1 /* 2 * Copyright(c) 2015 - 2017 Intel Corporation. 3 * 4 * This file is provided under a dual BSD/GPLv2 license. When using or 5 * redistributing this file, you may do so under either license. 6 * 7 * GPL LICENSE SUMMARY 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of version 2 of the GNU General Public License as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, but 14 * WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 16 * General Public License for more details. 17 * 18 * BSD LICENSE 19 * 20 * Redistribution and use in source and binary forms, with or without 21 * modification, are permitted provided that the following conditions 22 * are met: 23 * 24 * - Redistributions of source code must retain the above copyright 25 * notice, this list of conditions and the following disclaimer. 26 * - Redistributions in binary form must reproduce the above copyright 27 * notice, this list of conditions and the following disclaimer in 28 * the documentation and/or other materials provided with the 29 * distribution. 30 * - Neither the name of Intel Corporation nor the names of its 31 * contributors may be used to endorse or promote products derived 32 * from this software without specific prior written permission. 33 * 34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 35 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 36 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 37 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 38 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 39 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 40 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 41 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 42 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 44 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 45 * 46 */ 47 48 /* 49 * This file contains all of the code that is specific to the HFI chip 50 */ 51 52 #include <linux/pci.h> 53 #include <linux/delay.h> 54 #include <linux/interrupt.h> 55 #include <linux/module.h> 56 57 #include "hfi.h" 58 #include "trace.h" 59 #include "mad.h" 60 #include "pio.h" 61 #include "sdma.h" 62 #include "eprom.h" 63 #include "efivar.h" 64 #include "platform.h" 65 #include "aspm.h" 66 #include "affinity.h" 67 #include "debugfs.h" 68 69 #define NUM_IB_PORTS 1 70 71 uint kdeth_qp; 72 module_param_named(kdeth_qp, kdeth_qp, uint, S_IRUGO); 73 MODULE_PARM_DESC(kdeth_qp, "Set the KDETH queue pair prefix"); 74 75 uint num_vls = HFI1_MAX_VLS_SUPPORTED; 76 module_param(num_vls, uint, S_IRUGO); 77 MODULE_PARM_DESC(num_vls, "Set number of Virtual Lanes to use (1-8)"); 78 79 /* 80 * Default time to aggregate two 10K packets from the idle state 81 * (timer not running). The timer starts at the end of the first packet, 82 * so only the time for one 10K packet and header plus a bit extra is needed. 83 * 10 * 1024 + 64 header byte = 10304 byte 84 * 10304 byte / 12.5 GB/s = 824.32ns 85 */ 86 uint rcv_intr_timeout = (824 + 16); /* 16 is for coalescing interrupt */ 87 module_param(rcv_intr_timeout, uint, S_IRUGO); 88 MODULE_PARM_DESC(rcv_intr_timeout, "Receive interrupt mitigation timeout in ns"); 89 90 uint rcv_intr_count = 16; /* same as qib */ 91 module_param(rcv_intr_count, uint, S_IRUGO); 92 MODULE_PARM_DESC(rcv_intr_count, "Receive interrupt mitigation count"); 93 94 ushort link_crc_mask = SUPPORTED_CRCS; 95 module_param(link_crc_mask, ushort, S_IRUGO); 96 MODULE_PARM_DESC(link_crc_mask, "CRCs to use on the link"); 97 98 uint loopback; 99 module_param_named(loopback, loopback, uint, S_IRUGO); 100 MODULE_PARM_DESC(loopback, "Put into loopback mode (1 = serdes, 3 = external cable"); 101 102 /* Other driver tunables */ 103 uint rcv_intr_dynamic = 1; /* enable dynamic mode for rcv int mitigation*/ 104 static ushort crc_14b_sideband = 1; 105 static uint use_flr = 1; 106 uint quick_linkup; /* skip LNI */ 107 108 struct flag_table { 109 u64 flag; /* the flag */ 110 char *str; /* description string */ 111 u16 extra; /* extra information */ 112 u16 unused0; 113 u32 unused1; 114 }; 115 116 /* str must be a string constant */ 117 #define FLAG_ENTRY(str, extra, flag) {flag, str, extra} 118 #define FLAG_ENTRY0(str, flag) {flag, str, 0} 119 120 /* Send Error Consequences */ 121 #define SEC_WRITE_DROPPED 0x1 122 #define SEC_PACKET_DROPPED 0x2 123 #define SEC_SC_HALTED 0x4 /* per-context only */ 124 #define SEC_SPC_FREEZE 0x8 /* per-HFI only */ 125 126 #define DEFAULT_KRCVQS 2 127 #define MIN_KERNEL_KCTXTS 2 128 #define FIRST_KERNEL_KCTXT 1 129 130 /* 131 * RSM instance allocation 132 * 0 - Verbs 133 * 1 - User Fecn Handling 134 * 2 - Vnic 135 */ 136 #define RSM_INS_VERBS 0 137 #define RSM_INS_FECN 1 138 #define RSM_INS_VNIC 2 139 140 /* Bit offset into the GUID which carries HFI id information */ 141 #define GUID_HFI_INDEX_SHIFT 39 142 143 /* extract the emulation revision */ 144 #define emulator_rev(dd) ((dd)->irev >> 8) 145 /* parallel and serial emulation versions are 3 and 4 respectively */ 146 #define is_emulator_p(dd) ((((dd)->irev) & 0xf) == 3) 147 #define is_emulator_s(dd) ((((dd)->irev) & 0xf) == 4) 148 149 /* RSM fields for Verbs */ 150 /* packet type */ 151 #define IB_PACKET_TYPE 2ull 152 #define QW_SHIFT 6ull 153 /* QPN[7..1] */ 154 #define QPN_WIDTH 7ull 155 156 /* LRH.BTH: QW 0, OFFSET 48 - for match */ 157 #define LRH_BTH_QW 0ull 158 #define LRH_BTH_BIT_OFFSET 48ull 159 #define LRH_BTH_OFFSET(off) ((LRH_BTH_QW << QW_SHIFT) | (off)) 160 #define LRH_BTH_MATCH_OFFSET LRH_BTH_OFFSET(LRH_BTH_BIT_OFFSET) 161 #define LRH_BTH_SELECT 162 #define LRH_BTH_MASK 3ull 163 #define LRH_BTH_VALUE 2ull 164 165 /* LRH.SC[3..0] QW 0, OFFSET 56 - for match */ 166 #define LRH_SC_QW 0ull 167 #define LRH_SC_BIT_OFFSET 56ull 168 #define LRH_SC_OFFSET(off) ((LRH_SC_QW << QW_SHIFT) | (off)) 169 #define LRH_SC_MATCH_OFFSET LRH_SC_OFFSET(LRH_SC_BIT_OFFSET) 170 #define LRH_SC_MASK 128ull 171 #define LRH_SC_VALUE 0ull 172 173 /* SC[n..0] QW 0, OFFSET 60 - for select */ 174 #define LRH_SC_SELECT_OFFSET ((LRH_SC_QW << QW_SHIFT) | (60ull)) 175 176 /* QPN[m+n:1] QW 1, OFFSET 1 */ 177 #define QPN_SELECT_OFFSET ((1ull << QW_SHIFT) | (1ull)) 178 179 /* RSM fields for Vnic */ 180 /* L2_TYPE: QW 0, OFFSET 61 - for match */ 181 #define L2_TYPE_QW 0ull 182 #define L2_TYPE_BIT_OFFSET 61ull 183 #define L2_TYPE_OFFSET(off) ((L2_TYPE_QW << QW_SHIFT) | (off)) 184 #define L2_TYPE_MATCH_OFFSET L2_TYPE_OFFSET(L2_TYPE_BIT_OFFSET) 185 #define L2_TYPE_MASK 3ull 186 #define L2_16B_VALUE 2ull 187 188 /* L4_TYPE QW 1, OFFSET 0 - for match */ 189 #define L4_TYPE_QW 1ull 190 #define L4_TYPE_BIT_OFFSET 0ull 191 #define L4_TYPE_OFFSET(off) ((L4_TYPE_QW << QW_SHIFT) | (off)) 192 #define L4_TYPE_MATCH_OFFSET L4_TYPE_OFFSET(L4_TYPE_BIT_OFFSET) 193 #define L4_16B_TYPE_MASK 0xFFull 194 #define L4_16B_ETH_VALUE 0x78ull 195 196 /* 16B VESWID - for select */ 197 #define L4_16B_HDR_VESWID_OFFSET ((2 << QW_SHIFT) | (16ull)) 198 /* 16B ENTROPY - for select */ 199 #define L2_16B_ENTROPY_OFFSET ((1 << QW_SHIFT) | (32ull)) 200 201 /* defines to build power on SC2VL table */ 202 #define SC2VL_VAL( \ 203 num, \ 204 sc0, sc0val, \ 205 sc1, sc1val, \ 206 sc2, sc2val, \ 207 sc3, sc3val, \ 208 sc4, sc4val, \ 209 sc5, sc5val, \ 210 sc6, sc6val, \ 211 sc7, sc7val) \ 212 ( \ 213 ((u64)(sc0val) << SEND_SC2VLT##num##_SC##sc0##_SHIFT) | \ 214 ((u64)(sc1val) << SEND_SC2VLT##num##_SC##sc1##_SHIFT) | \ 215 ((u64)(sc2val) << SEND_SC2VLT##num##_SC##sc2##_SHIFT) | \ 216 ((u64)(sc3val) << SEND_SC2VLT##num##_SC##sc3##_SHIFT) | \ 217 ((u64)(sc4val) << SEND_SC2VLT##num##_SC##sc4##_SHIFT) | \ 218 ((u64)(sc5val) << SEND_SC2VLT##num##_SC##sc5##_SHIFT) | \ 219 ((u64)(sc6val) << SEND_SC2VLT##num##_SC##sc6##_SHIFT) | \ 220 ((u64)(sc7val) << SEND_SC2VLT##num##_SC##sc7##_SHIFT) \ 221 ) 222 223 #define DC_SC_VL_VAL( \ 224 range, \ 225 e0, e0val, \ 226 e1, e1val, \ 227 e2, e2val, \ 228 e3, e3val, \ 229 e4, e4val, \ 230 e5, e5val, \ 231 e6, e6val, \ 232 e7, e7val, \ 233 e8, e8val, \ 234 e9, e9val, \ 235 e10, e10val, \ 236 e11, e11val, \ 237 e12, e12val, \ 238 e13, e13val, \ 239 e14, e14val, \ 240 e15, e15val) \ 241 ( \ 242 ((u64)(e0val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e0##_SHIFT) | \ 243 ((u64)(e1val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e1##_SHIFT) | \ 244 ((u64)(e2val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e2##_SHIFT) | \ 245 ((u64)(e3val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e3##_SHIFT) | \ 246 ((u64)(e4val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e4##_SHIFT) | \ 247 ((u64)(e5val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e5##_SHIFT) | \ 248 ((u64)(e6val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e6##_SHIFT) | \ 249 ((u64)(e7val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e7##_SHIFT) | \ 250 ((u64)(e8val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e8##_SHIFT) | \ 251 ((u64)(e9val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e9##_SHIFT) | \ 252 ((u64)(e10val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e10##_SHIFT) | \ 253 ((u64)(e11val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e11##_SHIFT) | \ 254 ((u64)(e12val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e12##_SHIFT) | \ 255 ((u64)(e13val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e13##_SHIFT) | \ 256 ((u64)(e14val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e14##_SHIFT) | \ 257 ((u64)(e15val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e15##_SHIFT) \ 258 ) 259 260 /* all CceStatus sub-block freeze bits */ 261 #define ALL_FROZE (CCE_STATUS_SDMA_FROZE_SMASK \ 262 | CCE_STATUS_RXE_FROZE_SMASK \ 263 | CCE_STATUS_TXE_FROZE_SMASK \ 264 | CCE_STATUS_TXE_PIO_FROZE_SMASK) 265 /* all CceStatus sub-block TXE pause bits */ 266 #define ALL_TXE_PAUSE (CCE_STATUS_TXE_PIO_PAUSED_SMASK \ 267 | CCE_STATUS_TXE_PAUSED_SMASK \ 268 | CCE_STATUS_SDMA_PAUSED_SMASK) 269 /* all CceStatus sub-block RXE pause bits */ 270 #define ALL_RXE_PAUSE CCE_STATUS_RXE_PAUSED_SMASK 271 272 #define CNTR_MAX 0xFFFFFFFFFFFFFFFFULL 273 #define CNTR_32BIT_MAX 0x00000000FFFFFFFF 274 275 /* 276 * CCE Error flags. 277 */ 278 static struct flag_table cce_err_status_flags[] = { 279 /* 0*/ FLAG_ENTRY0("CceCsrParityErr", 280 CCE_ERR_STATUS_CCE_CSR_PARITY_ERR_SMASK), 281 /* 1*/ FLAG_ENTRY0("CceCsrReadBadAddrErr", 282 CCE_ERR_STATUS_CCE_CSR_READ_BAD_ADDR_ERR_SMASK), 283 /* 2*/ FLAG_ENTRY0("CceCsrWriteBadAddrErr", 284 CCE_ERR_STATUS_CCE_CSR_WRITE_BAD_ADDR_ERR_SMASK), 285 /* 3*/ FLAG_ENTRY0("CceTrgtAsyncFifoParityErr", 286 CCE_ERR_STATUS_CCE_TRGT_ASYNC_FIFO_PARITY_ERR_SMASK), 287 /* 4*/ FLAG_ENTRY0("CceTrgtAccessErr", 288 CCE_ERR_STATUS_CCE_TRGT_ACCESS_ERR_SMASK), 289 /* 5*/ FLAG_ENTRY0("CceRspdDataParityErr", 290 CCE_ERR_STATUS_CCE_RSPD_DATA_PARITY_ERR_SMASK), 291 /* 6*/ FLAG_ENTRY0("CceCli0AsyncFifoParityErr", 292 CCE_ERR_STATUS_CCE_CLI0_ASYNC_FIFO_PARITY_ERR_SMASK), 293 /* 7*/ FLAG_ENTRY0("CceCsrCfgBusParityErr", 294 CCE_ERR_STATUS_CCE_CSR_CFG_BUS_PARITY_ERR_SMASK), 295 /* 8*/ FLAG_ENTRY0("CceCli2AsyncFifoParityErr", 296 CCE_ERR_STATUS_CCE_CLI2_ASYNC_FIFO_PARITY_ERR_SMASK), 297 /* 9*/ FLAG_ENTRY0("CceCli1AsyncFifoPioCrdtParityErr", 298 CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_PIO_CRDT_PARITY_ERR_SMASK), 299 /*10*/ FLAG_ENTRY0("CceCli1AsyncFifoPioCrdtParityErr", 300 CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_SDMA_HD_PARITY_ERR_SMASK), 301 /*11*/ FLAG_ENTRY0("CceCli1AsyncFifoRxdmaParityError", 302 CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_RXDMA_PARITY_ERROR_SMASK), 303 /*12*/ FLAG_ENTRY0("CceCli1AsyncFifoDbgParityError", 304 CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_DBG_PARITY_ERROR_SMASK), 305 /*13*/ FLAG_ENTRY0("PcicRetryMemCorErr", 306 CCE_ERR_STATUS_PCIC_RETRY_MEM_COR_ERR_SMASK), 307 /*14*/ FLAG_ENTRY0("PcicRetryMemCorErr", 308 CCE_ERR_STATUS_PCIC_RETRY_SOT_MEM_COR_ERR_SMASK), 309 /*15*/ FLAG_ENTRY0("PcicPostHdQCorErr", 310 CCE_ERR_STATUS_PCIC_POST_HD_QCOR_ERR_SMASK), 311 /*16*/ FLAG_ENTRY0("PcicPostHdQCorErr", 312 CCE_ERR_STATUS_PCIC_POST_DAT_QCOR_ERR_SMASK), 313 /*17*/ FLAG_ENTRY0("PcicPostHdQCorErr", 314 CCE_ERR_STATUS_PCIC_CPL_HD_QCOR_ERR_SMASK), 315 /*18*/ FLAG_ENTRY0("PcicCplDatQCorErr", 316 CCE_ERR_STATUS_PCIC_CPL_DAT_QCOR_ERR_SMASK), 317 /*19*/ FLAG_ENTRY0("PcicNPostHQParityErr", 318 CCE_ERR_STATUS_PCIC_NPOST_HQ_PARITY_ERR_SMASK), 319 /*20*/ FLAG_ENTRY0("PcicNPostDatQParityErr", 320 CCE_ERR_STATUS_PCIC_NPOST_DAT_QPARITY_ERR_SMASK), 321 /*21*/ FLAG_ENTRY0("PcicRetryMemUncErr", 322 CCE_ERR_STATUS_PCIC_RETRY_MEM_UNC_ERR_SMASK), 323 /*22*/ FLAG_ENTRY0("PcicRetrySotMemUncErr", 324 CCE_ERR_STATUS_PCIC_RETRY_SOT_MEM_UNC_ERR_SMASK), 325 /*23*/ FLAG_ENTRY0("PcicPostHdQUncErr", 326 CCE_ERR_STATUS_PCIC_POST_HD_QUNC_ERR_SMASK), 327 /*24*/ FLAG_ENTRY0("PcicPostDatQUncErr", 328 CCE_ERR_STATUS_PCIC_POST_DAT_QUNC_ERR_SMASK), 329 /*25*/ FLAG_ENTRY0("PcicCplHdQUncErr", 330 CCE_ERR_STATUS_PCIC_CPL_HD_QUNC_ERR_SMASK), 331 /*26*/ FLAG_ENTRY0("PcicCplDatQUncErr", 332 CCE_ERR_STATUS_PCIC_CPL_DAT_QUNC_ERR_SMASK), 333 /*27*/ FLAG_ENTRY0("PcicTransmitFrontParityErr", 334 CCE_ERR_STATUS_PCIC_TRANSMIT_FRONT_PARITY_ERR_SMASK), 335 /*28*/ FLAG_ENTRY0("PcicTransmitBackParityErr", 336 CCE_ERR_STATUS_PCIC_TRANSMIT_BACK_PARITY_ERR_SMASK), 337 /*29*/ FLAG_ENTRY0("PcicReceiveParityErr", 338 CCE_ERR_STATUS_PCIC_RECEIVE_PARITY_ERR_SMASK), 339 /*30*/ FLAG_ENTRY0("CceTrgtCplTimeoutErr", 340 CCE_ERR_STATUS_CCE_TRGT_CPL_TIMEOUT_ERR_SMASK), 341 /*31*/ FLAG_ENTRY0("LATriggered", 342 CCE_ERR_STATUS_LA_TRIGGERED_SMASK), 343 /*32*/ FLAG_ENTRY0("CceSegReadBadAddrErr", 344 CCE_ERR_STATUS_CCE_SEG_READ_BAD_ADDR_ERR_SMASK), 345 /*33*/ FLAG_ENTRY0("CceSegWriteBadAddrErr", 346 CCE_ERR_STATUS_CCE_SEG_WRITE_BAD_ADDR_ERR_SMASK), 347 /*34*/ FLAG_ENTRY0("CceRcplAsyncFifoParityErr", 348 CCE_ERR_STATUS_CCE_RCPL_ASYNC_FIFO_PARITY_ERR_SMASK), 349 /*35*/ FLAG_ENTRY0("CceRxdmaConvFifoParityErr", 350 CCE_ERR_STATUS_CCE_RXDMA_CONV_FIFO_PARITY_ERR_SMASK), 351 /*36*/ FLAG_ENTRY0("CceMsixTableCorErr", 352 CCE_ERR_STATUS_CCE_MSIX_TABLE_COR_ERR_SMASK), 353 /*37*/ FLAG_ENTRY0("CceMsixTableUncErr", 354 CCE_ERR_STATUS_CCE_MSIX_TABLE_UNC_ERR_SMASK), 355 /*38*/ FLAG_ENTRY0("CceIntMapCorErr", 356 CCE_ERR_STATUS_CCE_INT_MAP_COR_ERR_SMASK), 357 /*39*/ FLAG_ENTRY0("CceIntMapUncErr", 358 CCE_ERR_STATUS_CCE_INT_MAP_UNC_ERR_SMASK), 359 /*40*/ FLAG_ENTRY0("CceMsixCsrParityErr", 360 CCE_ERR_STATUS_CCE_MSIX_CSR_PARITY_ERR_SMASK), 361 /*41-63 reserved*/ 362 }; 363 364 /* 365 * Misc Error flags 366 */ 367 #define MES(text) MISC_ERR_STATUS_MISC_##text##_ERR_SMASK 368 static struct flag_table misc_err_status_flags[] = { 369 /* 0*/ FLAG_ENTRY0("CSR_PARITY", MES(CSR_PARITY)), 370 /* 1*/ FLAG_ENTRY0("CSR_READ_BAD_ADDR", MES(CSR_READ_BAD_ADDR)), 371 /* 2*/ FLAG_ENTRY0("CSR_WRITE_BAD_ADDR", MES(CSR_WRITE_BAD_ADDR)), 372 /* 3*/ FLAG_ENTRY0("SBUS_WRITE_FAILED", MES(SBUS_WRITE_FAILED)), 373 /* 4*/ FLAG_ENTRY0("KEY_MISMATCH", MES(KEY_MISMATCH)), 374 /* 5*/ FLAG_ENTRY0("FW_AUTH_FAILED", MES(FW_AUTH_FAILED)), 375 /* 6*/ FLAG_ENTRY0("EFUSE_CSR_PARITY", MES(EFUSE_CSR_PARITY)), 376 /* 7*/ FLAG_ENTRY0("EFUSE_READ_BAD_ADDR", MES(EFUSE_READ_BAD_ADDR)), 377 /* 8*/ FLAG_ENTRY0("EFUSE_WRITE", MES(EFUSE_WRITE)), 378 /* 9*/ FLAG_ENTRY0("EFUSE_DONE_PARITY", MES(EFUSE_DONE_PARITY)), 379 /*10*/ FLAG_ENTRY0("INVALID_EEP_CMD", MES(INVALID_EEP_CMD)), 380 /*11*/ FLAG_ENTRY0("MBIST_FAIL", MES(MBIST_FAIL)), 381 /*12*/ FLAG_ENTRY0("PLL_LOCK_FAIL", MES(PLL_LOCK_FAIL)) 382 }; 383 384 /* 385 * TXE PIO Error flags and consequences 386 */ 387 static struct flag_table pio_err_status_flags[] = { 388 /* 0*/ FLAG_ENTRY("PioWriteBadCtxt", 389 SEC_WRITE_DROPPED, 390 SEND_PIO_ERR_STATUS_PIO_WRITE_BAD_CTXT_ERR_SMASK), 391 /* 1*/ FLAG_ENTRY("PioWriteAddrParity", 392 SEC_SPC_FREEZE, 393 SEND_PIO_ERR_STATUS_PIO_WRITE_ADDR_PARITY_ERR_SMASK), 394 /* 2*/ FLAG_ENTRY("PioCsrParity", 395 SEC_SPC_FREEZE, 396 SEND_PIO_ERR_STATUS_PIO_CSR_PARITY_ERR_SMASK), 397 /* 3*/ FLAG_ENTRY("PioSbMemFifo0", 398 SEC_SPC_FREEZE, 399 SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO0_ERR_SMASK), 400 /* 4*/ FLAG_ENTRY("PioSbMemFifo1", 401 SEC_SPC_FREEZE, 402 SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO1_ERR_SMASK), 403 /* 5*/ FLAG_ENTRY("PioPccFifoParity", 404 SEC_SPC_FREEZE, 405 SEND_PIO_ERR_STATUS_PIO_PCC_FIFO_PARITY_ERR_SMASK), 406 /* 6*/ FLAG_ENTRY("PioPecFifoParity", 407 SEC_SPC_FREEZE, 408 SEND_PIO_ERR_STATUS_PIO_PEC_FIFO_PARITY_ERR_SMASK), 409 /* 7*/ FLAG_ENTRY("PioSbrdctlCrrelParity", 410 SEC_SPC_FREEZE, 411 SEND_PIO_ERR_STATUS_PIO_SBRDCTL_CRREL_PARITY_ERR_SMASK), 412 /* 8*/ FLAG_ENTRY("PioSbrdctrlCrrelFifoParity", 413 SEC_SPC_FREEZE, 414 SEND_PIO_ERR_STATUS_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR_SMASK), 415 /* 9*/ FLAG_ENTRY("PioPktEvictFifoParityErr", 416 SEC_SPC_FREEZE, 417 SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_FIFO_PARITY_ERR_SMASK), 418 /*10*/ FLAG_ENTRY("PioSmPktResetParity", 419 SEC_SPC_FREEZE, 420 SEND_PIO_ERR_STATUS_PIO_SM_PKT_RESET_PARITY_ERR_SMASK), 421 /*11*/ FLAG_ENTRY("PioVlLenMemBank0Unc", 422 SEC_SPC_FREEZE, 423 SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_UNC_ERR_SMASK), 424 /*12*/ FLAG_ENTRY("PioVlLenMemBank1Unc", 425 SEC_SPC_FREEZE, 426 SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_UNC_ERR_SMASK), 427 /*13*/ FLAG_ENTRY("PioVlLenMemBank0Cor", 428 0, 429 SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_COR_ERR_SMASK), 430 /*14*/ FLAG_ENTRY("PioVlLenMemBank1Cor", 431 0, 432 SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_COR_ERR_SMASK), 433 /*15*/ FLAG_ENTRY("PioCreditRetFifoParity", 434 SEC_SPC_FREEZE, 435 SEND_PIO_ERR_STATUS_PIO_CREDIT_RET_FIFO_PARITY_ERR_SMASK), 436 /*16*/ FLAG_ENTRY("PioPpmcPblFifo", 437 SEC_SPC_FREEZE, 438 SEND_PIO_ERR_STATUS_PIO_PPMC_PBL_FIFO_ERR_SMASK), 439 /*17*/ FLAG_ENTRY("PioInitSmIn", 440 0, 441 SEND_PIO_ERR_STATUS_PIO_INIT_SM_IN_ERR_SMASK), 442 /*18*/ FLAG_ENTRY("PioPktEvictSmOrArbSm", 443 SEC_SPC_FREEZE, 444 SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_SM_OR_ARB_SM_ERR_SMASK), 445 /*19*/ FLAG_ENTRY("PioHostAddrMemUnc", 446 SEC_SPC_FREEZE, 447 SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_UNC_ERR_SMASK), 448 /*20*/ FLAG_ENTRY("PioHostAddrMemCor", 449 0, 450 SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_COR_ERR_SMASK), 451 /*21*/ FLAG_ENTRY("PioWriteDataParity", 452 SEC_SPC_FREEZE, 453 SEND_PIO_ERR_STATUS_PIO_WRITE_DATA_PARITY_ERR_SMASK), 454 /*22*/ FLAG_ENTRY("PioStateMachine", 455 SEC_SPC_FREEZE, 456 SEND_PIO_ERR_STATUS_PIO_STATE_MACHINE_ERR_SMASK), 457 /*23*/ FLAG_ENTRY("PioWriteQwValidParity", 458 SEC_WRITE_DROPPED | SEC_SPC_FREEZE, 459 SEND_PIO_ERR_STATUS_PIO_WRITE_QW_VALID_PARITY_ERR_SMASK), 460 /*24*/ FLAG_ENTRY("PioBlockQwCountParity", 461 SEC_WRITE_DROPPED | SEC_SPC_FREEZE, 462 SEND_PIO_ERR_STATUS_PIO_BLOCK_QW_COUNT_PARITY_ERR_SMASK), 463 /*25*/ FLAG_ENTRY("PioVlfVlLenParity", 464 SEC_SPC_FREEZE, 465 SEND_PIO_ERR_STATUS_PIO_VLF_VL_LEN_PARITY_ERR_SMASK), 466 /*26*/ FLAG_ENTRY("PioVlfSopParity", 467 SEC_SPC_FREEZE, 468 SEND_PIO_ERR_STATUS_PIO_VLF_SOP_PARITY_ERR_SMASK), 469 /*27*/ FLAG_ENTRY("PioVlFifoParity", 470 SEC_SPC_FREEZE, 471 SEND_PIO_ERR_STATUS_PIO_VL_FIFO_PARITY_ERR_SMASK), 472 /*28*/ FLAG_ENTRY("PioPpmcBqcMemParity", 473 SEC_SPC_FREEZE, 474 SEND_PIO_ERR_STATUS_PIO_PPMC_BQC_MEM_PARITY_ERR_SMASK), 475 /*29*/ FLAG_ENTRY("PioPpmcSopLen", 476 SEC_SPC_FREEZE, 477 SEND_PIO_ERR_STATUS_PIO_PPMC_SOP_LEN_ERR_SMASK), 478 /*30-31 reserved*/ 479 /*32*/ FLAG_ENTRY("PioCurrentFreeCntParity", 480 SEC_SPC_FREEZE, 481 SEND_PIO_ERR_STATUS_PIO_CURRENT_FREE_CNT_PARITY_ERR_SMASK), 482 /*33*/ FLAG_ENTRY("PioLastReturnedCntParity", 483 SEC_SPC_FREEZE, 484 SEND_PIO_ERR_STATUS_PIO_LAST_RETURNED_CNT_PARITY_ERR_SMASK), 485 /*34*/ FLAG_ENTRY("PioPccSopHeadParity", 486 SEC_SPC_FREEZE, 487 SEND_PIO_ERR_STATUS_PIO_PCC_SOP_HEAD_PARITY_ERR_SMASK), 488 /*35*/ FLAG_ENTRY("PioPecSopHeadParityErr", 489 SEC_SPC_FREEZE, 490 SEND_PIO_ERR_STATUS_PIO_PEC_SOP_HEAD_PARITY_ERR_SMASK), 491 /*36-63 reserved*/ 492 }; 493 494 /* TXE PIO errors that cause an SPC freeze */ 495 #define ALL_PIO_FREEZE_ERR \ 496 (SEND_PIO_ERR_STATUS_PIO_WRITE_ADDR_PARITY_ERR_SMASK \ 497 | SEND_PIO_ERR_STATUS_PIO_CSR_PARITY_ERR_SMASK \ 498 | SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO0_ERR_SMASK \ 499 | SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO1_ERR_SMASK \ 500 | SEND_PIO_ERR_STATUS_PIO_PCC_FIFO_PARITY_ERR_SMASK \ 501 | SEND_PIO_ERR_STATUS_PIO_PEC_FIFO_PARITY_ERR_SMASK \ 502 | SEND_PIO_ERR_STATUS_PIO_SBRDCTL_CRREL_PARITY_ERR_SMASK \ 503 | SEND_PIO_ERR_STATUS_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR_SMASK \ 504 | SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_FIFO_PARITY_ERR_SMASK \ 505 | SEND_PIO_ERR_STATUS_PIO_SM_PKT_RESET_PARITY_ERR_SMASK \ 506 | SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_UNC_ERR_SMASK \ 507 | SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_UNC_ERR_SMASK \ 508 | SEND_PIO_ERR_STATUS_PIO_CREDIT_RET_FIFO_PARITY_ERR_SMASK \ 509 | SEND_PIO_ERR_STATUS_PIO_PPMC_PBL_FIFO_ERR_SMASK \ 510 | SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_SM_OR_ARB_SM_ERR_SMASK \ 511 | SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_UNC_ERR_SMASK \ 512 | SEND_PIO_ERR_STATUS_PIO_WRITE_DATA_PARITY_ERR_SMASK \ 513 | SEND_PIO_ERR_STATUS_PIO_STATE_MACHINE_ERR_SMASK \ 514 | SEND_PIO_ERR_STATUS_PIO_WRITE_QW_VALID_PARITY_ERR_SMASK \ 515 | SEND_PIO_ERR_STATUS_PIO_BLOCK_QW_COUNT_PARITY_ERR_SMASK \ 516 | SEND_PIO_ERR_STATUS_PIO_VLF_VL_LEN_PARITY_ERR_SMASK \ 517 | SEND_PIO_ERR_STATUS_PIO_VLF_SOP_PARITY_ERR_SMASK \ 518 | SEND_PIO_ERR_STATUS_PIO_VL_FIFO_PARITY_ERR_SMASK \ 519 | SEND_PIO_ERR_STATUS_PIO_PPMC_BQC_MEM_PARITY_ERR_SMASK \ 520 | SEND_PIO_ERR_STATUS_PIO_PPMC_SOP_LEN_ERR_SMASK \ 521 | SEND_PIO_ERR_STATUS_PIO_CURRENT_FREE_CNT_PARITY_ERR_SMASK \ 522 | SEND_PIO_ERR_STATUS_PIO_LAST_RETURNED_CNT_PARITY_ERR_SMASK \ 523 | SEND_PIO_ERR_STATUS_PIO_PCC_SOP_HEAD_PARITY_ERR_SMASK \ 524 | SEND_PIO_ERR_STATUS_PIO_PEC_SOP_HEAD_PARITY_ERR_SMASK) 525 526 /* 527 * TXE SDMA Error flags 528 */ 529 static struct flag_table sdma_err_status_flags[] = { 530 /* 0*/ FLAG_ENTRY0("SDmaRpyTagErr", 531 SEND_DMA_ERR_STATUS_SDMA_RPY_TAG_ERR_SMASK), 532 /* 1*/ FLAG_ENTRY0("SDmaCsrParityErr", 533 SEND_DMA_ERR_STATUS_SDMA_CSR_PARITY_ERR_SMASK), 534 /* 2*/ FLAG_ENTRY0("SDmaPcieReqTrackingUncErr", 535 SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_UNC_ERR_SMASK), 536 /* 3*/ FLAG_ENTRY0("SDmaPcieReqTrackingCorErr", 537 SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_COR_ERR_SMASK), 538 /*04-63 reserved*/ 539 }; 540 541 /* TXE SDMA errors that cause an SPC freeze */ 542 #define ALL_SDMA_FREEZE_ERR \ 543 (SEND_DMA_ERR_STATUS_SDMA_RPY_TAG_ERR_SMASK \ 544 | SEND_DMA_ERR_STATUS_SDMA_CSR_PARITY_ERR_SMASK \ 545 | SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_UNC_ERR_SMASK) 546 547 /* SendEgressErrInfo bits that correspond to a PortXmitDiscard counter */ 548 #define PORT_DISCARD_EGRESS_ERRS \ 549 (SEND_EGRESS_ERR_INFO_TOO_LONG_IB_PACKET_ERR_SMASK \ 550 | SEND_EGRESS_ERR_INFO_VL_MAPPING_ERR_SMASK \ 551 | SEND_EGRESS_ERR_INFO_VL_ERR_SMASK) 552 553 /* 554 * TXE Egress Error flags 555 */ 556 #define SEES(text) SEND_EGRESS_ERR_STATUS_##text##_ERR_SMASK 557 static struct flag_table egress_err_status_flags[] = { 558 /* 0*/ FLAG_ENTRY0("TxPktIntegrityMemCorErr", SEES(TX_PKT_INTEGRITY_MEM_COR)), 559 /* 1*/ FLAG_ENTRY0("TxPktIntegrityMemUncErr", SEES(TX_PKT_INTEGRITY_MEM_UNC)), 560 /* 2 reserved */ 561 /* 3*/ FLAG_ENTRY0("TxEgressFifoUnderrunOrParityErr", 562 SEES(TX_EGRESS_FIFO_UNDERRUN_OR_PARITY)), 563 /* 4*/ FLAG_ENTRY0("TxLinkdownErr", SEES(TX_LINKDOWN)), 564 /* 5*/ FLAG_ENTRY0("TxIncorrectLinkStateErr", SEES(TX_INCORRECT_LINK_STATE)), 565 /* 6 reserved */ 566 /* 7*/ FLAG_ENTRY0("TxPioLaunchIntfParityErr", 567 SEES(TX_PIO_LAUNCH_INTF_PARITY)), 568 /* 8*/ FLAG_ENTRY0("TxSdmaLaunchIntfParityErr", 569 SEES(TX_SDMA_LAUNCH_INTF_PARITY)), 570 /* 9-10 reserved */ 571 /*11*/ FLAG_ENTRY0("TxSbrdCtlStateMachineParityErr", 572 SEES(TX_SBRD_CTL_STATE_MACHINE_PARITY)), 573 /*12*/ FLAG_ENTRY0("TxIllegalVLErr", SEES(TX_ILLEGAL_VL)), 574 /*13*/ FLAG_ENTRY0("TxLaunchCsrParityErr", SEES(TX_LAUNCH_CSR_PARITY)), 575 /*14*/ FLAG_ENTRY0("TxSbrdCtlCsrParityErr", SEES(TX_SBRD_CTL_CSR_PARITY)), 576 /*15*/ FLAG_ENTRY0("TxConfigParityErr", SEES(TX_CONFIG_PARITY)), 577 /*16*/ FLAG_ENTRY0("TxSdma0DisallowedPacketErr", 578 SEES(TX_SDMA0_DISALLOWED_PACKET)), 579 /*17*/ FLAG_ENTRY0("TxSdma1DisallowedPacketErr", 580 SEES(TX_SDMA1_DISALLOWED_PACKET)), 581 /*18*/ FLAG_ENTRY0("TxSdma2DisallowedPacketErr", 582 SEES(TX_SDMA2_DISALLOWED_PACKET)), 583 /*19*/ FLAG_ENTRY0("TxSdma3DisallowedPacketErr", 584 SEES(TX_SDMA3_DISALLOWED_PACKET)), 585 /*20*/ FLAG_ENTRY0("TxSdma4DisallowedPacketErr", 586 SEES(TX_SDMA4_DISALLOWED_PACKET)), 587 /*21*/ FLAG_ENTRY0("TxSdma5DisallowedPacketErr", 588 SEES(TX_SDMA5_DISALLOWED_PACKET)), 589 /*22*/ FLAG_ENTRY0("TxSdma6DisallowedPacketErr", 590 SEES(TX_SDMA6_DISALLOWED_PACKET)), 591 /*23*/ FLAG_ENTRY0("TxSdma7DisallowedPacketErr", 592 SEES(TX_SDMA7_DISALLOWED_PACKET)), 593 /*24*/ FLAG_ENTRY0("TxSdma8DisallowedPacketErr", 594 SEES(TX_SDMA8_DISALLOWED_PACKET)), 595 /*25*/ FLAG_ENTRY0("TxSdma9DisallowedPacketErr", 596 SEES(TX_SDMA9_DISALLOWED_PACKET)), 597 /*26*/ FLAG_ENTRY0("TxSdma10DisallowedPacketErr", 598 SEES(TX_SDMA10_DISALLOWED_PACKET)), 599 /*27*/ FLAG_ENTRY0("TxSdma11DisallowedPacketErr", 600 SEES(TX_SDMA11_DISALLOWED_PACKET)), 601 /*28*/ FLAG_ENTRY0("TxSdma12DisallowedPacketErr", 602 SEES(TX_SDMA12_DISALLOWED_PACKET)), 603 /*29*/ FLAG_ENTRY0("TxSdma13DisallowedPacketErr", 604 SEES(TX_SDMA13_DISALLOWED_PACKET)), 605 /*30*/ FLAG_ENTRY0("TxSdma14DisallowedPacketErr", 606 SEES(TX_SDMA14_DISALLOWED_PACKET)), 607 /*31*/ FLAG_ENTRY0("TxSdma15DisallowedPacketErr", 608 SEES(TX_SDMA15_DISALLOWED_PACKET)), 609 /*32*/ FLAG_ENTRY0("TxLaunchFifo0UncOrParityErr", 610 SEES(TX_LAUNCH_FIFO0_UNC_OR_PARITY)), 611 /*33*/ FLAG_ENTRY0("TxLaunchFifo1UncOrParityErr", 612 SEES(TX_LAUNCH_FIFO1_UNC_OR_PARITY)), 613 /*34*/ FLAG_ENTRY0("TxLaunchFifo2UncOrParityErr", 614 SEES(TX_LAUNCH_FIFO2_UNC_OR_PARITY)), 615 /*35*/ FLAG_ENTRY0("TxLaunchFifo3UncOrParityErr", 616 SEES(TX_LAUNCH_FIFO3_UNC_OR_PARITY)), 617 /*36*/ FLAG_ENTRY0("TxLaunchFifo4UncOrParityErr", 618 SEES(TX_LAUNCH_FIFO4_UNC_OR_PARITY)), 619 /*37*/ FLAG_ENTRY0("TxLaunchFifo5UncOrParityErr", 620 SEES(TX_LAUNCH_FIFO5_UNC_OR_PARITY)), 621 /*38*/ FLAG_ENTRY0("TxLaunchFifo6UncOrParityErr", 622 SEES(TX_LAUNCH_FIFO6_UNC_OR_PARITY)), 623 /*39*/ FLAG_ENTRY0("TxLaunchFifo7UncOrParityErr", 624 SEES(TX_LAUNCH_FIFO7_UNC_OR_PARITY)), 625 /*40*/ FLAG_ENTRY0("TxLaunchFifo8UncOrParityErr", 626 SEES(TX_LAUNCH_FIFO8_UNC_OR_PARITY)), 627 /*41*/ FLAG_ENTRY0("TxCreditReturnParityErr", SEES(TX_CREDIT_RETURN_PARITY)), 628 /*42*/ FLAG_ENTRY0("TxSbHdrUncErr", SEES(TX_SB_HDR_UNC)), 629 /*43*/ FLAG_ENTRY0("TxReadSdmaMemoryUncErr", SEES(TX_READ_SDMA_MEMORY_UNC)), 630 /*44*/ FLAG_ENTRY0("TxReadPioMemoryUncErr", SEES(TX_READ_PIO_MEMORY_UNC)), 631 /*45*/ FLAG_ENTRY0("TxEgressFifoUncErr", SEES(TX_EGRESS_FIFO_UNC)), 632 /*46*/ FLAG_ENTRY0("TxHcrcInsertionErr", SEES(TX_HCRC_INSERTION)), 633 /*47*/ FLAG_ENTRY0("TxCreditReturnVLErr", SEES(TX_CREDIT_RETURN_VL)), 634 /*48*/ FLAG_ENTRY0("TxLaunchFifo0CorErr", SEES(TX_LAUNCH_FIFO0_COR)), 635 /*49*/ FLAG_ENTRY0("TxLaunchFifo1CorErr", SEES(TX_LAUNCH_FIFO1_COR)), 636 /*50*/ FLAG_ENTRY0("TxLaunchFifo2CorErr", SEES(TX_LAUNCH_FIFO2_COR)), 637 /*51*/ FLAG_ENTRY0("TxLaunchFifo3CorErr", SEES(TX_LAUNCH_FIFO3_COR)), 638 /*52*/ FLAG_ENTRY0("TxLaunchFifo4CorErr", SEES(TX_LAUNCH_FIFO4_COR)), 639 /*53*/ FLAG_ENTRY0("TxLaunchFifo5CorErr", SEES(TX_LAUNCH_FIFO5_COR)), 640 /*54*/ FLAG_ENTRY0("TxLaunchFifo6CorErr", SEES(TX_LAUNCH_FIFO6_COR)), 641 /*55*/ FLAG_ENTRY0("TxLaunchFifo7CorErr", SEES(TX_LAUNCH_FIFO7_COR)), 642 /*56*/ FLAG_ENTRY0("TxLaunchFifo8CorErr", SEES(TX_LAUNCH_FIFO8_COR)), 643 /*57*/ FLAG_ENTRY0("TxCreditOverrunErr", SEES(TX_CREDIT_OVERRUN)), 644 /*58*/ FLAG_ENTRY0("TxSbHdrCorErr", SEES(TX_SB_HDR_COR)), 645 /*59*/ FLAG_ENTRY0("TxReadSdmaMemoryCorErr", SEES(TX_READ_SDMA_MEMORY_COR)), 646 /*60*/ FLAG_ENTRY0("TxReadPioMemoryCorErr", SEES(TX_READ_PIO_MEMORY_COR)), 647 /*61*/ FLAG_ENTRY0("TxEgressFifoCorErr", SEES(TX_EGRESS_FIFO_COR)), 648 /*62*/ FLAG_ENTRY0("TxReadSdmaMemoryCsrUncErr", 649 SEES(TX_READ_SDMA_MEMORY_CSR_UNC)), 650 /*63*/ FLAG_ENTRY0("TxReadPioMemoryCsrUncErr", 651 SEES(TX_READ_PIO_MEMORY_CSR_UNC)), 652 }; 653 654 /* 655 * TXE Egress Error Info flags 656 */ 657 #define SEEI(text) SEND_EGRESS_ERR_INFO_##text##_ERR_SMASK 658 static struct flag_table egress_err_info_flags[] = { 659 /* 0*/ FLAG_ENTRY0("Reserved", 0ull), 660 /* 1*/ FLAG_ENTRY0("VLErr", SEEI(VL)), 661 /* 2*/ FLAG_ENTRY0("JobKeyErr", SEEI(JOB_KEY)), 662 /* 3*/ FLAG_ENTRY0("JobKeyErr", SEEI(JOB_KEY)), 663 /* 4*/ FLAG_ENTRY0("PartitionKeyErr", SEEI(PARTITION_KEY)), 664 /* 5*/ FLAG_ENTRY0("SLIDErr", SEEI(SLID)), 665 /* 6*/ FLAG_ENTRY0("OpcodeErr", SEEI(OPCODE)), 666 /* 7*/ FLAG_ENTRY0("VLMappingErr", SEEI(VL_MAPPING)), 667 /* 8*/ FLAG_ENTRY0("RawErr", SEEI(RAW)), 668 /* 9*/ FLAG_ENTRY0("RawIPv6Err", SEEI(RAW_IPV6)), 669 /*10*/ FLAG_ENTRY0("GRHErr", SEEI(GRH)), 670 /*11*/ FLAG_ENTRY0("BypassErr", SEEI(BYPASS)), 671 /*12*/ FLAG_ENTRY0("KDETHPacketsErr", SEEI(KDETH_PACKETS)), 672 /*13*/ FLAG_ENTRY0("NonKDETHPacketsErr", SEEI(NON_KDETH_PACKETS)), 673 /*14*/ FLAG_ENTRY0("TooSmallIBPacketsErr", SEEI(TOO_SMALL_IB_PACKETS)), 674 /*15*/ FLAG_ENTRY0("TooSmallBypassPacketsErr", SEEI(TOO_SMALL_BYPASS_PACKETS)), 675 /*16*/ FLAG_ENTRY0("PbcTestErr", SEEI(PBC_TEST)), 676 /*17*/ FLAG_ENTRY0("BadPktLenErr", SEEI(BAD_PKT_LEN)), 677 /*18*/ FLAG_ENTRY0("TooLongIBPacketErr", SEEI(TOO_LONG_IB_PACKET)), 678 /*19*/ FLAG_ENTRY0("TooLongBypassPacketsErr", SEEI(TOO_LONG_BYPASS_PACKETS)), 679 /*20*/ FLAG_ENTRY0("PbcStaticRateControlErr", SEEI(PBC_STATIC_RATE_CONTROL)), 680 /*21*/ FLAG_ENTRY0("BypassBadPktLenErr", SEEI(BAD_PKT_LEN)), 681 }; 682 683 /* TXE Egress errors that cause an SPC freeze */ 684 #define ALL_TXE_EGRESS_FREEZE_ERR \ 685 (SEES(TX_EGRESS_FIFO_UNDERRUN_OR_PARITY) \ 686 | SEES(TX_PIO_LAUNCH_INTF_PARITY) \ 687 | SEES(TX_SDMA_LAUNCH_INTF_PARITY) \ 688 | SEES(TX_SBRD_CTL_STATE_MACHINE_PARITY) \ 689 | SEES(TX_LAUNCH_CSR_PARITY) \ 690 | SEES(TX_SBRD_CTL_CSR_PARITY) \ 691 | SEES(TX_CONFIG_PARITY) \ 692 | SEES(TX_LAUNCH_FIFO0_UNC_OR_PARITY) \ 693 | SEES(TX_LAUNCH_FIFO1_UNC_OR_PARITY) \ 694 | SEES(TX_LAUNCH_FIFO2_UNC_OR_PARITY) \ 695 | SEES(TX_LAUNCH_FIFO3_UNC_OR_PARITY) \ 696 | SEES(TX_LAUNCH_FIFO4_UNC_OR_PARITY) \ 697 | SEES(TX_LAUNCH_FIFO5_UNC_OR_PARITY) \ 698 | SEES(TX_LAUNCH_FIFO6_UNC_OR_PARITY) \ 699 | SEES(TX_LAUNCH_FIFO7_UNC_OR_PARITY) \ 700 | SEES(TX_LAUNCH_FIFO8_UNC_OR_PARITY) \ 701 | SEES(TX_CREDIT_RETURN_PARITY)) 702 703 /* 704 * TXE Send error flags 705 */ 706 #define SES(name) SEND_ERR_STATUS_SEND_##name##_ERR_SMASK 707 static struct flag_table send_err_status_flags[] = { 708 /* 0*/ FLAG_ENTRY0("SendCsrParityErr", SES(CSR_PARITY)), 709 /* 1*/ FLAG_ENTRY0("SendCsrReadBadAddrErr", SES(CSR_READ_BAD_ADDR)), 710 /* 2*/ FLAG_ENTRY0("SendCsrWriteBadAddrErr", SES(CSR_WRITE_BAD_ADDR)) 711 }; 712 713 /* 714 * TXE Send Context Error flags and consequences 715 */ 716 static struct flag_table sc_err_status_flags[] = { 717 /* 0*/ FLAG_ENTRY("InconsistentSop", 718 SEC_PACKET_DROPPED | SEC_SC_HALTED, 719 SEND_CTXT_ERR_STATUS_PIO_INCONSISTENT_SOP_ERR_SMASK), 720 /* 1*/ FLAG_ENTRY("DisallowedPacket", 721 SEC_PACKET_DROPPED | SEC_SC_HALTED, 722 SEND_CTXT_ERR_STATUS_PIO_DISALLOWED_PACKET_ERR_SMASK), 723 /* 2*/ FLAG_ENTRY("WriteCrossesBoundary", 724 SEC_WRITE_DROPPED | SEC_SC_HALTED, 725 SEND_CTXT_ERR_STATUS_PIO_WRITE_CROSSES_BOUNDARY_ERR_SMASK), 726 /* 3*/ FLAG_ENTRY("WriteOverflow", 727 SEC_WRITE_DROPPED | SEC_SC_HALTED, 728 SEND_CTXT_ERR_STATUS_PIO_WRITE_OVERFLOW_ERR_SMASK), 729 /* 4*/ FLAG_ENTRY("WriteOutOfBounds", 730 SEC_WRITE_DROPPED | SEC_SC_HALTED, 731 SEND_CTXT_ERR_STATUS_PIO_WRITE_OUT_OF_BOUNDS_ERR_SMASK), 732 /* 5-63 reserved*/ 733 }; 734 735 /* 736 * RXE Receive Error flags 737 */ 738 #define RXES(name) RCV_ERR_STATUS_RX_##name##_ERR_SMASK 739 static struct flag_table rxe_err_status_flags[] = { 740 /* 0*/ FLAG_ENTRY0("RxDmaCsrCorErr", RXES(DMA_CSR_COR)), 741 /* 1*/ FLAG_ENTRY0("RxDcIntfParityErr", RXES(DC_INTF_PARITY)), 742 /* 2*/ FLAG_ENTRY0("RxRcvHdrUncErr", RXES(RCV_HDR_UNC)), 743 /* 3*/ FLAG_ENTRY0("RxRcvHdrCorErr", RXES(RCV_HDR_COR)), 744 /* 4*/ FLAG_ENTRY0("RxRcvDataUncErr", RXES(RCV_DATA_UNC)), 745 /* 5*/ FLAG_ENTRY0("RxRcvDataCorErr", RXES(RCV_DATA_COR)), 746 /* 6*/ FLAG_ENTRY0("RxRcvQpMapTableUncErr", RXES(RCV_QP_MAP_TABLE_UNC)), 747 /* 7*/ FLAG_ENTRY0("RxRcvQpMapTableCorErr", RXES(RCV_QP_MAP_TABLE_COR)), 748 /* 8*/ FLAG_ENTRY0("RxRcvCsrParityErr", RXES(RCV_CSR_PARITY)), 749 /* 9*/ FLAG_ENTRY0("RxDcSopEopParityErr", RXES(DC_SOP_EOP_PARITY)), 750 /*10*/ FLAG_ENTRY0("RxDmaFlagUncErr", RXES(DMA_FLAG_UNC)), 751 /*11*/ FLAG_ENTRY0("RxDmaFlagCorErr", RXES(DMA_FLAG_COR)), 752 /*12*/ FLAG_ENTRY0("RxRcvFsmEncodingErr", RXES(RCV_FSM_ENCODING)), 753 /*13*/ FLAG_ENTRY0("RxRbufFreeListUncErr", RXES(RBUF_FREE_LIST_UNC)), 754 /*14*/ FLAG_ENTRY0("RxRbufFreeListCorErr", RXES(RBUF_FREE_LIST_COR)), 755 /*15*/ FLAG_ENTRY0("RxRbufLookupDesRegUncErr", RXES(RBUF_LOOKUP_DES_REG_UNC)), 756 /*16*/ FLAG_ENTRY0("RxRbufLookupDesRegUncCorErr", 757 RXES(RBUF_LOOKUP_DES_REG_UNC_COR)), 758 /*17*/ FLAG_ENTRY0("RxRbufLookupDesUncErr", RXES(RBUF_LOOKUP_DES_UNC)), 759 /*18*/ FLAG_ENTRY0("RxRbufLookupDesCorErr", RXES(RBUF_LOOKUP_DES_COR)), 760 /*19*/ FLAG_ENTRY0("RxRbufBlockListReadUncErr", 761 RXES(RBUF_BLOCK_LIST_READ_UNC)), 762 /*20*/ FLAG_ENTRY0("RxRbufBlockListReadCorErr", 763 RXES(RBUF_BLOCK_LIST_READ_COR)), 764 /*21*/ FLAG_ENTRY0("RxRbufCsrQHeadBufNumParityErr", 765 RXES(RBUF_CSR_QHEAD_BUF_NUM_PARITY)), 766 /*22*/ FLAG_ENTRY0("RxRbufCsrQEntCntParityErr", 767 RXES(RBUF_CSR_QENT_CNT_PARITY)), 768 /*23*/ FLAG_ENTRY0("RxRbufCsrQNextBufParityErr", 769 RXES(RBUF_CSR_QNEXT_BUF_PARITY)), 770 /*24*/ FLAG_ENTRY0("RxRbufCsrQVldBitParityErr", 771 RXES(RBUF_CSR_QVLD_BIT_PARITY)), 772 /*25*/ FLAG_ENTRY0("RxRbufCsrQHdPtrParityErr", RXES(RBUF_CSR_QHD_PTR_PARITY)), 773 /*26*/ FLAG_ENTRY0("RxRbufCsrQTlPtrParityErr", RXES(RBUF_CSR_QTL_PTR_PARITY)), 774 /*27*/ FLAG_ENTRY0("RxRbufCsrQNumOfPktParityErr", 775 RXES(RBUF_CSR_QNUM_OF_PKT_PARITY)), 776 /*28*/ FLAG_ENTRY0("RxRbufCsrQEOPDWParityErr", RXES(RBUF_CSR_QEOPDW_PARITY)), 777 /*29*/ FLAG_ENTRY0("RxRbufCtxIdParityErr", RXES(RBUF_CTX_ID_PARITY)), 778 /*30*/ FLAG_ENTRY0("RxRBufBadLookupErr", RXES(RBUF_BAD_LOOKUP)), 779 /*31*/ FLAG_ENTRY0("RxRbufFullErr", RXES(RBUF_FULL)), 780 /*32*/ FLAG_ENTRY0("RxRbufEmptyErr", RXES(RBUF_EMPTY)), 781 /*33*/ FLAG_ENTRY0("RxRbufFlRdAddrParityErr", RXES(RBUF_FL_RD_ADDR_PARITY)), 782 /*34*/ FLAG_ENTRY0("RxRbufFlWrAddrParityErr", RXES(RBUF_FL_WR_ADDR_PARITY)), 783 /*35*/ FLAG_ENTRY0("RxRbufFlInitdoneParityErr", 784 RXES(RBUF_FL_INITDONE_PARITY)), 785 /*36*/ FLAG_ENTRY0("RxRbufFlInitWrAddrParityErr", 786 RXES(RBUF_FL_INIT_WR_ADDR_PARITY)), 787 /*37*/ FLAG_ENTRY0("RxRbufNextFreeBufUncErr", RXES(RBUF_NEXT_FREE_BUF_UNC)), 788 /*38*/ FLAG_ENTRY0("RxRbufNextFreeBufCorErr", RXES(RBUF_NEXT_FREE_BUF_COR)), 789 /*39*/ FLAG_ENTRY0("RxLookupDesPart1UncErr", RXES(LOOKUP_DES_PART1_UNC)), 790 /*40*/ FLAG_ENTRY0("RxLookupDesPart1UncCorErr", 791 RXES(LOOKUP_DES_PART1_UNC_COR)), 792 /*41*/ FLAG_ENTRY0("RxLookupDesPart2ParityErr", 793 RXES(LOOKUP_DES_PART2_PARITY)), 794 /*42*/ FLAG_ENTRY0("RxLookupRcvArrayUncErr", RXES(LOOKUP_RCV_ARRAY_UNC)), 795 /*43*/ FLAG_ENTRY0("RxLookupRcvArrayCorErr", RXES(LOOKUP_RCV_ARRAY_COR)), 796 /*44*/ FLAG_ENTRY0("RxLookupCsrParityErr", RXES(LOOKUP_CSR_PARITY)), 797 /*45*/ FLAG_ENTRY0("RxHqIntrCsrParityErr", RXES(HQ_INTR_CSR_PARITY)), 798 /*46*/ FLAG_ENTRY0("RxHqIntrFsmErr", RXES(HQ_INTR_FSM)), 799 /*47*/ FLAG_ENTRY0("RxRbufDescPart1UncErr", RXES(RBUF_DESC_PART1_UNC)), 800 /*48*/ FLAG_ENTRY0("RxRbufDescPart1CorErr", RXES(RBUF_DESC_PART1_COR)), 801 /*49*/ FLAG_ENTRY0("RxRbufDescPart2UncErr", RXES(RBUF_DESC_PART2_UNC)), 802 /*50*/ FLAG_ENTRY0("RxRbufDescPart2CorErr", RXES(RBUF_DESC_PART2_COR)), 803 /*51*/ FLAG_ENTRY0("RxDmaHdrFifoRdUncErr", RXES(DMA_HDR_FIFO_RD_UNC)), 804 /*52*/ FLAG_ENTRY0("RxDmaHdrFifoRdCorErr", RXES(DMA_HDR_FIFO_RD_COR)), 805 /*53*/ FLAG_ENTRY0("RxDmaDataFifoRdUncErr", RXES(DMA_DATA_FIFO_RD_UNC)), 806 /*54*/ FLAG_ENTRY0("RxDmaDataFifoRdCorErr", RXES(DMA_DATA_FIFO_RD_COR)), 807 /*55*/ FLAG_ENTRY0("RxRbufDataUncErr", RXES(RBUF_DATA_UNC)), 808 /*56*/ FLAG_ENTRY0("RxRbufDataCorErr", RXES(RBUF_DATA_COR)), 809 /*57*/ FLAG_ENTRY0("RxDmaCsrParityErr", RXES(DMA_CSR_PARITY)), 810 /*58*/ FLAG_ENTRY0("RxDmaEqFsmEncodingErr", RXES(DMA_EQ_FSM_ENCODING)), 811 /*59*/ FLAG_ENTRY0("RxDmaDqFsmEncodingErr", RXES(DMA_DQ_FSM_ENCODING)), 812 /*60*/ FLAG_ENTRY0("RxDmaCsrUncErr", RXES(DMA_CSR_UNC)), 813 /*61*/ FLAG_ENTRY0("RxCsrReadBadAddrErr", RXES(CSR_READ_BAD_ADDR)), 814 /*62*/ FLAG_ENTRY0("RxCsrWriteBadAddrErr", RXES(CSR_WRITE_BAD_ADDR)), 815 /*63*/ FLAG_ENTRY0("RxCsrParityErr", RXES(CSR_PARITY)) 816 }; 817 818 /* RXE errors that will trigger an SPC freeze */ 819 #define ALL_RXE_FREEZE_ERR \ 820 (RCV_ERR_STATUS_RX_RCV_QP_MAP_TABLE_UNC_ERR_SMASK \ 821 | RCV_ERR_STATUS_RX_RCV_CSR_PARITY_ERR_SMASK \ 822 | RCV_ERR_STATUS_RX_DMA_FLAG_UNC_ERR_SMASK \ 823 | RCV_ERR_STATUS_RX_RCV_FSM_ENCODING_ERR_SMASK \ 824 | RCV_ERR_STATUS_RX_RBUF_FREE_LIST_UNC_ERR_SMASK \ 825 | RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_REG_UNC_ERR_SMASK \ 826 | RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_REG_UNC_COR_ERR_SMASK \ 827 | RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_UNC_ERR_SMASK \ 828 | RCV_ERR_STATUS_RX_RBUF_BLOCK_LIST_READ_UNC_ERR_SMASK \ 829 | RCV_ERR_STATUS_RX_RBUF_CSR_QHEAD_BUF_NUM_PARITY_ERR_SMASK \ 830 | RCV_ERR_STATUS_RX_RBUF_CSR_QENT_CNT_PARITY_ERR_SMASK \ 831 | RCV_ERR_STATUS_RX_RBUF_CSR_QNEXT_BUF_PARITY_ERR_SMASK \ 832 | RCV_ERR_STATUS_RX_RBUF_CSR_QVLD_BIT_PARITY_ERR_SMASK \ 833 | RCV_ERR_STATUS_RX_RBUF_CSR_QHD_PTR_PARITY_ERR_SMASK \ 834 | RCV_ERR_STATUS_RX_RBUF_CSR_QTL_PTR_PARITY_ERR_SMASK \ 835 | RCV_ERR_STATUS_RX_RBUF_CSR_QNUM_OF_PKT_PARITY_ERR_SMASK \ 836 | RCV_ERR_STATUS_RX_RBUF_CSR_QEOPDW_PARITY_ERR_SMASK \ 837 | RCV_ERR_STATUS_RX_RBUF_CTX_ID_PARITY_ERR_SMASK \ 838 | RCV_ERR_STATUS_RX_RBUF_BAD_LOOKUP_ERR_SMASK \ 839 | RCV_ERR_STATUS_RX_RBUF_FULL_ERR_SMASK \ 840 | RCV_ERR_STATUS_RX_RBUF_EMPTY_ERR_SMASK \ 841 | RCV_ERR_STATUS_RX_RBUF_FL_RD_ADDR_PARITY_ERR_SMASK \ 842 | RCV_ERR_STATUS_RX_RBUF_FL_WR_ADDR_PARITY_ERR_SMASK \ 843 | RCV_ERR_STATUS_RX_RBUF_FL_INITDONE_PARITY_ERR_SMASK \ 844 | RCV_ERR_STATUS_RX_RBUF_FL_INIT_WR_ADDR_PARITY_ERR_SMASK \ 845 | RCV_ERR_STATUS_RX_RBUF_NEXT_FREE_BUF_UNC_ERR_SMASK \ 846 | RCV_ERR_STATUS_RX_LOOKUP_DES_PART1_UNC_ERR_SMASK \ 847 | RCV_ERR_STATUS_RX_LOOKUP_DES_PART1_UNC_COR_ERR_SMASK \ 848 | RCV_ERR_STATUS_RX_LOOKUP_DES_PART2_PARITY_ERR_SMASK \ 849 | RCV_ERR_STATUS_RX_LOOKUP_RCV_ARRAY_UNC_ERR_SMASK \ 850 | RCV_ERR_STATUS_RX_LOOKUP_CSR_PARITY_ERR_SMASK \ 851 | RCV_ERR_STATUS_RX_HQ_INTR_CSR_PARITY_ERR_SMASK \ 852 | RCV_ERR_STATUS_RX_HQ_INTR_FSM_ERR_SMASK \ 853 | RCV_ERR_STATUS_RX_RBUF_DESC_PART1_UNC_ERR_SMASK \ 854 | RCV_ERR_STATUS_RX_RBUF_DESC_PART1_COR_ERR_SMASK \ 855 | RCV_ERR_STATUS_RX_RBUF_DESC_PART2_UNC_ERR_SMASK \ 856 | RCV_ERR_STATUS_RX_DMA_HDR_FIFO_RD_UNC_ERR_SMASK \ 857 | RCV_ERR_STATUS_RX_DMA_DATA_FIFO_RD_UNC_ERR_SMASK \ 858 | RCV_ERR_STATUS_RX_RBUF_DATA_UNC_ERR_SMASK \ 859 | RCV_ERR_STATUS_RX_DMA_CSR_PARITY_ERR_SMASK \ 860 | RCV_ERR_STATUS_RX_DMA_EQ_FSM_ENCODING_ERR_SMASK \ 861 | RCV_ERR_STATUS_RX_DMA_DQ_FSM_ENCODING_ERR_SMASK \ 862 | RCV_ERR_STATUS_RX_DMA_CSR_UNC_ERR_SMASK \ 863 | RCV_ERR_STATUS_RX_CSR_PARITY_ERR_SMASK) 864 865 #define RXE_FREEZE_ABORT_MASK \ 866 (RCV_ERR_STATUS_RX_DMA_CSR_UNC_ERR_SMASK | \ 867 RCV_ERR_STATUS_RX_DMA_HDR_FIFO_RD_UNC_ERR_SMASK | \ 868 RCV_ERR_STATUS_RX_DMA_DATA_FIFO_RD_UNC_ERR_SMASK) 869 870 /* 871 * DCC Error Flags 872 */ 873 #define DCCE(name) DCC_ERR_FLG_##name##_SMASK 874 static struct flag_table dcc_err_flags[] = { 875 FLAG_ENTRY0("bad_l2_err", DCCE(BAD_L2_ERR)), 876 FLAG_ENTRY0("bad_sc_err", DCCE(BAD_SC_ERR)), 877 FLAG_ENTRY0("bad_mid_tail_err", DCCE(BAD_MID_TAIL_ERR)), 878 FLAG_ENTRY0("bad_preemption_err", DCCE(BAD_PREEMPTION_ERR)), 879 FLAG_ENTRY0("preemption_err", DCCE(PREEMPTION_ERR)), 880 FLAG_ENTRY0("preemptionvl15_err", DCCE(PREEMPTIONVL15_ERR)), 881 FLAG_ENTRY0("bad_vl_marker_err", DCCE(BAD_VL_MARKER_ERR)), 882 FLAG_ENTRY0("bad_dlid_target_err", DCCE(BAD_DLID_TARGET_ERR)), 883 FLAG_ENTRY0("bad_lver_err", DCCE(BAD_LVER_ERR)), 884 FLAG_ENTRY0("uncorrectable_err", DCCE(UNCORRECTABLE_ERR)), 885 FLAG_ENTRY0("bad_crdt_ack_err", DCCE(BAD_CRDT_ACK_ERR)), 886 FLAG_ENTRY0("unsup_pkt_type", DCCE(UNSUP_PKT_TYPE)), 887 FLAG_ENTRY0("bad_ctrl_flit_err", DCCE(BAD_CTRL_FLIT_ERR)), 888 FLAG_ENTRY0("event_cntr_parity_err", DCCE(EVENT_CNTR_PARITY_ERR)), 889 FLAG_ENTRY0("event_cntr_rollover_err", DCCE(EVENT_CNTR_ROLLOVER_ERR)), 890 FLAG_ENTRY0("link_err", DCCE(LINK_ERR)), 891 FLAG_ENTRY0("misc_cntr_rollover_err", DCCE(MISC_CNTR_ROLLOVER_ERR)), 892 FLAG_ENTRY0("bad_ctrl_dist_err", DCCE(BAD_CTRL_DIST_ERR)), 893 FLAG_ENTRY0("bad_tail_dist_err", DCCE(BAD_TAIL_DIST_ERR)), 894 FLAG_ENTRY0("bad_head_dist_err", DCCE(BAD_HEAD_DIST_ERR)), 895 FLAG_ENTRY0("nonvl15_state_err", DCCE(NONVL15_STATE_ERR)), 896 FLAG_ENTRY0("vl15_multi_err", DCCE(VL15_MULTI_ERR)), 897 FLAG_ENTRY0("bad_pkt_length_err", DCCE(BAD_PKT_LENGTH_ERR)), 898 FLAG_ENTRY0("unsup_vl_err", DCCE(UNSUP_VL_ERR)), 899 FLAG_ENTRY0("perm_nvl15_err", DCCE(PERM_NVL15_ERR)), 900 FLAG_ENTRY0("slid_zero_err", DCCE(SLID_ZERO_ERR)), 901 FLAG_ENTRY0("dlid_zero_err", DCCE(DLID_ZERO_ERR)), 902 FLAG_ENTRY0("length_mtu_err", DCCE(LENGTH_MTU_ERR)), 903 FLAG_ENTRY0("rx_early_drop_err", DCCE(RX_EARLY_DROP_ERR)), 904 FLAG_ENTRY0("late_short_err", DCCE(LATE_SHORT_ERR)), 905 FLAG_ENTRY0("late_long_err", DCCE(LATE_LONG_ERR)), 906 FLAG_ENTRY0("late_ebp_err", DCCE(LATE_EBP_ERR)), 907 FLAG_ENTRY0("fpe_tx_fifo_ovflw_err", DCCE(FPE_TX_FIFO_OVFLW_ERR)), 908 FLAG_ENTRY0("fpe_tx_fifo_unflw_err", DCCE(FPE_TX_FIFO_UNFLW_ERR)), 909 FLAG_ENTRY0("csr_access_blocked_host", DCCE(CSR_ACCESS_BLOCKED_HOST)), 910 FLAG_ENTRY0("csr_access_blocked_uc", DCCE(CSR_ACCESS_BLOCKED_UC)), 911 FLAG_ENTRY0("tx_ctrl_parity_err", DCCE(TX_CTRL_PARITY_ERR)), 912 FLAG_ENTRY0("tx_ctrl_parity_mbe_err", DCCE(TX_CTRL_PARITY_MBE_ERR)), 913 FLAG_ENTRY0("tx_sc_parity_err", DCCE(TX_SC_PARITY_ERR)), 914 FLAG_ENTRY0("rx_ctrl_parity_mbe_err", DCCE(RX_CTRL_PARITY_MBE_ERR)), 915 FLAG_ENTRY0("csr_parity_err", DCCE(CSR_PARITY_ERR)), 916 FLAG_ENTRY0("csr_inval_addr", DCCE(CSR_INVAL_ADDR)), 917 FLAG_ENTRY0("tx_byte_shft_parity_err", DCCE(TX_BYTE_SHFT_PARITY_ERR)), 918 FLAG_ENTRY0("rx_byte_shft_parity_err", DCCE(RX_BYTE_SHFT_PARITY_ERR)), 919 FLAG_ENTRY0("fmconfig_err", DCCE(FMCONFIG_ERR)), 920 FLAG_ENTRY0("rcvport_err", DCCE(RCVPORT_ERR)), 921 }; 922 923 /* 924 * LCB error flags 925 */ 926 #define LCBE(name) DC_LCB_ERR_FLG_##name##_SMASK 927 static struct flag_table lcb_err_flags[] = { 928 /* 0*/ FLAG_ENTRY0("CSR_PARITY_ERR", LCBE(CSR_PARITY_ERR)), 929 /* 1*/ FLAG_ENTRY0("INVALID_CSR_ADDR", LCBE(INVALID_CSR_ADDR)), 930 /* 2*/ FLAG_ENTRY0("RST_FOR_FAILED_DESKEW", LCBE(RST_FOR_FAILED_DESKEW)), 931 /* 3*/ FLAG_ENTRY0("ALL_LNS_FAILED_REINIT_TEST", 932 LCBE(ALL_LNS_FAILED_REINIT_TEST)), 933 /* 4*/ FLAG_ENTRY0("LOST_REINIT_STALL_OR_TOS", LCBE(LOST_REINIT_STALL_OR_TOS)), 934 /* 5*/ FLAG_ENTRY0("TX_LESS_THAN_FOUR_LNS", LCBE(TX_LESS_THAN_FOUR_LNS)), 935 /* 6*/ FLAG_ENTRY0("RX_LESS_THAN_FOUR_LNS", LCBE(RX_LESS_THAN_FOUR_LNS)), 936 /* 7*/ FLAG_ENTRY0("SEQ_CRC_ERR", LCBE(SEQ_CRC_ERR)), 937 /* 8*/ FLAG_ENTRY0("REINIT_FROM_PEER", LCBE(REINIT_FROM_PEER)), 938 /* 9*/ FLAG_ENTRY0("REINIT_FOR_LN_DEGRADE", LCBE(REINIT_FOR_LN_DEGRADE)), 939 /*10*/ FLAG_ENTRY0("CRC_ERR_CNT_HIT_LIMIT", LCBE(CRC_ERR_CNT_HIT_LIMIT)), 940 /*11*/ FLAG_ENTRY0("RCLK_STOPPED", LCBE(RCLK_STOPPED)), 941 /*12*/ FLAG_ENTRY0("UNEXPECTED_REPLAY_MARKER", LCBE(UNEXPECTED_REPLAY_MARKER)), 942 /*13*/ FLAG_ENTRY0("UNEXPECTED_ROUND_TRIP_MARKER", 943 LCBE(UNEXPECTED_ROUND_TRIP_MARKER)), 944 /*14*/ FLAG_ENTRY0("ILLEGAL_NULL_LTP", LCBE(ILLEGAL_NULL_LTP)), 945 /*15*/ FLAG_ENTRY0("ILLEGAL_FLIT_ENCODING", LCBE(ILLEGAL_FLIT_ENCODING)), 946 /*16*/ FLAG_ENTRY0("FLIT_INPUT_BUF_OFLW", LCBE(FLIT_INPUT_BUF_OFLW)), 947 /*17*/ FLAG_ENTRY0("VL_ACK_INPUT_BUF_OFLW", LCBE(VL_ACK_INPUT_BUF_OFLW)), 948 /*18*/ FLAG_ENTRY0("VL_ACK_INPUT_PARITY_ERR", LCBE(VL_ACK_INPUT_PARITY_ERR)), 949 /*19*/ FLAG_ENTRY0("VL_ACK_INPUT_WRONG_CRC_MODE", 950 LCBE(VL_ACK_INPUT_WRONG_CRC_MODE)), 951 /*20*/ FLAG_ENTRY0("FLIT_INPUT_BUF_MBE", LCBE(FLIT_INPUT_BUF_MBE)), 952 /*21*/ FLAG_ENTRY0("FLIT_INPUT_BUF_SBE", LCBE(FLIT_INPUT_BUF_SBE)), 953 /*22*/ FLAG_ENTRY0("REPLAY_BUF_MBE", LCBE(REPLAY_BUF_MBE)), 954 /*23*/ FLAG_ENTRY0("REPLAY_BUF_SBE", LCBE(REPLAY_BUF_SBE)), 955 /*24*/ FLAG_ENTRY0("CREDIT_RETURN_FLIT_MBE", LCBE(CREDIT_RETURN_FLIT_MBE)), 956 /*25*/ FLAG_ENTRY0("RST_FOR_LINK_TIMEOUT", LCBE(RST_FOR_LINK_TIMEOUT)), 957 /*26*/ FLAG_ENTRY0("RST_FOR_INCOMPLT_RND_TRIP", 958 LCBE(RST_FOR_INCOMPLT_RND_TRIP)), 959 /*27*/ FLAG_ENTRY0("HOLD_REINIT", LCBE(HOLD_REINIT)), 960 /*28*/ FLAG_ENTRY0("NEG_EDGE_LINK_TRANSFER_ACTIVE", 961 LCBE(NEG_EDGE_LINK_TRANSFER_ACTIVE)), 962 /*29*/ FLAG_ENTRY0("REDUNDANT_FLIT_PARITY_ERR", 963 LCBE(REDUNDANT_FLIT_PARITY_ERR)) 964 }; 965 966 /* 967 * DC8051 Error Flags 968 */ 969 #define D8E(name) DC_DC8051_ERR_FLG_##name##_SMASK 970 static struct flag_table dc8051_err_flags[] = { 971 FLAG_ENTRY0("SET_BY_8051", D8E(SET_BY_8051)), 972 FLAG_ENTRY0("LOST_8051_HEART_BEAT", D8E(LOST_8051_HEART_BEAT)), 973 FLAG_ENTRY0("CRAM_MBE", D8E(CRAM_MBE)), 974 FLAG_ENTRY0("CRAM_SBE", D8E(CRAM_SBE)), 975 FLAG_ENTRY0("DRAM_MBE", D8E(DRAM_MBE)), 976 FLAG_ENTRY0("DRAM_SBE", D8E(DRAM_SBE)), 977 FLAG_ENTRY0("IRAM_MBE", D8E(IRAM_MBE)), 978 FLAG_ENTRY0("IRAM_SBE", D8E(IRAM_SBE)), 979 FLAG_ENTRY0("UNMATCHED_SECURE_MSG_ACROSS_BCC_LANES", 980 D8E(UNMATCHED_SECURE_MSG_ACROSS_BCC_LANES)), 981 FLAG_ENTRY0("INVALID_CSR_ADDR", D8E(INVALID_CSR_ADDR)), 982 }; 983 984 /* 985 * DC8051 Information Error flags 986 * 987 * Flags in DC8051_DBG_ERR_INFO_SET_BY_8051.ERROR field. 988 */ 989 static struct flag_table dc8051_info_err_flags[] = { 990 FLAG_ENTRY0("Spico ROM check failed", SPICO_ROM_FAILED), 991 FLAG_ENTRY0("Unknown frame received", UNKNOWN_FRAME), 992 FLAG_ENTRY0("Target BER not met", TARGET_BER_NOT_MET), 993 FLAG_ENTRY0("Serdes internal loopback failure", 994 FAILED_SERDES_INTERNAL_LOOPBACK), 995 FLAG_ENTRY0("Failed SerDes init", FAILED_SERDES_INIT), 996 FLAG_ENTRY0("Failed LNI(Polling)", FAILED_LNI_POLLING), 997 FLAG_ENTRY0("Failed LNI(Debounce)", FAILED_LNI_DEBOUNCE), 998 FLAG_ENTRY0("Failed LNI(EstbComm)", FAILED_LNI_ESTBCOMM), 999 FLAG_ENTRY0("Failed LNI(OptEq)", FAILED_LNI_OPTEQ), 1000 FLAG_ENTRY0("Failed LNI(VerifyCap_1)", FAILED_LNI_VERIFY_CAP1), 1001 FLAG_ENTRY0("Failed LNI(VerifyCap_2)", FAILED_LNI_VERIFY_CAP2), 1002 FLAG_ENTRY0("Failed LNI(ConfigLT)", FAILED_LNI_CONFIGLT), 1003 FLAG_ENTRY0("Host Handshake Timeout", HOST_HANDSHAKE_TIMEOUT), 1004 FLAG_ENTRY0("External Device Request Timeout", 1005 EXTERNAL_DEVICE_REQ_TIMEOUT), 1006 }; 1007 1008 /* 1009 * DC8051 Information Host Information flags 1010 * 1011 * Flags in DC8051_DBG_ERR_INFO_SET_BY_8051.HOST_MSG field. 1012 */ 1013 static struct flag_table dc8051_info_host_msg_flags[] = { 1014 FLAG_ENTRY0("Host request done", 0x0001), 1015 FLAG_ENTRY0("BC SMA message", 0x0002), 1016 FLAG_ENTRY0("BC PWR_MGM message", 0x0004), 1017 FLAG_ENTRY0("BC Unknown message (BCC)", 0x0008), 1018 FLAG_ENTRY0("BC Unknown message (LCB)", 0x0010), 1019 FLAG_ENTRY0("External device config request", 0x0020), 1020 FLAG_ENTRY0("VerifyCap all frames received", 0x0040), 1021 FLAG_ENTRY0("LinkUp achieved", 0x0080), 1022 FLAG_ENTRY0("Link going down", 0x0100), 1023 }; 1024 1025 static u32 encoded_size(u32 size); 1026 static u32 chip_to_opa_lstate(struct hfi1_devdata *dd, u32 chip_lstate); 1027 static int set_physical_link_state(struct hfi1_devdata *dd, u64 state); 1028 static void read_vc_remote_phy(struct hfi1_devdata *dd, u8 *power_management, 1029 u8 *continuous); 1030 static void read_vc_remote_fabric(struct hfi1_devdata *dd, u8 *vau, u8 *z, 1031 u8 *vcu, u16 *vl15buf, u8 *crc_sizes); 1032 static void read_vc_remote_link_width(struct hfi1_devdata *dd, 1033 u8 *remote_tx_rate, u16 *link_widths); 1034 static void read_vc_local_link_width(struct hfi1_devdata *dd, u8 *misc_bits, 1035 u8 *flag_bits, u16 *link_widths); 1036 static void read_remote_device_id(struct hfi1_devdata *dd, u16 *device_id, 1037 u8 *device_rev); 1038 static void read_mgmt_allowed(struct hfi1_devdata *dd, u8 *mgmt_allowed); 1039 static void read_local_lni(struct hfi1_devdata *dd, u8 *enable_lane_rx); 1040 static int read_tx_settings(struct hfi1_devdata *dd, u8 *enable_lane_tx, 1041 u8 *tx_polarity_inversion, 1042 u8 *rx_polarity_inversion, u8 *max_rate); 1043 static void handle_sdma_eng_err(struct hfi1_devdata *dd, 1044 unsigned int context, u64 err_status); 1045 static void handle_qsfp_int(struct hfi1_devdata *dd, u32 source, u64 reg); 1046 static void handle_dcc_err(struct hfi1_devdata *dd, 1047 unsigned int context, u64 err_status); 1048 static void handle_lcb_err(struct hfi1_devdata *dd, 1049 unsigned int context, u64 err_status); 1050 static void handle_8051_interrupt(struct hfi1_devdata *dd, u32 unused, u64 reg); 1051 static void handle_cce_err(struct hfi1_devdata *dd, u32 unused, u64 reg); 1052 static void handle_rxe_err(struct hfi1_devdata *dd, u32 unused, u64 reg); 1053 static void handle_misc_err(struct hfi1_devdata *dd, u32 unused, u64 reg); 1054 static void handle_pio_err(struct hfi1_devdata *dd, u32 unused, u64 reg); 1055 static void handle_sdma_err(struct hfi1_devdata *dd, u32 unused, u64 reg); 1056 static void handle_egress_err(struct hfi1_devdata *dd, u32 unused, u64 reg); 1057 static void handle_txe_err(struct hfi1_devdata *dd, u32 unused, u64 reg); 1058 static void set_partition_keys(struct hfi1_pportdata *ppd); 1059 static const char *link_state_name(u32 state); 1060 static const char *link_state_reason_name(struct hfi1_pportdata *ppd, 1061 u32 state); 1062 static int do_8051_command(struct hfi1_devdata *dd, u32 type, u64 in_data, 1063 u64 *out_data); 1064 static int read_idle_sma(struct hfi1_devdata *dd, u64 *data); 1065 static int thermal_init(struct hfi1_devdata *dd); 1066 1067 static int wait_logical_linkstate(struct hfi1_pportdata *ppd, u32 state, 1068 int msecs); 1069 static void read_planned_down_reason_code(struct hfi1_devdata *dd, u8 *pdrrc); 1070 static void read_link_down_reason(struct hfi1_devdata *dd, u8 *ldr); 1071 static void handle_temp_err(struct hfi1_devdata *dd); 1072 static void dc_shutdown(struct hfi1_devdata *dd); 1073 static void dc_start(struct hfi1_devdata *dd); 1074 static int qos_rmt_entries(struct hfi1_devdata *dd, unsigned int *mp, 1075 unsigned int *np); 1076 static void clear_full_mgmt_pkey(struct hfi1_pportdata *ppd); 1077 static int wait_link_transfer_active(struct hfi1_devdata *dd, int wait_ms); 1078 static void clear_rsm_rule(struct hfi1_devdata *dd, u8 rule_index); 1079 1080 /* 1081 * Error interrupt table entry. This is used as input to the interrupt 1082 * "clear down" routine used for all second tier error interrupt register. 1083 * Second tier interrupt registers have a single bit representing them 1084 * in the top-level CceIntStatus. 1085 */ 1086 struct err_reg_info { 1087 u32 status; /* status CSR offset */ 1088 u32 clear; /* clear CSR offset */ 1089 u32 mask; /* mask CSR offset */ 1090 void (*handler)(struct hfi1_devdata *dd, u32 source, u64 reg); 1091 const char *desc; 1092 }; 1093 1094 #define NUM_MISC_ERRS (IS_GENERAL_ERR_END - IS_GENERAL_ERR_START) 1095 #define NUM_DC_ERRS (IS_DC_END - IS_DC_START) 1096 #define NUM_VARIOUS (IS_VARIOUS_END - IS_VARIOUS_START) 1097 1098 /* 1099 * Helpers for building HFI and DC error interrupt table entries. Different 1100 * helpers are needed because of inconsistent register names. 1101 */ 1102 #define EE(reg, handler, desc) \ 1103 { reg##_STATUS, reg##_CLEAR, reg##_MASK, \ 1104 handler, desc } 1105 #define DC_EE1(reg, handler, desc) \ 1106 { reg##_FLG, reg##_FLG_CLR, reg##_FLG_EN, handler, desc } 1107 #define DC_EE2(reg, handler, desc) \ 1108 { reg##_FLG, reg##_CLR, reg##_EN, handler, desc } 1109 1110 /* 1111 * Table of the "misc" grouping of error interrupts. Each entry refers to 1112 * another register containing more information. 1113 */ 1114 static const struct err_reg_info misc_errs[NUM_MISC_ERRS] = { 1115 /* 0*/ EE(CCE_ERR, handle_cce_err, "CceErr"), 1116 /* 1*/ EE(RCV_ERR, handle_rxe_err, "RxeErr"), 1117 /* 2*/ EE(MISC_ERR, handle_misc_err, "MiscErr"), 1118 /* 3*/ { 0, 0, 0, NULL }, /* reserved */ 1119 /* 4*/ EE(SEND_PIO_ERR, handle_pio_err, "PioErr"), 1120 /* 5*/ EE(SEND_DMA_ERR, handle_sdma_err, "SDmaErr"), 1121 /* 6*/ EE(SEND_EGRESS_ERR, handle_egress_err, "EgressErr"), 1122 /* 7*/ EE(SEND_ERR, handle_txe_err, "TxeErr") 1123 /* the rest are reserved */ 1124 }; 1125 1126 /* 1127 * Index into the Various section of the interrupt sources 1128 * corresponding to the Critical Temperature interrupt. 1129 */ 1130 #define TCRIT_INT_SOURCE 4 1131 1132 /* 1133 * SDMA error interrupt entry - refers to another register containing more 1134 * information. 1135 */ 1136 static const struct err_reg_info sdma_eng_err = 1137 EE(SEND_DMA_ENG_ERR, handle_sdma_eng_err, "SDmaEngErr"); 1138 1139 static const struct err_reg_info various_err[NUM_VARIOUS] = { 1140 /* 0*/ { 0, 0, 0, NULL }, /* PbcInt */ 1141 /* 1*/ { 0, 0, 0, NULL }, /* GpioAssertInt */ 1142 /* 2*/ EE(ASIC_QSFP1, handle_qsfp_int, "QSFP1"), 1143 /* 3*/ EE(ASIC_QSFP2, handle_qsfp_int, "QSFP2"), 1144 /* 4*/ { 0, 0, 0, NULL }, /* TCritInt */ 1145 /* rest are reserved */ 1146 }; 1147 1148 /* 1149 * The DC encoding of mtu_cap for 10K MTU in the DCC_CFG_PORT_CONFIG 1150 * register can not be derived from the MTU value because 10K is not 1151 * a power of 2. Therefore, we need a constant. Everything else can 1152 * be calculated. 1153 */ 1154 #define DCC_CFG_PORT_MTU_CAP_10240 7 1155 1156 /* 1157 * Table of the DC grouping of error interrupts. Each entry refers to 1158 * another register containing more information. 1159 */ 1160 static const struct err_reg_info dc_errs[NUM_DC_ERRS] = { 1161 /* 0*/ DC_EE1(DCC_ERR, handle_dcc_err, "DCC Err"), 1162 /* 1*/ DC_EE2(DC_LCB_ERR, handle_lcb_err, "LCB Err"), 1163 /* 2*/ DC_EE2(DC_DC8051_ERR, handle_8051_interrupt, "DC8051 Interrupt"), 1164 /* 3*/ /* dc_lbm_int - special, see is_dc_int() */ 1165 /* the rest are reserved */ 1166 }; 1167 1168 struct cntr_entry { 1169 /* 1170 * counter name 1171 */ 1172 char *name; 1173 1174 /* 1175 * csr to read for name (if applicable) 1176 */ 1177 u64 csr; 1178 1179 /* 1180 * offset into dd or ppd to store the counter's value 1181 */ 1182 int offset; 1183 1184 /* 1185 * flags 1186 */ 1187 u8 flags; 1188 1189 /* 1190 * accessor for stat element, context either dd or ppd 1191 */ 1192 u64 (*rw_cntr)(const struct cntr_entry *, void *context, int vl, 1193 int mode, u64 data); 1194 }; 1195 1196 #define C_RCV_HDR_OVF_FIRST C_RCV_HDR_OVF_0 1197 #define C_RCV_HDR_OVF_LAST C_RCV_HDR_OVF_159 1198 1199 #define CNTR_ELEM(name, csr, offset, flags, accessor) \ 1200 { \ 1201 name, \ 1202 csr, \ 1203 offset, \ 1204 flags, \ 1205 accessor \ 1206 } 1207 1208 /* 32bit RXE */ 1209 #define RXE32_PORT_CNTR_ELEM(name, counter, flags) \ 1210 CNTR_ELEM(#name, \ 1211 (counter * 8 + RCV_COUNTER_ARRAY32), \ 1212 0, flags | CNTR_32BIT, \ 1213 port_access_u32_csr) 1214 1215 #define RXE32_DEV_CNTR_ELEM(name, counter, flags) \ 1216 CNTR_ELEM(#name, \ 1217 (counter * 8 + RCV_COUNTER_ARRAY32), \ 1218 0, flags | CNTR_32BIT, \ 1219 dev_access_u32_csr) 1220 1221 /* 64bit RXE */ 1222 #define RXE64_PORT_CNTR_ELEM(name, counter, flags) \ 1223 CNTR_ELEM(#name, \ 1224 (counter * 8 + RCV_COUNTER_ARRAY64), \ 1225 0, flags, \ 1226 port_access_u64_csr) 1227 1228 #define RXE64_DEV_CNTR_ELEM(name, counter, flags) \ 1229 CNTR_ELEM(#name, \ 1230 (counter * 8 + RCV_COUNTER_ARRAY64), \ 1231 0, flags, \ 1232 dev_access_u64_csr) 1233 1234 #define OVR_LBL(ctx) C_RCV_HDR_OVF_ ## ctx 1235 #define OVR_ELM(ctx) \ 1236 CNTR_ELEM("RcvHdrOvr" #ctx, \ 1237 (RCV_HDR_OVFL_CNT + ctx * 0x100), \ 1238 0, CNTR_NORMAL, port_access_u64_csr) 1239 1240 /* 32bit TXE */ 1241 #define TXE32_PORT_CNTR_ELEM(name, counter, flags) \ 1242 CNTR_ELEM(#name, \ 1243 (counter * 8 + SEND_COUNTER_ARRAY32), \ 1244 0, flags | CNTR_32BIT, \ 1245 port_access_u32_csr) 1246 1247 /* 64bit TXE */ 1248 #define TXE64_PORT_CNTR_ELEM(name, counter, flags) \ 1249 CNTR_ELEM(#name, \ 1250 (counter * 8 + SEND_COUNTER_ARRAY64), \ 1251 0, flags, \ 1252 port_access_u64_csr) 1253 1254 # define TX64_DEV_CNTR_ELEM(name, counter, flags) \ 1255 CNTR_ELEM(#name,\ 1256 counter * 8 + SEND_COUNTER_ARRAY64, \ 1257 0, \ 1258 flags, \ 1259 dev_access_u64_csr) 1260 1261 /* CCE */ 1262 #define CCE_PERF_DEV_CNTR_ELEM(name, counter, flags) \ 1263 CNTR_ELEM(#name, \ 1264 (counter * 8 + CCE_COUNTER_ARRAY32), \ 1265 0, flags | CNTR_32BIT, \ 1266 dev_access_u32_csr) 1267 1268 #define CCE_INT_DEV_CNTR_ELEM(name, counter, flags) \ 1269 CNTR_ELEM(#name, \ 1270 (counter * 8 + CCE_INT_COUNTER_ARRAY32), \ 1271 0, flags | CNTR_32BIT, \ 1272 dev_access_u32_csr) 1273 1274 /* DC */ 1275 #define DC_PERF_CNTR(name, counter, flags) \ 1276 CNTR_ELEM(#name, \ 1277 counter, \ 1278 0, \ 1279 flags, \ 1280 dev_access_u64_csr) 1281 1282 #define DC_PERF_CNTR_LCB(name, counter, flags) \ 1283 CNTR_ELEM(#name, \ 1284 counter, \ 1285 0, \ 1286 flags, \ 1287 dc_access_lcb_cntr) 1288 1289 /* ibp counters */ 1290 #define SW_IBP_CNTR(name, cntr) \ 1291 CNTR_ELEM(#name, \ 1292 0, \ 1293 0, \ 1294 CNTR_SYNTH, \ 1295 access_ibp_##cntr) 1296 1297 u64 read_csr(const struct hfi1_devdata *dd, u32 offset) 1298 { 1299 if (dd->flags & HFI1_PRESENT) { 1300 return readq((void __iomem *)dd->kregbase + offset); 1301 } 1302 return -1; 1303 } 1304 1305 void write_csr(const struct hfi1_devdata *dd, u32 offset, u64 value) 1306 { 1307 if (dd->flags & HFI1_PRESENT) 1308 writeq(value, (void __iomem *)dd->kregbase + offset); 1309 } 1310 1311 void __iomem *get_csr_addr( 1312 struct hfi1_devdata *dd, 1313 u32 offset) 1314 { 1315 return (void __iomem *)dd->kregbase + offset; 1316 } 1317 1318 static inline u64 read_write_csr(const struct hfi1_devdata *dd, u32 csr, 1319 int mode, u64 value) 1320 { 1321 u64 ret; 1322 1323 if (mode == CNTR_MODE_R) { 1324 ret = read_csr(dd, csr); 1325 } else if (mode == CNTR_MODE_W) { 1326 write_csr(dd, csr, value); 1327 ret = value; 1328 } else { 1329 dd_dev_err(dd, "Invalid cntr register access mode"); 1330 return 0; 1331 } 1332 1333 hfi1_cdbg(CNTR, "csr 0x%x val 0x%llx mode %d", csr, ret, mode); 1334 return ret; 1335 } 1336 1337 /* Dev Access */ 1338 static u64 dev_access_u32_csr(const struct cntr_entry *entry, 1339 void *context, int vl, int mode, u64 data) 1340 { 1341 struct hfi1_devdata *dd = context; 1342 u64 csr = entry->csr; 1343 1344 if (entry->flags & CNTR_SDMA) { 1345 if (vl == CNTR_INVALID_VL) 1346 return 0; 1347 csr += 0x100 * vl; 1348 } else { 1349 if (vl != CNTR_INVALID_VL) 1350 return 0; 1351 } 1352 return read_write_csr(dd, csr, mode, data); 1353 } 1354 1355 static u64 access_sde_err_cnt(const struct cntr_entry *entry, 1356 void *context, int idx, int mode, u64 data) 1357 { 1358 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1359 1360 if (dd->per_sdma && idx < dd->num_sdma) 1361 return dd->per_sdma[idx].err_cnt; 1362 return 0; 1363 } 1364 1365 static u64 access_sde_int_cnt(const struct cntr_entry *entry, 1366 void *context, int idx, int mode, u64 data) 1367 { 1368 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1369 1370 if (dd->per_sdma && idx < dd->num_sdma) 1371 return dd->per_sdma[idx].sdma_int_cnt; 1372 return 0; 1373 } 1374 1375 static u64 access_sde_idle_int_cnt(const struct cntr_entry *entry, 1376 void *context, int idx, int mode, u64 data) 1377 { 1378 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1379 1380 if (dd->per_sdma && idx < dd->num_sdma) 1381 return dd->per_sdma[idx].idle_int_cnt; 1382 return 0; 1383 } 1384 1385 static u64 access_sde_progress_int_cnt(const struct cntr_entry *entry, 1386 void *context, int idx, int mode, 1387 u64 data) 1388 { 1389 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1390 1391 if (dd->per_sdma && idx < dd->num_sdma) 1392 return dd->per_sdma[idx].progress_int_cnt; 1393 return 0; 1394 } 1395 1396 static u64 dev_access_u64_csr(const struct cntr_entry *entry, void *context, 1397 int vl, int mode, u64 data) 1398 { 1399 struct hfi1_devdata *dd = context; 1400 1401 u64 val = 0; 1402 u64 csr = entry->csr; 1403 1404 if (entry->flags & CNTR_VL) { 1405 if (vl == CNTR_INVALID_VL) 1406 return 0; 1407 csr += 8 * vl; 1408 } else { 1409 if (vl != CNTR_INVALID_VL) 1410 return 0; 1411 } 1412 1413 val = read_write_csr(dd, csr, mode, data); 1414 return val; 1415 } 1416 1417 static u64 dc_access_lcb_cntr(const struct cntr_entry *entry, void *context, 1418 int vl, int mode, u64 data) 1419 { 1420 struct hfi1_devdata *dd = context; 1421 u32 csr = entry->csr; 1422 int ret = 0; 1423 1424 if (vl != CNTR_INVALID_VL) 1425 return 0; 1426 if (mode == CNTR_MODE_R) 1427 ret = read_lcb_csr(dd, csr, &data); 1428 else if (mode == CNTR_MODE_W) 1429 ret = write_lcb_csr(dd, csr, data); 1430 1431 if (ret) { 1432 dd_dev_err(dd, "Could not acquire LCB for counter 0x%x", csr); 1433 return 0; 1434 } 1435 1436 hfi1_cdbg(CNTR, "csr 0x%x val 0x%llx mode %d", csr, data, mode); 1437 return data; 1438 } 1439 1440 /* Port Access */ 1441 static u64 port_access_u32_csr(const struct cntr_entry *entry, void *context, 1442 int vl, int mode, u64 data) 1443 { 1444 struct hfi1_pportdata *ppd = context; 1445 1446 if (vl != CNTR_INVALID_VL) 1447 return 0; 1448 return read_write_csr(ppd->dd, entry->csr, mode, data); 1449 } 1450 1451 static u64 port_access_u64_csr(const struct cntr_entry *entry, 1452 void *context, int vl, int mode, u64 data) 1453 { 1454 struct hfi1_pportdata *ppd = context; 1455 u64 val; 1456 u64 csr = entry->csr; 1457 1458 if (entry->flags & CNTR_VL) { 1459 if (vl == CNTR_INVALID_VL) 1460 return 0; 1461 csr += 8 * vl; 1462 } else { 1463 if (vl != CNTR_INVALID_VL) 1464 return 0; 1465 } 1466 val = read_write_csr(ppd->dd, csr, mode, data); 1467 return val; 1468 } 1469 1470 /* Software defined */ 1471 static inline u64 read_write_sw(struct hfi1_devdata *dd, u64 *cntr, int mode, 1472 u64 data) 1473 { 1474 u64 ret; 1475 1476 if (mode == CNTR_MODE_R) { 1477 ret = *cntr; 1478 } else if (mode == CNTR_MODE_W) { 1479 *cntr = data; 1480 ret = data; 1481 } else { 1482 dd_dev_err(dd, "Invalid cntr sw access mode"); 1483 return 0; 1484 } 1485 1486 hfi1_cdbg(CNTR, "val 0x%llx mode %d", ret, mode); 1487 1488 return ret; 1489 } 1490 1491 static u64 access_sw_link_dn_cnt(const struct cntr_entry *entry, void *context, 1492 int vl, int mode, u64 data) 1493 { 1494 struct hfi1_pportdata *ppd = context; 1495 1496 if (vl != CNTR_INVALID_VL) 1497 return 0; 1498 return read_write_sw(ppd->dd, &ppd->link_downed, mode, data); 1499 } 1500 1501 static u64 access_sw_link_up_cnt(const struct cntr_entry *entry, void *context, 1502 int vl, int mode, u64 data) 1503 { 1504 struct hfi1_pportdata *ppd = context; 1505 1506 if (vl != CNTR_INVALID_VL) 1507 return 0; 1508 return read_write_sw(ppd->dd, &ppd->link_up, mode, data); 1509 } 1510 1511 static u64 access_sw_unknown_frame_cnt(const struct cntr_entry *entry, 1512 void *context, int vl, int mode, 1513 u64 data) 1514 { 1515 struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context; 1516 1517 if (vl != CNTR_INVALID_VL) 1518 return 0; 1519 return read_write_sw(ppd->dd, &ppd->unknown_frame_count, mode, data); 1520 } 1521 1522 static u64 access_sw_xmit_discards(const struct cntr_entry *entry, 1523 void *context, int vl, int mode, u64 data) 1524 { 1525 struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context; 1526 u64 zero = 0; 1527 u64 *counter; 1528 1529 if (vl == CNTR_INVALID_VL) 1530 counter = &ppd->port_xmit_discards; 1531 else if (vl >= 0 && vl < C_VL_COUNT) 1532 counter = &ppd->port_xmit_discards_vl[vl]; 1533 else 1534 counter = &zero; 1535 1536 return read_write_sw(ppd->dd, counter, mode, data); 1537 } 1538 1539 static u64 access_xmit_constraint_errs(const struct cntr_entry *entry, 1540 void *context, int vl, int mode, 1541 u64 data) 1542 { 1543 struct hfi1_pportdata *ppd = context; 1544 1545 if (vl != CNTR_INVALID_VL) 1546 return 0; 1547 1548 return read_write_sw(ppd->dd, &ppd->port_xmit_constraint_errors, 1549 mode, data); 1550 } 1551 1552 static u64 access_rcv_constraint_errs(const struct cntr_entry *entry, 1553 void *context, int vl, int mode, u64 data) 1554 { 1555 struct hfi1_pportdata *ppd = context; 1556 1557 if (vl != CNTR_INVALID_VL) 1558 return 0; 1559 1560 return read_write_sw(ppd->dd, &ppd->port_rcv_constraint_errors, 1561 mode, data); 1562 } 1563 1564 u64 get_all_cpu_total(u64 __percpu *cntr) 1565 { 1566 int cpu; 1567 u64 counter = 0; 1568 1569 for_each_possible_cpu(cpu) 1570 counter += *per_cpu_ptr(cntr, cpu); 1571 return counter; 1572 } 1573 1574 static u64 read_write_cpu(struct hfi1_devdata *dd, u64 *z_val, 1575 u64 __percpu *cntr, 1576 int vl, int mode, u64 data) 1577 { 1578 u64 ret = 0; 1579 1580 if (vl != CNTR_INVALID_VL) 1581 return 0; 1582 1583 if (mode == CNTR_MODE_R) { 1584 ret = get_all_cpu_total(cntr) - *z_val; 1585 } else if (mode == CNTR_MODE_W) { 1586 /* A write can only zero the counter */ 1587 if (data == 0) 1588 *z_val = get_all_cpu_total(cntr); 1589 else 1590 dd_dev_err(dd, "Per CPU cntrs can only be zeroed"); 1591 } else { 1592 dd_dev_err(dd, "Invalid cntr sw cpu access mode"); 1593 return 0; 1594 } 1595 1596 return ret; 1597 } 1598 1599 static u64 access_sw_cpu_intr(const struct cntr_entry *entry, 1600 void *context, int vl, int mode, u64 data) 1601 { 1602 struct hfi1_devdata *dd = context; 1603 1604 return read_write_cpu(dd, &dd->z_int_counter, dd->int_counter, vl, 1605 mode, data); 1606 } 1607 1608 static u64 access_sw_cpu_rcv_limit(const struct cntr_entry *entry, 1609 void *context, int vl, int mode, u64 data) 1610 { 1611 struct hfi1_devdata *dd = context; 1612 1613 return read_write_cpu(dd, &dd->z_rcv_limit, dd->rcv_limit, vl, 1614 mode, data); 1615 } 1616 1617 static u64 access_sw_pio_wait(const struct cntr_entry *entry, 1618 void *context, int vl, int mode, u64 data) 1619 { 1620 struct hfi1_devdata *dd = context; 1621 1622 return dd->verbs_dev.n_piowait; 1623 } 1624 1625 static u64 access_sw_pio_drain(const struct cntr_entry *entry, 1626 void *context, int vl, int mode, u64 data) 1627 { 1628 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1629 1630 return dd->verbs_dev.n_piodrain; 1631 } 1632 1633 static u64 access_sw_vtx_wait(const struct cntr_entry *entry, 1634 void *context, int vl, int mode, u64 data) 1635 { 1636 struct hfi1_devdata *dd = context; 1637 1638 return dd->verbs_dev.n_txwait; 1639 } 1640 1641 static u64 access_sw_kmem_wait(const struct cntr_entry *entry, 1642 void *context, int vl, int mode, u64 data) 1643 { 1644 struct hfi1_devdata *dd = context; 1645 1646 return dd->verbs_dev.n_kmem_wait; 1647 } 1648 1649 static u64 access_sw_send_schedule(const struct cntr_entry *entry, 1650 void *context, int vl, int mode, u64 data) 1651 { 1652 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1653 1654 return read_write_cpu(dd, &dd->z_send_schedule, dd->send_schedule, vl, 1655 mode, data); 1656 } 1657 1658 /* Software counters for the error status bits within MISC_ERR_STATUS */ 1659 static u64 access_misc_pll_lock_fail_err_cnt(const struct cntr_entry *entry, 1660 void *context, int vl, int mode, 1661 u64 data) 1662 { 1663 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1664 1665 return dd->misc_err_status_cnt[12]; 1666 } 1667 1668 static u64 access_misc_mbist_fail_err_cnt(const struct cntr_entry *entry, 1669 void *context, int vl, int mode, 1670 u64 data) 1671 { 1672 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1673 1674 return dd->misc_err_status_cnt[11]; 1675 } 1676 1677 static u64 access_misc_invalid_eep_cmd_err_cnt(const struct cntr_entry *entry, 1678 void *context, int vl, int mode, 1679 u64 data) 1680 { 1681 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1682 1683 return dd->misc_err_status_cnt[10]; 1684 } 1685 1686 static u64 access_misc_efuse_done_parity_err_cnt(const struct cntr_entry *entry, 1687 void *context, int vl, 1688 int mode, u64 data) 1689 { 1690 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1691 1692 return dd->misc_err_status_cnt[9]; 1693 } 1694 1695 static u64 access_misc_efuse_write_err_cnt(const struct cntr_entry *entry, 1696 void *context, int vl, int mode, 1697 u64 data) 1698 { 1699 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1700 1701 return dd->misc_err_status_cnt[8]; 1702 } 1703 1704 static u64 access_misc_efuse_read_bad_addr_err_cnt( 1705 const struct cntr_entry *entry, 1706 void *context, int vl, int mode, u64 data) 1707 { 1708 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1709 1710 return dd->misc_err_status_cnt[7]; 1711 } 1712 1713 static u64 access_misc_efuse_csr_parity_err_cnt(const struct cntr_entry *entry, 1714 void *context, int vl, 1715 int mode, u64 data) 1716 { 1717 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1718 1719 return dd->misc_err_status_cnt[6]; 1720 } 1721 1722 static u64 access_misc_fw_auth_failed_err_cnt(const struct cntr_entry *entry, 1723 void *context, int vl, int mode, 1724 u64 data) 1725 { 1726 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1727 1728 return dd->misc_err_status_cnt[5]; 1729 } 1730 1731 static u64 access_misc_key_mismatch_err_cnt(const struct cntr_entry *entry, 1732 void *context, int vl, int mode, 1733 u64 data) 1734 { 1735 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1736 1737 return dd->misc_err_status_cnt[4]; 1738 } 1739 1740 static u64 access_misc_sbus_write_failed_err_cnt(const struct cntr_entry *entry, 1741 void *context, int vl, 1742 int mode, u64 data) 1743 { 1744 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1745 1746 return dd->misc_err_status_cnt[3]; 1747 } 1748 1749 static u64 access_misc_csr_write_bad_addr_err_cnt( 1750 const struct cntr_entry *entry, 1751 void *context, int vl, int mode, u64 data) 1752 { 1753 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1754 1755 return dd->misc_err_status_cnt[2]; 1756 } 1757 1758 static u64 access_misc_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry, 1759 void *context, int vl, 1760 int mode, u64 data) 1761 { 1762 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1763 1764 return dd->misc_err_status_cnt[1]; 1765 } 1766 1767 static u64 access_misc_csr_parity_err_cnt(const struct cntr_entry *entry, 1768 void *context, int vl, int mode, 1769 u64 data) 1770 { 1771 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1772 1773 return dd->misc_err_status_cnt[0]; 1774 } 1775 1776 /* 1777 * Software counter for the aggregate of 1778 * individual CceErrStatus counters 1779 */ 1780 static u64 access_sw_cce_err_status_aggregated_cnt( 1781 const struct cntr_entry *entry, 1782 void *context, int vl, int mode, u64 data) 1783 { 1784 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1785 1786 return dd->sw_cce_err_status_aggregate; 1787 } 1788 1789 /* 1790 * Software counters corresponding to each of the 1791 * error status bits within CceErrStatus 1792 */ 1793 static u64 access_cce_msix_csr_parity_err_cnt(const struct cntr_entry *entry, 1794 void *context, int vl, int mode, 1795 u64 data) 1796 { 1797 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1798 1799 return dd->cce_err_status_cnt[40]; 1800 } 1801 1802 static u64 access_cce_int_map_unc_err_cnt(const struct cntr_entry *entry, 1803 void *context, int vl, int mode, 1804 u64 data) 1805 { 1806 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1807 1808 return dd->cce_err_status_cnt[39]; 1809 } 1810 1811 static u64 access_cce_int_map_cor_err_cnt(const struct cntr_entry *entry, 1812 void *context, int vl, int mode, 1813 u64 data) 1814 { 1815 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1816 1817 return dd->cce_err_status_cnt[38]; 1818 } 1819 1820 static u64 access_cce_msix_table_unc_err_cnt(const struct cntr_entry *entry, 1821 void *context, int vl, int mode, 1822 u64 data) 1823 { 1824 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1825 1826 return dd->cce_err_status_cnt[37]; 1827 } 1828 1829 static u64 access_cce_msix_table_cor_err_cnt(const struct cntr_entry *entry, 1830 void *context, int vl, int mode, 1831 u64 data) 1832 { 1833 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1834 1835 return dd->cce_err_status_cnt[36]; 1836 } 1837 1838 static u64 access_cce_rxdma_conv_fifo_parity_err_cnt( 1839 const struct cntr_entry *entry, 1840 void *context, int vl, int mode, u64 data) 1841 { 1842 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1843 1844 return dd->cce_err_status_cnt[35]; 1845 } 1846 1847 static u64 access_cce_rcpl_async_fifo_parity_err_cnt( 1848 const struct cntr_entry *entry, 1849 void *context, int vl, int mode, u64 data) 1850 { 1851 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1852 1853 return dd->cce_err_status_cnt[34]; 1854 } 1855 1856 static u64 access_cce_seg_write_bad_addr_err_cnt(const struct cntr_entry *entry, 1857 void *context, int vl, 1858 int mode, u64 data) 1859 { 1860 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1861 1862 return dd->cce_err_status_cnt[33]; 1863 } 1864 1865 static u64 access_cce_seg_read_bad_addr_err_cnt(const struct cntr_entry *entry, 1866 void *context, int vl, int mode, 1867 u64 data) 1868 { 1869 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1870 1871 return dd->cce_err_status_cnt[32]; 1872 } 1873 1874 static u64 access_la_triggered_cnt(const struct cntr_entry *entry, 1875 void *context, int vl, int mode, u64 data) 1876 { 1877 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1878 1879 return dd->cce_err_status_cnt[31]; 1880 } 1881 1882 static u64 access_cce_trgt_cpl_timeout_err_cnt(const struct cntr_entry *entry, 1883 void *context, int vl, int mode, 1884 u64 data) 1885 { 1886 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1887 1888 return dd->cce_err_status_cnt[30]; 1889 } 1890 1891 static u64 access_pcic_receive_parity_err_cnt(const struct cntr_entry *entry, 1892 void *context, int vl, int mode, 1893 u64 data) 1894 { 1895 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1896 1897 return dd->cce_err_status_cnt[29]; 1898 } 1899 1900 static u64 access_pcic_transmit_back_parity_err_cnt( 1901 const struct cntr_entry *entry, 1902 void *context, int vl, int mode, u64 data) 1903 { 1904 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1905 1906 return dd->cce_err_status_cnt[28]; 1907 } 1908 1909 static u64 access_pcic_transmit_front_parity_err_cnt( 1910 const struct cntr_entry *entry, 1911 void *context, int vl, int mode, u64 data) 1912 { 1913 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1914 1915 return dd->cce_err_status_cnt[27]; 1916 } 1917 1918 static u64 access_pcic_cpl_dat_q_unc_err_cnt(const struct cntr_entry *entry, 1919 void *context, int vl, int mode, 1920 u64 data) 1921 { 1922 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1923 1924 return dd->cce_err_status_cnt[26]; 1925 } 1926 1927 static u64 access_pcic_cpl_hd_q_unc_err_cnt(const struct cntr_entry *entry, 1928 void *context, int vl, int mode, 1929 u64 data) 1930 { 1931 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1932 1933 return dd->cce_err_status_cnt[25]; 1934 } 1935 1936 static u64 access_pcic_post_dat_q_unc_err_cnt(const struct cntr_entry *entry, 1937 void *context, int vl, int mode, 1938 u64 data) 1939 { 1940 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1941 1942 return dd->cce_err_status_cnt[24]; 1943 } 1944 1945 static u64 access_pcic_post_hd_q_unc_err_cnt(const struct cntr_entry *entry, 1946 void *context, int vl, int mode, 1947 u64 data) 1948 { 1949 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1950 1951 return dd->cce_err_status_cnt[23]; 1952 } 1953 1954 static u64 access_pcic_retry_sot_mem_unc_err_cnt(const struct cntr_entry *entry, 1955 void *context, int vl, 1956 int mode, u64 data) 1957 { 1958 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1959 1960 return dd->cce_err_status_cnt[22]; 1961 } 1962 1963 static u64 access_pcic_retry_mem_unc_err(const struct cntr_entry *entry, 1964 void *context, int vl, int mode, 1965 u64 data) 1966 { 1967 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1968 1969 return dd->cce_err_status_cnt[21]; 1970 } 1971 1972 static u64 access_pcic_n_post_dat_q_parity_err_cnt( 1973 const struct cntr_entry *entry, 1974 void *context, int vl, int mode, u64 data) 1975 { 1976 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1977 1978 return dd->cce_err_status_cnt[20]; 1979 } 1980 1981 static u64 access_pcic_n_post_h_q_parity_err_cnt(const struct cntr_entry *entry, 1982 void *context, int vl, 1983 int mode, u64 data) 1984 { 1985 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1986 1987 return dd->cce_err_status_cnt[19]; 1988 } 1989 1990 static u64 access_pcic_cpl_dat_q_cor_err_cnt(const struct cntr_entry *entry, 1991 void *context, int vl, int mode, 1992 u64 data) 1993 { 1994 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1995 1996 return dd->cce_err_status_cnt[18]; 1997 } 1998 1999 static u64 access_pcic_cpl_hd_q_cor_err_cnt(const struct cntr_entry *entry, 2000 void *context, int vl, int mode, 2001 u64 data) 2002 { 2003 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2004 2005 return dd->cce_err_status_cnt[17]; 2006 } 2007 2008 static u64 access_pcic_post_dat_q_cor_err_cnt(const struct cntr_entry *entry, 2009 void *context, int vl, int mode, 2010 u64 data) 2011 { 2012 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2013 2014 return dd->cce_err_status_cnt[16]; 2015 } 2016 2017 static u64 access_pcic_post_hd_q_cor_err_cnt(const struct cntr_entry *entry, 2018 void *context, int vl, int mode, 2019 u64 data) 2020 { 2021 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2022 2023 return dd->cce_err_status_cnt[15]; 2024 } 2025 2026 static u64 access_pcic_retry_sot_mem_cor_err_cnt(const struct cntr_entry *entry, 2027 void *context, int vl, 2028 int mode, u64 data) 2029 { 2030 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2031 2032 return dd->cce_err_status_cnt[14]; 2033 } 2034 2035 static u64 access_pcic_retry_mem_cor_err_cnt(const struct cntr_entry *entry, 2036 void *context, int vl, int mode, 2037 u64 data) 2038 { 2039 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2040 2041 return dd->cce_err_status_cnt[13]; 2042 } 2043 2044 static u64 access_cce_cli1_async_fifo_dbg_parity_err_cnt( 2045 const struct cntr_entry *entry, 2046 void *context, int vl, int mode, u64 data) 2047 { 2048 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2049 2050 return dd->cce_err_status_cnt[12]; 2051 } 2052 2053 static u64 access_cce_cli1_async_fifo_rxdma_parity_err_cnt( 2054 const struct cntr_entry *entry, 2055 void *context, int vl, int mode, u64 data) 2056 { 2057 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2058 2059 return dd->cce_err_status_cnt[11]; 2060 } 2061 2062 static u64 access_cce_cli1_async_fifo_sdma_hd_parity_err_cnt( 2063 const struct cntr_entry *entry, 2064 void *context, int vl, int mode, u64 data) 2065 { 2066 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2067 2068 return dd->cce_err_status_cnt[10]; 2069 } 2070 2071 static u64 access_cce_cl1_async_fifo_pio_crdt_parity_err_cnt( 2072 const struct cntr_entry *entry, 2073 void *context, int vl, int mode, u64 data) 2074 { 2075 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2076 2077 return dd->cce_err_status_cnt[9]; 2078 } 2079 2080 static u64 access_cce_cli2_async_fifo_parity_err_cnt( 2081 const struct cntr_entry *entry, 2082 void *context, int vl, int mode, u64 data) 2083 { 2084 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2085 2086 return dd->cce_err_status_cnt[8]; 2087 } 2088 2089 static u64 access_cce_csr_cfg_bus_parity_err_cnt(const struct cntr_entry *entry, 2090 void *context, int vl, 2091 int mode, u64 data) 2092 { 2093 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2094 2095 return dd->cce_err_status_cnt[7]; 2096 } 2097 2098 static u64 access_cce_cli0_async_fifo_parity_err_cnt( 2099 const struct cntr_entry *entry, 2100 void *context, int vl, int mode, u64 data) 2101 { 2102 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2103 2104 return dd->cce_err_status_cnt[6]; 2105 } 2106 2107 static u64 access_cce_rspd_data_parity_err_cnt(const struct cntr_entry *entry, 2108 void *context, int vl, int mode, 2109 u64 data) 2110 { 2111 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2112 2113 return dd->cce_err_status_cnt[5]; 2114 } 2115 2116 static u64 access_cce_trgt_access_err_cnt(const struct cntr_entry *entry, 2117 void *context, int vl, int mode, 2118 u64 data) 2119 { 2120 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2121 2122 return dd->cce_err_status_cnt[4]; 2123 } 2124 2125 static u64 access_cce_trgt_async_fifo_parity_err_cnt( 2126 const struct cntr_entry *entry, 2127 void *context, int vl, int mode, u64 data) 2128 { 2129 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2130 2131 return dd->cce_err_status_cnt[3]; 2132 } 2133 2134 static u64 access_cce_csr_write_bad_addr_err_cnt(const struct cntr_entry *entry, 2135 void *context, int vl, 2136 int mode, u64 data) 2137 { 2138 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2139 2140 return dd->cce_err_status_cnt[2]; 2141 } 2142 2143 static u64 access_cce_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry, 2144 void *context, int vl, 2145 int mode, u64 data) 2146 { 2147 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2148 2149 return dd->cce_err_status_cnt[1]; 2150 } 2151 2152 static u64 access_ccs_csr_parity_err_cnt(const struct cntr_entry *entry, 2153 void *context, int vl, int mode, 2154 u64 data) 2155 { 2156 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2157 2158 return dd->cce_err_status_cnt[0]; 2159 } 2160 2161 /* 2162 * Software counters corresponding to each of the 2163 * error status bits within RcvErrStatus 2164 */ 2165 static u64 access_rx_csr_parity_err_cnt(const struct cntr_entry *entry, 2166 void *context, int vl, int mode, 2167 u64 data) 2168 { 2169 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2170 2171 return dd->rcv_err_status_cnt[63]; 2172 } 2173 2174 static u64 access_rx_csr_write_bad_addr_err_cnt(const struct cntr_entry *entry, 2175 void *context, int vl, 2176 int mode, u64 data) 2177 { 2178 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2179 2180 return dd->rcv_err_status_cnt[62]; 2181 } 2182 2183 static u64 access_rx_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry, 2184 void *context, int vl, int mode, 2185 u64 data) 2186 { 2187 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2188 2189 return dd->rcv_err_status_cnt[61]; 2190 } 2191 2192 static u64 access_rx_dma_csr_unc_err_cnt(const struct cntr_entry *entry, 2193 void *context, int vl, int mode, 2194 u64 data) 2195 { 2196 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2197 2198 return dd->rcv_err_status_cnt[60]; 2199 } 2200 2201 static u64 access_rx_dma_dq_fsm_encoding_err_cnt(const struct cntr_entry *entry, 2202 void *context, int vl, 2203 int mode, u64 data) 2204 { 2205 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2206 2207 return dd->rcv_err_status_cnt[59]; 2208 } 2209 2210 static u64 access_rx_dma_eq_fsm_encoding_err_cnt(const struct cntr_entry *entry, 2211 void *context, int vl, 2212 int mode, u64 data) 2213 { 2214 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2215 2216 return dd->rcv_err_status_cnt[58]; 2217 } 2218 2219 static u64 access_rx_dma_csr_parity_err_cnt(const struct cntr_entry *entry, 2220 void *context, int vl, int mode, 2221 u64 data) 2222 { 2223 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2224 2225 return dd->rcv_err_status_cnt[57]; 2226 } 2227 2228 static u64 access_rx_rbuf_data_cor_err_cnt(const struct cntr_entry *entry, 2229 void *context, int vl, int mode, 2230 u64 data) 2231 { 2232 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2233 2234 return dd->rcv_err_status_cnt[56]; 2235 } 2236 2237 static u64 access_rx_rbuf_data_unc_err_cnt(const struct cntr_entry *entry, 2238 void *context, int vl, int mode, 2239 u64 data) 2240 { 2241 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2242 2243 return dd->rcv_err_status_cnt[55]; 2244 } 2245 2246 static u64 access_rx_dma_data_fifo_rd_cor_err_cnt( 2247 const struct cntr_entry *entry, 2248 void *context, int vl, int mode, u64 data) 2249 { 2250 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2251 2252 return dd->rcv_err_status_cnt[54]; 2253 } 2254 2255 static u64 access_rx_dma_data_fifo_rd_unc_err_cnt( 2256 const struct cntr_entry *entry, 2257 void *context, int vl, int mode, u64 data) 2258 { 2259 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2260 2261 return dd->rcv_err_status_cnt[53]; 2262 } 2263 2264 static u64 access_rx_dma_hdr_fifo_rd_cor_err_cnt(const struct cntr_entry *entry, 2265 void *context, int vl, 2266 int mode, u64 data) 2267 { 2268 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2269 2270 return dd->rcv_err_status_cnt[52]; 2271 } 2272 2273 static u64 access_rx_dma_hdr_fifo_rd_unc_err_cnt(const struct cntr_entry *entry, 2274 void *context, int vl, 2275 int mode, u64 data) 2276 { 2277 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2278 2279 return dd->rcv_err_status_cnt[51]; 2280 } 2281 2282 static u64 access_rx_rbuf_desc_part2_cor_err_cnt(const struct cntr_entry *entry, 2283 void *context, int vl, 2284 int mode, u64 data) 2285 { 2286 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2287 2288 return dd->rcv_err_status_cnt[50]; 2289 } 2290 2291 static u64 access_rx_rbuf_desc_part2_unc_err_cnt(const struct cntr_entry *entry, 2292 void *context, int vl, 2293 int mode, u64 data) 2294 { 2295 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2296 2297 return dd->rcv_err_status_cnt[49]; 2298 } 2299 2300 static u64 access_rx_rbuf_desc_part1_cor_err_cnt(const struct cntr_entry *entry, 2301 void *context, int vl, 2302 int mode, u64 data) 2303 { 2304 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2305 2306 return dd->rcv_err_status_cnt[48]; 2307 } 2308 2309 static u64 access_rx_rbuf_desc_part1_unc_err_cnt(const struct cntr_entry *entry, 2310 void *context, int vl, 2311 int mode, u64 data) 2312 { 2313 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2314 2315 return dd->rcv_err_status_cnt[47]; 2316 } 2317 2318 static u64 access_rx_hq_intr_fsm_err_cnt(const struct cntr_entry *entry, 2319 void *context, int vl, int mode, 2320 u64 data) 2321 { 2322 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2323 2324 return dd->rcv_err_status_cnt[46]; 2325 } 2326 2327 static u64 access_rx_hq_intr_csr_parity_err_cnt( 2328 const struct cntr_entry *entry, 2329 void *context, int vl, int mode, u64 data) 2330 { 2331 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2332 2333 return dd->rcv_err_status_cnt[45]; 2334 } 2335 2336 static u64 access_rx_lookup_csr_parity_err_cnt( 2337 const struct cntr_entry *entry, 2338 void *context, int vl, int mode, u64 data) 2339 { 2340 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2341 2342 return dd->rcv_err_status_cnt[44]; 2343 } 2344 2345 static u64 access_rx_lookup_rcv_array_cor_err_cnt( 2346 const struct cntr_entry *entry, 2347 void *context, int vl, int mode, u64 data) 2348 { 2349 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2350 2351 return dd->rcv_err_status_cnt[43]; 2352 } 2353 2354 static u64 access_rx_lookup_rcv_array_unc_err_cnt( 2355 const struct cntr_entry *entry, 2356 void *context, int vl, int mode, u64 data) 2357 { 2358 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2359 2360 return dd->rcv_err_status_cnt[42]; 2361 } 2362 2363 static u64 access_rx_lookup_des_part2_parity_err_cnt( 2364 const struct cntr_entry *entry, 2365 void *context, int vl, int mode, u64 data) 2366 { 2367 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2368 2369 return dd->rcv_err_status_cnt[41]; 2370 } 2371 2372 static u64 access_rx_lookup_des_part1_unc_cor_err_cnt( 2373 const struct cntr_entry *entry, 2374 void *context, int vl, int mode, u64 data) 2375 { 2376 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2377 2378 return dd->rcv_err_status_cnt[40]; 2379 } 2380 2381 static u64 access_rx_lookup_des_part1_unc_err_cnt( 2382 const struct cntr_entry *entry, 2383 void *context, int vl, int mode, u64 data) 2384 { 2385 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2386 2387 return dd->rcv_err_status_cnt[39]; 2388 } 2389 2390 static u64 access_rx_rbuf_next_free_buf_cor_err_cnt( 2391 const struct cntr_entry *entry, 2392 void *context, int vl, int mode, u64 data) 2393 { 2394 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2395 2396 return dd->rcv_err_status_cnt[38]; 2397 } 2398 2399 static u64 access_rx_rbuf_next_free_buf_unc_err_cnt( 2400 const struct cntr_entry *entry, 2401 void *context, int vl, int mode, u64 data) 2402 { 2403 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2404 2405 return dd->rcv_err_status_cnt[37]; 2406 } 2407 2408 static u64 access_rbuf_fl_init_wr_addr_parity_err_cnt( 2409 const struct cntr_entry *entry, 2410 void *context, int vl, int mode, u64 data) 2411 { 2412 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2413 2414 return dd->rcv_err_status_cnt[36]; 2415 } 2416 2417 static u64 access_rx_rbuf_fl_initdone_parity_err_cnt( 2418 const struct cntr_entry *entry, 2419 void *context, int vl, int mode, u64 data) 2420 { 2421 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2422 2423 return dd->rcv_err_status_cnt[35]; 2424 } 2425 2426 static u64 access_rx_rbuf_fl_write_addr_parity_err_cnt( 2427 const struct cntr_entry *entry, 2428 void *context, int vl, int mode, u64 data) 2429 { 2430 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2431 2432 return dd->rcv_err_status_cnt[34]; 2433 } 2434 2435 static u64 access_rx_rbuf_fl_rd_addr_parity_err_cnt( 2436 const struct cntr_entry *entry, 2437 void *context, int vl, int mode, u64 data) 2438 { 2439 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2440 2441 return dd->rcv_err_status_cnt[33]; 2442 } 2443 2444 static u64 access_rx_rbuf_empty_err_cnt(const struct cntr_entry *entry, 2445 void *context, int vl, int mode, 2446 u64 data) 2447 { 2448 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2449 2450 return dd->rcv_err_status_cnt[32]; 2451 } 2452 2453 static u64 access_rx_rbuf_full_err_cnt(const struct cntr_entry *entry, 2454 void *context, int vl, int mode, 2455 u64 data) 2456 { 2457 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2458 2459 return dd->rcv_err_status_cnt[31]; 2460 } 2461 2462 static u64 access_rbuf_bad_lookup_err_cnt(const struct cntr_entry *entry, 2463 void *context, int vl, int mode, 2464 u64 data) 2465 { 2466 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2467 2468 return dd->rcv_err_status_cnt[30]; 2469 } 2470 2471 static u64 access_rbuf_ctx_id_parity_err_cnt(const struct cntr_entry *entry, 2472 void *context, int vl, int mode, 2473 u64 data) 2474 { 2475 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2476 2477 return dd->rcv_err_status_cnt[29]; 2478 } 2479 2480 static u64 access_rbuf_csr_qeopdw_parity_err_cnt(const struct cntr_entry *entry, 2481 void *context, int vl, 2482 int mode, u64 data) 2483 { 2484 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2485 2486 return dd->rcv_err_status_cnt[28]; 2487 } 2488 2489 static u64 access_rx_rbuf_csr_q_num_of_pkt_parity_err_cnt( 2490 const struct cntr_entry *entry, 2491 void *context, int vl, int mode, u64 data) 2492 { 2493 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2494 2495 return dd->rcv_err_status_cnt[27]; 2496 } 2497 2498 static u64 access_rx_rbuf_csr_q_t1_ptr_parity_err_cnt( 2499 const struct cntr_entry *entry, 2500 void *context, int vl, int mode, u64 data) 2501 { 2502 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2503 2504 return dd->rcv_err_status_cnt[26]; 2505 } 2506 2507 static u64 access_rx_rbuf_csr_q_hd_ptr_parity_err_cnt( 2508 const struct cntr_entry *entry, 2509 void *context, int vl, int mode, u64 data) 2510 { 2511 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2512 2513 return dd->rcv_err_status_cnt[25]; 2514 } 2515 2516 static u64 access_rx_rbuf_csr_q_vld_bit_parity_err_cnt( 2517 const struct cntr_entry *entry, 2518 void *context, int vl, int mode, u64 data) 2519 { 2520 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2521 2522 return dd->rcv_err_status_cnt[24]; 2523 } 2524 2525 static u64 access_rx_rbuf_csr_q_next_buf_parity_err_cnt( 2526 const struct cntr_entry *entry, 2527 void *context, int vl, int mode, u64 data) 2528 { 2529 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2530 2531 return dd->rcv_err_status_cnt[23]; 2532 } 2533 2534 static u64 access_rx_rbuf_csr_q_ent_cnt_parity_err_cnt( 2535 const struct cntr_entry *entry, 2536 void *context, int vl, int mode, u64 data) 2537 { 2538 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2539 2540 return dd->rcv_err_status_cnt[22]; 2541 } 2542 2543 static u64 access_rx_rbuf_csr_q_head_buf_num_parity_err_cnt( 2544 const struct cntr_entry *entry, 2545 void *context, int vl, int mode, u64 data) 2546 { 2547 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2548 2549 return dd->rcv_err_status_cnt[21]; 2550 } 2551 2552 static u64 access_rx_rbuf_block_list_read_cor_err_cnt( 2553 const struct cntr_entry *entry, 2554 void *context, int vl, int mode, u64 data) 2555 { 2556 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2557 2558 return dd->rcv_err_status_cnt[20]; 2559 } 2560 2561 static u64 access_rx_rbuf_block_list_read_unc_err_cnt( 2562 const struct cntr_entry *entry, 2563 void *context, int vl, int mode, u64 data) 2564 { 2565 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2566 2567 return dd->rcv_err_status_cnt[19]; 2568 } 2569 2570 static u64 access_rx_rbuf_lookup_des_cor_err_cnt(const struct cntr_entry *entry, 2571 void *context, int vl, 2572 int mode, u64 data) 2573 { 2574 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2575 2576 return dd->rcv_err_status_cnt[18]; 2577 } 2578 2579 static u64 access_rx_rbuf_lookup_des_unc_err_cnt(const struct cntr_entry *entry, 2580 void *context, int vl, 2581 int mode, u64 data) 2582 { 2583 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2584 2585 return dd->rcv_err_status_cnt[17]; 2586 } 2587 2588 static u64 access_rx_rbuf_lookup_des_reg_unc_cor_err_cnt( 2589 const struct cntr_entry *entry, 2590 void *context, int vl, int mode, u64 data) 2591 { 2592 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2593 2594 return dd->rcv_err_status_cnt[16]; 2595 } 2596 2597 static u64 access_rx_rbuf_lookup_des_reg_unc_err_cnt( 2598 const struct cntr_entry *entry, 2599 void *context, int vl, int mode, u64 data) 2600 { 2601 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2602 2603 return dd->rcv_err_status_cnt[15]; 2604 } 2605 2606 static u64 access_rx_rbuf_free_list_cor_err_cnt(const struct cntr_entry *entry, 2607 void *context, int vl, 2608 int mode, u64 data) 2609 { 2610 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2611 2612 return dd->rcv_err_status_cnt[14]; 2613 } 2614 2615 static u64 access_rx_rbuf_free_list_unc_err_cnt(const struct cntr_entry *entry, 2616 void *context, int vl, 2617 int mode, u64 data) 2618 { 2619 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2620 2621 return dd->rcv_err_status_cnt[13]; 2622 } 2623 2624 static u64 access_rx_rcv_fsm_encoding_err_cnt(const struct cntr_entry *entry, 2625 void *context, int vl, int mode, 2626 u64 data) 2627 { 2628 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2629 2630 return dd->rcv_err_status_cnt[12]; 2631 } 2632 2633 static u64 access_rx_dma_flag_cor_err_cnt(const struct cntr_entry *entry, 2634 void *context, int vl, int mode, 2635 u64 data) 2636 { 2637 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2638 2639 return dd->rcv_err_status_cnt[11]; 2640 } 2641 2642 static u64 access_rx_dma_flag_unc_err_cnt(const struct cntr_entry *entry, 2643 void *context, int vl, int mode, 2644 u64 data) 2645 { 2646 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2647 2648 return dd->rcv_err_status_cnt[10]; 2649 } 2650 2651 static u64 access_rx_dc_sop_eop_parity_err_cnt(const struct cntr_entry *entry, 2652 void *context, int vl, int mode, 2653 u64 data) 2654 { 2655 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2656 2657 return dd->rcv_err_status_cnt[9]; 2658 } 2659 2660 static u64 access_rx_rcv_csr_parity_err_cnt(const struct cntr_entry *entry, 2661 void *context, int vl, int mode, 2662 u64 data) 2663 { 2664 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2665 2666 return dd->rcv_err_status_cnt[8]; 2667 } 2668 2669 static u64 access_rx_rcv_qp_map_table_cor_err_cnt( 2670 const struct cntr_entry *entry, 2671 void *context, int vl, int mode, u64 data) 2672 { 2673 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2674 2675 return dd->rcv_err_status_cnt[7]; 2676 } 2677 2678 static u64 access_rx_rcv_qp_map_table_unc_err_cnt( 2679 const struct cntr_entry *entry, 2680 void *context, int vl, int mode, u64 data) 2681 { 2682 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2683 2684 return dd->rcv_err_status_cnt[6]; 2685 } 2686 2687 static u64 access_rx_rcv_data_cor_err_cnt(const struct cntr_entry *entry, 2688 void *context, int vl, int mode, 2689 u64 data) 2690 { 2691 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2692 2693 return dd->rcv_err_status_cnt[5]; 2694 } 2695 2696 static u64 access_rx_rcv_data_unc_err_cnt(const struct cntr_entry *entry, 2697 void *context, int vl, int mode, 2698 u64 data) 2699 { 2700 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2701 2702 return dd->rcv_err_status_cnt[4]; 2703 } 2704 2705 static u64 access_rx_rcv_hdr_cor_err_cnt(const struct cntr_entry *entry, 2706 void *context, int vl, int mode, 2707 u64 data) 2708 { 2709 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2710 2711 return dd->rcv_err_status_cnt[3]; 2712 } 2713 2714 static u64 access_rx_rcv_hdr_unc_err_cnt(const struct cntr_entry *entry, 2715 void *context, int vl, int mode, 2716 u64 data) 2717 { 2718 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2719 2720 return dd->rcv_err_status_cnt[2]; 2721 } 2722 2723 static u64 access_rx_dc_intf_parity_err_cnt(const struct cntr_entry *entry, 2724 void *context, int vl, int mode, 2725 u64 data) 2726 { 2727 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2728 2729 return dd->rcv_err_status_cnt[1]; 2730 } 2731 2732 static u64 access_rx_dma_csr_cor_err_cnt(const struct cntr_entry *entry, 2733 void *context, int vl, int mode, 2734 u64 data) 2735 { 2736 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2737 2738 return dd->rcv_err_status_cnt[0]; 2739 } 2740 2741 /* 2742 * Software counters corresponding to each of the 2743 * error status bits within SendPioErrStatus 2744 */ 2745 static u64 access_pio_pec_sop_head_parity_err_cnt( 2746 const struct cntr_entry *entry, 2747 void *context, int vl, int mode, u64 data) 2748 { 2749 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2750 2751 return dd->send_pio_err_status_cnt[35]; 2752 } 2753 2754 static u64 access_pio_pcc_sop_head_parity_err_cnt( 2755 const struct cntr_entry *entry, 2756 void *context, int vl, int mode, u64 data) 2757 { 2758 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2759 2760 return dd->send_pio_err_status_cnt[34]; 2761 } 2762 2763 static u64 access_pio_last_returned_cnt_parity_err_cnt( 2764 const struct cntr_entry *entry, 2765 void *context, int vl, int mode, u64 data) 2766 { 2767 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2768 2769 return dd->send_pio_err_status_cnt[33]; 2770 } 2771 2772 static u64 access_pio_current_free_cnt_parity_err_cnt( 2773 const struct cntr_entry *entry, 2774 void *context, int vl, int mode, u64 data) 2775 { 2776 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2777 2778 return dd->send_pio_err_status_cnt[32]; 2779 } 2780 2781 static u64 access_pio_reserved_31_err_cnt(const struct cntr_entry *entry, 2782 void *context, int vl, int mode, 2783 u64 data) 2784 { 2785 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2786 2787 return dd->send_pio_err_status_cnt[31]; 2788 } 2789 2790 static u64 access_pio_reserved_30_err_cnt(const struct cntr_entry *entry, 2791 void *context, int vl, int mode, 2792 u64 data) 2793 { 2794 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2795 2796 return dd->send_pio_err_status_cnt[30]; 2797 } 2798 2799 static u64 access_pio_ppmc_sop_len_err_cnt(const struct cntr_entry *entry, 2800 void *context, int vl, int mode, 2801 u64 data) 2802 { 2803 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2804 2805 return dd->send_pio_err_status_cnt[29]; 2806 } 2807 2808 static u64 access_pio_ppmc_bqc_mem_parity_err_cnt( 2809 const struct cntr_entry *entry, 2810 void *context, int vl, int mode, u64 data) 2811 { 2812 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2813 2814 return dd->send_pio_err_status_cnt[28]; 2815 } 2816 2817 static u64 access_pio_vl_fifo_parity_err_cnt(const struct cntr_entry *entry, 2818 void *context, int vl, int mode, 2819 u64 data) 2820 { 2821 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2822 2823 return dd->send_pio_err_status_cnt[27]; 2824 } 2825 2826 static u64 access_pio_vlf_sop_parity_err_cnt(const struct cntr_entry *entry, 2827 void *context, int vl, int mode, 2828 u64 data) 2829 { 2830 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2831 2832 return dd->send_pio_err_status_cnt[26]; 2833 } 2834 2835 static u64 access_pio_vlf_v1_len_parity_err_cnt(const struct cntr_entry *entry, 2836 void *context, int vl, 2837 int mode, u64 data) 2838 { 2839 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2840 2841 return dd->send_pio_err_status_cnt[25]; 2842 } 2843 2844 static u64 access_pio_block_qw_count_parity_err_cnt( 2845 const struct cntr_entry *entry, 2846 void *context, int vl, int mode, u64 data) 2847 { 2848 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2849 2850 return dd->send_pio_err_status_cnt[24]; 2851 } 2852 2853 static u64 access_pio_write_qw_valid_parity_err_cnt( 2854 const struct cntr_entry *entry, 2855 void *context, int vl, int mode, u64 data) 2856 { 2857 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2858 2859 return dd->send_pio_err_status_cnt[23]; 2860 } 2861 2862 static u64 access_pio_state_machine_err_cnt(const struct cntr_entry *entry, 2863 void *context, int vl, int mode, 2864 u64 data) 2865 { 2866 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2867 2868 return dd->send_pio_err_status_cnt[22]; 2869 } 2870 2871 static u64 access_pio_write_data_parity_err_cnt(const struct cntr_entry *entry, 2872 void *context, int vl, 2873 int mode, u64 data) 2874 { 2875 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2876 2877 return dd->send_pio_err_status_cnt[21]; 2878 } 2879 2880 static u64 access_pio_host_addr_mem_cor_err_cnt(const struct cntr_entry *entry, 2881 void *context, int vl, 2882 int mode, u64 data) 2883 { 2884 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2885 2886 return dd->send_pio_err_status_cnt[20]; 2887 } 2888 2889 static u64 access_pio_host_addr_mem_unc_err_cnt(const struct cntr_entry *entry, 2890 void *context, int vl, 2891 int mode, u64 data) 2892 { 2893 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2894 2895 return dd->send_pio_err_status_cnt[19]; 2896 } 2897 2898 static u64 access_pio_pkt_evict_sm_or_arb_sm_err_cnt( 2899 const struct cntr_entry *entry, 2900 void *context, int vl, int mode, u64 data) 2901 { 2902 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2903 2904 return dd->send_pio_err_status_cnt[18]; 2905 } 2906 2907 static u64 access_pio_init_sm_in_err_cnt(const struct cntr_entry *entry, 2908 void *context, int vl, int mode, 2909 u64 data) 2910 { 2911 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2912 2913 return dd->send_pio_err_status_cnt[17]; 2914 } 2915 2916 static u64 access_pio_ppmc_pbl_fifo_err_cnt(const struct cntr_entry *entry, 2917 void *context, int vl, int mode, 2918 u64 data) 2919 { 2920 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2921 2922 return dd->send_pio_err_status_cnt[16]; 2923 } 2924 2925 static u64 access_pio_credit_ret_fifo_parity_err_cnt( 2926 const struct cntr_entry *entry, 2927 void *context, int vl, int mode, u64 data) 2928 { 2929 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2930 2931 return dd->send_pio_err_status_cnt[15]; 2932 } 2933 2934 static u64 access_pio_v1_len_mem_bank1_cor_err_cnt( 2935 const struct cntr_entry *entry, 2936 void *context, int vl, int mode, u64 data) 2937 { 2938 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2939 2940 return dd->send_pio_err_status_cnt[14]; 2941 } 2942 2943 static u64 access_pio_v1_len_mem_bank0_cor_err_cnt( 2944 const struct cntr_entry *entry, 2945 void *context, int vl, int mode, u64 data) 2946 { 2947 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2948 2949 return dd->send_pio_err_status_cnt[13]; 2950 } 2951 2952 static u64 access_pio_v1_len_mem_bank1_unc_err_cnt( 2953 const struct cntr_entry *entry, 2954 void *context, int vl, int mode, u64 data) 2955 { 2956 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2957 2958 return dd->send_pio_err_status_cnt[12]; 2959 } 2960 2961 static u64 access_pio_v1_len_mem_bank0_unc_err_cnt( 2962 const struct cntr_entry *entry, 2963 void *context, int vl, int mode, u64 data) 2964 { 2965 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2966 2967 return dd->send_pio_err_status_cnt[11]; 2968 } 2969 2970 static u64 access_pio_sm_pkt_reset_parity_err_cnt( 2971 const struct cntr_entry *entry, 2972 void *context, int vl, int mode, u64 data) 2973 { 2974 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2975 2976 return dd->send_pio_err_status_cnt[10]; 2977 } 2978 2979 static u64 access_pio_pkt_evict_fifo_parity_err_cnt( 2980 const struct cntr_entry *entry, 2981 void *context, int vl, int mode, u64 data) 2982 { 2983 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2984 2985 return dd->send_pio_err_status_cnt[9]; 2986 } 2987 2988 static u64 access_pio_sbrdctrl_crrel_fifo_parity_err_cnt( 2989 const struct cntr_entry *entry, 2990 void *context, int vl, int mode, u64 data) 2991 { 2992 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2993 2994 return dd->send_pio_err_status_cnt[8]; 2995 } 2996 2997 static u64 access_pio_sbrdctl_crrel_parity_err_cnt( 2998 const struct cntr_entry *entry, 2999 void *context, int vl, int mode, u64 data) 3000 { 3001 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3002 3003 return dd->send_pio_err_status_cnt[7]; 3004 } 3005 3006 static u64 access_pio_pec_fifo_parity_err_cnt(const struct cntr_entry *entry, 3007 void *context, int vl, int mode, 3008 u64 data) 3009 { 3010 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3011 3012 return dd->send_pio_err_status_cnt[6]; 3013 } 3014 3015 static u64 access_pio_pcc_fifo_parity_err_cnt(const struct cntr_entry *entry, 3016 void *context, int vl, int mode, 3017 u64 data) 3018 { 3019 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3020 3021 return dd->send_pio_err_status_cnt[5]; 3022 } 3023 3024 static u64 access_pio_sb_mem_fifo1_err_cnt(const struct cntr_entry *entry, 3025 void *context, int vl, int mode, 3026 u64 data) 3027 { 3028 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3029 3030 return dd->send_pio_err_status_cnt[4]; 3031 } 3032 3033 static u64 access_pio_sb_mem_fifo0_err_cnt(const struct cntr_entry *entry, 3034 void *context, int vl, int mode, 3035 u64 data) 3036 { 3037 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3038 3039 return dd->send_pio_err_status_cnt[3]; 3040 } 3041 3042 static u64 access_pio_csr_parity_err_cnt(const struct cntr_entry *entry, 3043 void *context, int vl, int mode, 3044 u64 data) 3045 { 3046 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3047 3048 return dd->send_pio_err_status_cnt[2]; 3049 } 3050 3051 static u64 access_pio_write_addr_parity_err_cnt(const struct cntr_entry *entry, 3052 void *context, int vl, 3053 int mode, u64 data) 3054 { 3055 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3056 3057 return dd->send_pio_err_status_cnt[1]; 3058 } 3059 3060 static u64 access_pio_write_bad_ctxt_err_cnt(const struct cntr_entry *entry, 3061 void *context, int vl, int mode, 3062 u64 data) 3063 { 3064 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3065 3066 return dd->send_pio_err_status_cnt[0]; 3067 } 3068 3069 /* 3070 * Software counters corresponding to each of the 3071 * error status bits within SendDmaErrStatus 3072 */ 3073 static u64 access_sdma_pcie_req_tracking_cor_err_cnt( 3074 const struct cntr_entry *entry, 3075 void *context, int vl, int mode, u64 data) 3076 { 3077 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3078 3079 return dd->send_dma_err_status_cnt[3]; 3080 } 3081 3082 static u64 access_sdma_pcie_req_tracking_unc_err_cnt( 3083 const struct cntr_entry *entry, 3084 void *context, int vl, int mode, u64 data) 3085 { 3086 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3087 3088 return dd->send_dma_err_status_cnt[2]; 3089 } 3090 3091 static u64 access_sdma_csr_parity_err_cnt(const struct cntr_entry *entry, 3092 void *context, int vl, int mode, 3093 u64 data) 3094 { 3095 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3096 3097 return dd->send_dma_err_status_cnt[1]; 3098 } 3099 3100 static u64 access_sdma_rpy_tag_err_cnt(const struct cntr_entry *entry, 3101 void *context, int vl, int mode, 3102 u64 data) 3103 { 3104 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3105 3106 return dd->send_dma_err_status_cnt[0]; 3107 } 3108 3109 /* 3110 * Software counters corresponding to each of the 3111 * error status bits within SendEgressErrStatus 3112 */ 3113 static u64 access_tx_read_pio_memory_csr_unc_err_cnt( 3114 const struct cntr_entry *entry, 3115 void *context, int vl, int mode, u64 data) 3116 { 3117 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3118 3119 return dd->send_egress_err_status_cnt[63]; 3120 } 3121 3122 static u64 access_tx_read_sdma_memory_csr_err_cnt( 3123 const struct cntr_entry *entry, 3124 void *context, int vl, int mode, u64 data) 3125 { 3126 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3127 3128 return dd->send_egress_err_status_cnt[62]; 3129 } 3130 3131 static u64 access_tx_egress_fifo_cor_err_cnt(const struct cntr_entry *entry, 3132 void *context, int vl, int mode, 3133 u64 data) 3134 { 3135 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3136 3137 return dd->send_egress_err_status_cnt[61]; 3138 } 3139 3140 static u64 access_tx_read_pio_memory_cor_err_cnt(const struct cntr_entry *entry, 3141 void *context, int vl, 3142 int mode, u64 data) 3143 { 3144 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3145 3146 return dd->send_egress_err_status_cnt[60]; 3147 } 3148 3149 static u64 access_tx_read_sdma_memory_cor_err_cnt( 3150 const struct cntr_entry *entry, 3151 void *context, int vl, int mode, u64 data) 3152 { 3153 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3154 3155 return dd->send_egress_err_status_cnt[59]; 3156 } 3157 3158 static u64 access_tx_sb_hdr_cor_err_cnt(const struct cntr_entry *entry, 3159 void *context, int vl, int mode, 3160 u64 data) 3161 { 3162 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3163 3164 return dd->send_egress_err_status_cnt[58]; 3165 } 3166 3167 static u64 access_tx_credit_overrun_err_cnt(const struct cntr_entry *entry, 3168 void *context, int vl, int mode, 3169 u64 data) 3170 { 3171 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3172 3173 return dd->send_egress_err_status_cnt[57]; 3174 } 3175 3176 static u64 access_tx_launch_fifo8_cor_err_cnt(const struct cntr_entry *entry, 3177 void *context, int vl, int mode, 3178 u64 data) 3179 { 3180 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3181 3182 return dd->send_egress_err_status_cnt[56]; 3183 } 3184 3185 static u64 access_tx_launch_fifo7_cor_err_cnt(const struct cntr_entry *entry, 3186 void *context, int vl, int mode, 3187 u64 data) 3188 { 3189 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3190 3191 return dd->send_egress_err_status_cnt[55]; 3192 } 3193 3194 static u64 access_tx_launch_fifo6_cor_err_cnt(const struct cntr_entry *entry, 3195 void *context, int vl, int mode, 3196 u64 data) 3197 { 3198 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3199 3200 return dd->send_egress_err_status_cnt[54]; 3201 } 3202 3203 static u64 access_tx_launch_fifo5_cor_err_cnt(const struct cntr_entry *entry, 3204 void *context, int vl, int mode, 3205 u64 data) 3206 { 3207 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3208 3209 return dd->send_egress_err_status_cnt[53]; 3210 } 3211 3212 static u64 access_tx_launch_fifo4_cor_err_cnt(const struct cntr_entry *entry, 3213 void *context, int vl, int mode, 3214 u64 data) 3215 { 3216 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3217 3218 return dd->send_egress_err_status_cnt[52]; 3219 } 3220 3221 static u64 access_tx_launch_fifo3_cor_err_cnt(const struct cntr_entry *entry, 3222 void *context, int vl, int mode, 3223 u64 data) 3224 { 3225 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3226 3227 return dd->send_egress_err_status_cnt[51]; 3228 } 3229 3230 static u64 access_tx_launch_fifo2_cor_err_cnt(const struct cntr_entry *entry, 3231 void *context, int vl, int mode, 3232 u64 data) 3233 { 3234 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3235 3236 return dd->send_egress_err_status_cnt[50]; 3237 } 3238 3239 static u64 access_tx_launch_fifo1_cor_err_cnt(const struct cntr_entry *entry, 3240 void *context, int vl, int mode, 3241 u64 data) 3242 { 3243 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3244 3245 return dd->send_egress_err_status_cnt[49]; 3246 } 3247 3248 static u64 access_tx_launch_fifo0_cor_err_cnt(const struct cntr_entry *entry, 3249 void *context, int vl, int mode, 3250 u64 data) 3251 { 3252 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3253 3254 return dd->send_egress_err_status_cnt[48]; 3255 } 3256 3257 static u64 access_tx_credit_return_vl_err_cnt(const struct cntr_entry *entry, 3258 void *context, int vl, int mode, 3259 u64 data) 3260 { 3261 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3262 3263 return dd->send_egress_err_status_cnt[47]; 3264 } 3265 3266 static u64 access_tx_hcrc_insertion_err_cnt(const struct cntr_entry *entry, 3267 void *context, int vl, int mode, 3268 u64 data) 3269 { 3270 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3271 3272 return dd->send_egress_err_status_cnt[46]; 3273 } 3274 3275 static u64 access_tx_egress_fifo_unc_err_cnt(const struct cntr_entry *entry, 3276 void *context, int vl, int mode, 3277 u64 data) 3278 { 3279 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3280 3281 return dd->send_egress_err_status_cnt[45]; 3282 } 3283 3284 static u64 access_tx_read_pio_memory_unc_err_cnt(const struct cntr_entry *entry, 3285 void *context, int vl, 3286 int mode, u64 data) 3287 { 3288 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3289 3290 return dd->send_egress_err_status_cnt[44]; 3291 } 3292 3293 static u64 access_tx_read_sdma_memory_unc_err_cnt( 3294 const struct cntr_entry *entry, 3295 void *context, int vl, int mode, u64 data) 3296 { 3297 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3298 3299 return dd->send_egress_err_status_cnt[43]; 3300 } 3301 3302 static u64 access_tx_sb_hdr_unc_err_cnt(const struct cntr_entry *entry, 3303 void *context, int vl, int mode, 3304 u64 data) 3305 { 3306 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3307 3308 return dd->send_egress_err_status_cnt[42]; 3309 } 3310 3311 static u64 access_tx_credit_return_partiy_err_cnt( 3312 const struct cntr_entry *entry, 3313 void *context, int vl, int mode, u64 data) 3314 { 3315 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3316 3317 return dd->send_egress_err_status_cnt[41]; 3318 } 3319 3320 static u64 access_tx_launch_fifo8_unc_or_parity_err_cnt( 3321 const struct cntr_entry *entry, 3322 void *context, int vl, int mode, u64 data) 3323 { 3324 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3325 3326 return dd->send_egress_err_status_cnt[40]; 3327 } 3328 3329 static u64 access_tx_launch_fifo7_unc_or_parity_err_cnt( 3330 const struct cntr_entry *entry, 3331 void *context, int vl, int mode, u64 data) 3332 { 3333 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3334 3335 return dd->send_egress_err_status_cnt[39]; 3336 } 3337 3338 static u64 access_tx_launch_fifo6_unc_or_parity_err_cnt( 3339 const struct cntr_entry *entry, 3340 void *context, int vl, int mode, u64 data) 3341 { 3342 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3343 3344 return dd->send_egress_err_status_cnt[38]; 3345 } 3346 3347 static u64 access_tx_launch_fifo5_unc_or_parity_err_cnt( 3348 const struct cntr_entry *entry, 3349 void *context, int vl, int mode, u64 data) 3350 { 3351 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3352 3353 return dd->send_egress_err_status_cnt[37]; 3354 } 3355 3356 static u64 access_tx_launch_fifo4_unc_or_parity_err_cnt( 3357 const struct cntr_entry *entry, 3358 void *context, int vl, int mode, u64 data) 3359 { 3360 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3361 3362 return dd->send_egress_err_status_cnt[36]; 3363 } 3364 3365 static u64 access_tx_launch_fifo3_unc_or_parity_err_cnt( 3366 const struct cntr_entry *entry, 3367 void *context, int vl, int mode, u64 data) 3368 { 3369 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3370 3371 return dd->send_egress_err_status_cnt[35]; 3372 } 3373 3374 static u64 access_tx_launch_fifo2_unc_or_parity_err_cnt( 3375 const struct cntr_entry *entry, 3376 void *context, int vl, int mode, u64 data) 3377 { 3378 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3379 3380 return dd->send_egress_err_status_cnt[34]; 3381 } 3382 3383 static u64 access_tx_launch_fifo1_unc_or_parity_err_cnt( 3384 const struct cntr_entry *entry, 3385 void *context, int vl, int mode, u64 data) 3386 { 3387 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3388 3389 return dd->send_egress_err_status_cnt[33]; 3390 } 3391 3392 static u64 access_tx_launch_fifo0_unc_or_parity_err_cnt( 3393 const struct cntr_entry *entry, 3394 void *context, int vl, int mode, u64 data) 3395 { 3396 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3397 3398 return dd->send_egress_err_status_cnt[32]; 3399 } 3400 3401 static u64 access_tx_sdma15_disallowed_packet_err_cnt( 3402 const struct cntr_entry *entry, 3403 void *context, int vl, int mode, u64 data) 3404 { 3405 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3406 3407 return dd->send_egress_err_status_cnt[31]; 3408 } 3409 3410 static u64 access_tx_sdma14_disallowed_packet_err_cnt( 3411 const struct cntr_entry *entry, 3412 void *context, int vl, int mode, u64 data) 3413 { 3414 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3415 3416 return dd->send_egress_err_status_cnt[30]; 3417 } 3418 3419 static u64 access_tx_sdma13_disallowed_packet_err_cnt( 3420 const struct cntr_entry *entry, 3421 void *context, int vl, int mode, u64 data) 3422 { 3423 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3424 3425 return dd->send_egress_err_status_cnt[29]; 3426 } 3427 3428 static u64 access_tx_sdma12_disallowed_packet_err_cnt( 3429 const struct cntr_entry *entry, 3430 void *context, int vl, int mode, u64 data) 3431 { 3432 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3433 3434 return dd->send_egress_err_status_cnt[28]; 3435 } 3436 3437 static u64 access_tx_sdma11_disallowed_packet_err_cnt( 3438 const struct cntr_entry *entry, 3439 void *context, int vl, int mode, u64 data) 3440 { 3441 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3442 3443 return dd->send_egress_err_status_cnt[27]; 3444 } 3445 3446 static u64 access_tx_sdma10_disallowed_packet_err_cnt( 3447 const struct cntr_entry *entry, 3448 void *context, int vl, int mode, u64 data) 3449 { 3450 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3451 3452 return dd->send_egress_err_status_cnt[26]; 3453 } 3454 3455 static u64 access_tx_sdma9_disallowed_packet_err_cnt( 3456 const struct cntr_entry *entry, 3457 void *context, int vl, int mode, u64 data) 3458 { 3459 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3460 3461 return dd->send_egress_err_status_cnt[25]; 3462 } 3463 3464 static u64 access_tx_sdma8_disallowed_packet_err_cnt( 3465 const struct cntr_entry *entry, 3466 void *context, int vl, int mode, u64 data) 3467 { 3468 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3469 3470 return dd->send_egress_err_status_cnt[24]; 3471 } 3472 3473 static u64 access_tx_sdma7_disallowed_packet_err_cnt( 3474 const struct cntr_entry *entry, 3475 void *context, int vl, int mode, u64 data) 3476 { 3477 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3478 3479 return dd->send_egress_err_status_cnt[23]; 3480 } 3481 3482 static u64 access_tx_sdma6_disallowed_packet_err_cnt( 3483 const struct cntr_entry *entry, 3484 void *context, int vl, int mode, u64 data) 3485 { 3486 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3487 3488 return dd->send_egress_err_status_cnt[22]; 3489 } 3490 3491 static u64 access_tx_sdma5_disallowed_packet_err_cnt( 3492 const struct cntr_entry *entry, 3493 void *context, int vl, int mode, u64 data) 3494 { 3495 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3496 3497 return dd->send_egress_err_status_cnt[21]; 3498 } 3499 3500 static u64 access_tx_sdma4_disallowed_packet_err_cnt( 3501 const struct cntr_entry *entry, 3502 void *context, int vl, int mode, u64 data) 3503 { 3504 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3505 3506 return dd->send_egress_err_status_cnt[20]; 3507 } 3508 3509 static u64 access_tx_sdma3_disallowed_packet_err_cnt( 3510 const struct cntr_entry *entry, 3511 void *context, int vl, int mode, u64 data) 3512 { 3513 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3514 3515 return dd->send_egress_err_status_cnt[19]; 3516 } 3517 3518 static u64 access_tx_sdma2_disallowed_packet_err_cnt( 3519 const struct cntr_entry *entry, 3520 void *context, int vl, int mode, u64 data) 3521 { 3522 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3523 3524 return dd->send_egress_err_status_cnt[18]; 3525 } 3526 3527 static u64 access_tx_sdma1_disallowed_packet_err_cnt( 3528 const struct cntr_entry *entry, 3529 void *context, int vl, int mode, u64 data) 3530 { 3531 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3532 3533 return dd->send_egress_err_status_cnt[17]; 3534 } 3535 3536 static u64 access_tx_sdma0_disallowed_packet_err_cnt( 3537 const struct cntr_entry *entry, 3538 void *context, int vl, int mode, u64 data) 3539 { 3540 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3541 3542 return dd->send_egress_err_status_cnt[16]; 3543 } 3544 3545 static u64 access_tx_config_parity_err_cnt(const struct cntr_entry *entry, 3546 void *context, int vl, int mode, 3547 u64 data) 3548 { 3549 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3550 3551 return dd->send_egress_err_status_cnt[15]; 3552 } 3553 3554 static u64 access_tx_sbrd_ctl_csr_parity_err_cnt(const struct cntr_entry *entry, 3555 void *context, int vl, 3556 int mode, u64 data) 3557 { 3558 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3559 3560 return dd->send_egress_err_status_cnt[14]; 3561 } 3562 3563 static u64 access_tx_launch_csr_parity_err_cnt(const struct cntr_entry *entry, 3564 void *context, int vl, int mode, 3565 u64 data) 3566 { 3567 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3568 3569 return dd->send_egress_err_status_cnt[13]; 3570 } 3571 3572 static u64 access_tx_illegal_vl_err_cnt(const struct cntr_entry *entry, 3573 void *context, int vl, int mode, 3574 u64 data) 3575 { 3576 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3577 3578 return dd->send_egress_err_status_cnt[12]; 3579 } 3580 3581 static u64 access_tx_sbrd_ctl_state_machine_parity_err_cnt( 3582 const struct cntr_entry *entry, 3583 void *context, int vl, int mode, u64 data) 3584 { 3585 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3586 3587 return dd->send_egress_err_status_cnt[11]; 3588 } 3589 3590 static u64 access_egress_reserved_10_err_cnt(const struct cntr_entry *entry, 3591 void *context, int vl, int mode, 3592 u64 data) 3593 { 3594 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3595 3596 return dd->send_egress_err_status_cnt[10]; 3597 } 3598 3599 static u64 access_egress_reserved_9_err_cnt(const struct cntr_entry *entry, 3600 void *context, int vl, int mode, 3601 u64 data) 3602 { 3603 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3604 3605 return dd->send_egress_err_status_cnt[9]; 3606 } 3607 3608 static u64 access_tx_sdma_launch_intf_parity_err_cnt( 3609 const struct cntr_entry *entry, 3610 void *context, int vl, int mode, u64 data) 3611 { 3612 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3613 3614 return dd->send_egress_err_status_cnt[8]; 3615 } 3616 3617 static u64 access_tx_pio_launch_intf_parity_err_cnt( 3618 const struct cntr_entry *entry, 3619 void *context, int vl, int mode, u64 data) 3620 { 3621 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3622 3623 return dd->send_egress_err_status_cnt[7]; 3624 } 3625 3626 static u64 access_egress_reserved_6_err_cnt(const struct cntr_entry *entry, 3627 void *context, int vl, int mode, 3628 u64 data) 3629 { 3630 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3631 3632 return dd->send_egress_err_status_cnt[6]; 3633 } 3634 3635 static u64 access_tx_incorrect_link_state_err_cnt( 3636 const struct cntr_entry *entry, 3637 void *context, int vl, int mode, u64 data) 3638 { 3639 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3640 3641 return dd->send_egress_err_status_cnt[5]; 3642 } 3643 3644 static u64 access_tx_linkdown_err_cnt(const struct cntr_entry *entry, 3645 void *context, int vl, int mode, 3646 u64 data) 3647 { 3648 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3649 3650 return dd->send_egress_err_status_cnt[4]; 3651 } 3652 3653 static u64 access_tx_egress_fifi_underrun_or_parity_err_cnt( 3654 const struct cntr_entry *entry, 3655 void *context, int vl, int mode, u64 data) 3656 { 3657 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3658 3659 return dd->send_egress_err_status_cnt[3]; 3660 } 3661 3662 static u64 access_egress_reserved_2_err_cnt(const struct cntr_entry *entry, 3663 void *context, int vl, int mode, 3664 u64 data) 3665 { 3666 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3667 3668 return dd->send_egress_err_status_cnt[2]; 3669 } 3670 3671 static u64 access_tx_pkt_integrity_mem_unc_err_cnt( 3672 const struct cntr_entry *entry, 3673 void *context, int vl, int mode, u64 data) 3674 { 3675 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3676 3677 return dd->send_egress_err_status_cnt[1]; 3678 } 3679 3680 static u64 access_tx_pkt_integrity_mem_cor_err_cnt( 3681 const struct cntr_entry *entry, 3682 void *context, int vl, int mode, u64 data) 3683 { 3684 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3685 3686 return dd->send_egress_err_status_cnt[0]; 3687 } 3688 3689 /* 3690 * Software counters corresponding to each of the 3691 * error status bits within SendErrStatus 3692 */ 3693 static u64 access_send_csr_write_bad_addr_err_cnt( 3694 const struct cntr_entry *entry, 3695 void *context, int vl, int mode, u64 data) 3696 { 3697 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3698 3699 return dd->send_err_status_cnt[2]; 3700 } 3701 3702 static u64 access_send_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry, 3703 void *context, int vl, 3704 int mode, u64 data) 3705 { 3706 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3707 3708 return dd->send_err_status_cnt[1]; 3709 } 3710 3711 static u64 access_send_csr_parity_cnt(const struct cntr_entry *entry, 3712 void *context, int vl, int mode, 3713 u64 data) 3714 { 3715 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3716 3717 return dd->send_err_status_cnt[0]; 3718 } 3719 3720 /* 3721 * Software counters corresponding to each of the 3722 * error status bits within SendCtxtErrStatus 3723 */ 3724 static u64 access_pio_write_out_of_bounds_err_cnt( 3725 const struct cntr_entry *entry, 3726 void *context, int vl, int mode, u64 data) 3727 { 3728 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3729 3730 return dd->sw_ctxt_err_status_cnt[4]; 3731 } 3732 3733 static u64 access_pio_write_overflow_err_cnt(const struct cntr_entry *entry, 3734 void *context, int vl, int mode, 3735 u64 data) 3736 { 3737 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3738 3739 return dd->sw_ctxt_err_status_cnt[3]; 3740 } 3741 3742 static u64 access_pio_write_crosses_boundary_err_cnt( 3743 const struct cntr_entry *entry, 3744 void *context, int vl, int mode, u64 data) 3745 { 3746 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3747 3748 return dd->sw_ctxt_err_status_cnt[2]; 3749 } 3750 3751 static u64 access_pio_disallowed_packet_err_cnt(const struct cntr_entry *entry, 3752 void *context, int vl, 3753 int mode, u64 data) 3754 { 3755 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3756 3757 return dd->sw_ctxt_err_status_cnt[1]; 3758 } 3759 3760 static u64 access_pio_inconsistent_sop_err_cnt(const struct cntr_entry *entry, 3761 void *context, int vl, int mode, 3762 u64 data) 3763 { 3764 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3765 3766 return dd->sw_ctxt_err_status_cnt[0]; 3767 } 3768 3769 /* 3770 * Software counters corresponding to each of the 3771 * error status bits within SendDmaEngErrStatus 3772 */ 3773 static u64 access_sdma_header_request_fifo_cor_err_cnt( 3774 const struct cntr_entry *entry, 3775 void *context, int vl, int mode, u64 data) 3776 { 3777 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3778 3779 return dd->sw_send_dma_eng_err_status_cnt[23]; 3780 } 3781 3782 static u64 access_sdma_header_storage_cor_err_cnt( 3783 const struct cntr_entry *entry, 3784 void *context, int vl, int mode, u64 data) 3785 { 3786 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3787 3788 return dd->sw_send_dma_eng_err_status_cnt[22]; 3789 } 3790 3791 static u64 access_sdma_packet_tracking_cor_err_cnt( 3792 const struct cntr_entry *entry, 3793 void *context, int vl, int mode, u64 data) 3794 { 3795 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3796 3797 return dd->sw_send_dma_eng_err_status_cnt[21]; 3798 } 3799 3800 static u64 access_sdma_assembly_cor_err_cnt(const struct cntr_entry *entry, 3801 void *context, int vl, int mode, 3802 u64 data) 3803 { 3804 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3805 3806 return dd->sw_send_dma_eng_err_status_cnt[20]; 3807 } 3808 3809 static u64 access_sdma_desc_table_cor_err_cnt(const struct cntr_entry *entry, 3810 void *context, int vl, int mode, 3811 u64 data) 3812 { 3813 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3814 3815 return dd->sw_send_dma_eng_err_status_cnt[19]; 3816 } 3817 3818 static u64 access_sdma_header_request_fifo_unc_err_cnt( 3819 const struct cntr_entry *entry, 3820 void *context, int vl, int mode, u64 data) 3821 { 3822 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3823 3824 return dd->sw_send_dma_eng_err_status_cnt[18]; 3825 } 3826 3827 static u64 access_sdma_header_storage_unc_err_cnt( 3828 const struct cntr_entry *entry, 3829 void *context, int vl, int mode, u64 data) 3830 { 3831 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3832 3833 return dd->sw_send_dma_eng_err_status_cnt[17]; 3834 } 3835 3836 static u64 access_sdma_packet_tracking_unc_err_cnt( 3837 const struct cntr_entry *entry, 3838 void *context, int vl, int mode, u64 data) 3839 { 3840 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3841 3842 return dd->sw_send_dma_eng_err_status_cnt[16]; 3843 } 3844 3845 static u64 access_sdma_assembly_unc_err_cnt(const struct cntr_entry *entry, 3846 void *context, int vl, int mode, 3847 u64 data) 3848 { 3849 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3850 3851 return dd->sw_send_dma_eng_err_status_cnt[15]; 3852 } 3853 3854 static u64 access_sdma_desc_table_unc_err_cnt(const struct cntr_entry *entry, 3855 void *context, int vl, int mode, 3856 u64 data) 3857 { 3858 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3859 3860 return dd->sw_send_dma_eng_err_status_cnt[14]; 3861 } 3862 3863 static u64 access_sdma_timeout_err_cnt(const struct cntr_entry *entry, 3864 void *context, int vl, int mode, 3865 u64 data) 3866 { 3867 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3868 3869 return dd->sw_send_dma_eng_err_status_cnt[13]; 3870 } 3871 3872 static u64 access_sdma_header_length_err_cnt(const struct cntr_entry *entry, 3873 void *context, int vl, int mode, 3874 u64 data) 3875 { 3876 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3877 3878 return dd->sw_send_dma_eng_err_status_cnt[12]; 3879 } 3880 3881 static u64 access_sdma_header_address_err_cnt(const struct cntr_entry *entry, 3882 void *context, int vl, int mode, 3883 u64 data) 3884 { 3885 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3886 3887 return dd->sw_send_dma_eng_err_status_cnt[11]; 3888 } 3889 3890 static u64 access_sdma_header_select_err_cnt(const struct cntr_entry *entry, 3891 void *context, int vl, int mode, 3892 u64 data) 3893 { 3894 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3895 3896 return dd->sw_send_dma_eng_err_status_cnt[10]; 3897 } 3898 3899 static u64 access_sdma_reserved_9_err_cnt(const struct cntr_entry *entry, 3900 void *context, int vl, int mode, 3901 u64 data) 3902 { 3903 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3904 3905 return dd->sw_send_dma_eng_err_status_cnt[9]; 3906 } 3907 3908 static u64 access_sdma_packet_desc_overflow_err_cnt( 3909 const struct cntr_entry *entry, 3910 void *context, int vl, int mode, u64 data) 3911 { 3912 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3913 3914 return dd->sw_send_dma_eng_err_status_cnt[8]; 3915 } 3916 3917 static u64 access_sdma_length_mismatch_err_cnt(const struct cntr_entry *entry, 3918 void *context, int vl, 3919 int mode, u64 data) 3920 { 3921 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3922 3923 return dd->sw_send_dma_eng_err_status_cnt[7]; 3924 } 3925 3926 static u64 access_sdma_halt_err_cnt(const struct cntr_entry *entry, 3927 void *context, int vl, int mode, u64 data) 3928 { 3929 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3930 3931 return dd->sw_send_dma_eng_err_status_cnt[6]; 3932 } 3933 3934 static u64 access_sdma_mem_read_err_cnt(const struct cntr_entry *entry, 3935 void *context, int vl, int mode, 3936 u64 data) 3937 { 3938 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3939 3940 return dd->sw_send_dma_eng_err_status_cnt[5]; 3941 } 3942 3943 static u64 access_sdma_first_desc_err_cnt(const struct cntr_entry *entry, 3944 void *context, int vl, int mode, 3945 u64 data) 3946 { 3947 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3948 3949 return dd->sw_send_dma_eng_err_status_cnt[4]; 3950 } 3951 3952 static u64 access_sdma_tail_out_of_bounds_err_cnt( 3953 const struct cntr_entry *entry, 3954 void *context, int vl, int mode, u64 data) 3955 { 3956 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3957 3958 return dd->sw_send_dma_eng_err_status_cnt[3]; 3959 } 3960 3961 static u64 access_sdma_too_long_err_cnt(const struct cntr_entry *entry, 3962 void *context, int vl, int mode, 3963 u64 data) 3964 { 3965 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3966 3967 return dd->sw_send_dma_eng_err_status_cnt[2]; 3968 } 3969 3970 static u64 access_sdma_gen_mismatch_err_cnt(const struct cntr_entry *entry, 3971 void *context, int vl, int mode, 3972 u64 data) 3973 { 3974 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3975 3976 return dd->sw_send_dma_eng_err_status_cnt[1]; 3977 } 3978 3979 static u64 access_sdma_wrong_dw_err_cnt(const struct cntr_entry *entry, 3980 void *context, int vl, int mode, 3981 u64 data) 3982 { 3983 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3984 3985 return dd->sw_send_dma_eng_err_status_cnt[0]; 3986 } 3987 3988 static u64 access_dc_rcv_err_cnt(const struct cntr_entry *entry, 3989 void *context, int vl, int mode, 3990 u64 data) 3991 { 3992 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3993 3994 u64 val = 0; 3995 u64 csr = entry->csr; 3996 3997 val = read_write_csr(dd, csr, mode, data); 3998 if (mode == CNTR_MODE_R) { 3999 val = val > CNTR_MAX - dd->sw_rcv_bypass_packet_errors ? 