xref: /openbmc/linux/drivers/infiniband/hw/hfi1/chip.c (revision c8dbaa22)
1 /*
2  * Copyright(c) 2015 - 2017 Intel Corporation.
3  *
4  * This file is provided under a dual BSD/GPLv2 license.  When using or
5  * redistributing this file, you may do so under either license.
6  *
7  * GPL LICENSE SUMMARY
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of version 2 of the GNU General Public License as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * General Public License for more details.
17  *
18  * BSD LICENSE
19  *
20  * Redistribution and use in source and binary forms, with or without
21  * modification, are permitted provided that the following conditions
22  * are met:
23  *
24  *  - Redistributions of source code must retain the above copyright
25  *    notice, this list of conditions and the following disclaimer.
26  *  - Redistributions in binary form must reproduce the above copyright
27  *    notice, this list of conditions and the following disclaimer in
28  *    the documentation and/or other materials provided with the
29  *    distribution.
30  *  - Neither the name of Intel Corporation nor the names of its
31  *    contributors may be used to endorse or promote products derived
32  *    from this software without specific prior written permission.
33  *
34  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45  *
46  */
47 
48 /*
49  * This file contains all of the code that is specific to the HFI chip
50  */
51 
52 #include <linux/pci.h>
53 #include <linux/delay.h>
54 #include <linux/interrupt.h>
55 #include <linux/module.h>
56 
57 #include "hfi.h"
58 #include "trace.h"
59 #include "mad.h"
60 #include "pio.h"
61 #include "sdma.h"
62 #include "eprom.h"
63 #include "efivar.h"
64 #include "platform.h"
65 #include "aspm.h"
66 #include "affinity.h"
67 #include "debugfs.h"
68 
69 #define NUM_IB_PORTS 1
70 
71 uint kdeth_qp;
72 module_param_named(kdeth_qp, kdeth_qp, uint, S_IRUGO);
73 MODULE_PARM_DESC(kdeth_qp, "Set the KDETH queue pair prefix");
74 
75 uint num_vls = HFI1_MAX_VLS_SUPPORTED;
76 module_param(num_vls, uint, S_IRUGO);
77 MODULE_PARM_DESC(num_vls, "Set number of Virtual Lanes to use (1-8)");
78 
79 /*
80  * Default time to aggregate two 10K packets from the idle state
81  * (timer not running). The timer starts at the end of the first packet,
82  * so only the time for one 10K packet and header plus a bit extra is needed.
83  * 10 * 1024 + 64 header byte = 10304 byte
84  * 10304 byte / 12.5 GB/s = 824.32ns
85  */
86 uint rcv_intr_timeout = (824 + 16); /* 16 is for coalescing interrupt */
87 module_param(rcv_intr_timeout, uint, S_IRUGO);
88 MODULE_PARM_DESC(rcv_intr_timeout, "Receive interrupt mitigation timeout in ns");
89 
90 uint rcv_intr_count = 16; /* same as qib */
91 module_param(rcv_intr_count, uint, S_IRUGO);
92 MODULE_PARM_DESC(rcv_intr_count, "Receive interrupt mitigation count");
93 
94 ushort link_crc_mask = SUPPORTED_CRCS;
95 module_param(link_crc_mask, ushort, S_IRUGO);
96 MODULE_PARM_DESC(link_crc_mask, "CRCs to use on the link");
97 
98 uint loopback;
99 module_param_named(loopback, loopback, uint, S_IRUGO);
100 MODULE_PARM_DESC(loopback, "Put into loopback mode (1 = serdes, 3 = external cable");
101 
102 /* Other driver tunables */
103 uint rcv_intr_dynamic = 1; /* enable dynamic mode for rcv int mitigation*/
104 static ushort crc_14b_sideband = 1;
105 static uint use_flr = 1;
106 uint quick_linkup; /* skip LNI */
107 
108 struct flag_table {
109 	u64 flag;	/* the flag */
110 	char *str;	/* description string */
111 	u16 extra;	/* extra information */
112 	u16 unused0;
113 	u32 unused1;
114 };
115 
116 /* str must be a string constant */
117 #define FLAG_ENTRY(str, extra, flag) {flag, str, extra}
118 #define FLAG_ENTRY0(str, flag) {flag, str, 0}
119 
120 /* Send Error Consequences */
121 #define SEC_WRITE_DROPPED	0x1
122 #define SEC_PACKET_DROPPED	0x2
123 #define SEC_SC_HALTED		0x4	/* per-context only */
124 #define SEC_SPC_FREEZE		0x8	/* per-HFI only */
125 
126 #define DEFAULT_KRCVQS		  2
127 #define MIN_KERNEL_KCTXTS         2
128 #define FIRST_KERNEL_KCTXT        1
129 
130 /*
131  * RSM instance allocation
132  *   0 - Verbs
133  *   1 - User Fecn Handling
134  *   2 - Vnic
135  */
136 #define RSM_INS_VERBS             0
137 #define RSM_INS_FECN              1
138 #define RSM_INS_VNIC              2
139 
140 /* Bit offset into the GUID which carries HFI id information */
141 #define GUID_HFI_INDEX_SHIFT     39
142 
143 /* extract the emulation revision */
144 #define emulator_rev(dd) ((dd)->irev >> 8)
145 /* parallel and serial emulation versions are 3 and 4 respectively */
146 #define is_emulator_p(dd) ((((dd)->irev) & 0xf) == 3)
147 #define is_emulator_s(dd) ((((dd)->irev) & 0xf) == 4)
148 
149 /* RSM fields for Verbs */
150 /* packet type */
151 #define IB_PACKET_TYPE         2ull
152 #define QW_SHIFT               6ull
153 /* QPN[7..1] */
154 #define QPN_WIDTH              7ull
155 
156 /* LRH.BTH: QW 0, OFFSET 48 - for match */
157 #define LRH_BTH_QW             0ull
158 #define LRH_BTH_BIT_OFFSET     48ull
159 #define LRH_BTH_OFFSET(off)    ((LRH_BTH_QW << QW_SHIFT) | (off))
160 #define LRH_BTH_MATCH_OFFSET   LRH_BTH_OFFSET(LRH_BTH_BIT_OFFSET)
161 #define LRH_BTH_SELECT
162 #define LRH_BTH_MASK           3ull
163 #define LRH_BTH_VALUE          2ull
164 
165 /* LRH.SC[3..0] QW 0, OFFSET 56 - for match */
166 #define LRH_SC_QW              0ull
167 #define LRH_SC_BIT_OFFSET      56ull
168 #define LRH_SC_OFFSET(off)     ((LRH_SC_QW << QW_SHIFT) | (off))
169 #define LRH_SC_MATCH_OFFSET    LRH_SC_OFFSET(LRH_SC_BIT_OFFSET)
170 #define LRH_SC_MASK            128ull
171 #define LRH_SC_VALUE           0ull
172 
173 /* SC[n..0] QW 0, OFFSET 60 - for select */
174 #define LRH_SC_SELECT_OFFSET  ((LRH_SC_QW << QW_SHIFT) | (60ull))
175 
176 /* QPN[m+n:1] QW 1, OFFSET 1 */
177 #define QPN_SELECT_OFFSET      ((1ull << QW_SHIFT) | (1ull))
178 
179 /* RSM fields for Vnic */
180 /* L2_TYPE: QW 0, OFFSET 61 - for match */
181 #define L2_TYPE_QW             0ull
182 #define L2_TYPE_BIT_OFFSET     61ull
183 #define L2_TYPE_OFFSET(off)    ((L2_TYPE_QW << QW_SHIFT) | (off))
184 #define L2_TYPE_MATCH_OFFSET   L2_TYPE_OFFSET(L2_TYPE_BIT_OFFSET)
185 #define L2_TYPE_MASK           3ull
186 #define L2_16B_VALUE           2ull
187 
188 /* L4_TYPE QW 1, OFFSET 0 - for match */
189 #define L4_TYPE_QW              1ull
190 #define L4_TYPE_BIT_OFFSET      0ull
191 #define L4_TYPE_OFFSET(off)     ((L4_TYPE_QW << QW_SHIFT) | (off))
192 #define L4_TYPE_MATCH_OFFSET    L4_TYPE_OFFSET(L4_TYPE_BIT_OFFSET)
193 #define L4_16B_TYPE_MASK        0xFFull
194 #define L4_16B_ETH_VALUE        0x78ull
195 
196 /* 16B VESWID - for select */
197 #define L4_16B_HDR_VESWID_OFFSET  ((2 << QW_SHIFT) | (16ull))
198 /* 16B ENTROPY - for select */
199 #define L2_16B_ENTROPY_OFFSET     ((1 << QW_SHIFT) | (32ull))
200 
201 /* defines to build power on SC2VL table */
202 #define SC2VL_VAL( \
203 	num, \
204 	sc0, sc0val, \
205 	sc1, sc1val, \
206 	sc2, sc2val, \
207 	sc3, sc3val, \
208 	sc4, sc4val, \
209 	sc5, sc5val, \
210 	sc6, sc6val, \
211 	sc7, sc7val) \
212 ( \
213 	((u64)(sc0val) << SEND_SC2VLT##num##_SC##sc0##_SHIFT) | \
214 	((u64)(sc1val) << SEND_SC2VLT##num##_SC##sc1##_SHIFT) | \
215 	((u64)(sc2val) << SEND_SC2VLT##num##_SC##sc2##_SHIFT) | \
216 	((u64)(sc3val) << SEND_SC2VLT##num##_SC##sc3##_SHIFT) | \
217 	((u64)(sc4val) << SEND_SC2VLT##num##_SC##sc4##_SHIFT) | \
218 	((u64)(sc5val) << SEND_SC2VLT##num##_SC##sc5##_SHIFT) | \
219 	((u64)(sc6val) << SEND_SC2VLT##num##_SC##sc6##_SHIFT) | \
220 	((u64)(sc7val) << SEND_SC2VLT##num##_SC##sc7##_SHIFT)   \
221 )
222 
223 #define DC_SC_VL_VAL( \
224 	range, \
225 	e0, e0val, \
226 	e1, e1val, \
227 	e2, e2val, \
228 	e3, e3val, \
229 	e4, e4val, \
230 	e5, e5val, \
231 	e6, e6val, \
232 	e7, e7val, \
233 	e8, e8val, \
234 	e9, e9val, \
235 	e10, e10val, \
236 	e11, e11val, \
237 	e12, e12val, \
238 	e13, e13val, \
239 	e14, e14val, \
240 	e15, e15val) \
241 ( \
242 	((u64)(e0val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e0##_SHIFT) | \
243 	((u64)(e1val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e1##_SHIFT) | \
244 	((u64)(e2val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e2##_SHIFT) | \
245 	((u64)(e3val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e3##_SHIFT) | \
246 	((u64)(e4val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e4##_SHIFT) | \
247 	((u64)(e5val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e5##_SHIFT) | \
248 	((u64)(e6val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e6##_SHIFT) | \
249 	((u64)(e7val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e7##_SHIFT) | \
250 	((u64)(e8val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e8##_SHIFT) | \
251 	((u64)(e9val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e9##_SHIFT) | \
252 	((u64)(e10val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e10##_SHIFT) | \
253 	((u64)(e11val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e11##_SHIFT) | \
254 	((u64)(e12val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e12##_SHIFT) | \
255 	((u64)(e13val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e13##_SHIFT) | \
256 	((u64)(e14val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e14##_SHIFT) | \
257 	((u64)(e15val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e15##_SHIFT) \
258 )
259 
260 /* all CceStatus sub-block freeze bits */
261 #define ALL_FROZE (CCE_STATUS_SDMA_FROZE_SMASK \
262 			| CCE_STATUS_RXE_FROZE_SMASK \
263 			| CCE_STATUS_TXE_FROZE_SMASK \
264 			| CCE_STATUS_TXE_PIO_FROZE_SMASK)
265 /* all CceStatus sub-block TXE pause bits */
266 #define ALL_TXE_PAUSE (CCE_STATUS_TXE_PIO_PAUSED_SMASK \
267 			| CCE_STATUS_TXE_PAUSED_SMASK \
268 			| CCE_STATUS_SDMA_PAUSED_SMASK)
269 /* all CceStatus sub-block RXE pause bits */
270 #define ALL_RXE_PAUSE CCE_STATUS_RXE_PAUSED_SMASK
271 
272 #define CNTR_MAX 0xFFFFFFFFFFFFFFFFULL
273 #define CNTR_32BIT_MAX 0x00000000FFFFFFFF
274 
275 /*
276  * CCE Error flags.
277  */
278 static struct flag_table cce_err_status_flags[] = {
279 /* 0*/	FLAG_ENTRY0("CceCsrParityErr",
280 		CCE_ERR_STATUS_CCE_CSR_PARITY_ERR_SMASK),
281 /* 1*/	FLAG_ENTRY0("CceCsrReadBadAddrErr",
282 		CCE_ERR_STATUS_CCE_CSR_READ_BAD_ADDR_ERR_SMASK),
283 /* 2*/	FLAG_ENTRY0("CceCsrWriteBadAddrErr",
284 		CCE_ERR_STATUS_CCE_CSR_WRITE_BAD_ADDR_ERR_SMASK),
285 /* 3*/	FLAG_ENTRY0("CceTrgtAsyncFifoParityErr",
286 		CCE_ERR_STATUS_CCE_TRGT_ASYNC_FIFO_PARITY_ERR_SMASK),
287 /* 4*/	FLAG_ENTRY0("CceTrgtAccessErr",
288 		CCE_ERR_STATUS_CCE_TRGT_ACCESS_ERR_SMASK),
289 /* 5*/	FLAG_ENTRY0("CceRspdDataParityErr",
290 		CCE_ERR_STATUS_CCE_RSPD_DATA_PARITY_ERR_SMASK),
291 /* 6*/	FLAG_ENTRY0("CceCli0AsyncFifoParityErr",
292 		CCE_ERR_STATUS_CCE_CLI0_ASYNC_FIFO_PARITY_ERR_SMASK),
293 /* 7*/	FLAG_ENTRY0("CceCsrCfgBusParityErr",
294 		CCE_ERR_STATUS_CCE_CSR_CFG_BUS_PARITY_ERR_SMASK),
295 /* 8*/	FLAG_ENTRY0("CceCli2AsyncFifoParityErr",
296 		CCE_ERR_STATUS_CCE_CLI2_ASYNC_FIFO_PARITY_ERR_SMASK),
297 /* 9*/	FLAG_ENTRY0("CceCli1AsyncFifoPioCrdtParityErr",
298 	    CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_PIO_CRDT_PARITY_ERR_SMASK),
299 /*10*/	FLAG_ENTRY0("CceCli1AsyncFifoPioCrdtParityErr",
300 	    CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_SDMA_HD_PARITY_ERR_SMASK),
301 /*11*/	FLAG_ENTRY0("CceCli1AsyncFifoRxdmaParityError",
302 	    CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_RXDMA_PARITY_ERROR_SMASK),
303 /*12*/	FLAG_ENTRY0("CceCli1AsyncFifoDbgParityError",
304 		CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_DBG_PARITY_ERROR_SMASK),
305 /*13*/	FLAG_ENTRY0("PcicRetryMemCorErr",
306 		CCE_ERR_STATUS_PCIC_RETRY_MEM_COR_ERR_SMASK),
307 /*14*/	FLAG_ENTRY0("PcicRetryMemCorErr",
308 		CCE_ERR_STATUS_PCIC_RETRY_SOT_MEM_COR_ERR_SMASK),
309 /*15*/	FLAG_ENTRY0("PcicPostHdQCorErr",
310 		CCE_ERR_STATUS_PCIC_POST_HD_QCOR_ERR_SMASK),
311 /*16*/	FLAG_ENTRY0("PcicPostHdQCorErr",
312 		CCE_ERR_STATUS_PCIC_POST_DAT_QCOR_ERR_SMASK),
313 /*17*/	FLAG_ENTRY0("PcicPostHdQCorErr",
314 		CCE_ERR_STATUS_PCIC_CPL_HD_QCOR_ERR_SMASK),
315 /*18*/	FLAG_ENTRY0("PcicCplDatQCorErr",
316 		CCE_ERR_STATUS_PCIC_CPL_DAT_QCOR_ERR_SMASK),
317 /*19*/	FLAG_ENTRY0("PcicNPostHQParityErr",
318 		CCE_ERR_STATUS_PCIC_NPOST_HQ_PARITY_ERR_SMASK),
319 /*20*/	FLAG_ENTRY0("PcicNPostDatQParityErr",
320 		CCE_ERR_STATUS_PCIC_NPOST_DAT_QPARITY_ERR_SMASK),
321 /*21*/	FLAG_ENTRY0("PcicRetryMemUncErr",
322 		CCE_ERR_STATUS_PCIC_RETRY_MEM_UNC_ERR_SMASK),
323 /*22*/	FLAG_ENTRY0("PcicRetrySotMemUncErr",
324 		CCE_ERR_STATUS_PCIC_RETRY_SOT_MEM_UNC_ERR_SMASK),
325 /*23*/	FLAG_ENTRY0("PcicPostHdQUncErr",
326 		CCE_ERR_STATUS_PCIC_POST_HD_QUNC_ERR_SMASK),
327 /*24*/	FLAG_ENTRY0("PcicPostDatQUncErr",
328 		CCE_ERR_STATUS_PCIC_POST_DAT_QUNC_ERR_SMASK),
329 /*25*/	FLAG_ENTRY0("PcicCplHdQUncErr",
330 		CCE_ERR_STATUS_PCIC_CPL_HD_QUNC_ERR_SMASK),
331 /*26*/	FLAG_ENTRY0("PcicCplDatQUncErr",
332 		CCE_ERR_STATUS_PCIC_CPL_DAT_QUNC_ERR_SMASK),
333 /*27*/	FLAG_ENTRY0("PcicTransmitFrontParityErr",
334 		CCE_ERR_STATUS_PCIC_TRANSMIT_FRONT_PARITY_ERR_SMASK),
335 /*28*/	FLAG_ENTRY0("PcicTransmitBackParityErr",
336 		CCE_ERR_STATUS_PCIC_TRANSMIT_BACK_PARITY_ERR_SMASK),
337 /*29*/	FLAG_ENTRY0("PcicReceiveParityErr",
338 		CCE_ERR_STATUS_PCIC_RECEIVE_PARITY_ERR_SMASK),
339 /*30*/	FLAG_ENTRY0("CceTrgtCplTimeoutErr",
340 		CCE_ERR_STATUS_CCE_TRGT_CPL_TIMEOUT_ERR_SMASK),
341 /*31*/	FLAG_ENTRY0("LATriggered",
342 		CCE_ERR_STATUS_LA_TRIGGERED_SMASK),
343 /*32*/	FLAG_ENTRY0("CceSegReadBadAddrErr",
344 		CCE_ERR_STATUS_CCE_SEG_READ_BAD_ADDR_ERR_SMASK),
345 /*33*/	FLAG_ENTRY0("CceSegWriteBadAddrErr",
346 		CCE_ERR_STATUS_CCE_SEG_WRITE_BAD_ADDR_ERR_SMASK),
347 /*34*/	FLAG_ENTRY0("CceRcplAsyncFifoParityErr",
348 		CCE_ERR_STATUS_CCE_RCPL_ASYNC_FIFO_PARITY_ERR_SMASK),
349 /*35*/	FLAG_ENTRY0("CceRxdmaConvFifoParityErr",
350 		CCE_ERR_STATUS_CCE_RXDMA_CONV_FIFO_PARITY_ERR_SMASK),
351 /*36*/	FLAG_ENTRY0("CceMsixTableCorErr",
352 		CCE_ERR_STATUS_CCE_MSIX_TABLE_COR_ERR_SMASK),
353 /*37*/	FLAG_ENTRY0("CceMsixTableUncErr",
354 		CCE_ERR_STATUS_CCE_MSIX_TABLE_UNC_ERR_SMASK),
355 /*38*/	FLAG_ENTRY0("CceIntMapCorErr",
356 		CCE_ERR_STATUS_CCE_INT_MAP_COR_ERR_SMASK),
357 /*39*/	FLAG_ENTRY0("CceIntMapUncErr",
358 		CCE_ERR_STATUS_CCE_INT_MAP_UNC_ERR_SMASK),
359 /*40*/	FLAG_ENTRY0("CceMsixCsrParityErr",
360 		CCE_ERR_STATUS_CCE_MSIX_CSR_PARITY_ERR_SMASK),
361 /*41-63 reserved*/
362 };
363 
364 /*
365  * Misc Error flags
366  */
367 #define MES(text) MISC_ERR_STATUS_MISC_##text##_ERR_SMASK
368 static struct flag_table misc_err_status_flags[] = {
369 /* 0*/	FLAG_ENTRY0("CSR_PARITY", MES(CSR_PARITY)),
370 /* 1*/	FLAG_ENTRY0("CSR_READ_BAD_ADDR", MES(CSR_READ_BAD_ADDR)),
371 /* 2*/	FLAG_ENTRY0("CSR_WRITE_BAD_ADDR", MES(CSR_WRITE_BAD_ADDR)),
372 /* 3*/	FLAG_ENTRY0("SBUS_WRITE_FAILED", MES(SBUS_WRITE_FAILED)),
373 /* 4*/	FLAG_ENTRY0("KEY_MISMATCH", MES(KEY_MISMATCH)),
374 /* 5*/	FLAG_ENTRY0("FW_AUTH_FAILED", MES(FW_AUTH_FAILED)),
375 /* 6*/	FLAG_ENTRY0("EFUSE_CSR_PARITY", MES(EFUSE_CSR_PARITY)),
376 /* 7*/	FLAG_ENTRY0("EFUSE_READ_BAD_ADDR", MES(EFUSE_READ_BAD_ADDR)),
377 /* 8*/	FLAG_ENTRY0("EFUSE_WRITE", MES(EFUSE_WRITE)),
378 /* 9*/	FLAG_ENTRY0("EFUSE_DONE_PARITY", MES(EFUSE_DONE_PARITY)),
379 /*10*/	FLAG_ENTRY0("INVALID_EEP_CMD", MES(INVALID_EEP_CMD)),
380 /*11*/	FLAG_ENTRY0("MBIST_FAIL", MES(MBIST_FAIL)),
381 /*12*/	FLAG_ENTRY0("PLL_LOCK_FAIL", MES(PLL_LOCK_FAIL))
382 };
383 
384 /*
385  * TXE PIO Error flags and consequences
386  */
387 static struct flag_table pio_err_status_flags[] = {
388 /* 0*/	FLAG_ENTRY("PioWriteBadCtxt",
389 	SEC_WRITE_DROPPED,
390 	SEND_PIO_ERR_STATUS_PIO_WRITE_BAD_CTXT_ERR_SMASK),
391 /* 1*/	FLAG_ENTRY("PioWriteAddrParity",
392 	SEC_SPC_FREEZE,
393 	SEND_PIO_ERR_STATUS_PIO_WRITE_ADDR_PARITY_ERR_SMASK),
394 /* 2*/	FLAG_ENTRY("PioCsrParity",
395 	SEC_SPC_FREEZE,
396 	SEND_PIO_ERR_STATUS_PIO_CSR_PARITY_ERR_SMASK),
397 /* 3*/	FLAG_ENTRY("PioSbMemFifo0",
398 	SEC_SPC_FREEZE,
399 	SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO0_ERR_SMASK),
400 /* 4*/	FLAG_ENTRY("PioSbMemFifo1",
401 	SEC_SPC_FREEZE,
402 	SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO1_ERR_SMASK),
403 /* 5*/	FLAG_ENTRY("PioPccFifoParity",
404 	SEC_SPC_FREEZE,
405 	SEND_PIO_ERR_STATUS_PIO_PCC_FIFO_PARITY_ERR_SMASK),
406 /* 6*/	FLAG_ENTRY("PioPecFifoParity",
407 	SEC_SPC_FREEZE,
408 	SEND_PIO_ERR_STATUS_PIO_PEC_FIFO_PARITY_ERR_SMASK),
409 /* 7*/	FLAG_ENTRY("PioSbrdctlCrrelParity",
410 	SEC_SPC_FREEZE,
411 	SEND_PIO_ERR_STATUS_PIO_SBRDCTL_CRREL_PARITY_ERR_SMASK),
412 /* 8*/	FLAG_ENTRY("PioSbrdctrlCrrelFifoParity",
413 	SEC_SPC_FREEZE,
414 	SEND_PIO_ERR_STATUS_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR_SMASK),
415 /* 9*/	FLAG_ENTRY("PioPktEvictFifoParityErr",
416 	SEC_SPC_FREEZE,
417 	SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_FIFO_PARITY_ERR_SMASK),
418 /*10*/	FLAG_ENTRY("PioSmPktResetParity",
419 	SEC_SPC_FREEZE,
420 	SEND_PIO_ERR_STATUS_PIO_SM_PKT_RESET_PARITY_ERR_SMASK),
421 /*11*/	FLAG_ENTRY("PioVlLenMemBank0Unc",
422 	SEC_SPC_FREEZE,
423 	SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_UNC_ERR_SMASK),
424 /*12*/	FLAG_ENTRY("PioVlLenMemBank1Unc",
425 	SEC_SPC_FREEZE,
426 	SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_UNC_ERR_SMASK),
427 /*13*/	FLAG_ENTRY("PioVlLenMemBank0Cor",
428 	0,
429 	SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_COR_ERR_SMASK),
430 /*14*/	FLAG_ENTRY("PioVlLenMemBank1Cor",
431 	0,
432 	SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_COR_ERR_SMASK),
433 /*15*/	FLAG_ENTRY("PioCreditRetFifoParity",
434 	SEC_SPC_FREEZE,
435 	SEND_PIO_ERR_STATUS_PIO_CREDIT_RET_FIFO_PARITY_ERR_SMASK),
436 /*16*/	FLAG_ENTRY("PioPpmcPblFifo",
437 	SEC_SPC_FREEZE,
438 	SEND_PIO_ERR_STATUS_PIO_PPMC_PBL_FIFO_ERR_SMASK),
439 /*17*/	FLAG_ENTRY("PioInitSmIn",
440 	0,
441 	SEND_PIO_ERR_STATUS_PIO_INIT_SM_IN_ERR_SMASK),
442 /*18*/	FLAG_ENTRY("PioPktEvictSmOrArbSm",
443 	SEC_SPC_FREEZE,
444 	SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_SM_OR_ARB_SM_ERR_SMASK),
445 /*19*/	FLAG_ENTRY("PioHostAddrMemUnc",
446 	SEC_SPC_FREEZE,
447 	SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_UNC_ERR_SMASK),
448 /*20*/	FLAG_ENTRY("PioHostAddrMemCor",
449 	0,
450 	SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_COR_ERR_SMASK),
451 /*21*/	FLAG_ENTRY("PioWriteDataParity",
452 	SEC_SPC_FREEZE,
453 	SEND_PIO_ERR_STATUS_PIO_WRITE_DATA_PARITY_ERR_SMASK),
454 /*22*/	FLAG_ENTRY("PioStateMachine",
455 	SEC_SPC_FREEZE,
456 	SEND_PIO_ERR_STATUS_PIO_STATE_MACHINE_ERR_SMASK),
457 /*23*/	FLAG_ENTRY("PioWriteQwValidParity",
458 	SEC_WRITE_DROPPED | SEC_SPC_FREEZE,
459 	SEND_PIO_ERR_STATUS_PIO_WRITE_QW_VALID_PARITY_ERR_SMASK),
460 /*24*/	FLAG_ENTRY("PioBlockQwCountParity",
461 	SEC_WRITE_DROPPED | SEC_SPC_FREEZE,
462 	SEND_PIO_ERR_STATUS_PIO_BLOCK_QW_COUNT_PARITY_ERR_SMASK),
463 /*25*/	FLAG_ENTRY("PioVlfVlLenParity",
464 	SEC_SPC_FREEZE,
465 	SEND_PIO_ERR_STATUS_PIO_VLF_VL_LEN_PARITY_ERR_SMASK),
466 /*26*/	FLAG_ENTRY("PioVlfSopParity",
467 	SEC_SPC_FREEZE,
468 	SEND_PIO_ERR_STATUS_PIO_VLF_SOP_PARITY_ERR_SMASK),
469 /*27*/	FLAG_ENTRY("PioVlFifoParity",
470 	SEC_SPC_FREEZE,
471 	SEND_PIO_ERR_STATUS_PIO_VL_FIFO_PARITY_ERR_SMASK),
472 /*28*/	FLAG_ENTRY("PioPpmcBqcMemParity",
473 	SEC_SPC_FREEZE,
474 	SEND_PIO_ERR_STATUS_PIO_PPMC_BQC_MEM_PARITY_ERR_SMASK),
475 /*29*/	FLAG_ENTRY("PioPpmcSopLen",
476 	SEC_SPC_FREEZE,
477 	SEND_PIO_ERR_STATUS_PIO_PPMC_SOP_LEN_ERR_SMASK),
478 /*30-31 reserved*/
479 /*32*/	FLAG_ENTRY("PioCurrentFreeCntParity",
480 	SEC_SPC_FREEZE,
481 	SEND_PIO_ERR_STATUS_PIO_CURRENT_FREE_CNT_PARITY_ERR_SMASK),
482 /*33*/	FLAG_ENTRY("PioLastReturnedCntParity",
483 	SEC_SPC_FREEZE,
484 	SEND_PIO_ERR_STATUS_PIO_LAST_RETURNED_CNT_PARITY_ERR_SMASK),
485 /*34*/	FLAG_ENTRY("PioPccSopHeadParity",
486 	SEC_SPC_FREEZE,
487 	SEND_PIO_ERR_STATUS_PIO_PCC_SOP_HEAD_PARITY_ERR_SMASK),
488 /*35*/	FLAG_ENTRY("PioPecSopHeadParityErr",
489 	SEC_SPC_FREEZE,
490 	SEND_PIO_ERR_STATUS_PIO_PEC_SOP_HEAD_PARITY_ERR_SMASK),
491 /*36-63 reserved*/
492 };
493 
494 /* TXE PIO errors that cause an SPC freeze */
495 #define ALL_PIO_FREEZE_ERR \
496 	(SEND_PIO_ERR_STATUS_PIO_WRITE_ADDR_PARITY_ERR_SMASK \
497 	| SEND_PIO_ERR_STATUS_PIO_CSR_PARITY_ERR_SMASK \
498 	| SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO0_ERR_SMASK \
499 	| SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO1_ERR_SMASK \
500 	| SEND_PIO_ERR_STATUS_PIO_PCC_FIFO_PARITY_ERR_SMASK \
501 	| SEND_PIO_ERR_STATUS_PIO_PEC_FIFO_PARITY_ERR_SMASK \
502 	| SEND_PIO_ERR_STATUS_PIO_SBRDCTL_CRREL_PARITY_ERR_SMASK \
503 	| SEND_PIO_ERR_STATUS_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR_SMASK \
504 	| SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_FIFO_PARITY_ERR_SMASK \
505 	| SEND_PIO_ERR_STATUS_PIO_SM_PKT_RESET_PARITY_ERR_SMASK \
506 	| SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_UNC_ERR_SMASK \
507 	| SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_UNC_ERR_SMASK \
508 	| SEND_PIO_ERR_STATUS_PIO_CREDIT_RET_FIFO_PARITY_ERR_SMASK \
509 	| SEND_PIO_ERR_STATUS_PIO_PPMC_PBL_FIFO_ERR_SMASK \
510 	| SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_SM_OR_ARB_SM_ERR_SMASK \
511 	| SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_UNC_ERR_SMASK \
512 	| SEND_PIO_ERR_STATUS_PIO_WRITE_DATA_PARITY_ERR_SMASK \
513 	| SEND_PIO_ERR_STATUS_PIO_STATE_MACHINE_ERR_SMASK \
514 	| SEND_PIO_ERR_STATUS_PIO_WRITE_QW_VALID_PARITY_ERR_SMASK \
515 	| SEND_PIO_ERR_STATUS_PIO_BLOCK_QW_COUNT_PARITY_ERR_SMASK \
516 	| SEND_PIO_ERR_STATUS_PIO_VLF_VL_LEN_PARITY_ERR_SMASK \
517 	| SEND_PIO_ERR_STATUS_PIO_VLF_SOP_PARITY_ERR_SMASK \
518 	| SEND_PIO_ERR_STATUS_PIO_VL_FIFO_PARITY_ERR_SMASK \
519 	| SEND_PIO_ERR_STATUS_PIO_PPMC_BQC_MEM_PARITY_ERR_SMASK \
520 	| SEND_PIO_ERR_STATUS_PIO_PPMC_SOP_LEN_ERR_SMASK \
521 	| SEND_PIO_ERR_STATUS_PIO_CURRENT_FREE_CNT_PARITY_ERR_SMASK \
522 	| SEND_PIO_ERR_STATUS_PIO_LAST_RETURNED_CNT_PARITY_ERR_SMASK \
523 	| SEND_PIO_ERR_STATUS_PIO_PCC_SOP_HEAD_PARITY_ERR_SMASK \
524 	| SEND_PIO_ERR_STATUS_PIO_PEC_SOP_HEAD_PARITY_ERR_SMASK)
525 
526 /*
527  * TXE SDMA Error flags
528  */
529 static struct flag_table sdma_err_status_flags[] = {
530 /* 0*/	FLAG_ENTRY0("SDmaRpyTagErr",
531 		SEND_DMA_ERR_STATUS_SDMA_RPY_TAG_ERR_SMASK),
532 /* 1*/	FLAG_ENTRY0("SDmaCsrParityErr",
533 		SEND_DMA_ERR_STATUS_SDMA_CSR_PARITY_ERR_SMASK),
534 /* 2*/	FLAG_ENTRY0("SDmaPcieReqTrackingUncErr",
535 		SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_UNC_ERR_SMASK),
536 /* 3*/	FLAG_ENTRY0("SDmaPcieReqTrackingCorErr",
537 		SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_COR_ERR_SMASK),
538 /*04-63 reserved*/
539 };
540 
541 /* TXE SDMA errors that cause an SPC freeze */
542 #define ALL_SDMA_FREEZE_ERR  \
543 		(SEND_DMA_ERR_STATUS_SDMA_RPY_TAG_ERR_SMASK \
544 		| SEND_DMA_ERR_STATUS_SDMA_CSR_PARITY_ERR_SMASK \
545 		| SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_UNC_ERR_SMASK)
546 
547 /* SendEgressErrInfo bits that correspond to a PortXmitDiscard counter */
548 #define PORT_DISCARD_EGRESS_ERRS \
549 	(SEND_EGRESS_ERR_INFO_TOO_LONG_IB_PACKET_ERR_SMASK \
550 	| SEND_EGRESS_ERR_INFO_VL_MAPPING_ERR_SMASK \
551 	| SEND_EGRESS_ERR_INFO_VL_ERR_SMASK)
552 
553 /*
554  * TXE Egress Error flags
555  */
556 #define SEES(text) SEND_EGRESS_ERR_STATUS_##text##_ERR_SMASK
557 static struct flag_table egress_err_status_flags[] = {
558 /* 0*/	FLAG_ENTRY0("TxPktIntegrityMemCorErr", SEES(TX_PKT_INTEGRITY_MEM_COR)),
559 /* 1*/	FLAG_ENTRY0("TxPktIntegrityMemUncErr", SEES(TX_PKT_INTEGRITY_MEM_UNC)),
560 /* 2 reserved */
561 /* 3*/	FLAG_ENTRY0("TxEgressFifoUnderrunOrParityErr",
562 		SEES(TX_EGRESS_FIFO_UNDERRUN_OR_PARITY)),
563 /* 4*/	FLAG_ENTRY0("TxLinkdownErr", SEES(TX_LINKDOWN)),
564 /* 5*/	FLAG_ENTRY0("TxIncorrectLinkStateErr", SEES(TX_INCORRECT_LINK_STATE)),
565 /* 6 reserved */
566 /* 7*/	FLAG_ENTRY0("TxPioLaunchIntfParityErr",
567 		SEES(TX_PIO_LAUNCH_INTF_PARITY)),
568 /* 8*/	FLAG_ENTRY0("TxSdmaLaunchIntfParityErr",
569 		SEES(TX_SDMA_LAUNCH_INTF_PARITY)),
570 /* 9-10 reserved */
571 /*11*/	FLAG_ENTRY0("TxSbrdCtlStateMachineParityErr",
572 		SEES(TX_SBRD_CTL_STATE_MACHINE_PARITY)),
573 /*12*/	FLAG_ENTRY0("TxIllegalVLErr", SEES(TX_ILLEGAL_VL)),
574 /*13*/	FLAG_ENTRY0("TxLaunchCsrParityErr", SEES(TX_LAUNCH_CSR_PARITY)),
575 /*14*/	FLAG_ENTRY0("TxSbrdCtlCsrParityErr", SEES(TX_SBRD_CTL_CSR_PARITY)),
576 /*15*/	FLAG_ENTRY0("TxConfigParityErr", SEES(TX_CONFIG_PARITY)),
577 /*16*/	FLAG_ENTRY0("TxSdma0DisallowedPacketErr",
578 		SEES(TX_SDMA0_DISALLOWED_PACKET)),
579 /*17*/	FLAG_ENTRY0("TxSdma1DisallowedPacketErr",
580 		SEES(TX_SDMA1_DISALLOWED_PACKET)),
581 /*18*/	FLAG_ENTRY0("TxSdma2DisallowedPacketErr",
582 		SEES(TX_SDMA2_DISALLOWED_PACKET)),
583 /*19*/	FLAG_ENTRY0("TxSdma3DisallowedPacketErr",
584 		SEES(TX_SDMA3_DISALLOWED_PACKET)),
585 /*20*/	FLAG_ENTRY0("TxSdma4DisallowedPacketErr",
586 		SEES(TX_SDMA4_DISALLOWED_PACKET)),
587 /*21*/	FLAG_ENTRY0("TxSdma5DisallowedPacketErr",
588 		SEES(TX_SDMA5_DISALLOWED_PACKET)),
589 /*22*/	FLAG_ENTRY0("TxSdma6DisallowedPacketErr",
590 		SEES(TX_SDMA6_DISALLOWED_PACKET)),
591 /*23*/	FLAG_ENTRY0("TxSdma7DisallowedPacketErr",
592 		SEES(TX_SDMA7_DISALLOWED_PACKET)),
593 /*24*/	FLAG_ENTRY0("TxSdma8DisallowedPacketErr",
594 		SEES(TX_SDMA8_DISALLOWED_PACKET)),
595 /*25*/	FLAG_ENTRY0("TxSdma9DisallowedPacketErr",
596 		SEES(TX_SDMA9_DISALLOWED_PACKET)),
597 /*26*/	FLAG_ENTRY0("TxSdma10DisallowedPacketErr",
598 		SEES(TX_SDMA10_DISALLOWED_PACKET)),
599 /*27*/	FLAG_ENTRY0("TxSdma11DisallowedPacketErr",
600 		SEES(TX_SDMA11_DISALLOWED_PACKET)),
601 /*28*/	FLAG_ENTRY0("TxSdma12DisallowedPacketErr",
602 		SEES(TX_SDMA12_DISALLOWED_PACKET)),
603 /*29*/	FLAG_ENTRY0("TxSdma13DisallowedPacketErr",
604 		SEES(TX_SDMA13_DISALLOWED_PACKET)),
605 /*30*/	FLAG_ENTRY0("TxSdma14DisallowedPacketErr",
606 		SEES(TX_SDMA14_DISALLOWED_PACKET)),
607 /*31*/	FLAG_ENTRY0("TxSdma15DisallowedPacketErr",
608 		SEES(TX_SDMA15_DISALLOWED_PACKET)),
609 /*32*/	FLAG_ENTRY0("TxLaunchFifo0UncOrParityErr",
610 		SEES(TX_LAUNCH_FIFO0_UNC_OR_PARITY)),
611 /*33*/	FLAG_ENTRY0("TxLaunchFifo1UncOrParityErr",
612 		SEES(TX_LAUNCH_FIFO1_UNC_OR_PARITY)),
613 /*34*/	FLAG_ENTRY0("TxLaunchFifo2UncOrParityErr",
614 		SEES(TX_LAUNCH_FIFO2_UNC_OR_PARITY)),
615 /*35*/	FLAG_ENTRY0("TxLaunchFifo3UncOrParityErr",
616 		SEES(TX_LAUNCH_FIFO3_UNC_OR_PARITY)),
617 /*36*/	FLAG_ENTRY0("TxLaunchFifo4UncOrParityErr",
618 		SEES(TX_LAUNCH_FIFO4_UNC_OR_PARITY)),
619 /*37*/	FLAG_ENTRY0("TxLaunchFifo5UncOrParityErr",
620 		SEES(TX_LAUNCH_FIFO5_UNC_OR_PARITY)),
621 /*38*/	FLAG_ENTRY0("TxLaunchFifo6UncOrParityErr",
622 		SEES(TX_LAUNCH_FIFO6_UNC_OR_PARITY)),
623 /*39*/	FLAG_ENTRY0("TxLaunchFifo7UncOrParityErr",
624 		SEES(TX_LAUNCH_FIFO7_UNC_OR_PARITY)),
625 /*40*/	FLAG_ENTRY0("TxLaunchFifo8UncOrParityErr",
626 		SEES(TX_LAUNCH_FIFO8_UNC_OR_PARITY)),
627 /*41*/	FLAG_ENTRY0("TxCreditReturnParityErr", SEES(TX_CREDIT_RETURN_PARITY)),
628 /*42*/	FLAG_ENTRY0("TxSbHdrUncErr", SEES(TX_SB_HDR_UNC)),
629 /*43*/	FLAG_ENTRY0("TxReadSdmaMemoryUncErr", SEES(TX_READ_SDMA_MEMORY_UNC)),
630 /*44*/	FLAG_ENTRY0("TxReadPioMemoryUncErr", SEES(TX_READ_PIO_MEMORY_UNC)),
631 /*45*/	FLAG_ENTRY0("TxEgressFifoUncErr", SEES(TX_EGRESS_FIFO_UNC)),
632 /*46*/	FLAG_ENTRY0("TxHcrcInsertionErr", SEES(TX_HCRC_INSERTION)),
633 /*47*/	FLAG_ENTRY0("TxCreditReturnVLErr", SEES(TX_CREDIT_RETURN_VL)),
634 /*48*/	FLAG_ENTRY0("TxLaunchFifo0CorErr", SEES(TX_LAUNCH_FIFO0_COR)),
635 /*49*/	FLAG_ENTRY0("TxLaunchFifo1CorErr", SEES(TX_LAUNCH_FIFO1_COR)),
636 /*50*/	FLAG_ENTRY0("TxLaunchFifo2CorErr", SEES(TX_LAUNCH_FIFO2_COR)),
637 /*51*/	FLAG_ENTRY0("TxLaunchFifo3CorErr", SEES(TX_LAUNCH_FIFO3_COR)),
638 /*52*/	FLAG_ENTRY0("TxLaunchFifo4CorErr", SEES(TX_LAUNCH_FIFO4_COR)),
639 /*53*/	FLAG_ENTRY0("TxLaunchFifo5CorErr", SEES(TX_LAUNCH_FIFO5_COR)),
640 /*54*/	FLAG_ENTRY0("TxLaunchFifo6CorErr", SEES(TX_LAUNCH_FIFO6_COR)),
641 /*55*/	FLAG_ENTRY0("TxLaunchFifo7CorErr", SEES(TX_LAUNCH_FIFO7_COR)),
642 /*56*/	FLAG_ENTRY0("TxLaunchFifo8CorErr", SEES(TX_LAUNCH_FIFO8_COR)),
643 /*57*/	FLAG_ENTRY0("TxCreditOverrunErr", SEES(TX_CREDIT_OVERRUN)),
644 /*58*/	FLAG_ENTRY0("TxSbHdrCorErr", SEES(TX_SB_HDR_COR)),
645 /*59*/	FLAG_ENTRY0("TxReadSdmaMemoryCorErr", SEES(TX_READ_SDMA_MEMORY_COR)),
646 /*60*/	FLAG_ENTRY0("TxReadPioMemoryCorErr", SEES(TX_READ_PIO_MEMORY_COR)),
647 /*61*/	FLAG_ENTRY0("TxEgressFifoCorErr", SEES(TX_EGRESS_FIFO_COR)),
648 /*62*/	FLAG_ENTRY0("TxReadSdmaMemoryCsrUncErr",
649 		SEES(TX_READ_SDMA_MEMORY_CSR_UNC)),
650 /*63*/	FLAG_ENTRY0("TxReadPioMemoryCsrUncErr",
651 		SEES(TX_READ_PIO_MEMORY_CSR_UNC)),
652 };
653 
654 /*
655  * TXE Egress Error Info flags
656  */
657 #define SEEI(text) SEND_EGRESS_ERR_INFO_##text##_ERR_SMASK
658 static struct flag_table egress_err_info_flags[] = {
659 /* 0*/	FLAG_ENTRY0("Reserved", 0ull),
660 /* 1*/	FLAG_ENTRY0("VLErr", SEEI(VL)),
661 /* 2*/	FLAG_ENTRY0("JobKeyErr", SEEI(JOB_KEY)),
662 /* 3*/	FLAG_ENTRY0("JobKeyErr", SEEI(JOB_KEY)),
663 /* 4*/	FLAG_ENTRY0("PartitionKeyErr", SEEI(PARTITION_KEY)),
664 /* 5*/	FLAG_ENTRY0("SLIDErr", SEEI(SLID)),
665 /* 6*/	FLAG_ENTRY0("OpcodeErr", SEEI(OPCODE)),
666 /* 7*/	FLAG_ENTRY0("VLMappingErr", SEEI(VL_MAPPING)),
667 /* 8*/	FLAG_ENTRY0("RawErr", SEEI(RAW)),
668 /* 9*/	FLAG_ENTRY0("RawIPv6Err", SEEI(RAW_IPV6)),
669 /*10*/	FLAG_ENTRY0("GRHErr", SEEI(GRH)),
670 /*11*/	FLAG_ENTRY0("BypassErr", SEEI(BYPASS)),
671 /*12*/	FLAG_ENTRY0("KDETHPacketsErr", SEEI(KDETH_PACKETS)),
672 /*13*/	FLAG_ENTRY0("NonKDETHPacketsErr", SEEI(NON_KDETH_PACKETS)),
673 /*14*/	FLAG_ENTRY0("TooSmallIBPacketsErr", SEEI(TOO_SMALL_IB_PACKETS)),
674 /*15*/	FLAG_ENTRY0("TooSmallBypassPacketsErr", SEEI(TOO_SMALL_BYPASS_PACKETS)),
675 /*16*/	FLAG_ENTRY0("PbcTestErr", SEEI(PBC_TEST)),
676 /*17*/	FLAG_ENTRY0("BadPktLenErr", SEEI(BAD_PKT_LEN)),
677 /*18*/	FLAG_ENTRY0("TooLongIBPacketErr", SEEI(TOO_LONG_IB_PACKET)),
678 /*19*/	FLAG_ENTRY0("TooLongBypassPacketsErr", SEEI(TOO_LONG_BYPASS_PACKETS)),
679 /*20*/	FLAG_ENTRY0("PbcStaticRateControlErr", SEEI(PBC_STATIC_RATE_CONTROL)),
680 /*21*/	FLAG_ENTRY0("BypassBadPktLenErr", SEEI(BAD_PKT_LEN)),
681 };
682 
683 /* TXE Egress errors that cause an SPC freeze */
684 #define ALL_TXE_EGRESS_FREEZE_ERR \
685 	(SEES(TX_EGRESS_FIFO_UNDERRUN_OR_PARITY) \
686 	| SEES(TX_PIO_LAUNCH_INTF_PARITY) \
687 	| SEES(TX_SDMA_LAUNCH_INTF_PARITY) \
688 	| SEES(TX_SBRD_CTL_STATE_MACHINE_PARITY) \
689 	| SEES(TX_LAUNCH_CSR_PARITY) \
690 	| SEES(TX_SBRD_CTL_CSR_PARITY) \
691 	| SEES(TX_CONFIG_PARITY) \
692 	| SEES(TX_LAUNCH_FIFO0_UNC_OR_PARITY) \
693 	| SEES(TX_LAUNCH_FIFO1_UNC_OR_PARITY) \
694 	| SEES(TX_LAUNCH_FIFO2_UNC_OR_PARITY) \
695 	| SEES(TX_LAUNCH_FIFO3_UNC_OR_PARITY) \
696 	| SEES(TX_LAUNCH_FIFO4_UNC_OR_PARITY) \
697 	| SEES(TX_LAUNCH_FIFO5_UNC_OR_PARITY) \
698 	| SEES(TX_LAUNCH_FIFO6_UNC_OR_PARITY) \
699 	| SEES(TX_LAUNCH_FIFO7_UNC_OR_PARITY) \
700 	| SEES(TX_LAUNCH_FIFO8_UNC_OR_PARITY) \
701 	| SEES(TX_CREDIT_RETURN_PARITY))
702 
703 /*
704  * TXE Send error flags
705  */
706 #define SES(name) SEND_ERR_STATUS_SEND_##name##_ERR_SMASK
707 static struct flag_table send_err_status_flags[] = {
708 /* 0*/	FLAG_ENTRY0("SendCsrParityErr", SES(CSR_PARITY)),
709 /* 1*/	FLAG_ENTRY0("SendCsrReadBadAddrErr", SES(CSR_READ_BAD_ADDR)),
710 /* 2*/	FLAG_ENTRY0("SendCsrWriteBadAddrErr", SES(CSR_WRITE_BAD_ADDR))
711 };
712 
713 /*
714  * TXE Send Context Error flags and consequences
715  */
716 static struct flag_table sc_err_status_flags[] = {
717 /* 0*/	FLAG_ENTRY("InconsistentSop",
718 		SEC_PACKET_DROPPED | SEC_SC_HALTED,
719 		SEND_CTXT_ERR_STATUS_PIO_INCONSISTENT_SOP_ERR_SMASK),
720 /* 1*/	FLAG_ENTRY("DisallowedPacket",
721 		SEC_PACKET_DROPPED | SEC_SC_HALTED,
722 		SEND_CTXT_ERR_STATUS_PIO_DISALLOWED_PACKET_ERR_SMASK),
723 /* 2*/	FLAG_ENTRY("WriteCrossesBoundary",
724 		SEC_WRITE_DROPPED | SEC_SC_HALTED,
725 		SEND_CTXT_ERR_STATUS_PIO_WRITE_CROSSES_BOUNDARY_ERR_SMASK),
726 /* 3*/	FLAG_ENTRY("WriteOverflow",
727 		SEC_WRITE_DROPPED | SEC_SC_HALTED,
728 		SEND_CTXT_ERR_STATUS_PIO_WRITE_OVERFLOW_ERR_SMASK),
729 /* 4*/	FLAG_ENTRY("WriteOutOfBounds",
730 		SEC_WRITE_DROPPED | SEC_SC_HALTED,
731 		SEND_CTXT_ERR_STATUS_PIO_WRITE_OUT_OF_BOUNDS_ERR_SMASK),
732 /* 5-63 reserved*/
733 };
734 
735 /*
736  * RXE Receive Error flags
737  */
738 #define RXES(name) RCV_ERR_STATUS_RX_##name##_ERR_SMASK
739 static struct flag_table rxe_err_status_flags[] = {
740 /* 0*/	FLAG_ENTRY0("RxDmaCsrCorErr", RXES(DMA_CSR_COR)),
741 /* 1*/	FLAG_ENTRY0("RxDcIntfParityErr", RXES(DC_INTF_PARITY)),
742 /* 2*/	FLAG_ENTRY0("RxRcvHdrUncErr", RXES(RCV_HDR_UNC)),
743 /* 3*/	FLAG_ENTRY0("RxRcvHdrCorErr", RXES(RCV_HDR_COR)),
744 /* 4*/	FLAG_ENTRY0("RxRcvDataUncErr", RXES(RCV_DATA_UNC)),
745 /* 5*/	FLAG_ENTRY0("RxRcvDataCorErr", RXES(RCV_DATA_COR)),
746 /* 6*/	FLAG_ENTRY0("RxRcvQpMapTableUncErr", RXES(RCV_QP_MAP_TABLE_UNC)),
747 /* 7*/	FLAG_ENTRY0("RxRcvQpMapTableCorErr", RXES(RCV_QP_MAP_TABLE_COR)),
748 /* 8*/	FLAG_ENTRY0("RxRcvCsrParityErr", RXES(RCV_CSR_PARITY)),
749 /* 9*/	FLAG_ENTRY0("RxDcSopEopParityErr", RXES(DC_SOP_EOP_PARITY)),
750 /*10*/	FLAG_ENTRY0("RxDmaFlagUncErr", RXES(DMA_FLAG_UNC)),
751 /*11*/	FLAG_ENTRY0("RxDmaFlagCorErr", RXES(DMA_FLAG_COR)),
752 /*12*/	FLAG_ENTRY0("RxRcvFsmEncodingErr", RXES(RCV_FSM_ENCODING)),
753 /*13*/	FLAG_ENTRY0("RxRbufFreeListUncErr", RXES(RBUF_FREE_LIST_UNC)),
754 /*14*/	FLAG_ENTRY0("RxRbufFreeListCorErr", RXES(RBUF_FREE_LIST_COR)),
755 /*15*/	FLAG_ENTRY0("RxRbufLookupDesRegUncErr", RXES(RBUF_LOOKUP_DES_REG_UNC)),
756 /*16*/	FLAG_ENTRY0("RxRbufLookupDesRegUncCorErr",
757 		RXES(RBUF_LOOKUP_DES_REG_UNC_COR)),
758 /*17*/	FLAG_ENTRY0("RxRbufLookupDesUncErr", RXES(RBUF_LOOKUP_DES_UNC)),
759 /*18*/	FLAG_ENTRY0("RxRbufLookupDesCorErr", RXES(RBUF_LOOKUP_DES_COR)),
760 /*19*/	FLAG_ENTRY0("RxRbufBlockListReadUncErr",
761 		RXES(RBUF_BLOCK_LIST_READ_UNC)),
762 /*20*/	FLAG_ENTRY0("RxRbufBlockListReadCorErr",
763 		RXES(RBUF_BLOCK_LIST_READ_COR)),
764 /*21*/	FLAG_ENTRY0("RxRbufCsrQHeadBufNumParityErr",
765 		RXES(RBUF_CSR_QHEAD_BUF_NUM_PARITY)),
766 /*22*/	FLAG_ENTRY0("RxRbufCsrQEntCntParityErr",
767 		RXES(RBUF_CSR_QENT_CNT_PARITY)),
768 /*23*/	FLAG_ENTRY0("RxRbufCsrQNextBufParityErr",
769 		RXES(RBUF_CSR_QNEXT_BUF_PARITY)),
770 /*24*/	FLAG_ENTRY0("RxRbufCsrQVldBitParityErr",
771 		RXES(RBUF_CSR_QVLD_BIT_PARITY)),
772 /*25*/	FLAG_ENTRY0("RxRbufCsrQHdPtrParityErr", RXES(RBUF_CSR_QHD_PTR_PARITY)),
773 /*26*/	FLAG_ENTRY0("RxRbufCsrQTlPtrParityErr", RXES(RBUF_CSR_QTL_PTR_PARITY)),
774 /*27*/	FLAG_ENTRY0("RxRbufCsrQNumOfPktParityErr",
775 		RXES(RBUF_CSR_QNUM_OF_PKT_PARITY)),
776 /*28*/	FLAG_ENTRY0("RxRbufCsrQEOPDWParityErr", RXES(RBUF_CSR_QEOPDW_PARITY)),
777 /*29*/	FLAG_ENTRY0("RxRbufCtxIdParityErr", RXES(RBUF_CTX_ID_PARITY)),
778 /*30*/	FLAG_ENTRY0("RxRBufBadLookupErr", RXES(RBUF_BAD_LOOKUP)),
779 /*31*/	FLAG_ENTRY0("RxRbufFullErr", RXES(RBUF_FULL)),
780 /*32*/	FLAG_ENTRY0("RxRbufEmptyErr", RXES(RBUF_EMPTY)),
781 /*33*/	FLAG_ENTRY0("RxRbufFlRdAddrParityErr", RXES(RBUF_FL_RD_ADDR_PARITY)),
782 /*34*/	FLAG_ENTRY0("RxRbufFlWrAddrParityErr", RXES(RBUF_FL_WR_ADDR_PARITY)),
783 /*35*/	FLAG_ENTRY0("RxRbufFlInitdoneParityErr",
784 		RXES(RBUF_FL_INITDONE_PARITY)),
785 /*36*/	FLAG_ENTRY0("RxRbufFlInitWrAddrParityErr",
786 		RXES(RBUF_FL_INIT_WR_ADDR_PARITY)),
787 /*37*/	FLAG_ENTRY0("RxRbufNextFreeBufUncErr", RXES(RBUF_NEXT_FREE_BUF_UNC)),
788 /*38*/	FLAG_ENTRY0("RxRbufNextFreeBufCorErr", RXES(RBUF_NEXT_FREE_BUF_COR)),
789 /*39*/	FLAG_ENTRY0("RxLookupDesPart1UncErr", RXES(LOOKUP_DES_PART1_UNC)),
790 /*40*/	FLAG_ENTRY0("RxLookupDesPart1UncCorErr",
791 		RXES(LOOKUP_DES_PART1_UNC_COR)),
792 /*41*/	FLAG_ENTRY0("RxLookupDesPart2ParityErr",
793 		RXES(LOOKUP_DES_PART2_PARITY)),
794 /*42*/	FLAG_ENTRY0("RxLookupRcvArrayUncErr", RXES(LOOKUP_RCV_ARRAY_UNC)),
795 /*43*/	FLAG_ENTRY0("RxLookupRcvArrayCorErr", RXES(LOOKUP_RCV_ARRAY_COR)),
796 /*44*/	FLAG_ENTRY0("RxLookupCsrParityErr", RXES(LOOKUP_CSR_PARITY)),
797 /*45*/	FLAG_ENTRY0("RxHqIntrCsrParityErr", RXES(HQ_INTR_CSR_PARITY)),
798 /*46*/	FLAG_ENTRY0("RxHqIntrFsmErr", RXES(HQ_INTR_FSM)),
799 /*47*/	FLAG_ENTRY0("RxRbufDescPart1UncErr", RXES(RBUF_DESC_PART1_UNC)),
800 /*48*/	FLAG_ENTRY0("RxRbufDescPart1CorErr", RXES(RBUF_DESC_PART1_COR)),
801 /*49*/	FLAG_ENTRY0("RxRbufDescPart2UncErr", RXES(RBUF_DESC_PART2_UNC)),
802 /*50*/	FLAG_ENTRY0("RxRbufDescPart2CorErr", RXES(RBUF_DESC_PART2_COR)),
803 /*51*/	FLAG_ENTRY0("RxDmaHdrFifoRdUncErr", RXES(DMA_HDR_FIFO_RD_UNC)),
804 /*52*/	FLAG_ENTRY0("RxDmaHdrFifoRdCorErr", RXES(DMA_HDR_FIFO_RD_COR)),
805 /*53*/	FLAG_ENTRY0("RxDmaDataFifoRdUncErr", RXES(DMA_DATA_FIFO_RD_UNC)),
806 /*54*/	FLAG_ENTRY0("RxDmaDataFifoRdCorErr", RXES(DMA_DATA_FIFO_RD_COR)),
807 /*55*/	FLAG_ENTRY0("RxRbufDataUncErr", RXES(RBUF_DATA_UNC)),
808 /*56*/	FLAG_ENTRY0("RxRbufDataCorErr", RXES(RBUF_DATA_COR)),
809 /*57*/	FLAG_ENTRY0("RxDmaCsrParityErr", RXES(DMA_CSR_PARITY)),
810 /*58*/	FLAG_ENTRY0("RxDmaEqFsmEncodingErr", RXES(DMA_EQ_FSM_ENCODING)),
811 /*59*/	FLAG_ENTRY0("RxDmaDqFsmEncodingErr", RXES(DMA_DQ_FSM_ENCODING)),
812 /*60*/	FLAG_ENTRY0("RxDmaCsrUncErr", RXES(DMA_CSR_UNC)),
813 /*61*/	FLAG_ENTRY0("RxCsrReadBadAddrErr", RXES(CSR_READ_BAD_ADDR)),
814 /*62*/	FLAG_ENTRY0("RxCsrWriteBadAddrErr", RXES(CSR_WRITE_BAD_ADDR)),
815 /*63*/	FLAG_ENTRY0("RxCsrParityErr", RXES(CSR_PARITY))
816 };
817 
818 /* RXE errors that will trigger an SPC freeze */
819 #define ALL_RXE_FREEZE_ERR  \
820 	(RCV_ERR_STATUS_RX_RCV_QP_MAP_TABLE_UNC_ERR_SMASK \
821 	| RCV_ERR_STATUS_RX_RCV_CSR_PARITY_ERR_SMASK \
822 	| RCV_ERR_STATUS_RX_DMA_FLAG_UNC_ERR_SMASK \
823 	| RCV_ERR_STATUS_RX_RCV_FSM_ENCODING_ERR_SMASK \
824 	| RCV_ERR_STATUS_RX_RBUF_FREE_LIST_UNC_ERR_SMASK \
825 	| RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_REG_UNC_ERR_SMASK \
826 	| RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_REG_UNC_COR_ERR_SMASK \
827 	| RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_UNC_ERR_SMASK \
828 	| RCV_ERR_STATUS_RX_RBUF_BLOCK_LIST_READ_UNC_ERR_SMASK \
829 	| RCV_ERR_STATUS_RX_RBUF_CSR_QHEAD_BUF_NUM_PARITY_ERR_SMASK \
830 	| RCV_ERR_STATUS_RX_RBUF_CSR_QENT_CNT_PARITY_ERR_SMASK \
831 	| RCV_ERR_STATUS_RX_RBUF_CSR_QNEXT_BUF_PARITY_ERR_SMASK \
832 	| RCV_ERR_STATUS_RX_RBUF_CSR_QVLD_BIT_PARITY_ERR_SMASK \
833 	| RCV_ERR_STATUS_RX_RBUF_CSR_QHD_PTR_PARITY_ERR_SMASK \
834 	| RCV_ERR_STATUS_RX_RBUF_CSR_QTL_PTR_PARITY_ERR_SMASK \
835 	| RCV_ERR_STATUS_RX_RBUF_CSR_QNUM_OF_PKT_PARITY_ERR_SMASK \
836 	| RCV_ERR_STATUS_RX_RBUF_CSR_QEOPDW_PARITY_ERR_SMASK \
837 	| RCV_ERR_STATUS_RX_RBUF_CTX_ID_PARITY_ERR_SMASK \
838 	| RCV_ERR_STATUS_RX_RBUF_BAD_LOOKUP_ERR_SMASK \
839 	| RCV_ERR_STATUS_RX_RBUF_FULL_ERR_SMASK \
840 	| RCV_ERR_STATUS_RX_RBUF_EMPTY_ERR_SMASK \
841 	| RCV_ERR_STATUS_RX_RBUF_FL_RD_ADDR_PARITY_ERR_SMASK \
842 	| RCV_ERR_STATUS_RX_RBUF_FL_WR_ADDR_PARITY_ERR_SMASK \
843 	| RCV_ERR_STATUS_RX_RBUF_FL_INITDONE_PARITY_ERR_SMASK \
844 	| RCV_ERR_STATUS_RX_RBUF_FL_INIT_WR_ADDR_PARITY_ERR_SMASK \
845 	| RCV_ERR_STATUS_RX_RBUF_NEXT_FREE_BUF_UNC_ERR_SMASK \
846 	| RCV_ERR_STATUS_RX_LOOKUP_DES_PART1_UNC_ERR_SMASK \
847 	| RCV_ERR_STATUS_RX_LOOKUP_DES_PART1_UNC_COR_ERR_SMASK \
848 	| RCV_ERR_STATUS_RX_LOOKUP_DES_PART2_PARITY_ERR_SMASK \
849 	| RCV_ERR_STATUS_RX_LOOKUP_RCV_ARRAY_UNC_ERR_SMASK \
850 	| RCV_ERR_STATUS_RX_LOOKUP_CSR_PARITY_ERR_SMASK \
851 	| RCV_ERR_STATUS_RX_HQ_INTR_CSR_PARITY_ERR_SMASK \
852 	| RCV_ERR_STATUS_RX_HQ_INTR_FSM_ERR_SMASK \
853 	| RCV_ERR_STATUS_RX_RBUF_DESC_PART1_UNC_ERR_SMASK \
854 	| RCV_ERR_STATUS_RX_RBUF_DESC_PART1_COR_ERR_SMASK \
855 	| RCV_ERR_STATUS_RX_RBUF_DESC_PART2_UNC_ERR_SMASK \
856 	| RCV_ERR_STATUS_RX_DMA_HDR_FIFO_RD_UNC_ERR_SMASK \
857 	| RCV_ERR_STATUS_RX_DMA_DATA_FIFO_RD_UNC_ERR_SMASK \
858 	| RCV_ERR_STATUS_RX_RBUF_DATA_UNC_ERR_SMASK \
859 	| RCV_ERR_STATUS_RX_DMA_CSR_PARITY_ERR_SMASK \
860 	| RCV_ERR_STATUS_RX_DMA_EQ_FSM_ENCODING_ERR_SMASK \
861 	| RCV_ERR_STATUS_RX_DMA_DQ_FSM_ENCODING_ERR_SMASK \
862 	| RCV_ERR_STATUS_RX_DMA_CSR_UNC_ERR_SMASK \
863 	| RCV_ERR_STATUS_RX_CSR_PARITY_ERR_SMASK)
864 
865 #define RXE_FREEZE_ABORT_MASK \
866 	(RCV_ERR_STATUS_RX_DMA_CSR_UNC_ERR_SMASK | \
867 	RCV_ERR_STATUS_RX_DMA_HDR_FIFO_RD_UNC_ERR_SMASK | \
868 	RCV_ERR_STATUS_RX_DMA_DATA_FIFO_RD_UNC_ERR_SMASK)
869 
870 /*
871  * DCC Error Flags
872  */
873 #define DCCE(name) DCC_ERR_FLG_##name##_SMASK
874 static struct flag_table dcc_err_flags[] = {
875 	FLAG_ENTRY0("bad_l2_err", DCCE(BAD_L2_ERR)),
876 	FLAG_ENTRY0("bad_sc_err", DCCE(BAD_SC_ERR)),
877 	FLAG_ENTRY0("bad_mid_tail_err", DCCE(BAD_MID_TAIL_ERR)),
878 	FLAG_ENTRY0("bad_preemption_err", DCCE(BAD_PREEMPTION_ERR)),
879 	FLAG_ENTRY0("preemption_err", DCCE(PREEMPTION_ERR)),
880 	FLAG_ENTRY0("preemptionvl15_err", DCCE(PREEMPTIONVL15_ERR)),
881 	FLAG_ENTRY0("bad_vl_marker_err", DCCE(BAD_VL_MARKER_ERR)),
882 	FLAG_ENTRY0("bad_dlid_target_err", DCCE(BAD_DLID_TARGET_ERR)),
883 	FLAG_ENTRY0("bad_lver_err", DCCE(BAD_LVER_ERR)),
884 	FLAG_ENTRY0("uncorrectable_err", DCCE(UNCORRECTABLE_ERR)),
885 	FLAG_ENTRY0("bad_crdt_ack_err", DCCE(BAD_CRDT_ACK_ERR)),
886 	FLAG_ENTRY0("unsup_pkt_type", DCCE(UNSUP_PKT_TYPE)),
887 	FLAG_ENTRY0("bad_ctrl_flit_err", DCCE(BAD_CTRL_FLIT_ERR)),
888 	FLAG_ENTRY0("event_cntr_parity_err", DCCE(EVENT_CNTR_PARITY_ERR)),
889 	FLAG_ENTRY0("event_cntr_rollover_err", DCCE(EVENT_CNTR_ROLLOVER_ERR)),
890 	FLAG_ENTRY0("link_err", DCCE(LINK_ERR)),
891 	FLAG_ENTRY0("misc_cntr_rollover_err", DCCE(MISC_CNTR_ROLLOVER_ERR)),
892 	FLAG_ENTRY0("bad_ctrl_dist_err", DCCE(BAD_CTRL_DIST_ERR)),
893 	FLAG_ENTRY0("bad_tail_dist_err", DCCE(BAD_TAIL_DIST_ERR)),
894 	FLAG_ENTRY0("bad_head_dist_err", DCCE(BAD_HEAD_DIST_ERR)),
895 	FLAG_ENTRY0("nonvl15_state_err", DCCE(NONVL15_STATE_ERR)),
896 	FLAG_ENTRY0("vl15_multi_err", DCCE(VL15_MULTI_ERR)),
897 	FLAG_ENTRY0("bad_pkt_length_err", DCCE(BAD_PKT_LENGTH_ERR)),
898 	FLAG_ENTRY0("unsup_vl_err", DCCE(UNSUP_VL_ERR)),
899 	FLAG_ENTRY0("perm_nvl15_err", DCCE(PERM_NVL15_ERR)),
900 	FLAG_ENTRY0("slid_zero_err", DCCE(SLID_ZERO_ERR)),
901 	FLAG_ENTRY0("dlid_zero_err", DCCE(DLID_ZERO_ERR)),
902 	FLAG_ENTRY0("length_mtu_err", DCCE(LENGTH_MTU_ERR)),
903 	FLAG_ENTRY0("rx_early_drop_err", DCCE(RX_EARLY_DROP_ERR)),
904 	FLAG_ENTRY0("late_short_err", DCCE(LATE_SHORT_ERR)),
905 	FLAG_ENTRY0("late_long_err", DCCE(LATE_LONG_ERR)),
906 	FLAG_ENTRY0("late_ebp_err", DCCE(LATE_EBP_ERR)),
907 	FLAG_ENTRY0("fpe_tx_fifo_ovflw_err", DCCE(FPE_TX_FIFO_OVFLW_ERR)),
908 	FLAG_ENTRY0("fpe_tx_fifo_unflw_err", DCCE(FPE_TX_FIFO_UNFLW_ERR)),
909 	FLAG_ENTRY0("csr_access_blocked_host", DCCE(CSR_ACCESS_BLOCKED_HOST)),
910 	FLAG_ENTRY0("csr_access_blocked_uc", DCCE(CSR_ACCESS_BLOCKED_UC)),
911 	FLAG_ENTRY0("tx_ctrl_parity_err", DCCE(TX_CTRL_PARITY_ERR)),
912 	FLAG_ENTRY0("tx_ctrl_parity_mbe_err", DCCE(TX_CTRL_PARITY_MBE_ERR)),
913 	FLAG_ENTRY0("tx_sc_parity_err", DCCE(TX_SC_PARITY_ERR)),
914 	FLAG_ENTRY0("rx_ctrl_parity_mbe_err", DCCE(RX_CTRL_PARITY_MBE_ERR)),
915 	FLAG_ENTRY0("csr_parity_err", DCCE(CSR_PARITY_ERR)),
916 	FLAG_ENTRY0("csr_inval_addr", DCCE(CSR_INVAL_ADDR)),
917 	FLAG_ENTRY0("tx_byte_shft_parity_err", DCCE(TX_BYTE_SHFT_PARITY_ERR)),
918 	FLAG_ENTRY0("rx_byte_shft_parity_err", DCCE(RX_BYTE_SHFT_PARITY_ERR)),
919 	FLAG_ENTRY0("fmconfig_err", DCCE(FMCONFIG_ERR)),
920 	FLAG_ENTRY0("rcvport_err", DCCE(RCVPORT_ERR)),
921 };
922 
923 /*
924  * LCB error flags
925  */
926 #define LCBE(name) DC_LCB_ERR_FLG_##name##_SMASK
927 static struct flag_table lcb_err_flags[] = {
928 /* 0*/	FLAG_ENTRY0("CSR_PARITY_ERR", LCBE(CSR_PARITY_ERR)),
929 /* 1*/	FLAG_ENTRY0("INVALID_CSR_ADDR", LCBE(INVALID_CSR_ADDR)),
930 /* 2*/	FLAG_ENTRY0("RST_FOR_FAILED_DESKEW", LCBE(RST_FOR_FAILED_DESKEW)),
931 /* 3*/	FLAG_ENTRY0("ALL_LNS_FAILED_REINIT_TEST",
932 		LCBE(ALL_LNS_FAILED_REINIT_TEST)),
933 /* 4*/	FLAG_ENTRY0("LOST_REINIT_STALL_OR_TOS", LCBE(LOST_REINIT_STALL_OR_TOS)),
934 /* 5*/	FLAG_ENTRY0("TX_LESS_THAN_FOUR_LNS", LCBE(TX_LESS_THAN_FOUR_LNS)),
935 /* 6*/	FLAG_ENTRY0("RX_LESS_THAN_FOUR_LNS", LCBE(RX_LESS_THAN_FOUR_LNS)),
936 /* 7*/	FLAG_ENTRY0("SEQ_CRC_ERR", LCBE(SEQ_CRC_ERR)),
937 /* 8*/	FLAG_ENTRY0("REINIT_FROM_PEER", LCBE(REINIT_FROM_PEER)),
938 /* 9*/	FLAG_ENTRY0("REINIT_FOR_LN_DEGRADE", LCBE(REINIT_FOR_LN_DEGRADE)),
939 /*10*/	FLAG_ENTRY0("CRC_ERR_CNT_HIT_LIMIT", LCBE(CRC_ERR_CNT_HIT_LIMIT)),
940 /*11*/	FLAG_ENTRY0("RCLK_STOPPED", LCBE(RCLK_STOPPED)),
941 /*12*/	FLAG_ENTRY0("UNEXPECTED_REPLAY_MARKER", LCBE(UNEXPECTED_REPLAY_MARKER)),
942 /*13*/	FLAG_ENTRY0("UNEXPECTED_ROUND_TRIP_MARKER",
943 		LCBE(UNEXPECTED_ROUND_TRIP_MARKER)),
944 /*14*/	FLAG_ENTRY0("ILLEGAL_NULL_LTP", LCBE(ILLEGAL_NULL_LTP)),
945 /*15*/	FLAG_ENTRY0("ILLEGAL_FLIT_ENCODING", LCBE(ILLEGAL_FLIT_ENCODING)),
946 /*16*/	FLAG_ENTRY0("FLIT_INPUT_BUF_OFLW", LCBE(FLIT_INPUT_BUF_OFLW)),
947 /*17*/	FLAG_ENTRY0("VL_ACK_INPUT_BUF_OFLW", LCBE(VL_ACK_INPUT_BUF_OFLW)),
948 /*18*/	FLAG_ENTRY0("VL_ACK_INPUT_PARITY_ERR", LCBE(VL_ACK_INPUT_PARITY_ERR)),
949 /*19*/	FLAG_ENTRY0("VL_ACK_INPUT_WRONG_CRC_MODE",
950 		LCBE(VL_ACK_INPUT_WRONG_CRC_MODE)),
951 /*20*/	FLAG_ENTRY0("FLIT_INPUT_BUF_MBE", LCBE(FLIT_INPUT_BUF_MBE)),
952 /*21*/	FLAG_ENTRY0("FLIT_INPUT_BUF_SBE", LCBE(FLIT_INPUT_BUF_SBE)),
953 /*22*/	FLAG_ENTRY0("REPLAY_BUF_MBE", LCBE(REPLAY_BUF_MBE)),
954 /*23*/	FLAG_ENTRY0("REPLAY_BUF_SBE", LCBE(REPLAY_BUF_SBE)),
955 /*24*/	FLAG_ENTRY0("CREDIT_RETURN_FLIT_MBE", LCBE(CREDIT_RETURN_FLIT_MBE)),
956 /*25*/	FLAG_ENTRY0("RST_FOR_LINK_TIMEOUT", LCBE(RST_FOR_LINK_TIMEOUT)),
957 /*26*/	FLAG_ENTRY0("RST_FOR_INCOMPLT_RND_TRIP",
958 		LCBE(RST_FOR_INCOMPLT_RND_TRIP)),
959 /*27*/	FLAG_ENTRY0("HOLD_REINIT", LCBE(HOLD_REINIT)),
960 /*28*/	FLAG_ENTRY0("NEG_EDGE_LINK_TRANSFER_ACTIVE",
961 		LCBE(NEG_EDGE_LINK_TRANSFER_ACTIVE)),
962 /*29*/	FLAG_ENTRY0("REDUNDANT_FLIT_PARITY_ERR",
963 		LCBE(REDUNDANT_FLIT_PARITY_ERR))
964 };
965 
966 /*
967  * DC8051 Error Flags
968  */
969 #define D8E(name) DC_DC8051_ERR_FLG_##name##_SMASK
970 static struct flag_table dc8051_err_flags[] = {
971 	FLAG_ENTRY0("SET_BY_8051", D8E(SET_BY_8051)),
972 	FLAG_ENTRY0("LOST_8051_HEART_BEAT", D8E(LOST_8051_HEART_BEAT)),
973 	FLAG_ENTRY0("CRAM_MBE", D8E(CRAM_MBE)),
974 	FLAG_ENTRY0("CRAM_SBE", D8E(CRAM_SBE)),
975 	FLAG_ENTRY0("DRAM_MBE", D8E(DRAM_MBE)),
976 	FLAG_ENTRY0("DRAM_SBE", D8E(DRAM_SBE)),
977 	FLAG_ENTRY0("IRAM_MBE", D8E(IRAM_MBE)),
978 	FLAG_ENTRY0("IRAM_SBE", D8E(IRAM_SBE)),
979 	FLAG_ENTRY0("UNMATCHED_SECURE_MSG_ACROSS_BCC_LANES",
980 		    D8E(UNMATCHED_SECURE_MSG_ACROSS_BCC_LANES)),
981 	FLAG_ENTRY0("INVALID_CSR_ADDR", D8E(INVALID_CSR_ADDR)),
982 };
983 
984 /*
985  * DC8051 Information Error flags
986  *
987  * Flags in DC8051_DBG_ERR_INFO_SET_BY_8051.ERROR field.
988  */
989 static struct flag_table dc8051_info_err_flags[] = {
990 	FLAG_ENTRY0("Spico ROM check failed",  SPICO_ROM_FAILED),
991 	FLAG_ENTRY0("Unknown frame received",  UNKNOWN_FRAME),
992 	FLAG_ENTRY0("Target BER not met",      TARGET_BER_NOT_MET),
993 	FLAG_ENTRY0("Serdes internal loopback failure",
994 		    FAILED_SERDES_INTERNAL_LOOPBACK),
995 	FLAG_ENTRY0("Failed SerDes init",      FAILED_SERDES_INIT),
996 	FLAG_ENTRY0("Failed LNI(Polling)",     FAILED_LNI_POLLING),
997 	FLAG_ENTRY0("Failed LNI(Debounce)",    FAILED_LNI_DEBOUNCE),
998 	FLAG_ENTRY0("Failed LNI(EstbComm)",    FAILED_LNI_ESTBCOMM),
999 	FLAG_ENTRY0("Failed LNI(OptEq)",       FAILED_LNI_OPTEQ),
1000 	FLAG_ENTRY0("Failed LNI(VerifyCap_1)", FAILED_LNI_VERIFY_CAP1),
1001 	FLAG_ENTRY0("Failed LNI(VerifyCap_2)", FAILED_LNI_VERIFY_CAP2),
1002 	FLAG_ENTRY0("Failed LNI(ConfigLT)",    FAILED_LNI_CONFIGLT),
1003 	FLAG_ENTRY0("Host Handshake Timeout",  HOST_HANDSHAKE_TIMEOUT),
1004 	FLAG_ENTRY0("External Device Request Timeout",
1005 		    EXTERNAL_DEVICE_REQ_TIMEOUT),
1006 };
1007 
1008 /*
1009  * DC8051 Information Host Information flags
1010  *
1011  * Flags in DC8051_DBG_ERR_INFO_SET_BY_8051.HOST_MSG field.
1012  */
1013 static struct flag_table dc8051_info_host_msg_flags[] = {
1014 	FLAG_ENTRY0("Host request done", 0x0001),
1015 	FLAG_ENTRY0("BC SMA message", 0x0002),
1016 	FLAG_ENTRY0("BC PWR_MGM message", 0x0004),
1017 	FLAG_ENTRY0("BC Unknown message (BCC)", 0x0008),
1018 	FLAG_ENTRY0("BC Unknown message (LCB)", 0x0010),
1019 	FLAG_ENTRY0("External device config request", 0x0020),
1020 	FLAG_ENTRY0("VerifyCap all frames received", 0x0040),
1021 	FLAG_ENTRY0("LinkUp achieved", 0x0080),
1022 	FLAG_ENTRY0("Link going down", 0x0100),
1023 };
1024 
1025 static u32 encoded_size(u32 size);
1026 static u32 chip_to_opa_lstate(struct hfi1_devdata *dd, u32 chip_lstate);
1027 static int set_physical_link_state(struct hfi1_devdata *dd, u64 state);
1028 static void read_vc_remote_phy(struct hfi1_devdata *dd, u8 *power_management,
1029 			       u8 *continuous);
1030 static void read_vc_remote_fabric(struct hfi1_devdata *dd, u8 *vau, u8 *z,
1031 				  u8 *vcu, u16 *vl15buf, u8 *crc_sizes);
1032 static void read_vc_remote_link_width(struct hfi1_devdata *dd,
1033 				      u8 *remote_tx_rate, u16 *link_widths);
1034 static void read_vc_local_link_width(struct hfi1_devdata *dd, u8 *misc_bits,
1035 				     u8 *flag_bits, u16 *link_widths);
1036 static void read_remote_device_id(struct hfi1_devdata *dd, u16 *device_id,
1037 				  u8 *device_rev);
1038 static void read_mgmt_allowed(struct hfi1_devdata *dd, u8 *mgmt_allowed);
1039 static void read_local_lni(struct hfi1_devdata *dd, u8 *enable_lane_rx);
1040 static int read_tx_settings(struct hfi1_devdata *dd, u8 *enable_lane_tx,
1041 			    u8 *tx_polarity_inversion,
1042 			    u8 *rx_polarity_inversion, u8 *max_rate);
1043 static void handle_sdma_eng_err(struct hfi1_devdata *dd,
1044 				unsigned int context, u64 err_status);
1045 static void handle_qsfp_int(struct hfi1_devdata *dd, u32 source, u64 reg);
1046 static void handle_dcc_err(struct hfi1_devdata *dd,
1047 			   unsigned int context, u64 err_status);
1048 static void handle_lcb_err(struct hfi1_devdata *dd,
1049 			   unsigned int context, u64 err_status);
1050 static void handle_8051_interrupt(struct hfi1_devdata *dd, u32 unused, u64 reg);
1051 static void handle_cce_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1052 static void handle_rxe_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1053 static void handle_misc_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1054 static void handle_pio_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1055 static void handle_sdma_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1056 static void handle_egress_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1057 static void handle_txe_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1058 static void set_partition_keys(struct hfi1_pportdata *ppd);
1059 static const char *link_state_name(u32 state);
1060 static const char *link_state_reason_name(struct hfi1_pportdata *ppd,
1061 					  u32 state);
1062 static int do_8051_command(struct hfi1_devdata *dd, u32 type, u64 in_data,
1063 			   u64 *out_data);
1064 static int read_idle_sma(struct hfi1_devdata *dd, u64 *data);
1065 static int thermal_init(struct hfi1_devdata *dd);
1066 
1067 static int wait_logical_linkstate(struct hfi1_pportdata *ppd, u32 state,
1068 				  int msecs);
1069 static void read_planned_down_reason_code(struct hfi1_devdata *dd, u8 *pdrrc);
1070 static void read_link_down_reason(struct hfi1_devdata *dd, u8 *ldr);
1071 static void handle_temp_err(struct hfi1_devdata *dd);
1072 static void dc_shutdown(struct hfi1_devdata *dd);
1073 static void dc_start(struct hfi1_devdata *dd);
1074 static int qos_rmt_entries(struct hfi1_devdata *dd, unsigned int *mp,
1075 			   unsigned int *np);
1076 static void clear_full_mgmt_pkey(struct hfi1_pportdata *ppd);
1077 static int wait_link_transfer_active(struct hfi1_devdata *dd, int wait_ms);
1078 static void clear_rsm_rule(struct hfi1_devdata *dd, u8 rule_index);
1079 
1080 /*
1081  * Error interrupt table entry.  This is used as input to the interrupt
1082  * "clear down" routine used for all second tier error interrupt register.
1083  * Second tier interrupt registers have a single bit representing them
1084  * in the top-level CceIntStatus.
1085  */
1086 struct err_reg_info {
1087 	u32 status;		/* status CSR offset */
1088 	u32 clear;		/* clear CSR offset */
1089 	u32 mask;		/* mask CSR offset */
1090 	void (*handler)(struct hfi1_devdata *dd, u32 source, u64 reg);
1091 	const char *desc;
1092 };
1093 
1094 #define NUM_MISC_ERRS (IS_GENERAL_ERR_END - IS_GENERAL_ERR_START)
1095 #define NUM_DC_ERRS (IS_DC_END - IS_DC_START)
1096 #define NUM_VARIOUS (IS_VARIOUS_END - IS_VARIOUS_START)
1097 
1098 /*
1099  * Helpers for building HFI and DC error interrupt table entries.  Different
1100  * helpers are needed because of inconsistent register names.
1101  */
1102 #define EE(reg, handler, desc) \
1103 	{ reg##_STATUS, reg##_CLEAR, reg##_MASK, \
1104 		handler, desc }
1105 #define DC_EE1(reg, handler, desc) \
1106 	{ reg##_FLG, reg##_FLG_CLR, reg##_FLG_EN, handler, desc }
1107 #define DC_EE2(reg, handler, desc) \
1108 	{ reg##_FLG, reg##_CLR, reg##_EN, handler, desc }
1109 
1110 /*
1111  * Table of the "misc" grouping of error interrupts.  Each entry refers to
1112  * another register containing more information.
1113  */
1114 static const struct err_reg_info misc_errs[NUM_MISC_ERRS] = {
1115 /* 0*/	EE(CCE_ERR,		handle_cce_err,    "CceErr"),
1116 /* 1*/	EE(RCV_ERR,		handle_rxe_err,    "RxeErr"),
1117 /* 2*/	EE(MISC_ERR,	handle_misc_err,   "MiscErr"),
1118 /* 3*/	{ 0, 0, 0, NULL }, /* reserved */
1119 /* 4*/	EE(SEND_PIO_ERR,    handle_pio_err,    "PioErr"),
1120 /* 5*/	EE(SEND_DMA_ERR,    handle_sdma_err,   "SDmaErr"),
1121 /* 6*/	EE(SEND_EGRESS_ERR, handle_egress_err, "EgressErr"),
1122 /* 7*/	EE(SEND_ERR,	handle_txe_err,    "TxeErr")
1123 	/* the rest are reserved */
1124 };
1125 
1126 /*
1127  * Index into the Various section of the interrupt sources
1128  * corresponding to the Critical Temperature interrupt.
1129  */
1130 #define TCRIT_INT_SOURCE 4
1131 
1132 /*
1133  * SDMA error interrupt entry - refers to another register containing more
1134  * information.
1135  */
1136 static const struct err_reg_info sdma_eng_err =
1137 	EE(SEND_DMA_ENG_ERR, handle_sdma_eng_err, "SDmaEngErr");
1138 
1139 static const struct err_reg_info various_err[NUM_VARIOUS] = {
1140 /* 0*/	{ 0, 0, 0, NULL }, /* PbcInt */
1141 /* 1*/	{ 0, 0, 0, NULL }, /* GpioAssertInt */
1142 /* 2*/	EE(ASIC_QSFP1,	handle_qsfp_int,	"QSFP1"),
1143 /* 3*/	EE(ASIC_QSFP2,	handle_qsfp_int,	"QSFP2"),
1144 /* 4*/	{ 0, 0, 0, NULL }, /* TCritInt */
1145 	/* rest are reserved */
1146 };
1147 
1148 /*
1149  * The DC encoding of mtu_cap for 10K MTU in the DCC_CFG_PORT_CONFIG
1150  * register can not be derived from the MTU value because 10K is not
1151  * a power of 2. Therefore, we need a constant. Everything else can
1152  * be calculated.
1153  */
1154 #define DCC_CFG_PORT_MTU_CAP_10240 7
1155 
1156 /*
1157  * Table of the DC grouping of error interrupts.  Each entry refers to
1158  * another register containing more information.
