xref: /openbmc/linux/drivers/infiniband/hw/hfi1/chip.c (revision ba61bb17)
1 /*
2  * Copyright(c) 2015 - 2018 Intel Corporation.
3  *
4  * This file is provided under a dual BSD/GPLv2 license.  When using or
5  * redistributing this file, you may do so under either license.
6  *
7  * GPL LICENSE SUMMARY
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of version 2 of the GNU General Public License as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * General Public License for more details.
17  *
18  * BSD LICENSE
19  *
20  * Redistribution and use in source and binary forms, with or without
21  * modification, are permitted provided that the following conditions
22  * are met:
23  *
24  *  - Redistributions of source code must retain the above copyright
25  *    notice, this list of conditions and the following disclaimer.
26  *  - Redistributions in binary form must reproduce the above copyright
27  *    notice, this list of conditions and the following disclaimer in
28  *    the documentation and/or other materials provided with the
29  *    distribution.
30  *  - Neither the name of Intel Corporation nor the names of its
31  *    contributors may be used to endorse or promote products derived
32  *    from this software without specific prior written permission.
33  *
34  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45  *
46  */
47 
48 /*
49  * This file contains all of the code that is specific to the HFI chip
50  */
51 
52 #include <linux/pci.h>
53 #include <linux/delay.h>
54 #include <linux/interrupt.h>
55 #include <linux/module.h>
56 
57 #include "hfi.h"
58 #include "trace.h"
59 #include "mad.h"
60 #include "pio.h"
61 #include "sdma.h"
62 #include "eprom.h"
63 #include "efivar.h"
64 #include "platform.h"
65 #include "aspm.h"
66 #include "affinity.h"
67 #include "debugfs.h"
68 #include "fault.h"
69 
70 #define NUM_IB_PORTS 1
71 
72 uint kdeth_qp;
73 module_param_named(kdeth_qp, kdeth_qp, uint, S_IRUGO);
74 MODULE_PARM_DESC(kdeth_qp, "Set the KDETH queue pair prefix");
75 
76 uint num_vls = HFI1_MAX_VLS_SUPPORTED;
77 module_param(num_vls, uint, S_IRUGO);
78 MODULE_PARM_DESC(num_vls, "Set number of Virtual Lanes to use (1-8)");
79 
80 /*
81  * Default time to aggregate two 10K packets from the idle state
82  * (timer not running). The timer starts at the end of the first packet,
83  * so only the time for one 10K packet and header plus a bit extra is needed.
84  * 10 * 1024 + 64 header byte = 10304 byte
85  * 10304 byte / 12.5 GB/s = 824.32ns
86  */
87 uint rcv_intr_timeout = (824 + 16); /* 16 is for coalescing interrupt */
88 module_param(rcv_intr_timeout, uint, S_IRUGO);
89 MODULE_PARM_DESC(rcv_intr_timeout, "Receive interrupt mitigation timeout in ns");
90 
91 uint rcv_intr_count = 16; /* same as qib */
92 module_param(rcv_intr_count, uint, S_IRUGO);
93 MODULE_PARM_DESC(rcv_intr_count, "Receive interrupt mitigation count");
94 
95 ushort link_crc_mask = SUPPORTED_CRCS;
96 module_param(link_crc_mask, ushort, S_IRUGO);
97 MODULE_PARM_DESC(link_crc_mask, "CRCs to use on the link");
98 
99 uint loopback;
100 module_param_named(loopback, loopback, uint, S_IRUGO);
101 MODULE_PARM_DESC(loopback, "Put into loopback mode (1 = serdes, 3 = external cable");
102 
103 /* Other driver tunables */
104 uint rcv_intr_dynamic = 1; /* enable dynamic mode for rcv int mitigation*/
105 static ushort crc_14b_sideband = 1;
106 static uint use_flr = 1;
107 uint quick_linkup; /* skip LNI */
108 
109 struct flag_table {
110 	u64 flag;	/* the flag */
111 	char *str;	/* description string */
112 	u16 extra;	/* extra information */
113 	u16 unused0;
114 	u32 unused1;
115 };
116 
117 /* str must be a string constant */
118 #define FLAG_ENTRY(str, extra, flag) {flag, str, extra}
119 #define FLAG_ENTRY0(str, flag) {flag, str, 0}
120 
121 /* Send Error Consequences */
122 #define SEC_WRITE_DROPPED	0x1
123 #define SEC_PACKET_DROPPED	0x2
124 #define SEC_SC_HALTED		0x4	/* per-context only */
125 #define SEC_SPC_FREEZE		0x8	/* per-HFI only */
126 
127 #define DEFAULT_KRCVQS		  2
128 #define MIN_KERNEL_KCTXTS         2
129 #define FIRST_KERNEL_KCTXT        1
130 
131 /*
132  * RSM instance allocation
133  *   0 - Verbs
134  *   1 - User Fecn Handling
135  *   2 - Vnic
136  */
137 #define RSM_INS_VERBS             0
138 #define RSM_INS_FECN              1
139 #define RSM_INS_VNIC              2
140 
141 /* Bit offset into the GUID which carries HFI id information */
142 #define GUID_HFI_INDEX_SHIFT     39
143 
144 /* extract the emulation revision */
145 #define emulator_rev(dd) ((dd)->irev >> 8)
146 /* parallel and serial emulation versions are 3 and 4 respectively */
147 #define is_emulator_p(dd) ((((dd)->irev) & 0xf) == 3)
148 #define is_emulator_s(dd) ((((dd)->irev) & 0xf) == 4)
149 
150 /* RSM fields for Verbs */
151 /* packet type */
152 #define IB_PACKET_TYPE         2ull
153 #define QW_SHIFT               6ull
154 /* QPN[7..1] */
155 #define QPN_WIDTH              7ull
156 
157 /* LRH.BTH: QW 0, OFFSET 48 - for match */
158 #define LRH_BTH_QW             0ull
159 #define LRH_BTH_BIT_OFFSET     48ull
160 #define LRH_BTH_OFFSET(off)    ((LRH_BTH_QW << QW_SHIFT) | (off))
161 #define LRH_BTH_MATCH_OFFSET   LRH_BTH_OFFSET(LRH_BTH_BIT_OFFSET)
162 #define LRH_BTH_SELECT
163 #define LRH_BTH_MASK           3ull
164 #define LRH_BTH_VALUE          2ull
165 
166 /* LRH.SC[3..0] QW 0, OFFSET 56 - for match */
167 #define LRH_SC_QW              0ull
168 #define LRH_SC_BIT_OFFSET      56ull
169 #define LRH_SC_OFFSET(off)     ((LRH_SC_QW << QW_SHIFT) | (off))
170 #define LRH_SC_MATCH_OFFSET    LRH_SC_OFFSET(LRH_SC_BIT_OFFSET)
171 #define LRH_SC_MASK            128ull
172 #define LRH_SC_VALUE           0ull
173 
174 /* SC[n..0] QW 0, OFFSET 60 - for select */
175 #define LRH_SC_SELECT_OFFSET  ((LRH_SC_QW << QW_SHIFT) | (60ull))
176 
177 /* QPN[m+n:1] QW 1, OFFSET 1 */
178 #define QPN_SELECT_OFFSET      ((1ull << QW_SHIFT) | (1ull))
179 
180 /* RSM fields for Vnic */
181 /* L2_TYPE: QW 0, OFFSET 61 - for match */
182 #define L2_TYPE_QW             0ull
183 #define L2_TYPE_BIT_OFFSET     61ull
184 #define L2_TYPE_OFFSET(off)    ((L2_TYPE_QW << QW_SHIFT) | (off))
185 #define L2_TYPE_MATCH_OFFSET   L2_TYPE_OFFSET(L2_TYPE_BIT_OFFSET)
186 #define L2_TYPE_MASK           3ull
187 #define L2_16B_VALUE           2ull
188 
189 /* L4_TYPE QW 1, OFFSET 0 - for match */
190 #define L4_TYPE_QW              1ull
191 #define L4_TYPE_BIT_OFFSET      0ull
192 #define L4_TYPE_OFFSET(off)     ((L4_TYPE_QW << QW_SHIFT) | (off))
193 #define L4_TYPE_MATCH_OFFSET    L4_TYPE_OFFSET(L4_TYPE_BIT_OFFSET)
194 #define L4_16B_TYPE_MASK        0xFFull
195 #define L4_16B_ETH_VALUE        0x78ull
196 
197 /* 16B VESWID - for select */
198 #define L4_16B_HDR_VESWID_OFFSET  ((2 << QW_SHIFT) | (16ull))
199 /* 16B ENTROPY - for select */
200 #define L2_16B_ENTROPY_OFFSET     ((1 << QW_SHIFT) | (32ull))
201 
202 /* defines to build power on SC2VL table */
203 #define SC2VL_VAL( \
204 	num, \
205 	sc0, sc0val, \
206 	sc1, sc1val, \
207 	sc2, sc2val, \
208 	sc3, sc3val, \
209 	sc4, sc4val, \
210 	sc5, sc5val, \
211 	sc6, sc6val, \
212 	sc7, sc7val) \
213 ( \
214 	((u64)(sc0val) << SEND_SC2VLT##num##_SC##sc0##_SHIFT) | \
215 	((u64)(sc1val) << SEND_SC2VLT##num##_SC##sc1##_SHIFT) | \
216 	((u64)(sc2val) << SEND_SC2VLT##num##_SC##sc2##_SHIFT) | \
217 	((u64)(sc3val) << SEND_SC2VLT##num##_SC##sc3##_SHIFT) | \
218 	((u64)(sc4val) << SEND_SC2VLT##num##_SC##sc4##_SHIFT) | \
219 	((u64)(sc5val) << SEND_SC2VLT##num##_SC##sc5##_SHIFT) | \
220 	((u64)(sc6val) << SEND_SC2VLT##num##_SC##sc6##_SHIFT) | \
221 	((u64)(sc7val) << SEND_SC2VLT##num##_SC##sc7##_SHIFT)   \
222 )
223 
224 #define DC_SC_VL_VAL( \
225 	range, \
226 	e0, e0val, \
227 	e1, e1val, \
228 	e2, e2val, \
229 	e3, e3val, \
230 	e4, e4val, \
231 	e5, e5val, \
232 	e6, e6val, \
233 	e7, e7val, \
234 	e8, e8val, \
235 	e9, e9val, \
236 	e10, e10val, \
237 	e11, e11val, \
238 	e12, e12val, \
239 	e13, e13val, \
240 	e14, e14val, \
241 	e15, e15val) \
242 ( \
243 	((u64)(e0val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e0##_SHIFT) | \
244 	((u64)(e1val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e1##_SHIFT) | \
245 	((u64)(e2val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e2##_SHIFT) | \
246 	((u64)(e3val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e3##_SHIFT) | \
247 	((u64)(e4val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e4##_SHIFT) | \
248 	((u64)(e5val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e5##_SHIFT) | \
249 	((u64)(e6val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e6##_SHIFT) | \
250 	((u64)(e7val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e7##_SHIFT) | \
251 	((u64)(e8val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e8##_SHIFT) | \
252 	((u64)(e9val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e9##_SHIFT) | \
253 	((u64)(e10val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e10##_SHIFT) | \
254 	((u64)(e11val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e11##_SHIFT) | \
255 	((u64)(e12val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e12##_SHIFT) | \
256 	((u64)(e13val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e13##_SHIFT) | \
257 	((u64)(e14val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e14##_SHIFT) | \
258 	((u64)(e15val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e15##_SHIFT) \
259 )
260 
261 /* all CceStatus sub-block freeze bits */
262 #define ALL_FROZE (CCE_STATUS_SDMA_FROZE_SMASK \
263 			| CCE_STATUS_RXE_FROZE_SMASK \
264 			| CCE_STATUS_TXE_FROZE_SMASK \
265 			| CCE_STATUS_TXE_PIO_FROZE_SMASK)
266 /* all CceStatus sub-block TXE pause bits */
267 #define ALL_TXE_PAUSE (CCE_STATUS_TXE_PIO_PAUSED_SMASK \
268 			| CCE_STATUS_TXE_PAUSED_SMASK \
269 			| CCE_STATUS_SDMA_PAUSED_SMASK)
270 /* all CceStatus sub-block RXE pause bits */
271 #define ALL_RXE_PAUSE CCE_STATUS_RXE_PAUSED_SMASK
272 
273 #define CNTR_MAX 0xFFFFFFFFFFFFFFFFULL
274 #define CNTR_32BIT_MAX 0x00000000FFFFFFFF
275 
276 /*
277  * CCE Error flags.
