xref: /openbmc/linux/drivers/infiniband/hw/hfi1/chip.c (revision c51d39010a1bccc9c1294e2d7c00005aefeb2b5c)
1 /*
2  * Copyright(c) 2015, 2016 Intel Corporation.
3  *
4  * This file is provided under a dual BSD/GPLv2 license.  When using or
5  * redistributing this file, you may do so under either license.
6  *
7  * GPL LICENSE SUMMARY
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of version 2 of the GNU General Public License as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * General Public License for more details.
17  *
18  * BSD LICENSE
19  *
20  * Redistribution and use in source and binary forms, with or without
21  * modification, are permitted provided that the following conditions
22  * are met:
23  *
24  *  - Redistributions of source code must retain the above copyright
25  *    notice, this list of conditions and the following disclaimer.
26  *  - Redistributions in binary form must reproduce the above copyright
27  *    notice, this list of conditions and the following disclaimer in
28  *    the documentation and/or other materials provided with the
29  *    distribution.
30  *  - Neither the name of Intel Corporation nor the names of its
31  *    contributors may be used to endorse or promote products derived
32  *    from this software without specific prior written permission.
33  *
34  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45  *
46  */
47 
48 /*
49  * This file contains all of the code that is specific to the HFI chip
50  */
51 
52 #include <linux/pci.h>
53 #include <linux/delay.h>
54 #include <linux/interrupt.h>
55 #include <linux/module.h>
56 
57 #include "hfi.h"
58 #include "trace.h"
59 #include "mad.h"
60 #include "pio.h"
61 #include "sdma.h"
62 #include "eprom.h"
63 #include "efivar.h"
64 #include "platform.h"
65 #include "aspm.h"
66 #include "affinity.h"
67 
68 #define NUM_IB_PORTS 1
69 
70 uint kdeth_qp;
71 module_param_named(kdeth_qp, kdeth_qp, uint, S_IRUGO);
72 MODULE_PARM_DESC(kdeth_qp, "Set the KDETH queue pair prefix");
73 
74 uint num_vls = HFI1_MAX_VLS_SUPPORTED;
75 module_param(num_vls, uint, S_IRUGO);
76 MODULE_PARM_DESC(num_vls, "Set number of Virtual Lanes to use (1-8)");
77 
78 /*
79  * Default time to aggregate two 10K packets from the idle state
80  * (timer not running). The timer starts at the end of the first packet,
81  * so only the time for one 10K packet and header plus a bit extra is needed.
82  * 10 * 1024 + 64 header byte = 10304 byte
83  * 10304 byte / 12.5 GB/s = 824.32ns
84  */
85 uint rcv_intr_timeout = (824 + 16); /* 16 is for coalescing interrupt */
86 module_param(rcv_intr_timeout, uint, S_IRUGO);
87 MODULE_PARM_DESC(rcv_intr_timeout, "Receive interrupt mitigation timeout in ns");
88 
89 uint rcv_intr_count = 16; /* same as qib */
90 module_param(rcv_intr_count, uint, S_IRUGO);
91 MODULE_PARM_DESC(rcv_intr_count, "Receive interrupt mitigation count");
92 
93 ushort link_crc_mask = SUPPORTED_CRCS;
94 module_param(link_crc_mask, ushort, S_IRUGO);
95 MODULE_PARM_DESC(link_crc_mask, "CRCs to use on the link");
96 
97 uint loopback;
98 module_param_named(loopback, loopback, uint, S_IRUGO);
99 MODULE_PARM_DESC(loopback, "Put into loopback mode (1 = serdes, 3 = external cable");
100 
101 /* Other driver tunables */
102 uint rcv_intr_dynamic = 1; /* enable dynamic mode for rcv int mitigation*/
103 static ushort crc_14b_sideband = 1;
104 static uint use_flr = 1;
105 uint quick_linkup; /* skip LNI */
106 
107 struct flag_table {
108 	u64 flag;	/* the flag */
109 	char *str;	/* description string */
110 	u16 extra;	/* extra information */
111 	u16 unused0;
112 	u32 unused1;
113 };
114 
115 /* str must be a string constant */
116 #define FLAG_ENTRY(str, extra, flag) {flag, str, extra}
117 #define FLAG_ENTRY0(str, flag) {flag, str, 0}
118 
119 /* Send Error Consequences */
120 #define SEC_WRITE_DROPPED	0x1
121 #define SEC_PACKET_DROPPED	0x2
122 #define SEC_SC_HALTED		0x4	/* per-context only */
123 #define SEC_SPC_FREEZE		0x8	/* per-HFI only */
124 
125 #define DEFAULT_KRCVQS		  2
126 #define MIN_KERNEL_KCTXTS         2
127 #define FIRST_KERNEL_KCTXT        1
128 /* sizes for both the QP and RSM map tables */
129 #define NUM_MAP_ENTRIES		256
130 #define NUM_MAP_REGS             32
131 
132 /* Bit offset into the GUID which carries HFI id information */
133 #define GUID_HFI_INDEX_SHIFT     39
134 
135 /* extract the emulation revision */
136 #define emulator_rev(dd) ((dd)->irev >> 8)
137 /* parallel and serial emulation versions are 3 and 4 respectively */
138 #define is_emulator_p(dd) ((((dd)->irev) & 0xf) == 3)
139 #define is_emulator_s(dd) ((((dd)->irev) & 0xf) == 4)
140 
141 /* RSM fields */
142 
143 /* packet type */
144 #define IB_PACKET_TYPE         2ull
145 #define QW_SHIFT               6ull
146 /* QPN[7..1] */
147 #define QPN_WIDTH              7ull
148 
149 /* LRH.BTH: QW 0, OFFSET 48 - for match */
150 #define LRH_BTH_QW             0ull
151 #define LRH_BTH_BIT_OFFSET     48ull
152 #define LRH_BTH_OFFSET(off)    ((LRH_BTH_QW << QW_SHIFT) | (off))
153 #define LRH_BTH_MATCH_OFFSET   LRH_BTH_OFFSET(LRH_BTH_BIT_OFFSET)
154 #define LRH_BTH_SELECT
155 #define LRH_BTH_MASK           3ull
156 #define LRH_BTH_VALUE          2ull
157 
158 /* LRH.SC[3..0] QW 0, OFFSET 56 - for match */
159 #define LRH_SC_QW              0ull
160 #define LRH_SC_BIT_OFFSET      56ull
161 #define LRH_SC_OFFSET(off)     ((LRH_SC_QW << QW_SHIFT) | (off))
162 #define LRH_SC_MATCH_OFFSET    LRH_SC_OFFSET(LRH_SC_BIT_OFFSET)
163 #define LRH_SC_MASK            128ull
164 #define LRH_SC_VALUE           0ull
165 
166 /* SC[n..0] QW 0, OFFSET 60 - for select */
167 #define LRH_SC_SELECT_OFFSET  ((LRH_SC_QW << QW_SHIFT) | (60ull))
168 
169 /* QPN[m+n:1] QW 1, OFFSET 1 */
170 #define QPN_SELECT_OFFSET      ((1ull << QW_SHIFT) | (1ull))
171 
172 /* defines to build power on SC2VL table */
173 #define SC2VL_VAL( \
174 	num, \
175 	sc0, sc0val, \
176 	sc1, sc1val, \
177 	sc2, sc2val, \
178 	sc3, sc3val, \
179 	sc4, sc4val, \
180 	sc5, sc5val, \
181 	sc6, sc6val, \
182 	sc7, sc7val) \
183 ( \
184 	((u64)(sc0val) << SEND_SC2VLT##num##_SC##sc0##_SHIFT) | \
185 	((u64)(sc1val) << SEND_SC2VLT##num##_SC##sc1##_SHIFT) | \
186 	((u64)(sc2val) << SEND_SC2VLT##num##_SC##sc2##_SHIFT) | \
187 	((u64)(sc3val) << SEND_SC2VLT##num##_SC##sc3##_SHIFT) | \
188 	((u64)(sc4val) << SEND_SC2VLT##num##_SC##sc4##_SHIFT) | \
189 	((u64)(sc5val) << SEND_SC2VLT##num##_SC##sc5##_SHIFT) | \
190 	((u64)(sc6val) << SEND_SC2VLT##num##_SC##sc6##_SHIFT) | \
191 	((u64)(sc7val) << SEND_SC2VLT##num##_SC##sc7##_SHIFT)   \
192 )
193 
194 #define DC_SC_VL_VAL( \
195 	range, \
196 	e0, e0val, \
197 	e1, e1val, \
198 	e2, e2val, \
199 	e3, e3val, \
200 	e4, e4val, \
201 	e5, e5val, \
202 	e6, e6val, \
203 	e7, e7val, \
204 	e8, e8val, \
205 	e9, e9val, \
206 	e10, e10val, \
207 	e11, e11val, \
208 	e12, e12val, \
209 	e13, e13val, \
210 	e14, e14val, \
211 	e15, e15val) \
212 ( \
213 	((u64)(e0val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e0##_SHIFT) | \
214 	((u64)(e1val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e1##_SHIFT) | \
215 	((u64)(e2val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e2##_SHIFT) | \
216 	((u64)(e3val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e3##_SHIFT) | \
217 	((u64)(e4val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e4##_SHIFT) | \
218 	((u64)(e5val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e5##_SHIFT) | \
219 	((u64)(e6val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e6##_SHIFT) | \
220 	((u64)(e7val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e7##_SHIFT) | \
221 	((u64)(e8val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e8##_SHIFT) | \
222 	((u64)(e9val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e9##_SHIFT) | \
223 	((u64)(e10val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e10##_SHIFT) | \
224 	((u64)(e11val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e11##_SHIFT) | \
225 	((u64)(e12val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e12##_SHIFT) | \
226 	((u64)(e13val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e13##_SHIFT) | \
227 	((u64)(e14val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e14##_SHIFT) | \
228 	((u64)(e15val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e15##_SHIFT) \
229 )
230 
231 /* all CceStatus sub-block freeze bits */
232 #define ALL_FROZE (CCE_STATUS_SDMA_FROZE_SMASK \
233 			| CCE_STATUS_RXE_FROZE_SMASK \
234 			| CCE_STATUS_TXE_FROZE_SMASK \
235 			| CCE_STATUS_TXE_PIO_FROZE_SMASK)
236 /* all CceStatus sub-block TXE pause bits */
237 #define ALL_TXE_PAUSE (CCE_STATUS_TXE_PIO_PAUSED_SMASK \
238 			| CCE_STATUS_TXE_PAUSED_SMASK \
239 			| CCE_STATUS_SDMA_PAUSED_SMASK)
240 /* all CceStatus sub-block RXE pause bits */
241 #define ALL_RXE_PAUSE CCE_STATUS_RXE_PAUSED_SMASK
242 
243 #define CNTR_MAX 0xFFFFFFFFFFFFFFFFULL
244 #define CNTR_32BIT_MAX 0x00000000FFFFFFFF
245 
246 /*
247  * CCE Error flags.
248  */
249 static struct flag_table cce_err_status_flags[] = {
250 /* 0*/	FLAG_ENTRY0("CceCsrParityErr",
251 		CCE_ERR_STATUS_CCE_CSR_PARITY_ERR_SMASK),
252 /* 1*/	FLAG_ENTRY0("CceCsrReadBadAddrErr",
253 		CCE_ERR_STATUS_CCE_CSR_READ_BAD_ADDR_ERR_SMASK),
254 /* 2*/	FLAG_ENTRY0("CceCsrWriteBadAddrErr",
255 		CCE_ERR_STATUS_CCE_CSR_WRITE_BAD_ADDR_ERR_SMASK),
256 /* 3*/	FLAG_ENTRY0("CceTrgtAsyncFifoParityErr",
257 		CCE_ERR_STATUS_CCE_TRGT_ASYNC_FIFO_PARITY_ERR_SMASK),
258 /* 4*/	FLAG_ENTRY0("CceTrgtAccessErr",
259 		CCE_ERR_STATUS_CCE_TRGT_ACCESS_ERR_SMASK),
260 /* 5*/	FLAG_ENTRY0("CceRspdDataParityErr",
261 		CCE_ERR_STATUS_CCE_RSPD_DATA_PARITY_ERR_SMASK),
262 /* 6*/	FLAG_ENTRY0("CceCli0AsyncFifoParityErr",
263 		CCE_ERR_STATUS_CCE_CLI0_ASYNC_FIFO_PARITY_ERR_SMASK),
264 /* 7*/	FLAG_ENTRY0("CceCsrCfgBusParityErr",
265 		CCE_ERR_STATUS_CCE_CSR_CFG_BUS_PARITY_ERR_SMASK),
266 /* 8*/	FLAG_ENTRY0("CceCli2AsyncFifoParityErr",
267 		CCE_ERR_STATUS_CCE_CLI2_ASYNC_FIFO_PARITY_ERR_SMASK),
268 /* 9*/	FLAG_ENTRY0("CceCli1AsyncFifoPioCrdtParityErr",
269 	    CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_PIO_CRDT_PARITY_ERR_SMASK),
270 /*10*/	FLAG_ENTRY0("CceCli1AsyncFifoPioCrdtParityErr",
271 	    CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_SDMA_HD_PARITY_ERR_SMASK),
272 /*11*/	FLAG_ENTRY0("CceCli1AsyncFifoRxdmaParityError",
273 	    CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_RXDMA_PARITY_ERROR_SMASK),
274 /*12*/	FLAG_ENTRY0("CceCli1AsyncFifoDbgParityError",
275 		CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_DBG_PARITY_ERROR_SMASK),
276 /*13*/	FLAG_ENTRY0("PcicRetryMemCorErr",
277 		CCE_ERR_STATUS_PCIC_RETRY_MEM_COR_ERR_SMASK),
278 /*14*/	FLAG_ENTRY0("PcicRetryMemCorErr",
279 		CCE_ERR_STATUS_PCIC_RETRY_SOT_MEM_COR_ERR_SMASK),
280 /*15*/	FLAG_ENTRY0("PcicPostHdQCorErr",
281 		CCE_ERR_STATUS_PCIC_POST_HD_QCOR_ERR_SMASK),
282 /*16*/	FLAG_ENTRY0("PcicPostHdQCorErr",
283 		CCE_ERR_STATUS_PCIC_POST_DAT_QCOR_ERR_SMASK),
284 /*17*/	FLAG_ENTRY0("PcicPostHdQCorErr",
285 		CCE_ERR_STATUS_PCIC_CPL_HD_QCOR_ERR_SMASK),
286 /*18*/	FLAG_ENTRY0("PcicCplDatQCorErr",
287 		CCE_ERR_STATUS_PCIC_CPL_DAT_QCOR_ERR_SMASK),
288 /*19*/	FLAG_ENTRY0("PcicNPostHQParityErr",
289 		CCE_ERR_STATUS_PCIC_NPOST_HQ_PARITY_ERR_SMASK),
290 /*20*/	FLAG_ENTRY0("PcicNPostDatQParityErr",
291 		CCE_ERR_STATUS_PCIC_NPOST_DAT_QPARITY_ERR_SMASK),
292 /*21*/	FLAG_ENTRY0("PcicRetryMemUncErr",
293 		CCE_ERR_STATUS_PCIC_RETRY_MEM_UNC_ERR_SMASK),
294 /*22*/	FLAG_ENTRY0("PcicRetrySotMemUncErr",
295 		CCE_ERR_STATUS_PCIC_RETRY_SOT_MEM_UNC_ERR_SMASK),
296 /*23*/	FLAG_ENTRY0("PcicPostHdQUncErr",
297 		CCE_ERR_STATUS_PCIC_POST_HD_QUNC_ERR_SMASK),
298 /*24*/	FLAG_ENTRY0("PcicPostDatQUncErr",
299 		CCE_ERR_STATUS_PCIC_POST_DAT_QUNC_ERR_SMASK),
300 /*25*/	FLAG_ENTRY0("PcicCplHdQUncErr",
301 		CCE_ERR_STATUS_PCIC_CPL_HD_QUNC_ERR_SMASK),
302 /*26*/	FLAG_ENTRY0("PcicCplDatQUncErr",
303 		CCE_ERR_STATUS_PCIC_CPL_DAT_QUNC_ERR_SMASK),
304 /*27*/	FLAG_ENTRY0("PcicTransmitFrontParityErr",
305 		CCE_ERR_STATUS_PCIC_TRANSMIT_FRONT_PARITY_ERR_SMASK),
306 /*28*/	FLAG_ENTRY0("PcicTransmitBackParityErr",
307 		CCE_ERR_STATUS_PCIC_TRANSMIT_BACK_PARITY_ERR_SMASK),
308 /*29*/	FLAG_ENTRY0("PcicReceiveParityErr",
309 		CCE_ERR_STATUS_PCIC_RECEIVE_PARITY_ERR_SMASK),
310 /*30*/	FLAG_ENTRY0("CceTrgtCplTimeoutErr",
311 		CCE_ERR_STATUS_CCE_TRGT_CPL_TIMEOUT_ERR_SMASK),
312 /*31*/	FLAG_ENTRY0("LATriggered",
313 		CCE_ERR_STATUS_LA_TRIGGERED_SMASK),
314 /*32*/	FLAG_ENTRY0("CceSegReadBadAddrErr",
315 		CCE_ERR_STATUS_CCE_SEG_READ_BAD_ADDR_ERR_SMASK),
316 /*33*/	FLAG_ENTRY0("CceSegWriteBadAddrErr",
317 		CCE_ERR_STATUS_CCE_SEG_WRITE_BAD_ADDR_ERR_SMASK),
318 /*34*/	FLAG_ENTRY0("CceRcplAsyncFifoParityErr",
319 		CCE_ERR_STATUS_CCE_RCPL_ASYNC_FIFO_PARITY_ERR_SMASK),
320 /*35*/	FLAG_ENTRY0("CceRxdmaConvFifoParityErr",
321 		CCE_ERR_STATUS_CCE_RXDMA_CONV_FIFO_PARITY_ERR_SMASK),
322 /*36*/	FLAG_ENTRY0("CceMsixTableCorErr",
323 		CCE_ERR_STATUS_CCE_MSIX_TABLE_COR_ERR_SMASK),
324 /*37*/	FLAG_ENTRY0("CceMsixTableUncErr",
325 		CCE_ERR_STATUS_CCE_MSIX_TABLE_UNC_ERR_SMASK),
326 /*38*/	FLAG_ENTRY0("CceIntMapCorErr",
327 		CCE_ERR_STATUS_CCE_INT_MAP_COR_ERR_SMASK),
328 /*39*/	FLAG_ENTRY0("CceIntMapUncErr",
329 		CCE_ERR_STATUS_CCE_INT_MAP_UNC_ERR_SMASK),
330 /*40*/	FLAG_ENTRY0("CceMsixCsrParityErr",
331 		CCE_ERR_STATUS_CCE_MSIX_CSR_PARITY_ERR_SMASK),
332 /*41-63 reserved*/
333 };
334 
335 /*
336  * Misc Error flags
337  */
338 #define MES(text) MISC_ERR_STATUS_MISC_##text##_ERR_SMASK
339 static struct flag_table misc_err_status_flags[] = {
340 /* 0*/	FLAG_ENTRY0("CSR_PARITY", MES(CSR_PARITY)),
341 /* 1*/	FLAG_ENTRY0("CSR_READ_BAD_ADDR", MES(CSR_READ_BAD_ADDR)),
342 /* 2*/	FLAG_ENTRY0("CSR_WRITE_BAD_ADDR", MES(CSR_WRITE_BAD_ADDR)),
343 /* 3*/	FLAG_ENTRY0("SBUS_WRITE_FAILED", MES(SBUS_WRITE_FAILED)),
344 /* 4*/	FLAG_ENTRY0("KEY_MISMATCH", MES(KEY_MISMATCH)),
345 /* 5*/	FLAG_ENTRY0("FW_AUTH_FAILED", MES(FW_AUTH_FAILED)),
346 /* 6*/	FLAG_ENTRY0("EFUSE_CSR_PARITY", MES(EFUSE_CSR_PARITY)),
347 /* 7*/	FLAG_ENTRY0("EFUSE_READ_BAD_ADDR", MES(EFUSE_READ_BAD_ADDR)),
348 /* 8*/	FLAG_ENTRY0("EFUSE_WRITE", MES(EFUSE_WRITE)),
349 /* 9*/	FLAG_ENTRY0("EFUSE_DONE_PARITY", MES(EFUSE_DONE_PARITY)),
350 /*10*/	FLAG_ENTRY0("INVALID_EEP_CMD", MES(INVALID_EEP_CMD)),
351 /*11*/	FLAG_ENTRY0("MBIST_FAIL", MES(MBIST_FAIL)),
352 /*12*/	FLAG_ENTRY0("PLL_LOCK_FAIL", MES(PLL_LOCK_FAIL))
353 };
354 
355 /*
356  * TXE PIO Error flags and consequences
357  */
358 static struct flag_table pio_err_status_flags[] = {
359 /* 0*/	FLAG_ENTRY("PioWriteBadCtxt",
360 	SEC_WRITE_DROPPED,
361 	SEND_PIO_ERR_STATUS_PIO_WRITE_BAD_CTXT_ERR_SMASK),
362 /* 1*/	FLAG_ENTRY("PioWriteAddrParity",
363 	SEC_SPC_FREEZE,
364 	SEND_PIO_ERR_STATUS_PIO_WRITE_ADDR_PARITY_ERR_SMASK),
365 /* 2*/	FLAG_ENTRY("PioCsrParity",
366 	SEC_SPC_FREEZE,
367 	SEND_PIO_ERR_STATUS_PIO_CSR_PARITY_ERR_SMASK),
368 /* 3*/	FLAG_ENTRY("PioSbMemFifo0",
369 	SEC_SPC_FREEZE,
370 	SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO0_ERR_SMASK),
371 /* 4*/	FLAG_ENTRY("PioSbMemFifo1",
372 	SEC_SPC_FREEZE,
373 	SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO1_ERR_SMASK),
374 /* 5*/	FLAG_ENTRY("PioPccFifoParity",
375 	SEC_SPC_FREEZE,
376 	SEND_PIO_ERR_STATUS_PIO_PCC_FIFO_PARITY_ERR_SMASK),
377 /* 6*/	FLAG_ENTRY("PioPecFifoParity",
378 	SEC_SPC_FREEZE,
379 	SEND_PIO_ERR_STATUS_PIO_PEC_FIFO_PARITY_ERR_SMASK),
380 /* 7*/	FLAG_ENTRY("PioSbrdctlCrrelParity",
381 	SEC_SPC_FREEZE,
382 	SEND_PIO_ERR_STATUS_PIO_SBRDCTL_CRREL_PARITY_ERR_SMASK),
383 /* 8*/	FLAG_ENTRY("PioSbrdctrlCrrelFifoParity",
384 	SEC_SPC_FREEZE,
385 	SEND_PIO_ERR_STATUS_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR_SMASK),
386 /* 9*/	FLAG_ENTRY("PioPktEvictFifoParityErr",
387 	SEC_SPC_FREEZE,
388 	SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_FIFO_PARITY_ERR_SMASK),
389 /*10*/	FLAG_ENTRY("PioSmPktResetParity",
390 	SEC_SPC_FREEZE,
391 	SEND_PIO_ERR_STATUS_PIO_SM_PKT_RESET_PARITY_ERR_SMASK),
392 /*11*/	FLAG_ENTRY("PioVlLenMemBank0Unc",
393 	SEC_SPC_FREEZE,
394 	SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_UNC_ERR_SMASK),
395 /*12*/	FLAG_ENTRY("PioVlLenMemBank1Unc",
396 	SEC_SPC_FREEZE,
397 	SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_UNC_ERR_SMASK),
398 /*13*/	FLAG_ENTRY("PioVlLenMemBank0Cor",
399 	0,
400 	SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_COR_ERR_SMASK),
401 /*14*/	FLAG_ENTRY("PioVlLenMemBank1Cor",
402 	0,
403 	SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_COR_ERR_SMASK),
404 /*15*/	FLAG_ENTRY("PioCreditRetFifoParity",
405 	SEC_SPC_FREEZE,
406 	SEND_PIO_ERR_STATUS_PIO_CREDIT_RET_FIFO_PARITY_ERR_SMASK),
407 /*16*/	FLAG_ENTRY("PioPpmcPblFifo",
408 	SEC_SPC_FREEZE,
409 	SEND_PIO_ERR_STATUS_PIO_PPMC_PBL_FIFO_ERR_SMASK),
410 /*17*/	FLAG_ENTRY("PioInitSmIn",
411 	0,
412 	SEND_PIO_ERR_STATUS_PIO_INIT_SM_IN_ERR_SMASK),
413 /*18*/	FLAG_ENTRY("PioPktEvictSmOrArbSm",
414 	SEC_SPC_FREEZE,
415 	SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_SM_OR_ARB_SM_ERR_SMASK),
416 /*19*/	FLAG_ENTRY("PioHostAddrMemUnc",
417 	SEC_SPC_FREEZE,
418 	SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_UNC_ERR_SMASK),
419 /*20*/	FLAG_ENTRY("PioHostAddrMemCor",
420 	0,
421 	SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_COR_ERR_SMASK),
422 /*21*/	FLAG_ENTRY("PioWriteDataParity",
423 	SEC_SPC_FREEZE,
424 	SEND_PIO_ERR_STATUS_PIO_WRITE_DATA_PARITY_ERR_SMASK),
425 /*22*/	FLAG_ENTRY("PioStateMachine",
426 	SEC_SPC_FREEZE,
427 	SEND_PIO_ERR_STATUS_PIO_STATE_MACHINE_ERR_SMASK),
428 /*23*/	FLAG_ENTRY("PioWriteQwValidParity",
429 	SEC_WRITE_DROPPED | SEC_SPC_FREEZE,
430 	SEND_PIO_ERR_STATUS_PIO_WRITE_QW_VALID_PARITY_ERR_SMASK),
431 /*24*/	FLAG_ENTRY("PioBlockQwCountParity",
432 	SEC_WRITE_DROPPED | SEC_SPC_FREEZE,
433 	SEND_PIO_ERR_STATUS_PIO_BLOCK_QW_COUNT_PARITY_ERR_SMASK),
434 /*25*/	FLAG_ENTRY("PioVlfVlLenParity",
435 	SEC_SPC_FREEZE,
436 	SEND_PIO_ERR_STATUS_PIO_VLF_VL_LEN_PARITY_ERR_SMASK),
437 /*26*/	FLAG_ENTRY("PioVlfSopParity",
438 	SEC_SPC_FREEZE,
439 	SEND_PIO_ERR_STATUS_PIO_VLF_SOP_PARITY_ERR_SMASK),
440 /*27*/	FLAG_ENTRY("PioVlFifoParity",
441 	SEC_SPC_FREEZE,
442 	SEND_PIO_ERR_STATUS_PIO_VL_FIFO_PARITY_ERR_SMASK),
443 /*28*/	FLAG_ENTRY("PioPpmcBqcMemParity",
444 	SEC_SPC_FREEZE,
445 	SEND_PIO_ERR_STATUS_PIO_PPMC_BQC_MEM_PARITY_ERR_SMASK),
446 /*29*/	FLAG_ENTRY("PioPpmcSopLen",
447 	SEC_SPC_FREEZE,
448 	SEND_PIO_ERR_STATUS_PIO_PPMC_SOP_LEN_ERR_SMASK),
449 /*30-31 reserved*/
450 /*32*/	FLAG_ENTRY("PioCurrentFreeCntParity",
451 	SEC_SPC_FREEZE,
452 	SEND_PIO_ERR_STATUS_PIO_CURRENT_FREE_CNT_PARITY_ERR_SMASK),
453 /*33*/	FLAG_ENTRY("PioLastReturnedCntParity",
454 	SEC_SPC_FREEZE,
455 	SEND_PIO_ERR_STATUS_PIO_LAST_RETURNED_CNT_PARITY_ERR_SMASK),
456 /*34*/	FLAG_ENTRY("PioPccSopHeadParity",
457 	SEC_SPC_FREEZE,
458 	SEND_PIO_ERR_STATUS_PIO_PCC_SOP_HEAD_PARITY_ERR_SMASK),
459 /*35*/	FLAG_ENTRY("PioPecSopHeadParityErr",
460 	SEC_SPC_FREEZE,
461 	SEND_PIO_ERR_STATUS_PIO_PEC_SOP_HEAD_PARITY_ERR_SMASK),
462 /*36-63 reserved*/
463 };
464 
465 /* TXE PIO errors that cause an SPC freeze */
466 #define ALL_PIO_FREEZE_ERR \
467 	(SEND_PIO_ERR_STATUS_PIO_WRITE_ADDR_PARITY_ERR_SMASK \
468 	| SEND_PIO_ERR_STATUS_PIO_CSR_PARITY_ERR_SMASK \
469 	| SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO0_ERR_SMASK \
470 	| SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO1_ERR_SMASK \
471 	| SEND_PIO_ERR_STATUS_PIO_PCC_FIFO_PARITY_ERR_SMASK \
472 	| SEND_PIO_ERR_STATUS_PIO_PEC_FIFO_PARITY_ERR_SMASK \
473 	| SEND_PIO_ERR_STATUS_PIO_SBRDCTL_CRREL_PARITY_ERR_SMASK \
474 	| SEND_PIO_ERR_STATUS_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR_SMASK \
475 	| SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_FIFO_PARITY_ERR_SMASK \
476 	| SEND_PIO_ERR_STATUS_PIO_SM_PKT_RESET_PARITY_ERR_SMASK \
477 	| SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_UNC_ERR_SMASK \
478 	| SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_UNC_ERR_SMASK \
479 	| SEND_PIO_ERR_STATUS_PIO_CREDIT_RET_FIFO_PARITY_ERR_SMASK \
480 	| SEND_PIO_ERR_STATUS_PIO_PPMC_PBL_FIFO_ERR_SMASK \
481 	| SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_SM_OR_ARB_SM_ERR_SMASK \
482 	| SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_UNC_ERR_SMASK \
483 	| SEND_PIO_ERR_STATUS_PIO_WRITE_DATA_PARITY_ERR_SMASK \
484 	| SEND_PIO_ERR_STATUS_PIO_STATE_MACHINE_ERR_SMASK \
485 	| SEND_PIO_ERR_STATUS_PIO_WRITE_QW_VALID_PARITY_ERR_SMASK \
486 	| SEND_PIO_ERR_STATUS_PIO_BLOCK_QW_COUNT_PARITY_ERR_SMASK \
487 	| SEND_PIO_ERR_STATUS_PIO_VLF_VL_LEN_PARITY_ERR_SMASK \
488 	| SEND_PIO_ERR_STATUS_PIO_VLF_SOP_PARITY_ERR_SMASK \
489 	| SEND_PIO_ERR_STATUS_PIO_VL_FIFO_PARITY_ERR_SMASK \
490 	| SEND_PIO_ERR_STATUS_PIO_PPMC_BQC_MEM_PARITY_ERR_SMASK \
491 	| SEND_PIO_ERR_STATUS_PIO_PPMC_SOP_LEN_ERR_SMASK \
492 	| SEND_PIO_ERR_STATUS_PIO_CURRENT_FREE_CNT_PARITY_ERR_SMASK \
493 	| SEND_PIO_ERR_STATUS_PIO_LAST_RETURNED_CNT_PARITY_ERR_SMASK \
494 	| SEND_PIO_ERR_STATUS_PIO_PCC_SOP_HEAD_PARITY_ERR_SMASK \
495 	| SEND_PIO_ERR_STATUS_PIO_PEC_SOP_HEAD_PARITY_ERR_SMASK)
496 
497 /*
498  * TXE SDMA Error flags
499  */
500 static struct flag_table sdma_err_status_flags[] = {
501 /* 0*/	FLAG_ENTRY0("SDmaRpyTagErr",
502 		SEND_DMA_ERR_STATUS_SDMA_RPY_TAG_ERR_SMASK),
503 /* 1*/	FLAG_ENTRY0("SDmaCsrParityErr",
504 		SEND_DMA_ERR_STATUS_SDMA_CSR_PARITY_ERR_SMASK),
505 /* 2*/	FLAG_ENTRY0("SDmaPcieReqTrackingUncErr",
506 		SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_UNC_ERR_SMASK),
507 /* 3*/	FLAG_ENTRY0("SDmaPcieReqTrackingCorErr",
508 		SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_COR_ERR_SMASK),
509 /*04-63 reserved*/
510 };
511 
512 /* TXE SDMA errors that cause an SPC freeze */
513 #define ALL_SDMA_FREEZE_ERR  \
514 		(SEND_DMA_ERR_STATUS_SDMA_RPY_TAG_ERR_SMASK \
515 		| SEND_DMA_ERR_STATUS_SDMA_CSR_PARITY_ERR_SMASK \
516 		| SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_UNC_ERR_SMASK)
517 
518 /* SendEgressErrInfo bits that correspond to a PortXmitDiscard counter */
519 #define PORT_DISCARD_EGRESS_ERRS \
520 	(SEND_EGRESS_ERR_INFO_TOO_LONG_IB_PACKET_ERR_SMASK \
521 	| SEND_EGRESS_ERR_INFO_VL_MAPPING_ERR_SMASK \
522 	| SEND_EGRESS_ERR_INFO_VL_ERR_SMASK)
523 
524 /*
525  * TXE Egress Error flags
526  */
527 #define SEES(text) SEND_EGRESS_ERR_STATUS_##text##_ERR_SMASK
528 static struct flag_table egress_err_status_flags[] = {
529 /* 0*/	FLAG_ENTRY0("TxPktIntegrityMemCorErr", SEES(TX_PKT_INTEGRITY_MEM_COR)),
530 /* 1*/	FLAG_ENTRY0("TxPktIntegrityMemUncErr", SEES(TX_PKT_INTEGRITY_MEM_UNC)),
531 /* 2 reserved */
532 /* 3*/	FLAG_ENTRY0("TxEgressFifoUnderrunOrParityErr",
533 		SEES(TX_EGRESS_FIFO_UNDERRUN_OR_PARITY)),
534 /* 4*/	FLAG_ENTRY0("TxLinkdownErr", SEES(TX_LINKDOWN)),
535 /* 5*/	FLAG_ENTRY0("TxIncorrectLinkStateErr", SEES(TX_INCORRECT_LINK_STATE)),
536 /* 6 reserved */
537 /* 7*/	FLAG_ENTRY0("TxPioLaunchIntfParityErr",
538 		SEES(TX_PIO_LAUNCH_INTF_PARITY)),
539 /* 8*/	FLAG_ENTRY0("TxSdmaLaunchIntfParityErr",
540 		SEES(TX_SDMA_LAUNCH_INTF_PARITY)),
541 /* 9-10 reserved */
542 /*11*/	FLAG_ENTRY0("TxSbrdCtlStateMachineParityErr",
543 		SEES(TX_SBRD_CTL_STATE_MACHINE_PARITY)),
544 /*12*/	FLAG_ENTRY0("TxIllegalVLErr", SEES(TX_ILLEGAL_VL)),
545 /*13*/	FLAG_ENTRY0("TxLaunchCsrParityErr", SEES(TX_LAUNCH_CSR_PARITY)),
546 /*14*/	FLAG_ENTRY0("TxSbrdCtlCsrParityErr", SEES(TX_SBRD_CTL_CSR_PARITY)),
547 /*15*/	FLAG_ENTRY0("TxConfigParityErr", SEES(TX_CONFIG_PARITY)),
548 /*16*/	FLAG_ENTRY0("TxSdma0DisallowedPacketErr",
549 		SEES(TX_SDMA0_DISALLOWED_PACKET)),
550 /*17*/	FLAG_ENTRY0("TxSdma1DisallowedPacketErr",
551 		SEES(TX_SDMA1_DISALLOWED_PACKET)),
552 /*18*/	FLAG_ENTRY0("TxSdma2DisallowedPacketErr",
553 		SEES(TX_SDMA2_DISALLOWED_PACKET)),
554 /*19*/	FLAG_ENTRY0("TxSdma3DisallowedPacketErr",
555 		SEES(TX_SDMA3_DISALLOWED_PACKET)),
556 /*20*/	FLAG_ENTRY0("TxSdma4DisallowedPacketErr",
557 		SEES(TX_SDMA4_DISALLOWED_PACKET)),
558 /*21*/	FLAG_ENTRY0("TxSdma5DisallowedPacketErr",
559 		SEES(TX_SDMA5_DISALLOWED_PACKET)),
560 /*22*/	FLAG_ENTRY0("TxSdma6DisallowedPacketErr",
561 		SEES(TX_SDMA6_DISALLOWED_PACKET)),
562 /*23*/	FLAG_ENTRY0("TxSdma7DisallowedPacketErr",
563 		SEES(TX_SDMA7_DISALLOWED_PACKET)),
564 /*24*/	FLAG_ENTRY0("TxSdma8DisallowedPacketErr",
565 		SEES(TX_SDMA8_DISALLOWED_PACKET)),
566 /*25*/	FLAG_ENTRY0("TxSdma9DisallowedPacketErr",
567 		SEES(TX_SDMA9_DISALLOWED_PACKET)),
568 /*26*/	FLAG_ENTRY0("TxSdma10DisallowedPacketErr",
569 		SEES(TX_SDMA10_DISALLOWED_PACKET)),
570 /*27*/	FLAG_ENTRY0("TxSdma11DisallowedPacketErr",
571 		SEES(TX_SDMA11_DISALLOWED_PACKET)),
572 /*28*/	FLAG_ENTRY0("TxSdma12DisallowedPacketErr",
573 		SEES(TX_SDMA12_DISALLOWED_PACKET)),
574 /*29*/	FLAG_ENTRY0("TxSdma13DisallowedPacketErr",
575 		SEES(TX_SDMA13_DISALLOWED_PACKET)),
576 /*30*/	FLAG_ENTRY0("TxSdma14DisallowedPacketErr",
577 		SEES(TX_SDMA14_DISALLOWED_PACKET)),
578 /*31*/	FLAG_ENTRY0("TxSdma15DisallowedPacketErr",
579 		SEES(TX_SDMA15_DISALLOWED_PACKET)),
580 /*32*/	FLAG_ENTRY0("TxLaunchFifo0UncOrParityErr",
581 		SEES(TX_LAUNCH_FIFO0_UNC_OR_PARITY)),
582 /*33*/	FLAG_ENTRY0("TxLaunchFifo1UncOrParityErr",
583 		SEES(TX_LAUNCH_FIFO1_UNC_OR_PARITY)),
584 /*34*/	FLAG_ENTRY0("TxLaunchFifo2UncOrParityErr",
585 		SEES(TX_LAUNCH_FIFO2_UNC_OR_PARITY)),
586 /*35*/	FLAG_ENTRY0("TxLaunchFifo3UncOrParityErr",
587 		SEES(TX_LAUNCH_FIFO3_UNC_OR_PARITY)),
588 /*36*/	FLAG_ENTRY0("TxLaunchFifo4UncOrParityErr",
589 		SEES(TX_LAUNCH_FIFO4_UNC_OR_PARITY)),
590 /*37*/	FLAG_ENTRY0("TxLaunchFifo5UncOrParityErr",
591 		SEES(TX_LAUNCH_FIFO5_UNC_OR_PARITY)),
592 /*38*/	FLAG_ENTRY0("TxLaunchFifo6UncOrParityErr",
593 		SEES(TX_LAUNCH_FIFO6_UNC_OR_PARITY)),
594 /*39*/	FLAG_ENTRY0("TxLaunchFifo7UncOrParityErr",
595 		SEES(TX_LAUNCH_FIFO7_UNC_OR_PARITY)),
596 /*40*/	FLAG_ENTRY0("TxLaunchFifo8UncOrParityErr",
597 		SEES(TX_LAUNCH_FIFO8_UNC_OR_PARITY)),
598 /*41*/	FLAG_ENTRY0("TxCreditReturnParityErr", SEES(TX_CREDIT_RETURN_PARITY)),
599 /*42*/	FLAG_ENTRY0("TxSbHdrUncErr", SEES(TX_SB_HDR_UNC)),
600 /*43*/	FLAG_ENTRY0("TxReadSdmaMemoryUncErr", SEES(TX_READ_SDMA_MEMORY_UNC)),
601 /*44*/	FLAG_ENTRY0("TxReadPioMemoryUncErr", SEES(TX_READ_PIO_MEMORY_UNC)),
602 /*45*/	FLAG_ENTRY0("TxEgressFifoUncErr", SEES(TX_EGRESS_FIFO_UNC)),
603 /*46*/	FLAG_ENTRY0("TxHcrcInsertionErr", SEES(TX_HCRC_INSERTION)),
604 /*47*/	FLAG_ENTRY0("TxCreditReturnVLErr", SEES(TX_CREDIT_RETURN_VL)),
605 /*48*/	FLAG_ENTRY0("TxLaunchFifo0CorErr", SEES(TX_LAUNCH_FIFO0_COR)),
606 /*49*/	FLAG_ENTRY0("TxLaunchFifo1CorErr", SEES(TX_LAUNCH_FIFO1_COR)),
607 /*50*/	FLAG_ENTRY0("TxLaunchFifo2CorErr", SEES(TX_LAUNCH_FIFO2_COR)),
608 /*51*/	FLAG_ENTRY0("TxLaunchFifo3CorErr", SEES(TX_LAUNCH_FIFO3_COR)),
609 /*52*/	FLAG_ENTRY0("TxLaunchFifo4CorErr", SEES(TX_LAUNCH_FIFO4_COR)),
610 /*53*/	FLAG_ENTRY0("TxLaunchFifo5CorErr", SEES(TX_LAUNCH_FIFO5_COR)),
611 /*54*/	FLAG_ENTRY0("TxLaunchFifo6CorErr", SEES(TX_LAUNCH_FIFO6_COR)),
612 /*55*/	FLAG_ENTRY0("TxLaunchFifo7CorErr", SEES(TX_LAUNCH_FIFO7_COR)),
613 /*56*/	FLAG_ENTRY0("TxLaunchFifo8CorErr", SEES(TX_LAUNCH_FIFO8_COR)),
614 /*57*/	FLAG_ENTRY0("TxCreditOverrunErr", SEES(TX_CREDIT_OVERRUN)),
615 /*58*/	FLAG_ENTRY0("TxSbHdrCorErr", SEES(TX_SB_HDR_COR)),
616 /*59*/	FLAG_ENTRY0("TxReadSdmaMemoryCorErr", SEES(TX_READ_SDMA_MEMORY_COR)),
617 /*60*/	FLAG_ENTRY0("TxReadPioMemoryCorErr", SEES(TX_READ_PIO_MEMORY_COR)),
618 /*61*/	FLAG_ENTRY0("TxEgressFifoCorErr", SEES(TX_EGRESS_FIFO_COR)),
619 /*62*/	FLAG_ENTRY0("TxReadSdmaMemoryCsrUncErr",
620 		SEES(TX_READ_SDMA_MEMORY_CSR_UNC)),
621 /*63*/	FLAG_ENTRY0("TxReadPioMemoryCsrUncErr",
622 		SEES(TX_READ_PIO_MEMORY_CSR_UNC)),
623 };
624 
625 /*
626  * TXE Egress Error Info flags
627  */
628 #define SEEI(text) SEND_EGRESS_ERR_INFO_##text##_ERR_SMASK
629 static struct flag_table egress_err_info_flags[] = {
630 /* 0*/	FLAG_ENTRY0("Reserved", 0ull),
631 /* 1*/	FLAG_ENTRY0("VLErr", SEEI(VL)),
632 /* 2*/	FLAG_ENTRY0("JobKeyErr", SEEI(JOB_KEY)),
633 /* 3*/	FLAG_ENTRY0("JobKeyErr", SEEI(JOB_KEY)),
634 /* 4*/	FLAG_ENTRY0("PartitionKeyErr", SEEI(PARTITION_KEY)),
635 /* 5*/	FLAG_ENTRY0("SLIDErr", SEEI(SLID)),
636 /* 6*/	FLAG_ENTRY0("OpcodeErr", SEEI(OPCODE)),
637 /* 7*/	FLAG_ENTRY0("VLMappingErr", SEEI(VL_MAPPING)),
638 /* 8*/	FLAG_ENTRY0("RawErr", SEEI(RAW)),
639 /* 9*/	FLAG_ENTRY0("RawIPv6Err", SEEI(RAW_IPV6)),
640 /*10*/	FLAG_ENTRY0("GRHErr", SEEI(GRH)),
641 /*11*/	FLAG_ENTRY0("BypassErr", SEEI(BYPASS)),
642 /*12*/	FLAG_ENTRY0("KDETHPacketsErr", SEEI(KDETH_PACKETS)),
643 /*13*/	FLAG_ENTRY0("NonKDETHPacketsErr", SEEI(NON_KDETH_PACKETS)),
644 /*14*/	FLAG_ENTRY0("TooSmallIBPacketsErr", SEEI(TOO_SMALL_IB_PACKETS)),
645 /*15*/	FLAG_ENTRY0("TooSmallBypassPacketsErr", SEEI(TOO_SMALL_BYPASS_PACKETS)),
646 /*16*/	FLAG_ENTRY0("PbcTestErr", SEEI(PBC_TEST)),
647 /*17*/	FLAG_ENTRY0("BadPktLenErr", SEEI(BAD_PKT_LEN)),
648 /*18*/	FLAG_ENTRY0("TooLongIBPacketErr", SEEI(TOO_LONG_IB_PACKET)),
649 /*19*/	FLAG_ENTRY0("TooLongBypassPacketsErr", SEEI(TOO_LONG_BYPASS_PACKETS)),
650 /*20*/	FLAG_ENTRY0("PbcStaticRateControlErr", SEEI(PBC_STATIC_RATE_CONTROL)),
651 /*21*/	FLAG_ENTRY0("BypassBadPktLenErr", SEEI(BAD_PKT_LEN)),
652 };
653 
654 /* TXE Egress errors that cause an SPC freeze */
655 #define ALL_TXE_EGRESS_FREEZE_ERR \
656 	(SEES(TX_EGRESS_FIFO_UNDERRUN_OR_PARITY) \
657 	| SEES(TX_PIO_LAUNCH_INTF_PARITY) \
658 	| SEES(TX_SDMA_LAUNCH_INTF_PARITY) \
659 	| SEES(TX_SBRD_CTL_STATE_MACHINE_PARITY) \
660 	| SEES(TX_LAUNCH_CSR_PARITY) \
661 	| SEES(TX_SBRD_CTL_CSR_PARITY) \
662 	| SEES(TX_CONFIG_PARITY) \
663 	| SEES(TX_LAUNCH_FIFO0_UNC_OR_PARITY) \
664 	| SEES(TX_LAUNCH_FIFO1_UNC_OR_PARITY) \
665 	| SEES(TX_LAUNCH_FIFO2_UNC_OR_PARITY) \
666 	| SEES(TX_LAUNCH_FIFO3_UNC_OR_PARITY) \
667 	| SEES(TX_LAUNCH_FIFO4_UNC_OR_PARITY) \
668 	| SEES(TX_LAUNCH_FIFO5_UNC_OR_PARITY) \
669 	| SEES(TX_LAUNCH_FIFO6_UNC_OR_PARITY) \
670 	| SEES(TX_LAUNCH_FIFO7_UNC_OR_PARITY) \
671 	| SEES(TX_LAUNCH_FIFO8_UNC_OR_PARITY) \
672 	| SEES(TX_CREDIT_RETURN_PARITY))
673 
674 /*
675  * TXE Send error flags
676  */
677 #define SES(name) SEND_ERR_STATUS_SEND_##name##_ERR_SMASK
678 static struct flag_table send_err_status_flags[] = {
679 /* 0*/	FLAG_ENTRY0("SendCsrParityErr", SES(CSR_PARITY)),
680 /* 1*/	FLAG_ENTRY0("SendCsrReadBadAddrErr", SES(CSR_READ_BAD_ADDR)),
681 /* 2*/	FLAG_ENTRY0("SendCsrWriteBadAddrErr", SES(CSR_WRITE_BAD_ADDR))
682 };
683 
684 /*
685  * TXE Send Context Error flags and consequences
686  */
687 static struct flag_table sc_err_status_flags[] = {
688 /* 0*/	FLAG_ENTRY("InconsistentSop",
689 		SEC_PACKET_DROPPED | SEC_SC_HALTED,
690 		SEND_CTXT_ERR_STATUS_PIO_INCONSISTENT_SOP_ERR_SMASK),
691 /* 1*/	FLAG_ENTRY("DisallowedPacket",
692 		SEC_PACKET_DROPPED | SEC_SC_HALTED,
693 		SEND_CTXT_ERR_STATUS_PIO_DISALLOWED_PACKET_ERR_SMASK),
694 /* 2*/	FLAG_ENTRY("WriteCrossesBoundary",
695 		SEC_WRITE_DROPPED | SEC_SC_HALTED,
696 		SEND_CTXT_ERR_STATUS_PIO_WRITE_CROSSES_BOUNDARY_ERR_SMASK),
697 /* 3*/	FLAG_ENTRY("WriteOverflow",
698 		SEC_WRITE_DROPPED | SEC_SC_HALTED,
699 		SEND_CTXT_ERR_STATUS_PIO_WRITE_OVERFLOW_ERR_SMASK),
700 /* 4*/	FLAG_ENTRY("WriteOutOfBounds",
701 		SEC_WRITE_DROPPED | SEC_SC_HALTED,
702 		SEND_CTXT_ERR_STATUS_PIO_WRITE_OUT_OF_BOUNDS_ERR_SMASK),
703 /* 5-63 reserved*/
704 };
705 
706 /*
707  * RXE Receive Error flags
708  */
709 #define RXES(name) RCV_ERR_STATUS_RX_##name##_ERR_SMASK
710 static struct flag_table rxe_err_status_flags[] = {
711 /* 0*/	FLAG_ENTRY0("RxDmaCsrCorErr", RXES(DMA_CSR_COR)),
712 /* 1*/	FLAG_ENTRY0("RxDcIntfParityErr", RXES(DC_INTF_PARITY)),
713 /* 2*/	FLAG_ENTRY0("RxRcvHdrUncErr", RXES(RCV_HDR_UNC)),
714 /* 3*/	FLAG_ENTRY0("RxRcvHdrCorErr", RXES(RCV_HDR_COR)),
715 /* 4*/	FLAG_ENTRY0("RxRcvDataUncErr", RXES(RCV_DATA_UNC)),
716 /* 5*/	FLAG_ENTRY0("RxRcvDataCorErr", RXES(RCV_DATA_COR)),
717 /* 6*/	FLAG_ENTRY0("RxRcvQpMapTableUncErr", RXES(RCV_QP_MAP_TABLE_UNC)),
718 /* 7*/	FLAG_ENTRY0("RxRcvQpMapTableCorErr", RXES(RCV_QP_MAP_TABLE_COR)),
719 /* 8*/	FLAG_ENTRY0("RxRcvCsrParityErr", RXES(RCV_CSR_PARITY)),
720 /* 9*/	FLAG_ENTRY0("RxDcSopEopParityErr", RXES(DC_SOP_EOP_PARITY)),
721 /*10*/	FLAG_ENTRY0("RxDmaFlagUncErr", RXES(DMA_FLAG_UNC)),
722 /*11*/	FLAG_ENTRY0("RxDmaFlagCorErr", RXES(DMA_FLAG_COR)),
723 /*12*/	FLAG_ENTRY0("RxRcvFsmEncodingErr", RXES(RCV_FSM_ENCODING)),
724 /*13*/	FLAG_ENTRY0("RxRbufFreeListUncErr", RXES(RBUF_FREE_LIST_UNC)),
725 /*14*/	FLAG_ENTRY0("RxRbufFreeListCorErr", RXES(RBUF_FREE_LIST_COR)),
726 /*15*/	FLAG_ENTRY0("RxRbufLookupDesRegUncErr", RXES(RBUF_LOOKUP_DES_REG_UNC)),
727 /*16*/	FLAG_ENTRY0("RxRbufLookupDesRegUncCorErr",
728 		RXES(RBUF_LOOKUP_DES_REG_UNC_COR)),
729 /*17*/	FLAG_ENTRY0("RxRbufLookupDesUncErr", RXES(RBUF_LOOKUP_DES_UNC)),
730 /*18*/	FLAG_ENTRY0("RxRbufLookupDesCorErr", RXES(RBUF_LOOKUP_DES_COR)),
731 /*19*/	FLAG_ENTRY0("RxRbufBlockListReadUncErr",
732 		RXES(RBUF_BLOCK_LIST_READ_UNC)),
733 /*20*/	FLAG_ENTRY0("RxRbufBlockListReadCorErr",
734 		RXES(RBUF_BLOCK_LIST_READ_COR)),
735 /*21*/	FLAG_ENTRY0("RxRbufCsrQHeadBufNumParityErr",
736 		RXES(RBUF_CSR_QHEAD_BUF_NUM_PARITY)),
737 /*22*/	FLAG_ENTRY0("RxRbufCsrQEntCntParityErr",
738 		RXES(RBUF_CSR_QENT_CNT_PARITY)),
739 /*23*/	FLAG_ENTRY0("RxRbufCsrQNextBufParityErr",
740 		RXES(RBUF_CSR_QNEXT_BUF_PARITY)),
741 /*24*/	FLAG_ENTRY0("RxRbufCsrQVldBitParityErr",
742 		RXES(RBUF_CSR_QVLD_BIT_PARITY)),
743 /*25*/	FLAG_ENTRY0("RxRbufCsrQHdPtrParityErr", RXES(RBUF_CSR_QHD_PTR_PARITY)),
744 /*26*/	FLAG_ENTRY0("RxRbufCsrQTlPtrParityErr", RXES(RBUF_CSR_QTL_PTR_PARITY)),
745 /*27*/	FLAG_ENTRY0("RxRbufCsrQNumOfPktParityErr",
746 		RXES(RBUF_CSR_QNUM_OF_PKT_PARITY)),
747 /*28*/	FLAG_ENTRY0("RxRbufCsrQEOPDWParityErr", RXES(RBUF_CSR_QEOPDW_PARITY)),
748 /*29*/	FLAG_ENTRY0("RxRbufCtxIdParityErr", RXES(RBUF_CTX_ID_PARITY)),
749 /*30*/	FLAG_ENTRY0("RxRBufBadLookupErr", RXES(RBUF_BAD_LOOKUP)),
750 /*31*/	FLAG_ENTRY0("RxRbufFullErr", RXES(RBUF_FULL)),
751 /*32*/	FLAG_ENTRY0("RxRbufEmptyErr", RXES(RBUF_EMPTY)),
752 /*33*/	FLAG_ENTRY0("RxRbufFlRdAddrParityErr", RXES(RBUF_FL_RD_ADDR_PARITY)),
753 /*34*/	FLAG_ENTRY0("RxRbufFlWrAddrParityErr", RXES(RBUF_FL_WR_ADDR_PARITY)),
754 /*35*/	FLAG_ENTRY0("RxRbufFlInitdoneParityErr",
755 		RXES(RBUF_FL_INITDONE_PARITY)),
756 /*36*/	FLAG_ENTRY0("RxRbufFlInitWrAddrParityErr",
757 		RXES(RBUF_FL_INIT_WR_ADDR_PARITY)),
758 /*37*/	FLAG_ENTRY0("RxRbufNextFreeBufUncErr", RXES(RBUF_NEXT_FREE_BUF_UNC)),
759 /*38*/	FLAG_ENTRY0("RxRbufNextFreeBufCorErr", RXES(RBUF_NEXT_FREE_BUF_COR)),
760 /*39*/	FLAG_ENTRY0("RxLookupDesPart1UncErr", RXES(LOOKUP_DES_PART1_UNC)),
761 /*40*/	FLAG_ENTRY0("RxLookupDesPart1UncCorErr",
762 		RXES(LOOKUP_DES_PART1_UNC_COR)),
763 /*41*/	FLAG_ENTRY0("RxLookupDesPart2ParityErr",
764 		RXES(LOOKUP_DES_PART2_PARITY)),
765 /*42*/	FLAG_ENTRY0("RxLookupRcvArrayUncErr", RXES(LOOKUP_RCV_ARRAY_UNC)),
766 /*43*/	FLAG_ENTRY0("RxLookupRcvArrayCorErr", RXES(LOOKUP_RCV_ARRAY_COR)),
767 /*44*/	FLAG_ENTRY0("RxLookupCsrParityErr", RXES(LOOKUP_CSR_PARITY)),
768 /*45*/	FLAG_ENTRY0("RxHqIntrCsrParityErr", RXES(HQ_INTR_CSR_PARITY)),
769 /*46*/	FLAG_ENTRY0("RxHqIntrFsmErr", RXES(HQ_INTR_FSM)),
770 /*47*/	FLAG_ENTRY0("RxRbufDescPart1UncErr", RXES(RBUF_DESC_PART1_UNC)),
771 /*48*/	FLAG_ENTRY0("RxRbufDescPart1CorErr", RXES(RBUF_DESC_PART1_COR)),
772 /*49*/	FLAG_ENTRY0("RxRbufDescPart2UncErr", RXES(RBUF_DESC_PART2_UNC)),
773 /*50*/	FLAG_ENTRY0("RxRbufDescPart2CorErr", RXES(RBUF_DESC_PART2_COR)),
774 /*51*/	FLAG_ENTRY0("RxDmaHdrFifoRdUncErr", RXES(DMA_HDR_FIFO_RD_UNC)),
775 /*52*/	FLAG_ENTRY0("RxDmaHdrFifoRdCorErr", RXES(DMA_HDR_FIFO_RD_COR)),
776 /*53*/	FLAG_ENTRY0("RxDmaDataFifoRdUncErr", RXES(DMA_DATA_FIFO_RD_UNC)),
777 /*54*/	FLAG_ENTRY0("RxDmaDataFifoRdCorErr", RXES(DMA_DATA_FIFO_RD_COR)),
778 /*55*/	FLAG_ENTRY0("RxRbufDataUncErr", RXES(RBUF_DATA_UNC)),
779 /*56*/	FLAG_ENTRY0("RxRbufDataCorErr", RXES(RBUF_DATA_COR)),
780 /*57*/	FLAG_ENTRY0("RxDmaCsrParityErr", RXES(DMA_CSR_PARITY)),
781 /*58*/	FLAG_ENTRY0("RxDmaEqFsmEncodingErr", RXES(DMA_EQ_FSM_ENCODING)),
782 /*59*/	FLAG_ENTRY0("RxDmaDqFsmEncodingErr", RXES(DMA_DQ_FSM_ENCODING)),
783 /*60*/	FLAG_ENTRY0("RxDmaCsrUncErr", RXES(DMA_CSR_UNC)),
784 /*61*/	FLAG_ENTRY0("RxCsrReadBadAddrErr", RXES(CSR_READ_BAD_ADDR)),
785 /*62*/	FLAG_ENTRY0("RxCsrWriteBadAddrErr", RXES(CSR_WRITE_BAD_ADDR)),
786 /*63*/	FLAG_ENTRY0("RxCsrParityErr", RXES(CSR_PARITY))
787 };
788 
789 /* RXE errors that will trigger an SPC freeze */
790 #define ALL_RXE_FREEZE_ERR  \
791 	(RCV_ERR_STATUS_RX_RCV_QP_MAP_TABLE_UNC_ERR_SMASK \
792 	| RCV_ERR_STATUS_RX_RCV_CSR_PARITY_ERR_SMASK \
793 	| RCV_ERR_STATUS_RX_DMA_FLAG_UNC_ERR_SMASK \
794 	| RCV_ERR_STATUS_RX_RCV_FSM_ENCODING_ERR_SMASK \
795 	| RCV_ERR_STATUS_RX_RBUF_FREE_LIST_UNC_ERR_SMASK \
796 	| RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_REG_UNC_ERR_SMASK \
797 	| RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_REG_UNC_COR_ERR_SMASK \
798 	| RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_UNC_ERR_SMASK \
799 	| RCV_ERR_STATUS_RX_RBUF_BLOCK_LIST_READ_UNC_ERR_SMASK \
800 	| RCV_ERR_STATUS_RX_RBUF_CSR_QHEAD_BUF_NUM_PARITY_ERR_SMASK \
801 	| RCV_ERR_STATUS_RX_RBUF_CSR_QENT_CNT_PARITY_ERR_SMASK \
802 	| RCV_ERR_STATUS_RX_RBUF_CSR_QNEXT_BUF_PARITY_ERR_SMASK \
803 	| RCV_ERR_STATUS_RX_RBUF_CSR_QVLD_BIT_PARITY_ERR_SMASK \
804 	| RCV_ERR_STATUS_RX_RBUF_CSR_QHD_PTR_PARITY_ERR_SMASK \
805 	| RCV_ERR_STATUS_RX_RBUF_CSR_QTL_PTR_PARITY_ERR_SMASK \
806 	| RCV_ERR_STATUS_RX_RBUF_CSR_QNUM_OF_PKT_PARITY_ERR_SMASK \
807 	| RCV_ERR_STATUS_RX_RBUF_CSR_QEOPDW_PARITY_ERR_SMASK \
808 	| RCV_ERR_STATUS_RX_RBUF_CTX_ID_PARITY_ERR_SMASK \
809 	| RCV_ERR_STATUS_RX_RBUF_BAD_LOOKUP_ERR_SMASK \
810 	| RCV_ERR_STATUS_RX_RBUF_FULL_ERR_SMASK \
811 	| RCV_ERR_STATUS_RX_RBUF_EMPTY_ERR_SMASK \
812 	| RCV_ERR_STATUS_RX_RBUF_FL_RD_ADDR_PARITY_ERR_SMASK \
813 	| RCV_ERR_STATUS_RX_RBUF_FL_WR_ADDR_PARITY_ERR_SMASK \
814 	| RCV_ERR_STATUS_RX_RBUF_FL_INITDONE_PARITY_ERR_SMASK \
815 	| RCV_ERR_STATUS_RX_RBUF_FL_INIT_WR_ADDR_PARITY_ERR_SMASK \
816 	| RCV_ERR_STATUS_RX_RBUF_NEXT_FREE_BUF_UNC_ERR_SMASK \
817 	| RCV_ERR_STATUS_RX_LOOKUP_DES_PART1_UNC_ERR_SMASK \
818 	| RCV_ERR_STATUS_RX_LOOKUP_DES_PART1_UNC_COR_ERR_SMASK \
819 	| RCV_ERR_STATUS_RX_LOOKUP_DES_PART2_PARITY_ERR_SMASK \
820 	| RCV_ERR_STATUS_RX_LOOKUP_RCV_ARRAY_UNC_ERR_SMASK \
821 	| RCV_ERR_STATUS_RX_LOOKUP_CSR_PARITY_ERR_SMASK \
822 	| RCV_ERR_STATUS_RX_HQ_INTR_CSR_PARITY_ERR_SMASK \
823 	| RCV_ERR_STATUS_RX_HQ_INTR_FSM_ERR_SMASK \
824 	| RCV_ERR_STATUS_RX_RBUF_DESC_PART1_UNC_ERR_SMASK \
825 	| RCV_ERR_STATUS_RX_RBUF_DESC_PART1_COR_ERR_SMASK \
826 	| RCV_ERR_STATUS_RX_RBUF_DESC_PART2_UNC_ERR_SMASK \
827 	| RCV_ERR_STATUS_RX_DMA_HDR_FIFO_RD_UNC_ERR_SMASK \
828 	| RCV_ERR_STATUS_RX_DMA_DATA_FIFO_RD_UNC_ERR_SMASK \
829 	| RCV_ERR_STATUS_RX_RBUF_DATA_UNC_ERR_SMASK \
830 	| RCV_ERR_STATUS_RX_DMA_CSR_PARITY_ERR_SMASK \
831 	| RCV_ERR_STATUS_RX_DMA_EQ_FSM_ENCODING_ERR_SMASK \
832 	| RCV_ERR_STATUS_RX_DMA_DQ_FSM_ENCODING_ERR_SMASK \
833 	| RCV_ERR_STATUS_RX_DMA_CSR_UNC_ERR_SMASK \
834 	| RCV_ERR_STATUS_RX_CSR_PARITY_ERR_SMASK)
835 
836 #define RXE_FREEZE_ABORT_MASK \
837 	(RCV_ERR_STATUS_RX_DMA_CSR_UNC_ERR_SMASK | \
838 	RCV_ERR_STATUS_RX_DMA_HDR_FIFO_RD_UNC_ERR_SMASK | \
839 	RCV_ERR_STATUS_RX_DMA_DATA_FIFO_RD_UNC_ERR_SMASK)
840 
841 /*
842  * DCC Error Flags
843  */
844 #define DCCE(name) DCC_ERR_FLG_##name##_SMASK
845 static struct flag_table dcc_err_flags[] = {
846 	FLAG_ENTRY0("bad_l2_err", DCCE(BAD_L2_ERR)),
847 	FLAG_ENTRY0("bad_sc_err", DCCE(BAD_SC_ERR)),
848 	FLAG_ENTRY0("bad_mid_tail_err", DCCE(BAD_MID_TAIL_ERR)),
849 	FLAG_ENTRY0("bad_preemption_err", DCCE(BAD_PREEMPTION_ERR)),
850 	FLAG_ENTRY0("preemption_err", DCCE(PREEMPTION_ERR)),
851 	FLAG_ENTRY0("preemptionvl15_err", DCCE(PREEMPTIONVL15_ERR)),
852 	FLAG_ENTRY0("bad_vl_marker_err", DCCE(BAD_VL_MARKER_ERR)),
853 	FLAG_ENTRY0("bad_dlid_target_err", DCCE(BAD_DLID_TARGET_ERR)),
854 	FLAG_ENTRY0("bad_lver_err", DCCE(BAD_LVER_ERR)),
855 	FLAG_ENTRY0("uncorrectable_err", DCCE(UNCORRECTABLE_ERR)),
856 	FLAG_ENTRY0("bad_crdt_ack_err", DCCE(BAD_CRDT_ACK_ERR)),
857 	FLAG_ENTRY0("unsup_pkt_type", DCCE(UNSUP_PKT_TYPE)),
858 	FLAG_ENTRY0("bad_ctrl_flit_err", DCCE(BAD_CTRL_FLIT_ERR)),
859 	FLAG_ENTRY0("event_cntr_parity_err", DCCE(EVENT_CNTR_PARITY_ERR)),
860 	FLAG_ENTRY0("event_cntr_rollover_err", DCCE(EVENT_CNTR_ROLLOVER_ERR)),
861 	FLAG_ENTRY0("link_err", DCCE(LINK_ERR)),
862 	FLAG_ENTRY0("misc_cntr_rollover_err", DCCE(MISC_CNTR_ROLLOVER_ERR)),
863 	FLAG_ENTRY0("bad_ctrl_dist_err", DCCE(BAD_CTRL_DIST_ERR)),
864 	FLAG_ENTRY0("bad_tail_dist_err", DCCE(BAD_TAIL_DIST_ERR)),
865 	FLAG_ENTRY0("bad_head_dist_err", DCCE(BAD_HEAD_DIST_ERR)),
866 	FLAG_ENTRY0("nonvl15_state_err", DCCE(NONVL15_STATE_ERR)),
867 	FLAG_ENTRY0("vl15_multi_err", DCCE(VL15_MULTI_ERR)),
868 	FLAG_ENTRY0("bad_pkt_length_err", DCCE(BAD_PKT_LENGTH_ERR)),
869 	FLAG_ENTRY0("unsup_vl_err", DCCE(UNSUP_VL_ERR)),
870 	FLAG_ENTRY0("perm_nvl15_err", DCCE(PERM_NVL15_ERR)),
871 	FLAG_ENTRY0("slid_zero_err", DCCE(SLID_ZERO_ERR)),
872 	FLAG_ENTRY0("dlid_zero_err", DCCE(DLID_ZERO_ERR)),
873 	FLAG_ENTRY0("length_mtu_err", DCCE(LENGTH_MTU_ERR)),
874 	FLAG_ENTRY0("rx_early_drop_err", DCCE(RX_EARLY_DROP_ERR)),
875 	FLAG_ENTRY0("late_short_err", DCCE(LATE_SHORT_ERR)),
876 	FLAG_ENTRY0("late_long_err", DCCE(LATE_LONG_ERR)),
877 	FLAG_ENTRY0("late_ebp_err", DCCE(LATE_EBP_ERR)),
878 	FLAG_ENTRY0("fpe_tx_fifo_ovflw_err", DCCE(FPE_TX_FIFO_OVFLW_ERR)),
879 	FLAG_ENTRY0("fpe_tx_fifo_unflw_err", DCCE(FPE_TX_FIFO_UNFLW_ERR)),
880 	FLAG_ENTRY0("csr_access_blocked_host", DCCE(CSR_ACCESS_BLOCKED_HOST)),
881 	FLAG_ENTRY0("csr_access_blocked_uc", DCCE(CSR_ACCESS_BLOCKED_UC)),
882 	FLAG_ENTRY0("tx_ctrl_parity_err", DCCE(TX_CTRL_PARITY_ERR)),
883 	FLAG_ENTRY0("tx_ctrl_parity_mbe_err", DCCE(TX_CTRL_PARITY_MBE_ERR)),
884 	FLAG_ENTRY0("tx_sc_parity_err", DCCE(TX_SC_PARITY_ERR)),
885 	FLAG_ENTRY0("rx_ctrl_parity_mbe_err", DCCE(RX_CTRL_PARITY_MBE_ERR)),
886 	FLAG_ENTRY0("csr_parity_err", DCCE(CSR_PARITY_ERR)),
887 	FLAG_ENTRY0("csr_inval_addr", DCCE(CSR_INVAL_ADDR)),
888 	FLAG_ENTRY0("tx_byte_shft_parity_err", DCCE(TX_BYTE_SHFT_PARITY_ERR)),
889 	FLAG_ENTRY0("rx_byte_shft_parity_err", DCCE(RX_BYTE_SHFT_PARITY_ERR)),
890 	FLAG_ENTRY0("fmconfig_err", DCCE(FMCONFIG_ERR)),
891 	FLAG_ENTRY0("rcvport_err", DCCE(RCVPORT_ERR)),
892 };
893 
894 /*
895  * LCB error flags
896  */
897 #define LCBE(name) DC_LCB_ERR_FLG_##name##_SMASK
898 static struct flag_table lcb_err_flags[] = {
899 /* 0*/	FLAG_ENTRY0("CSR_PARITY_ERR", LCBE(CSR_PARITY_ERR)),
900 /* 1*/	FLAG_ENTRY0("INVALID_CSR_ADDR", LCBE(INVALID_CSR_ADDR)),
901 /* 2*/	FLAG_ENTRY0("RST_FOR_FAILED_DESKEW", LCBE(RST_FOR_FAILED_DESKEW)),
902 /* 3*/	FLAG_ENTRY0("ALL_LNS_FAILED_REINIT_TEST",
903 		LCBE(ALL_LNS_FAILED_REINIT_TEST)),
904 /* 4*/	FLAG_ENTRY0("LOST_REINIT_STALL_OR_TOS", LCBE(LOST_REINIT_STALL_OR_TOS)),
905 /* 5*/	FLAG_ENTRY0("TX_LESS_THAN_FOUR_LNS", LCBE(TX_LESS_THAN_FOUR_LNS)),
906 /* 6*/	FLAG_ENTRY0("RX_LESS_THAN_FOUR_LNS", LCBE(RX_LESS_THAN_FOUR_LNS)),
907 /* 7*/	FLAG_ENTRY0("SEQ_CRC_ERR", LCBE(SEQ_CRC_ERR)),
908 /* 8*/	FLAG_ENTRY0("REINIT_FROM_PEER", LCBE(REINIT_FROM_PEER)),
909 /* 9*/	FLAG_ENTRY0("REINIT_FOR_LN_DEGRADE", LCBE(REINIT_FOR_LN_DEGRADE)),
910 /*10*/	FLAG_ENTRY0("CRC_ERR_CNT_HIT_LIMIT", LCBE(CRC_ERR_CNT_HIT_LIMIT)),
911 /*11*/	FLAG_ENTRY0("RCLK_STOPPED", LCBE(RCLK_STOPPED)),
912 /*12*/	FLAG_ENTRY0("UNEXPECTED_REPLAY_MARKER", LCBE(UNEXPECTED_REPLAY_MARKER)),
913 /*13*/	FLAG_ENTRY0("UNEXPECTED_ROUND_TRIP_MARKER",
914 		LCBE(UNEXPECTED_ROUND_TRIP_MARKER)),
915 /*14*/	FLAG_ENTRY0("ILLEGAL_NULL_LTP", LCBE(ILLEGAL_NULL_LTP)),
916 /*15*/	FLAG_ENTRY0("ILLEGAL_FLIT_ENCODING", LCBE(ILLEGAL_FLIT_ENCODING)),
917 /*16*/	FLAG_ENTRY0("FLIT_INPUT_BUF_OFLW", LCBE(FLIT_INPUT_BUF_OFLW)),
918 /*17*/	FLAG_ENTRY0("VL_ACK_INPUT_BUF_OFLW", LCBE(VL_ACK_INPUT_BUF_OFLW)),
919 /*18*/	FLAG_ENTRY0("VL_ACK_INPUT_PARITY_ERR", LCBE(VL_ACK_INPUT_PARITY_ERR)),
920 /*19*/	FLAG_ENTRY0("VL_ACK_INPUT_WRONG_CRC_MODE",
921 		LCBE(VL_ACK_INPUT_WRONG_CRC_MODE)),
922 /*20*/	FLAG_ENTRY0("FLIT_INPUT_BUF_MBE", LCBE(FLIT_INPUT_BUF_MBE)),
923 /*21*/	FLAG_ENTRY0("FLIT_INPUT_BUF_SBE", LCBE(FLIT_INPUT_BUF_SBE)),
924 /*22*/	FLAG_ENTRY0("REPLAY_BUF_MBE", LCBE(REPLAY_BUF_MBE)),
925 /*23*/	FLAG_ENTRY0("REPLAY_BUF_SBE", LCBE(REPLAY_BUF_SBE)),
926 /*24*/	FLAG_ENTRY0("CREDIT_RETURN_FLIT_MBE", LCBE(CREDIT_RETURN_FLIT_MBE)),
927 /*25*/	FLAG_ENTRY0("RST_FOR_LINK_TIMEOUT", LCBE(RST_FOR_LINK_TIMEOUT)),
928 /*26*/	FLAG_ENTRY0("RST_FOR_INCOMPLT_RND_TRIP",
929 		LCBE(RST_FOR_INCOMPLT_RND_TRIP)),
930 /*27*/	FLAG_ENTRY0("HOLD_REINIT", LCBE(HOLD_REINIT)),
931 /*28*/	FLAG_ENTRY0("NEG_EDGE_LINK_TRANSFER_ACTIVE",
932 		LCBE(NEG_EDGE_LINK_TRANSFER_ACTIVE)),
933 /*29*/	FLAG_ENTRY0("REDUNDANT_FLIT_PARITY_ERR",
934 		LCBE(REDUNDANT_FLIT_PARITY_ERR))
935 };
936 
937 /*
938  * DC8051 Error Flags
939  */
940 #define D8E(name) DC_DC8051_ERR_FLG_##name##_SMASK
941 static struct flag_table dc8051_err_flags[] = {
942 	FLAG_ENTRY0("SET_BY_8051", D8E(SET_BY_8051)),
943 	FLAG_ENTRY0("LOST_8051_HEART_BEAT", D8E(LOST_8051_HEART_BEAT)),
944 	FLAG_ENTRY0("CRAM_MBE", D8E(CRAM_MBE)),
945 	FLAG_ENTRY0("CRAM_SBE", D8E(CRAM_SBE)),
946 	FLAG_ENTRY0("DRAM_MBE", D8E(DRAM_MBE)),
947 	FLAG_ENTRY0("DRAM_SBE", D8E(DRAM_SBE)),
948 	FLAG_ENTRY0("IRAM_MBE", D8E(IRAM_MBE)),
949 	FLAG_ENTRY0("IRAM_SBE", D8E(IRAM_SBE)),
950 	FLAG_ENTRY0("UNMATCHED_SECURE_MSG_ACROSS_BCC_LANES",
951 		    D8E(UNMATCHED_SECURE_MSG_ACROSS_BCC_LANES)),
952 	FLAG_ENTRY0("INVALID_CSR_ADDR", D8E(INVALID_CSR_ADDR)),
953 };
954 
955 /*
956  * DC8051 Information Error flags
957  *
958  * Flags in DC8051_DBG_ERR_INFO_SET_BY_8051.ERROR field.
959  */
960 static struct flag_table dc8051_info_err_flags[] = {
961 	FLAG_ENTRY0("Spico ROM check failed",  SPICO_ROM_FAILED),
962 	FLAG_ENTRY0("Unknown frame received",  UNKNOWN_FRAME),
963 	FLAG_ENTRY0("Target BER not met",      TARGET_BER_NOT_MET),
964 	FLAG_ENTRY0("Serdes internal loopback failure",
965 		    FAILED_SERDES_INTERNAL_LOOPBACK),
966 	FLAG_ENTRY0("Failed SerDes init",      FAILED_SERDES_INIT),
967 	FLAG_ENTRY0("Failed LNI(Polling)",     FAILED_LNI_POLLING),
968 	FLAG_ENTRY0("Failed LNI(Debounce)",    FAILED_LNI_DEBOUNCE),
969 	FLAG_ENTRY0("Failed LNI(EstbComm)",    FAILED_LNI_ESTBCOMM),
970 	FLAG_ENTRY0("Failed LNI(OptEq)",       FAILED_LNI_OPTEQ),
971 	FLAG_ENTRY0("Failed LNI(VerifyCap_1)", FAILED_LNI_VERIFY_CAP1),
972 	FLAG_ENTRY0("Failed LNI(VerifyCap_2)", FAILED_LNI_VERIFY_CAP2),
973 	FLAG_ENTRY0("Failed LNI(ConfigLT)",    FAILED_LNI_CONFIGLT),
974 	FLAG_ENTRY0("Host Handshake Timeout",  HOST_HANDSHAKE_TIMEOUT),
975 	FLAG_ENTRY0("External Device Request Timeout",
976 		    EXTERNAL_DEVICE_REQ_TIMEOUT),
977 };
978 
979 /*
980  * DC8051 Information Host Information flags
981  *
982  * Flags in DC8051_DBG_ERR_INFO_SET_BY_8051.HOST_MSG field.
983  */
984 static struct flag_table dc8051_info_host_msg_flags[] = {
985 	FLAG_ENTRY0("Host request done", 0x0001),
986 	FLAG_ENTRY0("BC SMA message", 0x0002),
987 	FLAG_ENTRY0("BC PWR_MGM message", 0x0004),
988 	FLAG_ENTRY0("BC Unknown message (BCC)", 0x0008),
989 	FLAG_ENTRY0("BC Unknown message (LCB)", 0x0010),
990 	FLAG_ENTRY0("External device config request", 0x0020),
991 	FLAG_ENTRY0("VerifyCap all frames received", 0x0040),
992 	FLAG_ENTRY0("LinkUp achieved", 0x0080),
993 	FLAG_ENTRY0("Link going down", 0x0100),
994 };
995 
996 static u32 encoded_size(u32 size);
997 static u32 chip_to_opa_lstate(struct hfi1_devdata *dd, u32 chip_lstate);
998 static int set_physical_link_state(struct hfi1_devdata *dd, u64 state);
999 static void read_vc_remote_phy(struct hfi1_devdata *dd, u8 *power_management,
1000 			       u8 *continuous);
1001 static void read_vc_remote_fabric(struct hfi1_devdata *dd, u8 *vau, u8 *z,
1002 				  u8 *vcu, u16 *vl15buf, u8 *crc_sizes);
1003 static void read_vc_remote_link_width(struct hfi1_devdata *dd,
1004 				      u8 *remote_tx_rate, u16 *link_widths);
1005 static void read_vc_local_link_width(struct hfi1_devdata *dd, u8 *misc_bits,
1006 				     u8 *flag_bits, u16 *link_widths);
1007 static void read_remote_device_id(struct hfi1_devdata *dd, u16 *device_id,
1008 				  u8 *device_rev);
1009 static void read_mgmt_allowed(struct hfi1_devdata *dd, u8 *mgmt_allowed);
1010 static void read_local_lni(struct hfi1_devdata *dd, u8 *enable_lane_rx);
1011 static int read_tx_settings(struct hfi1_devdata *dd, u8 *enable_lane_tx,
1012 			    u8 *tx_polarity_inversion,
1013 			    u8 *rx_polarity_inversion, u8 *max_rate);
1014 static void handle_sdma_eng_err(struct hfi1_devdata *dd,
1015 				unsigned int context, u64 err_status);
1016 static void handle_qsfp_int(struct hfi1_devdata *dd, u32 source, u64 reg);
1017 static void handle_dcc_err(struct hfi1_devdata *dd,
1018 			   unsigned int context, u64 err_status);
1019 static void handle_lcb_err(struct hfi1_devdata *dd,
1020 			   unsigned int context, u64 err_status);
1021 static void handle_8051_interrupt(struct hfi1_devdata *dd, u32 unused, u64 reg);
1022 static void handle_cce_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1023 static void handle_rxe_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1024 static void handle_misc_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1025 static void handle_pio_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1026 static void handle_sdma_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1027 static void handle_egress_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1028 static void handle_txe_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1029 static void set_partition_keys(struct hfi1_pportdata *);
1030 static const char *link_state_name(u32 state);
1031 static const char *link_state_reason_name(struct hfi1_pportdata *ppd,
1032 					  u32 state);
1033 static int do_8051_command(struct hfi1_devdata *dd, u32 type, u64 in_data,
1034 			   u64 *out_data);
1035 static int read_idle_sma(struct hfi1_devdata *dd, u64 *data);
1036 static int thermal_init(struct hfi1_devdata *dd);
1037 
1038 static int wait_logical_linkstate(struct hfi1_pportdata *ppd, u32 state,
1039 				  int msecs);
1040 static void read_planned_down_reason_code(struct hfi1_devdata *dd, u8 *pdrrc);
1041 static void read_link_down_reason(struct hfi1_devdata *dd, u8 *ldr);
1042 static void handle_temp_err(struct hfi1_devdata *);
1043 static void dc_shutdown(struct hfi1_devdata *);
1044 static void dc_start(struct hfi1_devdata *);
1045 static int qos_rmt_entries(struct hfi1_devdata *dd, unsigned int *mp,
1046 			   unsigned int *np);
1047 static void clear_full_mgmt_pkey(struct hfi1_pportdata *ppd);
1048 
1049 /*
1050  * Error interrupt table entry.  This is used as input to the interrupt
1051  * "clear down" routine used for all second tier error interrupt register.
1052  * Second tier interrupt registers have a single bit representing them
1053  * in the top-level CceIntStatus.
1054  */
1055 struct err_reg_info {
1056 	u32 status;		/* status CSR offset */
1057 	u32 clear;		/* clear CSR offset */
1058 	u32 mask;		/* mask CSR offset */
1059 	void (*handler)(struct hfi1_devdata *dd, u32 source, u64 reg);
1060 	const char *desc;
1061 };
1062 
1063 #define NUM_MISC_ERRS (IS_GENERAL_ERR_END - IS_GENERAL_ERR_START)
1064 #define NUM_DC_ERRS (IS_DC_END - IS_DC_START)
1065 #define NUM_VARIOUS (IS_VARIOUS_END - IS_VARIOUS_START)
1066 
1067 /*
1068  * Helpers for building HFI and DC error interrupt table entries.  Different
1069  * helpers are needed because of inconsistent register names.
1070  */
1071 #define EE(reg, handler, desc) \
1072 	{ reg##_STATUS, reg##_CLEAR, reg##_MASK, \
1073 		handler, desc }
1074 #define DC_EE1(reg, handler, desc) \
1075 	{ reg##_FLG, reg##_FLG_CLR, reg##_FLG_EN, handler, desc }
1076 #define DC_EE2(reg, handler, desc) \
1077 	{ reg##_FLG, reg##_CLR, reg##_EN, handler, desc }
1078 
1079 /*
1080  * Table of the "misc" grouping of error interrupts.  Each entry refers to
1081  * another register containing more information.
1082  */
1083 static const struct err_reg_info misc_errs[NUM_MISC_ERRS] = {
1084 /* 0*/	EE(CCE_ERR,		handle_cce_err,    "CceErr"),
1085 /* 1*/	EE(RCV_ERR,		handle_rxe_err,    "RxeErr"),
1086 /* 2*/	EE(MISC_ERR,	handle_misc_err,   "MiscErr"),
1087 /* 3*/	{ 0, 0, 0, NULL }, /* reserved */
1088 /* 4*/	EE(SEND_PIO_ERR,    handle_pio_err,    "PioErr"),
1089 /* 5*/	EE(SEND_DMA_ERR,    handle_sdma_err,   "SDmaErr"),
1090 /* 6*/	EE(SEND_EGRESS_ERR, handle_egress_err, "EgressErr"),
1091 /* 7*/	EE(SEND_ERR,	handle_txe_err,    "TxeErr")
1092 	/* the rest are reserved */
1093 };
1094 
1095 /*
1096  * Index into the Various section of the interrupt sources
1097  * corresponding to the Critical Temperature interrupt.
1098  */
1099 #define TCRIT_INT_SOURCE 4
1100 
1101 /*
1102  * SDMA error interrupt entry - refers to another register containing more
1103  * information.
1104  */
1105 static const struct err_reg_info sdma_eng_err =
1106 	EE(SEND_DMA_ENG_ERR, handle_sdma_eng_err, "SDmaEngErr");
1107 
1108 static const struct err_reg_info various_err[NUM_VARIOUS] = {
1109 /* 0*/	{ 0, 0, 0, NULL }, /* PbcInt */
1110 /* 1*/	{ 0, 0, 0, NULL }, /* GpioAssertInt */
1111 /* 2*/	EE(ASIC_QSFP1,	handle_qsfp_int,	"QSFP1"),
1112 /* 3*/	EE(ASIC_QSFP2,	handle_qsfp_int,	"QSFP2"),
1113 /* 4*/	{ 0, 0, 0, NULL }, /* TCritInt */
1114 	/* rest are reserved */
1115 };
1116 
1117 /*
1118  * The DC encoding of mtu_cap for 10K MTU in the DCC_CFG_PORT_CONFIG
1119  * register can not be derived from the MTU value because 10K is not
1120  * a power of 2. Therefore, we need a constant. Everything else can
1121  * be calculated.
1122  */
1123 #define DCC_CFG_PORT_MTU_CAP_10240 7
1124 
1125 /*
1126  * Table of the DC grouping of error interrupts.  Each entry refers to
1127  * another register containing more information.