1159  */
1160 static const struct err_reg_info dc_errs[NUM_DC_ERRS] = {
1161 /* 0*/	DC_EE1(DCC_ERR,		handle_dcc_err,	       "DCC Err"),
1162 /* 1*/	DC_EE2(DC_LCB_ERR,	handle_lcb_err,	       "LCB Err"),
1163 /* 2*/	DC_EE2(DC_DC8051_ERR,	handle_8051_interrupt, "DC8051 Interrupt"),
1164 /* 3*/	/* dc_lbm_int - special, see is_dc_int() */
1165 	/* the rest are reserved */
1166 };
1167 
1168 struct cntr_entry {
1169 	/*
1170 	 * counter name
1171 	 */
1172 	char *name;
1173 
1174 	/*
1175 	 * csr to read for name (if applicable)
1176 	 */
1177 	u64 csr;
1178 
1179 	/*
1180 	 * offset into dd or ppd to store the counter's value
1181 	 */
1182 	int offset;
1183 
1184 	/*
1185 	 * flags
1186 	 */
1187 	u8 flags;
1188 
1189 	/*
1190 	 * accessor for stat element, context either dd or ppd
1191 	 */
1192 	u64 (*rw_cntr)(const struct cntr_entry *, void *context, int vl,
1193 		       int mode, u64 data);
1194 };
1195 
1196 #define C_RCV_HDR_OVF_FIRST C_RCV_HDR_OVF_0
1197 #define C_RCV_HDR_OVF_LAST C_RCV_HDR_OVF_159
1198 
1199 #define CNTR_ELEM(name, csr, offset, flags, accessor) \
1200 { \
1201 	name, \
1202 	csr, \
1203 	offset, \
1204 	flags, \
1205 	accessor \
1206 }
1207 
1208 /* 32bit RXE */
1209 #define RXE32_PORT_CNTR_ELEM(name, counter, flags) \
1210 CNTR_ELEM(#name, \
1211 	  (counter * 8 + RCV_COUNTER_ARRAY32), \
1212 	  0, flags | CNTR_32BIT, \
1213 	  port_access_u32_csr)
1214 
1215 #define RXE32_DEV_CNTR_ELEM(name, counter, flags) \
1216 CNTR_ELEM(#name, \
1217 	  (counter * 8 + RCV_COUNTER_ARRAY32), \
1218 	  0, flags | CNTR_32BIT, \
1219 	  dev_access_u32_csr)
1220 
1221 /* 64bit RXE */
1222 #define RXE64_PORT_CNTR_ELEM(name, counter, flags) \
1223 CNTR_ELEM(#name, \
1224 	  (counter * 8 + RCV_COUNTER_ARRAY64), \
1225 	  0, flags, \
1226 	  port_access_u64_csr)
1227 
1228 #define RXE64_DEV_CNTR_ELEM(name, counter, flags) \
1229 CNTR_ELEM(#name, \
1230 	  (counter * 8 + RCV_COUNTER_ARRAY64), \
1231 	  0, flags, \
1232 	  dev_access_u64_csr)
1233 
1234 #define OVR_LBL(ctx) C_RCV_HDR_OVF_ ## ctx
1235 #define OVR_ELM(ctx) \
1236 CNTR_ELEM("RcvHdrOvr" #ctx, \
1237 	  (RCV_HDR_OVFL_CNT + ctx * 0x100), \
1238 	  0, CNTR_NORMAL, port_access_u64_csr)
1239 
1240 /* 32bit TXE */
1241 #define TXE32_PORT_CNTR_ELEM(name, counter, flags) \
1242 CNTR_ELEM(#name, \
1243 	  (counter * 8 + SEND_COUNTER_ARRAY32), \
1244 	  0, flags | CNTR_32BIT, \
1245 	  port_access_u32_csr)
1246 
1247 /* 64bit TXE */
1248 #define TXE64_PORT_CNTR_ELEM(name, counter, flags) \
1249 CNTR_ELEM(#name, \
1250 	  (counter * 8 + SEND_COUNTER_ARRAY64), \
1251 	  0, flags, \
1252 	  port_access_u64_csr)
1253 
1254 # define TX64_DEV_CNTR_ELEM(name, counter, flags) \
1255 CNTR_ELEM(#name,\
1256 	  counter * 8 + SEND_COUNTER_ARRAY64, \
1257 	  0, \
1258 	  flags, \
1259 	  dev_access_u64_csr)
1260 
1261 /* CCE */
1262 #define CCE_PERF_DEV_CNTR_ELEM(name, counter, flags) \
1263 CNTR_ELEM(#name, \
1264 	  (counter * 8 + CCE_COUNTER_ARRAY32), \
1265 	  0, flags | CNTR_32BIT, \
1266 	  dev_access_u32_csr)
1267 
1268 #define CCE_INT_DEV_CNTR_ELEM(name, counter, flags) \
1269 CNTR_ELEM(#name, \
1270 	  (counter * 8 + CCE_INT_COUNTER_ARRAY32), \
1271 	  0, flags | CNTR_32BIT, \
1272 	  dev_access_u32_csr)
1273 
1274 /* DC */
1275 #define DC_PERF_CNTR(name, counter, flags) \
1276 CNTR_ELEM(#name, \
1277 	  counter, \
1278 	  0, \
1279 	  flags, \
1280 	  dev_access_u64_csr)
1281 
1282 #define DC_PERF_CNTR_LCB(name, counter, flags) \
1283 CNTR_ELEM(#name, \
1284 	  counter, \
1285 	  0, \
1286 	  flags, \
1287 	  dc_access_lcb_cntr)
1288 
1289 /* ibp counters */
1290 #define SW_IBP_CNTR(name, cntr) \
1291 CNTR_ELEM(#name, \
1292 	  0, \
1293 	  0, \
1294 	  CNTR_SYNTH, \
1295 	  access_ibp_##cntr)
1296 
1297 u64 read_csr(const struct hfi1_devdata *dd, u32 offset)
1298 {
1299 	if (dd->flags & HFI1_PRESENT) {
1300 		return readq((void __iomem *)dd->kregbase + offset);
1301 	}
1302 	return -1;
1303 }
1304 
1305 void write_csr(const struct hfi1_devdata *dd, u32 offset, u64 value)
1306 {
1307 	if (dd->flags & HFI1_PRESENT)
1308 		writeq(value, (void __iomem *)dd->kregbase + offset);
1309 }
1310 
1311 void __iomem *get_csr_addr(
1312 	struct hfi1_devdata *dd,
1313 	u32 offset)
1314 {
1315 	return (void __iomem *)dd->kregbase + offset;
1316 }
1317 
1318 static inline u64 read_write_csr(const struct hfi1_devdata *dd, u32 csr,
1319 				 int mode, u64 value)
1320 {
1321 	u64 ret;
1322 
1323 	if (mode == CNTR_MODE_R) {
1324 		ret = read_csr(dd, csr);
1325 	} else if (mode == CNTR_MODE_W) {
1326 		write_csr(dd, csr, value);
1327 		ret = value;
1328 	} else {
1329 		dd_dev_err(dd, "Invalid cntr register access mode");
1330 		return 0;
1331 	}
1332 
1333 	hfi1_cdbg(CNTR, "csr 0x%x val 0x%llx mode %d", csr, ret, mode);
1334 	return ret;
1335 }
1336 
1337 /* Dev Access */
1338 static u64 dev_access_u32_csr(const struct cntr_entry *entry,
1339 			      void *context, int vl, int mode, u64 data)
1340 {
1341 	struct hfi1_devdata *dd = context;
1342 	u64 csr = entry->csr;
1343 
1344 	if (entry->flags & CNTR_SDMA) {
1345 		if (vl == CNTR_INVALID_VL)
1346 			return 0;
1347 		csr += 0x100 * vl;
1348 	} else {
1349 		if (vl != CNTR_INVALID_VL)
1350 			return 0;
1351 	}
1352 	return read_write_csr(dd, csr, mode, data);
1353 }
1354 
1355 static u64 access_sde_err_cnt(const struct cntr_entry *entry,
1356 			      void *context, int idx, int mode, u64 data)
1357 {
1358 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1359 
1360 	if (dd->per_sdma && idx < dd->num_sdma)
1361 		return dd->per_sdma[idx].err_cnt;
1362 	return 0;
1363 }
1364 
1365 static u64 access_sde_int_cnt(const struct cntr_entry *entry,
1366 			      void *context, int idx, int mode, u64 data)
1367 {
1368 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1369 
1370 	if (dd->per_sdma && idx < dd->num_sdma)
1371 		return dd->per_sdma[idx].sdma_int_cnt;
1372 	return 0;
1373 }
1374 
1375 static u64 access_sde_idle_int_cnt(const struct cntr_entry *entry,
1376 				   void *context, int idx, int mode, u64 data)
1377 {
1378 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1379 
1380 	if (dd->per_sdma && idx < dd->num_sdma)
1381 		return dd->per_sdma[idx].idle_int_cnt;
1382 	return 0;
1383 }
1384 
1385 static u64 access_sde_progress_int_cnt(const struct cntr_entry *entry,
1386 				       void *context, int idx, int mode,
1387 				       u64 data)
1388 {
1389 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1390 
1391 	if (dd->per_sdma && idx < dd->num_sdma)
1392 		return dd->per_sdma[idx].progress_int_cnt;
1393 	return 0;
1394 }
1395 
1396 static u64 dev_access_u64_csr(const struct cntr_entry *entry, void *context,
1397 			      int vl, int mode, u64 data)
1398 {
1399 	struct hfi1_devdata *dd = context;
1400 
1401 	u64 val = 0;
1402 	u64 csr = entry->csr;
1403 
1404 	if (entry->flags & CNTR_VL) {
1405 		if (vl == CNTR_INVALID_VL)
1406 			return 0;
1407 		csr += 8 * vl;
1408 	} else {
1409 		if (vl != CNTR_INVALID_VL)
1410 			return 0;
1411 	}
1412 
1413 	val = read_write_csr(dd, csr, mode, data);
1414 	return val;
1415 }
1416 
1417 static u64 dc_access_lcb_cntr(const struct cntr_entry *entry, void *context,
1418 			      int vl, int mode, u64 data)
1419 {
1420 	struct hfi1_devdata *dd = context;
1421 	u32 csr = entry->csr;
1422 	int ret = 0;
1423 
1424 	if (vl != CNTR_INVALID_VL)
1425 		return 0;
1426 	if (mode == CNTR_MODE_R)
1427 		ret = read_lcb_csr(dd, csr, &data);
1428 	else if (mode == CNTR_MODE_W)
1429 		ret = write_lcb_csr(dd, csr, data);
1430 
1431 	if (ret) {
1432 		dd_dev_err(dd, "Could not acquire LCB for counter 0x%x", csr);
1433 		return 0;
1434 	}
1435 
1436 	hfi1_cdbg(CNTR, "csr 0x%x val 0x%llx mode %d", csr, data, mode);
1437 	return data;
1438 }
1439 
1440 /* Port Access */
1441 static u64 port_access_u32_csr(const struct cntr_entry *entry, void *context,
1442 			       int vl, int mode, u64 data)
1443 {
1444 	struct hfi1_pportdata *ppd = context;
1445 
1446 	if (vl != CNTR_INVALID_VL)
1447 		return 0;
1448 	return read_write_csr(ppd->dd, entry->csr, mode, data);
1449 }
1450 
1451 static u64 port_access_u64_csr(const struct cntr_entry *entry,
1452 			       void *context, int vl, int mode, u64 data)
1453 {
1454 	struct hfi1_pportdata *ppd = context;
1455 	u64 val;
1456 	u64 csr = entry->csr;
1457 
1458 	if (entry->flags & CNTR_VL) {
1459 		if (vl == CNTR_INVALID_VL)
1460 			return 0;
1461 		csr += 8 * vl;
1462 	} else {
1463 		if (vl != CNTR_INVALID_VL)
1464 			return 0;
1465 	}
1466 	val = read_write_csr(ppd->dd, csr, mode, data);
1467 	return val;
1468 }
1469 
1470 /* Software defined */
1471 static inline u64 read_write_sw(struct hfi1_devdata *dd, u64 *cntr, int mode,
1472 				u64 data)
1473 {
1474 	u64 ret;
1475 
1476 	if (mode == CNTR_MODE_R) {
1477 		ret = *cntr;
1478 	} else if (mode == CNTR_MODE_W) {
1479 		*cntr = data;
1480 		ret = data;
1481 	} else {
1482 		dd_dev_err(dd, "Invalid cntr sw access mode");
1483 		return 0;
1484 	}
1485 
1486 	hfi1_cdbg(CNTR, "val 0x%llx mode %d", ret, mode);
1487 
1488 	return ret;
1489 }
1490 
1491 static u64 access_sw_link_dn_cnt(const struct cntr_entry *entry, void *context,
1492 				 int vl, int mode, u64 data)
1493 {
1494 	struct hfi1_pportdata *ppd = context;
1495 
1496 	if (vl != CNTR_INVALID_VL)
1497 		return 0;
1498 	return read_write_sw(ppd->dd, &ppd->link_downed, mode, data);
1499 }
1500 
1501 static u64 access_sw_link_up_cnt(const struct cntr_entry *entry, void *context,
1502 				 int vl, int mode, u64 data)
1503 {
1504 	struct hfi1_pportdata *ppd = context;
1505 
1506 	if (vl != CNTR_INVALID_VL)
1507 		return 0;
1508 	return read_write_sw(ppd->dd, &ppd->link_up, mode, data);
1509 }
1510 
1511 static u64 access_sw_unknown_frame_cnt(const struct cntr_entry *entry,
1512 				       void *context, int vl, int mode,
1513 				       u64 data)
1514 {
1515 	struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context;
1516 
1517 	if (vl != CNTR_INVALID_VL)
1518 		return 0;
1519 	return read_write_sw(ppd->dd, &ppd->unknown_frame_count, mode, data);
1520 }
1521 
1522 static u64 access_sw_xmit_discards(const struct cntr_entry *entry,
1523 				   void *context, int vl, int mode, u64 data)
1524 {
1525 	struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context;
1526 	u64 zero = 0;
1527 	u64 *counter;
1528 
1529 	if (vl == CNTR_INVALID_VL)
1530 		counter = &ppd->port_xmit_discards;
1531 	else if (vl >= 0 && vl < C_VL_COUNT)
1532 		counter = &ppd->port_xmit_discards_vl[vl];
1533 	else
1534 		counter = &zero;
1535 
1536 	return read_write_sw(ppd->dd, counter, mode, data);
1537 }
1538 
1539 static u64 access_xmit_constraint_errs(const struct cntr_entry *entry,
1540 				       void *context, int vl, int mode,
1541 				       u64 data)
1542 {
1543 	struct hfi1_pportdata *ppd = context;
1544 
1545 	if (vl != CNTR_INVALID_VL)
1546 		return 0;
1547 
1548 	return read_write_sw(ppd->dd, &ppd->port_xmit_constraint_errors,
1549 			     mode, data);
1550 }
1551 
1552 static u64 access_rcv_constraint_errs(const struct cntr_entry *entry,
1553 				      void *context, int vl, int mode, u64 data)
1554 {
1555 	struct hfi1_pportdata *ppd = context;
1556 
1557 	if (vl != CNTR_INVALID_VL)
1558 		return 0;
1559 
1560 	return read_write_sw(ppd->dd, &ppd->port_rcv_constraint_errors,
1561 			     mode, data);
1562 }
1563 
1564 u64 get_all_cpu_total(u64 __percpu *cntr)
1565 {
1566 	int cpu;
1567 	u64 counter = 0;
1568 
1569 	for_each_possible_cpu(cpu)
1570 		counter += *per_cpu_ptr(cntr, cpu);
1571 	return counter;
1572 }
1573 
1574 static u64 read_write_cpu(struct hfi1_devdata *dd, u64 *z_val,
1575 			  u64 __percpu *cntr,
1576 			  int vl, int mode, u64 data)
1577 {
1578 	u64 ret = 0;
1579 
1580 	if (vl != CNTR_INVALID_VL)
1581 		return 0;
1582 
1583 	if (mode == CNTR_MODE_R) {
1584 		ret = get_all_cpu_total(cntr) - *z_val;
1585 	} else if (mode == CNTR_MODE_W) {
1586 		/* A write can only zero the counter */
1587 		if (data == 0)
1588 			*z_val = get_all_cpu_total(cntr);
1589 		else
1590 			dd_dev_err(dd, "Per CPU cntrs can only be zeroed");
1591 	} else {
1592 		dd_dev_err(dd, "Invalid cntr sw cpu access mode");
1593 		return 0;
1594 	}
1595 
1596 	return ret;
1597 }
1598 
1599 static u64 access_sw_cpu_intr(const struct cntr_entry *entry,
1600 			      void *context, int vl, int mode, u64 data)
1601 {
1602 	struct hfi1_devdata *dd = context;
1603 
1604 	return read_write_cpu(dd, &dd->z_int_counter, dd->int_counter, vl,
1605 			      mode, data);
1606 }
1607 
1608 static u64 access_sw_cpu_rcv_limit(const struct cntr_entry *entry,
1609 				   void *context, int vl, int mode, u64 data)
1610 {
1611 	struct hfi1_devdata *dd = context;
1612 
1613 	return read_write_cpu(dd, &dd->z_rcv_limit, dd->rcv_limit, vl,
1614 			      mode, data);
1615 }
1616 
1617 static u64 access_sw_pio_wait(const struct cntr_entry *entry,
1618 			      void *context, int vl, int mode, u64 data)
1619 {
1620 	struct hfi1_devdata *dd = context;
1621 
1622 	return dd->verbs_dev.n_piowait;
1623 }
1624 
1625 static u64 access_sw_pio_drain(const struct cntr_entry *entry,
1626 			       void *context, int vl, int mode, u64 data)
1627 {
1628 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1629 
1630 	return dd->verbs_dev.n_piodrain;
1631 }
1632 
1633 static u64 access_sw_vtx_wait(const struct cntr_entry *entry,
1634 			      void *context, int vl, int mode, u64 data)
1635 {
1636 	struct hfi1_devdata *dd = context;
1637 
1638 	return dd->verbs_dev.n_txwait;
1639 }
1640 
1641 static u64 access_sw_kmem_wait(const struct cntr_entry *entry,
1642 			       void *context, int vl, int mode, u64 data)
1643 {
1644 	struct hfi1_devdata *dd = context;
1645 
1646 	return dd->verbs_dev.n_kmem_wait;
1647 }
1648 
1649 static u64 access_sw_send_schedule(const struct cntr_entry *entry,
1650 				   void *context, int vl, int mode, u64 data)
1651 {
1652 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1653 
1654 	return read_write_cpu(dd, &dd->z_send_schedule, dd->send_schedule, vl,
1655 			      mode, data);
1656 }
1657 
1658 /* Software counters for the error status bits within MISC_ERR_STATUS */
1659 static u64 access_misc_pll_lock_fail_err_cnt(const struct cntr_entry *entry,
1660 					     void *context, int vl, int mode,
1661 					     u64 data)
1662 {
1663 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1664 
1665 	return dd->misc_err_status_cnt[12];
1666 }
1667 
1668 static u64 access_misc_mbist_fail_err_cnt(const struct cntr_entry *entry,
1669 					  void *context, int vl, int mode,
1670 					  u64 data)
1671 {
1672 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1673 
1674 	return dd->misc_err_status_cnt[11];
1675 }
1676 
1677 static u64 access_misc_invalid_eep_cmd_err_cnt(const struct cntr_entry *entry,
1678 					       void *context, int vl, int mode,
1679 					       u64 data)
1680 {
1681 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1682 
1683 	return dd->misc_err_status_cnt[10];
1684 }
1685 
1686 static u64 access_misc_efuse_done_parity_err_cnt(const struct cntr_entry *entry,
1687 						 void *context, int vl,
1688 						 int mode, u64 data)
1689 {
1690 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1691 
1692 	return dd->misc_err_status_cnt[9];
1693 }
1694 
1695 static u64 access_misc_efuse_write_err_cnt(const struct cntr_entry *entry,
1696 					   void *context, int vl, int mode,
1697 					   u64 data)
1698 {
1699 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1700 
1701 	return dd->misc_err_status_cnt[8];
1702 }
1703 
1704 static u64 access_misc_efuse_read_bad_addr_err_cnt(
1705 				const struct cntr_entry *entry,
1706 				void *context, int vl, int mode, u64 data)
1707 {
1708 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1709 
1710 	return dd->misc_err_status_cnt[7];
1711 }
1712 
1713 static u64 access_misc_efuse_csr_parity_err_cnt(const struct cntr_entry *entry,
1714 						void *context, int vl,
1715 						int mode, u64 data)
1716 {
1717 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1718 
1719 	return dd->misc_err_status_cnt[6];
1720 }
1721 
1722 static u64 access_misc_fw_auth_failed_err_cnt(const struct cntr_entry *entry,
1723 					      void *context, int vl, int mode,
1724 					      u64 data)
1725 {
1726 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1727 
1728 	return dd->misc_err_status_cnt[5];
1729 }
1730 
1731 static u64 access_misc_key_mismatch_err_cnt(const struct cntr_entry *entry,
1732 					    void *context, int vl, int mode,
1733 					    u64 data)
1734 {
1735 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1736 
1737 	return dd->misc_err_status_cnt[4];
1738 }
1739 
1740 static u64 access_misc_sbus_write_failed_err_cnt(const struct cntr_entry *entry,
1741 						 void *context, int vl,
1742 						 int mode, u64 data)
1743 {
1744 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1745 
1746 	return dd->misc_err_status_cnt[3];
1747 }
1748 
1749 static u64 access_misc_csr_write_bad_addr_err_cnt(
1750 				const struct cntr_entry *entry,
1751 				void *context, int vl, int mode, u64 data)
1752 {
1753 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1754 
1755 	return dd->misc_err_status_cnt[2];
1756 }
1757 
1758 static u64 access_misc_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
1759 						 void *context, int vl,
1760 						 int mode, u64 data)
1761 {
1762 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1763 
1764 	return dd->misc_err_status_cnt[1];
1765 }
1766 
1767 static u64 access_misc_csr_parity_err_cnt(const struct cntr_entry *entry,
1768 					  void *context, int vl, int mode,
1769 					  u64 data)
1770 {
1771 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1772 
1773 	return dd->misc_err_status_cnt[0];
1774 }
1775 
1776 /*
1777  * Software counter for the aggregate of
1778  * individual CceErrStatus counters
1779  */
1780 static u64 access_sw_cce_err_status_aggregated_cnt(
1781 				const struct cntr_entry *entry,
1782 				void *context, int vl, int mode, u64 data)
1783 {
1784 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1785 
1786 	return dd->sw_cce_err_status_aggregate;
1787 }
1788 
1789 /*
1790  * Software counters corresponding to each of the
1791  * error status bits within CceErrStatus
1792  */
1793 static u64 access_cce_msix_csr_parity_err_cnt(const struct cntr_entry *entry,
1794 					      void *context, int vl, int mode,
1795 					      u64 data)
1796 {
1797 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1798 
1799 	return dd->cce_err_status_cnt[40];
1800 }
1801 
1802 static u64 access_cce_int_map_unc_err_cnt(const struct cntr_entry *entry,
1803 					  void *context, int vl, int mode,
1804 					  u64 data)
1805 {
1806 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1807 
1808 	return dd->cce_err_status_cnt[39];
1809 }
1810 
1811 static u64 access_cce_int_map_cor_err_cnt(const struct cntr_entry *entry,
1812 					  void *context, int vl, int mode,
1813 					  u64 data)
1814 {
1815 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1816 
1817 	return dd->cce_err_status_cnt[38];
1818 }
1819 
1820 static u64 access_cce_msix_table_unc_err_cnt(const struct cntr_entry *entry,
1821 					     void *context, int vl, int mode,
1822 					     u64 data)
1823 {
1824 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1825 
1826 	return dd->cce_err_status_cnt[37];
1827 }
1828 
1829 static u64 access_cce_msix_table_cor_err_cnt(const struct cntr_entry *entry,
1830 					     void *context, int vl, int mode,
1831 					     u64 data)
1832 {
1833 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1834 
1835 	return dd->cce_err_status_cnt[36];
1836 }
1837 
1838 static u64 access_cce_rxdma_conv_fifo_parity_err_cnt(
1839 				const struct cntr_entry *entry,
1840 				void *context, int vl, int mode, u64 data)
1841 {
1842 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1843 
1844 	return dd->cce_err_status_cnt[35];
1845 }
1846 
1847 static u64 access_cce_rcpl_async_fifo_parity_err_cnt(
1848 				const struct cntr_entry *entry,
1849 				void *context, int vl, int mode, u64 data)
1850 {
1851 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1852 
1853 	return dd->cce_err_status_cnt[34];
1854 }
1855 
1856 static u64 access_cce_seg_write_bad_addr_err_cnt(const struct cntr_entry *entry,
1857 						 void *context, int vl,
1858 						 int mode, u64 data)
1859 {
1860 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1861 
1862 	return dd->cce_err_status_cnt[33];
1863 }
1864 
1865 static u64 access_cce_seg_read_bad_addr_err_cnt(const struct cntr_entry *entry,
1866 						void *context, int vl, int mode,
1867 						u64 data)
1868 {
1869 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1870 
1871 	return dd->cce_err_status_cnt[32];
1872 }
1873 
1874 static u64 access_la_triggered_cnt(const struct cntr_entry *entry,
1875 				   void *context, int vl, int mode, u64 data)
1876 {
1877 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1878 
1879 	return dd->cce_err_status_cnt[31];
1880 }
1881 
1882 static u64 access_cce_trgt_cpl_timeout_err_cnt(const struct cntr_entry *entry,
1883 					       void *context, int vl, int mode,
1884 					       u64 data)
1885 {
1886 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1887 
1888 	return dd->cce_err_status_cnt[30];
1889 }
1890 
1891 static u64 access_pcic_receive_parity_err_cnt(const struct cntr_entry *entry,
1892 					      void *context, int vl, int mode,
1893 					      u64 data)
1894 {
1895 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1896 
1897 	return dd->cce_err_status_cnt[29];
1898 }
1899 
1900 static u64 access_pcic_transmit_back_parity_err_cnt(
1901 				const struct cntr_entry *entry,
1902 				void *context, int vl, int mode, u64 data)
1903 {
1904 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1905 
1906 	return dd->cce_err_status_cnt[28];
1907 }
1908 
1909 static u64 access_pcic_transmit_front_parity_err_cnt(
1910 				const struct cntr_entry *entry,
1911 				void *context, int vl, int mode, u64 data)
1912 {
1913 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1914 
1915 	return dd->cce_err_status_cnt[27];
1916 }
1917 
1918 static u64 access_pcic_cpl_dat_q_unc_err_cnt(const struct cntr_entry *entry,
1919 					     void *context, int vl, int mode,
1920 					     u64 data)
1921 {
1922 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1923 
1924 	return dd->cce_err_status_cnt[26];
1925 }
1926 
1927 static u64 access_pcic_cpl_hd_q_unc_err_cnt(const struct cntr_entry *entry,
1928 					    void *context, int vl, int mode,
1929 					    u64 data)
1930 {
1931 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1932 
1933 	return dd->cce_err_status_cnt[25];
1934 }
1935 
1936 static u64 access_pcic_post_dat_q_unc_err_cnt(const struct cntr_entry *entry,
1937 					      void *context, int vl, int mode,
1938 					      u64 data)
1939 {
1940 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1941 
1942 	return dd->cce_err_status_cnt[24];
1943 }
1944 
1945 static u64 access_pcic_post_hd_q_unc_err_cnt(const struct cntr_entry *entry,
1946 					     void *context, int vl, int mode,
1947 					     u64 data)
1948 {
1949 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1950 
1951 	return dd->cce_err_status_cnt[23];
1952 }
1953 
1954 static u64 access_pcic_retry_sot_mem_unc_err_cnt(const struct cntr_entry *entry,
1955 						 void *context, int vl,
1956 						 int mode, u64 data)
1957 {
1958 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1959 
1960 	return dd->cce_err_status_cnt[22];
1961 }
1962 
1963 static u64 access_pcic_retry_mem_unc_err(const struct cntr_entry *entry,
1964 					 void *context, int vl, int mode,
1965 					 u64 data)
1966 {
1967 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1968 
1969 	return dd->cce_err_status_cnt[21];
1970 }
1971 
1972 static u64 access_pcic_n_post_dat_q_parity_err_cnt(
1973 				const struct cntr_entry *entry,
1974 				void *context, int vl, int mode, u64 data)
1975 {
1976 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1977 
1978 	return dd->cce_err_status_cnt[20];
1979 }
1980 
1981 static u64 access_pcic_n_post_h_q_parity_err_cnt(const struct cntr_entry *entry,
1982 						 void *context, int vl,
1983 						 int mode, u64 data)
1984 {
1985 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1986 
1987 	return dd->cce_err_status_cnt[19];
1988 }
1989 
1990 static u64 access_pcic_cpl_dat_q_cor_err_cnt(const struct cntr_entry *entry,
1991 					     void *context, int vl, int mode,
1992 					     u64 data)
1993 {
1994 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1995 
1996 	return dd->cce_err_status_cnt[18];
1997 }
1998 
1999 static u64 access_pcic_cpl_hd_q_cor_err_cnt(const struct cntr_entry *entry,
2000 					    void *context, int vl, int mode,
2001 					    u64 data)
2002 {
2003 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2004 
2005 	return dd->cce_err_status_cnt[17];
2006 }
2007 
2008 static u64 access_pcic_post_dat_q_cor_err_cnt(const struct cntr_entry *entry,
2009 					      void *context, int vl, int mode,
2010 					      u64 data)
2011 {
2012 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2013 
2014 	return dd->cce_err_status_cnt[16];
2015 }
2016 
2017 static u64 access_pcic_post_hd_q_cor_err_cnt(const struct cntr_entry *entry,
2018 					     void *context, int vl, int mode,
2019 					     u64 data)
2020 {
2021 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2022 
2023 	return dd->cce_err_status_cnt[15];
2024 }
2025 
2026 static u64 access_pcic_retry_sot_mem_cor_err_cnt(const struct cntr_entry *entry,
2027 						 void *context, int vl,
2028 						 int mode, u64 data)
2029 {
2030 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2031 
2032 	return dd->cce_err_status_cnt[14];
2033 }
2034 
2035 static u64 access_pcic_retry_mem_cor_err_cnt(const struct cntr_entry *entry,
2036 					     void *context, int vl, int mode,
2037 					     u64 data)
2038 {
2039 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2040 
2041 	return dd->cce_err_status_cnt[13];
2042 }
2043 
2044 static u64 access_cce_cli1_async_fifo_dbg_parity_err_cnt(
2045 				const struct cntr_entry *entry,
2046 				void *context, int vl, int mode, u64 data)
2047 {
2048 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2049 
2050 	return dd->cce_err_status_cnt[12];
2051 }
2052 
2053 static u64 access_cce_cli1_async_fifo_rxdma_parity_err_cnt(
2054 				const struct cntr_entry *entry,
2055 				void *context, int vl, int mode, u64 data)
2056 {
2057 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2058 
2059 	return dd->cce_err_status_cnt[11];
2060 }
2061 
2062 static u64 access_cce_cli1_async_fifo_sdma_hd_parity_err_cnt(
2063 				const struct cntr_entry *entry,
2064 				void *context, int vl, int mode, u64 data)
2065 {
2066 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2067 
2068 	return dd->cce_err_status_cnt[10];
2069 }
2070 
2071 static u64 access_cce_cl1_async_fifo_pio_crdt_parity_err_cnt(
2072 				const struct cntr_entry *entry,
2073 				void *context, int vl, int mode, u64 data)
2074 {
2075 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2076 
2077 	return dd->cce_err_status_cnt[9];
2078 }
2079 
2080 static u64 access_cce_cli2_async_fifo_parity_err_cnt(
2081 				const struct cntr_entry *entry,
2082 				void *context, int vl, int mode, u64 data)
2083 {
2084 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2085 
2086 	return dd->cce_err_status_cnt[8];
2087 }
2088 
2089 static u64 access_cce_csr_cfg_bus_parity_err_cnt(const struct cntr_entry *entry,
2090 						 void *context, int vl,
2091 						 int mode, u64 data)
2092 {
2093 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2094 
2095 	return dd->cce_err_status_cnt[7];
2096 }
2097 
2098 static u64 access_cce_cli0_async_fifo_parity_err_cnt(
2099 				const struct cntr_entry *entry,
2100 				void *context, int vl, int mode, u64 data)
2101 {
2102 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2103 
2104 	return dd->cce_err_status_cnt[6];
2105 }
2106 
2107 static u64 access_cce_rspd_data_parity_err_cnt(const struct cntr_entry *entry,
2108 					       void *context, int vl, int mode,
2109 					       u64 data)
2110 {
2111 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2112 
2113 	return dd->cce_err_status_cnt[5];
2114 }
2115 
2116 static u64 access_cce_trgt_access_err_cnt(const struct cntr_entry *entry,
2117 					  void *context, int vl, int mode,
2118 					  u64 data)
2119 {
2120 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2121 
2122 	return dd->cce_err_status_cnt[4];
2123 }
2124 
2125 static u64 access_cce_trgt_async_fifo_parity_err_cnt(
2126 				const struct cntr_entry *entry,
2127 				void *context, int vl, int mode, u64 data)
2128 {
2129 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2130 
2131 	return dd->cce_err_status_cnt[3];
2132 }
2133 
2134 static u64 access_cce_csr_write_bad_addr_err_cnt(const struct cntr_entry *entry,
2135 						 void *context, int vl,
2136 						 int mode, u64 data)
2137 {
2138 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2139 
2140 	return dd->cce_err_status_cnt[2];
2141 }
2142 
2143 static u64 access_cce_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
2144 						void *context, int vl,
2145 						int mode, u64 data)
2146 {
2147 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2148 
2149 	return dd->cce_err_status_cnt[1];
2150 }
2151 
2152 static u64 access_ccs_csr_parity_err_cnt(const struct cntr_entry *entry,
2153 					 void *context, int vl, int mode,
2154 					 u64 data)
2155 {
2156 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2157 
2158 	return dd->cce_err_status_cnt[0];
2159 }
2160 
2161 /*
2162  * Software counters corresponding to each of the
2163  * error status bits within RcvErrStatus
2164  */
2165 static u64 access_rx_csr_parity_err_cnt(const struct cntr_entry *entry,
2166 					void *context, int vl, int mode,
2167 					u64 data)
2168 {
2169 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2170 
2171 	return dd->rcv_err_status_cnt[63];
2172 }
2173 
2174 static u64 access_rx_csr_write_bad_addr_err_cnt(const struct cntr_entry *entry,
2175 						void *context, int vl,
2176 						int mode, u64 data)
2177 {
2178 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2179 
2180 	return dd->rcv_err_status_cnt[62];
2181 }
2182 
2183 static u64 access_rx_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
2184 					       void *context, int vl, int mode,
2185 					       u64 data)
2186 {
2187 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2188 
2189 	return dd->rcv_err_status_cnt[61];
2190 }
2191 
2192 static u64 access_rx_dma_csr_unc_err_cnt(const struct cntr_entry *entry,
2193 					 void *context, int vl, int mode,
2194 					 u64 data)
2195 {
2196 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2197 
2198 	return dd->rcv_err_status_cnt[60];
2199 }
2200 
2201 static u64 access_rx_dma_dq_fsm_encoding_err_cnt(const struct cntr_entry *entry,
2202 						 void *context, int vl,
2203 						 int mode, u64 data)
2204 {
2205 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2206 
2207 	return dd->rcv_err_status_cnt[59];
2208 }
2209 
2210 static u64 access_rx_dma_eq_fsm_encoding_err_cnt(const struct cntr_entry *entry,
2211 						 void *context, int vl,
2212 						 int mode, u64 data)
2213 {
2214 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2215 
2216 	return dd->rcv_err_status_cnt[58];
2217 }
2218 
2219 static u64 access_rx_dma_csr_parity_err_cnt(const struct cntr_entry *entry,
2220 					    void *context, int vl, int mode,
2221 					    u64 data)
2222 {
2223 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2224 
2225 	return dd->rcv_err_status_cnt[57];
2226 }
2227 
2228 static u64 access_rx_rbuf_data_cor_err_cnt(const struct cntr_entry *entry,
2229 					   void *context, int vl, int mode,
2230 					   u64 data)
2231 {
2232 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2233 
2234 	return dd->rcv_err_status_cnt[56];
2235 }
2236 
2237 static u64 access_rx_rbuf_data_unc_err_cnt(const struct cntr_entry *entry,
2238 					   void *context, int vl, int mode,
2239 					   u64 data)
2240 {
2241 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2242 
2243 	return dd->rcv_err_status_cnt[55];
2244 }
2245 
2246 static u64 access_rx_dma_data_fifo_rd_cor_err_cnt(
2247 				const struct cntr_entry *entry,
2248 				void *context, int vl, int mode, u64 data)
2249 {
2250 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2251 
2252 	return dd->rcv_err_status_cnt[54];
2253 }
2254 
2255 static u64 access_rx_dma_data_fifo_rd_unc_err_cnt(
2256 				const struct cntr_entry *entry,
2257 				void *context, int vl, int mode, u64 data)
2258 {
2259 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2260 
2261 	return dd->rcv_err_status_cnt[53];
2262 }
2263 
2264 static u64 access_rx_dma_hdr_fifo_rd_cor_err_cnt(const struct cntr_entry *entry,
2265 						 void *context, int vl,
2266 						 int mode, u64 data)
2267 {
2268 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2269 
2270 	return dd->rcv_err_status_cnt[52];
2271 }
2272 
2273 static u64 access_rx_dma_hdr_fifo_rd_unc_err_cnt(const struct cntr_entry *entry,
2274 						 void *context, int vl,
2275 						 int mode, u64 data)
2276 {
2277 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2278 
2279 	return dd->rcv_err_status_cnt[51];
2280 }
2281 
2282 static u64 access_rx_rbuf_desc_part2_cor_err_cnt(const struct cntr_entry *entry,
2283 						 void *context, int vl,
2284 						 int mode, u64 data)
2285 {
2286 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2287 
2288 	return dd->rcv_err_status_cnt[50];
2289 }
2290 
2291 static u64 access_rx_rbuf_desc_part2_unc_err_cnt(const struct cntr_entry *entry,
2292 						 void *context, int vl,
2293 						 int mode, u64 data)
2294 {
2295 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2296 
2297 	return dd->rcv_err_status_cnt[49];
2298 }
2299 
2300 static u64 access_rx_rbuf_desc_part1_cor_err_cnt(const struct cntr_entry *entry,
2301 						 void *context, int vl,
2302 						 int mode, u64 data)
2303 {
2304 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2305 
2306 	return dd->rcv_err_status_cnt[48];
2307 }
2308 
2309 static u64 access_rx_rbuf_desc_part1_unc_err_cnt(const struct cntr_entry *entry,
2310 						 void *context, int vl,
2311 						 int mode, u64 data)
2312 {
2313 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2314 
2315 	return dd->rcv_err_status_cnt[47];
2316 }
2317 
2318 static u64 access_rx_hq_intr_fsm_err_cnt(const struct cntr_entry *entry,
2319 					 void *context, int vl, int mode,
2320 					 u64 data)
2321 {
2322 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2323 
2324 	return dd->rcv_err_status_cnt[46];
2325 }
2326 
2327 static u64 access_rx_hq_intr_csr_parity_err_cnt(
2328 				const struct cntr_entry *entry,
2329 				void *context, int vl, int mode, u64 data)
2330 {
2331 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2332 
2333 	return dd->rcv_err_status_cnt[45];
2334 }
2335 
2336 static u64 access_rx_lookup_csr_parity_err_cnt(
2337 				const struct cntr_entry *entry,
2338 				void *context, int vl, int mode, u64 data)
2339 {
2340 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2341 
2342 	return dd->rcv_err_status_cnt[44];
2343 }
2344 
2345 static u64 access_rx_lookup_rcv_array_cor_err_cnt(
2346 				const struct cntr_entry *entry,
2347 				void *context, int vl, int mode, u64 data)
2348 {
2349 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2350 
2351 	return dd->rcv_err_status_cnt[43];
2352 }
2353 
2354 static u64 access_rx_lookup_rcv_array_unc_err_cnt(
2355 				const struct cntr_entry *entry,
2356 				void *context, int vl, int mode, u64 data)
2357 {
2358 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2359 
2360 	return dd->rcv_err_status_cnt[42];
2361 }
2362 
2363 static u64 access_rx_lookup_des_part2_parity_err_cnt(
2364 				const struct cntr_entry *entry,
2365 				void *context, int vl, int mode, u64 data)
2366 {
2367 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2368 
2369 	return dd->rcv_err_status_cnt[41];
2370 }
2371 
2372 static u64 access_rx_lookup_des_part1_unc_cor_err_cnt(
2373 				const struct cntr_entry *entry,
2374 				void *context, int vl, int mode, u64 data)
2375 {
2376 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2377 
2378 	return dd->rcv_err_status_cnt[40];
2379 }
2380 
2381 static u64 access_rx_lookup_des_part1_unc_err_cnt(
2382 				const struct cntr_entry *entry,
2383 				void *context, int vl, int mode, u64 data)
2384 {
2385 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2386 
2387 	return dd->rcv_err_status_cnt[39];
2388 }
2389 
2390 static u64 access_rx_rbuf_next_free_buf_cor_err_cnt(
2391 				const struct cntr_entry *entry,
2392 				void *context, int vl, int mode, u64 data)
2393 {
2394 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2395 
2396 	return dd->rcv_err_status_cnt[38];
2397 }
2398 
2399 static u64 access_rx_rbuf_next_free_buf_unc_err_cnt(
2400 				const struct cntr_entry *entry,
2401 				void *context, int vl, int mode, u64 data)
2402 {
2403 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2404 
2405 	return dd->rcv_err_status_cnt[37];
2406 }
2407 
2408 static u64 access_rbuf_fl_init_wr_addr_parity_err_cnt(
2409 				const struct cntr_entry *entry,
2410 				void *context, int vl, int mode, u64 data)
2411 {
2412 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2413 
2414 	return dd->rcv_err_status_cnt[36];
2415 }
2416 
2417 static u64 access_rx_rbuf_fl_initdone_parity_err_cnt(
2418 				const struct cntr_entry *entry,
2419 				void *context, int vl, int mode, u64 data)
2420 {
2421 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2422 
2423 	return dd->rcv_err_status_cnt[35];
2424 }
2425 
2426 static u64 access_rx_rbuf_fl_write_addr_parity_err_cnt(
2427 				const struct cntr_entry *entry,
2428 				void *context, int vl, int mode, u64 data)
2429 {
2430 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2431 
2432 	return dd->rcv_err_status_cnt[34];
2433 }
2434 
2435 static u64 access_rx_rbuf_fl_rd_addr_parity_err_cnt(
2436 				const struct cntr_entry *entry,
2437 				void *context, int vl, int mode, u64 data)
2438 {
2439 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2440 
2441 	return dd->rcv_err_status_cnt[33];
2442 }
2443 
2444 static u64 access_rx_rbuf_empty_err_cnt(const struct cntr_entry *entry,
2445 					void *context, int vl, int mode,
2446 					u64 data)
2447 {
2448 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2449 
2450 	return dd->rcv_err_status_cnt[32];
2451 }
2452 
2453 static u64 access_rx_rbuf_full_err_cnt(const struct cntr_entry *entry,
2454 				       void *context, int vl, int mode,
2455 				       u64 data)
2456 {
2457 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2458 
2459 	return dd->rcv_err_status_cnt[31];
2460 }
2461 
2462 static u64 access_rbuf_bad_lookup_err_cnt(const struct cntr_entry *entry,
2463 					  void *context, int vl, int mode,
2464 					  u64 data)
2465 {
2466 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2467 
2468 	return dd->rcv_err_status_cnt[30];
2469 }
2470 
2471 static u64 access_rbuf_ctx_id_parity_err_cnt(const struct cntr_entry *entry,
2472 					     void *context, int vl, int mode,
2473 					     u64 data)
2474 {
2475 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2476 
2477 	return dd->rcv_err_status_cnt[29];
2478 }
2479 
2480 static u64 access_rbuf_csr_qeopdw_parity_err_cnt(const struct cntr_entry *entry,
2481 						 void *context, int vl,
2482 						 int mode, u64 data)
2483 {
2484 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2485 
2486 	return dd->rcv_err_status_cnt[28];
2487 }
2488 
2489 static u64 access_rx_rbuf_csr_q_num_of_pkt_parity_err_cnt(
2490 				const struct cntr_entry *entry,
2491 				void *context, int vl, int mode, u64 data)
2492 {
2493 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2494 
2495 	return dd->rcv_err_status_cnt[27];
2496 }
2497 
2498 static u64 access_rx_rbuf_csr_q_t1_ptr_parity_err_cnt(
2499 				const struct cntr_entry *entry,
2500 				void *context, int vl, int mode, u64 data)
2501 {
2502 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2503 
2504 	return dd->rcv_err_status_cnt[26];
2505 }
2506 
2507 static u64 access_rx_rbuf_csr_q_hd_ptr_parity_err_cnt(
2508 				const struct cntr_entry *entry,
2509 				void *context, int vl, int mode, u64 data)
2510 {
2511 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2512 
2513 	return dd->rcv_err_status_cnt[25];
2514 }
2515 
2516 static u64 access_rx_rbuf_csr_q_vld_bit_parity_err_cnt(
2517 				const struct cntr_entry *entry,
2518 				void *context, int vl, int mode, u64 data)
2519 {
2520 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2521 
2522 	return dd->rcv_err_status_cnt[24];
2523 }
2524 
2525 static u64 access_rx_rbuf_csr_q_next_buf_parity_err_cnt(
2526 				const struct cntr_entry *entry,
2527 				void *context, int vl, int mode, u64 data)
2528 {
2529 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2530 
2531 	return dd->rcv_err_status_cnt[23];
2532 }
2533 
2534 static u64 access_rx_rbuf_csr_q_ent_cnt_parity_err_cnt(
2535 				const struct cntr_entry *entry,
2536 				void *context, int vl, int mode, u64 data)
2537 {
2538 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2539 
2540 	return dd->rcv_err_status_cnt[22];
2541 }
2542 
2543 static u64 access_rx_rbuf_csr_q_head_buf_num_parity_err_cnt(
2544 				const struct cntr_entry *entry,
2545 				void *context, int vl, int mode, u64 data)
2546 {
2547 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2548 
2549 	return dd->rcv_err_status_cnt[21];
2550 }
2551 
2552 static u64 access_rx_rbuf_block_list_read_cor_err_cnt(
2553 				const struct cntr_entry *entry,
2554 				void *context, int vl, int mode, u64 data)
2555 {
2556 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2557 
2558 	return dd->rcv_err_status_cnt[20];
2559 }
2560 
2561 static u64 access_rx_rbuf_block_list_read_unc_err_cnt(
2562 				const struct cntr_entry *entry,
2563 				void *context, int vl, int mode, u64 data)
2564 {
2565 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2566 
2567 	return dd->rcv_err_status_cnt[19];
2568 }
2569 
2570 static u64 access_rx_rbuf_lookup_des_cor_err_cnt(const struct cntr_entry *entry,
2571 						 void *context, int vl,
2572 						 int mode, u64 data)
2573 {
2574 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2575 
2576 	return dd->rcv_err_status_cnt[18];
2577 }
2578 
2579 static u64 access_rx_rbuf_lookup_des_unc_err_cnt(const struct cntr_entry *entry,
2580 						 void *context, int vl,
2581 						 int mode, u64 data)
2582 {
2583 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2584 
2585 	return dd->rcv_err_status_cnt[17];
2586 }
2587 
2588 static u64 access_rx_rbuf_lookup_des_reg_unc_cor_err_cnt(
2589 				const struct cntr_entry *entry,
2590 				void *context, int vl, int mode, u64 data)
2591 {
2592 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2593 
2594 	return dd->rcv_err_status_cnt[16];
2595 }
2596 
2597 static u64 access_rx_rbuf_lookup_des_reg_unc_err_cnt(
2598 				const struct cntr_entry *entry,
2599 				void *context, int vl, int mode, u64 data)
2600 {
2601 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2602 
2603 	return dd->rcv_err_status_cnt[15];
2604 }
2605 
2606 static u64 access_rx_rbuf_free_list_cor_err_cnt(const struct cntr_entry *entry,
2607 						void *context, int vl,
2608 						int mode, u64 data)
2609 {
2610 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2611 
2612 	return dd->rcv_err_status_cnt[14];
2613 }
2614 
2615 static u64 access_rx_rbuf_free_list_unc_err_cnt(const struct cntr_entry *entry,
2616 						void *context, int vl,
2617 						int mode, u64 data)
2618 {
2619 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2620 
2621 	return dd->rcv_err_status_cnt[13];
2622 }
2623 
2624 static u64 access_rx_rcv_fsm_encoding_err_cnt(const struct cntr_entry *entry,
2625 					      void *context, int vl, int mode,
2626 					      u64 data)
2627 {
2628 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2629 
2630 	return dd->rcv_err_status_cnt[12];
2631 }
2632 
2633 static u64 access_rx_dma_flag_cor_err_cnt(const struct cntr_entry *entry,
2634 					  void *context, int vl, int mode,
2635 					  u64 data)
2636 {
2637 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2638 
2639 	return dd->rcv_err_status_cnt[11];
2640 }
2641 
2642 static u64 access_rx_dma_flag_unc_err_cnt(const struct cntr_entry *entry,
2643 					  void *context, int vl, int mode,
2644 					  u64 data)
2645 {
2646 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2647 
2648 	return dd->rcv_err_status_cnt[10];
2649 }
2650 
2651 static u64 access_rx_dc_sop_eop_parity_err_cnt(const struct cntr_entry *entry,
2652 					       void *context, int vl, int mode,
2653 					       u64 data)
2654 {
2655 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2656 
2657 	return dd->rcv_err_status_cnt[9];
2658 }
2659 
2660 static u64 access_rx_rcv_csr_parity_err_cnt(const struct cntr_entry *entry,
2661 					    void *context, int vl, int mode,
2662 					    u64 data)
2663 {
2664 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2665 
2666 	return dd->rcv_err_status_cnt[8];
2667 }
2668 
2669 static u64 access_rx_rcv_qp_map_table_cor_err_cnt(
2670 				const struct cntr_entry *entry,
2671 				void *context, int vl, int mode, u64 data)
2672 {
2673 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2674 
2675 	return dd->rcv_err_status_cnt[7];
2676 }
2677 
2678 static u64 access_rx_rcv_qp_map_table_unc_err_cnt(
2679 				const struct cntr_entry *entry,
2680 				void *context, int vl, int mode, u64 data)
2681 {
2682 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2683 
2684 	return dd->rcv_err_status_cnt[6];
2685 }
2686 
2687 static u64 access_rx_rcv_data_cor_err_cnt(const struct cntr_entry *entry,
2688 					  void *context, int vl, int mode,
2689 					  u64 data)
2690 {
2691 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2692 
2693 	return dd->rcv_err_status_cnt[5];
2694 }
2695 
2696 static u64 access_rx_rcv_data_unc_err_cnt(const struct cntr_entry *entry,
2697 					  void *context, int vl, int mode,
2698 					  u64 data)
2699 {
2700 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2701 
2702 	return dd->rcv_err_status_cnt[4];
2703 }
2704 
2705 static u64 access_rx_rcv_hdr_cor_err_cnt(const struct cntr_entry *entry,
2706 					 void *context, int vl, int mode,
2707 					 u64 data)
2708 {
2709 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2710 
2711 	return dd->rcv_err_status_cnt[3];
2712 }
2713 
2714 static u64 access_rx_rcv_hdr_unc_err_cnt(const struct cntr_entry *entry,
2715 					 void *context, int vl, int mode,
2716 					 u64 data)
2717 {
2718 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2719 
2720 	return dd->rcv_err_status_cnt[2];
2721 }
2722 
2723 static u64 access_rx_dc_intf_parity_err_cnt(const struct cntr_entry *entry,
2724 					    void *context, int vl, int mode,
2725 					    u64 data)
2726 {
2727 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2728 
2729 	return dd->rcv_err_status_cnt[1];
2730 }
2731 
2732 static u64 access_rx_dma_csr_cor_err_cnt(const struct cntr_entry *entry,
2733 					 void *context, int vl, int mode,
2734 					 u64 data)
2735 {
2736 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2737 
2738 	return dd->rcv_err_status_cnt[0];
2739 }
2740 
2741 /*
2742  * Software counters corresponding to each of the
2743  * error status bits within SendPioErrStatus
2744  */
2745 static u64 access_pio_pec_sop_head_parity_err_cnt(
2746 				const struct cntr_entry *entry,
2747 				void *context, int vl, int mode, u64 data)
2748 {
2749 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2750 
2751 	return dd->send_pio_err_status_cnt[35];
2752 }
2753 
2754 static u64 access_pio_pcc_sop_head_parity_err_cnt(
2755 				const struct cntr_entry *entry,
2756 				void *context, int vl, int mode, u64 data)
2757 {
2758 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2759 
2760 	return dd->send_pio_err_status_cnt[34];
2761 }
2762 
2763 static u64 access_pio_last_returned_cnt_parity_err_cnt(
2764 				const struct cntr_entry *entry,
2765 				void *context, int vl, int mode, u64 data)
2766 {
2767 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2768 
2769 	return dd->send_pio_err_status_cnt[33];
2770 }
2771 
2772 static u64 access_pio_current_free_cnt_parity_err_cnt(
2773 				const struct cntr_entry *entry,
2774 				void *context, int vl, int mode, u64 data)
2775 {
2776 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2777 
2778 	return dd->send_pio_err_status_cnt[32];
2779 }
2780 
2781 static u64 access_pio_reserved_31_err_cnt(const struct cntr_entry *entry,
2782 					  void *context, int vl, int mode,
2783 					  u64 data)
2784 {
2785 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2786 
2787 	return dd->send_pio_err_status_cnt[31];
2788 }
2789 
2790 static u64 access_pio_reserved_30_err_cnt(const struct cntr_entry *entry,
2791 					  void *context, int vl, int mode,
2792 					  u64 data)
2793 {
2794 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2795 
2796 	return dd->send_pio_err_status_cnt[30];
2797 }
2798 
2799 static u64 access_pio_ppmc_sop_len_err_cnt(const struct cntr_entry *entry,
2800 					   void *context, int vl, int mode,
2801 					   u64 data)
2802 {
2803 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2804 
2805 	return dd->send_pio_err_status_cnt[29];
2806 }
2807 
2808 static u64 access_pio_ppmc_bqc_mem_parity_err_cnt(
2809 				const struct cntr_entry *entry,
2810 				void *context, int vl, int mode, u64 data)
2811 {
2812 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2813 
2814 	return dd->send_pio_err_status_cnt[28];
2815 }
2816 
2817 static u64 access_pio_vl_fifo_parity_err_cnt(const struct cntr_entry *entry,
2818 					     void *context, int vl, int mode,
2819 					     u64 data)
2820 {
2821 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2822 
2823 	return dd->send_pio_err_status_cnt[27];
2824 }
2825 
2826 static u64 access_pio_vlf_sop_parity_err_cnt(const struct cntr_entry *entry,
2827 					     void *context, int vl, int mode,
2828 					     u64 data)
2829 {
2830 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2831 
2832 	return dd->send_pio_err_status_cnt[26];
2833 }
2834 
2835 static u64 access_pio_vlf_v1_len_parity_err_cnt(const struct cntr_entry *entry,
2836 						void *context, int vl,
2837 						int mode, u64 data)
2838 {
2839 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2840 
2841 	return dd->send_pio_err_status_cnt[25];
2842 }
2843 
2844 static u64 access_pio_block_qw_count_parity_err_cnt(
2845 				const struct cntr_entry *entry,
2846 				void *context, int vl, int mode, u64 data)
2847 {
2848 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2849 
2850 	return dd->send_pio_err_status_cnt[24];
2851 }
2852 
2853 static u64 access_pio_write_qw_valid_parity_err_cnt(
2854 				const struct cntr_entry *entry,
2855 				void *context, int vl, int mode, u64 data)
2856 {
2857 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2858 
2859 	return dd->send_pio_err_status_cnt[23];
2860 }
2861 
2862 static u64 access_pio_state_machine_err_cnt(const struct cntr_entry *entry,
2863 					    void *context, int vl, int mode,
2864 					    u64 data)
2865 {
2866 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2867 
2868 	return dd->send_pio_err_status_cnt[22];
2869 }
2870 
2871 static u64 access_pio_write_data_parity_err_cnt(const struct cntr_entry *entry,
2872 						void *context, int vl,
2873 						int mode, u64 data)
2874 {
2875 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2876 
2877 	return dd->send_pio_err_status_cnt[21];
2878 }
2879 
2880 static u64 access_pio_host_addr_mem_cor_err_cnt(const struct cntr_entry *entry,
2881 						void *context, int vl,
2882 						int mode, u64 data)
2883 {
2884 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2885 
2886 	return dd->send_pio_err_status_cnt[20];
2887 }
2888 
2889 static u64 access_pio_host_addr_mem_unc_err_cnt(const struct cntr_entry *entry,
2890 						void *context, int vl,
2891 						int mode, u64 data)
2892 {
2893 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2894 
2895 	return dd->send_pio_err_status_cnt[19];
2896 }
2897 
2898 static u64 access_pio_pkt_evict_sm_or_arb_sm_err_cnt(
2899 				const struct cntr_entry *entry,
2900 				void *context, int vl, int mode, u64 data)
2901 {
2902 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2903 
2904 	return dd->send_pio_err_status_cnt[18];
2905 }
2906 
2907 static u64 access_pio_init_sm_in_err_cnt(const struct cntr_entry *entry,
2908 					 void *context, int vl, int mode,
2909 					 u64 data)
2910 {
2911 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2912 
2913 	return dd->send_pio_err_status_cnt[17];
2914 }
2915 
2916 static u64 access_pio_ppmc_pbl_fifo_err_cnt(const struct cntr_entry *entry,
2917 					    void *context, int vl, int mode,
2918 					    u64 data)
2919 {
2920 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2921 
2922 	return dd->send_pio_err_status_cnt[16];
2923 }
2924 
2925 static u64 access_pio_credit_ret_fifo_parity_err_cnt(
2926 				const struct cntr_entry *entry,
2927 				void *context, int vl, int mode, u64 data)
2928 {
2929 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2930 
2931 	return dd->send_pio_err_status_cnt[15];
2932 }
2933 
2934 static u64 access_pio_v1_len_mem_bank1_cor_err_cnt(
2935 				const struct cntr_entry *entry,
2936 				void *context, int vl, int mode, u64 data)
2937 {
2938 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2939 
2940 	return dd->send_pio_err_status_cnt[14];
2941 }
2942 
2943 static u64 access_pio_v1_len_mem_bank0_cor_err_cnt(
2944 				const struct cntr_entry *entry,
2945 				void *context, int vl, int mode, u64 data)
2946 {
2947 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2948 
2949 	return dd->send_pio_err_status_cnt[13];
2950 }
2951 
2952 static u64 access_pio_v1_len_mem_bank1_unc_err_cnt(
2953 				const struct cntr_entry *entry,
2954 				void *context, int vl, int mode, u64 data)
2955 {
2956 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2957 
2958 	return dd->send_pio_err_status_cnt[12];
2959 }
2960 
2961 static u64 access_pio_v1_len_mem_bank0_unc_err_cnt(
2962 				const struct cntr_entry *entry,
2963 				void *context, int vl, int mode, u64 data)
2964 {
2965 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2966 
2967 	return dd->send_pio_err_status_cnt[11];
2968 }
2969 
2970 static u64 access_pio_sm_pkt_reset_parity_err_cnt(
2971 				const struct cntr_entry *entry,
2972 				void *context, int vl, int mode, u64 data)
2973 {
2974 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2975 
2976 	return dd->send_pio_err_status_cnt[10];
2977 }
2978 
2979 static u64 access_pio_pkt_evict_fifo_parity_err_cnt(
2980 				const struct cntr_entry *entry,
2981 				void *context, int vl, int mode, u64 data)
2982 {
2983 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2984 
2985 	return dd->send_pio_err_status_cnt[9];
2986 }
2987 
2988 static u64 access_pio_sbrdctrl_crrel_fifo_parity_err_cnt(
2989 				const struct cntr_entry *entry,
2990 				void *context, int vl, int mode, u64 data)
2991 {
2992 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2993 
2994 	return dd->send_pio_err_status_cnt[8];
2995 }
2996 
2997 static u64 access_pio_sbrdctl_crrel_parity_err_cnt(
2998 				const struct cntr_entry *entry,
2999 				void *context, int vl, int mode, u64 data)
3000 {
3001 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3002 
3003 	return dd->send_pio_err_status_cnt[7];
3004 }
3005 
3006 static u64 access_pio_pec_fifo_parity_err_cnt(const struct cntr_entry *entry,
3007 					      void *context, int vl, int mode,
3008 					      u64 data)
3009 {
3010 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3011 
3012 	return dd->send_pio_err_status_cnt[6];
3013 }
3014 
3015 static u64 access_pio_pcc_fifo_parity_err_cnt(const struct cntr_entry *entry,
3016 					      void *context, int vl, int mode,
3017 					      u64 data)
3018 {
3019 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3020 
3021 	return dd->send_pio_err_status_cnt[5];
3022 }
3023 
3024 static u64 access_pio_sb_mem_fifo1_err_cnt(const struct cntr_entry *entry,
3025 					   void *context, int vl, int mode,
3026 					   u64 data)
3027 {
3028 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3029 
3030 	return dd->send_pio_err_status_cnt[4];
3031 }
3032 
3033 static u64 access_pio_sb_mem_fifo0_err_cnt(const struct cntr_entry *entry,
3034 					   void *context, int vl, int mode,
3035 					   u64 data)
3036 {
3037 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3038 
3039 	return dd->send_pio_err_status_cnt[3];
3040 }
3041 
3042 static u64 access_pio_csr_parity_err_cnt(const struct cntr_entry *entry,
3043 					 void *context, int vl, int mode,
3044 					 u64 data)
3045 {
3046 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3047 
3048 	return dd->send_pio_err_status_cnt[2];
3049 }
3050 
3051 static u64 access_pio_write_addr_parity_err_cnt(const struct cntr_entry *entry,
3052 						void *context, int vl,
3053 						int mode, u64 data)
3054 {
3055 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3056 
3057 	return dd->send_pio_err_status_cnt[1];
3058 }
3059 
3060 static u64 access_pio_write_bad_ctxt_err_cnt(const struct cntr_entry *entry,
3061 					     void *context, int vl, int mode,
3062 					     u64 data)
3063 {
3064 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3065 
3066 	return dd->send_pio_err_status_cnt[0];
3067 }
3068 
3069 /*
3070  * Software counters corresponding to each of the
3071  * error status bits within SendDmaErrStatus
3072  */
3073 static u64 access_sdma_pcie_req_tracking_cor_err_cnt(
3074 				const struct cntr_entry *entry,
3075 				void *context, int vl, int mode, u64 data)
3076 {
3077 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3078 
3079 	return dd->send_dma_err_status_cnt[3];
3080 }
3081 
3082 static u64 access_sdma_pcie_req_tracking_unc_err_cnt(
3083 				const struct cntr_entry *entry,
3084 				void *context, int vl, int mode, u64 data)
3085 {
3086 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3087 
3088 	return dd->send_dma_err_status_cnt[2];
3089 }
3090 
3091 static u64 access_sdma_csr_parity_err_cnt(const struct cntr_entry *entry,
3092 					  void *context, int vl, int mode,
3093 					  u64 data)
3094 {
3095 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3096 
3097 	return dd->send_dma_err_status_cnt[1];
3098 }
3099 
3100 static u64 access_sdma_rpy_tag_err_cnt(const struct cntr_entry *entry,
3101 				       void *context, int vl, int mode,
3102 				       u64 data)
3103 {
3104 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3105 
3106 	return dd->send_dma_err_status_cnt[0];
3107 }
3108 
3109 /*
3110  * Software counters corresponding to each of the
3111  * error status bits within SendEgressErrStatus
3112  */
3113 static u64 access_tx_read_pio_memory_csr_unc_err_cnt(
3114 				const struct cntr_entry *entry,
3115 				void *context, int vl, int mode, u64 data)
3116 {
3117 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3118 
3119 	return dd->send_egress_err_status_cnt[63];
3120 }
3121 
3122 static u64 access_tx_read_sdma_memory_csr_err_cnt(
3123 				const struct cntr_entry *entry,
3124 				void *context, int vl, int mode, u64 data)
3125 {
3126 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3127 
3128 	return dd->send_egress_err_status_cnt[62];
3129 }
3130 
3131 static u64 access_tx_egress_fifo_cor_err_cnt(const struct cntr_entry *entry,
3132 					     void *context, int vl, int mode,
3133 					     u64 data)
3134 {
3135 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3136 
3137 	return dd->send_egress_err_status_cnt[61];
3138 }
3139 
3140 static u64 access_tx_read_pio_memory_cor_err_cnt(const struct cntr_entry *entry,
3141 						 void *context, int vl,
3142 						 int mode, u64 data)
3143 {
3144 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3145 
3146 	return dd->send_egress_err_status_cnt[60];
3147 }
3148 
3149 static u64 access_tx_read_sdma_memory_cor_err_cnt(
3150 				const struct cntr_entry *entry,
3151 				void *context, int vl, int mode, u64 data)
3152 {
3153 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3154 
3155 	return dd->send_egress_err_status_cnt[59];
3156 }
3157 
3158 static u64 access_tx_sb_hdr_cor_err_cnt(const struct cntr_entry *entry,
3159 					void *context, int vl, int mode,
3160 					u64 data)
3161 {
3162 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3163 
3164 	return dd->send_egress_err_status_cnt[58];
3165 }
3166 
3167 static u64 access_tx_credit_overrun_err_cnt(const struct cntr_entry *entry,
3168 					    void *context, int vl, int mode,
3169 					    u64 data)
3170 {
3171 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3172 
3173 	return dd->send_egress_err_status_cnt[57];
3174 }
3175 
3176 static u64 access_tx_launch_fifo8_cor_err_cnt(const struct cntr_entry *entry,
3177 					      void *context, int vl, int mode,
3178 					      u64 data)
3179 {
3180 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3181 
3182 	return dd->send_egress_err_status_cnt[56];
3183 }
3184 
3185 static u64 access_tx_launch_fifo7_cor_err_cnt(const struct cntr_entry *entry,
3186 					      void *context, int vl, int mode,
3187 					      u64 data)
3188 {
3189 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3190 
3191 	return dd->send_egress_err_status_cnt[55];
3192 }
3193 
3194 static u64 access_tx_launch_fifo6_cor_err_cnt(const struct cntr_entry *entry,
3195 					      void *context, int vl, int mode,
3196 					      u64 data)
3197 {
3198 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3199 
3200 	return dd->send_egress_err_status_cnt[54];
3201 }
3202 
3203 static u64 access_tx_launch_fifo5_cor_err_cnt(const struct cntr_entry *entry,
3204 					      void *context, int vl, int mode,
3205 					      u64 data)
3206 {
3207 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3208 
3209 	return dd->send_egress_err_status_cnt[53];
3210 }
3211 
3212 static u64 access_tx_launch_fifo4_cor_err_cnt(const struct cntr_entry *entry,
3213 					      void *context, int vl, int mode,
3214 					      u64 data)
3215 {
3216 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3217 
3218 	return dd->send_egress_err_status_cnt[52];
3219 }
3220 
3221 static u64 access_tx_launch_fifo3_cor_err_cnt(const struct cntr_entry *entry,
3222 					      void *context, int vl, int mode,
3223 					      u64 data)
3224 {
3225 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3226 
3227 	return dd->send_egress_err_status_cnt[51];
3228 }
3229 
3230 static u64 access_tx_launch_fifo2_cor_err_cnt(const struct cntr_entry *entry,
3231 					      void *context, int vl, int mode,
3232 					      u64 data)
3233 {
3234 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3235 
3236 	return dd->send_egress_err_status_cnt[50];
3237 }
3238 
3239 static u64 access_tx_launch_fifo1_cor_err_cnt(const struct cntr_entry *entry,
3240 					      void *context, int vl, int mode,
3241 					      u64 data)
3242 {
3243 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3244 
3245 	return dd->send_egress_err_status_cnt[49];
3246 }
3247 
3248 static u64 access_tx_launch_fifo0_cor_err_cnt(const struct cntr_entry *entry,
3249 					      void *context, int vl, int mode,
3250 					      u64 data)
3251 {
3252 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3253 
3254 	return dd->send_egress_err_status_cnt[48];
3255 }
3256 
3257 static u64 access_tx_credit_return_vl_err_cnt(const struct cntr_entry *entry,
3258 					      void *context, int vl, int mode,
3259 					      u64 data)
3260 {
3261 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3262 
3263 	return dd->send_egress_err_status_cnt[47];
3264 }
3265 
3266 static u64 access_tx_hcrc_insertion_err_cnt(const struct cntr_entry *entry,
3267 					    void *context, int vl, int mode,
3268 					    u64 data)
3269 {
3270 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3271 
3272 	return dd->send_egress_err_status_cnt[46];
3273 }
3274 
3275 static u64 access_tx_egress_fifo_unc_err_cnt(const struct cntr_entry *entry,
3276 					     void *context, int vl, int mode,
3277 					     u64 data)
3278 {
3279 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3280 
3281 	return dd->send_egress_err_status_cnt[45];
3282 }
3283 
3284 static u64 access_tx_read_pio_memory_unc_err_cnt(const struct cntr_entry *entry,
3285 						 void *context, int vl,
3286 						 int mode, u64 data)
3287 {
3288 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3289 
3290 	return dd->send_egress_err_status_cnt[44];
3291 }
3292 
3293 static u64 access_tx_read_sdma_memory_unc_err_cnt(
3294 				const struct cntr_entry *entry,
3295 				void *context, int vl, int mode, u64 data)
3296 {
3297 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3298 
3299 	return dd->send_egress_err_status_cnt[43];
3300 }
3301 
3302 static u64 access_tx_sb_hdr_unc_err_cnt(const struct cntr_entry *entry,
3303 					void *context, int vl, int mode,
3304 					u64 data)
3305 {
3306 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3307 
3308 	return dd->send_egress_err_status_cnt[42];
3309 }
3310 
3311 static u64 access_tx_credit_return_partiy_err_cnt(
3312 				const struct cntr_entry *entry,
3313 				void *context, int vl, int mode, u64 data)
3314 {
3315 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3316 
3317 	return dd->send_egress_err_status_cnt[41];
3318 }
3319 
3320 static u64 access_tx_launch_fifo8_unc_or_parity_err_cnt(
3321 				const struct cntr_entry *entry,
3322 				void *context, int vl, int mode, u64 data)
3323 {
3324 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3325 
3326 	return dd->send_egress_err_status_cnt[40];
3327 }
3328 
3329 static u64 access_tx_launch_fifo7_unc_or_parity_err_cnt(
3330 				const struct cntr_entry *entry,
3331 				void *context, int vl, int mode, u64 data)
3332 {
3333 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3334 
3335 	return dd->send_egress_err_status_cnt[39];
3336 }
3337 
3338 static u64 access_tx_launch_fifo6_unc_or_parity_err_cnt(
3339 				const struct cntr_entry *entry,
3340 				void *context, int vl, int mode, u64 data)
3341 {
3342 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3343 
3344 	return dd->send_egress_err_status_cnt[38];
3345 }
3346 
3347 static u64 access_tx_launch_fifo5_unc_or_parity_err_cnt(
3348 				const struct cntr_entry *entry,
3349 				void *context, int vl, int mode, u64 data)
3350 {
3351 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3352 
3353 	return dd->send_egress_err_status_cnt[37];
3354 }
3355 
3356 static u64 access_tx_launch_fifo4_unc_or_parity_err_cnt(
3357 				const struct cntr_entry *entry,
3358 				void *context, int vl, int mode, u64 data)
3359 {
3360 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3361 
3362 	return dd->send_egress_err_status_cnt[36];
3363 }
3364 
3365 static u64 access_tx_launch_fifo3_unc_or_parity_err_cnt(
3366 				const struct cntr_entry *entry,
3367 				void *context, int vl, int mode, u64 data)
3368 {
3369 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3370 
3371 	return dd->send_egress_err_status_cnt[35];
3372 }
3373 
3374 static u64 access_tx_launch_fifo2_unc_or_parity_err_cnt(
3375 				const struct cntr_entry *entry,
3376 				void *context, int vl, int mode, u64 data)
3377 {
3378 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3379 
3380 	return dd->send_egress_err_status_cnt[34];
3381 }
3382 
3383 static u64 access_tx_launch_fifo1_unc_or_parity_err_cnt(
3384 				const struct cntr_entry *entry,
3385 				void *context, int vl, int mode, u64 data)
3386 {
3387 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3388 
3389 	return dd->send_egress_err_status_cnt[33];
3390 }
3391 
3392 static u64 access_tx_launch_fifo0_unc_or_parity_err_cnt(
3393 				const struct cntr_entry *entry,
3394 				void *context, int vl, int mode, u64 data)
3395 {
3396 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3397 
3398 	return dd->send_egress_err_status_cnt[32];
3399 }
3400 
3401 static u64 access_tx_sdma15_disallowed_packet_err_cnt(
3402 				const struct cntr_entry *entry,
3403 				void *context, int vl, int mode, u64 data)
3404 {
3405 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3406 
3407 	return dd->send_egress_err_status_cnt[31];
3408 }
3409 
3410 static u64 access_tx_sdma14_disallowed_packet_err_cnt(
3411 				const struct cntr_entry *entry,
3412 				void *context, int vl, int mode, u64 data)
3413 {
3414 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3415 
3416 	return dd->send_egress_err_status_cnt[30];
3417 }
3418 
3419 static u64 access_tx_sdma13_disallowed_packet_err_cnt(
3420 				const struct cntr_entry *entry,
3421 				void *context, int vl, int mode, u64 data)
3422 {
3423 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3424 
3425 	return dd->send_egress_err_status_cnt[29];
3426 }
3427 
3428 static u64 access_tx_sdma12_disallowed_packet_err_cnt(
3429 				const struct cntr_entry *entry,
3430 				void *context, int vl, int mode, u64 data)
3431 {
3432 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3433 
3434 	return dd->send_egress_err_status_cnt[28];
3435 }
3436 
3437 static u64 access_tx_sdma11_disallowed_packet_err_cnt(
3438 				const struct cntr_entry *entry,
3439 				void *context, int vl, int mode, u64 data)
3440 {
3441 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3442 
3443 	return dd->send_egress_err_status_cnt[27];
3444 }
3445 
3446 static u64 access_tx_sdma10_disallowed_packet_err_cnt(
3447 				const struct cntr_entry *entry,
3448 				void *context, int vl, int mode, u64 data)
3449 {
3450 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3451 
3452 	return dd->send_egress_err_status_cnt[26];
3453 }
3454 
3455 static u64 access_tx_sdma9_disallowed_packet_err_cnt(
3456 				const struct cntr_entry *entry,
3457 				void *context, int vl, int mode, u64 data)
3458 {
3459 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3460 
3461 	return dd->send_egress_err_status_cnt[25];
3462 }
3463 
3464 static u64 access_tx_sdma8_disallowed_packet_err_cnt(
3465 				const struct cntr_entry *entry,
3466 				void *context, int vl, int mode, u64 data)
3467 {
3468 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3469 
3470 	return dd->send_egress_err_status_cnt[24];
3471 }
3472 
3473 static u64 access_tx_sdma7_disallowed_packet_err_cnt(
3474 				const struct cntr_entry *entry,
3475 				void *context, int vl, int mode, u64 data)
3476 {
3477 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3478 
3479 	return dd->send_egress_err_status_cnt[23];
3480 }
3481 
3482 static u64 access_tx_sdma6_disallowed_packet_err_cnt(
3483 				const struct cntr_entry *entry,
3484 				void *context, int vl, int mode, u64 data)
3485 {
3486 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3487 
3488 	return dd->send_egress_err_status_cnt[22];
3489 }
3490 
3491 static u64 access_tx_sdma5_disallowed_packet_err_cnt(
3492 				const struct cntr_entry *entry,
3493 				void *context, int vl, int mode, u64 data)
3494 {
3495 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3496 
3497 	return dd->send_egress_err_status_cnt[21];
3498 }
3499 
3500 static u64 access_tx_sdma4_disallowed_packet_err_cnt(
3501 				const struct cntr_entry *entry,
3502 				void *context, int vl, int mode, u64 data)
3503 {
3504 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3505 
3506 	return dd->send_egress_err_status_cnt[20];
3507 }
3508 
3509 static u64 access_tx_sdma3_disallowed_packet_err_cnt(
3510 				const struct cntr_entry *entry,
3511 				void *context, int vl, int mode, u64 data)
3512 {
3513 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3514 
3515 	return dd->send_egress_err_status_cnt[19];
3516 }
3517 
3518 static u64 access_tx_sdma2_disallowed_packet_err_cnt(
3519 				const struct cntr_entry *entry,
3520 				void *context, int vl, int mode, u64 data)
3521 {
3522 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3523 
3524 	return dd->send_egress_err_status_cnt[18];
3525 }
3526 
3527 static u64 access_tx_sdma1_disallowed_packet_err_cnt(
3528 				const struct cntr_entry *entry,
3529 				void *context, int vl, int mode, u64 data)
3530 {
3531 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3532 
3533 	return dd->send_egress_err_status_cnt[17];
3534 }
3535 
3536 static u64 access_tx_sdma0_disallowed_packet_err_cnt(
3537 				const struct cntr_entry *entry,
3538 				void *context, int vl, int mode, u64 data)
3539 {
3540 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3541 
3542 	return dd->send_egress_err_status_cnt[16];
3543 }
3544 
3545 static u64 access_tx_config_parity_err_cnt(const struct cntr_entry *entry,
3546 					   void *context, int vl, int mode,
3547 					   u64 data)
3548 {
3549 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3550 
3551 	return dd->send_egress_err_status_cnt[15];
3552 }
3553 
3554 static u64 access_tx_sbrd_ctl_csr_parity_err_cnt(const struct cntr_entry *entry,
3555 						 void *context, int vl,
3556 						 int mode, u64 data)
3557 {
3558 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3559 
3560 	return dd->send_egress_err_status_cnt[14];
3561 }
3562 
3563 static u64 access_tx_launch_csr_parity_err_cnt(const struct cntr_entry *entry,
3564 					       void *context, int vl, int mode,
3565 					       u64 data)
3566 {
3567 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3568 
3569 	return dd->send_egress_err_status_cnt[13];
3570 }
3571 
3572 static u64 access_tx_illegal_vl_err_cnt(const struct cntr_entry *entry,
3573 					void *context, int vl, int mode,
3574 					u64 data)
3575 {
3576 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3577 
3578 	return dd->send_egress_err_status_cnt[12];
3579 }
3580 
3581 static u64 access_tx_sbrd_ctl_state_machine_parity_err_cnt(
3582 				const struct cntr_entry *entry,
3583 				void *context, int vl, int mode, u64 data)
3584 {
3585 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3586 
3587 	return dd->send_egress_err_status_cnt[11];
3588 }
3589 
3590 static u64 access_egress_reserved_10_err_cnt(const struct cntr_entry *entry,
3591 					     void *context, int vl, int mode,
3592 					     u64 data)
3593 {
3594 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3595 
3596 	return dd->send_egress_err_status_cnt[10];
3597 }
3598 
3599 static u64 access_egress_reserved_9_err_cnt(const struct cntr_entry *entry,
3600 					    void *context, int vl, int mode,
3601 					    u64 data)
3602 {
3603 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3604 
3605 	return dd->send_egress_err_status_cnt[9];
3606 }
3607 
3608 static u64 access_tx_sdma_launch_intf_parity_err_cnt(
3609 				const struct cntr_entry *entry,
3610 				void *context, int vl, int mode, u64 data)
3611 {
3612 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3613 
3614 	return dd->send_egress_err_status_cnt[8];
3615 }
3616 
3617 static u64 access_tx_pio_launch_intf_parity_err_cnt(
3618 				const struct cntr_entry *entry,
3619 				void *context, int vl, int mode, u64 data)
3620 {
3621 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3622 
3623 	return dd->send_egress_err_status_cnt[7];
3624 }
3625 
3626 static u64 access_egress_reserved_6_err_cnt(const struct cntr_entry *entry,
3627 					    void *context, int vl, int mode,
3628 					    u64 data)
3629 {
3630 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3631 
3632 	return dd->send_egress_err_status_cnt[6];
3633 }
3634 
3635 static u64 access_tx_incorrect_link_state_err_cnt(
3636 				const struct cntr_entry *entry,
3637 				void *context, int vl, int mode, u64 data)
3638 {
3639 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3640 
3641 	return dd->send_egress_err_status_cnt[5];
3642 }
3643 
3644 static u64 access_tx_linkdown_err_cnt(const struct cntr_entry *entry,
3645 				      void *context, int vl, int mode,
3646 				      u64 data)
3647 {
3648 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3649 
3650 	return dd->send_egress_err_status_cnt[4];
3651 }
3652 
3653 static u64 access_tx_egress_fifi_underrun_or_parity_err_cnt(
3654 				const struct cntr_entry *entry,
3655 				void *context, int vl, int mode, u64 data)
3656 {
3657 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3658 
3659 	return dd->send_egress_err_status_cnt[3];
3660 }
3661 
3662 static u64 access_egress_reserved_2_err_cnt(const struct cntr_entry *entry,
3663 					    void *context, int vl, int mode,
3664 					    u64 data)
3665 {
3666 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3667 
3668 	return dd->send_egress_err_status_cnt[2];
3669 }
3670 
3671 static u64 access_tx_pkt_integrity_mem_unc_err_cnt(
3672 				const struct cntr_entry *entry,
3673 				void *context, int vl, int mode, u64 data)
3674 {
3675 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3676 
3677 	return dd->send_egress_err_status_cnt[1];
3678 }
3679 
3680 static u64 access_tx_pkt_integrity_mem_cor_err_cnt(
3681 				const struct cntr_entry *entry,
3682 				void *context, int vl, int mode, u64 data)
3683 {
3684 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3685 
3686 	return dd->send_egress_err_status_cnt[0];
3687 }
3688 
3689 /*
3690  * Software counters corresponding to each of the
3691  * error status bits within SendErrStatus
3692  */
3693 static u64 access_send_csr_write_bad_addr_err_cnt(
3694 				const struct cntr_entry *entry,
3695 				void *context, int vl, int mode, u64 data)
3696 {
3697 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3698 
3699 	return dd->send_err_status_cnt[2];
3700 }
3701 
3702 static u64 access_send_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
3703 						 void *context, int vl,
3704 						 int mode, u64 data)
3705 {
3706 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3707 
3708 	return dd->send_err_status_cnt[1];
3709 }
3710 
3711 static u64 access_send_csr_parity_cnt(const struct cntr_entry *entry,
3712 				      void *context, int vl, int mode,
3713 				      u64 data)
3714 {
3715 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3716 
3717 	return dd->send_err_status_cnt[0];
3718 }
3719 
3720 /*
3721  * Software counters corresponding to each of the
3722  * error status bits within SendCtxtErrStatus
3723  */
3724 static u64 access_pio_write_out_of_bounds_err_cnt(
3725 				const struct cntr_entry *entry,
3726 				void *context, int vl, int mode, u64 data)
3727 {
3728 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3729 
3730 	return dd->sw_ctxt_err_status_cnt[4];
3731 }
3732 
3733 static u64 access_pio_write_overflow_err_cnt(const struct cntr_entry *entry,
3734 					     void *context, int vl, int mode,
3735 					     u64 data)
3736 {
3737 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3738 
3739 	return dd->sw_ctxt_err_status_cnt[3];
3740 }
3741 
3742 static u64 access_pio_write_crosses_boundary_err_cnt(
3743 				const struct cntr_entry *entry,
3744 				void *context, int vl, int mode, u64 data)
3745 {
3746 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3747 
3748 	return dd->sw_ctxt_err_status_cnt[2];
3749 }
3750 
3751 static u64 access_pio_disallowed_packet_err_cnt(const struct cntr_entry *entry,
3752 						void *context, int vl,
3753 						int mode, u64 data)
3754 {
3755 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3756 
3757 	return dd->sw_ctxt_err_status_cnt[1];
3758 }
3759 
3760 static u64 access_pio_inconsistent_sop_err_cnt(const struct cntr_entry *entry,
3761 					       void *context, int vl, int mode,
3762 					       u64 data)
3763 {
3764 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3765 
3766 	return dd->sw_ctxt_err_status_cnt[0];
3767 }
3768 
3769 /*
3770  * Software counters corresponding to each of the
3771  * error status bits within SendDmaEngErrStatus
3772  */
3773 static u64 access_sdma_header_request_fifo_cor_err_cnt(
3774 				const struct cntr_entry *entry,
3775 				void *context, int vl, int mode, u64 data)
3776 {
3777 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3778 
3779 	return dd->sw_send_dma_eng_err_status_cnt[23];
3780 }
3781 
3782 static u64 access_sdma_header_storage_cor_err_cnt(
3783 				const struct cntr_entry *entry,
3784 				void *context, int vl, int mode, u64 data)
3785 {
3786 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3787 
3788 	return dd->sw_send_dma_eng_err_status_cnt[22];
3789 }
3790 
3791 static u64 access_sdma_packet_tracking_cor_err_cnt(
3792 				const struct cntr_entry *entry,
3793 				void *context, int vl, int mode, u64 data)
3794 {
3795 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3796 
3797 	return dd->sw_send_dma_eng_err_status_cnt[21];
3798 }
3799 
3800 static u64 access_sdma_assembly_cor_err_cnt(const struct cntr_entry *entry,
3801 					    void *context, int vl, int mode,
3802 					    u64 data)
3803 {
3804 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3805 
3806 	return dd->sw_send_dma_eng_err_status_cnt[20];
3807 }
3808 
3809 static u64 access_sdma_desc_table_cor_err_cnt(const struct cntr_entry *entry,
3810 					      void *context, int vl, int mode,
3811 					      u64 data)
3812 {
3813 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3814 
3815 	return dd->sw_send_dma_eng_err_status_cnt[19];
3816 }
3817 
3818 static u64 access_sdma_header_request_fifo_unc_err_cnt(
3819 				const struct cntr_entry *entry,
3820 				void *context, int vl, int mode, u64 data)
3821 {
3822 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3823 
3824 	return dd->sw_send_dma_eng_err_status_cnt[18];
3825 }
3826 
3827 static u64 access_sdma_header_storage_unc_err_cnt(
3828 				const struct cntr_entry *entry,
3829 				void *context, int vl, int mode, u64 data)
3830 {
3831 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3832 
3833 	return dd->sw_send_dma_eng_err_status_cnt[17];
3834 }
3835 
3836 static u64 access_sdma_packet_tracking_unc_err_cnt(
3837 				const struct cntr_entry *entry,
3838 				void *context, int vl, int mode, u64 data)
3839 {
3840 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3841 
3842 	return dd->sw_send_dma_eng_err_status_cnt[16];
3843 }
3844 
3845 static u64 access_sdma_assembly_unc_err_cnt(const struct cntr_entry *entry,
3846 					    void *context, int vl, int mode,
3847 					    u64 data)
3848 {
3849 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3850 
3851 	return dd->sw_send_dma_eng_err_status_cnt[15];
3852 }
3853 
3854 static u64 access_sdma_desc_table_unc_err_cnt(const struct cntr_entry *entry,
3855 					      void *context, int vl, int mode,
3856 					      u64 data)
3857 {
3858 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3859 
3860 	return dd->sw_send_dma_eng_err_status_cnt[14];
3861 }
3862 
3863 static u64 access_sdma_timeout_err_cnt(const struct cntr_entry *entry,
3864 				       void *context, int vl, int mode,
3865 				       u64 data)
3866 {
3867 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3868 
3869 	return dd->sw_send_dma_eng_err_status_cnt[13];
3870 }
3871 
3872 static u64 access_sdma_header_length_err_cnt(const struct cntr_entry *entry,
3873 					     void *context, int vl, int mode,
3874 					     u64 data)
3875 {
3876 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3877 
3878 	return dd->sw_send_dma_eng_err_status_cnt[12];
3879 }
3880 
3881 static u64 access_sdma_header_address_err_cnt(const struct cntr_entry *entry,
3882 					      void *context, int vl, int mode,
3883 					      u64 data)
3884 {
3885 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3886 
3887 	return dd->sw_send_dma_eng_err_status_cnt[11];
3888 }
3889 
3890 static u64 access_sdma_header_select_err_cnt(const struct cntr_entry *entry,
3891 					     void *context, int vl, int mode,
3892 					     u64 data)
3893 {
3894 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3895 
3896 	return dd->sw_send_dma_eng_err_status_cnt[10];
3897 }
3898 
3899 static u64 access_sdma_reserved_9_err_cnt(const struct cntr_entry *entry,
3900 					  void *context, int vl, int mode,
3901 					  u64 data)
3902 {
3903 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3904 
3905 	return dd->sw_send_dma_eng_err_status_cnt[9];
3906 }
3907 
3908 static u64 access_sdma_packet_desc_overflow_err_cnt(
3909 				const struct cntr_entry *entry,
3910 				void *context, int vl, int mode, u64 data)
3911 {
3912 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3913 
3914 	return dd->sw_send_dma_eng_err_status_cnt[8];
3915 }
3916 
3917 static u64 access_sdma_length_mismatch_err_cnt(const struct cntr_entry *entry,
3918 					       void *context, int vl,
3919 					       int mode, u64 data)
3920 {
3921 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3922 
3923 	return dd->sw_send_dma_eng_err_status_cnt[7];
3924 }
3925 
3926 static u64 access_sdma_halt_err_cnt(const struct cntr_entry *entry,
3927 				    void *context, int vl, int mode, u64 data)
3928 {
3929 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3930 
3931 	return dd->sw_send_dma_eng_err_status_cnt[6];
3932 }
3933 
3934 static u64 access_sdma_mem_read_err_cnt(const struct cntr_entry *entry,
3935 					void *context, int vl, int mode,
3936 					u64 data)
3937 {
3938 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3939 
3940 	return dd->sw_send_dma_eng_err_status_cnt[5];
3941 }
3942 
3943 static u64 access_sdma_first_desc_err_cnt(const struct cntr_entry *entry,
3944 					  void *context, int vl, int mode,
3945 					  u64 data)
3946 {
3947 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3948 
3949 	return dd->sw_send_dma_eng_err_status_cnt[4];
3950 }
3951 
3952 static u64 access_sdma_tail_out_of_bounds_err_cnt(
3953 				const struct cntr_entry *entry,
3954 				void *context, int vl, int mode, u64 data)
3955 {
3956 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3957 
3958 	return dd->sw_send_dma_eng_err_status_cnt[3];
3959 }
3960 
3961 static u64 access_sdma_too_long_err_cnt(const struct cntr_entry *entry,
3962 					void *context, int vl, int mode,
3963 					u64 data)
3964 {
3965 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3966 
3967 	return dd->sw_send_dma_eng_err_status_cnt[2];
3968 }
3969 
3970 static u64 access_sdma_gen_mismatch_err_cnt(const struct cntr_entry *entry,
3971 					    void *context, int vl, int mode,
3972 					    u64 data)
3973 {
3974 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3975 
3976 	return dd->sw_send_dma_eng_err_status_cnt[1];
3977 }
3978 
3979 static u64 access_sdma_wrong_dw_err_cnt(const struct cntr_entry *entry,
3980 					void *context, int vl, int mode,
3981 					u64 data)
3982 {
3983 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3984 
3985 	return dd->sw_send_dma_eng_err_status_cnt[0];
3986 }
3987 
3988 static u64 access_dc_rcv_err_cnt(const struct cntr_entry *entry,
3989 				 void *context, int vl, int mode,
3990 				 u64 data)
3991 {
3992 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3993 
3994 	u64 val = 0;
3995 	u64 csr = entry->csr;
3996 
3997 	val = read_write_csr(dd, csr, mode, data);
3998 	if (mode == CNTR_MODE_R) {
3999 		val = val > CNTR_MAX - dd->sw_rcv_bypass_packet_errors ?
