK
970 static struct flag_table dc8051_err_flags[] = {
971 	FLAG_ENTRY0("SET_BY_8051", D8E(SET_BY_8051)),
972 	FLAG_ENTRY0("LOST_8051_HEART_BEAT", D8E(LOST_8051_HEART_BEAT)),
973 	FLAG_ENTRY0("CRAM_MBE", D8E(CRAM_MBE)),
974 	FLAG_ENTRY0("CRAM_SBE", D8E(CRAM_SBE)),
975 	FLAG_ENTRY0("DRAM_MBE", D8E(DRAM_MBE)),
976 	FLAG_ENTRY0("DRAM_SBE", D8E(DRAM_SBE)),
977 	FLAG_ENTRY0("IRAM_MBE", D8E(IRAM_MBE)),
978 	FLAG_ENTRY0("IRAM_SBE", D8E(IRAM_SBE)),
979 	FLAG_ENTRY0("UNMATCHED_SECURE_MSG_ACROSS_BCC_LANES",
980 		    D8E(UNMATCHED_SECURE_MSG_ACROSS_BCC_LANES)),
981 	FLAG_ENTRY0("INVALID_CSR_ADDR", D8E(INVALID_CSR_ADDR)),
982 };
983 
984 /*
985  * DC8051 Information Error flags
986  *
987  * Flags in DC8051_DBG_ERR_INFO_SET_BY_8051.ERROR field.
988  */
989 static struct flag_table dc8051_info_err_flags[] = {
990 	FLAG_ENTRY0("Spico ROM check failed",  SPICO_ROM_FAILED),
991 	FLAG_ENTRY0("Unknown frame received",  UNKNOWN_FRAME),
992 	FLAG_ENTRY0("Target BER not met",      TARGET_BER_NOT_MET),
993 	FLAG_ENTRY0("Serdes internal loopback failure",
994 		    FAILED_SERDES_INTERNAL_LOOPBACK),
995 	FLAG_ENTRY0("Failed SerDes init",      FAILED_SERDES_INIT),
996 	FLAG_ENTRY0("Failed LNI(Polling)",     FAILED_LNI_POLLING),
997 	FLAG_ENTRY0("Failed LNI(Debounce)",    FAILED_LNI_DEBOUNCE),
998 	FLAG_ENTRY0("Failed LNI(EstbComm)",    FAILED_LNI_ESTBCOMM),
999 	FLAG_ENTRY0("Failed LNI(OptEq)",       FAILED_LNI_OPTEQ),
1000 	FLAG_ENTRY0("Failed LNI(VerifyCap_1)", FAILED_LNI_VERIFY_CAP1),
1001 	FLAG_ENTRY0("Failed LNI(VerifyCap_2)", FAILED_LNI_VERIFY_CAP2),
1002 	FLAG_ENTRY0("Failed LNI(ConfigLT)",    FAILED_LNI_CONFIGLT),
1003 	FLAG_ENTRY0("Host Handshake Timeout",  HOST_HANDSHAKE_TIMEOUT),
1004 	FLAG_ENTRY0("External Device Request Timeout",
1005 		    EXTERNAL_DEVICE_REQ_TIMEOUT),
1006 };
1007 
1008 /*
1009  * DC8051 Information Host Information flags
1010  *
1011  * Flags in DC8051_DBG_ERR_INFO_SET_BY_8051.HOST_MSG field.
1012  */
1013 static struct flag_table dc8051_info_host_msg_flags[] = {
1014 	FLAG_ENTRY0("Host request done", 0x0001),
1015 	FLAG_ENTRY0("BC PWR_MGM message", 0x0002),
1016 	FLAG_ENTRY0("BC SMA message", 0x0004),
1017 	FLAG_ENTRY0("BC Unknown message (BCC)", 0x0008),
1018 	FLAG_ENTRY0("BC Unknown message (LCB)", 0x0010),
1019 	FLAG_ENTRY0("External device config request", 0x0020),
1020 	FLAG_ENTRY0("VerifyCap all frames received", 0x0040),
1021 	FLAG_ENTRY0("LinkUp achieved", 0x0080),
1022 	FLAG_ENTRY0("Link going down", 0x0100),
1023 	FLAG_ENTRY0("Link width downgraded", 0x0200),
1024 };
1025 
1026 static u32 encoded_size(u32 size);
1027 static u32 chip_to_opa_lstate(struct hfi1_devdata *dd, u32 chip_lstate);
1028 static int set_physical_link_state(struct hfi1_devdata *dd, u64 state);
1029 static void read_vc_remote_phy(struct hfi1_devdata *dd, u8 *power_management,
1030 			       u8 *continuous);
1031 static void read_vc_remote_fabric(struct hfi1_devdata *dd, u8 *vau, u8 *z,
1032 				  u8 *vcu, u16 *vl15buf, u8 *crc_sizes);
1033 static void read_vc_remote_link_width(struct hfi1_devdata *dd,
1034 				      u8 *remote_tx_rate, u16 *link_widths);
1035 static void read_vc_local_link_width(struct hfi1_devdata *dd, u8 *misc_bits,
1036 				     u8 *flag_bits, u16 *link_widths);
1037 static void read_remote_device_id(struct hfi1_devdata *dd, u16 *device_id,
1038 				  u8 *device_rev);
1039 static void read_mgmt_allowed(struct hfi1_devdata *dd, u8 *mgmt_allowed);
1040 static void read_local_lni(struct hfi1_devdata *dd, u8 *enable_lane_rx);
1041 static int read_tx_settings(struct hfi1_devdata *dd, u8 *enable_lane_tx,
1042 			    u8 *tx_polarity_inversion,
1043 			    u8 *rx_polarity_inversion, u8 *max_rate);
1044 static void handle_sdma_eng_err(struct hfi1_devdata *dd,
1045 				unsigned int context, u64 err_status);
1046 static void handle_qsfp_int(struct hfi1_devdata *dd, u32 source, u64 reg);
1047 static void handle_dcc_err(struct hfi1_devdata *dd,
1048 			   unsigned int context, u64 err_status);
1049 static void handle_lcb_err(struct hfi1_devdata *dd,
1050 			   unsigned int context, u64 err_status);
1051 static void handle_8051_interrupt(struct hfi1_devdata *dd, u32 unused, u64 reg);
1052 static void handle_cce_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1053 static void handle_rxe_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1054 static void handle_misc_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1055 static void handle_pio_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1056 static void handle_sdma_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1057 static void handle_egress_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1058 static void handle_txe_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1059 static void set_partition_keys(struct hfi1_pportdata *ppd);
1060 static const char *link_state_name(u32 state);
1061 static const char *link_state_reason_name(struct hfi1_pportdata *ppd,
1062 					  u32 state);
1063 static int do_8051_command(struct hfi1_devdata *dd, u32 type, u64 in_data,
1064 			   u64 *out_data);
1065 static int read_idle_sma(struct hfi1_devdata *dd, u64 *data);
1066 static int thermal_init(struct hfi1_devdata *dd);
1067 
1068 static void update_statusp(struct hfi1_pportdata *ppd, u32 state);
1069 static int wait_phys_link_offline_substates(struct hfi1_pportdata *ppd,
1070 					    int msecs);
1071 static int wait_logical_linkstate(struct hfi1_pportdata *ppd, u32 state,
1072 				  int msecs);
1073 static void log_state_transition(struct hfi1_pportdata *ppd, u32 state);
1074 static void log_physical_state(struct hfi1_pportdata *ppd, u32 state);
1075 static int wait_physical_linkstate(struct hfi1_pportdata *ppd, u32 state,
1076 				   int msecs);
1077 static void read_planned_down_reason_code(struct hfi1_devdata *dd, u8 *pdrrc);
1078 static void read_link_down_reason(struct hfi1_devdata *dd, u8 *ldr);
1079 static void handle_temp_err(struct hfi1_devdata *dd);
1080 static void dc_shutdown(struct hfi1_devdata *dd);
1081 static void dc_start(struct hfi1_devdata *dd);
1082 static int qos_rmt_entries(struct hfi1_devdata *dd, unsigned int *mp,
1083 			   unsigned int *np);
1084 static void clear_full_mgmt_pkey(struct hfi1_pportdata *ppd);
1085 static int wait_link_transfer_active(struct hfi1_devdata *dd, int wait_ms);
1086 static void clear_rsm_rule(struct hfi1_devdata *dd, u8 rule_index);
1087 
1088 /*
1089  * Error interrupt table entry.  This is used as input to the interrupt
1090  * "clear down" routine used for all second tier error interrupt register.
1091  * Second tier interrupt registers have a single bit representing them
1092  * in the top-level CceIntStatus.
1093  */
1094 struct err_reg_info {
1095 	u32 status;		/* status CSR offset */
1096 	u32 clear;		/* clear CSR offset */
1097 	u32 mask;		/* mask CSR offset */
1098 	void (*handler)(struct hfi1_devdata *dd, u32 source, u64 reg);
1099 	const char *desc;
1100 };
1101 
1102 #define NUM_MISC_ERRS (IS_GENERAL_ERR_END - IS_GENERAL_ERR_START)
1103 #define NUM_DC_ERRS (IS_DC_END - IS_DC_START)
1104 #define NUM_VARIOUS (IS_VARIOUS_END - IS_VARIOUS_START)
1105 
1106 /*
1107  * Helpers for building HFI and DC error interrupt table entries.  Different
1108  * helpers are needed because of inconsistent register names.
1109  */
1110 #define EE(reg, handler, desc) \
1111 	{ reg##_STATUS, reg##_CLEAR, reg##_MASK, \
1112 		handler, desc }
1113 #define DC_EE1(reg, handler, desc) \
1114 	{ reg##_FLG, reg##_FLG_CLR, reg##_FLG_EN, handler, desc }
1115 #define DC_EE2(reg, handler, desc) \
1116 	{ reg##_FLG, reg##_CLR, reg##_EN, handler, desc }
1117 
1118 /*
1119  * Table of the "misc" grouping of error interrupts.  Each entry refers to
1120  * another register containing more information.
1121  */
1122 static const struct err_reg_info misc_errs[NUM_MISC_ERRS] = {
1123 /* 0*/	EE(CCE_ERR,		handle_cce_err,    "CceErr"),
1124 /* 1*/	EE(RCV_ERR,		handle_rxe_err,    "RxeErr"),
1125 /* 2*/	EE(MISC_ERR,	handle_misc_err,   "MiscErr"),
1126 /* 3*/	{ 0, 0, 0, NULL }, /* reserved */
1127 /* 4*/	EE(SEND_PIO_ERR,    handle_pio_err,    "PioErr"),
1128 /* 5*/	EE(SEND_DMA_ERR,    handle_sdma_err,   "SDmaErr"),
1129 /* 6*/	EE(SEND_EGRESS_ERR, handle_egress_err, "EgressErr"),
1130 /* 7*/	EE(SEND_ERR,	handle_txe_err,    "TxeErr")
1131 	/* the rest are reserved */
1132 };
1133 
1134 /*
1135  * Index into the Various section of the interrupt sources
1136  * corresponding to the Critical Temperature interrupt.
1137  */
1138 #define TCRIT_INT_SOURCE 4
1139 
1140 /*
1141  * SDMA error interrupt entry - refers to another register containing more
1142  * information.
1143  */
1144 static const struct err_reg_info sdma_eng_err =
1145 	EE(SEND_DMA_ENG_ERR, handle_sdma_eng_err, "SDmaEngErr");
1146 
1147 static const struct err_reg_info various_err[NUM_VARIOUS] = {
1148 /* 0*/	{ 0, 0, 0, NULL }, /* PbcInt */
1149 /* 1*/	{ 0, 0, 0, NULL }, /* GpioAssertInt */
1150 /* 2*/	EE(ASIC_QSFP1,	handle_qsfp_int,	"QSFP1"),
1151 /* 3*/	EE(ASIC_QSFP2,	handle_qsfp_int,	"QSFP2"),
1152 /* 4*/	{ 0, 0, 0, NULL }, /* TCritInt */
1153 	/* rest are reserved */
1154 };
1155 
1156 /*
1157  * The DC encoding of mtu_cap for 10K MTU in the DCC_CFG_PORT_CONFIG
1158  * register can not be derived from the MTU value because 10K is not
1159  * a power of 2. Therefore, we need a constant. Everything else can
1160  * be calculated.
1161  */
1162 #define DCC_CFG_PORT_MTU_CAP_10240 7
1163 
1164 /*
1165  * Table of the DC grouping of error interrupts.  Each entry refers to
1166  * another register containing more information.
1167  */
1168 static const struct err_reg_info dc_errs[NUM_DC_ERRS] = {
1169 /* 0*/	DC_EE1(DCC_ERR,		handle_dcc_err,	       "DCC Err"),
1170 /* 1*/	DC_EE2(DC_LCB_ERR,	handle_lcb_err,	       "LCB Err"),
1171 /* 2*/	DC_EE2(DC_DC8051_ERR,	handle_8051_interrupt, "DC8051 Interrupt"),
1172 /* 3*/	/* dc_lbm_int - special, see is_dc_int() */
1173 	/* the rest are reserved */
1174 };
1175 
1176 struct cntr_entry {
1177 	/*
1178 	 * counter name
1179 	 */
1180 	char *name;
1181 
1182 	/*
1183 	 * csr to read for name (if applicable)
1184 	 */
1185 	u64 csr;
1186 
1187 	/*
1188 	 * offset into dd or ppd to store the counter's value
1189 	 */
1190 	int offset;
1191 
1192 	/*
1193 	 * flags
1194 	 */
1195 	u8 flags;
1196 
1197 	/*
1198 	 * accessor for stat element, context either dd or ppd
1199 	 */
1200 	u64 (*rw_cntr)(const struct cntr_entry *, void *context, int vl,
1201 		       int mode, u64 data);
1202 };
1203 
1204 #define C_RCV_HDR_OVF_FIRST C_RCV_HDR_OVF_0
1205 #define C_RCV_HDR_OVF_LAST C_RCV_HDR_OVF_159
1206 
1207 #define CNTR_ELEM(name, csr, offset, flags, accessor) \
1208 { \
1209 	name, \
1210 	csr, \
1211 	offset, \
1212 	flags, \
1213 	accessor \
1214 }
1215 
1216 /* 32bit RXE */
1217 #define RXE32_PORT_CNTR_ELEM(name, counter, flags) \
1218 CNTR_ELEM(#name, \
1219 	  (counter * 8 + RCV_COUNTER_ARRAY32), \
1220 	  0, flags | CNTR_32BIT, \
1221 	  port_access_u32_csr)
1222 
1223 #define RXE32_DEV_CNTR_ELEM(name, counter, flags) \
1224 CNTR_ELEM(#name, \
1225 	  (counter * 8 + RCV_COUNTER_ARRAY32), \
1226 	  0, flags | CNTR_32BIT, \
1227 	  dev_access_u32_csr)
1228 
1229 /* 64bit RXE */
1230 #define RXE64_PORT_CNTR_ELEM(name, counter, flags) \
1231 CNTR_ELEM(#name, \
1232 	  (counter * 8 + RCV_COUNTER_ARRAY64), \
1233 	  0, flags, \
1234 	  port_access_u64_csr)
1235 
1236 #define RXE64_DEV_CNTR_ELEM(name, counter, flags) \
1237 CNTR_ELEM(#name, \
1238 	  (counter * 8 + RCV_COUNTER_ARRAY64), \
1239 	  0, flags, \
1240 	  dev_access_u64_csr)
1241 
1242 #define OVR_LBL(ctx) C_RCV_HDR_OVF_ ## ctx
1243 #define OVR_ELM(ctx) \
1244 CNTR_ELEM("RcvHdrOvr" #ctx, \
1245 	  (RCV_HDR_OVFL_CNT + ctx * 0x100), \
1246 	  0, CNTR_NORMAL, port_access_u64_csr)
1247 
1248 /* 32bit TXE */
1249 #define TXE32_PORT_CNTR_ELEM(name, counter, flags) \
1250 CNTR_ELEM(#name, \
1251 	  (counter * 8 + SEND_COUNTER_ARRAY32), \
1252 	  0, flags | CNTR_32BIT, \
1253 	  port_access_u32_csr)
1254 
1255 /* 64bit TXE */
1256 #define TXE64_PORT_CNTR_ELEM(name, counter, flags) \
1257 CNTR_ELEM(#name, \
1258 	  (counter * 8 + SEND_COUNTER_ARRAY64), \
1259 	  0, flags, \
1260 	  port_access_u64_csr)
1261 
1262 # define TX64_DEV_CNTR_ELEM(name, counter, flags) \
1263 CNTR_ELEM(#name,\
1264 	  counter * 8 + SEND_COUNTER_ARRAY64, \
1265 	  0, \
1266 	  flags, \
1267 	  dev_access_u64_csr)
1268 
1269 /* CCE */
1270 #define CCE_PERF_DEV_CNTR_ELEM(name, counter, flags) \
1271 CNTR_ELEM(#name, \
1272 	  (counter * 8 + CCE_COUNTER_ARRAY32), \
1273 	  0, flags | CNTR_32BIT, \
1274 	  dev_access_u32_csr)
1275 
1276 #define CCE_INT_DEV_CNTR_ELEM(name, counter, flags) \
1277 CNTR_ELEM(#name, \
1278 	  (counter * 8 + CCE_INT_COUNTER_ARRAY32), \
1279 	  0, flags | CNTR_32BIT, \
1280 	  dev_access_u32_csr)
1281 
1282 /* DC */
1283 #define DC_PERF_CNTR(name, counter, flags) \
1284 CNTR_ELEM(#name, \
1285 	  counter, \
1286 	  0, \
1287 	  flags, \
1288 	  dev_access_u64_csr)
1289 
1290 #define DC_PERF_CNTR_LCB(name, counter, flags) \
1291 CNTR_ELEM(#name, \
1292 	  counter, \
1293 	  0, \
1294 	  flags, \
1295 	  dc_access_lcb_cntr)
1296 
1297 /* ibp counters */
1298 #define SW_IBP_CNTR(name, cntr) \
1299 CNTR_ELEM(#name, \
1300 	  0, \
1301 	  0, \
1302 	  CNTR_SYNTH, \
1303 	  access_ibp_##cntr)
1304 
1305 /**
1306  * hfi_addr_from_offset - return addr for readq/writeq
1307  * @dd - the dd device
1308  * @offset - the offset of the CSR within bar0
1309  *
1310  * This routine selects the appropriate base address
1311  * based on the indicated offset.
1312  */
1313 static inline void __iomem *hfi1_addr_from_offset(
1314 	const struct hfi1_devdata *dd,
1315 	u32 offset)
1316 {
1317 	if (offset >= dd->base2_start)
1318 		return dd->kregbase2 + (offset - dd->base2_start);
1319 	return dd->kregbase1 + offset;
1320 }
1321 
1322 /**
1323  * read_csr - read CSR at the indicated offset
1324  * @dd - the dd device
1325  * @offset - the offset of the CSR within bar0
1326  *
1327  * Return: the value read or all FF's if there
1328  * is no mapping
1329  */
1330 u64 read_csr(const struct hfi1_devdata *dd, u32 offset)
1331 {
1332 	if (dd->flags & HFI1_PRESENT)
1333 		return readq(hfi1_addr_from_offset(dd, offset));
1334 	return -1;
1335 }
1336 
1337 /**
1338  * write_csr - write CSR at the indicated offset
1339  * @dd - the dd device
1340  * @offset - the offset of the CSR within bar0
1341  * @value - value to write
1342  */
1343 void write_csr(const struct hfi1_devdata *dd, u32 offset, u64 value)
1344 {
1345 	if (dd->flags & HFI1_PRESENT) {
1346 		void __iomem *base = hfi1_addr_from_offset(dd, offset);
1347 
1348 		/* avoid write to RcvArray */
1349 		if (WARN_ON(offset >= RCV_ARRAY && offset < dd->base2_start))
1350 			return;
1351 		writeq(value, base);
1352 	}
1353 }
1354 
1355 /**
1356  * get_csr_addr - return te iomem address for offset
1357  * @dd - the dd device
1358  * @offset - the offset of the CSR within bar0
1359  *
1360  * Return: The iomem address to use in subsequent
1361  * writeq/readq operations.
1362  */
1363 void __iomem *get_csr_addr(
1364 	const struct hfi1_devdata *dd,
1365 	u32 offset)
1366 {
1367 	if (dd->flags & HFI1_PRESENT)
1368 		return hfi1_addr_from_offset(dd, offset);
1369 	return NULL;
1370 }
1371 
1372 static inline u64 read_write_csr(const struct hfi1_devdata *dd, u32 csr,
1373 				 int mode, u64 value)
1374 {
1375 	u64 ret;
1376 
1377 	if (mode == CNTR_MODE_R) {
1378 		ret = read_csr(dd, csr);
1379 	} else if (mode == CNTR_MODE_W) {
1380 		write_csr(dd, csr, value);
1381 		ret = value;
1382 	} else {
1383 		dd_dev_err(dd, "Invalid cntr register access mode");
1384 		return 0;
1385 	}
1386 
1387 	hfi1_cdbg(CNTR, "csr 0x%x val 0x%llx mode %d", csr, ret, mode);
1388 	return ret;
1389 }
1390 
1391 /* Dev Access */
1392 static u64 dev_access_u32_csr(const struct cntr_entry *entry,
1393 			      void *context, int vl, int mode, u64 data)
1394 {
1395 	struct hfi1_devdata *dd = context;
1396 	u64 csr = entry->csr;
1397 
1398 	if (entry->flags & CNTR_SDMA) {
1399 		if (vl == CNTR_INVALID_VL)
1400 			return 0;
1401 		csr += 0x100 * vl;
1402 	} else {
1403 		if (vl != CNTR_INVALID_VL)
1404 			return 0;
1405 	}
1406 	return read_write_csr(dd, csr, mode, data);
1407 }
1408 
1409 static u64 access_sde_err_cnt(const struct cntr_entry *entry,
1410 			      void *context, int idx, int mode, u64 data)
1411 {
1412 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1413 
1414 	if (dd->per_sdma && idx < dd->num_sdma)
1415 		return dd->per_sdma[idx].err_cnt;
1416 	return 0;
1417 }
1418 
1419 static u64 access_sde_int_cnt(const struct cntr_entry *entry,
1420 			      void *context, int idx, int mode, u64 data)
1421 {
1422 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1423 
1424 	if (dd->per_sdma && idx < dd->num_sdma)
1425 		return dd->per_sdma[idx].sdma_int_cnt;
1426 	return 0;
1427 }
1428 
1429 static u64 access_sde_idle_int_cnt(const struct cntr_entry *entry,
1430 				   void *context, int idx, int mode, u64 data)
1431 {
1432 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1433 
1434 	if (dd->per_sdma && idx < dd->num_sdma)
1435 		return dd->per_sdma[idx].idle_int_cnt;
1436 	return 0;
1437 }
1438 
1439 static u64 access_sde_progress_int_cnt(const struct cntr_entry *entry,
1440 				       void *context, int idx, int mode,
1441 				       u64 data)
1442 {
1443 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1444 
1445 	if (dd->per_sdma && idx < dd->num_sdma)
1446 		return dd->per_sdma[idx].progress_int_cnt;
1447 	return 0;
1448 }
1449 
1450 static u64 dev_access_u64_csr(const struct cntr_entry *entry, void *context,
1451 			      int vl, int mode, u64 data)
1452 {
1453 	struct hfi1_devdata *dd = context;
1454 
1455 	u64 val = 0;
1456 	u64 csr = entry->csr;
1457 
1458 	if (entry->flags & CNTR_VL) {
1459 		if (vl == CNTR_INVALID_VL)
1460 			return 0;
1461 		csr += 8 * vl;
1462 	} else {
1463 		if (vl != CNTR_INVALID_VL)
1464 			return 0;
1465 	}
1466 
1467 	val = read_write_csr(dd, csr, mode, data);
1468 	return val;
1469 }
1470 
1471 static u64 dc_access_lcb_cntr(const struct cntr_entry *entry, void *context,
1472 			      int vl, int mode, u64 data)
1473 {
1474 	struct hfi1_devdata *dd = context;
1475 	u32 csr = entry->csr;
1476 	int ret = 0;
1477 
1478 	if (vl != CNTR_INVALID_VL)
1479 		return 0;
1480 	if (mode == CNTR_MODE_R)
1481 		ret = read_lcb_csr(dd, csr, &data);
1482 	else if (mode == CNTR_MODE_W)
1483 		ret = write_lcb_csr(dd, csr, data);
1484 
1485 	if (ret) {
1486 		dd_dev_err(dd, "Could not acquire LCB for counter 0x%x", csr);
1487 		return 0;
1488 	}
1489 
1490 	hfi1_cdbg(CNTR, "csr 0x%x val 0x%llx mode %d", csr, data, mode);
1491 	return data;
1492 }
1493 
1494 /* Port Access */
1495 static u64 port_access_u32_csr(const struct cntr_entry *entry, void *context,
1496 			       int vl, int mode, u64 data)
1497 {
1498 	struct hfi1_pportdata *ppd = context;
1499 
1500 	if (vl != CNTR_INVALID_VL)
1501 		return 0;
1502 	return read_write_csr(ppd->dd, entry->csr, mode, data);
1503 }
1504 
1505 static u64 port_access_u64_csr(const struct cntr_entry *entry,
1506 			       void *context, int vl, int mode, u64 data)
1507 {
1508 	struct hfi1_pportdata *ppd = context;
1509 	u64 val;
1510 	u64 csr = entry->csr;
1511 
1512 	if (entry->flags & CNTR_VL) {
1513 		if (vl == CNTR_INVALID_VL)
1514 			return 0;
1515 		csr += 8 * vl;
1516 	} else {
1517 		if (vl != CNTR_INVALID_VL)
1518 			return 0;
1519 	}
1520 	val = read_write_csr(ppd->dd, csr, mode, data);
1521 	return val;
1522 }
1523 
1524 /* Software defined */
1525 static inline u64 read_write_sw(struct hfi1_devdata *dd, u64 *cntr, int mode,
1526 				u64 data)
1527 {
1528 	u64 ret;
1529 
1530 	if (mode == CNTR_MODE_R) {
1531 		ret = *cntr;
1532 	} else if (mode == CNTR_MODE_W) {
1533 		*cntr = data;
1534 		ret = data;
1535 	} else {
1536 		dd_dev_err(dd, "Invalid cntr sw access mode");
1537 		return 0;
1538 	}
1539 
1540 	hfi1_cdbg(CNTR, "val 0x%llx mode %d", ret, mode);
1541 
1542 	return ret;
1543 }
1544 
1545 static u64 access_sw_link_dn_cnt(const struct cntr_entry *entry, void *context,
1546 				 int vl, int mode, u64 data)
1547 {
1548 	struct hfi1_pportdata *ppd = context;
1549 
1550 	if (vl != CNTR_INVALID_VL)
1551 		return 0;
1552 	return read_write_sw(ppd->dd, &ppd->link_downed, mode, data);
1553 }
1554 
1555 static u64 access_sw_link_up_cnt(const struct cntr_entry *entry, void *context,
1556 				 int vl, int mode, u64 data)
1557 {
1558 	struct hfi1_pportdata *ppd = context;
1559 
1560 	if (vl != CNTR_INVALID_VL)
1561 		return 0;
1562 	return read_write_sw(ppd->dd, &ppd->link_up, mode, data);
1563 }
1564 
1565 static u64 access_sw_unknown_frame_cnt(const struct cntr_entry *entry,
1566 				       void *context, int vl, int mode,
1567 				       u64 data)
1568 {
1569 	struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context;
1570 
1571 	if (vl != CNTR_INVALID_VL)
1572 		return 0;
1573 	return read_write_sw(ppd->dd, &ppd->unknown_frame_count, mode, data);
1574 }
1575 
1576 static u64 access_sw_xmit_discards(const struct cntr_entry *entry,
1577 				   void *context, int vl, int mode, u64 data)
1578 {
1579 	struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context;
1580 	u64 zero = 0;
1581 	u64 *counter;
1582 
1583 	if (vl == CNTR_INVALID_VL)
1584 		counter = &ppd->port_xmit_discards;
1585 	else if (vl >= 0 && vl < C_VL_COUNT)
1586 		counter = &ppd->port_xmit_discards_vl[vl];
1587 	else
1588 		counter = &zero;
1589 
1590 	return read_write_sw(ppd->dd, counter, mode, data);
1591 }
1592 
1593 static u64 access_xmit_constraint_errs(const struct cntr_entry *entry,
1594 				       void *context, int vl, int mode,
1595 				       u64 data)
1596 {
1597 	struct hfi1_pportdata *ppd = context;
1598 
1599 	if (vl != CNTR_INVALID_VL)
1600 		return 0;
1601 
1602 	return read_write_sw(ppd->dd, &ppd->port_xmit_constraint_errors,
1603 			     mode, data);
1604 }
1605 
1606 static u64 access_rcv_constraint_errs(const struct cntr_entry *entry,
1607 				      void *context, int vl, int mode, u64 data)
1608 {
1609 	struct hfi1_pportdata *ppd = context;
1610 
1611 	if (vl != CNTR_INVALID_VL)
1612 		return 0;
1613 
1614 	return read_write_sw(ppd->dd, &ppd->port_rcv_constraint_errors,
1615 			     mode, data);
1616 }
1617 
1618 u64 get_all_cpu_total(u64 __percpu *cntr)
1619 {
1620 	int cpu;
1621 	u64 counter = 0;
1622 
1623 	for_each_possible_cpu(cpu)
1624 		counter += *per_cpu_ptr(cntr, cpu);
1625 	return counter;
1626 }
1627 
1628 static u64 read_write_cpu(struct hfi1_devdata *dd, u64 *z_val,
1629 			  u64 __percpu *cntr,
1630 			  int vl, int mode, u64 data)
1631 {
1632 	u64 ret = 0;
1633 
1634 	if (vl != CNTR_INVALID_VL)
1635 		return 0;
1636 
1637 	if (mode == CNTR_MODE_R) {
1638 		ret = get_all_cpu_total(cntr) - *z_val;
1639 	} else if (mode == CNTR_MODE_W) {
1640 		/* A write can only zero the counter */
1641 		if (data == 0)
1642 			*z_val = get_all_cpu_total(cntr);
1643 		else
1644 			dd_dev_err(dd, "Per CPU cntrs can only be zeroed");
1645 	} else {
1646 		dd_dev_err(dd, "Invalid cntr sw cpu access mode");
1647 		return 0;
1648 	}
1649 
1650 	return ret;
1651 }
1652 
1653 static u64 access_sw_cpu_intr(const struct cntr_entry *entry,
1654 			      void *context, int vl, int mode, u64 data)
1655 {
1656 	struct hfi1_devdata *dd = context;
1657 
1658 	return read_write_cpu(dd, &dd->z_int_counter, dd->int_counter, vl,
1659 			      mode, data);
1660 }
1661 
1662 static u64 access_sw_cpu_rcv_limit(const struct cntr_entry *entry,
1663 				   void *context, int vl, int mode, u64 data)
1664 {
1665 	struct hfi1_devdata *dd = context;
1666 
1667 	return read_write_cpu(dd, &dd->z_rcv_limit, dd->rcv_limit, vl,
1668 			      mode, data);
1669 }
1670 
1671 static u64 access_sw_pio_wait(const struct cntr_entry *entry,
1672 			      void *context, int vl, int mode, u64 data)
1673 {
1674 	struct hfi1_devdata *dd = context;
1675 
1676 	return dd->verbs_dev.n_piowait;
1677 }
1678 
1679 static u64 access_sw_pio_drain(const struct cntr_entry *entry,
1680 			       void *context, int vl, int mode, u64 data)
1681 {
1682 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1683 
1684 	return dd->verbs_dev.n_piodrain;
1685 }
1686 
1687 static u64 access_sw_vtx_wait(const struct cntr_entry *entry,
1688 			      void *context, int vl, int mode, u64 data)
1689 {
1690 	struct hfi1_devdata *dd = context;
1691 
1692 	return dd->verbs_dev.n_txwait;
1693 }
1694 
1695 static u64 access_sw_kmem_wait(const struct cntr_entry *entry,
1696 			       void *context, int vl, int mode, u64 data)
1697 {
1698 	struct hfi1_devdata *dd = context;
1699 
1700 	return dd->verbs_dev.n_kmem_wait;
1701 }
1702 
1703 static u64 access_sw_send_schedule(const struct cntr_entry *entry,
1704 				   void *context, int vl, int mode, u64 data)
1705 {
1706 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1707 
1708 	return read_write_cpu(dd, &dd->z_send_schedule, dd->send_schedule, vl,
1709 			      mode, data);
1710 }
1711 
1712 /* Software counters for the error status bits within MISC_ERR_STATUS */
1713 static u64 access_misc_pll_lock_fail_err_cnt(const struct cntr_entry *entry,
1714 					     void *context, int vl, int mode,
1715 					     u64 data)
1716 {
1717 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1718 
1719 	return dd->misc_err_status_cnt[12];
1720 }
1721 
1722 static u64 access_misc_mbist_fail_err_cnt(const struct cntr_entry *entry,
1723 					  void *context, int vl, int mode,
1724 					  u64 data)
1725 {
1726 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1727 
1728 	return dd->misc_err_status_cnt[11];
1729 }
1730 
1731 static u64 access_misc_invalid_eep_cmd_err_cnt(const struct cntr_entry *entry,
1732 					       void *context, int vl, int mode,
1733 					       u64 data)
1734 {
1735 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1736 
1737 	return dd->misc_err_status_cnt[10];
1738 }
1739 
1740 static u64 access_misc_efuse_done_parity_err_cnt(const struct cntr_entry *entry,
1741 						 void *context, int vl,
1742 						 int mode, u64 data)
1743 {
1744 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1745 
1746 	return dd->misc_err_status_cnt[9];
1747 }
1748 
1749 static u64 access_misc_efuse_write_err_cnt(const struct cntr_entry *entry,
1750 					   void *context, int vl, int mode,
1751 					   u64 data)
1752 {
1753 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1754 
1755 	return dd->misc_err_status_cnt[8];
1756 }
1757 
1758 static u64 access_misc_efuse_read_bad_addr_err_cnt(
1759 				const struct cntr_entry *entry,
1760 				void *context, int vl, int mode, u64 data)
1761 {
1762 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1763 
1764 	return dd->misc_err_status_cnt[7];
1765 }
1766 
1767 static u64 access_misc_efuse_csr_parity_err_cnt(const struct cntr_entry *entry,
1768 						void *context, int vl,
1769 						int mode, u64 data)
1770 {
1771 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1772 
1773 	return dd->misc_err_status_cnt[6];
1774 }
1775 
1776 static u64 access_misc_fw_auth_failed_err_cnt(const struct cntr_entry *entry,
1777 					      void *context, int vl, int mode,
1778 					      u64 data)
1779 {
1780 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1781 
1782 	return dd->misc_err_status_cnt[5];
1783 }
1784 
1785 static u64 access_misc_key_mismatch_err_cnt(const struct cntr_entry *entry,
1786 					    void *context, int vl, int mode,
1787 					    u64 data)
1788 {
1789 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1790 
1791 	return dd->misc_err_status_cnt[4];
1792 }
1793 
1794 static u64 access_misc_sbus_write_failed_err_cnt(const struct cntr_entry *entry,
1795 						 void *context, int vl,
1796 						 int mode, u64 data)
1797 {
1798 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1799 
1800 	return dd->misc_err_status_cnt[3];
1801 }
1802 
1803 static u64 access_misc_csr_write_bad_addr_err_cnt(
1804 				const struct cntr_entry *entry,
1805 				void *context, int vl, int mode, u64 data)
1806 {
1807 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1808 
1809 	return dd->misc_err_status_cnt[2];
1810 }
1811 
1812 static u64 access_misc_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
1813 						 void *context, int vl,
1814 						 int mode, u64 data)
1815 {
1816 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1817 
1818 	return dd->misc_err_status_cnt[1];
1819 }
1820 
1821 static u64 access_misc_csr_parity_err_cnt(const struct cntr_entry *entry,
1822 					  void *context, int vl, int mode,
1823 					  u64 data)
1824 {
1825 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1826 
1827 	return dd->misc_err_status_cnt[0];
1828 }
1829 
1830 /*
1831  * Software counter for the aggregate of
1832  * individual CceErrStatus counters
1833  */
1834 static u64 access_sw_cce_err_status_aggregated_cnt(
1835 				const struct cntr_entry *entry,
1836 				void *context, int vl, int mode, u64 data)
1837 {
1838 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1839 
1840 	return dd->sw_cce_err_status_aggregate;
1841 }
1842 
1843 /*
1844  * Software counters corresponding to each of the
1845  * error status bits within CceErrStatus
1846  */
1847 static u64 access_cce_msix_csr_parity_err_cnt(const struct cntr_entry *entry,
1848 					      void *context, int vl, int mode,
1849 					      u64 data)
1850 {
1851 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1852 
1853 	return dd->cce_err_status_cnt[40];
1854 }
1855 
1856 static u64 access_cce_int_map_unc_err_cnt(const struct cntr_entry *entry,
1857 					  void *context, int vl, int mode,
1858 					  u64 data)
1859 {
1860 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1861 
1862 	return dd->cce_err_status_cnt[39];
1863 }
1864 
1865 static u64 access_cce_int_map_cor_err_cnt(const struct cntr_entry *entry,
1866 					  void *context, int vl, int mode,
1867 					  u64 data)
1868 {
1869 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1870 
1871 	return dd->cce_err_status_cnt[38];
1872 }
1873 
1874 static u64 access_cce_msix_table_unc_err_cnt(const struct cntr_entry *entry,
1875 					     void *context, int vl, int mode,
1876 					     u64 data)
1877 {
1878 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1879 
1880 	return dd->cce_err_status_cnt[37];
1881 }
1882 
1883 static u64 access_cce_msix_table_cor_err_cnt(const struct cntr_entry *entry,
1884 					     void *context, int vl, int mode,
1885 					     u64 data)
1886 {
1887 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1888 
1889 	return dd->cce_err_status_cnt[36];
1890 }
1891 
1892 static u64 access_cce_rxdma_conv_fifo_parity_err_cnt(
1893 				const struct cntr_entry *entry,
1894 				void *context, int vl, int mode, u64 data)
1895 {
1896 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1897 
1898 	return dd->cce_err_status_cnt[35];
1899 }
1900 
1901 static u64 access_cce_rcpl_async_fifo_parity_err_cnt(
1902 				const struct cntr_entry *entry,
1903 				void *context, int vl, int mode, u64 data)
1904 {
1905 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1906 
1907 	return dd->cce_err_status_cnt[34];
1908 }
1909 
1910 static u64 access_cce_seg_write_bad_addr_err_cnt(const struct cntr_entry *entry,
1911 						 void *context, int vl,
1912 						 int mode, u64 data)
1913 {
1914 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1915 
1916 	return dd->cce_err_status_cnt[33];
1917 }
1918 
1919 static u64 access_cce_seg_read_bad_addr_err_cnt(const struct cntr_entry *entry,
1920 						void *context, int vl, int mode,
1921 						u64 data)
1922 {
1923 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1924 
1925 	return dd->cce_err_status_cnt[32];
1926 }
1927 
1928 static u64 access_la_triggered_cnt(const struct cntr_entry *entry,
1929 				   void *context, int vl, int mode, u64 data)
1930 {
1931 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1932 
1933 	return dd->cce_err_status_cnt[31];
1934 }
1935 
1936 static u64 access_cce_trgt_cpl_timeout_err_cnt(const struct cntr_entry *entry,
1937 					       void *context, int vl, int mode,
1938 					       u64 data)
1939 {
1940 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1941 
1942 	return dd->cce_err_status_cnt[30];
1943 }
1944 
1945 static u64 access_pcic_receive_parity_err_cnt(const struct cntr_entry *entry,
1946 					      void *context, int vl, int mode,
1947 					      u64 data)
1948 {
1949 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1950 
1951 	return dd->cce_err_status_cnt[29];
1952 }
1953 
1954 static u64 access_pcic_transmit_back_parity_err_cnt(
1955 				const struct cntr_entry *entry,
1956 				void *context, int vl, int mode, u64 data)
1957 {
1958 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1959 
1960 	return dd->cce_err_status_cnt[28];
1961 }
1962 
1963 static u64 access_pcic_transmit_front_parity_err_cnt(
1964 				const struct cntr_entry *entry,
1965 				void *context, int vl, int mode, u64 data)
1966 {
1967 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1968 
1969 	return dd->cce_err_status_cnt[27];
1970 }
1971 
1972 static u64 access_pcic_cpl_dat_q_unc_err_cnt(const struct cntr_entry *entry,
1973 					     void *context, int vl, int mode,
1974 					     u64 data)
1975 {
1976 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1977 
1978 	return dd->cce_err_status_cnt[26];
1979 }
1980 
1981 static u64 access_pcic_cpl_hd_q_unc_err_cnt(const struct cntr_entry *entry,
1982 					    void *context, int vl, int mode,
1983 					    u64 data)
1984 {
1985 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1986 
1987 	return dd->cce_err_status_cnt[25];
1988 }
1989 
1990 static u64 access_pcic_post_dat_q_unc_err_cnt(const struct cntr_entry *entry,
1991 					      void *context, int vl, int mode,
1992 					      u64 data)
1993 {
1994 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1995 
1996 	return dd->cce_err_status_cnt[24];
1997 }
1998 
1999 static u64 access_pcic_post_hd_q_unc_err_cnt(const struct cntr_entry *entry,
2000 					     void *context, int vl, int mode,
2001 					     u64 data)
2002 {
2003 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2004 
2005 	return dd->cce_err_status_cnt[23];
2006 }
2007 
2008 static u64 access_pcic_retry_sot_mem_unc_err_cnt(const struct cntr_entry *entry,
2009 						 void *context, int vl,
2010 						 int mode, u64 data)
2011 {
2012 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2013 
2014 	return dd->cce_err_status_cnt[22];
2015 }
2016 
2017 static u64 access_pcic_retry_mem_unc_err(const struct cntr_entry *entry,
2018 					 void *context, int vl, int mode,
2019 					 u64 data)
2020 {
2021 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2022 
2023 	return dd->cce_err_status_cnt[21];
2024 }
2025 
2026 static u64 access_pcic_n_post_dat_q_parity_err_cnt(
2027 				const struct cntr_entry *entry,
2028 				void *context, int vl, int mode, u64 data)
2029 {
2030 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2031 
2032 	return dd->cce_err_status_cnt[20];
2033 }
2034 
2035 static u64 access_pcic_n_post_h_q_parity_err_cnt(const struct cntr_entry *entry,
2036 						 void *context, int vl,
2037 						 int mode, u64 data)
2038 {
2039 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2040 
2041 	return dd->cce_err_status_cnt[19];
2042 }
2043 
2044 static u64 access_pcic_cpl_dat_q_cor_err_cnt(const struct cntr_entry *entry,
2045 					     void *context, int vl, int mode,
2046 					     u64 data)
2047 {
2048 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2049 
2050 	return dd->cce_err_status_cnt[18];
2051 }
2052 
2053 static u64 access_pcic_cpl_hd_q_cor_err_cnt(const struct cntr_entry *entry,
2054 					    void *context, int vl, int mode,
2055 					    u64 data)
2056 {
2057 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2058 
2059 	return dd->cce_err_status_cnt[17];
2060 }
2061 
2062 static u64 access_pcic_post_dat_q_cor_err_cnt(const struct cntr_entry *entry,
2063 					      void *context, int vl, int mode,
2064 					      u64 data)
2065 {
2066 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2067 
2068 	return dd->cce_err_status_cnt[16];
2069 }
2070 
2071 static u64 access_pcic_post_hd_q_cor_err_cnt(const struct cntr_entry *entry,
2072 					     void *context, int vl, int mode,
2073 					     u64 data)
2074 {
2075 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2076 
2077 	return dd->cce_err_status_cnt[15];
2078 }
2079 
2080 static u64 access_pcic_retry_sot_mem_cor_err_cnt(const struct cntr_entry *entry,
2081 						 void *context, int vl,
2082 						 int mode, u64 data)
2083 {
2084 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2085 
2086 	return dd->cce_err_status_cnt[14];
2087 }
2088 
2089 static u64 access_pcic_retry_mem_cor_err_cnt(const struct cntr_entry *entry,
2090 					     void *context, int vl, int mode,
2091 					     u64 data)
2092 {
2093 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2094 
2095 	return dd->cce_err_status_cnt[13];
2096 }
2097 
2098 static u64 access_cce_cli1_async_fifo_dbg_parity_err_cnt(
2099 				const struct cntr_entry *entry,
2100 				void *context, int vl, int mode, u64 data)
2101 {
2102 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2103 
2104 	return dd->cce_err_status_cnt[12];
2105 }
2106 
2107 static u64 access_cce_cli1_async_fifo_rxdma_parity_err_cnt(
2108 				const struct cntr_entry *entry,
2109 				void *context, int vl, int mode, u64 data)
2110 {
2111 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2112 
2113 	return dd->cce_err_status_cnt[11];
2114 }
2115 
2116 static u64 access_cce_cli1_async_fifo_sdma_hd_parity_err_cnt(
2117 				const struct cntr_entry *entry,
2118 				void *context, int vl, int mode, u64 data)
2119 {
2120 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2121 
2122 	return dd->cce_err_status_cnt[10];
2123 }
2124 
2125 static u64 access_cce_cl1_async_fifo_pio_crdt_parity_err_cnt(
2126 				const struct cntr_entry *entry,
2127 				void *context, int vl, int mode, u64 data)
2128 {
2129 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2130 
2131 	return dd->cce_err_status_cnt[9];
2132 }
2133 
2134 static u64 access_cce_cli2_async_fifo_parity_err_cnt(
2135 				const struct cntr_entry *entry,
2136 				void *context, int vl, int mode, u64 data)
2137 {
2138 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2139 
2140 	return dd->cce_err_status_cnt[8];
2141 }
2142 
2143 static u64 access_cce_csr_cfg_bus_parity_err_cnt(const struct cntr_entry *entry,
2144 						 void *context, int vl,
2145 						 int mode, u64 data)
2146 {
2147 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2148 
2149 	return dd->cce_err_status_cnt[7];
2150 }
2151 
2152 static u64 access_cce_cli0_async_fifo_parity_err_cnt(
2153 				const struct cntr_entry *entry,
2154 				void *context, int vl, int mode, u64 data)
2155 {
2156 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2157 
2158 	return dd->cce_err_status_cnt[6];
2159 }
2160 
2161 static u64 access_cce_rspd_data_parity_err_cnt(const struct cntr_entry *entry,
2162 					       void *context, int vl, int mode,
2163 					       u64 data)
2164 {
2165 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2166 
2167 	return dd->cce_err_status_cnt[5];
2168 }
2169 
2170 static u64 access_cce_trgt_access_err_cnt(const struct cntr_entry *entry,
2171 					  void *context, int vl, int mode,
2172 					  u64 data)
2173 {
2174 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2175 
2176 	return dd->cce_err_status_cnt[4];
2177 }
2178 
2179 static u64 access_cce_trgt_async_fifo_parity_err_cnt(
2180 				const struct cntr_entry *entry,
2181 				void *context, int vl, int mode, u64 data)
2182 {
2183 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2184 
2185 	return dd->cce_err_status_cnt[3];
2186 }
2187 
2188 static u64 access_cce_csr_write_bad_addr_err_cnt(const struct cntr_entry *entry,
2189 						 void *context, int vl,
2190 						 int mode, u64 data)
2191 {
2192 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2193 
2194 	return dd->cce_err_status_cnt[2];
2195 }
2196 
2197 static u64 access_cce_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
2198 						void *context, int vl,
2199 						int mode, u64 data)
2200 {
2201 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2202 
2203 	return dd->cce_err_status_cnt[1];
2204 }
2205 
2206 static u64 access_ccs_csr_parity_err_cnt(const struct cntr_entry *entry,
2207 					 void *context, int vl, int mode,
2208 					 u64 data)
2209 {
2210 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2211 
2212 	return dd->cce_err_status_cnt[0];
2213 }
2214 
2215 /*
2216  * Software counters corresponding to each of the
2217  * error status bits within RcvErrStatus
2218  */
2219 static u64 access_rx_csr_parity_err_cnt(const struct cntr_entry *entry,
2220 					void *context, int vl, int mode,
2221 					u64 data)
2222 {
2223 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2224 
2225 	return dd->rcv_err_status_cnt[63];
2226 }
2227 
2228 static u64 access_rx_csr_write_bad_addr_err_cnt(const struct cntr_entry *entry,
2229 						void *context, int vl,
2230 						int mode, u64 data)
2231 {
2232 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2233 
2234 	return dd->rcv_err_status_cnt[62];
2235 }
2236 
2237 static u64 access_rx_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
2238 					       void *context, int vl, int mode,
2239 					       u64 data)
2240 {
2241 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2242 
2243 	return dd->rcv_err_status_cnt[61];
2244 }
2245 
2246 static u64 access_rx_dma_csr_unc_err_cnt(const struct cntr_entry *entry,
2247 					 void *context, int vl, int mode,
2248 					 u64 data)
2249 {
2250 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2251 
2252 	return dd->rcv_err_status_cnt[60];
2253 }
2254 
2255 static u64 access_rx_dma_dq_fsm_encoding_err_cnt(const struct cntr_entry *entry,
2256 						 void *context, int vl,
2257 						 int mode, u64 data)
2258 {
2259 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2260 
2261 	return dd->rcv_err_status_cnt[59];
2262 }
2263 
2264 static u64 access_rx_dma_eq_fsm_encoding_err_cnt(const struct cntr_entry *entry,
2265 						 void *context, int vl,
2266 						 int mode, u64 data)
2267 {
2268 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2269 
2270 	return dd->rcv_err_status_cnt[58];
2271 }
2272 
2273 static u64 access_rx_dma_csr_parity_err_cnt(const struct cntr_entry *entry,
2274 					    void *context, int vl, int mode,
2275 					    u64 data)
2276 {
2277 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2278 
2279 	return dd->rcv_err_status_cnt[57];
2280 }
2281 
2282 static u64 access_rx_rbuf_data_cor_err_cnt(const struct cntr_entry *entry,
2283 					   void *context, int vl, int mode,
2284 					   u64 data)
2285 {
2286 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2287 
2288 	return dd->rcv_err_status_cnt[56];
2289 }
2290 
2291 static u64 access_rx_rbuf_data_unc_err_cnt(const struct cntr_entry *entry,
2292 					   void *context, int vl, int mode,
2293 					   u64 data)
2294 {
2295 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2296 
2297 	return dd->rcv_err_status_cnt[55];
2298 }
2299 
2300 static u64 access_rx_dma_data_fifo_rd_cor_err_cnt(
2301 				const struct cntr_entry *entry,
2302 				void *context, int vl, int mode, u64 data)
2303 {
2304 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2305 
2306 	return dd->rcv_err_status_cnt[54];
2307 }
2308 
2309 static u64 access_rx_dma_data_fifo_rd_unc_err_cnt(
2310 				const struct cntr_entry *entry,
2311 				void *context, int vl, int mode, u64 data)
2312 {
2313 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2314 
2315 	return dd->rcv_err_status_cnt[53];
2316 }
2317 
2318 static u64 access_rx_dma_hdr_fifo_rd_cor_err_cnt(const struct cntr_entry *entry,
2319 						 void *context, int vl,
2320 						 int mode, u64 data)
2321 {
2322 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2323 
2324 	return dd->rcv_err_status_cnt[52];
2325 }
2326 
2327 static u64 access_rx_dma_hdr_fifo_rd_unc_err_cnt(const struct cntr_entry *entry,
2328 						 void *context, int vl,
2329 						 int mode, u64 data)
2330 {
2331 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2332 
2333 	return dd->rcv_err_status_cnt[51];
2334 }
2335 
2336 static u64 access_rx_rbuf_desc_part2_cor_err_cnt(const struct cntr_entry *entry,
2337 						 void *context, int vl,
2338 						 int mode, u64 data)
2339 {
2340 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2341 
2342 	return dd->rcv_err_status_cnt[50];
2343 }
2344 
2345 static u64 access_rx_rbuf_desc_part2_unc_err_cnt(const struct cntr_entry *entry,
2346 						 void *context, int vl,
2347 						 int mode, u64 data)
2348 {
2349 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2350 
2351 	return dd->rcv_err_status_cnt[49];
2352 }
2353 
2354 static u64 access_rx_rbuf_desc_part1_cor_err_cnt(const struct cntr_entry *entry,
2355 						 void *context, int vl,
2356 						 int mode, u64 data)
2357 {
2358 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2359 
2360 	return dd->rcv_err_status_cnt[48];
2361 }
2362 
2363 static u64 access_rx_rbuf_desc_part1_unc_err_cnt(const struct cntr_entry *entry,
2364 						 void *context, int vl,
2365 						 int mode, u64 data)
2366 {
2367 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2368 
2369 	return dd->rcv_err_status_cnt[47];
2370 }
2371 
2372 static u64 access_rx_hq_intr_fsm_err_cnt(const struct cntr_entry *entry,
2373 					 void *context, int vl, int mode,
2374 					 u64 data)
2375 {
2376 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2377 
2378 	return dd->rcv_err_status_cnt[46];
2379 }
2380 
2381 static u64 access_rx_hq_intr_csr_parity_err_cnt(
2382 				const struct cntr_entry *entry,
2383 				void *context, int vl, int mode, u64 data)
2384 {
2385 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2386 
2387 	return dd->rcv_err_status_cnt[45];
2388 }
2389 
2390 static u64 access_rx_lookup_csr_parity_err_cnt(
2391 				const struct cntr_entry *entry,
2392 				void *context, int vl, int mode, u64 data)
2393 {
2394 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2395 
2396 	return dd->rcv_err_status_cnt[44];
2397 }
2398 
2399 static u64 access_rx_lookup_rcv_array_cor_err_cnt(
2400 				const struct cntr_entry *entry,
2401 				void *context, int vl, int mode, u64 data)
2402 {
2403 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2404 
2405 	return dd->rcv_err_status_cnt[43];
2406 }
2407 
2408 static u64 access_rx_lookup_rcv_array_unc_err_cnt(
2409 				const struct cntr_entry *entry,
2410 				void *context, int vl, int mode, u64 data)
2411 {
2412 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2413 
2414 	return dd->rcv_err_status_cnt[42];
2415 }
2416 
2417 static u64 access_rx_lookup_des_part2_parity_err_cnt(
2418 				const struct cntr_entry *entry,
2419 				void *context, int vl, int mode, u64 data)
2420 {
2421 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2422 
2423 	return dd->rcv_err_status_cnt[41];
2424 }
2425 
2426 static u64 access_rx_lookup_des_part1_unc_cor_err_cnt(
2427 				const struct cntr_entry *entry,
2428 				void *context, int vl, int mode, u64 data)
2429 {
2430 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2431 
2432 	return dd->rcv_err_status_cnt[40];
2433 }
2434 
2435 static u64 access_rx_lookup_des_part1_unc_err_cnt(
2436 				const struct cntr_entry *entry,
2437 				void *context, int vl, int mode, u64 data)
2438 {
2439 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2440 
2441 	return dd->rcv_err_status_cnt[39];
2442 }
2443 
2444 static u64 access_rx_rbuf_next_free_buf_cor_err_cnt(
2445 				const struct cntr_entry *entry,
2446 				void *context, int vl, int mode, u64 data)
2447 {
2448 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2449 
2450 	return dd->rcv_err_status_cnt[38];
2451 }
2452 
2453 static u64 access_rx_rbuf_next_free_buf_unc_err_cnt(
2454 				const struct cntr_entry *entry,
2455 				void *context, int vl, int mode, u64 data)
2456 {
2457 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2458 
2459 	return dd->rcv_err_status_cnt[37];
2460 }
2461 
2462 static u64 access_rbuf_fl_init_wr_addr_parity_err_cnt(
2463 				const struct cntr_entry *entry,
2464 				void *context, int vl, int mode, u64 data)
2465 {
2466 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2467 
2468 	return dd->rcv_err_status_cnt[36];
2469 }
2470 
2471 static u64 access_rx_rbuf_fl_initdone_parity_err_cnt(
2472 				const struct cntr_entry *entry,
2473 				void *context, int vl, int mode, u64 data)
2474 {
2475 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2476 
2477 	return dd->rcv_err_status_cnt[35];
2478 }
2479 
2480 static u64 access_rx_rbuf_fl_write_addr_parity_err_cnt(
2481 				const struct cntr_entry *entry,
2482 				void *context, int vl, int mode, u64 data)
2483 {
2484 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2485 
2486 	return dd->rcv_err_status_cnt[34];
2487 }
2488 
2489 static u64 access_rx_rbuf_fl_rd_addr_parity_err_cnt(
2490 				const struct cntr_entry *entry,
2491 				void *context, int vl, int mode, u64 data)
2492 {
2493 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2494 
2495 	return dd->rcv_err_status_cnt[33];
2496 }
2497 
2498 static u64 access_rx_rbuf_empty_err_cnt(const struct cntr_entry *entry,
2499 					void *context, int vl, int mode,
2500 					u64 data)
2501 {
2502 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2503 
2504 	return dd->rcv_err_status_cnt[32];
2505 }
2506 
2507 static u64 access_rx_rbuf_full_err_cnt(const struct cntr_entry *entry,
2508 				       void *context, int vl, int mode,
2509 				       u64 data)
2510 {
2511 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2512 
2513 	return dd->rcv_err_status_cnt[31];
2514 }
2515 
2516 static u64 access_rbuf_bad_lookup_err_cnt(const struct cntr_entry *entry,
2517 					  void *context, int vl, int mode,
2518 					  u64 data)
2519 {
2520 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2521 
2522 	return dd->rcv_err_status_cnt[30];
2523 }
2524 
2525 static u64 access_rbuf_ctx_id_parity_err_cnt(const struct cntr_entry *entry,
2526 					     void *context, int vl, int mode,
2527 					     u64 data)
2528 {
2529 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2530 
2531 	return dd->rcv_err_status_cnt[29];
2532 }
2533 
2534 static u64 access_rbuf_csr_qeopdw_parity_err_cnt(const struct cntr_entry *entry,
2535 						 void *context, int vl,
2536 						 int mode, u64 data)
2537 {
2538 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2539 
2540 	return dd->rcv_err_status_cnt[28];
2541 }
2542 
2543 static u64 access_rx_rbuf_csr_q_num_of_pkt_parity_err_cnt(
2544 				const struct cntr_entry *entry,
2545 				void *context, int vl, int mode, u64 data)
2546 {
2547 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2548 
2549 	return dd->rcv_err_status_cnt[27];
2550 }
2551 
2552 static u64 access_rx_rbuf_csr_q_t1_ptr_parity_err_cnt(
2553 				const struct cntr_entry *entry,
2554 				void *context, int vl, int mode, u64 data)
2555 {
2556 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2557 
2558 	return dd->rcv_err_status_cnt[26];
2559 }
2560 
2561 static u64 access_rx_rbuf_csr_q_hd_ptr_parity_err_cnt(
2562 				const struct cntr_entry *entry,
2563 				void *context, int vl, int mode, u64 data)
2564 {
2565 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2566 
2567 	return dd->rcv_err_status_cnt[25];
2568 }
2569 
2570 static u64 access_rx_rbuf_csr_q_vld_bit_parity_err_cnt(
2571 				const struct cntr_entry *entry,
2572 				void *context, int vl, int mode, u64 data)
2573 {
2574 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2575 
2576 	return dd->rcv_err_status_cnt[24];
2577 }
2578 
2579 static u64 access_rx_rbuf_csr_q_next_buf_parity_err_cnt(
2580 				const struct cntr_entry *entry,
2581 				void *context, int vl, int mode, u64 data)
2582 {
2583 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2584 
2585 	return dd->rcv_err_status_cnt[23];
2586 }
2587 
2588 static u64 access_rx_rbuf_csr_q_ent_cnt_parity_err_cnt(
2589 				const struct cntr_entry *entry,
2590 				void *context, int vl, int mode, u64 data)
2591 {
2592 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2593 
2594 	return dd->rcv_err_status_cnt[22];
2595 }
2596 
2597 static u64 access_rx_rbuf_csr_q_head_buf_num_parity_err_cnt(
2598 				const struct cntr_entry *entry,
2599 				void *context, int vl, int mode, u64 data)
2600 {
2601 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2602 
2603 	return dd->rcv_err_status_cnt[21];
2604 }
2605 
2606 static u64 access_rx_rbuf_block_list_read_cor_err_cnt(
2607 				const struct cntr_entry *entry,
2608 				void *context, int vl, int mode, u64 data)
2609 {
2610 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2611 
2612 	return dd->rcv_err_status_cnt[20];
2613 }
2614 
2615 static u64 access_rx_rbuf_block_list_read_unc_err_cnt(
2616 				const struct cntr_entry *entry,
2617 				void *context, int vl, int mode, u64 data)
2618 {
2619 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2620 
2621 	return dd->rcv_err_status_cnt[19];
2622 }
2623 
2624 static u64 access_rx_rbuf_lookup_des_cor_err_cnt(const struct cntr_entry *entry,
2625 						 void *context, int vl,
2626 						 int mode, u64 data)
2627 {
2628 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2629 
2630 	return dd->rcv_err_status_cnt[18];
2631 }
2632 
2633 static u64 access_rx_rbuf_lookup_des_unc_err_cnt(const struct cntr_entry *entry,
2634 						 void *context, int vl,
2635 						 int mode, u64 data)
2636 {
2637 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2638 
2639 	return dd->rcv_err_status_cnt[17];
2640 }
2641 
2642 static u64 access_rx_rbuf_lookup_des_reg_unc_cor_err_cnt(
2643 				const struct cntr_entry *entry,
2644 				void *context, int vl, int mode, u64 data)
2645 {
2646 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2647 
2648 	return dd->rcv_err_status_cnt[16];
2649 }
2650 
2651 static u64 access_rx_rbuf_lookup_des_reg_unc_err_cnt(
2652 				const struct cntr_entry *entry,
2653 				void *context, int vl, int mode, u64 data)
2654 {
2655 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2656 
2657 	return dd->rcv_err_status_cnt[15];
2658 }
2659 
2660 static u64 access_rx_rbuf_free_list_cor_err_cnt(const struct cntr_entry *entry,
2661 						void *context, int vl,
2662 						int mode, u64 data)
2663 {
2664 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2665 
2666 	return dd->rcv_err_status_cnt[14];
2667 }
2668 
2669 static u64 access_rx_rbuf_free_list_unc_err_cnt(const struct cntr_entry *entry,
2670 						void *context, int vl,
2671 						int mode, u64 data)
2672 {
2673 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2674 
2675 	return dd->rcv_err_status_cnt[13];
2676 }
2677 
2678 static u64 access_rx_rcv_fsm_encoding_err_cnt(const struct cntr_entry *entry,
2679 					      void *context, int vl, int mode,
2680 					      u64 data)
2681 {
2682 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2683 
2684 	return dd->rcv_err_status_cnt[12];
2685 }
2686 
2687 static u64 access_rx_dma_flag_cor_err_cnt(const struct cntr_entry *entry,
2688 					  void *context, int vl, int mode,
2689 					  u64 data)
2690 {
2691 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2692 
2693 	return dd->rcv_err_status_cnt[11];
2694 }
2695 
2696 static u64 access_rx_dma_flag_unc_err_cnt(const struct cntr_entry *entry,
2697 					  void *context, int vl, int mode,
2698 					  u64 data)
2699 {
2700 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2701 
2702 	return dd->rcv_err_status_cnt[10];
2703 }
2704 
2705 static u64 access_rx_dc_sop_eop_parity_err_cnt(const struct cntr_entry *entry,
2706 					       void *context, int vl, int mode,
2707 					       u64 data)
2708 {
2709 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2710 
2711 	return dd->rcv_err_status_cnt[9];
2712 }
2713 
2714 static u64 access_rx_rcv_csr_parity_err_cnt(const struct cntr_entry *entry,
2715 					    void *context, int vl, int mode,
2716 					    u64 data)
2717 {
2718 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2719 
2720 	return dd->rcv_err_status_cnt[8];
2721 }
2722 
2723 static u64 access_rx_rcv_qp_map_table_cor_err_cnt(
2724 				const struct cntr_entry *entry,
2725 				void *context, int vl, int mode, u64 data)
2726 {
2727 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2728 
2729 	return dd->rcv_err_status_cnt[7];
2730 }
2731 
2732 static u64 access_rx_rcv_qp_map_table_unc_err_cnt(
2733 				const struct cntr_entry *entry,
2734 				void *context, int vl, int mode, u64 data)
2735 {
2736 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2737 
2738 	return dd->rcv_err_status_cnt[6];
2739 }
2740 
2741 static u64 access_rx_rcv_data_cor_err_cnt(const struct cntr_entry *entry,
2742 					  void *context, int vl, int mode,
2743 					  u64 data)
2744 {
2745 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2746 
2747 	return dd->rcv_err_status_cnt[5];
2748 }
2749 
2750 static u64 access_rx_rcv_data_unc_err_cnt(const struct cntr_entry *entry,
2751 					  void *context, int vl, int mode,
2752 					  u64 data)
2753 {
2754 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2755 
2756 	return dd->rcv_err_status_cnt[4];
2757 }
2758 
2759 static u64 access_rx_rcv_hdr_cor_err_cnt(const struct cntr_entry *entry,
2760 					 void *context, int vl, int mode,
2761 					 u64 data)
2762 {
2763 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2764 
2765 	return dd->rcv_err_status_cnt[3];
2766 }
2767 
2768 static u64 access_rx_rcv_hdr_unc_err_cnt(const struct cntr_entry *entry,
2769 					 void *context, int vl, int mode,
2770 					 u64 data)
2771 {
2772 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2773 
2774 	return dd->rcv_err_status_cnt[2];
2775 }
2776 
2777 static u64 access_rx_dc_intf_parity_err_cnt(const struct cntr_entry *entry,
2778 					    void *context, int vl, int mode,
2779 					    u64 data)
2780 {
2781 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2782 
2783 	return dd->rcv_err_status_cnt[1];
2784 }
2785 
2786 static u64 access_rx_dma_csr_cor_err_cnt(const struct cntr_entry *entry,
2787 					 void *context, int vl, int mode,
2788 					 u64 data)
2789 {
2790 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2791 
2792 	return dd->rcv_err_status_cnt[0];
2793 }
2794 
2795 /*
2796  * Software counters corresponding to each of the
2797  * error status bits within SendPioErrStatus
2798  */
2799 static u64 access_pio_pec_sop_head_parity_err_cnt(
2800 				const struct cntr_entry *entry,
2801 				void *context, int vl, int mode, u64 data)
2802 {
2803 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2804 
2805 	return dd->send_pio_err_status_cnt[35];
2806 }
2807 
2808 static u64 access_pio_pcc_sop_head_parity_err_cnt(
2809 				const struct cntr_entry *entry,
2810 				void *context, int vl, int mode, u64 data)
2811 {
2812 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2813 
2814 	return dd->send_pio_err_status_cnt[34];
2815 }
2816 
2817 static u64 access_pio_last_returned_cnt_parity_err_cnt(
2818 				const struct cntr_entry *entry,
2819 				void *context, int vl, int mode, u64 data)
2820 {
2821 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2822 
2823 	return dd->send_pio_err_status_cnt[33];
2824 }
2825 
2826 static u64 access_pio_current_free_cnt_parity_err_cnt(
2827 				const struct cntr_entry *entry,
2828 				void *context, int vl, int mode, u64 data)
2829 {
2830 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2831 
2832 	return dd->send_pio_err_status_cnt[32];
2833 }
2834 
2835 static u64 access_pio_reserved_31_err_cnt(const struct cntr_entry *entry,
2836 					  void *context, int vl, int mode,
2837 					  u64 data)
2838 {
2839 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2840 
2841 	return dd->send_pio_err_status_cnt[31];
2842 }
2843 
2844 static u64 access_pio_reserved_30_err_cnt(const struct cntr_entry *entry,
2845 					  void *context, int vl, int mode,
2846 					  u64 data)
2847 {
2848 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2849 
2850 	return dd->send_pio_err_status_cnt[30];
2851 }
2852 
2853 static u64 access_pio_ppmc_sop_len_err_cnt(const struct cntr_entry *entry,
2854 					   void *context, int vl, int mode,
2855 					   u64 data)
2856 {
2857 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2858 
2859 	return dd->send_pio_err_status_cnt[29];
2860 }
2861 
2862 static u64 access_pio_ppmc_bqc_mem_parity_err_cnt(
2863 				const struct cntr_entry *entry,
2864 				void *context, int vl, int mode, u64 data)
2865 {
2866 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2867 
2868 	return dd->send_pio_err_status_cnt[28];
2869 }
2870 
2871 static u64 access_pio_vl_fifo_parity_err_cnt(const struct cntr_entry *entry,
2872 					     void *context, int vl, int mode,
2873 					     u64 data)
2874 {
2875 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2876 
2877 	return dd->send_pio_err_status_cnt[27];
2878 }
2879 
2880 static u64 access_pio_vlf_sop_parity_err_cnt(const struct cntr_entry *entry,
2881 					     void *context, int vl, int mode,
2882 					     u64 data)
2883 {
2884 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2885 
2886 	return dd->send_pio_err_status_cnt[26];
2887 }
2888 
2889 static u64 access_pio_vlf_v1_len_parity_err_cnt(const struct cntr_entry *entry,
2890 						void *context, int vl,
2891 						int mode, u64 data)
2892 {
2893 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2894 
2895 	return dd->send_pio_err_status_cnt[25];
2896 }
2897 
2898 static u64 access_pio_block_qw_count_parity_err_cnt(
2899 				const struct cntr_entry *entry,
2900 				void *context, int vl, int mode, u64 data)
2901 {
2902 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2903 
2904 	return dd->send_pio_err_status_cnt[24];
2905 }
2906 
2907 static u64 access_pio_write_qw_valid_parity_err_cnt(
2908 				const struct cntr_entry *entry,
2909 				void *context, int vl, int mode, u64 data)
2910 {
2911 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2912 
2913 	return dd->send_pio_err_status_cnt[23];
2914 }
2915 
2916 static u64 access_pio_state_machine_err_cnt(const struct cntr_entry *entry,
2917 					    void *context, int vl, int mode,
2918 					    u64 data)
2919 {
2920 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2921 
2922 	return dd->send_pio_err_status_cnt[22];
2923 }
2924 
2925 static u64 access_pio_write_data_parity_err_cnt(const struct cntr_entry *entry,
2926 						void *context, int vl,
2927 						int mode, u64 data)