1128  */
1129 static const struct err_reg_info dc_errs[NUM_DC_ERRS] = {
1130 /* 0*/	DC_EE1(DCC_ERR,		handle_dcc_err,	       "DCC Err"),
1131 /* 1*/	DC_EE2(DC_LCB_ERR,	handle_lcb_err,	       "LCB Err"),
1132 /* 2*/	DC_EE2(DC_DC8051_ERR,	handle_8051_interrupt, "DC8051 Interrupt"),
1133 /* 3*/	/* dc_lbm_int - special, see is_dc_int() */
1134 	/* the rest are reserved */
1135 };
1136 
1137 struct cntr_entry {
1138 	/*
1139 	 * counter name
1140 	 */
1141 	char *name;
1142 
1143 	/*
1144 	 * csr to read for name (if applicable)
1145 	 */
1146 	u64 csr;
1147 
1148 	/*
1149 	 * offset into dd or ppd to store the counter's value
1150 	 */
1151 	int offset;
1152 
1153 	/*
1154 	 * flags
1155 	 */
1156 	u8 flags;
1157 
1158 	/*
1159 	 * accessor for stat element, context either dd or ppd
1160 	 */
1161 	u64 (*rw_cntr)(const struct cntr_entry *, void *context, int vl,
1162 		       int mode, u64 data);
1163 };
1164 
1165 #define C_RCV_HDR_OVF_FIRST C_RCV_HDR_OVF_0
1166 #define C_RCV_HDR_OVF_LAST C_RCV_HDR_OVF_159
1167 
1168 #define CNTR_ELEM(name, csr, offset, flags, accessor) \
1169 { \
1170 	name, \
1171 	csr, \
1172 	offset, \
1173 	flags, \
1174 	accessor \
1175 }
1176 
1177 /* 32bit RXE */
1178 #define RXE32_PORT_CNTR_ELEM(name, counter, flags) \
1179 CNTR_ELEM(#name, \
1180 	  (counter * 8 + RCV_COUNTER_ARRAY32), \
1181 	  0, flags | CNTR_32BIT, \
1182 	  port_access_u32_csr)
1183 
1184 #define RXE32_DEV_CNTR_ELEM(name, counter, flags) \
1185 CNTR_ELEM(#name, \
1186 	  (counter * 8 + RCV_COUNTER_ARRAY32), \
1187 	  0, flags | CNTR_32BIT, \
1188 	  dev_access_u32_csr)
1189 
1190 /* 64bit RXE */
1191 #define RXE64_PORT_CNTR_ELEM(name, counter, flags) \
1192 CNTR_ELEM(#name, \
1193 	  (counter * 8 + RCV_COUNTER_ARRAY64), \
1194 	  0, flags, \
1195 	  port_access_u64_csr)
1196 
1197 #define RXE64_DEV_CNTR_ELEM(name, counter, flags) \
1198 CNTR_ELEM(#name, \
1199 	  (counter * 8 + RCV_COUNTER_ARRAY64), \
1200 	  0, flags, \
1201 	  dev_access_u64_csr)
1202 
1203 #define OVR_LBL(ctx) C_RCV_HDR_OVF_ ## ctx
1204 #define OVR_ELM(ctx) \
1205 CNTR_ELEM("RcvHdrOvr" #ctx, \
1206 	  (RCV_HDR_OVFL_CNT + ctx * 0x100), \
1207 	  0, CNTR_NORMAL, port_access_u64_csr)
1208 
1209 /* 32bit TXE */
1210 #define TXE32_PORT_CNTR_ELEM(name, counter, flags) \
1211 CNTR_ELEM(#name, \
1212 	  (counter * 8 + SEND_COUNTER_ARRAY32), \
1213 	  0, flags | CNTR_32BIT, \
1214 	  port_access_u32_csr)
1215 
1216 /* 64bit TXE */
1217 #define TXE64_PORT_CNTR_ELEM(name, counter, flags) \
1218 CNTR_ELEM(#name, \
1219 	  (counter * 8 + SEND_COUNTER_ARRAY64), \
1220 	  0, flags, \
1221 	  port_access_u64_csr)
1222 
1223 # define TX64_DEV_CNTR_ELEM(name, counter, flags) \
1224 CNTR_ELEM(#name,\
1225 	  counter * 8 + SEND_COUNTER_ARRAY64, \
1226 	  0, \
1227 	  flags, \
1228 	  dev_access_u64_csr)
1229 
1230 /* CCE */
1231 #define CCE_PERF_DEV_CNTR_ELEM(name, counter, flags) \
1232 CNTR_ELEM(#name, \
1233 	  (counter * 8 + CCE_COUNTER_ARRAY32), \
1234 	  0, flags | CNTR_32BIT, \
1235 	  dev_access_u32_csr)
1236 
1237 #define CCE_INT_DEV_CNTR_ELEM(name, counter, flags) \
1238 CNTR_ELEM(#name, \
1239 	  (counter * 8 + CCE_INT_COUNTER_ARRAY32), \
1240 	  0, flags | CNTR_32BIT, \
1241 	  dev_access_u32_csr)
1242 
1243 /* DC */
1244 #define DC_PERF_CNTR(name, counter, flags) \
1245 CNTR_ELEM(#name, \
1246 	  counter, \
1247 	  0, \
1248 	  flags, \
1249 	  dev_access_u64_csr)
1250 
1251 #define DC_PERF_CNTR_LCB(name, counter, flags) \
1252 CNTR_ELEM(#name, \
1253 	  counter, \
1254 	  0, \
1255 	  flags, \
1256 	  dc_access_lcb_cntr)
1257 
1258 /* ibp counters */
1259 #define SW_IBP_CNTR(name, cntr) \
1260 CNTR_ELEM(#name, \
1261 	  0, \
1262 	  0, \
1263 	  CNTR_SYNTH, \
1264 	  access_ibp_##cntr)
1265 
1266 u64 read_csr(const struct hfi1_devdata *dd, u32 offset)
1267 {
1268 	if (dd->flags & HFI1_PRESENT) {
1269 		return readq((void __iomem *)dd->kregbase + offset);
1270 	}
1271 	return -1;
1272 }
1273 
1274 void write_csr(const struct hfi1_devdata *dd, u32 offset, u64 value)
1275 {
1276 	if (dd->flags & HFI1_PRESENT)
1277 		writeq(value, (void __iomem *)dd->kregbase + offset);
1278 }
1279 
1280 void __iomem *get_csr_addr(
1281 	struct hfi1_devdata *dd,
1282 	u32 offset)
1283 {
1284 	return (void __iomem *)dd->kregbase + offset;
1285 }
1286 
1287 static inline u64 read_write_csr(const struct hfi1_devdata *dd, u32 csr,
1288 				 int mode, u64 value)
1289 {
1290 	u64 ret;
1291 
1292 	if (mode == CNTR_MODE_R) {
1293 		ret = read_csr(dd, csr);
1294 	} else if (mode == CNTR_MODE_W) {
1295 		write_csr(dd, csr, value);
1296 		ret = value;
1297 	} else {
1298 		dd_dev_err(dd, "Invalid cntr register access mode");
1299 		return 0;
1300 	}
1301 
1302 	hfi1_cdbg(CNTR, "csr 0x%x val 0x%llx mode %d", csr, ret, mode);
1303 	return ret;
1304 }
1305 
1306 /* Dev Access */
1307 static u64 dev_access_u32_csr(const struct cntr_entry *entry,
1308 			      void *context, int vl, int mode, u64 data)
1309 {
1310 	struct hfi1_devdata *dd = context;
1311 	u64 csr = entry->csr;
1312 
1313 	if (entry->flags & CNTR_SDMA) {
1314 		if (vl == CNTR_INVALID_VL)
1315 			return 0;
1316 		csr += 0x100 * vl;
1317 	} else {
1318 		if (vl != CNTR_INVALID_VL)
1319 			return 0;
1320 	}
1321 	return read_write_csr(dd, csr, mode, data);
1322 }
1323 
1324 static u64 access_sde_err_cnt(const struct cntr_entry *entry,
1325 			      void *context, int idx, int mode, u64 data)
1326 {
1327 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1328 
1329 	if (dd->per_sdma && idx < dd->num_sdma)
1330 		return dd->per_sdma[idx].err_cnt;
1331 	return 0;
1332 }
1333 
1334 static u64 access_sde_int_cnt(const struct cntr_entry *entry,
1335 			      void *context, int idx, int mode, u64 data)
1336 {
1337 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1338 
1339 	if (dd->per_sdma && idx < dd->num_sdma)
1340 		return dd->per_sdma[idx].sdma_int_cnt;
1341 	return 0;
1342 }
1343 
1344 static u64 access_sde_idle_int_cnt(const struct cntr_entry *entry,
1345 				   void *context, int idx, int mode, u64 data)
1346 {
1347 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1348 
1349 	if (dd->per_sdma && idx < dd->num_sdma)
1350 		return dd->per_sdma[idx].idle_int_cnt;
1351 	return 0;
1352 }
1353 
1354 static u64 access_sde_progress_int_cnt(const struct cntr_entry *entry,
1355 				       void *context, int idx, int mode,
1356 				       u64 data)
1357 {
1358 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1359 
1360 	if (dd->per_sdma && idx < dd->num_sdma)
1361 		return dd->per_sdma[idx].progress_int_cnt;
1362 	return 0;
1363 }
1364 
1365 static u64 dev_access_u64_csr(const struct cntr_entry *entry, void *context,
1366 			      int vl, int mode, u64 data)
1367 {
1368 	struct hfi1_devdata *dd = context;
1369 
1370 	u64 val = 0;
1371 	u64 csr = entry->csr;
1372 
1373 	if (entry->flags & CNTR_VL) {
1374 		if (vl == CNTR_INVALID_VL)
1375 			return 0;
1376 		csr += 8 * vl;
1377 	} else {
1378 		if (vl != CNTR_INVALID_VL)
1379 			return 0;
1380 	}
1381 
1382 	val = read_write_csr(dd, csr, mode, data);
1383 	return val;
1384 }
1385 
1386 static u64 dc_access_lcb_cntr(const struct cntr_entry *entry, void *context,
1387 			      int vl, int mode, u64 data)
1388 {
1389 	struct hfi1_devdata *dd = context;
1390 	u32 csr = entry->csr;
1391 	int ret = 0;
1392 
1393 	if (vl != CNTR_INVALID_VL)
1394 		return 0;
1395 	if (mode == CNTR_MODE_R)
1396 		ret = read_lcb_csr(dd, csr, &data);
1397 	else if (mode == CNTR_MODE_W)
1398 		ret = write_lcb_csr(dd, csr, data);
1399 
1400 	if (ret) {
1401 		dd_dev_err(dd, "Could not acquire LCB for counter 0x%x", csr);
1402 		return 0;
1403 	}
1404 
1405 	hfi1_cdbg(CNTR, "csr 0x%x val 0x%llx mode %d", csr, data, mode);
1406 	return data;
1407 }
1408 
1409 /* Port Access */
1410 static u64 port_access_u32_csr(const struct cntr_entry *entry, void *context,
1411 			       int vl, int mode, u64 data)
1412 {
1413 	struct hfi1_pportdata *ppd = context;
1414 
1415 	if (vl != CNTR_INVALID_VL)
1416 		return 0;
1417 	return read_write_csr(ppd->dd, entry->csr, mode, data);
1418 }
1419 
1420 static u64 port_access_u64_csr(const struct cntr_entry *entry,
1421 			       void *context, int vl, int mode, u64 data)
1422 {
1423 	struct hfi1_pportdata *ppd = context;
1424 	u64 val;
1425 	u64 csr = entry->csr;
1426 
1427 	if (entry->flags & CNTR_VL) {
1428 		if (vl == CNTR_INVALID_VL)
1429 			return 0;
1430 		csr += 8 * vl;
1431 	} else {
1432 		if (vl != CNTR_INVALID_VL)
1433 			return 0;
1434 	}
1435 	val = read_write_csr(ppd->dd, csr, mode, data);
1436 	return val;
1437 }
1438 
1439 /* Software defined */
1440 static inline u64 read_write_sw(struct hfi1_devdata *dd, u64 *cntr, int mode,
1441 				u64 data)
1442 {
1443 	u64 ret;
1444 
1445 	if (mode == CNTR_MODE_R) {
1446 		ret = *cntr;
1447 	} else if (mode == CNTR_MODE_W) {
1448 		*cntr = data;
1449 		ret = data;
1450 	} else {
1451 		dd_dev_err(dd, "Invalid cntr sw access mode");
1452 		return 0;
1453 	}
1454 
1455 	hfi1_cdbg(CNTR, "val 0x%llx mode %d", ret, mode);
1456 
1457 	return ret;
1458 }
1459 
1460 static u64 access_sw_link_dn_cnt(const struct cntr_entry *entry, void *context,
1461 				 int vl, int mode, u64 data)
1462 {
1463 	struct hfi1_pportdata *ppd = context;
1464 
1465 	if (vl != CNTR_INVALID_VL)
1466 		return 0;
1467 	return read_write_sw(ppd->dd, &ppd->link_downed, mode, data);
1468 }
1469 
1470 static u64 access_sw_link_up_cnt(const struct cntr_entry *entry, void *context,
1471 				 int vl, int mode, u64 data)
1472 {
1473 	struct hfi1_pportdata *ppd = context;
1474 
1475 	if (vl != CNTR_INVALID_VL)
1476 		return 0;
1477 	return read_write_sw(ppd->dd, &ppd->link_up, mode, data);
1478 }
1479 
1480 static u64 access_sw_unknown_frame_cnt(const struct cntr_entry *entry,
1481 				       void *context, int vl, int mode,
1482 				       u64 data)
1483 {
1484 	struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context;
1485 
1486 	if (vl != CNTR_INVALID_VL)
1487 		return 0;
1488 	return read_write_sw(ppd->dd, &ppd->unknown_frame_count, mode, data);
1489 }
1490 
1491 static u64 access_sw_xmit_discards(const struct cntr_entry *entry,
1492 				   void *context, int vl, int mode, u64 data)
1493 {
1494 	struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context;
1495 	u64 zero = 0;
1496 	u64 *counter;
1497 
1498 	if (vl == CNTR_INVALID_VL)
1499 		counter = &ppd->port_xmit_discards;
1500 	else if (vl >= 0 && vl < C_VL_COUNT)
1501 		counter = &ppd->port_xmit_discards_vl[vl];
1502 	else
1503 		counter = &zero;
1504 
1505 	return read_write_sw(ppd->dd, counter, mode, data);
1506 }
1507 
1508 static u64 access_xmit_constraint_errs(const struct cntr_entry *entry,
1509 				       void *context, int vl, int mode,
1510 				       u64 data)
1511 {
1512 	struct hfi1_pportdata *ppd = context;
1513 
1514 	if (vl != CNTR_INVALID_VL)
1515 		return 0;
1516 
1517 	return read_write_sw(ppd->dd, &ppd->port_xmit_constraint_errors,
1518 			     mode, data);
1519 }
1520 
1521 static u64 access_rcv_constraint_errs(const struct cntr_entry *entry,
1522 				      void *context, int vl, int mode, u64 data)
1523 {
1524 	struct hfi1_pportdata *ppd = context;
1525 
1526 	if (vl != CNTR_INVALID_VL)
1527 		return 0;
1528 
1529 	return read_write_sw(ppd->dd, &ppd->port_rcv_constraint_errors,
1530 			     mode, data);
1531 }
1532 
1533 u64 get_all_cpu_total(u64 __percpu *cntr)
1534 {
1535 	int cpu;
1536 	u64 counter = 0;
1537 
1538 	for_each_possible_cpu(cpu)
1539 		counter += *per_cpu_ptr(cntr, cpu);
1540 	return counter;
1541 }
1542 
1543 static u64 read_write_cpu(struct hfi1_devdata *dd, u64 *z_val,
1544 			  u64 __percpu *cntr,
1545 			  int vl, int mode, u64 data)
1546 {
1547 	u64 ret = 0;
1548 
1549 	if (vl != CNTR_INVALID_VL)
1550 		return 0;
1551 
1552 	if (mode == CNTR_MODE_R) {
1553 		ret = get_all_cpu_total(cntr) - *z_val;
1554 	} else if (mode == CNTR_MODE_W) {
1555 		/* A write can only zero the counter */
1556 		if (data == 0)
1557 			*z_val = get_all_cpu_total(cntr);
1558 		else
1559 			dd_dev_err(dd, "Per CPU cntrs can only be zeroed");
1560 	} else {
1561 		dd_dev_err(dd, "Invalid cntr sw cpu access mode");
1562 		return 0;
1563 	}
1564 
1565 	return ret;
1566 }
1567 
1568 static u64 access_sw_cpu_intr(const struct cntr_entry *entry,
1569 			      void *context, int vl, int mode, u64 data)
1570 {
1571 	struct hfi1_devdata *dd = context;
1572 
1573 	return read_write_cpu(dd, &dd->z_int_counter, dd->int_counter, vl,
1574 			      mode, data);
1575 }
1576 
1577 static u64 access_sw_cpu_rcv_limit(const struct cntr_entry *entry,
1578 				   void *context, int vl, int mode, u64 data)
1579 {
1580 	struct hfi1_devdata *dd = context;
1581 
1582 	return read_write_cpu(dd, &dd->z_rcv_limit, dd->rcv_limit, vl,
1583 			      mode, data);
1584 }
1585 
1586 static u64 access_sw_pio_wait(const struct cntr_entry *entry,
1587 			      void *context, int vl, int mode, u64 data)
1588 {
1589 	struct hfi1_devdata *dd = context;
1590 
1591 	return dd->verbs_dev.n_piowait;
1592 }
1593 
1594 static u64 access_sw_pio_drain(const struct cntr_entry *entry,
1595 			       void *context, int vl, int mode, u64 data)
1596 {
1597 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1598 
1599 	return dd->verbs_dev.n_piodrain;
1600 }
1601 
1602 static u64 access_sw_vtx_wait(const struct cntr_entry *entry,
1603 			      void *context, int vl, int mode, u64 data)
1604 {
1605 	struct hfi1_devdata *dd = context;
1606 
1607 	return dd->verbs_dev.n_txwait;
1608 }
1609 
1610 static u64 access_sw_kmem_wait(const struct cntr_entry *entry,
1611 			       void *context, int vl, int mode, u64 data)
1612 {
1613 	struct hfi1_devdata *dd = context;
1614 
1615 	return dd->verbs_dev.n_kmem_wait;
1616 }
1617 
1618 static u64 access_sw_send_schedule(const struct cntr_entry *entry,
1619 				   void *context, int vl, int mode, u64 data)
1620 {
1621 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1622 
1623 	return read_write_cpu(dd, &dd->z_send_schedule, dd->send_schedule, vl,
1624 			      mode, data);
1625 }
1626 
1627 /* Software counters for the error status bits within MISC_ERR_STATUS */
1628 static u64 access_misc_pll_lock_fail_err_cnt(const struct cntr_entry *entry,
1629 					     void *context, int vl, int mode,
1630 					     u64 data)
1631 {
1632 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1633 
1634 	return dd->misc_err_status_cnt[12];
1635 }
1636 
1637 static u64 access_misc_mbist_fail_err_cnt(const struct cntr_entry *entry,
1638 					  void *context, int vl, int mode,
1639 					  u64 data)
1640 {
1641 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1642 
1643 	return dd->misc_err_status_cnt[11];
1644 }
1645 
1646 static u64 access_misc_invalid_eep_cmd_err_cnt(const struct cntr_entry *entry,
1647 					       void *context, int vl, int mode,
1648 					       u64 data)
1649 {
1650 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1651 
1652 	return dd->misc_err_status_cnt[10];
1653 }
1654 
1655 static u64 access_misc_efuse_done_parity_err_cnt(const struct cntr_entry *entry,
1656 						 void *context, int vl,
1657 						 int mode, u64 data)
1658 {
1659 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1660 
1661 	return dd->misc_err_status_cnt[9];
1662 }
1663 
1664 static u64 access_misc_efuse_write_err_cnt(const struct cntr_entry *entry,
1665 					   void *context, int vl, int mode,
1666 					   u64 data)
1667 {
1668 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1669 
1670 	return dd->misc_err_status_cnt[8];
1671 }
1672 
1673 static u64 access_misc_efuse_read_bad_addr_err_cnt(
1674 				const struct cntr_entry *entry,
1675 				void *context, int vl, int mode, u64 data)
1676 {
1677 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1678 
1679 	return dd->misc_err_status_cnt[7];
1680 }
1681 
1682 static u64 access_misc_efuse_csr_parity_err_cnt(const struct cntr_entry *entry,
1683 						void *context, int vl,
1684 						int mode, u64 data)
1685 {
1686 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1687 
1688 	return dd->misc_err_status_cnt[6];
1689 }
1690 
1691 static u64 access_misc_fw_auth_failed_err_cnt(const struct cntr_entry *entry,
1692 					      void *context, int vl, int mode,
1693 					      u64 data)
1694 {
1695 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1696 
1697 	return dd->misc_err_status_cnt[5];
1698 }
1699 
1700 static u64 access_misc_key_mismatch_err_cnt(const struct cntr_entry *entry,
1701 					    void *context, int vl, int mode,
1702 					    u64 data)
1703 {
1704 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1705 
1706 	return dd->misc_err_status_cnt[4];
1707 }
1708 
1709 static u64 access_misc_sbus_write_failed_err_cnt(const struct cntr_entry *entry,
1710 						 void *context, int vl,
1711 						 int mode, u64 data)
1712 {
1713 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1714 
1715 	return dd->misc_err_status_cnt[3];
1716 }
1717 
1718 static u64 access_misc_csr_write_bad_addr_err_cnt(
1719 				const struct cntr_entry *entry,
1720 				void *context, int vl, int mode, u64 data)
1721 {
1722 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1723 
1724 	return dd->misc_err_status_cnt[2];
1725 }
1726 
1727 static u64 access_misc_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
1728 						 void *context, int vl,
1729 						 int mode, u64 data)
1730 {
1731 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1732 
1733 	return dd->misc_err_status_cnt[1];
1734 }
1735 
1736 static u64 access_misc_csr_parity_err_cnt(const struct cntr_entry *entry,
1737 					  void *context, int vl, int mode,
1738 					  u64 data)
1739 {
1740 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1741 
1742 	return dd->misc_err_status_cnt[0];
1743 }
1744 
1745 /*
1746  * Software counter for the aggregate of
1747  * individual CceErrStatus counters
1748  */
1749 static u64 access_sw_cce_err_status_aggregated_cnt(
1750 				const struct cntr_entry *entry,
1751 				void *context, int vl, int mode, u64 data)
1752 {
1753 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1754 
1755 	return dd->sw_cce_err_status_aggregate;
1756 }
1757 
1758 /*
1759  * Software counters corresponding to each of the
1760  * error status bits within CceErrStatus
1761  */
1762 static u64 access_cce_msix_csr_parity_err_cnt(const struct cntr_entry *entry,
1763 					      void *context, int vl, int mode,
1764 					      u64 data)
1765 {
1766 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1767 
1768 	return dd->cce_err_status_cnt[40];
1769 }
1770 
1771 static u64 access_cce_int_map_unc_err_cnt(const struct cntr_entry *entry,
1772 					  void *context, int vl, int mode,
1773 					  u64 data)
1774 {
1775 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1776 
1777 	return dd->cce_err_status_cnt[39];
1778 }
1779 
1780 static u64 access_cce_int_map_cor_err_cnt(const struct cntr_entry *entry,
1781 					  void *context, int vl, int mode,
1782 					  u64 data)
1783 {
1784 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1785 
1786 	return dd->cce_err_status_cnt[38];
1787 }
1788 
1789 static u64 access_cce_msix_table_unc_err_cnt(const struct cntr_entry *entry,
1790 					     void *context, int vl, int mode,
1791 					     u64 data)
1792 {
1793 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1794 
1795 	return dd->cce_err_status_cnt[37];
1796 }
1797 
1798 static u64 access_cce_msix_table_cor_err_cnt(const struct cntr_entry *entry,
1799 					     void *context, int vl, int mode,
1800 					     u64 data)
1801 {
1802 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1803 
1804 	return dd->cce_err_status_cnt[36];
1805 }
1806 
1807 static u64 access_cce_rxdma_conv_fifo_parity_err_cnt(
1808 				const struct cntr_entry *entry,
1809 				void *context, int vl, int mode, u64 data)
1810 {
1811 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1812 
1813 	return dd->cce_err_status_cnt[35];
1814 }
1815 
1816 static u64 access_cce_rcpl_async_fifo_parity_err_cnt(
1817 				const struct cntr_entry *entry,
1818 				void *context, int vl, int mode, u64 data)
1819 {
1820 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1821 
1822 	return dd->cce_err_status_cnt[34];
1823 }
1824 
1825 static u64 access_cce_seg_write_bad_addr_err_cnt(const struct cntr_entry *entry,
1826 						 void *context, int vl,
1827 						 int mode, u64 data)
1828 {
1829 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1830 
1831 	return dd->cce_err_status_cnt[33];
1832 }
1833 
1834 static u64 access_cce_seg_read_bad_addr_err_cnt(const struct cntr_entry *entry,
1835 						void *context, int vl, int mode,
1836 						u64 data)
1837 {
1838 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1839 
1840 	return dd->cce_err_status_cnt[32];
1841 }
1842 
1843 static u64 access_la_triggered_cnt(const struct cntr_entry *entry,
1844 				   void *context, int vl, int mode, u64 data)
1845 {
1846 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1847 
1848 	return dd->cce_err_status_cnt[31];
1849 }
1850 
1851 static u64 access_cce_trgt_cpl_timeout_err_cnt(const struct cntr_entry *entry,
1852 					       void *context, int vl, int mode,
1853 					       u64 data)
1854 {
1855 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1856 
1857 	return dd->cce_err_status_cnt[30];
1858 }
1859 
1860 static u64 access_pcic_receive_parity_err_cnt(const struct cntr_entry *entry,
1861 					      void *context, int vl, int mode,
1862 					      u64 data)
1863 {
1864 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1865 
1866 	return dd->cce_err_status_cnt[29];
1867 }
1868 
1869 static u64 access_pcic_transmit_back_parity_err_cnt(
1870 				const struct cntr_entry *entry,
1871 				void *context, int vl, int mode, u64 data)
1872 {
1873 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1874 
1875 	return dd->cce_err_status_cnt[28];
1876 }
1877 
1878 static u64 access_pcic_transmit_front_parity_err_cnt(
1879 				const struct cntr_entry *entry,
1880 				void *context, int vl, int mode, u64 data)
1881 {
1882 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1883 
1884 	return dd->cce_err_status_cnt[27];
1885 }
1886 
1887 static u64 access_pcic_cpl_dat_q_unc_err_cnt(const struct cntr_entry *entry,
1888 					     void *context, int vl, int mode,
1889 					     u64 data)
1890 {
1891 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1892 
1893 	return dd->cce_err_status_cnt[26];
1894 }
1895 
1896 static u64 access_pcic_cpl_hd_q_unc_err_cnt(const struct cntr_entry *entry,
1897 					    void *context, int vl, int mode,
1898 					    u64 data)
1899 {
1900 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1901 
1902 	return dd->cce_err_status_cnt[25];
1903 }
1904 
1905 static u64 access_pcic_post_dat_q_unc_err_cnt(const struct cntr_entry *entry,
1906 					      void *context, int vl, int mode,
1907 					      u64 data)
1908 {
1909 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1910 
1911 	return dd->cce_err_status_cnt[24];
1912 }
1913 
1914 static u64 access_pcic_post_hd_q_unc_err_cnt(const struct cntr_entry *entry,
1915 					     void *context, int vl, int mode,
1916 					     u64 data)
1917 {
1918 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1919 
1920 	return dd->cce_err_status_cnt[23];
1921 }
1922 
1923 static u64 access_pcic_retry_sot_mem_unc_err_cnt(const struct cntr_entry *entry,
1924 						 void *context, int vl,
1925 						 int mode, u64 data)
1926 {
1927 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1928 
1929 	return dd->cce_err_status_cnt[22];
1930 }
1931 
1932 static u64 access_pcic_retry_mem_unc_err(const struct cntr_entry *entry,
1933 					 void *context, int vl, int mode,
1934 					 u64 data)
1935 {
1936 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1937 
1938 	return dd->cce_err_status_cnt[21];
1939 }
1940 
1941 static u64 access_pcic_n_post_dat_q_parity_err_cnt(
1942 				const struct cntr_entry *entry,
1943 				void *context, int vl, int mode, u64 data)
1944 {
1945 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1946 
1947 	return dd->cce_err_status_cnt[20];
1948 }
1949 
1950 static u64 access_pcic_n_post_h_q_parity_err_cnt(const struct cntr_entry *entry,
1951 						 void *context, int vl,
1952 						 int mode, u64 data)
1953 {
1954 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1955 
1956 	return dd->cce_err_status_cnt[19];
1957 }
1958 
1959 static u64 access_pcic_cpl_dat_q_cor_err_cnt(const struct cntr_entry *entry,
1960 					     void *context, int vl, int mode,
1961 					     u64 data)
1962 {
1963 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1964 
1965 	return dd->cce_err_status_cnt[18];
1966 }
1967 
1968 static u64 access_pcic_cpl_hd_q_cor_err_cnt(const struct cntr_entry *entry,
1969 					    void *context, int vl, int mode,
1970 					    u64 data)
1971 {
1972 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1973 
1974 	return dd->cce_err_status_cnt[17];
1975 }
1976 
1977 static u64 access_pcic_post_dat_q_cor_err_cnt(const struct cntr_entry *entry,
1978 					      void *context, int vl, int mode,
1979 					      u64 data)
1980 {
1981 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1982 
1983 	return dd->cce_err_status_cnt[16];
1984 }
1985 
1986 static u64 access_pcic_post_hd_q_cor_err_cnt(const struct cntr_entry *entry,
1987 					     void *context, int vl, int mode,
1988 					     u64 data)
1989 {
1990 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1991 
1992 	return dd->cce_err_status_cnt[15];
1993 }
1994 
1995 static u64 access_pcic_retry_sot_mem_cor_err_cnt(const struct cntr_entry *entry,
1996 						 void *context, int vl,
1997 						 int mode, u64 data)
1998 {
1999 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2000 
2001 	return dd->cce_err_status_cnt[14];
2002 }
2003 
2004 static u64 access_pcic_retry_mem_cor_err_cnt(const struct cntr_entry *entry,
2005 					     void *context, int vl, int mode,
2006 					     u64 data)
2007 {
2008 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2009 
2010 	return dd->cce_err_status_cnt[13];
2011 }
2012 
2013 static u64 access_cce_cli1_async_fifo_dbg_parity_err_cnt(
2014 				const struct cntr_entry *entry,
2015 				void *context, int vl, int mode, u64 data)
2016 {
2017 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2018 
2019 	return dd->cce_err_status_cnt[12];
2020 }
2021 
2022 static u64 access_cce_cli1_async_fifo_rxdma_parity_err_cnt(
2023 				const struct cntr_entry *entry,
2024 				void *context, int vl, int mode, u64 data)
2025 {
2026 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2027 
2028 	return dd->cce_err_status_cnt[11];
2029 }
2030 
2031 static u64 access_cce_cli1_async_fifo_sdma_hd_parity_err_cnt(
2032 				const struct cntr_entry *entry,
2033 				void *context, int vl, int mode, u64 data)
2034 {
2035 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2036 
2037 	return dd->cce_err_status_cnt[10];
2038 }
2039 
2040 static u64 access_cce_cl1_async_fifo_pio_crdt_parity_err_cnt(
2041 				const struct cntr_entry *entry,
2042 				void *context, int vl, int mode, u64 data)
2043 {
2044 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2045 
2046 	return dd->cce_err_status_cnt[9];
2047 }
2048 
2049 static u64 access_cce_cli2_async_fifo_parity_err_cnt(
2050 				const struct cntr_entry *entry,
2051 				void *context, int vl, int mode, u64 data)
2052 {
2053 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2054 
2055 	return dd->cce_err_status_cnt[8];
2056 }
2057 
2058 static u64 access_cce_csr_cfg_bus_parity_err_cnt(const struct cntr_entry *entry,
2059 						 void *context, int vl,
2060 						 int mode, u64 data)
2061 {
2062 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2063 
2064 	return dd->cce_err_status_cnt[7];
2065 }
2066 
2067 static u64 access_cce_cli0_async_fifo_parity_err_cnt(
2068 				const struct cntr_entry *entry,
2069 				void *context, int vl, int mode, u64 data)
2070 {
2071 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2072 
2073 	return dd->cce_err_status_cnt[6];
2074 }
2075 
2076 static u64 access_cce_rspd_data_parity_err_cnt(const struct cntr_entry *entry,
2077 					       void *context, int vl, int mode,
2078 					       u64 data)
2079 {
2080 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2081 
2082 	return dd->cce_err_status_cnt[5];
2083 }
2084 
2085 static u64 access_cce_trgt_access_err_cnt(const struct cntr_entry *entry,
2086 					  void *context, int vl, int mode,
2087 					  u64 data)
2088 {
2089 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2090 
2091 	return dd->cce_err_status_cnt[4];
2092 }
2093 
2094 static u64 access_cce_trgt_async_fifo_parity_err_cnt(
2095 				const struct cntr_entry *entry,
2096 				void *context, int vl, int mode, u64 data)
2097 {
2098 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2099 
2100 	return dd->cce_err_status_cnt[3];
2101 }
2102 
2103 static u64 access_cce_csr_write_bad_addr_err_cnt(const struct cntr_entry *entry,
2104 						 void *context, int vl,
2105 						 int mode, u64 data)
2106 {
2107 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2108 
2109 	return dd->cce_err_status_cnt[2];
2110 }
2111 
2112 static u64 access_cce_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
2113 						void *context, int vl,
2114 						int mode, u64 data)
2115 {
2116 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2117 
2118 	return dd->cce_err_status_cnt[1];
2119 }
2120 
2121 static u64 access_ccs_csr_parity_err_cnt(const struct cntr_entry *entry,
2122 					 void *context, int vl, int mode,
2123 					 u64 data)
2124 {
2125 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2126 
2127 	return dd->cce_err_status_cnt[0];
2128 }
2129 
2130 /*
2131  * Software counters corresponding to each of the
2132  * error status bits within RcvErrStatus
2133  */
2134 static u64 access_rx_csr_parity_err_cnt(const struct cntr_entry *entry,
2135 					void *context, int vl, int mode,
2136 					u64 data)
2137 {
2138 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2139 
2140 	return dd->rcv_err_status_cnt[63];
2141 }
2142 
2143 static u64 access_rx_csr_write_bad_addr_err_cnt(const struct cntr_entry *entry,
2144 						void *context, int vl,
2145 						int mode, u64 data)
2146 {
2147 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2148 
2149 	return dd->rcv_err_status_cnt[62];
2150 }
2151 
2152 static u64 access_rx_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
2153 					       void *context, int vl, int mode,
2154 					       u64 data)
2155 {
2156 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2157 
2158 	return dd->rcv_err_status_cnt[61];
2159 }
2160 
2161 static u64 access_rx_dma_csr_unc_err_cnt(const struct cntr_entry *entry,
2162 					 void *context, int vl, int mode,
2163 					 u64 data)
2164 {
2165 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2166 
2167 	return dd->rcv_err_status_cnt[60];
2168 }
2169 
2170 static u64 access_rx_dma_dq_fsm_encoding_err_cnt(const struct cntr_entry *entry,
2171 						 void *context, int vl,
2172 						 int mode, u64 data)
2173 {
2174 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2175 
2176 	return dd->rcv_err_status_cnt[59];
2177 }
2178 
2179 static u64 access_rx_dma_eq_fsm_encoding_err_cnt(const struct cntr_entry *entry,
2180 						 void *context, int vl,
2181 						 int mode, u64 data)
2182 {
2183 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2184 
2185 	return dd->rcv_err_status_cnt[58];
2186 }
2187 
2188 static u64 access_rx_dma_csr_parity_err_cnt(const struct cntr_entry *entry,
2189 					    void *context, int vl, int mode,
2190 					    u64 data)
2191 {
2192 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2193 
2194 	return dd->rcv_err_status_cnt[57];
2195 }
2196 
2197 static u64 access_rx_rbuf_data_cor_err_cnt(const struct cntr_entry *entry,
2198 					   void *context, int vl, int mode,
2199 					   u64 data)
2200 {
2201 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2202 
2203 	return dd->rcv_err_status_cnt[56];
2204 }
2205 
2206 static u64 access_rx_rbuf_data_unc_err_cnt(const struct cntr_entry *entry,
2207 					   void *context, int vl, int mode,
2208 					   u64 data)
2209 {
2210 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2211 
2212 	return dd->rcv_err_status_cnt[55];
2213 }
2214 
2215 static u64 access_rx_dma_data_fifo_rd_cor_err_cnt(
2216 				const struct cntr_entry *entry,
2217 				void *context, int vl, int mode, u64 data)
2218 {
2219 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2220 
2221 	return dd->rcv_err_status_cnt[54];
2222 }
2223 
2224 static u64 access_rx_dma_data_fifo_rd_unc_err_cnt(
2225 				const struct cntr_entry *entry,
2226 				void *context, int vl, int mode, u64 data)
2227 {
2228 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2229 
2230 	return dd->rcv_err_status_cnt[53];
2231 }
2232 
2233 static u64 access_rx_dma_hdr_fifo_rd_cor_err_cnt(const struct cntr_entry *entry,
2234 						 void *context, int vl,
2235 						 int mode, u64 data)
2236 {
2237 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2238 
2239 	return dd->rcv_err_status_cnt[52];
2240 }
2241 
2242 static u64 access_rx_dma_hdr_fifo_rd_unc_err_cnt(const struct cntr_entry *entry,
2243 						 void *context, int vl,
2244 						 int mode, u64 data)
2245 {
2246 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2247 
2248 	return dd->rcv_err_status_cnt[51];
2249 }
2250 
2251 static u64 access_rx_rbuf_desc_part2_cor_err_cnt(const struct cntr_entry *entry,
2252 						 void *context, int vl,
2253 						 int mode, u64 data)
2254 {
2255 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2256 
2257 	return dd->rcv_err_status_cnt[50];
2258 }
2259 
2260 static u64 access_rx_rbuf_desc_part2_unc_err_cnt(const struct cntr_entry *entry,
2261 						 void *context, int vl,
2262 						 int mode, u64 data)
2263 {
2264 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2265 
2266 	return dd->rcv_err_status_cnt[49];
2267 }
2268 
2269 static u64 access_rx_rbuf_desc_part1_cor_err_cnt(const struct cntr_entry *entry,
2270 						 void *context, int vl,
2271 						 int mode, u64 data)
2272 {
2273 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2274 
2275 	return dd->rcv_err_status_cnt[48];
2276 }
2277 
2278 static u64 access_rx_rbuf_desc_part1_unc_err_cnt(const struct cntr_entry *entry,
2279 						 void *context, int vl,
2280 						 int mode, u64 data)
2281 {
2282 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2283 
2284 	return dd->rcv_err_status_cnt[47];
2285 }
2286 
2287 static u64 access_rx_hq_intr_fsm_err_cnt(const struct cntr_entry *entry,
2288 					 void *context, int vl, int mode,
2289 					 u64 data)
2290 {
2291 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2292 
2293 	return dd->rcv_err_status_cnt[46];
2294 }
2295 
2296 static u64 access_rx_hq_intr_csr_parity_err_cnt(
2297 				const struct cntr_entry *entry,
2298 				void *context, int vl, int mode, u64 data)
2299 {
2300 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2301 
2302 	return dd->rcv_err_status_cnt[45];
2303 }
2304 
2305 static u64 access_rx_lookup_csr_parity_err_cnt(
2306 				const struct cntr_entry *entry,
2307 				void *context, int vl, int mode, u64 data)
2308 {
2309 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2310 
2311 	return dd->rcv_err_status_cnt[44];
2312 }
2313 
2314 static u64 access_rx_lookup_rcv_array_cor_err_cnt(
2315 				const struct cntr_entry *entry,
2316 				void *context, int vl, int mode, u64 data)
2317 {
2318 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2319 
2320 	return dd->rcv_err_status_cnt[43];
2321 }
2322 
2323 static u64 access_rx_lookup_rcv_array_unc_err_cnt(
2324 				const struct cntr_entry *entry,
2325 				void *context, int vl, int mode, u64 data)
2326 {
2327 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2328 
2329 	return dd->rcv_err_status_cnt[42];
2330 }
2331 
2332 static u64 access_rx_lookup_des_part2_parity_err_cnt(
2333 				const struct cntr_entry *entry,
2334 				void *context, int vl, int mode, u64 data)
2335 {
2336 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2337 
2338 	return dd->rcv_err_status_cnt[41];
2339 }
2340 
2341 static u64 access_rx_lookup_des_part1_unc_cor_err_cnt(
2342 				const struct cntr_entry *entry,
2343 				void *context, int vl, int mode, u64 data)
2344 {
2345 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2346 
2347 	return dd->rcv_err_status_cnt[40];
2348 }
2349 
2350 static u64 access_rx_lookup_des_part1_unc_err_cnt(
2351 				const struct cntr_entry *entry,
2352 				void *context, int vl, int mode, u64 data)
2353 {
2354 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2355 
2356 	return dd->rcv_err_status_cnt[39];
2357 }
2358 
2359 static u64 access_rx_rbuf_next_free_buf_cor_err_cnt(
2360 				const struct cntr_entry *entry,
2361 				void *context, int vl, int mode, u64 data)
2362 {
2363 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2364 
2365 	return dd->rcv_err_status_cnt[38];
2366 }
2367 
2368 static u64 access_rx_rbuf_next_free_buf_unc_err_cnt(
2369 				const struct cntr_entry *entry,
2370 				void *context, int vl, int mode, u64 data)
2371 {
2372 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2373 
2374 	return dd->rcv_err_status_cnt[37];
2375 }
2376 
2377 static u64 access_rbuf_fl_init_wr_addr_parity_err_cnt(
2378 				const struct cntr_entry *entry,
2379 				void *context, int vl, int mode, u64 data)
2380 {
2381 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2382 
2383 	return dd->rcv_err_status_cnt[36];
2384 }
2385 
2386 static u64 access_rx_rbuf_fl_initdone_parity_err_cnt(
2387 				const struct cntr_entry *entry,
2388 				void *context, int vl, int mode, u64 data)
2389 {
2390 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2391 
2392 	return dd->rcv_err_status_cnt[35];
2393 }
2394 
2395 static u64 access_rx_rbuf_fl_write_addr_parity_err_cnt(
2396 				const struct cntr_entry *entry,
2397 				void *context, int vl, int mode, u64 data)
2398 {
2399 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2400 
2401 	return dd->rcv_err_status_cnt[34];
2402 }
2403 
2404 static u64 access_rx_rbuf_fl_rd_addr_parity_err_cnt(
2405 				const struct cntr_entry *entry,
2406 				void *context, int vl, int mode, u64 data)
2407 {
2408 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2409 
2410 	return dd->rcv_err_status_cnt[33];
2411 }
2412 
2413 static u64 access_rx_rbuf_empty_err_cnt(const struct cntr_entry *entry,
2414 					void *context, int vl, int mode,
2415 					u64 data)
2416 {
2417 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2418 
2419 	return dd->rcv_err_status_cnt[32];
2420 }
2421 
2422 static u64 access_rx_rbuf_full_err_cnt(const struct cntr_entry *entry,
2423 				       void *context, int vl, int mode,
2424 				       u64 data)
2425 {
2426 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2427 
2428 	return dd->rcv_err_status_cnt[31];
2429 }
2430 
2431 static u64 access_rbuf_bad_lookup_err_cnt(const struct cntr_entry *entry,
2432 					  void *context, int vl, int mode,
2433 					  u64 data)
2434 {
2435 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2436 
2437 	return dd->rcv_err_status_cnt[30];
2438 }
2439 
2440 static u64 access_rbuf_ctx_id_parity_err_cnt(const struct cntr_entry *entry,
2441 					     void *context, int vl, int mode,
2442 					     u64 data)
2443 {
2444 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2445 
2446 	return dd->rcv_err_status_cnt[29];
2447 }
2448 
2449 static u64 access_rbuf_csr_qeopdw_parity_err_cnt(const struct cntr_entry *entry,
2450 						 void *context, int vl,
2451 						 int mode, u64 data)
2452 {
2453 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2454 
2455 	return dd->rcv_err_status_cnt[28];
2456 }
2457 
2458 static u64 access_rx_rbuf_csr_q_num_of_pkt_parity_err_cnt(
2459 				const struct cntr_entry *entry,
2460 				void *context, int vl, int mode, u64 data)
2461 {
2462 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2463 
2464 	return dd->rcv_err_status_cnt[27];
2465 }
2466 
2467 static u64 access_rx_rbuf_csr_q_t1_ptr_parity_err_cnt(
2468 				const struct cntr_entry *entry,
2469 				void *context, int vl, int mode, u64 data)
2470 {
2471 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2472 
2473 	return dd->rcv_err_status_cnt[26];
2474 }
2475 
2476 static u64 access_rx_rbuf_csr_q_hd_ptr_parity_err_cnt(
2477 				const struct cntr_entry *entry,
2478 				void *context, int vl, int mode, u64 data)
2479 {
2480 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2481 
2482 	return dd->rcv_err_status_cnt[25];
2483 }
2484 
2485 static u64 access_rx_rbuf_csr_q_vld_bit_parity_err_cnt(
2486 				const struct cntr_entry *entry,
2487 				void *context, int vl, int mode, u64 data)
2488 {
2489 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2490 
2491 	return dd->rcv_err_status_cnt[24];
2492 }
2493 
2494 static u64 access_rx_rbuf_csr_q_next_buf_parity_err_cnt(
2495 				const struct cntr_entry *entry,
2496 				void *context, int vl, int mode, u64 data)
2497 {
2498 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2499 
2500 	return dd->rcv_err_status_cnt[23];
2501 }
2502 
2503 static u64 access_rx_rbuf_csr_q_ent_cnt_parity_err_cnt(
2504 				const struct cntr_entry *entry,
2505 				void *context, int vl, int mode, u64 data)
2506 {
2507 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2508 
2509 	return dd->rcv_err_status_cnt[22];
2510 }
2511 
2512 static u64 access_rx_rbuf_csr_q_head_buf_num_parity_err_cnt(
2513 				const struct cntr_entry *entry,
2514 				void *context, int vl, int mode, u64 data)
2515 {
2516 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2517 
2518 	return dd->rcv_err_status_cnt[21];
2519 }
2520 
2521 static u64 access_rx_rbuf_block_list_read_cor_err_cnt(
2522 				const struct cntr_entry *entry,
2523 				void *context, int vl, int mode, u64 data)
2524 {
2525 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2526 
2527 	return dd->rcv_err_status_cnt[20];
2528 }
2529 
2530 static u64 access_rx_rbuf_block_list_read_unc_err_cnt(
2531 				const struct cntr_entry *entry,
2532 				void *context, int vl, int mode, u64 data)
2533 {
2534 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2535 
2536 	return dd->rcv_err_status_cnt[19];
2537 }
2538 
2539 static u64 access_rx_rbuf_lookup_des_cor_err_cnt(const struct cntr_entry *entry,
2540 						 void *context, int vl,
2541 						 int mode, u64 data)
2542 {
2543 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2544 
2545 	return dd->rcv_err_status_cnt[18];
2546 }
2547 
2548 static u64 access_rx_rbuf_lookup_des_unc_err_cnt(const struct cntr_entry *entry,
2549 						 void *context, int vl,
2550 						 int mode, u64 data)
2551 {
2552 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2553 
2554 	return dd->rcv_err_status_cnt[17];
2555 }
2556 
2557 static u64 access_rx_rbuf_lookup_des_reg_unc_cor_err_cnt(
2558 				const struct cntr_entry *entry,
2559 				void *context, int vl, int mode, u64 data)
2560 {
2561 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2562 
2563 	return dd->rcv_err_status_cnt[16];
2564 }
2565 
2566 static u64 access_rx_rbuf_lookup_des_reg_unc_err_cnt(
2567 				const struct cntr_entry *entry,
2568 				void *context, int vl, int mode, u64 data)
2569 {
2570 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2571 
2572 	return dd->rcv_err_status_cnt[15];
2573 }
2574 
2575 static u64 access_rx_rbuf_free_list_cor_err_cnt(const struct cntr_entry *entry,
2576 						void *context, int vl,
2577 						int mode, u64 data)
2578 {
2579 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2580 
2581 	return dd->rcv_err_status_cnt[14];
2582 }
2583 
2584 static u64 access_rx_rbuf_free_list_unc_err_cnt(const struct cntr_entry *entry,
2585 						void *context, int vl,
2586 						int mode, u64 data)
2587 {
2588 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2589 
2590 	return dd->rcv_err_status_cnt[13];
2591 }
2592 
2593 static u64 access_rx_rcv_fsm_encoding_err_cnt(const struct cntr_entry *entry,
2594 					      void *context, int vl, int mode,
2595 					      u64 data)
2596 {
2597 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2598 
2599 	return dd->rcv_err_status_cnt[12];
2600 }
2601 
2602 static u64 access_rx_dma_flag_cor_err_cnt(const struct cntr_entry *entry,
2603 					  void *context, int vl, int mode,
2604 					  u64 data)
2605 {
2606 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2607 
2608 	return dd->rcv_err_status_cnt[11];
2609 }
2610 
2611 static u64 access_rx_dma_flag_unc_err_cnt(const struct cntr_entry *entry,
2612 					  void *context, int vl, int mode,
2613 					  u64 data)
2614 {
2615 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2616 
2617 	return dd->rcv_err_status_cnt[10];
2618 }
2619 
2620 static u64 access_rx_dc_sop_eop_parity_err_cnt(const struct cntr_entry *entry,
2621 					       void *context, int vl, int mode,
2622 					       u64 data)
2623 {
2624 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2625 
2626 	return dd->rcv_err_status_cnt[9];
2627 }
2628 
2629 static u64 access_rx_rcv_csr_parity_err_cnt(const struct cntr_entry *entry,
2630 					    void *context, int vl, int mode,
2631 					    u64 data)
2632 {
2633 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2634 
2635 	return dd->rcv_err_status_cnt[8];
2636 }
2637 
2638 static u64 access_rx_rcv_qp_map_table_cor_err_cnt(
2639 				const struct cntr_entry *entry,
2640 				void *context, int vl, int mode, u64 data)
2641 {
2642 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2643 
2644 	return dd->rcv_err_status_cnt[7];
2645 }
2646 
2647 static u64 access_rx_rcv_qp_map_table_unc_err_cnt(
2648 				const struct cntr_entry *entry,
2649 				void *context, int vl, int mode, u64 data)
2650 {
2651 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2652 
2653 	return dd->rcv_err_status_cnt[6];
2654 }
2655 
2656 static u64 access_rx_rcv_data_cor_err_cnt(const struct cntr_entry *entry,
2657 					  void *context, int vl, int mode,
2658 					  u64 data)
2659 {
2660 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2661 
2662 	return dd->rcv_err_status_cnt[5];
2663 }
2664 
2665 static u64 access_rx_rcv_data_unc_err_cnt(const struct cntr_entry *entry,
2666 					  void *context, int vl, int mode,
2667 					  u64 data)
2668 {
2669 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2670 
2671 	return dd->rcv_err_status_cnt[4];
2672 }
2673 
2674 static u64 access_rx_rcv_hdr_cor_err_cnt(const struct cntr_entry *entry,
2675 					 void *context, int vl, int mode,
2676 					 u64 data)
2677 {
2678 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2679 
2680 	return dd->rcv_err_status_cnt[3];
2681 }
2682 
2683 static u64 access_rx_rcv_hdr_unc_err_cnt(const struct cntr_entry *entry,
2684 					 void *context, int vl, int mode,
2685 					 u64 data)
2686 {
2687 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2688 
2689 	return dd->rcv_err_status_cnt[2];
2690 }
2691 
2692 static u64 access_rx_dc_intf_parity_err_cnt(const struct cntr_entry *entry,
2693 					    void *context, int vl, int mode,
2694 					    u64 data)
2695 {
2696 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2697 
2698 	return dd->rcv_err_status_cnt[1];
2699 }
2700 
2701 static u64 access_rx_dma_csr_cor_err_cnt(const struct cntr_entry *entry,
2702 					 void *context, int vl, int mode,
2703 					 u64 data)
2704 {
2705 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2706 
2707 	return dd->rcv_err_status_cnt[0];
2708 }
2709 
2710 /*
2711  * Software counters corresponding to each of the
2712  * error status bits within SendPioErrStatus
2713  */
2714 static u64 access_pio_pec_sop_head_parity_err_cnt(
2715 				const struct cntr_entry *entry,
2716 				void *context, int vl, int mode, u64 data)
2717 {
2718 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2719 
2720 	return dd->send_pio_err_status_cnt[35];
2721 }
2722 
2723 static u64 access_pio_pcc_sop_head_parity_err_cnt(
2724 				const struct cntr_entry *entry,
2725 				void *context, int vl, int mode, u64 data)
2726 {
2727 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2728 
2729 	return dd->send_pio_err_status_cnt[34];
2730 }
2731 
2732 static u64 access_pio_last_returned_cnt_parity_err_cnt(
2733 				const struct cntr_entry *entry,
2734 				void *context, int vl, int mode, u64 data)
2735 {
2736 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2737 
2738 	return dd->send_pio_err_status_cnt[33];
2739 }
2740 
2741 static u64 access_pio_current_free_cnt_parity_err_cnt(
2742 				const struct cntr_entry *entry,
2743 				void *context, int vl, int mode, u64 data)
2744 {
2745 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2746 
2747 	return dd->send_pio_err_status_cnt[32];
2748 }
2749 
2750 static u64 access_pio_reserved_31_err_cnt(const struct cntr_entry *entry,
2751 					  void *context, int vl, int mode,
2752 					  u64 data)
2753 {
2754 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2755 
2756 	return dd->send_pio_err_status_cnt[31];
2757 }
2758 
2759 static u64 access_pio_reserved_30_err_cnt(const struct cntr_entry *entry,
2760 					  void *context, int vl, int mode,
2761 					  u64 data)
2762 {
2763 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2764 
2765 	return dd->send_pio_err_status_cnt[30];
2766 }
2767 
2768 static u64 access_pio_ppmc_sop_len_err_cnt(const struct cntr_entry *entry,
2769 					   void *context, int vl, int mode,
2770 					   u64 data)
2771 {
2772 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2773 
2774 	return dd->send_pio_err_status_cnt[29];
2775 }
2776 
2777 static u64 access_pio_ppmc_bqc_mem_parity_err_cnt(
2778 				const struct cntr_entry *entry,
2779 				void *context, int vl, int mode, u64 data)
2780 {
2781 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2782 
2783 	return dd->send_pio_err_status_cnt[28];
2784 }
2785 
2786 static u64 access_pio_vl_fifo_parity_err_cnt(const struct cntr_entry *entry,
2787 					     void *context, int vl, int mode,
2788 					     u64 data)
2789 {
2790 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2791 
2792 	return dd->send_pio_err_status_cnt[27];
2793 }
2794 
2795 static u64 access_pio_vlf_sop_parity_err_cnt(const struct cntr_entry *entry,
2796 					     void *context, int vl, int mode,
2797 					     u64 data)
2798 {
2799 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2800 
2801 	return dd->send_pio_err_status_cnt[26];
2802 }
2803 
2804 static u64 access_pio_vlf_v1_len_parity_err_cnt(const struct cntr_entry *entry,
2805 						void *context, int vl,
2806 						int mode, u64 data)
2807 {
2808 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2809 
2810 	return dd->send_pio_err_status_cnt[25];
2811 }
2812 
2813 static u64 access_pio_block_qw_count_parity_err_cnt(
2814 				const struct cntr_entry *entry,
2815 				void *context, int vl, int mode, u64 data)
2816 {
2817 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2818 
2819 	return dd->send_pio_err_status_cnt[24];
2820 }
2821 
2822 static u64 access_pio_write_qw_valid_parity_err_cnt(
2823 				const struct cntr_entry *entry,
2824 				void *context, int vl, int mode, u64 data)
2825 {
2826 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2827 
2828 	return dd->send_pio_err_status_cnt[23];
2829 }
2830 
2831 static u64 access_pio_state_machine_err_cnt(const struct cntr_entry *entry,
2832 					    void *context, int vl, int mode,
2833 					    u64 data)
2834 {
2835 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2836 
2837 	return dd->send_pio_err_status_cnt[22];
2838 }
2839 
2840 static u64 access_pio_write_data_parity_err_cnt(const struct cntr_entry *entry,
2841 						void *context, int vl,
2842 						int mode, u64 data)
2843 {
2844 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2845 
2846 	return dd->send_pio_err_status_cnt[21];
2847 }
2848 
2849 static u64 access_pio_host_addr_mem_cor_err_cnt(const struct cntr_entry *entry,
2850 						void *context, int vl,
2851 						int mode, u64 data)
2852 {
2853 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2854 
2855 	return dd->send_pio_err_status_cnt[20];
2856 }
2857 
2858 static u64 access_pio_host_addr_mem_unc_err_cnt(const struct cntr_entry *entry,
2859 						void *context, int vl,
2860 						int mode, u64 data)
2861 {
2862 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2863 
2864 	return dd->send_pio_err_status_cnt[19];
2865 }
2866 
2867 static u64 access_pio_pkt_evict_sm_or_arb_sm_err_cnt(
2868 				const struct cntr_entry *entry,
2869 				void *context, int vl, int mode, u64 data)
2870 {
2871 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2872 
2873 	return dd->send_pio_err_status_cnt[18];
2874 }
2875 
2876 static u64 access_pio_init_sm_in_err_cnt(const struct cntr_entry *entry,
2877 					 void *context, int vl, int mode,
2878 					 u64 data)
2879 {
2880 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2881 
2882 	return dd->send_pio_err_status_cnt[17];
2883 }
2884 
2885 static u64 access_pio_ppmc_pbl_fifo_err_cnt(const struct cntr_entry *entry,
2886 					    void *context, int vl, int mode,
2887 					    u64 data)
2888 {
2889 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2890 
2891 	return dd->send_pio_err_status_cnt[16];
2892 }
2893 
2894 static u64 access_pio_credit_ret_fifo_parity_err_cnt(
2895 				const struct cntr_entry *entry,
2896 				void *context, int vl, int mode, u64 data)
2897 {
2898 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2899 
2900 	return dd->send_pio_err_status_cnt[15];
2901 }
2902 
2903 static u64 access_pio_v1_len_mem_bank1_cor_err_cnt(
2904 				const struct cntr_entry *entry,
2905 				void *context, int vl, int mode, u64 data)
2906 {
2907 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2908 
2909 	return dd->send_pio_err_status_cnt[14];
2910 }
2911 
2912 static u64 access_pio_v1_len_mem_bank0_cor_err_cnt(
2913 				const struct cntr_entry *entry,
2914 				void *context, int vl, int mode, u64 data)
2915 {
2916 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2917 
2918 	return dd->send_pio_err_status_cnt[13];
2919 }
2920 
2921 static u64 access_pio_v1_len_mem_bank1_unc_err_cnt(
2922 				const struct cntr_entry *entry,
2923 				void *context, int vl, int mode, u64 data)
2924 {
2925 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2926 
2927 	return dd->send_pio_err_status_cnt[12];
2928 }
2929 
2930 static u64 access_pio_v1_len_mem_bank0_unc_err_cnt(
2931 				const struct cntr_entry *entry,
2932 				void *context, int vl, int mode, u64 data)
2933 {
2934 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2935 
2936 	return dd->send_pio_err_status_cnt[11];
2937 }
2938 
2939 static u64 access_pio_sm_pkt_reset_parity_err_cnt(
2940 				const struct cntr_entry *entry,
2941 				void *context, int vl, int mode, u64 data)
2942 {
2943 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2944 
2945 	return dd->send_pio_err_status_cnt[10];
2946 }
2947 
2948 static u64 access_pio_pkt_evict_fifo_parity_err_cnt(
2949 				const struct cntr_entry *entry,
2950 				void *context, int vl, int mode, u64 data)
2951 {
2952 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2953 
2954 	return dd->send_pio_err_status_cnt[9];
2955 }
2956 
2957 static u64 access_pio_sbrdctrl_crrel_fifo_parity_err_cnt(
2958 				const struct cntr_entry *entry,
2959 				void *context, int vl, int mode, u64 data)
2960 {
2961 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2962 
2963 	return dd->send_pio_err_status_cnt[8];
2964 }
2965 
2966 static u64 access_pio_sbrdctl_crrel_parity_err_cnt(
2967 				const struct cntr_entry *entry,
2968 				void *context, int vl, int mode, u64 data)
2969 {
2970 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2971 
2972 	return dd->send_pio_err_status_cnt[7];
2973 }
2974 
2975 static u64 access_pio_pec_fifo_parity_err_cnt(const struct cntr_entry *entry,
2976 					      void *context, int vl, int mode,
2977 					      u64 data)
2978 {
2979 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2980 
2981 	return dd->send_pio_err_status_cnt[6];
2982 }
2983 
2984 static u64 access_pio_pcc_fifo_parity_err_cnt(const struct cntr_entry *entry,
2985 					      void *context, int vl, int mode,
2986 					      u64 data)
2987 {
2988 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2989 
2990 	return dd->send_pio_err_status_cnt[5];
2991 }
2992 
2993 static u64 access_pio_sb_mem_fifo1_err_cnt(const struct cntr_entry *entry,
2994 					   void *context, int vl, int mode,
2995 					   u64 data)
2996 {
2997 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2998 
2999 	return dd->send_pio_err_status_cnt[4];
3000 }
3001 
3002 static u64 access_pio_sb_mem_fifo0_err_cnt(const struct cntr_entry *entry,
3003 					   void *context, int vl, int mode,
3004 					   u64 data)
3005 {
3006 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3007 
3008 	return dd->send_pio_err_status_cnt[3];
3009 }
3010 
3011 static u64 access_pio_csr_parity_err_cnt(const struct cntr_entry *entry,
3012 					 void *context, int vl, int mode,
3013 					 u64 data)
3014 {
3015 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3016 
3017 	return dd->send_pio_err_status_cnt[2];
3018 }
3019 
3020 static u64 access_pio_write_addr_parity_err_cnt(const struct cntr_entry *entry,
3021 						void *context, int vl,
3022 						int mode, u64 data)
3023 {
3024 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3025 
3026 	return dd->send_pio_err_status_cnt[1];
3027 }
3028 
3029 static u64 access_pio_write_bad_ctxt_err_cnt(const struct cntr_entry *entry,
3030 					     void *context, int vl, int mode,
3031 					     u64 data)
3032 {
3033 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3034 
3035 	return dd->send_pio_err_status_cnt[0];
3036 }
3037 
3038 /*
3039  * Software counters corresponding to each of the
3040  * error status bits within SendDmaErrStatus
3041  */
3042 static u64 access_sdma_pcie_req_tracking_cor_err_cnt(
3043 				const struct cntr_entry *entry,
3044 				void *context, int vl, int mode, u64 data)
3045 {
3046 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3047 
3048 	return dd->send_dma_err_status_cnt[3];
3049 }
3050 
3051 static u64 access_sdma_pcie_req_tracking_unc_err_cnt(
3052 				const struct cntr_entry *entry,
3053 				void *context, int vl, int mode, u64 data)
3054 {
3055 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3056 
3057 	return dd->send_dma_err_status_cnt[2];
3058 }
3059 
3060 static u64 access_sdma_csr_parity_err_cnt(const struct cntr_entry *entry,
3061 					  void *context, int vl, int mode,
3062 					  u64 data)
3063 {
3064 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3065 
3066 	return dd->send_dma_err_status_cnt[1];
3067 }
3068 
3069 static u64 access_sdma_rpy_tag_err_cnt(const struct cntr_entry *entry,
3070 				       void *context, int vl, int mode,
3071 				       u64 data)
3072 {
3073 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3074 
3075 	return dd->send_dma_err_status_cnt[0];
3076 }
3077 
3078 /*
3079  * Software counters corresponding to each of the
3080  * error status bits within SendEgressErrStatus
3081  */
3082 static u64 access_tx_read_pio_memory_csr_unc_err_cnt(
3083 				const struct cntr_entry *entry,
3084 				void *context, int vl, int mode, u64 data)
3085 {
3086 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3087 
3088 	return dd->send_egress_err_status_cnt[63];
3089 }
3090 
3091 static u64 access_tx_read_sdma_memory_csr_err_cnt(
3092 				const struct cntr_entry *entry,
3093 				void *context, int vl, int mode, u64 data)
3094 {
3095 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3096 
3097 	return dd->send_egress_err_status_cnt[62];
3098 }
3099 
3100 static u64 access_tx_egress_fifo_cor_err_cnt(const struct cntr_entry *entry,
3101 					     void *context, int vl, int mode,
3102 					     u64 data)
3103 {
3104 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3105 
3106 	return dd->send_egress_err_status_cnt[61];
3107 }
3108 
3109 static u64 access_tx_read_pio_memory_cor_err_cnt(const struct cntr_entry *entry,
3110 						 void *context, int vl,
3111 						 int mode, u64 data)
3112 {
3113 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3114 
3115 	return dd->send_egress_err_status_cnt[60];
3116 }
3117 
3118 static u64 access_tx_read_sdma_memory_cor_err_cnt(
3119 				const struct cntr_entry *entry,
3120 				void *context, int vl, int mode, u64 data)
3121 {
3122 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3123 
3124 	return dd->send_egress_err_status_cnt[59];
3125 }
3126 
3127 static u64 access_tx_sb_hdr_cor_err_cnt(const struct cntr_entry *entry,
3128 					void *context, int vl, int mode,
3129 					u64 data)
3130 {
3131 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3132 
3133 	return dd->send_egress_err_status_cnt[58];
3134 }
3135 
3136 static u64 access_tx_credit_overrun_err_cnt(const struct cntr_entry *entry,
3137 					    void *context, int vl, int mode,
3138 					    u64 data)
3139 {
3140 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3141 
3142 	return dd->send_egress_err_status_cnt[57];
3143 }
3144 
3145 static u64 access_tx_launch_fifo8_cor_err_cnt(const struct cntr_entry *entry,
3146 					      void *context, int vl, int mode,
3147 					      u64 data)
3148 {
3149 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3150 
3151 	return dd->send_egress_err_status_cnt[56];
3152 }
3153 
3154 static u64 access_tx_launch_fifo7_cor_err_cnt(const struct cntr_entry *entry,
3155 					      void *context, int vl, int mode,
3156 					      u64 data)
3157 {
3158 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3159 
3160 	return dd->send_egress_err_status_cnt[55];
3161 }
3162 
3163 static u64 access_tx_launch_fifo6_cor_err_cnt(const struct cntr_entry *entry,
3164 					      void *context, int vl, int mode,
3165 					      u64 data)
3166 {
3167 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3168 
3169 	return dd->send_egress_err_status_cnt[54];
3170 }
3171 
3172 static u64 access_tx_launch_fifo5_cor_err_cnt(const struct cntr_entry *entry,
3173 					      void *context, int vl, int mode,
3174 					      u64 data)
3175 {
3176 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3177 
3178 	return dd->send_egress_err_status_cnt[53];
3179 }
3180 
3181 static u64 access_tx_launch_fifo4_cor_err_cnt(const struct cntr_entry *entry,
3182 					      void *context, int vl, int mode,
3183 					      u64 data)
3184 {
3185 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3186 
3187 	return dd->send_egress_err_status_cnt[52];
3188 }
3189 
3190 static u64 access_tx_launch_fifo3_cor_err_cnt(const struct cntr_entry *entry,
3191 					      void *context, int vl, int mode,
3192 					      u64 data)
3193 {
3194 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3195 
3196 	return dd->send_egress_err_status_cnt[51];
3197 }
3198 
3199 static u64 access_tx_launch_fifo2_cor_err_cnt(const struct cntr_entry *entry,
3200 					      void *context, int vl, int mode,
3201 					      u64 data)
3202 {
3203 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3204 
3205 	return dd->send_egress_err_status_cnt[50];
3206 }
3207 
3208 static u64 access_tx_launch_fifo1_cor_err_cnt(const struct cntr_entry *entry,
3209 					      void *context, int vl, int mode,
3210 					      u64 data)
3211 {
3212 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3213 
3214 	return dd->send_egress_err_status_cnt[49];
3215 }
3216 
3217 static u64 access_tx_launch_fifo0_cor_err_cnt(const struct cntr_entry *entry,
3218 					      void *context, int vl, int mode,
3219 					      u64 data)
3220 {
3221 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3222 
3223 	return dd->send_egress_err_status_cnt[48];
3224 }
3225 
3226 static u64 access_tx_credit_return_vl_err_cnt(const struct cntr_entry *entry,
3227 					      void *context, int vl, int mode,
3228 					      u64 data)
3229 {
3230 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3231 
3232 	return dd->send_egress_err_status_cnt[47];
3233 }
3234 
3235 static u64 access_tx_hcrc_insertion_err_cnt(const struct cntr_entry *entry,
3236 					    void *context, int vl, int mode,
3237 					    u64 data)
3238 {
3239 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3240 
3241 	return dd->send_egress_err_status_cnt[46];
3242 }
3243 
3244 static u64 access_tx_egress_fifo_unc_err_cnt(const struct cntr_entry *entry,
3245 					     void *context, int vl, int mode,
3246 					     u64 data)
3247 {
3248 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3249 
3250 	return dd->send_egress_err_status_cnt[45];
3251 }
3252 
3253 static u64 access_tx_read_pio_memory_unc_err_cnt(const struct cntr_entry *entry,
3254 						 void *context, int vl,
3255 						 int mode, u64 data)
3256 {
3257 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3258 
3259 	return dd->send_egress_err_status_cnt[44];
3260 }
3261 
3262 static u64 access_tx_read_sdma_memory_unc_err_cnt(
3263 				const struct cntr_entry *entry,
3264 				void *context, int vl, int mode, u64 data)
3265 {
3266 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3267 
3268 	return dd->send_egress_err_status_cnt[43];
3269 }
3270 
3271 static u64 access_tx_sb_hdr_unc_err_cnt(const struct cntr_entry *entry,
3272 					void *context, int vl, int mode,
3273 					u64 data)
3274 {
3275 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3276 
3277 	return dd->send_egress_err_status_cnt[42];
3278 }
3279 
3280 static u64 access_tx_credit_return_partiy_err_cnt(
3281 				const struct cntr_entry *entry,
3282 				void *context, int vl, int mode, u64 data)
3283 {
3284 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3285 
3286 	return dd->send_egress_err_status_cnt[41];
3287 }
3288 
3289 static u64 access_tx_launch_fifo8_unc_or_parity_err_cnt(
3290 				const struct cntr_entry *entry,
3291 				void *context, int vl, int mode, u64 data)
3292 {
3293 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3294 
3295 	return dd->send_egress_err_status_cnt[40];
3296 }
3297 
3298 static u64 access_tx_launch_fifo7_unc_or_parity_err_cnt(
3299 				const struct cntr_entry *entry,
3300 				void *context, int vl, int mode, u64 data)
3301 {
3302 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3303 
3304 	return dd->send_egress_err_status_cnt[39];
3305 }
3306 
3307 static u64 access_tx_launch_fifo6_unc_or_parity_err_cnt(
3308 				const struct cntr_entry *entry,
3309 				void *context, int vl, int mode, u64 data)
3310 {
3311 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3312 
3313 	return dd->send_egress_err_status_cnt[38];
3314 }
3315 
3316 static u64 access_tx_launch_fifo5_unc_or_parity_err_cnt(
3317 				const struct cntr_entry *entry,
3318 				void *context, int vl, int mode, u64 data)
3319 {
3320 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3321 
3322 	return dd->send_egress_err_status_cnt[37];
3323 }
3324 
3325 static u64 access_tx_launch_fifo4_unc_or_parity_err_cnt(
3326 				const struct cntr_entry *entry,
3327 				void *context, int vl, int mode, u64 data)
3328 {
3329 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3330 
3331 	return dd->send_egress_err_status_cnt[36];
3332 }
3333 
3334 static u64 access_tx_launch_fifo3_unc_or_parity_err_cnt(
3335 				const struct cntr_entry *entry,
3336 				void *context, int vl, int mode, u64 data)
3337 {
3338 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3339 
3340 	return dd->send_egress_err_status_cnt[35];
3341 }
3342 
3343 static u64 access_tx_launch_fifo2_unc_or_parity_err_cnt(
3344 				const struct cntr_entry *entry,
3345 				void *context, int vl, int mode, u64 data)
3346 {
3347 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3348 
3349 	return dd->send_egress_err_status_cnt[34];
3350 }
3351 
3352 static u64 access_tx_launch_fifo1_unc_or_parity_err_cnt(
3353 				const struct cntr_entry *entry,
3354 				void *context, int vl, int mode, u64 data)
3355 {
3356 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3357 
3358 	return dd->send_egress_err_status_cnt[33];
3359 }
3360 
3361 static u64 access_tx_launch_fifo0_unc_or_parity_err_cnt(
3362 				const struct cntr_entry *entry,
3363 				void *context, int vl, int mode, u64 data)
3364 {
3365 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3366 
3367 	return dd->send_egress_err_status_cnt[32];
3368 }
3369 
3370 static u64 access_tx_sdma15_disallowed_packet_err_cnt(
3371 				const struct cntr_entry *entry,
3372 				void *context, int vl, int mode, u64 data)
3373 {
3374 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3375 
3376 	return dd->send_egress_err_status_cnt[31];
3377 }
3378 
3379 static u64 access_tx_sdma14_disallowed_packet_err_cnt(
3380 				const struct cntr_entry *entry,
3381 				void *context, int vl, int mode, u64 data)
3382 {
3383 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3384 
3385 	return dd->send_egress_err_status_cnt[30];
3386 }
3387 
3388 static u64 access_tx_sdma13_disallowed_packet_err_cnt(
3389 				const struct cntr_entry *entry,
3390 				void *context, int vl, int mode, u64 data)
3391 {
3392 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3393 
3394 	return dd->send_egress_err_status_cnt[29];
3395 }
3396 
3397 static u64 access_tx_sdma12_disallowed_packet_err_cnt(
3398 				const struct cntr_entry *entry,
3399 				void *context, int vl, int mode, u64 data)
3400 {
3401 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3402 
3403 	return dd->send_egress_err_status_cnt[28];
3404 }
3405 
3406 static u64 access_tx_sdma11_disallowed_packet_err_cnt(
3407 				const struct cntr_entry *entry,
3408 				void *context, int vl, int mode, u64 data)
3409 {
3410 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3411 
3412 	return dd->send_egress_err_status_cnt[27];
3413 }
3414 
3415 static u64 access_tx_sdma10_disallowed_packet_err_cnt(
3416 				const struct cntr_entry *entry,
3417 				void *context, int vl, int mode, u64 data)
3418 {
3419 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3420 
3421 	return dd->send_egress_err_status_cnt[26];
3422 }
3423 
3424 static u64 access_tx_sdma9_disallowed_packet_err_cnt(
3425 				const struct cntr_entry *entry,
3426 				void *context, int vl, int mode, u64 data)
3427 {
3428 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3429 
3430 	return dd->send_egress_err_status_cnt[25];
3431 }
3432 
3433 static u64 access_tx_sdma8_disallowed_packet_err_cnt(
3434 				const struct cntr_entry *entry,
3435 				void *context, int vl, int mode, u64 data)
3436 {
3437 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3438 
3439 	return dd->send_egress_err_status_cnt[24];
3440 }
3441 
3442 static u64 access_tx_sdma7_disallowed_packet_err_cnt(
3443 				const struct cntr_entry *entry,
3444 				void *context, int vl, int mode, u64 data)
3445 {
3446 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3447 
3448 	return dd->send_egress_err_status_cnt[23];
3449 }
3450 
3451 static u64 access_tx_sdma6_disallowed_packet_err_cnt(
3452 				const struct cntr_entry *entry,
3453 				void *context, int vl, int mode, u64 data)
3454 {
3455 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3456 
3457 	return dd->send_egress_err_status_cnt[22];
3458 }
3459 
3460 static u64 access_tx_sdma5_disallowed_packet_err_cnt(
3461 				const struct cntr_entry *entry,
3462 				void *context, int vl, int mode, u64 data)
3463 {
3464 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3465 
3466 	return dd->send_egress_err_status_cnt[21];
3467 }
3468 
3469 static u64 access_tx_sdma4_disallowed_packet_err_cnt(
3470 				const struct cntr_entry *entry,
3471 				void *context, int vl, int mode, u64 data)
3472 {
3473 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3474 
3475 	return dd->send_egress_err_status_cnt[20];
3476 }
3477 
3478 static u64 access_tx_sdma3_disallowed_packet_err_cnt(
3479 				const struct cntr_entry *entry,
3480 				void *context, int vl, int mode, u64 data)
3481 {
3482 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3483 
3484 	return dd->send_egress_err_status_cnt[19];
3485 }
3486 
3487 static u64 access_tx_sdma2_disallowed_packet_err_cnt(
3488 				const struct cntr_entry *entry,
3489 				void *context, int vl, int mode, u64 data)
3490 {
3491 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3492 
3493 	return dd->send_egress_err_status_cnt[18];
3494 }
3495 
3496 static u64 access_tx_sdma1_disallowed_packet_err_cnt(
3497 				const struct cntr_entry *entry,
3498 				void *context, int vl, int mode, u64 data)
3499 {
3500 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3501 
3502 	return dd->send_egress_err_status_cnt[17];
3503 }
3504 
3505 static u64 access_tx_sdma0_disallowed_packet_err_cnt(
3506 				const struct cntr_entry *entry,
3507 				void *context, int vl, int mode, u64 data)
3508 {
3509 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3510 
3511 	return dd->send_egress_err_status_cnt[16];
3512 }
3513 
3514 static u64 access_tx_config_parity_err_cnt(const struct cntr_entry *entry,
3515 					   void *context, int vl, int mode,
3516 					   u64 data)
3517 {
3518 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3519 
3520 	return dd->send_egress_err_status_cnt[15];
3521 }
3522 
3523 static u64 access_tx_sbrd_ctl_csr_parity_err_cnt(const struct cntr_entry *entry,
3524 						 void *context, int vl,
3525 						 int mode, u64 data)
3526 {
3527 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3528 
3529 	return dd->send_egress_err_status_cnt[14];
3530 }
3531 
3532 static u64 access_tx_launch_csr_parity_err_cnt(const struct cntr_entry *entry,
3533 					       void *context, int vl, int mode,
3534 					       u64 data)
3535 {
3536 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3537 
3538 	return dd->send_egress_err_status_cnt[13];
3539 }
3540 
3541 static u64 access_tx_illegal_vl_err_cnt(const struct cntr_entry *entry,
3542 					void *context, int vl, int mode,
3543 					u64 data)
3544 {
3545 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3546 
3547 	return dd->send_egress_err_status_cnt[12];
3548 }
3549 
3550 static u64 access_tx_sbrd_ctl_state_machine_parity_err_cnt(
3551 				const struct cntr_entry *entry,
3552 				void *context, int vl, int mode, u64 data)
3553 {
3554 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3555 
3556 	return dd->send_egress_err_status_cnt[11];
3557 }
3558 
3559 static u64 access_egress_reserved_10_err_cnt(const struct cntr_entry *entry,
3560 					     void *context, int vl, int mode,
3561 					     u64 data)
3562 {
3563 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3564 
3565 	return dd->send_egress_err_status_cnt[10];
3566 }
3567 
3568 static u64 access_egress_reserved_9_err_cnt(const struct cntr_entry *entry,
3569 					    void *context, int vl, int mode,
3570 					    u64 data)
3571 {
3572 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3573 
3574 	return dd->send_egress_err_status_cnt[9];
3575 }
3576 
3577 static u64 access_tx_sdma_launch_intf_parity_err_cnt(
3578 				const struct cntr_entry *entry,
3579 				void *context, int vl, int mode, u64 data)
3580 {
3581 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3582 
3583 	return dd->send_egress_err_status_cnt[8];
3584 }
3585 
3586 static u64 access_tx_pio_launch_intf_parity_err_cnt(
3587 				const struct cntr_entry *entry,
3588 				void *context, int vl, int mode, u64 data)
3589 {
3590 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3591 
3592 	return dd->send_egress_err_status_cnt[7];
3593 }
3594 
3595 static u64 access_egress_reserved_6_err_cnt(const struct cntr_entry *entry,
3596 					    void *context, int vl, int mode,
3597 					    u64 data)
3598 {
3599 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3600 
3601 	return dd->send_egress_err_status_cnt[6];
3602 }
3603 
3604 static u64 access_tx_incorrect_link_state_err_cnt(
3605 				const struct cntr_entry *entry,
3606 				void *context, int vl, int mode, u64 data)
3607 {
3608 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3609 
3610 	return dd->send_egress_err_status_cnt[5];
3611 }
3612 
3613 static u64 access_tx_linkdown_err_cnt(const struct cntr_entry *entry,
3614 				      void *context, int vl, int mode,
3615 				      u64 data)
3616 {
3617 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3618 
3619 	return dd->send_egress_err_status_cnt[4];
3620 }
3621 
3622 static u64 access_tx_egress_fifi_underrun_or_parity_err_cnt(
3623 				const struct cntr_entry *entry,
3624 				void *context, int vl, int mode, u64 data)
3625 {
3626 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3627 
3628 	return dd->send_egress_err_status_cnt[3];
3629 }
3630 
3631 static u64 access_egress_reserved_2_err_cnt(const struct cntr_entry *entry,
3632 					    void *context, int vl, int mode,
3633 					    u64 data)
3634 {
3635 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3636 
3637 	return dd->send_egress_err_status_cnt[2];
3638 }
3639 
3640 static u64 access_tx_pkt_integrity_mem_unc_err_cnt(
3641 				const struct cntr_entry *entry,
3642 				void *context, int vl, int mode, u64 data)
3643 {
3644 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3645 
3646 	return dd->send_egress_err_status_cnt[1];
3647 }
3648 
3649 static u64 access_tx_pkt_integrity_mem_cor_err_cnt(
3650 				const struct cntr_entry *entry,
3651 				void *context, int vl, int mode, u64 data)
3652 {
3653 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3654 
3655 	return dd->send_egress_err_status_cnt[0];
3656 }
3657 
3658 /*
3659  * Software counters corresponding to each of the
3660  * error status bits within SendErrStatus
3661  */
3662 static u64 access_send_csr_write_bad_addr_err_cnt(
3663 				const struct cntr_entry *entry,
3664 				void *context, int vl, int mode, u64 data)
3665 {
3666 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3667 
3668 	return dd->send_err_status_cnt[2];
3669 }
3670 
3671 static u64 access_send_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
3672 						 void *context, int vl,
3673 						 int mode, u64 data)
3674 {
3675 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3676 
3677 	return dd->send_err_status_cnt[1];
3678 }
3679 
3680 static u64 access_send_csr_parity_cnt(const struct cntr_entry *entry,
3681 				      void *context, int vl, int mode,
3682 				      u64 data)
3683 {
3684 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3685 
3686 	return dd->send_err_status_cnt[0];
3687 }
3688 
3689 /*
3690  * Software counters corresponding to each of the
3691  * error status bits within SendCtxtErrStatus
3692  */
3693 static u64 access_pio_write_out_of_bounds_err_cnt(
3694 				const struct cntr_entry *entry,
3695 				void *context, int vl, int mode, u64 data)
3696 {
3697 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3698 
3699 	return dd->sw_ctxt_err_status_cnt[4];
3700 }
3701 
3702 static u64 access_pio_write_overflow_err_cnt(const struct cntr_entry *entry,
3703 					     void *context, int vl, int mode,
3704 					     u64 data)
3705 {
3706 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3707 
3708 	return dd->sw_ctxt_err_status_cnt[3];
3709 }
3710 
3711 static u64 access_pio_write_crosses_boundary_err_cnt(
3712 				const struct cntr_entry *entry,
3713 				void *context, int vl, int mode, u64 data)
3714 {
3715 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3716 
3717 	return dd->sw_ctxt_err_status_cnt[2];
3718 }
3719 
3720 static u64 access_pio_disallowed_packet_err_cnt(const struct cntr_entry *entry,
3721 						void *context, int vl,
3722 						int mode, u64 data)
3723 {
3724 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3725 
3726 	return dd->sw_ctxt_err_status_cnt[1];
3727 }
3728 
3729 static u64 access_pio_inconsistent_sop_err_cnt(const struct cntr_entry *entry,
3730 					       void *context, int vl, int mode,
3731 					       u64 data)
3732 {
3733 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3734 
3735 	return dd->sw_ctxt_err_status_cnt[0];
3736 }
3737 
3738 /*
3739  * Software counters corresponding to each of the
3740  * error status bits within SendDmaEngErrStatus
3741  */
3742 static u64 access_sdma_header_request_fifo_cor_err_cnt(
3743 				const struct cntr_entry *entry,
3744 				void *context, int vl, int mode, u64 data)
3745 {
3746 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3747 
3748 	return dd->sw_send_dma_eng_err_status_cnt[23];
3749 }
3750 
3751 static u64 access_sdma_header_storage_cor_err_cnt(
3752 				const struct cntr_entry *entry,
3753 				void *context, int vl, int mode, u64 data)
3754 {
3755 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3756 
3757 	return dd->sw_send_dma_eng_err_status_cnt[22];
3758 }
3759 
3760 static u64 access_sdma_packet_tracking_cor_err_cnt(
3761 				const struct cntr_entry *entry,
3762 				void *context, int vl, int mode, u64 data)
3763 {
3764 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3765 
3766 	return dd->sw_send_dma_eng_err_status_cnt[21];
3767 }
3768 
3769 static u64 access_sdma_assembly_cor_err_cnt(const struct cntr_entry *entry,
3770 					    void *context, int vl, int mode,
3771 					    u64 data)
3772 {
3773 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3774 
3775 	return dd->sw_send_dma_eng_err_status_cnt[20];
3776 }
3777 
3778 static u64 access_sdma_desc_table_cor_err_cnt(const struct cntr_entry *entry,
3779 					      void *context, int vl, int mode,
3780 					      u64 data)
3781 {
3782 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3783 
3784 	return dd->sw_send_dma_eng_err_status_cnt[19];
3785 }
3786 
3787 static u64 access_sdma_header_request_fifo_unc_err_cnt(
3788 				const struct cntr_entry *entry,
3789 				void *context, int vl, int mode, u64 data)
3790 {
3791 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3792 
3793 	return dd->sw_send_dma_eng_err_status_cnt[18];
3794 }
3795 
3796 static u64 access_sdma_header_storage_unc_err_cnt(
3797 				const struct cntr_entry *entry,
3798 				void *context, int vl, int mode, u64 data)
3799 {
3800 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3801 
3802 	return dd->sw_send_dma_eng_err_status_cnt[17];
3803 }
3804 
3805 static u64 access_sdma_packet_tracking_unc_err_cnt(
3806 				const struct cntr_entry *entry,
3807 				void *context, int vl, int mode, u64 data)
3808 {
3809 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3810 
3811 	return dd->sw_send_dma_eng_err_status_cnt[16];
3812 }
3813 
3814 static u64 access_sdma_assembly_unc_err_cnt(const struct cntr_entry *entry,
3815 					    void *context, int vl, int mode,
3816 					    u64 data)
3817 {
3818 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3819 
3820 	return dd->sw_send_dma_eng_err_status_cnt[15];
3821 }
3822 
3823 static u64 access_sdma_desc_table_unc_err_cnt(const struct cntr_entry *entry,
3824 					      void *context, int vl, int mode,
3825 					      u64 data)
3826 {
3827 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3828 
3829 	return dd->sw_send_dma_eng_err_status_cnt[14];
3830 }
3831 
3832 static u64 access_sdma_timeout_err_cnt(const struct cntr_entry *entry,
3833 				       void *context, int vl, int mode,
3834 				       u64 data)
3835 {
3836 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3837 
3838 	return dd->sw_send_dma_eng_err_status_cnt[13];
3839 }
3840 
3841 static u64 access_sdma_header_length_err_cnt(const struct cntr_entry *entry,
3842 					     void *context, int vl, int mode,
3843 					     u64 data)
3844 {
3845 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3846 
3847 	return dd->sw_send_dma_eng_err_status_cnt[12];
3848 }
3849 
3850 static u64 access_sdma_header_address_err_cnt(const struct cntr_entry *entry,
3851 					      void *context, int vl, int mode,
3852 					      u64 data)
3853 {
3854 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3855 
3856 	return dd->sw_send_dma_eng_err_status_cnt[11];
3857 }
3858 
3859 static u64 access_sdma_header_select_err_cnt(const struct cntr_entry *entry,
3860 					     void *context, int vl, int mode,
3861 					     u64 data)
3862 {
3863 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3864 
3865 	return dd->sw_send_dma_eng_err_status_cnt[10];
3866 }
3867 
3868 static u64 access_sdma_reserved_9_err_cnt(const struct cntr_entry *entry,
3869 					  void *context, int vl, int mode,
3870 					  u64 data)
3871 {
3872 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3873 
3874 	return dd->sw_send_dma_eng_err_status_cnt[9];
3875 }
3876 
3877 static u64 access_sdma_packet_desc_overflow_err_cnt(
3878 				const struct cntr_entry *entry,
3879 				void *context, int vl, int mode, u64 data)
3880 {
3881 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3882 
3883 	return dd->sw_send_dma_eng_err_status_cnt[8];
3884 }
3885 
3886 static u64 access_sdma_length_mismatch_err_cnt(const struct cntr_entry *entry,
3887 					       void *context, int vl,
3888 					       int mode, u64 data)
3889 {
3890 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3891 
3892 	return dd->sw_send_dma_eng_err_status_cnt[7];
3893 }
3894 
3895 static u64 access_sdma_halt_err_cnt(const struct cntr_entry *entry,
3896 				    void *context, int vl, int mode, u64 data)
3897 {
3898 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3899 
3900 	return dd->sw_send_dma_eng_err_status_cnt[6];
3901 }
3902 
3903 static u64 access_sdma_mem_read_err_cnt(const struct cntr_entry *entry,
3904 					void *context, int vl, int mode,
3905 					u64 data)
3906 {
3907 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3908 
3909 	return dd->sw_send_dma_eng_err_status_cnt[5];
3910 }
3911 
3912 static u64 access_sdma_first_desc_err_cnt(const struct cntr_entry *entry,
3913 					  void *context, int vl, int mode,
3914 					  u64 data)
3915 {
3916 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3917 
3918 	return dd->sw_send_dma_eng_err_status_cnt[4];
3919 }
3920 
3921 static u64 access_sdma_tail_out_of_bounds_err_cnt(
3922 				const struct cntr_entry *entry,
3923 				void *context, int vl, int mode, u64 data)
3924 {
3925 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3926 
3927 	return dd->sw_send_dma_eng_err_status_cnt[3];
3928 }
3929 
3930 static u64 access_sdma_too_long_err_cnt(const struct cntr_entry *entry,
3931 					void *context, int vl, int mode,
3932 					u64 data)
3933 {
3934 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3935 
3936 	return dd->sw_send_dma_eng_err_status_cnt[2];
3937 }
3938 
3939 static u64 access_sdma_gen_mismatch_err_cnt(const struct cntr_entry *entry,
3940 					    void *context, int vl, int mode,
3941 					    u64 data)
3942 {
3943 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3944 
3945 	return dd->sw_send_dma_eng_err_status_cnt[1];
3946 }
3947 
3948 static u64 access_sdma_wrong_dw_err_cnt(const struct cntr_entry *entry,
3949 					void *context, int vl, int mode,
3950 					u64 data)
3951 {
3952 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3953 
3954 	return dd->sw_send_dma_eng_err_status_cnt[0];
3955 }
3956 
3957 static u64 access_dc_rcv_err_cnt(const struct cntr_entry *entry,
3958 				 void *context, int vl, int mode,
3959 				 u64 data)
3960 {
3961 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3962 
3963 	u64 val = 0;
3964 	u64 csr = entry->csr;
3965 
3966 	val = read_write_csr(dd, csr, mode, data);
3967 	if (mode == CNTR_MODE_R) {
3968 		val = val > CNTR_MAX - dd->sw_rcv_bypass_packet_errors ?