278  */
279 static struct flag_table cce_err_status_flags[] = {
280 /* 0*/	FLAG_ENTRY0("CceCsrParityErr",
281 		CCE_ERR_STATUS_CCE_CSR_PARITY_ERR_SMASK),
282 /* 1*/	FLAG_ENTRY0("CceCsrReadBadAddrErr",
283 		CCE_ERR_STATUS_CCE_CSR_READ_BAD_ADDR_ERR_SMASK),
284 /* 2*/	FLAG_ENTRY0("CceCsrWriteBadAddrErr",
285 		CCE_ERR_STATUS_CCE_CSR_WRITE_BAD_ADDR_ERR_SMASK),
286 /* 3*/	FLAG_ENTRY0("CceTrgtAsyncFifoParityErr",
287 		CCE_ERR_STATUS_CCE_TRGT_ASYNC_FIFO_PARITY_ERR_SMASK),
288 /* 4*/	FLAG_ENTRY0("CceTrgtAccessErr",
289 		CCE_ERR_STATUS_CCE_TRGT_ACCESS_ERR_SMASK),
290 /* 5*/	FLAG_ENTRY0("CceRspdDataParityErr",
291 		CCE_ERR_STATUS_CCE_RSPD_DATA_PARITY_ERR_SMASK),
292 /* 6*/	FLAG_ENTRY0("CceCli0AsyncFifoParityErr",
293 		CCE_ERR_STATUS_CCE_CLI0_ASYNC_FIFO_PARITY_ERR_SMASK),
294 /* 7*/	FLAG_ENTRY0("CceCsrCfgBusParityErr",
295 		CCE_ERR_STATUS_CCE_CSR_CFG_BUS_PARITY_ERR_SMASK),
296 /* 8*/	FLAG_ENTRY0("CceCli2AsyncFifoParityErr",
297 		CCE_ERR_STATUS_CCE_CLI2_ASYNC_FIFO_PARITY_ERR_SMASK),
298 /* 9*/	FLAG_ENTRY0("CceCli1AsyncFifoPioCrdtParityErr",
299 	    CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_PIO_CRDT_PARITY_ERR_SMASK),
300 /*10*/	FLAG_ENTRY0("CceCli1AsyncFifoPioCrdtParityErr",
301 	    CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_SDMA_HD_PARITY_ERR_SMASK),
302 /*11*/	FLAG_ENTRY0("CceCli1AsyncFifoRxdmaParityError",
303 	    CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_RXDMA_PARITY_ERROR_SMASK),
304 /*12*/	FLAG_ENTRY0("CceCli1AsyncFifoDbgParityError",
305 		CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_DBG_PARITY_ERROR_SMASK),
306 /*13*/	FLAG_ENTRY0("PcicRetryMemCorErr",
307 		CCE_ERR_STATUS_PCIC_RETRY_MEM_COR_ERR_SMASK),
308 /*14*/	FLAG_ENTRY0("PcicRetryMemCorErr",
309 		CCE_ERR_STATUS_PCIC_RETRY_SOT_MEM_COR_ERR_SMASK),
310 /*15*/	FLAG_ENTRY0("PcicPostHdQCorErr",
311 		CCE_ERR_STATUS_PCIC_POST_HD_QCOR_ERR_SMASK),
312 /*16*/	FLAG_ENTRY0("PcicPostHdQCorErr",
313 		CCE_ERR_STATUS_PCIC_POST_DAT_QCOR_ERR_SMASK),
314 /*17*/	FLAG_ENTRY0("PcicPostHdQCorErr",
315 		CCE_ERR_STATUS_PCIC_CPL_HD_QCOR_ERR_SMASK),
316 /*18*/	FLAG_ENTRY0("PcicCplDatQCorErr",
317 		CCE_ERR_STATUS_PCIC_CPL_DAT_QCOR_ERR_SMASK),
318 /*19*/	FLAG_ENTRY0("PcicNPostHQParityErr",
319 		CCE_ERR_STATUS_PCIC_NPOST_HQ_PARITY_ERR_SMASK),
320 /*20*/	FLAG_ENTRY0("PcicNPostDatQParityErr",
321 		CCE_ERR_STATUS_PCIC_NPOST_DAT_QPARITY_ERR_SMASK),
322 /*21*/	FLAG_ENTRY0("PcicRetryMemUncErr",
323 		CCE_ERR_STATUS_PCIC_RETRY_MEM_UNC_ERR_SMASK),
324 /*22*/	FLAG_ENTRY0("PcicRetrySotMemUncErr",
325 		CCE_ERR_STATUS_PCIC_RETRY_SOT_MEM_UNC_ERR_SMASK),
326 /*23*/	FLAG_ENTRY0("PcicPostHdQUncErr",
327 		CCE_ERR_STATUS_PCIC_POST_HD_QUNC_ERR_SMASK),
328 /*24*/	FLAG_ENTRY0("PcicPostDatQUncErr",
329 		CCE_ERR_STATUS_PCIC_POST_DAT_QUNC_ERR_SMASK),
330 /*25*/	FLAG_ENTRY0("PcicCplHdQUncErr",
331 		CCE_ERR_STATUS_PCIC_CPL_HD_QUNC_ERR_SMASK),
332 /*26*/	FLAG_ENTRY0("PcicCplDatQUncErr",
333 		CCE_ERR_STATUS_PCIC_CPL_DAT_QUNC_ERR_SMASK),
334 /*27*/	FLAG_ENTRY0("PcicTransmitFrontParityErr",
335 		CCE_ERR_STATUS_PCIC_TRANSMIT_FRONT_PARITY_ERR_SMASK),
336 /*28*/	FLAG_ENTRY0("PcicTransmitBackParityErr",
337 		CCE_ERR_STATUS_PCIC_TRANSMIT_BACK_PARITY_ERR_SMASK),
338 /*29*/	FLAG_ENTRY0("PcicReceiveParityErr",
339 		CCE_ERR_STATUS_PCIC_RECEIVE_PARITY_ERR_SMASK),
340 /*30*/	FLAG_ENTRY0("CceTrgtCplTimeoutErr",
341 		CCE_ERR_STATUS_CCE_TRGT_CPL_TIMEOUT_ERR_SMASK),
342 /*31*/	FLAG_ENTRY0("LATriggered",
343 		CCE_ERR_STATUS_LA_TRIGGERED_SMASK),
344 /*32*/	FLAG_ENTRY0("CceSegReadBadAddrErr",
345 		CCE_ERR_STATUS_CCE_SEG_READ_BAD_ADDR_ERR_SMASK),
346 /*33*/	FLAG_ENTRY0("CceSegWriteBadAddrErr",
347 		CCE_ERR_STATUS_CCE_SEG_WRITE_BAD_ADDR_ERR_SMASK),
348 /*34*/	FLAG_ENTRY0("CceRcplAsyncFifoParityErr",
349 		CCE_ERR_STATUS_CCE_RCPL_ASYNC_FIFO_PARITY_ERR_SMASK),
350 /*35*/	FLAG_ENTRY0("CceRxdmaConvFifoParityErr",
351 		CCE_ERR_STATUS_CCE_RXDMA_CONV_FIFO_PARITY_ERR_SMASK),
352 /*36*/	FLAG_ENTRY0("CceMsixTableCorErr",
353 		CCE_ERR_STATUS_CCE_MSIX_TABLE_COR_ERR_SMASK),
354 /*37*/	FLAG_ENTRY0("CceMsixTableUncErr",
355 		CCE_ERR_STATUS_CCE_MSIX_TABLE_UNC_ERR_SMASK),
356 /*38*/	FLAG_ENTRY0("CceIntMapCorErr",
357 		CCE_ERR_STATUS_CCE_INT_MAP_COR_ERR_SMASK),
358 /*39*/	FLAG_ENTRY0("CceIntMapUncErr",
359 		CCE_ERR_STATUS_CCE_INT_MAP_UNC_ERR_SMASK),
360 /*40*/	FLAG_ENTRY0("CceMsixCsrParityErr",
361 		CCE_ERR_STATUS_CCE_MSIX_CSR_PARITY_ERR_SMASK),
362 /*41-63 reserved*/
363 };
364 
365 /*
366  * Misc Error flags
367  */
368 #define MES(text) MISC_ERR_STATUS_MISC_##text##_ERR_SMASK
369 static struct flag_table misc_err_status_flags[] = {
370 /* 0*/	FLAG_ENTRY0("CSR_PARITY", MES(CSR_PARITY)),
371 /* 1*/	FLAG_ENTRY0("CSR_READ_BAD_ADDR", MES(CSR_READ_BAD_ADDR)),
372 /* 2*/	FLAG_ENTRY0("CSR_WRITE_BAD_ADDR", MES(CSR_WRITE_BAD_ADDR)),
373 /* 3*/	FLAG_ENTRY0("SBUS_WRITE_FAILED", MES(SBUS_WRITE_FAILED)),
374 /* 4*/	FLAG_ENTRY0("KEY_MISMATCH", MES(KEY_MISMATCH)),
375 /* 5*/	FLAG_ENTRY0("FW_AUTH_FAILED", MES(FW_AUTH_FAILED)),
376 /* 6*/	FLAG_ENTRY0("EFUSE_CSR_PARITY", MES(EFUSE_CSR_PARITY)),
377 /* 7*/	FLAG_ENTRY0("EFUSE_READ_BAD_ADDR", MES(EFUSE_READ_BAD_ADDR)),
378 /* 8*/	FLAG_ENTRY0("EFUSE_WRITE", MES(EFUSE_WRITE)),
379 /* 9*/	FLAG_ENTRY0("EFUSE_DONE_PARITY", MES(EFUSE_DONE_PARITY)),
380 /*10*/	FLAG_ENTRY0("INVALID_EEP_CMD", MES(INVALID_EEP_CMD)),
381 /*11*/	FLAG_ENTRY0("MBIST_FAIL", MES(MBIST_FAIL)),
382 /*12*/	FLAG_ENTRY0("PLL_LOCK_FAIL", MES(PLL_LOCK_FAIL))
383 };
384 
385 /*
386  * TXE PIO Error flags and consequences
387  */
388 static struct flag_table pio_err_status_flags[] = {
389 /* 0*/	FLAG_ENTRY("PioWriteBadCtxt",
390 	SEC_WRITE_DROPPED,
391 	SEND_PIO_ERR_STATUS_PIO_WRITE_BAD_CTXT_ERR_SMASK),
392 /* 1*/	FLAG_ENTRY("PioWriteAddrParity",
393 	SEC_SPC_FREEZE,
394 	SEND_PIO_ERR_STATUS_PIO_WRITE_ADDR_PARITY_ERR_SMASK),
395 /* 2*/	FLAG_ENTRY("PioCsrParity",
396 	SEC_SPC_FREEZE,
397 	SEND_PIO_ERR_STATUS_PIO_CSR_PARITY_ERR_SMASK),
398 /* 3*/	FLAG_ENTRY("PioSbMemFifo0",
399 	SEC_SPC_FREEZE,
400 	SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO0_ERR_SMASK),
401 /* 4*/	FLAG_ENTRY("PioSbMemFifo1",
402 	SEC_SPC_FREEZE,
403 	SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO1_ERR_SMASK),
404 /* 5*/	FLAG_ENTRY("PioPccFifoParity",
405 	SEC_SPC_FREEZE,
406 	SEND_PIO_ERR_STATUS_PIO_PCC_FIFO_PARITY_ERR_SMASK),
407 /* 6*/	FLAG_ENTRY("PioPecFifoParity",
408 	SEC_SPC_FREEZE,
409 	SEND_PIO_ERR_STATUS_PIO_PEC_FIFO_PARITY_ERR_SMASK),
410 /* 7*/	FLAG_ENTRY("PioSbrdctlCrrelParity",
411 	SEC_SPC_FREEZE,
412 	SEND_PIO_ERR_STATUS_PIO_SBRDCTL_CRREL_PARITY_ERR_SMASK),
413 /* 8*/	FLAG_ENTRY("PioSbrdctrlCrrelFifoParity",
414 	SEC_SPC_FREEZE,
415 	SEND_PIO_ERR_STATUS_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR_SMASK),
416 /* 9*/	FLAG_ENTRY("PioPktEvictFifoParityErr",
417 	SEC_SPC_FREEZE,
418 	SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_FIFO_PARITY_ERR_SMASK),
419 /*10*/	FLAG_ENTRY("PioSmPktResetParity",
420 	SEC_SPC_FREEZE,
421 	SEND_PIO_ERR_STATUS_PIO_SM_PKT_RESET_PARITY_ERR_SMASK),
422 /*11*/	FLAG_ENTRY("PioVlLenMemBank0Unc",
423 	SEC_SPC_FREEZE,
424 	SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_UNC_ERR_SMASK),
425 /*12*/	FLAG_ENTRY("PioVlLenMemBank1Unc",
426 	SEC_SPC_FREEZE,
427 	SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_UNC_ERR_SMASK),
428 /*13*/	FLAG_ENTRY("PioVlLenMemBank0Cor",