2928 {
2929 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2930 
2931 	return dd->send_pio_err_status_cnt[21];
2932 }
2933 
2934 static u64 access_pio_host_addr_mem_cor_err_cnt(const struct cntr_entry *entry,
2935 						void *context, int vl,
2936 						int mode, u64 data)
2937 {
2938 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2939 
2940 	return dd->send_pio_err_status_cnt[20];
2941 }
2942 
2943 static u64 access_pio_host_addr_mem_unc_err_cnt(const struct cntr_entry *entry,
2944 						void *context, int vl,
2945 						int mode, u64 data)
2946 {
2947 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2948 
2949 	return dd->send_pio_err_status_cnt[19];
2950 }
2951 
2952 static u64 access_pio_pkt_evict_sm_or_arb_sm_err_cnt(
2953 				const struct cntr_entry *entry,
2954 				void *context, int vl, int mode, u64 data)
2955 {
2956 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2957 
2958 	return dd->send_pio_err_status_cnt[18];
2959 }
2960 
2961 static u64 access_pio_init_sm_in_err_cnt(const struct cntr_entry *entry,
2962 					 void *context, int vl, int mode,
2963 					 u64 data)
2964 {
2965 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2966 
2967 	return dd->send_pio_err_status_cnt[17];
2968 }
2969 
2970 static u64 access_pio_ppmc_pbl_fifo_err_cnt(const struct cntr_entry *entry,
2971 					    void *context, int vl, int mode,
2972 					    u64 data)
2973 {
2974 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2975 
2976 	return dd->send_pio_err_status_cnt[16];
2977 }
2978 
2979 static u64 access_pio_credit_ret_fifo_parity_err_cnt(
2980 				const struct cntr_entry *entry,
2981 				void *context, int vl, int mode, u64 data)
2982 {
2983 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2984 
2985 	return dd->send_pio_err_status_cnt[15];
2986 }
2987 
2988 static u64 access_pio_v1_len_mem_bank1_cor_err_cnt(
2989 				const struct cntr_entry *entry,
2990 				void *context, int vl, int mode, u64 data)
2991 {
2992 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2993 
2994 	return dd->send_pio_err_status_cnt[14];
2995 }
2996 
2997 static u64 access_pio_v1_len_mem_bank0_cor_err_cnt(
2998 				const struct cntr_entry *entry,
2999 				void *context, int vl, int mode, u64 data)
3000 {
3001 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3002 
3003 	return dd->send_pio_err_status_cnt[13];
3004 }
3005 
3006 static u64 access_pio_v1_len_mem_bank1_unc_err_cnt(
3007 				const struct cntr_entry *entry,
3008 				void *context, int vl, int mode, u64 data)
3009 {
3010 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3011 
3012 	return dd->send_pio_err_status_cnt[12];
3013 }
3014 
3015 static u64 access_pio_v1_len_mem_bank0_unc_err_cnt(
3016 				const struct cntr_entry *entry,
3017 				void *context, int vl, int mode, u64 data)
3018 {
3019 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3020 
3021 	return dd->send_pio_err_status_cnt[11];
3022 }
3023 
3024 static u64 access_pio_sm_pkt_reset_parity_err_cnt(
3025 				const struct cntr_entry *entry,
3026 				void *context, int vl, int mode, u64 data)
3027 {
3028 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3029 
3030 	return dd->send_pio_err_status_cnt[10];
3031 }
3032 
3033 static u64 access_pio_pkt_evict_fifo_parity_err_cnt(
3034 				const struct cntr_entry *entry,
3035 				void *context, int vl, int mode, u64 data)
3036 {
3037 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3038 
3039 	return dd->send_pio_err_status_cnt[9];
3040 }
3041 
3042 static u64 access_pio_sbrdctrl_crrel_fifo_parity_err_cnt(
3043 				const struct cntr_entry *entry,
3044 				void *context, int vl, int mode, u64 data)
3045 {
3046 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3047 
3048 	return dd->send_pio_err_status_cnt[8];
3049 }
3050 
3051 static u64 access_pio_sbrdctl_crrel_parity_err_cnt(
3052 				const struct cntr_entry *entry,
3053 				void *context, int vl, int mode, u64 data)
3054 {
3055 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3056 
3057 	return dd->send_pio_err_status_cnt[7];
3058 }
3059 
3060 static u64 access_pio_pec_fifo_parity_err_cnt(const struct cntr_entry *entry,
3061 					      void *context, int vl, int mode,
3062 					      u64 data)
3063 {
3064 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3065 
3066 	return dd->send_pio_err_status_cnt[6];
3067 }
3068 
3069 static u64 access_pio_pcc_fifo_parity_err_cnt(const struct cntr_entry *entry,
3070 					      void *context, int vl, int mode,
3071 					      u64 data)
3072 {
3073 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3074 
3075 	return dd->send_pio_err_status_cnt[5];
3076 }
3077 
3078 static u64 access_pio_sb_mem_fifo1_err_cnt(const struct cntr_entry *entry,
3079 					   void *context, int vl, int mode,
3080 					   u64 data)
3081 {
3082 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3083 
3084 	return dd->send_pio_err_status_cnt[4];
3085 }
3086 
3087 static u64 access_pio_sb_mem_fifo0_err_cnt(const struct cntr_entry *entry,
3088 					   void *context, int vl, int mode,
3089 					   u64 data)
3090 {
3091 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3092 
3093 	return dd->send_pio_err_status_cnt[3];
3094 }
3095 
3096 static u64 access_pio_csr_parity_err_cnt(const struct cntr_entry *entry,
3097 					 void *context, int vl, int mode,
3098 					 u64 data)
3099 {
3100 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3101 
3102 	return dd->send_pio_err_status_cnt[2];
3103 }
3104 
3105 static u64 access_pio_write_addr_parity_err_cnt(const struct cntr_entry *entry,
3106 						void *context, int vl,
3107 						int mode, u64 data)
3108 {
3109 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3110 
3111 	return dd->send_pio_err_status_cnt[1];
3112 }
3113 
3114 static u64 access_pio_write_bad_ctxt_err_cnt(const struct cntr_entry *entry,
3115 					     void *context, int vl, int mode,
3116 					     u64 data)
3117 {
3118 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3119 
3120 	return dd->send_pio_err_status_cnt[0];
3121 }
3122 
3123 /*
3124  * Software counters corresponding to each of the
3125  * error status bits within SendDmaErrStatus
3126  */
3127 static u64 access_sdma_pcie_req_tracking_cor_err_cnt(
3128 				const struct cntr_entry *entry,
3129 				void *context, int vl, int mode, u64 data)
3130 {
3131 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3132 
3133 	return dd->send_dma_err_status_cnt[3];
3134 }
3135 
3136 static u64 access_sdma_pcie_req_tracking_unc_err_cnt(
3137 				const struct cntr_entry *entry,
3138 				void *context, int vl, int mode, u64 data)
3139 {
3140 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3141 
3142 	return dd->send_dma_err_status_cnt[2];
3143 }
3144 
3145 static u64 access_sdma_csr_parity_err_cnt(const struct cntr_entry *entry,
3146 					  void *context, int vl, int mode,
3147 					  u64 data)
3148 {
3149 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3150 
3151 	return dd->send_dma_err_status_cnt[1];
3152 }
3153 
3154 static u64 access_sdma_rpy_tag_err_cnt(const struct cntr_entry *entry,
3155 				       void *context, int vl, int mode,
3156 				       u64 data)
3157 {
3158 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3159 
3160 	return dd->send_dma_err_status_cnt[0];
3161 }
3162 
3163 /*
3164  * Software counters corresponding to each of the
3165  * error status bits within SendEgressErrStatus
3166  */
3167 static u64 access_tx_read_pio_memory_csr_unc_err_cnt(
3168 				const struct cntr_entry *entry,
3169 				void *context, int vl, int mode, u64 data)
3170 {
3171 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3172 
3173 	return dd->send_egress_err_status_cnt[63];
3174 }
3175 
3176 static u64 access_tx_read_sdma_memory_csr_err_cnt(
3177 				const struct cntr_entry *entry,
3178 				void *context, int vl, int mode, u64 data)
3179 {
3180 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3181 
3182 	return dd->send_egress_err_status_cnt[62];
3183 }
3184 
3185 static u64 access_tx_egress_fifo_cor_err_cnt(const struct cntr_entry *entry,
3186 					     void *context, int vl, int mode,
3187 					     u64 data)
3188 {
3189 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3190 
3191 	return dd->send_egress_err_status_cnt[61];
3192 }
3193 
3194 static u64 access_tx_read_pio_memory_cor_err_cnt(const struct cntr_entry *entry,
3195 						 void *context, int vl,
3196 						 int mode, u64 data)
3197 {
3198 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3199 
3200 	return dd->send_egress_err_status_cnt[60];
3201 }
3202 
3203 static u64 access_tx_read_sdma_memory_cor_err_cnt(
3204 				const struct cntr_entry *entry,
3205 				void *context, int vl, int mode, u64 data)
3206 {
3207 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3208 
3209 	return dd->send_egress_err_status_cnt[59];
3210 }
3211 
3212 static u64 access_tx_sb_hdr_cor_err_cnt(const struct cntr_entry *entry,
3213 					void *context, int vl, int mode,
3214 					u64 data)
3215 {
3216 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3217 
3218 	return dd->send_egress_err_status_cnt[58];
3219 }
3220 
3221 static u64 access_tx_credit_overrun_err_cnt(const struct cntr_entry *entry,
3222 					    void *context, int vl, int mode,
3223 					    u64 data)
3224 {
3225 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3226 
3227 	return dd->send_egress_err_status_cnt[57];
3228 }
3229 
3230 static u64 access_tx_launch_fifo8_cor_err_cnt(const struct cntr_entry *entry,
3231 					      void *context, int vl, int mode,
3232 					      u64 data)
3233 {
3234 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3235 
3236 	return dd->send_egress_err_status_cnt[56];
3237 }
3238 
3239 static u64 access_tx_launch_fifo7_cor_err_cnt(const struct cntr_entry *entry,
3240 					      void *context, int vl, int mode,
3241 					      u64 data)
3242 {
3243 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3244 
3245 	return dd->send_egress_err_status_cnt[55];
3246 }
3247 
3248 static u64 access_tx_launch_fifo6_cor_err_cnt(const struct cntr_entry *entry,
3249 					      void *context, int vl, int mode,
3250 					      u64 data)
3251 {
3252 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3253 
3254 	return dd->send_egress_err_status_cnt[54];
3255 }
3256 
3257 static u64 access_tx_launch_fifo5_cor_err_cnt(const struct cntr_entry *entry,
3258 					      void *context, int vl, int mode,
3259 					      u64 data)
3260 {
3261 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3262 
3263 	return dd->send_egress_err_status_cnt[53];
3264 }
3265 
3266 static u64 access_tx_launch_fifo4_cor_err_cnt(const struct cntr_entry *entry,
3267 					      void *context, int vl, int mode,
3268 					      u64 data)
3269 {
3270 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3271 
3272 	return dd->send_egress_err_status_cnt[52];
3273 }
3274 
3275 static u64 access_tx_launch_fifo3_cor_err_cnt(const struct cntr_entry *entry,
3276 					      void *context, int vl, int mode,
3277 					      u64 data)
3278 {
3279 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3280 
3281 	return dd->send_egress_err_status_cnt[51];
3282 }
3283 
3284 static u64 access_tx_launch_fifo2_cor_err_cnt(const struct cntr_entry *entry,
3285 					      void *context, int vl, int mode,
3286 					      u64 data)
3287 {
3288 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3289 
3290 	return dd->send_egress_err_status_cnt[50];
3291 }
3292 
3293 static u64 access_tx_launch_fifo1_cor_err_cnt(const struct cntr_entry *entry,
3294 					      void *context, int vl, int mode,
3295 					      u64 data)
3296 {
3297 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3298 
3299 	return dd->send_egress_err_status_cnt[49];
3300 }
3301 
3302 static u64 access_tx_launch_fifo0_cor_err_cnt(const struct cntr_entry *entry,
3303 					      void *context, int vl, int mode,
3304 					      u64 data)
3305 {
3306 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3307 
3308 	return dd->send_egress_err_status_cnt[48];
3309 }
3310 
3311 static u64 access_tx_credit_return_vl_err_cnt(const struct cntr_entry *entry,
3312 					      void *context, int vl, int mode,
3313 					      u64 data)
3314 {
3315 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3316 
3317 	return dd->send_egress_err_status_cnt[47];
3318 }
3319 
3320 static u64 access_tx_hcrc_insertion_err_cnt(const struct cntr_entry *entry,
3321 					    void *context, int vl, int mode,
3322 					    u64 data)
3323 {
3324 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3325 
3326 	return dd->send_egress_err_status_cnt[46];
3327 }
3328 
3329 static u64 access_tx_egress_fifo_unc_err_cnt(const struct cntr_entry *entry,
3330 					     void *context, int vl, int mode,
3331 					     u64 data)
3332 {
3333 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3334 
3335 	return dd->send_egress_err_status_cnt[45];
3336 }
3337 
3338 static u64 access_tx_read_pio_memory_unc_err_cnt(const struct cntr_entry *entry,
3339 						 void *context, int vl,
3340 						 int mode, u64 data)
3341 {
3342 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3343 
3344 	return dd->send_egress_err_status_cnt[44];
3345 }
3346 
3347 static u64 access_tx_read_sdma_memory_unc_err_cnt(
3348 				const struct cntr_entry *entry,
3349 				void *context, int vl, int mode, u64 data)
3350 {
3351 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3352 
3353 	return dd->send_egress_err_status_cnt[43];
3354 }
3355 
3356 static u64 access_tx_sb_hdr_unc_err_cnt(const struct cntr_entry *entry,
3357 					void *context, int vl, int mode,
3358 					u64 data)
3359 {
3360 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3361 
3362 	return dd->send_egress_err_status_cnt[42];
3363 }
3364 
3365 static u64 access_tx_credit_return_partiy_err_cnt(
3366 				const struct cntr_entry *entry,
3367 				void *context, int vl, int mode, u64 data)
3368 {
3369 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3370 
3371 	return dd->send_egress_err_status_cnt[41];
3372 }
3373 
3374 static u64 access_tx_launch_fifo8_unc_or_parity_err_cnt(
3375 				const struct cntr_entry *entry,
3376 				void *context, int vl, int mode, u64 data)
3377 {
3378 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3379 
3380 	return dd->send_egress_err_status_cnt[40];
3381 }
3382 
3383 static u64 access_tx_launch_fifo7_unc_or_parity_err_cnt(
3384 				const struct cntr_entry *entry,
3385 				void *context, int vl, int mode, u64 data)
3386 {
3387 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3388 
3389 	return dd->send_egress_err_status_cnt[39];
3390 }
3391 
3392 static u64 access_tx_launch_fifo6_unc_or_parity_err_cnt(
3393 				const struct cntr_entry *entry,
3394 				void *context, int vl, int mode, u64 data)
3395 {
3396 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3397 
3398 	return dd->send_egress_err_status_cnt[38];
3399 }
3400 
3401 static u64 access_tx_launch_fifo5_unc_or_parity_err_cnt(
3402 				const struct cntr_entry *entry,
3403 				void *context, int vl, int mode, u64 data)
3404 {
3405 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3406 
3407 	return dd->send_egress_err_status_cnt[37];
3408 }
3409 
3410 static u64 access_tx_launch_fifo4_unc_or_parity_err_cnt(
3411 				const struct cntr_entry *entry,
3412 				void *context, int vl, int mode, u64 data)
3413 {
3414 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3415 
3416 	return dd->send_egress_err_status_cnt[36];
3417 }
3418 
3419 static u64 access_tx_launch_fifo3_unc_or_parity_err_cnt(
3420 				const struct cntr_entry *entry,
3421 				void *context, int vl, int mode, u64 data)
3422 {
3423 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3424 
3425 	return dd->send_egress_err_status_cnt[35];
3426 }
3427 
3428 static u64 access_tx_launch_fifo2_unc_or_parity_err_cnt(
3429 				const struct cntr_entry *entry,
3430 				void *context, int vl, int mode, u64 data)
3431 {
3432 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3433 
3434 	return dd->send_egress_err_status_cnt[34];
3435 }
3436 
3437 static u64 access_tx_launch_fifo1_unc_or_parity_err_cnt(
3438 				const struct cntr_entry *entry,
3439 				void *context, int vl, int mode, u64 data)
3440 {
3441 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3442 
3443 	return dd->send_egress_err_status_cnt[33];
3444 }
3445 
3446 static u64 access_tx_launch_fifo0_unc_or_parity_err_cnt(
3447 				const struct cntr_entry *entry,
3448 				void *context, int vl, int mode, u64 data)
3449 {
3450 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3451 
3452 	return dd->send_egress_err_status_cnt[32];
3453 }
3454 
3455 static u64 access_tx_sdma15_disallowed_packet_err_cnt(
3456 				const struct cntr_entry *entry,
3457 				void *context, int vl, int mode, u64 data)
3458 {
3459 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3460 
3461 	return dd->send_egress_err_status_cnt[31];
3462 }
3463 
3464 static u64 access_tx_sdma14_disallowed_packet_err_cnt(
3465 				const struct cntr_entry *entry,
3466 				void *context, int vl, int mode, u64 data)
3467 {
3468 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3469 
3470 	return dd->send_egress_err_status_cnt[30];
3471 }
3472 
3473 static u64 access_tx_sdma13_disallowed_packet_err_cnt(
3474 				const struct cntr_entry *entry,
3475 				void *context, int vl, int mode, u64 data)
3476 {
3477 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3478 
3479 	return dd->send_egress_err_status_cnt[29];
3480 }
3481 
3482 static u64 access_tx_sdma12_disallowed_packet_err_cnt(
3483 				const struct cntr_entry *entry,
3484 				void *context, int vl, int mode, u64 data)
3485 {
3486 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3487 
3488 	return dd->send_egress_err_status_cnt[28];
3489 }
3490 
3491 static u64 access_tx_sdma11_disallowed_packet_err_cnt(
3492 				const struct cntr_entry *entry,
3493 				void *context, int vl, int mode, u64 data)
3494 {
3495 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3496 
3497 	return dd->send_egress_err_status_cnt[27];
3498 }
3499 
3500 static u64 access_tx_sdma10_disallowed_packet_err_cnt(
3501 				const struct cntr_entry *entry,
3502 				void *context, int vl, int mode, u64 data)
3503 {
3504 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3505 
3506 	return dd->send_egress_err_status_cnt[26];
3507 }
3508 
3509 static u64 access_tx_sdma9_disallowed_packet_err_cnt(
3510 				const struct cntr_entry *entry,
3511 				void *context, int vl, int mode, u64 data)
3512 {
3513 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3514 
3515 	return dd->send_egress_err_status_cnt[25];
3516 }
3517 
3518 static u64 access_tx_sdma8_disallowed_packet_err_cnt(
3519 				const struct cntr_entry *entry,
3520 				void *context, int vl, int mode, u64 data)
3521 {
3522 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3523 
3524 	return dd->send_egress_err_status_cnt[24];
3525 }
3526 
3527 static u64 access_tx_sdma7_disallowed_packet_err_cnt(
3528 				const struct cntr_entry *entry,
3529 				void *context, int vl, int mode, u64 data)
3530 {
3531 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3532 
3533 	return dd->send_egress_err_status_cnt[23];
3534 }
3535 
3536 static u64 access_tx_sdma6_disallowed_packet_err_cnt(
3537 				const struct cntr_entry *entry,
3538 				void *context, int vl, int mode, u64 data)
3539 {
3540 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3541 
3542 	return dd->send_egress_err_status_cnt[22];
3543 }
3544 
3545 static u64 access_tx_sdma5_disallowed_packet_err_cnt(
3546 				const struct cntr_entry *entry,
3547 				void *context, int vl, int mode, u64 data)
3548 {
3549 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3550 
3551 	return dd->send_egress_err_status_cnt[21];
3552 }
3553 
3554 static u64 access_tx_sdma4_disallowed_packet_err_cnt(
3555 				const struct cntr_entry *entry,
3556 				void *context, int vl, int mode, u64 data)
3557 {
3558 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3559 
3560 	return dd->send_egress_err_status_cnt[20];
3561 }
3562 
3563 static u64 access_tx_sdma3_disallowed_packet_err_cnt(
3564 				const struct cntr_entry *entry,
3565 				void *context, int vl, int mode, u64 data)
3566 {
3567 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3568 
3569 	return dd->send_egress_err_status_cnt[19];
3570 }
3571 
3572 static u64 access_tx_sdma2_disallowed_packet_err_cnt(
3573 				const struct cntr_entry *entry,
3574 				void *context, int vl, int mode, u64 data)
3575 {
3576 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3577 
3578 	return dd->send_egress_err_status_cnt[18];
3579 }
3580 
3581 static u64 access_tx_sdma1_disallowed_packet_err_cnt(
3582 				const struct cntr_entry *entry,
3583 				void *context, int vl, int mode, u64 data)
3584 {
3585 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3586 
3587 	return dd->send_egress_err_status_cnt[17];
3588 }
3589 
3590 static u64 access_tx_sdma0_disallowed_packet_err_cnt(
3591 				const struct cntr_entry *entry,
3592 				void *context, int vl, int mode, u64 data)
3593 {
3594 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3595 
3596 	return dd->send_egress_err_status_cnt[16];
3597 }
3598 
3599 static u64 access_tx_config_parity_err_cnt(const struct cntr_entry *entry,
3600 					   void *context, int vl, int mode,
3601 					   u64 data)
3602 {
3603 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3604 
3605 	return dd->send_egress_err_status_cnt[15];
3606 }
3607 
3608 static u64 access_tx_sbrd_ctl_csr_parity_err_cnt(const struct cntr_entry *entry,
3609 						 void *context, int vl,
3610 						 int mode, u64 data)
3611 {
3612 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3613 
3614 	return dd->send_egress_err_status_cnt[14];
3615 }
3616 
3617 static u64 access_tx_launch_csr_parity_err_cnt(const struct cntr_entry *entry,
3618 					       void *context, int vl, int mode,
3619 					       u64 data)
3620 {
3621 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3622 
3623 	return dd->send_egress_err_status_cnt[13];
3624 }
3625 
3626 static u64 access_tx_illegal_vl_err_cnt(const struct cntr_entry *entry,
3627 					void *context, int vl, int mode,
3628 					u64 data)
3629 {
3630 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3631 
3632 	return dd->send_egress_err_status_cnt[12];
3633 }
3634 
3635 static u64 access_tx_sbrd_ctl_state_machine_parity_err_cnt(
3636 				const struct cntr_entry *entry,
3637 				void *context, int vl, int mode, u64 data)
3638 {
3639 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3640 
3641 	return dd->send_egress_err_status_cnt[11];
3642 }
3643 
3644 static u64 access_egress_reserved_10_err_cnt(const struct cntr_entry *entry,
3645 					     void *context, int vl, int mode,
3646 					     u64 data)
3647 {
3648 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3649 
3650 	return dd->send_egress_err_status_cnt[10];
3651 }
3652 
3653 static u64 access_egress_reserved_9_err_cnt(const struct cntr_entry *entry,
3654 					    void *context, int vl, int mode,
3655 					    u64 data)
3656 {
3657 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3658 
3659 	return dd->send_egress_err_status_cnt[9];
3660 }
3661 
3662 static u64 access_tx_sdma_launch_intf_parity_err_cnt(
3663 				const struct cntr_entry *entry,
3664 				void *context, int vl, int mode, u64 data)
3665 {
3666 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3667 
3668 	return dd->send_egress_err_status_cnt[8];
3669 }
3670 
3671 static u64 access_tx_pio_launch_intf_parity_err_cnt(
3672 				const struct cntr_entry *entry,
3673 				void *context, int vl, int mode, u64 data)
3674 {
3675 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3676 
3677 	return dd->send_egress_err_status_cnt[7];
3678 }
3679 
3680 static u64 access_egress_reserved_6_err_cnt(const struct cntr_entry *entry,
3681 					    void *context, int vl, int mode,
3682 					    u64 data)
3683 {
3684 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3685 
3686 	return dd->send_egress_err_status_cnt[6];
3687 }
3688 
3689 static u64 access_tx_incorrect_link_state_err_cnt(
3690 				const struct cntr_entry *entry,
3691 				void *context, int vl, int mode, u64 data)
3692 {
3693 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3694 
3695 	return dd->send_egress_err_status_cnt[5];
3696 }
3697 
3698 static u64 access_tx_linkdown_err_cnt(const struct cntr_entry *entry,
3699 				      void *context, int vl, int mode,
3700 				      u64 data)
3701 {
3702 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3703 
3704 	return dd->send_egress_err_status_cnt[4];
3705 }
3706 
3707 static u64 access_tx_egress_fifi_underrun_or_parity_err_cnt(
3708 				const struct cntr_entry *entry,
3709 				void *context, int vl, int mode, u64 data)
3710 {
3711 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3712 
3713 	return dd->send_egress_err_status_cnt[3];
3714 }
3715 
3716 static u64 access_egress_reserved_2_err_cnt(const struct cntr_entry *entry,
3717 					    void *context, int vl, int mode,
3718 					    u64 data)
3719 {
3720 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3721 
3722 	return dd->send_egress_err_status_cnt[2];
3723 }
3724 
3725 static u64 access_tx_pkt_integrity_mem_unc_err_cnt(
3726 				const struct cntr_entry *entry,
3727 				void *context, int vl, int mode, u64 data)
3728 {
3729 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3730 
3731 	return dd->send_egress_err_status_cnt[1];
3732 }
3733 
3734 static u64 access_tx_pkt_integrity_mem_cor_err_cnt(
3735 				const struct cntr_entry *entry,
3736 				void *context, int vl, int mode, u64 data)
3737 {
3738 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3739 
3740 	return dd->send_egress_err_status_cnt[0];
3741 }
3742 
3743 /*
3744  * Software counters corresponding to each of the
3745  * error status bits within SendErrStatus
3746  */
3747 static u64 access_send_csr_write_bad_addr_err_cnt(
3748 				const struct cntr_entry *entry,
3749 				void *context, int vl, int mode, u64 data)
3750 {
3751 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3752 
3753 	return dd->send_err_status_cnt[2];
3754 }
3755 
3756 static u64 access_send_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
3757 						 void *context, int vl,
3758 						 int mode, u64 data)
3759 {
3760 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3761 
3762 	return dd->send_err_status_cnt[1];
3763 }
3764 
3765 static u64 access_send_csr_parity_cnt(const struct cntr_entry *entry,
3766 				      void *context, int vl, int mode,
3767 				      u64 data)
3768 {
3769 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3770 
3771 	return dd->send_err_status_cnt[0];
3772 }
3773 
3774 /*
3775  * Software counters corresponding to each of the
3776  * error status bits within SendCtxtErrStatus
3777  */
3778 static u64 access_pio_write_out_of_bounds_err_cnt(
3779 				const struct cntr_entry *entry,
3780 				void *context, int vl, int mode, u64 data)
3781 {
3782 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3783 
3784 	return dd->sw_ctxt_err_status_cnt[4];
3785 }
3786 
3787 static u64 access_pio_write_overflow_err_cnt(const struct cntr_entry *entry,
3788 					     void *context, int vl, int mode,
3789 					     u64 data)
3790 {
3791 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3792 
3793 	return dd->sw_ctxt_err_status_cnt[3];
3794 }
3795 
3796 static u64 access_pio_write_crosses_boundary_err_cnt(
3797 				const struct cntr_entry *entry,
3798 				void *context, int vl, int mode, u64 data)
3799 {
3800 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3801 
3802 	return dd->sw_ctxt_err_status_cnt[2];
3803 }
3804 
3805 static u64 access_pio_disallowed_packet_err_cnt(const struct cntr_entry *entry,
3806 						void *context, int vl,
3807 						int mode, u64 data)
3808 {
3809 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3810 
3811 	return dd->sw_ctxt_err_status_cnt[1];
3812 }
3813 
3814 static u64 access_pio_inconsistent_sop_err_cnt(const struct cntr_entry *entry,
3815 					       void *context, int vl, int mode,
3816 					       u64 data)
3817 {
3818 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3819 
3820 	return dd->sw_ctxt_err_status_cnt[0];
3821 }
3822 
3823 /*
3824  * Software counters corresponding to each of the
3825  * error status bits within SendDmaEngErrStatus
3826  */
3827 static u64 access_sdma_header_request_fifo_cor_err_cnt(
3828 				const struct cntr_entry *entry,
3829 				void *context, int vl, int mode, u64 data)
3830 {
3831 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3832 
3833 	return dd->sw_send_dma_eng_err_status_cnt[23];
3834 }
3835 
3836 static u64 access_sdma_header_storage_cor_err_cnt(
3837 				const struct cntr_entry *entry,
3838 				void *context, int vl, int mode, u64 data)
3839 {
3840 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3841 
3842 	return dd->sw_send_dma_eng_err_status_cnt[22];
3843 }
3844 
3845 static u64 access_sdma_packet_tracking_cor_err_cnt(
3846 				const struct cntr_entry *entry,
3847 				void *context, int vl, int mode, u64 data)
3848 {
3849 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3850 
3851 	return dd->sw_send_dma_eng_err_status_cnt[21];
3852 }
3853 
3854 static u64 access_sdma_assembly_cor_err_cnt(const struct cntr_entry *entry,
3855 					    void *context, int vl, int mode,
3856 					    u64 data)
3857 {
3858 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3859 
3860 	return dd->sw_send_dma_eng_err_status_cnt[20];
3861 }
3862 
3863 static u64 access_sdma_desc_table_cor_err_cnt(const struct cntr_entry *entry,
3864 					      void *context, int vl, int mode,
3865 					      u64 data)
3866 {
3867 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3868 
3869 	return dd->sw_send_dma_eng_err_status_cnt[19];
3870 }
3871 
3872 static u64 access_sdma_header_request_fifo_unc_err_cnt(
3873 				const struct cntr_entry *entry,
3874 				void *context, int vl, int mode, u64 data)
3875 {
3876 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3877 
3878 	return dd->sw_send_dma_eng_err_status_cnt[18];
3879 }
3880 
3881 static u64 access_sdma_header_storage_unc_err_cnt(
3882 				const struct cntr_entry *entry,
3883 				void *context, int vl, int mode, u64 data)
3884 {
3885 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3886 
3887 	return dd->sw_send_dma_eng_err_status_cnt[17];
3888 }
3889 
3890 static u64 access_sdma_packet_tracking_unc_err_cnt(
3891 				const struct cntr_entry *entry,
3892 				void *context, int vl, int mode, u64 data)
3893 {
3894 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3895 
3896 	return dd->sw_send_dma_eng_err_status_cnt[16];
3897 }
3898 
3899 static u64 access_sdma_assembly_unc_err_cnt(const struct cntr_entry *entry,
3900 					    void *context, int vl, int mode,
3901 					    u64 data)
3902 {
3903 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3904 
3905 	return dd->sw_send_dma_eng_err_status_cnt[15];
3906 }
3907 
3908 static u64 access_sdma_desc_table_unc_err_cnt(const struct cntr_entry *entry,
3909 					      void *context, int vl, int mode,
3910 					      u64 data)
3911 {
3912 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3913 
3914 	return dd->sw_send_dma_eng_err_status_cnt[14];
3915 }
3916 
3917 static u64 access_sdma_timeout_err_cnt(const struct cntr_entry *entry,
3918 				       void *context, int vl, int mode,
3919 				       u64 data)
3920 {
3921 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3922 
3923 	return dd->sw_send_dma_eng_err_status_cnt[13];
3924 }
3925 
3926 static u64 access_sdma_header_length_err_cnt(const struct cntr_entry *entry,
3927 					     void *context, int vl, int mode,
3928 					     u64 data)
3929 {
3930 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3931 
3932 	return dd->sw_send_dma_eng_err_status_cnt[12];
3933 }
3934 
3935 static u64 access_sdma_header_address_err_cnt(const struct cntr_entry *entry,
3936 					      void *context, int vl, int mode,
3937 					      u64 data)
3938 {
3939 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3940 
3941 	return dd->sw_send_dma_eng_err_status_cnt[11];
3942 }
3943 
3944 static u64 access_sdma_header_select_err_cnt(const struct cntr_entry *entry,
3945 					     void *context, int vl, int mode,
3946 					     u64 data)
3947 {
3948 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3949 
3950 	return dd->sw_send_dma_eng_err_status_cnt[10];
3951 }
3952 
3953 static u64 access_sdma_reserved_9_err_cnt(const struct cntr_entry *entry,
3954 					  void *context, int vl, int mode,
3955 					  u64 data)
3956 {
3957 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3958 
3959 	return dd->sw_send_dma_eng_err_status_cnt[9];
3960 }
3961 
3962 static u64 access_sdma_packet_desc_overflow_err_cnt(
3963 				const struct cntr_entry *entry,
3964 				void *context, int vl, int mode, u64 data)
3965 {
3966 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3967 
3968 	return dd->sw_send_dma_eng_err_status_cnt[8];
3969 }
3970 
3971 static u64 access_sdma_length_mismatch_err_cnt(const struct cntr_entry *entry,
3972 					       void *context, int vl,
3973 					       int mode, u64 data)
3974 {
3975 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3976 
3977 	return dd->sw_send_dma_eng_err_status_cnt[7];
3978 }
3979 
3980 static u64 access_sdma_halt_err_cnt(const struct cntr_entry *entry,
3981 				    void *context, int vl, int mode, u64 data)
3982 {
3983 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3984 
3985 	return dd->sw_send_dma_eng_err_status_cnt[6];
3986 }
3987 
3988 static u64 access_sdma_mem_read_err_cnt(const struct cntr_entry *entry,
3989 					void *context, int vl, int mode,
3990 					u64 data)
3991 {
3992 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3993 
3994 	return dd->sw_send_dma_eng_err_status_cnt[5];
3995 }
3996 
3997 static u64 access_sdma_first_desc_err_cnt(const struct cntr_entry *entry,
3998 					  void *context, int vl, int mode,
3999 					  u64 data)
4000 {
4001 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4002 
4003 	return dd->sw_send_dma_eng_err_status_cnt[4];
4004 }
4005 
4006 static u64 access_sdma_tail_out_of_bounds_err_cnt(
4007 				const struct cntr_entry *entry,
4008 				void *context, int vl, int mode, u64 data)
4009 {
4010 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4011 
4012 	return dd->sw_send_dma_eng_err_status_cnt[3];
4013 }
4014 
4015 static u64 access_sdma_too_long_err_cnt(const struct cntr_entry *entry,
4016 					void *context, int vl, int mode,
4017 					u64 data)
4018 {
4019 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4020 
4021 	return dd->sw_send_dma_eng_err_status_cnt[2];
4022 }
4023 
4024 static u64 access_sdma_gen_mismatch_err_cnt(const struct cntr_entry *entry,
4025 					    void *context, int vl, int mode,
4026 					    u64 data)
4027 {
4028 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4029 
4030 	return dd->sw_send_dma_eng_err_status_cnt[1];
4031 }
4032 
4033 static u64 access_sdma_wrong_dw_err_cnt(const struct cntr_entry *entry,
4034 					void *context, int vl, int mode,
4035 					u64 data)
4036 {
4037 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4038 
4039 	return dd->sw_send_dma_eng_err_status_cnt[0];
4040 }
4041 
4042 static u64 access_dc_rcv_err_cnt(const struct cntr_entry *entry,
4043 				 void *context, int vl, int mode,
4044 				 u64 data)
4045 {
4046 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4047 
4048 	u64 val = 0;
4049 	u64 csr = entry->csr;
4050 
4051 	val = read_write_csr(dd, csr, mode, data);
4052 	if (mode == CNTR_MODE_R) {
4053 		val = val > CNTR_MAX - dd->sw_rcv_bypass_packet_errors ?
4054 			CNTR_MAX : val + dd->sw_rcv_bypass_packet_errors;
4055 	} else if (mode == CNTR_MODE_W) {
4056 		dd->sw_rcv_bypass_packet_errors = 0;
4057 	} else {
4058 		dd_dev_err(dd, "Invalid cntr register access mode");
4059 		return 0;
4060 	}
4061 	return val;
4062 }
4063 
4064 #define def_access_sw_cpu(cntr) \
4065 static u64 access_sw_cpu_##cntr(const struct cntr_entry *entry,		      \
4066 			      void *context, int vl, int mode, u64 data)      \
4067 {									      \
4068 	struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context;	      \
4069 	return read_write_cpu(ppd->dd, &ppd->ibport_data.rvp.z_ ##cntr,	      \
4070 			      ppd->ibport_data.rvp.cntr, vl,		      \
4071 			      mode, data);				      \
4072 }
4073 
4074 def_access_sw_cpu(rc_acks);
4075 def_access_sw_cpu(rc_qacks);
4076 def_access_sw_cpu(rc_delayed_comp);
4077 
4078 #define def_access_ibp_counter(cntr) \
4079 static u64 access_ibp_##cntr(const struct cntr_entry *entry,		      \
4080 				void *context, int vl, int mode, u64 data)    \
4081 {									      \
4082 	struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context;	      \
4083 									      \
4084 	if (vl != CNTR_INVALID_VL)					      \
4085 		return 0;						      \
4086 									      \
4087 	return read_write_sw(ppd->dd, &ppd->ibport_data.rvp.n_ ##cntr,	      \
4088 			     mode, data);				      \
4089 }
4090 
4091 def_access_ibp_counter(loop_pkts);
4092 def_access_ibp_counter(rc_resends);
4093 def_access_ibp_counter(rnr_naks);
4094 def_access_ibp_counter(other_naks);
4095 def_access_ibp_counter(rc_timeouts);
4096 def_access_ibp_counter(pkt_drops);
4097 def_access_ibp_counter(dmawait);
4098 def_access_ibp_counter(rc_seqnak);
4099 def_access_ibp_counter(rc_dupreq);
4100 def_access_ibp_counter(rdma_seq);
4101 def_access_ibp_counter(unaligned);
4102 def_access_ibp_counter(seq_naks);
4103 
4104 static struct cntr_entry dev_cntrs[DEV_CNTR_LAST] = {
4105 [C_RCV_OVF] = RXE32_DEV_CNTR_ELEM(RcvOverflow, RCV_BUF_OVFL_CNT, CNTR_SYNTH),
4106 [C_RX_TID_FULL] = RXE32_DEV_CNTR_ELEM(RxTIDFullEr, RCV_TID_FULL_ERR_CNT,
4107 			CNTR_NORMAL),
4108 [C_RX_TID_INVALID] = RXE32_DEV_CNTR_ELEM(RxTIDInvalid, RCV_TID_VALID_ERR_CNT,
4109 			CNTR_NORMAL),
4110 [C_RX_TID_FLGMS] = RXE32_DEV_CNTR_ELEM(RxTidFLGMs,
4111 			RCV_TID_FLOW_GEN_MISMATCH_CNT,
4112 			CNTR_NORMAL),
4113 [C_RX_CTX_EGRS] = RXE32_DEV_CNTR_ELEM(RxCtxEgrS, RCV_CONTEXT_EGR_STALL,
4114 			CNTR_NORMAL),
4115 [C_RCV_TID_FLSMS] = RXE32_DEV_CNTR_ELEM(RxTidFLSMs,
4116 			RCV_TID_FLOW_SEQ_MISMATCH_CNT, CNTR_NORMAL),
4117 [C_CCE_PCI_CR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePciCrSt,
4118 			CCE_PCIE_POSTED_CRDT_STALL_CNT, CNTR_NORMAL),
4119 [C_CCE_PCI_TR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePciTrSt, CCE_PCIE_TRGT_STALL_CNT,
4120 			CNTR_NORMAL),
4121 [C_CCE_PIO_WR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePioWrSt, CCE_PIO_WR_STALL_CNT,
4122 			CNTR_NORMAL),
4123 [C_CCE_ERR_INT] = CCE_INT_DEV_CNTR_ELEM(CceErrInt, CCE_ERR_INT_CNT,
4124 			CNTR_NORMAL),
4125 [C_CCE_SDMA_INT] = CCE_INT_DEV_CNTR_ELEM(CceSdmaInt, CCE_SDMA_INT_CNT,
4126 			CNTR_NORMAL),
4127 [C_CCE_MISC_INT] = CCE_INT_DEV_CNTR_ELEM(CceMiscInt, CCE_MISC_INT_CNT,
4128 			CNTR_NORMAL),
4129 [C_CCE_RCV_AV_INT] = CCE_INT_DEV_CNTR_ELEM(CceRcvAvInt, CCE_RCV_AVAIL_INT_CNT,
4130 			CNTR_NORMAL),
4131 [C_CCE_RCV_URG_INT] = CCE_INT_DEV_CNTR_ELEM(CceRcvUrgInt,
4132 			CCE_RCV_URGENT_INT_CNT,	CNTR_NORMAL),
4133 [C_CCE_SEND_CR_INT] = CCE_INT_DEV_CNTR_ELEM(CceSndCrInt,
4134 			CCE_SEND_CREDIT_INT_CNT, CNTR_NORMAL),
4135 [C_DC_UNC_ERR] = DC_PERF_CNTR(DcUnctblErr, DCC_ERR_UNCORRECTABLE_CNT,
4136 			      CNTR_SYNTH),
4137 [C_DC_RCV_ERR] = CNTR_ELEM("DcRecvErr", DCC_ERR_PORTRCV_ERR_CNT, 0, CNTR_SYNTH,
4138 			    access_dc_rcv_err_cnt),
4139 [C_DC_FM_CFG_ERR] = DC_PERF_CNTR(DcFmCfgErr, DCC_ERR_FMCONFIG_ERR_CNT,
4140 				 CNTR_SYNTH),
4141 [C_DC_RMT_PHY_ERR] = DC_PERF_CNTR(DcRmtPhyErr, DCC_ERR_RCVREMOTE_PHY_ERR_CNT,
4142 				  CNTR_SYNTH),
4143 [C_DC_DROPPED_PKT] = DC_PERF_CNTR(DcDroppedPkt, DCC_ERR_DROPPED_PKT_CNT,
4144 				  CNTR_SYNTH),
4145 [C_DC_MC_XMIT_PKTS] = DC_PERF_CNTR(DcMcXmitPkts,
4146 				   DCC_PRF_PORT_XMIT_MULTICAST_CNT, CNTR_SYNTH),
4147 [C_DC_MC_RCV_PKTS] = DC_PERF_CNTR(DcMcRcvPkts,
4148 				  DCC_PRF_PORT_RCV_MULTICAST_PKT_CNT,
4149 				  CNTR_SYNTH),
4150 [C_DC_XMIT_CERR] = DC_PERF_CNTR(DcXmitCorr,
4151 				DCC_PRF_PORT_XMIT_CORRECTABLE_CNT, CNTR_SYNTH),
4152 [C_DC_RCV_CERR] = DC_PERF_CNTR(DcRcvCorrCnt, DCC_PRF_PORT_RCV_CORRECTABLE_CNT,
4153 			       CNTR_SYNTH),
4154 [C_DC_RCV_FCC] = DC_PERF_CNTR(DcRxFCntl, DCC_PRF_RX_FLOW_CRTL_CNT,
4155 			      CNTR_SYNTH),
4156 [C_DC_XMIT_FCC] = DC_PERF_CNTR(DcXmitFCntl, DCC_PRF_TX_FLOW_CRTL_CNT,
4157 			       CNTR_SYNTH),
4158 [C_DC_XMIT_FLITS] = DC_PERF_CNTR(DcXmitFlits, DCC_PRF_PORT_XMIT_DATA_CNT,
4159 				 CNTR_SYNTH),
4160 [C_DC_RCV_FLITS] = DC_PERF_CNTR(DcRcvFlits, DCC_PRF_PORT_RCV_DATA_CNT,
4161 				CNTR_SYNTH),
4162 [C_DC_XMIT_PKTS] = DC_PERF_CNTR(DcXmitPkts, DCC_PRF_PORT_XMIT_PKTS_CNT,
4163 				CNTR_SYNTH),
4164 [C_DC_RCV_PKTS] = DC_PERF_CNTR(DcRcvPkts, DCC_PRF_PORT_RCV_PKTS_CNT,
4165 			       CNTR_SYNTH),
4166 [C_DC_RX_FLIT_VL] = DC_PERF_CNTR(DcRxFlitVl, DCC_PRF_PORT_VL_RCV_DATA_CNT,
4167 				 CNTR_SYNTH | CNTR_VL),
4168 [C_DC_RX_PKT_VL] = DC_PERF_CNTR(DcRxPktVl, DCC_PRF_PORT_VL_RCV_PKTS_CNT,
4169 				CNTR_SYNTH | CNTR_VL),
4170 [C_DC_RCV_FCN] = DC_PERF_CNTR(DcRcvFcn, DCC_PRF_PORT_RCV_FECN_CNT, CNTR_SYNTH),
4171 [C_DC_RCV_FCN_VL] = DC_PERF_CNTR(DcRcvFcnVl, DCC_PRF_PORT_VL_RCV_FECN_CNT,
4172 				 CNTR_SYNTH | CNTR_VL),
4173 [C_DC_RCV_BCN] = DC_PERF_CNTR(DcRcvBcn, DCC_PRF_PORT_RCV_BECN_CNT, CNTR_SYNTH),
4174 [C_DC_RCV_BCN_VL] = DC_PERF_CNTR(DcRcvBcnVl, DCC_PRF_PORT_VL_RCV_BECN_CNT,
4175 				 CNTR_SYNTH | CNTR_VL),
4176 [C_DC_RCV_BBL] = DC_PERF_CNTR(DcRcvBbl, DCC_PRF_PORT_RCV_BUBBLE_CNT,
4177 			      CNTR_SYNTH),
4178 [C_DC_RCV_BBL_VL] = DC_PERF_CNTR(DcRcvBblVl, DCC_PRF_PORT_VL_RCV_BUBBLE_CNT,
4179 				 CNTR_SYNTH | CNTR_VL),
4180 [C_DC_MARK_FECN] = DC_PERF_CNTR(DcMarkFcn, DCC_PRF_PORT_MARK_FECN_CNT,
4181 				CNTR_SYNTH),
4182 [C_DC_MARK_FECN_VL] = DC_PERF_CNTR(DcMarkFcnVl, DCC_PRF_PORT_VL_MARK_FECN_CNT,
4183 				   CNTR_SYNTH | CNTR_VL),
4184 [C_DC_TOTAL_CRC] =
4185 	DC_PERF_CNTR_LCB(DcTotCrc, DC_LCB_ERR_INFO_TOTAL_CRC_ERR,
4186 			 CNTR_SYNTH),
4187 [C_DC_CRC_LN0] = DC_PERF_CNTR_LCB(DcCrcLn0, DC_LCB_ERR_INFO_CRC_ERR_LN0,
4188 				  CNTR_SYNTH),
4189 [C_DC_CRC_LN1] = DC_PERF_CNTR_LCB(DcCrcLn1, DC_LCB_ERR_INFO_CRC_ERR_LN1,
4190 				  CNTR_SYNTH),
4191 [C_DC_CRC_LN2] = DC_PERF_CNTR_LCB(DcCrcLn2, DC_LCB_ERR_INFO_CRC_ERR_LN2,
4192 				  CNTR_SYNTH),
4193 [C_DC_CRC_LN3] = DC_PERF_CNTR_LCB(DcCrcLn3, DC_LCB_ERR_INFO_CRC_ERR_LN3,
4194 				  CNTR_SYNTH),
4195 [C_DC_CRC_MULT_LN] =
4196 	DC_PERF_CNTR_LCB(DcMultLn, DC_LCB_ERR_INFO_CRC_ERR_MULTI_LN,
4197 			 CNTR_SYNTH),
4198 [C_DC_TX_REPLAY] = DC_PERF_CNTR_LCB(DcTxReplay, DC_LCB_ERR_INFO_TX_REPLAY_CNT,
4199 				    CNTR_SYNTH),
4200 [C_DC_RX_REPLAY] = DC_PERF_CNTR_LCB(DcRxReplay, DC_LCB_ERR_INFO_RX_REPLAY_CNT,
4201 				    CNTR_SYNTH),
4202 [C_DC_SEQ_CRC_CNT] =
4203 	DC_PERF_CNTR_LCB(DcLinkSeqCrc, DC_LCB_ERR_INFO_SEQ_CRC_CNT,
4204 			 CNTR_SYNTH),
4205 [C_DC_ESC0_ONLY_CNT] =
4206 	DC_PERF_CNTR_LCB(DcEsc0, DC_LCB_ERR_INFO_ESCAPE_0_ONLY_CNT,
4207 			 CNTR_SYNTH),
4208 [C_DC_ESC0_PLUS1_CNT] =
4209 	DC_PERF_CNTR_LCB(DcEsc1, DC_LCB_ERR_INFO_ESCAPE_0_PLUS1_CNT,
4210 			 CNTR_SYNTH),
4211 [C_DC_ESC0_PLUS2_CNT] =
4212 	DC_PERF_CNTR_LCB(DcEsc0Plus2, DC_LCB_ERR_INFO_ESCAPE_0_PLUS2_CNT,
4213 			 CNTR_SYNTH),
4214 [C_DC_REINIT_FROM_PEER_CNT] =
4215 	DC_PERF_CNTR_LCB(DcReinitPeer, DC_LCB_ERR_INFO_REINIT_FROM_PEER_CNT,
4216 			 CNTR_SYNTH),
4217 [C_DC_SBE_CNT] = DC_PERF_CNTR_LCB(DcSbe, DC_LCB_ERR_INFO_SBE_CNT,
4218 				  CNTR_SYNTH),
4219 [C_DC_MISC_FLG_CNT] =
4220 	DC_PERF_CNTR_LCB(DcMiscFlg, DC_LCB_ERR_INFO_MISC_FLG_CNT,
4221 			 CNTR_SYNTH),
4222 [C_DC_PRF_GOOD_LTP_CNT] =
4223 	DC_PERF_CNTR_LCB(DcGoodLTP, DC_LCB_PRF_GOOD_LTP_CNT, CNTR_SYNTH),
4224 [C_DC_PRF_ACCEPTED_LTP_CNT] =
4225 	DC_PERF_CNTR_LCB(DcAccLTP, DC_LCB_PRF_ACCEPTED_LTP_CNT,
4226 			 CNTR_SYNTH),
4227 [C_DC_PRF_RX_FLIT_CNT] =
4228 	DC_PERF_CNTR_LCB(DcPrfRxFlit, DC_LCB_PRF_RX_FLIT_CNT, CNTR_SYNTH),
4229 [C_DC_PRF_TX_FLIT_CNT] =
4230 	DC_PERF_CNTR_LCB(DcPrfTxFlit, DC_LCB_PRF_TX_FLIT_CNT, CNTR_SYNTH),
4231 [C_DC_PRF_CLK_CNTR] =
4232 	DC_PERF_CNTR_LCB(DcPrfClk, DC_LCB_PRF_CLK_CNTR, CNTR_SYNTH),
4233 [C_DC_PG_DBG_FLIT_CRDTS_CNT] =
4234 	DC_PERF_CNTR_LCB(DcFltCrdts, DC_LCB_PG_DBG_FLIT_CRDTS_CNT, CNTR_SYNTH),
4235 [C_DC_PG_STS_PAUSE_COMPLETE_CNT] =
4236 	DC_PERF_CNTR_LCB(DcPauseComp, DC_LCB_PG_STS_PAUSE_COMPLETE_CNT,
4237 			 CNTR_SYNTH),
4238 [C_DC_PG_STS_TX_SBE_CNT] =
4239 	DC_PERF_CNTR_LCB(DcStsTxSbe, DC_LCB_PG_STS_TX_SBE_CNT, CNTR_SYNTH),
4240 [C_DC_PG_STS_TX_MBE_CNT] =
4241 	DC_PERF_CNTR_LCB(DcStsTxMbe, DC_LCB_PG_STS_TX_MBE_CNT,
4242 			 CNTR_SYNTH),
4243 [C_SW_CPU_INTR] = CNTR_ELEM("Intr", 0, 0, CNTR_NORMAL,
4244 			    access_sw_cpu_intr),
4245 [C_SW_CPU_RCV_LIM] = CNTR_ELEM("RcvLimit", 0, 0, CNTR_NORMAL,
4246 			    access_sw_cpu_rcv_limit),
4247 [C_SW_VTX_WAIT] = CNTR_ELEM("vTxWait", 0, 0, CNTR_NORMAL,
4248 			    access_sw_vtx_wait),
4249 [C_SW_PIO_WAIT] = CNTR_ELEM("PioWait", 0, 0, CNTR_NORMAL,
4250 			    access_sw_pio_wait),
4251 [C_SW_PIO_DRAIN] = CNTR_ELEM("PioDrain", 0, 0, CNTR_NORMAL,
4252 			    access_sw_pio_drain),
4253 [C_SW_KMEM_WAIT] = CNTR_ELEM("KmemWait", 0, 0, CNTR_NORMAL,
4254 			    access_sw_kmem_wait),
4255 [C_SW_SEND_SCHED] = CNTR_ELEM("SendSched", 0, 0, CNTR_NORMAL,
4256 			    access_sw_send_schedule),
4257 [C_SDMA_DESC_FETCHED_CNT] = CNTR_ELEM("SDEDscFdCn",
4258 				      SEND_DMA_DESC_FETCHED_CNT, 0,
4259 				      CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4260 				      dev_access_u32_csr),
4261 [C_SDMA_INT_CNT] = CNTR_ELEM("SDMAInt", 0, 0,
4262 			     CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4263 			     access_sde_int_cnt),
4264 [C_SDMA_ERR_CNT] = CNTR_ELEM("SDMAErrCt", 0, 0,
4265 			     CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4266 			     access_sde_err_cnt),
4267 [C_SDMA_IDLE_INT_CNT] = CNTR_ELEM("SDMAIdInt", 0, 0,
4268 				  CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4269 				  access_sde_idle_int_cnt),
4270 [C_SDMA_PROGRESS_INT_CNT] = CNTR_ELEM("SDMAPrIntCn", 0, 0,
4271 				      CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4272 				      access_sde_progress_int_cnt),
4273 /* MISC_ERR_STATUS */
4274 [C_MISC_PLL_LOCK_FAIL_ERR] = CNTR_ELEM("MISC_PLL_LOCK_FAIL_ERR", 0, 0,
4275 				CNTR_NORMAL,
4276 				access_misc_pll_lock_fail_err_cnt),
4277 [C_MISC_MBIST_FAIL_ERR] = CNTR_ELEM("MISC_MBIST_FAIL_ERR", 0, 0,
4278 				CNTR_NORMAL,
4279 				access_misc_mbist_fail_err_cnt),
4280 [C_MISC_INVALID_EEP_CMD_ERR] = CNTR_ELEM("MISC_INVALID_EEP_CMD_ERR", 0, 0,
4281 				CNTR_NORMAL,
4282 				access_misc_invalid_eep_cmd_err_cnt),
4283 [C_MISC_EFUSE_DONE_PARITY_ERR] = CNTR_ELEM("MISC_EFUSE_DONE_PARITY_ERR", 0, 0,
4284 				CNTR_NORMAL,
4285 				access_misc_efuse_done_parity_err_cnt),
4286 [C_MISC_EFUSE_WRITE_ERR] = CNTR_ELEM("MISC_EFUSE_WRITE_ERR", 0, 0,
4287 				CNTR_NORMAL,
4288 				access_misc_efuse_write_err_cnt),
4289 [C_MISC_EFUSE_READ_BAD_ADDR_ERR] = CNTR_ELEM("MISC_EFUSE_READ_BAD_ADDR_ERR", 0,
4290 				0, CNTR_NORMAL,
4291 				access_misc_efuse_read_bad_addr_err_cnt),
4292 [C_MISC_EFUSE_CSR_PARITY_ERR] = CNTR_ELEM("MISC_EFUSE_CSR_PARITY_ERR", 0, 0,
4293 				CNTR_NORMAL,
4294 				access_misc_efuse_csr_parity_err_cnt),
4295 [C_MISC_FW_AUTH_FAILED_ERR] = CNTR_ELEM("MISC_FW_AUTH_FAILED_ERR", 0, 0,
4296 				CNTR_NORMAL,
4297 				access_misc_fw_auth_failed_err_cnt),
4298 [C_MISC_KEY_MISMATCH_ERR] = CNTR_ELEM("MISC_KEY_MISMATCH_ERR", 0, 0,
4299 				CNTR_NORMAL,
4300 				access_misc_key_mismatch_err_cnt),
4301 [C_MISC_SBUS_WRITE_FAILED_ERR] = CNTR_ELEM("MISC_SBUS_WRITE_FAILED_ERR", 0, 0,
4302 				CNTR_NORMAL,
4303 				access_misc_sbus_write_failed_err_cnt),
4304 [C_MISC_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("MISC_CSR_WRITE_BAD_ADDR_ERR", 0, 0,
4305 				CNTR_NORMAL,
4306 				access_misc_csr_write_bad_addr_err_cnt),
4307 [C_MISC_CSR_READ_BAD_ADDR_ERR] = CNTR_ELEM("MISC_CSR_READ_BAD_ADDR_ERR", 0, 0,
4308 				CNTR_NORMAL,
4309 				access_misc_csr_read_bad_addr_err_cnt),
4310 [C_MISC_CSR_PARITY_ERR] = CNTR_ELEM("MISC_CSR_PARITY_ERR", 0, 0,
4311 				CNTR_NORMAL,
4312 				access_misc_csr_parity_err_cnt),
4313 /* CceErrStatus */
4314 [C_CCE_ERR_STATUS_AGGREGATED_CNT] = CNTR_ELEM("CceErrStatusAggregatedCnt", 0, 0,
4315 				CNTR_NORMAL,
4316 				access_sw_cce_err_status_aggregated_cnt),
4317 [C_CCE_MSIX_CSR_PARITY_ERR] = CNTR_ELEM("CceMsixCsrParityErr", 0, 0,
4318 				CNTR_NORMAL,
4319 				access_cce_msix_csr_parity_err_cnt),
4320 [C_CCE_INT_MAP_UNC_ERR] = CNTR_ELEM("CceIntMapUncErr", 0, 0,
4321 				CNTR_NORMAL,
4322 				access_cce_int_map_unc_err_cnt),
4323 [C_CCE_INT_MAP_COR_ERR] = CNTR_ELEM("CceIntMapCorErr", 0, 0,
4324 				CNTR_NORMAL,
4325 				access_cce_int_map_cor_err_cnt),
4326 [C_CCE_MSIX_TABLE_UNC_ERR] = CNTR_ELEM("CceMsixTableUncErr", 0, 0,
4327 				CNTR_NORMAL,
4328 				access_cce_msix_table_unc_err_cnt),
4329 [C_CCE_MSIX_TABLE_COR_ERR] = CNTR_ELEM("CceMsixTableCorErr", 0, 0,
4330 				CNTR_NORMAL,
4331 				access_cce_msix_table_cor_err_cnt),
4332 [C_CCE_RXDMA_CONV_FIFO_PARITY_ERR] = CNTR_ELEM("CceRxdmaConvFifoParityErr", 0,
4333 				0, CNTR_NORMAL,
4334 				access_cce_rxdma_conv_fifo_parity_err_cnt),
4335 [C_CCE_RCPL_ASYNC_FIFO_PARITY_ERR] = CNTR_ELEM("CceRcplAsyncFifoParityErr", 0,
4336 				0, CNTR_NORMAL,
4337 				access_cce_rcpl_async_fifo_parity_err_cnt),
4338 [C_CCE_SEG_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("CceSegWriteBadAddrErr", 0, 0,
4339 				CNTR_NORMAL,
4340 				access_cce_seg_write_bad_addr_err_cnt),
4341 [C_CCE_SEG_READ_BAD_ADDR_ERR] = CNTR_ELEM("CceSegReadBadAddrErr", 0, 0,
4342 				CNTR_NORMAL,
4343 				access_cce_seg_read_bad_addr_err_cnt),
4344 [C_LA_TRIGGERED] = CNTR_ELEM("Cce LATriggered", 0, 0,
4345 				CNTR_NORMAL,
4346 				access_la_triggered_cnt),
4347 [C_CCE_TRGT_CPL_TIMEOUT_ERR] = CNTR_ELEM("CceTrgtCplTimeoutErr", 0, 0,
4348 				CNTR_NORMAL,
4349 				access_cce_trgt_cpl_timeout_err_cnt),
4350 [C_PCIC_RECEIVE_PARITY_ERR] = CNTR_ELEM("PcicReceiveParityErr", 0, 0,
4351 				CNTR_NORMAL,
4352 				access_pcic_receive_parity_err_cnt),
4353 [C_PCIC_TRANSMIT_BACK_PARITY_ERR] = CNTR_ELEM("PcicTransmitBackParityErr", 0, 0,
4354 				CNTR_NORMAL,
4355 				access_pcic_transmit_back_parity_err_cnt),
4356 [C_PCIC_TRANSMIT_FRONT_PARITY_ERR] = CNTR_ELEM("PcicTransmitFrontParityErr", 0,
4357 				0, CNTR_NORMAL,
4358 				access_pcic_transmit_front_parity_err_cnt),
4359 [C_PCIC_CPL_DAT_Q_UNC_ERR] = CNTR_ELEM("PcicCplDatQUncErr", 0, 0,
4360 				CNTR_NORMAL,
4361 				access_pcic_cpl_dat_q_unc_err_cnt),
4362 [C_PCIC_CPL_HD_Q_UNC_ERR] = CNTR_ELEM("PcicCplHdQUncErr", 0, 0,
4363 				CNTR_NORMAL,
4364 				access_pcic_cpl_hd_q_unc_err_cnt),
4365 [C_PCIC_POST_DAT_Q_UNC_ERR] = CNTR_ELEM("PcicPostDatQUncErr", 0, 0,
4366 				CNTR_NORMAL,
4367 				access_pcic_post_dat_q_unc_err_cnt),
4368 [C_PCIC_POST_HD_Q_UNC_ERR] = CNTR_ELEM("PcicPostHdQUncErr", 0, 0,
4369 				CNTR_NORMAL,
4370 				access_pcic_post_hd_q_unc_err_cnt),
4371 [C_PCIC_RETRY_SOT_MEM_UNC_ERR] = CNTR_ELEM("PcicRetrySotMemUncErr", 0, 0,
4372 				CNTR_NORMAL,
4373 				access_pcic_retry_sot_mem_unc_err_cnt),
4374 [C_PCIC_RETRY_MEM_UNC_ERR] = CNTR_ELEM("PcicRetryMemUncErr", 0, 0,
4375 				CNTR_NORMAL,
4376 				access_pcic_retry_mem_unc_err),
4377 [C_PCIC_N_POST_DAT_Q_PARITY_ERR] = CNTR_ELEM("PcicNPostDatQParityErr", 0, 0,
4378 				CNTR_NORMAL,
4379 				access_pcic_n_post_dat_q_parity_err_cnt),
4380 [C_PCIC_N_POST_H_Q_PARITY_ERR] = CNTR_ELEM("PcicNPostHQParityErr", 0, 0,
4381 				CNTR_NORMAL,
4382 				access_pcic_n_post_h_q_parity_err_cnt),
4383 [C_PCIC_CPL_DAT_Q_COR_ERR] = CNTR_ELEM("PcicCplDatQCorErr", 0, 0,
4384 				CNTR_NORMAL,
4385 				access_pcic_cpl_dat_q_cor_err_cnt),
4386 [C_PCIC_CPL_HD_Q_COR_ERR] = CNTR_ELEM("PcicCplHdQCorErr", 0, 0,
4387 				CNTR_NORMAL,
4388 				access_pcic_cpl_hd_q_cor_err_cnt),
4389 [C_PCIC_POST_DAT_Q_COR_ERR] = CNTR_ELEM("PcicPostDatQCorErr", 0, 0,
4390 				CNTR_NORMAL,
4391 				access_pcic_post_dat_q_cor_err_cnt),
4392 [C_PCIC_POST_HD_Q_COR_ERR] = CNTR_ELEM("PcicPostHdQCorErr", 0, 0,
4393 				CNTR_NORMAL,
4394 				access_pcic_post_hd_q_cor_err_cnt),
4395 [C_PCIC_RETRY_SOT_MEM_COR_ERR] = CNTR_ELEM("PcicRetrySotMemCorErr", 0, 0,
4396 				CNTR_NORMAL,
4397 				access_pcic_retry_sot_mem_cor_err_cnt),
4398 [C_PCIC_RETRY_MEM_COR_ERR] = CNTR_ELEM("PcicRetryMemCorErr", 0, 0,
4399 				CNTR_NORMAL,
4400 				access_pcic_retry_mem_cor_err_cnt),
4401 [C_CCE_CLI1_ASYNC_FIFO_DBG_PARITY_ERR] = CNTR_ELEM(
4402 				"CceCli1AsyncFifoDbgParityError", 0, 0,
4403 				CNTR_NORMAL,
4404 				access_cce_cli1_async_fifo_dbg_parity_err_cnt),
4405 [C_CCE_CLI1_ASYNC_FIFO_RXDMA_PARITY_ERR] = CNTR_ELEM(
4406 				"CceCli1AsyncFifoRxdmaParityError", 0, 0,
4407 				CNTR_NORMAL,
4408 				access_cce_cli1_async_fifo_rxdma_parity_err_cnt
4409 				),
4410 [C_CCE_CLI1_ASYNC_FIFO_SDMA_HD_PARITY_ERR] = CNTR_ELEM(
4411 			"CceCli1AsyncFifoSdmaHdParityErr", 0, 0,
4412 			CNTR_NORMAL,
4413 			access_cce_cli1_async_fifo_sdma_hd_parity_err_cnt),
4414 [C_CCE_CLI1_ASYNC_FIFO_PIO_CRDT_PARITY_ERR] = CNTR_ELEM(
4415 			"CceCli1AsyncFifoPioCrdtParityErr", 0, 0,
4416 			CNTR_NORMAL,
4417 			access_cce_cl1_async_fifo_pio_crdt_parity_err_cnt),
4418 [C_CCE_CLI2_ASYNC_FIFO_PARITY_ERR] = CNTR_ELEM("CceCli2AsyncFifoParityErr", 0,
4419 			0, CNTR_NORMAL,
4420 			access_cce_cli2_async_fifo_parity_err_cnt),
4421 [C_CCE_CSR_CFG_BUS_PARITY_ERR] = CNTR_ELEM("CceCsrCfgBusParityErr", 0, 0,
4422 			CNTR_NORMAL,
4423 			access_cce_csr_cfg_bus_parity_err_cnt),
4424 [C_CCE_CLI0_ASYNC_FIFO_PARTIY_ERR] = CNTR_ELEM("CceCli0AsyncFifoParityErr", 0,
4425 			0, CNTR_NORMAL,
4426 			access_cce_cli0_async_fifo_parity_err_cnt),
4427 [C_CCE_RSPD_DATA_PARITY_ERR] = CNTR_ELEM("CceRspdDataParityErr", 0, 0,
4428 			CNTR_NORMAL,
4429 			access_cce_rspd_data_parity_err_cnt),
4430 [C_CCE_TRGT_ACCESS_ERR] = CNTR_ELEM("CceTrgtAccessErr", 0, 0,
4431 			CNTR_NORMAL,
4432 			access_cce_trgt_access_err_cnt),
4433 [C_CCE_TRGT_ASYNC_FIFO_PARITY_ERR] = CNTR_ELEM("CceTrgtAsyncFifoParityErr", 0,
4434 			0, CNTR_NORMAL,
4435 			access_cce_trgt_async_fifo_parity_err_cnt),
4436 [C_CCE_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("CceCsrWriteBadAddrErr", 0, 0,
4437 			CNTR_NORMAL,
4438 			access_cce_csr_write_bad_addr_err_cnt),
4439 [C_CCE_CSR_READ_BAD_ADDR_ERR] = CNTR_ELEM("CceCsrReadBadAddrErr", 0, 0,
4440 			CNTR_NORMAL,
4441 			access_cce_csr_read_bad_addr_err_cnt),
4442 [C_CCE_CSR_PARITY_ERR] = CNTR_ELEM("CceCsrParityErr", 0, 0,
4443 			CNTR_NORMAL,
4444 			access_ccs_csr_parity_err_cnt),
4445 
4446 /* RcvErrStatus */
4447 [C_RX_CSR_PARITY_ERR] = CNTR_ELEM("RxCsrParityErr", 0, 0,
4448 			CNTR_NORMAL,
4449 			access_rx_csr_parity_err_cnt),
4450 [C_RX_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("RxCsrWriteBadAddrErr", 0, 0,
4451 			CNTR_NORMAL,
4452 			access_rx_csr_write_bad_addr_err_cnt),
4453 [C_RX_CSR_READ_BAD_ADDR_ERR] = CNTR_ELEM("RxCsrReadBadAddrErr", 0, 0,
4454 			CNTR_NORMAL,
4455 			access_rx_csr_read_bad_addr_err_cnt),
4456 [C_RX_DMA_CSR_UNC_ERR] = CNTR_ELEM("RxDmaCsrUncErr", 0, 0,
4457 			CNTR_NORMAL,
4458 			access_rx_dma_csr_unc_err_cnt),
4459 [C_RX_DMA_DQ_FSM_ENCODING_ERR] = CNTR_ELEM("RxDmaDqFsmEncodingErr", 0, 0,
4460 			CNTR_NORMAL,
4461 			access_rx_dma_dq_fsm_encoding_err_cnt),
4462 [C_RX_DMA_EQ_FSM_ENCODING_ERR] = CNTR_ELEM("RxDmaEqFsmEncodingErr", 0, 0,
4463 			CNTR_NORMAL,
4464 			access_rx_dma_eq_fsm_encoding_err_cnt),
4465 [C_RX_DMA_CSR_PARITY_ERR] = CNTR_ELEM("RxDmaCsrParityErr", 0, 0,
4466 			CNTR_NORMAL,
4467 			access_rx_dma_csr_parity_err_cnt),
4468 [C_RX_RBUF_DATA_COR_ERR] = CNTR_ELEM("RxRbufDataCorErr", 0, 0,
4469 			CNTR_NORMAL,
4470 			access_rx_rbuf_data_cor_err_cnt),
4471 [C_RX_RBUF_DATA_UNC_ERR] = CNTR_ELEM("RxRbufDataUncErr", 0, 0,
4472 			CNTR_NORMAL,
4473 			access_rx_rbuf_data_unc_err_cnt),
4474 [C_RX_DMA_DATA_FIFO_RD_COR_ERR] = CNTR_ELEM("RxDmaDataFifoRdCorErr", 0, 0,
4475 			CNTR_NORMAL,
4476 			access_rx_dma_data_fifo_rd_cor_err_cnt),
4477 [C_RX_DMA_DATA_FIFO_RD_UNC_ERR] = CNTR_ELEM("RxDmaDataFifoRdUncErr", 0, 0,
4478 			CNTR_NORMAL,
4479 			access_rx_dma_data_fifo_rd_unc_err_cnt),
4480 [C_RX_DMA_HDR_FIFO_RD_COR_ERR] = CNTR_ELEM("RxDmaHdrFifoRdCorErr", 0, 0,
4481 			CNTR_NORMAL,
4482 			access_rx_dma_hdr_fifo_rd_cor_err_cnt),
4483 [C_RX_DMA_HDR_FIFO_RD_UNC_ERR] = CNTR_ELEM("RxDmaHdrFifoRdUncErr", 0, 0,
4484 			CNTR_NORMAL,
4485 			access_rx_dma_hdr_fifo_rd_unc_err_cnt),
4486 [C_RX_RBUF_DESC_PART2_COR_ERR] = CNTR_ELEM("RxRbufDescPart2CorErr", 0, 0,
4487 			CNTR_NORMAL,
4488 			access_rx_rbuf_desc_part2_cor_err_cnt),
4489 [C_RX_RBUF_DESC_PART2_UNC_ERR] = CNTR_ELEM("RxRbufDescPart2UncErr", 0, 0,
4490 			CNTR_NORMAL,
4491 			access_rx_rbuf_desc_part2_unc_err_cnt),
4492 [C_RX_RBUF_DESC_PART1_COR_ERR] = CNTR_ELEM("RxRbufDescPart1CorErr", 0, 0,
4493 			CNTR_NORMAL,
4494 			access_rx_rbuf_desc_part1_cor_err_cnt),
4495 [C_RX_RBUF_DESC_PART1_UNC_ERR] = CNTR_ELEM("RxRbufDescPart1UncErr", 0, 0,
4496 			CNTR_NORMAL,
4497 			access_rx_rbuf_desc_part1_unc_err_cnt),
4498 [C_RX_HQ_INTR_FSM_ERR] = CNTR_ELEM("RxHqIntrFsmErr", 0, 0,
4499 			CNTR_NORMAL,
4500 			access_rx_hq_intr_fsm_err_cnt),
4501 [C_RX_HQ_INTR_CSR_PARITY_ERR] = CNTR_ELEM("RxHqIntrCsrParityErr", 0, 0,
4502 			CNTR_NORMAL,
4503 			access_rx_hq_intr_csr_parity_err_cnt),
4504 [C_RX_LOOKUP_CSR_PARITY_ERR] = CNTR_ELEM("RxLookupCsrParityErr", 0, 0,
4505 			CNTR_NORMAL,
4506 			access_rx_lookup_csr_parity_err_cnt),
4507 [C_RX_LOOKUP_RCV_ARRAY_COR_ERR] = CNTR_ELEM("RxLookupRcvArrayCorErr", 0, 0,
4508 			CNTR_NORMAL,
4509 			access_rx_lookup_rcv_array_cor_err_cnt),
4510 [C_RX_LOOKUP_RCV_ARRAY_UNC_ERR] = CNTR_ELEM("RxLookupRcvArrayUncErr", 0, 0,
4511 			CNTR_NORMAL,
4512 			access_rx_lookup_rcv_array_unc_err_cnt),
4513 [C_RX_LOOKUP_DES_PART2_PARITY_ERR] = CNTR_ELEM("RxLookupDesPart2ParityErr", 0,
4514 			0, CNTR_NORMAL,
4515 			access_rx_lookup_des_part2_parity_err_cnt),
4516 [C_RX_LOOKUP_DES_PART1_UNC_COR_ERR] = CNTR_ELEM("RxLookupDesPart1UncCorErr", 0,
4517 			0, CNTR_NORMAL,
4518 			access_rx_lookup_des_part1_unc_cor_err_cnt),
4519 [C_RX_LOOKUP_DES_PART1_UNC_ERR] = CNTR_ELEM("RxLookupDesPart1UncErr", 0, 0,
4520 			CNTR_NORMAL,
4521 			access_rx_lookup_des_part1_unc_err_cnt),
4522 [C_RX_RBUF_NEXT_FREE_BUF_COR_ERR] = CNTR_ELEM("RxRbufNextFreeBufCorErr", 0, 0,
4523 			CNTR_NORMAL,
4524 			access_rx_rbuf_next_free_buf_cor_err_cnt),
4525 [C_RX_RBUF_NEXT_FREE_BUF_UNC_ERR] = CNTR_ELEM("RxRbufNextFreeBufUncErr", 0, 0,
4526 			CNTR_NORMAL,
4527 			access_rx_rbuf_next_free_buf_unc_err_cnt),
4528 [C_RX_RBUF_FL_INIT_WR_ADDR_PARITY_ERR] = CNTR_ELEM(
4529 			"RxRbufFlInitWrAddrParityErr", 0, 0,
4530 			CNTR_NORMAL,
4531 			access_rbuf_fl_init_wr_addr_parity_err_cnt),
4532 [C_RX_RBUF_FL_INITDONE_PARITY_ERR] = CNTR_ELEM("RxRbufFlInitdoneParityErr", 0,
4533 			0, CNTR_NORMAL,
4534 			access_rx_rbuf_fl_initdone_parity_err_cnt),
4535 [C_RX_RBUF_FL_WRITE_ADDR_PARITY_ERR] = CNTR_ELEM("RxRbufFlWrAddrParityErr", 0,
4536 			0, CNTR_NORMAL,
4537 			access_rx_rbuf_fl_write_addr_parity_err_cnt),
4538 [C_RX_RBUF_FL_RD_ADDR_PARITY_ERR] = CNTR_ELEM("RxRbufFlRdAddrParityErr", 0, 0,
4539 			CNTR_NORMAL,
4540 			access_rx_rbuf_fl_rd_addr_parity_err_cnt),
4541 [C_RX_RBUF_EMPTY_ERR] = CNTR_ELEM("RxRbufEmptyErr", 0, 0,
4542 			CNTR_NORMAL,
4543 			access_rx_rbuf_empty_err_cnt),
4544 [C_RX_RBUF_FULL_ERR] = CNTR_ELEM("RxRbufFullErr", 0, 0,
4545 			CNTR_NORMAL,
4546 			access_rx_rbuf_full_err_cnt),
4547 [C_RX_RBUF_BAD_LOOKUP_ERR] = CNTR_ELEM("RxRBufBadLookupErr", 0, 0,
4548 			CNTR_NORMAL,
4549 			access_rbuf_bad_lookup_err_cnt),
4550 [C_RX_RBUF_CTX_ID_PARITY_ERR] = CNTR_ELEM("RxRbufCtxIdParityErr", 0, 0,
4551 			CNTR_NORMAL,
4552 			access_rbuf_ctx_id_parity_err_cnt),
4553 [C_RX_RBUF_CSR_QEOPDW_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQEOPDWParityErr", 0, 0,
4554 			CNTR_NORMAL,
4555 			access_rbuf_csr_qeopdw_parity_err_cnt),
4556 [C_RX_RBUF_CSR_Q_NUM_OF_PKT_PARITY_ERR] = CNTR_ELEM(
4557 			"RxRbufCsrQNumOfPktParityErr", 0, 0,
4558 			CNTR_NORMAL,
4559 			access_rx_rbuf_csr_q_num_of_pkt_parity_err_cnt),
4560 [C_RX_RBUF_CSR_Q_T1_PTR_PARITY_ERR] = CNTR_ELEM(
4561 			"RxRbufCsrQTlPtrParityErr", 0, 0,
4562 			CNTR_NORMAL,
4563 			access_rx_rbuf_csr_q_t1_ptr_parity_err_cnt),
4564 [C_RX_RBUF_CSR_Q_HD_PTR_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQHdPtrParityErr", 0,
4565 			0, CNTR_NORMAL,
4566 			access_rx_rbuf_csr_q_hd_ptr_parity_err_cnt),
4567 [C_RX_RBUF_CSR_Q_VLD_BIT_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQVldBitParityErr", 0,
4568 			0, CNTR_NORMAL,
4569 			access_rx_rbuf_csr_q_vld_bit_parity_err_cnt),
4570 [C_RX_RBUF_CSR_Q_NEXT_BUF_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQNextBufParityErr",
4571 			0, 0, CNTR_NORMAL,
4572 			access_rx_rbuf_csr_q_next_buf_parity_err_cnt),
4573 [C_RX_RBUF_CSR_Q_ENT_CNT_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQEntCntParityErr", 0,
4574 			0, CNTR_NORMAL,
4575 			access_rx_rbuf_csr_q_ent_cnt_parity_err_cnt),
4576 [C_RX_RBUF_CSR_Q_HEAD_BUF_NUM_PARITY_ERR] = CNTR_ELEM(
4577 			"RxRbufCsrQHeadBufNumParityErr", 0, 0,
4578 			CNTR_NORMAL,
4579 			access_rx_rbuf_csr_q_head_buf_num_parity_err_cnt),
4580 [C_RX_RBUF_BLOCK_LIST_READ_COR_ERR] = CNTR_ELEM("RxRbufBlockListReadCorErr", 0,
4581 			0, CNTR_NORMAL,
4582 			access_rx_rbuf_block_list_read_cor_err_cnt),
4583 [C_RX_RBUF_BLOCK_LIST_READ_UNC_ERR] = CNTR_ELEM("RxRbufBlockListReadUncErr", 0,
4584 			0, CNTR_NORMAL,
4585 			access_rx_rbuf_block_list_read_unc_err_cnt),
4586 [C_RX_RBUF_LOOKUP_DES_COR_ERR] = CNTR_ELEM("RxRbufLookupDesCorErr", 0, 0,
4587 			CNTR_NORMAL,
4588 			access_rx_rbuf_lookup_des_cor_err_cnt),
4589 [C_RX_RBUF_LOOKUP_DES_UNC_ERR] = CNTR_ELEM("RxRbufLookupDesUncErr", 0, 0,
4590 			CNTR_NORMAL,
4591 			access_rx_rbuf_lookup_des_unc_err_cnt),
4592 [C_RX_RBUF_LOOKUP_DES_REG_UNC_COR_ERR] = CNTR_ELEM(
4593 			"RxRbufLookupDesRegUncCorErr", 0, 0,
4594 			CNTR_NORMAL,
4595 			access_rx_rbuf_lookup_des_reg_unc_cor_err_cnt),
4596 [C_RX_RBUF_LOOKUP_DES_REG_UNC_ERR] = CNTR_ELEM("RxRbufLookupDesRegUncErr", 0, 0,
4597 			CNTR_NORMAL,
4598 			access_rx_rbuf_lookup_des_reg_unc_err_cnt),
4599 [C_RX_RBUF_FREE_LIST_COR_ERR] = CNTR_ELEM("RxRbufFreeListCorErr", 0, 0,
4600 			CNTR_NORMAL,
4601 			access_rx_rbuf_free_list_cor_err_cnt),
4602 [C_RX_RBUF_FREE_LIST_UNC_ERR] = CNTR_ELEM("RxRbufFreeListUncErr", 0, 0,
4603 			CNTR_NORMAL,
4604 			access_rx_rbuf_free_list_unc_err_cnt),
4605 [C_RX_RCV_FSM_ENCODING_ERR] = CNTR_ELEM("RxRcvFsmEncodingErr", 0, 0,
4606 			CNTR_NORMAL,
4607 			access_rx_rcv_fsm_encoding_err_cnt),
4608 [C_RX_DMA_FLAG_COR_ERR] = CNTR_ELEM("RxDmaFlagCorErr", 0, 0,
4609 			CNTR_NORMAL,
4610 			access_rx_dma_flag_cor_err_cnt),
4611 [C_RX_DMA_FLAG_UNC_ERR] = CNTR_ELEM("RxDmaFlagUncErr", 0, 0,
4612 			CNTR_NORMAL,