3969 			CNTR_MAX : val + dd->sw_rcv_bypass_packet_errors;
3970 	} else if (mode == CNTR_MODE_W) {
3971 		dd->sw_rcv_bypass_packet_errors = 0;
3972 	} else {
3973 		dd_dev_err(dd, "Invalid cntr register access mode");
3974 		return 0;
3975 	}
3976 	return val;
3977 }
3978 
3979 #define def_access_sw_cpu(cntr) \
3980 static u64 access_sw_cpu_##cntr(const struct cntr_entry *entry,		      \
3981 			      void *context, int vl, int mode, u64 data)      \
3982 {									      \
3983 	struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context;	      \
3984 	return read_write_cpu(ppd->dd, &ppd->ibport_data.rvp.z_ ##cntr,	      \
3985 			      ppd->ibport_data.rvp.cntr, vl,		      \
3986 			      mode, data);				      \
3987 }
3988 
3989 def_access_sw_cpu(rc_acks);
3990 def_access_sw_cpu(rc_qacks);
3991 def_access_sw_cpu(rc_delayed_comp);
3992 
3993 #define def_access_ibp_counter(cntr) \
3994 static u64 access_ibp_##cntr(const struct cntr_entry *entry,		      \
3995 				void *context, int vl, int mode, u64 data)    \
3996 {									      \
3997 	struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context;	      \
3998 									      \
3999 	if (vl != CNTR_INVALID_VL)					      \
4000 		return 0;						      \
4001 									      \
4002 	return read_write_sw(ppd->dd, &ppd->ibport_data.rvp.n_ ##cntr,	      \
4003 			     mode, data);				      \
4004 }
4005 
4006 def_access_ibp_counter(loop_pkts);
4007 def_access_ibp_counter(rc_resends);
4008 def_access_ibp_counter(rnr_naks);
4009 def_access_ibp_counter(other_naks);
4010 def_access_ibp_counter(rc_timeouts);
4011 def_access_ibp_counter(pkt_drops);
4012 def_access_ibp_counter(dmawait);
4013 def_access_ibp_counter(rc_seqnak);
4014 def_access_ibp_counter(rc_dupreq);
4015 def_access_ibp_counter(rdma_seq);
4016 def_access_ibp_counter(unaligned);
4017 def_access_ibp_counter(seq_naks);
4018 
4019 static struct cntr_entry dev_cntrs[DEV_CNTR_LAST] = {
4020 [C_RCV_OVF] = RXE32_DEV_CNTR_ELEM(RcvOverflow, RCV_BUF_OVFL_CNT, CNTR_SYNTH),
4021 [C_RX_TID_FULL] = RXE32_DEV_CNTR_ELEM(RxTIDFullEr, RCV_TID_FULL_ERR_CNT,
4022 			CNTR_NORMAL),
4023 [C_RX_TID_INVALID] = RXE32_DEV_CNTR_ELEM(RxTIDInvalid, RCV_TID_VALID_ERR_CNT,
4024 			CNTR_NORMAL),
4025 [C_RX_TID_FLGMS] = RXE32_DEV_CNTR_ELEM(RxTidFLGMs,
4026 			RCV_TID_FLOW_GEN_MISMATCH_CNT,
4027 			CNTR_NORMAL),
4028 [C_RX_CTX_EGRS] = RXE32_DEV_CNTR_ELEM(RxCtxEgrS, RCV_CONTEXT_EGR_STALL,
4029 			CNTR_NORMAL),
4030 [C_RCV_TID_FLSMS] = RXE32_DEV_CNTR_ELEM(RxTidFLSMs,
4031 			RCV_TID_FLOW_SEQ_MISMATCH_CNT, CNTR_NORMAL),
4032 [C_CCE_PCI_CR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePciCrSt,
4033 			CCE_PCIE_POSTED_CRDT_STALL_CNT, CNTR_NORMAL),
4034 [C_CCE_PCI_TR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePciTrSt, CCE_PCIE_TRGT_STALL_CNT,
4035 			CNTR_NORMAL),
4036 [C_CCE_PIO_WR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePioWrSt, CCE_PIO_WR_STALL_CNT,
4037 			CNTR_NORMAL),
4038 [C_CCE_ERR_INT] = CCE_INT_DEV_CNTR_ELEM(CceErrInt, CCE_ERR_INT_CNT,
4039 			CNTR_NORMAL),
4040 [C_CCE_SDMA_INT] = CCE_INT_DEV_CNTR_ELEM(CceSdmaInt, CCE_SDMA_INT_CNT,
4041 			CNTR_NORMAL),
4042 [C_CCE_MISC_INT] = CCE_INT_DEV_CNTR_ELEM(CceMiscInt, CCE_MISC_INT_CNT,
4043 			CNTR_NORMAL),
4044 [C_CCE_RCV_AV_INT] = CCE_INT_DEV_CNTR_ELEM(CceRcvAvInt, CCE_RCV_AVAIL_INT_CNT,
4045 			CNTR_NORMAL),
4046 [C_CCE_RCV_URG_INT] = CCE_INT_DEV_CNTR_ELEM(CceRcvUrgInt,
4047 			CCE_RCV_URGENT_INT_CNT,	CNTR_NORMAL),
4048 [C_CCE_SEND_CR_INT] = CCE_INT_DEV_CNTR_ELEM(CceSndCrInt,
4049 			CCE_SEND_CREDIT_INT_CNT, CNTR_NORMAL),
4050 [C_DC_UNC_ERR] = DC_PERF_CNTR(DcUnctblErr, DCC_ERR_UNCORRECTABLE_CNT,
4051 			      CNTR_SYNTH),
4052 [C_DC_RCV_ERR] = CNTR_ELEM("DcRecvErr", DCC_ERR_PORTRCV_ERR_CNT, 0, CNTR_SYNTH,
4053 			    access_dc_rcv_err_cnt),
4054 [C_DC_FM_CFG_ERR] = DC_PERF_CNTR(DcFmCfgErr, DCC_ERR_FMCONFIG_ERR_CNT,
4055 				 CNTR_SYNTH),
4056 [C_DC_RMT_PHY_ERR] = DC_PERF_CNTR(DcRmtPhyErr, DCC_ERR_RCVREMOTE_PHY_ERR_CNT,
4057 				  CNTR_SYNTH),
4058 [C_DC_DROPPED_PKT] = DC_PERF_CNTR(DcDroppedPkt, DCC_ERR_DROPPED_PKT_CNT,
4059 				  CNTR_SYNTH),
4060 [C_DC_MC_XMIT_PKTS] = DC_PERF_CNTR(DcMcXmitPkts,
4061 				   DCC_PRF_PORT_XMIT_MULTICAST_CNT, CNTR_SYNTH),
4062 [C_DC_MC_RCV_PKTS] = DC_PERF_CNTR(DcMcRcvPkts,
4063 				  DCC_PRF_PORT_RCV_MULTICAST_PKT_CNT,
4064 				  CNTR_SYNTH),
4065 [C_DC_XMIT_CERR] = DC_PERF_CNTR(DcXmitCorr,
4066 				DCC_PRF_PORT_XMIT_CORRECTABLE_CNT, CNTR_SYNTH),
4067 [C_DC_RCV_CERR] = DC_PERF_CNTR(DcRcvCorrCnt, DCC_PRF_PORT_RCV_CORRECTABLE_CNT,
4068 			       CNTR_SYNTH),
4069 [C_DC_RCV_FCC] = DC_PERF_CNTR(DcRxFCntl, DCC_PRF_RX_FLOW_CRTL_CNT,
4070 			      CNTR_SYNTH),
4071 [C_DC_XMIT_FCC] = DC_PERF_CNTR(DcXmitFCntl, DCC_PRF_TX_FLOW_CRTL_CNT,
4072 			       CNTR_SYNTH),
4073 [C_DC_XMIT_FLITS] = DC_PERF_CNTR(DcXmitFlits, DCC_PRF_PORT_XMIT_DATA_CNT,
4074 				 CNTR_SYNTH),
4075 [C_DC_RCV_FLITS] = DC_PERF_CNTR(DcRcvFlits, DCC_PRF_PORT_RCV_DATA_CNT,
4076 				CNTR_SYNTH),
4077 [C_DC_XMIT_PKTS] = DC_PERF_CNTR(DcXmitPkts, DCC_PRF_PORT_XMIT_PKTS_CNT,
4078 				CNTR_SYNTH),
4079 [C_DC_RCV_PKTS] = DC_PERF_CNTR(DcRcvPkts, DCC_PRF_PORT_RCV_PKTS_CNT,
4080 			       CNTR_SYNTH),
4081 [C_DC_RX_FLIT_VL] = DC_PERF_CNTR(DcRxFlitVl, DCC_PRF_PORT_VL_RCV_DATA_CNT,
4082 				 CNTR_SYNTH | CNTR_VL),
4083 [C_DC_RX_PKT_VL] = DC_PERF_CNTR(DcRxPktVl, DCC_PRF_PORT_VL_RCV_PKTS_CNT,
4084 				CNTR_SYNTH | CNTR_VL),
4085 [C_DC_RCV_FCN] = DC_PERF_CNTR(DcRcvFcn, DCC_PRF_PORT_RCV_FECN_CNT, CNTR_SYNTH),
4086 [C_DC_RCV_FCN_VL] = DC_PERF_CNTR(DcRcvFcnVl, DCC_PRF_PORT_VL_RCV_FECN_CNT,
4087 				 CNTR_SYNTH | CNTR_VL),
4088 [C_DC_RCV_BCN] = DC_PERF_CNTR(DcRcvBcn, DCC_PRF_PORT_RCV_BECN_CNT, CNTR_SYNTH),
4089 [C_DC_RCV_BCN_VL] = DC_PERF_CNTR(DcRcvBcnVl, DCC_PRF_PORT_VL_RCV_BECN_CNT,
4090 				 CNTR_SYNTH | CNTR_VL),
4091 [C_DC_RCV_BBL] = DC_PERF_CNTR(DcRcvBbl, DCC_PRF_PORT_RCV_BUBBLE_CNT,
4092 			      CNTR_SYNTH),
4093 [C_DC_RCV_BBL_VL] = DC_PERF_CNTR(DcRcvBblVl, DCC_PRF_PORT_VL_RCV_BUBBLE_CNT,
4094 				 CNTR_SYNTH | CNTR_VL),
4095 [C_DC_MARK_FECN] = DC_PERF_CNTR(DcMarkFcn, DCC_PRF_PORT_MARK_FECN_CNT,
4096 				CNTR_SYNTH),
4097 [C_DC_MARK_FECN_VL] = DC_PERF_CNTR(DcMarkFcnVl, DCC_PRF_PORT_VL_MARK_FECN_CNT,
4098 				   CNTR_SYNTH | CNTR_VL),
4099 [C_DC_TOTAL_CRC] =
4100 	DC_PERF_CNTR_LCB(DcTotCrc, DC_LCB_ERR_INFO_TOTAL_CRC_ERR,
4101 			 CNTR_SYNTH),
4102 [C_DC_CRC_LN0] = DC_PERF_CNTR_LCB(DcCrcLn0, DC_LCB_ERR_INFO_CRC_ERR_LN0,
4103 				  CNTR_SYNTH),
4104 [C_DC_CRC_LN1] = DC_PERF_CNTR_LCB(DcCrcLn1, DC_LCB_ERR_INFO_CRC_ERR_LN1,
4105 				  CNTR_SYNTH),
4106 [C_DC_CRC_LN2] = DC_PERF_CNTR_LCB(DcCrcLn2, DC_LCB_ERR_INFO_CRC_ERR_LN2,
4107 				  CNTR_SYNTH),
4108 [C_DC_CRC_LN3] = DC_PERF_CNTR_LCB(DcCrcLn3, DC_LCB_ERR_INFO_CRC_ERR_LN3,
4109 				  CNTR_SYNTH),
4110 [C_DC_CRC_MULT_LN] =
4111 	DC_PERF_CNTR_LCB(DcMultLn, DC_LCB_ERR_INFO_CRC_ERR_MULTI_LN,
4112 			 CNTR_SYNTH),
4113 [C_DC_TX_REPLAY] = DC_PERF_CNTR_LCB(DcTxReplay, DC_LCB_ERR_INFO_TX_REPLAY_CNT,
4114 				    CNTR_SYNTH),
4115 [C_DC_RX_REPLAY] = DC_PERF_CNTR_LCB(DcRxReplay, DC_LCB_ERR_INFO_RX_REPLAY_CNT,
4116 				    CNTR_SYNTH),
4117 [C_DC_SEQ_CRC_CNT] =
4118 	DC_PERF_CNTR_LCB(DcLinkSeqCrc, DC_LCB_ERR_INFO_SEQ_CRC_CNT,
4119 			 CNTR_SYNTH),
4120 [C_DC_ESC0_ONLY_CNT] =
4121 	DC_PERF_CNTR_LCB(DcEsc0, DC_LCB_ERR_INFO_ESCAPE_0_ONLY_CNT,
4122 			 CNTR_SYNTH),
4123 [C_DC_ESC0_PLUS1_CNT] =
4124 	DC_PERF_CNTR_LCB(DcEsc1, DC_LCB_ERR_INFO_ESCAPE_0_PLUS1_CNT,
4125 			 CNTR_SYNTH),
4126 [C_DC_ESC0_PLUS2_CNT] =
4127 	DC_PERF_CNTR_LCB(DcEsc0Plus2, DC_LCB_ERR_INFO_ESCAPE_0_PLUS2_CNT,
4128 			 CNTR_SYNTH),
4129 [C_DC_REINIT_FROM_PEER_CNT] =
4130 	DC_PERF_CNTR_LCB(DcReinitPeer, DC_LCB_ERR_INFO_REINIT_FROM_PEER_CNT,
4131 			 CNTR_SYNTH),
4132 [C_DC_SBE_CNT] = DC_PERF_CNTR_LCB(DcSbe, DC_LCB_ERR_INFO_SBE_CNT,
4133 				  CNTR_SYNTH),
4134 [C_DC_MISC_FLG_CNT] =
4135 	DC_PERF_CNTR_LCB(DcMiscFlg, DC_LCB_ERR_INFO_MISC_FLG_CNT,
4136 			 CNTR_SYNTH),
4137 [C_DC_PRF_GOOD_LTP_CNT] =
4138 	DC_PERF_CNTR_LCB(DcGoodLTP, DC_LCB_PRF_GOOD_LTP_CNT, CNTR_SYNTH),
4139 [C_DC_PRF_ACCEPTED_LTP_CNT] =
4140 	DC_PERF_CNTR_LCB(DcAccLTP, DC_LCB_PRF_ACCEPTED_LTP_CNT,
4141 			 CNTR_SYNTH),
4142 [C_DC_PRF_RX_FLIT_CNT] =
4143 	DC_PERF_CNTR_LCB(DcPrfRxFlit, DC_LCB_PRF_RX_FLIT_CNT, CNTR_SYNTH),
4144 [C_DC_PRF_TX_FLIT_CNT] =
4145 	DC_PERF_CNTR_LCB(DcPrfTxFlit, DC_LCB_PRF_TX_FLIT_CNT, CNTR_SYNTH),
4146 [C_DC_PRF_CLK_CNTR] =
4147 	DC_PERF_CNTR_LCB(DcPrfClk, DC_LCB_PRF_CLK_CNTR, CNTR_SYNTH),
4148 [C_DC_PG_DBG_FLIT_CRDTS_CNT] =
4149 	DC_PERF_CNTR_LCB(DcFltCrdts, DC_LCB_PG_DBG_FLIT_CRDTS_CNT, CNTR_SYNTH),
4150 [C_DC_PG_STS_PAUSE_COMPLETE_CNT] =
4151 	DC_PERF_CNTR_LCB(DcPauseComp, DC_LCB_PG_STS_PAUSE_COMPLETE_CNT,
4152 			 CNTR_SYNTH),
4153 [C_DC_PG_STS_TX_SBE_CNT] =
4154 	DC_PERF_CNTR_LCB(DcStsTxSbe, DC_LCB_PG_STS_TX_SBE_CNT, CNTR_SYNTH),
4155 [C_DC_PG_STS_TX_MBE_CNT] =
4156 	DC_PERF_CNTR_LCB(DcStsTxMbe, DC_LCB_PG_STS_TX_MBE_CNT,
4157 			 CNTR_SYNTH),
4158 [C_SW_CPU_INTR] = CNTR_ELEM("Intr", 0, 0, CNTR_NORMAL,
4159 			    access_sw_cpu_intr),
4160 [C_SW_CPU_RCV_LIM] = CNTR_ELEM("RcvLimit", 0, 0, CNTR_NORMAL,
4161 			    access_sw_cpu_rcv_limit),
4162 [C_SW_VTX_WAIT] = CNTR_ELEM("vTxWait", 0, 0, CNTR_NORMAL,
4163 			    access_sw_vtx_wait),
4164 [C_SW_PIO_WAIT] = CNTR_ELEM("PioWait", 0, 0, CNTR_NORMAL,
4165 			    access_sw_pio_wait),
4166 [C_SW_PIO_DRAIN] = CNTR_ELEM("PioDrain", 0, 0, CNTR_NORMAL,
4167 			    access_sw_pio_drain),
4168 [C_SW_KMEM_WAIT] = CNTR_ELEM("KmemWait", 0, 0, CNTR_NORMAL,
4169 			    access_sw_kmem_wait),
4170 [C_SW_SEND_SCHED] = CNTR_ELEM("SendSched", 0, 0, CNTR_NORMAL,
4171 			    access_sw_send_schedule),
4172 [C_SDMA_DESC_FETCHED_CNT] = CNTR_ELEM("SDEDscFdCn",
4173 				      SEND_DMA_DESC_FETCHED_CNT, 0,
4174 				      CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4175 				      dev_access_u32_csr),
4176 [C_SDMA_INT_CNT] = CNTR_ELEM("SDMAInt", 0, 0,
4177 			     CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4178 			     access_sde_int_cnt),
4179 [C_SDMA_ERR_CNT] = CNTR_ELEM("SDMAErrCt", 0, 0,
4180 			     CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4181 			     access_sde_err_cnt),
4182 [C_SDMA_IDLE_INT_CNT] = CNTR_ELEM("SDMAIdInt", 0, 0,
4183 				  CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4184 				  access_sde_idle_int_cnt),
4185 [C_SDMA_PROGRESS_INT_CNT] = CNTR_ELEM("SDMAPrIntCn", 0, 0,
4186 				      CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4187 				      access_sde_progress_int_cnt),
4188 /* MISC_ERR_STATUS */
4189 [C_MISC_PLL_LOCK_FAIL_ERR] = CNTR_ELEM("MISC_PLL_LOCK_FAIL_ERR", 0, 0,
4190 				CNTR_NORMAL,
4191 				access_misc_pll_lock_fail_err_cnt),
4192 [C_MISC_MBIST_FAIL_ERR] = CNTR_ELEM("MISC_MBIST_FAIL_ERR", 0, 0,
4193 				CNTR_NORMAL,
4194 				access_misc_mbist_fail_err_cnt),
4195 [C_MISC_INVALID_EEP_CMD_ERR] = CNTR_ELEM("MISC_INVALID_EEP_CMD_ERR", 0, 0,
4196 				CNTR_NORMAL,
4197 				access_misc_invalid_eep_cmd_err_cnt),
4198 [C_MISC_EFUSE_DONE_PARITY_ERR] = CNTR_ELEM("MISC_EFUSE_DONE_PARITY_ERR", 0, 0,
4199 				CNTR_NORMAL,
4200 				access_misc_efuse_done_parity_err_cnt),
4201 [C_MISC_EFUSE_WRITE_ERR] = CNTR_ELEM("MISC_EFUSE_WRITE_ERR", 0, 0,
4202 				CNTR_NORMAL,
4203 				access_misc_efuse_write_err_cnt),
4204 [C_MISC_EFUSE_READ_BAD_ADDR_ERR] = CNTR_ELEM("MISC_EFUSE_READ_BAD_ADDR_ERR", 0,
4205 				0, CNTR_NORMAL,
4206 				access_misc_efuse_read_bad_addr_err_cnt),
4207 [C_MISC_EFUSE_CSR_PARITY_ERR] = CNTR_ELEM("MISC_EFUSE_CSR_PARITY_ERR", 0, 0,
4208 				CNTR_NORMAL,
4209 				access_misc_efuse_csr_parity_err_cnt),
4210 [C_MISC_FW_AUTH_FAILED_ERR] = CNTR_ELEM("MISC_FW_AUTH_FAILED_ERR", 0, 0,
4211 				CNTR_NORMAL,
4212 				access_misc_fw_auth_failed_err_cnt),
4213 [C_MISC_KEY_MISMATCH_ERR] = CNTR_ELEM("MISC_KEY_MISMATCH_ERR", 0, 0,
4214 				CNTR_NORMAL,
4215 				access_misc_key_mismatch_err_cnt),
4216 [C_MISC_SBUS_WRITE_FAILED_ERR] = CNTR_ELEM("MISC_SBUS_WRITE_FAILED_ERR", 0, 0,
4217 				CNTR_NORMAL,
4218 				access_misc_sbus_write_failed_err_cnt),
4219 [C_MISC_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("MISC_CSR_WRITE_BAD_ADDR_ERR", 0, 0,
4220 				CNTR_NORMAL,
4221 				access_misc_csr_write_bad_addr_err_cnt),
4222 [C_MISC_CSR_READ_BAD_ADDR_ERR] = CNTR_ELEM("MISC_CSR_READ_BAD_ADDR_ERR", 0, 0,
4223 				CNTR_NORMAL,
4224 				access_misc_csr_read_bad_addr_err_cnt),
4225 [C_MISC_CSR_PARITY_ERR] = CNTR_ELEM("MISC_CSR_PARITY_ERR", 0, 0,
4226 				CNTR_NORMAL,
4227 				access_misc_csr_parity_err_cnt),
4228 /* CceErrStatus */
4229 [C_CCE_ERR_STATUS_AGGREGATED_CNT] = CNTR_ELEM("CceErrStatusAggregatedCnt", 0, 0,
4230 				CNTR_NORMAL,
4231 				access_sw_cce_err_status_aggregated_cnt),
4232 [C_CCE_MSIX_CSR_PARITY_ERR] = CNTR_ELEM("CceMsixCsrParityErr", 0, 0,
4233 				CNTR_NORMAL,
4234 				access_cce_msix_csr_parity_err_cnt),
4235 [C_CCE_INT_MAP_UNC_ERR] = CNTR_ELEM("CceIntMapUncErr", 0, 0,
4236 				CNTR_NORMAL,
4237 				access_cce_int_map_unc_err_cnt),
4238 [C_CCE_INT_MAP_COR_ERR] = CNTR_ELEM("CceIntMapCorErr", 0, 0,
4239 				CNTR_NORMAL,
4240 				access_cce_int_map_cor_err_cnt),
4241 [C_CCE_MSIX_TABLE_UNC_ERR] = CNTR_ELEM("CceMsixTableUncErr", 0, 0,
4242 				CNTR_NORMAL,
4243 				access_cce_msix_table_unc_err_cnt),
4244 [C_CCE_MSIX_TABLE_COR_ERR] = CNTR_ELEM("CceMsixTableCorErr", 0, 0,
4245 				CNTR_NORMAL,
4246 				access_cce_msix_table_cor_err_cnt),
4247 [C_CCE_RXDMA_CONV_FIFO_PARITY_ERR] = CNTR_ELEM("CceRxdmaConvFifoParityErr", 0,
4248 				0, CNTR_NORMAL,
4249 				access_cce_rxdma_conv_fifo_parity_err_cnt),
4250 [C_CCE_RCPL_ASYNC_FIFO_PARITY_ERR] = CNTR_ELEM("CceRcplAsyncFifoParityErr", 0,
4251 				0, CNTR_NORMAL,
4252 				access_cce_rcpl_async_fifo_parity_err_cnt),
4253 [C_CCE_SEG_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("CceSegWriteBadAddrErr", 0, 0,
4254 				CNTR_NORMAL,
4255 				access_cce_seg_write_bad_addr_err_cnt),
4256 [C_CCE_SEG_READ_BAD_ADDR_ERR] = CNTR_ELEM("CceSegReadBadAddrErr", 0, 0,
4257 				CNTR_NORMAL,
4258 				access_cce_seg_read_bad_addr_err_cnt),
4259 [C_LA_TRIGGERED] = CNTR_ELEM("Cce LATriggered", 0, 0,
4260 				CNTR_NORMAL,
4261 				access_la_triggered_cnt),
4262 [C_CCE_TRGT_CPL_TIMEOUT_ERR] = CNTR_ELEM("CceTrgtCplTimeoutErr", 0, 0,
4263 				CNTR_NORMAL,
4264 				access_cce_trgt_cpl_timeout_err_cnt),
4265 [C_PCIC_RECEIVE_PARITY_ERR] = CNTR_ELEM("PcicReceiveParityErr", 0, 0,
4266 				CNTR_NORMAL,
4267 				access_pcic_receive_parity_err_cnt),
4268 [C_PCIC_TRANSMIT_BACK_PARITY_ERR] = CNTR_ELEM("PcicTransmitBackParityErr", 0, 0,
4269 				CNTR_NORMAL,
4270 				access_pcic_transmit_back_parity_err_cnt),
4271 [C_PCIC_TRANSMIT_FRONT_PARITY_ERR] = CNTR_ELEM("PcicTransmitFrontParityErr", 0,
4272 				0, CNTR_NORMAL,
4273 				access_pcic_transmit_front_parity_err_cnt),
4274 [C_PCIC_CPL_DAT_Q_UNC_ERR] = CNTR_ELEM("PcicCplDatQUncErr", 0, 0,
4275 				CNTR_NORMAL,
4276 				access_pcic_cpl_dat_q_unc_err_cnt),
4277 [C_PCIC_CPL_HD_Q_UNC_ERR] = CNTR_ELEM("PcicCplHdQUncErr", 0, 0,
4278 				CNTR_NORMAL,
4279 				access_pcic_cpl_hd_q_unc_err_cnt),
4280 [C_PCIC_POST_DAT_Q_UNC_ERR] = CNTR_ELEM("PcicPostDatQUncErr", 0, 0,
4281 				CNTR_NORMAL,
4282 				access_pcic_post_dat_q_unc_err_cnt),
4283 [C_PCIC_POST_HD_Q_UNC_ERR] = CNTR_ELEM("PcicPostHdQUncErr", 0, 0,
4284 				CNTR_NORMAL,
4285 				access_pcic_post_hd_q_unc_err_cnt),
4286 [C_PCIC_RETRY_SOT_MEM_UNC_ERR] = CNTR_ELEM("PcicRetrySotMemUncErr", 0, 0,
4287 				CNTR_NORMAL,
4288 				access_pcic_retry_sot_mem_unc_err_cnt),
4289 [C_PCIC_RETRY_MEM_UNC_ERR] = CNTR_ELEM("PcicRetryMemUncErr", 0, 0,
4290 				CNTR_NORMAL,
4291 				access_pcic_retry_mem_unc_err),
4292 [C_PCIC_N_POST_DAT_Q_PARITY_ERR] = CNTR_ELEM("PcicNPostDatQParityErr", 0, 0,
4293 				CNTR_NORMAL,
4294 				access_pcic_n_post_dat_q_parity_err_cnt),
4295 [C_PCIC_N_POST_H_Q_PARITY_ERR] = CNTR_ELEM("PcicNPostHQParityErr", 0, 0,
4296 				CNTR_NORMAL,
4297 				access_pcic_n_post_h_q_parity_err_cnt),
4298 [C_PCIC_CPL_DAT_Q_COR_ERR] = CNTR_ELEM("PcicCplDatQCorErr", 0, 0,
4299 				CNTR_NORMAL,
4300 				access_pcic_cpl_dat_q_cor_err_cnt),
4301 [C_PCIC_CPL_HD_Q_COR_ERR] = CNTR_ELEM("PcicCplHdQCorErr", 0, 0,
4302 				CNTR_NORMAL,
4303 				access_pcic_cpl_hd_q_cor_err_cnt),
4304 [C_PCIC_POST_DAT_Q_COR_ERR] = CNTR_ELEM("PcicPostDatQCorErr", 0, 0,
4305 				CNTR_NORMAL,
4306 				access_pcic_post_dat_q_cor_err_cnt),
4307 [C_PCIC_POST_HD_Q_COR_ERR] = CNTR_ELEM("PcicPostHdQCorErr", 0, 0,
4308 				CNTR_NORMAL,
4309 				access_pcic_post_hd_q_cor_err_cnt),
4310 [C_PCIC_RETRY_SOT_MEM_COR_ERR] = CNTR_ELEM("PcicRetrySotMemCorErr", 0, 0,
4311 				CNTR_NORMAL,
4312 				access_pcic_retry_sot_mem_cor_err_cnt),
4313 [C_PCIC_RETRY_MEM_COR_ERR] = CNTR_ELEM("PcicRetryMemCorErr", 0, 0,
4314 				CNTR_NORMAL,
4315 				access_pcic_retry_mem_cor_err_cnt),
4316 [C_CCE_CLI1_ASYNC_FIFO_DBG_PARITY_ERR] = CNTR_ELEM(
4317 				"CceCli1AsyncFifoDbgParityError", 0, 0,
4318 				CNTR_NORMAL,
4319 				access_cce_cli1_async_fifo_dbg_parity_err_cnt),
4320 [C_CCE_CLI1_ASYNC_FIFO_RXDMA_PARITY_ERR] = CNTR_ELEM(
4321 				"CceCli1AsyncFifoRxdmaParityError", 0, 0,
4322 				CNTR_NORMAL,
4323 				access_cce_cli1_async_fifo_rxdma_parity_err_cnt
4324 				),
4325 [C_CCE_CLI1_ASYNC_FIFO_SDMA_HD_PARITY_ERR] = CNTR_ELEM(
4326 			"CceCli1AsyncFifoSdmaHdParityErr", 0, 0,
4327 			CNTR_NORMAL,
4328 			access_cce_cli1_async_fifo_sdma_hd_parity_err_cnt),
4329 [C_CCE_CLI1_ASYNC_FIFO_PIO_CRDT_PARITY_ERR] = CNTR_ELEM(
4330 			"CceCli1AsyncFifoPioCrdtParityErr", 0, 0,
4331 			CNTR_NORMAL,
4332 			access_cce_cl1_async_fifo_pio_crdt_parity_err_cnt),
4333 [C_CCE_CLI2_ASYNC_FIFO_PARITY_ERR] = CNTR_ELEM("CceCli2AsyncFifoParityErr", 0,
4334 			0, CNTR_NORMAL,
4335 			access_cce_cli2_async_fifo_parity_err_cnt),
4336 [C_CCE_CSR_CFG_BUS_PARITY_ERR] = CNTR_ELEM("CceCsrCfgBusParityErr", 0, 0,
4337 			CNTR_NORMAL,
4338 			access_cce_csr_cfg_bus_parity_err_cnt),
4339 [C_CCE_CLI0_ASYNC_FIFO_PARTIY_ERR] = CNTR_ELEM("CceCli0AsyncFifoParityErr", 0,
4340 			0, CNTR_NORMAL,
4341 			access_cce_cli0_async_fifo_parity_err_cnt),
4342 [C_CCE_RSPD_DATA_PARITY_ERR] = CNTR_ELEM("CceRspdDataParityErr", 0, 0,
4343 			CNTR_NORMAL,
4344 			access_cce_rspd_data_parity_err_cnt),
4345 [C_CCE_TRGT_ACCESS_ERR] = CNTR_ELEM("CceTrgtAccessErr", 0, 0,
4346 			CNTR_NORMAL,
4347 			access_cce_trgt_access_err_cnt),
4348 [C_CCE_TRGT_ASYNC_FIFO_PARITY_ERR] = CNTR_ELEM("CceTrgtAsyncFifoParityErr", 0,
4349 			0, CNTR_NORMAL,
4350 			access_cce_trgt_async_fifo_parity_err_cnt),
4351 [C_CCE_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("CceCsrWriteBadAddrErr", 0, 0,
4352 			CNTR_NORMAL,
4353 			access_cce_csr_write_bad_addr_err_cnt),
4354 [C_CCE_CSR_READ_BAD_ADDR_ERR] = CNTR_ELEM("CceCsrReadBadAddrErr", 0, 0,
4355 			CNTR_NORMAL,
4356 			access_cce_csr_read_bad_addr_err_cnt),
4357 [C_CCE_CSR_PARITY_ERR] = CNTR_ELEM("CceCsrParityErr", 0, 0,
4358 			CNTR_NORMAL,
4359 			access_ccs_csr_parity_err_cnt),
4360 
4361 /* RcvErrStatus */
4362 [C_RX_CSR_PARITY_ERR] = CNTR_ELEM("RxCsrParityErr", 0, 0,
4363 			CNTR_NORMAL,
4364 			access_rx_csr_parity_err_cnt),
4365 [C_RX_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("RxCsrWriteBadAddrErr", 0, 0,
4366 			CNTR_NORMAL,
4367 			access_rx_csr_write_bad_addr_err_cnt),
4368 [C_RX_CSR_READ_BAD_ADDR_ERR] = CNTR_ELEM("RxCsrReadBadAddrErr", 0, 0,
4369 			CNTR_NORMAL,
4370 			access_rx_csr_read_bad_addr_err_cnt),
4371 [C_RX_DMA_CSR_UNC_ERR] = CNTR_ELEM("RxDmaCsrUncErr", 0, 0,
4372 			CNTR_NORMAL,
4373 			access_rx_dma_csr_unc_err_cnt),
4374 [C_RX_DMA_DQ_FSM_ENCODING_ERR] = CNTR_ELEM("RxDmaDqFsmEncodingErr", 0, 0,
4375 			CNTR_NORMAL,
4376 			access_rx_dma_dq_fsm_encoding_err_cnt),
4377 [C_RX_DMA_EQ_FSM_ENCODING_ERR] = CNTR_ELEM("RxDmaEqFsmEncodingErr", 0, 0,
4378 			CNTR_NORMAL,
4379 			access_rx_dma_eq_fsm_encoding_err_cnt),
4380 [C_RX_DMA_CSR_PARITY_ERR] = CNTR_ELEM("RxDmaCsrParityErr", 0, 0,
4381 			CNTR_NORMAL,
4382 			access_rx_dma_csr_parity_err_cnt),
4383 [C_RX_RBUF_DATA_COR_ERR] = CNTR_ELEM("RxRbufDataCorErr", 0, 0,
4384 			CNTR_NORMAL,
4385 			access_rx_rbuf_data_cor_err_cnt),
4386 [C_RX_RBUF_DATA_UNC_ERR] = CNTR_ELEM("RxRbufDataUncErr", 0, 0,
4387 			CNTR_NORMAL,
4388 			access_rx_rbuf_data_unc_err_cnt),
4389 [C_RX_DMA_DATA_FIFO_RD_COR_ERR] = CNTR_ELEM("RxDmaDataFifoRdCorErr", 0, 0,
4390 			CNTR_NORMAL,
4391 			access_rx_dma_data_fifo_rd_cor_err_cnt),
4392 [C_RX_DMA_DATA_FIFO_RD_UNC_ERR] = CNTR_ELEM("RxDmaDataFifoRdUncErr", 0, 0,
4393 			CNTR_NORMAL,
4394 			access_rx_dma_data_fifo_rd_unc_err_cnt),
4395 [C_RX_DMA_HDR_FIFO_RD_COR_ERR] = CNTR_ELEM("RxDmaHdrFifoRdCorErr", 0, 0,
4396 			CNTR_NORMAL,
4397 			access_rx_dma_hdr_fifo_rd_cor_err_cnt),
4398 [C_RX_DMA_HDR_FIFO_RD_UNC_ERR] = CNTR_ELEM("RxDmaHdrFifoRdUncErr", 0, 0,
4399 			CNTR_NORMAL,
4400 			access_rx_dma_hdr_fifo_rd_unc_err_cnt),
4401 [C_RX_RBUF_DESC_PART2_COR_ERR] = CNTR_ELEM("RxRbufDescPart2CorErr", 0, 0,
4402 			CNTR_NORMAL,
4403 			access_rx_rbuf_desc_part2_cor_err_cnt),
4404 [C_RX_RBUF_DESC_PART2_UNC_ERR] = CNTR_ELEM("RxRbufDescPart2UncErr", 0, 0,
4405 			CNTR_NORMAL,
4406 			access_rx_rbuf_desc_part2_unc_err_cnt),
4407 [C_RX_RBUF_DESC_PART1_COR_ERR] = CNTR_ELEM("RxRbufDescPart1CorErr", 0, 0,
4408 			CNTR_NORMAL,
4409 			access_rx_rbuf_desc_part1_cor_err_cnt),
4410 [C_RX_RBUF_DESC_PART1_UNC_ERR] = CNTR_ELEM("RxRbufDescPart1UncErr", 0, 0,
4411 			CNTR_NORMAL,
4412 			access_rx_rbuf_desc_part1_unc_err_cnt),
4413 [C_RX_HQ_INTR_FSM_ERR] = CNTR_ELEM("RxHqIntrFsmErr", 0, 0,
4414 			CNTR_NORMAL,
4415 			access_rx_hq_intr_fsm_err_cnt),
4416 [C_RX_HQ_INTR_CSR_PARITY_ERR] = CNTR_ELEM("RxHqIntrCsrParityErr", 0, 0,
4417 			CNTR_NORMAL,
4418 			access_rx_hq_intr_csr_parity_err_cnt),
4419 [C_RX_LOOKUP_CSR_PARITY_ERR] = CNTR_ELEM("RxLookupCsrParityErr", 0, 0,
4420 			CNTR_NORMAL,
4421 			access_rx_lookup_csr_parity_err_cnt),
4422 [C_RX_LOOKUP_RCV_ARRAY_COR_ERR] = CNTR_ELEM("RxLookupRcvArrayCorErr", 0, 0,
4423 			CNTR_NORMAL,
4424 			access_rx_lookup_rcv_array_cor_err_cnt),
4425 [C_RX_LOOKUP_RCV_ARRAY_UNC_ERR] = CNTR_ELEM("RxLookupRcvArrayUncErr", 0, 0,
4426 			CNTR_NORMAL,
4427 			access_rx_lookup_rcv_array_unc_err_cnt),
4428 [C_RX_LOOKUP_DES_PART2_PARITY_ERR] = CNTR_ELEM("RxLookupDesPart2ParityErr", 0,
4429 			0, CNTR_NORMAL,
4430 			access_rx_lookup_des_part2_parity_err_cnt),
4431 [C_RX_LOOKUP_DES_PART1_UNC_COR_ERR] = CNTR_ELEM("RxLookupDesPart1UncCorErr", 0,
4432 			0, CNTR_NORMAL,
4433 			access_rx_lookup_des_part1_unc_cor_err_cnt),
4434 [C_RX_LOOKUP_DES_PART1_UNC_ERR] = CNTR_ELEM("RxLookupDesPart1UncErr", 0, 0,
4435 			CNTR_NORMAL,
4436 			access_rx_lookup_des_part1_unc_err_cnt),
4437 [C_RX_RBUF_NEXT_FREE_BUF_COR_ERR] = CNTR_ELEM("RxRbufNextFreeBufCorErr", 0, 0,
4438 			CNTR_NORMAL,
4439 			access_rx_rbuf_next_free_buf_cor_err_cnt),
4440 [C_RX_RBUF_NEXT_FREE_BUF_UNC_ERR] = CNTR_ELEM("RxRbufNextFreeBufUncErr", 0, 0,
4441 			CNTR_NORMAL,
4442 			access_rx_rbuf_next_free_buf_unc_err_cnt),
4443 [C_RX_RBUF_FL_INIT_WR_ADDR_PARITY_ERR] = CNTR_ELEM(
4444 			"RxRbufFlInitWrAddrParityErr", 0, 0,
4445 			CNTR_NORMAL,
4446 			access_rbuf_fl_init_wr_addr_parity_err_cnt),
4447 [C_RX_RBUF_FL_INITDONE_PARITY_ERR] = CNTR_ELEM("RxRbufFlInitdoneParityErr", 0,
4448 			0, CNTR_NORMAL,
4449 			access_rx_rbuf_fl_initdone_parity_err_cnt),
4450 [C_RX_RBUF_FL_WRITE_ADDR_PARITY_ERR] = CNTR_ELEM("RxRbufFlWrAddrParityErr", 0,
4451 			0, CNTR_NORMAL,
4452 			access_rx_rbuf_fl_write_addr_parity_err_cnt),
4453 [C_RX_RBUF_FL_RD_ADDR_PARITY_ERR] = CNTR_ELEM("RxRbufFlRdAddrParityErr", 0, 0,
4454 			CNTR_NORMAL,
4455 			access_rx_rbuf_fl_rd_addr_parity_err_cnt),
4456 [C_RX_RBUF_EMPTY_ERR] = CNTR_ELEM("RxRbufEmptyErr", 0, 0,
4457 			CNTR_NORMAL,
4458 			access_rx_rbuf_empty_err_cnt),
4459 [C_RX_RBUF_FULL_ERR] = CNTR_ELEM("RxRbufFullErr", 0, 0,
4460 			CNTR_NORMAL,
4461 			access_rx_rbuf_full_err_cnt),
4462 [C_RX_RBUF_BAD_LOOKUP_ERR] = CNTR_ELEM("RxRBufBadLookupErr", 0, 0,
4463 			CNTR_NORMAL,
4464 			access_rbuf_bad_lookup_err_cnt),
4465 [C_RX_RBUF_CTX_ID_PARITY_ERR] = CNTR_ELEM("RxRbufCtxIdParityErr", 0, 0,
4466 			CNTR_NORMAL,
4467 			access_rbuf_ctx_id_parity_err_cnt),
4468 [C_RX_RBUF_CSR_QEOPDW_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQEOPDWParityErr", 0, 0,
4469 			CNTR_NORMAL,
4470 			access_rbuf_csr_qeopdw_parity_err_cnt),
4471 [C_RX_RBUF_CSR_Q_NUM_OF_PKT_PARITY_ERR] = CNTR_ELEM(
4472 			"RxRbufCsrQNumOfPktParityErr", 0, 0,
4473 			CNTR_NORMAL,
4474 			access_rx_rbuf_csr_q_num_of_pkt_parity_err_cnt),
4475 [C_RX_RBUF_CSR_Q_T1_PTR_PARITY_ERR] = CNTR_ELEM(
4476 			"RxRbufCsrQTlPtrParityErr", 0, 0,
4477 			CNTR_NORMAL,
4478 			access_rx_rbuf_csr_q_t1_ptr_parity_err_cnt),
4479 [C_RX_RBUF_CSR_Q_HD_PTR_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQHdPtrParityErr", 0,
4480 			0, CNTR_NORMAL,
4481 			access_rx_rbuf_csr_q_hd_ptr_parity_err_cnt),
4482 [C_RX_RBUF_CSR_Q_VLD_BIT_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQVldBitParityErr", 0,
4483 			0, CNTR_NORMAL,
4484 			access_rx_rbuf_csr_q_vld_bit_parity_err_cnt),
4485 [C_RX_RBUF_CSR_Q_NEXT_BUF_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQNextBufParityErr",
4486 			0, 0, CNTR_NORMAL,
4487 			access_rx_rbuf_csr_q_next_buf_parity_err_cnt),
4488 [C_RX_RBUF_CSR_Q_ENT_CNT_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQEntCntParityErr", 0,
4489 			0, CNTR_NORMAL,
4490 			access_rx_rbuf_csr_q_ent_cnt_parity_err_cnt),
4491 [C_RX_RBUF_CSR_Q_HEAD_BUF_NUM_PARITY_ERR] = CNTR_ELEM(
4492 			"RxRbufCsrQHeadBufNumParityErr", 0, 0,
4493 			CNTR_NORMAL,
4494 			access_rx_rbuf_csr_q_head_buf_num_parity_err_cnt),
4495 [C_RX_RBUF_BLOCK_LIST_READ_COR_ERR] = CNTR_ELEM("RxRbufBlockListReadCorErr", 0,
4496 			0, CNTR_NORMAL,
4497 			access_rx_rbuf_block_list_read_cor_err_cnt),
4498 [C_RX_RBUF_BLOCK_LIST_READ_UNC_ERR] = CNTR_ELEM("RxRbufBlockListReadUncErr", 0,
4499 			0, CNTR_NORMAL,
4500 			access_rx_rbuf_block_list_read_unc_err_cnt),
4501 [C_RX_RBUF_LOOKUP_DES_COR_ERR] = CNTR_ELEM("RxRbufLookupDesCorErr", 0, 0,
4502 			CNTR_NORMAL,
4503 			access_rx_rbuf_lookup_des_cor_err_cnt),
4504 [C_RX_RBUF_LOOKUP_DES_UNC_ERR] = CNTR_ELEM("RxRbufLookupDesUncErr", 0, 0,
4505 			CNTR_NORMAL,
4506 			access_rx_rbuf_lookup_des_unc_err_cnt),
4507 [C_RX_RBUF_LOOKUP_DES_REG_UNC_COR_ERR] = CNTR_ELEM(
4508 			"RxRbufLookupDesRegUncCorErr", 0, 0,
4509 			CNTR_NORMAL,
4510 			access_rx_rbuf_lookup_des_reg_unc_cor_err_cnt),
4511 [C_RX_RBUF_LOOKUP_DES_REG_UNC_ERR] = CNTR_ELEM("RxRbufLookupDesRegUncErr", 0, 0,
4512 			CNTR_NORMAL,
4513 			access_rx_rbuf_lookup_des_reg_unc_err_cnt),
4514 [C_RX_RBUF_FREE_LIST_COR_ERR] = CNTR_ELEM("RxRbufFreeListCorErr", 0, 0,
4515 			CNTR_NORMAL,
4516 			access_rx_rbuf_free_list_cor_err_cnt),
4517 [C_RX_RBUF_FREE_LIST_UNC_ERR] = CNTR_ELEM("RxRbufFreeListUncErr", 0, 0,
4518 			CNTR_NORMAL,
4519 			access_rx_rbuf_free_list_unc_err_cnt),
4520 [C_RX_RCV_FSM_ENCODING_ERR] = CNTR_ELEM("RxRcvFsmEncodingErr", 0, 0,
4521 			CNTR_NORMAL,
4522 			access_rx_rcv_fsm_encoding_err_cnt),
4523 [C_RX_DMA_FLAG_COR_ERR] = CNTR_ELEM("RxDmaFlagCorErr", 0, 0,
4524 			CNTR_NORMAL,
4525 			access_rx_dma_flag_cor_err_cnt),
4526 [C_RX_DMA_FLAG_UNC_ERR] = CNTR_ELEM("RxDmaFlagUncErr", 0, 0,
4527 			CNTR_NORMAL,
4528 			access_rx_dma_flag_unc_err_cnt),
4529 [C_RX_DC_SOP_EOP_PARITY_ERR] = CNTR_ELEM("RxDcSopEopParityErr", 0, 0,
4530 			CNTR_NORMAL,
4531 			access_rx_dc_sop_eop_parity_err_cnt),
4532 [C_RX_RCV_CSR_PARITY_ERR] = CNTR_ELEM("RxRcvCsrParityErr", 0, 0,
4533 			CNTR_NORMAL,
4534 			access_rx_rcv_csr_parity_err_cnt),
4535 [C_RX_RCV_QP_MAP_TABLE_COR_ERR] = CNTR_ELEM("RxRcvQpMapTableCorErr", 0, 0,
4536 			CNTR_NORMAL,
4537 			access_rx_rcv_qp_map_table_cor_err_cnt),
4538 [C_RX_RCV_QP_MAP_TABLE_UNC_ERR] = CNTR_ELEM("RxRcvQpMapTableUncErr", 0, 0,
4539 			CNTR_NORMAL,
4540 			access_rx_rcv_qp_map_table_unc_err_cnt),
4541 [C_RX_RCV_DATA_COR_ERR] = CNTR_ELEM("RxRcvDataCorErr", 0, 0,
4542 			CNTR_NORMAL,
4543 			access_rx_rcv_data_cor_err_cnt),
4544 [C_RX_RCV_DATA_UNC_ERR] = CNTR_ELEM("RxRcvDataUncErr", 0, 0,
4545 			CNTR_NORMAL,
4546 			access_rx_rcv_data_unc_err_cnt),
4547 [C_RX_RCV_HDR_COR_ERR] = CNTR_ELEM("RxRcvHdrCorErr", 0, 0,
4548 			CNTR_NORMAL,
4549 			access_rx_rcv_hdr_cor_err_cnt),
4550 [C_RX_RCV_HDR_UNC_ERR] = CNTR_ELEM("RxRcvHdrUncErr", 0, 0,
4551 			CNTR_NORMAL,
4552 			access_rx_rcv_hdr_unc_err_cnt),
4553 [C_RX_DC_INTF_PARITY_ERR] = CNTR_ELEM("RxDcIntfParityErr", 0, 0,
4554 			CNTR_NORMAL,
4555 			access_rx_dc_intf_parity_err_cnt),
4556 [C_RX_DMA_CSR_COR_ERR] = CNTR_ELEM("RxDmaCsrCorErr", 0, 0,
4557 			CNTR_NORMAL,
4558 			access_rx_dma_csr_cor_err_cnt),
4559 /* SendPioErrStatus */
4560 [C_PIO_PEC_SOP_HEAD_PARITY_ERR] = CNTR_ELEM("PioPecSopHeadParityErr", 0, 0,
4561 			CNTR_NORMAL,
4562 			access_pio_pec_sop_head_parity_err_cnt),
4563 [C_PIO_PCC_SOP_HEAD_PARITY_ERR] = CNTR_ELEM("PioPccSopHeadParityErr", 0, 0,
4564 			CNTR_NORMAL,
4565 			access_pio_pcc_sop_head_parity_err_cnt),
4566 [C_PIO_LAST_RETURNED_CNT_PARITY_ERR] = CNTR_ELEM("PioLastReturnedCntParityErr",
4567 			0, 0, CNTR_NORMAL,
4568 			access_pio_last_returned_cnt_parity_err_cnt),
4569 [C_PIO_CURRENT_FREE_CNT_PARITY_ERR] = CNTR_ELEM("PioCurrentFreeCntParityErr", 0,
4570 			0, CNTR_NORMAL,
4571 			access_pio_current_free_cnt_parity_err_cnt),
4572 [C_PIO_RSVD_31_ERR] = CNTR_ELEM("Pio Reserved 31", 0, 0,
4573 			CNTR_NORMAL,
4574 			access_pio_reserved_31_err_cnt),
4575 [C_PIO_RSVD_30_ERR] = CNTR_ELEM("Pio Reserved 30", 0, 0,
4576 			CNTR_NORMAL,
4577 			access_pio_reserved_30_err_cnt),
4578 [C_PIO_PPMC_SOP_LEN_ERR] = CNTR_ELEM("PioPpmcSopLenErr", 0, 0,
4579 			CNTR_NORMAL,
4580 			access_pio_ppmc_sop_len_err_cnt),
4581 [C_PIO_PPMC_BQC_MEM_PARITY_ERR] = CNTR_ELEM("PioPpmcBqcMemParityErr", 0, 0,
4582 			CNTR_NORMAL,
4583 			access_pio_ppmc_bqc_mem_parity_err_cnt),
4584 [C_PIO_VL_FIFO_PARITY_ERR] = CNTR_ELEM("PioVlFifoParityErr", 0, 0,
4585 			CNTR_NORMAL,
4586 			access_pio_vl_fifo_parity_err_cnt),
4587 [C_PIO_VLF_SOP_PARITY_ERR] = CNTR_ELEM("PioVlfSopParityErr", 0, 0,
4588 			CNTR_NORMAL,
4589 			access_pio_vlf_sop_parity_err_cnt),
4590 [C_PIO_VLF_V1_LEN_PARITY_ERR] = CNTR_ELEM("PioVlfVlLenParityErr", 0, 0,
4591 			CNTR_NORMAL,
4592 			access_pio_vlf_v1_len_parity_err_cnt),
4593 [C_PIO_BLOCK_QW_COUNT_PARITY_ERR] = CNTR_ELEM("PioBlockQwCountParityErr", 0, 0,
4594 			CNTR_NORMAL,
4595 			access_pio_block_qw_count_parity_err_cnt),
4596 [C_PIO_WRITE_QW_VALID_PARITY_ERR] = CNTR_ELEM("PioWriteQwValidParityErr", 0, 0,
4597 			CNTR_NORMAL,
4598 			access_pio_write_qw_valid_parity_err_cnt),
4599 [C_PIO_STATE_MACHINE_ERR] = CNTR_ELEM("PioStateMachineErr", 0, 0,
4600 			CNTR_NORMAL,
4601 			access_pio_state_machine_err_cnt),
4602 [C_PIO_WRITE_DATA_PARITY_ERR] = CNTR_ELEM("PioWriteDataParityErr", 0, 0,
4603 			CNTR_NORMAL,
4604 			access_pio_write_data_parity_err_cnt),
4605 [C_PIO_HOST_ADDR_MEM_COR_ERR] = CNTR_ELEM("PioHostAddrMemCorErr", 0, 0,
4606 			CNTR_NORMAL,
4607 			access_pio_host_addr_mem_cor_err_cnt),
4608 [C_PIO_HOST_ADDR_MEM_UNC_ERR] = CNTR_ELEM("PioHostAddrMemUncErr", 0, 0,
4609 			CNTR_NORMAL,
4610 			access_pio_host_addr_mem_unc_err_cnt),
4611 [C_PIO_PKT_EVICT_SM_OR_ARM_SM_ERR] = CNTR_ELEM("PioPktEvictSmOrArbSmErr", 0, 0,
4612 			CNTR_NORMAL,
4613 			access_pio_pkt_evict_sm_or_arb_sm_err_cnt),
4614 [C_PIO_INIT_SM_IN_ERR] = CNTR_ELEM("PioInitSmInErr", 0, 0,
4615 			CNTR_NORMAL,
4616 			access_pio_init_sm_in_err_cnt),
4617 [C_PIO_PPMC_PBL_FIFO_ERR] = CNTR_ELEM("PioPpmcPblFifoErr", 0, 0,
4618 			CNTR_NORMAL,
4619 			access_pio_ppmc_pbl_fifo_err_cnt),
4620 [C_PIO_CREDIT_RET_FIFO_PARITY_ERR] = CNTR_ELEM("PioCreditRetFifoParityErr", 0,
4621 			0, CNTR_NORMAL,
4622 			access_pio_credit_ret_fifo_parity_err_cnt),
4623 [C_PIO_V1_LEN_MEM_BANK1_COR_ERR] = CNTR_ELEM("PioVlLenMemBank1CorErr", 0, 0,
4624 			CNTR_NORMAL,
4625 			access_pio_v1_len_mem_bank1_cor_err_cnt),
4626 [C_PIO_V1_LEN_MEM_BANK0_COR_ERR] = CNTR_ELEM("PioVlLenMemBank0CorErr", 0, 0,
4627 			CNTR_NORMAL,
4628 			access_pio_v1_len_mem_bank0_cor_err_cnt),
4629 [C_PIO_V1_LEN_MEM_BANK1_UNC_ERR] = CNTR_ELEM("PioVlLenMemBank1UncErr", 0, 0,
4630 			CNTR_NORMAL,
4631 			access_pio_v1_len_mem_bank1_unc_err_cnt),
4632 [C_PIO_V1_LEN_MEM_BANK0_UNC_ERR] = CNTR_ELEM("PioVlLenMemBank0UncErr", 0, 0,
4633 			CNTR_NORMAL,
4634 			access_pio_v1_len_mem_bank0_unc_err_cnt),
4635 [C_PIO_SM_PKT_RESET_PARITY_ERR] = CNTR_ELEM("PioSmPktResetParityErr", 0, 0,
4636 			CNTR_NORMAL,
4637 			access_pio_sm_pkt_reset_parity_err_cnt),
4638 [C_PIO_PKT_EVICT_FIFO_PARITY_ERR] = CNTR_ELEM("PioPktEvictFifoParityErr", 0, 0,
4639 			CNTR_NORMAL,
4640 			access_pio_pkt_evict_fifo_parity_err_cnt),
4641 [C_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR] = CNTR_ELEM(
4642 			"PioSbrdctrlCrrelFifoParityErr", 0, 0,
4643 			CNTR_NORMAL,
4644 			access_pio_sbrdctrl_crrel_fifo_parity_err_cnt),
4645 [C_PIO_SBRDCTL_CRREL_PARITY_ERR] = CNTR_ELEM("PioSbrdctlCrrelParityErr", 0, 0,
4646 			CNTR_NORMAL,
4647 			access_pio_sbrdctl_crrel_parity_err_cnt),
4648 [C_PIO_PEC_FIFO_PARITY_ERR] = CNTR_ELEM("PioPecFifoParityErr", 0, 0,
4649 			CNTR_NORMAL,
4650 			access_pio_pec_fifo_parity_err_cnt),
4651 [C_PIO_PCC_FIFO_PARITY_ERR] = CNTR_ELEM("PioPccFifoParityErr", 0, 0,
4652 			CNTR_NORMAL,
4653 			access_pio_pcc_fifo_parity_err_cnt),
4654 [C_PIO_SB_MEM_FIFO1_ERR] = CNTR_ELEM("PioSbMemFifo1Err", 0, 0,
4655 			CNTR_NORMAL,
4656 			access_pio_sb_mem_fifo1_err_cnt),
4657 [C_PIO_SB_MEM_FIFO0_ERR] = CNTR_ELEM("PioSbMemFifo0Err", 0, 0,
4658 			CNTR_NORMAL,
4659 			access_pio_sb_mem_fifo0_err_cnt),
4660 [C_PIO_CSR_PARITY_ERR] = CNTR_ELEM("PioCsrParityErr", 0, 0,
4661 			CNTR_NORMAL,
4662 			access_pio_csr_parity_err_cnt),
4663 [C_PIO_WRITE_ADDR_PARITY_ERR] = CNTR_ELEM("PioWriteAddrParityErr", 0, 0,
4664 			CNTR_NORMAL,
4665 			access_pio_write_addr_parity_err_cnt),
4666 [C_PIO_WRITE_BAD_CTXT_ERR] = CNTR_ELEM("PioWriteBadCtxtErr", 0, 0,
4667 			CNTR_NORMAL,
4668 			access_pio_write_bad_ctxt_err_cnt),
4669 /* SendDmaErrStatus */
4670 [C_SDMA_PCIE_REQ_TRACKING_COR_ERR] = CNTR_ELEM("SDmaPcieReqTrackingCorErr", 0,
4671 			0, CNTR_NORMAL,
4672 			access_sdma_pcie_req_tracking_cor_err_cnt),
4673 [C_SDMA_PCIE_REQ_TRACKING_UNC_ERR] = CNTR_ELEM("SDmaPcieReqTrackingUncErr", 0,
4674 			0, CNTR_NORMAL,
4675 			access_sdma_pcie_req_tracking_unc_err_cnt),
4676 [C_SDMA_CSR_PARITY_ERR] = CNTR_ELEM("SDmaCsrParityErr", 0, 0,
4677 			CNTR_NORMAL,
4678 			access_sdma_csr_parity_err_cnt),
4679 [C_SDMA_RPY_TAG_ERR] = CNTR_ELEM("SDmaRpyTagErr", 0, 0,
4680 			CNTR_NORMAL,
4681 			access_sdma_rpy_tag_err_cnt),
4682 /* SendEgressErrStatus */
4683 [C_TX_READ_PIO_MEMORY_CSR_UNC_ERR] = CNTR_ELEM("TxReadPioMemoryCsrUncErr", 0, 0,
4684 			CNTR_NORMAL,
4685 			access_tx_read_pio_memory_csr_unc_err_cnt),
4686 [C_TX_READ_SDMA_MEMORY_CSR_UNC_ERR] = CNTR_ELEM("TxReadSdmaMemoryCsrUncErr", 0,
4687 			0, CNTR_NORMAL,
4688 			access_tx_read_sdma_memory_csr_err_cnt),
4689 [C_TX_EGRESS_FIFO_COR_ERR] = CNTR_ELEM("TxEgressFifoCorErr", 0, 0,
4690 			CNTR_NORMAL,
4691 			access_tx_egress_fifo_cor_err_cnt),
4692 [C_TX_READ_PIO_MEMORY_COR_ERR] = CNTR_ELEM("TxReadPioMemoryCorErr", 0, 0,
4693 			CNTR_NORMAL,
4694 			access_tx_read_pio_memory_cor_err_cnt),
4695 [C_TX_READ_SDMA_MEMORY_COR_ERR] = CNTR_ELEM("TxReadSdmaMemoryCorErr", 0, 0,
4696 			CNTR_NORMAL,
4697 			access_tx_read_sdma_memory_cor_err_cnt),
4698 [C_TX_SB_HDR_COR_ERR] = CNTR_ELEM("TxSbHdrCorErr", 0, 0,
4699 			CNTR_NORMAL,
4700 			access_tx_sb_hdr_cor_err_cnt),
4701 [C_TX_CREDIT_OVERRUN_ERR] = CNTR_ELEM("TxCreditOverrunErr", 0, 0,
4702 			CNTR_NORMAL,
4703 			access_tx_credit_overrun_err_cnt),
4704 [C_TX_LAUNCH_FIFO8_COR_ERR] = CNTR_ELEM("TxLaunchFifo8CorErr", 0, 0,
4705 			CNTR_NORMAL,
4706 			access_tx_launch_fifo8_cor_err_cnt),
4707 [C_TX_LAUNCH_FIFO7_COR_ERR] = CNTR_ELEM("TxLaunchFifo7CorErr", 0, 0,
4708 			CNTR_NORMAL,
4709 			access_tx_launch_fifo7_cor_err_cnt),
4710 [C_TX_LAUNCH_FIFO6_COR_ERR] = CNTR_ELEM("TxLaunchFifo6CorErr", 0, 0,
4711 			CNTR_NORMAL,
4712 			access_tx_launch_fifo6_cor_err_cnt),
4713 [C_TX_LAUNCH_FIFO5_COR_ERR] = CNTR_ELEM("TxLaunchFifo5CorErr", 0, 0,
4714 			CNTR_NORMAL,
4715 			access_tx_launch_fifo5_cor_err_cnt),
4716 [C_TX_LAUNCH_FIFO4_COR_ERR] = CNTR_ELEM("TxLaunchFifo4CorErr", 0, 0,
4717 			CNTR_NORMAL,
4718 			access_tx_launch_fifo4_cor_err_cnt),
4719 [C_TX_LAUNCH_FIFO3_COR_ERR] = CNTR_ELEM("TxLaunchFifo3CorErr", 0, 0,
4720 			CNTR_NORMAL,
4721 			access_tx_launch_fifo3_cor_err_cnt),
4722 [C_TX_LAUNCH_FIFO2_COR_ERR] = CNTR_ELEM("TxLaunchFifo2CorErr", 0, 0,
4723 			CNTR_NORMAL,
4724 			access_tx_launch_fifo2_cor_err_cnt),
4725 [C_TX_LAUNCH_FIFO1_COR_ERR] = CNTR_ELEM("TxLaunchFifo1CorErr", 0, 0,
4726 			CNTR_NORMAL,
4727 			access_tx_launch_fifo1_cor_err_cnt),
4728 [C_TX_LAUNCH_FIFO0_COR_ERR] = CNTR_ELEM("TxLaunchFifo0CorErr", 0, 0,
4729 			CNTR_NORMAL,
4730 			access_tx_launch_fifo0_cor_err_cnt),
4731 [C_TX_CREDIT_RETURN_VL_ERR] = CNTR_ELEM("TxCreditReturnVLErr", 0, 0,
4732 			CNTR_NORMAL,
4733 			access_tx_credit_return_vl_err_cnt),
4734 [C_TX_HCRC_INSERTION_ERR] = CNTR_ELEM("TxHcrcInsertionErr", 0, 0,
4735 			CNTR_NORMAL,
4736 			access_tx_hcrc_insertion_err_cnt),
4737 [C_TX_EGRESS_FIFI_UNC_ERR] = CNTR_ELEM("TxEgressFifoUncErr", 0, 0,
4738 			CNTR_NORMAL,
4739 			access_tx_egress_fifo_unc_err_cnt),
4740 [C_TX_READ_PIO_MEMORY_UNC_ERR] = CNTR_ELEM("TxReadPioMemoryUncErr", 0, 0,
4741 			CNTR_NORMAL,
4742 			access_tx_read_pio_memory_unc_err_cnt),
4743 [C_TX_READ_SDMA_MEMORY_UNC_ERR] = CNTR_ELEM("TxReadSdmaMemoryUncErr", 0, 0,
4744 			CNTR_NORMAL,
4745 			access_tx_read_sdma_memory_unc_err_cnt),
4746 [C_TX_SB_HDR_UNC_ERR] = CNTR_ELEM("TxSbHdrUncErr", 0, 0,
4747 			CNTR_NORMAL,
4748 			access_tx_sb_hdr_unc_err_cnt),
4749 [C_TX_CREDIT_RETURN_PARITY_ERR] = CNTR_ELEM("TxCreditReturnParityErr", 0, 0,
4750 			CNTR_NORMAL,
4751 			access_tx_credit_return_partiy_err_cnt),
4752 [C_TX_LAUNCH_FIFO8_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo8UncOrParityErr",
4753 			0, 0, CNTR_NORMAL,
4754 			access_tx_launch_fifo8_unc_or_parity_err_cnt),
4755 [C_TX_LAUNCH_FIFO7_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo7UncOrParityErr",
4756 			0, 0, CNTR_NORMAL,
4757 			access_tx_launch_fifo7_unc_or_parity_err_cnt),
4758 [C_TX_LAUNCH_FIFO6_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo6UncOrParityErr",
4759 			0, 0, CNTR_NORMAL,
4760 			access_tx_launch_fifo6_unc_or_parity_err_cnt),
4761 [C_TX_LAUNCH_FIFO5_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo5UncOrParityErr",
4762 			0, 0, CNTR_NORMAL,
4763 			access_tx_launch_fifo5_unc_or_parity_err_cnt),
4764 [C_TX_LAUNCH_FIFO4_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo4UncOrParityErr",
4765 			0, 0, CNTR_NORMAL,
4766 			access_tx_launch_fifo4_unc_or_parity_err_cnt),
4767 [C_TX_LAUNCH_FIFO3_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo3UncOrParityErr",
4768 			0, 0, CNTR_NORMAL,
4769 			access_tx_launch_fifo3_unc_or_parity_err_cnt),
4770 [C_TX_LAUNCH_FIFO2_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo2UncOrParityErr",
4771 			0, 0, CNTR_NORMAL,
4772 			access_tx_launch_fifo2_unc_or_parity_err_cnt),
4773 [C_TX_LAUNCH_FIFO1_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo1UncOrParityErr",
4774 			0, 0, CNTR_NORMAL,
4775 			access_tx_launch_fifo1_unc_or_parity_err_cnt),
4776 [C_TX_LAUNCH_FIFO0_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo0UncOrParityErr",
4777 			0, 0, CNTR_NORMAL,
4778 			access_tx_launch_fifo0_unc_or_parity_err_cnt),
4779 [C_TX_SDMA15_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma15DisallowedPacketErr",
4780 			0, 0, CNTR_NORMAL,
4781 			access_tx_sdma15_disallowed_packet_err_cnt),
4782 [C_TX_SDMA14_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma14DisallowedPacketErr",
4783 			0, 0, CNTR_NORMAL,
4784 			access_tx_sdma14_disallowed_packet_err_cnt),
4785 [C_TX_SDMA13_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma13DisallowedPacketErr",
4786 			0, 0, CNTR_NORMAL,
4787 			access_tx_sdma13_disallowed_packet_err_cnt),
4788 [C_TX_SDMA12_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma12DisallowedPacketErr",
4789 			0, 0, CNTR_NORMAL,
4790 			access_tx_sdma12_disallowed_packet_err_cnt),
4791 [C_TX_SDMA11_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma11DisallowedPacketErr",
4792 			0, 0, CNTR_NORMAL,
4793 			access_tx_sdma11_disallowed_packet_err_cnt),
4794 [C_TX_SDMA10_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma10DisallowedPacketErr",
4795 			0, 0, CNTR_NORMAL,
4796 			access_tx_sdma10_disallowed_packet_err_cnt),
4797 [C_TX_SDMA9_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma9DisallowedPacketErr",
4798 			0, 0, CNTR_NORMAL,
4799 			access_tx_sdma9_disallowed_packet_err_cnt),
4800 [C_TX_SDMA8_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma8DisallowedPacketErr",
4801 			0, 0, CNTR_NORMAL,
4802 			access_tx_sdma8_disallowed_packet_err_cnt),
4803 [C_TX_SDMA7_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma7DisallowedPacketErr",
4804 			0, 0, CNTR_NORMAL,
4805 			access_tx_sdma7_disallowed_packet_err_cnt),
4806 [C_TX_SDMA6_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma6DisallowedPacketErr",
4807 			0, 0, CNTR_NORMAL,
4808 			access_tx_sdma6_disallowed_packet_err_cnt),
4809 [C_TX_SDMA5_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma5DisallowedPacketErr",
4810 			0, 0, CNTR_NORMAL,
4811 			access_tx_sdma5_disallowed_packet_err_cnt),
4812 [C_TX_SDMA4_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma4DisallowedPacketErr",
4813 			0, 0, CNTR_NORMAL,
4814 			access_tx_sdma4_disallowed_packet_err_cnt),
4815 [C_TX_SDMA3_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma3DisallowedPacketErr",
4816 			0, 0, CNTR_NORMAL,
4817 			access_tx_sdma3_disallowed_packet_err_cnt),
4818 [C_TX_SDMA2_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma2DisallowedPacketErr",
4819 			0, 0, CNTR_NORMAL,
4820 			access_tx_sdma2_disallowed_packet_err_cnt),
4821 [C_TX_SDMA1_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma1DisallowedPacketErr",
4822 			0, 0, CNTR_NORMAL,
4823 			access_tx_sdma1_disallowed_packet_err_cnt),
4824 [C_TX_SDMA0_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma0DisallowedPacketErr",
4825 			0, 0, CNTR_NORMAL,
4826 			access_tx_sdma0_disallowed_packet_err_cnt),
4827 [C_TX_CONFIG_PARITY_ERR] = CNTR_ELEM("TxConfigParityErr", 0, 0,
4828 			CNTR_NORMAL,
4829 			access_tx_config_parity_err_cnt),
4830 [C_TX_SBRD_CTL_CSR_PARITY_ERR] = CNTR_ELEM("TxSbrdCtlCsrParityErr", 0, 0,
4831 			CNTR_NORMAL,
4832 			access_tx_sbrd_ctl_csr_parity_err_cnt),
4833 [C_TX_LAUNCH_CSR_PARITY_ERR] = CNTR_ELEM("TxLaunchCsrParityErr", 0, 0,
4834 			CNTR_NORMAL,
4835 			access_tx_launch_csr_parity_err_cnt),
4836 [C_TX_ILLEGAL_CL_ERR] = CNTR_ELEM("TxIllegalVLErr", 0, 0,
4837 			CNTR_NORMAL,
4838 			access_tx_illegal_vl_err_cnt),
4839 [C_TX_SBRD_CTL_STATE_MACHINE_PARITY_ERR] = CNTR_ELEM(
4840 			"TxSbrdCtlStateMachineParityErr", 0, 0,
4841 			CNTR_NORMAL,
4842 			access_tx_sbrd_ctl_state_machine_parity_err_cnt),
4843 [C_TX_RESERVED_10] = CNTR_ELEM("Tx Egress Reserved 10", 0, 0,
4844 			CNTR_NORMAL,
4845 			access_egress_reserved_10_err_cnt),
4846 [C_TX_RESERVED_9] = CNTR_ELEM("Tx Egress Reserved 9", 0, 0,
4847 			CNTR_NORMAL,
4848 			access_egress_reserved_9_err_cnt),
4849 [C_TX_SDMA_LAUNCH_INTF_PARITY_ERR] = CNTR_ELEM("TxSdmaLaunchIntfParityErr",
4850 			0, 0, CNTR_NORMAL,
4851 			access_tx_sdma_launch_intf_parity_err_cnt),
4852 [C_TX_PIO_LAUNCH_INTF_PARITY_ERR] = CNTR_ELEM("TxPioLaunchIntfParityErr", 0, 0,
4853 			CNTR_NORMAL,
4854 			access_tx_pio_launch_intf_parity_err_cnt),
4855 [C_TX_RESERVED_6] = CNTR_ELEM("Tx Egress Reserved 6", 0, 0,
4856 			CNTR_NORMAL,
4857 			access_egress_reserved_6_err_cnt),
4858 [C_TX_INCORRECT_LINK_STATE_ERR] = CNTR_ELEM("TxIncorrectLinkStateErr", 0, 0,
4859 			CNTR_NORMAL,
4860 			access_tx_incorrect_link_state_err_cnt),
4861 [C_TX_LINK_DOWN_ERR] = CNTR_ELEM("TxLinkdownErr", 0, 0,
4862 			CNTR_NORMAL,
4863 			access_tx_linkdown_err_cnt),
4864 [C_TX_EGRESS_FIFO_UNDERRUN_OR_PARITY_ERR] = CNTR_ELEM(
4865 			"EgressFifoUnderrunOrParityErr", 0, 0,
4866 			CNTR_NORMAL,
4867 			access_tx_egress_fifi_underrun_or_parity_err_cnt),
4868 [C_TX_RESERVED_2] = CNTR_ELEM("Tx Egress Reserved 2", 0, 0,
4869 			CNTR_NORMAL,
4870 			access_egress_reserved_2_err_cnt),
4871 [C_TX_PKT_INTEGRITY_MEM_UNC_ERR] = CNTR_ELEM("TxPktIntegrityMemUncErr", 0, 0,
4872 			CNTR_NORMAL,
4873 			access_tx_pkt_integrity_mem_unc_err_cnt),
4874 [C_TX_PKT_INTEGRITY_MEM_COR_ERR] = CNTR_ELEM("TxPktIntegrityMemCorErr", 0, 0,
4875 			CNTR_NORMAL,
4876 			access_tx_pkt_integrity_mem_cor_err_cnt),
4877 /* SendErrStatus */
4878 [C_SEND_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("SendCsrWriteBadAddrErr", 0, 0,
4879 			CNTR_NORMAL,
4880 			access_send_csr_write_bad_addr_err_cnt),
4881 [C_SEND_CSR_READ_BAD_ADD_ERR] = CNTR_ELEM("SendCsrReadBadAddrErr", 0, 0,
4882 			CNTR_NORMAL,
4883 			access_send_csr_read_bad_addr_err_cnt),
4884 [C_SEND_CSR_PARITY_ERR] = CNTR_ELEM("SendCsrParityErr", 0, 0,
4885 			CNTR_NORMAL,
4886 			access_send_csr_parity_cnt),
4887 /* SendCtxtErrStatus */
4888 [C_PIO_WRITE_OUT_OF_BOUNDS_ERR] = CNTR_ELEM("PioWriteOutOfBoundsErr", 0, 0,
4889 			CNTR_NORMAL,
4890 			access_pio_write_out_of_bounds_err_cnt),
4891 [C_PIO_WRITE_OVERFLOW_ERR] = CNTR_ELEM("PioWriteOverflowErr", 0, 0,
4892 			CNTR_NORMAL,
4893 			access_pio_write_overflow_err_cnt),
4894 [C_PIO_WRITE_CROSSES_BOUNDARY_ERR] = CNTR_ELEM("PioWriteCrossesBoundaryErr",
4895 			0, 0, CNTR_NORMAL,
4896 			access_pio_write_crosses_boundary_err_cnt),
4897 [C_PIO_DISALLOWED_PACKET_ERR] = CNTR_ELEM("PioDisallowedPacketErr", 0, 0,
4898 			CNTR_NORMAL,
4899 			access_pio_disallowed_packet_err_cnt),
4900 [C_PIO_INCONSISTENT_SOP_ERR] = CNTR_ELEM("PioInconsistentSopErr", 0, 0,
4901 			CNTR_NORMAL,
4902 			access_pio_inconsistent_sop_err_cnt),
4903 /* SendDmaEngErrStatus */
4904 [C_SDMA_HEADER_REQUEST_FIFO_COR_ERR] = CNTR_ELEM("SDmaHeaderRequestFifoCorErr",
4905 			0, 0, CNTR_NORMAL,
4906 			access_sdma_header_request_fifo_cor_err_cnt),
4907 [C_SDMA_HEADER_STORAGE_COR_ERR] = CNTR_ELEM("SDmaHeaderStorageCorErr", 0, 0,
4908 			CNTR_NORMAL,
4909 			access_sdma_header_storage_cor_err_cnt),
4910 [C_SDMA_PACKET_TRACKING_COR_ERR] = CNTR_ELEM("SDmaPacketTrackingCorErr", 0, 0,
4911 			CNTR_NORMAL,
4912 			access_sdma_packet_tracking_cor_err_cnt),
4913 [C_SDMA_ASSEMBLY_COR_ERR] = CNTR_ELEM("SDmaAssemblyCorErr", 0, 0,
4914 			CNTR_NORMAL,
4915 			access_sdma_assembly_cor_err_cnt),
4916 [C_SDMA_DESC_TABLE_COR_ERR] = CNTR_ELEM("SDmaDescTableCorErr", 0, 0,
4917 			CNTR_NORMAL,
4918 			access_sdma_desc_table_cor_err_cnt),
4919 [C_SDMA_HEADER_REQUEST_FIFO_UNC_ERR] = CNTR_ELEM("SDmaHeaderRequestFifoUncErr",
4920 			0, 0, CNTR_NORMAL,
4921 			access_sdma_header_request_fifo_unc_err_cnt),
4922 [C_SDMA_HEADER_STORAGE_UNC_ERR] = CNTR_ELEM("SDmaHeaderStorageUncErr", 0, 0,
4923 			CNTR_NORMAL,
4924 			access_sdma_header_storage_unc_err_cnt),
4925 [C_SDMA_PACKET_TRACKING_UNC_ERR] = CNTR_ELEM("SDmaPacketTrackingUncErr", 0, 0,
4926 			CNTR_NORMAL,
4927 			access_sdma_packet_tracking_unc_err_cnt),
4928 [C_SDMA_ASSEMBLY_UNC_ERR] = CNTR_ELEM("SDmaAssemblyUncErr", 0, 0,
4929 			CNTR_NORMAL,
4930 			access_sdma_assembly_unc_err_cnt),
4931 [C_SDMA_DESC_TABLE_UNC_ERR] = CNTR_ELEM("SDmaDescTableUncErr", 0, 0,
4932 			CNTR_NORMAL,
4933 			access_sdma_desc_table_unc_err_cnt),
4934 [C_SDMA_TIMEOUT_ERR] = CNTR_ELEM("SDmaTimeoutErr", 0, 0,
4935 			CNTR_NORMAL,
4936 			access_sdma_timeout_err_cnt),
4937 [C_SDMA_HEADER_LENGTH_ERR] = CNTR_ELEM("SDmaHeaderLengthErr", 0, 0,
4938 			CNTR_NORMAL,
4939 			access_sdma_header_length_err_cnt),
4940 [C_SDMA_HEADER_ADDRESS_ERR] = CNTR_ELEM("SDmaHeaderAddressErr", 0, 0,
4941 			CNTR_NORMAL,
4942 			access_sdma_header_address_err_cnt),
4943 [C_SDMA_HEADER_SELECT_ERR] = CNTR_ELEM("SDmaHeaderSelectErr", 0, 0,
4944 			CNTR_NORMAL,
4945 			access_sdma_header_select_err_cnt),
4946 [C_SMDA_RESERVED_9] = CNTR_ELEM("SDma Reserved 9", 0, 0,
4947 			CNTR_NORMAL,
4948 			access_sdma_reserved_9_err_cnt),
4949 [C_SDMA_PACKET_DESC_OVERFLOW_ERR] = CNTR_ELEM("SDmaPacketDescOverflowErr", 0, 0,
4950 			CNTR_NORMAL,
4951 			access_sdma_packet_desc_overflow_err_cnt),
4952 [C_SDMA_LENGTH_MISMATCH_ERR] = CNTR_ELEM("SDmaLengthMismatchErr", 0, 0,
4953 			CNTR_NORMAL,
4954 			access_sdma_length_mismatch_err_cnt),
4955 [C_SDMA_HALT_ERR] = CNTR_ELEM("SDmaHaltErr", 0, 0,
4956 			CNTR_NORMAL,
4957 			access_sdma_halt_err_cnt),
4958 [C_SDMA_MEM_READ_ERR] = CNTR_ELEM("SDmaMemReadErr", 0, 0,
4959 			CNTR_NORMAL,
4960 			access_sdma_mem_read_err_cnt),
4961 [C_SDMA_FIRST_DESC_ERR] = CNTR_ELEM("SDmaFirstDescErr", 0, 0,
4962 			CNTR_NORMAL,
4963 			access_sdma_first_desc_err_cnt),
4964 [C_SDMA_TAIL_OUT_OF_BOUNDS_ERR] = CNTR_ELEM("SDmaTailOutOfBoundsErr", 0, 0,
4965 			CNTR_NORMAL,
4966 			access_sdma_tail_out_of_bounds_err_cnt),
4967 [C_SDMA_TOO_LONG_ERR] = CNTR_ELEM("SDmaTooLongErr", 0, 0,
4968 			CNTR_NORMAL,
4969 			access_sdma_too_long_err_cnt),
4970 [C_SDMA_GEN_MISMATCH_ERR] = CNTR_ELEM("SDmaGenMismatchErr", 0, 0,
4971 			CNTR_NORMAL,
4972 			access_sdma_gen_mismatch_err_cnt),
4973 [C_SDMA_WRONG_DW_ERR] = CNTR_ELEM("SDmaWrongDwErr", 0, 0,
4974 			CNTR_NORMAL,
4975 			access_sdma_wrong_dw_err_cnt),
4976 };
4977 
4978 static struct cntr_entry port_cntrs[PORT_CNTR_LAST] = {
4979 [C_TX_UNSUP_VL] = TXE32_PORT_CNTR_ELEM(TxUnVLErr, SEND_UNSUP_VL_ERR_CNT,
4980 			CNTR_NORMAL),
4981 [C_TX_INVAL_LEN] = TXE32_PORT_CNTR_ELEM(TxInvalLen, SEND_LEN_ERR_CNT,
4982 			CNTR_NORMAL),
4983 [C_TX_MM_LEN_ERR] = TXE32_PORT_CNTR_ELEM(TxMMLenErr, SEND_MAX_MIN_LEN_ERR_CNT,
4984 			CNTR_NORMAL),
4985 [C_TX_UNDERRUN] = TXE32_PORT_CNTR_ELEM(TxUnderrun, SEND_UNDERRUN_CNT,
4986 			CNTR_NORMAL),
4987 [C_TX_FLOW_STALL] = TXE32_PORT_CNTR_ELEM(TxFlowStall, SEND_FLOW_STALL_CNT,
4988 			CNTR_NORMAL),
4989 [C_TX_DROPPED] = TXE32_PORT_CNTR_ELEM(TxDropped, SEND_DROPPED_PKT_CNT,
4990 			CNTR_NORMAL),
4991 [C_TX_HDR_ERR] = TXE32_PORT_CNTR_ELEM(TxHdrErr, SEND_HEADERS_ERR_CNT,
4992 			CNTR_NORMAL),
4993 [C_TX_PKT] = TXE64_PORT_CNTR_ELEM(TxPkt, SEND_DATA_PKT_CNT, CNTR_NORMAL),
4994 [C_TX_WORDS] = TXE64_PORT_CNTR_ELEM(TxWords, SEND_DWORD_CNT, CNTR_NORMAL),
4995 [C_TX_WAIT] = TXE64_PORT_CNTR_ELEM(TxWait, SEND_WAIT_CNT, CNTR_SYNTH),
4996 [C_TX_FLIT_VL] = TXE64_PORT_CNTR_ELEM(TxFlitVL, SEND_DATA_VL0_CNT,
4997 				      CNTR_SYNTH | CNTR_VL),
4998 [C_TX_PKT_VL] = TXE64_PORT_CNTR_ELEM(TxPktVL, SEND_DATA_PKT_VL0_CNT,
4999 				     CNTR_SYNTH | CNTR_VL),
5000 [C_TX_WAIT_VL] = TXE64_PORT_CNTR_ELEM(TxWaitVL, SEND_WAIT_VL0_CNT,
5001 				      CNTR_SYNTH | CNTR_VL),
5002 [C_RX_PKT] = RXE64_PORT_CNTR_ELEM(RxPkt, RCV_DATA_PKT_CNT, CNTR_NORMAL),
5003 [C_RX_WORDS] = RXE64_PORT_CNTR_ELEM(RxWords, RCV_DWORD_CNT, CNTR_NORMAL),
5004 [C_SW_LINK_DOWN] = CNTR_ELEM("SwLinkDown", 0, 0, CNTR_SYNTH | CNTR_32BIT,
5005 			     access_sw_link_dn_cnt),
5006 [C_SW_LINK_UP] = CNTR_ELEM("SwLinkUp", 0, 0, CNTR_SYNTH | CNTR_32BIT,
5007 			   access_sw_link_up_cnt),
5008 [C_SW_UNKNOWN_FRAME] = CNTR_ELEM("UnknownFrame", 0, 0, CNTR_NORMAL,
5009 				 access_sw_unknown_frame_cnt),
5010 [C_SW_XMIT_DSCD] = CNTR_ELEM("XmitDscd", 0, 0, CNTR_SYNTH | CNTR_32BIT,
5011 			     access_sw_xmit_discards),
5012 [C_SW_XMIT_DSCD_VL] = CNTR_ELEM("XmitDscdVl", 0, 0,
5013 				CNTR_SYNTH | CNTR_32BIT | CNTR_VL,
5014 				access_sw_xmit_discards),
5015 [C_SW_XMIT_CSTR_ERR] = CNTR_ELEM("XmitCstrErr", 0, 0, CNTR_SYNTH,
5016 				 access_xmit_constraint_errs),
5017 [C_SW_RCV_CSTR_ERR] = CNTR_ELEM("RcvCstrErr", 0, 0, CNTR_SYNTH,
5018 				access_rcv_constraint_errs),
5019 [C_SW_IBP_LOOP_PKTS] = SW_IBP_CNTR(LoopPkts, loop_pkts),
5020 [C_SW_IBP_RC_RESENDS] = SW_IBP_CNTR(RcResend, rc_resends),
5021 [C_SW_IBP_RNR_NAKS] = SW_IBP_CNTR(RnrNak, rnr_naks),
5022 [C_SW_IBP_OTHER_NAKS] = SW_IBP_CNTR(OtherNak, other_naks),
5023 [C_SW_IBP_RC_TIMEOUTS] = SW_IBP_CNTR(RcTimeOut, rc_timeouts),
5024 [C_SW_IBP_PKT_DROPS] = SW_IBP_CNTR(PktDrop, pkt_drops),
5025 [C_SW_IBP_DMA_WAIT] = SW_IBP_CNTR(DmaWait, dmawait),
5026 [C_SW_IBP_RC_SEQNAK] = SW_IBP_CNTR(RcSeqNak, rc_seqnak),
5027 [C_SW_IBP_RC_DUPREQ] = SW_IBP_CNTR(RcDupRew, rc_dupreq),
5028 [C_SW_IBP_RDMA_SEQ] = SW_IBP_CNTR(RdmaSeq, rdma_seq),
5029 [C_SW_IBP_UNALIGNED] = SW_IBP_CNTR(Unaligned, unaligned),
5030 [C_SW_IBP_SEQ_NAK] = SW_IBP_CNTR(SeqNak, seq_naks),
5031 [C_SW_CPU_RC_ACKS] = CNTR_ELEM("RcAcks", 0, 0, CNTR_NORMAL,
5032 			       access_sw_cpu_rc_acks),
5033 [C_SW_CPU_RC_QACKS] = CNTR_ELEM("RcQacks", 0, 0, CNTR_NORMAL,
5034 				access_sw_cpu_rc_qacks),
5035 [C_SW_CPU_RC_DELAYED_COMP] = CNTR_ELEM("RcDelayComp", 0, 0, CNTR_NORMAL,
5036 				       access_sw_cpu_rc_delayed_comp),
5037 [OVR_LBL(0)] = OVR_ELM(0), [OVR_LBL(1)] = OVR_ELM(1),
5038 [OVR_LBL(2)] = OVR_ELM(2), [OVR_LBL(3)] = OVR_ELM(3),
5039 [OVR_LBL(4)] = OVR_ELM(4), [OVR_LBL(5)] = OVR_ELM(5),
5040 [OVR_LBL(6)] = OVR_ELM(6), [OVR_LBL(7)] = OVR_ELM(7),
5041 [OVR_LBL(8)] = OVR_ELM(8), [OVR_LBL(9)] = OVR_ELM(9),
5042 [OVR_LBL(10)] = OVR_ELM(10), [OVR_LBL(11)] = OVR_ELM(11),
5043 [OVR_LBL(12)] = OVR_ELM(12), [OVR_LBL(13)] = OVR_ELM(13),
5044 [OVR_LBL(14)] = OVR_ELM(14), [OVR_LBL(15)] = OVR_ELM(15),
5045 [OVR_LBL(16)] = OVR_ELM(16), [OVR_LBL(17)] = OVR_ELM(17),
5046 [OVR_LBL(18)] = OVR_ELM(18), [OVR_LBL(19)] = OVR_ELM(19),
5047 [OVR_LBL(20)] = OVR_ELM(20), [OVR_LBL(21)] = OVR_ELM(21),
5048 [OVR_LBL(22)] = OVR_ELM(22), [OVR_LBL(23)] = OVR_ELM(23),
5049 [OVR_LBL(24)] = OVR_ELM(24), [OVR_LBL(25)] = OVR_ELM(25),
5050 [OVR_LBL(26)] = OVR_ELM(26), [OVR_LBL(27)] = OVR_ELM(27),
5051 [OVR_LBL(28)] = OVR_ELM(28), [OVR_LBL(29)] = OVR_ELM(29),
5052 [OVR_LBL(30)] = OVR_ELM(30), [OVR_LBL(31)] = OVR_ELM(31),
5053 [OVR_LBL(32)] = OVR_ELM(32), [OVR_LBL(33)] = OVR_ELM(33),
5054 [OVR_LBL(34)] = OVR_ELM(34), [OVR_LBL(35)] = OVR_ELM(35),
5055 [OVR_LBL(36)] = OVR_ELM(36), [OVR_LBL(37)] = OVR_ELM(37),
5056 [OVR_LBL(38)] = OVR_ELM(38), [OVR_LBL(39)] = OVR_ELM(39),
5057 [OVR_LBL(40)] = OVR_ELM(40), [OVR_LBL(41)] = OVR_ELM(41),
5058 [OVR_LBL(42)] = OVR_ELM(42), [OVR_LBL(43)] = OVR_ELM(43),
5059 [OVR_LBL(44)] = OVR_ELM(44), [OVR_LBL(45)] = OVR_ELM(45),
5060 [OVR_LBL(46)] = OVR_ELM(46), [OVR_LBL(47)] = OVR_ELM(47),
5061 [OVR_LBL(48)] = OVR_ELM(48), [OVR_LBL(49)] = OVR_ELM(49),
5062 [OVR_LBL(50)] = OVR_ELM(50), [OVR_LBL(51)] = OVR_ELM(51),
5063 [OVR_LBL(52)] = OVR_ELM(52), [OVR_LBL(53)] = OVR_ELM(53),
5064 [OVR_LBL(54)] = OVR_ELM(54), [OVR_LBL(55)] = OVR_ELM(55),
5065 [OVR_LBL(56)] = OVR_ELM(56), [OVR_LBL(57)] = OVR_ELM(57),
5066 [OVR_LBL(58)] = OVR_ELM(58), [OVR_LBL(59)] = OVR_ELM(59),
5067 [OVR_LBL(60)] = OVR_ELM(60), [OVR_LBL(61)] = OVR_ELM(61),
5068 [OVR_LBL(62)] = OVR_ELM(62), [OVR_LBL(63)] = OVR_ELM(63),
5069 [OVR_LBL(64)] = OVR_ELM(64), [OVR_LBL(65)] = OVR_ELM(65),
5070 [OVR_LBL(66)] = OVR_ELM(66), [OVR_LBL(67)] = OVR_ELM(67),
5071 [OVR_LBL(68)] = OVR_ELM(68), [OVR_LBL(69)] = OVR_ELM(69),
5072 [OVR_LBL(70)] = OVR_ELM(70), [OVR_LBL(71)] = OVR_ELM(71),
5073 [OVR_LBL(72)] = OVR_ELM(72), [OVR_LBL(73)] = OVR_ELM(73),
5074 [OVR_LBL(74)] = OVR_ELM(74), [OVR_LBL(75)] = OVR_ELM(75),
5075 [OVR_LBL(76)] = OVR_ELM(76), [OVR_LBL(77)] = OVR_ELM(77),
5076 [OVR_LBL(78)] = OVR_ELM(78), [OVR_LBL(79)] = OVR_ELM(79),
5077 [OVR_LBL(80)] = OVR_ELM(80), [OVR_LBL(81)] = OVR_ELM(81),
5078 [OVR_LBL(82)] = OVR_ELM(82), [OVR_LBL(83)] = OVR_ELM(83),
5079 [OVR_LBL(84)] = OVR_ELM(84), [OVR_LBL(85)] = OVR_ELM(85),
5080 [OVR_LBL(86)] = OVR_ELM(86), [OVR_LBL(87)] = OVR_ELM(87),
5081 [OVR_LBL(88)] = OVR_ELM(88), [OVR_LBL(89)] = OVR_ELM(89),
5082 [OVR_LBL(90)] = OVR_ELM(90), [OVR_LBL(91)] = OVR_ELM(91),
5083 [OVR_LBL(92)] = OVR_ELM(92), [OVR_LBL(93)] = OVR_ELM(93),
5084 [OVR_LBL(94)] = OVR_ELM(94), [OVR_LBL(95)] = OVR_ELM(95),
5085 [OVR_LBL(96)] = OVR_ELM(96), [OVR_LBL(97)] = OVR_ELM(97),
5086 [OVR_LBL(98)] = OVR_ELM(98), [OVR_LBL(99)] = OVR_ELM(99),
5087 [OVR_LBL(100)] = OVR_ELM(100), [OVR_LBL(101)] = OVR_ELM(101),
5088 [OVR_LBL(102)] = OVR_ELM(102), [OVR_LBL(103)] = OVR_ELM(103),
5089 [OVR_LBL(104)] = OVR_ELM(104), [OVR_LBL(105)] = OVR_ELM(105),
5090 [OVR_LBL(106)] = OVR_ELM(106), [OVR_LBL(107)] = OVR_ELM(107),
5091 [OVR_LBL(108)] = OVR_ELM(108), [OVR_LBL(109)] = OVR_ELM(109),
5092 [OVR_LBL(110)] = OVR_ELM(110), [OVR_LBL(111)] = OVR_ELM(111),
5093 [OVR_LBL(112)] = OVR_ELM(112), [OVR_LBL(113)] = OVR_ELM(113),
5094 [OVR_LBL(114)] = OVR_ELM(114), [OVR_LBL(115)] = OVR_ELM(115),
5095 [OVR_LBL(116)] = OVR_ELM(116), [OVR_LBL(117)] = OVR_ELM(117),
5096 [OVR_LBL(118)] = OVR_ELM(118), [OVR_LBL(119)] = OVR_ELM(119),
5097 [OVR_LBL(120)] = OVR_ELM(120), [OVR_LBL(121)] = OVR_ELM(121),
5098 [OVR_LBL(122)] = OVR_ELM(122), [OVR_LBL(123)] = OVR_ELM(123),
5099 [OVR_LBL(124)] = OVR_ELM(124), [OVR_LBL(125)] = OVR_ELM(125),
5100 [OVR_LBL(126)] = OVR_ELM(126), [OVR_LBL(127)] = OVR_ELM(127),
5101 [OVR_LBL(128)] = OVR_ELM(128), [OVR_LBL(129)] = OVR_ELM(129),
5102 [OVR_LBL(130)] = OVR_ELM(130), [OVR_LBL(131)] = OVR_ELM(131),
5103 [OVR_LBL(132)] = OVR_ELM(132), [OVR_LBL(133)] = OVR_ELM(133),
5104 [OVR_LBL(134)] = OVR_ELM(134), [OVR_LBL(135)] = OVR_ELM(135),
5105 [OVR_LBL(136)] = OVR_ELM(136), [OVR_LBL(137)] = OVR_ELM(137),
5106 [OVR_LBL(138)] = OVR_ELM(138), [OVR_LBL(139)] = OVR_ELM(139),
5107 [OVR_LBL(140)] = OVR_ELM(140), [OVR_LBL(141)] = OVR_ELM(141),
5108 [OVR_LBL(142)] = OVR_ELM(142), [OVR_LBL(143)] = OVR_ELM(143),
5109 [OVR_LBL(144)] = OVR_ELM(144), [OVR_LBL(145)] = OVR_ELM(145),
5110 [OVR_LBL(146)] = OVR_ELM(146), [OVR_LBL(147)] = OVR_ELM(147),
5111 [OVR_LBL(148)] = OVR_ELM(148), [OVR_LBL(149)] = OVR_ELM(149),
5112 [OVR_LBL(150)] = OVR_ELM(150), [OVR_LBL(151)] = OVR_ELM(151),
5113 [OVR_LBL(152)] = OVR_ELM(152), [OVR_LBL(153)] = OVR_ELM(153),
5114 [OVR_LBL(154)] = OVR_ELM(154), [OVR_LBL(155)] = OVR_ELM(155),
5115 [OVR_LBL(156)] = OVR_ELM(156), [OVR_LBL(157)] = OVR_ELM(157),
5116 [OVR_LBL(158)] = OVR_ELM(158), [OVR_LBL(159)] = OVR_ELM(159),
5117 };
5118 
5119 /* ======================================================================== */
5120 
5121 /* return true if this is chip revision revision a */
5122 int is_ax(struct hfi1_devdata *dd)
5123 {
5124 	u8 chip_rev_minor =
5125 		dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT
5126 			& CCE_REVISION_CHIP_REV_MINOR_MASK;
5127 	return (chip_rev_minor & 0xf0) == 0;
5128 }
5129 
5130 /* return true if this is chip revision revision b */
5131 int is_bx(struct hfi1_devdata *dd)
5132 {
5133 	u8 chip_rev_minor =
5134 		dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT
5135 			& CCE_REVISION_CHIP_REV_MINOR_MASK;
5136 	return (chip_rev_minor & 0xF0) == 0x10;
5137 }
5138 
5139 /*
5140  * Append string s to buffer buf.  Arguments curp and len are the current
5141  * position and remaining length, respectively.