4000 			CNTR_MAX : val + dd->sw_rcv_bypass_packet_errors;
4001 	} else if (mode == CNTR_MODE_W) {
4002 		dd->sw_rcv_bypass_packet_errors = 0;
4003 	} else {
4004 		dd_dev_err(dd, "Invalid cntr register access mode");
4005 		return 0;
4006 	}
4007 	return val;
4008 }
4009 
4010 #define def_access_sw_cpu(cntr) \
4011 static u64 access_sw_cpu_##cntr(const struct cntr_entry *entry,		      \
4012 			      void *context, int vl, int mode, u64 data)      \
4013 {									      \
4014 	struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context;	      \
4015 	return read_write_cpu(ppd->dd, &ppd->ibport_data.rvp.z_ ##cntr,	      \
4016 			      ppd->ibport_data.rvp.cntr, vl,		      \
4017 			      mode, data);				      \
4018 }
4019 
4020 def_access_sw_cpu(rc_acks);
4021 def_access_sw_cpu(rc_qacks);
4022 def_access_sw_cpu(rc_delayed_comp);
4023 
4024 #define def_access_ibp_counter(cntr) \
4025 static u64 access_ibp_##cntr(const struct cntr_entry *entry,		      \
4026 				void *context, int vl, int mode, u64 data)    \
4027 {									      \
4028 	struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context;	      \
4029 									      \
4030 	if (vl != CNTR_INVALID_VL)					      \
4031 		return 0;						      \
4032 									      \
4033 	return read_write_sw(ppd->dd, &ppd->ibport_data.rvp.n_ ##cntr,	      \
4034 			     mode, data);				      \
4035 }
4036 
4037 def_access_ibp_counter(loop_pkts);
4038 def_access_ibp_counter(rc_resends);
4039 def_access_ibp_counter(rnr_naks);
4040 def_access_ibp_counter(other_naks);
4041 def_access_ibp_counter(rc_timeouts);
4042 def_access_ibp_counter(pkt_drops);
4043 def_access_ibp_counter(dmawait);
4044 def_access_ibp_counter(rc_seqnak);
4045 def_access_ibp_counter(rc_dupreq);
4046 def_access_ibp_counter(rdma_seq);
4047 def_access_ibp_counter(unaligned);
4048 def_access_ibp_counter(seq_naks);
4049 
4050 static struct cntr_entry dev_cntrs[DEV_CNTR_LAST] = {
4051 [C_RCV_OVF] = RXE32_DEV_CNTR_ELEM(RcvOverflow, RCV_BUF_OVFL_CNT, CNTR_SYNTH),
4052 [C_RX_TID_FULL] = RXE32_DEV_CNTR_ELEM(RxTIDFullEr, RCV_TID_FULL_ERR_CNT,
4053 			CNTR_NORMAL),
4054 [C_RX_TID_INVALID] = RXE32_DEV_CNTR_ELEM(RxTIDInvalid, RCV_TID_VALID_ERR_CNT,
4055 			CNTR_NORMAL),
4056 [C_RX_TID_FLGMS] = RXE32_DEV_CNTR_ELEM(RxTidFLGMs,
4057 			RCV_TID_FLOW_GEN_MISMATCH_CNT,
4058 			CNTR_NORMAL),
4059 [C_RX_CTX_EGRS] = RXE32_DEV_CNTR_ELEM(RxCtxEgrS, RCV_CONTEXT_EGR_STALL,
4060 			CNTR_NORMAL),
4061 [C_RCV_TID_FLSMS] = RXE32_DEV_CNTR_ELEM(RxTidFLSMs,
4062 			RCV_TID_FLOW_SEQ_MISMATCH_CNT, CNTR_NORMAL),
4063 [C_CCE_PCI_CR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePciCrSt,
4064 			CCE_PCIE_POSTED_CRDT_STALL_CNT, CNTR_NORMAL),
4065 [C_CCE_PCI_TR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePciTrSt, CCE_PCIE_TRGT_STALL_CNT,
4066 			CNTR_NORMAL),
4067 [C_CCE_PIO_WR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePioWrSt, CCE_PIO_WR_STALL_CNT,
4068 			CNTR_NORMAL),
4069 [C_CCE_ERR_INT] = CCE_INT_DEV_CNTR_ELEM(CceErrInt, CCE_ERR_INT_CNT,
4070 			CNTR_NORMAL),
4071 [C_CCE_SDMA_INT] = CCE_INT_DEV_CNTR_ELEM(CceSdmaInt, CCE_SDMA_INT_CNT,
4072 			CNTR_NORMAL),
4073 [C_CCE_MISC_INT] = CCE_INT_DEV_CNTR_ELEM(CceMiscInt, CCE_MISC_INT_CNT,
4074 			CNTR_NORMAL),
4075 [C_CCE_RCV_AV_INT] = CCE_INT_DEV_CNTR_ELEM(CceRcvAvInt, CCE_RCV_AVAIL_INT_CNT,
4076 			CNTR_NORMAL),
4077 [C_CCE_RCV_URG_INT] = CCE_INT_DEV_CNTR_ELEM(CceRcvUrgInt,
4078 			CCE_RCV_URGENT_INT_CNT,	CNTR_NORMAL),
4079 [C_CCE_SEND_CR_INT] = CCE_INT_DEV_CNTR_ELEM(CceSndCrInt,
4080 			CCE_SEND_CREDIT_INT_CNT, CNTR_NORMAL),
4081 [C_DC_UNC_ERR] = DC_PERF_CNTR(DcUnctblErr, DCC_ERR_UNCORRECTABLE_CNT,
4082 			      CNTR_SYNTH),
4083 [C_DC_RCV_ERR] = CNTR_ELEM("DcRecvErr", DCC_ERR_PORTRCV_ERR_CNT, 0, CNTR_SYNTH,
4084 			    access_dc_rcv_err_cnt),
4085 [C_DC_FM_CFG_ERR] = DC_PERF_CNTR(DcFmCfgErr, DCC_ERR_FMCONFIG_ERR_CNT,
4086 				 CNTR_SYNTH),
4087 [C_DC_RMT_PHY_ERR] = DC_PERF_CNTR(DcRmtPhyErr, DCC_ERR_RCVREMOTE_PHY_ERR_CNT,
4088 				  CNTR_SYNTH),
4089 [C_DC_DROPPED_PKT] = DC_PERF_CNTR(DcDroppedPkt, DCC_ERR_DROPPED_PKT_CNT,
4090 				  CNTR_SYNTH),
4091 [C_DC_MC_XMIT_PKTS] = DC_PERF_CNTR(DcMcXmitPkts,
4092 				   DCC_PRF_PORT_XMIT_MULTICAST_CNT, CNTR_SYNTH),
4093 [C_DC_MC_RCV_PKTS] = DC_PERF_CNTR(DcMcRcvPkts,
4094 				  DCC_PRF_PORT_RCV_MULTICAST_PKT_CNT,
4095 				  CNTR_SYNTH),
4096 [C_DC_XMIT_CERR] = DC_PERF_CNTR(DcXmitCorr,
4097 				DCC_PRF_PORT_XMIT_CORRECTABLE_CNT, CNTR_SYNTH),
4098 [C_DC_RCV_CERR] = DC_PERF_CNTR(DcRcvCorrCnt, DCC_PRF_PORT_RCV_CORRECTABLE_CNT,
4099 			       CNTR_SYNTH),
4100 [C_DC_RCV_FCC] = DC_PERF_CNTR(DcRxFCntl, DCC_PRF_RX_FLOW_CRTL_CNT,
4101 			      CNTR_SYNTH),
4102 [C_DC_XMIT_FCC] = DC_PERF_CNTR(DcXmitFCntl, DCC_PRF_TX_FLOW_CRTL_CNT,
4103 			       CNTR_SYNTH),
4104 [C_DC_XMIT_FLITS] = DC_PERF_CNTR(DcXmitFlits, DCC_PRF_PORT_XMIT_DATA_CNT,
4105 				 CNTR_SYNTH),
4106 [C_DC_RCV_FLITS] = DC_PERF_CNTR(DcRcvFlits, DCC_PRF_PORT_RCV_DATA_CNT,
4107 				CNTR_SYNTH),
4108 [C_DC_XMIT_PKTS] = DC_PERF_CNTR(DcXmitPkts, DCC_PRF_PORT_XMIT_PKTS_CNT,
4109 				CNTR_SYNTH),
4110 [C_DC_RCV_PKTS] = DC_PERF_CNTR(DcRcvPkts, DCC_PRF_PORT_RCV_PKTS_CNT,
4111 			       CNTR_SYNTH),
4112 [C_DC_RX_FLIT_VL] = DC_PERF_CNTR(DcRxFlitVl, DCC_PRF_PORT_VL_RCV_DATA_CNT,
4113 				 CNTR_SYNTH | CNTR_VL),
4114 [C_DC_RX_PKT_VL] = DC_PERF_CNTR(DcRxPktVl, DCC_PRF_PORT_VL_RCV_PKTS_CNT,
4115 				CNTR_SYNTH | CNTR_VL),
4116 [C_DC_RCV_FCN] = DC_PERF_CNTR(DcRcvFcn, DCC_PRF_PORT_RCV_FECN_CNT, CNTR_SYNTH),
4117 [C_DC_RCV_FCN_VL] = DC_PERF_CNTR(DcRcvFcnVl, DCC_PRF_PORT_VL_RCV_FECN_CNT,
4118 				 CNTR_SYNTH | CNTR_VL),
4119 [C_DC_RCV_BCN] = DC_PERF_CNTR(DcRcvBcn, DCC_PRF_PORT_RCV_BECN_CNT, CNTR_SYNTH),
4120 [C_DC_RCV_BCN_VL] = DC_PERF_CNTR(DcRcvBcnVl, DCC_PRF_PORT_VL_RCV_BECN_CNT,
4121 				 CNTR_SYNTH | CNTR_VL),
4122 [C_DC_RCV_BBL] = DC_PERF_CNTR(DcRcvBbl, DCC_PRF_PORT_RCV_BUBBLE_CNT,
4123 			      CNTR_SYNTH),
4124 [C_DC_RCV_BBL_VL] = DC_PERF_CNTR(DcRcvBblVl, DCC_PRF_PORT_VL_RCV_BUBBLE_CNT,
4125 				 CNTR_SYNTH | CNTR_VL),
4126 [C_DC_MARK_FECN] = DC_PERF_CNTR(DcMarkFcn, DCC_PRF_PORT_MARK_FECN_CNT,
4127 				CNTR_SYNTH),
4128 [C_DC_MARK_FECN_VL] = DC_PERF_CNTR(DcMarkFcnVl, DCC_PRF_PORT_VL_MARK_FECN_CNT,
4129 				   CNTR_SYNTH | CNTR_VL),
4130 [C_DC_TOTAL_CRC] =
4131 	DC_PERF_CNTR_LCB(DcTotCrc, DC_LCB_ERR_INFO_TOTAL_CRC_ERR,
4132 			 CNTR_SYNTH),
4133 [C_DC_CRC_LN0] = DC_PERF_CNTR_LCB(DcCrcLn0, DC_LCB_ERR_INFO_CRC_ERR_LN0,
4134 				  CNTR_SYNTH),
4135 [C_DC_CRC_LN1] = DC_PERF_CNTR_LCB(DcCrcLn1, DC_LCB_ERR_INFO_CRC_ERR_LN1,
4136 				  CNTR_SYNTH),
4137 [C_DC_CRC_LN2] = DC_PERF_CNTR_LCB(DcCrcLn2, DC_LCB_ERR_INFO_CRC_ERR_LN2,
4138 				  CNTR_SYNTH),
4139 [C_DC_CRC_LN3] = DC_PERF_CNTR_LCB(DcCrcLn3, DC_LCB_ERR_INFO_CRC_ERR_LN3,
4140 				  CNTR_SYNTH),
4141 [C_DC_CRC_MULT_LN] =
4142 	DC_PERF_CNTR_LCB(DcMultLn, DC_LCB_ERR_INFO_CRC_ERR_MULTI_LN,
4143 			 CNTR_SYNTH),
4144 [C_DC_TX_REPLAY] = DC_PERF_CNTR_LCB(DcTxReplay, DC_LCB_ERR_INFO_TX_REPLAY_CNT,
4145 				    CNTR_SYNTH),
4146 [C_DC_RX_REPLAY] = DC_PERF_CNTR_LCB(DcRxReplay, DC_LCB_ERR_INFO_RX_REPLAY_CNT,
4147 				    CNTR_SYNTH),
4148 [C_DC_SEQ_CRC_CNT] =
4149 	DC_PERF_CNTR_LCB(DcLinkSeqCrc, DC_LCB_ERR_INFO_SEQ_CRC_CNT,
4150 			 CNTR_SYNTH),
4151 [C_DC_ESC0_ONLY_CNT] =
4152 	DC_PERF_CNTR_LCB(DcEsc0, DC_LCB_ERR_INFO_ESCAPE_0_ONLY_CNT,
4153 			 CNTR_SYNTH),
4154 [C_DC_ESC0_PLUS1_CNT] =
4155 	DC_PERF_CNTR_LCB(DcEsc1, DC_LCB_ERR_INFO_ESCAPE_0_PLUS1_CNT,
4156 			 CNTR_SYNTH),
4157 [C_DC_ESC0_PLUS2_CNT] =
4158 	DC_PERF_CNTR_LCB(DcEsc0Plus2, DC_LCB_ERR_INFO_ESCAPE_0_PLUS2_CNT,
4159 			 CNTR_SYNTH),
4160 [C_DC_REINIT_FROM_PEER_CNT] =
4161 	DC_PERF_CNTR_LCB(DcReinitPeer, DC_LCB_ERR_INFO_REINIT_FROM_PEER_CNT,
4162 			 CNTR_SYNTH),
4163 [C_DC_SBE_CNT] = DC_PERF_CNTR_LCB(DcSbe, DC_LCB_ERR_INFO_SBE_CNT,
4164 				  CNTR_SYNTH),
4165 [C_DC_MISC_FLG_CNT] =
4166 	DC_PERF_CNTR_LCB(DcMiscFlg, DC_LCB_ERR_INFO_MISC_FLG_CNT,
4167 			 CNTR_SYNTH),
4168 [C_DC_PRF_GOOD_LTP_CNT] =
4169 	DC_PERF_CNTR_LCB(DcGoodLTP, DC_LCB_PRF_GOOD_LTP_CNT, CNTR_SYNTH),
4170 [C_DC_PRF_ACCEPTED_LTP_CNT] =
4171 	DC_PERF_CNTR_LCB(DcAccLTP, DC_LCB_PRF_ACCEPTED_LTP_CNT,
4172 			 CNTR_SYNTH),
4173 [C_DC_PRF_RX_FLIT_CNT] =
4174 	DC_PERF_CNTR_LCB(DcPrfRxFlit, DC_LCB_PRF_RX_FLIT_CNT, CNTR_SYNTH),
4175 [C_DC_PRF_TX_FLIT_CNT] =
4176 	DC_PERF_CNTR_LCB(DcPrfTxFlit, DC_LCB_PRF_TX_FLIT_CNT, CNTR_SYNTH),
4177 [C_DC_PRF_CLK_CNTR] =
4178 	DC_PERF_CNTR_LCB(DcPrfClk, DC_LCB_PRF_CLK_CNTR, CNTR_SYNTH),
4179 [C_DC_PG_DBG_FLIT_CRDTS_CNT] =
4180 	DC_PERF_CNTR_LCB(DcFltCrdts, DC_LCB_PG_DBG_FLIT_CRDTS_CNT, CNTR_SYNTH),
4181 [C_DC_PG_STS_PAUSE_COMPLETE_CNT] =
4182 	DC_PERF_CNTR_LCB(DcPauseComp, DC_LCB_PG_STS_PAUSE_COMPLETE_CNT,
4183 			 CNTR_SYNTH),
4184 [C_DC_PG_STS_TX_SBE_CNT] =
4185 	DC_PERF_CNTR_LCB(DcStsTxSbe, DC_LCB_PG_STS_TX_SBE_CNT, CNTR_SYNTH),
4186 [C_DC_PG_STS_TX_MBE_CNT] =
4187 	DC_PERF_CNTR_LCB(DcStsTxMbe, DC_LCB_PG_STS_TX_MBE_CNT,
4188 			 CNTR_SYNTH),
4189 [C_SW_CPU_INTR] = CNTR_ELEM("Intr", 0, 0, CNTR_NORMAL,
4190 			    access_sw_cpu_intr),
4191 [C_SW_CPU_RCV_LIM] = CNTR_ELEM("RcvLimit", 0, 0, CNTR_NORMAL,
4192 			    access_sw_cpu_rcv_limit),
4193 [C_SW_VTX_WAIT] = CNTR_ELEM("vTxWait", 0, 0, CNTR_NORMAL,
4194 			    access_sw_vtx_wait),
4195 [C_SW_PIO_WAIT] = CNTR_ELEM("PioWait", 0, 0, CNTR_NORMAL,
4196 			    access_sw_pio_wait),
4197 [C_SW_PIO_DRAIN] = CNTR_ELEM("PioDrain", 0, 0, CNTR_NORMAL,
4198 			    access_sw_pio_drain),
4199 [C_SW_KMEM_WAIT] = CNTR_ELEM("KmemWait", 0, 0, CNTR_NORMAL,
4200 			    access_sw_kmem_wait),
4201 [C_SW_SEND_SCHED] = CNTR_ELEM("SendSched", 0, 0, CNTR_NORMAL,
4202 			    access_sw_send_schedule),
4203 [C_SDMA_DESC_FETCHED_CNT] = CNTR_ELEM("SDEDscFdCn",
4204 				      SEND_DMA_DESC_FETCHED_CNT, 0,
4205 				      CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4206 				      dev_access_u32_csr),
4207 [C_SDMA_INT_CNT] = CNTR_ELEM("SDMAInt", 0, 0,
4208 			     CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4209 			     access_sde_int_cnt),
4210 [C_SDMA_ERR_CNT] = CNTR_ELEM("SDMAErrCt", 0, 0,
4211 			     CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4212 			     access_sde_err_cnt),
4213 [C_SDMA_IDLE_INT_CNT] = CNTR_ELEM("SDMAIdInt", 0, 0,
4214 				  CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4215 				  access_sde_idle_int_cnt),
4216 [C_SDMA_PROGRESS_INT_CNT] = CNTR_ELEM("SDMAPrIntCn", 0, 0,
4217 				      CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4218 				      access_sde_progress_int_cnt),
4219 /* MISC_ERR_STATUS */
4220 [C_MISC_PLL_LOCK_FAIL_ERR] = CNTR_ELEM("MISC_PLL_LOCK_FAIL_ERR", 0, 0,
4221 				CNTR_NORMAL,
4222 				access_misc_pll_lock_fail_err_cnt),
4223 [C_MISC_MBIST_FAIL_ERR] = CNTR_ELEM("MISC_MBIST_FAIL_ERR", 0, 0,
4224 				CNTR_NORMAL,
4225 				access_misc_mbist_fail_err_cnt),
4226 [C_MISC_INVALID_EEP_CMD_ERR] = CNTR_ELEM("MISC_INVALID_EEP_CMD_ERR", 0, 0,
4227 				CNTR_NORMAL,
4228 				access_misc_invalid_eep_cmd_err_cnt),
4229 [C_MISC_EFUSE_DONE_PARITY_ERR] = CNTR_ELEM("MISC_EFUSE_DONE_PARITY_ERR", 0, 0,
4230 				CNTR_NORMAL,
4231 				access_misc_efuse_done_parity_err_cnt),
4232 [C_MISC_EFUSE_WRITE_ERR] = CNTR_ELEM("MISC_EFUSE_WRITE_ERR", 0, 0,
4233 				CNTR_NORMAL,
4234 				access_misc_efuse_write_err_cnt),
4235 [C_MISC_EFUSE_READ_BAD_ADDR_ERR] = CNTR_ELEM("MISC_EFUSE_READ_BAD_ADDR_ERR", 0,
4236 				0, CNTR_NORMAL,
4237 				access_misc_efuse_read_bad_addr_err_cnt),
4238 [C_MISC_EFUSE_CSR_PARITY_ERR] = CNTR_ELEM("MISC_EFUSE_CSR_PARITY_ERR", 0, 0,
4239 				CNTR_NORMAL,
4240 				access_misc_efuse_csr_parity_err_cnt),
4241 [C_MISC_FW_AUTH_FAILED_ERR] = CNTR_ELEM("MISC_FW_AUTH_FAILED_ERR", 0, 0,
4242 				CNTR_NORMAL,
4243 				access_misc_fw_auth_failed_err_cnt),
4244 [C_MISC_KEY_MISMATCH_ERR] = CNTR_ELEM("MISC_KEY_MISMATCH_ERR", 0, 0,
4245 				CNTR_NORMAL,
4246 				access_misc_key_mismatch_err_cnt),
4247 [C_MISC_SBUS_WRITE_FAILED_ERR] = CNTR_ELEM("MISC_SBUS_WRITE_FAILED_ERR", 0, 0,
4248 				CNTR_NORMAL,
4249 				access_misc_sbus_write_failed_err_cnt),
4250 [C_MISC_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("MISC_CSR_WRITE_BAD_ADDR_ERR", 0, 0,
4251 				CNTR_NORMAL,
4252 				access_misc_csr_write_bad_addr_err_cnt),
4253 [C_MISC_CSR_READ_BAD_ADDR_ERR] = CNTR_ELEM("MISC_CSR_READ_BAD_ADDR_ERR", 0, 0,
4254 				CNTR_NORMAL,
4255 				access_misc_csr_read_bad_addr_err_cnt),
4256 [C_MISC_CSR_PARITY_ERR] = CNTR_ELEM("MISC_CSR_PARITY_ERR", 0, 0,
4257 				CNTR_NORMAL,
4258 				access_misc_csr_parity_err_cnt),
4259 /* CceErrStatus */
4260 [C_CCE_ERR_STATUS_AGGREGATED_CNT] = CNTR_ELEM("CceErrStatusAggregatedCnt", 0, 0,
4261 				CNTR_NORMAL,
4262 				access_sw_cce_err_status_aggregated_cnt),
4263 [C_CCE_MSIX_CSR_PARITY_ERR] = CNTR_ELEM("CceMsixCsrParityErr", 0, 0,
4264 				CNTR_NORMAL,
4265 				access_cce_msix_csr_parity_err_cnt),
4266 [C_CCE_INT_MAP_UNC_ERR] = CNTR_ELEM("CceIntMapUncErr", 0, 0,
4267 				CNTR_NORMAL,
4268 				access_cce_int_map_unc_err_cnt),
4269 [C_CCE_INT_MAP_COR_ERR] = CNTR_ELEM("CceIntMapCorErr", 0, 0,
4270 				CNTR_NORMAL,
4271 				access_cce_int_map_cor_err_cnt),
4272 [C_CCE_MSIX_TABLE_UNC_ERR] = CNTR_ELEM("CceMsixTableUncErr", 0, 0,
4273 				CNTR_NORMAL,
4274 				access_cce_msix_table_unc_err_cnt),
4275 [C_CCE_MSIX_TABLE_COR_ERR] = CNTR_ELEM("CceMsixTableCorErr", 0, 0,
4276 				CNTR_NORMAL,
4277 				access_cce_msix_table_cor_err_cnt),
4278 [C_CCE_RXDMA_CONV_FIFO_PARITY_ERR] = CNTR_ELEM("CceRxdmaConvFifoParityErr", 0,
4279 				0, CNTR_NORMAL,
4280 				access_cce_rxdma_conv_fifo_parity_err_cnt),
4281 [C_CCE_RCPL_ASYNC_FIFO_PARITY_ERR] = CNTR_ELEM("CceRcplAsyncFifoParityErr", 0,
4282 				0, CNTR_NORMAL,
4283 				access_cce_rcpl_async_fifo_parity_err_cnt),
4284 [C_CCE_SEG_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("CceSegWriteBadAddrErr", 0, 0,
4285 				CNTR_NORMAL,
4286 				access_cce_seg_write_bad_addr_err_cnt),
4287 [C_CCE_SEG_READ_BAD_ADDR_ERR] = CNTR_ELEM("CceSegReadBadAddrErr", 0, 0,
4288 				CNTR_NORMAL,
4289 				access_cce_seg_read_bad_addr_err_cnt),
4290 [C_LA_TRIGGERED] = CNTR_ELEM("Cce LATriggered", 0, 0,
4291 				CNTR_NORMAL,
4292 				access_la_triggered_cnt),
4293 [C_CCE_TRGT_CPL_TIMEOUT_ERR] = CNTR_ELEM("CceTrgtCplTimeoutErr", 0, 0,
4294 				CNTR_NORMAL,
4295 				access_cce_trgt_cpl_timeout_err_cnt),
4296 [C_PCIC_RECEIVE_PARITY_ERR] = CNTR_ELEM("PcicReceiveParityErr", 0, 0,
4297 				CNTR_NORMAL,
4298 				access_pcic_receive_parity_err_cnt),
4299 [C_PCIC_TRANSMIT_BACK_PARITY_ERR] = CNTR_ELEM("PcicTransmitBackParityErr", 0, 0,
4300 				CNTR_NORMAL,
4301 				access_pcic_transmit_back_parity_err_cnt),
4302 [C_PCIC_TRANSMIT_FRONT_PARITY_ERR] = CNTR_ELEM("PcicTransmitFrontParityErr", 0,
4303 				0, CNTR_NORMAL,
4304 				access_pcic_transmit_front_parity_err_cnt),
4305 [C_PCIC_CPL_DAT_Q_UNC_ERR] = CNTR_ELEM("PcicCplDatQUncErr", 0, 0,
4306 				CNTR_NORMAL,
4307 				access_pcic_cpl_dat_q_unc_err_cnt),
4308 [C_PCIC_CPL_HD_Q_UNC_ERR] = CNTR_ELEM("PcicCplHdQUncErr", 0, 0,
4309 				CNTR_NORMAL,
4310 				access_pcic_cpl_hd_q_unc_err_cnt),
4311 [C_PCIC_POST_DAT_Q_UNC_ERR] = CNTR_ELEM("PcicPostDatQUncErr", 0, 0,
4312 				CNTR_NORMAL,
4313 				access_pcic_post_dat_q_unc_err_cnt),
4314 [C_PCIC_POST_HD_Q_UNC_ERR] = CNTR_ELEM("PcicPostHdQUncErr", 0, 0,
4315 				CNTR_NORMAL,
4316 				access_pcic_post_hd_q_unc_err_cnt),
4317 [C_PCIC_RETRY_SOT_MEM_UNC_ERR] = CNTR_ELEM("PcicRetrySotMemUncErr", 0, 0,
4318 				CNTR_NORMAL,
4319 				access_pcic_retry_sot_mem_unc_err_cnt),
4320 [C_PCIC_RETRY_MEM_UNC_ERR] = CNTR_ELEM("PcicRetryMemUncErr", 0, 0,
4321 				CNTR_NORMAL,
4322 				access_pcic_retry_mem_unc_err),
4323 [C_PCIC_N_POST_DAT_Q_PARITY_ERR] = CNTR_ELEM("PcicNPostDatQParityErr", 0, 0,
4324 				CNTR_NORMAL,
4325 				access_pcic_n_post_dat_q_parity_err_cnt),
4326 [C_PCIC_N_POST_H_Q_PARITY_ERR] = CNTR_ELEM("PcicNPostHQParityErr", 0, 0,
4327 				CNTR_NORMAL,
4328 				access_pcic_n_post_h_q_parity_err_cnt),
4329 [C_PCIC_CPL_DAT_Q_COR_ERR] = CNTR_ELEM("PcicCplDatQCorErr", 0, 0,
4330 				CNTR_NORMAL,
4331 				access_pcic_cpl_dat_q_cor_err_cnt),
4332 [C_PCIC_CPL_HD_Q_COR_ERR] = CNTR_ELEM("PcicCplHdQCorErr", 0, 0,
4333 				CNTR_NORMAL,
4334 				access_pcic_cpl_hd_q_cor_err_cnt),
4335 [C_PCIC_POST_DAT_Q_COR_ERR] = CNTR_ELEM("PcicPostDatQCorErr", 0, 0,
4336 				CNTR_NORMAL,
4337 				access_pcic_post_dat_q_cor_err_cnt),
4338 [C_PCIC_POST_HD_Q_COR_ERR] = CNTR_ELEM("PcicPostHdQCorErr", 0, 0,
4339 				CNTR_NORMAL,
4340 				access_pcic_post_hd_q_cor_err_cnt),
4341 [C_PCIC_RETRY_SOT_MEM_COR_ERR] = CNTR_ELEM("PcicRetrySotMemCorErr", 0, 0,
4342 				CNTR_NORMAL,
4343 				access_pcic_retry_sot_mem_cor_err_cnt),
4344 [C_PCIC_RETRY_MEM_COR_ERR] = CNTR_ELEM("PcicRetryMemCorErr", 0, 0,
4345 				CNTR_NORMAL,
4346 				access_pcic_retry_mem_cor_err_cnt),
4347 [C_CCE_CLI1_ASYNC_FIFO_DBG_PARITY_ERR] = CNTR_ELEM(
4348 				"CceCli1AsyncFifoDbgParityError", 0, 0,
4349 				CNTR_NORMAL,
4350 				access_cce_cli1_async_fifo_dbg_parity_err_cnt),
4351 [C_CCE_CLI1_ASYNC_FIFO_RXDMA_PARITY_ERR] = CNTR_ELEM(
4352 				"CceCli1AsyncFifoRxdmaParityError", 0, 0,
4353 				CNTR_NORMAL,
4354 				access_cce_cli1_async_fifo_rxdma_parity_err_cnt
4355 				),
4356 [C_CCE_CLI1_ASYNC_FIFO_SDMA_HD_PARITY_ERR] = CNTR_ELEM(
4357 			"CceCli1AsyncFifoSdmaHdParityErr", 0, 0,
4358 			CNTR_NORMAL,
4359 			access_cce_cli1_async_fifo_sdma_hd_parity_err_cnt),
4360 [C_CCE_CLI1_ASYNC_FIFO_PIO_CRDT_PARITY_ERR] = CNTR_ELEM(
4361 			"CceCli1AsyncFifoPioCrdtParityErr", 0, 0,
4362 			CNTR_NORMAL,
4363 			access_cce_cl1_async_fifo_pio_crdt_parity_err_cnt),
4364 [C_CCE_CLI2_ASYNC_FIFO_PARITY_ERR] = CNTR_ELEM("CceCli2AsyncFifoParityErr", 0,
4365 			0, CNTR_NORMAL,
4366 			access_cce_cli2_async_fifo_parity_err_cnt),
4367 [C_CCE_CSR_CFG_BUS_PARITY_ERR] = CNTR_ELEM("CceCsrCfgBusParityErr", 0, 0,
4368 			CNTR_NORMAL,
4369 			access_cce_csr_cfg_bus_parity_err_cnt),
4370 [C_CCE_CLI0_ASYNC_FIFO_PARTIY_ERR] = CNTR_ELEM("CceCli0AsyncFifoParityErr", 0,
4371 			0, CNTR_NORMAL,
4372 			access_cce_cli0_async_fifo_parity_err_cnt),
4373 [C_CCE_RSPD_DATA_PARITY_ERR] = CNTR_ELEM("CceRspdDataParityErr", 0, 0,
4374 			CNTR_NORMAL,
4375 			access_cce_rspd_data_parity_err_cnt),
4376 [C_CCE_TRGT_ACCESS_ERR] = CNTR_ELEM("CceTrgtAccessErr", 0, 0,
4377 			CNTR_NORMAL,
4378 			access_cce_trgt_access_err_cnt),
4379 [C_CCE_TRGT_ASYNC_FIFO_PARITY_ERR] = CNTR_ELEM("CceTrgtAsyncFifoParityErr", 0,
4380 			0, CNTR_NORMAL,
4381 			access_cce_trgt_async_fifo_parity_err_cnt),
4382 [C_CCE_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("CceCsrWriteBadAddrErr", 0, 0,
4383 			CNTR_NORMAL,
4384 			access_cce_csr_write_bad_addr_err_cnt),
4385 [C_CCE_CSR_READ_BAD_ADDR_ERR] = CNTR_ELEM("CceCsrReadBadAddrErr", 0, 0,
4386 			CNTR_NORMAL,
4387 			access_cce_csr_read_bad_addr_err_cnt),
4388 [C_CCE_CSR_PARITY_ERR] = CNTR_ELEM("CceCsrParityErr", 0, 0,
4389 			CNTR_NORMAL,
4390 			access_ccs_csr_parity_err_cnt),
4391 
4392 /* RcvErrStatus */
4393 [C_RX_CSR_PARITY_ERR] = CNTR_ELEM("RxCsrParityErr", 0, 0,
4394 			CNTR_NORMAL,
4395 			access_rx_csr_parity_err_cnt),
4396 [C_RX_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("RxCsrWriteBadAddrErr", 0, 0,
4397 			CNTR_NORMAL,
4398 			access_rx_csr_write_bad_addr_err_cnt),
4399 [C_RX_CSR_READ_BAD_ADDR_ERR] = CNTR_ELEM("RxCsrReadBadAddrErr", 0, 0,
4400 			CNTR_NORMAL,
4401 			access_rx_csr_read_bad_addr_err_cnt),
4402 [C_RX_DMA_CSR_UNC_ERR] = CNTR_ELEM("RxDmaCsrUncErr", 0, 0,
4403 			CNTR_NORMAL,
4404 			access_rx_dma_csr_unc_err_cnt),
4405 [C_RX_DMA_DQ_FSM_ENCODING_ERR] = CNTR_ELEM("RxDmaDqFsmEncodingErr", 0, 0,
4406 			CNTR_NORMAL,
4407 			access_rx_dma_dq_fsm_encoding_err_cnt),
4408 [C_RX_DMA_EQ_FSM_ENCODING_ERR] = CNTR_ELEM("RxDmaEqFsmEncodingErr", 0, 0,
4409 			CNTR_NORMAL,
4410 			access_rx_dma_eq_fsm_encoding_err_cnt),
4411 [C_RX_DMA_CSR_PARITY_ERR] = CNTR_ELEM("RxDmaCsrParityErr", 0, 0,
4412 			CNTR_NORMAL,
4413 			access_rx_dma_csr_parity_err_cnt),
4414 [C_RX_RBUF_DATA_COR_ERR] = CNTR_ELEM("RxRbufDataCorErr", 0, 0,
4415 			CNTR_NORMAL,
4416 			access_rx_rbuf_data_cor_err_cnt),
4417 [C_RX_RBUF_DATA_UNC_ERR] = CNTR_ELEM("RxRbufDataUncErr", 0, 0,
4418 			CNTR_NORMAL,
4419 			access_rx_rbuf_data_unc_err_cnt),
4420 [C_RX_DMA_DATA_FIFO_RD_COR_ERR] = CNTR_ELEM("RxDmaDataFifoRdCorErr", 0, 0,
4421 			CNTR_NORMAL,
4422 			access_rx_dma_data_fifo_rd_cor_err_cnt),
4423 [C_RX_DMA_DATA_FIFO_RD_UNC_ERR] = CNTR_ELEM("RxDmaDataFifoRdUncErr", 0, 0,
4424 			CNTR_NORMAL,
4425 			access_rx_dma_data_fifo_rd_unc_err_cnt),
4426 [C_RX_DMA_HDR_FIFO_RD_COR_ERR] = CNTR_ELEM("RxDmaHdrFifoRdCorErr", 0, 0,
4427 			CNTR_NORMAL,
4428 			access_rx_dma_hdr_fifo_rd_cor_err_cnt),
4429 [C_RX_DMA_HDR_FIFO_RD_UNC_ERR] = CNTR_ELEM("RxDmaHdrFifoRdUncErr", 0, 0,
4430 			CNTR_NORMAL,
4431 			access_rx_dma_hdr_fifo_rd_unc_err_cnt),
4432 [C_RX_RBUF_DESC_PART2_COR_ERR] = CNTR_ELEM("RxRbufDescPart2CorErr", 0, 0,
4433 			CNTR_NORMAL,
4434 			access_rx_rbuf_desc_part2_cor_err_cnt),
4435 [C_RX_RBUF_DESC_PART2_UNC_ERR] = CNTR_ELEM("RxRbufDescPart2UncErr", 0, 0,
4436 			CNTR_NORMAL,
4437 			access_rx_rbuf_desc_part2_unc_err_cnt),
4438 [C_RX_RBUF_DESC_PART1_COR_ERR] = CNTR_ELEM("RxRbufDescPart1CorErr", 0, 0,
4439 			CNTR_NORMAL,
4440 			access_rx_rbuf_desc_part1_cor_err_cnt),
4441 [C_RX_RBUF_DESC_PART1_UNC_ERR] = CNTR_ELEM("RxRbufDescPart1UncErr", 0, 0,
4442 			CNTR_NORMAL,
4443 			access_rx_rbuf_desc_part1_unc_err_cnt),
4444 [C_RX_HQ_INTR_FSM_ERR] = CNTR_ELEM("RxHqIntrFsmErr", 0, 0,
4445 			CNTR_NORMAL,
4446 			access_rx_hq_intr_fsm_err_cnt),
4447 [C_RX_HQ_INTR_CSR_PARITY_ERR] = CNTR_ELEM("RxHqIntrCsrParityErr", 0, 0,
4448 			CNTR_NORMAL,
4449 			access_rx_hq_intr_csr_parity_err_cnt),
4450 [C_RX_LOOKUP_CSR_PARITY_ERR] = CNTR_ELEM("RxLookupCsrParityErr", 0, 0,
4451 			CNTR_NORMAL,
4452 			access_rx_lookup_csr_parity_err_cnt),
4453 [C_RX_LOOKUP_RCV_ARRAY_COR_ERR] = CNTR_ELEM("RxLookupRcvArrayCorErr", 0, 0,
4454 			CNTR_NORMAL,
4455 			access_rx_lookup_rcv_array_cor_err_cnt),
4456 [C_RX_LOOKUP_RCV_ARRAY_UNC_ERR] = CNTR_ELEM("RxLookupRcvArrayUncErr", 0, 0,
4457 			CNTR_NORMAL,
4458 			access_rx_lookup_rcv_array_unc_err_cnt),
4459 [C_RX_LOOKUP_DES_PART2_PARITY_ERR] = CNTR_ELEM("RxLookupDesPart2ParityErr", 0,
4460 			0, CNTR_NORMAL,
4461 			access_rx_lookup_des_part2_parity_err_cnt),
4462 [C_RX_LOOKUP_DES_PART1_UNC_COR_ERR] = CNTR_ELEM("RxLookupDesPart1UncCorErr", 0,
4463 			0, CNTR_NORMAL,
4464 			access_rx_lookup_des_part1_unc_cor_err_cnt),
4465 [C_RX_LOOKUP_DES_PART1_UNC_ERR] = CNTR_ELEM("RxLookupDesPart1UncErr", 0, 0,
4466 			CNTR_NORMAL,
4467 			access_rx_lookup_des_part1_unc_err_cnt),
4468 [C_RX_RBUF_NEXT_FREE_BUF_COR_ERR] = CNTR_ELEM("RxRbufNextFreeBufCorErr", 0, 0,
4469 			CNTR_NORMAL,
4470 			access_rx_rbuf_next_free_buf_cor_err_cnt),
4471 [C_RX_RBUF_NEXT_FREE_BUF_UNC_ERR] = CNTR_ELEM("RxRbufNextFreeBufUncErr", 0, 0,
4472 			CNTR_NORMAL,
4473 			access_rx_rbuf_next_free_buf_unc_err_cnt),
4474 [C_RX_RBUF_FL_INIT_WR_ADDR_PARITY_ERR] = CNTR_ELEM(
4475 			"RxRbufFlInitWrAddrParityErr", 0, 0,
4476 			CNTR_NORMAL,
4477 			access_rbuf_fl_init_wr_addr_parity_err_cnt),
4478 [C_RX_RBUF_FL_INITDONE_PARITY_ERR] = CNTR_ELEM("RxRbufFlInitdoneParityErr", 0,
4479 			0, CNTR_NORMAL,
4480 			access_rx_rbuf_fl_initdone_parity_err_cnt),
4481 [C_RX_RBUF_FL_WRITE_ADDR_PARITY_ERR] = CNTR_ELEM("RxRbufFlWrAddrParityErr", 0,
4482 			0, CNTR_NORMAL,
4483 			access_rx_rbuf_fl_write_addr_parity_err_cnt),
4484 [C_RX_RBUF_FL_RD_ADDR_PARITY_ERR] = CNTR_ELEM("RxRbufFlRdAddrParityErr", 0, 0,
4485 			CNTR_NORMAL,
4486 			access_rx_rbuf_fl_rd_addr_parity_err_cnt),
4487 [C_RX_RBUF_EMPTY_ERR] = CNTR_ELEM("RxRbufEmptyErr", 0, 0,
4488 			CNTR_NORMAL,
4489 			access_rx_rbuf_empty_err_cnt),
4490 [C_RX_RBUF_FULL_ERR] = CNTR_ELEM("RxRbufFullErr", 0, 0,
4491 			CNTR_NORMAL,
4492 			access_rx_rbuf_full_err_cnt),
4493 [C_RX_RBUF_BAD_LOOKUP_ERR] = CNTR_ELEM("RxRBufBadLookupErr", 0, 0,
4494 			CNTR_NORMAL,
4495 			access_rbuf_bad_lookup_err_cnt),
4496 [C_RX_RBUF_CTX_ID_PARITY_ERR] = CNTR_ELEM("RxRbufCtxIdParityErr", 0, 0,
4497 			CNTR_NORMAL,
4498 			access_rbuf_ctx_id_parity_err_cnt),
4499 [C_RX_RBUF_CSR_QEOPDW_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQEOPDWParityErr", 0, 0,
4500 			CNTR_NORMAL,
4501 			access_rbuf_csr_qeopdw_parity_err_cnt),
4502 [C_RX_RBUF_CSR_Q_NUM_OF_PKT_PARITY_ERR] = CNTR_ELEM(
4503 			"RxRbufCsrQNumOfPktParityErr", 0, 0,
4504 			CNTR_NORMAL,
4505 			access_rx_rbuf_csr_q_num_of_pkt_parity_err_cnt),
4506 [C_RX_RBUF_CSR_Q_T1_PTR_PARITY_ERR] = CNTR_ELEM(
4507 			"RxRbufCsrQTlPtrParityErr", 0, 0,
4508 			CNTR_NORMAL,
4509 			access_rx_rbuf_csr_q_t1_ptr_parity_err_cnt),
4510 [C_RX_RBUF_CSR_Q_HD_PTR_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQHdPtrParityErr", 0,
4511 			0, CNTR_NORMAL,
4512 			access_rx_rbuf_csr_q_hd_ptr_parity_err_cnt),
4513 [C_RX_RBUF_CSR_Q_VLD_BIT_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQVldBitParityErr", 0,
4514 			0, CNTR_NORMAL,
4515 			access_rx_rbuf_csr_q_vld_bit_parity_err_cnt),
4516 [C_RX_RBUF_CSR_Q_NEXT_BUF_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQNextBufParityErr",
4517 			0, 0, CNTR_NORMAL,
4518 			access_rx_rbuf_csr_q_next_buf_parity_err_cnt),
4519 [C_RX_RBUF_CSR_Q_ENT_CNT_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQEntCntParityErr", 0,
4520 			0, CNTR_NORMAL,
4521 			access_rx_rbuf_csr_q_ent_cnt_parity_err_cnt),
4522 [C_RX_RBUF_CSR_Q_HEAD_BUF_NUM_PARITY_ERR] = CNTR_ELEM(
4523 			"RxRbufCsrQHeadBufNumParityErr", 0, 0,
4524 			CNTR_NORMAL,
4525 			access_rx_rbuf_csr_q_head_buf_num_parity_err_cnt),
4526 [C_RX_RBUF_BLOCK_LIST_READ_COR_ERR] = CNTR_ELEM("RxRbufBlockListReadCorErr", 0,
4527 			0, CNTR_NORMAL,
4528 			access_rx_rbuf_block_list_read_cor_err_cnt),
4529 [C_RX_RBUF_BLOCK_LIST_READ_UNC_ERR] = CNTR_ELEM("RxRbufBlockListReadUncErr", 0,
4530 			0, CNTR_NORMAL,
4531 			access_rx_rbuf_block_list_read_unc_err_cnt),
4532 [C_RX_RBUF_LOOKUP_DES_COR_ERR] = CNTR_ELEM("RxRbufLookupDesCorErr", 0, 0,
4533 			CNTR_NORMAL,
4534 			access_rx_rbuf_lookup_des_cor_err_cnt),
4535 [C_RX_RBUF_LOOKUP_DES_UNC_ERR] = CNTR_ELEM("RxRbufLookupDesUncErr", 0, 0,
4536 			CNTR_NORMAL,
4537 			access_rx_rbuf_lookup_des_unc_err_cnt),
4538 [C_RX_RBUF_LOOKUP_DES_REG_UNC_COR_ERR] = CNTR_ELEM(
4539 			"RxRbufLookupDesRegUncCorErr", 0, 0,
4540 			CNTR_NORMAL,
4541 			access_rx_rbuf_lookup_des_reg_unc_cor_err_cnt),
4542 [C_RX_RBUF_LOOKUP_DES_REG_UNC_ERR] = CNTR_ELEM("RxRbufLookupDesRegUncErr", 0, 0,
4543 			CNTR_NORMAL,
4544 			access_rx_rbuf_lookup_des_reg_unc_err_cnt),
4545 [C_RX_RBUF_FREE_LIST_COR_ERR] = CNTR_ELEM("RxRbufFreeListCorErr", 0, 0,
4546 			CNTR_NORMAL,
4547 			access_rx_rbuf_free_list_cor_err_cnt),
4548 [C_RX_RBUF_FREE_LIST_UNC_ERR] = CNTR_ELEM("RxRbufFreeListUncErr", 0, 0,
4549 			CNTR_NORMAL,
4550 			access_rx_rbuf_free_list_unc_err_cnt),
4551 [C_RX_RCV_FSM_ENCODING_ERR] = CNTR_ELEM("RxRcvFsmEncodingErr", 0, 0,
4552 			CNTR_NORMAL,
4553 			access_rx_rcv_fsm_encoding_err_cnt),
4554 [C_RX_DMA_FLAG_COR_ERR] = CNTR_ELEM("RxDmaFlagCorErr", 0, 0,
4555 			CNTR_NORMAL,
4556 			access_rx_dma_flag_cor_err_cnt),
4557 [C_RX_DMA_FLAG_UNC_ERR] = CNTR_ELEM("RxDmaFlagUncErr", 0, 0,
4558 			CNTR_NORMAL,
4559 			access_rx_dma_flag_unc_err_cnt),
4560 [C_RX_DC_SOP_EOP_PARITY_ERR] = CNTR_ELEM("RxDcSopEopParityErr", 0, 0,
4561 			CNTR_NORMAL,
4562 			access_rx_dc_sop_eop_parity_err_cnt),
4563 [C_RX_RCV_CSR_PARITY_ERR] = CNTR_ELEM("RxRcvCsrParityErr", 0, 0,
4564 			CNTR_NORMAL,
4565 			access_rx_rcv_csr_parity_err_cnt),
4566 [C_RX_RCV_QP_MAP_TABLE_COR_ERR] = CNTR_ELEM("RxRcvQpMapTableCorErr", 0, 0,
4567 			CNTR_NORMAL,
4568 			access_rx_rcv_qp_map_table_cor_err_cnt),
4569 [C_RX_RCV_QP_MAP_TABLE_UNC_ERR] = CNTR_ELEM("RxRcvQpMapTableUncErr", 0, 0,
4570 			CNTR_NORMAL,
4571 			access_rx_rcv_qp_map_table_unc_err_cnt),
4572 [C_RX_RCV_DATA_COR_ERR] = CNTR_ELEM("RxRcvDataCorErr", 0, 0,
4573 			CNTR_NORMAL,
4574 			access_rx_rcv_data_cor_err_cnt),
4575 [C_RX_RCV_DATA_UNC_ERR] = CNTR_ELEM("RxRcvDataUncErr", 0, 0,
4576 			CNTR_NORMAL,
4577 			access_rx_rcv_data_unc_err_cnt),
4578 [C_RX_RCV_HDR_COR_ERR] = CNTR_ELEM("RxRcvHdrCorErr", 0, 0,
4579 			CNTR_NORMAL,
4580 			access_rx_rcv_hdr_cor_err_cnt),
4581 [C_RX_RCV_HDR_UNC_ERR] = CNTR_ELEM("RxRcvHdrUncErr", 0, 0,
4582 			CNTR_NORMAL,
4583 			access_rx_rcv_hdr_unc_err_cnt),
4584 [C_RX_DC_INTF_PARITY_ERR] = CNTR_ELEM("RxDcIntfParityErr", 0, 0,
4585 			CNTR_NORMAL,
4586 			access_rx_dc_intf_parity_err_cnt),
4587 [C_RX_DMA_CSR_COR_ERR] = CNTR_ELEM("RxDmaCsrCorErr", 0, 0,
4588 			CNTR_NORMAL,
4589 			access_rx_dma_csr_cor_err_cnt),
4590 /* SendPioErrStatus */
4591 [C_PIO_PEC_SOP_HEAD_PARITY_ERR] = CNTR_ELEM("PioPecSopHeadParityErr", 0, 0,
4592 			CNTR_NORMAL,
4593 			access_pio_pec_sop_head_parity_err_cnt),
4594 [C_PIO_PCC_SOP_HEAD_PARITY_ERR] = CNTR_ELEM("PioPccSopHeadParityErr", 0, 0,
4595 			CNTR_NORMAL,
4596 			access_pio_pcc_sop_head_parity_err_cnt),
4597 [C_PIO_LAST_RETURNED_CNT_PARITY_ERR] = CNTR_ELEM("PioLastReturnedCntParityErr",
4598 			0, 0, CNTR_NORMAL,
4599 			access_pio_last_returned_cnt_parity_err_cnt),
4600 [C_PIO_CURRENT_FREE_CNT_PARITY_ERR] = CNTR_ELEM("PioCurrentFreeCntParityErr", 0,
4601 			0, CNTR_NORMAL,
4602 			access_pio_current_free_cnt_parity_err_cnt),
4603 [C_PIO_RSVD_31_ERR] = CNTR_ELEM("Pio Reserved 31", 0, 0,
4604 			CNTR_NORMAL,
4605 			access_pio_reserved_31_err_cnt),
4606 [C_PIO_RSVD_30_ERR] = CNTR_ELEM("Pio Reserved 30", 0, 0,
4607 			CNTR_NORMAL,
4608 			access_pio_reserved_30_err_cnt),
4609 [C_PIO_PPMC_SOP_LEN_ERR] = CNTR_ELEM("PioPpmcSopLenErr", 0, 0,
4610 			CNTR_NORMAL,
4611 			access_pio_ppmc_sop_len_err_cnt),
4612 [C_PIO_PPMC_BQC_MEM_PARITY_ERR] = CNTR_ELEM("PioPpmcBqcMemParityErr", 0, 0,
4613 			CNTR_NORMAL,
4614 			access_pio_ppmc_bqc_mem_parity_err_cnt),
4615 [C_PIO_VL_FIFO_PARITY_ERR] = CNTR_ELEM("PioVlFifoParityErr", 0, 0,
4616 			CNTR_NORMAL,
4617 			access_pio_vl_fifo_parity_err_cnt),
4618 [C_PIO_VLF_SOP_PARITY_ERR] = CNTR_ELEM("PioVlfSopParityErr", 0, 0,
4619 			CNTR_NORMAL,
4620 			access_pio_vlf_sop_parity_err_cnt),
4621 [C_PIO_VLF_V1_LEN_PARITY_ERR] = CNTR_ELEM("PioVlfVlLenParityErr", 0, 0,
4622 			CNTR_NORMAL,
4623 			access_pio_vlf_v1_len_parity_err_cnt),
4624 [C_PIO_BLOCK_QW_COUNT_PARITY_ERR] = CNTR_ELEM("PioBlockQwCountParityErr", 0, 0,
4625 			CNTR_NORMAL,
4626 			access_pio_block_qw_count_parity_err_cnt),
4627 [C_PIO_WRITE_QW_VALID_PARITY_ERR] = CNTR_ELEM("PioWriteQwValidParityErr", 0, 0,
4628 			CNTR_NORMAL,
4629 			access_pio_write_qw_valid_parity_err_cnt),
4630 [C_PIO_STATE_MACHINE_ERR] = CNTR_ELEM("PioStateMachineErr", 0, 0,
4631 			CNTR_NORMAL,
4632 			access_pio_state_machine_err_cnt),
4633 [C_PIO_WRITE_DATA_PARITY_ERR] = CNTR_ELEM("PioWriteDataParityErr", 0, 0,
4634 			CNTR_NORMAL,
4635 			access_pio_write_data_parity_err_cnt),
4636 [C_PIO_HOST_ADDR_MEM_COR_ERR] = CNTR_ELEM("PioHostAddrMemCorErr", 0, 0,
4637 			CNTR_NORMAL,
4638 			access_pio_host_addr_mem_cor_err_cnt),
4639 [C_PIO_HOST_ADDR_MEM_UNC_ERR] = CNTR_ELEM("PioHostAddrMemUncErr", 0, 0,
4640 			CNTR_NORMAL,
4641 			access_pio_host_addr_mem_unc_err_cnt),
4642 [C_PIO_PKT_EVICT_SM_OR_ARM_SM_ERR] = CNTR_ELEM("PioPktEvictSmOrArbSmErr", 0, 0,
4643 			CNTR_NORMAL,
4644 			access_pio_pkt_evict_sm_or_arb_sm_err_cnt),
4645 [C_PIO_INIT_SM_IN_ERR] = CNTR_ELEM("PioInitSmInErr", 0, 0,
4646 			CNTR_NORMAL,
4647 			access_pio_init_sm_in_err_cnt),
4648 [C_PIO_PPMC_PBL_FIFO_ERR] = CNTR_ELEM("PioPpmcPblFifoErr", 0, 0,
4649 			CNTR_NORMAL,
4650 			access_pio_ppmc_pbl_fifo_err_cnt),
4651 [C_PIO_CREDIT_RET_FIFO_PARITY_ERR] = CNTR_ELEM("PioCreditRetFifoParityErr", 0,
4652 			0, CNTR_NORMAL,
4653 			access_pio_credit_ret_fifo_parity_err_cnt),
4654 [C_PIO_V1_LEN_MEM_BANK1_COR_ERR] = CNTR_ELEM("PioVlLenMemBank1CorErr", 0, 0,
4655 			CNTR_NORMAL,
4656 			access_pio_v1_len_mem_bank1_cor_err_cnt),
4657 [C_PIO_V1_LEN_MEM_BANK0_COR_ERR] = CNTR_ELEM("PioVlLenMemBank0CorErr", 0, 0,
4658 			CNTR_NORMAL,
4659 			access_pio_v1_len_mem_bank0_cor_err_cnt),
4660 [C_PIO_V1_LEN_MEM_BANK1_UNC_ERR] = CNTR_ELEM("PioVlLenMemBank1UncErr", 0, 0,
4661 			CNTR_NORMAL,
4662 			access_pio_v1_len_mem_bank1_unc_err_cnt),
4663 [C_PIO_V1_LEN_MEM_BANK0_UNC_ERR] = CNTR_ELEM("PioVlLenMemBank0UncErr", 0, 0,
4664 			CNTR_NORMAL,
4665 			access_pio_v1_len_mem_bank0_unc_err_cnt),
4666 [C_PIO_SM_PKT_RESET_PARITY_ERR] = CNTR_ELEM("PioSmPktResetParityErr", 0, 0,
4667 			CNTR_NORMAL,
4668 			access_pio_sm_pkt_reset_parity_err_cnt),
4669 [C_PIO_PKT_EVICT_FIFO_PARITY_ERR] = CNTR_ELEM("PioPktEvictFifoParityErr", 0, 0,
4670 			CNTR_NORMAL,
4671 			access_pio_pkt_evict_fifo_parity_err_cnt),
4672 [C_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR] = CNTR_ELEM(
4673 			"PioSbrdctrlCrrelFifoParityErr", 0, 0,
4674 			CNTR_NORMAL,
4675 			access_pio_sbrdctrl_crrel_fifo_parity_err_cnt),
4676 [C_PIO_SBRDCTL_CRREL_PARITY_ERR] = CNTR_ELEM("PioSbrdctlCrrelParityErr", 0, 0,
4677 			CNTR_NORMAL,
4678 			access_pio_sbrdctl_crrel_parity_err_cnt),
4679 [C_PIO_PEC_FIFO_PARITY_ERR] = CNTR_ELEM("PioPecFifoParityErr", 0, 0,
4680 			CNTR_NORMAL,
4681 			access_pio_pec_fifo_parity_err_cnt),
4682 [C_PIO_PCC_FIFO_PARITY_ERR] = CNTR_ELEM("PioPccFifoParityErr", 0, 0,
4683 			CNTR_NORMAL,
4684 			access_pio_pcc_fifo_parity_err_cnt),
4685 [C_PIO_SB_MEM_FIFO1_ERR] = CNTR_ELEM("PioSbMemFifo1Err", 0, 0,
4686 			CNTR_NORMAL,
4687 			access_pio_sb_mem_fifo1_err_cnt),
4688 [C_PIO_SB_MEM_FIFO0_ERR] = CNTR_ELEM("PioSbMemFifo0Err", 0, 0,
4689 			CNTR_NORMAL,
4690 			access_pio_sb_mem_fifo0_err_cnt),
4691 [C_PIO_CSR_PARITY_ERR] = CNTR_ELEM("PioCsrParityErr", 0, 0,
4692 			CNTR_NORMAL,
4693 			access_pio_csr_parity_err_cnt),
4694 [C_PIO_WRITE_ADDR_PARITY_ERR] = CNTR_ELEM("PioWriteAddrParityErr", 0, 0,
4695 			CNTR_NORMAL,
4696 			access_pio_write_addr_parity_err_cnt),
4697 [C_PIO_WRITE_BAD_CTXT_ERR] = CNTR_ELEM("PioWriteBadCtxtErr", 0, 0,
4698 			CNTR_NORMAL,
4699 			access_pio_write_bad_ctxt_err_cnt),
4700 /* SendDmaErrStatus */
4701 [C_SDMA_PCIE_REQ_TRACKING_COR_ERR] = CNTR_ELEM("SDmaPcieReqTrackingCorErr", 0,
4702 			0, CNTR_NORMAL,
4703 			access_sdma_pcie_req_tracking_cor_err_cnt),
4704 [C_SDMA_PCIE_REQ_TRACKING_UNC_ERR] = CNTR_ELEM("SDmaPcieReqTrackingUncErr", 0,
4705 			0, CNTR_NORMAL,
4706 			access_sdma_pcie_req_tracking_unc_err_cnt),
4707 [C_SDMA_CSR_PARITY_ERR] = CNTR_ELEM("SDmaCsrParityErr", 0, 0,
4708 			CNTR_NORMAL,
4709 			access_sdma_csr_parity_err_cnt),
4710 [C_SDMA_RPY_TAG_ERR] = CNTR_ELEM("SDmaRpyTagErr", 0, 0,
4711 			CNTR_NORMAL,
4712 			access_sdma_rpy_tag_err_cnt),
4713 /* SendEgressErrStatus */
4714 [C_TX_READ_PIO_MEMORY_CSR_UNC_ERR] = CNTR_ELEM("TxReadPioMemoryCsrUncErr", 0, 0,
4715 			CNTR_NORMAL,
4716 			access_tx_read_pio_memory_csr_unc_err_cnt),
4717 [C_TX_READ_SDMA_MEMORY_CSR_UNC_ERR] = CNTR_ELEM("TxReadSdmaMemoryCsrUncErr", 0,
4718 			0, CNTR_NORMAL,
4719 			access_tx_read_sdma_memory_csr_err_cnt),
4720 [C_TX_EGRESS_FIFO_COR_ERR] = CNTR_ELEM("TxEgressFifoCorErr", 0, 0,
4721 			CNTR_NORMAL,
4722 			access_tx_egress_fifo_cor_err_cnt),
4723 [C_TX_READ_PIO_MEMORY_COR_ERR] = CNTR_ELEM("TxReadPioMemoryCorErr", 0, 0,
4724 			CNTR_NORMAL,
4725 			access_tx_read_pio_memory_cor_err_cnt),
4726 [C_TX_READ_SDMA_MEMORY_COR_ERR] = CNTR_ELEM("TxReadSdmaMemoryCorErr", 0, 0,
4727 			CNTR_NORMAL,
4728 			access_tx_read_sdma_memory_cor_err_cnt),
4729 [C_TX_SB_HDR_COR_ERR] = CNTR_ELEM("TxSbHdrCorErr", 0, 0,
4730 			CNTR_NORMAL,
4731 			access_tx_sb_hdr_cor_err_cnt),
4732 [C_TX_CREDIT_OVERRUN_ERR] = CNTR_ELEM("TxCreditOverrunErr", 0, 0,
4733 			CNTR_NORMAL,
4734 			access_tx_credit_overrun_err_cnt),
4735 [C_TX_LAUNCH_FIFO8_COR_ERR] = CNTR_ELEM("TxLaunchFifo8CorErr", 0, 0,
4736 			CNTR_NORMAL,
4737 			access_tx_launch_fifo8_cor_err_cnt),
4738 [C_TX_LAUNCH_FIFO7_COR_ERR] = CNTR_ELEM("TxLaunchFifo7CorErr", 0, 0,
4739 			CNTR_NORMAL,
4740 			access_tx_launch_fifo7_cor_err_cnt),
4741 [C_TX_LAUNCH_FIFO6_COR_ERR] = CNTR_ELEM("TxLaunchFifo6CorErr", 0, 0,
4742 			CNTR_NORMAL,
4743 			access_tx_launch_fifo6_cor_err_cnt),
4744 [C_TX_LAUNCH_FIFO5_COR_ERR] = CNTR_ELEM("TxLaunchFifo5CorErr", 0, 0,
4745 			CNTR_NORMAL,
4746 			access_tx_launch_fifo5_cor_err_cnt),
4747 [C_TX_LAUNCH_FIFO4_COR_ERR] = CNTR_ELEM("TxLaunchFifo4CorErr", 0, 0,
4748 			CNTR_NORMAL,
4749 			access_tx_launch_fifo4_cor_err_cnt),
4750 [C_TX_LAUNCH_FIFO3_COR_ERR] = CNTR_ELEM("TxLaunchFifo3CorErr", 0, 0,
4751 			CNTR_NORMAL,
4752 			access_tx_launch_fifo3_cor_err_cnt),
4753 [C_TX_LAUNCH_FIFO2_COR_ERR] = CNTR_ELEM("TxLaunchFifo2CorErr", 0, 0,
4754 			CNTR_NORMAL,
4755 			access_tx_launch_fifo2_cor_err_cnt),
4756 [C_TX_LAUNCH_FIFO1_COR_ERR] = CNTR_ELEM("TxLaunchFifo1CorErr", 0, 0,
4757 			CNTR_NORMAL,
4758 			access_tx_launch_fifo1_cor_err_cnt),
4759 [C_TX_LAUNCH_FIFO0_COR_ERR] = CNTR_ELEM("TxLaunchFifo0CorErr", 0, 0,
4760 			CNTR_NORMAL,
4761 			access_tx_launch_fifo0_cor_err_cnt),
4762 [C_TX_CREDIT_RETURN_VL_ERR] = CNTR_ELEM("TxCreditReturnVLErr", 0, 0,
4763 			CNTR_NORMAL,
4764 			access_tx_credit_return_vl_err_cnt),
4765 [C_TX_HCRC_INSERTION_ERR] = CNTR_ELEM("TxHcrcInsertionErr", 0, 0,
4766 			CNTR_NORMAL,
4767 			access_tx_hcrc_insertion_err_cnt),
4768 [C_TX_EGRESS_FIFI_UNC_ERR] = CNTR_ELEM("TxEgressFifoUncErr", 0, 0,
4769 			CNTR_NORMAL,
4770 			access_tx_egress_fifo_unc_err_cnt),
4771 [C_TX_READ_PIO_MEMORY_UNC_ERR] = CNTR_ELEM("TxReadPioMemoryUncErr", 0, 0,
4772 			CNTR_NORMAL,
4773 			access_tx_read_pio_memory_unc_err_cnt),
4774 [C_TX_READ_SDMA_MEMORY_UNC_ERR] = CNTR_ELEM("TxReadSdmaMemoryUncErr", 0, 0,
4775 			CNTR_NORMAL,
4776 			access_tx_read_sdma_memory_unc_err_cnt),
4777 [C_TX_SB_HDR_UNC_ERR] = CNTR_ELEM("TxSbHdrUncErr", 0, 0,
4778 			CNTR_NORMAL,
4779 			access_tx_sb_hdr_unc_err_cnt),
4780 [C_TX_CREDIT_RETURN_PARITY_ERR] = CNTR_ELEM("TxCreditReturnParityErr", 0, 0,
4781 			CNTR_NORMAL,
4782 			access_tx_credit_return_partiy_err_cnt),
4783 [C_TX_LAUNCH_FIFO8_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo8UncOrParityErr",
4784 			0, 0, CNTR_NORMAL,
4785 			access_tx_launch_fifo8_unc_or_parity_err_cnt),
4786 [C_TX_LAUNCH_FIFO7_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo7UncOrParityErr",
4787 			0, 0, CNTR_NORMAL,
4788 			access_tx_launch_fifo7_unc_or_parity_err_cnt),
4789 [C_TX_LAUNCH_FIFO6_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo6UncOrParityErr",
4790 			0, 0, CNTR_NORMAL,
4791 			access_tx_launch_fifo6_unc_or_parity_err_cnt),
4792 [C_TX_LAUNCH_FIFO5_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo5UncOrParityErr",
4793 			0, 0, CNTR_NORMAL,
4794 			access_tx_launch_fifo5_unc_or_parity_err_cnt),
4795 [C_TX_LAUNCH_FIFO4_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo4UncOrParityErr",
4796 			0, 0, CNTR_NORMAL,
4797 			access_tx_launch_fifo4_unc_or_parity_err_cnt),
4798 [C_TX_LAUNCH_FIFO3_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo3UncOrParityErr",
4799 			0, 0, CNTR_NORMAL,
4800 			access_tx_launch_fifo3_unc_or_parity_err_cnt),
4801 [C_TX_LAUNCH_FIFO2_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo2UncOrParityErr",
4802 			0, 0, CNTR_NORMAL,
4803 			access_tx_launch_fifo2_unc_or_parity_err_cnt),
4804 [C_TX_LAUNCH_FIFO1_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo1UncOrParityErr",
4805 			0, 0, CNTR_NORMAL,
4806 			access_tx_launch_fifo1_unc_or_parity_err_cnt),
4807 [C_TX_LAUNCH_FIFO0_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo0UncOrParityErr",
4808 			0, 0, CNTR_NORMAL,
4809 			access_tx_launch_fifo0_unc_or_parity_err_cnt),
4810 [C_TX_SDMA15_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma15DisallowedPacketErr",
4811 			0, 0, CNTR_NORMAL,
4812 			access_tx_sdma15_disallowed_packet_err_cnt),
4813 [C_TX_SDMA14_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma14DisallowedPacketErr",
4814 			0, 0, CNTR_NORMAL,
4815 			access_tx_sdma14_disallowed_packet_err_cnt),
4816 [C_TX_SDMA13_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma13DisallowedPacketErr",
4817 			0, 0, CNTR_NORMAL,
4818 			access_tx_sdma13_disallowed_packet_err_cnt),
4819 [C_TX_SDMA12_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma12DisallowedPacketErr",
4820 			0, 0, CNTR_NORMAL,
4821 			access_tx_sdma12_disallowed_packet_err_cnt),
4822 [C_TX_SDMA11_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma11DisallowedPacketErr",
4823 			0, 0, CNTR_NORMAL,
4824 			access_tx_sdma11_disallowed_packet_err_cnt),
4825 [C_TX_SDMA10_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma10DisallowedPacketErr",
4826 			0, 0, CNTR_NORMAL,
4827 			access_tx_sdma10_disallowed_packet_err_cnt),
4828 [C_TX_SDMA9_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma9DisallowedPacketErr",
4829 			0, 0, CNTR_NORMAL,
4830 			access_tx_sdma9_disallowed_packet_err_cnt),
4831 [C_TX_SDMA8_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma8DisallowedPacketErr",
4832 			0, 0, CNTR_NORMAL,
4833 			access_tx_sdma8_disallowed_packet_err_cnt),
4834 [C_TX_SDMA7_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma7DisallowedPacketErr",
4835 			0, 0, CNTR_NORMAL,
4836 			access_tx_sdma7_disallowed_packet_err_cnt),
4837 [C_TX_SDMA6_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma6DisallowedPacketErr",
4838 			0, 0, CNTR_NORMAL,
4839 			access_tx_sdma6_disallowed_packet_err_cnt),
4840 [C_TX_SDMA5_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma5DisallowedPacketErr",
4841 			0, 0, CNTR_NORMAL,
4842 			access_tx_sdma5_disallowed_packet_err_cnt),
4843 [C_TX_SDMA4_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma4DisallowedPacketErr",
4844 			0, 0, CNTR_NORMAL,
4845 			access_tx_sdma4_disallowed_packet_err_cnt),
4846 [C_TX_SDMA3_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma3DisallowedPacketErr",
4847 			0, 0, CNTR_NORMAL,
4848 			access_tx_sdma3_disallowed_packet_err_cnt),
4849 [C_TX_SDMA2_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma2DisallowedPacketErr",
4850 			0, 0, CNTR_NORMAL,
4851 			access_tx_sdma2_disallowed_packet_err_cnt),
4852 [C_TX_SDMA1_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma1DisallowedPacketErr",
4853 			0, 0, CNTR_NORMAL,
4854 			access_tx_sdma1_disallowed_packet_err_cnt),
4855 [C_TX_SDMA0_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma0DisallowedPacketErr",
4856 			0, 0, CNTR_NORMAL,
4857 			access_tx_sdma0_disallowed_packet_err_cnt),
4858 [C_TX_CONFIG_PARITY_ERR] = CNTR_ELEM("TxConfigParityErr", 0, 0,
4859 			CNTR_NORMAL,
4860 			access_tx_config_parity_err_cnt),
4861 [C_TX_SBRD_CTL_CSR_PARITY_ERR] = CNTR_ELEM("TxSbrdCtlCsrParityErr", 0, 0,
4862 			CNTR_NORMAL,
4863 			access_tx_sbrd_ctl_csr_parity_err_cnt),
4864 [C_TX_LAUNCH_CSR_PARITY_ERR] = CNTR_ELEM("TxLaunchCsrParityErr", 0, 0,
4865 			CNTR_NORMAL,
4866 			access_tx_launch_csr_parity_err_cnt),
4867 [C_TX_ILLEGAL_CL_ERR] = CNTR_ELEM("TxIllegalVLErr", 0, 0,
4868 			CNTR_NORMAL,
4869 			access_tx_illegal_vl_err_cnt),
4870 [C_TX_SBRD_CTL_STATE_MACHINE_PARITY_ERR] = CNTR_ELEM(
4871 			"TxSbrdCtlStateMachineParityErr", 0, 0,
4872 			CNTR_NORMAL,
4873 			access_tx_sbrd_ctl_state_machine_parity_err_cnt),
4874 [C_TX_RESERVED_10] = CNTR_ELEM("Tx Egress Reserved 10", 0, 0,
4875 			CNTR_NORMAL,
4876 			access_egress_reserved_10_err_cnt),
4877 [C_TX_RESERVED_9] = CNTR_ELEM("Tx Egress Reserved 9", 0, 0,
4878 			CNTR_NORMAL,
4879 			access_egress_reserved_9_err_cnt),
4880 [C_TX_SDMA_LAUNCH_INTF_PARITY_ERR] = CNTR_ELEM("TxSdmaLaunchIntfParityErr",
4881 			0, 0, CNTR_NORMAL,
4882 			access_tx_sdma_launch_intf_parity_err_cnt),
4883 [C_TX_PIO_LAUNCH_INTF_PARITY_ERR] = CNTR_ELEM("TxPioLaunchIntfParityErr", 0, 0,
4884 			CNTR_NORMAL,
4885 			access_tx_pio_launch_intf_parity_err_cnt),
4886 [C_TX_RESERVED_6] = CNTR_ELEM("Tx Egress Reserved 6", 0, 0,
4887 			CNTR_NORMAL,
4888 			access_egress_reserved_6_err_cnt),
4889 [C_TX_INCORRECT_LINK_STATE_ERR] = CNTR_ELEM("TxIncorrectLinkStateErr", 0, 0,
4890 			CNTR_NORMAL,
4891 			access_tx_incorrect_link_state_err_cnt),
4892 [C_TX_LINK_DOWN_ERR] = CNTR_ELEM("TxLinkdownErr", 0, 0,
4893 			CNTR_NORMAL,
4894 			access_tx_linkdown_err_cnt),
4895 [C_TX_EGRESS_FIFO_UNDERRUN_OR_PARITY_ERR] = CNTR_ELEM(
4896 			"EgressFifoUnderrunOrParityErr", 0, 0,
4897 			CNTR_NORMAL,
4898 			access_tx_egress_fifi_underrun_or_parity_err_cnt),
4899 [C_TX_RESERVED_2] = CNTR_ELEM("Tx Egress Reserved 2", 0, 0,
4900 			CNTR_NORMAL,
4901 			access_egress_reserved_2_err_cnt),
4902 [C_TX_PKT_INTEGRITY_MEM_UNC_ERR] = CNTR_ELEM("TxPktIntegrityMemUncErr", 0, 0,
4903 			CNTR_NORMAL,
4904 			access_tx_pkt_integrity_mem_unc_err_cnt),
4905 [C_TX_PKT_INTEGRITY_MEM_COR_ERR] = CNTR_ELEM("TxPktIntegrityMemCorErr", 0, 0,
4906 			CNTR_NORMAL,
4907 			access_tx_pkt_integrity_mem_cor_err_cnt),
4908 /* SendErrStatus */
4909 [C_SEND_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("SendCsrWriteBadAddrErr", 0, 0,
4910 			CNTR_NORMAL,
4911 			access_send_csr_write_bad_addr_err_cnt),
4912 [C_SEND_CSR_READ_BAD_ADD_ERR] = CNTR_ELEM("SendCsrReadBadAddrErr", 0, 0,
4913 			CNTR_NORMAL,
4914 			access_send_csr_read_bad_addr_err_cnt),
4915 [C_SEND_CSR_PARITY_ERR] = CNTR_ELEM("SendCsrParityErr", 0, 0,
4916 			CNTR_NORMAL,
4917 			access_send_csr_parity_cnt),
4918 /* SendCtxtErrStatus */
4919 [C_PIO_WRITE_OUT_OF_BOUNDS_ERR] = CNTR_ELEM("PioWriteOutOfBoundsErr", 0, 0,
4920 			CNTR_NORMAL,
4921 			access_pio_write_out_of_bounds_err_cnt),
4922 [C_PIO_WRITE_OVERFLOW_ERR] = CNTR_ELEM("PioWriteOverflowErr", 0, 0,
4923 			CNTR_NORMAL,
4924 			access_pio_write_overflow_err_cnt),
4925 [C_PIO_WRITE_CROSSES_BOUNDARY_ERR] = CNTR_ELEM("PioWriteCrossesBoundaryErr",
4926 			0, 0, CNTR_NORMAL,
4927 			access_pio_write_crosses_boundary_err_cnt),
4928 [C_PIO_DISALLOWED_PACKET_ERR] = CNTR_ELEM("PioDisallowedPacketErr", 0, 0,
4929 			CNTR_NORMAL,
4930 			access_pio_disallowed_packet_err_cnt),
4931 [C_PIO_INCONSISTENT_SOP_ERR] = CNTR_ELEM("PioInconsistentSopErr", 0, 0,
4932 			CNTR_NORMAL,
4933 			access_pio_inconsistent_sop_err_cnt),
4934 /* SendDmaEngErrStatus */
4935 [C_SDMA_HEADER_REQUEST_FIFO_COR_ERR] = CNTR_ELEM("SDmaHeaderRequestFifoCorErr",
4936 			0, 0, CNTR_NORMAL,
4937 			access_sdma_header_request_fifo_cor_err_cnt),
4938 [C_SDMA_HEADER_STORAGE_COR_ERR] = CNTR_ELEM("SDmaHeaderStorageCorErr", 0, 0,
4939 			CNTR_NORMAL,
4940 			access_sdma_header_storage_cor_err_cnt),
4941 [C_SDMA_PACKET_TRACKING_COR_ERR] = CNTR_ELEM("SDmaPacketTrackingCorErr", 0, 0,
4942 			CNTR_NORMAL,
4943 			access_sdma_packet_tracking_cor_err_cnt),
4944 [C_SDMA_ASSEMBLY_COR_ERR] = CNTR_ELEM("SDmaAssemblyCorErr", 0, 0,
4945 			CNTR_NORMAL,
4946 			access_sdma_assembly_cor_err_cnt),
4947 [C_SDMA_DESC_TABLE_COR_ERR] = CNTR_ELEM("SDmaDescTableCorErr", 0, 0,
4948 			CNTR_NORMAL,
4949 			access_sdma_desc_table_cor_err_cnt),
4950 [C_SDMA_HEADER_REQUEST_FIFO_UNC_ERR] = CNTR_ELEM("SDmaHeaderRequestFifoUncErr",
4951 			0, 0, CNTR_NORMAL,
4952 			access_sdma_header_request_fifo_unc_err_cnt),
4953 [C_SDMA_HEADER_STORAGE_UNC_ERR] = CNTR_ELEM("SDmaHeaderStorageUncErr", 0, 0,
4954 			CNTR_NORMAL,
4955 			access_sdma_header_storage_unc_err_cnt),
4956 [C_SDMA_PACKET_TRACKING_UNC_ERR] = CNTR_ELEM("SDmaPacketTrackingUncErr", 0, 0,
4957 			CNTR_NORMAL,
4958 			access_sdma_packet_tracking_unc_err_cnt),
4959 [C_SDMA_ASSEMBLY_UNC_ERR] = CNTR_ELEM("SDmaAssemblyUncErr", 0, 0,
4960 			CNTR_NORMAL,
4961 			access_sdma_assembly_unc_err_cnt),
4962 [C_SDMA_DESC_TABLE_UNC_ERR] = CNTR_ELEM("SDmaDescTableUncErr", 0, 0,
4963 			CNTR_NORMAL,
4964 			access_sdma_desc_table_unc_err_cnt),
4965 [C_SDMA_TIMEOUT_ERR] = CNTR_ELEM("SDmaTimeoutErr", 0, 0,
4966 			CNTR_NORMAL,
4967 			access_sdma_timeout_err_cnt),
4968 [C_SDMA_HEADER_LENGTH_ERR] = CNTR_ELEM("SDmaHeaderLengthErr", 0, 0,
4969 			CNTR_NORMAL,
4970 			access_sdma_header_length_err_cnt),
4971 [C_SDMA_HEADER_ADDRESS_ERR] = CNTR_ELEM("SDmaHeaderAddressErr", 0, 0,
4972 			CNTR_NORMAL,
4973 			access_sdma_header_address_err_cnt),
4974 [C_SDMA_HEADER_SELECT_ERR] = CNTR_ELEM("SDmaHeaderSelectErr", 0, 0,
4975 			CNTR_NORMAL,
4976 			access_sdma_header_select_err_cnt),
4977 [C_SMDA_RESERVED_9] = CNTR_ELEM("SDma Reserved 9", 0, 0,
4978 			CNTR_NORMAL,
4979 			access_sdma_reserved_9_err_cnt),
4980 [C_SDMA_PACKET_DESC_OVERFLOW_ERR] = CNTR_ELEM("SDmaPacketDescOverflowErr", 0, 0,
4981 			CNTR_NORMAL,
4982 			access_sdma_packet_desc_overflow_err_cnt),
4983 [C_SDMA_LENGTH_MISMATCH_ERR] = CNTR_ELEM("SDmaLengthMismatchErr", 0, 0,
4984 			CNTR_NORMAL,
4985 			access_sdma_length_mismatch_err_cnt),
4986 [C_SDMA_HALT_ERR] = CNTR_ELEM("SDmaHaltErr", 0, 0,
4987 			CNTR_NORMAL,
4988 			access_sdma_halt_err_cnt),
4989 [C_SDMA_MEM_READ_ERR] = CNTR_ELEM("SDmaMemReadErr", 0, 0,
4990 			CNTR_NORMAL,
4991 			access_sdma_mem_read_err_cnt),
4992 [C_SDMA_FIRST_DESC_ERR] = CNTR_ELEM("SDmaFirstDescErr", 0, 0,
4993 			CNTR_NORMAL,
4994 			access_sdma_first_desc_err_cnt),
4995 [C_SDMA_TAIL_OUT_OF_BOUNDS_ERR] = CNTR_ELEM("SDmaTailOutOfBoundsErr", 0, 0,
4996 			CNTR_NORMAL,
4997 			access_sdma_tail_out_of_bounds_err_cnt),
4998 [C_SDMA_TOO_LONG_ERR] = CNTR_ELEM("SDmaTooLongErr", 0, 0,
4999 			CNTR_NORMAL,
5000 			access_sdma_too_long_err_cnt),
5001 [C_SDMA_GEN_MISMATCH_ERR] = CNTR_ELEM("SDmaGenMismatchErr", 0, 0,
5002 			CNTR_NORMAL,
5003 			access_sdma_gen_mismatch_err_cnt),
5004 [C_SDMA_WRONG_DW_ERR] = CNTR_ELEM("SDmaWrongDwErr", 0, 0,
5005 			CNTR_NORMAL,
5006 			access_sdma_wrong_dw_err_cnt),
5007 };
5008 
5009 static struct cntr_entry port_cntrs[PORT_CNTR_LAST] = {
5010 [C_TX_UNSUP_VL] = TXE32_PORT_CNTR_ELEM(TxUnVLErr, SEND_UNSUP_VL_ERR_CNT,
5011 			CNTR_NORMAL),
5012 [C_TX_INVAL_LEN] = TXE32_PORT_CNTR_ELEM(TxInvalLen, SEND_LEN_ERR_CNT,
5013 			CNTR_NORMAL),
5014 [C_TX_MM_LEN_ERR] = TXE32_PORT_CNTR_ELEM(TxMMLenErr, SEND_MAX_MIN_LEN_ERR_CNT,
5015 			CNTR_NORMAL),
5016 [C_TX_UNDERRUN] = TXE32_PORT_CNTR_ELEM(TxUnderrun, SEND_UNDERRUN_CNT,
5017 			CNTR_NORMAL),
5018 [C_TX_FLOW_STALL] = TXE32_PORT_CNTR_ELEM(TxFlowStall, SEND_FLOW_STALL_CNT,
5019 			CNTR_NORMAL),
5020 [C_TX_DROPPED] = TXE32_PORT_CNTR_ELEM(TxDropped, SEND_DROPPED_PKT_CNT,
5021 			CNTR_NORMAL),
5022 [C_TX_HDR_ERR] = TXE32_PORT_CNTR_ELEM(TxHdrErr, SEND_HEADERS_ERR_CNT,
5023 			CNTR_NORMAL),
5024 [C_TX_PKT] = TXE64_PORT_CNTR_ELEM(TxPkt, SEND_DATA_PKT_CNT, CNTR_NORMAL),
5025 [C_TX_WORDS] = TXE64_PORT_CNTR_ELEM(TxWords, SEND_DWORD_CNT, CNTR_NORMAL),
5026 [C_TX_WAIT] = TXE64_PORT_CNTR_ELEM(TxWait, SEND_WAIT_CNT, CNTR_SYNTH),
5027 [C_TX_FLIT_VL] = TXE64_PORT_CNTR_ELEM(TxFlitVL, SEND_DATA_VL0_CNT,
5028 				      CNTR_SYNTH | CNTR_VL),
5029 [C_TX_PKT_VL] = TXE64_PORT_CNTR_ELEM(TxPktVL, SEND_DATA_PKT_VL0_CNT,
5030 				     CNTR_SYNTH | CNTR_VL),
5031 [C_TX_WAIT_VL] = TXE64_PORT_CNTR_ELEM(TxWaitVL, SEND_WAIT_VL0_CNT,
5032 				      CNTR_SYNTH | CNTR_VL),
5033 [C_RX_PKT] = RXE64_PORT_CNTR_ELEM(RxPkt, RCV_DATA_PKT_CNT, CNTR_NORMAL),
5034 [C_RX_WORDS] = RXE64_PORT_CNTR_ELEM(RxWords, RCV_DWORD_CNT, CNTR_NORMAL),
5035 [C_SW_LINK_DOWN] = CNTR_ELEM("SwLinkDown", 0, 0, CNTR_SYNTH | CNTR_32BIT,
5036 			     access_sw_link_dn_cnt),
5037 [C_SW_LINK_UP] = CNTR_ELEM("SwLinkUp", 0, 0, CNTR_SYNTH | CNTR_32BIT,
5038 			   access_sw_link_up_cnt),
5039 [C_SW_UNKNOWN_FRAME] = CNTR_ELEM("UnknownFrame", 0, 0, CNTR_NORMAL,
5040 				 access_sw_unknown_frame_cnt),
5041 [C_SW_XMIT_DSCD] = CNTR_ELEM("XmitDscd", 0, 0, CNTR_SYNTH | CNTR_32BIT,
5042 			     access_sw_xmit_discards),
5043 [C_SW_XMIT_DSCD_VL] = CNTR_ELEM("XmitDscdVl", 0, 0,
5044 				CNTR_SYNTH | CNTR_32BIT | CNTR_VL,
5045 				access_sw_xmit_discards),
5046 [C_SW_XMIT_CSTR_ERR] = CNTR_ELEM("XmitCstrErr", 0, 0, CNTR_SYNTH,
5047 				 access_xmit_constraint_errs),
5048 [C_SW_RCV_CSTR_ERR] = CNTR_ELEM("RcvCstrErr", 0, 0, CNTR_SYNTH,
5049 				access_rcv_constraint_errs),
5050 [C_SW_IBP_LOOP_PKTS] = SW_IBP_CNTR(LoopPkts, loop_pkts),
5051 [C_SW_IBP_RC_RESENDS] = SW_IBP_CNTR(RcResend, rc_resends),
5052 [C_SW_IBP_RNR_NAKS] = SW_IBP_CNTR(RnrNak, rnr_naks),
5053 [C_SW_IBP_OTHER_NAKS] = SW_IBP_CNTR(OtherNak, other_naks),
5054 [C_SW_IBP_RC_TIMEOUTS] = SW_IBP_CNTR(RcTimeOut, rc_timeouts),
5055 [C_SW_IBP_PKT_DROPS] = SW_IBP_CNTR(PktDrop, pkt_drops),
5056 [C_SW_IBP_DMA_WAIT] = SW_IBP_CNTR(DmaWait, dmawait),
5057 [C_SW_IBP_RC_SEQNAK] = SW_IBP_CNTR(RcSeqNak, rc_seqnak),
5058 [C_SW_IBP_RC_DUPREQ] = SW_IBP_CNTR(RcDupRew, rc_dupreq),
5059 [C_SW_IBP_RDMA_SEQ] = SW_IBP_CNTR(RdmaSeq, rdma_seq),
5060 [C_SW_IBP_UNALIGNED] = SW_IBP_CNTR(Unaligned, unaligned),
5061 [C_SW_IBP_SEQ_NAK] = SW_IBP_CNTR(SeqNak, seq_naks),
5062 [C_SW_CPU_RC_ACKS] = CNTR_ELEM("RcAcks", 0, 0, CNTR_NORMAL,
5063 			       access_sw_cpu_rc_acks),
5064 [C_SW_CPU_RC_QACKS] = CNTR_ELEM("RcQacks", 0, 0, CNTR_NORMAL,
5065 				access_sw_cpu_rc_qacks),
5066 [C_SW_CPU_RC_DELAYED_COMP] = CNTR_ELEM("RcDelayComp", 0, 0, CNTR_NORMAL,
5067 				       access_sw_cpu_rc_delayed_comp),
5068 [OVR_LBL(0)] = OVR_ELM(0), [OVR_LBL(1)] = OVR_ELM(1),
5069 [OVR_LBL(2)] = OVR_ELM(2), [OVR_LBL(3)] = OVR_ELM(3),
5070 [OVR_LBL(4)] = OVR_ELM(4), [OVR_LBL(5)] = OVR_ELM(5),
5071 [OVR_LBL(6)] = OVR_ELM(6), [OVR_LBL(7)] = OVR_ELM(7),
5072 [OVR_LBL(8)] = OVR_ELM(8), [OVR_LBL(9)] = OVR_ELM(9),
5073 [OVR_LBL(10)] = OVR_ELM(10), [OVR_LBL(11)] = OVR_ELM(11),
5074 [OVR_LBL(12)] = OVR_ELM(12), [OVR_LBL(13)] = OVR_ELM(13),
5075 [OVR_LBL(14)] = OVR_ELM(14), [OVR_LBL(15)] = OVR_ELM(15),
5076 [OVR_LBL(16)] = OVR_ELM(16), [OVR_LBL(17)] = OVR_ELM(17),
5077 [OVR_LBL(18)] = OVR_ELM(18), [OVR_LBL(19)] = OVR_ELM(19),
5078 [OVR_LBL(20)] = OVR_ELM(20), [OVR_LBL(21)] = OVR_ELM(21),
5079 [OVR_LBL(22)] = OVR_ELM(22), [OVR_LBL(23)] = OVR_ELM(23),
5080 [OVR_LBL(24)] = OVR_ELM(24), [OVR_LBL(25)] = OVR_ELM(25),
5081 [OVR_LBL(26)] = OVR_ELM(26), [OVR_LBL(27)] = OVR_ELM(27),
5082 [OVR_LBL(28)] = OVR_ELM(28), [OVR_LBL(29)] = OVR_ELM(29),
5083 [OVR_LBL(30)] = OVR_ELM(30), [OVR_LBL(31)] = OVR_ELM(31),
5084 [OVR_LBL(32)] = OVR_ELM(32), [OVR_LBL(33)] = OVR_ELM(33),
5085 [OVR_LBL(34)] = OVR_ELM(34), [OVR_LBL(35)] = OVR_ELM(35),
5086 [OVR_LBL(36)] = OVR_ELM(36), [OVR_LBL(37)] = OVR_ELM(37),
5087 [OVR_LBL(38)] = OVR_ELM(38), [OVR_LBL(39)] = OVR_ELM(39),
5088 [OVR_LBL(40)] = OVR_ELM(40), [OVR_LBL(41)] = OVR_ELM(41),
5089 [OVR_LBL(42)] = OVR_ELM(42), [OVR_LBL(43)] = OVR_ELM(43),
5090 [OVR_LBL(44)] = OVR_ELM(44), [OVR_LBL(45)] = OVR_ELM(45),
5091 [OVR_LBL(46)] = OVR_ELM(46), [OVR_LBL(47)] = OVR_ELM(47),
5092 [OVR_LBL(48)] = OVR_ELM(48), [OVR_LBL(49)] = OVR_ELM(49),
5093 [OVR_LBL(50)] = OVR_ELM(50), [OVR_LBL(51)] = OVR_ELM(51),
5094 [OVR_LBL(52)] = OVR_ELM(52), [OVR_LBL(53)] = OVR_ELM(53),
5095 [OVR_LBL(54)] = OVR_ELM(54), [OVR_LBL(55)] = OVR_ELM(55),
5096 [OVR_LBL(56)] = OVR_ELM(56), [OVR_LBL(57)] = OVR_ELM(57),
5097 [OVR_LBL(58)] = OVR_ELM(58), [OVR_LBL(59)] = OVR_ELM(59),
5098 [OVR_LBL(60)] = OVR_ELM(60), [OVR_LBL(61)] = OVR_ELM(61),
5099 [OVR_LBL(62)] = OVR_ELM(62), [OVR_LBL(63)] = OVR_ELM(63),
5100 [OVR_LBL(64)] = OVR_ELM(64), [OVR_LBL(65)] = OVR_ELM(65),
5101 [OVR_LBL(66)] = OVR_ELM(66), [OVR_LBL(67)] = OVR_ELM(67),
5102 [OVR_LBL(68)] = OVR_ELM(68), [OVR_LBL(69)] = OVR_ELM(69),
5103 [OVR_LBL(70)] = OVR_ELM(70), [OVR_LBL(71)] = OVR_ELM(71),
5104 [OVR_LBL(72)] = OVR_ELM(72), [OVR_LBL(73)] = OVR_ELM(73),
5105 [OVR_LBL(74)] = OVR_ELM(74), [OVR_LBL(75)] = OVR_ELM(75),
5106 [OVR_LBL(76)] = OVR_ELM(76), [OVR_LBL(77)] = OVR_ELM(77),
5107 [OVR_LBL(78)] = OVR_ELM(78), [OVR_LBL(79)] = OVR_ELM(79),
5108 [OVR_LBL(80)] = OVR_ELM(80), [OVR_LBL(81)] = OVR_ELM(81),
5109 [OVR_LBL(82)] = OVR_ELM(82), [OVR_LBL(83)] = OVR_ELM(83),
5110 [OVR_LBL(84)] = OVR_ELM(84), [OVR_LBL(85)] = OVR_ELM(85),
5111 [OVR_LBL(86)] = OVR_ELM(86), [OVR_LBL(87)] = OVR_ELM(87),
5112 [OVR_LBL(88)] = OVR_ELM(88), [OVR_LBL(89)] = OVR_ELM(89),
5113 [OVR_LBL(90)] = OVR_ELM(90), [OVR_LBL(91)] = OVR_ELM(91),
5114 [OVR_LBL(92)] = OVR_ELM(92), [OVR_LBL(93)] = OVR_ELM(93),
5115 [OVR_LBL(94)] = OVR_ELM(94), [OVR_LBL(95)] = OVR_ELM(95),
5116 [OVR_LBL(96)] = OVR_ELM(96), [OVR_LBL(97)] = OVR_ELM(97),
5117 [OVR_LBL(98)] = OVR_ELM(98), [OVR_LBL(99)] = OVR_ELM(99),
5118 [OVR_LBL(100)] = OVR_ELM(100), [OVR_LBL(101)] = OVR_ELM(101),
5119 [OVR_LBL(102)] = OVR_ELM(102), [OVR_LBL(103)] = OVR_ELM(103),
5120 [OVR_LBL(104)] = OVR_ELM(104), [OVR_LBL(105)] = OVR_ELM(105),
5121 [OVR_LBL(106)] = OVR_ELM(106), [OVR_LBL(107)] = OVR_ELM(107),
5122 [OVR_LBL(108)] = OVR_ELM(108), [OVR_LBL(109)] = OVR_ELM(109),
5123 [OVR_LBL(110)] = OVR_ELM(110), [OVR_LBL(111)] = OVR_ELM(111),
5124 [OVR_LBL(112)] = OVR_ELM(112), [OVR_LBL(113)] = OVR_ELM(113),
5125 [OVR_LBL(114)] = OVR_ELM(114), [OVR_LBL(115)] = OVR_ELM(115),
5126 [OVR_LBL(116)] = OVR_ELM(116), [OVR_LBL(117)] = OVR_ELM(117),
5127 [OVR_LBL(118)] = OVR_ELM(118), [OVR_LBL(119)] = OVR_ELM(119),
5128 [OVR_LBL(120)] = OVR_ELM(120), [OVR_LBL(121)] = OVR_ELM(121),
5129 [OVR_LBL(122)] = OVR_ELM(122), [OVR_LBL(123)] = OVR_ELM(123),
5130 [OVR_LBL(124)] = OVR_ELM(124), [OVR_LBL(125)] = OVR_ELM(125),
5131 [OVR_LBL(126)] = OVR_ELM(126), [OVR_LBL(127)] = OVR_ELM(127),
5132 [OVR_LBL(128)] = OVR_ELM(128), [OVR_LBL(129)] = OVR_ELM(129),
5133 [OVR_LBL(130)] = OVR_ELM(130), [OVR_LBL(131)] = OVR_ELM(131),
5134 [OVR_LBL(132)] = OVR_ELM(132), [OVR_LBL(133)] = OVR_ELM(133),
5135 [OVR_LBL(134)] = OVR_ELM(134), [OVR_LBL(135)] = OVR_ELM(135),
5136 [OVR_LBL(136)] = OVR_ELM(136), [OVR_LBL(137)] = OVR_ELM(137),
5137 [OVR_LBL(138)] = OVR_ELM(138), [OVR_LBL(139)] = OVR_ELM(139),
5138 [OVR_LBL(140)] = OVR_ELM(140), [OVR_LBL(141)] = OVR_ELM(141),
5139 [OVR_LBL(142)] = OVR_ELM(142), [OVR_LBL(143)] = OVR_ELM(143),
5140 [OVR_LBL(144)] = OVR_ELM(144), [OVR_LBL(145)] = OVR_ELM(145),
5141 [OVR_LBL(146)] = OVR_ELM(146), [OVR_LBL(147)] = OVR_ELM(147),
5142 [OVR_LBL(148)] = OVR_ELM(148), [OVR_LBL(149)] = OVR_ELM(149),
5143 [OVR_LBL(150)] = OVR_ELM(150), [OVR_LBL(151)] = OVR_ELM(151),
5144 [OVR_LBL(152)] = OVR_ELM(152), [OVR_LBL(153)] = OVR_ELM(153),
5145 [OVR_LBL(154)] = OVR_ELM(154), [OVR_LBL(155)] = OVR_ELM(155),
5146 [OVR_LBL(156)] = OVR_ELM(156), [OVR_LBL(157)] = OVR_ELM(157),
5147 [OVR_LBL(158)] = OVR_ELM(158), [OVR_LBL(159)] = OVR_ELM(159),
5148 };
5149 
5150 /* ======================================================================== */
5151 
5152 /* return true if this is chip revision revision a */
5153 int is_ax(struct hfi1_devdata *dd)
5154 {
5155 	u8 chip_rev_minor =
5156 		dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT
5157 			& CCE_REVISION_CHIP_REV_MINOR_MASK;
5158 	return (chip_rev_minor & 0xf0) == 0;
5159 }
5160 
5161 /* return true if this is chip revision revision b */
5162 int is_bx(struct hfi1_devdata *dd)
5163 {
5164 	u8 chip_rev_minor =
5165 		dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT
5166 			& CCE_REVISION_CHIP_REV_MINOR_MASK;
5167 	return (chip_rev_minor & 0xF0) == 0x10;
5168 }
5169 
5170 /*
5171  * Append string s to buffer buf.  Arguments curp and len are the current
5172  * position and remaining length, respectively.