4613 			access_rx_dma_flag_unc_err_cnt),
4614 [C_RX_DC_SOP_EOP_PARITY_ERR] = CNTR_ELEM("RxDcSopEopParityErr", 0, 0,
4615 			CNTR_NORMAL,
4616 			access_rx_dc_sop_eop_parity_err_cnt),
4617 [C_RX_RCV_CSR_PARITY_ERR] = CNTR_ELEM("RxRcvCsrParityErr", 0, 0,
4618 			CNTR_NORMAL,
4619 			access_rx_rcv_csr_parity_err_cnt),
4620 [C_RX_RCV_QP_MAP_TABLE_COR_ERR] = CNTR_ELEM("RxRcvQpMapTableCorErr", 0, 0,
4621 			CNTR_NORMAL,
4622 			access_rx_rcv_qp_map_table_cor_err_cnt),
4623 [C_RX_RCV_QP_MAP_TABLE_UNC_ERR] = CNTR_ELEM("RxRcvQpMapTableUncErr", 0, 0,
4624 			CNTR_NORMAL,
4625 			access_rx_rcv_qp_map_table_unc_err_cnt),
4626 [C_RX_RCV_DATA_COR_ERR] = CNTR_ELEM("RxRcvDataCorErr", 0, 0,
4627 			CNTR_NORMAL,
4628 			access_rx_rcv_data_cor_err_cnt),
4629 [C_RX_RCV_DATA_UNC_ERR] = CNTR_ELEM("RxRcvDataUncErr", 0, 0,
4630 			CNTR_NORMAL,
4631 			access_rx_rcv_data_unc_err_cnt),
4632 [C_RX_RCV_HDR_COR_ERR] = CNTR_ELEM("RxRcvHdrCorErr", 0, 0,
4633 			CNTR_NORMAL,
4634 			access_rx_rcv_hdr_cor_err_cnt),
4635 [C_RX_RCV_HDR_UNC_ERR] = CNTR_ELEM("RxRcvHdrUncErr", 0, 0,
4636 			CNTR_NORMAL,
4637 			access_rx_rcv_hdr_unc_err_cnt),
4638 [C_RX_DC_INTF_PARITY_ERR] = CNTR_ELEM("RxDcIntfParityErr", 0, 0,
4639 			CNTR_NORMAL,
4640 			access_rx_dc_intf_parity_err_cnt),
4641 [C_RX_DMA_CSR_COR_ERR] = CNTR_ELEM("RxDmaCsrCorErr", 0, 0,
4642 			CNTR_NORMAL,
4643 			access_rx_dma_csr_cor_err_cnt),
4644 /* SendPioErrStatus */
4645 [C_PIO_PEC_SOP_HEAD_PARITY_ERR] = CNTR_ELEM("PioPecSopHeadParityErr", 0, 0,
4646 			CNTR_NORMAL,
4647 			access_pio_pec_sop_head_parity_err_cnt),
4648 [C_PIO_PCC_SOP_HEAD_PARITY_ERR] = CNTR_ELEM("PioPccSopHeadParityErr", 0, 0,
4649 			CNTR_NORMAL,
4650 			access_pio_pcc_sop_head_parity_err_cnt),
4651 [C_PIO_LAST_RETURNED_CNT_PARITY_ERR] = CNTR_ELEM("PioLastReturnedCntParityErr",
4652 			0, 0, CNTR_NORMAL,
4653 			access_pio_last_returned_cnt_parity_err_cnt),
4654 [C_PIO_CURRENT_FREE_CNT_PARITY_ERR] = CNTR_ELEM("PioCurrentFreeCntParityErr", 0,
4655 			0, CNTR_NORMAL,
4656 			access_pio_current_free_cnt_parity_err_cnt),
4657 [C_PIO_RSVD_31_ERR] = CNTR_ELEM("Pio Reserved 31", 0, 0,
4658 			CNTR_NORMAL,
4659 			access_pio_reserved_31_err_cnt),
4660 [C_PIO_RSVD_30_ERR] = CNTR_ELEM("Pio Reserved 30", 0, 0,
4661 			CNTR_NORMAL,
4662 			access_pio_reserved_30_err_cnt),
4663 [C_PIO_PPMC_SOP_LEN_ERR] = CNTR_ELEM("PioPpmcSopLenErr", 0, 0,
4664 			CNTR_NORMAL,
4665 			access_pio_ppmc_sop_len_err_cnt),
4666 [C_PIO_PPMC_BQC_MEM_PARITY_ERR] = CNTR_ELEM("PioPpmcBqcMemParityErr", 0, 0,
4667 			CNTR_NORMAL,
4668 			access_pio_ppmc_bqc_mem_parity_err_cnt),
4669 [C_PIO_VL_FIFO_PARITY_ERR] = CNTR_ELEM("PioVlFifoParityErr", 0, 0,
4670 			CNTR_NORMAL,
4671 			access_pio_vl_fifo_parity_err_cnt),
4672 [C_PIO_VLF_SOP_PARITY_ERR] = CNTR_ELEM("PioVlfSopParityErr", 0, 0,
4673 			CNTR_NORMAL,
4674 			access_pio_vlf_sop_parity_err_cnt),
4675 [C_PIO_VLF_V1_LEN_PARITY_ERR] = CNTR_ELEM("PioVlfVlLenParityErr", 0, 0,
4676 			CNTR_NORMAL,
4677 			access_pio_vlf_v1_len_parity_err_cnt),
4678 [C_PIO_BLOCK_QW_COUNT_PARITY_ERR] = CNTR_ELEM("PioBlockQwCountParityErr", 0, 0,
4679 			CNTR_NORMAL,
4680 			access_pio_block_qw_count_parity_err_cnt),
4681 [C_PIO_WRITE_QW_VALID_PARITY_ERR] = CNTR_ELEM("PioWriteQwValidParityErr", 0, 0,
4682 			CNTR_NORMAL,
4683 			access_pio_write_qw_valid_parity_err_cnt),
4684 [C_PIO_STATE_MACHINE_ERR] = CNTR_ELEM("PioStateMachineErr", 0, 0,
4685 			CNTR_NORMAL,
4686 			access_pio_state_machine_err_cnt),
4687 [C_PIO_WRITE_DATA_PARITY_ERR] = CNTR_ELEM("PioWriteDataParityErr", 0, 0,
4688 			CNTR_NORMAL,
4689 			access_pio_write_data_parity_err_cnt),
4690 [C_PIO_HOST_ADDR_MEM_COR_ERR] = CNTR_ELEM("PioHostAddrMemCorErr", 0, 0,
4691 			CNTR_NORMAL,
4692 			access_pio_host_addr_mem_cor_err_cnt),
4693 [C_PIO_HOST_ADDR_MEM_UNC_ERR] = CNTR_ELEM("PioHostAddrMemUncErr", 0, 0,
4694 			CNTR_NORMAL,
4695 			access_pio_host_addr_mem_unc_err_cnt),
4696 [C_PIO_PKT_EVICT_SM_OR_ARM_SM_ERR] = CNTR_ELEM("PioPktEvictSmOrArbSmErr", 0, 0,
4697 			CNTR_NORMAL,
4698 			access_pio_pkt_evict_sm_or_arb_sm_err_cnt),
4699 [C_PIO_INIT_SM_IN_ERR] = CNTR_ELEM("PioInitSmInErr", 0, 0,
4700 			CNTR_NORMAL,
4701 			access_pio_init_sm_in_err_cnt),
4702 [C_PIO_PPMC_PBL_FIFO_ERR] = CNTR_ELEM("PioPpmcPblFifoErr", 0, 0,
4703 			CNTR_NORMAL,
4704 			access_pio_ppmc_pbl_fifo_err_cnt),
4705 [C_PIO_CREDIT_RET_FIFO_PARITY_ERR] = CNTR_ELEM("PioCreditRetFifoParityErr", 0,
4706 			0, CNTR_NORMAL,
4707 			access_pio_credit_ret_fifo_parity_err_cnt),
4708 [C_PIO_V1_LEN_MEM_BANK1_COR_ERR] = CNTR_ELEM("PioVlLenMemBank1CorErr", 0, 0,
4709 			CNTR_NORMAL,
4710 			access_pio_v1_len_mem_bank1_cor_err_cnt),
4711 [C_PIO_V1_LEN_MEM_BANK0_COR_ERR] = CNTR_ELEM("PioVlLenMemBank0CorErr", 0, 0,
4712 			CNTR_NORMAL,
4713 			access_pio_v1_len_mem_bank0_cor_err_cnt),
4714 [C_PIO_V1_LEN_MEM_BANK1_UNC_ERR] = CNTR_ELEM("PioVlLenMemBank1UncErr", 0, 0,
4715 			CNTR_NORMAL,
4716 			access_pio_v1_len_mem_bank1_unc_err_cnt),
4717 [C_PIO_V1_LEN_MEM_BANK0_UNC_ERR] = CNTR_ELEM("PioVlLenMemBank0UncErr", 0, 0,
4718 			CNTR_NORMAL,
4719 			access_pio_v1_len_mem_bank0_unc_err_cnt),
4720 [C_PIO_SM_PKT_RESET_PARITY_ERR] = CNTR_ELEM("PioSmPktResetParityErr", 0, 0,
4721 			CNTR_NORMAL,
4722 			access_pio_sm_pkt_reset_parity_err_cnt),
4723 [C_PIO_PKT_EVICT_FIFO_PARITY_ERR] = CNTR_ELEM("PioPktEvictFifoParityErr", 0, 0,
4724 			CNTR_NORMAL,
4725 			access_pio_pkt_evict_fifo_parity_err_cnt),
4726 [C_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR] = CNTR_ELEM(
4727 			"PioSbrdctrlCrrelFifoParityErr", 0, 0,
4728 			CNTR_NORMAL,
4729 			access_pio_sbrdctrl_crrel_fifo_parity_err_cnt),
4730 [C_PIO_SBRDCTL_CRREL_PARITY_ERR] = CNTR_ELEM("PioSbrdctlCrrelParityErr", 0, 0,
4731 			CNTR_NORMAL,
4732 			access_pio_sbrdctl_crrel_parity_err_cnt),
4733 [C_PIO_PEC_FIFO_PARITY_ERR] = CNTR_ELEM("PioPecFifoParityErr", 0, 0,
4734 			CNTR_NORMAL,
4735 			access_pio_pec_fifo_parity_err_cnt),
4736 [C_PIO_PCC_FIFO_PARITY_ERR] = CNTR_ELEM("PioPccFifoParityErr", 0, 0,
4737 			CNTR_NORMAL,
4738 			access_pio_pcc_fifo_parity_err_cnt),
4739 [C_PIO_SB_MEM_FIFO1_ERR] = CNTR_ELEM("PioSbMemFifo1Err", 0, 0,
4740 			CNTR_NORMAL,
4741 			access_pio_sb_mem_fifo1_err_cnt),
4742 [C_PIO_SB_MEM_FIFO0_ERR] = CNTR_ELEM("PioSbMemFifo0Err", 0, 0,
4743 			CNTR_NORMAL,
4744 			access_pio_sb_mem_fifo0_err_cnt),
4745 [C_PIO_CSR_PARITY_ERR] = CNTR_ELEM("PioCsrParityErr", 0, 0,
4746 			CNTR_NORMAL,
4747 			access_pio_csr_parity_err_cnt),
4748 [C_PIO_WRITE_ADDR_PARITY_ERR] = CNTR_ELEM("PioWriteAddrParityErr", 0, 0,
4749 			CNTR_NORMAL,
4750 			access_pio_write_addr_parity_err_cnt),
4751 [C_PIO_WRITE_BAD_CTXT_ERR] = CNTR_ELEM("PioWriteBadCtxtErr", 0, 0,
4752 			CNTR_NORMAL,
4753 			access_pio_write_bad_ctxt_err_cnt),
4754 /* SendDmaErrStatus */
4755 [C_SDMA_PCIE_REQ_TRACKING_COR_ERR] = CNTR_ELEM("SDmaPcieReqTrackingCorErr", 0,
4756 			0, CNTR_NORMAL,
4757 			access_sdma_pcie_req_tracking_cor_err_cnt),
4758 [C_SDMA_PCIE_REQ_TRACKING_UNC_ERR] = CNTR_ELEM("SDmaPcieReqTrackingUncErr", 0,
4759 			0, CNTR_NORMAL,
4760 			access_sdma_pcie_req_tracking_unc_err_cnt),
4761 [C_SDMA_CSR_PARITY_ERR] = CNTR_ELEM("SDmaCsrParityErr", 0, 0,
4762 			CNTR_NORMAL,
4763 			access_sdma_csr_parity_err_cnt),
4764 [C_SDMA_RPY_TAG_ERR] = CNTR_ELEM("SDmaRpyTagErr", 0, 0,
4765 			CNTR_NORMAL,
4766 			access_sdma_rpy_tag_err_cnt),
4767 /* SendEgressErrStatus */
4768 [C_TX_READ_PIO_MEMORY_CSR_UNC_ERR] = CNTR_ELEM("TxReadPioMemoryCsrUncErr", 0, 0,
4769 			CNTR_NORMAL,
4770 			access_tx_read_pio_memory_csr_unc_err_cnt),
4771 [C_TX_READ_SDMA_MEMORY_CSR_UNC_ERR] = CNTR_ELEM("TxReadSdmaMemoryCsrUncErr", 0,
4772 			0, CNTR_NORMAL,
4773 			access_tx_read_sdma_memory_csr_err_cnt),
4774 [C_TX_EGRESS_FIFO_COR_ERR] = CNTR_ELEM("TxEgressFifoCorErr", 0, 0,
4775 			CNTR_NORMAL,
4776 			access_tx_egress_fifo_cor_err_cnt),
4777 [C_TX_READ_PIO_MEMORY_COR_ERR] = CNTR_ELEM("TxReadPioMemoryCorErr", 0, 0,
4778 			CNTR_NORMAL,
4779 			access_tx_read_pio_memory_cor_err_cnt),
4780 [C_TX_READ_SDMA_MEMORY_COR_ERR] = CNTR_ELEM("TxReadSdmaMemoryCorErr", 0, 0,
4781 			CNTR_NORMAL,
4782 			access_tx_read_sdma_memory_cor_err_cnt),
4783 [C_TX_SB_HDR_COR_ERR] = CNTR_ELEM("TxSbHdrCorErr", 0, 0,
4784 			CNTR_NORMAL,
4785 			access_tx_sb_hdr_cor_err_cnt),
4786 [C_TX_CREDIT_OVERRUN_ERR] = CNTR_ELEM("TxCreditOverrunErr", 0, 0,
4787 			CNTR_NORMAL,
4788 			access_tx_credit_overrun_err_cnt),
4789 [C_TX_LAUNCH_FIFO8_COR_ERR] = CNTR_ELEM("TxLaunchFifo8CorErr", 0, 0,
4790 			CNTR_NORMAL,
4791 			access_tx_launch_fifo8_cor_err_cnt),
4792 [C_TX_LAUNCH_FIFO7_COR_ERR] = CNTR_ELEM("TxLaunchFifo7CorErr", 0, 0,
4793 			CNTR_NORMAL,
4794 			access_tx_launch_fifo7_cor_err_cnt),
4795 [C_TX_LAUNCH_FIFO6_COR_ERR] = CNTR_ELEM("TxLaunchFifo6CorErr", 0, 0,
4796 			CNTR_NORMAL,
4797 			access_tx_launch_fifo6_cor_err_cnt),
4798 [C_TX_LAUNCH_FIFO5_COR_ERR] = CNTR_ELEM("TxLaunchFifo5CorErr", 0, 0,
4799 			CNTR_NORMAL,
4800 			access_tx_launch_fifo5_cor_err_cnt),
4801 [C_TX_LAUNCH_FIFO4_COR_ERR] = CNTR_ELEM("TxLaunchFifo4CorErr", 0, 0,
4802 			CNTR_NORMAL,
4803 			access_tx_launch_fifo4_cor_err_cnt),
4804 [C_TX_LAUNCH_FIFO3_COR_ERR] = CNTR_ELEM("TxLaunchFifo3CorErr", 0, 0,
4805 			CNTR_NORMAL,
4806 			access_tx_launch_fifo3_cor_err_cnt),
4807 [C_TX_LAUNCH_FIFO2_COR_ERR] = CNTR_ELEM("TxLaunchFifo2CorErr", 0, 0,
4808 			CNTR_NORMAL,
4809 			access_tx_launch_fifo2_cor_err_cnt),
4810 [C_TX_LAUNCH_FIFO1_COR_ERR] = CNTR_ELEM("TxLaunchFifo1CorErr", 0, 0,
4811 			CNTR_NORMAL,
4812 			access_tx_launch_fifo1_cor_err_cnt),
4813 [C_TX_LAUNCH_FIFO0_COR_ERR] = CNTR_ELEM("TxLaunchFifo0CorErr", 0, 0,
4814 			CNTR_NORMAL,
4815 			access_tx_launch_fifo0_cor_err_cnt),
4816 [C_TX_CREDIT_RETURN_VL_ERR] = CNTR_ELEM("TxCreditReturnVLErr", 0, 0,
4817 			CNTR_NORMAL,
4818 			access_tx_credit_return_vl_err_cnt),
4819 [C_TX_HCRC_INSERTION_ERR] = CNTR_ELEM("TxHcrcInsertionErr", 0, 0,
4820 			CNTR_NORMAL,
4821 			access_tx_hcrc_insertion_err_cnt),
4822 [C_TX_EGRESS_FIFI_UNC_ERR] = CNTR_ELEM("TxEgressFifoUncErr", 0, 0,
4823 			CNTR_NORMAL,
4824 			access_tx_egress_fifo_unc_err_cnt),
4825 [C_TX_READ_PIO_MEMORY_UNC_ERR] = CNTR_ELEM("TxReadPioMemoryUncErr", 0, 0,
4826 			CNTR_NORMAL,
4827 			access_tx_read_pio_memory_unc_err_cnt),
4828 [C_TX_READ_SDMA_MEMORY_UNC_ERR] = CNTR_ELEM("TxReadSdmaMemoryUncErr", 0, 0,
4829 			CNTR_NORMAL,
4830 			access_tx_read_sdma_memory_unc_err_cnt),
4831 [C_TX_SB_HDR_UNC_ERR] = CNTR_ELEM("TxSbHdrUncErr", 0, 0,
4832 			CNTR_NORMAL,
4833 			access_tx_sb_hdr_unc_err_cnt),
4834 [C_TX_CREDIT_RETURN_PARITY_ERR] = CNTR_ELEM("TxCreditReturnParityErr", 0, 0,
4835 			CNTR_NORMAL,
4836 			access_tx_credit_return_partiy_err_cnt),
4837 [C_TX_LAUNCH_FIFO8_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo8UncOrParityErr",
4838 			0, 0, CNTR_NORMAL,
4839 			access_tx_launch_fifo8_unc_or_parity_err_cnt),
4840 [C_TX_LAUNCH_FIFO7_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo7UncOrParityErr",
4841 			0, 0, CNTR_NORMAL,
4842 			access_tx_launch_fifo7_unc_or_parity_err_cnt),
4843 [C_TX_LAUNCH_FIFO6_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo6UncOrParityErr",
4844 			0, 0, CNTR_NORMAL,
4845 			access_tx_launch_fifo6_unc_or_parity_err_cnt),
4846 [C_TX_LAUNCH_FIFO5_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo5UncOrParityErr",
4847 			0, 0, CNTR_NORMAL,
4848 			access_tx_launch_fifo5_unc_or_parity_err_cnt),
4849 [C_TX_LAUNCH_FIFO4_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo4UncOrParityErr",
4850 			0, 0, CNTR_NORMAL,
4851 			access_tx_launch_fifo4_unc_or_parity_err_cnt),
4852 [C_TX_LAUNCH_FIFO3_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo3UncOrParityErr",
4853 			0, 0, CNTR_NORMAL,
4854 			access_tx_launch_fifo3_unc_or_parity_err_cnt),
4855 [C_TX_LAUNCH_FIFO2_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo2UncOrParityErr",
4856 			0, 0, CNTR_NORMAL,
4857 			access_tx_launch_fifo2_unc_or_parity_err_cnt),
4858 [C_TX_LAUNCH_FIFO1_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo1UncOrParityErr",
4859 			0, 0, CNTR_NORMAL,
4860 			access_tx_launch_fifo1_unc_or_parity_err_cnt),
4861 [C_TX_LAUNCH_FIFO0_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo0UncOrParityErr",
4862 			0, 0, CNTR_NORMAL,
4863 			access_tx_launch_fifo0_unc_or_parity_err_cnt),
4864 [C_TX_SDMA15_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma15DisallowedPacketErr",
4865 			0, 0, CNTR_NORMAL,
4866 			access_tx_sdma15_disallowed_packet_err_cnt),
4867 [C_TX_SDMA14_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma14DisallowedPacketErr",
4868 			0, 0, CNTR_NORMAL,
4869 			access_tx_sdma14_disallowed_packet_err_cnt),
4870 [C_TX_SDMA13_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma13DisallowedPacketErr",
4871 			0, 0, CNTR_NORMAL,
4872 			access_tx_sdma13_disallowed_packet_err_cnt),
4873 [C_TX_SDMA12_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma12DisallowedPacketErr",
4874 			0, 0, CNTR_NORMAL,
4875 			access_tx_sdma12_disallowed_packet_err_cnt),
4876 [C_TX_SDMA11_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma11DisallowedPacketErr",
4877 			0, 0, CNTR_NORMAL,
4878 			access_tx_sdma11_disallowed_packet_err_cnt),
4879 [C_TX_SDMA10_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma10DisallowedPacketErr",
4880 			0, 0, CNTR_NORMAL,
4881 			access_tx_sdma10_disallowed_packet_err_cnt),
4882 [C_TX_SDMA9_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma9DisallowedPacketErr",
4883 			0, 0, CNTR_NORMAL,
4884 			access_tx_sdma9_disallowed_packet_err_cnt),
4885 [C_TX_SDMA8_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma8DisallowedPacketErr",
4886 			0, 0, CNTR_NORMAL,
4887 			access_tx_sdma8_disallowed_packet_err_cnt),
4888 [C_TX_SDMA7_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma7DisallowedPacketErr",
4889 			0, 0, CNTR_NORMAL,
4890 			access_tx_sdma7_disallowed_packet_err_cnt),
4891 [C_TX_SDMA6_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma6DisallowedPacketErr",
4892 			0, 0, CNTR_NORMAL,
4893 			access_tx_sdma6_disallowed_packet_err_cnt),
4894 [C_TX_SDMA5_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma5DisallowedPacketErr",
4895 			0, 0, CNTR_NORMAL,
4896 			access_tx_sdma5_disallowed_packet_err_cnt),
4897 [C_TX_SDMA4_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma4DisallowedPacketErr",
4898 			0, 0, CNTR_NORMAL,
4899 			access_tx_sdma4_disallowed_packet_err_cnt),
4900 [C_TX_SDMA3_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma3DisallowedPacketErr",
4901 			0, 0, CNTR_NORMAL,
4902 			access_tx_sdma3_disallowed_packet_err_cnt),
4903 [C_TX_SDMA2_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma2DisallowedPacketErr",
4904 			0, 0, CNTR_NORMAL,
4905 			access_tx_sdma2_disallowed_packet_err_cnt),
4906 [C_TX_SDMA1_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma1DisallowedPacketErr",
4907 			0, 0, CNTR_NORMAL,
4908 			access_tx_sdma1_disallowed_packet_err_cnt),
4909 [C_TX_SDMA0_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma0DisallowedPacketErr",
4910 			0, 0, CNTR_NORMAL,
4911 			access_tx_sdma0_disallowed_packet_err_cnt),
4912 [C_TX_CONFIG_PARITY_ERR] = CNTR_ELEM("TxConfigParityErr", 0, 0,
4913 			CNTR_NORMAL,
4914 			access_tx_config_parity_err_cnt),
4915 [C_TX_SBRD_CTL_CSR_PARITY_ERR] = CNTR_ELEM("TxSbrdCtlCsrParityErr", 0, 0,
4916 			CNTR_NORMAL,
4917 			access_tx_sbrd_ctl_csr_parity_err_cnt),
4918 [C_TX_LAUNCH_CSR_PARITY_ERR] = CNTR_ELEM("TxLaunchCsrParityErr", 0, 0,
4919 			CNTR_NORMAL,
4920 			access_tx_launch_csr_parity_err_cnt),
4921 [C_TX_ILLEGAL_CL_ERR] = CNTR_ELEM("TxIllegalVLErr", 0, 0,
4922 			CNTR_NORMAL,
4923 			access_tx_illegal_vl_err_cnt),
4924 [C_TX_SBRD_CTL_STATE_MACHINE_PARITY_ERR] = CNTR_ELEM(
4925 			"TxSbrdCtlStateMachineParityErr", 0, 0,
4926 			CNTR_NORMAL,
4927 			access_tx_sbrd_ctl_state_machine_parity_err_cnt),
4928 [C_TX_RESERVED_10] = CNTR_ELEM("Tx Egress Reserved 10", 0, 0,
4929 			CNTR_NORMAL,
4930 			access_egress_reserved_10_err_cnt),
4931 [C_TX_RESERVED_9] = CNTR_ELEM("Tx Egress Reserved 9", 0, 0,
4932 			CNTR_NORMAL,
4933 			access_egress_reserved_9_err_cnt),
4934 [C_TX_SDMA_LAUNCH_INTF_PARITY_ERR] = CNTR_ELEM("TxSdmaLaunchIntfParityErr",
4935 			0, 0, CNTR_NORMAL,
4936 			access_tx_sdma_launch_intf_parity_err_cnt),
4937 [C_TX_PIO_LAUNCH_INTF_PARITY_ERR] = CNTR_ELEM("TxPioLaunchIntfParityErr", 0, 0,
4938 			CNTR_NORMAL,
4939 			access_tx_pio_launch_intf_parity_err_cnt),
4940 [C_TX_RESERVED_6] = CNTR_ELEM("Tx Egress Reserved 6", 0, 0,
4941 			CNTR_NORMAL,
4942 			access_egress_reserved_6_err_cnt),
4943 [C_TX_INCORRECT_LINK_STATE_ERR] = CNTR_ELEM("TxIncorrectLinkStateErr", 0, 0,
4944 			CNTR_NORMAL,
4945 			access_tx_incorrect_link_state_err_cnt),
4946 [C_TX_LINK_DOWN_ERR] = CNTR_ELEM("TxLinkdownErr", 0, 0,
4947 			CNTR_NORMAL,
4948 			access_tx_linkdown_err_cnt),
4949 [C_TX_EGRESS_FIFO_UNDERRUN_OR_PARITY_ERR] = CNTR_ELEM(
4950 			"EgressFifoUnderrunOrParityErr", 0, 0,
4951 			CNTR_NORMAL,
4952 			access_tx_egress_fifi_underrun_or_parity_err_cnt),
4953 [C_TX_RESERVED_2] = CNTR_ELEM("Tx Egress Reserved 2", 0, 0,
4954 			CNTR_NORMAL,
4955 			access_egress_reserved_2_err_cnt),
4956 [C_TX_PKT_INTEGRITY_MEM_UNC_ERR] = CNTR_ELEM("TxPktIntegrityMemUncErr", 0, 0,
4957 			CNTR_NORMAL,
4958 			access_tx_pkt_integrity_mem_unc_err_cnt),
4959 [C_TX_PKT_INTEGRITY_MEM_COR_ERR] = CNTR_ELEM("TxPktIntegrityMemCorErr", 0, 0,
4960 			CNTR_NORMAL,
4961 			access_tx_pkt_integrity_mem_cor_err_cnt),
4962 /* SendErrStatus */
4963 [C_SEND_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("SendCsrWriteBadAddrErr", 0, 0,
4964 			CNTR_NORMAL,
4965 			access_send_csr_write_bad_addr_err_cnt),
4966 [C_SEND_CSR_READ_BAD_ADD_ERR] = CNTR_ELEM("SendCsrReadBadAddrErr", 0, 0,
4967 			CNTR_NORMAL,
4968 			access_send_csr_read_bad_addr_err_cnt),
4969 [C_SEND_CSR_PARITY_ERR] = CNTR_ELEM("SendCsrParityErr", 0, 0,
4970 			CNTR_NORMAL,
4971 			access_send_csr_parity_cnt),
4972 /* SendCtxtErrStatus */
4973 [C_PIO_WRITE_OUT_OF_BOUNDS_ERR] = CNTR_ELEM("PioWriteOutOfBoundsErr", 0, 0,
4974 			CNTR_NORMAL,
4975 			access_pio_write_out_of_bounds_err_cnt),
4976 [C_PIO_WRITE_OVERFLOW_ERR] = CNTR_ELEM("PioWriteOverflowErr", 0, 0,
4977 			CNTR_NORMAL,
4978 			access_pio_write_overflow_err_cnt),
4979 [C_PIO_WRITE_CROSSES_BOUNDARY_ERR] = CNTR_ELEM("PioWriteCrossesBoundaryErr",
4980 			0, 0, CNTR_NORMAL,
4981 			access_pio_write_crosses_boundary_err_cnt),
4982 [C_PIO_DISALLOWED_PACKET_ERR] = CNTR_ELEM("PioDisallowedPacketErr", 0, 0,
4983 			CNTR_NORMAL,
4984 			access_pio_disallowed_packet_err_cnt),
4985 [C_PIO_INCONSISTENT_SOP_ERR] = CNTR_ELEM("PioInconsistentSopErr", 0, 0,
4986 			CNTR_NORMAL,
4987 			access_pio_inconsistent_sop_err_cnt),
4988 /* SendDmaEngErrStatus */
4989 [C_SDMA_HEADER_REQUEST_FIFO_COR_ERR] = CNTR_ELEM("SDmaHeaderRequestFifoCorErr",
4990 			0, 0, CNTR_NORMAL,
4991 			access_sdma_header_request_fifo_cor_err_cnt),
4992 [C_SDMA_HEADER_STORAGE_COR_ERR] = CNTR_ELEM("SDmaHeaderStorageCorErr", 0, 0,
4993 			CNTR_NORMAL,
4994 			access_sdma_header_storage_cor_err_cnt),
4995 [C_SDMA_PACKET_TRACKING_COR_ERR] = CNTR_ELEM("SDmaPacketTrackingCorErr", 0, 0,
4996 			CNTR_NORMAL,
4997 			access_sdma_packet_tracking_cor_err_cnt),
4998 [C_SDMA_ASSEMBLY_COR_ERR] = CNTR_ELEM("SDmaAssemblyCorErr", 0, 0,
4999 			CNTR_NORMAL,
5000 			access_sdma_assembly_cor_err_cnt),
5001 [C_SDMA_DESC_TABLE_COR_ERR] = CNTR_ELEM("SDmaDescTableCorErr", 0, 0,
5002 			CNTR_NORMAL,
5003 			access_sdma_desc_table_cor_err_cnt),
5004 [C_SDMA_HEADER_REQUEST_FIFO_UNC_ERR] = CNTR_ELEM("SDmaHeaderRequestFifoUncErr",
5005 			0, 0, CNTR_NORMAL,
5006 			access_sdma_header_request_fifo_unc_err_cnt),
5007 [C_SDMA_HEADER_STORAGE_UNC_ERR] = CNTR_ELEM("SDmaHeaderStorageUncErr", 0, 0,
5008 			CNTR_NORMAL,
5009 			access_sdma_header_storage_unc_err_cnt),
5010 [C_SDMA_PACKET_TRACKING_UNC_ERR] = CNTR_ELEM("SDmaPacketTrackingUncErr", 0, 0,
5011 			CNTR_NORMAL,
5012 			access_sdma_packet_tracking_unc_err_cnt),
5013 [C_SDMA_ASSEMBLY_UNC_ERR] = CNTR_ELEM("SDmaAssemblyUncErr", 0, 0,
5014 			CNTR_NORMAL,
5015 			access_sdma_assembly_unc_err_cnt),
5016 [C_SDMA_DESC_TABLE_UNC_ERR] = CNTR_ELEM("SDmaDescTableUncErr", 0, 0,
5017 			CNTR_NORMAL,
5018 			access_sdma_desc_table_unc_err_cnt),
5019 [C_SDMA_TIMEOUT_ERR] = CNTR_ELEM("SDmaTimeoutErr", 0, 0,
5020 			CNTR_NORMAL,
5021 			access_sdma_timeout_err_cnt),
5022 [C_SDMA_HEADER_LENGTH_ERR] = CNTR_ELEM("SDmaHeaderLengthErr", 0, 0,
5023 			CNTR_NORMAL,
5024 			access_sdma_header_length_err_cnt),
5025 [C_SDMA_HEADER_ADDRESS_ERR] = CNTR_ELEM("SDmaHeaderAddressErr", 0, 0,
5026 			CNTR_NORMAL,
5027 			access_sdma_header_address_err_cnt),
5028 [C_SDMA_HEADER_SELECT_ERR] = CNTR_ELEM("SDmaHeaderSelectErr", 0, 0,
5029 			CNTR_NORMAL,
5030 			access_sdma_header_select_err_cnt),
5031 [C_SMDA_RESERVED_9] = CNTR_ELEM("SDma Reserved 9", 0, 0,
5032 			CNTR_NORMAL,
5033 			access_sdma_reserved_9_err_cnt),
5034 [C_SDMA_PACKET_DESC_OVERFLOW_ERR] = CNTR_ELEM("SDmaPacketDescOverflowErr", 0, 0,
5035 			CNTR_NORMAL,
5036 			access_sdma_packet_desc_overflow_err_cnt),
5037 [C_SDMA_LENGTH_MISMATCH_ERR] = CNTR_ELEM("SDmaLengthMismatchErr", 0, 0,
5038 			CNTR_NORMAL,
5039 			access_sdma_length_mismatch_err_cnt),
5040 [C_SDMA_HALT_ERR] = CNTR_ELEM("SDmaHaltErr", 0, 0,
5041 			CNTR_NORMAL,
5042 			access_sdma_halt_err_cnt),
5043 [C_SDMA_MEM_READ_ERR] = CNTR_ELEM("SDmaMemReadErr", 0, 0,
5044 			CNTR_NORMAL,
5045 			access_sdma_mem_read_err_cnt),
5046 [C_SDMA_FIRST_DESC_ERR] = CNTR_ELEM("SDmaFirstDescErr", 0, 0,
5047 			CNTR_NORMAL,
5048 			access_sdma_first_desc_err_cnt),
5049 [C_SDMA_TAIL_OUT_OF_BOUNDS_ERR] = CNTR_ELEM("SDmaTailOutOfBoundsErr", 0, 0,
5050 			CNTR_NORMAL,
5051 			access_sdma_tail_out_of_bounds_err_cnt),
5052 [C_SDMA_TOO_LONG_ERR] = CNTR_ELEM("SDmaTooLongErr", 0, 0,
5053 			CNTR_NORMAL,
5054 			access_sdma_too_long_err_cnt),
5055 [C_SDMA_GEN_MISMATCH_ERR] = CNTR_ELEM("SDmaGenMismatchErr", 0, 0,
5056 			CNTR_NORMAL,
5057 			access_sdma_gen_mismatch_err_cnt),
5058 [C_SDMA_WRONG_DW_ERR] = CNTR_ELEM("SDmaWrongDwErr", 0, 0,
5059 			CNTR_NORMAL,
5060 			access_sdma_wrong_dw_err_cnt),
5061 };
5062 
5063 static struct cntr_entry port_cntrs[PORT_CNTR_LAST] = {
5064 [C_TX_UNSUP_VL] = TXE32_PORT_CNTR_ELEM(TxUnVLErr, SEND_UNSUP_VL_ERR_CNT,
5065 			CNTR_NORMAL),
5066 [C_TX_INVAL_LEN] = TXE32_PORT_CNTR_ELEM(TxInvalLen, SEND_LEN_ERR_CNT,
5067 			CNTR_NORMAL),
5068 [C_TX_MM_LEN_ERR] = TXE32_PORT_CNTR_ELEM(TxMMLenErr, SEND_MAX_MIN_LEN_ERR_CNT,
5069 			CNTR_NORMAL),
5070 [C_TX_UNDERRUN] = TXE32_PORT_CNTR_ELEM(TxUnderrun, SEND_UNDERRUN_CNT,
5071 			CNTR_NORMAL),
5072 [C_TX_FLOW_STALL] = TXE32_PORT_CNTR_ELEM(TxFlowStall, SEND_FLOW_STALL_CNT,
5073 			CNTR_NORMAL),
5074 [C_TX_DROPPED] = TXE32_PORT_CNTR_ELEM(TxDropped, SEND_DROPPED_PKT_CNT,
5075 			CNTR_NORMAL),
5076 [C_TX_HDR_ERR] = TXE32_PORT_CNTR_ELEM(TxHdrErr, SEND_HEADERS_ERR_CNT,
5077 			CNTR_NORMAL),
5078 [C_TX_PKT] = TXE64_PORT_CNTR_ELEM(TxPkt, SEND_DATA_PKT_CNT, CNTR_NORMAL),
5079 [C_TX_WORDS] = TXE64_PORT_CNTR_ELEM(TxWords, SEND_DWORD_CNT, CNTR_NORMAL),
5080 [C_TX_WAIT] = TXE64_PORT_CNTR_ELEM(TxWait, SEND_WAIT_CNT, CNTR_SYNTH),
5081 [C_TX_FLIT_VL] = TXE64_PORT_CNTR_ELEM(TxFlitVL, SEND_DATA_VL0_CNT,
5082 				      CNTR_SYNTH | CNTR_VL),
5083 [C_TX_PKT_VL] = TXE64_PORT_CNTR_ELEM(TxPktVL, SEND_DATA_PKT_VL0_CNT,
5084 				     CNTR_SYNTH | CNTR_VL),
5085 [C_TX_WAIT_VL] = TXE64_PORT_CNTR_ELEM(TxWaitVL, SEND_WAIT_VL0_CNT,
5086 				      CNTR_SYNTH | CNTR_VL),
5087 [C_RX_PKT] = RXE64_PORT_CNTR_ELEM(RxPkt, RCV_DATA_PKT_CNT, CNTR_NORMAL),
5088 [C_RX_WORDS] = RXE64_PORT_CNTR_ELEM(RxWords, RCV_DWORD_CNT, CNTR_NORMAL),
5089 [C_SW_LINK_DOWN] = CNTR_ELEM("SwLinkDown", 0, 0, CNTR_SYNTH | CNTR_32BIT,
5090 			     access_sw_link_dn_cnt),
5091 [C_SW_LINK_UP] = CNTR_ELEM("SwLinkUp", 0, 0, CNTR_SYNTH | CNTR_32BIT,
5092 			   access_sw_link_up_cnt),
5093 [C_SW_UNKNOWN_FRAME] = CNTR_ELEM("UnknownFrame", 0, 0, CNTR_NORMAL,
5094 				 access_sw_unknown_frame_cnt),
5095 [C_SW_XMIT_DSCD] = CNTR_ELEM("XmitDscd", 0, 0, CNTR_SYNTH | CNTR_32BIT,
5096 			     access_sw_xmit_discards),
5097 [C_SW_XMIT_DSCD_VL] = CNTR_ELEM("XmitDscdVl", 0, 0,
5098 				CNTR_SYNTH | CNTR_32BIT | CNTR_VL,
5099 				access_sw_xmit_discards),
5100 [C_SW_XMIT_CSTR_ERR] = CNTR_ELEM("XmitCstrErr", 0, 0, CNTR_SYNTH,
5101 				 access_xmit_constraint_errs),
5102 [C_SW_RCV_CSTR_ERR] = CNTR_ELEM("RcvCstrErr", 0, 0, CNTR_SYNTH,
5103 				access_rcv_constraint_errs),
5104 [C_SW_IBP_LOOP_PKTS] = SW_IBP_CNTR(LoopPkts, loop_pkts),
5105 [C_SW_IBP_RC_RESENDS] = SW_IBP_CNTR(RcResend, rc_resends),
5106 [C_SW_IBP_RNR_NAKS] = SW_IBP_CNTR(RnrNak, rnr_naks),
5107 [C_SW_IBP_OTHER_NAKS] = SW_IBP_CNTR(OtherNak, other_naks),
5108 [C_SW_IBP_RC_TIMEOUTS] = SW_IBP_CNTR(RcTimeOut, rc_timeouts),
5109 [C_SW_IBP_PKT_DROPS] = SW_IBP_CNTR(PktDrop, pkt_drops),
5110 [C_SW_IBP_DMA_WAIT] = SW_IBP_CNTR(DmaWait, dmawait),
5111 [C_SW_IBP_RC_SEQNAK] = SW_IBP_CNTR(RcSeqNak, rc_seqnak),
5112 [C_SW_IBP_RC_DUPREQ] = SW_IBP_CNTR(RcDupRew, rc_dupreq),
5113 [C_SW_IBP_RDMA_SEQ] = SW_IBP_CNTR(RdmaSeq, rdma_seq),
5114 [C_SW_IBP_UNALIGNED] = SW_IBP_CNTR(Unaligned, unaligned),
5115 [C_SW_IBP_SEQ_NAK] = SW_IBP_CNTR(SeqNak, seq_naks),
5116 [C_SW_CPU_RC_ACKS] = CNTR_ELEM("RcAcks", 0, 0, CNTR_NORMAL,
5117 			       access_sw_cpu_rc_acks),
5118 [C_SW_CPU_RC_QACKS] = CNTR_ELEM("RcQacks", 0, 0, CNTR_NORMAL,
5119 				access_sw_cpu_rc_qacks),
5120 [C_SW_CPU_RC_DELAYED_COMP] = CNTR_ELEM("RcDelayComp", 0, 0, CNTR_NORMAL,
5121 				       access_sw_cpu_rc_delayed_comp),
5122 [OVR_LBL(0)] = OVR_ELM(0), [OVR_LBL(1)] = OVR_ELM(1),
5123 [OVR_LBL(2)] = OVR_ELM(2), [OVR_LBL(3)] = OVR_ELM(3),
5124 [OVR_LBL(4)] = OVR_ELM(4), [OVR_LBL(5)] = OVR_ELM(5),
5125 [OVR_LBL(6)] = OVR_ELM(6), [OVR_LBL(7)] = OVR_ELM(7),
5126 [OVR_LBL(8)] = OVR_ELM(8), [OVR_LBL(9)] = OVR_ELM(9),
5127 [OVR_LBL(10)] = OVR_ELM(10), [OVR_LBL(11)] = OVR_ELM(11),
5128 [OVR_LBL(12)] = OVR_ELM(12), [OVR_LBL(13)] = OVR_ELM(13),
5129 [OVR_LBL(14)] = OVR_ELM(14), [OVR_LBL(15)] = OVR_ELM(15),
5130 [OVR_LBL(16)] = OVR_ELM(16), [OVR_LBL(17)] = OVR_ELM(17),
5131 [OVR_LBL(18)] = OVR_ELM(18), [OVR_LBL(19)] = OVR_ELM(19),
5132 [OVR_LBL(20)] = OVR_ELM(20), [OVR_LBL(21)] = OVR_ELM(21),
5133 [OVR_LBL(22)] = OVR_ELM(22), [OVR_LBL(23)] = OVR_ELM(23),
5134 [OVR_LBL(24)] = OVR_ELM(24), [OVR_LBL(25)] = OVR_ELM(25),
5135 [OVR_LBL(26)] = OVR_ELM(26), [OVR_LBL(27)] = OVR_ELM(27),
5136 [OVR_LBL(28)] = OVR_ELM(28), [OVR_LBL(29)] = OVR_ELM(29),
5137 [OVR_LBL(30)] = OVR_ELM(30), [OVR_LBL(31)] = OVR_ELM(31),
5138 [OVR_LBL(32)] = OVR_ELM(32), [OVR_LBL(33)] = OVR_ELM(33),
5139 [OVR_LBL(34)] = OVR_ELM(34), [OVR_LBL(35)] = OVR_ELM(35),
5140 [OVR_LBL(36)] = OVR_ELM(36), [OVR_LBL(37)] = OVR_ELM(37),
5141 [OVR_LBL(38)] = OVR_ELM(38), [OVR_LBL(39)] = OVR_ELM(39),
5142 [OVR_LBL(40)] = OVR_ELM(40), [OVR_LBL(41)] = OVR_ELM(41),
5143 [OVR_LBL(42)] = OVR_ELM(42), [OVR_LBL(43)] = OVR_ELM(43),
5144 [OVR_LBL(44)] = OVR_ELM(44), [OVR_LBL(45)] = OVR_ELM(45),
5145 [OVR_LBL(46)] = OVR_ELM(46), [OVR_LBL(47)] = OVR_ELM(47),
5146 [OVR_LBL(48)] = OVR_ELM(48), [OVR_LBL(49)] = OVR_ELM(49),
5147 [OVR_LBL(50)] = OVR_ELM(50), [OVR_LBL(51)] = OVR_ELM(51),
5148 [OVR_LBL(52)] = OVR_ELM(52), [OVR_LBL(53)] = OVR_ELM(53),
5149 [OVR_LBL(54)] = OVR_ELM(54), [OVR_LBL(55)] = OVR_ELM(55),
5150 [OVR_LBL(56)] = OVR_ELM(56), [OVR_LBL(57)] = OVR_ELM(57),
5151 [OVR_LBL(58)] = OVR_ELM(58), [OVR_LBL(59)] = OVR_ELM(59),
5152 [OVR_LBL(60)] = OVR_ELM(60), [OVR_LBL(61)] = OVR_ELM(61),
5153 [OVR_LBL(62)] = OVR_ELM(62), [OVR_LBL(63)] = OVR_ELM(63),
5154 [OVR_LBL(64)] = OVR_ELM(64), [OVR_LBL(65)] = OVR_ELM(65),
5155 [OVR_LBL(66)] = OVR_ELM(66), [OVR_LBL(67)] = OVR_ELM(67),
5156 [OVR_LBL(68)] = OVR_ELM(68), [OVR_LBL(69)] = OVR_ELM(69),
5157 [OVR_LBL(70)] = OVR_ELM(70), [OVR_LBL(71)] = OVR_ELM(71),
5158 [OVR_LBL(72)] = OVR_ELM(72), [OVR_LBL(73)] = OVR_ELM(73),
5159 [OVR_LBL(74)] = OVR_ELM(74), [OVR_LBL(75)] = OVR_ELM(75),
5160 [OVR_LBL(76)] = OVR_ELM(76), [OVR_LBL(77)] = OVR_ELM(77),
5161 [OVR_LBL(78)] = OVR_ELM(78), [OVR_LBL(79)] = OVR_ELM(79),
5162 [OVR_LBL(80)] = OVR_ELM(80), [OVR_LBL(81)] = OVR_ELM(81),
5163 [OVR_LBL(82)] = OVR_ELM(82), [OVR_LBL(83)] = OVR_ELM(83),
5164 [OVR_LBL(84)] = OVR_ELM(84), [OVR_LBL(85)] = OVR_ELM(85),
5165 [OVR_LBL(86)] = OVR_ELM(86), [OVR_LBL(87)] = OVR_ELM(87),
5166 [OVR_LBL(88)] = OVR_ELM(88), [OVR_LBL(89)] = OVR_ELM(89),
5167 [OVR_LBL(90)] = OVR_ELM(90), [OVR_LBL(91)] = OVR_ELM(91),
5168 [OVR_LBL(92)] = OVR_ELM(92), [OVR_LBL(93)] = OVR_ELM(93),
5169 [OVR_LBL(94)] = OVR_ELM(94), [OVR_LBL(95)] = OVR_ELM(95),
5170 [OVR_LBL(96)] = OVR_ELM(96), [OVR_LBL(97)] = OVR_ELM(97),
5171 [OVR_LBL(98)] = OVR_ELM(98), [OVR_LBL(99)] = OVR_ELM(99),
5172 [OVR_LBL(100)] = OVR_ELM(100), [OVR_LBL(101)] = OVR_ELM(101),
5173 [OVR_LBL(102)] = OVR_ELM(102), [OVR_LBL(103)] = OVR_ELM(103),
5174 [OVR_LBL(104)] = OVR_ELM(104), [OVR_LBL(105)] = OVR_ELM(105),
5175 [OVR_LBL(106)] = OVR_ELM(106), [OVR_LBL(107)] = OVR_ELM(107),
5176 [OVR_LBL(108)] = OVR_ELM(108), [OVR_LBL(109)] = OVR_ELM(109),
5177 [OVR_LBL(110)] = OVR_ELM(110), [OVR_LBL(111)] = OVR_ELM(111),
5178 [OVR_LBL(112)] = OVR_ELM(112), [OVR_LBL(113)] = OVR_ELM(113),
5179 [OVR_LBL(114)] = OVR_ELM(114), [OVR_LBL(115)] = OVR_ELM(115),
5180 [OVR_LBL(116)] = OVR_ELM(116), [OVR_LBL(117)] = OVR_ELM(117),
5181 [OVR_LBL(118)] = OVR_ELM(118), [OVR_LBL(119)] = OVR_ELM(119),
5182 [OVR_LBL(120)] = OVR_ELM(120), [OVR_LBL(121)] = OVR_ELM(121),
5183 [OVR_LBL(122)] = OVR_ELM(122), [OVR_LBL(123)] = OVR_ELM(123),
5184 [OVR_LBL(124)] = OVR_ELM(124), [OVR_LBL(125)] = OVR_ELM(125),
5185 [OVR_LBL(126)] = OVR_ELM(126), [OVR_LBL(127)] = OVR_ELM(127),
5186 [OVR_LBL(128)] = OVR_ELM(128), [OVR_LBL(129)] = OVR_ELM(129),
5187 [OVR_LBL(130)] = OVR_ELM(130), [OVR_LBL(131)] = OVR_ELM(131),
5188 [OVR_LBL(132)] = OVR_ELM(132), [OVR_LBL(133)] = OVR_ELM(133),
5189 [OVR_LBL(134)] = OVR_ELM(134), [OVR_LBL(135)] = OVR_ELM(135),
5190 [OVR_LBL(136)] = OVR_ELM(136), [OVR_LBL(137)] = OVR_ELM(137),
5191 [OVR_LBL(138)] = OVR_ELM(138), [OVR_LBL(139)] = OVR_ELM(139),
5192 [OVR_LBL(140)] = OVR_ELM(140), [OVR_LBL(141)] = OVR_ELM(141),
5193 [OVR_LBL(142)] = OVR_ELM(142), [OVR_LBL(143)] = OVR_ELM(143),
5194 [OVR_LBL(144)] = OVR_ELM(144), [OVR_LBL(145)] = OVR_ELM(145),
5195 [OVR_LBL(146)] = OVR_ELM(146), [OVR_LBL(147)] = OVR_ELM(147),
5196 [OVR_LBL(148)] = OVR_ELM(148), [OVR_LBL(149)] = OVR_ELM(149),
5197 [OVR_LBL(150)] = OVR_ELM(150), [OVR_LBL(151)] = OVR_ELM(151),
5198 [OVR_LBL(152)] = OVR_ELM(152), [OVR_LBL(153)] = OVR_ELM(153),
5199 [OVR_LBL(154)] = OVR_ELM(154), [OVR_LBL(155)] = OVR_ELM(155),
5200 [OVR_LBL(156)] = OVR_ELM(156), [OVR_LBL(157)] = OVR_ELM(157),
5201 [OVR_LBL(158)] = OVR_ELM(158), [OVR_LBL(159)] = OVR_ELM(159),
5202 };
5203 
5204 /* ======================================================================== */
5205 
5206 /* return true if this is chip revision revision a */
5207 int is_ax(struct hfi1_devdata *dd)
5208 {
5209 	u8 chip_rev_minor =
5210 		dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT
5211 			& CCE_REVISION_CHIP_REV_MINOR_MASK;
5212 	return (chip_rev_minor & 0xf0) == 0;
5213 }
5214 
5215 /* return true if this is chip revision revision b */
5216 int is_bx(struct hfi1_devdata *dd)
5217 {
5218 	u8 chip_rev_minor =
5219 		dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT
5220 			& CCE_REVISION_CHIP_REV_MINOR_MASK;
5221 	return (chip_rev_minor & 0xF0) == 0x10;
5222 }
5223 
5224 /*
5225  * Append string s to buffer buf.  Arguments curp and len are the current
5226  * position and remaining length, respectively.
5227  *
5228  * return 0 on success, 1 on out of room
5229  */
5230 static int append_str(char *buf, char **curp, int *lenp, const char *s)
5231 {
5232 	char *p = *curp;
5233 	int len = *lenp;
5234 	int result = 0; /* success */
5235 	char c;
5236 
5237 	/* add a comma, if first in the buffer */
5238 	if (p != buf) {
5239 		if (len == 0) {
5240 			result = 1; /* out of room */
5241 			goto done;
5242 		}
5243 		*p++ = ',';
5244 		len--;
5245 	}
5246 
5247 	/* copy the string */
5248 	while ((c = *s++) != 0) {
5249 		if (len == 0) {
5250 			result = 1; /* out of room */
5251 			goto done;
5252 		}
5253 		*p++ = c;
5254 		len--;
5255 	}
5256 
5257 done:
5258 	/* write return values */
5259 	*curp = p;
5260 	*lenp = len;
5261 
5262 	return result;
5263 }
5264 
5265 /*
5266  * Using the given flag table, print a comma separated string into
5267  * the buffer.  End in '*' if the buffer is too short.
5268  */
5269 static char *flag_string(char *buf, int buf_len, u64 flags,
5270 			 struct flag_table *table, int table_size)
5271 {
5272 	char extra[32];
5273 	char *p = buf;
5274 	int len = buf_len;
5275 	int no_room = 0;
5276 	int i;
5277 
5278 	/* make sure there is at least 2 so we can form "*" */
5279 	if (len < 2)
5280 		return "";
5281 
5282 	len--;	/* leave room for a nul */
5283 	for (i = 0; i < table_size; i++) {
5284 		if (flags & table[i].flag) {
5285 			no_room = append_str(buf, &p, &len, table[i].str);
5286 			if (no_room)
5287 				break;
5288 			flags &= ~table[i].flag;
5289 		}
5290 	}
5291 
5292 	/* any undocumented bits left? */
5293 	if (!no_room && flags) {
5294 		snprintf(extra, sizeof(extra), "bits 0x%llx", flags);
5295 		no_room = append_str(buf, &p, &len, extra);
5296 	}
5297 
5298 	/* add * if ran out of room */
5299 	if (no_room) {
5300 		/* may need to back up to add space for a '*' */
5301 		if (len == 0)
5302 			--p;
5303 		*p++ = '*';
5304 	}
5305 
5306 	/* add final nul - space already allocated above */
5307 	*p = 0;
5308 	return buf;
5309 }
5310 
5311 /* first 8 CCE error interrupt source names */
5312 static const char * const cce_misc_names[] = {
5313 	"CceErrInt",		/* 0 */
5314 	"RxeErrInt",		/* 1 */
5315 	"MiscErrInt",		/* 2 */
5316 	"Reserved3",		/* 3 */
5317 	"PioErrInt",		/* 4 */
5318 	"SDmaErrInt",		/* 5 */
5319 	"EgressErrInt",		/* 6 */
5320 	"TxeErrInt"		/* 7 */
5321 };
5322 
5323 /*
5324  * Return the miscellaneous error interrupt name.
5325  */
5326 static char *is_misc_err_name(char *buf, size_t bsize, unsigned int source)
5327 {
5328 	if (source < ARRAY_SIZE(cce_misc_names))
5329 		strncpy(buf, cce_misc_names[source], bsize);
5330 	else
5331 		snprintf(buf, bsize, "Reserved%u",
5332 			 source + IS_GENERAL_ERR_START);
5333 
5334 	return buf;
5335 }
5336 
5337 /*
5338  * Return the SDMA engine error interrupt name.
5339  */
5340 static char *is_sdma_eng_err_name(char *buf, size_t bsize, unsigned int source)
5341 {
5342 	snprintf(buf, bsize, "SDmaEngErrInt%u", source);
5343 	return buf;
5344 }
5345 
5346 /*
5347  * Return the send context error interrupt name.
5348  */
5349 static char *is_sendctxt_err_name(char *buf, size_t bsize, unsigned int source)
5350 {
5351 	snprintf(buf, bsize, "SendCtxtErrInt%u", source);
5352 	return buf;
5353 }
5354 
5355 static const char * const various_names[] = {
5356 	"PbcInt",
5357 	"GpioAssertInt",
5358 	"Qsfp1Int",
5359 	"Qsfp2Int",
5360 	"TCritInt"
5361 };
5362 
5363 /*
5364  * Return the various interrupt name.
5365  */
5366 static char *is_various_name(char *buf, size_t bsize, unsigned int source)
5367 {
5368 	if (source < ARRAY_SIZE(various_names))
5369 		strncpy(buf, various_names[source], bsize);
5370 	else
5371 		snprintf(buf, bsize, "Reserved%u", source + IS_VARIOUS_START);
5372 	return buf;
5373 }
5374 
5375 /*
5376  * Return the DC interrupt name.
5377  */
5378 static char *is_dc_name(char *buf, size_t bsize, unsigned int source)
5379 {
5380 	static const char * const dc_int_names[] = {
5381 		"common",
5382 		"lcb",
5383 		"8051",
5384 		"lbm"	/* local block merge */
5385 	};
5386 
5387 	if (source < ARRAY_SIZE(dc_int_names))
5388 		snprintf(buf, bsize, "dc_%s_int", dc_int_names[source]);
5389 	else
5390 		snprintf(buf, bsize, "DCInt%u", source);
5391 	return buf;
5392 }
5393 
5394 static const char * const sdma_int_names[] = {
5395 	"SDmaInt",
5396 	"SdmaIdleInt",
5397 	"SdmaProgressInt",
5398 };
5399 
5400 /*
5401  * Return the SDMA engine interrupt name.
5402  */
5403 static char *is_sdma_eng_name(char *buf, size_t bsize, unsigned int source)
5404 {
5405 	/* what interrupt */
5406 	unsigned int what  = source / TXE_NUM_SDMA_ENGINES;
5407 	/* which engine */
5408 	unsigned int which = source % TXE_NUM_SDMA_ENGINES;
5409 
5410 	if (likely(what < 3))
5411 		snprintf(buf, bsize, "%s%u", sdma_int_names[what], which);
5412 	else
5413 		snprintf(buf, bsize, "Invalid SDMA interrupt %u", source);
5414 	return buf;
5415 }
5416 
5417 /*
5418  * Return the receive available interrupt name.
5419  */
5420 static char *is_rcv_avail_name(char *buf, size_t bsize, unsigned int source)
5421 {
5422 	snprintf(buf, bsize, "RcvAvailInt%u", source);
5423 	return buf;
5424 }
5425 
5426 /*
5427  * Return the receive urgent interrupt name.
5428  */
5429 static char *is_rcv_urgent_name(char *buf, size_t bsize, unsigned int source)
5430 {
5431 	snprintf(buf, bsize, "RcvUrgentInt%u", source);
5432 	return buf;
5433 }
5434 
5435 /*
5436  * Return the send credit interrupt name.
5437  */
5438 static char *is_send_credit_name(char *buf, size_t bsize, unsigned int source)
5439 {
5440 	snprintf(buf, bsize, "SendCreditInt%u", source);
5441 	return buf;
5442 }
5443 
5444 /*
5445  * Return the reserved interrupt name.
5446  */
5447 static char *is_reserved_name(char *buf, size_t bsize, unsigned int source)
5448 {
5449 	snprintf(buf, bsize, "Reserved%u", source + IS_RESERVED_START);
5450 	return buf;
5451 }
5452 
5453 static char *cce_err_status_string(char *buf, int buf_len, u64 flags)
5454 {
5455 	return flag_string(buf, buf_len, flags,
5456 			   cce_err_status_flags,
5457 			   ARRAY_SIZE(cce_err_status_flags));
5458 }
5459 
5460 static char *rxe_err_status_string(char *buf, int buf_len, u64 flags)
5461 {
5462 	return flag_string(buf, buf_len, flags,
5463 			   rxe_err_status_flags,
5464 			   ARRAY_SIZE(rxe_err_status_flags));
5465 }
5466 
5467 static char *misc_err_status_string(char *buf, int buf_len, u64 flags)
5468 {
5469 	return flag_string(buf, buf_len, flags, misc_err_status_flags,
5470 			   ARRAY_SIZE(misc_err_status_flags));
5471 }
5472 
5473 static char *pio_err_status_string(char *buf, int buf_len, u64 flags)
5474 {
5475 	return flag_string(buf, buf_len, flags,
5476 			   pio_err_status_flags,
5477 			   ARRAY_SIZE(pio_err_status_flags));
5478 }
5479 
5480 static char *sdma_err_status_string(char *buf, int buf_len, u64 flags)
5481 {
5482 	return flag_string(buf, buf_len, flags,
5483 			   sdma_err_status_flags,
5484 			   ARRAY_SIZE(sdma_err_status_flags));
5485 }
5486 
5487 static char *egress_err_status_string(char *buf, int buf_len, u64 flags)
5488 {
5489 	return flag_string(buf, buf_len, flags,
5490 			   egress_err_status_flags,
5491 			   ARRAY_SIZE(egress_err_status_flags));
5492 }
5493 
5494 static char *egress_err_info_string(char *buf, int buf_len, u64 flags)
5495 {
5496 	return flag_string(buf, buf_len, flags,
5497 			   egress_err_info_flags,
5498 			   ARRAY_SIZE(egress_err_info_flags));
5499 }
5500 
5501 static char *send_err_status_string(char *buf, int buf_len, u64 flags)
5502 {
5503 	return flag_string(buf, buf_len, flags,
5504 			   send_err_status_flags,
5505 			   ARRAY_SIZE(send_err_status_flags));
5506 }
5507 
5508 static void handle_cce_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5509 {
5510 	char buf[96];
5511 	int i = 0;
5512 
5513 	/*
5514 	 * For most these errors, there is nothing that can be done except
5515 	 * report or record it.
5516 	 */
5517 	dd_dev_info(dd, "CCE Error: %s\n",
5518 		    cce_err_status_string(buf, sizeof(buf), reg));
5519 
5520 	if ((reg & CCE_ERR_STATUS_CCE_CLI2_ASYNC_FIFO_PARITY_ERR_SMASK) &&
5521 	    is_ax(dd) && (dd->icode != ICODE_FUNCTIONAL_SIMULATOR)) {
5522 		/* this error requires a manual drop into SPC freeze mode */
5523 		/* then a fix up */
5524 		start_freeze_handling(dd->pport, FREEZE_SELF);
5525 	}
5526 
5527 	for (i = 0; i < NUM_CCE_ERR_STATUS_COUNTERS; i++) {
5528 		if (reg & (1ull << i)) {
5529 			incr_cntr64(&dd->cce_err_status_cnt[i]);
5530 			/* maintain a counter over all cce_err_status errors */
5531 			incr_cntr64(&dd->sw_cce_err_status_aggregate);
5532 		}
5533 	}
5534 }
5535 
5536 /*
5537  * Check counters for receive errors that do not have an interrupt
5538  * associated with them.
5539  */
5540 #define RCVERR_CHECK_TIME 10
5541 static void update_rcverr_timer(unsigned long opaque)
5542 {
5543 	struct hfi1_devdata *dd = (struct hfi1_devdata *)opaque;
5544 	struct hfi1_pportdata *ppd = dd->pport;
5545 	u32 cur_ovfl_cnt = read_dev_cntr(dd, C_RCV_OVF, CNTR_INVALID_VL);
5546 
5547 	if (dd->rcv_ovfl_cnt < cur_ovfl_cnt &&
5548 	    ppd->port_error_action & OPA_PI_MASK_EX_BUFFER_OVERRUN) {
5549 		dd_dev_info(dd, "%s: PortErrorAction bounce\n", __func__);
5550 		set_link_down_reason(
5551 		ppd, OPA_LINKDOWN_REASON_EXCESSIVE_BUFFER_OVERRUN, 0,
5552 		OPA_LINKDOWN_REASON_EXCESSIVE_BUFFER_OVERRUN);
5553 		queue_work(ppd->link_wq, &ppd->link_bounce_work);
5554 	}
5555 	dd->rcv_ovfl_cnt = (u32)cur_ovfl_cnt;
5556 
5557 	mod_timer(&dd->rcverr_timer, jiffies + HZ * RCVERR_CHECK_TIME);
5558 }
5559 
5560 static int init_rcverr(struct hfi1_devdata *dd)
5561 {
5562 	setup_timer(&dd->rcverr_timer, update_rcverr_timer, (unsigned long)dd);
5563 	/* Assume the hardware counter has been reset */
5564 	dd->rcv_ovfl_cnt = 0;
5565 	return mod_timer(&dd->rcverr_timer, jiffies + HZ * RCVERR_CHECK_TIME);
5566 }
5567 
5568 static void free_rcverr(struct hfi1_devdata *dd)
5569 {
5570 	if (dd->rcverr_timer.data)
5571 		del_timer_sync(&dd->rcverr_timer);
5572 	dd->rcverr_timer.data = 0;
5573 }
5574 
5575 static void handle_rxe_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5576 {
5577 	char buf[96];
5578 	int i = 0;
5579 
5580 	dd_dev_info(dd, "Receive Error: %s\n",
5581 		    rxe_err_status_string(buf, sizeof(buf), reg));
5582 
5583 	if (reg & ALL_RXE_FREEZE_ERR) {
5584 		int flags = 0;
5585 
5586 		/*
5587 		 * Freeze mode recovery is disabled for the errors
5588 		 * in RXE_FREEZE_ABORT_MASK
5589 		 */
5590 		if (is_ax(dd) && (reg & RXE_FREEZE_ABORT_MASK))
5591 			flags = FREEZE_ABORT;
5592 
5593 		start_freeze_handling(dd->pport, flags);
5594 	}
5595 
5596 	for (i = 0; i < NUM_RCV_ERR_STATUS_COUNTERS; i++) {
5597 		if (reg & (1ull << i))
5598 			incr_cntr64(&dd->rcv_err_status_cnt[i]);
5599 	}
5600 }
5601 
5602 static void handle_misc_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5603 {
5604 	char buf[96];
5605 	int i = 0;
5606 
5607 	dd_dev_info(dd, "Misc Error: %s",
5608 		    misc_err_status_string(buf, sizeof(buf), reg));
5609 	for (i = 0; i < NUM_MISC_ERR_STATUS_COUNTERS; i++) {
5610 		if (reg & (1ull << i))
5611 			incr_cntr64(&dd->misc_err_status_cnt[i]);
5612 	}
5613 }
5614 
5615 static void handle_pio_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5616 {
5617 	char buf[96];
5618 	int i = 0;
5619 
5620 	dd_dev_info(dd, "PIO Error: %s\n",
5621 		    pio_err_status_string(buf, sizeof(buf), reg));
5622 
5623 	if (reg & ALL_PIO_FREEZE_ERR)
5624 		start_freeze_handling(dd->pport, 0);
5625 
5626 	for (i = 0; i < NUM_SEND_PIO_ERR_STATUS_COUNTERS; i++) {
5627 		if (reg & (1ull << i))
5628 			incr_cntr64(&dd->send_pio_err_status_cnt[i]);
5629 	}
5630 }
5631 
5632 static void handle_sdma_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5633 {
5634 	char buf[96];
5635 	int i = 0;
5636 
5637 	dd_dev_info(dd, "SDMA Error: %s\n",
5638 		    sdma_err_status_string(buf, sizeof(buf), reg));
5639 
5640 	if (reg & ALL_SDMA_FREEZE_ERR)
5641 		start_freeze_handling(dd->pport, 0);
5642 
5643 	for (i = 0; i < NUM_SEND_DMA_ERR_STATUS_COUNTERS; i++) {
5644 		if (reg & (1ull << i))
5645 			incr_cntr64(&dd->send_dma_err_status_cnt[i]);
5646 	}
5647 }
5648 
5649 static inline void __count_port_discards(struct hfi1_pportdata *ppd)
5650 {
5651 	incr_cntr64(&ppd->port_xmit_discards);
5652 }
5653 
5654 static void count_port_inactive(struct hfi1_devdata *dd)
5655 {
5656 	__count_port_discards(dd->pport);
5657 }
5658 
5659 /*
5660  * We have had a "disallowed packet" error during egress. Determine the
5661  * integrity check which failed, and update relevant error counter, etc.
5662  *
5663  * Note that the SEND_EGRESS_ERR_INFO register has only a single
5664  * bit of state per integrity check, and so we can miss the reason for an
5665  * egress error if more than one packet fails the same integrity check
5666  * since we cleared the corresponding bit in SEND_EGRESS_ERR_INFO.
5667  */
5668 static void handle_send_egress_err_info(struct hfi1_devdata *dd,
5669 					int vl)
5670 {
5671 	struct hfi1_pportdata *ppd = dd->pport;
5672 	u64 src = read_csr(dd, SEND_EGRESS_ERR_SOURCE); /* read first */
5673 	u64 info = read_csr(dd, SEND_EGRESS_ERR_INFO);
5674 	char buf[96];
5675 
5676 	/* clear down all observed info as quickly as possible after read */
5677 	write_csr(dd, SEND_EGRESS_ERR_INFO, info);
5678 
5679 	dd_dev_info(dd,
5680 		    "Egress Error Info: 0x%llx, %s Egress Error Src 0x%llx\n",
5681 		    info, egress_err_info_string(buf, sizeof(buf), info), src);
5682 
5683 	/* Eventually add other counters for each bit */
5684 	if (info & PORT_DISCARD_EGRESS_ERRS) {
5685 		int weight, i;
5686 
5687 		/*
5688 		 * Count all applicable bits as individual errors and
5689 		 * attribute them to the packet that triggered this handler.
5690 		 * This may not be completely accurate due to limitations
5691 		 * on the available hardware error information.  There is
5692 		 * a single information register and any number of error
5693 		 * packets may have occurred and contributed to it before
5694 		 * this routine is called.  This means that:
5695 		 * a) If multiple packets with the same error occur before
5696 		 *    this routine is called, earlier packets are missed.
5697 		 *    There is only a single bit for each error type.
5698 		 * b) Errors may not be attributed to the correct VL.
5699 		 *    The driver is attributing all bits in the info register
5700 		 *    to the packet that triggered this call, but bits
5701 		 *    could be an accumulation of different packets with
5702 		 *    different VLs.
5703 		 * c) A single error packet may have multiple counts attached
5704 		 *    to it.  There is no way for the driver to know if
5705 		 *    multiple bits set in the info register are due to a
5706 		 *    single packet or multiple packets.  The driver assumes
5707 		 *    multiple packets.
5708 		 */
5709 		weight = hweight64(info & PORT_DISCARD_EGRESS_ERRS);
5710 		for (i = 0; i < weight; i++) {
5711 			__count_port_discards(ppd);
5712 			if (vl >= 0 && vl < TXE_NUM_DATA_VL)
5713 				incr_cntr64(&ppd->port_xmit_discards_vl[vl]);
5714 			else if (vl == 15)
5715 				incr_cntr64(&ppd->port_xmit_discards_vl
5716 					    [C_VL_15]);
5717 		}
5718 	}
5719 }
5720 
5721 /*
5722  * Input value is a bit position within the SEND_EGRESS_ERR_STATUS
5723  * register. Does it represent a 'port inactive' error?
5724  */
5725 static inline int port_inactive_err(u64 posn)
5726 {
5727 	return (posn >= SEES(TX_LINKDOWN) &&
5728 		posn <= SEES(TX_INCORRECT_LINK_STATE));
5729 }
5730 
5731 /*
5732  * Input value is a bit position within the SEND_EGRESS_ERR_STATUS
5733  * register. Does it represent a 'disallowed packet' error?
5734  */
5735 static inline int disallowed_pkt_err(int posn)
5736 {
5737 	return (posn >= SEES(TX_SDMA0_DISALLOWED_PACKET) &&
5738 		posn <= SEES(TX_SDMA15_DISALLOWED_PACKET));
5739 }
5740 
5741 /*
5742  * Input value is a bit position of one of the SDMA engine disallowed
5743  * packet errors.  Return which engine.  Use of this must be guarded by
5744  * disallowed_pkt_err().
5745  */
5746 static inline int disallowed_pkt_engine(int posn)
5747 {
5748 	return posn - SEES(TX_SDMA0_DISALLOWED_PACKET);
5749 }
5750 
5751 /*
5752  * Translate an SDMA engine to a VL.  Return -1 if the tranlation cannot
5753  * be done.
5754  */
5755 static int engine_to_vl(struct hfi1_devdata *dd, int engine)
5756 {
5757 	struct sdma_vl_map *m;
5758 	int vl;
5759 
5760 	/* range check */
5761 	if (engine < 0 || engine >= TXE_NUM_SDMA_ENGINES)
5762 		return -1;
5763 
5764 	rcu_read_lock();
5765 	m = rcu_dereference(dd->sdma_map);
5766 	vl = m->engine_to_vl[engine];
5767 	rcu_read_unlock();
5768 
5769 	return vl;
5770 }
5771 
5772 /*
5773  * Translate the send context (sofware index) into a VL.  Return -1 if the
5774  * translation cannot be done.
5775  */
5776 static int sc_to_vl(struct hfi1_devdata *dd, int sw_index)
5777 {
5778 	struct send_context_info *sci;
5779 	struct send_context *sc;
5780 	int i;
5781 
5782 	sci = &dd->send_contexts[sw_index];
5783 
5784 	/* there is no information for user (PSM) and ack contexts */
5785 	if ((sci->type != SC_KERNEL) && (sci->type != SC_VL15))
5786 		return -1;
5787 
5788 	sc = sci->sc;
5789 	if (!sc)
5790 		return -1;
5791 	if (dd->vld[15].sc == sc)
5792 		return 15;
5793 	for (i = 0; i < num_vls; i++)
5794 		if (dd->vld[i].sc == sc)
5795 			return i;
5796 
5797 	return -1;
5798 }
5799 
5800 static void handle_egress_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5801 {
5802 	u64 reg_copy = reg, handled = 0;
5803 	char buf[96];
5804 	int i = 0;
5805 
5806 	if (reg & ALL_TXE_EGRESS_FREEZE_ERR)
5807 		start_freeze_handling(dd->pport, 0);
5808 	else if (is_ax(dd) &&
5809 		 (reg & SEND_EGRESS_ERR_STATUS_TX_CREDIT_RETURN_VL_ERR_SMASK) &&
5810 		 (dd->icode != ICODE_FUNCTIONAL_SIMULATOR))
5811 		start_freeze_handling(dd->pport, 0);
5812 
5813 	while (reg_copy) {
5814 		int posn = fls64(reg_copy);
5815 		/* fls64() returns a 1-based offset, we want it zero based */
5816 		int shift = posn - 1;
5817 		u64 mask = 1ULL << shift;
5818 
5819 		if (port_inactive_err(shift)) {
5820 			count_port_inactive(dd);
5821 			handled |= mask;
5822 		} else if (disallowed_pkt_err(shift)) {
5823 			int vl = engine_to_vl(dd, disallowed_pkt_engine(shift));
5824 
5825 			handle_send_egress_err_info(dd, vl);
5826 			handled |= mask;
5827 		}
5828 		reg_copy &= ~mask;
5829 	}
5830 
5831 	reg &= ~handled;
5832 
5833 	if (reg)
5834 		dd_dev_info(dd, "Egress Error: %s\n",
5835 			    egress_err_status_string(buf, sizeof(buf), reg));
5836 
5837 	for (i = 0; i < NUM_SEND_EGRESS_ERR_STATUS_COUNTERS; i++) {
5838 		if (reg & (1ull << i))
5839 			incr_cntr64(&dd->send_egress_err_status_cnt[i]);
5840 	}
5841 }
5842 
5843 static void handle_txe_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5844 {
5845 	char buf[96];
5846 	int i = 0;
5847 
5848 	dd_dev_info(dd, "Send Error: %s\n",
5849 		    send_err_status_string(buf, sizeof(buf), reg));
5850 
5851 	for (i = 0; i < NUM_SEND_ERR_STATUS_COUNTERS; i++) {
5852 		if (reg & (1ull << i))
5853 			incr_cntr64(&dd->send_err_status_cnt[i]);
5854 	}
5855 }
5856 
5857 /*
5858  * The maximum number of times the error clear down will loop before
5859  * blocking a repeating error.  This value is arbitrary.
5860  */
5861 #define MAX_CLEAR_COUNT 20
5862 
5863 /*
5864  * Clear and handle an error register.  All error interrupts are funneled
5865  * through here to have a central location to correctly handle single-
5866  * or multi-shot errors.
5867  *
5868  * For non per-context registers, call this routine with a context value
5869  * of 0 so the per-context offset is zero.
5870  *
5871  * If the handler loops too many times, assume that something is wrong
5872  * and can't be fixed, so mask the error bits.
5873  */
5874 static void interrupt_clear_down(struct hfi1_devdata *dd,
5875 				 u32 context,
5876 				 const struct err_reg_info *eri)
5877 {
5878 	u64 reg;
5879 	u32 count;
5880 
5881 	/* read in a loop until no more errors are seen */
5882 	count = 0;
5883 	while (1) {
5884 		reg = read_kctxt_csr(dd, context, eri->status);
5885 		if (reg == 0)
5886 			break;
5887 		write_kctxt_csr(dd, context, eri->clear, reg);
5888 		if (likely(eri->handler))
5889 			eri->handler(dd, context, reg);
5890 		count++;
5891 		if (count > MAX_CLEAR_COUNT) {
5892 			u64 mask;
5893 
5894 			dd_dev_err(dd, "Repeating %s bits 0x%llx - masking\n",
5895 				   eri->desc, reg);
5896 			/*
5897 			 * Read-modify-write so any other masked bits
5898 			 * remain masked.
5899 			 */
5900 			mask = read_kctxt_csr(dd, context, eri->mask);
5901 			mask &= ~reg;
5902 			write_kctxt_csr(dd, context, eri->mask, mask);
5903 			break;
5904 		}
5905 	}
5906 }
5907 
5908 /*
5909  * CCE block "misc" interrupt.  Source is < 16.
5910  */
5911 static void is_misc_err_int(struct hfi1_devdata *dd, unsigned int source)
5912 {
5913 	const struct err_reg_info *eri = &misc_errs[source];
5914 
5915 	if (eri->handler) {
5916 		interrupt_clear_down(dd, 0, eri);
5917 	} else {
5918 		dd_dev_err(dd, "Unexpected misc interrupt (%u) - reserved\n",
5919 			   source);
5920 	}
5921 }
5922 
5923 static char *send_context_err_status_string(char *buf, int buf_len, u64 flags)
5924 {
5925 	return flag_string(buf, buf_len, flags,
5926 			   sc_err_status_flags,
5927 			   ARRAY_SIZE(sc_err_status_flags));
5928 }
5929 
5930 /*
5931  * Send context error interrupt.  Source (hw_context) is < 160.
5932  *
5933  * All send context errors cause the send context to halt.  The normal
5934  * clear-down mechanism cannot be used because we cannot clear the
5935  * error bits until several other long-running items are done first.
5936  * This is OK because with the context halted, nothing else is going
5937  * to happen on it anyway.
5938  */
5939 static void is_sendctxt_err_int(struct hfi1_devdata *dd,
5940 				unsigned int hw_context)
5941 {
5942 	struct send_context_info *sci;
5943 	struct send_context *sc;
5944 	char flags[96];
5945 	u64 status;
5946 	u32 sw_index;
5947 	int i = 0;
5948 
5949 	sw_index = dd->hw_to_sw[hw_context];
5950 	if (sw_index >= dd->num_send_contexts) {
5951 		dd_dev_err(dd,
5952 			   "out of range sw index %u for send context %u\n",
5953 			   sw_index, hw_context);
5954 		return;
5955 	}
5956 	sci = &dd->send_contexts[sw_index];
5957 	sc = sci->sc;
5958 	if (!sc) {
5959 		dd_dev_err(dd, "%s: context %u(%u): no sc?\n", __func__,
5960 			   sw_index, hw_context);
5961 		return;
5962 	}
5963 
5964 	/* tell the software that a halt has begun */
5965 	sc_stop(sc, SCF_HALTED);
5966 
5967 	status = read_kctxt_csr(dd, hw_context, SEND_CTXT_ERR_STATUS);
5968 
5969 	dd_dev_info(dd, "Send Context %u(%u) Error: %s\n", sw_index, hw_context,
5970 		    send_context_err_status_string(flags, sizeof(flags),
5971 						   status));
5972 
5973 	if (status & SEND_CTXT_ERR_STATUS_PIO_DISALLOWED_PACKET_ERR_SMASK)
5974 		handle_send_egress_err_info(dd, sc_to_vl(dd, sw_index));
5975 
5976 	/*
5977 	 * Automatically restart halted kernel contexts out of interrupt
5978 	 * context.  User contexts must ask the driver to restart the context.
5979 	 */
5980 	if (sc->type != SC_USER)
5981 		queue_work(dd->pport->hfi1_wq, &sc->halt_work);
5982 
5983 	/*
5984 	 * Update the counters for the corresponding status bits.
5985 	 * Note that these particular counters are aggregated over all
5986 	 * 160 contexts.
5987 	 */
5988 	for (i = 0; i < NUM_SEND_CTXT_ERR_STATUS_COUNTERS; i++) {
5989 		if (status & (1ull << i))
5990 			incr_cntr64(&dd->sw_ctxt_err_status_cnt[i]);
5991 	}
5992 }
5993 
5994 static void handle_sdma_eng_err(struct hfi1_devdata *dd,
5995 				unsigned int source, u64 status)
5996 {
5997 	struct sdma_engine *sde;
5998 	int i = 0;
5999 
6000 	sde = &dd->per_sdma[source];
6001 #ifdef CONFIG_SDMA_VERBOSITY
6002 	dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
6003 		   slashstrip(__FILE__), __LINE__, __func__);
6004 	dd_dev_err(sde->dd, "CONFIG SDMA(%u) source: %u status 0x%llx\n",
6005 		   sde->this_idx, source, (unsigned long long)status);
6006 #endif
6007 	sde->err_cnt++;
6008 	sdma_engine_error(sde, status);
6009 
6010 	/*
6011 	* Update the counters for the corresponding status bits.
6012 	* Note that these particular counters are aggregated over
6013 	* all 16 DMA engines.
6014 	*/
6015 	for (i = 0; i < NUM_SEND_DMA_ENG_ERR_STATUS_COUNTERS; i++) {
6016 		if (status & (1ull << i))
6017 			incr_cntr64(&dd->sw_send_dma_eng_err_status_cnt[i]);
6018 	}
6019 }
6020 
6021 /*
6022  * CCE block SDMA error interrupt.  Source is < 16.
6023  */
6024 static void is_sdma_eng_err_int(struct hfi1_devdata *dd, unsigned int source)
6025 {
6026 #ifdef CONFIG_SDMA_VERBOSITY
6027 	struct sdma_engine *sde = &dd->per_sdma[source];
6028 
6029 	dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
6030 		   slashstrip(__FILE__), __LINE__, __func__);
6031 	dd_dev_err(dd, "CONFIG SDMA(%u) source: %u\n", sde->this_idx,
6032 		   source);
6033 	sdma_dumpstate(sde);
6034 #endif
6035 	interrupt_clear_down(dd, source, &sdma_eng_err);
6036 }
6037 
6038 /*
6039  * CCE block "various" interrupt.  Source is < 8.
6040  */
6041 static void is_various_int(struct hfi1_devdata *dd, unsigned int source)
6042 {
6043 	const struct err_reg_info *eri = &various_err[source];
6044 
6045 	/*
6046 	 * TCritInt cannot go through interrupt_clear_down()
6047 	 * because it is not a second tier interrupt. The handler
6048 	 * should be called directly.
6049 	 */
6050 	if (source == TCRIT_INT_SOURCE)
6051 		handle_temp_err(dd);
6052 	else if (eri->handler)
6053 		interrupt_clear_down(dd, 0, eri);
6054 	else
6055 		dd_dev_info(dd,
6056 			    "%s: Unimplemented/reserved interrupt %d\n",
6057 			    __func__, source);
6058 }
6059 
6060 static void handle_qsfp_int(struct hfi1_devdata *dd, u32 src_ctx, u64 reg)
6061 {
6062 	/* src_ctx is always zero */
6063 	struct hfi1_pportdata *ppd = dd->pport;
6064 	unsigned long flags;
6065 	u64 qsfp_int_mgmt = (u64)(QSFP_HFI0_INT_N | QSFP_HFI0_MODPRST_N);
6066 
6067 	if (reg & QSFP_HFI0_MODPRST_N) {
6068 		if (!qsfp_mod_present(ppd)) {
6069 			dd_dev_info(dd, "%s: QSFP module removed\n",
6070 				    __func__);
6071 
6072 			ppd->driver_link_ready = 0;
6073 			/*
6074 			 * Cable removed, reset all our information about the
6075 			 * cache and cable capabilities
6076 			 */
6077 
6078 			spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
6079 			/*
6080 			 * We don't set cache_refresh_required here as we expect
6081 			 * an interrupt when a cable is inserted
6082 			 */
6083 			ppd->qsfp_info.cache_valid = 0;
6084 			ppd->qsfp_info.reset_needed = 0;
6085 			ppd->qsfp_info.limiting_active = 0;
6086 			spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock,
6087 					       flags);
6088 			/* Invert the ModPresent pin now to detect plug-in */
6089 			write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_INVERT :
6090 				  ASIC_QSFP1_INVERT, qsfp_int_mgmt);
6091 
6092 			if ((ppd->offline_disabled_reason >
6093 			  HFI1_ODR_MASK(
6094 			  OPA_LINKDOWN_REASON_LOCAL_MEDIA_NOT_INSTALLED)) ||
6095 			  (ppd->offline_disabled_reason ==
6096 			  HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE)))
6097 				ppd->offline_disabled_reason =
6098 				HFI1_ODR_MASK(
6099 				OPA_LINKDOWN_REASON_LOCAL_MEDIA_NOT_INSTALLED);
6100 
6101 			if (ppd->host_link_state == HLS_DN_POLL) {
6102 				/*
6103 				 * The link is still in POLL. This means
6104 				 * that the normal link down processing
6105 				 * will not happen. We have to do it here
6106 				 * before turning the DC off.
6107 				 */
6108 				queue_work(ppd->link_wq, &ppd->link_down_work);
6109 			}
6110 		} else {
6111 			dd_dev_info(dd, "%s: QSFP module inserted\n",
6112 				    __func__);
6113 
6114 			spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
6115 			ppd->qsfp_info.cache_valid = 0;
6116 			ppd->qsfp_info.cache_refresh_required = 1;
6117 			spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock,
6118 					       flags);
6119 
6120 			/*
6121 			 * Stop inversion of ModPresent pin to detect
6122 			 * removal of the cable
6123 			 */
6124 			qsfp_int_mgmt &= ~(u64)QSFP_HFI0_MODPRST_N;
6125 			write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_INVERT :
6126 				  ASIC_QSFP1_INVERT, qsfp_int_mgmt);
6127 
6128 			ppd->offline_disabled_reason =
6129 				HFI1_ODR_MASK(OPA_LINKDOWN_REASON_TRANSIENT);
6130 		}
6131 	}
6132 
6133 	if (reg & QSFP_HFI0_INT_N) {
6134 		dd_dev_info(dd, "%s: Interrupt received from QSFP module\n",
6135 			    __func__);
6136 		spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
6137 		ppd->qsfp_info.check_interrupt_flags = 1;
6138 		spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock, flags);
6139 	}
6140 
6141 	/* Schedule the QSFP work only if there is a cable attached. */
6142 	if (qsfp_mod_present(ppd))
6143 		queue_work(ppd->link_wq, &ppd->qsfp_info.qsfp_work);
6144 }
6145 
6146 static int request_host_lcb_access(struct hfi1_devdata *dd)
6147 {
6148 	int ret;
6149 
6150 	ret = do_8051_command(dd, HCMD_MISC,
6151 			      (u64)HCMD_MISC_REQUEST_LCB_ACCESS <<
6152 			      LOAD_DATA_FIELD_ID_SHIFT, NULL);
6153 	if (ret != HCMD_SUCCESS) {
6154 		dd_dev_err(dd, "%s: command failed with error %d\n",
6155 			   __func__, ret);
6156 	}
6157 	return ret == HCMD_SUCCESS ? 0 : -EBUSY;
6158 }
6159 
6160 static int request_8051_lcb_access(struct hfi1_devdata *dd)
6161 {
6162 	int ret;
6163 
6164 	ret = do_8051_command(dd, HCMD_MISC,
6165 			      (u64)HCMD_MISC_GRANT_LCB_ACCESS <<
6166 			      LOAD_DATA_FIELD_ID_SHIFT, NULL);
6167 	if (ret != HCMD_SUCCESS) {
6168 		dd_dev_err(dd, "%s: command failed with error %d\n",
6169 			   __func__, ret);
6170 	}
6171 	return ret == HCMD_SUCCESS ? 0 : -EBUSY;
6172 }
6173 
6174 /*
6175  * Set the LCB selector - allow host access.  The DCC selector always
6176  * points to the host.
6177  */
6178 static inline void set_host_lcb_access(struct hfi1_devdata *dd)
6179 {
6180 	write_csr(dd, DC_DC8051_CFG_CSR_ACCESS_SEL,
6181 		  DC_DC8051_CFG_CSR_ACCESS_SEL_DCC_SMASK |
6182 		  DC_DC8051_CFG_CSR_ACCESS_SEL_LCB_SMASK);
6183 }
6184 
6185 /*
6186  * Clear the LCB selector - allow 8051 access.  The DCC selector always
6187  * points to the host.
6188  */
6189 static inline void set_8051_lcb_access(struct hfi1_devdata *dd)
6190 {
6191 	write_csr(dd, DC_DC8051_CFG_CSR_ACCESS_SEL,
6192 		  DC_DC8051_CFG_CSR_ACCESS_SEL_DCC_SMASK);
6193 }
6194 
6195 /*
6196  * Acquire LCB access from the 8051.  If the host already has access,
6197  * just increment a counter.  Otherwise, inform the 8051 that the
6198  * host is taking access.
6199  *
6200  * Returns:
6201  *	0 on success
6202  *	-EBUSY if the 8051 has control and cannot be disturbed
6203  *	-errno if unable to acquire access from the 8051
6204  */
6205 int acquire_lcb_access(struct hfi1_devdata *dd, int sleep_ok)
6206 {
6207 	struct hfi1_pportdata *ppd = dd->pport;
6208 	int ret = 0;
6209 
6210 	/*
6211 	 * Use the host link state lock so the operation of this routine
6212 	 * { link state check, selector change, count increment } can occur
6213 	 * as a unit against a link state change.  Otherwise there is a
6214 	 * race between the state change and the count increment.