5142  *
5143  * return 0 on success, 1 on out of room
5144  */
5145 static int append_str(char *buf, char **curp, int *lenp, const char *s)
5146 {
5147 	char *p = *curp;
5148 	int len = *lenp;
5149 	int result = 0; /* success */
5150 	char c;
5151 
5152 	/* add a comma, if first in the buffer */
5153 	if (p != buf) {
5154 		if (len == 0) {
5155 			result = 1; /* out of room */
5156 			goto done;
5157 		}
5158 		*p++ = ',';
5159 		len--;
5160 	}
5161 
5162 	/* copy the string */
5163 	while ((c = *s++) != 0) {
5164 		if (len == 0) {
5165 			result = 1; /* out of room */
5166 			goto done;
5167 		}
5168 		*p++ = c;
5169 		len--;
5170 	}
5171 
5172 done:
5173 	/* write return values */
5174 	*curp = p;
5175 	*lenp = len;
5176 
5177 	return result;
5178 }
5179 
5180 /*
5181  * Using the given flag table, print a comma separated string into
5182  * the buffer.  End in '*' if the buffer is too short.
5183  */
5184 static char *flag_string(char *buf, int buf_len, u64 flags,
5185 			 struct flag_table *table, int table_size)
5186 {
5187 	char extra[32];
5188 	char *p = buf;
5189 	int len = buf_len;
5190 	int no_room = 0;
5191 	int i;
5192 
5193 	/* make sure there is at least 2 so we can form "*" */
5194 	if (len < 2)
5195 		return "";
5196 
5197 	len--;	/* leave room for a nul */
5198 	for (i = 0; i < table_size; i++) {
5199 		if (flags & table[i].flag) {
5200 			no_room = append_str(buf, &p, &len, table[i].str);
5201 			if (no_room)
5202 				break;
5203 			flags &= ~table[i].flag;
5204 		}
5205 	}
5206 
5207 	/* any undocumented bits left? */
5208 	if (!no_room && flags) {
5209 		snprintf(extra, sizeof(extra), "bits 0x%llx", flags);
5210 		no_room = append_str(buf, &p, &len, extra);
5211 	}
5212 
5213 	/* add * if ran out of room */
5214 	if (no_room) {
5215 		/* may need to back up to add space for a '*' */
5216 		if (len == 0)
5217 			--p;
5218 		*p++ = '*';
5219 	}
5220 
5221 	/* add final nul - space already allocated above */
5222 	*p = 0;
5223 	return buf;
5224 }
5225 
5226 /* first 8 CCE error interrupt source names */
5227 static const char * const cce_misc_names[] = {
5228 	"CceErrInt",		/* 0 */
5229 	"RxeErrInt",		/* 1 */
5230 	"MiscErrInt",		/* 2 */
5231 	"Reserved3",		/* 3 */
5232 	"PioErrInt",		/* 4 */
5233 	"SDmaErrInt",		/* 5 */
5234 	"EgressErrInt",		/* 6 */
5235 	"TxeErrInt"		/* 7 */
5236 };
5237 
5238 /*
5239  * Return the miscellaneous error interrupt name.
5240  */
5241 static char *is_misc_err_name(char *buf, size_t bsize, unsigned int source)
5242 {
5243 	if (source < ARRAY_SIZE(cce_misc_names))
5244 		strncpy(buf, cce_misc_names[source], bsize);
5245 	else
5246 		snprintf(buf, bsize, "Reserved%u",
5247 			 source + IS_GENERAL_ERR_START);
5248 
5249 	return buf;
5250 }
5251 
5252 /*
5253  * Return the SDMA engine error interrupt name.
5254  */
5255 static char *is_sdma_eng_err_name(char *buf, size_t bsize, unsigned int source)
5256 {
5257 	snprintf(buf, bsize, "SDmaEngErrInt%u", source);
5258 	return buf;
5259 }
5260 
5261 /*
5262  * Return the send context error interrupt name.
5263  */
5264 static char *is_sendctxt_err_name(char *buf, size_t bsize, unsigned int source)
5265 {
5266 	snprintf(buf, bsize, "SendCtxtErrInt%u", source);
5267 	return buf;
5268 }
5269 
5270 static const char * const various_names[] = {
5271 	"PbcInt",
5272 	"GpioAssertInt",
5273 	"Qsfp1Int",
5274 	"Qsfp2Int",
5275 	"TCritInt"
5276 };
5277 
5278 /*
5279  * Return the various interrupt name.
5280  */
5281 static char *is_various_name(char *buf, size_t bsize, unsigned int source)
5282 {
5283 	if (source < ARRAY_SIZE(various_names))
5284 		strncpy(buf, various_names[source], bsize);
5285 	else
5286 		snprintf(buf, bsize, "Reserved%u", source + IS_VARIOUS_START);
5287 	return buf;
5288 }
5289 
5290 /*
5291  * Return the DC interrupt name.
5292  */
5293 static char *is_dc_name(char *buf, size_t bsize, unsigned int source)
5294 {
5295 	static const char * const dc_int_names[] = {
5296 		"common",
5297 		"lcb",
5298 		"8051",
5299 		"lbm"	/* local block merge */
5300 	};
5301 
5302 	if (source < ARRAY_SIZE(dc_int_names))
5303 		snprintf(buf, bsize, "dc_%s_int", dc_int_names[source]);
5304 	else
5305 		snprintf(buf, bsize, "DCInt%u", source);
5306 	return buf;
5307 }
5308 
5309 static const char * const sdma_int_names[] = {
5310 	"SDmaInt",
5311 	"SdmaIdleInt",
5312 	"SdmaProgressInt",
5313 };
5314 
5315 /*
5316  * Return the SDMA engine interrupt name.
5317  */
5318 static char *is_sdma_eng_name(char *buf, size_t bsize, unsigned int source)
5319 {
5320 	/* what interrupt */
5321 	unsigned int what  = source / TXE_NUM_SDMA_ENGINES;
5322 	/* which engine */
5323 	unsigned int which = source % TXE_NUM_SDMA_ENGINES;
5324 
5325 	if (likely(what < 3))
5326 		snprintf(buf, bsize, "%s%u", sdma_int_names[what], which);
5327 	else
5328 		snprintf(buf, bsize, "Invalid SDMA interrupt %u", source);
5329 	return buf;
5330 }
5331 
5332 /*
5333  * Return the receive available interrupt name.
5334  */
5335 static char *is_rcv_avail_name(char *buf, size_t bsize, unsigned int source)
5336 {
5337 	snprintf(buf, bsize, "RcvAvailInt%u", source);
5338 	return buf;
5339 }
5340 
5341 /*
5342  * Return the receive urgent interrupt name.
5343  */
5344 static char *is_rcv_urgent_name(char *buf, size_t bsize, unsigned int source)
5345 {
5346 	snprintf(buf, bsize, "RcvUrgentInt%u", source);
5347 	return buf;
5348 }
5349 
5350 /*
5351  * Return the send credit interrupt name.
5352  */
5353 static char *is_send_credit_name(char *buf, size_t bsize, unsigned int source)
5354 {
5355 	snprintf(buf, bsize, "SendCreditInt%u", source);
5356 	return buf;
5357 }
5358 
5359 /*
5360  * Return the reserved interrupt name.
5361  */
5362 static char *is_reserved_name(char *buf, size_t bsize, unsigned int source)
5363 {
5364 	snprintf(buf, bsize, "Reserved%u", source + IS_RESERVED_START);
5365 	return buf;
5366 }
5367 
5368 static char *cce_err_status_string(char *buf, int buf_len, u64 flags)
5369 {
5370 	return flag_string(buf, buf_len, flags,
5371 			   cce_err_status_flags,
5372 			   ARRAY_SIZE(cce_err_status_flags));
5373 }
5374 
5375 static char *rxe_err_status_string(char *buf, int buf_len, u64 flags)
5376 {
5377 	return flag_string(buf, buf_len, flags,
5378 			   rxe_err_status_flags,
5379 			   ARRAY_SIZE(rxe_err_status_flags));
5380 }
5381 
5382 static char *misc_err_status_string(char *buf, int buf_len, u64 flags)
5383 {
5384 	return flag_string(buf, buf_len, flags, misc_err_status_flags,
5385 			   ARRAY_SIZE(misc_err_status_flags));
5386 }
5387 
5388 static char *pio_err_status_string(char *buf, int buf_len, u64 flags)
5389 {
5390 	return flag_string(buf, buf_len, flags,
5391 			   pio_err_status_flags,
5392 			   ARRAY_SIZE(pio_err_status_flags));
5393 }
5394 
5395 static char *sdma_err_status_string(char *buf, int buf_len, u64 flags)
5396 {
5397 	return flag_string(buf, buf_len, flags,
5398 			   sdma_err_status_flags,
5399 			   ARRAY_SIZE(sdma_err_status_flags));
5400 }
5401 
5402 static char *egress_err_status_string(char *buf, int buf_len, u64 flags)
5403 {
5404 	return flag_string(buf, buf_len, flags,
5405 			   egress_err_status_flags,
5406 			   ARRAY_SIZE(egress_err_status_flags));
5407 }
5408 
5409 static char *egress_err_info_string(char *buf, int buf_len, u64 flags)
5410 {
5411 	return flag_string(buf, buf_len, flags,
5412 			   egress_err_info_flags,
5413 			   ARRAY_SIZE(egress_err_info_flags));
5414 }
5415 
5416 static char *send_err_status_string(char *buf, int buf_len, u64 flags)
5417 {
5418 	return flag_string(buf, buf_len, flags,
5419 			   send_err_status_flags,
5420 			   ARRAY_SIZE(send_err_status_flags));
5421 }
5422 
5423 static void handle_cce_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5424 {
5425 	char buf[96];
5426 	int i = 0;
5427 
5428 	/*
5429 	 * For most these errors, there is nothing that can be done except
5430 	 * report or record it.
5431 	 */
5432 	dd_dev_info(dd, "CCE Error: %s\n",
5433 		    cce_err_status_string(buf, sizeof(buf), reg));
5434 
5435 	if ((reg & CCE_ERR_STATUS_CCE_CLI2_ASYNC_FIFO_PARITY_ERR_SMASK) &&
5436 	    is_ax(dd) && (dd->icode != ICODE_FUNCTIONAL_SIMULATOR)) {
5437 		/* this error requires a manual drop into SPC freeze mode */
5438 		/* then a fix up */
5439 		start_freeze_handling(dd->pport, FREEZE_SELF);
5440 	}
5441 
5442 	for (i = 0; i < NUM_CCE_ERR_STATUS_COUNTERS; i++) {
5443 		if (reg & (1ull << i)) {
5444 			incr_cntr64(&dd->cce_err_status_cnt[i]);
5445 			/* maintain a counter over all cce_err_status errors */
5446 			incr_cntr64(&dd->sw_cce_err_status_aggregate);
5447 		}
5448 	}
5449 }
5450 
5451 /*
5452  * Check counters for receive errors that do not have an interrupt
5453  * associated with them.
5454  */
5455 #define RCVERR_CHECK_TIME 10
5456 static void update_rcverr_timer(unsigned long opaque)
5457 {
5458 	struct hfi1_devdata *dd = (struct hfi1_devdata *)opaque;
5459 	struct hfi1_pportdata *ppd = dd->pport;
5460 	u32 cur_ovfl_cnt = read_dev_cntr(dd, C_RCV_OVF, CNTR_INVALID_VL);
5461 
5462 	if (dd->rcv_ovfl_cnt < cur_ovfl_cnt &&
5463 	    ppd->port_error_action & OPA_PI_MASK_EX_BUFFER_OVERRUN) {
5464 		dd_dev_info(dd, "%s: PortErrorAction bounce\n", __func__);
5465 		set_link_down_reason(
5466 		ppd, OPA_LINKDOWN_REASON_EXCESSIVE_BUFFER_OVERRUN, 0,
5467 		OPA_LINKDOWN_REASON_EXCESSIVE_BUFFER_OVERRUN);
5468 		queue_work(ppd->hfi1_wq, &ppd->link_bounce_work);
5469 	}
5470 	dd->rcv_ovfl_cnt = (u32)cur_ovfl_cnt;
5471 
5472 	mod_timer(&dd->rcverr_timer, jiffies + HZ * RCVERR_CHECK_TIME);
5473 }
5474 
5475 static int init_rcverr(struct hfi1_devdata *dd)
5476 {
5477 	setup_timer(&dd->rcverr_timer, update_rcverr_timer, (unsigned long)dd);
5478 	/* Assume the hardware counter has been reset */
5479 	dd->rcv_ovfl_cnt = 0;
5480 	return mod_timer(&dd->rcverr_timer, jiffies + HZ * RCVERR_CHECK_TIME);
5481 }
5482 
5483 static void free_rcverr(struct hfi1_devdata *dd)
5484 {
5485 	if (dd->rcverr_timer.data)
5486 		del_timer_sync(&dd->rcverr_timer);
5487 	dd->rcverr_timer.data = 0;
5488 }
5489 
5490 static void handle_rxe_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5491 {
5492 	char buf[96];
5493 	int i = 0;
5494 
5495 	dd_dev_info(dd, "Receive Error: %s\n",
5496 		    rxe_err_status_string(buf, sizeof(buf), reg));
5497 
5498 	if (reg & ALL_RXE_FREEZE_ERR) {
5499 		int flags = 0;
5500 
5501 		/*
5502 		 * Freeze mode recovery is disabled for the errors
5503 		 * in RXE_FREEZE_ABORT_MASK
5504 		 */
5505 		if (is_ax(dd) && (reg & RXE_FREEZE_ABORT_MASK))
5506 			flags = FREEZE_ABORT;
5507 
5508 		start_freeze_handling(dd->pport, flags);
5509 	}
5510 
5511 	for (i = 0; i < NUM_RCV_ERR_STATUS_COUNTERS; i++) {
5512 		if (reg & (1ull << i))
5513 			incr_cntr64(&dd->rcv_err_status_cnt[i]);
5514 	}
5515 }
5516 
5517 static void handle_misc_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5518 {
5519 	char buf[96];
5520 	int i = 0;
5521 
5522 	dd_dev_info(dd, "Misc Error: %s",
5523 		    misc_err_status_string(buf, sizeof(buf), reg));
5524 	for (i = 0; i < NUM_MISC_ERR_STATUS_COUNTERS; i++) {
5525 		if (reg & (1ull << i))
5526 			incr_cntr64(&dd->misc_err_status_cnt[i]);
5527 	}
5528 }
5529 
5530 static void handle_pio_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5531 {
5532 	char buf[96];
5533 	int i = 0;
5534 
5535 	dd_dev_info(dd, "PIO Error: %s\n",
5536 		    pio_err_status_string(buf, sizeof(buf), reg));
5537 
5538 	if (reg & ALL_PIO_FREEZE_ERR)
5539 		start_freeze_handling(dd->pport, 0);
5540 
5541 	for (i = 0; i < NUM_SEND_PIO_ERR_STATUS_COUNTERS; i++) {
5542 		if (reg & (1ull << i))
5543 			incr_cntr64(&dd->send_pio_err_status_cnt[i]);
5544 	}
5545 }
5546 
5547 static void handle_sdma_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5548 {
5549 	char buf[96];
5550 	int i = 0;
5551 
5552 	dd_dev_info(dd, "SDMA Error: %s\n",
5553 		    sdma_err_status_string(buf, sizeof(buf), reg));
5554 
5555 	if (reg & ALL_SDMA_FREEZE_ERR)
5556 		start_freeze_handling(dd->pport, 0);
5557 
5558 	for (i = 0; i < NUM_SEND_DMA_ERR_STATUS_COUNTERS; i++) {
5559 		if (reg & (1ull << i))
5560 			incr_cntr64(&dd->send_dma_err_status_cnt[i]);
5561 	}
5562 }
5563 
5564 static inline void __count_port_discards(struct hfi1_pportdata *ppd)
5565 {
5566 	incr_cntr64(&ppd->port_xmit_discards);
5567 }
5568 
5569 static void count_port_inactive(struct hfi1_devdata *dd)
5570 {
5571 	__count_port_discards(dd->pport);
5572 }
5573 
5574 /*
5575  * We have had a "disallowed packet" error during egress. Determine the
5576  * integrity check which failed, and update relevant error counter, etc.
5577  *
5578  * Note that the SEND_EGRESS_ERR_INFO register has only a single
5579  * bit of state per integrity check, and so we can miss the reason for an
5580  * egress error if more than one packet fails the same integrity check
5581  * since we cleared the corresponding bit in SEND_EGRESS_ERR_INFO.
5582  */
5583 static void handle_send_egress_err_info(struct hfi1_devdata *dd,
5584 					int vl)
5585 {
5586 	struct hfi1_pportdata *ppd = dd->pport;
5587 	u64 src = read_csr(dd, SEND_EGRESS_ERR_SOURCE); /* read first */
5588 	u64 info = read_csr(dd, SEND_EGRESS_ERR_INFO);
5589 	char buf[96];
5590 
5591 	/* clear down all observed info as quickly as possible after read */
5592 	write_csr(dd, SEND_EGRESS_ERR_INFO, info);
5593 
5594 	dd_dev_info(dd,
5595 		    "Egress Error Info: 0x%llx, %s Egress Error Src 0x%llx\n",
5596 		    info, egress_err_info_string(buf, sizeof(buf), info), src);
5597 
5598 	/* Eventually add other counters for each bit */
5599 	if (info & PORT_DISCARD_EGRESS_ERRS) {
5600 		int weight, i;
5601 
5602 		/*
5603 		 * Count all applicable bits as individual errors and
5604 		 * attribute them to the packet that triggered this handler.
5605 		 * This may not be completely accurate due to limitations
5606 		 * on the available hardware error information.  There is
5607 		 * a single information register and any number of error
5608 		 * packets may have occurred and contributed to it before
5609 		 * this routine is called.  This means that:
5610 		 * a) If multiple packets with the same error occur before
5611 		 *    this routine is called, earlier packets are missed.
5612 		 *    There is only a single bit for each error type.
5613 		 * b) Errors may not be attributed to the correct VL.
5614 		 *    The driver is attributing all bits in the info register
5615 		 *    to the packet that triggered this call, but bits
5616 		 *    could be an accumulation of different packets with
5617 		 *    different VLs.
5618 		 * c) A single error packet may have multiple counts attached
5619 		 *    to it.  There is no way for the driver to know if
5620 		 *    multiple bits set in the info register are due to a
5621 		 *    single packet or multiple packets.  The driver assumes
5622 		 *    multiple packets.
5623 		 */
5624 		weight = hweight64(info & PORT_DISCARD_EGRESS_ERRS);
5625 		for (i = 0; i < weight; i++) {
5626 			__count_port_discards(ppd);
5627 			if (vl >= 0 && vl < TXE_NUM_DATA_VL)
5628 				incr_cntr64(&ppd->port_xmit_discards_vl[vl]);
5629 			else if (vl == 15)
5630 				incr_cntr64(&ppd->port_xmit_discards_vl
5631 					    [C_VL_15]);
5632 		}
5633 	}
5634 }
5635 
5636 /*
5637  * Input value is a bit position within the SEND_EGRESS_ERR_STATUS
5638  * register. Does it represent a 'port inactive' error?
5639  */
5640 static inline int port_inactive_err(u64 posn)
5641 {
5642 	return (posn >= SEES(TX_LINKDOWN) &&
5643 		posn <= SEES(TX_INCORRECT_LINK_STATE));
5644 }
5645 
5646 /*
5647  * Input value is a bit position within the SEND_EGRESS_ERR_STATUS
5648  * register. Does it represent a 'disallowed packet' error?
5649  */
5650 static inline int disallowed_pkt_err(int posn)
5651 {
5652 	return (posn >= SEES(TX_SDMA0_DISALLOWED_PACKET) &&
5653 		posn <= SEES(TX_SDMA15_DISALLOWED_PACKET));
5654 }
5655 
5656 /*
5657  * Input value is a bit position of one of the SDMA engine disallowed
5658  * packet errors.  Return which engine.  Use of this must be guarded by
5659  * disallowed_pkt_err().
5660  */
5661 static inline int disallowed_pkt_engine(int posn)
5662 {
5663 	return posn - SEES(TX_SDMA0_DISALLOWED_PACKET);
5664 }
5665 
5666 /*
5667  * Translate an SDMA engine to a VL.  Return -1 if the tranlation cannot
5668  * be done.
5669  */
5670 static int engine_to_vl(struct hfi1_devdata *dd, int engine)
5671 {
5672 	struct sdma_vl_map *m;
5673 	int vl;
5674 
5675 	/* range check */
5676 	if (engine < 0 || engine >= TXE_NUM_SDMA_ENGINES)
5677 		return -1;
5678 
5679 	rcu_read_lock();
5680 	m = rcu_dereference(dd->sdma_map);
5681 	vl = m->engine_to_vl[engine];
5682 	rcu_read_unlock();
5683 
5684 	return vl;
5685 }
5686 
5687 /*
5688  * Translate the send context (sofware index) into a VL.  Return -1 if the
5689  * translation cannot be done.
5690  */
5691 static int sc_to_vl(struct hfi1_devdata *dd, int sw_index)
5692 {
5693 	struct send_context_info *sci;
5694 	struct send_context *sc;
5695 	int i;
5696 
5697 	sci = &dd->send_contexts[sw_index];
5698 
5699 	/* there is no information for user (PSM) and ack contexts */
5700 	if ((sci->type != SC_KERNEL) && (sci->type != SC_VL15))
5701 		return -1;
5702 
5703 	sc = sci->sc;
5704 	if (!sc)
5705 		return -1;
5706 	if (dd->vld[15].sc == sc)
5707 		return 15;
5708 	for (i = 0; i < num_vls; i++)
5709 		if (dd->vld[i].sc == sc)
5710 			return i;
5711 
5712 	return -1;
5713 }
5714 
5715 static void handle_egress_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5716 {
5717 	u64 reg_copy = reg, handled = 0;
5718 	char buf[96];
5719 	int i = 0;
5720 
5721 	if (reg & ALL_TXE_EGRESS_FREEZE_ERR)
5722 		start_freeze_handling(dd->pport, 0);
5723 	else if (is_ax(dd) &&
5724 		 (reg & SEND_EGRESS_ERR_STATUS_TX_CREDIT_RETURN_VL_ERR_SMASK) &&
5725 		 (dd->icode != ICODE_FUNCTIONAL_SIMULATOR))
5726 		start_freeze_handling(dd->pport, 0);
5727 
5728 	while (reg_copy) {
5729 		int posn = fls64(reg_copy);
5730 		/* fls64() returns a 1-based offset, we want it zero based */
5731 		int shift = posn - 1;
5732 		u64 mask = 1ULL << shift;
5733 
5734 		if (port_inactive_err(shift)) {
5735 			count_port_inactive(dd);
5736 			handled |= mask;
5737 		} else if (disallowed_pkt_err(shift)) {
5738 			int vl = engine_to_vl(dd, disallowed_pkt_engine(shift));
5739 
5740 			handle_send_egress_err_info(dd, vl);
5741 			handled |= mask;
5742 		}
5743 		reg_copy &= ~mask;
5744 	}
5745 
5746 	reg &= ~handled;
5747 
5748 	if (reg)
5749 		dd_dev_info(dd, "Egress Error: %s\n",
5750 			    egress_err_status_string(buf, sizeof(buf), reg));
5751 
5752 	for (i = 0; i < NUM_SEND_EGRESS_ERR_STATUS_COUNTERS; i++) {
5753 		if (reg & (1ull << i))
5754 			incr_cntr64(&dd->send_egress_err_status_cnt[i]);
5755 	}
5756 }
5757 
5758 static void handle_txe_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5759 {
5760 	char buf[96];
5761 	int i = 0;
5762 
5763 	dd_dev_info(dd, "Send Error: %s\n",
5764 		    send_err_status_string(buf, sizeof(buf), reg));
5765 
5766 	for (i = 0; i < NUM_SEND_ERR_STATUS_COUNTERS; i++) {
5767 		if (reg & (1ull << i))
5768 			incr_cntr64(&dd->send_err_status_cnt[i]);
5769 	}
5770 }
5771 
5772 /*
5773  * The maximum number of times the error clear down will loop before
5774  * blocking a repeating error.  This value is arbitrary.
5775  */
5776 #define MAX_CLEAR_COUNT 20
5777 
5778 /*
5779  * Clear and handle an error register.  All error interrupts are funneled
5780  * through here to have a central location to correctly handle single-
5781  * or multi-shot errors.
5782  *
5783  * For non per-context registers, call this routine with a context value
5784  * of 0 so the per-context offset is zero.
5785  *
5786  * If the handler loops too many times, assume that something is wrong
5787  * and can't be fixed, so mask the error bits.
5788  */
5789 static void interrupt_clear_down(struct hfi1_devdata *dd,
5790 				 u32 context,
5791 				 const struct err_reg_info *eri)
5792 {
5793 	u64 reg;
5794 	u32 count;
5795 
5796 	/* read in a loop until no more errors are seen */
5797 	count = 0;
5798 	while (1) {
5799 		reg = read_kctxt_csr(dd, context, eri->status);
5800 		if (reg == 0)
5801 			break;
5802 		write_kctxt_csr(dd, context, eri->clear, reg);
5803 		if (likely(eri->handler))
5804 			eri->handler(dd, context, reg);
5805 		count++;
5806 		if (count > MAX_CLEAR_COUNT) {
5807 			u64 mask;
5808 
5809 			dd_dev_err(dd, "Repeating %s bits 0x%llx - masking\n",
5810 				   eri->desc, reg);
5811 			/*
5812 			 * Read-modify-write so any other masked bits
5813 			 * remain masked.
5814 			 */
5815 			mask = read_kctxt_csr(dd, context, eri->mask);
5816 			mask &= ~reg;
5817 			write_kctxt_csr(dd, context, eri->mask, mask);
5818 			break;
5819 		}
5820 	}
5821 }
5822 
5823 /*
5824  * CCE block "misc" interrupt.  Source is < 16.
5825  */
5826 static void is_misc_err_int(struct hfi1_devdata *dd, unsigned int source)
5827 {
5828 	const struct err_reg_info *eri = &misc_errs[source];
5829 
5830 	if (eri->handler) {
5831 		interrupt_clear_down(dd, 0, eri);
5832 	} else {
5833 		dd_dev_err(dd, "Unexpected misc interrupt (%u) - reserved\n",
5834 			   source);
5835 	}
5836 }
5837 
5838 static char *send_context_err_status_string(char *buf, int buf_len, u64 flags)
5839 {
5840 	return flag_string(buf, buf_len, flags,
5841 			   sc_err_status_flags,
5842 			   ARRAY_SIZE(sc_err_status_flags));
5843 }
5844 
5845 /*
5846  * Send context error interrupt.  Source (hw_context) is < 160.
5847  *
5848  * All send context errors cause the send context to halt.  The normal
5849  * clear-down mechanism cannot be used because we cannot clear the
5850  * error bits until several other long-running items are done first.
5851  * This is OK because with the context halted, nothing else is going
5852  * to happen on it anyway.
5853  */
5854 static void is_sendctxt_err_int(struct hfi1_devdata *dd,
5855 				unsigned int hw_context)
5856 {
5857 	struct send_context_info *sci;
5858 	struct send_context *sc;
5859 	char flags[96];
5860 	u64 status;
5861 	u32 sw_index;
5862 	int i = 0;
5863 
5864 	sw_index = dd->hw_to_sw[hw_context];
5865 	if (sw_index >= dd->num_send_contexts) {
5866 		dd_dev_err(dd,
5867 			   "out of range sw index %u for send context %u\n",
5868 			   sw_index, hw_context);
5869 		return;
5870 	}
5871 	sci = &dd->send_contexts[sw_index];
5872 	sc = sci->sc;
5873 	if (!sc) {
5874 		dd_dev_err(dd, "%s: context %u(%u): no sc?\n", __func__,
5875 			   sw_index, hw_context);
5876 		return;
5877 	}
5878 
5879 	/* tell the software that a halt has begun */
5880 	sc_stop(sc, SCF_HALTED);
5881 
5882 	status = read_kctxt_csr(dd, hw_context, SEND_CTXT_ERR_STATUS);
5883 
5884 	dd_dev_info(dd, "Send Context %u(%u) Error: %s\n", sw_index, hw_context,
5885 		    send_context_err_status_string(flags, sizeof(flags),
5886 						   status));
5887 
5888 	if (status & SEND_CTXT_ERR_STATUS_PIO_DISALLOWED_PACKET_ERR_SMASK)
5889 		handle_send_egress_err_info(dd, sc_to_vl(dd, sw_index));
5890 
5891 	/*
5892 	 * Automatically restart halted kernel contexts out of interrupt
5893 	 * context.  User contexts must ask the driver to restart the context.
5894 	 */
5895 	if (sc->type != SC_USER)
5896 		queue_work(dd->pport->hfi1_wq, &sc->halt_work);
5897 
5898 	/*
5899 	 * Update the counters for the corresponding status bits.
5900 	 * Note that these particular counters are aggregated over all
5901 	 * 160 contexts.
5902 	 */
5903 	for (i = 0; i < NUM_SEND_CTXT_ERR_STATUS_COUNTERS; i++) {
5904 		if (status & (1ull << i))
5905 			incr_cntr64(&dd->sw_ctxt_err_status_cnt[i]);
5906 	}
5907 }
5908 
5909 static void handle_sdma_eng_err(struct hfi1_devdata *dd,
5910 				unsigned int source, u64 status)
5911 {
5912 	struct sdma_engine *sde;
5913 	int i = 0;
5914 
5915 	sde = &dd->per_sdma[source];
5916 #ifdef CONFIG_SDMA_VERBOSITY
5917 	dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
5918 		   slashstrip(__FILE__), __LINE__, __func__);
5919 	dd_dev_err(sde->dd, "CONFIG SDMA(%u) source: %u status 0x%llx\n",
5920 		   sde->this_idx, source, (unsigned long long)status);
5921 #endif
5922 	sde->err_cnt++;
5923 	sdma_engine_error(sde, status);
5924 
5925 	/*
5926 	* Update the counters for the corresponding status bits.
5927 	* Note that these particular counters are aggregated over
5928 	* all 16 DMA engines.
5929 	*/
5930 	for (i = 0; i < NUM_SEND_DMA_ENG_ERR_STATUS_COUNTERS; i++) {
5931 		if (status & (1ull << i))
5932 			incr_cntr64(&dd->sw_send_dma_eng_err_status_cnt[i]);
5933 	}
5934 }
5935 
5936 /*
5937  * CCE block SDMA error interrupt.  Source is < 16.
5938  */
5939 static void is_sdma_eng_err_int(struct hfi1_devdata *dd, unsigned int source)
5940 {
5941 #ifdef CONFIG_SDMA_VERBOSITY
5942 	struct sdma_engine *sde = &dd->per_sdma[source];
5943 
5944 	dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
5945 		   slashstrip(__FILE__), __LINE__, __func__);
5946 	dd_dev_err(dd, "CONFIG SDMA(%u) source: %u\n", sde->this_idx,
5947 		   source);
5948 	sdma_dumpstate(sde);
5949 #endif
5950 	interrupt_clear_down(dd, source, &sdma_eng_err);
5951 }
5952 
5953 /*
5954  * CCE block "various" interrupt.  Source is < 8.
5955  */
5956 static void is_various_int(struct hfi1_devdata *dd, unsigned int source)
5957 {
5958 	const struct err_reg_info *eri = &various_err[source];
5959 
5960 	/*
5961 	 * TCritInt cannot go through interrupt_clear_down()
5962 	 * because it is not a second tier interrupt. The handler
5963 	 * should be called directly.
5964 	 */
5965 	if (source == TCRIT_INT_SOURCE)
5966 		handle_temp_err(dd);
5967 	else if (eri->handler)
5968 		interrupt_clear_down(dd, 0, eri);
5969 	else
5970 		dd_dev_info(dd,
5971 			    "%s: Unimplemented/reserved interrupt %d\n",
5972 			    __func__, source);
5973 }
5974 
5975 static void handle_qsfp_int(struct hfi1_devdata *dd, u32 src_ctx, u64 reg)
5976 {
5977 	/* src_ctx is always zero */
5978 	struct hfi1_pportdata *ppd = dd->pport;
5979 	unsigned long flags;
5980 	u64 qsfp_int_mgmt = (u64)(QSFP_HFI0_INT_N | QSFP_HFI0_MODPRST_N);
5981 
5982 	if (reg & QSFP_HFI0_MODPRST_N) {
5983 		if (!qsfp_mod_present(ppd)) {
5984 			dd_dev_info(dd, "%s: QSFP module removed\n",
5985 				    __func__);
5986 
5987 			ppd->driver_link_ready = 0;
5988 			/*
5989 			 * Cable removed, reset all our information about the
5990 			 * cache and cable capabilities
5991 			 */
5992 
5993 			spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
5994 			/*
5995 			 * We don't set cache_refresh_required here as we expect
5996 			 * an interrupt when a cable is inserted
5997 			 */
5998 			ppd->qsfp_info.cache_valid = 0;
5999 			ppd->qsfp_info.reset_needed = 0;
6000 			ppd->qsfp_info.limiting_active = 0;
6001 			spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock,
6002 					       flags);
6003 			/* Invert the ModPresent pin now to detect plug-in */
6004 			write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_INVERT :
6005 				  ASIC_QSFP1_INVERT, qsfp_int_mgmt);
6006 
6007 			if ((ppd->offline_disabled_reason >
6008 			  HFI1_ODR_MASK(
6009 			  OPA_LINKDOWN_REASON_LOCAL_MEDIA_NOT_INSTALLED)) ||
6010 			  (ppd->offline_disabled_reason ==
6011 			  HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE)))
6012 				ppd->offline_disabled_reason =
6013 				HFI1_ODR_MASK(
6014 				OPA_LINKDOWN_REASON_LOCAL_MEDIA_NOT_INSTALLED);
6015 
6016 			if (ppd->host_link_state == HLS_DN_POLL) {
6017 				/*
6018 				 * The link is still in POLL. This means
6019 				 * that the normal link down processing
6020 				 * will not happen. We have to do it here
6021 				 * before turning the DC off.
6022 				 */
6023 				queue_work(ppd->hfi1_wq, &ppd->link_down_work);
6024 			}
6025 		} else {
6026 			dd_dev_info(dd, "%s: QSFP module inserted\n",
6027 				    __func__);
6028 
6029 			spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
6030 			ppd->qsfp_info.cache_valid = 0;
6031 			ppd->qsfp_info.cache_refresh_required = 1;
6032 			spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock,
6033 					       flags);
6034 
6035 			/*
6036 			 * Stop inversion of ModPresent pin to detect
6037 			 * removal of the cable
6038 			 */
6039 			qsfp_int_mgmt &= ~(u64)QSFP_HFI0_MODPRST_N;
6040 			write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_INVERT :
6041 				  ASIC_QSFP1_INVERT, qsfp_int_mgmt);
6042 
6043 			ppd->offline_disabled_reason =
6044 				HFI1_ODR_MASK(OPA_LINKDOWN_REASON_TRANSIENT);
6045 		}
6046 	}
6047 
6048 	if (reg & QSFP_HFI0_INT_N) {
6049 		dd_dev_info(dd, "%s: Interrupt received from QSFP module\n",
6050 			    __func__);
6051 		spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
6052 		ppd->qsfp_info.check_interrupt_flags = 1;
6053 		spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock, flags);
6054 	}
6055 
6056 	/* Schedule the QSFP work only if there is a cable attached. */
6057 	if (qsfp_mod_present(ppd))
6058 		queue_work(ppd->hfi1_wq, &ppd->qsfp_info.qsfp_work);
6059 }
6060 
6061 static int request_host_lcb_access(struct hfi1_devdata *dd)
6062 {
6063 	int ret;
6064 
6065 	ret = do_8051_command(dd, HCMD_MISC,
6066 			      (u64)HCMD_MISC_REQUEST_LCB_ACCESS <<
6067 			      LOAD_DATA_FIELD_ID_SHIFT, NULL);
6068 	if (ret != HCMD_SUCCESS) {
6069 		dd_dev_err(dd, "%s: command failed with error %d\n",
6070 			   __func__, ret);
6071 	}
6072 	return ret == HCMD_SUCCESS ? 0 : -EBUSY;
6073 }
6074 
6075 static int request_8051_lcb_access(struct hfi1_devdata *dd)
6076 {
6077 	int ret;
6078 
6079 	ret = do_8051_command(dd, HCMD_MISC,
6080 			      (u64)HCMD_MISC_GRANT_LCB_ACCESS <<
6081 			      LOAD_DATA_FIELD_ID_SHIFT, NULL);
6082 	if (ret != HCMD_SUCCESS) {
6083 		dd_dev_err(dd, "%s: command failed with error %d\n",
6084 			   __func__, ret);
6085 	}
6086 	return ret == HCMD_SUCCESS ? 0 : -EBUSY;
6087 }
6088 
6089 /*
6090  * Set the LCB selector - allow host access.  The DCC selector always
6091  * points to the host.
6092  */
6093 static inline void set_host_lcb_access(struct hfi1_devdata *dd)
6094 {
6095 	write_csr(dd, DC_DC8051_CFG_CSR_ACCESS_SEL,
6096 		  DC_DC8051_CFG_CSR_ACCESS_SEL_DCC_SMASK |
6097 		  DC_DC8051_CFG_CSR_ACCESS_SEL_LCB_SMASK);
6098 }
6099 
6100 /*
6101  * Clear the LCB selector - allow 8051 access.  The DCC selector always
6102  * points to the host.
6103  */
6104 static inline void set_8051_lcb_access(struct hfi1_devdata *dd)
6105 {
6106 	write_csr(dd, DC_DC8051_CFG_CSR_ACCESS_SEL,
6107 		  DC_DC8051_CFG_CSR_ACCESS_SEL_DCC_SMASK);
6108 }
6109 
6110 /*
6111  * Acquire LCB access from the 8051.  If the host already has access,
6112  * just increment a counter.  Otherwise, inform the 8051 that the
6113  * host is taking access.
6114  *
6115  * Returns:
6116  *	0 on success
6117  *	-EBUSY if the 8051 has control and cannot be disturbed
6118  *	-errno if unable to acquire access from the 8051
6119  */
6120 int acquire_lcb_access(struct hfi1_devdata *dd, int sleep_ok)
6121 {
6122 	struct hfi1_pportdata *ppd = dd->pport;
6123 	int ret = 0;
6124 
6125 	/*
6126 	 * Use the host link state lock so the operation of this routine
6127 	 * { link state check, selector change, count increment } can occur
6128 	 * as a unit against a link state change.  Otherwise there is a
6129 	 * race between the state change and the count increment.
6130 	 */
6131 	if (sleep_ok) {
6132 		mutex_lock(&ppd->hls_lock);
6133 	} else {
6134 		while (!mutex_trylock(&ppd->hls_lock))
6135 			udelay(1);
6136 	}
6137 
6138 	/* this access is valid only when the link is up */
6139 	if (ppd->host_link_state & HLS_DOWN) {
6140 		dd_dev_info(dd, "%s: link state %s not up\n",
6141 			    __func__, link_state_name(ppd->host_link_state));
6142 		ret = -EBUSY;
6143 		goto done;
6144 	}
6145 
6146 	if (dd->lcb_access_count == 0) {
6147 		ret = request_host_lcb_access(dd);
6148 		if (ret) {
6149 			dd_dev_err(dd,
6150 				   "%s: unable to acquire LCB access, err %d\n",
6151 				   __func__, ret);
6152 			goto done;
6153 		}
6154 		set_host_lcb_access(dd);
6155 	}
6156 	dd->lcb_access_count++;
6157 done:
6158 	mutex_unlock(&ppd->hls_lock);
6159 	return ret;
6160 }
6161 
6162 /*
6163  * Release LCB access by decrementing the use count.  If the count is moving
6164  * from 1 to 0, inform 8051 that it has control back.
6165  *
6166  * Returns:
6167  *	0 on success
6168  *	-errno if unable to release access to the 8051
6169  */
6170 int release_lcb_access(struct hfi1_devdata *dd, int sleep_ok)
6171 {
6172 	int ret = 0;
6173 
6174 	/*
6175 	 * Use the host link state lock because the acquire needed it.
6176 	 * Here, we only need to keep { selector change, count decrement }
6177 	 * as a unit.
6178 	 */
6179 	if (sleep_ok) {
6180 		mutex_lock(&dd->pport->hls_lock);
6181 	} else {
6182 		while (!mutex_trylock(&dd->pport->hls_lock))
6183 			udelay(1);
6184 	}
6185 
6186 	if (dd->lcb_access_count == 0) {
6187 		dd_dev_err(dd, "%s: LCB access count is zero.  Skipping.\n",
6188 			   __func__);
6189 		goto done;
6190 	}
6191 
6192 	if (dd->lcb_access_count == 1) {
6193 		set_8051_lcb_access(dd);
6194 		ret = request_8051_lcb_access(dd);
6195 		if (ret) {
6196 			dd_dev_err(dd,
6197 				   "%s: unable to release LCB access, err %d\n",
6198 				   __func__, ret);
6199 			/* restore host access if the grant didn't work */
6200 			set_host_lcb_access(dd);
6201 			goto done;
6202 		}
6203 	}
6204 	dd->lcb_access_count--;
6205 done:
6206 	mutex_unlock(&dd->pport->hls_lock);
6207 	return ret;
6208 }
6209 
6210 /*
6211  * Initialize LCB access variables and state.  Called during driver load,
6212  * after most of the initialization is finished.
6213  *
6214  * The DC default is LCB access on for the host.  The driver defaults to
6215  * leaving access to the 8051.  Assign access now - this constrains the call
6216  * to this routine to be after all LCB set-up is done.  In particular, after
6217  * hf1_init_dd() -> set_up_interrupts() -> clear_all_interrupts()
6218  */
6219 static void init_lcb_access(struct hfi1_devdata *dd)
6220 {
6221 	dd->lcb_access_count = 0;
6222 }
6223 
6224 /*
6225  * Write a response back to a 8051 request.
6226  */
6227 static void hreq_response(struct hfi1_devdata *dd, u8 return_code, u16 rsp_data)
6228 {
6229 	write_csr(dd, DC_DC8051_CFG_EXT_DEV_0,
6230 		  DC_DC8051_CFG_EXT_DEV_0_COMPLETED_SMASK |
6231 		  (u64)return_code <<
6232 		  DC_DC8051_CFG_EXT_DEV_0_RETURN_CODE_SHIFT |
6233 		  (u64)rsp_data << DC_DC8051_CFG_EXT_DEV_0_RSP_DATA_SHIFT);
6234 }
6235 
6236 /*
6237  * Handle host requests from the 8051.
6238  */
6239 static void handle_8051_request(struct hfi1_pportdata *ppd)
6240 {
6241 	struct hfi1_devdata *dd = ppd->dd;
6242 	u64 reg;
6243 	u16 data = 0;
6244 	u8 type;
6245 
6246 	reg = read_csr(dd, DC_DC8051_CFG_EXT_DEV_1);
6247 	if ((reg & DC_DC8051_CFG_EXT_DEV_1_REQ_NEW_SMASK) == 0)
6248 		return;	/* no request */
6249 
6250 	/* zero out COMPLETED so the response is seen */
6251 	write_csr(dd, DC_DC8051_CFG_EXT_DEV_0, 0);
6252 
6253 	/* extract request details */
6254 	type = (reg >> DC_DC8051_CFG_EXT_DEV_1_REQ_TYPE_SHIFT)
6255 			& DC_DC8051_CFG_EXT_DEV_1_REQ_TYPE_MASK;
6256 	data = (reg >> DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SHIFT)
6257 			& DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_MASK;
6258 
6259 	switch (type) {
6260 	case HREQ_LOAD_CONFIG:
6261 	case HREQ_SAVE_CONFIG:
6262 	case HREQ_READ_CONFIG:
6263 	case HREQ_SET_TX_EQ_ABS:
6264 	case HREQ_SET_TX_EQ_REL:
6265 	case HREQ_ENABLE:
6266 		dd_dev_info(dd, "8051 request: request 0x%x not supported\n",
6267 			    type);
6268 		hreq_response(dd, HREQ_NOT_SUPPORTED, 0);
6269 		break;
6270 	case HREQ_CONFIG_DONE:
6271 		hreq_response(dd, HREQ_SUCCESS, 0);
6272 		break;
6273 
6274 	case HREQ_INTERFACE_TEST:
6275 		hreq_response(dd, HREQ_SUCCESS, data);
6276 		break;
6277 	default:
6278 		dd_dev_err(dd, "8051 request: unknown request 0x%x\n", type);
6279 		hreq_response(dd, HREQ_NOT_SUPPORTED, 0);
6280 		break;
6281 	}
6282 }
6283 
6284 static void write_global_credit(struct hfi1_devdata *dd,
6285 				u8 vau, u16 total, u16 shared)
6286 {
6287 	write_csr(dd, SEND_CM_GLOBAL_CREDIT,
6288 		  ((u64)total <<
6289 		   SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT) |
6290 		  ((u64)shared <<
6291 		   SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SHIFT) |
6292 		  ((u64)vau << SEND_CM_GLOBAL_CREDIT_AU_SHIFT));
6293 }
6294 
6295 /*
6296  * Set up initial VL15 credits of the remote.  Assumes the rest of
6297  * the CM credit registers are zero from a previous global or credit reset .
6298  */
6299 void set_up_vl15(struct hfi1_devdata *dd, u8 vau, u16 vl15buf)
6300 {
6301 	/* leave shared count at zero for both global and VL15 */
6302 	write_global_credit(dd, vau, vl15buf, 0);
6303 
6304 	write_csr(dd, SEND_CM_CREDIT_VL15, (u64)vl15buf
6305 		  << SEND_CM_CREDIT_VL15_DEDICATED_LIMIT_VL_SHIFT);
6306 }
6307 
6308 /*
6309  * Zero all credit details from the previous connection and
6310  * reset the CM manager's internal counters.
6311  */
6312 void reset_link_credits(struct hfi1_devdata *dd)
6313 {
6314 	int i;
6315 
6316 	/* remove all previous VL credit limits */
6317 	for (i = 0; i < TXE_NUM_DATA_VL; i++)
6318 		write_csr(dd, SEND_CM_CREDIT_VL + (8 * i), 0);
6319 	write_csr(dd, SEND_CM_CREDIT_VL15, 0);
6320 	write_global_credit(dd, 0, 0, 0);
6321 	/* reset the CM block */
6322 	pio_send_control(dd, PSC_CM_RESET);
6323 }
6324 
6325 /* convert a vCU to a CU */
6326 static u32 vcu_to_cu(u8 vcu)
6327 {
6328 	return 1 << vcu;
6329 }
6330 
6331 /* convert a CU to a vCU */
6332 static u8 cu_to_vcu(u32 cu)
6333 {
6334 	return ilog2(cu);
6335 }
6336 
6337 /* convert a vAU to an AU */
6338 static u32 vau_to_au(u8 vau)
6339 {
6340 	return 8 * (1 << vau);
6341 }
6342 
6343 static void set_linkup_defaults(struct hfi1_pportdata *ppd)
6344 {
6345 	ppd->sm_trap_qp = 0x0;
6346 	ppd->sa_qp = 0x1;
6347 }
6348 
6349 /*
6350  * Graceful LCB shutdown.  This leaves the LCB FIFOs in reset.
6351  */
6352 static void lcb_shutdown(struct hfi1_devdata *dd, int abort)
6353 {
6354 	u64 reg;
6355 
6356 	/* clear lcb run: LCB_CFG_RUN.EN = 0 */
6357 	write_csr(dd, DC_LCB_CFG_RUN, 0);
6358 	/* set tx fifo reset: LCB_CFG_TX_FIFOS_RESET.VAL = 1 */
6359 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET,
6360 		  1ull << DC_LCB_CFG_TX_FIFOS_RESET_VAL_SHIFT);
6361 	/* set dcc reset csr: DCC_CFG_RESET.{reset_lcb,reset_rx_fpe} = 1 */
6362 	dd->lcb_err_en = read_csr(dd, DC_LCB_ERR_EN);
6363 	reg = read_csr(dd, DCC_CFG_RESET);
6364 	write_csr(dd, DCC_CFG_RESET, reg |
6365 		  (1ull << DCC_CFG_RESET_RESET_LCB_SHIFT) |
6366 		  (1ull << DCC_CFG_RESET_RESET_RX_FPE_SHIFT));
6367 	(void)read_csr(dd, DCC_CFG_RESET); /* make sure the write completed */
6368 	if (!abort) {
6369 		udelay(1);    /* must hold for the longer of 16cclks or 20ns */
6370 		write_csr(dd, DCC_CFG_RESET, reg);
6371 		write_csr(dd, DC_LCB_ERR_EN, dd->lcb_err_en);
6372 	}
6373 }
6374 
6375 /*
6376  * This routine should be called after the link has been transitioned to
6377  * OFFLINE (OFFLINE state has the side effect of putting the SerDes into
6378  * reset).
6379  *
6380  * The expectation is that the caller of this routine would have taken
6381  * care of properly transitioning the link into the correct state.
6382  */
6383 static void dc_shutdown(struct hfi1_devdata *dd)
6384 {
6385 	unsigned long flags;
6386 
6387 	spin_lock_irqsave(&dd->dc8051_lock, flags);
6388 	if (dd->dc_shutdown) {
6389 		spin_unlock_irqrestore(&dd->dc8051_lock, flags);
6390 		return;
6391 	}
6392 	dd->dc_shutdown = 1;
6393 	spin_unlock_irqrestore(&dd->dc8051_lock, flags);
6394 	/* Shutdown the LCB */
6395 	lcb_shutdown(dd, 1);
6396 	/*
6397 	 * Going to OFFLINE would have causes the 8051 to put the
6398 	 * SerDes into reset already. Just need to shut down the 8051,
6399 	 * itself.
6400 	 */
6401 	write_csr(dd, DC_DC8051_CFG_RST, 0x1);
6402 }
6403 
6404 /*
6405  * Calling this after the DC has been brought out of reset should not
6406  * do any damage.
6407  */
6408 static void dc_start(struct hfi1_devdata *dd)
6409 {
6410 	unsigned long flags;
6411 	int ret;
6412 
6413 	spin_lock_irqsave(&dd->dc8051_lock, flags);
6414 	if (!dd->dc_shutdown)
6415 		goto done;
6416 	spin_unlock_irqrestore(&dd->dc8051_lock, flags);
6417 	/* Take the 8051 out of reset */
6418 	write_csr(dd, DC_DC8051_CFG_RST, 0ull);
6419 	/* Wait until 8051 is ready */
6420 	ret = wait_fm_ready(dd, TIMEOUT_8051_START);
6421 	if (ret) {
6422 		dd_dev_err(dd, "%s: timeout starting 8051 firmware\n",
6423 			   __func__);
6424 	}
6425 	/* Take away reset for LCB and RX FPE (set in lcb_shutdown). */
6426 	write_csr(dd, DCC_CFG_RESET, 0x10);
6427 	/* lcb_shutdown() with abort=1 does not restore these */
6428 	write_csr(dd, DC_LCB_ERR_EN, dd->lcb_err_en);
6429 	spin_lock_irqsave(&dd->dc8051_lock, flags);
6430 	dd->dc_shutdown = 0;
6431 done:
6432 	spin_unlock_irqrestore(&dd->dc8051_lock, flags);
6433 }
6434 
6435 /*
6436  * These LCB adjustments are for the Aurora SerDes core in the FPGA.
6437  */
6438 static void adjust_lcb_for_fpga_serdes(struct hfi1_devdata *dd)
6439 {
6440 	u64 rx_radr, tx_radr;
6441 	u32 version;
6442 
6443 	if (dd->icode != ICODE_FPGA_EMULATION)
6444 		return;
6445 
6446 	/*
6447 	 * These LCB defaults on emulator _s are good, nothing to do here:
6448 	 *	LCB_CFG_TX_FIFOS_RADR
6449 	 *	LCB_CFG_RX_FIFOS_RADR
6450 	 *	LCB_CFG_LN_DCLK
6451 	 *	LCB_CFG_IGNORE_LOST_RCLK
6452 	 */
6453 	if (is_emulator_s(dd))
6454 		return;
6455 	/* else this is _p */
6456 
6457 	version = emulator_rev(dd);
6458 	if (!is_ax(dd))
6459 		version = 0x2d;	/* all B0 use 0x2d or higher settings */
6460 
6461 	if (version <= 0x12) {
6462 		/* release 0x12 and below */
6463 
6464 		/*
6465 		 * LCB_CFG_RX_FIFOS_RADR.RST_VAL = 0x9
6466 		 * LCB_CFG_RX_FIFOS_RADR.OK_TO_JUMP_VAL = 0x9
6467 		 * LCB_CFG_RX_FIFOS_RADR.DO_NOT_JUMP_VAL = 0xa
6468 		 */
6469 		rx_radr =
6470 		      0xaull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6471 		    | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6472 		    | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6473 		/*
6474 		 * LCB_CFG_TX_FIFOS_RADR.ON_REINIT = 0 (default)
6475 		 * LCB_CFG_TX_FIFOS_RADR.RST_VAL = 6
6476 		 */
6477 		tx_radr = 6ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6478 	} else if (version <= 0x18) {
6479 		/* release 0x13 up to 0x18 */
6480 		/* LCB_CFG_RX_FIFOS_RADR = 0x988 */
6481 		rx_radr =
6482 		      0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6483 		    | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6484 		    | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6485 		tx_radr = 7ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6486 	} else if (version == 0x19) {
6487 		/* release 0x19 */
6488 		/* LCB_CFG_RX_FIFOS_RADR = 0xa99 */
6489 		rx_radr =
6490 		      0xAull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6491 		    | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6492 		    | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6493 		tx_radr = 3ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6494 	} else if (version == 0x1a) {
6495 		/* release 0x1a */
6496 		/* LCB_CFG_RX_FIFOS_RADR = 0x988 */
6497 		rx_radr =
6498 		      0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6499 		    | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6500 		    | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6501 		tx_radr = 7ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6502 		write_csr(dd, DC_LCB_CFG_LN_DCLK, 1ull);
6503 	} else {
6504 		/* release 0x1b and higher */
6505 		/* LCB_CFG_RX_FIFOS_RADR = 0x877 */
6506 		rx_radr =
6507 		      0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6508 		    | 0x7ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6509 		    | 0x7ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6510 		tx_radr = 3ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6511 	}
6512 
6513 	write_csr(dd, DC_LCB_CFG_RX_FIFOS_RADR, rx_radr);
6514 	/* LCB_CFG_IGNORE_LOST_RCLK.EN = 1 */
6515 	write_csr(dd, DC_LCB_CFG_IGNORE_LOST_RCLK,
6516 		  DC_LCB_CFG_IGNORE_LOST_RCLK_EN_SMASK);
6517 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RADR, tx_radr);
6518 }
6519 
6520 /*
6521  * Handle a SMA idle message
6522  *
6523  * This is a work-queue function outside of the interrupt.
6524  */
6525 void handle_sma_message(struct work_struct *work)
6526 {
6527 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
6528 							sma_message_work);
6529 	struct hfi1_devdata *dd = ppd->dd;
6530 	u64 msg;
6531 	int ret;
6532 
6533 	/*
6534 	 * msg is bytes 1-4 of the 40-bit idle message - the command code
6535 	 * is stripped off
6536 	 */
6537 	ret = read_idle_sma(dd, &msg);
6538 	if (ret)
6539 		return;
6540 	dd_dev_info(dd, "%s: SMA message 0x%llx\n", __func__, msg);
6541 	/*
6542 	 * React to the SMA message.  Byte[1] (0 for us) is the command.
6543 	 */
6544 	switch (msg & 0xff) {
6545 	case SMA_IDLE_ARM:
6546 		/*
6547 		 * See OPAv1 table 9-14 - HFI and External Switch Ports Key
6548 		 * State Transitions
6549 		 *
6550 		 * Only expected in INIT or ARMED, discard otherwise.
6551 		 */
6552 		if (ppd->host_link_state & (HLS_UP_INIT | HLS_UP_ARMED))
6553 			ppd->neighbor_normal = 1;
6554 		break;
6555 	case SMA_IDLE_ACTIVE:
6556 		/*
6557 		 * See OPAv1 table 9-14 - HFI and External Switch Ports Key
6558 		 * State Transitions
6559 		 *
6560 		 * Can activate the node.  Discard otherwise.
6561 		 */
6562 		if (ppd->host_link_state == HLS_UP_ARMED &&
6563 		    ppd->is_active_optimize_enabled) {
6564 			ppd->neighbor_normal = 1;
6565 			ret = set_link_state(ppd, HLS_UP_ACTIVE);
6566 			if (ret)
6567 				dd_dev_err(
6568 					dd,
6569 					"%s: received Active SMA idle message, couldn't set link to Active\n",
6570 					__func__);
6571 		}
6572 		break;
6573 	default:
6574 		dd_dev_err(dd,
6575 			   "%s: received unexpected SMA idle message 0x%llx\n",
6576 			   __func__, msg);
6577 		break;
6578 	}
6579 }
6580 
6581 static void adjust_rcvctrl(struct hfi1_devdata *dd, u64 add, u64 clear)
6582 {
6583 	u64 rcvctrl;
6584 	unsigned long flags;
6585 
6586 	spin_lock_irqsave(&dd->rcvctrl_lock, flags);
6587 	rcvctrl = read_csr(dd, RCV_CTRL);
6588 	rcvctrl |= add;
6589 	rcvctrl &= ~clear;
6590 	write_csr(dd, RCV_CTRL, rcvctrl);
6591 	spin_unlock_irqrestore(&dd->rcvctrl_lock, flags);
6592 }
6593 
6594 static inline void add_rcvctrl(struct hfi1_devdata *dd, u64 add)
6595 {
6596 	adjust_rcvctrl(dd, add, 0);
6597 }
6598 
6599 static inline void clear_rcvctrl(struct hfi1_devdata *dd, u64 clear)
6600 {
6601 	adjust_rcvctrl(dd, 0, clear);
6602 }
6603 
6604 /*
6605  * Called from all interrupt handlers to start handling an SPC freeze.
6606  */
6607 void start_freeze_handling(struct hfi1_pportdata *ppd, int flags)
6608 {
6609 	struct hfi1_devdata *dd = ppd->dd;
6610 	struct send_context *sc;
6611 	int i;
6612 
6613 	if (flags & FREEZE_SELF)
6614 		write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_FREEZE_SMASK);
6615 
6616 	/* enter frozen mode */
6617 	dd->flags |= HFI1_FROZEN;
6618 
6619 	/* notify all SDMA engines that they are going into a freeze */
6620 	sdma_freeze_notify(dd, !!(flags & FREEZE_LINK_DOWN));
6621 
6622 	/* do halt pre-handling on all enabled send contexts */
6623 	for (i = 0; i < dd->num_send_contexts; i++) {
6624 		sc = dd->send_contexts[i].sc;
6625 		if (sc && (sc->flags & SCF_ENABLED))
6626 			sc_stop(sc, SCF_FROZEN | SCF_HALTED);
6627 	}
6628 
6629 	/* Send context are frozen. Notify user space */
6630 	hfi1_set_uevent_bits(ppd, _HFI1_EVENT_FROZEN_BIT);
6631 
6632 	if (flags & FREEZE_ABORT) {
6633 		dd_dev_err(dd,
6634 			   "Aborted freeze recovery. Please REBOOT system\n");
6635 		return;
6636 	}
6637 	/* queue non-interrupt handler */
6638 	queue_work(ppd->hfi1_wq, &ppd->freeze_work);
6639 }
6640 
6641 /*
6642  * Wait until all 4 sub-blocks indicate that they have frozen or unfrozen,
6643  * depending on the "freeze" parameter.
6644  *
6645  * No need to return an error if it times out, our only option
6646  * is to proceed anyway.
6647  */
6648 static void wait_for_freeze_status(struct hfi1_devdata *dd, int freeze)
6649 {
6650 	unsigned long timeout;
6651 	u64 reg;
6652 
6653 	timeout = jiffies + msecs_to_jiffies(FREEZE_STATUS_TIMEOUT);
6654 	while (1) {
6655 		reg = read_csr(dd, CCE_STATUS);
6656 		if (freeze) {
6657 			/* waiting until all indicators are set */
6658 			if ((reg & ALL_FROZE) == ALL_FROZE)
6659 				return;	/* all done */
6660 		} else {
6661 			/* waiting until all indicators are clear */
6662 			if ((reg & ALL_FROZE) == 0)
6663 				return; /* all done */
6664 		}
6665 
6666 		if (time_after(jiffies, timeout)) {
6667 			dd_dev_err(dd,
6668 				   "Time out waiting for SPC %sfreeze, bits 0x%llx, expecting 0x%llx, continuing",
6669 				   freeze ? "" : "un", reg & ALL_FROZE,
6670 				   freeze ? ALL_FROZE : 0ull);
6671 			return;
6672 		}
6673 		usleep_range(80, 120);
6674 	}
6675 }
6676 
6677 /*
6678  * Do all freeze handling for the RXE block.
6679  */
6680 static void rxe_freeze(struct hfi1_devdata *dd)
6681 {
6682 	int i;
6683 
6684 	/* disable port */
6685 	clear_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
6686 
6687 	/* disable all receive contexts */
6688 	for (i = 0; i < dd->num_rcv_contexts; i++)
6689 		hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_DIS, i);
6690 }
6691 
6692 /*
6693  * Unfreeze handling for the RXE block - kernel contexts only.
6694  * This will also enable the port.  User contexts will do unfreeze
6695  * handling on a per-context basis as they call into the driver.
6696  *
6697  */
6698 static void rxe_kernel_unfreeze(struct hfi1_devdata *dd)
6699 {
6700 	u32 rcvmask;
6701 	int i;
6702 
6703 	/* enable all kernel contexts */
6704 	for (i = 0; i < dd->n_krcv_queues; i++) {
6705 		rcvmask = HFI1_RCVCTRL_CTXT_ENB;
6706 		/* HFI1_RCVCTRL_TAILUPD_[ENB|DIS] needs to be set explicitly */
6707 		rcvmask |= HFI1_CAP_KGET_MASK(dd->rcd[i]->flags, DMA_RTAIL) ?
6708 			HFI1_RCVCTRL_TAILUPD_ENB : HFI1_RCVCTRL_TAILUPD_DIS;
6709 		hfi1_rcvctrl(dd, rcvmask, i);
6710 	}
6711 
6712 	/* enable port */
6713 	add_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
6714 }
6715 
6716 /*
6717  * Non-interrupt SPC freeze handling.
6718  *
6719  * This is a work-queue function outside of the triggering interrupt.
6720  */
6721 void handle_freeze(struct work_struct *work)
6722 {
6723 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
6724 								freeze_work);
6725 	struct hfi1_devdata *dd = ppd->dd;
6726 
6727 	/* wait for freeze indicators on all affected blocks */
6728 	wait_for_freeze_status(dd, 1);
6729 
6730 	/* SPC is now frozen */
6731 
6732 	/* do send PIO freeze steps */
6733 	pio_freeze(dd);
6734 
6735 	/* do send DMA freeze steps */
6736 	sdma_freeze(dd);
6737 
6738 	/* do send egress freeze steps - nothing to do */
6739 
6740 	/* do receive freeze steps */
6741 	rxe_freeze(dd);
6742 
6743 	/*
6744 	 * Unfreeze the hardware - clear the freeze, wait for each
6745 	 * block's frozen bit to clear, then clear the frozen flag.
6746 	 */
6747 	write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_UNFREEZE_SMASK);
6748 	wait_for_freeze_status(dd, 0);
6749 
6750 	if (is_ax(dd)) {
6751 		write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_FREEZE_SMASK);
6752 		wait_for_freeze_status(dd, 1);
6753 		write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_UNFREEZE_SMASK);
6754 		wait_for_freeze_status(dd, 0);
6755 	}
6756 
6757 	/* do send PIO unfreeze steps for kernel contexts */
6758 	pio_kernel_unfreeze(dd);
6759 
6760 	/* do send DMA unfreeze steps */
6761 	sdma_unfreeze(dd);
6762 
6763 	/* do send egress unfreeze steps - nothing to do */
6764 
6765 	/* do receive unfreeze steps for kernel contexts */
6766 	rxe_kernel_unfreeze(dd);
6767 
6768 	/*
6769 	 * The unfreeze procedure touches global device registers when
6770 	 * it disables and re-enables RXE. Mark the device unfrozen
6771 	 * after all that is done so other parts of the driver waiting
6772 	 * for the device to unfreeze don't do things out of order.
6773 	 *
6774 	 * The above implies that the meaning of HFI1_FROZEN flag is
6775 	 * "Device has gone into freeze mode and freeze mode handling
6776 	 * is still in progress."
6777 	 *
6778 	 * The flag will be removed when freeze mode processing has
6779 	 * completed.
6780 	 */
6781 	dd->flags &= ~HFI1_FROZEN;
6782 	wake_up(&dd->event_queue);
6783 
6784 	/* no longer frozen */
6785 }
6786 
6787 /*
6788  * Handle a link up interrupt from the 8051.
6789  *
6790  * This is a work-queue function outside of the interrupt.
6791  */
6792 void handle_link_up(struct work_struct *work)
6793 {
6794 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
6795 						  link_up_work);
6796 	set_link_state(ppd, HLS_UP_INIT);
6797 
6798 	/* cache the read of DC_LCB_STS_ROUND_TRIP_LTP_CNT */
6799 	read_ltp_rtt(ppd->dd);
6800 	/*
6801 	 * OPA specifies that certain counters are cleared on a transition
6802 	 * to link up, so do that.
6803 	 */
6804 	clear_linkup_counters(ppd->dd);
6805 	/*
6806 	 * And (re)set link up default values.
6807 	 */
6808 	set_linkup_defaults(ppd);
6809 
6810 	/* enforce link speed enabled */
6811 	if ((ppd->link_speed_active & ppd->link_speed_enabled) == 0) {
6812 		/* oops - current speed is not enabled, bounce */
6813 		dd_dev_err(ppd->dd,
6814 			   "Link speed active 0x%x is outside enabled 0x%x, downing link\n",
6815 			   ppd->link_speed_active, ppd->link_speed_enabled);
6816 		set_link_down_reason(ppd, OPA_LINKDOWN_REASON_SPEED_POLICY, 0,
6817 				     OPA_LINKDOWN_REASON_SPEED_POLICY);
6818 		set_link_state(ppd, HLS_DN_OFFLINE);
6819 		start_link(ppd);
6820 	}
6821 }
6822 
6823 /*
6824  * Several pieces of LNI information were cached for SMA in ppd.
6825  * Reset these on link down
6826  */
6827 static void reset_neighbor_info(struct hfi1_pportdata *ppd)
6828 {
6829 	ppd->neighbor_guid = 0;
6830 	ppd->neighbor_port_number = 0;
6831 	ppd->neighbor_type = 0;
6832 	ppd->neighbor_fm_security = 0;
6833 }
6834 
6835 static const char * const link_down_reason_strs[] = {
6836 	[OPA_LINKDOWN_REASON_NONE] = "None",
6837 	[OPA_LINKDOWN_REASON_RCV_ERROR_0] = "Recive error 0",
6838 	[OPA_LINKDOWN_REASON_BAD_PKT_LEN] = "Bad packet length",
6839 	[OPA_LINKDOWN_REASON_PKT_TOO_LONG] = "Packet too long",
6840 	[OPA_LINKDOWN_REASON_PKT_TOO_SHORT] = "Packet too short",
6841 	[OPA_LINKDOWN_REASON_BAD_SLID] = "Bad SLID",
6842 	[OPA_LINKDOWN_REASON_BAD_DLID] = "Bad DLID",
6843 	[OPA_LINKDOWN_REASON_BAD_L2] = "Bad L2",
6844 	[OPA_LINKDOWN_REASON_BAD_SC] = "Bad SC",
6845 	[OPA_LINKDOWN_REASON_RCV_ERROR_8] = "Receive error 8",
6846 	[OPA_LINKDOWN_REASON_BAD_MID_TAIL] = "Bad mid tail",
6847 	[OPA_LINKDOWN_REASON_RCV_ERROR_10] = "Receive error 10",
6848 	[OPA_LINKDOWN_REASON_PREEMPT_ERROR] = "Preempt error",
6849 	[OPA_LINKDOWN_REASON_PREEMPT_VL15] = "Preempt vl15",
6850 	[OPA_LINKDOWN_REASON_BAD_VL_MARKER] = "Bad VL marker",
6851 	[OPA_LINKDOWN_REASON_RCV_ERROR_14] = "Receive error 14",
6852 	[OPA_LINKDOWN_REASON_RCV_ERROR_15] = "Receive error 15",
6853 	[OPA_LINKDOWN_REASON_BAD_HEAD_DIST] = "Bad head distance",
6854 	[OPA_LINKDOWN_REASON_BAD_TAIL_DIST] = "Bad tail distance",
6855 	[OPA_LINKDOWN_REASON_BAD_CTRL_DIST] = "Bad control distance",
6856 	[OPA_LINKDOWN_REASON_BAD_CREDIT_ACK] = "Bad credit ack",
6857 	[OPA_LINKDOWN_REASON_UNSUPPORTED_VL_MARKER] = "Unsupported VL marker",
6858 	[OPA_LINKDOWN_REASON_BAD_PREEMPT] = "Bad preempt",
6859 	[OPA_LINKDOWN_REASON_BAD_CONTROL_FLIT] = "Bad control flit",
6860 	[OPA_LINKDOWN_REASON_EXCEED_MULTICAST_LIMIT] = "Exceed multicast limit",
6861 	[OPA_LINKDOWN_REASON_RCV_ERROR_24] = "Receive error 24",
6862 	[OPA_LINKDOWN_REASON_RCV_ERROR_25] = "Receive error 25",
6863 	[OPA_LINKDOWN_REASON_RCV_ERROR_26] = "Receive error 26",
6864 	[OPA_LINKDOWN_REASON_RCV_ERROR_27] = "Receive error 27",
6865 	[OPA_LINKDOWN_REASON_RCV_ERROR_28] = "Receive error 28",
6866 	[OPA_LINKDOWN_REASON_RCV_ERROR_29] = "Receive error 29",
6867 	[OPA_LINKDOWN_REASON_RCV_ERROR_30] = "Receive error 30",
6868 	[OPA_LINKDOWN_REASON_EXCESSIVE_BUFFER_OVERRUN] =
6869 					"Excessive buffer overrun",
6870 	[OPA_LINKDOWN_REASON_UNKNOWN] = "Unknown",
6871 	[OPA_LINKDOWN_REASON_REBOOT] = "Reboot",
6872 	[OPA_LINKDOWN_REASON_NEIGHBOR_UNKNOWN] = "Neighbor unknown",
6873 	[OPA_LINKDOWN_REASON_FM_BOUNCE] = "FM bounce",
6874 	[OPA_LINKDOWN_REASON_SPEED_POLICY] = "Speed policy",
6875 	[OPA_LINKDOWN_REASON_WIDTH_POLICY] = "Width policy",
6876 	[OPA_LINKDOWN_REASON_DISCONNECTED] = "Disconnected",
6877 	[OPA_LINKDOWN_REASON_LOCAL_MEDIA_NOT_INSTALLED] =
6878 					"Local media not installed",
6879 	[OPA_LINKDOWN_REASON_NOT_INSTALLED] = "Not installed",
6880 	[OPA_LINKDOWN_REASON_CHASSIS_CONFIG] = "Chassis config",
6881 	[OPA_LINKDOWN_REASON_END_TO_END_NOT_INSTALLED] =
6882 					"End to end not installed",
6883 	[OPA_LINKDOWN_REASON_POWER_POLICY] = "Power policy",
6884 	[OPA_LINKDOWN_REASON_LINKSPEED_POLICY] = "Link speed policy",
6885 	[OPA_LINKDOWN_REASON_LINKWIDTH_POLICY] = "Link width policy",
6886 	[OPA_LINKDOWN_REASON_SWITCH_MGMT] = "Switch management",
6887 	[OPA_LINKDOWN_REASON_SMA_DISABLED] = "SMA disabled",
6888 	[OPA_LINKDOWN_REASON_TRANSIENT] = "Transient"
6889 };
6890 
6891 /* return the neighbor link down reason string */
6892 static const char *link_down_reason_str(u8 reason)
6893 {
6894 	const char *str = NULL;
6895 
6896 	if (reason < ARRAY_SIZE(link_down_reason_strs))
6897 		str = link_down_reason_strs[reason];
6898 	if (!str)
6899 		str = "(invalid)";
6900 
6901 	return str;
6902 }
6903 
6904 /*
6905  * Handle a link down interrupt from the 8051.
6906  *
6907  * This is a work-queue function outside of the interrupt.
6908  */
6909 void handle_link_down(struct work_struct *work)
6910 {
6911 	u8 lcl_reason, neigh_reason = 0;
6912 	u8 link_down_reason;
6913 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
6914 						  link_down_work);
6915 	int was_up;
6916 	static const char ldr_str[] = "Link down reason: ";
6917 
6918 	if ((ppd->host_link_state &
6919 	     (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) &&
6920 	     ppd->port_type == PORT_TYPE_FIXED)
6921 		ppd->offline_disabled_reason =
6922 			HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NOT_INSTALLED);
6923 
6924 	/* Go offline first, then deal with reading/writing through 8051 */
6925 	was_up = !!(ppd->host_link_state & HLS_UP);
6926 	set_link_state(ppd, HLS_DN_OFFLINE);
6927 
6928 	if (was_up) {
6929 		lcl_reason = 0;
6930 		/* link down reason is only valid if the link was up */
6931 		read_link_down_reason(ppd->dd, &link_down_reason);
6932 		switch (link_down_reason) {
6933 		case LDR_LINK_TRANSFER_ACTIVE_LOW:
6934 			/* the link went down, no idle message reason */
6935 			dd_dev_info(ppd->dd, "%sUnexpected link down\n",
6936 				    ldr_str);
6937 			break;
6938 		case LDR_RECEIVED_LINKDOWN_IDLE_MSG:
6939 			/*
6940 			 * The neighbor reason is only valid if an idle message
6941 			 * was received for it.