4000 CNTR_MAX : val + dd->sw_rcv_bypass_packet_errors; 4001 } else if (mode == CNTR_MODE_W) { 4002 dd->sw_rcv_bypass_packet_errors = 0; 4003 } else { 4004 dd_dev_err(dd, "Invalid cntr register access mode"); 4005 return 0; 4006 } 4007 return val; 4008 } 4009 4010 #define def_access_sw_cpu(cntr) \ 4011 static u64 access_sw_cpu_##cntr(const struct cntr_entry *entry, \ 4012 void *context, int vl, int mode, u64 data) \ 4013 { \ 4014 struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context; \ 4015 return read_write_cpu(ppd->dd, &ppd->ibport_data.rvp.z_ ##cntr, \ 4016 ppd->ibport_data.rvp.cntr, vl, \ 4017 mode, data); \ 4018 } 4019 4020 def_access_sw_cpu(rc_acks); 4021 def_access_sw_cpu(rc_qacks); 4022 def_access_sw_cpu(rc_delayed_comp); 4023 4024 #define def_access_ibp_counter(cntr) \ 4025 static u64 access_ibp_##cntr(const struct cntr_entry *entry, \ 4026 void *context, int vl, int mode, u64 data) \ 4027 { \ 4028 struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context; \ 4029 \ 4030 if (vl != CNTR_INVALID_VL) \ 4031 return 0; \ 4032 \ 4033 return read_write_sw(ppd->dd, &ppd->ibport_data.rvp.n_ ##cntr, \ 4034 mode, data); \ 4035 } 4036 4037 def_access_ibp_counter(loop_pkts); 4038 def_access_ibp_counter(rc_resends); 4039 def_access_ibp_counter(rnr_naks); 4040 def_access_ibp_counter(other_naks); 4041 def_access_ibp_counter(rc_timeouts); 4042 def_access_ibp_counter(pkt_drops); 4043 def_access_ibp_counter(dmawait); 4044 def_access_ibp_counter(rc_seqnak); 4045 def_access_ibp_counter(rc_dupreq); 4046 def_access_ibp_counter(rdma_seq); 4047 def_access_ibp_counter(unaligned); 4048 def_access_ibp_counter(seq_naks); 4049 4050 static struct cntr_entry dev_cntrs[DEV_CNTR_LAST] = { 4051 [C_RCV_OVF] = RXE32_DEV_CNTR_ELEM(RcvOverflow, RCV_BUF_OVFL_CNT, CNTR_SYNTH), 4052 [C_RX_TID_FULL] = RXE32_DEV_CNTR_ELEM(RxTIDFullEr, RCV_TID_FULL_ERR_CNT, 4053 CNTR_NORMAL), 4054 [C_RX_TID_INVALID] = RXE32_DEV_CNTR_ELEM(RxTIDInvalid, RCV_TID_VALID_ERR_CNT, 4055 CNTR_NORMAL), 4056 [C_RX_TID_FLGMS] = RXE32_DEV_CNTR_ELEM(RxTidFLGMs, 4057 RCV_TID_FLOW_GEN_MISMATCH_CNT, 4058 CNTR_NORMAL), 4059 [C_RX_CTX_EGRS] = RXE32_DEV_CNTR_ELEM(RxCtxEgrS, RCV_CONTEXT_EGR_STALL, 4060 CNTR_NORMAL), 4061 [C_RCV_TID_FLSMS] = RXE32_DEV_CNTR_ELEM(RxTidFLSMs, 4062 RCV_TID_FLOW_SEQ_MISMATCH_CNT, CNTR_NORMAL), 4063 [C_CCE_PCI_CR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePciCrSt, 4064 CCE_PCIE_POSTED_CRDT_STALL_CNT, CNTR_NORMAL), 4065 [C_CCE_PCI_TR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePciTrSt, CCE_PCIE_TRGT_STALL_CNT, 4066 CNTR_NORMAL), 4067 [C_CCE_PIO_WR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePioWrSt, CCE_PIO_WR_STALL_CNT, 4068 CNTR_NORMAL), 4069 [C_CCE_ERR_INT] = CCE_INT_DEV_CNTR_ELEM(CceErrInt, CCE_ERR_INT_CNT, 4070 CNTR_NORMAL), 4071 [C_CCE_SDMA_INT] = CCE_INT_DEV_CNTR_ELEM(CceSdmaInt, CCE_SDMA_INT_CNT, 4072 CNTR_NORMAL), 4073 [C_CCE_MISC_INT] = CCE_INT_DEV_CNTR_ELEM(CceMiscInt, CCE_MISC_INT_CNT, 4074 CNTR_NORMAL), 4075 [C_CCE_RCV_AV_INT] = CCE_INT_DEV_CNTR_ELEM(CceRcvAvInt, CCE_RCV_AVAIL_INT_CNT, 4076 CNTR_NORMAL), 4077 [C_CCE_RCV_URG_INT] = CCE_INT_DEV_CNTR_ELEM(CceRcvUrgInt, 4078 CCE_RCV_URGENT_INT_CNT, CNTR_NORMAL), 4079 [C_CCE_SEND_CR_INT] = CCE_INT_DEV_CNTR_ELEM(CceSndCrInt, 4080 CCE_SEND_CREDIT_INT_CNT, CNTR_NORMAL), 4081 [C_DC_UNC_ERR] = DC_PERF_CNTR(DcUnctblErr, DCC_ERR_UNCORRECTABLE_CNT, 4082 CNTR_SYNTH), 4083 [C_DC_RCV_ERR] = CNTR_ELEM("DcRecvErr", DCC_ERR_PORTRCV_ERR_CNT, 0, CNTR_SYNTH, 4084 access_dc_rcv_err_cnt), 4085 [C_DC_FM_CFG_ERR] = DC_PERF_CNTR(DcFmCfgErr, DCC_ERR_FMCONFIG_ERR_CNT, 4086 CNTR_SYNTH), 4087 [C_DC_RMT_PHY_ERR] = DC_PERF_CNTR(DcRmtPhyErr, DCC_ERR_RCVREMOTE_PHY_ERR_CNT, 4088 CNTR_SYNTH), 4089 [C_DC_DROPPED_PKT] = DC_PERF_CNTR(DcDroppedPkt, DCC_ERR_DROPPED_PKT_CNT, 4090 CNTR_SYNTH), 4091 [C_DC_MC_XMIT_PKTS] = DC_PERF_CNTR(DcMcXmitPkts, 4092 DCC_PRF_PORT_XMIT_MULTICAST_CNT, CNTR_SYNTH), 4093 [C_DC_MC_RCV_PKTS] = DC_PERF_CNTR(DcMcRcvPkts, 4094 DCC_PRF_PORT_RCV_MULTICAST_PKT_CNT, 4095 CNTR_SYNTH), 4096 [C_DC_XMIT_CERR] = DC_PERF_CNTR(DcXmitCorr, 4097 DCC_PRF_PORT_XMIT_CORRECTABLE_CNT, CNTR_SYNTH), 4098 [C_DC_RCV_CERR] = DC_PERF_CNTR(DcRcvCorrCnt, DCC_PRF_PORT_RCV_CORRECTABLE_CNT, 4099 CNTR_SYNTH), 4100 [C_DC_RCV_FCC] = DC_PERF_CNTR(DcRxFCntl, DCC_PRF_RX_FLOW_CRTL_CNT, 4101 CNTR_SYNTH), 4102 [C_DC_XMIT_FCC] = DC_PERF_CNTR(DcXmitFCntl, DCC_PRF_TX_FLOW_CRTL_CNT, 4103 CNTR_SYNTH), 4104 [C_DC_XMIT_FLITS] = DC_PERF_CNTR(DcXmitFlits, DCC_PRF_PORT_XMIT_DATA_CNT, 4105 CNTR_SYNTH), 4106 [C_DC_RCV_FLITS] = DC_PERF_CNTR(DcRcvFlits, DCC_PRF_PORT_RCV_DATA_CNT, 4107 CNTR_SYNTH), 4108 [C_DC_XMIT_PKTS] = DC_PERF_CNTR(DcXmitPkts, DCC_PRF_PORT_XMIT_PKTS_CNT, 4109 CNTR_SYNTH), 4110 [C_DC_RCV_PKTS] = DC_PERF_CNTR(DcRcvPkts, DCC_PRF_PORT_RCV_PKTS_CNT, 4111 CNTR_SYNTH), 4112 [C_DC_RX_FLIT_VL] = DC_PERF_CNTR(DcRxFlitVl, DCC_PRF_PORT_VL_RCV_DATA_CNT, 4113 CNTR_SYNTH | CNTR_VL), 4114 [C_DC_RX_PKT_VL] = DC_PERF_CNTR(DcRxPktVl, DCC_PRF_PORT_VL_RCV_PKTS_CNT, 4115 CNTR_SYNTH | CNTR_VL), 4116 [C_DC_RCV_FCN] = DC_PERF_CNTR(DcRcvFcn, DCC_PRF_PORT_RCV_FECN_CNT, CNTR_SYNTH), 4117 [C_DC_RCV_FCN_VL] = DC_PERF_CNTR(DcRcvFcnVl, DCC_PRF_PORT_VL_RCV_FECN_CNT, 4118 CNTR_SYNTH | CNTR_VL), 4119 [C_DC_RCV_BCN] = DC_PERF_CNTR(DcRcvBcn, DCC_PRF_PORT_RCV_BECN_CNT, CNTR_SYNTH), 4120 [C_DC_RCV_BCN_VL] = DC_PERF_CNTR(DcRcvBcnVl, DCC_PRF_PORT_VL_RCV_BECN_CNT, 4121 CNTR_SYNTH | CNTR_VL), 4122 [C_DC_RCV_BBL] = DC_PERF_CNTR(DcRcvBbl, DCC_PRF_PORT_RCV_BUBBLE_CNT, 4123 CNTR_SYNTH), 4124 [C_DC_RCV_BBL_VL] = DC_PERF_CNTR(DcRcvBblVl, DCC_PRF_PORT_VL_RCV_BUBBLE_CNT, 4125 CNTR_SYNTH | CNTR_VL), 4126 [C_DC_MARK_FECN] = DC_PERF_CNTR(DcMarkFcn, DCC_PRF_PORT_MARK_FECN_CNT, 4127 CNTR_SYNTH), 4128 [C_DC_MARK_FECN_VL] = DC_PERF_CNTR(DcMarkFcnVl, DCC_PRF_PORT_VL_MARK_FECN_CNT, 4129 CNTR_SYNTH | CNTR_VL), 4130 [C_DC_TOTAL_CRC] = 4131 DC_PERF_CNTR_LCB(DcTotCrc, DC_LCB_ERR_INFO_TOTAL_CRC_ERR, 4132 CNTR_SYNTH), 4133 [C_DC_CRC_LN0] = DC_PERF_CNTR_LCB(DcCrcLn0, DC_LCB_ERR_INFO_CRC_ERR_LN0, 4134 CNTR_SYNTH), 4135 [C_DC_CRC_LN1] = DC_PERF_CNTR_LCB(DcCrcLn1, DC_LCB_ERR_INFO_CRC_ERR_LN1, 4136 CNTR_SYNTH), 4137 [C_DC_CRC_LN2] = DC_PERF_CNTR_LCB(DcCrcLn2, DC_LCB_ERR_INFO_CRC_ERR_LN2, 4138 CNTR_SYNTH), 4139 [C_DC_CRC_LN3] = DC_PERF_CNTR_LCB(DcCrcLn3, DC_LCB_ERR_INFO_CRC_ERR_LN3, 4140 CNTR_SYNTH), 4141 [C_DC_CRC_MULT_LN] = 4142 DC_PERF_CNTR_LCB(DcMultLn, DC_LCB_ERR_INFO_CRC_ERR_MULTI_LN, 4143 CNTR_SYNTH), 4144 [C_DC_TX_REPLAY] = DC_PERF_CNTR_LCB(DcTxReplay, DC_LCB_ERR_INFO_TX_REPLAY_CNT, 4145 CNTR_SYNTH), 4146 [C_DC_RX_REPLAY] = DC_PERF_CNTR_LCB(DcRxReplay, DC_LCB_ERR_INFO_RX_REPLAY_CNT, 4147 CNTR_SYNTH), 4148 [C_DC_SEQ_CRC_CNT] = 4149 DC_PERF_CNTR_LCB(DcLinkSeqCrc, DC_LCB_ERR_INFO_SEQ_CRC_CNT, 4150 CNTR_SYNTH), 4151 [C_DC_ESC0_ONLY_CNT] = 4152 DC_PERF_CNTR_LCB(DcEsc0, DC_LCB_ERR_INFO_ESCAPE_0_ONLY_CNT, 4153 CNTR_SYNTH), 4154 [C_DC_ESC0_PLUS1_CNT] = 4155 DC_PERF_CNTR_LCB(DcEsc1, DC_LCB_ERR_INFO_ESCAPE_0_PLUS1_CNT, 4156 CNTR_SYNTH), 4157 [C_DC_ESC0_PLUS2_CNT] = 4158 DC_PERF_CNTR_LCB(DcEsc0Plus2, DC_LCB_ERR_INFO_ESCAPE_0_PLUS2_CNT, 4159 CNTR_SYNTH), 4160 [C_DC_REINIT_FROM_PEER_CNT] = 4161 DC_PERF_CNTR_LCB(DcReinitPeer, DC_LCB_ERR_INFO_REINIT_FROM_PEER_CNT, 4162 CNTR_SYNTH), 4163 [C_DC_SBE_CNT] = DC_PERF_CNTR_LCB(DcSbe, DC_LCB_ERR_INFO_SBE_CNT, 4164 CNTR_SYNTH), 4165 [C_DC_MISC_FLG_CNT] = 4166 DC_PERF_CNTR_LCB(DcMiscFlg, DC_LCB_ERR_INFO_MISC_FLG_CNT, 4167 CNTR_SYNTH), 4168 [C_DC_PRF_GOOD_LTP_CNT] = 4169 DC_PERF_CNTR_LCB(DcGoodLTP, DC_LCB_PRF_GOOD_LTP_CNT, CNTR_SYNTH), 4170 [C_DC_PRF_ACCEPTED_LTP_CNT] = 4171 DC_PERF_CNTR_LCB(DcAccLTP, DC_LCB_PRF_ACCEPTED_LTP_CNT, 4172 CNTR_SYNTH), 4173 [C_DC_PRF_RX_FLIT_CNT] = 4174 DC_PERF_CNTR_LCB(DcPrfRxFlit, DC_LCB_PRF_RX_FLIT_CNT, CNTR_SYNTH), 4175 [C_DC_PRF_TX_FLIT_CNT] = 4176 DC_PERF_CNTR_LCB(DcPrfTxFlit, DC_LCB_PRF_TX_FLIT_CNT, CNTR_SYNTH), 4177 [C_DC_PRF_CLK_CNTR] = 4178 DC_PERF_CNTR_LCB(DcPrfClk, DC_LCB_PRF_CLK_CNTR, CNTR_SYNTH), 4179 [C_DC_PG_DBG_FLIT_CRDTS_CNT] = 4180 DC_PERF_CNTR_LCB(DcFltCrdts, DC_LCB_PG_DBG_FLIT_CRDTS_CNT, CNTR_SYNTH), 4181 [C_DC_PG_STS_PAUSE_COMPLETE_CNT] = 4182 DC_PERF_CNTR_LCB(DcPauseComp, DC_LCB_PG_STS_PAUSE_COMPLETE_CNT, 4183 CNTR_SYNTH), 4184 [C_DC_PG_STS_TX_SBE_CNT] = 4185 DC_PERF_CNTR_LCB(DcStsTxSbe, DC_LCB_PG_STS_TX_SBE_CNT, CNTR_SYNTH), 4186 [C_DC_PG_STS_TX_MBE_CNT] = 4187 DC_PERF_CNTR_LCB(DcStsTxMbe, DC_LCB_PG_STS_TX_MBE_CNT, 4188 CNTR_SYNTH), 4189 [C_SW_CPU_INTR] = CNTR_ELEM("Intr", 0, 0, CNTR_NORMAL, 4190 access_sw_cpu_intr), 4191 [C_SW_CPU_RCV_LIM] = CNTR_ELEM("RcvLimit", 0, 0, CNTR_NORMAL, 4192 access_sw_cpu_rcv_limit), 4193 [C_SW_VTX_WAIT] = CNTR_ELEM("vTxWait", 0, 0, CNTR_NORMAL, 4194 access_sw_vtx_wait), 4195 [C_SW_PIO_WAIT] = CNTR_ELEM("PioWait", 0, 0, CNTR_NORMAL, 4196 access_sw_pio_wait), 4197 [C_SW_PIO_DRAIN] = CNTR_ELEM("PioDrain", 0, 0, CNTR_NORMAL, 4198 access_sw_pio_drain), 4199 [C_SW_KMEM_WAIT] = CNTR_ELEM("KmemWait", 0, 0, CNTR_NORMAL, 4200 access_sw_kmem_wait), 4201 [C_SW_SEND_SCHED] = CNTR_ELEM("SendSched", 0, 0, CNTR_NORMAL, 4202 access_sw_send_schedule), 4203 [C_SDMA_DESC_FETCHED_CNT] = CNTR_ELEM("SDEDscFdCn", 4204 SEND_DMA_DESC_FETCHED_CNT, 0, 4205 CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA, 4206 dev_access_u32_csr), 4207 [C_SDMA_INT_CNT] = CNTR_ELEM("SDMAInt", 0, 0, 4208 CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA, 4209 access_sde_int_cnt), 4210 [C_SDMA_ERR_CNT] = CNTR_ELEM("SDMAErrCt", 0, 0, 4211 CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA, 4212 access_sde_err_cnt), 4213 [C_SDMA_IDLE_INT_CNT] = CNTR_ELEM("SDMAIdInt", 0, 0, 4214 CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA, 4215 access_sde_idle_int_cnt), 4216 [C_SDMA_PROGRESS_INT_CNT] = CNTR_ELEM("SDMAPrIntCn", 0, 0, 4217 CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA, 4218 access_sde_progress_int_cnt), 4219 /* MISC_ERR_STATUS */ 4220 [C_MISC_PLL_LOCK_FAIL_ERR] = CNTR_ELEM("MISC_PLL_LOCK_FAIL_ERR", 0, 0, 4221 CNTR_NORMAL, 4222 access_misc_pll_lock_fail_err_cnt), 4223 [C_MISC_MBIST_FAIL_ERR] = CNTR_ELEM("MISC_MBIST_FAIL_ERR", 0, 0, 4224 CNTR_NORMAL, 4225 access_misc_mbist_fail_err_cnt), 4226 [C_MISC_INVALID_EEP_CMD_ERR] = CNTR_ELEM("MISC_INVALID_EEP_CMD_ERR", 0, 0, 4227 CNTR_NORMAL, 4228 access_misc_invalid_eep_cmd_err_cnt), 4229 [C_MISC_EFUSE_DONE_PARITY_ERR] = CNTR_ELEM("MISC_EFUSE_DONE_PARITY_ERR", 0, 0, 4230 CNTR_NORMAL, 4231 access_misc_efuse_done_parity_err_cnt), 4232 [C_MISC_EFUSE_WRITE_ERR] = CNTR_ELEM("MISC_EFUSE_WRITE_ERR", 0, 0, 4233 CNTR_NORMAL, 4234 access_misc_efuse_write_err_cnt), 4235 [C_MISC_EFUSE_READ_BAD_ADDR_ERR] = CNTR_ELEM("MISC_EFUSE_READ_BAD_ADDR_ERR", 0, 4236 0, CNTR_NORMAL, 4237 access_misc_efuse_read_bad_addr_err_cnt), 4238 [C_MISC_EFUSE_CSR_PARITY_ERR] = CNTR_ELEM("MISC_EFUSE_CSR_PARITY_ERR", 0, 0, 4239 CNTR_NORMAL, 4240 access_misc_efuse_csr_parity_err_cnt), 4241 [C_MISC_FW_AUTH_FAILED_ERR] = CNTR_ELEM("MISC_FW_AUTH_FAILED_ERR", 0, 0, 4242 CNTR_NORMAL, 4243 access_misc_fw_auth_failed_err_cnt), 4244 [C_MISC_KEY_MISMATCH_ERR] = CNTR_ELEM("MISC_KEY_MISMATCH_ERR", 0, 0, 4245 CNTR_NORMAL, 4246 access_misc_key_mismatch_err_cnt), 4247 [C_MISC_SBUS_WRITE_FAILED_ERR] = CNTR_ELEM("MISC_SBUS_WRITE_FAILED_ERR", 0, 0, 4248 CNTR_NORMAL, 4249 access_misc_sbus_write_failed_err_cnt), 4250 [C_MISC_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("MISC_CSR_WRITE_BAD_ADDR_ERR", 0, 0, 4251 CNTR_NORMAL, 4252 access_misc_csr_write_bad_addr_err_cnt), 4253 [C_MISC_CSR_READ_BAD_ADDR_ERR] = CNTR_ELEM("MISC_CSR_READ_BAD_ADDR_ERR", 0, 0, 4254 CNTR_NORMAL, 4255 access_misc_csr_read_bad_addr_err_cnt), 4256 [C_MISC_CSR_PARITY_ERR] = CNTR_ELEM("MISC_CSR_PARITY_ERR", 0, 0, 4257 CNTR_NORMAL, 4258 access_misc_csr_parity_err_cnt), 4259 /* CceErrStatus */ 4260 [C_CCE_ERR_STATUS_AGGREGATED_CNT] = CNTR_ELEM("CceErrStatusAggregatedCnt", 0, 0, 4261 CNTR_NORMAL, 4262 access_sw_cce_err_status_aggregated_cnt), 4263 [C_CCE_MSIX_CSR_PARITY_ERR] = CNTR_ELEM("CceMsixCsrParityErr", 0, 0, 4264 CNTR_NORMAL, 4265 access_cce_msix_csr_parity_err_cnt), 4266 [C_CCE_INT_MAP_UNC_ERR] = CNTR_ELEM("CceIntMapUncErr", 0, 0, 4267 CNTR_NORMAL, 4268 access_cce_int_map_unc_err_cnt), 4269 [C_CCE_INT_MAP_COR_ERR] = CNTR_ELEM("CceIntMapCorErr", 0, 0, 4270 CNTR_NORMAL, 4271 access_cce_int_map_cor_err_cnt), 4272 [C_CCE_MSIX_TABLE_UNC_ERR] = CNTR_ELEM("CceMsixTableUncErr", 0, 0, 4273 CNTR_NORMAL, 4274 access_cce_msix_table_unc_err_cnt), 4275 [C_CCE_MSIX_TABLE_COR_ERR] = CNTR_ELEM("CceMsixTableCorErr", 0, 0, 4276 CNTR_NORMAL, 4277 access_cce_msix_table_cor_err_cnt), 4278 [C_CCE_RXDMA_CONV_FIFO_PARITY_ERR] = CNTR_ELEM("CceRxdmaConvFifoParityErr", 0, 4279 0, CNTR_NORMAL, 4280 access_cce_rxdma_conv_fifo_parity_err_cnt), 4281 [C_CCE_RCPL_ASYNC_FIFO_PARITY_ERR] = CNTR_ELEM("CceRcplAsyncFifoParityErr", 0, 4282 0, CNTR_NORMAL, 4283 access_cce_rcpl_async_fifo_parity_err_cnt), 4284 [C_CCE_SEG_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("CceSegWriteBadAddrErr", 0, 0, 4285 CNTR_NORMAL, 4286 access_cce_seg_write_bad_addr_err_cnt), 4287 [C_CCE_SEG_READ_BAD_ADDR_ERR] = CNTR_ELEM("CceSegReadBadAddrErr", 0, 0, 4288 CNTR_NORMAL, 4289 access_cce_seg_read_bad_addr_err_cnt), 4290 [C_LA_TRIGGERED] = CNTR_ELEM("Cce LATriggered", 0, 0, 4291 CNTR_NORMAL, 4292 access_la_triggered_cnt), 4293 [C_CCE_TRGT_CPL_TIMEOUT_ERR] = CNTR_ELEM("CceTrgtCplTimeoutErr", 0, 0, 4294 CNTR_NORMAL, 4295 access_cce_trgt_cpl_timeout_err_cnt), 4296 [C_PCIC_RECEIVE_PARITY_ERR] = CNTR_ELEM("PcicReceiveParityErr", 0, 0, 4297 CNTR_NORMAL, 4298 access_pcic_receive_parity_err_cnt), 4299 [C_PCIC_TRANSMIT_BACK_PARITY_ERR] = CNTR_ELEM("PcicTransmitBackParityErr", 0, 0, 4300 CNTR_NORMAL, 4301 access_pcic_transmit_back_parity_err_cnt), 4302 [C_PCIC_TRANSMIT_FRONT_PARITY_ERR] = CNTR_ELEM("PcicTransmitFrontParityErr", 0, 4303 0, CNTR_NORMAL, 4304 access_pcic_transmit_front_parity_err_cnt), 4305 [C_PCIC_CPL_DAT_Q_UNC_ERR] = CNTR_ELEM("PcicCplDatQUncErr", 0, 0, 4306 CNTR_NORMAL, 4307 access_pcic_cpl_dat_q_unc_err_cnt), 4308 [C_PCIC_CPL_HD_Q_UNC_ERR] = CNTR_ELEM("PcicCplHdQUncErr", 0, 0, 4309 CNTR_NORMAL, 4310 access_pcic_cpl_hd_q_unc_err_cnt), 4311 [C_PCIC_POST_DAT_Q_UNC_ERR] = CNTR_ELEM("PcicPostDatQUncErr", 0, 0, 4312 CNTR_NORMAL, 4313 access_pcic_post_dat_q_unc_err_cnt), 4314 [C_PCIC_POST_HD_Q_UNC_ERR] = CNTR_ELEM("PcicPostHdQUncErr", 0, 0, 4315 CNTR_NORMAL, 4316 access_pcic_post_hd_q_unc_err_cnt), 4317 [C_PCIC_RETRY_SOT_MEM_UNC_ERR] = CNTR_ELEM("PcicRetrySotMemUncErr", 0, 0, 4318 CNTR_NORMAL, 4319 access_pcic_retry_sot_mem_unc_err_cnt), 4320 [C_PCIC_RETRY_MEM_UNC_ERR] = CNTR_ELEM("PcicRetryMemUncErr", 0, 0, 4321 CNTR_NORMAL, 4322 access_pcic_retry_mem_unc_err), 4323 [C_PCIC_N_POST_DAT_Q_PARITY_ERR] = CNTR_ELEM("PcicNPostDatQParityErr", 0, 0, 4324 CNTR_NORMAL, 4325 access_pcic_n_post_dat_q_parity_err_cnt), 4326 [C_PCIC_N_POST_H_Q_PARITY_ERR] = CNTR_ELEM("PcicNPostHQParityErr", 0, 0, 4327 CNTR_NORMAL, 4328 access_pcic_n_post_h_q_parity_err_cnt), 4329 [C_PCIC_CPL_DAT_Q_COR_ERR] = CNTR_ELEM("PcicCplDatQCorErr", 0, 0, 4330 CNTR_NORMAL, 4331 access_pcic_cpl_dat_q_cor_err_cnt), 4332 [C_PCIC_CPL_HD_Q_COR_ERR] = CNTR_ELEM("PcicCplHdQCorErr", 0, 0, 4333 CNTR_NORMAL, 4334 access_pcic_cpl_hd_q_cor_err_cnt), 4335 [C_PCIC_POST_DAT_Q_COR_ERR] = CNTR_ELEM("PcicPostDatQCorErr", 0, 0, 4336 CNTR_NORMAL, 4337 access_pcic_post_dat_q_cor_err_cnt), 4338 [C_PCIC_POST_HD_Q_COR_ERR] = CNTR_ELEM("PcicPostHdQCorErr", 0, 0, 4339 CNTR_NORMAL, 4340 access_pcic_post_hd_q_cor_err_cnt), 4341 [C_PCIC_RETRY_SOT_MEM_COR_ERR] = CNTR_ELEM("PcicRetrySotMemCorErr", 0, 0, 4342 CNTR_NORMAL, 4343 access_pcic_retry_sot_mem_cor_err_cnt), 4344 [C_PCIC_RETRY_MEM_COR_ERR] = CNTR_ELEM("PcicRetryMemCorErr", 0, 0, 4345 CNTR_NORMAL, 4346 access_pcic_retry_mem_cor_err_cnt), 4347 [C_CCE_CLI1_ASYNC_FIFO_DBG_PARITY_ERR] = CNTR_ELEM( 4348 "CceCli1AsyncFifoDbgParityError", 0, 0, 4349 CNTR_NORMAL, 4350 access_cce_cli1_async_fifo_dbg_parity_err_cnt), 4351 [C_CCE_CLI1_ASYNC_FIFO_RXDMA_PARITY_ERR] = CNTR_ELEM( 4352 "CceCli1AsyncFifoRxdmaParityError", 0, 0, 4353 CNTR_NORMAL, 4354 access_cce_cli1_async_fifo_rxdma_parity_err_cnt 4355 ), 4356 [C_CCE_CLI1_ASYNC_FIFO_SDMA_HD_PARITY_ERR] = CNTR_ELEM( 4357 "CceCli1AsyncFifoSdmaHdParityErr", 0, 0, 4358 CNTR_NORMAL, 4359 access_cce_cli1_async_fifo_sdma_hd_parity_err_cnt), 4360 [C_CCE_CLI1_ASYNC_FIFO_PIO_CRDT_PARITY_ERR] = CNTR_ELEM( 4361 "CceCli1AsyncFifoPioCrdtParityErr", 0, 0, 4362 CNTR_NORMAL, 4363 access_cce_cl1_async_fifo_pio_crdt_parity_err_cnt), 4364 [C_CCE_CLI2_ASYNC_FIFO_PARITY_ERR] = CNTR_ELEM("CceCli2AsyncFifoParityErr", 0, 4365 0, CNTR_NORMAL, 4366 access_cce_cli2_async_fifo_parity_err_cnt), 4367 [C_CCE_CSR_CFG_BUS_PARITY_ERR] = CNTR_ELEM("CceCsrCfgBusParityErr", 0, 0, 4368 CNTR_NORMAL, 4369 access_cce_csr_cfg_bus_parity_err_cnt), 4370 [C_CCE_CLI0_ASYNC_FIFO_PARTIY_ERR] = CNTR_ELEM("CceCli0AsyncFifoParityErr", 0, 4371 0, CNTR_NORMAL, 4372 access_cce_cli0_async_fifo_parity_err_cnt), 4373 [C_CCE_RSPD_DATA_PARITY_ERR] = CNTR_ELEM("CceRspdDataParityErr", 0, 0, 4374 CNTR_NORMAL, 4375 access_cce_rspd_data_parity_err_cnt), 4376 [C_CCE_TRGT_ACCESS_ERR] = CNTR_ELEM("CceTrgtAccessErr", 0, 0, 4377 CNTR_NORMAL, 4378 access_cce_trgt_access_err_cnt), 4379 [C_CCE_TRGT_ASYNC_FIFO_PARITY_ERR] = CNTR_ELEM("CceTrgtAsyncFifoParityErr", 0, 4380 0, CNTR_NORMAL, 4381 access_cce_trgt_async_fifo_parity_err_cnt), 4382 [C_CCE_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("CceCsrWriteBadAddrErr", 0, 0, 4383 CNTR_NORMAL, 4384 access_cce_csr_write_bad_addr_err_cnt), 4385 [C_CCE_CSR_READ_BAD_ADDR_ERR] = CNTR_ELEM("CceCsrReadBadAddrErr", 0, 0, 4386 CNTR_NORMAL, 4387 access_cce_csr_read_bad_addr_err_cnt), 4388 [C_CCE_CSR_PARITY_ERR] = CNTR_ELEM("CceCsrParityErr", 0, 0, 4389 CNTR_NORMAL, 4390 access_ccs_csr_parity_err_cnt), 4391 4392 /* RcvErrStatus */ 4393 [C_RX_CSR_PARITY_ERR] = CNTR_ELEM("RxCsrParityErr", 0, 0, 4394 CNTR_NORMAL, 4395 access_rx_csr_parity_err_cnt), 4396 [C_RX_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("RxCsrWriteBadAddrErr", 0, 0, 4397 CNTR_NORMAL, 4398 access_rx_csr_write_bad_addr_err_cnt), 4399 [C_RX_CSR_READ_BAD_ADDR_ERR] = CNTR_ELEM("RxCsrReadBadAddrErr", 0, 0, 4400 CNTR_NORMAL, 4401 access_rx_csr_read_bad_addr_err_cnt), 4402 [C_RX_DMA_CSR_UNC_ERR] = CNTR_ELEM("RxDmaCsrUncErr", 0, 0, 4403 CNTR_NORMAL, 4404 access_rx_dma_csr_unc_err_cnt), 4405 [C_RX_DMA_DQ_FSM_ENCODING_ERR] = CNTR_ELEM("RxDmaDqFsmEncodingErr", 0, 0, 4406 CNTR_NORMAL, 4407 access_rx_dma_dq_fsm_encoding_err_cnt), 4408 [C_RX_DMA_EQ_FSM_ENCODING_ERR] = CNTR_ELEM("RxDmaEqFsmEncodingErr", 0, 0, 4409 CNTR_NORMAL, 4410 access_rx_dma_eq_fsm_encoding_err_cnt), 4411 [C_RX_DMA_CSR_PARITY_ERR] = CNTR_ELEM("RxDmaCsrParityErr", 0, 0, 4412 CNTR_NORMAL, 4413 access_rx_dma_csr_parity_err_cnt), 4414 [C_RX_RBUF_DATA_COR_ERR] = CNTR_ELEM("RxRbufDataCorErr", 0, 0, 4415 CNTR_NORMAL, 4416 access_rx_rbuf_data_cor_err_cnt), 4417 [C_RX_RBUF_DATA_UNC_ERR] = CNTR_ELEM("RxRbufDataUncErr", 0, 0, 4418 CNTR_NORMAL, 4419 access_rx_rbuf_data_unc_err_cnt), 4420 [C_RX_DMA_DATA_FIFO_RD_COR_ERR] = CNTR_ELEM("RxDmaDataFifoRdCorErr", 0, 0, 4421 CNTR_NORMAL, 4422 access_rx_dma_data_fifo_rd_cor_err_cnt), 4423 [C_RX_DMA_DATA_FIFO_RD_UNC_ERR] = CNTR_ELEM("RxDmaDataFifoRdUncErr", 0, 0, 4424 CNTR_NORMAL, 4425 access_rx_dma_data_fifo_rd_unc_err_cnt), 4426 [C_RX_DMA_HDR_FIFO_RD_COR_ERR] = CNTR_ELEM("RxDmaHdrFifoRdCorErr", 0, 0, 4427 CNTR_NORMAL, 4428 access_rx_dma_hdr_fifo_rd_cor_err_cnt), 4429 [C_RX_DMA_HDR_FIFO_RD_UNC_ERR] = CNTR_ELEM("RxDmaHdrFifoRdUncErr", 0, 0, 4430 CNTR_NORMAL, 4431 access_rx_dma_hdr_fifo_rd_unc_err_cnt), 4432 [C_RX_RBUF_DESC_PART2_COR_ERR] = CNTR_ELEM("RxRbufDescPart2CorErr", 0, 0, 4433 CNTR_NORMAL, 4434 access_rx_rbuf_desc_part2_cor_err_cnt), 4435 [C_RX_RBUF_DESC_PART2_UNC_ERR] = CNTR_ELEM("RxRbufDescPart2UncErr", 0, 0, 4436 CNTR_NORMAL, 4437 access_rx_rbuf_desc_part2_unc_err_cnt), 4438 [C_RX_RBUF_DESC_PART1_COR_ERR] = CNTR_ELEM("RxRbufDescPart1CorErr", 0, 0, 4439 CNTR_NORMAL, 4440 access_rx_rbuf_desc_part1_cor_err_cnt), 4441 [C_RX_RBUF_DESC_PART1_UNC_ERR] = CNTR_ELEM("RxRbufDescPart1UncErr", 0, 0, 4442 CNTR_NORMAL, 4443 access_rx_rbuf_desc_part1_unc_err_cnt), 4444 [C_RX_HQ_INTR_FSM_ERR] = CNTR_ELEM("RxHqIntrFsmErr", 0, 0, 4445 CNTR_NORMAL, 4446 access_rx_hq_intr_fsm_err_cnt), 4447 [C_RX_HQ_INTR_CSR_PARITY_ERR] = CNTR_ELEM("RxHqIntrCsrParityErr", 0, 0, 4448 CNTR_NORMAL, 4449 access_rx_hq_intr_csr_parity_err_cnt), 4450 [C_RX_LOOKUP_CSR_PARITY_ERR] = CNTR_ELEM("RxLookupCsrParityErr", 0, 0, 4451 CNTR_NORMAL, 4452 access_rx_lookup_csr_parity_err_cnt), 4453 [C_RX_LOOKUP_RCV_ARRAY_COR_ERR] = CNTR_ELEM("RxLookupRcvArrayCorErr", 0, 0, 4454 CNTR_NORMAL, 4455 access_rx_lookup_rcv_array_cor_err_cnt), 4456 [C_RX_LOOKUP_RCV_ARRAY_UNC_ERR] = CNTR_ELEM("RxLookupRcvArrayUncErr", 0, 0, 4457 CNTR_NORMAL, 4458 access_rx_lookup_rcv_array_unc_err_cnt), 4459 [C_RX_LOOKUP_DES_PART2_PARITY_ERR] = CNTR_ELEM("RxLookupDesPart2ParityErr", 0, 4460 0, CNTR_NORMAL, 4461 access_rx_lookup_des_part2_parity_err_cnt), 4462 [C_RX_LOOKUP_DES_PART1_UNC_COR_ERR] = CNTR_ELEM("RxLookupDesPart1UncCorErr", 0, 4463 0, CNTR_NORMAL, 4464 access_rx_lookup_des_part1_unc_cor_err_cnt), 4465 [C_RX_LOOKUP_DES_PART1_UNC_ERR] = CNTR_ELEM("RxLookupDesPart1UncErr", 0, 0, 4466 CNTR_NORMAL, 4467 access_rx_lookup_des_part1_unc_err_cnt), 4468 [C_RX_RBUF_NEXT_FREE_BUF_COR_ERR] = CNTR_ELEM("RxRbufNextFreeBufCorErr", 0, 0, 4469 CNTR_NORMAL, 4470 access_rx_rbuf_next_free_buf_cor_err_cnt), 4471 [C_RX_RBUF_NEXT_FREE_BUF_UNC_ERR] = CNTR_ELEM("RxRbufNextFreeBufUncErr", 0, 0, 4472 CNTR_NORMAL, 4473 access_rx_rbuf_next_free_buf_unc_err_cnt), 4474 [C_RX_RBUF_FL_INIT_WR_ADDR_PARITY_ERR] = CNTR_ELEM( 4475 "RxRbufFlInitWrAddrParityErr", 0, 0, 4476 CNTR_NORMAL, 4477 access_rbuf_fl_init_wr_addr_parity_err_cnt), 4478 [C_RX_RBUF_FL_INITDONE_PARITY_ERR] = CNTR_ELEM("RxRbufFlInitdoneParityErr", 0, 4479 0, CNTR_NORMAL, 4480 access_rx_rbuf_fl_initdone_parity_err_cnt), 4481 [C_RX_RBUF_FL_WRITE_ADDR_PARITY_ERR] = CNTR_ELEM("RxRbufFlWrAddrParityErr", 0, 4482 0, CNTR_NORMAL, 4483 access_rx_rbuf_fl_write_addr_parity_err_cnt), 4484 [C_RX_RBUF_FL_RD_ADDR_PARITY_ERR] = CNTR_ELEM("RxRbufFlRdAddrParityErr", 0, 0, 4485 CNTR_NORMAL, 4486 access_rx_rbuf_fl_rd_addr_parity_err_cnt), 4487 [C_RX_RBUF_EMPTY_ERR] = CNTR_ELEM("RxRbufEmptyErr", 0, 0, 4488 CNTR_NORMAL, 4489 access_rx_rbuf_empty_err_cnt), 4490 [C_RX_RBUF_FULL_ERR] = CNTR_ELEM("RxRbufFullErr", 0, 0, 4491 CNTR_NORMAL, 4492 access_rx_rbuf_full_err_cnt), 4493 [C_RX_RBUF_BAD_LOOKUP_ERR] = CNTR_ELEM("RxRBufBadLookupErr", 0, 0, 4494 CNTR_NORMAL, 4495 access_rbuf_bad_lookup_err_cnt), 4496 [C_RX_RBUF_CTX_ID_PARITY_ERR] = CNTR_ELEM("RxRbufCtxIdParityErr", 0, 0, 4497 CNTR_NORMAL, 4498 access_rbuf_ctx_id_parity_err_cnt), 4499 [C_RX_RBUF_CSR_QEOPDW_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQEOPDWParityErr", 0, 0, 4500 CNTR_NORMAL, 4501 access_rbuf_csr_qeopdw_parity_err_cnt), 4502 [C_RX_RBUF_CSR_Q_NUM_OF_PKT_PARITY_ERR] = CNTR_ELEM( 4503 "RxRbufCsrQNumOfPktParityErr", 0, 0, 4504 CNTR_NORMAL, 4505 access_rx_rbuf_csr_q_num_of_pkt_parity_err_cnt), 4506 [C_RX_RBUF_CSR_Q_T1_PTR_PARITY_ERR] = CNTR_ELEM( 4507 "RxRbufCsrQTlPtrParityErr", 0, 0, 4508 CNTR_NORMAL, 4509 access_rx_rbuf_csr_q_t1_ptr_parity_err_cnt), 4510 [C_RX_RBUF_CSR_Q_HD_PTR_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQHdPtrParityErr", 0, 4511 0, CNTR_NORMAL, 4512 access_rx_rbuf_csr_q_hd_ptr_parity_err_cnt), 4513 [C_RX_RBUF_CSR_Q_VLD_BIT_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQVldBitParityErr", 0, 4514 0, CNTR_NORMAL, 4515 access_rx_rbuf_csr_q_vld_bit_parity_err_cnt), 4516 [C_RX_RBUF_CSR_Q_NEXT_BUF_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQNextBufParityErr", 4517 0, 0, CNTR_NORMAL, 4518 access_rx_rbuf_csr_q_next_buf_parity_err_cnt), 4519 [C_RX_RBUF_CSR_Q_ENT_CNT_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQEntCntParityErr", 0, 4520 0, CNTR_NORMAL, 4521 access_rx_rbuf_csr_q_ent_cnt_parity_err_cnt), 4522 [C_RX_RBUF_CSR_Q_HEAD_BUF_NUM_PARITY_ERR] = CNTR_ELEM( 4523 "RxRbufCsrQHeadBufNumParityErr", 0, 0, 4524 CNTR_NORMAL, 4525 access_rx_rbuf_csr_q_head_buf_num_parity_err_cnt), 4526 [C_RX_RBUF_BLOCK_LIST_READ_COR_ERR] = CNTR_ELEM("RxRbufBlockListReadCorErr", 0, 4527 0, CNTR_NORMAL, 4528 access_rx_rbuf_block_list_read_cor_err_cnt), 4529 [C_RX_RBUF_BLOCK_LIST_READ_UNC_ERR] = CNTR_ELEM("RxRbufBlockListReadUncErr", 0, 4530 0, CNTR_NORMAL, 4531 access_rx_rbuf_block_list_read_unc_err_cnt), 4532 [C_RX_RBUF_LOOKUP_DES_COR_ERR] = CNTR_ELEM("RxRbufLookupDesCorErr", 0, 0, 4533 CNTR_NORMAL, 4534 access_rx_rbuf_lookup_des_cor_err_cnt), 4535 [C_RX_RBUF_LOOKUP_DES_UNC_ERR] = CNTR_ELEM("RxRbufLookupDesUncErr", 0, 0, 4536 CNTR_NORMAL, 4537 access_rx_rbuf_lookup_des_unc_err_cnt), 4538 [C_RX_RBUF_LOOKUP_DES_REG_UNC_COR_ERR] = CNTR_ELEM( 4539 "RxRbufLookupDesRegUncCorErr", 0, 0, 4540 CNTR_NORMAL, 4541 access_rx_rbuf_lookup_des_reg_unc_cor_err_cnt), 4542 [C_RX_RBUF_LOOKUP_DES_REG_UNC_ERR] = CNTR_ELEM("RxRbufLookupDesRegUncErr", 0, 0, 4543 CNTR_NORMAL, 4544 access_rx_rbuf_lookup_des_reg_unc_err_cnt), 4545 [C_RX_RBUF_FREE_LIST_COR_ERR] = CNTR_ELEM("RxRbufFreeListCorErr", 0, 0, 4546 CNTR_NORMAL, 4547 access_rx_rbuf_free_list_cor_err_cnt), 4548 [C_RX_RBUF_FREE_LIST_UNC_ERR] = CNTR_ELEM("RxRbufFreeListUncErr", 0, 0, 4549 CNTR_NORMAL, 4550 access_rx_rbuf_free_list_unc_err_cnt), 4551 [C_RX_RCV_FSM_ENCODING_ERR] = CNTR_ELEM("RxRcvFsmEncodingErr", 0, 0, 4552 CNTR_NORMAL, 4553 access_rx_rcv_fsm_encoding_err_cnt), 4554 [C_RX_DMA_FLAG_COR_ERR] = CNTR_ELEM("RxDmaFlagCorErr", 0, 0, 4555 CNTR_NORMAL, 4556 access_rx_dma_flag_cor_err_cnt), 4557 [C_RX_DMA_FLAG_UNC_ERR] = CNTR_ELEM("RxDmaFlagUncErr", 0, 0, 4558 CNTR_NORMAL, 4559 access_rx_dma_flag_unc_err_cnt), 4560 [C_RX_DC_SOP_EOP_PARITY_ERR] = CNTR_ELEM("RxDcSopEopParityErr", 0, 0, 4561 CNTR_NORMAL, 4562 access_rx_dc_sop_eop_parity_err_cnt), 4563 [C_RX_RCV_CSR_PARITY_ERR] = CNTR_ELEM("RxRcvCsrParityErr", 0, 0, 4564 CNTR_NORMAL, 4565 access_rx_rcv_csr_parity_err_cnt), 4566 [C_RX_RCV_QP_MAP_TABLE_COR_ERR] = CNTR_ELEM("RxRcvQpMapTableCorErr", 0, 0, 4567 CNTR_NORMAL, 4568 access_rx_rcv_qp_map_table_cor_err_cnt), 4569 [C_RX_RCV_QP_MAP_TABLE_UNC_ERR] = CNTR_ELEM("RxRcvQpMapTableUncErr", 0, 0, 4570 CNTR_NORMAL, 4571 access_rx_rcv_qp_map_table_unc_err_cnt), 4572 [C_RX_RCV_DATA_COR_ERR] = CNTR_ELEM("RxRcvDataCorErr", 0, 0, 4573 CNTR_NORMAL, 4574 access_rx_rcv_data_cor_err_cnt), 4575 [C_RX_RCV_DATA_UNC_ERR] = CNTR_ELEM("RxRcvDataUncErr", 0, 0, 4576 CNTR_NORMAL, 4577 access_rx_rcv_data_unc_err_cnt), 4578 [C_RX_RCV_HDR_COR_ERR] = CNTR_ELEM("RxRcvHdrCorErr", 0, 0, 4579 CNTR_NORMAL, 4580 access_rx_rcv_hdr_cor_err_cnt), 4581 [C_RX_RCV_HDR_UNC_ERR] = CNTR_ELEM("RxRcvHdrUncErr", 0, 0, 4582 CNTR_NORMAL, 4583 access_rx_rcv_hdr_unc_err_cnt), 4584 [C_RX_DC_INTF_PARITY_ERR] = CNTR_ELEM("RxDcIntfParityErr", 0, 0, 4585 CNTR_NORMAL, 4586 access_rx_dc_intf_parity_err_cnt), 4587 [C_RX_DMA_CSR_COR_ERR] = CNTR_ELEM("RxDmaCsrCorErr", 0, 0, 4588 CNTR_NORMAL, 4589 access_rx_dma_csr_cor_err_cnt), 4590 /* SendPioErrStatus */ 4591 [C_PIO_PEC_SOP_HEAD_PARITY_ERR] = CNTR_ELEM("PioPecSopHeadParityErr", 0, 0, 4592 CNTR_NORMAL, 4593 access_pio_pec_sop_head_parity_err_cnt), 4594 [C_PIO_PCC_SOP_HEAD_PARITY_ERR] = CNTR_ELEM("PioPccSopHeadParityErr", 0, 0, 4595 CNTR_NORMAL, 4596 access_pio_pcc_sop_head_parity_err_cnt), 4597 [C_PIO_LAST_RETURNED_CNT_PARITY_ERR] = CNTR_ELEM("PioLastReturnedCntParityErr", 4598 0, 0, CNTR_NORMAL, 4599 access_pio_last_returned_cnt_parity_err_cnt), 4600 [C_PIO_CURRENT_FREE_CNT_PARITY_ERR] = CNTR_ELEM("PioCurrentFreeCntParityErr", 0, 4601 0, CNTR_NORMAL, 4602 access_pio_current_free_cnt_parity_err_cnt), 4603 [C_PIO_RSVD_31_ERR] = CNTR_ELEM("Pio Reserved 31", 0, 0, 4604 CNTR_NORMAL, 4605 access_pio_reserved_31_err_cnt), 4606 [C_PIO_RSVD_30_ERR] = CNTR_ELEM("Pio Reserved 30", 0, 0, 4607 CNTR_NORMAL, 4608 access_pio_reserved_30_err_cnt), 4609 [C_PIO_PPMC_SOP_LEN_ERR] = CNTR_ELEM("PioPpmcSopLenErr", 0, 0, 4610 CNTR_NORMAL, 4611 access_pio_ppmc_sop_len_err_cnt), 4612 [C_PIO_PPMC_BQC_MEM_PARITY_ERR] = CNTR_ELEM("PioPpmcBqcMemParityErr", 0, 0, 4613 CNTR_NORMAL, 4614 access_pio_ppmc_bqc_mem_parity_err_cnt), 4615 [C_PIO_VL_FIFO_PARITY_ERR] = CNTR_ELEM("PioVlFifoParityErr", 0, 0, 4616 CNTR_NORMAL, 4617 access_pio_vl_fifo_parity_err_cnt), 4618 [C_PIO_VLF_SOP_PARITY_ERR] = CNTR_ELEM("PioVlfSopParityErr", 0, 0, 4619 CNTR_NORMAL, 4620 access_pio_vlf_sop_parity_err_cnt), 4621 [C_PIO_VLF_V1_LEN_PARITY_ERR] = CNTR_ELEM("PioVlfVlLenParityErr", 0, 0, 4622 CNTR_NORMAL, 4623 access_pio_vlf_v1_len_parity_err_cnt), 4624 [C_PIO_BLOCK_QW_COUNT_PARITY_ERR] = CNTR_ELEM("PioBlockQwCountParityErr", 0, 0, 4625 CNTR_NORMAL, 4626 access_pio_block_qw_count_parity_err_cnt), 4627 [C_PIO_WRITE_QW_VALID_PARITY_ERR] = CNTR_ELEM("PioWriteQwValidParityErr", 0, 0, 4628 CNTR_NORMAL, 4629 access_pio_write_qw_valid_parity_err_cnt), 4630 [C_PIO_STATE_MACHINE_ERR] = CNTR_ELEM("PioStateMachineErr", 0, 0, 4631 CNTR_NORMAL, 4632 access_pio_state_machine_err_cnt), 4633 [C_PIO_WRITE_DATA_PARITY_ERR] = CNTR_ELEM("PioWriteDataParityErr", 0, 0, 4634 CNTR_NORMAL, 4635 access_pio_write_data_parity_err_cnt), 4636 [C_PIO_HOST_ADDR_MEM_COR_ERR] = CNTR_ELEM("PioHostAddrMemCorErr", 0, 0, 4637 CNTR_NORMAL, 4638 access_pio_host_addr_mem_cor_err_cnt), 4639 [C_PIO_HOST_ADDR_MEM_UNC_ERR] = CNTR_ELEM("PioHostAddrMemUncErr", 0, 0, 4640 CNTR_NORMAL, 4641 access_pio_host_addr_mem_unc_err_cnt), 4642 [C_PIO_PKT_EVICT_SM_OR_ARM_SM_ERR] = CNTR_ELEM("PioPktEvictSmOrArbSmErr", 0, 0, 4643 CNTR_NORMAL, 4644 access_pio_pkt_evict_sm_or_arb_sm_err_cnt), 4645 [C_PIO_INIT_SM_IN_ERR] = CNTR_ELEM("PioInitSmInErr", 0, 0, 4646 CNTR_NORMAL, 4647 access_pio_init_sm_in_err_cnt), 4648 [C_PIO_PPMC_PBL_FIFO_ERR] = CNTR_ELEM("PioPpmcPblFifoErr", 0, 0, 4649 CNTR_NORMAL, 4650 access_pio_ppmc_pbl_fifo_err_cnt), 4651 [C_PIO_CREDIT_RET_FIFO_PARITY_ERR] = CNTR_ELEM("PioCreditRetFifoParityErr", 0, 4652 0, CNTR_NORMAL, 4653 access_pio_credit_ret_fifo_parity_err_cnt), 4654 [C_PIO_V1_LEN_MEM_BANK1_COR_ERR] = CNTR_ELEM("PioVlLenMemBank1CorErr", 0, 0, 4655 CNTR_NORMAL, 4656 access_pio_v1_len_mem_bank1_cor_err_cnt), 4657 [C_PIO_V1_LEN_MEM_BANK0_COR_ERR] = CNTR_ELEM("PioVlLenMemBank0CorErr", 0, 0, 4658 CNTR_NORMAL, 4659 access_pio_v1_len_mem_bank0_cor_err_cnt), 4660 [C_PIO_V1_LEN_MEM_BANK1_UNC_ERR] = CNTR_ELEM("PioVlLenMemBank1UncErr", 0, 0, 4661 CNTR_NORMAL, 4662 access_pio_v1_len_mem_bank1_unc_err_cnt), 4663 [C_PIO_V1_LEN_MEM_BANK0_UNC_ERR] = CNTR_ELEM("PioVlLenMemBank0UncErr", 0, 0, 4664 CNTR_NORMAL, 4665 access_pio_v1_len_mem_bank0_unc_err_cnt), 4666 [C_PIO_SM_PKT_RESET_PARITY_ERR] = CNTR_ELEM("PioSmPktResetParityErr", 0, 0, 4667 CNTR_NORMAL, 4668 access_pio_sm_pkt_reset_parity_err_cnt), 4669 [C_PIO_PKT_EVICT_FIFO_PARITY_ERR] = CNTR_ELEM("PioPktEvictFifoParityErr", 0, 0, 4670 CNTR_NORMAL, 4671 access_pio_pkt_evict_fifo_parity_err_cnt), 4672 [C_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR] = CNTR_ELEM( 4673 "PioSbrdctrlCrrelFifoParityErr", 0, 0, 4674 CNTR_NORMAL, 4675 access_pio_sbrdctrl_crrel_fifo_parity_err_cnt), 4676 [C_PIO_SBRDCTL_CRREL_PARITY_ERR] = CNTR_ELEM("PioSbrdctlCrrelParityErr", 0, 0, 4677 CNTR_NORMAL, 4678 access_pio_sbrdctl_crrel_parity_err_cnt), 4679 [C_PIO_PEC_FIFO_PARITY_ERR] = CNTR_ELEM("PioPecFifoParityErr", 0, 0, 4680 CNTR_NORMAL, 4681 access_pio_pec_fifo_parity_err_cnt), 4682 [C_PIO_PCC_FIFO_PARITY_ERR] = CNTR_ELEM("PioPccFifoParityErr", 0, 0, 4683 CNTR_NORMAL, 4684 access_pio_pcc_fifo_parity_err_cnt), 4685 [C_PIO_SB_MEM_FIFO1_ERR] = CNTR_ELEM("PioSbMemFifo1Err", 0, 0, 4686 CNTR_NORMAL, 4687 access_pio_sb_mem_fifo1_err_cnt), 4688 [C_PIO_SB_MEM_FIFO0_ERR] = CNTR_ELEM("PioSbMemFifo0Err", 0, 0, 4689 CNTR_NORMAL, 4690 access_pio_sb_mem_fifo0_err_cnt), 4691 [C_PIO_CSR_PARITY_ERR] = CNTR_ELEM("PioCsrParityErr", 0, 0, 4692 CNTR_NORMAL, 4693 access_pio_csr_parity_err_cnt), 4694 [C_PIO_WRITE_ADDR_PARITY_ERR] = CNTR_ELEM("PioWriteAddrParityErr", 0, 0, 4695 CNTR_NORMAL, 4696 access_pio_write_addr_parity_err_cnt), 4697 [C_PIO_WRITE_BAD_CTXT_ERR] = CNTR_ELEM("PioWriteBadCtxtErr", 0, 0, 4698 CNTR_NORMAL, 4699 access_pio_write_bad_ctxt_err_cnt), 4700 /* SendDmaErrStatus */ 4701 [C_SDMA_PCIE_REQ_TRACKING_COR_ERR] = CNTR_ELEM("SDmaPcieReqTrackingCorErr", 0, 4702 0, CNTR_NORMAL, 4703 access_sdma_pcie_req_tracking_cor_err_cnt), 4704 [C_SDMA_PCIE_REQ_TRACKING_UNC_ERR] = CNTR_ELEM("SDmaPcieReqTrackingUncErr", 0, 4705 0, CNTR_NORMAL, 4706 access_sdma_pcie_req_tracking_unc_err_cnt), 4707 [C_SDMA_CSR_PARITY_ERR] = CNTR_ELEM("SDmaCsrParityErr", 0, 0, 4708 CNTR_NORMAL, 4709 access_sdma_csr_parity_err_cnt), 4710 [C_SDMA_RPY_TAG_ERR] = CNTR_ELEM("SDmaRpyTagErr", 0, 0, 4711 CNTR_NORMAL, 4712 access_sdma_rpy_tag_err_cnt), 4713 /* SendEgressErrStatus */ 4714 [C_TX_READ_PIO_MEMORY_CSR_UNC_ERR] = CNTR_ELEM("TxReadPioMemoryCsrUncErr", 0, 0, 4715 CNTR_NORMAL, 4716 access_tx_read_pio_memory_csr_unc_err_cnt), 4717 [C_TX_READ_SDMA_MEMORY_CSR_UNC_ERR] = CNTR_ELEM("TxReadSdmaMemoryCsrUncErr", 0, 4718 0, CNTR_NORMAL, 4719 access_tx_read_sdma_memory_csr_err_cnt), 4720 [C_TX_EGRESS_FIFO_COR_ERR] = CNTR_ELEM("TxEgressFifoCorErr", 0, 0, 4721 CNTR_NORMAL, 4722 access_tx_egress_fifo_cor_err_cnt), 4723 [C_TX_READ_PIO_MEMORY_COR_ERR] = CNTR_ELEM("TxReadPioMemoryCorErr", 0, 0, 4724 CNTR_NORMAL, 4725 access_tx_read_pio_memory_cor_err_cnt), 4726 [C_TX_READ_SDMA_MEMORY_COR_ERR] = CNTR_ELEM("TxReadSdmaMemoryCorErr", 0, 0, 4727 CNTR_NORMAL, 4728 access_tx_read_sdma_memory_cor_err_cnt), 4729 [C_TX_SB_HDR_COR_ERR] = CNTR_ELEM("TxSbHdrCorErr", 0, 0, 4730 CNTR_NORMAL, 4731 access_tx_sb_hdr_cor_err_cnt), 4732 [C_TX_CREDIT_OVERRUN_ERR] = CNTR_ELEM("TxCreditOverrunErr", 0, 0, 4733 CNTR_NORMAL, 4734 access_tx_credit_overrun_err_cnt), 4735 [C_TX_LAUNCH_FIFO8_COR_ERR] = CNTR_ELEM("TxLaunchFifo8CorErr", 0, 0, 4736 CNTR_NORMAL, 4737 access_tx_launch_fifo8_cor_err_cnt), 4738 [C_TX_LAUNCH_FIFO7_COR_ERR] = CNTR_ELEM("TxLaunchFifo7CorErr", 0, 0, 4739 CNTR_NORMAL, 4740 access_tx_launch_fifo7_cor_err_cnt), 4741 [C_TX_LAUNCH_FIFO6_COR_ERR] = CNTR_ELEM("TxLaunchFifo6CorErr", 0, 0, 4742 CNTR_NORMAL, 4743 access_tx_launch_fifo6_cor_err_cnt), 4744 [C_TX_LAUNCH_FIFO5_COR_ERR] = CNTR_ELEM("TxLaunchFifo5CorErr", 0, 0, 4745 CNTR_NORMAL, 4746 access_tx_launch_fifo5_cor_err_cnt), 4747 [C_TX_LAUNCH_FIFO4_COR_ERR] = CNTR_ELEM("TxLaunchFifo4CorErr", 0, 0, 4748 CNTR_NORMAL, 4749 access_tx_launch_fifo4_cor_err_cnt), 4750 [C_TX_LAUNCH_FIFO3_COR_ERR] = CNTR_ELEM("TxLaunchFifo3CorErr", 0, 0, 4751 CNTR_NORMAL, 4752 access_tx_launch_fifo3_cor_err_cnt), 4753 [C_TX_LAUNCH_FIFO2_COR_ERR] = CNTR_ELEM("TxLaunchFifo2CorErr", 0, 0, 4754 CNTR_NORMAL, 4755 access_tx_launch_fifo2_cor_err_cnt), 4756 [C_TX_LAUNCH_FIFO1_COR_ERR] = CNTR_ELEM("TxLaunchFifo1CorErr", 0, 0, 4757 CNTR_NORMAL, 4758 access_tx_launch_fifo1_cor_err_cnt), 4759 [C_TX_LAUNCH_FIFO0_COR_ERR] = CNTR_ELEM("TxLaunchFifo0CorErr", 0, 0, 4760 CNTR_NORMAL, 4761 access_tx_launch_fifo0_cor_err_cnt), 4762 [C_TX_CREDIT_RETURN_VL_ERR] = CNTR_ELEM("TxCreditReturnVLErr", 0, 0, 4763 CNTR_NORMAL, 4764 access_tx_credit_return_vl_err_cnt), 4765 [C_TX_HCRC_INSERTION_ERR] = CNTR_ELEM("TxHcrcInsertionErr", 0, 0, 4766 CNTR_NORMAL, 4767 access_tx_hcrc_insertion_err_cnt), 4768 [C_TX_EGRESS_FIFI_UNC_ERR] = CNTR_ELEM("TxEgressFifoUncErr", 0, 0, 4769 CNTR_NORMAL, 4770 access_tx_egress_fifo_unc_err_cnt), 4771 [C_TX_READ_PIO_MEMORY_UNC_ERR] = CNTR_ELEM("TxReadPioMemoryUncErr", 0, 0, 4772 CNTR_NORMAL, 4773 access_tx_read_pio_memory_unc_err_cnt), 4774 [C_TX_READ_SDMA_MEMORY_UNC_ERR] = CNTR_ELEM("TxReadSdmaMemoryUncErr", 0, 0, 4775 CNTR_NORMAL, 4776 access_tx_read_sdma_memory_unc_err_cnt), 4777 [C_TX_SB_HDR_UNC_ERR] = CNTR_ELEM("TxSbHdrUncErr", 0, 0, 4778 CNTR_NORMAL, 4779 access_tx_sb_hdr_unc_err_cnt), 4780 [C_TX_CREDIT_RETURN_PARITY_ERR] = CNTR_ELEM("TxCreditReturnParityErr", 0, 0, 4781 CNTR_NORMAL, 4782 access_tx_credit_return_partiy_err_cnt), 4783 [C_TX_LAUNCH_FIFO8_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo8UncOrParityErr", 4784 0, 0, CNTR_NORMAL, 4785 access_tx_launch_fifo8_unc_or_parity_err_cnt), 4786 [C_TX_LAUNCH_FIFO7_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo7UncOrParityErr", 4787 0, 0, CNTR_NORMAL, 4788 access_tx_launch_fifo7_unc_or_parity_err_cnt), 4789 [C_TX_LAUNCH_FIFO6_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo6UncOrParityErr", 4790 0, 0, CNTR_NORMAL, 4791 access_tx_launch_fifo6_unc_or_parity_err_cnt), 4792 [C_TX_LAUNCH_FIFO5_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo5UncOrParityErr", 4793 0, 0, CNTR_NORMAL, 4794 access_tx_launch_fifo5_unc_or_parity_err_cnt), 4795 [C_TX_LAUNCH_FIFO4_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo4UncOrParityErr", 4796 0, 0, CNTR_NORMAL, 4797 access_tx_launch_fifo4_unc_or_parity_err_cnt), 4798 [C_TX_LAUNCH_FIFO3_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo3UncOrParityErr", 4799 0, 0, CNTR_NORMAL, 4800 access_tx_launch_fifo3_unc_or_parity_err_cnt), 4801 [C_TX_LAUNCH_FIFO2_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo2UncOrParityErr", 4802 0, 0, CNTR_NORMAL, 4803 access_tx_launch_fifo2_unc_or_parity_err_cnt), 4804 [C_TX_LAUNCH_FIFO1_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo1UncOrParityErr", 4805 0, 0, CNTR_NORMAL, 4806 access_tx_launch_fifo1_unc_or_parity_err_cnt), 4807 [C_TX_LAUNCH_FIFO0_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo0UncOrParityErr", 4808 0, 0, CNTR_NORMAL, 4809 access_tx_launch_fifo0_unc_or_parity_err_cnt), 4810 [C_TX_SDMA15_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma15DisallowedPacketErr", 4811 0, 0, CNTR_NORMAL, 4812 access_tx_sdma15_disallowed_packet_err_cnt), 4813 [C_TX_SDMA14_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma14DisallowedPacketErr", 4814 0, 0, CNTR_NORMAL, 4815 access_tx_sdma14_disallowed_packet_err_cnt), 4816 [C_TX_SDMA13_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma13DisallowedPacketErr", 4817 0, 0, CNTR_NORMAL, 4818 access_tx_sdma13_disallowed_packet_err_cnt), 4819 [C_TX_SDMA12_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma12DisallowedPacketErr", 4820 0, 0, CNTR_NORMAL, 4821 access_tx_sdma12_disallowed_packet_err_cnt), 4822 [C_TX_SDMA11_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma11DisallowedPacketErr", 4823 0, 0, CNTR_NORMAL, 4824 access_tx_sdma11_disallowed_packet_err_cnt), 4825 [C_TX_SDMA10_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma10DisallowedPacketErr", 4826 0, 0, CNTR_NORMAL, 4827 access_tx_sdma10_disallowed_packet_err_cnt), 4828 [C_TX_SDMA9_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma9DisallowedPacketErr", 4829 0, 0, CNTR_NORMAL, 4830 access_tx_sdma9_disallowed_packet_err_cnt), 4831 [C_TX_SDMA8_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma8DisallowedPacketErr", 4832 0, 0, CNTR_NORMAL, 4833 access_tx_sdma8_disallowed_packet_err_cnt), 4834 [C_TX_SDMA7_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma7DisallowedPacketErr", 4835 0, 0, CNTR_NORMAL, 4836 access_tx_sdma7_disallowed_packet_err_cnt), 4837 [C_TX_SDMA6_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma6DisallowedPacketErr", 4838 0, 0, CNTR_NORMAL, 4839 access_tx_sdma6_disallowed_packet_err_cnt), 4840 [C_TX_SDMA5_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma5DisallowedPacketErr", 4841 0, 0, CNTR_NORMAL, 4842 access_tx_sdma5_disallowed_packet_err_cnt), 4843 [C_TX_SDMA4_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma4DisallowedPacketErr", 4844 0, 0, CNTR_NORMAL, 4845 access_tx_sdma4_disallowed_packet_err_cnt), 4846 [C_TX_SDMA3_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma3DisallowedPacketErr", 4847 0, 0, CNTR_NORMAL, 4848 access_tx_sdma3_disallowed_packet_err_cnt), 4849 [C_TX_SDMA2_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma2DisallowedPacketErr", 4850 0, 0, CNTR_NORMAL, 4851 access_tx_sdma2_disallowed_packet_err_cnt), 4852 [C_TX_SDMA1_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma1DisallowedPacketErr", 4853 0, 0, CNTR_NORMAL, 4854 access_tx_sdma1_disallowed_packet_err_cnt), 4855 [C_TX_SDMA0_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma0DisallowedPacketErr", 4856 0, 0, CNTR_NORMAL, 4857 access_tx_sdma0_disallowed_packet_err_cnt), 4858 [C_TX_CONFIG_PARITY_ERR] = CNTR_ELEM("TxConfigParityErr", 0, 0, 4859 CNTR_NORMAL, 4860 access_tx_config_parity_err_cnt), 4861 [C_TX_SBRD_CTL_CSR_PARITY_ERR] = CNTR_ELEM("TxSbrdCtlCsrParityErr", 0, 0, 4862 CNTR_NORMAL, 4863 access_tx_sbrd_ctl_csr_parity_err_cnt), 4864 [C_TX_LAUNCH_CSR_PARITY_ERR] = CNTR_ELEM("TxLaunchCsrParityErr", 0, 0, 4865 CNTR_NORMAL, 4866 access_tx_launch_csr_parity_err_cnt), 4867 [C_TX_ILLEGAL_CL_ERR] = CNTR_ELEM("TxIllegalVLErr", 0, 0, 4868 CNTR_NORMAL, 4869 access_tx_illegal_vl_err_cnt), 4870 [C_TX_SBRD_CTL_STATE_MACHINE_PARITY_ERR] = CNTR_ELEM( 4871 "TxSbrdCtlStateMachineParityErr", 0, 0, 4872 CNTR_NORMAL, 4873 access_tx_sbrd_ctl_state_machine_parity_err_cnt), 4874 [C_TX_RESERVED_10] = CNTR_ELEM("Tx Egress Reserved 10", 0, 0, 4875 CNTR_NORMAL, 4876 access_egress_reserved_10_err_cnt), 4877 [C_TX_RESERVED_9] = CNTR_ELEM("Tx Egress Reserved 9", 0, 0, 4878 CNTR_NORMAL, 4879 access_egress_reserved_9_err_cnt), 4880 [C_TX_SDMA_LAUNCH_INTF_PARITY_ERR] = CNTR_ELEM("TxSdmaLaunchIntfParityErr", 4881 0, 0, CNTR_NORMAL, 4882 access_tx_sdma_launch_intf_parity_err_cnt), 4883 [C_TX_PIO_LAUNCH_INTF_PARITY_ERR] = CNTR_ELEM("TxPioLaunchIntfParityErr", 0, 0, 4884 CNTR_NORMAL, 4885 access_tx_pio_launch_intf_parity_err_cnt), 4886 [C_TX_RESERVED_6] = CNTR_ELEM("Tx Egress Reserved 6", 0, 0, 4887 CNTR_NORMAL, 4888 access_egress_reserved_6_err_cnt), 4889 [C_TX_INCORRECT_LINK_STATE_ERR] = CNTR_ELEM("TxIncorrectLinkStateErr", 0, 0, 4890 CNTR_NORMAL, 4891 access_tx_incorrect_link_state_err_cnt), 4892 [C_TX_LINK_DOWN_ERR] = CNTR_ELEM("TxLinkdownErr", 0, 0, 4893 CNTR_NORMAL, 4894 access_tx_linkdown_err_cnt), 4895 [C_TX_EGRESS_FIFO_UNDERRUN_OR_PARITY_ERR] = CNTR_ELEM( 4896 "EgressFifoUnderrunOrParityErr", 0, 0, 4897 CNTR_NORMAL, 4898 access_tx_egress_fifi_underrun_or_parity_err_cnt), 4899 [C_TX_RESERVED_2] = CNTR_ELEM("Tx Egress Reserved 2", 0, 0, 4900 CNTR_NORMAL, 4901 access_egress_reserved_2_err_cnt), 4902 [C_TX_PKT_INTEGRITY_MEM_UNC_ERR] = CNTR_ELEM("TxPktIntegrityMemUncErr", 0, 0, 4903 CNTR_NORMAL, 4904 access_tx_pkt_integrity_mem_unc_err_cnt), 4905 [C_TX_PKT_INTEGRITY_MEM_COR_ERR] = CNTR_ELEM("TxPktIntegrityMemCorErr", 0, 0, 4906 CNTR_NORMAL, 4907 access_tx_pkt_integrity_mem_cor_err_cnt), 4908 /* SendErrStatus */ 4909 [C_SEND_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("SendCsrWriteBadAddrErr", 0, 0, 4910 CNTR_NORMAL, 4911 access_send_csr_write_bad_addr_err_cnt), 4912 [C_SEND_CSR_READ_BAD_ADD_ERR] = CNTR_ELEM("SendCsrReadBadAddrErr", 0, 0, 4913 CNTR_NORMAL, 4914 access_send_csr_read_bad_addr_err_cnt), 4915 [C_SEND_CSR_PARITY_ERR] = CNTR_ELEM("SendCsrParityErr", 0, 0, 4916 CNTR_NORMAL, 4917 access_send_csr_parity_cnt), 4918 /* SendCtxtErrStatus */ 4919 [C_PIO_WRITE_OUT_OF_BOUNDS_ERR] = CNTR_ELEM("PioWriteOutOfBoundsErr", 0, 0, 4920 CNTR_NORMAL, 4921 access_pio_write_out_of_bounds_err_cnt), 4922 [C_PIO_WRITE_OVERFLOW_ERR] = CNTR_ELEM("PioWriteOverflowErr", 0, 0, 4923 CNTR_NORMAL, 4924 access_pio_write_overflow_err_cnt), 4925 [C_PIO_WRITE_CROSSES_BOUNDARY_ERR] = CNTR_ELEM("PioWriteCrossesBoundaryErr", 4926 0, 0, CNTR_NORMAL, 4927 access_pio_write_crosses_boundary_err_cnt), 4928 [C_PIO_DISALLOWED_PACKET_ERR] = CNTR_ELEM("PioDisallowedPacketErr", 0, 0, 4929 CNTR_NORMAL, 4930 access_pio_disallowed_packet_err_cnt), 4931 [C_PIO_INCONSISTENT_SOP_ERR] = CNTR_ELEM("PioInconsistentSopErr", 0, 0, 4932 CNTR_NORMAL, 4933 access_pio_inconsistent_sop_err_cnt), 4934 /* SendDmaEngErrStatus */ 4935 [C_SDMA_HEADER_REQUEST_FIFO_COR_ERR] = CNTR_ELEM("SDmaHeaderRequestFifoCorErr", 4936 0, 0, CNTR_NORMAL, 4937 access_sdma_header_request_fifo_cor_err_cnt), 4938 [C_SDMA_HEADER_STORAGE_COR_ERR] = CNTR_ELEM("SDmaHeaderStorageCorErr", 0, 0, 4939 CNTR_NORMAL, 4940 access_sdma_header_storage_cor_err_cnt), 4941 [C_SDMA_PACKET_TRACKING_COR_ERR] = CNTR_ELEM("SDmaPacketTrackingCorErr", 0, 0, 4942 CNTR_NORMAL, 4943 access_sdma_packet_tracking_cor_err_cnt), 4944 [C_SDMA_ASSEMBLY_COR_ERR] = CNTR_ELEM("SDmaAssemblyCorErr", 0, 0, 4945 CNTR_NORMAL, 4946 access_sdma_assembly_cor_err_cnt), 4947 [C_SDMA_DESC_TABLE_COR_ERR] = CNTR_ELEM("SDmaDescTableCorErr", 0, 0, 4948 CNTR_NORMAL, 4949 access_sdma_desc_table_cor_err_cnt), 4950 [C_SDMA_HEADER_REQUEST_FIFO_UNC_ERR] = CNTR_ELEM("SDmaHeaderRequestFifoUncErr", 4951 0, 0, CNTR_NORMAL, 4952 access_sdma_header_request_fifo_unc_err_cnt), 4953 [C_SDMA_HEADER_STORAGE_UNC_ERR] = CNTR_ELEM("SDmaHeaderStorageUncErr", 0, 0, 4954 CNTR_NORMAL, 4955 access_sdma_header_storage_unc_err_cnt), 4956 [C_SDMA_PACKET_TRACKING_UNC_ERR] = CNTR_ELEM("SDmaPacketTrackingUncErr", 0, 0, 4957 CNTR_NORMAL, 4958 access_sdma_packet_tracking_unc_err_cnt), 4959 [C_SDMA_ASSEMBLY_UNC_ERR] = CNTR_ELEM("SDmaAssemblyUncErr", 0, 0, 4960 CNTR_NORMAL, 4961 access_sdma_assembly_unc_err_cnt), 4962 [C_SDMA_DESC_TABLE_UNC_ERR] = CNTR_ELEM("SDmaDescTableUncErr", 0, 0, 4963 CNTR_NORMAL, 4964 access_sdma_desc_table_unc_err_cnt), 4965 [C_SDMA_TIMEOUT_ERR] = CNTR_ELEM("SDmaTimeoutErr", 0, 0, 4966 CNTR_NORMAL, 4967 access_sdma_timeout_err_cnt), 4968 [C_SDMA_HEADER_LENGTH_ERR] = CNTR_ELEM("SDmaHeaderLengthErr", 0, 0, 4969 CNTR_NORMAL, 4970 access_sdma_header_length_err_cnt), 4971 [C_SDMA_HEADER_ADDRESS_ERR] = CNTR_ELEM("SDmaHeaderAddressErr", 0, 0, 4972 CNTR_NORMAL, 4973 access_sdma_header_address_err_cnt), 4974 [C_SDMA_HEADER_SELECT_ERR] = CNTR_ELEM("SDmaHeaderSelectErr", 0, 0, 4975 CNTR_NORMAL, 4976 access_sdma_header_select_err_cnt), 4977 [C_SMDA_RESERVED_9] = CNTR_ELEM("SDma Reserved 9", 0, 0, 4978 CNTR_NORMAL, 4979 access_sdma_reserved_9_err_cnt), 4980 [C_SDMA_PACKET_DESC_OVERFLOW_ERR] = CNTR_ELEM("SDmaPacketDescOverflowErr", 0, 0, 4981 CNTR_NORMAL, 4982 access_sdma_packet_desc_overflow_err_cnt), 4983 [C_SDMA_LENGTH_MISMATCH_ERR] = CNTR_ELEM("SDmaLengthMismatchErr", 0, 0, 4984 CNTR_NORMAL, 4985 access_sdma_length_mismatch_err_cnt), 4986 [C_SDMA_HALT_ERR] = CNTR_ELEM("SDmaHaltErr", 0, 0, 4987 CNTR_NORMAL, 4988 access_sdma_halt_err_cnt), 4989 [C_SDMA_MEM_READ_ERR] = CNTR_ELEM("SDmaMemReadErr", 0, 0, 4990 CNTR_NORMAL, 4991 access_sdma_mem_read_err_cnt), 4992 [C_SDMA_FIRST_DESC_ERR] = CNTR_ELEM("SDmaFirstDescErr", 0, 0, 4993 CNTR_NORMAL, 4994 access_sdma_first_desc_err_cnt), 4995 [C_SDMA_TAIL_OUT_OF_BOUNDS_ERR] = CNTR_ELEM("SDmaTailOutOfBoundsErr", 0, 0, 4996 CNTR_NORMAL, 4997 access_sdma_tail_out_of_bounds_err_cnt), 4998 [C_SDMA_TOO_LONG_ERR] = CNTR_ELEM("SDmaTooLongErr", 0, 0, 4999 CNTR_NORMAL, 5000 access_sdma_too_long_err_cnt), 5001 [C_SDMA_GEN_MISMATCH_ERR] = CNTR_ELEM("SDmaGenMismatchErr", 0, 0, 5002 CNTR_NORMAL, 5003 access_sdma_gen_mismatch_err_cnt), 5004 [C_SDMA_WRONG_DW_ERR] = CNTR_ELEM("SDmaWrongDwErr", 0, 0, 5005 CNTR_NORMAL, 5006 access_sdma_wrong_dw_err_cnt), 5007 }; 5008 5009 static struct cntr_entry port_cntrs[PORT_CNTR_LAST] = { 5010 [C_TX_UNSUP_VL] = TXE32_PORT_CNTR_ELEM(TxUnVLErr, SEND_UNSUP_VL_ERR_CNT, 5011 CNTR_NORMAL), 5012 [C_TX_INVAL_LEN] = TXE32_PORT_CNTR_ELEM(TxInvalLen, SEND_LEN_ERR_CNT, 5013 CNTR_NORMAL), 5014 [C_TX_MM_LEN_ERR] = TXE32_PORT_CNTR_ELEM(TxMMLenErr, SEND_MAX_MIN_LEN_ERR_CNT, 5015 CNTR_NORMAL), 5016 [C_TX_UNDERRUN] = TXE32_PORT_CNTR_ELEM(TxUnderrun, SEND_UNDERRUN_CNT, 5017 CNTR_NORMAL), 5018 [C_TX_FLOW_STALL] = TXE32_PORT_CNTR_ELEM(TxFlowStall, SEND_FLOW_STALL_CNT, 5019 CNTR_NORMAL), 5020 [C_TX_DROPPED] = TXE32_PORT_CNTR_ELEM(TxDropped, SEND_DROPPED_PKT_CNT, 5021 CNTR_NORMAL), 5022 [C_TX_HDR_ERR] = TXE32_PORT_CNTR_ELEM(TxHdrErr, SEND_HEADERS_ERR_CNT, 5023 CNTR_NORMAL), 5024 [C_TX_PKT] = TXE64_PORT_CNTR_ELEM(TxPkt, SEND_DATA_PKT_CNT, CNTR_NORMAL), 5025 [C_TX_WORDS] = TXE64_PORT_CNTR_ELEM(TxWords, SEND_DWORD_CNT, CNTR_NORMAL), 5026 [C_TX_WAIT] = TXE64_PORT_CNTR_ELEM(TxWait, SEND_WAIT_CNT, CNTR_SYNTH), 5027 [C_TX_FLIT_VL] = TXE64_PORT_CNTR_ELEM(TxFlitVL, SEND_DATA_VL0_CNT, 5028 CNTR_SYNTH | CNTR_VL), 5029 [C_TX_PKT_VL] = TXE64_PORT_CNTR_ELEM(TxPktVL, SEND_DATA_PKT_VL0_CNT, 5030 CNTR_SYNTH | CNTR_VL), 5031 [C_TX_WAIT_VL] = TXE64_PORT_CNTR_ELEM(TxWaitVL, SEND_WAIT_VL0_CNT, 5032 CNTR_SYNTH | CNTR_VL), 5033 [C_RX_PKT] = RXE64_PORT_CNTR_ELEM(RxPkt, RCV_DATA_PKT_CNT, CNTR_NORMAL), 5034 [C_RX_WORDS] = RXE64_PORT_CNTR_ELEM(RxWords, RCV_DWORD_CNT, CNTR_NORMAL), 5035 [C_SW_LINK_DOWN] = CNTR_ELEM("SwLinkDown", 0, 0, CNTR_SYNTH | CNTR_32BIT, 5036 access_sw_link_dn_cnt), 5037 [C_SW_LINK_UP] = CNTR_ELEM("SwLinkUp", 0, 0, CNTR_SYNTH | CNTR_32BIT, 5038 access_sw_link_up_cnt), 5039 [C_SW_UNKNOWN_FRAME] = CNTR_ELEM("UnknownFrame", 0, 0, CNTR_NORMAL, 5040 access_sw_unknown_frame_cnt), 5041 [C_SW_XMIT_DSCD] = CNTR_ELEM("XmitDscd", 0, 0, CNTR_SYNTH | CNTR_32BIT, 5042 access_sw_xmit_discards), 5043 [C_SW_XMIT_DSCD_VL] = CNTR_ELEM("XmitDscdVl", 0, 0, 5044 CNTR_SYNTH | CNTR_32BIT | CNTR_VL, 5045 access_sw_xmit_discards), 5046 [C_SW_XMIT_CSTR_ERR] = CNTR_ELEM("XmitCstrErr", 0, 0, CNTR_SYNTH, 5047 access_xmit_constraint_errs), 5048 [C_SW_RCV_CSTR_ERR] = CNTR_ELEM("RcvCstrErr", 0, 0, CNTR_SYNTH, 5049 access_rcv_constraint_errs), 5050 [C_SW_IBP_LOOP_PKTS] = SW_IBP_CNTR(LoopPkts, loop_pkts), 5051 [C_SW_IBP_RC_RESENDS] = SW_IBP_CNTR(RcResend, rc_resends), 5052 [C_SW_IBP_RNR_NAKS] = SW_IBP_CNTR(RnrNak, rnr_naks), 5053 [C_SW_IBP_OTHER_NAKS] = SW_IBP_CNTR(OtherNak, other_naks), 5054 [C_SW_IBP_RC_TIMEOUTS] = SW_IBP_CNTR(RcTimeOut, rc_timeouts), 5055 [C_SW_IBP_PKT_DROPS] = SW_IBP_CNTR(PktDrop, pkt_drops), 5056 [C_SW_IBP_DMA_WAIT] = SW_IBP_CNTR(DmaWait, dmawait), 5057 [C_SW_IBP_RC_SEQNAK] = SW_IBP_CNTR(RcSeqNak, rc_seqnak), 5058 [C_SW_IBP_RC_DUPREQ] = SW_IBP_CNTR(RcDupRew, rc_dupreq), 5059 [C_SW_IBP_RDMA_SEQ] = SW_IBP_CNTR(RdmaSeq, rdma_seq), 5060 [C_SW_IBP_UNALIGNED] = SW_IBP_CNTR(Unaligned, unaligned), 5061 [C_SW_IBP_SEQ_NAK] = SW_IBP_CNTR(SeqNak, seq_naks), 5062 [C_SW_CPU_RC_ACKS] = CNTR_ELEM("RcAcks", 0, 0, CNTR_NORMAL, 5063 access_sw_cpu_rc_acks), 5064 [C_SW_CPU_RC_QACKS] = CNTR_ELEM("RcQacks", 0, 0, CNTR_NORMAL, 5065 access_sw_cpu_rc_qacks), 5066 [C_SW_CPU_RC_DELAYED_COMP] = CNTR_ELEM("RcDelayComp", 0, 0, CNTR_NORMAL, 5067 access_sw_cpu_rc_delayed_comp), 5068 [OVR_LBL(0)] = OVR_ELM(0), [OVR_LBL(1)] = OVR_ELM(1), 5069 [OVR_LBL(2)] = OVR_ELM(2), [OVR_LBL(3)] = OVR_ELM(3), 5070 [OVR_LBL(4)] = OVR_ELM(4), [OVR_LBL(5)] = OVR_ELM(5), 5071 [OVR_LBL(6)] = OVR_ELM(6), [OVR_LBL(7)] = OVR_ELM(7), 5072 [OVR_LBL(8)] = OVR_ELM(8), [OVR_LBL(9)] = OVR_ELM(9), 5073 [OVR_LBL(10)] = OVR_ELM(10), [OVR_LBL(11)] = OVR_ELM(11), 5074 [OVR_LBL(12)] = OVR_ELM(12), [OVR_LBL(13)] = OVR_ELM(13), 5075 [OVR_LBL(14)] = OVR_ELM(14), [OVR_LBL(15)] = OVR_ELM(15), 5076 [OVR_LBL(16)] = OVR_ELM(16), [OVR_LBL(17)] = OVR_ELM(17), 5077 [OVR_LBL(18)] = OVR_ELM(18), [OVR_LBL(19)] = OVR_ELM(19), 5078 [OVR_LBL(20)] = OVR_ELM(20), [OVR_LBL(21)] = OVR_ELM(21), 5079 [OVR_LBL(22)] = OVR_ELM(22), [OVR_LBL(23)] = OVR_ELM(23), 5080 [OVR_LBL(24)] = OVR_ELM(24), [OVR_LBL(25)] = OVR_ELM(25), 5081 [OVR_LBL(26)] = OVR_ELM(26), [OVR_LBL(27)] = OVR_ELM(27), 5082 [OVR_LBL(28)] = OVR_ELM(28), [OVR_LBL(29)] = OVR_ELM(29), 5083 [OVR_LBL(30)] = OVR_ELM(30), [OVR_LBL(31)] = OVR_ELM(31), 5084 [OVR_LBL(32)] = OVR_ELM(32), [OVR_LBL(33)] = OVR_ELM(33), 5085 [OVR_LBL(34)] = OVR_ELM(34), [OVR_LBL(35)] = OVR_ELM(35), 5086 [OVR_LBL(36)] = OVR_ELM(36), [OVR_LBL(37)] = OVR_ELM(37), 5087 [OVR_LBL(38)] = OVR_ELM(38), [OVR_LBL(39)] = OVR_ELM(39), 5088 [OVR_LBL(40)] = OVR_ELM(40), [OVR_LBL(41)] = OVR_ELM(41), 5089 [OVR_LBL(42)] = OVR_ELM(42), [OVR_LBL(43)] = OVR_ELM(43), 5090 [OVR_LBL(44)] = OVR_ELM(44), [OVR_LBL(45)] = OVR_ELM(45), 5091 [OVR_LBL(46)] = OVR_ELM(46), [OVR_LBL(47)] = OVR_ELM(47), 5092 [OVR_LBL(48)] = OVR_ELM(48), [OVR_LBL(49)] = OVR_ELM(49), 5093 [OVR_LBL(50)] = OVR_ELM(50), [OVR_LBL(51)] = OVR_ELM(51), 5094 [OVR_LBL(52)] = OVR_ELM(52), [OVR_LBL(53)] = OVR_ELM(53), 5095 [OVR_LBL(54)] = OVR_ELM(54), [OVR_LBL(55)] = OVR_ELM(55), 5096 [OVR_LBL(56)] = OVR_ELM(56), [OVR_LBL(57)] = OVR_ELM(57), 5097 [OVR_LBL(58)] = OVR_ELM(58), [OVR_LBL(59)] = OVR_ELM(59), 5098 [OVR_LBL(60)] = OVR_ELM(60), [OVR_LBL(61)] = OVR_ELM(61), 5099 [OVR_LBL(62)] = OVR_ELM(62), [OVR_LBL(63)] = OVR_ELM(63), 5100 [OVR_LBL(64)] = OVR_ELM(64), [OVR_LBL(65)] = OVR_ELM(65), 5101 [OVR_LBL(66)] = OVR_ELM(66), [OVR_LBL(67)] = OVR_ELM(67), 5102 [OVR_LBL(68)] = OVR_ELM(68), [OVR_LBL(69)] = OVR_ELM(69), 5103 [OVR_LBL(70)] = OVR_ELM(70), [OVR_LBL(71)] = OVR_ELM(71), 5104 [OVR_LBL(72)] = OVR_ELM(72), [OVR_LBL(73)] = OVR_ELM(73), 5105 [OVR_LBL(74)] = OVR_ELM(74), [OVR_LBL(75)] = OVR_ELM(75), 5106 [OVR_LBL(76)] = OVR_ELM(76), [OVR_LBL(77)] = OVR_ELM(77), 5107 [OVR_LBL(78)] = OVR_ELM(78), [OVR_LBL(79)] = OVR_ELM(79), 5108 [OVR_LBL(80)] = OVR_ELM(80), [OVR_LBL(81)] = OVR_ELM(81), 5109 [OVR_LBL(82)] = OVR_ELM(82), [OVR_LBL(83)] = OVR_ELM(83), 5110 [OVR_LBL(84)] = OVR_ELM(84), [OVR_LBL(85)] = OVR_ELM(85), 5111 [OVR_LBL(86)] = OVR_ELM(86), [OVR_LBL(87)] = OVR_ELM(87), 5112 [OVR_LBL(88)] = OVR_ELM(88), [OVR_LBL(89)] = OVR_ELM(89), 5113 [OVR_LBL(90)] = OVR_ELM(90), [OVR_LBL(91)] = OVR_ELM(91), 5114 [OVR_LBL(92)] = OVR_ELM(92), [OVR_LBL(93)] = OVR_ELM(93), 5115 [OVR_LBL(94)] = OVR_ELM(94), [OVR_LBL(95)] = OVR_ELM(95), 5116 [OVR_LBL(96)] = OVR_ELM(96), [OVR_LBL(97)] = OVR_ELM(97), 5117 [OVR_LBL(98)] = OVR_ELM(98), [OVR_LBL(99)] = OVR_ELM(99), 5118 [OVR_LBL(100)] = OVR_ELM(100), [OVR_LBL(101)] = OVR_ELM(101), 5119 [OVR_LBL(102)] = OVR_ELM(102), [OVR_LBL(103)] = OVR_ELM(103), 5120 [OVR_LBL(104)] = OVR_ELM(104), [OVR_LBL(105)] = OVR_ELM(105), 5121 [OVR_LBL(106)] = OVR_ELM(106), [OVR_LBL(107)] = OVR_ELM(107), 5122 [OVR_LBL(108)] = OVR_ELM(108), [OVR_LBL(109)] = OVR_ELM(109), 5123 [OVR_LBL(110)] = OVR_ELM(110), [OVR_LBL(111)] = OVR_ELM(111), 5124 [OVR_LBL(112)] = OVR_ELM(112), [OVR_LBL(113)] = OVR_ELM(113), 5125 [OVR_LBL(114)] = OVR_ELM(114), [OVR_LBL(115)] = OVR_ELM(115), 5126 [OVR_LBL(116)] = OVR_ELM(116), [OVR_LBL(117)] = OVR_ELM(117), 5127 [OVR_LBL(118)] = OVR_ELM(118), [OVR_LBL(119)] = OVR_ELM(119), 5128 [OVR_LBL(120)] = OVR_ELM(120), [OVR_LBL(121)] = OVR_ELM(121), 5129 [OVR_LBL(122)] = OVR_ELM(122), [OVR_LBL(123)] = OVR_ELM(123), 5130 [OVR_LBL(124)] = OVR_ELM(124), [OVR_LBL(125)] = OVR_ELM(125), 5131 [OVR_LBL(126)] = OVR_ELM(126), [OVR_LBL(127)] = OVR_ELM(127), 5132 [OVR_LBL(128)] = OVR_ELM(128), [OVR_LBL(129)] = OVR_ELM(129), 5133 [OVR_LBL(130)] = OVR_ELM(130), [OVR_LBL(131)] = OVR_ELM(131), 5134 [OVR_LBL(132)] = OVR_ELM(132), [OVR_LBL(133)] = OVR_ELM(133), 5135 [OVR_LBL(134)] = OVR_ELM(134), [OVR_LBL(135)] = OVR_ELM(135), 5136 [OVR_LBL(136)] = OVR_ELM(136), [OVR_LBL(137)] = OVR_ELM(137), 5137 [OVR_LBL(138)] = OVR_ELM(138), [OVR_LBL(139)] = OVR_ELM(139), 5138 [OVR_LBL(140)] = OVR_ELM(140), [OVR_LBL(141)] = OVR_ELM(141), 5139 [OVR_LBL(142)] = OVR_ELM(142), [OVR_LBL(143)] = OVR_ELM(143), 5140 [OVR_LBL(144)] = OVR_ELM(144), [OVR_LBL(145)] = OVR_ELM(145), 5141 [OVR_LBL(146)] = OVR_ELM(146), [OVR_LBL(147)] = OVR_ELM(147), 5142 [OVR_LBL(148)] = OVR_ELM(148), [OVR_LBL(149)] = OVR_ELM(149), 5143 [OVR_LBL(150)] = OVR_ELM(150), [OVR_LBL(151)] = OVR_ELM(151), 5144 [OVR_LBL(152)] = OVR_ELM(152), [OVR_LBL(153)] = OVR_ELM(153), 5145 [OVR_LBL(154)] = OVR_ELM(154), [OVR_LBL(155)] = OVR_ELM(155), 5146 [OVR_LBL(156)] = OVR_ELM(156), [OVR_LBL(157)] = OVR_ELM(157), 5147 [OVR_LBL(158)] = OVR_ELM(158), [OVR_LBL(159)] = OVR_ELM(159), 5148 }; 5149 5150 /* ======================================================================== */ 5151 5152 /* return true if this is chip revision revision a */ 5153 int is_ax(struct hfi1_devdata *dd) 5154 { 5155 u8 chip_rev_minor = 5156 dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT 5157 & CCE_REVISION_CHIP_REV_MINOR_MASK; 5158 return (chip_rev_minor & 0xf0) == 0; 5159 } 5160 5161 /* return true if this is chip revision revision b */ 5162 int is_bx(struct hfi1_devdata *dd) 5163 { 5164 u8 chip_rev_minor = 5165 dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT 5166 & CCE_REVISION_CHIP_REV_MINOR_MASK; 5167 return (chip_rev_minor & 0xF0) == 0x10; 5168 } 5169 5170 /* 5171 * Append string s to buffer buf. Arguments curp and len are the current 5172 * position and remaining length, respectively. 