6215 	 */
6216 	if (sleep_ok) {
6217 		mutex_lock(&ppd->hls_lock);
6218 	} else {
6219 		while (!mutex_trylock(&ppd->hls_lock))
6220 			udelay(1);
6221 	}
6222 
6223 	/* this access is valid only when the link is up */
6224 	if (ppd->host_link_state & HLS_DOWN) {
6225 		dd_dev_info(dd, "%s: link state %s not up\n",
6226 			    __func__, link_state_name(ppd->host_link_state));
6227 		ret = -EBUSY;
6228 		goto done;
6229 	}
6230 
6231 	if (dd->lcb_access_count == 0) {
6232 		ret = request_host_lcb_access(dd);
6233 		if (ret) {
6234 			dd_dev_err(dd,
6235 				   "%s: unable to acquire LCB access, err %d\n",
6236 				   __func__, ret);
6237 			goto done;
6238 		}
6239 		set_host_lcb_access(dd);
6240 	}
6241 	dd->lcb_access_count++;
6242 done:
6243 	mutex_unlock(&ppd->hls_lock);
6244 	return ret;
6245 }
6246 
6247 /*
6248  * Release LCB access by decrementing the use count.  If the count is moving
6249  * from 1 to 0, inform 8051 that it has control back.
6250  *
6251  * Returns:
6252  *	0 on success
6253  *	-errno if unable to release access to the 8051
6254  */
6255 int release_lcb_access(struct hfi1_devdata *dd, int sleep_ok)
6256 {
6257 	int ret = 0;
6258 
6259 	/*
6260 	 * Use the host link state lock because the acquire needed it.
6261 	 * Here, we only need to keep { selector change, count decrement }
6262 	 * as a unit.
6263 	 */
6264 	if (sleep_ok) {
6265 		mutex_lock(&dd->pport->hls_lock);
6266 	} else {
6267 		while (!mutex_trylock(&dd->pport->hls_lock))
6268 			udelay(1);
6269 	}
6270 
6271 	if (dd->lcb_access_count == 0) {
6272 		dd_dev_err(dd, "%s: LCB access count is zero.  Skipping.\n",
6273 			   __func__);
6274 		goto done;
6275 	}
6276 
6277 	if (dd->lcb_access_count == 1) {
6278 		set_8051_lcb_access(dd);
6279 		ret = request_8051_lcb_access(dd);
6280 		if (ret) {
6281 			dd_dev_err(dd,
6282 				   "%s: unable to release LCB access, err %d\n",
6283 				   __func__, ret);
6284 			/* restore host access if the grant didn't work */
6285 			set_host_lcb_access(dd);
6286 			goto done;
6287 		}
6288 	}
6289 	dd->lcb_access_count--;
6290 done:
6291 	mutex_unlock(&dd->pport->hls_lock);
6292 	return ret;
6293 }
6294 
6295 /*
6296  * Initialize LCB access variables and state.  Called during driver load,
6297  * after most of the initialization is finished.
6298  *
6299  * The DC default is LCB access on for the host.  The driver defaults to
6300  * leaving access to the 8051.  Assign access now - this constrains the call
6301  * to this routine to be after all LCB set-up is done.  In particular, after
6302  * hf1_init_dd() -> set_up_interrupts() -> clear_all_interrupts()
6303  */
6304 static void init_lcb_access(struct hfi1_devdata *dd)
6305 {
6306 	dd->lcb_access_count = 0;
6307 }
6308 
6309 /*
6310  * Write a response back to a 8051 request.
6311  */
6312 static void hreq_response(struct hfi1_devdata *dd, u8 return_code, u16 rsp_data)
6313 {
6314 	write_csr(dd, DC_DC8051_CFG_EXT_DEV_0,
6315 		  DC_DC8051_CFG_EXT_DEV_0_COMPLETED_SMASK |
6316 		  (u64)return_code <<
6317 		  DC_DC8051_CFG_EXT_DEV_0_RETURN_CODE_SHIFT |
6318 		  (u64)rsp_data << DC_DC8051_CFG_EXT_DEV_0_RSP_DATA_SHIFT);
6319 }
6320 
6321 /*
6322  * Handle host requests from the 8051.
6323  */
6324 static void handle_8051_request(struct hfi1_pportdata *ppd)
6325 {
6326 	struct hfi1_devdata *dd = ppd->dd;
6327 	u64 reg;
6328 	u16 data = 0;
6329 	u8 type;
6330 
6331 	reg = read_csr(dd, DC_DC8051_CFG_EXT_DEV_1);
6332 	if ((reg & DC_DC8051_CFG_EXT_DEV_1_REQ_NEW_SMASK) == 0)
6333 		return;	/* no request */
6334 
6335 	/* zero out COMPLETED so the response is seen */
6336 	write_csr(dd, DC_DC8051_CFG_EXT_DEV_0, 0);
6337 
6338 	/* extract request details */
6339 	type = (reg >> DC_DC8051_CFG_EXT_DEV_1_REQ_TYPE_SHIFT)
6340 			& DC_DC8051_CFG_EXT_DEV_1_REQ_TYPE_MASK;
6341 	data = (reg >> DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SHIFT)
6342 			& DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_MASK;
6343 
6344 	switch (type) {
6345 	case HREQ_LOAD_CONFIG:
6346 	case HREQ_SAVE_CONFIG:
6347 	case HREQ_READ_CONFIG:
6348 	case HREQ_SET_TX_EQ_ABS:
6349 	case HREQ_SET_TX_EQ_REL:
6350 	case HREQ_ENABLE:
6351 		dd_dev_info(dd, "8051 request: request 0x%x not supported\n",
6352 			    type);
6353 		hreq_response(dd, HREQ_NOT_SUPPORTED, 0);
6354 		break;
6355 	case HREQ_CONFIG_DONE:
6356 		hreq_response(dd, HREQ_SUCCESS, 0);
6357 		break;
6358 
6359 	case HREQ_INTERFACE_TEST:
6360 		hreq_response(dd, HREQ_SUCCESS, data);
6361 		break;
6362 	default:
6363 		dd_dev_err(dd, "8051 request: unknown request 0x%x\n", type);
6364 		hreq_response(dd, HREQ_NOT_SUPPORTED, 0);
6365 		break;
6366 	}
6367 }
6368 
6369 /*
6370  * Set up allocation unit vaulue.
6371  */
6372 void set_up_vau(struct hfi1_devdata *dd, u8 vau)
6373 {
6374 	u64 reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
6375 
6376 	/* do not modify other values in the register */
6377 	reg &= ~SEND_CM_GLOBAL_CREDIT_AU_SMASK;
6378 	reg |= (u64)vau << SEND_CM_GLOBAL_CREDIT_AU_SHIFT;
6379 	write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg);
6380 }
6381 
6382 /*
6383  * Set up initial VL15 credits of the remote.  Assumes the rest of
6384  * the CM credit registers are zero from a previous global or credit reset.
6385  * Shared limit for VL15 will always be 0.
6386  */
6387 void set_up_vl15(struct hfi1_devdata *dd, u16 vl15buf)
6388 {
6389 	u64 reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
6390 
6391 	/* set initial values for total and shared credit limit */
6392 	reg &= ~(SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SMASK |
6393 		 SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SMASK);
6394 
6395 	/*
6396 	 * Set total limit to be equal to VL15 credits.
6397 	 * Leave shared limit at 0.
6398 	 */
6399 	reg |= (u64)vl15buf << SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT;
6400 	write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg);
6401 
6402 	write_csr(dd, SEND_CM_CREDIT_VL15, (u64)vl15buf
6403 		  << SEND_CM_CREDIT_VL15_DEDICATED_LIMIT_VL_SHIFT);
6404 }
6405 
6406 /*
6407  * Zero all credit details from the previous connection and
6408  * reset the CM manager's internal counters.
6409  */
6410 void reset_link_credits(struct hfi1_devdata *dd)
6411 {
6412 	int i;
6413 
6414 	/* remove all previous VL credit limits */
6415 	for (i = 0; i < TXE_NUM_DATA_VL; i++)
6416 		write_csr(dd, SEND_CM_CREDIT_VL + (8 * i), 0);
6417 	write_csr(dd, SEND_CM_CREDIT_VL15, 0);
6418 	write_csr(dd, SEND_CM_GLOBAL_CREDIT, 0);
6419 	/* reset the CM block */
6420 	pio_send_control(dd, PSC_CM_RESET);
6421 	/* reset cached value */
6422 	dd->vl15buf_cached = 0;
6423 }
6424 
6425 /* convert a vCU to a CU */
6426 static u32 vcu_to_cu(u8 vcu)
6427 {
6428 	return 1 << vcu;
6429 }
6430 
6431 /* convert a CU to a vCU */
6432 static u8 cu_to_vcu(u32 cu)
6433 {
6434 	return ilog2(cu);
6435 }
6436 
6437 /* convert a vAU to an AU */
6438 static u32 vau_to_au(u8 vau)
6439 {
6440 	return 8 * (1 << vau);
6441 }
6442 
6443 static void set_linkup_defaults(struct hfi1_pportdata *ppd)
6444 {
6445 	ppd->sm_trap_qp = 0x0;
6446 	ppd->sa_qp = 0x1;
6447 }
6448 
6449 /*
6450  * Graceful LCB shutdown.  This leaves the LCB FIFOs in reset.
6451  */
6452 static void lcb_shutdown(struct hfi1_devdata *dd, int abort)
6453 {
6454 	u64 reg;
6455 
6456 	/* clear lcb run: LCB_CFG_RUN.EN = 0 */
6457 	write_csr(dd, DC_LCB_CFG_RUN, 0);
6458 	/* set tx fifo reset: LCB_CFG_TX_FIFOS_RESET.VAL = 1 */
6459 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET,
6460 		  1ull << DC_LCB_CFG_TX_FIFOS_RESET_VAL_SHIFT);
6461 	/* set dcc reset csr: DCC_CFG_RESET.{reset_lcb,reset_rx_fpe} = 1 */
6462 	dd->lcb_err_en = read_csr(dd, DC_LCB_ERR_EN);
6463 	reg = read_csr(dd, DCC_CFG_RESET);
6464 	write_csr(dd, DCC_CFG_RESET, reg |
6465 		  (1ull << DCC_CFG_RESET_RESET_LCB_SHIFT) |
6466 		  (1ull << DCC_CFG_RESET_RESET_RX_FPE_SHIFT));
6467 	(void)read_csr(dd, DCC_CFG_RESET); /* make sure the write completed */
6468 	if (!abort) {
6469 		udelay(1);    /* must hold for the longer of 16cclks or 20ns */
6470 		write_csr(dd, DCC_CFG_RESET, reg);
6471 		write_csr(dd, DC_LCB_ERR_EN, dd->lcb_err_en);
6472 	}
6473 }
6474 
6475 /*
6476  * This routine should be called after the link has been transitioned to
6477  * OFFLINE (OFFLINE state has the side effect of putting the SerDes into
6478  * reset).
6479  *
6480  * The expectation is that the caller of this routine would have taken
6481  * care of properly transitioning the link into the correct state.
6482  * NOTE: the caller needs to acquire the dd->dc8051_lock lock
6483  *       before calling this function.
6484  */
6485 static void _dc_shutdown(struct hfi1_devdata *dd)
6486 {
6487 	lockdep_assert_held(&dd->dc8051_lock);
6488 
6489 	if (dd->dc_shutdown)
6490 		return;
6491 
6492 	dd->dc_shutdown = 1;
6493 	/* Shutdown the LCB */
6494 	lcb_shutdown(dd, 1);
6495 	/*
6496 	 * Going to OFFLINE would have causes the 8051 to put the
6497 	 * SerDes into reset already. Just need to shut down the 8051,
6498 	 * itself.
6499 	 */
6500 	write_csr(dd, DC_DC8051_CFG_RST, 0x1);
6501 }
6502 
6503 static void dc_shutdown(struct hfi1_devdata *dd)
6504 {
6505 	mutex_lock(&dd->dc8051_lock);
6506 	_dc_shutdown(dd);
6507 	mutex_unlock(&dd->dc8051_lock);
6508 }
6509 
6510 /*
6511  * Calling this after the DC has been brought out of reset should not
6512  * do any damage.
6513  * NOTE: the caller needs to acquire the dd->dc8051_lock lock
6514  *       before calling this function.
6515  */
6516 static void _dc_start(struct hfi1_devdata *dd)
6517 {
6518 	lockdep_assert_held(&dd->dc8051_lock);
6519 
6520 	if (!dd->dc_shutdown)
6521 		return;
6522 
6523 	/* Take the 8051 out of reset */
6524 	write_csr(dd, DC_DC8051_CFG_RST, 0ull);
6525 	/* Wait until 8051 is ready */
6526 	if (wait_fm_ready(dd, TIMEOUT_8051_START))
6527 		dd_dev_err(dd, "%s: timeout starting 8051 firmware\n",
6528 			   __func__);
6529 
6530 	/* Take away reset for LCB and RX FPE (set in lcb_shutdown). */
6531 	write_csr(dd, DCC_CFG_RESET, 0x10);
6532 	/* lcb_shutdown() with abort=1 does not restore these */
6533 	write_csr(dd, DC_LCB_ERR_EN, dd->lcb_err_en);
6534 	dd->dc_shutdown = 0;
6535 }
6536 
6537 static void dc_start(struct hfi1_devdata *dd)
6538 {
6539 	mutex_lock(&dd->dc8051_lock);
6540 	_dc_start(dd);
6541 	mutex_unlock(&dd->dc8051_lock);
6542 }
6543 
6544 /*
6545  * These LCB adjustments are for the Aurora SerDes core in the FPGA.
6546  */
6547 static void adjust_lcb_for_fpga_serdes(struct hfi1_devdata *dd)
6548 {
6549 	u64 rx_radr, tx_radr;
6550 	u32 version;
6551 
6552 	if (dd->icode != ICODE_FPGA_EMULATION)
6553 		return;
6554 
6555 	/*
6556 	 * These LCB defaults on emulator _s are good, nothing to do here:
6557 	 *	LCB_CFG_TX_FIFOS_RADR
6558 	 *	LCB_CFG_RX_FIFOS_RADR
6559 	 *	LCB_CFG_LN_DCLK
6560 	 *	LCB_CFG_IGNORE_LOST_RCLK
6561 	 */
6562 	if (is_emulator_s(dd))
6563 		return;
6564 	/* else this is _p */
6565 
6566 	version = emulator_rev(dd);
6567 	if (!is_ax(dd))
6568 		version = 0x2d;	/* all B0 use 0x2d or higher settings */
6569 
6570 	if (version <= 0x12) {
6571 		/* release 0x12 and below */
6572 
6573 		/*
6574 		 * LCB_CFG_RX_FIFOS_RADR.RST_VAL = 0x9
6575 		 * LCB_CFG_RX_FIFOS_RADR.OK_TO_JUMP_VAL = 0x9
6576 		 * LCB_CFG_RX_FIFOS_RADR.DO_NOT_JUMP_VAL = 0xa
6577 		 */
6578 		rx_radr =
6579 		      0xaull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6580 		    | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6581 		    | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6582 		/*
6583 		 * LCB_CFG_TX_FIFOS_RADR.ON_REINIT = 0 (default)
6584 		 * LCB_CFG_TX_FIFOS_RADR.RST_VAL = 6
6585 		 */
6586 		tx_radr = 6ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6587 	} else if (version <= 0x18) {
6588 		/* release 0x13 up to 0x18 */
6589 		/* LCB_CFG_RX_FIFOS_RADR = 0x988 */
6590 		rx_radr =
6591 		      0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6592 		    | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6593 		    | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6594 		tx_radr = 7ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6595 	} else if (version == 0x19) {
6596 		/* release 0x19 */
6597 		/* LCB_CFG_RX_FIFOS_RADR = 0xa99 */
6598 		rx_radr =
6599 		      0xAull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6600 		    | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6601 		    | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6602 		tx_radr = 3ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6603 	} else if (version == 0x1a) {
6604 		/* release 0x1a */
6605 		/* LCB_CFG_RX_FIFOS_RADR = 0x988 */
6606 		rx_radr =
6607 		      0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6608 		    | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6609 		    | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6610 		tx_radr = 7ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6611 		write_csr(dd, DC_LCB_CFG_LN_DCLK, 1ull);
6612 	} else {
6613 		/* release 0x1b and higher */
6614 		/* LCB_CFG_RX_FIFOS_RADR = 0x877 */
6615 		rx_radr =
6616 		      0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6617 		    | 0x7ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6618 		    | 0x7ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6619 		tx_radr = 3ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6620 	}
6621 
6622 	write_csr(dd, DC_LCB_CFG_RX_FIFOS_RADR, rx_radr);
6623 	/* LCB_CFG_IGNORE_LOST_RCLK.EN = 1 */
6624 	write_csr(dd, DC_LCB_CFG_IGNORE_LOST_RCLK,
6625 		  DC_LCB_CFG_IGNORE_LOST_RCLK_EN_SMASK);
6626 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RADR, tx_radr);
6627 }
6628 
6629 /*
6630  * Handle a SMA idle message
6631  *
6632  * This is a work-queue function outside of the interrupt.
6633  */
6634 void handle_sma_message(struct work_struct *work)
6635 {
6636 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
6637 							sma_message_work);
6638 	struct hfi1_devdata *dd = ppd->dd;
6639 	u64 msg;
6640 	int ret;
6641 
6642 	/*
6643 	 * msg is bytes 1-4 of the 40-bit idle message - the command code
6644 	 * is stripped off
6645 	 */
6646 	ret = read_idle_sma(dd, &msg);
6647 	if (ret)
6648 		return;
6649 	dd_dev_info(dd, "%s: SMA message 0x%llx\n", __func__, msg);
6650 	/*
6651 	 * React to the SMA message.  Byte[1] (0 for us) is the command.
6652 	 */
6653 	switch (msg & 0xff) {
6654 	case SMA_IDLE_ARM:
6655 		/*
6656 		 * See OPAv1 table 9-14 - HFI and External Switch Ports Key
6657 		 * State Transitions
6658 		 *
6659 		 * Only expected in INIT or ARMED, discard otherwise.
6660 		 */
6661 		if (ppd->host_link_state & (HLS_UP_INIT | HLS_UP_ARMED))
6662 			ppd->neighbor_normal = 1;
6663 		break;
6664 	case SMA_IDLE_ACTIVE:
6665 		/*
6666 		 * See OPAv1 table 9-14 - HFI and External Switch Ports Key
6667 		 * State Transitions
6668 		 *
6669 		 * Can activate the node.  Discard otherwise.
6670 		 */
6671 		if (ppd->host_link_state == HLS_UP_ARMED &&
6672 		    ppd->is_active_optimize_enabled) {
6673 			ppd->neighbor_normal = 1;
6674 			ret = set_link_state(ppd, HLS_UP_ACTIVE);
6675 			if (ret)
6676 				dd_dev_err(
6677 					dd,
6678 					"%s: received Active SMA idle message, couldn't set link to Active\n",
6679 					__func__);
6680 		}
6681 		break;
6682 	default:
6683 		dd_dev_err(dd,
6684 			   "%s: received unexpected SMA idle message 0x%llx\n",
6685 			   __func__, msg);
6686 		break;
6687 	}
6688 }
6689 
6690 static void adjust_rcvctrl(struct hfi1_devdata *dd, u64 add, u64 clear)
6691 {
6692 	u64 rcvctrl;
6693 	unsigned long flags;
6694 
6695 	spin_lock_irqsave(&dd->rcvctrl_lock, flags);
6696 	rcvctrl = read_csr(dd, RCV_CTRL);
6697 	rcvctrl |= add;
6698 	rcvctrl &= ~clear;
6699 	write_csr(dd, RCV_CTRL, rcvctrl);
6700 	spin_unlock_irqrestore(&dd->rcvctrl_lock, flags);
6701 }
6702 
6703 static inline void add_rcvctrl(struct hfi1_devdata *dd, u64 add)
6704 {
6705 	adjust_rcvctrl(dd, add, 0);
6706 }
6707 
6708 static inline void clear_rcvctrl(struct hfi1_devdata *dd, u64 clear)
6709 {
6710 	adjust_rcvctrl(dd, 0, clear);
6711 }
6712 
6713 /*
6714  * Called from all interrupt handlers to start handling an SPC freeze.
6715  */
6716 void start_freeze_handling(struct hfi1_pportdata *ppd, int flags)
6717 {
6718 	struct hfi1_devdata *dd = ppd->dd;
6719 	struct send_context *sc;
6720 	int i;
6721 
6722 	if (flags & FREEZE_SELF)
6723 		write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_FREEZE_SMASK);
6724 
6725 	/* enter frozen mode */
6726 	dd->flags |= HFI1_FROZEN;
6727 
6728 	/* notify all SDMA engines that they are going into a freeze */
6729 	sdma_freeze_notify(dd, !!(flags & FREEZE_LINK_DOWN));
6730 
6731 	/* do halt pre-handling on all enabled send contexts */
6732 	for (i = 0; i < dd->num_send_contexts; i++) {
6733 		sc = dd->send_contexts[i].sc;
6734 		if (sc && (sc->flags & SCF_ENABLED))
6735 			sc_stop(sc, SCF_FROZEN | SCF_HALTED);
6736 	}
6737 
6738 	/* Send context are frozen. Notify user space */
6739 	hfi1_set_uevent_bits(ppd, _HFI1_EVENT_FROZEN_BIT);
6740 
6741 	if (flags & FREEZE_ABORT) {
6742 		dd_dev_err(dd,
6743 			   "Aborted freeze recovery. Please REBOOT system\n");
6744 		return;
6745 	}
6746 	/* queue non-interrupt handler */
6747 	queue_work(ppd->hfi1_wq, &ppd->freeze_work);
6748 }
6749 
6750 /*
6751  * Wait until all 4 sub-blocks indicate that they have frozen or unfrozen,
6752  * depending on the "freeze" parameter.
6753  *
6754  * No need to return an error if it times out, our only option
6755  * is to proceed anyway.
6756  */
6757 static void wait_for_freeze_status(struct hfi1_devdata *dd, int freeze)
6758 {
6759 	unsigned long timeout;
6760 	u64 reg;
6761 
6762 	timeout = jiffies + msecs_to_jiffies(FREEZE_STATUS_TIMEOUT);
6763 	while (1) {
6764 		reg = read_csr(dd, CCE_STATUS);
6765 		if (freeze) {
6766 			/* waiting until all indicators are set */
6767 			if ((reg & ALL_FROZE) == ALL_FROZE)
6768 				return;	/* all done */
6769 		} else {
6770 			/* waiting until all indicators are clear */
6771 			if ((reg & ALL_FROZE) == 0)
6772 				return; /* all done */
6773 		}
6774 
6775 		if (time_after(jiffies, timeout)) {
6776 			dd_dev_err(dd,
6777 				   "Time out waiting for SPC %sfreeze, bits 0x%llx, expecting 0x%llx, continuing",
6778 				   freeze ? "" : "un", reg & ALL_FROZE,
6779 				   freeze ? ALL_FROZE : 0ull);
6780 			return;
6781 		}
6782 		usleep_range(80, 120);
6783 	}
6784 }
6785 
6786 /*
6787  * Do all freeze handling for the RXE block.
6788  */
6789 static void rxe_freeze(struct hfi1_devdata *dd)
6790 {
6791 	int i;
6792 	struct hfi1_ctxtdata *rcd;
6793 
6794 	/* disable port */
6795 	clear_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
6796 
6797 	/* disable all receive contexts */
6798 	for (i = 0; i < dd->num_rcv_contexts; i++) {
6799 		rcd = hfi1_rcd_get_by_index(dd, i);
6800 		hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_DIS, rcd);
6801 		hfi1_rcd_put(rcd);
6802 	}
6803 }
6804 
6805 /*
6806  * Unfreeze handling for the RXE block - kernel contexts only.
6807  * This will also enable the port.  User contexts will do unfreeze
6808  * handling on a per-context basis as they call into the driver.
6809  *
6810  */
6811 static void rxe_kernel_unfreeze(struct hfi1_devdata *dd)
6812 {
6813 	u32 rcvmask;
6814 	u16 i;
6815 	struct hfi1_ctxtdata *rcd;
6816 
6817 	/* enable all kernel contexts */
6818 	for (i = 0; i < dd->num_rcv_contexts; i++) {
6819 		rcd = hfi1_rcd_get_by_index(dd, i);
6820 
6821 		/* Ensure all non-user contexts(including vnic) are enabled */
6822 		if (!rcd || !rcd->sc || (rcd->sc->type == SC_USER)) {
6823 			hfi1_rcd_put(rcd);
6824 			continue;
6825 		}
6826 		rcvmask = HFI1_RCVCTRL_CTXT_ENB;
6827 		/* HFI1_RCVCTRL_TAILUPD_[ENB|DIS] needs to be set explicitly */
6828 		rcvmask |= HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL) ?
6829 			HFI1_RCVCTRL_TAILUPD_ENB : HFI1_RCVCTRL_TAILUPD_DIS;
6830 		hfi1_rcvctrl(dd, rcvmask, rcd);
6831 		hfi1_rcd_put(rcd);
6832 	}
6833 
6834 	/* enable port */
6835 	add_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
6836 }
6837 
6838 /*
6839  * Non-interrupt SPC freeze handling.
6840  *
6841  * This is a work-queue function outside of the triggering interrupt.
6842  */
6843 void handle_freeze(struct work_struct *work)
6844 {
6845 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
6846 								freeze_work);
6847 	struct hfi1_devdata *dd = ppd->dd;
6848 
6849 	/* wait for freeze indicators on all affected blocks */
6850 	wait_for_freeze_status(dd, 1);
6851 
6852 	/* SPC is now frozen */
6853 
6854 	/* do send PIO freeze steps */
6855 	pio_freeze(dd);
6856 
6857 	/* do send DMA freeze steps */
6858 	sdma_freeze(dd);
6859 
6860 	/* do send egress freeze steps - nothing to do */
6861 
6862 	/* do receive freeze steps */
6863 	rxe_freeze(dd);
6864 
6865 	/*
6866 	 * Unfreeze the hardware - clear the freeze, wait for each
6867 	 * block's frozen bit to clear, then clear the frozen flag.
6868 	 */
6869 	write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_UNFREEZE_SMASK);
6870 	wait_for_freeze_status(dd, 0);
6871 
6872 	if (is_ax(dd)) {
6873 		write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_FREEZE_SMASK);
6874 		wait_for_freeze_status(dd, 1);
6875 		write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_UNFREEZE_SMASK);
6876 		wait_for_freeze_status(dd, 0);
6877 	}
6878 
6879 	/* do send PIO unfreeze steps for kernel contexts */
6880 	pio_kernel_unfreeze(dd);
6881 
6882 	/* do send DMA unfreeze steps */
6883 	sdma_unfreeze(dd);
6884 
6885 	/* do send egress unfreeze steps - nothing to do */
6886 
6887 	/* do receive unfreeze steps for kernel contexts */
6888 	rxe_kernel_unfreeze(dd);
6889 
6890 	/*
6891 	 * The unfreeze procedure touches global device registers when
6892 	 * it disables and re-enables RXE. Mark the device unfrozen
6893 	 * after all that is done so other parts of the driver waiting
6894 	 * for the device to unfreeze don't do things out of order.
6895 	 *
6896 	 * The above implies that the meaning of HFI1_FROZEN flag is
6897 	 * "Device has gone into freeze mode and freeze mode handling
6898 	 * is still in progress."
6899 	 *
6900 	 * The flag will be removed when freeze mode processing has
6901 	 * completed.
6902 	 */
6903 	dd->flags &= ~HFI1_FROZEN;
6904 	wake_up(&dd->event_queue);
6905 
6906 	/* no longer frozen */
6907 }
6908 
6909 /*
6910  * Handle a link up interrupt from the 8051.
6911  *
6912  * This is a work-queue function outside of the interrupt.
6913  */
6914 void handle_link_up(struct work_struct *work)
6915 {
6916 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
6917 						  link_up_work);
6918 	struct hfi1_devdata *dd = ppd->dd;
6919 
6920 	set_link_state(ppd, HLS_UP_INIT);
6921 
6922 	/* cache the read of DC_LCB_STS_ROUND_TRIP_LTP_CNT */
6923 	read_ltp_rtt(dd);
6924 	/*
6925 	 * OPA specifies that certain counters are cleared on a transition
6926 	 * to link up, so do that.
6927 	 */
6928 	clear_linkup_counters(dd);
6929 	/*
6930 	 * And (re)set link up default values.
6931 	 */
6932 	set_linkup_defaults(ppd);
6933 
6934 	/*
6935 	 * Set VL15 credits. Use cached value from verify cap interrupt.
6936 	 * In case of quick linkup or simulator, vl15 value will be set by
6937 	 * handle_linkup_change. VerifyCap interrupt handler will not be
6938 	 * called in those scenarios.
6939 	 */
6940 	if (!(quick_linkup || dd->icode == ICODE_FUNCTIONAL_SIMULATOR))
6941 		set_up_vl15(dd, dd->vl15buf_cached);
6942 
6943 	/* enforce link speed enabled */
6944 	if ((ppd->link_speed_active & ppd->link_speed_enabled) == 0) {
6945 		/* oops - current speed is not enabled, bounce */
6946 		dd_dev_err(dd,
6947 			   "Link speed active 0x%x is outside enabled 0x%x, downing link\n",
6948 			   ppd->link_speed_active, ppd->link_speed_enabled);
6949 		set_link_down_reason(ppd, OPA_LINKDOWN_REASON_SPEED_POLICY, 0,
6950 				     OPA_LINKDOWN_REASON_SPEED_POLICY);
6951 		set_link_state(ppd, HLS_DN_OFFLINE);
6952 		start_link(ppd);
6953 	}
6954 }
6955 
6956 /*
6957  * Several pieces of LNI information were cached for SMA in ppd.
6958  * Reset these on link down
6959  */
6960 static void reset_neighbor_info(struct hfi1_pportdata *ppd)
6961 {
6962 	ppd->neighbor_guid = 0;
6963 	ppd->neighbor_port_number = 0;
6964 	ppd->neighbor_type = 0;
6965 	ppd->neighbor_fm_security = 0;
6966 }
6967 
6968 static const char * const link_down_reason_strs[] = {
6969 	[OPA_LINKDOWN_REASON_NONE] = "None",
6970 	[OPA_LINKDOWN_REASON_RCV_ERROR_0] = "Receive error 0",
6971 	[OPA_LINKDOWN_REASON_BAD_PKT_LEN] = "Bad packet length",
6972 	[OPA_LINKDOWN_REASON_PKT_TOO_LONG] = "Packet too long",
6973 	[OPA_LINKDOWN_REASON_PKT_TOO_SHORT] = "Packet too short",
6974 	[OPA_LINKDOWN_REASON_BAD_SLID] = "Bad SLID",
6975 	[OPA_LINKDOWN_REASON_BAD_DLID] = "Bad DLID",
6976 	[OPA_LINKDOWN_REASON_BAD_L2] = "Bad L2",
6977 	[OPA_LINKDOWN_REASON_BAD_SC] = "Bad SC",
6978 	[OPA_LINKDOWN_REASON_RCV_ERROR_8] = "Receive error 8",
6979 	[OPA_LINKDOWN_REASON_BAD_MID_TAIL] = "Bad mid tail",
6980 	[OPA_LINKDOWN_REASON_RCV_ERROR_10] = "Receive error 10",
6981 	[OPA_LINKDOWN_REASON_PREEMPT_ERROR] = "Preempt error",
6982 	[OPA_LINKDOWN_REASON_PREEMPT_VL15] = "Preempt vl15",
6983 	[OPA_LINKDOWN_REASON_BAD_VL_MARKER] = "Bad VL marker",
6984 	[OPA_LINKDOWN_REASON_RCV_ERROR_14] = "Receive error 14",
6985 	[OPA_LINKDOWN_REASON_RCV_ERROR_15] = "Receive error 15",
6986 	[OPA_LINKDOWN_REASON_BAD_HEAD_DIST] = "Bad head distance",
6987 	[OPA_LINKDOWN_REASON_BAD_TAIL_DIST] = "Bad tail distance",
6988 	[OPA_LINKDOWN_REASON_BAD_CTRL_DIST] = "Bad control distance",
6989 	[OPA_LINKDOWN_REASON_BAD_CREDIT_ACK] = "Bad credit ack",
6990 	[OPA_LINKDOWN_REASON_UNSUPPORTED_VL_MARKER] = "Unsupported VL marker",
6991 	[OPA_LINKDOWN_REASON_BAD_PREEMPT] = "Bad preempt",
6992 	[OPA_LINKDOWN_REASON_BAD_CONTROL_FLIT] = "Bad control flit",
6993 	[OPA_LINKDOWN_REASON_EXCEED_MULTICAST_LIMIT] = "Exceed multicast limit",
6994 	[OPA_LINKDOWN_REASON_RCV_ERROR_24] = "Receive error 24",
6995 	[OPA_LINKDOWN_REASON_RCV_ERROR_25] = "Receive error 25",
6996 	[OPA_LINKDOWN_REASON_RCV_ERROR_26] = "Receive error 26",
6997 	[OPA_LINKDOWN_REASON_RCV_ERROR_27] = "Receive error 27",
6998 	[OPA_LINKDOWN_REASON_RCV_ERROR_28] = "Receive error 28",
6999 	[OPA_LINKDOWN_REASON_RCV_ERROR_29] = "Receive error 29",
7000 	[OPA_LINKDOWN_REASON_RCV_ERROR_30] = "Receive error 30",
7001 	[OPA_LINKDOWN_REASON_EXCESSIVE_BUFFER_OVERRUN] =
7002 					"Excessive buffer overrun",
7003 	[OPA_LINKDOWN_REASON_UNKNOWN] = "Unknown",
7004 	[OPA_LINKDOWN_REASON_REBOOT] = "Reboot",
7005 	[OPA_LINKDOWN_REASON_NEIGHBOR_UNKNOWN] = "Neighbor unknown",
7006 	[OPA_LINKDOWN_REASON_FM_BOUNCE] = "FM bounce",
7007 	[OPA_LINKDOWN_REASON_SPEED_POLICY] = "Speed policy",
7008 	[OPA_LINKDOWN_REASON_WIDTH_POLICY] = "Width policy",
7009 	[OPA_LINKDOWN_REASON_DISCONNECTED] = "Disconnected",
7010 	[OPA_LINKDOWN_REASON_LOCAL_MEDIA_NOT_INSTALLED] =
7011 					"Local media not installed",
7012 	[OPA_LINKDOWN_REASON_NOT_INSTALLED] = "Not installed",
7013 	[OPA_LINKDOWN_REASON_CHASSIS_CONFIG] = "Chassis config",
7014 	[OPA_LINKDOWN_REASON_END_TO_END_NOT_INSTALLED] =
7015 					"End to end not installed",
7016 	[OPA_LINKDOWN_REASON_POWER_POLICY] = "Power policy",
7017 	[OPA_LINKDOWN_REASON_LINKSPEED_POLICY] = "Link speed policy",
7018 	[OPA_LINKDOWN_REASON_LINKWIDTH_POLICY] = "Link width policy",
7019 	[OPA_LINKDOWN_REASON_SWITCH_MGMT] = "Switch management",
7020 	[OPA_LINKDOWN_REASON_SMA_DISABLED] = "SMA disabled",
7021 	[OPA_LINKDOWN_REASON_TRANSIENT] = "Transient"
7022 };
7023 
7024 /* return the neighbor link down reason string */
7025 static const char *link_down_reason_str(u8 reason)
7026 {
7027 	const char *str = NULL;
7028 
7029 	if (reason < ARRAY_SIZE(link_down_reason_strs))
7030 		str = link_down_reason_strs[reason];
7031 	if (!str)
7032 		str = "(invalid)";
7033 
7034 	return str;
7035 }
7036 
7037 /*
7038  * Handle a link down interrupt from the 8051.
7039  *
7040  * This is a work-queue function outside of the interrupt.
7041  */
7042 void handle_link_down(struct work_struct *work)
7043 {
7044 	u8 lcl_reason, neigh_reason = 0;
7045 	u8 link_down_reason;
7046 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
7047 						  link_down_work);
7048 	int was_up;
7049 	static const char ldr_str[] = "Link down reason: ";
7050 
7051 	if ((ppd->host_link_state &
7052 	     (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) &&
7053 	     ppd->port_type == PORT_TYPE_FIXED)
7054 		ppd->offline_disabled_reason =
7055 			HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NOT_INSTALLED);
7056 
7057 	/* Go offline first, then deal with reading/writing through 8051 */
7058 	was_up = !!(ppd->host_link_state & HLS_UP);
7059 	set_link_state(ppd, HLS_DN_OFFLINE);
7060 	xchg(&ppd->is_link_down_queued, 0);
7061 
7062 	if (was_up) {
7063 		lcl_reason = 0;
7064 		/* link down reason is only valid if the link was up */
7065 		read_link_down_reason(ppd->dd, &link_down_reason);
7066 		switch (link_down_reason) {
7067 		case LDR_LINK_TRANSFER_ACTIVE_LOW:
7068 			/* the link went down, no idle message reason */
7069 			dd_dev_info(ppd->dd, "%sUnexpected link down\n",
7070 				    ldr_str);
7071 			break;
7072 		case LDR_RECEIVED_LINKDOWN_IDLE_MSG:
7073 			/*
7074 			 * The neighbor reason is only valid if an idle message
7075 			 * was received for it.
7076 			 */
7077 			read_planned_down_reason_code(ppd->dd, &neigh_reason);
7078 			dd_dev_info(ppd->dd,
7079 				    "%sNeighbor link down message %d, %s\n",
7080 				    ldr_str, neigh_reason,
7081 				    link_down_reason_str(neigh_reason));
7082 			break;
7083 		case LDR_RECEIVED_HOST_OFFLINE_REQ:
7084 			dd_dev_info(ppd->dd,
7085 				    "%sHost requested link to go offline\n",
7086 				    ldr_str);
7087 			break;
7088 		default:
7089 			dd_dev_info(ppd->dd, "%sUnknown reason 0x%x\n",
7090 				    ldr_str, link_down_reason);
7091 			break;
7092 		}
7093 
7094 		/*
7095 		 * If no reason, assume peer-initiated but missed
7096 		 * LinkGoingDown idle flits.
7097 		 */
7098 		if (neigh_reason == 0)
7099 			lcl_reason = OPA_LINKDOWN_REASON_NEIGHBOR_UNKNOWN;
7100 	} else {
7101 		/* went down while polling or going up */
7102 		lcl_reason = OPA_LINKDOWN_REASON_TRANSIENT;
7103 	}
7104 
7105 	set_link_down_reason(ppd, lcl_reason, neigh_reason, 0);
7106 
7107 	/* inform the SMA when the link transitions from up to down */
7108 	if (was_up && ppd->local_link_down_reason.sma == 0 &&
7109 	    ppd->neigh_link_down_reason.sma == 0) {
7110 		ppd->local_link_down_reason.sma =
7111 					ppd->local_link_down_reason.latest;
7112 		ppd->neigh_link_down_reason.sma =
7113 					ppd->neigh_link_down_reason.latest;
7114 	}
7115 
7116 	reset_neighbor_info(ppd);
7117 
7118 	/* disable the port */
7119 	clear_rcvctrl(ppd->dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
7120 
7121 	/*
7122 	 * If there is no cable attached, turn the DC off. Otherwise,
7123 	 * start the link bring up.
7124 	 */
7125 	if (ppd->port_type == PORT_TYPE_QSFP && !qsfp_mod_present(ppd))
7126 		dc_shutdown(ppd->dd);
7127 	else
7128 		start_link(ppd);
7129 }
7130 
7131 void handle_link_bounce(struct work_struct *work)
7132 {
7133 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
7134 							link_bounce_work);
7135 
7136 	/*
7137 	 * Only do something if the link is currently up.
7138 	 */
7139 	if (ppd->host_link_state & HLS_UP) {
7140 		set_link_state(ppd, HLS_DN_OFFLINE);
7141 		start_link(ppd);
7142 	} else {
7143 		dd_dev_info(ppd->dd, "%s: link not up (%s), nothing to do\n",
7144 			    __func__, link_state_name(ppd->host_link_state));
7145 	}
7146 }
7147 
7148 /*
7149  * Mask conversion: Capability exchange to Port LTP.  The capability
7150  * exchange has an implicit 16b CRC that is mandatory.
7151  */
7152 static int cap_to_port_ltp(int cap)
7153 {
7154 	int port_ltp = PORT_LTP_CRC_MODE_16; /* this mode is mandatory */
7155 
7156 	if (cap & CAP_CRC_14B)
7157 		port_ltp |= PORT_LTP_CRC_MODE_14;
7158 	if (cap & CAP_CRC_48B)
7159 		port_ltp |= PORT_LTP_CRC_MODE_48;
7160 	if (cap & CAP_CRC_12B_16B_PER_LANE)
7161 		port_ltp |= PORT_LTP_CRC_MODE_PER_LANE;
7162 
7163 	return port_ltp;
7164 }
7165 
7166 /*
7167  * Convert an OPA Port LTP mask to capability mask
7168  */
7169 int port_ltp_to_cap(int port_ltp)
7170 {
7171 	int cap_mask = 0;
7172 
7173 	if (port_ltp & PORT_LTP_CRC_MODE_14)
7174 		cap_mask |= CAP_CRC_14B;
7175 	if (port_ltp & PORT_LTP_CRC_MODE_48)
7176 		cap_mask |= CAP_CRC_48B;
7177 	if (port_ltp & PORT_LTP_CRC_MODE_PER_LANE)
7178 		cap_mask |= CAP_CRC_12B_16B_PER_LANE;
7179 
7180 	return cap_mask;
7181 }
7182 
7183 /*
7184  * Convert a single DC LCB CRC mode to an OPA Port LTP mask.
7185  */
7186 static int lcb_to_port_ltp(int lcb_crc)
7187 {
7188 	int port_ltp = 0;
7189 
7190 	if (lcb_crc == LCB_CRC_12B_16B_PER_LANE)
7191 		port_ltp = PORT_LTP_CRC_MODE_PER_LANE;
7192 	else if (lcb_crc == LCB_CRC_48B)
7193 		port_ltp = PORT_LTP_CRC_MODE_48;
7194 	else if (lcb_crc == LCB_CRC_14B)
7195 		port_ltp = PORT_LTP_CRC_MODE_14;
7196 	else
7197 		port_ltp = PORT_LTP_CRC_MODE_16;
7198 
7199 	return port_ltp;
7200 }
7201 
7202 /*
7203  * Our neighbor has indicated that we are allowed to act as a fabric
7204  * manager, so place the full management partition key in the second
7205  * (0-based) pkey array position (see OPAv1, section 20.2.2.6.8). Note
7206  * that we should already have the limited management partition key in
7207  * array element 1, and also that the port is not yet up when
7208  * add_full_mgmt_pkey() is invoked.
7209  */
7210 static void add_full_mgmt_pkey(struct hfi1_pportdata *ppd)
7211 {
7212 	struct hfi1_devdata *dd = ppd->dd;
7213 
7214 	/* Sanity check - ppd->pkeys[2] should be 0, or already initialized */
7215 	if (!((ppd->pkeys[2] == 0) || (ppd->pkeys[2] == FULL_MGMT_P_KEY)))
7216 		dd_dev_warn(dd, "%s pkey[2] already set to 0x%x, resetting it to 0x%x\n",
7217 			    __func__, ppd->pkeys[2], FULL_MGMT_P_KEY);
7218 	ppd->pkeys[2] = FULL_MGMT_P_KEY;
7219 	(void)hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_PKEYS, 0);
7220 	hfi1_event_pkey_change(ppd->dd, ppd->port);
7221 }
7222 
7223 static void clear_full_mgmt_pkey(struct hfi1_pportdata *ppd)
7224 {
7225 	if (ppd->pkeys[2] != 0) {
7226 		ppd->pkeys[2] = 0;
7227 		(void)hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_PKEYS, 0);
7228 		hfi1_event_pkey_change(ppd->dd, ppd->port);
7229 	}
7230 }
7231 
7232 /*
7233  * Convert the given link width to the OPA link width bitmask.
7234  */
7235 static u16 link_width_to_bits(struct hfi1_devdata *dd, u16 width)
7236 {
7237 	switch (width) {
7238 	case 0:
7239 		/*
7240 		 * Simulator and quick linkup do not set the width.
7241 		 * Just set it to 4x without complaint.
7242 		 */
7243 		if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR || quick_linkup)
7244 			return OPA_LINK_WIDTH_4X;
7245 		return 0; /* no lanes up */
7246 	case 1: return OPA_LINK_WIDTH_1X;
7247 	case 2: return OPA_LINK_WIDTH_2X;
7248 	case 3: return OPA_LINK_WIDTH_3X;
7249 	default:
7250 		dd_dev_info(dd, "%s: invalid width %d, using 4\n",
7251 			    __func__, width);
7252 		/* fall through */
7253 	case 4: return OPA_LINK_WIDTH_4X;
7254 	}
7255 }
7256 
7257 /*
7258  * Do a population count on the bottom nibble.
7259  */
7260 static const u8 bit_counts[16] = {
7261 	0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4
7262 };
7263 
7264 static inline u8 nibble_to_count(u8 nibble)
7265 {
7266 	return bit_counts[nibble & 0xf];
7267 }
7268 
7269 /*
7270  * Read the active lane information from the 8051 registers and return
7271  * their widths.
7272  *
7273  * Active lane information is found in these 8051 registers:
7274  *	enable_lane_tx
7275  *	enable_lane_rx
7276  */
7277 static void get_link_widths(struct hfi1_devdata *dd, u16 *tx_width,
7278 			    u16 *rx_width)
7279 {
7280 	u16 tx, rx;
7281 	u8 enable_lane_rx;
7282 	u8 enable_lane_tx;
7283 	u8 tx_polarity_inversion;
7284 	u8 rx_polarity_inversion;
7285 	u8 max_rate;
7286 
7287 	/* read the active lanes */
7288 	read_tx_settings(dd, &enable_lane_tx, &tx_polarity_inversion,
7289 			 &rx_polarity_inversion, &max_rate);
7290 	read_local_lni(dd, &enable_lane_rx);
7291 
7292 	/* convert to counts */
7293 	tx = nibble_to_count(enable_lane_tx);
7294 	rx = nibble_to_count(enable_lane_rx);
7295 
7296 	/*
7297 	 * Set link_speed_active here, overriding what was set in
7298 	 * handle_verify_cap().  The ASIC 8051 firmware does not correctly
7299 	 * set the max_rate field in handle_verify_cap until v0.19.
7300 	 */
7301 	if ((dd->icode == ICODE_RTL_SILICON) &&
7302 	    (dd->dc8051_ver < dc8051_ver(0, 19, 0))) {
7303 		/* max_rate: 0 = 12.5G, 1 = 25G */
7304 		switch (max_rate) {
7305 		case 0:
7306 			dd->pport[0].link_speed_active = OPA_LINK_SPEED_12_5G;
7307 			break;
7308 		default:
7309 			dd_dev_err(dd,
7310 				   "%s: unexpected max rate %d, using 25Gb\n",
7311 				   __func__, (int)max_rate);
7312 			/* fall through */
7313 		case 1:
7314 			dd->pport[0].link_speed_active = OPA_LINK_SPEED_25G;
7315 			break;
7316 		}
7317 	}
7318 
7319 	dd_dev_info(dd,
7320 		    "Fabric active lanes (width): tx 0x%x (%d), rx 0x%x (%d)\n",
7321 		    enable_lane_tx, tx, enable_lane_rx, rx);
7322 	*tx_width = link_width_to_bits(dd, tx);
7323 	*rx_width = link_width_to_bits(dd, rx);
7324 }
7325 
7326 /*
7327  * Read verify_cap_local_fm_link_width[1] to obtain the link widths.
7328  * Valid after the end of VerifyCap and during LinkUp.  Does not change
7329  * after link up.  I.e. look elsewhere for downgrade information.
7330  *
7331  * Bits are:
7332  *	+ bits [7:4] contain the number of active transmitters
7333  *	+ bits [3:0] contain the number of active receivers
7334  * These are numbers 1 through 4 and can be different values if the
7335  * link is asymmetric.
7336  *
7337  * verify_cap_local_fm_link_width[0] retains its original value.
7338  */
7339 static void get_linkup_widths(struct hfi1_devdata *dd, u16 *tx_width,
7340 			      u16 *rx_width)
7341 {
7342 	u16 widths, tx, rx;
7343 	u8 misc_bits, local_flags;
7344 	u16 active_tx, active_rx;
7345 
7346 	read_vc_local_link_width(dd, &misc_bits, &local_flags, &widths);
7347 	tx = widths >> 12;
7348 	rx = (widths >> 8) & 0xf;
7349 
7350 	*tx_width = link_width_to_bits(dd, tx);
7351 	*rx_width = link_width_to_bits(dd, rx);
7352 
7353 	/* print the active widths */
7354 	get_link_widths(dd, &active_tx, &active_rx);
7355 }
7356 
7357 /*
7358  * Set ppd->link_width_active and ppd->link_width_downgrade_active using
7359  * hardware information when the link first comes up.
7360  *
7361  * The link width is not available until after VerifyCap.AllFramesReceived
7362  * (the trigger for handle_verify_cap), so this is outside that routine
7363  * and should be called when the 8051 signals linkup.
7364  */
7365 void get_linkup_link_widths(struct hfi1_pportdata *ppd)
7366 {
7367 	u16 tx_width, rx_width;
7368 
7369 	/* get end-of-LNI link widths */
7370 	get_linkup_widths(ppd->dd, &tx_width, &rx_width);
7371 
7372 	/* use tx_width as the link is supposed to be symmetric on link up */
7373 	ppd->link_width_active = tx_width;
7374 	/* link width downgrade active (LWD.A) starts out matching LW.A */
7375 	ppd->link_width_downgrade_tx_active = ppd->link_width_active;
7376 	ppd->link_width_downgrade_rx_active = ppd->link_width_active;
7377 	/* per OPA spec, on link up LWD.E resets to LWD.S */
7378 	ppd->link_width_downgrade_enabled = ppd->link_width_downgrade_supported;
7379 	/* cache the active egress rate (units {10^6 bits/sec]) */
7380 	ppd->current_egress_rate = active_egress_rate(ppd);
7381 }
7382 
7383 /*
7384  * Handle a verify capabilities interrupt from the 8051.
7385  *
7386  * This is a work-queue function outside of the interrupt.
7387  */
7388 void handle_verify_cap(struct work_struct *work)
7389 {
7390 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
7391 								link_vc_work);
7392 	struct hfi1_devdata *dd = ppd->dd;
7393 	u64 reg;
7394 	u8 power_management;
7395 	u8 continuous;
7396 	u8 vcu;
7397 	u8 vau;
7398 	u8 z;
7399 	u16 vl15buf;
7400 	u16 link_widths;
7401 	u16 crc_mask;
7402 	u16 crc_val;
7403 	u16 device_id;
7404 	u16 active_tx, active_rx;
7405 	u8 partner_supported_crc;
7406 	u8 remote_tx_rate;
7407 	u8 device_rev;
7408 
7409 	set_link_state(ppd, HLS_VERIFY_CAP);
7410 
7411 	lcb_shutdown(dd, 0);
7412 	adjust_lcb_for_fpga_serdes(dd);
7413 
7414 	read_vc_remote_phy(dd, &power_management, &continuous);
7415 	read_vc_remote_fabric(dd, &vau, &z, &vcu, &vl15buf,
7416 			      &partner_supported_crc);
7417 	read_vc_remote_link_width(dd, &remote_tx_rate, &link_widths);
7418 	read_remote_device_id(dd, &device_id, &device_rev);
7419 	/*
7420 	 * And the 'MgmtAllowed' information, which is exchanged during
7421 	 * LNI, is also be available at this point.
7422 	 */
7423 	read_mgmt_allowed(dd, &ppd->mgmt_allowed);
7424 	/* print the active widths */
7425 	get_link_widths(dd, &active_tx, &active_rx);
7426 	dd_dev_info(dd,
7427 		    "Peer PHY: power management 0x%x, continuous updates 0x%x\n",
7428 		    (int)power_management, (int)continuous);
7429 	dd_dev_info(dd,
7430 		    "Peer Fabric: vAU %d, Z %d, vCU %d, vl15 credits 0x%x, CRC sizes 0x%x\n",
7431 		    (int)vau, (int)z, (int)vcu, (int)vl15buf,
7432 		    (int)partner_supported_crc);
7433 	dd_dev_info(dd, "Peer Link Width: tx rate 0x%x, widths 0x%x\n",
7434 		    (u32)remote_tx_rate, (u32)link_widths);
7435 	dd_dev_info(dd, "Peer Device ID: 0x%04x, Revision 0x%02x\n",
7436 		    (u32)device_id, (u32)device_rev);
7437 	/*
7438 	 * The peer vAU value just read is the peer receiver value.  HFI does
7439 	 * not support a transmit vAU of 0 (AU == 8).  We advertised that
7440 	 * with Z=1 in the fabric capabilities sent to the peer.  The peer
7441 	 * will see our Z=1, and, if it advertised a vAU of 0, will move its
7442 	 * receive to vAU of 1 (AU == 16).  Do the same here.  We do not care
7443 	 * about the peer Z value - our sent vAU is 3 (hardwired) and is not
7444 	 * subject to the Z value exception.
7445 	 */
7446 	if (vau == 0)
7447 		vau = 1;
7448 	set_up_vau(dd, vau);
7449 
7450 	/*
7451 	 * Set VL15 credits to 0 in global credit register. Cache remote VL15
7452 	 * credits value and wait for link-up interrupt ot set it.
7453 	 */
7454 	set_up_vl15(dd, 0);
7455 	dd->vl15buf_cached = vl15buf;
7456 
7457 	/* set up the LCB CRC mode */
7458 	crc_mask = ppd->port_crc_mode_enabled & partner_supported_crc;
7459 
7460 	/* order is important: use the lowest bit in common */
7461 	if (crc_mask & CAP_CRC_14B)
7462 		crc_val = LCB_CRC_14B;
7463 	else if (crc_mask & CAP_CRC_48B)
7464 		crc_val = LCB_CRC_48B;
7465 	else if (crc_mask & CAP_CRC_12B_16B_PER_LANE)
7466 		crc_val = LCB_CRC_12B_16B_PER_LANE;
7467 	else
7468 		crc_val = LCB_CRC_16B;
7469 
7470 	dd_dev_info(dd, "Final LCB CRC mode: %d\n", (int)crc_val);
7471 	write_csr(dd, DC_LCB_CFG_CRC_MODE,
7472 		  (u64)crc_val << DC_LCB_CFG_CRC_MODE_TX_VAL_SHIFT);
7473 
7474 	/* set (14b only) or clear sideband credit */
7475 	reg = read_csr(dd, SEND_CM_CTRL);
7476 	if (crc_val == LCB_CRC_14B && crc_14b_sideband) {
7477 		write_csr(dd, SEND_CM_CTRL,
7478 			  reg | SEND_CM_CTRL_FORCE_CREDIT_MODE_SMASK);
7479 	} else {
7480 		write_csr(dd, SEND_CM_CTRL,
7481 			  reg & ~SEND_CM_CTRL_FORCE_CREDIT_MODE_SMASK);
7482 	}
7483 
7484 	ppd->link_speed_active = 0;	/* invalid value */
7485 	if (dd->dc8051_ver < dc8051_ver(0, 20, 0)) {
7486 		/* remote_tx_rate: 0 = 12.5G, 1 = 25G */
7487 		switch (remote_tx_rate) {
7488 		case 0:
7489 			ppd->link_speed_active = OPA_LINK_SPEED_12_5G;
7490 			break;
7491 		case 1:
7492 			ppd->link_speed_active = OPA_LINK_SPEED_25G;
7493 			break;
7494 		}
7495 	} else {
7496 		/* actual rate is highest bit of the ANDed rates */
7497 		u8 rate = remote_tx_rate & ppd->local_tx_rate;
7498 
7499 		if (rate & 2)
7500 			ppd->link_speed_active = OPA_LINK_SPEED_25G;
7501 		else if (rate & 1)
7502 			ppd->link_speed_active = OPA_LINK_SPEED_12_5G;
7503 	}
7504 	if (ppd->link_speed_active == 0) {
7505 		dd_dev_err(dd, "%s: unexpected remote tx rate %d, using 25Gb\n",
7506 			   __func__, (int)remote_tx_rate);
7507 		ppd->link_speed_active = OPA_LINK_SPEED_25G;
7508 	}
7509 
7510 	/*
7511 	 * Cache the values of the supported, enabled, and active
7512 	 * LTP CRC modes to return in 'portinfo' queries. But the bit
7513 	 * flags that are returned in the portinfo query differ from
7514 	 * what's in the link_crc_mask, crc_sizes, and crc_val
7515 	 * variables. Convert these here.
7516 	 */
7517 	ppd->port_ltp_crc_mode = cap_to_port_ltp(link_crc_mask) << 8;
7518 		/* supported crc modes */
7519 	ppd->port_ltp_crc_mode |=
7520 		cap_to_port_ltp(ppd->port_crc_mode_enabled) << 4;
7521 		/* enabled crc modes */
7522 	ppd->port_ltp_crc_mode |= lcb_to_port_ltp(crc_val);
7523 		/* active crc mode */
7524 
7525 	/* set up the remote credit return table */
7526 	assign_remote_cm_au_table(dd, vcu);
7527 
7528 	/*
7529 	 * The LCB is reset on entry to handle_verify_cap(), so this must
7530 	 * be applied on every link up.
7531 	 *
7532 	 * Adjust LCB error kill enable to kill the link if
7533 	 * these RBUF errors are seen:
7534 	 *	REPLAY_BUF_MBE_SMASK
7535 	 *	FLIT_INPUT_BUF_MBE_SMASK
7536 	 */
7537 	if (is_ax(dd)) {			/* fixed in B0 */
7538 		reg = read_csr(dd, DC_LCB_CFG_LINK_KILL_EN);
7539 		reg |= DC_LCB_CFG_LINK_KILL_EN_REPLAY_BUF_MBE_SMASK
7540 			| DC_LCB_CFG_LINK_KILL_EN_FLIT_INPUT_BUF_MBE_SMASK;
7541 		write_csr(dd, DC_LCB_CFG_LINK_KILL_EN, reg);
7542 	}
7543 
7544 	/* pull LCB fifos out of reset - all fifo clocks must be stable */
7545 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0);
7546 
7547 	/* give 8051 access to the LCB CSRs */
7548 	write_csr(dd, DC_LCB_ERR_EN, 0); /* mask LCB errors */
7549 	set_8051_lcb_access(dd);
7550 
7551 	if (ppd->mgmt_allowed)
7552 		add_full_mgmt_pkey(ppd);
7553 
7554 	/* tell the 8051 to go to LinkUp */
7555 	set_link_state(ppd, HLS_GOING_UP);
7556 }
7557 
7558 /*
7559  * Apply the link width downgrade enabled policy against the current active
7560  * link widths.
7561  *
7562  * Called when the enabled policy changes or the active link widths change.
7563  */
7564 void apply_link_downgrade_policy(struct hfi1_pportdata *ppd, int refresh_widths)
7565 {
7566 	int do_bounce = 0;
7567 	int tries;
7568 	u16 lwde;
7569 	u16 tx, rx;
7570 
7571 	/* use the hls lock to avoid a race with actual link up */
7572 	tries = 0;
7573 retry:
7574 	mutex_lock(&ppd->hls_lock);
7575 	/* only apply if the link is up */
7576 	if (ppd->host_link_state & HLS_DOWN) {
7577 		/* still going up..wait and retry */
7578 		if (ppd->host_link_state & HLS_GOING_UP) {
7579 			if (++tries < 1000) {
7580 				mutex_unlock(&ppd->hls_lock);
7581 				usleep_range(100, 120); /* arbitrary */
7582 				goto retry;
7583 			}
7584 			dd_dev_err(ppd->dd,
7585 				   "%s: giving up waiting for link state change\n",
7586 				   __func__);
7587 		}
7588 		goto done;
7589 	}
7590 
7591 	lwde = ppd->link_width_downgrade_enabled;
7592 
7593 	if (refresh_widths) {
7594 		get_link_widths(ppd->dd, &tx, &rx);
7595 		ppd->link_width_downgrade_tx_active = tx;
7596 		ppd->link_width_downgrade_rx_active = rx;
7597 	}
7598 
7599 	if (ppd->link_width_downgrade_tx_active == 0 ||
7600 	    ppd->link_width_downgrade_rx_active == 0) {
7601 		/* the 8051 reported a dead link as a downgrade */
7602 		dd_dev_err(ppd->dd, "Link downgrade is really a link down, ignoring\n");
7603 	} else if (lwde == 0) {
7604 		/* downgrade is disabled */
7605 
7606 		/* bounce if not at starting active width */
7607 		if ((ppd->link_width_active !=
7608 		     ppd->link_width_downgrade_tx_active) ||
7609 		    (ppd->link_width_active !=
7610 		     ppd->link_width_downgrade_rx_active)) {
7611 			dd_dev_err(ppd->dd,
7612 				   "Link downgrade is disabled and link has downgraded, downing link\n");
7613 			dd_dev_err(ppd->dd,
7614 				   "  original 0x%x, tx active 0x%x, rx active 0x%x\n",
7615 				   ppd->link_width_active,
7616 				   ppd->link_width_downgrade_tx_active,
7617 				   ppd->link_width_downgrade_rx_active);
7618 			do_bounce = 1;
7619 		}
7620 	} else if ((lwde & ppd->link_width_downgrade_tx_active) == 0 ||
7621 		   (lwde & ppd->link_width_downgrade_rx_active) == 0) {
7622 		/* Tx or Rx is outside the enabled policy */
7623 		dd_dev_err(ppd->dd,
7624 			   "Link is outside of downgrade allowed, downing link\n");
7625 		dd_dev_err(ppd->dd,
7626 			   "  enabled 0x%x, tx active 0x%x, rx active 0x%x\n",
7627 			   lwde, ppd->link_width_downgrade_tx_active,
7628 			   ppd->link_width_downgrade_rx_active);
7629 		do_bounce = 1;
7630 	}
7631 
7632 done:
7633 	mutex_unlock(&ppd->hls_lock);
7634 
7635 	if (do_bounce) {
7636 		set_link_down_reason(ppd, OPA_LINKDOWN_REASON_WIDTH_POLICY, 0,
7637 				     OPA_LINKDOWN_REASON_WIDTH_POLICY);
7638 		set_link_state(ppd, HLS_DN_OFFLINE);
7639 		start_link(ppd);
7640 	}
7641 }
7642 
7643 /*
7644  * Handle a link downgrade interrupt from the 8051.
7645  *
7646  * This is a work-queue function outside of the interrupt.
7647  */
7648 void handle_link_downgrade(struct work_struct *work)
7649 {
7650 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
7651 							link_downgrade_work);
7652 
7653 	dd_dev_info(ppd->dd, "8051: Link width downgrade\n");
7654 	apply_link_downgrade_policy(ppd, 1);
7655 }
7656 
7657 static char *dcc_err_string(char *buf, int buf_len, u64 flags)
7658 {
7659 	return flag_string(buf, buf_len, flags, dcc_err_flags,
7660 		ARRAY_SIZE(dcc_err_flags));
7661 }
7662 
7663 static char *lcb_err_string(char *buf, int buf_len, u64 flags)
7664 {
7665 	return flag_string(buf, buf_len, flags, lcb_err_flags,
7666 		ARRAY_SIZE(lcb_err_flags));
7667 }
7668 
7669 static char *dc8051_err_string(char *buf, int buf_len, u64 flags)
7670 {
7671 	return flag_string(buf, buf_len, flags, dc8051_err_flags,
7672 		ARRAY_SIZE(dc8051_err_flags));
7673 }
7674 
7675 static char *dc8051_info_err_string(char *buf, int buf_len, u64 flags)
7676 {
7677 	return flag_string(buf, buf_len, flags, dc8051_info_err_flags,
7678 		ARRAY_SIZE(dc8051_info_err_flags));
7679 }
7680 
7681 static char *dc8051_info_host_msg_string(char *buf, int buf_len, u64 flags)
7682 {
7683 	return flag_string(buf, buf_len, flags, dc8051_info_host_msg_flags,
7684 		ARRAY_SIZE(dc8051_info_host_msg_flags));
7685 }
7686 
7687 static void handle_8051_interrupt(struct hfi1_devdata *dd, u32 unused, u64 reg)
7688 {
7689 	struct hfi1_pportdata *ppd = dd->pport;
7690 	u64 info, err, host_msg;
7691 	int queue_link_down = 0;
7692 	char buf[96];
7693 
7694 	/* look at the flags */
7695 	if (reg & DC_DC8051_ERR_FLG_SET_BY_8051_SMASK) {
7696 		/* 8051 information set by firmware */
7697 		/* read DC8051_DBG_ERR_INFO_SET_BY_8051 for details */
7698 		info = read_csr(dd, DC_DC8051_DBG_ERR_INFO_SET_BY_8051);
7699 		err = (info >> DC_DC8051_DBG_ERR_INFO_SET_BY_8051_ERROR_SHIFT)
7700 			& DC_DC8051_DBG_ERR_INFO_SET_BY_8051_ERROR_MASK;
7701 		host_msg = (info >>
7702 			DC_DC8051_DBG_ERR_INFO_SET_BY_8051_HOST_MSG_SHIFT)
7703 			& DC_DC8051_DBG_ERR_INFO_SET_BY_8051_HOST_MSG_MASK;
7704 
7705 		/*
7706 		 * Handle error flags.
7707 		 */
7708 		if (err & FAILED_LNI) {
7709 			/*
7710 			 * LNI error indications are cleared by the 8051
7711 			 * only when starting polling.  Only pay attention
7712 			 * to them when in the states that occur during
7713 			 * LNI.
7714 			 */
7715 			if (ppd->host_link_state
7716 			    & (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) {
7717 				queue_link_down = 1;
7718 				dd_dev_info(dd, "Link error: %s\n",
7719 					    dc8051_info_err_string(buf,
7720 								   sizeof(buf),
7721 								   err &
7722 								   FAILED_LNI));
7723 			}
7724 			err &= ~(u64)FAILED_LNI;
7725 		}
7726 		/* unknown frames can happen durning LNI, just count */
7727 		if (err & UNKNOWN_FRAME) {
7728 			ppd->unknown_frame_count++;
7729 			err &= ~(u64)UNKNOWN_FRAME;
7730 		}
7731 		if (err) {
7732 			/* report remaining errors, but do not do anything */
7733 			dd_dev_err(dd, "8051 info error: %s\n",
7734 				   dc8051_info_err_string(buf, sizeof(buf),
7735 							  err));
7736 		}
7737 
7738 		/*
7739 		 * Handle host message flags.
7740 		 */
7741 		if (host_msg & HOST_REQ_DONE) {
7742 			/*
7743 			 * Presently, the driver does a busy wait for
7744 			 * host requests to complete.  This is only an
7745 			 * informational message.
7746 			 * NOTE: The 8051 clears the host message
7747 			 * information *on the next 8051 command*.
7748 			 * Therefore, when linkup is achieved,
7749 			 * this flag will still be set.
7750 			 */
7751 			host_msg &= ~(u64)HOST_REQ_DONE;
7752 		}
7753 		if (host_msg & BC_SMA_MSG) {
7754 			queue_work(ppd->link_wq, &ppd->sma_message_work);
7755 			host_msg &= ~(u64)BC_SMA_MSG;
7756 		}
7757 		if (host_msg & LINKUP_ACHIEVED) {
7758 			dd_dev_info(dd, "8051: Link up\n");
7759 			queue_work(ppd->link_wq, &ppd->link_up_work);
7760 			host_msg &= ~(u64)LINKUP_ACHIEVED;
7761 		}
7762 		if (host_msg & EXT_DEVICE_CFG_REQ) {
7763 			handle_8051_request(ppd);
7764 			host_msg &= ~(u64)EXT_DEVICE_CFG_REQ;
7765 		}
7766 		if (host_msg & VERIFY_CAP_FRAME) {
7767 			queue_work(ppd->link_wq, &ppd->link_vc_work);
7768 			host_msg &= ~(u64)VERIFY_CAP_FRAME;
7769 		}
7770 		if (host_msg & LINK_GOING_DOWN) {
7771 			const char *extra = "";
7772 			/* no downgrade action needed if going down */
7773 			if (host_msg & LINK_WIDTH_DOWNGRADED) {
7774 				host_msg &= ~(u64)LINK_WIDTH_DOWNGRADED;
7775 				extra = " (ignoring downgrade)";
7776 			}
7777 			dd_dev_info(dd, "8051: Link down%s\n", extra);
7778 			queue_link_down = 1;
7779 			host_msg &= ~(u64)LINK_GOING_DOWN;
7780 		}
7781 		if (host_msg & LINK_WIDTH_DOWNGRADED) {
7782 			queue_work(ppd->link_wq, &ppd->link_downgrade_work);
7783 			host_msg &= ~(u64)LINK_WIDTH_DOWNGRADED;
7784 		}
7785 		if (host_msg) {
7786 			/* report remaining messages, but do not do anything */
7787 			dd_dev_info(dd, "8051 info host message: %s\n",
7788 				    dc8051_info_host_msg_string(buf,
7789 								sizeof(buf),
7790 								host_msg));
7791 		}
7792 
7793 		reg &= ~DC_DC8051_ERR_FLG_SET_BY_8051_SMASK;
7794 	}
7795 	if (reg & DC_DC8051_ERR_FLG_LOST_8051_HEART_BEAT_SMASK) {
7796 		/*
7797 		 * Lost the 8051 heartbeat.  If this happens, we
7798 		 * receive constant interrupts about it.  Disable
7799 		 * the interrupt after the first.
7800 		 */
7801 		dd_dev_err(dd, "Lost 8051 heartbeat\n");
7802 		write_csr(dd, DC_DC8051_ERR_EN,
7803 			  read_csr(dd, DC_DC8051_ERR_EN) &
7804 			  ~DC_DC8051_ERR_EN_LOST_8051_HEART_BEAT_SMASK);
7805 
7806 		reg &= ~DC_DC8051_ERR_FLG_LOST_8051_HEART_BEAT_SMASK;
7807 	}
7808 	if (reg) {
7809 		/* report the error, but do not do anything */
7810 		dd_dev_err(dd, "8051 error: %s\n",
7811 			   dc8051_err_string(buf, sizeof(buf), reg));
7812 	}
7813 
7814 	if (queue_link_down) {
7815 		/*
7816 		 * if the link is already going down or disabled, do not
7817 		 * queue another. If there's a link down entry already
7818 		 * queued, don't queue another one.
7819 		 */
7820 		if ((ppd->host_link_state &
7821 		    (HLS_GOING_OFFLINE | HLS_LINK_COOLDOWN)) ||
7822 		    ppd->link_enabled == 0) {
7823 			dd_dev_info(dd, "%s: not queuing link down. host_link_state %x, link_enabled %x\n",
7824 				    __func__, ppd->host_link_state,
7825 				    ppd->link_enabled);
7826 		} else {
7827 			if (xchg(&ppd->is_link_down_queued, 1) == 1)
7828 				dd_dev_info(dd,
7829 					    "%s: link down request already queued\n",
7830 					    __func__);
7831 			else
7832 				queue_work(ppd->link_wq, &ppd->link_down_work);
7833 		}
7834 	}
7835 }
7836 
7837 static const char * const fm_config_txt[] = {
7838 [0] =
7839 	"BadHeadDist: Distance violation between two head flits",
7840 [1] =
7841 	"BadTailDist: Distance violation between two tail flits",
7842 [2] =
7843 	"BadCtrlDist: Distance violation between two credit control flits",
7844 [3] =
7845 	"BadCrdAck: Credits return for unsupported VL",
7846 [4] =
7847 	"UnsupportedVLMarker: Received VL Marker",
7848 [5] =
7849 	"BadPreempt: Exceeded the preemption nesting level",
7850 [6] =
7851 	"BadControlFlit: Received unsupported control flit",
7852 /* no 7 */
7853 [8] =
7854 	"UnsupportedVLMarker: Received VL Marker for unconfigured or disabled VL",
7855 };
7856 
7857 static const char * const port_rcv_txt[] = {
7858 [1] =
7859 	"BadPktLen: Illegal PktLen",
7860 [2] =
7861 	"PktLenTooLong: Packet longer than PktLen",
7862 [3] =
7863 	"PktLenTooShort: Packet shorter than PktLen",
7864 [4] =
7865 	"BadSLID: Illegal SLID (0, using multicast as SLID, does not include security validation of SLID)",
7866 [5] =
7867 	"BadDLID: Illegal DLID (0, doesn't match HFI)",
7868 [6] =
7869 	"BadL2: Illegal L2 opcode",
7870 [7] =
7871 	"BadSC: Unsupported SC",
7872 [9] =
7873 	"BadRC: Illegal RC",
7874 [11] =
7875 	"PreemptError: Preempting with same VL",
7876 [12] =
7877 	"PreemptVL15: Preempting a VL15 packet",
7878 };
7879 
7880 #define OPA_LDR_FMCONFIG_OFFSET 16
7881 #define OPA_LDR_PORTRCV_OFFSET 0
7882 static void handle_dcc_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
7883 {
7884 	u64 info, hdr0, hdr1;
7885 	const char *extra;
7886 	char buf[96];
7887 	struct hfi1_pportdata *ppd = dd->pport;
7888 	u8 lcl_reason = 0;
7889 	int do_bounce = 0;
7890 
7891 	if (reg & DCC_ERR_FLG_UNCORRECTABLE_ERR_SMASK) {
7892 		if (!(dd->err_info_uncorrectable & OPA_EI_STATUS_SMASK)) {
7893 			info = read_csr(dd, DCC_ERR_INFO_UNCORRECTABLE);
7894 			dd->err_info_uncorrectable = info & OPA_EI_CODE_SMASK;
7895 			/* set status bit */
7896 			dd->err_info_uncorrectable |= OPA_EI_STATUS_SMASK;
7897 		}
7898 		reg &= ~DCC_ERR_FLG_UNCORRECTABLE_ERR_SMASK;
7899 	}
7900 
7901 	if (reg & DCC_ERR_FLG_LINK_ERR_SMASK) {
7902 		struct hfi1_pportdata *ppd = dd->pport;
7903 		/* this counter saturates at (2^32) - 1 */
7904 		if (ppd->link_downed < (u32)UINT_MAX)
7905 			ppd->link_downed++;
7906 		reg &= ~DCC_ERR_FLG_LINK_ERR_SMASK;
7907 	}
7908 
7909 	if (reg & DCC_ERR_FLG_FMCONFIG_ERR_SMASK) {
7910 		u8 reason_valid = 1;
7911 
7912 		info = read_csr(dd, DCC_ERR_INFO_FMCONFIG);
7913 		if (!(dd->err_info_fmconfig & OPA_EI_STATUS_SMASK)) {
7914 			dd->err_info_fmconfig = info & OPA_EI_CODE_SMASK;
7915 			/* set status bit */
7916 			dd->err_info_fmconfig |= OPA_EI_STATUS_SMASK;
7917 		}
7918 		switch (info) {
7919 		case 0:
7920 		case 1:
7921 		case 2:
7922 		case 3:
7923 		case 4:
7924 		case 5:
7925 		case 6:
7926 			extra = fm_config_txt[info];
7927 			break;
7928 		case 8:
7929 			extra = fm_config_txt[info];
7930 			if (ppd->port_error_action &
7931 			    OPA_PI_MASK_FM_CFG_UNSUPPORTED_VL_MARKER) {
7932 				do_bounce = 1;
7933 				/*
7934 				 * lcl_reason cannot be derived from info
7935 				 * for this error
7936 				 */
7937 				lcl_reason =
7938 				  OPA_LINKDOWN_REASON_UNSUPPORTED_VL_MARKER;
7939 			}
7940 			break;
7941 		default:
7942 			reason_valid = 0;
7943 			snprintf(buf, sizeof(buf), "reserved%lld", info);
7944 			extra = buf;
7945 			break;
7946 		}
7947 
7948 		if (reason_valid && !do_bounce) {
7949 			do_bounce = ppd->port_error_action &
7950 					(1 << (OPA_LDR_FMCONFIG_OFFSET + info));
7951 			lcl_reason = info + OPA_LINKDOWN_REASON_BAD_HEAD_DIST;
7952 		}
7953 
7954 		/* just report this */
7955 		dd_dev_info_ratelimited(dd, "DCC Error: fmconfig error: %s\n",
7956 					extra);
7957 		reg &= ~DCC_ERR_FLG_FMCONFIG_ERR_SMASK;
7958 	}
7959 
7960 	if (reg & DCC_ERR_FLG_RCVPORT_ERR_SMASK) {
7961 		u8 reason_valid = 1;
7962 
7963 		info = read_csr(dd, DCC_ERR_INFO_PORTRCV);
7964 		hdr0 = read_csr(dd, DCC_ERR_INFO_PORTRCV_HDR0);
7965 		hdr1 = read_csr(dd, DCC_ERR_INFO_PORTRCV_HDR1);
7966 		if (!(dd->err_info_rcvport.status_and_code &
7967 		      OPA_EI_STATUS_SMASK)) {
7968 			dd->err_info_rcvport.status_and_code =
7969 				info & OPA_EI_CODE_SMASK;
7970 			/* set status bit */
7971 			dd->err_info_rcvport.status_and_code |=
7972 				OPA_EI_STATUS_SMASK;
7973 			/*
7974 			 * save first 2 flits in the packet that caused
7975 			 * the error
7976 			 */
7977 			dd->err_info_rcvport.packet_flit1 = hdr0;
7978 			dd->err_info_rcvport.packet_flit2 = hdr1;
7979 		}
7980 		switch (info) {
7981 		case 1:
7982 		case 2:
7983 		case 3:
7984 		case 4:
7985 		case 5:
7986 		case 6:
7987 		case 7:
7988 		case 9:
7989 		case 11:
7990 		case 12:
7991 			extra = port_rcv_txt[info];
7992 			break;
7993 		default:
7994 			reason_valid = 0;
7995 			snprintf(buf, sizeof(buf), "reserved%lld", info);
7996 			extra = buf;
7997 			break;
7998 		}
7999 
8000 		if (reason_valid && !do_bounce) {
8001 			do_bounce = ppd->port_error_action &
8002 					(1 << (OPA_LDR_PORTRCV_OFFSET + info));
8003 			lcl_reason = info + OPA_LINKDOWN_REASON_RCV_ERROR_0;
8004 		}
8005 
8006 		/* just report this */
8007 		dd_dev_info_ratelimited(dd, "DCC Error: PortRcv error: %s\n"
8008 					"               hdr0 0x%llx, hdr1 0x%llx\n",
8009 					extra, hdr0, hdr1);
8010 
8011 		reg &= ~DCC_ERR_FLG_RCVPORT_ERR_SMASK;
8012 	}
8013 
8014 	if (reg & DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_UC_SMASK) {
8015 		/* informative only */
8016 		dd_dev_info_ratelimited(dd, "8051 access to LCB blocked\n");
8017 		reg &= ~DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_UC_SMASK;
8018 	}
8019 	if (reg & DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_HOST_SMASK) {
8020 		/* informative only */
8021 		dd_dev_info_ratelimited(dd, "host access to LCB blocked\n");
8022 		reg &= ~DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_HOST_SMASK;
8023 	}
8024 
8025 	if (unlikely(hfi1_dbg_fault_suppress_err(&dd->verbs_dev)))
8026 		reg &= ~DCC_ERR_FLG_LATE_EBP_ERR_SMASK;
8027 
8028 	/* report any remaining errors */
8029 	if (reg)
8030 		dd_dev_info_ratelimited(dd, "DCC Error: %s\n",
8031 					dcc_err_string(buf, sizeof(buf), reg));
8032 
8033 	if (lcl_reason == 0)
8034 		lcl_reason = OPA_LINKDOWN_REASON_UNKNOWN;
8035 
8036 	if (do_bounce) {
8037 		dd_dev_info_ratelimited(dd, "%s: PortErrorAction bounce\n",
8038 					__func__);
8039 		set_link_down_reason(ppd, lcl_reason, 0, lcl_reason);
8040 		queue_work(ppd->link_wq, &ppd->link_bounce_work);
8041 	}
8042 }
8043 
8044 static void handle_lcb_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
8045 {
8046 	char buf[96];
8047 
8048 	dd_dev_info(dd, "LCB Error: %s\n",
8049 		    lcb_err_string(buf, sizeof(buf), reg));
8050 }
8051 
8052 /*
8053  * CCE block DC interrupt.  Source is < 8.
8054  */
8055 static void is_dc_int(struct hfi1_devdata *dd, unsigned int source)
8056 {
8057 	const struct err_reg_info *eri = &dc_errs[source];
8058 
8059 	if (eri->handler) {
8060 		interrupt_clear_down(dd, 0, eri);
8061 	} else if (source == 3 /* dc_lbm_int */) {
8062 		/*
8063 		 * This indicates that a parity error has occurred on the
8064 		 * address/control lines presented to the LBM.  The error
8065 		 * is a single pulse, there is no associated error flag,
8066 		 * and it is non-maskable.  This is because if a parity
8067 		 * error occurs on the request the request is dropped.
8068 		 * This should never occur, but it is nice to know if it
8069 		 * ever does.
8070 		 */
8071 		dd_dev_err(dd, "Parity error in DC LBM block\n");
8072 	} else {
8073 		dd_dev_err(dd, "Invalid DC interrupt %u\n", source);
8074 	}
8075 }
8076 
8077 /*
8078  * TX block send credit interrupt.  Source is < 160.