6942 			 */
6943 			read_planned_down_reason_code(ppd->dd, &neigh_reason);
6944 			dd_dev_info(ppd->dd,
6945 				    "%sNeighbor link down message %d, %s\n",
6946 				    ldr_str, neigh_reason,
6947 				    link_down_reason_str(neigh_reason));
6948 			break;
6949 		case LDR_RECEIVED_HOST_OFFLINE_REQ:
6950 			dd_dev_info(ppd->dd,
6951 				    "%sHost requested link to go offline\n",
6952 				    ldr_str);
6953 			break;
6954 		default:
6955 			dd_dev_info(ppd->dd, "%sUnknown reason 0x%x\n",
6956 				    ldr_str, link_down_reason);
6957 			break;
6958 		}
6959 
6960 		/*
6961 		 * If no reason, assume peer-initiated but missed
6962 		 * LinkGoingDown idle flits.
6963 		 */
6964 		if (neigh_reason == 0)
6965 			lcl_reason = OPA_LINKDOWN_REASON_NEIGHBOR_UNKNOWN;
6966 	} else {
6967 		/* went down while polling or going up */
6968 		lcl_reason = OPA_LINKDOWN_REASON_TRANSIENT;
6969 	}
6970 
6971 	set_link_down_reason(ppd, lcl_reason, neigh_reason, 0);
6972 
6973 	/* inform the SMA when the link transitions from up to down */
6974 	if (was_up && ppd->local_link_down_reason.sma == 0 &&
6975 	    ppd->neigh_link_down_reason.sma == 0) {
6976 		ppd->local_link_down_reason.sma =
6977 					ppd->local_link_down_reason.latest;
6978 		ppd->neigh_link_down_reason.sma =
6979 					ppd->neigh_link_down_reason.latest;
6980 	}
6981 
6982 	reset_neighbor_info(ppd);
6983 
6984 	/* disable the port */
6985 	clear_rcvctrl(ppd->dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
6986 
6987 	/*
6988 	 * If there is no cable attached, turn the DC off. Otherwise,
6989 	 * start the link bring up.
6990 	 */
6991 	if (ppd->port_type == PORT_TYPE_QSFP && !qsfp_mod_present(ppd))
6992 		dc_shutdown(ppd->dd);
6993 	else
6994 		start_link(ppd);
6995 }
6996 
6997 void handle_link_bounce(struct work_struct *work)
6998 {
6999 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
7000 							link_bounce_work);
7001 
7002 	/*
7003 	 * Only do something if the link is currently up.
7004 	 */
7005 	if (ppd->host_link_state & HLS_UP) {
7006 		set_link_state(ppd, HLS_DN_OFFLINE);
7007 		start_link(ppd);
7008 	} else {
7009 		dd_dev_info(ppd->dd, "%s: link not up (%s), nothing to do\n",
7010 			    __func__, link_state_name(ppd->host_link_state));
7011 	}
7012 }
7013 
7014 /*
7015  * Mask conversion: Capability exchange to Port LTP.  The capability
7016  * exchange has an implicit 16b CRC that is mandatory.
7017  */
7018 static int cap_to_port_ltp(int cap)
7019 {
7020 	int port_ltp = PORT_LTP_CRC_MODE_16; /* this mode is mandatory */
7021 
7022 	if (cap & CAP_CRC_14B)
7023 		port_ltp |= PORT_LTP_CRC_MODE_14;
7024 	if (cap & CAP_CRC_48B)
7025 		port_ltp |= PORT_LTP_CRC_MODE_48;
7026 	if (cap & CAP_CRC_12B_16B_PER_LANE)
7027 		port_ltp |= PORT_LTP_CRC_MODE_PER_LANE;
7028 
7029 	return port_ltp;
7030 }
7031 
7032 /*
7033  * Convert an OPA Port LTP mask to capability mask
7034  */
7035 int port_ltp_to_cap(int port_ltp)
7036 {
7037 	int cap_mask = 0;
7038 
7039 	if (port_ltp & PORT_LTP_CRC_MODE_14)
7040 		cap_mask |= CAP_CRC_14B;
7041 	if (port_ltp & PORT_LTP_CRC_MODE_48)
7042 		cap_mask |= CAP_CRC_48B;
7043 	if (port_ltp & PORT_LTP_CRC_MODE_PER_LANE)
7044 		cap_mask |= CAP_CRC_12B_16B_PER_LANE;
7045 
7046 	return cap_mask;
7047 }
7048 
7049 /*
7050  * Convert a single DC LCB CRC mode to an OPA Port LTP mask.
7051  */
7052 static int lcb_to_port_ltp(int lcb_crc)
7053 {
7054 	int port_ltp = 0;
7055 
7056 	if (lcb_crc == LCB_CRC_12B_16B_PER_LANE)
7057 		port_ltp = PORT_LTP_CRC_MODE_PER_LANE;
7058 	else if (lcb_crc == LCB_CRC_48B)
7059 		port_ltp = PORT_LTP_CRC_MODE_48;
7060 	else if (lcb_crc == LCB_CRC_14B)
7061 		port_ltp = PORT_LTP_CRC_MODE_14;
7062 	else
7063 		port_ltp = PORT_LTP_CRC_MODE_16;
7064 
7065 	return port_ltp;
7066 }
7067 
7068 /*
7069  * Our neighbor has indicated that we are allowed to act as a fabric
7070  * manager, so place the full management partition key in the second
7071  * (0-based) pkey array position (see OPAv1, section 20.2.2.6.8). Note
7072  * that we should already have the limited management partition key in
7073  * array element 1, and also that the port is not yet up when
7074  * add_full_mgmt_pkey() is invoked.
7075  */
7076 static void add_full_mgmt_pkey(struct hfi1_pportdata *ppd)
7077 {
7078 	struct hfi1_devdata *dd = ppd->dd;
7079 
7080 	/* Sanity check - ppd->pkeys[2] should be 0, or already initalized */
7081 	if (!((ppd->pkeys[2] == 0) || (ppd->pkeys[2] == FULL_MGMT_P_KEY)))
7082 		dd_dev_warn(dd, "%s pkey[2] already set to 0x%x, resetting it to 0x%x\n",
7083 			    __func__, ppd->pkeys[2], FULL_MGMT_P_KEY);
7084 	ppd->pkeys[2] = FULL_MGMT_P_KEY;
7085 	(void)hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_PKEYS, 0);
7086 	hfi1_event_pkey_change(ppd->dd, ppd->port);
7087 }
7088 
7089 static void clear_full_mgmt_pkey(struct hfi1_pportdata *ppd)
7090 {
7091 	if (ppd->pkeys[2] != 0) {
7092 		ppd->pkeys[2] = 0;
7093 		(void)hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_PKEYS, 0);
7094 		hfi1_event_pkey_change(ppd->dd, ppd->port);
7095 	}
7096 }
7097 
7098 /*
7099  * Convert the given link width to the OPA link width bitmask.
7100  */
7101 static u16 link_width_to_bits(struct hfi1_devdata *dd, u16 width)
7102 {
7103 	switch (width) {
7104 	case 0:
7105 		/*
7106 		 * Simulator and quick linkup do not set the width.
7107 		 * Just set it to 4x without complaint.
7108 		 */
7109 		if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR || quick_linkup)
7110 			return OPA_LINK_WIDTH_4X;
7111 		return 0; /* no lanes up */
7112 	case 1: return OPA_LINK_WIDTH_1X;
7113 	case 2: return OPA_LINK_WIDTH_2X;
7114 	case 3: return OPA_LINK_WIDTH_3X;
7115 	default:
7116 		dd_dev_info(dd, "%s: invalid width %d, using 4\n",
7117 			    __func__, width);
7118 		/* fall through */
7119 	case 4: return OPA_LINK_WIDTH_4X;
7120 	}
7121 }
7122 
7123 /*
7124  * Do a population count on the bottom nibble.
7125  */
7126 static const u8 bit_counts[16] = {
7127 	0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4
7128 };
7129 
7130 static inline u8 nibble_to_count(u8 nibble)
7131 {
7132 	return bit_counts[nibble & 0xf];
7133 }
7134 
7135 /*
7136  * Read the active lane information from the 8051 registers and return
7137  * their widths.
7138  *
7139  * Active lane information is found in these 8051 registers:
7140  *	enable_lane_tx
7141  *	enable_lane_rx
7142  */
7143 static void get_link_widths(struct hfi1_devdata *dd, u16 *tx_width,
7144 			    u16 *rx_width)
7145 {
7146 	u16 tx, rx;
7147 	u8 enable_lane_rx;
7148 	u8 enable_lane_tx;
7149 	u8 tx_polarity_inversion;
7150 	u8 rx_polarity_inversion;
7151 	u8 max_rate;
7152 
7153 	/* read the active lanes */
7154 	read_tx_settings(dd, &enable_lane_tx, &tx_polarity_inversion,
7155 			 &rx_polarity_inversion, &max_rate);
7156 	read_local_lni(dd, &enable_lane_rx);
7157 
7158 	/* convert to counts */
7159 	tx = nibble_to_count(enable_lane_tx);
7160 	rx = nibble_to_count(enable_lane_rx);
7161 
7162 	/*
7163 	 * Set link_speed_active here, overriding what was set in
7164 	 * handle_verify_cap().  The ASIC 8051 firmware does not correctly
7165 	 * set the max_rate field in handle_verify_cap until v0.19.
7166 	 */
7167 	if ((dd->icode == ICODE_RTL_SILICON) &&
7168 	    (dd->dc8051_ver < dc8051_ver(0, 19))) {
7169 		/* max_rate: 0 = 12.5G, 1 = 25G */
7170 		switch (max_rate) {
7171 		case 0:
7172 			dd->pport[0].link_speed_active = OPA_LINK_SPEED_12_5G;
7173 			break;
7174 		default:
7175 			dd_dev_err(dd,
7176 				   "%s: unexpected max rate %d, using 25Gb\n",
7177 				   __func__, (int)max_rate);
7178 			/* fall through */
7179 		case 1:
7180 			dd->pport[0].link_speed_active = OPA_LINK_SPEED_25G;
7181 			break;
7182 		}
7183 	}
7184 
7185 	dd_dev_info(dd,
7186 		    "Fabric active lanes (width): tx 0x%x (%d), rx 0x%x (%d)\n",
7187 		    enable_lane_tx, tx, enable_lane_rx, rx);
7188 	*tx_width = link_width_to_bits(dd, tx);
7189 	*rx_width = link_width_to_bits(dd, rx);
7190 }
7191 
7192 /*
7193  * Read verify_cap_local_fm_link_width[1] to obtain the link widths.
7194  * Valid after the end of VerifyCap and during LinkUp.  Does not change
7195  * after link up.  I.e. look elsewhere for downgrade information.
7196  *
7197  * Bits are:
7198  *	+ bits [7:4] contain the number of active transmitters
7199  *	+ bits [3:0] contain the number of active receivers
7200  * These are numbers 1 through 4 and can be different values if the
7201  * link is asymmetric.
7202  *
7203  * verify_cap_local_fm_link_width[0] retains its original value.
7204  */
7205 static void get_linkup_widths(struct hfi1_devdata *dd, u16 *tx_width,
7206 			      u16 *rx_width)
7207 {
7208 	u16 widths, tx, rx;
7209 	u8 misc_bits, local_flags;
7210 	u16 active_tx, active_rx;
7211 
7212 	read_vc_local_link_width(dd, &misc_bits, &local_flags, &widths);
7213 	tx = widths >> 12;
7214 	rx = (widths >> 8) & 0xf;
7215 
7216 	*tx_width = link_width_to_bits(dd, tx);
7217 	*rx_width = link_width_to_bits(dd, rx);
7218 
7219 	/* print the active widths */
7220 	get_link_widths(dd, &active_tx, &active_rx);
7221 }
7222 
7223 /*
7224  * Set ppd->link_width_active and ppd->link_width_downgrade_active using
7225  * hardware information when the link first comes up.
7226  *
7227  * The link width is not available until after VerifyCap.AllFramesReceived
7228  * (the trigger for handle_verify_cap), so this is outside that routine
7229  * and should be called when the 8051 signals linkup.
7230  */
7231 void get_linkup_link_widths(struct hfi1_pportdata *ppd)
7232 {
7233 	u16 tx_width, rx_width;
7234 
7235 	/* get end-of-LNI link widths */
7236 	get_linkup_widths(ppd->dd, &tx_width, &rx_width);
7237 
7238 	/* use tx_width as the link is supposed to be symmetric on link up */
7239 	ppd->link_width_active = tx_width;
7240 	/* link width downgrade active (LWD.A) starts out matching LW.A */
7241 	ppd->link_width_downgrade_tx_active = ppd->link_width_active;
7242 	ppd->link_width_downgrade_rx_active = ppd->link_width_active;
7243 	/* per OPA spec, on link up LWD.E resets to LWD.S */
7244 	ppd->link_width_downgrade_enabled = ppd->link_width_downgrade_supported;
7245 	/* cache the active egress rate (units {10^6 bits/sec]) */
7246 	ppd->current_egress_rate = active_egress_rate(ppd);
7247 }
7248 
7249 /*
7250  * Handle a verify capabilities interrupt from the 8051.
7251  *
7252  * This is a work-queue function outside of the interrupt.
7253  */
7254 void handle_verify_cap(struct work_struct *work)
7255 {
7256 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
7257 								link_vc_work);
7258 	struct hfi1_devdata *dd = ppd->dd;
7259 	u64 reg;
7260 	u8 power_management;
7261 	u8 continious;
7262 	u8 vcu;
7263 	u8 vau;
7264 	u8 z;
7265 	u16 vl15buf;
7266 	u16 link_widths;
7267 	u16 crc_mask;
7268 	u16 crc_val;
7269 	u16 device_id;
7270 	u16 active_tx, active_rx;
7271 	u8 partner_supported_crc;
7272 	u8 remote_tx_rate;
7273 	u8 device_rev;
7274 
7275 	set_link_state(ppd, HLS_VERIFY_CAP);
7276 
7277 	lcb_shutdown(dd, 0);
7278 	adjust_lcb_for_fpga_serdes(dd);
7279 
7280 	/*
7281 	 * These are now valid:
7282 	 *	remote VerifyCap fields in the general LNI config
7283 	 *	CSR DC8051_STS_REMOTE_GUID
7284 	 *	CSR DC8051_STS_REMOTE_NODE_TYPE
7285 	 *	CSR DC8051_STS_REMOTE_FM_SECURITY
7286 	 *	CSR DC8051_STS_REMOTE_PORT_NO
7287 	 */
7288 
7289 	read_vc_remote_phy(dd, &power_management, &continious);
7290 	read_vc_remote_fabric(dd, &vau, &z, &vcu, &vl15buf,
7291 			      &partner_supported_crc);
7292 	read_vc_remote_link_width(dd, &remote_tx_rate, &link_widths);
7293 	read_remote_device_id(dd, &device_id, &device_rev);
7294 	/*
7295 	 * And the 'MgmtAllowed' information, which is exchanged during
7296 	 * LNI, is also be available at this point.
7297 	 */
7298 	read_mgmt_allowed(dd, &ppd->mgmt_allowed);
7299 	/* print the active widths */
7300 	get_link_widths(dd, &active_tx, &active_rx);
7301 	dd_dev_info(dd,
7302 		    "Peer PHY: power management 0x%x, continuous updates 0x%x\n",
7303 		    (int)power_management, (int)continious);
7304 	dd_dev_info(dd,
7305 		    "Peer Fabric: vAU %d, Z %d, vCU %d, vl15 credits 0x%x, CRC sizes 0x%x\n",
7306 		    (int)vau, (int)z, (int)vcu, (int)vl15buf,
7307 		    (int)partner_supported_crc);
7308 	dd_dev_info(dd, "Peer Link Width: tx rate 0x%x, widths 0x%x\n",
7309 		    (u32)remote_tx_rate, (u32)link_widths);
7310 	dd_dev_info(dd, "Peer Device ID: 0x%04x, Revision 0x%02x\n",
7311 		    (u32)device_id, (u32)device_rev);
7312 	/*
7313 	 * The peer vAU value just read is the peer receiver value.  HFI does
7314 	 * not support a transmit vAU of 0 (AU == 8).  We advertised that
7315 	 * with Z=1 in the fabric capabilities sent to the peer.  The peer
7316 	 * will see our Z=1, and, if it advertised a vAU of 0, will move its
7317 	 * receive to vAU of 1 (AU == 16).  Do the same here.  We do not care
7318 	 * about the peer Z value - our sent vAU is 3 (hardwired) and is not
7319 	 * subject to the Z value exception.
7320 	 */
7321 	if (vau == 0)
7322 		vau = 1;
7323 	set_up_vl15(dd, vau, vl15buf);
7324 
7325 	/* set up the LCB CRC mode */
7326 	crc_mask = ppd->port_crc_mode_enabled & partner_supported_crc;
7327 
7328 	/* order is important: use the lowest bit in common */
7329 	if (crc_mask & CAP_CRC_14B)
7330 		crc_val = LCB_CRC_14B;
7331 	else if (crc_mask & CAP_CRC_48B)
7332 		crc_val = LCB_CRC_48B;
7333 	else if (crc_mask & CAP_CRC_12B_16B_PER_LANE)
7334 		crc_val = LCB_CRC_12B_16B_PER_LANE;
7335 	else
7336 		crc_val = LCB_CRC_16B;
7337 
7338 	dd_dev_info(dd, "Final LCB CRC mode: %d\n", (int)crc_val);
7339 	write_csr(dd, DC_LCB_CFG_CRC_MODE,
7340 		  (u64)crc_val << DC_LCB_CFG_CRC_MODE_TX_VAL_SHIFT);
7341 
7342 	/* set (14b only) or clear sideband credit */
7343 	reg = read_csr(dd, SEND_CM_CTRL);
7344 	if (crc_val == LCB_CRC_14B && crc_14b_sideband) {
7345 		write_csr(dd, SEND_CM_CTRL,
7346 			  reg | SEND_CM_CTRL_FORCE_CREDIT_MODE_SMASK);
7347 	} else {
7348 		write_csr(dd, SEND_CM_CTRL,
7349 			  reg & ~SEND_CM_CTRL_FORCE_CREDIT_MODE_SMASK);
7350 	}
7351 
7352 	ppd->link_speed_active = 0;	/* invalid value */
7353 	if (dd->dc8051_ver < dc8051_ver(0, 20)) {
7354 		/* remote_tx_rate: 0 = 12.5G, 1 = 25G */
7355 		switch (remote_tx_rate) {
7356 		case 0:
7357 			ppd->link_speed_active = OPA_LINK_SPEED_12_5G;
7358 			break;
7359 		case 1:
7360 			ppd->link_speed_active = OPA_LINK_SPEED_25G;
7361 			break;
7362 		}
7363 	} else {
7364 		/* actual rate is highest bit of the ANDed rates */
7365 		u8 rate = remote_tx_rate & ppd->local_tx_rate;
7366 
7367 		if (rate & 2)
7368 			ppd->link_speed_active = OPA_LINK_SPEED_25G;
7369 		else if (rate & 1)
7370 			ppd->link_speed_active = OPA_LINK_SPEED_12_5G;
7371 	}
7372 	if (ppd->link_speed_active == 0) {
7373 		dd_dev_err(dd, "%s: unexpected remote tx rate %d, using 25Gb\n",
7374 			   __func__, (int)remote_tx_rate);
7375 		ppd->link_speed_active = OPA_LINK_SPEED_25G;
7376 	}
7377 
7378 	/*
7379 	 * Cache the values of the supported, enabled, and active
7380 	 * LTP CRC modes to return in 'portinfo' queries. But the bit
7381 	 * flags that are returned in the portinfo query differ from
7382 	 * what's in the link_crc_mask, crc_sizes, and crc_val
7383 	 * variables. Convert these here.
7384 	 */
7385 	ppd->port_ltp_crc_mode = cap_to_port_ltp(link_crc_mask) << 8;
7386 		/* supported crc modes */
7387 	ppd->port_ltp_crc_mode |=
7388 		cap_to_port_ltp(ppd->port_crc_mode_enabled) << 4;
7389 		/* enabled crc modes */
7390 	ppd->port_ltp_crc_mode |= lcb_to_port_ltp(crc_val);
7391 		/* active crc mode */
7392 
7393 	/* set up the remote credit return table */
7394 	assign_remote_cm_au_table(dd, vcu);
7395 
7396 	/*
7397 	 * The LCB is reset on entry to handle_verify_cap(), so this must
7398 	 * be applied on every link up.
7399 	 *
7400 	 * Adjust LCB error kill enable to kill the link if
7401 	 * these RBUF errors are seen:
7402 	 *	REPLAY_BUF_MBE_SMASK
7403 	 *	FLIT_INPUT_BUF_MBE_SMASK
7404 	 */
7405 	if (is_ax(dd)) {			/* fixed in B0 */
7406 		reg = read_csr(dd, DC_LCB_CFG_LINK_KILL_EN);
7407 		reg |= DC_LCB_CFG_LINK_KILL_EN_REPLAY_BUF_MBE_SMASK
7408 			| DC_LCB_CFG_LINK_KILL_EN_FLIT_INPUT_BUF_MBE_SMASK;
7409 		write_csr(dd, DC_LCB_CFG_LINK_KILL_EN, reg);
7410 	}
7411 
7412 	/* pull LCB fifos out of reset - all fifo clocks must be stable */
7413 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0);
7414 
7415 	/* give 8051 access to the LCB CSRs */
7416 	write_csr(dd, DC_LCB_ERR_EN, 0); /* mask LCB errors */
7417 	set_8051_lcb_access(dd);
7418 
7419 	ppd->neighbor_guid =
7420 		read_csr(dd, DC_DC8051_STS_REMOTE_GUID);
7421 	ppd->neighbor_port_number = read_csr(dd, DC_DC8051_STS_REMOTE_PORT_NO) &
7422 					DC_DC8051_STS_REMOTE_PORT_NO_VAL_SMASK;
7423 	ppd->neighbor_type =
7424 		read_csr(dd, DC_DC8051_STS_REMOTE_NODE_TYPE) &
7425 		DC_DC8051_STS_REMOTE_NODE_TYPE_VAL_MASK;
7426 	ppd->neighbor_fm_security =
7427 		read_csr(dd, DC_DC8051_STS_REMOTE_FM_SECURITY) &
7428 		DC_DC8051_STS_LOCAL_FM_SECURITY_DISABLED_MASK;
7429 	dd_dev_info(dd,
7430 		    "Neighbor Guid: %llx Neighbor type %d MgmtAllowed %d FM security bypass %d\n",
7431 		    ppd->neighbor_guid, ppd->neighbor_type,
7432 		    ppd->mgmt_allowed, ppd->neighbor_fm_security);
7433 	if (ppd->mgmt_allowed)
7434 		add_full_mgmt_pkey(ppd);
7435 
7436 	/* tell the 8051 to go to LinkUp */
7437 	set_link_state(ppd, HLS_GOING_UP);
7438 }
7439 
7440 /*
7441  * Apply the link width downgrade enabled policy against the current active
7442  * link widths.
7443  *
7444  * Called when the enabled policy changes or the active link widths change.
7445  */
7446 void apply_link_downgrade_policy(struct hfi1_pportdata *ppd, int refresh_widths)
7447 {
7448 	int do_bounce = 0;
7449 	int tries;
7450 	u16 lwde;
7451 	u16 tx, rx;
7452 
7453 	/* use the hls lock to avoid a race with actual link up */
7454 	tries = 0;
7455 retry:
7456 	mutex_lock(&ppd->hls_lock);
7457 	/* only apply if the link is up */
7458 	if (ppd->host_link_state & HLS_DOWN) {
7459 		/* still going up..wait and retry */
7460 		if (ppd->host_link_state & HLS_GOING_UP) {
7461 			if (++tries < 1000) {
7462 				mutex_unlock(&ppd->hls_lock);
7463 				usleep_range(100, 120); /* arbitrary */
7464 				goto retry;
7465 			}
7466 			dd_dev_err(ppd->dd,
7467 				   "%s: giving up waiting for link state change\n",
7468 				   __func__);
7469 		}
7470 		goto done;
7471 	}
7472 
7473 	lwde = ppd->link_width_downgrade_enabled;
7474 
7475 	if (refresh_widths) {
7476 		get_link_widths(ppd->dd, &tx, &rx);
7477 		ppd->link_width_downgrade_tx_active = tx;
7478 		ppd->link_width_downgrade_rx_active = rx;
7479 	}
7480 
7481 	if (ppd->link_width_downgrade_tx_active == 0 ||
7482 	    ppd->link_width_downgrade_rx_active == 0) {
7483 		/* the 8051 reported a dead link as a downgrade */
7484 		dd_dev_err(ppd->dd, "Link downgrade is really a link down, ignoring\n");
7485 	} else if (lwde == 0) {
7486 		/* downgrade is disabled */
7487 
7488 		/* bounce if not at starting active width */
7489 		if ((ppd->link_width_active !=
7490 		     ppd->link_width_downgrade_tx_active) ||
7491 		    (ppd->link_width_active !=
7492 		     ppd->link_width_downgrade_rx_active)) {
7493 			dd_dev_err(ppd->dd,
7494 				   "Link downgrade is disabled and link has downgraded, downing link\n");
7495 			dd_dev_err(ppd->dd,
7496 				   "  original 0x%x, tx active 0x%x, rx active 0x%x\n",
7497 				   ppd->link_width_active,
7498 				   ppd->link_width_downgrade_tx_active,
7499 				   ppd->link_width_downgrade_rx_active);
7500 			do_bounce = 1;
7501 		}
7502 	} else if ((lwde & ppd->link_width_downgrade_tx_active) == 0 ||
7503 		   (lwde & ppd->link_width_downgrade_rx_active) == 0) {
7504 		/* Tx or Rx is outside the enabled policy */
7505 		dd_dev_err(ppd->dd,
7506 			   "Link is outside of downgrade allowed, downing link\n");
7507 		dd_dev_err(ppd->dd,
7508 			   "  enabled 0x%x, tx active 0x%x, rx active 0x%x\n",
7509 			   lwde, ppd->link_width_downgrade_tx_active,
7510 			   ppd->link_width_downgrade_rx_active);
7511 		do_bounce = 1;
7512 	}
7513 
7514 done:
7515 	mutex_unlock(&ppd->hls_lock);
7516 
7517 	if (do_bounce) {
7518 		set_link_down_reason(ppd, OPA_LINKDOWN_REASON_WIDTH_POLICY, 0,
7519 				     OPA_LINKDOWN_REASON_WIDTH_POLICY);
7520 		set_link_state(ppd, HLS_DN_OFFLINE);
7521 		start_link(ppd);
7522 	}
7523 }
7524 
7525 /*
7526  * Handle a link downgrade interrupt from the 8051.
7527  *
7528  * This is a work-queue function outside of the interrupt.
7529  */
7530 void handle_link_downgrade(struct work_struct *work)
7531 {
7532 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
7533 							link_downgrade_work);
7534 
7535 	dd_dev_info(ppd->dd, "8051: Link width downgrade\n");
7536 	apply_link_downgrade_policy(ppd, 1);
7537 }
7538 
7539 static char *dcc_err_string(char *buf, int buf_len, u64 flags)
7540 {
7541 	return flag_string(buf, buf_len, flags, dcc_err_flags,
7542 		ARRAY_SIZE(dcc_err_flags));
7543 }
7544 
7545 static char *lcb_err_string(char *buf, int buf_len, u64 flags)
7546 {
7547 	return flag_string(buf, buf_len, flags, lcb_err_flags,
7548 		ARRAY_SIZE(lcb_err_flags));
7549 }
7550 
7551 static char *dc8051_err_string(char *buf, int buf_len, u64 flags)
7552 {
7553 	return flag_string(buf, buf_len, flags, dc8051_err_flags,
7554 		ARRAY_SIZE(dc8051_err_flags));
7555 }
7556 
7557 static char *dc8051_info_err_string(char *buf, int buf_len, u64 flags)
7558 {
7559 	return flag_string(buf, buf_len, flags, dc8051_info_err_flags,
7560 		ARRAY_SIZE(dc8051_info_err_flags));
7561 }
7562 
7563 static char *dc8051_info_host_msg_string(char *buf, int buf_len, u64 flags)
7564 {
7565 	return flag_string(buf, buf_len, flags, dc8051_info_host_msg_flags,
7566 		ARRAY_SIZE(dc8051_info_host_msg_flags));
7567 }
7568 
7569 static void handle_8051_interrupt(struct hfi1_devdata *dd, u32 unused, u64 reg)
7570 {
7571 	struct hfi1_pportdata *ppd = dd->pport;
7572 	u64 info, err, host_msg;
7573 	int queue_link_down = 0;
7574 	char buf[96];
7575 
7576 	/* look at the flags */
7577 	if (reg & DC_DC8051_ERR_FLG_SET_BY_8051_SMASK) {
7578 		/* 8051 information set by firmware */
7579 		/* read DC8051_DBG_ERR_INFO_SET_BY_8051 for details */
7580 		info = read_csr(dd, DC_DC8051_DBG_ERR_INFO_SET_BY_8051);
7581 		err = (info >> DC_DC8051_DBG_ERR_INFO_SET_BY_8051_ERROR_SHIFT)
7582 			& DC_DC8051_DBG_ERR_INFO_SET_BY_8051_ERROR_MASK;
7583 		host_msg = (info >>
7584 			DC_DC8051_DBG_ERR_INFO_SET_BY_8051_HOST_MSG_SHIFT)
7585 			& DC_DC8051_DBG_ERR_INFO_SET_BY_8051_HOST_MSG_MASK;
7586 
7587 		/*
7588 		 * Handle error flags.
7589 		 */
7590 		if (err & FAILED_LNI) {
7591 			/*
7592 			 * LNI error indications are cleared by the 8051
7593 			 * only when starting polling.  Only pay attention
7594 			 * to them when in the states that occur during
7595 			 * LNI.
7596 			 */
7597 			if (ppd->host_link_state
7598 			    & (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) {
7599 				queue_link_down = 1;
7600 				dd_dev_info(dd, "Link error: %s\n",
7601 					    dc8051_info_err_string(buf,
7602 								   sizeof(buf),
7603 								   err &
7604 								   FAILED_LNI));
7605 			}
7606 			err &= ~(u64)FAILED_LNI;
7607 		}
7608 		/* unknown frames can happen durning LNI, just count */
7609 		if (err & UNKNOWN_FRAME) {
7610 			ppd->unknown_frame_count++;
7611 			err &= ~(u64)UNKNOWN_FRAME;
7612 		}
7613 		if (err) {
7614 			/* report remaining errors, but do not do anything */
7615 			dd_dev_err(dd, "8051 info error: %s\n",
7616 				   dc8051_info_err_string(buf, sizeof(buf),
7617 							  err));
7618 		}
7619 
7620 		/*
7621 		 * Handle host message flags.
7622 		 */
7623 		if (host_msg & HOST_REQ_DONE) {
7624 			/*
7625 			 * Presently, the driver does a busy wait for
7626 			 * host requests to complete.  This is only an
7627 			 * informational message.
7628 			 * NOTE: The 8051 clears the host message
7629 			 * information *on the next 8051 command*.
7630 			 * Therefore, when linkup is achieved,
7631 			 * this flag will still be set.
7632 			 */
7633 			host_msg &= ~(u64)HOST_REQ_DONE;
7634 		}
7635 		if (host_msg & BC_SMA_MSG) {
7636 			queue_work(ppd->hfi1_wq, &ppd->sma_message_work);
7637 			host_msg &= ~(u64)BC_SMA_MSG;
7638 		}
7639 		if (host_msg & LINKUP_ACHIEVED) {
7640 			dd_dev_info(dd, "8051: Link up\n");
7641 			queue_work(ppd->hfi1_wq, &ppd->link_up_work);
7642 			host_msg &= ~(u64)LINKUP_ACHIEVED;
7643 		}
7644 		if (host_msg & EXT_DEVICE_CFG_REQ) {
7645 			handle_8051_request(ppd);
7646 			host_msg &= ~(u64)EXT_DEVICE_CFG_REQ;
7647 		}
7648 		if (host_msg & VERIFY_CAP_FRAME) {
7649 			queue_work(ppd->hfi1_wq, &ppd->link_vc_work);
7650 			host_msg &= ~(u64)VERIFY_CAP_FRAME;
7651 		}
7652 		if (host_msg & LINK_GOING_DOWN) {
7653 			const char *extra = "";
7654 			/* no downgrade action needed if going down */
7655 			if (host_msg & LINK_WIDTH_DOWNGRADED) {
7656 				host_msg &= ~(u64)LINK_WIDTH_DOWNGRADED;
7657 				extra = " (ignoring downgrade)";
7658 			}
7659 			dd_dev_info(dd, "8051: Link down%s\n", extra);
7660 			queue_link_down = 1;
7661 			host_msg &= ~(u64)LINK_GOING_DOWN;
7662 		}
7663 		if (host_msg & LINK_WIDTH_DOWNGRADED) {
7664 			queue_work(ppd->hfi1_wq, &ppd->link_downgrade_work);
7665 			host_msg &= ~(u64)LINK_WIDTH_DOWNGRADED;
7666 		}
7667 		if (host_msg) {
7668 			/* report remaining messages, but do not do anything */
7669 			dd_dev_info(dd, "8051 info host message: %s\n",
7670 				    dc8051_info_host_msg_string(buf,
7671 								sizeof(buf),
7672 								host_msg));
7673 		}
7674 
7675 		reg &= ~DC_DC8051_ERR_FLG_SET_BY_8051_SMASK;
7676 	}
7677 	if (reg & DC_DC8051_ERR_FLG_LOST_8051_HEART_BEAT_SMASK) {
7678 		/*
7679 		 * Lost the 8051 heartbeat.  If this happens, we
7680 		 * receive constant interrupts about it.  Disable
7681 		 * the interrupt after the first.
7682 		 */
7683 		dd_dev_err(dd, "Lost 8051 heartbeat\n");
7684 		write_csr(dd, DC_DC8051_ERR_EN,
7685 			  read_csr(dd, DC_DC8051_ERR_EN) &
7686 			  ~DC_DC8051_ERR_EN_LOST_8051_HEART_BEAT_SMASK);
7687 
7688 		reg &= ~DC_DC8051_ERR_FLG_LOST_8051_HEART_BEAT_SMASK;
7689 	}
7690 	if (reg) {
7691 		/* report the error, but do not do anything */
7692 		dd_dev_err(dd, "8051 error: %s\n",
7693 			   dc8051_err_string(buf, sizeof(buf), reg));
7694 	}
7695 
7696 	if (queue_link_down) {
7697 		/*
7698 		 * if the link is already going down or disabled, do not
7699 		 * queue another
7700 		 */
7701 		if ((ppd->host_link_state &
7702 		    (HLS_GOING_OFFLINE | HLS_LINK_COOLDOWN)) ||
7703 		    ppd->link_enabled == 0) {
7704 			dd_dev_info(dd, "%s: not queuing link down\n",
7705 				    __func__);
7706 		} else {
7707 			queue_work(ppd->hfi1_wq, &ppd->link_down_work);
7708 		}
7709 	}
7710 }
7711 
7712 static const char * const fm_config_txt[] = {
7713 [0] =
7714 	"BadHeadDist: Distance violation between two head flits",
7715 [1] =
7716 	"BadTailDist: Distance violation between two tail flits",
7717 [2] =
7718 	"BadCtrlDist: Distance violation between two credit control flits",
7719 [3] =
7720 	"BadCrdAck: Credits return for unsupported VL",
7721 [4] =
7722 	"UnsupportedVLMarker: Received VL Marker",
7723 [5] =
7724 	"BadPreempt: Exceeded the preemption nesting level",
7725 [6] =
7726 	"BadControlFlit: Received unsupported control flit",
7727 /* no 7 */
7728 [8] =
7729 	"UnsupportedVLMarker: Received VL Marker for unconfigured or disabled VL",
7730 };
7731 
7732 static const char * const port_rcv_txt[] = {
7733 [1] =
7734 	"BadPktLen: Illegal PktLen",
7735 [2] =
7736 	"PktLenTooLong: Packet longer than PktLen",
7737 [3] =
7738 	"PktLenTooShort: Packet shorter than PktLen",
7739 [4] =
7740 	"BadSLID: Illegal SLID (0, using multicast as SLID, does not include security validation of SLID)",
7741 [5] =
7742 	"BadDLID: Illegal DLID (0, doesn't match HFI)",
7743 [6] =
7744 	"BadL2: Illegal L2 opcode",
7745 [7] =
7746 	"BadSC: Unsupported SC",
7747 [9] =
7748 	"BadRC: Illegal RC",
7749 [11] =
7750 	"PreemptError: Preempting with same VL",
7751 [12] =
7752 	"PreemptVL15: Preempting a VL15 packet",
7753 };
7754 
7755 #define OPA_LDR_FMCONFIG_OFFSET 16
7756 #define OPA_LDR_PORTRCV_OFFSET 0
7757 static void handle_dcc_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
7758 {
7759 	u64 info, hdr0, hdr1;
7760 	const char *extra;
7761 	char buf[96];
7762 	struct hfi1_pportdata *ppd = dd->pport;
7763 	u8 lcl_reason = 0;
7764 	int do_bounce = 0;
7765 
7766 	if (reg & DCC_ERR_FLG_UNCORRECTABLE_ERR_SMASK) {
7767 		if (!(dd->err_info_uncorrectable & OPA_EI_STATUS_SMASK)) {
7768 			info = read_csr(dd, DCC_ERR_INFO_UNCORRECTABLE);
7769 			dd->err_info_uncorrectable = info & OPA_EI_CODE_SMASK;
7770 			/* set status bit */
7771 			dd->err_info_uncorrectable |= OPA_EI_STATUS_SMASK;
7772 		}
7773 		reg &= ~DCC_ERR_FLG_UNCORRECTABLE_ERR_SMASK;
7774 	}
7775 
7776 	if (reg & DCC_ERR_FLG_LINK_ERR_SMASK) {
7777 		struct hfi1_pportdata *ppd = dd->pport;
7778 		/* this counter saturates at (2^32) - 1 */
7779 		if (ppd->link_downed < (u32)UINT_MAX)
7780 			ppd->link_downed++;
7781 		reg &= ~DCC_ERR_FLG_LINK_ERR_SMASK;
7782 	}
7783 
7784 	if (reg & DCC_ERR_FLG_FMCONFIG_ERR_SMASK) {
7785 		u8 reason_valid = 1;
7786 
7787 		info = read_csr(dd, DCC_ERR_INFO_FMCONFIG);
7788 		if (!(dd->err_info_fmconfig & OPA_EI_STATUS_SMASK)) {
7789 			dd->err_info_fmconfig = info & OPA_EI_CODE_SMASK;
7790 			/* set status bit */
7791 			dd->err_info_fmconfig |= OPA_EI_STATUS_SMASK;
7792 		}
7793 		switch (info) {
7794 		case 0:
7795 		case 1:
7796 		case 2:
7797 		case 3:
7798 		case 4:
7799 		case 5:
7800 		case 6:
7801 			extra = fm_config_txt[info];
7802 			break;
7803 		case 8:
7804 			extra = fm_config_txt[info];
7805 			if (ppd->port_error_action &
7806 			    OPA_PI_MASK_FM_CFG_UNSUPPORTED_VL_MARKER) {
7807 				do_bounce = 1;
7808 				/*
7809 				 * lcl_reason cannot be derived from info
7810 				 * for this error
7811 				 */
7812 				lcl_reason =
7813 				  OPA_LINKDOWN_REASON_UNSUPPORTED_VL_MARKER;
7814 			}
7815 			break;
7816 		default:
7817 			reason_valid = 0;
7818 			snprintf(buf, sizeof(buf), "reserved%lld", info);
7819 			extra = buf;
7820 			break;
7821 		}
7822 
7823 		if (reason_valid && !do_bounce) {
7824 			do_bounce = ppd->port_error_action &
7825 					(1 << (OPA_LDR_FMCONFIG_OFFSET + info));
7826 			lcl_reason = info + OPA_LINKDOWN_REASON_BAD_HEAD_DIST;
7827 		}
7828 
7829 		/* just report this */
7830 		dd_dev_info(dd, "DCC Error: fmconfig error: %s\n", extra);
7831 		reg &= ~DCC_ERR_FLG_FMCONFIG_ERR_SMASK;
7832 	}
7833 
7834 	if (reg & DCC_ERR_FLG_RCVPORT_ERR_SMASK) {
7835 		u8 reason_valid = 1;
7836 
7837 		info = read_csr(dd, DCC_ERR_INFO_PORTRCV);
7838 		hdr0 = read_csr(dd, DCC_ERR_INFO_PORTRCV_HDR0);
7839 		hdr1 = read_csr(dd, DCC_ERR_INFO_PORTRCV_HDR1);
7840 		if (!(dd->err_info_rcvport.status_and_code &
7841 		      OPA_EI_STATUS_SMASK)) {
7842 			dd->err_info_rcvport.status_and_code =
7843 				info & OPA_EI_CODE_SMASK;
7844 			/* set status bit */
7845 			dd->err_info_rcvport.status_and_code |=
7846 				OPA_EI_STATUS_SMASK;
7847 			/*
7848 			 * save first 2 flits in the packet that caused
7849 			 * the error
7850 			 */
7851 			dd->err_info_rcvport.packet_flit1 = hdr0;
7852 			dd->err_info_rcvport.packet_flit2 = hdr1;
7853 		}
7854 		switch (info) {
7855 		case 1:
7856 		case 2:
7857 		case 3:
7858 		case 4:
7859 		case 5:
7860 		case 6:
7861 		case 7:
7862 		case 9:
7863 		case 11:
7864 		case 12:
7865 			extra = port_rcv_txt[info];
7866 			break;
7867 		default:
7868 			reason_valid = 0;
7869 			snprintf(buf, sizeof(buf), "reserved%lld", info);
7870 			extra = buf;
7871 			break;
7872 		}
7873 
7874 		if (reason_valid && !do_bounce) {
7875 			do_bounce = ppd->port_error_action &
7876 					(1 << (OPA_LDR_PORTRCV_OFFSET + info));
7877 			lcl_reason = info + OPA_LINKDOWN_REASON_RCV_ERROR_0;
7878 		}
7879 
7880 		/* just report this */
7881 		dd_dev_info(dd, "DCC Error: PortRcv error: %s\n", extra);
7882 		dd_dev_info(dd, "           hdr0 0x%llx, hdr1 0x%llx\n",
7883 			    hdr0, hdr1);
7884 
7885 		reg &= ~DCC_ERR_FLG_RCVPORT_ERR_SMASK;
7886 	}
7887 
7888 	if (reg & DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_UC_SMASK) {
7889 		/* informative only */
7890 		dd_dev_info(dd, "8051 access to LCB blocked\n");
7891 		reg &= ~DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_UC_SMASK;
7892 	}
7893 	if (reg & DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_HOST_SMASK) {
7894 		/* informative only */
7895 		dd_dev_info(dd, "host access to LCB blocked\n");
7896 		reg &= ~DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_HOST_SMASK;
7897 	}
7898 
7899 	/* report any remaining errors */
7900 	if (reg)
7901 		dd_dev_info(dd, "DCC Error: %s\n",
7902 			    dcc_err_string(buf, sizeof(buf), reg));
7903 
7904 	if (lcl_reason == 0)
7905 		lcl_reason = OPA_LINKDOWN_REASON_UNKNOWN;
7906 
7907 	if (do_bounce) {
7908 		dd_dev_info(dd, "%s: PortErrorAction bounce\n", __func__);
7909 		set_link_down_reason(ppd, lcl_reason, 0, lcl_reason);
7910 		queue_work(ppd->hfi1_wq, &ppd->link_bounce_work);
7911 	}
7912 }
7913 
7914 static void handle_lcb_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
7915 {
7916 	char buf[96];
7917 
7918 	dd_dev_info(dd, "LCB Error: %s\n",
7919 		    lcb_err_string(buf, sizeof(buf), reg));
7920 }
7921 
7922 /*
7923  * CCE block DC interrupt.  Source is < 8.
7924  */
7925 static void is_dc_int(struct hfi1_devdata *dd, unsigned int source)
7926 {
7927 	const struct err_reg_info *eri = &dc_errs[source];
7928 
7929 	if (eri->handler) {
7930 		interrupt_clear_down(dd, 0, eri);
7931 	} else if (source == 3 /* dc_lbm_int */) {
7932 		/*
7933 		 * This indicates that a parity error has occurred on the
7934 		 * address/control lines presented to the LBM.  The error
7935 		 * is a single pulse, there is no associated error flag,
7936 		 * and it is non-maskable.  This is because if a parity
7937 		 * error occurs on the request the request is dropped.
7938 		 * This should never occur, but it is nice to know if it
7939 		 * ever does.
7940 		 */
7941 		dd_dev_err(dd, "Parity error in DC LBM block\n");
7942 	} else {
7943 		dd_dev_err(dd, "Invalid DC interrupt %u\n", source);
7944 	}
7945 }
7946 
7947 /*
7948  * TX block send credit interrupt.  Source is < 160.
7949  */
7950 static void is_send_credit_int(struct hfi1_devdata *dd, unsigned int source)
7951 {
7952 	sc_group_release_update(dd, source);
7953 }
7954 
7955 /*
7956  * TX block SDMA interrupt.  Source is < 48.
7957  *
7958  * SDMA interrupts are grouped by type:
7959  *
7960  *	 0 -  N-1 = SDma
7961  *	 N - 2N-1 = SDmaProgress
7962  *	2N - 3N-1 = SDmaIdle
7963  */
7964 static void is_sdma_eng_int(struct hfi1_devdata *dd, unsigned int source)
7965 {
7966 	/* what interrupt */
7967 	unsigned int what  = source / TXE_NUM_SDMA_ENGINES;
7968 	/* which engine */
7969 	unsigned int which = source % TXE_NUM_SDMA_ENGINES;
7970 
7971 #ifdef CONFIG_SDMA_VERBOSITY
7972 	dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", which,
7973 		   slashstrip(__FILE__), __LINE__, __func__);
7974 	sdma_dumpstate(&dd->per_sdma[which]);
7975 #endif
7976 
7977 	if (likely(what < 3 && which < dd->num_sdma)) {
7978 		sdma_engine_interrupt(&dd->per_sdma[which], 1ull << source);
7979 	} else {
7980 		/* should not happen */
7981 		dd_dev_err(dd, "Invalid SDMA interrupt 0x%x\n", source);
7982 	}
7983 }
7984 
7985 /*
7986  * RX block receive available interrupt.  Source is < 160.
7987  */
7988 static void is_rcv_avail_int(struct hfi1_devdata *dd, unsigned int source)
7989 {
7990 	struct hfi1_ctxtdata *rcd;
7991 	char *err_detail;
7992 
7993 	if (likely(source < dd->num_rcv_contexts)) {
7994 		rcd = dd->rcd[source];
7995 		if (rcd) {
7996 			if (source < dd->first_user_ctxt)
7997 				rcd->do_interrupt(rcd, 0);
7998 			else
7999 				handle_user_interrupt(rcd);
8000 			return;	/* OK */
8001 		}
8002 		/* received an interrupt, but no rcd */
8003 		err_detail = "dataless";
8004 	} else {
8005 		/* received an interrupt, but are not using that context */
8006 		err_detail = "out of range";
8007 	}
8008 	dd_dev_err(dd, "unexpected %s receive available context interrupt %u\n",
8009 		   err_detail, source);
8010 }
8011 
8012 /*
8013  * RX block receive urgent interrupt.  Source is < 160.
8014  */
8015 static void is_rcv_urgent_int(struct hfi1_devdata *dd, unsigned int source)
8016 {
8017 	struct hfi1_ctxtdata *rcd;
8018 	char *err_detail;
8019 
8020 	if (likely(source < dd->num_rcv_contexts)) {
8021 		rcd = dd->rcd[source];
8022 		if (rcd) {
8023 			/* only pay attention to user urgent interrupts */
8024 			if (source >= dd->first_user_ctxt)
8025 				handle_user_interrupt(rcd);
8026 			return;	/* OK */
8027 		}
8028 		/* received an interrupt, but no rcd */
8029 		err_detail = "dataless";
8030 	} else {
8031 		/* received an interrupt, but are not using that context */
8032 		err_detail = "out of range";
8033 	}
8034 	dd_dev_err(dd, "unexpected %s receive urgent context interrupt %u\n",
8035 		   err_detail, source);
8036 }
8037 
8038 /*
8039  * Reserved range interrupt.  Should not be called in normal operation.
8040  */
8041 static void is_reserved_int(struct hfi1_devdata *dd, unsigned int source)
8042 {
8043 	char name[64];
8044 
8045 	dd_dev_err(dd, "unexpected %s interrupt\n",
8046 		   is_reserved_name(name, sizeof(name), source));
8047 }
8048 
8049 static const struct is_table is_table[] = {
8050 /*
8051  * start		 end
8052  *				name func		interrupt func
8053  */
8054 { IS_GENERAL_ERR_START,  IS_GENERAL_ERR_END,
8055 				is_misc_err_name,	is_misc_err_int },
8056 { IS_SDMAENG_ERR_START,  IS_SDMAENG_ERR_END,
8057 				is_sdma_eng_err_name,	is_sdma_eng_err_int },
8058 { IS_SENDCTXT_ERR_START, IS_SENDCTXT_ERR_END,
8059 				is_sendctxt_err_name,	is_sendctxt_err_int },
8060 { IS_SDMA_START,	     IS_SDMA_END,
8061 				is_sdma_eng_name,	is_sdma_eng_int },
8062 { IS_VARIOUS_START,	     IS_VARIOUS_END,
8063 				is_various_name,	is_various_int },
8064 { IS_DC_START,	     IS_DC_END,
8065 				is_dc_name,		is_dc_int },
8066 { IS_RCVAVAIL_START,     IS_RCVAVAIL_END,
8067 				is_rcv_avail_name,	is_rcv_avail_int },
8068 { IS_RCVURGENT_START,    IS_RCVURGENT_END,
8069 				is_rcv_urgent_name,	is_rcv_urgent_int },
8070 { IS_SENDCREDIT_START,   IS_SENDCREDIT_END,
8071 				is_send_credit_name,	is_send_credit_int},
8072 { IS_RESERVED_START,     IS_RESERVED_END,
8073 				is_reserved_name,	is_reserved_int},
8074 };
8075 
8076 /*
8077  * Interrupt source interrupt - called when the given source has an interrupt.
8078  * Source is a bit index into an array of 64-bit integers.
8079  */
8080 static void is_interrupt(struct hfi1_devdata *dd, unsigned int source)
8081 {
8082 	const struct is_table *entry;
8083 
8084 	/* avoids a double compare by walking the table in-order */
8085 	for (entry = &is_table[0]; entry->is_name; entry++) {
8086 		if (source < entry->end) {
8087 			trace_hfi1_interrupt(dd, entry, source);
8088 			entry->is_int(dd, source - entry->start);
8089 			return;
8090 		}
8091 	}
8092 	/* fell off the end */
8093 	dd_dev_err(dd, "invalid interrupt source %u\n", source);
8094 }
8095 
8096 /*
8097  * General interrupt handler.  This is able to correctly handle
8098  * all interrupts in case INTx is used.
8099  */
8100 static irqreturn_t general_interrupt(int irq, void *data)
8101 {
8102 	struct hfi1_devdata *dd = data;
8103 	u64 regs[CCE_NUM_INT_CSRS];
8104 	u32 bit;
8105 	int i;
8106 
8107 	this_cpu_inc(*dd->int_counter);
8108 
8109 	/* phase 1: scan and clear all handled interrupts */
8110 	for (i = 0; i < CCE_NUM_INT_CSRS; i++) {
8111 		if (dd->gi_mask[i] == 0) {
8112 			regs[i] = 0;	/* used later */
8113 			continue;
8114 		}
8115 		regs[i] = read_csr(dd, CCE_INT_STATUS + (8 * i)) &
8116 				dd->gi_mask[i];
8117 		/* only clear if anything is set */
8118 		if (regs[i])
8119 			write_csr(dd, CCE_INT_CLEAR + (8 * i), regs[i]);
8120 	}
8121 
8122 	/* phase 2: call the appropriate handler */
8123 	for_each_set_bit(bit, (unsigned long *)&regs[0],
8124 			 CCE_NUM_INT_CSRS * 64) {
8125 		is_interrupt(dd, bit);
8126 	}
8127 
8128 	return IRQ_HANDLED;
8129 }
8130 
8131 static irqreturn_t sdma_interrupt(int irq, void *data)
8132 {
8133 	struct sdma_engine *sde = data;
8134 	struct hfi1_devdata *dd = sde->dd;
8135 	u64 status;
8136 
8137 #ifdef CONFIG_SDMA_VERBOSITY
8138 	dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
8139 		   slashstrip(__FILE__), __LINE__, __func__);
8140 	sdma_dumpstate(sde);
8141 #endif
8142 
8143 	this_cpu_inc(*dd->int_counter);
8144 
8145 	/* This read_csr is really bad in the hot path */
8146 	status = read_csr(dd,
8147 			  CCE_INT_STATUS + (8 * (IS_SDMA_START / 64)))
8148 			  & sde->imask;
8149 	if (likely(status)) {
8150 		/* clear the interrupt(s) */
8151 		write_csr(dd,
8152 			  CCE_INT_CLEAR + (8 * (IS_SDMA_START / 64)),
8153 			  status);
8154 
8155 		/* handle the interrupt(s) */
8156 		sdma_engine_interrupt(sde, status);
8157 	} else
8158 		dd_dev_err(dd, "SDMA engine %u interrupt, but no status bits set\n",
8159 			   sde->this_idx);
8160 
8161 	return IRQ_HANDLED;
8162 }
8163 
8164 /*
8165  * Clear the receive interrupt.  Use a read of the interrupt clear CSR
8166  * to insure that the write completed.  This does NOT guarantee that
8167  * queued DMA writes to memory from the chip are pushed.
8168  */
8169 static inline void clear_recv_intr(struct hfi1_ctxtdata *rcd)
8170 {
8171 	struct hfi1_devdata *dd = rcd->dd;
8172 	u32 addr = CCE_INT_CLEAR + (8 * rcd->ireg);
8173 
8174 	mmiowb();	/* make sure everything before is written */
8175 	write_csr(dd, addr, rcd->imask);
8176 	/* force the above write on the chip and get a value back */
8177 	(void)read_csr(dd, addr);
8178 }
8179 
8180 /* force the receive interrupt */
8181 void force_recv_intr(struct hfi1_ctxtdata *rcd)
8182 {
8183 	write_csr(rcd->dd, CCE_INT_FORCE + (8 * rcd->ireg), rcd->imask);
8184 }
8185 
8186 /*
8187  * Return non-zero if a packet is present.
8188  *
8189  * This routine is called when rechecking for packets after the RcvAvail
8190  * interrupt has been cleared down.  First, do a quick check of memory for
8191  * a packet present.  If not found, use an expensive CSR read of the context
8192  * tail to determine the actual tail.  The CSR read is necessary because there
8193  * is no method to push pending DMAs to memory other than an interrupt and we
8194  * are trying to determine if we need to force an interrupt.
8195  */
8196 static inline int check_packet_present(struct hfi1_ctxtdata *rcd)
8197 {
8198 	u32 tail;
8199 	int present;
8200 
8201 	if (!HFI1_CAP_IS_KSET(DMA_RTAIL))
8202 		present = (rcd->seq_cnt ==
8203 				rhf_rcv_seq(rhf_to_cpu(get_rhf_addr(rcd))));
8204 	else /* is RDMA rtail */
8205 		present = (rcd->head != get_rcvhdrtail(rcd));
8206 
8207 	if (present)
8208 		return 1;
8209 
8210 	/* fall back to a CSR read, correct indpendent of DMA_RTAIL */
8211 	tail = (u32)read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_TAIL);
8212 	return rcd->head != tail;
8213 }
8214 
8215 /*
8216  * Receive packet IRQ handler.  This routine expects to be on its own IRQ.
8217  * This routine will try to handle packets immediately (latency), but if
8218  * it finds too many, it will invoke the thread handler (bandwitdh).  The
8219  * chip receive interrupt is *not* cleared down until this or the thread (if
8220  * invoked) is finished.  The intent is to avoid extra interrupts while we
8221  * are processing packets anyway.
8222  */
8223 static irqreturn_t receive_context_interrupt(int irq, void *data)
8224 {
8225 	struct hfi1_ctxtdata *rcd = data;
8226 	struct hfi1_devdata *dd = rcd->dd;
8227 	int disposition;
8228 	int present;
8229 
8230 	trace_hfi1_receive_interrupt(dd, rcd->ctxt);
8231 	this_cpu_inc(*dd->int_counter);
8232 	aspm_ctx_disable(rcd);
8233 
8234 	/* receive interrupt remains blocked while processing packets */
8235 	disposition = rcd->do_interrupt(rcd, 0);
8236 
8237 	/*
8238 	 * Too many packets were seen while processing packets in this
8239 	 * IRQ handler.  Invoke the handler thread.  The receive interrupt
8240 	 * remains blocked.
8241 	 */
8242 	if (disposition == RCV_PKT_LIMIT)
8243 		return IRQ_WAKE_THREAD;
8244 
8245 	/*
8246 	 * The packet processor detected no more packets.  Clear the receive
8247 	 * interrupt and recheck for a packet packet that may have arrived
8248 	 * after the previous check and interrupt clear.  If a packet arrived,
8249 	 * force another interrupt.
8250 	 */
8251 	clear_recv_intr(rcd);
8252 	present = check_packet_present(rcd);
8253 	if (present)
8254 		force_recv_intr(rcd);
8255 
8256 	return IRQ_HANDLED;
8257 }
8258 
8259 /*
8260  * Receive packet thread handler.  This expects to be invoked with the
8261  * receive interrupt still blocked.
8262  */
8263 static irqreturn_t receive_context_thread(int irq, void *data)
8264 {
8265 	struct hfi1_ctxtdata *rcd = data;
8266 	int present;
8267 
8268 	/* receive interrupt is still blocked from the IRQ handler */
8269 	(void)rcd->do_interrupt(rcd, 1);
8270 
8271 	/*
8272 	 * The packet processor will only return if it detected no more
8273 	 * packets.  Hold IRQs here so we can safely clear the interrupt and
8274 	 * recheck for a packet that may have arrived after the previous
8275 	 * check and the interrupt clear.  If a packet arrived, force another
8276 	 * interrupt.
8277 	 */
8278 	local_irq_disable();
8279 	clear_recv_intr(rcd);
8280 	present = check_packet_present(rcd);
8281 	if (present)
8282 		force_recv_intr(rcd);
8283 	local_irq_enable();
8284 
8285 	return IRQ_HANDLED;
8286 }
8287 
8288 /* ========================================================================= */
8289 
8290 u32 read_physical_state(struct hfi1_devdata *dd)
8291 {
8292 	u64 reg;
8293 
8294 	reg = read_csr(dd, DC_DC8051_STS_CUR_STATE);
8295 	return (reg >> DC_DC8051_STS_CUR_STATE_PORT_SHIFT)
8296 				& DC_DC8051_STS_CUR_STATE_PORT_MASK;
8297 }
8298 
8299 u32 read_logical_state(struct hfi1_devdata *dd)
8300 {
8301 	u64 reg;
8302 
8303 	reg = read_csr(dd, DCC_CFG_PORT_CONFIG);
8304 	return (reg >> DCC_CFG_PORT_CONFIG_LINK_STATE_SHIFT)
8305 				& DCC_CFG_PORT_CONFIG_LINK_STATE_MASK;
8306 }
8307 
8308 static void set_logical_state(struct hfi1_devdata *dd, u32 chip_lstate)
8309 {
8310 	u64 reg;
8311 
8312 	reg = read_csr(dd, DCC_CFG_PORT_CONFIG);
8313 	/* clear current state, set new state */
8314 	reg &= ~DCC_CFG_PORT_CONFIG_LINK_STATE_SMASK;
8315 	reg |= (u64)chip_lstate << DCC_CFG_PORT_CONFIG_LINK_STATE_SHIFT;
8316 	write_csr(dd, DCC_CFG_PORT_CONFIG, reg);
8317 }
8318 
8319 /*
8320  * Use the 8051 to read a LCB CSR.
8321  */
8322 static int read_lcb_via_8051(struct hfi1_devdata *dd, u32 addr, u64 *data)
8323 {
8324 	u32 regno;
8325 	int ret;
8326 
8327 	if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR) {
8328 		if (acquire_lcb_access(dd, 0) == 0) {
8329 			*data = read_csr(dd, addr);
8330 			release_lcb_access(dd, 0);
8331 			return 0;
8332 		}
8333 		return -EBUSY;
8334 	}
8335 
8336 	/* register is an index of LCB registers: (offset - base) / 8 */
8337 	regno = (addr - DC_LCB_CFG_RUN) >> 3;
8338 	ret = do_8051_command(dd, HCMD_READ_LCB_CSR, regno, data);
8339 	if (ret != HCMD_SUCCESS)
8340 		return -EBUSY;
8341 	return 0;
8342 }
8343 
8344 /*
8345  * Read an LCB CSR.  Access may not be in host control, so check.
8346  * Return 0 on success, -EBUSY on failure.
8347  */
8348 int read_lcb_csr(struct hfi1_devdata *dd, u32 addr, u64 *data)
8349 {
8350 	struct hfi1_pportdata *ppd = dd->pport;
8351 
8352 	/* if up, go through the 8051 for the value */
8353 	if (ppd->host_link_state & HLS_UP)
8354 		return read_lcb_via_8051(dd, addr, data);
8355 	/* if going up or down, no access */
8356 	if (ppd->host_link_state & (HLS_GOING_UP | HLS_GOING_OFFLINE))
8357 		return -EBUSY;
8358 	/* otherwise, host has access */
8359 	*data = read_csr(dd, addr);
8360 	return 0;
8361 }
8362 
8363 /*
8364  * Use the 8051 to write a LCB CSR.
8365  */
8366 static int write_lcb_via_8051(struct hfi1_devdata *dd, u32 addr, u64 data)
8367 {
8368 	u32 regno;
8369 	int ret;
8370 
8371 	if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR ||
8372 	    (dd->dc8051_ver < dc8051_ver(0, 20))) {
8373 		if (acquire_lcb_access(dd, 0) == 0) {
8374 			write_csr(dd, addr, data);
8375 			release_lcb_access(dd, 0);
8376 			return 0;
8377 		}
8378 		return -EBUSY;
8379 	}
8380 
8381 	/* register is an index of LCB registers: (offset - base) / 8 */
8382 	regno = (addr - DC_LCB_CFG_RUN) >> 3;
8383 	ret = do_8051_command(dd, HCMD_WRITE_LCB_CSR, regno, &data);
8384 	if (ret != HCMD_SUCCESS)
8385 		return -EBUSY;
8386 	return 0;
8387 }
8388 
8389 /*
8390  * Write an LCB CSR.  Access may not be in host control, so check.
8391  * Return 0 on success, -EBUSY on failure.
8392  */
8393 int write_lcb_csr(struct hfi1_devdata *dd, u32 addr, u64 data)
8394 {
8395 	struct hfi1_pportdata *ppd = dd->pport;
8396 
8397 	/* if up, go through the 8051 for the value */
8398 	if (ppd->host_link_state & HLS_UP)
8399 		return write_lcb_via_8051(dd, addr, data);
8400 	/* if going up or down, no access */
8401 	if (ppd->host_link_state & (HLS_GOING_UP | HLS_GOING_OFFLINE))
8402 		return -EBUSY;
8403 	/* otherwise, host has access */
8404 	write_csr(dd, addr, data);
8405 	return 0;
8406 }
8407 
8408 /*
8409  * Returns:
8410  *	< 0 = Linux error, not able to get access
8411  *	> 0 = 8051 command RETURN_CODE
8412  */
8413 static int do_8051_command(
8414 	struct hfi1_devdata *dd,
8415 	u32 type,
8416 	u64 in_data,
8417 	u64 *out_data)
8418 {
8419 	u64 reg, completed;
8420 	int return_code;
8421 	unsigned long flags;
8422 	unsigned long timeout;
8423 
8424 	hfi1_cdbg(DC8051, "type %d, data 0x%012llx", type, in_data);
8425 
8426 	/*
8427 	 * Alternative to holding the lock for a long time:
8428 	 * - keep busy wait - have other users bounce off
8429 	 */
8430 	spin_lock_irqsave(&dd->dc8051_lock, flags);
8431 
8432 	/* We can't send any commands to the 8051 if it's in reset */
8433 	if (dd->dc_shutdown) {
8434 		return_code = -ENODEV;
8435 		goto fail;
8436 	}
8437 
8438 	/*
8439 	 * If an 8051 host command timed out previously, then the 8051 is
8440 	 * stuck.
8441 	 *
8442 	 * On first timeout, attempt to reset and restart the entire DC
8443 	 * block (including 8051). (Is this too big of a hammer?)
8444 	 *
8445 	 * If the 8051 times out a second time, the reset did not bring it
8446 	 * back to healthy life. In that case, fail any subsequent commands.
8447 	 */
8448 	if (dd->dc8051_timed_out) {
8449 		if (dd->dc8051_timed_out > 1) {
8450 			dd_dev_err(dd,
8451 				   "Previous 8051 host command timed out, skipping command %u\n",
8452 				   type);
8453 			return_code = -ENXIO;
8454 			goto fail;
8455 		}
8456 		spin_unlock_irqrestore(&dd->dc8051_lock, flags);
8457 		dc_shutdown(dd);
8458 		dc_start(dd);
8459 		spin_lock_irqsave(&dd->dc8051_lock, flags);
8460 	}
8461 
8462 	/*
8463 	 * If there is no timeout, then the 8051 command interface is
8464 	 * waiting for a command.
8465 	 */
8466 
8467 	/*
8468 	 * When writing a LCB CSR, out_data contains the full value to
8469 	 * to be written, while in_data contains the relative LCB
8470 	 * address in 7:0.  Do the work here, rather than the caller,
8471 	 * of distrubting the write data to where it needs to go:
8472 	 *
8473 	 * Write data
8474 	 *   39:00 -> in_data[47:8]
8475 	 *   47:40 -> DC8051_CFG_EXT_DEV_0.RETURN_CODE
8476 	 *   63:48 -> DC8051_CFG_EXT_DEV_0.RSP_DATA
8477 	 */
8478 	if (type == HCMD_WRITE_LCB_CSR) {
8479 		in_data |= ((*out_data) & 0xffffffffffull) << 8;
8480 		reg = ((((*out_data) >> 40) & 0xff) <<
8481 				DC_DC8051_CFG_EXT_DEV_0_RETURN_CODE_SHIFT)
8482 		      | ((((*out_data) >> 48) & 0xffff) <<
8483 				DC_DC8051_CFG_EXT_DEV_0_RSP_DATA_SHIFT);
8484 		write_csr(dd, DC_DC8051_CFG_EXT_DEV_0, reg);
8485 	}
8486 
8487 	/*
8488 	 * Do two writes: the first to stabilize the type and req_data, the
8489 	 * second to activate.
8490 	 */
8491 	reg = ((u64)type & DC_DC8051_CFG_HOST_CMD_0_REQ_TYPE_MASK)
8492 			<< DC_DC8051_CFG_HOST_CMD_0_REQ_TYPE_SHIFT
8493 		| (in_data & DC_DC8051_CFG_HOST_CMD_0_REQ_DATA_MASK)
8494 			<< DC_DC8051_CFG_HOST_CMD_0_REQ_DATA_SHIFT;
8495 	write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, reg);
8496 	reg |= DC_DC8051_CFG_HOST_CMD_0_REQ_NEW_SMASK;
8497 	write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, reg);
8498 
8499 	/* wait for completion, alternate: interrupt */
8500 	timeout = jiffies + msecs_to_jiffies(DC8051_COMMAND_TIMEOUT);
8501 	while (1) {
8502 		reg = read_csr(dd, DC_DC8051_CFG_HOST_CMD_1);
8503 		completed = reg & DC_DC8051_CFG_HOST_CMD_1_COMPLETED_SMASK;
8504 		if (completed)
8505 			break;
8506 		if (time_after(jiffies, timeout)) {
8507 			dd->dc8051_timed_out++;
8508 			dd_dev_err(dd, "8051 host command %u timeout\n", type);
8509 			if (out_data)
8510 				*out_data = 0;
8511 			return_code = -ETIMEDOUT;
8512 			goto fail;
8513 		}
8514 		udelay(2);
8515 	}
8516 
8517 	if (out_data) {
8518 		*out_data = (reg >> DC_DC8051_CFG_HOST_CMD_1_RSP_DATA_SHIFT)
8519 				& DC_DC8051_CFG_HOST_CMD_1_RSP_DATA_MASK;
8520 		if (type == HCMD_READ_LCB_CSR) {
8521 			/* top 16 bits are in a different register */
8522 			*out_data |= (read_csr(dd, DC_DC8051_CFG_EXT_DEV_1)
8523 				& DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SMASK)
8524 				<< (48
8525 				    - DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SHIFT);
8526 		}
8527 	}
8528 	return_code = (reg >> DC_DC8051_CFG_HOST_CMD_1_RETURN_CODE_SHIFT)
8529 				& DC_DC8051_CFG_HOST_CMD_1_RETURN_CODE_MASK;
8530 	dd->dc8051_timed_out = 0;
8531 	/*
8532 	 * Clear command for next user.
8533 	 */
8534 	write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, 0);
8535 
8536 fail:
8537 	spin_unlock_irqrestore(&dd->dc8051_lock, flags);
8538 
8539 	return return_code;
8540 }
8541 
8542 static int set_physical_link_state(struct hfi1_devdata *dd, u64 state)
8543 {
8544 	return do_8051_command(dd, HCMD_CHANGE_PHY_STATE, state, NULL);
8545 }
8546 
8547 int load_8051_config(struct hfi1_devdata *dd, u8 field_id,
8548 		     u8 lane_id, u32 config_data)
8549 {
8550 	u64 data;
8551 	int ret;
8552 
8553 	data = (u64)field_id << LOAD_DATA_FIELD_ID_SHIFT
8554 		| (u64)lane_id << LOAD_DATA_LANE_ID_SHIFT
8555 		| (u64)config_data << LOAD_DATA_DATA_SHIFT;
8556 	ret = do_8051_command(dd, HCMD_LOAD_CONFIG_DATA, data, NULL);
8557 	if (ret != HCMD_SUCCESS) {
8558 		dd_dev_err(dd,
8559 			   "load 8051 config: field id %d, lane %d, err %d\n",
8560 			   (int)field_id, (int)lane_id, ret);
8561 	}
8562 	return ret;
8563 }
8564 
8565 /*
8566  * Read the 8051 firmware "registers".  Use the RAM directly.  Always
8567  * set the result, even on error.
8568  * Return 0 on success, -errno on failure
8569  */
8570 int read_8051_config(struct hfi1_devdata *dd, u8 field_id, u8 lane_id,
8571 		     u32 *result)
8572 {
8573 	u64 big_data;
8574 	u32 addr;
8575 	int ret;
8576 
8577 	/* address start depends on the lane_id */
8578 	if (lane_id < 4)
8579 		addr = (4 * NUM_GENERAL_FIELDS)
8580 			+ (lane_id * 4 * NUM_LANE_FIELDS);
8581 	else
8582 		addr = 0;
8583 	addr += field_id * 4;
8584 
8585 	/* read is in 8-byte chunks, hardware will truncate the address down */
8586 	ret = read_8051_data(dd, addr, 8, &big_data);
8587 
8588 	if (ret == 0) {
8589 		/* extract the 4 bytes we want */
8590 		if (addr & 0x4)
8591 			*result = (u32)(big_data >> 32);
8592 		else
8593 			*result = (u32)big_data;
8594 	} else {
8595 		*result = 0;
8596 		dd_dev_err(dd, "%s: direct read failed, lane %d, field %d!\n",
8597 			   __func__, lane_id, field_id);
8598 	}
8599 
8600 	return ret;
8601 }
8602 
8603 static int write_vc_local_phy(struct hfi1_devdata *dd, u8 power_management,
8604 			      u8 continuous)
8605 {
8606 	u32 frame;
8607 
8608 	frame = continuous << CONTINIOUS_REMOTE_UPDATE_SUPPORT_SHIFT
8609 		| power_management << POWER_MANAGEMENT_SHIFT;
8610 	return load_8051_config(dd, VERIFY_CAP_LOCAL_PHY,
8611 				GENERAL_CONFIG, frame);
8612 }
8613 
8614 static int write_vc_local_fabric(struct hfi1_devdata *dd, u8 vau, u8 z, u8 vcu,
8615 				 u16 vl15buf, u8 crc_sizes)
8616 {
8617 	u32 frame;
8618 
8619 	frame = (u32)vau << VAU_SHIFT
8620 		| (u32)z << Z_SHIFT
8621 		| (u32)vcu << VCU_SHIFT
8622 		| (u32)vl15buf << VL15BUF_SHIFT
8623 		| (u32)crc_sizes << CRC_SIZES_SHIFT;
8624 	return load_8051_config(dd, VERIFY_CAP_LOCAL_FABRIC,
8625 				GENERAL_CONFIG, frame);
8626 }
8627 
8628 static void read_vc_local_link_width(struct hfi1_devdata *dd, u8 *misc_bits,
8629 				     u8 *flag_bits, u16 *link_widths)
8630 {
8631 	u32 frame;
8632 
8633 	read_8051_config(dd, VERIFY_CAP_LOCAL_LINK_WIDTH, GENERAL_CONFIG,
8634 			 &frame);
8635 	*misc_bits = (frame >> MISC_CONFIG_BITS_SHIFT) & MISC_CONFIG_BITS_MASK;
8636 	*flag_bits = (frame >> LOCAL_FLAG_BITS_SHIFT) & LOCAL_FLAG_BITS_MASK;
8637 	*link_widths = (frame >> LINK_WIDTH_SHIFT) & LINK_WIDTH_MASK;
8638 }
8639 
8640 static int write_vc_local_link_width(struct hfi1_devdata *dd,
8641 				     u8 misc_bits,
8642 				     u8 flag_bits,
8643 				     u16 link_widths)
8644 {
8645 	u32 frame;
8646 
8647 	frame = (u32)misc_bits << MISC_CONFIG_BITS_SHIFT
8648 		| (u32)flag_bits << LOCAL_FLAG_BITS_SHIFT
8649 		| (u32)link_widths << LINK_WIDTH_SHIFT;
8650 	return load_8051_config(dd, VERIFY_CAP_LOCAL_LINK_WIDTH, GENERAL_CONFIG,
8651 		     frame);
8652 }
8653 
8654 static int write_local_device_id(struct hfi1_devdata *dd, u16 device_id,
8655 				 u8 device_rev)
8656 {
8657 	u32 frame;
8658 
8659 	frame = ((u32)device_id << LOCAL_DEVICE_ID_SHIFT)
8660 		| ((u32)device_rev << LOCAL_DEVICE_REV_SHIFT);
8661 	return load_8051_config(dd, LOCAL_DEVICE_ID, GENERAL_CONFIG, frame);
8662 }
8663 
8664 static void read_remote_device_id(struct hfi1_devdata *dd, u16 *device_id,
8665 				  u8 *device_rev)
8666 {
8667 	u32 frame;
8668 
8669 	read_8051_config(dd, REMOTE_DEVICE_ID, GENERAL_CONFIG, &frame);
8670 	*device_id = (frame >> REMOTE_DEVICE_ID_SHIFT) & REMOTE_DEVICE_ID_MASK;
8671 	*device_rev = (frame >> REMOTE_DEVICE_REV_SHIFT)
8672 			& REMOTE_DEVICE_REV_MASK;
8673 }
8674 
8675 void read_misc_status(struct hfi1_devdata *dd, u8 *ver_a, u8 *ver_b)
8676 {
8677 	u32 frame;
8678 
8679 	read_8051_config(dd, MISC_STATUS, GENERAL_CONFIG, &frame);
8680 	*ver_a = (frame >> STS_FM_VERSION_A_SHIFT) & STS_FM_VERSION_A_MASK;
8681 	*ver_b = (frame >> STS_FM_VERSION_B_SHIFT) & STS_FM_VERSION_B_MASK;
8682 }
8683 
8684 static void read_vc_remote_phy(struct hfi1_devdata *dd, u8 *power_management,
8685 			       u8 *continuous)
8686 {
8687 	u32 frame;
8688 
8689 	read_8051_config(dd, VERIFY_CAP_REMOTE_PHY, GENERAL_CONFIG, &frame);
8690 	*power_management = (frame >> POWER_MANAGEMENT_SHIFT)
8691 					& POWER_MANAGEMENT_MASK;
8692 	*continuous = (frame >> CONTINIOUS_REMOTE_UPDATE_SUPPORT_SHIFT)
8693 					& CONTINIOUS_REMOTE_UPDATE_SUPPORT_MASK;
8694 }
8695 
8696 static void read_vc_remote_fabric(struct hfi1_devdata *dd, u8 *vau, u8 *z,
8697 				  u8 *vcu, u16 *vl15buf, u8 *crc_sizes)
8698 {
8699 	u32 frame;
8700 
8701 	read_8051_config(dd, VERIFY_CAP_REMOTE_FABRIC, GENERAL_CONFIG, &frame);
8702 	*vau = (frame >> VAU_SHIFT) & VAU_MASK;
8703 	*z = (frame >> Z_SHIFT) & Z_MASK;
8704 	*vcu = (frame >> VCU_SHIFT) & VCU_MASK;
8705 	*vl15buf = (frame >> VL15BUF_SHIFT) & VL15BUF_MASK;
8706 	*crc_sizes = (frame >> CRC_SIZES_SHIFT) & CRC_SIZES_MASK;
8707 }
8708 
8709 static void read_vc_remote_link_width(struct hfi1_devdata *dd,
8710 				      u8 *remote_tx_rate,
8711 				      u16 *link_widths)
8712 {
8713 	u32 frame;
8714 
8715 	read_8051_config(dd, VERIFY_CAP_REMOTE_LINK_WIDTH, GENERAL_CONFIG,
8716 			 &frame);
8717 	*remote_tx_rate = (frame >> REMOTE_TX_RATE_SHIFT)
8718 				& REMOTE_TX_RATE_MASK;
8719 	*link_widths = (frame >> LINK_WIDTH_SHIFT) & LINK_WIDTH_MASK;
8720 }
8721 
8722 static void read_local_lni(struct hfi1_devdata *dd, u8 *enable_lane_rx)
8723 {
8724 	u32 frame;
8725 
8726 	read_8051_config(dd, LOCAL_LNI_INFO, GENERAL_CONFIG, &frame);
8727 	*enable_lane_rx = (frame >> ENABLE_LANE_RX_SHIFT) & ENABLE_LANE_RX_MASK;
8728 }
8729 
8730 static void read_mgmt_allowed(struct hfi1_devdata *dd, u8 *mgmt_allowed)
8731 {
8732 	u32 frame;
8733 
8734 	read_8051_config(dd, REMOTE_LNI_INFO, GENERAL_CONFIG, &frame);
8735 	*mgmt_allowed = (frame >> MGMT_ALLOWED_SHIFT) & MGMT_ALLOWED_MASK;
8736 }
8737 
8738 static void read_last_local_state(struct hfi1_devdata *dd, u32 *lls)
8739 {
8740 	read_8051_config(dd, LAST_LOCAL_STATE_COMPLETE, GENERAL_CONFIG, lls);
8741 }
8742 
8743 static void read_last_remote_state(struct hfi1_devdata *dd, u32 *lrs)
8744 {
8745 	read_8051_config(dd, LAST_REMOTE_STATE_COMPLETE, GENERAL_CONFIG, lrs);
8746 }
8747 
8748 void hfi1_read_link_quality(struct hfi1_devdata *dd, u8 *link_quality)
8749 {
8750 	u32 frame;
8751 	int ret;
8752 
8753 	*link_quality = 0;
8754 	if (dd->pport->host_link_state & HLS_UP) {
8755 		ret = read_8051_config(dd, LINK_QUALITY_INFO, GENERAL_CONFIG,
8756 				       &frame);
8757 		if (ret == 0)
8758 			*link_quality = (frame >> LINK_QUALITY_SHIFT)
8759 						& LINK_QUALITY_MASK;
8760 	}
8761 }
8762 
8763 static void read_planned_down_reason_code(struct hfi1_devdata *dd, u8 *pdrrc)
8764 {
8765 	u32 frame;
8766 
8767 	read_8051_config(dd, LINK_QUALITY_INFO, GENERAL_CONFIG, &frame);
8768 	*pdrrc = (frame >> DOWN_REMOTE_REASON_SHIFT) & DOWN_REMOTE_REASON_MASK;
8769 }
8770 
8771 static void read_link_down_reason(struct hfi1_devdata *dd, u8 *ldr)
8772 {
8773 	u32 frame;
8774 
8775 	read_8051_config(dd, LINK_DOWN_REASON, GENERAL_CONFIG, &frame);
8776 	*ldr = (frame & 0xff);
8777 }
8778 
8779 static int read_tx_settings(struct hfi1_devdata *dd,
8780 			    u8 *enable_lane_tx,
8781 			    u8 *tx_polarity_inversion,
8782 			    u8 *rx_polarity_inversion,
8783 			    u8 *max_rate)
8784 {
8785 	u32 frame;
8786 	int ret;
8787 
8788 	ret = read_8051_config(dd, TX_SETTINGS, GENERAL_CONFIG, &frame);
8789 	*enable_lane_tx = (frame >> ENABLE_LANE_TX_SHIFT)
8790 				& ENABLE_LANE_TX_MASK;
8791 	*tx_polarity_inversion = (frame >> TX_POLARITY_INVERSION_SHIFT)
8792 				& TX_POLARITY_INVERSION_MASK;
8793 	*rx_polarity_inversion = (frame >> RX_POLARITY_INVERSION_SHIFT)
8794 				& RX_POLARITY_INVERSION_MASK;
8795 	*max_rate = (frame >> MAX_RATE_SHIFT) & MAX_RATE_MASK;
8796 	return ret;
8797 }
8798 
8799 static int write_tx_settings(struct hfi1_devdata *dd,
8800 			     u8 enable_lane_tx,
8801 			     u8 tx_polarity_inversion,
8802 			     u8 rx_polarity_inversion,
8803 			     u8 max_rate)
8804 {
8805 	u32 frame;
8806 
8807 	/* no need to mask, all variable sizes match field widths */
8808 	frame = enable_lane_tx << ENABLE_LANE_TX_SHIFT
8809 		| tx_polarity_inversion << TX_POLARITY_INVERSION_SHIFT
8810 		| rx_polarity_inversion << RX_POLARITY_INVERSION_SHIFT
8811 		| max_rate << MAX_RATE_SHIFT;
8812 	return load_8051_config(dd, TX_SETTINGS, GENERAL_CONFIG, frame);
8813 }
8814 
8815 /*
8816  * Read an idle LCB message.
8817  *
8818  * Returns 0 on success, -EINVAL on error
8819  */
8820 static int read_idle_message(struct hfi1_devdata *dd, u64 type, u64 *data_out)
8821 {
8822 	int ret;
8823 
8824 	ret = do_8051_command(dd, HCMD_READ_LCB_IDLE_MSG, type, data_out);
8825 	if (ret != HCMD_SUCCESS) {
8826 		dd_dev_err(dd, "read idle message: type %d, err %d\n",
8827 			   (u32)type, ret);
8828 		return -EINVAL;
8829 	}
8830 	dd_dev_info(dd, "%s: read idle message 0x%llx\n", __func__, *data_out);
8831 	/* return only the payload as we already know the type */
8832 	*data_out >>= IDLE_PAYLOAD_SHIFT;
8833 	return 0;
8834 }
8835 
8836 /*
8837  * Read an idle SMA message.  To be done in response to a notification from
8838  * the 8051.
8839  *
8840  * Returns 0 on success, -EINVAL on error
8841  */
8842 static int read_idle_sma(struct hfi1_devdata *dd, u64 *data)
8843 {
8844 	return read_idle_message(dd, (u64)IDLE_SMA << IDLE_MSG_TYPE_SHIFT,
8845 				 data);
8846 }
8847 
8848 /*
8849  * Send an idle LCB message.
8850  *
8851  * Returns 0 on success, -EINVAL on error
8852  */
8853 static int send_idle_message(struct hfi1_devdata *dd, u64 data)
8854 {
8855 	int ret;
8856 
8857 	dd_dev_info(dd, "%s: sending idle message 0x%llx\n", __func__, data);
8858 	ret = do_8051_command(dd, HCMD_SEND_LCB_IDLE_MSG, data, NULL);
8859 	if (ret != HCMD_SUCCESS) {
8860 		dd_dev_err(dd, "send idle message: data 0x%llx, err %d\n",
8861 			   data, ret);
8862 		return -EINVAL;
8863 	}
8864 	return 0;
8865 }
8866 
8867 /*
8868  * Send an idle SMA message.
8869  *
8870  * Returns 0 on success, -EINVAL on error
8871  */
8872 int send_idle_sma(struct hfi1_devdata *dd, u64 message)
8873 {
8874 	u64 data;
8875 
8876 	data = ((message & IDLE_PAYLOAD_MASK) << IDLE_PAYLOAD_SHIFT) |
8877 		((u64)IDLE_SMA << IDLE_MSG_TYPE_SHIFT);
8878 	return send_idle_message(dd, data);
8879 }
8880 
8881 /*
8882  * Initialize the LCB then do a quick link up.  This may or may not be
8883  * in loopback.
8884  *
8885  * return 0 on success, -errno on error
8886  */
8887 static int do_quick_linkup(struct hfi1_devdata *dd)
8888 {
8889 	u64 reg;
8890 	unsigned long timeout;
8891 	int ret;
8892 
8893 	lcb_shutdown(dd, 0);
8894 
8895 	if (loopback) {
8896 		/* LCB_CFG_LOOPBACK.VAL = 2 */
8897 		/* LCB_CFG_LANE_WIDTH.VAL = 0 */
8898 		write_csr(dd, DC_LCB_CFG_LOOPBACK,
8899 			  IB_PACKET_TYPE << DC_LCB_CFG_LOOPBACK_VAL_SHIFT);
8900 		write_csr(dd, DC_LCB_CFG_LANE_WIDTH, 0);
8901 	}
8902 
8903 	/* start the LCBs */
8904 	/* LCB_CFG_TX_FIFOS_RESET.VAL = 0 */
8905 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0);
8906 
8907 	/* simulator only loopback steps */
8908 	if (loopback && dd->icode == ICODE_FUNCTIONAL_SIMULATOR) {
8909 		/* LCB_CFG_RUN.EN = 1 */
8910 		write_csr(dd, DC_LCB_CFG_RUN,
8911 			  1ull << DC_LCB_CFG_RUN_EN_SHIFT);
8912 
8913 		/* watch LCB_STS_LINK_TRANSFER_ACTIVE */
8914 		timeout = jiffies + msecs_to_jiffies(10);
8915 		while (1) {
8916 			reg = read_csr(dd, DC_LCB_STS_LINK_TRANSFER_ACTIVE);
8917 			if (reg)
8918 				break;
8919 			if (time_after(jiffies, timeout)) {
8920 				dd_dev_err(dd,
8921 					   "timeout waiting for LINK_TRANSFER_ACTIVE\n");
8922 				return -ETIMEDOUT;
8923 			}
8924 			udelay(2);
8925 		}
8926 
8927 		write_csr(dd, DC_LCB_CFG_ALLOW_LINK_UP,
8928 			  1ull << DC_LCB_CFG_ALLOW_LINK_UP_VAL_SHIFT);
8929 	}
8930 
8931 	if (!loopback) {
8932 		/*
8933 		 * When doing quick linkup and not in loopback, both
8934 		 * sides must be done with LCB set-up before either
8935 		 * starts the quick linkup.  Put a delay here so that
8936 		 * both sides can be started and have a chance to be
8937 		 * done with LCB set up before resuming.
8938 		 */
8939 		dd_dev_err(dd,
8940 			   "Pausing for peer to be finished with LCB set up\n");
8941 		msleep(5000);
8942 		dd_dev_err(dd, "Continuing with quick linkup\n");
8943 	}
8944 
8945 	write_csr(dd, DC_LCB_ERR_EN, 0); /* mask LCB errors */
8946 	set_8051_lcb_access(dd);
8947 
8948 	/*
8949 	 * State "quick" LinkUp request sets the physical link state to
8950 	 * LinkUp without a verify capability sequence.