429 	0,
430 	SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_COR_ERR_SMASK),
431 /*14*/	FLAG_ENTRY("PioVlLenMemBank1Cor",
432 	0,
433 	SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_COR_ERR_SMASK),
434 /*15*/	FLAG_ENTRY("PioCreditRetFifoParity",
435 	SEC_SPC_FREEZE,
436 	SEND_PIO_ERR_STATUS_PIO_CREDIT_RET_FIFO_PARITY_ERR_SMASK),
437 /*16*/	FLAG_ENTRY("PioPpmcPblFifo",
438 	SEC_SPC_FREEZE,
439 	SEND_PIO_ERR_STATUS_PIO_PPMC_PBL_FIFO_ERR_SMASK),
440 /*17*/	FLAG_ENTRY("PioInitSmIn",
441 	0,
442 	SEND_PIO_ERR_STATUS_PIO_INIT_SM_IN_ERR_SMASK),
443 /*18*/	FLAG_ENTRY("PioPktEvictSmOrArbSm",
444 	SEC_SPC_FREEZE,
445 	SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_SM_OR_ARB_SM_ERR_SMASK),
446 /*19*/	FLAG_ENTRY("PioHostAddrMemUnc",
447 	SEC_SPC_FREEZE,
448 	SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_UNC_ERR_SMASK),
449 /*20*/	FLAG_ENTRY("PioHostAddrMemCor",
450 	0,
451 	SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_COR_ERR_SMASK),
452 /*21*/	FLAG_ENTRY("PioWriteDataParity",
453 	SEC_SPC_FREEZE,
454 	SEND_PIO_ERR_STATUS_PIO_WRITE_DATA_PARITY_ERR_SMASK),
455 /*22*/	FLAG_ENTRY("PioStateMachine",
456 	SEC_SPC_FREEZE,
457 	SEND_PIO_ERR_STATUS_PIO_STATE_MACHINE_ERR_SMASK),
458 /*23*/	FLAG_ENTRY("PioWriteQwValidParity",
459 	SEC_WRITE_DROPPED | SEC_SPC_FREEZE,
460 	SEND_PIO_ERR_STATUS_PIO_WRITE_QW_VALID_PARITY_ERR_SMASK),
461 /*24*/	FLAG_ENTRY("PioBlockQwCountParity",
462 	SEC_WRITE_DROPPED | SEC_SPC_FREEZE,
463 	SEND_PIO_ERR_STATUS_PIO_BLOCK_QW_COUNT_PARITY_ERR_SMASK),
464 /*25*/	FLAG_ENTRY("PioVlfVlLenParity",
465 	SEC_SPC_FREEZE,
466 	SEND_PIO_ERR_STATUS_PIO_VLF_VL_LEN_PARITY_ERR_SMASK),
467 /*26*/	FLAG_ENTRY("PioVlfSopParity",
468 	SEC_SPC_FREEZE,
469 	SEND_PIO_ERR_STATUS_PIO_VLF_SOP_PARITY_ERR_SMASK),
470 /*27*/	FLAG_ENTRY("PioVlFifoParity",
471 	SEC_SPC_FREEZE,
472 	SEND_PIO_ERR_STATUS_PIO_VL_FIFO_PARITY_ERR_SMASK),
473 /*28*/	FLAG_ENTRY("PioPpmcBqcMemParity",
474 	SEC_SPC_FREEZE,
475 	SEND_PIO_ERR_STATUS_PIO_PPMC_BQC_MEM_PARITY_ERR_SMASK),
476 /*29*/	FLAG_ENTRY("PioPpmcSopLen",
477 	SEC_SPC_FREEZE,
478 	SEND_PIO_ERR_STATUS_PIO_PPMC_SOP_LEN_ERR_SMASK),
479 /*30-31 reserved*/
480 /*32*/	FLAG_ENTRY("PioCurrentFreeCntParity",
481 	SEC_SPC_FREEZE,
482 	SEND_PIO_ERR_STATUS_PIO_CURRENT_FREE_CNT_PARITY_ERR_SMASK),
483 /*33*/	FLAG_ENTRY("PioLastReturnedCntParity",
484 	SEC_SPC_FREEZE,
485 	SEND_PIO_ERR_STATUS_PIO_LAST_RETURNED_CNT_PARITY_ERR_SMASK),
486 /*34*/	FLAG_ENTRY("PioPccSopHeadParity",
487 	SEC_SPC_FREEZE,
488 	SEND_PIO_ERR_STATUS_PIO_PCC_SOP_HEAD_PARITY_ERR_SMASK),
489 /*35*/	FLAG_ENTRY("PioPecSopHeadParityErr",
490 	SEC_SPC_FREEZE,
491 	SEND_PIO_ERR_STATUS_PIO_PEC_SOP_HEAD_PARITY_ERR_SMASK),
492 /*36-63 reserved*/
493 };
494 
495 /* TXE PIO errors that cause an SPC freeze */
496 #define ALL_PIO_FREEZE_ERR \
497 	(SEND_PIO_ERR_STATUS_PIO_WRITE_ADDR_PARITY_ERR_SMASK \
498 	| SEND_PIO_ERR_STATUS_PIO_CSR_PARITY_ERR_SMASK \
499 	| SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO0_ERR_SMASK \
500 	| SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO1_ERR_SMASK \
501 	| SEND_PIO_ERR_STATUS_PIO_PCC_FIFO_PARITY_ERR_SMASK \
502 	| SEND_PIO_ERR_STATUS_PIO_PEC_FIFO_PARITY_ERR_SMASK \
503 	| SEND_PIO_ERR_STATUS_PIO_SBRDCTL_CRREL_PARITY_ERR_SMASK \
504 	| SEND_PIO_ERR_STATUS_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR_SMASK \
505 	| SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_FIFO_PARITY_ERR_SMASK \
506 	| SEND_PIO_ERR_STATUS_PIO_SM_PKT_RESET_PARITY_ERR_SMASK \
507 	| SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_UNC_ERR_SMASK \
508 	| SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_UNC_ERR_SMASK \
509 	| SEND_PIO_ERR_STATUS_PIO_CREDIT_RET_FIFO_PARITY_ERR_SMASK \
510 	| SEND_PIO_ERR_STATUS_PIO_PPMC_PBL_FIFO_ERR_SMASK \
511 	| SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_SM_OR_ARB_SM_ERR_SMASK \
512 	| SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_UNC_ERR_SMASK \
513 	| SEND_PIO_ERR_STATUS_PIO_WRITE_DATA_PARITY_ERR_SMASK \
514 	| SEND_PIO_ERR_STATUS_PIO_STATE_MACHINE_ERR_SMASK \
515 	| SEND_PIO_ERR_STATUS_PIO_WRITE_QW_VALID_PARITY_ERR_SMASK \
516 	| SEND_PIO_ERR_STATUS_PIO_BLOCK_QW_COUNT_PARITY_ERR_SMASK \
517 	| SEND_PIO_ERR_STATUS_PIO_VLF_VL_LEN_PARITY_ERR_SMASK \
518 	| SEND_PIO_ERR_STATUS_PIO_VLF_SOP_PARITY_ERR_SMASK \
519 	| SEND_PIO_ERR_STATUS_PIO_VL_FIFO_PARITY_ERR_SMASK \
520 	| SEND_PIO_ERR_STATUS_PIO_PPMC_BQC_MEM_PARITY_ERR_SMASK \
521 	| SEND_PIO_ERR_STATUS_PIO_PPMC_SOP_LEN_ERR_SMASK \
522 	| SEND_PIO_ERR_STATUS_PIO_CURRENT_FREE_CNT_PARITY_ERR_SMASK \
523 	| SEND_PIO_ERR_STATUS_PIO_LAST_RETURNED_CNT_PARITY_ERR_SMASK \
524 	| SEND_PIO_ERR_STATUS_PIO_PCC_SOP_HEAD_PARITY_ERR_SMASK \
525 	| SEND_PIO_ERR_STATUS_PIO_PEC_SOP_HEAD_PARITY_ERR_SMASK)
526 
527 /*
528  * TXE SDMA Error flags
529  */
530 static struct flag_table sdma_err_status_flags[] = {
531 /* 0*/	FLAG_ENTRY0("SDmaRpyTagErr",
532 		SEND_DMA_ERR_STATUS_SDMA_RPY_TAG_ERR_SMASK),
533 /* 1*/	FLAG_ENTRY0("SDmaCsrParityErr",
534 		SEND_DMA_ERR_STATUS_SDMA_CSR_PARITY_ERR_SMASK),
535 /* 2*/	FLAG_ENTRY0("SDmaPcieReqTrackingUncErr",
536 		SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_UNC_ERR_SMASK),
537 /* 3*/	FLAG_ENTRY0("SDmaPcieReqTrackingCorErr",
538 		SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_COR_ERR_SMASK),
539 /*04-63 reserved*/
540 };
541 
542 /* TXE SDMA errors that cause an SPC freeze */
543 #define ALL_SDMA_FREEZE_ERR  \
544 		(SEND_DMA_ERR_STATUS_SDMA_RPY_TAG_ERR_SMASK \
545 		| SEND_DMA_ERR_STATUS_SDMA_CSR_PARITY_ERR_SMASK \
546 		| SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_UNC_ERR_SMASK)
547 
548 /* SendEgressErrInfo bits that correspond to a PortXmitDiscard counter */
549 #define PORT_DISCARD_EGRESS_ERRS \
550 	(SEND_EGRESS_ERR_INFO_TOO_LONG_IB_PACKET_ERR_SMASK \
551 	| SEND_EGRESS_ERR_INFO_VL_MAPPING_ERR_SMASK \
552 	| SEND_EGRESS_ERR_INFO_VL_ERR_SMASK)
553 
554 /*
555  * TXE Egress Error flags
556  */
557 #define SEES(text) SEND_EGRESS_ERR_STATUS_##text##_ERR_SMASK
558 static struct flag_table egress_err_status_flags[] = {
559 /* 0*/	FLAG_ENTRY0("TxPktIntegrityMemCorErr", SEES(TX_PKT_INTEGRITY_MEM_COR)),
560 /* 1*/	FLAG_ENTRY0("TxPktIntegrityMemUncErr", SEES(TX_PKT_INTEGRITY_MEM_UNC)),
561 /* 2 reserved */
562 /* 3*/	FLAG_ENTRY0("TxEgressFifoUnderrunOrParityErr",
563 		SEES(TX_EGRESS_FIFO_UNDERRUN_OR_PARITY)),
564 /* 4*/	FLAG_ENTRY0("TxLinkdownErr", SEES(TX_LINKDOWN)),
565 /* 5*/	FLAG_ENTRY0("TxIncorrectLinkStateErr", SEES(TX_INCORRECT_LINK_STATE)),
566 /* 6 reserved */
567 /* 7*/	FLAG_ENTRY0("TxPioLaunchIntfParityErr",
568 		SEES(TX_PIO_LAUNCH_INTF_PARITY)),
569 /* 8*/	FLAG_ENTRY0("TxSdmaLaunchIntfParityErr",
570 		SEES(TX_SDMA_LAUNCH_INTF_PARITY)),
571 /* 9-10 reserved */
572 /*11*/	FLAG_ENTRY0("TxSbrdCtlStateMachineParityErr",
573 		SEES(TX_SBRD_CTL_STATE_MACHINE_PARITY)),
574 /*12*/	FLAG_ENTRY0("TxIllegalVLErr", SEES(TX_ILLEGAL_VL)),
575 /*13*/	FLAG_ENTRY0("TxLaunchCsrParityErr", SEES(TX_LAUNCH_CSR_PARITY)),
576 /*14*/	FLAG_ENTRY0("TxSbrdCtlCsrParityErr", SEES(TX_SBRD_CTL_CSR_PARITY)),
577 /*15*/	FLAG_ENTRY0("TxConfigParityErr", SEES(TX_CONFIG_PARITY)),
578 /*16*/	FLAG_ENTRY0("TxSdma0DisallowedPacketErr",
579 		SEES(TX_SDMA0_DISALLOWED_PACKET)),
580 /*17*/	FLAG_ENTRY0("TxSdma1DisallowedPacketErr",
581 		SEES(TX_SDMA1_DISALLOWED_PACKET)),