5173  *
5174  * return 0 on success, 1 on out of room
5175  */
5176 static int append_str(char *buf, char **curp, int *lenp, const char *s)
5177 {
5178 	char *p = *curp;
5179 	int len = *lenp;
5180 	int result = 0; /* success */
5181 	char c;
5182 
5183 	/* add a comma, if first in the buffer */
5184 	if (p != buf) {
5185 		if (len == 0) {
5186 			result = 1; /* out of room */
5187 			goto done;
5188 		}
5189 		*p++ = ',';
5190 		len--;
5191 	}
5192 
5193 	/* copy the string */
5194 	while ((c = *s++) != 0) {
5195 		if (len == 0) {
5196 			result = 1; /* out of room */
5197 			goto done;
5198 		}
5199 		*p++ = c;
5200 		len--;
5201 	}
5202 
5203 done:
5204 	/* write return values */
5205 	*curp = p;
5206 	*lenp = len;
5207 
5208 	return result;
5209 }
5210 
5211 /*
5212  * Using the given flag table, print a comma separated string into
5213  * the buffer.  End in '*' if the buffer is too short.
5214  */
5215 static char *flag_string(char *buf, int buf_len, u64 flags,
5216 			 struct flag_table *table, int table_size)
5217 {
5218 	char extra[32];
5219 	char *p = buf;
5220 	int len = buf_len;
5221 	int no_room = 0;
5222 	int i;
5223 
5224 	/* make sure there is at least 2 so we can form "*" */
5225 	if (len < 2)
5226 		return "";
5227 
5228 	len--;	/* leave room for a nul */
5229 	for (i = 0; i < table_size; i++) {
5230 		if (flags & table[i].flag) {
5231 			no_room = append_str(buf, &p, &len, table[i].str);
5232 			if (no_room)
5233 				break;
5234 			flags &= ~table[i].flag;
5235 		}
5236 	}
5237 
5238 	/* any undocumented bits left? */
5239 	if (!no_room && flags) {
5240 		snprintf(extra, sizeof(extra), "bits 0x%llx", flags);
5241 		no_room = append_str(buf, &p, &len, extra);
5242 	}
5243 
5244 	/* add * if ran out of room */
5245 	if (no_room) {
5246 		/* may need to back up to add space for a '*' */
5247 		if (len == 0)
5248 			--p;
5249 		*p++ = '*';
5250 	}
5251 
5252 	/* add final nul - space already allocated above */
5253 	*p = 0;
5254 	return buf;
5255 }
5256 
5257 /* first 8 CCE error interrupt source names */
5258 static const char * const cce_misc_names[] = {
5259 	"CceErrInt",		/* 0 */
5260 	"RxeErrInt",		/* 1 */
5261 	"MiscErrInt",		/* 2 */
5262 	"Reserved3",		/* 3 */
5263 	"PioErrInt",		/* 4 */
5264 	"SDmaErrInt",		/* 5 */
5265 	"EgressErrInt",		/* 6 */
5266 	"TxeErrInt"		/* 7 */
5267 };
5268 
5269 /*
5270  * Return the miscellaneous error interrupt name.
5271  */
5272 static char *is_misc_err_name(char *buf, size_t bsize, unsigned int source)
5273 {
5274 	if (source < ARRAY_SIZE(cce_misc_names))
5275 		strncpy(buf, cce_misc_names[source], bsize);
5276 	else
5277 		snprintf(buf, bsize, "Reserved%u",
5278 			 source + IS_GENERAL_ERR_START);
5279 
5280 	return buf;
5281 }
5282 
5283 /*
5284  * Return the SDMA engine error interrupt name.
5285  */
5286 static char *is_sdma_eng_err_name(char *buf, size_t bsize, unsigned int source)
5287 {
5288 	snprintf(buf, bsize, "SDmaEngErrInt%u", source);
5289 	return buf;
5290 }
5291 
5292 /*
5293  * Return the send context error interrupt name.
5294  */
5295 static char *is_sendctxt_err_name(char *buf, size_t bsize, unsigned int source)
5296 {
5297 	snprintf(buf, bsize, "SendCtxtErrInt%u", source);
5298 	return buf;
5299 }
5300 
5301 static const char * const various_names[] = {
5302 	"PbcInt",
5303 	"GpioAssertInt",
5304 	"Qsfp1Int",
5305 	"Qsfp2Int",
5306 	"TCritInt"
5307 };
5308 
5309 /*
5310  * Return the various interrupt name.
5311  */
5312 static char *is_various_name(char *buf, size_t bsize, unsigned int source)
5313 {
5314 	if (source < ARRAY_SIZE(various_names))
5315 		strncpy(buf, various_names[source], bsize);
5316 	else
5317 		snprintf(buf, bsize, "Reserved%u", source + IS_VARIOUS_START);
5318 	return buf;
5319 }
5320 
5321 /*
5322  * Return the DC interrupt name.
5323  */
5324 static char *is_dc_name(char *buf, size_t bsize, unsigned int source)
5325 {
5326 	static const char * const dc_int_names[] = {
5327 		"common",
5328 		"lcb",
5329 		"8051",
5330 		"lbm"	/* local block merge */
5331 	};
5332 
5333 	if (source < ARRAY_SIZE(dc_int_names))
5334 		snprintf(buf, bsize, "dc_%s_int", dc_int_names[source]);
5335 	else
5336 		snprintf(buf, bsize, "DCInt%u", source);
5337 	return buf;
5338 }
5339 
5340 static const char * const sdma_int_names[] = {
5341 	"SDmaInt",
5342 	"SdmaIdleInt",
5343 	"SdmaProgressInt",
5344 };
5345 
5346 /*
5347  * Return the SDMA engine interrupt name.
5348  */
5349 static char *is_sdma_eng_name(char *buf, size_t bsize, unsigned int source)
5350 {
5351 	/* what interrupt */
5352 	unsigned int what  = source / TXE_NUM_SDMA_ENGINES;
5353 	/* which engine */
5354 	unsigned int which = source % TXE_NUM_SDMA_ENGINES;
5355 
5356 	if (likely(what < 3))
5357 		snprintf(buf, bsize, "%s%u", sdma_int_names[what], which);
5358 	else
5359 		snprintf(buf, bsize, "Invalid SDMA interrupt %u", source);
5360 	return buf;
5361 }
5362 
5363 /*
5364  * Return the receive available interrupt name.
5365  */
5366 static char *is_rcv_avail_name(char *buf, size_t bsize, unsigned int source)
5367 {
5368 	snprintf(buf, bsize, "RcvAvailInt%u", source);
5369 	return buf;
5370 }
5371 
5372 /*
5373  * Return the receive urgent interrupt name.
5374  */
5375 static char *is_rcv_urgent_name(char *buf, size_t bsize, unsigned int source)
5376 {
5377 	snprintf(buf, bsize, "RcvUrgentInt%u", source);
5378 	return buf;
5379 }
5380 
5381 /*
5382  * Return the send credit interrupt name.
5383  */
5384 static char *is_send_credit_name(char *buf, size_t bsize, unsigned int source)
5385 {
5386 	snprintf(buf, bsize, "SendCreditInt%u", source);
5387 	return buf;
5388 }
5389 
5390 /*
5391  * Return the reserved interrupt name.
5392  */
5393 static char *is_reserved_name(char *buf, size_t bsize, unsigned int source)
5394 {
5395 	snprintf(buf, bsize, "Reserved%u", source + IS_RESERVED_START);
5396 	return buf;
5397 }
5398 
5399 static char *cce_err_status_string(char *buf, int buf_len, u64 flags)
5400 {
5401 	return flag_string(buf, buf_len, flags,
5402 			   cce_err_status_flags,
5403 			   ARRAY_SIZE(cce_err_status_flags));
5404 }
5405 
5406 static char *rxe_err_status_string(char *buf, int buf_len, u64 flags)
5407 {
5408 	return flag_string(buf, buf_len, flags,
5409 			   rxe_err_status_flags,
5410 			   ARRAY_SIZE(rxe_err_status_flags));
5411 }
5412 
5413 static char *misc_err_status_string(char *buf, int buf_len, u64 flags)
5414 {
5415 	return flag_string(buf, buf_len, flags, misc_err_status_flags,
5416 			   ARRAY_SIZE(misc_err_status_flags));
5417 }
5418 
5419 static char *pio_err_status_string(char *buf, int buf_len, u64 flags)
5420 {
5421 	return flag_string(buf, buf_len, flags,
5422 			   pio_err_status_flags,
5423 			   ARRAY_SIZE(pio_err_status_flags));
5424 }
5425 
5426 static char *sdma_err_status_string(char *buf, int buf_len, u64 flags)
5427 {
5428 	return flag_string(buf, buf_len, flags,
5429 			   sdma_err_status_flags,
5430 			   ARRAY_SIZE(sdma_err_status_flags));
5431 }
5432 
5433 static char *egress_err_status_string(char *buf, int buf_len, u64 flags)
5434 {
5435 	return flag_string(buf, buf_len, flags,
5436 			   egress_err_status_flags,
5437 			   ARRAY_SIZE(egress_err_status_flags));
5438 }
5439 
5440 static char *egress_err_info_string(char *buf, int buf_len, u64 flags)
5441 {
5442 	return flag_string(buf, buf_len, flags,
5443 			   egress_err_info_flags,
5444 			   ARRAY_SIZE(egress_err_info_flags));
5445 }
5446 
5447 static char *send_err_status_string(char *buf, int buf_len, u64 flags)
5448 {
5449 	return flag_string(buf, buf_len, flags,
5450 			   send_err_status_flags,
5451 			   ARRAY_SIZE(send_err_status_flags));
5452 }
5453 
5454 static void handle_cce_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5455 {
5456 	char buf[96];
5457 	int i = 0;
5458 
5459 	/*
5460 	 * For most these errors, there is nothing that can be done except
5461 	 * report or record it.
5462 	 */
5463 	dd_dev_info(dd, "CCE Error: %s\n",
5464 		    cce_err_status_string(buf, sizeof(buf), reg));
5465 
5466 	if ((reg & CCE_ERR_STATUS_CCE_CLI2_ASYNC_FIFO_PARITY_ERR_SMASK) &&
5467 	    is_ax(dd) && (dd->icode != ICODE_FUNCTIONAL_SIMULATOR)) {
5468 		/* this error requires a manual drop into SPC freeze mode */
5469 		/* then a fix up */
5470 		start_freeze_handling(dd->pport, FREEZE_SELF);
5471 	}
5472 
5473 	for (i = 0; i < NUM_CCE_ERR_STATUS_COUNTERS; i++) {
5474 		if (reg & (1ull << i)) {
5475 			incr_cntr64(&dd->cce_err_status_cnt[i]);
5476 			/* maintain a counter over all cce_err_status errors */
5477 			incr_cntr64(&dd->sw_cce_err_status_aggregate);
5478 		}
5479 	}
5480 }
5481 
5482 /*
5483  * Check counters for receive errors that do not have an interrupt
5484  * associated with them.
5485  */
5486 #define RCVERR_CHECK_TIME 10
5487 static void update_rcverr_timer(unsigned long opaque)
5488 {
5489 	struct hfi1_devdata *dd = (struct hfi1_devdata *)opaque;
5490 	struct hfi1_pportdata *ppd = dd->pport;
5491 	u32 cur_ovfl_cnt = read_dev_cntr(dd, C_RCV_OVF, CNTR_INVALID_VL);
5492 
5493 	if (dd->rcv_ovfl_cnt < cur_ovfl_cnt &&
5494 	    ppd->port_error_action & OPA_PI_MASK_EX_BUFFER_OVERRUN) {
5495 		dd_dev_info(dd, "%s: PortErrorAction bounce\n", __func__);
5496 		set_link_down_reason(
5497 		ppd, OPA_LINKDOWN_REASON_EXCESSIVE_BUFFER_OVERRUN, 0,
5498 		OPA_LINKDOWN_REASON_EXCESSIVE_BUFFER_OVERRUN);
5499 		queue_work(ppd->hfi1_wq, &ppd->link_bounce_work);
5500 	}
5501 	dd->rcv_ovfl_cnt = (u32)cur_ovfl_cnt;
5502 
5503 	mod_timer(&dd->rcverr_timer, jiffies + HZ * RCVERR_CHECK_TIME);
5504 }
5505 
5506 static int init_rcverr(struct hfi1_devdata *dd)
5507 {
5508 	setup_timer(&dd->rcverr_timer, update_rcverr_timer, (unsigned long)dd);
5509 	/* Assume the hardware counter has been reset */
5510 	dd->rcv_ovfl_cnt = 0;
5511 	return mod_timer(&dd->rcverr_timer, jiffies + HZ * RCVERR_CHECK_TIME);
5512 }
5513 
5514 static void free_rcverr(struct hfi1_devdata *dd)
5515 {
5516 	if (dd->rcverr_timer.data)
5517 		del_timer_sync(&dd->rcverr_timer);
5518 	dd->rcverr_timer.data = 0;
5519 }
5520 
5521 static void handle_rxe_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5522 {
5523 	char buf[96];
5524 	int i = 0;
5525 
5526 	dd_dev_info(dd, "Receive Error: %s\n",
5527 		    rxe_err_status_string(buf, sizeof(buf), reg));
5528 
5529 	if (reg & ALL_RXE_FREEZE_ERR) {
5530 		int flags = 0;
5531 
5532 		/*
5533 		 * Freeze mode recovery is disabled for the errors
5534 		 * in RXE_FREEZE_ABORT_MASK
5535 		 */
5536 		if (is_ax(dd) && (reg & RXE_FREEZE_ABORT_MASK))
5537 			flags = FREEZE_ABORT;
5538 
5539 		start_freeze_handling(dd->pport, flags);
5540 	}
5541 
5542 	for (i = 0; i < NUM_RCV_ERR_STATUS_COUNTERS; i++) {
5543 		if (reg & (1ull << i))
5544 			incr_cntr64(&dd->rcv_err_status_cnt[i]);
5545 	}
5546 }
5547 
5548 static void handle_misc_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5549 {
5550 	char buf[96];
5551 	int i = 0;
5552 
5553 	dd_dev_info(dd, "Misc Error: %s",
5554 		    misc_err_status_string(buf, sizeof(buf), reg));
5555 	for (i = 0; i < NUM_MISC_ERR_STATUS_COUNTERS; i++) {
5556 		if (reg & (1ull << i))
5557 			incr_cntr64(&dd->misc_err_status_cnt[i]);
5558 	}
5559 }
5560 
5561 static void handle_pio_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5562 {
5563 	char buf[96];
5564 	int i = 0;
5565 
5566 	dd_dev_info(dd, "PIO Error: %s\n",
5567 		    pio_err_status_string(buf, sizeof(buf), reg));
5568 
5569 	if (reg & ALL_PIO_FREEZE_ERR)
5570 		start_freeze_handling(dd->pport, 0);
5571 
5572 	for (i = 0; i < NUM_SEND_PIO_ERR_STATUS_COUNTERS; i++) {
5573 		if (reg & (1ull << i))
5574 			incr_cntr64(&dd->send_pio_err_status_cnt[i]);
5575 	}
5576 }
5577 
5578 static void handle_sdma_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5579 {
5580 	char buf[96];
5581 	int i = 0;
5582 
5583 	dd_dev_info(dd, "SDMA Error: %s\n",
5584 		    sdma_err_status_string(buf, sizeof(buf), reg));
5585 
5586 	if (reg & ALL_SDMA_FREEZE_ERR)
5587 		start_freeze_handling(dd->pport, 0);
5588 
5589 	for (i = 0; i < NUM_SEND_DMA_ERR_STATUS_COUNTERS; i++) {
5590 		if (reg & (1ull << i))
5591 			incr_cntr64(&dd->send_dma_err_status_cnt[i]);
5592 	}
5593 }
5594 
5595 static inline void __count_port_discards(struct hfi1_pportdata *ppd)
5596 {
5597 	incr_cntr64(&ppd->port_xmit_discards);
5598 }
5599 
5600 static void count_port_inactive(struct hfi1_devdata *dd)
5601 {
5602 	__count_port_discards(dd->pport);
5603 }
5604 
5605 /*
5606  * We have had a "disallowed packet" error during egress. Determine the
5607  * integrity check which failed, and update relevant error counter, etc.
5608  *
5609  * Note that the SEND_EGRESS_ERR_INFO register has only a single
5610  * bit of state per integrity check, and so we can miss the reason for an
5611  * egress error if more than one packet fails the same integrity check
5612  * since we cleared the corresponding bit in SEND_EGRESS_ERR_INFO.
5613  */
5614 static void handle_send_egress_err_info(struct hfi1_devdata *dd,
5615 					int vl)
5616 {
5617 	struct hfi1_pportdata *ppd = dd->pport;
5618 	u64 src = read_csr(dd, SEND_EGRESS_ERR_SOURCE); /* read first */
5619 	u64 info = read_csr(dd, SEND_EGRESS_ERR_INFO);
5620 	char buf[96];
5621 
5622 	/* clear down all observed info as quickly as possible after read */
5623 	write_csr(dd, SEND_EGRESS_ERR_INFO, info);
5624 
5625 	dd_dev_info(dd,
5626 		    "Egress Error Info: 0x%llx, %s Egress Error Src 0x%llx\n",
5627 		    info, egress_err_info_string(buf, sizeof(buf), info), src);
5628 
5629 	/* Eventually add other counters for each bit */
5630 	if (info & PORT_DISCARD_EGRESS_ERRS) {
5631 		int weight, i;
5632 
5633 		/*
5634 		 * Count all applicable bits as individual errors and
5635 		 * attribute them to the packet that triggered this handler.
5636 		 * This may not be completely accurate due to limitations
5637 		 * on the available hardware error information.  There is
5638 		 * a single information register and any number of error
5639 		 * packets may have occurred and contributed to it before
5640 		 * this routine is called.  This means that:
5641 		 * a) If multiple packets with the same error occur before
5642 		 *    this routine is called, earlier packets are missed.
5643 		 *    There is only a single bit for each error type.
5644 		 * b) Errors may not be attributed to the correct VL.
5645 		 *    The driver is attributing all bits in the info register
5646 		 *    to the packet that triggered this call, but bits
5647 		 *    could be an accumulation of different packets with
5648 		 *    different VLs.
5649 		 * c) A single error packet may have multiple counts attached
5650 		 *    to it.  There is no way for the driver to know if
5651 		 *    multiple bits set in the info register are due to a
5652 		 *    single packet or multiple packets.  The driver assumes
5653 		 *    multiple packets.
5654 		 */
5655 		weight = hweight64(info & PORT_DISCARD_EGRESS_ERRS);
5656 		for (i = 0; i < weight; i++) {
5657 			__count_port_discards(ppd);
5658 			if (vl >= 0 && vl < TXE_NUM_DATA_VL)
5659 				incr_cntr64(&ppd->port_xmit_discards_vl[vl]);
5660 			else if (vl == 15)
5661 				incr_cntr64(&ppd->port_xmit_discards_vl
5662 					    [C_VL_15]);
5663 		}
5664 	}
5665 }
5666 
5667 /*
5668  * Input value is a bit position within the SEND_EGRESS_ERR_STATUS
5669  * register. Does it represent a 'port inactive' error?
5670  */
5671 static inline int port_inactive_err(u64 posn)
5672 {
5673 	return (posn >= SEES(TX_LINKDOWN) &&
5674 		posn <= SEES(TX_INCORRECT_LINK_STATE));
5675 }
5676 
5677 /*
5678  * Input value is a bit position within the SEND_EGRESS_ERR_STATUS
5679  * register. Does it represent a 'disallowed packet' error?
5680  */
5681 static inline int disallowed_pkt_err(int posn)
5682 {
5683 	return (posn >= SEES(TX_SDMA0_DISALLOWED_PACKET) &&
5684 		posn <= SEES(TX_SDMA15_DISALLOWED_PACKET));
5685 }
5686 
5687 /*
5688  * Input value is a bit position of one of the SDMA engine disallowed
5689  * packet errors.  Return which engine.  Use of this must be guarded by
5690  * disallowed_pkt_err().
5691  */
5692 static inline int disallowed_pkt_engine(int posn)
5693 {
5694 	return posn - SEES(TX_SDMA0_DISALLOWED_PACKET);
5695 }
5696 
5697 /*
5698  * Translate an SDMA engine to a VL.  Return -1 if the tranlation cannot
5699  * be done.
5700  */
5701 static int engine_to_vl(struct hfi1_devdata *dd, int engine)
5702 {
5703 	struct sdma_vl_map *m;
5704 	int vl;
5705 
5706 	/* range check */
5707 	if (engine < 0 || engine >= TXE_NUM_SDMA_ENGINES)
5708 		return -1;
5709 
5710 	rcu_read_lock();
5711 	m = rcu_dereference(dd->sdma_map);
5712 	vl = m->engine_to_vl[engine];
5713 	rcu_read_unlock();
5714 
5715 	return vl;
5716 }
5717 
5718 /*
5719  * Translate the send context (sofware index) into a VL.  Return -1 if the
5720  * translation cannot be done.
5721  */
5722 static int sc_to_vl(struct hfi1_devdata *dd, int sw_index)
5723 {
5724 	struct send_context_info *sci;
5725 	struct send_context *sc;
5726 	int i;
5727 
5728 	sci = &dd->send_contexts[sw_index];
5729 
5730 	/* there is no information for user (PSM) and ack contexts */
5731 	if ((sci->type != SC_KERNEL) && (sci->type != SC_VL15))
5732 		return -1;
5733 
5734 	sc = sci->sc;
5735 	if (!sc)
5736 		return -1;
5737 	if (dd->vld[15].sc == sc)
5738 		return 15;
5739 	for (i = 0; i < num_vls; i++)
5740 		if (dd->vld[i].sc == sc)
5741 			return i;
5742 
5743 	return -1;
5744 }
5745 
5746 static void handle_egress_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5747 {
5748 	u64 reg_copy = reg, handled = 0;
5749 	char buf[96];
5750 	int i = 0;
5751 
5752 	if (reg & ALL_TXE_EGRESS_FREEZE_ERR)
5753 		start_freeze_handling(dd->pport, 0);
5754 	else if (is_ax(dd) &&
5755 		 (reg & SEND_EGRESS_ERR_STATUS_TX_CREDIT_RETURN_VL_ERR_SMASK) &&
5756 		 (dd->icode != ICODE_FUNCTIONAL_SIMULATOR))
5757 		start_freeze_handling(dd->pport, 0);
5758 
5759 	while (reg_copy) {
5760 		int posn = fls64(reg_copy);
5761 		/* fls64() returns a 1-based offset, we want it zero based */
5762 		int shift = posn - 1;
5763 		u64 mask = 1ULL << shift;
5764 
5765 		if (port_inactive_err(shift)) {
5766 			count_port_inactive(dd);
5767 			handled |= mask;
5768 		} else if (disallowed_pkt_err(shift)) {
5769 			int vl = engine_to_vl(dd, disallowed_pkt_engine(shift));
5770 
5771 			handle_send_egress_err_info(dd, vl);
5772 			handled |= mask;
5773 		}
5774 		reg_copy &= ~mask;
5775 	}
5776 
5777 	reg &= ~handled;
5778 
5779 	if (reg)
5780 		dd_dev_info(dd, "Egress Error: %s\n",
5781 			    egress_err_status_string(buf, sizeof(buf), reg));
5782 
5783 	for (i = 0; i < NUM_SEND_EGRESS_ERR_STATUS_COUNTERS; i++) {
5784 		if (reg & (1ull << i))
5785 			incr_cntr64(&dd->send_egress_err_status_cnt[i]);
5786 	}
5787 }
5788 
5789 static void handle_txe_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5790 {
5791 	char buf[96];
5792 	int i = 0;
5793 
5794 	dd_dev_info(dd, "Send Error: %s\n",
5795 		    send_err_status_string(buf, sizeof(buf), reg));
5796 
5797 	for (i = 0; i < NUM_SEND_ERR_STATUS_COUNTERS; i++) {
5798 		if (reg & (1ull << i))
5799 			incr_cntr64(&dd->send_err_status_cnt[i]);
5800 	}
5801 }
5802 
5803 /*
5804  * The maximum number of times the error clear down will loop before
5805  * blocking a repeating error.  This value is arbitrary.
5806  */
5807 #define MAX_CLEAR_COUNT 20
5808 
5809 /*
5810  * Clear and handle an error register.  All error interrupts are funneled
5811  * through here to have a central location to correctly handle single-
5812  * or multi-shot errors.
5813  *
5814  * For non per-context registers, call this routine with a context value
5815  * of 0 so the per-context offset is zero.
5816  *
5817  * If the handler loops too many times, assume that something is wrong
5818  * and can't be fixed, so mask the error bits.
5819  */
5820 static void interrupt_clear_down(struct hfi1_devdata *dd,
5821 				 u32 context,
5822 				 const struct err_reg_info *eri)
5823 {
5824 	u64 reg;
5825 	u32 count;
5826 
5827 	/* read in a loop until no more errors are seen */
5828 	count = 0;
5829 	while (1) {
5830 		reg = read_kctxt_csr(dd, context, eri->status);
5831 		if (reg == 0)
5832 			break;
5833 		write_kctxt_csr(dd, context, eri->clear, reg);
5834 		if (likely(eri->handler))
5835 			eri->handler(dd, context, reg);
5836 		count++;
5837 		if (count > MAX_CLEAR_COUNT) {
5838 			u64 mask;
5839 
5840 			dd_dev_err(dd, "Repeating %s bits 0x%llx - masking\n",
5841 				   eri->desc, reg);
5842 			/*
5843 			 * Read-modify-write so any other masked bits
5844 			 * remain masked.
5845 			 */
5846 			mask = read_kctxt_csr(dd, context, eri->mask);
5847 			mask &= ~reg;
5848 			write_kctxt_csr(dd, context, eri->mask, mask);
5849 			break;
5850 		}
5851 	}
5852 }
5853 
5854 /*
5855  * CCE block "misc" interrupt.  Source is < 16.
5856  */
5857 static void is_misc_err_int(struct hfi1_devdata *dd, unsigned int source)
5858 {
5859 	const struct err_reg_info *eri = &misc_errs[source];
5860 
5861 	if (eri->handler) {
5862 		interrupt_clear_down(dd, 0, eri);
5863 	} else {
5864 		dd_dev_err(dd, "Unexpected misc interrupt (%u) - reserved\n",
5865 			   source);
5866 	}
5867 }
5868 
5869 static char *send_context_err_status_string(char *buf, int buf_len, u64 flags)
5870 {
5871 	return flag_string(buf, buf_len, flags,
5872 			   sc_err_status_flags,
5873 			   ARRAY_SIZE(sc_err_status_flags));
5874 }
5875 
5876 /*
5877  * Send context error interrupt.  Source (hw_context) is < 160.
5878  *
5879  * All send context errors cause the send context to halt.  The normal
5880  * clear-down mechanism cannot be used because we cannot clear the
5881  * error bits until several other long-running items are done first.
5882  * This is OK because with the context halted, nothing else is going
5883  * to happen on it anyway.
5884  */
5885 static void is_sendctxt_err_int(struct hfi1_devdata *dd,
5886 				unsigned int hw_context)
5887 {
5888 	struct send_context_info *sci;
5889 	struct send_context *sc;
5890 	char flags[96];
5891 	u64 status;
5892 	u32 sw_index;
5893 	int i = 0;
5894 
5895 	sw_index = dd->hw_to_sw[hw_context];
5896 	if (sw_index >= dd->num_send_contexts) {
5897 		dd_dev_err(dd,
5898 			   "out of range sw index %u for send context %u\n",
5899 			   sw_index, hw_context);
5900 		return;
5901 	}
5902 	sci = &dd->send_contexts[sw_index];
5903 	sc = sci->sc;
5904 	if (!sc) {
5905 		dd_dev_err(dd, "%s: context %u(%u): no sc?\n", __func__,
5906 			   sw_index, hw_context);
5907 		return;
5908 	}
5909 
5910 	/* tell the software that a halt has begun */
5911 	sc_stop(sc, SCF_HALTED);
5912 
5913 	status = read_kctxt_csr(dd, hw_context, SEND_CTXT_ERR_STATUS);
5914 
5915 	dd_dev_info(dd, "Send Context %u(%u) Error: %s\n", sw_index, hw_context,
5916 		    send_context_err_status_string(flags, sizeof(flags),
5917 						   status));
5918 
5919 	if (status & SEND_CTXT_ERR_STATUS_PIO_DISALLOWED_PACKET_ERR_SMASK)
5920 		handle_send_egress_err_info(dd, sc_to_vl(dd, sw_index));
5921 
5922 	/*
5923 	 * Automatically restart halted kernel contexts out of interrupt
5924 	 * context.  User contexts must ask the driver to restart the context.
5925 	 */
5926 	if (sc->type != SC_USER)
5927 		queue_work(dd->pport->hfi1_wq, &sc->halt_work);
5928 
5929 	/*
5930 	 * Update the counters for the corresponding status bits.
5931 	 * Note that these particular counters are aggregated over all
5932 	 * 160 contexts.
5933 	 */
5934 	for (i = 0; i < NUM_SEND_CTXT_ERR_STATUS_COUNTERS; i++) {
5935 		if (status & (1ull << i))
5936 			incr_cntr64(&dd->sw_ctxt_err_status_cnt[i]);
5937 	}
5938 }
5939 
5940 static void handle_sdma_eng_err(struct hfi1_devdata *dd,
5941 				unsigned int source, u64 status)
5942 {
5943 	struct sdma_engine *sde;
5944 	int i = 0;
5945 
5946 	sde = &dd->per_sdma[source];
5947 #ifdef CONFIG_SDMA_VERBOSITY
5948 	dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
5949 		   slashstrip(__FILE__), __LINE__, __func__);
5950 	dd_dev_err(sde->dd, "CONFIG SDMA(%u) source: %u status 0x%llx\n",
5951 		   sde->this_idx, source, (unsigned long long)status);
5952 #endif
5953 	sde->err_cnt++;
5954 	sdma_engine_error(sde, status);
5955 
5956 	/*
5957 	* Update the counters for the corresponding status bits.
5958 	* Note that these particular counters are aggregated over
5959 	* all 16 DMA engines.
5960 	*/
5961 	for (i = 0; i < NUM_SEND_DMA_ENG_ERR_STATUS_COUNTERS; i++) {
5962 		if (status & (1ull << i))
5963 			incr_cntr64(&dd->sw_send_dma_eng_err_status_cnt[i]);
5964 	}
5965 }
5966 
5967 /*
5968  * CCE block SDMA error interrupt.  Source is < 16.
5969  */
5970 static void is_sdma_eng_err_int(struct hfi1_devdata *dd, unsigned int source)
5971 {
5972 #ifdef CONFIG_SDMA_VERBOSITY
5973 	struct sdma_engine *sde = &dd->per_sdma[source];
5974 
5975 	dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
5976 		   slashstrip(__FILE__), __LINE__, __func__);
5977 	dd_dev_err(dd, "CONFIG SDMA(%u) source: %u\n", sde->this_idx,
5978 		   source);
5979 	sdma_dumpstate(sde);
5980 #endif
5981 	interrupt_clear_down(dd, source, &sdma_eng_err);
5982 }
5983 
5984 /*
5985  * CCE block "various" interrupt.  Source is < 8.
5986  */
5987 static void is_various_int(struct hfi1_devdata *dd, unsigned int source)
5988 {
5989 	const struct err_reg_info *eri = &various_err[source];
5990 
5991 	/*
5992 	 * TCritInt cannot go through interrupt_clear_down()
5993 	 * because it is not a second tier interrupt. The handler
5994 	 * should be called directly.
5995 	 */
5996 	if (source == TCRIT_INT_SOURCE)
5997 		handle_temp_err(dd);
5998 	else if (eri->handler)
5999 		interrupt_clear_down(dd, 0, eri);
6000 	else
6001 		dd_dev_info(dd,
6002 			    "%s: Unimplemented/reserved interrupt %d\n",
6003 			    __func__, source);
6004 }
6005 
6006 static void handle_qsfp_int(struct hfi1_devdata *dd, u32 src_ctx, u64 reg)
6007 {
6008 	/* src_ctx is always zero */
6009 	struct hfi1_pportdata *ppd = dd->pport;
6010 	unsigned long flags;
6011 	u64 qsfp_int_mgmt = (u64)(QSFP_HFI0_INT_N | QSFP_HFI0_MODPRST_N);
6012 
6013 	if (reg & QSFP_HFI0_MODPRST_N) {
6014 		if (!qsfp_mod_present(ppd)) {
6015 			dd_dev_info(dd, "%s: QSFP module removed\n",
6016 				    __func__);
6017 
6018 			ppd->driver_link_ready = 0;
6019 			/*
6020 			 * Cable removed, reset all our information about the
6021 			 * cache and cable capabilities
6022 			 */
6023 
6024 			spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
6025 			/*
6026 			 * We don't set cache_refresh_required here as we expect
6027 			 * an interrupt when a cable is inserted
6028 			 */
6029 			ppd->qsfp_info.cache_valid = 0;
6030 			ppd->qsfp_info.reset_needed = 0;
6031 			ppd->qsfp_info.limiting_active = 0;
6032 			spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock,
6033 					       flags);
6034 			/* Invert the ModPresent pin now to detect plug-in */
6035 			write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_INVERT :
6036 				  ASIC_QSFP1_INVERT, qsfp_int_mgmt);
6037 
6038 			if ((ppd->offline_disabled_reason >
6039 			  HFI1_ODR_MASK(
6040 			  OPA_LINKDOWN_REASON_LOCAL_MEDIA_NOT_INSTALLED)) ||
6041 			  (ppd->offline_disabled_reason ==
6042 			  HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE)))
6043 				ppd->offline_disabled_reason =
6044 				HFI1_ODR_MASK(
6045 				OPA_LINKDOWN_REASON_LOCAL_MEDIA_NOT_INSTALLED);
6046 
6047 			if (ppd->host_link_state == HLS_DN_POLL) {
6048 				/*
6049 				 * The link is still in POLL. This means
6050 				 * that the normal link down processing
6051 				 * will not happen. We have to do it here
6052 				 * before turning the DC off.
6053 				 */
6054 				queue_work(ppd->hfi1_wq, &ppd->link_down_work);
6055 			}
6056 		} else {
6057 			dd_dev_info(dd, "%s: QSFP module inserted\n",
6058 				    __func__);
6059 
6060 			spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
6061 			ppd->qsfp_info.cache_valid = 0;
6062 			ppd->qsfp_info.cache_refresh_required = 1;
6063 			spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock,
6064 					       flags);
6065 
6066 			/*
6067 			 * Stop inversion of ModPresent pin to detect
6068 			 * removal of the cable
6069 			 */
6070 			qsfp_int_mgmt &= ~(u64)QSFP_HFI0_MODPRST_N;
6071 			write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_INVERT :
6072 				  ASIC_QSFP1_INVERT, qsfp_int_mgmt);
6073 
6074 			ppd->offline_disabled_reason =
6075 				HFI1_ODR_MASK(OPA_LINKDOWN_REASON_TRANSIENT);
6076 		}
6077 	}
6078 
6079 	if (reg & QSFP_HFI0_INT_N) {
6080 		dd_dev_info(dd, "%s: Interrupt received from QSFP module\n",
6081 			    __func__);
6082 		spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
6083 		ppd->qsfp_info.check_interrupt_flags = 1;
6084 		spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock, flags);
6085 	}
6086 
6087 	/* Schedule the QSFP work only if there is a cable attached. */
6088 	if (qsfp_mod_present(ppd))
6089 		queue_work(ppd->hfi1_wq, &ppd->qsfp_info.qsfp_work);
6090 }
6091 
6092 static int request_host_lcb_access(struct hfi1_devdata *dd)
6093 {
6094 	int ret;
6095 
6096 	ret = do_8051_command(dd, HCMD_MISC,
6097 			      (u64)HCMD_MISC_REQUEST_LCB_ACCESS <<
6098 			      LOAD_DATA_FIELD_ID_SHIFT, NULL);
6099 	if (ret != HCMD_SUCCESS) {
6100 		dd_dev_err(dd, "%s: command failed with error %d\n",
6101 			   __func__, ret);
6102 	}
6103 	return ret == HCMD_SUCCESS ? 0 : -EBUSY;
6104 }
6105 
6106 static int request_8051_lcb_access(struct hfi1_devdata *dd)
6107 {
6108 	int ret;
6109 
6110 	ret = do_8051_command(dd, HCMD_MISC,
6111 			      (u64)HCMD_MISC_GRANT_LCB_ACCESS <<
6112 			      LOAD_DATA_FIELD_ID_SHIFT, NULL);
6113 	if (ret != HCMD_SUCCESS) {
6114 		dd_dev_err(dd, "%s: command failed with error %d\n",
6115 			   __func__, ret);
6116 	}
6117 	return ret == HCMD_SUCCESS ? 0 : -EBUSY;
6118 }
6119 
6120 /*
6121  * Set the LCB selector - allow host access.  The DCC selector always
6122  * points to the host.
6123  */
6124 static inline void set_host_lcb_access(struct hfi1_devdata *dd)
6125 {
6126 	write_csr(dd, DC_DC8051_CFG_CSR_ACCESS_SEL,
6127 		  DC_DC8051_CFG_CSR_ACCESS_SEL_DCC_SMASK |
6128 		  DC_DC8051_CFG_CSR_ACCESS_SEL_LCB_SMASK);
6129 }
6130 
6131 /*
6132  * Clear the LCB selector - allow 8051 access.  The DCC selector always
6133  * points to the host.
6134  */
6135 static inline void set_8051_lcb_access(struct hfi1_devdata *dd)
6136 {
6137 	write_csr(dd, DC_DC8051_CFG_CSR_ACCESS_SEL,
6138 		  DC_DC8051_CFG_CSR_ACCESS_SEL_DCC_SMASK);
6139 }
6140 
6141 /*
6142  * Acquire LCB access from the 8051.  If the host already has access,
6143  * just increment a counter.  Otherwise, inform the 8051 that the
6144  * host is taking access.
6145  *
6146  * Returns:
6147  *	0 on success
6148  *	-EBUSY if the 8051 has control and cannot be disturbed
6149  *	-errno if unable to acquire access from the 8051
6150  */
6151 int acquire_lcb_access(struct hfi1_devdata *dd, int sleep_ok)
6152 {
6153 	struct hfi1_pportdata *ppd = dd->pport;
6154 	int ret = 0;
6155 
6156 	/*
6157 	 * Use the host link state lock so the operation of this routine
6158 	 * { link state check, selector change, count increment } can occur
6159 	 * as a unit against a link state change.  Otherwise there is a
6160 	 * race between the state change and the count increment.
6161 	 */
6162 	if (sleep_ok) {
6163 		mutex_lock(&ppd->hls_lock);
6164 	} else {
6165 		while (!mutex_trylock(&ppd->hls_lock))
6166 			udelay(1);
6167 	}
6168 
6169 	/* this access is valid only when the link is up */
6170 	if (ppd->host_link_state & HLS_DOWN) {
6171 		dd_dev_info(dd, "%s: link state %s not up\n",
6172 			    __func__, link_state_name(ppd->host_link_state));
6173 		ret = -EBUSY;
6174 		goto done;
6175 	}
6176 
6177 	if (dd->lcb_access_count == 0) {
6178 		ret = request_host_lcb_access(dd);
6179 		if (ret) {
6180 			dd_dev_err(dd,
6181 				   "%s: unable to acquire LCB access, err %d\n",
6182 				   __func__, ret);
6183 			goto done;
6184 		}
6185 		set_host_lcb_access(dd);
6186 	}
6187 	dd->lcb_access_count++;
6188 done:
6189 	mutex_unlock(&ppd->hls_lock);
6190 	return ret;
6191 }
6192 
6193 /*
6194  * Release LCB access by decrementing the use count.  If the count is moving
6195  * from 1 to 0, inform 8051 that it has control back.
6196  *
6197  * Returns:
6198  *	0 on success
6199  *	-errno if unable to release access to the 8051
6200  */
6201 int release_lcb_access(struct hfi1_devdata *dd, int sleep_ok)
6202 {
6203 	int ret = 0;
6204 
6205 	/*
6206 	 * Use the host link state lock because the acquire needed it.
6207 	 * Here, we only need to keep { selector change, count decrement }
6208 	 * as a unit.
6209 	 */
6210 	if (sleep_ok) {
6211 		mutex_lock(&dd->pport->hls_lock);
6212 	} else {
6213 		while (!mutex_trylock(&dd->pport->hls_lock))
6214 			udelay(1);
6215 	}
6216 
6217 	if (dd->lcb_access_count == 0) {
6218 		dd_dev_err(dd, "%s: LCB access count is zero.  Skipping.\n",
6219 			   __func__);
6220 		goto done;
6221 	}
6222 
6223 	if (dd->lcb_access_count == 1) {
6224 		set_8051_lcb_access(dd);
6225 		ret = request_8051_lcb_access(dd);
6226 		if (ret) {
6227 			dd_dev_err(dd,
6228 				   "%s: unable to release LCB access, err %d\n",
6229 				   __func__, ret);
6230 			/* restore host access if the grant didn't work */
6231 			set_host_lcb_access(dd);
6232 			goto done;
6233 		}
6234 	}
6235 	dd->lcb_access_count--;
6236 done:
6237 	mutex_unlock(&dd->pport->hls_lock);
6238 	return ret;
6239 }
6240 
6241 /*
6242  * Initialize LCB access variables and state.  Called during driver load,
6243  * after most of the initialization is finished.
6244  *
6245  * The DC default is LCB access on for the host.  The driver defaults to
6246  * leaving access to the 8051.  Assign access now - this constrains the call
6247  * to this routine to be after all LCB set-up is done.  In particular, after
6248  * hf1_init_dd() -> set_up_interrupts() -> clear_all_interrupts()
6249  */
6250 static void init_lcb_access(struct hfi1_devdata *dd)
6251 {
6252 	dd->lcb_access_count = 0;
6253 }
6254 
6255 /*
6256  * Write a response back to a 8051 request.
6257  */
6258 static void hreq_response(struct hfi1_devdata *dd, u8 return_code, u16 rsp_data)
6259 {
6260 	write_csr(dd, DC_DC8051_CFG_EXT_DEV_0,
6261 		  DC_DC8051_CFG_EXT_DEV_0_COMPLETED_SMASK |
6262 		  (u64)return_code <<
6263 		  DC_DC8051_CFG_EXT_DEV_0_RETURN_CODE_SHIFT |
6264 		  (u64)rsp_data << DC_DC8051_CFG_EXT_DEV_0_RSP_DATA_SHIFT);
6265 }
6266 
6267 /*
6268  * Handle host requests from the 8051.
6269  */
6270 static void handle_8051_request(struct hfi1_pportdata *ppd)
6271 {
6272 	struct hfi1_devdata *dd = ppd->dd;
6273 	u64 reg;
6274 	u16 data = 0;
6275 	u8 type;
6276 
6277 	reg = read_csr(dd, DC_DC8051_CFG_EXT_DEV_1);
6278 	if ((reg & DC_DC8051_CFG_EXT_DEV_1_REQ_NEW_SMASK) == 0)
6279 		return;	/* no request */
6280 
6281 	/* zero out COMPLETED so the response is seen */
6282 	write_csr(dd, DC_DC8051_CFG_EXT_DEV_0, 0);
6283 
6284 	/* extract request details */
6285 	type = (reg >> DC_DC8051_CFG_EXT_DEV_1_REQ_TYPE_SHIFT)
6286 			& DC_DC8051_CFG_EXT_DEV_1_REQ_TYPE_MASK;
6287 	data = (reg >> DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SHIFT)
6288 			& DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_MASK;
6289 
6290 	switch (type) {
6291 	case HREQ_LOAD_CONFIG:
6292 	case HREQ_SAVE_CONFIG:
6293 	case HREQ_READ_CONFIG:
6294 	case HREQ_SET_TX_EQ_ABS:
6295 	case HREQ_SET_TX_EQ_REL:
6296 	case HREQ_ENABLE:
6297 		dd_dev_info(dd, "8051 request: request 0x%x not supported\n",
6298 			    type);
6299 		hreq_response(dd, HREQ_NOT_SUPPORTED, 0);
6300 		break;
6301 	case HREQ_CONFIG_DONE:
6302 		hreq_response(dd, HREQ_SUCCESS, 0);
6303 		break;
6304 
6305 	case HREQ_INTERFACE_TEST:
6306 		hreq_response(dd, HREQ_SUCCESS, data);
6307 		break;
6308 	default:
6309 		dd_dev_err(dd, "8051 request: unknown request 0x%x\n", type);
6310 		hreq_response(dd, HREQ_NOT_SUPPORTED, 0);
6311 		break;
6312 	}
6313 }
6314 
6315 /*
6316  * Set up allocation unit vaulue.
6317  */
6318 void set_up_vau(struct hfi1_devdata *dd, u8 vau)
6319 {
6320 	u64 reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
6321 
6322 	/* do not modify other values in the register */
6323 	reg &= ~SEND_CM_GLOBAL_CREDIT_AU_SMASK;
6324 	reg |= (u64)vau << SEND_CM_GLOBAL_CREDIT_AU_SHIFT;
6325 	write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg);
6326 }
6327 
6328 /*
6329  * Set up initial VL15 credits of the remote.  Assumes the rest of
6330  * the CM credit registers are zero from a previous global or credit reset.
6331  * Shared limit for VL15 will always be 0.
6332  */
6333 void set_up_vl15(struct hfi1_devdata *dd, u16 vl15buf)
6334 {
6335 	u64 reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
6336 
6337 	/* set initial values for total and shared credit limit */
6338 	reg &= ~(SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SMASK |
6339 		 SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SMASK);
6340 
6341 	/*
6342 	 * Set total limit to be equal to VL15 credits.
6343 	 * Leave shared limit at 0.
6344 	 */
6345 	reg |= (u64)vl15buf << SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT;
6346 	write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg);
6347 
6348 	write_csr(dd, SEND_CM_CREDIT_VL15, (u64)vl15buf
6349 		  << SEND_CM_CREDIT_VL15_DEDICATED_LIMIT_VL_SHIFT);
6350 }
6351 
6352 /*
6353  * Zero all credit details from the previous connection and
6354  * reset the CM manager's internal counters.
6355  */
6356 void reset_link_credits(struct hfi1_devdata *dd)
6357 {
6358 	int i;
6359 
6360 	/* remove all previous VL credit limits */
6361 	for (i = 0; i < TXE_NUM_DATA_VL; i++)
6362 		write_csr(dd, SEND_CM_CREDIT_VL + (8 * i), 0);
6363 	write_csr(dd, SEND_CM_CREDIT_VL15, 0);
6364 	write_csr(dd, SEND_CM_GLOBAL_CREDIT, 0);
6365 	/* reset the CM block */
6366 	pio_send_control(dd, PSC_CM_RESET);
6367 	/* reset cached value */
6368 	dd->vl15buf_cached = 0;
6369 }
6370 
6371 /* convert a vCU to a CU */
6372 static u32 vcu_to_cu(u8 vcu)
6373 {
6374 	return 1 << vcu;
6375 }
6376 
6377 /* convert a CU to a vCU */
6378 static u8 cu_to_vcu(u32 cu)
6379 {
6380 	return ilog2(cu);
6381 }
6382 
6383 /* convert a vAU to an AU */
6384 static u32 vau_to_au(u8 vau)
6385 {
6386 	return 8 * (1 << vau);
6387 }
6388 
6389 static void set_linkup_defaults(struct hfi1_pportdata *ppd)
6390 {
6391 	ppd->sm_trap_qp = 0x0;
6392 	ppd->sa_qp = 0x1;
6393 }
6394 
6395 /*
6396  * Graceful LCB shutdown.  This leaves the LCB FIFOs in reset.
6397  */
6398 static void lcb_shutdown(struct hfi1_devdata *dd, int abort)
6399 {
6400 	u64 reg;
6401 
6402 	/* clear lcb run: LCB_CFG_RUN.EN = 0 */
6403 	write_csr(dd, DC_LCB_CFG_RUN, 0);
6404 	/* set tx fifo reset: LCB_CFG_TX_FIFOS_RESET.VAL = 1 */
6405 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET,
6406 		  1ull << DC_LCB_CFG_TX_FIFOS_RESET_VAL_SHIFT);
6407 	/* set dcc reset csr: DCC_CFG_RESET.{reset_lcb,reset_rx_fpe} = 1 */
6408 	dd->lcb_err_en = read_csr(dd, DC_LCB_ERR_EN);
6409 	reg = read_csr(dd, DCC_CFG_RESET);
6410 	write_csr(dd, DCC_CFG_RESET, reg |
6411 		  (1ull << DCC_CFG_RESET_RESET_LCB_SHIFT) |
6412 		  (1ull << DCC_CFG_RESET_RESET_RX_FPE_SHIFT));
6413 	(void)read_csr(dd, DCC_CFG_RESET); /* make sure the write completed */
6414 	if (!abort) {
6415 		udelay(1);    /* must hold for the longer of 16cclks or 20ns */
6416 		write_csr(dd, DCC_CFG_RESET, reg);
6417 		write_csr(dd, DC_LCB_ERR_EN, dd->lcb_err_en);
6418 	}
6419 }
6420 
6421 /*
6422  * This routine should be called after the link has been transitioned to
6423  * OFFLINE (OFFLINE state has the side effect of putting the SerDes into
6424  * reset).
6425  *
6426  * The expectation is that the caller of this routine would have taken
6427  * care of properly transitioning the link into the correct state.
6428  * NOTE: the caller needs to acquire the dd->dc8051_lock lock
6429  *       before calling this function.
6430  */
6431 static void _dc_shutdown(struct hfi1_devdata *dd)
6432 {
6433 	lockdep_assert_held(&dd->dc8051_lock);
6434 
6435 	if (dd->dc_shutdown)
6436 		return;
6437 
6438 	dd->dc_shutdown = 1;
6439 	/* Shutdown the LCB */
6440 	lcb_shutdown(dd, 1);
6441 	/*
6442 	 * Going to OFFLINE would have causes the 8051 to put the
6443 	 * SerDes into reset already. Just need to shut down the 8051,
6444 	 * itself.
6445 	 */
6446 	write_csr(dd, DC_DC8051_CFG_RST, 0x1);
6447 }
6448 
6449 static void dc_shutdown(struct hfi1_devdata *dd)
6450 {
6451 	mutex_lock(&dd->dc8051_lock);
6452 	_dc_shutdown(dd);
6453 	mutex_unlock(&dd->dc8051_lock);
6454 }
6455 
6456 /*
6457  * Calling this after the DC has been brought out of reset should not
6458  * do any damage.
6459  * NOTE: the caller needs to acquire the dd->dc8051_lock lock
6460  *       before calling this function.
6461  */
6462 static void _dc_start(struct hfi1_devdata *dd)
6463 {
6464 	lockdep_assert_held(&dd->dc8051_lock);
6465 
6466 	if (!dd->dc_shutdown)
6467 		return;
6468 
6469 	/* Take the 8051 out of reset */
6470 	write_csr(dd, DC_DC8051_CFG_RST, 0ull);
6471 	/* Wait until 8051 is ready */
6472 	if (wait_fm_ready(dd, TIMEOUT_8051_START))
6473 		dd_dev_err(dd, "%s: timeout starting 8051 firmware\n",
6474 			   __func__);
6475 
6476 	/* Take away reset for LCB and RX FPE (set in lcb_shutdown). */
6477 	write_csr(dd, DCC_CFG_RESET, 0x10);
6478 	/* lcb_shutdown() with abort=1 does not restore these */
6479 	write_csr(dd, DC_LCB_ERR_EN, dd->lcb_err_en);
6480 	dd->dc_shutdown = 0;
6481 }
6482 
6483 static void dc_start(struct hfi1_devdata *dd)
6484 {
6485 	mutex_lock(&dd->dc8051_lock);
6486 	_dc_start(dd);
6487 	mutex_unlock(&dd->dc8051_lock);
6488 }
6489 
6490 /*
6491  * These LCB adjustments are for the Aurora SerDes core in the FPGA.
6492  */
6493 static void adjust_lcb_for_fpga_serdes(struct hfi1_devdata *dd)
6494 {
6495 	u64 rx_radr, tx_radr;
6496 	u32 version;
6497 
6498 	if (dd->icode != ICODE_FPGA_EMULATION)
6499 		return;
6500 
6501 	/*
6502 	 * These LCB defaults on emulator _s are good, nothing to do here:
6503 	 *	LCB_CFG_TX_FIFOS_RADR
6504 	 *	LCB_CFG_RX_FIFOS_RADR
6505 	 *	LCB_CFG_LN_DCLK
6506 	 *	LCB_CFG_IGNORE_LOST_RCLK
6507 	 */
6508 	if (is_emulator_s(dd))
6509 		return;
6510 	/* else this is _p */
6511 
6512 	version = emulator_rev(dd);
6513 	if (!is_ax(dd))
6514 		version = 0x2d;	/* all B0 use 0x2d or higher settings */
6515 
6516 	if (version <= 0x12) {
6517 		/* release 0x12 and below */
6518 
6519 		/*
6520 		 * LCB_CFG_RX_FIFOS_RADR.RST_VAL = 0x9
6521 		 * LCB_CFG_RX_FIFOS_RADR.OK_TO_JUMP_VAL = 0x9
6522 		 * LCB_CFG_RX_FIFOS_RADR.DO_NOT_JUMP_VAL = 0xa
6523 		 */
6524 		rx_radr =
6525 		      0xaull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6526 		    | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6527 		    | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6528 		/*
6529 		 * LCB_CFG_TX_FIFOS_RADR.ON_REINIT = 0 (default)
6530 		 * LCB_CFG_TX_FIFOS_RADR.RST_VAL = 6
6531 		 */
6532 		tx_radr = 6ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6533 	} else if (version <= 0x18) {
6534 		/* release 0x13 up to 0x18 */
6535 		/* LCB_CFG_RX_FIFOS_RADR = 0x988 */
6536 		rx_radr =
6537 		      0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6538 		    | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6539 		    | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6540 		tx_radr = 7ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6541 	} else if (version == 0x19) {
6542 		/* release 0x19 */
6543 		/* LCB_CFG_RX_FIFOS_RADR = 0xa99 */
6544 		rx_radr =
6545 		      0xAull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6546 		    | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6547 		    | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6548 		tx_radr = 3ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6549 	} else if (version == 0x1a) {
6550 		/* release 0x1a */
6551 		/* LCB_CFG_RX_FIFOS_RADR = 0x988 */
6552 		rx_radr =
6553 		      0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6554 		    | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6555 		    | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6556 		tx_radr = 7ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6557 		write_csr(dd, DC_LCB_CFG_LN_DCLK, 1ull);
6558 	} else {
6559 		/* release 0x1b and higher */
6560 		/* LCB_CFG_RX_FIFOS_RADR = 0x877 */
6561 		rx_radr =
6562 		      0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6563 		    | 0x7ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6564 		    | 0x7ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6565 		tx_radr = 3ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6566 	}
6567 
6568 	write_csr(dd, DC_LCB_CFG_RX_FIFOS_RADR, rx_radr);
6569 	/* LCB_CFG_IGNORE_LOST_RCLK.EN = 1 */
6570 	write_csr(dd, DC_LCB_CFG_IGNORE_LOST_RCLK,
6571 		  DC_LCB_CFG_IGNORE_LOST_RCLK_EN_SMASK);
6572 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RADR, tx_radr);
6573 }
6574 
6575 /*
6576  * Handle a SMA idle message
6577  *
6578  * This is a work-queue function outside of the interrupt.
6579  */
6580 void handle_sma_message(struct work_struct *work)
6581 {
6582 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
6583 							sma_message_work);
6584 	struct hfi1_devdata *dd = ppd->dd;
6585 	u64 msg;
6586 	int ret;
6587 
6588 	/*
6589 	 * msg is bytes 1-4 of the 40-bit idle message - the command code
6590 	 * is stripped off
6591 	 */
6592 	ret = read_idle_sma(dd, &msg);
6593 	if (ret)
6594 		return;
6595 	dd_dev_info(dd, "%s: SMA message 0x%llx\n", __func__, msg);
6596 	/*
6597 	 * React to the SMA message.  Byte[1] (0 for us) is the command.
6598 	 */
6599 	switch (msg & 0xff) {
6600 	case SMA_IDLE_ARM:
6601 		/*
6602 		 * See OPAv1 table 9-14 - HFI and External Switch Ports Key
6603 		 * State Transitions
6604 		 *
6605 		 * Only expected in INIT or ARMED, discard otherwise.
6606 		 */
6607 		if (ppd->host_link_state & (HLS_UP_INIT | HLS_UP_ARMED))
6608 			ppd->neighbor_normal = 1;
6609 		break;
6610 	case SMA_IDLE_ACTIVE:
6611 		/*
6612 		 * See OPAv1 table 9-14 - HFI and External Switch Ports Key
6613 		 * State Transitions
6614 		 *
6615 		 * Can activate the node.  Discard otherwise.
6616 		 */
6617 		if (ppd->host_link_state == HLS_UP_ARMED &&
6618 		    ppd->is_active_optimize_enabled) {
6619 			ppd->neighbor_normal = 1;
6620 			ret = set_link_state(ppd, HLS_UP_ACTIVE);
6621 			if (ret)
6622 				dd_dev_err(
6623 					dd,
6624 					"%s: received Active SMA idle message, couldn't set link to Active\n",
6625 					__func__);
6626 		}
6627 		break;
6628 	default:
6629 		dd_dev_err(dd,
6630 			   "%s: received unexpected SMA idle message 0x%llx\n",
6631 			   __func__, msg);
6632 		break;
6633 	}
6634 }
6635 
6636 static void adjust_rcvctrl(struct hfi1_devdata *dd, u64 add, u64 clear)
6637 {
6638 	u64 rcvctrl;
6639 	unsigned long flags;
6640 
6641 	spin_lock_irqsave(&dd->rcvctrl_lock, flags);
6642 	rcvctrl = read_csr(dd, RCV_CTRL);
6643 	rcvctrl |= add;
6644 	rcvctrl &= ~clear;
6645 	write_csr(dd, RCV_CTRL, rcvctrl);
6646 	spin_unlock_irqrestore(&dd->rcvctrl_lock, flags);
6647 }
6648 
6649 static inline void add_rcvctrl(struct hfi1_devdata *dd, u64 add)
6650 {
6651 	adjust_rcvctrl(dd, add, 0);
6652 }
6653 
6654 static inline void clear_rcvctrl(struct hfi1_devdata *dd, u64 clear)
6655 {
6656 	adjust_rcvctrl(dd, 0, clear);
6657 }
6658 
6659 /*
6660  * Called from all interrupt handlers to start handling an SPC freeze.
6661  */
6662 void start_freeze_handling(struct hfi1_pportdata *ppd, int flags)
6663 {
6664 	struct hfi1_devdata *dd = ppd->dd;
6665 	struct send_context *sc;
6666 	int i;
6667 
6668 	if (flags & FREEZE_SELF)
6669 		write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_FREEZE_SMASK);
6670 
6671 	/* enter frozen mode */
6672 	dd->flags |= HFI1_FROZEN;
6673 
6674 	/* notify all SDMA engines that they are going into a freeze */
6675 	sdma_freeze_notify(dd, !!(flags & FREEZE_LINK_DOWN));
6676 
6677 	/* do halt pre-handling on all enabled send contexts */
6678 	for (i = 0; i < dd->num_send_contexts; i++) {
6679 		sc = dd->send_contexts[i].sc;
6680 		if (sc && (sc->flags & SCF_ENABLED))
6681 			sc_stop(sc, SCF_FROZEN | SCF_HALTED);
6682 	}
6683 
6684 	/* Send context are frozen. Notify user space */
6685 	hfi1_set_uevent_bits(ppd, _HFI1_EVENT_FROZEN_BIT);
6686 
6687 	if (flags & FREEZE_ABORT) {
6688 		dd_dev_err(dd,
6689 			   "Aborted freeze recovery. Please REBOOT system\n");
6690 		return;
6691 	}
6692 	/* queue non-interrupt handler */
6693 	queue_work(ppd->hfi1_wq, &ppd->freeze_work);
6694 }
6695 
6696 /*
6697  * Wait until all 4 sub-blocks indicate that they have frozen or unfrozen,
6698  * depending on the "freeze" parameter.
6699  *
6700  * No need to return an error if it times out, our only option
6701  * is to proceed anyway.
6702  */
6703 static void wait_for_freeze_status(struct hfi1_devdata *dd, int freeze)
6704 {
6705 	unsigned long timeout;
6706 	u64 reg;
6707 
6708 	timeout = jiffies + msecs_to_jiffies(FREEZE_STATUS_TIMEOUT);
6709 	while (1) {
6710 		reg = read_csr(dd, CCE_STATUS);
6711 		if (freeze) {
6712 			/* waiting until all indicators are set */
6713 			if ((reg & ALL_FROZE) == ALL_FROZE)
6714 				return;	/* all done */
6715 		} else {
6716 			/* waiting until all indicators are clear */
6717 			if ((reg & ALL_FROZE) == 0)
6718 				return; /* all done */
6719 		}
6720 
6721 		if (time_after(jiffies, timeout)) {
6722 			dd_dev_err(dd,
6723 				   "Time out waiting for SPC %sfreeze, bits 0x%llx, expecting 0x%llx, continuing",
6724 				   freeze ? "" : "un", reg & ALL_FROZE,
6725 				   freeze ? ALL_FROZE : 0ull);
6726 			return;
6727 		}
6728 		usleep_range(80, 120);
6729 	}
6730 }
6731 
6732 /*
6733  * Do all freeze handling for the RXE block.
6734  */
6735 static void rxe_freeze(struct hfi1_devdata *dd)
6736 {
6737 	int i;
6738 
6739 	/* disable port */
6740 	clear_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
6741 
6742 	/* disable all receive contexts */
6743 	for (i = 0; i < dd->num_rcv_contexts; i++)
6744 		hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_DIS, i);
6745 }
6746 
6747 /*
6748  * Unfreeze handling for the RXE block - kernel contexts only.
6749  * This will also enable the port.  User contexts will do unfreeze
6750  * handling on a per-context basis as they call into the driver.
6751  *
6752  */
6753 static void rxe_kernel_unfreeze(struct hfi1_devdata *dd)
6754 {
6755 	u32 rcvmask;
6756 	int i;
6757 
6758 	/* enable all kernel contexts */
6759 	for (i = 0; i < dd->num_rcv_contexts; i++) {
6760 		struct hfi1_ctxtdata *rcd = dd->rcd[i];
6761 
6762 		/* Ensure all non-user contexts(including vnic) are enabled */
6763 		if (!rcd || !rcd->sc || (rcd->sc->type == SC_USER))
6764 			continue;
6765 
6766 		rcvmask = HFI1_RCVCTRL_CTXT_ENB;
6767 		/* HFI1_RCVCTRL_TAILUPD_[ENB|DIS] needs to be set explicitly */
6768 		rcvmask |= HFI1_CAP_KGET_MASK(dd->rcd[i]->flags, DMA_RTAIL) ?
6769 			HFI1_RCVCTRL_TAILUPD_ENB : HFI1_RCVCTRL_TAILUPD_DIS;
6770 		hfi1_rcvctrl(dd, rcvmask, i);
6771 	}
6772 
6773 	/* enable port */
6774 	add_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
6775 }
6776 
6777 /*
6778  * Non-interrupt SPC freeze handling.
6779  *
6780  * This is a work-queue function outside of the triggering interrupt.
6781  */
6782 void handle_freeze(struct work_struct *work)
6783 {
6784 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
6785 								freeze_work);
6786 	struct hfi1_devdata *dd = ppd->dd;
6787 
6788 	/* wait for freeze indicators on all affected blocks */
6789 	wait_for_freeze_status(dd, 1);
6790 
6791 	/* SPC is now frozen */
6792 
6793 	/* do send PIO freeze steps */
6794 	pio_freeze(dd);
6795 
6796 	/* do send DMA freeze steps */
6797 	sdma_freeze(dd);
6798 
6799 	/* do send egress freeze steps - nothing to do */
6800 
6801 	/* do receive freeze steps */
6802 	rxe_freeze(dd);
6803 
6804 	/*
6805 	 * Unfreeze the hardware - clear the freeze, wait for each
6806 	 * block's frozen bit to clear, then clear the frozen flag.
6807 	 */
6808 	write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_UNFREEZE_SMASK);
6809 	wait_for_freeze_status(dd, 0);
6810 
6811 	if (is_ax(dd)) {
6812 		write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_FREEZE_SMASK);
6813 		wait_for_freeze_status(dd, 1);
6814 		write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_UNFREEZE_SMASK);
6815 		wait_for_freeze_status(dd, 0);
6816 	}
6817 
6818 	/* do send PIO unfreeze steps for kernel contexts */
6819 	pio_kernel_unfreeze(dd);
6820 
6821 	/* do send DMA unfreeze steps */
6822 	sdma_unfreeze(dd);
6823 
6824 	/* do send egress unfreeze steps - nothing to do */
6825 
6826 	/* do receive unfreeze steps for kernel contexts */
6827 	rxe_kernel_unfreeze(dd);
6828 
6829 	/*
6830 	 * The unfreeze procedure touches global device registers when
6831 	 * it disables and re-enables RXE. Mark the device unfrozen
6832 	 * after all that is done so other parts of the driver waiting
6833 	 * for the device to unfreeze don't do things out of order.
6834 	 *
6835 	 * The above implies that the meaning of HFI1_FROZEN flag is
6836 	 * "Device has gone into freeze mode and freeze mode handling
6837 	 * is still in progress."
6838 	 *
6839 	 * The flag will be removed when freeze mode processing has
6840 	 * completed.
6841 	 */
6842 	dd->flags &= ~HFI1_FROZEN;
6843 	wake_up(&dd->event_queue);
6844 
6845 	/* no longer frozen */
6846 }
6847 
6848 /*
6849  * Handle a link up interrupt from the 8051.
6850  *
6851  * This is a work-queue function outside of the interrupt.
6852  */
6853 void handle_link_up(struct work_struct *work)
6854 {
6855 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
6856 						  link_up_work);
6857 	struct hfi1_devdata *dd = ppd->dd;
6858 
6859 	set_link_state(ppd, HLS_UP_INIT);
6860 
6861 	/* cache the read of DC_LCB_STS_ROUND_TRIP_LTP_CNT */
6862 	read_ltp_rtt(dd);
6863 	/*
6864 	 * OPA specifies that certain counters are cleared on a transition
6865 	 * to link up, so do that.
6866 	 */
6867 	clear_linkup_counters(dd);
6868 	/*
6869 	 * And (re)set link up default values.
6870 	 */
6871 	set_linkup_defaults(ppd);
6872 
6873 	/*
6874 	 * Set VL15 credits. Use cached value from verify cap interrupt.
6875 	 * In case of quick linkup or simulator, vl15 value will be set by
6876 	 * handle_linkup_change. VerifyCap interrupt handler will not be
6877 	 * called in those scenarios.
6878 	 */
6879 	if (!(quick_linkup || dd->icode == ICODE_FUNCTIONAL_SIMULATOR))
6880 		set_up_vl15(dd, dd->vl15buf_cached);
6881 
6882 	/* enforce link speed enabled */
6883 	if ((ppd->link_speed_active & ppd->link_speed_enabled) == 0) {
6884 		/* oops - current speed is not enabled, bounce */
6885 		dd_dev_err(dd,
6886 			   "Link speed active 0x%x is outside enabled 0x%x, downing link\n",
6887 			   ppd->link_speed_active, ppd->link_speed_enabled);
6888 		set_link_down_reason(ppd, OPA_LINKDOWN_REASON_SPEED_POLICY, 0,
6889 				     OPA_LINKDOWN_REASON_SPEED_POLICY);
6890 		set_link_state(ppd, HLS_DN_OFFLINE);
6891 		start_link(ppd);
6892 	}
6893 }
6894 
6895 /*
6896  * Several pieces of LNI information were cached for SMA in ppd.
6897  * Reset these on link down
6898  */
6899 static void reset_neighbor_info(struct hfi1_pportdata *ppd)
6900 {
6901 	ppd->neighbor_guid = 0;
6902 	ppd->neighbor_port_number = 0;
6903 	ppd->neighbor_type = 0;
6904 	ppd->neighbor_fm_security = 0;
6905 }
6906 
6907 static const char * const link_down_reason_strs[] = {
6908 	[OPA_LINKDOWN_REASON_NONE] = "None",
6909 	[OPA_LINKDOWN_REASON_RCV_ERROR_0] = "Recive error 0",
6910 	[OPA_LINKDOWN_REASON_BAD_PKT_LEN] = "Bad packet length",
6911 	[OPA_LINKDOWN_REASON_PKT_TOO_LONG] = "Packet too long",
6912 	[OPA_LINKDOWN_REASON_PKT_TOO_SHORT] = "Packet too short",
6913 	[OPA_LINKDOWN_REASON_BAD_SLID] = "Bad SLID",
6914 	[OPA_LINKDOWN_REASON_BAD_DLID] = "Bad DLID",
6915 	[OPA_LINKDOWN_REASON_BAD_L2] = "Bad L2",
6916 	[OPA_LINKDOWN_REASON_BAD_SC] = "Bad SC",
6917 	[OPA_LINKDOWN_REASON_RCV_ERROR_8] = "Receive error 8",
6918 	[OPA_LINKDOWN_REASON_BAD_MID_TAIL] = "Bad mid tail",
6919 	[OPA_LINKDOWN_REASON_RCV_ERROR_10] = "Receive error 10",
6920 	[OPA_LINKDOWN_REASON_PREEMPT_ERROR] = "Preempt error",
6921 	[OPA_LINKDOWN_REASON_PREEMPT_VL15] = "Preempt vl15",
6922 	[OPA_LINKDOWN_REASON_BAD_VL_MARKER] = "Bad VL marker",
6923 	[OPA_LINKDOWN_REASON_RCV_ERROR_14] = "Receive error 14",
6924 	[OPA_LINKDOWN_REASON_RCV_ERROR_15] = "Receive error 15",
6925 	[OPA_LINKDOWN_REASON_BAD_HEAD_DIST] = "Bad head distance",
6926 	[OPA_LINKDOWN_REASON_BAD_TAIL_DIST] = "Bad tail distance",
6927 	[OPA_LINKDOWN_REASON_BAD_CTRL_DIST] = "Bad control distance",
6928 	[OPA_LINKDOWN_REASON_BAD_CREDIT_ACK] = "Bad credit ack",
6929 	[OPA_LINKDOWN_REASON_UNSUPPORTED_VL_MARKER] = "Unsupported VL marker",
6930 	[OPA_LINKDOWN_REASON_BAD_PREEMPT] = "Bad preempt",
6931 	[OPA_LINKDOWN_REASON_BAD_CONTROL_FLIT] = "Bad control flit",
6932 	[OPA_LINKDOWN_REASON_EXCEED_MULTICAST_LIMIT] = "Exceed multicast limit",
6933 	[OPA_LINKDOWN_REASON_RCV_ERROR_24] = "Receive error 24",
6934 	[OPA_LINKDOWN_REASON_RCV_ERROR_25] = "Receive error 25",
6935 	[OPA_LINKDOWN_REASON_RCV_ERROR_26] = "Receive error 26",
6936 	[OPA_LINKDOWN_REASON_RCV_ERROR_27] = "Receive error 27",
6937 	[OPA_LINKDOWN_REASON_RCV_ERROR_28] = "Receive error 28",
6938 	[OPA_LINKDOWN_REASON_RCV_ERROR_29] = "Receive error 29",
6939 	[OPA_LINKDOWN_REASON_RCV_ERROR_30] = "Receive error 30",
6940 	[OPA_LINKDOWN_REASON_EXCESSIVE_BUFFER_OVERRUN] =
6941 					"Excessive buffer overrun",
6942 	[OPA_LINKDOWN_REASON_UNKNOWN] = "Unknown",
6943 	[OPA_LINKDOWN_REASON_REBOOT] = "Reboot",
6944 	[OPA_LINKDOWN_REASON_NEIGHBOR_UNKNOWN] = "Neighbor unknown",
6945 	[OPA_LINKDOWN_REASON_FM_BOUNCE] = "FM bounce",
6946 	[OPA_LINKDOWN_REASON_SPEED_POLICY] = "Speed policy",
6947 	[OPA_LINKDOWN_REASON_WIDTH_POLICY] = "Width policy",
6948 	[OPA_LINKDOWN_REASON_DISCONNECTED] = "Disconnected",
6949 	[OPA_LINKDOWN_REASON_LOCAL_MEDIA_NOT_INSTALLED] =
6950 					"Local media not installed",
6951 	[OPA_LINKDOWN_REASON_NOT_INSTALLED] = "Not installed",
6952 	[OPA_LINKDOWN_REASON_CHASSIS_CONFIG] = "Chassis config",
6953 	[OPA_LINKDOWN_REASON_END_TO_END_NOT_INSTALLED] =
6954 					"End to end not installed",
6955 	[OPA_LINKDOWN_REASON_POWER_POLICY] = "Power policy",
6956 	[OPA_LINKDOWN_REASON_LINKSPEED_POLICY] = "Link speed policy",
6957 	[OPA_LINKDOWN_REASON_LINKWIDTH_POLICY] = "Link width policy",
6958 	[OPA_LINKDOWN_REASON_SWITCH_MGMT] = "Switch management",
6959 	[OPA_LINKDOWN_REASON_SMA_DISABLED] = "SMA disabled",
6960 	[OPA_LINKDOWN_REASON_TRANSIENT] = "Transient"
6961 };
6962 
6963 /* return the neighbor link down reason string */
6964 static const char *link_down_reason_str(u8 reason)
6965 {
6966 	const char *str = NULL;
6967 
6968 	if (reason < ARRAY_SIZE(link_down_reason_strs))
6969 		str = link_down_reason_strs[reason];
6970 	if (!str)
6971 		str = "(invalid)";
6972 
6973 	return str;
6974 }
6975 
6976 /*
6977  * Handle a link down interrupt from the 8051.
6978  *
6979  * This is a work-queue function outside of the interrupt.
6980  */
6981 void handle_link_down(struct work_struct *work)
6982 {
6983 	u8 lcl_reason, neigh_reason = 0;
6984 	u8 link_down_reason;
6985 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
6986 						  link_down_work);
6987 	int was_up;
6988 	static const char ldr_str[] = "Link down reason: ";
6989 
6990 	if ((ppd->host_link_state &
6991 	     (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) &&
6992 	     ppd->port_type == PORT_TYPE_FIXED)
6993 		ppd->offline_disabled_reason =
6994 			HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NOT_INSTALLED);
6995 
6996 	/* Go offline first, then deal with reading/writing through 8051 */
6997 	was_up = !!(ppd->host_link_state & HLS_UP);
6998 	set_link_state(ppd, HLS_DN_OFFLINE);
6999 
7000 	if (was_up) {
7001 		lcl_reason = 0;
7002 		/* link down reason is only valid if the link was up */
7003 		read_link_down_reason(ppd->dd, &link_down_reason);
7004 		switch (link_down_reason) {
7005 		case LDR_LINK_TRANSFER_ACTIVE_LOW:
7006 			/* the link went down, no idle message reason */
7007 			dd_dev_info(ppd->dd, "%sUnexpected link down\n",
7008 				    ldr_str);
7009 			break;
7010 		case LDR_RECEIVED_LINKDOWN_IDLE_MSG:
7011 			/*
7012 			 * The neighbor reason is only valid if an idle message
7013 			 * was received for it.
7014 			 */
7015 			read_planned_down_reason_code(ppd->dd, &neigh_reason);
7016 			dd_dev_info(ppd->dd,
7017 				    "%sNeighbor link down message %d, %s\n",
7018 				    ldr_str, neigh_reason,
7019 				    link_down_reason_str(neigh_reason));
7020 			break;
7021 		case LDR_RECEIVED_HOST_OFFLINE_REQ:
7022 			dd_dev_info(ppd->dd,
7023 				    "%sHost requested link to go offline\n",
7024 				    ldr_str);
7025 			break;
7026 		default:
7027 			dd_dev_info(ppd->dd, "%sUnknown reason 0x%x\n",
7028 				    ldr_str, link_down_reason);
7029 			break;
7030 		}
7031 
7032 		/*
7033 		 * If no reason, assume peer-initiated but missed
7034 		 * LinkGoingDown idle flits.
7035 		 */
7036 		if (neigh_reason == 0)
7037 			lcl_reason = OPA_LINKDOWN_REASON_NEIGHBOR_UNKNOWN;
7038 	} else {
7039 		/* went down while polling or going up */
7040 		lcl_reason = OPA_LINKDOWN_REASON_TRANSIENT;
7041 	}
7042 
7043 	set_link_down_reason(ppd, lcl_reason, neigh_reason, 0);
7044 
7045 	/* inform the SMA when the link transitions from up to down */
7046 	if (was_up && ppd->local_link_down_reason.sma == 0 &&
7047 	    ppd->neigh_link_down_reason.sma == 0) {
7048 		ppd->local_link_down_reason.sma =
7049 					ppd->local_link_down_reason.latest;
7050 		ppd->neigh_link_down_reason.sma =
7051 					ppd->neigh_link_down_reason.latest;
7052 	}
7053 
7054 	reset_neighbor_info(ppd);
7055 
7056 	/* disable the port */
7057 	clear_rcvctrl(ppd->dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
7058 
7059 	/*
7060 	 * If there is no cable attached, turn the DC off. Otherwise,
7061 	 * start the link bring up.
7062 	 */
7063 	if (ppd->port_type == PORT_TYPE_QSFP && !qsfp_mod_present(ppd))
7064 		dc_shutdown(ppd->dd);
7065 	else
7066 		start_link(ppd);
7067 }
7068 
7069 void handle_link_bounce(struct work_struct *work)
7070 {
7071 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
7072 							link_bounce_work);
7073 
7074 	/*
7075 	 * Only do something if the link is currently up.
7076 	 */
7077 	if (ppd->host_link_state & HLS_UP) {
7078 		set_link_state(ppd, HLS_DN_OFFLINE);
7079 		start_link(ppd);
7080 	} else {
7081 		dd_dev_info(ppd->dd, "%s: link not up (%s), nothing to do\n",
7082 			    __func__, link_state_name(ppd->host_link_state));
7083 	}
7084 }
7085 
7086 /*
7087  * Mask conversion: Capability exchange to Port LTP.  The capability
7088  * exchange has an implicit 16b CRC that is mandatory.
7089  */
7090 static int cap_to_port_ltp(int cap)
7091 {
7092 	int port_ltp = PORT_LTP_CRC_MODE_16; /* this mode is mandatory */
7093 
7094 	if (cap & CAP_CRC_14B)
7095 		port_ltp |= PORT_LTP_CRC_MODE_14;
7096 	if (cap & CAP_CRC_48B)
7097 		port_ltp |= PORT_LTP_CRC_MODE_48;
7098 	if (cap & CAP_CRC_12B_16B_PER_LANE)
7099 		port_ltp |= PORT_LTP_CRC_MODE_PER_LANE;
7100 
7101 	return port_ltp;
7102 }
7103 
7104 /*
7105  * Convert an OPA Port LTP mask to capability mask
7106  */
7107 int port_ltp_to_cap(int port_ltp)
7108 {
7109 	int cap_mask = 0;
7110 
7111 	if (port_ltp & PORT_LTP_CRC_MODE_14)
7112 		cap_mask |= CAP_CRC_14B;
7113 	if (port_ltp & PORT_LTP_CRC_MODE_48)
7114 		cap_mask |= CAP_CRC_48B;
7115 	if (port_ltp & PORT_LTP_CRC_MODE_PER_LANE)
7116 		cap_mask |= CAP_CRC_12B_16B_PER_LANE;
7117 
7118 	return cap_mask;
7119 }
7120 
7121 /*
7122  * Convert a single DC LCB CRC mode to an OPA Port LTP mask.
7123  */
7124 static int lcb_to_port_ltp(int lcb_crc)
7125 {
7126 	int port_ltp = 0;
7127 
7128 	if (lcb_crc == LCB_CRC_12B_16B_PER_LANE)
7129 		port_ltp = PORT_LTP_CRC_MODE_PER_LANE;
7130 	else if (lcb_crc == LCB_CRC_48B)
7131 		port_ltp = PORT_LTP_CRC_MODE_48;
7132 	else if (lcb_crc == LCB_CRC_14B)
7133 		port_ltp = PORT_LTP_CRC_MODE_14;
7134 	else
7135 		port_ltp = PORT_LTP_CRC_MODE_16;
7136 
7137 	return port_ltp;
7138 }
7139 
7140 /*
7141  * Our neighbor has indicated that we are allowed to act as a fabric
7142  * manager, so place the full management partition key in the second
7143  * (0-based) pkey array position (see OPAv1, section 20.2.2.6.8). Note
7144  * that we should already have the limited management partition key in
7145  * array element 1, and also that the port is not yet up when
7146  * add_full_mgmt_pkey() is invoked.