8951 	 * This state is in simulator v37 and later.
8952 	 */
8953 	ret = set_physical_link_state(dd, PLS_QUICK_LINKUP);
8954 	if (ret != HCMD_SUCCESS) {
8955 		dd_dev_err(dd,
8956 			   "%s: set physical link state to quick LinkUp failed with return %d\n",
8957 			   __func__, ret);
8958 
8959 		set_host_lcb_access(dd);
8960 		write_csr(dd, DC_LCB_ERR_EN, ~0ull); /* watch LCB errors */
8961 
8962 		if (ret >= 0)
8963 			ret = -EINVAL;
8964 		return ret;
8965 	}
8966 
8967 	return 0; /* success */
8968 }
8969 
8970 /*
8971  * Set the SerDes to internal loopback mode.
8972  * Returns 0 on success, -errno on error.
8973  */
8974 static int set_serdes_loopback_mode(struct hfi1_devdata *dd)
8975 {
8976 	int ret;
8977 
8978 	ret = set_physical_link_state(dd, PLS_INTERNAL_SERDES_LOOPBACK);
8979 	if (ret == HCMD_SUCCESS)
8980 		return 0;
8981 	dd_dev_err(dd,
8982 		   "Set physical link state to SerDes Loopback failed with return %d\n",
8983 		   ret);
8984 	if (ret >= 0)
8985 		ret = -EINVAL;
8986 	return ret;
8987 }
8988 
8989 /*
8990  * Do all special steps to set up loopback.
8991  */
8992 static int init_loopback(struct hfi1_devdata *dd)
8993 {
8994 	dd_dev_info(dd, "Entering loopback mode\n");
8995 
8996 	/* all loopbacks should disable self GUID check */
8997 	write_csr(dd, DC_DC8051_CFG_MODE,
8998 		  (read_csr(dd, DC_DC8051_CFG_MODE) | DISABLE_SELF_GUID_CHECK));
8999 
9000 	/*
9001 	 * The simulator has only one loopback option - LCB.  Switch
9002 	 * to that option, which includes quick link up.
9003 	 *
9004 	 * Accept all valid loopback values.
9005 	 */
9006 	if ((dd->icode == ICODE_FUNCTIONAL_SIMULATOR) &&
9007 	    (loopback == LOOPBACK_SERDES || loopback == LOOPBACK_LCB ||
9008 	     loopback == LOOPBACK_CABLE)) {
9009 		loopback = LOOPBACK_LCB;
9010 		quick_linkup = 1;
9011 		return 0;
9012 	}
9013 
9014 	/* handle serdes loopback */
9015 	if (loopback == LOOPBACK_SERDES) {
9016 		/* internal serdes loopack needs quick linkup on RTL */
9017 		if (dd->icode == ICODE_RTL_SILICON)
9018 			quick_linkup = 1;
9019 		return set_serdes_loopback_mode(dd);
9020 	}
9021 
9022 	/* LCB loopback - handled at poll time */
9023 	if (loopback == LOOPBACK_LCB) {
9024 		quick_linkup = 1; /* LCB is always quick linkup */
9025 
9026 		/* not supported in emulation due to emulation RTL changes */
9027 		if (dd->icode == ICODE_FPGA_EMULATION) {
9028 			dd_dev_err(dd,
9029 				   "LCB loopback not supported in emulation\n");
9030 			return -EINVAL;
9031 		}
9032 		return 0;
9033 	}
9034 
9035 	/* external cable loopback requires no extra steps */
9036 	if (loopback == LOOPBACK_CABLE)
9037 		return 0;
9038 
9039 	dd_dev_err(dd, "Invalid loopback mode %d\n", loopback);
9040 	return -EINVAL;
9041 }
9042 
9043 /*
9044  * Translate from the OPA_LINK_WIDTH handed to us by the FM to bits
9045  * used in the Verify Capability link width attribute.
9046  */
9047 static u16 opa_to_vc_link_widths(u16 opa_widths)
9048 {
9049 	int i;
9050 	u16 result = 0;
9051 
9052 	static const struct link_bits {
9053 		u16 from;
9054 		u16 to;
9055 	} opa_link_xlate[] = {
9056 		{ OPA_LINK_WIDTH_1X, 1 << (1 - 1)  },
9057 		{ OPA_LINK_WIDTH_2X, 1 << (2 - 1)  },
9058 		{ OPA_LINK_WIDTH_3X, 1 << (3 - 1)  },
9059 		{ OPA_LINK_WIDTH_4X, 1 << (4 - 1)  },
9060 	};
9061 
9062 	for (i = 0; i < ARRAY_SIZE(opa_link_xlate); i++) {
9063 		if (opa_widths & opa_link_xlate[i].from)
9064 			result |= opa_link_xlate[i].to;
9065 	}
9066 	return result;
9067 }
9068 
9069 /*
9070  * Set link attributes before moving to polling.
9071  */
9072 static int set_local_link_attributes(struct hfi1_pportdata *ppd)
9073 {
9074 	struct hfi1_devdata *dd = ppd->dd;
9075 	u8 enable_lane_tx;
9076 	u8 tx_polarity_inversion;
9077 	u8 rx_polarity_inversion;
9078 	int ret;
9079 
9080 	/* reset our fabric serdes to clear any lingering problems */
9081 	fabric_serdes_reset(dd);
9082 
9083 	/* set the local tx rate - need to read-modify-write */
9084 	ret = read_tx_settings(dd, &enable_lane_tx, &tx_polarity_inversion,
9085 			       &rx_polarity_inversion, &ppd->local_tx_rate);
9086 	if (ret)
9087 		goto set_local_link_attributes_fail;
9088 
9089 	if (dd->dc8051_ver < dc8051_ver(0, 20)) {
9090 		/* set the tx rate to the fastest enabled */
9091 		if (ppd->link_speed_enabled & OPA_LINK_SPEED_25G)
9092 			ppd->local_tx_rate = 1;
9093 		else
9094 			ppd->local_tx_rate = 0;
9095 	} else {
9096 		/* set the tx rate to all enabled */
9097 		ppd->local_tx_rate = 0;
9098 		if (ppd->link_speed_enabled & OPA_LINK_SPEED_25G)
9099 			ppd->local_tx_rate |= 2;
9100 		if (ppd->link_speed_enabled & OPA_LINK_SPEED_12_5G)
9101 			ppd->local_tx_rate |= 1;
9102 	}
9103 
9104 	enable_lane_tx = 0xF; /* enable all four lanes */
9105 	ret = write_tx_settings(dd, enable_lane_tx, tx_polarity_inversion,
9106 				rx_polarity_inversion, ppd->local_tx_rate);
9107 	if (ret != HCMD_SUCCESS)
9108 		goto set_local_link_attributes_fail;
9109 
9110 	/*
9111 	 * DC supports continuous updates.
9112 	 */
9113 	ret = write_vc_local_phy(dd,
9114 				 0 /* no power management */,
9115 				 1 /* continuous updates */);
9116 	if (ret != HCMD_SUCCESS)
9117 		goto set_local_link_attributes_fail;
9118 
9119 	/* z=1 in the next call: AU of 0 is not supported by the hardware */
9120 	ret = write_vc_local_fabric(dd, dd->vau, 1, dd->vcu, dd->vl15_init,
9121 				    ppd->port_crc_mode_enabled);
9122 	if (ret != HCMD_SUCCESS)
9123 		goto set_local_link_attributes_fail;
9124 
9125 	ret = write_vc_local_link_width(dd, 0, 0,
9126 					opa_to_vc_link_widths(
9127 						ppd->link_width_enabled));
9128 	if (ret != HCMD_SUCCESS)
9129 		goto set_local_link_attributes_fail;
9130 
9131 	/* let peer know who we are */
9132 	ret = write_local_device_id(dd, dd->pcidev->device, dd->minrev);
9133 	if (ret == HCMD_SUCCESS)
9134 		return 0;
9135 
9136 set_local_link_attributes_fail:
9137 	dd_dev_err(dd,
9138 		   "Failed to set local link attributes, return 0x%x\n",
9139 		   ret);
9140 	return ret;
9141 }
9142 
9143 /*
9144  * Call this to start the link.
9145  * Do not do anything if the link is disabled.
9146  * Returns 0 if link is disabled, moved to polling, or the driver is not ready.
9147  */
9148 int start_link(struct hfi1_pportdata *ppd)
9149 {
9150 	/*
9151 	 * Tune the SerDes to a ballpark setting for optimal signal and bit
9152 	 * error rate.  Needs to be done before starting the link.
9153 	 */
9154 	tune_serdes(ppd);
9155 
9156 	if (!ppd->link_enabled) {
9157 		dd_dev_info(ppd->dd,
9158 			    "%s: stopping link start because link is disabled\n",
9159 			    __func__);
9160 		return 0;
9161 	}
9162 	if (!ppd->driver_link_ready) {
9163 		dd_dev_info(ppd->dd,
9164 			    "%s: stopping link start because driver is not ready\n",
9165 			    __func__);
9166 		return 0;
9167 	}
9168 
9169 	/*
9170 	 * FULL_MGMT_P_KEY is cleared from the pkey table, so that the
9171 	 * pkey table can be configured properly if the HFI unit is connected
9172 	 * to switch port with MgmtAllowed=NO
9173 	 */
9174 	clear_full_mgmt_pkey(ppd);
9175 
9176 	return set_link_state(ppd, HLS_DN_POLL);
9177 }
9178 
9179 static void wait_for_qsfp_init(struct hfi1_pportdata *ppd)
9180 {
9181 	struct hfi1_devdata *dd = ppd->dd;
9182 	u64 mask;
9183 	unsigned long timeout;
9184 
9185 	/*
9186 	 * Some QSFP cables have a quirk that asserts the IntN line as a side
9187 	 * effect of power up on plug-in. We ignore this false positive
9188 	 * interrupt until the module has finished powering up by waiting for
9189 	 * a minimum timeout of the module inrush initialization time of
9190 	 * 500 ms (SFF 8679 Table 5-6) to ensure the voltage rails in the
9191 	 * module have stabilized.
9192 	 */
9193 	msleep(500);
9194 
9195 	/*
9196 	 * Check for QSFP interrupt for t_init (SFF 8679 Table 8-1)
9197 	 */
9198 	timeout = jiffies + msecs_to_jiffies(2000);
9199 	while (1) {
9200 		mask = read_csr(dd, dd->hfi1_id ?
9201 				ASIC_QSFP2_IN : ASIC_QSFP1_IN);
9202 		if (!(mask & QSFP_HFI0_INT_N))
9203 			break;
9204 		if (time_after(jiffies, timeout)) {
9205 			dd_dev_info(dd, "%s: No IntN detected, reset complete\n",
9206 				    __func__);
9207 			break;
9208 		}
9209 		udelay(2);
9210 	}
9211 }
9212 
9213 static void set_qsfp_int_n(struct hfi1_pportdata *ppd, u8 enable)
9214 {
9215 	struct hfi1_devdata *dd = ppd->dd;
9216 	u64 mask;
9217 
9218 	mask = read_csr(dd, dd->hfi1_id ? ASIC_QSFP2_MASK : ASIC_QSFP1_MASK);
9219 	if (enable) {
9220 		/*
9221 		 * Clear the status register to avoid an immediate interrupt
9222 		 * when we re-enable the IntN pin
9223 		 */
9224 		write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_CLEAR : ASIC_QSFP1_CLEAR,
9225 			  QSFP_HFI0_INT_N);
9226 		mask |= (u64)QSFP_HFI0_INT_N;
9227 	} else {
9228 		mask &= ~(u64)QSFP_HFI0_INT_N;
9229 	}
9230 	write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_MASK : ASIC_QSFP1_MASK, mask);
9231 }
9232 
9233 void reset_qsfp(struct hfi1_pportdata *ppd)
9234 {
9235 	struct hfi1_devdata *dd = ppd->dd;
9236 	u64 mask, qsfp_mask;
9237 
9238 	/* Disable INT_N from triggering QSFP interrupts */
9239 	set_qsfp_int_n(ppd, 0);
9240 
9241 	/* Reset the QSFP */
9242 	mask = (u64)QSFP_HFI0_RESET_N;
9243 
9244 	qsfp_mask = read_csr(dd,
9245 			     dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT);
9246 	qsfp_mask &= ~mask;
9247 	write_csr(dd,
9248 		  dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT, qsfp_mask);
9249 
9250 	udelay(10);
9251 
9252 	qsfp_mask |= mask;
9253 	write_csr(dd,
9254 		  dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT, qsfp_mask);
9255 
9256 	wait_for_qsfp_init(ppd);
9257 
9258 	/*
9259 	 * Allow INT_N to trigger the QSFP interrupt to watch
9260 	 * for alarms and warnings
9261 	 */
9262 	set_qsfp_int_n(ppd, 1);
9263 }
9264 
9265 static int handle_qsfp_error_conditions(struct hfi1_pportdata *ppd,
9266 					u8 *qsfp_interrupt_status)
9267 {
9268 	struct hfi1_devdata *dd = ppd->dd;
9269 
9270 	if ((qsfp_interrupt_status[0] & QSFP_HIGH_TEMP_ALARM) ||
9271 	    (qsfp_interrupt_status[0] & QSFP_HIGH_TEMP_WARNING))
9272 		dd_dev_info(dd, "%s: QSFP cable on fire\n",
9273 			    __func__);
9274 
9275 	if ((qsfp_interrupt_status[0] & QSFP_LOW_TEMP_ALARM) ||
9276 	    (qsfp_interrupt_status[0] & QSFP_LOW_TEMP_WARNING))
9277 		dd_dev_info(dd, "%s: QSFP cable temperature too low\n",
9278 			    __func__);
9279 
9280 	/*
9281 	 * The remaining alarms/warnings don't matter if the link is down.
9282 	 */
9283 	if (ppd->host_link_state & HLS_DOWN)
9284 		return 0;
9285 
9286 	if ((qsfp_interrupt_status[1] & QSFP_HIGH_VCC_ALARM) ||
9287 	    (qsfp_interrupt_status[1] & QSFP_HIGH_VCC_WARNING))
9288 		dd_dev_info(dd, "%s: QSFP supply voltage too high\n",
9289 			    __func__);
9290 
9291 	if ((qsfp_interrupt_status[1] & QSFP_LOW_VCC_ALARM) ||
9292 	    (qsfp_interrupt_status[1] & QSFP_LOW_VCC_WARNING))
9293 		dd_dev_info(dd, "%s: QSFP supply voltage too low\n",
9294 			    __func__);
9295 
9296 	/* Byte 2 is vendor specific */
9297 
9298 	if ((qsfp_interrupt_status[3] & QSFP_HIGH_POWER_ALARM) ||
9299 	    (qsfp_interrupt_status[3] & QSFP_HIGH_POWER_WARNING))
9300 		dd_dev_info(dd, "%s: Cable RX channel 1/2 power too high\n",
9301 			    __func__);
9302 
9303 	if ((qsfp_interrupt_status[3] & QSFP_LOW_POWER_ALARM) ||
9304 	    (qsfp_interrupt_status[3] & QSFP_LOW_POWER_WARNING))
9305 		dd_dev_info(dd, "%s: Cable RX channel 1/2 power too low\n",
9306 			    __func__);
9307 
9308 	if ((qsfp_interrupt_status[4] & QSFP_HIGH_POWER_ALARM) ||
9309 	    (qsfp_interrupt_status[4] & QSFP_HIGH_POWER_WARNING))
9310 		dd_dev_info(dd, "%s: Cable RX channel 3/4 power too high\n",
9311 			    __func__);
9312 
9313 	if ((qsfp_interrupt_status[4] & QSFP_LOW_POWER_ALARM) ||
9314 	    (qsfp_interrupt_status[4] & QSFP_LOW_POWER_WARNING))
9315 		dd_dev_info(dd, "%s: Cable RX channel 3/4 power too low\n",
9316 			    __func__);
9317 
9318 	if ((qsfp_interrupt_status[5] & QSFP_HIGH_BIAS_ALARM) ||
9319 	    (qsfp_interrupt_status[5] & QSFP_HIGH_BIAS_WARNING))
9320 		dd_dev_info(dd, "%s: Cable TX channel 1/2 bias too high\n",
9321 			    __func__);
9322 
9323 	if ((qsfp_interrupt_status[5] & QSFP_LOW_BIAS_ALARM) ||
9324 	    (qsfp_interrupt_status[5] & QSFP_LOW_BIAS_WARNING))
9325 		dd_dev_info(dd, "%s: Cable TX channel 1/2 bias too low\n",
9326 			    __func__);
9327 
9328 	if ((qsfp_interrupt_status[6] & QSFP_HIGH_BIAS_ALARM) ||
9329 	    (qsfp_interrupt_status[6] & QSFP_HIGH_BIAS_WARNING))
9330 		dd_dev_info(dd, "%s: Cable TX channel 3/4 bias too high\n",
9331 			    __func__);
9332 
9333 	if ((qsfp_interrupt_status[6] & QSFP_LOW_BIAS_ALARM) ||
9334 	    (qsfp_interrupt_status[6] & QSFP_LOW_BIAS_WARNING))
9335 		dd_dev_info(dd, "%s: Cable TX channel 3/4 bias too low\n",
9336 			    __func__);
9337 
9338 	if ((qsfp_interrupt_status[7] & QSFP_HIGH_POWER_ALARM) ||
9339 	    (qsfp_interrupt_status[7] & QSFP_HIGH_POWER_WARNING))
9340 		dd_dev_info(dd, "%s: Cable TX channel 1/2 power too high\n",
9341 			    __func__);
9342 
9343 	if ((qsfp_interrupt_status[7] & QSFP_LOW_POWER_ALARM) ||
9344 	    (qsfp_interrupt_status[7] & QSFP_LOW_POWER_WARNING))
9345 		dd_dev_info(dd, "%s: Cable TX channel 1/2 power too low\n",
9346 			    __func__);
9347 
9348 	if ((qsfp_interrupt_status[8] & QSFP_HIGH_POWER_ALARM) ||
9349 	    (qsfp_interrupt_status[8] & QSFP_HIGH_POWER_WARNING))
9350 		dd_dev_info(dd, "%s: Cable TX channel 3/4 power too high\n",
9351 			    __func__);
9352 
9353 	if ((qsfp_interrupt_status[8] & QSFP_LOW_POWER_ALARM) ||
9354 	    (qsfp_interrupt_status[8] & QSFP_LOW_POWER_WARNING))
9355 		dd_dev_info(dd, "%s: Cable TX channel 3/4 power too low\n",
9356 			    __func__);
9357 
9358 	/* Bytes 9-10 and 11-12 are reserved */
9359 	/* Bytes 13-15 are vendor specific */
9360 
9361 	return 0;
9362 }
9363 
9364 /* This routine will only be scheduled if the QSFP module present is asserted */
9365 void qsfp_event(struct work_struct *work)
9366 {
9367 	struct qsfp_data *qd;
9368 	struct hfi1_pportdata *ppd;
9369 	struct hfi1_devdata *dd;
9370 
9371 	qd = container_of(work, struct qsfp_data, qsfp_work);
9372 	ppd = qd->ppd;
9373 	dd = ppd->dd;
9374 
9375 	/* Sanity check */
9376 	if (!qsfp_mod_present(ppd))
9377 		return;
9378 
9379 	/*
9380 	 * Turn DC back on after cable has been re-inserted. Up until
9381 	 * now, the DC has been in reset to save power.
9382 	 */
9383 	dc_start(dd);
9384 
9385 	if (qd->cache_refresh_required) {
9386 		set_qsfp_int_n(ppd, 0);
9387 
9388 		wait_for_qsfp_init(ppd);
9389 
9390 		/*
9391 		 * Allow INT_N to trigger the QSFP interrupt to watch
9392 		 * for alarms and warnings
9393 		 */
9394 		set_qsfp_int_n(ppd, 1);
9395 
9396 		start_link(ppd);
9397 	}
9398 
9399 	if (qd->check_interrupt_flags) {
9400 		u8 qsfp_interrupt_status[16] = {0,};
9401 
9402 		if (one_qsfp_read(ppd, dd->hfi1_id, 6,
9403 				  &qsfp_interrupt_status[0], 16) != 16) {
9404 			dd_dev_info(dd,
9405 				    "%s: Failed to read status of QSFP module\n",
9406 				    __func__);
9407 		} else {
9408 			unsigned long flags;
9409 
9410 			handle_qsfp_error_conditions(
9411 					ppd, qsfp_interrupt_status);
9412 			spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
9413 			ppd->qsfp_info.check_interrupt_flags = 0;
9414 			spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock,
9415 					       flags);
9416 		}
9417 	}
9418 }
9419 
9420 static void init_qsfp_int(struct hfi1_devdata *dd)
9421 {
9422 	struct hfi1_pportdata *ppd = dd->pport;
9423 	u64 qsfp_mask, cce_int_mask;
9424 	const int qsfp1_int_smask = QSFP1_INT % 64;
9425 	const int qsfp2_int_smask = QSFP2_INT % 64;
9426 
9427 	/*
9428 	 * disable QSFP1 interrupts for HFI1, QSFP2 interrupts for HFI0
9429 	 * Qsfp1Int and Qsfp2Int are adjacent bits in the same CSR,
9430 	 * therefore just one of QSFP1_INT/QSFP2_INT can be used to find
9431 	 * the index of the appropriate CSR in the CCEIntMask CSR array
9432 	 */
9433 	cce_int_mask = read_csr(dd, CCE_INT_MASK +
9434 				(8 * (QSFP1_INT / 64)));
9435 	if (dd->hfi1_id) {
9436 		cce_int_mask &= ~((u64)1 << qsfp1_int_smask);
9437 		write_csr(dd, CCE_INT_MASK + (8 * (QSFP1_INT / 64)),
9438 			  cce_int_mask);
9439 	} else {
9440 		cce_int_mask &= ~((u64)1 << qsfp2_int_smask);
9441 		write_csr(dd, CCE_INT_MASK + (8 * (QSFP2_INT / 64)),
9442 			  cce_int_mask);
9443 	}
9444 
9445 	qsfp_mask = (u64)(QSFP_HFI0_INT_N | QSFP_HFI0_MODPRST_N);
9446 	/* Clear current status to avoid spurious interrupts */
9447 	write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_CLEAR : ASIC_QSFP1_CLEAR,
9448 		  qsfp_mask);
9449 	write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_MASK : ASIC_QSFP1_MASK,
9450 		  qsfp_mask);
9451 
9452 	set_qsfp_int_n(ppd, 0);
9453 
9454 	/* Handle active low nature of INT_N and MODPRST_N pins */
9455 	if (qsfp_mod_present(ppd))
9456 		qsfp_mask &= ~(u64)QSFP_HFI0_MODPRST_N;
9457 	write_csr(dd,
9458 		  dd->hfi1_id ? ASIC_QSFP2_INVERT : ASIC_QSFP1_INVERT,
9459 		  qsfp_mask);
9460 }
9461 
9462 /*
9463  * Do a one-time initialize of the LCB block.
9464  */
9465 static void init_lcb(struct hfi1_devdata *dd)
9466 {
9467 	/* simulator does not correctly handle LCB cclk loopback, skip */
9468 	if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR)
9469 		return;
9470 
9471 	/* the DC has been reset earlier in the driver load */
9472 
9473 	/* set LCB for cclk loopback on the port */
9474 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0x01);
9475 	write_csr(dd, DC_LCB_CFG_LANE_WIDTH, 0x00);
9476 	write_csr(dd, DC_LCB_CFG_REINIT_AS_SLAVE, 0x00);
9477 	write_csr(dd, DC_LCB_CFG_CNT_FOR_SKIP_STALL, 0x110);
9478 	write_csr(dd, DC_LCB_CFG_CLK_CNTR, 0x08);
9479 	write_csr(dd, DC_LCB_CFG_LOOPBACK, 0x02);
9480 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0x00);
9481 }
9482 
9483 /*
9484  * Perform a test read on the QSFP.  Return 0 on success, -ERRNO
9485  * on error.
9486  */
9487 static int test_qsfp_read(struct hfi1_pportdata *ppd)
9488 {
9489 	int ret;
9490 	u8 status;
9491 
9492 	/* report success if not a QSFP */
9493 	if (ppd->port_type != PORT_TYPE_QSFP)
9494 		return 0;
9495 
9496 	/* read byte 2, the status byte */
9497 	ret = one_qsfp_read(ppd, ppd->dd->hfi1_id, 2, &status, 1);
9498 	if (ret < 0)
9499 		return ret;
9500 	if (ret != 1)
9501 		return -EIO;
9502 
9503 	return 0; /* success */
9504 }
9505 
9506 /*
9507  * Values for QSFP retry.
9508  *
9509  * Give up after 10s (20 x 500ms).  The overall timeout was empirically
9510  * arrived at from experience on a large cluster.
9511  */
9512 #define MAX_QSFP_RETRIES 20
9513 #define QSFP_RETRY_WAIT 500 /* msec */
9514 
9515 /*
9516  * Try a QSFP read.  If it fails, schedule a retry for later.
9517  * Called on first link activation after driver load.
9518  */
9519 static void try_start_link(struct hfi1_pportdata *ppd)
9520 {
9521 	if (test_qsfp_read(ppd)) {
9522 		/* read failed */
9523 		if (ppd->qsfp_retry_count >= MAX_QSFP_RETRIES) {
9524 			dd_dev_err(ppd->dd, "QSFP not responding, giving up\n");
9525 			return;
9526 		}
9527 		dd_dev_info(ppd->dd,
9528 			    "QSFP not responding, waiting and retrying %d\n",
9529 			    (int)ppd->qsfp_retry_count);
9530 		ppd->qsfp_retry_count++;
9531 		queue_delayed_work(ppd->hfi1_wq, &ppd->start_link_work,
9532 				   msecs_to_jiffies(QSFP_RETRY_WAIT));
9533 		return;
9534 	}
9535 	ppd->qsfp_retry_count = 0;
9536 
9537 	start_link(ppd);
9538 }
9539 
9540 /*
9541  * Workqueue function to start the link after a delay.
9542  */
9543 void handle_start_link(struct work_struct *work)
9544 {
9545 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
9546 						  start_link_work.work);
9547 	try_start_link(ppd);
9548 }
9549 
9550 int bringup_serdes(struct hfi1_pportdata *ppd)
9551 {
9552 	struct hfi1_devdata *dd = ppd->dd;
9553 	u64 guid;
9554 	int ret;
9555 
9556 	if (HFI1_CAP_IS_KSET(EXTENDED_PSN))
9557 		add_rcvctrl(dd, RCV_CTRL_RCV_EXTENDED_PSN_ENABLE_SMASK);
9558 
9559 	guid = ppd->guid;
9560 	if (!guid) {
9561 		if (dd->base_guid)
9562 			guid = dd->base_guid + ppd->port - 1;
9563 		ppd->guid = guid;
9564 	}
9565 
9566 	/* Set linkinit_reason on power up per OPA spec */
9567 	ppd->linkinit_reason = OPA_LINKINIT_REASON_LINKUP;
9568 
9569 	/* one-time init of the LCB */
9570 	init_lcb(dd);
9571 
9572 	if (loopback) {
9573 		ret = init_loopback(dd);
9574 		if (ret < 0)
9575 			return ret;
9576 	}
9577 
9578 	get_port_type(ppd);
9579 	if (ppd->port_type == PORT_TYPE_QSFP) {
9580 		set_qsfp_int_n(ppd, 0);
9581 		wait_for_qsfp_init(ppd);
9582 		set_qsfp_int_n(ppd, 1);
9583 	}
9584 
9585 	try_start_link(ppd);
9586 	return 0;
9587 }
9588 
9589 void hfi1_quiet_serdes(struct hfi1_pportdata *ppd)
9590 {
9591 	struct hfi1_devdata *dd = ppd->dd;
9592 
9593 	/*
9594 	 * Shut down the link and keep it down.   First turn off that the
9595 	 * driver wants to allow the link to be up (driver_link_ready).
9596 	 * Then make sure the link is not automatically restarted
9597 	 * (link_enabled).  Cancel any pending restart.  And finally
9598 	 * go offline.
9599 	 */
9600 	ppd->driver_link_ready = 0;
9601 	ppd->link_enabled = 0;
9602 
9603 	ppd->qsfp_retry_count = MAX_QSFP_RETRIES; /* prevent more retries */
9604 	flush_delayed_work(&ppd->start_link_work);
9605 	cancel_delayed_work_sync(&ppd->start_link_work);
9606 
9607 	ppd->offline_disabled_reason =
9608 			HFI1_ODR_MASK(OPA_LINKDOWN_REASON_SMA_DISABLED);
9609 	set_link_down_reason(ppd, OPA_LINKDOWN_REASON_SMA_DISABLED, 0,
9610 			     OPA_LINKDOWN_REASON_SMA_DISABLED);
9611 	set_link_state(ppd, HLS_DN_OFFLINE);
9612 
9613 	/* disable the port */
9614 	clear_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
9615 }
9616 
9617 static inline int init_cpu_counters(struct hfi1_devdata *dd)
9618 {
9619 	struct hfi1_pportdata *ppd;
9620 	int i;
9621 
9622 	ppd = (struct hfi1_pportdata *)(dd + 1);
9623 	for (i = 0; i < dd->num_pports; i++, ppd++) {
9624 		ppd->ibport_data.rvp.rc_acks = NULL;
9625 		ppd->ibport_data.rvp.rc_qacks = NULL;
9626 		ppd->ibport_data.rvp.rc_acks = alloc_percpu(u64);
9627 		ppd->ibport_data.rvp.rc_qacks = alloc_percpu(u64);
9628 		ppd->ibport_data.rvp.rc_delayed_comp = alloc_percpu(u64);
9629 		if (!ppd->ibport_data.rvp.rc_acks ||
9630 		    !ppd->ibport_data.rvp.rc_delayed_comp ||
9631 		    !ppd->ibport_data.rvp.rc_qacks)
9632 			return -ENOMEM;
9633 	}
9634 
9635 	return 0;
9636 }
9637 
9638 static const char * const pt_names[] = {
9639 	"expected",
9640 	"eager",
9641 	"invalid"
9642 };
9643 
9644 static const char *pt_name(u32 type)
9645 {
9646 	return type >= ARRAY_SIZE(pt_names) ? "unknown" : pt_names[type];
9647 }
9648 
9649 /*
9650  * index is the index into the receive array
9651  */
9652 void hfi1_put_tid(struct hfi1_devdata *dd, u32 index,
9653 		  u32 type, unsigned long pa, u16 order)
9654 {
9655 	u64 reg;
9656 	void __iomem *base = (dd->rcvarray_wc ? dd->rcvarray_wc :
9657 			      (dd->kregbase + RCV_ARRAY));
9658 
9659 	if (!(dd->flags & HFI1_PRESENT))
9660 		goto done;
9661 
9662 	if (type == PT_INVALID) {
9663 		pa = 0;
9664 	} else if (type > PT_INVALID) {
9665 		dd_dev_err(dd,
9666 			   "unexpected receive array type %u for index %u, not handled\n",
9667 			   type, index);
9668 		goto done;
9669 	}
9670 
9671 	hfi1_cdbg(TID, "type %s, index 0x%x, pa 0x%lx, bsize 0x%lx",
9672 		  pt_name(type), index, pa, (unsigned long)order);
9673 
9674 #define RT_ADDR_SHIFT 12	/* 4KB kernel address boundary */
9675 	reg = RCV_ARRAY_RT_WRITE_ENABLE_SMASK
9676 		| (u64)order << RCV_ARRAY_RT_BUF_SIZE_SHIFT
9677 		| ((pa >> RT_ADDR_SHIFT) & RCV_ARRAY_RT_ADDR_MASK)
9678 					<< RCV_ARRAY_RT_ADDR_SHIFT;
9679 	writeq(reg, base + (index * 8));
9680 
9681 	if (type == PT_EAGER)
9682 		/*
9683 		 * Eager entries are written one-by-one so we have to push them
9684 		 * after we write the entry.
9685 		 */
9686 		flush_wc();
9687 done:
9688 	return;
9689 }
9690 
9691 void hfi1_clear_tids(struct hfi1_ctxtdata *rcd)
9692 {
9693 	struct hfi1_devdata *dd = rcd->dd;
9694 	u32 i;
9695 
9696 	/* this could be optimized */
9697 	for (i = rcd->eager_base; i < rcd->eager_base +
9698 		     rcd->egrbufs.alloced; i++)
9699 		hfi1_put_tid(dd, i, PT_INVALID, 0, 0);
9700 
9701 	for (i = rcd->expected_base;
9702 			i < rcd->expected_base + rcd->expected_count; i++)
9703 		hfi1_put_tid(dd, i, PT_INVALID, 0, 0);
9704 }
9705 
9706 struct ib_header *hfi1_get_msgheader(
9707 	struct hfi1_devdata *dd, __le32 *rhf_addr)
9708 {
9709 	u32 offset = rhf_hdrq_offset(rhf_to_cpu(rhf_addr));
9710 
9711 	return (struct ib_header *)
9712 		(rhf_addr - dd->rhf_offset + offset);
9713 }
9714 
9715 static const char * const ib_cfg_name_strings[] = {
9716 	"HFI1_IB_CFG_LIDLMC",
9717 	"HFI1_IB_CFG_LWID_DG_ENB",
9718 	"HFI1_IB_CFG_LWID_ENB",
9719 	"HFI1_IB_CFG_LWID",
9720 	"HFI1_IB_CFG_SPD_ENB",
9721 	"HFI1_IB_CFG_SPD",
9722 	"HFI1_IB_CFG_RXPOL_ENB",
9723 	"HFI1_IB_CFG_LREV_ENB",
9724 	"HFI1_IB_CFG_LINKLATENCY",
9725 	"HFI1_IB_CFG_HRTBT",
9726 	"HFI1_IB_CFG_OP_VLS",
9727 	"HFI1_IB_CFG_VL_HIGH_CAP",
9728 	"HFI1_IB_CFG_VL_LOW_CAP",
9729 	"HFI1_IB_CFG_OVERRUN_THRESH",
9730 	"HFI1_IB_CFG_PHYERR_THRESH",
9731 	"HFI1_IB_CFG_LINKDEFAULT",
9732 	"HFI1_IB_CFG_PKEYS",
9733 	"HFI1_IB_CFG_MTU",
9734 	"HFI1_IB_CFG_LSTATE",
9735 	"HFI1_IB_CFG_VL_HIGH_LIMIT",
9736 	"HFI1_IB_CFG_PMA_TICKS",
9737 	"HFI1_IB_CFG_PORT"
9738 };
9739 
9740 static const char *ib_cfg_name(int which)
9741 {
9742 	if (which < 0 || which >= ARRAY_SIZE(ib_cfg_name_strings))
9743 		return "invalid";
9744 	return ib_cfg_name_strings[which];
9745 }
9746 
9747 int hfi1_get_ib_cfg(struct hfi1_pportdata *ppd, int which)
9748 {
9749 	struct hfi1_devdata *dd = ppd->dd;
9750 	int val = 0;
9751 
9752 	switch (which) {
9753 	case HFI1_IB_CFG_LWID_ENB: /* allowed Link-width */
9754 		val = ppd->link_width_enabled;
9755 		break;
9756 	case HFI1_IB_CFG_LWID: /* currently active Link-width */
9757 		val = ppd->link_width_active;
9758 		break;
9759 	case HFI1_IB_CFG_SPD_ENB: /* allowed Link speeds */
9760 		val = ppd->link_speed_enabled;
9761 		break;
9762 	case HFI1_IB_CFG_SPD: /* current Link speed */
9763 		val = ppd->link_speed_active;
9764 		break;
9765 
9766 	case HFI1_IB_CFG_RXPOL_ENB: /* Auto-RX-polarity enable */
9767 	case HFI1_IB_CFG_LREV_ENB: /* Auto-Lane-reversal enable */
9768 	case HFI1_IB_CFG_LINKLATENCY:
9769 		goto unimplemented;
9770 
9771 	case HFI1_IB_CFG_OP_VLS:
9772 		val = ppd->vls_operational;
9773 		break;
9774 	case HFI1_IB_CFG_VL_HIGH_CAP: /* VL arb high priority table size */
9775 		val = VL_ARB_HIGH_PRIO_TABLE_SIZE;
9776 		break;
9777 	case HFI1_IB_CFG_VL_LOW_CAP: /* VL arb low priority table size */
9778 		val = VL_ARB_LOW_PRIO_TABLE_SIZE;
9779 		break;
9780 	case HFI1_IB_CFG_OVERRUN_THRESH: /* IB overrun threshold */
9781 		val = ppd->overrun_threshold;
9782 		break;
9783 	case HFI1_IB_CFG_PHYERR_THRESH: /* IB PHY error threshold */
9784 		val = ppd->phy_error_threshold;
9785 		break;
9786 	case HFI1_IB_CFG_LINKDEFAULT: /* IB link default (sleep/poll) */
9787 		val = dd->link_default;
9788 		break;
9789 
9790 	case HFI1_IB_CFG_HRTBT: /* Heartbeat off/enable/auto */
9791 	case HFI1_IB_CFG_PMA_TICKS:
9792 	default:
9793 unimplemented:
9794 		if (HFI1_CAP_IS_KSET(PRINT_UNIMPL))
9795 			dd_dev_info(
9796 				dd,
9797 				"%s: which %s: not implemented\n",
9798 				__func__,
9799 				ib_cfg_name(which));
9800 		break;
9801 	}
9802 
9803 	return val;
9804 }
9805 
9806 /*
9807  * The largest MAD packet size.
9808  */
9809 #define MAX_MAD_PACKET 2048
9810 
9811 /*
9812  * Return the maximum header bytes that can go on the _wire_
9813  * for this device. This count includes the ICRC which is
9814  * not part of the packet held in memory but it is appended
9815  * by the HW.
9816  * This is dependent on the device's receive header entry size.
9817  * HFI allows this to be set per-receive context, but the
9818  * driver presently enforces a global value.
9819  */
9820 u32 lrh_max_header_bytes(struct hfi1_devdata *dd)
9821 {
9822 	/*
9823 	 * The maximum non-payload (MTU) bytes in LRH.PktLen are
9824 	 * the Receive Header Entry Size minus the PBC (or RHF) size
9825 	 * plus one DW for the ICRC appended by HW.
9826 	 *
9827 	 * dd->rcd[0].rcvhdrqentsize is in DW.
9828 	 * We use rcd[0] as all context will have the same value. Also,
9829 	 * the first kernel context would have been allocated by now so
9830 	 * we are guaranteed a valid value.
9831 	 */
9832 	return (dd->rcd[0]->rcvhdrqentsize - 2/*PBC/RHF*/ + 1/*ICRC*/) << 2;
9833 }
9834 
9835 /*
9836  * Set Send Length
9837  * @ppd - per port data
9838  *
9839  * Set the MTU by limiting how many DWs may be sent.  The SendLenCheck*
9840  * registers compare against LRH.PktLen, so use the max bytes included
9841  * in the LRH.
9842  *
9843  * This routine changes all VL values except VL15, which it maintains at
9844  * the same value.
9845  */
9846 static void set_send_length(struct hfi1_pportdata *ppd)
9847 {
9848 	struct hfi1_devdata *dd = ppd->dd;
9849 	u32 max_hb = lrh_max_header_bytes(dd), dcmtu;
9850 	u32 maxvlmtu = dd->vld[15].mtu;
9851 	u64 len1 = 0, len2 = (((dd->vld[15].mtu + max_hb) >> 2)
9852 			      & SEND_LEN_CHECK1_LEN_VL15_MASK) <<
9853 		SEND_LEN_CHECK1_LEN_VL15_SHIFT;
9854 	int i, j;
9855 	u32 thres;
9856 
9857 	for (i = 0; i < ppd->vls_supported; i++) {
9858 		if (dd->vld[i].mtu > maxvlmtu)
9859 			maxvlmtu = dd->vld[i].mtu;
9860 		if (i <= 3)
9861 			len1 |= (((dd->vld[i].mtu + max_hb) >> 2)
9862 				 & SEND_LEN_CHECK0_LEN_VL0_MASK) <<
9863 				((i % 4) * SEND_LEN_CHECK0_LEN_VL1_SHIFT);
9864 		else
9865 			len2 |= (((dd->vld[i].mtu + max_hb) >> 2)
9866 				 & SEND_LEN_CHECK1_LEN_VL4_MASK) <<
9867 				((i % 4) * SEND_LEN_CHECK1_LEN_VL5_SHIFT);
9868 	}
9869 	write_csr(dd, SEND_LEN_CHECK0, len1);
9870 	write_csr(dd, SEND_LEN_CHECK1, len2);
9871 	/* adjust kernel credit return thresholds based on new MTUs */
9872 	/* all kernel receive contexts have the same hdrqentsize */
9873 	for (i = 0; i < ppd->vls_supported; i++) {
9874 		thres = min(sc_percent_to_threshold(dd->vld[i].sc, 50),
9875 			    sc_mtu_to_threshold(dd->vld[i].sc,
9876 						dd->vld[i].mtu,
9877 						dd->rcd[0]->rcvhdrqentsize));
9878 		for (j = 0; j < INIT_SC_PER_VL; j++)
9879 			sc_set_cr_threshold(
9880 					pio_select_send_context_vl(dd, j, i),
9881 					    thres);
9882 	}
9883 	thres = min(sc_percent_to_threshold(dd->vld[15].sc, 50),
9884 		    sc_mtu_to_threshold(dd->vld[15].sc,
9885 					dd->vld[15].mtu,
9886 					dd->rcd[0]->rcvhdrqentsize));
9887 	sc_set_cr_threshold(dd->vld[15].sc, thres);
9888 
9889 	/* Adjust maximum MTU for the port in DC */
9890 	dcmtu = maxvlmtu == 10240 ? DCC_CFG_PORT_MTU_CAP_10240 :
9891 		(ilog2(maxvlmtu >> 8) + 1);
9892 	len1 = read_csr(ppd->dd, DCC_CFG_PORT_CONFIG);
9893 	len1 &= ~DCC_CFG_PORT_CONFIG_MTU_CAP_SMASK;
9894 	len1 |= ((u64)dcmtu & DCC_CFG_PORT_CONFIG_MTU_CAP_MASK) <<
9895 		DCC_CFG_PORT_CONFIG_MTU_CAP_SHIFT;
9896 	write_csr(ppd->dd, DCC_CFG_PORT_CONFIG, len1);
9897 }
9898 
9899 static void set_lidlmc(struct hfi1_pportdata *ppd)
9900 {
9901 	int i;
9902 	u64 sreg = 0;
9903 	struct hfi1_devdata *dd = ppd->dd;
9904 	u32 mask = ~((1U << ppd->lmc) - 1);
9905 	u64 c1 = read_csr(ppd->dd, DCC_CFG_PORT_CONFIG1);
9906 
9907 	c1 &= ~(DCC_CFG_PORT_CONFIG1_TARGET_DLID_SMASK
9908 		| DCC_CFG_PORT_CONFIG1_DLID_MASK_SMASK);
9909 	c1 |= ((ppd->lid & DCC_CFG_PORT_CONFIG1_TARGET_DLID_MASK)
9910 			<< DCC_CFG_PORT_CONFIG1_TARGET_DLID_SHIFT) |
9911 	      ((mask & DCC_CFG_PORT_CONFIG1_DLID_MASK_MASK)
9912 			<< DCC_CFG_PORT_CONFIG1_DLID_MASK_SHIFT);
9913 	write_csr(ppd->dd, DCC_CFG_PORT_CONFIG1, c1);
9914 
9915 	/*
9916 	 * Iterate over all the send contexts and set their SLID check
9917 	 */
9918 	sreg = ((mask & SEND_CTXT_CHECK_SLID_MASK_MASK) <<
9919 			SEND_CTXT_CHECK_SLID_MASK_SHIFT) |
9920 	       (((ppd->lid & mask) & SEND_CTXT_CHECK_SLID_VALUE_MASK) <<
9921 			SEND_CTXT_CHECK_SLID_VALUE_SHIFT);
9922 
9923 	for (i = 0; i < dd->chip_send_contexts; i++) {
9924 		hfi1_cdbg(LINKVERB, "SendContext[%d].SLID_CHECK = 0x%x",
9925 			  i, (u32)sreg);
9926 		write_kctxt_csr(dd, i, SEND_CTXT_CHECK_SLID, sreg);
9927 	}
9928 
9929 	/* Now we have to do the same thing for the sdma engines */
9930 	sdma_update_lmc(dd, mask, ppd->lid);
9931 }
9932 
9933 static int wait_phy_linkstate(struct hfi1_devdata *dd, u32 state, u32 msecs)
9934 {
9935 	unsigned long timeout;
9936 	u32 curr_state;
9937 
9938 	timeout = jiffies + msecs_to_jiffies(msecs);
9939 	while (1) {
9940 		curr_state = read_physical_state(dd);
9941 		if (curr_state == state)
9942 			break;
9943 		if (time_after(jiffies, timeout)) {
9944 			dd_dev_err(dd,
9945 				   "timeout waiting for phy link state 0x%x, current state is 0x%x\n",
9946 				   state, curr_state);
9947 			return -ETIMEDOUT;
9948 		}
9949 		usleep_range(1950, 2050); /* sleep 2ms-ish */
9950 	}
9951 
9952 	return 0;
9953 }
9954 
9955 static const char *state_completed_string(u32 completed)
9956 {
9957 	static const char * const state_completed[] = {
9958 		"EstablishComm",
9959 		"OptimizeEQ",
9960 		"VerifyCap"
9961 	};
9962 
9963 	if (completed < ARRAY_SIZE(state_completed))
9964 		return state_completed[completed];
9965 
9966 	return "unknown";
9967 }
9968 
9969 static const char all_lanes_dead_timeout_expired[] =
9970 	"All lanes were inactive – was the interconnect media removed?";
9971 static const char tx_out_of_policy[] =
9972 	"Passing lanes on local port do not meet the local link width policy";
9973 static const char no_state_complete[] =
9974 	"State timeout occurred before link partner completed the state";
9975 static const char * const state_complete_reasons[] = {
9976 	[0x00] = "Reason unknown",
9977 	[0x01] = "Link was halted by driver, refer to LinkDownReason",
9978 	[0x02] = "Link partner reported failure",
9979 	[0x10] = "Unable to achieve frame sync on any lane",
9980 	[0x11] =
9981 	  "Unable to find a common bit rate with the link partner",
9982 	[0x12] =
9983 	  "Unable to achieve frame sync on sufficient lanes to meet the local link width policy",
9984 	[0x13] =
9985 	  "Unable to identify preset equalization on sufficient lanes to meet the local link width policy",
9986 	[0x14] = no_state_complete,
9987 	[0x15] =
9988 	  "State timeout occurred before link partner identified equalization presets",
9989 	[0x16] =
9990 	  "Link partner completed the EstablishComm state, but the passing lanes do not meet the local link width policy",
9991 	[0x17] = tx_out_of_policy,
9992 	[0x20] = all_lanes_dead_timeout_expired,
9993 	[0x21] =
9994 	  "Unable to achieve acceptable BER on sufficient lanes to meet the local link width policy",
9995 	[0x22] = no_state_complete,
9996 	[0x23] =
9997 	  "Link partner completed the OptimizeEq state, but the passing lanes do not meet the local link width policy",
9998 	[0x24] = tx_out_of_policy,
9999 	[0x30] = all_lanes_dead_timeout_expired,
10000 	[0x31] =
10001 	  "State timeout occurred waiting for host to process received frames",
10002 	[0x32] = no_state_complete,
10003 	[0x33] =
10004 	  "Link partner completed the VerifyCap state, but the passing lanes do not meet the local link width policy",
10005 	[0x34] = tx_out_of_policy,
10006 };
10007 
10008 static const char *state_complete_reason_code_string(struct hfi1_pportdata *ppd,
10009 						     u32 code)
10010 {
10011 	const char *str = NULL;
10012 
10013 	if (code < ARRAY_SIZE(state_complete_reasons))
10014 		str = state_complete_reasons[code];
10015 
10016 	if (str)
10017 		return str;
10018 	return "Reserved";
10019 }
10020 
10021 /* describe the given last state complete frame */
10022 static void decode_state_complete(struct hfi1_pportdata *ppd, u32 frame,
10023 				  const char *prefix)
10024 {
10025 	struct hfi1_devdata *dd = ppd->dd;
10026 	u32 success;
10027 	u32 state;
10028 	u32 reason;
10029 	u32 lanes;
10030 
10031 	/*
10032 	 * Decode frame:
10033 	 *  [ 0: 0] - success
10034 	 *  [ 3: 1] - state
10035 	 *  [ 7: 4] - next state timeout
10036 	 *  [15: 8] - reason code
10037 	 *  [31:16] - lanes
10038 	 */
10039 	success = frame & 0x1;
10040 	state = (frame >> 1) & 0x7;
10041 	reason = (frame >> 8) & 0xff;
10042 	lanes = (frame >> 16) & 0xffff;
10043 
10044 	dd_dev_err(dd, "Last %s LNI state complete frame 0x%08x:\n",
10045 		   prefix, frame);
10046 	dd_dev_err(dd, "    last reported state state: %s (0x%x)\n",
10047 		   state_completed_string(state), state);
10048 	dd_dev_err(dd, "    state successfully completed: %s\n",
10049 		   success ? "yes" : "no");
10050 	dd_dev_err(dd, "    fail reason 0x%x: %s\n",
10051 		   reason, state_complete_reason_code_string(ppd, reason));
10052 	dd_dev_err(dd, "    passing lane mask: 0x%x", lanes);
10053 }
10054 
10055 /*
10056  * Read the last state complete frames and explain them.  This routine
10057  * expects to be called if the link went down during link negotiation
10058  * and initialization (LNI).  That is, anywhere between polling and link up.
10059  */
10060 static void check_lni_states(struct hfi1_pportdata *ppd)
10061 {
10062 	u32 last_local_state;
10063 	u32 last_remote_state;
10064 
10065 	read_last_local_state(ppd->dd, &last_local_state);
10066 	read_last_remote_state(ppd->dd, &last_remote_state);
10067 
10068 	/*
10069 	 * Don't report anything if there is nothing to report.  A value of
10070 	 * 0 means the link was taken down while polling and there was no
10071 	 * training in-process.
10072 	 */
10073 	if (last_local_state == 0 && last_remote_state == 0)
10074 		return;
10075 
10076 	decode_state_complete(ppd, last_local_state, "transmitted");
10077 	decode_state_complete(ppd, last_remote_state, "received");
10078 }
10079 
10080 /*
10081  * Helper for set_link_state().  Do not call except from that routine.
10082  * Expects ppd->hls_mutex to be held.
10083  *
10084  * @rem_reason value to be sent to the neighbor
10085  *
10086  * LinkDownReasons only set if transition succeeds.
10087  */
10088 static int goto_offline(struct hfi1_pportdata *ppd, u8 rem_reason)
10089 {
10090 	struct hfi1_devdata *dd = ppd->dd;
10091 	u32 pstate, previous_state;
10092 	int ret;
10093 	int do_transition;
10094 	int do_wait;
10095 
10096 	previous_state = ppd->host_link_state;
10097 	ppd->host_link_state = HLS_GOING_OFFLINE;
10098 	pstate = read_physical_state(dd);
10099 	if (pstate == PLS_OFFLINE) {
10100 		do_transition = 0;	/* in right state */
10101 		do_wait = 0;		/* ...no need to wait */
10102 	} else if ((pstate & 0xff) == PLS_OFFLINE) {
10103 		do_transition = 0;	/* in an offline transient state */
10104 		do_wait = 1;		/* ...wait for it to settle */
10105 	} else {
10106 		do_transition = 1;	/* need to move to offline */
10107 		do_wait = 1;		/* ...will need to wait */
10108 	}
10109 
10110 	if (do_transition) {
10111 		ret = set_physical_link_state(dd,
10112 					      (rem_reason << 8) | PLS_OFFLINE);
10113 
10114 		if (ret != HCMD_SUCCESS) {
10115 			dd_dev_err(dd,
10116 				   "Failed to transition to Offline link state, return %d\n",
10117 				   ret);
10118 			return -EINVAL;
10119 		}
10120 		if (ppd->offline_disabled_reason ==
10121 				HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE))
10122 			ppd->offline_disabled_reason =
10123 			HFI1_ODR_MASK(OPA_LINKDOWN_REASON_TRANSIENT);
10124 	}
10125 
10126 	if (do_wait) {
10127 		/* it can take a while for the link to go down */
10128 		ret = wait_phy_linkstate(dd, PLS_OFFLINE, 10000);
10129 		if (ret < 0)
10130 			return ret;
10131 	}
10132 
10133 	/* make sure the logical state is also down */
10134 	wait_logical_linkstate(ppd, IB_PORT_DOWN, 1000);
10135 
10136 	/*
10137 	 * Now in charge of LCB - must be after the physical state is
10138 	 * offline.quiet and before host_link_state is changed.
10139 	 */
10140 	set_host_lcb_access(dd);
10141 	write_csr(dd, DC_LCB_ERR_EN, ~0ull); /* watch LCB errors */
10142 	ppd->host_link_state = HLS_LINK_COOLDOWN; /* LCB access allowed */
10143 
10144 	if (ppd->port_type == PORT_TYPE_QSFP &&
10145 	    ppd->qsfp_info.limiting_active &&
10146 	    qsfp_mod_present(ppd)) {
10147 		int ret;
10148 
10149 		ret = acquire_chip_resource(dd, qsfp_resource(dd), QSFP_WAIT);
10150 		if (ret == 0) {
10151 			set_qsfp_tx(ppd, 0);
10152 			release_chip_resource(dd, qsfp_resource(dd));
10153 		} else {
10154 			/* not fatal, but should warn */
10155 			dd_dev_err(dd,
10156 				   "Unable to acquire lock to turn off QSFP TX\n");
10157 		}
10158 	}
10159 
10160 	/*
10161 	 * The LNI has a mandatory wait time after the physical state
10162 	 * moves to Offline.Quiet.  The wait time may be different
10163 	 * depending on how the link went down.  The 8051 firmware
10164 	 * will observe the needed wait time and only move to ready
10165 	 * when that is completed.  The largest of the quiet timeouts
10166 	 * is 6s, so wait that long and then at least 0.5s more for
10167 	 * other transitions, and another 0.5s for a buffer.
10168 	 */
10169 	ret = wait_fm_ready(dd, 7000);
10170 	if (ret) {
10171 		dd_dev_err(dd,
10172 			   "After going offline, timed out waiting for the 8051 to become ready to accept host requests\n");
10173 		/* state is really offline, so make it so */
10174 		ppd->host_link_state = HLS_DN_OFFLINE;
10175 		return ret;
10176 	}
10177 
10178 	/*
10179 	 * The state is now offline and the 8051 is ready to accept host
10180 	 * requests.
10181 	 *	- change our state
10182 	 *	- notify others if we were previously in a linkup state
10183 	 */
10184 	ppd->host_link_state = HLS_DN_OFFLINE;
10185 	if (previous_state & HLS_UP) {
10186 		/* went down while link was up */
10187 		handle_linkup_change(dd, 0);
10188 	} else if (previous_state
10189 			& (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) {
10190 		/* went down while attempting link up */
10191 		check_lni_states(ppd);
10192 	}
10193 
10194 	/* the active link width (downgrade) is 0 on link down */
10195 	ppd->link_width_active = 0;
10196 	ppd->link_width_downgrade_tx_active = 0;
10197 	ppd->link_width_downgrade_rx_active = 0;
10198 	ppd->current_egress_rate = 0;
10199 	return 0;
10200 }
10201 
10202 /* return the link state name */
10203 static const char *link_state_name(u32 state)
10204 {
10205 	const char *name;
10206 	int n = ilog2(state);
10207 	static const char * const names[] = {
10208 		[__HLS_UP_INIT_BP]	 = "INIT",
10209 		[__HLS_UP_ARMED_BP]	 = "ARMED",
10210 		[__HLS_UP_ACTIVE_BP]	 = "ACTIVE",
10211 		[__HLS_DN_DOWNDEF_BP]	 = "DOWNDEF",
10212 		[__HLS_DN_POLL_BP]	 = "POLL",
10213 		[__HLS_DN_DISABLE_BP]	 = "DISABLE",
10214 		[__HLS_DN_OFFLINE_BP]	 = "OFFLINE",
10215 		[__HLS_VERIFY_CAP_BP]	 = "VERIFY_CAP",
10216 		[__HLS_GOING_UP_BP]	 = "GOING_UP",
10217 		[__HLS_GOING_OFFLINE_BP] = "GOING_OFFLINE",
10218 		[__HLS_LINK_COOLDOWN_BP] = "LINK_COOLDOWN"
10219 	};
10220 
10221 	name = n < ARRAY_SIZE(names) ? names[n] : NULL;
10222 	return name ? name : "unknown";
10223 }
10224 
10225 /* return the link state reason name */
10226 static const char *link_state_reason_name(struct hfi1_pportdata *ppd, u32 state)
10227 {
10228 	if (state == HLS_UP_INIT) {
10229 		switch (ppd->linkinit_reason) {
10230 		case OPA_LINKINIT_REASON_LINKUP:
10231 			return "(LINKUP)";
10232 		case OPA_LINKINIT_REASON_FLAPPING:
10233 			return "(FLAPPING)";
10234 		case OPA_LINKINIT_OUTSIDE_POLICY:
10235 			return "(OUTSIDE_POLICY)";
10236 		case OPA_LINKINIT_QUARANTINED:
10237 			return "(QUARANTINED)";
10238 		case OPA_LINKINIT_INSUFIC_CAPABILITY:
10239 			return "(INSUFIC_CAPABILITY)";
10240 		default:
10241 			break;
10242 		}
10243 	}
10244 	return "";
10245 }
10246 
10247 /*
10248  * driver_physical_state - convert the driver's notion of a port's
10249  * state (an HLS_*) into a physical state (a {IB,OPA}_PORTPHYSSTATE_*).
10250  * Return -1 (converted to a u32) to indicate error.
10251  */
10252 u32 driver_physical_state(struct hfi1_pportdata *ppd)
10253 {
10254 	switch (ppd->host_link_state) {
10255 	case HLS_UP_INIT:
10256 	case HLS_UP_ARMED:
10257 	case HLS_UP_ACTIVE:
10258 		return IB_PORTPHYSSTATE_LINKUP;
10259 	case HLS_DN_POLL:
10260 		return IB_PORTPHYSSTATE_POLLING;
10261 	case HLS_DN_DISABLE:
10262 		return IB_PORTPHYSSTATE_DISABLED;
10263 	case HLS_DN_OFFLINE:
10264 		return OPA_PORTPHYSSTATE_OFFLINE;
10265 	case HLS_VERIFY_CAP:
10266 		return IB_PORTPHYSSTATE_POLLING;
10267 	case HLS_GOING_UP:
10268 		return IB_PORTPHYSSTATE_POLLING;
10269 	case HLS_GOING_OFFLINE:
10270 		return OPA_PORTPHYSSTATE_OFFLINE;
10271 	case HLS_LINK_COOLDOWN:
10272 		return OPA_PORTPHYSSTATE_OFFLINE;
10273 	case HLS_DN_DOWNDEF:
10274 	default:
10275 		dd_dev_err(ppd->dd, "invalid host_link_state 0x%x\n",
10276 			   ppd->host_link_state);
10277 		return  -1;
10278 	}
10279 }
10280 
10281 /*
10282  * driver_logical_state - convert the driver's notion of a port's
10283  * state (an HLS_*) into a logical state (a IB_PORT_*). Return -1
10284  * (converted to a u32) to indicate error.
10285  */
10286 u32 driver_logical_state(struct hfi1_pportdata *ppd)
10287 {
10288 	if (ppd->host_link_state && (ppd->host_link_state & HLS_DOWN))
10289 		return IB_PORT_DOWN;
10290 
10291 	switch (ppd->host_link_state & HLS_UP) {
10292 	case HLS_UP_INIT:
10293 		return IB_PORT_INIT;
10294 	case HLS_UP_ARMED:
10295 		return IB_PORT_ARMED;
10296 	case HLS_UP_ACTIVE:
10297 		return IB_PORT_ACTIVE;
10298 	default:
10299 		dd_dev_err(ppd->dd, "invalid host_link_state 0x%x\n",
10300 			   ppd->host_link_state);
10301 	return -1;
10302 	}
10303 }
10304 
10305 void set_link_down_reason(struct hfi1_pportdata *ppd, u8 lcl_reason,
10306 			  u8 neigh_reason, u8 rem_reason)
10307 {
10308 	if (ppd->local_link_down_reason.latest == 0 &&
10309 	    ppd->neigh_link_down_reason.latest == 0) {
10310 		ppd->local_link_down_reason.latest = lcl_reason;
10311 		ppd->neigh_link_down_reason.latest = neigh_reason;
10312 		ppd->remote_link_down_reason = rem_reason;
10313 	}
10314 }
10315 
10316 /*
10317  * Change the physical and/or logical link state.
10318  *
10319  * Do not call this routine while inside an interrupt.  It contains
10320  * calls to routines that can take multiple seconds to finish.
10321  *
10322  * Returns 0 on success, -errno on failure.
10323  */
10324 int set_link_state(struct hfi1_pportdata *ppd, u32 state)
10325 {
10326 	struct hfi1_devdata *dd = ppd->dd;
10327 	struct ib_event event = {.device = NULL};
10328 	int ret1, ret = 0;
10329 	int orig_new_state, poll_bounce;
10330 
10331 	mutex_lock(&ppd->hls_lock);
10332 
10333 	orig_new_state = state;
10334 	if (state == HLS_DN_DOWNDEF)
10335 		state = dd->link_default;
10336 
10337 	/* interpret poll -> poll as a link bounce */
10338 	poll_bounce = ppd->host_link_state == HLS_DN_POLL &&
10339 		      state == HLS_DN_POLL;
10340 
10341 	dd_dev_info(dd, "%s: current %s, new %s %s%s\n", __func__,
10342 		    link_state_name(ppd->host_link_state),
10343 		    link_state_name(orig_new_state),
10344 		    poll_bounce ? "(bounce) " : "",
10345 		    link_state_reason_name(ppd, state));
10346 
10347 	/*
10348 	 * If we're going to a (HLS_*) link state that implies the logical
10349 	 * link state is neither of (IB_PORT_ARMED, IB_PORT_ACTIVE), then
10350 	 * reset is_sm_config_started to 0.
10351 	 */
10352 	if (!(state & (HLS_UP_ARMED | HLS_UP_ACTIVE)))
10353 		ppd->is_sm_config_started = 0;
10354 
10355 	/*
10356 	 * Do nothing if the states match.  Let a poll to poll link bounce
10357 	 * go through.
10358 	 */
10359 	if (ppd->host_link_state == state && !poll_bounce)
10360 		goto done;
10361 
10362 	switch (state) {
10363 	case HLS_UP_INIT:
10364 		if (ppd->host_link_state == HLS_DN_POLL &&
10365 		    (quick_linkup || dd->icode == ICODE_FUNCTIONAL_SIMULATOR)) {
10366 			/*
10367 			 * Quick link up jumps from polling to here.
10368 			 *
10369 			 * Whether in normal or loopback mode, the
10370 			 * simulator jumps from polling to link up.
10371 			 * Accept that here.
10372 			 */
10373 			/* OK */
10374 		} else if (ppd->host_link_state != HLS_GOING_UP) {
10375 			goto unexpected;
10376 		}
10377 
10378 		ppd->host_link_state = HLS_UP_INIT;
10379 		ret = wait_logical_linkstate(ppd, IB_PORT_INIT, 1000);
10380 		if (ret) {
10381 			/* logical state didn't change, stay at going_up */
10382 			ppd->host_link_state = HLS_GOING_UP;
10383 			dd_dev_err(dd,
10384 				   "%s: logical state did not change to INIT\n",
10385 				   __func__);
10386 		} else {
10387 			/* clear old transient LINKINIT_REASON code */
10388 			if (ppd->linkinit_reason >= OPA_LINKINIT_REASON_CLEAR)
10389 				ppd->linkinit_reason =
10390 					OPA_LINKINIT_REASON_LINKUP;
10391 
10392 			/* enable the port */
10393 			add_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
10394 
10395 			handle_linkup_change(dd, 1);
10396 		}
10397 		break;
10398 	case HLS_UP_ARMED:
10399 		if (ppd->host_link_state != HLS_UP_INIT)
10400 			goto unexpected;
10401 
10402 		ppd->host_link_state = HLS_UP_ARMED;
10403 		set_logical_state(dd, LSTATE_ARMED);
10404 		ret = wait_logical_linkstate(ppd, IB_PORT_ARMED, 1000);
10405 		if (ret) {
10406 			/* logical state didn't change, stay at init */
10407 			ppd->host_link_state = HLS_UP_INIT;
10408 			dd_dev_err(dd,
10409 				   "%s: logical state did not change to ARMED\n",
10410 				   __func__);
10411 		}
10412 		/*
10413 		 * The simulator does not currently implement SMA messages,
10414 		 * so neighbor_normal is not set.  Set it here when we first
10415 		 * move to Armed.
10416 		 */
10417 		if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR)
10418 			ppd->neighbor_normal = 1;
10419 		break;
10420 	case HLS_UP_ACTIVE:
10421 		if (ppd->host_link_state != HLS_UP_ARMED)
10422 			goto unexpected;
10423 
10424 		ppd->host_link_state = HLS_UP_ACTIVE;
10425 		set_logical_state(dd, LSTATE_ACTIVE);
10426 		ret = wait_logical_linkstate(ppd, IB_PORT_ACTIVE, 1000);
10427 		if (ret) {
10428 			/* logical state didn't change, stay at armed */
10429 			ppd->host_link_state = HLS_UP_ARMED;
10430 			dd_dev_err(dd,
10431 				   "%s: logical state did not change to ACTIVE\n",
10432 				   __func__);
10433 		} else {
10434 			/* tell all engines to go running */
10435 			sdma_all_running(dd);
10436 
10437 			/* Signal the IB layer that the port has went active */
10438 			event.device = &dd->verbs_dev.rdi.ibdev;
10439 			event.element.port_num = ppd->port;
10440 			event.event = IB_EVENT_PORT_ACTIVE;
10441 		}
10442 		break;
10443 	case HLS_DN_POLL:
10444 		if ((ppd->host_link_state == HLS_DN_DISABLE ||
10445 		     ppd->host_link_state == HLS_DN_OFFLINE) &&
10446 		    dd->dc_shutdown)
10447 			dc_start(dd);
10448 		/* Hand LED control to the DC */
10449 		write_csr(dd, DCC_CFG_LED_CNTRL, 0);
10450 
10451 		if (ppd->host_link_state != HLS_DN_OFFLINE) {
10452 			u8 tmp = ppd->link_enabled;
10453 
10454 			ret = goto_offline(ppd, ppd->remote_link_down_reason);
10455 			if (ret) {
10456 				ppd->link_enabled = tmp;
10457 				break;
10458 			}
10459 			ppd->remote_link_down_reason = 0;
10460 
10461 			if (ppd->driver_link_ready)
10462 				ppd->link_enabled = 1;
10463 		}
10464 
10465 		set_all_slowpath(ppd->dd);
10466 		ret = set_local_link_attributes(ppd);
10467 		if (ret)
10468 			break;
10469 
10470 		ppd->port_error_action = 0;
10471 		ppd->host_link_state = HLS_DN_POLL;
10472 
10473 		if (quick_linkup) {
10474 			/* quick linkup does not go into polling */
10475 			ret = do_quick_linkup(dd);
10476 		} else {
10477 			ret1 = set_physical_link_state(dd, PLS_POLLING);
10478 			if (ret1 != HCMD_SUCCESS) {
10479 				dd_dev_err(dd,
10480 					   "Failed to transition to Polling link state, return 0x%x\n",
10481 					   ret1);
10482 				ret = -EINVAL;
10483 			}
10484 		}
10485 		ppd->offline_disabled_reason =
10486 			HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE);
10487 		/*
10488 		 * If an error occurred above, go back to offline.  The
10489 		 * caller may reschedule another attempt.
10490 		 */
10491 		if (ret)
10492 			goto_offline(ppd, 0);
10493 		break;
10494 	case HLS_DN_DISABLE:
10495 		/* link is disabled */
10496 		ppd->link_enabled = 0;
10497 
10498 		/* allow any state to transition to disabled */
10499 
10500 		/* must transition to offline first */
10501 		if (ppd->host_link_state != HLS_DN_OFFLINE) {
10502 			ret = goto_offline(ppd, ppd->remote_link_down_reason);
10503 			if (ret)
10504 				break;
10505 			ppd->remote_link_down_reason = 0;
10506 		}
10507 
10508 		ret1 = set_physical_link_state(dd, PLS_DISABLED);
10509 		if (ret1 != HCMD_SUCCESS) {
10510 			dd_dev_err(dd,
10511 				   "Failed to transition to Disabled link state, return 0x%x\n",
10512 				   ret1);
10513 			ret = -EINVAL;
10514 			break;
10515 		}
10516 		ppd->host_link_state = HLS_DN_DISABLE;
10517 		dc_shutdown(dd);
10518 		break;
10519 	case HLS_DN_OFFLINE:
10520 		if (ppd->host_link_state == HLS_DN_DISABLE)
10521 			dc_start(dd);
10522 
10523 		/* allow any state to transition to offline */
10524 		ret = goto_offline(ppd, ppd->remote_link_down_reason);
10525 		if (!ret)
10526 			ppd->remote_link_down_reason = 0;
10527 		break;
10528 	case HLS_VERIFY_CAP:
10529 		if (ppd->host_link_state != HLS_DN_POLL)
10530 			goto unexpected;
10531 		ppd->host_link_state = HLS_VERIFY_CAP;
10532 		break;
10533 	case HLS_GOING_UP:
10534 		if (ppd->host_link_state != HLS_VERIFY_CAP)
10535 			goto unexpected;
10536 
10537 		ret1 = set_physical_link_state(dd, PLS_LINKUP);
10538 		if (ret1 != HCMD_SUCCESS) {
10539 			dd_dev_err(dd,
10540 				   "Failed to transition to link up state, return 0x%x\n",
10541 				   ret1);
10542 			ret = -EINVAL;
10543 			break;
10544 		}
10545 		ppd->host_link_state = HLS_GOING_UP;
10546 		break;
10547 
10548 	case HLS_GOING_OFFLINE:		/* transient within goto_offline() */
10549 	case HLS_LINK_COOLDOWN:		/* transient within goto_offline() */
10550 	default:
10551 		dd_dev_info(dd, "%s: state 0x%x: not supported\n",
10552 			    __func__, state);
10553 		ret = -EINVAL;
10554 		break;
10555 	}
10556 
10557 	goto done;
10558 
10559 unexpected:
10560 	dd_dev_err(dd, "%s: unexpected state transition from %s to %s\n",
10561 		   __func__, link_state_name(ppd->host_link_state),
10562 		   link_state_name(state));
10563 	ret = -EINVAL;
10564 
10565 done:
10566 	mutex_unlock(&ppd->hls_lock);
10567 
10568 	if (event.device)
10569 		ib_dispatch_event(&event);
10570 
10571 	return ret;
10572 }
10573 
10574 int hfi1_set_ib_cfg(struct hfi1_pportdata *ppd, int which, u32 val)
10575 {
10576 	u64 reg;
10577 	int ret = 0;
10578 
10579 	switch (which) {
10580 	case HFI1_IB_CFG_LIDLMC:
10581 		set_lidlmc(ppd);
10582 		break;
10583 	case HFI1_IB_CFG_VL_HIGH_LIMIT:
10584 		/*
10585 		 * The VL Arbitrator high limit is sent in units of 4k
10586 		 * bytes, while HFI stores it in units of 64 bytes.
10587 		 */
10588 		val *= 4096 / 64;
10589 		reg = ((u64)val & SEND_HIGH_PRIORITY_LIMIT_LIMIT_MASK)
10590 			<< SEND_HIGH_PRIORITY_LIMIT_LIMIT_SHIFT;
10591 		write_csr(ppd->dd, SEND_HIGH_PRIORITY_LIMIT, reg);
10592 		break;
10593 	case HFI1_IB_CFG_LINKDEFAULT: /* IB link default (sleep/poll) */
10594 		/* HFI only supports POLL as the default link down state */
10595 		if (val != HLS_DN_POLL)
10596 			ret = -EINVAL;
10597 		break;
10598 	case HFI1_IB_CFG_OP_VLS:
10599 		if (ppd->vls_operational != val) {
10600 			ppd->vls_operational = val;
10601 			if (!ppd->port)
10602 				ret = -EINVAL;
10603 		}
10604 		break;
10605 	/*
10606 	 * For link width, link width downgrade, and speed enable, always AND
10607 	 * the setting with what is actually supported.  This has two benefits.
10608 	 * First, enabled can't have unsupported values, no matter what the
10609 	 * SM or FM might want.  Second, the ALL_SUPPORTED wildcards that mean
10610 	 * "fill in with your supported value" have all the bits in the
10611 	 * field set, so simply ANDing with supported has the desired result.
10612 	 */
10613 	case HFI1_IB_CFG_LWID_ENB: /* set allowed Link-width */
10614 		ppd->link_width_enabled = val & ppd->link_width_supported;
10615 		break;
10616 	case HFI1_IB_CFG_LWID_DG_ENB: /* set allowed link width downgrade */
10617 		ppd->link_width_downgrade_enabled =
10618 				val & ppd->link_width_downgrade_supported;
10619 		break;
10620 	case HFI1_IB_CFG_SPD_ENB: /* allowed Link speeds */
10621 		ppd->link_speed_enabled = val & ppd->link_speed_supported;
10622 		break;
10623 	case HFI1_IB_CFG_OVERRUN_THRESH: /* IB overrun threshold */
10624 		/*
10625 		 * HFI does not follow IB specs, save this value
10626 		 * so we can report it, if asked.
10627 		 */
10628 		ppd->overrun_threshold = val;
10629 		break;
10630 	case HFI1_IB_CFG_PHYERR_THRESH: /* IB PHY error threshold */
10631 		/*
10632 		 * HFI does not follow IB specs, save this value
10633 		 * so we can report it, if asked.
10634 		 */
10635 		ppd->phy_error_threshold = val;
10636 		break;
10637 
10638 	case HFI1_IB_CFG_MTU:
10639 		set_send_length(ppd);
10640 		break;
10641 
10642 	case HFI1_IB_CFG_PKEYS:
10643 		if (HFI1_CAP_IS_KSET(PKEY_CHECK))
10644 			set_partition_keys(ppd);
10645 		break;
10646 
10647 	default:
10648 		if (HFI1_CAP_IS_KSET(PRINT_UNIMPL))
10649 			dd_dev_info(ppd->dd,
10650 				    "%s: which %s, val 0x%x: not implemented\n",
10651 				    __func__, ib_cfg_name(which), val);
10652 		break;
10653 	}
10654 	return ret;
10655 }
10656 
10657 /* begin functions related to vl arbitration table caching */
10658 static void init_vl_arb_caches(struct hfi1_pportdata *ppd)
10659 {
10660 	int i;
10661 
10662 	BUILD_BUG_ON(VL_ARB_TABLE_SIZE !=
10663 			VL_ARB_LOW_PRIO_TABLE_SIZE);
10664 	BUILD_BUG_ON(VL_ARB_TABLE_SIZE !=
10665 			VL_ARB_HIGH_PRIO_TABLE_SIZE);
10666 
10667 	/*
10668 	 * Note that we always return values directly from the
10669 	 * 'vl_arb_cache' (and do no CSR reads) in response to a
10670 	 * 'Get(VLArbTable)'. This is obviously correct after a
10671 	 * 'Set(VLArbTable)', since the cache will then be up to
10672 	 * date. But it's also correct prior to any 'Set(VLArbTable)'
10673 	 * since then both the cache, and the relevant h/w registers
10674 	 * will be zeroed.
10675 	 */
10676 
10677 	for (i = 0; i < MAX_PRIO_TABLE; i++)
10678 		spin_lock_init(&ppd->vl_arb_cache[i].lock);
10679 }
10680 
10681 /*
10682  * vl_arb_lock_cache
10683  *
10684  * All other vl_arb_* functions should be called only after locking
10685  * the cache.
10686  */
10687 static inline struct vl_arb_cache *
10688 vl_arb_lock_cache(struct hfi1_pportdata *ppd, int idx)
10689 {
10690 	if (idx != LO_PRIO_TABLE && idx != HI_PRIO_TABLE)
10691 		return NULL;
10692 	spin_lock(&ppd->vl_arb_cache[idx].lock);
10693 	return &ppd->vl_arb_cache[idx];
10694 }
10695 
10696 static inline void vl_arb_unlock_cache(struct hfi1_pportdata *ppd, int idx)
10697 {
10698 	spin_unlock(&ppd->vl_arb_cache[idx].lock);
10699 }
10700 
10701 static void vl_arb_get_cache(struct vl_arb_cache *cache,
10702 			     struct ib_vl_weight_elem *vl)
10703 {
10704 	memcpy(vl, cache->table, VL_ARB_TABLE_SIZE * sizeof(*vl));
10705 }
10706 
10707 static void vl_arb_set_cache(struct vl_arb_cache *cache,
10708 			     struct ib_vl_weight_elem *vl)
10709 {
10710 	memcpy(cache->table, vl, VL_ARB_TABLE_SIZE * sizeof(*vl));
10711 }
10712 
10713 static int vl_arb_match_cache(struct vl_arb_cache *cache,
10714 			      struct ib_vl_weight_elem *vl)
10715 {
10716 	return !memcmp(cache->table, vl, VL_ARB_TABLE_SIZE * sizeof(*vl));
10717 }
10718 
10719 /* end functions related to vl arbitration table caching */
10720 
10721 static int set_vl_weights(struct hfi1_pportdata *ppd, u32 target,
10722 			  u32 size, struct ib_vl_weight_elem *vl)
10723 {
10724 	struct hfi1_devdata *dd = ppd->dd;
10725 	u64 reg;
10726 	unsigned int i, is_up = 0;
10727 	int drain, ret = 0;
10728 
10729 	mutex_lock(&ppd->hls_lock);
10730 
10731 	if (ppd->host_link_state & HLS_UP)
10732 		is_up = 1;
10733 
10734 	drain = !is_ax(dd) && is_up;
10735 
10736 	if (drain)
10737 		/*
10738 		 * Before adjusting VL arbitration weights, empty per-VL
10739 		 * FIFOs, otherwise a packet whose VL weight is being
10740 		 * set to 0 could get stuck in a FIFO with no chance to
10741 		 * egress.
10742 		 */
10743 		ret = stop_drain_data_vls(dd);
10744 
10745 	if (ret) {
10746 		dd_dev_err(
10747 			dd,
10748 			"%s: cannot stop/drain VLs - refusing to change VL arbitration weights\n",
10749 			__func__);
10750 		goto err;
10751 	}
10752 
10753 	for (i = 0; i < size; i++, vl++) {
10754 		/*
10755 		 * NOTE: The low priority shift and mask are used here, but
10756 		 * they are the same for both the low and high registers.
10757 		 */
10758 		reg = (((u64)vl->vl & SEND_LOW_PRIORITY_LIST_VL_MASK)
10759 				<< SEND_LOW_PRIORITY_LIST_VL_SHIFT)
10760 		      | (((u64)vl->weight
10761 				& SEND_LOW_PRIORITY_LIST_WEIGHT_MASK)
10762 				<< SEND_LOW_PRIORITY_LIST_WEIGHT_SHIFT);
10763 		write_csr(dd, target + (i * 8), reg);
10764 	}
10765 	pio_send_control(dd, PSC_GLOBAL_VLARB_ENABLE);
10766 
10767 	if (drain)
10768 		open_fill_data_vls(dd); /* reopen all VLs */
10769 
10770 err:
10771 	mutex_unlock(&ppd->hls_lock);
10772 
10773 	return ret;
10774 }
10775 
10776 /*
10777  * Read one credit merge VL register.
10778  */
10779 static void read_one_cm_vl(struct hfi1_devdata *dd, u32 csr,
10780 			   struct vl_limit *vll)
10781 {
10782 	u64 reg = read_csr(dd, csr);
10783 
10784 	vll->dedicated = cpu_to_be16(
10785 		(reg >> SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SHIFT)
10786 		& SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_MASK);
10787 	vll->shared = cpu_to_be16(
10788 		(reg >> SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SHIFT)
10789 		& SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_MASK);
10790 }
10791 
10792 /*
10793  * Read the current credit merge limits.
10794  */
10795 static int get_buffer_control(struct hfi1_devdata *dd,
10796 			      struct buffer_control *bc, u16 *overall_limit)
10797 {
10798 	u64 reg;
10799 	int i;
10800 
10801 	/* not all entries are filled in */
10802 	memset(bc, 0, sizeof(*bc));
10803 
10804 	/* OPA and HFI have a 1-1 mapping */
10805 	for (i = 0; i < TXE_NUM_DATA_VL; i++)
10806 		read_one_cm_vl(dd, SEND_CM_CREDIT_VL + (8 * i), &bc->vl[i]);
10807 
10808 	/* NOTE: assumes that VL* and VL15 CSRs are bit-wise identical */
10809 	read_one_cm_vl(dd, SEND_CM_CREDIT_VL15, &bc->vl[15]);
10810 
10811 	reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
10812 	bc->overall_shared_limit = cpu_to_be16(
10813 		(reg >> SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SHIFT)
10814 		& SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_MASK);
10815 	if (overall_limit)
10816 		*overall_limit = (reg
10817 			>> SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT)
10818 			& SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_MASK;
10819 	return sizeof(struct buffer_control);
10820 }
10821 
10822 static int get_sc2vlnt(struct hfi1_devdata *dd, struct sc2vlnt *dp)
10823 {
10824 	u64 reg;
10825 	int i;
10826 
10827 	/* each register contains 16 SC->VLnt mappings, 4 bits each */
10828 	reg = read_csr(dd, DCC_CFG_SC_VL_TABLE_15_0);
10829 	for (i = 0; i < sizeof(u64); i++) {
10830 		u8 byte = *(((u8 *)&reg) + i);
10831 
10832 		dp->vlnt[2 * i] = byte & 0xf;
10833 		dp->vlnt[(2 * i) + 1] = (byte & 0xf0) >> 4;
10834 	}
10835 
10836 	reg = read_csr(dd, DCC_CFG_SC_VL_TABLE_31_16);
10837 	for (i = 0; i < sizeof(u64); i++) {
10838 		u8 byte = *(((u8 *)&reg) + i);
10839 
10840 		dp->vlnt[16 + (2 * i)] = byte & 0xf;
10841 		dp->vlnt[16 + (2 * i) + 1] = (byte & 0xf0) >> 4;
10842 	}
10843 	return sizeof(struct sc2vlnt);
10844 }
10845 
10846 static void get_vlarb_preempt(struct hfi1_devdata *dd, u32 nelems,
10847 			      struct ib_vl_weight_elem *vl)
10848 {
10849 	unsigned int i;
10850 
10851 	for (i = 0; i < nelems; i++, vl++) {
10852 		vl->vl = 0xf;
10853 		vl->weight = 0;
10854 	}
10855 }
10856 
10857 static void set_sc2vlnt(struct hfi1_devdata *dd, struct sc2vlnt *dp)
10858 {
10859 	write_csr(dd, DCC_CFG_SC_VL_TABLE_15_0,
10860 		  DC_SC_VL_VAL(15_0,
10861 			       0, dp->vlnt[0] & 0xf,
10862 			       1, dp->vlnt[1] & 0xf,
10863 			       2, dp->vlnt[2] & 0xf,
10864 			       3, dp->vlnt[3] & 0xf,
10865 			       4, dp->vlnt[4] & 0xf,
10866 			       5, dp->vlnt[5] & 0xf,
10867 			       6, dp->vlnt[6] & 0xf,
10868 			       7, dp->vlnt[7] & 0xf,
10869 			       8, dp->vlnt[8] & 0xf,
10870 			       9, dp->vlnt[9] & 0xf,
10871 			       10, dp->vlnt[10] & 0xf,
10872 			       11, dp->vlnt[11] & 0xf,
10873 			       12, dp->vlnt[12] & 0xf,
10874 			       13, dp->vlnt[13] & 0xf,
10875 			       14, dp->vlnt[14] & 0xf,
10876 			       15, dp->vlnt[15] & 0xf));
10877 	write_csr(dd, DCC_CFG_SC_VL_TABLE_31_16,
10878 		  DC_SC_VL_VAL(31_16,
10879 			       16, dp->vlnt[16] & 0xf,
10880 			       17, dp->vlnt[17] & 0xf,
10881 			       18, dp->vlnt[18] & 0xf,
10882 			       19, dp->vlnt[19] & 0xf,
10883 			       20, dp->vlnt[20] & 0xf,
10884 			       21, dp->vlnt[21] & 0xf,
10885 			       22, dp->vlnt[22] & 0xf,
10886 			       23, dp->vlnt[23] & 0xf,
10887 			       24, dp->vlnt[24] & 0xf,
10888 			       25, dp->vlnt[25] & 0xf,
10889 			       26, dp->vlnt[26] & 0xf,
10890 			       27, dp->vlnt[27] & 0xf,
10891 			       28, dp->vlnt[28] & 0xf,
10892 			       29, dp->vlnt[29] & 0xf,
10893 			       30, dp->vlnt[30] & 0xf,
10894 			       31, dp->vlnt[31] & 0xf));
10895 }
10896 
10897 static void nonzero_msg(struct hfi1_devdata *dd, int idx, const char *what,
10898 			u16 limit)
10899 {
10900 	if (limit != 0)
10901 		dd_dev_info(dd, "Invalid %s limit %d on VL %d, ignoring\n",
10902 			    what, (int)limit, idx);
10903 }
10904 
10905 /* change only the shared limit portion of SendCmGLobalCredit */
10906 static void set_global_shared(struct hfi1_devdata *dd, u16 limit)
10907 {
10908 	u64 reg;
10909 
10910 	reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
10911 	reg &= ~SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SMASK;
10912 	reg |= (u64)limit << SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SHIFT;
10913 	write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg);
10914 }
10915 
10916 /* change only the total credit limit portion of SendCmGLobalCredit */
10917 static void set_global_limit(struct hfi1_devdata *dd, u16 limit)
10918 {
10919 	u64 reg;
10920 
10921 	reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
10922 	reg &= ~SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SMASK;
10923 	reg |= (u64)limit << SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT;
10924 	write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg);
10925 }
10926 
10927 /* set the given per-VL shared limit */
10928 static void set_vl_shared(struct hfi1_devdata *dd, int vl, u16 limit)
10929 {
10930 	u64 reg;
10931 	u32 addr;
10932 
10933 	if (vl < TXE_NUM_DATA_VL)
10934 		addr = SEND_CM_CREDIT_VL + (8 * vl);
10935 	else
10936 		addr = SEND_CM_CREDIT_VL15;
10937 
10938 	reg = read_csr(dd, addr);
10939 	reg &= ~SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SMASK;
10940 	reg |= (u64)limit << SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SHIFT;
10941 	write_csr(dd, addr, reg);
10942 }
10943 
10944 /* set the given per-VL dedicated limit */
10945 static void set_vl_dedicated(struct hfi1_devdata *dd, int vl, u16 limit)
10946 {
10947 	u64 reg;
10948 	u32 addr;
10949 
10950 	if (vl < TXE_NUM_DATA_VL)
10951 		addr = SEND_CM_CREDIT_VL + (8 * vl);
10952 	else
10953 		addr = SEND_CM_CREDIT_VL15;
10954 
10955 	reg = read_csr(dd, addr);
10956 	reg &= ~SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SMASK;
10957 	reg |= (u64)limit << SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SHIFT;
10958 	write_csr(dd, addr, reg);
10959 }
10960 
10961 /* spin until the given per-VL status mask bits clear */
10962 static void wait_for_vl_status_clear(struct hfi1_devdata *dd, u64 mask,
10963 				     const char *which)
10964 {
10965 	unsigned long timeout;
10966 	u64 reg;
10967 
10968 	timeout = jiffies + msecs_to_jiffies(VL_STATUS_CLEAR_TIMEOUT);
10969 	while (1) {
10970 		reg = read_csr(dd, SEND_CM_CREDIT_USED_STATUS) & mask;
10971 
10972 		if (reg == 0)
10973 			return;	/* success */
10974 		if (time_after(jiffies, timeout))
10975 			break;		/* timed out */
10976 		udelay(1);
10977 	}
10978 
10979 	dd_dev_err(dd,
10980 		   "%s credit change status not clearing after %dms, mask 0x%llx, not clear 0x%llx\n",
10981 		   which, VL_STATUS_CLEAR_TIMEOUT, mask, reg);
10982 	/*
10983 	 * If this occurs, it is likely there was a credit loss on the link.