8079  */
8080 static void is_send_credit_int(struct hfi1_devdata *dd, unsigned int source)
8081 {
8082 	sc_group_release_update(dd, source);
8083 }
8084 
8085 /*
8086  * TX block SDMA interrupt.  Source is < 48.
8087  *
8088  * SDMA interrupts are grouped by type:
8089  *
8090  *	 0 -  N-1 = SDma
8091  *	 N - 2N-1 = SDmaProgress
8092  *	2N - 3N-1 = SDmaIdle
8093  */
8094 static void is_sdma_eng_int(struct hfi1_devdata *dd, unsigned int source)
8095 {
8096 	/* what interrupt */
8097 	unsigned int what  = source / TXE_NUM_SDMA_ENGINES;
8098 	/* which engine */
8099 	unsigned int which = source % TXE_NUM_SDMA_ENGINES;
8100 
8101 #ifdef CONFIG_SDMA_VERBOSITY
8102 	dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", which,
8103 		   slashstrip(__FILE__), __LINE__, __func__);
8104 	sdma_dumpstate(&dd->per_sdma[which]);
8105 #endif
8106 
8107 	if (likely(what < 3 && which < dd->num_sdma)) {
8108 		sdma_engine_interrupt(&dd->per_sdma[which], 1ull << source);
8109 	} else {
8110 		/* should not happen */
8111 		dd_dev_err(dd, "Invalid SDMA interrupt 0x%x\n", source);
8112 	}
8113 }
8114 
8115 /*
8116  * RX block receive available interrupt.  Source is < 160.
8117  */
8118 static void is_rcv_avail_int(struct hfi1_devdata *dd, unsigned int source)
8119 {
8120 	struct hfi1_ctxtdata *rcd;
8121 	char *err_detail;
8122 
8123 	if (likely(source < dd->num_rcv_contexts)) {
8124 		rcd = hfi1_rcd_get_by_index(dd, source);
8125 		if (rcd) {
8126 			/* Check for non-user contexts, including vnic */
8127 			if ((source < dd->first_dyn_alloc_ctxt) ||
8128 			    (rcd->sc && (rcd->sc->type == SC_KERNEL)))
8129 				rcd->do_interrupt(rcd, 0);
8130 			else
8131 				handle_user_interrupt(rcd);
8132 
8133 			hfi1_rcd_put(rcd);
8134 			return;	/* OK */
8135 		}
8136 		/* received an interrupt, but no rcd */
8137 		err_detail = "dataless";
8138 	} else {
8139 		/* received an interrupt, but are not using that context */
8140 		err_detail = "out of range";
8141 	}
8142 	dd_dev_err(dd, "unexpected %s receive available context interrupt %u\n",
8143 		   err_detail, source);
8144 }
8145 
8146 /*
8147  * RX block receive urgent interrupt.  Source is < 160.
8148  */
8149 static void is_rcv_urgent_int(struct hfi1_devdata *dd, unsigned int source)
8150 {
8151 	struct hfi1_ctxtdata *rcd;
8152 	char *err_detail;
8153 
8154 	if (likely(source < dd->num_rcv_contexts)) {
8155 		rcd = hfi1_rcd_get_by_index(dd, source);
8156 		if (rcd) {
8157 			/* only pay attention to user urgent interrupts */
8158 			if ((source >= dd->first_dyn_alloc_ctxt) &&
8159 			    (!rcd->sc || (rcd->sc->type == SC_USER)))
8160 				handle_user_interrupt(rcd);
8161 
8162 			hfi1_rcd_put(rcd);
8163 			return;	/* OK */
8164 		}
8165 		/* received an interrupt, but no rcd */
8166 		err_detail = "dataless";
8167 	} else {
8168 		/* received an interrupt, but are not using that context */
8169 		err_detail = "out of range";
8170 	}
8171 	dd_dev_err(dd, "unexpected %s receive urgent context interrupt %u\n",
8172 		   err_detail, source);
8173 }
8174 
8175 /*
8176  * Reserved range interrupt.  Should not be called in normal operation.
8177  */
8178 static void is_reserved_int(struct hfi1_devdata *dd, unsigned int source)
8179 {
8180 	char name[64];
8181 
8182 	dd_dev_err(dd, "unexpected %s interrupt\n",
8183 		   is_reserved_name(name, sizeof(name), source));
8184 }
8185 
8186 static const struct is_table is_table[] = {
8187 /*
8188  * start		 end
8189  *				name func		interrupt func
8190  */
8191 { IS_GENERAL_ERR_START,  IS_GENERAL_ERR_END,
8192 				is_misc_err_name,	is_misc_err_int },
8193 { IS_SDMAENG_ERR_START,  IS_SDMAENG_ERR_END,
8194 				is_sdma_eng_err_name,	is_sdma_eng_err_int },
8195 { IS_SENDCTXT_ERR_START, IS_SENDCTXT_ERR_END,
8196 				is_sendctxt_err_name,	is_sendctxt_err_int },
8197 { IS_SDMA_START,	     IS_SDMA_END,
8198 				is_sdma_eng_name,	is_sdma_eng_int },
8199 { IS_VARIOUS_START,	     IS_VARIOUS_END,
8200 				is_various_name,	is_various_int },
8201 { IS_DC_START,	     IS_DC_END,
8202 				is_dc_name,		is_dc_int },
8203 { IS_RCVAVAIL_START,     IS_RCVAVAIL_END,
8204 				is_rcv_avail_name,	is_rcv_avail_int },
8205 { IS_RCVURGENT_START,    IS_RCVURGENT_END,
8206 				is_rcv_urgent_name,	is_rcv_urgent_int },
8207 { IS_SENDCREDIT_START,   IS_SENDCREDIT_END,
8208 				is_send_credit_name,	is_send_credit_int},
8209 { IS_RESERVED_START,     IS_RESERVED_END,
8210 				is_reserved_name,	is_reserved_int},
8211 };
8212 
8213 /*
8214  * Interrupt source interrupt - called when the given source has an interrupt.
8215  * Source is a bit index into an array of 64-bit integers.
8216  */
8217 static void is_interrupt(struct hfi1_devdata *dd, unsigned int source)
8218 {
8219 	const struct is_table *entry;
8220 
8221 	/* avoids a double compare by walking the table in-order */
8222 	for (entry = &is_table[0]; entry->is_name; entry++) {
8223 		if (source < entry->end) {
8224 			trace_hfi1_interrupt(dd, entry, source);
8225 			entry->is_int(dd, source - entry->start);
8226 			return;
8227 		}
8228 	}
8229 	/* fell off the end */
8230 	dd_dev_err(dd, "invalid interrupt source %u\n", source);
8231 }
8232 
8233 /*
8234  * General interrupt handler.  This is able to correctly handle
8235  * all interrupts in case INTx is used.
8236  */
8237 static irqreturn_t general_interrupt(int irq, void *data)
8238 {
8239 	struct hfi1_devdata *dd = data;
8240 	u64 regs[CCE_NUM_INT_CSRS];
8241 	u32 bit;
8242 	int i;
8243 	irqreturn_t handled = IRQ_NONE;
8244 
8245 	this_cpu_inc(*dd->int_counter);
8246 
8247 	/* phase 1: scan and clear all handled interrupts */
8248 	for (i = 0; i < CCE_NUM_INT_CSRS; i++) {
8249 		if (dd->gi_mask[i] == 0) {
8250 			regs[i] = 0;	/* used later */
8251 			continue;
8252 		}
8253 		regs[i] = read_csr(dd, CCE_INT_STATUS + (8 * i)) &
8254 				dd->gi_mask[i];
8255 		/* only clear if anything is set */
8256 		if (regs[i])
8257 			write_csr(dd, CCE_INT_CLEAR + (8 * i), regs[i]);
8258 	}
8259 
8260 	/* phase 2: call the appropriate handler */
8261 	for_each_set_bit(bit, (unsigned long *)&regs[0],
8262 			 CCE_NUM_INT_CSRS * 64) {
8263 		is_interrupt(dd, bit);
8264 		handled = IRQ_HANDLED;
8265 	}
8266 
8267 	return handled;
8268 }
8269 
8270 static irqreturn_t sdma_interrupt(int irq, void *data)
8271 {
8272 	struct sdma_engine *sde = data;
8273 	struct hfi1_devdata *dd = sde->dd;
8274 	u64 status;
8275 
8276 #ifdef CONFIG_SDMA_VERBOSITY
8277 	dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
8278 		   slashstrip(__FILE__), __LINE__, __func__);
8279 	sdma_dumpstate(sde);
8280 #endif
8281 
8282 	this_cpu_inc(*dd->int_counter);
8283 
8284 	/* This read_csr is really bad in the hot path */
8285 	status = read_csr(dd,
8286 			  CCE_INT_STATUS + (8 * (IS_SDMA_START / 64)))
8287 			  & sde->imask;
8288 	if (likely(status)) {
8289 		/* clear the interrupt(s) */
8290 		write_csr(dd,
8291 			  CCE_INT_CLEAR + (8 * (IS_SDMA_START / 64)),
8292 			  status);
8293 
8294 		/* handle the interrupt(s) */
8295 		sdma_engine_interrupt(sde, status);
8296 	} else {
8297 		dd_dev_err_ratelimited(dd, "SDMA engine %u interrupt, but no status bits set\n",
8298 				       sde->this_idx);
8299 	}
8300 	return IRQ_HANDLED;
8301 }
8302 
8303 /*
8304  * Clear the receive interrupt.  Use a read of the interrupt clear CSR
8305  * to insure that the write completed.  This does NOT guarantee that
8306  * queued DMA writes to memory from the chip are pushed.
8307  */
8308 static inline void clear_recv_intr(struct hfi1_ctxtdata *rcd)
8309 {
8310 	struct hfi1_devdata *dd = rcd->dd;
8311 	u32 addr = CCE_INT_CLEAR + (8 * rcd->ireg);
8312 
8313 	mmiowb();	/* make sure everything before is written */
8314 	write_csr(dd, addr, rcd->imask);
8315 	/* force the above write on the chip and get a value back */
8316 	(void)read_csr(dd, addr);
8317 }
8318 
8319 /* force the receive interrupt */
8320 void force_recv_intr(struct hfi1_ctxtdata *rcd)
8321 {
8322 	write_csr(rcd->dd, CCE_INT_FORCE + (8 * rcd->ireg), rcd->imask);
8323 }
8324 
8325 /*
8326  * Return non-zero if a packet is present.
8327  *
8328  * This routine is called when rechecking for packets after the RcvAvail
8329  * interrupt has been cleared down.  First, do a quick check of memory for
8330  * a packet present.  If not found, use an expensive CSR read of the context
8331  * tail to determine the actual tail.  The CSR read is necessary because there
8332  * is no method to push pending DMAs to memory other than an interrupt and we
8333  * are trying to determine if we need to force an interrupt.
8334  */
8335 static inline int check_packet_present(struct hfi1_ctxtdata *rcd)
8336 {
8337 	u32 tail;
8338 	int present;
8339 
8340 	if (!HFI1_CAP_IS_KSET(DMA_RTAIL))
8341 		present = (rcd->seq_cnt ==
8342 				rhf_rcv_seq(rhf_to_cpu(get_rhf_addr(rcd))));
8343 	else /* is RDMA rtail */
8344 		present = (rcd->head != get_rcvhdrtail(rcd));
8345 
8346 	if (present)
8347 		return 1;
8348 
8349 	/* fall back to a CSR read, correct indpendent of DMA_RTAIL */
8350 	tail = (u32)read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_TAIL);
8351 	return rcd->head != tail;
8352 }
8353 
8354 /*
8355  * Receive packet IRQ handler.  This routine expects to be on its own IRQ.
8356  * This routine will try to handle packets immediately (latency), but if
8357  * it finds too many, it will invoke the thread handler (bandwitdh).  The
8358  * chip receive interrupt is *not* cleared down until this or the thread (if
8359  * invoked) is finished.  The intent is to avoid extra interrupts while we
8360  * are processing packets anyway.
8361  */
8362 static irqreturn_t receive_context_interrupt(int irq, void *data)
8363 {
8364 	struct hfi1_ctxtdata *rcd = data;
8365 	struct hfi1_devdata *dd = rcd->dd;
8366 	int disposition;
8367 	int present;
8368 
8369 	trace_hfi1_receive_interrupt(dd, rcd);
8370 	this_cpu_inc(*dd->int_counter);
8371 	aspm_ctx_disable(rcd);
8372 
8373 	/* receive interrupt remains blocked while processing packets */
8374 	disposition = rcd->do_interrupt(rcd, 0);
8375 
8376 	/*
8377 	 * Too many packets were seen while processing packets in this
8378 	 * IRQ handler.  Invoke the handler thread.  The receive interrupt
8379 	 * remains blocked.
8380 	 */
8381 	if (disposition == RCV_PKT_LIMIT)
8382 		return IRQ_WAKE_THREAD;
8383 
8384 	/*
8385 	 * The packet processor detected no more packets.  Clear the receive
8386 	 * interrupt and recheck for a packet packet that may have arrived
8387 	 * after the previous check and interrupt clear.  If a packet arrived,
8388 	 * force another interrupt.
8389 	 */
8390 	clear_recv_intr(rcd);
8391 	present = check_packet_present(rcd);
8392 	if (present)
8393 		force_recv_intr(rcd);
8394 
8395 	return IRQ_HANDLED;
8396 }
8397 
8398 /*
8399  * Receive packet thread handler.  This expects to be invoked with the
8400  * receive interrupt still blocked.
8401  */
8402 static irqreturn_t receive_context_thread(int irq, void *data)
8403 {
8404 	struct hfi1_ctxtdata *rcd = data;
8405 	int present;
8406 
8407 	/* receive interrupt is still blocked from the IRQ handler */
8408 	(void)rcd->do_interrupt(rcd, 1);
8409 
8410 	/*
8411 	 * The packet processor will only return if it detected no more
8412 	 * packets.  Hold IRQs here so we can safely clear the interrupt and
8413 	 * recheck for a packet that may have arrived after the previous
8414 	 * check and the interrupt clear.  If a packet arrived, force another
8415 	 * interrupt.
8416 	 */
8417 	local_irq_disable();
8418 	clear_recv_intr(rcd);
8419 	present = check_packet_present(rcd);
8420 	if (present)
8421 		force_recv_intr(rcd);
8422 	local_irq_enable();
8423 
8424 	return IRQ_HANDLED;
8425 }
8426 
8427 /* ========================================================================= */
8428 
8429 u32 read_physical_state(struct hfi1_devdata *dd)
8430 {
8431 	u64 reg;
8432 
8433 	reg = read_csr(dd, DC_DC8051_STS_CUR_STATE);
8434 	return (reg >> DC_DC8051_STS_CUR_STATE_PORT_SHIFT)
8435 				& DC_DC8051_STS_CUR_STATE_PORT_MASK;
8436 }
8437 
8438 u32 read_logical_state(struct hfi1_devdata *dd)
8439 {
8440 	u64 reg;
8441 
8442 	reg = read_csr(dd, DCC_CFG_PORT_CONFIG);
8443 	return (reg >> DCC_CFG_PORT_CONFIG_LINK_STATE_SHIFT)
8444 				& DCC_CFG_PORT_CONFIG_LINK_STATE_MASK;
8445 }
8446 
8447 static void set_logical_state(struct hfi1_devdata *dd, u32 chip_lstate)
8448 {
8449 	u64 reg;
8450 
8451 	reg = read_csr(dd, DCC_CFG_PORT_CONFIG);
8452 	/* clear current state, set new state */
8453 	reg &= ~DCC_CFG_PORT_CONFIG_LINK_STATE_SMASK;
8454 	reg |= (u64)chip_lstate << DCC_CFG_PORT_CONFIG_LINK_STATE_SHIFT;
8455 	write_csr(dd, DCC_CFG_PORT_CONFIG, reg);
8456 }
8457 
8458 /*
8459  * Use the 8051 to read a LCB CSR.
8460  */
8461 static int read_lcb_via_8051(struct hfi1_devdata *dd, u32 addr, u64 *data)
8462 {
8463 	u32 regno;
8464 	int ret;
8465 
8466 	if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR) {
8467 		if (acquire_lcb_access(dd, 0) == 0) {
8468 			*data = read_csr(dd, addr);
8469 			release_lcb_access(dd, 0);
8470 			return 0;
8471 		}
8472 		return -EBUSY;
8473 	}
8474 
8475 	/* register is an index of LCB registers: (offset - base) / 8 */
8476 	regno = (addr - DC_LCB_CFG_RUN) >> 3;
8477 	ret = do_8051_command(dd, HCMD_READ_LCB_CSR, regno, data);
8478 	if (ret != HCMD_SUCCESS)
8479 		return -EBUSY;
8480 	return 0;
8481 }
8482 
8483 /*
8484  * Provide a cache for some of the LCB registers in case the LCB is
8485  * unavailable.
8486  * (The LCB is unavailable in certain link states, for example.)
8487  */
8488 struct lcb_datum {
8489 	u32 off;
8490 	u64 val;
8491 };
8492 
8493 static struct lcb_datum lcb_cache[] = {
8494 	{ DC_LCB_ERR_INFO_RX_REPLAY_CNT, 0},
8495 	{ DC_LCB_ERR_INFO_SEQ_CRC_CNT, 0 },
8496 	{ DC_LCB_ERR_INFO_REINIT_FROM_PEER_CNT, 0 },
8497 };
8498 
8499 static void update_lcb_cache(struct hfi1_devdata *dd)
8500 {
8501 	int i;
8502 	int ret;
8503 	u64 val;
8504 
8505 	for (i = 0; i < ARRAY_SIZE(lcb_cache); i++) {
8506 		ret = read_lcb_csr(dd, lcb_cache[i].off, &val);
8507 
8508 		/* Update if we get good data */
8509 		if (likely(ret != -EBUSY))
8510 			lcb_cache[i].val = val;
8511 	}
8512 }
8513 
8514 static int read_lcb_cache(u32 off, u64 *val)
8515 {
8516 	int i;
8517 
8518 	for (i = 0; i < ARRAY_SIZE(lcb_cache); i++) {
8519 		if (lcb_cache[i].off == off) {
8520 			*val = lcb_cache[i].val;
8521 			return 0;
8522 		}
8523 	}
8524 
8525 	pr_warn("%s bad offset 0x%x\n", __func__, off);
8526 	return -1;
8527 }
8528 
8529 /*
8530  * Read an LCB CSR.  Access may not be in host control, so check.
8531  * Return 0 on success, -EBUSY on failure.
8532  */
8533 int read_lcb_csr(struct hfi1_devdata *dd, u32 addr, u64 *data)
8534 {
8535 	struct hfi1_pportdata *ppd = dd->pport;
8536 
8537 	/* if up, go through the 8051 for the value */
8538 	if (ppd->host_link_state & HLS_UP)
8539 		return read_lcb_via_8051(dd, addr, data);
8540 	/* if going up or down, check the cache, otherwise, no access */
8541 	if (ppd->host_link_state & (HLS_GOING_UP | HLS_GOING_OFFLINE)) {
8542 		if (read_lcb_cache(addr, data))
8543 			return -EBUSY;
8544 		return 0;
8545 	}
8546 
8547 	/* otherwise, host has access */
8548 	*data = read_csr(dd, addr);
8549 	return 0;
8550 }
8551 
8552 /*
8553  * Use the 8051 to write a LCB CSR.
8554  */
8555 static int write_lcb_via_8051(struct hfi1_devdata *dd, u32 addr, u64 data)
8556 {
8557 	u32 regno;
8558 	int ret;
8559 
8560 	if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR ||
8561 	    (dd->dc8051_ver < dc8051_ver(0, 20, 0))) {
8562 		if (acquire_lcb_access(dd, 0) == 0) {
8563 			write_csr(dd, addr, data);
8564 			release_lcb_access(dd, 0);
8565 			return 0;
8566 		}
8567 		return -EBUSY;
8568 	}
8569 
8570 	/* register is an index of LCB registers: (offset - base) / 8 */
8571 	regno = (addr - DC_LCB_CFG_RUN) >> 3;
8572 	ret = do_8051_command(dd, HCMD_WRITE_LCB_CSR, regno, &data);
8573 	if (ret != HCMD_SUCCESS)
8574 		return -EBUSY;
8575 	return 0;
8576 }
8577 
8578 /*
8579  * Write an LCB CSR.  Access may not be in host control, so check.
8580  * Return 0 on success, -EBUSY on failure.
8581  */
8582 int write_lcb_csr(struct hfi1_devdata *dd, u32 addr, u64 data)
8583 {
8584 	struct hfi1_pportdata *ppd = dd->pport;
8585 
8586 	/* if up, go through the 8051 for the value */
8587 	if (ppd->host_link_state & HLS_UP)
8588 		return write_lcb_via_8051(dd, addr, data);
8589 	/* if going up or down, no access */
8590 	if (ppd->host_link_state & (HLS_GOING_UP | HLS_GOING_OFFLINE))
8591 		return -EBUSY;
8592 	/* otherwise, host has access */
8593 	write_csr(dd, addr, data);
8594 	return 0;
8595 }
8596 
8597 /*
8598  * Returns:
8599  *	< 0 = Linux error, not able to get access
8600  *	> 0 = 8051 command RETURN_CODE
8601  */
8602 static int do_8051_command(
8603 	struct hfi1_devdata *dd,
8604 	u32 type,
8605 	u64 in_data,
8606 	u64 *out_data)
8607 {
8608 	u64 reg, completed;
8609 	int return_code;
8610 	unsigned long timeout;
8611 
8612 	hfi1_cdbg(DC8051, "type %d, data 0x%012llx", type, in_data);
8613 
8614 	mutex_lock(&dd->dc8051_lock);
8615 
8616 	/* We can't send any commands to the 8051 if it's in reset */
8617 	if (dd->dc_shutdown) {
8618 		return_code = -ENODEV;
8619 		goto fail;
8620 	}
8621 
8622 	/*
8623 	 * If an 8051 host command timed out previously, then the 8051 is
8624 	 * stuck.
8625 	 *
8626 	 * On first timeout, attempt to reset and restart the entire DC
8627 	 * block (including 8051). (Is this too big of a hammer?)
8628 	 *
8629 	 * If the 8051 times out a second time, the reset did not bring it
8630 	 * back to healthy life. In that case, fail any subsequent commands.
8631 	 */
8632 	if (dd->dc8051_timed_out) {
8633 		if (dd->dc8051_timed_out > 1) {
8634 			dd_dev_err(dd,
8635 				   "Previous 8051 host command timed out, skipping command %u\n",
8636 				   type);
8637 			return_code = -ENXIO;
8638 			goto fail;
8639 		}
8640 		_dc_shutdown(dd);
8641 		_dc_start(dd);
8642 	}
8643 
8644 	/*
8645 	 * If there is no timeout, then the 8051 command interface is
8646 	 * waiting for a command.
8647 	 */
8648 
8649 	/*
8650 	 * When writing a LCB CSR, out_data contains the full value to
8651 	 * to be written, while in_data contains the relative LCB
8652 	 * address in 7:0.  Do the work here, rather than the caller,
8653 	 * of distrubting the write data to where it needs to go:
8654 	 *
8655 	 * Write data
8656 	 *   39:00 -> in_data[47:8]
8657 	 *   47:40 -> DC8051_CFG_EXT_DEV_0.RETURN_CODE
8658 	 *   63:48 -> DC8051_CFG_EXT_DEV_0.RSP_DATA
8659 	 */
8660 	if (type == HCMD_WRITE_LCB_CSR) {
8661 		in_data |= ((*out_data) & 0xffffffffffull) << 8;
8662 		/* must preserve COMPLETED - it is tied to hardware */
8663 		reg = read_csr(dd, DC_DC8051_CFG_EXT_DEV_0);
8664 		reg &= DC_DC8051_CFG_EXT_DEV_0_COMPLETED_SMASK;
8665 		reg |= ((((*out_data) >> 40) & 0xff) <<
8666 				DC_DC8051_CFG_EXT_DEV_0_RETURN_CODE_SHIFT)
8667 		      | ((((*out_data) >> 48) & 0xffff) <<
8668 				DC_DC8051_CFG_EXT_DEV_0_RSP_DATA_SHIFT);
8669 		write_csr(dd, DC_DC8051_CFG_EXT_DEV_0, reg);
8670 	}
8671 
8672 	/*
8673 	 * Do two writes: the first to stabilize the type and req_data, the
8674 	 * second to activate.
8675 	 */
8676 	reg = ((u64)type & DC_DC8051_CFG_HOST_CMD_0_REQ_TYPE_MASK)
8677 			<< DC_DC8051_CFG_HOST_CMD_0_REQ_TYPE_SHIFT
8678 		| (in_data & DC_DC8051_CFG_HOST_CMD_0_REQ_DATA_MASK)
8679 			<< DC_DC8051_CFG_HOST_CMD_0_REQ_DATA_SHIFT;
8680 	write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, reg);
8681 	reg |= DC_DC8051_CFG_HOST_CMD_0_REQ_NEW_SMASK;
8682 	write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, reg);
8683 
8684 	/* wait for completion, alternate: interrupt */
8685 	timeout = jiffies + msecs_to_jiffies(DC8051_COMMAND_TIMEOUT);
8686 	while (1) {
8687 		reg = read_csr(dd, DC_DC8051_CFG_HOST_CMD_1);
8688 		completed = reg & DC_DC8051_CFG_HOST_CMD_1_COMPLETED_SMASK;
8689 		if (completed)
8690 			break;
8691 		if (time_after(jiffies, timeout)) {
8692 			dd->dc8051_timed_out++;
8693 			dd_dev_err(dd, "8051 host command %u timeout\n", type);
8694 			if (out_data)
8695 				*out_data = 0;
8696 			return_code = -ETIMEDOUT;
8697 			goto fail;
8698 		}
8699 		udelay(2);
8700 	}
8701 
8702 	if (out_data) {
8703 		*out_data = (reg >> DC_DC8051_CFG_HOST_CMD_1_RSP_DATA_SHIFT)
8704 				& DC_DC8051_CFG_HOST_CMD_1_RSP_DATA_MASK;
8705 		if (type == HCMD_READ_LCB_CSR) {
8706 			/* top 16 bits are in a different register */
8707 			*out_data |= (read_csr(dd, DC_DC8051_CFG_EXT_DEV_1)
8708 				& DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SMASK)
8709 				<< (48
8710 				    - DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SHIFT);
8711 		}
8712 	}
8713 	return_code = (reg >> DC_DC8051_CFG_HOST_CMD_1_RETURN_CODE_SHIFT)
8714 				& DC_DC8051_CFG_HOST_CMD_1_RETURN_CODE_MASK;
8715 	dd->dc8051_timed_out = 0;
8716 	/*
8717 	 * Clear command for next user.
8718 	 */
8719 	write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, 0);
8720 
8721 fail:
8722 	mutex_unlock(&dd->dc8051_lock);
8723 	return return_code;
8724 }
8725 
8726 static int set_physical_link_state(struct hfi1_devdata *dd, u64 state)
8727 {
8728 	return do_8051_command(dd, HCMD_CHANGE_PHY_STATE, state, NULL);
8729 }
8730 
8731 int load_8051_config(struct hfi1_devdata *dd, u8 field_id,
8732 		     u8 lane_id, u32 config_data)
8733 {
8734 	u64 data;
8735 	int ret;
8736 
8737 	data = (u64)field_id << LOAD_DATA_FIELD_ID_SHIFT
8738 		| (u64)lane_id << LOAD_DATA_LANE_ID_SHIFT
8739 		| (u64)config_data << LOAD_DATA_DATA_SHIFT;
8740 	ret = do_8051_command(dd, HCMD_LOAD_CONFIG_DATA, data, NULL);
8741 	if (ret != HCMD_SUCCESS) {
8742 		dd_dev_err(dd,
8743 			   "load 8051 config: field id %d, lane %d, err %d\n",
8744 			   (int)field_id, (int)lane_id, ret);
8745 	}
8746 	return ret;
8747 }
8748 
8749 /*
8750  * Read the 8051 firmware "registers".  Use the RAM directly.  Always
8751  * set the result, even on error.
8752  * Return 0 on success, -errno on failure
8753  */
8754 int read_8051_config(struct hfi1_devdata *dd, u8 field_id, u8 lane_id,
8755 		     u32 *result)
8756 {
8757 	u64 big_data;
8758 	u32 addr;
8759 	int ret;
8760 
8761 	/* address start depends on the lane_id */
8762 	if (lane_id < 4)
8763 		addr = (4 * NUM_GENERAL_FIELDS)
8764 			+ (lane_id * 4 * NUM_LANE_FIELDS);
8765 	else
8766 		addr = 0;
8767 	addr += field_id * 4;
8768 
8769 	/* read is in 8-byte chunks, hardware will truncate the address down */
8770 	ret = read_8051_data(dd, addr, 8, &big_data);
8771 
8772 	if (ret == 0) {
8773 		/* extract the 4 bytes we want */
8774 		if (addr & 0x4)
8775 			*result = (u32)(big_data >> 32);
8776 		else
8777 			*result = (u32)big_data;
8778 	} else {
8779 		*result = 0;
8780 		dd_dev_err(dd, "%s: direct read failed, lane %d, field %d!\n",
8781 			   __func__, lane_id, field_id);
8782 	}
8783 
8784 	return ret;
8785 }
8786 
8787 static int write_vc_local_phy(struct hfi1_devdata *dd, u8 power_management,
8788 			      u8 continuous)
8789 {
8790 	u32 frame;
8791 
8792 	frame = continuous << CONTINIOUS_REMOTE_UPDATE_SUPPORT_SHIFT
8793 		| power_management << POWER_MANAGEMENT_SHIFT;
8794 	return load_8051_config(dd, VERIFY_CAP_LOCAL_PHY,
8795 				GENERAL_CONFIG, frame);
8796 }
8797 
8798 static int write_vc_local_fabric(struct hfi1_devdata *dd, u8 vau, u8 z, u8 vcu,
8799 				 u16 vl15buf, u8 crc_sizes)
8800 {
8801 	u32 frame;
8802 
8803 	frame = (u32)vau << VAU_SHIFT
8804 		| (u32)z << Z_SHIFT
8805 		| (u32)vcu << VCU_SHIFT
8806 		| (u32)vl15buf << VL15BUF_SHIFT
8807 		| (u32)crc_sizes << CRC_SIZES_SHIFT;
8808 	return load_8051_config(dd, VERIFY_CAP_LOCAL_FABRIC,
8809 				GENERAL_CONFIG, frame);
8810 }
8811 
8812 static void read_vc_local_link_width(struct hfi1_devdata *dd, u8 *misc_bits,
8813 				     u8 *flag_bits, u16 *link_widths)
8814 {
8815 	u32 frame;
8816 
8817 	read_8051_config(dd, VERIFY_CAP_LOCAL_LINK_WIDTH, GENERAL_CONFIG,
8818 			 &frame);
8819 	*misc_bits = (frame >> MISC_CONFIG_BITS_SHIFT) & MISC_CONFIG_BITS_MASK;
8820 	*flag_bits = (frame >> LOCAL_FLAG_BITS_SHIFT) & LOCAL_FLAG_BITS_MASK;
8821 	*link_widths = (frame >> LINK_WIDTH_SHIFT) & LINK_WIDTH_MASK;
8822 }
8823 
8824 static int write_vc_local_link_width(struct hfi1_devdata *dd,
8825 				     u8 misc_bits,
8826 				     u8 flag_bits,
8827 				     u16 link_widths)
8828 {
8829 	u32 frame;
8830 
8831 	frame = (u32)misc_bits << MISC_CONFIG_BITS_SHIFT
8832 		| (u32)flag_bits << LOCAL_FLAG_BITS_SHIFT
8833 		| (u32)link_widths << LINK_WIDTH_SHIFT;
8834 	return load_8051_config(dd, VERIFY_CAP_LOCAL_LINK_WIDTH, GENERAL_CONFIG,
8835 		     frame);
8836 }
8837 
8838 static int write_local_device_id(struct hfi1_devdata *dd, u16 device_id,
8839 				 u8 device_rev)
8840 {
8841 	u32 frame;
8842 
8843 	frame = ((u32)device_id << LOCAL_DEVICE_ID_SHIFT)
8844 		| ((u32)device_rev << LOCAL_DEVICE_REV_SHIFT);
8845 	return load_8051_config(dd, LOCAL_DEVICE_ID, GENERAL_CONFIG, frame);
8846 }
8847 
8848 static void read_remote_device_id(struct hfi1_devdata *dd, u16 *device_id,
8849 				  u8 *device_rev)
8850 {
8851 	u32 frame;
8852 
8853 	read_8051_config(dd, REMOTE_DEVICE_ID, GENERAL_CONFIG, &frame);
8854 	*device_id = (frame >> REMOTE_DEVICE_ID_SHIFT) & REMOTE_DEVICE_ID_MASK;
8855 	*device_rev = (frame >> REMOTE_DEVICE_REV_SHIFT)
8856 			& REMOTE_DEVICE_REV_MASK;
8857 }
8858 
8859 int write_host_interface_version(struct hfi1_devdata *dd, u8 version)
8860 {
8861 	u32 frame;
8862 	u32 mask;
8863 
8864 	mask = (HOST_INTERFACE_VERSION_MASK << HOST_INTERFACE_VERSION_SHIFT);
8865 	read_8051_config(dd, RESERVED_REGISTERS, GENERAL_CONFIG, &frame);
8866 	/* Clear, then set field */
8867 	frame &= ~mask;
8868 	frame |= ((u32)version << HOST_INTERFACE_VERSION_SHIFT);
8869 	return load_8051_config(dd, RESERVED_REGISTERS, GENERAL_CONFIG,
8870 				frame);
8871 }
8872 
8873 void read_misc_status(struct hfi1_devdata *dd, u8 *ver_major, u8 *ver_minor,
8874 		      u8 *ver_patch)
8875 {
8876 	u32 frame;
8877 
8878 	read_8051_config(dd, MISC_STATUS, GENERAL_CONFIG, &frame);
8879 	*ver_major = (frame >> STS_FM_VERSION_MAJOR_SHIFT) &
8880 		STS_FM_VERSION_MAJOR_MASK;
8881 	*ver_minor = (frame >> STS_FM_VERSION_MINOR_SHIFT) &
8882 		STS_FM_VERSION_MINOR_MASK;
8883 
8884 	read_8051_config(dd, VERSION_PATCH, GENERAL_CONFIG, &frame);
8885 	*ver_patch = (frame >> STS_FM_VERSION_PATCH_SHIFT) &
8886 		STS_FM_VERSION_PATCH_MASK;
8887 }
8888 
8889 static void read_vc_remote_phy(struct hfi1_devdata *dd, u8 *power_management,
8890 			       u8 *continuous)
8891 {
8892 	u32 frame;
8893 
8894 	read_8051_config(dd, VERIFY_CAP_REMOTE_PHY, GENERAL_CONFIG, &frame);
8895 	*power_management = (frame >> POWER_MANAGEMENT_SHIFT)
8896 					& POWER_MANAGEMENT_MASK;
8897 	*continuous = (frame >> CONTINIOUS_REMOTE_UPDATE_SUPPORT_SHIFT)
8898 					& CONTINIOUS_REMOTE_UPDATE_SUPPORT_MASK;
8899 }
8900 
8901 static void read_vc_remote_fabric(struct hfi1_devdata *dd, u8 *vau, u8 *z,
8902 				  u8 *vcu, u16 *vl15buf, u8 *crc_sizes)
8903 {
8904 	u32 frame;
8905 
8906 	read_8051_config(dd, VERIFY_CAP_REMOTE_FABRIC, GENERAL_CONFIG, &frame);
8907 	*vau = (frame >> VAU_SHIFT) & VAU_MASK;
8908 	*z = (frame >> Z_SHIFT) & Z_MASK;
8909 	*vcu = (frame >> VCU_SHIFT) & VCU_MASK;
8910 	*vl15buf = (frame >> VL15BUF_SHIFT) & VL15BUF_MASK;
8911 	*crc_sizes = (frame >> CRC_SIZES_SHIFT) & CRC_SIZES_MASK;
8912 }
8913 
8914 static void read_vc_remote_link_width(struct hfi1_devdata *dd,
8915 				      u8 *remote_tx_rate,
8916 				      u16 *link_widths)
8917 {
8918 	u32 frame;
8919 
8920 	read_8051_config(dd, VERIFY_CAP_REMOTE_LINK_WIDTH, GENERAL_CONFIG,
8921 			 &frame);
8922 	*remote_tx_rate = (frame >> REMOTE_TX_RATE_SHIFT)
8923 				& REMOTE_TX_RATE_MASK;
8924 	*link_widths = (frame >> LINK_WIDTH_SHIFT) & LINK_WIDTH_MASK;
8925 }
8926 
8927 static void read_local_lni(struct hfi1_devdata *dd, u8 *enable_lane_rx)
8928 {
8929 	u32 frame;
8930 
8931 	read_8051_config(dd, LOCAL_LNI_INFO, GENERAL_CONFIG, &frame);
8932 	*enable_lane_rx = (frame >> ENABLE_LANE_RX_SHIFT) & ENABLE_LANE_RX_MASK;
8933 }
8934 
8935 static void read_mgmt_allowed(struct hfi1_devdata *dd, u8 *mgmt_allowed)
8936 {
8937 	u32 frame;
8938 
8939 	read_8051_config(dd, REMOTE_LNI_INFO, GENERAL_CONFIG, &frame);
8940 	*mgmt_allowed = (frame >> MGMT_ALLOWED_SHIFT) & MGMT_ALLOWED_MASK;
8941 }
8942 
8943 static void read_last_local_state(struct hfi1_devdata *dd, u32 *lls)
8944 {
8945 	read_8051_config(dd, LAST_LOCAL_STATE_COMPLETE, GENERAL_CONFIG, lls);
8946 }
8947 
8948 static void read_last_remote_state(struct hfi1_devdata *dd, u32 *lrs)
8949 {
8950 	read_8051_config(dd, LAST_REMOTE_STATE_COMPLETE, GENERAL_CONFIG, lrs);
8951 }
8952 
8953 void hfi1_read_link_quality(struct hfi1_devdata *dd, u8 *link_quality)
8954 {
8955 	u32 frame;
8956 	int ret;
8957 
8958 	*link_quality = 0;
8959 	if (dd->pport->host_link_state & HLS_UP) {
8960 		ret = read_8051_config(dd, LINK_QUALITY_INFO, GENERAL_CONFIG,
8961 				       &frame);
8962 		if (ret == 0)
8963 			*link_quality = (frame >> LINK_QUALITY_SHIFT)
8964 						& LINK_QUALITY_MASK;
8965 	}
8966 }
8967 
8968 static void read_planned_down_reason_code(struct hfi1_devdata *dd, u8 *pdrrc)
8969 {
8970 	u32 frame;
8971 
8972 	read_8051_config(dd, LINK_QUALITY_INFO, GENERAL_CONFIG, &frame);
8973 	*pdrrc = (frame >> DOWN_REMOTE_REASON_SHIFT) & DOWN_REMOTE_REASON_MASK;
8974 }
8975 
8976 static void read_link_down_reason(struct hfi1_devdata *dd, u8 *ldr)
8977 {
8978 	u32 frame;
8979 
8980 	read_8051_config(dd, LINK_DOWN_REASON, GENERAL_CONFIG, &frame);
8981 	*ldr = (frame & 0xff);
8982 }
8983 
8984 static int read_tx_settings(struct hfi1_devdata *dd,
8985 			    u8 *enable_lane_tx,
8986 			    u8 *tx_polarity_inversion,
8987 			    u8 *rx_polarity_inversion,
8988 			    u8 *max_rate)
8989 {
8990 	u32 frame;
8991 	int ret;
8992 
8993 	ret = read_8051_config(dd, TX_SETTINGS, GENERAL_CONFIG, &frame);
8994 	*enable_lane_tx = (frame >> ENABLE_LANE_TX_SHIFT)
8995 				& ENABLE_LANE_TX_MASK;
8996 	*tx_polarity_inversion = (frame >> TX_POLARITY_INVERSION_SHIFT)
8997 				& TX_POLARITY_INVERSION_MASK;
8998 	*rx_polarity_inversion = (frame >> RX_POLARITY_INVERSION_SHIFT)
8999 				& RX_POLARITY_INVERSION_MASK;
9000 	*max_rate = (frame >> MAX_RATE_SHIFT) & MAX_RATE_MASK;
9001 	return ret;
9002 }
9003 
9004 static int write_tx_settings(struct hfi1_devdata *dd,
9005 			     u8 enable_lane_tx,
9006 			     u8 tx_polarity_inversion,
9007 			     u8 rx_polarity_inversion,
9008 			     u8 max_rate)
9009 {
9010 	u32 frame;
9011 
9012 	/* no need to mask, all variable sizes match field widths */
9013 	frame = enable_lane_tx << ENABLE_LANE_TX_SHIFT
9014 		| tx_polarity_inversion << TX_POLARITY_INVERSION_SHIFT
9015 		| rx_polarity_inversion << RX_POLARITY_INVERSION_SHIFT
9016 		| max_rate << MAX_RATE_SHIFT;
9017 	return load_8051_config(dd, TX_SETTINGS, GENERAL_CONFIG, frame);
9018 }
9019 
9020 /*
9021  * Read an idle LCB message.
9022  *
9023  * Returns 0 on success, -EINVAL on error
9024  */
9025 static int read_idle_message(struct hfi1_devdata *dd, u64 type, u64 *data_out)
9026 {
9027 	int ret;
9028 
9029 	ret = do_8051_command(dd, HCMD_READ_LCB_IDLE_MSG, type, data_out);
9030 	if (ret != HCMD_SUCCESS) {
9031 		dd_dev_err(dd, "read idle message: type %d, err %d\n",
9032 			   (u32)type, ret);
9033 		return -EINVAL;
9034 	}
9035 	dd_dev_info(dd, "%s: read idle message 0x%llx\n", __func__, *data_out);
9036 	/* return only the payload as we already know the type */
9037 	*data_out >>= IDLE_PAYLOAD_SHIFT;
9038 	return 0;
9039 }
9040 
9041 /*
9042  * Read an idle SMA message.  To be done in response to a notification from
9043  * the 8051.
9044  *
9045  * Returns 0 on success, -EINVAL on error
9046  */
9047 static int read_idle_sma(struct hfi1_devdata *dd, u64 *data)
9048 {
9049 	return read_idle_message(dd, (u64)IDLE_SMA << IDLE_MSG_TYPE_SHIFT,
9050 				 data);
9051 }
9052 
9053 /*
9054  * Send an idle LCB message.
9055  *
9056  * Returns 0 on success, -EINVAL on error
9057  */
9058 static int send_idle_message(struct hfi1_devdata *dd, u64 data)
9059 {
9060 	int ret;
9061 
9062 	dd_dev_info(dd, "%s: sending idle message 0x%llx\n", __func__, data);
9063 	ret = do_8051_command(dd, HCMD_SEND_LCB_IDLE_MSG, data, NULL);
9064 	if (ret != HCMD_SUCCESS) {
9065 		dd_dev_err(dd, "send idle message: data 0x%llx, err %d\n",
9066 			   data, ret);
9067 		return -EINVAL;
9068 	}
9069 	return 0;
9070 }
9071 
9072 /*
9073  * Send an idle SMA message.
9074  *
9075  * Returns 0 on success, -EINVAL on error
9076  */
9077 int send_idle_sma(struct hfi1_devdata *dd, u64 message)
9078 {
9079 	u64 data;
9080 
9081 	data = ((message & IDLE_PAYLOAD_MASK) << IDLE_PAYLOAD_SHIFT) |
9082 		((u64)IDLE_SMA << IDLE_MSG_TYPE_SHIFT);
9083 	return send_idle_message(dd, data);
9084 }
9085 
9086 /*
9087  * Initialize the LCB then do a quick link up.  This may or may not be
9088  * in loopback.
9089  *
9090  * return 0 on success, -errno on error
9091  */
9092 static int do_quick_linkup(struct hfi1_devdata *dd)
9093 {
9094 	int ret;
9095 
9096 	lcb_shutdown(dd, 0);
9097 
9098 	if (loopback) {
9099 		/* LCB_CFG_LOOPBACK.VAL = 2 */
9100 		/* LCB_CFG_LANE_WIDTH.VAL = 0 */
9101 		write_csr(dd, DC_LCB_CFG_LOOPBACK,
9102 			  IB_PACKET_TYPE << DC_LCB_CFG_LOOPBACK_VAL_SHIFT);
9103 		write_csr(dd, DC_LCB_CFG_LANE_WIDTH, 0);
9104 	}
9105 
9106 	/* start the LCBs */
9107 	/* LCB_CFG_TX_FIFOS_RESET.VAL = 0 */
9108 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0);
9109 
9110 	/* simulator only loopback steps */
9111 	if (loopback && dd->icode == ICODE_FUNCTIONAL_SIMULATOR) {
9112 		/* LCB_CFG_RUN.EN = 1 */
9113 		write_csr(dd, DC_LCB_CFG_RUN,
9114 			  1ull << DC_LCB_CFG_RUN_EN_SHIFT);
9115 
9116 		ret = wait_link_transfer_active(dd, 10);
9117 		if (ret)
9118 			return ret;
9119 
9120 		write_csr(dd, DC_LCB_CFG_ALLOW_LINK_UP,
9121 			  1ull << DC_LCB_CFG_ALLOW_LINK_UP_VAL_SHIFT);
9122 	}
9123 
9124 	if (!loopback) {
9125 		/*
9126 		 * When doing quick linkup and not in loopback, both
9127 		 * sides must be done with LCB set-up before either
9128 		 * starts the quick linkup.  Put a delay here so that
9129 		 * both sides can be started and have a chance to be
9130 		 * done with LCB set up before resuming.
9131 		 */
9132 		dd_dev_err(dd,
9133 			   "Pausing for peer to be finished with LCB set up\n");
9134 		msleep(5000);
9135 		dd_dev_err(dd, "Continuing with quick linkup\n");
9136 	}
9137 
9138 	write_csr(dd, DC_LCB_ERR_EN, 0); /* mask LCB errors */
9139 	set_8051_lcb_access(dd);
9140 
9141 	/*
9142 	 * State "quick" LinkUp request sets the physical link state to
9143 	 * LinkUp without a verify capability sequence.
9144 	 * This state is in simulator v37 and later.
9145 	 */
9146 	ret = set_physical_link_state(dd, PLS_QUICK_LINKUP);
9147 	if (ret != HCMD_SUCCESS) {
9148 		dd_dev_err(dd,
9149 			   "%s: set physical link state to quick LinkUp failed with return %d\n",
9150 			   __func__, ret);
9151 
9152 		set_host_lcb_access(dd);
9153 		write_csr(dd, DC_LCB_ERR_EN, ~0ull); /* watch LCB errors */
9154 
9155 		if (ret >= 0)
9156 			ret = -EINVAL;
9157 		return ret;
9158 	}
9159 
9160 	return 0; /* success */
9161 }
9162 
9163 /*
9164  * Set the SerDes to internal loopback mode.
9165  * Returns 0 on success, -errno on error.
9166  */
9167 static int set_serdes_loopback_mode(struct hfi1_devdata *dd)
9168 {
9169 	int ret;
9170 
9171 	ret = set_physical_link_state(dd, PLS_INTERNAL_SERDES_LOOPBACK);
9172 	if (ret == HCMD_SUCCESS)
9173 		return 0;
9174 	dd_dev_err(dd,
9175 		   "Set physical link state to SerDes Loopback failed with return %d\n",
9176 		   ret);
9177 	if (ret >= 0)
9178 		ret = -EINVAL;
9179 	return ret;
9180 }
9181 
9182 /*
9183  * Do all special steps to set up loopback.
9184  */
9185 static int init_loopback(struct hfi1_devdata *dd)
9186 {
9187 	dd_dev_info(dd, "Entering loopback mode\n");
9188 
9189 	/* all loopbacks should disable self GUID check */
9190 	write_csr(dd, DC_DC8051_CFG_MODE,
9191 		  (read_csr(dd, DC_DC8051_CFG_MODE) | DISABLE_SELF_GUID_CHECK));
9192 
9193 	/*
9194 	 * The simulator has only one loopback option - LCB.  Switch
9195 	 * to that option, which includes quick link up.
9196 	 *
9197 	 * Accept all valid loopback values.
9198 	 */
9199 	if ((dd->icode == ICODE_FUNCTIONAL_SIMULATOR) &&
9200 	    (loopback == LOOPBACK_SERDES || loopback == LOOPBACK_LCB ||
9201 	     loopback == LOOPBACK_CABLE)) {
9202 		loopback = LOOPBACK_LCB;
9203 		quick_linkup = 1;
9204 		return 0;
9205 	}
9206 
9207 	/* handle serdes loopback */
9208 	if (loopback == LOOPBACK_SERDES) {
9209 		/* internal serdes loopack needs quick linkup on RTL */
9210 		if (dd->icode == ICODE_RTL_SILICON)
9211 			quick_linkup = 1;
9212 		return set_serdes_loopback_mode(dd);
9213 	}
9214 
9215 	/* LCB loopback - handled at poll time */
9216 	if (loopback == LOOPBACK_LCB) {
9217 		quick_linkup = 1; /* LCB is always quick linkup */
9218 
9219 		/* not supported in emulation due to emulation RTL changes */
9220 		if (dd->icode == ICODE_FPGA_EMULATION) {
9221 			dd_dev_err(dd,
9222 				   "LCB loopback not supported in emulation\n");
9223 			return -EINVAL;
9224 		}
9225 		return 0;
9226 	}
9227 
9228 	/* external cable loopback requires no extra steps */
9229 	if (loopback == LOOPBACK_CABLE)
9230 		return 0;
9231 
9232 	dd_dev_err(dd, "Invalid loopback mode %d\n", loopback);
9233 	return -EINVAL;
9234 }
9235 
9236 /*
9237  * Translate from the OPA_LINK_WIDTH handed to us by the FM to bits
9238  * used in the Verify Capability link width attribute.
9239  */
9240 static u16 opa_to_vc_link_widths(u16 opa_widths)
9241 {
9242 	int i;
9243 	u16 result = 0;
9244 
9245 	static const struct link_bits {
9246 		u16 from;
9247 		u16 to;
9248 	} opa_link_xlate[] = {
9249 		{ OPA_LINK_WIDTH_1X, 1 << (1 - 1)  },
9250 		{ OPA_LINK_WIDTH_2X, 1 << (2 - 1)  },
9251 		{ OPA_LINK_WIDTH_3X, 1 << (3 - 1)  },
9252 		{ OPA_LINK_WIDTH_4X, 1 << (4 - 1)  },
9253 	};
9254 
9255 	for (i = 0; i < ARRAY_SIZE(opa_link_xlate); i++) {
9256 		if (opa_widths & opa_link_xlate[i].from)
9257 			result |= opa_link_xlate[i].to;
9258 	}
9259 	return result;
9260 }
9261 
9262 /*
9263  * Set link attributes before moving to polling.
9264  */
9265 static int set_local_link_attributes(struct hfi1_pportdata *ppd)
9266 {
9267 	struct hfi1_devdata *dd = ppd->dd;
9268 	u8 enable_lane_tx;
9269 	u8 tx_polarity_inversion;
9270 	u8 rx_polarity_inversion;
9271 	int ret;
9272 
9273 	/* reset our fabric serdes to clear any lingering problems */
9274 	fabric_serdes_reset(dd);
9275 
9276 	/* set the local tx rate - need to read-modify-write */
9277 	ret = read_tx_settings(dd, &enable_lane_tx, &tx_polarity_inversion,
9278 			       &rx_polarity_inversion, &ppd->local_tx_rate);
9279 	if (ret)
9280 		goto set_local_link_attributes_fail;
9281 
9282 	if (dd->dc8051_ver < dc8051_ver(0, 20, 0)) {
9283 		/* set the tx rate to the fastest enabled */
9284 		if (ppd->link_speed_enabled & OPA_LINK_SPEED_25G)
9285 			ppd->local_tx_rate = 1;
9286 		else
9287 			ppd->local_tx_rate = 0;
9288 	} else {
9289 		/* set the tx rate to all enabled */
9290 		ppd->local_tx_rate = 0;
9291 		if (ppd->link_speed_enabled & OPA_LINK_SPEED_25G)
9292 			ppd->local_tx_rate |= 2;
9293 		if (ppd->link_speed_enabled & OPA_LINK_SPEED_12_5G)
9294 			ppd->local_tx_rate |= 1;
9295 	}
9296 
9297 	enable_lane_tx = 0xF; /* enable all four lanes */
9298 	ret = write_tx_settings(dd, enable_lane_tx, tx_polarity_inversion,
9299 				rx_polarity_inversion, ppd->local_tx_rate);
9300 	if (ret != HCMD_SUCCESS)
9301 		goto set_local_link_attributes_fail;
9302 
9303 	/*
9304 	 * DC supports continuous updates.
9305 	 */
9306 	ret = write_vc_local_phy(dd,
9307 				 0 /* no power management */,
9308 				 1 /* continuous updates */);
9309 	if (ret != HCMD_SUCCESS)
9310 		goto set_local_link_attributes_fail;
9311 
9312 	/* z=1 in the next call: AU of 0 is not supported by the hardware */
9313 	ret = write_vc_local_fabric(dd, dd->vau, 1, dd->vcu, dd->vl15_init,
9314 				    ppd->port_crc_mode_enabled);
9315 	if (ret != HCMD_SUCCESS)
9316 		goto set_local_link_attributes_fail;
9317 
9318 	ret = write_vc_local_link_width(dd, 0, 0,
9319 					opa_to_vc_link_widths(
9320 						ppd->link_width_enabled));
9321 	if (ret != HCMD_SUCCESS)
9322 		goto set_local_link_attributes_fail;
9323 
9324 	/* let peer know who we are */
9325 	ret = write_local_device_id(dd, dd->pcidev->device, dd->minrev);
9326 	if (ret == HCMD_SUCCESS)
9327 		return 0;
9328 
9329 set_local_link_attributes_fail:
9330 	dd_dev_err(dd,
9331 		   "Failed to set local link attributes, return 0x%x\n",
9332 		   ret);
9333 	return ret;
9334 }
9335 
9336 /*
9337  * Call this to start the link.
9338  * Do not do anything if the link is disabled.
9339  * Returns 0 if link is disabled, moved to polling, or the driver is not ready.
9340  */
9341 int start_link(struct hfi1_pportdata *ppd)
9342 {
9343 	/*
9344 	 * Tune the SerDes to a ballpark setting for optimal signal and bit
9345 	 * error rate.  Needs to be done before starting the link.
9346 	 */
9347 	tune_serdes(ppd);
9348 
9349 	if (!ppd->driver_link_ready) {
9350 		dd_dev_info(ppd->dd,
9351 			    "%s: stopping link start because driver is not ready\n",
9352 			    __func__);
9353 		return 0;
9354 	}
9355 
9356 	/*
9357 	 * FULL_MGMT_P_KEY is cleared from the pkey table, so that the
9358 	 * pkey table can be configured properly if the HFI unit is connected
9359 	 * to switch port with MgmtAllowed=NO
9360 	 */
9361 	clear_full_mgmt_pkey(ppd);
9362 
9363 	return set_link_state(ppd, HLS_DN_POLL);
9364 }
9365 
9366 static void wait_for_qsfp_init(struct hfi1_pportdata *ppd)
9367 {
9368 	struct hfi1_devdata *dd = ppd->dd;
9369 	u64 mask;
9370 	unsigned long timeout;
9371 
9372 	/*
9373 	 * Some QSFP cables have a quirk that asserts the IntN line as a side
9374 	 * effect of power up on plug-in. We ignore this false positive
9375 	 * interrupt until the module has finished powering up by waiting for
9376 	 * a minimum timeout of the module inrush initialization time of
9377 	 * 500 ms (SFF 8679 Table 5-6) to ensure the voltage rails in the
9378 	 * module have stabilized.
9379 	 */
9380 	msleep(500);
9381 
9382 	/*
9383 	 * Check for QSFP interrupt for t_init (SFF 8679 Table 8-1)
9384 	 */
9385 	timeout = jiffies + msecs_to_jiffies(2000);
9386 	while (1) {
9387 		mask = read_csr(dd, dd->hfi1_id ?
9388 				ASIC_QSFP2_IN : ASIC_QSFP1_IN);
9389 		if (!(mask & QSFP_HFI0_INT_N))
9390 			break;
9391 		if (time_after(jiffies, timeout)) {
9392 			dd_dev_info(dd, "%s: No IntN detected, reset complete\n",
9393 				    __func__);
9394 			break;
9395 		}
9396 		udelay(2);
9397 	}
9398 }
9399 
9400 static void set_qsfp_int_n(struct hfi1_pportdata *ppd, u8 enable)
9401 {
9402 	struct hfi1_devdata *dd = ppd->dd;
9403 	u64 mask;
9404 
9405 	mask = read_csr(dd, dd->hfi1_id ? ASIC_QSFP2_MASK : ASIC_QSFP1_MASK);
9406 	if (enable) {
9407 		/*
9408 		 * Clear the status register to avoid an immediate interrupt
9409 		 * when we re-enable the IntN pin
9410 		 */
9411 		write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_CLEAR : ASIC_QSFP1_CLEAR,
9412 			  QSFP_HFI0_INT_N);
9413 		mask |= (u64)QSFP_HFI0_INT_N;
9414 	} else {
9415 		mask &= ~(u64)QSFP_HFI0_INT_N;
9416 	}
9417 	write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_MASK : ASIC_QSFP1_MASK, mask);
9418 }
9419 
9420 int reset_qsfp(struct hfi1_pportdata *ppd)
9421 {
9422 	struct hfi1_devdata *dd = ppd->dd;
9423 	u64 mask, qsfp_mask;
9424 
9425 	/* Disable INT_N from triggering QSFP interrupts */
9426 	set_qsfp_int_n(ppd, 0);
9427 
9428 	/* Reset the QSFP */
9429 	mask = (u64)QSFP_HFI0_RESET_N;
9430 
9431 	qsfp_mask = read_csr(dd,
9432 			     dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT);
9433 	qsfp_mask &= ~mask;
9434 	write_csr(dd,
9435 		  dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT, qsfp_mask);
9436 
9437 	udelay(10);
9438 
9439 	qsfp_mask |= mask;
9440 	write_csr(dd,
9441 		  dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT, qsfp_mask);
9442 
9443 	wait_for_qsfp_init(ppd);
9444 
9445 	/*
9446 	 * Allow INT_N to trigger the QSFP interrupt to watch
9447 	 * for alarms and warnings
9448 	 */
9449 	set_qsfp_int_n(ppd, 1);
9450 
9451 	/*
9452 	 * After the reset, AOC transmitters are enabled by default. They need
9453 	 * to be turned off to complete the QSFP setup before they can be
9454 	 * enabled again.
9455 	 */
9456 	return set_qsfp_tx(ppd, 0);
9457 }
9458 
9459 static int handle_qsfp_error_conditions(struct hfi1_pportdata *ppd,
9460 					u8 *qsfp_interrupt_status)
9461 {
9462 	struct hfi1_devdata *dd = ppd->dd;
9463 
9464 	if ((qsfp_interrupt_status[0] & QSFP_HIGH_TEMP_ALARM) ||
9465 	    (qsfp_interrupt_status[0] & QSFP_HIGH_TEMP_WARNING))
9466 		dd_dev_err(dd, "%s: QSFP cable temperature too high\n",
9467 			   __func__);
9468 
9469 	if ((qsfp_interrupt_status[0] & QSFP_LOW_TEMP_ALARM) ||
9470 	    (qsfp_interrupt_status[0] & QSFP_LOW_TEMP_WARNING))
9471 		dd_dev_err(dd, "%s: QSFP cable temperature too low\n",
9472 			   __func__);
9473 
9474 	/*
9475 	 * The remaining alarms/warnings don't matter if the link is down.
9476 	 */
9477 	if (ppd->host_link_state & HLS_DOWN)
9478 		return 0;
9479 
9480 	if ((qsfp_interrupt_status[1] & QSFP_HIGH_VCC_ALARM) ||
9481 	    (qsfp_interrupt_status[1] & QSFP_HIGH_VCC_WARNING))
9482 		dd_dev_err(dd, "%s: QSFP supply voltage too high\n",
9483 			   __func__);
9484 
9485 	if ((qsfp_interrupt_status[1] & QSFP_LOW_VCC_ALARM) ||
9486 	    (qsfp_interrupt_status[1] & QSFP_LOW_VCC_WARNING))
9487 		dd_dev_err(dd, "%s: QSFP supply voltage too low\n",
9488 			   __func__);
9489 
9490 	/* Byte 2 is vendor specific */
9491 
9492 	if ((qsfp_interrupt_status[3] & QSFP_HIGH_POWER_ALARM) ||
9493 	    (qsfp_interrupt_status[3] & QSFP_HIGH_POWER_WARNING))
9494 		dd_dev_err(dd, "%s: Cable RX channel 1/2 power too high\n",
9495 			   __func__);
9496 
9497 	if ((qsfp_interrupt_status[3] & QSFP_LOW_POWER_ALARM) ||
9498 	    (qsfp_interrupt_status[3] & QSFP_LOW_POWER_WARNING))
9499 		dd_dev_err(dd, "%s: Cable RX channel 1/2 power too low\n",
9500 			   __func__);
9501 
9502 	if ((qsfp_interrupt_status[4] & QSFP_HIGH_POWER_ALARM) ||
9503 	    (qsfp_interrupt_status[4] & QSFP_HIGH_POWER_WARNING))
9504 		dd_dev_err(dd, "%s: Cable RX channel 3/4 power too high\n",
9505 			   __func__);
9506 
9507 	if ((qsfp_interrupt_status[4] & QSFP_LOW_POWER_ALARM) ||
9508 	    (qsfp_interrupt_status[4] & QSFP_LOW_POWER_WARNING))
9509 		dd_dev_err(dd, "%s: Cable RX channel 3/4 power too low\n",
9510 			   __func__);
9511 
9512 	if ((qsfp_interrupt_status[5] & QSFP_HIGH_BIAS_ALARM) ||
9513 	    (qsfp_interrupt_status[5] & QSFP_HIGH_BIAS_WARNING))
9514 		dd_dev_err(dd, "%s: Cable TX channel 1/2 bias too high\n",
9515 			   __func__);
9516 
9517 	if ((qsfp_interrupt_status[5] & QSFP_LOW_BIAS_ALARM) ||
9518 	    (qsfp_interrupt_status[5] & QSFP_LOW_BIAS_WARNING))
9519 		dd_dev_err(dd, "%s: Cable TX channel 1/2 bias too low\n",
9520 			   __func__);
9521 
9522 	if ((qsfp_interrupt_status[6] & QSFP_HIGH_BIAS_ALARM) ||
9523 	    (qsfp_interrupt_status[6] & QSFP_HIGH_BIAS_WARNING))
9524 		dd_dev_err(dd, "%s: Cable TX channel 3/4 bias too high\n",
9525 			   __func__);
9526 
9527 	if ((qsfp_interrupt_status[6] & QSFP_LOW_BIAS_ALARM) ||
9528 	    (qsfp_interrupt_status[6] & QSFP_LOW_BIAS_WARNING))
9529 		dd_dev_err(dd, "%s: Cable TX channel 3/4 bias too low\n",
9530 			   __func__);
9531 
9532 	if ((qsfp_interrupt_status[7] & QSFP_HIGH_POWER_ALARM) ||
9533 	    (qsfp_interrupt_status[7] & QSFP_HIGH_POWER_WARNING))
9534 		dd_dev_err(dd, "%s: Cable TX channel 1/2 power too high\n",
9535 			   __func__);
9536 
9537 	if ((qsfp_interrupt_status[7] & QSFP_LOW_POWER_ALARM) ||
9538 	    (qsfp_interrupt_status[7] & QSFP_LOW_POWER_WARNING))
9539 		dd_dev_err(dd, "%s: Cable TX channel 1/2 power too low\n",
9540 			   __func__);
9541 
9542 	if ((qsfp_interrupt_status[8] & QSFP_HIGH_POWER_ALARM) ||
9543 	    (qsfp_interrupt_status[8] & QSFP_HIGH_POWER_WARNING))
9544 		dd_dev_err(dd, "%s: Cable TX channel 3/4 power too high\n",
9545 			   __func__);
9546 
9547 	if ((qsfp_interrupt_status[8] & QSFP_LOW_POWER_ALARM) ||
9548 	    (qsfp_interrupt_status[8] & QSFP_LOW_POWER_WARNING))
9549 		dd_dev_err(dd, "%s: Cable TX channel 3/4 power too low\n",
9550 			   __func__);
9551 
9552 	/* Bytes 9-10 and 11-12 are reserved */
9553 	/* Bytes 13-15 are vendor specific */
9554 
9555 	return 0;
9556 }
9557 
9558 /* This routine will only be scheduled if the QSFP module present is asserted */
9559 void qsfp_event(struct work_struct *work)
9560 {
9561 	struct qsfp_data *qd;
9562 	struct hfi1_pportdata *ppd;
9563 	struct hfi1_devdata *dd;
9564 
9565 	qd = container_of(work, struct qsfp_data, qsfp_work);
9566 	ppd = qd->ppd;
9567 	dd = ppd->dd;
9568 
9569 	/* Sanity check */
9570 	if (!qsfp_mod_present(ppd))
9571 		return;
9572 
9573 	if (ppd->host_link_state == HLS_DN_DISABLE) {
9574 		dd_dev_info(ppd->dd,
9575 			    "%s: stopping link start because link is disabled\n",
9576 			    __func__);
9577 		return;
9578 	}
9579 
9580 	/*
9581 	 * Turn DC back on after cable has been re-inserted. Up until
9582 	 * now, the DC has been in reset to save power.
9583 	 */
9584 	dc_start(dd);
9585 
9586 	if (qd->cache_refresh_required) {
9587 		set_qsfp_int_n(ppd, 0);
9588 
9589 		wait_for_qsfp_init(ppd);
9590 
9591 		/*
9592 		 * Allow INT_N to trigger the QSFP interrupt to watch
9593 		 * for alarms and warnings
9594 		 */
9595 		set_qsfp_int_n(ppd, 1);
9596 
9597 		start_link(ppd);
9598 	}
9599 
9600 	if (qd->check_interrupt_flags) {
9601 		u8 qsfp_interrupt_status[16] = {0,};
9602 
9603 		if (one_qsfp_read(ppd, dd->hfi1_id, 6,
9604 				  &qsfp_interrupt_status[0], 16) != 16) {
9605 			dd_dev_info(dd,
9606 				    "%s: Failed to read status of QSFP module\n",
9607 				    __func__);
9608 		} else {
9609 			unsigned long flags;
9610 
9611 			handle_qsfp_error_conditions(
9612 					ppd, qsfp_interrupt_status);
9613 			spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
9614 			ppd->qsfp_info.check_interrupt_flags = 0;
9615 			spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock,
9616 					       flags);
9617 		}
9618 	}
9619 }
9620 
9621 static void init_qsfp_int(struct hfi1_devdata *dd)
9622 {
9623 	struct hfi1_pportdata *ppd = dd->pport;
9624 	u64 qsfp_mask, cce_int_mask;
9625 	const int qsfp1_int_smask = QSFP1_INT % 64;
9626 	const int qsfp2_int_smask = QSFP2_INT % 64;
9627 
9628 	/*
9629 	 * disable QSFP1 interrupts for HFI1, QSFP2 interrupts for HFI0
9630 	 * Qsfp1Int and Qsfp2Int are adjacent bits in the same CSR,
9631 	 * therefore just one of QSFP1_INT/QSFP2_INT can be used to find
9632 	 * the index of the appropriate CSR in the CCEIntMask CSR array
9633 	 */
9634 	cce_int_mask = read_csr(dd, CCE_INT_MASK +
9635 				(8 * (QSFP1_INT / 64)));
9636 	if (dd->hfi1_id) {
9637 		cce_int_mask &= ~((u64)1 << qsfp1_int_smask);
9638 		write_csr(dd, CCE_INT_MASK + (8 * (QSFP1_INT / 64)),
9639 			  cce_int_mask);
9640 	} else {
9641 		cce_int_mask &= ~((u64)1 << qsfp2_int_smask);
9642 		write_csr(dd, CCE_INT_MASK + (8 * (QSFP2_INT / 64)),
9643 			  cce_int_mask);
9644 	}
9645 
9646 	qsfp_mask = (u64)(QSFP_HFI0_INT_N | QSFP_HFI0_MODPRST_N);
9647 	/* Clear current status to avoid spurious interrupts */
9648 	write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_CLEAR : ASIC_QSFP1_CLEAR,
9649 		  qsfp_mask);
9650 	write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_MASK : ASIC_QSFP1_MASK,
9651 		  qsfp_mask);
9652 
9653 	set_qsfp_int_n(ppd, 0);
9654 
9655 	/* Handle active low nature of INT_N and MODPRST_N pins */
9656 	if (qsfp_mod_present(ppd))
9657 		qsfp_mask &= ~(u64)QSFP_HFI0_MODPRST_N;
9658 	write_csr(dd,
9659 		  dd->hfi1_id ? ASIC_QSFP2_INVERT : ASIC_QSFP1_INVERT,
9660 		  qsfp_mask);
9661 }
9662 
9663 /*
9664  * Do a one-time initialize of the LCB block.
9665  */
9666 static void init_lcb(struct hfi1_devdata *dd)
9667 {
9668 	/* simulator does not correctly handle LCB cclk loopback, skip */
9669 	if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR)
9670 		return;
9671 
9672 	/* the DC has been reset earlier in the driver load */
9673 
9674 	/* set LCB for cclk loopback on the port */
9675 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0x01);
9676 	write_csr(dd, DC_LCB_CFG_LANE_WIDTH, 0x00);
9677 	write_csr(dd, DC_LCB_CFG_REINIT_AS_SLAVE, 0x00);
9678 	write_csr(dd, DC_LCB_CFG_CNT_FOR_SKIP_STALL, 0x110);
9679 	write_csr(dd, DC_LCB_CFG_CLK_CNTR, 0x08);
9680 	write_csr(dd, DC_LCB_CFG_LOOPBACK, 0x02);
9681 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0x00);
9682 }
9683 
9684 /*
9685  * Perform a test read on the QSFP.  Return 0 on success, -ERRNO
9686  * on error.
9687  */
9688 static int test_qsfp_read(struct hfi1_pportdata *ppd)
9689 {
9690 	int ret;
9691 	u8 status;
9692 
9693 	/*
9694 	 * Report success if not a QSFP or, if it is a QSFP, but the cable is
9695 	 * not present
9696 	 */
9697 	if (ppd->port_type != PORT_TYPE_QSFP || !qsfp_mod_present(ppd))
9698 		return 0;
9699 
9700 	/* read byte 2, the status byte */
9701 	ret = one_qsfp_read(ppd, ppd->dd->hfi1_id, 2, &status, 1);
9702 	if (ret < 0)
9703 		return ret;
9704 	if (ret != 1)
9705 		return -EIO;
9706 
9707 	return 0; /* success */
9708 }
9709 
9710 /*
9711  * Values for QSFP retry.
9712  *
9713  * Give up after 10s (20 x 500ms).  The overall timeout was empirically
9714  * arrived at from experience on a large cluster.
9715  */
9716 #define MAX_QSFP_RETRIES 20
9717 #define QSFP_RETRY_WAIT 500 /* msec */
9718 
9719 /*
9720  * Try a QSFP read.  If it fails, schedule a retry for later.
9721  * Called on first link activation after driver load.
9722  */
9723 static void try_start_link(struct hfi1_pportdata *ppd)
9724 {
9725 	if (test_qsfp_read(ppd)) {
9726 		/* read failed */
9727 		if (ppd->qsfp_retry_count >= MAX_QSFP_RETRIES) {
9728 			dd_dev_err(ppd->dd, "QSFP not responding, giving up\n");
9729 			return;
9730 		}
9731 		dd_dev_info(ppd->dd,
9732 			    "QSFP not responding, waiting and retrying %d\n",
9733 			    (int)ppd->qsfp_retry_count);
9734 		ppd->qsfp_retry_count++;
9735 		queue_delayed_work(ppd->link_wq, &ppd->start_link_work,
9736 				   msecs_to_jiffies(QSFP_RETRY_WAIT));
9737 		return;
9738 	}
9739 	ppd->qsfp_retry_count = 0;
9740 
9741 	start_link(ppd);
9742 }
9743 
9744 /*
9745  * Workqueue function to start the link after a delay.
9746  */
9747 void handle_start_link(struct work_struct *work)
9748 {
9749 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
9750 						  start_link_work.work);
9751 	try_start_link(ppd);
9752 }
9753 
9754 int bringup_serdes(struct hfi1_pportdata *ppd)
9755 {
9756 	struct hfi1_devdata *dd = ppd->dd;
9757 	u64 guid;
9758 	int ret;
9759 
9760 	if (HFI1_CAP_IS_KSET(EXTENDED_PSN))
9761 		add_rcvctrl(dd, RCV_CTRL_RCV_EXTENDED_PSN_ENABLE_SMASK);
9762 
9763 	guid = ppd->guids[HFI1_PORT_GUID_INDEX];
9764 	if (!guid) {
9765 		if (dd->base_guid)
9766 			guid = dd->base_guid + ppd->port - 1;
9767 		ppd->guids[HFI1_PORT_GUID_INDEX] = guid;
9768 	}
9769 
9770 	/* Set linkinit_reason on power up per OPA spec */
9771 	ppd->linkinit_reason = OPA_LINKINIT_REASON_LINKUP;
9772 
9773 	/* one-time init of the LCB */
9774 	init_lcb(dd);
9775 
9776 	if (loopback) {
9777 		ret = init_loopback(dd);
9778 		if (ret < 0)
9779 			return ret;
9780 	}
9781 
9782 	get_port_type(ppd);
9783 	if (ppd->port_type == PORT_TYPE_QSFP) {
9784 		set_qsfp_int_n(ppd, 0);
9785 		wait_for_qsfp_init(ppd);
9786 		set_qsfp_int_n(ppd, 1);
9787 	}
9788 
9789 	try_start_link(ppd);
9790 	return 0;
9791 }
9792 
9793 void hfi1_quiet_serdes(struct hfi1_pportdata *ppd)
9794 {
9795 	struct hfi1_devdata *dd = ppd->dd;
9796 
9797 	/*
9798 	 * Shut down the link and keep it down.   First turn off that the
9799 	 * driver wants to allow the link to be up (driver_link_ready).
9800 	 * Then make sure the link is not automatically restarted
9801 	 * (link_enabled).  Cancel any pending restart.  And finally
9802 	 * go offline.
9803 	 */
9804 	ppd->driver_link_ready = 0;
9805 	ppd->link_enabled = 0;
9806 
9807 	ppd->qsfp_retry_count = MAX_QSFP_RETRIES; /* prevent more retries */
9808 	flush_delayed_work(&ppd->start_link_work);
9809 	cancel_delayed_work_sync(&ppd->start_link_work);
9810 
9811 	ppd->offline_disabled_reason =
9812 			HFI1_ODR_MASK(OPA_LINKDOWN_REASON_SMA_DISABLED);
9813 	set_link_down_reason(ppd, OPA_LINKDOWN_REASON_SMA_DISABLED, 0,
9814 			     OPA_LINKDOWN_REASON_SMA_DISABLED);
9815 	set_link_state(ppd, HLS_DN_OFFLINE);
9816 
9817 	/* disable the port */
9818 	clear_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
9819 }
9820 
9821 static inline int init_cpu_counters(struct hfi1_devdata *dd)
9822 {
9823 	struct hfi1_pportdata *ppd;
9824 	int i;
9825 
9826 	ppd = (struct hfi1_pportdata *)(dd + 1);
9827 	for (i = 0; i < dd->num_pports; i++, ppd++) {
9828 		ppd->ibport_data.rvp.rc_acks = NULL;
9829 		ppd->ibport_data.rvp.rc_qacks = NULL;
9830 		ppd->ibport_data.rvp.rc_acks = alloc_percpu(u64);
9831 		ppd->ibport_data.rvp.rc_qacks = alloc_percpu(u64);
9832 		ppd->ibport_data.rvp.rc_delayed_comp = alloc_percpu(u64);
9833 		if (!ppd->ibport_data.rvp.rc_acks ||
9834 		    !ppd->ibport_data.rvp.rc_delayed_comp ||
9835 		    !ppd->ibport_data.rvp.rc_qacks)
9836 			return -ENOMEM;
9837 	}
9838 
9839 	return 0;
9840 }
9841 
9842 /*
9843  * index is the index into the receive array
9844  */
9845 void hfi1_put_tid(struct hfi1_devdata *dd, u32 index,
9846 		  u32 type, unsigned long pa, u16 order)
9847 {
9848 	u64 reg;
9849 
9850 	if (!(dd->flags & HFI1_PRESENT))
9851 		goto done;
9852 
9853 	if (type == PT_INVALID || type == PT_INVALID_FLUSH) {
9854 		pa = 0;
9855 		order = 0;
9856 	} else if (type > PT_INVALID) {
9857 		dd_dev_err(dd,
9858 			   "unexpected receive array type %u for index %u, not handled\n",
9859 			   type, index);
9860 		goto done;
9861 	}
9862 	trace_hfi1_put_tid(dd, index, type, pa, order);
9863 
9864 #define RT_ADDR_SHIFT 12	/* 4KB kernel address boundary */
9865 	reg = RCV_ARRAY_RT_WRITE_ENABLE_SMASK
9866 		| (u64)order << RCV_ARRAY_RT_BUF_SIZE_SHIFT
9867 		| ((pa >> RT_ADDR_SHIFT) & RCV_ARRAY_RT_ADDR_MASK)
9868 					<< RCV_ARRAY_RT_ADDR_SHIFT;
9869 	trace_hfi1_write_rcvarray(dd->rcvarray_wc + (index * 8), reg);
9870 	writeq(reg, dd->rcvarray_wc + (index * 8));
9871 
9872 	if (type == PT_EAGER || type == PT_INVALID_FLUSH || (index & 3) == 3)
9873 		/*
9874 		 * Eager entries are written and flushed
9875 		 *
9876 		 * Expected entries are flushed every 4 writes
9877 		 */
9878 		flush_wc();
9879 done:
9880 	return;
9881 }
9882 
9883 void hfi1_clear_tids(struct hfi1_ctxtdata *rcd)
9884 {
9885 	struct hfi1_devdata *dd = rcd->dd;
9886 	u32 i;
9887 
9888 	/* this could be optimized */
9889 	for (i = rcd->eager_base; i < rcd->eager_base +
9890 		     rcd->egrbufs.alloced; i++)
9891 		hfi1_put_tid(dd, i, PT_INVALID, 0, 0);
9892 
9893 	for (i = rcd->expected_base;
9894 			i < rcd->expected_base + rcd->expected_count; i++)
9895 		hfi1_put_tid(dd, i, PT_INVALID, 0, 0);
9896 }
9897 
9898 static const char * const ib_cfg_name_strings[] = {
9899 	"HFI1_IB_CFG_LIDLMC",
9900 	"HFI1_IB_CFG_LWID_DG_ENB",
9901 	"HFI1_IB_CFG_LWID_ENB",
9902 	"HFI1_IB_CFG_LWID",
9903 	"HFI1_IB_CFG_SPD_ENB",
9904 	"HFI1_IB_CFG_SPD",
9905 	"HFI1_IB_CFG_RXPOL_ENB",
9906 	"HFI1_IB_CFG_LREV_ENB",
9907 	"HFI1_IB_CFG_LINKLATENCY",
9908 	"HFI1_IB_CFG_HRTBT",
9909 	"HFI1_IB_CFG_OP_VLS",
9910 	"HFI1_IB_CFG_VL_HIGH_CAP",
9911 	"HFI1_IB_CFG_VL_LOW_CAP",
9912 	"HFI1_IB_CFG_OVERRUN_THRESH",
9913 	"HFI1_IB_CFG_PHYERR_THRESH",
9914 	"HFI1_IB_CFG_LINKDEFAULT",
9915 	"HFI1_IB_CFG_PKEYS",
9916 	"HFI1_IB_CFG_MTU",
9917 	"HFI1_IB_CFG_LSTATE",
9918 	"HFI1_IB_CFG_VL_HIGH_LIMIT",
9919 	"HFI1_IB_CFG_PMA_TICKS",
9920 	"HFI1_IB_CFG_PORT"
9921 };
9922 
9923 static const char *ib_cfg_name(int which)
9924 {
9925 	if (which < 0 || which >= ARRAY_SIZE(ib_cfg_name_strings))
9926 		return "invalid";
9927 	return ib_cfg_name_strings[which];
9928 }
9929 
9930 int hfi1_get_ib_cfg(struct hfi1_pportdata *ppd, int which)
9931 {
9932 	struct hfi1_devdata *dd = ppd->dd;
9933 	int val = 0;
9934 
9935 	switch (which) {
9936 	case HFI1_IB_CFG_LWID_ENB: /* allowed Link-width */
9937 		val = ppd->link_width_enabled;
9938 		break;
9939 	case HFI1_IB_CFG_LWID: /* currently active Link-width */
9940 		val = ppd->link_width_active;
9941 		break;
9942 	case HFI1_IB_CFG_SPD_ENB: /* allowed Link speeds */
9943 		val = ppd->link_speed_enabled;
9944 		break;
9945 	case HFI1_IB_CFG_SPD: /* current Link speed */
9946 		val = ppd->link_speed_active;
9947 		break;
9948 
9949 	case HFI1_IB_CFG_RXPOL_ENB: /* Auto-RX-polarity enable */
9950 	case HFI1_IB_CFG_LREV_ENB: /* Auto-Lane-reversal enable */
9951 	case HFI1_IB_CFG_LINKLATENCY:
9952 		goto unimplemented;
9953 
9954 	case HFI1_IB_CFG_OP_VLS:
9955 		val = ppd->vls_operational;
9956 		break;
9957 	case HFI1_IB_CFG_VL_HIGH_CAP: /* VL arb high priority table size */
9958 		val = VL_ARB_HIGH_PRIO_TABLE_SIZE;
9959 		break;
9960 	case HFI1_IB_CFG_VL_LOW_CAP: /* VL arb low priority table size */
9961 		val = VL_ARB_LOW_PRIO_TABLE_SIZE;
9962 		break;
9963 	case HFI1_IB_CFG_OVERRUN_THRESH: /* IB overrun threshold */
9964 		val = ppd->overrun_threshold;
9965 		break;
9966 	case HFI1_IB_CFG_PHYERR_THRESH: /* IB PHY error threshold */
9967 		val = ppd->phy_error_threshold;
9968 		break;
9969 	case HFI1_IB_CFG_LINKDEFAULT: /* IB link default (sleep/poll) */
9970 		val = dd->link_default;
9971 		break;
9972 
9973 	case HFI1_IB_CFG_HRTBT: /* Heartbeat off/enable/auto */
9974 	case HFI1_IB_CFG_PMA_TICKS:
9975 	default:
9976 unimplemented:
9977 		if (HFI1_CAP_IS_KSET(PRINT_UNIMPL))
9978 			dd_dev_info(
9979 				dd,
9980 				"%s: which %s: not implemented\n",
9981 				__func__,
9982 				ib_cfg_name(which));
9983 		break;
9984 	}
9985 
9986 	return val;
9987 }
9988 
9989 /*
9990  * The largest MAD packet size.