7147  */
7148 static void add_full_mgmt_pkey(struct hfi1_pportdata *ppd)
7149 {
7150 	struct hfi1_devdata *dd = ppd->dd;
7151 
7152 	/* Sanity check - ppd->pkeys[2] should be 0, or already initialized */
7153 	if (!((ppd->pkeys[2] == 0) || (ppd->pkeys[2] == FULL_MGMT_P_KEY)))
7154 		dd_dev_warn(dd, "%s pkey[2] already set to 0x%x, resetting it to 0x%x\n",
7155 			    __func__, ppd->pkeys[2], FULL_MGMT_P_KEY);
7156 	ppd->pkeys[2] = FULL_MGMT_P_KEY;
7157 	(void)hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_PKEYS, 0);
7158 	hfi1_event_pkey_change(ppd->dd, ppd->port);
7159 }
7160 
7161 static void clear_full_mgmt_pkey(struct hfi1_pportdata *ppd)
7162 {
7163 	if (ppd->pkeys[2] != 0) {
7164 		ppd->pkeys[2] = 0;
7165 		(void)hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_PKEYS, 0);
7166 		hfi1_event_pkey_change(ppd->dd, ppd->port);
7167 	}
7168 }
7169 
7170 /*
7171  * Convert the given link width to the OPA link width bitmask.
7172  */
7173 static u16 link_width_to_bits(struct hfi1_devdata *dd, u16 width)
7174 {
7175 	switch (width) {
7176 	case 0:
7177 		/*
7178 		 * Simulator and quick linkup do not set the width.
7179 		 * Just set it to 4x without complaint.
7180 		 */
7181 		if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR || quick_linkup)
7182 			return OPA_LINK_WIDTH_4X;
7183 		return 0; /* no lanes up */
7184 	case 1: return OPA_LINK_WIDTH_1X;
7185 	case 2: return OPA_LINK_WIDTH_2X;
7186 	case 3: return OPA_LINK_WIDTH_3X;
7187 	default:
7188 		dd_dev_info(dd, "%s: invalid width %d, using 4\n",
7189 			    __func__, width);
7190 		/* fall through */
7191 	case 4: return OPA_LINK_WIDTH_4X;
7192 	}
7193 }
7194 
7195 /*
7196  * Do a population count on the bottom nibble.
7197  */
7198 static const u8 bit_counts[16] = {
7199 	0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4
7200 };
7201 
7202 static inline u8 nibble_to_count(u8 nibble)
7203 {
7204 	return bit_counts[nibble & 0xf];
7205 }
7206 
7207 /*
7208  * Read the active lane information from the 8051 registers and return
7209  * their widths.
7210  *
7211  * Active lane information is found in these 8051 registers:
7212  *	enable_lane_tx
7213  *	enable_lane_rx
7214  */
7215 static void get_link_widths(struct hfi1_devdata *dd, u16 *tx_width,
7216 			    u16 *rx_width)
7217 {
7218 	u16 tx, rx;
7219 	u8 enable_lane_rx;
7220 	u8 enable_lane_tx;
7221 	u8 tx_polarity_inversion;
7222 	u8 rx_polarity_inversion;
7223 	u8 max_rate;
7224 
7225 	/* read the active lanes */
7226 	read_tx_settings(dd, &enable_lane_tx, &tx_polarity_inversion,
7227 			 &rx_polarity_inversion, &max_rate);
7228 	read_local_lni(dd, &enable_lane_rx);
7229 
7230 	/* convert to counts */
7231 	tx = nibble_to_count(enable_lane_tx);
7232 	rx = nibble_to_count(enable_lane_rx);
7233 
7234 	/*
7235 	 * Set link_speed_active here, overriding what was set in
7236 	 * handle_verify_cap().  The ASIC 8051 firmware does not correctly
7237 	 * set the max_rate field in handle_verify_cap until v0.19.
7238 	 */
7239 	if ((dd->icode == ICODE_RTL_SILICON) &&
7240 	    (dd->dc8051_ver < dc8051_ver(0, 19, 0))) {
7241 		/* max_rate: 0 = 12.5G, 1 = 25G */
7242 		switch (max_rate) {
7243 		case 0:
7244 			dd->pport[0].link_speed_active = OPA_LINK_SPEED_12_5G;
7245 			break;
7246 		default:
7247 			dd_dev_err(dd,
7248 				   "%s: unexpected max rate %d, using 25Gb\n",
7249 				   __func__, (int)max_rate);
7250 			/* fall through */
7251 		case 1:
7252 			dd->pport[0].link_speed_active = OPA_LINK_SPEED_25G;
7253 			break;
7254 		}
7255 	}
7256 
7257 	dd_dev_info(dd,
7258 		    "Fabric active lanes (width): tx 0x%x (%d), rx 0x%x (%d)\n",
7259 		    enable_lane_tx, tx, enable_lane_rx, rx);
7260 	*tx_width = link_width_to_bits(dd, tx);
7261 	*rx_width = link_width_to_bits(dd, rx);
7262 }
7263 
7264 /*
7265  * Read verify_cap_local_fm_link_width[1] to obtain the link widths.
7266  * Valid after the end of VerifyCap and during LinkUp.  Does not change
7267  * after link up.  I.e. look elsewhere for downgrade information.
7268  *
7269  * Bits are:
7270  *	+ bits [7:4] contain the number of active transmitters
7271  *	+ bits [3:0] contain the number of active receivers
7272  * These are numbers 1 through 4 and can be different values if the
7273  * link is asymmetric.
7274  *
7275  * verify_cap_local_fm_link_width[0] retains its original value.
7276  */
7277 static void get_linkup_widths(struct hfi1_devdata *dd, u16 *tx_width,
7278 			      u16 *rx_width)
7279 {
7280 	u16 widths, tx, rx;
7281 	u8 misc_bits, local_flags;
7282 	u16 active_tx, active_rx;
7283 
7284 	read_vc_local_link_width(dd, &misc_bits, &local_flags, &widths);
7285 	tx = widths >> 12;
7286 	rx = (widths >> 8) & 0xf;
7287 
7288 	*tx_width = link_width_to_bits(dd, tx);
7289 	*rx_width = link_width_to_bits(dd, rx);
7290 
7291 	/* print the active widths */
7292 	get_link_widths(dd, &active_tx, &active_rx);
7293 }
7294 
7295 /*
7296  * Set ppd->link_width_active and ppd->link_width_downgrade_active using
7297  * hardware information when the link first comes up.
7298  *
7299  * The link width is not available until after VerifyCap.AllFramesReceived
7300  * (the trigger for handle_verify_cap), so this is outside that routine
7301  * and should be called when the 8051 signals linkup.
7302  */
7303 void get_linkup_link_widths(struct hfi1_pportdata *ppd)
7304 {
7305 	u16 tx_width, rx_width;
7306 
7307 	/* get end-of-LNI link widths */
7308 	get_linkup_widths(ppd->dd, &tx_width, &rx_width);
7309 
7310 	/* use tx_width as the link is supposed to be symmetric on link up */
7311 	ppd->link_width_active = tx_width;
7312 	/* link width downgrade active (LWD.A) starts out matching LW.A */
7313 	ppd->link_width_downgrade_tx_active = ppd->link_width_active;
7314 	ppd->link_width_downgrade_rx_active = ppd->link_width_active;
7315 	/* per OPA spec, on link up LWD.E resets to LWD.S */
7316 	ppd->link_width_downgrade_enabled = ppd->link_width_downgrade_supported;
7317 	/* cache the active egress rate (units {10^6 bits/sec]) */
7318 	ppd->current_egress_rate = active_egress_rate(ppd);
7319 }
7320 
7321 /*
7322  * Handle a verify capabilities interrupt from the 8051.
7323  *
7324  * This is a work-queue function outside of the interrupt.
7325  */
7326 void handle_verify_cap(struct work_struct *work)
7327 {
7328 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
7329 								link_vc_work);
7330 	struct hfi1_devdata *dd = ppd->dd;
7331 	u64 reg;
7332 	u8 power_management;
7333 	u8 continious;
7334 	u8 vcu;
7335 	u8 vau;
7336 	u8 z;
7337 	u16 vl15buf;
7338 	u16 link_widths;
7339 	u16 crc_mask;
7340 	u16 crc_val;
7341 	u16 device_id;
7342 	u16 active_tx, active_rx;
7343 	u8 partner_supported_crc;
7344 	u8 remote_tx_rate;
7345 	u8 device_rev;
7346 
7347 	set_link_state(ppd, HLS_VERIFY_CAP);
7348 
7349 	lcb_shutdown(dd, 0);
7350 	adjust_lcb_for_fpga_serdes(dd);
7351 
7352 	read_vc_remote_phy(dd, &power_management, &continious);
7353 	read_vc_remote_fabric(dd, &vau, &z, &vcu, &vl15buf,
7354 			      &partner_supported_crc);
7355 	read_vc_remote_link_width(dd, &remote_tx_rate, &link_widths);
7356 	read_remote_device_id(dd, &device_id, &device_rev);
7357 	/*
7358 	 * And the 'MgmtAllowed' information, which is exchanged during
7359 	 * LNI, is also be available at this point.
7360 	 */
7361 	read_mgmt_allowed(dd, &ppd->mgmt_allowed);
7362 	/* print the active widths */
7363 	get_link_widths(dd, &active_tx, &active_rx);
7364 	dd_dev_info(dd,
7365 		    "Peer PHY: power management 0x%x, continuous updates 0x%x\n",
7366 		    (int)power_management, (int)continious);
7367 	dd_dev_info(dd,
7368 		    "Peer Fabric: vAU %d, Z %d, vCU %d, vl15 credits 0x%x, CRC sizes 0x%x\n",
7369 		    (int)vau, (int)z, (int)vcu, (int)vl15buf,
7370 		    (int)partner_supported_crc);
7371 	dd_dev_info(dd, "Peer Link Width: tx rate 0x%x, widths 0x%x\n",
7372 		    (u32)remote_tx_rate, (u32)link_widths);
7373 	dd_dev_info(dd, "Peer Device ID: 0x%04x, Revision 0x%02x\n",
7374 		    (u32)device_id, (u32)device_rev);
7375 	/*
7376 	 * The peer vAU value just read is the peer receiver value.  HFI does
7377 	 * not support a transmit vAU of 0 (AU == 8).  We advertised that
7378 	 * with Z=1 in the fabric capabilities sent to the peer.  The peer
7379 	 * will see our Z=1, and, if it advertised a vAU of 0, will move its
7380 	 * receive to vAU of 1 (AU == 16).  Do the same here.  We do not care
7381 	 * about the peer Z value - our sent vAU is 3 (hardwired) and is not
7382 	 * subject to the Z value exception.
7383 	 */
7384 	if (vau == 0)
7385 		vau = 1;
7386 	set_up_vau(dd, vau);
7387 
7388 	/*
7389 	 * Set VL15 credits to 0 in global credit register. Cache remote VL15
7390 	 * credits value and wait for link-up interrupt ot set it.
7391 	 */
7392 	set_up_vl15(dd, 0);
7393 	dd->vl15buf_cached = vl15buf;
7394 
7395 	/* set up the LCB CRC mode */
7396 	crc_mask = ppd->port_crc_mode_enabled & partner_supported_crc;
7397 
7398 	/* order is important: use the lowest bit in common */
7399 	if (crc_mask & CAP_CRC_14B)
7400 		crc_val = LCB_CRC_14B;
7401 	else if (crc_mask & CAP_CRC_48B)
7402 		crc_val = LCB_CRC_48B;
7403 	else if (crc_mask & CAP_CRC_12B_16B_PER_LANE)
7404 		crc_val = LCB_CRC_12B_16B_PER_LANE;
7405 	else
7406 		crc_val = LCB_CRC_16B;
7407 
7408 	dd_dev_info(dd, "Final LCB CRC mode: %d\n", (int)crc_val);
7409 	write_csr(dd, DC_LCB_CFG_CRC_MODE,
7410 		  (u64)crc_val << DC_LCB_CFG_CRC_MODE_TX_VAL_SHIFT);
7411 
7412 	/* set (14b only) or clear sideband credit */
7413 	reg = read_csr(dd, SEND_CM_CTRL);
7414 	if (crc_val == LCB_CRC_14B && crc_14b_sideband) {
7415 		write_csr(dd, SEND_CM_CTRL,
7416 			  reg | SEND_CM_CTRL_FORCE_CREDIT_MODE_SMASK);
7417 	} else {
7418 		write_csr(dd, SEND_CM_CTRL,
7419 			  reg & ~SEND_CM_CTRL_FORCE_CREDIT_MODE_SMASK);
7420 	}
7421 
7422 	ppd->link_speed_active = 0;	/* invalid value */
7423 	if (dd->dc8051_ver < dc8051_ver(0, 20, 0)) {
7424 		/* remote_tx_rate: 0 = 12.5G, 1 = 25G */
7425 		switch (remote_tx_rate) {
7426 		case 0:
7427 			ppd->link_speed_active = OPA_LINK_SPEED_12_5G;
7428 			break;
7429 		case 1:
7430 			ppd->link_speed_active = OPA_LINK_SPEED_25G;
7431 			break;
7432 		}
7433 	} else {
7434 		/* actual rate is highest bit of the ANDed rates */
7435 		u8 rate = remote_tx_rate & ppd->local_tx_rate;
7436 
7437 		if (rate & 2)
7438 			ppd->link_speed_active = OPA_LINK_SPEED_25G;
7439 		else if (rate & 1)
7440 			ppd->link_speed_active = OPA_LINK_SPEED_12_5G;
7441 	}
7442 	if (ppd->link_speed_active == 0) {
7443 		dd_dev_err(dd, "%s: unexpected remote tx rate %d, using 25Gb\n",
7444 			   __func__, (int)remote_tx_rate);
7445 		ppd->link_speed_active = OPA_LINK_SPEED_25G;
7446 	}
7447 
7448 	/*
7449 	 * Cache the values of the supported, enabled, and active
7450 	 * LTP CRC modes to return in 'portinfo' queries. But the bit
7451 	 * flags that are returned in the portinfo query differ from
7452 	 * what's in the link_crc_mask, crc_sizes, and crc_val
7453 	 * variables. Convert these here.
7454 	 */
7455 	ppd->port_ltp_crc_mode = cap_to_port_ltp(link_crc_mask) << 8;
7456 		/* supported crc modes */
7457 	ppd->port_ltp_crc_mode |=
7458 		cap_to_port_ltp(ppd->port_crc_mode_enabled) << 4;
7459 		/* enabled crc modes */
7460 	ppd->port_ltp_crc_mode |= lcb_to_port_ltp(crc_val);
7461 		/* active crc mode */
7462 
7463 	/* set up the remote credit return table */
7464 	assign_remote_cm_au_table(dd, vcu);
7465 
7466 	/*
7467 	 * The LCB is reset on entry to handle_verify_cap(), so this must
7468 	 * be applied on every link up.
7469 	 *
7470 	 * Adjust LCB error kill enable to kill the link if
7471 	 * these RBUF errors are seen:
7472 	 *	REPLAY_BUF_MBE_SMASK
7473 	 *	FLIT_INPUT_BUF_MBE_SMASK
7474 	 */
7475 	if (is_ax(dd)) {			/* fixed in B0 */
7476 		reg = read_csr(dd, DC_LCB_CFG_LINK_KILL_EN);
7477 		reg |= DC_LCB_CFG_LINK_KILL_EN_REPLAY_BUF_MBE_SMASK
7478 			| DC_LCB_CFG_LINK_KILL_EN_FLIT_INPUT_BUF_MBE_SMASK;
7479 		write_csr(dd, DC_LCB_CFG_LINK_KILL_EN, reg);
7480 	}
7481 
7482 	/* pull LCB fifos out of reset - all fifo clocks must be stable */
7483 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0);
7484 
7485 	/* give 8051 access to the LCB CSRs */
7486 	write_csr(dd, DC_LCB_ERR_EN, 0); /* mask LCB errors */
7487 	set_8051_lcb_access(dd);
7488 
7489 	if (ppd->mgmt_allowed)
7490 		add_full_mgmt_pkey(ppd);
7491 
7492 	/* tell the 8051 to go to LinkUp */
7493 	set_link_state(ppd, HLS_GOING_UP);
7494 }
7495 
7496 /*
7497  * Apply the link width downgrade enabled policy against the current active
7498  * link widths.
7499  *
7500  * Called when the enabled policy changes or the active link widths change.
7501  */
7502 void apply_link_downgrade_policy(struct hfi1_pportdata *ppd, int refresh_widths)
7503 {
7504 	int do_bounce = 0;
7505 	int tries;
7506 	u16 lwde;
7507 	u16 tx, rx;
7508 
7509 	/* use the hls lock to avoid a race with actual link up */
7510 	tries = 0;
7511 retry:
7512 	mutex_lock(&ppd->hls_lock);
7513 	/* only apply if the link is up */
7514 	if (ppd->host_link_state & HLS_DOWN) {
7515 		/* still going up..wait and retry */
7516 		if (ppd->host_link_state & HLS_GOING_UP) {
7517 			if (++tries < 1000) {
7518 				mutex_unlock(&ppd->hls_lock);
7519 				usleep_range(100, 120); /* arbitrary */
7520 				goto retry;
7521 			}
7522 			dd_dev_err(ppd->dd,
7523 				   "%s: giving up waiting for link state change\n",
7524 				   __func__);
7525 		}
7526 		goto done;
7527 	}
7528 
7529 	lwde = ppd->link_width_downgrade_enabled;
7530 
7531 	if (refresh_widths) {
7532 		get_link_widths(ppd->dd, &tx, &rx);
7533 		ppd->link_width_downgrade_tx_active = tx;
7534 		ppd->link_width_downgrade_rx_active = rx;
7535 	}
7536 
7537 	if (ppd->link_width_downgrade_tx_active == 0 ||
7538 	    ppd->link_width_downgrade_rx_active == 0) {
7539 		/* the 8051 reported a dead link as a downgrade */
7540 		dd_dev_err(ppd->dd, "Link downgrade is really a link down, ignoring\n");
7541 	} else if (lwde == 0) {
7542 		/* downgrade is disabled */
7543 
7544 		/* bounce if not at starting active width */
7545 		if ((ppd->link_width_active !=
7546 		     ppd->link_width_downgrade_tx_active) ||
7547 		    (ppd->link_width_active !=
7548 		     ppd->link_width_downgrade_rx_active)) {
7549 			dd_dev_err(ppd->dd,
7550 				   "Link downgrade is disabled and link has downgraded, downing link\n");
7551 			dd_dev_err(ppd->dd,
7552 				   "  original 0x%x, tx active 0x%x, rx active 0x%x\n",
7553 				   ppd->link_width_active,
7554 				   ppd->link_width_downgrade_tx_active,
7555 				   ppd->link_width_downgrade_rx_active);
7556 			do_bounce = 1;
7557 		}
7558 	} else if ((lwde & ppd->link_width_downgrade_tx_active) == 0 ||
7559 		   (lwde & ppd->link_width_downgrade_rx_active) == 0) {
7560 		/* Tx or Rx is outside the enabled policy */
7561 		dd_dev_err(ppd->dd,
7562 			   "Link is outside of downgrade allowed, downing link\n");
7563 		dd_dev_err(ppd->dd,
7564 			   "  enabled 0x%x, tx active 0x%x, rx active 0x%x\n",
7565 			   lwde, ppd->link_width_downgrade_tx_active,
7566 			   ppd->link_width_downgrade_rx_active);
7567 		do_bounce = 1;
7568 	}
7569 
7570 done:
7571 	mutex_unlock(&ppd->hls_lock);
7572 
7573 	if (do_bounce) {
7574 		set_link_down_reason(ppd, OPA_LINKDOWN_REASON_WIDTH_POLICY, 0,
7575 				     OPA_LINKDOWN_REASON_WIDTH_POLICY);
7576 		set_link_state(ppd, HLS_DN_OFFLINE);
7577 		start_link(ppd);
7578 	}
7579 }
7580 
7581 /*
7582  * Handle a link downgrade interrupt from the 8051.
7583  *
7584  * This is a work-queue function outside of the interrupt.
7585  */
7586 void handle_link_downgrade(struct work_struct *work)
7587 {
7588 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
7589 							link_downgrade_work);
7590 
7591 	dd_dev_info(ppd->dd, "8051: Link width downgrade\n");
7592 	apply_link_downgrade_policy(ppd, 1);
7593 }
7594 
7595 static char *dcc_err_string(char *buf, int buf_len, u64 flags)
7596 {
7597 	return flag_string(buf, buf_len, flags, dcc_err_flags,
7598 		ARRAY_SIZE(dcc_err_flags));
7599 }
7600 
7601 static char *lcb_err_string(char *buf, int buf_len, u64 flags)
7602 {
7603 	return flag_string(buf, buf_len, flags, lcb_err_flags,
7604 		ARRAY_SIZE(lcb_err_flags));
7605 }
7606 
7607 static char *dc8051_err_string(char *buf, int buf_len, u64 flags)
7608 {
7609 	return flag_string(buf, buf_len, flags, dc8051_err_flags,
7610 		ARRAY_SIZE(dc8051_err_flags));
7611 }
7612 
7613 static char *dc8051_info_err_string(char *buf, int buf_len, u64 flags)
7614 {
7615 	return flag_string(buf, buf_len, flags, dc8051_info_err_flags,
7616 		ARRAY_SIZE(dc8051_info_err_flags));
7617 }
7618 
7619 static char *dc8051_info_host_msg_string(char *buf, int buf_len, u64 flags)
7620 {
7621 	return flag_string(buf, buf_len, flags, dc8051_info_host_msg_flags,
7622 		ARRAY_SIZE(dc8051_info_host_msg_flags));
7623 }
7624 
7625 static void handle_8051_interrupt(struct hfi1_devdata *dd, u32 unused, u64 reg)
7626 {
7627 	struct hfi1_pportdata *ppd = dd->pport;
7628 	u64 info, err, host_msg;
7629 	int queue_link_down = 0;
7630 	char buf[96];
7631 
7632 	/* look at the flags */
7633 	if (reg & DC_DC8051_ERR_FLG_SET_BY_8051_SMASK) {
7634 		/* 8051 information set by firmware */
7635 		/* read DC8051_DBG_ERR_INFO_SET_BY_8051 for details */
7636 		info = read_csr(dd, DC_DC8051_DBG_ERR_INFO_SET_BY_8051);
7637 		err = (info >> DC_DC8051_DBG_ERR_INFO_SET_BY_8051_ERROR_SHIFT)
7638 			& DC_DC8051_DBG_ERR_INFO_SET_BY_8051_ERROR_MASK;
7639 		host_msg = (info >>
7640 			DC_DC8051_DBG_ERR_INFO_SET_BY_8051_HOST_MSG_SHIFT)
7641 			& DC_DC8051_DBG_ERR_INFO_SET_BY_8051_HOST_MSG_MASK;
7642 
7643 		/*
7644 		 * Handle error flags.
7645 		 */
7646 		if (err & FAILED_LNI) {
7647 			/*
7648 			 * LNI error indications are cleared by the 8051
7649 			 * only when starting polling.  Only pay attention
7650 			 * to them when in the states that occur during
7651 			 * LNI.
7652 			 */
7653 			if (ppd->host_link_state
7654 			    & (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) {
7655 				queue_link_down = 1;
7656 				dd_dev_info(dd, "Link error: %s\n",
7657 					    dc8051_info_err_string(buf,
7658 								   sizeof(buf),
7659 								   err &
7660 								   FAILED_LNI));
7661 			}
7662 			err &= ~(u64)FAILED_LNI;
7663 		}
7664 		/* unknown frames can happen durning LNI, just count */
7665 		if (err & UNKNOWN_FRAME) {
7666 			ppd->unknown_frame_count++;
7667 			err &= ~(u64)UNKNOWN_FRAME;
7668 		}
7669 		if (err) {
7670 			/* report remaining errors, but do not do anything */
7671 			dd_dev_err(dd, "8051 info error: %s\n",
7672 				   dc8051_info_err_string(buf, sizeof(buf),
7673 							  err));
7674 		}
7675 
7676 		/*
7677 		 * Handle host message flags.
7678 		 */
7679 		if (host_msg & HOST_REQ_DONE) {
7680 			/*
7681 			 * Presently, the driver does a busy wait for
7682 			 * host requests to complete.  This is only an
7683 			 * informational message.
7684 			 * NOTE: The 8051 clears the host message
7685 			 * information *on the next 8051 command*.
7686 			 * Therefore, when linkup is achieved,
7687 			 * this flag will still be set.
7688 			 */
7689 			host_msg &= ~(u64)HOST_REQ_DONE;
7690 		}
7691 		if (host_msg & BC_SMA_MSG) {
7692 			queue_work(ppd->hfi1_wq, &ppd->sma_message_work);
7693 			host_msg &= ~(u64)BC_SMA_MSG;
7694 		}
7695 		if (host_msg & LINKUP_ACHIEVED) {
7696 			dd_dev_info(dd, "8051: Link up\n");
7697 			queue_work(ppd->hfi1_wq, &ppd->link_up_work);
7698 			host_msg &= ~(u64)LINKUP_ACHIEVED;
7699 		}
7700 		if (host_msg & EXT_DEVICE_CFG_REQ) {
7701 			handle_8051_request(ppd);
7702 			host_msg &= ~(u64)EXT_DEVICE_CFG_REQ;
7703 		}
7704 		if (host_msg & VERIFY_CAP_FRAME) {
7705 			queue_work(ppd->hfi1_wq, &ppd->link_vc_work);
7706 			host_msg &= ~(u64)VERIFY_CAP_FRAME;
7707 		}
7708 		if (host_msg & LINK_GOING_DOWN) {
7709 			const char *extra = "";
7710 			/* no downgrade action needed if going down */
7711 			if (host_msg & LINK_WIDTH_DOWNGRADED) {
7712 				host_msg &= ~(u64)LINK_WIDTH_DOWNGRADED;
7713 				extra = " (ignoring downgrade)";
7714 			}
7715 			dd_dev_info(dd, "8051: Link down%s\n", extra);
7716 			queue_link_down = 1;
7717 			host_msg &= ~(u64)LINK_GOING_DOWN;
7718 		}
7719 		if (host_msg & LINK_WIDTH_DOWNGRADED) {
7720 			queue_work(ppd->hfi1_wq, &ppd->link_downgrade_work);
7721 			host_msg &= ~(u64)LINK_WIDTH_DOWNGRADED;
7722 		}
7723 		if (host_msg) {
7724 			/* report remaining messages, but do not do anything */
7725 			dd_dev_info(dd, "8051 info host message: %s\n",
7726 				    dc8051_info_host_msg_string(buf,
7727 								sizeof(buf),
7728 								host_msg));
7729 		}
7730 
7731 		reg &= ~DC_DC8051_ERR_FLG_SET_BY_8051_SMASK;
7732 	}
7733 	if (reg & DC_DC8051_ERR_FLG_LOST_8051_HEART_BEAT_SMASK) {
7734 		/*
7735 		 * Lost the 8051 heartbeat.  If this happens, we
7736 		 * receive constant interrupts about it.  Disable
7737 		 * the interrupt after the first.
7738 		 */
7739 		dd_dev_err(dd, "Lost 8051 heartbeat\n");
7740 		write_csr(dd, DC_DC8051_ERR_EN,
7741 			  read_csr(dd, DC_DC8051_ERR_EN) &
7742 			  ~DC_DC8051_ERR_EN_LOST_8051_HEART_BEAT_SMASK);
7743 
7744 		reg &= ~DC_DC8051_ERR_FLG_LOST_8051_HEART_BEAT_SMASK;
7745 	}
7746 	if (reg) {
7747 		/* report the error, but do not do anything */
7748 		dd_dev_err(dd, "8051 error: %s\n",
7749 			   dc8051_err_string(buf, sizeof(buf), reg));
7750 	}
7751 
7752 	if (queue_link_down) {
7753 		/*
7754 		 * if the link is already going down or disabled, do not
7755 		 * queue another
7756 		 */
7757 		if ((ppd->host_link_state &
7758 		    (HLS_GOING_OFFLINE | HLS_LINK_COOLDOWN)) ||
7759 		    ppd->link_enabled == 0) {
7760 			dd_dev_info(dd, "%s: not queuing link down\n",
7761 				    __func__);
7762 		} else {
7763 			queue_work(ppd->hfi1_wq, &ppd->link_down_work);
7764 		}
7765 	}
7766 }
7767 
7768 static const char * const fm_config_txt[] = {
7769 [0] =
7770 	"BadHeadDist: Distance violation between two head flits",
7771 [1] =
7772 	"BadTailDist: Distance violation between two tail flits",
7773 [2] =
7774 	"BadCtrlDist: Distance violation between two credit control flits",
7775 [3] =
7776 	"BadCrdAck: Credits return for unsupported VL",
7777 [4] =
7778 	"UnsupportedVLMarker: Received VL Marker",
7779 [5] =
7780 	"BadPreempt: Exceeded the preemption nesting level",
7781 [6] =
7782 	"BadControlFlit: Received unsupported control flit",
7783 /* no 7 */
7784 [8] =
7785 	"UnsupportedVLMarker: Received VL Marker for unconfigured or disabled VL",
7786 };
7787 
7788 static const char * const port_rcv_txt[] = {
7789 [1] =
7790 	"BadPktLen: Illegal PktLen",
7791 [2] =
7792 	"PktLenTooLong: Packet longer than PktLen",
7793 [3] =
7794 	"PktLenTooShort: Packet shorter than PktLen",
7795 [4] =
7796 	"BadSLID: Illegal SLID (0, using multicast as SLID, does not include security validation of SLID)",
7797 [5] =
7798 	"BadDLID: Illegal DLID (0, doesn't match HFI)",
7799 [6] =
7800 	"BadL2: Illegal L2 opcode",
7801 [7] =
7802 	"BadSC: Unsupported SC",
7803 [9] =
7804 	"BadRC: Illegal RC",
7805 [11] =
7806 	"PreemptError: Preempting with same VL",
7807 [12] =
7808 	"PreemptVL15: Preempting a VL15 packet",
7809 };
7810 
7811 #define OPA_LDR_FMCONFIG_OFFSET 16
7812 #define OPA_LDR_PORTRCV_OFFSET 0
7813 static void handle_dcc_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
7814 {
7815 	u64 info, hdr0, hdr1;
7816 	const char *extra;
7817 	char buf[96];
7818 	struct hfi1_pportdata *ppd = dd->pport;
7819 	u8 lcl_reason = 0;
7820 	int do_bounce = 0;
7821 
7822 	if (reg & DCC_ERR_FLG_UNCORRECTABLE_ERR_SMASK) {
7823 		if (!(dd->err_info_uncorrectable & OPA_EI_STATUS_SMASK)) {
7824 			info = read_csr(dd, DCC_ERR_INFO_UNCORRECTABLE);
7825 			dd->err_info_uncorrectable = info & OPA_EI_CODE_SMASK;
7826 			/* set status bit */
7827 			dd->err_info_uncorrectable |= OPA_EI_STATUS_SMASK;
7828 		}
7829 		reg &= ~DCC_ERR_FLG_UNCORRECTABLE_ERR_SMASK;
7830 	}
7831 
7832 	if (reg & DCC_ERR_FLG_LINK_ERR_SMASK) {
7833 		struct hfi1_pportdata *ppd = dd->pport;
7834 		/* this counter saturates at (2^32) - 1 */
7835 		if (ppd->link_downed < (u32)UINT_MAX)
7836 			ppd->link_downed++;
7837 		reg &= ~DCC_ERR_FLG_LINK_ERR_SMASK;
7838 	}
7839 
7840 	if (reg & DCC_ERR_FLG_FMCONFIG_ERR_SMASK) {
7841 		u8 reason_valid = 1;
7842 
7843 		info = read_csr(dd, DCC_ERR_INFO_FMCONFIG);
7844 		if (!(dd->err_info_fmconfig & OPA_EI_STATUS_SMASK)) {
7845 			dd->err_info_fmconfig = info & OPA_EI_CODE_SMASK;
7846 			/* set status bit */
7847 			dd->err_info_fmconfig |= OPA_EI_STATUS_SMASK;
7848 		}
7849 		switch (info) {
7850 		case 0:
7851 		case 1:
7852 		case 2:
7853 		case 3:
7854 		case 4:
7855 		case 5:
7856 		case 6:
7857 			extra = fm_config_txt[info];
7858 			break;
7859 		case 8:
7860 			extra = fm_config_txt[info];
7861 			if (ppd->port_error_action &
7862 			    OPA_PI_MASK_FM_CFG_UNSUPPORTED_VL_MARKER) {
7863 				do_bounce = 1;
7864 				/*
7865 				 * lcl_reason cannot be derived from info
7866 				 * for this error
7867 				 */
7868 				lcl_reason =
7869 				  OPA_LINKDOWN_REASON_UNSUPPORTED_VL_MARKER;
7870 			}
7871 			break;
7872 		default:
7873 			reason_valid = 0;
7874 			snprintf(buf, sizeof(buf), "reserved%lld", info);
7875 			extra = buf;
7876 			break;
7877 		}
7878 
7879 		if (reason_valid && !do_bounce) {
7880 			do_bounce = ppd->port_error_action &
7881 					(1 << (OPA_LDR_FMCONFIG_OFFSET + info));
7882 			lcl_reason = info + OPA_LINKDOWN_REASON_BAD_HEAD_DIST;
7883 		}
7884 
7885 		/* just report this */
7886 		dd_dev_info_ratelimited(dd, "DCC Error: fmconfig error: %s\n",
7887 					extra);
7888 		reg &= ~DCC_ERR_FLG_FMCONFIG_ERR_SMASK;
7889 	}
7890 
7891 	if (reg & DCC_ERR_FLG_RCVPORT_ERR_SMASK) {
7892 		u8 reason_valid = 1;
7893 
7894 		info = read_csr(dd, DCC_ERR_INFO_PORTRCV);
7895 		hdr0 = read_csr(dd, DCC_ERR_INFO_PORTRCV_HDR0);
7896 		hdr1 = read_csr(dd, DCC_ERR_INFO_PORTRCV_HDR1);
7897 		if (!(dd->err_info_rcvport.status_and_code &
7898 		      OPA_EI_STATUS_SMASK)) {
7899 			dd->err_info_rcvport.status_and_code =
7900 				info & OPA_EI_CODE_SMASK;
7901 			/* set status bit */
7902 			dd->err_info_rcvport.status_and_code |=
7903 				OPA_EI_STATUS_SMASK;
7904 			/*
7905 			 * save first 2 flits in the packet that caused
7906 			 * the error
7907 			 */
7908 			dd->err_info_rcvport.packet_flit1 = hdr0;
7909 			dd->err_info_rcvport.packet_flit2 = hdr1;
7910 		}
7911 		switch (info) {
7912 		case 1:
7913 		case 2:
7914 		case 3:
7915 		case 4:
7916 		case 5:
7917 		case 6:
7918 		case 7:
7919 		case 9:
7920 		case 11:
7921 		case 12:
7922 			extra = port_rcv_txt[info];
7923 			break;
7924 		default:
7925 			reason_valid = 0;
7926 			snprintf(buf, sizeof(buf), "reserved%lld", info);
7927 			extra = buf;
7928 			break;
7929 		}
7930 
7931 		if (reason_valid && !do_bounce) {
7932 			do_bounce = ppd->port_error_action &
7933 					(1 << (OPA_LDR_PORTRCV_OFFSET + info));
7934 			lcl_reason = info + OPA_LINKDOWN_REASON_RCV_ERROR_0;
7935 		}
7936 
7937 		/* just report this */
7938 		dd_dev_info_ratelimited(dd, "DCC Error: PortRcv error: %s\n"
7939 					"               hdr0 0x%llx, hdr1 0x%llx\n",
7940 					extra, hdr0, hdr1);
7941 
7942 		reg &= ~DCC_ERR_FLG_RCVPORT_ERR_SMASK;
7943 	}
7944 
7945 	if (reg & DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_UC_SMASK) {
7946 		/* informative only */
7947 		dd_dev_info_ratelimited(dd, "8051 access to LCB blocked\n");
7948 		reg &= ~DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_UC_SMASK;
7949 	}
7950 	if (reg & DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_HOST_SMASK) {
7951 		/* informative only */
7952 		dd_dev_info_ratelimited(dd, "host access to LCB blocked\n");
7953 		reg &= ~DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_HOST_SMASK;
7954 	}
7955 
7956 	if (unlikely(hfi1_dbg_fault_suppress_err(&dd->verbs_dev)))
7957 		reg &= ~DCC_ERR_FLG_LATE_EBP_ERR_SMASK;
7958 
7959 	/* report any remaining errors */
7960 	if (reg)
7961 		dd_dev_info_ratelimited(dd, "DCC Error: %s\n",
7962 					dcc_err_string(buf, sizeof(buf), reg));
7963 
7964 	if (lcl_reason == 0)
7965 		lcl_reason = OPA_LINKDOWN_REASON_UNKNOWN;
7966 
7967 	if (do_bounce) {
7968 		dd_dev_info_ratelimited(dd, "%s: PortErrorAction bounce\n",
7969 					__func__);
7970 		set_link_down_reason(ppd, lcl_reason, 0, lcl_reason);
7971 		queue_work(ppd->hfi1_wq, &ppd->link_bounce_work);
7972 	}
7973 }
7974 
7975 static void handle_lcb_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
7976 {
7977 	char buf[96];
7978 
7979 	dd_dev_info(dd, "LCB Error: %s\n",
7980 		    lcb_err_string(buf, sizeof(buf), reg));
7981 }
7982 
7983 /*
7984  * CCE block DC interrupt.  Source is < 8.
7985  */
7986 static void is_dc_int(struct hfi1_devdata *dd, unsigned int source)
7987 {
7988 	const struct err_reg_info *eri = &dc_errs[source];
7989 
7990 	if (eri->handler) {
7991 		interrupt_clear_down(dd, 0, eri);
7992 	} else if (source == 3 /* dc_lbm_int */) {
7993 		/*
7994 		 * This indicates that a parity error has occurred on the
7995 		 * address/control lines presented to the LBM.  The error
7996 		 * is a single pulse, there is no associated error flag,
7997 		 * and it is non-maskable.  This is because if a parity
7998 		 * error occurs on the request the request is dropped.
7999 		 * This should never occur, but it is nice to know if it
8000 		 * ever does.
8001 		 */
8002 		dd_dev_err(dd, "Parity error in DC LBM block\n");
8003 	} else {
8004 		dd_dev_err(dd, "Invalid DC interrupt %u\n", source);
8005 	}
8006 }
8007 
8008 /*
8009  * TX block send credit interrupt.  Source is < 160.
8010  */
8011 static void is_send_credit_int(struct hfi1_devdata *dd, unsigned int source)
8012 {
8013 	sc_group_release_update(dd, source);
8014 }
8015 
8016 /*
8017  * TX block SDMA interrupt.  Source is < 48.
8018  *
8019  * SDMA interrupts are grouped by type:
8020  *
8021  *	 0 -  N-1 = SDma
8022  *	 N - 2N-1 = SDmaProgress
8023  *	2N - 3N-1 = SDmaIdle
8024  */
8025 static void is_sdma_eng_int(struct hfi1_devdata *dd, unsigned int source)
8026 {
8027 	/* what interrupt */
8028 	unsigned int what  = source / TXE_NUM_SDMA_ENGINES;
8029 	/* which engine */
8030 	unsigned int which = source % TXE_NUM_SDMA_ENGINES;
8031 
8032 #ifdef CONFIG_SDMA_VERBOSITY
8033 	dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", which,
8034 		   slashstrip(__FILE__), __LINE__, __func__);
8035 	sdma_dumpstate(&dd->per_sdma[which]);
8036 #endif
8037 
8038 	if (likely(what < 3 && which < dd->num_sdma)) {
8039 		sdma_engine_interrupt(&dd->per_sdma[which], 1ull << source);
8040 	} else {
8041 		/* should not happen */
8042 		dd_dev_err(dd, "Invalid SDMA interrupt 0x%x\n", source);
8043 	}
8044 }
8045 
8046 /*
8047  * RX block receive available interrupt.  Source is < 160.
8048  */
8049 static void is_rcv_avail_int(struct hfi1_devdata *dd, unsigned int source)
8050 {
8051 	struct hfi1_ctxtdata *rcd;
8052 	char *err_detail;
8053 
8054 	if (likely(source < dd->num_rcv_contexts)) {
8055 		rcd = dd->rcd[source];
8056 		if (rcd) {
8057 			/* Check for non-user contexts, including vnic */
8058 			if ((source < dd->first_dyn_alloc_ctxt) ||
8059 			    (rcd->sc && (rcd->sc->type == SC_KERNEL)))
8060 				rcd->do_interrupt(rcd, 0);
8061 			else
8062 				handle_user_interrupt(rcd);
8063 			return;	/* OK */
8064 		}
8065 		/* received an interrupt, but no rcd */
8066 		err_detail = "dataless";
8067 	} else {
8068 		/* received an interrupt, but are not using that context */
8069 		err_detail = "out of range";
8070 	}
8071 	dd_dev_err(dd, "unexpected %s receive available context interrupt %u\n",
8072 		   err_detail, source);
8073 }
8074 
8075 /*
8076  * RX block receive urgent interrupt.  Source is < 160.
8077  */
8078 static void is_rcv_urgent_int(struct hfi1_devdata *dd, unsigned int source)
8079 {
8080 	struct hfi1_ctxtdata *rcd;
8081 	char *err_detail;
8082 
8083 	if (likely(source < dd->num_rcv_contexts)) {
8084 		rcd = dd->rcd[source];
8085 		if (rcd) {
8086 			/* only pay attention to user urgent interrupts */
8087 			if ((source >= dd->first_dyn_alloc_ctxt) &&
8088 			    (!rcd->sc || (rcd->sc->type == SC_USER)))
8089 				handle_user_interrupt(rcd);
8090 			return;	/* OK */
8091 		}
8092 		/* received an interrupt, but no rcd */
8093 		err_detail = "dataless";
8094 	} else {
8095 		/* received an interrupt, but are not using that context */
8096 		err_detail = "out of range";
8097 	}
8098 	dd_dev_err(dd, "unexpected %s receive urgent context interrupt %u\n",
8099 		   err_detail, source);
8100 }
8101 
8102 /*
8103  * Reserved range interrupt.  Should not be called in normal operation.
8104  */
8105 static void is_reserved_int(struct hfi1_devdata *dd, unsigned int source)
8106 {
8107 	char name[64];
8108 
8109 	dd_dev_err(dd, "unexpected %s interrupt\n",
8110 		   is_reserved_name(name, sizeof(name), source));
8111 }
8112 
8113 static const struct is_table is_table[] = {
8114 /*
8115  * start		 end
8116  *				name func		interrupt func
8117  */
8118 { IS_GENERAL_ERR_START,  IS_GENERAL_ERR_END,
8119 				is_misc_err_name,	is_misc_err_int },
8120 { IS_SDMAENG_ERR_START,  IS_SDMAENG_ERR_END,
8121 				is_sdma_eng_err_name,	is_sdma_eng_err_int },
8122 { IS_SENDCTXT_ERR_START, IS_SENDCTXT_ERR_END,
8123 				is_sendctxt_err_name,	is_sendctxt_err_int },
8124 { IS_SDMA_START,	     IS_SDMA_END,
8125 				is_sdma_eng_name,	is_sdma_eng_int },
8126 { IS_VARIOUS_START,	     IS_VARIOUS_END,
8127 				is_various_name,	is_various_int },
8128 { IS_DC_START,	     IS_DC_END,
8129 				is_dc_name,		is_dc_int },
8130 { IS_RCVAVAIL_START,     IS_RCVAVAIL_END,
8131 				is_rcv_avail_name,	is_rcv_avail_int },
8132 { IS_RCVURGENT_START,    IS_RCVURGENT_END,
8133 				is_rcv_urgent_name,	is_rcv_urgent_int },
8134 { IS_SENDCREDIT_START,   IS_SENDCREDIT_END,
8135 				is_send_credit_name,	is_send_credit_int},
8136 { IS_RESERVED_START,     IS_RESERVED_END,
8137 				is_reserved_name,	is_reserved_int},
8138 };
8139 
8140 /*
8141  * Interrupt source interrupt - called when the given source has an interrupt.
8142  * Source is a bit index into an array of 64-bit integers.
8143  */
8144 static void is_interrupt(struct hfi1_devdata *dd, unsigned int source)
8145 {
8146 	const struct is_table *entry;
8147 
8148 	/* avoids a double compare by walking the table in-order */
8149 	for (entry = &is_table[0]; entry->is_name; entry++) {
8150 		if (source < entry->end) {
8151 			trace_hfi1_interrupt(dd, entry, source);
8152 			entry->is_int(dd, source - entry->start);
8153 			return;
8154 		}
8155 	}
8156 	/* fell off the end */
8157 	dd_dev_err(dd, "invalid interrupt source %u\n", source);
8158 }
8159 
8160 /*
8161  * General interrupt handler.  This is able to correctly handle
8162  * all interrupts in case INTx is used.
8163  */
8164 static irqreturn_t general_interrupt(int irq, void *data)
8165 {
8166 	struct hfi1_devdata *dd = data;
8167 	u64 regs[CCE_NUM_INT_CSRS];
8168 	u32 bit;
8169 	int i;
8170 
8171 	this_cpu_inc(*dd->int_counter);
8172 
8173 	/* phase 1: scan and clear all handled interrupts */
8174 	for (i = 0; i < CCE_NUM_INT_CSRS; i++) {
8175 		if (dd->gi_mask[i] == 0) {
8176 			regs[i] = 0;	/* used later */
8177 			continue;
8178 		}
8179 		regs[i] = read_csr(dd, CCE_INT_STATUS + (8 * i)) &
8180 				dd->gi_mask[i];
8181 		/* only clear if anything is set */
8182 		if (regs[i])
8183 			write_csr(dd, CCE_INT_CLEAR + (8 * i), regs[i]);
8184 	}
8185 
8186 	/* phase 2: call the appropriate handler */
8187 	for_each_set_bit(bit, (unsigned long *)&regs[0],
8188 			 CCE_NUM_INT_CSRS * 64) {
8189 		is_interrupt(dd, bit);
8190 	}
8191 
8192 	return IRQ_HANDLED;
8193 }
8194 
8195 static irqreturn_t sdma_interrupt(int irq, void *data)
8196 {
8197 	struct sdma_engine *sde = data;
8198 	struct hfi1_devdata *dd = sde->dd;
8199 	u64 status;
8200 
8201 #ifdef CONFIG_SDMA_VERBOSITY
8202 	dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
8203 		   slashstrip(__FILE__), __LINE__, __func__);
8204 	sdma_dumpstate(sde);
8205 #endif
8206 
8207 	this_cpu_inc(*dd->int_counter);
8208 
8209 	/* This read_csr is really bad in the hot path */
8210 	status = read_csr(dd,
8211 			  CCE_INT_STATUS + (8 * (IS_SDMA_START / 64)))
8212 			  & sde->imask;
8213 	if (likely(status)) {
8214 		/* clear the interrupt(s) */
8215 		write_csr(dd,
8216 			  CCE_INT_CLEAR + (8 * (IS_SDMA_START / 64)),
8217 			  status);
8218 
8219 		/* handle the interrupt(s) */
8220 		sdma_engine_interrupt(sde, status);
8221 	} else {
8222 		dd_dev_err(dd, "SDMA engine %u interrupt, but no status bits set\n",
8223 			   sde->this_idx);
8224 	}
8225 	return IRQ_HANDLED;
8226 }
8227 
8228 /*
8229  * Clear the receive interrupt.  Use a read of the interrupt clear CSR
8230  * to insure that the write completed.  This does NOT guarantee that
8231  * queued DMA writes to memory from the chip are pushed.
8232  */
8233 static inline void clear_recv_intr(struct hfi1_ctxtdata *rcd)
8234 {
8235 	struct hfi1_devdata *dd = rcd->dd;
8236 	u32 addr = CCE_INT_CLEAR + (8 * rcd->ireg);
8237 
8238 	mmiowb();	/* make sure everything before is written */
8239 	write_csr(dd, addr, rcd->imask);
8240 	/* force the above write on the chip and get a value back */
8241 	(void)read_csr(dd, addr);
8242 }
8243 
8244 /* force the receive interrupt */
8245 void force_recv_intr(struct hfi1_ctxtdata *rcd)
8246 {
8247 	write_csr(rcd->dd, CCE_INT_FORCE + (8 * rcd->ireg), rcd->imask);
8248 }
8249 
8250 /*
8251  * Return non-zero if a packet is present.
8252  *
8253  * This routine is called when rechecking for packets after the RcvAvail
8254  * interrupt has been cleared down.  First, do a quick check of memory for
8255  * a packet present.  If not found, use an expensive CSR read of the context
8256  * tail to determine the actual tail.  The CSR read is necessary because there
8257  * is no method to push pending DMAs to memory other than an interrupt and we
8258  * are trying to determine if we need to force an interrupt.
8259  */
8260 static inline int check_packet_present(struct hfi1_ctxtdata *rcd)
8261 {
8262 	u32 tail;
8263 	int present;
8264 
8265 	if (!HFI1_CAP_IS_KSET(DMA_RTAIL))
8266 		present = (rcd->seq_cnt ==
8267 				rhf_rcv_seq(rhf_to_cpu(get_rhf_addr(rcd))));
8268 	else /* is RDMA rtail */
8269 		present = (rcd->head != get_rcvhdrtail(rcd));
8270 
8271 	if (present)
8272 		return 1;
8273 
8274 	/* fall back to a CSR read, correct indpendent of DMA_RTAIL */
8275 	tail = (u32)read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_TAIL);
8276 	return rcd->head != tail;
8277 }
8278 
8279 /*
8280  * Receive packet IRQ handler.  This routine expects to be on its own IRQ.
8281  * This routine will try to handle packets immediately (latency), but if
8282  * it finds too many, it will invoke the thread handler (bandwitdh).  The
8283  * chip receive interrupt is *not* cleared down until this or the thread (if
8284  * invoked) is finished.  The intent is to avoid extra interrupts while we
8285  * are processing packets anyway.
8286  */
8287 static irqreturn_t receive_context_interrupt(int irq, void *data)
8288 {
8289 	struct hfi1_ctxtdata *rcd = data;
8290 	struct hfi1_devdata *dd = rcd->dd;
8291 	int disposition;
8292 	int present;
8293 
8294 	trace_hfi1_receive_interrupt(dd, rcd->ctxt);
8295 	this_cpu_inc(*dd->int_counter);
8296 	aspm_ctx_disable(rcd);
8297 
8298 	/* receive interrupt remains blocked while processing packets */
8299 	disposition = rcd->do_interrupt(rcd, 0);
8300 
8301 	/*
8302 	 * Too many packets were seen while processing packets in this
8303 	 * IRQ handler.  Invoke the handler thread.  The receive interrupt
8304 	 * remains blocked.
8305 	 */
8306 	if (disposition == RCV_PKT_LIMIT)
8307 		return IRQ_WAKE_THREAD;
8308 
8309 	/*
8310 	 * The packet processor detected no more packets.  Clear the receive
8311 	 * interrupt and recheck for a packet packet that may have arrived
8312 	 * after the previous check and interrupt clear.  If a packet arrived,
8313 	 * force another interrupt.
8314 	 */
8315 	clear_recv_intr(rcd);
8316 	present = check_packet_present(rcd);
8317 	if (present)
8318 		force_recv_intr(rcd);
8319 
8320 	return IRQ_HANDLED;
8321 }
8322 
8323 /*
8324  * Receive packet thread handler.  This expects to be invoked with the
8325  * receive interrupt still blocked.
8326  */
8327 static irqreturn_t receive_context_thread(int irq, void *data)
8328 {
8329 	struct hfi1_ctxtdata *rcd = data;
8330 	int present;
8331 
8332 	/* receive interrupt is still blocked from the IRQ handler */
8333 	(void)rcd->do_interrupt(rcd, 1);
8334 
8335 	/*
8336 	 * The packet processor will only return if it detected no more
8337 	 * packets.  Hold IRQs here so we can safely clear the interrupt and
8338 	 * recheck for a packet that may have arrived after the previous
8339 	 * check and the interrupt clear.  If a packet arrived, force another
8340 	 * interrupt.
8341 	 */
8342 	local_irq_disable();
8343 	clear_recv_intr(rcd);
8344 	present = check_packet_present(rcd);
8345 	if (present)
8346 		force_recv_intr(rcd);
8347 	local_irq_enable();
8348 
8349 	return IRQ_HANDLED;
8350 }
8351 
8352 /* ========================================================================= */
8353 
8354 u32 read_physical_state(struct hfi1_devdata *dd)
8355 {
8356 	u64 reg;
8357 
8358 	reg = read_csr(dd, DC_DC8051_STS_CUR_STATE);
8359 	return (reg >> DC_DC8051_STS_CUR_STATE_PORT_SHIFT)
8360 				& DC_DC8051_STS_CUR_STATE_PORT_MASK;
8361 }
8362 
8363 u32 read_logical_state(struct hfi1_devdata *dd)
8364 {
8365 	u64 reg;
8366 
8367 	reg = read_csr(dd, DCC_CFG_PORT_CONFIG);
8368 	return (reg >> DCC_CFG_PORT_CONFIG_LINK_STATE_SHIFT)
8369 				& DCC_CFG_PORT_CONFIG_LINK_STATE_MASK;
8370 }
8371 
8372 static void set_logical_state(struct hfi1_devdata *dd, u32 chip_lstate)
8373 {
8374 	u64 reg;
8375 
8376 	reg = read_csr(dd, DCC_CFG_PORT_CONFIG);
8377 	/* clear current state, set new state */
8378 	reg &= ~DCC_CFG_PORT_CONFIG_LINK_STATE_SMASK;
8379 	reg |= (u64)chip_lstate << DCC_CFG_PORT_CONFIG_LINK_STATE_SHIFT;
8380 	write_csr(dd, DCC_CFG_PORT_CONFIG, reg);
8381 }
8382 
8383 /*
8384  * Use the 8051 to read a LCB CSR.
8385  */
8386 static int read_lcb_via_8051(struct hfi1_devdata *dd, u32 addr, u64 *data)
8387 {
8388 	u32 regno;
8389 	int ret;
8390 
8391 	if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR) {
8392 		if (acquire_lcb_access(dd, 0) == 0) {
8393 			*data = read_csr(dd, addr);
8394 			release_lcb_access(dd, 0);
8395 			return 0;
8396 		}
8397 		return -EBUSY;
8398 	}
8399 
8400 	/* register is an index of LCB registers: (offset - base) / 8 */
8401 	regno = (addr - DC_LCB_CFG_RUN) >> 3;
8402 	ret = do_8051_command(dd, HCMD_READ_LCB_CSR, regno, data);
8403 	if (ret != HCMD_SUCCESS)
8404 		return -EBUSY;
8405 	return 0;
8406 }
8407 
8408 /*
8409  * Provide a cache for some of the LCB registers in case the LCB is
8410  * unavailable.
8411  * (The LCB is unavailable in certain link states, for example.)
8412  */
8413 struct lcb_datum {
8414 	u32 off;
8415 	u64 val;
8416 };
8417 
8418 static struct lcb_datum lcb_cache[] = {
8419 	{ DC_LCB_ERR_INFO_RX_REPLAY_CNT, 0},
8420 	{ DC_LCB_ERR_INFO_SEQ_CRC_CNT, 0 },
8421 	{ DC_LCB_ERR_INFO_REINIT_FROM_PEER_CNT, 0 },
8422 };
8423 
8424 static void update_lcb_cache(struct hfi1_devdata *dd)
8425 {
8426 	int i;
8427 	int ret;
8428 	u64 val;
8429 
8430 	for (i = 0; i < ARRAY_SIZE(lcb_cache); i++) {
8431 		ret = read_lcb_csr(dd, lcb_cache[i].off, &val);
8432 
8433 		/* Update if we get good data */
8434 		if (likely(ret != -EBUSY))
8435 			lcb_cache[i].val = val;
8436 	}
8437 }
8438 
8439 static int read_lcb_cache(u32 off, u64 *val)
8440 {
8441 	int i;
8442 
8443 	for (i = 0; i < ARRAY_SIZE(lcb_cache); i++) {
8444 		if (lcb_cache[i].off == off) {
8445 			*val = lcb_cache[i].val;
8446 			return 0;
8447 		}
8448 	}
8449 
8450 	pr_warn("%s bad offset 0x%x\n", __func__, off);
8451 	return -1;
8452 }
8453 
8454 /*
8455  * Read an LCB CSR.  Access may not be in host control, so check.
8456  * Return 0 on success, -EBUSY on failure.
8457  */
8458 int read_lcb_csr(struct hfi1_devdata *dd, u32 addr, u64 *data)
8459 {
8460 	struct hfi1_pportdata *ppd = dd->pport;
8461 
8462 	/* if up, go through the 8051 for the value */
8463 	if (ppd->host_link_state & HLS_UP)
8464 		return read_lcb_via_8051(dd, addr, data);
8465 	/* if going up or down, check the cache, otherwise, no access */
8466 	if (ppd->host_link_state & (HLS_GOING_UP | HLS_GOING_OFFLINE)) {
8467 		if (read_lcb_cache(addr, data))
8468 			return -EBUSY;
8469 		return 0;
8470 	}
8471 
8472 	/* otherwise, host has access */
8473 	*data = read_csr(dd, addr);
8474 	return 0;
8475 }
8476 
8477 /*
8478  * Use the 8051 to write a LCB CSR.
8479  */
8480 static int write_lcb_via_8051(struct hfi1_devdata *dd, u32 addr, u64 data)
8481 {
8482 	u32 regno;
8483 	int ret;
8484 
8485 	if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR ||
8486 	    (dd->dc8051_ver < dc8051_ver(0, 20, 0))) {
8487 		if (acquire_lcb_access(dd, 0) == 0) {
8488 			write_csr(dd, addr, data);
8489 			release_lcb_access(dd, 0);
8490 			return 0;
8491 		}
8492 		return -EBUSY;
8493 	}
8494 
8495 	/* register is an index of LCB registers: (offset - base) / 8 */
8496 	regno = (addr - DC_LCB_CFG_RUN) >> 3;
8497 	ret = do_8051_command(dd, HCMD_WRITE_LCB_CSR, regno, &data);
8498 	if (ret != HCMD_SUCCESS)
8499 		return -EBUSY;
8500 	return 0;
8501 }
8502 
8503 /*
8504  * Write an LCB CSR.  Access may not be in host control, so check.
8505  * Return 0 on success, -EBUSY on failure.
8506  */
8507 int write_lcb_csr(struct hfi1_devdata *dd, u32 addr, u64 data)
8508 {
8509 	struct hfi1_pportdata *ppd = dd->pport;
8510 
8511 	/* if up, go through the 8051 for the value */
8512 	if (ppd->host_link_state & HLS_UP)
8513 		return write_lcb_via_8051(dd, addr, data);
8514 	/* if going up or down, no access */
8515 	if (ppd->host_link_state & (HLS_GOING_UP | HLS_GOING_OFFLINE))
8516 		return -EBUSY;
8517 	/* otherwise, host has access */
8518 	write_csr(dd, addr, data);
8519 	return 0;
8520 }
8521 
8522 /*
8523  * Returns:
8524  *	< 0 = Linux error, not able to get access
8525  *	> 0 = 8051 command RETURN_CODE
8526  */
8527 static int do_8051_command(
8528 	struct hfi1_devdata *dd,
8529 	u32 type,
8530 	u64 in_data,
8531 	u64 *out_data)
8532 {
8533 	u64 reg, completed;
8534 	int return_code;
8535 	unsigned long timeout;
8536 
8537 	hfi1_cdbg(DC8051, "type %d, data 0x%012llx", type, in_data);
8538 
8539 	mutex_lock(&dd->dc8051_lock);
8540 
8541 	/* We can't send any commands to the 8051 if it's in reset */
8542 	if (dd->dc_shutdown) {
8543 		return_code = -ENODEV;
8544 		goto fail;
8545 	}
8546 
8547 	/*
8548 	 * If an 8051 host command timed out previously, then the 8051 is
8549 	 * stuck.
8550 	 *
8551 	 * On first timeout, attempt to reset and restart the entire DC
8552 	 * block (including 8051). (Is this too big of a hammer?)
8553 	 *
8554 	 * If the 8051 times out a second time, the reset did not bring it
8555 	 * back to healthy life. In that case, fail any subsequent commands.
8556 	 */
8557 	if (dd->dc8051_timed_out) {
8558 		if (dd->dc8051_timed_out > 1) {
8559 			dd_dev_err(dd,
8560 				   "Previous 8051 host command timed out, skipping command %u\n",
8561 				   type);
8562 			return_code = -ENXIO;
8563 			goto fail;
8564 		}
8565 		_dc_shutdown(dd);
8566 		_dc_start(dd);
8567 	}
8568 
8569 	/*
8570 	 * If there is no timeout, then the 8051 command interface is
8571 	 * waiting for a command.
8572 	 */
8573 
8574 	/*
8575 	 * When writing a LCB CSR, out_data contains the full value to
8576 	 * to be written, while in_data contains the relative LCB
8577 	 * address in 7:0.  Do the work here, rather than the caller,
8578 	 * of distrubting the write data to where it needs to go:
8579 	 *
8580 	 * Write data
8581 	 *   39:00 -> in_data[47:8]
8582 	 *   47:40 -> DC8051_CFG_EXT_DEV_0.RETURN_CODE
8583 	 *   63:48 -> DC8051_CFG_EXT_DEV_0.RSP_DATA
8584 	 */
8585 	if (type == HCMD_WRITE_LCB_CSR) {
8586 		in_data |= ((*out_data) & 0xffffffffffull) << 8;
8587 		/* must preserve COMPLETED - it is tied to hardware */
8588 		reg = read_csr(dd, DC_DC8051_CFG_EXT_DEV_0);
8589 		reg &= DC_DC8051_CFG_EXT_DEV_0_COMPLETED_SMASK;
8590 		reg |= ((((*out_data) >> 40) & 0xff) <<
8591 				DC_DC8051_CFG_EXT_DEV_0_RETURN_CODE_SHIFT)
8592 		      | ((((*out_data) >> 48) & 0xffff) <<
8593 				DC_DC8051_CFG_EXT_DEV_0_RSP_DATA_SHIFT);
8594 		write_csr(dd, DC_DC8051_CFG_EXT_DEV_0, reg);
8595 	}
8596 
8597 	/*
8598 	 * Do two writes: the first to stabilize the type and req_data, the
8599 	 * second to activate.
8600 	 */
8601 	reg = ((u64)type & DC_DC8051_CFG_HOST_CMD_0_REQ_TYPE_MASK)
8602 			<< DC_DC8051_CFG_HOST_CMD_0_REQ_TYPE_SHIFT
8603 		| (in_data & DC_DC8051_CFG_HOST_CMD_0_REQ_DATA_MASK)
8604 			<< DC_DC8051_CFG_HOST_CMD_0_REQ_DATA_SHIFT;
8605 	write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, reg);
8606 	reg |= DC_DC8051_CFG_HOST_CMD_0_REQ_NEW_SMASK;
8607 	write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, reg);
8608 
8609 	/* wait for completion, alternate: interrupt */
8610 	timeout = jiffies + msecs_to_jiffies(DC8051_COMMAND_TIMEOUT);
8611 	while (1) {
8612 		reg = read_csr(dd, DC_DC8051_CFG_HOST_CMD_1);
8613 		completed = reg & DC_DC8051_CFG_HOST_CMD_1_COMPLETED_SMASK;
8614 		if (completed)
8615 			break;
8616 		if (time_after(jiffies, timeout)) {
8617 			dd->dc8051_timed_out++;
8618 			dd_dev_err(dd, "8051 host command %u timeout\n", type);
8619 			if (out_data)
8620 				*out_data = 0;
8621 			return_code = -ETIMEDOUT;
8622 			goto fail;
8623 		}
8624 		udelay(2);
8625 	}
8626 
8627 	if (out_data) {
8628 		*out_data = (reg >> DC_DC8051_CFG_HOST_CMD_1_RSP_DATA_SHIFT)
8629 				& DC_DC8051_CFG_HOST_CMD_1_RSP_DATA_MASK;
8630 		if (type == HCMD_READ_LCB_CSR) {
8631 			/* top 16 bits are in a different register */
8632 			*out_data |= (read_csr(dd, DC_DC8051_CFG_EXT_DEV_1)
8633 				& DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SMASK)
8634 				<< (48
8635 				    - DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SHIFT);
8636 		}
8637 	}
8638 	return_code = (reg >> DC_DC8051_CFG_HOST_CMD_1_RETURN_CODE_SHIFT)
8639 				& DC_DC8051_CFG_HOST_CMD_1_RETURN_CODE_MASK;
8640 	dd->dc8051_timed_out = 0;
8641 	/*
8642 	 * Clear command for next user.
8643 	 */
8644 	write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, 0);
8645 
8646 fail:
8647 	mutex_unlock(&dd->dc8051_lock);
8648 	return return_code;
8649 }
8650 
8651 static int set_physical_link_state(struct hfi1_devdata *dd, u64 state)
8652 {
8653 	return do_8051_command(dd, HCMD_CHANGE_PHY_STATE, state, NULL);
8654 }
8655 
8656 int load_8051_config(struct hfi1_devdata *dd, u8 field_id,
8657 		     u8 lane_id, u32 config_data)
8658 {
8659 	u64 data;
8660 	int ret;
8661 
8662 	data = (u64)field_id << LOAD_DATA_FIELD_ID_SHIFT
8663 		| (u64)lane_id << LOAD_DATA_LANE_ID_SHIFT
8664 		| (u64)config_data << LOAD_DATA_DATA_SHIFT;
8665 	ret = do_8051_command(dd, HCMD_LOAD_CONFIG_DATA, data, NULL);
8666 	if (ret != HCMD_SUCCESS) {
8667 		dd_dev_err(dd,
8668 			   "load 8051 config: field id %d, lane %d, err %d\n",
8669 			   (int)field_id, (int)lane_id, ret);
8670 	}
8671 	return ret;
8672 }
8673 
8674 /*
8675  * Read the 8051 firmware "registers".  Use the RAM directly.  Always
8676  * set the result, even on error.
8677  * Return 0 on success, -errno on failure
8678  */
8679 int read_8051_config(struct hfi1_devdata *dd, u8 field_id, u8 lane_id,
8680 		     u32 *result)
8681 {
8682 	u64 big_data;
8683 	u32 addr;
8684 	int ret;
8685 
8686 	/* address start depends on the lane_id */
8687 	if (lane_id < 4)
8688 		addr = (4 * NUM_GENERAL_FIELDS)
8689 			+ (lane_id * 4 * NUM_LANE_FIELDS);
8690 	else
8691 		addr = 0;
8692 	addr += field_id * 4;
8693 
8694 	/* read is in 8-byte chunks, hardware will truncate the address down */
8695 	ret = read_8051_data(dd, addr, 8, &big_data);
8696 
8697 	if (ret == 0) {
8698 		/* extract the 4 bytes we want */
8699 		if (addr & 0x4)
8700 			*result = (u32)(big_data >> 32);
8701 		else
8702 			*result = (u32)big_data;
8703 	} else {
8704 		*result = 0;
8705 		dd_dev_err(dd, "%s: direct read failed, lane %d, field %d!\n",
8706 			   __func__, lane_id, field_id);
8707 	}
8708 
8709 	return ret;
8710 }
8711 
8712 static int write_vc_local_phy(struct hfi1_devdata *dd, u8 power_management,
8713 			      u8 continuous)
8714 {
8715 	u32 frame;
8716 
8717 	frame = continuous << CONTINIOUS_REMOTE_UPDATE_SUPPORT_SHIFT
8718 		| power_management << POWER_MANAGEMENT_SHIFT;
8719 	return load_8051_config(dd, VERIFY_CAP_LOCAL_PHY,
8720 				GENERAL_CONFIG, frame);
8721 }
8722 
8723 static int write_vc_local_fabric(struct hfi1_devdata *dd, u8 vau, u8 z, u8 vcu,
8724 				 u16 vl15buf, u8 crc_sizes)
8725 {
8726 	u32 frame;
8727 
8728 	frame = (u32)vau << VAU_SHIFT
8729 		| (u32)z << Z_SHIFT
8730 		| (u32)vcu << VCU_SHIFT
8731 		| (u32)vl15buf << VL15BUF_SHIFT
8732 		| (u32)crc_sizes << CRC_SIZES_SHIFT;
8733 	return load_8051_config(dd, VERIFY_CAP_LOCAL_FABRIC,
8734 				GENERAL_CONFIG, frame);
8735 }
8736 
8737 static void read_vc_local_link_width(struct hfi1_devdata *dd, u8 *misc_bits,
8738 				     u8 *flag_bits, u16 *link_widths)
8739 {
8740 	u32 frame;
8741 
8742 	read_8051_config(dd, VERIFY_CAP_LOCAL_LINK_WIDTH, GENERAL_CONFIG,
8743 			 &frame);
8744 	*misc_bits = (frame >> MISC_CONFIG_BITS_SHIFT) & MISC_CONFIG_BITS_MASK;
8745 	*flag_bits = (frame >> LOCAL_FLAG_BITS_SHIFT) & LOCAL_FLAG_BITS_MASK;
8746 	*link_widths = (frame >> LINK_WIDTH_SHIFT) & LINK_WIDTH_MASK;
8747 }
8748 
8749 static int write_vc_local_link_width(struct hfi1_devdata *dd,
8750 				     u8 misc_bits,
8751 				     u8 flag_bits,
8752 				     u16 link_widths)
8753 {
8754 	u32 frame;
8755 
8756 	frame = (u32)misc_bits << MISC_CONFIG_BITS_SHIFT
8757 		| (u32)flag_bits << LOCAL_FLAG_BITS_SHIFT
8758 		| (u32)link_widths << LINK_WIDTH_SHIFT;
8759 	return load_8051_config(dd, VERIFY_CAP_LOCAL_LINK_WIDTH, GENERAL_CONFIG,
8760 		     frame);
8761 }
8762 
8763 static int write_local_device_id(struct hfi1_devdata *dd, u16 device_id,
8764 				 u8 device_rev)
8765 {
8766 	u32 frame;
8767 
8768 	frame = ((u32)device_id << LOCAL_DEVICE_ID_SHIFT)
8769 		| ((u32)device_rev << LOCAL_DEVICE_REV_SHIFT);
8770 	return load_8051_config(dd, LOCAL_DEVICE_ID, GENERAL_CONFIG, frame);
8771 }
8772 
8773 static void read_remote_device_id(struct hfi1_devdata *dd, u16 *device_id,
8774 				  u8 *device_rev)
8775 {
8776 	u32 frame;
8777 
8778 	read_8051_config(dd, REMOTE_DEVICE_ID, GENERAL_CONFIG, &frame);
8779 	*device_id = (frame >> REMOTE_DEVICE_ID_SHIFT) & REMOTE_DEVICE_ID_MASK;
8780 	*device_rev = (frame >> REMOTE_DEVICE_REV_SHIFT)
8781 			& REMOTE_DEVICE_REV_MASK;
8782 }
8783 
8784 void read_misc_status(struct hfi1_devdata *dd, u8 *ver_major, u8 *ver_minor,
8785 		      u8 *ver_patch)
8786 {
8787 	u32 frame;
8788 
8789 	read_8051_config(dd, MISC_STATUS, GENERAL_CONFIG, &frame);
8790 	*ver_major = (frame >> STS_FM_VERSION_MAJOR_SHIFT) &
8791 		STS_FM_VERSION_MAJOR_MASK;
8792 	*ver_minor = (frame >> STS_FM_VERSION_MINOR_SHIFT) &
8793 		STS_FM_VERSION_MINOR_MASK;
8794 
8795 	read_8051_config(dd, VERSION_PATCH, GENERAL_CONFIG, &frame);
8796 	*ver_patch = (frame >> STS_FM_VERSION_PATCH_SHIFT) &
8797 		STS_FM_VERSION_PATCH_MASK;
8798 }
8799 
8800 static void read_vc_remote_phy(struct hfi1_devdata *dd, u8 *power_management,
8801 			       u8 *continuous)
8802 {
8803 	u32 frame;
8804 
8805 	read_8051_config(dd, VERIFY_CAP_REMOTE_PHY, GENERAL_CONFIG, &frame);
8806 	*power_management = (frame >> POWER_MANAGEMENT_SHIFT)
8807 					& POWER_MANAGEMENT_MASK;
8808 	*continuous = (frame >> CONTINIOUS_REMOTE_UPDATE_SUPPORT_SHIFT)
8809 					& CONTINIOUS_REMOTE_UPDATE_SUPPORT_MASK;
8810 }
8811 
8812 static void read_vc_remote_fabric(struct hfi1_devdata *dd, u8 *vau, u8 *z,
8813 				  u8 *vcu, u16 *vl15buf, u8 *crc_sizes)
8814 {
8815 	u32 frame;
8816 
8817 	read_8051_config(dd, VERIFY_CAP_REMOTE_FABRIC, GENERAL_CONFIG, &frame);
8818 	*vau = (frame >> VAU_SHIFT) & VAU_MASK;
8819 	*z = (frame >> Z_SHIFT) & Z_MASK;
8820 	*vcu = (frame >> VCU_SHIFT) & VCU_MASK;
8821 	*vl15buf = (frame >> VL15BUF_SHIFT) & VL15BUF_MASK;
8822 	*crc_sizes = (frame >> CRC_SIZES_SHIFT) & CRC_SIZES_MASK;
8823 }
8824 
8825 static void read_vc_remote_link_width(struct hfi1_devdata *dd,
8826 				      u8 *remote_tx_rate,
8827 				      u16 *link_widths)
8828 {
8829 	u32 frame;
8830 
8831 	read_8051_config(dd, VERIFY_CAP_REMOTE_LINK_WIDTH, GENERAL_CONFIG,
8832 			 &frame);
8833 	*remote_tx_rate = (frame >> REMOTE_TX_RATE_SHIFT)
8834 				& REMOTE_TX_RATE_MASK;
8835 	*link_widths = (frame >> LINK_WIDTH_SHIFT) & LINK_WIDTH_MASK;
8836 }
8837 
8838 static void read_local_lni(struct hfi1_devdata *dd, u8 *enable_lane_rx)
8839 {
8840 	u32 frame;
8841 
8842 	read_8051_config(dd, LOCAL_LNI_INFO, GENERAL_CONFIG, &frame);
8843 	*enable_lane_rx = (frame >> ENABLE_LANE_RX_SHIFT) & ENABLE_LANE_RX_MASK;
8844 }
8845 
8846 static void read_mgmt_allowed(struct hfi1_devdata *dd, u8 *mgmt_allowed)
8847 {
8848 	u32 frame;
8849 
8850 	read_8051_config(dd, REMOTE_LNI_INFO, GENERAL_CONFIG, &frame);
8851 	*mgmt_allowed = (frame >> MGMT_ALLOWED_SHIFT) & MGMT_ALLOWED_MASK;
8852 }
8853 
8854 static void read_last_local_state(struct hfi1_devdata *dd, u32 *lls)
8855 {
8856 	read_8051_config(dd, LAST_LOCAL_STATE_COMPLETE, GENERAL_CONFIG, lls);
8857 }
8858 
8859 static void read_last_remote_state(struct hfi1_devdata *dd, u32 *lrs)
8860 {
8861 	read_8051_config(dd, LAST_REMOTE_STATE_COMPLETE, GENERAL_CONFIG, lrs);
8862 }
8863 
8864 void hfi1_read_link_quality(struct hfi1_devdata *dd, u8 *link_quality)
8865 {
8866 	u32 frame;
8867 	int ret;
8868 
8869 	*link_quality = 0;
8870 	if (dd->pport->host_link_state & HLS_UP) {
8871 		ret = read_8051_config(dd, LINK_QUALITY_INFO, GENERAL_CONFIG,
8872 				       &frame);
8873 		if (ret == 0)
8874 			*link_quality = (frame >> LINK_QUALITY_SHIFT)
8875 						& LINK_QUALITY_MASK;
8876 	}
8877 }
8878 
8879 static void read_planned_down_reason_code(struct hfi1_devdata *dd, u8 *pdrrc)
8880 {
8881 	u32 frame;
8882 
8883 	read_8051_config(dd, LINK_QUALITY_INFO, GENERAL_CONFIG, &frame);
8884 	*pdrrc = (frame >> DOWN_REMOTE_REASON_SHIFT) & DOWN_REMOTE_REASON_MASK;
8885 }
8886 
8887 static void read_link_down_reason(struct hfi1_devdata *dd, u8 *ldr)
8888 {
8889 	u32 frame;
8890 
8891 	read_8051_config(dd, LINK_DOWN_REASON, GENERAL_CONFIG, &frame);
8892 	*ldr = (frame & 0xff);
8893 }
8894 
8895 static int read_tx_settings(struct hfi1_devdata *dd,
8896 			    u8 *enable_lane_tx,
8897 			    u8 *tx_polarity_inversion,
8898 			    u8 *rx_polarity_inversion,
8899 			    u8 *max_rate)
8900 {
8901 	u32 frame;
8902 	int ret;
8903 
8904 	ret = read_8051_config(dd, TX_SETTINGS, GENERAL_CONFIG, &frame);
8905 	*enable_lane_tx = (frame >> ENABLE_LANE_TX_SHIFT)
8906 				& ENABLE_LANE_TX_MASK;
8907 	*tx_polarity_inversion = (frame >> TX_POLARITY_INVERSION_SHIFT)
8908 				& TX_POLARITY_INVERSION_MASK;
8909 	*rx_polarity_inversion = (frame >> RX_POLARITY_INVERSION_SHIFT)
8910 				& RX_POLARITY_INVERSION_MASK;
8911 	*max_rate = (frame >> MAX_RATE_SHIFT) & MAX_RATE_MASK;
8912 	return ret;
8913 }
8914 
8915 static int write_tx_settings(struct hfi1_devdata *dd,
8916 			     u8 enable_lane_tx,
8917 			     u8 tx_polarity_inversion,
8918 			     u8 rx_polarity_inversion,
8919 			     u8 max_rate)
8920 {
8921 	u32 frame;
8922 
8923 	/* no need to mask, all variable sizes match field widths */
8924 	frame = enable_lane_tx << ENABLE_LANE_TX_SHIFT
8925 		| tx_polarity_inversion << TX_POLARITY_INVERSION_SHIFT
8926 		| rx_polarity_inversion << RX_POLARITY_INVERSION_SHIFT
8927 		| max_rate << MAX_RATE_SHIFT;
8928 	return load_8051_config(dd, TX_SETTINGS, GENERAL_CONFIG, frame);
8929 }
8930 
8931 /*
8932  * Read an idle LCB message.
8933  *
8934  * Returns 0 on success, -EINVAL on error
8935  */
8936 static int read_idle_message(struct hfi1_devdata *dd, u64 type, u64 *data_out)
8937 {
8938 	int ret;
8939 
8940 	ret = do_8051_command(dd, HCMD_READ_LCB_IDLE_MSG, type, data_out);
8941 	if (ret != HCMD_SUCCESS) {
8942 		dd_dev_err(dd, "read idle message: type %d, err %d\n",
8943 			   (u32)type, ret);
8944 		return -EINVAL;
8945 	}
8946 	dd_dev_info(dd, "%s: read idle message 0x%llx\n", __func__, *data_out);
8947 	/* return only the payload as we already know the type */
8948 	*data_out >>= IDLE_PAYLOAD_SHIFT;
8949 	return 0;
8950 }
8951 
8952 /*
8953  * Read an idle SMA message.  To be done in response to a notification from
8954  * the 8051.
8955  *
8956  * Returns 0 on success, -EINVAL on error
8957  */
8958 static int read_idle_sma(struct hfi1_devdata *dd, u64 *data)
8959 {
8960 	return read_idle_message(dd, (u64)IDLE_SMA << IDLE_MSG_TYPE_SHIFT,
8961 				 data);
8962 }
8963 
8964 /*
8965  * Send an idle LCB message.
8966  *
8967  * Returns 0 on success, -EINVAL on error
8968  */
8969 static int send_idle_message(struct hfi1_devdata *dd, u64 data)
8970 {
8971 	int ret;
8972 
8973 	dd_dev_info(dd, "%s: sending idle message 0x%llx\n", __func__, data);
8974 	ret = do_8051_command(dd, HCMD_SEND_LCB_IDLE_MSG, data, NULL);
8975 	if (ret != HCMD_SUCCESS) {
8976 		dd_dev_err(dd, "send idle message: data 0x%llx, err %d\n",
8977 			   data, ret);
8978 		return -EINVAL;
8979 	}
8980 	return 0;
8981 }
8982 
8983 /*
8984  * Send an idle SMA message.
8985  *
8986  * Returns 0 on success, -EINVAL on error
8987  */
8988 int send_idle_sma(struct hfi1_devdata *dd, u64 message)
8989 {
8990 	u64 data;
8991 
8992 	data = ((message & IDLE_PAYLOAD_MASK) << IDLE_PAYLOAD_SHIFT) |
8993 		((u64)IDLE_SMA << IDLE_MSG_TYPE_SHIFT);
8994 	return send_idle_message(dd, data);
8995 }
8996 
8997 /*
8998  * Initialize the LCB then do a quick link up.  This may or may not be
8999  * in loopback.
9000  *
9001  * return 0 on success, -errno on error
9002  */
9003 static int do_quick_linkup(struct hfi1_devdata *dd)
9004 {
9005 	int ret;
9006 
9007 	lcb_shutdown(dd, 0);
9008 
9009 	if (loopback) {
9010 		/* LCB_CFG_LOOPBACK.VAL = 2 */
9011 		/* LCB_CFG_LANE_WIDTH.VAL = 0 */
9012 		write_csr(dd, DC_LCB_CFG_LOOPBACK,
9013 			  IB_PACKET_TYPE << DC_LCB_CFG_LOOPBACK_VAL_SHIFT);
9014 		write_csr(dd, DC_LCB_CFG_LANE_WIDTH, 0);
9015 	}
9016 
9017 	/* start the LCBs */
9018 	/* LCB_CFG_TX_FIFOS_RESET.VAL = 0 */
9019 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0);
9020 
9021 	/* simulator only loopback steps */
9022 	if (loopback && dd->icode == ICODE_FUNCTIONAL_SIMULATOR) {
9023 		/* LCB_CFG_RUN.EN = 1 */
9024 		write_csr(dd, DC_LCB_CFG_RUN,
9025 			  1ull << DC_LCB_CFG_RUN_EN_SHIFT);
9026 
9027 		ret = wait_link_transfer_active(dd, 10);
9028 		if (ret)
9029 			return ret;
9030 
9031 		write_csr(dd, DC_LCB_CFG_ALLOW_LINK_UP,
9032 			  1ull << DC_LCB_CFG_ALLOW_LINK_UP_VAL_SHIFT);
9033 	}
9034 
9035 	if (!loopback) {
9036 		/*
9037 		 * When doing quick linkup and not in loopback, both
9038 		 * sides must be done with LCB set-up before either
9039 		 * starts the quick linkup.  Put a delay here so that
9040 		 * both sides can be started and have a chance to be
9041 		 * done with LCB set up before resuming.
9042 		 */
9043 		dd_dev_err(dd,
9044 			   "Pausing for peer to be finished with LCB set up\n");
9045 		msleep(5000);
9046 		dd_dev_err(dd, "Continuing with quick linkup\n");
9047 	}
9048 
9049 	write_csr(dd, DC_LCB_ERR_EN, 0); /* mask LCB errors */
9050 	set_8051_lcb_access(dd);
9051 
9052 	/*
9053 	 * State "quick" LinkUp request sets the physical link state to
9054 	 * LinkUp without a verify capability sequence.
9055 	 * This state is in simulator v37 and later.
9056 	 */
9057 	ret = set_physical_link_state(dd, PLS_QUICK_LINKUP);
9058 	if (ret != HCMD_SUCCESS) {
9059 		dd_dev_err(dd,
9060 			   "%s: set physical link state to quick LinkUp failed with return %d\n",
9061 			   __func__, ret);
9062 
9063 		set_host_lcb_access(dd);
9064 		write_csr(dd, DC_LCB_ERR_EN, ~0ull); /* watch LCB errors */
9065 
9066 		if (ret >= 0)
9067 			ret = -EINVAL;
9068 		return ret;
9069 	}
9070 
9071 	return 0; /* success */
9072 }
9073 
9074 /*
9075  * Set the SerDes to internal loopback mode.
9076  * Returns 0 on success, -errno on error.
9077  */
9078 static int set_serdes_loopback_mode(struct hfi1_devdata *dd)
9079 {
9080 	int ret;
9081 
9082 	ret = set_physical_link_state(dd, PLS_INTERNAL_SERDES_LOOPBACK);
9083 	if (ret == HCMD_SUCCESS)
9084 		return 0;
9085 	dd_dev_err(dd,
9086 		   "Set physical link state to SerDes Loopback failed with return %d\n",
9087 		   ret);
9088 	if (ret >= 0)
9089 		ret = -EINVAL;
9090 	return ret;
9091 }
9092 
9093 /*
9094  * Do all special steps to set up loopback.
9095  */
9096 static int init_loopback(struct hfi1_devdata *dd)
9097 {
9098 	dd_dev_info(dd, "Entering loopback mode\n");
9099 
9100 	/* all loopbacks should disable self GUID check */
9101 	write_csr(dd, DC_DC8051_CFG_MODE,
9102 		  (read_csr(dd, DC_DC8051_CFG_MODE) | DISABLE_SELF_GUID_CHECK));
9103 
9104 	/*
9105 	 * The simulator has only one loopback option - LCB.  Switch
9106 	 * to that option, which includes quick link up.
9107 	 *
9108 	 * Accept all valid loopback values.
9109 	 */
9110 	if ((dd->icode == ICODE_FUNCTIONAL_SIMULATOR) &&
9111 	    (loopback == LOOPBACK_SERDES || loopback == LOOPBACK_LCB ||
9112 	     loopback == LOOPBACK_CABLE)) {
9113 		loopback = LOOPBACK_LCB;
9114 		quick_linkup = 1;
9115 		return 0;
9116 	}
9117 
9118 	/* handle serdes loopback */
9119 	if (loopback == LOOPBACK_SERDES) {
9120 		/* internal serdes loopack needs quick linkup on RTL */
9121 		if (dd->icode == ICODE_RTL_SILICON)
9122 			quick_linkup = 1;
9123 		return set_serdes_loopback_mode(dd);
9124 	}
9125 
9126 	/* LCB loopback - handled at poll time */
9127 	if (loopback == LOOPBACK_LCB) {
9128 		quick_linkup = 1; /* LCB is always quick linkup */
9129 
9130 		/* not supported in emulation due to emulation RTL changes */
9131 		if (dd->icode == ICODE_FPGA_EMULATION) {
9132 			dd_dev_err(dd,
9133 				   "LCB loopback not supported in emulation\n");
9134 			return -EINVAL;
9135 		}
9136 		return 0;
9137 	}
9138 
9139 	/* external cable loopback requires no extra steps */
9140 	if (loopback == LOOPBACK_CABLE)
9141 		return 0;
9142 
9143 	dd_dev_err(dd, "Invalid loopback mode %d\n", loopback);
9144 	return -EINVAL;
9145 }
9146 
9147 /*
9148  * Translate from the OPA_LINK_WIDTH handed to us by the FM to bits
9149  * used in the Verify Capability link width attribute.
9150  */
9151 static u16 opa_to_vc_link_widths(u16 opa_widths)
9152 {
9153 	int i;
9154 	u16 result = 0;
9155 
9156 	static const struct link_bits {
9157 		u16 from;
9158 		u16 to;
9159 	} opa_link_xlate[] = {
9160 		{ OPA_LINK_WIDTH_1X, 1 << (1 - 1)  },
9161 		{ OPA_LINK_WIDTH_2X, 1 << (2 - 1)  },
9162 		{ OPA_LINK_WIDTH_3X, 1 << (3 - 1)  },
9163 		{ OPA_LINK_WIDTH_4X, 1 << (4 - 1)  },
9164 	};
9165 
9166 	for (i = 0; i < ARRAY_SIZE(opa_link_xlate); i++) {
9167 		if (opa_widths & opa_link_xlate[i].from)
9168 			result |= opa_link_xlate[i].to;
9169 	}
9170 	return result;
9171 }
9172 
9173 /*
9174  * Set link attributes before moving to polling.
9175  */
9176 static int set_local_link_attributes(struct hfi1_pportdata *ppd)
9177 {
9178 	struct hfi1_devdata *dd = ppd->dd;
9179 	u8 enable_lane_tx;
9180 	u8 tx_polarity_inversion;
9181 	u8 rx_polarity_inversion;
9182 	int ret;
9183 
9184 	/* reset our fabric serdes to clear any lingering problems */
9185 	fabric_serdes_reset(dd);
9186 
9187 	/* set the local tx rate - need to read-modify-write */
9188 	ret = read_tx_settings(dd, &enable_lane_tx, &tx_polarity_inversion,
9189 			       &rx_polarity_inversion, &ppd->local_tx_rate);
9190 	if (ret)
9191 		goto set_local_link_attributes_fail;
9192 
9193 	if (dd->dc8051_ver < dc8051_ver(0, 20, 0)) {
9194 		/* set the tx rate to the fastest enabled */
9195 		if (ppd->link_speed_enabled & OPA_LINK_SPEED_25G)
9196 			ppd->local_tx_rate = 1;
9197 		else
9198 			ppd->local_tx_rate = 0;
9199 	} else {
9200 		/* set the tx rate to all enabled */
9201 		ppd->local_tx_rate = 0;
9202 		if (ppd->link_speed_enabled & OPA_LINK_SPEED_25G)
9203 			ppd->local_tx_rate |= 2;
9204 		if (ppd->link_speed_enabled & OPA_LINK_SPEED_12_5G)
9205 			ppd->local_tx_rate |= 1;
9206 	}
9207 
9208 	enable_lane_tx = 0xF; /* enable all four lanes */
9209 	ret = write_tx_settings(dd, enable_lane_tx, tx_polarity_inversion,
9210 				rx_polarity_inversion, ppd->local_tx_rate);
9211 	if (ret != HCMD_SUCCESS)
9212 		goto set_local_link_attributes_fail;
9213 
9214 	/*
9215 	 * DC supports continuous updates.