582 /*18*/	FLAG_ENTRY0("TxSdma2DisallowedPacketErr",
583 		SEES(TX_SDMA2_DISALLOWED_PACKET)),
584 /*19*/	FLAG_ENTRY0("TxSdma3DisallowedPacketErr",
585 		SEES(TX_SDMA3_DISALLOWED_PACKET)),
586 /*20*/	FLAG_ENTRY0("TxSdma4DisallowedPacketErr",
587 		SEES(TX_SDMA4_DISALLOWED_PACKET)),
588 /*21*/	FLAG_ENTRY0("TxSdma5DisallowedPacketErr",
589 		SEES(TX_SDMA5_DISALLOWED_PACKET)),
590 /*22*/	FLAG_ENTRY0("TxSdma6DisallowedPacketErr",
591 		SEES(TX_SDMA6_DISALLOWED_PACKET)),
592 /*23*/	FLAG_ENTRY0("TxSdma7DisallowedPacketErr",
593 		SEES(TX_SDMA7_DISALLOWED_PACKET)),
594 /*24*/	FLAG_ENTRY0("TxSdma8DisallowedPacketErr",
595 		SEES(TX_SDMA8_DISALLOWED_PACKET)),
596 /*25*/	FLAG_ENTRY0("TxSdma9DisallowedPacketErr",
597 		SEES(TX_SDMA9_DISALLOWED_PACKET)),
598 /*26*/	FLAG_ENTRY0("TxSdma10DisallowedPacketErr",
599 		SEES(TX_SDMA10_DISALLOWED_PACKET)),
600 /*27*/	FLAG_ENTRY0("TxSdma11DisallowedPacketErr",
601 		SEES(TX_SDMA11_DISALLOWED_PACKET)),
602 /*28*/	FLAG_ENTRY0("TxSdma12DisallowedPacketErr",
603 		SEES(TX_SDMA12_DISALLOWED_PACKET)),
604 /*29*/	FLAG_ENTRY0("TxSdma13DisallowedPacketErr",
605 		SEES(TX_SDMA13_DISALLOWED_PACKET)),
606 /*30*/	FLAG_ENTRY0("TxSdma14DisallowedPacketErr",
607 		SEES(TX_SDMA14_DISALLOWED_PACKET)),
608 /*31*/	FLAG_ENTRY0("TxSdma15DisallowedPacketErr",
609 		SEES(TX_SDMA15_DISALLOWED_PACKET)),
610 /*32*/	FLAG_ENTRY0("TxLaunchFifo0UncOrParityErr",
611 		SEES(TX_LAUNCH_FIFO0_UNC_OR_PARITY)),
612 /*33*/	FLAG_ENTRY0("TxLaunchFifo1UncOrParityErr",
613 		SEES(TX_LAUNCH_FIFO1_UNC_OR_PARITY)),
614 /*34*/	FLAG_ENTRY0("TxLaunchFifo2UncOrParityErr",
615 		SEES(TX_LAUNCH_FIFO2_UNC_OR_PARITY)),
616 /*35*/	FLAG_ENTRY0("TxLaunchFifo3UncOrParityErr",
617 		SEES(TX_LAUNCH_FIFO3_UNC_OR_PARITY)),
618 /*36*/	FLAG_ENTRY0("TxLaunchFifo4UncOrParityErr",
619 		SEES(TX_LAUNCH_FIFO4_UNC_OR_PARITY)),
620 /*37*/	FLAG_ENTRY0("TxLaunchFifo5UncOrParityErr",
621 		SEES(TX_LAUNCH_FIFO5_UNC_OR_PARITY)),
622 /*38*/	FLAG_ENTRY0("TxLaunchFifo6UncOrParityErr",
623 		SEES(TX_LAUNCH_FIFO6_UNC_OR_PARITY)),
624 /*39*/	FLAG_ENTRY0("TxLaunchFifo7UncOrParityErr",
625 		SEES(TX_LAUNCH_FIFO7_UNC_OR_PARITY)),
626 /*40*/	FLAG_ENTRY0("TxLaunchFifo8UncOrParityErr",
627 		SEES(TX_LAUNCH_FIFO8_UNC_OR_PARITY)),
628 /*41*/	FLAG_ENTRY0("TxCreditReturnParityErr", SEES(TX_CREDIT_RETURN_PARITY)),
629 /*42*/	FLAG_ENTRY0("TxSbHdrUncErr", SEES(TX_SB_HDR_UNC)),
630 /*43*/	FLAG_ENTRY0("TxReadSdmaMemoryUncErr", SEES(TX_READ_SDMA_MEMORY_UNC)),
631 /*44*/	FLAG_ENTRY0("TxReadPioMemoryUncErr", SEES(TX_READ_PIO_MEMORY_UNC)),
632 /*45*/	FLAG_ENTRY0("TxEgressFifoUncErr", SEES(TX_EGRESS_FIFO_UNC)),
633 /*46*/	FLAG_ENTRY0("TxHcrcInsertionErr", SEES(TX_HCRC_INSERTION)),
634 /*47*/	FLAG_ENTRY0("TxCreditReturnVLErr", SEES(TX_CREDIT_RETURN_VL)),
635 /*48*/	FLAG_ENTRY0("TxLaunchFifo0CorErr", SEES(TX_LAUNCH_FIFO0_COR)),
636 /*49*/	FLAG_ENTRY0("TxLaunchFifo1CorErr", SEES(TX_LAUNCH_FIFO1_COR)),
637 /*50*/	FLAG_ENTRY0("TxLaunchFifo2CorErr", SEES(TX_LAUNCH_FIFO2_COR)),
638 /*51*/	FLAG_ENTRY0("TxLaunchFifo3CorErr", SEES(TX_LAUNCH_FIFO3_COR)),
639 /*52*/	FLAG_ENTRY0("TxLaunchFifo4CorErr", SEES(TX_LAUNCH_FIFO4_COR)),
640 /*53*/	FLAG_ENTRY0("TxLaunchFifo5CorErr", SEES(TX_LAUNCH_FIFO5_COR)),
641 /*54*/	FLAG_ENTRY0("TxLaunchFifo6CorErr", SEES(TX_LAUNCH_FIFO6_COR)),
642 /*55*/	FLAG_ENTRY0("TxLaunchFifo7CorErr", SEES(TX_LAUNCH_FIFO7_COR)),
643 /*56*/	FLAG_ENTRY0("TxLaunchFifo8CorErr", SEES(TX_LAUNCH_FIFO8_COR)),
644 /*57*/	FLAG_ENTRY0("TxCreditOverrunErr", SEES(TX_CREDIT_OVERRUN)),
645 /*58*/	FLAG_ENTRY0("TxSbHdrCorErr", SEES(TX_SB_HDR_COR)),
646 /*59*/	FLAG_ENTRY0("TxReadSdmaMemoryCorErr", SEES(TX_READ_SDMA_MEMORY_COR)),
647 /*60*/	FLAG_ENTRY0("TxReadPioMemoryCorErr", SEES(TX_READ_PIO_MEMORY_COR)),
648 /*61*/	FLAG_ENTRY0("TxEgressFifoCorErr", SEES(TX_EGRESS_FIFO_COR)),
649 /*62*/	FLAG_ENTRY0("TxReadSdmaMemoryCsrUncErr",
650 		SEES(TX_READ_SDMA_MEMORY_CSR_UNC)),
651 /*63*/	FLAG_ENTRY0("TxReadPioMemoryCsrUncErr",
652 		SEES(TX_READ_PIO_MEMORY_CSR_UNC)),
653 };
654 
655 /*
656  * TXE Egress Error Info flags
657  */
658 #define SEEI(text) SEND_EGRESS_ERR_INFO_##text##_ERR_SMASK
659 static struct flag_table egress_err_info_flags[] = {
660 /* 0*/	FLAG_ENTRY0("Reserved", 0ull),
661 /* 1*/	FLAG_ENTRY0("VLErr", SEEI(VL)),
662 /* 2*/	FLAG_ENTRY0("JobKeyErr", SEEI(JOB_KEY)),
663 /* 3*/	FLAG_ENTRY0("JobKeyErr", SEEI(JOB_KEY)),
664 /* 4*/	FLAG_ENTRY0("PartitionKeyErr", SEEI(PARTITION_KEY)),
665 /* 5*/	FLAG_ENTRY0("SLIDErr", SEEI(SLID)),
666 /* 6*/	FLAG_ENTRY0("OpcodeErr", SEEI(OPCODE)),
667 /* 7*/	FLAG_ENTRY0("VLMappingErr", SEEI(VL_MAPPING)),
668 /* 8*/	FLAG_ENTRY0("RawErr", SEEI(RAW)),
669 /* 9*/	FLAG_ENTRY0("RawIPv6Err", SEEI(RAW_IPV6)),
670 /*10*/	FLAG_ENTRY0("GRHErr", SEEI(GRH)),
671 /*11*/	FLAG_ENTRY0("BypassErr", SEEI(BYPASS)),
672 /*12*/	FLAG_ENTRY0("KDETHPacketsErr", SEEI(KDETH_PACKETS)),
673 /*13*/	FLAG_ENTRY0("NonKDETHPacketsErr", SEEI(NON_KDETH_PACKETS)),
674 /*14*/	FLAG_ENTRY0("TooSmallIBPacketsErr", SEEI(TOO_SMALL_IB_PACKETS)),
675 /*15*/	FLAG_ENTRY0("TooSmallBypassPacketsErr", SEEI(TOO_SMALL_BYPASS_PACKETS)),
676 /*16*/	FLAG_ENTRY0("PbcTestErr", SEEI(PBC_TEST)),
677 /*17*/	FLAG_ENTRY0("BadPktLenErr", SEEI(BAD_PKT_LEN)),
678 /*18*/	FLAG_ENTRY0("TooLongIBPacketErr", SEEI(TOO_LONG_IB_PACKET)),
679 /*19*/	FLAG_ENTRY0("TooLongBypassPacketsErr", SEEI(TOO_LONG_BYPASS_PACKETS)),
680 /*20*/	FLAG_ENTRY0("PbcStaticRateControlErr", SEEI(PBC_STATIC_RATE_CONTROL)),
681 /*21*/	FLAG_ENTRY0("BypassBadPktLenErr", SEEI(BAD_PKT_LEN)),
682 };
683 
684 /* TXE Egress errors that cause an SPC freeze */
685 #define ALL_TXE_EGRESS_FREEZE_ERR \
686 	(SEES(TX_EGRESS_FIFO_UNDERRUN_OR_PARITY) \
687 	| SEES(TX_PIO_LAUNCH_INTF_PARITY) \
688 	| SEES(TX_SDMA_LAUNCH_INTF_PARITY) \
689 	| SEES(TX_SBRD_CTL_STATE_MACHINE_PARITY) \
690 	| SEES(TX_LAUNCH_CSR_PARITY) \
691 	| SEES(TX_SBRD_CTL_CSR_PARITY) \
692 	| SEES(TX_CONFIG_PARITY) \
693 	| SEES(TX_LAUNCH_FIFO0_UNC_OR_PARITY) \
694 	| SEES(TX_LAUNCH_FIFO1_UNC_OR_PARITY) \
695 	| SEES(TX_LAUNCH_FIFO2_UNC_OR_PARITY) \
696 	| SEES(TX_LAUNCH_FIFO3_UNC_OR_PARITY) \
697 	| SEES(TX_LAUNCH_FIFO4_UNC_OR_PARITY) \
698 	| SEES(TX_LAUNCH_FIFO5_UNC_OR_PARITY) \
699 	| SEES(TX_LAUNCH_FIFO6_UNC_OR_PARITY) \
700 	| SEES(TX_LAUNCH_FIFO7_UNC_OR_PARITY) \
701 	| SEES(TX_LAUNCH_FIFO8_UNC_OR_PARITY) \
702 	| SEES(TX_CREDIT_RETURN_PARITY))
703 
704 /*
705  * TXE Send error flags
706  */
707 #define SES(name) SEND_ERR_STATUS_SEND_##name##_ERR_SMASK
708 static struct flag_table send_err_status_flags[] = {
709 /* 0*/	FLAG_ENTRY0("SendCsrParityErr", SES(CSR_PARITY)),
710 /* 1*/	FLAG_ENTRY0("SendCsrReadBadAddrErr", SES(CSR_READ_BAD_ADDR)),
711 /* 2*/	FLAG_ENTRY0("SendCsrWriteBadAddrErr", SES(CSR_WRITE_BAD_ADDR))
712 };
713 
714 /*
715  * TXE Send Context Error flags and consequences
716  */
717 static struct flag_table sc_err_status_flags[] = {
718 /* 0*/	FLAG_ENTRY("InconsistentSop",
719 		SEC_PACKET_DROPPED | SEC_SC_HALTED,
720 		SEND_CTXT_ERR_STATUS_PIO_INCONSISTENT_SOP_ERR_SMASK),
721 /* 1*/	FLAG_ENTRY("DisallowedPacket",
722 		SEC_PACKET_DROPPED | SEC_SC_HALTED,
723 		SEND_CTXT_ERR_STATUS_PIO_DISALLOWED_PACKET_ERR_SMASK),
724 /* 2*/	FLAG_ENTRY("WriteCrossesBoundary",
725 		SEC_WRITE_DROPPED | SEC_SC_HALTED,
726 		SEND_CTXT_ERR_STATUS_PIO_WRITE_CROSSES_BOUNDARY_ERR_SMASK),
727 /* 3*/	FLAG_ENTRY("WriteOverflow",