9991  */
9992 #define MAX_MAD_PACKET 2048
9993 
9994 /*
9995  * Return the maximum header bytes that can go on the _wire_
9996  * for this device. This count includes the ICRC which is
9997  * not part of the packet held in memory but it is appended
9998  * by the HW.
9999  * This is dependent on the device's receive header entry size.
10000  * HFI allows this to be set per-receive context, but the
10001  * driver presently enforces a global value.
10002  */
10003 u32 lrh_max_header_bytes(struct hfi1_devdata *dd)
10004 {
10005 	/*
10006 	 * The maximum non-payload (MTU) bytes in LRH.PktLen are
10007 	 * the Receive Header Entry Size minus the PBC (or RHF) size
10008 	 * plus one DW for the ICRC appended by HW.
10009 	 *
10010 	 * dd->rcd[0].rcvhdrqentsize is in DW.
10011 	 * We use rcd[0] as all context will have the same value. Also,
10012 	 * the first kernel context would have been allocated by now so
10013 	 * we are guaranteed a valid value.
10014 	 */
10015 	return (dd->rcd[0]->rcvhdrqentsize - 2/*PBC/RHF*/ + 1/*ICRC*/) << 2;
10016 }
10017 
10018 /*
10019  * Set Send Length
10020  * @ppd - per port data
10021  *
10022  * Set the MTU by limiting how many DWs may be sent.  The SendLenCheck*
10023  * registers compare against LRH.PktLen, so use the max bytes included
10024  * in the LRH.
10025  *
10026  * This routine changes all VL values except VL15, which it maintains at
10027  * the same value.
10028  */
10029 static void set_send_length(struct hfi1_pportdata *ppd)
10030 {
10031 	struct hfi1_devdata *dd = ppd->dd;
10032 	u32 max_hb = lrh_max_header_bytes(dd), dcmtu;
10033 	u32 maxvlmtu = dd->vld[15].mtu;
10034 	u64 len1 = 0, len2 = (((dd->vld[15].mtu + max_hb) >> 2)
10035 			      & SEND_LEN_CHECK1_LEN_VL15_MASK) <<
10036 		SEND_LEN_CHECK1_LEN_VL15_SHIFT;
10037 	int i, j;
10038 	u32 thres;
10039 
10040 	for (i = 0; i < ppd->vls_supported; i++) {
10041 		if (dd->vld[i].mtu > maxvlmtu)
10042 			maxvlmtu = dd->vld[i].mtu;
10043 		if (i <= 3)
10044 			len1 |= (((dd->vld[i].mtu + max_hb) >> 2)
10045 				 & SEND_LEN_CHECK0_LEN_VL0_MASK) <<
10046 				((i % 4) * SEND_LEN_CHECK0_LEN_VL1_SHIFT);
10047 		else
10048 			len2 |= (((dd->vld[i].mtu + max_hb) >> 2)
10049 				 & SEND_LEN_CHECK1_LEN_VL4_MASK) <<
10050 				((i % 4) * SEND_LEN_CHECK1_LEN_VL5_SHIFT);
10051 	}
10052 	write_csr(dd, SEND_LEN_CHECK0, len1);
10053 	write_csr(dd, SEND_LEN_CHECK1, len2);
10054 	/* adjust kernel credit return thresholds based on new MTUs */
10055 	/* all kernel receive contexts have the same hdrqentsize */
10056 	for (i = 0; i < ppd->vls_supported; i++) {
10057 		thres = min(sc_percent_to_threshold(dd->vld[i].sc, 50),
10058 			    sc_mtu_to_threshold(dd->vld[i].sc,
10059 						dd->vld[i].mtu,
10060 						dd->rcd[0]->rcvhdrqentsize));
10061 		for (j = 0; j < INIT_SC_PER_VL; j++)
10062 			sc_set_cr_threshold(
10063 					pio_select_send_context_vl(dd, j, i),
10064 					    thres);
10065 	}
10066 	thres = min(sc_percent_to_threshold(dd->vld[15].sc, 50),
10067 		    sc_mtu_to_threshold(dd->vld[15].sc,
10068 					dd->vld[15].mtu,
10069 					dd->rcd[0]->rcvhdrqentsize));
10070 	sc_set_cr_threshold(dd->vld[15].sc, thres);
10071 
10072 	/* Adjust maximum MTU for the port in DC */
10073 	dcmtu = maxvlmtu == 10240 ? DCC_CFG_PORT_MTU_CAP_10240 :
10074 		(ilog2(maxvlmtu >> 8) + 1);
10075 	len1 = read_csr(ppd->dd, DCC_CFG_PORT_CONFIG);
10076 	len1 &= ~DCC_CFG_PORT_CONFIG_MTU_CAP_SMASK;
10077 	len1 |= ((u64)dcmtu & DCC_CFG_PORT_CONFIG_MTU_CAP_MASK) <<
10078 		DCC_CFG_PORT_CONFIG_MTU_CAP_SHIFT;
10079 	write_csr(ppd->dd, DCC_CFG_PORT_CONFIG, len1);
10080 }
10081 
10082 static void set_lidlmc(struct hfi1_pportdata *ppd)
10083 {
10084 	int i;
10085 	u64 sreg = 0;
10086 	struct hfi1_devdata *dd = ppd->dd;
10087 	u32 mask = ~((1U << ppd->lmc) - 1);
10088 	u64 c1 = read_csr(ppd->dd, DCC_CFG_PORT_CONFIG1);
10089 	u32 lid;
10090 
10091 	/*
10092 	 * Program 0 in CSR if port lid is extended. This prevents
10093 	 * 9B packets being sent out for large lids.
10094 	 */
10095 	lid = (ppd->lid >= be16_to_cpu(IB_MULTICAST_LID_BASE)) ? 0 : ppd->lid;
10096 	c1 &= ~(DCC_CFG_PORT_CONFIG1_TARGET_DLID_SMASK
10097 		| DCC_CFG_PORT_CONFIG1_DLID_MASK_SMASK);
10098 	c1 |= ((lid & DCC_CFG_PORT_CONFIG1_TARGET_DLID_MASK)
10099 			<< DCC_CFG_PORT_CONFIG1_TARGET_DLID_SHIFT) |
10100 	      ((mask & DCC_CFG_PORT_CONFIG1_DLID_MASK_MASK)
10101 			<< DCC_CFG_PORT_CONFIG1_DLID_MASK_SHIFT);
10102 	write_csr(ppd->dd, DCC_CFG_PORT_CONFIG1, c1);
10103 
10104 	/*
10105 	 * Iterate over all the send contexts and set their SLID check
10106 	 */
10107 	sreg = ((mask & SEND_CTXT_CHECK_SLID_MASK_MASK) <<
10108 			SEND_CTXT_CHECK_SLID_MASK_SHIFT) |
10109 	       (((lid & mask) & SEND_CTXT_CHECK_SLID_VALUE_MASK) <<
10110 			SEND_CTXT_CHECK_SLID_VALUE_SHIFT);
10111 
10112 	for (i = 0; i < dd->chip_send_contexts; i++) {
10113 		hfi1_cdbg(LINKVERB, "SendContext[%d].SLID_CHECK = 0x%x",
10114 			  i, (u32)sreg);
10115 		write_kctxt_csr(dd, i, SEND_CTXT_CHECK_SLID, sreg);
10116 	}
10117 
10118 	/* Now we have to do the same thing for the sdma engines */
10119 	sdma_update_lmc(dd, mask, lid);
10120 }
10121 
10122 static const char *state_completed_string(u32 completed)
10123 {
10124 	static const char * const state_completed[] = {
10125 		"EstablishComm",
10126 		"OptimizeEQ",
10127 		"VerifyCap"
10128 	};
10129 
10130 	if (completed < ARRAY_SIZE(state_completed))
10131 		return state_completed[completed];
10132 
10133 	return "unknown";
10134 }
10135 
10136 static const char all_lanes_dead_timeout_expired[] =
10137 	"All lanes were inactive – was the interconnect media removed?";
10138 static const char tx_out_of_policy[] =
10139 	"Passing lanes on local port do not meet the local link width policy";
10140 static const char no_state_complete[] =
10141 	"State timeout occurred before link partner completed the state";
10142 static const char * const state_complete_reasons[] = {
10143 	[0x00] = "Reason unknown",
10144 	[0x01] = "Link was halted by driver, refer to LinkDownReason",
10145 	[0x02] = "Link partner reported failure",
10146 	[0x10] = "Unable to achieve frame sync on any lane",
10147 	[0x11] =
10148 	  "Unable to find a common bit rate with the link partner",
10149 	[0x12] =
10150 	  "Unable to achieve frame sync on sufficient lanes to meet the local link width policy",
10151 	[0x13] =
10152 	  "Unable to identify preset equalization on sufficient lanes to meet the local link width policy",
10153 	[0x14] = no_state_complete,
10154 	[0x15] =
10155 	  "State timeout occurred before link partner identified equalization presets",
10156 	[0x16] =
10157 	  "Link partner completed the EstablishComm state, but the passing lanes do not meet the local link width policy",
10158 	[0x17] = tx_out_of_policy,
10159 	[0x20] = all_lanes_dead_timeout_expired,
10160 	[0x21] =
10161 	  "Unable to achieve acceptable BER on sufficient lanes to meet the local link width policy",
10162 	[0x22] = no_state_complete,
10163 	[0x23] =
10164 	  "Link partner completed the OptimizeEq state, but the passing lanes do not meet the local link width policy",
10165 	[0x24] = tx_out_of_policy,
10166 	[0x30] = all_lanes_dead_timeout_expired,
10167 	[0x31] =
10168 	  "State timeout occurred waiting for host to process received frames",
10169 	[0x32] = no_state_complete,
10170 	[0x33] =
10171 	  "Link partner completed the VerifyCap state, but the passing lanes do not meet the local link width policy",
10172 	[0x34] = tx_out_of_policy,
10173 };
10174 
10175 static const char *state_complete_reason_code_string(struct hfi1_pportdata *ppd,
10176 						     u32 code)
10177 {
10178 	const char *str = NULL;
10179 
10180 	if (code < ARRAY_SIZE(state_complete_reasons))
10181 		str = state_complete_reasons[code];
10182 
10183 	if (str)
10184 		return str;
10185 	return "Reserved";
10186 }
10187 
10188 /* describe the given last state complete frame */
10189 static void decode_state_complete(struct hfi1_pportdata *ppd, u32 frame,
10190 				  const char *prefix)
10191 {
10192 	struct hfi1_devdata *dd = ppd->dd;
10193 	u32 success;
10194 	u32 state;
10195 	u32 reason;
10196 	u32 lanes;
10197 
10198 	/*
10199 	 * Decode frame:
10200 	 *  [ 0: 0] - success
10201 	 *  [ 3: 1] - state
10202 	 *  [ 7: 4] - next state timeout
10203 	 *  [15: 8] - reason code
10204 	 *  [31:16] - lanes
10205 	 */
10206 	success = frame & 0x1;
10207 	state = (frame >> 1) & 0x7;
10208 	reason = (frame >> 8) & 0xff;
10209 	lanes = (frame >> 16) & 0xffff;
10210 
10211 	dd_dev_err(dd, "Last %s LNI state complete frame 0x%08x:\n",
10212 		   prefix, frame);
10213 	dd_dev_err(dd, "    last reported state state: %s (0x%x)\n",
10214 		   state_completed_string(state), state);
10215 	dd_dev_err(dd, "    state successfully completed: %s\n",
10216 		   success ? "yes" : "no");
10217 	dd_dev_err(dd, "    fail reason 0x%x: %s\n",
10218 		   reason, state_complete_reason_code_string(ppd, reason));
10219 	dd_dev_err(dd, "    passing lane mask: 0x%x", lanes);
10220 }
10221 
10222 /*
10223  * Read the last state complete frames and explain them.  This routine
10224  * expects to be called if the link went down during link negotiation
10225  * and initialization (LNI).  That is, anywhere between polling and link up.
10226  */
10227 static void check_lni_states(struct hfi1_pportdata *ppd)
10228 {
10229 	u32 last_local_state;
10230 	u32 last_remote_state;
10231 
10232 	read_last_local_state(ppd->dd, &last_local_state);
10233 	read_last_remote_state(ppd->dd, &last_remote_state);
10234 
10235 	/*
10236 	 * Don't report anything if there is nothing to report.  A value of
10237 	 * 0 means the link was taken down while polling and there was no
10238 	 * training in-process.
10239 	 */
10240 	if (last_local_state == 0 && last_remote_state == 0)
10241 		return;
10242 
10243 	decode_state_complete(ppd, last_local_state, "transmitted");
10244 	decode_state_complete(ppd, last_remote_state, "received");
10245 }
10246 
10247 /* wait for wait_ms for LINK_TRANSFER_ACTIVE to go to 1 */
10248 static int wait_link_transfer_active(struct hfi1_devdata *dd, int wait_ms)
10249 {
10250 	u64 reg;
10251 	unsigned long timeout;
10252 
10253 	/* watch LCB_STS_LINK_TRANSFER_ACTIVE */
10254 	timeout = jiffies + msecs_to_jiffies(wait_ms);
10255 	while (1) {
10256 		reg = read_csr(dd, DC_LCB_STS_LINK_TRANSFER_ACTIVE);
10257 		if (reg)
10258 			break;
10259 		if (time_after(jiffies, timeout)) {
10260 			dd_dev_err(dd,
10261 				   "timeout waiting for LINK_TRANSFER_ACTIVE\n");
10262 			return -ETIMEDOUT;
10263 		}
10264 		udelay(2);
10265 	}
10266 	return 0;
10267 }
10268 
10269 /* called when the logical link state is not down as it should be */
10270 static void force_logical_link_state_down(struct hfi1_pportdata *ppd)
10271 {
10272 	struct hfi1_devdata *dd = ppd->dd;
10273 
10274 	/*
10275 	 * Bring link up in LCB loopback
10276 	 */
10277 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 1);
10278 	write_csr(dd, DC_LCB_CFG_IGNORE_LOST_RCLK,
10279 		  DC_LCB_CFG_IGNORE_LOST_RCLK_EN_SMASK);
10280 
10281 	write_csr(dd, DC_LCB_CFG_LANE_WIDTH, 0);
10282 	write_csr(dd, DC_LCB_CFG_REINIT_AS_SLAVE, 0);
10283 	write_csr(dd, DC_LCB_CFG_CNT_FOR_SKIP_STALL, 0x110);
10284 	write_csr(dd, DC_LCB_CFG_LOOPBACK, 0x2);
10285 
10286 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0);
10287 	(void)read_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET);
10288 	udelay(3);
10289 	write_csr(dd, DC_LCB_CFG_ALLOW_LINK_UP, 1);
10290 	write_csr(dd, DC_LCB_CFG_RUN, 1ull << DC_LCB_CFG_RUN_EN_SHIFT);
10291 
10292 	wait_link_transfer_active(dd, 100);
10293 
10294 	/*
10295 	 * Bring the link down again.
10296 	 */
10297 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 1);
10298 	write_csr(dd, DC_LCB_CFG_ALLOW_LINK_UP, 0);
10299 	write_csr(dd, DC_LCB_CFG_IGNORE_LOST_RCLK, 0);
10300 
10301 	/* adjust ppd->statusp, if needed */
10302 	update_statusp(ppd, IB_PORT_DOWN);
10303 
10304 	dd_dev_info(ppd->dd, "logical state forced to LINK_DOWN\n");
10305 }
10306 
10307 /*
10308  * Helper for set_link_state().  Do not call except from that routine.
10309  * Expects ppd->hls_mutex to be held.
10310  *
10311  * @rem_reason value to be sent to the neighbor
10312  *
10313  * LinkDownReasons only set if transition succeeds.
10314  */
10315 static int goto_offline(struct hfi1_pportdata *ppd, u8 rem_reason)
10316 {
10317 	struct hfi1_devdata *dd = ppd->dd;
10318 	u32 previous_state;
10319 	int offline_state_ret;
10320 	int ret;
10321 
10322 	update_lcb_cache(dd);
10323 
10324 	previous_state = ppd->host_link_state;
10325 	ppd->host_link_state = HLS_GOING_OFFLINE;
10326 
10327 	/* start offline transition */
10328 	ret = set_physical_link_state(dd, (rem_reason << 8) | PLS_OFFLINE);
10329 
10330 	if (ret != HCMD_SUCCESS) {
10331 		dd_dev_err(dd,
10332 			   "Failed to transition to Offline link state, return %d\n",
10333 			   ret);
10334 		return -EINVAL;
10335 	}
10336 	if (ppd->offline_disabled_reason ==
10337 			HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE))
10338 		ppd->offline_disabled_reason =
10339 		HFI1_ODR_MASK(OPA_LINKDOWN_REASON_TRANSIENT);
10340 
10341 	offline_state_ret = wait_phys_link_offline_substates(ppd, 10000);
10342 	if (offline_state_ret < 0)
10343 		return offline_state_ret;
10344 
10345 	/* Disabling AOC transmitters */
10346 	if (ppd->port_type == PORT_TYPE_QSFP &&
10347 	    ppd->qsfp_info.limiting_active &&
10348 	    qsfp_mod_present(ppd)) {
10349 		int ret;
10350 
10351 		ret = acquire_chip_resource(dd, qsfp_resource(dd), QSFP_WAIT);
10352 		if (ret == 0) {
10353 			set_qsfp_tx(ppd, 0);
10354 			release_chip_resource(dd, qsfp_resource(dd));
10355 		} else {
10356 			/* not fatal, but should warn */
10357 			dd_dev_err(dd,
10358 				   "Unable to acquire lock to turn off QSFP TX\n");
10359 		}
10360 	}
10361 
10362 	/*
10363 	 * Wait for the offline.Quiet transition if it hasn't happened yet. It
10364 	 * can take a while for the link to go down.
10365 	 */
10366 	if (offline_state_ret != PLS_OFFLINE_QUIET) {
10367 		ret = wait_physical_linkstate(ppd, PLS_OFFLINE, 30000);
10368 		if (ret < 0)
10369 			return ret;
10370 	}
10371 
10372 	/*
10373 	 * Now in charge of LCB - must be after the physical state is
10374 	 * offline.quiet and before host_link_state is changed.
10375 	 */
10376 	set_host_lcb_access(dd);
10377 	write_csr(dd, DC_LCB_ERR_EN, ~0ull); /* watch LCB errors */
10378 
10379 	/* make sure the logical state is also down */
10380 	ret = wait_logical_linkstate(ppd, IB_PORT_DOWN, 1000);
10381 	if (ret)
10382 		force_logical_link_state_down(ppd);
10383 
10384 	ppd->host_link_state = HLS_LINK_COOLDOWN; /* LCB access allowed */
10385 
10386 	/*
10387 	 * The LNI has a mandatory wait time after the physical state
10388 	 * moves to Offline.Quiet.  The wait time may be different
10389 	 * depending on how the link went down.  The 8051 firmware
10390 	 * will observe the needed wait time and only move to ready
10391 	 * when that is completed.  The largest of the quiet timeouts
10392 	 * is 6s, so wait that long and then at least 0.5s more for
10393 	 * other transitions, and another 0.5s for a buffer.
10394 	 */
10395 	ret = wait_fm_ready(dd, 7000);
10396 	if (ret) {
10397 		dd_dev_err(dd,
10398 			   "After going offline, timed out waiting for the 8051 to become ready to accept host requests\n");
10399 		/* state is really offline, so make it so */
10400 		ppd->host_link_state = HLS_DN_OFFLINE;
10401 		return ret;
10402 	}
10403 
10404 	/*
10405 	 * The state is now offline and the 8051 is ready to accept host
10406 	 * requests.
10407 	 *	- change our state
10408 	 *	- notify others if we were previously in a linkup state
10409 	 */
10410 	ppd->host_link_state = HLS_DN_OFFLINE;
10411 	if (previous_state & HLS_UP) {
10412 		/* went down while link was up */
10413 		handle_linkup_change(dd, 0);
10414 	} else if (previous_state
10415 			& (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) {
10416 		/* went down while attempting link up */
10417 		check_lni_states(ppd);
10418 
10419 		/* The QSFP doesn't need to be reset on LNI failure */
10420 		ppd->qsfp_info.reset_needed = 0;
10421 	}
10422 
10423 	/* the active link width (downgrade) is 0 on link down */
10424 	ppd->link_width_active = 0;
10425 	ppd->link_width_downgrade_tx_active = 0;
10426 	ppd->link_width_downgrade_rx_active = 0;
10427 	ppd->current_egress_rate = 0;
10428 	return 0;
10429 }
10430 
10431 /* return the link state name */
10432 static const char *link_state_name(u32 state)
10433 {
10434 	const char *name;
10435 	int n = ilog2(state);
10436 	static const char * const names[] = {
10437 		[__HLS_UP_INIT_BP]	 = "INIT",
10438 		[__HLS_UP_ARMED_BP]	 = "ARMED",
10439 		[__HLS_UP_ACTIVE_BP]	 = "ACTIVE",
10440 		[__HLS_DN_DOWNDEF_BP]	 = "DOWNDEF",
10441 		[__HLS_DN_POLL_BP]	 = "POLL",
10442 		[__HLS_DN_DISABLE_BP]	 = "DISABLE",
10443 		[__HLS_DN_OFFLINE_BP]	 = "OFFLINE",
10444 		[__HLS_VERIFY_CAP_BP]	 = "VERIFY_CAP",
10445 		[__HLS_GOING_UP_BP]	 = "GOING_UP",
10446 		[__HLS_GOING_OFFLINE_BP] = "GOING_OFFLINE",
10447 		[__HLS_LINK_COOLDOWN_BP] = "LINK_COOLDOWN"
10448 	};
10449 
10450 	name = n < ARRAY_SIZE(names) ? names[n] : NULL;
10451 	return name ? name : "unknown";
10452 }
10453 
10454 /* return the link state reason name */
10455 static const char *link_state_reason_name(struct hfi1_pportdata *ppd, u32 state)
10456 {
10457 	if (state == HLS_UP_INIT) {
10458 		switch (ppd->linkinit_reason) {
10459 		case OPA_LINKINIT_REASON_LINKUP:
10460 			return "(LINKUP)";
10461 		case OPA_LINKINIT_REASON_FLAPPING:
10462 			return "(FLAPPING)";
10463 		case OPA_LINKINIT_OUTSIDE_POLICY:
10464 			return "(OUTSIDE_POLICY)";
10465 		case OPA_LINKINIT_QUARANTINED:
10466 			return "(QUARANTINED)";
10467 		case OPA_LINKINIT_INSUFIC_CAPABILITY:
10468 			return "(INSUFIC_CAPABILITY)";
10469 		default:
10470 			break;
10471 		}
10472 	}
10473 	return "";
10474 }
10475 
10476 /*
10477  * driver_pstate - convert the driver's notion of a port's
10478  * state (an HLS_*) into a physical state (a {IB,OPA}_PORTPHYSSTATE_*).
10479  * Return -1 (converted to a u32) to indicate error.
10480  */
10481 u32 driver_pstate(struct hfi1_pportdata *ppd)
10482 {
10483 	switch (ppd->host_link_state) {
10484 	case HLS_UP_INIT:
10485 	case HLS_UP_ARMED:
10486 	case HLS_UP_ACTIVE:
10487 		return IB_PORTPHYSSTATE_LINKUP;
10488 	case HLS_DN_POLL:
10489 		return IB_PORTPHYSSTATE_POLLING;
10490 	case HLS_DN_DISABLE:
10491 		return IB_PORTPHYSSTATE_DISABLED;
10492 	case HLS_DN_OFFLINE:
10493 		return OPA_PORTPHYSSTATE_OFFLINE;
10494 	case HLS_VERIFY_CAP:
10495 		return IB_PORTPHYSSTATE_POLLING;
10496 	case HLS_GOING_UP:
10497 		return IB_PORTPHYSSTATE_POLLING;
10498 	case HLS_GOING_OFFLINE:
10499 		return OPA_PORTPHYSSTATE_OFFLINE;
10500 	case HLS_LINK_COOLDOWN:
10501 		return OPA_PORTPHYSSTATE_OFFLINE;
10502 	case HLS_DN_DOWNDEF:
10503 	default:
10504 		dd_dev_err(ppd->dd, "invalid host_link_state 0x%x\n",
10505 			   ppd->host_link_state);
10506 		return  -1;
10507 	}
10508 }
10509 
10510 /*
10511  * driver_lstate - convert the driver's notion of a port's
10512  * state (an HLS_*) into a logical state (a IB_PORT_*). Return -1
10513  * (converted to a u32) to indicate error.
10514  */
10515 u32 driver_lstate(struct hfi1_pportdata *ppd)
10516 {
10517 	if (ppd->host_link_state && (ppd->host_link_state & HLS_DOWN))
10518 		return IB_PORT_DOWN;
10519 
10520 	switch (ppd->host_link_state & HLS_UP) {
10521 	case HLS_UP_INIT:
10522 		return IB_PORT_INIT;
10523 	case HLS_UP_ARMED:
10524 		return IB_PORT_ARMED;
10525 	case HLS_UP_ACTIVE:
10526 		return IB_PORT_ACTIVE;
10527 	default:
10528 		dd_dev_err(ppd->dd, "invalid host_link_state 0x%x\n",
10529 			   ppd->host_link_state);
10530 	return -1;
10531 	}
10532 }
10533 
10534 void set_link_down_reason(struct hfi1_pportdata *ppd, u8 lcl_reason,
10535 			  u8 neigh_reason, u8 rem_reason)
10536 {
10537 	if (ppd->local_link_down_reason.latest == 0 &&
10538 	    ppd->neigh_link_down_reason.latest == 0) {
10539 		ppd->local_link_down_reason.latest = lcl_reason;
10540 		ppd->neigh_link_down_reason.latest = neigh_reason;
10541 		ppd->remote_link_down_reason = rem_reason;
10542 	}
10543 }
10544 
10545 /*
10546  * Verify if BCT for data VLs is non-zero.
10547  */
10548 static inline bool data_vls_operational(struct hfi1_pportdata *ppd)
10549 {
10550 	return !!ppd->actual_vls_operational;
10551 }
10552 
10553 /*
10554  * Change the physical and/or logical link state.
10555  *
10556  * Do not call this routine while inside an interrupt.  It contains
10557  * calls to routines that can take multiple seconds to finish.
10558  *
10559  * Returns 0 on success, -errno on failure.
10560  */
10561 int set_link_state(struct hfi1_pportdata *ppd, u32 state)
10562 {
10563 	struct hfi1_devdata *dd = ppd->dd;
10564 	struct ib_event event = {.device = NULL};
10565 	int ret1, ret = 0;
10566 	int orig_new_state, poll_bounce;
10567 
10568 	mutex_lock(&ppd->hls_lock);
10569 
10570 	orig_new_state = state;
10571 	if (state == HLS_DN_DOWNDEF)
10572 		state = dd->link_default;
10573 
10574 	/* interpret poll -> poll as a link bounce */
10575 	poll_bounce = ppd->host_link_state == HLS_DN_POLL &&
10576 		      state == HLS_DN_POLL;
10577 
10578 	dd_dev_info(dd, "%s: current %s, new %s %s%s\n", __func__,
10579 		    link_state_name(ppd->host_link_state),
10580 		    link_state_name(orig_new_state),
10581 		    poll_bounce ? "(bounce) " : "",
10582 		    link_state_reason_name(ppd, state));
10583 
10584 	/*
10585 	 * If we're going to a (HLS_*) link state that implies the logical
10586 	 * link state is neither of (IB_PORT_ARMED, IB_PORT_ACTIVE), then
10587 	 * reset is_sm_config_started to 0.
10588 	 */
10589 	if (!(state & (HLS_UP_ARMED | HLS_UP_ACTIVE)))
10590 		ppd->is_sm_config_started = 0;
10591 
10592 	/*
10593 	 * Do nothing if the states match.  Let a poll to poll link bounce
10594 	 * go through.
10595 	 */
10596 	if (ppd->host_link_state == state && !poll_bounce)
10597 		goto done;
10598 
10599 	switch (state) {
10600 	case HLS_UP_INIT:
10601 		if (ppd->host_link_state == HLS_DN_POLL &&
10602 		    (quick_linkup || dd->icode == ICODE_FUNCTIONAL_SIMULATOR)) {
10603 			/*
10604 			 * Quick link up jumps from polling to here.
10605 			 *
10606 			 * Whether in normal or loopback mode, the
10607 			 * simulator jumps from polling to link up.
10608 			 * Accept that here.
10609 			 */
10610 			/* OK */
10611 		} else if (ppd->host_link_state != HLS_GOING_UP) {
10612 			goto unexpected;
10613 		}
10614 
10615 		/*
10616 		 * Wait for Link_Up physical state.
10617 		 * Physical and Logical states should already be
10618 		 * be transitioned to LinkUp and LinkInit respectively.
10619 		 */
10620 		ret = wait_physical_linkstate(ppd, PLS_LINKUP, 1000);
10621 		if (ret) {
10622 			dd_dev_err(dd,
10623 				   "%s: physical state did not change to LINK-UP\n",
10624 				   __func__);
10625 			break;
10626 		}
10627 
10628 		ret = wait_logical_linkstate(ppd, IB_PORT_INIT, 1000);
10629 		if (ret) {
10630 			dd_dev_err(dd,
10631 				   "%s: logical state did not change to INIT\n",
10632 				   __func__);
10633 			break;
10634 		}
10635 
10636 		/* clear old transient LINKINIT_REASON code */
10637 		if (ppd->linkinit_reason >= OPA_LINKINIT_REASON_CLEAR)
10638 			ppd->linkinit_reason =
10639 				OPA_LINKINIT_REASON_LINKUP;
10640 
10641 		/* enable the port */
10642 		add_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
10643 
10644 		handle_linkup_change(dd, 1);
10645 		ppd->host_link_state = HLS_UP_INIT;
10646 		break;
10647 	case HLS_UP_ARMED:
10648 		if (ppd->host_link_state != HLS_UP_INIT)
10649 			goto unexpected;
10650 
10651 		if (!data_vls_operational(ppd)) {
10652 			dd_dev_err(dd,
10653 				   "%s: data VLs not operational\n", __func__);
10654 			ret = -EINVAL;
10655 			break;
10656 		}
10657 
10658 		set_logical_state(dd, LSTATE_ARMED);
10659 		ret = wait_logical_linkstate(ppd, IB_PORT_ARMED, 1000);
10660 		if (ret) {
10661 			dd_dev_err(dd,
10662 				   "%s: logical state did not change to ARMED\n",
10663 				   __func__);
10664 			break;
10665 		}
10666 		ppd->host_link_state = HLS_UP_ARMED;
10667 		/*
10668 		 * The simulator does not currently implement SMA messages,
10669 		 * so neighbor_normal is not set.  Set it here when we first
10670 		 * move to Armed.
10671 		 */
10672 		if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR)
10673 			ppd->neighbor_normal = 1;
10674 		break;
10675 	case HLS_UP_ACTIVE:
10676 		if (ppd->host_link_state != HLS_UP_ARMED)
10677 			goto unexpected;
10678 
10679 		set_logical_state(dd, LSTATE_ACTIVE);
10680 		ret = wait_logical_linkstate(ppd, IB_PORT_ACTIVE, 1000);
10681 		if (ret) {
10682 			dd_dev_err(dd,
10683 				   "%s: logical state did not change to ACTIVE\n",
10684 				   __func__);
10685 		} else {
10686 			/* tell all engines to go running */
10687 			sdma_all_running(dd);
10688 			ppd->host_link_state = HLS_UP_ACTIVE;
10689 
10690 			/* Signal the IB layer that the port has went active */
10691 			event.device = &dd->verbs_dev.rdi.ibdev;
10692 			event.element.port_num = ppd->port;
10693 			event.event = IB_EVENT_PORT_ACTIVE;
10694 		}
10695 		break;
10696 	case HLS_DN_POLL:
10697 		if ((ppd->host_link_state == HLS_DN_DISABLE ||
10698 		     ppd->host_link_state == HLS_DN_OFFLINE) &&
10699 		    dd->dc_shutdown)
10700 			dc_start(dd);
10701 		/* Hand LED control to the DC */
10702 		write_csr(dd, DCC_CFG_LED_CNTRL, 0);
10703 
10704 		if (ppd->host_link_state != HLS_DN_OFFLINE) {
10705 			u8 tmp = ppd->link_enabled;
10706 
10707 			ret = goto_offline(ppd, ppd->remote_link_down_reason);
10708 			if (ret) {
10709 				ppd->link_enabled = tmp;
10710 				break;
10711 			}
10712 			ppd->remote_link_down_reason = 0;
10713 
10714 			if (ppd->driver_link_ready)
10715 				ppd->link_enabled = 1;
10716 		}
10717 
10718 		set_all_slowpath(ppd->dd);
10719 		ret = set_local_link_attributes(ppd);
10720 		if (ret)
10721 			break;
10722 
10723 		ppd->port_error_action = 0;
10724 		ppd->host_link_state = HLS_DN_POLL;
10725 
10726 		if (quick_linkup) {
10727 			/* quick linkup does not go into polling */
10728 			ret = do_quick_linkup(dd);
10729 		} else {
10730 			ret1 = set_physical_link_state(dd, PLS_POLLING);
10731 			if (ret1 != HCMD_SUCCESS) {
10732 				dd_dev_err(dd,
10733 					   "Failed to transition to Polling link state, return 0x%x\n",
10734 					   ret1);
10735 				ret = -EINVAL;
10736 			}
10737 		}
10738 		ppd->offline_disabled_reason =
10739 			HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE);
10740 		/*
10741 		 * If an error occurred above, go back to offline.  The
10742 		 * caller may reschedule another attempt.
10743 		 */
10744 		if (ret)
10745 			goto_offline(ppd, 0);
10746 		else
10747 			log_physical_state(ppd, PLS_POLLING);
10748 		break;
10749 	case HLS_DN_DISABLE:
10750 		/* link is disabled */
10751 		ppd->link_enabled = 0;
10752 
10753 		/* allow any state to transition to disabled */
10754 
10755 		/* must transition to offline first */
10756 		if (ppd->host_link_state != HLS_DN_OFFLINE) {
10757 			ret = goto_offline(ppd, ppd->remote_link_down_reason);
10758 			if (ret)
10759 				break;
10760 			ppd->remote_link_down_reason = 0;
10761 		}
10762 
10763 		if (!dd->dc_shutdown) {
10764 			ret1 = set_physical_link_state(dd, PLS_DISABLED);
10765 			if (ret1 != HCMD_SUCCESS) {
10766 				dd_dev_err(dd,
10767 					   "Failed to transition to Disabled link state, return 0x%x\n",
10768 					   ret1);
10769 				ret = -EINVAL;
10770 				break;
10771 			}
10772 			ret = wait_physical_linkstate(ppd, PLS_DISABLED, 10000);
10773 			if (ret) {
10774 				dd_dev_err(dd,
10775 					   "%s: physical state did not change to DISABLED\n",
10776 					   __func__);
10777 				break;
10778 			}
10779 			dc_shutdown(dd);
10780 		}
10781 		ppd->host_link_state = HLS_DN_DISABLE;
10782 		break;
10783 	case HLS_DN_OFFLINE:
10784 		if (ppd->host_link_state == HLS_DN_DISABLE)
10785 			dc_start(dd);
10786 
10787 		/* allow any state to transition to offline */
10788 		ret = goto_offline(ppd, ppd->remote_link_down_reason);
10789 		if (!ret)
10790 			ppd->remote_link_down_reason = 0;
10791 		break;
10792 	case HLS_VERIFY_CAP:
10793 		if (ppd->host_link_state != HLS_DN_POLL)
10794 			goto unexpected;
10795 		ppd->host_link_state = HLS_VERIFY_CAP;
10796 		log_physical_state(ppd, PLS_CONFIGPHY_VERIFYCAP);
10797 		break;
10798 	case HLS_GOING_UP:
10799 		if (ppd->host_link_state != HLS_VERIFY_CAP)
10800 			goto unexpected;
10801 
10802 		ret1 = set_physical_link_state(dd, PLS_LINKUP);
10803 		if (ret1 != HCMD_SUCCESS) {
10804 			dd_dev_err(dd,
10805 				   "Failed to transition to link up state, return 0x%x\n",
10806 				   ret1);
10807 			ret = -EINVAL;
10808 			break;
10809 		}
10810 		ppd->host_link_state = HLS_GOING_UP;
10811 		break;
10812 
10813 	case HLS_GOING_OFFLINE:		/* transient within goto_offline() */
10814 	case HLS_LINK_COOLDOWN:		/* transient within goto_offline() */
10815 	default:
10816 		dd_dev_info(dd, "%s: state 0x%x: not supported\n",
10817 			    __func__, state);
10818 		ret = -EINVAL;
10819 		break;
10820 	}
10821 
10822 	goto done;
10823 
10824 unexpected:
10825 	dd_dev_err(dd, "%s: unexpected state transition from %s to %s\n",
10826 		   __func__, link_state_name(ppd->host_link_state),
10827 		   link_state_name(state));
10828 	ret = -EINVAL;
10829 
10830 done:
10831 	mutex_unlock(&ppd->hls_lock);
10832 
10833 	if (event.device)
10834 		ib_dispatch_event(&event);
10835 
10836 	return ret;
10837 }
10838 
10839 int hfi1_set_ib_cfg(struct hfi1_pportdata *ppd, int which, u32 val)
10840 {
10841 	u64 reg;
10842 	int ret = 0;
10843 
10844 	switch (which) {
10845 	case HFI1_IB_CFG_LIDLMC:
10846 		set_lidlmc(ppd);
10847 		break;
10848 	case HFI1_IB_CFG_VL_HIGH_LIMIT:
10849 		/*
10850 		 * The VL Arbitrator high limit is sent in units of 4k
10851 		 * bytes, while HFI stores it in units of 64 bytes.
10852 		 */
10853 		val *= 4096 / 64;
10854 		reg = ((u64)val & SEND_HIGH_PRIORITY_LIMIT_LIMIT_MASK)
10855 			<< SEND_HIGH_PRIORITY_LIMIT_LIMIT_SHIFT;
10856 		write_csr(ppd->dd, SEND_HIGH_PRIORITY_LIMIT, reg);
10857 		break;
10858 	case HFI1_IB_CFG_LINKDEFAULT: /* IB link default (sleep/poll) */
10859 		/* HFI only supports POLL as the default link down state */
10860 		if (val != HLS_DN_POLL)
10861 			ret = -EINVAL;
10862 		break;
10863 	case HFI1_IB_CFG_OP_VLS:
10864 		if (ppd->vls_operational != val) {
10865 			ppd->vls_operational = val;
10866 			if (!ppd->port)
10867 				ret = -EINVAL;
10868 		}
10869 		break;
10870 	/*
10871 	 * For link width, link width downgrade, and speed enable, always AND
10872 	 * the setting with what is actually supported.  This has two benefits.
10873 	 * First, enabled can't have unsupported values, no matter what the
10874 	 * SM or FM might want.  Second, the ALL_SUPPORTED wildcards that mean
10875 	 * "fill in with your supported value" have all the bits in the
10876 	 * field set, so simply ANDing with supported has the desired result.
10877 	 */
10878 	case HFI1_IB_CFG_LWID_ENB: /* set allowed Link-width */
10879 		ppd->link_width_enabled = val & ppd->link_width_supported;
10880 		break;
10881 	case HFI1_IB_CFG_LWID_DG_ENB: /* set allowed link width downgrade */
10882 		ppd->link_width_downgrade_enabled =
10883 				val & ppd->link_width_downgrade_supported;
10884 		break;
10885 	case HFI1_IB_CFG_SPD_ENB: /* allowed Link speeds */
10886 		ppd->link_speed_enabled = val & ppd->link_speed_supported;
10887 		break;
10888 	case HFI1_IB_CFG_OVERRUN_THRESH: /* IB overrun threshold */
10889 		/*
10890 		 * HFI does not follow IB specs, save this value
10891 		 * so we can report it, if asked.
10892 		 */
10893 		ppd->overrun_threshold = val;
10894 		break;
10895 	case HFI1_IB_CFG_PHYERR_THRESH: /* IB PHY error threshold */
10896 		/*
10897 		 * HFI does not follow IB specs, save this value
10898 		 * so we can report it, if asked.
10899 		 */
10900 		ppd->phy_error_threshold = val;
10901 		break;
10902 
10903 	case HFI1_IB_CFG_MTU:
10904 		set_send_length(ppd);
10905 		break;
10906 
10907 	case HFI1_IB_CFG_PKEYS:
10908 		if (HFI1_CAP_IS_KSET(PKEY_CHECK))
10909 			set_partition_keys(ppd);
10910 		break;
10911 
10912 	default:
10913 		if (HFI1_CAP_IS_KSET(PRINT_UNIMPL))
10914 			dd_dev_info(ppd->dd,
10915 				    "%s: which %s, val 0x%x: not implemented\n",
10916 				    __func__, ib_cfg_name(which), val);
10917 		break;
10918 	}
10919 	return ret;
10920 }
10921 
10922 /* begin functions related to vl arbitration table caching */
10923 static void init_vl_arb_caches(struct hfi1_pportdata *ppd)
10924 {
10925 	int i;
10926 
10927 	BUILD_BUG_ON(VL_ARB_TABLE_SIZE !=
10928 			VL_ARB_LOW_PRIO_TABLE_SIZE);
10929 	BUILD_BUG_ON(VL_ARB_TABLE_SIZE !=
10930 			VL_ARB_HIGH_PRIO_TABLE_SIZE);
10931 
10932 	/*
10933 	 * Note that we always return values directly from the
10934 	 * 'vl_arb_cache' (and do no CSR reads) in response to a
10935 	 * 'Get(VLArbTable)'. This is obviously correct after a
10936 	 * 'Set(VLArbTable)', since the cache will then be up to
10937 	 * date. But it's also correct prior to any 'Set(VLArbTable)'
10938 	 * since then both the cache, and the relevant h/w registers
10939 	 * will be zeroed.
10940 	 */
10941 
10942 	for (i = 0; i < MAX_PRIO_TABLE; i++)
10943 		spin_lock_init(&ppd->vl_arb_cache[i].lock);
10944 }
10945 
10946 /*
10947  * vl_arb_lock_cache
10948  *
10949  * All other vl_arb_* functions should be called only after locking
10950  * the cache.
10951  */
10952 static inline struct vl_arb_cache *
10953 vl_arb_lock_cache(struct hfi1_pportdata *ppd, int idx)
10954 {
10955 	if (idx != LO_PRIO_TABLE && idx != HI_PRIO_TABLE)
10956 		return NULL;
10957 	spin_lock(&ppd->vl_arb_cache[idx].lock);
10958 	return &ppd->vl_arb_cache[idx];
10959 }
10960 
10961 static inline void vl_arb_unlock_cache(struct hfi1_pportdata *ppd, int idx)
10962 {
10963 	spin_unlock(&ppd->vl_arb_cache[idx].lock);
10964 }
10965 
10966 static void vl_arb_get_cache(struct vl_arb_cache *cache,
10967 			     struct ib_vl_weight_elem *vl)
10968 {
10969 	memcpy(vl, cache->table, VL_ARB_TABLE_SIZE * sizeof(*vl));
10970 }
10971 
10972 static void vl_arb_set_cache(struct vl_arb_cache *cache,
10973 			     struct ib_vl_weight_elem *vl)
10974 {
10975 	memcpy(cache->table, vl, VL_ARB_TABLE_SIZE * sizeof(*vl));
10976 }
10977 
10978 static int vl_arb_match_cache(struct vl_arb_cache *cache,
10979 			      struct ib_vl_weight_elem *vl)
10980 {
10981 	return !memcmp(cache->table, vl, VL_ARB_TABLE_SIZE * sizeof(*vl));
10982 }
10983 
10984 /* end functions related to vl arbitration table caching */
10985 
10986 static int set_vl_weights(struct hfi1_pportdata *ppd, u32 target,
10987 			  u32 size, struct ib_vl_weight_elem *vl)
10988 {
10989 	struct hfi1_devdata *dd = ppd->dd;
10990 	u64 reg;
10991 	unsigned int i, is_up = 0;
10992 	int drain, ret = 0;
10993 
10994 	mutex_lock(&ppd->hls_lock);
10995 
10996 	if (ppd->host_link_state & HLS_UP)
10997 		is_up = 1;
10998 
10999 	drain = !is_ax(dd) && is_up;
11000 
11001 	if (drain)
11002 		/*
11003 		 * Before adjusting VL arbitration weights, empty per-VL
11004 		 * FIFOs, otherwise a packet whose VL weight is being
11005 		 * set to 0 could get stuck in a FIFO with no chance to
11006 		 * egress.
11007 		 */
11008 		ret = stop_drain_data_vls(dd);
11009 
11010 	if (ret) {
11011 		dd_dev_err(
11012 			dd,
11013 			"%s: cannot stop/drain VLs - refusing to change VL arbitration weights\n",
11014 			__func__);
11015 		goto err;
11016 	}
11017 
11018 	for (i = 0; i < size; i++, vl++) {
11019 		/*
11020 		 * NOTE: The low priority shift and mask are used here, but
11021 		 * they are the same for both the low and high registers.
11022 		 */
11023 		reg = (((u64)vl->vl & SEND_LOW_PRIORITY_LIST_VL_MASK)
11024 				<< SEND_LOW_PRIORITY_LIST_VL_SHIFT)
11025 		      | (((u64)vl->weight
11026 				& SEND_LOW_PRIORITY_LIST_WEIGHT_MASK)
11027 				<< SEND_LOW_PRIORITY_LIST_WEIGHT_SHIFT);
11028 		write_csr(dd, target + (i * 8), reg);
11029 	}
11030 	pio_send_control(dd, PSC_GLOBAL_VLARB_ENABLE);
11031 
11032 	if (drain)
11033 		open_fill_data_vls(dd); /* reopen all VLs */
11034 
11035 err:
11036 	mutex_unlock(&ppd->hls_lock);
11037 
11038 	return ret;
11039 }
11040 
11041 /*
11042  * Read one credit merge VL register.
11043  */
11044 static void read_one_cm_vl(struct hfi1_devdata *dd, u32 csr,
11045 			   struct vl_limit *vll)
11046 {
11047 	u64 reg = read_csr(dd, csr);
11048 
11049 	vll->dedicated = cpu_to_be16(
11050 		(reg >> SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SHIFT)
11051 		& SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_MASK);
11052 	vll->shared = cpu_to_be16(
11053 		(reg >> SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SHIFT)
11054 		& SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_MASK);
11055 }
11056 
11057 /*
11058  * Read the current credit merge limits.
11059  */
11060 static int get_buffer_control(struct hfi1_devdata *dd,
11061 			      struct buffer_control *bc, u16 *overall_limit)
11062 {
11063 	u64 reg;
11064 	int i;
11065 
11066 	/* not all entries are filled in */
11067 	memset(bc, 0, sizeof(*bc));
11068 
11069 	/* OPA and HFI have a 1-1 mapping */
11070 	for (i = 0; i < TXE_NUM_DATA_VL; i++)
11071 		read_one_cm_vl(dd, SEND_CM_CREDIT_VL + (8 * i), &bc->vl[i]);
11072 
11073 	/* NOTE: assumes that VL* and VL15 CSRs are bit-wise identical */
11074 	read_one_cm_vl(dd, SEND_CM_CREDIT_VL15, &bc->vl[15]);
11075 
11076 	reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
11077 	bc->overall_shared_limit = cpu_to_be16(
11078 		(reg >> SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SHIFT)
11079 		& SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_MASK);
11080 	if (overall_limit)
11081 		*overall_limit = (reg
11082 			>> SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT)
11083 			& SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_MASK;
11084 	return sizeof(struct buffer_control);
11085 }
11086 
11087 static int get_sc2vlnt(struct hfi1_devdata *dd, struct sc2vlnt *dp)
11088 {
11089 	u64 reg;
11090 	int i;
11091 
11092 	/* each register contains 16 SC->VLnt mappings, 4 bits each */
11093 	reg = read_csr(dd, DCC_CFG_SC_VL_TABLE_15_0);
11094 	for (i = 0; i < sizeof(u64); i++) {
11095 		u8 byte = *(((u8 *)&reg) + i);
11096 
11097 		dp->vlnt[2 * i] = byte & 0xf;
11098 		dp->vlnt[(2 * i) + 1] = (byte & 0xf0) >> 4;
11099 	}
11100 
11101 	reg = read_csr(dd, DCC_CFG_SC_VL_TABLE_31_16);
11102 	for (i = 0; i < sizeof(u64); i++) {
11103 		u8 byte = *(((u8 *)&reg) + i);
11104 
11105 		dp->vlnt[16 + (2 * i)] = byte & 0xf;
11106 		dp->vlnt[16 + (2 * i) + 1] = (byte & 0xf0) >> 4;
11107 	}
11108 	return sizeof(struct sc2vlnt);
11109 }
11110 
11111 static void get_vlarb_preempt(struct hfi1_devdata *dd, u32 nelems,
11112 			      struct ib_vl_weight_elem *vl)
11113 {
11114 	unsigned int i;
11115 
11116 	for (i = 0; i < nelems; i++, vl++) {
11117 		vl->vl = 0xf;
11118 		vl->weight = 0;
11119 	}
11120 }
11121 
11122 static void set_sc2vlnt(struct hfi1_devdata *dd, struct sc2vlnt *dp)
11123 {
11124 	write_csr(dd, DCC_CFG_SC_VL_TABLE_15_0,
11125 		  DC_SC_VL_VAL(15_0,
11126 			       0, dp->vlnt[0] & 0xf,
11127 			       1, dp->vlnt[1] & 0xf,
11128 			       2, dp->vlnt[2] & 0xf,
11129 			       3, dp->vlnt[3] & 0xf,
11130 			       4, dp->vlnt[4] & 0xf,
11131 			       5, dp->vlnt[5] & 0xf,
11132 			       6, dp->vlnt[6] & 0xf,
11133 			       7, dp->vlnt[7] & 0xf,
11134 			       8, dp->vlnt[8] & 0xf,
11135 			       9, dp->vlnt[9] & 0xf,
11136 			       10, dp->vlnt[10] & 0xf,
11137 			       11, dp->vlnt[11] & 0xf,
11138 			       12, dp->vlnt[12] & 0xf,
11139 			       13, dp->vlnt[13] & 0xf,
11140 			       14, dp->vlnt[14] & 0xf,
11141 			       15, dp->vlnt[15] & 0xf));
11142 	write_csr(dd, DCC_CFG_SC_VL_TABLE_31_16,
11143 		  DC_SC_VL_VAL(31_16,
11144 			       16, dp->vlnt[16] & 0xf,
11145 			       17, dp->vlnt[17] & 0xf,
11146 			       18, dp->vlnt[18] & 0xf,
11147 			       19, dp->vlnt[19] & 0xf,
11148 			       20, dp->vlnt[20] & 0xf,
11149 			       21, dp->vlnt[21] & 0xf,
11150 			       22, dp->vlnt[22] & 0xf,
11151 			       23, dp->vlnt[23] & 0xf,
11152 			       24, dp->vlnt[24] & 0xf,
11153 			       25, dp->vlnt[25] & 0xf,
11154 			       26, dp->vlnt[26] & 0xf,
11155 			       27, dp->vlnt[27] & 0xf,
11156 			       28, dp->vlnt[28] & 0xf,
11157 			       29, dp->vlnt[29] & 0xf,
11158 			       30, dp->vlnt[30] & 0xf,
11159 			       31, dp->vlnt[31] & 0xf));
11160 }
11161 
11162 static void nonzero_msg(struct hfi1_devdata *dd, int idx, const char *what,
11163 			u16 limit)
11164 {
11165 	if (limit != 0)
11166 		dd_dev_info(dd, "Invalid %s limit %d on VL %d, ignoring\n",
11167 			    what, (int)limit, idx);
11168 }
11169 
11170 /* change only the shared limit portion of SendCmGLobalCredit */
11171 static void set_global_shared(struct hfi1_devdata *dd, u16 limit)
11172 {
11173 	u64 reg;
11174 
11175 	reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
11176 	reg &= ~SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SMASK;
11177 	reg |= (u64)limit << SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SHIFT;
11178 	write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg);
11179 }
11180 
11181 /* change only the total credit limit portion of SendCmGLobalCredit */
11182 static void set_global_limit(struct hfi1_devdata *dd, u16 limit)
11183 {
11184 	u64 reg;
11185 
11186 	reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
11187 	reg &= ~SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SMASK;
11188 	reg |= (u64)limit << SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT;
11189 	write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg);
11190 }
11191 
11192 /* set the given per-VL shared limit */
11193 static void set_vl_shared(struct hfi1_devdata *dd, int vl, u16 limit)
11194 {
11195 	u64 reg;
11196 	u32 addr;
11197 
11198 	if (vl < TXE_NUM_DATA_VL)
11199 		addr = SEND_CM_CREDIT_VL + (8 * vl);
11200 	else
11201 		addr = SEND_CM_CREDIT_VL15;
11202 
11203 	reg = read_csr(dd, addr);
11204 	reg &= ~SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SMASK;
11205 	reg |= (u64)limit << SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SHIFT;
11206 	write_csr(dd, addr, reg);
11207 }
11208 
11209 /* set the given per-VL dedicated limit */
11210 static void set_vl_dedicated(struct hfi1_devdata *dd, int vl, u16 limit)
11211 {
11212 	u64 reg;
11213 	u32 addr;
11214 
11215 	if (vl < TXE_NUM_DATA_VL)
11216 		addr = SEND_CM_CREDIT_VL + (8 * vl);
11217 	else
11218 		addr = SEND_CM_CREDIT_VL15;
11219 
11220 	reg = read_csr(dd, addr);
11221 	reg &= ~SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SMASK;
11222 	reg |= (u64)limit << SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SHIFT;
11223 	write_csr(dd, addr, reg);
11224 }
11225 
11226 /* spin until the given per-VL status mask bits clear */
11227 static void wait_for_vl_status_clear(struct hfi1_devdata *dd, u64 mask,
11228 				     const char *which)
11229 {
11230 	unsigned long timeout;
11231 	u64 reg;
11232 
11233 	timeout = jiffies + msecs_to_jiffies(VL_STATUS_CLEAR_TIMEOUT);
11234 	while (1) {
11235 		reg = read_csr(dd, SEND_CM_CREDIT_USED_STATUS) & mask;
11236 
11237 		if (reg == 0)
11238 			return;	/* success */
11239 		if (time_after(jiffies, timeout))
11240 			break;		/* timed out */
11241 		udelay(1);
11242 	}
11243 
11244 	dd_dev_err(dd,
11245 		   "%s credit change status not clearing after %dms, mask 0x%llx, not clear 0x%llx\n",
11246 		   which, VL_STATUS_CLEAR_TIMEOUT, mask, reg);
11247 	/*
11248 	 * If this occurs, it is likely there was a credit loss on the link.
11249 	 * The only recovery from that is a link bounce.
11250 	 */
11251 	dd_dev_err(dd,
11252 		   "Continuing anyway.  A credit loss may occur.  Suggest a link bounce\n");
11253 }
11254 
11255 /*
11256  * The number of credits on the VLs may be changed while everything
11257  * is "live", but the following algorithm must be followed due to
11258  * how the hardware is actually implemented.  In particular,
11259  * Return_Credit_Status[] is the only correct status check.
11260  *
11261  * if (reducing Global_Shared_Credit_Limit or any shared limit changing)
11262  *     set Global_Shared_Credit_Limit = 0
11263  *     use_all_vl = 1
11264  * mask0 = all VLs that are changing either dedicated or shared limits
11265  * set Shared_Limit[mask0] = 0
11266  * spin until Return_Credit_Status[use_all_vl ? all VL : mask0] == 0
11267  * if (changing any dedicated limit)
11268  *     mask1 = all VLs that are lowering dedicated limits
11269  *     lower Dedicated_Limit[mask1]
11270  *     spin until Return_Credit_Status[mask1] == 0
11271  *     raise Dedicated_Limits
11272  * raise Shared_Limits
11273  * raise Global_Shared_Credit_Limit
11274  *
11275  * lower = if the new limit is lower, set the limit to the new value
11276  * raise = if the new limit is higher than the current value (may be changed
11277  *	earlier in the algorithm), set the new limit to the new value
11278  */
11279 int set_buffer_control(struct hfi1_pportdata *ppd,
11280 		       struct buffer_control *new_bc)
11281 {
11282 	struct hfi1_devdata *dd = ppd->dd;
11283 	u64 changing_mask, ld_mask, stat_mask;
11284 	int change_count;
11285 	int i, use_all_mask;
11286 	int this_shared_changing;
11287 	int vl_count = 0, ret;
11288 	/*
11289 	 * A0: add the variable any_shared_limit_changing below and in the
11290 	 * algorithm above.  If removing A0 support, it can be removed.
11291 	 */
11292 	int any_shared_limit_changing;
11293 	struct buffer_control cur_bc;
11294 	u8 changing[OPA_MAX_VLS];
11295 	u8 lowering_dedicated[OPA_MAX_VLS];
11296 	u16 cur_total;
11297 	u32 new_total = 0;
11298 	const u64 all_mask =
11299 	SEND_CM_CREDIT_USED_STATUS_VL0_RETURN_CREDIT_STATUS_SMASK
11300 	 | SEND_CM_CREDIT_USED_STATUS_VL1_RETURN_CREDIT_STATUS_SMASK
11301 	 | SEND_CM_CREDIT_USED_STATUS_VL2_RETURN_CREDIT_STATUS_SMASK
11302 	 | SEND_CM_CREDIT_USED_STATUS_VL3_RETURN_CREDIT_STATUS_SMASK
11303 	 | SEND_CM_CREDIT_USED_STATUS_VL4_RETURN_CREDIT_STATUS_SMASK
11304 	 | SEND_CM_CREDIT_USED_STATUS_VL5_RETURN_CREDIT_STATUS_SMASK
11305 	 | SEND_CM_CREDIT_USED_STATUS_VL6_RETURN_CREDIT_STATUS_SMASK
11306 	 | SEND_CM_CREDIT_USED_STATUS_VL7_RETURN_CREDIT_STATUS_SMASK
11307 	 | SEND_CM_CREDIT_USED_STATUS_VL15_RETURN_CREDIT_STATUS_SMASK;
11308 
11309 #define valid_vl(idx) ((idx) < TXE_NUM_DATA_VL || (idx) == 15)
11310 #define NUM_USABLE_VLS 16	/* look at VL15 and less */
11311 
11312 	/* find the new total credits, do sanity check on unused VLs */
11313 	for (i = 0; i < OPA_MAX_VLS; i++) {
11314 		if (valid_vl(i)) {
11315 			new_total += be16_to_cpu(new_bc->vl[i].dedicated);
11316 			continue;
11317 		}
11318 		nonzero_msg(dd, i, "dedicated",
11319 			    be16_to_cpu(new_bc->vl[i].dedicated));
11320 		nonzero_msg(dd, i, "shared",
11321 			    be16_to_cpu(new_bc->vl[i].shared));
11322 		new_bc->vl[i].dedicated = 0;
11323 		new_bc->vl[i].shared = 0;
11324 	}
11325 	new_total += be16_to_cpu(new_bc->overall_shared_limit);
11326 
11327 	/* fetch the current values */
11328 	get_buffer_control(dd, &cur_bc, &cur_total);
11329 
11330 	/*
11331 	 * Create the masks we will use.
11332 	 */
11333 	memset(changing, 0, sizeof(changing));
11334 	memset(lowering_dedicated, 0, sizeof(lowering_dedicated));
11335 	/*
11336 	 * NOTE: Assumes that the individual VL bits are adjacent and in
11337 	 * increasing order
11338 	 */
11339 	stat_mask =
11340 		SEND_CM_CREDIT_USED_STATUS_VL0_RETURN_CREDIT_STATUS_SMASK;
11341 	changing_mask = 0;
11342 	ld_mask = 0;
11343 	change_count = 0;
11344 	any_shared_limit_changing = 0;
11345 	for (i = 0; i < NUM_USABLE_VLS; i++, stat_mask <<= 1) {
11346 		if (!valid_vl(i))
11347 			continue;
11348 		this_shared_changing = new_bc->vl[i].shared
11349 						!= cur_bc.vl[i].shared;
11350 		if (this_shared_changing)
11351 			any_shared_limit_changing = 1;
11352 		if (new_bc->vl[i].dedicated != cur_bc.vl[i].dedicated ||
11353 		    this_shared_changing) {
11354 			changing[i] = 1;
11355 			changing_mask |= stat_mask;
11356 			change_count++;
11357 		}
11358 		if (be16_to_cpu(new_bc->vl[i].dedicated) <
11359 					be16_to_cpu(cur_bc.vl[i].dedicated)) {
11360 			lowering_dedicated[i] = 1;
11361 			ld_mask |= stat_mask;
11362 		}
11363 	}
11364 
11365 	/* bracket the credit change with a total adjustment */
11366 	if (new_total > cur_total)
11367 		set_global_limit(dd, new_total);
11368 
11369 	/*
11370 	 * Start the credit change algorithm.
11371 	 */
11372 	use_all_mask = 0;
11373 	if ((be16_to_cpu(new_bc->overall_shared_limit) <
11374 	     be16_to_cpu(cur_bc.overall_shared_limit)) ||
11375 	    (is_ax(dd) && any_shared_limit_changing)) {
11376 		set_global_shared(dd, 0);
11377 		cur_bc.overall_shared_limit = 0;
11378 		use_all_mask = 1;
11379 	}
11380 
11381 	for (i = 0; i < NUM_USABLE_VLS; i++) {
11382 		if (!valid_vl(i))
11383 			continue;
11384 
11385 		if (changing[i]) {
11386 			set_vl_shared(dd, i, 0);
11387 			cur_bc.vl[i].shared = 0;
11388 		}
11389 	}
11390 
11391 	wait_for_vl_status_clear(dd, use_all_mask ? all_mask : changing_mask,
11392 				 "shared");
11393 
11394 	if (change_count > 0) {
11395 		for (i = 0; i < NUM_USABLE_VLS; i++) {
11396 			if (!valid_vl(i))
11397 				continue;
11398 
11399 			if (lowering_dedicated[i]) {
11400 				set_vl_dedicated(dd, i,
11401 						 be16_to_cpu(new_bc->
11402 							     vl[i].dedicated));
11403 				cur_bc.vl[i].dedicated =
11404 						new_bc->vl[i].dedicated;
11405 			}
11406 		}
11407 
11408 		wait_for_vl_status_clear(dd, ld_mask, "dedicated");
11409 
11410 		/* now raise all dedicated that are going up */
11411 		for (i = 0; i < NUM_USABLE_VLS; i++) {
11412 			if (!valid_vl(i))
11413 				continue;
11414 
11415 			if (be16_to_cpu(new_bc->vl[i].dedicated) >
11416 					be16_to_cpu(cur_bc.vl[i].dedicated))
11417 				set_vl_dedicated(dd, i,
11418 						 be16_to_cpu(new_bc->
11419 							     vl[i].dedicated));
11420 		}
11421 	}
11422 
11423 	/* next raise all shared that are going up */
11424 	for (i = 0; i < NUM_USABLE_VLS; i++) {
11425 		if (!valid_vl(i))
11426 			continue;
11427 
11428 		if (be16_to_cpu(new_bc->vl[i].shared) >
11429 				be16_to_cpu(cur_bc.vl[i].shared))
11430 			set_vl_shared(dd, i, be16_to_cpu(new_bc->vl[i].shared));
11431 	}
11432 
11433 	/* finally raise the global shared */
11434 	if (be16_to_cpu(new_bc->overall_shared_limit) >
11435 	    be16_to_cpu(cur_bc.overall_shared_limit))
11436 		set_global_shared(dd,
11437 				  be16_to_cpu(new_bc->overall_shared_limit));
11438 
11439 	/* bracket the credit change with a total adjustment */
11440 	if (new_total < cur_total)
11441 		set_global_limit(dd, new_total);
11442 
11443 	/*
11444 	 * Determine the actual number of operational VLS using the number of
11445 	 * dedicated and shared credits for each VL.
11446 	 */
11447 	if (change_count > 0) {
11448 		for (i = 0; i < TXE_NUM_DATA_VL; i++)
11449 			if (be16_to_cpu(new_bc->vl[i].dedicated) > 0 ||
11450 			    be16_to_cpu(new_bc->vl[i].shared) > 0)
11451 				vl_count++;
11452 		ppd->actual_vls_operational = vl_count;
11453 		ret = sdma_map_init(dd, ppd->port - 1, vl_count ?
11454 				    ppd->actual_vls_operational :
11455 				    ppd->vls_operational,
11456 				    NULL);
11457 		if (ret == 0)
11458 			ret = pio_map_init(dd, ppd->port - 1, vl_count ?
11459 					   ppd->actual_vls_operational :
11460 					   ppd->vls_operational, NULL);
11461 		if (ret)
11462 			return ret;
11463 	}
11464 	return 0;
11465 }
11466 
11467 /*
11468  * Read the given fabric manager table. Return the size of the
11469  * table (in bytes) on success, and a negative error code on
11470  * failure.
11471  */
11472 int fm_get_table(struct hfi1_pportdata *ppd, int which, void *t)
11473 
11474 {
11475 	int size;
11476 	struct vl_arb_cache *vlc;
11477 
11478 	switch (which) {
11479 	case FM_TBL_VL_HIGH_ARB:
11480 		size = 256;
11481 		/*
11482 		 * OPA specifies 128 elements (of 2 bytes each), though
11483 		 * HFI supports only 16 elements in h/w.
11484 		 */
11485 		vlc = vl_arb_lock_cache(ppd, HI_PRIO_TABLE);
11486 		vl_arb_get_cache(vlc, t);
11487 		vl_arb_unlock_cache(ppd, HI_PRIO_TABLE);
11488 		break;
11489 	case FM_TBL_VL_LOW_ARB:
11490 		size = 256;
11491 		/*
11492 		 * OPA specifies 128 elements (of 2 bytes each), though
11493 		 * HFI supports only 16 elements in h/w.
11494 		 */
11495 		vlc = vl_arb_lock_cache(ppd, LO_PRIO_TABLE);
11496 		vl_arb_get_cache(vlc, t);
11497 		vl_arb_unlock_cache(ppd, LO_PRIO_TABLE);
11498 		break;
11499 	case FM_TBL_BUFFER_CONTROL:
11500 		size = get_buffer_control(ppd->dd, t, NULL);
11501 		break;
11502 	case FM_TBL_SC2VLNT:
11503 		size = get_sc2vlnt(ppd->dd, t);
11504 		break;
11505 	case FM_TBL_VL_PREEMPT_ELEMS:
11506 		size = 256;
11507 		/* OPA specifies 128 elements, of 2 bytes each */
11508 		get_vlarb_preempt(ppd->dd, OPA_MAX_VLS, t);
11509 		break;
11510 	case FM_TBL_VL_PREEMPT_MATRIX:
11511 		size = 256;
11512 		/*
11513 		 * OPA specifies that this is the same size as the VL
11514 		 * arbitration tables (i.e., 256 bytes).
11515 		 */
11516 		break;
11517 	default:
11518 		return -EINVAL;
11519 	}
11520 	return size;
11521 }
11522 
11523 /*
11524  * Write the given fabric manager table.
11525  */
11526 int fm_set_table(struct hfi1_pportdata *ppd, int which, void *t)
11527 {
11528 	int ret = 0;
11529 	struct vl_arb_cache *vlc;
11530 
11531 	switch (which) {
11532 	case FM_TBL_VL_HIGH_ARB:
11533 		vlc = vl_arb_lock_cache(ppd, HI_PRIO_TABLE);
11534 		if (vl_arb_match_cache(vlc, t)) {
11535 			vl_arb_unlock_cache(ppd, HI_PRIO_TABLE);
11536 			break;
11537 		}
11538 		vl_arb_set_cache(vlc, t);
11539 		vl_arb_unlock_cache(ppd, HI_PRIO_TABLE);
11540 		ret = set_vl_weights(ppd, SEND_HIGH_PRIORITY_LIST,
11541 				     VL_ARB_HIGH_PRIO_TABLE_SIZE, t);
11542 		break;
11543 	case FM_TBL_VL_LOW_ARB:
11544 		vlc = vl_arb_lock_cache(ppd, LO_PRIO_TABLE);
11545 		if (vl_arb_match_cache(vlc, t)) {
11546 			vl_arb_unlock_cache(ppd, LO_PRIO_TABLE);
11547 			break;
11548 		}
11549 		vl_arb_set_cache(vlc, t);
11550 		vl_arb_unlock_cache(ppd, LO_PRIO_TABLE);
11551 		ret = set_vl_weights(ppd, SEND_LOW_PRIORITY_LIST,
11552 				     VL_ARB_LOW_PRIO_TABLE_SIZE, t);
11553 		break;
11554 	case FM_TBL_BUFFER_CONTROL:
11555 		ret = set_buffer_control(ppd, t);
11556 		break;
11557 	case FM_TBL_SC2VLNT:
11558 		set_sc2vlnt(ppd->dd, t);
11559 		break;
11560 	default:
11561 		ret = -EINVAL;
11562 	}
11563 	return ret;
11564 }
11565 
11566 /*
11567  * Disable all data VLs.
11568  *
11569  * Return 0 if disabled, non-zero if the VLs cannot be disabled.
11570  */
11571 static int disable_data_vls(struct hfi1_devdata *dd)
11572 {
11573 	if (is_ax(dd))
11574 		return 1;
11575 
11576 	pio_send_control(dd, PSC_DATA_VL_DISABLE);
11577 
11578 	return 0;
11579 }
11580 
11581 /*
11582  * open_fill_data_vls() - the counterpart to stop_drain_data_vls().
11583  * Just re-enables all data VLs (the "fill" part happens
11584  * automatically - the name was chosen for symmetry with
11585  * stop_drain_data_vls()).
11586  *
11587  * Return 0 if successful, non-zero if the VLs cannot be enabled.
11588  */
11589 int open_fill_data_vls(struct hfi1_devdata *dd)
11590 {
11591 	if (is_ax(dd))
11592 		return 1;
11593 
11594 	pio_send_control(dd, PSC_DATA_VL_ENABLE);
11595 
11596 	return 0;
11597 }
11598 
11599 /*
11600  * drain_data_vls() - assumes that disable_data_vls() has been called,
11601  * wait for occupancy (of per-VL FIFOs) for all contexts, and SDMA
11602  * engines to drop to 0.
11603  */
11604 static void drain_data_vls(struct hfi1_devdata *dd)
11605 {
11606 	sc_wait(dd);
11607 	sdma_wait(dd);
11608 	pause_for_credit_return(dd);
11609 }
11610 
11611 /*
11612  * stop_drain_data_vls() - disable, then drain all per-VL fifos.
11613  *
11614  * Use open_fill_data_vls() to resume using data VLs.  This pair is
11615  * meant to be used like this:
11616  *
11617  * stop_drain_data_vls(dd);
11618  * // do things with per-VL resources
11619  * open_fill_data_vls(dd);
11620  */
11621 int stop_drain_data_vls(struct hfi1_devdata *dd)
11622 {
11623 	int ret;
11624 
11625 	ret = disable_data_vls(dd);
11626 	if (ret == 0)
11627 		drain_data_vls(dd);
11628 
11629 	return ret;
11630 }
11631 
11632 /*
11633  * Convert a nanosecond time to a cclock count.  No matter how slow
11634  * the cclock, a non-zero ns will always have a non-zero result.
11635  */
11636 u32 ns_to_cclock(struct hfi1_devdata *dd, u32 ns)
11637 {
11638 	u32 cclocks;
11639 
11640 	if (dd->icode == ICODE_FPGA_EMULATION)
11641 		cclocks = (ns * 1000) / FPGA_CCLOCK_PS;
11642 	else  /* simulation pretends to be ASIC */
11643 		cclocks = (ns * 1000) / ASIC_CCLOCK_PS;
11644 	if (ns && !cclocks)	/* if ns nonzero, must be at least 1 */
11645 		cclocks = 1;
11646 	return cclocks;
11647 }
11648 
11649 /*
11650  * Convert a cclock count to nanoseconds. Not matter how slow
11651  * the cclock, a non-zero cclocks will always have a non-zero result.
11652  */
11653 u32 cclock_to_ns(struct hfi1_devdata *dd, u32 cclocks)
11654 {
11655 	u32 ns;
11656 
11657 	if (dd->icode == ICODE_FPGA_EMULATION)
11658 		ns = (cclocks * FPGA_CCLOCK_PS) / 1000;
11659 	else  /* simulation pretends to be ASIC */
11660 		ns = (cclocks * ASIC_CCLOCK_PS) / 1000;
11661 	if (cclocks && !ns)
11662 		ns = 1;
11663 	return ns;
11664 }
11665 
11666 /*
11667  * Dynamically adjust the receive interrupt timeout for a context based on
11668  * incoming packet rate.
11669  *
11670  * NOTE: Dynamic adjustment does not allow rcv_intr_count to be zero.
11671  */
11672 static void adjust_rcv_timeout(struct hfi1_ctxtdata *rcd, u32 npkts)
11673 {
11674 	struct hfi1_devdata *dd = rcd->dd;
11675 	u32 timeout = rcd->rcvavail_timeout;
11676 
11677 	/*
11678 	 * This algorithm doubles or halves the timeout depending on whether
11679 	 * the number of packets received in this interrupt were less than or
11680 	 * greater equal the interrupt count.
11681 	 *
11682 	 * The calculations below do not allow a steady state to be achieved.
11683 	 * Only at the endpoints it is possible to have an unchanging
11684 	 * timeout.
11685 	 */
11686 	if (npkts < rcv_intr_count) {
11687 		/*
11688 		 * Not enough packets arrived before the timeout, adjust
11689 		 * timeout downward.
11690 		 */
11691 		if (timeout < 2) /* already at minimum? */
11692 			return;
11693 		timeout >>= 1;
11694 	} else {
11695 		/*
11696 		 * More than enough packets arrived before the timeout, adjust
11697 		 * timeout upward.
11698 		 */
11699 		if (timeout >= dd->rcv_intr_timeout_csr) /* already at max? */
11700 			return;
11701 		timeout = min(timeout << 1, dd->rcv_intr_timeout_csr);
11702 	}
11703 
11704 	rcd->rcvavail_timeout = timeout;
11705 	/*
11706 	 * timeout cannot be larger than rcv_intr_timeout_csr which has already
11707 	 * been verified to be in range
11708 	 */
11709 	write_kctxt_csr(dd, rcd->ctxt, RCV_AVAIL_TIME_OUT,
11710 			(u64)timeout <<
11711 			RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_SHIFT);
11712 }
11713 
11714 void update_usrhead(struct hfi1_ctxtdata *rcd, u32 hd, u32 updegr, u32 egrhd,
11715 		    u32 intr_adjust, u32 npkts)
11716 {
11717 	struct hfi1_devdata *dd = rcd->dd;
11718 	u64 reg;
11719 	u32 ctxt = rcd->ctxt;
11720 
11721 	/*
11722 	 * Need to write timeout register before updating RcvHdrHead to ensure
11723 	 * that a new value is used when the HW decides to restart counting.
11724 	 */
11725 	if (intr_adjust)
11726 		adjust_rcv_timeout(rcd, npkts);
11727 	if (updegr) {
11728 		reg = (egrhd & RCV_EGR_INDEX_HEAD_HEAD_MASK)
11729 			<< RCV_EGR_INDEX_HEAD_HEAD_SHIFT;
11730 		write_uctxt_csr(dd, ctxt, RCV_EGR_INDEX_HEAD, reg);
11731 	}
11732 	mmiowb();
11733 	reg = ((u64)rcv_intr_count << RCV_HDR_HEAD_COUNTER_SHIFT) |
11734 		(((u64)hd & RCV_HDR_HEAD_HEAD_MASK)
11735 			<< RCV_HDR_HEAD_HEAD_SHIFT);
11736 	write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, reg);
11737 	mmiowb();
11738 }
11739 
11740 u32 hdrqempty(struct hfi1_ctxtdata *rcd)
11741 {
11742 	u32 head, tail;
11743 
11744 	head = (read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_HEAD)
11745 		& RCV_HDR_HEAD_HEAD_SMASK) >> RCV_HDR_HEAD_HEAD_SHIFT;
11746 
11747 	if (rcd->rcvhdrtail_kvaddr)
11748 		tail = get_rcvhdrtail(rcd);
11749 	else
11750 		tail = read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_TAIL);
11751 
11752 	return head == tail;
11753 }
11754 
11755 /*
11756  * Context Control and Receive Array encoding for buffer size:
11757  *	0x0 invalid
11758  *	0x1   4 KB
11759  *	0x2   8 KB
11760  *	0x3  16 KB
11761  *	0x4  32 KB
11762  *	0x5  64 KB
11763  *	0x6 128 KB
11764  *	0x7 256 KB
11765  *	0x8 512 KB (Receive Array only)
11766  *	0x9   1 MB (Receive Array only)
11767  *	0xa   2 MB (Receive Array only)
11768  *
11769  *	0xB-0xF - reserved (Receive Array only)
11770  *
11771  *
11772  * This routine assumes that the value has already been sanity checked.
11773  */
11774 static u32 encoded_size(u32 size)
11775 {
11776 	switch (size) {
11777 	case   4 * 1024: return 0x1;
11778 	case   8 * 1024: return 0x2;
11779 	case  16 * 1024: return 0x3;
11780 	case  32 * 1024: return 0x4;
11781 	case  64 * 1024: return 0x5;
11782 	case 128 * 1024: return 0x6;
11783 	case 256 * 1024: return 0x7;
11784 	case 512 * 1024: return 0x8;
11785 	case   1 * 1024 * 1024: return 0x9;
11786 	case   2 * 1024 * 1024: return 0xa;
11787 	}
11788 	return 0x1;	/* if invalid, go with the minimum size */
11789 }
11790 
11791 void hfi1_rcvctrl(struct hfi1_devdata *dd, unsigned int op,
11792 		  struct hfi1_ctxtdata *rcd)
11793 {
11794 	u64 rcvctrl, reg;
11795 	int did_enable = 0;
11796 	u16 ctxt;
11797 
11798 	if (!rcd)
11799 		return;
11800 
11801 	ctxt = rcd->ctxt;
11802 
11803 	hfi1_cdbg(RCVCTRL, "ctxt %d op 0x%x", ctxt, op);
11804 
11805 	rcvctrl = read_kctxt_csr(dd, ctxt, RCV_CTXT_CTRL);
11806 	/* if the context already enabled, don't do the extra steps */
11807 	if ((op & HFI1_RCVCTRL_CTXT_ENB) &&
11808 	    !(rcvctrl & RCV_CTXT_CTRL_ENABLE_SMASK)) {
11809 		/* reset the tail and hdr addresses, and sequence count */
11810 		write_kctxt_csr(dd, ctxt, RCV_HDR_ADDR,
11811 				rcd->rcvhdrq_dma);
11812 		if (HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL))
11813 			write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR,
11814 					rcd->rcvhdrqtailaddr_dma);
11815 		rcd->seq_cnt = 1;
11816 
11817 		/* reset the cached receive header queue head value */
11818 		rcd->head = 0;
11819 
11820 		/*
11821 		 * Zero the receive header queue so we don't get false
11822 		 * positives when checking the sequence number.  The
11823 		 * sequence numbers could land exactly on the same spot.