9216 	 */
9217 	ret = write_vc_local_phy(dd,
9218 				 0 /* no power management */,
9219 				 1 /* continuous updates */);
9220 	if (ret != HCMD_SUCCESS)
9221 		goto set_local_link_attributes_fail;
9222 
9223 	/* z=1 in the next call: AU of 0 is not supported by the hardware */
9224 	ret = write_vc_local_fabric(dd, dd->vau, 1, dd->vcu, dd->vl15_init,
9225 				    ppd->port_crc_mode_enabled);
9226 	if (ret != HCMD_SUCCESS)
9227 		goto set_local_link_attributes_fail;
9228 
9229 	ret = write_vc_local_link_width(dd, 0, 0,
9230 					opa_to_vc_link_widths(
9231 						ppd->link_width_enabled));
9232 	if (ret != HCMD_SUCCESS)
9233 		goto set_local_link_attributes_fail;
9234 
9235 	/* let peer know who we are */
9236 	ret = write_local_device_id(dd, dd->pcidev->device, dd->minrev);
9237 	if (ret == HCMD_SUCCESS)
9238 		return 0;
9239 
9240 set_local_link_attributes_fail:
9241 	dd_dev_err(dd,
9242 		   "Failed to set local link attributes, return 0x%x\n",
9243 		   ret);
9244 	return ret;
9245 }
9246 
9247 /*
9248  * Call this to start the link.
9249  * Do not do anything if the link is disabled.
9250  * Returns 0 if link is disabled, moved to polling, or the driver is not ready.
9251  */
9252 int start_link(struct hfi1_pportdata *ppd)
9253 {
9254 	/*
9255 	 * Tune the SerDes to a ballpark setting for optimal signal and bit
9256 	 * error rate.  Needs to be done before starting the link.
9257 	 */
9258 	tune_serdes(ppd);
9259 
9260 	if (!ppd->link_enabled) {
9261 		dd_dev_info(ppd->dd,
9262 			    "%s: stopping link start because link is disabled\n",
9263 			    __func__);
9264 		return 0;
9265 	}
9266 	if (!ppd->driver_link_ready) {
9267 		dd_dev_info(ppd->dd,
9268 			    "%s: stopping link start because driver is not ready\n",
9269 			    __func__);
9270 		return 0;
9271 	}
9272 
9273 	/*
9274 	 * FULL_MGMT_P_KEY is cleared from the pkey table, so that the
9275 	 * pkey table can be configured properly if the HFI unit is connected
9276 	 * to switch port with MgmtAllowed=NO
9277 	 */
9278 	clear_full_mgmt_pkey(ppd);
9279 
9280 	return set_link_state(ppd, HLS_DN_POLL);
9281 }
9282 
9283 static void wait_for_qsfp_init(struct hfi1_pportdata *ppd)
9284 {
9285 	struct hfi1_devdata *dd = ppd->dd;
9286 	u64 mask;
9287 	unsigned long timeout;
9288 
9289 	/*
9290 	 * Some QSFP cables have a quirk that asserts the IntN line as a side
9291 	 * effect of power up on plug-in. We ignore this false positive
9292 	 * interrupt until the module has finished powering up by waiting for
9293 	 * a minimum timeout of the module inrush initialization time of
9294 	 * 500 ms (SFF 8679 Table 5-6) to ensure the voltage rails in the
9295 	 * module have stabilized.
9296 	 */
9297 	msleep(500);
9298 
9299 	/*
9300 	 * Check for QSFP interrupt for t_init (SFF 8679 Table 8-1)
9301 	 */
9302 	timeout = jiffies + msecs_to_jiffies(2000);
9303 	while (1) {
9304 		mask = read_csr(dd, dd->hfi1_id ?
9305 				ASIC_QSFP2_IN : ASIC_QSFP1_IN);
9306 		if (!(mask & QSFP_HFI0_INT_N))
9307 			break;
9308 		if (time_after(jiffies, timeout)) {
9309 			dd_dev_info(dd, "%s: No IntN detected, reset complete\n",
9310 				    __func__);
9311 			break;
9312 		}
9313 		udelay(2);
9314 	}
9315 }
9316 
9317 static void set_qsfp_int_n(struct hfi1_pportdata *ppd, u8 enable)
9318 {
9319 	struct hfi1_devdata *dd = ppd->dd;
9320 	u64 mask;
9321 
9322 	mask = read_csr(dd, dd->hfi1_id ? ASIC_QSFP2_MASK : ASIC_QSFP1_MASK);
9323 	if (enable) {
9324 		/*
9325 		 * Clear the status register to avoid an immediate interrupt
9326 		 * when we re-enable the IntN pin
9327 		 */
9328 		write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_CLEAR : ASIC_QSFP1_CLEAR,
9329 			  QSFP_HFI0_INT_N);
9330 		mask |= (u64)QSFP_HFI0_INT_N;
9331 	} else {
9332 		mask &= ~(u64)QSFP_HFI0_INT_N;
9333 	}
9334 	write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_MASK : ASIC_QSFP1_MASK, mask);
9335 }
9336 
9337 void reset_qsfp(struct hfi1_pportdata *ppd)
9338 {
9339 	struct hfi1_devdata *dd = ppd->dd;
9340 	u64 mask, qsfp_mask;
9341 
9342 	/* Disable INT_N from triggering QSFP interrupts */
9343 	set_qsfp_int_n(ppd, 0);
9344 
9345 	/* Reset the QSFP */
9346 	mask = (u64)QSFP_HFI0_RESET_N;
9347 
9348 	qsfp_mask = read_csr(dd,
9349 			     dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT);
9350 	qsfp_mask &= ~mask;
9351 	write_csr(dd,
9352 		  dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT, qsfp_mask);
9353 
9354 	udelay(10);
9355 
9356 	qsfp_mask |= mask;
9357 	write_csr(dd,
9358 		  dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT, qsfp_mask);
9359 
9360 	wait_for_qsfp_init(ppd);
9361 
9362 	/*
9363 	 * Allow INT_N to trigger the QSFP interrupt to watch
9364 	 * for alarms and warnings
9365 	 */
9366 	set_qsfp_int_n(ppd, 1);
9367 }
9368 
9369 static int handle_qsfp_error_conditions(struct hfi1_pportdata *ppd,
9370 					u8 *qsfp_interrupt_status)
9371 {
9372 	struct hfi1_devdata *dd = ppd->dd;
9373 
9374 	if ((qsfp_interrupt_status[0] & QSFP_HIGH_TEMP_ALARM) ||
9375 	    (qsfp_interrupt_status[0] & QSFP_HIGH_TEMP_WARNING))
9376 		dd_dev_info(dd, "%s: QSFP cable temperature too high\n",
9377 			    __func__);
9378 
9379 	if ((qsfp_interrupt_status[0] & QSFP_LOW_TEMP_ALARM) ||
9380 	    (qsfp_interrupt_status[0] & QSFP_LOW_TEMP_WARNING))
9381 		dd_dev_info(dd, "%s: QSFP cable temperature too low\n",
9382 			    __func__);
9383 
9384 	/*
9385 	 * The remaining alarms/warnings don't matter if the link is down.
9386 	 */
9387 	if (ppd->host_link_state & HLS_DOWN)
9388 		return 0;
9389 
9390 	if ((qsfp_interrupt_status[1] & QSFP_HIGH_VCC_ALARM) ||
9391 	    (qsfp_interrupt_status[1] & QSFP_HIGH_VCC_WARNING))
9392 		dd_dev_info(dd, "%s: QSFP supply voltage too high\n",
9393 			    __func__);
9394 
9395 	if ((qsfp_interrupt_status[1] & QSFP_LOW_VCC_ALARM) ||
9396 	    (qsfp_interrupt_status[1] & QSFP_LOW_VCC_WARNING))
9397 		dd_dev_info(dd, "%s: QSFP supply voltage too low\n",
9398 			    __func__);
9399 
9400 	/* Byte 2 is vendor specific */
9401 
9402 	if ((qsfp_interrupt_status[3] & QSFP_HIGH_POWER_ALARM) ||
9403 	    (qsfp_interrupt_status[3] & QSFP_HIGH_POWER_WARNING))
9404 		dd_dev_info(dd, "%s: Cable RX channel 1/2 power too high\n",
9405 			    __func__);
9406 
9407 	if ((qsfp_interrupt_status[3] & QSFP_LOW_POWER_ALARM) ||
9408 	    (qsfp_interrupt_status[3] & QSFP_LOW_POWER_WARNING))
9409 		dd_dev_info(dd, "%s: Cable RX channel 1/2 power too low\n",
9410 			    __func__);
9411 
9412 	if ((qsfp_interrupt_status[4] & QSFP_HIGH_POWER_ALARM) ||
9413 	    (qsfp_interrupt_status[4] & QSFP_HIGH_POWER_WARNING))
9414 		dd_dev_info(dd, "%s: Cable RX channel 3/4 power too high\n",
9415 			    __func__);
9416 
9417 	if ((qsfp_interrupt_status[4] & QSFP_LOW_POWER_ALARM) ||
9418 	    (qsfp_interrupt_status[4] & QSFP_LOW_POWER_WARNING))
9419 		dd_dev_info(dd, "%s: Cable RX channel 3/4 power too low\n",
9420 			    __func__);
9421 
9422 	if ((qsfp_interrupt_status[5] & QSFP_HIGH_BIAS_ALARM) ||
9423 	    (qsfp_interrupt_status[5] & QSFP_HIGH_BIAS_WARNING))
9424 		dd_dev_info(dd, "%s: Cable TX channel 1/2 bias too high\n",
9425 			    __func__);
9426 
9427 	if ((qsfp_interrupt_status[5] & QSFP_LOW_BIAS_ALARM) ||
9428 	    (qsfp_interrupt_status[5] & QSFP_LOW_BIAS_WARNING))
9429 		dd_dev_info(dd, "%s: Cable TX channel 1/2 bias too low\n",
9430 			    __func__);
9431 
9432 	if ((qsfp_interrupt_status[6] & QSFP_HIGH_BIAS_ALARM) ||
9433 	    (qsfp_interrupt_status[6] & QSFP_HIGH_BIAS_WARNING))
9434 		dd_dev_info(dd, "%s: Cable TX channel 3/4 bias too high\n",
9435 			    __func__);
9436 
9437 	if ((qsfp_interrupt_status[6] & QSFP_LOW_BIAS_ALARM) ||
9438 	    (qsfp_interrupt_status[6] & QSFP_LOW_BIAS_WARNING))
9439 		dd_dev_info(dd, "%s: Cable TX channel 3/4 bias too low\n",
9440 			    __func__);
9441 
9442 	if ((qsfp_interrupt_status[7] & QSFP_HIGH_POWER_ALARM) ||
9443 	    (qsfp_interrupt_status[7] & QSFP_HIGH_POWER_WARNING))
9444 		dd_dev_info(dd, "%s: Cable TX channel 1/2 power too high\n",
9445 			    __func__);
9446 
9447 	if ((qsfp_interrupt_status[7] & QSFP_LOW_POWER_ALARM) ||
9448 	    (qsfp_interrupt_status[7] & QSFP_LOW_POWER_WARNING))
9449 		dd_dev_info(dd, "%s: Cable TX channel 1/2 power too low\n",
9450 			    __func__);
9451 
9452 	if ((qsfp_interrupt_status[8] & QSFP_HIGH_POWER_ALARM) ||
9453 	    (qsfp_interrupt_status[8] & QSFP_HIGH_POWER_WARNING))
9454 		dd_dev_info(dd, "%s: Cable TX channel 3/4 power too high\n",
9455 			    __func__);
9456 
9457 	if ((qsfp_interrupt_status[8] & QSFP_LOW_POWER_ALARM) ||
9458 	    (qsfp_interrupt_status[8] & QSFP_LOW_POWER_WARNING))
9459 		dd_dev_info(dd, "%s: Cable TX channel 3/4 power too low\n",
9460 			    __func__);
9461 
9462 	/* Bytes 9-10 and 11-12 are reserved */
9463 	/* Bytes 13-15 are vendor specific */
9464 
9465 	return 0;
9466 }
9467 
9468 /* This routine will only be scheduled if the QSFP module present is asserted */
9469 void qsfp_event(struct work_struct *work)
9470 {
9471 	struct qsfp_data *qd;
9472 	struct hfi1_pportdata *ppd;
9473 	struct hfi1_devdata *dd;
9474 
9475 	qd = container_of(work, struct qsfp_data, qsfp_work);
9476 	ppd = qd->ppd;
9477 	dd = ppd->dd;
9478 
9479 	/* Sanity check */
9480 	if (!qsfp_mod_present(ppd))
9481 		return;
9482 
9483 	/*
9484 	 * Turn DC back on after cable has been re-inserted. Up until
9485 	 * now, the DC has been in reset to save power.
9486 	 */
9487 	dc_start(dd);
9488 
9489 	if (qd->cache_refresh_required) {
9490 		set_qsfp_int_n(ppd, 0);
9491 
9492 		wait_for_qsfp_init(ppd);
9493 
9494 		/*
9495 		 * Allow INT_N to trigger the QSFP interrupt to watch
9496 		 * for alarms and warnings
9497 		 */
9498 		set_qsfp_int_n(ppd, 1);
9499 
9500 		start_link(ppd);
9501 	}
9502 
9503 	if (qd->check_interrupt_flags) {
9504 		u8 qsfp_interrupt_status[16] = {0,};
9505 
9506 		if (one_qsfp_read(ppd, dd->hfi1_id, 6,
9507 				  &qsfp_interrupt_status[0], 16) != 16) {
9508 			dd_dev_info(dd,
9509 				    "%s: Failed to read status of QSFP module\n",
9510 				    __func__);
9511 		} else {
9512 			unsigned long flags;
9513 
9514 			handle_qsfp_error_conditions(
9515 					ppd, qsfp_interrupt_status);
9516 			spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
9517 			ppd->qsfp_info.check_interrupt_flags = 0;
9518 			spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock,
9519 					       flags);
9520 		}
9521 	}
9522 }
9523 
9524 static void init_qsfp_int(struct hfi1_devdata *dd)
9525 {
9526 	struct hfi1_pportdata *ppd = dd->pport;
9527 	u64 qsfp_mask, cce_int_mask;
9528 	const int qsfp1_int_smask = QSFP1_INT % 64;
9529 	const int qsfp2_int_smask = QSFP2_INT % 64;
9530 
9531 	/*
9532 	 * disable QSFP1 interrupts for HFI1, QSFP2 interrupts for HFI0
9533 	 * Qsfp1Int and Qsfp2Int are adjacent bits in the same CSR,
9534 	 * therefore just one of QSFP1_INT/QSFP2_INT can be used to find
9535 	 * the index of the appropriate CSR in the CCEIntMask CSR array
9536 	 */
9537 	cce_int_mask = read_csr(dd, CCE_INT_MASK +
9538 				(8 * (QSFP1_INT / 64)));
9539 	if (dd->hfi1_id) {
9540 		cce_int_mask &= ~((u64)1 << qsfp1_int_smask);
9541 		write_csr(dd, CCE_INT_MASK + (8 * (QSFP1_INT / 64)),
9542 			  cce_int_mask);
9543 	} else {
9544 		cce_int_mask &= ~((u64)1 << qsfp2_int_smask);
9545 		write_csr(dd, CCE_INT_MASK + (8 * (QSFP2_INT / 64)),
9546 			  cce_int_mask);
9547 	}
9548 
9549 	qsfp_mask = (u64)(QSFP_HFI0_INT_N | QSFP_HFI0_MODPRST_N);
9550 	/* Clear current status to avoid spurious interrupts */
9551 	write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_CLEAR : ASIC_QSFP1_CLEAR,
9552 		  qsfp_mask);
9553 	write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_MASK : ASIC_QSFP1_MASK,
9554 		  qsfp_mask);
9555 
9556 	set_qsfp_int_n(ppd, 0);
9557 
9558 	/* Handle active low nature of INT_N and MODPRST_N pins */
9559 	if (qsfp_mod_present(ppd))
9560 		qsfp_mask &= ~(u64)QSFP_HFI0_MODPRST_N;
9561 	write_csr(dd,
9562 		  dd->hfi1_id ? ASIC_QSFP2_INVERT : ASIC_QSFP1_INVERT,
9563 		  qsfp_mask);
9564 }
9565 
9566 /*
9567  * Do a one-time initialize of the LCB block.
9568  */
9569 static void init_lcb(struct hfi1_devdata *dd)
9570 {
9571 	/* simulator does not correctly handle LCB cclk loopback, skip */
9572 	if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR)
9573 		return;
9574 
9575 	/* the DC has been reset earlier in the driver load */
9576 
9577 	/* set LCB for cclk loopback on the port */
9578 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0x01);
9579 	write_csr(dd, DC_LCB_CFG_LANE_WIDTH, 0x00);
9580 	write_csr(dd, DC_LCB_CFG_REINIT_AS_SLAVE, 0x00);
9581 	write_csr(dd, DC_LCB_CFG_CNT_FOR_SKIP_STALL, 0x110);
9582 	write_csr(dd, DC_LCB_CFG_CLK_CNTR, 0x08);
9583 	write_csr(dd, DC_LCB_CFG_LOOPBACK, 0x02);
9584 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0x00);
9585 }
9586 
9587 /*
9588  * Perform a test read on the QSFP.  Return 0 on success, -ERRNO
9589  * on error.
9590  */
9591 static int test_qsfp_read(struct hfi1_pportdata *ppd)
9592 {
9593 	int ret;
9594 	u8 status;
9595 
9596 	/*
9597 	 * Report success if not a QSFP or, if it is a QSFP, but the cable is
9598 	 * not present
9599 	 */
9600 	if (ppd->port_type != PORT_TYPE_QSFP || !qsfp_mod_present(ppd))
9601 		return 0;
9602 
9603 	/* read byte 2, the status byte */
9604 	ret = one_qsfp_read(ppd, ppd->dd->hfi1_id, 2, &status, 1);
9605 	if (ret < 0)
9606 		return ret;
9607 	if (ret != 1)
9608 		return -EIO;
9609 
9610 	return 0; /* success */
9611 }
9612 
9613 /*
9614  * Values for QSFP retry.
9615  *
9616  * Give up after 10s (20 x 500ms).  The overall timeout was empirically
9617  * arrived at from experience on a large cluster.
9618  */
9619 #define MAX_QSFP_RETRIES 20
9620 #define QSFP_RETRY_WAIT 500 /* msec */
9621 
9622 /*
9623  * Try a QSFP read.  If it fails, schedule a retry for later.
9624  * Called on first link activation after driver load.
9625  */
9626 static void try_start_link(struct hfi1_pportdata *ppd)
9627 {
9628 	if (test_qsfp_read(ppd)) {
9629 		/* read failed */
9630 		if (ppd->qsfp_retry_count >= MAX_QSFP_RETRIES) {
9631 			dd_dev_err(ppd->dd, "QSFP not responding, giving up\n");
9632 			return;
9633 		}
9634 		dd_dev_info(ppd->dd,
9635 			    "QSFP not responding, waiting and retrying %d\n",
9636 			    (int)ppd->qsfp_retry_count);
9637 		ppd->qsfp_retry_count++;
9638 		queue_delayed_work(ppd->hfi1_wq, &ppd->start_link_work,
9639 				   msecs_to_jiffies(QSFP_RETRY_WAIT));
9640 		return;
9641 	}
9642 	ppd->qsfp_retry_count = 0;
9643 
9644 	start_link(ppd);
9645 }
9646 
9647 /*
9648  * Workqueue function to start the link after a delay.
9649  */
9650 void handle_start_link(struct work_struct *work)
9651 {
9652 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
9653 						  start_link_work.work);
9654 	try_start_link(ppd);
9655 }
9656 
9657 int bringup_serdes(struct hfi1_pportdata *ppd)
9658 {
9659 	struct hfi1_devdata *dd = ppd->dd;
9660 	u64 guid;
9661 	int ret;
9662 
9663 	if (HFI1_CAP_IS_KSET(EXTENDED_PSN))
9664 		add_rcvctrl(dd, RCV_CTRL_RCV_EXTENDED_PSN_ENABLE_SMASK);
9665 
9666 	guid = ppd->guids[HFI1_PORT_GUID_INDEX];
9667 	if (!guid) {
9668 		if (dd->base_guid)
9669 			guid = dd->base_guid + ppd->port - 1;
9670 		ppd->guids[HFI1_PORT_GUID_INDEX] = guid;
9671 	}
9672 
9673 	/* Set linkinit_reason on power up per OPA spec */
9674 	ppd->linkinit_reason = OPA_LINKINIT_REASON_LINKUP;
9675 
9676 	/* one-time init of the LCB */
9677 	init_lcb(dd);
9678 
9679 	if (loopback) {
9680 		ret = init_loopback(dd);
9681 		if (ret < 0)
9682 			return ret;
9683 	}
9684 
9685 	get_port_type(ppd);
9686 	if (ppd->port_type == PORT_TYPE_QSFP) {
9687 		set_qsfp_int_n(ppd, 0);
9688 		wait_for_qsfp_init(ppd);
9689 		set_qsfp_int_n(ppd, 1);
9690 	}
9691 
9692 	try_start_link(ppd);
9693 	return 0;
9694 }
9695 
9696 void hfi1_quiet_serdes(struct hfi1_pportdata *ppd)
9697 {
9698 	struct hfi1_devdata *dd = ppd->dd;
9699 
9700 	/*
9701 	 * Shut down the link and keep it down.   First turn off that the
9702 	 * driver wants to allow the link to be up (driver_link_ready).
9703 	 * Then make sure the link is not automatically restarted
9704 	 * (link_enabled).  Cancel any pending restart.  And finally
9705 	 * go offline.
9706 	 */
9707 	ppd->driver_link_ready = 0;
9708 	ppd->link_enabled = 0;
9709 
9710 	ppd->qsfp_retry_count = MAX_QSFP_RETRIES; /* prevent more retries */
9711 	flush_delayed_work(&ppd->start_link_work);
9712 	cancel_delayed_work_sync(&ppd->start_link_work);
9713 
9714 	ppd->offline_disabled_reason =
9715 			HFI1_ODR_MASK(OPA_LINKDOWN_REASON_SMA_DISABLED);
9716 	set_link_down_reason(ppd, OPA_LINKDOWN_REASON_SMA_DISABLED, 0,
9717 			     OPA_LINKDOWN_REASON_SMA_DISABLED);
9718 	set_link_state(ppd, HLS_DN_OFFLINE);
9719 
9720 	/* disable the port */
9721 	clear_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
9722 }
9723 
9724 static inline int init_cpu_counters(struct hfi1_devdata *dd)
9725 {
9726 	struct hfi1_pportdata *ppd;
9727 	int i;
9728 
9729 	ppd = (struct hfi1_pportdata *)(dd + 1);
9730 	for (i = 0; i < dd->num_pports; i++, ppd++) {
9731 		ppd->ibport_data.rvp.rc_acks = NULL;
9732 		ppd->ibport_data.rvp.rc_qacks = NULL;
9733 		ppd->ibport_data.rvp.rc_acks = alloc_percpu(u64);
9734 		ppd->ibport_data.rvp.rc_qacks = alloc_percpu(u64);
9735 		ppd->ibport_data.rvp.rc_delayed_comp = alloc_percpu(u64);
9736 		if (!ppd->ibport_data.rvp.rc_acks ||
9737 		    !ppd->ibport_data.rvp.rc_delayed_comp ||
9738 		    !ppd->ibport_data.rvp.rc_qacks)
9739 			return -ENOMEM;
9740 	}
9741 
9742 	return 0;
9743 }
9744 
9745 static const char * const pt_names[] = {
9746 	"expected",
9747 	"eager",
9748 	"invalid"
9749 };
9750 
9751 static const char *pt_name(u32 type)
9752 {
9753 	return type >= ARRAY_SIZE(pt_names) ? "unknown" : pt_names[type];
9754 }
9755 
9756 /*
9757  * index is the index into the receive array
9758  */
9759 void hfi1_put_tid(struct hfi1_devdata *dd, u32 index,
9760 		  u32 type, unsigned long pa, u16 order)
9761 {
9762 	u64 reg;
9763 	void __iomem *base = (dd->rcvarray_wc ? dd->rcvarray_wc :
9764 			      (dd->kregbase + RCV_ARRAY));
9765 
9766 	if (!(dd->flags & HFI1_PRESENT))
9767 		goto done;
9768 
9769 	if (type == PT_INVALID) {
9770 		pa = 0;
9771 	} else if (type > PT_INVALID) {
9772 		dd_dev_err(dd,
9773 			   "unexpected receive array type %u for index %u, not handled\n",
9774 			   type, index);
9775 		goto done;
9776 	}
9777 
9778 	hfi1_cdbg(TID, "type %s, index 0x%x, pa 0x%lx, bsize 0x%lx",
9779 		  pt_name(type), index, pa, (unsigned long)order);
9780 
9781 #define RT_ADDR_SHIFT 12	/* 4KB kernel address boundary */
9782 	reg = RCV_ARRAY_RT_WRITE_ENABLE_SMASK
9783 		| (u64)order << RCV_ARRAY_RT_BUF_SIZE_SHIFT
9784 		| ((pa >> RT_ADDR_SHIFT) & RCV_ARRAY_RT_ADDR_MASK)
9785 					<< RCV_ARRAY_RT_ADDR_SHIFT;
9786 	writeq(reg, base + (index * 8));
9787 
9788 	if (type == PT_EAGER)
9789 		/*
9790 		 * Eager entries are written one-by-one so we have to push them
9791 		 * after we write the entry.
9792 		 */
9793 		flush_wc();
9794 done:
9795 	return;
9796 }
9797 
9798 void hfi1_clear_tids(struct hfi1_ctxtdata *rcd)
9799 {
9800 	struct hfi1_devdata *dd = rcd->dd;
9801 	u32 i;
9802 
9803 	/* this could be optimized */
9804 	for (i = rcd->eager_base; i < rcd->eager_base +
9805 		     rcd->egrbufs.alloced; i++)
9806 		hfi1_put_tid(dd, i, PT_INVALID, 0, 0);
9807 
9808 	for (i = rcd->expected_base;
9809 			i < rcd->expected_base + rcd->expected_count; i++)
9810 		hfi1_put_tid(dd, i, PT_INVALID, 0, 0);
9811 }
9812 
9813 struct ib_header *hfi1_get_msgheader(
9814 	struct hfi1_devdata *dd, __le32 *rhf_addr)
9815 {
9816 	u32 offset = rhf_hdrq_offset(rhf_to_cpu(rhf_addr));
9817 
9818 	return (struct ib_header *)
9819 		(rhf_addr - dd->rhf_offset + offset);
9820 }
9821 
9822 static const char * const ib_cfg_name_strings[] = {
9823 	"HFI1_IB_CFG_LIDLMC",
9824 	"HFI1_IB_CFG_LWID_DG_ENB",
9825 	"HFI1_IB_CFG_LWID_ENB",
9826 	"HFI1_IB_CFG_LWID",
9827 	"HFI1_IB_CFG_SPD_ENB",
9828 	"HFI1_IB_CFG_SPD",
9829 	"HFI1_IB_CFG_RXPOL_ENB",
9830 	"HFI1_IB_CFG_LREV_ENB",
9831 	"HFI1_IB_CFG_LINKLATENCY",
9832 	"HFI1_IB_CFG_HRTBT",
9833 	"HFI1_IB_CFG_OP_VLS",
9834 	"HFI1_IB_CFG_VL_HIGH_CAP",
9835 	"HFI1_IB_CFG_VL_LOW_CAP",
9836 	"HFI1_IB_CFG_OVERRUN_THRESH",
9837 	"HFI1_IB_CFG_PHYERR_THRESH",
9838 	"HFI1_IB_CFG_LINKDEFAULT",
9839 	"HFI1_IB_CFG_PKEYS",
9840 	"HFI1_IB_CFG_MTU",
9841 	"HFI1_IB_CFG_LSTATE",
9842 	"HFI1_IB_CFG_VL_HIGH_LIMIT",
9843 	"HFI1_IB_CFG_PMA_TICKS",
9844 	"HFI1_IB_CFG_PORT"
9845 };
9846 
9847 static const char *ib_cfg_name(int which)
9848 {
9849 	if (which < 0 || which >= ARRAY_SIZE(ib_cfg_name_strings))
9850 		return "invalid";
9851 	return ib_cfg_name_strings[which];
9852 }
9853 
9854 int hfi1_get_ib_cfg(struct hfi1_pportdata *ppd, int which)
9855 {
9856 	struct hfi1_devdata *dd = ppd->dd;
9857 	int val = 0;
9858 
9859 	switch (which) {
9860 	case HFI1_IB_CFG_LWID_ENB: /* allowed Link-width */
9861 		val = ppd->link_width_enabled;
9862 		break;
9863 	case HFI1_IB_CFG_LWID: /* currently active Link-width */
9864 		val = ppd->link_width_active;
9865 		break;
9866 	case HFI1_IB_CFG_SPD_ENB: /* allowed Link speeds */
9867 		val = ppd->link_speed_enabled;
9868 		break;
9869 	case HFI1_IB_CFG_SPD: /* current Link speed */
9870 		val = ppd->link_speed_active;
9871 		break;
9872 
9873 	case HFI1_IB_CFG_RXPOL_ENB: /* Auto-RX-polarity enable */
9874 	case HFI1_IB_CFG_LREV_ENB: /* Auto-Lane-reversal enable */
9875 	case HFI1_IB_CFG_LINKLATENCY:
9876 		goto unimplemented;
9877 
9878 	case HFI1_IB_CFG_OP_VLS:
9879 		val = ppd->vls_operational;
9880 		break;
9881 	case HFI1_IB_CFG_VL_HIGH_CAP: /* VL arb high priority table size */
9882 		val = VL_ARB_HIGH_PRIO_TABLE_SIZE;
9883 		break;
9884 	case HFI1_IB_CFG_VL_LOW_CAP: /* VL arb low priority table size */
9885 		val = VL_ARB_LOW_PRIO_TABLE_SIZE;
9886 		break;
9887 	case HFI1_IB_CFG_OVERRUN_THRESH: /* IB overrun threshold */
9888 		val = ppd->overrun_threshold;
9889 		break;
9890 	case HFI1_IB_CFG_PHYERR_THRESH: /* IB PHY error threshold */
9891 		val = ppd->phy_error_threshold;
9892 		break;
9893 	case HFI1_IB_CFG_LINKDEFAULT: /* IB link default (sleep/poll) */
9894 		val = dd->link_default;
9895 		break;
9896 
9897 	case HFI1_IB_CFG_HRTBT: /* Heartbeat off/enable/auto */
9898 	case HFI1_IB_CFG_PMA_TICKS:
9899 	default:
9900 unimplemented:
9901 		if (HFI1_CAP_IS_KSET(PRINT_UNIMPL))
9902 			dd_dev_info(
9903 				dd,
9904 				"%s: which %s: not implemented\n",
9905 				__func__,
9906 				ib_cfg_name(which));
9907 		break;
9908 	}
9909 
9910 	return val;
9911 }
9912 
9913 /*
9914  * The largest MAD packet size.
9915  */
9916 #define MAX_MAD_PACKET 2048
9917 
9918 /*
9919  * Return the maximum header bytes that can go on the _wire_
9920  * for this device. This count includes the ICRC which is
9921  * not part of the packet held in memory but it is appended
9922  * by the HW.
9923  * This is dependent on the device's receive header entry size.
9924  * HFI allows this to be set per-receive context, but the
9925  * driver presently enforces a global value.
9926  */
9927 u32 lrh_max_header_bytes(struct hfi1_devdata *dd)
9928 {
9929 	/*
9930 	 * The maximum non-payload (MTU) bytes in LRH.PktLen are
9931 	 * the Receive Header Entry Size minus the PBC (or RHF) size
9932 	 * plus one DW for the ICRC appended by HW.
9933 	 *
9934 	 * dd->rcd[0].rcvhdrqentsize is in DW.
9935 	 * We use rcd[0] as all context will have the same value. Also,
9936 	 * the first kernel context would have been allocated by now so
9937 	 * we are guaranteed a valid value.
9938 	 */
9939 	return (dd->rcd[0]->rcvhdrqentsize - 2/*PBC/RHF*/ + 1/*ICRC*/) << 2;
9940 }
9941 
9942 /*
9943  * Set Send Length
9944  * @ppd - per port data
9945  *
9946  * Set the MTU by limiting how many DWs may be sent.  The SendLenCheck*
9947  * registers compare against LRH.PktLen, so use the max bytes included
9948  * in the LRH.
9949  *
9950  * This routine changes all VL values except VL15, which it maintains at
9951  * the same value.
9952  */
9953 static void set_send_length(struct hfi1_pportdata *ppd)
9954 {
9955 	struct hfi1_devdata *dd = ppd->dd;
9956 	u32 max_hb = lrh_max_header_bytes(dd), dcmtu;
9957 	u32 maxvlmtu = dd->vld[15].mtu;
9958 	u64 len1 = 0, len2 = (((dd->vld[15].mtu + max_hb) >> 2)
9959 			      & SEND_LEN_CHECK1_LEN_VL15_MASK) <<
9960 		SEND_LEN_CHECK1_LEN_VL15_SHIFT;
9961 	int i, j;
9962 	u32 thres;
9963 
9964 	for (i = 0; i < ppd->vls_supported; i++) {
9965 		if (dd->vld[i].mtu > maxvlmtu)
9966 			maxvlmtu = dd->vld[i].mtu;
9967 		if (i <= 3)
9968 			len1 |= (((dd->vld[i].mtu + max_hb) >> 2)
9969 				 & SEND_LEN_CHECK0_LEN_VL0_MASK) <<
9970 				((i % 4) * SEND_LEN_CHECK0_LEN_VL1_SHIFT);
9971 		else
9972 			len2 |= (((dd->vld[i].mtu + max_hb) >> 2)
9973 				 & SEND_LEN_CHECK1_LEN_VL4_MASK) <<
9974 				((i % 4) * SEND_LEN_CHECK1_LEN_VL5_SHIFT);
9975 	}
9976 	write_csr(dd, SEND_LEN_CHECK0, len1);
9977 	write_csr(dd, SEND_LEN_CHECK1, len2);
9978 	/* adjust kernel credit return thresholds based on new MTUs */
9979 	/* all kernel receive contexts have the same hdrqentsize */
9980 	for (i = 0; i < ppd->vls_supported; i++) {
9981 		thres = min(sc_percent_to_threshold(dd->vld[i].sc, 50),
9982 			    sc_mtu_to_threshold(dd->vld[i].sc,
9983 						dd->vld[i].mtu,
9984 						dd->rcd[0]->rcvhdrqentsize));
9985 		for (j = 0; j < INIT_SC_PER_VL; j++)
9986 			sc_set_cr_threshold(
9987 					pio_select_send_context_vl(dd, j, i),
9988 					    thres);
9989 	}
9990 	thres = min(sc_percent_to_threshold(dd->vld[15].sc, 50),
9991 		    sc_mtu_to_threshold(dd->vld[15].sc,
9992 					dd->vld[15].mtu,
9993 					dd->rcd[0]->rcvhdrqentsize));
9994 	sc_set_cr_threshold(dd->vld[15].sc, thres);
9995 
9996 	/* Adjust maximum MTU for the port in DC */
9997 	dcmtu = maxvlmtu == 10240 ? DCC_CFG_PORT_MTU_CAP_10240 :
9998 		(ilog2(maxvlmtu >> 8) + 1);
9999 	len1 = read_csr(ppd->dd, DCC_CFG_PORT_CONFIG);
10000 	len1 &= ~DCC_CFG_PORT_CONFIG_MTU_CAP_SMASK;
10001 	len1 |= ((u64)dcmtu & DCC_CFG_PORT_CONFIG_MTU_CAP_MASK) <<
10002 		DCC_CFG_PORT_CONFIG_MTU_CAP_SHIFT;
10003 	write_csr(ppd->dd, DCC_CFG_PORT_CONFIG, len1);
10004 }
10005 
10006 static void set_lidlmc(struct hfi1_pportdata *ppd)
10007 {
10008 	int i;
10009 	u64 sreg = 0;
10010 	struct hfi1_devdata *dd = ppd->dd;
10011 	u32 mask = ~((1U << ppd->lmc) - 1);
10012 	u64 c1 = read_csr(ppd->dd, DCC_CFG_PORT_CONFIG1);
10013 
10014 	c1 &= ~(DCC_CFG_PORT_CONFIG1_TARGET_DLID_SMASK
10015 		| DCC_CFG_PORT_CONFIG1_DLID_MASK_SMASK);
10016 	c1 |= ((ppd->lid & DCC_CFG_PORT_CONFIG1_TARGET_DLID_MASK)
10017 			<< DCC_CFG_PORT_CONFIG1_TARGET_DLID_SHIFT) |
10018 	      ((mask & DCC_CFG_PORT_CONFIG1_DLID_MASK_MASK)
10019 			<< DCC_CFG_PORT_CONFIG1_DLID_MASK_SHIFT);
10020 	write_csr(ppd->dd, DCC_CFG_PORT_CONFIG1, c1);
10021 
10022 	/*
10023 	 * Iterate over all the send contexts and set their SLID check
10024 	 */
10025 	sreg = ((mask & SEND_CTXT_CHECK_SLID_MASK_MASK) <<
10026 			SEND_CTXT_CHECK_SLID_MASK_SHIFT) |
10027 	       (((ppd->lid & mask) & SEND_CTXT_CHECK_SLID_VALUE_MASK) <<
10028 			SEND_CTXT_CHECK_SLID_VALUE_SHIFT);
10029 
10030 	for (i = 0; i < dd->chip_send_contexts; i++) {
10031 		hfi1_cdbg(LINKVERB, "SendContext[%d].SLID_CHECK = 0x%x",
10032 			  i, (u32)sreg);
10033 		write_kctxt_csr(dd, i, SEND_CTXT_CHECK_SLID, sreg);
10034 	}
10035 
10036 	/* Now we have to do the same thing for the sdma engines */
10037 	sdma_update_lmc(dd, mask, ppd->lid);
10038 }
10039 
10040 static int wait_phy_linkstate(struct hfi1_devdata *dd, u32 state, u32 msecs)
10041 {
10042 	unsigned long timeout;
10043 	u32 curr_state;
10044 
10045 	timeout = jiffies + msecs_to_jiffies(msecs);
10046 	while (1) {
10047 		curr_state = read_physical_state(dd);
10048 		if (curr_state == state)
10049 			break;
10050 		if (time_after(jiffies, timeout)) {
10051 			dd_dev_err(dd,
10052 				   "timeout waiting for phy link state 0x%x, current state is 0x%x\n",
10053 				   state, curr_state);
10054 			return -ETIMEDOUT;
10055 		}
10056 		usleep_range(1950, 2050); /* sleep 2ms-ish */
10057 	}
10058 
10059 	return 0;
10060 }
10061 
10062 static const char *state_completed_string(u32 completed)
10063 {
10064 	static const char * const state_completed[] = {
10065 		"EstablishComm",
10066 		"OptimizeEQ",
10067 		"VerifyCap"
10068 	};
10069 
10070 	if (completed < ARRAY_SIZE(state_completed))
10071 		return state_completed[completed];
10072 
10073 	return "unknown";
10074 }
10075 
10076 static const char all_lanes_dead_timeout_expired[] =
10077 	"All lanes were inactive – was the interconnect media removed?";
10078 static const char tx_out_of_policy[] =
10079 	"Passing lanes on local port do not meet the local link width policy";
10080 static const char no_state_complete[] =
10081 	"State timeout occurred before link partner completed the state";
10082 static const char * const state_complete_reasons[] = {
10083 	[0x00] = "Reason unknown",
10084 	[0x01] = "Link was halted by driver, refer to LinkDownReason",
10085 	[0x02] = "Link partner reported failure",
10086 	[0x10] = "Unable to achieve frame sync on any lane",
10087 	[0x11] =
10088 	  "Unable to find a common bit rate with the link partner",
10089 	[0x12] =
10090 	  "Unable to achieve frame sync on sufficient lanes to meet the local link width policy",
10091 	[0x13] =
10092 	  "Unable to identify preset equalization on sufficient lanes to meet the local link width policy",
10093 	[0x14] = no_state_complete,
10094 	[0x15] =
10095 	  "State timeout occurred before link partner identified equalization presets",
10096 	[0x16] =
10097 	  "Link partner completed the EstablishComm state, but the passing lanes do not meet the local link width policy",
10098 	[0x17] = tx_out_of_policy,
10099 	[0x20] = all_lanes_dead_timeout_expired,
10100 	[0x21] =
10101 	  "Unable to achieve acceptable BER on sufficient lanes to meet the local link width policy",
10102 	[0x22] = no_state_complete,
10103 	[0x23] =
10104 	  "Link partner completed the OptimizeEq state, but the passing lanes do not meet the local link width policy",
10105 	[0x24] = tx_out_of_policy,
10106 	[0x30] = all_lanes_dead_timeout_expired,
10107 	[0x31] =
10108 	  "State timeout occurred waiting for host to process received frames",
10109 	[0x32] = no_state_complete,
10110 	[0x33] =
10111 	  "Link partner completed the VerifyCap state, but the passing lanes do not meet the local link width policy",
10112 	[0x34] = tx_out_of_policy,
10113 };
10114 
10115 static const char *state_complete_reason_code_string(struct hfi1_pportdata *ppd,
10116 						     u32 code)
10117 {
10118 	const char *str = NULL;
10119 
10120 	if (code < ARRAY_SIZE(state_complete_reasons))
10121 		str = state_complete_reasons[code];
10122 
10123 	if (str)
10124 		return str;
10125 	return "Reserved";
10126 }
10127 
10128 /* describe the given last state complete frame */
10129 static void decode_state_complete(struct hfi1_pportdata *ppd, u32 frame,
10130 				  const char *prefix)
10131 {
10132 	struct hfi1_devdata *dd = ppd->dd;
10133 	u32 success;
10134 	u32 state;
10135 	u32 reason;
10136 	u32 lanes;
10137 
10138 	/*
10139 	 * Decode frame:
10140 	 *  [ 0: 0] - success
10141 	 *  [ 3: 1] - state
10142 	 *  [ 7: 4] - next state timeout
10143 	 *  [15: 8] - reason code
10144 	 *  [31:16] - lanes
10145 	 */
10146 	success = frame & 0x1;
10147 	state = (frame >> 1) & 0x7;
10148 	reason = (frame >> 8) & 0xff;
10149 	lanes = (frame >> 16) & 0xffff;
10150 
10151 	dd_dev_err(dd, "Last %s LNI state complete frame 0x%08x:\n",
10152 		   prefix, frame);
10153 	dd_dev_err(dd, "    last reported state state: %s (0x%x)\n",
10154 		   state_completed_string(state), state);
10155 	dd_dev_err(dd, "    state successfully completed: %s\n",
10156 		   success ? "yes" : "no");
10157 	dd_dev_err(dd, "    fail reason 0x%x: %s\n",
10158 		   reason, state_complete_reason_code_string(ppd, reason));
10159 	dd_dev_err(dd, "    passing lane mask: 0x%x", lanes);
10160 }
10161 
10162 /*
10163  * Read the last state complete frames and explain them.  This routine
10164  * expects to be called if the link went down during link negotiation
10165  * and initialization (LNI).  That is, anywhere between polling and link up.
10166  */
10167 static void check_lni_states(struct hfi1_pportdata *ppd)
10168 {
10169 	u32 last_local_state;
10170 	u32 last_remote_state;
10171 
10172 	read_last_local_state(ppd->dd, &last_local_state);
10173 	read_last_remote_state(ppd->dd, &last_remote_state);
10174 
10175 	/*
10176 	 * Don't report anything if there is nothing to report.  A value of
10177 	 * 0 means the link was taken down while polling and there was no
10178 	 * training in-process.
10179 	 */
10180 	if (last_local_state == 0 && last_remote_state == 0)
10181 		return;
10182 
10183 	decode_state_complete(ppd, last_local_state, "transmitted");
10184 	decode_state_complete(ppd, last_remote_state, "received");
10185 }
10186 
10187 /* wait for wait_ms for LINK_TRANSFER_ACTIVE to go to 1 */
10188 static int wait_link_transfer_active(struct hfi1_devdata *dd, int wait_ms)
10189 {
10190 	u64 reg;
10191 	unsigned long timeout;
10192 
10193 	/* watch LCB_STS_LINK_TRANSFER_ACTIVE */
10194 	timeout = jiffies + msecs_to_jiffies(wait_ms);
10195 	while (1) {
10196 		reg = read_csr(dd, DC_LCB_STS_LINK_TRANSFER_ACTIVE);
10197 		if (reg)
10198 			break;
10199 		if (time_after(jiffies, timeout)) {
10200 			dd_dev_err(dd,
10201 				   "timeout waiting for LINK_TRANSFER_ACTIVE\n");
10202 			return -ETIMEDOUT;
10203 		}
10204 		udelay(2);
10205 	}
10206 	return 0;
10207 }
10208 
10209 /* called when the logical link state is not down as it should be */
10210 static void force_logical_link_state_down(struct hfi1_pportdata *ppd)
10211 {
10212 	struct hfi1_devdata *dd = ppd->dd;
10213 
10214 	/*
10215 	 * Bring link up in LCB loopback
10216 	 */
10217 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 1);
10218 	write_csr(dd, DC_LCB_CFG_IGNORE_LOST_RCLK,
10219 		  DC_LCB_CFG_IGNORE_LOST_RCLK_EN_SMASK);
10220 
10221 	write_csr(dd, DC_LCB_CFG_LANE_WIDTH, 0);
10222 	write_csr(dd, DC_LCB_CFG_REINIT_AS_SLAVE, 0);
10223 	write_csr(dd, DC_LCB_CFG_CNT_FOR_SKIP_STALL, 0x110);
10224 	write_csr(dd, DC_LCB_CFG_LOOPBACK, 0x2);
10225 
10226 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0);
10227 	(void)read_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET);
10228 	udelay(3);
10229 	write_csr(dd, DC_LCB_CFG_ALLOW_LINK_UP, 1);
10230 	write_csr(dd, DC_LCB_CFG_RUN, 1ull << DC_LCB_CFG_RUN_EN_SHIFT);
10231 
10232 	wait_link_transfer_active(dd, 100);
10233 
10234 	/*
10235 	 * Bring the link down again.
10236 	 */
10237 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 1);
10238 	write_csr(dd, DC_LCB_CFG_ALLOW_LINK_UP, 0);
10239 	write_csr(dd, DC_LCB_CFG_IGNORE_LOST_RCLK, 0);
10240 
10241 	/* call again to adjust ppd->statusp, if needed */
10242 	get_logical_state(ppd);
10243 }
10244 
10245 /*
10246  * Helper for set_link_state().  Do not call except from that routine.
10247  * Expects ppd->hls_mutex to be held.
10248  *
10249  * @rem_reason value to be sent to the neighbor
10250  *
10251  * LinkDownReasons only set if transition succeeds.
10252  */
10253 static int goto_offline(struct hfi1_pportdata *ppd, u8 rem_reason)
10254 {
10255 	struct hfi1_devdata *dd = ppd->dd;
10256 	u32 pstate, previous_state;
10257 	int ret;
10258 	int do_transition;
10259 	int do_wait;
10260 
10261 	update_lcb_cache(dd);
10262 
10263 	previous_state = ppd->host_link_state;
10264 	ppd->host_link_state = HLS_GOING_OFFLINE;
10265 	pstate = read_physical_state(dd);
10266 	if (pstate == PLS_OFFLINE) {
10267 		do_transition = 0;	/* in right state */
10268 		do_wait = 0;		/* ...no need to wait */
10269 	} else if ((pstate & 0xf0) == PLS_OFFLINE) {
10270 		do_transition = 0;	/* in an offline transient state */
10271 		do_wait = 1;		/* ...wait for it to settle */
10272 	} else {
10273 		do_transition = 1;	/* need to move to offline */
10274 		do_wait = 1;		/* ...will need to wait */
10275 	}
10276 
10277 	if (do_transition) {
10278 		ret = set_physical_link_state(dd,
10279 					      (rem_reason << 8) | PLS_OFFLINE);
10280 
10281 		if (ret != HCMD_SUCCESS) {
10282 			dd_dev_err(dd,
10283 				   "Failed to transition to Offline link state, return %d\n",
10284 				   ret);
10285 			return -EINVAL;
10286 		}
10287 		if (ppd->offline_disabled_reason ==
10288 				HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE))
10289 			ppd->offline_disabled_reason =
10290 			HFI1_ODR_MASK(OPA_LINKDOWN_REASON_TRANSIENT);
10291 	}
10292 
10293 	if (do_wait) {
10294 		/* it can take a while for the link to go down */
10295 		ret = wait_phy_linkstate(dd, PLS_OFFLINE, 10000);
10296 		if (ret < 0)
10297 			return ret;
10298 	}
10299 
10300 	/*
10301 	 * Now in charge of LCB - must be after the physical state is
10302 	 * offline.quiet and before host_link_state is changed.
10303 	 */
10304 	set_host_lcb_access(dd);
10305 	write_csr(dd, DC_LCB_ERR_EN, ~0ull); /* watch LCB errors */
10306 
10307 	/* make sure the logical state is also down */
10308 	ret = wait_logical_linkstate(ppd, IB_PORT_DOWN, 1000);
10309 	if (ret)
10310 		force_logical_link_state_down(ppd);
10311 
10312 	ppd->host_link_state = HLS_LINK_COOLDOWN; /* LCB access allowed */
10313 
10314 	if (ppd->port_type == PORT_TYPE_QSFP &&
10315 	    ppd->qsfp_info.limiting_active &&
10316 	    qsfp_mod_present(ppd)) {
10317 		int ret;
10318 
10319 		ret = acquire_chip_resource(dd, qsfp_resource(dd), QSFP_WAIT);
10320 		if (ret == 0) {
10321 			set_qsfp_tx(ppd, 0);
10322 			release_chip_resource(dd, qsfp_resource(dd));
10323 		} else {
10324 			/* not fatal, but should warn */
10325 			dd_dev_err(dd,
10326 				   "Unable to acquire lock to turn off QSFP TX\n");
10327 		}
10328 	}
10329 
10330 	/*
10331 	 * The LNI has a mandatory wait time after the physical state
10332 	 * moves to Offline.Quiet.  The wait time may be different
10333 	 * depending on how the link went down.  The 8051 firmware
10334 	 * will observe the needed wait time and only move to ready
10335 	 * when that is completed.  The largest of the quiet timeouts
10336 	 * is 6s, so wait that long and then at least 0.5s more for
10337 	 * other transitions, and another 0.5s for a buffer.
10338 	 */
10339 	ret = wait_fm_ready(dd, 7000);
10340 	if (ret) {
10341 		dd_dev_err(dd,
10342 			   "After going offline, timed out waiting for the 8051 to become ready to accept host requests\n");
10343 		/* state is really offline, so make it so */
10344 		ppd->host_link_state = HLS_DN_OFFLINE;
10345 		return ret;
10346 	}
10347 
10348 	/*
10349 	 * The state is now offline and the 8051 is ready to accept host
10350 	 * requests.
10351 	 *	- change our state
10352 	 *	- notify others if we were previously in a linkup state
10353 	 */
10354 	ppd->host_link_state = HLS_DN_OFFLINE;
10355 	if (previous_state & HLS_UP) {
10356 		/* went down while link was up */
10357 		handle_linkup_change(dd, 0);
10358 	} else if (previous_state
10359 			& (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) {
10360 		/* went down while attempting link up */
10361 		check_lni_states(ppd);
10362 	}
10363 
10364 	/* the active link width (downgrade) is 0 on link down */
10365 	ppd->link_width_active = 0;
10366 	ppd->link_width_downgrade_tx_active = 0;
10367 	ppd->link_width_downgrade_rx_active = 0;
10368 	ppd->current_egress_rate = 0;
10369 	return 0;
10370 }
10371 
10372 /* return the link state name */
10373 static const char *link_state_name(u32 state)
10374 {
10375 	const char *name;
10376 	int n = ilog2(state);
10377 	static const char * const names[] = {
10378 		[__HLS_UP_INIT_BP]	 = "INIT",
10379 		[__HLS_UP_ARMED_BP]	 = "ARMED",
10380 		[__HLS_UP_ACTIVE_BP]	 = "ACTIVE",
10381 		[__HLS_DN_DOWNDEF_BP]	 = "DOWNDEF",
10382 		[__HLS_DN_POLL_BP]	 = "POLL",
10383 		[__HLS_DN_DISABLE_BP]	 = "DISABLE",
10384 		[__HLS_DN_OFFLINE_BP]	 = "OFFLINE",
10385 		[__HLS_VERIFY_CAP_BP]	 = "VERIFY_CAP",
10386 		[__HLS_GOING_UP_BP]	 = "GOING_UP",
10387 		[__HLS_GOING_OFFLINE_BP] = "GOING_OFFLINE",
10388 		[__HLS_LINK_COOLDOWN_BP] = "LINK_COOLDOWN"
10389 	};
10390 
10391 	name = n < ARRAY_SIZE(names) ? names[n] : NULL;
10392 	return name ? name : "unknown";
10393 }
10394 
10395 /* return the link state reason name */
10396 static const char *link_state_reason_name(struct hfi1_pportdata *ppd, u32 state)
10397 {
10398 	if (state == HLS_UP_INIT) {
10399 		switch (ppd->linkinit_reason) {
10400 		case OPA_LINKINIT_REASON_LINKUP:
10401 			return "(LINKUP)";
10402 		case OPA_LINKINIT_REASON_FLAPPING:
10403 			return "(FLAPPING)";
10404 		case OPA_LINKINIT_OUTSIDE_POLICY:
10405 			return "(OUTSIDE_POLICY)";
10406 		case OPA_LINKINIT_QUARANTINED:
10407 			return "(QUARANTINED)";
10408 		case OPA_LINKINIT_INSUFIC_CAPABILITY:
10409 			return "(INSUFIC_CAPABILITY)";
10410 		default:
10411 			break;
10412 		}
10413 	}
10414 	return "";
10415 }
10416 
10417 /*
10418  * driver_physical_state - convert the driver's notion of a port's
10419  * state (an HLS_*) into a physical state (a {IB,OPA}_PORTPHYSSTATE_*).
10420  * Return -1 (converted to a u32) to indicate error.
10421  */
10422 u32 driver_physical_state(struct hfi1_pportdata *ppd)
10423 {
10424 	switch (ppd->host_link_state) {
10425 	case HLS_UP_INIT:
10426 	case HLS_UP_ARMED:
10427 	case HLS_UP_ACTIVE:
10428 		return IB_PORTPHYSSTATE_LINKUP;
10429 	case HLS_DN_POLL:
10430 		return IB_PORTPHYSSTATE_POLLING;
10431 	case HLS_DN_DISABLE:
10432 		return IB_PORTPHYSSTATE_DISABLED;
10433 	case HLS_DN_OFFLINE:
10434 		return OPA_PORTPHYSSTATE_OFFLINE;
10435 	case HLS_VERIFY_CAP:
10436 		return IB_PORTPHYSSTATE_POLLING;
10437 	case HLS_GOING_UP:
10438 		return IB_PORTPHYSSTATE_POLLING;
10439 	case HLS_GOING_OFFLINE:
10440 		return OPA_PORTPHYSSTATE_OFFLINE;
10441 	case HLS_LINK_COOLDOWN:
10442 		return OPA_PORTPHYSSTATE_OFFLINE;
10443 	case HLS_DN_DOWNDEF:
10444 	default:
10445 		dd_dev_err(ppd->dd, "invalid host_link_state 0x%x\n",
10446 			   ppd->host_link_state);
10447 		return  -1;
10448 	}
10449 }
10450 
10451 /*
10452  * driver_logical_state - convert the driver's notion of a port's
10453  * state (an HLS_*) into a logical state (a IB_PORT_*). Return -1
10454  * (converted to a u32) to indicate error.
10455  */
10456 u32 driver_logical_state(struct hfi1_pportdata *ppd)
10457 {
10458 	if (ppd->host_link_state && (ppd->host_link_state & HLS_DOWN))
10459 		return IB_PORT_DOWN;
10460 
10461 	switch (ppd->host_link_state & HLS_UP) {
10462 	case HLS_UP_INIT:
10463 		return IB_PORT_INIT;
10464 	case HLS_UP_ARMED:
10465 		return IB_PORT_ARMED;
10466 	case HLS_UP_ACTIVE:
10467 		return IB_PORT_ACTIVE;
10468 	default:
10469 		dd_dev_err(ppd->dd, "invalid host_link_state 0x%x\n",
10470 			   ppd->host_link_state);
10471 	return -1;
10472 	}
10473 }
10474 
10475 void set_link_down_reason(struct hfi1_pportdata *ppd, u8 lcl_reason,
10476 			  u8 neigh_reason, u8 rem_reason)
10477 {
10478 	if (ppd->local_link_down_reason.latest == 0 &&
10479 	    ppd->neigh_link_down_reason.latest == 0) {
10480 		ppd->local_link_down_reason.latest = lcl_reason;
10481 		ppd->neigh_link_down_reason.latest = neigh_reason;
10482 		ppd->remote_link_down_reason = rem_reason;
10483 	}
10484 }
10485 
10486 /*
10487  * Change the physical and/or logical link state.
10488  *
10489  * Do not call this routine while inside an interrupt.  It contains
10490  * calls to routines that can take multiple seconds to finish.
10491  *
10492  * Returns 0 on success, -errno on failure.
10493  */
10494 int set_link_state(struct hfi1_pportdata *ppd, u32 state)
10495 {
10496 	struct hfi1_devdata *dd = ppd->dd;
10497 	struct ib_event event = {.device = NULL};
10498 	int ret1, ret = 0;
10499 	int orig_new_state, poll_bounce;
10500 
10501 	mutex_lock(&ppd->hls_lock);
10502 
10503 	orig_new_state = state;
10504 	if (state == HLS_DN_DOWNDEF)
10505 		state = dd->link_default;
10506 
10507 	/* interpret poll -> poll as a link bounce */
10508 	poll_bounce = ppd->host_link_state == HLS_DN_POLL &&
10509 		      state == HLS_DN_POLL;
10510 
10511 	dd_dev_info(dd, "%s: current %s, new %s %s%s\n", __func__,
10512 		    link_state_name(ppd->host_link_state),
10513 		    link_state_name(orig_new_state),
10514 		    poll_bounce ? "(bounce) " : "",
10515 		    link_state_reason_name(ppd, state));
10516 
10517 	/*
10518 	 * If we're going to a (HLS_*) link state that implies the logical
10519 	 * link state is neither of (IB_PORT_ARMED, IB_PORT_ACTIVE), then
10520 	 * reset is_sm_config_started to 0.
10521 	 */
10522 	if (!(state & (HLS_UP_ARMED | HLS_UP_ACTIVE)))
10523 		ppd->is_sm_config_started = 0;
10524 
10525 	/*
10526 	 * Do nothing if the states match.  Let a poll to poll link bounce
10527 	 * go through.
10528 	 */
10529 	if (ppd->host_link_state == state && !poll_bounce)
10530 		goto done;
10531 
10532 	switch (state) {
10533 	case HLS_UP_INIT:
10534 		if (ppd->host_link_state == HLS_DN_POLL &&
10535 		    (quick_linkup || dd->icode == ICODE_FUNCTIONAL_SIMULATOR)) {
10536 			/*
10537 			 * Quick link up jumps from polling to here.
10538 			 *
10539 			 * Whether in normal or loopback mode, the
10540 			 * simulator jumps from polling to link up.
10541 			 * Accept that here.
10542 			 */
10543 			/* OK */
10544 		} else if (ppd->host_link_state != HLS_GOING_UP) {
10545 			goto unexpected;
10546 		}
10547 
10548 		ret = wait_logical_linkstate(ppd, IB_PORT_INIT, 1000);
10549 		if (ret) {
10550 			dd_dev_err(dd,
10551 				   "%s: logical state did not change to INIT\n",
10552 				   __func__);
10553 		} else {
10554 			/* clear old transient LINKINIT_REASON code */
10555 			if (ppd->linkinit_reason >= OPA_LINKINIT_REASON_CLEAR)
10556 				ppd->linkinit_reason =
10557 					OPA_LINKINIT_REASON_LINKUP;
10558 
10559 			/* enable the port */
10560 			add_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
10561 
10562 			handle_linkup_change(dd, 1);
10563 			ppd->host_link_state = HLS_UP_INIT;
10564 		}
10565 		break;
10566 	case HLS_UP_ARMED:
10567 		if (ppd->host_link_state != HLS_UP_INIT)
10568 			goto unexpected;
10569 
10570 		ppd->host_link_state = HLS_UP_ARMED;
10571 		set_logical_state(dd, LSTATE_ARMED);
10572 		ret = wait_logical_linkstate(ppd, IB_PORT_ARMED, 1000);
10573 		if (ret) {
10574 			/* logical state didn't change, stay at init */
10575 			ppd->host_link_state = HLS_UP_INIT;
10576 			dd_dev_err(dd,
10577 				   "%s: logical state did not change to ARMED\n",
10578 				   __func__);
10579 		}
10580 		/*
10581 		 * The simulator does not currently implement SMA messages,
10582 		 * so neighbor_normal is not set.  Set it here when we first
10583 		 * move to Armed.
10584 		 */
10585 		if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR)
10586 			ppd->neighbor_normal = 1;
10587 		break;
10588 	case HLS_UP_ACTIVE:
10589 		if (ppd->host_link_state != HLS_UP_ARMED)
10590 			goto unexpected;
10591 
10592 		ppd->host_link_state = HLS_UP_ACTIVE;
10593 		set_logical_state(dd, LSTATE_ACTIVE);
10594 		ret = wait_logical_linkstate(ppd, IB_PORT_ACTIVE, 1000);
10595 		if (ret) {
10596 			/* logical state didn't change, stay at armed */
10597 			ppd->host_link_state = HLS_UP_ARMED;
10598 			dd_dev_err(dd,
10599 				   "%s: logical state did not change to ACTIVE\n",
10600 				   __func__);
10601 		} else {
10602 			/* tell all engines to go running */
10603 			sdma_all_running(dd);
10604 
10605 			/* Signal the IB layer that the port has went active */
10606 			event.device = &dd->verbs_dev.rdi.ibdev;
10607 			event.element.port_num = ppd->port;
10608 			event.event = IB_EVENT_PORT_ACTIVE;
10609 		}
10610 		break;
10611 	case HLS_DN_POLL:
10612 		if ((ppd->host_link_state == HLS_DN_DISABLE ||
10613 		     ppd->host_link_state == HLS_DN_OFFLINE) &&
10614 		    dd->dc_shutdown)
10615 			dc_start(dd);
10616 		/* Hand LED control to the DC */
10617 		write_csr(dd, DCC_CFG_LED_CNTRL, 0);
10618 
10619 		if (ppd->host_link_state != HLS_DN_OFFLINE) {
10620 			u8 tmp = ppd->link_enabled;
10621 
10622 			ret = goto_offline(ppd, ppd->remote_link_down_reason);
10623 			if (ret) {
10624 				ppd->link_enabled = tmp;
10625 				break;
10626 			}
10627 			ppd->remote_link_down_reason = 0;
10628 
10629 			if (ppd->driver_link_ready)
10630 				ppd->link_enabled = 1;
10631 		}
10632 
10633 		set_all_slowpath(ppd->dd);
10634 		ret = set_local_link_attributes(ppd);
10635 		if (ret)
10636 			break;
10637 
10638 		ppd->port_error_action = 0;
10639 		ppd->host_link_state = HLS_DN_POLL;
10640 
10641 		if (quick_linkup) {
10642 			/* quick linkup does not go into polling */
10643 			ret = do_quick_linkup(dd);
10644 		} else {
10645 			ret1 = set_physical_link_state(dd, PLS_POLLING);
10646 			if (ret1 != HCMD_SUCCESS) {
10647 				dd_dev_err(dd,
10648 					   "Failed to transition to Polling link state, return 0x%x\n",
10649 					   ret1);
10650 				ret = -EINVAL;
10651 			}
10652 		}
10653 		ppd->offline_disabled_reason =
10654 			HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE);
10655 		/*
10656 		 * If an error occurred above, go back to offline.  The
10657 		 * caller may reschedule another attempt.
10658 		 */
10659 		if (ret)
10660 			goto_offline(ppd, 0);
10661 		break;
10662 	case HLS_DN_DISABLE:
10663 		/* link is disabled */
10664 		ppd->link_enabled = 0;
10665 
10666 		/* allow any state to transition to disabled */
10667 
10668 		/* must transition to offline first */
10669 		if (ppd->host_link_state != HLS_DN_OFFLINE) {
10670 			ret = goto_offline(ppd, ppd->remote_link_down_reason);
10671 			if (ret)
10672 				break;
10673 			ppd->remote_link_down_reason = 0;
10674 		}
10675 
10676 		if (!dd->dc_shutdown) {
10677 			ret1 = set_physical_link_state(dd, PLS_DISABLED);
10678 			if (ret1 != HCMD_SUCCESS) {
10679 				dd_dev_err(dd,
10680 					   "Failed to transition to Disabled link state, return 0x%x\n",
10681 					   ret1);
10682 				ret = -EINVAL;
10683 				break;
10684 			}
10685 			dc_shutdown(dd);
10686 		}
10687 		ppd->host_link_state = HLS_DN_DISABLE;
10688 		break;
10689 	case HLS_DN_OFFLINE:
10690 		if (ppd->host_link_state == HLS_DN_DISABLE)
10691 			dc_start(dd);
10692 
10693 		/* allow any state to transition to offline */
10694 		ret = goto_offline(ppd, ppd->remote_link_down_reason);
10695 		if (!ret)
10696 			ppd->remote_link_down_reason = 0;
10697 		break;
10698 	case HLS_VERIFY_CAP:
10699 		if (ppd->host_link_state != HLS_DN_POLL)
10700 			goto unexpected;
10701 		ppd->host_link_state = HLS_VERIFY_CAP;
10702 		break;
10703 	case HLS_GOING_UP:
10704 		if (ppd->host_link_state != HLS_VERIFY_CAP)
10705 			goto unexpected;
10706 
10707 		ret1 = set_physical_link_state(dd, PLS_LINKUP);
10708 		if (ret1 != HCMD_SUCCESS) {
10709 			dd_dev_err(dd,
10710 				   "Failed to transition to link up state, return 0x%x\n",
10711 				   ret1);
10712 			ret = -EINVAL;
10713 			break;
10714 		}
10715 		ppd->host_link_state = HLS_GOING_UP;
10716 		break;
10717 
10718 	case HLS_GOING_OFFLINE:		/* transient within goto_offline() */
10719 	case HLS_LINK_COOLDOWN:		/* transient within goto_offline() */
10720 	default:
10721 		dd_dev_info(dd, "%s: state 0x%x: not supported\n",
10722 			    __func__, state);
10723 		ret = -EINVAL;
10724 		break;
10725 	}
10726 
10727 	goto done;
10728 
10729 unexpected:
10730 	dd_dev_err(dd, "%s: unexpected state transition from %s to %s\n",
10731 		   __func__, link_state_name(ppd->host_link_state),
10732 		   link_state_name(state));
10733 	ret = -EINVAL;
10734 
10735 done:
10736 	mutex_unlock(&ppd->hls_lock);
10737 
10738 	if (event.device)
10739 		ib_dispatch_event(&event);
10740 
10741 	return ret;
10742 }
10743 
10744 int hfi1_set_ib_cfg(struct hfi1_pportdata *ppd, int which, u32 val)
10745 {
10746 	u64 reg;
10747 	int ret = 0;
10748 
10749 	switch (which) {
10750 	case HFI1_IB_CFG_LIDLMC:
10751 		set_lidlmc(ppd);
10752 		break;
10753 	case HFI1_IB_CFG_VL_HIGH_LIMIT:
10754 		/*
10755 		 * The VL Arbitrator high limit is sent in units of 4k
10756 		 * bytes, while HFI stores it in units of 64 bytes.
10757 		 */
10758 		val *= 4096 / 64;
10759 		reg = ((u64)val & SEND_HIGH_PRIORITY_LIMIT_LIMIT_MASK)
10760 			<< SEND_HIGH_PRIORITY_LIMIT_LIMIT_SHIFT;
10761 		write_csr(ppd->dd, SEND_HIGH_PRIORITY_LIMIT, reg);
10762 		break;
10763 	case HFI1_IB_CFG_LINKDEFAULT: /* IB link default (sleep/poll) */
10764 		/* HFI only supports POLL as the default link down state */
10765 		if (val != HLS_DN_POLL)
10766 			ret = -EINVAL;
10767 		break;
10768 	case HFI1_IB_CFG_OP_VLS:
10769 		if (ppd->vls_operational != val) {
10770 			ppd->vls_operational = val;
10771 			if (!ppd->port)
10772 				ret = -EINVAL;
10773 		}
10774 		break;
10775 	/*
10776 	 * For link width, link width downgrade, and speed enable, always AND
10777 	 * the setting with what is actually supported.  This has two benefits.
10778 	 * First, enabled can't have unsupported values, no matter what the
10779 	 * SM or FM might want.  Second, the ALL_SUPPORTED wildcards that mean
10780 	 * "fill in with your supported value" have all the bits in the
10781 	 * field set, so simply ANDing with supported has the desired result.
10782 	 */
10783 	case HFI1_IB_CFG_LWID_ENB: /* set allowed Link-width */
10784 		ppd->link_width_enabled = val & ppd->link_width_supported;
10785 		break;
10786 	case HFI1_IB_CFG_LWID_DG_ENB: /* set allowed link width downgrade */
10787 		ppd->link_width_downgrade_enabled =
10788 				val & ppd->link_width_downgrade_supported;
10789 		break;
10790 	case HFI1_IB_CFG_SPD_ENB: /* allowed Link speeds */
10791 		ppd->link_speed_enabled = val & ppd->link_speed_supported;
10792 		break;
10793 	case HFI1_IB_CFG_OVERRUN_THRESH: /* IB overrun threshold */
10794 		/*
10795 		 * HFI does not follow IB specs, save this value
10796 		 * so we can report it, if asked.
10797 		 */
10798 		ppd->overrun_threshold = val;
10799 		break;
10800 	case HFI1_IB_CFG_PHYERR_THRESH: /* IB PHY error threshold */
10801 		/*
10802 		 * HFI does not follow IB specs, save this value
10803 		 * so we can report it, if asked.
10804 		 */
10805 		ppd->phy_error_threshold = val;
10806 		break;
10807 
10808 	case HFI1_IB_CFG_MTU:
10809 		set_send_length(ppd);
10810 		break;
10811 
10812 	case HFI1_IB_CFG_PKEYS:
10813 		if (HFI1_CAP_IS_KSET(PKEY_CHECK))
10814 			set_partition_keys(ppd);
10815 		break;
10816 
10817 	default:
10818 		if (HFI1_CAP_IS_KSET(PRINT_UNIMPL))
10819 			dd_dev_info(ppd->dd,
10820 				    "%s: which %s, val 0x%x: not implemented\n",
10821 				    __func__, ib_cfg_name(which), val);
10822 		break;
10823 	}
10824 	return ret;
10825 }
10826 
10827 /* begin functions related to vl arbitration table caching */
10828 static void init_vl_arb_caches(struct hfi1_pportdata *ppd)
10829 {
10830 	int i;
10831 
10832 	BUILD_BUG_ON(VL_ARB_TABLE_SIZE !=
10833 			VL_ARB_LOW_PRIO_TABLE_SIZE);
10834 	BUILD_BUG_ON(VL_ARB_TABLE_SIZE !=
10835 			VL_ARB_HIGH_PRIO_TABLE_SIZE);
10836 
10837 	/*
10838 	 * Note that we always return values directly from the
10839 	 * 'vl_arb_cache' (and do no CSR reads) in response to a
10840 	 * 'Get(VLArbTable)'. This is obviously correct after a
10841 	 * 'Set(VLArbTable)', since the cache will then be up to
10842 	 * date. But it's also correct prior to any 'Set(VLArbTable)'
10843 	 * since then both the cache, and the relevant h/w registers
10844 	 * will be zeroed.
10845 	 */
10846 
10847 	for (i = 0; i < MAX_PRIO_TABLE; i++)
10848 		spin_lock_init(&ppd->vl_arb_cache[i].lock);
10849 }
10850 
10851 /*
10852  * vl_arb_lock_cache
10853  *
10854  * All other vl_arb_* functions should be called only after locking
10855  * the cache.
10856  */
10857 static inline struct vl_arb_cache *
10858 vl_arb_lock_cache(struct hfi1_pportdata *ppd, int idx)
10859 {
10860 	if (idx != LO_PRIO_TABLE && idx != HI_PRIO_TABLE)
10861 		return NULL;
10862 	spin_lock(&ppd->vl_arb_cache[idx].lock);
10863 	return &ppd->vl_arb_cache[idx];
10864 }
10865 
10866 static inline void vl_arb_unlock_cache(struct hfi1_pportdata *ppd, int idx)
10867 {
10868 	spin_unlock(&ppd->vl_arb_cache[idx].lock);
10869 }
10870 
10871 static void vl_arb_get_cache(struct vl_arb_cache *cache,
10872 			     struct ib_vl_weight_elem *vl)
10873 {
10874 	memcpy(vl, cache->table, VL_ARB_TABLE_SIZE * sizeof(*vl));
10875 }
10876 
10877 static void vl_arb_set_cache(struct vl_arb_cache *cache,
10878 			     struct ib_vl_weight_elem *vl)
10879 {
10880 	memcpy(cache->table, vl, VL_ARB_TABLE_SIZE * sizeof(*vl));
10881 }
10882 
10883 static int vl_arb_match_cache(struct vl_arb_cache *cache,
10884 			      struct ib_vl_weight_elem *vl)
10885 {
10886 	return !memcmp(cache->table, vl, VL_ARB_TABLE_SIZE * sizeof(*vl));
10887 }
10888 
10889 /* end functions related to vl arbitration table caching */
10890 
10891 static int set_vl_weights(struct hfi1_pportdata *ppd, u32 target,
10892 			  u32 size, struct ib_vl_weight_elem *vl)
10893 {
10894 	struct hfi1_devdata *dd = ppd->dd;
10895 	u64 reg;
10896 	unsigned int i, is_up = 0;
10897 	int drain, ret = 0;
10898 
10899 	mutex_lock(&ppd->hls_lock);
10900 
10901 	if (ppd->host_link_state & HLS_UP)
10902 		is_up = 1;
10903 
10904 	drain = !is_ax(dd) && is_up;
10905 
10906 	if (drain)
10907 		/*
10908 		 * Before adjusting VL arbitration weights, empty per-VL
10909 		 * FIFOs, otherwise a packet whose VL weight is being
10910 		 * set to 0 could get stuck in a FIFO with no chance to
10911 		 * egress.
10912 		 */
10913 		ret = stop_drain_data_vls(dd);
10914 
10915 	if (ret) {
10916 		dd_dev_err(
10917 			dd,
10918 			"%s: cannot stop/drain VLs - refusing to change VL arbitration weights\n",
10919 			__func__);
10920 		goto err;
10921 	}
10922 
10923 	for (i = 0; i < size; i++, vl++) {
10924 		/*
10925 		 * NOTE: The low priority shift and mask are used here, but
10926 		 * they are the same for both the low and high registers.
10927 		 */
10928 		reg = (((u64)vl->vl & SEND_LOW_PRIORITY_LIST_VL_MASK)
10929 				<< SEND_LOW_PRIORITY_LIST_VL_SHIFT)
10930 		      | (((u64)vl->weight
10931 				& SEND_LOW_PRIORITY_LIST_WEIGHT_MASK)
10932 				<< SEND_LOW_PRIORITY_LIST_WEIGHT_SHIFT);
10933 		write_csr(dd, target + (i * 8), reg);
10934 	}
10935 	pio_send_control(dd, PSC_GLOBAL_VLARB_ENABLE);
10936 
10937 	if (drain)
10938 		open_fill_data_vls(dd); /* reopen all VLs */
10939 
10940 err:
10941 	mutex_unlock(&ppd->hls_lock);
10942 
10943 	return ret;
10944 }
10945 
10946 /*
10947  * Read one credit merge VL register.
10948  */
10949 static void read_one_cm_vl(struct hfi1_devdata *dd, u32 csr,
10950 			   struct vl_limit *vll)
10951 {
10952 	u64 reg = read_csr(dd, csr);
10953 
10954 	vll->dedicated = cpu_to_be16(
10955 		(reg >> SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SHIFT)
10956 		& SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_MASK);
10957 	vll->shared = cpu_to_be16(
10958 		(reg >> SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SHIFT)
10959 		& SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_MASK);
10960 }
10961 
10962 /*
10963  * Read the current credit merge limits.
10964  */
10965 static int get_buffer_control(struct hfi1_devdata *dd,
10966 			      struct buffer_control *bc, u16 *overall_limit)
10967 {
10968 	u64 reg;
10969 	int i;
10970 
10971 	/* not all entries are filled in */
10972 	memset(bc, 0, sizeof(*bc));
10973 
10974 	/* OPA and HFI have a 1-1 mapping */
10975 	for (i = 0; i < TXE_NUM_DATA_VL; i++)
10976 		read_one_cm_vl(dd, SEND_CM_CREDIT_VL + (8 * i), &bc->vl[i]);
10977 
10978 	/* NOTE: assumes that VL* and VL15 CSRs are bit-wise identical */
10979 	read_one_cm_vl(dd, SEND_CM_CREDIT_VL15, &bc->vl[15]);
10980 
10981 	reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
10982 	bc->overall_shared_limit = cpu_to_be16(
10983 		(reg >> SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SHIFT)
10984 		& SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_MASK);
10985 	if (overall_limit)
10986 		*overall_limit = (reg
10987 			>> SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT)
10988 			& SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_MASK;
10989 	return sizeof(struct buffer_control);
10990 }
10991 
10992 static int get_sc2vlnt(struct hfi1_devdata *dd, struct sc2vlnt *dp)
10993 {
10994 	u64 reg;
10995 	int i;
10996 
10997 	/* each register contains 16 SC->VLnt mappings, 4 bits each */
10998 	reg = read_csr(dd, DCC_CFG_SC_VL_TABLE_15_0);
10999 	for (i = 0; i < sizeof(u64); i++) {
11000 		u8 byte = *(((u8 *)&reg) + i);
11001 
11002 		dp->vlnt[2 * i] = byte & 0xf;
11003 		dp->vlnt[(2 * i) + 1] = (byte & 0xf0) >> 4;
11004 	}
11005 
11006 	reg = read_csr(dd, DCC_CFG_SC_VL_TABLE_31_16);
11007 	for (i = 0; i < sizeof(u64); i++) {
11008 		u8 byte = *(((u8 *)&reg) + i);
11009 
11010 		dp->vlnt[16 + (2 * i)] = byte & 0xf;
11011 		dp->vlnt[16 + (2 * i) + 1] = (byte & 0xf0) >> 4;
11012 	}
11013 	return sizeof(struct sc2vlnt);
11014 }
11015 
11016 static void get_vlarb_preempt(struct hfi1_devdata *dd, u32 nelems,
11017 			      struct ib_vl_weight_elem *vl)
11018 {
11019 	unsigned int i;
11020 
11021 	for (i = 0; i < nelems; i++, vl++) {
11022 		vl->vl = 0xf;
11023 		vl->weight = 0;
11024 	}
11025 }
11026 
11027 static void set_sc2vlnt(struct hfi1_devdata *dd, struct sc2vlnt *dp)
11028 {
11029 	write_csr(dd, DCC_CFG_SC_VL_TABLE_15_0,
11030 		  DC_SC_VL_VAL(15_0,
11031 			       0, dp->vlnt[0] & 0xf,
11032 			       1, dp->vlnt[1] & 0xf,
11033 			       2, dp->vlnt[2] & 0xf,
11034 			       3, dp->vlnt[3] & 0xf,
11035 			       4, dp->vlnt[4] & 0xf,
11036 			       5, dp->vlnt[5] & 0xf,
11037 			       6, dp->vlnt[6] & 0xf,
11038 			       7, dp->vlnt[7] & 0xf,
11039 			       8, dp->vlnt[8] & 0xf,
11040 			       9, dp->vlnt[9] & 0xf,
11041 			       10, dp->vlnt[10] & 0xf,
11042 			       11, dp->vlnt[11] & 0xf,
11043 			       12, dp->vlnt[12] & 0xf,
11044 			       13, dp->vlnt[13] & 0xf,
11045 			       14, dp->vlnt[14] & 0xf,
11046 			       15, dp->vlnt[15] & 0xf));
11047 	write_csr(dd, DCC_CFG_SC_VL_TABLE_31_16,
11048 		  DC_SC_VL_VAL(31_16,
11049 			       16, dp->vlnt[16] & 0xf,
11050 			       17, dp->vlnt[17] & 0xf,
11051 			       18, dp->vlnt[18] & 0xf,
11052 			       19, dp->vlnt[19] & 0xf,
11053 			       20, dp->vlnt[20] & 0xf,
11054 			       21, dp->vlnt[21] & 0xf,
11055 			       22, dp->vlnt[22] & 0xf,
11056 			       23, dp->vlnt[23] & 0xf,
11057 			       24, dp->vlnt[24] & 0xf,
11058 			       25, dp->vlnt[25] & 0xf,
11059 			       26, dp->vlnt[26] & 0xf,
11060 			       27, dp->vlnt[27] & 0xf,
11061 			       28, dp->vlnt[28] & 0xf,
11062 			       29, dp->vlnt[29] & 0xf,
11063 			       30, dp->vlnt[30] & 0xf,
11064 			       31, dp->vlnt[31] & 0xf));
11065 }
11066 
11067 static void nonzero_msg(struct hfi1_devdata *dd, int idx, const char *what,
11068 			u16 limit)
11069 {
11070 	if (limit != 0)
11071 		dd_dev_info(dd, "Invalid %s limit %d on VL %d, ignoring\n",
11072 			    what, (int)limit, idx);
11073 }
11074 
11075 /* change only the shared limit portion of SendCmGLobalCredit */
11076 static void set_global_shared(struct hfi1_devdata *dd, u16 limit)
11077 {
11078 	u64 reg;
11079 
11080 	reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
11081 	reg &= ~SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SMASK;
11082 	reg |= (u64)limit << SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SHIFT;
11083 	write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg);
11084 }
11085 
11086 /* change only the total credit limit portion of SendCmGLobalCredit */
11087 static void set_global_limit(struct hfi1_devdata *dd, u16 limit)
11088 {
11089 	u64 reg;
11090 
11091 	reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
11092 	reg &= ~SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SMASK;
11093 	reg |= (u64)limit << SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT;
11094 	write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg);
11095 }
11096 
11097 /* set the given per-VL shared limit */
11098 static void set_vl_shared(struct hfi1_devdata *dd, int vl, u16 limit)
11099 {
11100 	u64 reg;
11101 	u32 addr;
11102 
11103 	if (vl < TXE_NUM_DATA_VL)
11104 		addr = SEND_CM_CREDIT_VL + (8 * vl);
11105 	else
11106 		addr = SEND_CM_CREDIT_VL15;
11107 
11108 	reg = read_csr(dd, addr);
11109 	reg &= ~SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SMASK;
11110 	reg |= (u64)limit << SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SHIFT;
11111 	write_csr(dd, addr, reg);
11112 }
11113 
11114 /* set the given per-VL dedicated limit */
11115 static void set_vl_dedicated(struct hfi1_devdata *dd, int vl, u16 limit)
11116 {
11117 	u64 reg;
11118 	u32 addr;
11119 
11120 	if (vl < TXE_NUM_DATA_VL)
11121 		addr = SEND_CM_CREDIT_VL + (8 * vl);
11122 	else
11123 		addr = SEND_CM_CREDIT_VL15;
11124 
11125 	reg = read_csr(dd, addr);
11126 	reg &= ~SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SMASK;
11127 	reg |= (u64)limit << SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SHIFT;
11128 	write_csr(dd, addr, reg);
11129 }
11130 
11131 /* spin until the given per-VL status mask bits clear */
11132 static void wait_for_vl_status_clear(struct hfi1_devdata *dd, u64 mask,
11133 				     const char *which)
11134 {
11135 	unsigned long timeout;
11136 	u64 reg;
11137 
11138 	timeout = jiffies + msecs_to_jiffies(VL_STATUS_CLEAR_TIMEOUT);
11139 	while (1) {
11140 		reg = read_csr(dd, SEND_CM_CREDIT_USED_STATUS) & mask;
11141 
11142 		if (reg == 0)
11143 			return;	/* success */
11144 		if (time_after(jiffies, timeout))
11145 			break;		/* timed out */
11146 		udelay(1);
11147 	}
11148 
11149 	dd_dev_err(dd,
11150 		   "%s credit change status not clearing after %dms, mask 0x%llx, not clear 0x%llx\n",
11151 		   which, VL_STATUS_CLEAR_TIMEOUT, mask, reg);
11152 	/*
11153 	 * If this occurs, it is likely there was a credit loss on the link.
11154 	 * The only recovery from that is a link bounce.
11155 	 */
11156 	dd_dev_err(dd,
11157 		   "Continuing anyway.  A credit loss may occur.  Suggest a link bounce\n");
11158 }
11159 
11160 /*
11161  * The number of credits on the VLs may be changed while everything
11162  * is "live", but the following algorithm must be followed due to
11163  * how the hardware is actually implemented.  In particular,
11164  * Return_Credit_Status[] is the only correct status check.
11165  *
11166  * if (reducing Global_Shared_Credit_Limit or any shared limit changing)
11167  *     set Global_Shared_Credit_Limit = 0
11168  *     use_all_vl = 1
11169  * mask0 = all VLs that are changing either dedicated or shared limits
11170  * set Shared_Limit[mask0] = 0
11171  * spin until Return_Credit_Status[use_all_vl ? all VL : mask0] == 0
11172  * if (changing any dedicated limit)
11173  *     mask1 = all VLs that are lowering dedicated limits
11174  *     lower Dedicated_Limit[mask1]
11175  *     spin until Return_Credit_Status[mask1] == 0
11176  *     raise Dedicated_Limits
11177  * raise Shared_Limits
11178  * raise Global_Shared_Credit_Limit
11179  *
11180  * lower = if the new limit is lower, set the limit to the new value
11181  * raise = if the new limit is higher than the current value (may be changed
11182  *	earlier in the algorithm), set the new limit to the new value
11183  */
11184 int set_buffer_control(struct hfi1_pportdata *ppd,
11185 		       struct buffer_control *new_bc)
11186 {
11187 	struct hfi1_devdata *dd = ppd->dd;
11188 	u64 changing_mask, ld_mask, stat_mask;
11189 	int change_count;
11190 	int i, use_all_mask;
11191 	int this_shared_changing;
11192 	int vl_count = 0, ret;
11193 	/*
11194 	 * A0: add the variable any_shared_limit_changing below and in the
11195 	 * algorithm above.  If removing A0 support, it can be removed.
11196 	 */
11197 	int any_shared_limit_changing;
11198 	struct buffer_control cur_bc;
11199 	u8 changing[OPA_MAX_VLS];
11200 	u8 lowering_dedicated[OPA_MAX_VLS];
11201 	u16 cur_total;
11202 	u32 new_total = 0;
11203 	const u64 all_mask =
11204 	SEND_CM_CREDIT_USED_STATUS_VL0_RETURN_CREDIT_STATUS_SMASK
11205 	 | SEND_CM_CREDIT_USED_STATUS_VL1_RETURN_CREDIT_STATUS_SMASK
11206 	 | SEND_CM_CREDIT_USED_STATUS_VL2_RETURN_CREDIT_STATUS_SMASK
11207 	 | SEND_CM_CREDIT_USED_STATUS_VL3_RETURN_CREDIT_STATUS_SMASK
11208 	 | SEND_CM_CREDIT_USED_STATUS_VL4_RETURN_CREDIT_STATUS_SMASK
11209 	 | SEND_CM_CREDIT_USED_STATUS_VL5_RETURN_CREDIT_STATUS_SMASK
11210 	 | SEND_CM_CREDIT_USED_STATUS_VL6_RETURN_CREDIT_STATUS_SMASK
11211 	 | SEND_CM_CREDIT_USED_STATUS_VL7_RETURN_CREDIT_STATUS_SMASK
11212 	 | SEND_CM_CREDIT_USED_STATUS_VL15_RETURN_CREDIT_STATUS_SMASK;
11213 
11214 #define valid_vl(idx) ((idx) < TXE_NUM_DATA_VL || (idx) == 15)
11215 #define NUM_USABLE_VLS 16	/* look at VL15 and less */
11216 
11217 	/* find the new total credits, do sanity check on unused VLs */
11218 	for (i = 0; i < OPA_MAX_VLS; i++) {
11219 		if (valid_vl(i)) {
11220 			new_total += be16_to_cpu(new_bc->vl[i].dedicated);
11221 			continue;
11222 		}
11223 		nonzero_msg(dd, i, "dedicated",
11224 			    be16_to_cpu(new_bc->vl[i].dedicated));
11225 		nonzero_msg(dd, i, "shared",
11226 			    be16_to_cpu(new_bc->vl[i].shared));
11227 		new_bc->vl[i].dedicated = 0;
11228 		new_bc->vl[i].shared = 0;
11229 	}
11230 	new_total += be16_to_cpu(new_bc->overall_shared_limit);
11231 
11232 	/* fetch the current values */
11233 	get_buffer_control(dd, &cur_bc, &cur_total);
11234 
11235 	/*
11236 	 * Create the masks we will use.