728 		SEC_WRITE_DROPPED | SEC_SC_HALTED,
729 		SEND_CTXT_ERR_STATUS_PIO_WRITE_OVERFLOW_ERR_SMASK),
730 /* 4*/	FLAG_ENTRY("WriteOutOfBounds",
731 		SEC_WRITE_DROPPED | SEC_SC_HALTED,
732 		SEND_CTXT_ERR_STATUS_PIO_WRITE_OUT_OF_BOUNDS_ERR_SMASK),
733 /* 5-63 reserved*/
734 };
735 
736 /*
737  * RXE Receive Error flags
738  */
739 #define RXES(name) RCV_ERR_STATUS_RX_##name##_ERR_SMASK
740 static struct flag_table rxe_err_status_flags[] = {
741 /* 0*/	FLAG_ENTRY0("RxDmaCsrCorErr", RXES(DMA_CSR_COR)),
742 /* 1*/	FLAG_ENTRY0("RxDcIntfParityErr", RXES(DC_INTF_PARITY)),
743 /* 2*/	FLAG_ENTRY0("RxRcvHdrUncErr", RXES(RCV_HDR_UNC)),
744 /* 3*/	FLAG_ENTRY0("RxRcvHdrCorErr", RXES(RCV_HDR_COR)),
745 /* 4*/	FLAG_ENTRY0("RxRcvDataUncErr", RXES(RCV_DATA_UNC)),
746 /* 5*/	FLAG_ENTRY0("RxRcvDataCorErr", RXES(RCV_DATA_COR)),
747 /* 6*/	FLAG_ENTRY0("RxRcvQpMapTableUncErr", RXES(RCV_QP_MAP_TABLE_UNC)),
748 /* 7*/	FLAG_ENTRY0("RxRcvQpMapTableCorErr", RXES(RCV_QP_MAP_TABLE_COR)),
749 /* 8*/	FLAG_ENTRY0("RxRcvCsrParityErr", RXES(RCV_CSR_PARITY)),
750 /* 9*/	FLAG_ENTRY0("RxDcSopEopParityErr", RXES(DC_SOP_EOP_PARITY)),
751 /*10*/	FLAG_ENTRY0("RxDmaFlagUncErr", RXES(DMA_FLAG_UNC)),
752 /*11*/	FLAG_ENTRY0("RxDmaFlagCorErr", RXES(DMA_FLAG_COR)),
753 /*12*/	FLAG_ENTRY0("RxRcvFsmEncodingErr", RXES(RCV_FSM_ENCODING)),
754 /*13*/	FLAG_ENTRY0("RxRbufFreeListUncErr", RXES(RBUF_FREE_LIST_UNC)),
755 /*14*/	FLAG_ENTRY0("RxRbufFreeListCorErr", RXES(RBUF_FREE_LIST_COR)),
756 /*15*/	FLAG_ENTRY0("RxRbufLookupDesRegUncErr", RXES(RBUF_LOOKUP_DES_REG_UNC)),
757 /*16*/	FLAG_ENTRY0("RxRbufLookupDesRegUncCorErr",
758 		RXES(RBUF_LOOKUP_DES_REG_UNC_COR)),
759 /*17*/	FLAG_ENTRY0("RxRbufLookupDesUncErr", RXES(RBUF_LOOKUP_DES_UNC)),
760 /*18*/	FLAG_ENTRY0("RxRbufLookupDesCorErr", RXES(RBUF_LOOKUP_DES_COR)),
761 /*19*/	FLAG_ENTRY0("RxRbufBlockListReadUncErr",
762 		RXES(RBUF_BLOCK_LIST_READ_UNC)),
763 /*20*/	FLAG_ENTRY0("RxRbufBlockListReadCorErr",
764 		RXES(RBUF_BLOCK_LIST_READ_COR)),
765 /*21*/	FLAG_ENTRY0("RxRbufCsrQHeadBufNumParityErr",
766 		RXES(RBUF_CSR_QHEAD_BUF_NUM_PARITY)),
767 /*22*/	FLAG_ENTRY0("RxRbufCsrQEntCntParityErr",
768 		RXES(RBUF_CSR_QENT_CNT_PARITY)),
769 /*23*/	FLAG_ENTRY0("RxRbufCsrQNextBufParityErr",
770 		RXES(RBUF_CSR_QNEXT_BUF_PARITY)),
771 /*24*/	FLAG_ENTRY0("RxRbufCsrQVldBitParityErr",
772 		RXES(RBUF_CSR_QVLD_BIT_PARITY)),
773 /*25*/	FLAG_ENTRY0("RxRbufCsrQHdPtrParityErr", RXES(RBUF_CSR_QHD_PTR_PARITY)),
774 /*26*/	FLAG_ENTRY0("RxRbufCsrQTlPtrParityErr", RXES(RBUF_CSR_QTL_PTR_PARITY)),
775 /*27*/	FLAG_ENTRY0("RxRbufCsrQNumOfPktParityErr",
776 		RXES(RBUF_CSR_QNUM_OF_PKT_PARITY)),
777 /*28*/	FLAG_ENTRY0("RxRbufCsrQEOPDWParityErr", RXES(RBUF_CSR_QEOPDW_PARITY)),
778 /*29*/	FLAG_ENTRY0("RxRbufCtxIdParityErr", RXES(RBUF_CTX_ID_PARITY)),
779 /*30*/	FLAG_ENTRY0("RxRBufBadLookupErr", RXES(RBUF_BAD_LOOKUP)),
780 /*31*/	FLAG_ENTRY0("RxRbufFullErr", RXES(RBUF_FULL)),
781 /*32*/	FLAG_ENTRY0("RxRbufEmptyErr", RXES(RBUF_EMPTY)),
782 /*33*/	FLAG_ENTRY0("RxRbufFlRdAddrParityErr", RXES(RBUF_FL_RD_ADDR_PARITY)),
783 /*34*/	FLAG_ENTRY0("RxRbufFlWrAddrParityErr", RXES(RBUF_FL_WR_ADDR_PARITY)),
784 /*35*/	FLAG_ENTRY0("RxRbufFlInitdoneParityErr",
785 		RXES(RBUF_FL_INITDONE_PARITY)),
786 /*36*/	FLAG_ENTRY0("RxRbufFlInitWrAddrParityErr",
787 		RXES(RBUF_FL_INIT_WR_ADDR_PARITY)),
788 /*37*/	FLAG_ENTRY0("RxRbufNextFreeBufUncErr", RXES(RBUF_NEXT_FREE_BUF_UNC)),
789 /*38*/	FLAG_ENTRY0("RxRbufNextFreeBufCorErr", RXES(RBUF_NEXT_FREE_BUF_COR)),
790 /*39*/	FLAG_ENTRY0("RxLookupDesPart1UncErr", RXES(LOOKUP_DES_PART1_UNC)),
791 /*40*/	FLAG_ENTRY0("RxLookupDesPart1UncCorErr",
792 		RXES(LOOKUP_DES_PART1_UNC_COR)),
793 /*41*/	FLAG_ENTRY0("RxLookupDesPart2ParityErr",
794 		RXES(LOOKUP_DES_PART2_PARITY)),
795 /*42*/	FLAG_ENTRY0("RxLookupRcvArrayUncErr", RXES(LOOKUP_RCV_ARRAY_UNC)),
796 /*43*/	FLAG_ENTRY0("RxLookupRcvArrayCorErr", RXES(LOOKUP_RCV_ARRAY_COR)),
797 /*44*/	FLAG_ENTRY0("RxLookupCsrParityErr", RXES(LOOKUP_CSR_PARITY)),
798 /*45*/	FLAG_ENTRY0("RxHqIntrCsrParityErr", RXES(HQ_INTR_CSR_PARITY)),
799 /*46*/	FLAG_ENTRY0("RxHqIntrFsmErr", RXES(HQ_INTR_FSM)),
800 /*47*/	FLAG_ENTRY0("RxRbufDescPart1UncErr", RXES(RBUF_DESC_PART1_UNC)),
801 /*48*/	FLAG_ENTRY0("RxRbufDescPart1CorErr", RXES(RBUF_DESC_PART1_COR)),
802 /*49*/	FLAG_ENTRY0("RxRbufDescPart2UncErr", RXES(RBUF_DESC_PART2_UNC)),
803 /*50*/	FLAG_ENTRY0("RxRbufDescPart2CorErr", RXES(RBUF_DESC_PART2_COR)),
804 /*51*/	FLAG_ENTRY0("RxDmaHdrFifoRdUncErr", RXES(DMA_HDR_FIFO_RD_UNC)),
805 /*52*/	FLAG_ENTRY0("RxDmaHdrFifoRdCorErr", RXES(DMA_HDR_FIFO_RD_COR)),
806 /*53*/	FLAG_ENTRY0("RxDmaDataFifoRdUncErr", RXES(DMA_DATA_FIFO_RD_UNC)),
807 /*54*/	FLAG_ENTRY0("RxDmaDataFifoRdCorErr", RXES(DMA_DATA_FIFO_RD_COR)),
808 /*55*/	FLAG_ENTRY0("RxRbufDataUncErr", RXES(RBUF_DATA_UNC)),
809 /*56*/	FLAG_ENTRY0("RxRbufDataCorErr", RXES(RBUF_DATA_COR)),
810 /*57*/	FLAG_ENTRY0("RxDmaCsrParityErr", RXES(DMA_CSR_PARITY)),
811 /*58*/	FLAG_ENTRY0("RxDmaEqFsmEncodingErr", RXES(DMA_EQ_FSM_ENCODING)),
812 /*59*/	FLAG_ENTRY0("RxDmaDqFsmEncodingErr", RXES(DMA_DQ_FSM_ENCODING)),
813 /*60*/	FLAG_ENTRY0("RxDmaCsrUncErr", RXES(DMA_CSR_UNC)),
814 /*61*/	FLAG_ENTRY0("RxCsrReadBadAddrErr", RXES(CSR_READ_BAD_ADDR)),
815 /*62*/	FLAG_ENTRY0("RxCsrWriteBadAddrErr", RXES(CSR_WRITE_BAD_ADDR)),
816 /*63*/	FLAG_ENTRY0("RxCsrParityErr", RXES(CSR_PARITY))
817 };
818 
819 /* RXE errors that will trigger an SPC freeze */
820 #define ALL_RXE_FREEZE_ERR  \
821 	(RCV_ERR_STATUS_RX_RCV_QP_MAP_TABLE_UNC_ERR_SMASK \
822 	| RCV_ERR_STATUS_RX_RCV_CSR_PARITY_ERR_SMASK \
823 	| RCV_ERR_STATUS_RX_DMA_FLAG_UNC_ERR_SMASK \
824 	| RCV_ERR_STATUS_RX_RCV_FSM_ENCODING_ERR_SMASK \
825 	| RCV_ERR_STATUS_RX_RBUF_FREE_LIST_UNC_ERR_SMASK \
826 	| RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_REG_UNC_ERR_SMASK \
827 	| RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_REG_UNC_COR_ERR_SMASK \
828 	| RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_UNC_ERR_SMASK \
829 	| RCV_ERR_STATUS_RX_RBUF_BLOCK_LIST_READ_UNC_ERR_SMASK \
830 	| RCV_ERR_STATUS_RX_RBUF_CSR_QHEAD_BUF_NUM_PARITY_ERR_SMASK \
831 	| RCV_ERR_STATUS_RX_RBUF_CSR_QENT_CNT_PARITY_ERR_SMASK \
832 	| RCV_ERR_STATUS_RX_RBUF_CSR_QNEXT_BUF_PARITY_ERR_SMASK \
833 	| RCV_ERR_STATUS_RX_RBUF_CSR_QVLD_BIT_PARITY_ERR_SMASK \
834 	| RCV_ERR_STATUS_RX_RBUF_CSR_QHD_PTR_PARITY_ERR_SMASK \
835 	| RCV_ERR_STATUS_RX_RBUF_CSR_QTL_PTR_PARITY_ERR_SMASK \
836 	| RCV_ERR_STATUS_RX_RBUF_CSR_QNUM_OF_PKT_PARITY_ERR_SMASK \
837 	| RCV_ERR_STATUS_RX_RBUF_CSR_QEOPDW_PARITY_ERR_SMASK \
838 	| RCV_ERR_STATUS_RX_RBUF_CTX_ID_PARITY_ERR_SMASK \
839 	| RCV_ERR_STATUS_RX_RBUF_BAD_LOOKUP_ERR_SMASK \
840 	| RCV_ERR_STATUS_RX_RBUF_FULL_ERR_SMASK \
841 	| RCV_ERR_STATUS_RX_RBUF_EMPTY_ERR_SMASK \
842 	| RCV_ERR_STATUS_RX_RBUF_FL_RD_ADDR_PARITY_ERR_SMASK \
843 	| RCV_ERR_STATUS_RX_RBUF_FL_WR_ADDR_PARITY_ERR_SMASK \
844 	| RCV_ERR_STATUS_RX_RBUF_FL_INITDONE_PARITY_ERR_SMASK \
845 	| RCV_ERR_STATUS_RX_RBUF_FL_INIT_WR_ADDR_PARITY_ERR_SMASK \
846 	| RCV_ERR_STATUS_RX_RBUF_NEXT_FREE_BUF_UNC_ERR_SMASK \
847 	| RCV_ERR_STATUS_RX_LOOKUP_DES_PART1_UNC_ERR_SMASK \
848 	| RCV_ERR_STATUS_RX_LOOKUP_DES_PART1_UNC_COR_ERR_SMASK \
849 	| RCV_ERR_STATUS_RX_LOOKUP_DES_PART2_PARITY_ERR_SMASK \
850 	| RCV_ERR_STATUS_RX_LOOKUP_RCV_ARRAY_UNC_ERR_SMASK \
851 	| RCV_ERR_STATUS_RX_LOOKUP_CSR_PARITY_ERR_SMASK \