5173 * 5174 * return 0 on success, 1 on out of room 5175 */ 5176 static int append_str(char *buf, char **curp, int *lenp, const char *s) 5177 { 5178 char *p = *curp; 5179 int len = *lenp; 5180 int result = 0; /* success */ 5181 char c; 5182 5183 /* add a comma, if first in the buffer */ 5184 if (p != buf) { 5185 if (len == 0) { 5186 result = 1; /* out of room */ 5187 goto done; 5188 } 5189 *p++ = ','; 5190 len--; 5191 } 5192 5193 /* copy the string */ 5194 while ((c = *s++) != 0) { 5195 if (len == 0) { 5196 result = 1; /* out of room */ 5197 goto done; 5198 } 5199 *p++ = c; 5200 len--; 5201 } 5202 5203 done: 5204 /* write return values */ 5205 *curp = p; 5206 *lenp = len; 5207 5208 return result; 5209 } 5210 5211 /* 5212 * Using the given flag table, print a comma separated string into 5213 * the buffer. End in '*' if the buffer is too short. 5214 */ 5215 static char *flag_string(char *buf, int buf_len, u64 flags, 5216 struct flag_table *table, int table_size) 5217 { 5218 char extra[32]; 5219 char *p = buf; 5220 int len = buf_len; 5221 int no_room = 0; 5222 int i; 5223 5224 /* make sure there is at least 2 so we can form "*" */ 5225 if (len < 2) 5226 return ""; 5227 5228 len--; /* leave room for a nul */ 5229 for (i = 0; i < table_size; i++) { 5230 if (flags & table[i].flag) { 5231 no_room = append_str(buf, &p, &len, table[i].str); 5232 if (no_room) 5233 break; 5234 flags &= ~table[i].flag; 5235 } 5236 } 5237 5238 /* any undocumented bits left? */ 5239 if (!no_room && flags) { 5240 snprintf(extra, sizeof(extra), "bits 0x%llx", flags); 5241 no_room = append_str(buf, &p, &len, extra); 5242 } 5243 5244 /* add * if ran out of room */ 5245 if (no_room) { 5246 /* may need to back up to add space for a '*' */ 5247 if (len == 0) 5248 --p; 5249 *p++ = '*'; 5250 } 5251 5252 /* add final nul - space already allocated above */ 5253 *p = 0; 5254 return buf; 5255 } 5256 5257 /* first 8 CCE error interrupt source names */ 5258 static const char * const cce_misc_names[] = { 5259 "CceErrInt", /* 0 */ 5260 "RxeErrInt", /* 1 */ 5261 "MiscErrInt", /* 2 */ 5262 "Reserved3", /* 3 */ 5263 "PioErrInt", /* 4 */ 5264 "SDmaErrInt", /* 5 */ 5265 "EgressErrInt", /* 6 */ 5266 "TxeErrInt" /* 7 */ 5267 }; 5268 5269 /* 5270 * Return the miscellaneous error interrupt name. 5271 */ 5272 static char *is_misc_err_name(char *buf, size_t bsize, unsigned int source) 5273 { 5274 if (source < ARRAY_SIZE(cce_misc_names)) 5275 strncpy(buf, cce_misc_names[source], bsize); 5276 else 5277 snprintf(buf, bsize, "Reserved%u", 5278 source + IS_GENERAL_ERR_START); 5279 5280 return buf; 5281 } 5282 5283 /* 5284 * Return the SDMA engine error interrupt name. 5285 */ 5286 static char *is_sdma_eng_err_name(char *buf, size_t bsize, unsigned int source) 5287 { 5288 snprintf(buf, bsize, "SDmaEngErrInt%u", source); 5289 return buf; 5290 } 5291 5292 /* 5293 * Return the send context error interrupt name. 5294 */ 5295 static char *is_sendctxt_err_name(char *buf, size_t bsize, unsigned int source) 5296 { 5297 snprintf(buf, bsize, "SendCtxtErrInt%u", source); 5298 return buf; 5299 } 5300 5301 static const char * const various_names[] = { 5302 "PbcInt", 5303 "GpioAssertInt", 5304 "Qsfp1Int", 5305 "Qsfp2Int", 5306 "TCritInt" 5307 }; 5308 5309 /* 5310 * Return the various interrupt name. 5311 */ 5312 static char *is_various_name(char *buf, size_t bsize, unsigned int source) 5313 { 5314 if (source < ARRAY_SIZE(various_names)) 5315 strncpy(buf, various_names[source], bsize); 5316 else 5317 snprintf(buf, bsize, "Reserved%u", source + IS_VARIOUS_START); 5318 return buf; 5319 } 5320 5321 /* 5322 * Return the DC interrupt name. 5323 */ 5324 static char *is_dc_name(char *buf, size_t bsize, unsigned int source) 5325 { 5326 static const char * const dc_int_names[] = { 5327 "common", 5328 "lcb", 5329 "8051", 5330 "lbm" /* local block merge */ 5331 }; 5332 5333 if (source < ARRAY_SIZE(dc_int_names)) 5334 snprintf(buf, bsize, "dc_%s_int", dc_int_names[source]); 5335 else 5336 snprintf(buf, bsize, "DCInt%u", source); 5337 return buf; 5338 } 5339 5340 static const char * const sdma_int_names[] = { 5341 "SDmaInt", 5342 "SdmaIdleInt", 5343 "SdmaProgressInt", 5344 }; 5345 5346 /* 5347 * Return the SDMA engine interrupt name. 5348 */ 5349 static char *is_sdma_eng_name(char *buf, size_t bsize, unsigned int source) 5350 { 5351 /* what interrupt */ 5352 unsigned int what = source / TXE_NUM_SDMA_ENGINES; 5353 /* which engine */ 5354 unsigned int which = source % TXE_NUM_SDMA_ENGINES; 5355 5356 if (likely(what < 3)) 5357 snprintf(buf, bsize, "%s%u", sdma_int_names[what], which); 5358 else 5359 snprintf(buf, bsize, "Invalid SDMA interrupt %u", source); 5360 return buf; 5361 } 5362 5363 /* 5364 * Return the receive available interrupt name. 5365 */ 5366 static char *is_rcv_avail_name(char *buf, size_t bsize, unsigned int source) 5367 { 5368 snprintf(buf, bsize, "RcvAvailInt%u", source); 5369 return buf; 5370 } 5371 5372 /* 5373 * Return the receive urgent interrupt name. 5374 */ 5375 static char *is_rcv_urgent_name(char *buf, size_t bsize, unsigned int source) 5376 { 5377 snprintf(buf, bsize, "RcvUrgentInt%u", source); 5378 return buf; 5379 } 5380 5381 /* 5382 * Return the send credit interrupt name. 5383 */ 5384 static char *is_send_credit_name(char *buf, size_t bsize, unsigned int source) 5385 { 5386 snprintf(buf, bsize, "SendCreditInt%u", source); 5387 return buf; 5388 } 5389 5390 /* 5391 * Return the reserved interrupt name. 5392 */ 5393 static char *is_reserved_name(char *buf, size_t bsize, unsigned int source) 5394 { 5395 snprintf(buf, bsize, "Reserved%u", source + IS_RESERVED_START); 5396 return buf; 5397 } 5398 5399 static char *cce_err_status_string(char *buf, int buf_len, u64 flags) 5400 { 5401 return flag_string(buf, buf_len, flags, 5402 cce_err_status_flags, 5403 ARRAY_SIZE(cce_err_status_flags)); 5404 } 5405 5406 static char *rxe_err_status_string(char *buf, int buf_len, u64 flags) 5407 { 5408 return flag_string(buf, buf_len, flags, 5409 rxe_err_status_flags, 5410 ARRAY_SIZE(rxe_err_status_flags)); 5411 } 5412 5413 static char *misc_err_status_string(char *buf, int buf_len, u64 flags) 5414 { 5415 return flag_string(buf, buf_len, flags, misc_err_status_flags, 5416 ARRAY_SIZE(misc_err_status_flags)); 5417 } 5418 5419 static char *pio_err_status_string(char *buf, int buf_len, u64 flags) 5420 { 5421 return flag_string(buf, buf_len, flags, 5422 pio_err_status_flags, 5423 ARRAY_SIZE(pio_err_status_flags)); 5424 } 5425 5426 static char *sdma_err_status_string(char *buf, int buf_len, u64 flags) 5427 { 5428 return flag_string(buf, buf_len, flags, 5429 sdma_err_status_flags, 5430 ARRAY_SIZE(sdma_err_status_flags)); 5431 } 5432 5433 static char *egress_err_status_string(char *buf, int buf_len, u64 flags) 5434 { 5435 return flag_string(buf, buf_len, flags, 5436 egress_err_status_flags, 5437 ARRAY_SIZE(egress_err_status_flags)); 5438 } 5439 5440 static char *egress_err_info_string(char *buf, int buf_len, u64 flags) 5441 { 5442 return flag_string(buf, buf_len, flags, 5443 egress_err_info_flags, 5444 ARRAY_SIZE(egress_err_info_flags)); 5445 } 5446 5447 static char *send_err_status_string(char *buf, int buf_len, u64 flags) 5448 { 5449 return flag_string(buf, buf_len, flags, 5450 send_err_status_flags, 5451 ARRAY_SIZE(send_err_status_flags)); 5452 } 5453 5454 static void handle_cce_err(struct hfi1_devdata *dd, u32 unused, u64 reg) 5455 { 5456 char buf[96]; 5457 int i = 0; 5458 5459 /* 5460 * For most these errors, there is nothing that can be done except 5461 * report or record it. 5462 */ 5463 dd_dev_info(dd, "CCE Error: %s\n", 5464 cce_err_status_string(buf, sizeof(buf), reg)); 5465 5466 if ((reg & CCE_ERR_STATUS_CCE_CLI2_ASYNC_FIFO_PARITY_ERR_SMASK) && 5467 is_ax(dd) && (dd->icode != ICODE_FUNCTIONAL_SIMULATOR)) { 5468 /* this error requires a manual drop into SPC freeze mode */ 5469 /* then a fix up */ 5470 start_freeze_handling(dd->pport, FREEZE_SELF); 5471 } 5472 5473 for (i = 0; i < NUM_CCE_ERR_STATUS_COUNTERS; i++) { 5474 if (reg & (1ull << i)) { 5475 incr_cntr64(&dd->cce_err_status_cnt[i]); 5476 /* maintain a counter over all cce_err_status errors */ 5477 incr_cntr64(&dd->sw_cce_err_status_aggregate); 5478 } 5479 } 5480 } 5481 5482 /* 5483 * Check counters for receive errors that do not have an interrupt 5484 * associated with them. 5485 */ 5486 #define RCVERR_CHECK_TIME 10 5487 static void update_rcverr_timer(unsigned long opaque) 5488 { 5489 struct hfi1_devdata *dd = (struct hfi1_devdata *)opaque; 5490 struct hfi1_pportdata *ppd = dd->pport; 5491 u32 cur_ovfl_cnt = read_dev_cntr(dd, C_RCV_OVF, CNTR_INVALID_VL); 5492 5493 if (dd->rcv_ovfl_cnt < cur_ovfl_cnt && 5494 ppd->port_error_action & OPA_PI_MASK_EX_BUFFER_OVERRUN) { 5495 dd_dev_info(dd, "%s: PortErrorAction bounce\n", __func__); 5496 set_link_down_reason( 5497 ppd, OPA_LINKDOWN_REASON_EXCESSIVE_BUFFER_OVERRUN, 0, 5498 OPA_LINKDOWN_REASON_EXCESSIVE_BUFFER_OVERRUN); 5499 queue_work(ppd->hfi1_wq, &ppd->link_bounce_work); 5500 } 5501 dd->rcv_ovfl_cnt = (u32)cur_ovfl_cnt; 5502 5503 mod_timer(&dd->rcverr_timer, jiffies + HZ * RCVERR_CHECK_TIME); 5504 } 5505 5506 static int init_rcverr(struct hfi1_devdata *dd) 5507 { 5508 setup_timer(&dd->rcverr_timer, update_rcverr_timer, (unsigned long)dd); 5509 /* Assume the hardware counter has been reset */ 5510 dd->rcv_ovfl_cnt = 0; 5511 return mod_timer(&dd->rcverr_timer, jiffies + HZ * RCVERR_CHECK_TIME); 5512 } 5513 5514 static void free_rcverr(struct hfi1_devdata *dd) 5515 { 5516 if (dd->rcverr_timer.data) 5517 del_timer_sync(&dd->rcverr_timer); 5518 dd->rcverr_timer.data = 0; 5519 } 5520 5521 static void handle_rxe_err(struct hfi1_devdata *dd, u32 unused, u64 reg) 5522 { 5523 char buf[96]; 5524 int i = 0; 5525 5526 dd_dev_info(dd, "Receive Error: %s\n", 5527 rxe_err_status_string(buf, sizeof(buf), reg)); 5528 5529 if (reg & ALL_RXE_FREEZE_ERR) { 5530 int flags = 0; 5531 5532 /* 5533 * Freeze mode recovery is disabled for the errors 5534 * in RXE_FREEZE_ABORT_MASK 5535 */ 5536 if (is_ax(dd) && (reg & RXE_FREEZE_ABORT_MASK)) 5537 flags = FREEZE_ABORT; 5538 5539 start_freeze_handling(dd->pport, flags); 5540 } 5541 5542 for (i = 0; i < NUM_RCV_ERR_STATUS_COUNTERS; i++) { 5543 if (reg & (1ull << i)) 5544 incr_cntr64(&dd->rcv_err_status_cnt[i]); 5545 } 5546 } 5547 5548 static void handle_misc_err(struct hfi1_devdata *dd, u32 unused, u64 reg) 5549 { 5550 char buf[96]; 5551 int i = 0; 5552 5553 dd_dev_info(dd, "Misc Error: %s", 5554 misc_err_status_string(buf, sizeof(buf), reg)); 5555 for (i = 0; i < NUM_MISC_ERR_STATUS_COUNTERS; i++) { 5556 if (reg & (1ull << i)) 5557 incr_cntr64(&dd->misc_err_status_cnt[i]); 5558 } 5559 } 5560 5561 static void handle_pio_err(struct hfi1_devdata *dd, u32 unused, u64 reg) 5562 { 5563 char buf[96]; 5564 int i = 0; 5565 5566 dd_dev_info(dd, "PIO Error: %s\n", 5567 pio_err_status_string(buf, sizeof(buf), reg)); 5568 5569 if (reg & ALL_PIO_FREEZE_ERR) 5570 start_freeze_handling(dd->pport, 0); 5571 5572 for (i = 0; i < NUM_SEND_PIO_ERR_STATUS_COUNTERS; i++) { 5573 if (reg & (1ull << i)) 5574 incr_cntr64(&dd->send_pio_err_status_cnt[i]); 5575 } 5576 } 5577 5578 static void handle_sdma_err(struct hfi1_devdata *dd, u32 unused, u64 reg) 5579 { 5580 char buf[96]; 5581 int i = 0; 5582 5583 dd_dev_info(dd, "SDMA Error: %s\n", 5584 sdma_err_status_string(buf, sizeof(buf), reg)); 5585 5586 if (reg & ALL_SDMA_FREEZE_ERR) 5587 start_freeze_handling(dd->pport, 0); 5588 5589 for (i = 0; i < NUM_SEND_DMA_ERR_STATUS_COUNTERS; i++) { 5590 if (reg & (1ull << i)) 5591 incr_cntr64(&dd->send_dma_err_status_cnt[i]); 5592 } 5593 } 5594 5595 static inline void __count_port_discards(struct hfi1_pportdata *ppd) 5596 { 5597 incr_cntr64(&ppd->port_xmit_discards); 5598 } 5599 5600 static void count_port_inactive(struct hfi1_devdata *dd) 5601 { 5602 __count_port_discards(dd->pport); 5603 } 5604 5605 /* 5606 * We have had a "disallowed packet" error during egress. Determine the 5607 * integrity check which failed, and update relevant error counter, etc. 5608 * 5609 * Note that the SEND_EGRESS_ERR_INFO register has only a single 5610 * bit of state per integrity check, and so we can miss the reason for an 5611 * egress error if more than one packet fails the same integrity check 5612 * since we cleared the corresponding bit in SEND_EGRESS_ERR_INFO. 5613 */ 5614 static void handle_send_egress_err_info(struct hfi1_devdata *dd, 5615 int vl) 5616 { 5617 struct hfi1_pportdata *ppd = dd->pport; 5618 u64 src = read_csr(dd, SEND_EGRESS_ERR_SOURCE); /* read first */ 5619 u64 info = read_csr(dd, SEND_EGRESS_ERR_INFO); 5620 char buf[96]; 5621 5622 /* clear down all observed info as quickly as possible after read */ 5623 write_csr(dd, SEND_EGRESS_ERR_INFO, info); 5624 5625 dd_dev_info(dd, 5626 "Egress Error Info: 0x%llx, %s Egress Error Src 0x%llx\n", 5627 info, egress_err_info_string(buf, sizeof(buf), info), src); 5628 5629 /* Eventually add other counters for each bit */ 5630 if (info & PORT_DISCARD_EGRESS_ERRS) { 5631 int weight, i; 5632 5633 /* 5634 * Count all applicable bits as individual errors and 5635 * attribute them to the packet that triggered this handler. 5636 * This may not be completely accurate due to limitations 5637 * on the available hardware error information. There is 5638 * a single information register and any number of error 5639 * packets may have occurred and contributed to it before 5640 * this routine is called. This means that: 5641 * a) If multiple packets with the same error occur before 5642 * this routine is called, earlier packets are missed. 5643 * There is only a single bit for each error type. 5644 * b) Errors may not be attributed to the correct VL. 5645 * The driver is attributing all bits in the info register 5646 * to the packet that triggered this call, but bits 5647 * could be an accumulation of different packets with 5648 * different VLs. 5649 * c) A single error packet may have multiple counts attached 5650 * to it. There is no way for the driver to know if 5651 * multiple bits set in the info register are due to a 5652 * single packet or multiple packets. The driver assumes 5653 * multiple packets. 5654 */ 5655 weight = hweight64(info & PORT_DISCARD_EGRESS_ERRS); 5656 for (i = 0; i < weight; i++) { 5657 __count_port_discards(ppd); 5658 if (vl >= 0 && vl < TXE_NUM_DATA_VL) 5659 incr_cntr64(&ppd->port_xmit_discards_vl[vl]); 5660 else if (vl == 15) 5661 incr_cntr64(&ppd->port_xmit_discards_vl 5662 [C_VL_15]); 5663 } 5664 } 5665 } 5666 5667 /* 5668 * Input value is a bit position within the SEND_EGRESS_ERR_STATUS 5669 * register. Does it represent a 'port inactive' error? 5670 */ 5671 static inline int port_inactive_err(u64 posn) 5672 { 5673 return (posn >= SEES(TX_LINKDOWN) && 5674 posn <= SEES(TX_INCORRECT_LINK_STATE)); 5675 } 5676 5677 /* 5678 * Input value is a bit position within the SEND_EGRESS_ERR_STATUS 5679 * register. Does it represent a 'disallowed packet' error? 5680 */ 5681 static inline int disallowed_pkt_err(int posn) 5682 { 5683 return (posn >= SEES(TX_SDMA0_DISALLOWED_PACKET) && 5684 posn <= SEES(TX_SDMA15_DISALLOWED_PACKET)); 5685 } 5686 5687 /* 5688 * Input value is a bit position of one of the SDMA engine disallowed 5689 * packet errors. Return which engine. Use of this must be guarded by 5690 * disallowed_pkt_err(). 5691 */ 5692 static inline int disallowed_pkt_engine(int posn) 5693 { 5694 return posn - SEES(TX_SDMA0_DISALLOWED_PACKET); 5695 } 5696 5697 /* 5698 * Translate an SDMA engine to a VL. Return -1 if the tranlation cannot 5699 * be done. 5700 */ 5701 static int engine_to_vl(struct hfi1_devdata *dd, int engine) 5702 { 5703 struct sdma_vl_map *m; 5704 int vl; 5705 5706 /* range check */ 5707 if (engine < 0 || engine >= TXE_NUM_SDMA_ENGINES) 5708 return -1; 5709 5710 rcu_read_lock(); 5711 m = rcu_dereference(dd->sdma_map); 5712 vl = m->engine_to_vl[engine]; 5713 rcu_read_unlock(); 5714 5715 return vl; 5716 } 5717 5718 /* 5719 * Translate the send context (sofware index) into a VL. Return -1 if the 5720 * translation cannot be done. 5721 */ 5722 static int sc_to_vl(struct hfi1_devdata *dd, int sw_index) 5723 { 5724 struct send_context_info *sci; 5725 struct send_context *sc; 5726 int i; 5727 5728 sci = &dd->send_contexts[sw_index]; 5729 5730 /* there is no information for user (PSM) and ack contexts */ 5731 if ((sci->type != SC_KERNEL) && (sci->type != SC_VL15)) 5732 return -1; 5733 5734 sc = sci->sc; 5735 if (!sc) 5736 return -1; 5737 if (dd->vld[15].sc == sc) 5738 return 15; 5739 for (i = 0; i < num_vls; i++) 5740 if (dd->vld[i].sc == sc) 5741 return i; 5742 5743 return -1; 5744 } 5745 5746 static void handle_egress_err(struct hfi1_devdata *dd, u32 unused, u64 reg) 5747 { 5748 u64 reg_copy = reg, handled = 0; 5749 char buf[96]; 5750 int i = 0; 5751 5752 if (reg & ALL_TXE_EGRESS_FREEZE_ERR) 5753 start_freeze_handling(dd->pport, 0); 5754 else if (is_ax(dd) && 5755 (reg & SEND_EGRESS_ERR_STATUS_TX_CREDIT_RETURN_VL_ERR_SMASK) && 5756 (dd->icode != ICODE_FUNCTIONAL_SIMULATOR)) 5757 start_freeze_handling(dd->pport, 0); 5758 5759 while (reg_copy) { 5760 int posn = fls64(reg_copy); 5761 /* fls64() returns a 1-based offset, we want it zero based */ 5762 int shift = posn - 1; 5763 u64 mask = 1ULL << shift; 5764 5765 if (port_inactive_err(shift)) { 5766 count_port_inactive(dd); 5767 handled |= mask; 5768 } else if (disallowed_pkt_err(shift)) { 5769 int vl = engine_to_vl(dd, disallowed_pkt_engine(shift)); 5770 5771 handle_send_egress_err_info(dd, vl); 5772 handled |= mask; 5773 } 5774 reg_copy &= ~mask; 5775 } 5776 5777 reg &= ~handled; 5778 5779 if (reg) 5780 dd_dev_info(dd, "Egress Error: %s\n", 5781 egress_err_status_string(buf, sizeof(buf), reg)); 5782 5783 for (i = 0; i < NUM_SEND_EGRESS_ERR_STATUS_COUNTERS; i++) { 5784 if (reg & (1ull << i)) 5785 incr_cntr64(&dd->send_egress_err_status_cnt[i]); 5786 } 5787 } 5788 5789 static void handle_txe_err(struct hfi1_devdata *dd, u32 unused, u64 reg) 5790 { 5791 char buf[96]; 5792 int i = 0; 5793 5794 dd_dev_info(dd, "Send Error: %s\n", 5795 send_err_status_string(buf, sizeof(buf), reg)); 5796 5797 for (i = 0; i < NUM_SEND_ERR_STATUS_COUNTERS; i++) { 5798 if (reg & (1ull << i)) 5799 incr_cntr64(&dd->send_err_status_cnt[i]); 5800 } 5801 } 5802 5803 /* 5804 * The maximum number of times the error clear down will loop before 5805 * blocking a repeating error. This value is arbitrary. 5806 */ 5807 #define MAX_CLEAR_COUNT 20 5808 5809 /* 5810 * Clear and handle an error register. All error interrupts are funneled 5811 * through here to have a central location to correctly handle single- 5812 * or multi-shot errors. 5813 * 5814 * For non per-context registers, call this routine with a context value 5815 * of 0 so the per-context offset is zero. 5816 * 5817 * If the handler loops too many times, assume that something is wrong 5818 * and can't be fixed, so mask the error bits. 5819 */ 5820 static void interrupt_clear_down(struct hfi1_devdata *dd, 5821 u32 context, 5822 const struct err_reg_info *eri) 5823 { 5824 u64 reg; 5825 u32 count; 5826 5827 /* read in a loop until no more errors are seen */ 5828 count = 0; 5829 while (1) { 5830 reg = read_kctxt_csr(dd, context, eri->status); 5831 if (reg == 0) 5832 break; 5833 write_kctxt_csr(dd, context, eri->clear, reg); 5834 if (likely(eri->handler)) 5835 eri->handler(dd, context, reg); 5836 count++; 5837 if (count > MAX_CLEAR_COUNT) { 5838 u64 mask; 5839 5840 dd_dev_err(dd, "Repeating %s bits 0x%llx - masking\n", 5841 eri->desc, reg); 5842 /* 5843 * Read-modify-write so any other masked bits 5844 * remain masked. 5845 */ 5846 mask = read_kctxt_csr(dd, context, eri->mask); 5847 mask &= ~reg; 5848 write_kctxt_csr(dd, context, eri->mask, mask); 5849 break; 5850 } 5851 } 5852 } 5853 5854 /* 5855 * CCE block "misc" interrupt. Source is < 16. 5856 */ 5857 static void is_misc_err_int(struct hfi1_devdata *dd, unsigned int source) 5858 { 5859 const struct err_reg_info *eri = &misc_errs[source]; 5860 5861 if (eri->handler) { 5862 interrupt_clear_down(dd, 0, eri); 5863 } else { 5864 dd_dev_err(dd, "Unexpected misc interrupt (%u) - reserved\n", 5865 source); 5866 } 5867 } 5868 5869 static char *send_context_err_status_string(char *buf, int buf_len, u64 flags) 5870 { 5871 return flag_string(buf, buf_len, flags, 5872 sc_err_status_flags, 5873 ARRAY_SIZE(sc_err_status_flags)); 5874 } 5875 5876 /* 5877 * Send context error interrupt. Source (hw_context) is < 160. 5878 * 5879 * All send context errors cause the send context to halt. The normal 5880 * clear-down mechanism cannot be used because we cannot clear the 5881 * error bits until several other long-running items are done first. 5882 * This is OK because with the context halted, nothing else is going 5883 * to happen on it anyway. 5884 */ 5885 static void is_sendctxt_err_int(struct hfi1_devdata *dd, 5886 unsigned int hw_context) 5887 { 5888 struct send_context_info *sci; 5889 struct send_context *sc; 5890 char flags[96]; 5891 u64 status; 5892 u32 sw_index; 5893 int i = 0; 5894 5895 sw_index = dd->hw_to_sw[hw_context]; 5896 if (sw_index >= dd->num_send_contexts) { 5897 dd_dev_err(dd, 5898 "out of range sw index %u for send context %u\n", 5899 sw_index, hw_context); 5900 return; 5901 } 5902 sci = &dd->send_contexts[sw_index]; 5903 sc = sci->sc; 5904 if (!sc) { 5905 dd_dev_err(dd, "%s: context %u(%u): no sc?\n", __func__, 5906 sw_index, hw_context); 5907 return; 5908 } 5909 5910 /* tell the software that a halt has begun */ 5911 sc_stop(sc, SCF_HALTED); 5912 5913 status = read_kctxt_csr(dd, hw_context, SEND_CTXT_ERR_STATUS); 5914 5915 dd_dev_info(dd, "Send Context %u(%u) Error: %s\n", sw_index, hw_context, 5916 send_context_err_status_string(flags, sizeof(flags), 5917 status)); 5918 5919 if (status & SEND_CTXT_ERR_STATUS_PIO_DISALLOWED_PACKET_ERR_SMASK) 5920 handle_send_egress_err_info(dd, sc_to_vl(dd, sw_index)); 5921 5922 /* 5923 * Automatically restart halted kernel contexts out of interrupt 5924 * context. User contexts must ask the driver to restart the context. 5925 */ 5926 if (sc->type != SC_USER) 5927 queue_work(dd->pport->hfi1_wq, &sc->halt_work); 5928 5929 /* 5930 * Update the counters for the corresponding status bits. 5931 * Note that these particular counters are aggregated over all 5932 * 160 contexts. 5933 */ 5934 for (i = 0; i < NUM_SEND_CTXT_ERR_STATUS_COUNTERS; i++) { 5935 if (status & (1ull << i)) 5936 incr_cntr64(&dd->sw_ctxt_err_status_cnt[i]); 5937 } 5938 } 5939 5940 static void handle_sdma_eng_err(struct hfi1_devdata *dd, 5941 unsigned int source, u64 status) 5942 { 5943 struct sdma_engine *sde; 5944 int i = 0; 5945 5946 sde = &dd->per_sdma[source]; 5947 #ifdef CONFIG_SDMA_VERBOSITY 5948 dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx, 5949 slashstrip(__FILE__), __LINE__, __func__); 5950 dd_dev_err(sde->dd, "CONFIG SDMA(%u) source: %u status 0x%llx\n", 5951 sde->this_idx, source, (unsigned long long)status); 5952 #endif 5953 sde->err_cnt++; 5954 sdma_engine_error(sde, status); 5955 5956 /* 5957 * Update the counters for the corresponding status bits. 5958 * Note that these particular counters are aggregated over 5959 * all 16 DMA engines. 5960 */ 5961 for (i = 0; i < NUM_SEND_DMA_ENG_ERR_STATUS_COUNTERS; i++) { 5962 if (status & (1ull << i)) 5963 incr_cntr64(&dd->sw_send_dma_eng_err_status_cnt[i]); 5964 } 5965 } 5966 5967 /* 5968 * CCE block SDMA error interrupt. Source is < 16. 5969 */ 5970 static void is_sdma_eng_err_int(struct hfi1_devdata *dd, unsigned int source) 5971 { 5972 #ifdef CONFIG_SDMA_VERBOSITY 5973 struct sdma_engine *sde = &dd->per_sdma[source]; 5974 5975 dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx, 5976 slashstrip(__FILE__), __LINE__, __func__); 5977 dd_dev_err(dd, "CONFIG SDMA(%u) source: %u\n", sde->this_idx, 5978 source); 5979 sdma_dumpstate(sde); 5980 #endif 5981 interrupt_clear_down(dd, source, &sdma_eng_err); 5982 } 5983 5984 /* 5985 * CCE block "various" interrupt. Source is < 8. 5986 */ 5987 static void is_various_int(struct hfi1_devdata *dd, unsigned int source) 5988 { 5989 const struct err_reg_info *eri = &various_err[source]; 5990 5991 /* 5992 * TCritInt cannot go through interrupt_clear_down() 5993 * because it is not a second tier interrupt. The handler 5994 * should be called directly. 5995 */ 5996 if (source == TCRIT_INT_SOURCE) 5997 handle_temp_err(dd); 5998 else if (eri->handler) 5999 interrupt_clear_down(dd, 0, eri); 6000 else 6001 dd_dev_info(dd, 6002 "%s: Unimplemented/reserved interrupt %d\n", 6003 __func__, source); 6004 } 6005 6006 static void handle_qsfp_int(struct hfi1_devdata *dd, u32 src_ctx, u64 reg) 6007 { 6008 /* src_ctx is always zero */ 6009 struct hfi1_pportdata *ppd = dd->pport; 6010 unsigned long flags; 6011 u64 qsfp_int_mgmt = (u64)(QSFP_HFI0_INT_N | QSFP_HFI0_MODPRST_N); 6012 6013 if (reg & QSFP_HFI0_MODPRST_N) { 6014 if (!qsfp_mod_present(ppd)) { 6015 dd_dev_info(dd, "%s: QSFP module removed\n", 6016 __func__); 6017 6018 ppd->driver_link_ready = 0; 6019 /* 6020 * Cable removed, reset all our information about the 6021 * cache and cable capabilities 6022 */ 6023 6024 spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags); 6025 /* 6026 * We don't set cache_refresh_required here as we expect 6027 * an interrupt when a cable is inserted 6028 */ 6029 ppd->qsfp_info.cache_valid = 0; 6030 ppd->qsfp_info.reset_needed = 0; 6031 ppd->qsfp_info.limiting_active = 0; 6032 spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock, 6033 flags); 6034 /* Invert the ModPresent pin now to detect plug-in */ 6035 write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_INVERT : 6036 ASIC_QSFP1_INVERT, qsfp_int_mgmt); 6037 6038 if ((ppd->offline_disabled_reason > 6039 HFI1_ODR_MASK( 6040 OPA_LINKDOWN_REASON_LOCAL_MEDIA_NOT_INSTALLED)) || 6041 (ppd->offline_disabled_reason == 6042 HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE))) 6043 ppd->offline_disabled_reason = 6044 HFI1_ODR_MASK( 6045 OPA_LINKDOWN_REASON_LOCAL_MEDIA_NOT_INSTALLED); 6046 6047 if (ppd->host_link_state == HLS_DN_POLL) { 6048 /* 6049 * The link is still in POLL. This means 6050 * that the normal link down processing 6051 * will not happen. We have to do it here 6052 * before turning the DC off. 6053 */ 6054 queue_work(ppd->hfi1_wq, &ppd->link_down_work); 6055 } 6056 } else { 6057 dd_dev_info(dd, "%s: QSFP module inserted\n", 6058 __func__); 6059 6060 spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags); 6061 ppd->qsfp_info.cache_valid = 0; 6062 ppd->qsfp_info.cache_refresh_required = 1; 6063 spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock, 6064 flags); 6065 6066 /* 6067 * Stop inversion of ModPresent pin to detect 6068 * removal of the cable 6069 */ 6070 qsfp_int_mgmt &= ~(u64)QSFP_HFI0_MODPRST_N; 6071 write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_INVERT : 6072 ASIC_QSFP1_INVERT, qsfp_int_mgmt); 6073 6074 ppd->offline_disabled_reason = 6075 HFI1_ODR_MASK(OPA_LINKDOWN_REASON_TRANSIENT); 6076 } 6077 } 6078 6079 if (reg & QSFP_HFI0_INT_N) { 6080 dd_dev_info(dd, "%s: Interrupt received from QSFP module\n", 6081 __func__); 6082 spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags); 6083 ppd->qsfp_info.check_interrupt_flags = 1; 6084 spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock, flags); 6085 } 6086 6087 /* Schedule the QSFP work only if there is a cable attached. */ 6088 if (qsfp_mod_present(ppd)) 6089 queue_work(ppd->hfi1_wq, &ppd->qsfp_info.qsfp_work); 6090 } 6091 6092 static int request_host_lcb_access(struct hfi1_devdata *dd) 6093 { 6094 int ret; 6095 6096 ret = do_8051_command(dd, HCMD_MISC, 6097 (u64)HCMD_MISC_REQUEST_LCB_ACCESS << 6098 LOAD_DATA_FIELD_ID_SHIFT, NULL); 6099 if (ret != HCMD_SUCCESS) { 6100 dd_dev_err(dd, "%s: command failed with error %d\n", 6101 __func__, ret); 6102 } 6103 return ret == HCMD_SUCCESS ? 0 : -EBUSY; 6104 } 6105 6106 static int request_8051_lcb_access(struct hfi1_devdata *dd) 6107 { 6108 int ret; 6109 6110 ret = do_8051_command(dd, HCMD_MISC, 6111 (u64)HCMD_MISC_GRANT_LCB_ACCESS << 6112 LOAD_DATA_FIELD_ID_SHIFT, NULL); 6113 if (ret != HCMD_SUCCESS) { 6114 dd_dev_err(dd, "%s: command failed with error %d\n", 6115 __func__, ret); 6116 } 6117 return ret == HCMD_SUCCESS ? 0 : -EBUSY; 6118 } 6119 6120 /* 6121 * Set the LCB selector - allow host access. The DCC selector always 6122 * points to the host. 6123 */ 6124 static inline void set_host_lcb_access(struct hfi1_devdata *dd) 6125 { 6126 write_csr(dd, DC_DC8051_CFG_CSR_ACCESS_SEL, 6127 DC_DC8051_CFG_CSR_ACCESS_SEL_DCC_SMASK | 6128 DC_DC8051_CFG_CSR_ACCESS_SEL_LCB_SMASK); 6129 } 6130 6131 /* 6132 * Clear the LCB selector - allow 8051 access. The DCC selector always 6133 * points to the host. 6134 */ 6135 static inline void set_8051_lcb_access(struct hfi1_devdata *dd) 6136 { 6137 write_csr(dd, DC_DC8051_CFG_CSR_ACCESS_SEL, 6138 DC_DC8051_CFG_CSR_ACCESS_SEL_DCC_SMASK); 6139 } 6140 6141 /* 6142 * Acquire LCB access from the 8051. If the host already has access, 6143 * just increment a counter. Otherwise, inform the 8051 that the 6144 * host is taking access. 6145 * 6146 * Returns: 6147 * 0 on success 6148 * -EBUSY if the 8051 has control and cannot be disturbed 6149 * -errno if unable to acquire access from the 8051 6150 */ 6151 int acquire_lcb_access(struct hfi1_devdata *dd, int sleep_ok) 6152 { 6153 struct hfi1_pportdata *ppd = dd->pport; 6154 int ret = 0; 6155 6156 /* 6157 * Use the host link state lock so the operation of this routine 6158 * { link state check, selector change, count increment } can occur 6159 * as a unit against a link state change. Otherwise there is a 6160 * race between the state change and the count increment. 6161 */ 6162 if (sleep_ok) { 6163 mutex_lock(&ppd->hls_lock); 6164 } else { 6165 while (!mutex_trylock(&ppd->hls_lock)) 6166 udelay(1); 6167 } 6168 6169 /* this access is valid only when the link is up */ 6170 if (ppd->host_link_state & HLS_DOWN) { 6171 dd_dev_info(dd, "%s: link state %s not up\n", 6172 __func__, link_state_name(ppd->host_link_state)); 6173 ret = -EBUSY; 6174 goto done; 6175 } 6176 6177 if (dd->lcb_access_count == 0) { 6178 ret = request_host_lcb_access(dd); 6179 if (ret) { 6180 dd_dev_err(dd, 6181 "%s: unable to acquire LCB access, err %d\n", 6182 __func__, ret); 6183 goto done; 6184 } 6185 set_host_lcb_access(dd); 6186 } 6187 dd->lcb_access_count++; 6188 done: 6189 mutex_unlock(&ppd->hls_lock); 6190 return ret; 6191 } 6192 6193 /* 6194 * Release LCB access by decrementing the use count. If the count is moving 6195 * from 1 to 0, inform 8051 that it has control back. 6196 * 6197 * Returns: 6198 * 0 on success 6199 * -errno if unable to release access to the 8051 6200 */ 6201 int release_lcb_access(struct hfi1_devdata *dd, int sleep_ok) 6202 { 6203 int ret = 0; 6204 6205 /* 6206 * Use the host link state lock because the acquire needed it. 6207 * Here, we only need to keep { selector change, count decrement } 6208 * as a unit. 6209 */ 6210 if (sleep_ok) { 6211 mutex_lock(&dd->pport->hls_lock); 6212 } else { 6213 while (!mutex_trylock(&dd->pport->hls_lock)) 6214 udelay(1); 6215 } 6216 6217 if (dd->lcb_access_count == 0) { 6218 dd_dev_err(dd, "%s: LCB access count is zero. Skipping.\n", 6219 __func__); 6220 goto done; 6221 } 6222 6223 if (dd->lcb_access_count == 1) { 6224 set_8051_lcb_access(dd); 6225 ret = request_8051_lcb_access(dd); 6226 if (ret) { 6227 dd_dev_err(dd, 6228 "%s: unable to release LCB access, err %d\n", 6229 __func__, ret); 6230 /* restore host access if the grant didn't work */ 6231 set_host_lcb_access(dd); 6232 goto done; 6233 } 6234 } 6235 dd->lcb_access_count--; 6236 done: 6237 mutex_unlock(&dd->pport->hls_lock); 6238 return ret; 6239 } 6240 6241 /* 6242 * Initialize LCB access variables and state. Called during driver load, 6243 * after most of the initialization is finished. 6244 * 6245 * The DC default is LCB access on for the host. The driver defaults to 6246 * leaving access to the 8051. Assign access now - this constrains the call 6247 * to this routine to be after all LCB set-up is done. In particular, after 6248 * hf1_init_dd() -> set_up_interrupts() -> clear_all_interrupts() 6249 */ 6250 static void init_lcb_access(struct hfi1_devdata *dd) 6251 { 6252 dd->lcb_access_count = 0; 6253 } 6254 6255 /* 6256 * Write a response back to a 8051 request. 6257 */ 6258 static void hreq_response(struct hfi1_devdata *dd, u8 return_code, u16 rsp_data) 6259 { 6260 write_csr(dd, DC_DC8051_CFG_EXT_DEV_0, 6261 DC_DC8051_CFG_EXT_DEV_0_COMPLETED_SMASK | 6262 (u64)return_code << 6263 DC_DC8051_CFG_EXT_DEV_0_RETURN_CODE_SHIFT | 6264 (u64)rsp_data << DC_DC8051_CFG_EXT_DEV_0_RSP_DATA_SHIFT); 6265 } 6266 6267 /* 6268 * Handle host requests from the 8051. 6269 */ 6270 static void handle_8051_request(struct hfi1_pportdata *ppd) 6271 { 6272 struct hfi1_devdata *dd = ppd->dd; 6273 u64 reg; 6274 u16 data = 0; 6275 u8 type; 6276 6277 reg = read_csr(dd, DC_DC8051_CFG_EXT_DEV_1); 6278 if ((reg & DC_DC8051_CFG_EXT_DEV_1_REQ_NEW_SMASK) == 0) 6279 return; /* no request */ 6280 6281 /* zero out COMPLETED so the response is seen */ 6282 write_csr(dd, DC_DC8051_CFG_EXT_DEV_0, 0); 6283 6284 /* extract request details */ 6285 type = (reg >> DC_DC8051_CFG_EXT_DEV_1_REQ_TYPE_SHIFT) 6286 & DC_DC8051_CFG_EXT_DEV_1_REQ_TYPE_MASK; 6287 data = (reg >> DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SHIFT) 6288 & DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_MASK; 6289 6290 switch (type) { 6291 case HREQ_LOAD_CONFIG: 6292 case HREQ_SAVE_CONFIG: 6293 case HREQ_READ_CONFIG: 6294 case HREQ_SET_TX_EQ_ABS: 6295 case HREQ_SET_TX_EQ_REL: 6296 case HREQ_ENABLE: 6297 dd_dev_info(dd, "8051 request: request 0x%x not supported\n", 6298 type); 6299 hreq_response(dd, HREQ_NOT_SUPPORTED, 0); 6300 break; 6301 case HREQ_CONFIG_DONE: 6302 hreq_response(dd, HREQ_SUCCESS, 0); 6303 break; 6304 6305 case HREQ_INTERFACE_TEST: 6306 hreq_response(dd, HREQ_SUCCESS, data); 6307 break; 6308 default: 6309 dd_dev_err(dd, "8051 request: unknown request 0x%x\n", type); 6310 hreq_response(dd, HREQ_NOT_SUPPORTED, 0); 6311 break; 6312 } 6313 } 6314 6315 /* 6316 * Set up allocation unit vaulue. 6317 */ 6318 void set_up_vau(struct hfi1_devdata *dd, u8 vau) 6319 { 6320 u64 reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT); 6321 6322 /* do not modify other values in the register */ 6323 reg &= ~SEND_CM_GLOBAL_CREDIT_AU_SMASK; 6324 reg |= (u64)vau << SEND_CM_GLOBAL_CREDIT_AU_SHIFT; 6325 write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg); 6326 } 6327 6328 /* 6329 * Set up initial VL15 credits of the remote. Assumes the rest of 6330 * the CM credit registers are zero from a previous global or credit reset. 6331 * Shared limit for VL15 will always be 0. 6332 */ 6333 void set_up_vl15(struct hfi1_devdata *dd, u16 vl15buf) 6334 { 6335 u64 reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT); 6336 6337 /* set initial values for total and shared credit limit */ 6338 reg &= ~(SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SMASK | 6339 SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SMASK); 6340 6341 /* 6342 * Set total limit to be equal to VL15 credits. 6343 * Leave shared limit at 0. 6344 */ 6345 reg |= (u64)vl15buf << SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT; 6346 write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg); 6347 6348 write_csr(dd, SEND_CM_CREDIT_VL15, (u64)vl15buf 6349 << SEND_CM_CREDIT_VL15_DEDICATED_LIMIT_VL_SHIFT); 6350 } 6351 6352 /* 6353 * Zero all credit details from the previous connection and 6354 * reset the CM manager's internal counters. 6355 */ 6356 void reset_link_credits(struct hfi1_devdata *dd) 6357 { 6358 int i; 6359 6360 /* remove all previous VL credit limits */ 6361 for (i = 0; i < TXE_NUM_DATA_VL; i++) 6362 write_csr(dd, SEND_CM_CREDIT_VL + (8 * i), 0); 6363 write_csr(dd, SEND_CM_CREDIT_VL15, 0); 6364 write_csr(dd, SEND_CM_GLOBAL_CREDIT, 0); 6365 /* reset the CM block */ 6366 pio_send_control(dd, PSC_CM_RESET); 6367 /* reset cached value */ 6368 dd->vl15buf_cached = 0; 6369 } 6370 6371 /* convert a vCU to a CU */ 6372 static u32 vcu_to_cu(u8 vcu) 6373 { 6374 return 1 << vcu; 6375 } 6376 6377 /* convert a CU to a vCU */ 6378 static u8 cu_to_vcu(u32 cu) 6379 { 6380 return ilog2(cu); 6381 } 6382 6383 /* convert a vAU to an AU */ 6384 static u32 vau_to_au(u8 vau) 6385 { 6386 return 8 * (1 << vau); 6387 } 6388 6389 static void set_linkup_defaults(struct hfi1_pportdata *ppd) 6390 { 6391 ppd->sm_trap_qp = 0x0; 6392 ppd->sa_qp = 0x1; 6393 } 6394 6395 /* 6396 * Graceful LCB shutdown. This leaves the LCB FIFOs in reset. 6397 */ 6398 static void lcb_shutdown(struct hfi1_devdata *dd, int abort) 6399 { 6400 u64 reg; 6401 6402 /* clear lcb run: LCB_CFG_RUN.EN = 0 */ 6403 write_csr(dd, DC_LCB_CFG_RUN, 0); 6404 /* set tx fifo reset: LCB_CFG_TX_FIFOS_RESET.VAL = 1 */ 6405 write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 6406 1ull << DC_LCB_CFG_TX_FIFOS_RESET_VAL_SHIFT); 6407 /* set dcc reset csr: DCC_CFG_RESET.{reset_lcb,reset_rx_fpe} = 1 */ 6408 dd->lcb_err_en = read_csr(dd, DC_LCB_ERR_EN); 6409 reg = read_csr(dd, DCC_CFG_RESET); 6410 write_csr(dd, DCC_CFG_RESET, reg | 6411 (1ull << DCC_CFG_RESET_RESET_LCB_SHIFT) | 6412 (1ull << DCC_CFG_RESET_RESET_RX_FPE_SHIFT)); 6413 (void)read_csr(dd, DCC_CFG_RESET); /* make sure the write completed */ 6414 if (!abort) { 6415 udelay(1); /* must hold for the longer of 16cclks or 20ns */ 6416 write_csr(dd, DCC_CFG_RESET, reg); 6417 write_csr(dd, DC_LCB_ERR_EN, dd->lcb_err_en); 6418 } 6419 } 6420 6421 /* 6422 * This routine should be called after the link has been transitioned to 6423 * OFFLINE (OFFLINE state has the side effect of putting the SerDes into 6424 * reset). 6425 * 6426 * The expectation is that the caller of this routine would have taken 6427 * care of properly transitioning the link into the correct state. 6428 * NOTE: the caller needs to acquire the dd->dc8051_lock lock 6429 * before calling this function. 6430 */ 6431 static void _dc_shutdown(struct hfi1_devdata *dd) 6432 { 6433 lockdep_assert_held(&dd->dc8051_lock); 6434 6435 if (dd->dc_shutdown) 6436 return; 6437 6438 dd->dc_shutdown = 1; 6439 /* Shutdown the LCB */ 6440 lcb_shutdown(dd, 1); 6441 /* 6442 * Going to OFFLINE would have causes the 8051 to put the 6443 * SerDes into reset already. Just need to shut down the 8051, 6444 * itself. 6445 */ 6446 write_csr(dd, DC_DC8051_CFG_RST, 0x1); 6447 } 6448 6449 static void dc_shutdown(struct hfi1_devdata *dd) 6450 { 6451 mutex_lock(&dd->dc8051_lock); 6452 _dc_shutdown(dd); 6453 mutex_unlock(&dd->dc8051_lock); 6454 } 6455 6456 /* 6457 * Calling this after the DC has been brought out of reset should not 6458 * do any damage. 6459 * NOTE: the caller needs to acquire the dd->dc8051_lock lock 6460 * before calling this function. 6461 */ 6462 static void _dc_start(struct hfi1_devdata *dd) 6463 { 6464 lockdep_assert_held(&dd->dc8051_lock); 6465 6466 if (!dd->dc_shutdown) 6467 return; 6468 6469 /* Take the 8051 out of reset */ 6470 write_csr(dd, DC_DC8051_CFG_RST, 0ull); 6471 /* Wait until 8051 is ready */ 6472 if (wait_fm_ready(dd, TIMEOUT_8051_START)) 6473 dd_dev_err(dd, "%s: timeout starting 8051 firmware\n", 6474 __func__); 6475 6476 /* Take away reset for LCB and RX FPE (set in lcb_shutdown). */ 6477 write_csr(dd, DCC_CFG_RESET, 0x10); 6478 /* lcb_shutdown() with abort=1 does not restore these */ 6479 write_csr(dd, DC_LCB_ERR_EN, dd->lcb_err_en); 6480 dd->dc_shutdown = 0; 6481 } 6482 6483 static void dc_start(struct hfi1_devdata *dd) 6484 { 6485 mutex_lock(&dd->dc8051_lock); 6486 _dc_start(dd); 6487 mutex_unlock(&dd->dc8051_lock); 6488 } 6489 6490 /* 6491 * These LCB adjustments are for the Aurora SerDes core in the FPGA. 6492 */ 6493 static void adjust_lcb_for_fpga_serdes(struct hfi1_devdata *dd) 6494 { 6495 u64 rx_radr, tx_radr; 6496 u32 version; 6497 6498 if (dd->icode != ICODE_FPGA_EMULATION) 6499 return; 6500 6501 /* 6502 * These LCB defaults on emulator _s are good, nothing to do here: 6503 * LCB_CFG_TX_FIFOS_RADR 6504 * LCB_CFG_RX_FIFOS_RADR 6505 * LCB_CFG_LN_DCLK 6506 * LCB_CFG_IGNORE_LOST_RCLK 6507 */ 6508 if (is_emulator_s(dd)) 6509 return; 6510 /* else this is _p */ 6511 6512 version = emulator_rev(dd); 6513 if (!is_ax(dd)) 6514 version = 0x2d; /* all B0 use 0x2d or higher settings */ 6515 6516 if (version <= 0x12) { 6517 /* release 0x12 and below */ 6518 6519 /* 6520 * LCB_CFG_RX_FIFOS_RADR.RST_VAL = 0x9 6521 * LCB_CFG_RX_FIFOS_RADR.OK_TO_JUMP_VAL = 0x9 6522 * LCB_CFG_RX_FIFOS_RADR.DO_NOT_JUMP_VAL = 0xa 6523 */ 6524 rx_radr = 6525 0xaull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT 6526 | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT 6527 | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT; 6528 /* 6529 * LCB_CFG_TX_FIFOS_RADR.ON_REINIT = 0 (default) 6530 * LCB_CFG_TX_FIFOS_RADR.RST_VAL = 6 6531 */ 6532 tx_radr = 6ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT; 6533 } else if (version <= 0x18) { 6534 /* release 0x13 up to 0x18 */ 6535 /* LCB_CFG_RX_FIFOS_RADR = 0x988 */ 6536 rx_radr = 6537 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT 6538 | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT 6539 | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT; 6540 tx_radr = 7ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT; 6541 } else if (version == 0x19) { 6542 /* release 0x19 */ 6543 /* LCB_CFG_RX_FIFOS_RADR = 0xa99 */ 6544 rx_radr = 6545 0xAull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT 6546 | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT 6547 | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT; 6548 tx_radr = 3ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT; 6549 } else if (version == 0x1a) { 6550 /* release 0x1a */ 6551 /* LCB_CFG_RX_FIFOS_RADR = 0x988 */ 6552 rx_radr = 6553 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT 6554 | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT 6555 | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT; 6556 tx_radr = 7ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT; 6557 write_csr(dd, DC_LCB_CFG_LN_DCLK, 1ull); 6558 } else { 6559 /* release 0x1b and higher */ 6560 /* LCB_CFG_RX_FIFOS_RADR = 0x877 */ 6561 rx_radr = 6562 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT 6563 | 0x7ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT 6564 | 0x7ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT; 6565 tx_radr = 3ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT; 6566 } 6567 6568 write_csr(dd, DC_LCB_CFG_RX_FIFOS_RADR, rx_radr); 6569 /* LCB_CFG_IGNORE_LOST_RCLK.EN = 1 */ 6570 write_csr(dd, DC_LCB_CFG_IGNORE_LOST_RCLK, 6571 DC_LCB_CFG_IGNORE_LOST_RCLK_EN_SMASK); 6572 write_csr(dd, DC_LCB_CFG_TX_FIFOS_RADR, tx_radr); 6573 } 6574 6575 /* 6576 * Handle a SMA idle message 6577 * 6578 * This is a work-queue function outside of the interrupt. 6579 */ 6580 void handle_sma_message(struct work_struct *work) 6581 { 6582 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata, 6583 sma_message_work); 6584 struct hfi1_devdata *dd = ppd->dd; 6585 u64 msg; 6586 int ret; 6587 6588 /* 6589 * msg is bytes 1-4 of the 40-bit idle message - the command code 6590 * is stripped off 6591 */ 6592 ret = read_idle_sma(dd, &msg); 6593 if (ret) 6594 return; 6595 dd_dev_info(dd, "%s: SMA message 0x%llx\n", __func__, msg); 6596 /* 6597 * React to the SMA message. Byte[1] (0 for us) is the command. 6598 */ 6599 switch (msg & 0xff) { 6600 case SMA_IDLE_ARM: 6601 /* 6602 * See OPAv1 table 9-14 - HFI and External Switch Ports Key 6603 * State Transitions 6604 * 6605 * Only expected in INIT or ARMED, discard otherwise. 6606 */ 6607 if (ppd->host_link_state & (HLS_UP_INIT | HLS_UP_ARMED)) 6608 ppd->neighbor_normal = 1; 6609 break; 6610 case SMA_IDLE_ACTIVE: 6611 /* 6612 * See OPAv1 table 9-14 - HFI and External Switch Ports Key 6613 * State Transitions 6614 * 6615 * Can activate the node. Discard otherwise. 6616 */ 6617 if (ppd->host_link_state == HLS_UP_ARMED && 6618 ppd->is_active_optimize_enabled) { 6619 ppd->neighbor_normal = 1; 6620 ret = set_link_state(ppd, HLS_UP_ACTIVE); 6621 if (ret) 6622 dd_dev_err( 6623 dd, 6624 "%s: received Active SMA idle message, couldn't set link to Active\n", 6625 __func__); 6626 } 6627 break; 6628 default: 6629 dd_dev_err(dd, 6630 "%s: received unexpected SMA idle message 0x%llx\n", 6631 __func__, msg); 6632 break; 6633 } 6634 } 6635 6636 static void adjust_rcvctrl(struct hfi1_devdata *dd, u64 add, u64 clear) 6637 { 6638 u64 rcvctrl; 6639 unsigned long flags; 6640 6641 spin_lock_irqsave(&dd->rcvctrl_lock, flags); 6642 rcvctrl = read_csr(dd, RCV_CTRL); 6643 rcvctrl |= add; 6644 rcvctrl &= ~clear; 6645 write_csr(dd, RCV_CTRL, rcvctrl); 6646 spin_unlock_irqrestore(&dd->rcvctrl_lock, flags); 6647 } 6648 6649 static inline void add_rcvctrl(struct hfi1_devdata *dd, u64 add) 6650 { 6651 adjust_rcvctrl(dd, add, 0); 6652 } 6653 6654 static inline void clear_rcvctrl(struct hfi1_devdata *dd, u64 clear) 6655 { 6656 adjust_rcvctrl(dd, 0, clear); 6657 } 6658 6659 /* 6660 * Called from all interrupt handlers to start handling an SPC freeze. 6661 */ 6662 void start_freeze_handling(struct hfi1_pportdata *ppd, int flags) 6663 { 6664 struct hfi1_devdata *dd = ppd->dd; 6665 struct send_context *sc; 6666 int i; 6667 6668 if (flags & FREEZE_SELF) 6669 write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_FREEZE_SMASK); 6670 6671 /* enter frozen mode */ 6672 dd->flags |= HFI1_FROZEN; 6673 6674 /* notify all SDMA engines that they are going into a freeze */ 6675 sdma_freeze_notify(dd, !!(flags & FREEZE_LINK_DOWN)); 6676 6677 /* do halt pre-handling on all enabled send contexts */ 6678 for (i = 0; i < dd->num_send_contexts; i++) { 6679 sc = dd->send_contexts[i].sc; 6680 if (sc && (sc->flags & SCF_ENABLED)) 6681 sc_stop(sc, SCF_FROZEN | SCF_HALTED); 6682 } 6683 6684 /* Send context are frozen. Notify user space */ 6685 hfi1_set_uevent_bits(ppd, _HFI1_EVENT_FROZEN_BIT); 6686 6687 if (flags & FREEZE_ABORT) { 6688 dd_dev_err(dd, 6689 "Aborted freeze recovery. Please REBOOT system\n"); 6690 return; 6691 } 6692 /* queue non-interrupt handler */ 6693 queue_work(ppd->hfi1_wq, &ppd->freeze_work); 6694 } 6695 6696 /* 6697 * Wait until all 4 sub-blocks indicate that they have frozen or unfrozen, 6698 * depending on the "freeze" parameter. 6699 * 6700 * No need to return an error if it times out, our only option 6701 * is to proceed anyway. 6702 */ 6703 static void wait_for_freeze_status(struct hfi1_devdata *dd, int freeze) 6704 { 6705 unsigned long timeout; 6706 u64 reg; 6707 6708 timeout = jiffies + msecs_to_jiffies(FREEZE_STATUS_TIMEOUT); 6709 while (1) { 6710 reg = read_csr(dd, CCE_STATUS); 6711 if (freeze) { 6712 /* waiting until all indicators are set */ 6713 if ((reg & ALL_FROZE) == ALL_FROZE) 6714 return; /* all done */ 6715 } else { 6716 /* waiting until all indicators are clear */ 6717 if ((reg & ALL_FROZE) == 0) 6718 return; /* all done */ 6719 } 6720 6721 if (time_after(jiffies, timeout)) { 6722 dd_dev_err(dd, 6723 "Time out waiting for SPC %sfreeze, bits 0x%llx, expecting 0x%llx, continuing", 6724 freeze ? "" : "un", reg & ALL_FROZE, 6725 freeze ? ALL_FROZE : 0ull); 6726 return; 6727 } 6728 usleep_range(80, 120); 6729 } 6730 } 6731 6732 /* 6733 * Do all freeze handling for the RXE block. 6734 */ 6735 static void rxe_freeze(struct hfi1_devdata *dd) 6736 { 6737 int i; 6738 6739 /* disable port */ 6740 clear_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK); 6741 6742 /* disable all receive contexts */ 6743 for (i = 0; i < dd->num_rcv_contexts; i++) 6744 hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_DIS, i); 6745 } 6746 6747 /* 6748 * Unfreeze handling for the RXE block - kernel contexts only. 6749 * This will also enable the port. User contexts will do unfreeze 6750 * handling on a per-context basis as they call into the driver. 6751 * 6752 */ 6753 static void rxe_kernel_unfreeze(struct hfi1_devdata *dd) 6754 { 6755 u32 rcvmask; 6756 int i; 6757 6758 /* enable all kernel contexts */ 6759 for (i = 0; i < dd->num_rcv_contexts; i++) { 6760 struct hfi1_ctxtdata *rcd = dd->rcd[i]; 6761 6762 /* Ensure all non-user contexts(including vnic) are enabled */ 6763 if (!rcd || !rcd->sc || (rcd->sc->type == SC_USER)) 6764 continue; 6765 6766 rcvmask = HFI1_RCVCTRL_CTXT_ENB; 6767 /* HFI1_RCVCTRL_TAILUPD_[ENB|DIS] needs to be set explicitly */ 6768 rcvmask |= HFI1_CAP_KGET_MASK(dd->rcd[i]->flags, DMA_RTAIL) ? 6769 HFI1_RCVCTRL_TAILUPD_ENB : HFI1_RCVCTRL_TAILUPD_DIS; 6770 hfi1_rcvctrl(dd, rcvmask, i); 6771 } 6772 6773 /* enable port */ 6774 add_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK); 6775 } 6776 6777 /* 6778 * Non-interrupt SPC freeze handling. 6779 * 6780 * This is a work-queue function outside of the triggering interrupt. 6781 */ 6782 void handle_freeze(struct work_struct *work) 6783 { 6784 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata, 6785 freeze_work); 6786 struct hfi1_devdata *dd = ppd->dd; 6787 6788 /* wait for freeze indicators on all affected blocks */ 6789 wait_for_freeze_status(dd, 1); 6790 6791 /* SPC is now frozen */ 6792 6793 /* do send PIO freeze steps */ 6794 pio_freeze(dd); 6795 6796 /* do send DMA freeze steps */ 6797 sdma_freeze(dd); 6798 6799 /* do send egress freeze steps - nothing to do */ 6800 6801 /* do receive freeze steps */ 6802 rxe_freeze(dd); 6803 6804 /* 6805 * Unfreeze the hardware - clear the freeze, wait for each 6806 * block's frozen bit to clear, then clear the frozen flag. 6807 */ 6808 write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_UNFREEZE_SMASK); 6809 wait_for_freeze_status(dd, 0); 6810 6811 if (is_ax(dd)) { 6812 write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_FREEZE_SMASK); 6813 wait_for_freeze_status(dd, 1); 6814 write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_UNFREEZE_SMASK); 6815 wait_for_freeze_status(dd, 0); 6816 } 6817 6818 /* do send PIO unfreeze steps for kernel contexts */ 6819 pio_kernel_unfreeze(dd); 6820 6821 /* do send DMA unfreeze steps */ 6822 sdma_unfreeze(dd); 6823 6824 /* do send egress unfreeze steps - nothing to do */ 6825 6826 /* do receive unfreeze steps for kernel contexts */ 6827 rxe_kernel_unfreeze(dd); 6828 6829 /* 6830 * The unfreeze procedure touches global device registers when 6831 * it disables and re-enables RXE. Mark the device unfrozen 6832 * after all that is done so other parts of the driver waiting 6833 * for the device to unfreeze don't do things out of order. 6834 * 6835 * The above implies that the meaning of HFI1_FROZEN flag is 6836 * "Device has gone into freeze mode and freeze mode handling 6837 * is still in progress." 6838 * 6839 * The flag will be removed when freeze mode processing has 6840 * completed. 6841 */ 6842 dd->flags &= ~HFI1_FROZEN; 6843 wake_up(&dd->event_queue); 6844 6845 /* no longer frozen */ 6846 } 6847 6848 /* 6849 * Handle a link up interrupt from the 8051. 6850 * 6851 * This is a work-queue function outside of the interrupt. 6852 */ 6853 void handle_link_up(struct work_struct *work) 6854 { 6855 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata, 6856 link_up_work); 6857 struct hfi1_devdata *dd = ppd->dd; 6858 6859 set_link_state(ppd, HLS_UP_INIT); 6860 6861 /* cache the read of DC_LCB_STS_ROUND_TRIP_LTP_CNT */ 6862 read_ltp_rtt(dd); 6863 /* 6864 * OPA specifies that certain counters are cleared on a transition 6865 * to link up, so do that. 6866 */ 6867 clear_linkup_counters(dd); 6868 /* 6869 * And (re)set link up default values. 6870 */ 6871 set_linkup_defaults(ppd); 6872 6873 /* 6874 * Set VL15 credits. Use cached value from verify cap interrupt. 6875 * In case of quick linkup or simulator, vl15 value will be set by 6876 * handle_linkup_change. VerifyCap interrupt handler will not be 6877 * called in those scenarios. 6878 */ 6879 if (!(quick_linkup || dd->icode == ICODE_FUNCTIONAL_SIMULATOR)) 6880 set_up_vl15(dd, dd->vl15buf_cached); 6881 6882 /* enforce link speed enabled */ 6883 if ((ppd->link_speed_active & ppd->link_speed_enabled) == 0) { 6884 /* oops - current speed is not enabled, bounce */ 6885 dd_dev_err(dd, 6886 "Link speed active 0x%x is outside enabled 0x%x, downing link\n", 6887 ppd->link_speed_active, ppd->link_speed_enabled); 6888 set_link_down_reason(ppd, OPA_LINKDOWN_REASON_SPEED_POLICY, 0, 6889 OPA_LINKDOWN_REASON_SPEED_POLICY); 6890 set_link_state(ppd, HLS_DN_OFFLINE); 6891 start_link(ppd); 6892 } 6893 } 6894 6895 /* 6896 * Several pieces of LNI information were cached for SMA in ppd. 6897 * Reset these on link down 6898 */ 6899 static void reset_neighbor_info(struct hfi1_pportdata *ppd) 6900 { 6901 ppd->neighbor_guid = 0; 6902 ppd->neighbor_port_number = 0; 6903 ppd->neighbor_type = 0; 6904 ppd->neighbor_fm_security = 0; 6905 } 6906 6907 static const char * const link_down_reason_strs[] = { 6908 [OPA_LINKDOWN_REASON_NONE] = "None", 6909 [OPA_LINKDOWN_REASON_RCV_ERROR_0] = "Recive error 0", 6910 [OPA_LINKDOWN_REASON_BAD_PKT_LEN] = "Bad packet length", 6911 [OPA_LINKDOWN_REASON_PKT_TOO_LONG] = "Packet too long", 6912 [OPA_LINKDOWN_REASON_PKT_TOO_SHORT] = "Packet too short", 6913 [OPA_LINKDOWN_REASON_BAD_SLID] = "Bad SLID", 6914 [OPA_LINKDOWN_REASON_BAD_DLID] = "Bad DLID", 6915 [OPA_LINKDOWN_REASON_BAD_L2] = "Bad L2", 6916 [OPA_LINKDOWN_REASON_BAD_SC] = "Bad SC", 6917 [OPA_LINKDOWN_REASON_RCV_ERROR_8] = "Receive error 8", 6918 [OPA_LINKDOWN_REASON_BAD_MID_TAIL] = "Bad mid tail", 6919 [OPA_LINKDOWN_REASON_RCV_ERROR_10] = "Receive error 10", 6920 [OPA_LINKDOWN_REASON_PREEMPT_ERROR] = "Preempt error", 6921 [OPA_LINKDOWN_REASON_PREEMPT_VL15] = "Preempt vl15", 6922 [OPA_LINKDOWN_REASON_BAD_VL_MARKER] = "Bad VL marker", 6923 [OPA_LINKDOWN_REASON_RCV_ERROR_14] = "Receive error 14", 6924 [OPA_LINKDOWN_REASON_RCV_ERROR_15] = "Receive error 15", 6925 [OPA_LINKDOWN_REASON_BAD_HEAD_DIST] = "Bad head distance", 6926 [OPA_LINKDOWN_REASON_BAD_TAIL_DIST] = "Bad tail distance", 6927 [OPA_LINKDOWN_REASON_BAD_CTRL_DIST] = "Bad control distance", 6928 [OPA_LINKDOWN_REASON_BAD_CREDIT_ACK] = "Bad credit ack", 6929 [OPA_LINKDOWN_REASON_UNSUPPORTED_VL_MARKER] = "Unsupported VL marker", 6930 [OPA_LINKDOWN_REASON_BAD_PREEMPT] = "Bad preempt", 6931 [OPA_LINKDOWN_REASON_BAD_CONTROL_FLIT] = "Bad control flit", 6932 [OPA_LINKDOWN_REASON_EXCEED_MULTICAST_LIMIT] = "Exceed multicast limit", 6933 [OPA_LINKDOWN_REASON_RCV_ERROR_24] = "Receive error 24", 6934 [OPA_LINKDOWN_REASON_RCV_ERROR_25] = "Receive error 25", 6935 [OPA_LINKDOWN_REASON_RCV_ERROR_26] = "Receive error 26", 6936 [OPA_LINKDOWN_REASON_RCV_ERROR_27] = "Receive error 27", 6937 [OPA_LINKDOWN_REASON_RCV_ERROR_28] = "Receive error 28", 6938 [OPA_LINKDOWN_REASON_RCV_ERROR_29] = "Receive error 29", 6939 [OPA_LINKDOWN_REASON_RCV_ERROR_30] = "Receive error 30", 6940 [OPA_LINKDOWN_REASON_EXCESSIVE_BUFFER_OVERRUN] = 6941 "Excessive buffer overrun", 6942 [OPA_LINKDOWN_REASON_UNKNOWN] = "Unknown", 6943 [OPA_LINKDOWN_REASON_REBOOT] = "Reboot", 6944 [OPA_LINKDOWN_REASON_NEIGHBOR_UNKNOWN] = "Neighbor unknown", 6945 [OPA_LINKDOWN_REASON_FM_BOUNCE] = "FM bounce", 6946 [OPA_LINKDOWN_REASON_SPEED_POLICY] = "Speed policy", 6947 [OPA_LINKDOWN_REASON_WIDTH_POLICY] = "Width policy", 6948 [OPA_LINKDOWN_REASON_DISCONNECTED] = "Disconnected", 6949 [OPA_LINKDOWN_REASON_LOCAL_MEDIA_NOT_INSTALLED] = 6950 "Local media not installed", 6951 [OPA_LINKDOWN_REASON_NOT_INSTALLED] = "Not installed", 6952 [OPA_LINKDOWN_REASON_CHASSIS_CONFIG] = "Chassis config", 6953 [OPA_LINKDOWN_REASON_END_TO_END_NOT_INSTALLED] = 6954 "End to end not installed", 6955 [OPA_LINKDOWN_REASON_POWER_POLICY] = "Power policy", 6956 [OPA_LINKDOWN_REASON_LINKSPEED_POLICY] = "Link speed policy", 6957 [OPA_LINKDOWN_REASON_LINKWIDTH_POLICY] = "Link width policy", 6958 [OPA_LINKDOWN_REASON_SWITCH_MGMT] = "Switch management", 6959 [OPA_LINKDOWN_REASON_SMA_DISABLED] = "SMA disabled", 6960 [OPA_LINKDOWN_REASON_TRANSIENT] = "Transient" 6961 }; 6962 6963 /* return the neighbor link down reason string */ 6964 static const char *link_down_reason_str(u8 reason) 6965 { 6966 const char *str = NULL; 6967 6968 if (reason < ARRAY_SIZE(link_down_reason_strs)) 6969 str = link_down_reason_strs[reason]; 6970 if (!str) 6971 str = "(invalid)"; 6972 6973 return str; 6974 } 6975 6976 /* 6977 * Handle a link down interrupt from the 8051. 6978 * 6979 * This is a work-queue function outside of the interrupt. 6980 */ 6981 void handle_link_down(struct work_struct *work) 6982 { 6983 u8 lcl_reason, neigh_reason = 0; 6984 u8 link_down_reason; 6985 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata, 6986 link_down_work); 6987 int was_up; 6988 static const char ldr_str[] = "Link down reason: "; 6989 6990 if ((ppd->host_link_state & 6991 (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) && 6992 ppd->port_type == PORT_TYPE_FIXED) 6993 ppd->offline_disabled_reason = 6994 HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NOT_INSTALLED); 6995 6996 /* Go offline first, then deal with reading/writing through 8051 */ 6997 was_up = !!(ppd->host_link_state & HLS_UP); 6998 set_link_state(ppd, HLS_DN_OFFLINE); 6999 7000 if (was_up) { 7001 lcl_reason = 0; 7002 /* link down reason is only valid if the link was up */ 7003 read_link_down_reason(ppd->dd, &link_down_reason); 7004 switch (link_down_reason) { 7005 case LDR_LINK_TRANSFER_ACTIVE_LOW: 7006 /* the link went down, no idle message reason */ 7007 dd_dev_info(ppd->dd, "%sUnexpected link down\n", 7008 ldr_str); 7009 break; 7010 case LDR_RECEIVED_LINKDOWN_IDLE_MSG: 7011 /* 7012 * The neighbor reason is only valid if an idle message 7013 * was received for it. 7014 */ 7015 read_planned_down_reason_code(ppd->dd, &neigh_reason); 7016 dd_dev_info(ppd->dd, 7017 "%sNeighbor link down message %d, %s\n", 7018 ldr_str, neigh_reason, 7019 link_down_reason_str(neigh_reason)); 7020 break; 7021 case LDR_RECEIVED_HOST_OFFLINE_REQ: 7022 dd_dev_info(ppd->dd, 7023 "%sHost requested link to go offline\n", 7024 ldr_str); 7025 break; 7026 default: 7027 dd_dev_info(ppd->dd, "%sUnknown reason 0x%x\n", 7028 ldr_str, link_down_reason); 7029 break; 7030 } 7031 7032 /* 7033 * If no reason, assume peer-initiated but missed 7034 * LinkGoingDown idle flits. 7035 */ 7036 if (neigh_reason == 0) 7037 lcl_reason = OPA_LINKDOWN_REASON_NEIGHBOR_UNKNOWN; 7038 } else { 7039 /* went down while polling or going up */ 7040 lcl_reason = OPA_LINKDOWN_REASON_TRANSIENT; 7041 } 7042 7043 set_link_down_reason(ppd, lcl_reason, neigh_reason, 0); 7044 7045 /* inform the SMA when the link transitions from up to down */ 7046 if (was_up && ppd->local_link_down_reason.sma == 0 && 7047 ppd->neigh_link_down_reason.sma == 0) { 7048 ppd->local_link_down_reason.sma = 7049 ppd->local_link_down_reason.latest; 7050 ppd->neigh_link_down_reason.sma = 7051 ppd->neigh_link_down_reason.latest; 7052 } 7053 7054 reset_neighbor_info(ppd); 7055 7056 /* disable the port */ 7057 clear_rcvctrl(ppd->dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK); 7058 7059 /* 7060 * If there is no cable attached, turn the DC off. Otherwise, 7061 * start the link bring up. 7062 */ 7063 if (ppd->port_type == PORT_TYPE_QSFP && !qsfp_mod_present(ppd)) 7064 dc_shutdown(ppd->dd); 7065 else 7066 start_link(ppd); 7067 } 7068 7069 void handle_link_bounce(struct work_struct *work) 7070 { 7071 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata, 7072 link_bounce_work); 7073 7074 /* 7075 * Only do something if the link is currently up. 7076 */ 7077 if (ppd->host_link_state & HLS_UP) { 7078 set_link_state(ppd, HLS_DN_OFFLINE); 7079 start_link(ppd); 7080 } else { 7081 dd_dev_info(ppd->dd, "%s: link not up (%s), nothing to do\n", 7082 __func__, link_state_name(ppd->host_link_state)); 7083 } 7084 } 7085 7086 /* 7087 * Mask conversion: Capability exchange to Port LTP. The capability 7088 * exchange has an implicit 16b CRC that is mandatory. 7089 */ 7090 static int cap_to_port_ltp(int cap) 7091 { 7092 int port_ltp = PORT_LTP_CRC_MODE_16; /* this mode is mandatory */ 7093 7094 if (cap & CAP_CRC_14B) 7095 port_ltp |= PORT_LTP_CRC_MODE_14; 7096 if (cap & CAP_CRC_48B) 7097 port_ltp |= PORT_LTP_CRC_MODE_48; 7098 if (cap & CAP_CRC_12B_16B_PER_LANE) 7099 port_ltp |= PORT_LTP_CRC_MODE_PER_LANE; 7100 7101 return port_ltp; 7102 } 7103 7104 /* 7105 * Convert an OPA Port LTP mask to capability mask 7106 */ 7107 int port_ltp_to_cap(int port_ltp) 7108 { 7109 int cap_mask = 0; 7110 7111 if (port_ltp & PORT_LTP_CRC_MODE_14) 7112 cap_mask |= CAP_CRC_14B; 7113 if (port_ltp & PORT_LTP_CRC_MODE_48) 7114 cap_mask |= CAP_CRC_48B; 7115 if (port_ltp & PORT_LTP_CRC_MODE_PER_LANE) 7116 cap_mask |= CAP_CRC_12B_16B_PER_LANE; 7117 7118 return cap_mask; 7119 } 7120 7121 /* 7122 * Convert a single DC LCB CRC mode to an OPA Port LTP mask. 7123 */ 7124 static int lcb_to_port_ltp(int lcb_crc) 7125 { 7126 int port_ltp = 0; 7127 7128 if (lcb_crc == LCB_CRC_12B_16B_PER_LANE) 7129 port_ltp = PORT_LTP_CRC_MODE_PER_LANE; 7130 else if (lcb_crc == LCB_CRC_48B) 7131 port_ltp = PORT_LTP_CRC_MODE_48; 7132 else if (lcb_crc == LCB_CRC_14B) 7133 port_ltp = PORT_LTP_CRC_MODE_14; 7134 else 7135 port_ltp = PORT_LTP_CRC_MODE_16; 7136 7137 return port_ltp; 7138 } 7139 7140 /* 7141 * Our neighbor has indicated that we are allowed to act as a fabric 7142 * manager, so place the full management partition key in the second 7143 * (0-based) pkey array position (see OPAv1, section 20.2.2.6.8). Note 7144 * that we should already have the limited management partition key in 7145 * array element 1, and also that the port is not yet up when 7146 * add_full_mgmt_pkey() is invoked. 7147 */ 7148 static void add_full_mgmt_pkey(struct hfi1_pportdata *ppd) 7149 { 7150 struct hfi1_devdata *dd = ppd->dd; 7151 7152 /* Sanity check - ppd->pkeys[2] should be 0, or already initialized */ 7153 if (!((ppd->pkeys[2] == 0) || (ppd->pkeys[2] == FULL_MGMT_P_KEY))) 7154 dd_dev_warn(dd, "%s pkey[2] already set to 0x%x, resetting it to 0x%x\n", 7155 __func__, ppd->pkeys[2], FULL_MGMT_P_KEY); 7156 ppd->pkeys[2] = FULL_MGMT_P_KEY; 7157 (void)hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_PKEYS, 0); 7158 hfi1_event_pkey_change(ppd->dd, ppd->port); 7159 } 7160 7161 static void clear_full_mgmt_pkey(struct hfi1_pportdata *ppd) 7162 { 7163 if (ppd->pkeys[2] != 0) { 7164 ppd->pkeys[2] = 0; 7165 (void)hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_PKEYS, 0); 7166 hfi1_event_pkey_change(ppd->dd, ppd->port); 7167 } 7168 } 7169 7170 /* 7171 * Convert the given link width to the OPA link width bitmask. 7172 */ 7173 static u16 link_width_to_bits(struct hfi1_devdata *dd, u16 width) 7174 { 7175 switch (width) { 7176 case 0: 7177 /* 7178 * Simulator and quick linkup do not set the width. 7179 * Just set it to 4x without complaint. 7180 */ 7181 if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR || quick_linkup) 7182 return OPA_LINK_WIDTH_4X; 7183 return 0; /* no lanes up */ 7184 case 1: return OPA_LINK_WIDTH_1X; 7185 case 2: return OPA_LINK_WIDTH_2X; 7186 case 3: return OPA_LINK_WIDTH_3X; 7187 default: 7188 dd_dev_info(dd, "%s: invalid width %d, using 4\n", 7189 __func__, width); 7190 /* fall through */ 7191 case 4: return OPA_LINK_WIDTH_4X; 7192 } 7193 } 7194 7195 /* 7196 * Do a population count on the bottom nibble. 7197 */ 7198 static const u8 bit_counts[16] = { 7199 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4 7200 }; 7201 7202 static inline u8 nibble_to_count(u8 nibble) 7203 { 7204 return bit_counts[nibble & 0xf]; 7205 } 7206 7207 /* 7208 * Read the active lane information from the 8051 registers and return 7209 * their widths. 