10984 	 * The only recovery from that is a link bounce.
10985 	 */
10986 	dd_dev_err(dd,
10987 		   "Continuing anyway.  A credit loss may occur.  Suggest a link bounce\n");
10988 }
10989 
10990 /*
10991  * The number of credits on the VLs may be changed while everything
10992  * is "live", but the following algorithm must be followed due to
10993  * how the hardware is actually implemented.  In particular,
10994  * Return_Credit_Status[] is the only correct status check.
10995  *
10996  * if (reducing Global_Shared_Credit_Limit or any shared limit changing)
10997  *     set Global_Shared_Credit_Limit = 0
10998  *     use_all_vl = 1
10999  * mask0 = all VLs that are changing either dedicated or shared limits
11000  * set Shared_Limit[mask0] = 0
11001  * spin until Return_Credit_Status[use_all_vl ? all VL : mask0] == 0
11002  * if (changing any dedicated limit)
11003  *     mask1 = all VLs that are lowering dedicated limits
11004  *     lower Dedicated_Limit[mask1]
11005  *     spin until Return_Credit_Status[mask1] == 0
11006  *     raise Dedicated_Limits
11007  * raise Shared_Limits
11008  * raise Global_Shared_Credit_Limit
11009  *
11010  * lower = if the new limit is lower, set the limit to the new value
11011  * raise = if the new limit is higher than the current value (may be changed
11012  *	earlier in the algorithm), set the new limit to the new value
11013  */
11014 int set_buffer_control(struct hfi1_pportdata *ppd,
11015 		       struct buffer_control *new_bc)
11016 {
11017 	struct hfi1_devdata *dd = ppd->dd;
11018 	u64 changing_mask, ld_mask, stat_mask;
11019 	int change_count;
11020 	int i, use_all_mask;
11021 	int this_shared_changing;
11022 	int vl_count = 0, ret;
11023 	/*
11024 	 * A0: add the variable any_shared_limit_changing below and in the
11025 	 * algorithm above.  If removing A0 support, it can be removed.
11026 	 */
11027 	int any_shared_limit_changing;
11028 	struct buffer_control cur_bc;
11029 	u8 changing[OPA_MAX_VLS];
11030 	u8 lowering_dedicated[OPA_MAX_VLS];
11031 	u16 cur_total;
11032 	u32 new_total = 0;
11033 	const u64 all_mask =
11034 	SEND_CM_CREDIT_USED_STATUS_VL0_RETURN_CREDIT_STATUS_SMASK
11035 	 | SEND_CM_CREDIT_USED_STATUS_VL1_RETURN_CREDIT_STATUS_SMASK
11036 	 | SEND_CM_CREDIT_USED_STATUS_VL2_RETURN_CREDIT_STATUS_SMASK
11037 	 | SEND_CM_CREDIT_USED_STATUS_VL3_RETURN_CREDIT_STATUS_SMASK
11038 	 | SEND_CM_CREDIT_USED_STATUS_VL4_RETURN_CREDIT_STATUS_SMASK
11039 	 | SEND_CM_CREDIT_USED_STATUS_VL5_RETURN_CREDIT_STATUS_SMASK
11040 	 | SEND_CM_CREDIT_USED_STATUS_VL6_RETURN_CREDIT_STATUS_SMASK
11041 	 | SEND_CM_CREDIT_USED_STATUS_VL7_RETURN_CREDIT_STATUS_SMASK
11042 	 | SEND_CM_CREDIT_USED_STATUS_VL15_RETURN_CREDIT_STATUS_SMASK;
11043 
11044 #define valid_vl(idx) ((idx) < TXE_NUM_DATA_VL || (idx) == 15)
11045 #define NUM_USABLE_VLS 16	/* look at VL15 and less */
11046 
11047 	/* find the new total credits, do sanity check on unused VLs */
11048 	for (i = 0; i < OPA_MAX_VLS; i++) {
11049 		if (valid_vl(i)) {
11050 			new_total += be16_to_cpu(new_bc->vl[i].dedicated);
11051 			continue;
11052 		}
11053 		nonzero_msg(dd, i, "dedicated",
11054 			    be16_to_cpu(new_bc->vl[i].dedicated));
11055 		nonzero_msg(dd, i, "shared",
11056 			    be16_to_cpu(new_bc->vl[i].shared));
11057 		new_bc->vl[i].dedicated = 0;
11058 		new_bc->vl[i].shared = 0;
11059 	}
11060 	new_total += be16_to_cpu(new_bc->overall_shared_limit);
11061 
11062 	/* fetch the current values */
11063 	get_buffer_control(dd, &cur_bc, &cur_total);
11064 
11065 	/*
11066 	 * Create the masks we will use.
11067 	 */
11068 	memset(changing, 0, sizeof(changing));
11069 	memset(lowering_dedicated, 0, sizeof(lowering_dedicated));
11070 	/*
11071 	 * NOTE: Assumes that the individual VL bits are adjacent and in
11072 	 * increasing order
11073 	 */
11074 	stat_mask =
11075 		SEND_CM_CREDIT_USED_STATUS_VL0_RETURN_CREDIT_STATUS_SMASK;
11076 	changing_mask = 0;
11077 	ld_mask = 0;
11078 	change_count = 0;
11079 	any_shared_limit_changing = 0;
11080 	for (i = 0; i < NUM_USABLE_VLS; i++, stat_mask <<= 1) {
11081 		if (!valid_vl(i))
11082 			continue;
11083 		this_shared_changing = new_bc->vl[i].shared
11084 						!= cur_bc.vl[i].shared;
11085 		if (this_shared_changing)
11086 			any_shared_limit_changing = 1;
11087 		if (new_bc->vl[i].dedicated != cur_bc.vl[i].dedicated ||
11088 		    this_shared_changing) {
11089 			changing[i] = 1;
11090 			changing_mask |= stat_mask;
11091 			change_count++;
11092 		}
11093 		if (be16_to_cpu(new_bc->vl[i].dedicated) <
11094 					be16_to_cpu(cur_bc.vl[i].dedicated)) {
11095 			lowering_dedicated[i] = 1;
11096 			ld_mask |= stat_mask;
11097 		}
11098 	}
11099 
11100 	/* bracket the credit change with a total adjustment */
11101 	if (new_total > cur_total)
11102 		set_global_limit(dd, new_total);
11103 
11104 	/*
11105 	 * Start the credit change algorithm.
11106 	 */
11107 	use_all_mask = 0;
11108 	if ((be16_to_cpu(new_bc->overall_shared_limit) <
11109 	     be16_to_cpu(cur_bc.overall_shared_limit)) ||
11110 	    (is_ax(dd) && any_shared_limit_changing)) {
11111 		set_global_shared(dd, 0);
11112 		cur_bc.overall_shared_limit = 0;
11113 		use_all_mask = 1;
11114 	}
11115 
11116 	for (i = 0; i < NUM_USABLE_VLS; i++) {
11117 		if (!valid_vl(i))
11118 			continue;
11119 
11120 		if (changing[i]) {
11121 			set_vl_shared(dd, i, 0);
11122 			cur_bc.vl[i].shared = 0;
11123 		}
11124 	}
11125 
11126 	wait_for_vl_status_clear(dd, use_all_mask ? all_mask : changing_mask,
11127 				 "shared");
11128 
11129 	if (change_count > 0) {
11130 		for (i = 0; i < NUM_USABLE_VLS; i++) {
11131 			if (!valid_vl(i))
11132 				continue;
11133 
11134 			if (lowering_dedicated[i]) {
11135 				set_vl_dedicated(dd, i,
11136 						 be16_to_cpu(new_bc->
11137 							     vl[i].dedicated));
11138 				cur_bc.vl[i].dedicated =
11139 						new_bc->vl[i].dedicated;
11140 			}
11141 		}
11142 
11143 		wait_for_vl_status_clear(dd, ld_mask, "dedicated");
11144 
11145 		/* now raise all dedicated that are going up */
11146 		for (i = 0; i < NUM_USABLE_VLS; i++) {
11147 			if (!valid_vl(i))
11148 				continue;
11149 
11150 			if (be16_to_cpu(new_bc->vl[i].dedicated) >
11151 					be16_to_cpu(cur_bc.vl[i].dedicated))
11152 				set_vl_dedicated(dd, i,
11153 						 be16_to_cpu(new_bc->
11154 							     vl[i].dedicated));
11155 		}
11156 	}
11157 
11158 	/* next raise all shared that are going up */
11159 	for (i = 0; i < NUM_USABLE_VLS; i++) {
11160 		if (!valid_vl(i))
11161 			continue;
11162 
11163 		if (be16_to_cpu(new_bc->vl[i].shared) >
11164 				be16_to_cpu(cur_bc.vl[i].shared))
11165 			set_vl_shared(dd, i, be16_to_cpu(new_bc->vl[i].shared));
11166 	}
11167 
11168 	/* finally raise the global shared */
11169 	if (be16_to_cpu(new_bc->overall_shared_limit) >
11170 	    be16_to_cpu(cur_bc.overall_shared_limit))
11171 		set_global_shared(dd,
11172 				  be16_to_cpu(new_bc->overall_shared_limit));
11173 
11174 	/* bracket the credit change with a total adjustment */
11175 	if (new_total < cur_total)
11176 		set_global_limit(dd, new_total);
11177 
11178 	/*
11179 	 * Determine the actual number of operational VLS using the number of
11180 	 * dedicated and shared credits for each VL.
11181 	 */
11182 	if (change_count > 0) {
11183 		for (i = 0; i < TXE_NUM_DATA_VL; i++)
11184 			if (be16_to_cpu(new_bc->vl[i].dedicated) > 0 ||
11185 			    be16_to_cpu(new_bc->vl[i].shared) > 0)
11186 				vl_count++;
11187 		ppd->actual_vls_operational = vl_count;
11188 		ret = sdma_map_init(dd, ppd->port - 1, vl_count ?
11189 				    ppd->actual_vls_operational :
11190 				    ppd->vls_operational,
11191 				    NULL);
11192 		if (ret == 0)
11193 			ret = pio_map_init(dd, ppd->port - 1, vl_count ?
11194 					   ppd->actual_vls_operational :
11195 					   ppd->vls_operational, NULL);
11196 		if (ret)
11197 			return ret;
11198 	}
11199 	return 0;
11200 }
11201 
11202 /*
11203  * Read the given fabric manager table. Return the size of the
11204  * table (in bytes) on success, and a negative error code on
11205  * failure.
11206  */
11207 int fm_get_table(struct hfi1_pportdata *ppd, int which, void *t)
11208 
11209 {
11210 	int size;
11211 	struct vl_arb_cache *vlc;
11212 
11213 	switch (which) {
11214 	case FM_TBL_VL_HIGH_ARB:
11215 		size = 256;
11216 		/*
11217 		 * OPA specifies 128 elements (of 2 bytes each), though
11218 		 * HFI supports only 16 elements in h/w.
11219 		 */
11220 		vlc = vl_arb_lock_cache(ppd, HI_PRIO_TABLE);
11221 		vl_arb_get_cache(vlc, t);
11222 		vl_arb_unlock_cache(ppd, HI_PRIO_TABLE);
11223 		break;
11224 	case FM_TBL_VL_LOW_ARB:
11225 		size = 256;
11226 		/*
11227 		 * OPA specifies 128 elements (of 2 bytes each), though
11228 		 * HFI supports only 16 elements in h/w.
11229 		 */
11230 		vlc = vl_arb_lock_cache(ppd, LO_PRIO_TABLE);
11231 		vl_arb_get_cache(vlc, t);
11232 		vl_arb_unlock_cache(ppd, LO_PRIO_TABLE);
11233 		break;
11234 	case FM_TBL_BUFFER_CONTROL:
11235 		size = get_buffer_control(ppd->dd, t, NULL);
11236 		break;
11237 	case FM_TBL_SC2VLNT:
11238 		size = get_sc2vlnt(ppd->dd, t);
11239 		break;
11240 	case FM_TBL_VL_PREEMPT_ELEMS:
11241 		size = 256;
11242 		/* OPA specifies 128 elements, of 2 bytes each */
11243 		get_vlarb_preempt(ppd->dd, OPA_MAX_VLS, t);
11244 		break;
11245 	case FM_TBL_VL_PREEMPT_MATRIX:
11246 		size = 256;
11247 		/*
11248 		 * OPA specifies that this is the same size as the VL
11249 		 * arbitration tables (i.e., 256 bytes).
11250 		 */
11251 		break;
11252 	default:
11253 		return -EINVAL;
11254 	}
11255 	return size;
11256 }
11257 
11258 /*
11259  * Write the given fabric manager table.
11260  */
11261 int fm_set_table(struct hfi1_pportdata *ppd, int which, void *t)
11262 {
11263 	int ret = 0;
11264 	struct vl_arb_cache *vlc;
11265 
11266 	switch (which) {
11267 	case FM_TBL_VL_HIGH_ARB:
11268 		vlc = vl_arb_lock_cache(ppd, HI_PRIO_TABLE);
11269 		if (vl_arb_match_cache(vlc, t)) {
11270 			vl_arb_unlock_cache(ppd, HI_PRIO_TABLE);
11271 			break;
11272 		}
11273 		vl_arb_set_cache(vlc, t);
11274 		vl_arb_unlock_cache(ppd, HI_PRIO_TABLE);
11275 		ret = set_vl_weights(ppd, SEND_HIGH_PRIORITY_LIST,
11276 				     VL_ARB_HIGH_PRIO_TABLE_SIZE, t);
11277 		break;
11278 	case FM_TBL_VL_LOW_ARB:
11279 		vlc = vl_arb_lock_cache(ppd, LO_PRIO_TABLE);
11280 		if (vl_arb_match_cache(vlc, t)) {
11281 			vl_arb_unlock_cache(ppd, LO_PRIO_TABLE);
11282 			break;
11283 		}
11284 		vl_arb_set_cache(vlc, t);
11285 		vl_arb_unlock_cache(ppd, LO_PRIO_TABLE);
11286 		ret = set_vl_weights(ppd, SEND_LOW_PRIORITY_LIST,
11287 				     VL_ARB_LOW_PRIO_TABLE_SIZE, t);
11288 		break;
11289 	case FM_TBL_BUFFER_CONTROL:
11290 		ret = set_buffer_control(ppd, t);
11291 		break;
11292 	case FM_TBL_SC2VLNT:
11293 		set_sc2vlnt(ppd->dd, t);
11294 		break;
11295 	default:
11296 		ret = -EINVAL;
11297 	}
11298 	return ret;
11299 }
11300 
11301 /*
11302  * Disable all data VLs.
11303  *
11304  * Return 0 if disabled, non-zero if the VLs cannot be disabled.
11305  */
11306 static int disable_data_vls(struct hfi1_devdata *dd)
11307 {
11308 	if (is_ax(dd))
11309 		return 1;
11310 
11311 	pio_send_control(dd, PSC_DATA_VL_DISABLE);
11312 
11313 	return 0;
11314 }
11315 
11316 /*
11317  * open_fill_data_vls() - the counterpart to stop_drain_data_vls().
11318  * Just re-enables all data VLs (the "fill" part happens
11319  * automatically - the name was chosen for symmetry with
11320  * stop_drain_data_vls()).
11321  *
11322  * Return 0 if successful, non-zero if the VLs cannot be enabled.
11323  */
11324 int open_fill_data_vls(struct hfi1_devdata *dd)
11325 {
11326 	if (is_ax(dd))
11327 		return 1;
11328 
11329 	pio_send_control(dd, PSC_DATA_VL_ENABLE);
11330 
11331 	return 0;
11332 }
11333 
11334 /*
11335  * drain_data_vls() - assumes that disable_data_vls() has been called,
11336  * wait for occupancy (of per-VL FIFOs) for all contexts, and SDMA
11337  * engines to drop to 0.
11338  */
11339 static void drain_data_vls(struct hfi1_devdata *dd)
11340 {
11341 	sc_wait(dd);
11342 	sdma_wait(dd);
11343 	pause_for_credit_return(dd);
11344 }
11345 
11346 /*
11347  * stop_drain_data_vls() - disable, then drain all per-VL fifos.
11348  *
11349  * Use open_fill_data_vls() to resume using data VLs.  This pair is
11350  * meant to be used like this:
11351  *
11352  * stop_drain_data_vls(dd);
11353  * // do things with per-VL resources
11354  * open_fill_data_vls(dd);
11355  */
11356 int stop_drain_data_vls(struct hfi1_devdata *dd)
11357 {
11358 	int ret;
11359 
11360 	ret = disable_data_vls(dd);
11361 	if (ret == 0)
11362 		drain_data_vls(dd);
11363 
11364 	return ret;
11365 }
11366 
11367 /*
11368  * Convert a nanosecond time to a cclock count.  No matter how slow
11369  * the cclock, a non-zero ns will always have a non-zero result.
11370  */
11371 u32 ns_to_cclock(struct hfi1_devdata *dd, u32 ns)
11372 {
11373 	u32 cclocks;
11374 
11375 	if (dd->icode == ICODE_FPGA_EMULATION)
11376 		cclocks = (ns * 1000) / FPGA_CCLOCK_PS;
11377 	else  /* simulation pretends to be ASIC */
11378 		cclocks = (ns * 1000) / ASIC_CCLOCK_PS;
11379 	if (ns && !cclocks)	/* if ns nonzero, must be at least 1 */
11380 		cclocks = 1;
11381 	return cclocks;
11382 }
11383 
11384 /*
11385  * Convert a cclock count to nanoseconds. Not matter how slow
11386  * the cclock, a non-zero cclocks will always have a non-zero result.
11387  */
11388 u32 cclock_to_ns(struct hfi1_devdata *dd, u32 cclocks)
11389 {
11390 	u32 ns;
11391 
11392 	if (dd->icode == ICODE_FPGA_EMULATION)
11393 		ns = (cclocks * FPGA_CCLOCK_PS) / 1000;
11394 	else  /* simulation pretends to be ASIC */
11395 		ns = (cclocks * ASIC_CCLOCK_PS) / 1000;
11396 	if (cclocks && !ns)
11397 		ns = 1;
11398 	return ns;
11399 }
11400 
11401 /*
11402  * Dynamically adjust the receive interrupt timeout for a context based on
11403  * incoming packet rate.
11404  *
11405  * NOTE: Dynamic adjustment does not allow rcv_intr_count to be zero.
11406  */
11407 static void adjust_rcv_timeout(struct hfi1_ctxtdata *rcd, u32 npkts)
11408 {
11409 	struct hfi1_devdata *dd = rcd->dd;
11410 	u32 timeout = rcd->rcvavail_timeout;
11411 
11412 	/*
11413 	 * This algorithm doubles or halves the timeout depending on whether
11414 	 * the number of packets received in this interrupt were less than or
11415 	 * greater equal the interrupt count.
11416 	 *
11417 	 * The calculations below do not allow a steady state to be achieved.
11418 	 * Only at the endpoints it is possible to have an unchanging
11419 	 * timeout.
11420 	 */
11421 	if (npkts < rcv_intr_count) {
11422 		/*
11423 		 * Not enough packets arrived before the timeout, adjust
11424 		 * timeout downward.
11425 		 */
11426 		if (timeout < 2) /* already at minimum? */
11427 			return;
11428 		timeout >>= 1;
11429 	} else {
11430 		/*
11431 		 * More than enough packets arrived before the timeout, adjust
11432 		 * timeout upward.
11433 		 */
11434 		if (timeout >= dd->rcv_intr_timeout_csr) /* already at max? */
11435 			return;
11436 		timeout = min(timeout << 1, dd->rcv_intr_timeout_csr);
11437 	}
11438 
11439 	rcd->rcvavail_timeout = timeout;
11440 	/*
11441 	 * timeout cannot be larger than rcv_intr_timeout_csr which has already
11442 	 * been verified to be in range
11443 	 */
11444 	write_kctxt_csr(dd, rcd->ctxt, RCV_AVAIL_TIME_OUT,
11445 			(u64)timeout <<
11446 			RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_SHIFT);
11447 }
11448 
11449 void update_usrhead(struct hfi1_ctxtdata *rcd, u32 hd, u32 updegr, u32 egrhd,
11450 		    u32 intr_adjust, u32 npkts)
11451 {
11452 	struct hfi1_devdata *dd = rcd->dd;
11453 	u64 reg;
11454 	u32 ctxt = rcd->ctxt;
11455 
11456 	/*
11457 	 * Need to write timeout register before updating RcvHdrHead to ensure
11458 	 * that a new value is used when the HW decides to restart counting.
11459 	 */
11460 	if (intr_adjust)
11461 		adjust_rcv_timeout(rcd, npkts);
11462 	if (updegr) {
11463 		reg = (egrhd & RCV_EGR_INDEX_HEAD_HEAD_MASK)
11464 			<< RCV_EGR_INDEX_HEAD_HEAD_SHIFT;
11465 		write_uctxt_csr(dd, ctxt, RCV_EGR_INDEX_HEAD, reg);
11466 	}
11467 	mmiowb();
11468 	reg = ((u64)rcv_intr_count << RCV_HDR_HEAD_COUNTER_SHIFT) |
11469 		(((u64)hd & RCV_HDR_HEAD_HEAD_MASK)
11470 			<< RCV_HDR_HEAD_HEAD_SHIFT);
11471 	write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, reg);
11472 	mmiowb();
11473 }
11474 
11475 u32 hdrqempty(struct hfi1_ctxtdata *rcd)
11476 {
11477 	u32 head, tail;
11478 
11479 	head = (read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_HEAD)
11480 		& RCV_HDR_HEAD_HEAD_SMASK) >> RCV_HDR_HEAD_HEAD_SHIFT;
11481 
11482 	if (rcd->rcvhdrtail_kvaddr)
11483 		tail = get_rcvhdrtail(rcd);
11484 	else
11485 		tail = read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_TAIL);
11486 
11487 	return head == tail;
11488 }
11489 
11490 /*
11491  * Context Control and Receive Array encoding for buffer size:
11492  *	0x0 invalid
11493  *	0x1   4 KB
11494  *	0x2   8 KB
11495  *	0x3  16 KB
11496  *	0x4  32 KB
11497  *	0x5  64 KB
11498  *	0x6 128 KB
11499  *	0x7 256 KB
11500  *	0x8 512 KB (Receive Array only)
11501  *	0x9   1 MB (Receive Array only)
11502  *	0xa   2 MB (Receive Array only)
11503  *
11504  *	0xB-0xF - reserved (Receive Array only)
11505  *
11506  *
11507  * This routine assumes that the value has already been sanity checked.
11508  */
11509 static u32 encoded_size(u32 size)
11510 {
11511 	switch (size) {
11512 	case   4 * 1024: return 0x1;
11513 	case   8 * 1024: return 0x2;
11514 	case  16 * 1024: return 0x3;
11515 	case  32 * 1024: return 0x4;
11516 	case  64 * 1024: return 0x5;
11517 	case 128 * 1024: return 0x6;
11518 	case 256 * 1024: return 0x7;
11519 	case 512 * 1024: return 0x8;
11520 	case   1 * 1024 * 1024: return 0x9;
11521 	case   2 * 1024 * 1024: return 0xa;
11522 	}
11523 	return 0x1;	/* if invalid, go with the minimum size */
11524 }
11525 
11526 void hfi1_rcvctrl(struct hfi1_devdata *dd, unsigned int op, int ctxt)
11527 {
11528 	struct hfi1_ctxtdata *rcd;
11529 	u64 rcvctrl, reg;
11530 	int did_enable = 0;
11531 
11532 	rcd = dd->rcd[ctxt];
11533 	if (!rcd)
11534 		return;
11535 
11536 	hfi1_cdbg(RCVCTRL, "ctxt %d op 0x%x", ctxt, op);
11537 
11538 	rcvctrl = read_kctxt_csr(dd, ctxt, RCV_CTXT_CTRL);
11539 	/* if the context already enabled, don't do the extra steps */
11540 	if ((op & HFI1_RCVCTRL_CTXT_ENB) &&
11541 	    !(rcvctrl & RCV_CTXT_CTRL_ENABLE_SMASK)) {
11542 		/* reset the tail and hdr addresses, and sequence count */
11543 		write_kctxt_csr(dd, ctxt, RCV_HDR_ADDR,
11544 				rcd->rcvhdrq_dma);
11545 		if (HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL))
11546 			write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR,
11547 					rcd->rcvhdrqtailaddr_dma);
11548 		rcd->seq_cnt = 1;
11549 
11550 		/* reset the cached receive header queue head value */
11551 		rcd->head = 0;
11552 
11553 		/*
11554 		 * Zero the receive header queue so we don't get false
11555 		 * positives when checking the sequence number.  The
11556 		 * sequence numbers could land exactly on the same spot.
11557 		 * E.g. a rcd restart before the receive header wrapped.
11558 		 */
11559 		memset(rcd->rcvhdrq, 0, rcd->rcvhdrq_size);
11560 
11561 		/* starting timeout */
11562 		rcd->rcvavail_timeout = dd->rcv_intr_timeout_csr;
11563 
11564 		/* enable the context */
11565 		rcvctrl |= RCV_CTXT_CTRL_ENABLE_SMASK;
11566 
11567 		/* clean the egr buffer size first */
11568 		rcvctrl &= ~RCV_CTXT_CTRL_EGR_BUF_SIZE_SMASK;
11569 		rcvctrl |= ((u64)encoded_size(rcd->egrbufs.rcvtid_size)
11570 				& RCV_CTXT_CTRL_EGR_BUF_SIZE_MASK)
11571 					<< RCV_CTXT_CTRL_EGR_BUF_SIZE_SHIFT;
11572 
11573 		/* zero RcvHdrHead - set RcvHdrHead.Counter after enable */
11574 		write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0);
11575 		did_enable = 1;
11576 
11577 		/* zero RcvEgrIndexHead */
11578 		write_uctxt_csr(dd, ctxt, RCV_EGR_INDEX_HEAD, 0);
11579 
11580 		/* set eager count and base index */
11581 		reg = (((u64)(rcd->egrbufs.alloced >> RCV_SHIFT)
11582 			& RCV_EGR_CTRL_EGR_CNT_MASK)
11583 		       << RCV_EGR_CTRL_EGR_CNT_SHIFT) |
11584 			(((rcd->eager_base >> RCV_SHIFT)
11585 			  & RCV_EGR_CTRL_EGR_BASE_INDEX_MASK)
11586 			 << RCV_EGR_CTRL_EGR_BASE_INDEX_SHIFT);
11587 		write_kctxt_csr(dd, ctxt, RCV_EGR_CTRL, reg);
11588 
11589 		/*
11590 		 * Set TID (expected) count and base index.
11591 		 * rcd->expected_count is set to individual RcvArray entries,
11592 		 * not pairs, and the CSR takes a pair-count in groups of
11593 		 * four, so divide by 8.
11594 		 */
11595 		reg = (((rcd->expected_count >> RCV_SHIFT)
11596 					& RCV_TID_CTRL_TID_PAIR_CNT_MASK)
11597 				<< RCV_TID_CTRL_TID_PAIR_CNT_SHIFT) |
11598 		      (((rcd->expected_base >> RCV_SHIFT)
11599 					& RCV_TID_CTRL_TID_BASE_INDEX_MASK)
11600 				<< RCV_TID_CTRL_TID_BASE_INDEX_SHIFT);
11601 		write_kctxt_csr(dd, ctxt, RCV_TID_CTRL, reg);
11602 		if (ctxt == HFI1_CTRL_CTXT)
11603 			write_csr(dd, RCV_VL15, HFI1_CTRL_CTXT);
11604 	}
11605 	if (op & HFI1_RCVCTRL_CTXT_DIS) {
11606 		write_csr(dd, RCV_VL15, 0);
11607 		/*
11608 		 * When receive context is being disabled turn on tail
11609 		 * update with a dummy tail address and then disable
11610 		 * receive context.
11611 		 */
11612 		if (dd->rcvhdrtail_dummy_dma) {
11613 			write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR,
11614 					dd->rcvhdrtail_dummy_dma);
11615 			/* Enabling RcvCtxtCtrl.TailUpd is intentional. */
11616 			rcvctrl |= RCV_CTXT_CTRL_TAIL_UPD_SMASK;
11617 		}
11618 
11619 		rcvctrl &= ~RCV_CTXT_CTRL_ENABLE_SMASK;
11620 	}
11621 	if (op & HFI1_RCVCTRL_INTRAVAIL_ENB)
11622 		rcvctrl |= RCV_CTXT_CTRL_INTR_AVAIL_SMASK;
11623 	if (op & HFI1_RCVCTRL_INTRAVAIL_DIS)
11624 		rcvctrl &= ~RCV_CTXT_CTRL_INTR_AVAIL_SMASK;
11625 	if (op & HFI1_RCVCTRL_TAILUPD_ENB && rcd->rcvhdrqtailaddr_dma)
11626 		rcvctrl |= RCV_CTXT_CTRL_TAIL_UPD_SMASK;
11627 	if (op & HFI1_RCVCTRL_TAILUPD_DIS) {
11628 		/* See comment on RcvCtxtCtrl.TailUpd above */
11629 		if (!(op & HFI1_RCVCTRL_CTXT_DIS))
11630 			rcvctrl &= ~RCV_CTXT_CTRL_TAIL_UPD_SMASK;
11631 	}
11632 	if (op & HFI1_RCVCTRL_TIDFLOW_ENB)
11633 		rcvctrl |= RCV_CTXT_CTRL_TID_FLOW_ENABLE_SMASK;
11634 	if (op & HFI1_RCVCTRL_TIDFLOW_DIS)
11635 		rcvctrl &= ~RCV_CTXT_CTRL_TID_FLOW_ENABLE_SMASK;
11636 	if (op & HFI1_RCVCTRL_ONE_PKT_EGR_ENB) {
11637 		/*
11638 		 * In one-packet-per-eager mode, the size comes from
11639 		 * the RcvArray entry.
11640 		 */
11641 		rcvctrl &= ~RCV_CTXT_CTRL_EGR_BUF_SIZE_SMASK;
11642 		rcvctrl |= RCV_CTXT_CTRL_ONE_PACKET_PER_EGR_BUFFER_SMASK;
11643 	}
11644 	if (op & HFI1_RCVCTRL_ONE_PKT_EGR_DIS)
11645 		rcvctrl &= ~RCV_CTXT_CTRL_ONE_PACKET_PER_EGR_BUFFER_SMASK;
11646 	if (op & HFI1_RCVCTRL_NO_RHQ_DROP_ENB)
11647 		rcvctrl |= RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK;
11648 	if (op & HFI1_RCVCTRL_NO_RHQ_DROP_DIS)
11649 		rcvctrl &= ~RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK;
11650 	if (op & HFI1_RCVCTRL_NO_EGR_DROP_ENB)
11651 		rcvctrl |= RCV_CTXT_CTRL_DONT_DROP_EGR_FULL_SMASK;
11652 	if (op & HFI1_RCVCTRL_NO_EGR_DROP_DIS)
11653 		rcvctrl &= ~RCV_CTXT_CTRL_DONT_DROP_EGR_FULL_SMASK;
11654 	rcd->rcvctrl = rcvctrl;
11655 	hfi1_cdbg(RCVCTRL, "ctxt %d rcvctrl 0x%llx\n", ctxt, rcvctrl);
11656 	write_kctxt_csr(dd, ctxt, RCV_CTXT_CTRL, rcd->rcvctrl);
11657 
11658 	/* work around sticky RcvCtxtStatus.BlockedRHQFull */
11659 	if (did_enable &&
11660 	    (rcvctrl & RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK)) {
11661 		reg = read_kctxt_csr(dd, ctxt, RCV_CTXT_STATUS);
11662 		if (reg != 0) {
11663 			dd_dev_info(dd, "ctxt %d status %lld (blocked)\n",
11664 				    ctxt, reg);
11665 			read_uctxt_csr(dd, ctxt, RCV_HDR_HEAD);
11666 			write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0x10);
11667 			write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0x00);
11668 			read_uctxt_csr(dd, ctxt, RCV_HDR_HEAD);
11669 			reg = read_kctxt_csr(dd, ctxt, RCV_CTXT_STATUS);
11670 			dd_dev_info(dd, "ctxt %d status %lld (%s blocked)\n",
11671 				    ctxt, reg, reg == 0 ? "not" : "still");
11672 		}
11673 	}
11674 
11675 	if (did_enable) {
11676 		/*
11677 		 * The interrupt timeout and count must be set after
11678 		 * the context is enabled to take effect.
11679 		 */
11680 		/* set interrupt timeout */
11681 		write_kctxt_csr(dd, ctxt, RCV_AVAIL_TIME_OUT,
11682 				(u64)rcd->rcvavail_timeout <<
11683 				RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_SHIFT);
11684 
11685 		/* set RcvHdrHead.Counter, zero RcvHdrHead.Head (again) */
11686 		reg = (u64)rcv_intr_count << RCV_HDR_HEAD_COUNTER_SHIFT;
11687 		write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, reg);
11688 	}
11689 
11690 	if (op & (HFI1_RCVCTRL_TAILUPD_DIS | HFI1_RCVCTRL_CTXT_DIS))
11691 		/*
11692 		 * If the context has been disabled and the Tail Update has
11693 		 * been cleared, set the RCV_HDR_TAIL_ADDR CSR to dummy address
11694 		 * so it doesn't contain an address that is invalid.
11695 		 */
11696 		write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR,
11697 				dd->rcvhdrtail_dummy_dma);
11698 }
11699 
11700 u32 hfi1_read_cntrs(struct hfi1_devdata *dd, char **namep, u64 **cntrp)
11701 {
11702 	int ret;
11703 	u64 val = 0;
11704 
11705 	if (namep) {
11706 		ret = dd->cntrnameslen;
11707 		*namep = dd->cntrnames;
11708 	} else {
11709 		const struct cntr_entry *entry;
11710 		int i, j;
11711 
11712 		ret = (dd->ndevcntrs) * sizeof(u64);
11713 
11714 		/* Get the start of the block of counters */
11715 		*cntrp = dd->cntrs;
11716 
11717 		/*
11718 		 * Now go and fill in each counter in the block.
11719 		 */
11720 		for (i = 0; i < DEV_CNTR_LAST; i++) {
11721 			entry = &dev_cntrs[i];
11722 			hfi1_cdbg(CNTR, "reading %s", entry->name);
11723 			if (entry->flags & CNTR_DISABLED) {
11724 				/* Nothing */
11725 				hfi1_cdbg(CNTR, "\tDisabled\n");
11726 			} else {
11727 				if (entry->flags & CNTR_VL) {
11728 					hfi1_cdbg(CNTR, "\tPer VL\n");
11729 					for (j = 0; j < C_VL_COUNT; j++) {
11730 						val = entry->rw_cntr(entry,
11731 								  dd, j,
11732 								  CNTR_MODE_R,
11733 								  0);
11734 						hfi1_cdbg(
11735 						   CNTR,
11736 						   "\t\tRead 0x%llx for %d\n",
11737 						   val, j);
11738 						dd->cntrs[entry->offset + j] =
11739 									    val;
11740 					}
11741 				} else if (entry->flags & CNTR_SDMA) {
11742 					hfi1_cdbg(CNTR,
11743 						  "\t Per SDMA Engine\n");
11744 					for (j = 0; j < dd->chip_sdma_engines;
11745 					     j++) {
11746 						val =
11747 						entry->rw_cntr(entry, dd, j,
11748 							       CNTR_MODE_R, 0);
11749 						hfi1_cdbg(CNTR,
11750 							  "\t\tRead 0x%llx for %d\n",
11751 							  val, j);
11752 						dd->cntrs[entry->offset + j] =
11753 									val;
11754 					}
11755 				} else {
11756 					val = entry->rw_cntr(entry, dd,
11757 							CNTR_INVALID_VL,
11758 							CNTR_MODE_R, 0);
11759 					dd->cntrs[entry->offset] = val;
11760 					hfi1_cdbg(CNTR, "\tRead 0x%llx", val);
11761 				}
11762 			}
11763 		}
11764 	}
11765 	return ret;
11766 }
11767 
11768 /*
11769  * Used by sysfs to create files for hfi stats to read
11770  */
11771 u32 hfi1_read_portcntrs(struct hfi1_pportdata *ppd, char **namep, u64 **cntrp)
11772 {
11773 	int ret;
11774 	u64 val = 0;
11775 
11776 	if (namep) {
11777 		ret = ppd->dd->portcntrnameslen;
11778 		*namep = ppd->dd->portcntrnames;
11779 	} else {
11780 		const struct cntr_entry *entry;
11781 		int i, j;
11782 
11783 		ret = ppd->dd->nportcntrs * sizeof(u64);
11784 		*cntrp = ppd->cntrs;
11785 
11786 		for (i = 0; i < PORT_CNTR_LAST; i++) {
11787 			entry = &port_cntrs[i];
11788 			hfi1_cdbg(CNTR, "reading %s", entry->name);
11789 			if (entry->flags & CNTR_DISABLED) {
11790 				/* Nothing */
11791 				hfi1_cdbg(CNTR, "\tDisabled\n");
11792 				continue;
11793 			}
11794 
11795 			if (entry->flags & CNTR_VL) {
11796 				hfi1_cdbg(CNTR, "\tPer VL");
11797 				for (j = 0; j < C_VL_COUNT; j++) {
11798 					val = entry->rw_cntr(entry, ppd, j,
11799 							       CNTR_MODE_R,
11800 							       0);
11801 					hfi1_cdbg(
11802 					   CNTR,
11803 					   "\t\tRead 0x%llx for %d",
11804 					   val, j);
11805 					ppd->cntrs[entry->offset + j] = val;
11806 				}
11807 			} else {
11808 				val = entry->rw_cntr(entry, ppd,
11809 						       CNTR_INVALID_VL,
11810 						       CNTR_MODE_R,
11811 						       0);
11812 				ppd->cntrs[entry->offset] = val;
11813 				hfi1_cdbg(CNTR, "\tRead 0x%llx", val);
11814 			}
11815 		}
11816 	}
11817 	return ret;
11818 }
11819 
11820 static void free_cntrs(struct hfi1_devdata *dd)
11821 {
11822 	struct hfi1_pportdata *ppd;
11823 	int i;
11824 
11825 	if (dd->synth_stats_timer.data)
11826 		del_timer_sync(&dd->synth_stats_timer);
11827 	dd->synth_stats_timer.data = 0;
11828 	ppd = (struct hfi1_pportdata *)(dd + 1);
11829 	for (i = 0; i < dd->num_pports; i++, ppd++) {
11830 		kfree(ppd->cntrs);
11831 		kfree(ppd->scntrs);
11832 		free_percpu(ppd->ibport_data.rvp.rc_acks);
11833 		free_percpu(ppd->ibport_data.rvp.rc_qacks);
11834 		free_percpu(ppd->ibport_data.rvp.rc_delayed_comp);
11835 		ppd->cntrs = NULL;
11836 		ppd->scntrs = NULL;
11837 		ppd->ibport_data.rvp.rc_acks = NULL;
11838 		ppd->ibport_data.rvp.rc_qacks = NULL;
11839 		ppd->ibport_data.rvp.rc_delayed_comp = NULL;
11840 	}
11841 	kfree(dd->portcntrnames);
11842 	dd->portcntrnames = NULL;
11843 	kfree(dd->cntrs);
11844 	dd->cntrs = NULL;
11845 	kfree(dd->scntrs);
11846 	dd->scntrs = NULL;
11847 	kfree(dd->cntrnames);
11848 	dd->cntrnames = NULL;
11849 }
11850 
11851 static u64 read_dev_port_cntr(struct hfi1_devdata *dd, struct cntr_entry *entry,
11852 			      u64 *psval, void *context, int vl)
11853 {
11854 	u64 val;
11855 	u64 sval = *psval;
11856 
11857 	if (entry->flags & CNTR_DISABLED) {
11858 		dd_dev_err(dd, "Counter %s not enabled", entry->name);
11859 		return 0;
11860 	}
11861 
11862 	hfi1_cdbg(CNTR, "cntr: %s vl %d psval 0x%llx", entry->name, vl, *psval);
11863 
11864 	val = entry->rw_cntr(entry, context, vl, CNTR_MODE_R, 0);
11865 
11866 	/* If its a synthetic counter there is more work we need to do */
11867 	if (entry->flags & CNTR_SYNTH) {
11868 		if (sval == CNTR_MAX) {
11869 			/* No need to read already saturated */
11870 			return CNTR_MAX;
11871 		}
11872 
11873 		if (entry->flags & CNTR_32BIT) {
11874 			/* 32bit counters can wrap multiple times */
11875 			u64 upper = sval >> 32;
11876 			u64 lower = (sval << 32) >> 32;
11877 
11878 			if (lower > val) { /* hw wrapped */
11879 				if (upper == CNTR_32BIT_MAX)
11880 					val = CNTR_MAX;
11881 				else
11882 					upper++;
11883 			}
11884 
11885 			if (val != CNTR_MAX)
11886 				val = (upper << 32) | val;
11887 
11888 		} else {
11889 			/* If we rolled we are saturated */
11890 			if ((val < sval) || (val > CNTR_MAX))
11891 				val = CNTR_MAX;
11892 		}
11893 	}
11894 
11895 	*psval = val;
11896 
11897 	hfi1_cdbg(CNTR, "\tNew val=0x%llx", val);
11898 
11899 	return val;
11900 }
11901 
11902 static u64 write_dev_port_cntr(struct hfi1_devdata *dd,
11903 			       struct cntr_entry *entry,
11904 			       u64 *psval, void *context, int vl, u64 data)
11905 {
11906 	u64 val;
11907 
11908 	if (entry->flags & CNTR_DISABLED) {
11909 		dd_dev_err(dd, "Counter %s not enabled", entry->name);
11910 		return 0;
11911 	}
11912 
11913 	hfi1_cdbg(CNTR, "cntr: %s vl %d psval 0x%llx", entry->name, vl, *psval);
11914 
11915 	if (entry->flags & CNTR_SYNTH) {
11916 		*psval = data;
11917 		if (entry->flags & CNTR_32BIT) {
11918 			val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W,
11919 					     (data << 32) >> 32);
11920 			val = data; /* return the full 64bit value */
11921 		} else {
11922 			val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W,
11923 					     data);
11924 		}
11925 	} else {
11926 		val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W, data);
11927 	}
11928 
11929 	*psval = val;
11930 
11931 	hfi1_cdbg(CNTR, "\tNew val=0x%llx", val);
11932 
11933 	return val;
11934 }
11935 
11936 u64 read_dev_cntr(struct hfi1_devdata *dd, int index, int vl)
11937 {
11938 	struct cntr_entry *entry;
11939 	u64 *sval;
11940 
11941 	entry = &dev_cntrs[index];
11942 	sval = dd->scntrs + entry->offset;
11943 
11944 	if (vl != CNTR_INVALID_VL)
11945 		sval += vl;
11946 
11947 	return read_dev_port_cntr(dd, entry, sval, dd, vl);
11948 }
11949 
11950 u64 write_dev_cntr(struct hfi1_devdata *dd, int index, int vl, u64 data)
11951 {
11952 	struct cntr_entry *entry;
11953 	u64 *sval;
11954 
11955 	entry = &dev_cntrs[index];
11956 	sval = dd->scntrs + entry->offset;
11957 
11958 	if (vl != CNTR_INVALID_VL)
11959 		sval += vl;
11960 
11961 	return write_dev_port_cntr(dd, entry, sval, dd, vl, data);
11962 }
11963 
11964 u64 read_port_cntr(struct hfi1_pportdata *ppd, int index, int vl)
11965 {
11966 	struct cntr_entry *entry;
11967 	u64 *sval;
11968 
11969 	entry = &port_cntrs[index];
11970 	sval = ppd->scntrs + entry->offset;
11971 
11972 	if (vl != CNTR_INVALID_VL)
11973 		sval += vl;
11974 
11975 	if ((index >= C_RCV_HDR_OVF_FIRST + ppd->dd->num_rcv_contexts) &&
11976 	    (index <= C_RCV_HDR_OVF_LAST)) {
11977 		/* We do not want to bother for disabled contexts */
11978 		return 0;
11979 	}
11980 
11981 	return read_dev_port_cntr(ppd->dd, entry, sval, ppd, vl);
11982 }
11983 
11984 u64 write_port_cntr(struct hfi1_pportdata *ppd, int index, int vl, u64 data)
11985 {
11986 	struct cntr_entry *entry;
11987 	u64 *sval;
11988 
11989 	entry = &port_cntrs[index];
11990 	sval = ppd->scntrs + entry->offset;
11991 
11992 	if (vl != CNTR_INVALID_VL)
11993 		sval += vl;
11994 
11995 	if ((index >= C_RCV_HDR_OVF_FIRST + ppd->dd->num_rcv_contexts) &&
11996 	    (index <= C_RCV_HDR_OVF_LAST)) {
11997 		/* We do not want to bother for disabled contexts */
11998 		return 0;
11999 	}
12000 
12001 	return write_dev_port_cntr(ppd->dd, entry, sval, ppd, vl, data);
12002 }
12003 
12004 static void update_synth_timer(unsigned long opaque)
12005 {
12006 	u64 cur_tx;
12007 	u64 cur_rx;
12008 	u64 total_flits;
12009 	u8 update = 0;
12010 	int i, j, vl;
12011 	struct hfi1_pportdata *ppd;
12012 	struct cntr_entry *entry;
12013 
12014 	struct hfi1_devdata *dd = (struct hfi1_devdata *)opaque;
12015 
12016 	/*
12017 	 * Rather than keep beating on the CSRs pick a minimal set that we can
12018 	 * check to watch for potential roll over. We can do this by looking at
12019 	 * the number of flits sent/recv. If the total flits exceeds 32bits then
12020 	 * we have to iterate all the counters and update.
12021 	 */
12022 	entry = &dev_cntrs[C_DC_RCV_FLITS];
12023 	cur_rx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL, CNTR_MODE_R, 0);
12024 
12025 	entry = &dev_cntrs[C_DC_XMIT_FLITS];
12026 	cur_tx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL, CNTR_MODE_R, 0);
12027 
12028 	hfi1_cdbg(
12029 	    CNTR,
12030 	    "[%d] curr tx=0x%llx rx=0x%llx :: last tx=0x%llx rx=0x%llx\n",
12031 	    dd->unit, cur_tx, cur_rx, dd->last_tx, dd->last_rx);
12032 
12033 	if ((cur_tx < dd->last_tx) || (cur_rx < dd->last_rx)) {
12034 		/*
12035 		 * May not be strictly necessary to update but it won't hurt and
12036 		 * simplifies the logic here.
12037 		 */
12038 		update = 1;
12039 		hfi1_cdbg(CNTR, "[%d] Tripwire counter rolled, updating",
12040 			  dd->unit);
12041 	} else {
12042 		total_flits = (cur_tx - dd->last_tx) + (cur_rx - dd->last_rx);
12043 		hfi1_cdbg(CNTR,
12044 			  "[%d] total flits 0x%llx limit 0x%llx\n", dd->unit,
12045 			  total_flits, (u64)CNTR_32BIT_MAX);
12046 		if (total_flits >= CNTR_32BIT_MAX) {
12047 			hfi1_cdbg(CNTR, "[%d] 32bit limit hit, updating",
12048 				  dd->unit);
12049 			update = 1;
12050 		}
12051 	}
12052 
12053 	if (update) {
12054 		hfi1_cdbg(CNTR, "[%d] Updating dd and ppd counters", dd->unit);
12055 		for (i = 0; i < DEV_CNTR_LAST; i++) {
12056 			entry = &dev_cntrs[i];
12057 			if (entry->flags & CNTR_VL) {
12058 				for (vl = 0; vl < C_VL_COUNT; vl++)
12059 					read_dev_cntr(dd, i, vl);
12060 			} else {
12061 				read_dev_cntr(dd, i, CNTR_INVALID_VL);
12062 			}
12063 		}
12064 		ppd = (struct hfi1_pportdata *)(dd + 1);
12065 		for (i = 0; i < dd->num_pports; i++, ppd++) {
12066 			for (j = 0; j < PORT_CNTR_LAST; j++) {
12067 				entry = &port_cntrs[j];
12068 				if (entry->flags & CNTR_VL) {
12069 					for (vl = 0; vl < C_VL_COUNT; vl++)
12070 						read_port_cntr(ppd, j, vl);
12071 				} else {
12072 					read_port_cntr(ppd, j, CNTR_INVALID_VL);
12073 				}
12074 			}
12075 		}
12076 
12077 		/*
12078 		 * We want the value in the register. The goal is to keep track
12079 		 * of the number of "ticks" not the counter value. In other
12080 		 * words if the register rolls we want to notice it and go ahead
12081 		 * and force an update.
12082 		 */
12083 		entry = &dev_cntrs[C_DC_XMIT_FLITS];
12084 		dd->last_tx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL,
12085 						CNTR_MODE_R, 0);
12086 
12087 		entry = &dev_cntrs[C_DC_RCV_FLITS];
12088 		dd->last_rx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL,
12089 						CNTR_MODE_R, 0);
12090 
12091 		hfi1_cdbg(CNTR, "[%d] setting last tx/rx to 0x%llx 0x%llx",
12092 			  dd->unit, dd->last_tx, dd->last_rx);
12093 
12094 	} else {
12095 		hfi1_cdbg(CNTR, "[%d] No update necessary", dd->unit);
12096 	}
12097 
12098 	mod_timer(&dd->synth_stats_timer, jiffies + HZ * SYNTH_CNT_TIME);
12099 }
12100 
12101 #define C_MAX_NAME 16 /* 15 chars + one for /0 */
12102 static int init_cntrs(struct hfi1_devdata *dd)
12103 {
12104 	int i, rcv_ctxts, j;
12105 	size_t sz;
12106 	char *p;
12107 	char name[C_MAX_NAME];
12108 	struct hfi1_pportdata *ppd;
12109 	const char *bit_type_32 = ",32";
12110 	const int bit_type_32_sz = strlen(bit_type_32);
12111 
12112 	/* set up the stats timer; the add_timer is done at the end */
12113 	setup_timer(&dd->synth_stats_timer, update_synth_timer,
12114 		    (unsigned long)dd);
12115 
12116 	/***********************/
12117 	/* per device counters */
12118 	/***********************/
12119 
12120 	/* size names and determine how many we have*/
12121 	dd->ndevcntrs = 0;
12122 	sz = 0;
12123 
12124 	for (i = 0; i < DEV_CNTR_LAST; i++) {
12125 		if (dev_cntrs[i].flags & CNTR_DISABLED) {
12126 			hfi1_dbg_early("\tSkipping %s\n", dev_cntrs[i].name);
12127 			continue;
12128 		}
12129 
12130 		if (dev_cntrs[i].flags & CNTR_VL) {
12131 			dev_cntrs[i].offset = dd->ndevcntrs;
12132 			for (j = 0; j < C_VL_COUNT; j++) {
12133 				snprintf(name, C_MAX_NAME, "%s%d",
12134 					 dev_cntrs[i].name, vl_from_idx(j));
12135 				sz += strlen(name);
12136 				/* Add ",32" for 32-bit counters */
12137 				if (dev_cntrs[i].flags & CNTR_32BIT)
12138 					sz += bit_type_32_sz;
12139 				sz++;
12140 				dd->ndevcntrs++;
12141 			}
12142 		} else if (dev_cntrs[i].flags & CNTR_SDMA) {
12143 			dev_cntrs[i].offset = dd->ndevcntrs;
12144 			for (j = 0; j < dd->chip_sdma_engines; j++) {
12145 				snprintf(name, C_MAX_NAME, "%s%d",
12146 					 dev_cntrs[i].name, j);
12147 				sz += strlen(name);
12148 				/* Add ",32" for 32-bit counters */
12149 				if (dev_cntrs[i].flags & CNTR_32BIT)
12150 					sz += bit_type_32_sz;
12151 				sz++;
12152 				dd->ndevcntrs++;
12153 			}
12154 		} else {
12155 			/* +1 for newline. */
12156 			sz += strlen(dev_cntrs[i].name) + 1;
12157 			/* Add ",32" for 32-bit counters */
12158 			if (dev_cntrs[i].flags & CNTR_32BIT)
12159 				sz += bit_type_32_sz;
12160 			dev_cntrs[i].offset = dd->ndevcntrs;
12161 			dd->ndevcntrs++;
12162 		}
12163 	}
12164 
12165 	/* allocate space for the counter values */
12166 	dd->cntrs = kcalloc(dd->ndevcntrs, sizeof(u64), GFP_KERNEL);
12167 	if (!dd->cntrs)
12168 		goto bail;
12169 
12170 	dd->scntrs = kcalloc(dd->ndevcntrs, sizeof(u64), GFP_KERNEL);
12171 	if (!dd->scntrs)
12172 		goto bail;
12173 
12174 	/* allocate space for the counter names */
12175 	dd->cntrnameslen = sz;
12176 	dd->cntrnames = kmalloc(sz, GFP_KERNEL);
12177 	if (!dd->cntrnames)
12178 		goto bail;
12179 
12180 	/* fill in the names */
12181 	for (p = dd->cntrnames, i = 0; i < DEV_CNTR_LAST; i++) {
12182 		if (dev_cntrs[i].flags & CNTR_DISABLED) {
12183 			/* Nothing */
12184 		} else if (dev_cntrs[i].flags & CNTR_VL) {
12185 			for (j = 0; j < C_VL_COUNT; j++) {
12186 				snprintf(name, C_MAX_NAME, "%s%d",
12187 					 dev_cntrs[i].name,
12188 					 vl_from_idx(j));
12189 				memcpy(p, name, strlen(name));
12190 				p += strlen(name);
12191 
12192 				/* Counter is 32 bits */
12193 				if (dev_cntrs[i].flags & CNTR_32BIT) {
12194 					memcpy(p, bit_type_32, bit_type_32_sz);
12195 					p += bit_type_32_sz;
12196 				}
12197 
12198 				*p++ = '\n';
12199 			}
12200 		} else if (dev_cntrs[i].flags & CNTR_SDMA) {
12201 			for (j = 0; j < dd->chip_sdma_engines; j++) {
12202 				snprintf(name, C_MAX_NAME, "%s%d",
12203 					 dev_cntrs[i].name, j);
12204 				memcpy(p, name, strlen(name));
12205 				p += strlen(name);
12206 
12207 				/* Counter is 32 bits */
12208 				if (dev_cntrs[i].flags & CNTR_32BIT) {
12209 					memcpy(p, bit_type_32, bit_type_32_sz);
12210 					p += bit_type_32_sz;
12211 				}
12212 
12213 				*p++ = '\n';
12214 			}
12215 		} else {
12216 			memcpy(p, dev_cntrs[i].name, strlen(dev_cntrs[i].name));
12217 			p += strlen(dev_cntrs[i].name);
12218 
12219 			/* Counter is 32 bits */
12220 			if (dev_cntrs[i].flags & CNTR_32BIT) {
12221 				memcpy(p, bit_type_32, bit_type_32_sz);
12222 				p += bit_type_32_sz;
12223 			}
12224 
12225 			*p++ = '\n';
12226 		}
12227 	}
12228 
12229 	/*********************/
12230 	/* per port counters */
12231 	/*********************/
12232 
12233 	/*
12234 	 * Go through the counters for the overflows and disable the ones we
12235 	 * don't need. This varies based on platform so we need to do it
12236 	 * dynamically here.
12237 	 */
12238 	rcv_ctxts = dd->num_rcv_contexts;
12239 	for (i = C_RCV_HDR_OVF_FIRST + rcv_ctxts;
12240 	     i <= C_RCV_HDR_OVF_LAST; i++) {
12241 		port_cntrs[i].flags |= CNTR_DISABLED;
12242 	}
12243 
12244 	/* size port counter names and determine how many we have*/
12245 	sz = 0;
12246 	dd->nportcntrs = 0;
12247 	for (i = 0; i < PORT_CNTR_LAST; i++) {
12248 		if (port_cntrs[i].flags & CNTR_DISABLED) {
12249 			hfi1_dbg_early("\tSkipping %s\n", port_cntrs[i].name);
12250 			continue;
12251 		}
12252 
12253 		if (port_cntrs[i].flags & CNTR_VL) {
12254 			port_cntrs[i].offset = dd->nportcntrs;
12255 			for (j = 0; j < C_VL_COUNT; j++) {
12256 				snprintf(name, C_MAX_NAME, "%s%d",
12257 					 port_cntrs[i].name, vl_from_idx(j));
12258 				sz += strlen(name);
12259 				/* Add ",32" for 32-bit counters */
12260 				if (port_cntrs[i].flags & CNTR_32BIT)
12261 					sz += bit_type_32_sz;
12262 				sz++;
12263 				dd->nportcntrs++;
12264 			}
12265 		} else {
12266 			/* +1 for newline */
12267 			sz += strlen(port_cntrs[i].name) + 1;
12268 			/* Add ",32" for 32-bit counters */
12269 			if (port_cntrs[i].flags & CNTR_32BIT)
12270 				sz += bit_type_32_sz;
12271 			port_cntrs[i].offset = dd->nportcntrs;
12272 			dd->nportcntrs++;
12273 		}
12274 	}
12275 
12276 	/* allocate space for the counter names */
12277 	dd->portcntrnameslen = sz;
12278 	dd->portcntrnames = kmalloc(sz, GFP_KERNEL);
12279 	if (!dd->portcntrnames)
12280 		goto bail;
12281 
12282 	/* fill in port cntr names */
12283 	for (p = dd->portcntrnames, i = 0; i < PORT_CNTR_LAST; i++) {
12284 		if (port_cntrs[i].flags & CNTR_DISABLED)
12285 			continue;
12286 
12287 		if (port_cntrs[i].flags & CNTR_VL) {
12288 			for (j = 0; j < C_VL_COUNT; j++) {
12289 				snprintf(name, C_MAX_NAME, "%s%d",
12290 					 port_cntrs[i].name, vl_from_idx(j));
12291 				memcpy(p, name, strlen(name));
12292 				p += strlen(name);
12293 
12294 				/* Counter is 32 bits */
12295 				if (port_cntrs[i].flags & CNTR_32BIT) {
12296 					memcpy(p, bit_type_32, bit_type_32_sz);
12297 					p += bit_type_32_sz;
12298 				}
12299 
12300 				*p++ = '\n';
12301 			}
12302 		} else {
12303 			memcpy(p, port_cntrs[i].name,
12304 			       strlen(port_cntrs[i].name));
12305 			p += strlen(port_cntrs[i].name);
12306 
12307 			/* Counter is 32 bits */
12308 			if (port_cntrs[i].flags & CNTR_32BIT) {
12309 				memcpy(p, bit_type_32, bit_type_32_sz);
12310 				p += bit_type_32_sz;
12311 			}
12312 
12313 			*p++ = '\n';
12314 		}
12315 	}
12316 
12317 	/* allocate per port storage for counter values */
12318 	ppd = (struct hfi1_pportdata *)(dd + 1);
12319 	for (i = 0; i < dd->num_pports; i++, ppd++) {
12320 		ppd->cntrs = kcalloc(dd->nportcntrs, sizeof(u64), GFP_KERNEL);
12321 		if (!ppd->cntrs)
12322 			goto bail;
12323 
12324 		ppd->scntrs = kcalloc(dd->nportcntrs, sizeof(u64), GFP_KERNEL);
12325 		if (!ppd->scntrs)
12326 			goto bail;
12327 	}
12328 
12329 	/* CPU counters need to be allocated and zeroed */
12330 	if (init_cpu_counters(dd))
12331 		goto bail;
12332 
12333 	mod_timer(&dd->synth_stats_timer, jiffies + HZ * SYNTH_CNT_TIME);
12334 	return 0;
12335 bail:
12336 	free_cntrs(dd);
12337 	return -ENOMEM;
12338 }
12339 
12340 static u32 chip_to_opa_lstate(struct hfi1_devdata *dd, u32 chip_lstate)
12341 {
12342 	switch (chip_lstate) {
12343 	default:
12344 		dd_dev_err(dd,
12345 			   "Unknown logical state 0x%x, reporting IB_PORT_DOWN\n",
12346 			   chip_lstate);
12347 		/* fall through */
12348 	case LSTATE_DOWN:
12349 		return IB_PORT_DOWN;
12350 	case LSTATE_INIT:
12351 		return IB_PORT_INIT;
12352 	case LSTATE_ARMED:
12353 		return IB_PORT_ARMED;
12354 	case LSTATE_ACTIVE:
12355 		return IB_PORT_ACTIVE;
12356 	}
12357 }
12358 
12359 u32 chip_to_opa_pstate(struct hfi1_devdata *dd, u32 chip_pstate)
12360 {
12361 	/* look at the HFI meta-states only */
12362 	switch (chip_pstate & 0xf0) {
12363 	default:
12364 		dd_dev_err(dd, "Unexpected chip physical state of 0x%x\n",
12365 			   chip_pstate);
12366 		/* fall through */
12367 	case PLS_DISABLED:
12368 		return IB_PORTPHYSSTATE_DISABLED;
12369 	case PLS_OFFLINE:
12370 		return OPA_PORTPHYSSTATE_OFFLINE;
12371 	case PLS_POLLING:
12372 		return IB_PORTPHYSSTATE_POLLING;
12373 	case PLS_CONFIGPHY:
12374 		return IB_PORTPHYSSTATE_TRAINING;
12375 	case PLS_LINKUP:
12376 		return IB_PORTPHYSSTATE_LINKUP;
12377 	case PLS_PHYTEST:
12378 		return IB_PORTPHYSSTATE_PHY_TEST;
12379 	}
12380 }
12381 
12382 /* return the OPA port logical state name */
12383 const char *opa_lstate_name(u32 lstate)
12384 {
12385 	static const char * const port_logical_names[] = {
12386 		"PORT_NOP",
12387 		"PORT_DOWN",
12388 		"PORT_INIT",
12389 		"PORT_ARMED",
12390 		"PORT_ACTIVE",
12391 		"PORT_ACTIVE_DEFER",
12392 	};
12393 	if (lstate < ARRAY_SIZE(port_logical_names))
12394 		return port_logical_names[lstate];
12395 	return "unknown";
12396 }
12397 
12398 /* return the OPA port physical state name */
12399 const char *opa_pstate_name(u32 pstate)
12400 {
12401 	static const char * const port_physical_names[] = {
12402 		"PHYS_NOP",
12403 		"reserved1",
12404 		"PHYS_POLL",
12405 		"PHYS_DISABLED",
12406 		"PHYS_TRAINING",
12407 		"PHYS_LINKUP",
12408 		"PHYS_LINK_ERR_RECOVER",
12409 		"PHYS_PHY_TEST",
12410 		"reserved8",
12411 		"PHYS_OFFLINE",
12412 		"PHYS_GANGED",
12413 		"PHYS_TEST",
12414 	};
12415 	if (pstate < ARRAY_SIZE(port_physical_names))
12416 		return port_physical_names[pstate];
12417 	return "unknown";
12418 }
12419 
12420 /*
12421  * Read the hardware link state and set the driver's cached value of it.
12422  * Return the (new) current value.
12423  */
12424 u32 get_logical_state(struct hfi1_pportdata *ppd)
12425 {
12426 	u32 new_state;
12427 
12428 	new_state = chip_to_opa_lstate(ppd->dd, read_logical_state(ppd->dd));
12429 	if (new_state != ppd->lstate) {
12430 		dd_dev_info(ppd->dd, "logical state changed to %s (0x%x)\n",
12431 			    opa_lstate_name(new_state), new_state);
12432 		ppd->lstate = new_state;
12433 	}
12434 	/*
12435 	 * Set port status flags in the page mapped into userspace
12436 	 * memory. Do it here to ensure a reliable state - this is
12437 	 * the only function called by all state handling code.
12438 	 * Always set the flags due to the fact that the cache value
12439 	 * might have been changed explicitly outside of this
12440 	 * function.
12441 	 */
12442 	if (ppd->statusp) {
12443 		switch (ppd->lstate) {
12444 		case IB_PORT_DOWN:
12445 		case IB_PORT_INIT:
12446 			*ppd->statusp &= ~(HFI1_STATUS_IB_CONF |
12447 					   HFI1_STATUS_IB_READY);
12448 			break;
12449 		case IB_PORT_ARMED:
12450 			*ppd->statusp |= HFI1_STATUS_IB_CONF;
12451 			break;
12452 		case IB_PORT_ACTIVE:
12453 			*ppd->statusp |= HFI1_STATUS_IB_READY;
12454 			break;
12455 		}
12456 	}
12457 	return ppd->lstate;
12458 }
12459 
12460 /**
12461  * wait_logical_linkstate - wait for an IB link state change to occur
12462  * @ppd: port device
12463  * @state: the state to wait for
12464  * @msecs: the number of milliseconds to wait
12465  *
12466  * Wait up to msecs milliseconds for IB link state change to occur.
12467  * For now, take the easy polling route.
12468  * Returns 0 if state reached, otherwise -ETIMEDOUT.
12469  */
12470 static int wait_logical_linkstate(struct hfi1_pportdata *ppd, u32 state,
12471 				  int msecs)
12472 {
12473 	unsigned long timeout;
12474 
12475 	timeout = jiffies + msecs_to_jiffies(msecs);
12476 	while (1) {
12477 		if (get_logical_state(ppd) == state)
12478 			return 0;
12479 		if (time_after(jiffies, timeout))
12480 			break;
12481 		msleep(20);
12482 	}
12483 	dd_dev_err(ppd->dd, "timeout waiting for link state 0x%x\n", state);
12484 
12485 	return -ETIMEDOUT;
12486 }
12487 
12488 u8 hfi1_ibphys_portstate(struct hfi1_pportdata *ppd)
12489 {
12490 	u32 pstate;
12491 	u32 ib_pstate;
12492 
12493 	pstate = read_physical_state(ppd->dd);
12494 	ib_pstate = chip_to_opa_pstate(ppd->dd, pstate);
12495 	if (ppd->last_pstate != ib_pstate) {
12496 		dd_dev_info(ppd->dd,
12497 			    "%s: physical state changed to %s (0x%x), phy 0x%x\n",
12498 			    __func__, opa_pstate_name(ib_pstate), ib_pstate,
12499 			    pstate);
12500 		ppd->last_pstate = ib_pstate;
12501 	}
12502 	return ib_pstate;
12503 }
12504 
12505 #define CLEAR_STATIC_RATE_CONTROL_SMASK(r) \
12506 (r &= ~SEND_CTXT_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK)
12507 
12508 #define SET_STATIC_RATE_CONTROL_SMASK(r) \
12509 (r |= SEND_CTXT_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK)
12510 
12511 int hfi1_init_ctxt(struct send_context *sc)
12512 {
12513 	if (sc) {
12514 		struct hfi1_devdata *dd = sc->dd;
12515 		u64 reg;
12516 		u8 set = (sc->type == SC_USER ?
12517 			  HFI1_CAP_IS_USET(STATIC_RATE_CTRL) :
12518 			  HFI1_CAP_IS_KSET(STATIC_RATE_CTRL));
12519 		reg = read_kctxt_csr(dd, sc->hw_context,
12520 				     SEND_CTXT_CHECK_ENABLE);
12521 		if (set)
12522 			CLEAR_STATIC_RATE_CONTROL_SMASK(reg);
12523 		else
12524 			SET_STATIC_RATE_CONTROL_SMASK(reg);
12525 		write_kctxt_csr(dd, sc->hw_context,
12526 				SEND_CTXT_CHECK_ENABLE, reg);
12527 	}
12528 	return 0;
12529 }
12530 
12531 int hfi1_tempsense_rd(struct hfi1_devdata *dd, struct hfi1_temp *temp)
12532 {
12533 	int ret = 0;
12534 	u64 reg;
12535 
12536 	if (dd->icode != ICODE_RTL_SILICON) {
12537 		if (HFI1_CAP_IS_KSET(PRINT_UNIMPL))
12538 			dd_dev_info(dd, "%s: tempsense not supported by HW\n",
12539 				    __func__);
12540 		return -EINVAL;
12541 	}
12542 	reg = read_csr(dd, ASIC_STS_THERM);
12543 	temp->curr = ((reg >> ASIC_STS_THERM_CURR_TEMP_SHIFT) &
12544 		      ASIC_STS_THERM_CURR_TEMP_MASK);
12545 	temp->lo_lim = ((reg >> ASIC_STS_THERM_LO_TEMP_SHIFT) &
12546 			ASIC_STS_THERM_LO_TEMP_MASK);
12547 	temp->hi_lim = ((reg >> ASIC_STS_THERM_HI_TEMP_SHIFT) &
12548 			ASIC_STS_THERM_HI_TEMP_MASK);
12549 	temp->crit_lim = ((reg >> ASIC_STS_THERM_CRIT_TEMP_SHIFT) &
12550 			  ASIC_STS_THERM_CRIT_TEMP_MASK);
12551 	/* triggers is a 3-bit value - 1 bit per trigger. */
12552 	temp->triggers = (u8)((reg >> ASIC_STS_THERM_LOW_SHIFT) & 0x7);
12553 
12554 	return ret;
12555 }
12556 
12557 /* ========================================================================= */
12558 
12559 /*
12560  * Enable/disable chip from delivering interrupts.
12561  */
12562 void set_intr_state(struct hfi1_devdata *dd, u32 enable)
12563 {
12564 	int i;
12565 
12566 	/*
12567 	 * In HFI, the mask needs to be 1 to allow interrupts.
12568 	 */
12569 	if (enable) {
12570 		/* enable all interrupts */
12571 		for (i = 0; i < CCE_NUM_INT_CSRS; i++)
12572 			write_csr(dd, CCE_INT_MASK + (8 * i), ~(u64)0);
12573 
12574 		init_qsfp_int(dd);
12575 	} else {
12576 		for (i = 0; i < CCE_NUM_INT_CSRS; i++)
12577 			write_csr(dd, CCE_INT_MASK + (8 * i), 0ull);
12578 	}
12579 }
12580 
12581 /*
12582  * Clear all interrupt sources on the chip.
12583  */
12584 static void clear_all_interrupts(struct hfi1_devdata *dd)
12585 {
12586 	int i;
12587 
12588 	for (i = 0; i < CCE_NUM_INT_CSRS; i++)
12589 		write_csr(dd, CCE_INT_CLEAR + (8 * i), ~(u64)0);
12590 
12591 	write_csr(dd, CCE_ERR_CLEAR, ~(u64)0);
12592 	write_csr(dd, MISC_ERR_CLEAR, ~(u64)0);
12593 	write_csr(dd, RCV_ERR_CLEAR, ~(u64)0);
12594 	write_csr(dd, SEND_ERR_CLEAR, ~(u64)0);
12595 	write_csr(dd, SEND_PIO_ERR_CLEAR, ~(u64)0);
12596 	write_csr(dd, SEND_DMA_ERR_CLEAR, ~(u64)0);
12597 	write_csr(dd, SEND_EGRESS_ERR_CLEAR, ~(u64)0);
12598 	for (i = 0; i < dd->chip_send_contexts; i++)
12599 		write_kctxt_csr(dd, i, SEND_CTXT_ERR_CLEAR, ~(u64)0);
12600 	for (i = 0; i < dd->chip_sdma_engines; i++)
12601 		write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_CLEAR, ~(u64)0);
12602 
12603 	write_csr(dd, DCC_ERR_FLG_CLR, ~(u64)0);
12604 	write_csr(dd, DC_LCB_ERR_CLR, ~(u64)0);
12605 	write_csr(dd, DC_DC8051_ERR_CLR, ~(u64)0);
12606 }
12607 
12608 /* Move to pcie.c? */
12609 static void disable_intx(struct pci_dev *pdev)
12610 {
12611 	pci_intx(pdev, 0);
12612 }
12613 
12614 static void clean_up_interrupts(struct hfi1_devdata *dd)
12615 {
12616 	int i;
12617 
12618 	/* remove irqs - must happen before disabling/turning off */
12619 	if (dd->num_msix_entries) {
12620 		/* MSI-X */
12621 		struct hfi1_msix_entry *me = dd->msix_entries;
12622 
12623 		for (i = 0; i < dd->num_msix_entries; i++, me++) {
12624 			if (!me->arg) /* => no irq, no affinity */
12625 				continue;
12626 			hfi1_put_irq_affinity(dd, &dd->msix_entries[i]);
12627 			free_irq(me->msix.vector, me->arg);
12628 		}
12629 	} else {
12630 		/* INTx */
12631 		if (dd->requested_intx_irq) {
12632 			free_irq(dd->pcidev->irq, dd);
12633 			dd->requested_intx_irq = 0;
12634 		}
12635 	}
12636 
12637 	/* turn off interrupts */
12638 	if (dd->num_msix_entries) {
12639 		/* MSI-X */
12640 		pci_disable_msix(dd->pcidev);
12641 	} else {
12642 		/* INTx */
12643 		disable_intx(dd->pcidev);
12644 	}
12645 
12646 	/* clean structures */
12647 	kfree(dd->msix_entries);
12648 	dd->msix_entries = NULL;
12649 	dd->num_msix_entries = 0;
12650 }
12651 
12652 /*
12653  * Remap the interrupt source from the general handler to the given MSI-X
12654  * interrupt.
12655  */
12656 static void remap_intr(struct hfi1_devdata *dd, int isrc, int msix_intr)
12657 {
12658 	u64 reg;
12659 	int m, n;
12660 
12661 	/* clear from the handled mask of the general interrupt */
12662 	m = isrc / 64;
12663 	n = isrc % 64;
12664 	dd->gi_mask[m] &= ~((u64)1 << n);
12665 
12666 	/* direct the chip source to the given MSI-X interrupt */
12667 	m = isrc / 8;
12668 	n = isrc % 8;
12669 	reg = read_csr(dd, CCE_INT_MAP + (8 * m));
12670 	reg &= ~((u64)0xff << (8 * n));
12671 	reg |= ((u64)msix_intr & 0xff) << (8 * n);
12672 	write_csr(dd, CCE_INT_MAP + (8 * m), reg);
12673 }
12674 
12675 static void remap_sdma_interrupts(struct hfi1_devdata *dd,
12676 				  int engine, int msix_intr)
12677 {
12678 	/*
12679 	 * SDMA engine interrupt sources grouped by type, rather than
12680 	 * engine.  Per-engine interrupts are as follows:
12681 	 *	SDMA
12682 	 *	SDMAProgress
12683 	 *	SDMAIdle
12684 	 */
12685 	remap_intr(dd, IS_SDMA_START + 0 * TXE_NUM_SDMA_ENGINES + engine,
12686 		   msix_intr);
12687 	remap_intr(dd, IS_SDMA_START + 1 * TXE_NUM_SDMA_ENGINES + engine,
12688 		   msix_intr);
12689 	remap_intr(dd, IS_SDMA_START + 2 * TXE_NUM_SDMA_ENGINES + engine,
12690 		   msix_intr);
12691 }
12692 
12693 static int request_intx_irq(struct hfi1_devdata *dd)
12694 {
12695 	int ret;
12696 
12697 	snprintf(dd->intx_name, sizeof(dd->intx_name), DRIVER_NAME "_%d",
12698 		 dd->unit);
12699 	ret = request_irq(dd->pcidev->irq, general_interrupt,
12700 			  IRQF_SHARED, dd->intx_name, dd);
12701 	if (ret)
12702 		dd_dev_err(dd, "unable to request INTx interrupt, err %d\n",
12703 			   ret);
12704 	else
12705 		dd->requested_intx_irq = 1;
12706 	return ret;
12707 }
12708 
12709 static int request_msix_irqs(struct hfi1_devdata *dd)
12710 {
12711 	int first_general, last_general;
12712 	int first_sdma, last_sdma;
12713 	int first_rx, last_rx;
12714 	int i, ret = 0;
12715 
12716 	/* calculate the ranges we are going to use */
12717 	first_general = 0;
12718 	last_general = first_general + 1;
12719 	first_sdma = last_general;
12720 	last_sdma = first_sdma + dd->num_sdma;
12721 	first_rx = last_sdma;
12722 	last_rx = first_rx + dd->n_krcv_queues;
12723 
12724 	/*
12725 	 * Sanity check - the code expects all SDMA chip source
12726 	 * interrupts to be in the same CSR, starting at bit 0.  Verify
12727 	 * that this is true by checking the bit location of the start.
12728 	 */
12729 	BUILD_BUG_ON(IS_SDMA_START % 64);
12730 
12731 	for (i = 0; i < dd->num_msix_entries; i++) {
12732 		struct hfi1_msix_entry *me = &dd->msix_entries[i];
12733 		const char *err_info;
12734 		irq_handler_t handler;
12735 		irq_handler_t thread = NULL;
12736 		void *arg;
12737 		int idx;
12738 		struct hfi1_ctxtdata *rcd = NULL;
12739 		struct sdma_engine *sde = NULL;
12740 
12741 		/* obtain the arguments to request_irq */
12742 		if (first_general <= i && i < last_general) {
12743 			idx = i - first_general;
12744 			handler = general_interrupt;
12745 			arg = dd;
12746 			snprintf(me->name, sizeof(me->name),
12747 				 DRIVER_NAME "_%d", dd->unit);
12748 			err_info = "general";
12749 			me->type = IRQ_GENERAL;
12750 		} else if (first_sdma <= i && i < last_sdma) {
12751 			idx = i - first_sdma;
12752 			sde = &dd->per_sdma[idx];
12753 			handler = sdma_interrupt;
12754 			arg = sde;
12755 			snprintf(me->name, sizeof(me->name),
12756 				 DRIVER_NAME "_%d sdma%d", dd->unit, idx);
12757 			err_info = "sdma";
12758 			remap_sdma_interrupts(dd, idx, i);
12759 			me->type = IRQ_SDMA;
12760 		} else if (first_rx <= i && i < last_rx) {
12761 			idx = i - first_rx;
12762 			rcd = dd->rcd[idx];
12763 			/* no interrupt if no rcd */
12764 			if (!rcd)
12765 				continue;
12766 			/*
12767 			 * Set the interrupt register and mask for this
12768 			 * context's interrupt.
12769 			 */
12770 			rcd->ireg = (IS_RCVAVAIL_START + idx) / 64;
12771 			rcd->imask = ((u64)1) <<
12772 					((IS_RCVAVAIL_START + idx) % 64);
12773 			handler = receive_context_interrupt;
12774 			thread = receive_context_thread;
12775 			arg = rcd;
12776 			snprintf(me->name, sizeof(me->name),
12777 				 DRIVER_NAME "_%d kctxt%d", dd->unit, idx);
12778 			err_info = "receive context";
12779 			remap_intr(dd, IS_RCVAVAIL_START + idx, i);
12780 			me->type = IRQ_RCVCTXT;
12781 		} else {
12782 			/* not in our expected range - complain, then
12783 			 * ignore it
12784 			 */
12785 			dd_dev_err(dd,
12786 				   "Unexpected extra MSI-X interrupt %d\n", i);
12787 			continue;
12788 		}
12789 		/* no argument, no interrupt */
12790 		if (!arg)
12791 			continue;
12792 		/* make sure the name is terminated */
12793 		me->name[sizeof(me->name) - 1] = 0;
12794 
12795 		ret = request_threaded_irq(me->msix.vector, handler, thread, 0,
12796 					   me->name, arg);
12797 		if (ret) {
12798 			dd_dev_err(dd,
12799 				   "unable to allocate %s interrupt, vector %d, index %d, err %d\n",
12800 				   err_info, me->msix.vector, idx, ret);
12801 			return ret;
12802 		}
12803 		/*
12804 		 * assign arg after request_irq call, so it will be
12805 		 * cleaned up
12806 		 */
12807 		me->arg = arg;
12808 
12809 		ret = hfi1_get_irq_affinity(dd, me);
12810 		if (ret)
12811 			dd_dev_err(dd,
12812 				   "unable to pin IRQ %d\n", ret);
12813 	}
12814 
12815 	return ret;
12816 }
12817 
12818 /*
12819  * Set the general handler to accept all interrupts, remap all
12820  * chip interrupts back to MSI-X 0.
12821  */
12822 static void reset_interrupts(struct hfi1_devdata *dd)
12823 {
12824 	int i;
12825 
12826 	/* all interrupts handled by the general handler */
12827 	for (i = 0; i < CCE_NUM_INT_CSRS; i++)
12828 		dd->gi_mask[i] = ~(u64)0;
12829 
12830 	/* all chip interrupts map to MSI-X 0 */
12831 	for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++)
12832 		write_csr(dd, CCE_INT_MAP + (8 * i), 0);
12833 }
12834 
12835 static int set_up_interrupts(struct hfi1_devdata *dd)
12836 {
12837 	struct hfi1_msix_entry *entries;
12838 	u32 total, request;
12839 	int i, ret;
12840 	int single_interrupt = 0; /* we expect to have all the interrupts */
12841 
12842 	/*
12843 	 * Interrupt count:
12844 	 *	1 general, "slow path" interrupt (includes the SDMA engines
12845 	 *		slow source, SDMACleanupDone)
12846 	 *	N interrupts - one per used SDMA engine
12847 	 *	M interrupt - one per kernel receive context
12848 	 */
12849 	total = 1 + dd->num_sdma + dd->n_krcv_queues;
12850 
12851 	entries = kcalloc(total, sizeof(*entries), GFP_KERNEL);
12852 	if (!entries) {
12853 		ret = -ENOMEM;
12854 		goto fail;
12855 	}
12856 	/* 1-1 MSI-X entry assignment */
12857 	for (i = 0; i < total; i++)
12858 		entries[i].msix.entry = i;
12859 
12860 	/* ask for MSI-X interrupts */
12861 	request = total;
12862 	request_msix(dd, &request, entries);
12863 
12864 	if (request == 0) {
12865 		/* using INTx */
12866 		/* dd->num_msix_entries already zero */
12867 		kfree(entries);
12868 		single_interrupt = 1;
12869 		dd_dev_err(dd, "MSI-X failed, using INTx interrupts\n");
12870 	} else {
12871 		/* using MSI-X */
12872 		dd->num_msix_entries = request;
12873 		dd->msix_entries = entries;
12874 
12875 		if (request != total) {
12876 			/* using MSI-X, with reduced interrupts */
12877 			dd_dev_err(
12878 				dd,
12879 				"cannot handle reduced interrupt case, want %u, got %u\n",
12880 				total, request);
12881 			ret = -EINVAL;
12882 			goto fail;
12883 		}
12884 		dd_dev_info(dd, "%u MSI-X interrupts allocated\n", total);
12885 	}
12886 
12887 	/* mask all interrupts */
12888 	set_intr_state(dd, 0);
12889 	/* clear all pending interrupts */
12890 	clear_all_interrupts(dd);
12891 
12892 	/* reset general handler mask, chip MSI-X mappings */
12893 	reset_interrupts(dd);
12894 
12895 	if (single_interrupt)
12896 		ret = request_intx_irq(dd);
12897 	else
12898 		ret = request_msix_irqs(dd);
12899 	if (ret)
12900 		goto fail;
12901 
12902 	return 0;
12903 
12904 fail:
12905 	clean_up_interrupts(dd);
12906 	return ret;
12907 }
12908 
12909 /*
12910  * Set up context values in dd.  Sets:
12911  *
12912  *	num_rcv_contexts - number of contexts being used
12913  *	n_krcv_queues - number of kernel contexts
12914  *	first_user_ctxt - first non-kernel context in array of contexts
12915  *	freectxts  - number of free user contexts
12916  *	num_send_contexts - number of PIO send contexts being used
12917  */
12918 static int set_up_context_variables(struct hfi1_devdata *dd)
12919 {
12920 	unsigned long num_kernel_contexts;
12921 	int total_contexts;
12922 	int ret;
12923 	unsigned ngroups;
12924 	int qos_rmt_count;
12925 	int user_rmt_reduced;
12926 
12927 	/*
12928 	 * Kernel receive contexts:
12929 	 * - Context 0 - control context (VL15/multicast/error)
12930 	 * - Context 1 - first kernel context
12931 	 * - Context 2 - second kernel context
12932 	 * ...
12933 	 */
12934 	if (n_krcvqs)
12935 		/*
12936 		 * n_krcvqs is the sum of module parameter kernel receive
12937 		 * contexts, krcvqs[].  It does not include the control
12938 		 * context, so add that.
12939 		 */
12940 		num_kernel_contexts = n_krcvqs + 1;
12941 	else
12942 		num_kernel_contexts = DEFAULT_KRCVQS + 1;
12943 	/*
12944 	 * Every kernel receive context needs an ACK send context.
12945 	 * one send context is allocated for each VL{0-7} and VL15
12946 	 */
12947 	if (num_kernel_contexts > (dd->chip_send_contexts - num_vls - 1)) {
12948 		dd_dev_err(dd,
12949 			   "Reducing # kernel rcv contexts to: %d, from %lu\n",
12950 			   (int)(dd->chip_send_contexts - num_vls - 1),
12951 			   num_kernel_contexts);
12952 		num_kernel_contexts = dd->chip_send_contexts - num_vls - 1;
12953 	}
12954 	/*
12955 	 * User contexts:
12956 	 *	- default to 1 user context per real (non-HT) CPU core if
12957 	 *	  num_user_contexts is negative
12958 	 */
12959 	if (num_user_contexts < 0)
12960 		num_user_contexts =
12961 			cpumask_weight(&node_affinity.real_cpu_mask);
12962 
12963 	total_contexts = num_kernel_contexts + num_user_contexts;
12964 
12965 	/*
12966 	 * Adjust the counts given a global max.
12967 	 */
12968 	if (total_contexts > dd->chip_rcv_contexts) {
12969 		dd_dev_err(dd,
12970 			   "Reducing # user receive contexts to: %d, from %d\n",
12971 			   (int)(dd->chip_rcv_contexts - num_kernel_contexts),
12972 			   (int)num_user_contexts);
12973 		num_user_contexts = dd->chip_rcv_contexts - num_kernel_contexts;
12974 		/* recalculate */
12975 		total_contexts = num_kernel_contexts + num_user_contexts;
12976 	}
12977 
12978 	/* each user context requires an entry in the RMT */
12979 	qos_rmt_count = qos_rmt_entries(dd, NULL, NULL);
12980 	if (qos_rmt_count + num_user_contexts > NUM_MAP_ENTRIES) {
12981 		user_rmt_reduced = NUM_MAP_ENTRIES - qos_rmt_count;
12982 		dd_dev_err(dd,
12983 			   "RMT size is reducing the number of user receive contexts from %d to %d\n",
12984 			   (int)num_user_contexts,
12985 			   user_rmt_reduced);
12986 		/* recalculate */
12987 		num_user_contexts = user_rmt_reduced;
12988 		total_contexts = num_kernel_contexts + num_user_contexts;
12989 	}
12990 
12991 	/* the first N are kernel contexts, the rest are user contexts */
12992 	dd->num_rcv_contexts = total_contexts;
12993 	dd->n_krcv_queues = num_kernel_contexts;
12994 	dd->first_user_ctxt = num_kernel_contexts;
12995 	dd->num_user_contexts = num_user_contexts;
12996 	dd->freectxts = num_user_contexts;
12997 	dd_dev_info(dd,
12998 		    "rcv contexts: chip %d, used %d (kernel %d, user %d)\n",
12999 		    (int)dd->chip_rcv_contexts,
13000 		    (int)dd->num_rcv_contexts,
13001 		    (int)dd->n_krcv_queues,
13002 		    (int)dd->num_rcv_contexts - dd->n_krcv_queues);
13003 
13004 	/*
13005 	 * Receive array allocation:
13006 	 *   All RcvArray entries are divided into groups of 8. This
13007 	 *   is required by the hardware and will speed up writes to
13008 	 *   consecutive entries by using write-combining of the entire
13009 	 *   cacheline.