852 	| RCV_ERR_STATUS_RX_HQ_INTR_CSR_PARITY_ERR_SMASK \
853 	| RCV_ERR_STATUS_RX_HQ_INTR_FSM_ERR_SMASK \
854 	| RCV_ERR_STATUS_RX_RBUF_DESC_PART1_UNC_ERR_SMASK \
855 	| RCV_ERR_STATUS_RX_RBUF_DESC_PART1_COR_ERR_SMASK \
856 	| RCV_ERR_STATUS_RX_RBUF_DESC_PART2_UNC_ERR_SMASK \
857 	| RCV_ERR_STATUS_RX_DMA_HDR_FIFO_RD_UNC_ERR_SMASK \
858 	| RCV_ERR_STATUS_RX_DMA_DATA_FIFO_RD_UNC_ERR_SMASK \
859 	| RCV_ERR_STATUS_RX_RBUF_DATA_UNC_ERR_SMASK \
860 	| RCV_ERR_STATUS_RX_DMA_CSR_PARITY_ERR_SMASK \
861 	| RCV_ERR_STATUS_RX_DMA_EQ_FSM_ENCODING_ERR_SMASK \
862 	| RCV_ERR_STATUS_RX_DMA_DQ_FSM_ENCODING_ERR_SMASK \
863 	| RCV_ERR_STATUS_RX_DMA_CSR_UNC_ERR_SMASK \
864 	| RCV_ERR_STATUS_RX_CSR_PARITY_ERR_SMASK)
865 
866 #define RXE_FREEZE_ABORT_MASK \
867 	(RCV_ERR_STATUS_RX_DMA_CSR_UNC_ERR_SMASK | \
868 	RCV_ERR_STATUS_RX_DMA_HDR_FIFO_RD_UNC_ERR_SMASK | \
869 	RCV_ERR_STATUS_RX_DMA_DATA_FIFO_RD_UNC_ERR_SMASK)
870 
871 /*
872  * DCC Error Flags
873  */
874 #define DCCE(name) DCC_ERR_FLG_##name##_SMASK
875 static struct flag_table dcc_err_flags[] = {
876 	FLAG_ENTRY0("bad_l2_err", DCCE(BAD_L2_ERR)),
877 	FLAG_ENTRY0("bad_sc_err", DCCE(BAD_SC_ERR)),
878 	FLAG_ENTRY0("bad_mid_tail_err", DCCE(BAD_MID_TAIL_ERR)),
879 	FLAG_ENTRY0("bad_preemption_err", DCCE(BAD_PREEMPTION_ERR)),
880 	FLAG_ENTRY0("preemption_err", DCCE(PREEMPTION_ERR)),
881 	FLAG_ENTRY0("preemptionvl15_err", DCCE(PREEMPTIONVL15_ERR)),
882 	FLAG_ENTRY0("bad_vl_marker_err", DCCE(BAD_VL_MARKER_ERR)),
883 	FLAG_ENTRY0("bad_dlid_target_err", DCCE(BAD_DLID_TARGET_ERR)),
884 	FLAG_ENTRY0("bad_lver_err", DCCE(BAD_LVER_ERR)),
885 	FLAG_ENTRY0("uncorrectable_err", DCCE(UNCORRECTABLE_ERR)),
886 	FLAG_ENTRY0("bad_crdt_ack_err", DCCE(BAD_CRDT_ACK_ERR)),
887 	FLAG_ENTRY0("unsup_pkt_type", DCCE(UNSUP_PKT_TYPE)),
888 	FLAG_ENTRY0("bad_ctrl_flit_err", DCCE(BAD_CTRL_FLIT_ERR)),
889 	FLAG_ENTRY0("event_cntr_parity_err", DCCE(EVENT_CNTR_PARITY_ERR)),
890 	FLAG_ENTRY0("event_cntr_rollover_err", DCCE(EVENT_CNTR_ROLLOVER_ERR)),
891 	FLAG_ENTRY0("link_err", DCCE(LINK_ERR)),
892 	FLAG_ENTRY0("misc_cntr_rollover_err", DCCE(MISC_CNTR_ROLLOVER_ERR)),
893 	FLAG_ENTRY0("bad_ctrl_dist_err", DCCE(BAD_CTRL_DIST_ERR)),
894 	FLAG_ENTRY0("bad_tail_dist_err", DCCE(BAD_TAIL_DIST_ERR)),
895 	FLAG_ENTRY0("bad_head_dist_err", DCCE(BAD_HEAD_DIST_ERR)),
896 	FLAG_ENTRY0("nonvl15_state_err", DCCE(NONVL15_STATE_ERR)),
897 	FLAG_ENTRY0("vl15_multi_err", DCCE(VL15_MULTI_ERR)),
898 	FLAG_ENTRY0("bad_pkt_length_err", DCCE(BAD_PKT_LENGTH_ERR)),
899 	FLAG_ENTRY0("unsup_vl_err", DCCE(UNSUP_VL_ERR)),
900 	FLAG_ENTRY0("perm_nvl15_err", DCCE(PERM_NVL15_ERR)),
901 	FLAG_ENTRY0("slid_zero_err", DCCE(SLID_ZERO_ERR)),
902 	FLAG_ENTRY0("dlid_zero_err", DCCE(DLID_ZERO_ERR)),
903 	FLAG_ENTRY0("length_mtu_err", DCCE(LENGTH_MTU_ERR)),
904 	FLAG_ENTRY0("rx_early_drop_err", DCCE(RX_EARLY_DROP_ERR)),
905 	FLAG_ENTRY0("late_short_err", DCCE(LATE_SHORT_ERR)),
906 	FLAG_ENTRY0("late_long_err", DCCE(LATE_LONG_ERR)),
907 	FLAG_ENTRY0("late_ebp_err", DCCE(LATE_EBP_ERR)),
908 	FLAG_ENTRY0("fpe_tx_fifo_ovflw_err", DCCE(FPE_TX_FIFO_OVFLW_ERR)),
909 	FLAG_ENTRY0("fpe_tx_fifo_unflw_err", DCCE(FPE_TX_FIFO_UNFLW_ERR)),
910 	FLAG_ENTRY0("csr_access_blocked_host", DCCE(CSR_ACCESS_BLOCKED_HOST)),
911 	FLAG_ENTRY0("csr_access_blocked_uc", DCCE(CSR_ACCESS_BLOCKED_UC)),
912 	FLAG_ENTRY0("tx_ctrl_parity_err", DCCE(TX_CTRL_PARITY_ERR)),
913 	FLAG_ENTRY0("tx_ctrl_parity_mbe_err", DCCE(TX_CTRL_PARITY_MBE_ERR)),
914 	FLAG_ENTRY0("tx_sc_parity_err", DCCE(TX_SC_PARITY_ERR)),
915 	FLAG_ENTRY0("rx_ctrl_parity_mbe_err", DCCE(RX_CTRL_PARITY_MBE_ERR)),
916 	FLAG_ENTRY0("csr_parity_err", DCCE(CSR_PARITY_ERR)),
917 	FLAG_ENTRY0("csr_inval_addr", DCCE(CSR_INVAL_ADDR)),
918 	FLAG_ENTRY0("tx_byte_shft_parity_err", DCCE(TX_BYTE_SHFT_PARITY_ERR)),
919 	FLAG_ENTRY0("rx_byte_shft_parity_err", DCCE(RX_BYTE_SHFT_PARITY_ERR)),
920 	FLAG_ENTRY0("fmconfig_err", DCCE(FMCONFIG_ERR)),
921 	FLAG_ENTRY0("rcvport_err", DCCE(RCVPORT_ERR)),
922 };
923 
924 /*
925  * LCB error flags
926  */
927 #define LCBE(name) DC_LCB_ERR_FLG_##name##_SMASK
928 static struct flag_table lcb_err_flags[] = {
929 /* 0*/	FLAG_ENTRY0("CSR_PARITY_ERR", LCBE(CSR_PARITY_ERR)),
930 /* 1*/	FLAG_ENTRY0("INVALID_CSR_ADDR", LCBE(INVALID_CSR_ADDR)),
931 /* 2*/	FLAG_ENTRY0("RST_FOR_FAILED_DESKEW", LCBE(RST_FOR_FAILED_DESKEW)),
932 /* 3*/	FLAG_ENTRY0("ALL_LNS_FAILED_REINIT_TEST",
933 		LCBE(ALL_LNS_FAILED_REINIT_TEST)),
934 /* 4*/	FLAG_ENTRY0("LOST_REINIT_STALL_OR_TOS", LCBE(LOST_REINIT_STALL_OR_TOS)),
935 /* 5*/	FLAG_ENTRY0("TX_LESS_THAN_FOUR_LNS", LCBE(TX_LESS_THAN_FOUR_LNS)),
936 /* 6*/	FLAG_ENTRY0("RX_LESS_THAN_FOUR_LNS", LCBE(RX_LESS_THAN_FOUR_LNS)),
937 /* 7*/	FLAG_ENTRY0("SEQ_CRC_ERR", LCBE(SEQ_CRC_ERR)),
938 /* 8*/	FLAG_ENTRY0("REINIT_FROM_PEER", LCBE(REINIT_FROM_PEER)),
939 /* 9*/	FLAG_ENTRY0("REINIT_FOR_LN_DEGRADE", LCBE(REINIT_FOR_LN_DEGRADE)),
940 /*10*/	FLAG_ENTRY0("CRC_ERR_CNT_HIT_LIMIT", LCBE(CRC_ERR_CNT_HIT_LIMIT)),
941 /*11*/	FLAG_ENTRY0("RCLK_STOPPED", LCBE(RCLK_STOPPED)),
942 /*12*/	FLAG_ENTRY0("UNEXPECTED_REPLAY_MARKER", LCBE(UNEXPECTED_REPLAY_MARKER)),
943 /*13*/	FLAG_ENTRY0("UNEXPECTED_ROUND_TRIP_MARKER",
944 		LCBE(UNEXPECTED_ROUND_TRIP_MARKER)),
945 /*14*/	FLAG_ENTRY0("ILLEGAL_NULL_LTP", LCBE(ILLEGAL_NULL_LTP)),
946 /*15*/	FLAG_ENTRY0("ILLEGAL_FLIT_ENCODING", LCBE(ILLEGAL_FLIT_ENCODING)),
947 /*16*/	FLAG_ENTRY0("FLIT_INPUT_BUF_OFLW", LCBE(FLIT_INPUT_BUF_OFLW)),
948 /*17*/	FLAG_ENTRY0("VL_ACK_INPUT_BUF_OFLW", LCBE(VL_ACK_INPUT_BUF_OFLW)),
949 /*18*/	FLAG_ENTRY0("VL_ACK_INPUT_PARITY_ERR", LCBE(VL_ACK_INPUT_PARITY_ERR)),
950 /*19*/	FLAG_ENTRY0("VL_ACK_INPUT_WRONG_CRC_MODE",
951 		LCBE(VL_ACK_INPUT_WRONG_CRC_MODE)),
952 /*20*/	FLAG_ENTRY0("FLIT_INPUT_BUF_MBE", LCBE(FLIT_INPUT_BUF_MBE)),
953 /*21*/	FLAG_ENTRY0("FLIT_INPUT_BUF_SBE", LCBE(FLIT_INPUT_BUF_SBE)),
954 /*22*/	FLAG_ENTRY0("REPLAY_BUF_MBE", LCBE(REPLAY_BUF_MBE)),
955 /*23*/	FLAG_ENTRY0("REPLAY_BUF_SBE", LCBE(REPLAY_BUF_SBE)),
956 /*24*/	FLAG_ENTRY0("CREDIT_RETURN_FLIT_MBE", LCBE(CREDIT_RETURN_FLIT_MBE)),
957 /*25*/	FLAG_ENTRY0("RST_FOR_LINK_TIMEOUT", LCBE(RST_FOR_LINK_TIMEOUT)),
958 /*26*/	FLAG_ENTRY0("RST_FOR_INCOMPLT_RND_TRIP",
959 		LCBE(RST_FOR_INCOMPLT_RND_TRIP)),
960 /*27*/	FLAG_ENTRY0("HOLD_REINIT", LCBE(HOLD_REINIT)),
961 /*28*/	FLAG_ENTRY0("NEG_EDGE_LINK_TRANSFER_ACTIVE",
962 		LCBE(NEG_EDGE_LINK_TRANSFER_ACTIVE)),
963 /*29*/	FLAG_ENTRY0("REDUNDANT_FLIT_PARITY_ERR",
964 		LCBE(REDUNDANT_FLIT_PARITY_ERR))
965 };
966 
967 /*
968  * DC8051 Error Flags
969  */
970 #define D8E(name) DC_DC8051_ERR_FLG_##name##_SMASK
971 static struct flag_table dc8051_err_flags[] = {
972 	FLAG_ENTRY0("SET_BY_8051", D8E(SET_BY_8051)),
973 	FLAG_ENTRY0("LOST_8051_HEART_BEAT", D8E(LOST_8051_HEART_BEAT)),
974 	FLAG_ENTRY0("CRAM_MBE", D8E(CRAM_MBE)),
975 	FLAG_ENTRY0("CRAM_SBE", D8E(CRAM_SBE)),
976 	FLAG_ENTRY0("DRAM_MBE", D8E(DRAM_MBE)),
977 	FLAG_ENTRY0("DRAM_SBE", D8E(DRAM_SBE)),
978 	FLAG_ENTRY0("IRAM_MBE", D8E(IRAM_MBE)),
979 	FLAG_ENTRY0("IRAM_SBE", D8E(IRAM_SBE)),
980 	FLAG_ENTRY0("UNMATCHED_SECURE_MSG_ACROSS_BCC_LANES",
981 		    D8E(UNMATCHED_SECURE_MSG_ACROSS_BCC_LANES)),
982 	FLAG_ENTRY0("INVALID_CSR_ADDR", D8E(INVALID_CSR_ADDR)),
983 };
984 
985 /*
986  * DC8051 Information Error flags
987  *
988  * Flags in DC8051_DBG_ERR_INFO_SET_BY_8051.ERROR field.