7210 * 7211 * Active lane information is found in these 8051 registers: 7212 * enable_lane_tx 7213 * enable_lane_rx 7214 */ 7215 static void get_link_widths(struct hfi1_devdata *dd, u16 *tx_width, 7216 u16 *rx_width) 7217 { 7218 u16 tx, rx; 7219 u8 enable_lane_rx; 7220 u8 enable_lane_tx; 7221 u8 tx_polarity_inversion; 7222 u8 rx_polarity_inversion; 7223 u8 max_rate; 7224 7225 /* read the active lanes */ 7226 read_tx_settings(dd, &enable_lane_tx, &tx_polarity_inversion, 7227 &rx_polarity_inversion, &max_rate); 7228 read_local_lni(dd, &enable_lane_rx); 7229 7230 /* convert to counts */ 7231 tx = nibble_to_count(enable_lane_tx); 7232 rx = nibble_to_count(enable_lane_rx); 7233 7234 /* 7235 * Set link_speed_active here, overriding what was set in 7236 * handle_verify_cap(). The ASIC 8051 firmware does not correctly 7237 * set the max_rate field in handle_verify_cap until v0.19. 7238 */ 7239 if ((dd->icode == ICODE_RTL_SILICON) && 7240 (dd->dc8051_ver < dc8051_ver(0, 19, 0))) { 7241 /* max_rate: 0 = 12.5G, 1 = 25G */ 7242 switch (max_rate) { 7243 case 0: 7244 dd->pport[0].link_speed_active = OPA_LINK_SPEED_12_5G; 7245 break; 7246 default: 7247 dd_dev_err(dd, 7248 "%s: unexpected max rate %d, using 25Gb\n", 7249 __func__, (int)max_rate); 7250 /* fall through */ 7251 case 1: 7252 dd->pport[0].link_speed_active = OPA_LINK_SPEED_25G; 7253 break; 7254 } 7255 } 7256 7257 dd_dev_info(dd, 7258 "Fabric active lanes (width): tx 0x%x (%d), rx 0x%x (%d)\n", 7259 enable_lane_tx, tx, enable_lane_rx, rx); 7260 *tx_width = link_width_to_bits(dd, tx); 7261 *rx_width = link_width_to_bits(dd, rx); 7262 } 7263 7264 /* 7265 * Read verify_cap_local_fm_link_width[1] to obtain the link widths. 7266 * Valid after the end of VerifyCap and during LinkUp. Does not change 7267 * after link up. I.e. look elsewhere for downgrade information. 7268 * 7269 * Bits are: 7270 * + bits [7:4] contain the number of active transmitters 7271 * + bits [3:0] contain the number of active receivers 7272 * These are numbers 1 through 4 and can be different values if the 7273 * link is asymmetric. 7274 * 7275 * verify_cap_local_fm_link_width[0] retains its original value. 7276 */ 7277 static void get_linkup_widths(struct hfi1_devdata *dd, u16 *tx_width, 7278 u16 *rx_width) 7279 { 7280 u16 widths, tx, rx; 7281 u8 misc_bits, local_flags; 7282 u16 active_tx, active_rx; 7283 7284 read_vc_local_link_width(dd, &misc_bits, &local_flags, &widths); 7285 tx = widths >> 12; 7286 rx = (widths >> 8) & 0xf; 7287 7288 *tx_width = link_width_to_bits(dd, tx); 7289 *rx_width = link_width_to_bits(dd, rx); 7290 7291 /* print the active widths */ 7292 get_link_widths(dd, &active_tx, &active_rx); 7293 } 7294 7295 /* 7296 * Set ppd->link_width_active and ppd->link_width_downgrade_active using 7297 * hardware information when the link first comes up. 7298 * 7299 * The link width is not available until after VerifyCap.AllFramesReceived 7300 * (the trigger for handle_verify_cap), so this is outside that routine 7301 * and should be called when the 8051 signals linkup. 7302 */ 7303 void get_linkup_link_widths(struct hfi1_pportdata *ppd) 7304 { 7305 u16 tx_width, rx_width; 7306 7307 /* get end-of-LNI link widths */ 7308 get_linkup_widths(ppd->dd, &tx_width, &rx_width); 7309 7310 /* use tx_width as the link is supposed to be symmetric on link up */ 7311 ppd->link_width_active = tx_width; 7312 /* link width downgrade active (LWD.A) starts out matching LW.A */ 7313 ppd->link_width_downgrade_tx_active = ppd->link_width_active; 7314 ppd->link_width_downgrade_rx_active = ppd->link_width_active; 7315 /* per OPA spec, on link up LWD.E resets to LWD.S */ 7316 ppd->link_width_downgrade_enabled = ppd->link_width_downgrade_supported; 7317 /* cache the active egress rate (units {10^6 bits/sec]) */ 7318 ppd->current_egress_rate = active_egress_rate(ppd); 7319 } 7320 7321 /* 7322 * Handle a verify capabilities interrupt from the 8051. 7323 * 7324 * This is a work-queue function outside of the interrupt. 7325 */ 7326 void handle_verify_cap(struct work_struct *work) 7327 { 7328 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata, 7329 link_vc_work); 7330 struct hfi1_devdata *dd = ppd->dd; 7331 u64 reg; 7332 u8 power_management; 7333 u8 continious; 7334 u8 vcu; 7335 u8 vau; 7336 u8 z; 7337 u16 vl15buf; 7338 u16 link_widths; 7339 u16 crc_mask; 7340 u16 crc_val; 7341 u16 device_id; 7342 u16 active_tx, active_rx; 7343 u8 partner_supported_crc; 7344 u8 remote_tx_rate; 7345 u8 device_rev; 7346 7347 set_link_state(ppd, HLS_VERIFY_CAP); 7348 7349 lcb_shutdown(dd, 0); 7350 adjust_lcb_for_fpga_serdes(dd); 7351 7352 read_vc_remote_phy(dd, &power_management, &continious); 7353 read_vc_remote_fabric(dd, &vau, &z, &vcu, &vl15buf, 7354 &partner_supported_crc); 7355 read_vc_remote_link_width(dd, &remote_tx_rate, &link_widths); 7356 read_remote_device_id(dd, &device_id, &device_rev); 7357 /* 7358 * And the 'MgmtAllowed' information, which is exchanged during 7359 * LNI, is also be available at this point. 7360 */ 7361 read_mgmt_allowed(dd, &ppd->mgmt_allowed); 7362 /* print the active widths */ 7363 get_link_widths(dd, &active_tx, &active_rx); 7364 dd_dev_info(dd, 7365 "Peer PHY: power management 0x%x, continuous updates 0x%x\n", 7366 (int)power_management, (int)continious); 7367 dd_dev_info(dd, 7368 "Peer Fabric: vAU %d, Z %d, vCU %d, vl15 credits 0x%x, CRC sizes 0x%x\n", 7369 (int)vau, (int)z, (int)vcu, (int)vl15buf, 7370 (int)partner_supported_crc); 7371 dd_dev_info(dd, "Peer Link Width: tx rate 0x%x, widths 0x%x\n", 7372 (u32)remote_tx_rate, (u32)link_widths); 7373 dd_dev_info(dd, "Peer Device ID: 0x%04x, Revision 0x%02x\n", 7374 (u32)device_id, (u32)device_rev); 7375 /* 7376 * The peer vAU value just read is the peer receiver value. HFI does 7377 * not support a transmit vAU of 0 (AU == 8). We advertised that 7378 * with Z=1 in the fabric capabilities sent to the peer. The peer 7379 * will see our Z=1, and, if it advertised a vAU of 0, will move its 7380 * receive to vAU of 1 (AU == 16). Do the same here. We do not care 7381 * about the peer Z value - our sent vAU is 3 (hardwired) and is not 7382 * subject to the Z value exception. 7383 */ 7384 if (vau == 0) 7385 vau = 1; 7386 set_up_vau(dd, vau); 7387 7388 /* 7389 * Set VL15 credits to 0 in global credit register. Cache remote VL15 7390 * credits value and wait for link-up interrupt ot set it. 7391 */ 7392 set_up_vl15(dd, 0); 7393 dd->vl15buf_cached = vl15buf; 7394 7395 /* set up the LCB CRC mode */ 7396 crc_mask = ppd->port_crc_mode_enabled & partner_supported_crc; 7397 7398 /* order is important: use the lowest bit in common */ 7399 if (crc_mask & CAP_CRC_14B) 7400 crc_val = LCB_CRC_14B; 7401 else if (crc_mask & CAP_CRC_48B) 7402 crc_val = LCB_CRC_48B; 7403 else if (crc_mask & CAP_CRC_12B_16B_PER_LANE) 7404 crc_val = LCB_CRC_12B_16B_PER_LANE; 7405 else 7406 crc_val = LCB_CRC_16B; 7407 7408 dd_dev_info(dd, "Final LCB CRC mode: %d\n", (int)crc_val); 7409 write_csr(dd, DC_LCB_CFG_CRC_MODE, 7410 (u64)crc_val << DC_LCB_CFG_CRC_MODE_TX_VAL_SHIFT); 7411 7412 /* set (14b only) or clear sideband credit */ 7413 reg = read_csr(dd, SEND_CM_CTRL); 7414 if (crc_val == LCB_CRC_14B && crc_14b_sideband) { 7415 write_csr(dd, SEND_CM_CTRL, 7416 reg | SEND_CM_CTRL_FORCE_CREDIT_MODE_SMASK); 7417 } else { 7418 write_csr(dd, SEND_CM_CTRL, 7419 reg & ~SEND_CM_CTRL_FORCE_CREDIT_MODE_SMASK); 7420 } 7421 7422 ppd->link_speed_active = 0; /* invalid value */ 7423 if (dd->dc8051_ver < dc8051_ver(0, 20, 0)) { 7424 /* remote_tx_rate: 0 = 12.5G, 1 = 25G */ 7425 switch (remote_tx_rate) { 7426 case 0: 7427 ppd->link_speed_active = OPA_LINK_SPEED_12_5G; 7428 break; 7429 case 1: 7430 ppd->link_speed_active = OPA_LINK_SPEED_25G; 7431 break; 7432 } 7433 } else { 7434 /* actual rate is highest bit of the ANDed rates */ 7435 u8 rate = remote_tx_rate & ppd->local_tx_rate; 7436 7437 if (rate & 2) 7438 ppd->link_speed_active = OPA_LINK_SPEED_25G; 7439 else if (rate & 1) 7440 ppd->link_speed_active = OPA_LINK_SPEED_12_5G; 7441 } 7442 if (ppd->link_speed_active == 0) { 7443 dd_dev_err(dd, "%s: unexpected remote tx rate %d, using 25Gb\n", 7444 __func__, (int)remote_tx_rate); 7445 ppd->link_speed_active = OPA_LINK_SPEED_25G; 7446 } 7447 7448 /* 7449 * Cache the values of the supported, enabled, and active 7450 * LTP CRC modes to return in 'portinfo' queries. But the bit 7451 * flags that are returned in the portinfo query differ from 7452 * what's in the link_crc_mask, crc_sizes, and crc_val 7453 * variables. Convert these here. 7454 */ 7455 ppd->port_ltp_crc_mode = cap_to_port_ltp(link_crc_mask) << 8; 7456 /* supported crc modes */ 7457 ppd->port_ltp_crc_mode |= 7458 cap_to_port_ltp(ppd->port_crc_mode_enabled) << 4; 7459 /* enabled crc modes */ 7460 ppd->port_ltp_crc_mode |= lcb_to_port_ltp(crc_val); 7461 /* active crc mode */ 7462 7463 /* set up the remote credit return table */ 7464 assign_remote_cm_au_table(dd, vcu); 7465 7466 /* 7467 * The LCB is reset on entry to handle_verify_cap(), so this must 7468 * be applied on every link up. 7469 * 7470 * Adjust LCB error kill enable to kill the link if 7471 * these RBUF errors are seen: 7472 * REPLAY_BUF_MBE_SMASK 7473 * FLIT_INPUT_BUF_MBE_SMASK 7474 */ 7475 if (is_ax(dd)) { /* fixed in B0 */ 7476 reg = read_csr(dd, DC_LCB_CFG_LINK_KILL_EN); 7477 reg |= DC_LCB_CFG_LINK_KILL_EN_REPLAY_BUF_MBE_SMASK 7478 | DC_LCB_CFG_LINK_KILL_EN_FLIT_INPUT_BUF_MBE_SMASK; 7479 write_csr(dd, DC_LCB_CFG_LINK_KILL_EN, reg); 7480 } 7481 7482 /* pull LCB fifos out of reset - all fifo clocks must be stable */ 7483 write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0); 7484 7485 /* give 8051 access to the LCB CSRs */ 7486 write_csr(dd, DC_LCB_ERR_EN, 0); /* mask LCB errors */ 7487 set_8051_lcb_access(dd); 7488 7489 if (ppd->mgmt_allowed) 7490 add_full_mgmt_pkey(ppd); 7491 7492 /* tell the 8051 to go to LinkUp */ 7493 set_link_state(ppd, HLS_GOING_UP); 7494 } 7495 7496 /* 7497 * Apply the link width downgrade enabled policy against the current active 7498 * link widths. 7499 * 7500 * Called when the enabled policy changes or the active link widths change. 7501 */ 7502 void apply_link_downgrade_policy(struct hfi1_pportdata *ppd, int refresh_widths) 7503 { 7504 int do_bounce = 0; 7505 int tries; 7506 u16 lwde; 7507 u16 tx, rx; 7508 7509 /* use the hls lock to avoid a race with actual link up */ 7510 tries = 0; 7511 retry: 7512 mutex_lock(&ppd->hls_lock); 7513 /* only apply if the link is up */ 7514 if (ppd->host_link_state & HLS_DOWN) { 7515 /* still going up..wait and retry */ 7516 if (ppd->host_link_state & HLS_GOING_UP) { 7517 if (++tries < 1000) { 7518 mutex_unlock(&ppd->hls_lock); 7519 usleep_range(100, 120); /* arbitrary */ 7520 goto retry; 7521 } 7522 dd_dev_err(ppd->dd, 7523 "%s: giving up waiting for link state change\n", 7524 __func__); 7525 } 7526 goto done; 7527 } 7528 7529 lwde = ppd->link_width_downgrade_enabled; 7530 7531 if (refresh_widths) { 7532 get_link_widths(ppd->dd, &tx, &rx); 7533 ppd->link_width_downgrade_tx_active = tx; 7534 ppd->link_width_downgrade_rx_active = rx; 7535 } 7536 7537 if (ppd->link_width_downgrade_tx_active == 0 || 7538 ppd->link_width_downgrade_rx_active == 0) { 7539 /* the 8051 reported a dead link as a downgrade */ 7540 dd_dev_err(ppd->dd, "Link downgrade is really a link down, ignoring\n"); 7541 } else if (lwde == 0) { 7542 /* downgrade is disabled */ 7543 7544 /* bounce if not at starting active width */ 7545 if ((ppd->link_width_active != 7546 ppd->link_width_downgrade_tx_active) || 7547 (ppd->link_width_active != 7548 ppd->link_width_downgrade_rx_active)) { 7549 dd_dev_err(ppd->dd, 7550 "Link downgrade is disabled and link has downgraded, downing link\n"); 7551 dd_dev_err(ppd->dd, 7552 " original 0x%x, tx active 0x%x, rx active 0x%x\n", 7553 ppd->link_width_active, 7554 ppd->link_width_downgrade_tx_active, 7555 ppd->link_width_downgrade_rx_active); 7556 do_bounce = 1; 7557 } 7558 } else if ((lwde & ppd->link_width_downgrade_tx_active) == 0 || 7559 (lwde & ppd->link_width_downgrade_rx_active) == 0) { 7560 /* Tx or Rx is outside the enabled policy */ 7561 dd_dev_err(ppd->dd, 7562 "Link is outside of downgrade allowed, downing link\n"); 7563 dd_dev_err(ppd->dd, 7564 " enabled 0x%x, tx active 0x%x, rx active 0x%x\n", 7565 lwde, ppd->link_width_downgrade_tx_active, 7566 ppd->link_width_downgrade_rx_active); 7567 do_bounce = 1; 7568 } 7569 7570 done: 7571 mutex_unlock(&ppd->hls_lock); 7572 7573 if (do_bounce) { 7574 set_link_down_reason(ppd, OPA_LINKDOWN_REASON_WIDTH_POLICY, 0, 7575 OPA_LINKDOWN_REASON_WIDTH_POLICY); 7576 set_link_state(ppd, HLS_DN_OFFLINE); 7577 start_link(ppd); 7578 } 7579 } 7580 7581 /* 7582 * Handle a link downgrade interrupt from the 8051. 7583 * 7584 * This is a work-queue function outside of the interrupt. 7585 */ 7586 void handle_link_downgrade(struct work_struct *work) 7587 { 7588 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata, 7589 link_downgrade_work); 7590 7591 dd_dev_info(ppd->dd, "8051: Link width downgrade\n"); 7592 apply_link_downgrade_policy(ppd, 1); 7593 } 7594 7595 static char *dcc_err_string(char *buf, int buf_len, u64 flags) 7596 { 7597 return flag_string(buf, buf_len, flags, dcc_err_flags, 7598 ARRAY_SIZE(dcc_err_flags)); 7599 } 7600 7601 static char *lcb_err_string(char *buf, int buf_len, u64 flags) 7602 { 7603 return flag_string(buf, buf_len, flags, lcb_err_flags, 7604 ARRAY_SIZE(lcb_err_flags)); 7605 } 7606 7607 static char *dc8051_err_string(char *buf, int buf_len, u64 flags) 7608 { 7609 return flag_string(buf, buf_len, flags, dc8051_err_flags, 7610 ARRAY_SIZE(dc8051_err_flags)); 7611 } 7612 7613 static char *dc8051_info_err_string(char *buf, int buf_len, u64 flags) 7614 { 7615 return flag_string(buf, buf_len, flags, dc8051_info_err_flags, 7616 ARRAY_SIZE(dc8051_info_err_flags)); 7617 } 7618 7619 static char *dc8051_info_host_msg_string(char *buf, int buf_len, u64 flags) 7620 { 7621 return flag_string(buf, buf_len, flags, dc8051_info_host_msg_flags, 7622 ARRAY_SIZE(dc8051_info_host_msg_flags)); 7623 } 7624 7625 static void handle_8051_interrupt(struct hfi1_devdata *dd, u32 unused, u64 reg) 7626 { 7627 struct hfi1_pportdata *ppd = dd->pport; 7628 u64 info, err, host_msg; 7629 int queue_link_down = 0; 7630 char buf[96]; 7631 7632 /* look at the flags */ 7633 if (reg & DC_DC8051_ERR_FLG_SET_BY_8051_SMASK) { 7634 /* 8051 information set by firmware */ 7635 /* read DC8051_DBG_ERR_INFO_SET_BY_8051 for details */ 7636 info = read_csr(dd, DC_DC8051_DBG_ERR_INFO_SET_BY_8051); 7637 err = (info >> DC_DC8051_DBG_ERR_INFO_SET_BY_8051_ERROR_SHIFT) 7638 & DC_DC8051_DBG_ERR_INFO_SET_BY_8051_ERROR_MASK; 7639 host_msg = (info >> 7640 DC_DC8051_DBG_ERR_INFO_SET_BY_8051_HOST_MSG_SHIFT) 7641 & DC_DC8051_DBG_ERR_INFO_SET_BY_8051_HOST_MSG_MASK; 7642 7643 /* 7644 * Handle error flags. 7645 */ 7646 if (err & FAILED_LNI) { 7647 /* 7648 * LNI error indications are cleared by the 8051 7649 * only when starting polling. Only pay attention 7650 * to them when in the states that occur during 7651 * LNI. 7652 */ 7653 if (ppd->host_link_state 7654 & (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) { 7655 queue_link_down = 1; 7656 dd_dev_info(dd, "Link error: %s\n", 7657 dc8051_info_err_string(buf, 7658 sizeof(buf), 7659 err & 7660 FAILED_LNI)); 7661 } 7662 err &= ~(u64)FAILED_LNI; 7663 } 7664 /* unknown frames can happen durning LNI, just count */ 7665 if (err & UNKNOWN_FRAME) { 7666 ppd->unknown_frame_count++; 7667 err &= ~(u64)UNKNOWN_FRAME; 7668 } 7669 if (err) { 7670 /* report remaining errors, but do not do anything */ 7671 dd_dev_err(dd, "8051 info error: %s\n", 7672 dc8051_info_err_string(buf, sizeof(buf), 7673 err)); 7674 } 7675 7676 /* 7677 * Handle host message flags. 7678 */ 7679 if (host_msg & HOST_REQ_DONE) { 7680 /* 7681 * Presently, the driver does a busy wait for 7682 * host requests to complete. This is only an 7683 * informational message. 7684 * NOTE: The 8051 clears the host message 7685 * information *on the next 8051 command*. 7686 * Therefore, when linkup is achieved, 7687 * this flag will still be set. 7688 */ 7689 host_msg &= ~(u64)HOST_REQ_DONE; 7690 } 7691 if (host_msg & BC_SMA_MSG) { 7692 queue_work(ppd->hfi1_wq, &ppd->sma_message_work); 7693 host_msg &= ~(u64)BC_SMA_MSG; 7694 } 7695 if (host_msg & LINKUP_ACHIEVED) { 7696 dd_dev_info(dd, "8051: Link up\n"); 7697 queue_work(ppd->hfi1_wq, &ppd->link_up_work); 7698 host_msg &= ~(u64)LINKUP_ACHIEVED; 7699 } 7700 if (host_msg & EXT_DEVICE_CFG_REQ) { 7701 handle_8051_request(ppd); 7702 host_msg &= ~(u64)EXT_DEVICE_CFG_REQ; 7703 } 7704 if (host_msg & VERIFY_CAP_FRAME) { 7705 queue_work(ppd->hfi1_wq, &ppd->link_vc_work); 7706 host_msg &= ~(u64)VERIFY_CAP_FRAME; 7707 } 7708 if (host_msg & LINK_GOING_DOWN) { 7709 const char *extra = ""; 7710 /* no downgrade action needed if going down */ 7711 if (host_msg & LINK_WIDTH_DOWNGRADED) { 7712 host_msg &= ~(u64)LINK_WIDTH_DOWNGRADED; 7713 extra = " (ignoring downgrade)"; 7714 } 7715 dd_dev_info(dd, "8051: Link down%s\n", extra); 7716 queue_link_down = 1; 7717 host_msg &= ~(u64)LINK_GOING_DOWN; 7718 } 7719 if (host_msg & LINK_WIDTH_DOWNGRADED) { 7720 queue_work(ppd->hfi1_wq, &ppd->link_downgrade_work); 7721 host_msg &= ~(u64)LINK_WIDTH_DOWNGRADED; 7722 } 7723 if (host_msg) { 7724 /* report remaining messages, but do not do anything */ 7725 dd_dev_info(dd, "8051 info host message: %s\n", 7726 dc8051_info_host_msg_string(buf, 7727 sizeof(buf), 7728 host_msg)); 7729 } 7730 7731 reg &= ~DC_DC8051_ERR_FLG_SET_BY_8051_SMASK; 7732 } 7733 if (reg & DC_DC8051_ERR_FLG_LOST_8051_HEART_BEAT_SMASK) { 7734 /* 7735 * Lost the 8051 heartbeat. If this happens, we 7736 * receive constant interrupts about it. Disable 7737 * the interrupt after the first. 7738 */ 7739 dd_dev_err(dd, "Lost 8051 heartbeat\n"); 7740 write_csr(dd, DC_DC8051_ERR_EN, 7741 read_csr(dd, DC_DC8051_ERR_EN) & 7742 ~DC_DC8051_ERR_EN_LOST_8051_HEART_BEAT_SMASK); 7743 7744 reg &= ~DC_DC8051_ERR_FLG_LOST_8051_HEART_BEAT_SMASK; 7745 } 7746 if (reg) { 7747 /* report the error, but do not do anything */ 7748 dd_dev_err(dd, "8051 error: %s\n", 7749 dc8051_err_string(buf, sizeof(buf), reg)); 7750 } 7751 7752 if (queue_link_down) { 7753 /* 7754 * if the link is already going down or disabled, do not 7755 * queue another 7756 */ 7757 if ((ppd->host_link_state & 7758 (HLS_GOING_OFFLINE | HLS_LINK_COOLDOWN)) || 7759 ppd->link_enabled == 0) { 7760 dd_dev_info(dd, "%s: not queuing link down\n", 7761 __func__); 7762 } else { 7763 queue_work(ppd->hfi1_wq, &ppd->link_down_work); 7764 } 7765 } 7766 } 7767 7768 static const char * const fm_config_txt[] = { 7769 [0] = 7770 "BadHeadDist: Distance violation between two head flits", 7771 [1] = 7772 "BadTailDist: Distance violation between two tail flits", 7773 [2] = 7774 "BadCtrlDist: Distance violation between two credit control flits", 7775 [3] = 7776 "BadCrdAck: Credits return for unsupported VL", 7777 [4] = 7778 "UnsupportedVLMarker: Received VL Marker", 7779 [5] = 7780 "BadPreempt: Exceeded the preemption nesting level", 7781 [6] = 7782 "BadControlFlit: Received unsupported control flit", 7783 /* no 7 */ 7784 [8] = 7785 "UnsupportedVLMarker: Received VL Marker for unconfigured or disabled VL", 7786 }; 7787 7788 static const char * const port_rcv_txt[] = { 7789 [1] = 7790 "BadPktLen: Illegal PktLen", 7791 [2] = 7792 "PktLenTooLong: Packet longer than PktLen", 7793 [3] = 7794 "PktLenTooShort: Packet shorter than PktLen", 7795 [4] = 7796 "BadSLID: Illegal SLID (0, using multicast as SLID, does not include security validation of SLID)", 7797 [5] = 7798 "BadDLID: Illegal DLID (0, doesn't match HFI)", 7799 [6] = 7800 "BadL2: Illegal L2 opcode", 7801 [7] = 7802 "BadSC: Unsupported SC", 7803 [9] = 7804 "BadRC: Illegal RC", 7805 [11] = 7806 "PreemptError: Preempting with same VL", 7807 [12] = 7808 "PreemptVL15: Preempting a VL15 packet", 7809 }; 7810 7811 #define OPA_LDR_FMCONFIG_OFFSET 16 7812 #define OPA_LDR_PORTRCV_OFFSET 0 7813 static void handle_dcc_err(struct hfi1_devdata *dd, u32 unused, u64 reg) 7814 { 7815 u64 info, hdr0, hdr1; 7816 const char *extra; 7817 char buf[96]; 7818 struct hfi1_pportdata *ppd = dd->pport; 7819 u8 lcl_reason = 0; 7820 int do_bounce = 0; 7821 7822 if (reg & DCC_ERR_FLG_UNCORRECTABLE_ERR_SMASK) { 7823 if (!(dd->err_info_uncorrectable & OPA_EI_STATUS_SMASK)) { 7824 info = read_csr(dd, DCC_ERR_INFO_UNCORRECTABLE); 7825 dd->err_info_uncorrectable = info & OPA_EI_CODE_SMASK; 7826 /* set status bit */ 7827 dd->err_info_uncorrectable |= OPA_EI_STATUS_SMASK; 7828 } 7829 reg &= ~DCC_ERR_FLG_UNCORRECTABLE_ERR_SMASK; 7830 } 7831 7832 if (reg & DCC_ERR_FLG_LINK_ERR_SMASK) { 7833 struct hfi1_pportdata *ppd = dd->pport; 7834 /* this counter saturates at (2^32) - 1 */ 7835 if (ppd->link_downed < (u32)UINT_MAX) 7836 ppd->link_downed++; 7837 reg &= ~DCC_ERR_FLG_LINK_ERR_SMASK; 7838 } 7839 7840 if (reg & DCC_ERR_FLG_FMCONFIG_ERR_SMASK) { 7841 u8 reason_valid = 1; 7842 7843 info = read_csr(dd, DCC_ERR_INFO_FMCONFIG); 7844 if (!(dd->err_info_fmconfig & OPA_EI_STATUS_SMASK)) { 7845 dd->err_info_fmconfig = info & OPA_EI_CODE_SMASK; 7846 /* set status bit */ 7847 dd->err_info_fmconfig |= OPA_EI_STATUS_SMASK; 7848 } 7849 switch (info) { 7850 case 0: 7851 case 1: 7852 case 2: 7853 case 3: 7854 case 4: 7855 case 5: 7856 case 6: 7857 extra = fm_config_txt[info]; 7858 break; 7859 case 8: 7860 extra = fm_config_txt[info]; 7861 if (ppd->port_error_action & 7862 OPA_PI_MASK_FM_CFG_UNSUPPORTED_VL_MARKER) { 7863 do_bounce = 1; 7864 /* 7865 * lcl_reason cannot be derived from info 7866 * for this error 7867 */ 7868 lcl_reason = 7869 OPA_LINKDOWN_REASON_UNSUPPORTED_VL_MARKER; 7870 } 7871 break; 7872 default: 7873 reason_valid = 0; 7874 snprintf(buf, sizeof(buf), "reserved%lld", info); 7875 extra = buf; 7876 break; 7877 } 7878 7879 if (reason_valid && !do_bounce) { 7880 do_bounce = ppd->port_error_action & 7881 (1 << (OPA_LDR_FMCONFIG_OFFSET + info)); 7882 lcl_reason = info + OPA_LINKDOWN_REASON_BAD_HEAD_DIST; 7883 } 7884 7885 /* just report this */ 7886 dd_dev_info_ratelimited(dd, "DCC Error: fmconfig error: %s\n", 7887 extra); 7888 reg &= ~DCC_ERR_FLG_FMCONFIG_ERR_SMASK; 7889 } 7890 7891 if (reg & DCC_ERR_FLG_RCVPORT_ERR_SMASK) { 7892 u8 reason_valid = 1; 7893 7894 info = read_csr(dd, DCC_ERR_INFO_PORTRCV); 7895 hdr0 = read_csr(dd, DCC_ERR_INFO_PORTRCV_HDR0); 7896 hdr1 = read_csr(dd, DCC_ERR_INFO_PORTRCV_HDR1); 7897 if (!(dd->err_info_rcvport.status_and_code & 7898 OPA_EI_STATUS_SMASK)) { 7899 dd->err_info_rcvport.status_and_code = 7900 info & OPA_EI_CODE_SMASK; 7901 /* set status bit */ 7902 dd->err_info_rcvport.status_and_code |= 7903 OPA_EI_STATUS_SMASK; 7904 /* 7905 * save first 2 flits in the packet that caused 7906 * the error 7907 */ 7908 dd->err_info_rcvport.packet_flit1 = hdr0; 7909 dd->err_info_rcvport.packet_flit2 = hdr1; 7910 } 7911 switch (info) { 7912 case 1: 7913 case 2: 7914 case 3: 7915 case 4: 7916 case 5: 7917 case 6: 7918 case 7: 7919 case 9: 7920 case 11: 7921 case 12: 7922 extra = port_rcv_txt[info]; 7923 break; 7924 default: 7925 reason_valid = 0; 7926 snprintf(buf, sizeof(buf), "reserved%lld", info); 7927 extra = buf; 7928 break; 7929 } 7930 7931 if (reason_valid && !do_bounce) { 7932 do_bounce = ppd->port_error_action & 7933 (1 << (OPA_LDR_PORTRCV_OFFSET + info)); 7934 lcl_reason = info + OPA_LINKDOWN_REASON_RCV_ERROR_0; 7935 } 7936 7937 /* just report this */ 7938 dd_dev_info_ratelimited(dd, "DCC Error: PortRcv error: %s\n" 7939 " hdr0 0x%llx, hdr1 0x%llx\n", 7940 extra, hdr0, hdr1); 7941 7942 reg &= ~DCC_ERR_FLG_RCVPORT_ERR_SMASK; 7943 } 7944 7945 if (reg & DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_UC_SMASK) { 7946 /* informative only */ 7947 dd_dev_info_ratelimited(dd, "8051 access to LCB blocked\n"); 7948 reg &= ~DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_UC_SMASK; 7949 } 7950 if (reg & DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_HOST_SMASK) { 7951 /* informative only */ 7952 dd_dev_info_ratelimited(dd, "host access to LCB blocked\n"); 7953 reg &= ~DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_HOST_SMASK; 7954 } 7955 7956 if (unlikely(hfi1_dbg_fault_suppress_err(&dd->verbs_dev))) 7957 reg &= ~DCC_ERR_FLG_LATE_EBP_ERR_SMASK; 7958 7959 /* report any remaining errors */ 7960 if (reg) 7961 dd_dev_info_ratelimited(dd, "DCC Error: %s\n", 7962 dcc_err_string(buf, sizeof(buf), reg)); 7963 7964 if (lcl_reason == 0) 7965 lcl_reason = OPA_LINKDOWN_REASON_UNKNOWN; 7966 7967 if (do_bounce) { 7968 dd_dev_info_ratelimited(dd, "%s: PortErrorAction bounce\n", 7969 __func__); 7970 set_link_down_reason(ppd, lcl_reason, 0, lcl_reason); 7971 queue_work(ppd->hfi1_wq, &ppd->link_bounce_work); 7972 } 7973 } 7974 7975 static void handle_lcb_err(struct hfi1_devdata *dd, u32 unused, u64 reg) 7976 { 7977 char buf[96]; 7978 7979 dd_dev_info(dd, "LCB Error: %s\n", 7980 lcb_err_string(buf, sizeof(buf), reg)); 7981 } 7982 7983 /* 7984 * CCE block DC interrupt. Source is < 8. 7985 */ 7986 static void is_dc_int(struct hfi1_devdata *dd, unsigned int source) 7987 { 7988 const struct err_reg_info *eri = &dc_errs[source]; 7989 7990 if (eri->handler) { 7991 interrupt_clear_down(dd, 0, eri); 7992 } else if (source == 3 /* dc_lbm_int */) { 7993 /* 7994 * This indicates that a parity error has occurred on the 7995 * address/control lines presented to the LBM. The error 7996 * is a single pulse, there is no associated error flag, 7997 * and it is non-maskable. This is because if a parity 7998 * error occurs on the request the request is dropped. 7999 * This should never occur, but it is nice to know if it 8000 * ever does. 8001 */ 8002 dd_dev_err(dd, "Parity error in DC LBM block\n"); 8003 } else { 8004 dd_dev_err(dd, "Invalid DC interrupt %u\n", source); 8005 } 8006 } 8007 8008 /* 8009 * TX block send credit interrupt. Source is < 160. 8010 */ 8011 static void is_send_credit_int(struct hfi1_devdata *dd, unsigned int source) 8012 { 8013 sc_group_release_update(dd, source); 8014 } 8015 8016 /* 8017 * TX block SDMA interrupt. Source is < 48. 8018 * 8019 * SDMA interrupts are grouped by type: 8020 * 8021 * 0 - N-1 = SDma 8022 * N - 2N-1 = SDmaProgress 8023 * 2N - 3N-1 = SDmaIdle 8024 */ 8025 static void is_sdma_eng_int(struct hfi1_devdata *dd, unsigned int source) 8026 { 8027 /* what interrupt */ 8028 unsigned int what = source / TXE_NUM_SDMA_ENGINES; 8029 /* which engine */ 8030 unsigned int which = source % TXE_NUM_SDMA_ENGINES; 8031 8032 #ifdef CONFIG_SDMA_VERBOSITY 8033 dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", which, 8034 slashstrip(__FILE__), __LINE__, __func__); 8035 sdma_dumpstate(&dd->per_sdma[which]); 8036 #endif 8037 8038 if (likely(what < 3 && which < dd->num_sdma)) { 8039 sdma_engine_interrupt(&dd->per_sdma[which], 1ull << source); 8040 } else { 8041 /* should not happen */ 8042 dd_dev_err(dd, "Invalid SDMA interrupt 0x%x\n", source); 8043 } 8044 } 8045 8046 /* 8047 * RX block receive available interrupt. Source is < 160. 8048 */ 8049 static void is_rcv_avail_int(struct hfi1_devdata *dd, unsigned int source) 8050 { 8051 struct hfi1_ctxtdata *rcd; 8052 char *err_detail; 8053 8054 if (likely(source < dd->num_rcv_contexts)) { 8055 rcd = dd->rcd[source]; 8056 if (rcd) { 8057 /* Check for non-user contexts, including vnic */ 8058 if ((source < dd->first_dyn_alloc_ctxt) || 8059 (rcd->sc && (rcd->sc->type == SC_KERNEL))) 8060 rcd->do_interrupt(rcd, 0); 8061 else 8062 handle_user_interrupt(rcd); 8063 return; /* OK */ 8064 } 8065 /* received an interrupt, but no rcd */ 8066 err_detail = "dataless"; 8067 } else { 8068 /* received an interrupt, but are not using that context */ 8069 err_detail = "out of range"; 8070 } 8071 dd_dev_err(dd, "unexpected %s receive available context interrupt %u\n", 8072 err_detail, source); 8073 } 8074 8075 /* 8076 * RX block receive urgent interrupt. Source is < 160. 8077 */ 8078 static void is_rcv_urgent_int(struct hfi1_devdata *dd, unsigned int source) 8079 { 8080 struct hfi1_ctxtdata *rcd; 8081 char *err_detail; 8082 8083 if (likely(source < dd->num_rcv_contexts)) { 8084 rcd = dd->rcd[source]; 8085 if (rcd) { 8086 /* only pay attention to user urgent interrupts */ 8087 if ((source >= dd->first_dyn_alloc_ctxt) && 8088 (!rcd->sc || (rcd->sc->type == SC_USER))) 8089 handle_user_interrupt(rcd); 8090 return; /* OK */ 8091 } 8092 /* received an interrupt, but no rcd */ 8093 err_detail = "dataless"; 8094 } else { 8095 /* received an interrupt, but are not using that context */ 8096 err_detail = "out of range"; 8097 } 8098 dd_dev_err(dd, "unexpected %s receive urgent context interrupt %u\n", 8099 err_detail, source); 8100 } 8101 8102 /* 8103 * Reserved range interrupt. Should not be called in normal operation. 8104 */ 8105 static void is_reserved_int(struct hfi1_devdata *dd, unsigned int source) 8106 { 8107 char name[64]; 8108 8109 dd_dev_err(dd, "unexpected %s interrupt\n", 8110 is_reserved_name(name, sizeof(name), source)); 8111 } 8112 8113 static const struct is_table is_table[] = { 8114 /* 8115 * start end 8116 * name func interrupt func 8117 */ 8118 { IS_GENERAL_ERR_START, IS_GENERAL_ERR_END, 8119 is_misc_err_name, is_misc_err_int }, 8120 { IS_SDMAENG_ERR_START, IS_SDMAENG_ERR_END, 8121 is_sdma_eng_err_name, is_sdma_eng_err_int }, 8122 { IS_SENDCTXT_ERR_START, IS_SENDCTXT_ERR_END, 8123 is_sendctxt_err_name, is_sendctxt_err_int }, 8124 { IS_SDMA_START, IS_SDMA_END, 8125 is_sdma_eng_name, is_sdma_eng_int }, 8126 { IS_VARIOUS_START, IS_VARIOUS_END, 8127 is_various_name, is_various_int }, 8128 { IS_DC_START, IS_DC_END, 8129 is_dc_name, is_dc_int }, 8130 { IS_RCVAVAIL_START, IS_RCVAVAIL_END, 8131 is_rcv_avail_name, is_rcv_avail_int }, 8132 { IS_RCVURGENT_START, IS_RCVURGENT_END, 8133 is_rcv_urgent_name, is_rcv_urgent_int }, 8134 { IS_SENDCREDIT_START, IS_SENDCREDIT_END, 8135 is_send_credit_name, is_send_credit_int}, 8136 { IS_RESERVED_START, IS_RESERVED_END, 8137 is_reserved_name, is_reserved_int}, 8138 }; 8139 8140 /* 8141 * Interrupt source interrupt - called when the given source has an interrupt. 8142 * Source is a bit index into an array of 64-bit integers. 8143 */ 8144 static void is_interrupt(struct hfi1_devdata *dd, unsigned int source) 8145 { 8146 const struct is_table *entry; 8147 8148 /* avoids a double compare by walking the table in-order */ 8149 for (entry = &is_table[0]; entry->is_name; entry++) { 8150 if (source < entry->end) { 8151 trace_hfi1_interrupt(dd, entry, source); 8152 entry->is_int(dd, source - entry->start); 8153 return; 8154 } 8155 } 8156 /* fell off the end */ 8157 dd_dev_err(dd, "invalid interrupt source %u\n", source); 8158 } 8159 8160 /* 8161 * General interrupt handler. This is able to correctly handle 8162 * all interrupts in case INTx is used. 8163 */ 8164 static irqreturn_t general_interrupt(int irq, void *data) 8165 { 8166 struct hfi1_devdata *dd = data; 8167 u64 regs[CCE_NUM_INT_CSRS]; 8168 u32 bit; 8169 int i; 8170 8171 this_cpu_inc(*dd->int_counter); 8172 8173 /* phase 1: scan and clear all handled interrupts */ 8174 for (i = 0; i < CCE_NUM_INT_CSRS; i++) { 8175 if (dd->gi_mask[i] == 0) { 8176 regs[i] = 0; /* used later */ 8177 continue; 8178 } 8179 regs[i] = read_csr(dd, CCE_INT_STATUS + (8 * i)) & 8180 dd->gi_mask[i]; 8181 /* only clear if anything is set */ 8182 if (regs[i]) 8183 write_csr(dd, CCE_INT_CLEAR + (8 * i), regs[i]); 8184 } 8185 8186 /* phase 2: call the appropriate handler */ 8187 for_each_set_bit(bit, (unsigned long *)®s[0], 8188 CCE_NUM_INT_CSRS * 64) { 8189 is_interrupt(dd, bit); 8190 } 8191 8192 return IRQ_HANDLED; 8193 } 8194 8195 static irqreturn_t sdma_interrupt(int irq, void *data) 8196 { 8197 struct sdma_engine *sde = data; 8198 struct hfi1_devdata *dd = sde->dd; 8199 u64 status; 8200 8201 #ifdef CONFIG_SDMA_VERBOSITY 8202 dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx, 8203 slashstrip(__FILE__), __LINE__, __func__); 8204 sdma_dumpstate(sde); 8205 #endif 8206 8207 this_cpu_inc(*dd->int_counter); 8208 8209 /* This read_csr is really bad in the hot path */ 8210 status = read_csr(dd, 8211 CCE_INT_STATUS + (8 * (IS_SDMA_START / 64))) 8212 & sde->imask; 8213 if (likely(status)) { 8214 /* clear the interrupt(s) */ 8215 write_csr(dd, 8216 CCE_INT_CLEAR + (8 * (IS_SDMA_START / 64)), 8217 status); 8218 8219 /* handle the interrupt(s) */ 8220 sdma_engine_interrupt(sde, status); 8221 } else { 8222 dd_dev_err(dd, "SDMA engine %u interrupt, but no status bits set\n", 8223 sde->this_idx); 8224 } 8225 return IRQ_HANDLED; 8226 } 8227 8228 /* 8229 * Clear the receive interrupt. Use a read of the interrupt clear CSR 8230 * to insure that the write completed. This does NOT guarantee that 8231 * queued DMA writes to memory from the chip are pushed. 8232 */ 8233 static inline void clear_recv_intr(struct hfi1_ctxtdata *rcd) 8234 { 8235 struct hfi1_devdata *dd = rcd->dd; 8236 u32 addr = CCE_INT_CLEAR + (8 * rcd->ireg); 8237 8238 mmiowb(); /* make sure everything before is written */ 8239 write_csr(dd, addr, rcd->imask); 8240 /* force the above write on the chip and get a value back */ 8241 (void)read_csr(dd, addr); 8242 } 8243 8244 /* force the receive interrupt */ 8245 void force_recv_intr(struct hfi1_ctxtdata *rcd) 8246 { 8247 write_csr(rcd->dd, CCE_INT_FORCE + (8 * rcd->ireg), rcd->imask); 8248 } 8249 8250 /* 8251 * Return non-zero if a packet is present. 8252 * 8253 * This routine is called when rechecking for packets after the RcvAvail 8254 * interrupt has been cleared down. First, do a quick check of memory for 8255 * a packet present. If not found, use an expensive CSR read of the context 8256 * tail to determine the actual tail. The CSR read is necessary because there 8257 * is no method to push pending DMAs to memory other than an interrupt and we 8258 * are trying to determine if we need to force an interrupt. 8259 */ 8260 static inline int check_packet_present(struct hfi1_ctxtdata *rcd) 8261 { 8262 u32 tail; 8263 int present; 8264 8265 if (!HFI1_CAP_IS_KSET(DMA_RTAIL)) 8266 present = (rcd->seq_cnt == 8267 rhf_rcv_seq(rhf_to_cpu(get_rhf_addr(rcd)))); 8268 else /* is RDMA rtail */ 8269 present = (rcd->head != get_rcvhdrtail(rcd)); 8270 8271 if (present) 8272 return 1; 8273 8274 /* fall back to a CSR read, correct indpendent of DMA_RTAIL */ 8275 tail = (u32)read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_TAIL); 8276 return rcd->head != tail; 8277 } 8278 8279 /* 8280 * Receive packet IRQ handler. This routine expects to be on its own IRQ. 8281 * This routine will try to handle packets immediately (latency), but if 8282 * it finds too many, it will invoke the thread handler (bandwitdh). The 8283 * chip receive interrupt is *not* cleared down until this or the thread (if 8284 * invoked) is finished. The intent is to avoid extra interrupts while we 8285 * are processing packets anyway. 8286 */ 8287 static irqreturn_t receive_context_interrupt(int irq, void *data) 8288 { 8289 struct hfi1_ctxtdata *rcd = data; 8290 struct hfi1_devdata *dd = rcd->dd; 8291 int disposition; 8292 int present; 8293 8294 trace_hfi1_receive_interrupt(dd, rcd->ctxt); 8295 this_cpu_inc(*dd->int_counter); 8296 aspm_ctx_disable(rcd); 8297 8298 /* receive interrupt remains blocked while processing packets */ 8299 disposition = rcd->do_interrupt(rcd, 0); 8300 8301 /* 8302 * Too many packets were seen while processing packets in this 8303 * IRQ handler. Invoke the handler thread. The receive interrupt 8304 * remains blocked. 8305 */ 8306 if (disposition == RCV_PKT_LIMIT) 8307 return IRQ_WAKE_THREAD; 8308 8309 /* 8310 * The packet processor detected no more packets. Clear the receive 8311 * interrupt and recheck for a packet packet that may have arrived 8312 * after the previous check and interrupt clear. If a packet arrived, 8313 * force another interrupt. 8314 */ 8315 clear_recv_intr(rcd); 8316 present = check_packet_present(rcd); 8317 if (present) 8318 force_recv_intr(rcd); 8319 8320 return IRQ_HANDLED; 8321 } 8322 8323 /* 8324 * Receive packet thread handler. This expects to be invoked with the 8325 * receive interrupt still blocked. 8326 */ 8327 static irqreturn_t receive_context_thread(int irq, void *data) 8328 { 8329 struct hfi1_ctxtdata *rcd = data; 8330 int present; 8331 8332 /* receive interrupt is still blocked from the IRQ handler */ 8333 (void)rcd->do_interrupt(rcd, 1); 8334 8335 /* 8336 * The packet processor will only return if it detected no more 8337 * packets. Hold IRQs here so we can safely clear the interrupt and 8338 * recheck for a packet that may have arrived after the previous 8339 * check and the interrupt clear. If a packet arrived, force another 8340 * interrupt. 8341 */ 8342 local_irq_disable(); 8343 clear_recv_intr(rcd); 8344 present = check_packet_present(rcd); 8345 if (present) 8346 force_recv_intr(rcd); 8347 local_irq_enable(); 8348 8349 return IRQ_HANDLED; 8350 } 8351 8352 /* ========================================================================= */ 8353 8354 u32 read_physical_state(struct hfi1_devdata *dd) 8355 { 8356 u64 reg; 8357 8358 reg = read_csr(dd, DC_DC8051_STS_CUR_STATE); 8359 return (reg >> DC_DC8051_STS_CUR_STATE_PORT_SHIFT) 8360 & DC_DC8051_STS_CUR_STATE_PORT_MASK; 8361 } 8362 8363 u32 read_logical_state(struct hfi1_devdata *dd) 8364 { 8365 u64 reg; 8366 8367 reg = read_csr(dd, DCC_CFG_PORT_CONFIG); 8368 return (reg >> DCC_CFG_PORT_CONFIG_LINK_STATE_SHIFT) 8369 & DCC_CFG_PORT_CONFIG_LINK_STATE_MASK; 8370 } 8371 8372 static void set_logical_state(struct hfi1_devdata *dd, u32 chip_lstate) 8373 { 8374 u64 reg; 8375 8376 reg = read_csr(dd, DCC_CFG_PORT_CONFIG); 8377 /* clear current state, set new state */ 8378 reg &= ~DCC_CFG_PORT_CONFIG_LINK_STATE_SMASK; 8379 reg |= (u64)chip_lstate << DCC_CFG_PORT_CONFIG_LINK_STATE_SHIFT; 8380 write_csr(dd, DCC_CFG_PORT_CONFIG, reg); 8381 } 8382 8383 /* 8384 * Use the 8051 to read a LCB CSR. 8385 */ 8386 static int read_lcb_via_8051(struct hfi1_devdata *dd, u32 addr, u64 *data) 8387 { 8388 u32 regno; 8389 int ret; 8390 8391 if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR) { 8392 if (acquire_lcb_access(dd, 0) == 0) { 8393 *data = read_csr(dd, addr); 8394 release_lcb_access(dd, 0); 8395 return 0; 8396 } 8397 return -EBUSY; 8398 } 8399 8400 /* register is an index of LCB registers: (offset - base) / 8 */ 8401 regno = (addr - DC_LCB_CFG_RUN) >> 3; 8402 ret = do_8051_command(dd, HCMD_READ_LCB_CSR, regno, data); 8403 if (ret != HCMD_SUCCESS) 8404 return -EBUSY; 8405 return 0; 8406 } 8407 8408 /* 8409 * Provide a cache for some of the LCB registers in case the LCB is 8410 * unavailable. 8411 * (The LCB is unavailable in certain link states, for example.) 8412 */ 8413 struct lcb_datum { 8414 u32 off; 8415 u64 val; 8416 }; 8417 8418 static struct lcb_datum lcb_cache[] = { 8419 { DC_LCB_ERR_INFO_RX_REPLAY_CNT, 0}, 8420 { DC_LCB_ERR_INFO_SEQ_CRC_CNT, 0 }, 8421 { DC_LCB_ERR_INFO_REINIT_FROM_PEER_CNT, 0 }, 8422 }; 8423 8424 static void update_lcb_cache(struct hfi1_devdata *dd) 8425 { 8426 int i; 8427 int ret; 8428 u64 val; 8429 8430 for (i = 0; i < ARRAY_SIZE(lcb_cache); i++) { 8431 ret = read_lcb_csr(dd, lcb_cache[i].off, &val); 8432 8433 /* Update if we get good data */ 8434 if (likely(ret != -EBUSY)) 8435 lcb_cache[i].val = val; 8436 } 8437 } 8438 8439 static int read_lcb_cache(u32 off, u64 *val) 8440 { 8441 int i; 8442 8443 for (i = 0; i < ARRAY_SIZE(lcb_cache); i++) { 8444 if (lcb_cache[i].off == off) { 8445 *val = lcb_cache[i].val; 8446 return 0; 8447 } 8448 } 8449 8450 pr_warn("%s bad offset 0x%x\n", __func__, off); 8451 return -1; 8452 } 8453 8454 /* 8455 * Read an LCB CSR. Access may not be in host control, so check. 8456 * Return 0 on success, -EBUSY on failure. 8457 */ 8458 int read_lcb_csr(struct hfi1_devdata *dd, u32 addr, u64 *data) 8459 { 8460 struct hfi1_pportdata *ppd = dd->pport; 8461 8462 /* if up, go through the 8051 for the value */ 8463 if (ppd->host_link_state & HLS_UP) 8464 return read_lcb_via_8051(dd, addr, data); 8465 /* if going up or down, check the cache, otherwise, no access */ 8466 if (ppd->host_link_state & (HLS_GOING_UP | HLS_GOING_OFFLINE)) { 8467 if (read_lcb_cache(addr, data)) 8468 return -EBUSY; 8469 return 0; 8470 } 8471 8472 /* otherwise, host has access */ 8473 *data = read_csr(dd, addr); 8474 return 0; 8475 } 8476 8477 /* 8478 * Use the 8051 to write a LCB CSR. 8479 */ 8480 static int write_lcb_via_8051(struct hfi1_devdata *dd, u32 addr, u64 data) 8481 { 8482 u32 regno; 8483 int ret; 8484 8485 if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR || 8486 (dd->dc8051_ver < dc8051_ver(0, 20, 0))) { 8487 if (acquire_lcb_access(dd, 0) == 0) { 8488 write_csr(dd, addr, data); 8489 release_lcb_access(dd, 0); 8490 return 0; 8491 } 8492 return -EBUSY; 8493 } 8494 8495 /* register is an index of LCB registers: (offset - base) / 8 */ 8496 regno = (addr - DC_LCB_CFG_RUN) >> 3; 8497 ret = do_8051_command(dd, HCMD_WRITE_LCB_CSR, regno, &data); 8498 if (ret != HCMD_SUCCESS) 8499 return -EBUSY; 8500 return 0; 8501 } 8502 8503 /* 8504 * Write an LCB CSR. Access may not be in host control, so check. 8505 * Return 0 on success, -EBUSY on failure. 8506 */ 8507 int write_lcb_csr(struct hfi1_devdata *dd, u32 addr, u64 data) 8508 { 8509 struct hfi1_pportdata *ppd = dd->pport; 8510 8511 /* if up, go through the 8051 for the value */ 8512 if (ppd->host_link_state & HLS_UP) 8513 return write_lcb_via_8051(dd, addr, data); 8514 /* if going up or down, no access */ 8515 if (ppd->host_link_state & (HLS_GOING_UP | HLS_GOING_OFFLINE)) 8516 return -EBUSY; 8517 /* otherwise, host has access */ 8518 write_csr(dd, addr, data); 8519 return 0; 8520 } 8521 8522 /* 8523 * Returns: 8524 * < 0 = Linux error, not able to get access 8525 * > 0 = 8051 command RETURN_CODE 8526 */ 8527 static int do_8051_command( 8528 struct hfi1_devdata *dd, 8529 u32 type, 8530 u64 in_data, 8531 u64 *out_data) 8532 { 8533 u64 reg, completed; 8534 int return_code; 8535 unsigned long timeout; 8536 8537 hfi1_cdbg(DC8051, "type %d, data 0x%012llx", type, in_data); 8538 8539 mutex_lock(&dd->dc8051_lock); 8540 8541 /* We can't send any commands to the 8051 if it's in reset */ 8542 if (dd->dc_shutdown) { 8543 return_code = -ENODEV; 8544 goto fail; 8545 } 8546 8547 /* 8548 * If an 8051 host command timed out previously, then the 8051 is 8549 * stuck. 8550 * 8551 * On first timeout, attempt to reset and restart the entire DC 8552 * block (including 8051). (Is this too big of a hammer?) 8553 * 8554 * If the 8051 times out a second time, the reset did not bring it 8555 * back to healthy life. In that case, fail any subsequent commands. 8556 */ 8557 if (dd->dc8051_timed_out) { 8558 if (dd->dc8051_timed_out > 1) { 8559 dd_dev_err(dd, 8560 "Previous 8051 host command timed out, skipping command %u\n", 8561 type); 8562 return_code = -ENXIO; 8563 goto fail; 8564 } 8565 _dc_shutdown(dd); 8566 _dc_start(dd); 8567 } 8568 8569 /* 8570 * If there is no timeout, then the 8051 command interface is 8571 * waiting for a command. 8572 */ 8573 8574 /* 8575 * When writing a LCB CSR, out_data contains the full value to 8576 * to be written, while in_data contains the relative LCB 8577 * address in 7:0. Do the work here, rather than the caller, 8578 * of distrubting the write data to where it needs to go: 8579 * 8580 * Write data 8581 * 39:00 -> in_data[47:8] 8582 * 47:40 -> DC8051_CFG_EXT_DEV_0.RETURN_CODE 8583 * 63:48 -> DC8051_CFG_EXT_DEV_0.RSP_DATA 8584 */ 8585 if (type == HCMD_WRITE_LCB_CSR) { 8586 in_data |= ((*out_data) & 0xffffffffffull) << 8; 8587 /* must preserve COMPLETED - it is tied to hardware */ 8588 reg = read_csr(dd, DC_DC8051_CFG_EXT_DEV_0); 8589 reg &= DC_DC8051_CFG_EXT_DEV_0_COMPLETED_SMASK; 8590 reg |= ((((*out_data) >> 40) & 0xff) << 8591 DC_DC8051_CFG_EXT_DEV_0_RETURN_CODE_SHIFT) 8592 | ((((*out_data) >> 48) & 0xffff) << 8593 DC_DC8051_CFG_EXT_DEV_0_RSP_DATA_SHIFT); 8594 write_csr(dd, DC_DC8051_CFG_EXT_DEV_0, reg); 8595 } 8596 8597 /* 8598 * Do two writes: the first to stabilize the type and req_data, the 8599 * second to activate. 8600 */ 8601 reg = ((u64)type & DC_DC8051_CFG_HOST_CMD_0_REQ_TYPE_MASK) 8602 << DC_DC8051_CFG_HOST_CMD_0_REQ_TYPE_SHIFT 8603 | (in_data & DC_DC8051_CFG_HOST_CMD_0_REQ_DATA_MASK) 8604 << DC_DC8051_CFG_HOST_CMD_0_REQ_DATA_SHIFT; 8605 write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, reg); 8606 reg |= DC_DC8051_CFG_HOST_CMD_0_REQ_NEW_SMASK; 8607 write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, reg); 8608 8609 /* wait for completion, alternate: interrupt */ 8610 timeout = jiffies + msecs_to_jiffies(DC8051_COMMAND_TIMEOUT); 8611 while (1) { 8612 reg = read_csr(dd, DC_DC8051_CFG_HOST_CMD_1); 8613 completed = reg & DC_DC8051_CFG_HOST_CMD_1_COMPLETED_SMASK; 8614 if (completed) 8615 break; 8616 if (time_after(jiffies, timeout)) { 8617 dd->dc8051_timed_out++; 8618 dd_dev_err(dd, "8051 host command %u timeout\n", type); 8619 if (out_data) 8620 *out_data = 0; 8621 return_code = -ETIMEDOUT; 8622 goto fail; 8623 } 8624 udelay(2); 8625 } 8626 8627 if (out_data) { 8628 *out_data = (reg >> DC_DC8051_CFG_HOST_CMD_1_RSP_DATA_SHIFT) 8629 & DC_DC8051_CFG_HOST_CMD_1_RSP_DATA_MASK; 8630 if (type == HCMD_READ_LCB_CSR) { 8631 /* top 16 bits are in a different register */ 8632 *out_data |= (read_csr(dd, DC_DC8051_CFG_EXT_DEV_1) 8633 & DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SMASK) 8634 << (48 8635 - DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SHIFT); 8636 } 8637 } 8638 return_code = (reg >> DC_DC8051_CFG_HOST_CMD_1_RETURN_CODE_SHIFT) 8639 & DC_DC8051_CFG_HOST_CMD_1_RETURN_CODE_MASK; 8640 dd->dc8051_timed_out = 0; 8641 /* 8642 * Clear command for next user. 8643 */ 8644 write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, 0); 8645 8646 fail: 8647 mutex_unlock(&dd->dc8051_lock); 8648 return return_code; 8649 } 8650 8651 static int set_physical_link_state(struct hfi1_devdata *dd, u64 state) 8652 { 8653 return do_8051_command(dd, HCMD_CHANGE_PHY_STATE, state, NULL); 8654 } 8655 8656 int load_8051_config(struct hfi1_devdata *dd, u8 field_id, 8657 u8 lane_id, u32 config_data) 8658 { 8659 u64 data; 8660 int ret; 8661 8662 data = (u64)field_id << LOAD_DATA_FIELD_ID_SHIFT 8663 | (u64)lane_id << LOAD_DATA_LANE_ID_SHIFT 8664 | (u64)config_data << LOAD_DATA_DATA_SHIFT; 8665 ret = do_8051_command(dd, HCMD_LOAD_CONFIG_DATA, data, NULL); 8666 if (ret != HCMD_SUCCESS) { 8667 dd_dev_err(dd, 8668 "load 8051 config: field id %d, lane %d, err %d\n", 8669 (int)field_id, (int)lane_id, ret); 8670 } 8671 return ret; 8672 } 8673 8674 /* 8675 * Read the 8051 firmware "registers". Use the RAM directly. Always 8676 * set the result, even on error. 8677 * Return 0 on success, -errno on failure 8678 */ 8679 int read_8051_config(struct hfi1_devdata *dd, u8 field_id, u8 lane_id, 8680 u32 *result) 8681 { 8682 u64 big_data; 8683 u32 addr; 8684 int ret; 8685 8686 /* address start depends on the lane_id */ 8687 if (lane_id < 4) 8688 addr = (4 * NUM_GENERAL_FIELDS) 8689 + (lane_id * 4 * NUM_LANE_FIELDS); 8690 else 8691 addr = 0; 8692 addr += field_id * 4; 8693 8694 /* read is in 8-byte chunks, hardware will truncate the address down */ 8695 ret = read_8051_data(dd, addr, 8, &big_data); 8696 8697 if (ret == 0) { 8698 /* extract the 4 bytes we want */ 8699 if (addr & 0x4) 8700 *result = (u32)(big_data >> 32); 8701 else 8702 *result = (u32)big_data; 8703 } else { 8704 *result = 0; 8705 dd_dev_err(dd, "%s: direct read failed, lane %d, field %d!\n", 8706 __func__, lane_id, field_id); 8707 } 8708 8709 return ret; 8710 } 8711 8712 static int write_vc_local_phy(struct hfi1_devdata *dd, u8 power_management, 8713 u8 continuous) 8714 { 8715 u32 frame; 8716 8717 frame = continuous << CONTINIOUS_REMOTE_UPDATE_SUPPORT_SHIFT 8718 | power_management << POWER_MANAGEMENT_SHIFT; 8719 return load_8051_config(dd, VERIFY_CAP_LOCAL_PHY, 8720 GENERAL_CONFIG, frame); 8721 } 8722 8723 static int write_vc_local_fabric(struct hfi1_devdata *dd, u8 vau, u8 z, u8 vcu, 8724 u16 vl15buf, u8 crc_sizes) 8725 { 8726 u32 frame; 8727 8728 frame = (u32)vau << VAU_SHIFT 8729 | (u32)z << Z_SHIFT 8730 | (u32)vcu << VCU_SHIFT 8731 | (u32)vl15buf << VL15BUF_SHIFT 8732 | (u32)crc_sizes << CRC_SIZES_SHIFT; 8733 return load_8051_config(dd, VERIFY_CAP_LOCAL_FABRIC, 8734 GENERAL_CONFIG, frame); 8735 } 8736 8737 static void read_vc_local_link_width(struct hfi1_devdata *dd, u8 *misc_bits, 8738 u8 *flag_bits, u16 *link_widths) 8739 { 8740 u32 frame; 8741 8742 read_8051_config(dd, VERIFY_CAP_LOCAL_LINK_WIDTH, GENERAL_CONFIG, 8743 &frame); 8744 *misc_bits = (frame >> MISC_CONFIG_BITS_SHIFT) & MISC_CONFIG_BITS_MASK; 8745 *flag_bits = (frame >> LOCAL_FLAG_BITS_SHIFT) & LOCAL_FLAG_BITS_MASK; 8746 *link_widths = (frame >> LINK_WIDTH_SHIFT) & LINK_WIDTH_MASK; 8747 } 8748 8749 static int write_vc_local_link_width(struct hfi1_devdata *dd, 8750 u8 misc_bits, 8751 u8 flag_bits, 8752 u16 link_widths) 8753 { 8754 u32 frame; 8755 8756 frame = (u32)misc_bits << MISC_CONFIG_BITS_SHIFT 8757 | (u32)flag_bits << LOCAL_FLAG_BITS_SHIFT 8758 | (u32)link_widths << LINK_WIDTH_SHIFT; 8759 return load_8051_config(dd, VERIFY_CAP_LOCAL_LINK_WIDTH, GENERAL_CONFIG, 8760 frame); 8761 } 8762 8763 static int write_local_device_id(struct hfi1_devdata *dd, u16 device_id, 8764 u8 device_rev) 8765 { 8766 u32 frame; 8767 8768 frame = ((u32)device_id << LOCAL_DEVICE_ID_SHIFT) 8769 | ((u32)device_rev << LOCAL_DEVICE_REV_SHIFT); 8770 return load_8051_config(dd, LOCAL_DEVICE_ID, GENERAL_CONFIG, frame); 8771 } 8772 8773 static void read_remote_device_id(struct hfi1_devdata *dd, u16 *device_id, 8774 u8 *device_rev) 8775 { 8776 u32 frame; 8777 8778 read_8051_config(dd, REMOTE_DEVICE_ID, GENERAL_CONFIG, &frame); 8779 *device_id = (frame >> REMOTE_DEVICE_ID_SHIFT) & REMOTE_DEVICE_ID_MASK; 8780 *device_rev = (frame >> REMOTE_DEVICE_REV_SHIFT) 8781 & REMOTE_DEVICE_REV_MASK; 8782 } 8783 8784 void read_misc_status(struct hfi1_devdata *dd, u8 *ver_major, u8 *ver_minor, 8785 u8 *ver_patch) 8786 { 8787 u32 frame; 8788 8789 read_8051_config(dd, MISC_STATUS, GENERAL_CONFIG, &frame); 8790 *ver_major = (frame >> STS_FM_VERSION_MAJOR_SHIFT) & 8791 STS_FM_VERSION_MAJOR_MASK; 8792 *ver_minor = (frame >> STS_FM_VERSION_MINOR_SHIFT) & 8793 STS_FM_VERSION_MINOR_MASK; 8794 8795 read_8051_config(dd, VERSION_PATCH, GENERAL_CONFIG, &frame); 8796 *ver_patch = (frame >> STS_FM_VERSION_PATCH_SHIFT) & 8797 STS_FM_VERSION_PATCH_MASK; 8798 } 8799 8800 static void read_vc_remote_phy(struct hfi1_devdata *dd, u8 *power_management, 8801 u8 *continuous) 8802 { 8803 u32 frame; 8804 8805 read_8051_config(dd, VERIFY_CAP_REMOTE_PHY, GENERAL_CONFIG, &frame); 8806 *power_management = (frame >> POWER_MANAGEMENT_SHIFT) 8807 & POWER_MANAGEMENT_MASK; 8808 *continuous = (frame >> CONTINIOUS_REMOTE_UPDATE_SUPPORT_SHIFT) 8809 & CONTINIOUS_REMOTE_UPDATE_SUPPORT_MASK; 8810 } 8811 8812 static void read_vc_remote_fabric(struct hfi1_devdata *dd, u8 *vau, u8 *z, 8813 u8 *vcu, u16 *vl15buf, u8 *crc_sizes) 8814 { 8815 u32 frame; 8816 8817 read_8051_config(dd, VERIFY_CAP_REMOTE_FABRIC, GENERAL_CONFIG, &frame); 8818 *vau = (frame >> VAU_SHIFT) & VAU_MASK; 8819 *z = (frame >> Z_SHIFT) & Z_MASK; 8820 *vcu = (frame >> VCU_SHIFT) & VCU_MASK; 8821 *vl15buf = (frame >> VL15BUF_SHIFT) & VL15BUF_MASK; 8822 *crc_sizes = (frame >> CRC_SIZES_SHIFT) & CRC_SIZES_MASK; 8823 } 8824 8825 static void read_vc_remote_link_width(struct hfi1_devdata *dd, 8826 u8 *remote_tx_rate, 8827 u16 *link_widths) 8828 { 8829 u32 frame; 8830 8831 read_8051_config(dd, VERIFY_CAP_REMOTE_LINK_WIDTH, GENERAL_CONFIG, 8832 &frame); 8833 *remote_tx_rate = (frame >> REMOTE_TX_RATE_SHIFT) 8834 & REMOTE_TX_RATE_MASK; 8835 *link_widths = (frame >> LINK_WIDTH_SHIFT) & LINK_WIDTH_MASK; 8836 } 8837 8838 static void read_local_lni(struct hfi1_devdata *dd, u8 *enable_lane_rx) 8839 { 8840 u32 frame; 8841 8842 read_8051_config(dd, LOCAL_LNI_INFO, GENERAL_CONFIG, &frame); 8843 *enable_lane_rx = (frame >> ENABLE_LANE_RX_SHIFT) & ENABLE_LANE_RX_MASK; 8844 } 8845 8846 static void read_mgmt_allowed(struct hfi1_devdata *dd, u8 *mgmt_allowed) 8847 { 8848 u32 frame; 8849 8850 read_8051_config(dd, REMOTE_LNI_INFO, GENERAL_CONFIG, &frame); 8851 *mgmt_allowed = (frame >> MGMT_ALLOWED_SHIFT) & MGMT_ALLOWED_MASK; 8852 } 8853 8854 static void read_last_local_state(struct hfi1_devdata *dd, u32 *lls) 8855 { 8856 read_8051_config(dd, LAST_LOCAL_STATE_COMPLETE, GENERAL_CONFIG, lls); 8857 } 8858 8859 static void read_last_remote_state(struct hfi1_devdata *dd, u32 *lrs) 8860 { 8861 read_8051_config(dd, LAST_REMOTE_STATE_COMPLETE, GENERAL_CONFIG, lrs); 8862 } 8863 8864 void hfi1_read_link_quality(struct hfi1_devdata *dd, u8 *link_quality) 8865 { 8866 u32 frame; 8867 int ret; 8868 8869 *link_quality = 0; 8870 if (dd->pport->host_link_state & HLS_UP) { 8871 ret = read_8051_config(dd, LINK_QUALITY_INFO, GENERAL_CONFIG, 8872 &frame); 8873 if (ret == 0) 8874 *link_quality = (frame >> LINK_QUALITY_SHIFT) 8875 & LINK_QUALITY_MASK; 8876 } 8877 } 8878 8879 static void read_planned_down_reason_code(struct hfi1_devdata *dd, u8 *pdrrc) 8880 { 8881 u32 frame; 8882 8883 read_8051_config(dd, LINK_QUALITY_INFO, GENERAL_CONFIG, &frame); 8884 *pdrrc = (frame >> DOWN_REMOTE_REASON_SHIFT) & DOWN_REMOTE_REASON_MASK; 8885 } 8886 8887 static void read_link_down_reason(struct hfi1_devdata *dd, u8 *ldr) 8888 { 8889 u32 frame; 8890 8891 read_8051_config(dd, LINK_DOWN_REASON, GENERAL_CONFIG, &frame); 8892 *ldr = (frame & 0xff); 8893 } 8894 8895 static int read_tx_settings(struct hfi1_devdata *dd, 8896 u8 *enable_lane_tx, 8897 u8 *tx_polarity_inversion, 8898 u8 *rx_polarity_inversion, 8899 u8 *max_rate) 8900 { 8901 u32 frame; 8902 int ret; 8903 8904 ret = read_8051_config(dd, TX_SETTINGS, GENERAL_CONFIG, &frame); 8905 *enable_lane_tx = (frame >> ENABLE_LANE_TX_SHIFT) 8906 & ENABLE_LANE_TX_MASK; 8907 *tx_polarity_inversion = (frame >> TX_POLARITY_INVERSION_SHIFT) 8908 & TX_POLARITY_INVERSION_MASK; 8909 *rx_polarity_inversion = (frame >> RX_POLARITY_INVERSION_SHIFT) 8910 & RX_POLARITY_INVERSION_MASK; 8911 *max_rate = (frame >> MAX_RATE_SHIFT) & MAX_RATE_MASK; 8912 return ret; 8913 } 8914 8915 static int write_tx_settings(struct hfi1_devdata *dd, 8916 u8 enable_lane_tx, 8917 u8 tx_polarity_inversion, 8918 u8 rx_polarity_inversion, 8919 u8 max_rate) 8920 { 8921 u32 frame; 8922 8923 /* no need to mask, all variable sizes match field widths */ 8924 frame = enable_lane_tx << ENABLE_LANE_TX_SHIFT 8925 | tx_polarity_inversion << TX_POLARITY_INVERSION_SHIFT 8926 | rx_polarity_inversion << RX_POLARITY_INVERSION_SHIFT 8927 | max_rate << MAX_RATE_SHIFT; 8928 return load_8051_config(dd, TX_SETTINGS, GENERAL_CONFIG, frame); 8929 } 8930 8931 /* 8932 * Read an idle LCB message. 8933 * 8934 * Returns 0 on success, -EINVAL on error 8935 */ 8936 static int read_idle_message(struct hfi1_devdata *dd, u64 type, u64 *data_out) 8937 { 8938 int ret; 8939 8940 ret = do_8051_command(dd, HCMD_READ_LCB_IDLE_MSG, type, data_out); 8941 if (ret != HCMD_SUCCESS) { 8942 dd_dev_err(dd, "read idle message: type %d, err %d\n", 8943 (u32)type, ret); 8944 return -EINVAL; 8945 } 8946 dd_dev_info(dd, "%s: read idle message 0x%llx\n", __func__, *data_out); 8947 /* return only the payload as we already know the type */ 8948 *data_out >>= IDLE_PAYLOAD_SHIFT; 8949 return 0; 8950 } 8951 8952 /* 8953 * Read an idle SMA message. To be done in response to a notification from 8954 * the 8051. 8955 * 8956 * Returns 0 on success, -EINVAL on error 8957 */ 8958 static int read_idle_sma(struct hfi1_devdata *dd, u64 *data) 8959 { 8960 return read_idle_message(dd, (u64)IDLE_SMA << IDLE_MSG_TYPE_SHIFT, 8961 data); 8962 } 8963 8964 /* 8965 * Send an idle LCB message. 8966 * 8967 * Returns 0 on success, -EINVAL on error 8968 */ 8969 static int send_idle_message(struct hfi1_devdata *dd, u64 data) 8970 { 8971 int ret; 8972 8973 dd_dev_info(dd, "%s: sending idle message 0x%llx\n", __func__, data); 8974 ret = do_8051_command(dd, HCMD_SEND_LCB_IDLE_MSG, data, NULL); 8975 if (ret != HCMD_SUCCESS) { 8976 dd_dev_err(dd, "send idle message: data 0x%llx, err %d\n", 8977 data, ret); 8978 return -EINVAL; 8979 } 8980 return 0; 8981 } 8982 8983 /* 8984 * Send an idle SMA message. 8985 * 8986 * Returns 0 on success, -EINVAL on error 8987 */ 8988 int send_idle_sma(struct hfi1_devdata *dd, u64 message) 8989 { 8990 u64 data; 8991 8992 data = ((message & IDLE_PAYLOAD_MASK) << IDLE_PAYLOAD_SHIFT) | 8993 ((u64)IDLE_SMA << IDLE_MSG_TYPE_SHIFT); 8994 return send_idle_message(dd, data); 8995 } 8996 8997 /* 8998 * Initialize the LCB then do a quick link up. This may or may not be 8999 * in loopback. 9000 * 9001 * return 0 on success, -errno on error 9002 */ 9003 static int do_quick_linkup(struct hfi1_devdata *dd) 9004 { 9005 int ret; 9006 9007 lcb_shutdown(dd, 0); 9008 9009 if (loopback) { 9010 /* LCB_CFG_LOOPBACK.VAL = 2 */ 9011 /* LCB_CFG_LANE_WIDTH.VAL = 0 */ 9012 write_csr(dd, DC_LCB_CFG_LOOPBACK, 9013 IB_PACKET_TYPE << DC_LCB_CFG_LOOPBACK_VAL_SHIFT); 9014 write_csr(dd, DC_LCB_CFG_LANE_WIDTH, 0); 9015 } 9016 9017 /* start the LCBs */ 9018 /* LCB_CFG_TX_FIFOS_RESET.VAL = 0 */ 9019 write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0); 9020 9021 /* simulator only loopback steps */ 9022 if (loopback && dd->icode == ICODE_FUNCTIONAL_SIMULATOR) { 9023 /* LCB_CFG_RUN.EN = 1 */ 9024 write_csr(dd, DC_LCB_CFG_RUN, 9025 1ull << DC_LCB_CFG_RUN_EN_SHIFT); 9026 9027 ret = wait_link_transfer_active(dd, 10); 9028 if (ret) 9029 return ret; 9030 9031 write_csr(dd, DC_LCB_CFG_ALLOW_LINK_UP, 9032 1ull << DC_LCB_CFG_ALLOW_LINK_UP_VAL_SHIFT); 9033 } 9034 9035 if (!loopback) { 9036 /* 9037 * When doing quick linkup and not in loopback, both 9038 * sides must be done with LCB set-up before either 9039 * starts the quick linkup. Put a delay here so that 9040 * both sides can be started and have a chance to be 9041 * done with LCB set up before resuming. 9042 */ 9043 dd_dev_err(dd, 9044 "Pausing for peer to be finished with LCB set up\n"); 9045 msleep(5000); 9046 dd_dev_err(dd, "Continuing with quick linkup\n"); 9047 } 9048 9049 write_csr(dd, DC_LCB_ERR_EN, 0); /* mask LCB errors */ 9050 set_8051_lcb_access(dd); 9051 9052 /* 9053 * State "quick" LinkUp request sets the physical link state to 9054 * LinkUp without a verify capability sequence. 9055 * This state is in simulator v37 and later. 9056 */ 9057 ret = set_physical_link_state(dd, PLS_QUICK_LINKUP); 9058 if (ret != HCMD_SUCCESS) { 9059 dd_dev_err(dd, 9060 "%s: set physical link state to quick LinkUp failed with return %d\n", 9061 __func__, ret); 9062 9063 set_host_lcb_access(dd); 9064 write_csr(dd, DC_LCB_ERR_EN, ~0ull); /* watch LCB errors */ 9065 9066 if (ret >= 0) 9067 ret = -EINVAL; 9068 return ret; 9069 } 9070 9071 return 0; /* success */ 9072 } 9073 9074 /* 9075 * Set the SerDes to internal loopback mode. 9076 * Returns 0 on success, -errno on error. 9077 */ 9078 static int set_serdes_loopback_mode(struct hfi1_devdata *dd) 9079 { 9080 int ret; 9081 9082 ret = set_physical_link_state(dd, PLS_INTERNAL_SERDES_LOOPBACK); 9083 if (ret == HCMD_SUCCESS) 9084 return 0; 9085 dd_dev_err(dd, 9086 "Set physical link state to SerDes Loopback failed with return %d\n", 9087 ret); 9088 if (ret >= 0) 9089 ret = -EINVAL; 9090 return ret; 9091 } 9092 9093 /* 9094 * Do all special steps to set up loopback. 9095 */ 9096 static int init_loopback(struct hfi1_devdata *dd) 9097 { 9098 dd_dev_info(dd, "Entering loopback mode\n"); 9099 9100 /* all loopbacks should disable self GUID check */ 9101 write_csr(dd, DC_DC8051_CFG_MODE, 9102 (read_csr(dd, DC_DC8051_CFG_MODE) | DISABLE_SELF_GUID_CHECK)); 9103 9104 /* 9105 * The simulator has only one loopback option - LCB. Switch 9106 * to that option, which includes quick link up. 9107 * 9108 * Accept all valid loopback values. 9109 */ 9110 if ((dd->icode == ICODE_FUNCTIONAL_SIMULATOR) && 9111 (loopback == LOOPBACK_SERDES || loopback == LOOPBACK_LCB || 9112 loopback == LOOPBACK_CABLE)) { 9113 loopback = LOOPBACK_LCB; 9114 quick_linkup = 1; 9115 return 0; 9116 } 9117 9118 /* handle serdes loopback */ 9119 if (loopback == LOOPBACK_SERDES) { 9120 /* internal serdes loopack needs quick linkup on RTL */ 9121 if (dd->icode == ICODE_RTL_SILICON) 9122 quick_linkup = 1; 9123 return set_serdes_loopback_mode(dd); 9124 } 9125 9126 /* LCB loopback - handled at poll time */ 9127 if (loopback == LOOPBACK_LCB) { 9128 quick_linkup = 1; /* LCB is always quick linkup */ 9129 9130 /* not supported in emulation due to emulation RTL changes */ 9131 if (dd->icode == ICODE_FPGA_EMULATION) { 9132 dd_dev_err(dd, 9133 "LCB loopback not supported in emulation\n"); 9134 return -EINVAL; 9135 } 9136 return 0; 9137 } 9138 9139 /* external cable loopback requires no extra steps */ 9140 if (loopback == LOOPBACK_CABLE) 9141 return 0; 9142 9143 dd_dev_err(dd, "Invalid loopback mode %d\n", loopback); 9144 return -EINVAL; 9145 } 9146 9147 /* 9148 * Translate from the OPA_LINK_WIDTH handed to us by the FM to bits 9149 * used in the Verify Capability link width attribute. 9150 */ 9151 static u16 opa_to_vc_link_widths(u16 opa_widths) 9152 { 9153 int i; 9154 u16 result = 0; 9155 9156 static const struct link_bits { 9157 u16 from; 9158 u16 to; 9159 } opa_link_xlate[] = { 9160 { OPA_LINK_WIDTH_1X, 1 << (1 - 1) }, 9161 { OPA_LINK_WIDTH_2X, 1 << (2 - 1) }, 9162 { OPA_LINK_WIDTH_3X, 1 << (3 - 1) }, 9163 { OPA_LINK_WIDTH_4X, 1 << (4 - 1) }, 9164 }; 9165 9166 for (i = 0; i < ARRAY_SIZE(opa_link_xlate); i++) { 9167 if (opa_widths & opa_link_xlate[i].from) 9168 result |= opa_link_xlate[i].to; 9169 } 9170 return result; 9171 } 9172 9173 /* 9174 * Set link attributes before moving to polling. 9175 */ 9176 static int set_local_link_attributes(struct hfi1_pportdata *ppd) 9177 { 9178 struct hfi1_devdata *dd = ppd->dd; 9179 u8 enable_lane_tx; 9180 u8 tx_polarity_inversion; 9181 u8 rx_polarity_inversion; 9182 int ret; 9183 9184 /* reset our fabric serdes to clear any lingering problems */ 9185 fabric_serdes_reset(dd); 9186 9187 /* set the local tx rate - need to read-modify-write */ 9188 ret = read_tx_settings(dd, &enable_lane_tx, &tx_polarity_inversion, 9189 &rx_polarity_inversion, &ppd->local_tx_rate); 9190 if (ret) 9191 goto set_local_link_attributes_fail; 9192 9193 if (dd->dc8051_ver < dc8051_ver(0, 20, 0)) { 9194 /* set the tx rate to the fastest enabled */ 9195 if (ppd->link_speed_enabled & OPA_LINK_SPEED_25G) 9196 ppd->local_tx_rate = 1; 9197 else 9198 ppd->local_tx_rate = 0; 9199 } else { 9200 /* set the tx rate to all enabled */ 9201 ppd->local_tx_rate = 0; 9202 if (ppd->link_speed_enabled & OPA_LINK_SPEED_25G) 9203 ppd->local_tx_rate |= 2; 9204 if (ppd->link_speed_enabled & OPA_LINK_SPEED_12_5G) 9205 ppd->local_tx_rate |= 1; 9206 } 9207 9208 enable_lane_tx = 0xF; /* enable all four lanes */ 9209 ret = write_tx_settings(dd, enable_lane_tx, tx_polarity_inversion, 9210 rx_polarity_inversion, ppd->local_tx_rate); 9211 if (ret != HCMD_SUCCESS) 9212 goto set_local_link_attributes_fail; 9213 9214 /* 9215 * DC supports continuous updates. 9216 */ 9217 ret = write_vc_local_phy(dd, 9218 0 /* no power management */, 9219 1 /* continuous updates */); 9220 if (ret != HCMD_SUCCESS) 9221 goto set_local_link_attributes_fail; 9222 9223 /* z=1 in the next call: AU of 0 is not supported by the hardware */ 9224 ret = write_vc_local_fabric(dd, dd->vau, 1, dd->vcu, dd->vl15_init, 9225 ppd->port_crc_mode_enabled); 9226 if (ret != HCMD_SUCCESS) 9227 goto set_local_link_attributes_fail; 9228 9229 ret = write_vc_local_link_width(dd, 0, 0, 9230 opa_to_vc_link_widths( 9231 ppd->link_width_enabled)); 9232 if (ret != HCMD_SUCCESS) 9233 goto set_local_link_attributes_fail; 9234 9235 /* let peer know who we are */ 9236 ret = write_local_device_id(dd, dd->pcidev->device, dd->minrev); 9237 if (ret == HCMD_SUCCESS) 9238 return 0; 9239 9240 set_local_link_attributes_fail: 9241 dd_dev_err(dd, 9242 "Failed to set local link attributes, return 0x%x\n", 9243 ret); 9244 return ret; 9245 } 9246 9247 /* 9248 * Call this to start the link. 9249 * Do not do anything if the link is disabled. 9250 * Returns 0 if link is disabled, moved to polling, or the driver is not ready. 