11824 		 * E.g. a rcd restart before the receive header wrapped.
11825 		 */
11826 		memset(rcd->rcvhdrq, 0, rcd->rcvhdrq_size);
11827 
11828 		/* starting timeout */
11829 		rcd->rcvavail_timeout = dd->rcv_intr_timeout_csr;
11830 
11831 		/* enable the context */
11832 		rcvctrl |= RCV_CTXT_CTRL_ENABLE_SMASK;
11833 
11834 		/* clean the egr buffer size first */
11835 		rcvctrl &= ~RCV_CTXT_CTRL_EGR_BUF_SIZE_SMASK;
11836 		rcvctrl |= ((u64)encoded_size(rcd->egrbufs.rcvtid_size)
11837 				& RCV_CTXT_CTRL_EGR_BUF_SIZE_MASK)
11838 					<< RCV_CTXT_CTRL_EGR_BUF_SIZE_SHIFT;
11839 
11840 		/* zero RcvHdrHead - set RcvHdrHead.Counter after enable */
11841 		write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0);
11842 		did_enable = 1;
11843 
11844 		/* zero RcvEgrIndexHead */
11845 		write_uctxt_csr(dd, ctxt, RCV_EGR_INDEX_HEAD, 0);
11846 
11847 		/* set eager count and base index */
11848 		reg = (((u64)(rcd->egrbufs.alloced >> RCV_SHIFT)
11849 			& RCV_EGR_CTRL_EGR_CNT_MASK)
11850 		       << RCV_EGR_CTRL_EGR_CNT_SHIFT) |
11851 			(((rcd->eager_base >> RCV_SHIFT)
11852 			  & RCV_EGR_CTRL_EGR_BASE_INDEX_MASK)
11853 			 << RCV_EGR_CTRL_EGR_BASE_INDEX_SHIFT);
11854 		write_kctxt_csr(dd, ctxt, RCV_EGR_CTRL, reg);
11855 
11856 		/*
11857 		 * Set TID (expected) count and base index.
11858 		 * rcd->expected_count is set to individual RcvArray entries,
11859 		 * not pairs, and the CSR takes a pair-count in groups of
11860 		 * four, so divide by 8.
11861 		 */
11862 		reg = (((rcd->expected_count >> RCV_SHIFT)
11863 					& RCV_TID_CTRL_TID_PAIR_CNT_MASK)
11864 				<< RCV_TID_CTRL_TID_PAIR_CNT_SHIFT) |
11865 		      (((rcd->expected_base >> RCV_SHIFT)
11866 					& RCV_TID_CTRL_TID_BASE_INDEX_MASK)
11867 				<< RCV_TID_CTRL_TID_BASE_INDEX_SHIFT);
11868 		write_kctxt_csr(dd, ctxt, RCV_TID_CTRL, reg);
11869 		if (ctxt == HFI1_CTRL_CTXT)
11870 			write_csr(dd, RCV_VL15, HFI1_CTRL_CTXT);
11871 	}
11872 	if (op & HFI1_RCVCTRL_CTXT_DIS) {
11873 		write_csr(dd, RCV_VL15, 0);
11874 		/*
11875 		 * When receive context is being disabled turn on tail
11876 		 * update with a dummy tail address and then disable
11877 		 * receive context.
11878 		 */
11879 		if (dd->rcvhdrtail_dummy_dma) {
11880 			write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR,
11881 					dd->rcvhdrtail_dummy_dma);
11882 			/* Enabling RcvCtxtCtrl.TailUpd is intentional. */
11883 			rcvctrl |= RCV_CTXT_CTRL_TAIL_UPD_SMASK;
11884 		}
11885 
11886 		rcvctrl &= ~RCV_CTXT_CTRL_ENABLE_SMASK;
11887 	}
11888 	if (op & HFI1_RCVCTRL_INTRAVAIL_ENB)
11889 		rcvctrl |= RCV_CTXT_CTRL_INTR_AVAIL_SMASK;
11890 	if (op & HFI1_RCVCTRL_INTRAVAIL_DIS)
11891 		rcvctrl &= ~RCV_CTXT_CTRL_INTR_AVAIL_SMASK;
11892 	if (op & HFI1_RCVCTRL_TAILUPD_ENB && rcd->rcvhdrqtailaddr_dma)
11893 		rcvctrl |= RCV_CTXT_CTRL_TAIL_UPD_SMASK;
11894 	if (op & HFI1_RCVCTRL_TAILUPD_DIS) {
11895 		/* See comment on RcvCtxtCtrl.TailUpd above */
11896 		if (!(op & HFI1_RCVCTRL_CTXT_DIS))
11897 			rcvctrl &= ~RCV_CTXT_CTRL_TAIL_UPD_SMASK;
11898 	}
11899 	if (op & HFI1_RCVCTRL_TIDFLOW_ENB)
11900 		rcvctrl |= RCV_CTXT_CTRL_TID_FLOW_ENABLE_SMASK;
11901 	if (op & HFI1_RCVCTRL_TIDFLOW_DIS)
11902 		rcvctrl &= ~RCV_CTXT_CTRL_TID_FLOW_ENABLE_SMASK;
11903 	if (op & HFI1_RCVCTRL_ONE_PKT_EGR_ENB) {
11904 		/*
11905 		 * In one-packet-per-eager mode, the size comes from
11906 		 * the RcvArray entry.
11907 		 */
11908 		rcvctrl &= ~RCV_CTXT_CTRL_EGR_BUF_SIZE_SMASK;
11909 		rcvctrl |= RCV_CTXT_CTRL_ONE_PACKET_PER_EGR_BUFFER_SMASK;
11910 	}
11911 	if (op & HFI1_RCVCTRL_ONE_PKT_EGR_DIS)
11912 		rcvctrl &= ~RCV_CTXT_CTRL_ONE_PACKET_PER_EGR_BUFFER_SMASK;
11913 	if (op & HFI1_RCVCTRL_NO_RHQ_DROP_ENB)
11914 		rcvctrl |= RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK;
11915 	if (op & HFI1_RCVCTRL_NO_RHQ_DROP_DIS)
11916 		rcvctrl &= ~RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK;
11917 	if (op & HFI1_RCVCTRL_NO_EGR_DROP_ENB)
11918 		rcvctrl |= RCV_CTXT_CTRL_DONT_DROP_EGR_FULL_SMASK;
11919 	if (op & HFI1_RCVCTRL_NO_EGR_DROP_DIS)
11920 		rcvctrl &= ~RCV_CTXT_CTRL_DONT_DROP_EGR_FULL_SMASK;
11921 	rcd->rcvctrl = rcvctrl;
11922 	hfi1_cdbg(RCVCTRL, "ctxt %d rcvctrl 0x%llx\n", ctxt, rcvctrl);
11923 	write_kctxt_csr(dd, ctxt, RCV_CTXT_CTRL, rcd->rcvctrl);
11924 
11925 	/* work around sticky RcvCtxtStatus.BlockedRHQFull */
11926 	if (did_enable &&
11927 	    (rcvctrl & RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK)) {
11928 		reg = read_kctxt_csr(dd, ctxt, RCV_CTXT_STATUS);
11929 		if (reg != 0) {
11930 			dd_dev_info(dd, "ctxt %d status %lld (blocked)\n",
11931 				    ctxt, reg);
11932 			read_uctxt_csr(dd, ctxt, RCV_HDR_HEAD);
11933 			write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0x10);
11934 			write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0x00);
11935 			read_uctxt_csr(dd, ctxt, RCV_HDR_HEAD);
11936 			reg = read_kctxt_csr(dd, ctxt, RCV_CTXT_STATUS);
11937 			dd_dev_info(dd, "ctxt %d status %lld (%s blocked)\n",
11938 				    ctxt, reg, reg == 0 ? "not" : "still");
11939 		}
11940 	}
11941 
11942 	if (did_enable) {
11943 		/*
11944 		 * The interrupt timeout and count must be set after
11945 		 * the context is enabled to take effect.
11946 		 */
11947 		/* set interrupt timeout */
11948 		write_kctxt_csr(dd, ctxt, RCV_AVAIL_TIME_OUT,
11949 				(u64)rcd->rcvavail_timeout <<
11950 				RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_SHIFT);
11951 
11952 		/* set RcvHdrHead.Counter, zero RcvHdrHead.Head (again) */
11953 		reg = (u64)rcv_intr_count << RCV_HDR_HEAD_COUNTER_SHIFT;
11954 		write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, reg);
11955 	}
11956 
11957 	if (op & (HFI1_RCVCTRL_TAILUPD_DIS | HFI1_RCVCTRL_CTXT_DIS))
11958 		/*
11959 		 * If the context has been disabled and the Tail Update has
11960 		 * been cleared, set the RCV_HDR_TAIL_ADDR CSR to dummy address
11961 		 * so it doesn't contain an address that is invalid.
11962 		 */
11963 		write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR,
11964 				dd->rcvhdrtail_dummy_dma);
11965 }
11966 
11967 u32 hfi1_read_cntrs(struct hfi1_devdata *dd, char **namep, u64 **cntrp)
11968 {
11969 	int ret;
11970 	u64 val = 0;
11971 
11972 	if (namep) {
11973 		ret = dd->cntrnameslen;
11974 		*namep = dd->cntrnames;
11975 	} else {
11976 		const struct cntr_entry *entry;
11977 		int i, j;
11978 
11979 		ret = (dd->ndevcntrs) * sizeof(u64);
11980 
11981 		/* Get the start of the block of counters */
11982 		*cntrp = dd->cntrs;
11983 
11984 		/*
11985 		 * Now go and fill in each counter in the block.
11986 		 */
11987 		for (i = 0; i < DEV_CNTR_LAST; i++) {
11988 			entry = &dev_cntrs[i];
11989 			hfi1_cdbg(CNTR, "reading %s", entry->name);
11990 			if (entry->flags & CNTR_DISABLED) {
11991 				/* Nothing */
11992 				hfi1_cdbg(CNTR, "\tDisabled\n");
11993 			} else {
11994 				if (entry->flags & CNTR_VL) {
11995 					hfi1_cdbg(CNTR, "\tPer VL\n");
11996 					for (j = 0; j < C_VL_COUNT; j++) {
11997 						val = entry->rw_cntr(entry,
11998 								  dd, j,
11999 								  CNTR_MODE_R,
12000 								  0);
12001 						hfi1_cdbg(
12002 						   CNTR,
12003 						   "\t\tRead 0x%llx for %d\n",
12004 						   val, j);
12005 						dd->cntrs[entry->offset + j] =
12006 									    val;
12007 					}
12008 				} else if (entry->flags & CNTR_SDMA) {
12009 					hfi1_cdbg(CNTR,
12010 						  "\t Per SDMA Engine\n");
12011 					for (j = 0; j < dd->chip_sdma_engines;
12012 					     j++) {
12013 						val =
12014 						entry->rw_cntr(entry, dd, j,
12015 							       CNTR_MODE_R, 0);
12016 						hfi1_cdbg(CNTR,
12017 							  "\t\tRead 0x%llx for %d\n",
12018 							  val, j);
12019 						dd->cntrs[entry->offset + j] =
12020 									val;
12021 					}
12022 				} else {
12023 					val = entry->rw_cntr(entry, dd,
12024 							CNTR_INVALID_VL,
12025 							CNTR_MODE_R, 0);
12026 					dd->cntrs[entry->offset] = val;
12027 					hfi1_cdbg(CNTR, "\tRead 0x%llx", val);
12028 				}
12029 			}
12030 		}
12031 	}
12032 	return ret;
12033 }
12034 
12035 /*
12036  * Used by sysfs to create files for hfi stats to read
12037  */
12038 u32 hfi1_read_portcntrs(struct hfi1_pportdata *ppd, char **namep, u64 **cntrp)
12039 {
12040 	int ret;
12041 	u64 val = 0;
12042 
12043 	if (namep) {
12044 		ret = ppd->dd->portcntrnameslen;
12045 		*namep = ppd->dd->portcntrnames;
12046 	} else {
12047 		const struct cntr_entry *entry;
12048 		int i, j;
12049 
12050 		ret = ppd->dd->nportcntrs * sizeof(u64);
12051 		*cntrp = ppd->cntrs;
12052 
12053 		for (i = 0; i < PORT_CNTR_LAST; i++) {
12054 			entry = &port_cntrs[i];
12055 			hfi1_cdbg(CNTR, "reading %s", entry->name);
12056 			if (entry->flags & CNTR_DISABLED) {
12057 				/* Nothing */
12058 				hfi1_cdbg(CNTR, "\tDisabled\n");
12059 				continue;
12060 			}
12061 
12062 			if (entry->flags & CNTR_VL) {
12063 				hfi1_cdbg(CNTR, "\tPer VL");
12064 				for (j = 0; j < C_VL_COUNT; j++) {
12065 					val = entry->rw_cntr(entry, ppd, j,
12066 							       CNTR_MODE_R,
12067 							       0);
12068 					hfi1_cdbg(
12069 					   CNTR,
12070 					   "\t\tRead 0x%llx for %d",
12071 					   val, j);
12072 					ppd->cntrs[entry->offset + j] = val;
12073 				}
12074 			} else {
12075 				val = entry->rw_cntr(entry, ppd,
12076 						       CNTR_INVALID_VL,
12077 						       CNTR_MODE_R,
12078 						       0);
12079 				ppd->cntrs[entry->offset] = val;
12080 				hfi1_cdbg(CNTR, "\tRead 0x%llx", val);
12081 			}
12082 		}
12083 	}
12084 	return ret;
12085 }
12086 
12087 static void free_cntrs(struct hfi1_devdata *dd)
12088 {
12089 	struct hfi1_pportdata *ppd;
12090 	int i;
12091 
12092 	if (dd->synth_stats_timer.data)
12093 		del_timer_sync(&dd->synth_stats_timer);
12094 	dd->synth_stats_timer.data = 0;
12095 	ppd = (struct hfi1_pportdata *)(dd + 1);
12096 	for (i = 0; i < dd->num_pports; i++, ppd++) {
12097 		kfree(ppd->cntrs);
12098 		kfree(ppd->scntrs);
12099 		free_percpu(ppd->ibport_data.rvp.rc_acks);
12100 		free_percpu(ppd->ibport_data.rvp.rc_qacks);
12101 		free_percpu(ppd->ibport_data.rvp.rc_delayed_comp);
12102 		ppd->cntrs = NULL;
12103 		ppd->scntrs = NULL;
12104 		ppd->ibport_data.rvp.rc_acks = NULL;
12105 		ppd->ibport_data.rvp.rc_qacks = NULL;
12106 		ppd->ibport_data.rvp.rc_delayed_comp = NULL;
12107 	}
12108 	kfree(dd->portcntrnames);
12109 	dd->portcntrnames = NULL;
12110 	kfree(dd->cntrs);
12111 	dd->cntrs = NULL;
12112 	kfree(dd->scntrs);
12113 	dd->scntrs = NULL;
12114 	kfree(dd->cntrnames);
12115 	dd->cntrnames = NULL;
12116 	if (dd->update_cntr_wq) {
12117 		destroy_workqueue(dd->update_cntr_wq);
12118 		dd->update_cntr_wq = NULL;
12119 	}
12120 }
12121 
12122 static u64 read_dev_port_cntr(struct hfi1_devdata *dd, struct cntr_entry *entry,
12123 			      u64 *psval, void *context, int vl)
12124 {
12125 	u64 val;
12126 	u64 sval = *psval;
12127 
12128 	if (entry->flags & CNTR_DISABLED) {
12129 		dd_dev_err(dd, "Counter %s not enabled", entry->name);
12130 		return 0;
12131 	}
12132 
12133 	hfi1_cdbg(CNTR, "cntr: %s vl %d psval 0x%llx", entry->name, vl, *psval);
12134 
12135 	val = entry->rw_cntr(entry, context, vl, CNTR_MODE_R, 0);
12136 
12137 	/* If its a synthetic counter there is more work we need to do */
12138 	if (entry->flags & CNTR_SYNTH) {
12139 		if (sval == CNTR_MAX) {
12140 			/* No need to read already saturated */
12141 			return CNTR_MAX;
12142 		}
12143 
12144 		if (entry->flags & CNTR_32BIT) {
12145 			/* 32bit counters can wrap multiple times */
12146 			u64 upper = sval >> 32;
12147 			u64 lower = (sval << 32) >> 32;
12148 
12149 			if (lower > val) { /* hw wrapped */
12150 				if (upper == CNTR_32BIT_MAX)
12151 					val = CNTR_MAX;
12152 				else
12153 					upper++;
12154 			}
12155 
12156 			if (val != CNTR_MAX)
12157 				val = (upper << 32) | val;
12158 
12159 		} else {
12160 			/* If we rolled we are saturated */
12161 			if ((val < sval) || (val > CNTR_MAX))
12162 				val = CNTR_MAX;
12163 		}
12164 	}
12165 
12166 	*psval = val;
12167 
12168 	hfi1_cdbg(CNTR, "\tNew val=0x%llx", val);
12169 
12170 	return val;
12171 }
12172 
12173 static u64 write_dev_port_cntr(struct hfi1_devdata *dd,
12174 			       struct cntr_entry *entry,
12175 			       u64 *psval, void *context, int vl, u64 data)
12176 {
12177 	u64 val;
12178 
12179 	if (entry->flags & CNTR_DISABLED) {
12180 		dd_dev_err(dd, "Counter %s not enabled", entry->name);
12181 		return 0;
12182 	}
12183 
12184 	hfi1_cdbg(CNTR, "cntr: %s vl %d psval 0x%llx", entry->name, vl, *psval);
12185 
12186 	if (entry->flags & CNTR_SYNTH) {
12187 		*psval = data;
12188 		if (entry->flags & CNTR_32BIT) {
12189 			val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W,
12190 					     (data << 32) >> 32);
12191 			val = data; /* return the full 64bit value */
12192 		} else {
12193 			val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W,
12194 					     data);
12195 		}
12196 	} else {
12197 		val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W, data);
12198 	}
12199 
12200 	*psval = val;
12201 
12202 	hfi1_cdbg(CNTR, "\tNew val=0x%llx", val);
12203 
12204 	return val;
12205 }
12206 
12207 u64 read_dev_cntr(struct hfi1_devdata *dd, int index, int vl)
12208 {
12209 	struct cntr_entry *entry;
12210 	u64 *sval;
12211 
12212 	entry = &dev_cntrs[index];
12213 	sval = dd->scntrs + entry->offset;
12214 
12215 	if (vl != CNTR_INVALID_VL)
12216 		sval += vl;
12217 
12218 	return read_dev_port_cntr(dd, entry, sval, dd, vl);
12219 }
12220 
12221 u64 write_dev_cntr(struct hfi1_devdata *dd, int index, int vl, u64 data)
12222 {
12223 	struct cntr_entry *entry;
12224 	u64 *sval;
12225 
12226 	entry = &dev_cntrs[index];
12227 	sval = dd->scntrs + entry->offset;
12228 
12229 	if (vl != CNTR_INVALID_VL)
12230 		sval += vl;
12231 
12232 	return write_dev_port_cntr(dd, entry, sval, dd, vl, data);
12233 }
12234 
12235 u64 read_port_cntr(struct hfi1_pportdata *ppd, int index, int vl)
12236 {
12237 	struct cntr_entry *entry;
12238 	u64 *sval;
12239 
12240 	entry = &port_cntrs[index];
12241 	sval = ppd->scntrs + entry->offset;
12242 
12243 	if (vl != CNTR_INVALID_VL)
12244 		sval += vl;
12245 
12246 	if ((index >= C_RCV_HDR_OVF_FIRST + ppd->dd->num_rcv_contexts) &&
12247 	    (index <= C_RCV_HDR_OVF_LAST)) {
12248 		/* We do not want to bother for disabled contexts */
12249 		return 0;
12250 	}
12251 
12252 	return read_dev_port_cntr(ppd->dd, entry, sval, ppd, vl);
12253 }
12254 
12255 u64 write_port_cntr(struct hfi1_pportdata *ppd, int index, int vl, u64 data)
12256 {
12257 	struct cntr_entry *entry;
12258 	u64 *sval;
12259 
12260 	entry = &port_cntrs[index];
12261 	sval = ppd->scntrs + entry->offset;
12262 
12263 	if (vl != CNTR_INVALID_VL)
12264 		sval += vl;
12265 
12266 	if ((index >= C_RCV_HDR_OVF_FIRST + ppd->dd->num_rcv_contexts) &&
12267 	    (index <= C_RCV_HDR_OVF_LAST)) {
12268 		/* We do not want to bother for disabled contexts */
12269 		return 0;
12270 	}
12271 
12272 	return write_dev_port_cntr(ppd->dd, entry, sval, ppd, vl, data);
12273 }
12274 
12275 static void do_update_synth_timer(struct work_struct *work)
12276 {
12277 	u64 cur_tx;
12278 	u64 cur_rx;
12279 	u64 total_flits;
12280 	u8 update = 0;
12281 	int i, j, vl;
12282 	struct hfi1_pportdata *ppd;
12283 	struct cntr_entry *entry;
12284 	struct hfi1_devdata *dd = container_of(work, struct hfi1_devdata,
12285 					       update_cntr_work);
12286 
12287 	/*
12288 	 * Rather than keep beating on the CSRs pick a minimal set that we can
12289 	 * check to watch for potential roll over. We can do this by looking at
12290 	 * the number of flits sent/recv. If the total flits exceeds 32bits then
12291 	 * we have to iterate all the counters and update.
12292 	 */
12293 	entry = &dev_cntrs[C_DC_RCV_FLITS];
12294 	cur_rx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL, CNTR_MODE_R, 0);
12295 
12296 	entry = &dev_cntrs[C_DC_XMIT_FLITS];
12297 	cur_tx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL, CNTR_MODE_R, 0);
12298 
12299 	hfi1_cdbg(
12300 	    CNTR,
12301 	    "[%d] curr tx=0x%llx rx=0x%llx :: last tx=0x%llx rx=0x%llx\n",
12302 	    dd->unit, cur_tx, cur_rx, dd->last_tx, dd->last_rx);
12303 
12304 	if ((cur_tx < dd->last_tx) || (cur_rx < dd->last_rx)) {
12305 		/*
12306 		 * May not be strictly necessary to update but it won't hurt and
12307 		 * simplifies the logic here.
12308 		 */
12309 		update = 1;
12310 		hfi1_cdbg(CNTR, "[%d] Tripwire counter rolled, updating",
12311 			  dd->unit);
12312 	} else {
12313 		total_flits = (cur_tx - dd->last_tx) + (cur_rx - dd->last_rx);
12314 		hfi1_cdbg(CNTR,
12315 			  "[%d] total flits 0x%llx limit 0x%llx\n", dd->unit,
12316 			  total_flits, (u64)CNTR_32BIT_MAX);
12317 		if (total_flits >= CNTR_32BIT_MAX) {
12318 			hfi1_cdbg(CNTR, "[%d] 32bit limit hit, updating",
12319 				  dd->unit);
12320 			update = 1;
12321 		}
12322 	}
12323 
12324 	if (update) {
12325 		hfi1_cdbg(CNTR, "[%d] Updating dd and ppd counters", dd->unit);
12326 		for (i = 0; i < DEV_CNTR_LAST; i++) {
12327 			entry = &dev_cntrs[i];
12328 			if (entry->flags & CNTR_VL) {
12329 				for (vl = 0; vl < C_VL_COUNT; vl++)
12330 					read_dev_cntr(dd, i, vl);
12331 			} else {
12332 				read_dev_cntr(dd, i, CNTR_INVALID_VL);
12333 			}
12334 		}
12335 		ppd = (struct hfi1_pportdata *)(dd + 1);
12336 		for (i = 0; i < dd->num_pports; i++, ppd++) {
12337 			for (j = 0; j < PORT_CNTR_LAST; j++) {
12338 				entry = &port_cntrs[j];
12339 				if (entry->flags & CNTR_VL) {
12340 					for (vl = 0; vl < C_VL_COUNT; vl++)
12341 						read_port_cntr(ppd, j, vl);
12342 				} else {
12343 					read_port_cntr(ppd, j, CNTR_INVALID_VL);
12344 				}
12345 			}
12346 		}
12347 
12348 		/*
12349 		 * We want the value in the register. The goal is to keep track
12350 		 * of the number of "ticks" not the counter value. In other
12351 		 * words if the register rolls we want to notice it and go ahead
12352 		 * and force an update.
12353 		 */
12354 		entry = &dev_cntrs[C_DC_XMIT_FLITS];
12355 		dd->last_tx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL,
12356 						CNTR_MODE_R, 0);
12357 
12358 		entry = &dev_cntrs[C_DC_RCV_FLITS];
12359 		dd->last_rx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL,
12360 						CNTR_MODE_R, 0);
12361 
12362 		hfi1_cdbg(CNTR, "[%d] setting last tx/rx to 0x%llx 0x%llx",
12363 			  dd->unit, dd->last_tx, dd->last_rx);
12364 
12365 	} else {
12366 		hfi1_cdbg(CNTR, "[%d] No update necessary", dd->unit);
12367 	}
12368 }
12369 
12370 static void update_synth_timer(unsigned long opaque)
12371 {
12372 	struct hfi1_devdata *dd = (struct hfi1_devdata *)opaque;
12373 
12374 	queue_work(dd->update_cntr_wq, &dd->update_cntr_work);
12375 	mod_timer(&dd->synth_stats_timer, jiffies + HZ * SYNTH_CNT_TIME);
12376 }
12377 
12378 #define C_MAX_NAME 16 /* 15 chars + one for /0 */
12379 static int init_cntrs(struct hfi1_devdata *dd)
12380 {
12381 	int i, rcv_ctxts, j;
12382 	size_t sz;
12383 	char *p;
12384 	char name[C_MAX_NAME];
12385 	struct hfi1_pportdata *ppd;
12386 	const char *bit_type_32 = ",32";
12387 	const int bit_type_32_sz = strlen(bit_type_32);
12388 
12389 	/* set up the stats timer; the add_timer is done at the end */
12390 	setup_timer(&dd->synth_stats_timer, update_synth_timer,
12391 		    (unsigned long)dd);
12392 
12393 	/***********************/
12394 	/* per device counters */
12395 	/***********************/
12396 
12397 	/* size names and determine how many we have*/
12398 	dd->ndevcntrs = 0;
12399 	sz = 0;
12400 
12401 	for (i = 0; i < DEV_CNTR_LAST; i++) {
12402 		if (dev_cntrs[i].flags & CNTR_DISABLED) {
12403 			hfi1_dbg_early("\tSkipping %s\n", dev_cntrs[i].name);
12404 			continue;
12405 		}
12406 
12407 		if (dev_cntrs[i].flags & CNTR_VL) {
12408 			dev_cntrs[i].offset = dd->ndevcntrs;
12409 			for (j = 0; j < C_VL_COUNT; j++) {
12410 				snprintf(name, C_MAX_NAME, "%s%d",
12411 					 dev_cntrs[i].name, vl_from_idx(j));
12412 				sz += strlen(name);
12413 				/* Add ",32" for 32-bit counters */
12414 				if (dev_cntrs[i].flags & CNTR_32BIT)
12415 					sz += bit_type_32_sz;
12416 				sz++;
12417 				dd->ndevcntrs++;
12418 			}
12419 		} else if (dev_cntrs[i].flags & CNTR_SDMA) {
12420 			dev_cntrs[i].offset = dd->ndevcntrs;
12421 			for (j = 0; j < dd->chip_sdma_engines; j++) {
12422 				snprintf(name, C_MAX_NAME, "%s%d",
12423 					 dev_cntrs[i].name, j);
12424 				sz += strlen(name);
12425 				/* Add ",32" for 32-bit counters */
12426 				if (dev_cntrs[i].flags & CNTR_32BIT)
12427 					sz += bit_type_32_sz;
12428 				sz++;
12429 				dd->ndevcntrs++;
12430 			}
12431 		} else {
12432 			/* +1 for newline. */
12433 			sz += strlen(dev_cntrs[i].name) + 1;
12434 			/* Add ",32" for 32-bit counters */
12435 			if (dev_cntrs[i].flags & CNTR_32BIT)
12436 				sz += bit_type_32_sz;
12437 			dev_cntrs[i].offset = dd->ndevcntrs;
12438 			dd->ndevcntrs++;
12439 		}
12440 	}
12441 
12442 	/* allocate space for the counter values */
12443 	dd->cntrs = kcalloc(dd->ndevcntrs, sizeof(u64), GFP_KERNEL);
12444 	if (!dd->cntrs)
12445 		goto bail;
12446 
12447 	dd->scntrs = kcalloc(dd->ndevcntrs, sizeof(u64), GFP_KERNEL);
12448 	if (!dd->scntrs)
12449 		goto bail;
12450 
12451 	/* allocate space for the counter names */
12452 	dd->cntrnameslen = sz;
12453 	dd->cntrnames = kmalloc(sz, GFP_KERNEL);
12454 	if (!dd->cntrnames)
12455 		goto bail;
12456 
12457 	/* fill in the names */
12458 	for (p = dd->cntrnames, i = 0; i < DEV_CNTR_LAST; i++) {
12459 		if (dev_cntrs[i].flags & CNTR_DISABLED) {
12460 			/* Nothing */
12461 		} else if (dev_cntrs[i].flags & CNTR_VL) {
12462 			for (j = 0; j < C_VL_COUNT; j++) {
12463 				snprintf(name, C_MAX_NAME, "%s%d",
12464 					 dev_cntrs[i].name,
12465 					 vl_from_idx(j));
12466 				memcpy(p, name, strlen(name));
12467 				p += strlen(name);
12468 
12469 				/* Counter is 32 bits */
12470 				if (dev_cntrs[i].flags & CNTR_32BIT) {
12471 					memcpy(p, bit_type_32, bit_type_32_sz);
12472 					p += bit_type_32_sz;
12473 				}
12474 
12475 				*p++ = '\n';
12476 			}
12477 		} else if (dev_cntrs[i].flags & CNTR_SDMA) {
12478 			for (j = 0; j < dd->chip_sdma_engines; j++) {
12479 				snprintf(name, C_MAX_NAME, "%s%d",
12480 					 dev_cntrs[i].name, j);
12481 				memcpy(p, name, strlen(name));
12482 				p += strlen(name);
12483 
12484 				/* Counter is 32 bits */
12485 				if (dev_cntrs[i].flags & CNTR_32BIT) {
12486 					memcpy(p, bit_type_32, bit_type_32_sz);
12487 					p += bit_type_32_sz;
12488 				}
12489 
12490 				*p++ = '\n';
12491 			}
12492 		} else {
12493 			memcpy(p, dev_cntrs[i].name, strlen(dev_cntrs[i].name));
12494 			p += strlen(dev_cntrs[i].name);
12495 
12496 			/* Counter is 32 bits */
12497 			if (dev_cntrs[i].flags & CNTR_32BIT) {
12498 				memcpy(p, bit_type_32, bit_type_32_sz);
12499 				p += bit_type_32_sz;
12500 			}
12501 
12502 			*p++ = '\n';
12503 		}
12504 	}
12505 
12506 	/*********************/
12507 	/* per port counters */
12508 	/*********************/
12509 
12510 	/*
12511 	 * Go through the counters for the overflows and disable the ones we
12512 	 * don't need. This varies based on platform so we need to do it
12513 	 * dynamically here.
12514 	 */
12515 	rcv_ctxts = dd->num_rcv_contexts;
12516 	for (i = C_RCV_HDR_OVF_FIRST + rcv_ctxts;
12517 	     i <= C_RCV_HDR_OVF_LAST; i++) {
12518 		port_cntrs[i].flags |= CNTR_DISABLED;
12519 	}
12520 
12521 	/* size port counter names and determine how many we have*/
12522 	sz = 0;
12523 	dd->nportcntrs = 0;
12524 	for (i = 0; i < PORT_CNTR_LAST; i++) {
12525 		if (port_cntrs[i].flags & CNTR_DISABLED) {
12526 			hfi1_dbg_early("\tSkipping %s\n", port_cntrs[i].name);
12527 			continue;
12528 		}
12529 
12530 		if (port_cntrs[i].flags & CNTR_VL) {
12531 			port_cntrs[i].offset = dd->nportcntrs;
12532 			for (j = 0; j < C_VL_COUNT; j++) {
12533 				snprintf(name, C_MAX_NAME, "%s%d",
12534 					 port_cntrs[i].name, vl_from_idx(j));
12535 				sz += strlen(name);
12536 				/* Add ",32" for 32-bit counters */
12537 				if (port_cntrs[i].flags & CNTR_32BIT)
12538 					sz += bit_type_32_sz;
12539 				sz++;
12540 				dd->nportcntrs++;
12541 			}
12542 		} else {
12543 			/* +1 for newline */
12544 			sz += strlen(port_cntrs[i].name) + 1;
12545 			/* Add ",32" for 32-bit counters */
12546 			if (port_cntrs[i].flags & CNTR_32BIT)
12547 				sz += bit_type_32_sz;
12548 			port_cntrs[i].offset = dd->nportcntrs;
12549 			dd->nportcntrs++;
12550 		}
12551 	}
12552 
12553 	/* allocate space for the counter names */
12554 	dd->portcntrnameslen = sz;
12555 	dd->portcntrnames = kmalloc(sz, GFP_KERNEL);
12556 	if (!dd->portcntrnames)
12557 		goto bail;
12558 
12559 	/* fill in port cntr names */
12560 	for (p = dd->portcntrnames, i = 0; i < PORT_CNTR_LAST; i++) {
12561 		if (port_cntrs[i].flags & CNTR_DISABLED)
12562 			continue;
12563 
12564 		if (port_cntrs[i].flags & CNTR_VL) {
12565 			for (j = 0; j < C_VL_COUNT; j++) {
12566 				snprintf(name, C_MAX_NAME, "%s%d",
12567 					 port_cntrs[i].name, vl_from_idx(j));
12568 				memcpy(p, name, strlen(name));
12569 				p += strlen(name);
12570 
12571 				/* Counter is 32 bits */
12572 				if (port_cntrs[i].flags & CNTR_32BIT) {
12573 					memcpy(p, bit_type_32, bit_type_32_sz);
12574 					p += bit_type_32_sz;
12575 				}
12576 
12577 				*p++ = '\n';
12578 			}
12579 		} else {
12580 			memcpy(p, port_cntrs[i].name,
12581 			       strlen(port_cntrs[i].name));
12582 			p += strlen(port_cntrs[i].name);
12583 
12584 			/* Counter is 32 bits */
12585 			if (port_cntrs[i].flags & CNTR_32BIT) {
12586 				memcpy(p, bit_type_32, bit_type_32_sz);
12587 				p += bit_type_32_sz;
12588 			}
12589 
12590 			*p++ = '\n';
12591 		}
12592 	}
12593 
12594 	/* allocate per port storage for counter values */
12595 	ppd = (struct hfi1_pportdata *)(dd + 1);
12596 	for (i = 0; i < dd->num_pports; i++, ppd++) {
12597 		ppd->cntrs = kcalloc(dd->nportcntrs, sizeof(u64), GFP_KERNEL);
12598 		if (!ppd->cntrs)
12599 			goto bail;
12600 
12601 		ppd->scntrs = kcalloc(dd->nportcntrs, sizeof(u64), GFP_KERNEL);
12602 		if (!ppd->scntrs)
12603 			goto bail;
12604 	}
12605 
12606 	/* CPU counters need to be allocated and zeroed */
12607 	if (init_cpu_counters(dd))
12608 		goto bail;
12609 
12610 	dd->update_cntr_wq = alloc_ordered_workqueue("hfi1_update_cntr_%d",
12611 						     WQ_MEM_RECLAIM, dd->unit);
12612 	if (!dd->update_cntr_wq)
12613 		goto bail;
12614 
12615 	INIT_WORK(&dd->update_cntr_work, do_update_synth_timer);
12616 
12617 	mod_timer(&dd->synth_stats_timer, jiffies + HZ * SYNTH_CNT_TIME);
12618 	return 0;
12619 bail:
12620 	free_cntrs(dd);
12621 	return -ENOMEM;
12622 }
12623 
12624 static u32 chip_to_opa_lstate(struct hfi1_devdata *dd, u32 chip_lstate)
12625 {
12626 	switch (chip_lstate) {
12627 	default:
12628 		dd_dev_err(dd,
12629 			   "Unknown logical state 0x%x, reporting IB_PORT_DOWN\n",
12630 			   chip_lstate);
12631 		/* fall through */
12632 	case LSTATE_DOWN:
12633 		return IB_PORT_DOWN;
12634 	case LSTATE_INIT:
12635 		return IB_PORT_INIT;
12636 	case LSTATE_ARMED:
12637 		return IB_PORT_ARMED;
12638 	case LSTATE_ACTIVE:
12639 		return IB_PORT_ACTIVE;
12640 	}
12641 }
12642 
12643 u32 chip_to_opa_pstate(struct hfi1_devdata *dd, u32 chip_pstate)
12644 {
12645 	/* look at the HFI meta-states only */
12646 	switch (chip_pstate & 0xf0) {
12647 	default:
12648 		dd_dev_err(dd, "Unexpected chip physical state of 0x%x\n",
12649 			   chip_pstate);
12650 		/* fall through */
12651 	case PLS_DISABLED:
12652 		return IB_PORTPHYSSTATE_DISABLED;
12653 	case PLS_OFFLINE:
12654 		return OPA_PORTPHYSSTATE_OFFLINE;
12655 	case PLS_POLLING:
12656 		return IB_PORTPHYSSTATE_POLLING;
12657 	case PLS_CONFIGPHY:
12658 		return IB_PORTPHYSSTATE_TRAINING;
12659 	case PLS_LINKUP:
12660 		return IB_PORTPHYSSTATE_LINKUP;
12661 	case PLS_PHYTEST:
12662 		return IB_PORTPHYSSTATE_PHY_TEST;
12663 	}
12664 }
12665 
12666 /* return the OPA port logical state name */
12667 const char *opa_lstate_name(u32 lstate)
12668 {
12669 	static const char * const port_logical_names[] = {
12670 		"PORT_NOP",
12671 		"PORT_DOWN",
12672 		"PORT_INIT",
12673 		"PORT_ARMED",
12674 		"PORT_ACTIVE",
12675 		"PORT_ACTIVE_DEFER",
12676 	};
12677 	if (lstate < ARRAY_SIZE(port_logical_names))
12678 		return port_logical_names[lstate];
12679 	return "unknown";
12680 }
12681 
12682 /* return the OPA port physical state name */
12683 const char *opa_pstate_name(u32 pstate)
12684 {
12685 	static const char * const port_physical_names[] = {
12686 		"PHYS_NOP",
12687 		"reserved1",
12688 		"PHYS_POLL",
12689 		"PHYS_DISABLED",
12690 		"PHYS_TRAINING",
12691 		"PHYS_LINKUP",
12692 		"PHYS_LINK_ERR_RECOVER",
12693 		"PHYS_PHY_TEST",
12694 		"reserved8",
12695 		"PHYS_OFFLINE",
12696 		"PHYS_GANGED",
12697 		"PHYS_TEST",
12698 	};
12699 	if (pstate < ARRAY_SIZE(port_physical_names))
12700 		return port_physical_names[pstate];
12701 	return "unknown";
12702 }
12703 
12704 static void update_statusp(struct hfi1_pportdata *ppd, u32 state)
12705 {
12706 	/*
12707 	 * Set port status flags in the page mapped into userspace
12708 	 * memory. Do it here to ensure a reliable state - this is
12709 	 * the only function called by all state handling code.
12710 	 * Always set the flags due to the fact that the cache value
12711 	 * might have been changed explicitly outside of this
12712 	 * function.
12713 	 */
12714 	if (ppd->statusp) {
12715 		switch (state) {
12716 		case IB_PORT_DOWN:
12717 		case IB_PORT_INIT:
12718 			*ppd->statusp &= ~(HFI1_STATUS_IB_CONF |
12719 					   HFI1_STATUS_IB_READY);
12720 			break;
12721 		case IB_PORT_ARMED:
12722 			*ppd->statusp |= HFI1_STATUS_IB_CONF;
12723 			break;
12724 		case IB_PORT_ACTIVE:
12725 			*ppd->statusp |= HFI1_STATUS_IB_READY;
12726 			break;
12727 		}
12728 	}
12729 }
12730 
12731 /*
12732  * wait_logical_linkstate - wait for an IB link state change to occur
12733  * @ppd: port device
12734  * @state: the state to wait for
12735  * @msecs: the number of milliseconds to wait
12736  *
12737  * Wait up to msecs milliseconds for IB link state change to occur.
12738  * For now, take the easy polling route.
12739  * Returns 0 if state reached, otherwise -ETIMEDOUT.
12740  */
12741 static int wait_logical_linkstate(struct hfi1_pportdata *ppd, u32 state,
12742 				  int msecs)
12743 {
12744 	unsigned long timeout;
12745 	u32 new_state;
12746 
12747 	timeout = jiffies + msecs_to_jiffies(msecs);
12748 	while (1) {
12749 		new_state = chip_to_opa_lstate(ppd->dd,
12750 					       read_logical_state(ppd->dd));
12751 		if (new_state == state)
12752 			break;
12753 		if (time_after(jiffies, timeout)) {
12754 			dd_dev_err(ppd->dd,
12755 				   "timeout waiting for link state 0x%x\n",
12756 				   state);
12757 			return -ETIMEDOUT;
12758 		}
12759 		msleep(20);
12760 	}
12761 
12762 	update_statusp(ppd, state);
12763 	dd_dev_info(ppd->dd,
12764 		    "logical state changed to %s (0x%x)\n",
12765 		    opa_lstate_name(state),
12766 		    state);
12767 	return 0;
12768 }
12769 
12770 static void log_state_transition(struct hfi1_pportdata *ppd, u32 state)
12771 {
12772 	u32 ib_pstate = chip_to_opa_pstate(ppd->dd, state);
12773 
12774 	dd_dev_info(ppd->dd,
12775 		    "physical state changed to %s (0x%x), phy 0x%x\n",
12776 		    opa_pstate_name(ib_pstate), ib_pstate, state);
12777 }
12778 
12779 /*
12780  * Read the physical hardware link state and check if it matches host
12781  * drivers anticipated state.
12782  */
12783 static void log_physical_state(struct hfi1_pportdata *ppd, u32 state)
12784 {
12785 	u32 read_state = read_physical_state(ppd->dd);
12786 
12787 	if (read_state == state) {
12788 		log_state_transition(ppd, state);
12789 	} else {
12790 		dd_dev_err(ppd->dd,
12791 			   "anticipated phy link state 0x%x, read 0x%x\n",
12792 			   state, read_state);
12793 	}
12794 }
12795 
12796 /*
12797  * wait_physical_linkstate - wait for an physical link state change to occur
12798  * @ppd: port device
12799  * @state: the state to wait for
12800  * @msecs: the number of milliseconds to wait
12801  *
12802  * Wait up to msecs milliseconds for physical link state change to occur.
12803  * Returns 0 if state reached, otherwise -ETIMEDOUT.
12804  */
12805 static int wait_physical_linkstate(struct hfi1_pportdata *ppd, u32 state,
12806 				   int msecs)
12807 {
12808 	u32 read_state;
12809 	unsigned long timeout;
12810 
12811 	timeout = jiffies + msecs_to_jiffies(msecs);
12812 	while (1) {
12813 		read_state = read_physical_state(ppd->dd);
12814 		if (read_state == state)
12815 			break;
12816 		if (time_after(jiffies, timeout)) {
12817 			dd_dev_err(ppd->dd,
12818 				   "timeout waiting for phy link state 0x%x\n",
12819 				   state);
12820 			return -ETIMEDOUT;
12821 		}
12822 		usleep_range(1950, 2050); /* sleep 2ms-ish */
12823 	}
12824 
12825 	log_state_transition(ppd, state);
12826 	return 0;
12827 }
12828 
12829 /*
12830  * wait_phys_link_offline_quiet_substates - wait for any offline substate
12831  * @ppd: port device
12832  * @msecs: the number of milliseconds to wait
12833  *
12834  * Wait up to msecs milliseconds for any offline physical link
12835  * state change to occur.
12836  * Returns 0 if at least one state is reached, otherwise -ETIMEDOUT.
12837  */
12838 static int wait_phys_link_offline_substates(struct hfi1_pportdata *ppd,
12839 					    int msecs)
12840 {
12841 	u32 read_state;
12842 	unsigned long timeout;
12843 
12844 	timeout = jiffies + msecs_to_jiffies(msecs);
12845 	while (1) {
12846 		read_state = read_physical_state(ppd->dd);
12847 		if ((read_state & 0xF0) == PLS_OFFLINE)
12848 			break;
12849 		if (time_after(jiffies, timeout)) {
12850 			dd_dev_err(ppd->dd,
12851 				   "timeout waiting for phy link offline.quiet substates. Read state 0x%x, %dms\n",
12852 				   read_state, msecs);
12853 			return -ETIMEDOUT;
12854 		}
12855 		usleep_range(1950, 2050); /* sleep 2ms-ish */
12856 	}
12857 
12858 	log_state_transition(ppd, read_state);
12859 	return read_state;
12860 }
12861 
12862 #define CLEAR_STATIC_RATE_CONTROL_SMASK(r) \
12863 (r &= ~SEND_CTXT_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK)
12864 
12865 #define SET_STATIC_RATE_CONTROL_SMASK(r) \
12866 (r |= SEND_CTXT_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK)
12867 
12868 void hfi1_init_ctxt(struct send_context *sc)
12869 {
12870 	if (sc) {
12871 		struct hfi1_devdata *dd = sc->dd;
12872 		u64 reg;
12873 		u8 set = (sc->type == SC_USER ?
12874 			  HFI1_CAP_IS_USET(STATIC_RATE_CTRL) :
12875 			  HFI1_CAP_IS_KSET(STATIC_RATE_CTRL));
12876 		reg = read_kctxt_csr(dd, sc->hw_context,
12877 				     SEND_CTXT_CHECK_ENABLE);
12878 		if (set)
12879 			CLEAR_STATIC_RATE_CONTROL_SMASK(reg);
12880 		else
12881 			SET_STATIC_RATE_CONTROL_SMASK(reg);
12882 		write_kctxt_csr(dd, sc->hw_context,
12883 				SEND_CTXT_CHECK_ENABLE, reg);
12884 	}
12885 }
12886 
12887 int hfi1_tempsense_rd(struct hfi1_devdata *dd, struct hfi1_temp *temp)
12888 {
12889 	int ret = 0;
12890 	u64 reg;
12891 
12892 	if (dd->icode != ICODE_RTL_SILICON) {
12893 		if (HFI1_CAP_IS_KSET(PRINT_UNIMPL))
12894 			dd_dev_info(dd, "%s: tempsense not supported by HW\n",
12895 				    __func__);
12896 		return -EINVAL;
12897 	}
12898 	reg = read_csr(dd, ASIC_STS_THERM);
12899 	temp->curr = ((reg >> ASIC_STS_THERM_CURR_TEMP_SHIFT) &
12900 		      ASIC_STS_THERM_CURR_TEMP_MASK);
12901 	temp->lo_lim = ((reg >> ASIC_STS_THERM_LO_TEMP_SHIFT) &
12902 			ASIC_STS_THERM_LO_TEMP_MASK);
12903 	temp->hi_lim = ((reg >> ASIC_STS_THERM_HI_TEMP_SHIFT) &
12904 			ASIC_STS_THERM_HI_TEMP_MASK);
12905 	temp->crit_lim = ((reg >> ASIC_STS_THERM_CRIT_TEMP_SHIFT) &
12906 			  ASIC_STS_THERM_CRIT_TEMP_MASK);
12907 	/* triggers is a 3-bit value - 1 bit per trigger. */
12908 	temp->triggers = (u8)((reg >> ASIC_STS_THERM_LOW_SHIFT) & 0x7);
12909 
12910 	return ret;
12911 }
12912 
12913 /* ========================================================================= */
12914 
12915 /*
12916  * Enable/disable chip from delivering interrupts.
12917  */
12918 void set_intr_state(struct hfi1_devdata *dd, u32 enable)
12919 {
12920 	int i;
12921 
12922 	/*
12923 	 * In HFI, the mask needs to be 1 to allow interrupts.
12924 	 */
12925 	if (enable) {
12926 		/* enable all interrupts */
12927 		for (i = 0; i < CCE_NUM_INT_CSRS; i++)
12928 			write_csr(dd, CCE_INT_MASK + (8 * i), ~(u64)0);
12929 
12930 		init_qsfp_int(dd);
12931 	} else {
12932 		for (i = 0; i < CCE_NUM_INT_CSRS; i++)
12933 			write_csr(dd, CCE_INT_MASK + (8 * i), 0ull);
12934 	}
12935 }
12936 
12937 /*
12938  * Clear all interrupt sources on the chip.
12939  */
12940 static void clear_all_interrupts(struct hfi1_devdata *dd)
12941 {
12942 	int i;
12943 
12944 	for (i = 0; i < CCE_NUM_INT_CSRS; i++)
12945 		write_csr(dd, CCE_INT_CLEAR + (8 * i), ~(u64)0);
12946 
12947 	write_csr(dd, CCE_ERR_CLEAR, ~(u64)0);
12948 	write_csr(dd, MISC_ERR_CLEAR, ~(u64)0);
12949 	write_csr(dd, RCV_ERR_CLEAR, ~(u64)0);
12950 	write_csr(dd, SEND_ERR_CLEAR, ~(u64)0);
12951 	write_csr(dd, SEND_PIO_ERR_CLEAR, ~(u64)0);
12952 	write_csr(dd, SEND_DMA_ERR_CLEAR, ~(u64)0);
12953 	write_csr(dd, SEND_EGRESS_ERR_CLEAR, ~(u64)0);
12954 	for (i = 0; i < dd->chip_send_contexts; i++)
12955 		write_kctxt_csr(dd, i, SEND_CTXT_ERR_CLEAR, ~(u64)0);
12956 	for (i = 0; i < dd->chip_sdma_engines; i++)
12957 		write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_CLEAR, ~(u64)0);
12958 
12959 	write_csr(dd, DCC_ERR_FLG_CLR, ~(u64)0);
12960 	write_csr(dd, DC_LCB_ERR_CLR, ~(u64)0);
12961 	write_csr(dd, DC_DC8051_ERR_CLR, ~(u64)0);
12962 }
12963 
12964 /* Move to pcie.c? */
12965 static void disable_intx(struct pci_dev *pdev)
12966 {
12967 	pci_intx(pdev, 0);
12968 }
12969 
12970 static void clean_up_interrupts(struct hfi1_devdata *dd)
12971 {
12972 	int i;
12973 
12974 	/* remove irqs - must happen before disabling/turning off */
12975 	if (dd->num_msix_entries) {
12976 		/* MSI-X */
12977 		struct hfi1_msix_entry *me = dd->msix_entries;
12978 
12979 		for (i = 0; i < dd->num_msix_entries; i++, me++) {
12980 			if (!me->arg) /* => no irq, no affinity */
12981 				continue;
12982 			hfi1_put_irq_affinity(dd, me);
12983 			free_irq(me->irq, me->arg);
12984 		}
12985 
12986 		/* clean structures */
12987 		kfree(dd->msix_entries);
12988 		dd->msix_entries = NULL;
12989 		dd->num_msix_entries = 0;
12990 	} else {
12991 		/* INTx */
12992 		if (dd->requested_intx_irq) {
12993 			free_irq(dd->pcidev->irq, dd);
12994 			dd->requested_intx_irq = 0;
12995 		}
12996 		disable_intx(dd->pcidev);
12997 	}
12998 
12999 	pci_free_irq_vectors(dd->pcidev);
13000 }
13001 
13002 /*
13003  * Remap the interrupt source from the general handler to the given MSI-X
13004  * interrupt.
13005  */
13006 static void remap_intr(struct hfi1_devdata *dd, int isrc, int msix_intr)
13007 {
13008 	u64 reg;
13009 	int m, n;
13010 
13011 	/* clear from the handled mask of the general interrupt */
13012 	m = isrc / 64;
13013 	n = isrc % 64;
13014 	if (likely(m < CCE_NUM_INT_CSRS)) {
13015 		dd->gi_mask[m] &= ~((u64)1 << n);
13016 	} else {
13017 		dd_dev_err(dd, "remap interrupt err\n");
13018 		return;
13019 	}
13020 
13021 	/* direct the chip source to the given MSI-X interrupt */
13022 	m = isrc / 8;
13023 	n = isrc % 8;
13024 	reg = read_csr(dd, CCE_INT_MAP + (8 * m));
13025 	reg &= ~((u64)0xff << (8 * n));
13026 	reg |= ((u64)msix_intr & 0xff) << (8 * n);
13027 	write_csr(dd, CCE_INT_MAP + (8 * m), reg);
13028 }
13029 
13030 static void remap_sdma_interrupts(struct hfi1_devdata *dd,
13031 				  int engine, int msix_intr)
13032 {
13033 	/*
13034 	 * SDMA engine interrupt sources grouped by type, rather than
13035 	 * engine.  Per-engine interrupts are as follows:
13036 	 *	SDMA
13037 	 *	SDMAProgress
13038 	 *	SDMAIdle
13039 	 */
13040 	remap_intr(dd, IS_SDMA_START + 0 * TXE_NUM_SDMA_ENGINES + engine,
13041 		   msix_intr);
13042 	remap_intr(dd, IS_SDMA_START + 1 * TXE_NUM_SDMA_ENGINES + engine,
13043 		   msix_intr);
13044 	remap_intr(dd, IS_SDMA_START + 2 * TXE_NUM_SDMA_ENGINES + engine,
13045 		   msix_intr);
13046 }
13047 
13048 static int request_intx_irq(struct hfi1_devdata *dd)
13049 {
13050 	int ret;
13051 
13052 	snprintf(dd->intx_name, sizeof(dd->intx_name), DRIVER_NAME "_%d",
13053 		 dd->unit);
13054 	ret = request_irq(dd->pcidev->irq, general_interrupt,
13055 			  IRQF_SHARED, dd->intx_name, dd);
13056 	if (ret)
13057 		dd_dev_err(dd, "unable to request INTx interrupt, err %d\n",
13058 			   ret);
13059 	else
13060 		dd->requested_intx_irq = 1;
13061 	return ret;
13062 }
13063 
13064 static int request_msix_irqs(struct hfi1_devdata *dd)
13065 {
13066 	int first_general, last_general;
13067 	int first_sdma, last_sdma;
13068 	int first_rx, last_rx;
13069 	int i, ret = 0;
13070 
13071 	/* calculate the ranges we are going to use */
13072 	first_general = 0;
13073 	last_general = first_general + 1;
13074 	first_sdma = last_general;
13075 	last_sdma = first_sdma + dd->num_sdma;
13076 	first_rx = last_sdma;
13077 	last_rx = first_rx + dd->n_krcv_queues + HFI1_NUM_VNIC_CTXT;
13078 
13079 	/* VNIC MSIx interrupts get mapped when VNIC contexts are created */
13080 	dd->first_dyn_msix_idx = first_rx + dd->n_krcv_queues;
13081 
13082 	/*
13083 	 * Sanity check - the code expects all SDMA chip source
13084 	 * interrupts to be in the same CSR, starting at bit 0.  Verify
13085 	 * that this is true by checking the bit location of the start.
13086 	 */
13087 	BUILD_BUG_ON(IS_SDMA_START % 64);
13088 
13089 	for (i = 0; i < dd->num_msix_entries; i++) {
13090 		struct hfi1_msix_entry *me = &dd->msix_entries[i];
13091 		const char *err_info;
13092 		irq_handler_t handler;
13093 		irq_handler_t thread = NULL;
13094 		void *arg = NULL;
13095 		int idx;
13096 		struct hfi1_ctxtdata *rcd = NULL;
13097 		struct sdma_engine *sde = NULL;
13098 
13099 		/* obtain the arguments to request_irq */
13100 		if (first_general <= i && i < last_general) {
13101 			idx = i - first_general;
13102 			handler = general_interrupt;
13103 			arg = dd;
13104 			snprintf(me->name, sizeof(me->name),
13105 				 DRIVER_NAME "_%d", dd->unit);
13106 			err_info = "general";
13107 			me->type = IRQ_GENERAL;
13108 		} else if (first_sdma <= i && i < last_sdma) {
13109 			idx = i - first_sdma;
13110 			sde = &dd->per_sdma[idx];
13111 			handler = sdma_interrupt;
13112 			arg = sde;
13113 			snprintf(me->name, sizeof(me->name),
13114 				 DRIVER_NAME "_%d sdma%d", dd->unit, idx);
13115 			err_info = "sdma";
13116 			remap_sdma_interrupts(dd, idx, i);
13117 			me->type = IRQ_SDMA;
13118 		} else if (first_rx <= i && i < last_rx) {
13119 			idx = i - first_rx;
13120 			rcd = hfi1_rcd_get_by_index(dd, idx);
13121 			if (rcd) {
13122 				/*
13123 				 * Set the interrupt register and mask for this
13124 				 * context's interrupt.
13125 				 */
13126 				rcd->ireg = (IS_RCVAVAIL_START + idx) / 64;
13127 				rcd->imask = ((u64)1) <<
13128 					  ((IS_RCVAVAIL_START + idx) % 64);
13129 				handler = receive_context_interrupt;
13130 				thread = receive_context_thread;
13131 				arg = rcd;
13132 				snprintf(me->name, sizeof(me->name),
13133 					 DRIVER_NAME "_%d kctxt%d",
13134 					 dd->unit, idx);
13135 				err_info = "receive context";
13136 				remap_intr(dd, IS_RCVAVAIL_START + idx, i);
13137 				me->type = IRQ_RCVCTXT;
13138 				rcd->msix_intr = i;
13139 				hfi1_rcd_put(rcd);
13140 			}
13141 		} else {
13142 			/* not in our expected range - complain, then
13143 			 * ignore it
13144 			 */
13145 			dd_dev_err(dd,
13146 				   "Unexpected extra MSI-X interrupt %d\n", i);
13147 			continue;
13148 		}
13149 		/* no argument, no interrupt */
13150 		if (!arg)
13151 			continue;
13152 		/* make sure the name is terminated */
13153 		me->name[sizeof(me->name) - 1] = 0;
13154 		me->irq = pci_irq_vector(dd->pcidev, i);
13155 		/*
13156 		 * On err return me->irq.  Don't need to clear this
13157 		 * because 'arg' has not been set, and cleanup will
13158 		 * do the right thing.
13159 		 */
13160 		if (me->irq < 0)
13161 			return me->irq;
13162 
13163 		ret = request_threaded_irq(me->irq, handler, thread, 0,
13164 					   me->name, arg);
13165 		if (ret) {
13166 			dd_dev_err(dd,
13167 				   "unable to allocate %s interrupt, irq %d, index %d, err %d\n",
13168 				   err_info, me->irq, idx, ret);
13169 			return ret;
13170 		}
13171 		/*
13172 		 * assign arg after request_irq call, so it will be
13173 		 * cleaned up
13174 		 */
13175 		me->arg = arg;
13176 
13177 		ret = hfi1_get_irq_affinity(dd, me);
13178 		if (ret)
13179 			dd_dev_err(dd, "unable to pin IRQ %d\n", ret);
13180 	}
13181 
13182 	return ret;
13183 }
13184 
13185 void hfi1_vnic_synchronize_irq(struct hfi1_devdata *dd)
13186 {
13187 	int i;
13188 
13189 	if (!dd->num_msix_entries) {
13190 		synchronize_irq(dd->pcidev->irq);
13191 		return;
13192 	}
13193 
13194 	for (i = 0; i < dd->vnic.num_ctxt; i++) {
13195 		struct hfi1_ctxtdata *rcd = dd->vnic.ctxt[i];
13196 		struct hfi1_msix_entry *me = &dd->msix_entries[rcd->msix_intr];
13197 
13198 		synchronize_irq(me->irq);
13199 	}
13200 }
13201 
13202 void hfi1_reset_vnic_msix_info(struct hfi1_ctxtdata *rcd)
13203 {
13204 	struct hfi1_devdata *dd = rcd->dd;
13205 	struct hfi1_msix_entry *me = &dd->msix_entries[rcd->msix_intr];
13206 
13207 	if (!me->arg) /* => no irq, no affinity */
13208 		return;
13209 
13210 	hfi1_put_irq_affinity(dd, me);
13211 	free_irq(me->irq, me->arg);
13212 
13213 	me->arg = NULL;
13214 }
13215 
13216 void hfi1_set_vnic_msix_info(struct hfi1_ctxtdata *rcd)
13217 {
13218 	struct hfi1_devdata *dd = rcd->dd;
13219 	struct hfi1_msix_entry *me;
13220 	int idx = rcd->ctxt;
13221 	void *arg = rcd;
13222 	int ret;
13223 
13224 	rcd->msix_intr = dd->vnic.msix_idx++;
13225 	me = &dd->msix_entries[rcd->msix_intr];
13226 
13227 	/*
13228 	 * Set the interrupt register and mask for this
13229 	 * context's interrupt.
13230 	 */
13231 	rcd->ireg = (IS_RCVAVAIL_START + idx) / 64;
13232 	rcd->imask = ((u64)1) <<
13233 		  ((IS_RCVAVAIL_START + idx) % 64);
13234 
13235 	snprintf(me->name, sizeof(me->name),
13236 		 DRIVER_NAME "_%d kctxt%d", dd->unit, idx);
13237 	me->name[sizeof(me->name) - 1] = 0;
13238 	me->type = IRQ_RCVCTXT;
13239 	me->irq = pci_irq_vector(dd->pcidev, rcd->msix_intr);
13240 	if (me->irq < 0) {
13241 		dd_dev_err(dd, "vnic irq vector request (idx %d) fail %d\n",
13242 			   idx, me->irq);
13243 		return;
13244 	}
13245 	remap_intr(dd, IS_RCVAVAIL_START + idx, rcd->msix_intr);
13246 
13247 	ret = request_threaded_irq(me->irq, receive_context_interrupt,
13248 				   receive_context_thread, 0, me->name, arg);
13249 	if (ret) {
13250 		dd_dev_err(dd, "vnic irq request (irq %d, idx %d) fail %d\n",
13251 			   me->irq, idx, ret);
13252 		return;
13253 	}
13254 	/*
13255 	 * assign arg after request_irq call, so it will be
13256 	 * cleaned up
13257 	 */
13258 	me->arg = arg;
13259 
13260 	ret = hfi1_get_irq_affinity(dd, me);
13261 	if (ret) {
13262 		dd_dev_err(dd,
13263 			   "unable to pin IRQ %d\n", ret);
13264 		free_irq(me->irq, me->arg);
13265 	}
13266 }
13267 
13268 /*
13269  * Set the general handler to accept all interrupts, remap all
13270  * chip interrupts back to MSI-X 0.
13271  */
13272 static void reset_interrupts(struct hfi1_devdata *dd)
13273 {
13274 	int i;
13275 
13276 	/* all interrupts handled by the general handler */
13277 	for (i = 0; i < CCE_NUM_INT_CSRS; i++)
13278 		dd->gi_mask[i] = ~(u64)0;
13279 
13280 	/* all chip interrupts map to MSI-X 0 */
13281 	for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++)
13282 		write_csr(dd, CCE_INT_MAP + (8 * i), 0);
13283 }
13284 
13285 static int set_up_interrupts(struct hfi1_devdata *dd)
13286 {
13287 	u32 total;
13288 	int ret, request;
13289 	int single_interrupt = 0; /* we expect to have all the interrupts */
13290 
13291 	/*
13292 	 * Interrupt count:
13293 	 *	1 general, "slow path" interrupt (includes the SDMA engines
13294 	 *		slow source, SDMACleanupDone)
13295 	 *	N interrupts - one per used SDMA engine
13296 	 *	M interrupt - one per kernel receive context
13297 	 */
13298 	total = 1 + dd->num_sdma + dd->n_krcv_queues + HFI1_NUM_VNIC_CTXT;
13299 
13300 	/* ask for MSI-X interrupts */
13301 	request = request_msix(dd, total);
13302 	if (request < 0) {
13303 		ret = request;
13304 		goto fail;
13305 	} else if (request == 0) {
13306 		/* using INTx */
13307 		/* dd->num_msix_entries already zero */
13308 		single_interrupt = 1;
13309 		dd_dev_err(dd, "MSI-X failed, using INTx interrupts\n");
13310 	} else if (request < total) {
13311 		/* using MSI-X, with reduced interrupts */
13312 		dd_dev_err(dd, "reduced interrupt found, wanted %u, got %u\n",
13313 			   total, request);
13314 		ret = -EINVAL;
13315 		goto fail;
13316 	} else {
13317 		dd->msix_entries = kcalloc(total, sizeof(*dd->msix_entries),
13318 					   GFP_KERNEL);
13319 		if (!dd->msix_entries) {
13320 			ret = -ENOMEM;
13321 			goto fail;
13322 		}
13323 		/* using MSI-X */
13324 		dd->num_msix_entries = total;
13325 		dd_dev_info(dd, "%u MSI-X interrupts allocated\n", total);
13326 	}
13327 
13328 	/* mask all interrupts */
13329 	set_intr_state(dd, 0);
13330 	/* clear all pending interrupts */
13331 	clear_all_interrupts(dd);
13332 
13333 	/* reset general handler mask, chip MSI-X mappings */
13334 	reset_interrupts(dd);
13335 
13336 	if (single_interrupt)
13337 		ret = request_intx_irq(dd);
13338 	else
13339 		ret = request_msix_irqs(dd);
13340 	if (ret)
13341 		goto fail;
13342 
13343 	return 0;
13344 
13345 fail:
13346 	clean_up_interrupts(dd);
13347 	return ret;
13348 }
13349 
13350 /*
13351  * Set up context values in dd.  Sets:
13352  *
13353  *	num_rcv_contexts - number of contexts being used
13354  *	n_krcv_queues - number of kernel contexts
13355  *	first_dyn_alloc_ctxt - first dynamically allocated context
13356  *                             in array of contexts
13357  *	freectxts  - number of free user contexts
13358  *	num_send_contexts - number of PIO send contexts being used
13359  */
13360 static int set_up_context_variables(struct hfi1_devdata *dd)
13361 {
13362 	unsigned long num_kernel_contexts;
13363 	int total_contexts;
13364 	int ret;
13365 	unsigned ngroups;
13366 	int qos_rmt_count;
13367 	int user_rmt_reduced;
13368 
13369 	/*
13370 	 * Kernel receive contexts:
13371 	 * - Context 0 - control context (VL15/multicast/error)
13372 	 * - Context 1 - first kernel context
13373 	 * - Context 2 - second kernel context
13374 	 * ...
13375 	 */
13376 	if (n_krcvqs)
13377 		/*
13378 		 * n_krcvqs is the sum of module parameter kernel receive
13379 		 * contexts, krcvqs[].  It does not include the control
13380 		 * context, so add that.
13381 		 */
13382 		num_kernel_contexts = n_krcvqs + 1;
13383 	else
13384 		num_kernel_contexts = DEFAULT_KRCVQS + 1;
13385 	/*
13386 	 * Every kernel receive context needs an ACK send context.
13387 	 * one send context is allocated for each VL{0-7} and VL15
13388 	 */
13389 	if (num_kernel_contexts > (dd->chip_send_contexts - num_vls - 1)) {
13390 		dd_dev_err(dd,
13391 			   "Reducing # kernel rcv contexts to: %d, from %lu\n",
13392 			   (int)(dd->chip_send_contexts - num_vls - 1),
13393 			   num_kernel_contexts);
13394 		num_kernel_contexts = dd->chip_send_contexts - num_vls - 1;
13395 	}
13396 	/*
13397 	 * User contexts:
13398 	 *	- default to 1 user context per real (non-HT) CPU core if
13399 	 *	  num_user_contexts is negative
13400 	 */
13401 	if (num_user_contexts < 0)
13402 		num_user_contexts =
13403 			cpumask_weight(&node_affinity.real_cpu_mask);
13404 
13405 	total_contexts = num_kernel_contexts + num_user_contexts;
13406 
13407 	/*
13408 	 * Adjust the counts given a global max.
13409 	 */
13410 	if (total_contexts > dd->chip_rcv_contexts) {
13411 		dd_dev_err(dd,
13412 			   "Reducing # user receive contexts to: %d, from %d\n",
13413 			   (int)(dd->chip_rcv_contexts - num_kernel_contexts),
13414 			   (int)num_user_contexts);
13415 		num_user_contexts = dd->chip_rcv_contexts - num_kernel_contexts;
13416 		/* recalculate */
13417 		total_contexts = num_kernel_contexts + num_user_contexts;
13418 	}
13419 
13420 	/* each user context requires an entry in the RMT */
13421 	qos_rmt_count = qos_rmt_entries(dd, NULL, NULL);
13422 	if (qos_rmt_count + num_user_contexts > NUM_MAP_ENTRIES) {
13423 		user_rmt_reduced = NUM_MAP_ENTRIES - qos_rmt_count;
13424 		dd_dev_err(dd,
13425 			   "RMT size is reducing the number of user receive contexts from %d to %d\n",
13426 			   (int)num_user_contexts,
13427 			   user_rmt_reduced);
13428 		/* recalculate */
13429 		num_user_contexts = user_rmt_reduced;
13430 		total_contexts = num_kernel_contexts + num_user_contexts;
13431 	}
13432 
13433 	/* Accommodate VNIC contexts */
13434 	if ((total_contexts + HFI1_NUM_VNIC_CTXT) <= dd->chip_rcv_contexts)
13435 		total_contexts += HFI1_NUM_VNIC_CTXT;
13436 
13437 	/* the first N are kernel contexts, the rest are user/vnic contexts */
13438 	dd->num_rcv_contexts = total_contexts;
13439 	dd->n_krcv_queues = num_kernel_contexts;
13440 	dd->first_dyn_alloc_ctxt = num_kernel_contexts;
13441 	dd->num_user_contexts = num_user_contexts;
13442 	dd->freectxts = num_user_contexts;
13443 	dd_dev_info(dd,
13444 		    "rcv contexts: chip %d, used %d (kernel %d, user %d)\n",
13445 		    (int)dd->chip_rcv_contexts,
13446 		    (int)dd->num_rcv_contexts,
13447 		    (int)dd->n_krcv_queues,
13448 		    (int)dd->num_rcv_contexts - dd->n_krcv_queues);
13449 
13450 	/*
13451 	 * Receive array allocation:
13452 	 *   All RcvArray entries are divided into groups of 8. This
13453 	 *   is required by the hardware and will speed up writes to
13454 	 *   consecutive entries by using write-combining of the entire
13455 	 *   cacheline.
13456 	 *
13457 	 *   The number of groups are evenly divided among all contexts.
13458 	 *   any left over groups will be given to the first N user
13459 	 *   contexts.
13460 	 */
13461 	dd->rcv_entries.group_size = RCV_INCREMENT;
13462 	ngroups = dd->chip_rcv_array_count / dd->rcv_entries.group_size;
13463 	dd->rcv_entries.ngroups = ngroups / dd->num_rcv_contexts;
13464 	dd->rcv_entries.nctxt_extra = ngroups -
13465 		(dd->num_rcv_contexts * dd->rcv_entries.ngroups);
13466 	dd_dev_info(dd, "RcvArray groups %u, ctxts extra %u\n",
13467 		    dd->rcv_entries.ngroups,
13468 		    dd->rcv_entries.nctxt_extra);
13469 	if (dd->rcv_entries.ngroups * dd->rcv_entries.group_size >
13470 	    MAX_EAGER_ENTRIES * 2) {
13471 		dd->rcv_entries.ngroups = (MAX_EAGER_ENTRIES * 2) /
13472 			dd->rcv_entries.group_size;
13473 		dd_dev_info(dd,
13474 			    "RcvArray group count too high, change to %u\n",
13475 			    dd->rcv_entries.ngroups);
13476 		dd->rcv_entries.nctxt_extra = 0;
13477 	}
13478 	/*
13479 	 * PIO send contexts
13480 	 */
13481 	ret = init_sc_pools_and_sizes(dd);
13482 	if (ret >= 0) {	/* success */
13483 		dd->num_send_contexts = ret;
13484 		dd_dev_info(
13485 			dd,
13486 			"send contexts: chip %d, used %d (kernel %d, ack %d, user %d, vl15 %d)\n",
13487 			dd->chip_send_contexts,
13488 			dd->num_send_contexts,
13489 			dd->sc_sizes[SC_KERNEL].count,
13490 			dd->sc_sizes[SC_ACK].count,
13491 			dd->sc_sizes[SC_USER].count,
13492 			dd->sc_sizes[SC_VL15].count);
13493 		ret = 0;	/* success */
13494 	}
13495 
13496 	return ret;
13497 }
13498 
13499 /*
13500  * Set the device/port partition key table. The MAD code
13501  * will ensure that, at least, the partial management
13502  * partition key is present in the table.
13503  */
13504 static void set_partition_keys(struct hfi1_pportdata *ppd)
13505 {
13506 	struct hfi1_devdata *dd = ppd->dd;
13507 	u64 reg = 0;
13508 	int i;
13509 
13510 	dd_dev_info(dd, "Setting partition keys\n");
13511 	for (i = 0; i < hfi1_get_npkeys(dd); i++) {
13512 		reg |= (ppd->pkeys[i] &
13513 			RCV_PARTITION_KEY_PARTITION_KEY_A_MASK) <<
13514 			((i % 4) *
13515 			 RCV_PARTITION_KEY_PARTITION_KEY_B_SHIFT);
13516 		/* Each register holds 4 PKey values. */
13517 		if ((i % 4) == 3) {
13518 			write_csr(dd, RCV_PARTITION_KEY +
13519 				  ((i - 3) * 2), reg);
13520 			reg = 0;
13521 		}
13522 	}
13523 
13524 	/* Always enable HW pkeys check when pkeys table is set */
13525 	add_rcvctrl(dd, RCV_CTRL_RCV_PARTITION_KEY_ENABLE_SMASK);
13526 }
13527 
13528 /*
13529  * These CSRs and memories are uninitialized on reset and must be
13530  * written before reading to set the ECC/parity bits.
13531  *
13532  * NOTE: All user context CSRs that are not mmaped write-only
13533  * (e.g. the TID flows) must be initialized even if the driver never
13534  * reads them.
13535  */
13536 static void write_uninitialized_csrs_and_memories(struct hfi1_devdata *dd)
13537 {
13538 	int i, j;
13539 
13540 	/* CceIntMap */
13541 	for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++)
13542 		write_csr(dd, CCE_INT_MAP + (8 * i), 0);
13543 
13544 	/* SendCtxtCreditReturnAddr */
13545 	for (i = 0; i < dd->chip_send_contexts; i++)
13546 		write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_RETURN_ADDR, 0);
13547 
13548 	/* PIO Send buffers */
13549 	/* SDMA Send buffers */
13550 	/*
13551 	 * These are not normally read, and (presently) have no method
13552 	 * to be read, so are not pre-initialized
13553 	 */
13554 
13555 	/* RcvHdrAddr */
13556 	/* RcvHdrTailAddr */
13557 	/* RcvTidFlowTable */
13558 	for (i = 0; i < dd->chip_rcv_contexts; i++) {
13559 		write_kctxt_csr(dd, i, RCV_HDR_ADDR, 0);
13560 		write_kctxt_csr(dd, i, RCV_HDR_TAIL_ADDR, 0);
13561 		for (j = 0; j < RXE_NUM_TID_FLOWS; j++)
13562 			write_uctxt_csr(dd, i, RCV_TID_FLOW_TABLE + (8 * j), 0);
13563 	}
13564 
13565 	/* RcvArray */
13566 	for (i = 0; i < dd->chip_rcv_array_count; i++)
13567 		hfi1_put_tid(dd, i, PT_INVALID_FLUSH, 0, 0);
13568 
13569 	/* RcvQPMapTable */
13570 	for (i = 0; i < 32; i++)
13571 		write_csr(dd, RCV_QP_MAP_TABLE + (8 * i), 0);
13572 }
13573 
13574 /*
13575  * Use the ctrl_bits in CceCtrl to clear the status_bits in CceStatus.