989  */
990 static struct flag_table dc8051_info_err_flags[] = {
991 	FLAG_ENTRY0("Spico ROM check failed",  SPICO_ROM_FAILED),
992 	FLAG_ENTRY0("Unknown frame received",  UNKNOWN_FRAME),
993 	FLAG_ENTRY0("Target BER not met",      TARGET_BER_NOT_MET),
994 	FLAG_ENTRY0("Serdes internal loopback failure",
995 		    FAILED_SERDES_INTERNAL_LOOPBACK),
996 	FLAG_ENTRY0("Failed SerDes init",      FAILED_SERDES_INIT),
997 	FLAG_ENTRY0("Failed LNI(Polling)",     FAILED_LNI_POLLING),
998 	FLAG_ENTRY0("Failed LNI(Debounce)",    FAILED_LNI_DEBOUNCE),
999 	FLAG_ENTRY0("Failed LNI(EstbComm)",    FAILED_LNI_ESTBCOMM),
1000 	FLAG_ENTRY0("Failed LNI(OptEq)",       FAILED_LNI_OPTEQ),
1001 	FLAG_ENTRY0("Failed LNI(VerifyCap_1)", FAILED_LNI_VERIFY_CAP1),
1002 	FLAG_ENTRY0("Failed LNI(VerifyCap_2)", FAILED_LNI_VERIFY_CAP2),
1003 	FLAG_ENTRY0("Failed LNI(ConfigLT)",    FAILED_LNI_CONFIGLT),
1004 	FLAG_ENTRY0("Host Handshake Timeout",  HOST_HANDSHAKE_TIMEOUT),
1005 	FLAG_ENTRY0("External Device Request Timeout",
1006 		    EXTERNAL_DEVICE_REQ_TIMEOUT),
1007 };
1008 
1009 /*
1010  * DC8051 Information Host Information flags
1011  *
1012  * Flags in DC8051_DBG_ERR_INFO_SET_BY_8051.HOST_MSG field.
1013  */
1014 static struct flag_table dc8051_info_host_msg_flags[] = {
1015 	FLAG_ENTRY0("Host request done", 0x0001),
1016 	FLAG_ENTRY0("BC PWR_MGM message", 0x0002),
1017 	FLAG_ENTRY0("BC SMA message", 0x0004),
1018 	FLAG_ENTRY0("BC Unknown message (BCC)", 0x0008),
1019 	FLAG_ENTRY0("BC Unknown message (LCB)", 0x0010),
1020 	FLAG_ENTRY0("External device config request", 0x0020),
1021 	FLAG_ENTRY0("VerifyCap all frames received", 0x0040),
1022 	FLAG_ENTRY0("LinkUp achieved", 0x0080),
1023 	FLAG_ENTRY0("Link going down", 0x0100),
1024 	FLAG_ENTRY0("Link width downgraded", 0x0200),
1025 };
1026 
1027 static u32 encoded_size(u32 size);
1028 static u32 chip_to_opa_lstate(struct hfi1_devdata *dd, u32 chip_lstate);
1029 static int set_physical_link_state(struct hfi1_devdata *dd, u64 state);
1030 static void read_vc_remote_phy(struct hfi1_devdata *dd, u8 *power_management,
1031 			       u8 *continuous);
1032 static void read_vc_remote_fabric(struct hfi1_devdata *dd, u8 *vau, u8 *z,
1033 				  u8 *vcu, u16 *vl15buf, u8 *crc_sizes);
1034 static void read_vc_remote_link_width(struct hfi1_devdata *dd,
1035 				      u8 *remote_tx_rate, u16 *link_widths);
1036 static void read_vc_local_link_mode(struct hfi1_devdata *dd, u8 *misc_bits,
1037 				    u8 *flag_bits, u16 *link_widths);
1038 static void read_remote_device_id(struct hfi1_devdata *dd, u16 *device_id,
1039 				  u8 *device_rev);
1040 static void read_local_lni(struct hfi1_devdata *dd, u8 *enable_lane_rx);
1041 static int read_tx_settings(struct hfi1_devdata *dd, u8 *enable_lane_tx,
1042 			    u8 *tx_polarity_inversion,
1043 			    u8 *rx_polarity_inversion, u8 *max_rate);
1044 static void handle_sdma_eng_err(struct hfi1_devdata *dd,
1045 				unsigned int context, u64 err_status);
1046 static void handle_qsfp_int(struct hfi1_devdata *dd, u32 source, u64 reg);
1047 static void handle_dcc_err(struct hfi1_devdata *dd,
1048 			   unsigned int context, u64 err_status);
1049 static void handle_lcb_err(struct hfi1_devdata *dd,
1050 			   unsigned int context, u64 err_status);
1051 static void handle_8051_interrupt(struct hfi1_devdata *dd, u32 unused, u64 reg);
1052 static void handle_cce_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1053 static void handle_rxe_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1054 static void handle_misc_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1055 static void handle_pio_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1056 static void handle_sdma_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1057 static void handle_egress_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1058 static void handle_txe_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1059 static void set_partition_keys(struct hfi1_pportdata *ppd);
1060 static const char *link_state_name(u32 state);
1061 static const char *link_state_reason_name(struct hfi1_pportdata *ppd,
1062 					  u32 state);
1063 static int do_8051_command(struct hfi1_devdata *dd, u32 type, u64 in_data,
1064 			   u64 *out_data);
1065 static int read_idle_sma(struct hfi1_devdata *dd, u64 *data);
1066 static int thermal_init(struct hfi1_devdata *dd);
1067 
1068 static void update_statusp(struct hfi1_pportdata *ppd, u32 state);
1069 static int wait_phys_link_offline_substates(struct hfi1_pportdata *ppd,
1070 					    int msecs);
1071 static int wait_logical_linkstate(struct hfi1_pportdata *ppd, u32 state,
1072 				  int msecs);
1073 static void log_state_transition(struct hfi1_pportdata *ppd, u32 state);
1074 static void log_physical_state(struct hfi1_pportdata *ppd, u32 state);
1075 static int wait_physical_linkstate(struct hfi1_pportdata *ppd, u32 state,
1076 				   int msecs);
1077 static void read_planned_down_reason_code(struct hfi1_devdata *dd, u8 *pdrrc);
1078 static void read_link_down_reason(struct hfi1_devdata *dd, u8 *ldr);
1079 static void handle_temp_err(struct hfi1_devdata *dd);
1080 static void dc_shutdown(struct hfi1_devdata *dd);
1081 static void dc_start(struct hfi1_devdata *dd);
1082 static int qos_rmt_entries(struct hfi1_devdata *dd, unsigned int *mp,
1083 			   unsigned int *np);
1084 static void clear_full_mgmt_pkey(struct hfi1_pportdata *ppd);
1085 static int wait_link_transfer_active(struct hfi1_devdata *dd, int wait_ms);
1086 static void clear_rsm_rule(struct hfi1_devdata *dd, u8 rule_index);
1087 static void update_xmit_counters(struct hfi1_pportdata *ppd, u16 link_width);
1088 
1089 /*
1090  * Error interrupt table entry.  This is used as input to the interrupt
1091  * "clear down" routine used for all second tier error interrupt register.
1092  * Second tier interrupt registers have a single bit representing them
1093  * in the top-level CceIntStatus.
1094  */
1095 struct err_reg_info {
1096 	u32 status;		/* status CSR offset */
1097 	u32 clear;		/* clear CSR offset */
1098 	u32 mask;		/* mask CSR offset */
1099 	void (*handler)(struct hfi1_devdata *dd, u32 source, u64 reg);
1100 	const char *desc;
1101 };
1102 
1103 #define NUM_MISC_ERRS (IS_GENERAL_ERR_END - IS_GENERAL_ERR_START)
1104 #define NUM_DC_ERRS (IS_DC_END - IS_DC_START)
1105 #define NUM_VARIOUS (IS_VARIOUS_END - IS_VARIOUS_START)
1106 
1107 /*
1108  * Helpers for building HFI and DC error interrupt table entries.  Different
1109  * helpers are needed because of inconsistent register names.
1110  */
1111 #define EE(reg, handler, desc) \
1112 	{ reg##_STATUS, reg##_CLEAR, reg##_MASK, \
1113 		handler, desc }
1114 #define DC_EE1(reg, handler, desc) \
1115 	{ reg##_FLG, reg##_FLG_CLR, reg##_FLG_EN, handler, desc }
1116 #define DC_EE2(reg, handler, desc) \
1117 	{ reg##_FLG, reg##_CLR, reg##_EN, handler, desc }
1118 
1119 /*
1120  * Table of the "misc" grouping of error interrupts.  Each entry refers to
1121  * another register containing more information.
1122  */
1123 static const struct err_reg_info misc_errs[NUM_MISC_ERRS] = {
1124 /* 0*/	EE(CCE_ERR,		handle_cce_err,    "CceErr"),
1125 /* 1*/	EE(RCV_ERR,		handle_rxe_err,    "RxeErr"),
1126 /* 2*/	EE(MISC_ERR,	handle_misc_err,   "MiscErr"),
1127 /* 3*/	{ 0, 0, 0, NULL }, /* reserved */
1128 /* 4*/	EE(SEND_PIO_ERR,    handle_pio_err,    "PioErr"),
1129 /* 5*/	EE(SEND_DMA_ERR,    handle_sdma_err,   "SDmaErr"),
1130 /* 6*/	EE(SEND_EGRESS_ERR, handle_egress_err, "EgressErr"),
1131 /* 7*/	EE(SEND_ERR,	handle_txe_err,    "TxeErr")
1132 	/* the rest are reserved */
1133 };
1134 
1135 /*
1136  * Index into the Various section of the interrupt sources
1137  * corresponding to the Critical Temperature interrupt.
1138  */
1139 #define TCRIT_INT_SOURCE 4
1140 
1141 /*
1142  * SDMA error interrupt entry - refers to another register containing more
1143  * information.
1144  */
1145 static const struct err_reg_info sdma_eng_err =
1146 	EE(SEND_DMA_ENG_ERR, handle_sdma_eng_err, "SDmaEngErr");
1147 
1148 static const struct err_reg_info various_err[NUM_VARIOUS] = {
1149 /* 0*/	{ 0, 0, 0, NULL }, /* PbcInt */
1150 /* 1*/	{ 0, 0, 0, NULL }, /* GpioAssertInt */
1151 /* 2*/	EE(ASIC_QSFP1,	handle_qsfp_int,	"QSFP1"),
1152 /* 3*/	EE(ASIC_QSFP2,	handle_qsfp_int,	"QSFP2"),
1153 /* 4*/	{ 0, 0, 0, NULL }, /* TCritInt */
1154 	/* rest are reserved */
1155 };
1156 
1157 /*
1158  * The DC encoding of mtu_cap for 10K MTU in the DCC_CFG_PORT_CONFIG
1159  * register can not be derived from the MTU value because 10K is not
1160  * a power of 2. Therefore, we need a constant. Everything else can
1161  * be calculated.
1162  */
1163 #define DCC_CFG_PORT_MTU_CAP_10240 7
1164 
1165 /*
1166  * Table of the DC grouping of error interrupts.  Each entry refers to
1167  * another register containing more information.