11237 	 */
11238 	memset(changing, 0, sizeof(changing));
11239 	memset(lowering_dedicated, 0, sizeof(lowering_dedicated));
11240 	/*
11241 	 * NOTE: Assumes that the individual VL bits are adjacent and in
11242 	 * increasing order
11243 	 */
11244 	stat_mask =
11245 		SEND_CM_CREDIT_USED_STATUS_VL0_RETURN_CREDIT_STATUS_SMASK;
11246 	changing_mask = 0;
11247 	ld_mask = 0;
11248 	change_count = 0;
11249 	any_shared_limit_changing = 0;
11250 	for (i = 0; i < NUM_USABLE_VLS; i++, stat_mask <<= 1) {
11251 		if (!valid_vl(i))
11252 			continue;
11253 		this_shared_changing = new_bc->vl[i].shared
11254 						!= cur_bc.vl[i].shared;
11255 		if (this_shared_changing)
11256 			any_shared_limit_changing = 1;
11257 		if (new_bc->vl[i].dedicated != cur_bc.vl[i].dedicated ||
11258 		    this_shared_changing) {
11259 			changing[i] = 1;
11260 			changing_mask |= stat_mask;
11261 			change_count++;
11262 		}
11263 		if (be16_to_cpu(new_bc->vl[i].dedicated) <
11264 					be16_to_cpu(cur_bc.vl[i].dedicated)) {
11265 			lowering_dedicated[i] = 1;
11266 			ld_mask |= stat_mask;
11267 		}
11268 	}
11269 
11270 	/* bracket the credit change with a total adjustment */
11271 	if (new_total > cur_total)
11272 		set_global_limit(dd, new_total);
11273 
11274 	/*
11275 	 * Start the credit change algorithm.
11276 	 */
11277 	use_all_mask = 0;
11278 	if ((be16_to_cpu(new_bc->overall_shared_limit) <
11279 	     be16_to_cpu(cur_bc.overall_shared_limit)) ||
11280 	    (is_ax(dd) && any_shared_limit_changing)) {
11281 		set_global_shared(dd, 0);
11282 		cur_bc.overall_shared_limit = 0;
11283 		use_all_mask = 1;
11284 	}
11285 
11286 	for (i = 0; i < NUM_USABLE_VLS; i++) {
11287 		if (!valid_vl(i))
11288 			continue;
11289 
11290 		if (changing[i]) {
11291 			set_vl_shared(dd, i, 0);
11292 			cur_bc.vl[i].shared = 0;
11293 		}
11294 	}
11295 
11296 	wait_for_vl_status_clear(dd, use_all_mask ? all_mask : changing_mask,
11297 				 "shared");
11298 
11299 	if (change_count > 0) {
11300 		for (i = 0; i < NUM_USABLE_VLS; i++) {
11301 			if (!valid_vl(i))
11302 				continue;
11303 
11304 			if (lowering_dedicated[i]) {
11305 				set_vl_dedicated(dd, i,
11306 						 be16_to_cpu(new_bc->
11307 							     vl[i].dedicated));
11308 				cur_bc.vl[i].dedicated =
11309 						new_bc->vl[i].dedicated;
11310 			}
11311 		}
11312 
11313 		wait_for_vl_status_clear(dd, ld_mask, "dedicated");
11314 
11315 		/* now raise all dedicated that are going up */
11316 		for (i = 0; i < NUM_USABLE_VLS; i++) {
11317 			if (!valid_vl(i))
11318 				continue;
11319 
11320 			if (be16_to_cpu(new_bc->vl[i].dedicated) >
11321 					be16_to_cpu(cur_bc.vl[i].dedicated))
11322 				set_vl_dedicated(dd, i,
11323 						 be16_to_cpu(new_bc->
11324 							     vl[i].dedicated));
11325 		}
11326 	}
11327 
11328 	/* next raise all shared that are going up */
11329 	for (i = 0; i < NUM_USABLE_VLS; i++) {
11330 		if (!valid_vl(i))
11331 			continue;
11332 
11333 		if (be16_to_cpu(new_bc->vl[i].shared) >
11334 				be16_to_cpu(cur_bc.vl[i].shared))
11335 			set_vl_shared(dd, i, be16_to_cpu(new_bc->vl[i].shared));
11336 	}
11337 
11338 	/* finally raise the global shared */
11339 	if (be16_to_cpu(new_bc->overall_shared_limit) >
11340 	    be16_to_cpu(cur_bc.overall_shared_limit))
11341 		set_global_shared(dd,
11342 				  be16_to_cpu(new_bc->overall_shared_limit));
11343 
11344 	/* bracket the credit change with a total adjustment */
11345 	if (new_total < cur_total)
11346 		set_global_limit(dd, new_total);
11347 
11348 	/*
11349 	 * Determine the actual number of operational VLS using the number of
11350 	 * dedicated and shared credits for each VL.
11351 	 */
11352 	if (change_count > 0) {
11353 		for (i = 0; i < TXE_NUM_DATA_VL; i++)
11354 			if (be16_to_cpu(new_bc->vl[i].dedicated) > 0 ||
11355 			    be16_to_cpu(new_bc->vl[i].shared) > 0)
11356 				vl_count++;
11357 		ppd->actual_vls_operational = vl_count;
11358 		ret = sdma_map_init(dd, ppd->port - 1, vl_count ?
11359 				    ppd->actual_vls_operational :
11360 				    ppd->vls_operational,
11361 				    NULL);
11362 		if (ret == 0)
11363 			ret = pio_map_init(dd, ppd->port - 1, vl_count ?
11364 					   ppd->actual_vls_operational :
11365 					   ppd->vls_operational, NULL);
11366 		if (ret)
11367 			return ret;
11368 	}
11369 	return 0;
11370 }
11371 
11372 /*
11373  * Read the given fabric manager table. Return the size of the
11374  * table (in bytes) on success, and a negative error code on
11375  * failure.
11376  */
11377 int fm_get_table(struct hfi1_pportdata *ppd, int which, void *t)
11378 
11379 {
11380 	int size;
11381 	struct vl_arb_cache *vlc;
11382 
11383 	switch (which) {
11384 	case FM_TBL_VL_HIGH_ARB:
11385 		size = 256;
11386 		/*
11387 		 * OPA specifies 128 elements (of 2 bytes each), though
11388 		 * HFI supports only 16 elements in h/w.
11389 		 */
11390 		vlc = vl_arb_lock_cache(ppd, HI_PRIO_TABLE);
11391 		vl_arb_get_cache(vlc, t);
11392 		vl_arb_unlock_cache(ppd, HI_PRIO_TABLE);
11393 		break;
11394 	case FM_TBL_VL_LOW_ARB:
11395 		size = 256;
11396 		/*
11397 		 * OPA specifies 128 elements (of 2 bytes each), though
11398 		 * HFI supports only 16 elements in h/w.
11399 		 */
11400 		vlc = vl_arb_lock_cache(ppd, LO_PRIO_TABLE);
11401 		vl_arb_get_cache(vlc, t);
11402 		vl_arb_unlock_cache(ppd, LO_PRIO_TABLE);
11403 		break;
11404 	case FM_TBL_BUFFER_CONTROL:
11405 		size = get_buffer_control(ppd->dd, t, NULL);
11406 		break;
11407 	case FM_TBL_SC2VLNT:
11408 		size = get_sc2vlnt(ppd->dd, t);
11409 		break;
11410 	case FM_TBL_VL_PREEMPT_ELEMS:
11411 		size = 256;
11412 		/* OPA specifies 128 elements, of 2 bytes each */
11413 		get_vlarb_preempt(ppd->dd, OPA_MAX_VLS, t);
11414 		break;
11415 	case FM_TBL_VL_PREEMPT_MATRIX:
11416 		size = 256;
11417 		/*
11418 		 * OPA specifies that this is the same size as the VL
11419 		 * arbitration tables (i.e., 256 bytes).
11420 		 */
11421 		break;
11422 	default:
11423 		return -EINVAL;
11424 	}
11425 	return size;
11426 }
11427 
11428 /*
11429  * Write the given fabric manager table.
11430  */
11431 int fm_set_table(struct hfi1_pportdata *ppd, int which, void *t)
11432 {
11433 	int ret = 0;
11434 	struct vl_arb_cache *vlc;
11435 
11436 	switch (which) {
11437 	case FM_TBL_VL_HIGH_ARB:
11438 		vlc = vl_arb_lock_cache(ppd, HI_PRIO_TABLE);
11439 		if (vl_arb_match_cache(vlc, t)) {
11440 			vl_arb_unlock_cache(ppd, HI_PRIO_TABLE);
11441 			break;
11442 		}
11443 		vl_arb_set_cache(vlc, t);
11444 		vl_arb_unlock_cache(ppd, HI_PRIO_TABLE);
11445 		ret = set_vl_weights(ppd, SEND_HIGH_PRIORITY_LIST,
11446 				     VL_ARB_HIGH_PRIO_TABLE_SIZE, t);
11447 		break;
11448 	case FM_TBL_VL_LOW_ARB:
11449 		vlc = vl_arb_lock_cache(ppd, LO_PRIO_TABLE);
11450 		if (vl_arb_match_cache(vlc, t)) {
11451 			vl_arb_unlock_cache(ppd, LO_PRIO_TABLE);
11452 			break;
11453 		}
11454 		vl_arb_set_cache(vlc, t);
11455 		vl_arb_unlock_cache(ppd, LO_PRIO_TABLE);
11456 		ret = set_vl_weights(ppd, SEND_LOW_PRIORITY_LIST,
11457 				     VL_ARB_LOW_PRIO_TABLE_SIZE, t);
11458 		break;
11459 	case FM_TBL_BUFFER_CONTROL:
11460 		ret = set_buffer_control(ppd, t);
11461 		break;
11462 	case FM_TBL_SC2VLNT:
11463 		set_sc2vlnt(ppd->dd, t);
11464 		break;
11465 	default:
11466 		ret = -EINVAL;
11467 	}
11468 	return ret;
11469 }
11470 
11471 /*
11472  * Disable all data VLs.
11473  *
11474  * Return 0 if disabled, non-zero if the VLs cannot be disabled.
11475  */
11476 static int disable_data_vls(struct hfi1_devdata *dd)
11477 {
11478 	if (is_ax(dd))
11479 		return 1;
11480 
11481 	pio_send_control(dd, PSC_DATA_VL_DISABLE);
11482 
11483 	return 0;
11484 }
11485 
11486 /*
11487  * open_fill_data_vls() - the counterpart to stop_drain_data_vls().
11488  * Just re-enables all data VLs (the "fill" part happens
11489  * automatically - the name was chosen for symmetry with
11490  * stop_drain_data_vls()).
11491  *
11492  * Return 0 if successful, non-zero if the VLs cannot be enabled.
11493  */
11494 int open_fill_data_vls(struct hfi1_devdata *dd)
11495 {
11496 	if (is_ax(dd))
11497 		return 1;
11498 
11499 	pio_send_control(dd, PSC_DATA_VL_ENABLE);
11500 
11501 	return 0;
11502 }
11503 
11504 /*
11505  * drain_data_vls() - assumes that disable_data_vls() has been called,
11506  * wait for occupancy (of per-VL FIFOs) for all contexts, and SDMA
11507  * engines to drop to 0.
11508  */
11509 static void drain_data_vls(struct hfi1_devdata *dd)
11510 {
11511 	sc_wait(dd);
11512 	sdma_wait(dd);
11513 	pause_for_credit_return(dd);
11514 }
11515 
11516 /*
11517  * stop_drain_data_vls() - disable, then drain all per-VL fifos.
11518  *
11519  * Use open_fill_data_vls() to resume using data VLs.  This pair is
11520  * meant to be used like this:
11521  *
11522  * stop_drain_data_vls(dd);
11523  * // do things with per-VL resources
11524  * open_fill_data_vls(dd);
11525  */
11526 int stop_drain_data_vls(struct hfi1_devdata *dd)
11527 {
11528 	int ret;
11529 
11530 	ret = disable_data_vls(dd);
11531 	if (ret == 0)
11532 		drain_data_vls(dd);
11533 
11534 	return ret;
11535 }
11536 
11537 /*
11538  * Convert a nanosecond time to a cclock count.  No matter how slow
11539  * the cclock, a non-zero ns will always have a non-zero result.
11540  */
11541 u32 ns_to_cclock(struct hfi1_devdata *dd, u32 ns)
11542 {
11543 	u32 cclocks;
11544 
11545 	if (dd->icode == ICODE_FPGA_EMULATION)
11546 		cclocks = (ns * 1000) / FPGA_CCLOCK_PS;
11547 	else  /* simulation pretends to be ASIC */
11548 		cclocks = (ns * 1000) / ASIC_CCLOCK_PS;
11549 	if (ns && !cclocks)	/* if ns nonzero, must be at least 1 */
11550 		cclocks = 1;
11551 	return cclocks;
11552 }
11553 
11554 /*
11555  * Convert a cclock count to nanoseconds. Not matter how slow
11556  * the cclock, a non-zero cclocks will always have a non-zero result.
11557  */
11558 u32 cclock_to_ns(struct hfi1_devdata *dd, u32 cclocks)
11559 {
11560 	u32 ns;
11561 
11562 	if (dd->icode == ICODE_FPGA_EMULATION)
11563 		ns = (cclocks * FPGA_CCLOCK_PS) / 1000;
11564 	else  /* simulation pretends to be ASIC */
11565 		ns = (cclocks * ASIC_CCLOCK_PS) / 1000;
11566 	if (cclocks && !ns)
11567 		ns = 1;
11568 	return ns;
11569 }
11570 
11571 /*
11572  * Dynamically adjust the receive interrupt timeout for a context based on
11573  * incoming packet rate.
11574  *
11575  * NOTE: Dynamic adjustment does not allow rcv_intr_count to be zero.
11576  */
11577 static void adjust_rcv_timeout(struct hfi1_ctxtdata *rcd, u32 npkts)
11578 {
11579 	struct hfi1_devdata *dd = rcd->dd;
11580 	u32 timeout = rcd->rcvavail_timeout;
11581 
11582 	/*
11583 	 * This algorithm doubles or halves the timeout depending on whether
11584 	 * the number of packets received in this interrupt were less than or
11585 	 * greater equal the interrupt count.
11586 	 *
11587 	 * The calculations below do not allow a steady state to be achieved.
11588 	 * Only at the endpoints it is possible to have an unchanging
11589 	 * timeout.
11590 	 */
11591 	if (npkts < rcv_intr_count) {
11592 		/*
11593 		 * Not enough packets arrived before the timeout, adjust
11594 		 * timeout downward.
11595 		 */
11596 		if (timeout < 2) /* already at minimum? */
11597 			return;
11598 		timeout >>= 1;
11599 	} else {
11600 		/*
11601 		 * More than enough packets arrived before the timeout, adjust
11602 		 * timeout upward.
11603 		 */
11604 		if (timeout >= dd->rcv_intr_timeout_csr) /* already at max? */
11605 			return;
11606 		timeout = min(timeout << 1, dd->rcv_intr_timeout_csr);
11607 	}
11608 
11609 	rcd->rcvavail_timeout = timeout;
11610 	/*
11611 	 * timeout cannot be larger than rcv_intr_timeout_csr which has already
11612 	 * been verified to be in range
11613 	 */
11614 	write_kctxt_csr(dd, rcd->ctxt, RCV_AVAIL_TIME_OUT,
11615 			(u64)timeout <<
11616 			RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_SHIFT);
11617 }
11618 
11619 void update_usrhead(struct hfi1_ctxtdata *rcd, u32 hd, u32 updegr, u32 egrhd,
11620 		    u32 intr_adjust, u32 npkts)
11621 {
11622 	struct hfi1_devdata *dd = rcd->dd;
11623 	u64 reg;
11624 	u32 ctxt = rcd->ctxt;
11625 
11626 	/*
11627 	 * Need to write timeout register before updating RcvHdrHead to ensure
11628 	 * that a new value is used when the HW decides to restart counting.
11629 	 */
11630 	if (intr_adjust)
11631 		adjust_rcv_timeout(rcd, npkts);
11632 	if (updegr) {
11633 		reg = (egrhd & RCV_EGR_INDEX_HEAD_HEAD_MASK)
11634 			<< RCV_EGR_INDEX_HEAD_HEAD_SHIFT;
11635 		write_uctxt_csr(dd, ctxt, RCV_EGR_INDEX_HEAD, reg);
11636 	}
11637 	mmiowb();
11638 	reg = ((u64)rcv_intr_count << RCV_HDR_HEAD_COUNTER_SHIFT) |
11639 		(((u64)hd & RCV_HDR_HEAD_HEAD_MASK)
11640 			<< RCV_HDR_HEAD_HEAD_SHIFT);
11641 	write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, reg);
11642 	mmiowb();
11643 }
11644 
11645 u32 hdrqempty(struct hfi1_ctxtdata *rcd)
11646 {
11647 	u32 head, tail;
11648 
11649 	head = (read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_HEAD)
11650 		& RCV_HDR_HEAD_HEAD_SMASK) >> RCV_HDR_HEAD_HEAD_SHIFT;
11651 
11652 	if (rcd->rcvhdrtail_kvaddr)
11653 		tail = get_rcvhdrtail(rcd);
11654 	else
11655 		tail = read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_TAIL);
11656 
11657 	return head == tail;
11658 }
11659 
11660 /*
11661  * Context Control and Receive Array encoding for buffer size:
11662  *	0x0 invalid
11663  *	0x1   4 KB
11664  *	0x2   8 KB
11665  *	0x3  16 KB
11666  *	0x4  32 KB
11667  *	0x5  64 KB
11668  *	0x6 128 KB
11669  *	0x7 256 KB
11670  *	0x8 512 KB (Receive Array only)
11671  *	0x9   1 MB (Receive Array only)
11672  *	0xa   2 MB (Receive Array only)
11673  *
11674  *	0xB-0xF - reserved (Receive Array only)
11675  *
11676  *
11677  * This routine assumes that the value has already been sanity checked.
11678  */
11679 static u32 encoded_size(u32 size)
11680 {
11681 	switch (size) {
11682 	case   4 * 1024: return 0x1;
11683 	case   8 * 1024: return 0x2;
11684 	case  16 * 1024: return 0x3;
11685 	case  32 * 1024: return 0x4;
11686 	case  64 * 1024: return 0x5;
11687 	case 128 * 1024: return 0x6;
11688 	case 256 * 1024: return 0x7;
11689 	case 512 * 1024: return 0x8;
11690 	case   1 * 1024 * 1024: return 0x9;
11691 	case   2 * 1024 * 1024: return 0xa;
11692 	}
11693 	return 0x1;	/* if invalid, go with the minimum size */
11694 }
11695 
11696 void hfi1_rcvctrl(struct hfi1_devdata *dd, unsigned int op, int ctxt)
11697 {
11698 	struct hfi1_ctxtdata *rcd;
11699 	u64 rcvctrl, reg;
11700 	int did_enable = 0;
11701 
11702 	rcd = dd->rcd[ctxt];
11703 	if (!rcd)
11704 		return;
11705 
11706 	hfi1_cdbg(RCVCTRL, "ctxt %d op 0x%x", ctxt, op);
11707 
11708 	rcvctrl = read_kctxt_csr(dd, ctxt, RCV_CTXT_CTRL);
11709 	/* if the context already enabled, don't do the extra steps */
11710 	if ((op & HFI1_RCVCTRL_CTXT_ENB) &&
11711 	    !(rcvctrl & RCV_CTXT_CTRL_ENABLE_SMASK)) {
11712 		/* reset the tail and hdr addresses, and sequence count */
11713 		write_kctxt_csr(dd, ctxt, RCV_HDR_ADDR,
11714 				rcd->rcvhdrq_dma);
11715 		if (HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL))
11716 			write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR,
11717 					rcd->rcvhdrqtailaddr_dma);
11718 		rcd->seq_cnt = 1;
11719 
11720 		/* reset the cached receive header queue head value */
11721 		rcd->head = 0;
11722 
11723 		/*
11724 		 * Zero the receive header queue so we don't get false
11725 		 * positives when checking the sequence number.  The
11726 		 * sequence numbers could land exactly on the same spot.
11727 		 * E.g. a rcd restart before the receive header wrapped.
11728 		 */
11729 		memset(rcd->rcvhdrq, 0, rcd->rcvhdrq_size);
11730 
11731 		/* starting timeout */
11732 		rcd->rcvavail_timeout = dd->rcv_intr_timeout_csr;
11733 
11734 		/* enable the context */
11735 		rcvctrl |= RCV_CTXT_CTRL_ENABLE_SMASK;
11736 
11737 		/* clean the egr buffer size first */
11738 		rcvctrl &= ~RCV_CTXT_CTRL_EGR_BUF_SIZE_SMASK;
11739 		rcvctrl |= ((u64)encoded_size(rcd->egrbufs.rcvtid_size)
11740 				& RCV_CTXT_CTRL_EGR_BUF_SIZE_MASK)
11741 					<< RCV_CTXT_CTRL_EGR_BUF_SIZE_SHIFT;
11742 
11743 		/* zero RcvHdrHead - set RcvHdrHead.Counter after enable */
11744 		write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0);
11745 		did_enable = 1;
11746 
11747 		/* zero RcvEgrIndexHead */
11748 		write_uctxt_csr(dd, ctxt, RCV_EGR_INDEX_HEAD, 0);
11749 
11750 		/* set eager count and base index */
11751 		reg = (((u64)(rcd->egrbufs.alloced >> RCV_SHIFT)
11752 			& RCV_EGR_CTRL_EGR_CNT_MASK)
11753 		       << RCV_EGR_CTRL_EGR_CNT_SHIFT) |
11754 			(((rcd->eager_base >> RCV_SHIFT)
11755 			  & RCV_EGR_CTRL_EGR_BASE_INDEX_MASK)
11756 			 << RCV_EGR_CTRL_EGR_BASE_INDEX_SHIFT);
11757 		write_kctxt_csr(dd, ctxt, RCV_EGR_CTRL, reg);
11758 
11759 		/*
11760 		 * Set TID (expected) count and base index.
11761 		 * rcd->expected_count is set to individual RcvArray entries,
11762 		 * not pairs, and the CSR takes a pair-count in groups of
11763 		 * four, so divide by 8.
11764 		 */
11765 		reg = (((rcd->expected_count >> RCV_SHIFT)
11766 					& RCV_TID_CTRL_TID_PAIR_CNT_MASK)
11767 				<< RCV_TID_CTRL_TID_PAIR_CNT_SHIFT) |
11768 		      (((rcd->expected_base >> RCV_SHIFT)
11769 					& RCV_TID_CTRL_TID_BASE_INDEX_MASK)
11770 				<< RCV_TID_CTRL_TID_BASE_INDEX_SHIFT);
11771 		write_kctxt_csr(dd, ctxt, RCV_TID_CTRL, reg);
11772 		if (ctxt == HFI1_CTRL_CTXT)
11773 			write_csr(dd, RCV_VL15, HFI1_CTRL_CTXT);
11774 	}
11775 	if (op & HFI1_RCVCTRL_CTXT_DIS) {
11776 		write_csr(dd, RCV_VL15, 0);
11777 		/*
11778 		 * When receive context is being disabled turn on tail
11779 		 * update with a dummy tail address and then disable
11780 		 * receive context.
11781 		 */
11782 		if (dd->rcvhdrtail_dummy_dma) {
11783 			write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR,
11784 					dd->rcvhdrtail_dummy_dma);
11785 			/* Enabling RcvCtxtCtrl.TailUpd is intentional. */
11786 			rcvctrl |= RCV_CTXT_CTRL_TAIL_UPD_SMASK;
11787 		}
11788 
11789 		rcvctrl &= ~RCV_CTXT_CTRL_ENABLE_SMASK;
11790 	}
11791 	if (op & HFI1_RCVCTRL_INTRAVAIL_ENB)
11792 		rcvctrl |= RCV_CTXT_CTRL_INTR_AVAIL_SMASK;
11793 	if (op & HFI1_RCVCTRL_INTRAVAIL_DIS)
11794 		rcvctrl &= ~RCV_CTXT_CTRL_INTR_AVAIL_SMASK;
11795 	if (op & HFI1_RCVCTRL_TAILUPD_ENB && rcd->rcvhdrqtailaddr_dma)
11796 		rcvctrl |= RCV_CTXT_CTRL_TAIL_UPD_SMASK;
11797 	if (op & HFI1_RCVCTRL_TAILUPD_DIS) {
11798 		/* See comment on RcvCtxtCtrl.TailUpd above */
11799 		if (!(op & HFI1_RCVCTRL_CTXT_DIS))
11800 			rcvctrl &= ~RCV_CTXT_CTRL_TAIL_UPD_SMASK;
11801 	}
11802 	if (op & HFI1_RCVCTRL_TIDFLOW_ENB)
11803 		rcvctrl |= RCV_CTXT_CTRL_TID_FLOW_ENABLE_SMASK;
11804 	if (op & HFI1_RCVCTRL_TIDFLOW_DIS)
11805 		rcvctrl &= ~RCV_CTXT_CTRL_TID_FLOW_ENABLE_SMASK;
11806 	if (op & HFI1_RCVCTRL_ONE_PKT_EGR_ENB) {
11807 		/*
11808 		 * In one-packet-per-eager mode, the size comes from
11809 		 * the RcvArray entry.
11810 		 */
11811 		rcvctrl &= ~RCV_CTXT_CTRL_EGR_BUF_SIZE_SMASK;
11812 		rcvctrl |= RCV_CTXT_CTRL_ONE_PACKET_PER_EGR_BUFFER_SMASK;
11813 	}
11814 	if (op & HFI1_RCVCTRL_ONE_PKT_EGR_DIS)
11815 		rcvctrl &= ~RCV_CTXT_CTRL_ONE_PACKET_PER_EGR_BUFFER_SMASK;
11816 	if (op & HFI1_RCVCTRL_NO_RHQ_DROP_ENB)
11817 		rcvctrl |= RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK;
11818 	if (op & HFI1_RCVCTRL_NO_RHQ_DROP_DIS)
11819 		rcvctrl &= ~RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK;
11820 	if (op & HFI1_RCVCTRL_NO_EGR_DROP_ENB)
11821 		rcvctrl |= RCV_CTXT_CTRL_DONT_DROP_EGR_FULL_SMASK;
11822 	if (op & HFI1_RCVCTRL_NO_EGR_DROP_DIS)
11823 		rcvctrl &= ~RCV_CTXT_CTRL_DONT_DROP_EGR_FULL_SMASK;
11824 	rcd->rcvctrl = rcvctrl;
11825 	hfi1_cdbg(RCVCTRL, "ctxt %d rcvctrl 0x%llx\n", ctxt, rcvctrl);
11826 	write_kctxt_csr(dd, ctxt, RCV_CTXT_CTRL, rcd->rcvctrl);
11827 
11828 	/* work around sticky RcvCtxtStatus.BlockedRHQFull */
11829 	if (did_enable &&
11830 	    (rcvctrl & RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK)) {
11831 		reg = read_kctxt_csr(dd, ctxt, RCV_CTXT_STATUS);
11832 		if (reg != 0) {
11833 			dd_dev_info(dd, "ctxt %d status %lld (blocked)\n",
11834 				    ctxt, reg);
11835 			read_uctxt_csr(dd, ctxt, RCV_HDR_HEAD);
11836 			write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0x10);
11837 			write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0x00);
11838 			read_uctxt_csr(dd, ctxt, RCV_HDR_HEAD);
11839 			reg = read_kctxt_csr(dd, ctxt, RCV_CTXT_STATUS);
11840 			dd_dev_info(dd, "ctxt %d status %lld (%s blocked)\n",
11841 				    ctxt, reg, reg == 0 ? "not" : "still");
11842 		}
11843 	}
11844 
11845 	if (did_enable) {
11846 		/*
11847 		 * The interrupt timeout and count must be set after
11848 		 * the context is enabled to take effect.
11849 		 */
11850 		/* set interrupt timeout */
11851 		write_kctxt_csr(dd, ctxt, RCV_AVAIL_TIME_OUT,
11852 				(u64)rcd->rcvavail_timeout <<
11853 				RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_SHIFT);
11854 
11855 		/* set RcvHdrHead.Counter, zero RcvHdrHead.Head (again) */
11856 		reg = (u64)rcv_intr_count << RCV_HDR_HEAD_COUNTER_SHIFT;
11857 		write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, reg);
11858 	}
11859 
11860 	if (op & (HFI1_RCVCTRL_TAILUPD_DIS | HFI1_RCVCTRL_CTXT_DIS))
11861 		/*
11862 		 * If the context has been disabled and the Tail Update has
11863 		 * been cleared, set the RCV_HDR_TAIL_ADDR CSR to dummy address
11864 		 * so it doesn't contain an address that is invalid.
11865 		 */
11866 		write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR,
11867 				dd->rcvhdrtail_dummy_dma);
11868 }
11869 
11870 u32 hfi1_read_cntrs(struct hfi1_devdata *dd, char **namep, u64 **cntrp)
11871 {
11872 	int ret;
11873 	u64 val = 0;
11874 
11875 	if (namep) {
11876 		ret = dd->cntrnameslen;
11877 		*namep = dd->cntrnames;
11878 	} else {
11879 		const struct cntr_entry *entry;
11880 		int i, j;
11881 
11882 		ret = (dd->ndevcntrs) * sizeof(u64);
11883 
11884 		/* Get the start of the block of counters */
11885 		*cntrp = dd->cntrs;
11886 
11887 		/*
11888 		 * Now go and fill in each counter in the block.
11889 		 */
11890 		for (i = 0; i < DEV_CNTR_LAST; i++) {
11891 			entry = &dev_cntrs[i];
11892 			hfi1_cdbg(CNTR, "reading %s", entry->name);
11893 			if (entry->flags & CNTR_DISABLED) {
11894 				/* Nothing */
11895 				hfi1_cdbg(CNTR, "\tDisabled\n");
11896 			} else {
11897 				if (entry->flags & CNTR_VL) {
11898 					hfi1_cdbg(CNTR, "\tPer VL\n");
11899 					for (j = 0; j < C_VL_COUNT; j++) {
11900 						val = entry->rw_cntr(entry,
11901 								  dd, j,
11902 								  CNTR_MODE_R,
11903 								  0);
11904 						hfi1_cdbg(
11905 						   CNTR,
11906 						   "\t\tRead 0x%llx for %d\n",
11907 						   val, j);
11908 						dd->cntrs[entry->offset + j] =
11909 									    val;
11910 					}
11911 				} else if (entry->flags & CNTR_SDMA) {
11912 					hfi1_cdbg(CNTR,
11913 						  "\t Per SDMA Engine\n");
11914 					for (j = 0; j < dd->chip_sdma_engines;
11915 					     j++) {
11916 						val =
11917 						entry->rw_cntr(entry, dd, j,
11918 							       CNTR_MODE_R, 0);
11919 						hfi1_cdbg(CNTR,
11920 							  "\t\tRead 0x%llx for %d\n",
11921 							  val, j);
11922 						dd->cntrs[entry->offset + j] =
11923 									val;
11924 					}
11925 				} else {
11926 					val = entry->rw_cntr(entry, dd,
11927 							CNTR_INVALID_VL,
11928 							CNTR_MODE_R, 0);
11929 					dd->cntrs[entry->offset] = val;
11930 					hfi1_cdbg(CNTR, "\tRead 0x%llx", val);
11931 				}
11932 			}
11933 		}
11934 	}
11935 	return ret;
11936 }
11937 
11938 /*
11939  * Used by sysfs to create files for hfi stats to read
11940  */
11941 u32 hfi1_read_portcntrs(struct hfi1_pportdata *ppd, char **namep, u64 **cntrp)
11942 {
11943 	int ret;
11944 	u64 val = 0;
11945 
11946 	if (namep) {
11947 		ret = ppd->dd->portcntrnameslen;
11948 		*namep = ppd->dd->portcntrnames;
11949 	} else {
11950 		const struct cntr_entry *entry;
11951 		int i, j;
11952 
11953 		ret = ppd->dd->nportcntrs * sizeof(u64);
11954 		*cntrp = ppd->cntrs;
11955 
11956 		for (i = 0; i < PORT_CNTR_LAST; i++) {
11957 			entry = &port_cntrs[i];
11958 			hfi1_cdbg(CNTR, "reading %s", entry->name);
11959 			if (entry->flags & CNTR_DISABLED) {
11960 				/* Nothing */
11961 				hfi1_cdbg(CNTR, "\tDisabled\n");
11962 				continue;
11963 			}
11964 
11965 			if (entry->flags & CNTR_VL) {
11966 				hfi1_cdbg(CNTR, "\tPer VL");
11967 				for (j = 0; j < C_VL_COUNT; j++) {
11968 					val = entry->rw_cntr(entry, ppd, j,
11969 							       CNTR_MODE_R,
11970 							       0);
11971 					hfi1_cdbg(
11972 					   CNTR,
11973 					   "\t\tRead 0x%llx for %d",
11974 					   val, j);
11975 					ppd->cntrs[entry->offset + j] = val;
11976 				}
11977 			} else {
11978 				val = entry->rw_cntr(entry, ppd,
11979 						       CNTR_INVALID_VL,
11980 						       CNTR_MODE_R,
11981 						       0);
11982 				ppd->cntrs[entry->offset] = val;
11983 				hfi1_cdbg(CNTR, "\tRead 0x%llx", val);
11984 			}
11985 		}
11986 	}
11987 	return ret;
11988 }
11989 
11990 static void free_cntrs(struct hfi1_devdata *dd)
11991 {
11992 	struct hfi1_pportdata *ppd;
11993 	int i;
11994 
11995 	if (dd->synth_stats_timer.data)
11996 		del_timer_sync(&dd->synth_stats_timer);
11997 	dd->synth_stats_timer.data = 0;
11998 	ppd = (struct hfi1_pportdata *)(dd + 1);
11999 	for (i = 0; i < dd->num_pports; i++, ppd++) {
12000 		kfree(ppd->cntrs);
12001 		kfree(ppd->scntrs);
12002 		free_percpu(ppd->ibport_data.rvp.rc_acks);
12003 		free_percpu(ppd->ibport_data.rvp.rc_qacks);
12004 		free_percpu(ppd->ibport_data.rvp.rc_delayed_comp);
12005 		ppd->cntrs = NULL;
12006 		ppd->scntrs = NULL;
12007 		ppd->ibport_data.rvp.rc_acks = NULL;
12008 		ppd->ibport_data.rvp.rc_qacks = NULL;
12009 		ppd->ibport_data.rvp.rc_delayed_comp = NULL;
12010 	}
12011 	kfree(dd->portcntrnames);
12012 	dd->portcntrnames = NULL;
12013 	kfree(dd->cntrs);
12014 	dd->cntrs = NULL;
12015 	kfree(dd->scntrs);
12016 	dd->scntrs = NULL;
12017 	kfree(dd->cntrnames);
12018 	dd->cntrnames = NULL;
12019 	if (dd->update_cntr_wq) {
12020 		destroy_workqueue(dd->update_cntr_wq);
12021 		dd->update_cntr_wq = NULL;
12022 	}
12023 }
12024 
12025 static u64 read_dev_port_cntr(struct hfi1_devdata *dd, struct cntr_entry *entry,
12026 			      u64 *psval, void *context, int vl)
12027 {
12028 	u64 val;
12029 	u64 sval = *psval;
12030 
12031 	if (entry->flags & CNTR_DISABLED) {
12032 		dd_dev_err(dd, "Counter %s not enabled", entry->name);
12033 		return 0;
12034 	}
12035 
12036 	hfi1_cdbg(CNTR, "cntr: %s vl %d psval 0x%llx", entry->name, vl, *psval);
12037 
12038 	val = entry->rw_cntr(entry, context, vl, CNTR_MODE_R, 0);
12039 
12040 	/* If its a synthetic counter there is more work we need to do */
12041 	if (entry->flags & CNTR_SYNTH) {
12042 		if (sval == CNTR_MAX) {
12043 			/* No need to read already saturated */
12044 			return CNTR_MAX;
12045 		}
12046 
12047 		if (entry->flags & CNTR_32BIT) {
12048 			/* 32bit counters can wrap multiple times */
12049 			u64 upper = sval >> 32;
12050 			u64 lower = (sval << 32) >> 32;
12051 
12052 			if (lower > val) { /* hw wrapped */
12053 				if (upper == CNTR_32BIT_MAX)
12054 					val = CNTR_MAX;
12055 				else
12056 					upper++;
12057 			}
12058 
12059 			if (val != CNTR_MAX)
12060 				val = (upper << 32) | val;
12061 
12062 		} else {
12063 			/* If we rolled we are saturated */
12064 			if ((val < sval) || (val > CNTR_MAX))
12065 				val = CNTR_MAX;
12066 		}
12067 	}
12068 
12069 	*psval = val;
12070 
12071 	hfi1_cdbg(CNTR, "\tNew val=0x%llx", val);
12072 
12073 	return val;
12074 }
12075 
12076 static u64 write_dev_port_cntr(struct hfi1_devdata *dd,
12077 			       struct cntr_entry *entry,
12078 			       u64 *psval, void *context, int vl, u64 data)
12079 {
12080 	u64 val;
12081 
12082 	if (entry->flags & CNTR_DISABLED) {
12083 		dd_dev_err(dd, "Counter %s not enabled", entry->name);
12084 		return 0;
12085 	}
12086 
12087 	hfi1_cdbg(CNTR, "cntr: %s vl %d psval 0x%llx", entry->name, vl, *psval);
12088 
12089 	if (entry->flags & CNTR_SYNTH) {
12090 		*psval = data;
12091 		if (entry->flags & CNTR_32BIT) {
12092 			val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W,
12093 					     (data << 32) >> 32);
12094 			val = data; /* return the full 64bit value */
12095 		} else {
12096 			val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W,
12097 					     data);
12098 		}
12099 	} else {
12100 		val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W, data);
12101 	}
12102 
12103 	*psval = val;
12104 
12105 	hfi1_cdbg(CNTR, "\tNew val=0x%llx", val);
12106 
12107 	return val;
12108 }
12109 
12110 u64 read_dev_cntr(struct hfi1_devdata *dd, int index, int vl)
12111 {
12112 	struct cntr_entry *entry;
12113 	u64 *sval;
12114 
12115 	entry = &dev_cntrs[index];
12116 	sval = dd->scntrs + entry->offset;
12117 
12118 	if (vl != CNTR_INVALID_VL)
12119 		sval += vl;
12120 
12121 	return read_dev_port_cntr(dd, entry, sval, dd, vl);
12122 }
12123 
12124 u64 write_dev_cntr(struct hfi1_devdata *dd, int index, int vl, u64 data)
12125 {
12126 	struct cntr_entry *entry;
12127 	u64 *sval;
12128 
12129 	entry = &dev_cntrs[index];
12130 	sval = dd->scntrs + entry->offset;
12131 
12132 	if (vl != CNTR_INVALID_VL)
12133 		sval += vl;
12134 
12135 	return write_dev_port_cntr(dd, entry, sval, dd, vl, data);
12136 }
12137 
12138 u64 read_port_cntr(struct hfi1_pportdata *ppd, int index, int vl)
12139 {
12140 	struct cntr_entry *entry;
12141 	u64 *sval;
12142 
12143 	entry = &port_cntrs[index];
12144 	sval = ppd->scntrs + entry->offset;
12145 
12146 	if (vl != CNTR_INVALID_VL)
12147 		sval += vl;
12148 
12149 	if ((index >= C_RCV_HDR_OVF_FIRST + ppd->dd->num_rcv_contexts) &&
12150 	    (index <= C_RCV_HDR_OVF_LAST)) {
12151 		/* We do not want to bother for disabled contexts */
12152 		return 0;
12153 	}
12154 
12155 	return read_dev_port_cntr(ppd->dd, entry, sval, ppd, vl);
12156 }
12157 
12158 u64 write_port_cntr(struct hfi1_pportdata *ppd, int index, int vl, u64 data)
12159 {
12160 	struct cntr_entry *entry;
12161 	u64 *sval;
12162 
12163 	entry = &port_cntrs[index];
12164 	sval = ppd->scntrs + entry->offset;
12165 
12166 	if (vl != CNTR_INVALID_VL)
12167 		sval += vl;
12168 
12169 	if ((index >= C_RCV_HDR_OVF_FIRST + ppd->dd->num_rcv_contexts) &&
12170 	    (index <= C_RCV_HDR_OVF_LAST)) {
12171 		/* We do not want to bother for disabled contexts */
12172 		return 0;
12173 	}
12174 
12175 	return write_dev_port_cntr(ppd->dd, entry, sval, ppd, vl, data);
12176 }
12177 
12178 static void do_update_synth_timer(struct work_struct *work)
12179 {
12180 	u64 cur_tx;
12181 	u64 cur_rx;
12182 	u64 total_flits;
12183 	u8 update = 0;
12184 	int i, j, vl;
12185 	struct hfi1_pportdata *ppd;
12186 	struct cntr_entry *entry;
12187 	struct hfi1_devdata *dd = container_of(work, struct hfi1_devdata,
12188 					       update_cntr_work);
12189 
12190 	/*
12191 	 * Rather than keep beating on the CSRs pick a minimal set that we can
12192 	 * check to watch for potential roll over. We can do this by looking at
12193 	 * the number of flits sent/recv. If the total flits exceeds 32bits then
12194 	 * we have to iterate all the counters and update.
12195 	 */
12196 	entry = &dev_cntrs[C_DC_RCV_FLITS];
12197 	cur_rx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL, CNTR_MODE_R, 0);
12198 
12199 	entry = &dev_cntrs[C_DC_XMIT_FLITS];
12200 	cur_tx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL, CNTR_MODE_R, 0);
12201 
12202 	hfi1_cdbg(
12203 	    CNTR,
12204 	    "[%d] curr tx=0x%llx rx=0x%llx :: last tx=0x%llx rx=0x%llx\n",
12205 	    dd->unit, cur_tx, cur_rx, dd->last_tx, dd->last_rx);
12206 
12207 	if ((cur_tx < dd->last_tx) || (cur_rx < dd->last_rx)) {
12208 		/*
12209 		 * May not be strictly necessary to update but it won't hurt and
12210 		 * simplifies the logic here.
12211 		 */
12212 		update = 1;
12213 		hfi1_cdbg(CNTR, "[%d] Tripwire counter rolled, updating",
12214 			  dd->unit);
12215 	} else {
12216 		total_flits = (cur_tx - dd->last_tx) + (cur_rx - dd->last_rx);
12217 		hfi1_cdbg(CNTR,
12218 			  "[%d] total flits 0x%llx limit 0x%llx\n", dd->unit,
12219 			  total_flits, (u64)CNTR_32BIT_MAX);
12220 		if (total_flits >= CNTR_32BIT_MAX) {
12221 			hfi1_cdbg(CNTR, "[%d] 32bit limit hit, updating",
12222 				  dd->unit);
12223 			update = 1;
12224 		}
12225 	}
12226 
12227 	if (update) {
12228 		hfi1_cdbg(CNTR, "[%d] Updating dd and ppd counters", dd->unit);
12229 		for (i = 0; i < DEV_CNTR_LAST; i++) {
12230 			entry = &dev_cntrs[i];
12231 			if (entry->flags & CNTR_VL) {
12232 				for (vl = 0; vl < C_VL_COUNT; vl++)
12233 					read_dev_cntr(dd, i, vl);
12234 			} else {
12235 				read_dev_cntr(dd, i, CNTR_INVALID_VL);
12236 			}
12237 		}
12238 		ppd = (struct hfi1_pportdata *)(dd + 1);
12239 		for (i = 0; i < dd->num_pports; i++, ppd++) {
12240 			for (j = 0; j < PORT_CNTR_LAST; j++) {
12241 				entry = &port_cntrs[j];
12242 				if (entry->flags & CNTR_VL) {
12243 					for (vl = 0; vl < C_VL_COUNT; vl++)
12244 						read_port_cntr(ppd, j, vl);
12245 				} else {
12246 					read_port_cntr(ppd, j, CNTR_INVALID_VL);
12247 				}
12248 			}
12249 		}
12250 
12251 		/*
12252 		 * We want the value in the register. The goal is to keep track
12253 		 * of the number of "ticks" not the counter value. In other
12254 		 * words if the register rolls we want to notice it and go ahead
12255 		 * and force an update.
12256 		 */
12257 		entry = &dev_cntrs[C_DC_XMIT_FLITS];
12258 		dd->last_tx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL,
12259 						CNTR_MODE_R, 0);
12260 
12261 		entry = &dev_cntrs[C_DC_RCV_FLITS];
12262 		dd->last_rx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL,
12263 						CNTR_MODE_R, 0);
12264 
12265 		hfi1_cdbg(CNTR, "[%d] setting last tx/rx to 0x%llx 0x%llx",
12266 			  dd->unit, dd->last_tx, dd->last_rx);
12267 
12268 	} else {
12269 		hfi1_cdbg(CNTR, "[%d] No update necessary", dd->unit);
12270 	}
12271 }
12272 
12273 static void update_synth_timer(unsigned long opaque)
12274 {
12275 	struct hfi1_devdata *dd = (struct hfi1_devdata *)opaque;
12276 
12277 	queue_work(dd->update_cntr_wq, &dd->update_cntr_work);
12278 	mod_timer(&dd->synth_stats_timer, jiffies + HZ * SYNTH_CNT_TIME);
12279 }
12280 
12281 #define C_MAX_NAME 16 /* 15 chars + one for /0 */
12282 static int init_cntrs(struct hfi1_devdata *dd)
12283 {
12284 	int i, rcv_ctxts, j;
12285 	size_t sz;
12286 	char *p;
12287 	char name[C_MAX_NAME];
12288 	struct hfi1_pportdata *ppd;
12289 	const char *bit_type_32 = ",32";
12290 	const int bit_type_32_sz = strlen(bit_type_32);
12291 
12292 	/* set up the stats timer; the add_timer is done at the end */
12293 	setup_timer(&dd->synth_stats_timer, update_synth_timer,
12294 		    (unsigned long)dd);
12295 
12296 	/***********************/
12297 	/* per device counters */
12298 	/***********************/
12299 
12300 	/* size names and determine how many we have*/
12301 	dd->ndevcntrs = 0;
12302 	sz = 0;
12303 
12304 	for (i = 0; i < DEV_CNTR_LAST; i++) {
12305 		if (dev_cntrs[i].flags & CNTR_DISABLED) {
12306 			hfi1_dbg_early("\tSkipping %s\n", dev_cntrs[i].name);
12307 			continue;
12308 		}
12309 
12310 		if (dev_cntrs[i].flags & CNTR_VL) {
12311 			dev_cntrs[i].offset = dd->ndevcntrs;
12312 			for (j = 0; j < C_VL_COUNT; j++) {
12313 				snprintf(name, C_MAX_NAME, "%s%d",
12314 					 dev_cntrs[i].name, vl_from_idx(j));
12315 				sz += strlen(name);
12316 				/* Add ",32" for 32-bit counters */
12317 				if (dev_cntrs[i].flags & CNTR_32BIT)
12318 					sz += bit_type_32_sz;
12319 				sz++;
12320 				dd->ndevcntrs++;
12321 			}
12322 		} else if (dev_cntrs[i].flags & CNTR_SDMA) {
12323 			dev_cntrs[i].offset = dd->ndevcntrs;
12324 			for (j = 0; j < dd->chip_sdma_engines; j++) {
12325 				snprintf(name, C_MAX_NAME, "%s%d",
12326 					 dev_cntrs[i].name, j);
12327 				sz += strlen(name);
12328 				/* Add ",32" for 32-bit counters */
12329 				if (dev_cntrs[i].flags & CNTR_32BIT)
12330 					sz += bit_type_32_sz;
12331 				sz++;
12332 				dd->ndevcntrs++;
12333 			}
12334 		} else {
12335 			/* +1 for newline. */
12336 			sz += strlen(dev_cntrs[i].name) + 1;
12337 			/* Add ",32" for 32-bit counters */
12338 			if (dev_cntrs[i].flags & CNTR_32BIT)
12339 				sz += bit_type_32_sz;
12340 			dev_cntrs[i].offset = dd->ndevcntrs;
12341 			dd->ndevcntrs++;
12342 		}
12343 	}
12344 
12345 	/* allocate space for the counter values */
12346 	dd->cntrs = kcalloc(dd->ndevcntrs, sizeof(u64), GFP_KERNEL);
12347 	if (!dd->cntrs)
12348 		goto bail;
12349 
12350 	dd->scntrs = kcalloc(dd->ndevcntrs, sizeof(u64), GFP_KERNEL);
12351 	if (!dd->scntrs)
12352 		goto bail;
12353 
12354 	/* allocate space for the counter names */
12355 	dd->cntrnameslen = sz;
12356 	dd->cntrnames = kmalloc(sz, GFP_KERNEL);
12357 	if (!dd->cntrnames)
12358 		goto bail;
12359 
12360 	/* fill in the names */
12361 	for (p = dd->cntrnames, i = 0; i < DEV_CNTR_LAST; i++) {
12362 		if (dev_cntrs[i].flags & CNTR_DISABLED) {
12363 			/* Nothing */
12364 		} else if (dev_cntrs[i].flags & CNTR_VL) {
12365 			for (j = 0; j < C_VL_COUNT; j++) {
12366 				snprintf(name, C_MAX_NAME, "%s%d",
12367 					 dev_cntrs[i].name,
12368 					 vl_from_idx(j));
12369 				memcpy(p, name, strlen(name));
12370 				p += strlen(name);
12371 
12372 				/* Counter is 32 bits */
12373 				if (dev_cntrs[i].flags & CNTR_32BIT) {
12374 					memcpy(p, bit_type_32, bit_type_32_sz);
12375 					p += bit_type_32_sz;
12376 				}
12377 
12378 				*p++ = '\n';
12379 			}
12380 		} else if (dev_cntrs[i].flags & CNTR_SDMA) {
12381 			for (j = 0; j < dd->chip_sdma_engines; j++) {
12382 				snprintf(name, C_MAX_NAME, "%s%d",
12383 					 dev_cntrs[i].name, j);
12384 				memcpy(p, name, strlen(name));
12385 				p += strlen(name);
12386 
12387 				/* Counter is 32 bits */
12388 				if (dev_cntrs[i].flags & CNTR_32BIT) {
12389 					memcpy(p, bit_type_32, bit_type_32_sz);
12390 					p += bit_type_32_sz;
12391 				}
12392 
12393 				*p++ = '\n';
12394 			}
12395 		} else {
12396 			memcpy(p, dev_cntrs[i].name, strlen(dev_cntrs[i].name));
12397 			p += strlen(dev_cntrs[i].name);
12398 
12399 			/* Counter is 32 bits */
12400 			if (dev_cntrs[i].flags & CNTR_32BIT) {
12401 				memcpy(p, bit_type_32, bit_type_32_sz);
12402 				p += bit_type_32_sz;
12403 			}
12404 
12405 			*p++ = '\n';
12406 		}
12407 	}
12408 
12409 	/*********************/
12410 	/* per port counters */
12411 	/*********************/
12412 
12413 	/*
12414 	 * Go through the counters for the overflows and disable the ones we
12415 	 * don't need. This varies based on platform so we need to do it
12416 	 * dynamically here.
12417 	 */
12418 	rcv_ctxts = dd->num_rcv_contexts;
12419 	for (i = C_RCV_HDR_OVF_FIRST + rcv_ctxts;
12420 	     i <= C_RCV_HDR_OVF_LAST; i++) {
12421 		port_cntrs[i].flags |= CNTR_DISABLED;
12422 	}
12423 
12424 	/* size port counter names and determine how many we have*/
12425 	sz = 0;
12426 	dd->nportcntrs = 0;
12427 	for (i = 0; i < PORT_CNTR_LAST; i++) {
12428 		if (port_cntrs[i].flags & CNTR_DISABLED) {
12429 			hfi1_dbg_early("\tSkipping %s\n", port_cntrs[i].name);
12430 			continue;
12431 		}
12432 
12433 		if (port_cntrs[i].flags & CNTR_VL) {
12434 			port_cntrs[i].offset = dd->nportcntrs;
12435 			for (j = 0; j < C_VL_COUNT; j++) {
12436 				snprintf(name, C_MAX_NAME, "%s%d",
12437 					 port_cntrs[i].name, vl_from_idx(j));
12438 				sz += strlen(name);
12439 				/* Add ",32" for 32-bit counters */
12440 				if (port_cntrs[i].flags & CNTR_32BIT)
12441 					sz += bit_type_32_sz;
12442 				sz++;
12443 				dd->nportcntrs++;
12444 			}
12445 		} else {
12446 			/* +1 for newline */
12447 			sz += strlen(port_cntrs[i].name) + 1;
12448 			/* Add ",32" for 32-bit counters */
12449 			if (port_cntrs[i].flags & CNTR_32BIT)
12450 				sz += bit_type_32_sz;
12451 			port_cntrs[i].offset = dd->nportcntrs;
12452 			dd->nportcntrs++;
12453 		}
12454 	}
12455 
12456 	/* allocate space for the counter names */
12457 	dd->portcntrnameslen = sz;
12458 	dd->portcntrnames = kmalloc(sz, GFP_KERNEL);
12459 	if (!dd->portcntrnames)
12460 		goto bail;
12461 
12462 	/* fill in port cntr names */
12463 	for (p = dd->portcntrnames, i = 0; i < PORT_CNTR_LAST; i++) {
12464 		if (port_cntrs[i].flags & CNTR_DISABLED)
12465 			continue;
12466 
12467 		if (port_cntrs[i].flags & CNTR_VL) {
12468 			for (j = 0; j < C_VL_COUNT; j++) {
12469 				snprintf(name, C_MAX_NAME, "%s%d",
12470 					 port_cntrs[i].name, vl_from_idx(j));
12471 				memcpy(p, name, strlen(name));
12472 				p += strlen(name);
12473 
12474 				/* Counter is 32 bits */
12475 				if (port_cntrs[i].flags & CNTR_32BIT) {
12476 					memcpy(p, bit_type_32, bit_type_32_sz);
12477 					p += bit_type_32_sz;
12478 				}
12479 
12480 				*p++ = '\n';
12481 			}
12482 		} else {
12483 			memcpy(p, port_cntrs[i].name,
12484 			       strlen(port_cntrs[i].name));
12485 			p += strlen(port_cntrs[i].name);
12486 
12487 			/* Counter is 32 bits */
12488 			if (port_cntrs[i].flags & CNTR_32BIT) {
12489 				memcpy(p, bit_type_32, bit_type_32_sz);
12490 				p += bit_type_32_sz;
12491 			}
12492 
12493 			*p++ = '\n';
12494 		}
12495 	}
12496 
12497 	/* allocate per port storage for counter values */
12498 	ppd = (struct hfi1_pportdata *)(dd + 1);
12499 	for (i = 0; i < dd->num_pports; i++, ppd++) {
12500 		ppd->cntrs = kcalloc(dd->nportcntrs, sizeof(u64), GFP_KERNEL);
12501 		if (!ppd->cntrs)
12502 			goto bail;
12503 
12504 		ppd->scntrs = kcalloc(dd->nportcntrs, sizeof(u64), GFP_KERNEL);
12505 		if (!ppd->scntrs)
12506 			goto bail;
12507 	}
12508 
12509 	/* CPU counters need to be allocated and zeroed */
12510 	if (init_cpu_counters(dd))
12511 		goto bail;
12512 
12513 	dd->update_cntr_wq = alloc_ordered_workqueue("hfi1_update_cntr_%d",
12514 						     WQ_MEM_RECLAIM, dd->unit);
12515 	if (!dd->update_cntr_wq)
12516 		goto bail;
12517 
12518 	INIT_WORK(&dd->update_cntr_work, do_update_synth_timer);
12519 
12520 	mod_timer(&dd->synth_stats_timer, jiffies + HZ * SYNTH_CNT_TIME);
12521 	return 0;
12522 bail:
12523 	free_cntrs(dd);
12524 	return -ENOMEM;
12525 }
12526 
12527 static u32 chip_to_opa_lstate(struct hfi1_devdata *dd, u32 chip_lstate)
12528 {
12529 	switch (chip_lstate) {
12530 	default:
12531 		dd_dev_err(dd,
12532 			   "Unknown logical state 0x%x, reporting IB_PORT_DOWN\n",
12533 			   chip_lstate);
12534 		/* fall through */
12535 	case LSTATE_DOWN:
12536 		return IB_PORT_DOWN;
12537 	case LSTATE_INIT:
12538 		return IB_PORT_INIT;
12539 	case LSTATE_ARMED:
12540 		return IB_PORT_ARMED;
12541 	case LSTATE_ACTIVE:
12542 		return IB_PORT_ACTIVE;
12543 	}
12544 }
12545 
12546 u32 chip_to_opa_pstate(struct hfi1_devdata *dd, u32 chip_pstate)
12547 {
12548 	/* look at the HFI meta-states only */
12549 	switch (chip_pstate & 0xf0) {
12550 	default:
12551 		dd_dev_err(dd, "Unexpected chip physical state of 0x%x\n",
12552 			   chip_pstate);
12553 		/* fall through */
12554 	case PLS_DISABLED:
12555 		return IB_PORTPHYSSTATE_DISABLED;
12556 	case PLS_OFFLINE:
12557 		return OPA_PORTPHYSSTATE_OFFLINE;
12558 	case PLS_POLLING:
12559 		return IB_PORTPHYSSTATE_POLLING;
12560 	case PLS_CONFIGPHY:
12561 		return IB_PORTPHYSSTATE_TRAINING;
12562 	case PLS_LINKUP:
12563 		return IB_PORTPHYSSTATE_LINKUP;
12564 	case PLS_PHYTEST:
12565 		return IB_PORTPHYSSTATE_PHY_TEST;
12566 	}
12567 }
12568 
12569 /* return the OPA port logical state name */
12570 const char *opa_lstate_name(u32 lstate)
12571 {
12572 	static const char * const port_logical_names[] = {
12573 		"PORT_NOP",
12574 		"PORT_DOWN",
12575 		"PORT_INIT",
12576 		"PORT_ARMED",
12577 		"PORT_ACTIVE",
12578 		"PORT_ACTIVE_DEFER",
12579 	};
12580 	if (lstate < ARRAY_SIZE(port_logical_names))
12581 		return port_logical_names[lstate];
12582 	return "unknown";
12583 }
12584 
12585 /* return the OPA port physical state name */
12586 const char *opa_pstate_name(u32 pstate)
12587 {
12588 	static const char * const port_physical_names[] = {
12589 		"PHYS_NOP",
12590 		"reserved1",
12591 		"PHYS_POLL",
12592 		"PHYS_DISABLED",
12593 		"PHYS_TRAINING",
12594 		"PHYS_LINKUP",
12595 		"PHYS_LINK_ERR_RECOVER",
12596 		"PHYS_PHY_TEST",
12597 		"reserved8",
12598 		"PHYS_OFFLINE",
12599 		"PHYS_GANGED",
12600 		"PHYS_TEST",
12601 	};
12602 	if (pstate < ARRAY_SIZE(port_physical_names))
12603 		return port_physical_names[pstate];
12604 	return "unknown";
12605 }
12606 
12607 /*
12608  * Read the hardware link state and set the driver's cached value of it.
12609  * Return the (new) current value.
12610  */
12611 u32 get_logical_state(struct hfi1_pportdata *ppd)
12612 {
12613 	u32 new_state;
12614 
12615 	new_state = chip_to_opa_lstate(ppd->dd, read_logical_state(ppd->dd));
12616 	if (new_state != ppd->lstate) {
12617 		dd_dev_info(ppd->dd, "logical state changed to %s (0x%x)\n",
12618 			    opa_lstate_name(new_state), new_state);
12619 		ppd->lstate = new_state;
12620 	}
12621 	/*
12622 	 * Set port status flags in the page mapped into userspace
12623 	 * memory. Do it here to ensure a reliable state - this is
12624 	 * the only function called by all state handling code.
12625 	 * Always set the flags due to the fact that the cache value
12626 	 * might have been changed explicitly outside of this
12627 	 * function.
12628 	 */
12629 	if (ppd->statusp) {
12630 		switch (ppd->lstate) {
12631 		case IB_PORT_DOWN:
12632 		case IB_PORT_INIT:
12633 			*ppd->statusp &= ~(HFI1_STATUS_IB_CONF |
12634 					   HFI1_STATUS_IB_READY);
12635 			break;
12636 		case IB_PORT_ARMED:
12637 			*ppd->statusp |= HFI1_STATUS_IB_CONF;
12638 			break;
12639 		case IB_PORT_ACTIVE:
12640 			*ppd->statusp |= HFI1_STATUS_IB_READY;
12641 			break;
12642 		}
12643 	}
12644 	return ppd->lstate;
12645 }
12646 
12647 /**
12648  * wait_logical_linkstate - wait for an IB link state change to occur
12649  * @ppd: port device
12650  * @state: the state to wait for
12651  * @msecs: the number of milliseconds to wait
12652  *
12653  * Wait up to msecs milliseconds for IB link state change to occur.
12654  * For now, take the easy polling route.
12655  * Returns 0 if state reached, otherwise -ETIMEDOUT.
12656  */
12657 static int wait_logical_linkstate(struct hfi1_pportdata *ppd, u32 state,
12658 				  int msecs)
12659 {
12660 	unsigned long timeout;
12661 
12662 	timeout = jiffies + msecs_to_jiffies(msecs);
12663 	while (1) {
12664 		if (get_logical_state(ppd) == state)
12665 			return 0;
12666 		if (time_after(jiffies, timeout))
12667 			break;
12668 		msleep(20);
12669 	}
12670 	dd_dev_err(ppd->dd, "timeout waiting for link state 0x%x\n", state);
12671 
12672 	return -ETIMEDOUT;
12673 }
12674 
12675 u8 hfi1_ibphys_portstate(struct hfi1_pportdata *ppd)
12676 {
12677 	u32 pstate;
12678 	u32 ib_pstate;
12679 
12680 	pstate = read_physical_state(ppd->dd);
12681 	ib_pstate = chip_to_opa_pstate(ppd->dd, pstate);
12682 	if (ppd->last_pstate != ib_pstate) {
12683 		dd_dev_info(ppd->dd,
12684 			    "%s: physical state changed to %s (0x%x), phy 0x%x\n",
12685 			    __func__, opa_pstate_name(ib_pstate), ib_pstate,
12686 			    pstate);
12687 		ppd->last_pstate = ib_pstate;
12688 	}
12689 	return ib_pstate;
12690 }
12691 
12692 #define CLEAR_STATIC_RATE_CONTROL_SMASK(r) \
12693 (r &= ~SEND_CTXT_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK)
12694 
12695 #define SET_STATIC_RATE_CONTROL_SMASK(r) \
12696 (r |= SEND_CTXT_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK)
12697 
12698 void hfi1_init_ctxt(struct send_context *sc)
12699 {
12700 	if (sc) {
12701 		struct hfi1_devdata *dd = sc->dd;
12702 		u64 reg;
12703 		u8 set = (sc->type == SC_USER ?
12704 			  HFI1_CAP_IS_USET(STATIC_RATE_CTRL) :
12705 			  HFI1_CAP_IS_KSET(STATIC_RATE_CTRL));
12706 		reg = read_kctxt_csr(dd, sc->hw_context,
12707 				     SEND_CTXT_CHECK_ENABLE);
12708 		if (set)
12709 			CLEAR_STATIC_RATE_CONTROL_SMASK(reg);
12710 		else
12711 			SET_STATIC_RATE_CONTROL_SMASK(reg);
12712 		write_kctxt_csr(dd, sc->hw_context,
12713 				SEND_CTXT_CHECK_ENABLE, reg);
12714 	}
12715 }
12716 
12717 int hfi1_tempsense_rd(struct hfi1_devdata *dd, struct hfi1_temp *temp)
12718 {
12719 	int ret = 0;
12720 	u64 reg;
12721 
12722 	if (dd->icode != ICODE_RTL_SILICON) {
12723 		if (HFI1_CAP_IS_KSET(PRINT_UNIMPL))
12724 			dd_dev_info(dd, "%s: tempsense not supported by HW\n",
12725 				    __func__);
12726 		return -EINVAL;
12727 	}
12728 	reg = read_csr(dd, ASIC_STS_THERM);
12729 	temp->curr = ((reg >> ASIC_STS_THERM_CURR_TEMP_SHIFT) &
12730 		      ASIC_STS_THERM_CURR_TEMP_MASK);
12731 	temp->lo_lim = ((reg >> ASIC_STS_THERM_LO_TEMP_SHIFT) &
12732 			ASIC_STS_THERM_LO_TEMP_MASK);
12733 	temp->hi_lim = ((reg >> ASIC_STS_THERM_HI_TEMP_SHIFT) &
12734 			ASIC_STS_THERM_HI_TEMP_MASK);
12735 	temp->crit_lim = ((reg >> ASIC_STS_THERM_CRIT_TEMP_SHIFT) &
12736 			  ASIC_STS_THERM_CRIT_TEMP_MASK);
12737 	/* triggers is a 3-bit value - 1 bit per trigger. */
12738 	temp->triggers = (u8)((reg >> ASIC_STS_THERM_LOW_SHIFT) & 0x7);
12739 
12740 	return ret;
12741 }
12742 
12743 /* ========================================================================= */
12744 
12745 /*
12746  * Enable/disable chip from delivering interrupts.
12747  */
12748 void set_intr_state(struct hfi1_devdata *dd, u32 enable)
12749 {
12750 	int i;
12751 
12752 	/*
12753 	 * In HFI, the mask needs to be 1 to allow interrupts.
12754 	 */
12755 	if (enable) {
12756 		/* enable all interrupts */
12757 		for (i = 0; i < CCE_NUM_INT_CSRS; i++)
12758 			write_csr(dd, CCE_INT_MASK + (8 * i), ~(u64)0);
12759 
12760 		init_qsfp_int(dd);
12761 	} else {
12762 		for (i = 0; i < CCE_NUM_INT_CSRS; i++)
12763 			write_csr(dd, CCE_INT_MASK + (8 * i), 0ull);
12764 	}
12765 }
12766 
12767 /*
12768  * Clear all interrupt sources on the chip.
12769  */
12770 static void clear_all_interrupts(struct hfi1_devdata *dd)
12771 {
12772 	int i;
12773 
12774 	for (i = 0; i < CCE_NUM_INT_CSRS; i++)
12775 		write_csr(dd, CCE_INT_CLEAR + (8 * i), ~(u64)0);
12776 
12777 	write_csr(dd, CCE_ERR_CLEAR, ~(u64)0);
12778 	write_csr(dd, MISC_ERR_CLEAR, ~(u64)0);
12779 	write_csr(dd, RCV_ERR_CLEAR, ~(u64)0);
12780 	write_csr(dd, SEND_ERR_CLEAR, ~(u64)0);
12781 	write_csr(dd, SEND_PIO_ERR_CLEAR, ~(u64)0);
12782 	write_csr(dd, SEND_DMA_ERR_CLEAR, ~(u64)0);
12783 	write_csr(dd, SEND_EGRESS_ERR_CLEAR, ~(u64)0);
12784 	for (i = 0; i < dd->chip_send_contexts; i++)
12785 		write_kctxt_csr(dd, i, SEND_CTXT_ERR_CLEAR, ~(u64)0);
12786 	for (i = 0; i < dd->chip_sdma_engines; i++)
12787 		write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_CLEAR, ~(u64)0);
12788 
12789 	write_csr(dd, DCC_ERR_FLG_CLR, ~(u64)0);
12790 	write_csr(dd, DC_LCB_ERR_CLR, ~(u64)0);
12791 	write_csr(dd, DC_DC8051_ERR_CLR, ~(u64)0);
12792 }
12793 
12794 /* Move to pcie.c? */
12795 static void disable_intx(struct pci_dev *pdev)
12796 {
12797 	pci_intx(pdev, 0);
12798 }
12799 
12800 static void clean_up_interrupts(struct hfi1_devdata *dd)
12801 {
12802 	int i;
12803 
12804 	/* remove irqs - must happen before disabling/turning off */
12805 	if (dd->num_msix_entries) {
12806 		/* MSI-X */
12807 		struct hfi1_msix_entry *me = dd->msix_entries;
12808 
12809 		for (i = 0; i < dd->num_msix_entries; i++, me++) {
12810 			if (!me->arg) /* => no irq, no affinity */
12811 				continue;
12812 			hfi1_put_irq_affinity(dd, &dd->msix_entries[i]);
12813 			free_irq(me->msix.vector, me->arg);
12814 		}
12815 	} else {
12816 		/* INTx */
12817 		if (dd->requested_intx_irq) {
12818 			free_irq(dd->pcidev->irq, dd);
12819 			dd->requested_intx_irq = 0;
12820 		}
12821 	}
12822 
12823 	/* turn off interrupts */
12824 	if (dd->num_msix_entries) {
12825 		/* MSI-X */
12826 		pci_disable_msix(dd->pcidev);
12827 	} else {
12828 		/* INTx */
12829 		disable_intx(dd->pcidev);
12830 	}
12831 
12832 	/* clean structures */
12833 	kfree(dd->msix_entries);
12834 	dd->msix_entries = NULL;
12835 	dd->num_msix_entries = 0;
12836 }
12837 
12838 /*
12839  * Remap the interrupt source from the general handler to the given MSI-X
12840  * interrupt.
12841  */
12842 static void remap_intr(struct hfi1_devdata *dd, int isrc, int msix_intr)
12843 {
12844 	u64 reg;
12845 	int m, n;
12846 
12847 	/* clear from the handled mask of the general interrupt */
12848 	m = isrc / 64;
12849 	n = isrc % 64;
12850 	if (likely(m < CCE_NUM_INT_CSRS)) {
12851 		dd->gi_mask[m] &= ~((u64)1 << n);
12852 	} else {
12853 		dd_dev_err(dd, "remap interrupt err\n");
12854 		return;
12855 	}
12856 
12857 	/* direct the chip source to the given MSI-X interrupt */
12858 	m = isrc / 8;
12859 	n = isrc % 8;
12860 	reg = read_csr(dd, CCE_INT_MAP + (8 * m));
12861 	reg &= ~((u64)0xff << (8 * n));
12862 	reg |= ((u64)msix_intr & 0xff) << (8 * n);
12863 	write_csr(dd, CCE_INT_MAP + (8 * m), reg);
12864 }
12865 
12866 static void remap_sdma_interrupts(struct hfi1_devdata *dd,
12867 				  int engine, int msix_intr)
12868 {
12869 	/*
12870 	 * SDMA engine interrupt sources grouped by type, rather than
12871 	 * engine.  Per-engine interrupts are as follows:
12872 	 *	SDMA
12873 	 *	SDMAProgress
12874 	 *	SDMAIdle
12875 	 */
12876 	remap_intr(dd, IS_SDMA_START + 0 * TXE_NUM_SDMA_ENGINES + engine,
12877 		   msix_intr);
12878 	remap_intr(dd, IS_SDMA_START + 1 * TXE_NUM_SDMA_ENGINES + engine,
12879 		   msix_intr);
12880 	remap_intr(dd, IS_SDMA_START + 2 * TXE_NUM_SDMA_ENGINES + engine,
12881 		   msix_intr);
12882 }
12883 
12884 static int request_intx_irq(struct hfi1_devdata *dd)
12885 {
12886 	int ret;
12887 
12888 	snprintf(dd->intx_name, sizeof(dd->intx_name), DRIVER_NAME "_%d",
12889 		 dd->unit);
12890 	ret = request_irq(dd->pcidev->irq, general_interrupt,
12891 			  IRQF_SHARED, dd->intx_name, dd);
12892 	if (ret)
12893 		dd_dev_err(dd, "unable to request INTx interrupt, err %d\n",
12894 			   ret);
12895 	else
12896 		dd->requested_intx_irq = 1;
12897 	return ret;
12898 }
12899 
12900 static int request_msix_irqs(struct hfi1_devdata *dd)
12901 {
12902 	int first_general, last_general;
12903 	int first_sdma, last_sdma;
12904 	int first_rx, last_rx;
12905 	int i, ret = 0;
12906 
12907 	/* calculate the ranges we are going to use */
12908 	first_general = 0;
12909 	last_general = first_general + 1;
12910 	first_sdma = last_general;
12911 	last_sdma = first_sdma + dd->num_sdma;
12912 	first_rx = last_sdma;
12913 	last_rx = first_rx + dd->n_krcv_queues + HFI1_NUM_VNIC_CTXT;
12914 
12915 	/* VNIC MSIx interrupts get mapped when VNIC contexts are created */
12916 	dd->first_dyn_msix_idx = first_rx + dd->n_krcv_queues;
12917 
12918 	/*
12919 	 * Sanity check - the code expects all SDMA chip source
12920 	 * interrupts to be in the same CSR, starting at bit 0.  Verify
12921 	 * that this is true by checking the bit location of the start.
12922 	 */
12923 	BUILD_BUG_ON(IS_SDMA_START % 64);
12924 
12925 	for (i = 0; i < dd->num_msix_entries; i++) {
12926 		struct hfi1_msix_entry *me = &dd->msix_entries[i];
12927 		const char *err_info;
12928 		irq_handler_t handler;
12929 		irq_handler_t thread = NULL;
12930 		void *arg = NULL;
12931 		int idx;
12932 		struct hfi1_ctxtdata *rcd = NULL;
12933 		struct sdma_engine *sde = NULL;
12934 
12935 		/* obtain the arguments to request_irq */
12936 		if (first_general <= i && i < last_general) {
12937 			idx = i - first_general;
12938 			handler = general_interrupt;
12939 			arg = dd;
12940 			snprintf(me->name, sizeof(me->name),
12941 				 DRIVER_NAME "_%d", dd->unit);
12942 			err_info = "general";
12943 			me->type = IRQ_GENERAL;
12944 		} else if (first_sdma <= i && i < last_sdma) {
12945 			idx = i - first_sdma;
12946 			sde = &dd->per_sdma[idx];
12947 			handler = sdma_interrupt;
12948 			arg = sde;
12949 			snprintf(me->name, sizeof(me->name),
12950 				 DRIVER_NAME "_%d sdma%d", dd->unit, idx);
12951 			err_info = "sdma";
12952 			remap_sdma_interrupts(dd, idx, i);
12953 			me->type = IRQ_SDMA;
12954 		} else if (first_rx <= i && i < last_rx) {
12955 			idx = i - first_rx;
12956 			rcd = dd->rcd[idx];
12957 			if (rcd) {
12958 				/*
12959 				 * Set the interrupt register and mask for this
12960 				 * context's interrupt.
12961 				 */
12962 				rcd->ireg = (IS_RCVAVAIL_START + idx) / 64;
12963 				rcd->imask = ((u64)1) <<
12964 					  ((IS_RCVAVAIL_START + idx) % 64);
12965 				handler = receive_context_interrupt;
12966 				thread = receive_context_thread;
12967 				arg = rcd;
12968 				snprintf(me->name, sizeof(me->name),
12969 					 DRIVER_NAME "_%d kctxt%d",
12970 					 dd->unit, idx);
12971 				err_info = "receive context";
12972 				remap_intr(dd, IS_RCVAVAIL_START + idx, i);
12973 				me->type = IRQ_RCVCTXT;
12974 				rcd->msix_intr = i;
12975 			}
12976 		} else {
12977 			/* not in our expected range - complain, then
12978 			 * ignore it
12979 			 */
12980 			dd_dev_err(dd,
12981 				   "Unexpected extra MSI-X interrupt %d\n", i);
12982 			continue;
12983 		}
12984 		/* no argument, no interrupt */
12985 		if (!arg)
12986 			continue;
12987 		/* make sure the name is terminated */
12988 		me->name[sizeof(me->name) - 1] = 0;
12989 
12990 		ret = request_threaded_irq(me->msix.vector, handler, thread, 0,
12991 					   me->name, arg);
12992 		if (ret) {
12993 			dd_dev_err(dd,
12994 				   "unable to allocate %s interrupt, vector %d, index %d, err %d\n",
12995 				   err_info, me->msix.vector, idx, ret);
12996 			return ret;
12997 		}
12998 		/*
12999 		 * assign arg after request_irq call, so it will be
13000 		 * cleaned up
13001 		 */
13002 		me->arg = arg;
13003 
13004 		ret = hfi1_get_irq_affinity(dd, me);
13005 		if (ret)
13006 			dd_dev_err(dd,
13007 				   "unable to pin IRQ %d\n", ret);
13008 	}
13009 
13010 	return ret;
13011 }
13012 
13013 void hfi1_vnic_synchronize_irq(struct hfi1_devdata *dd)
13014 {
13015 	int i;
13016 
13017 	if (!dd->num_msix_entries) {
13018 		synchronize_irq(dd->pcidev->irq);
13019 		return;
13020 	}
13021 
13022 	for (i = 0; i < dd->vnic.num_ctxt; i++) {
13023 		struct hfi1_ctxtdata *rcd = dd->vnic.ctxt[i];
13024 		struct hfi1_msix_entry *me = &dd->msix_entries[rcd->msix_intr];
13025 
13026 		synchronize_irq(me->msix.vector);
13027 	}
13028 }
13029 
13030 void hfi1_reset_vnic_msix_info(struct hfi1_ctxtdata *rcd)
13031 {
13032 	struct hfi1_devdata *dd = rcd->dd;
13033 	struct hfi1_msix_entry *me = &dd->msix_entries[rcd->msix_intr];
13034 
13035 	if (!me->arg) /* => no irq, no affinity */
13036 		return;
13037 
13038 	hfi1_put_irq_affinity(dd, me);
13039 	free_irq(me->msix.vector, me->arg);
13040 
13041 	me->arg = NULL;
13042 }
13043 
13044 void hfi1_set_vnic_msix_info(struct hfi1_ctxtdata *rcd)
13045 {
13046 	struct hfi1_devdata *dd = rcd->dd;
13047 	struct hfi1_msix_entry *me;
13048 	int idx = rcd->ctxt;
13049 	void *arg = rcd;
13050 	int ret;
13051 
13052 	rcd->msix_intr = dd->vnic.msix_idx++;
13053 	me = &dd->msix_entries[rcd->msix_intr];
13054 
13055 	/*
13056 	 * Set the interrupt register and mask for this
13057 	 * context's interrupt.
13058 	 */
13059 	rcd->ireg = (IS_RCVAVAIL_START + idx) / 64;
13060 	rcd->imask = ((u64)1) <<
13061 		  ((IS_RCVAVAIL_START + idx) % 64);
13062 
13063 	snprintf(me->name, sizeof(me->name),
13064 		 DRIVER_NAME "_%d kctxt%d", dd->unit, idx);
13065 	me->name[sizeof(me->name) - 1] = 0;
13066 	me->type = IRQ_RCVCTXT;
13067 
13068 	remap_intr(dd, IS_RCVAVAIL_START + idx, rcd->msix_intr);
13069 
13070 	ret = request_threaded_irq(me->msix.vector, receive_context_interrupt,
13071 				   receive_context_thread, 0, me->name, arg);
13072 	if (ret) {
13073 		dd_dev_err(dd, "vnic irq request (vector %d, idx %d) fail %d\n",
13074 			   me->msix.vector, idx, ret);
13075 		return;
13076 	}
13077 	/*
13078 	 * assign arg after request_irq call, so it will be
13079 	 * cleaned up
13080 	 */
13081 	me->arg = arg;
13082 
13083 	ret = hfi1_get_irq_affinity(dd, me);
13084 	if (ret) {
13085 		dd_dev_err(dd,
13086 			   "unable to pin IRQ %d\n", ret);
13087 		free_irq(me->msix.vector, me->arg);
13088 	}
13089 }
13090 
13091 /*
13092  * Set the general handler to accept all interrupts, remap all
13093  * chip interrupts back to MSI-X 0.
13094  */
13095 static void reset_interrupts(struct hfi1_devdata *dd)
13096 {
13097 	int i;
13098 
13099 	/* all interrupts handled by the general handler */
13100 	for (i = 0; i < CCE_NUM_INT_CSRS; i++)
13101 		dd->gi_mask[i] = ~(u64)0;
13102 
13103 	/* all chip interrupts map to MSI-X 0 */
13104 	for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++)
13105 		write_csr(dd, CCE_INT_MAP + (8 * i), 0);
13106 }
13107 
13108 static int set_up_interrupts(struct hfi1_devdata *dd)
13109 {
13110 	struct hfi1_msix_entry *entries;
13111 	u32 total, request;
13112 	int i, ret;
13113 	int single_interrupt = 0; /* we expect to have all the interrupts */
13114 
13115 	/*
13116 	 * Interrupt count:
13117 	 *	1 general, "slow path" interrupt (includes the SDMA engines
13118 	 *		slow source, SDMACleanupDone)
13119 	 *	N interrupts - one per used SDMA engine
13120 	 *	M interrupt - one per kernel receive context
13121 	 */
13122 	total = 1 + dd->num_sdma + dd->n_krcv_queues + HFI1_NUM_VNIC_CTXT;
13123 
13124 	entries = kcalloc(total, sizeof(*entries), GFP_KERNEL);
13125 	if (!entries) {
13126 		ret = -ENOMEM;
13127 		goto fail;
13128 	}
13129 	/* 1-1 MSI-X entry assignment */
13130 	for (i = 0; i < total; i++)
13131 		entries[i].msix.entry = i;
13132 
13133 	/* ask for MSI-X interrupts */
13134 	request = total;
13135 	request_msix(dd, &request, entries);
13136 
13137 	if (request == 0) {
13138 		/* using INTx */
13139 		/* dd->num_msix_entries already zero */
13140 		kfree(entries);
13141 		single_interrupt = 1;
13142 		dd_dev_err(dd, "MSI-X failed, using INTx interrupts\n");
13143 	} else {
13144 		/* using MSI-X */
13145 		dd->num_msix_entries = request;
13146 		dd->msix_entries = entries;
13147 
13148 		if (request != total) {
13149 			/* using MSI-X, with reduced interrupts */
13150 			dd_dev_err(
13151 				dd,
13152 				"cannot handle reduced interrupt case, want %u, got %u\n",
13153 				total, request);
13154 			ret = -EINVAL;
13155 			goto fail;
13156 		}
13157 		dd_dev_info(dd, "%u MSI-X interrupts allocated\n", total);
13158 	}
13159 
13160 	/* mask all interrupts */
13161 	set_intr_state(dd, 0);
13162 	/* clear all pending interrupts */
13163 	clear_all_interrupts(dd);
13164 
13165 	/* reset general handler mask, chip MSI-X mappings */
13166 	reset_interrupts(dd);
13167 
13168 	if (single_interrupt)
13169 		ret = request_intx_irq(dd);
13170 	else
13171 		ret = request_msix_irqs(dd);
13172 	if (ret)
13173 		goto fail;
13174 
13175 	return 0;
13176 
13177 fail:
13178 	clean_up_interrupts(dd);
13179 	return ret;
13180 }
13181 
13182 /*
13183  * Set up context values in dd.  Sets:
13184  *
13185  *	num_rcv_contexts - number of contexts being used
13186  *	n_krcv_queues - number of kernel contexts
13187  *	first_dyn_alloc_ctxt - first dynamically allocated context
13188  *                             in array of contexts
13189  *	freectxts  - number of free user contexts
13190  *	num_send_contexts - number of PIO send contexts being used
13191  */
13192 static int set_up_context_variables(struct hfi1_devdata *dd)
13193 {
13194 	unsigned long num_kernel_contexts;
13195 	int total_contexts;
13196 	int ret;
13197 	unsigned ngroups;
13198 	int qos_rmt_count;
13199 	int user_rmt_reduced;
13200 
13201 	/*
13202 	 * Kernel receive contexts:
13203 	 * - Context 0 - control context (VL15/multicast/error)
13204 	 * - Context 1 - first kernel context
13205 	 * - Context 2 - second kernel context
13206 	 * ...
13207 	 */
13208 	if (n_krcvqs)
13209 		/*
13210 		 * n_krcvqs is the sum of module parameter kernel receive
13211 		 * contexts, krcvqs[].  It does not include the control
13212 		 * context, so add that.
13213 		 */
13214 		num_kernel_contexts = n_krcvqs + 1;
13215 	else
13216 		num_kernel_contexts = DEFAULT_KRCVQS + 1;
13217 	/*
13218 	 * Every kernel receive context needs an ACK send context.
13219 	 * one send context is allocated for each VL{0-7} and VL15
13220 	 */
13221 	if (num_kernel_contexts > (dd->chip_send_contexts - num_vls - 1)) {
13222 		dd_dev_err(dd,
13223 			   "Reducing # kernel rcv contexts to: %d, from %lu\n",
13224 			   (int)(dd->chip_send_contexts - num_vls - 1),
13225 			   num_kernel_contexts);
13226 		num_kernel_contexts = dd->chip_send_contexts - num_vls - 1;
13227 	}
13228 	/*
13229 	 * User contexts:
13230 	 *	- default to 1 user context per real (non-HT) CPU core if
13231 	 *	  num_user_contexts is negative
13232 	 */
13233 	if (num_user_contexts < 0)
13234 		num_user_contexts =
13235 			cpumask_weight(&node_affinity.real_cpu_mask);
13236 
13237 	total_contexts = num_kernel_contexts + num_user_contexts;
13238 
13239 	/*
13240 	 * Adjust the counts given a global max.
13241 	 */
13242 	if (total_contexts > dd->chip_rcv_contexts) {
13243 		dd_dev_err(dd,
13244 			   "Reducing # user receive contexts to: %d, from %d\n",
13245 			   (int)(dd->chip_rcv_contexts - num_kernel_contexts),
13246 			   (int)num_user_contexts);
13247 		num_user_contexts = dd->chip_rcv_contexts - num_kernel_contexts;
13248 		/* recalculate */
13249 		total_contexts = num_kernel_contexts + num_user_contexts;
13250 	}
13251 
13252 	/* each user context requires an entry in the RMT */
13253 	qos_rmt_count = qos_rmt_entries(dd, NULL, NULL);
13254 	if (qos_rmt_count + num_user_contexts > NUM_MAP_ENTRIES) {
13255 		user_rmt_reduced = NUM_MAP_ENTRIES - qos_rmt_count;
13256 		dd_dev_err(dd,
13257 			   "RMT size is reducing the number of user receive contexts from %d to %d\n",
13258 			   (int)num_user_contexts,
13259 			   user_rmt_reduced);
13260 		/* recalculate */
13261 		num_user_contexts = user_rmt_reduced;
13262 		total_contexts = num_kernel_contexts + num_user_contexts;
13263 	}
13264 
13265 	/* Accommodate VNIC contexts */
13266 	if ((total_contexts + HFI1_NUM_VNIC_CTXT) <= dd->chip_rcv_contexts)
13267 		total_contexts += HFI1_NUM_VNIC_CTXT;
13268 
13269 	/* the first N are kernel contexts, the rest are user/vnic contexts */
13270 	dd->num_rcv_contexts = total_contexts;
13271 	dd->n_krcv_queues = num_kernel_contexts;
13272 	dd->first_dyn_alloc_ctxt = num_kernel_contexts;
13273 	dd->num_user_contexts = num_user_contexts;
13274 	dd->freectxts = num_user_contexts;
13275 	dd_dev_info(dd,
13276 		    "rcv contexts: chip %d, used %d (kernel %d, user %d)\n",
13277 		    (int)dd->chip_rcv_contexts,
13278 		    (int)dd->num_rcv_contexts,
13279 		    (int)dd->n_krcv_queues,
13280 		    (int)dd->num_rcv_contexts - dd->n_krcv_queues);
13281 
13282 	/*
13283 	 * Receive array allocation:
13284 	 *   All RcvArray entries are divided into groups of 8. This
13285 	 *   is required by the hardware and will speed up writes to
13286 	 *   consecutive entries by using write-combining of the entire
13287 	 *   cacheline.
13288 	 *
13289 	 *   The number of groups are evenly divided among all contexts.
13290 	 *   any left over groups will be given to the first N user
13291 	 *   contexts.
13292 	 */
13293 	dd->rcv_entries.group_size = RCV_INCREMENT;
13294 	ngroups = dd->chip_rcv_array_count / dd->rcv_entries.group_size;
13295 	dd->rcv_entries.ngroups = ngroups / dd->num_rcv_contexts;
13296 	dd->rcv_entries.nctxt_extra = ngroups -
13297 		(dd->num_rcv_contexts * dd->rcv_entries.ngroups);
13298 	dd_dev_info(dd, "RcvArray groups %u, ctxts extra %u\n",
13299 		    dd->rcv_entries.ngroups,
13300 		    dd->rcv_entries.nctxt_extra);
13301 	if (dd->rcv_entries.ngroups * dd->rcv_entries.group_size >
13302 	    MAX_EAGER_ENTRIES * 2) {
13303 		dd->rcv_entries.ngroups = (MAX_EAGER_ENTRIES * 2) /
13304 			dd->rcv_entries.group_size;
13305 		dd_dev_info(dd,
13306 			    "RcvArray group count too high, change to %u\n",
13307 			    dd->rcv_entries.ngroups);
13308 		dd->rcv_entries.nctxt_extra = 0;
13309 	}
13310 	/*
13311 	 * PIO send contexts
13312 	 */
13313 	ret = init_sc_pools_and_sizes(dd);
13314 	if (ret >= 0) {	/* success */
13315 		dd->num_send_contexts = ret;
13316 		dd_dev_info(
13317 			dd,
13318 			"send contexts: chip %d, used %d (kernel %d, ack %d, user %d, vl15 %d)\n",
13319 			dd->chip_send_contexts,
13320 			dd->num_send_contexts,
13321 			dd->sc_sizes[SC_KERNEL].count,
13322 			dd->sc_sizes[SC_ACK].count,
13323 			dd->sc_sizes[SC_USER].count,
13324 			dd->sc_sizes[SC_VL15].count);
13325 		ret = 0;	/* success */
13326 	}
13327 
13328 	return ret;
13329 }
13330 
13331 /*
13332  * Set the device/port partition key table. The MAD code
13333  * will ensure that, at least, the partial management
13334  * partition key is present in the table.