9251 */ 9252 int start_link(struct hfi1_pportdata *ppd) 9253 { 9254 /* 9255 * Tune the SerDes to a ballpark setting for optimal signal and bit 9256 * error rate. Needs to be done before starting the link. 9257 */ 9258 tune_serdes(ppd); 9259 9260 if (!ppd->link_enabled) { 9261 dd_dev_info(ppd->dd, 9262 "%s: stopping link start because link is disabled\n", 9263 __func__); 9264 return 0; 9265 } 9266 if (!ppd->driver_link_ready) { 9267 dd_dev_info(ppd->dd, 9268 "%s: stopping link start because driver is not ready\n", 9269 __func__); 9270 return 0; 9271 } 9272 9273 /* 9274 * FULL_MGMT_P_KEY is cleared from the pkey table, so that the 9275 * pkey table can be configured properly if the HFI unit is connected 9276 * to switch port with MgmtAllowed=NO 9277 */ 9278 clear_full_mgmt_pkey(ppd); 9279 9280 return set_link_state(ppd, HLS_DN_POLL); 9281 } 9282 9283 static void wait_for_qsfp_init(struct hfi1_pportdata *ppd) 9284 { 9285 struct hfi1_devdata *dd = ppd->dd; 9286 u64 mask; 9287 unsigned long timeout; 9288 9289 /* 9290 * Some QSFP cables have a quirk that asserts the IntN line as a side 9291 * effect of power up on plug-in. We ignore this false positive 9292 * interrupt until the module has finished powering up by waiting for 9293 * a minimum timeout of the module inrush initialization time of 9294 * 500 ms (SFF 8679 Table 5-6) to ensure the voltage rails in the 9295 * module have stabilized. 9296 */ 9297 msleep(500); 9298 9299 /* 9300 * Check for QSFP interrupt for t_init (SFF 8679 Table 8-1) 9301 */ 9302 timeout = jiffies + msecs_to_jiffies(2000); 9303 while (1) { 9304 mask = read_csr(dd, dd->hfi1_id ? 9305 ASIC_QSFP2_IN : ASIC_QSFP1_IN); 9306 if (!(mask & QSFP_HFI0_INT_N)) 9307 break; 9308 if (time_after(jiffies, timeout)) { 9309 dd_dev_info(dd, "%s: No IntN detected, reset complete\n", 9310 __func__); 9311 break; 9312 } 9313 udelay(2); 9314 } 9315 } 9316 9317 static void set_qsfp_int_n(struct hfi1_pportdata *ppd, u8 enable) 9318 { 9319 struct hfi1_devdata *dd = ppd->dd; 9320 u64 mask; 9321 9322 mask = read_csr(dd, dd->hfi1_id ? ASIC_QSFP2_MASK : ASIC_QSFP1_MASK); 9323 if (enable) { 9324 /* 9325 * Clear the status register to avoid an immediate interrupt 9326 * when we re-enable the IntN pin 9327 */ 9328 write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_CLEAR : ASIC_QSFP1_CLEAR, 9329 QSFP_HFI0_INT_N); 9330 mask |= (u64)QSFP_HFI0_INT_N; 9331 } else { 9332 mask &= ~(u64)QSFP_HFI0_INT_N; 9333 } 9334 write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_MASK : ASIC_QSFP1_MASK, mask); 9335 } 9336 9337 void reset_qsfp(struct hfi1_pportdata *ppd) 9338 { 9339 struct hfi1_devdata *dd = ppd->dd; 9340 u64 mask, qsfp_mask; 9341 9342 /* Disable INT_N from triggering QSFP interrupts */ 9343 set_qsfp_int_n(ppd, 0); 9344 9345 /* Reset the QSFP */ 9346 mask = (u64)QSFP_HFI0_RESET_N; 9347 9348 qsfp_mask = read_csr(dd, 9349 dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT); 9350 qsfp_mask &= ~mask; 9351 write_csr(dd, 9352 dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT, qsfp_mask); 9353 9354 udelay(10); 9355 9356 qsfp_mask |= mask; 9357 write_csr(dd, 9358 dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT, qsfp_mask); 9359 9360 wait_for_qsfp_init(ppd); 9361 9362 /* 9363 * Allow INT_N to trigger the QSFP interrupt to watch 9364 * for alarms and warnings 9365 */ 9366 set_qsfp_int_n(ppd, 1); 9367 } 9368 9369 static int handle_qsfp_error_conditions(struct hfi1_pportdata *ppd, 9370 u8 *qsfp_interrupt_status) 9371 { 9372 struct hfi1_devdata *dd = ppd->dd; 9373 9374 if ((qsfp_interrupt_status[0] & QSFP_HIGH_TEMP_ALARM) || 9375 (qsfp_interrupt_status[0] & QSFP_HIGH_TEMP_WARNING)) 9376 dd_dev_info(dd, "%s: QSFP cable temperature too high\n", 9377 __func__); 9378 9379 if ((qsfp_interrupt_status[0] & QSFP_LOW_TEMP_ALARM) || 9380 (qsfp_interrupt_status[0] & QSFP_LOW_TEMP_WARNING)) 9381 dd_dev_info(dd, "%s: QSFP cable temperature too low\n", 9382 __func__); 9383 9384 /* 9385 * The remaining alarms/warnings don't matter if the link is down. 9386 */ 9387 if (ppd->host_link_state & HLS_DOWN) 9388 return 0; 9389 9390 if ((qsfp_interrupt_status[1] & QSFP_HIGH_VCC_ALARM) || 9391 (qsfp_interrupt_status[1] & QSFP_HIGH_VCC_WARNING)) 9392 dd_dev_info(dd, "%s: QSFP supply voltage too high\n", 9393 __func__); 9394 9395 if ((qsfp_interrupt_status[1] & QSFP_LOW_VCC_ALARM) || 9396 (qsfp_interrupt_status[1] & QSFP_LOW_VCC_WARNING)) 9397 dd_dev_info(dd, "%s: QSFP supply voltage too low\n", 9398 __func__); 9399 9400 /* Byte 2 is vendor specific */ 9401 9402 if ((qsfp_interrupt_status[3] & QSFP_HIGH_POWER_ALARM) || 9403 (qsfp_interrupt_status[3] & QSFP_HIGH_POWER_WARNING)) 9404 dd_dev_info(dd, "%s: Cable RX channel 1/2 power too high\n", 9405 __func__); 9406 9407 if ((qsfp_interrupt_status[3] & QSFP_LOW_POWER_ALARM) || 9408 (qsfp_interrupt_status[3] & QSFP_LOW_POWER_WARNING)) 9409 dd_dev_info(dd, "%s: Cable RX channel 1/2 power too low\n", 9410 __func__); 9411 9412 if ((qsfp_interrupt_status[4] & QSFP_HIGH_POWER_ALARM) || 9413 (qsfp_interrupt_status[4] & QSFP_HIGH_POWER_WARNING)) 9414 dd_dev_info(dd, "%s: Cable RX channel 3/4 power too high\n", 9415 __func__); 9416 9417 if ((qsfp_interrupt_status[4] & QSFP_LOW_POWER_ALARM) || 9418 (qsfp_interrupt_status[4] & QSFP_LOW_POWER_WARNING)) 9419 dd_dev_info(dd, "%s: Cable RX channel 3/4 power too low\n", 9420 __func__); 9421 9422 if ((qsfp_interrupt_status[5] & QSFP_HIGH_BIAS_ALARM) || 9423 (qsfp_interrupt_status[5] & QSFP_HIGH_BIAS_WARNING)) 9424 dd_dev_info(dd, "%s: Cable TX channel 1/2 bias too high\n", 9425 __func__); 9426 9427 if ((qsfp_interrupt_status[5] & QSFP_LOW_BIAS_ALARM) || 9428 (qsfp_interrupt_status[5] & QSFP_LOW_BIAS_WARNING)) 9429 dd_dev_info(dd, "%s: Cable TX channel 1/2 bias too low\n", 9430 __func__); 9431 9432 if ((qsfp_interrupt_status[6] & QSFP_HIGH_BIAS_ALARM) || 9433 (qsfp_interrupt_status[6] & QSFP_HIGH_BIAS_WARNING)) 9434 dd_dev_info(dd, "%s: Cable TX channel 3/4 bias too high\n", 9435 __func__); 9436 9437 if ((qsfp_interrupt_status[6] & QSFP_LOW_BIAS_ALARM) || 9438 (qsfp_interrupt_status[6] & QSFP_LOW_BIAS_WARNING)) 9439 dd_dev_info(dd, "%s: Cable TX channel 3/4 bias too low\n", 9440 __func__); 9441 9442 if ((qsfp_interrupt_status[7] & QSFP_HIGH_POWER_ALARM) || 9443 (qsfp_interrupt_status[7] & QSFP_HIGH_POWER_WARNING)) 9444 dd_dev_info(dd, "%s: Cable TX channel 1/2 power too high\n", 9445 __func__); 9446 9447 if ((qsfp_interrupt_status[7] & QSFP_LOW_POWER_ALARM) || 9448 (qsfp_interrupt_status[7] & QSFP_LOW_POWER_WARNING)) 9449 dd_dev_info(dd, "%s: Cable TX channel 1/2 power too low\n", 9450 __func__); 9451 9452 if ((qsfp_interrupt_status[8] & QSFP_HIGH_POWER_ALARM) || 9453 (qsfp_interrupt_status[8] & QSFP_HIGH_POWER_WARNING)) 9454 dd_dev_info(dd, "%s: Cable TX channel 3/4 power too high\n", 9455 __func__); 9456 9457 if ((qsfp_interrupt_status[8] & QSFP_LOW_POWER_ALARM) || 9458 (qsfp_interrupt_status[8] & QSFP_LOW_POWER_WARNING)) 9459 dd_dev_info(dd, "%s: Cable TX channel 3/4 power too low\n", 9460 __func__); 9461 9462 /* Bytes 9-10 and 11-12 are reserved */ 9463 /* Bytes 13-15 are vendor specific */ 9464 9465 return 0; 9466 } 9467 9468 /* This routine will only be scheduled if the QSFP module present is asserted */ 9469 void qsfp_event(struct work_struct *work) 9470 { 9471 struct qsfp_data *qd; 9472 struct hfi1_pportdata *ppd; 9473 struct hfi1_devdata *dd; 9474 9475 qd = container_of(work, struct qsfp_data, qsfp_work); 9476 ppd = qd->ppd; 9477 dd = ppd->dd; 9478 9479 /* Sanity check */ 9480 if (!qsfp_mod_present(ppd)) 9481 return; 9482 9483 /* 9484 * Turn DC back on after cable has been re-inserted. Up until 9485 * now, the DC has been in reset to save power. 9486 */ 9487 dc_start(dd); 9488 9489 if (qd->cache_refresh_required) { 9490 set_qsfp_int_n(ppd, 0); 9491 9492 wait_for_qsfp_init(ppd); 9493 9494 /* 9495 * Allow INT_N to trigger the QSFP interrupt to watch 9496 * for alarms and warnings 9497 */ 9498 set_qsfp_int_n(ppd, 1); 9499 9500 start_link(ppd); 9501 } 9502 9503 if (qd->check_interrupt_flags) { 9504 u8 qsfp_interrupt_status[16] = {0,}; 9505 9506 if (one_qsfp_read(ppd, dd->hfi1_id, 6, 9507 &qsfp_interrupt_status[0], 16) != 16) { 9508 dd_dev_info(dd, 9509 "%s: Failed to read status of QSFP module\n", 9510 __func__); 9511 } else { 9512 unsigned long flags; 9513 9514 handle_qsfp_error_conditions( 9515 ppd, qsfp_interrupt_status); 9516 spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags); 9517 ppd->qsfp_info.check_interrupt_flags = 0; 9518 spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock, 9519 flags); 9520 } 9521 } 9522 } 9523 9524 static void init_qsfp_int(struct hfi1_devdata *dd) 9525 { 9526 struct hfi1_pportdata *ppd = dd->pport; 9527 u64 qsfp_mask, cce_int_mask; 9528 const int qsfp1_int_smask = QSFP1_INT % 64; 9529 const int qsfp2_int_smask = QSFP2_INT % 64; 9530 9531 /* 9532 * disable QSFP1 interrupts for HFI1, QSFP2 interrupts for HFI0 9533 * Qsfp1Int and Qsfp2Int are adjacent bits in the same CSR, 9534 * therefore just one of QSFP1_INT/QSFP2_INT can be used to find 9535 * the index of the appropriate CSR in the CCEIntMask CSR array 9536 */ 9537 cce_int_mask = read_csr(dd, CCE_INT_MASK + 9538 (8 * (QSFP1_INT / 64))); 9539 if (dd->hfi1_id) { 9540 cce_int_mask &= ~((u64)1 << qsfp1_int_smask); 9541 write_csr(dd, CCE_INT_MASK + (8 * (QSFP1_INT / 64)), 9542 cce_int_mask); 9543 } else { 9544 cce_int_mask &= ~((u64)1 << qsfp2_int_smask); 9545 write_csr(dd, CCE_INT_MASK + (8 * (QSFP2_INT / 64)), 9546 cce_int_mask); 9547 } 9548 9549 qsfp_mask = (u64)(QSFP_HFI0_INT_N | QSFP_HFI0_MODPRST_N); 9550 /* Clear current status to avoid spurious interrupts */ 9551 write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_CLEAR : ASIC_QSFP1_CLEAR, 9552 qsfp_mask); 9553 write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_MASK : ASIC_QSFP1_MASK, 9554 qsfp_mask); 9555 9556 set_qsfp_int_n(ppd, 0); 9557 9558 /* Handle active low nature of INT_N and MODPRST_N pins */ 9559 if (qsfp_mod_present(ppd)) 9560 qsfp_mask &= ~(u64)QSFP_HFI0_MODPRST_N; 9561 write_csr(dd, 9562 dd->hfi1_id ? ASIC_QSFP2_INVERT : ASIC_QSFP1_INVERT, 9563 qsfp_mask); 9564 } 9565 9566 /* 9567 * Do a one-time initialize of the LCB block. 9568 */ 9569 static void init_lcb(struct hfi1_devdata *dd) 9570 { 9571 /* simulator does not correctly handle LCB cclk loopback, skip */ 9572 if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR) 9573 return; 9574 9575 /* the DC has been reset earlier in the driver load */ 9576 9577 /* set LCB for cclk loopback on the port */ 9578 write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0x01); 9579 write_csr(dd, DC_LCB_CFG_LANE_WIDTH, 0x00); 9580 write_csr(dd, DC_LCB_CFG_REINIT_AS_SLAVE, 0x00); 9581 write_csr(dd, DC_LCB_CFG_CNT_FOR_SKIP_STALL, 0x110); 9582 write_csr(dd, DC_LCB_CFG_CLK_CNTR, 0x08); 9583 write_csr(dd, DC_LCB_CFG_LOOPBACK, 0x02); 9584 write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0x00); 9585 } 9586 9587 /* 9588 * Perform a test read on the QSFP. Return 0 on success, -ERRNO 9589 * on error. 9590 */ 9591 static int test_qsfp_read(struct hfi1_pportdata *ppd) 9592 { 9593 int ret; 9594 u8 status; 9595 9596 /* 9597 * Report success if not a QSFP or, if it is a QSFP, but the cable is 9598 * not present 9599 */ 9600 if (ppd->port_type != PORT_TYPE_QSFP || !qsfp_mod_present(ppd)) 9601 return 0; 9602 9603 /* read byte 2, the status byte */ 9604 ret = one_qsfp_read(ppd, ppd->dd->hfi1_id, 2, &status, 1); 9605 if (ret < 0) 9606 return ret; 9607 if (ret != 1) 9608 return -EIO; 9609 9610 return 0; /* success */ 9611 } 9612 9613 /* 9614 * Values for QSFP retry. 9615 * 9616 * Give up after 10s (20 x 500ms). The overall timeout was empirically 9617 * arrived at from experience on a large cluster. 9618 */ 9619 #define MAX_QSFP_RETRIES 20 9620 #define QSFP_RETRY_WAIT 500 /* msec */ 9621 9622 /* 9623 * Try a QSFP read. If it fails, schedule a retry for later. 9624 * Called on first link activation after driver load. 9625 */ 9626 static void try_start_link(struct hfi1_pportdata *ppd) 9627 { 9628 if (test_qsfp_read(ppd)) { 9629 /* read failed */ 9630 if (ppd->qsfp_retry_count >= MAX_QSFP_RETRIES) { 9631 dd_dev_err(ppd->dd, "QSFP not responding, giving up\n"); 9632 return; 9633 } 9634 dd_dev_info(ppd->dd, 9635 "QSFP not responding, waiting and retrying %d\n", 9636 (int)ppd->qsfp_retry_count); 9637 ppd->qsfp_retry_count++; 9638 queue_delayed_work(ppd->hfi1_wq, &ppd->start_link_work, 9639 msecs_to_jiffies(QSFP_RETRY_WAIT)); 9640 return; 9641 } 9642 ppd->qsfp_retry_count = 0; 9643 9644 start_link(ppd); 9645 } 9646 9647 /* 9648 * Workqueue function to start the link after a delay. 9649 */ 9650 void handle_start_link(struct work_struct *work) 9651 { 9652 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata, 9653 start_link_work.work); 9654 try_start_link(ppd); 9655 } 9656 9657 int bringup_serdes(struct hfi1_pportdata *ppd) 9658 { 9659 struct hfi1_devdata *dd = ppd->dd; 9660 u64 guid; 9661 int ret; 9662 9663 if (HFI1_CAP_IS_KSET(EXTENDED_PSN)) 9664 add_rcvctrl(dd, RCV_CTRL_RCV_EXTENDED_PSN_ENABLE_SMASK); 9665 9666 guid = ppd->guids[HFI1_PORT_GUID_INDEX]; 9667 if (!guid) { 9668 if (dd->base_guid) 9669 guid = dd->base_guid + ppd->port - 1; 9670 ppd->guids[HFI1_PORT_GUID_INDEX] = guid; 9671 } 9672 9673 /* Set linkinit_reason on power up per OPA spec */ 9674 ppd->linkinit_reason = OPA_LINKINIT_REASON_LINKUP; 9675 9676 /* one-time init of the LCB */ 9677 init_lcb(dd); 9678 9679 if (loopback) { 9680 ret = init_loopback(dd); 9681 if (ret < 0) 9682 return ret; 9683 } 9684 9685 get_port_type(ppd); 9686 if (ppd->port_type == PORT_TYPE_QSFP) { 9687 set_qsfp_int_n(ppd, 0); 9688 wait_for_qsfp_init(ppd); 9689 set_qsfp_int_n(ppd, 1); 9690 } 9691 9692 try_start_link(ppd); 9693 return 0; 9694 } 9695 9696 void hfi1_quiet_serdes(struct hfi1_pportdata *ppd) 9697 { 9698 struct hfi1_devdata *dd = ppd->dd; 9699 9700 /* 9701 * Shut down the link and keep it down. First turn off that the 9702 * driver wants to allow the link to be up (driver_link_ready). 9703 * Then make sure the link is not automatically restarted 9704 * (link_enabled). Cancel any pending restart. And finally 9705 * go offline. 9706 */ 9707 ppd->driver_link_ready = 0; 9708 ppd->link_enabled = 0; 9709 9710 ppd->qsfp_retry_count = MAX_QSFP_RETRIES; /* prevent more retries */ 9711 flush_delayed_work(&ppd->start_link_work); 9712 cancel_delayed_work_sync(&ppd->start_link_work); 9713 9714 ppd->offline_disabled_reason = 9715 HFI1_ODR_MASK(OPA_LINKDOWN_REASON_SMA_DISABLED); 9716 set_link_down_reason(ppd, OPA_LINKDOWN_REASON_SMA_DISABLED, 0, 9717 OPA_LINKDOWN_REASON_SMA_DISABLED); 9718 set_link_state(ppd, HLS_DN_OFFLINE); 9719 9720 /* disable the port */ 9721 clear_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK); 9722 } 9723 9724 static inline int init_cpu_counters(struct hfi1_devdata *dd) 9725 { 9726 struct hfi1_pportdata *ppd; 9727 int i; 9728 9729 ppd = (struct hfi1_pportdata *)(dd + 1); 9730 for (i = 0; i < dd->num_pports; i++, ppd++) { 9731 ppd->ibport_data.rvp.rc_acks = NULL; 9732 ppd->ibport_data.rvp.rc_qacks = NULL; 9733 ppd->ibport_data.rvp.rc_acks = alloc_percpu(u64); 9734 ppd->ibport_data.rvp.rc_qacks = alloc_percpu(u64); 9735 ppd->ibport_data.rvp.rc_delayed_comp = alloc_percpu(u64); 9736 if (!ppd->ibport_data.rvp.rc_acks || 9737 !ppd->ibport_data.rvp.rc_delayed_comp || 9738 !ppd->ibport_data.rvp.rc_qacks) 9739 return -ENOMEM; 9740 } 9741 9742 return 0; 9743 } 9744 9745 static const char * const pt_names[] = { 9746 "expected", 9747 "eager", 9748 "invalid" 9749 }; 9750 9751 static const char *pt_name(u32 type) 9752 { 9753 return type >= ARRAY_SIZE(pt_names) ? "unknown" : pt_names[type]; 9754 } 9755 9756 /* 9757 * index is the index into the receive array 9758 */ 9759 void hfi1_put_tid(struct hfi1_devdata *dd, u32 index, 9760 u32 type, unsigned long pa, u16 order) 9761 { 9762 u64 reg; 9763 void __iomem *base = (dd->rcvarray_wc ? dd->rcvarray_wc : 9764 (dd->kregbase + RCV_ARRAY)); 9765 9766 if (!(dd->flags & HFI1_PRESENT)) 9767 goto done; 9768 9769 if (type == PT_INVALID) { 9770 pa = 0; 9771 } else if (type > PT_INVALID) { 9772 dd_dev_err(dd, 9773 "unexpected receive array type %u for index %u, not handled\n", 9774 type, index); 9775 goto done; 9776 } 9777 9778 hfi1_cdbg(TID, "type %s, index 0x%x, pa 0x%lx, bsize 0x%lx", 9779 pt_name(type), index, pa, (unsigned long)order); 9780 9781 #define RT_ADDR_SHIFT 12 /* 4KB kernel address boundary */ 9782 reg = RCV_ARRAY_RT_WRITE_ENABLE_SMASK 9783 | (u64)order << RCV_ARRAY_RT_BUF_SIZE_SHIFT 9784 | ((pa >> RT_ADDR_SHIFT) & RCV_ARRAY_RT_ADDR_MASK) 9785 << RCV_ARRAY_RT_ADDR_SHIFT; 9786 writeq(reg, base + (index * 8)); 9787 9788 if (type == PT_EAGER) 9789 /* 9790 * Eager entries are written one-by-one so we have to push them 9791 * after we write the entry. 9792 */ 9793 flush_wc(); 9794 done: 9795 return; 9796 } 9797 9798 void hfi1_clear_tids(struct hfi1_ctxtdata *rcd) 9799 { 9800 struct hfi1_devdata *dd = rcd->dd; 9801 u32 i; 9802 9803 /* this could be optimized */ 9804 for (i = rcd->eager_base; i < rcd->eager_base + 9805 rcd->egrbufs.alloced; i++) 9806 hfi1_put_tid(dd, i, PT_INVALID, 0, 0); 9807 9808 for (i = rcd->expected_base; 9809 i < rcd->expected_base + rcd->expected_count; i++) 9810 hfi1_put_tid(dd, i, PT_INVALID, 0, 0); 9811 } 9812 9813 struct ib_header *hfi1_get_msgheader( 9814 struct hfi1_devdata *dd, __le32 *rhf_addr) 9815 { 9816 u32 offset = rhf_hdrq_offset(rhf_to_cpu(rhf_addr)); 9817 9818 return (struct ib_header *) 9819 (rhf_addr - dd->rhf_offset + offset); 9820 } 9821 9822 static const char * const ib_cfg_name_strings[] = { 9823 "HFI1_IB_CFG_LIDLMC", 9824 "HFI1_IB_CFG_LWID_DG_ENB", 9825 "HFI1_IB_CFG_LWID_ENB", 9826 "HFI1_IB_CFG_LWID", 9827 "HFI1_IB_CFG_SPD_ENB", 9828 "HFI1_IB_CFG_SPD", 9829 "HFI1_IB_CFG_RXPOL_ENB", 9830 "HFI1_IB_CFG_LREV_ENB", 9831 "HFI1_IB_CFG_LINKLATENCY", 9832 "HFI1_IB_CFG_HRTBT", 9833 "HFI1_IB_CFG_OP_VLS", 9834 "HFI1_IB_CFG_VL_HIGH_CAP", 9835 "HFI1_IB_CFG_VL_LOW_CAP", 9836 "HFI1_IB_CFG_OVERRUN_THRESH", 9837 "HFI1_IB_CFG_PHYERR_THRESH", 9838 "HFI1_IB_CFG_LINKDEFAULT", 9839 "HFI1_IB_CFG_PKEYS", 9840 "HFI1_IB_CFG_MTU", 9841 "HFI1_IB_CFG_LSTATE", 9842 "HFI1_IB_CFG_VL_HIGH_LIMIT", 9843 "HFI1_IB_CFG_PMA_TICKS", 9844 "HFI1_IB_CFG_PORT" 9845 }; 9846 9847 static const char *ib_cfg_name(int which) 9848 { 9849 if (which < 0 || which >= ARRAY_SIZE(ib_cfg_name_strings)) 9850 return "invalid"; 9851 return ib_cfg_name_strings[which]; 9852 } 9853 9854 int hfi1_get_ib_cfg(struct hfi1_pportdata *ppd, int which) 9855 { 9856 struct hfi1_devdata *dd = ppd->dd; 9857 int val = 0; 9858 9859 switch (which) { 9860 case HFI1_IB_CFG_LWID_ENB: /* allowed Link-width */ 9861 val = ppd->link_width_enabled; 9862 break; 9863 case HFI1_IB_CFG_LWID: /* currently active Link-width */ 9864 val = ppd->link_width_active; 9865 break; 9866 case HFI1_IB_CFG_SPD_ENB: /* allowed Link speeds */ 9867 val = ppd->link_speed_enabled; 9868 break; 9869 case HFI1_IB_CFG_SPD: /* current Link speed */ 9870 val = ppd->link_speed_active; 9871 break; 9872 9873 case HFI1_IB_CFG_RXPOL_ENB: /* Auto-RX-polarity enable */ 9874 case HFI1_IB_CFG_LREV_ENB: /* Auto-Lane-reversal enable */ 9875 case HFI1_IB_CFG_LINKLATENCY: 9876 goto unimplemented; 9877 9878 case HFI1_IB_CFG_OP_VLS: 9879 val = ppd->vls_operational; 9880 break; 9881 case HFI1_IB_CFG_VL_HIGH_CAP: /* VL arb high priority table size */ 9882 val = VL_ARB_HIGH_PRIO_TABLE_SIZE; 9883 break; 9884 case HFI1_IB_CFG_VL_LOW_CAP: /* VL arb low priority table size */ 9885 val = VL_ARB_LOW_PRIO_TABLE_SIZE; 9886 break; 9887 case HFI1_IB_CFG_OVERRUN_THRESH: /* IB overrun threshold */ 9888 val = ppd->overrun_threshold; 9889 break; 9890 case HFI1_IB_CFG_PHYERR_THRESH: /* IB PHY error threshold */ 9891 val = ppd->phy_error_threshold; 9892 break; 9893 case HFI1_IB_CFG_LINKDEFAULT: /* IB link default (sleep/poll) */ 9894 val = dd->link_default; 9895 break; 9896 9897 case HFI1_IB_CFG_HRTBT: /* Heartbeat off/enable/auto */ 9898 case HFI1_IB_CFG_PMA_TICKS: 9899 default: 9900 unimplemented: 9901 if (HFI1_CAP_IS_KSET(PRINT_UNIMPL)) 9902 dd_dev_info( 9903 dd, 9904 "%s: which %s: not implemented\n", 9905 __func__, 9906 ib_cfg_name(which)); 9907 break; 9908 } 9909 9910 return val; 9911 } 9912 9913 /* 9914 * The largest MAD packet size. 9915 */ 9916 #define MAX_MAD_PACKET 2048 9917 9918 /* 9919 * Return the maximum header bytes that can go on the _wire_ 9920 * for this device. This count includes the ICRC which is 9921 * not part of the packet held in memory but it is appended 9922 * by the HW. 9923 * This is dependent on the device's receive header entry size. 9924 * HFI allows this to be set per-receive context, but the 9925 * driver presently enforces a global value. 9926 */ 9927 u32 lrh_max_header_bytes(struct hfi1_devdata *dd) 9928 { 9929 /* 9930 * The maximum non-payload (MTU) bytes in LRH.PktLen are 9931 * the Receive Header Entry Size minus the PBC (or RHF) size 9932 * plus one DW for the ICRC appended by HW. 9933 * 9934 * dd->rcd[0].rcvhdrqentsize is in DW. 9935 * We use rcd[0] as all context will have the same value. Also, 9936 * the first kernel context would have been allocated by now so 9937 * we are guaranteed a valid value. 9938 */ 9939 return (dd->rcd[0]->rcvhdrqentsize - 2/*PBC/RHF*/ + 1/*ICRC*/) << 2; 9940 } 9941 9942 /* 9943 * Set Send Length 9944 * @ppd - per port data 9945 * 9946 * Set the MTU by limiting how many DWs may be sent. The SendLenCheck* 9947 * registers compare against LRH.PktLen, so use the max bytes included 9948 * in the LRH. 9949 * 9950 * This routine changes all VL values except VL15, which it maintains at 9951 * the same value. 9952 */ 9953 static void set_send_length(struct hfi1_pportdata *ppd) 9954 { 9955 struct hfi1_devdata *dd = ppd->dd; 9956 u32 max_hb = lrh_max_header_bytes(dd), dcmtu; 9957 u32 maxvlmtu = dd->vld[15].mtu; 9958 u64 len1 = 0, len2 = (((dd->vld[15].mtu + max_hb) >> 2) 9959 & SEND_LEN_CHECK1_LEN_VL15_MASK) << 9960 SEND_LEN_CHECK1_LEN_VL15_SHIFT; 9961 int i, j; 9962 u32 thres; 9963 9964 for (i = 0; i < ppd->vls_supported; i++) { 9965 if (dd->vld[i].mtu > maxvlmtu) 9966 maxvlmtu = dd->vld[i].mtu; 9967 if (i <= 3) 9968 len1 |= (((dd->vld[i].mtu + max_hb) >> 2) 9969 & SEND_LEN_CHECK0_LEN_VL0_MASK) << 9970 ((i % 4) * SEND_LEN_CHECK0_LEN_VL1_SHIFT); 9971 else 9972 len2 |= (((dd->vld[i].mtu + max_hb) >> 2) 9973 & SEND_LEN_CHECK1_LEN_VL4_MASK) << 9974 ((i % 4) * SEND_LEN_CHECK1_LEN_VL5_SHIFT); 9975 } 9976 write_csr(dd, SEND_LEN_CHECK0, len1); 9977 write_csr(dd, SEND_LEN_CHECK1, len2); 9978 /* adjust kernel credit return thresholds based on new MTUs */ 9979 /* all kernel receive contexts have the same hdrqentsize */ 9980 for (i = 0; i < ppd->vls_supported; i++) { 9981 thres = min(sc_percent_to_threshold(dd->vld[i].sc, 50), 9982 sc_mtu_to_threshold(dd->vld[i].sc, 9983 dd->vld[i].mtu, 9984 dd->rcd[0]->rcvhdrqentsize)); 9985 for (j = 0; j < INIT_SC_PER_VL; j++) 9986 sc_set_cr_threshold( 9987 pio_select_send_context_vl(dd, j, i), 9988 thres); 9989 } 9990 thres = min(sc_percent_to_threshold(dd->vld[15].sc, 50), 9991 sc_mtu_to_threshold(dd->vld[15].sc, 9992 dd->vld[15].mtu, 9993 dd->rcd[0]->rcvhdrqentsize)); 9994 sc_set_cr_threshold(dd->vld[15].sc, thres); 9995 9996 /* Adjust maximum MTU for the port in DC */ 9997 dcmtu = maxvlmtu == 10240 ? DCC_CFG_PORT_MTU_CAP_10240 : 9998 (ilog2(maxvlmtu >> 8) + 1); 9999 len1 = read_csr(ppd->dd, DCC_CFG_PORT_CONFIG); 10000 len1 &= ~DCC_CFG_PORT_CONFIG_MTU_CAP_SMASK; 10001 len1 |= ((u64)dcmtu & DCC_CFG_PORT_CONFIG_MTU_CAP_MASK) << 10002 DCC_CFG_PORT_CONFIG_MTU_CAP_SHIFT; 10003 write_csr(ppd->dd, DCC_CFG_PORT_CONFIG, len1); 10004 } 10005 10006 static void set_lidlmc(struct hfi1_pportdata *ppd) 10007 { 10008 int i; 10009 u64 sreg = 0; 10010 struct hfi1_devdata *dd = ppd->dd; 10011 u32 mask = ~((1U << ppd->lmc) - 1); 10012 u64 c1 = read_csr(ppd->dd, DCC_CFG_PORT_CONFIG1); 10013 10014 c1 &= ~(DCC_CFG_PORT_CONFIG1_TARGET_DLID_SMASK 10015 | DCC_CFG_PORT_CONFIG1_DLID_MASK_SMASK); 10016 c1 |= ((ppd->lid & DCC_CFG_PORT_CONFIG1_TARGET_DLID_MASK) 10017 << DCC_CFG_PORT_CONFIG1_TARGET_DLID_SHIFT) | 10018 ((mask & DCC_CFG_PORT_CONFIG1_DLID_MASK_MASK) 10019 << DCC_CFG_PORT_CONFIG1_DLID_MASK_SHIFT); 10020 write_csr(ppd->dd, DCC_CFG_PORT_CONFIG1, c1); 10021 10022 /* 10023 * Iterate over all the send contexts and set their SLID check 10024 */ 10025 sreg = ((mask & SEND_CTXT_CHECK_SLID_MASK_MASK) << 10026 SEND_CTXT_CHECK_SLID_MASK_SHIFT) | 10027 (((ppd->lid & mask) & SEND_CTXT_CHECK_SLID_VALUE_MASK) << 10028 SEND_CTXT_CHECK_SLID_VALUE_SHIFT); 10029 10030 for (i = 0; i < dd->chip_send_contexts; i++) { 10031 hfi1_cdbg(LINKVERB, "SendContext[%d].SLID_CHECK = 0x%x", 10032 i, (u32)sreg); 10033 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_SLID, sreg); 10034 } 10035 10036 /* Now we have to do the same thing for the sdma engines */ 10037 sdma_update_lmc(dd, mask, ppd->lid); 10038 } 10039 10040 static int wait_phy_linkstate(struct hfi1_devdata *dd, u32 state, u32 msecs) 10041 { 10042 unsigned long timeout; 10043 u32 curr_state; 10044 10045 timeout = jiffies + msecs_to_jiffies(msecs); 10046 while (1) { 10047 curr_state = read_physical_state(dd); 10048 if (curr_state == state) 10049 break; 10050 if (time_after(jiffies, timeout)) { 10051 dd_dev_err(dd, 10052 "timeout waiting for phy link state 0x%x, current state is 0x%x\n", 10053 state, curr_state); 10054 return -ETIMEDOUT; 10055 } 10056 usleep_range(1950, 2050); /* sleep 2ms-ish */ 10057 } 10058 10059 return 0; 10060 } 10061 10062 static const char *state_completed_string(u32 completed) 10063 { 10064 static const char * const state_completed[] = { 10065 "EstablishComm", 10066 "OptimizeEQ", 10067 "VerifyCap" 10068 }; 10069 10070 if (completed < ARRAY_SIZE(state_completed)) 10071 return state_completed[completed]; 10072 10073 return "unknown"; 10074 } 10075 10076 static const char all_lanes_dead_timeout_expired[] = 10077 "All lanes were inactive – was the interconnect media removed?"; 10078 static const char tx_out_of_policy[] = 10079 "Passing lanes on local port do not meet the local link width policy"; 10080 static const char no_state_complete[] = 10081 "State timeout occurred before link partner completed the state"; 10082 static const char * const state_complete_reasons[] = { 10083 [0x00] = "Reason unknown", 10084 [0x01] = "Link was halted by driver, refer to LinkDownReason", 10085 [0x02] = "Link partner reported failure", 10086 [0x10] = "Unable to achieve frame sync on any lane", 10087 [0x11] = 10088 "Unable to find a common bit rate with the link partner", 10089 [0x12] = 10090 "Unable to achieve frame sync on sufficient lanes to meet the local link width policy", 10091 [0x13] = 10092 "Unable to identify preset equalization on sufficient lanes to meet the local link width policy", 10093 [0x14] = no_state_complete, 10094 [0x15] = 10095 "State timeout occurred before link partner identified equalization presets", 10096 [0x16] = 10097 "Link partner completed the EstablishComm state, but the passing lanes do not meet the local link width policy", 10098 [0x17] = tx_out_of_policy, 10099 [0x20] = all_lanes_dead_timeout_expired, 10100 [0x21] = 10101 "Unable to achieve acceptable BER on sufficient lanes to meet the local link width policy", 10102 [0x22] = no_state_complete, 10103 [0x23] = 10104 "Link partner completed the OptimizeEq state, but the passing lanes do not meet the local link width policy", 10105 [0x24] = tx_out_of_policy, 10106 [0x30] = all_lanes_dead_timeout_expired, 10107 [0x31] = 10108 "State timeout occurred waiting for host to process received frames", 10109 [0x32] = no_state_complete, 10110 [0x33] = 10111 "Link partner completed the VerifyCap state, but the passing lanes do not meet the local link width policy", 10112 [0x34] = tx_out_of_policy, 10113 }; 10114 10115 static const char *state_complete_reason_code_string(struct hfi1_pportdata *ppd, 10116 u32 code) 10117 { 10118 const char *str = NULL; 10119 10120 if (code < ARRAY_SIZE(state_complete_reasons)) 10121 str = state_complete_reasons[code]; 10122 10123 if (str) 10124 return str; 10125 return "Reserved"; 10126 } 10127 10128 /* describe the given last state complete frame */ 10129 static void decode_state_complete(struct hfi1_pportdata *ppd, u32 frame, 10130 const char *prefix) 10131 { 10132 struct hfi1_devdata *dd = ppd->dd; 10133 u32 success; 10134 u32 state; 10135 u32 reason; 10136 u32 lanes; 10137 10138 /* 10139 * Decode frame: 10140 * [ 0: 0] - success 10141 * [ 3: 1] - state 10142 * [ 7: 4] - next state timeout 10143 * [15: 8] - reason code 10144 * [31:16] - lanes 10145 */ 10146 success = frame & 0x1; 10147 state = (frame >> 1) & 0x7; 10148 reason = (frame >> 8) & 0xff; 10149 lanes = (frame >> 16) & 0xffff; 10150 10151 dd_dev_err(dd, "Last %s LNI state complete frame 0x%08x:\n", 10152 prefix, frame); 10153 dd_dev_err(dd, " last reported state state: %s (0x%x)\n", 10154 state_completed_string(state), state); 10155 dd_dev_err(dd, " state successfully completed: %s\n", 10156 success ? "yes" : "no"); 10157 dd_dev_err(dd, " fail reason 0x%x: %s\n", 10158 reason, state_complete_reason_code_string(ppd, reason)); 10159 dd_dev_err(dd, " passing lane mask: 0x%x", lanes); 10160 } 10161 10162 /* 10163 * Read the last state complete frames and explain them. This routine 10164 * expects to be called if the link went down during link negotiation 10165 * and initialization (LNI). That is, anywhere between polling and link up. 10166 */ 10167 static void check_lni_states(struct hfi1_pportdata *ppd) 10168 { 10169 u32 last_local_state; 10170 u32 last_remote_state; 10171 10172 read_last_local_state(ppd->dd, &last_local_state); 10173 read_last_remote_state(ppd->dd, &last_remote_state); 10174 10175 /* 10176 * Don't report anything if there is nothing to report. A value of 10177 * 0 means the link was taken down while polling and there was no 10178 * training in-process. 10179 */ 10180 if (last_local_state == 0 && last_remote_state == 0) 10181 return; 10182 10183 decode_state_complete(ppd, last_local_state, "transmitted"); 10184 decode_state_complete(ppd, last_remote_state, "received"); 10185 } 10186 10187 /* wait for wait_ms for LINK_TRANSFER_ACTIVE to go to 1 */ 10188 static int wait_link_transfer_active(struct hfi1_devdata *dd, int wait_ms) 10189 { 10190 u64 reg; 10191 unsigned long timeout; 10192 10193 /* watch LCB_STS_LINK_TRANSFER_ACTIVE */ 10194 timeout = jiffies + msecs_to_jiffies(wait_ms); 10195 while (1) { 10196 reg = read_csr(dd, DC_LCB_STS_LINK_TRANSFER_ACTIVE); 10197 if (reg) 10198 break; 10199 if (time_after(jiffies, timeout)) { 10200 dd_dev_err(dd, 10201 "timeout waiting for LINK_TRANSFER_ACTIVE\n"); 10202 return -ETIMEDOUT; 10203 } 10204 udelay(2); 10205 } 10206 return 0; 10207 } 10208 10209 /* called when the logical link state is not down as it should be */ 10210 static void force_logical_link_state_down(struct hfi1_pportdata *ppd) 10211 { 10212 struct hfi1_devdata *dd = ppd->dd; 10213 10214 /* 10215 * Bring link up in LCB loopback 10216 */ 10217 write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 1); 10218 write_csr(dd, DC_LCB_CFG_IGNORE_LOST_RCLK, 10219 DC_LCB_CFG_IGNORE_LOST_RCLK_EN_SMASK); 10220 10221 write_csr(dd, DC_LCB_CFG_LANE_WIDTH, 0); 10222 write_csr(dd, DC_LCB_CFG_REINIT_AS_SLAVE, 0); 10223 write_csr(dd, DC_LCB_CFG_CNT_FOR_SKIP_STALL, 0x110); 10224 write_csr(dd, DC_LCB_CFG_LOOPBACK, 0x2); 10225 10226 write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0); 10227 (void)read_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET); 10228 udelay(3); 10229 write_csr(dd, DC_LCB_CFG_ALLOW_LINK_UP, 1); 10230 write_csr(dd, DC_LCB_CFG_RUN, 1ull << DC_LCB_CFG_RUN_EN_SHIFT); 10231 10232 wait_link_transfer_active(dd, 100); 10233 10234 /* 10235 * Bring the link down again. 10236 */ 10237 write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 1); 10238 write_csr(dd, DC_LCB_CFG_ALLOW_LINK_UP, 0); 10239 write_csr(dd, DC_LCB_CFG_IGNORE_LOST_RCLK, 0); 10240 10241 /* call again to adjust ppd->statusp, if needed */ 10242 get_logical_state(ppd); 10243 } 10244 10245 /* 10246 * Helper for set_link_state(). Do not call except from that routine. 10247 * Expects ppd->hls_mutex to be held. 10248 * 10249 * @rem_reason value to be sent to the neighbor 10250 * 10251 * LinkDownReasons only set if transition succeeds. 10252 */ 10253 static int goto_offline(struct hfi1_pportdata *ppd, u8 rem_reason) 10254 { 10255 struct hfi1_devdata *dd = ppd->dd; 10256 u32 pstate, previous_state; 10257 int ret; 10258 int do_transition; 10259 int do_wait; 10260 10261 update_lcb_cache(dd); 10262 10263 previous_state = ppd->host_link_state; 10264 ppd->host_link_state = HLS_GOING_OFFLINE; 10265 pstate = read_physical_state(dd); 10266 if (pstate == PLS_OFFLINE) { 10267 do_transition = 0; /* in right state */ 10268 do_wait = 0; /* ...no need to wait */ 10269 } else if ((pstate & 0xf0) == PLS_OFFLINE) { 10270 do_transition = 0; /* in an offline transient state */ 10271 do_wait = 1; /* ...wait for it to settle */ 10272 } else { 10273 do_transition = 1; /* need to move to offline */ 10274 do_wait = 1; /* ...will need to wait */ 10275 } 10276 10277 if (do_transition) { 10278 ret = set_physical_link_state(dd, 10279 (rem_reason << 8) | PLS_OFFLINE); 10280 10281 if (ret != HCMD_SUCCESS) { 10282 dd_dev_err(dd, 10283 "Failed to transition to Offline link state, return %d\n", 10284 ret); 10285 return -EINVAL; 10286 } 10287 if (ppd->offline_disabled_reason == 10288 HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE)) 10289 ppd->offline_disabled_reason = 10290 HFI1_ODR_MASK(OPA_LINKDOWN_REASON_TRANSIENT); 10291 } 10292 10293 if (do_wait) { 10294 /* it can take a while for the link to go down */ 10295 ret = wait_phy_linkstate(dd, PLS_OFFLINE, 10000); 10296 if (ret < 0) 10297 return ret; 10298 } 10299 10300 /* 10301 * Now in charge of LCB - must be after the physical state is 10302 * offline.quiet and before host_link_state is changed. 10303 */ 10304 set_host_lcb_access(dd); 10305 write_csr(dd, DC_LCB_ERR_EN, ~0ull); /* watch LCB errors */ 10306 10307 /* make sure the logical state is also down */ 10308 ret = wait_logical_linkstate(ppd, IB_PORT_DOWN, 1000); 10309 if (ret) 10310 force_logical_link_state_down(ppd); 10311 10312 ppd->host_link_state = HLS_LINK_COOLDOWN; /* LCB access allowed */ 10313 10314 if (ppd->port_type == PORT_TYPE_QSFP && 10315 ppd->qsfp_info.limiting_active && 10316 qsfp_mod_present(ppd)) { 10317 int ret; 10318 10319 ret = acquire_chip_resource(dd, qsfp_resource(dd), QSFP_WAIT); 10320 if (ret == 0) { 10321 set_qsfp_tx(ppd, 0); 10322 release_chip_resource(dd, qsfp_resource(dd)); 10323 } else { 10324 /* not fatal, but should warn */ 10325 dd_dev_err(dd, 10326 "Unable to acquire lock to turn off QSFP TX\n"); 10327 } 10328 } 10329 10330 /* 10331 * The LNI has a mandatory wait time after the physical state 10332 * moves to Offline.Quiet. The wait time may be different 10333 * depending on how the link went down. The 8051 firmware 10334 * will observe the needed wait time and only move to ready 10335 * when that is completed. The largest of the quiet timeouts 10336 * is 6s, so wait that long and then at least 0.5s more for 10337 * other transitions, and another 0.5s for a buffer. 10338 */ 10339 ret = wait_fm_ready(dd, 7000); 10340 if (ret) { 10341 dd_dev_err(dd, 10342 "After going offline, timed out waiting for the 8051 to become ready to accept host requests\n"); 10343 /* state is really offline, so make it so */ 10344 ppd->host_link_state = HLS_DN_OFFLINE; 10345 return ret; 10346 } 10347 10348 /* 10349 * The state is now offline and the 8051 is ready to accept host 10350 * requests. 10351 * - change our state 10352 * - notify others if we were previously in a linkup state 10353 */ 10354 ppd->host_link_state = HLS_DN_OFFLINE; 10355 if (previous_state & HLS_UP) { 10356 /* went down while link was up */ 10357 handle_linkup_change(dd, 0); 10358 } else if (previous_state 10359 & (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) { 10360 /* went down while attempting link up */ 10361 check_lni_states(ppd); 10362 } 10363 10364 /* the active link width (downgrade) is 0 on link down */ 10365 ppd->link_width_active = 0; 10366 ppd->link_width_downgrade_tx_active = 0; 10367 ppd->link_width_downgrade_rx_active = 0; 10368 ppd->current_egress_rate = 0; 10369 return 0; 10370 } 10371 10372 /* return the link state name */ 10373 static const char *link_state_name(u32 state) 10374 { 10375 const char *name; 10376 int n = ilog2(state); 10377 static const char * const names[] = { 10378 [__HLS_UP_INIT_BP] = "INIT", 10379 [__HLS_UP_ARMED_BP] = "ARMED", 10380 [__HLS_UP_ACTIVE_BP] = "ACTIVE", 10381 [__HLS_DN_DOWNDEF_BP] = "DOWNDEF", 10382 [__HLS_DN_POLL_BP] = "POLL", 10383 [__HLS_DN_DISABLE_BP] = "DISABLE", 10384 [__HLS_DN_OFFLINE_BP] = "OFFLINE", 10385 [__HLS_VERIFY_CAP_BP] = "VERIFY_CAP", 10386 [__HLS_GOING_UP_BP] = "GOING_UP", 10387 [__HLS_GOING_OFFLINE_BP] = "GOING_OFFLINE", 10388 [__HLS_LINK_COOLDOWN_BP] = "LINK_COOLDOWN" 10389 }; 10390 10391 name = n < ARRAY_SIZE(names) ? names[n] : NULL; 10392 return name ? name : "unknown"; 10393 } 10394 10395 /* return the link state reason name */ 10396 static const char *link_state_reason_name(struct hfi1_pportdata *ppd, u32 state) 10397 { 10398 if (state == HLS_UP_INIT) { 10399 switch (ppd->linkinit_reason) { 10400 case OPA_LINKINIT_REASON_LINKUP: 10401 return "(LINKUP)"; 10402 case OPA_LINKINIT_REASON_FLAPPING: 10403 return "(FLAPPING)"; 10404 case OPA_LINKINIT_OUTSIDE_POLICY: 10405 return "(OUTSIDE_POLICY)"; 10406 case OPA_LINKINIT_QUARANTINED: 10407 return "(QUARANTINED)"; 10408 case OPA_LINKINIT_INSUFIC_CAPABILITY: 10409 return "(INSUFIC_CAPABILITY)"; 10410 default: 10411 break; 10412 } 10413 } 10414 return ""; 10415 } 10416 10417 /* 10418 * driver_physical_state - convert the driver's notion of a port's 10419 * state (an HLS_*) into a physical state (a {IB,OPA}_PORTPHYSSTATE_*). 10420 * Return -1 (converted to a u32) to indicate error. 10421 */ 10422 u32 driver_physical_state(struct hfi1_pportdata *ppd) 10423 { 10424 switch (ppd->host_link_state) { 10425 case HLS_UP_INIT: 10426 case HLS_UP_ARMED: 10427 case HLS_UP_ACTIVE: 10428 return IB_PORTPHYSSTATE_LINKUP; 10429 case HLS_DN_POLL: 10430 return IB_PORTPHYSSTATE_POLLING; 10431 case HLS_DN_DISABLE: 10432 return IB_PORTPHYSSTATE_DISABLED; 10433 case HLS_DN_OFFLINE: 10434 return OPA_PORTPHYSSTATE_OFFLINE; 10435 case HLS_VERIFY_CAP: 10436 return IB_PORTPHYSSTATE_POLLING; 10437 case HLS_GOING_UP: 10438 return IB_PORTPHYSSTATE_POLLING; 10439 case HLS_GOING_OFFLINE: 10440 return OPA_PORTPHYSSTATE_OFFLINE; 10441 case HLS_LINK_COOLDOWN: 10442 return OPA_PORTPHYSSTATE_OFFLINE; 10443 case HLS_DN_DOWNDEF: 10444 default: 10445 dd_dev_err(ppd->dd, "invalid host_link_state 0x%x\n", 10446 ppd->host_link_state); 10447 return -1; 10448 } 10449 } 10450 10451 /* 10452 * driver_logical_state - convert the driver's notion of a port's 10453 * state (an HLS_*) into a logical state (a IB_PORT_*). Return -1 10454 * (converted to a u32) to indicate error. 10455 */ 10456 u32 driver_logical_state(struct hfi1_pportdata *ppd) 10457 { 10458 if (ppd->host_link_state && (ppd->host_link_state & HLS_DOWN)) 10459 return IB_PORT_DOWN; 10460 10461 switch (ppd->host_link_state & HLS_UP) { 10462 case HLS_UP_INIT: 10463 return IB_PORT_INIT; 10464 case HLS_UP_ARMED: 10465 return IB_PORT_ARMED; 10466 case HLS_UP_ACTIVE: 10467 return IB_PORT_ACTIVE; 10468 default: 10469 dd_dev_err(ppd->dd, "invalid host_link_state 0x%x\n", 10470 ppd->host_link_state); 10471 return -1; 10472 } 10473 } 10474 10475 void set_link_down_reason(struct hfi1_pportdata *ppd, u8 lcl_reason, 10476 u8 neigh_reason, u8 rem_reason) 10477 { 10478 if (ppd->local_link_down_reason.latest == 0 && 10479 ppd->neigh_link_down_reason.latest == 0) { 10480 ppd->local_link_down_reason.latest = lcl_reason; 10481 ppd->neigh_link_down_reason.latest = neigh_reason; 10482 ppd->remote_link_down_reason = rem_reason; 10483 } 10484 } 10485 10486 /* 10487 * Change the physical and/or logical link state. 10488 * 10489 * Do not call this routine while inside an interrupt. It contains 10490 * calls to routines that can take multiple seconds to finish. 10491 * 10492 * Returns 0 on success, -errno on failure. 10493 */ 10494 int set_link_state(struct hfi1_pportdata *ppd, u32 state) 10495 { 10496 struct hfi1_devdata *dd = ppd->dd; 10497 struct ib_event event = {.device = NULL}; 10498 int ret1, ret = 0; 10499 int orig_new_state, poll_bounce; 10500 10501 mutex_lock(&ppd->hls_lock); 10502 10503 orig_new_state = state; 10504 if (state == HLS_DN_DOWNDEF) 10505 state = dd->link_default; 10506 10507 /* interpret poll -> poll as a link bounce */ 10508 poll_bounce = ppd->host_link_state == HLS_DN_POLL && 10509 state == HLS_DN_POLL; 10510 10511 dd_dev_info(dd, "%s: current %s, new %s %s%s\n", __func__, 10512 link_state_name(ppd->host_link_state), 10513 link_state_name(orig_new_state), 10514 poll_bounce ? "(bounce) " : "", 10515 link_state_reason_name(ppd, state)); 10516 10517 /* 10518 * If we're going to a (HLS_*) link state that implies the logical 10519 * link state is neither of (IB_PORT_ARMED, IB_PORT_ACTIVE), then 10520 * reset is_sm_config_started to 0. 10521 */ 10522 if (!(state & (HLS_UP_ARMED | HLS_UP_ACTIVE))) 10523 ppd->is_sm_config_started = 0; 10524 10525 /* 10526 * Do nothing if the states match. Let a poll to poll link bounce 10527 * go through. 10528 */ 10529 if (ppd->host_link_state == state && !poll_bounce) 10530 goto done; 10531 10532 switch (state) { 10533 case HLS_UP_INIT: 10534 if (ppd->host_link_state == HLS_DN_POLL && 10535 (quick_linkup || dd->icode == ICODE_FUNCTIONAL_SIMULATOR)) { 10536 /* 10537 * Quick link up jumps from polling to here. 10538 * 10539 * Whether in normal or loopback mode, the 10540 * simulator jumps from polling to link up. 10541 * Accept that here. 10542 */ 10543 /* OK */ 10544 } else if (ppd->host_link_state != HLS_GOING_UP) { 10545 goto unexpected; 10546 } 10547 10548 ret = wait_logical_linkstate(ppd, IB_PORT_INIT, 1000); 10549 if (ret) { 10550 dd_dev_err(dd, 10551 "%s: logical state did not change to INIT\n", 10552 __func__); 10553 } else { 10554 /* clear old transient LINKINIT_REASON code */ 10555 if (ppd->linkinit_reason >= OPA_LINKINIT_REASON_CLEAR) 10556 ppd->linkinit_reason = 10557 OPA_LINKINIT_REASON_LINKUP; 10558 10559 /* enable the port */ 10560 add_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK); 10561 10562 handle_linkup_change(dd, 1); 10563 ppd->host_link_state = HLS_UP_INIT; 10564 } 10565 break; 10566 case HLS_UP_ARMED: 10567 if (ppd->host_link_state != HLS_UP_INIT) 10568 goto unexpected; 10569 10570 ppd->host_link_state = HLS_UP_ARMED; 10571 set_logical_state(dd, LSTATE_ARMED); 10572 ret = wait_logical_linkstate(ppd, IB_PORT_ARMED, 1000); 10573 if (ret) { 10574 /* logical state didn't change, stay at init */ 10575 ppd->host_link_state = HLS_UP_INIT; 10576 dd_dev_err(dd, 10577 "%s: logical state did not change to ARMED\n", 10578 __func__); 10579 } 10580 /* 10581 * The simulator does not currently implement SMA messages, 10582 * so neighbor_normal is not set. Set it here when we first 10583 * move to Armed. 10584 */ 10585 if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR) 10586 ppd->neighbor_normal = 1; 10587 break; 10588 case HLS_UP_ACTIVE: 10589 if (ppd->host_link_state != HLS_UP_ARMED) 10590 goto unexpected; 10591 10592 ppd->host_link_state = HLS_UP_ACTIVE; 10593 set_logical_state(dd, LSTATE_ACTIVE); 10594 ret = wait_logical_linkstate(ppd, IB_PORT_ACTIVE, 1000); 10595 if (ret) { 10596 /* logical state didn't change, stay at armed */ 10597 ppd->host_link_state = HLS_UP_ARMED; 10598 dd_dev_err(dd, 10599 "%s: logical state did not change to ACTIVE\n", 10600 __func__); 10601 } else { 10602 /* tell all engines to go running */ 10603 sdma_all_running(dd); 10604 10605 /* Signal the IB layer that the port has went active */ 10606 event.device = &dd->verbs_dev.rdi.ibdev; 10607 event.element.port_num = ppd->port; 10608 event.event = IB_EVENT_PORT_ACTIVE; 10609 } 10610 break; 10611 case HLS_DN_POLL: 10612 if ((ppd->host_link_state == HLS_DN_DISABLE || 10613 ppd->host_link_state == HLS_DN_OFFLINE) && 10614 dd->dc_shutdown) 10615 dc_start(dd); 10616 /* Hand LED control to the DC */ 10617 write_csr(dd, DCC_CFG_LED_CNTRL, 0); 10618 10619 if (ppd->host_link_state != HLS_DN_OFFLINE) { 10620 u8 tmp = ppd->link_enabled; 10621 10622 ret = goto_offline(ppd, ppd->remote_link_down_reason); 10623 if (ret) { 10624 ppd->link_enabled = tmp; 10625 break; 10626 } 10627 ppd->remote_link_down_reason = 0; 10628 10629 if (ppd->driver_link_ready) 10630 ppd->link_enabled = 1; 10631 } 10632 10633 set_all_slowpath(ppd->dd); 10634 ret = set_local_link_attributes(ppd); 10635 if (ret) 10636 break; 10637 10638 ppd->port_error_action = 0; 10639 ppd->host_link_state = HLS_DN_POLL; 10640 10641 if (quick_linkup) { 10642 /* quick linkup does not go into polling */ 10643 ret = do_quick_linkup(dd); 10644 } else { 10645 ret1 = set_physical_link_state(dd, PLS_POLLING); 10646 if (ret1 != HCMD_SUCCESS) { 10647 dd_dev_err(dd, 10648 "Failed to transition to Polling link state, return 0x%x\n", 10649 ret1); 10650 ret = -EINVAL; 10651 } 10652 } 10653 ppd->offline_disabled_reason = 10654 HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE); 10655 /* 10656 * If an error occurred above, go back to offline. The 10657 * caller may reschedule another attempt. 10658 */ 10659 if (ret) 10660 goto_offline(ppd, 0); 10661 break; 10662 case HLS_DN_DISABLE: 10663 /* link is disabled */ 10664 ppd->link_enabled = 0; 10665 10666 /* allow any state to transition to disabled */ 10667 10668 /* must transition to offline first */ 10669 if (ppd->host_link_state != HLS_DN_OFFLINE) { 10670 ret = goto_offline(ppd, ppd->remote_link_down_reason); 10671 if (ret) 10672 break; 10673 ppd->remote_link_down_reason = 0; 10674 } 10675 10676 if (!dd->dc_shutdown) { 10677 ret1 = set_physical_link_state(dd, PLS_DISABLED); 10678 if (ret1 != HCMD_SUCCESS) { 10679 dd_dev_err(dd, 10680 "Failed to transition to Disabled link state, return 0x%x\n", 10681 ret1); 10682 ret = -EINVAL; 10683 break; 10684 } 10685 dc_shutdown(dd); 10686 } 10687 ppd->host_link_state = HLS_DN_DISABLE; 10688 break; 10689 case HLS_DN_OFFLINE: 10690 if (ppd->host_link_state == HLS_DN_DISABLE) 10691 dc_start(dd); 10692 10693 /* allow any state to transition to offline */ 10694 ret = goto_offline(ppd, ppd->remote_link_down_reason); 10695 if (!ret) 10696 ppd->remote_link_down_reason = 0; 10697 break; 10698 case HLS_VERIFY_CAP: 10699 if (ppd->host_link_state != HLS_DN_POLL) 10700 goto unexpected; 10701 ppd->host_link_state = HLS_VERIFY_CAP; 10702 break; 10703 case HLS_GOING_UP: 10704 if (ppd->host_link_state != HLS_VERIFY_CAP) 10705 goto unexpected; 10706 10707 ret1 = set_physical_link_state(dd, PLS_LINKUP); 10708 if (ret1 != HCMD_SUCCESS) { 10709 dd_dev_err(dd, 10710 "Failed to transition to link up state, return 0x%x\n", 10711 ret1); 10712 ret = -EINVAL; 10713 break; 10714 } 10715 ppd->host_link_state = HLS_GOING_UP; 10716 break; 10717 10718 case HLS_GOING_OFFLINE: /* transient within goto_offline() */ 10719 case HLS_LINK_COOLDOWN: /* transient within goto_offline() */ 10720 default: 10721 dd_dev_info(dd, "%s: state 0x%x: not supported\n", 10722 __func__, state); 10723 ret = -EINVAL; 10724 break; 10725 } 10726 10727 goto done; 10728 10729 unexpected: 10730 dd_dev_err(dd, "%s: unexpected state transition from %s to %s\n", 10731 __func__, link_state_name(ppd->host_link_state), 10732 link_state_name(state)); 10733 ret = -EINVAL; 10734 10735 done: 10736 mutex_unlock(&ppd->hls_lock); 10737 10738 if (event.device) 10739 ib_dispatch_event(&event); 10740 10741 return ret; 10742 } 10743 10744 int hfi1_set_ib_cfg(struct hfi1_pportdata *ppd, int which, u32 val) 10745 { 10746 u64 reg; 10747 int ret = 0; 10748 10749 switch (which) { 10750 case HFI1_IB_CFG_LIDLMC: 10751 set_lidlmc(ppd); 10752 break; 10753 case HFI1_IB_CFG_VL_HIGH_LIMIT: 10754 /* 10755 * The VL Arbitrator high limit is sent in units of 4k 10756 * bytes, while HFI stores it in units of 64 bytes. 10757 */ 10758 val *= 4096 / 64; 10759 reg = ((u64)val & SEND_HIGH_PRIORITY_LIMIT_LIMIT_MASK) 10760 << SEND_HIGH_PRIORITY_LIMIT_LIMIT_SHIFT; 10761 write_csr(ppd->dd, SEND_HIGH_PRIORITY_LIMIT, reg); 10762 break; 10763 case HFI1_IB_CFG_LINKDEFAULT: /* IB link default (sleep/poll) */ 10764 /* HFI only supports POLL as the default link down state */ 10765 if (val != HLS_DN_POLL) 10766 ret = -EINVAL; 10767 break; 10768 case HFI1_IB_CFG_OP_VLS: 10769 if (ppd->vls_operational != val) { 10770 ppd->vls_operational = val; 10771 if (!ppd->port) 10772 ret = -EINVAL; 10773 } 10774 break; 10775 /* 10776 * For link width, link width downgrade, and speed enable, always AND 10777 * the setting with what is actually supported. This has two benefits. 10778 * First, enabled can't have unsupported values, no matter what the 10779 * SM or FM might want. Second, the ALL_SUPPORTED wildcards that mean 10780 * "fill in with your supported value" have all the bits in the 10781 * field set, so simply ANDing with supported has the desired result. 10782 */ 10783 case HFI1_IB_CFG_LWID_ENB: /* set allowed Link-width */ 10784 ppd->link_width_enabled = val & ppd->link_width_supported; 10785 break; 10786 case HFI1_IB_CFG_LWID_DG_ENB: /* set allowed link width downgrade */ 10787 ppd->link_width_downgrade_enabled = 10788 val & ppd->link_width_downgrade_supported; 10789 break; 10790 case HFI1_IB_CFG_SPD_ENB: /* allowed Link speeds */ 10791 ppd->link_speed_enabled = val & ppd->link_speed_supported; 10792 break; 10793 case HFI1_IB_CFG_OVERRUN_THRESH: /* IB overrun threshold */ 10794 /* 10795 * HFI does not follow IB specs, save this value 10796 * so we can report it, if asked. 10797 */ 10798 ppd->overrun_threshold = val; 10799 break; 10800 case HFI1_IB_CFG_PHYERR_THRESH: /* IB PHY error threshold */ 10801 /* 10802 * HFI does not follow IB specs, save this value 10803 * so we can report it, if asked. 10804 */ 10805 ppd->phy_error_threshold = val; 10806 break; 10807 10808 case HFI1_IB_CFG_MTU: 10809 set_send_length(ppd); 10810 break; 10811 10812 case HFI1_IB_CFG_PKEYS: 10813 if (HFI1_CAP_IS_KSET(PKEY_CHECK)) 10814 set_partition_keys(ppd); 10815 break; 10816 10817 default: 10818 if (HFI1_CAP_IS_KSET(PRINT_UNIMPL)) 10819 dd_dev_info(ppd->dd, 10820 "%s: which %s, val 0x%x: not implemented\n", 10821 __func__, ib_cfg_name(which), val); 10822 break; 10823 } 10824 return ret; 10825 } 10826 10827 /* begin functions related to vl arbitration table caching */ 10828 static void init_vl_arb_caches(struct hfi1_pportdata *ppd) 10829 { 10830 int i; 10831 10832 BUILD_BUG_ON(VL_ARB_TABLE_SIZE != 10833 VL_ARB_LOW_PRIO_TABLE_SIZE); 10834 BUILD_BUG_ON(VL_ARB_TABLE_SIZE != 10835 VL_ARB_HIGH_PRIO_TABLE_SIZE); 10836 10837 /* 10838 * Note that we always return values directly from the 10839 * 'vl_arb_cache' (and do no CSR reads) in response to a 10840 * 'Get(VLArbTable)'. This is obviously correct after a 10841 * 'Set(VLArbTable)', since the cache will then be up to 10842 * date. But it's also correct prior to any 'Set(VLArbTable)' 10843 * since then both the cache, and the relevant h/w registers 10844 * will be zeroed. 10845 */ 10846 10847 for (i = 0; i < MAX_PRIO_TABLE; i++) 10848 spin_lock_init(&ppd->vl_arb_cache[i].lock); 10849 } 10850 10851 /* 10852 * vl_arb_lock_cache 10853 * 10854 * All other vl_arb_* functions should be called only after locking 10855 * the cache. 10856 */ 10857 static inline struct vl_arb_cache * 10858 vl_arb_lock_cache(struct hfi1_pportdata *ppd, int idx) 10859 { 10860 if (idx != LO_PRIO_TABLE && idx != HI_PRIO_TABLE) 10861 return NULL; 10862 spin_lock(&ppd->vl_arb_cache[idx].lock); 10863 return &ppd->vl_arb_cache[idx]; 10864 } 10865 10866 static inline void vl_arb_unlock_cache(struct hfi1_pportdata *ppd, int idx) 10867 { 10868 spin_unlock(&ppd->vl_arb_cache[idx].lock); 10869 } 10870 10871 static void vl_arb_get_cache(struct vl_arb_cache *cache, 10872 struct ib_vl_weight_elem *vl) 10873 { 10874 memcpy(vl, cache->table, VL_ARB_TABLE_SIZE * sizeof(*vl)); 10875 } 10876 10877 static void vl_arb_set_cache(struct vl_arb_cache *cache, 10878 struct ib_vl_weight_elem *vl) 10879 { 10880 memcpy(cache->table, vl, VL_ARB_TABLE_SIZE * sizeof(*vl)); 10881 } 10882 10883 static int vl_arb_match_cache(struct vl_arb_cache *cache, 10884 struct ib_vl_weight_elem *vl) 10885 { 10886 return !memcmp(cache->table, vl, VL_ARB_TABLE_SIZE * sizeof(*vl)); 10887 } 10888 10889 /* end functions related to vl arbitration table caching */ 10890 10891 static int set_vl_weights(struct hfi1_pportdata *ppd, u32 target, 10892 u32 size, struct ib_vl_weight_elem *vl) 10893 { 10894 struct hfi1_devdata *dd = ppd->dd; 10895 u64 reg; 10896 unsigned int i, is_up = 0; 10897 int drain, ret = 0; 10898 10899 mutex_lock(&ppd->hls_lock); 10900 10901 if (ppd->host_link_state & HLS_UP) 10902 is_up = 1; 10903 10904 drain = !is_ax(dd) && is_up; 10905 10906 if (drain) 10907 /* 10908 * Before adjusting VL arbitration weights, empty per-VL 10909 * FIFOs, otherwise a packet whose VL weight is being 10910 * set to 0 could get stuck in a FIFO with no chance to 10911 * egress. 10912 */ 10913 ret = stop_drain_data_vls(dd); 10914 10915 if (ret) { 10916 dd_dev_err( 10917 dd, 10918 "%s: cannot stop/drain VLs - refusing to change VL arbitration weights\n", 10919 __func__); 10920 goto err; 10921 } 10922 10923 for (i = 0; i < size; i++, vl++) { 10924 /* 10925 * NOTE: The low priority shift and mask are used here, but 10926 * they are the same for both the low and high registers. 10927 */ 10928 reg = (((u64)vl->vl & SEND_LOW_PRIORITY_LIST_VL_MASK) 10929 << SEND_LOW_PRIORITY_LIST_VL_SHIFT) 10930 | (((u64)vl->weight 10931 & SEND_LOW_PRIORITY_LIST_WEIGHT_MASK) 10932 << SEND_LOW_PRIORITY_LIST_WEIGHT_SHIFT); 10933 write_csr(dd, target + (i * 8), reg); 10934 } 10935 pio_send_control(dd, PSC_GLOBAL_VLARB_ENABLE); 10936 10937 if (drain) 10938 open_fill_data_vls(dd); /* reopen all VLs */ 10939 10940 err: 10941 mutex_unlock(&ppd->hls_lock); 10942 10943 return ret; 10944 } 10945 10946 /* 10947 * Read one credit merge VL register. 10948 */ 10949 static void read_one_cm_vl(struct hfi1_devdata *dd, u32 csr, 10950 struct vl_limit *vll) 10951 { 10952 u64 reg = read_csr(dd, csr); 10953 10954 vll->dedicated = cpu_to_be16( 10955 (reg >> SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SHIFT) 10956 & SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_MASK); 10957 vll->shared = cpu_to_be16( 10958 (reg >> SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SHIFT) 10959 & SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_MASK); 10960 } 10961 10962 /* 10963 * Read the current credit merge limits. 10964 */ 10965 static int get_buffer_control(struct hfi1_devdata *dd, 10966 struct buffer_control *bc, u16 *overall_limit) 10967 { 10968 u64 reg; 10969 int i; 10970 10971 /* not all entries are filled in */ 10972 memset(bc, 0, sizeof(*bc)); 10973 10974 /* OPA and HFI have a 1-1 mapping */ 10975 for (i = 0; i < TXE_NUM_DATA_VL; i++) 10976 read_one_cm_vl(dd, SEND_CM_CREDIT_VL + (8 * i), &bc->vl[i]); 10977 10978 /* NOTE: assumes that VL* and VL15 CSRs are bit-wise identical */ 10979 read_one_cm_vl(dd, SEND_CM_CREDIT_VL15, &bc->vl[15]); 10980 10981 reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT); 10982 bc->overall_shared_limit = cpu_to_be16( 10983 (reg >> SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SHIFT) 10984 & SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_MASK); 10985 if (overall_limit) 10986 *overall_limit = (reg 10987 >> SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT) 10988 & SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_MASK; 10989 return sizeof(struct buffer_control); 10990 } 10991 10992 static int get_sc2vlnt(struct hfi1_devdata *dd, struct sc2vlnt *dp) 10993 { 10994 u64 reg; 10995 int i; 10996 10997 /* each register contains 16 SC->VLnt mappings, 4 bits each */ 10998 reg = read_csr(dd, DCC_CFG_SC_VL_TABLE_15_0); 10999 for (i = 0; i < sizeof(u64); i++) { 11000 u8 byte = *(((u8 *)®) + i); 11001 11002 dp->vlnt[2 * i] = byte & 0xf; 11003 dp->vlnt[(2 * i) + 1] = (byte & 0xf0) >> 4; 11004 } 11005 11006 reg = read_csr(dd, DCC_CFG_SC_VL_TABLE_31_16); 11007 for (i = 0; i < sizeof(u64); i++) { 11008 u8 byte = *(((u8 *)®) + i); 11009 11010 dp->vlnt[16 + (2 * i)] = byte & 0xf; 11011 dp->vlnt[16 + (2 * i) + 1] = (byte & 0xf0) >> 4; 11012 } 11013 return sizeof(struct sc2vlnt); 11014 } 11015 11016 static void get_vlarb_preempt(struct hfi1_devdata *dd, u32 nelems, 11017 struct ib_vl_weight_elem *vl) 11018 { 11019 unsigned int i; 11020 11021 for (i = 0; i < nelems; i++, vl++) { 11022 vl->vl = 0xf; 11023 vl->weight = 0; 11024 } 11025 } 11026 11027 static void set_sc2vlnt(struct hfi1_devdata *dd, struct sc2vlnt *dp) 11028 { 11029 write_csr(dd, DCC_CFG_SC_VL_TABLE_15_0, 11030 DC_SC_VL_VAL(15_0, 11031 0, dp->vlnt[0] & 0xf, 11032 1, dp->vlnt[1] & 0xf, 11033 2, dp->vlnt[2] & 0xf, 11034 3, dp->vlnt[3] & 0xf, 11035 4, dp->vlnt[4] & 0xf, 11036 5, dp->vlnt[5] & 0xf, 11037 6, dp->vlnt[6] & 0xf, 11038 7, dp->vlnt[7] & 0xf, 11039 8, dp->vlnt[8] & 0xf, 11040 9, dp->vlnt[9] & 0xf, 11041 10, dp->vlnt[10] & 0xf, 11042 11, dp->vlnt[11] & 0xf, 11043 12, dp->vlnt[12] & 0xf, 11044 13, dp->vlnt[13] & 0xf, 11045 14, dp->vlnt[14] & 0xf, 11046 15, dp->vlnt[15] & 0xf)); 11047 write_csr(dd, DCC_CFG_SC_VL_TABLE_31_16, 11048 DC_SC_VL_VAL(31_16, 11049 16, dp->vlnt[16] & 0xf, 11050 17, dp->vlnt[17] & 0xf, 11051 18, dp->vlnt[18] & 0xf, 11052 19, dp->vlnt[19] & 0xf, 11053 20, dp->vlnt[20] & 0xf, 11054 21, dp->vlnt[21] & 0xf, 11055 22, dp->vlnt[22] & 0xf, 11056 23, dp->vlnt[23] & 0xf, 11057 24, dp->vlnt[24] & 0xf, 11058 25, dp->vlnt[25] & 0xf, 11059 26, dp->vlnt[26] & 0xf, 11060 27, dp->vlnt[27] & 0xf, 11061 28, dp->vlnt[28] & 0xf, 11062 29, dp->vlnt[29] & 0xf, 11063 30, dp->vlnt[30] & 0xf, 11064 31, dp->vlnt[31] & 0xf)); 11065 } 11066 11067 static void nonzero_msg(struct hfi1_devdata *dd, int idx, const char *what, 11068 u16 limit) 11069 { 11070 if (limit != 0) 11071 dd_dev_info(dd, "Invalid %s limit %d on VL %d, ignoring\n", 11072 what, (int)limit, idx); 11073 } 11074 11075 /* change only the shared limit portion of SendCmGLobalCredit */ 11076 static void set_global_shared(struct hfi1_devdata *dd, u16 limit) 11077 { 11078 u64 reg; 11079 11080 reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT); 11081 reg &= ~SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SMASK; 11082 reg |= (u64)limit << SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SHIFT; 11083 write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg); 11084 } 11085 11086 /* change only the total credit limit portion of SendCmGLobalCredit */ 11087 static void set_global_limit(struct hfi1_devdata *dd, u16 limit) 11088 { 11089 u64 reg; 11090 11091 reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT); 11092 reg &= ~SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SMASK; 11093 reg |= (u64)limit << SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT; 11094 write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg); 11095 } 11096 11097 /* set the given per-VL shared limit */ 11098 static void set_vl_shared(struct hfi1_devdata *dd, int vl, u16 limit) 11099 { 11100 u64 reg; 11101 u32 addr; 11102 11103 if (vl < TXE_NUM_DATA_VL) 11104 addr = SEND_CM_CREDIT_VL + (8 * vl); 11105 else 11106 addr = SEND_CM_CREDIT_VL15; 11107 11108 reg = read_csr(dd, addr); 11109 reg &= ~SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SMASK; 11110 reg |= (u64)limit << SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SHIFT; 11111 write_csr(dd, addr, reg); 11112 } 11113 11114 /* set the given per-VL dedicated limit */ 11115 static void set_vl_dedicated(struct hfi1_devdata *dd, int vl, u16 limit) 11116 { 11117 u64 reg; 11118 u32 addr; 11119 11120 if (vl < TXE_NUM_DATA_VL) 11121 addr = SEND_CM_CREDIT_VL + (8 * vl); 11122 else 11123 addr = SEND_CM_CREDIT_VL15; 11124 11125 reg = read_csr(dd, addr); 11126 reg &= ~SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SMASK; 11127 reg |= (u64)limit << SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SHIFT; 11128 write_csr(dd, addr, reg); 11129 } 11130 11131 /* spin until the given per-VL status mask bits clear */ 11132 static void wait_for_vl_status_clear(struct hfi1_devdata *dd, u64 mask, 11133 const char *which) 11134 { 11135 unsigned long timeout; 11136 u64 reg; 11137 11138 timeout = jiffies + msecs_to_jiffies(VL_STATUS_CLEAR_TIMEOUT); 11139 while (1) { 11140 reg = read_csr(dd, SEND_CM_CREDIT_USED_STATUS) & mask; 11141 11142 if (reg == 0) 11143 return; /* success */ 11144 if (time_after(jiffies, timeout)) 11145 break; /* timed out */ 11146 udelay(1); 11147 } 11148 11149 dd_dev_err(dd, 11150 "%s credit change status not clearing after %dms, mask 0x%llx, not clear 0x%llx\n", 11151 which, VL_STATUS_CLEAR_TIMEOUT, mask, reg); 11152 /* 11153 * If this occurs, it is likely there was a credit loss on the link. 11154 * The only recovery from that is a link bounce. 11155 */ 11156 dd_dev_err(dd, 11157 "Continuing anyway. A credit loss may occur. Suggest a link bounce\n"); 11158 } 11159 11160 /* 11161 * The number of credits on the VLs may be changed while everything 11162 * is "live", but the following algorithm must be followed due to 11163 * how the hardware is actually implemented. In particular, 11164 * Return_Credit_Status[] is the only correct status check. 11165 * 11166 * if (reducing Global_Shared_Credit_Limit or any shared limit changing) 11167 * set Global_Shared_Credit_Limit = 0 11168 * use_all_vl = 1 11169 * mask0 = all VLs that are changing either dedicated or shared limits 11170 * set Shared_Limit[mask0] = 0 11171 * spin until Return_Credit_Status[use_all_vl ? all VL : mask0] == 0 11172 * if (changing any dedicated limit) 11173 * mask1 = all VLs that are lowering dedicated limits 11174 * lower Dedicated_Limit[mask1] 11175 * spin until Return_Credit_Status[mask1] == 0 11176 * raise Dedicated_Limits 11177 * raise Shared_Limits 11178 * raise Global_Shared_Credit_Limit 11179 * 11180 * lower = if the new limit is lower, set the limit to the new value 11181 * raise = if the new limit is higher than the current value (may be changed 11182 * earlier in the algorithm), set the new limit to the new value 11183 */ 11184 int set_buffer_control(struct hfi1_pportdata *ppd, 11185 struct buffer_control *new_bc) 11186 { 11187 struct hfi1_devdata *dd = ppd->dd; 11188 u64 changing_mask, ld_mask, stat_mask; 11189 int change_count; 11190 int i, use_all_mask; 11191 int this_shared_changing; 11192 int vl_count = 0, ret; 11193 /* 11194 * A0: add the variable any_shared_limit_changing below and in the 11195 * algorithm above. If removing A0 support, it can be removed. 11196 */ 11197 int any_shared_limit_changing; 11198 struct buffer_control cur_bc; 11199 u8 changing[OPA_MAX_VLS]; 11200 u8 lowering_dedicated[OPA_MAX_VLS]; 11201 u16 cur_total; 11202 u32 new_total = 0; 11203 const u64 all_mask = 11204 SEND_CM_CREDIT_USED_STATUS_VL0_RETURN_CREDIT_STATUS_SMASK 11205 | SEND_CM_CREDIT_USED_STATUS_VL1_RETURN_CREDIT_STATUS_SMASK 11206 | SEND_CM_CREDIT_USED_STATUS_VL2_RETURN_CREDIT_STATUS_SMASK 11207 | SEND_CM_CREDIT_USED_STATUS_VL3_RETURN_CREDIT_STATUS_SMASK 11208 | SEND_CM_CREDIT_USED_STATUS_VL4_RETURN_CREDIT_STATUS_SMASK 11209 | SEND_CM_CREDIT_USED_STATUS_VL5_RETURN_CREDIT_STATUS_SMASK 11210 | SEND_CM_CREDIT_USED_STATUS_VL6_RETURN_CREDIT_STATUS_SMASK 11211 | SEND_CM_CREDIT_USED_STATUS_VL7_RETURN_CREDIT_STATUS_SMASK 11212 | SEND_CM_CREDIT_USED_STATUS_VL15_RETURN_CREDIT_STATUS_SMASK; 11213 11214 #define valid_vl(idx) ((idx) < TXE_NUM_DATA_VL || (idx) == 15) 11215 #define NUM_USABLE_VLS 16 /* look at VL15 and less */ 11216 11217 /* find the new total credits, do sanity check on unused VLs */ 11218 for (i = 0; i < OPA_MAX_VLS; i++) { 11219 if (valid_vl(i)) { 11220 new_total += be16_to_cpu(new_bc->vl[i].dedicated); 11221 continue; 11222 } 11223 nonzero_msg(dd, i, "dedicated", 11224 be16_to_cpu(new_bc->vl[i].dedicated)); 11225 nonzero_msg(dd, i, "shared", 11226 be16_to_cpu(new_bc->vl[i].shared)); 11227 new_bc->vl[i].dedicated = 0; 11228 new_bc->vl[i].shared = 0; 11229 } 11230 new_total += be16_to_cpu(new_bc->overall_shared_limit); 11231 11232 /* fetch the current values */ 11233 get_buffer_control(dd, &cur_bc, &cur_total); 11234 11235 /* 11236 * Create the masks we will use. 11237 */ 11238 memset(changing, 0, sizeof(changing)); 11239 memset(lowering_dedicated, 0, sizeof(lowering_dedicated)); 11240 /* 11241 * NOTE: Assumes that the individual VL bits are adjacent and in 11242 * increasing order 11243 */ 11244 stat_mask = 11245 SEND_CM_CREDIT_USED_STATUS_VL0_RETURN_CREDIT_STATUS_SMASK; 11246 changing_mask = 0; 11247 ld_mask = 0; 11248 change_count = 0; 11249 any_shared_limit_changing = 0; 11250 for (i = 0; i < NUM_USABLE_VLS; i++, stat_mask <<= 1) { 11251 if (!valid_vl(i)) 11252 continue; 11253 this_shared_changing = new_bc->vl[i].shared 11254 != cur_bc.vl[i].shared; 11255 if (this_shared_changing) 11256 any_shared_limit_changing = 1; 11257 if (new_bc->vl[i].dedicated != cur_bc.vl[i].dedicated || 11258 this_shared_changing) { 11259 changing[i] = 1; 11260 changing_mask |= stat_mask; 11261 change_count++; 11262 } 11263 if (be16_to_cpu(new_bc->vl[i].dedicated) < 11264 be16_to_cpu(cur_bc.vl[i].dedicated)) { 11265 lowering_dedicated[i] = 1; 11266 ld_mask |= stat_mask; 11267 } 11268 } 11269 11270 /* bracket the credit change with a total adjustment */ 11271 if (new_total > cur_total) 11272 set_global_limit(dd, new_total); 11273 11274 /* 11275 * Start the credit change algorithm. 