13010 	 *
13011 	 *   The number of groups are evenly divided among all contexts.
13012 	 *   any left over groups will be given to the first N user
13013 	 *   contexts.
13014 	 */
13015 	dd->rcv_entries.group_size = RCV_INCREMENT;
13016 	ngroups = dd->chip_rcv_array_count / dd->rcv_entries.group_size;
13017 	dd->rcv_entries.ngroups = ngroups / dd->num_rcv_contexts;
13018 	dd->rcv_entries.nctxt_extra = ngroups -
13019 		(dd->num_rcv_contexts * dd->rcv_entries.ngroups);
13020 	dd_dev_info(dd, "RcvArray groups %u, ctxts extra %u\n",
13021 		    dd->rcv_entries.ngroups,
13022 		    dd->rcv_entries.nctxt_extra);
13023 	if (dd->rcv_entries.ngroups * dd->rcv_entries.group_size >
13024 	    MAX_EAGER_ENTRIES * 2) {
13025 		dd->rcv_entries.ngroups = (MAX_EAGER_ENTRIES * 2) /
13026 			dd->rcv_entries.group_size;
13027 		dd_dev_info(dd,
13028 			    "RcvArray group count too high, change to %u\n",
13029 			    dd->rcv_entries.ngroups);
13030 		dd->rcv_entries.nctxt_extra = 0;
13031 	}
13032 	/*
13033 	 * PIO send contexts
13034 	 */
13035 	ret = init_sc_pools_and_sizes(dd);
13036 	if (ret >= 0) {	/* success */
13037 		dd->num_send_contexts = ret;
13038 		dd_dev_info(
13039 			dd,
13040 			"send contexts: chip %d, used %d (kernel %d, ack %d, user %d, vl15 %d)\n",
13041 			dd->chip_send_contexts,
13042 			dd->num_send_contexts,
13043 			dd->sc_sizes[SC_KERNEL].count,
13044 			dd->sc_sizes[SC_ACK].count,
13045 			dd->sc_sizes[SC_USER].count,
13046 			dd->sc_sizes[SC_VL15].count);
13047 		ret = 0;	/* success */
13048 	}
13049 
13050 	return ret;
13051 }
13052 
13053 /*
13054  * Set the device/port partition key table. The MAD code
13055  * will ensure that, at least, the partial management
13056  * partition key is present in the table.
13057  */
13058 static void set_partition_keys(struct hfi1_pportdata *ppd)
13059 {
13060 	struct hfi1_devdata *dd = ppd->dd;
13061 	u64 reg = 0;
13062 	int i;
13063 
13064 	dd_dev_info(dd, "Setting partition keys\n");
13065 	for (i = 0; i < hfi1_get_npkeys(dd); i++) {
13066 		reg |= (ppd->pkeys[i] &
13067 			RCV_PARTITION_KEY_PARTITION_KEY_A_MASK) <<
13068 			((i % 4) *
13069 			 RCV_PARTITION_KEY_PARTITION_KEY_B_SHIFT);
13070 		/* Each register holds 4 PKey values. */
13071 		if ((i % 4) == 3) {
13072 			write_csr(dd, RCV_PARTITION_KEY +
13073 				  ((i - 3) * 2), reg);
13074 			reg = 0;
13075 		}
13076 	}
13077 
13078 	/* Always enable HW pkeys check when pkeys table is set */
13079 	add_rcvctrl(dd, RCV_CTRL_RCV_PARTITION_KEY_ENABLE_SMASK);
13080 }
13081 
13082 /*
13083  * These CSRs and memories are uninitialized on reset and must be
13084  * written before reading to set the ECC/parity bits.
13085  *
13086  * NOTE: All user context CSRs that are not mmaped write-only
13087  * (e.g. the TID flows) must be initialized even if the driver never
13088  * reads them.
13089  */
13090 static void write_uninitialized_csrs_and_memories(struct hfi1_devdata *dd)
13091 {
13092 	int i, j;
13093 
13094 	/* CceIntMap */
13095 	for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++)
13096 		write_csr(dd, CCE_INT_MAP + (8 * i), 0);
13097 
13098 	/* SendCtxtCreditReturnAddr */
13099 	for (i = 0; i < dd->chip_send_contexts; i++)
13100 		write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_RETURN_ADDR, 0);
13101 
13102 	/* PIO Send buffers */
13103 	/* SDMA Send buffers */
13104 	/*
13105 	 * These are not normally read, and (presently) have no method
13106 	 * to be read, so are not pre-initialized
13107 	 */
13108 
13109 	/* RcvHdrAddr */
13110 	/* RcvHdrTailAddr */
13111 	/* RcvTidFlowTable */
13112 	for (i = 0; i < dd->chip_rcv_contexts; i++) {
13113 		write_kctxt_csr(dd, i, RCV_HDR_ADDR, 0);
13114 		write_kctxt_csr(dd, i, RCV_HDR_TAIL_ADDR, 0);
13115 		for (j = 0; j < RXE_NUM_TID_FLOWS; j++)
13116 			write_uctxt_csr(dd, i, RCV_TID_FLOW_TABLE + (8 * j), 0);
13117 	}
13118 
13119 	/* RcvArray */
13120 	for (i = 0; i < dd->chip_rcv_array_count; i++)
13121 		write_csr(dd, RCV_ARRAY + (8 * i),
13122 			  RCV_ARRAY_RT_WRITE_ENABLE_SMASK);
13123 
13124 	/* RcvQPMapTable */
13125 	for (i = 0; i < 32; i++)
13126 		write_csr(dd, RCV_QP_MAP_TABLE + (8 * i), 0);
13127 }
13128 
13129 /*
13130  * Use the ctrl_bits in CceCtrl to clear the status_bits in CceStatus.
13131  */
13132 static void clear_cce_status(struct hfi1_devdata *dd, u64 status_bits,
13133 			     u64 ctrl_bits)
13134 {
13135 	unsigned long timeout;
13136 	u64 reg;
13137 
13138 	/* is the condition present? */
13139 	reg = read_csr(dd, CCE_STATUS);
13140 	if ((reg & status_bits) == 0)
13141 		return;
13142 
13143 	/* clear the condition */
13144 	write_csr(dd, CCE_CTRL, ctrl_bits);
13145 
13146 	/* wait for the condition to clear */
13147 	timeout = jiffies + msecs_to_jiffies(CCE_STATUS_TIMEOUT);
13148 	while (1) {
13149 		reg = read_csr(dd, CCE_STATUS);
13150 		if ((reg & status_bits) == 0)
13151 			return;
13152 		if (time_after(jiffies, timeout)) {
13153 			dd_dev_err(dd,
13154 				   "Timeout waiting for CceStatus to clear bits 0x%llx, remaining 0x%llx\n",
13155 				   status_bits, reg & status_bits);
13156 			return;
13157 		}
13158 		udelay(1);
13159 	}
13160 }
13161 
13162 /* set CCE CSRs to chip reset defaults */
13163 static void reset_cce_csrs(struct hfi1_devdata *dd)
13164 {
13165 	int i;
13166 
13167 	/* CCE_REVISION read-only */
13168 	/* CCE_REVISION2 read-only */
13169 	/* CCE_CTRL - bits clear automatically */
13170 	/* CCE_STATUS read-only, use CceCtrl to clear */
13171 	clear_cce_status(dd, ALL_FROZE, CCE_CTRL_SPC_UNFREEZE_SMASK);
13172 	clear_cce_status(dd, ALL_TXE_PAUSE, CCE_CTRL_TXE_RESUME_SMASK);
13173 	clear_cce_status(dd, ALL_RXE_PAUSE, CCE_CTRL_RXE_RESUME_SMASK);
13174 	for (i = 0; i < CCE_NUM_SCRATCH; i++)
13175 		write_csr(dd, CCE_SCRATCH + (8 * i), 0);
13176 	/* CCE_ERR_STATUS read-only */
13177 	write_csr(dd, CCE_ERR_MASK, 0);
13178 	write_csr(dd, CCE_ERR_CLEAR, ~0ull);
13179 	/* CCE_ERR_FORCE leave alone */
13180 	for (i = 0; i < CCE_NUM_32_BIT_COUNTERS; i++)
13181 		write_csr(dd, CCE_COUNTER_ARRAY32 + (8 * i), 0);
13182 	write_csr(dd, CCE_DC_CTRL, CCE_DC_CTRL_RESETCSR);
13183 	/* CCE_PCIE_CTRL leave alone */
13184 	for (i = 0; i < CCE_NUM_MSIX_VECTORS; i++) {
13185 		write_csr(dd, CCE_MSIX_TABLE_LOWER + (8 * i), 0);
13186 		write_csr(dd, CCE_MSIX_TABLE_UPPER + (8 * i),
13187 			  CCE_MSIX_TABLE_UPPER_RESETCSR);
13188 	}
13189 	for (i = 0; i < CCE_NUM_MSIX_PBAS; i++) {
13190 		/* CCE_MSIX_PBA read-only */
13191 		write_csr(dd, CCE_MSIX_INT_GRANTED, ~0ull);
13192 		write_csr(dd, CCE_MSIX_VEC_CLR_WITHOUT_INT, ~0ull);
13193 	}
13194 	for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++)
13195 		write_csr(dd, CCE_INT_MAP, 0);
13196 	for (i = 0; i < CCE_NUM_INT_CSRS; i++) {
13197 		/* CCE_INT_STATUS read-only */
13198 		write_csr(dd, CCE_INT_MASK + (8 * i), 0);
13199 		write_csr(dd, CCE_INT_CLEAR + (8 * i), ~0ull);
13200 		/* CCE_INT_FORCE leave alone */
13201 		/* CCE_INT_BLOCKED read-only */
13202 	}
13203 	for (i = 0; i < CCE_NUM_32_BIT_INT_COUNTERS; i++)
13204 		write_csr(dd, CCE_INT_COUNTER_ARRAY32 + (8 * i), 0);
13205 }
13206 
13207 /* set MISC CSRs to chip reset defaults */
13208 static void reset_misc_csrs(struct hfi1_devdata *dd)
13209 {
13210 	int i;
13211 
13212 	for (i = 0; i < 32; i++) {
13213 		write_csr(dd, MISC_CFG_RSA_R2 + (8 * i), 0);
13214 		write_csr(dd, MISC_CFG_RSA_SIGNATURE + (8 * i), 0);
13215 		write_csr(dd, MISC_CFG_RSA_MODULUS + (8 * i), 0);
13216 	}
13217 	/*
13218 	 * MISC_CFG_SHA_PRELOAD leave alone - always reads 0 and can
13219 	 * only be written 128-byte chunks
13220 	 */
13221 	/* init RSA engine to clear lingering errors */
13222 	write_csr(dd, MISC_CFG_RSA_CMD, 1);
13223 	write_csr(dd, MISC_CFG_RSA_MU, 0);
13224 	write_csr(dd, MISC_CFG_FW_CTRL, 0);
13225 	/* MISC_STS_8051_DIGEST read-only */
13226 	/* MISC_STS_SBM_DIGEST read-only */
13227 	/* MISC_STS_PCIE_DIGEST read-only */
13228 	/* MISC_STS_FAB_DIGEST read-only */
13229 	/* MISC_ERR_STATUS read-only */
13230 	write_csr(dd, MISC_ERR_MASK, 0);
13231 	write_csr(dd, MISC_ERR_CLEAR, ~0ull);
13232 	/* MISC_ERR_FORCE leave alone */
13233 }
13234 
13235 /* set TXE CSRs to chip reset defaults */
13236 static void reset_txe_csrs(struct hfi1_devdata *dd)
13237 {
13238 	int i;
13239 
13240 	/*
13241 	 * TXE Kernel CSRs
13242 	 */
13243 	write_csr(dd, SEND_CTRL, 0);
13244 	__cm_reset(dd, 0);	/* reset CM internal state */
13245 	/* SEND_CONTEXTS read-only */
13246 	/* SEND_DMA_ENGINES read-only */
13247 	/* SEND_PIO_MEM_SIZE read-only */
13248 	/* SEND_DMA_MEM_SIZE read-only */
13249 	write_csr(dd, SEND_HIGH_PRIORITY_LIMIT, 0);
13250 	pio_reset_all(dd);	/* SEND_PIO_INIT_CTXT */
13251 	/* SEND_PIO_ERR_STATUS read-only */
13252 	write_csr(dd, SEND_PIO_ERR_MASK, 0);
13253 	write_csr(dd, SEND_PIO_ERR_CLEAR, ~0ull);
13254 	/* SEND_PIO_ERR_FORCE leave alone */
13255 	/* SEND_DMA_ERR_STATUS read-only */
13256 	write_csr(dd, SEND_DMA_ERR_MASK, 0);
13257 	write_csr(dd, SEND_DMA_ERR_CLEAR, ~0ull);
13258 	/* SEND_DMA_ERR_FORCE leave alone */
13259 	/* SEND_EGRESS_ERR_STATUS read-only */
13260 	write_csr(dd, SEND_EGRESS_ERR_MASK, 0);
13261 	write_csr(dd, SEND_EGRESS_ERR_CLEAR, ~0ull);
13262 	/* SEND_EGRESS_ERR_FORCE leave alone */
13263 	write_csr(dd, SEND_BTH_QP, 0);
13264 	write_csr(dd, SEND_STATIC_RATE_CONTROL, 0);
13265 	write_csr(dd, SEND_SC2VLT0, 0);
13266 	write_csr(dd, SEND_SC2VLT1, 0);
13267 	write_csr(dd, SEND_SC2VLT2, 0);
13268 	write_csr(dd, SEND_SC2VLT3, 0);
13269 	write_csr(dd, SEND_LEN_CHECK0, 0);
13270 	write_csr(dd, SEND_LEN_CHECK1, 0);
13271 	/* SEND_ERR_STATUS read-only */
13272 	write_csr(dd, SEND_ERR_MASK, 0);
13273 	write_csr(dd, SEND_ERR_CLEAR, ~0ull);
13274 	/* SEND_ERR_FORCE read-only */
13275 	for (i = 0; i < VL_ARB_LOW_PRIO_TABLE_SIZE; i++)
13276 		write_csr(dd, SEND_LOW_PRIORITY_LIST + (8 * i), 0);
13277 	for (i = 0; i < VL_ARB_HIGH_PRIO_TABLE_SIZE; i++)
13278 		write_csr(dd, SEND_HIGH_PRIORITY_LIST + (8 * i), 0);
13279 	for (i = 0; i < dd->chip_send_contexts / NUM_CONTEXTS_PER_SET; i++)
13280 		write_csr(dd, SEND_CONTEXT_SET_CTRL + (8 * i), 0);
13281 	for (i = 0; i < TXE_NUM_32_BIT_COUNTER; i++)
13282 		write_csr(dd, SEND_COUNTER_ARRAY32 + (8 * i), 0);
13283 	for (i = 0; i < TXE_NUM_64_BIT_COUNTER; i++)
13284 		write_csr(dd, SEND_COUNTER_ARRAY64 + (8 * i), 0);
13285 	write_csr(dd, SEND_CM_CTRL, SEND_CM_CTRL_RESETCSR);
13286 	write_csr(dd, SEND_CM_GLOBAL_CREDIT, SEND_CM_GLOBAL_CREDIT_RESETCSR);
13287 	/* SEND_CM_CREDIT_USED_STATUS read-only */
13288 	write_csr(dd, SEND_CM_TIMER_CTRL, 0);
13289 	write_csr(dd, SEND_CM_LOCAL_AU_TABLE0_TO3, 0);
13290 	write_csr(dd, SEND_CM_LOCAL_AU_TABLE4_TO7, 0);
13291 	write_csr(dd, SEND_CM_REMOTE_AU_TABLE0_TO3, 0);
13292 	write_csr(dd, SEND_CM_REMOTE_AU_TABLE4_TO7, 0);
13293 	for (i = 0; i < TXE_NUM_DATA_VL; i++)
13294 		write_csr(dd, SEND_CM_CREDIT_VL + (8 * i), 0);
13295 	write_csr(dd, SEND_CM_CREDIT_VL15, 0);
13296 	/* SEND_CM_CREDIT_USED_VL read-only */
13297 	/* SEND_CM_CREDIT_USED_VL15 read-only */
13298 	/* SEND_EGRESS_CTXT_STATUS read-only */
13299 	/* SEND_EGRESS_SEND_DMA_STATUS read-only */
13300 	write_csr(dd, SEND_EGRESS_ERR_INFO, ~0ull);
13301 	/* SEND_EGRESS_ERR_INFO read-only */
13302 	/* SEND_EGRESS_ERR_SOURCE read-only */
13303 
13304 	/*
13305 	 * TXE Per-Context CSRs
13306 	 */
13307 	for (i = 0; i < dd->chip_send_contexts; i++) {
13308 		write_kctxt_csr(dd, i, SEND_CTXT_CTRL, 0);
13309 		write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_CTRL, 0);
13310 		write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_RETURN_ADDR, 0);
13311 		write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_FORCE, 0);
13312 		write_kctxt_csr(dd, i, SEND_CTXT_ERR_MASK, 0);
13313 		write_kctxt_csr(dd, i, SEND_CTXT_ERR_CLEAR, ~0ull);
13314 		write_kctxt_csr(dd, i, SEND_CTXT_CHECK_ENABLE, 0);
13315 		write_kctxt_csr(dd, i, SEND_CTXT_CHECK_VL, 0);
13316 		write_kctxt_csr(dd, i, SEND_CTXT_CHECK_JOB_KEY, 0);
13317 		write_kctxt_csr(dd, i, SEND_CTXT_CHECK_PARTITION_KEY, 0);
13318 		write_kctxt_csr(dd, i, SEND_CTXT_CHECK_SLID, 0);
13319 		write_kctxt_csr(dd, i, SEND_CTXT_CHECK_OPCODE, 0);
13320 	}
13321 
13322 	/*
13323 	 * TXE Per-SDMA CSRs
13324 	 */
13325 	for (i = 0; i < dd->chip_sdma_engines; i++) {
13326 		write_kctxt_csr(dd, i, SEND_DMA_CTRL, 0);
13327 		/* SEND_DMA_STATUS read-only */
13328 		write_kctxt_csr(dd, i, SEND_DMA_BASE_ADDR, 0);
13329 		write_kctxt_csr(dd, i, SEND_DMA_LEN_GEN, 0);
13330 		write_kctxt_csr(dd, i, SEND_DMA_TAIL, 0);
13331 		/* SEND_DMA_HEAD read-only */
13332 		write_kctxt_csr(dd, i, SEND_DMA_HEAD_ADDR, 0);
13333 		write_kctxt_csr(dd, i, SEND_DMA_PRIORITY_THLD, 0);
13334 		/* SEND_DMA_IDLE_CNT read-only */
13335 		write_kctxt_csr(dd, i, SEND_DMA_RELOAD_CNT, 0);
13336 		write_kctxt_csr(dd, i, SEND_DMA_DESC_CNT, 0);
13337 		/* SEND_DMA_DESC_FETCHED_CNT read-only */
13338 		/* SEND_DMA_ENG_ERR_STATUS read-only */
13339 		write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_MASK, 0);
13340 		write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_CLEAR, ~0ull);
13341 		/* SEND_DMA_ENG_ERR_FORCE leave alone */
13342 		write_kctxt_csr(dd, i, SEND_DMA_CHECK_ENABLE, 0);
13343 		write_kctxt_csr(dd, i, SEND_DMA_CHECK_VL, 0);
13344 		write_kctxt_csr(dd, i, SEND_DMA_CHECK_JOB_KEY, 0);
13345 		write_kctxt_csr(dd, i, SEND_DMA_CHECK_PARTITION_KEY, 0);
13346 		write_kctxt_csr(dd, i, SEND_DMA_CHECK_SLID, 0);
13347 		write_kctxt_csr(dd, i, SEND_DMA_CHECK_OPCODE, 0);
13348 		write_kctxt_csr(dd, i, SEND_DMA_MEMORY, 0);
13349 	}
13350 }
13351 
13352 /*
13353  * Expect on entry:
13354  * o Packet ingress is disabled, i.e. RcvCtrl.RcvPortEnable == 0
13355  */
13356 static void init_rbufs(struct hfi1_devdata *dd)
13357 {
13358 	u64 reg;
13359 	int count;
13360 
13361 	/*
13362 	 * Wait for DMA to stop: RxRbufPktPending and RxPktInProgress are
13363 	 * clear.
13364 	 */
13365 	count = 0;
13366 	while (1) {
13367 		reg = read_csr(dd, RCV_STATUS);
13368 		if ((reg & (RCV_STATUS_RX_RBUF_PKT_PENDING_SMASK
13369 			    | RCV_STATUS_RX_PKT_IN_PROGRESS_SMASK)) == 0)
13370 			break;
13371 		/*
13372 		 * Give up after 1ms - maximum wait time.
13373 		 *
13374 		 * RBuf size is 136KiB.  Slowest possible is PCIe Gen1 x1 at
13375 		 * 250MB/s bandwidth.  Lower rate to 66% for overhead to get:
13376 		 *	136 KB / (66% * 250MB/s) = 844us
13377 		 */
13378 		if (count++ > 500) {
13379 			dd_dev_err(dd,
13380 				   "%s: in-progress DMA not clearing: RcvStatus 0x%llx, continuing\n",
13381 				   __func__, reg);
13382 			break;
13383 		}
13384 		udelay(2); /* do not busy-wait the CSR */
13385 	}
13386 
13387 	/* start the init - expect RcvCtrl to be 0 */
13388 	write_csr(dd, RCV_CTRL, RCV_CTRL_RX_RBUF_INIT_SMASK);
13389 
13390 	/*
13391 	 * Read to force the write of Rcvtrl.RxRbufInit.  There is a brief
13392 	 * period after the write before RcvStatus.RxRbufInitDone is valid.
13393 	 * The delay in the first run through the loop below is sufficient and
13394 	 * required before the first read of RcvStatus.RxRbufInintDone.
13395 	 */
13396 	read_csr(dd, RCV_CTRL);
13397 
13398 	/* wait for the init to finish */
13399 	count = 0;
13400 	while (1) {
13401 		/* delay is required first time through - see above */
13402 		udelay(2); /* do not busy-wait the CSR */
13403 		reg = read_csr(dd, RCV_STATUS);
13404 		if (reg & (RCV_STATUS_RX_RBUF_INIT_DONE_SMASK))
13405 			break;
13406 
13407 		/* give up after 100us - slowest possible at 33MHz is 73us */
13408 		if (count++ > 50) {
13409 			dd_dev_err(dd,
13410 				   "%s: RcvStatus.RxRbufInit not set, continuing\n",
13411 				   __func__);
13412 			break;
13413 		}
13414 	}
13415 }
13416 
13417 /* set RXE CSRs to chip reset defaults */
13418 static void reset_rxe_csrs(struct hfi1_devdata *dd)
13419 {
13420 	int i, j;
13421 
13422 	/*
13423 	 * RXE Kernel CSRs
13424 	 */
13425 	write_csr(dd, RCV_CTRL, 0);
13426 	init_rbufs(dd);
13427 	/* RCV_STATUS read-only */
13428 	/* RCV_CONTEXTS read-only */
13429 	/* RCV_ARRAY_CNT read-only */
13430 	/* RCV_BUF_SIZE read-only */
13431 	write_csr(dd, RCV_BTH_QP, 0);
13432 	write_csr(dd, RCV_MULTICAST, 0);
13433 	write_csr(dd, RCV_BYPASS, 0);
13434 	write_csr(dd, RCV_VL15, 0);
13435 	/* this is a clear-down */
13436 	write_csr(dd, RCV_ERR_INFO,
13437 		  RCV_ERR_INFO_RCV_EXCESS_BUFFER_OVERRUN_SMASK);
13438 	/* RCV_ERR_STATUS read-only */
13439 	write_csr(dd, RCV_ERR_MASK, 0);
13440 	write_csr(dd, RCV_ERR_CLEAR, ~0ull);
13441 	/* RCV_ERR_FORCE leave alone */
13442 	for (i = 0; i < 32; i++)
13443 		write_csr(dd, RCV_QP_MAP_TABLE + (8 * i), 0);
13444 	for (i = 0; i < 4; i++)
13445 		write_csr(dd, RCV_PARTITION_KEY + (8 * i), 0);
13446 	for (i = 0; i < RXE_NUM_32_BIT_COUNTERS; i++)
13447 		write_csr(dd, RCV_COUNTER_ARRAY32 + (8 * i), 0);
13448 	for (i = 0; i < RXE_NUM_64_BIT_COUNTERS; i++)
13449 		write_csr(dd, RCV_COUNTER_ARRAY64 + (8 * i), 0);
13450 	for (i = 0; i < RXE_NUM_RSM_INSTANCES; i++) {
13451 		write_csr(dd, RCV_RSM_CFG + (8 * i), 0);
13452 		write_csr(dd, RCV_RSM_SELECT + (8 * i), 0);
13453 		write_csr(dd, RCV_RSM_MATCH + (8 * i), 0);
13454 	}
13455 	for (i = 0; i < 32; i++)
13456 		write_csr(dd, RCV_RSM_MAP_TABLE + (8 * i), 0);
13457 
13458 	/*
13459 	 * RXE Kernel and User Per-Context CSRs
13460 	 */
13461 	for (i = 0; i < dd->chip_rcv_contexts; i++) {
13462 		/* kernel */
13463 		write_kctxt_csr(dd, i, RCV_CTXT_CTRL, 0);
13464 		/* RCV_CTXT_STATUS read-only */
13465 		write_kctxt_csr(dd, i, RCV_EGR_CTRL, 0);
13466 		write_kctxt_csr(dd, i, RCV_TID_CTRL, 0);
13467 		write_kctxt_csr(dd, i, RCV_KEY_CTRL, 0);
13468 		write_kctxt_csr(dd, i, RCV_HDR_ADDR, 0);
13469 		write_kctxt_csr(dd, i, RCV_HDR_CNT, 0);
13470 		write_kctxt_csr(dd, i, RCV_HDR_ENT_SIZE, 0);
13471 		write_kctxt_csr(dd, i, RCV_HDR_SIZE, 0);
13472 		write_kctxt_csr(dd, i, RCV_HDR_TAIL_ADDR, 0);
13473 		write_kctxt_csr(dd, i, RCV_AVAIL_TIME_OUT, 0);
13474 		write_kctxt_csr(dd, i, RCV_HDR_OVFL_CNT, 0);
13475 
13476 		/* user */
13477 		/* RCV_HDR_TAIL read-only */
13478 		write_uctxt_csr(dd, i, RCV_HDR_HEAD, 0);
13479 		/* RCV_EGR_INDEX_TAIL read-only */
13480 		write_uctxt_csr(dd, i, RCV_EGR_INDEX_HEAD, 0);
13481 		/* RCV_EGR_OFFSET_TAIL read-only */
13482 		for (j = 0; j < RXE_NUM_TID_FLOWS; j++) {
13483 			write_uctxt_csr(dd, i,
13484 					RCV_TID_FLOW_TABLE + (8 * j), 0);
13485 		}
13486 	}
13487 }
13488 
13489 /*
13490  * Set sc2vl tables.
13491  *
13492  * They power on to zeros, so to avoid send context errors
13493  * they need to be set:
13494  *
13495  * SC 0-7 -> VL 0-7 (respectively)
13496  * SC 15  -> VL 15
13497  * otherwise
13498  *        -> VL 0
13499  */
13500 static void init_sc2vl_tables(struct hfi1_devdata *dd)
13501 {
13502 	int i;
13503 	/* init per architecture spec, constrained by hardware capability */
13504 
13505 	/* HFI maps sent packets */
13506 	write_csr(dd, SEND_SC2VLT0, SC2VL_VAL(
13507 		0,
13508 		0, 0, 1, 1,
13509 		2, 2, 3, 3,
13510 		4, 4, 5, 5,
13511 		6, 6, 7, 7));
13512 	write_csr(dd, SEND_SC2VLT1, SC2VL_VAL(
13513 		1,
13514 		8, 0, 9, 0,
13515 		10, 0, 11, 0,
13516 		12, 0, 13, 0,
13517 		14, 0, 15, 15));
13518 	write_csr(dd, SEND_SC2VLT2, SC2VL_VAL(
13519 		2,
13520 		16, 0, 17, 0,
13521 		18, 0, 19, 0,
13522 		20, 0, 21, 0,
13523 		22, 0, 23, 0));
13524 	write_csr(dd, SEND_SC2VLT3, SC2VL_VAL(
13525 		3,
13526 		24, 0, 25, 0,
13527 		26, 0, 27, 0,
13528 		28, 0, 29, 0,
13529 		30, 0, 31, 0));
13530 
13531 	/* DC maps received packets */
13532 	write_csr(dd, DCC_CFG_SC_VL_TABLE_15_0, DC_SC_VL_VAL(
13533 		15_0,
13534 		0, 0, 1, 1,  2, 2,  3, 3,  4, 4,  5, 5,  6, 6,  7,  7,
13535 		8, 0, 9, 0, 10, 0, 11, 0, 12, 0, 13, 0, 14, 0, 15, 15));
13536 	write_csr(dd, DCC_CFG_SC_VL_TABLE_31_16, DC_SC_VL_VAL(
13537 		31_16,
13538 		16, 0, 17, 0, 18, 0, 19, 0, 20, 0, 21, 0, 22, 0, 23, 0,
13539 		24, 0, 25, 0, 26, 0, 27, 0, 28, 0, 29, 0, 30, 0, 31, 0));
13540 
13541 	/* initialize the cached sc2vl values consistently with h/w */
13542 	for (i = 0; i < 32; i++) {
13543 		if (i < 8 || i == 15)
13544 			*((u8 *)(dd->sc2vl) + i) = (u8)i;
13545 		else
13546 			*((u8 *)(dd->sc2vl) + i) = 0;
13547 	}
13548 }
13549 
13550 /*
13551  * Read chip sizes and then reset parts to sane, disabled, values.  We cannot
13552  * depend on the chip going through a power-on reset - a driver may be loaded
13553  * and unloaded many times.
13554  *
13555  * Do not write any CSR values to the chip in this routine - there may be
13556  * a reset following the (possible) FLR in this routine.
13557  *
13558  */
13559 static void init_chip(struct hfi1_devdata *dd)
13560 {
13561 	int i;
13562 
13563 	/*
13564 	 * Put the HFI CSRs in a known state.
13565 	 * Combine this with a DC reset.
13566 	 *
13567 	 * Stop the device from doing anything while we do a
13568 	 * reset.  We know there are no other active users of
13569 	 * the device since we are now in charge.  Turn off
13570 	 * off all outbound and inbound traffic and make sure
13571 	 * the device does not generate any interrupts.
13572 	 */
13573 
13574 	/* disable send contexts and SDMA engines */
13575 	write_csr(dd, SEND_CTRL, 0);
13576 	for (i = 0; i < dd->chip_send_contexts; i++)
13577 		write_kctxt_csr(dd, i, SEND_CTXT_CTRL, 0);
13578 	for (i = 0; i < dd->chip_sdma_engines; i++)
13579 		write_kctxt_csr(dd, i, SEND_DMA_CTRL, 0);
13580 	/* disable port (turn off RXE inbound traffic) and contexts */
13581 	write_csr(dd, RCV_CTRL, 0);
13582 	for (i = 0; i < dd->chip_rcv_contexts; i++)
13583 		write_csr(dd, RCV_CTXT_CTRL, 0);
13584 	/* mask all interrupt sources */
13585 	for (i = 0; i < CCE_NUM_INT_CSRS; i++)
13586 		write_csr(dd, CCE_INT_MASK + (8 * i), 0ull);
13587 
13588 	/*
13589 	 * DC Reset: do a full DC reset before the register clear.
13590 	 * A recommended length of time to hold is one CSR read,
13591 	 * so reread the CceDcCtrl.  Then, hold the DC in reset
13592 	 * across the clear.
13593 	 */
13594 	write_csr(dd, CCE_DC_CTRL, CCE_DC_CTRL_DC_RESET_SMASK);
13595 	(void)read_csr(dd, CCE_DC_CTRL);
13596 
13597 	if (use_flr) {
13598 		/*
13599 		 * A FLR will reset the SPC core and part of the PCIe.
13600 		 * The parts that need to be restored have already been
13601 		 * saved.
13602 		 */
13603 		dd_dev_info(dd, "Resetting CSRs with FLR\n");
13604 
13605 		/* do the FLR, the DC reset will remain */
13606 		hfi1_pcie_flr(dd);
13607 
13608 		/* restore command and BARs */
13609 		restore_pci_variables(dd);
13610 
13611 		if (is_ax(dd)) {
13612 			dd_dev_info(dd, "Resetting CSRs with FLR\n");
13613 			hfi1_pcie_flr(dd);
13614 			restore_pci_variables(dd);
13615 		}
13616 	} else {
13617 		dd_dev_info(dd, "Resetting CSRs with writes\n");
13618 		reset_cce_csrs(dd);
13619 		reset_txe_csrs(dd);
13620 		reset_rxe_csrs(dd);
13621 		reset_misc_csrs(dd);
13622 	}
13623 	/* clear the DC reset */
13624 	write_csr(dd, CCE_DC_CTRL, 0);
13625 
13626 	/* Set the LED off */
13627 	setextled(dd, 0);
13628 
13629 	/*
13630 	 * Clear the QSFP reset.
13631 	 * An FLR enforces a 0 on all out pins. The driver does not touch
13632 	 * ASIC_QSFPn_OUT otherwise.  This leaves RESET_N low and
13633 	 * anything plugged constantly in reset, if it pays attention
13634 	 * to RESET_N.
13635 	 * Prime examples of this are optical cables. Set all pins high.
13636 	 * I2CCLK and I2CDAT will change per direction, and INT_N and
13637 	 * MODPRS_N are input only and their value is ignored.
13638 	 */
13639 	write_csr(dd, ASIC_QSFP1_OUT, 0x1f);
13640 	write_csr(dd, ASIC_QSFP2_OUT, 0x1f);
13641 	init_chip_resources(dd);
13642 }
13643 
13644 static void init_early_variables(struct hfi1_devdata *dd)
13645 {
13646 	int i;
13647 
13648 	/* assign link credit variables */
13649 	dd->vau = CM_VAU;
13650 	dd->link_credits = CM_GLOBAL_CREDITS;
13651 	if (is_ax(dd))
13652 		dd->link_credits--;
13653 	dd->vcu = cu_to_vcu(hfi1_cu);
13654 	/* enough room for 8 MAD packets plus header - 17K */
13655 	dd->vl15_init = (8 * (2048 + 128)) / vau_to_au(dd->vau);
13656 	if (dd->vl15_init > dd->link_credits)
13657 		dd->vl15_init = dd->link_credits;
13658 
13659 	write_uninitialized_csrs_and_memories(dd);
13660 
13661 	if (HFI1_CAP_IS_KSET(PKEY_CHECK))
13662 		for (i = 0; i < dd->num_pports; i++) {
13663 			struct hfi1_pportdata *ppd = &dd->pport[i];
13664 
13665 			set_partition_keys(ppd);
13666 		}
13667 	init_sc2vl_tables(dd);
13668 }
13669 
13670 static void init_kdeth_qp(struct hfi1_devdata *dd)
13671 {
13672 	/* user changed the KDETH_QP */
13673 	if (kdeth_qp != 0 && kdeth_qp >= 0xff) {
13674 		/* out of range or illegal value */
13675 		dd_dev_err(dd, "Invalid KDETH queue pair prefix, ignoring");
13676 		kdeth_qp = 0;
13677 	}
13678 	if (kdeth_qp == 0)	/* not set, or failed range check */
13679 		kdeth_qp = DEFAULT_KDETH_QP;
13680 
13681 	write_csr(dd, SEND_BTH_QP,
13682 		  (kdeth_qp & SEND_BTH_QP_KDETH_QP_MASK) <<
13683 		  SEND_BTH_QP_KDETH_QP_SHIFT);
13684 
13685 	write_csr(dd, RCV_BTH_QP,
13686 		  (kdeth_qp & RCV_BTH_QP_KDETH_QP_MASK) <<
13687 		  RCV_BTH_QP_KDETH_QP_SHIFT);
13688 }
13689 
13690 /**
13691  * init_qpmap_table
13692  * @dd - device data
13693  * @first_ctxt - first context
13694  * @last_ctxt - first context
13695  *
13696  * This return sets the qpn mapping table that
13697  * is indexed by qpn[8:1].
13698  *
13699  * The routine will round robin the 256 settings
13700  * from first_ctxt to last_ctxt.
13701  *
13702  * The first/last looks ahead to having specialized
13703  * receive contexts for mgmt and bypass.  Normal
13704  * verbs traffic will assumed to be on a range
13705  * of receive contexts.
13706  */
13707 static void init_qpmap_table(struct hfi1_devdata *dd,
13708 			     u32 first_ctxt,
13709 			     u32 last_ctxt)
13710 {
13711 	u64 reg = 0;
13712 	u64 regno = RCV_QP_MAP_TABLE;
13713 	int i;
13714 	u64 ctxt = first_ctxt;
13715 
13716 	for (i = 0; i < 256; i++) {
13717 		reg |= ctxt << (8 * (i % 8));
13718 		ctxt++;
13719 		if (ctxt > last_ctxt)
13720 			ctxt = first_ctxt;
13721 		if (i % 8 == 7) {
13722 			write_csr(dd, regno, reg);
13723 			reg = 0;
13724 			regno += 8;
13725 		}
13726 	}
13727 
13728 	add_rcvctrl(dd, RCV_CTRL_RCV_QP_MAP_ENABLE_SMASK
13729 			| RCV_CTRL_RCV_BYPASS_ENABLE_SMASK);
13730 }
13731 
13732 struct rsm_map_table {
13733 	u64 map[NUM_MAP_REGS];
13734 	unsigned int used;
13735 };
13736 
13737 struct rsm_rule_data {
13738 	u8 offset;
13739 	u8 pkt_type;
13740 	u32 field1_off;
13741 	u32 field2_off;
13742 	u32 index1_off;
13743 	u32 index1_width;
13744 	u32 index2_off;
13745 	u32 index2_width;
13746 	u32 mask1;
13747 	u32 value1;
13748 	u32 mask2;
13749 	u32 value2;
13750 };
13751 
13752 /*
13753  * Return an initialized RMT map table for users to fill in.  OK if it
13754  * returns NULL, indicating no table.
13755  */
13756 static struct rsm_map_table *alloc_rsm_map_table(struct hfi1_devdata *dd)
13757 {
13758 	struct rsm_map_table *rmt;
13759 	u8 rxcontext = is_ax(dd) ? 0 : 0xff;  /* 0 is default if a0 ver. */
13760 
13761 	rmt = kmalloc(sizeof(*rmt), GFP_KERNEL);
13762 	if (rmt) {
13763 		memset(rmt->map, rxcontext, sizeof(rmt->map));
13764 		rmt->used = 0;
13765 	}
13766 
13767 	return rmt;
13768 }
13769 
13770 /*
13771  * Write the final RMT map table to the chip and free the table.  OK if
13772  * table is NULL.
13773  */
13774 static void complete_rsm_map_table(struct hfi1_devdata *dd,
13775 				   struct rsm_map_table *rmt)
13776 {
13777 	int i;
13778 
13779 	if (rmt) {
13780 		/* write table to chip */
13781 		for (i = 0; i < NUM_MAP_REGS; i++)
13782 			write_csr(dd, RCV_RSM_MAP_TABLE + (8 * i), rmt->map[i]);
13783 
13784 		/* enable RSM */
13785 		add_rcvctrl(dd, RCV_CTRL_RCV_RSM_ENABLE_SMASK);
13786 	}
13787 }
13788 
13789 /*
13790  * Add a receive side mapping rule.
13791  */
13792 static void add_rsm_rule(struct hfi1_devdata *dd, u8 rule_index,
13793 			 struct rsm_rule_data *rrd)
13794 {
13795 	write_csr(dd, RCV_RSM_CFG + (8 * rule_index),
13796 		  (u64)rrd->offset << RCV_RSM_CFG_OFFSET_SHIFT |
13797 		  1ull << rule_index | /* enable bit */
13798 		  (u64)rrd->pkt_type << RCV_RSM_CFG_PACKET_TYPE_SHIFT);
13799 	write_csr(dd, RCV_RSM_SELECT + (8 * rule_index),
13800 		  (u64)rrd->field1_off << RCV_RSM_SELECT_FIELD1_OFFSET_SHIFT |
13801 		  (u64)rrd->field2_off << RCV_RSM_SELECT_FIELD2_OFFSET_SHIFT |
13802 		  (u64)rrd->index1_off << RCV_RSM_SELECT_INDEX1_OFFSET_SHIFT |
13803 		  (u64)rrd->index1_width << RCV_RSM_SELECT_INDEX1_WIDTH_SHIFT |
13804 		  (u64)rrd->index2_off << RCV_RSM_SELECT_INDEX2_OFFSET_SHIFT |
13805 		  (u64)rrd->index2_width << RCV_RSM_SELECT_INDEX2_WIDTH_SHIFT);
13806 	write_csr(dd, RCV_RSM_MATCH + (8 * rule_index),
13807 		  (u64)rrd->mask1 << RCV_RSM_MATCH_MASK1_SHIFT |
13808 		  (u64)rrd->value1 << RCV_RSM_MATCH_VALUE1_SHIFT |
13809 		  (u64)rrd->mask2 << RCV_RSM_MATCH_MASK2_SHIFT |
13810 		  (u64)rrd->value2 << RCV_RSM_MATCH_VALUE2_SHIFT);
13811 }
13812 
13813 /* return the number of RSM map table entries that will be used for QOS */
13814 static int qos_rmt_entries(struct hfi1_devdata *dd, unsigned int *mp,
13815 			   unsigned int *np)
13816 {
13817 	int i;
13818 	unsigned int m, n;
13819 	u8 max_by_vl = 0;
13820 
13821 	/* is QOS active at all? */
13822 	if (dd->n_krcv_queues <= MIN_KERNEL_KCTXTS ||
13823 	    num_vls == 1 ||
13824 	    krcvqsset <= 1)
13825 		goto no_qos;
13826 
13827 	/* determine bits for qpn */
13828 	for (i = 0; i < min_t(unsigned int, num_vls, krcvqsset); i++)
13829 		if (krcvqs[i] > max_by_vl)
13830 			max_by_vl = krcvqs[i];
13831 	if (max_by_vl > 32)
13832 		goto no_qos;
13833 	m = ilog2(__roundup_pow_of_two(max_by_vl));
13834 
13835 	/* determine bits for vl */
13836 	n = ilog2(__roundup_pow_of_two(num_vls));
13837 
13838 	/* reject if too much is used */
13839 	if ((m + n) > 7)
13840 		goto no_qos;
13841 
13842 	if (mp)
13843 		*mp = m;
13844 	if (np)
13845 		*np = n;
13846 
13847 	return 1 << (m + n);
13848 
13849 no_qos:
13850 	if (mp)
13851 		*mp = 0;
13852 	if (np)
13853 		*np = 0;
13854 	return 0;
13855 }
13856 
13857 /**
13858  * init_qos - init RX qos
13859  * @dd - device data
13860  * @rmt - RSM map table
13861  *
13862  * This routine initializes Rule 0 and the RSM map table to implement
13863  * quality of service (qos).
13864  *
13865  * If all of the limit tests succeed, qos is applied based on the array
13866  * interpretation of krcvqs where entry 0 is VL0.
13867  *
13868  * The number of vl bits (n) and the number of qpn bits (m) are computed to
13869  * feed both the RSM map table and the single rule.
13870  */
13871 static void init_qos(struct hfi1_devdata *dd, struct rsm_map_table *rmt)
13872 {
13873 	struct rsm_rule_data rrd;
13874 	unsigned qpns_per_vl, ctxt, i, qpn, n = 1, m;
13875 	unsigned int rmt_entries;
13876 	u64 reg;
13877 
13878 	if (!rmt)
13879 		goto bail;
13880 	rmt_entries = qos_rmt_entries(dd, &m, &n);
13881 	if (rmt_entries == 0)
13882 		goto bail;
13883 	qpns_per_vl = 1 << m;
13884 
13885 	/* enough room in the map table? */
13886 	rmt_entries = 1 << (m + n);
13887 	if (rmt->used + rmt_entries >= NUM_MAP_ENTRIES)
13888 		goto bail;
13889 
13890 	/* add qos entries to the the RSM map table */
13891 	for (i = 0, ctxt = FIRST_KERNEL_KCTXT; i < num_vls; i++) {
13892 		unsigned tctxt;
13893 
13894 		for (qpn = 0, tctxt = ctxt;
13895 		     krcvqs[i] && qpn < qpns_per_vl; qpn++) {
13896 			unsigned idx, regoff, regidx;
13897 
13898 			/* generate the index the hardware will produce */
13899 			idx = rmt->used + ((qpn << n) ^ i);
13900 			regoff = (idx % 8) * 8;
13901 			regidx = idx / 8;
13902 			/* replace default with context number */
13903 			reg = rmt->map[regidx];
13904 			reg &= ~(RCV_RSM_MAP_TABLE_RCV_CONTEXT_A_MASK
13905 				<< regoff);
13906 			reg |= (u64)(tctxt++) << regoff;
13907 			rmt->map[regidx] = reg;
13908 			if (tctxt == ctxt + krcvqs[i])
13909 				tctxt = ctxt;
13910 		}
13911 		ctxt += krcvqs[i];
13912 	}
13913 
13914 	rrd.offset = rmt->used;
13915 	rrd.pkt_type = 2;
13916 	rrd.field1_off = LRH_BTH_MATCH_OFFSET;
13917 	rrd.field2_off = LRH_SC_MATCH_OFFSET;
13918 	rrd.index1_off = LRH_SC_SELECT_OFFSET;
13919 	rrd.index1_width = n;
13920 	rrd.index2_off = QPN_SELECT_OFFSET;
13921 	rrd.index2_width = m + n;
13922 	rrd.mask1 = LRH_BTH_MASK;
13923 	rrd.value1 = LRH_BTH_VALUE;
13924 	rrd.mask2 = LRH_SC_MASK;
13925 	rrd.value2 = LRH_SC_VALUE;
13926 
13927 	/* add rule 0 */
13928 	add_rsm_rule(dd, 0, &rrd);
13929 
13930 	/* mark RSM map entries as used */
13931 	rmt->used += rmt_entries;
13932 	/* map everything else to the mcast/err/vl15 context */
13933 	init_qpmap_table(dd, HFI1_CTRL_CTXT, HFI1_CTRL_CTXT);
13934 	dd->qos_shift = n + 1;
13935 	return;
13936 bail:
13937 	dd->qos_shift = 1;
13938 	init_qpmap_table(dd, FIRST_KERNEL_KCTXT, dd->n_krcv_queues - 1);
13939 }
13940 
13941 static void init_user_fecn_handling(struct hfi1_devdata *dd,
13942 				    struct rsm_map_table *rmt)
13943 {
13944 	struct rsm_rule_data rrd;
13945 	u64 reg;
13946 	int i, idx, regoff, regidx;
13947 	u8 offset;
13948 
13949 	/* there needs to be enough room in the map table */
13950 	if (rmt->used + dd->num_user_contexts >= NUM_MAP_ENTRIES) {
13951 		dd_dev_err(dd, "User FECN handling disabled - too many user contexts allocated\n");
13952 		return;
13953 	}
13954 
13955 	/*
13956 	 * RSM will extract the destination context as an index into the
13957 	 * map table.  The destination contexts are a sequential block
13958 	 * in the range first_user_ctxt...num_rcv_contexts-1 (inclusive).
13959 	 * Map entries are accessed as offset + extracted value.  Adjust
13960 	 * the added offset so this sequence can be placed anywhere in
13961 	 * the table - as long as the entries themselves do not wrap.
13962 	 * There are only enough bits in offset for the table size, so
13963 	 * start with that to allow for a "negative" offset.
13964 	 */
13965 	offset = (u8)(NUM_MAP_ENTRIES + (int)rmt->used -
13966 						(int)dd->first_user_ctxt);
13967 
13968 	for (i = dd->first_user_ctxt, idx = rmt->used;
13969 				i < dd->num_rcv_contexts; i++, idx++) {
13970 		/* replace with identity mapping */
13971 		regoff = (idx % 8) * 8;
13972 		regidx = idx / 8;
13973 		reg = rmt->map[regidx];
13974 		reg &= ~(RCV_RSM_MAP_TABLE_RCV_CONTEXT_A_MASK << regoff);
13975 		reg |= (u64)i << regoff;
13976 		rmt->map[regidx] = reg;
13977 	}
13978 
13979 	/*
13980 	 * For RSM intercept of Expected FECN packets:
13981 	 * o packet type 0 - expected
13982 	 * o match on F (bit 95), using select/match 1, and
13983 	 * o match on SH (bit 133), using select/match 2.
13984 	 *
13985 	 * Use index 1 to extract the 8-bit receive context from DestQP
13986 	 * (start at bit 64).  Use that as the RSM map table index.
13987 	 */
13988 	rrd.offset = offset;
13989 	rrd.pkt_type = 0;
13990 	rrd.field1_off = 95;
13991 	rrd.field2_off = 133;
13992 	rrd.index1_off = 64;
13993 	rrd.index1_width = 8;
13994 	rrd.index2_off = 0;
13995 	rrd.index2_width = 0;
13996 	rrd.mask1 = 1;
13997 	rrd.value1 = 1;
13998 	rrd.mask2 = 1;
13999 	rrd.value2 = 1;
14000 
14001 	/* add rule 1 */
14002 	add_rsm_rule(dd, 1, &rrd);
14003 
14004 	rmt->used += dd->num_user_contexts;
14005 }
14006 
14007 static void init_rxe(struct hfi1_devdata *dd)
14008 {
14009 	struct rsm_map_table *rmt;
14010 
14011 	/* enable all receive errors */
14012 	write_csr(dd, RCV_ERR_MASK, ~0ull);
14013 
14014 	rmt = alloc_rsm_map_table(dd);
14015 	/* set up QOS, including the QPN map table */
14016 	init_qos(dd, rmt);
14017 	init_user_fecn_handling(dd, rmt);
14018 	complete_rsm_map_table(dd, rmt);
14019 	kfree(rmt);
14020 
14021 	/*
14022 	 * make sure RcvCtrl.RcvWcb <= PCIe Device Control
14023 	 * Register Max_Payload_Size (PCI_EXP_DEVCTL in Linux PCIe config
14024 	 * space, PciCfgCap2.MaxPayloadSize in HFI).  There is only one
14025 	 * invalid configuration: RcvCtrl.RcvWcb set to its max of 256 and
14026 	 * Max_PayLoad_Size set to its minimum of 128.
14027 	 *
14028 	 * Presently, RcvCtrl.RcvWcb is not modified from its default of 0
14029 	 * (64 bytes).  Max_Payload_Size is possibly modified upward in
14030 	 * tune_pcie_caps() which is called after this routine.
14031 	 */
14032 }
14033 
14034 static void init_other(struct hfi1_devdata *dd)
14035 {
14036 	/* enable all CCE errors */
14037 	write_csr(dd, CCE_ERR_MASK, ~0ull);
14038 	/* enable *some* Misc errors */
14039 	write_csr(dd, MISC_ERR_MASK, DRIVER_MISC_MASK);
14040 	/* enable all DC errors, except LCB */
14041 	write_csr(dd, DCC_ERR_FLG_EN, ~0ull);
14042 	write_csr(dd, DC_DC8051_ERR_EN, ~0ull);
14043 }
14044 
14045 /*
14046  * Fill out the given AU table using the given CU.  A CU is defined in terms
14047  * AUs.  The table is a an encoding: given the index, how many AUs does that
14048  * represent?
14049  *
14050  * NOTE: Assumes that the register layout is the same for the
14051  * local and remote tables.
14052  */
14053 static void assign_cm_au_table(struct hfi1_devdata *dd, u32 cu,
14054 			       u32 csr0to3, u32 csr4to7)
14055 {
14056 	write_csr(dd, csr0to3,
14057 		  0ull << SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE0_SHIFT |
14058 		  1ull << SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE1_SHIFT |
14059 		  2ull * cu <<
14060 		  SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE2_SHIFT |
14061 		  4ull * cu <<
14062 		  SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE3_SHIFT);
14063 	write_csr(dd, csr4to7,
14064 		  8ull * cu <<
14065 		  SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE4_SHIFT |
14066 		  16ull * cu <<
14067 		  SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE5_SHIFT |
14068 		  32ull * cu <<
14069 		  SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE6_SHIFT |
14070 		  64ull * cu <<
14071 		  SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE7_SHIFT);
14072 }
14073 
14074 static void assign_local_cm_au_table(struct hfi1_devdata *dd, u8 vcu)
14075 {
14076 	assign_cm_au_table(dd, vcu_to_cu(vcu), SEND_CM_LOCAL_AU_TABLE0_TO3,
14077 			   SEND_CM_LOCAL_AU_TABLE4_TO7);
14078 }
14079 
14080 void assign_remote_cm_au_table(struct hfi1_devdata *dd, u8 vcu)
14081 {
14082 	assign_cm_au_table(dd, vcu_to_cu(vcu), SEND_CM_REMOTE_AU_TABLE0_TO3,
14083 			   SEND_CM_REMOTE_AU_TABLE4_TO7);
14084 }
14085 
14086 static void init_txe(struct hfi1_devdata *dd)
14087 {
14088 	int i;
14089 
14090 	/* enable all PIO, SDMA, general, and Egress errors */
14091 	write_csr(dd, SEND_PIO_ERR_MASK, ~0ull);
14092 	write_csr(dd, SEND_DMA_ERR_MASK, ~0ull);
14093 	write_csr(dd, SEND_ERR_MASK, ~0ull);
14094 	write_csr(dd, SEND_EGRESS_ERR_MASK, ~0ull);
14095 
14096 	/* enable all per-context and per-SDMA engine errors */
14097 	for (i = 0; i < dd->chip_send_contexts; i++)
14098 		write_kctxt_csr(dd, i, SEND_CTXT_ERR_MASK, ~0ull);
14099 	for (i = 0; i < dd->chip_sdma_engines; i++)
14100 		write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_MASK, ~0ull);
14101 
14102 	/* set the local CU to AU mapping */
14103 	assign_local_cm_au_table(dd, dd->vcu);
14104 
14105 	/*
14106 	 * Set reasonable default for Credit Return Timer
14107 	 * Don't set on Simulator - causes it to choke.
14108 	 */
14109 	if (dd->icode != ICODE_FUNCTIONAL_SIMULATOR)
14110 		write_csr(dd, SEND_CM_TIMER_CTRL, HFI1_CREDIT_RETURN_RATE);
14111 }
14112 
14113 int hfi1_set_ctxt_jkey(struct hfi1_devdata *dd, unsigned ctxt, u16 jkey)
14114 {
14115 	struct hfi1_ctxtdata *rcd = dd->rcd[ctxt];
14116 	unsigned sctxt;
14117 	int ret = 0;
14118 	u64 reg;
14119 
14120 	if (!rcd || !rcd->sc) {
14121 		ret = -EINVAL;
14122 		goto done;
14123 	}
14124 	sctxt = rcd->sc->hw_context;
14125 	reg = SEND_CTXT_CHECK_JOB_KEY_MASK_SMASK | /* mask is always 1's */
14126 		((jkey & SEND_CTXT_CHECK_JOB_KEY_VALUE_MASK) <<
14127 		 SEND_CTXT_CHECK_JOB_KEY_VALUE_SHIFT);
14128 	/* JOB_KEY_ALLOW_PERMISSIVE is not allowed by default */
14129 	if (HFI1_CAP_KGET_MASK(rcd->flags, ALLOW_PERM_JKEY))
14130 		reg |= SEND_CTXT_CHECK_JOB_KEY_ALLOW_PERMISSIVE_SMASK;
14131 	write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_JOB_KEY, reg);
14132 	/*
14133 	 * Enable send-side J_KEY integrity check, unless this is A0 h/w
14134 	 */
14135 	if (!is_ax(dd)) {
14136 		reg = read_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE);
14137 		reg |= SEND_CTXT_CHECK_ENABLE_CHECK_JOB_KEY_SMASK;
14138 		write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE, reg);
14139 	}
14140 
14141 	/* Enable J_KEY check on receive context. */
14142 	reg = RCV_KEY_CTRL_JOB_KEY_ENABLE_SMASK |
14143 		((jkey & RCV_KEY_CTRL_JOB_KEY_VALUE_MASK) <<
14144 		 RCV_KEY_CTRL_JOB_KEY_VALUE_SHIFT);
14145 	write_kctxt_csr(dd, ctxt, RCV_KEY_CTRL, reg);
14146 done:
14147 	return ret;
14148 }
14149 
14150 int hfi1_clear_ctxt_jkey(struct hfi1_devdata *dd, unsigned ctxt)
14151 {
14152 	struct hfi1_ctxtdata *rcd = dd->rcd[ctxt];
14153 	unsigned sctxt;
14154 	int ret = 0;
14155 	u64 reg;
14156 
14157 	if (!rcd || !rcd->sc) {
14158 		ret = -EINVAL;
14159 		goto done;
14160 	}
14161 	sctxt = rcd->sc->hw_context;
14162 	write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_JOB_KEY, 0);
14163 	/*
14164 	 * Disable send-side J_KEY integrity check, unless this is A0 h/w.
14165 	 * This check would not have been enabled for A0 h/w, see
14166 	 * set_ctxt_jkey().
14167 	 */
14168 	if (!is_ax(dd)) {
14169 		reg = read_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE);
14170 		reg &= ~SEND_CTXT_CHECK_ENABLE_CHECK_JOB_KEY_SMASK;
14171 		write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE, reg);
14172 	}
14173 	/* Turn off the J_KEY on the receive side */
14174 	write_kctxt_csr(dd, ctxt, RCV_KEY_CTRL, 0);
14175 done:
14176 	return ret;
14177 }
14178 
14179 int hfi1_set_ctxt_pkey(struct hfi1_devdata *dd, unsigned ctxt, u16 pkey)
14180 {
14181 	struct hfi1_ctxtdata *rcd;
14182 	unsigned sctxt;
14183 	int ret = 0;
14184 	u64 reg;
14185 
14186 	if (ctxt < dd->num_rcv_contexts) {
14187 		rcd = dd->rcd[ctxt];
14188 	} else {
14189 		ret = -EINVAL;
14190 		goto done;
14191 	}
14192 	if (!rcd || !rcd->sc) {
14193 		ret = -EINVAL;
14194 		goto done;
14195 	}
14196 	sctxt = rcd->sc->hw_context;
14197 	reg = ((u64)pkey & SEND_CTXT_CHECK_PARTITION_KEY_VALUE_MASK) <<
14198 		SEND_CTXT_CHECK_PARTITION_KEY_VALUE_SHIFT;
14199 	write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_PARTITION_KEY, reg);
14200 	reg = read_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE);
14201 	reg |= SEND_CTXT_CHECK_ENABLE_CHECK_PARTITION_KEY_SMASK;
14202 	reg &= ~SEND_CTXT_CHECK_ENABLE_DISALLOW_KDETH_PACKETS_SMASK;
14203 	write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE, reg);
14204 done:
14205 	return ret;
14206 }
14207 
14208 int hfi1_clear_ctxt_pkey(struct hfi1_devdata *dd, unsigned ctxt)
14209 {
14210 	struct hfi1_ctxtdata *rcd;
14211 	unsigned sctxt;
14212 	int ret = 0;
14213 	u64 reg;
14214 
14215 	if (ctxt < dd->num_rcv_contexts) {
14216 		rcd = dd->rcd[ctxt];
14217 	} else {
14218 		ret = -EINVAL;
14219 		goto done;
14220 	}
14221 	if (!rcd || !rcd->sc) {
14222 		ret = -EINVAL;
14223 		goto done;
14224 	}
14225 	sctxt = rcd->sc->hw_context;
14226 	reg = read_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE);
14227 	reg &= ~SEND_CTXT_CHECK_ENABLE_CHECK_PARTITION_KEY_SMASK;
14228 	write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE, reg);
14229 	write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_PARTITION_KEY, 0);
14230 done:
14231 	return ret;
14232 }
14233 
14234 /*
14235  * Start doing the clean up the the chip. Our clean up happens in multiple
14236  * stages and this is just the first.
14237  */
14238 void hfi1_start_cleanup(struct hfi1_devdata *dd)
14239 {
14240 	aspm_exit(dd);
14241 	free_cntrs(dd);
14242 	free_rcverr(dd);
14243 	clean_up_interrupts(dd);
14244 	finish_chip_resources(dd);
14245 }
14246 
14247 #define HFI_BASE_GUID(dev) \
14248 	((dev)->base_guid & ~(1ULL << GUID_HFI_INDEX_SHIFT))
14249 
14250 /*
14251  * Information can be shared between the two HFIs on the same ASIC
14252  * in the same OS.  This function finds the peer device and sets
14253  * up a shared structure.
14254  */
14255 static int init_asic_data(struct hfi1_devdata *dd)
14256 {
14257 	unsigned long flags;
14258 	struct hfi1_devdata *tmp, *peer = NULL;
14259 	struct hfi1_asic_data *asic_data;
14260 	int ret = 0;
14261 
14262 	/* pre-allocate the asic structure in case we are the first device */
14263 	asic_data = kzalloc(sizeof(*dd->asic_data), GFP_KERNEL);
14264 	if (!asic_data)
14265 		return -ENOMEM;
14266 
14267 	spin_lock_irqsave(&hfi1_devs_lock, flags);
14268 	/* Find our peer device */
14269 	list_for_each_entry(tmp, &hfi1_dev_list, list) {
14270 		if ((HFI_BASE_GUID(dd) == HFI_BASE_GUID(tmp)) &&
14271 		    dd->unit != tmp->unit) {
14272 			peer = tmp;
14273 			break;
14274 		}
14275 	}
14276 
14277 	if (peer) {
14278 		/* use already allocated structure */
14279 		dd->asic_data = peer->asic_data;
14280 		kfree(asic_data);
14281 	} else {
14282 		dd->asic_data = asic_data;
14283 		mutex_init(&dd->asic_data->asic_resource_mutex);
14284 	}
14285 	dd->asic_data->dds[dd->hfi1_id] = dd; /* self back-pointer */
14286 	spin_unlock_irqrestore(&hfi1_devs_lock, flags);
14287 
14288 	/* first one through - set up i2c devices */
14289 	if (!peer)
14290 		ret = set_up_i2c(dd, dd->asic_data);
14291 
14292 	return ret;
14293 }
14294 
14295 /*
14296  * Set dd->boardname.  Use a generic name if a name is not returned from
14297  * EFI variable space.
14298  *
14299  * Return 0 on success, -ENOMEM if space could not be allocated.
14300  */
14301 static int obtain_boardname(struct hfi1_devdata *dd)
14302 {
14303 	/* generic board description */
14304 	const char generic[] =
14305 		"Intel Omni-Path Host Fabric Interface Adapter 100 Series";
14306 	unsigned long size;
14307 	int ret;
14308 
14309 	ret = read_hfi1_efi_var(dd, "description", &size,
14310 				(void **)&dd->boardname);
14311 	if (ret) {
14312 		dd_dev_info(dd, "Board description not found\n");
14313 		/* use generic description */
14314 		dd->boardname = kstrdup(generic, GFP_KERNEL);
14315 		if (!dd->boardname)
14316 			return -ENOMEM;
14317 	}
14318 	return 0;
14319 }
14320 
14321 /*
14322  * Check the interrupt registers to make sure that they are mapped correctly.
14323  * It is intended to help user identify any mismapping by VMM when the driver
14324  * is running in a VM. This function should only be called before interrupt
14325  * is set up properly.
14326  *
14327  * Return 0 on success, -EINVAL on failure.
14328  */
14329 static int check_int_registers(struct hfi1_devdata *dd)
14330 {
14331 	u64 reg;
14332 	u64 all_bits = ~(u64)0;
14333 	u64 mask;
14334 
14335 	/* Clear CceIntMask[0] to avoid raising any interrupts */
14336 	mask = read_csr(dd, CCE_INT_MASK);
14337 	write_csr(dd, CCE_INT_MASK, 0ull);
14338 	reg = read_csr(dd, CCE_INT_MASK);
14339 	if (reg)
14340 		goto err_exit;
14341 
14342 	/* Clear all interrupt status bits */
14343 	write_csr(dd, CCE_INT_CLEAR, all_bits);
14344 	reg = read_csr(dd, CCE_INT_STATUS);
14345 	if (reg)
14346 		goto err_exit;
14347 
14348 	/* Set all interrupt status bits */
14349 	write_csr(dd, CCE_INT_FORCE, all_bits);
14350 	reg = read_csr(dd, CCE_INT_STATUS);
14351 	if (reg != all_bits)
14352 		goto err_exit;
14353 
14354 	/* Restore the interrupt mask */
14355 	write_csr(dd, CCE_INT_CLEAR, all_bits);
14356 	write_csr(dd, CCE_INT_MASK, mask);
14357 
14358 	return 0;
14359 err_exit:
14360 	write_csr(dd, CCE_INT_MASK, mask);
14361 	dd_dev_err(dd, "Interrupt registers not properly mapped by VMM\n");
14362 	return -EINVAL;
14363 }
14364 
14365 /**
14366  * Allocate and initialize the device structure for the hfi.
14367  * @dev: the pci_dev for hfi1_ib device
14368  * @ent: pci_device_id struct for this dev
14369  *
14370  * Also allocates, initializes, and returns the devdata struct for this
14371  * device instance
14372  *
14373  * This is global, and is called directly at init to set up the
14374  * chip-specific function pointers for later use.
14375  */
14376 struct hfi1_devdata *hfi1_init_dd(struct pci_dev *pdev,
14377 				  const struct pci_device_id *ent)
14378 {
14379 	struct hfi1_devdata *dd;
14380 	struct hfi1_pportdata *ppd;
14381 	u64 reg;
14382 	int i, ret;
14383 	static const char * const inames[] = { /* implementation names */
14384 		"RTL silicon",
14385 		"RTL VCS simulation",
14386 		"RTL FPGA emulation",
14387 		"Functional simulator"
14388 	};
14389 	struct pci_dev *parent = pdev->bus->self;
14390 
14391 	dd = hfi1_alloc_devdata(pdev, NUM_IB_PORTS *
14392 				sizeof(struct hfi1_pportdata));
14393 	if (IS_ERR(dd))
14394 		goto bail;
14395 	ppd = dd->pport;
14396 	for (i = 0; i < dd->num_pports; i++, ppd++) {
14397 		int vl;
14398 		/* init common fields */
14399 		hfi1_init_pportdata(pdev, ppd, dd, 0, 1);
14400 		/* DC supports 4 link widths */
14401 		ppd->link_width_supported =
14402 			OPA_LINK_WIDTH_1X | OPA_LINK_WIDTH_2X |
14403 			OPA_LINK_WIDTH_3X | OPA_LINK_WIDTH_4X;
14404 		ppd->link_width_downgrade_supported =
14405 			ppd->link_width_supported;
14406 		/* start out enabling only 4X */
14407 		ppd->link_width_enabled = OPA_LINK_WIDTH_4X;
14408 		ppd->link_width_downgrade_enabled =
14409 					ppd->link_width_downgrade_supported;
14410 		/* link width active is 0 when link is down */
14411 		/* link width downgrade active is 0 when link is down */
14412 
14413 		if (num_vls < HFI1_MIN_VLS_SUPPORTED ||
14414 		    num_vls > HFI1_MAX_VLS_SUPPORTED) {
14415 			hfi1_early_err(&pdev->dev,
14416 				       "Invalid num_vls %u, using %u VLs\n",
14417 				    num_vls, HFI1_MAX_VLS_SUPPORTED);
14418 			num_vls = HFI1_MAX_VLS_SUPPORTED;
14419 		}
14420 		ppd->vls_supported = num_vls;
14421 		ppd->vls_operational = ppd->vls_supported;
14422 		ppd->actual_vls_operational = ppd->vls_supported;
14423 		/* Set the default MTU. */
14424 		for (vl = 0; vl < num_vls; vl++)
14425 			dd->vld[vl].mtu = hfi1_max_mtu;
14426 		dd->vld[15].mtu = MAX_MAD_PACKET;
14427 		/*
14428 		 * Set the initial values to reasonable default, will be set
14429 		 * for real when link is up.
14430 		 */
14431 		ppd->lstate = IB_PORT_DOWN;
14432 		ppd->overrun_threshold = 0x4;
14433 		ppd->phy_error_threshold = 0xf;
14434 		ppd->port_crc_mode_enabled = link_crc_mask;
14435 		/* initialize supported LTP CRC mode */
14436 		ppd->port_ltp_crc_mode = cap_to_port_ltp(link_crc_mask) << 8;
14437 		/* initialize enabled LTP CRC mode */
14438 		ppd->port_ltp_crc_mode |= cap_to_port_ltp(link_crc_mask) << 4;
14439 		/* start in offline */
14440 		ppd->host_link_state = HLS_DN_OFFLINE;
14441 		init_vl_arb_caches(ppd);
14442 		ppd->last_pstate = 0xff; /* invalid value */
14443 	}
14444 
14445 	dd->link_default = HLS_DN_POLL;
14446 
14447 	/*
14448 	 * Do remaining PCIe setup and save PCIe values in dd.
14449 	 * Any error printing is already done by the init code.
14450 	 * On return, we have the chip mapped.
14451 	 */
14452 	ret = hfi1_pcie_ddinit(dd, pdev);
14453 	if (ret < 0)
14454 		goto bail_free;
14455 
14456 	/* verify that reads actually work, save revision for reset check */
14457 	dd->revision = read_csr(dd, CCE_REVISION);
14458 	if (dd->revision == ~(u64)0) {
14459 		dd_dev_err(dd, "cannot read chip CSRs\n");
14460 		ret = -EINVAL;
14461 		goto bail_cleanup;
14462 	}
14463 	dd->majrev = (dd->revision >> CCE_REVISION_CHIP_REV_MAJOR_SHIFT)
14464 			& CCE_REVISION_CHIP_REV_MAJOR_MASK;
14465 	dd->minrev = (dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT)
14466 			& CCE_REVISION_CHIP_REV_MINOR_MASK;
14467 
14468 	/*
14469 	 * Check interrupt registers mapping if the driver has no access to
14470 	 * the upstream component. In this case, it is likely that the driver
14471 	 * is running in a VM.
14472 	 */
14473 	if (!parent) {
14474 		ret = check_int_registers(dd);
14475 		if (ret)
14476 			goto bail_cleanup;
14477 	}
14478 
14479 	/*
14480 	 * obtain the hardware ID - NOT related to unit, which is a
14481 	 * software enumeration
14482 	 */
14483 	reg = read_csr(dd, CCE_REVISION2);
14484 	dd->hfi1_id = (reg >> CCE_REVISION2_HFI_ID_SHIFT)
14485 					& CCE_REVISION2_HFI_ID_MASK;
14486 	/* the variable size will remove unwanted bits */
14487 	dd->icode = reg >> CCE_REVISION2_IMPL_CODE_SHIFT;
14488 	dd->irev = reg >> CCE_REVISION2_IMPL_REVISION_SHIFT;
14489 	dd_dev_info(dd, "Implementation: %s, revision 0x%x\n",
14490 		    dd->icode < ARRAY_SIZE(inames) ?
14491 		    inames[dd->icode] : "unknown", (int)dd->irev);
14492 
14493 	/* speeds the hardware can support */
14494 	dd->pport->link_speed_supported = OPA_LINK_SPEED_25G;
14495 	/* speeds allowed to run at */
14496 	dd->pport->link_speed_enabled = dd->pport->link_speed_supported;
14497 	/* give a reasonable active value, will be set on link up */
14498 	dd->pport->link_speed_active = OPA_LINK_SPEED_25G;
14499 
14500 	dd->chip_rcv_contexts = read_csr(dd, RCV_CONTEXTS);
14501 	dd->chip_send_contexts = read_csr(dd, SEND_CONTEXTS);
14502 	dd->chip_sdma_engines = read_csr(dd, SEND_DMA_ENGINES);
14503 	dd->chip_pio_mem_size = read_csr(dd, SEND_PIO_MEM_SIZE);
14504 	dd->chip_sdma_mem_size = read_csr(dd, SEND_DMA_MEM_SIZE);
14505 	/* fix up link widths for emulation _p */
14506 	ppd = dd->pport;
14507 	if (dd->icode == ICODE_FPGA_EMULATION && is_emulator_p(dd)) {
14508 		ppd->link_width_supported =
14509 			ppd->link_width_enabled =
14510 			ppd->link_width_downgrade_supported =
14511 			ppd->link_width_downgrade_enabled =
14512 				OPA_LINK_WIDTH_1X;
14513 	}
14514 	/* insure num_vls isn't larger than number of sdma engines */
14515 	if (HFI1_CAP_IS_KSET(SDMA) && num_vls > dd->chip_sdma_engines) {
14516 		dd_dev_err(dd, "num_vls %u too large, using %u VLs\n",
14517 			   num_vls, dd->chip_sdma_engines);
14518 		num_vls = dd->chip_sdma_engines;
14519 		ppd->vls_supported = dd->chip_sdma_engines;
14520 		ppd->vls_operational = ppd->vls_supported;
14521 	}
14522 
14523 	/*
14524 	 * Convert the ns parameter to the 64 * cclocks used in the CSR.
14525 	 * Limit the max if larger than the field holds.  If timeout is
14526 	 * non-zero, then the calculated field will be at least 1.
14527 	 *
14528 	 * Must be after icode is set up - the cclock rate depends
14529 	 * on knowing the hardware being used.
14530 	 */
14531 	dd->rcv_intr_timeout_csr = ns_to_cclock(dd, rcv_intr_timeout) / 64;
14532 	if (dd->rcv_intr_timeout_csr >
14533 			RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_MASK)
14534 		dd->rcv_intr_timeout_csr =
14535 			RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_MASK;
14536 	else if (dd->rcv_intr_timeout_csr == 0 && rcv_intr_timeout)
14537 		dd->rcv_intr_timeout_csr = 1;
14538 
14539 	/* needs to be done before we look for the peer device */
14540 	read_guid(dd);
14541 
14542 	/* set up shared ASIC data with peer device */
14543 	ret = init_asic_data(dd);
14544 	if (ret)
14545 		goto bail_cleanup;
14546 
14547 	/* obtain chip sizes, reset chip CSRs */
14548 	init_chip(dd);
14549 
14550 	/* read in the PCIe link speed information */
14551 	ret = pcie_speeds(dd);
14552 	if (ret)
14553 		goto bail_cleanup;
14554 
14555 	/* call before get_platform_config(), after init_chip_resources() */
14556 	ret = eprom_init(dd);
14557 	if (ret)
14558 		goto bail_free_rcverr;
14559 
14560 	/* Needs to be called before hfi1_firmware_init */
14561 	get_platform_config(dd);
14562 
14563 	/* read in firmware */
14564 	ret = hfi1_firmware_init(dd);
14565 	if (ret)
14566 		goto bail_cleanup;
14567 
14568 	/*
14569 	 * In general, the PCIe Gen3 transition must occur after the
14570 	 * chip has been idled (so it won't initiate any PCIe transactions
14571 	 * e.g. an interrupt) and before the driver changes any registers
14572 	 * (the transition will reset the registers).
14573 	 *
14574 	 * In particular, place this call after:
14575 	 * - init_chip()     - the chip will not initiate any PCIe transactions
14576 	 * - pcie_speeds()   - reads the current link speed
14577 	 * - hfi1_firmware_init() - the needed firmware is ready to be
14578 	 *			    downloaded
14579 	 */
14580 	ret = do_pcie_gen3_transition(dd);
14581 	if (ret)
14582 		goto bail_cleanup;
14583 
14584 	/* start setting dd values and adjusting CSRs */
14585 	init_early_variables(dd);
14586 
14587 	parse_platform_config(dd);
14588 
14589 	ret = obtain_boardname(dd);
14590 	if (ret)
14591 		goto bail_cleanup;
14592 
14593 	snprintf(dd->boardversion, BOARD_VERS_MAX,
14594 		 "ChipABI %u.%u, ChipRev %u.%u, SW Compat %llu\n",
14595 		 HFI1_CHIP_VERS_MAJ, HFI1_CHIP_VERS_MIN,
14596 		 (u32)dd->majrev,
14597 		 (u32)dd->minrev,
14598 		 (dd->revision >> CCE_REVISION_SW_SHIFT)
14599 		    & CCE_REVISION_SW_MASK);
14600 
14601 	ret = set_up_context_variables(dd);
14602 	if (ret)
14603 		goto bail_cleanup;
14604 
14605 	/* set initial RXE CSRs */
14606 	init_rxe(dd);
14607 	/* set initial TXE CSRs */
14608 	init_txe(dd);
14609 	/* set initial non-RXE, non-TXE CSRs */
14610 	init_other(dd);
14611 	/* set up KDETH QP prefix in both RX and TX CSRs */
14612 	init_kdeth_qp(dd);
14613 
14614 	ret = hfi1_dev_affinity_init(dd);
14615 	if (ret)
14616 		goto bail_cleanup;
14617 
14618 	/* send contexts must be set up before receive contexts */
14619 	ret = init_send_contexts(dd);
14620 	if (ret)
14621 		goto bail_cleanup;
14622 
14623 	ret = hfi1_create_ctxts(dd);
14624 	if (ret)
14625 		goto bail_cleanup;
14626 
14627 	dd->rcvhdrsize = DEFAULT_RCVHDRSIZE;
14628 	/*
14629 	 * rcd[0] is guaranteed to be valid by this point. Also, all
14630 	 * context are using the same value, as per the module parameter.
14631 	 */
14632 	dd->rhf_offset = dd->rcd[0]->rcvhdrqentsize - sizeof(u64) / sizeof(u32);
14633 
14634 	ret = init_pervl_scs(dd);
14635 	if (ret)
14636 		goto bail_cleanup;
14637 
14638 	/* sdma init */
14639 	for (i = 0; i < dd->num_pports; ++i) {
14640 		ret = sdma_init(dd, i);
14641 		if (ret)
14642 			goto bail_cleanup;
14643 	}
14644 
14645 	/* use contexts created by hfi1_create_ctxts */
14646 	ret = set_up_interrupts(dd);
14647 	if (ret)
14648 		goto bail_cleanup;
14649 
14650 	/* set up LCB access - must be after set_up_interrupts() */
14651 	init_lcb_access(dd);
14652 
14653 	/*
14654 	 * Serial number is created from the base guid:
14655 	 * [27:24] = base guid [38:35]
14656 	 * [23: 0] = base guid [23: 0]
14657 	 */
14658 	snprintf(dd->serial, SERIAL_MAX, "0x%08llx\n",
14659 		 (dd->base_guid & 0xFFFFFF) |
14660 		     ((dd->base_guid >> 11) & 0xF000000));
14661 
14662 	dd->oui1 = dd->base_guid >> 56 & 0xFF;
14663 	dd->oui2 = dd->base_guid >> 48 & 0xFF;
14664 	dd->oui3 = dd->base_guid >> 40 & 0xFF;
14665 
14666 	ret = load_firmware(dd); /* asymmetric with dispose_firmware() */
14667 	if (ret)
14668 		goto bail_clear_intr;
14669 
14670 	thermal_init(dd);
14671 
14672 	ret = init_cntrs(dd);
14673 	if (ret)
14674 		goto bail_clear_intr;
14675 
14676 	ret = init_rcverr(dd);
14677 	if (ret)
14678 		goto bail_free_cntrs;
14679 
14680 	init_completion(&dd->user_comp);
14681 
14682 	/* The user refcount starts with one to inidicate an active device */
14683 	atomic_set(&dd->user_refcount, 1);
14684 
14685 	goto bail;
14686 
14687 bail_free_rcverr:
14688 	free_rcverr(dd);
14689 bail_free_cntrs:
14690 	free_cntrs(dd);
14691 bail_clear_intr:
14692 	clean_up_interrupts(dd);
14693 bail_cleanup:
14694 	hfi1_pcie_ddcleanup(dd);
14695 bail_free:
14696 	hfi1_free_devdata(dd);
14697 	dd = ERR_PTR(ret);
14698 bail:
14699 	return dd;
14700 }
14701 
14702 static u16 delay_cycles(struct hfi1_pportdata *ppd, u32 desired_egress_rate,
14703 			u32 dw_len)
14704 {
14705 	u32 delta_cycles;
14706 	u32 current_egress_rate = ppd->current_egress_rate;
14707 	/* rates here are in units of 10^6 bits/sec */
14708 
14709 	if (desired_egress_rate == -1)
14710 		return 0; /* shouldn't happen */
14711 
14712 	if (desired_egress_rate >= current_egress_rate)
14713 		return 0; /* we can't help go faster, only slower */
14714 
14715 	delta_cycles = egress_cycles(dw_len * 4, desired_egress_rate) -
14716 			egress_cycles(dw_len * 4, current_egress_rate);
14717 
14718 	return (u16)delta_cycles;
14719 }
14720 
14721 /**
14722  * create_pbc - build a pbc for transmission
14723  * @flags: special case flags or-ed in built pbc
14724  * @srate: static rate
14725  * @vl: vl
14726  * @dwlen: dword length (header words + data words + pbc words)
14727  *
14728  * Create a PBC with the given flags, rate, VL, and length.
14729  *
14730  * NOTE: The PBC created will not insert any HCRC - all callers but one are
14731  * for verbs, which does not use this PSM feature.  The lone other caller
14732  * is for the diagnostic interface which calls this if the user does not
14733  * supply their own PBC.
14734  */
14735 u64 create_pbc(struct hfi1_pportdata *ppd, u64 flags, int srate_mbs, u32 vl,
14736 	       u32 dw_len)
14737 {
14738 	u64 pbc, delay = 0;
14739 
14740 	if (unlikely(srate_mbs))
14741 		delay = delay_cycles(ppd, srate_mbs, dw_len);
14742 
14743 	pbc = flags
14744 		| (delay << PBC_STATIC_RATE_CONTROL_COUNT_SHIFT)
14745 		| ((u64)PBC_IHCRC_NONE << PBC_INSERT_HCRC_SHIFT)
14746 		| (vl & PBC_VL_MASK) << PBC_VL_SHIFT
14747 		| (dw_len & PBC_LENGTH_DWS_MASK)
14748 			<< PBC_LENGTH_DWS_SHIFT;
14749 
14750 	return pbc;
14751 }
14752 
14753 #define SBUS_THERMAL    0x4f
14754 #define SBUS_THERM_MONITOR_MODE 0x1
14755 
14756 #define THERM_FAILURE(dev, ret, reason) \
14757 	dd_dev_err((dd),						\
14758 		   "Thermal sensor initialization failed: %s (%d)\n",	\
14759 		   (reason), (ret))
14760 
14761 /*
14762  * Initialize the thermal sensor.
14763  *
14764  * After initialization, enable polling of thermal sensor through
14765  * SBus interface. In order for this to work, the SBus Master
14766  * firmware has to be loaded due to the fact that the HW polling
14767  * logic uses SBus interrupts, which are not supported with
14768  * default firmware. Otherwise, no data will be returned through
14769  * the ASIC_STS_THERM CSR.
14770  */
14771 static int thermal_init(struct hfi1_devdata *dd)
14772 {
14773 	int ret = 0;
14774 
14775 	if (dd->icode != ICODE_RTL_SILICON ||
14776 	    check_chip_resource(dd, CR_THERM_INIT, NULL))
14777 		return ret;
14778 
14779 	ret = acquire_chip_resource(dd, CR_SBUS, SBUS_TIMEOUT);
14780 	if (ret) {
14781 		THERM_FAILURE(dd, ret, "Acquire SBus");
14782 		return ret;
14783 	}
14784 
14785 	dd_dev_info(dd, "Initializing thermal sensor\n");
14786 	/* Disable polling of thermal readings */
14787 	write_csr(dd, ASIC_CFG_THERM_POLL_EN, 0x0);
14788 	msleep(100);
14789 	/* Thermal Sensor Initialization */
14790 	/*    Step 1: Reset the Thermal SBus Receiver */
14791 	ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0,
14792 				RESET_SBUS_RECEIVER, 0);
14793 	if (ret) {
14794 		THERM_FAILURE(dd, ret, "Bus Reset");
14795 		goto done;
14796 	}
14797 	/*    Step 2: Set Reset bit in Thermal block */
14798 	ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0,
14799 				WRITE_SBUS_RECEIVER, 0x1);
14800 	if (ret) {
14801 		THERM_FAILURE(dd, ret, "Therm Block Reset");
14802 		goto done;
14803 	}
14804 	/*    Step 3: Write clock divider value (100MHz -> 2MHz) */
14805 	ret = sbus_request_slow(dd, SBUS_THERMAL, 0x1,
14806 				WRITE_SBUS_RECEIVER, 0x32);
14807 	if (ret) {
14808 		THERM_FAILURE(dd, ret, "Write Clock Div");
14809 		goto done;
14810 	}
14811 	/*    Step 4: Select temperature mode */
14812 	ret = sbus_request_slow(dd, SBUS_THERMAL, 0x3,
14813 				WRITE_SBUS_RECEIVER,
14814 				SBUS_THERM_MONITOR_MODE);
14815 	if (ret) {
14816 		THERM_FAILURE(dd, ret, "Write Mode Sel");
14817 		goto done;
14818 	}
14819 	/*    Step 5: De-assert block reset and start conversion */
14820 	ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0,
14821 				WRITE_SBUS_RECEIVER, 0x2);
14822 	if (ret) {
14823 		THERM_FAILURE(dd, ret, "Write Reset Deassert");
14824 		goto done;
14825 	}
14826 	/*    Step 5.1: Wait for first conversion (21.5ms per spec) */
14827 	msleep(22);
14828 
14829 	/* Enable polling of thermal readings */
14830 	write_csr(dd, ASIC_CFG_THERM_POLL_EN, 0x1);
14831 
14832 	/* Set initialized flag */
14833 	ret = acquire_chip_resource(dd, CR_THERM_INIT, 0);
14834 	if (ret)
14835 		THERM_FAILURE(dd, ret, "Unable to set thermal init flag");
14836 
14837 done:
14838 	release_chip_resource(dd, CR_SBUS);
14839 	return ret;
14840 }
14841 
14842 static void handle_temp_err(struct hfi1_devdata *dd)
14843 {
14844 	struct hfi1_pportdata *ppd = &dd->pport[0];
14845 	/*
14846 	 * Thermal Critical Interrupt
14847 	 * Put the device into forced freeze mode, take link down to
14848 	 * offline, and put DC into reset.
14849 	 */
14850 	dd_dev_emerg(dd,
14851 		     "Critical temperature reached! Forcing device into freeze mode!\n");
14852 	dd->flags |= HFI1_FORCED_FREEZE;
14853 	start_freeze_handling(ppd, FREEZE_SELF | FREEZE_ABORT);
14854 	/*
14855 	 * Shut DC down as much and as quickly as possible.
14856 	 *
14857 	 * Step 1: Take the link down to OFFLINE. This will cause the
14858 	 *         8051 to put the Serdes in reset. However, we don't want to
14859 	 *         go through the entire link state machine since we want to
14860 	 *         shutdown ASAP. Furthermore, this is not a graceful shutdown
14861 	 *         but rather an attempt to save the chip.
14862 	 *         Code below is almost the same as quiet_serdes() but avoids
14863 	 *         all the extra work and the sleeps.
14864 	 */
14865 	ppd->driver_link_ready = 0;
14866 	ppd->link_enabled = 0;
14867 	set_physical_link_state(dd, (OPA_LINKDOWN_REASON_SMA_DISABLED << 8) |
14868 				PLS_OFFLINE);
14869 	/*
14870 	 * Step 2: Shutdown LCB and 8051
14871 	 *         After shutdown, do not restore DC_CFG_RESET value.
14872 	 */
14873 	dc_shutdown(dd);
14874 }
14875