13576  */
13577 static void clear_cce_status(struct hfi1_devdata *dd, u64 status_bits,
13578 			     u64 ctrl_bits)
13579 {
13580 	unsigned long timeout;
13581 	u64 reg;
13582 
13583 	/* is the condition present? */
13584 	reg = read_csr(dd, CCE_STATUS);
13585 	if ((reg & status_bits) == 0)
13586 		return;
13587 
13588 	/* clear the condition */
13589 	write_csr(dd, CCE_CTRL, ctrl_bits);
13590 
13591 	/* wait for the condition to clear */
13592 	timeout = jiffies + msecs_to_jiffies(CCE_STATUS_TIMEOUT);
13593 	while (1) {
13594 		reg = read_csr(dd, CCE_STATUS);
13595 		if ((reg & status_bits) == 0)
13596 			return;
13597 		if (time_after(jiffies, timeout)) {
13598 			dd_dev_err(dd,
13599 				   "Timeout waiting for CceStatus to clear bits 0x%llx, remaining 0x%llx\n",
13600 				   status_bits, reg & status_bits);
13601 			return;
13602 		}
13603 		udelay(1);
13604 	}
13605 }
13606 
13607 /* set CCE CSRs to chip reset defaults */
13608 static void reset_cce_csrs(struct hfi1_devdata *dd)
13609 {
13610 	int i;
13611 
13612 	/* CCE_REVISION read-only */
13613 	/* CCE_REVISION2 read-only */
13614 	/* CCE_CTRL - bits clear automatically */
13615 	/* CCE_STATUS read-only, use CceCtrl to clear */
13616 	clear_cce_status(dd, ALL_FROZE, CCE_CTRL_SPC_UNFREEZE_SMASK);
13617 	clear_cce_status(dd, ALL_TXE_PAUSE, CCE_CTRL_TXE_RESUME_SMASK);
13618 	clear_cce_status(dd, ALL_RXE_PAUSE, CCE_CTRL_RXE_RESUME_SMASK);
13619 	for (i = 0; i < CCE_NUM_SCRATCH; i++)
13620 		write_csr(dd, CCE_SCRATCH + (8 * i), 0);
13621 	/* CCE_ERR_STATUS read-only */
13622 	write_csr(dd, CCE_ERR_MASK, 0);
13623 	write_csr(dd, CCE_ERR_CLEAR, ~0ull);
13624 	/* CCE_ERR_FORCE leave alone */
13625 	for (i = 0; i < CCE_NUM_32_BIT_COUNTERS; i++)
13626 		write_csr(dd, CCE_COUNTER_ARRAY32 + (8 * i), 0);
13627 	write_csr(dd, CCE_DC_CTRL, CCE_DC_CTRL_RESETCSR);
13628 	/* CCE_PCIE_CTRL leave alone */
13629 	for (i = 0; i < CCE_NUM_MSIX_VECTORS; i++) {
13630 		write_csr(dd, CCE_MSIX_TABLE_LOWER + (8 * i), 0);
13631 		write_csr(dd, CCE_MSIX_TABLE_UPPER + (8 * i),
13632 			  CCE_MSIX_TABLE_UPPER_RESETCSR);
13633 	}
13634 	for (i = 0; i < CCE_NUM_MSIX_PBAS; i++) {
13635 		/* CCE_MSIX_PBA read-only */
13636 		write_csr(dd, CCE_MSIX_INT_GRANTED, ~0ull);
13637 		write_csr(dd, CCE_MSIX_VEC_CLR_WITHOUT_INT, ~0ull);
13638 	}
13639 	for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++)
13640 		write_csr(dd, CCE_INT_MAP, 0);
13641 	for (i = 0; i < CCE_NUM_INT_CSRS; i++) {
13642 		/* CCE_INT_STATUS read-only */
13643 		write_csr(dd, CCE_INT_MASK + (8 * i), 0);
13644 		write_csr(dd, CCE_INT_CLEAR + (8 * i), ~0ull);
13645 		/* CCE_INT_FORCE leave alone */
13646 		/* CCE_INT_BLOCKED read-only */
13647 	}
13648 	for (i = 0; i < CCE_NUM_32_BIT_INT_COUNTERS; i++)
13649 		write_csr(dd, CCE_INT_COUNTER_ARRAY32 + (8 * i), 0);
13650 }
13651 
13652 /* set MISC CSRs to chip reset defaults */
13653 static void reset_misc_csrs(struct hfi1_devdata *dd)
13654 {
13655 	int i;
13656 
13657 	for (i = 0; i < 32; i++) {
13658 		write_csr(dd, MISC_CFG_RSA_R2 + (8 * i), 0);
13659 		write_csr(dd, MISC_CFG_RSA_SIGNATURE + (8 * i), 0);
13660 		write_csr(dd, MISC_CFG_RSA_MODULUS + (8 * i), 0);
13661 	}
13662 	/*
13663 	 * MISC_CFG_SHA_PRELOAD leave alone - always reads 0 and can
13664 	 * only be written 128-byte chunks
13665 	 */
13666 	/* init RSA engine to clear lingering errors */
13667 	write_csr(dd, MISC_CFG_RSA_CMD, 1);
13668 	write_csr(dd, MISC_CFG_RSA_MU, 0);
13669 	write_csr(dd, MISC_CFG_FW_CTRL, 0);
13670 	/* MISC_STS_8051_DIGEST read-only */
13671 	/* MISC_STS_SBM_DIGEST read-only */
13672 	/* MISC_STS_PCIE_DIGEST read-only */
13673 	/* MISC_STS_FAB_DIGEST read-only */
13674 	/* MISC_ERR_STATUS read-only */
13675 	write_csr(dd, MISC_ERR_MASK, 0);
13676 	write_csr(dd, MISC_ERR_CLEAR, ~0ull);
13677 	/* MISC_ERR_FORCE leave alone */
13678 }
13679 
13680 /* set TXE CSRs to chip reset defaults */
13681 static void reset_txe_csrs(struct hfi1_devdata *dd)
13682 {
13683 	int i;
13684 
13685 	/*
13686 	 * TXE Kernel CSRs
13687 	 */
13688 	write_csr(dd, SEND_CTRL, 0);
13689 	__cm_reset(dd, 0);	/* reset CM internal state */
13690 	/* SEND_CONTEXTS read-only */
13691 	/* SEND_DMA_ENGINES read-only */
13692 	/* SEND_PIO_MEM_SIZE read-only */
13693 	/* SEND_DMA_MEM_SIZE read-only */
13694 	write_csr(dd, SEND_HIGH_PRIORITY_LIMIT, 0);
13695 	pio_reset_all(dd);	/* SEND_PIO_INIT_CTXT */
13696 	/* SEND_PIO_ERR_STATUS read-only */
13697 	write_csr(dd, SEND_PIO_ERR_MASK, 0);
13698 	write_csr(dd, SEND_PIO_ERR_CLEAR, ~0ull);
13699 	/* SEND_PIO_ERR_FORCE leave alone */
13700 	/* SEND_DMA_ERR_STATUS read-only */
13701 	write_csr(dd, SEND_DMA_ERR_MASK, 0);
13702 	write_csr(dd, SEND_DMA_ERR_CLEAR, ~0ull);
13703 	/* SEND_DMA_ERR_FORCE leave alone */
13704 	/* SEND_EGRESS_ERR_STATUS read-only */
13705 	write_csr(dd, SEND_EGRESS_ERR_MASK, 0);
13706 	write_csr(dd, SEND_EGRESS_ERR_CLEAR, ~0ull);
13707 	/* SEND_EGRESS_ERR_FORCE leave alone */
13708 	write_csr(dd, SEND_BTH_QP, 0);
13709 	write_csr(dd, SEND_STATIC_RATE_CONTROL, 0);
13710 	write_csr(dd, SEND_SC2VLT0, 0);
13711 	write_csr(dd, SEND_SC2VLT1, 0);
13712 	write_csr(dd, SEND_SC2VLT2, 0);
13713 	write_csr(dd, SEND_SC2VLT3, 0);
13714 	write_csr(dd, SEND_LEN_CHECK0, 0);
13715 	write_csr(dd, SEND_LEN_CHECK1, 0);
13716 	/* SEND_ERR_STATUS read-only */
13717 	write_csr(dd, SEND_ERR_MASK, 0);
13718 	write_csr(dd, SEND_ERR_CLEAR, ~0ull);
13719 	/* SEND_ERR_FORCE read-only */
13720 	for (i = 0; i < VL_ARB_LOW_PRIO_TABLE_SIZE; i++)
13721 		write_csr(dd, SEND_LOW_PRIORITY_LIST + (8 * i), 0);
13722 	for (i = 0; i < VL_ARB_HIGH_PRIO_TABLE_SIZE; i++)
13723 		write_csr(dd, SEND_HIGH_PRIORITY_LIST + (8 * i), 0);
13724 	for (i = 0; i < dd->chip_send_contexts / NUM_CONTEXTS_PER_SET; i++)
13725 		write_csr(dd, SEND_CONTEXT_SET_CTRL + (8 * i), 0);
13726 	for (i = 0; i < TXE_NUM_32_BIT_COUNTER; i++)
13727 		write_csr(dd, SEND_COUNTER_ARRAY32 + (8 * i), 0);
13728 	for (i = 0; i < TXE_NUM_64_BIT_COUNTER; i++)
13729 		write_csr(dd, SEND_COUNTER_ARRAY64 + (8 * i), 0);
13730 	write_csr(dd, SEND_CM_CTRL, SEND_CM_CTRL_RESETCSR);
13731 	write_csr(dd, SEND_CM_GLOBAL_CREDIT, SEND_CM_GLOBAL_CREDIT_RESETCSR);
13732 	/* SEND_CM_CREDIT_USED_STATUS read-only */
13733 	write_csr(dd, SEND_CM_TIMER_CTRL, 0);
13734 	write_csr(dd, SEND_CM_LOCAL_AU_TABLE0_TO3, 0);
13735 	write_csr(dd, SEND_CM_LOCAL_AU_TABLE4_TO7, 0);
13736 	write_csr(dd, SEND_CM_REMOTE_AU_TABLE0_TO3, 0);
13737 	write_csr(dd, SEND_CM_REMOTE_AU_TABLE4_TO7, 0);
13738 	for (i = 0; i < TXE_NUM_DATA_VL; i++)
13739 		write_csr(dd, SEND_CM_CREDIT_VL + (8 * i), 0);
13740 	write_csr(dd, SEND_CM_CREDIT_VL15, 0);
13741 	/* SEND_CM_CREDIT_USED_VL read-only */
13742 	/* SEND_CM_CREDIT_USED_VL15 read-only */
13743 	/* SEND_EGRESS_CTXT_STATUS read-only */
13744 	/* SEND_EGRESS_SEND_DMA_STATUS read-only */
13745 	write_csr(dd, SEND_EGRESS_ERR_INFO, ~0ull);
13746 	/* SEND_EGRESS_ERR_INFO read-only */
13747 	/* SEND_EGRESS_ERR_SOURCE read-only */
13748 
13749 	/*
13750 	 * TXE Per-Context CSRs
13751 	 */
13752 	for (i = 0; i < dd->chip_send_contexts; i++) {
13753 		write_kctxt_csr(dd, i, SEND_CTXT_CTRL, 0);
13754 		write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_CTRL, 0);
13755 		write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_RETURN_ADDR, 0);
13756 		write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_FORCE, 0);
13757 		write_kctxt_csr(dd, i, SEND_CTXT_ERR_MASK, 0);
13758 		write_kctxt_csr(dd, i, SEND_CTXT_ERR_CLEAR, ~0ull);
13759 		write_kctxt_csr(dd, i, SEND_CTXT_CHECK_ENABLE, 0);
13760 		write_kctxt_csr(dd, i, SEND_CTXT_CHECK_VL, 0);
13761 		write_kctxt_csr(dd, i, SEND_CTXT_CHECK_JOB_KEY, 0);
13762 		write_kctxt_csr(dd, i, SEND_CTXT_CHECK_PARTITION_KEY, 0);
13763 		write_kctxt_csr(dd, i, SEND_CTXT_CHECK_SLID, 0);
13764 		write_kctxt_csr(dd, i, SEND_CTXT_CHECK_OPCODE, 0);
13765 	}
13766 
13767 	/*
13768 	 * TXE Per-SDMA CSRs
13769 	 */
13770 	for (i = 0; i < dd->chip_sdma_engines; i++) {
13771 		write_kctxt_csr(dd, i, SEND_DMA_CTRL, 0);
13772 		/* SEND_DMA_STATUS read-only */
13773 		write_kctxt_csr(dd, i, SEND_DMA_BASE_ADDR, 0);
13774 		write_kctxt_csr(dd, i, SEND_DMA_LEN_GEN, 0);
13775 		write_kctxt_csr(dd, i, SEND_DMA_TAIL, 0);
13776 		/* SEND_DMA_HEAD read-only */
13777 		write_kctxt_csr(dd, i, SEND_DMA_HEAD_ADDR, 0);
13778 		write_kctxt_csr(dd, i, SEND_DMA_PRIORITY_THLD, 0);
13779 		/* SEND_DMA_IDLE_CNT read-only */
13780 		write_kctxt_csr(dd, i, SEND_DMA_RELOAD_CNT, 0);
13781 		write_kctxt_csr(dd, i, SEND_DMA_DESC_CNT, 0);
13782 		/* SEND_DMA_DESC_FETCHED_CNT read-only */
13783 		/* SEND_DMA_ENG_ERR_STATUS read-only */
13784 		write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_MASK, 0);
13785 		write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_CLEAR, ~0ull);
13786 		/* SEND_DMA_ENG_ERR_FORCE leave alone */
13787 		write_kctxt_csr(dd, i, SEND_DMA_CHECK_ENABLE, 0);
13788 		write_kctxt_csr(dd, i, SEND_DMA_CHECK_VL, 0);
13789 		write_kctxt_csr(dd, i, SEND_DMA_CHECK_JOB_KEY, 0);
13790 		write_kctxt_csr(dd, i, SEND_DMA_CHECK_PARTITION_KEY, 0);
13791 		write_kctxt_csr(dd, i, SEND_DMA_CHECK_SLID, 0);
13792 		write_kctxt_csr(dd, i, SEND_DMA_CHECK_OPCODE, 0);
13793 		write_kctxt_csr(dd, i, SEND_DMA_MEMORY, 0);
13794 	}
13795 }
13796 
13797 /*
13798  * Expect on entry:
13799  * o Packet ingress is disabled, i.e. RcvCtrl.RcvPortEnable == 0
13800  */
13801 static void init_rbufs(struct hfi1_devdata *dd)
13802 {
13803 	u64 reg;
13804 	int count;
13805 
13806 	/*
13807 	 * Wait for DMA to stop: RxRbufPktPending and RxPktInProgress are
13808 	 * clear.
13809 	 */
13810 	count = 0;
13811 	while (1) {
13812 		reg = read_csr(dd, RCV_STATUS);
13813 		if ((reg & (RCV_STATUS_RX_RBUF_PKT_PENDING_SMASK
13814 			    | RCV_STATUS_RX_PKT_IN_PROGRESS_SMASK)) == 0)
13815 			break;
13816 		/*
13817 		 * Give up after 1ms - maximum wait time.
13818 		 *
13819 		 * RBuf size is 136KiB.  Slowest possible is PCIe Gen1 x1 at
13820 		 * 250MB/s bandwidth.  Lower rate to 66% for overhead to get:
13821 		 *	136 KB / (66% * 250MB/s) = 844us
13822 		 */
13823 		if (count++ > 500) {
13824 			dd_dev_err(dd,
13825 				   "%s: in-progress DMA not clearing: RcvStatus 0x%llx, continuing\n",
13826 				   __func__, reg);
13827 			break;
13828 		}
13829 		udelay(2); /* do not busy-wait the CSR */
13830 	}
13831 
13832 	/* start the init - expect RcvCtrl to be 0 */
13833 	write_csr(dd, RCV_CTRL, RCV_CTRL_RX_RBUF_INIT_SMASK);
13834 
13835 	/*
13836 	 * Read to force the write of Rcvtrl.RxRbufInit.  There is a brief
13837 	 * period after the write before RcvStatus.RxRbufInitDone is valid.
13838 	 * The delay in the first run through the loop below is sufficient and
13839 	 * required before the first read of RcvStatus.RxRbufInintDone.
13840 	 */
13841 	read_csr(dd, RCV_CTRL);
13842 
13843 	/* wait for the init to finish */
13844 	count = 0;
13845 	while (1) {
13846 		/* delay is required first time through - see above */
13847 		udelay(2); /* do not busy-wait the CSR */
13848 		reg = read_csr(dd, RCV_STATUS);
13849 		if (reg & (RCV_STATUS_RX_RBUF_INIT_DONE_SMASK))
13850 			break;
13851 
13852 		/* give up after 100us - slowest possible at 33MHz is 73us */
13853 		if (count++ > 50) {
13854 			dd_dev_err(dd,
13855 				   "%s: RcvStatus.RxRbufInit not set, continuing\n",
13856 				   __func__);
13857 			break;
13858 		}
13859 	}
13860 }
13861 
13862 /* set RXE CSRs to chip reset defaults */
13863 static void reset_rxe_csrs(struct hfi1_devdata *dd)
13864 {
13865 	int i, j;
13866 
13867 	/*
13868 	 * RXE Kernel CSRs
13869 	 */
13870 	write_csr(dd, RCV_CTRL, 0);
13871 	init_rbufs(dd);
13872 	/* RCV_STATUS read-only */
13873 	/* RCV_CONTEXTS read-only */
13874 	/* RCV_ARRAY_CNT read-only */
13875 	/* RCV_BUF_SIZE read-only */
13876 	write_csr(dd, RCV_BTH_QP, 0);
13877 	write_csr(dd, RCV_MULTICAST, 0);
13878 	write_csr(dd, RCV_BYPASS, 0);
13879 	write_csr(dd, RCV_VL15, 0);
13880 	/* this is a clear-down */
13881 	write_csr(dd, RCV_ERR_INFO,
13882 		  RCV_ERR_INFO_RCV_EXCESS_BUFFER_OVERRUN_SMASK);
13883 	/* RCV_ERR_STATUS read-only */
13884 	write_csr(dd, RCV_ERR_MASK, 0);
13885 	write_csr(dd, RCV_ERR_CLEAR, ~0ull);
13886 	/* RCV_ERR_FORCE leave alone */
13887 	for (i = 0; i < 32; i++)
13888 		write_csr(dd, RCV_QP_MAP_TABLE + (8 * i), 0);
13889 	for (i = 0; i < 4; i++)
13890 		write_csr(dd, RCV_PARTITION_KEY + (8 * i), 0);
13891 	for (i = 0; i < RXE_NUM_32_BIT_COUNTERS; i++)
13892 		write_csr(dd, RCV_COUNTER_ARRAY32 + (8 * i), 0);
13893 	for (i = 0; i < RXE_NUM_64_BIT_COUNTERS; i++)
13894 		write_csr(dd, RCV_COUNTER_ARRAY64 + (8 * i), 0);
13895 	for (i = 0; i < RXE_NUM_RSM_INSTANCES; i++)
13896 		clear_rsm_rule(dd, i);
13897 	for (i = 0; i < 32; i++)
13898 		write_csr(dd, RCV_RSM_MAP_TABLE + (8 * i), 0);
13899 
13900 	/*
13901 	 * RXE Kernel and User Per-Context CSRs
13902 	 */
13903 	for (i = 0; i < dd->chip_rcv_contexts; i++) {
13904 		/* kernel */
13905 		write_kctxt_csr(dd, i, RCV_CTXT_CTRL, 0);
13906 		/* RCV_CTXT_STATUS read-only */
13907 		write_kctxt_csr(dd, i, RCV_EGR_CTRL, 0);
13908 		write_kctxt_csr(dd, i, RCV_TID_CTRL, 0);
13909 		write_kctxt_csr(dd, i, RCV_KEY_CTRL, 0);
13910 		write_kctxt_csr(dd, i, RCV_HDR_ADDR, 0);
13911 		write_kctxt_csr(dd, i, RCV_HDR_CNT, 0);
13912 		write_kctxt_csr(dd, i, RCV_HDR_ENT_SIZE, 0);
13913 		write_kctxt_csr(dd, i, RCV_HDR_SIZE, 0);
13914 		write_kctxt_csr(dd, i, RCV_HDR_TAIL_ADDR, 0);
13915 		write_kctxt_csr(dd, i, RCV_AVAIL_TIME_OUT, 0);
13916 		write_kctxt_csr(dd, i, RCV_HDR_OVFL_CNT, 0);
13917 
13918 		/* user */
13919 		/* RCV_HDR_TAIL read-only */
13920 		write_uctxt_csr(dd, i, RCV_HDR_HEAD, 0);
13921 		/* RCV_EGR_INDEX_TAIL read-only */
13922 		write_uctxt_csr(dd, i, RCV_EGR_INDEX_HEAD, 0);
13923 		/* RCV_EGR_OFFSET_TAIL read-only */
13924 		for (j = 0; j < RXE_NUM_TID_FLOWS; j++) {
13925 			write_uctxt_csr(dd, i,
13926 					RCV_TID_FLOW_TABLE + (8 * j), 0);
13927 		}
13928 	}
13929 }
13930 
13931 /*
13932  * Set sc2vl tables.
13933  *
13934  * They power on to zeros, so to avoid send context errors
13935  * they need to be set:
13936  *
13937  * SC 0-7 -> VL 0-7 (respectively)
13938  * SC 15  -> VL 15
13939  * otherwise
13940  *        -> VL 0
13941  */
13942 static void init_sc2vl_tables(struct hfi1_devdata *dd)
13943 {
13944 	int i;
13945 	/* init per architecture spec, constrained by hardware capability */
13946 
13947 	/* HFI maps sent packets */
13948 	write_csr(dd, SEND_SC2VLT0, SC2VL_VAL(
13949 		0,
13950 		0, 0, 1, 1,
13951 		2, 2, 3, 3,
13952 		4, 4, 5, 5,
13953 		6, 6, 7, 7));
13954 	write_csr(dd, SEND_SC2VLT1, SC2VL_VAL(
13955 		1,
13956 		8, 0, 9, 0,
13957 		10, 0, 11, 0,
13958 		12, 0, 13, 0,
13959 		14, 0, 15, 15));
13960 	write_csr(dd, SEND_SC2VLT2, SC2VL_VAL(
13961 		2,
13962 		16, 0, 17, 0,
13963 		18, 0, 19, 0,
13964 		20, 0, 21, 0,
13965 		22, 0, 23, 0));
13966 	write_csr(dd, SEND_SC2VLT3, SC2VL_VAL(
13967 		3,
13968 		24, 0, 25, 0,
13969 		26, 0, 27, 0,
13970 		28, 0, 29, 0,
13971 		30, 0, 31, 0));
13972 
13973 	/* DC maps received packets */
13974 	write_csr(dd, DCC_CFG_SC_VL_TABLE_15_0, DC_SC_VL_VAL(
13975 		15_0,
13976 		0, 0, 1, 1,  2, 2,  3, 3,  4, 4,  5, 5,  6, 6,  7,  7,
13977 		8, 0, 9, 0, 10, 0, 11, 0, 12, 0, 13, 0, 14, 0, 15, 15));
13978 	write_csr(dd, DCC_CFG_SC_VL_TABLE_31_16, DC_SC_VL_VAL(
13979 		31_16,
13980 		16, 0, 17, 0, 18, 0, 19, 0, 20, 0, 21, 0, 22, 0, 23, 0,
13981 		24, 0, 25, 0, 26, 0, 27, 0, 28, 0, 29, 0, 30, 0, 31, 0));
13982 
13983 	/* initialize the cached sc2vl values consistently with h/w */
13984 	for (i = 0; i < 32; i++) {
13985 		if (i < 8 || i == 15)
13986 			*((u8 *)(dd->sc2vl) + i) = (u8)i;
13987 		else
13988 			*((u8 *)(dd->sc2vl) + i) = 0;
13989 	}
13990 }
13991 
13992 /*
13993  * Read chip sizes and then reset parts to sane, disabled, values.  We cannot
13994  * depend on the chip going through a power-on reset - a driver may be loaded
13995  * and unloaded many times.
13996  *
13997  * Do not write any CSR values to the chip in this routine - there may be
13998  * a reset following the (possible) FLR in this routine.
13999  *
14000  */
14001 static int init_chip(struct hfi1_devdata *dd)
14002 {
14003 	int i;
14004 	int ret = 0;
14005 
14006 	/*
14007 	 * Put the HFI CSRs in a known state.
14008 	 * Combine this with a DC reset.
14009 	 *
14010 	 * Stop the device from doing anything while we do a
14011 	 * reset.  We know there are no other active users of
14012 	 * the device since we are now in charge.  Turn off
14013 	 * off all outbound and inbound traffic and make sure
14014 	 * the device does not generate any interrupts.
14015 	 */
14016 
14017 	/* disable send contexts and SDMA engines */
14018 	write_csr(dd, SEND_CTRL, 0);
14019 	for (i = 0; i < dd->chip_send_contexts; i++)
14020 		write_kctxt_csr(dd, i, SEND_CTXT_CTRL, 0);
14021 	for (i = 0; i < dd->chip_sdma_engines; i++)
14022 		write_kctxt_csr(dd, i, SEND_DMA_CTRL, 0);
14023 	/* disable port (turn off RXE inbound traffic) and contexts */
14024 	write_csr(dd, RCV_CTRL, 0);
14025 	for (i = 0; i < dd->chip_rcv_contexts; i++)
14026 		write_csr(dd, RCV_CTXT_CTRL, 0);
14027 	/* mask all interrupt sources */
14028 	for (i = 0; i < CCE_NUM_INT_CSRS; i++)
14029 		write_csr(dd, CCE_INT_MASK + (8 * i), 0ull);
14030 
14031 	/*
14032 	 * DC Reset: do a full DC reset before the register clear.
14033 	 * A recommended length of time to hold is one CSR read,
14034 	 * so reread the CceDcCtrl.  Then, hold the DC in reset
14035 	 * across the clear.
14036 	 */
14037 	write_csr(dd, CCE_DC_CTRL, CCE_DC_CTRL_DC_RESET_SMASK);
14038 	(void)read_csr(dd, CCE_DC_CTRL);
14039 
14040 	if (use_flr) {
14041 		/*
14042 		 * A FLR will reset the SPC core and part of the PCIe.
14043 		 * The parts that need to be restored have already been
14044 		 * saved.
14045 		 */
14046 		dd_dev_info(dd, "Resetting CSRs with FLR\n");
14047 
14048 		/* do the FLR, the DC reset will remain */
14049 		pcie_flr(dd->pcidev);
14050 
14051 		/* restore command and BARs */
14052 		ret = restore_pci_variables(dd);
14053 		if (ret) {
14054 			dd_dev_err(dd, "%s: Could not restore PCI variables\n",
14055 				   __func__);
14056 			return ret;
14057 		}
14058 
14059 		if (is_ax(dd)) {
14060 			dd_dev_info(dd, "Resetting CSRs with FLR\n");
14061 			pcie_flr(dd->pcidev);
14062 			ret = restore_pci_variables(dd);
14063 			if (ret) {
14064 				dd_dev_err(dd, "%s: Could not restore PCI variables\n",
14065 					   __func__);
14066 				return ret;
14067 			}
14068 		}
14069 	} else {
14070 		dd_dev_info(dd, "Resetting CSRs with writes\n");
14071 		reset_cce_csrs(dd);
14072 		reset_txe_csrs(dd);
14073 		reset_rxe_csrs(dd);
14074 		reset_misc_csrs(dd);
14075 	}
14076 	/* clear the DC reset */
14077 	write_csr(dd, CCE_DC_CTRL, 0);
14078 
14079 	/* Set the LED off */
14080 	setextled(dd, 0);
14081 
14082 	/*
14083 	 * Clear the QSFP reset.
14084 	 * An FLR enforces a 0 on all out pins. The driver does not touch
14085 	 * ASIC_QSFPn_OUT otherwise.  This leaves RESET_N low and
14086 	 * anything plugged constantly in reset, if it pays attention
14087 	 * to RESET_N.
14088 	 * Prime examples of this are optical cables. Set all pins high.
14089 	 * I2CCLK and I2CDAT will change per direction, and INT_N and
14090 	 * MODPRS_N are input only and their value is ignored.
14091 	 */
14092 	write_csr(dd, ASIC_QSFP1_OUT, 0x1f);
14093 	write_csr(dd, ASIC_QSFP2_OUT, 0x1f);
14094 	init_chip_resources(dd);
14095 	return ret;
14096 }
14097 
14098 static void init_early_variables(struct hfi1_devdata *dd)
14099 {
14100 	int i;
14101 
14102 	/* assign link credit variables */
14103 	dd->vau = CM_VAU;
14104 	dd->link_credits = CM_GLOBAL_CREDITS;
14105 	if (is_ax(dd))
14106 		dd->link_credits--;
14107 	dd->vcu = cu_to_vcu(hfi1_cu);
14108 	/* enough room for 8 MAD packets plus header - 17K */
14109 	dd->vl15_init = (8 * (2048 + 128)) / vau_to_au(dd->vau);
14110 	if (dd->vl15_init > dd->link_credits)
14111 		dd->vl15_init = dd->link_credits;
14112 
14113 	write_uninitialized_csrs_and_memories(dd);
14114 
14115 	if (HFI1_CAP_IS_KSET(PKEY_CHECK))
14116 		for (i = 0; i < dd->num_pports; i++) {
14117 			struct hfi1_pportdata *ppd = &dd->pport[i];
14118 
14119 			set_partition_keys(ppd);
14120 		}
14121 	init_sc2vl_tables(dd);
14122 }
14123 
14124 static void init_kdeth_qp(struct hfi1_devdata *dd)
14125 {
14126 	/* user changed the KDETH_QP */
14127 	if (kdeth_qp != 0 && kdeth_qp >= 0xff) {
14128 		/* out of range or illegal value */
14129 		dd_dev_err(dd, "Invalid KDETH queue pair prefix, ignoring");
14130 		kdeth_qp = 0;
14131 	}
14132 	if (kdeth_qp == 0)	/* not set, or failed range check */
14133 		kdeth_qp = DEFAULT_KDETH_QP;
14134 
14135 	write_csr(dd, SEND_BTH_QP,
14136 		  (kdeth_qp & SEND_BTH_QP_KDETH_QP_MASK) <<
14137 		  SEND_BTH_QP_KDETH_QP_SHIFT);
14138 
14139 	write_csr(dd, RCV_BTH_QP,
14140 		  (kdeth_qp & RCV_BTH_QP_KDETH_QP_MASK) <<
14141 		  RCV_BTH_QP_KDETH_QP_SHIFT);
14142 }
14143 
14144 /**
14145  * init_qpmap_table
14146  * @dd - device data
14147  * @first_ctxt - first context
14148  * @last_ctxt - first context
14149  *
14150  * This return sets the qpn mapping table that
14151  * is indexed by qpn[8:1].
14152  *
14153  * The routine will round robin the 256 settings
14154  * from first_ctxt to last_ctxt.
14155  *
14156  * The first/last looks ahead to having specialized
14157  * receive contexts for mgmt and bypass.  Normal
14158  * verbs traffic will assumed to be on a range
14159  * of receive contexts.
14160  */
14161 static void init_qpmap_table(struct hfi1_devdata *dd,
14162 			     u32 first_ctxt,
14163 			     u32 last_ctxt)
14164 {
14165 	u64 reg = 0;
14166 	u64 regno = RCV_QP_MAP_TABLE;
14167 	int i;
14168 	u64 ctxt = first_ctxt;
14169 
14170 	for (i = 0; i < 256; i++) {
14171 		reg |= ctxt << (8 * (i % 8));
14172 		ctxt++;
14173 		if (ctxt > last_ctxt)
14174 			ctxt = first_ctxt;
14175 		if (i % 8 == 7) {
14176 			write_csr(dd, regno, reg);
14177 			reg = 0;
14178 			regno += 8;
14179 		}
14180 	}
14181 
14182 	add_rcvctrl(dd, RCV_CTRL_RCV_QP_MAP_ENABLE_SMASK
14183 			| RCV_CTRL_RCV_BYPASS_ENABLE_SMASK);
14184 }
14185 
14186 struct rsm_map_table {
14187 	u64 map[NUM_MAP_REGS];
14188 	unsigned int used;
14189 };
14190 
14191 struct rsm_rule_data {
14192 	u8 offset;
14193 	u8 pkt_type;
14194 	u32 field1_off;
14195 	u32 field2_off;
14196 	u32 index1_off;
14197 	u32 index1_width;
14198 	u32 index2_off;
14199 	u32 index2_width;
14200 	u32 mask1;
14201 	u32 value1;
14202 	u32 mask2;
14203 	u32 value2;
14204 };
14205 
14206 /*
14207  * Return an initialized RMT map table for users to fill in.  OK if it
14208  * returns NULL, indicating no table.
14209  */
14210 static struct rsm_map_table *alloc_rsm_map_table(struct hfi1_devdata *dd)
14211 {
14212 	struct rsm_map_table *rmt;
14213 	u8 rxcontext = is_ax(dd) ? 0 : 0xff;  /* 0 is default if a0 ver. */
14214 
14215 	rmt = kmalloc(sizeof(*rmt), GFP_KERNEL);
14216 	if (rmt) {
14217 		memset(rmt->map, rxcontext, sizeof(rmt->map));
14218 		rmt->used = 0;
14219 	}
14220 
14221 	return rmt;
14222 }
14223 
14224 /*
14225  * Write the final RMT map table to the chip and free the table.  OK if
14226  * table is NULL.
14227  */
14228 static void complete_rsm_map_table(struct hfi1_devdata *dd,
14229 				   struct rsm_map_table *rmt)
14230 {
14231 	int i;
14232 
14233 	if (rmt) {
14234 		/* write table to chip */
14235 		for (i = 0; i < NUM_MAP_REGS; i++)
14236 			write_csr(dd, RCV_RSM_MAP_TABLE + (8 * i), rmt->map[i]);
14237 
14238 		/* enable RSM */
14239 		add_rcvctrl(dd, RCV_CTRL_RCV_RSM_ENABLE_SMASK);
14240 	}
14241 }
14242 
14243 /*
14244  * Add a receive side mapping rule.
14245  */
14246 static void add_rsm_rule(struct hfi1_devdata *dd, u8 rule_index,
14247 			 struct rsm_rule_data *rrd)
14248 {
14249 	write_csr(dd, RCV_RSM_CFG + (8 * rule_index),
14250 		  (u64)rrd->offset << RCV_RSM_CFG_OFFSET_SHIFT |
14251 		  1ull << rule_index | /* enable bit */
14252 		  (u64)rrd->pkt_type << RCV_RSM_CFG_PACKET_TYPE_SHIFT);
14253 	write_csr(dd, RCV_RSM_SELECT + (8 * rule_index),
14254 		  (u64)rrd->field1_off << RCV_RSM_SELECT_FIELD1_OFFSET_SHIFT |
14255 		  (u64)rrd->field2_off << RCV_RSM_SELECT_FIELD2_OFFSET_SHIFT |
14256 		  (u64)rrd->index1_off << RCV_RSM_SELECT_INDEX1_OFFSET_SHIFT |
14257 		  (u64)rrd->index1_width << RCV_RSM_SELECT_INDEX1_WIDTH_SHIFT |
14258 		  (u64)rrd->index2_off << RCV_RSM_SELECT_INDEX2_OFFSET_SHIFT |
14259 		  (u64)rrd->index2_width << RCV_RSM_SELECT_INDEX2_WIDTH_SHIFT);
14260 	write_csr(dd, RCV_RSM_MATCH + (8 * rule_index),
14261 		  (u64)rrd->mask1 << RCV_RSM_MATCH_MASK1_SHIFT |
14262 		  (u64)rrd->value1 << RCV_RSM_MATCH_VALUE1_SHIFT |
14263 		  (u64)rrd->mask2 << RCV_RSM_MATCH_MASK2_SHIFT |
14264 		  (u64)rrd->value2 << RCV_RSM_MATCH_VALUE2_SHIFT);
14265 }
14266 
14267 /*
14268  * Clear a receive side mapping rule.
14269  */
14270 static void clear_rsm_rule(struct hfi1_devdata *dd, u8 rule_index)
14271 {
14272 	write_csr(dd, RCV_RSM_CFG + (8 * rule_index), 0);
14273 	write_csr(dd, RCV_RSM_SELECT + (8 * rule_index), 0);
14274 	write_csr(dd, RCV_RSM_MATCH + (8 * rule_index), 0);
14275 }
14276 
14277 /* return the number of RSM map table entries that will be used for QOS */
14278 static int qos_rmt_entries(struct hfi1_devdata *dd, unsigned int *mp,
14279 			   unsigned int *np)
14280 {
14281 	int i;
14282 	unsigned int m, n;
14283 	u8 max_by_vl = 0;
14284 
14285 	/* is QOS active at all? */
14286 	if (dd->n_krcv_queues <= MIN_KERNEL_KCTXTS ||
14287 	    num_vls == 1 ||
14288 	    krcvqsset <= 1)
14289 		goto no_qos;
14290 
14291 	/* determine bits for qpn */
14292 	for (i = 0; i < min_t(unsigned int, num_vls, krcvqsset); i++)
14293 		if (krcvqs[i] > max_by_vl)
14294 			max_by_vl = krcvqs[i];
14295 	if (max_by_vl > 32)
14296 		goto no_qos;
14297 	m = ilog2(__roundup_pow_of_two(max_by_vl));
14298 
14299 	/* determine bits for vl */
14300 	n = ilog2(__roundup_pow_of_two(num_vls));
14301 
14302 	/* reject if too much is used */
14303 	if ((m + n) > 7)
14304 		goto no_qos;
14305 
14306 	if (mp)
14307 		*mp = m;
14308 	if (np)
14309 		*np = n;
14310 
14311 	return 1 << (m + n);
14312 
14313 no_qos:
14314 	if (mp)
14315 		*mp = 0;
14316 	if (np)
14317 		*np = 0;
14318 	return 0;
14319 }
14320 
14321 /**
14322  * init_qos - init RX qos
14323  * @dd - device data
14324  * @rmt - RSM map table
14325  *
14326  * This routine initializes Rule 0 and the RSM map table to implement
14327  * quality of service (qos).
14328  *
14329  * If all of the limit tests succeed, qos is applied based on the array
14330  * interpretation of krcvqs where entry 0 is VL0.
14331  *
14332  * The number of vl bits (n) and the number of qpn bits (m) are computed to
14333  * feed both the RSM map table and the single rule.
14334  */
14335 static void init_qos(struct hfi1_devdata *dd, struct rsm_map_table *rmt)
14336 {
14337 	struct rsm_rule_data rrd;
14338 	unsigned qpns_per_vl, ctxt, i, qpn, n = 1, m;
14339 	unsigned int rmt_entries;
14340 	u64 reg;
14341 
14342 	if (!rmt)
14343 		goto bail;
14344 	rmt_entries = qos_rmt_entries(dd, &m, &n);
14345 	if (rmt_entries == 0)
14346 		goto bail;
14347 	qpns_per_vl = 1 << m;
14348 
14349 	/* enough room in the map table? */
14350 	rmt_entries = 1 << (m + n);
14351 	if (rmt->used + rmt_entries >= NUM_MAP_ENTRIES)
14352 		goto bail;
14353 
14354 	/* add qos entries to the the RSM map table */
14355 	for (i = 0, ctxt = FIRST_KERNEL_KCTXT; i < num_vls; i++) {
14356 		unsigned tctxt;
14357 
14358 		for (qpn = 0, tctxt = ctxt;
14359 		     krcvqs[i] && qpn < qpns_per_vl; qpn++) {
14360 			unsigned idx, regoff, regidx;
14361 
14362 			/* generate the index the hardware will produce */
14363 			idx = rmt->used + ((qpn << n) ^ i);
14364 			regoff = (idx % 8) * 8;
14365 			regidx = idx / 8;
14366 			/* replace default with context number */
14367 			reg = rmt->map[regidx];
14368 			reg &= ~(RCV_RSM_MAP_TABLE_RCV_CONTEXT_A_MASK
14369 				<< regoff);
14370 			reg |= (u64)(tctxt++) << regoff;
14371 			rmt->map[regidx] = reg;
14372 			if (tctxt == ctxt + krcvqs[i])
14373 				tctxt = ctxt;
14374 		}
14375 		ctxt += krcvqs[i];
14376 	}
14377 
14378 	rrd.offset = rmt->used;
14379 	rrd.pkt_type = 2;
14380 	rrd.field1_off = LRH_BTH_MATCH_OFFSET;
14381 	rrd.field2_off = LRH_SC_MATCH_OFFSET;
14382 	rrd.index1_off = LRH_SC_SELECT_OFFSET;
14383 	rrd.index1_width = n;
14384 	rrd.index2_off = QPN_SELECT_OFFSET;
14385 	rrd.index2_width = m + n;
14386 	rrd.mask1 = LRH_BTH_MASK;
14387 	rrd.value1 = LRH_BTH_VALUE;
14388 	rrd.mask2 = LRH_SC_MASK;
14389 	rrd.value2 = LRH_SC_VALUE;
14390 
14391 	/* add rule 0 */
14392 	add_rsm_rule(dd, RSM_INS_VERBS, &rrd);
14393 
14394 	/* mark RSM map entries as used */
14395 	rmt->used += rmt_entries;
14396 	/* map everything else to the mcast/err/vl15 context */
14397 	init_qpmap_table(dd, HFI1_CTRL_CTXT, HFI1_CTRL_CTXT);
14398 	dd->qos_shift = n + 1;
14399 	return;
14400 bail:
14401 	dd->qos_shift = 1;
14402 	init_qpmap_table(dd, FIRST_KERNEL_KCTXT, dd->n_krcv_queues - 1);
14403 }
14404 
14405 static void init_user_fecn_handling(struct hfi1_devdata *dd,
14406 				    struct rsm_map_table *rmt)
14407 {
14408 	struct rsm_rule_data rrd;
14409 	u64 reg;
14410 	int i, idx, regoff, regidx;
14411 	u8 offset;
14412 
14413 	/* there needs to be enough room in the map table */
14414 	if (rmt->used + dd->num_user_contexts >= NUM_MAP_ENTRIES) {
14415 		dd_dev_err(dd, "User FECN handling disabled - too many user contexts allocated\n");
14416 		return;
14417 	}
14418 
14419 	/*
14420 	 * RSM will extract the destination context as an index into the
14421 	 * map table.  The destination contexts are a sequential block
14422 	 * in the range first_dyn_alloc_ctxt...num_rcv_contexts-1 (inclusive).
14423 	 * Map entries are accessed as offset + extracted value.  Adjust
14424 	 * the added offset so this sequence can be placed anywhere in
14425 	 * the table - as long as the entries themselves do not wrap.
14426 	 * There are only enough bits in offset for the table size, so
14427 	 * start with that to allow for a "negative" offset.
14428 	 */
14429 	offset = (u8)(NUM_MAP_ENTRIES + (int)rmt->used -
14430 						(int)dd->first_dyn_alloc_ctxt);
14431 
14432 	for (i = dd->first_dyn_alloc_ctxt, idx = rmt->used;
14433 				i < dd->num_rcv_contexts; i++, idx++) {
14434 		/* replace with identity mapping */
14435 		regoff = (idx % 8) * 8;
14436 		regidx = idx / 8;
14437 		reg = rmt->map[regidx];
14438 		reg &= ~(RCV_RSM_MAP_TABLE_RCV_CONTEXT_A_MASK << regoff);
14439 		reg |= (u64)i << regoff;
14440 		rmt->map[regidx] = reg;
14441 	}
14442 
14443 	/*
14444 	 * For RSM intercept of Expected FECN packets:
14445 	 * o packet type 0 - expected
14446 	 * o match on F (bit 95), using select/match 1, and
14447 	 * o match on SH (bit 133), using select/match 2.
14448 	 *
14449 	 * Use index 1 to extract the 8-bit receive context from DestQP
14450 	 * (start at bit 64).  Use that as the RSM map table index.
14451 	 */
14452 	rrd.offset = offset;
14453 	rrd.pkt_type = 0;
14454 	rrd.field1_off = 95;
14455 	rrd.field2_off = 133;
14456 	rrd.index1_off = 64;
14457 	rrd.index1_width = 8;
14458 	rrd.index2_off = 0;
14459 	rrd.index2_width = 0;
14460 	rrd.mask1 = 1;
14461 	rrd.value1 = 1;
14462 	rrd.mask2 = 1;
14463 	rrd.value2 = 1;
14464 
14465 	/* add rule 1 */
14466 	add_rsm_rule(dd, RSM_INS_FECN, &rrd);
14467 
14468 	rmt->used += dd->num_user_contexts;
14469 }
14470 
14471 /* Initialize RSM for VNIC */
14472 void hfi1_init_vnic_rsm(struct hfi1_devdata *dd)
14473 {
14474 	u8 i, j;
14475 	u8 ctx_id = 0;
14476 	u64 reg;
14477 	u32 regoff;
14478 	struct rsm_rule_data rrd;
14479 
14480 	if (hfi1_vnic_is_rsm_full(dd, NUM_VNIC_MAP_ENTRIES)) {
14481 		dd_dev_err(dd, "Vnic RSM disabled, rmt entries used = %d\n",
14482 			   dd->vnic.rmt_start);
14483 		return;
14484 	}
14485 
14486 	dev_dbg(&(dd)->pcidev->dev, "Vnic rsm start = %d, end %d\n",
14487 		dd->vnic.rmt_start,
14488 		dd->vnic.rmt_start + NUM_VNIC_MAP_ENTRIES);
14489 
14490 	/* Update RSM mapping table, 32 regs, 256 entries - 1 ctx per byte */
14491 	regoff = RCV_RSM_MAP_TABLE + (dd->vnic.rmt_start / 8) * 8;
14492 	reg = read_csr(dd, regoff);
14493 	for (i = 0; i < NUM_VNIC_MAP_ENTRIES; i++) {
14494 		/* Update map register with vnic context */
14495 		j = (dd->vnic.rmt_start + i) % 8;
14496 		reg &= ~(0xffllu << (j * 8));
14497 		reg |= (u64)dd->vnic.ctxt[ctx_id++]->ctxt << (j * 8);
14498 		/* Wrap up vnic ctx index */
14499 		ctx_id %= dd->vnic.num_ctxt;
14500 		/* Write back map register */
14501 		if (j == 7 || ((i + 1) == NUM_VNIC_MAP_ENTRIES)) {
14502 			dev_dbg(&(dd)->pcidev->dev,
14503 				"Vnic rsm map reg[%d] =0x%llx\n",
14504 				regoff - RCV_RSM_MAP_TABLE, reg);
14505 
14506 			write_csr(dd, regoff, reg);
14507 			regoff += 8;
14508 			if (i < (NUM_VNIC_MAP_ENTRIES - 1))
14509 				reg = read_csr(dd, regoff);
14510 		}
14511 	}
14512 
14513 	/* Add rule for vnic */
14514 	rrd.offset = dd->vnic.rmt_start;
14515 	rrd.pkt_type = 4;
14516 	/* Match 16B packets */
14517 	rrd.field1_off = L2_TYPE_MATCH_OFFSET;
14518 	rrd.mask1 = L2_TYPE_MASK;
14519 	rrd.value1 = L2_16B_VALUE;
14520 	/* Match ETH L4 packets */
14521 	rrd.field2_off = L4_TYPE_MATCH_OFFSET;
14522 	rrd.mask2 = L4_16B_TYPE_MASK;
14523 	rrd.value2 = L4_16B_ETH_VALUE;
14524 	/* Calc context from veswid and entropy */
14525 	rrd.index1_off = L4_16B_HDR_VESWID_OFFSET;
14526 	rrd.index1_width = ilog2(NUM_VNIC_MAP_ENTRIES);
14527 	rrd.index2_off = L2_16B_ENTROPY_OFFSET;
14528 	rrd.index2_width = ilog2(NUM_VNIC_MAP_ENTRIES);
14529 	add_rsm_rule(dd, RSM_INS_VNIC, &rrd);
14530 
14531 	/* Enable RSM if not already enabled */
14532 	add_rcvctrl(dd, RCV_CTRL_RCV_RSM_ENABLE_SMASK);
14533 }
14534 
14535 void hfi1_deinit_vnic_rsm(struct hfi1_devdata *dd)
14536 {
14537 	clear_rsm_rule(dd, RSM_INS_VNIC);
14538 
14539 	/* Disable RSM if used only by vnic */
14540 	if (dd->vnic.rmt_start == 0)
14541 		clear_rcvctrl(dd, RCV_CTRL_RCV_RSM_ENABLE_SMASK);
14542 }
14543 
14544 static void init_rxe(struct hfi1_devdata *dd)
14545 {
14546 	struct rsm_map_table *rmt;
14547 	u64 val;
14548 
14549 	/* enable all receive errors */
14550 	write_csr(dd, RCV_ERR_MASK, ~0ull);
14551 
14552 	rmt = alloc_rsm_map_table(dd);
14553 	/* set up QOS, including the QPN map table */
14554 	init_qos(dd, rmt);
14555 	init_user_fecn_handling(dd, rmt);
14556 	complete_rsm_map_table(dd, rmt);
14557 	/* record number of used rsm map entries for vnic */
14558 	dd->vnic.rmt_start = rmt->used;
14559 	kfree(rmt);
14560 
14561 	/*
14562 	 * make sure RcvCtrl.RcvWcb <= PCIe Device Control
14563 	 * Register Max_Payload_Size (PCI_EXP_DEVCTL in Linux PCIe config
14564 	 * space, PciCfgCap2.MaxPayloadSize in HFI).  There is only one
14565 	 * invalid configuration: RcvCtrl.RcvWcb set to its max of 256 and
14566 	 * Max_PayLoad_Size set to its minimum of 128.
14567 	 *
14568 	 * Presently, RcvCtrl.RcvWcb is not modified from its default of 0
14569 	 * (64 bytes).  Max_Payload_Size is possibly modified upward in
14570 	 * tune_pcie_caps() which is called after this routine.
14571 	 */
14572 
14573 	/* Have 16 bytes (4DW) of bypass header available in header queue */
14574 	val = read_csr(dd, RCV_BYPASS);
14575 	val |= (4ull << 16);
14576 	write_csr(dd, RCV_BYPASS, val);
14577 }
14578 
14579 static void init_other(struct hfi1_devdata *dd)
14580 {
14581 	/* enable all CCE errors */
14582 	write_csr(dd, CCE_ERR_MASK, ~0ull);
14583 	/* enable *some* Misc errors */
14584 	write_csr(dd, MISC_ERR_MASK, DRIVER_MISC_MASK);
14585 	/* enable all DC errors, except LCB */
14586 	write_csr(dd, DCC_ERR_FLG_EN, ~0ull);
14587 	write_csr(dd, DC_DC8051_ERR_EN, ~0ull);
14588 }
14589 
14590 /*
14591  * Fill out the given AU table using the given CU.  A CU is defined in terms
14592  * AUs.  The table is a an encoding: given the index, how many AUs does that
14593  * represent?
14594  *
14595  * NOTE: Assumes that the register layout is the same for the
14596  * local and remote tables.
14597  */
14598 static void assign_cm_au_table(struct hfi1_devdata *dd, u32 cu,
14599 			       u32 csr0to3, u32 csr4to7)
14600 {
14601 	write_csr(dd, csr0to3,
14602 		  0ull << SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE0_SHIFT |
14603 		  1ull << SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE1_SHIFT |
14604 		  2ull * cu <<
14605 		  SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE2_SHIFT |
14606 		  4ull * cu <<
14607 		  SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE3_SHIFT);
14608 	write_csr(dd, csr4to7,
14609 		  8ull * cu <<
14610 		  SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE4_SHIFT |
14611 		  16ull * cu <<
14612 		  SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE5_SHIFT |
14613 		  32ull * cu <<
14614 		  SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE6_SHIFT |
14615 		  64ull * cu <<
14616 		  SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE7_SHIFT);
14617 }
14618 
14619 static void assign_local_cm_au_table(struct hfi1_devdata *dd, u8 vcu)
14620 {
14621 	assign_cm_au_table(dd, vcu_to_cu(vcu), SEND_CM_LOCAL_AU_TABLE0_TO3,
14622 			   SEND_CM_LOCAL_AU_TABLE4_TO7);
14623 }
14624 
14625 void assign_remote_cm_au_table(struct hfi1_devdata *dd, u8 vcu)
14626 {
14627 	assign_cm_au_table(dd, vcu_to_cu(vcu), SEND_CM_REMOTE_AU_TABLE0_TO3,
14628 			   SEND_CM_REMOTE_AU_TABLE4_TO7);
14629 }
14630 
14631 static void init_txe(struct hfi1_devdata *dd)
14632 {
14633 	int i;
14634 
14635 	/* enable all PIO, SDMA, general, and Egress errors */
14636 	write_csr(dd, SEND_PIO_ERR_MASK, ~0ull);
14637 	write_csr(dd, SEND_DMA_ERR_MASK, ~0ull);
14638 	write_csr(dd, SEND_ERR_MASK, ~0ull);
14639 	write_csr(dd, SEND_EGRESS_ERR_MASK, ~0ull);
14640 
14641 	/* enable all per-context and per-SDMA engine errors */
14642 	for (i = 0; i < dd->chip_send_contexts; i++)
14643 		write_kctxt_csr(dd, i, SEND_CTXT_ERR_MASK, ~0ull);
14644 	for (i = 0; i < dd->chip_sdma_engines; i++)
14645 		write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_MASK, ~0ull);
14646 
14647 	/* set the local CU to AU mapping */
14648 	assign_local_cm_au_table(dd, dd->vcu);
14649 
14650 	/*
14651 	 * Set reasonable default for Credit Return Timer
14652 	 * Don't set on Simulator - causes it to choke.
14653 	 */
14654 	if (dd->icode != ICODE_FUNCTIONAL_SIMULATOR)
14655 		write_csr(dd, SEND_CM_TIMER_CTRL, HFI1_CREDIT_RETURN_RATE);
14656 }
14657 
14658 int hfi1_set_ctxt_jkey(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd,
14659 		       u16 jkey)
14660 {
14661 	u8 hw_ctxt;
14662 	u64 reg;
14663 
14664 	if (!rcd || !rcd->sc)
14665 		return -EINVAL;
14666 
14667 	hw_ctxt = rcd->sc->hw_context;
14668 	reg = SEND_CTXT_CHECK_JOB_KEY_MASK_SMASK | /* mask is always 1's */
14669 		((jkey & SEND_CTXT_CHECK_JOB_KEY_VALUE_MASK) <<
14670 		 SEND_CTXT_CHECK_JOB_KEY_VALUE_SHIFT);
14671 	/* JOB_KEY_ALLOW_PERMISSIVE is not allowed by default */
14672 	if (HFI1_CAP_KGET_MASK(rcd->flags, ALLOW_PERM_JKEY))
14673 		reg |= SEND_CTXT_CHECK_JOB_KEY_ALLOW_PERMISSIVE_SMASK;
14674 	write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_JOB_KEY, reg);
14675 	/*
14676 	 * Enable send-side J_KEY integrity check, unless this is A0 h/w
14677 	 */
14678 	if (!is_ax(dd)) {
14679 		reg = read_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE);
14680 		reg |= SEND_CTXT_CHECK_ENABLE_CHECK_JOB_KEY_SMASK;
14681 		write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE, reg);
14682 	}
14683 
14684 	/* Enable J_KEY check on receive context. */
14685 	reg = RCV_KEY_CTRL_JOB_KEY_ENABLE_SMASK |
14686 		((jkey & RCV_KEY_CTRL_JOB_KEY_VALUE_MASK) <<
14687 		 RCV_KEY_CTRL_JOB_KEY_VALUE_SHIFT);
14688 	write_kctxt_csr(dd, rcd->ctxt, RCV_KEY_CTRL, reg);
14689 
14690 	return 0;
14691 }
14692 
14693 int hfi1_clear_ctxt_jkey(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd)
14694 {
14695 	u8 hw_ctxt;
14696 	u64 reg;
14697 
14698 	if (!rcd || !rcd->sc)
14699 		return -EINVAL;
14700 
14701 	hw_ctxt = rcd->sc->hw_context;
14702 	write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_JOB_KEY, 0);
14703 	/*
14704 	 * Disable send-side J_KEY integrity check, unless this is A0 h/w.
14705 	 * This check would not have been enabled for A0 h/w, see
14706 	 * set_ctxt_jkey().
14707 	 */
14708 	if (!is_ax(dd)) {
14709 		reg = read_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE);
14710 		reg &= ~SEND_CTXT_CHECK_ENABLE_CHECK_JOB_KEY_SMASK;
14711 		write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE, reg);
14712 	}
14713 	/* Turn off the J_KEY on the receive side */
14714 	write_kctxt_csr(dd, rcd->ctxt, RCV_KEY_CTRL, 0);
14715 
14716 	return 0;
14717 }
14718 
14719 int hfi1_set_ctxt_pkey(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd,
14720 		       u16 pkey)
14721 {
14722 	u8 hw_ctxt;
14723 	u64 reg;
14724 
14725 	if (!rcd || !rcd->sc)
14726 		return -EINVAL;
14727 
14728 	hw_ctxt = rcd->sc->hw_context;
14729 	reg = ((u64)pkey & SEND_CTXT_CHECK_PARTITION_KEY_VALUE_MASK) <<
14730 		SEND_CTXT_CHECK_PARTITION_KEY_VALUE_SHIFT;
14731 	write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_PARTITION_KEY, reg);
14732 	reg = read_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE);
14733 	reg |= SEND_CTXT_CHECK_ENABLE_CHECK_PARTITION_KEY_SMASK;
14734 	reg &= ~SEND_CTXT_CHECK_ENABLE_DISALLOW_KDETH_PACKETS_SMASK;
14735 	write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE, reg);
14736 
14737 	return 0;
14738 }
14739 
14740 int hfi1_clear_ctxt_pkey(struct hfi1_devdata *dd, struct hfi1_ctxtdata *ctxt)
14741 {
14742 	u8 hw_ctxt;
14743 	u64 reg;
14744 
14745 	if (!ctxt || !ctxt->sc)
14746 		return -EINVAL;
14747 
14748 	hw_ctxt = ctxt->sc->hw_context;
14749 	reg = read_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE);
14750 	reg &= ~SEND_CTXT_CHECK_ENABLE_CHECK_PARTITION_KEY_SMASK;
14751 	write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE, reg);
14752 	write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_PARTITION_KEY, 0);
14753 
14754 	return 0;
14755 }
14756 
14757 /*
14758  * Start doing the clean up the the chip. Our clean up happens in multiple
14759  * stages and this is just the first.
14760  */
14761 void hfi1_start_cleanup(struct hfi1_devdata *dd)
14762 {
14763 	aspm_exit(dd);
14764 	free_cntrs(dd);
14765 	free_rcverr(dd);
14766 	clean_up_interrupts(dd);
14767 	finish_chip_resources(dd);
14768 }
14769 
14770 #define HFI_BASE_GUID(dev) \
14771 	((dev)->base_guid & ~(1ULL << GUID_HFI_INDEX_SHIFT))
14772 
14773 /*
14774  * Information can be shared between the two HFIs on the same ASIC
14775  * in the same OS.  This function finds the peer device and sets
14776  * up a shared structure.
14777  */
14778 static int init_asic_data(struct hfi1_devdata *dd)
14779 {
14780 	unsigned long flags;
14781 	struct hfi1_devdata *tmp, *peer = NULL;
14782 	struct hfi1_asic_data *asic_data;
14783 	int ret = 0;
14784 
14785 	/* pre-allocate the asic structure in case we are the first device */
14786 	asic_data = kzalloc(sizeof(*dd->asic_data), GFP_KERNEL);
14787 	if (!asic_data)
14788 		return -ENOMEM;
14789 
14790 	spin_lock_irqsave(&hfi1_devs_lock, flags);
14791 	/* Find our peer device */
14792 	list_for_each_entry(tmp, &hfi1_dev_list, list) {
14793 		if ((HFI_BASE_GUID(dd) == HFI_BASE_GUID(tmp)) &&
14794 		    dd->unit != tmp->unit) {
14795 			peer = tmp;
14796 			break;
14797 		}
14798 	}
14799 
14800 	if (peer) {
14801 		/* use already allocated structure */
14802 		dd->asic_data = peer->asic_data;
14803 		kfree(asic_data);
14804 	} else {
14805 		dd->asic_data = asic_data;
14806 		mutex_init(&dd->asic_data->asic_resource_mutex);
14807 	}
14808 	dd->asic_data->dds[dd->hfi1_id] = dd; /* self back-pointer */
14809 	spin_unlock_irqrestore(&hfi1_devs_lock, flags);
14810 
14811 	/* first one through - set up i2c devices */
14812 	if (!peer)
14813 		ret = set_up_i2c(dd, dd->asic_data);
14814 
14815 	return ret;
14816 }
14817 
14818 /*
14819  * Set dd->boardname.  Use a generic name if a name is not returned from
14820  * EFI variable space.
14821  *
14822  * Return 0 on success, -ENOMEM if space could not be allocated.
14823  */
14824 static int obtain_boardname(struct hfi1_devdata *dd)
14825 {
14826 	/* generic board description */
14827 	const char generic[] =
14828 		"Intel Omni-Path Host Fabric Interface Adapter 100 Series";
14829 	unsigned long size;
14830 	int ret;
14831 
14832 	ret = read_hfi1_efi_var(dd, "description", &size,
14833 				(void **)&dd->boardname);
14834 	if (ret) {
14835 		dd_dev_info(dd, "Board description not found\n");
14836 		/* use generic description */
14837 		dd->boardname = kstrdup(generic, GFP_KERNEL);
14838 		if (!dd->boardname)
14839 			return -ENOMEM;
14840 	}
14841 	return 0;
14842 }
14843 
14844 /*
14845  * Check the interrupt registers to make sure that they are mapped correctly.
14846  * It is intended to help user identify any mismapping by VMM when the driver
14847  * is running in a VM. This function should only be called before interrupt
14848  * is set up properly.
14849  *
14850  * Return 0 on success, -EINVAL on failure.
14851  */
14852 static int check_int_registers(struct hfi1_devdata *dd)
14853 {
14854 	u64 reg;
14855 	u64 all_bits = ~(u64)0;
14856 	u64 mask;
14857 
14858 	/* Clear CceIntMask[0] to avoid raising any interrupts */
14859 	mask = read_csr(dd, CCE_INT_MASK);
14860 	write_csr(dd, CCE_INT_MASK, 0ull);
14861 	reg = read_csr(dd, CCE_INT_MASK);
14862 	if (reg)
14863 		goto err_exit;
14864 
14865 	/* Clear all interrupt status bits */
14866 	write_csr(dd, CCE_INT_CLEAR, all_bits);
14867 	reg = read_csr(dd, CCE_INT_STATUS);
14868 	if (reg)
14869 		goto err_exit;
14870 
14871 	/* Set all interrupt status bits */
14872 	write_csr(dd, CCE_INT_FORCE, all_bits);
14873 	reg = read_csr(dd, CCE_INT_STATUS);
14874 	if (reg != all_bits)
14875 		goto err_exit;
14876 
14877 	/* Restore the interrupt mask */
14878 	write_csr(dd, CCE_INT_CLEAR, all_bits);
14879 	write_csr(dd, CCE_INT_MASK, mask);
14880 
14881 	return 0;
14882 err_exit:
14883 	write_csr(dd, CCE_INT_MASK, mask);
14884 	dd_dev_err(dd, "Interrupt registers not properly mapped by VMM\n");
14885 	return -EINVAL;
14886 }
14887 
14888 /**
14889  * Allocate and initialize the device structure for the hfi.
14890  * @dev: the pci_dev for hfi1_ib device
14891  * @ent: pci_device_id struct for this dev
14892  *
14893  * Also allocates, initializes, and returns the devdata struct for this
14894  * device instance
14895  *
14896  * This is global, and is called directly at init to set up the
14897  * chip-specific function pointers for later use.
14898  */
14899 struct hfi1_devdata *hfi1_init_dd(struct pci_dev *pdev,
14900 				  const struct pci_device_id *ent)
14901 {
14902 	struct hfi1_devdata *dd;
14903 	struct hfi1_pportdata *ppd;
14904 	u64 reg;
14905 	int i, ret;
14906 	static const char * const inames[] = { /* implementation names */
14907 		"RTL silicon",
14908 		"RTL VCS simulation",
14909 		"RTL FPGA emulation",
14910 		"Functional simulator"
14911 	};
14912 	struct pci_dev *parent = pdev->bus->self;
14913 
14914 	dd = hfi1_alloc_devdata(pdev, NUM_IB_PORTS *
14915 				sizeof(struct hfi1_pportdata));
14916 	if (IS_ERR(dd))
14917 		goto bail;
14918 	ppd = dd->pport;
14919 	for (i = 0; i < dd->num_pports; i++, ppd++) {
14920 		int vl;
14921 		/* init common fields */
14922 		hfi1_init_pportdata(pdev, ppd, dd, 0, 1);
14923 		/* DC supports 4 link widths */
14924 		ppd->link_width_supported =
14925 			OPA_LINK_WIDTH_1X | OPA_LINK_WIDTH_2X |
14926 			OPA_LINK_WIDTH_3X | OPA_LINK_WIDTH_4X;
14927 		ppd->link_width_downgrade_supported =
14928 			ppd->link_width_supported;
14929 		/* start out enabling only 4X */
14930 		ppd->link_width_enabled = OPA_LINK_WIDTH_4X;
14931 		ppd->link_width_downgrade_enabled =
14932 					ppd->link_width_downgrade_supported;
14933 		/* link width active is 0 when link is down */
14934 		/* link width downgrade active is 0 when link is down */
14935 
14936 		if (num_vls < HFI1_MIN_VLS_SUPPORTED ||
14937 		    num_vls > HFI1_MAX_VLS_SUPPORTED) {
14938 			hfi1_early_err(&pdev->dev,
14939 				       "Invalid num_vls %u, using %u VLs\n",
14940 				    num_vls, HFI1_MAX_VLS_SUPPORTED);
14941 			num_vls = HFI1_MAX_VLS_SUPPORTED;
14942 		}
14943 		ppd->vls_supported = num_vls;
14944 		ppd->vls_operational = ppd->vls_supported;
14945 		/* Set the default MTU. */
14946 		for (vl = 0; vl < num_vls; vl++)
14947 			dd->vld[vl].mtu = hfi1_max_mtu;
14948 		dd->vld[15].mtu = MAX_MAD_PACKET;
14949 		/*
14950 		 * Set the initial values to reasonable default, will be set
14951 		 * for real when link is up.
14952 		 */
14953 		ppd->overrun_threshold = 0x4;
14954 		ppd->phy_error_threshold = 0xf;
14955 		ppd->port_crc_mode_enabled = link_crc_mask;
14956 		/* initialize supported LTP CRC mode */
14957 		ppd->port_ltp_crc_mode = cap_to_port_ltp(link_crc_mask) << 8;
14958 		/* initialize enabled LTP CRC mode */
14959 		ppd->port_ltp_crc_mode |= cap_to_port_ltp(link_crc_mask) << 4;
14960 		/* start in offline */
14961 		ppd->host_link_state = HLS_DN_OFFLINE;
14962 		init_vl_arb_caches(ppd);
14963 	}
14964 
14965 	dd->link_default = HLS_DN_POLL;
14966 
14967 	/*
14968 	 * Do remaining PCIe setup and save PCIe values in dd.
14969 	 * Any error printing is already done by the init code.
14970 	 * On return, we have the chip mapped.
14971 	 */
14972 	ret = hfi1_pcie_ddinit(dd, pdev);
14973 	if (ret < 0)
14974 		goto bail_free;
14975 
14976 	/* Save PCI space registers to rewrite after device reset */
14977 	ret = save_pci_variables(dd);
14978 	if (ret < 0)
14979 		goto bail_cleanup;
14980 
14981 	/* verify that reads actually work, save revision for reset check */
14982 	dd->revision = read_csr(dd, CCE_REVISION);
14983 	if (dd->revision == ~(u64)0) {
14984 		dd_dev_err(dd, "cannot read chip CSRs\n");
14985 		ret = -EINVAL;
14986 		goto bail_cleanup;
14987 	}
14988 	dd->majrev = (dd->revision >> CCE_REVISION_CHIP_REV_MAJOR_SHIFT)
14989 			& CCE_REVISION_CHIP_REV_MAJOR_MASK;
14990 	dd->minrev = (dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT)
14991 			& CCE_REVISION_CHIP_REV_MINOR_MASK;
14992 
14993 	/*
14994 	 * Check interrupt registers mapping if the driver has no access to
14995 	 * the upstream component. In this case, it is likely that the driver
14996 	 * is running in a VM.
14997 	 */
14998 	if (!parent) {
14999 		ret = check_int_registers(dd);
15000 		if (ret)
15001 			goto bail_cleanup;
15002 	}
15003 
15004 	/*
15005 	 * obtain the hardware ID - NOT related to unit, which is a
15006 	 * software enumeration
15007 	 */
15008 	reg = read_csr(dd, CCE_REVISION2);
15009 	dd->hfi1_id = (reg >> CCE_REVISION2_HFI_ID_SHIFT)
15010 					& CCE_REVISION2_HFI_ID_MASK;
15011 	/* the variable size will remove unwanted bits */
15012 	dd->icode = reg >> CCE_REVISION2_IMPL_CODE_SHIFT;
15013 	dd->irev = reg >> CCE_REVISION2_IMPL_REVISION_SHIFT;
15014 	dd_dev_info(dd, "Implementation: %s, revision 0x%x\n",
15015 		    dd->icode < ARRAY_SIZE(inames) ?
15016 		    inames[dd->icode] : "unknown", (int)dd->irev);
15017 
15018 	/* speeds the hardware can support */
15019 	dd->pport->link_speed_supported = OPA_LINK_SPEED_25G;
15020 	/* speeds allowed to run at */
15021 	dd->pport->link_speed_enabled = dd->pport->link_speed_supported;
15022 	/* give a reasonable active value, will be set on link up */
15023 	dd->pport->link_speed_active = OPA_LINK_SPEED_25G;
15024 
15025 	dd->chip_rcv_contexts = read_csr(dd, RCV_CONTEXTS);
15026 	dd->chip_send_contexts = read_csr(dd, SEND_CONTEXTS);
15027 	dd->chip_sdma_engines = read_csr(dd, SEND_DMA_ENGINES);
15028 	dd->chip_pio_mem_size = read_csr(dd, SEND_PIO_MEM_SIZE);
15029 	dd->chip_sdma_mem_size = read_csr(dd, SEND_DMA_MEM_SIZE);
15030 	/* fix up link widths for emulation _p */
15031 	ppd = dd->pport;
15032 	if (dd->icode == ICODE_FPGA_EMULATION && is_emulator_p(dd)) {
15033 		ppd->link_width_supported =
15034 			ppd->link_width_enabled =
15035 			ppd->link_width_downgrade_supported =
15036 			ppd->link_width_downgrade_enabled =
15037 				OPA_LINK_WIDTH_1X;
15038 	}
15039 	/* insure num_vls isn't larger than number of sdma engines */
15040 	if (HFI1_CAP_IS_KSET(SDMA) && num_vls > dd->chip_sdma_engines) {
15041 		dd_dev_err(dd, "num_vls %u too large, using %u VLs\n",
15042 			   num_vls, dd->chip_sdma_engines);
15043 		num_vls = dd->chip_sdma_engines;
15044 		ppd->vls_supported = dd->chip_sdma_engines;
15045 		ppd->vls_operational = ppd->vls_supported;
15046 	}
15047 
15048 	/*
15049 	 * Convert the ns parameter to the 64 * cclocks used in the CSR.
15050 	 * Limit the max if larger than the field holds.  If timeout is
15051 	 * non-zero, then the calculated field will be at least 1.
15052 	 *
15053 	 * Must be after icode is set up - the cclock rate depends
15054 	 * on knowing the hardware being used.
15055 	 */
15056 	dd->rcv_intr_timeout_csr = ns_to_cclock(dd, rcv_intr_timeout) / 64;
15057 	if (dd->rcv_intr_timeout_csr >
15058 			RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_MASK)
15059 		dd->rcv_intr_timeout_csr =
15060 			RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_MASK;
15061 	else if (dd->rcv_intr_timeout_csr == 0 && rcv_intr_timeout)
15062 		dd->rcv_intr_timeout_csr = 1;
15063 
15064 	/* needs to be done before we look for the peer device */
15065 	read_guid(dd);
15066 
15067 	/* set up shared ASIC data with peer device */
15068 	ret = init_asic_data(dd);
15069 	if (ret)
15070 		goto bail_cleanup;
15071 
15072 	/* obtain chip sizes, reset chip CSRs */
15073 	ret = init_chip(dd);
15074 	if (ret)
15075 		goto bail_cleanup;
15076 
15077 	/* read in the PCIe link speed information */
15078 	ret = pcie_speeds(dd);
15079 	if (ret)
15080 		goto bail_cleanup;
15081 
15082 	/* call before get_platform_config(), after init_chip_resources() */
15083 	ret = eprom_init(dd);
15084 	if (ret)
15085 		goto bail_free_rcverr;
15086 
15087 	/* Needs to be called before hfi1_firmware_init */
15088 	get_platform_config(dd);
15089 
15090 	/* read in firmware */
15091 	ret = hfi1_firmware_init(dd);
15092 	if (ret)
15093 		goto bail_cleanup;
15094 
15095 	/*
15096 	 * In general, the PCIe Gen3 transition must occur after the
15097 	 * chip has been idled (so it won't initiate any PCIe transactions
15098 	 * e.g. an interrupt) and before the driver changes any registers
15099 	 * (the transition will reset the registers).
15100 	 *
15101 	 * In particular, place this call after:
15102 	 * - init_chip()     - the chip will not initiate any PCIe transactions
15103 	 * - pcie_speeds()   - reads the current link speed
15104 	 * - hfi1_firmware_init() - the needed firmware is ready to be
15105 	 *			    downloaded
15106 	 */
15107 	ret = do_pcie_gen3_transition(dd);
15108 	if (ret)
15109 		goto bail_cleanup;
15110 
15111 	/* start setting dd values and adjusting CSRs */
15112 	init_early_variables(dd);
15113 
15114 	parse_platform_config(dd);
15115 
15116 	ret = obtain_boardname(dd);
15117 	if (ret)
15118 		goto bail_cleanup;
15119 
15120 	snprintf(dd->boardversion, BOARD_VERS_MAX,
15121 		 "ChipABI %u.%u, ChipRev %u.%u, SW Compat %llu\n",
15122 		 HFI1_CHIP_VERS_MAJ, HFI1_CHIP_VERS_MIN,
15123 		 (u32)dd->majrev,
15124 		 (u32)dd->minrev,
15125 		 (dd->revision >> CCE_REVISION_SW_SHIFT)
15126 		    & CCE_REVISION_SW_MASK);
15127 
15128 	ret = set_up_context_variables(dd);
15129 	if (ret)
15130 		goto bail_cleanup;
15131 
15132 	/* set initial RXE CSRs */
15133 	init_rxe(dd);
15134 	/* set initial TXE CSRs */
15135 	init_txe(dd);
15136 	/* set initial non-RXE, non-TXE CSRs */
15137 	init_other(dd);
15138 	/* set up KDETH QP prefix in both RX and TX CSRs */
15139 	init_kdeth_qp(dd);
15140 
15141 	ret = hfi1_dev_affinity_init(dd);
15142 	if (ret)
15143 		goto bail_cleanup;
15144 
15145 	/* send contexts must be set up before receive contexts */
15146 	ret = init_send_contexts(dd);
15147 	if (ret)
15148 		goto bail_cleanup;
15149 
15150 	ret = hfi1_create_kctxts(dd);
15151 	if (ret)
15152 		goto bail_cleanup;
15153 
15154 	/*
15155 	 * Initialize aspm, to be done after gen3 transition and setting up
15156 	 * contexts and before enabling interrupts
15157 	 */
15158 	aspm_init(dd);
15159 
15160 	dd->rcvhdrsize = DEFAULT_RCVHDRSIZE;
15161 	/*
15162 	 * rcd[0] is guaranteed to be valid by this point. Also, all
15163 	 * context are using the same value, as per the module parameter.
15164 	 */
15165 	dd->rhf_offset = dd->rcd[0]->rcvhdrqentsize - sizeof(u64) / sizeof(u32);
15166 
15167 	ret = init_pervl_scs(dd);
15168 	if (ret)
15169 		goto bail_cleanup;
15170 
15171 	/* sdma init */
15172 	for (i = 0; i < dd->num_pports; ++i) {
15173 		ret = sdma_init(dd, i);
15174 		if (ret)
15175 			goto bail_cleanup;
15176 	}
15177 
15178 	/* use contexts created by hfi1_create_kctxts */
15179 	ret = set_up_interrupts(dd);
15180 	if (ret)
15181 		goto bail_cleanup;
15182 
15183 	/* set up LCB access - must be after set_up_interrupts() */
15184 	init_lcb_access(dd);
15185 
15186 	/*
15187 	 * Serial number is created from the base guid:
15188 	 * [27:24] = base guid [38:35]
15189 	 * [23: 0] = base guid [23: 0]
15190 	 */
15191 	snprintf(dd->serial, SERIAL_MAX, "0x%08llx\n",
15192 		 (dd->base_guid & 0xFFFFFF) |
15193 		     ((dd->base_guid >> 11) & 0xF000000));
15194 
15195 	dd->oui1 = dd->base_guid >> 56 & 0xFF;
15196 	dd->oui2 = dd->base_guid >> 48 & 0xFF;
15197 	dd->oui3 = dd->base_guid >> 40 & 0xFF;
15198 
15199 	ret = load_firmware(dd); /* asymmetric with dispose_firmware() */
15200 	if (ret)
15201 		goto bail_clear_intr;
15202 
15203 	thermal_init(dd);
15204 
15205 	ret = init_cntrs(dd);
15206 	if (ret)
15207 		goto bail_clear_intr;
15208 
15209 	ret = init_rcverr(dd);
15210 	if (ret)
15211 		goto bail_free_cntrs;
15212 
15213 	init_completion(&dd->user_comp);
15214 
15215 	/* The user refcount starts with one to inidicate an active device */
15216 	atomic_set(&dd->user_refcount, 1);
15217 
15218 	goto bail;
15219 
15220 bail_free_rcverr:
15221 	free_rcverr(dd);
15222 bail_free_cntrs:
15223 	free_cntrs(dd);
15224 bail_clear_intr:
15225 	clean_up_interrupts(dd);
15226 bail_cleanup:
15227 	hfi1_pcie_ddcleanup(dd);
15228 bail_free:
15229 	hfi1_free_devdata(dd);
15230 	dd = ERR_PTR(ret);
15231 bail:
15232 	return dd;
15233 }
15234 
15235 static u16 delay_cycles(struct hfi1_pportdata *ppd, u32 desired_egress_rate,
15236 			u32 dw_len)
15237 {
15238 	u32 delta_cycles;
15239 	u32 current_egress_rate = ppd->current_egress_rate;
15240 	/* rates here are in units of 10^6 bits/sec */
15241 
15242 	if (desired_egress_rate == -1)
15243 		return 0; /* shouldn't happen */
15244 
15245 	if (desired_egress_rate >= current_egress_rate)
15246 		return 0; /* we can't help go faster, only slower */
15247 
15248 	delta_cycles = egress_cycles(dw_len * 4, desired_egress_rate) -
15249 			egress_cycles(dw_len * 4, current_egress_rate);
15250 
15251 	return (u16)delta_cycles;
15252 }
15253 
15254 /**
15255  * create_pbc - build a pbc for transmission
15256  * @flags: special case flags or-ed in built pbc
15257  * @srate: static rate
15258  * @vl: vl
15259  * @dwlen: dword length (header words + data words + pbc words)
15260  *
15261  * Create a PBC with the given flags, rate, VL, and length.
15262  *
15263  * NOTE: The PBC created will not insert any HCRC - all callers but one are
15264  * for verbs, which does not use this PSM feature.  The lone other caller
15265  * is for the diagnostic interface which calls this if the user does not
15266  * supply their own PBC.
15267  */
15268 u64 create_pbc(struct hfi1_pportdata *ppd, u64 flags, int srate_mbs, u32 vl,
15269 	       u32 dw_len)
15270 {
15271 	u64 pbc, delay = 0;
15272 
15273 	if (unlikely(srate_mbs))
15274 		delay = delay_cycles(ppd, srate_mbs, dw_len);
15275 
15276 	pbc = flags
15277 		| (delay << PBC_STATIC_RATE_CONTROL_COUNT_SHIFT)
15278 		| ((u64)PBC_IHCRC_NONE << PBC_INSERT_HCRC_SHIFT)
15279 		| (vl & PBC_VL_MASK) << PBC_VL_SHIFT
15280 		| (dw_len & PBC_LENGTH_DWS_MASK)
15281 			<< PBC_LENGTH_DWS_SHIFT;
15282 
15283 	return pbc;
15284 }
15285 
15286 #define SBUS_THERMAL    0x4f
15287 #define SBUS_THERM_MONITOR_MODE 0x1
15288 
15289 #define THERM_FAILURE(dev, ret, reason) \
15290 	dd_dev_err((dd),						\
15291 		   "Thermal sensor initialization failed: %s (%d)\n",	\
15292 		   (reason), (ret))
15293 
15294 /*
15295  * Initialize the thermal sensor.
15296  *
15297  * After initialization, enable polling of thermal sensor through
15298  * SBus interface. In order for this to work, the SBus Master
15299  * firmware has to be loaded due to the fact that the HW polling
15300  * logic uses SBus interrupts, which are not supported with
15301  * default firmware. Otherwise, no data will be returned through
15302  * the ASIC_STS_THERM CSR.
15303  */
15304 static int thermal_init(struct hfi1_devdata *dd)
15305 {
15306 	int ret = 0;
15307 
15308 	if (dd->icode != ICODE_RTL_SILICON ||
15309 	    check_chip_resource(dd, CR_THERM_INIT, NULL))
15310 		return ret;
15311 
15312 	ret = acquire_chip_resource(dd, CR_SBUS, SBUS_TIMEOUT);
15313 	if (ret) {
15314 		THERM_FAILURE(dd, ret, "Acquire SBus");
15315 		return ret;
15316 	}
15317 
15318 	dd_dev_info(dd, "Initializing thermal sensor\n");
15319 	/* Disable polling of thermal readings */
15320 	write_csr(dd, ASIC_CFG_THERM_POLL_EN, 0x0);
15321 	msleep(100);
15322 	/* Thermal Sensor Initialization */
15323 	/*    Step 1: Reset the Thermal SBus Receiver */
15324 	ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0,
15325 				RESET_SBUS_RECEIVER, 0);
15326 	if (ret) {
15327 		THERM_FAILURE(dd, ret, "Bus Reset");
15328 		goto done;
15329 	}
15330 	/*    Step 2: Set Reset bit in Thermal block */
15331 	ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0,
15332 				WRITE_SBUS_RECEIVER, 0x1);
15333 	if (ret) {
15334 		THERM_FAILURE(dd, ret, "Therm Block Reset");
15335 		goto done;
15336 	}
15337 	/*    Step 3: Write clock divider value (100MHz -> 2MHz) */
15338 	ret = sbus_request_slow(dd, SBUS_THERMAL, 0x1,
15339 				WRITE_SBUS_RECEIVER, 0x32);
15340 	if (ret) {
15341 		THERM_FAILURE(dd, ret, "Write Clock Div");
15342 		goto done;
15343 	}
15344 	/*    Step 4: Select temperature mode */
15345 	ret = sbus_request_slow(dd, SBUS_THERMAL, 0x3,
15346 				WRITE_SBUS_RECEIVER,
15347 				SBUS_THERM_MONITOR_MODE);
15348 	if (ret) {
15349 		THERM_FAILURE(dd, ret, "Write Mode Sel");
15350 		goto done;
15351 	}
15352 	/*    Step 5: De-assert block reset and start conversion */
15353 	ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0,
15354 				WRITE_SBUS_RECEIVER, 0x2);
15355 	if (ret) {
15356 		THERM_FAILURE(dd, ret, "Write Reset Deassert");
15357 		goto done;
15358 	}
15359 	/*    Step 5.1: Wait for first conversion (21.5ms per spec) */
15360 	msleep(22);
15361 
15362 	/* Enable polling of thermal readings */
15363 	write_csr(dd, ASIC_CFG_THERM_POLL_EN, 0x1);
15364 
15365 	/* Set initialized flag */
15366 	ret = acquire_chip_resource(dd, CR_THERM_INIT, 0);
15367 	if (ret)
15368 		THERM_FAILURE(dd, ret, "Unable to set thermal init flag");
15369 
15370 done:
15371 	release_chip_resource(dd, CR_SBUS);
15372 	return ret;
15373 }
15374 
15375 static void handle_temp_err(struct hfi1_devdata *dd)
15376 {
15377 	struct hfi1_pportdata *ppd = &dd->pport[0];
15378 	/*
15379 	 * Thermal Critical Interrupt
15380 	 * Put the device into forced freeze mode, take link down to
15381 	 * offline, and put DC into reset.
15382 	 */
15383 	dd_dev_emerg(dd,
15384 		     "Critical temperature reached! Forcing device into freeze mode!\n");
15385 	dd->flags |= HFI1_FORCED_FREEZE;
15386 	start_freeze_handling(ppd, FREEZE_SELF | FREEZE_ABORT);
15387 	/*
15388 	 * Shut DC down as much and as quickly as possible.
15389 	 *
15390 	 * Step 1: Take the link down to OFFLINE. This will cause the
15391 	 *         8051 to put the Serdes in reset. However, we don't want to
15392 	 *         go through the entire link state machine since we want to
15393 	 *         shutdown ASAP. Furthermore, this is not a graceful shutdown
15394 	 *         but rather an attempt to save the chip.
15395 	 *         Code below is almost the same as quiet_serdes() but avoids
15396 	 *         all the extra work and the sleeps.
15397 	 */
15398 	ppd->driver_link_ready = 0;
15399 	ppd->link_enabled = 0;
15400 	set_physical_link_state(dd, (OPA_LINKDOWN_REASON_SMA_DISABLED << 8) |
15401 				PLS_OFFLINE);
15402 	/*
15403 	 * Step 2: Shutdown LCB and 8051
15404 	 *         After shutdown, do not restore DC_CFG_RESET value.
15405 	 */
15406 	dc_shutdown(dd);
15407 }
15408