11276 */ 11277 use_all_mask = 0; 11278 if ((be16_to_cpu(new_bc->overall_shared_limit) < 11279 be16_to_cpu(cur_bc.overall_shared_limit)) || 11280 (is_ax(dd) && any_shared_limit_changing)) { 11281 set_global_shared(dd, 0); 11282 cur_bc.overall_shared_limit = 0; 11283 use_all_mask = 1; 11284 } 11285 11286 for (i = 0; i < NUM_USABLE_VLS; i++) { 11287 if (!valid_vl(i)) 11288 continue; 11289 11290 if (changing[i]) { 11291 set_vl_shared(dd, i, 0); 11292 cur_bc.vl[i].shared = 0; 11293 } 11294 } 11295 11296 wait_for_vl_status_clear(dd, use_all_mask ? all_mask : changing_mask, 11297 "shared"); 11298 11299 if (change_count > 0) { 11300 for (i = 0; i < NUM_USABLE_VLS; i++) { 11301 if (!valid_vl(i)) 11302 continue; 11303 11304 if (lowering_dedicated[i]) { 11305 set_vl_dedicated(dd, i, 11306 be16_to_cpu(new_bc-> 11307 vl[i].dedicated)); 11308 cur_bc.vl[i].dedicated = 11309 new_bc->vl[i].dedicated; 11310 } 11311 } 11312 11313 wait_for_vl_status_clear(dd, ld_mask, "dedicated"); 11314 11315 /* now raise all dedicated that are going up */ 11316 for (i = 0; i < NUM_USABLE_VLS; i++) { 11317 if (!valid_vl(i)) 11318 continue; 11319 11320 if (be16_to_cpu(new_bc->vl[i].dedicated) > 11321 be16_to_cpu(cur_bc.vl[i].dedicated)) 11322 set_vl_dedicated(dd, i, 11323 be16_to_cpu(new_bc-> 11324 vl[i].dedicated)); 11325 } 11326 } 11327 11328 /* next raise all shared that are going up */ 11329 for (i = 0; i < NUM_USABLE_VLS; i++) { 11330 if (!valid_vl(i)) 11331 continue; 11332 11333 if (be16_to_cpu(new_bc->vl[i].shared) > 11334 be16_to_cpu(cur_bc.vl[i].shared)) 11335 set_vl_shared(dd, i, be16_to_cpu(new_bc->vl[i].shared)); 11336 } 11337 11338 /* finally raise the global shared */ 11339 if (be16_to_cpu(new_bc->overall_shared_limit) > 11340 be16_to_cpu(cur_bc.overall_shared_limit)) 11341 set_global_shared(dd, 11342 be16_to_cpu(new_bc->overall_shared_limit)); 11343 11344 /* bracket the credit change with a total adjustment */ 11345 if (new_total < cur_total) 11346 set_global_limit(dd, new_total); 11347 11348 /* 11349 * Determine the actual number of operational VLS using the number of 11350 * dedicated and shared credits for each VL. 11351 */ 11352 if (change_count > 0) { 11353 for (i = 0; i < TXE_NUM_DATA_VL; i++) 11354 if (be16_to_cpu(new_bc->vl[i].dedicated) > 0 || 11355 be16_to_cpu(new_bc->vl[i].shared) > 0) 11356 vl_count++; 11357 ppd->actual_vls_operational = vl_count; 11358 ret = sdma_map_init(dd, ppd->port - 1, vl_count ? 11359 ppd->actual_vls_operational : 11360 ppd->vls_operational, 11361 NULL); 11362 if (ret == 0) 11363 ret = pio_map_init(dd, ppd->port - 1, vl_count ? 11364 ppd->actual_vls_operational : 11365 ppd->vls_operational, NULL); 11366 if (ret) 11367 return ret; 11368 } 11369 return 0; 11370 } 11371 11372 /* 11373 * Read the given fabric manager table. Return the size of the 11374 * table (in bytes) on success, and a negative error code on 11375 * failure. 11376 */ 11377 int fm_get_table(struct hfi1_pportdata *ppd, int which, void *t) 11378 11379 { 11380 int size; 11381 struct vl_arb_cache *vlc; 11382 11383 switch (which) { 11384 case FM_TBL_VL_HIGH_ARB: 11385 size = 256; 11386 /* 11387 * OPA specifies 128 elements (of 2 bytes each), though 11388 * HFI supports only 16 elements in h/w. 11389 */ 11390 vlc = vl_arb_lock_cache(ppd, HI_PRIO_TABLE); 11391 vl_arb_get_cache(vlc, t); 11392 vl_arb_unlock_cache(ppd, HI_PRIO_TABLE); 11393 break; 11394 case FM_TBL_VL_LOW_ARB: 11395 size = 256; 11396 /* 11397 * OPA specifies 128 elements (of 2 bytes each), though 11398 * HFI supports only 16 elements in h/w. 11399 */ 11400 vlc = vl_arb_lock_cache(ppd, LO_PRIO_TABLE); 11401 vl_arb_get_cache(vlc, t); 11402 vl_arb_unlock_cache(ppd, LO_PRIO_TABLE); 11403 break; 11404 case FM_TBL_BUFFER_CONTROL: 11405 size = get_buffer_control(ppd->dd, t, NULL); 11406 break; 11407 case FM_TBL_SC2VLNT: 11408 size = get_sc2vlnt(ppd->dd, t); 11409 break; 11410 case FM_TBL_VL_PREEMPT_ELEMS: 11411 size = 256; 11412 /* OPA specifies 128 elements, of 2 bytes each */ 11413 get_vlarb_preempt(ppd->dd, OPA_MAX_VLS, t); 11414 break; 11415 case FM_TBL_VL_PREEMPT_MATRIX: 11416 size = 256; 11417 /* 11418 * OPA specifies that this is the same size as the VL 11419 * arbitration tables (i.e., 256 bytes). 11420 */ 11421 break; 11422 default: 11423 return -EINVAL; 11424 } 11425 return size; 11426 } 11427 11428 /* 11429 * Write the given fabric manager table. 11430 */ 11431 int fm_set_table(struct hfi1_pportdata *ppd, int which, void *t) 11432 { 11433 int ret = 0; 11434 struct vl_arb_cache *vlc; 11435 11436 switch (which) { 11437 case FM_TBL_VL_HIGH_ARB: 11438 vlc = vl_arb_lock_cache(ppd, HI_PRIO_TABLE); 11439 if (vl_arb_match_cache(vlc, t)) { 11440 vl_arb_unlock_cache(ppd, HI_PRIO_TABLE); 11441 break; 11442 } 11443 vl_arb_set_cache(vlc, t); 11444 vl_arb_unlock_cache(ppd, HI_PRIO_TABLE); 11445 ret = set_vl_weights(ppd, SEND_HIGH_PRIORITY_LIST, 11446 VL_ARB_HIGH_PRIO_TABLE_SIZE, t); 11447 break; 11448 case FM_TBL_VL_LOW_ARB: 11449 vlc = vl_arb_lock_cache(ppd, LO_PRIO_TABLE); 11450 if (vl_arb_match_cache(vlc, t)) { 11451 vl_arb_unlock_cache(ppd, LO_PRIO_TABLE); 11452 break; 11453 } 11454 vl_arb_set_cache(vlc, t); 11455 vl_arb_unlock_cache(ppd, LO_PRIO_TABLE); 11456 ret = set_vl_weights(ppd, SEND_LOW_PRIORITY_LIST, 11457 VL_ARB_LOW_PRIO_TABLE_SIZE, t); 11458 break; 11459 case FM_TBL_BUFFER_CONTROL: 11460 ret = set_buffer_control(ppd, t); 11461 break; 11462 case FM_TBL_SC2VLNT: 11463 set_sc2vlnt(ppd->dd, t); 11464 break; 11465 default: 11466 ret = -EINVAL; 11467 } 11468 return ret; 11469 } 11470 11471 /* 11472 * Disable all data VLs. 11473 * 11474 * Return 0 if disabled, non-zero if the VLs cannot be disabled. 11475 */ 11476 static int disable_data_vls(struct hfi1_devdata *dd) 11477 { 11478 if (is_ax(dd)) 11479 return 1; 11480 11481 pio_send_control(dd, PSC_DATA_VL_DISABLE); 11482 11483 return 0; 11484 } 11485 11486 /* 11487 * open_fill_data_vls() - the counterpart to stop_drain_data_vls(). 11488 * Just re-enables all data VLs (the "fill" part happens 11489 * automatically - the name was chosen for symmetry with 11490 * stop_drain_data_vls()). 11491 * 11492 * Return 0 if successful, non-zero if the VLs cannot be enabled. 11493 */ 11494 int open_fill_data_vls(struct hfi1_devdata *dd) 11495 { 11496 if (is_ax(dd)) 11497 return 1; 11498 11499 pio_send_control(dd, PSC_DATA_VL_ENABLE); 11500 11501 return 0; 11502 } 11503 11504 /* 11505 * drain_data_vls() - assumes that disable_data_vls() has been called, 11506 * wait for occupancy (of per-VL FIFOs) for all contexts, and SDMA 11507 * engines to drop to 0. 11508 */ 11509 static void drain_data_vls(struct hfi1_devdata *dd) 11510 { 11511 sc_wait(dd); 11512 sdma_wait(dd); 11513 pause_for_credit_return(dd); 11514 } 11515 11516 /* 11517 * stop_drain_data_vls() - disable, then drain all per-VL fifos. 11518 * 11519 * Use open_fill_data_vls() to resume using data VLs. This pair is 11520 * meant to be used like this: 11521 * 11522 * stop_drain_data_vls(dd); 11523 * // do things with per-VL resources 11524 * open_fill_data_vls(dd); 11525 */ 11526 int stop_drain_data_vls(struct hfi1_devdata *dd) 11527 { 11528 int ret; 11529 11530 ret = disable_data_vls(dd); 11531 if (ret == 0) 11532 drain_data_vls(dd); 11533 11534 return ret; 11535 } 11536 11537 /* 11538 * Convert a nanosecond time to a cclock count. No matter how slow 11539 * the cclock, a non-zero ns will always have a non-zero result. 11540 */ 11541 u32 ns_to_cclock(struct hfi1_devdata *dd, u32 ns) 11542 { 11543 u32 cclocks; 11544 11545 if (dd->icode == ICODE_FPGA_EMULATION) 11546 cclocks = (ns * 1000) / FPGA_CCLOCK_PS; 11547 else /* simulation pretends to be ASIC */ 11548 cclocks = (ns * 1000) / ASIC_CCLOCK_PS; 11549 if (ns && !cclocks) /* if ns nonzero, must be at least 1 */ 11550 cclocks = 1; 11551 return cclocks; 11552 } 11553 11554 /* 11555 * Convert a cclock count to nanoseconds. Not matter how slow 11556 * the cclock, a non-zero cclocks will always have a non-zero result. 11557 */ 11558 u32 cclock_to_ns(struct hfi1_devdata *dd, u32 cclocks) 11559 { 11560 u32 ns; 11561 11562 if (dd->icode == ICODE_FPGA_EMULATION) 11563 ns = (cclocks * FPGA_CCLOCK_PS) / 1000; 11564 else /* simulation pretends to be ASIC */ 11565 ns = (cclocks * ASIC_CCLOCK_PS) / 1000; 11566 if (cclocks && !ns) 11567 ns = 1; 11568 return ns; 11569 } 11570 11571 /* 11572 * Dynamically adjust the receive interrupt timeout for a context based on 11573 * incoming packet rate. 11574 * 11575 * NOTE: Dynamic adjustment does not allow rcv_intr_count to be zero. 11576 */ 11577 static void adjust_rcv_timeout(struct hfi1_ctxtdata *rcd, u32 npkts) 11578 { 11579 struct hfi1_devdata *dd = rcd->dd; 11580 u32 timeout = rcd->rcvavail_timeout; 11581 11582 /* 11583 * This algorithm doubles or halves the timeout depending on whether 11584 * the number of packets received in this interrupt were less than or 11585 * greater equal the interrupt count. 11586 * 11587 * The calculations below do not allow a steady state to be achieved. 11588 * Only at the endpoints it is possible to have an unchanging 11589 * timeout. 11590 */ 11591 if (npkts < rcv_intr_count) { 11592 /* 11593 * Not enough packets arrived before the timeout, adjust 11594 * timeout downward. 11595 */ 11596 if (timeout < 2) /* already at minimum? */ 11597 return; 11598 timeout >>= 1; 11599 } else { 11600 /* 11601 * More than enough packets arrived before the timeout, adjust 11602 * timeout upward. 11603 */ 11604 if (timeout >= dd->rcv_intr_timeout_csr) /* already at max? */ 11605 return; 11606 timeout = min(timeout << 1, dd->rcv_intr_timeout_csr); 11607 } 11608 11609 rcd->rcvavail_timeout = timeout; 11610 /* 11611 * timeout cannot be larger than rcv_intr_timeout_csr which has already 11612 * been verified to be in range 11613 */ 11614 write_kctxt_csr(dd, rcd->ctxt, RCV_AVAIL_TIME_OUT, 11615 (u64)timeout << 11616 RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_SHIFT); 11617 } 11618 11619 void update_usrhead(struct hfi1_ctxtdata *rcd, u32 hd, u32 updegr, u32 egrhd, 11620 u32 intr_adjust, u32 npkts) 11621 { 11622 struct hfi1_devdata *dd = rcd->dd; 11623 u64 reg; 11624 u32 ctxt = rcd->ctxt; 11625 11626 /* 11627 * Need to write timeout register before updating RcvHdrHead to ensure 11628 * that a new value is used when the HW decides to restart counting. 11629 */ 11630 if (intr_adjust) 11631 adjust_rcv_timeout(rcd, npkts); 11632 if (updegr) { 11633 reg = (egrhd & RCV_EGR_INDEX_HEAD_HEAD_MASK) 11634 << RCV_EGR_INDEX_HEAD_HEAD_SHIFT; 11635 write_uctxt_csr(dd, ctxt, RCV_EGR_INDEX_HEAD, reg); 11636 } 11637 mmiowb(); 11638 reg = ((u64)rcv_intr_count << RCV_HDR_HEAD_COUNTER_SHIFT) | 11639 (((u64)hd & RCV_HDR_HEAD_HEAD_MASK) 11640 << RCV_HDR_HEAD_HEAD_SHIFT); 11641 write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, reg); 11642 mmiowb(); 11643 } 11644 11645 u32 hdrqempty(struct hfi1_ctxtdata *rcd) 11646 { 11647 u32 head, tail; 11648 11649 head = (read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_HEAD) 11650 & RCV_HDR_HEAD_HEAD_SMASK) >> RCV_HDR_HEAD_HEAD_SHIFT; 11651 11652 if (rcd->rcvhdrtail_kvaddr) 11653 tail = get_rcvhdrtail(rcd); 11654 else 11655 tail = read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_TAIL); 11656 11657 return head == tail; 11658 } 11659 11660 /* 11661 * Context Control and Receive Array encoding for buffer size: 11662 * 0x0 invalid 11663 * 0x1 4 KB 11664 * 0x2 8 KB 11665 * 0x3 16 KB 11666 * 0x4 32 KB 11667 * 0x5 64 KB 11668 * 0x6 128 KB 11669 * 0x7 256 KB 11670 * 0x8 512 KB (Receive Array only) 11671 * 0x9 1 MB (Receive Array only) 11672 * 0xa 2 MB (Receive Array only) 11673 * 11674 * 0xB-0xF - reserved (Receive Array only) 11675 * 11676 * 11677 * This routine assumes that the value has already been sanity checked. 11678 */ 11679 static u32 encoded_size(u32 size) 11680 { 11681 switch (size) { 11682 case 4 * 1024: return 0x1; 11683 case 8 * 1024: return 0x2; 11684 case 16 * 1024: return 0x3; 11685 case 32 * 1024: return 0x4; 11686 case 64 * 1024: return 0x5; 11687 case 128 * 1024: return 0x6; 11688 case 256 * 1024: return 0x7; 11689 case 512 * 1024: return 0x8; 11690 case 1 * 1024 * 1024: return 0x9; 11691 case 2 * 1024 * 1024: return 0xa; 11692 } 11693 return 0x1; /* if invalid, go with the minimum size */ 11694 } 11695 11696 void hfi1_rcvctrl(struct hfi1_devdata *dd, unsigned int op, int ctxt) 11697 { 11698 struct hfi1_ctxtdata *rcd; 11699 u64 rcvctrl, reg; 11700 int did_enable = 0; 11701 11702 rcd = dd->rcd[ctxt]; 11703 if (!rcd) 11704 return; 11705 11706 hfi1_cdbg(RCVCTRL, "ctxt %d op 0x%x", ctxt, op); 11707 11708 rcvctrl = read_kctxt_csr(dd, ctxt, RCV_CTXT_CTRL); 11709 /* if the context already enabled, don't do the extra steps */ 11710 if ((op & HFI1_RCVCTRL_CTXT_ENB) && 11711 !(rcvctrl & RCV_CTXT_CTRL_ENABLE_SMASK)) { 11712 /* reset the tail and hdr addresses, and sequence count */ 11713 write_kctxt_csr(dd, ctxt, RCV_HDR_ADDR, 11714 rcd->rcvhdrq_dma); 11715 if (HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL)) 11716 write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR, 11717 rcd->rcvhdrqtailaddr_dma); 11718 rcd->seq_cnt = 1; 11719 11720 /* reset the cached receive header queue head value */ 11721 rcd->head = 0; 11722 11723 /* 11724 * Zero the receive header queue so we don't get false 11725 * positives when checking the sequence number. The 11726 * sequence numbers could land exactly on the same spot. 11727 * E.g. a rcd restart before the receive header wrapped. 11728 */ 11729 memset(rcd->rcvhdrq, 0, rcd->rcvhdrq_size); 11730 11731 /* starting timeout */ 11732 rcd->rcvavail_timeout = dd->rcv_intr_timeout_csr; 11733 11734 /* enable the context */ 11735 rcvctrl |= RCV_CTXT_CTRL_ENABLE_SMASK; 11736 11737 /* clean the egr buffer size first */ 11738 rcvctrl &= ~RCV_CTXT_CTRL_EGR_BUF_SIZE_SMASK; 11739 rcvctrl |= ((u64)encoded_size(rcd->egrbufs.rcvtid_size) 11740 & RCV_CTXT_CTRL_EGR_BUF_SIZE_MASK) 11741 << RCV_CTXT_CTRL_EGR_BUF_SIZE_SHIFT; 11742 11743 /* zero RcvHdrHead - set RcvHdrHead.Counter after enable */ 11744 write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0); 11745 did_enable = 1; 11746 11747 /* zero RcvEgrIndexHead */ 11748 write_uctxt_csr(dd, ctxt, RCV_EGR_INDEX_HEAD, 0); 11749 11750 /* set eager count and base index */ 11751 reg = (((u64)(rcd->egrbufs.alloced >> RCV_SHIFT) 11752 & RCV_EGR_CTRL_EGR_CNT_MASK) 11753 << RCV_EGR_CTRL_EGR_CNT_SHIFT) | 11754 (((rcd->eager_base >> RCV_SHIFT) 11755 & RCV_EGR_CTRL_EGR_BASE_INDEX_MASK) 11756 << RCV_EGR_CTRL_EGR_BASE_INDEX_SHIFT); 11757 write_kctxt_csr(dd, ctxt, RCV_EGR_CTRL, reg); 11758 11759 /* 11760 * Set TID (expected) count and base index. 11761 * rcd->expected_count is set to individual RcvArray entries, 11762 * not pairs, and the CSR takes a pair-count in groups of 11763 * four, so divide by 8. 11764 */ 11765 reg = (((rcd->expected_count >> RCV_SHIFT) 11766 & RCV_TID_CTRL_TID_PAIR_CNT_MASK) 11767 << RCV_TID_CTRL_TID_PAIR_CNT_SHIFT) | 11768 (((rcd->expected_base >> RCV_SHIFT) 11769 & RCV_TID_CTRL_TID_BASE_INDEX_MASK) 11770 << RCV_TID_CTRL_TID_BASE_INDEX_SHIFT); 11771 write_kctxt_csr(dd, ctxt, RCV_TID_CTRL, reg); 11772 if (ctxt == HFI1_CTRL_CTXT) 11773 write_csr(dd, RCV_VL15, HFI1_CTRL_CTXT); 11774 } 11775 if (op & HFI1_RCVCTRL_CTXT_DIS) { 11776 write_csr(dd, RCV_VL15, 0); 11777 /* 11778 * When receive context is being disabled turn on tail 11779 * update with a dummy tail address and then disable 11780 * receive context. 11781 */ 11782 if (dd->rcvhdrtail_dummy_dma) { 11783 write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR, 11784 dd->rcvhdrtail_dummy_dma); 11785 /* Enabling RcvCtxtCtrl.TailUpd is intentional. */ 11786 rcvctrl |= RCV_CTXT_CTRL_TAIL_UPD_SMASK; 11787 } 11788 11789 rcvctrl &= ~RCV_CTXT_CTRL_ENABLE_SMASK; 11790 } 11791 if (op & HFI1_RCVCTRL_INTRAVAIL_ENB) 11792 rcvctrl |= RCV_CTXT_CTRL_INTR_AVAIL_SMASK; 11793 if (op & HFI1_RCVCTRL_INTRAVAIL_DIS) 11794 rcvctrl &= ~RCV_CTXT_CTRL_INTR_AVAIL_SMASK; 11795 if (op & HFI1_RCVCTRL_TAILUPD_ENB && rcd->rcvhdrqtailaddr_dma) 11796 rcvctrl |= RCV_CTXT_CTRL_TAIL_UPD_SMASK; 11797 if (op & HFI1_RCVCTRL_TAILUPD_DIS) { 11798 /* See comment on RcvCtxtCtrl.TailUpd above */ 11799 if (!(op & HFI1_RCVCTRL_CTXT_DIS)) 11800 rcvctrl &= ~RCV_CTXT_CTRL_TAIL_UPD_SMASK; 11801 } 11802 if (op & HFI1_RCVCTRL_TIDFLOW_ENB) 11803 rcvctrl |= RCV_CTXT_CTRL_TID_FLOW_ENABLE_SMASK; 11804 if (op & HFI1_RCVCTRL_TIDFLOW_DIS) 11805 rcvctrl &= ~RCV_CTXT_CTRL_TID_FLOW_ENABLE_SMASK; 11806 if (op & HFI1_RCVCTRL_ONE_PKT_EGR_ENB) { 11807 /* 11808 * In one-packet-per-eager mode, the size comes from 11809 * the RcvArray entry. 11810 */ 11811 rcvctrl &= ~RCV_CTXT_CTRL_EGR_BUF_SIZE_SMASK; 11812 rcvctrl |= RCV_CTXT_CTRL_ONE_PACKET_PER_EGR_BUFFER_SMASK; 11813 } 11814 if (op & HFI1_RCVCTRL_ONE_PKT_EGR_DIS) 11815 rcvctrl &= ~RCV_CTXT_CTRL_ONE_PACKET_PER_EGR_BUFFER_SMASK; 11816 if (op & HFI1_RCVCTRL_NO_RHQ_DROP_ENB) 11817 rcvctrl |= RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK; 11818 if (op & HFI1_RCVCTRL_NO_RHQ_DROP_DIS) 11819 rcvctrl &= ~RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK; 11820 if (op & HFI1_RCVCTRL_NO_EGR_DROP_ENB) 11821 rcvctrl |= RCV_CTXT_CTRL_DONT_DROP_EGR_FULL_SMASK; 11822 if (op & HFI1_RCVCTRL_NO_EGR_DROP_DIS) 11823 rcvctrl &= ~RCV_CTXT_CTRL_DONT_DROP_EGR_FULL_SMASK; 11824 rcd->rcvctrl = rcvctrl; 11825 hfi1_cdbg(RCVCTRL, "ctxt %d rcvctrl 0x%llx\n", ctxt, rcvctrl); 11826 write_kctxt_csr(dd, ctxt, RCV_CTXT_CTRL, rcd->rcvctrl); 11827 11828 /* work around sticky RcvCtxtStatus.BlockedRHQFull */ 11829 if (did_enable && 11830 (rcvctrl & RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK)) { 11831 reg = read_kctxt_csr(dd, ctxt, RCV_CTXT_STATUS); 11832 if (reg != 0) { 11833 dd_dev_info(dd, "ctxt %d status %lld (blocked)\n", 11834 ctxt, reg); 11835 read_uctxt_csr(dd, ctxt, RCV_HDR_HEAD); 11836 write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0x10); 11837 write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0x00); 11838 read_uctxt_csr(dd, ctxt, RCV_HDR_HEAD); 11839 reg = read_kctxt_csr(dd, ctxt, RCV_CTXT_STATUS); 11840 dd_dev_info(dd, "ctxt %d status %lld (%s blocked)\n", 11841 ctxt, reg, reg == 0 ? "not" : "still"); 11842 } 11843 } 11844 11845 if (did_enable) { 11846 /* 11847 * The interrupt timeout and count must be set after 11848 * the context is enabled to take effect. 11849 */ 11850 /* set interrupt timeout */ 11851 write_kctxt_csr(dd, ctxt, RCV_AVAIL_TIME_OUT, 11852 (u64)rcd->rcvavail_timeout << 11853 RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_SHIFT); 11854 11855 /* set RcvHdrHead.Counter, zero RcvHdrHead.Head (again) */ 11856 reg = (u64)rcv_intr_count << RCV_HDR_HEAD_COUNTER_SHIFT; 11857 write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, reg); 11858 } 11859 11860 if (op & (HFI1_RCVCTRL_TAILUPD_DIS | HFI1_RCVCTRL_CTXT_DIS)) 11861 /* 11862 * If the context has been disabled and the Tail Update has 11863 * been cleared, set the RCV_HDR_TAIL_ADDR CSR to dummy address 11864 * so it doesn't contain an address that is invalid. 11865 */ 11866 write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR, 11867 dd->rcvhdrtail_dummy_dma); 11868 } 11869 11870 u32 hfi1_read_cntrs(struct hfi1_devdata *dd, char **namep, u64 **cntrp) 11871 { 11872 int ret; 11873 u64 val = 0; 11874 11875 if (namep) { 11876 ret = dd->cntrnameslen; 11877 *namep = dd->cntrnames; 11878 } else { 11879 const struct cntr_entry *entry; 11880 int i, j; 11881 11882 ret = (dd->ndevcntrs) * sizeof(u64); 11883 11884 /* Get the start of the block of counters */ 11885 *cntrp = dd->cntrs; 11886 11887 /* 11888 * Now go and fill in each counter in the block. 11889 */ 11890 for (i = 0; i < DEV_CNTR_LAST; i++) { 11891 entry = &dev_cntrs[i]; 11892 hfi1_cdbg(CNTR, "reading %s", entry->name); 11893 if (entry->flags & CNTR_DISABLED) { 11894 /* Nothing */ 11895 hfi1_cdbg(CNTR, "\tDisabled\n"); 11896 } else { 11897 if (entry->flags & CNTR_VL) { 11898 hfi1_cdbg(CNTR, "\tPer VL\n"); 11899 for (j = 0; j < C_VL_COUNT; j++) { 11900 val = entry->rw_cntr(entry, 11901 dd, j, 11902 CNTR_MODE_R, 11903 0); 11904 hfi1_cdbg( 11905 CNTR, 11906 "\t\tRead 0x%llx for %d\n", 11907 val, j); 11908 dd->cntrs[entry->offset + j] = 11909 val; 11910 } 11911 } else if (entry->flags & CNTR_SDMA) { 11912 hfi1_cdbg(CNTR, 11913 "\t Per SDMA Engine\n"); 11914 for (j = 0; j < dd->chip_sdma_engines; 11915 j++) { 11916 val = 11917 entry->rw_cntr(entry, dd, j, 11918 CNTR_MODE_R, 0); 11919 hfi1_cdbg(CNTR, 11920 "\t\tRead 0x%llx for %d\n", 11921 val, j); 11922 dd->cntrs[entry->offset + j] = 11923 val; 11924 } 11925 } else { 11926 val = entry->rw_cntr(entry, dd, 11927 CNTR_INVALID_VL, 11928 CNTR_MODE_R, 0); 11929 dd->cntrs[entry->offset] = val; 11930 hfi1_cdbg(CNTR, "\tRead 0x%llx", val); 11931 } 11932 } 11933 } 11934 } 11935 return ret; 11936 } 11937 11938 /* 11939 * Used by sysfs to create files for hfi stats to read 11940 */ 11941 u32 hfi1_read_portcntrs(struct hfi1_pportdata *ppd, char **namep, u64 **cntrp) 11942 { 11943 int ret; 11944 u64 val = 0; 11945 11946 if (namep) { 11947 ret = ppd->dd->portcntrnameslen; 11948 *namep = ppd->dd->portcntrnames; 11949 } else { 11950 const struct cntr_entry *entry; 11951 int i, j; 11952 11953 ret = ppd->dd->nportcntrs * sizeof(u64); 11954 *cntrp = ppd->cntrs; 11955 11956 for (i = 0; i < PORT_CNTR_LAST; i++) { 11957 entry = &port_cntrs[i]; 11958 hfi1_cdbg(CNTR, "reading %s", entry->name); 11959 if (entry->flags & CNTR_DISABLED) { 11960 /* Nothing */ 11961 hfi1_cdbg(CNTR, "\tDisabled\n"); 11962 continue; 11963 } 11964 11965 if (entry->flags & CNTR_VL) { 11966 hfi1_cdbg(CNTR, "\tPer VL"); 11967 for (j = 0; j < C_VL_COUNT; j++) { 11968 val = entry->rw_cntr(entry, ppd, j, 11969 CNTR_MODE_R, 11970 0); 11971 hfi1_cdbg( 11972 CNTR, 11973 "\t\tRead 0x%llx for %d", 11974 val, j); 11975 ppd->cntrs[entry->offset + j] = val; 11976 } 11977 } else { 11978 val = entry->rw_cntr(entry, ppd, 11979 CNTR_INVALID_VL, 11980 CNTR_MODE_R, 11981 0); 11982 ppd->cntrs[entry->offset] = val; 11983 hfi1_cdbg(CNTR, "\tRead 0x%llx", val); 11984 } 11985 } 11986 } 11987 return ret; 11988 } 11989 11990 static void free_cntrs(struct hfi1_devdata *dd) 11991 { 11992 struct hfi1_pportdata *ppd; 11993 int i; 11994 11995 if (dd->synth_stats_timer.data) 11996 del_timer_sync(&dd->synth_stats_timer); 11997 dd->synth_stats_timer.data = 0; 11998 ppd = (struct hfi1_pportdata *)(dd + 1); 11999 for (i = 0; i < dd->num_pports; i++, ppd++) { 12000 kfree(ppd->cntrs); 12001 kfree(ppd->scntrs); 12002 free_percpu(ppd->ibport_data.rvp.rc_acks); 12003 free_percpu(ppd->ibport_data.rvp.rc_qacks); 12004 free_percpu(ppd->ibport_data.rvp.rc_delayed_comp); 12005 ppd->cntrs = NULL; 12006 ppd->scntrs = NULL; 12007 ppd->ibport_data.rvp.rc_acks = NULL; 12008 ppd->ibport_data.rvp.rc_qacks = NULL; 12009 ppd->ibport_data.rvp.rc_delayed_comp = NULL; 12010 } 12011 kfree(dd->portcntrnames); 12012 dd->portcntrnames = NULL; 12013 kfree(dd->cntrs); 12014 dd->cntrs = NULL; 12015 kfree(dd->scntrs); 12016 dd->scntrs = NULL; 12017 kfree(dd->cntrnames); 12018 dd->cntrnames = NULL; 12019 if (dd->update_cntr_wq) { 12020 destroy_workqueue(dd->update_cntr_wq); 12021 dd->update_cntr_wq = NULL; 12022 } 12023 } 12024 12025 static u64 read_dev_port_cntr(struct hfi1_devdata *dd, struct cntr_entry *entry, 12026 u64 *psval, void *context, int vl) 12027 { 12028 u64 val; 12029 u64 sval = *psval; 12030 12031 if (entry->flags & CNTR_DISABLED) { 12032 dd_dev_err(dd, "Counter %s not enabled", entry->name); 12033 return 0; 12034 } 12035 12036 hfi1_cdbg(CNTR, "cntr: %s vl %d psval 0x%llx", entry->name, vl, *psval); 12037 12038 val = entry->rw_cntr(entry, context, vl, CNTR_MODE_R, 0); 12039 12040 /* If its a synthetic counter there is more work we need to do */ 12041 if (entry->flags & CNTR_SYNTH) { 12042 if (sval == CNTR_MAX) { 12043 /* No need to read already saturated */ 12044 return CNTR_MAX; 12045 } 12046 12047 if (entry->flags & CNTR_32BIT) { 12048 /* 32bit counters can wrap multiple times */ 12049 u64 upper = sval >> 32; 12050 u64 lower = (sval << 32) >> 32; 12051 12052 if (lower > val) { /* hw wrapped */ 12053 if (upper == CNTR_32BIT_MAX) 12054 val = CNTR_MAX; 12055 else 12056 upper++; 12057 } 12058 12059 if (val != CNTR_MAX) 12060 val = (upper << 32) | val; 12061 12062 } else { 12063 /* If we rolled we are saturated */ 12064 if ((val < sval) || (val > CNTR_MAX)) 12065 val = CNTR_MAX; 12066 } 12067 } 12068 12069 *psval = val; 12070 12071 hfi1_cdbg(CNTR, "\tNew val=0x%llx", val); 12072 12073 return val; 12074 } 12075 12076 static u64 write_dev_port_cntr(struct hfi1_devdata *dd, 12077 struct cntr_entry *entry, 12078 u64 *psval, void *context, int vl, u64 data) 12079 { 12080 u64 val; 12081 12082 if (entry->flags & CNTR_DISABLED) { 12083 dd_dev_err(dd, "Counter %s not enabled", entry->name); 12084 return 0; 12085 } 12086 12087 hfi1_cdbg(CNTR, "cntr: %s vl %d psval 0x%llx", entry->name, vl, *psval); 12088 12089 if (entry->flags & CNTR_SYNTH) { 12090 *psval = data; 12091 if (entry->flags & CNTR_32BIT) { 12092 val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W, 12093 (data << 32) >> 32); 12094 val = data; /* return the full 64bit value */ 12095 } else { 12096 val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W, 12097 data); 12098 } 12099 } else { 12100 val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W, data); 12101 } 12102 12103 *psval = val; 12104 12105 hfi1_cdbg(CNTR, "\tNew val=0x%llx", val); 12106 12107 return val; 12108 } 12109 12110 u64 read_dev_cntr(struct hfi1_devdata *dd, int index, int vl) 12111 { 12112 struct cntr_entry *entry; 12113 u64 *sval; 12114 12115 entry = &dev_cntrs[index]; 12116 sval = dd->scntrs + entry->offset; 12117 12118 if (vl != CNTR_INVALID_VL) 12119 sval += vl; 12120 12121 return read_dev_port_cntr(dd, entry, sval, dd, vl); 12122 } 12123 12124 u64 write_dev_cntr(struct hfi1_devdata *dd, int index, int vl, u64 data) 12125 { 12126 struct cntr_entry *entry; 12127 u64 *sval; 12128 12129 entry = &dev_cntrs[index]; 12130 sval = dd->scntrs + entry->offset; 12131 12132 if (vl != CNTR_INVALID_VL) 12133 sval += vl; 12134 12135 return write_dev_port_cntr(dd, entry, sval, dd, vl, data); 12136 } 12137 12138 u64 read_port_cntr(struct hfi1_pportdata *ppd, int index, int vl) 12139 { 12140 struct cntr_entry *entry; 12141 u64 *sval; 12142 12143 entry = &port_cntrs[index]; 12144 sval = ppd->scntrs + entry->offset; 12145 12146 if (vl != CNTR_INVALID_VL) 12147 sval += vl; 12148 12149 if ((index >= C_RCV_HDR_OVF_FIRST + ppd->dd->num_rcv_contexts) && 12150 (index <= C_RCV_HDR_OVF_LAST)) { 12151 /* We do not want to bother for disabled contexts */ 12152 return 0; 12153 } 12154 12155 return read_dev_port_cntr(ppd->dd, entry, sval, ppd, vl); 12156 } 12157 12158 u64 write_port_cntr(struct hfi1_pportdata *ppd, int index, int vl, u64 data) 12159 { 12160 struct cntr_entry *entry; 12161 u64 *sval; 12162 12163 entry = &port_cntrs[index]; 12164 sval = ppd->scntrs + entry->offset; 12165 12166 if (vl != CNTR_INVALID_VL) 12167 sval += vl; 12168 12169 if ((index >= C_RCV_HDR_OVF_FIRST + ppd->dd->num_rcv_contexts) && 12170 (index <= C_RCV_HDR_OVF_LAST)) { 12171 /* We do not want to bother for disabled contexts */ 12172 return 0; 12173 } 12174 12175 return write_dev_port_cntr(ppd->dd, entry, sval, ppd, vl, data); 12176 } 12177 12178 static void do_update_synth_timer(struct work_struct *work) 12179 { 12180 u64 cur_tx; 12181 u64 cur_rx; 12182 u64 total_flits; 12183 u8 update = 0; 12184 int i, j, vl; 12185 struct hfi1_pportdata *ppd; 12186 struct cntr_entry *entry; 12187 struct hfi1_devdata *dd = container_of(work, struct hfi1_devdata, 12188 update_cntr_work); 12189 12190 /* 12191 * Rather than keep beating on the CSRs pick a minimal set that we can 12192 * check to watch for potential roll over. We can do this by looking at 12193 * the number of flits sent/recv. If the total flits exceeds 32bits then 12194 * we have to iterate all the counters and update. 12195 */ 12196 entry = &dev_cntrs[C_DC_RCV_FLITS]; 12197 cur_rx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL, CNTR_MODE_R, 0); 12198 12199 entry = &dev_cntrs[C_DC_XMIT_FLITS]; 12200 cur_tx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL, CNTR_MODE_R, 0); 12201 12202 hfi1_cdbg( 12203 CNTR, 12204 "[%d] curr tx=0x%llx rx=0x%llx :: last tx=0x%llx rx=0x%llx\n", 12205 dd->unit, cur_tx, cur_rx, dd->last_tx, dd->last_rx); 12206 12207 if ((cur_tx < dd->last_tx) || (cur_rx < dd->last_rx)) { 12208 /* 12209 * May not be strictly necessary to update but it won't hurt and 12210 * simplifies the logic here. 12211 */ 12212 update = 1; 12213 hfi1_cdbg(CNTR, "[%d] Tripwire counter rolled, updating", 12214 dd->unit); 12215 } else { 12216 total_flits = (cur_tx - dd->last_tx) + (cur_rx - dd->last_rx); 12217 hfi1_cdbg(CNTR, 12218 "[%d] total flits 0x%llx limit 0x%llx\n", dd->unit, 12219 total_flits, (u64)CNTR_32BIT_MAX); 12220 if (total_flits >= CNTR_32BIT_MAX) { 12221 hfi1_cdbg(CNTR, "[%d] 32bit limit hit, updating", 12222 dd->unit); 12223 update = 1; 12224 } 12225 } 12226 12227 if (update) { 12228 hfi1_cdbg(CNTR, "[%d] Updating dd and ppd counters", dd->unit); 12229 for (i = 0; i < DEV_CNTR_LAST; i++) { 12230 entry = &dev_cntrs[i]; 12231 if (entry->flags & CNTR_VL) { 12232 for (vl = 0; vl < C_VL_COUNT; vl++) 12233 read_dev_cntr(dd, i, vl); 12234 } else { 12235 read_dev_cntr(dd, i, CNTR_INVALID_VL); 12236 } 12237 } 12238 ppd = (struct hfi1_pportdata *)(dd + 1); 12239 for (i = 0; i < dd->num_pports; i++, ppd++) { 12240 for (j = 0; j < PORT_CNTR_LAST; j++) { 12241 entry = &port_cntrs[j]; 12242 if (entry->flags & CNTR_VL) { 12243 for (vl = 0; vl < C_VL_COUNT; vl++) 12244 read_port_cntr(ppd, j, vl); 12245 } else { 12246 read_port_cntr(ppd, j, CNTR_INVALID_VL); 12247 } 12248 } 12249 } 12250 12251 /* 12252 * We want the value in the register. The goal is to keep track 12253 * of the number of "ticks" not the counter value. In other 12254 * words if the register rolls we want to notice it and go ahead 12255 * and force an update. 12256 */ 12257 entry = &dev_cntrs[C_DC_XMIT_FLITS]; 12258 dd->last_tx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL, 12259 CNTR_MODE_R, 0); 12260 12261 entry = &dev_cntrs[C_DC_RCV_FLITS]; 12262 dd->last_rx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL, 12263 CNTR_MODE_R, 0); 12264 12265 hfi1_cdbg(CNTR, "[%d] setting last tx/rx to 0x%llx 0x%llx", 12266 dd->unit, dd->last_tx, dd->last_rx); 12267 12268 } else { 12269 hfi1_cdbg(CNTR, "[%d] No update necessary", dd->unit); 12270 } 12271 } 12272 12273 static void update_synth_timer(unsigned long opaque) 12274 { 12275 struct hfi1_devdata *dd = (struct hfi1_devdata *)opaque; 12276 12277 queue_work(dd->update_cntr_wq, &dd->update_cntr_work); 12278 mod_timer(&dd->synth_stats_timer, jiffies + HZ * SYNTH_CNT_TIME); 12279 } 12280 12281 #define C_MAX_NAME 16 /* 15 chars + one for /0 */ 12282 static int init_cntrs(struct hfi1_devdata *dd) 12283 { 12284 int i, rcv_ctxts, j; 12285 size_t sz; 12286 char *p; 12287 char name[C_MAX_NAME]; 12288 struct hfi1_pportdata *ppd; 12289 const char *bit_type_32 = ",32"; 12290 const int bit_type_32_sz = strlen(bit_type_32); 12291 12292 /* set up the stats timer; the add_timer is done at the end */ 12293 setup_timer(&dd->synth_stats_timer, update_synth_timer, 12294 (unsigned long)dd); 12295 12296 /***********************/ 12297 /* per device counters */ 12298 /***********************/ 12299 12300 /* size names and determine how many we have*/ 12301 dd->ndevcntrs = 0; 12302 sz = 0; 12303 12304 for (i = 0; i < DEV_CNTR_LAST; i++) { 12305 if (dev_cntrs[i].flags & CNTR_DISABLED) { 12306 hfi1_dbg_early("\tSkipping %s\n", dev_cntrs[i].name); 12307 continue; 12308 } 12309 12310 if (dev_cntrs[i].flags & CNTR_VL) { 12311 dev_cntrs[i].offset = dd->ndevcntrs; 12312 for (j = 0; j < C_VL_COUNT; j++) { 12313 snprintf(name, C_MAX_NAME, "%s%d", 12314 dev_cntrs[i].name, vl_from_idx(j)); 12315 sz += strlen(name); 12316 /* Add ",32" for 32-bit counters */ 12317 if (dev_cntrs[i].flags & CNTR_32BIT) 12318 sz += bit_type_32_sz; 12319 sz++; 12320 dd->ndevcntrs++; 12321 } 12322 } else if (dev_cntrs[i].flags & CNTR_SDMA) { 12323 dev_cntrs[i].offset = dd->ndevcntrs; 12324 for (j = 0; j < dd->chip_sdma_engines; j++) { 12325 snprintf(name, C_MAX_NAME, "%s%d", 12326 dev_cntrs[i].name, j); 12327 sz += strlen(name); 12328 /* Add ",32" for 32-bit counters */ 12329 if (dev_cntrs[i].flags & CNTR_32BIT) 12330 sz += bit_type_32_sz; 12331 sz++; 12332 dd->ndevcntrs++; 12333 } 12334 } else { 12335 /* +1 for newline. */ 12336 sz += strlen(dev_cntrs[i].name) + 1; 12337 /* Add ",32" for 32-bit counters */ 12338 if (dev_cntrs[i].flags & CNTR_32BIT) 12339 sz += bit_type_32_sz; 12340 dev_cntrs[i].offset = dd->ndevcntrs; 12341 dd->ndevcntrs++; 12342 } 12343 } 12344 12345 /* allocate space for the counter values */ 12346 dd->cntrs = kcalloc(dd->ndevcntrs, sizeof(u64), GFP_KERNEL); 12347 if (!dd->cntrs) 12348 goto bail; 12349 12350 dd->scntrs = kcalloc(dd->ndevcntrs, sizeof(u64), GFP_KERNEL); 12351 if (!dd->scntrs) 12352 goto bail; 12353 12354 /* allocate space for the counter names */ 12355 dd->cntrnameslen = sz; 12356 dd->cntrnames = kmalloc(sz, GFP_KERNEL); 12357 if (!dd->cntrnames) 12358 goto bail; 12359 12360 /* fill in the names */ 12361 for (p = dd->cntrnames, i = 0; i < DEV_CNTR_LAST; i++) { 12362 if (dev_cntrs[i].flags & CNTR_DISABLED) { 12363 /* Nothing */ 12364 } else if (dev_cntrs[i].flags & CNTR_VL) { 12365 for (j = 0; j < C_VL_COUNT; j++) { 12366 snprintf(name, C_MAX_NAME, "%s%d", 12367 dev_cntrs[i].name, 12368 vl_from_idx(j)); 12369 memcpy(p, name, strlen(name)); 12370 p += strlen(name); 12371 12372 /* Counter is 32 bits */ 12373 if (dev_cntrs[i].flags & CNTR_32BIT) { 12374 memcpy(p, bit_type_32, bit_type_32_sz); 12375 p += bit_type_32_sz; 12376 } 12377 12378 *p++ = '\n'; 12379 } 12380 } else if (dev_cntrs[i].flags & CNTR_SDMA) { 12381 for (j = 0; j < dd->chip_sdma_engines; j++) { 12382 snprintf(name, C_MAX_NAME, "%s%d", 12383 dev_cntrs[i].name, j); 12384 memcpy(p, name, strlen(name)); 12385 p += strlen(name); 12386 12387 /* Counter is 32 bits */ 12388 if (dev_cntrs[i].flags & CNTR_32BIT) { 12389 memcpy(p, bit_type_32, bit_type_32_sz); 12390 p += bit_type_32_sz; 12391 } 12392 12393 *p++ = '\n'; 12394 } 12395 } else { 12396 memcpy(p, dev_cntrs[i].name, strlen(dev_cntrs[i].name)); 12397 p += strlen(dev_cntrs[i].name); 12398 12399 /* Counter is 32 bits */ 12400 if (dev_cntrs[i].flags & CNTR_32BIT) { 12401 memcpy(p, bit_type_32, bit_type_32_sz); 12402 p += bit_type_32_sz; 12403 } 12404 12405 *p++ = '\n'; 12406 } 12407 } 12408 12409 /*********************/ 12410 /* per port counters */ 12411 /*********************/ 12412 12413 /* 12414 * Go through the counters for the overflows and disable the ones we 12415 * don't need. This varies based on platform so we need to do it 12416 * dynamically here. 12417 */ 12418 rcv_ctxts = dd->num_rcv_contexts; 12419 for (i = C_RCV_HDR_OVF_FIRST + rcv_ctxts; 12420 i <= C_RCV_HDR_OVF_LAST; i++) { 12421 port_cntrs[i].flags |= CNTR_DISABLED; 12422 } 12423 12424 /* size port counter names and determine how many we have*/ 12425 sz = 0; 12426 dd->nportcntrs = 0; 12427 for (i = 0; i < PORT_CNTR_LAST; i++) { 12428 if (port_cntrs[i].flags & CNTR_DISABLED) { 12429 hfi1_dbg_early("\tSkipping %s\n", port_cntrs[i].name); 12430 continue; 12431 } 12432 12433 if (port_cntrs[i].flags & CNTR_VL) { 12434 port_cntrs[i].offset = dd->nportcntrs; 12435 for (j = 0; j < C_VL_COUNT; j++) { 12436 snprintf(name, C_MAX_NAME, "%s%d", 12437 port_cntrs[i].name, vl_from_idx(j)); 12438 sz += strlen(name); 12439 /* Add ",32" for 32-bit counters */ 12440 if (port_cntrs[i].flags & CNTR_32BIT) 12441 sz += bit_type_32_sz; 12442 sz++; 12443 dd->nportcntrs++; 12444 } 12445 } else { 12446 /* +1 for newline */ 12447 sz += strlen(port_cntrs[i].name) + 1; 12448 /* Add ",32" for 32-bit counters */ 12449 if (port_cntrs[i].flags & CNTR_32BIT) 12450 sz += bit_type_32_sz; 12451 port_cntrs[i].offset = dd->nportcntrs; 12452 dd->nportcntrs++; 12453 } 12454 } 12455 12456 /* allocate space for the counter names */ 12457 dd->portcntrnameslen = sz; 12458 dd->portcntrnames = kmalloc(sz, GFP_KERNEL); 12459 if (!dd->portcntrnames) 12460 goto bail; 12461 12462 /* fill in port cntr names */ 12463 for (p = dd->portcntrnames, i = 0; i < PORT_CNTR_LAST; i++) { 12464 if (port_cntrs[i].flags & CNTR_DISABLED) 12465 continue; 12466 12467 if (port_cntrs[i].flags & CNTR_VL) { 12468 for (j = 0; j < C_VL_COUNT; j++) { 12469 snprintf(name, C_MAX_NAME, "%s%d", 12470 port_cntrs[i].name, vl_from_idx(j)); 12471 memcpy(p, name, strlen(name)); 12472 p += strlen(name); 12473 12474 /* Counter is 32 bits */ 12475 if (port_cntrs[i].flags & CNTR_32BIT) { 12476 memcpy(p, bit_type_32, bit_type_32_sz); 12477 p += bit_type_32_sz; 12478 } 12479 12480 *p++ = '\n'; 12481 } 12482 } else { 12483 memcpy(p, port_cntrs[i].name, 12484 strlen(port_cntrs[i].name)); 12485 p += strlen(port_cntrs[i].name); 12486 12487 /* Counter is 32 bits */ 12488 if (port_cntrs[i].flags & CNTR_32BIT) { 12489 memcpy(p, bit_type_32, bit_type_32_sz); 12490 p += bit_type_32_sz; 12491 } 12492 12493 *p++ = '\n'; 12494 } 12495 } 12496 12497 /* allocate per port storage for counter values */ 12498 ppd = (struct hfi1_pportdata *)(dd + 1); 12499 for (i = 0; i < dd->num_pports; i++, ppd++) { 12500 ppd->cntrs = kcalloc(dd->nportcntrs, sizeof(u64), GFP_KERNEL); 12501 if (!ppd->cntrs) 12502 goto bail; 12503 12504 ppd->scntrs = kcalloc(dd->nportcntrs, sizeof(u64), GFP_KERNEL); 12505 if (!ppd->scntrs) 12506 goto bail; 12507 } 12508 12509 /* CPU counters need to be allocated and zeroed */ 12510 if (init_cpu_counters(dd)) 12511 goto bail; 12512 12513 dd->update_cntr_wq = alloc_ordered_workqueue("hfi1_update_cntr_%d", 12514 WQ_MEM_RECLAIM, dd->unit); 12515 if (!dd->update_cntr_wq) 12516 goto bail; 12517 12518 INIT_WORK(&dd->update_cntr_work, do_update_synth_timer); 12519 12520 mod_timer(&dd->synth_stats_timer, jiffies + HZ * SYNTH_CNT_TIME); 12521 return 0; 12522 bail: 12523 free_cntrs(dd); 12524 return -ENOMEM; 12525 } 12526 12527 static u32 chip_to_opa_lstate(struct hfi1_devdata *dd, u32 chip_lstate) 12528 { 12529 switch (chip_lstate) { 12530 default: 12531 dd_dev_err(dd, 12532 "Unknown logical state 0x%x, reporting IB_PORT_DOWN\n", 12533 chip_lstate); 12534 /* fall through */ 12535 case LSTATE_DOWN: 12536 return IB_PORT_DOWN; 12537 case LSTATE_INIT: 12538 return IB_PORT_INIT; 12539 case LSTATE_ARMED: 12540 return IB_PORT_ARMED; 12541 case LSTATE_ACTIVE: 12542 return IB_PORT_ACTIVE; 12543 } 12544 } 12545 12546 u32 chip_to_opa_pstate(struct hfi1_devdata *dd, u32 chip_pstate) 12547 { 12548 /* look at the HFI meta-states only */ 12549 switch (chip_pstate & 0xf0) { 12550 default: 12551 dd_dev_err(dd, "Unexpected chip physical state of 0x%x\n", 12552 chip_pstate); 12553 /* fall through */ 12554 case PLS_DISABLED: 12555 return IB_PORTPHYSSTATE_DISABLED; 12556 case PLS_OFFLINE: 12557 return OPA_PORTPHYSSTATE_OFFLINE; 12558 case PLS_POLLING: 12559 return IB_PORTPHYSSTATE_POLLING; 12560 case PLS_CONFIGPHY: 12561 return IB_PORTPHYSSTATE_TRAINING; 12562 case PLS_LINKUP: 12563 return IB_PORTPHYSSTATE_LINKUP; 12564 case PLS_PHYTEST: 12565 return IB_PORTPHYSSTATE_PHY_TEST; 12566 } 12567 } 12568 12569 /* return the OPA port logical state name */ 12570 const char *opa_lstate_name(u32 lstate) 12571 { 12572 static const char * const port_logical_names[] = { 12573 "PORT_NOP", 12574 "PORT_DOWN", 12575 "PORT_INIT", 12576 "PORT_ARMED", 12577 "PORT_ACTIVE", 12578 "PORT_ACTIVE_DEFER", 12579 }; 12580 if (lstate < ARRAY_SIZE(port_logical_names)) 12581 return port_logical_names[lstate]; 12582 return "unknown"; 12583 } 12584 12585 /* return the OPA port physical state name */ 12586 const char *opa_pstate_name(u32 pstate) 12587 { 12588 static const char * const port_physical_names[] = { 12589 "PHYS_NOP", 12590 "reserved1", 12591 "PHYS_POLL", 12592 "PHYS_DISABLED", 12593 "PHYS_TRAINING", 12594 "PHYS_LINKUP", 12595 "PHYS_LINK_ERR_RECOVER", 12596 "PHYS_PHY_TEST", 12597 "reserved8", 12598 "PHYS_OFFLINE", 12599 "PHYS_GANGED", 12600 "PHYS_TEST", 12601 }; 12602 if (pstate < ARRAY_SIZE(port_physical_names)) 12603 return port_physical_names[pstate]; 12604 return "unknown"; 12605 } 12606 12607 /* 12608 * Read the hardware link state and set the driver's cached value of it. 12609 * Return the (new) current value. 12610 */ 12611 u32 get_logical_state(struct hfi1_pportdata *ppd) 12612 { 12613 u32 new_state; 12614 12615 new_state = chip_to_opa_lstate(ppd->dd, read_logical_state(ppd->dd)); 12616 if (new_state != ppd->lstate) { 12617 dd_dev_info(ppd->dd, "logical state changed to %s (0x%x)\n", 12618 opa_lstate_name(new_state), new_state); 12619 ppd->lstate = new_state; 12620 } 12621 /* 12622 * Set port status flags in the page mapped into userspace 12623 * memory. Do it here to ensure a reliable state - this is 12624 * the only function called by all state handling code. 12625 * Always set the flags due to the fact that the cache value 12626 * might have been changed explicitly outside of this 12627 * function. 12628 */ 12629 if (ppd->statusp) { 12630 switch (ppd->lstate) { 12631 case IB_PORT_DOWN: 12632 case IB_PORT_INIT: 12633 *ppd->statusp &= ~(HFI1_STATUS_IB_CONF | 12634 HFI1_STATUS_IB_READY); 12635 break; 12636 case IB_PORT_ARMED: 12637 *ppd->statusp |= HFI1_STATUS_IB_CONF; 12638 break; 12639 case IB_PORT_ACTIVE: 12640 *ppd->statusp |= HFI1_STATUS_IB_READY; 12641 break; 12642 } 12643 } 12644 return ppd->lstate; 12645 } 12646 12647 /** 12648 * wait_logical_linkstate - wait for an IB link state change to occur 12649 * @ppd: port device 12650 * @state: the state to wait for 12651 * @msecs: the number of milliseconds to wait 12652 * 12653 * Wait up to msecs milliseconds for IB link state change to occur. 12654 * For now, take the easy polling route. 12655 * Returns 0 if state reached, otherwise -ETIMEDOUT. 12656 */ 12657 static int wait_logical_linkstate(struct hfi1_pportdata *ppd, u32 state, 12658 int msecs) 12659 { 12660 unsigned long timeout; 12661 12662 timeout = jiffies + msecs_to_jiffies(msecs); 12663 while (1) { 12664 if (get_logical_state(ppd) == state) 12665 return 0; 12666 if (time_after(jiffies, timeout)) 12667 break; 12668 msleep(20); 12669 } 12670 dd_dev_err(ppd->dd, "timeout waiting for link state 0x%x\n", state); 12671 12672 return -ETIMEDOUT; 12673 } 12674 12675 u8 hfi1_ibphys_portstate(struct hfi1_pportdata *ppd) 12676 { 12677 u32 pstate; 12678 u32 ib_pstate; 12679 12680 pstate = read_physical_state(ppd->dd); 12681 ib_pstate = chip_to_opa_pstate(ppd->dd, pstate); 12682 if (ppd->last_pstate != ib_pstate) { 12683 dd_dev_info(ppd->dd, 12684 "%s: physical state changed to %s (0x%x), phy 0x%x\n", 12685 __func__, opa_pstate_name(ib_pstate), ib_pstate, 12686 pstate); 12687 ppd->last_pstate = ib_pstate; 12688 } 12689 return ib_pstate; 12690 } 12691 12692 #define CLEAR_STATIC_RATE_CONTROL_SMASK(r) \ 12693 (r &= ~SEND_CTXT_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK) 12694 12695 #define SET_STATIC_RATE_CONTROL_SMASK(r) \ 12696 (r |= SEND_CTXT_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK) 12697 12698 void hfi1_init_ctxt(struct send_context *sc) 12699 { 12700 if (sc) { 12701 struct hfi1_devdata *dd = sc->dd; 12702 u64 reg; 12703 u8 set = (sc->type == SC_USER ? 12704 HFI1_CAP_IS_USET(STATIC_RATE_CTRL) : 12705 HFI1_CAP_IS_KSET(STATIC_RATE_CTRL)); 12706 reg = read_kctxt_csr(dd, sc->hw_context, 12707 SEND_CTXT_CHECK_ENABLE); 12708 if (set) 12709 CLEAR_STATIC_RATE_CONTROL_SMASK(reg); 12710 else 12711 SET_STATIC_RATE_CONTROL_SMASK(reg); 12712 write_kctxt_csr(dd, sc->hw_context, 12713 SEND_CTXT_CHECK_ENABLE, reg); 12714 } 12715 } 12716 12717 int hfi1_tempsense_rd(struct hfi1_devdata *dd, struct hfi1_temp *temp) 12718 { 12719 int ret = 0; 12720 u64 reg; 12721 12722 if (dd->icode != ICODE_RTL_SILICON) { 12723 if (HFI1_CAP_IS_KSET(PRINT_UNIMPL)) 12724 dd_dev_info(dd, "%s: tempsense not supported by HW\n", 12725 __func__); 12726 return -EINVAL; 12727 } 12728 reg = read_csr(dd, ASIC_STS_THERM); 12729 temp->curr = ((reg >> ASIC_STS_THERM_CURR_TEMP_SHIFT) & 12730 ASIC_STS_THERM_CURR_TEMP_MASK); 12731 temp->lo_lim = ((reg >> ASIC_STS_THERM_LO_TEMP_SHIFT) & 12732 ASIC_STS_THERM_LO_TEMP_MASK); 12733 temp->hi_lim = ((reg >> ASIC_STS_THERM_HI_TEMP_SHIFT) & 12734 ASIC_STS_THERM_HI_TEMP_MASK); 12735 temp->crit_lim = ((reg >> ASIC_STS_THERM_CRIT_TEMP_SHIFT) & 12736 ASIC_STS_THERM_CRIT_TEMP_MASK); 12737 /* triggers is a 3-bit value - 1 bit per trigger. */ 12738 temp->triggers = (u8)((reg >> ASIC_STS_THERM_LOW_SHIFT) & 0x7); 12739 12740 return ret; 12741 } 12742 12743 /* ========================================================================= */ 12744 12745 /* 12746 * Enable/disable chip from delivering interrupts. 12747 */ 12748 void set_intr_state(struct hfi1_devdata *dd, u32 enable) 12749 { 12750 int i; 12751 12752 /* 12753 * In HFI, the mask needs to be 1 to allow interrupts. 12754 */ 12755 if (enable) { 12756 /* enable all interrupts */ 12757 for (i = 0; i < CCE_NUM_INT_CSRS; i++) 12758 write_csr(dd, CCE_INT_MASK + (8 * i), ~(u64)0); 12759 12760 init_qsfp_int(dd); 12761 } else { 12762 for (i = 0; i < CCE_NUM_INT_CSRS; i++) 12763 write_csr(dd, CCE_INT_MASK + (8 * i), 0ull); 12764 } 12765 } 12766 12767 /* 12768 * Clear all interrupt sources on the chip. 12769 */ 12770 static void clear_all_interrupts(struct hfi1_devdata *dd) 12771 { 12772 int i; 12773 12774 for (i = 0; i < CCE_NUM_INT_CSRS; i++) 12775 write_csr(dd, CCE_INT_CLEAR + (8 * i), ~(u64)0); 12776 12777 write_csr(dd, CCE_ERR_CLEAR, ~(u64)0); 12778 write_csr(dd, MISC_ERR_CLEAR, ~(u64)0); 12779 write_csr(dd, RCV_ERR_CLEAR, ~(u64)0); 12780 write_csr(dd, SEND_ERR_CLEAR, ~(u64)0); 12781 write_csr(dd, SEND_PIO_ERR_CLEAR, ~(u64)0); 12782 write_csr(dd, SEND_DMA_ERR_CLEAR, ~(u64)0); 12783 write_csr(dd, SEND_EGRESS_ERR_CLEAR, ~(u64)0); 12784 for (i = 0; i < dd->chip_send_contexts; i++) 12785 write_kctxt_csr(dd, i, SEND_CTXT_ERR_CLEAR, ~(u64)0); 12786 for (i = 0; i < dd->chip_sdma_engines; i++) 12787 write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_CLEAR, ~(u64)0); 12788 12789 write_csr(dd, DCC_ERR_FLG_CLR, ~(u64)0); 12790 write_csr(dd, DC_LCB_ERR_CLR, ~(u64)0); 12791 write_csr(dd, DC_DC8051_ERR_CLR, ~(u64)0); 12792 } 12793 12794 /* Move to pcie.c? */ 12795 static void disable_intx(struct pci_dev *pdev) 12796 { 12797 pci_intx(pdev, 0); 12798 } 12799 12800 static void clean_up_interrupts(struct hfi1_devdata *dd) 12801 { 12802 int i; 12803 12804 /* remove irqs - must happen before disabling/turning off */ 12805 if (dd->num_msix_entries) { 12806 /* MSI-X */ 12807 struct hfi1_msix_entry *me = dd->msix_entries; 12808 12809 for (i = 0; i < dd->num_msix_entries; i++, me++) { 12810 if (!me->arg) /* => no irq, no affinity */ 12811 continue; 12812 hfi1_put_irq_affinity(dd, &dd->msix_entries[i]); 12813 free_irq(me->msix.vector, me->arg); 12814 } 12815 } else { 12816 /* INTx */ 12817 if (dd->requested_intx_irq) { 12818 free_irq(dd->pcidev->irq, dd); 12819 dd->requested_intx_irq = 0; 12820 } 12821 } 12822 12823 /* turn off interrupts */ 12824 if (dd->num_msix_entries) { 12825 /* MSI-X */ 12826 pci_disable_msix(dd->pcidev); 12827 } else { 12828 /* INTx */ 12829 disable_intx(dd->pcidev); 12830 } 12831 12832 /* clean structures */ 12833 kfree(dd->msix_entries); 12834 dd->msix_entries = NULL; 12835 dd->num_msix_entries = 0; 12836 } 12837 12838 /* 12839 * Remap the interrupt source from the general handler to the given MSI-X 12840 * interrupt. 12841 */ 12842 static void remap_intr(struct hfi1_devdata *dd, int isrc, int msix_intr) 12843 { 12844 u64 reg; 12845 int m, n; 12846 12847 /* clear from the handled mask of the general interrupt */ 12848 m = isrc / 64; 12849 n = isrc % 64; 12850 if (likely(m < CCE_NUM_INT_CSRS)) { 12851 dd->gi_mask[m] &= ~((u64)1 << n); 12852 } else { 12853 dd_dev_err(dd, "remap interrupt err\n"); 12854 return; 12855 } 12856 12857 /* direct the chip source to the given MSI-X interrupt */ 12858 m = isrc / 8; 12859 n = isrc % 8; 12860 reg = read_csr(dd, CCE_INT_MAP + (8 * m)); 12861 reg &= ~((u64)0xff << (8 * n)); 12862 reg |= ((u64)msix_intr & 0xff) << (8 * n); 12863 write_csr(dd, CCE_INT_MAP + (8 * m), reg); 12864 } 12865 12866 static void remap_sdma_interrupts(struct hfi1_devdata *dd, 12867 int engine, int msix_intr) 12868 { 12869 /* 12870 * SDMA engine interrupt sources grouped by type, rather than 12871 * engine. Per-engine interrupts are as follows: 12872 * SDMA 12873 * SDMAProgress 12874 * SDMAIdle 12875 */ 12876 remap_intr(dd, IS_SDMA_START + 0 * TXE_NUM_SDMA_ENGINES + engine, 12877 msix_intr); 12878 remap_intr(dd, IS_SDMA_START + 1 * TXE_NUM_SDMA_ENGINES + engine, 12879 msix_intr); 12880 remap_intr(dd, IS_SDMA_START + 2 * TXE_NUM_SDMA_ENGINES + engine, 12881 msix_intr); 12882 } 12883 12884 static int request_intx_irq(struct hfi1_devdata *dd) 12885 { 12886 int ret; 12887 12888 snprintf(dd->intx_name, sizeof(dd->intx_name), DRIVER_NAME "_%d", 12889 dd->unit); 12890 ret = request_irq(dd->pcidev->irq, general_interrupt, 12891 IRQF_SHARED, dd->intx_name, dd); 12892 if (ret) 12893 dd_dev_err(dd, "unable to request INTx interrupt, err %d\n", 12894 ret); 12895 else 12896 dd->requested_intx_irq = 1; 12897 return ret; 12898 } 12899 12900 static int request_msix_irqs(struct hfi1_devdata *dd) 12901 { 12902 int first_general, last_general; 12903 int first_sdma, last_sdma; 12904 int first_rx, last_rx; 12905 int i, ret = 0; 12906 12907 /* calculate the ranges we are going to use */ 12908 first_general = 0; 12909 last_general = first_general + 1; 12910 first_sdma = last_general; 12911 last_sdma = first_sdma + dd->num_sdma; 12912 first_rx = last_sdma; 12913 last_rx = first_rx + dd->n_krcv_queues + HFI1_NUM_VNIC_CTXT; 12914 12915 /* VNIC MSIx interrupts get mapped when VNIC contexts are created */ 12916 dd->first_dyn_msix_idx = first_rx + dd->n_krcv_queues; 12917 12918 /* 12919 * Sanity check - the code expects all SDMA chip source 12920 * interrupts to be in the same CSR, starting at bit 0. Verify 12921 * that this is true by checking the bit location of the start. 12922 */ 12923 BUILD_BUG_ON(IS_SDMA_START % 64); 12924 12925 for (i = 0; i < dd->num_msix_entries; i++) { 12926 struct hfi1_msix_entry *me = &dd->msix_entries[i]; 12927 const char *err_info; 12928 irq_handler_t handler; 12929 irq_handler_t thread = NULL; 12930 void *arg = NULL; 12931 int idx; 12932 struct hfi1_ctxtdata *rcd = NULL; 12933 struct sdma_engine *sde = NULL; 12934 12935 /* obtain the arguments to request_irq */ 12936 if (first_general <= i && i < last_general) { 12937 idx = i - first_general; 12938 handler = general_interrupt; 12939 arg = dd; 12940 snprintf(me->name, sizeof(me->name), 12941 DRIVER_NAME "_%d", dd->unit); 12942 err_info = "general"; 12943 me->type = IRQ_GENERAL; 12944 } else if (first_sdma <= i && i < last_sdma) { 12945 idx = i - first_sdma; 12946 sde = &dd->per_sdma[idx]; 12947 handler = sdma_interrupt; 12948 arg = sde; 12949 snprintf(me->name, sizeof(me->name), 12950 DRIVER_NAME "_%d sdma%d", dd->unit, idx); 12951 err_info = "sdma"; 12952 remap_sdma_interrupts(dd, idx, i); 12953 me->type = IRQ_SDMA; 12954 } else if (first_rx <= i && i < last_rx) { 12955 idx = i - first_rx; 12956 rcd = dd->rcd[idx]; 12957 if (rcd) { 12958 /* 12959 * Set the interrupt register and mask for this 12960 * context's interrupt. 12961 */ 12962 rcd->ireg = (IS_RCVAVAIL_START + idx) / 64; 12963 rcd->imask = ((u64)1) << 12964 ((IS_RCVAVAIL_START + idx) % 64); 12965 handler = receive_context_interrupt; 12966 thread = receive_context_thread; 12967 arg = rcd; 12968 snprintf(me->name, sizeof(me->name), 12969 DRIVER_NAME "_%d kctxt%d", 12970 dd->unit, idx); 12971 err_info = "receive context"; 12972 remap_intr(dd, IS_RCVAVAIL_START + idx, i); 12973 me->type = IRQ_RCVCTXT; 12974 rcd->msix_intr = i; 12975 } 12976 } else { 12977 /* not in our expected range - complain, then 12978 * ignore it 12979 */ 12980 dd_dev_err(dd, 12981 "Unexpected extra MSI-X interrupt %d\n", i); 12982 continue; 12983 } 12984 /* no argument, no interrupt */ 12985 if (!arg) 12986 continue; 12987 /* make sure the name is terminated */ 12988 me->name[sizeof(me->name) - 1] = 0; 12989 12990 ret = request_threaded_irq(me->msix.vector, handler, thread, 0, 12991 me->name, arg); 12992 if (ret) { 12993 dd_dev_err(dd, 12994 "unable to allocate %s interrupt, vector %d, index %d, err %d\n", 12995 err_info, me->msix.vector, idx, ret); 12996 return ret; 12997 } 12998 /* 12999 * assign arg after request_irq call, so it will be 13000 * cleaned up 13001 */ 13002 me->arg = arg; 13003 13004 ret = hfi1_get_irq_affinity(dd, me); 13005 if (ret) 13006 dd_dev_err(dd, 13007 "unable to pin IRQ %d\n", ret); 13008 } 13009 13010 return ret; 13011 } 13012 13013 void hfi1_vnic_synchronize_irq(struct hfi1_devdata *dd) 13014 { 13015 int i; 13016 13017 if (!dd->num_msix_entries) { 13018 synchronize_irq(dd->pcidev->irq); 13019 return; 13020 } 13021 13022 for (i = 0; i < dd->vnic.num_ctxt; i++) { 13023 struct hfi1_ctxtdata *rcd = dd->vnic.ctxt[i]; 13024 struct hfi1_msix_entry *me = &dd->msix_entries[rcd->msix_intr]; 13025 13026 synchronize_irq(me->msix.vector); 13027 } 13028 } 13029 13030 void hfi1_reset_vnic_msix_info(struct hfi1_ctxtdata *rcd) 13031 { 13032 struct hfi1_devdata *dd = rcd->dd; 13033 struct hfi1_msix_entry *me = &dd->msix_entries[rcd->msix_intr]; 13034 13035 if (!me->arg) /* => no irq, no affinity */ 13036 return; 13037 13038 hfi1_put_irq_affinity(dd, me); 13039 free_irq(me->msix.vector, me->arg); 13040 13041 me->arg = NULL; 13042 } 13043 13044 void hfi1_set_vnic_msix_info(struct hfi1_ctxtdata *rcd) 13045 { 13046 struct hfi1_devdata *dd = rcd->dd; 13047 struct hfi1_msix_entry *me; 13048 int idx = rcd->ctxt; 13049 void *arg = rcd; 13050 int ret; 13051 13052 rcd->msix_intr = dd->vnic.msix_idx++; 13053 me = &dd->msix_entries[rcd->msix_intr]; 13054 13055 /* 13056 * Set the interrupt register and mask for this 13057 * context's interrupt. 13058 */ 13059 rcd->ireg = (IS_RCVAVAIL_START + idx) / 64; 13060 rcd->imask = ((u64)1) << 13061 ((IS_RCVAVAIL_START + idx) % 64); 13062 13063 snprintf(me->name, sizeof(me->name), 13064 DRIVER_NAME "_%d kctxt%d", dd->unit, idx); 13065 me->name[sizeof(me->name) - 1] = 0; 13066 me->type = IRQ_RCVCTXT; 13067 13068 remap_intr(dd, IS_RCVAVAIL_START + idx, rcd->msix_intr); 13069 13070 ret = request_threaded_irq(me->msix.vector, receive_context_interrupt, 13071 receive_context_thread, 0, me->name, arg); 13072 if (ret) { 13073 dd_dev_err(dd, "vnic irq request (vector %d, idx %d) fail %d\n", 13074 me->msix.vector, idx, ret); 13075 return; 13076 } 13077 /* 13078 * assign arg after request_irq call, so it will be 13079 * cleaned up 13080 */ 13081 me->arg = arg; 13082 13083 ret = hfi1_get_irq_affinity(dd, me); 13084 if (ret) { 13085 dd_dev_err(dd, 13086 "unable to pin IRQ %d\n", ret); 13087 free_irq(me->msix.vector, me->arg); 13088 } 13089 } 13090 13091 /* 13092 * Set the general handler to accept all interrupts, remap all 13093 * chip interrupts back to MSI-X 0. 13094 */ 13095 static void reset_interrupts(struct hfi1_devdata *dd) 13096 { 13097 int i; 13098 13099 /* all interrupts handled by the general handler */ 13100 for (i = 0; i < CCE_NUM_INT_CSRS; i++) 13101 dd->gi_mask[i] = ~(u64)0; 13102 13103 /* all chip interrupts map to MSI-X 0 */ 13104 for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++) 13105 write_csr(dd, CCE_INT_MAP + (8 * i), 0); 13106 } 13107 13108 static int set_up_interrupts(struct hfi1_devdata *dd) 13109 { 13110 struct hfi1_msix_entry *entries; 13111 u32 total, request; 13112 int i, ret; 13113 int single_interrupt = 0; /* we expect to have all the interrupts */ 13114 13115 /* 13116 * Interrupt count: 13117 * 1 general, "slow path" interrupt (includes the SDMA engines 13118 * slow source, SDMACleanupDone) 13119 * N interrupts - one per used SDMA engine 13120 * M interrupt - one per kernel receive context 13121 */ 13122 total = 1 + dd->num_sdma + dd->n_krcv_queues + HFI1_NUM_VNIC_CTXT; 13123 13124 entries = kcalloc(total, sizeof(*entries), GFP_KERNEL); 13125 if (!entries) { 13126 ret = -ENOMEM; 13127 goto fail; 13128 } 13129 /* 1-1 MSI-X entry assignment */ 13130 for (i = 0; i < total; i++) 13131 entries[i].msix.entry = i; 13132 13133 /* ask for MSI-X interrupts */ 13134 request = total; 13135 request_msix(dd, &request, entries); 13136 13137 if (request == 0) { 13138 /* using INTx */ 13139 /* dd->num_msix_entries already zero */ 13140 kfree(entries); 13141 single_interrupt = 1; 13142 dd_dev_err(dd, "MSI-X failed, using INTx interrupts\n"); 13143 } else { 13144 /* using MSI-X */ 13145 dd->num_msix_entries = request; 13146 dd->msix_entries = entries; 13147 13148 if (request != total) { 13149 /* using MSI-X, with reduced interrupts */ 13150 dd_dev_err( 13151 dd, 13152 "cannot handle reduced interrupt case, want %u, got %u\n", 13153 total, request); 13154 ret = -EINVAL; 13155 goto fail; 13156 } 13157 dd_dev_info(dd, "%u MSI-X interrupts allocated\n", total); 13158 } 13159 13160 /* mask all interrupts */ 13161 set_intr_state(dd, 0); 13162 /* clear all pending interrupts */ 13163 clear_all_interrupts(dd); 13164 13165 /* reset general handler mask, chip MSI-X mappings */ 13166 reset_interrupts(dd); 13167 13168 if (single_interrupt) 13169 ret = request_intx_irq(dd); 13170 else 13171 ret = request_msix_irqs(dd); 13172 if (ret) 13173 goto fail; 13174 13175 return 0; 13176 13177 fail: 13178 clean_up_interrupts(dd); 13179 return ret; 13180 } 13181 13182 /* 13183 * Set up context values in dd. Sets: 13184 * 13185 * num_rcv_contexts - number of contexts being used 13186 * n_krcv_queues - number of kernel contexts 13187 * first_dyn_alloc_ctxt - first dynamically allocated context 13188 * in array of contexts 13189 * freectxts - number of free user contexts 13190 * num_send_contexts - number of PIO send contexts being used 13191 */ 13192 static int set_up_context_variables(struct hfi1_devdata *dd) 13193 { 13194 unsigned long num_kernel_contexts; 13195 int total_contexts; 13196 int ret; 13197 unsigned ngroups; 13198 int qos_rmt_count; 13199 int user_rmt_reduced; 13200 13201 /* 13202 * Kernel receive contexts: 13203 * - Context 0 - control context (VL15/multicast/error) 13204 * - Context 1 - first kernel context 13205 * - Context 2 - second kernel context 13206 * ... 13207 */ 13208 if (n_krcvqs) 13209 /* 13210 * n_krcvqs is the sum of module parameter kernel receive 13211 * contexts, krcvqs[]. It does not include the control 13212 * context, so add that. 13213 */ 13214 num_kernel_contexts = n_krcvqs + 1; 13215 else 13216 num_kernel_contexts = DEFAULT_KRCVQS + 1; 13217 /* 13218 * Every kernel receive context needs an ACK send context. 13219 * one send context is allocated for each VL{0-7} and VL15 13220 */ 13221 if (num_kernel_contexts > (dd->chip_send_contexts - num_vls - 1)) { 13222 dd_dev_err(dd, 13223 "Reducing # kernel rcv contexts to: %d, from %lu\n", 13224 (int)(dd->chip_send_contexts - num_vls - 1), 13225 num_kernel_contexts); 13226 num_kernel_contexts = dd->chip_send_contexts - num_vls - 1; 13227 } 13228 /* 13229 * User contexts: 13230 * - default to 1 user context per real (non-HT) CPU core if 13231 * num_user_contexts is negative 13232 */ 13233 if (num_user_contexts < 0) 13234 num_user_contexts = 13235 cpumask_weight(&node_affinity.real_cpu_mask); 13236 13237 total_contexts = num_kernel_contexts + num_user_contexts; 13238 13239 /* 13240 * Adjust the counts given a global max. 13241 */ 13242 if (total_contexts > dd->chip_rcv_contexts) { 13243 dd_dev_err(dd, 13244 "Reducing # user receive contexts to: %d, from %d\n", 13245 (int)(dd->chip_rcv_contexts - num_kernel_contexts), 13246 (int)num_user_contexts); 13247 num_user_contexts = dd->chip_rcv_contexts - num_kernel_contexts; 13248 /* recalculate */ 13249 total_contexts = num_kernel_contexts + num_user_contexts; 13250 } 13251 13252 /* each user context requires an entry in the RMT */ 13253 qos_rmt_count = qos_rmt_entries(dd, NULL, NULL); 13254 if (qos_rmt_count + num_user_contexts > NUM_MAP_ENTRIES) { 13255 user_rmt_reduced = NUM_MAP_ENTRIES - qos_rmt_count; 13256 dd_dev_err(dd, 13257 "RMT size is reducing the number of user receive contexts from %d to %d\n", 13258 (int)num_user_contexts, 13259 user_rmt_reduced); 13260 /* recalculate */ 13261 num_user_contexts = user_rmt_reduced; 13262 total_contexts = num_kernel_contexts + num_user_contexts; 13263 } 13264 13265 /* Accommodate VNIC contexts */ 13266 if ((total_contexts + HFI1_NUM_VNIC_CTXT) <= dd->chip_rcv_contexts) 13267 total_contexts += HFI1_NUM_VNIC_CTXT; 13268 13269 /* the first N are kernel contexts, the rest are user/vnic contexts */ 13270 dd->num_rcv_contexts = total_contexts; 13271 dd->n_krcv_queues = num_kernel_contexts; 13272 dd->first_dyn_alloc_ctxt = num_kernel_contexts; 13273 dd->num_user_contexts = num_user_contexts; 13274 dd->freectxts = num_user_contexts; 13275 dd_dev_info(dd, 13276 "rcv contexts: chip %d, used %d (kernel %d, user %d)\n", 13277 (int)dd->chip_rcv_contexts, 13278 (int)dd->num_rcv_contexts, 13279 (int)dd->n_krcv_queues, 13280 (int)dd->num_rcv_contexts - dd->n_krcv_queues); 13281 13282 /* 13283 * Receive array allocation: 13284 * All RcvArray entries are divided into groups of 8. This 13285 * is required by the hardware and will speed up writes to 13286 * consecutive entries by using write-combining of the entire 13287 * cacheline. 13288 * 13289 * The number of groups are evenly divided among all contexts. 13290 * any left over groups will be given to the first N user 13291 * contexts. 13292 */ 13293 dd->rcv_entries.group_size = RCV_INCREMENT; 13294 ngroups = dd->chip_rcv_array_count / dd->rcv_entries.group_size; 13295 dd->rcv_entries.ngroups = ngroups / dd->num_rcv_contexts; 13296 dd->rcv_entries.nctxt_extra = ngroups - 13297 (dd->num_rcv_contexts * dd->rcv_entries.ngroups); 13298 dd_dev_info(dd, "RcvArray groups %u, ctxts extra %u\n", 13299 dd->rcv_entries.ngroups, 13300 dd->rcv_entries.nctxt_extra); 13301 if (dd->rcv_entries.ngroups * dd->rcv_entries.group_size > 13302 MAX_EAGER_ENTRIES * 2) { 13303 dd->rcv_entries.ngroups = (MAX_EAGER_ENTRIES * 2) / 13304 dd->rcv_entries.group_size; 13305 dd_dev_info(dd, 13306 "RcvArray group count too high, change to %u\n", 13307 dd->rcv_entries.ngroups); 13308 dd->rcv_entries.nctxt_extra = 0; 13309 } 13310 /* 13311 * PIO send contexts 13312 */ 13313 ret = init_sc_pools_and_sizes(dd); 13314 if (ret >= 0) { /* success */ 13315 dd->num_send_contexts = ret; 13316 dd_dev_info( 13317 dd, 13318 "send contexts: chip %d, used %d (kernel %d, ack %d, user %d, vl15 %d)\n", 13319 dd->chip_send_contexts, 13320 dd->num_send_contexts, 13321 dd->sc_sizes[SC_KERNEL].count, 13322 dd->sc_sizes[SC_ACK].count, 13323 dd->sc_sizes[SC_USER].count, 13324 dd->sc_sizes[SC_VL15].count); 13325 ret = 0; /* success */ 13326 } 13327 13328 return ret; 13329 } 13330 13331 /* 13332 * Set the device/port partition key table. The MAD code 13333 * will ensure that, at least, the partial management 13334 * partition key is present in the table. 