13335  */
13336 static void set_partition_keys(struct hfi1_pportdata *ppd)
13337 {
13338 	struct hfi1_devdata *dd = ppd->dd;
13339 	u64 reg = 0;
13340 	int i;
13341 
13342 	dd_dev_info(dd, "Setting partition keys\n");
13343 	for (i = 0; i < hfi1_get_npkeys(dd); i++) {
13344 		reg |= (ppd->pkeys[i] &
13345 			RCV_PARTITION_KEY_PARTITION_KEY_A_MASK) <<
13346 			((i % 4) *
13347 			 RCV_PARTITION_KEY_PARTITION_KEY_B_SHIFT);
13348 		/* Each register holds 4 PKey values. */
13349 		if ((i % 4) == 3) {
13350 			write_csr(dd, RCV_PARTITION_KEY +
13351 				  ((i - 3) * 2), reg);
13352 			reg = 0;
13353 		}
13354 	}
13355 
13356 	/* Always enable HW pkeys check when pkeys table is set */
13357 	add_rcvctrl(dd, RCV_CTRL_RCV_PARTITION_KEY_ENABLE_SMASK);
13358 }
13359 
13360 /*
13361  * These CSRs and memories are uninitialized on reset and must be
13362  * written before reading to set the ECC/parity bits.
13363  *
13364  * NOTE: All user context CSRs that are not mmaped write-only
13365  * (e.g. the TID flows) must be initialized even if the driver never
13366  * reads them.
13367  */
13368 static void write_uninitialized_csrs_and_memories(struct hfi1_devdata *dd)
13369 {
13370 	int i, j;
13371 
13372 	/* CceIntMap */
13373 	for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++)
13374 		write_csr(dd, CCE_INT_MAP + (8 * i), 0);
13375 
13376 	/* SendCtxtCreditReturnAddr */
13377 	for (i = 0; i < dd->chip_send_contexts; i++)
13378 		write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_RETURN_ADDR, 0);
13379 
13380 	/* PIO Send buffers */
13381 	/* SDMA Send buffers */
13382 	/*
13383 	 * These are not normally read, and (presently) have no method
13384 	 * to be read, so are not pre-initialized
13385 	 */
13386 
13387 	/* RcvHdrAddr */
13388 	/* RcvHdrTailAddr */
13389 	/* RcvTidFlowTable */
13390 	for (i = 0; i < dd->chip_rcv_contexts; i++) {
13391 		write_kctxt_csr(dd, i, RCV_HDR_ADDR, 0);
13392 		write_kctxt_csr(dd, i, RCV_HDR_TAIL_ADDR, 0);
13393 		for (j = 0; j < RXE_NUM_TID_FLOWS; j++)
13394 			write_uctxt_csr(dd, i, RCV_TID_FLOW_TABLE + (8 * j), 0);
13395 	}
13396 
13397 	/* RcvArray */
13398 	for (i = 0; i < dd->chip_rcv_array_count; i++)
13399 		write_csr(dd, RCV_ARRAY + (8 * i),
13400 			  RCV_ARRAY_RT_WRITE_ENABLE_SMASK);
13401 
13402 	/* RcvQPMapTable */
13403 	for (i = 0; i < 32; i++)
13404 		write_csr(dd, RCV_QP_MAP_TABLE + (8 * i), 0);
13405 }
13406 
13407 /*
13408  * Use the ctrl_bits in CceCtrl to clear the status_bits in CceStatus.
13409  */
13410 static void clear_cce_status(struct hfi1_devdata *dd, u64 status_bits,
13411 			     u64 ctrl_bits)
13412 {
13413 	unsigned long timeout;
13414 	u64 reg;
13415 
13416 	/* is the condition present? */
13417 	reg = read_csr(dd, CCE_STATUS);
13418 	if ((reg & status_bits) == 0)
13419 		return;
13420 
13421 	/* clear the condition */
13422 	write_csr(dd, CCE_CTRL, ctrl_bits);
13423 
13424 	/* wait for the condition to clear */
13425 	timeout = jiffies + msecs_to_jiffies(CCE_STATUS_TIMEOUT);
13426 	while (1) {
13427 		reg = read_csr(dd, CCE_STATUS);
13428 		if ((reg & status_bits) == 0)
13429 			return;
13430 		if (time_after(jiffies, timeout)) {
13431 			dd_dev_err(dd,
13432 				   "Timeout waiting for CceStatus to clear bits 0x%llx, remaining 0x%llx\n",
13433 				   status_bits, reg & status_bits);
13434 			return;
13435 		}
13436 		udelay(1);
13437 	}
13438 }
13439 
13440 /* set CCE CSRs to chip reset defaults */
13441 static void reset_cce_csrs(struct hfi1_devdata *dd)
13442 {
13443 	int i;
13444 
13445 	/* CCE_REVISION read-only */
13446 	/* CCE_REVISION2 read-only */
13447 	/* CCE_CTRL - bits clear automatically */
13448 	/* CCE_STATUS read-only, use CceCtrl to clear */
13449 	clear_cce_status(dd, ALL_FROZE, CCE_CTRL_SPC_UNFREEZE_SMASK);
13450 	clear_cce_status(dd, ALL_TXE_PAUSE, CCE_CTRL_TXE_RESUME_SMASK);
13451 	clear_cce_status(dd, ALL_RXE_PAUSE, CCE_CTRL_RXE_RESUME_SMASK);
13452 	for (i = 0; i < CCE_NUM_SCRATCH; i++)
13453 		write_csr(dd, CCE_SCRATCH + (8 * i), 0);
13454 	/* CCE_ERR_STATUS read-only */
13455 	write_csr(dd, CCE_ERR_MASK, 0);
13456 	write_csr(dd, CCE_ERR_CLEAR, ~0ull);
13457 	/* CCE_ERR_FORCE leave alone */
13458 	for (i = 0; i < CCE_NUM_32_BIT_COUNTERS; i++)
13459 		write_csr(dd, CCE_COUNTER_ARRAY32 + (8 * i), 0);
13460 	write_csr(dd, CCE_DC_CTRL, CCE_DC_CTRL_RESETCSR);
13461 	/* CCE_PCIE_CTRL leave alone */
13462 	for (i = 0; i < CCE_NUM_MSIX_VECTORS; i++) {
13463 		write_csr(dd, CCE_MSIX_TABLE_LOWER + (8 * i), 0);
13464 		write_csr(dd, CCE_MSIX_TABLE_UPPER + (8 * i),
13465 			  CCE_MSIX_TABLE_UPPER_RESETCSR);
13466 	}
13467 	for (i = 0; i < CCE_NUM_MSIX_PBAS; i++) {
13468 		/* CCE_MSIX_PBA read-only */
13469 		write_csr(dd, CCE_MSIX_INT_GRANTED, ~0ull);
13470 		write_csr(dd, CCE_MSIX_VEC_CLR_WITHOUT_INT, ~0ull);
13471 	}
13472 	for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++)
13473 		write_csr(dd, CCE_INT_MAP, 0);
13474 	for (i = 0; i < CCE_NUM_INT_CSRS; i++) {
13475 		/* CCE_INT_STATUS read-only */
13476 		write_csr(dd, CCE_INT_MASK + (8 * i), 0);
13477 		write_csr(dd, CCE_INT_CLEAR + (8 * i), ~0ull);
13478 		/* CCE_INT_FORCE leave alone */
13479 		/* CCE_INT_BLOCKED read-only */
13480 	}
13481 	for (i = 0; i < CCE_NUM_32_BIT_INT_COUNTERS; i++)
13482 		write_csr(dd, CCE_INT_COUNTER_ARRAY32 + (8 * i), 0);
13483 }
13484 
13485 /* set MISC CSRs to chip reset defaults */
13486 static void reset_misc_csrs(struct hfi1_devdata *dd)
13487 {
13488 	int i;
13489 
13490 	for (i = 0; i < 32; i++) {
13491 		write_csr(dd, MISC_CFG_RSA_R2 + (8 * i), 0);
13492 		write_csr(dd, MISC_CFG_RSA_SIGNATURE + (8 * i), 0);
13493 		write_csr(dd, MISC_CFG_RSA_MODULUS + (8 * i), 0);
13494 	}
13495 	/*
13496 	 * MISC_CFG_SHA_PRELOAD leave alone - always reads 0 and can
13497 	 * only be written 128-byte chunks
13498 	 */
13499 	/* init RSA engine to clear lingering errors */
13500 	write_csr(dd, MISC_CFG_RSA_CMD, 1);
13501 	write_csr(dd, MISC_CFG_RSA_MU, 0);
13502 	write_csr(dd, MISC_CFG_FW_CTRL, 0);
13503 	/* MISC_STS_8051_DIGEST read-only */
13504 	/* MISC_STS_SBM_DIGEST read-only */
13505 	/* MISC_STS_PCIE_DIGEST read-only */
13506 	/* MISC_STS_FAB_DIGEST read-only */
13507 	/* MISC_ERR_STATUS read-only */
13508 	write_csr(dd, MISC_ERR_MASK, 0);
13509 	write_csr(dd, MISC_ERR_CLEAR, ~0ull);
13510 	/* MISC_ERR_FORCE leave alone */
13511 }
13512 
13513 /* set TXE CSRs to chip reset defaults */
13514 static void reset_txe_csrs(struct hfi1_devdata *dd)
13515 {
13516 	int i;
13517 
13518 	/*
13519 	 * TXE Kernel CSRs
13520 	 */
13521 	write_csr(dd, SEND_CTRL, 0);
13522 	__cm_reset(dd, 0);	/* reset CM internal state */
13523 	/* SEND_CONTEXTS read-only */
13524 	/* SEND_DMA_ENGINES read-only */
13525 	/* SEND_PIO_MEM_SIZE read-only */
13526 	/* SEND_DMA_MEM_SIZE read-only */
13527 	write_csr(dd, SEND_HIGH_PRIORITY_LIMIT, 0);
13528 	pio_reset_all(dd);	/* SEND_PIO_INIT_CTXT */
13529 	/* SEND_PIO_ERR_STATUS read-only */
13530 	write_csr(dd, SEND_PIO_ERR_MASK, 0);
13531 	write_csr(dd, SEND_PIO_ERR_CLEAR, ~0ull);
13532 	/* SEND_PIO_ERR_FORCE leave alone */
13533 	/* SEND_DMA_ERR_STATUS read-only */
13534 	write_csr(dd, SEND_DMA_ERR_MASK, 0);
13535 	write_csr(dd, SEND_DMA_ERR_CLEAR, ~0ull);
13536 	/* SEND_DMA_ERR_FORCE leave alone */
13537 	/* SEND_EGRESS_ERR_STATUS read-only */
13538 	write_csr(dd, SEND_EGRESS_ERR_MASK, 0);
13539 	write_csr(dd, SEND_EGRESS_ERR_CLEAR, ~0ull);
13540 	/* SEND_EGRESS_ERR_FORCE leave alone */
13541 	write_csr(dd, SEND_BTH_QP, 0);
13542 	write_csr(dd, SEND_STATIC_RATE_CONTROL, 0);
13543 	write_csr(dd, SEND_SC2VLT0, 0);
13544 	write_csr(dd, SEND_SC2VLT1, 0);
13545 	write_csr(dd, SEND_SC2VLT2, 0);
13546 	write_csr(dd, SEND_SC2VLT3, 0);
13547 	write_csr(dd, SEND_LEN_CHECK0, 0);
13548 	write_csr(dd, SEND_LEN_CHECK1, 0);
13549 	/* SEND_ERR_STATUS read-only */
13550 	write_csr(dd, SEND_ERR_MASK, 0);
13551 	write_csr(dd, SEND_ERR_CLEAR, ~0ull);
13552 	/* SEND_ERR_FORCE read-only */
13553 	for (i = 0; i < VL_ARB_LOW_PRIO_TABLE_SIZE; i++)
13554 		write_csr(dd, SEND_LOW_PRIORITY_LIST + (8 * i), 0);
13555 	for (i = 0; i < VL_ARB_HIGH_PRIO_TABLE_SIZE; i++)
13556 		write_csr(dd, SEND_HIGH_PRIORITY_LIST + (8 * i), 0);
13557 	for (i = 0; i < dd->chip_send_contexts / NUM_CONTEXTS_PER_SET; i++)
13558 		write_csr(dd, SEND_CONTEXT_SET_CTRL + (8 * i), 0);
13559 	for (i = 0; i < TXE_NUM_32_BIT_COUNTER; i++)
13560 		write_csr(dd, SEND_COUNTER_ARRAY32 + (8 * i), 0);
13561 	for (i = 0; i < TXE_NUM_64_BIT_COUNTER; i++)
13562 		write_csr(dd, SEND_COUNTER_ARRAY64 + (8 * i), 0);
13563 	write_csr(dd, SEND_CM_CTRL, SEND_CM_CTRL_RESETCSR);
13564 	write_csr(dd, SEND_CM_GLOBAL_CREDIT, SEND_CM_GLOBAL_CREDIT_RESETCSR);
13565 	/* SEND_CM_CREDIT_USED_STATUS read-only */
13566 	write_csr(dd, SEND_CM_TIMER_CTRL, 0);
13567 	write_csr(dd, SEND_CM_LOCAL_AU_TABLE0_TO3, 0);
13568 	write_csr(dd, SEND_CM_LOCAL_AU_TABLE4_TO7, 0);
13569 	write_csr(dd, SEND_CM_REMOTE_AU_TABLE0_TO3, 0);
13570 	write_csr(dd, SEND_CM_REMOTE_AU_TABLE4_TO7, 0);
13571 	for (i = 0; i < TXE_NUM_DATA_VL; i++)
13572 		write_csr(dd, SEND_CM_CREDIT_VL + (8 * i), 0);
13573 	write_csr(dd, SEND_CM_CREDIT_VL15, 0);
13574 	/* SEND_CM_CREDIT_USED_VL read-only */
13575 	/* SEND_CM_CREDIT_USED_VL15 read-only */
13576 	/* SEND_EGRESS_CTXT_STATUS read-only */
13577 	/* SEND_EGRESS_SEND_DMA_STATUS read-only */
13578 	write_csr(dd, SEND_EGRESS_ERR_INFO, ~0ull);
13579 	/* SEND_EGRESS_ERR_INFO read-only */
13580 	/* SEND_EGRESS_ERR_SOURCE read-only */
13581 
13582 	/*
13583 	 * TXE Per-Context CSRs
13584 	 */
13585 	for (i = 0; i < dd->chip_send_contexts; i++) {
13586 		write_kctxt_csr(dd, i, SEND_CTXT_CTRL, 0);
13587 		write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_CTRL, 0);
13588 		write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_RETURN_ADDR, 0);
13589 		write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_FORCE, 0);
13590 		write_kctxt_csr(dd, i, SEND_CTXT_ERR_MASK, 0);
13591 		write_kctxt_csr(dd, i, SEND_CTXT_ERR_CLEAR, ~0ull);
13592 		write_kctxt_csr(dd, i, SEND_CTXT_CHECK_ENABLE, 0);
13593 		write_kctxt_csr(dd, i, SEND_CTXT_CHECK_VL, 0);
13594 		write_kctxt_csr(dd, i, SEND_CTXT_CHECK_JOB_KEY, 0);
13595 		write_kctxt_csr(dd, i, SEND_CTXT_CHECK_PARTITION_KEY, 0);
13596 		write_kctxt_csr(dd, i, SEND_CTXT_CHECK_SLID, 0);
13597 		write_kctxt_csr(dd, i, SEND_CTXT_CHECK_OPCODE, 0);
13598 	}
13599 
13600 	/*
13601 	 * TXE Per-SDMA CSRs
13602 	 */
13603 	for (i = 0; i < dd->chip_sdma_engines; i++) {
13604 		write_kctxt_csr(dd, i, SEND_DMA_CTRL, 0);
13605 		/* SEND_DMA_STATUS read-only */
13606 		write_kctxt_csr(dd, i, SEND_DMA_BASE_ADDR, 0);
13607 		write_kctxt_csr(dd, i, SEND_DMA_LEN_GEN, 0);
13608 		write_kctxt_csr(dd, i, SEND_DMA_TAIL, 0);
13609 		/* SEND_DMA_HEAD read-only */
13610 		write_kctxt_csr(dd, i, SEND_DMA_HEAD_ADDR, 0);
13611 		write_kctxt_csr(dd, i, SEND_DMA_PRIORITY_THLD, 0);
13612 		/* SEND_DMA_IDLE_CNT read-only */
13613 		write_kctxt_csr(dd, i, SEND_DMA_RELOAD_CNT, 0);
13614 		write_kctxt_csr(dd, i, SEND_DMA_DESC_CNT, 0);
13615 		/* SEND_DMA_DESC_FETCHED_CNT read-only */
13616 		/* SEND_DMA_ENG_ERR_STATUS read-only */
13617 		write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_MASK, 0);
13618 		write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_CLEAR, ~0ull);
13619 		/* SEND_DMA_ENG_ERR_FORCE leave alone */
13620 		write_kctxt_csr(dd, i, SEND_DMA_CHECK_ENABLE, 0);
13621 		write_kctxt_csr(dd, i, SEND_DMA_CHECK_VL, 0);
13622 		write_kctxt_csr(dd, i, SEND_DMA_CHECK_JOB_KEY, 0);
13623 		write_kctxt_csr(dd, i, SEND_DMA_CHECK_PARTITION_KEY, 0);
13624 		write_kctxt_csr(dd, i, SEND_DMA_CHECK_SLID, 0);
13625 		write_kctxt_csr(dd, i, SEND_DMA_CHECK_OPCODE, 0);
13626 		write_kctxt_csr(dd, i, SEND_DMA_MEMORY, 0);
13627 	}
13628 }
13629 
13630 /*
13631  * Expect on entry:
13632  * o Packet ingress is disabled, i.e. RcvCtrl.RcvPortEnable == 0
13633  */
13634 static void init_rbufs(struct hfi1_devdata *dd)
13635 {
13636 	u64 reg;
13637 	int count;
13638 
13639 	/*
13640 	 * Wait for DMA to stop: RxRbufPktPending and RxPktInProgress are
13641 	 * clear.
13642 	 */
13643 	count = 0;
13644 	while (1) {
13645 		reg = read_csr(dd, RCV_STATUS);
13646 		if ((reg & (RCV_STATUS_RX_RBUF_PKT_PENDING_SMASK
13647 			    | RCV_STATUS_RX_PKT_IN_PROGRESS_SMASK)) == 0)
13648 			break;
13649 		/*
13650 		 * Give up after 1ms - maximum wait time.
13651 		 *
13652 		 * RBuf size is 136KiB.  Slowest possible is PCIe Gen1 x1 at
13653 		 * 250MB/s bandwidth.  Lower rate to 66% for overhead to get:
13654 		 *	136 KB / (66% * 250MB/s) = 844us
13655 		 */
13656 		if (count++ > 500) {
13657 			dd_dev_err(dd,
13658 				   "%s: in-progress DMA not clearing: RcvStatus 0x%llx, continuing\n",
13659 				   __func__, reg);
13660 			break;
13661 		}
13662 		udelay(2); /* do not busy-wait the CSR */
13663 	}
13664 
13665 	/* start the init - expect RcvCtrl to be 0 */
13666 	write_csr(dd, RCV_CTRL, RCV_CTRL_RX_RBUF_INIT_SMASK);
13667 
13668 	/*
13669 	 * Read to force the write of Rcvtrl.RxRbufInit.  There is a brief
13670 	 * period after the write before RcvStatus.RxRbufInitDone is valid.
13671 	 * The delay in the first run through the loop below is sufficient and
13672 	 * required before the first read of RcvStatus.RxRbufInintDone.
13673 	 */
13674 	read_csr(dd, RCV_CTRL);
13675 
13676 	/* wait for the init to finish */
13677 	count = 0;
13678 	while (1) {
13679 		/* delay is required first time through - see above */
13680 		udelay(2); /* do not busy-wait the CSR */
13681 		reg = read_csr(dd, RCV_STATUS);
13682 		if (reg & (RCV_STATUS_RX_RBUF_INIT_DONE_SMASK))
13683 			break;
13684 
13685 		/* give up after 100us - slowest possible at 33MHz is 73us */
13686 		if (count++ > 50) {
13687 			dd_dev_err(dd,
13688 				   "%s: RcvStatus.RxRbufInit not set, continuing\n",
13689 				   __func__);
13690 			break;
13691 		}
13692 	}
13693 }
13694 
13695 /* set RXE CSRs to chip reset defaults */
13696 static void reset_rxe_csrs(struct hfi1_devdata *dd)
13697 {
13698 	int i, j;
13699 
13700 	/*
13701 	 * RXE Kernel CSRs
13702 	 */
13703 	write_csr(dd, RCV_CTRL, 0);
13704 	init_rbufs(dd);
13705 	/* RCV_STATUS read-only */
13706 	/* RCV_CONTEXTS read-only */
13707 	/* RCV_ARRAY_CNT read-only */
13708 	/* RCV_BUF_SIZE read-only */
13709 	write_csr(dd, RCV_BTH_QP, 0);
13710 	write_csr(dd, RCV_MULTICAST, 0);
13711 	write_csr(dd, RCV_BYPASS, 0);
13712 	write_csr(dd, RCV_VL15, 0);
13713 	/* this is a clear-down */
13714 	write_csr(dd, RCV_ERR_INFO,
13715 		  RCV_ERR_INFO_RCV_EXCESS_BUFFER_OVERRUN_SMASK);
13716 	/* RCV_ERR_STATUS read-only */
13717 	write_csr(dd, RCV_ERR_MASK, 0);
13718 	write_csr(dd, RCV_ERR_CLEAR, ~0ull);
13719 	/* RCV_ERR_FORCE leave alone */
13720 	for (i = 0; i < 32; i++)
13721 		write_csr(dd, RCV_QP_MAP_TABLE + (8 * i), 0);
13722 	for (i = 0; i < 4; i++)
13723 		write_csr(dd, RCV_PARTITION_KEY + (8 * i), 0);
13724 	for (i = 0; i < RXE_NUM_32_BIT_COUNTERS; i++)
13725 		write_csr(dd, RCV_COUNTER_ARRAY32 + (8 * i), 0);
13726 	for (i = 0; i < RXE_NUM_64_BIT_COUNTERS; i++)
13727 		write_csr(dd, RCV_COUNTER_ARRAY64 + (8 * i), 0);
13728 	for (i = 0; i < RXE_NUM_RSM_INSTANCES; i++)
13729 		clear_rsm_rule(dd, i);
13730 	for (i = 0; i < 32; i++)
13731 		write_csr(dd, RCV_RSM_MAP_TABLE + (8 * i), 0);
13732 
13733 	/*
13734 	 * RXE Kernel and User Per-Context CSRs
13735 	 */
13736 	for (i = 0; i < dd->chip_rcv_contexts; i++) {
13737 		/* kernel */
13738 		write_kctxt_csr(dd, i, RCV_CTXT_CTRL, 0);
13739 		/* RCV_CTXT_STATUS read-only */
13740 		write_kctxt_csr(dd, i, RCV_EGR_CTRL, 0);
13741 		write_kctxt_csr(dd, i, RCV_TID_CTRL, 0);
13742 		write_kctxt_csr(dd, i, RCV_KEY_CTRL, 0);
13743 		write_kctxt_csr(dd, i, RCV_HDR_ADDR, 0);
13744 		write_kctxt_csr(dd, i, RCV_HDR_CNT, 0);
13745 		write_kctxt_csr(dd, i, RCV_HDR_ENT_SIZE, 0);
13746 		write_kctxt_csr(dd, i, RCV_HDR_SIZE, 0);
13747 		write_kctxt_csr(dd, i, RCV_HDR_TAIL_ADDR, 0);
13748 		write_kctxt_csr(dd, i, RCV_AVAIL_TIME_OUT, 0);
13749 		write_kctxt_csr(dd, i, RCV_HDR_OVFL_CNT, 0);
13750 
13751 		/* user */
13752 		/* RCV_HDR_TAIL read-only */
13753 		write_uctxt_csr(dd, i, RCV_HDR_HEAD, 0);
13754 		/* RCV_EGR_INDEX_TAIL read-only */
13755 		write_uctxt_csr(dd, i, RCV_EGR_INDEX_HEAD, 0);
13756 		/* RCV_EGR_OFFSET_TAIL read-only */
13757 		for (j = 0; j < RXE_NUM_TID_FLOWS; j++) {
13758 			write_uctxt_csr(dd, i,
13759 					RCV_TID_FLOW_TABLE + (8 * j), 0);
13760 		}
13761 	}
13762 }
13763 
13764 /*
13765  * Set sc2vl tables.
13766  *
13767  * They power on to zeros, so to avoid send context errors
13768  * they need to be set:
13769  *
13770  * SC 0-7 -> VL 0-7 (respectively)
13771  * SC 15  -> VL 15
13772  * otherwise
13773  *        -> VL 0
13774  */
13775 static void init_sc2vl_tables(struct hfi1_devdata *dd)
13776 {
13777 	int i;
13778 	/* init per architecture spec, constrained by hardware capability */
13779 
13780 	/* HFI maps sent packets */
13781 	write_csr(dd, SEND_SC2VLT0, SC2VL_VAL(
13782 		0,
13783 		0, 0, 1, 1,
13784 		2, 2, 3, 3,
13785 		4, 4, 5, 5,
13786 		6, 6, 7, 7));
13787 	write_csr(dd, SEND_SC2VLT1, SC2VL_VAL(
13788 		1,
13789 		8, 0, 9, 0,
13790 		10, 0, 11, 0,
13791 		12, 0, 13, 0,
13792 		14, 0, 15, 15));
13793 	write_csr(dd, SEND_SC2VLT2, SC2VL_VAL(
13794 		2,
13795 		16, 0, 17, 0,
13796 		18, 0, 19, 0,
13797 		20, 0, 21, 0,
13798 		22, 0, 23, 0));
13799 	write_csr(dd, SEND_SC2VLT3, SC2VL_VAL(
13800 		3,
13801 		24, 0, 25, 0,
13802 		26, 0, 27, 0,
13803 		28, 0, 29, 0,
13804 		30, 0, 31, 0));
13805 
13806 	/* DC maps received packets */
13807 	write_csr(dd, DCC_CFG_SC_VL_TABLE_15_0, DC_SC_VL_VAL(
13808 		15_0,
13809 		0, 0, 1, 1,  2, 2,  3, 3,  4, 4,  5, 5,  6, 6,  7,  7,
13810 		8, 0, 9, 0, 10, 0, 11, 0, 12, 0, 13, 0, 14, 0, 15, 15));
13811 	write_csr(dd, DCC_CFG_SC_VL_TABLE_31_16, DC_SC_VL_VAL(
13812 		31_16,
13813 		16, 0, 17, 0, 18, 0, 19, 0, 20, 0, 21, 0, 22, 0, 23, 0,
13814 		24, 0, 25, 0, 26, 0, 27, 0, 28, 0, 29, 0, 30, 0, 31, 0));
13815 
13816 	/* initialize the cached sc2vl values consistently with h/w */
13817 	for (i = 0; i < 32; i++) {
13818 		if (i < 8 || i == 15)
13819 			*((u8 *)(dd->sc2vl) + i) = (u8)i;
13820 		else
13821 			*((u8 *)(dd->sc2vl) + i) = 0;
13822 	}
13823 }
13824 
13825 /*
13826  * Read chip sizes and then reset parts to sane, disabled, values.  We cannot
13827  * depend on the chip going through a power-on reset - a driver may be loaded
13828  * and unloaded many times.
13829  *
13830  * Do not write any CSR values to the chip in this routine - there may be
13831  * a reset following the (possible) FLR in this routine.
13832  *
13833  */
13834 static void init_chip(struct hfi1_devdata *dd)
13835 {
13836 	int i;
13837 
13838 	/*
13839 	 * Put the HFI CSRs in a known state.
13840 	 * Combine this with a DC reset.
13841 	 *
13842 	 * Stop the device from doing anything while we do a
13843 	 * reset.  We know there are no other active users of
13844 	 * the device since we are now in charge.  Turn off
13845 	 * off all outbound and inbound traffic and make sure
13846 	 * the device does not generate any interrupts.
13847 	 */
13848 
13849 	/* disable send contexts and SDMA engines */
13850 	write_csr(dd, SEND_CTRL, 0);
13851 	for (i = 0; i < dd->chip_send_contexts; i++)
13852 		write_kctxt_csr(dd, i, SEND_CTXT_CTRL, 0);
13853 	for (i = 0; i < dd->chip_sdma_engines; i++)
13854 		write_kctxt_csr(dd, i, SEND_DMA_CTRL, 0);
13855 	/* disable port (turn off RXE inbound traffic) and contexts */
13856 	write_csr(dd, RCV_CTRL, 0);
13857 	for (i = 0; i < dd->chip_rcv_contexts; i++)
13858 		write_csr(dd, RCV_CTXT_CTRL, 0);
13859 	/* mask all interrupt sources */
13860 	for (i = 0; i < CCE_NUM_INT_CSRS; i++)
13861 		write_csr(dd, CCE_INT_MASK + (8 * i), 0ull);
13862 
13863 	/*
13864 	 * DC Reset: do a full DC reset before the register clear.
13865 	 * A recommended length of time to hold is one CSR read,
13866 	 * so reread the CceDcCtrl.  Then, hold the DC in reset
13867 	 * across the clear.
13868 	 */
13869 	write_csr(dd, CCE_DC_CTRL, CCE_DC_CTRL_DC_RESET_SMASK);
13870 	(void)read_csr(dd, CCE_DC_CTRL);
13871 
13872 	if (use_flr) {
13873 		/*
13874 		 * A FLR will reset the SPC core and part of the PCIe.
13875 		 * The parts that need to be restored have already been
13876 		 * saved.
13877 		 */
13878 		dd_dev_info(dd, "Resetting CSRs with FLR\n");
13879 
13880 		/* do the FLR, the DC reset will remain */
13881 		pcie_flr(dd->pcidev);
13882 
13883 		/* restore command and BARs */
13884 		restore_pci_variables(dd);
13885 
13886 		if (is_ax(dd)) {
13887 			dd_dev_info(dd, "Resetting CSRs with FLR\n");
13888 			pcie_flr(dd->pcidev);
13889 			restore_pci_variables(dd);
13890 		}
13891 	} else {
13892 		dd_dev_info(dd, "Resetting CSRs with writes\n");
13893 		reset_cce_csrs(dd);
13894 		reset_txe_csrs(dd);
13895 		reset_rxe_csrs(dd);
13896 		reset_misc_csrs(dd);
13897 	}
13898 	/* clear the DC reset */
13899 	write_csr(dd, CCE_DC_CTRL, 0);
13900 
13901 	/* Set the LED off */
13902 	setextled(dd, 0);
13903 
13904 	/*
13905 	 * Clear the QSFP reset.
13906 	 * An FLR enforces a 0 on all out pins. The driver does not touch
13907 	 * ASIC_QSFPn_OUT otherwise.  This leaves RESET_N low and
13908 	 * anything plugged constantly in reset, if it pays attention
13909 	 * to RESET_N.
13910 	 * Prime examples of this are optical cables. Set all pins high.
13911 	 * I2CCLK and I2CDAT will change per direction, and INT_N and
13912 	 * MODPRS_N are input only and their value is ignored.
13913 	 */
13914 	write_csr(dd, ASIC_QSFP1_OUT, 0x1f);
13915 	write_csr(dd, ASIC_QSFP2_OUT, 0x1f);
13916 	init_chip_resources(dd);
13917 }
13918 
13919 static void init_early_variables(struct hfi1_devdata *dd)
13920 {
13921 	int i;
13922 
13923 	/* assign link credit variables */
13924 	dd->vau = CM_VAU;
13925 	dd->link_credits = CM_GLOBAL_CREDITS;
13926 	if (is_ax(dd))
13927 		dd->link_credits--;
13928 	dd->vcu = cu_to_vcu(hfi1_cu);
13929 	/* enough room for 8 MAD packets plus header - 17K */
13930 	dd->vl15_init = (8 * (2048 + 128)) / vau_to_au(dd->vau);
13931 	if (dd->vl15_init > dd->link_credits)
13932 		dd->vl15_init = dd->link_credits;
13933 
13934 	write_uninitialized_csrs_and_memories(dd);
13935 
13936 	if (HFI1_CAP_IS_KSET(PKEY_CHECK))
13937 		for (i = 0; i < dd->num_pports; i++) {
13938 			struct hfi1_pportdata *ppd = &dd->pport[i];
13939 
13940 			set_partition_keys(ppd);
13941 		}
13942 	init_sc2vl_tables(dd);
13943 }
13944 
13945 static void init_kdeth_qp(struct hfi1_devdata *dd)
13946 {
13947 	/* user changed the KDETH_QP */
13948 	if (kdeth_qp != 0 && kdeth_qp >= 0xff) {
13949 		/* out of range or illegal value */
13950 		dd_dev_err(dd, "Invalid KDETH queue pair prefix, ignoring");
13951 		kdeth_qp = 0;
13952 	}
13953 	if (kdeth_qp == 0)	/* not set, or failed range check */
13954 		kdeth_qp = DEFAULT_KDETH_QP;
13955 
13956 	write_csr(dd, SEND_BTH_QP,
13957 		  (kdeth_qp & SEND_BTH_QP_KDETH_QP_MASK) <<
13958 		  SEND_BTH_QP_KDETH_QP_SHIFT);
13959 
13960 	write_csr(dd, RCV_BTH_QP,
13961 		  (kdeth_qp & RCV_BTH_QP_KDETH_QP_MASK) <<
13962 		  RCV_BTH_QP_KDETH_QP_SHIFT);
13963 }
13964 
13965 /**
13966  * init_qpmap_table
13967  * @dd - device data
13968  * @first_ctxt - first context
13969  * @last_ctxt - first context
13970  *
13971  * This return sets the qpn mapping table that
13972  * is indexed by qpn[8:1].
13973  *
13974  * The routine will round robin the 256 settings
13975  * from first_ctxt to last_ctxt.
13976  *
13977  * The first/last looks ahead to having specialized
13978  * receive contexts for mgmt and bypass.  Normal
13979  * verbs traffic will assumed to be on a range
13980  * of receive contexts.
13981  */
13982 static void init_qpmap_table(struct hfi1_devdata *dd,
13983 			     u32 first_ctxt,
13984 			     u32 last_ctxt)
13985 {
13986 	u64 reg = 0;
13987 	u64 regno = RCV_QP_MAP_TABLE;
13988 	int i;
13989 	u64 ctxt = first_ctxt;
13990 
13991 	for (i = 0; i < 256; i++) {
13992 		reg |= ctxt << (8 * (i % 8));
13993 		ctxt++;
13994 		if (ctxt > last_ctxt)
13995 			ctxt = first_ctxt;
13996 		if (i % 8 == 7) {
13997 			write_csr(dd, regno, reg);
13998 			reg = 0;
13999 			regno += 8;
14000 		}
14001 	}
14002 
14003 	add_rcvctrl(dd, RCV_CTRL_RCV_QP_MAP_ENABLE_SMASK
14004 			| RCV_CTRL_RCV_BYPASS_ENABLE_SMASK);
14005 }
14006 
14007 struct rsm_map_table {
14008 	u64 map[NUM_MAP_REGS];
14009 	unsigned int used;
14010 };
14011 
14012 struct rsm_rule_data {
14013 	u8 offset;
14014 	u8 pkt_type;
14015 	u32 field1_off;
14016 	u32 field2_off;
14017 	u32 index1_off;
14018 	u32 index1_width;
14019 	u32 index2_off;
14020 	u32 index2_width;
14021 	u32 mask1;
14022 	u32 value1;
14023 	u32 mask2;
14024 	u32 value2;
14025 };
14026 
14027 /*
14028  * Return an initialized RMT map table for users to fill in.  OK if it
14029  * returns NULL, indicating no table.
14030  */
14031 static struct rsm_map_table *alloc_rsm_map_table(struct hfi1_devdata *dd)
14032 {
14033 	struct rsm_map_table *rmt;
14034 	u8 rxcontext = is_ax(dd) ? 0 : 0xff;  /* 0 is default if a0 ver. */
14035 
14036 	rmt = kmalloc(sizeof(*rmt), GFP_KERNEL);
14037 	if (rmt) {
14038 		memset(rmt->map, rxcontext, sizeof(rmt->map));
14039 		rmt->used = 0;
14040 	}
14041 
14042 	return rmt;
14043 }
14044 
14045 /*
14046  * Write the final RMT map table to the chip and free the table.  OK if
14047  * table is NULL.
14048  */
14049 static void complete_rsm_map_table(struct hfi1_devdata *dd,
14050 				   struct rsm_map_table *rmt)
14051 {
14052 	int i;
14053 
14054 	if (rmt) {
14055 		/* write table to chip */
14056 		for (i = 0; i < NUM_MAP_REGS; i++)
14057 			write_csr(dd, RCV_RSM_MAP_TABLE + (8 * i), rmt->map[i]);
14058 
14059 		/* enable RSM */
14060 		add_rcvctrl(dd, RCV_CTRL_RCV_RSM_ENABLE_SMASK);
14061 	}
14062 }
14063 
14064 /*
14065  * Add a receive side mapping rule.
14066  */
14067 static void add_rsm_rule(struct hfi1_devdata *dd, u8 rule_index,
14068 			 struct rsm_rule_data *rrd)
14069 {
14070 	write_csr(dd, RCV_RSM_CFG + (8 * rule_index),
14071 		  (u64)rrd->offset << RCV_RSM_CFG_OFFSET_SHIFT |
14072 		  1ull << rule_index | /* enable bit */
14073 		  (u64)rrd->pkt_type << RCV_RSM_CFG_PACKET_TYPE_SHIFT);
14074 	write_csr(dd, RCV_RSM_SELECT + (8 * rule_index),
14075 		  (u64)rrd->field1_off << RCV_RSM_SELECT_FIELD1_OFFSET_SHIFT |
14076 		  (u64)rrd->field2_off << RCV_RSM_SELECT_FIELD2_OFFSET_SHIFT |
14077 		  (u64)rrd->index1_off << RCV_RSM_SELECT_INDEX1_OFFSET_SHIFT |
14078 		  (u64)rrd->index1_width << RCV_RSM_SELECT_INDEX1_WIDTH_SHIFT |
14079 		  (u64)rrd->index2_off << RCV_RSM_SELECT_INDEX2_OFFSET_SHIFT |
14080 		  (u64)rrd->index2_width << RCV_RSM_SELECT_INDEX2_WIDTH_SHIFT);
14081 	write_csr(dd, RCV_RSM_MATCH + (8 * rule_index),
14082 		  (u64)rrd->mask1 << RCV_RSM_MATCH_MASK1_SHIFT |
14083 		  (u64)rrd->value1 << RCV_RSM_MATCH_VALUE1_SHIFT |
14084 		  (u64)rrd->mask2 << RCV_RSM_MATCH_MASK2_SHIFT |
14085 		  (u64)rrd->value2 << RCV_RSM_MATCH_VALUE2_SHIFT);
14086 }
14087 
14088 /*
14089  * Clear a receive side mapping rule.
14090  */
14091 static void clear_rsm_rule(struct hfi1_devdata *dd, u8 rule_index)
14092 {
14093 	write_csr(dd, RCV_RSM_CFG + (8 * rule_index), 0);
14094 	write_csr(dd, RCV_RSM_SELECT + (8 * rule_index), 0);
14095 	write_csr(dd, RCV_RSM_MATCH + (8 * rule_index), 0);
14096 }
14097 
14098 /* return the number of RSM map table entries that will be used for QOS */
14099 static int qos_rmt_entries(struct hfi1_devdata *dd, unsigned int *mp,
14100 			   unsigned int *np)
14101 {
14102 	int i;
14103 	unsigned int m, n;
14104 	u8 max_by_vl = 0;
14105 
14106 	/* is QOS active at all? */
14107 	if (dd->n_krcv_queues <= MIN_KERNEL_KCTXTS ||
14108 	    num_vls == 1 ||
14109 	    krcvqsset <= 1)
14110 		goto no_qos;
14111 
14112 	/* determine bits for qpn */
14113 	for (i = 0; i < min_t(unsigned int, num_vls, krcvqsset); i++)
14114 		if (krcvqs[i] > max_by_vl)
14115 			max_by_vl = krcvqs[i];
14116 	if (max_by_vl > 32)
14117 		goto no_qos;
14118 	m = ilog2(__roundup_pow_of_two(max_by_vl));
14119 
14120 	/* determine bits for vl */
14121 	n = ilog2(__roundup_pow_of_two(num_vls));
14122 
14123 	/* reject if too much is used */
14124 	if ((m + n) > 7)
14125 		goto no_qos;
14126 
14127 	if (mp)
14128 		*mp = m;
14129 	if (np)
14130 		*np = n;
14131 
14132 	return 1 << (m + n);
14133 
14134 no_qos:
14135 	if (mp)
14136 		*mp = 0;
14137 	if (np)
14138 		*np = 0;
14139 	return 0;
14140 }
14141 
14142 /**
14143  * init_qos - init RX qos
14144  * @dd - device data
14145  * @rmt - RSM map table
14146  *
14147  * This routine initializes Rule 0 and the RSM map table to implement
14148  * quality of service (qos).
14149  *
14150  * If all of the limit tests succeed, qos is applied based on the array
14151  * interpretation of krcvqs where entry 0 is VL0.
14152  *
14153  * The number of vl bits (n) and the number of qpn bits (m) are computed to
14154  * feed both the RSM map table and the single rule.
14155  */
14156 static void init_qos(struct hfi1_devdata *dd, struct rsm_map_table *rmt)
14157 {
14158 	struct rsm_rule_data rrd;
14159 	unsigned qpns_per_vl, ctxt, i, qpn, n = 1, m;
14160 	unsigned int rmt_entries;
14161 	u64 reg;
14162 
14163 	if (!rmt)
14164 		goto bail;
14165 	rmt_entries = qos_rmt_entries(dd, &m, &n);
14166 	if (rmt_entries == 0)
14167 		goto bail;
14168 	qpns_per_vl = 1 << m;
14169 
14170 	/* enough room in the map table? */
14171 	rmt_entries = 1 << (m + n);
14172 	if (rmt->used + rmt_entries >= NUM_MAP_ENTRIES)
14173 		goto bail;
14174 
14175 	/* add qos entries to the the RSM map table */
14176 	for (i = 0, ctxt = FIRST_KERNEL_KCTXT; i < num_vls; i++) {
14177 		unsigned tctxt;
14178 
14179 		for (qpn = 0, tctxt = ctxt;
14180 		     krcvqs[i] && qpn < qpns_per_vl; qpn++) {
14181 			unsigned idx, regoff, regidx;
14182 
14183 			/* generate the index the hardware will produce */
14184 			idx = rmt->used + ((qpn << n) ^ i);
14185 			regoff = (idx % 8) * 8;
14186 			regidx = idx / 8;
14187 			/* replace default with context number */
14188 			reg = rmt->map[regidx];
14189 			reg &= ~(RCV_RSM_MAP_TABLE_RCV_CONTEXT_A_MASK
14190 				<< regoff);
14191 			reg |= (u64)(tctxt++) << regoff;
14192 			rmt->map[regidx] = reg;
14193 			if (tctxt == ctxt + krcvqs[i])
14194 				tctxt = ctxt;
14195 		}
14196 		ctxt += krcvqs[i];
14197 	}
14198 
14199 	rrd.offset = rmt->used;
14200 	rrd.pkt_type = 2;
14201 	rrd.field1_off = LRH_BTH_MATCH_OFFSET;
14202 	rrd.field2_off = LRH_SC_MATCH_OFFSET;
14203 	rrd.index1_off = LRH_SC_SELECT_OFFSET;
14204 	rrd.index1_width = n;
14205 	rrd.index2_off = QPN_SELECT_OFFSET;
14206 	rrd.index2_width = m + n;
14207 	rrd.mask1 = LRH_BTH_MASK;
14208 	rrd.value1 = LRH_BTH_VALUE;
14209 	rrd.mask2 = LRH_SC_MASK;
14210 	rrd.value2 = LRH_SC_VALUE;
14211 
14212 	/* add rule 0 */
14213 	add_rsm_rule(dd, RSM_INS_VERBS, &rrd);
14214 
14215 	/* mark RSM map entries as used */
14216 	rmt->used += rmt_entries;
14217 	/* map everything else to the mcast/err/vl15 context */
14218 	init_qpmap_table(dd, HFI1_CTRL_CTXT, HFI1_CTRL_CTXT);
14219 	dd->qos_shift = n + 1;
14220 	return;
14221 bail:
14222 	dd->qos_shift = 1;
14223 	init_qpmap_table(dd, FIRST_KERNEL_KCTXT, dd->n_krcv_queues - 1);
14224 }
14225 
14226 static void init_user_fecn_handling(struct hfi1_devdata *dd,
14227 				    struct rsm_map_table *rmt)
14228 {
14229 	struct rsm_rule_data rrd;
14230 	u64 reg;
14231 	int i, idx, regoff, regidx;
14232 	u8 offset;
14233 
14234 	/* there needs to be enough room in the map table */
14235 	if (rmt->used + dd->num_user_contexts >= NUM_MAP_ENTRIES) {
14236 		dd_dev_err(dd, "User FECN handling disabled - too many user contexts allocated\n");
14237 		return;
14238 	}
14239 
14240 	/*
14241 	 * RSM will extract the destination context as an index into the
14242 	 * map table.  The destination contexts are a sequential block
14243 	 * in the range first_dyn_alloc_ctxt...num_rcv_contexts-1 (inclusive).
14244 	 * Map entries are accessed as offset + extracted value.  Adjust
14245 	 * the added offset so this sequence can be placed anywhere in
14246 	 * the table - as long as the entries themselves do not wrap.
14247 	 * There are only enough bits in offset for the table size, so
14248 	 * start with that to allow for a "negative" offset.
14249 	 */
14250 	offset = (u8)(NUM_MAP_ENTRIES + (int)rmt->used -
14251 						(int)dd->first_dyn_alloc_ctxt);
14252 
14253 	for (i = dd->first_dyn_alloc_ctxt, idx = rmt->used;
14254 				i < dd->num_rcv_contexts; i++, idx++) {
14255 		/* replace with identity mapping */
14256 		regoff = (idx % 8) * 8;
14257 		regidx = idx / 8;
14258 		reg = rmt->map[regidx];
14259 		reg &= ~(RCV_RSM_MAP_TABLE_RCV_CONTEXT_A_MASK << regoff);
14260 		reg |= (u64)i << regoff;
14261 		rmt->map[regidx] = reg;
14262 	}
14263 
14264 	/*
14265 	 * For RSM intercept of Expected FECN packets:
14266 	 * o packet type 0 - expected
14267 	 * o match on F (bit 95), using select/match 1, and
14268 	 * o match on SH (bit 133), using select/match 2.
14269 	 *
14270 	 * Use index 1 to extract the 8-bit receive context from DestQP
14271 	 * (start at bit 64).  Use that as the RSM map table index.
14272 	 */
14273 	rrd.offset = offset;
14274 	rrd.pkt_type = 0;
14275 	rrd.field1_off = 95;
14276 	rrd.field2_off = 133;
14277 	rrd.index1_off = 64;
14278 	rrd.index1_width = 8;
14279 	rrd.index2_off = 0;
14280 	rrd.index2_width = 0;
14281 	rrd.mask1 = 1;
14282 	rrd.value1 = 1;
14283 	rrd.mask2 = 1;
14284 	rrd.value2 = 1;
14285 
14286 	/* add rule 1 */
14287 	add_rsm_rule(dd, RSM_INS_FECN, &rrd);
14288 
14289 	rmt->used += dd->num_user_contexts;
14290 }
14291 
14292 /* Initialize RSM for VNIC */
14293 void hfi1_init_vnic_rsm(struct hfi1_devdata *dd)
14294 {
14295 	u8 i, j;
14296 	u8 ctx_id = 0;
14297 	u64 reg;
14298 	u32 regoff;
14299 	struct rsm_rule_data rrd;
14300 
14301 	if (hfi1_vnic_is_rsm_full(dd, NUM_VNIC_MAP_ENTRIES)) {
14302 		dd_dev_err(dd, "Vnic RSM disabled, rmt entries used = %d\n",
14303 			   dd->vnic.rmt_start);
14304 		return;
14305 	}
14306 
14307 	dev_dbg(&(dd)->pcidev->dev, "Vnic rsm start = %d, end %d\n",
14308 		dd->vnic.rmt_start,
14309 		dd->vnic.rmt_start + NUM_VNIC_MAP_ENTRIES);
14310 
14311 	/* Update RSM mapping table, 32 regs, 256 entries - 1 ctx per byte */
14312 	regoff = RCV_RSM_MAP_TABLE + (dd->vnic.rmt_start / 8) * 8;
14313 	reg = read_csr(dd, regoff);
14314 	for (i = 0; i < NUM_VNIC_MAP_ENTRIES; i++) {
14315 		/* Update map register with vnic context */
14316 		j = (dd->vnic.rmt_start + i) % 8;
14317 		reg &= ~(0xffllu << (j * 8));
14318 		reg |= (u64)dd->vnic.ctxt[ctx_id++]->ctxt << (j * 8);
14319 		/* Wrap up vnic ctx index */
14320 		ctx_id %= dd->vnic.num_ctxt;
14321 		/* Write back map register */
14322 		if (j == 7 || ((i + 1) == NUM_VNIC_MAP_ENTRIES)) {
14323 			dev_dbg(&(dd)->pcidev->dev,
14324 				"Vnic rsm map reg[%d] =0x%llx\n",
14325 				regoff - RCV_RSM_MAP_TABLE, reg);
14326 
14327 			write_csr(dd, regoff, reg);
14328 			regoff += 8;
14329 			if (i < (NUM_VNIC_MAP_ENTRIES - 1))
14330 				reg = read_csr(dd, regoff);
14331 		}
14332 	}
14333 
14334 	/* Add rule for vnic */
14335 	rrd.offset = dd->vnic.rmt_start;
14336 	rrd.pkt_type = 4;
14337 	/* Match 16B packets */
14338 	rrd.field1_off = L2_TYPE_MATCH_OFFSET;
14339 	rrd.mask1 = L2_TYPE_MASK;
14340 	rrd.value1 = L2_16B_VALUE;
14341 	/* Match ETH L4 packets */
14342 	rrd.field2_off = L4_TYPE_MATCH_OFFSET;
14343 	rrd.mask2 = L4_16B_TYPE_MASK;
14344 	rrd.value2 = L4_16B_ETH_VALUE;
14345 	/* Calc context from veswid and entropy */
14346 	rrd.index1_off = L4_16B_HDR_VESWID_OFFSET;
14347 	rrd.index1_width = ilog2(NUM_VNIC_MAP_ENTRIES);
14348 	rrd.index2_off = L2_16B_ENTROPY_OFFSET;
14349 	rrd.index2_width = ilog2(NUM_VNIC_MAP_ENTRIES);
14350 	add_rsm_rule(dd, RSM_INS_VNIC, &rrd);
14351 
14352 	/* Enable RSM if not already enabled */
14353 	add_rcvctrl(dd, RCV_CTRL_RCV_RSM_ENABLE_SMASK);
14354 }
14355 
14356 void hfi1_deinit_vnic_rsm(struct hfi1_devdata *dd)
14357 {
14358 	clear_rsm_rule(dd, RSM_INS_VNIC);
14359 
14360 	/* Disable RSM if used only by vnic */
14361 	if (dd->vnic.rmt_start == 0)
14362 		clear_rcvctrl(dd, RCV_CTRL_RCV_RSM_ENABLE_SMASK);
14363 }
14364 
14365 static void init_rxe(struct hfi1_devdata *dd)
14366 {
14367 	struct rsm_map_table *rmt;
14368 
14369 	/* enable all receive errors */
14370 	write_csr(dd, RCV_ERR_MASK, ~0ull);
14371 
14372 	rmt = alloc_rsm_map_table(dd);
14373 	/* set up QOS, including the QPN map table */
14374 	init_qos(dd, rmt);
14375 	init_user_fecn_handling(dd, rmt);
14376 	complete_rsm_map_table(dd, rmt);
14377 	/* record number of used rsm map entries for vnic */
14378 	dd->vnic.rmt_start = rmt->used;
14379 	kfree(rmt);
14380 
14381 	/*
14382 	 * make sure RcvCtrl.RcvWcb <= PCIe Device Control
14383 	 * Register Max_Payload_Size (PCI_EXP_DEVCTL in Linux PCIe config
14384 	 * space, PciCfgCap2.MaxPayloadSize in HFI).  There is only one
14385 	 * invalid configuration: RcvCtrl.RcvWcb set to its max of 256 and
14386 	 * Max_PayLoad_Size set to its minimum of 128.
14387 	 *
14388 	 * Presently, RcvCtrl.RcvWcb is not modified from its default of 0
14389 	 * (64 bytes).  Max_Payload_Size is possibly modified upward in
14390 	 * tune_pcie_caps() which is called after this routine.
14391 	 */
14392 }
14393 
14394 static void init_other(struct hfi1_devdata *dd)
14395 {
14396 	/* enable all CCE errors */
14397 	write_csr(dd, CCE_ERR_MASK, ~0ull);
14398 	/* enable *some* Misc errors */
14399 	write_csr(dd, MISC_ERR_MASK, DRIVER_MISC_MASK);
14400 	/* enable all DC errors, except LCB */
14401 	write_csr(dd, DCC_ERR_FLG_EN, ~0ull);
14402 	write_csr(dd, DC_DC8051_ERR_EN, ~0ull);
14403 }
14404 
14405 /*
14406  * Fill out the given AU table using the given CU.  A CU is defined in terms
14407  * AUs.  The table is a an encoding: given the index, how many AUs does that
14408  * represent?
14409  *
14410  * NOTE: Assumes that the register layout is the same for the
14411  * local and remote tables.
14412  */
14413 static void assign_cm_au_table(struct hfi1_devdata *dd, u32 cu,
14414 			       u32 csr0to3, u32 csr4to7)
14415 {
14416 	write_csr(dd, csr0to3,
14417 		  0ull << SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE0_SHIFT |
14418 		  1ull << SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE1_SHIFT |
14419 		  2ull * cu <<
14420 		  SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE2_SHIFT |
14421 		  4ull * cu <<
14422 		  SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE3_SHIFT);
14423 	write_csr(dd, csr4to7,
14424 		  8ull * cu <<
14425 		  SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE4_SHIFT |
14426 		  16ull * cu <<
14427 		  SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE5_SHIFT |
14428 		  32ull * cu <<
14429 		  SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE6_SHIFT |
14430 		  64ull * cu <<
14431 		  SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE7_SHIFT);
14432 }
14433 
14434 static void assign_local_cm_au_table(struct hfi1_devdata *dd, u8 vcu)
14435 {
14436 	assign_cm_au_table(dd, vcu_to_cu(vcu), SEND_CM_LOCAL_AU_TABLE0_TO3,
14437 			   SEND_CM_LOCAL_AU_TABLE4_TO7);
14438 }
14439 
14440 void assign_remote_cm_au_table(struct hfi1_devdata *dd, u8 vcu)
14441 {
14442 	assign_cm_au_table(dd, vcu_to_cu(vcu), SEND_CM_REMOTE_AU_TABLE0_TO3,
14443 			   SEND_CM_REMOTE_AU_TABLE4_TO7);
14444 }
14445 
14446 static void init_txe(struct hfi1_devdata *dd)
14447 {
14448 	int i;
14449 
14450 	/* enable all PIO, SDMA, general, and Egress errors */
14451 	write_csr(dd, SEND_PIO_ERR_MASK, ~0ull);
14452 	write_csr(dd, SEND_DMA_ERR_MASK, ~0ull);
14453 	write_csr(dd, SEND_ERR_MASK, ~0ull);
14454 	write_csr(dd, SEND_EGRESS_ERR_MASK, ~0ull);
14455 
14456 	/* enable all per-context and per-SDMA engine errors */
14457 	for (i = 0; i < dd->chip_send_contexts; i++)
14458 		write_kctxt_csr(dd, i, SEND_CTXT_ERR_MASK, ~0ull);
14459 	for (i = 0; i < dd->chip_sdma_engines; i++)
14460 		write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_MASK, ~0ull);
14461 
14462 	/* set the local CU to AU mapping */
14463 	assign_local_cm_au_table(dd, dd->vcu);
14464 
14465 	/*
14466 	 * Set reasonable default for Credit Return Timer
14467 	 * Don't set on Simulator - causes it to choke.
14468 	 */
14469 	if (dd->icode != ICODE_FUNCTIONAL_SIMULATOR)
14470 		write_csr(dd, SEND_CM_TIMER_CTRL, HFI1_CREDIT_RETURN_RATE);
14471 }
14472 
14473 int hfi1_set_ctxt_jkey(struct hfi1_devdata *dd, unsigned ctxt, u16 jkey)
14474 {
14475 	struct hfi1_ctxtdata *rcd = dd->rcd[ctxt];
14476 	unsigned sctxt;
14477 	int ret = 0;
14478 	u64 reg;
14479 
14480 	if (!rcd || !rcd->sc) {
14481 		ret = -EINVAL;
14482 		goto done;
14483 	}
14484 	sctxt = rcd->sc->hw_context;
14485 	reg = SEND_CTXT_CHECK_JOB_KEY_MASK_SMASK | /* mask is always 1's */
14486 		((jkey & SEND_CTXT_CHECK_JOB_KEY_VALUE_MASK) <<
14487 		 SEND_CTXT_CHECK_JOB_KEY_VALUE_SHIFT);
14488 	/* JOB_KEY_ALLOW_PERMISSIVE is not allowed by default */
14489 	if (HFI1_CAP_KGET_MASK(rcd->flags, ALLOW_PERM_JKEY))
14490 		reg |= SEND_CTXT_CHECK_JOB_KEY_ALLOW_PERMISSIVE_SMASK;
14491 	write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_JOB_KEY, reg);
14492 	/*
14493 	 * Enable send-side J_KEY integrity check, unless this is A0 h/w
14494 	 */
14495 	if (!is_ax(dd)) {
14496 		reg = read_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE);
14497 		reg |= SEND_CTXT_CHECK_ENABLE_CHECK_JOB_KEY_SMASK;
14498 		write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE, reg);
14499 	}
14500 
14501 	/* Enable J_KEY check on receive context. */
14502 	reg = RCV_KEY_CTRL_JOB_KEY_ENABLE_SMASK |
14503 		((jkey & RCV_KEY_CTRL_JOB_KEY_VALUE_MASK) <<
14504 		 RCV_KEY_CTRL_JOB_KEY_VALUE_SHIFT);
14505 	write_kctxt_csr(dd, ctxt, RCV_KEY_CTRL, reg);
14506 done:
14507 	return ret;
14508 }
14509 
14510 int hfi1_clear_ctxt_jkey(struct hfi1_devdata *dd, unsigned ctxt)
14511 {
14512 	struct hfi1_ctxtdata *rcd = dd->rcd[ctxt];
14513 	unsigned sctxt;
14514 	int ret = 0;
14515 	u64 reg;
14516 
14517 	if (!rcd || !rcd->sc) {
14518 		ret = -EINVAL;
14519 		goto done;
14520 	}
14521 	sctxt = rcd->sc->hw_context;
14522 	write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_JOB_KEY, 0);
14523 	/*
14524 	 * Disable send-side J_KEY integrity check, unless this is A0 h/w.
14525 	 * This check would not have been enabled for A0 h/w, see
14526 	 * set_ctxt_jkey().
14527 	 */
14528 	if (!is_ax(dd)) {
14529 		reg = read_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE);
14530 		reg &= ~SEND_CTXT_CHECK_ENABLE_CHECK_JOB_KEY_SMASK;
14531 		write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE, reg);
14532 	}
14533 	/* Turn off the J_KEY on the receive side */
14534 	write_kctxt_csr(dd, ctxt, RCV_KEY_CTRL, 0);
14535 done:
14536 	return ret;
14537 }
14538 
14539 int hfi1_set_ctxt_pkey(struct hfi1_devdata *dd, unsigned ctxt, u16 pkey)
14540 {
14541 	struct hfi1_ctxtdata *rcd;
14542 	unsigned sctxt;
14543 	int ret = 0;
14544 	u64 reg;
14545 
14546 	if (ctxt < dd->num_rcv_contexts) {
14547 		rcd = dd->rcd[ctxt];
14548 	} else {
14549 		ret = -EINVAL;
14550 		goto done;
14551 	}
14552 	if (!rcd || !rcd->sc) {
14553 		ret = -EINVAL;
14554 		goto done;
14555 	}
14556 	sctxt = rcd->sc->hw_context;
14557 	reg = ((u64)pkey & SEND_CTXT_CHECK_PARTITION_KEY_VALUE_MASK) <<
14558 		SEND_CTXT_CHECK_PARTITION_KEY_VALUE_SHIFT;
14559 	write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_PARTITION_KEY, reg);
14560 	reg = read_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE);
14561 	reg |= SEND_CTXT_CHECK_ENABLE_CHECK_PARTITION_KEY_SMASK;
14562 	reg &= ~SEND_CTXT_CHECK_ENABLE_DISALLOW_KDETH_PACKETS_SMASK;
14563 	write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE, reg);
14564 done:
14565 	return ret;
14566 }
14567 
14568 int hfi1_clear_ctxt_pkey(struct hfi1_devdata *dd, struct hfi1_ctxtdata *ctxt)
14569 {
14570 	u8 hw_ctxt;
14571 	u64 reg;
14572 
14573 	if (!ctxt || !ctxt->sc)
14574 		return -EINVAL;
14575 
14576 	if (ctxt->ctxt >= dd->num_rcv_contexts)
14577 		return -EINVAL;
14578 
14579 	hw_ctxt = ctxt->sc->hw_context;
14580 	reg = read_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE);
14581 	reg &= ~SEND_CTXT_CHECK_ENABLE_CHECK_PARTITION_KEY_SMASK;
14582 	write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE, reg);
14583 	write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_PARTITION_KEY, 0);
14584 
14585 	return 0;
14586 }
14587 
14588 /*
14589  * Start doing the clean up the the chip. Our clean up happens in multiple
14590  * stages and this is just the first.
14591  */
14592 void hfi1_start_cleanup(struct hfi1_devdata *dd)
14593 {
14594 	aspm_exit(dd);
14595 	free_cntrs(dd);
14596 	free_rcverr(dd);
14597 	clean_up_interrupts(dd);
14598 	finish_chip_resources(dd);
14599 }
14600 
14601 #define HFI_BASE_GUID(dev) \
14602 	((dev)->base_guid & ~(1ULL << GUID_HFI_INDEX_SHIFT))
14603 
14604 /*
14605  * Information can be shared between the two HFIs on the same ASIC
14606  * in the same OS.  This function finds the peer device and sets
14607  * up a shared structure.
14608  */
14609 static int init_asic_data(struct hfi1_devdata *dd)
14610 {
14611 	unsigned long flags;
14612 	struct hfi1_devdata *tmp, *peer = NULL;
14613 	struct hfi1_asic_data *asic_data;
14614 	int ret = 0;
14615 
14616 	/* pre-allocate the asic structure in case we are the first device */
14617 	asic_data = kzalloc(sizeof(*dd->asic_data), GFP_KERNEL);
14618 	if (!asic_data)
14619 		return -ENOMEM;
14620 
14621 	spin_lock_irqsave(&hfi1_devs_lock, flags);
14622 	/* Find our peer device */
14623 	list_for_each_entry(tmp, &hfi1_dev_list, list) {
14624 		if ((HFI_BASE_GUID(dd) == HFI_BASE_GUID(tmp)) &&
14625 		    dd->unit != tmp->unit) {
14626 			peer = tmp;
14627 			break;
14628 		}
14629 	}
14630 
14631 	if (peer) {
14632 		/* use already allocated structure */
14633 		dd->asic_data = peer->asic_data;
14634 		kfree(asic_data);
14635 	} else {
14636 		dd->asic_data = asic_data;
14637 		mutex_init(&dd->asic_data->asic_resource_mutex);
14638 	}
14639 	dd->asic_data->dds[dd->hfi1_id] = dd; /* self back-pointer */
14640 	spin_unlock_irqrestore(&hfi1_devs_lock, flags);
14641 
14642 	/* first one through - set up i2c devices */
14643 	if (!peer)
14644 		ret = set_up_i2c(dd, dd->asic_data);
14645 
14646 	return ret;
14647 }
14648 
14649 /*
14650  * Set dd->boardname.  Use a generic name if a name is not returned from
14651  * EFI variable space.
14652  *
14653  * Return 0 on success, -ENOMEM if space could not be allocated.
14654  */
14655 static int obtain_boardname(struct hfi1_devdata *dd)
14656 {
14657 	/* generic board description */
14658 	const char generic[] =
14659 		"Intel Omni-Path Host Fabric Interface Adapter 100 Series";
14660 	unsigned long size;
14661 	int ret;
14662 
14663 	ret = read_hfi1_efi_var(dd, "description", &size,
14664 				(void **)&dd->boardname);
14665 	if (ret) {
14666 		dd_dev_info(dd, "Board description not found\n");
14667 		/* use generic description */
14668 		dd->boardname = kstrdup(generic, GFP_KERNEL);
14669 		if (!dd->boardname)
14670 			return -ENOMEM;
14671 	}
14672 	return 0;
14673 }
14674 
14675 /*
14676  * Check the interrupt registers to make sure that they are mapped correctly.
14677  * It is intended to help user identify any mismapping by VMM when the driver
14678  * is running in a VM. This function should only be called before interrupt
14679  * is set up properly.
14680  *
14681  * Return 0 on success, -EINVAL on failure.
14682  */
14683 static int check_int_registers(struct hfi1_devdata *dd)
14684 {
14685 	u64 reg;
14686 	u64 all_bits = ~(u64)0;
14687 	u64 mask;
14688 
14689 	/* Clear CceIntMask[0] to avoid raising any interrupts */
14690 	mask = read_csr(dd, CCE_INT_MASK);
14691 	write_csr(dd, CCE_INT_MASK, 0ull);
14692 	reg = read_csr(dd, CCE_INT_MASK);
14693 	if (reg)
14694 		goto err_exit;
14695 
14696 	/* Clear all interrupt status bits */
14697 	write_csr(dd, CCE_INT_CLEAR, all_bits);
14698 	reg = read_csr(dd, CCE_INT_STATUS);
14699 	if (reg)
14700 		goto err_exit;
14701 
14702 	/* Set all interrupt status bits */
14703 	write_csr(dd, CCE_INT_FORCE, all_bits);
14704 	reg = read_csr(dd, CCE_INT_STATUS);
14705 	if (reg != all_bits)
14706 		goto err_exit;
14707 
14708 	/* Restore the interrupt mask */
14709 	write_csr(dd, CCE_INT_CLEAR, all_bits);
14710 	write_csr(dd, CCE_INT_MASK, mask);
14711 
14712 	return 0;
14713 err_exit:
14714 	write_csr(dd, CCE_INT_MASK, mask);
14715 	dd_dev_err(dd, "Interrupt registers not properly mapped by VMM\n");
14716 	return -EINVAL;
14717 }
14718 
14719 /**
14720  * Allocate and initialize the device structure for the hfi.
14721  * @dev: the pci_dev for hfi1_ib device
14722  * @ent: pci_device_id struct for this dev
14723  *
14724  * Also allocates, initializes, and returns the devdata struct for this
14725  * device instance
14726  *
14727  * This is global, and is called directly at init to set up the
14728  * chip-specific function pointers for later use.
14729  */
14730 struct hfi1_devdata *hfi1_init_dd(struct pci_dev *pdev,
14731 				  const struct pci_device_id *ent)
14732 {
14733 	struct hfi1_devdata *dd;
14734 	struct hfi1_pportdata *ppd;
14735 	u64 reg;
14736 	int i, ret;
14737 	static const char * const inames[] = { /* implementation names */
14738 		"RTL silicon",
14739 		"RTL VCS simulation",
14740 		"RTL FPGA emulation",
14741 		"Functional simulator"
14742 	};
14743 	struct pci_dev *parent = pdev->bus->self;
14744 
14745 	dd = hfi1_alloc_devdata(pdev, NUM_IB_PORTS *
14746 				sizeof(struct hfi1_pportdata));
14747 	if (IS_ERR(dd))
14748 		goto bail;
14749 	ppd = dd->pport;
14750 	for (i = 0; i < dd->num_pports; i++, ppd++) {
14751 		int vl;
14752 		/* init common fields */
14753 		hfi1_init_pportdata(pdev, ppd, dd, 0, 1);
14754 		/* DC supports 4 link widths */
14755 		ppd->link_width_supported =
14756 			OPA_LINK_WIDTH_1X | OPA_LINK_WIDTH_2X |
14757 			OPA_LINK_WIDTH_3X | OPA_LINK_WIDTH_4X;
14758 		ppd->link_width_downgrade_supported =
14759 			ppd->link_width_supported;
14760 		/* start out enabling only 4X */
14761 		ppd->link_width_enabled = OPA_LINK_WIDTH_4X;
14762 		ppd->link_width_downgrade_enabled =
14763 					ppd->link_width_downgrade_supported;
14764 		/* link width active is 0 when link is down */
14765 		/* link width downgrade active is 0 when link is down */
14766 
14767 		if (num_vls < HFI1_MIN_VLS_SUPPORTED ||
14768 		    num_vls > HFI1_MAX_VLS_SUPPORTED) {
14769 			hfi1_early_err(&pdev->dev,
14770 				       "Invalid num_vls %u, using %u VLs\n",
14771 				    num_vls, HFI1_MAX_VLS_SUPPORTED);
14772 			num_vls = HFI1_MAX_VLS_SUPPORTED;
14773 		}
14774 		ppd->vls_supported = num_vls;
14775 		ppd->vls_operational = ppd->vls_supported;
14776 		ppd->actual_vls_operational = ppd->vls_supported;
14777 		/* Set the default MTU. */
14778 		for (vl = 0; vl < num_vls; vl++)
14779 			dd->vld[vl].mtu = hfi1_max_mtu;
14780 		dd->vld[15].mtu = MAX_MAD_PACKET;
14781 		/*
14782 		 * Set the initial values to reasonable default, will be set
14783 		 * for real when link is up.
14784 		 */
14785 		ppd->lstate = IB_PORT_DOWN;
14786 		ppd->overrun_threshold = 0x4;
14787 		ppd->phy_error_threshold = 0xf;
14788 		ppd->port_crc_mode_enabled = link_crc_mask;
14789 		/* initialize supported LTP CRC mode */
14790 		ppd->port_ltp_crc_mode = cap_to_port_ltp(link_crc_mask) << 8;
14791 		/* initialize enabled LTP CRC mode */
14792 		ppd->port_ltp_crc_mode |= cap_to_port_ltp(link_crc_mask) << 4;
14793 		/* start in offline */
14794 		ppd->host_link_state = HLS_DN_OFFLINE;
14795 		init_vl_arb_caches(ppd);
14796 		ppd->last_pstate = 0xff; /* invalid value */
14797 	}
14798 
14799 	dd->link_default = HLS_DN_POLL;
14800 
14801 	/*
14802 	 * Do remaining PCIe setup and save PCIe values in dd.
14803 	 * Any error printing is already done by the init code.
14804 	 * On return, we have the chip mapped.
14805 	 */
14806 	ret = hfi1_pcie_ddinit(dd, pdev);
14807 	if (ret < 0)
14808 		goto bail_free;
14809 
14810 	/* verify that reads actually work, save revision for reset check */
14811 	dd->revision = read_csr(dd, CCE_REVISION);
14812 	if (dd->revision == ~(u64)0) {
14813 		dd_dev_err(dd, "cannot read chip CSRs\n");
14814 		ret = -EINVAL;
14815 		goto bail_cleanup;
14816 	}
14817 	dd->majrev = (dd->revision >> CCE_REVISION_CHIP_REV_MAJOR_SHIFT)
14818 			& CCE_REVISION_CHIP_REV_MAJOR_MASK;
14819 	dd->minrev = (dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT)
14820 			& CCE_REVISION_CHIP_REV_MINOR_MASK;
14821 
14822 	/*
14823 	 * Check interrupt registers mapping if the driver has no access to
14824 	 * the upstream component. In this case, it is likely that the driver
14825 	 * is running in a VM.
14826 	 */
14827 	if (!parent) {
14828 		ret = check_int_registers(dd);
14829 		if (ret)
14830 			goto bail_cleanup;
14831 	}
14832 
14833 	/*
14834 	 * obtain the hardware ID - NOT related to unit, which is a
14835 	 * software enumeration
14836 	 */
14837 	reg = read_csr(dd, CCE_REVISION2);
14838 	dd->hfi1_id = (reg >> CCE_REVISION2_HFI_ID_SHIFT)
14839 					& CCE_REVISION2_HFI_ID_MASK;
14840 	/* the variable size will remove unwanted bits */
14841 	dd->icode = reg >> CCE_REVISION2_IMPL_CODE_SHIFT;
14842 	dd->irev = reg >> CCE_REVISION2_IMPL_REVISION_SHIFT;
14843 	dd_dev_info(dd, "Implementation: %s, revision 0x%x\n",
14844 		    dd->icode < ARRAY_SIZE(inames) ?
14845 		    inames[dd->icode] : "unknown", (int)dd->irev);
14846 
14847 	/* speeds the hardware can support */
14848 	dd->pport->link_speed_supported = OPA_LINK_SPEED_25G;
14849 	/* speeds allowed to run at */
14850 	dd->pport->link_speed_enabled = dd->pport->link_speed_supported;
14851 	/* give a reasonable active value, will be set on link up */
14852 	dd->pport->link_speed_active = OPA_LINK_SPEED_25G;
14853 
14854 	dd->chip_rcv_contexts = read_csr(dd, RCV_CONTEXTS);
14855 	dd->chip_send_contexts = read_csr(dd, SEND_CONTEXTS);
14856 	dd->chip_sdma_engines = read_csr(dd, SEND_DMA_ENGINES);
14857 	dd->chip_pio_mem_size = read_csr(dd, SEND_PIO_MEM_SIZE);
14858 	dd->chip_sdma_mem_size = read_csr(dd, SEND_DMA_MEM_SIZE);
14859 	/* fix up link widths for emulation _p */
14860 	ppd = dd->pport;
14861 	if (dd->icode == ICODE_FPGA_EMULATION && is_emulator_p(dd)) {
14862 		ppd->link_width_supported =
14863 			ppd->link_width_enabled =
14864 			ppd->link_width_downgrade_supported =
14865 			ppd->link_width_downgrade_enabled =
14866 				OPA_LINK_WIDTH_1X;
14867 	}
14868 	/* insure num_vls isn't larger than number of sdma engines */
14869 	if (HFI1_CAP_IS_KSET(SDMA) && num_vls > dd->chip_sdma_engines) {
14870 		dd_dev_err(dd, "num_vls %u too large, using %u VLs\n",
14871 			   num_vls, dd->chip_sdma_engines);
14872 		num_vls = dd->chip_sdma_engines;
14873 		ppd->vls_supported = dd->chip_sdma_engines;
14874 		ppd->vls_operational = ppd->vls_supported;
14875 	}
14876 
14877 	/*
14878 	 * Convert the ns parameter to the 64 * cclocks used in the CSR.
14879 	 * Limit the max if larger than the field holds.  If timeout is
14880 	 * non-zero, then the calculated field will be at least 1.
14881 	 *
14882 	 * Must be after icode is set up - the cclock rate depends
14883 	 * on knowing the hardware being used.
14884 	 */
14885 	dd->rcv_intr_timeout_csr = ns_to_cclock(dd, rcv_intr_timeout) / 64;
14886 	if (dd->rcv_intr_timeout_csr >
14887 			RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_MASK)
14888 		dd->rcv_intr_timeout_csr =
14889 			RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_MASK;
14890 	else if (dd->rcv_intr_timeout_csr == 0 && rcv_intr_timeout)
14891 		dd->rcv_intr_timeout_csr = 1;
14892 
14893 	/* needs to be done before we look for the peer device */
14894 	read_guid(dd);
14895 
14896 	/* set up shared ASIC data with peer device */
14897 	ret = init_asic_data(dd);
14898 	if (ret)
14899 		goto bail_cleanup;
14900 
14901 	/* obtain chip sizes, reset chip CSRs */
14902 	init_chip(dd);
14903 
14904 	/* read in the PCIe link speed information */
14905 	ret = pcie_speeds(dd);
14906 	if (ret)
14907 		goto bail_cleanup;
14908 
14909 	/* call before get_platform_config(), after init_chip_resources() */
14910 	ret = eprom_init(dd);
14911 	if (ret)
14912 		goto bail_free_rcverr;
14913 
14914 	/* Needs to be called before hfi1_firmware_init */
14915 	get_platform_config(dd);
14916 
14917 	/* read in firmware */
14918 	ret = hfi1_firmware_init(dd);
14919 	if (ret)
14920 		goto bail_cleanup;
14921 
14922 	/*
14923 	 * In general, the PCIe Gen3 transition must occur after the
14924 	 * chip has been idled (so it won't initiate any PCIe transactions
14925 	 * e.g. an interrupt) and before the driver changes any registers
14926 	 * (the transition will reset the registers).
14927 	 *
14928 	 * In particular, place this call after:
14929 	 * - init_chip()     - the chip will not initiate any PCIe transactions
14930 	 * - pcie_speeds()   - reads the current link speed
14931 	 * - hfi1_firmware_init() - the needed firmware is ready to be
14932 	 *			    downloaded
14933 	 */
14934 	ret = do_pcie_gen3_transition(dd);
14935 	if (ret)
14936 		goto bail_cleanup;
14937 
14938 	/* start setting dd values and adjusting CSRs */
14939 	init_early_variables(dd);
14940 
14941 	parse_platform_config(dd);
14942 
14943 	ret = obtain_boardname(dd);
14944 	if (ret)
14945 		goto bail_cleanup;
14946 
14947 	snprintf(dd->boardversion, BOARD_VERS_MAX,
14948 		 "ChipABI %u.%u, ChipRev %u.%u, SW Compat %llu\n",
14949 		 HFI1_CHIP_VERS_MAJ, HFI1_CHIP_VERS_MIN,
14950 		 (u32)dd->majrev,
14951 		 (u32)dd->minrev,
14952 		 (dd->revision >> CCE_REVISION_SW_SHIFT)
14953 		    & CCE_REVISION_SW_MASK);
14954 
14955 	ret = set_up_context_variables(dd);
14956 	if (ret)
14957 		goto bail_cleanup;
14958 
14959 	/* set initial RXE CSRs */
14960 	init_rxe(dd);
14961 	/* set initial TXE CSRs */
14962 	init_txe(dd);
14963 	/* set initial non-RXE, non-TXE CSRs */
14964 	init_other(dd);
14965 	/* set up KDETH QP prefix in both RX and TX CSRs */
14966 	init_kdeth_qp(dd);
14967 
14968 	ret = hfi1_dev_affinity_init(dd);
14969 	if (ret)
14970 		goto bail_cleanup;
14971 
14972 	/* send contexts must be set up before receive contexts */
14973 	ret = init_send_contexts(dd);
14974 	if (ret)
14975 		goto bail_cleanup;
14976 
14977 	ret = hfi1_create_ctxts(dd);
14978 	if (ret)
14979 		goto bail_cleanup;
14980 
14981 	dd->rcvhdrsize = DEFAULT_RCVHDRSIZE;
14982 	/*
14983 	 * rcd[0] is guaranteed to be valid by this point. Also, all
14984 	 * context are using the same value, as per the module parameter.
14985 	 */
14986 	dd->rhf_offset = dd->rcd[0]->rcvhdrqentsize - sizeof(u64) / sizeof(u32);
14987 
14988 	ret = init_pervl_scs(dd);
14989 	if (ret)
14990 		goto bail_cleanup;
14991 
14992 	/* sdma init */
14993 	for (i = 0; i < dd->num_pports; ++i) {
14994 		ret = sdma_init(dd, i);
14995 		if (ret)
14996 			goto bail_cleanup;
14997 	}
14998 
14999 	/* use contexts created by hfi1_create_ctxts */
15000 	ret = set_up_interrupts(dd);
15001 	if (ret)
15002 		goto bail_cleanup;
15003 
15004 	/* set up LCB access - must be after set_up_interrupts() */
15005 	init_lcb_access(dd);
15006 
15007 	/*
15008 	 * Serial number is created from the base guid:
15009 	 * [27:24] = base guid [38:35]
15010 	 * [23: 0] = base guid [23: 0]
15011 	 */
15012 	snprintf(dd->serial, SERIAL_MAX, "0x%08llx\n",
15013 		 (dd->base_guid & 0xFFFFFF) |
15014 		     ((dd->base_guid >> 11) & 0xF000000));
15015 
15016 	dd->oui1 = dd->base_guid >> 56 & 0xFF;
15017 	dd->oui2 = dd->base_guid >> 48 & 0xFF;
15018 	dd->oui3 = dd->base_guid >> 40 & 0xFF;
15019 
15020 	ret = load_firmware(dd); /* asymmetric with dispose_firmware() */
15021 	if (ret)
15022 		goto bail_clear_intr;
15023 
15024 	thermal_init(dd);
15025 
15026 	ret = init_cntrs(dd);
15027 	if (ret)
15028 		goto bail_clear_intr;
15029 
15030 	ret = init_rcverr(dd);
15031 	if (ret)
15032 		goto bail_free_cntrs;
15033 
15034 	init_completion(&dd->user_comp);
15035 
15036 	/* The user refcount starts with one to inidicate an active device */
15037 	atomic_set(&dd->user_refcount, 1);
15038 
15039 	goto bail;
15040 
15041 bail_free_rcverr:
15042 	free_rcverr(dd);
15043 bail_free_cntrs:
15044 	free_cntrs(dd);
15045 bail_clear_intr:
15046 	clean_up_interrupts(dd);
15047 bail_cleanup:
15048 	hfi1_pcie_ddcleanup(dd);
15049 bail_free:
15050 	hfi1_free_devdata(dd);
15051 	dd = ERR_PTR(ret);
15052 bail:
15053 	return dd;
15054 }
15055 
15056 static u16 delay_cycles(struct hfi1_pportdata *ppd, u32 desired_egress_rate,
15057 			u32 dw_len)
15058 {
15059 	u32 delta_cycles;
15060 	u32 current_egress_rate = ppd->current_egress_rate;
15061 	/* rates here are in units of 10^6 bits/sec */
15062 
15063 	if (desired_egress_rate == -1)
15064 		return 0; /* shouldn't happen */
15065 
15066 	if (desired_egress_rate >= current_egress_rate)
15067 		return 0; /* we can't help go faster, only slower */
15068 
15069 	delta_cycles = egress_cycles(dw_len * 4, desired_egress_rate) -
15070 			egress_cycles(dw_len * 4, current_egress_rate);
15071 
15072 	return (u16)delta_cycles;
15073 }
15074 
15075 /**
15076  * create_pbc - build a pbc for transmission
15077  * @flags: special case flags or-ed in built pbc
15078  * @srate: static rate
15079  * @vl: vl
15080  * @dwlen: dword length (header words + data words + pbc words)
15081  *
15082  * Create a PBC with the given flags, rate, VL, and length.
15083  *
15084  * NOTE: The PBC created will not insert any HCRC - all callers but one are
15085  * for verbs, which does not use this PSM feature.  The lone other caller
15086  * is for the diagnostic interface which calls this if the user does not
15087  * supply their own PBC.
15088  */
15089 u64 create_pbc(struct hfi1_pportdata *ppd, u64 flags, int srate_mbs, u32 vl,
15090 	       u32 dw_len)
15091 {
15092 	u64 pbc, delay = 0;
15093 
15094 	if (unlikely(srate_mbs))
15095 		delay = delay_cycles(ppd, srate_mbs, dw_len);
15096 
15097 	pbc = flags
15098 		| (delay << PBC_STATIC_RATE_CONTROL_COUNT_SHIFT)
15099 		| ((u64)PBC_IHCRC_NONE << PBC_INSERT_HCRC_SHIFT)
15100 		| (vl & PBC_VL_MASK) << PBC_VL_SHIFT
15101 		| (dw_len & PBC_LENGTH_DWS_MASK)
15102 			<< PBC_LENGTH_DWS_SHIFT;
15103 
15104 	return pbc;
15105 }
15106 
15107 #define SBUS_THERMAL    0x4f
15108 #define SBUS_THERM_MONITOR_MODE 0x1
15109 
15110 #define THERM_FAILURE(dev, ret, reason) \
15111 	dd_dev_err((dd),						\
15112 		   "Thermal sensor initialization failed: %s (%d)\n",	\
15113 		   (reason), (ret))
15114 
15115 /*
15116  * Initialize the thermal sensor.
15117  *
15118  * After initialization, enable polling of thermal sensor through
15119  * SBus interface. In order for this to work, the SBus Master
15120  * firmware has to be loaded due to the fact that the HW polling
15121  * logic uses SBus interrupts, which are not supported with
15122  * default firmware. Otherwise, no data will be returned through
15123  * the ASIC_STS_THERM CSR.
15124  */
15125 static int thermal_init(struct hfi1_devdata *dd)
15126 {
15127 	int ret = 0;
15128 
15129 	if (dd->icode != ICODE_RTL_SILICON ||
15130 	    check_chip_resource(dd, CR_THERM_INIT, NULL))
15131 		return ret;
15132 
15133 	ret = acquire_chip_resource(dd, CR_SBUS, SBUS_TIMEOUT);
15134 	if (ret) {
15135 		THERM_FAILURE(dd, ret, "Acquire SBus");
15136 		return ret;
15137 	}
15138 
15139 	dd_dev_info(dd, "Initializing thermal sensor\n");
15140 	/* Disable polling of thermal readings */
15141 	write_csr(dd, ASIC_CFG_THERM_POLL_EN, 0x0);
15142 	msleep(100);
15143 	/* Thermal Sensor Initialization */
15144 	/*    Step 1: Reset the Thermal SBus Receiver */
15145 	ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0,
15146 				RESET_SBUS_RECEIVER, 0);
15147 	if (ret) {
15148 		THERM_FAILURE(dd, ret, "Bus Reset");
15149 		goto done;
15150 	}
15151 	/*    Step 2: Set Reset bit in Thermal block */
15152 	ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0,
15153 				WRITE_SBUS_RECEIVER, 0x1);
15154 	if (ret) {
15155 		THERM_FAILURE(dd, ret, "Therm Block Reset");
15156 		goto done;
15157 	}
15158 	/*    Step 3: Write clock divider value (100MHz -> 2MHz) */
15159 	ret = sbus_request_slow(dd, SBUS_THERMAL, 0x1,
15160 				WRITE_SBUS_RECEIVER, 0x32);
15161 	if (ret) {
15162 		THERM_FAILURE(dd, ret, "Write Clock Div");
15163 		goto done;
15164 	}
15165 	/*    Step 4: Select temperature mode */
15166 	ret = sbus_request_slow(dd, SBUS_THERMAL, 0x3,
15167 				WRITE_SBUS_RECEIVER,
15168 				SBUS_THERM_MONITOR_MODE);
15169 	if (ret) {
15170 		THERM_FAILURE(dd, ret, "Write Mode Sel");
15171 		goto done;
15172 	}
15173 	/*    Step 5: De-assert block reset and start conversion */
15174 	ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0,
15175 				WRITE_SBUS_RECEIVER, 0x2);
15176 	if (ret) {
15177 		THERM_FAILURE(dd, ret, "Write Reset Deassert");
15178 		goto done;
15179 	}
15180 	/*    Step 5.1: Wait for first conversion (21.5ms per spec) */
15181 	msleep(22);
15182 
15183 	/* Enable polling of thermal readings */
15184 	write_csr(dd, ASIC_CFG_THERM_POLL_EN, 0x1);
15185 
15186 	/* Set initialized flag */
15187 	ret = acquire_chip_resource(dd, CR_THERM_INIT, 0);
15188 	if (ret)
15189 		THERM_FAILURE(dd, ret, "Unable to set thermal init flag");
15190 
15191 done:
15192 	release_chip_resource(dd, CR_SBUS);
15193 	return ret;
15194 }
15195 
15196 static void handle_temp_err(struct hfi1_devdata *dd)
15197 {
15198 	struct hfi1_pportdata *ppd = &dd->pport[0];
15199 	/*
15200 	 * Thermal Critical Interrupt
15201 	 * Put the device into forced freeze mode, take link down to
15202 	 * offline, and put DC into reset.
15203 	 */
15204 	dd_dev_emerg(dd,
15205 		     "Critical temperature reached! Forcing device into freeze mode!\n");
15206 	dd->flags |= HFI1_FORCED_FREEZE;
15207 	start_freeze_handling(ppd, FREEZE_SELF | FREEZE_ABORT);
15208 	/*
15209 	 * Shut DC down as much and as quickly as possible.
15210 	 *
15211 	 * Step 1: Take the link down to OFFLINE. This will cause the
15212 	 *         8051 to put the Serdes in reset. However, we don't want to
15213 	 *         go through the entire link state machine since we want to
15214 	 *         shutdown ASAP. Furthermore, this is not a graceful shutdown
15215 	 *         but rather an attempt to save the chip.
15216 	 *         Code below is almost the same as quiet_serdes() but avoids
15217 	 *         all the extra work and the sleeps.
15218 	 */
15219 	ppd->driver_link_ready = 0;
15220 	ppd->link_enabled = 0;
15221 	set_physical_link_state(dd, (OPA_LINKDOWN_REASON_SMA_DISABLED << 8) |
15222 				PLS_OFFLINE);
15223 	/*
15224 	 * Step 2: Shutdown LCB and 8051
15225 	 *         After shutdown, do not restore DC_CFG_RESET value.
15226 	 */
15227 	dc_shutdown(dd);
15228 }
15229