13335 */ 13336 static void set_partition_keys(struct hfi1_pportdata *ppd) 13337 { 13338 struct hfi1_devdata *dd = ppd->dd; 13339 u64 reg = 0; 13340 int i; 13341 13342 dd_dev_info(dd, "Setting partition keys\n"); 13343 for (i = 0; i < hfi1_get_npkeys(dd); i++) { 13344 reg |= (ppd->pkeys[i] & 13345 RCV_PARTITION_KEY_PARTITION_KEY_A_MASK) << 13346 ((i % 4) * 13347 RCV_PARTITION_KEY_PARTITION_KEY_B_SHIFT); 13348 /* Each register holds 4 PKey values. */ 13349 if ((i % 4) == 3) { 13350 write_csr(dd, RCV_PARTITION_KEY + 13351 ((i - 3) * 2), reg); 13352 reg = 0; 13353 } 13354 } 13355 13356 /* Always enable HW pkeys check when pkeys table is set */ 13357 add_rcvctrl(dd, RCV_CTRL_RCV_PARTITION_KEY_ENABLE_SMASK); 13358 } 13359 13360 /* 13361 * These CSRs and memories are uninitialized on reset and must be 13362 * written before reading to set the ECC/parity bits. 13363 * 13364 * NOTE: All user context CSRs that are not mmaped write-only 13365 * (e.g. the TID flows) must be initialized even if the driver never 13366 * reads them. 13367 */ 13368 static void write_uninitialized_csrs_and_memories(struct hfi1_devdata *dd) 13369 { 13370 int i, j; 13371 13372 /* CceIntMap */ 13373 for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++) 13374 write_csr(dd, CCE_INT_MAP + (8 * i), 0); 13375 13376 /* SendCtxtCreditReturnAddr */ 13377 for (i = 0; i < dd->chip_send_contexts; i++) 13378 write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_RETURN_ADDR, 0); 13379 13380 /* PIO Send buffers */ 13381 /* SDMA Send buffers */ 13382 /* 13383 * These are not normally read, and (presently) have no method 13384 * to be read, so are not pre-initialized 13385 */ 13386 13387 /* RcvHdrAddr */ 13388 /* RcvHdrTailAddr */ 13389 /* RcvTidFlowTable */ 13390 for (i = 0; i < dd->chip_rcv_contexts; i++) { 13391 write_kctxt_csr(dd, i, RCV_HDR_ADDR, 0); 13392 write_kctxt_csr(dd, i, RCV_HDR_TAIL_ADDR, 0); 13393 for (j = 0; j < RXE_NUM_TID_FLOWS; j++) 13394 write_uctxt_csr(dd, i, RCV_TID_FLOW_TABLE + (8 * j), 0); 13395 } 13396 13397 /* RcvArray */ 13398 for (i = 0; i < dd->chip_rcv_array_count; i++) 13399 write_csr(dd, RCV_ARRAY + (8 * i), 13400 RCV_ARRAY_RT_WRITE_ENABLE_SMASK); 13401 13402 /* RcvQPMapTable */ 13403 for (i = 0; i < 32; i++) 13404 write_csr(dd, RCV_QP_MAP_TABLE + (8 * i), 0); 13405 } 13406 13407 /* 13408 * Use the ctrl_bits in CceCtrl to clear the status_bits in CceStatus. 13409 */ 13410 static void clear_cce_status(struct hfi1_devdata *dd, u64 status_bits, 13411 u64 ctrl_bits) 13412 { 13413 unsigned long timeout; 13414 u64 reg; 13415 13416 /* is the condition present? */ 13417 reg = read_csr(dd, CCE_STATUS); 13418 if ((reg & status_bits) == 0) 13419 return; 13420 13421 /* clear the condition */ 13422 write_csr(dd, CCE_CTRL, ctrl_bits); 13423 13424 /* wait for the condition to clear */ 13425 timeout = jiffies + msecs_to_jiffies(CCE_STATUS_TIMEOUT); 13426 while (1) { 13427 reg = read_csr(dd, CCE_STATUS); 13428 if ((reg & status_bits) == 0) 13429 return; 13430 if (time_after(jiffies, timeout)) { 13431 dd_dev_err(dd, 13432 "Timeout waiting for CceStatus to clear bits 0x%llx, remaining 0x%llx\n", 13433 status_bits, reg & status_bits); 13434 return; 13435 } 13436 udelay(1); 13437 } 13438 } 13439 13440 /* set CCE CSRs to chip reset defaults */ 13441 static void reset_cce_csrs(struct hfi1_devdata *dd) 13442 { 13443 int i; 13444 13445 /* CCE_REVISION read-only */ 13446 /* CCE_REVISION2 read-only */ 13447 /* CCE_CTRL - bits clear automatically */ 13448 /* CCE_STATUS read-only, use CceCtrl to clear */ 13449 clear_cce_status(dd, ALL_FROZE, CCE_CTRL_SPC_UNFREEZE_SMASK); 13450 clear_cce_status(dd, ALL_TXE_PAUSE, CCE_CTRL_TXE_RESUME_SMASK); 13451 clear_cce_status(dd, ALL_RXE_PAUSE, CCE_CTRL_RXE_RESUME_SMASK); 13452 for (i = 0; i < CCE_NUM_SCRATCH; i++) 13453 write_csr(dd, CCE_SCRATCH + (8 * i), 0); 13454 /* CCE_ERR_STATUS read-only */ 13455 write_csr(dd, CCE_ERR_MASK, 0); 13456 write_csr(dd, CCE_ERR_CLEAR, ~0ull); 13457 /* CCE_ERR_FORCE leave alone */ 13458 for (i = 0; i < CCE_NUM_32_BIT_COUNTERS; i++) 13459 write_csr(dd, CCE_COUNTER_ARRAY32 + (8 * i), 0); 13460 write_csr(dd, CCE_DC_CTRL, CCE_DC_CTRL_RESETCSR); 13461 /* CCE_PCIE_CTRL leave alone */ 13462 for (i = 0; i < CCE_NUM_MSIX_VECTORS; i++) { 13463 write_csr(dd, CCE_MSIX_TABLE_LOWER + (8 * i), 0); 13464 write_csr(dd, CCE_MSIX_TABLE_UPPER + (8 * i), 13465 CCE_MSIX_TABLE_UPPER_RESETCSR); 13466 } 13467 for (i = 0; i < CCE_NUM_MSIX_PBAS; i++) { 13468 /* CCE_MSIX_PBA read-only */ 13469 write_csr(dd, CCE_MSIX_INT_GRANTED, ~0ull); 13470 write_csr(dd, CCE_MSIX_VEC_CLR_WITHOUT_INT, ~0ull); 13471 } 13472 for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++) 13473 write_csr(dd, CCE_INT_MAP, 0); 13474 for (i = 0; i < CCE_NUM_INT_CSRS; i++) { 13475 /* CCE_INT_STATUS read-only */ 13476 write_csr(dd, CCE_INT_MASK + (8 * i), 0); 13477 write_csr(dd, CCE_INT_CLEAR + (8 * i), ~0ull); 13478 /* CCE_INT_FORCE leave alone */ 13479 /* CCE_INT_BLOCKED read-only */ 13480 } 13481 for (i = 0; i < CCE_NUM_32_BIT_INT_COUNTERS; i++) 13482 write_csr(dd, CCE_INT_COUNTER_ARRAY32 + (8 * i), 0); 13483 } 13484 13485 /* set MISC CSRs to chip reset defaults */ 13486 static void reset_misc_csrs(struct hfi1_devdata *dd) 13487 { 13488 int i; 13489 13490 for (i = 0; i < 32; i++) { 13491 write_csr(dd, MISC_CFG_RSA_R2 + (8 * i), 0); 13492 write_csr(dd, MISC_CFG_RSA_SIGNATURE + (8 * i), 0); 13493 write_csr(dd, MISC_CFG_RSA_MODULUS + (8 * i), 0); 13494 } 13495 /* 13496 * MISC_CFG_SHA_PRELOAD leave alone - always reads 0 and can 13497 * only be written 128-byte chunks 13498 */ 13499 /* init RSA engine to clear lingering errors */ 13500 write_csr(dd, MISC_CFG_RSA_CMD, 1); 13501 write_csr(dd, MISC_CFG_RSA_MU, 0); 13502 write_csr(dd, MISC_CFG_FW_CTRL, 0); 13503 /* MISC_STS_8051_DIGEST read-only */ 13504 /* MISC_STS_SBM_DIGEST read-only */ 13505 /* MISC_STS_PCIE_DIGEST read-only */ 13506 /* MISC_STS_FAB_DIGEST read-only */ 13507 /* MISC_ERR_STATUS read-only */ 13508 write_csr(dd, MISC_ERR_MASK, 0); 13509 write_csr(dd, MISC_ERR_CLEAR, ~0ull); 13510 /* MISC_ERR_FORCE leave alone */ 13511 } 13512 13513 /* set TXE CSRs to chip reset defaults */ 13514 static void reset_txe_csrs(struct hfi1_devdata *dd) 13515 { 13516 int i; 13517 13518 /* 13519 * TXE Kernel CSRs 13520 */ 13521 write_csr(dd, SEND_CTRL, 0); 13522 __cm_reset(dd, 0); /* reset CM internal state */ 13523 /* SEND_CONTEXTS read-only */ 13524 /* SEND_DMA_ENGINES read-only */ 13525 /* SEND_PIO_MEM_SIZE read-only */ 13526 /* SEND_DMA_MEM_SIZE read-only */ 13527 write_csr(dd, SEND_HIGH_PRIORITY_LIMIT, 0); 13528 pio_reset_all(dd); /* SEND_PIO_INIT_CTXT */ 13529 /* SEND_PIO_ERR_STATUS read-only */ 13530 write_csr(dd, SEND_PIO_ERR_MASK, 0); 13531 write_csr(dd, SEND_PIO_ERR_CLEAR, ~0ull); 13532 /* SEND_PIO_ERR_FORCE leave alone */ 13533 /* SEND_DMA_ERR_STATUS read-only */ 13534 write_csr(dd, SEND_DMA_ERR_MASK, 0); 13535 write_csr(dd, SEND_DMA_ERR_CLEAR, ~0ull); 13536 /* SEND_DMA_ERR_FORCE leave alone */ 13537 /* SEND_EGRESS_ERR_STATUS read-only */ 13538 write_csr(dd, SEND_EGRESS_ERR_MASK, 0); 13539 write_csr(dd, SEND_EGRESS_ERR_CLEAR, ~0ull); 13540 /* SEND_EGRESS_ERR_FORCE leave alone */ 13541 write_csr(dd, SEND_BTH_QP, 0); 13542 write_csr(dd, SEND_STATIC_RATE_CONTROL, 0); 13543 write_csr(dd, SEND_SC2VLT0, 0); 13544 write_csr(dd, SEND_SC2VLT1, 0); 13545 write_csr(dd, SEND_SC2VLT2, 0); 13546 write_csr(dd, SEND_SC2VLT3, 0); 13547 write_csr(dd, SEND_LEN_CHECK0, 0); 13548 write_csr(dd, SEND_LEN_CHECK1, 0); 13549 /* SEND_ERR_STATUS read-only */ 13550 write_csr(dd, SEND_ERR_MASK, 0); 13551 write_csr(dd, SEND_ERR_CLEAR, ~0ull); 13552 /* SEND_ERR_FORCE read-only */ 13553 for (i = 0; i < VL_ARB_LOW_PRIO_TABLE_SIZE; i++) 13554 write_csr(dd, SEND_LOW_PRIORITY_LIST + (8 * i), 0); 13555 for (i = 0; i < VL_ARB_HIGH_PRIO_TABLE_SIZE; i++) 13556 write_csr(dd, SEND_HIGH_PRIORITY_LIST + (8 * i), 0); 13557 for (i = 0; i < dd->chip_send_contexts / NUM_CONTEXTS_PER_SET; i++) 13558 write_csr(dd, SEND_CONTEXT_SET_CTRL + (8 * i), 0); 13559 for (i = 0; i < TXE_NUM_32_BIT_COUNTER; i++) 13560 write_csr(dd, SEND_COUNTER_ARRAY32 + (8 * i), 0); 13561 for (i = 0; i < TXE_NUM_64_BIT_COUNTER; i++) 13562 write_csr(dd, SEND_COUNTER_ARRAY64 + (8 * i), 0); 13563 write_csr(dd, SEND_CM_CTRL, SEND_CM_CTRL_RESETCSR); 13564 write_csr(dd, SEND_CM_GLOBAL_CREDIT, SEND_CM_GLOBAL_CREDIT_RESETCSR); 13565 /* SEND_CM_CREDIT_USED_STATUS read-only */ 13566 write_csr(dd, SEND_CM_TIMER_CTRL, 0); 13567 write_csr(dd, SEND_CM_LOCAL_AU_TABLE0_TO3, 0); 13568 write_csr(dd, SEND_CM_LOCAL_AU_TABLE4_TO7, 0); 13569 write_csr(dd, SEND_CM_REMOTE_AU_TABLE0_TO3, 0); 13570 write_csr(dd, SEND_CM_REMOTE_AU_TABLE4_TO7, 0); 13571 for (i = 0; i < TXE_NUM_DATA_VL; i++) 13572 write_csr(dd, SEND_CM_CREDIT_VL + (8 * i), 0); 13573 write_csr(dd, SEND_CM_CREDIT_VL15, 0); 13574 /* SEND_CM_CREDIT_USED_VL read-only */ 13575 /* SEND_CM_CREDIT_USED_VL15 read-only */ 13576 /* SEND_EGRESS_CTXT_STATUS read-only */ 13577 /* SEND_EGRESS_SEND_DMA_STATUS read-only */ 13578 write_csr(dd, SEND_EGRESS_ERR_INFO, ~0ull); 13579 /* SEND_EGRESS_ERR_INFO read-only */ 13580 /* SEND_EGRESS_ERR_SOURCE read-only */ 13581 13582 /* 13583 * TXE Per-Context CSRs 13584 */ 13585 for (i = 0; i < dd->chip_send_contexts; i++) { 13586 write_kctxt_csr(dd, i, SEND_CTXT_CTRL, 0); 13587 write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_CTRL, 0); 13588 write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_RETURN_ADDR, 0); 13589 write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_FORCE, 0); 13590 write_kctxt_csr(dd, i, SEND_CTXT_ERR_MASK, 0); 13591 write_kctxt_csr(dd, i, SEND_CTXT_ERR_CLEAR, ~0ull); 13592 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_ENABLE, 0); 13593 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_VL, 0); 13594 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_JOB_KEY, 0); 13595 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_PARTITION_KEY, 0); 13596 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_SLID, 0); 13597 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_OPCODE, 0); 13598 } 13599 13600 /* 13601 * TXE Per-SDMA CSRs 13602 */ 13603 for (i = 0; i < dd->chip_sdma_engines; i++) { 13604 write_kctxt_csr(dd, i, SEND_DMA_CTRL, 0); 13605 /* SEND_DMA_STATUS read-only */ 13606 write_kctxt_csr(dd, i, SEND_DMA_BASE_ADDR, 0); 13607 write_kctxt_csr(dd, i, SEND_DMA_LEN_GEN, 0); 13608 write_kctxt_csr(dd, i, SEND_DMA_TAIL, 0); 13609 /* SEND_DMA_HEAD read-only */ 13610 write_kctxt_csr(dd, i, SEND_DMA_HEAD_ADDR, 0); 13611 write_kctxt_csr(dd, i, SEND_DMA_PRIORITY_THLD, 0); 13612 /* SEND_DMA_IDLE_CNT read-only */ 13613 write_kctxt_csr(dd, i, SEND_DMA_RELOAD_CNT, 0); 13614 write_kctxt_csr(dd, i, SEND_DMA_DESC_CNT, 0); 13615 /* SEND_DMA_DESC_FETCHED_CNT read-only */ 13616 /* SEND_DMA_ENG_ERR_STATUS read-only */ 13617 write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_MASK, 0); 13618 write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_CLEAR, ~0ull); 13619 /* SEND_DMA_ENG_ERR_FORCE leave alone */ 13620 write_kctxt_csr(dd, i, SEND_DMA_CHECK_ENABLE, 0); 13621 write_kctxt_csr(dd, i, SEND_DMA_CHECK_VL, 0); 13622 write_kctxt_csr(dd, i, SEND_DMA_CHECK_JOB_KEY, 0); 13623 write_kctxt_csr(dd, i, SEND_DMA_CHECK_PARTITION_KEY, 0); 13624 write_kctxt_csr(dd, i, SEND_DMA_CHECK_SLID, 0); 13625 write_kctxt_csr(dd, i, SEND_DMA_CHECK_OPCODE, 0); 13626 write_kctxt_csr(dd, i, SEND_DMA_MEMORY, 0); 13627 } 13628 } 13629 13630 /* 13631 * Expect on entry: 13632 * o Packet ingress is disabled, i.e. RcvCtrl.RcvPortEnable == 0 13633 */ 13634 static void init_rbufs(struct hfi1_devdata *dd) 13635 { 13636 u64 reg; 13637 int count; 13638 13639 /* 13640 * Wait for DMA to stop: RxRbufPktPending and RxPktInProgress are 13641 * clear. 13642 */ 13643 count = 0; 13644 while (1) { 13645 reg = read_csr(dd, RCV_STATUS); 13646 if ((reg & (RCV_STATUS_RX_RBUF_PKT_PENDING_SMASK 13647 | RCV_STATUS_RX_PKT_IN_PROGRESS_SMASK)) == 0) 13648 break; 13649 /* 13650 * Give up after 1ms - maximum wait time. 13651 * 13652 * RBuf size is 136KiB. Slowest possible is PCIe Gen1 x1 at 13653 * 250MB/s bandwidth. Lower rate to 66% for overhead to get: 13654 * 136 KB / (66% * 250MB/s) = 844us 13655 */ 13656 if (count++ > 500) { 13657 dd_dev_err(dd, 13658 "%s: in-progress DMA not clearing: RcvStatus 0x%llx, continuing\n", 13659 __func__, reg); 13660 break; 13661 } 13662 udelay(2); /* do not busy-wait the CSR */ 13663 } 13664 13665 /* start the init - expect RcvCtrl to be 0 */ 13666 write_csr(dd, RCV_CTRL, RCV_CTRL_RX_RBUF_INIT_SMASK); 13667 13668 /* 13669 * Read to force the write of Rcvtrl.RxRbufInit. There is a brief 13670 * period after the write before RcvStatus.RxRbufInitDone is valid. 13671 * The delay in the first run through the loop below is sufficient and 13672 * required before the first read of RcvStatus.RxRbufInintDone. 13673 */ 13674 read_csr(dd, RCV_CTRL); 13675 13676 /* wait for the init to finish */ 13677 count = 0; 13678 while (1) { 13679 /* delay is required first time through - see above */ 13680 udelay(2); /* do not busy-wait the CSR */ 13681 reg = read_csr(dd, RCV_STATUS); 13682 if (reg & (RCV_STATUS_RX_RBUF_INIT_DONE_SMASK)) 13683 break; 13684 13685 /* give up after 100us - slowest possible at 33MHz is 73us */ 13686 if (count++ > 50) { 13687 dd_dev_err(dd, 13688 "%s: RcvStatus.RxRbufInit not set, continuing\n", 13689 __func__); 13690 break; 13691 } 13692 } 13693 } 13694 13695 /* set RXE CSRs to chip reset defaults */ 13696 static void reset_rxe_csrs(struct hfi1_devdata *dd) 13697 { 13698 int i, j; 13699 13700 /* 13701 * RXE Kernel CSRs 13702 */ 13703 write_csr(dd, RCV_CTRL, 0); 13704 init_rbufs(dd); 13705 /* RCV_STATUS read-only */ 13706 /* RCV_CONTEXTS read-only */ 13707 /* RCV_ARRAY_CNT read-only */ 13708 /* RCV_BUF_SIZE read-only */ 13709 write_csr(dd, RCV_BTH_QP, 0); 13710 write_csr(dd, RCV_MULTICAST, 0); 13711 write_csr(dd, RCV_BYPASS, 0); 13712 write_csr(dd, RCV_VL15, 0); 13713 /* this is a clear-down */ 13714 write_csr(dd, RCV_ERR_INFO, 13715 RCV_ERR_INFO_RCV_EXCESS_BUFFER_OVERRUN_SMASK); 13716 /* RCV_ERR_STATUS read-only */ 13717 write_csr(dd, RCV_ERR_MASK, 0); 13718 write_csr(dd, RCV_ERR_CLEAR, ~0ull); 13719 /* RCV_ERR_FORCE leave alone */ 13720 for (i = 0; i < 32; i++) 13721 write_csr(dd, RCV_QP_MAP_TABLE + (8 * i), 0); 13722 for (i = 0; i < 4; i++) 13723 write_csr(dd, RCV_PARTITION_KEY + (8 * i), 0); 13724 for (i = 0; i < RXE_NUM_32_BIT_COUNTERS; i++) 13725 write_csr(dd, RCV_COUNTER_ARRAY32 + (8 * i), 0); 13726 for (i = 0; i < RXE_NUM_64_BIT_COUNTERS; i++) 13727 write_csr(dd, RCV_COUNTER_ARRAY64 + (8 * i), 0); 13728 for (i = 0; i < RXE_NUM_RSM_INSTANCES; i++) 13729 clear_rsm_rule(dd, i); 13730 for (i = 0; i < 32; i++) 13731 write_csr(dd, RCV_RSM_MAP_TABLE + (8 * i), 0); 13732 13733 /* 13734 * RXE Kernel and User Per-Context CSRs 13735 */ 13736 for (i = 0; i < dd->chip_rcv_contexts; i++) { 13737 /* kernel */ 13738 write_kctxt_csr(dd, i, RCV_CTXT_CTRL, 0); 13739 /* RCV_CTXT_STATUS read-only */ 13740 write_kctxt_csr(dd, i, RCV_EGR_CTRL, 0); 13741 write_kctxt_csr(dd, i, RCV_TID_CTRL, 0); 13742 write_kctxt_csr(dd, i, RCV_KEY_CTRL, 0); 13743 write_kctxt_csr(dd, i, RCV_HDR_ADDR, 0); 13744 write_kctxt_csr(dd, i, RCV_HDR_CNT, 0); 13745 write_kctxt_csr(dd, i, RCV_HDR_ENT_SIZE, 0); 13746 write_kctxt_csr(dd, i, RCV_HDR_SIZE, 0); 13747 write_kctxt_csr(dd, i, RCV_HDR_TAIL_ADDR, 0); 13748 write_kctxt_csr(dd, i, RCV_AVAIL_TIME_OUT, 0); 13749 write_kctxt_csr(dd, i, RCV_HDR_OVFL_CNT, 0); 13750 13751 /* user */ 13752 /* RCV_HDR_TAIL read-only */ 13753 write_uctxt_csr(dd, i, RCV_HDR_HEAD, 0); 13754 /* RCV_EGR_INDEX_TAIL read-only */ 13755 write_uctxt_csr(dd, i, RCV_EGR_INDEX_HEAD, 0); 13756 /* RCV_EGR_OFFSET_TAIL read-only */ 13757 for (j = 0; j < RXE_NUM_TID_FLOWS; j++) { 13758 write_uctxt_csr(dd, i, 13759 RCV_TID_FLOW_TABLE + (8 * j), 0); 13760 } 13761 } 13762 } 13763 13764 /* 13765 * Set sc2vl tables. 13766 * 13767 * They power on to zeros, so to avoid send context errors 13768 * they need to be set: 13769 * 13770 * SC 0-7 -> VL 0-7 (respectively) 13771 * SC 15 -> VL 15 13772 * otherwise 13773 * -> VL 0 13774 */ 13775 static void init_sc2vl_tables(struct hfi1_devdata *dd) 13776 { 13777 int i; 13778 /* init per architecture spec, constrained by hardware capability */ 13779 13780 /* HFI maps sent packets */ 13781 write_csr(dd, SEND_SC2VLT0, SC2VL_VAL( 13782 0, 13783 0, 0, 1, 1, 13784 2, 2, 3, 3, 13785 4, 4, 5, 5, 13786 6, 6, 7, 7)); 13787 write_csr(dd, SEND_SC2VLT1, SC2VL_VAL( 13788 1, 13789 8, 0, 9, 0, 13790 10, 0, 11, 0, 13791 12, 0, 13, 0, 13792 14, 0, 15, 15)); 13793 write_csr(dd, SEND_SC2VLT2, SC2VL_VAL( 13794 2, 13795 16, 0, 17, 0, 13796 18, 0, 19, 0, 13797 20, 0, 21, 0, 13798 22, 0, 23, 0)); 13799 write_csr(dd, SEND_SC2VLT3, SC2VL_VAL( 13800 3, 13801 24, 0, 25, 0, 13802 26, 0, 27, 0, 13803 28, 0, 29, 0, 13804 30, 0, 31, 0)); 13805 13806 /* DC maps received packets */ 13807 write_csr(dd, DCC_CFG_SC_VL_TABLE_15_0, DC_SC_VL_VAL( 13808 15_0, 13809 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 13810 8, 0, 9, 0, 10, 0, 11, 0, 12, 0, 13, 0, 14, 0, 15, 15)); 13811 write_csr(dd, DCC_CFG_SC_VL_TABLE_31_16, DC_SC_VL_VAL( 13812 31_16, 13813 16, 0, 17, 0, 18, 0, 19, 0, 20, 0, 21, 0, 22, 0, 23, 0, 13814 24, 0, 25, 0, 26, 0, 27, 0, 28, 0, 29, 0, 30, 0, 31, 0)); 13815 13816 /* initialize the cached sc2vl values consistently with h/w */ 13817 for (i = 0; i < 32; i++) { 13818 if (i < 8 || i == 15) 13819 *((u8 *)(dd->sc2vl) + i) = (u8)i; 13820 else 13821 *((u8 *)(dd->sc2vl) + i) = 0; 13822 } 13823 } 13824 13825 /* 13826 * Read chip sizes and then reset parts to sane, disabled, values. We cannot 13827 * depend on the chip going through a power-on reset - a driver may be loaded 13828 * and unloaded many times. 13829 * 13830 * Do not write any CSR values to the chip in this routine - there may be 13831 * a reset following the (possible) FLR in this routine. 13832 * 13833 */ 13834 static void init_chip(struct hfi1_devdata *dd) 13835 { 13836 int i; 13837 13838 /* 13839 * Put the HFI CSRs in a known state. 13840 * Combine this with a DC reset. 13841 * 13842 * Stop the device from doing anything while we do a 13843 * reset. We know there are no other active users of 13844 * the device since we are now in charge. Turn off 13845 * off all outbound and inbound traffic and make sure 13846 * the device does not generate any interrupts. 13847 */ 13848 13849 /* disable send contexts and SDMA engines */ 13850 write_csr(dd, SEND_CTRL, 0); 13851 for (i = 0; i < dd->chip_send_contexts; i++) 13852 write_kctxt_csr(dd, i, SEND_CTXT_CTRL, 0); 13853 for (i = 0; i < dd->chip_sdma_engines; i++) 13854 write_kctxt_csr(dd, i, SEND_DMA_CTRL, 0); 13855 /* disable port (turn off RXE inbound traffic) and contexts */ 13856 write_csr(dd, RCV_CTRL, 0); 13857 for (i = 0; i < dd->chip_rcv_contexts; i++) 13858 write_csr(dd, RCV_CTXT_CTRL, 0); 13859 /* mask all interrupt sources */ 13860 for (i = 0; i < CCE_NUM_INT_CSRS; i++) 13861 write_csr(dd, CCE_INT_MASK + (8 * i), 0ull); 13862 13863 /* 13864 * DC Reset: do a full DC reset before the register clear. 13865 * A recommended length of time to hold is one CSR read, 13866 * so reread the CceDcCtrl. Then, hold the DC in reset 13867 * across the clear. 13868 */ 13869 write_csr(dd, CCE_DC_CTRL, CCE_DC_CTRL_DC_RESET_SMASK); 13870 (void)read_csr(dd, CCE_DC_CTRL); 13871 13872 if (use_flr) { 13873 /* 13874 * A FLR will reset the SPC core and part of the PCIe. 13875 * The parts that need to be restored have already been 13876 * saved. 13877 */ 13878 dd_dev_info(dd, "Resetting CSRs with FLR\n"); 13879 13880 /* do the FLR, the DC reset will remain */ 13881 pcie_flr(dd->pcidev); 13882 13883 /* restore command and BARs */ 13884 restore_pci_variables(dd); 13885 13886 if (is_ax(dd)) { 13887 dd_dev_info(dd, "Resetting CSRs with FLR\n"); 13888 pcie_flr(dd->pcidev); 13889 restore_pci_variables(dd); 13890 } 13891 } else { 13892 dd_dev_info(dd, "Resetting CSRs with writes\n"); 13893 reset_cce_csrs(dd); 13894 reset_txe_csrs(dd); 13895 reset_rxe_csrs(dd); 13896 reset_misc_csrs(dd); 13897 } 13898 /* clear the DC reset */ 13899 write_csr(dd, CCE_DC_CTRL, 0); 13900 13901 /* Set the LED off */ 13902 setextled(dd, 0); 13903 13904 /* 13905 * Clear the QSFP reset. 13906 * An FLR enforces a 0 on all out pins. The driver does not touch 13907 * ASIC_QSFPn_OUT otherwise. This leaves RESET_N low and 13908 * anything plugged constantly in reset, if it pays attention 13909 * to RESET_N. 13910 * Prime examples of this are optical cables. Set all pins high. 13911 * I2CCLK and I2CDAT will change per direction, and INT_N and 13912 * MODPRS_N are input only and their value is ignored. 13913 */ 13914 write_csr(dd, ASIC_QSFP1_OUT, 0x1f); 13915 write_csr(dd, ASIC_QSFP2_OUT, 0x1f); 13916 init_chip_resources(dd); 13917 } 13918 13919 static void init_early_variables(struct hfi1_devdata *dd) 13920 { 13921 int i; 13922 13923 /* assign link credit variables */ 13924 dd->vau = CM_VAU; 13925 dd->link_credits = CM_GLOBAL_CREDITS; 13926 if (is_ax(dd)) 13927 dd->link_credits--; 13928 dd->vcu = cu_to_vcu(hfi1_cu); 13929 /* enough room for 8 MAD packets plus header - 17K */ 13930 dd->vl15_init = (8 * (2048 + 128)) / vau_to_au(dd->vau); 13931 if (dd->vl15_init > dd->link_credits) 13932 dd->vl15_init = dd->link_credits; 13933 13934 write_uninitialized_csrs_and_memories(dd); 13935 13936 if (HFI1_CAP_IS_KSET(PKEY_CHECK)) 13937 for (i = 0; i < dd->num_pports; i++) { 13938 struct hfi1_pportdata *ppd = &dd->pport[i]; 13939 13940 set_partition_keys(ppd); 13941 } 13942 init_sc2vl_tables(dd); 13943 } 13944 13945 static void init_kdeth_qp(struct hfi1_devdata *dd) 13946 { 13947 /* user changed the KDETH_QP */ 13948 if (kdeth_qp != 0 && kdeth_qp >= 0xff) { 13949 /* out of range or illegal value */ 13950 dd_dev_err(dd, "Invalid KDETH queue pair prefix, ignoring"); 13951 kdeth_qp = 0; 13952 } 13953 if (kdeth_qp == 0) /* not set, or failed range check */ 13954 kdeth_qp = DEFAULT_KDETH_QP; 13955 13956 write_csr(dd, SEND_BTH_QP, 13957 (kdeth_qp & SEND_BTH_QP_KDETH_QP_MASK) << 13958 SEND_BTH_QP_KDETH_QP_SHIFT); 13959 13960 write_csr(dd, RCV_BTH_QP, 13961 (kdeth_qp & RCV_BTH_QP_KDETH_QP_MASK) << 13962 RCV_BTH_QP_KDETH_QP_SHIFT); 13963 } 13964 13965 /** 13966 * init_qpmap_table 13967 * @dd - device data 13968 * @first_ctxt - first context 13969 * @last_ctxt - first context 13970 * 13971 * This return sets the qpn mapping table that 13972 * is indexed by qpn[8:1]. 13973 * 13974 * The routine will round robin the 256 settings 13975 * from first_ctxt to last_ctxt. 13976 * 13977 * The first/last looks ahead to having specialized 13978 * receive contexts for mgmt and bypass. Normal 13979 * verbs traffic will assumed to be on a range 13980 * of receive contexts. 13981 */ 13982 static void init_qpmap_table(struct hfi1_devdata *dd, 13983 u32 first_ctxt, 13984 u32 last_ctxt) 13985 { 13986 u64 reg = 0; 13987 u64 regno = RCV_QP_MAP_TABLE; 13988 int i; 13989 u64 ctxt = first_ctxt; 13990 13991 for (i = 0; i < 256; i++) { 13992 reg |= ctxt << (8 * (i % 8)); 13993 ctxt++; 13994 if (ctxt > last_ctxt) 13995 ctxt = first_ctxt; 13996 if (i % 8 == 7) { 13997 write_csr(dd, regno, reg); 13998 reg = 0; 13999 regno += 8; 14000 } 14001 } 14002 14003 add_rcvctrl(dd, RCV_CTRL_RCV_QP_MAP_ENABLE_SMASK 14004 | RCV_CTRL_RCV_BYPASS_ENABLE_SMASK); 14005 } 14006 14007 struct rsm_map_table { 14008 u64 map[NUM_MAP_REGS]; 14009 unsigned int used; 14010 }; 14011 14012 struct rsm_rule_data { 14013 u8 offset; 14014 u8 pkt_type; 14015 u32 field1_off; 14016 u32 field2_off; 14017 u32 index1_off; 14018 u32 index1_width; 14019 u32 index2_off; 14020 u32 index2_width; 14021 u32 mask1; 14022 u32 value1; 14023 u32 mask2; 14024 u32 value2; 14025 }; 14026 14027 /* 14028 * Return an initialized RMT map table for users to fill in. OK if it 14029 * returns NULL, indicating no table. 14030 */ 14031 static struct rsm_map_table *alloc_rsm_map_table(struct hfi1_devdata *dd) 14032 { 14033 struct rsm_map_table *rmt; 14034 u8 rxcontext = is_ax(dd) ? 0 : 0xff; /* 0 is default if a0 ver. */ 14035 14036 rmt = kmalloc(sizeof(*rmt), GFP_KERNEL); 14037 if (rmt) { 14038 memset(rmt->map, rxcontext, sizeof(rmt->map)); 14039 rmt->used = 0; 14040 } 14041 14042 return rmt; 14043 } 14044 14045 /* 14046 * Write the final RMT map table to the chip and free the table. OK if 14047 * table is NULL. 14048 */ 14049 static void complete_rsm_map_table(struct hfi1_devdata *dd, 14050 struct rsm_map_table *rmt) 14051 { 14052 int i; 14053 14054 if (rmt) { 14055 /* write table to chip */ 14056 for (i = 0; i < NUM_MAP_REGS; i++) 14057 write_csr(dd, RCV_RSM_MAP_TABLE + (8 * i), rmt->map[i]); 14058 14059 /* enable RSM */ 14060 add_rcvctrl(dd, RCV_CTRL_RCV_RSM_ENABLE_SMASK); 14061 } 14062 } 14063 14064 /* 14065 * Add a receive side mapping rule. 14066 */ 14067 static void add_rsm_rule(struct hfi1_devdata *dd, u8 rule_index, 14068 struct rsm_rule_data *rrd) 14069 { 14070 write_csr(dd, RCV_RSM_CFG + (8 * rule_index), 14071 (u64)rrd->offset << RCV_RSM_CFG_OFFSET_SHIFT | 14072 1ull << rule_index | /* enable bit */ 14073 (u64)rrd->pkt_type << RCV_RSM_CFG_PACKET_TYPE_SHIFT); 14074 write_csr(dd, RCV_RSM_SELECT + (8 * rule_index), 14075 (u64)rrd->field1_off << RCV_RSM_SELECT_FIELD1_OFFSET_SHIFT | 14076 (u64)rrd->field2_off << RCV_RSM_SELECT_FIELD2_OFFSET_SHIFT | 14077 (u64)rrd->index1_off << RCV_RSM_SELECT_INDEX1_OFFSET_SHIFT | 14078 (u64)rrd->index1_width << RCV_RSM_SELECT_INDEX1_WIDTH_SHIFT | 14079 (u64)rrd->index2_off << RCV_RSM_SELECT_INDEX2_OFFSET_SHIFT | 14080 (u64)rrd->index2_width << RCV_RSM_SELECT_INDEX2_WIDTH_SHIFT); 14081 write_csr(dd, RCV_RSM_MATCH + (8 * rule_index), 14082 (u64)rrd->mask1 << RCV_RSM_MATCH_MASK1_SHIFT | 14083 (u64)rrd->value1 << RCV_RSM_MATCH_VALUE1_SHIFT | 14084 (u64)rrd->mask2 << RCV_RSM_MATCH_MASK2_SHIFT | 14085 (u64)rrd->value2 << RCV_RSM_MATCH_VALUE2_SHIFT); 14086 } 14087 14088 /* 14089 * Clear a receive side mapping rule. 14090 */ 14091 static void clear_rsm_rule(struct hfi1_devdata *dd, u8 rule_index) 14092 { 14093 write_csr(dd, RCV_RSM_CFG + (8 * rule_index), 0); 14094 write_csr(dd, RCV_RSM_SELECT + (8 * rule_index), 0); 14095 write_csr(dd, RCV_RSM_MATCH + (8 * rule_index), 0); 14096 } 14097 14098 /* return the number of RSM map table entries that will be used for QOS */ 14099 static int qos_rmt_entries(struct hfi1_devdata *dd, unsigned int *mp, 14100 unsigned int *np) 14101 { 14102 int i; 14103 unsigned int m, n; 14104 u8 max_by_vl = 0; 14105 14106 /* is QOS active at all? */ 14107 if (dd->n_krcv_queues <= MIN_KERNEL_KCTXTS || 14108 num_vls == 1 || 14109 krcvqsset <= 1) 14110 goto no_qos; 14111 14112 /* determine bits for qpn */ 14113 for (i = 0; i < min_t(unsigned int, num_vls, krcvqsset); i++) 14114 if (krcvqs[i] > max_by_vl) 14115 max_by_vl = krcvqs[i]; 14116 if (max_by_vl > 32) 14117 goto no_qos; 14118 m = ilog2(__roundup_pow_of_two(max_by_vl)); 14119 14120 /* determine bits for vl */ 14121 n = ilog2(__roundup_pow_of_two(num_vls)); 14122 14123 /* reject if too much is used */ 14124 if ((m + n) > 7) 14125 goto no_qos; 14126 14127 if (mp) 14128 *mp = m; 14129 if (np) 14130 *np = n; 14131 14132 return 1 << (m + n); 14133 14134 no_qos: 14135 if (mp) 14136 *mp = 0; 14137 if (np) 14138 *np = 0; 14139 return 0; 14140 } 14141 14142 /** 14143 * init_qos - init RX qos 14144 * @dd - device data 14145 * @rmt - RSM map table 14146 * 14147 * This routine initializes Rule 0 and the RSM map table to implement 14148 * quality of service (qos). 14149 * 14150 * If all of the limit tests succeed, qos is applied based on the array 14151 * interpretation of krcvqs where entry 0 is VL0. 14152 * 14153 * The number of vl bits (n) and the number of qpn bits (m) are computed to 14154 * feed both the RSM map table and the single rule. 14155 */ 14156 static void init_qos(struct hfi1_devdata *dd, struct rsm_map_table *rmt) 14157 { 14158 struct rsm_rule_data rrd; 14159 unsigned qpns_per_vl, ctxt, i, qpn, n = 1, m; 14160 unsigned int rmt_entries; 14161 u64 reg; 14162 14163 if (!rmt) 14164 goto bail; 14165 rmt_entries = qos_rmt_entries(dd, &m, &n); 14166 if (rmt_entries == 0) 14167 goto bail; 14168 qpns_per_vl = 1 << m; 14169 14170 /* enough room in the map table? */ 14171 rmt_entries = 1 << (m + n); 14172 if (rmt->used + rmt_entries >= NUM_MAP_ENTRIES) 14173 goto bail; 14174 14175 /* add qos entries to the the RSM map table */ 14176 for (i = 0, ctxt = FIRST_KERNEL_KCTXT; i < num_vls; i++) { 14177 unsigned tctxt; 14178 14179 for (qpn = 0, tctxt = ctxt; 14180 krcvqs[i] && qpn < qpns_per_vl; qpn++) { 14181 unsigned idx, regoff, regidx; 14182 14183 /* generate the index the hardware will produce */ 14184 idx = rmt->used + ((qpn << n) ^ i); 14185 regoff = (idx % 8) * 8; 14186 regidx = idx / 8; 14187 /* replace default with context number */ 14188 reg = rmt->map[regidx]; 14189 reg &= ~(RCV_RSM_MAP_TABLE_RCV_CONTEXT_A_MASK 14190 << regoff); 14191 reg |= (u64)(tctxt++) << regoff; 14192 rmt->map[regidx] = reg; 14193 if (tctxt == ctxt + krcvqs[i]) 14194 tctxt = ctxt; 14195 } 14196 ctxt += krcvqs[i]; 14197 } 14198 14199 rrd.offset = rmt->used; 14200 rrd.pkt_type = 2; 14201 rrd.field1_off = LRH_BTH_MATCH_OFFSET; 14202 rrd.field2_off = LRH_SC_MATCH_OFFSET; 14203 rrd.index1_off = LRH_SC_SELECT_OFFSET; 14204 rrd.index1_width = n; 14205 rrd.index2_off = QPN_SELECT_OFFSET; 14206 rrd.index2_width = m + n; 14207 rrd.mask1 = LRH_BTH_MASK; 14208 rrd.value1 = LRH_BTH_VALUE; 14209 rrd.mask2 = LRH_SC_MASK; 14210 rrd.value2 = LRH_SC_VALUE; 14211 14212 /* add rule 0 */ 14213 add_rsm_rule(dd, RSM_INS_VERBS, &rrd); 14214 14215 /* mark RSM map entries as used */ 14216 rmt->used += rmt_entries; 14217 /* map everything else to the mcast/err/vl15 context */ 14218 init_qpmap_table(dd, HFI1_CTRL_CTXT, HFI1_CTRL_CTXT); 14219 dd->qos_shift = n + 1; 14220 return; 14221 bail: 14222 dd->qos_shift = 1; 14223 init_qpmap_table(dd, FIRST_KERNEL_KCTXT, dd->n_krcv_queues - 1); 14224 } 14225 14226 static void init_user_fecn_handling(struct hfi1_devdata *dd, 14227 struct rsm_map_table *rmt) 14228 { 14229 struct rsm_rule_data rrd; 14230 u64 reg; 14231 int i, idx, regoff, regidx; 14232 u8 offset; 14233 14234 /* there needs to be enough room in the map table */ 14235 if (rmt->used + dd->num_user_contexts >= NUM_MAP_ENTRIES) { 14236 dd_dev_err(dd, "User FECN handling disabled - too many user contexts allocated\n"); 14237 return; 14238 } 14239 14240 /* 14241 * RSM will extract the destination context as an index into the 14242 * map table. The destination contexts are a sequential block 14243 * in the range first_dyn_alloc_ctxt...num_rcv_contexts-1 (inclusive). 14244 * Map entries are accessed as offset + extracted value. Adjust 14245 * the added offset so this sequence can be placed anywhere in 14246 * the table - as long as the entries themselves do not wrap. 14247 * There are only enough bits in offset for the table size, so 14248 * start with that to allow for a "negative" offset. 14249 */ 14250 offset = (u8)(NUM_MAP_ENTRIES + (int)rmt->used - 14251 (int)dd->first_dyn_alloc_ctxt); 14252 14253 for (i = dd->first_dyn_alloc_ctxt, idx = rmt->used; 14254 i < dd->num_rcv_contexts; i++, idx++) { 14255 /* replace with identity mapping */ 14256 regoff = (idx % 8) * 8; 14257 regidx = idx / 8; 14258 reg = rmt->map[regidx]; 14259 reg &= ~(RCV_RSM_MAP_TABLE_RCV_CONTEXT_A_MASK << regoff); 14260 reg |= (u64)i << regoff; 14261 rmt->map[regidx] = reg; 14262 } 14263 14264 /* 14265 * For RSM intercept of Expected FECN packets: 14266 * o packet type 0 - expected 14267 * o match on F (bit 95), using select/match 1, and 14268 * o match on SH (bit 133), using select/match 2. 14269 * 14270 * Use index 1 to extract the 8-bit receive context from DestQP 14271 * (start at bit 64). Use that as the RSM map table index. 14272 */ 14273 rrd.offset = offset; 14274 rrd.pkt_type = 0; 14275 rrd.field1_off = 95; 14276 rrd.field2_off = 133; 14277 rrd.index1_off = 64; 14278 rrd.index1_width = 8; 14279 rrd.index2_off = 0; 14280 rrd.index2_width = 0; 14281 rrd.mask1 = 1; 14282 rrd.value1 = 1; 14283 rrd.mask2 = 1; 14284 rrd.value2 = 1; 14285 14286 /* add rule 1 */ 14287 add_rsm_rule(dd, RSM_INS_FECN, &rrd); 14288 14289 rmt->used += dd->num_user_contexts; 14290 } 14291 14292 /* Initialize RSM for VNIC */ 14293 void hfi1_init_vnic_rsm(struct hfi1_devdata *dd) 14294 { 14295 u8 i, j; 14296 u8 ctx_id = 0; 14297 u64 reg; 14298 u32 regoff; 14299 struct rsm_rule_data rrd; 14300 14301 if (hfi1_vnic_is_rsm_full(dd, NUM_VNIC_MAP_ENTRIES)) { 14302 dd_dev_err(dd, "Vnic RSM disabled, rmt entries used = %d\n", 14303 dd->vnic.rmt_start); 14304 return; 14305 } 14306 14307 dev_dbg(&(dd)->pcidev->dev, "Vnic rsm start = %d, end %d\n", 14308 dd->vnic.rmt_start, 14309 dd->vnic.rmt_start + NUM_VNIC_MAP_ENTRIES); 14310 14311 /* Update RSM mapping table, 32 regs, 256 entries - 1 ctx per byte */ 14312 regoff = RCV_RSM_MAP_TABLE + (dd->vnic.rmt_start / 8) * 8; 14313 reg = read_csr(dd, regoff); 14314 for (i = 0; i < NUM_VNIC_MAP_ENTRIES; i++) { 14315 /* Update map register with vnic context */ 14316 j = (dd->vnic.rmt_start + i) % 8; 14317 reg &= ~(0xffllu << (j * 8)); 14318 reg |= (u64)dd->vnic.ctxt[ctx_id++]->ctxt << (j * 8); 14319 /* Wrap up vnic ctx index */ 14320 ctx_id %= dd->vnic.num_ctxt; 14321 /* Write back map register */ 14322 if (j == 7 || ((i + 1) == NUM_VNIC_MAP_ENTRIES)) { 14323 dev_dbg(&(dd)->pcidev->dev, 14324 "Vnic rsm map reg[%d] =0x%llx\n", 14325 regoff - RCV_RSM_MAP_TABLE, reg); 14326 14327 write_csr(dd, regoff, reg); 14328 regoff += 8; 14329 if (i < (NUM_VNIC_MAP_ENTRIES - 1)) 14330 reg = read_csr(dd, regoff); 14331 } 14332 } 14333 14334 /* Add rule for vnic */ 14335 rrd.offset = dd->vnic.rmt_start; 14336 rrd.pkt_type = 4; 14337 /* Match 16B packets */ 14338 rrd.field1_off = L2_TYPE_MATCH_OFFSET; 14339 rrd.mask1 = L2_TYPE_MASK; 14340 rrd.value1 = L2_16B_VALUE; 14341 /* Match ETH L4 packets */ 14342 rrd.field2_off = L4_TYPE_MATCH_OFFSET; 14343 rrd.mask2 = L4_16B_TYPE_MASK; 14344 rrd.value2 = L4_16B_ETH_VALUE; 14345 /* Calc context from veswid and entropy */ 14346 rrd.index1_off = L4_16B_HDR_VESWID_OFFSET; 14347 rrd.index1_width = ilog2(NUM_VNIC_MAP_ENTRIES); 14348 rrd.index2_off = L2_16B_ENTROPY_OFFSET; 14349 rrd.index2_width = ilog2(NUM_VNIC_MAP_ENTRIES); 14350 add_rsm_rule(dd, RSM_INS_VNIC, &rrd); 14351 14352 /* Enable RSM if not already enabled */ 14353 add_rcvctrl(dd, RCV_CTRL_RCV_RSM_ENABLE_SMASK); 14354 } 14355 14356 void hfi1_deinit_vnic_rsm(struct hfi1_devdata *dd) 14357 { 14358 clear_rsm_rule(dd, RSM_INS_VNIC); 14359 14360 /* Disable RSM if used only by vnic */ 14361 if (dd->vnic.rmt_start == 0) 14362 clear_rcvctrl(dd, RCV_CTRL_RCV_RSM_ENABLE_SMASK); 14363 } 14364 14365 static void init_rxe(struct hfi1_devdata *dd) 14366 { 14367 struct rsm_map_table *rmt; 14368 14369 /* enable all receive errors */ 14370 write_csr(dd, RCV_ERR_MASK, ~0ull); 14371 14372 rmt = alloc_rsm_map_table(dd); 14373 /* set up QOS, including the QPN map table */ 14374 init_qos(dd, rmt); 14375 init_user_fecn_handling(dd, rmt); 14376 complete_rsm_map_table(dd, rmt); 14377 /* record number of used rsm map entries for vnic */ 14378 dd->vnic.rmt_start = rmt->used; 14379 kfree(rmt); 14380 14381 /* 14382 * make sure RcvCtrl.RcvWcb <= PCIe Device Control 14383 * Register Max_Payload_Size (PCI_EXP_DEVCTL in Linux PCIe config 14384 * space, PciCfgCap2.MaxPayloadSize in HFI). There is only one 14385 * invalid configuration: RcvCtrl.RcvWcb set to its max of 256 and 14386 * Max_PayLoad_Size set to its minimum of 128. 14387 * 14388 * Presently, RcvCtrl.RcvWcb is not modified from its default of 0 14389 * (64 bytes). Max_Payload_Size is possibly modified upward in 14390 * tune_pcie_caps() which is called after this routine. 14391 */ 14392 } 14393 14394 static void init_other(struct hfi1_devdata *dd) 14395 { 14396 /* enable all CCE errors */ 14397 write_csr(dd, CCE_ERR_MASK, ~0ull); 14398 /* enable *some* Misc errors */ 14399 write_csr(dd, MISC_ERR_MASK, DRIVER_MISC_MASK); 14400 /* enable all DC errors, except LCB */ 14401 write_csr(dd, DCC_ERR_FLG_EN, ~0ull); 14402 write_csr(dd, DC_DC8051_ERR_EN, ~0ull); 14403 } 14404 14405 /* 14406 * Fill out the given AU table using the given CU. A CU is defined in terms 14407 * AUs. The table is a an encoding: given the index, how many AUs does that 14408 * represent? 14409 * 14410 * NOTE: Assumes that the register layout is the same for the 14411 * local and remote tables. 14412 */ 14413 static void assign_cm_au_table(struct hfi1_devdata *dd, u32 cu, 14414 u32 csr0to3, u32 csr4to7) 14415 { 14416 write_csr(dd, csr0to3, 14417 0ull << SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE0_SHIFT | 14418 1ull << SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE1_SHIFT | 14419 2ull * cu << 14420 SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE2_SHIFT | 14421 4ull * cu << 14422 SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE3_SHIFT); 14423 write_csr(dd, csr4to7, 14424 8ull * cu << 14425 SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE4_SHIFT | 14426 16ull * cu << 14427 SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE5_SHIFT | 14428 32ull * cu << 14429 SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE6_SHIFT | 14430 64ull * cu << 14431 SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE7_SHIFT); 14432 } 14433 14434 static void assign_local_cm_au_table(struct hfi1_devdata *dd, u8 vcu) 14435 { 14436 assign_cm_au_table(dd, vcu_to_cu(vcu), SEND_CM_LOCAL_AU_TABLE0_TO3, 14437 SEND_CM_LOCAL_AU_TABLE4_TO7); 14438 } 14439 14440 void assign_remote_cm_au_table(struct hfi1_devdata *dd, u8 vcu) 14441 { 14442 assign_cm_au_table(dd, vcu_to_cu(vcu), SEND_CM_REMOTE_AU_TABLE0_TO3, 14443 SEND_CM_REMOTE_AU_TABLE4_TO7); 14444 } 14445 14446 static void init_txe(struct hfi1_devdata *dd) 14447 { 14448 int i; 14449 14450 /* enable all PIO, SDMA, general, and Egress errors */ 14451 write_csr(dd, SEND_PIO_ERR_MASK, ~0ull); 14452 write_csr(dd, SEND_DMA_ERR_MASK, ~0ull); 14453 write_csr(dd, SEND_ERR_MASK, ~0ull); 14454 write_csr(dd, SEND_EGRESS_ERR_MASK, ~0ull); 14455 14456 /* enable all per-context and per-SDMA engine errors */ 14457 for (i = 0; i < dd->chip_send_contexts; i++) 14458 write_kctxt_csr(dd, i, SEND_CTXT_ERR_MASK, ~0ull); 14459 for (i = 0; i < dd->chip_sdma_engines; i++) 14460 write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_MASK, ~0ull); 14461 14462 /* set the local CU to AU mapping */ 14463 assign_local_cm_au_table(dd, dd->vcu); 14464 14465 /* 14466 * Set reasonable default for Credit Return Timer 14467 * Don't set on Simulator - causes it to choke. 14468 */ 14469 if (dd->icode != ICODE_FUNCTIONAL_SIMULATOR) 14470 write_csr(dd, SEND_CM_TIMER_CTRL, HFI1_CREDIT_RETURN_RATE); 14471 } 14472 14473 int hfi1_set_ctxt_jkey(struct hfi1_devdata *dd, unsigned ctxt, u16 jkey) 14474 { 14475 struct hfi1_ctxtdata *rcd = dd->rcd[ctxt]; 14476 unsigned sctxt; 14477 int ret = 0; 14478 u64 reg; 14479 14480 if (!rcd || !rcd->sc) { 14481 ret = -EINVAL; 14482 goto done; 14483 } 14484 sctxt = rcd->sc->hw_context; 14485 reg = SEND_CTXT_CHECK_JOB_KEY_MASK_SMASK | /* mask is always 1's */ 14486 ((jkey & SEND_CTXT_CHECK_JOB_KEY_VALUE_MASK) << 14487 SEND_CTXT_CHECK_JOB_KEY_VALUE_SHIFT); 14488 /* JOB_KEY_ALLOW_PERMISSIVE is not allowed by default */ 14489 if (HFI1_CAP_KGET_MASK(rcd->flags, ALLOW_PERM_JKEY)) 14490 reg |= SEND_CTXT_CHECK_JOB_KEY_ALLOW_PERMISSIVE_SMASK; 14491 write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_JOB_KEY, reg); 14492 /* 14493 * Enable send-side J_KEY integrity check, unless this is A0 h/w 14494 */ 14495 if (!is_ax(dd)) { 14496 reg = read_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE); 14497 reg |= SEND_CTXT_CHECK_ENABLE_CHECK_JOB_KEY_SMASK; 14498 write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE, reg); 14499 } 14500 14501 /* Enable J_KEY check on receive context. */ 14502 reg = RCV_KEY_CTRL_JOB_KEY_ENABLE_SMASK | 14503 ((jkey & RCV_KEY_CTRL_JOB_KEY_VALUE_MASK) << 14504 RCV_KEY_CTRL_JOB_KEY_VALUE_SHIFT); 14505 write_kctxt_csr(dd, ctxt, RCV_KEY_CTRL, reg); 14506 done: 14507 return ret; 14508 } 14509 14510 int hfi1_clear_ctxt_jkey(struct hfi1_devdata *dd, unsigned ctxt) 14511 { 14512 struct hfi1_ctxtdata *rcd = dd->rcd[ctxt]; 14513 unsigned sctxt; 14514 int ret = 0; 14515 u64 reg; 14516 14517 if (!rcd || !rcd->sc) { 14518 ret = -EINVAL; 14519 goto done; 14520 } 14521 sctxt = rcd->sc->hw_context; 14522 write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_JOB_KEY, 0); 14523 /* 14524 * Disable send-side J_KEY integrity check, unless this is A0 h/w. 14525 * This check would not have been enabled for A0 h/w, see 14526 * set_ctxt_jkey(). 14527 */ 14528 if (!is_ax(dd)) { 14529 reg = read_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE); 14530 reg &= ~SEND_CTXT_CHECK_ENABLE_CHECK_JOB_KEY_SMASK; 14531 write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE, reg); 14532 } 14533 /* Turn off the J_KEY on the receive side */ 14534 write_kctxt_csr(dd, ctxt, RCV_KEY_CTRL, 0); 14535 done: 14536 return ret; 14537 } 14538 14539 int hfi1_set_ctxt_pkey(struct hfi1_devdata *dd, unsigned ctxt, u16 pkey) 14540 { 14541 struct hfi1_ctxtdata *rcd; 14542 unsigned sctxt; 14543 int ret = 0; 14544 u64 reg; 14545 14546 if (ctxt < dd->num_rcv_contexts) { 14547 rcd = dd->rcd[ctxt]; 14548 } else { 14549 ret = -EINVAL; 14550 goto done; 14551 } 14552 if (!rcd || !rcd->sc) { 14553 ret = -EINVAL; 14554 goto done; 14555 } 14556 sctxt = rcd->sc->hw_context; 14557 reg = ((u64)pkey & SEND_CTXT_CHECK_PARTITION_KEY_VALUE_MASK) << 14558 SEND_CTXT_CHECK_PARTITION_KEY_VALUE_SHIFT; 14559 write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_PARTITION_KEY, reg); 14560 reg = read_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE); 14561 reg |= SEND_CTXT_CHECK_ENABLE_CHECK_PARTITION_KEY_SMASK; 14562 reg &= ~SEND_CTXT_CHECK_ENABLE_DISALLOW_KDETH_PACKETS_SMASK; 14563 write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE, reg); 14564 done: 14565 return ret; 14566 } 14567 14568 int hfi1_clear_ctxt_pkey(struct hfi1_devdata *dd, struct hfi1_ctxtdata *ctxt) 14569 { 14570 u8 hw_ctxt; 14571 u64 reg; 14572 14573 if (!ctxt || !ctxt->sc) 14574 return -EINVAL; 14575 14576 if (ctxt->ctxt >= dd->num_rcv_contexts) 14577 return -EINVAL; 14578 14579 hw_ctxt = ctxt->sc->hw_context; 14580 reg = read_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE); 14581 reg &= ~SEND_CTXT_CHECK_ENABLE_CHECK_PARTITION_KEY_SMASK; 14582 write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE, reg); 14583 write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_PARTITION_KEY, 0); 14584 14585 return 0; 14586 } 14587 14588 /* 14589 * Start doing the clean up the the chip. Our clean up happens in multiple 14590 * stages and this is just the first. 14591 */ 14592 void hfi1_start_cleanup(struct hfi1_devdata *dd) 14593 { 14594 aspm_exit(dd); 14595 free_cntrs(dd); 14596 free_rcverr(dd); 14597 clean_up_interrupts(dd); 14598 finish_chip_resources(dd); 14599 } 14600 14601 #define HFI_BASE_GUID(dev) \ 14602 ((dev)->base_guid & ~(1ULL << GUID_HFI_INDEX_SHIFT)) 14603 14604 /* 14605 * Information can be shared between the two HFIs on the same ASIC 14606 * in the same OS. This function finds the peer device and sets 14607 * up a shared structure. 14608 */ 14609 static int init_asic_data(struct hfi1_devdata *dd) 14610 { 14611 unsigned long flags; 14612 struct hfi1_devdata *tmp, *peer = NULL; 14613 struct hfi1_asic_data *asic_data; 14614 int ret = 0; 14615 14616 /* pre-allocate the asic structure in case we are the first device */ 14617 asic_data = kzalloc(sizeof(*dd->asic_data), GFP_KERNEL); 14618 if (!asic_data) 14619 return -ENOMEM; 14620 14621 spin_lock_irqsave(&hfi1_devs_lock, flags); 14622 /* Find our peer device */ 14623 list_for_each_entry(tmp, &hfi1_dev_list, list) { 14624 if ((HFI_BASE_GUID(dd) == HFI_BASE_GUID(tmp)) && 14625 dd->unit != tmp->unit) { 14626 peer = tmp; 14627 break; 14628 } 14629 } 14630 14631 if (peer) { 14632 /* use already allocated structure */ 14633 dd->asic_data = peer->asic_data; 14634 kfree(asic_data); 14635 } else { 14636 dd->asic_data = asic_data; 14637 mutex_init(&dd->asic_data->asic_resource_mutex); 14638 } 14639 dd->asic_data->dds[dd->hfi1_id] = dd; /* self back-pointer */ 14640 spin_unlock_irqrestore(&hfi1_devs_lock, flags); 14641 14642 /* first one through - set up i2c devices */ 14643 if (!peer) 14644 ret = set_up_i2c(dd, dd->asic_data); 14645 14646 return ret; 14647 } 14648 14649 /* 14650 * Set dd->boardname. Use a generic name if a name is not returned from 14651 * EFI variable space. 14652 * 14653 * Return 0 on success, -ENOMEM if space could not be allocated. 14654 */ 14655 static int obtain_boardname(struct hfi1_devdata *dd) 14656 { 14657 /* generic board description */ 14658 const char generic[] = 14659 "Intel Omni-Path Host Fabric Interface Adapter 100 Series"; 14660 unsigned long size; 14661 int ret; 14662 14663 ret = read_hfi1_efi_var(dd, "description", &size, 14664 (void **)&dd->boardname); 14665 if (ret) { 14666 dd_dev_info(dd, "Board description not found\n"); 14667 /* use generic description */ 14668 dd->boardname = kstrdup(generic, GFP_KERNEL); 14669 if (!dd->boardname) 14670 return -ENOMEM; 14671 } 14672 return 0; 14673 } 14674 14675 /* 14676 * Check the interrupt registers to make sure that they are mapped correctly. 14677 * It is intended to help user identify any mismapping by VMM when the driver 14678 * is running in a VM. This function should only be called before interrupt 14679 * is set up properly. 14680 * 14681 * Return 0 on success, -EINVAL on failure. 14682 */ 14683 static int check_int_registers(struct hfi1_devdata *dd) 14684 { 14685 u64 reg; 14686 u64 all_bits = ~(u64)0; 14687 u64 mask; 14688 14689 /* Clear CceIntMask[0] to avoid raising any interrupts */ 14690 mask = read_csr(dd, CCE_INT_MASK); 14691 write_csr(dd, CCE_INT_MASK, 0ull); 14692 reg = read_csr(dd, CCE_INT_MASK); 14693 if (reg) 14694 goto err_exit; 14695 14696 /* Clear all interrupt status bits */ 14697 write_csr(dd, CCE_INT_CLEAR, all_bits); 14698 reg = read_csr(dd, CCE_INT_STATUS); 14699 if (reg) 14700 goto err_exit; 14701 14702 /* Set all interrupt status bits */ 14703 write_csr(dd, CCE_INT_FORCE, all_bits); 14704 reg = read_csr(dd, CCE_INT_STATUS); 14705 if (reg != all_bits) 14706 goto err_exit; 14707 14708 /* Restore the interrupt mask */ 14709 write_csr(dd, CCE_INT_CLEAR, all_bits); 14710 write_csr(dd, CCE_INT_MASK, mask); 14711 14712 return 0; 14713 err_exit: 14714 write_csr(dd, CCE_INT_MASK, mask); 14715 dd_dev_err(dd, "Interrupt registers not properly mapped by VMM\n"); 14716 return -EINVAL; 14717 } 14718 14719 /** 14720 * Allocate and initialize the device structure for the hfi. 14721 * @dev: the pci_dev for hfi1_ib device 14722 * @ent: pci_device_id struct for this dev 14723 * 14724 * Also allocates, initializes, and returns the devdata struct for this 14725 * device instance 14726 * 14727 * This is global, and is called directly at init to set up the 14728 * chip-specific function pointers for later use. 14729 */ 14730 struct hfi1_devdata *hfi1_init_dd(struct pci_dev *pdev, 14731 const struct pci_device_id *ent) 14732 { 14733 struct hfi1_devdata *dd; 14734 struct hfi1_pportdata *ppd; 14735 u64 reg; 14736 int i, ret; 14737 static const char * const inames[] = { /* implementation names */ 14738 "RTL silicon", 14739 "RTL VCS simulation", 14740 "RTL FPGA emulation", 14741 "Functional simulator" 14742 }; 14743 struct pci_dev *parent = pdev->bus->self; 14744 14745 dd = hfi1_alloc_devdata(pdev, NUM_IB_PORTS * 14746 sizeof(struct hfi1_pportdata)); 14747 if (IS_ERR(dd)) 14748 goto bail; 14749 ppd = dd->pport; 14750 for (i = 0; i < dd->num_pports; i++, ppd++) { 14751 int vl; 14752 /* init common fields */ 14753 hfi1_init_pportdata(pdev, ppd, dd, 0, 1); 14754 /* DC supports 4 link widths */ 14755 ppd->link_width_supported = 14756 OPA_LINK_WIDTH_1X | OPA_LINK_WIDTH_2X | 14757 OPA_LINK_WIDTH_3X | OPA_LINK_WIDTH_4X; 14758 ppd->link_width_downgrade_supported = 14759 ppd->link_width_supported; 14760 /* start out enabling only 4X */ 14761 ppd->link_width_enabled = OPA_LINK_WIDTH_4X; 14762 ppd->link_width_downgrade_enabled = 14763 ppd->link_width_downgrade_supported; 14764 /* link width active is 0 when link is down */ 14765 /* link width downgrade active is 0 when link is down */ 14766 14767 if (num_vls < HFI1_MIN_VLS_SUPPORTED || 14768 num_vls > HFI1_MAX_VLS_SUPPORTED) { 14769 hfi1_early_err(&pdev->dev, 14770 "Invalid num_vls %u, using %u VLs\n", 14771 num_vls, HFI1_MAX_VLS_SUPPORTED); 14772 num_vls = HFI1_MAX_VLS_SUPPORTED; 14773 } 14774 ppd->vls_supported = num_vls; 14775 ppd->vls_operational = ppd->vls_supported; 14776 ppd->actual_vls_operational = ppd->vls_supported; 14777 /* Set the default MTU. */ 14778 for (vl = 0; vl < num_vls; vl++) 14779 dd->vld[vl].mtu = hfi1_max_mtu; 14780 dd->vld[15].mtu = MAX_MAD_PACKET; 14781 /* 14782 * Set the initial values to reasonable default, will be set 14783 * for real when link is up. 14784 */ 14785 ppd->lstate = IB_PORT_DOWN; 14786 ppd->overrun_threshold = 0x4; 14787 ppd->phy_error_threshold = 0xf; 14788 ppd->port_crc_mode_enabled = link_crc_mask; 14789 /* initialize supported LTP CRC mode */ 14790 ppd->port_ltp_crc_mode = cap_to_port_ltp(link_crc_mask) << 8; 14791 /* initialize enabled LTP CRC mode */ 14792 ppd->port_ltp_crc_mode |= cap_to_port_ltp(link_crc_mask) << 4; 14793 /* start in offline */ 14794 ppd->host_link_state = HLS_DN_OFFLINE; 14795 init_vl_arb_caches(ppd); 14796 ppd->last_pstate = 0xff; /* invalid value */ 14797 } 14798 14799 dd->link_default = HLS_DN_POLL; 14800 14801 /* 14802 * Do remaining PCIe setup and save PCIe values in dd. 14803 * Any error printing is already done by the init code. 14804 * On return, we have the chip mapped. 14805 */ 14806 ret = hfi1_pcie_ddinit(dd, pdev); 14807 if (ret < 0) 14808 goto bail_free; 14809 14810 /* verify that reads actually work, save revision for reset check */ 14811 dd->revision = read_csr(dd, CCE_REVISION); 14812 if (dd->revision == ~(u64)0) { 14813 dd_dev_err(dd, "cannot read chip CSRs\n"); 14814 ret = -EINVAL; 14815 goto bail_cleanup; 14816 } 14817 dd->majrev = (dd->revision >> CCE_REVISION_CHIP_REV_MAJOR_SHIFT) 14818 & CCE_REVISION_CHIP_REV_MAJOR_MASK; 14819 dd->minrev = (dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT) 14820 & CCE_REVISION_CHIP_REV_MINOR_MASK; 14821 14822 /* 14823 * Check interrupt registers mapping if the driver has no access to 14824 * the upstream component. In this case, it is likely that the driver 14825 * is running in a VM. 14826 */ 14827 if (!parent) { 14828 ret = check_int_registers(dd); 14829 if (ret) 14830 goto bail_cleanup; 14831 } 14832 14833 /* 14834 * obtain the hardware ID - NOT related to unit, which is a 14835 * software enumeration 14836 */ 14837 reg = read_csr(dd, CCE_REVISION2); 14838 dd->hfi1_id = (reg >> CCE_REVISION2_HFI_ID_SHIFT) 14839 & CCE_REVISION2_HFI_ID_MASK; 14840 /* the variable size will remove unwanted bits */ 14841 dd->icode = reg >> CCE_REVISION2_IMPL_CODE_SHIFT; 14842 dd->irev = reg >> CCE_REVISION2_IMPL_REVISION_SHIFT; 14843 dd_dev_info(dd, "Implementation: %s, revision 0x%x\n", 14844 dd->icode < ARRAY_SIZE(inames) ? 14845 inames[dd->icode] : "unknown", (int)dd->irev); 14846 14847 /* speeds the hardware can support */ 14848 dd->pport->link_speed_supported = OPA_LINK_SPEED_25G; 14849 /* speeds allowed to run at */ 14850 dd->pport->link_speed_enabled = dd->pport->link_speed_supported; 14851 /* give a reasonable active value, will be set on link up */ 14852 dd->pport->link_speed_active = OPA_LINK_SPEED_25G; 14853 14854 dd->chip_rcv_contexts = read_csr(dd, RCV_CONTEXTS); 14855 dd->chip_send_contexts = read_csr(dd, SEND_CONTEXTS); 14856 dd->chip_sdma_engines = read_csr(dd, SEND_DMA_ENGINES); 14857 dd->chip_pio_mem_size = read_csr(dd, SEND_PIO_MEM_SIZE); 14858 dd->chip_sdma_mem_size = read_csr(dd, SEND_DMA_MEM_SIZE); 14859 /* fix up link widths for emulation _p */ 14860 ppd = dd->pport; 14861 if (dd->icode == ICODE_FPGA_EMULATION && is_emulator_p(dd)) { 14862 ppd->link_width_supported = 14863 ppd->link_width_enabled = 14864 ppd->link_width_downgrade_supported = 14865 ppd->link_width_downgrade_enabled = 14866 OPA_LINK_WIDTH_1X; 14867 } 14868 /* insure num_vls isn't larger than number of sdma engines */ 14869 if (HFI1_CAP_IS_KSET(SDMA) && num_vls > dd->chip_sdma_engines) { 14870 dd_dev_err(dd, "num_vls %u too large, using %u VLs\n", 14871 num_vls, dd->chip_sdma_engines); 14872 num_vls = dd->chip_sdma_engines; 14873 ppd->vls_supported = dd->chip_sdma_engines; 14874 ppd->vls_operational = ppd->vls_supported; 14875 } 14876 14877 /* 14878 * Convert the ns parameter to the 64 * cclocks used in the CSR. 14879 * Limit the max if larger than the field holds. If timeout is 14880 * non-zero, then the calculated field will be at least 1. 14881 * 14882 * Must be after icode is set up - the cclock rate depends 14883 * on knowing the hardware being used. 14884 */ 14885 dd->rcv_intr_timeout_csr = ns_to_cclock(dd, rcv_intr_timeout) / 64; 14886 if (dd->rcv_intr_timeout_csr > 14887 RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_MASK) 14888 dd->rcv_intr_timeout_csr = 14889 RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_MASK; 14890 else if (dd->rcv_intr_timeout_csr == 0 && rcv_intr_timeout) 14891 dd->rcv_intr_timeout_csr = 1; 14892 14893 /* needs to be done before we look for the peer device */ 14894 read_guid(dd); 14895 14896 /* set up shared ASIC data with peer device */ 14897 ret = init_asic_data(dd); 14898 if (ret) 14899 goto bail_cleanup; 14900 14901 /* obtain chip sizes, reset chip CSRs */ 14902 init_chip(dd); 14903 14904 /* read in the PCIe link speed information */ 14905 ret = pcie_speeds(dd); 14906 if (ret) 14907 goto bail_cleanup; 14908 14909 /* call before get_platform_config(), after init_chip_resources() */ 14910 ret = eprom_init(dd); 14911 if (ret) 14912 goto bail_free_rcverr; 14913 14914 /* Needs to be called before hfi1_firmware_init */ 14915 get_platform_config(dd); 14916 14917 /* read in firmware */ 14918 ret = hfi1_firmware_init(dd); 14919 if (ret) 14920 goto bail_cleanup; 14921 14922 /* 14923 * In general, the PCIe Gen3 transition must occur after the 14924 * chip has been idled (so it won't initiate any PCIe transactions 14925 * e.g. an interrupt) and before the driver changes any registers 14926 * (the transition will reset the registers). 14927 * 14928 * In particular, place this call after: 14929 * - init_chip() - the chip will not initiate any PCIe transactions 14930 * - pcie_speeds() - reads the current link speed 14931 * - hfi1_firmware_init() - the needed firmware is ready to be 14932 * downloaded 14933 */ 14934 ret = do_pcie_gen3_transition(dd); 14935 if (ret) 14936 goto bail_cleanup; 14937 14938 /* start setting dd values and adjusting CSRs */ 14939 init_early_variables(dd); 14940 14941 parse_platform_config(dd); 14942 14943 ret = obtain_boardname(dd); 14944 if (ret) 14945 goto bail_cleanup; 14946 14947 snprintf(dd->boardversion, BOARD_VERS_MAX, 14948 "ChipABI %u.%u, ChipRev %u.%u, SW Compat %llu\n", 14949 HFI1_CHIP_VERS_MAJ, HFI1_CHIP_VERS_MIN, 14950 (u32)dd->majrev, 14951 (u32)dd->minrev, 14952 (dd->revision >> CCE_REVISION_SW_SHIFT) 14953 & CCE_REVISION_SW_MASK); 14954 14955 ret = set_up_context_variables(dd); 14956 if (ret) 14957 goto bail_cleanup; 14958 14959 /* set initial RXE CSRs */ 14960 init_rxe(dd); 14961 /* set initial TXE CSRs */ 14962 init_txe(dd); 14963 /* set initial non-RXE, non-TXE CSRs */ 14964 init_other(dd); 14965 /* set up KDETH QP prefix in both RX and TX CSRs */ 14966 init_kdeth_qp(dd); 14967 14968 ret = hfi1_dev_affinity_init(dd); 14969 if (ret) 14970 goto bail_cleanup; 14971 14972 /* send contexts must be set up before receive contexts */ 14973 ret = init_send_contexts(dd); 14974 if (ret) 14975 goto bail_cleanup; 14976 14977 ret = hfi1_create_ctxts(dd); 14978 if (ret) 14979 goto bail_cleanup; 14980 14981 dd->rcvhdrsize = DEFAULT_RCVHDRSIZE; 14982 /* 14983 * rcd[0] is guaranteed to be valid by this point. Also, all 14984 * context are using the same value, as per the module parameter. 14985 */ 14986 dd->rhf_offset = dd->rcd[0]->rcvhdrqentsize - sizeof(u64) / sizeof(u32); 14987 14988 ret = init_pervl_scs(dd); 14989 if (ret) 14990 goto bail_cleanup; 14991 14992 /* sdma init */ 14993 for (i = 0; i < dd->num_pports; ++i) { 14994 ret = sdma_init(dd, i); 14995 if (ret) 14996 goto bail_cleanup; 14997 } 14998 14999 /* use contexts created by hfi1_create_ctxts */ 15000 ret = set_up_interrupts(dd); 15001 if (ret) 15002 goto bail_cleanup; 15003 15004 /* set up LCB access - must be after set_up_interrupts() */ 15005 init_lcb_access(dd); 15006 15007 /* 15008 * Serial number is created from the base guid: 15009 * [27:24] = base guid [38:35] 15010 * [23: 0] = base guid [23: 0] 15011 */ 15012 snprintf(dd->serial, SERIAL_MAX, "0x%08llx\n", 15013 (dd->base_guid & 0xFFFFFF) | 15014 ((dd->base_guid >> 11) & 0xF000000)); 15015 15016 dd->oui1 = dd->base_guid >> 56 & 0xFF; 15017 dd->oui2 = dd->base_guid >> 48 & 0xFF; 15018 dd->oui3 = dd->base_guid >> 40 & 0xFF; 15019 15020 ret = load_firmware(dd); /* asymmetric with dispose_firmware() */ 15021 if (ret) 15022 goto bail_clear_intr; 15023 15024 thermal_init(dd); 15025 15026 ret = init_cntrs(dd); 15027 if (ret) 15028 goto bail_clear_intr; 15029 15030 ret = init_rcverr(dd); 15031 if (ret) 15032 goto bail_free_cntrs; 15033 15034 init_completion(&dd->user_comp); 15035 15036 /* The user refcount starts with one to inidicate an active device */ 15037 atomic_set(&dd->user_refcount, 1); 15038 15039 goto bail; 15040 15041 bail_free_rcverr: 15042 free_rcverr(dd); 15043 bail_free_cntrs: 15044 free_cntrs(dd); 15045 bail_clear_intr: 15046 clean_up_interrupts(dd); 15047 bail_cleanup: 15048 hfi1_pcie_ddcleanup(dd); 15049 bail_free: 15050 hfi1_free_devdata(dd); 15051 dd = ERR_PTR(ret); 15052 bail: 15053 return dd; 15054 } 15055 15056 static u16 delay_cycles(struct hfi1_pportdata *ppd, u32 desired_egress_rate, 15057 u32 dw_len) 15058 { 15059 u32 delta_cycles; 15060 u32 current_egress_rate = ppd->current_egress_rate; 15061 /* rates here are in units of 10^6 bits/sec */ 15062 15063 if (desired_egress_rate == -1) 15064 return 0; /* shouldn't happen */ 15065 15066 if (desired_egress_rate >= current_egress_rate) 15067 return 0; /* we can't help go faster, only slower */ 15068 15069 delta_cycles = egress_cycles(dw_len * 4, desired_egress_rate) - 15070 egress_cycles(dw_len * 4, current_egress_rate); 15071 15072 return (u16)delta_cycles; 15073 } 15074 15075 /** 15076 * create_pbc - build a pbc for transmission 15077 * @flags: special case flags or-ed in built pbc 15078 * @srate: static rate 15079 * @vl: vl 15080 * @dwlen: dword length (header words + data words + pbc words) 15081 * 15082 * Create a PBC with the given flags, rate, VL, and length. 15083 * 15084 * NOTE: The PBC created will not insert any HCRC - all callers but one are 15085 * for verbs, which does not use this PSM feature. The lone other caller 15086 * is for the diagnostic interface which calls this if the user does not 15087 * supply their own PBC. 15088 */ 15089 u64 create_pbc(struct hfi1_pportdata *ppd, u64 flags, int srate_mbs, u32 vl, 15090 u32 dw_len) 15091 { 15092 u64 pbc, delay = 0; 15093 15094 if (unlikely(srate_mbs)) 15095 delay = delay_cycles(ppd, srate_mbs, dw_len); 15096 15097 pbc = flags 15098 | (delay << PBC_STATIC_RATE_CONTROL_COUNT_SHIFT) 15099 | ((u64)PBC_IHCRC_NONE << PBC_INSERT_HCRC_SHIFT) 15100 | (vl & PBC_VL_MASK) << PBC_VL_SHIFT 15101 | (dw_len & PBC_LENGTH_DWS_MASK) 15102 << PBC_LENGTH_DWS_SHIFT; 15103 15104 return pbc; 15105 } 15106 15107 #define SBUS_THERMAL 0x4f 15108 #define SBUS_THERM_MONITOR_MODE 0x1 15109 15110 #define THERM_FAILURE(dev, ret, reason) \ 15111 dd_dev_err((dd), \ 15112 "Thermal sensor initialization failed: %s (%d)\n", \ 15113 (reason), (ret)) 15114 15115 /* 15116 * Initialize the thermal sensor. 15117 * 15118 * After initialization, enable polling of thermal sensor through 15119 * SBus interface. In order for this to work, the SBus Master 15120 * firmware has to be loaded due to the fact that the HW polling 15121 * logic uses SBus interrupts, which are not supported with 15122 * default firmware. Otherwise, no data will be returned through 15123 * the ASIC_STS_THERM CSR. 15124 */ 15125 static int thermal_init(struct hfi1_devdata *dd) 15126 { 15127 int ret = 0; 15128 15129 if (dd->icode != ICODE_RTL_SILICON || 15130 check_chip_resource(dd, CR_THERM_INIT, NULL)) 15131 return ret; 15132 15133 ret = acquire_chip_resource(dd, CR_SBUS, SBUS_TIMEOUT); 15134 if (ret) { 15135 THERM_FAILURE(dd, ret, "Acquire SBus"); 15136 return ret; 15137 } 15138 15139 dd_dev_info(dd, "Initializing thermal sensor\n"); 15140 /* Disable polling of thermal readings */ 15141 write_csr(dd, ASIC_CFG_THERM_POLL_EN, 0x0); 15142 msleep(100); 15143 /* Thermal Sensor Initialization */ 15144 /* Step 1: Reset the Thermal SBus Receiver */ 15145 ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0, 15146 RESET_SBUS_RECEIVER, 0); 15147 if (ret) { 15148 THERM_FAILURE(dd, ret, "Bus Reset"); 15149 goto done; 15150 } 15151 /* Step 2: Set Reset bit in Thermal block */ 15152 ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0, 15153 WRITE_SBUS_RECEIVER, 0x1); 15154 if (ret) { 15155 THERM_FAILURE(dd, ret, "Therm Block Reset"); 15156 goto done; 15157 } 15158 /* Step 3: Write clock divider value (100MHz -> 2MHz) */ 15159 ret = sbus_request_slow(dd, SBUS_THERMAL, 0x1, 15160 WRITE_SBUS_RECEIVER, 0x32); 15161 if (ret) { 15162 THERM_FAILURE(dd, ret, "Write Clock Div"); 15163 goto done; 15164 } 15165 /* Step 4: Select temperature mode */ 15166 ret = sbus_request_slow(dd, SBUS_THERMAL, 0x3, 15167 WRITE_SBUS_RECEIVER, 15168 SBUS_THERM_MONITOR_MODE); 15169 if (ret) { 15170 THERM_FAILURE(dd, ret, "Write Mode Sel"); 15171 goto done; 15172 } 15173 /* Step 5: De-assert block reset and start conversion */ 15174 ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0, 15175 WRITE_SBUS_RECEIVER, 0x2); 15176 if (ret) { 15177 THERM_FAILURE(dd, ret, "Write Reset Deassert"); 15178 goto done; 15179 } 15180 /* Step 5.1: Wait for first conversion (21.5ms per spec) */ 15181 msleep(22); 15182 15183 /* Enable polling of thermal readings */ 15184 write_csr(dd, ASIC_CFG_THERM_POLL_EN, 0x1); 15185 15186 /* Set initialized flag */ 15187 ret = acquire_chip_resource(dd, CR_THERM_INIT, 0); 15188 if (ret) 15189 THERM_FAILURE(dd, ret, "Unable to set thermal init flag"); 15190 15191 done: 15192 release_chip_resource(dd, CR_SBUS); 15193 return ret; 15194 } 15195 15196 static void handle_temp_err(struct hfi1_devdata *dd) 15197 { 15198 struct hfi1_pportdata *ppd = &dd->pport[0]; 15199 /* 15200 * Thermal Critical Interrupt 15201 * Put the device into forced freeze mode, take link down to 15202 * offline, and put DC into reset. 15203 */ 15204 dd_dev_emerg(dd, 15205 "Critical temperature reached! Forcing device into freeze mode!\n"); 15206 dd->flags |= HFI1_FORCED_FREEZE; 15207 start_freeze_handling(ppd, FREEZE_SELF | FREEZE_ABORT); 15208 /* 15209 * Shut DC down as much and as quickly as possible. 15210 * 15211 * Step 1: Take the link down to OFFLINE. This will cause the 15212 * 8051 to put the Serdes in reset. However, we don't want to 15213 * go through the entire link state machine since we want to 15214 * shutdown ASAP. Furthermore, this is not a graceful shutdown 15215 * but rather an attempt to save the chip. 15216 * Code below is almost the same as quiet_serdes() but avoids 15217 * all the extra work and the sleeps. 15218 */ 15219 ppd->driver_link_ready = 0; 15220 ppd->link_enabled = 0; 15221 set_physical_link_state(dd, (OPA_LINKDOWN_REASON_SMA_DISABLED << 8) | 15222 PLS_OFFLINE); 15223 /* 15224 * Step 2: Shutdown LCB and 8051 15225 * After shutdown, do not restore DC_CFG_RESET value. 15226 */ 15227 dc_shutdown(dd); 15228 } 15229