1168  */
1169 static const struct err_reg_info dc_errs[NUM_DC_ERRS] = {
1170 /* 0*/	DC_EE1(DCC_ERR,		handle_dcc_err,	       "DCC Err"),
1171 /* 1*/	DC_EE2(DC_LCB_ERR,	handle_lcb_err,	       "LCB Err"),
1172 /* 2*/	DC_EE2(DC_DC8051_ERR,	handle_8051_interrupt, "DC8051 Interrupt"),
1173 /* 3*/	/* dc_lbm_int - special, see is_dc_int() */
1174 	/* the rest are reserved */
1175 };
1176 
1177 struct cntr_entry {
1178 	/*
1179 	 * counter name
1180 	 */
1181 	char *name;
1182 
1183 	/*
1184 	 * csr to read for name (if applicable)
1185 	 */
1186 	u64 csr;
1187 
1188 	/*
1189 	 * offset into dd or ppd to store the counter's value
1190 	 */
1191 	int offset;
1192 
1193 	/*
1194 	 * flags
1195 	 */
1196 	u8 flags;
1197 
1198 	/*
1199 	 * accessor for stat element, context either dd or ppd
1200 	 */
1201 	u64 (*rw_cntr)(const struct cntr_entry *, void *context, int vl,
1202 		       int mode, u64 data);
1203 };
1204 
1205 #define C_RCV_HDR_OVF_FIRST C_RCV_HDR_OVF_0
1206 #define C_RCV_HDR_OVF_LAST C_RCV_HDR_OVF_159
1207 
1208 #define CNTR_ELEM(name, csr, offset, flags, accessor) \
1209 { \
1210 	name, \
1211 	csr, \
1212 	offset, \
1213 	flags, \
1214 	accessor \
1215 }
1216 
1217 /* 32bit RXE */
1218 #define RXE32_PORT_CNTR_ELEM(name, counter, flags) \
1219 CNTR_ELEM(#name, \
1220 	  (counter * 8 + RCV_COUNTER_ARRAY32), \
1221 	  0, flags | CNTR_32BIT, \
1222 	  port_access_u32_csr)
1223 
1224 #define RXE32_DEV_CNTR_ELEM(name, counter, flags) \
1225 CNTR_ELEM(#name, \
1226 	  (counter * 8 + RCV_COUNTER_ARRAY32), \
1227 	  0, flags | CNTR_32BIT, \
1228 	  dev_access_u32_csr)
1229 
1230 /* 64bit RXE */
1231 #define RXE64_PORT_CNTR_ELEM(name, counter, flags) \
1232 CNTR_ELEM(#name, \
1233 	  (counter * 8 + RCV_COUNTER_ARRAY64), \
1234 	  0, flags, \
1235 	  port_access_u64_csr)
1236 
1237 #define RXE64_DEV_CNTR_ELEM(name, counter, flags) \
1238 CNTR_ELEM(#name, \
1239 	  (counter * 8 + RCV_COUNTER_ARRAY64), \
1240 	  0, flags, \
1241 	  dev_access_u64_csr)
1242 
1243 #define OVR_LBL(ctx) C_RCV_HDR_OVF_ ## ctx
1244 #define OVR_ELM(ctx) \
1245 CNTR_ELEM("RcvHdrOvr" #ctx, \
1246 	  (RCV_HDR_OVFL_CNT + ctx * 0x100), \
1247 	  0, CNTR_NORMAL, port_access_u64_csr)
1248 
1249 /* 32bit TXE */
1250 #define TXE32_PORT_CNTR_ELEM(name, counter, flags) \
1251 CNTR_ELEM(#name, \
1252 	  (counter * 8 + SEND_COUNTER_ARRAY32), \
1253 	  0, flags | CNTR_32BIT, \
1254 	  port_access_u32_csr)
1255 
1256 /* 64bit TXE */
1257 #define TXE64_PORT_CNTR_ELEM(name, counter, flags) \
1258 CNTR_ELEM(#name, \
1259 	  (counter * 8 + SEND_COUNTER_ARRAY64), \
1260 	  0, flags, \
1261 	  port_access_u64_csr)
1262 
1263 # define TX64_DEV_CNTR_ELEM(name, counter, flags) \
1264 CNTR_ELEM(#name,\
1265 	  counter * 8 + SEND_COUNTER_ARRAY64, \
1266 	  0, \
1267 	  flags, \
1268 	  dev_access_u64_csr)
1269 
1270 /* CCE */
1271 #define CCE_PERF_DEV_CNTR_ELEM(name, counter, flags) \
1272 CNTR_ELEM(#name, \
1273 	  (counter * 8 + CCE_COUNTER_ARRAY32), \
1274 	  0, flags | CNTR_32BIT, \
1275 	  dev_access_u32_csr)
1276 
1277 #define CCE_INT_DEV_CNTR_ELEM(name, counter, flags) \
1278 CNTR_ELEM(#name, \
1279 	  (counter * 8 + CCE_INT_COUNTER_ARRAY32), \
1280 	  0, flags | CNTR_32BIT, \
1281 	  dev_access_u32_csr)
1282 
1283 /* DC */
1284 #define DC_PERF_CNTR(name, counter, flags) \
1285 CNTR_ELEM(#name, \
1286 	  counter, \
1287 	  0, \
1288 	  flags, \
1289 	  dev_access_u64_csr)
1290 
1291 #define DC_PERF_CNTR_LCB(name, counter, flags) \
1292 CNTR_ELEM(#name, \
1293 	  counter, \
1294 	  0, \
1295 	  flags, \
1296 	  dc_access_lcb_cntr)
1297 
1298 /* ibp counters */
1299 #define SW_IBP_CNTR(name, cntr) \
1300 CNTR_ELEM(#name, \
1301 	  0, \
1302 	  0, \
1303 	  CNTR_SYNTH, \
1304 	  access_ibp_##cntr)
1305 
1306 /**
1307  * hfi_addr_from_offset - return addr for readq/writeq
1308  * @dd - the dd device
1309  * @offset - the offset of the CSR within bar0
1310  *
1311  * This routine selects the appropriate base address
1312  * based on the indicated offset.
1313  */
1314 static inline void __iomem *hfi1_addr_from_offset(
1315 	const struct hfi1_devdata *dd,
1316 	u32 offset)
1317 {
1318 	if (offset >= dd->base2_start)
1319 		return dd->kregbase2 + (offset - dd->base2_start);
1320 	return dd->kregbase1 + offset;
1321 }
1322 
1323 /**
1324  * read_csr - read CSR at the indicated offset
1325  * @dd - the dd device
1326  * @offset - the offset of the CSR within bar0
1327  *
1328  * Return: the value read or all FF's if there
1329  * is no mapping
1330  */
1331 u64 read_csr(const struct hfi1_devdata *dd, u32 offset)
1332 {
1333 	if (dd->flags & HFI1_PRESENT)
1334 		return readq(hfi1_addr_from_offset(dd, offset));
1335 	return -1;
1336 }
1337 
1338 /**
1339  * write_csr - write CSR at the indicated offset
1340  * @dd - the dd device
1341  * @offset - the offset of the CSR within bar0
1342  * @value - value to write
1343  */
1344 void write_csr(const struct hfi1_devdata *dd, u32 offset, u64 value)
1345 {
1346 	if (dd->flags & HFI1_PRESENT) {
1347 		void __iomem *base = hfi1_addr_from_offset(dd, offset);
1348 
1349 		/* avoid write to RcvArray */
1350 		if (WARN_ON(offset >= RCV_ARRAY && offset < dd->base2_start))
1351 			return;
1352 		writeq(value, base);
1353 	}
1354 }
1355 
1356 /**
1357  * get_csr_addr - return te iomem address for offset
1358  * @dd - the dd device
1359  * @offset - the offset of the CSR within bar0
1360  *
1361  * Return: The iomem address to use in subsequent
1362  * writeq/readq operations.
1363  */
1364 void __iomem *get_csr_addr(
1365 	const struct hfi1_devdata *dd,
1366 	u32 offset)
1367 {
1368 	if (dd->flags & HFI1_PRESENT)
1369 		return hfi1_addr_from_offset(dd, offset);
1370 	return NULL;
1371 }
1372 
1373 static inline u64 read_write_csr(const struct hfi1_devdata *dd, u32 csr,
1374 				 int mode, u64 value)
1375 {
1376 	u64 ret;
1377 
1378 	if (mode == CNTR_MODE_R) {
1379 		ret = read_csr(dd, csr);
1380 	} else if (mode == CNTR_MODE_W) {
1381 		write_csr(dd, csr, value);
1382 		ret = value;
1383 	} else {
1384 		dd_dev_err(dd, "Invalid cntr register access mode");
1385 		return 0;
1386 	}
1387 
1388 	hfi1_cdbg(CNTR, "csr 0x%x val 0x%llx mode %d", csr, ret, mode);
1389 	return ret;
1390 }
1391 
1392 /* Dev Access */
1393 static u64 dev_access_u32_csr(const struct cntr_entry *entry,
1394 			      void *context, int vl, int mode, u64 data)
1395 {
1396 	struct hfi1_devdata *dd = context;
1397 	u64 csr = entry->csr;
1398 
1399 	if (entry->flags & CNTR_SDMA) {
1400 		if (vl == CNTR_INVALID_VL)
1401 			return 0;
1402 		csr += 0x100 * vl;
1403 	} else {
1404 		if (vl != CNTR_INVALID_VL)
1405 			return 0;
1406 	}
1407 	return read_write_csr(dd, csr, mode, data);
1408 }
1409 
1410 static u64 access_sde_err_cnt(const struct cntr_entry *entry,
1411 			      void *context, int idx, int mode, u64 data)
1412 {
1413 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1414 
1415 	if (dd->per_sdma && idx < dd->num_sdma)
1416 		return dd->per_sdma[idx].err_cnt;
1417 	return 0;
1418 }
1419 
1420 static u64 access_sde_int_cnt(const struct cntr_entry *entry,
1421 			      void *context, int idx, int mode, u64 data)
1422 {
1423 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1424 
1425 	if (dd->per_sdma && idx < dd->num_sdma)
1426 		return dd->per_sdma[idx].sdma_int_cnt;
1427 	return 0;
1428 }
1429 
1430 static u64 access_sde_idle_int_cnt(const struct cntr_entry *entry,
1431 				   void *context, int idx, int mode, u64 data)
1432 {
1433 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1434 
1435 	if (dd->per_sdma && idx < dd->num_sdma)
1436 		return dd->per_sdma[idx].idle_int_cnt;
1437 	return 0;
1438 }
1439 
1440 static u64 access_sde_progress_int_cnt(const struct cntr_entry *entry,
1441 				       void *context, int idx, int mode,
1442 				       u64 data)
1443 {
1444 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1445 
1446 	if (dd->per_sdma && idx < dd->num_sdma)
1447 		return dd->per_sdma[idx].progress_int_cnt;
1448 	return 0;
1449 }
1450 
1451 static u64 dev_access_u64_csr(const struct cntr_entry *entry, void *context,
1452 			      int vl, int mode, u64 data)
1453 {
1454 	struct hfi1_devdata *dd = context;
1455 
1456 	u64 val = 0;
1457 	u64 csr = entry->csr;
1458 
1459 	if (entry->flags & CNTR_VL) {
1460 		if (vl == CNTR_INVALID_VL)
1461 			return 0;
1462 		csr += 8 * vl;
1463 	} else {
1464 		if (vl != CNTR_INVALID_VL)
1465 			return 0;
1466 	}
1467 
1468 	val = read_write_csr(dd, csr, mode, data);
1469 	return val;
1470 }
1471 
1472 static u64 dc_access_lcb_cntr(const struct cntr_entry *entry, void *context,
1473 			      int vl, int mode, u64 data)
1474 {
1475 	struct hfi1_devdata *dd = context;
1476 	u32 csr = entry->csr;
1477 	int ret = 0;
1478 
1479 	if (vl != CNTR_INVALID_VL)
1480 		return 0;
1481 	if (mode == CNTR_MODE_R)
1482 		ret = read_lcb_csr(dd, csr, &data);
1483 	else if (mode == CNTR_MODE_W)
1484 		ret = write_lcb_csr(dd, csr, data);
1485 
1486 	if (ret) {
1487 		dd_dev_err(dd, "Could not acquire LCB for counter 0x%x", csr);
1488 		return 0;
1489 	}
1490 
1491 	hfi1_cdbg(CNTR, "csr 0x%x val 0x%llx mode %d", csr, data, mode);
1492 	return data;
1493 }
1494 
1495 /* Port Access */
1496 static u64 port_access_u32_csr(const struct cntr_entry *entry, void *context,
1497 			       int vl, int mode, u64 data)
1498 {
1499 	struct hfi1_pportdata *ppd = context;
1500 
1501 	if (vl != CNTR_INVALID_VL)
1502 		return 0;
1503 	return read_write_csr(ppd->dd, entry->csr, mode, data);
1504 }
1505 
1506 static u64 port_access_u64_csr(const struct cntr_entry *entry,
1507 			       void *context, int vl, int mode, u64 data)
1508 {
1509 	struct hfi1_pportdata *ppd = context;
1510 	u64 val;
1511 	u64 csr = entry->csr;
1512 
1513 	if (entry->flags & CNTR_VL) {
1514 		if (vl == CNTR_INVALID_VL)
1515 			return 0;
1516 		csr += 8 * vl;
1517 	} else {
1518 		if (vl != CNTR_INVALID_VL)
1519 			return 0;
1520 	}
1521 	val = read_write_csr(ppd->dd, csr, mode, data);
1522 	return val;
1523 }
1524 
1525 /* Software defined */
1526 static inline u64 read_write_sw(struct hfi1_devdata *dd, u64 *cntr, int mode,
1527 				u64 data)
1528 {
1529 	u64 ret;
1530 
1531 	if (mode == CNTR_MODE_R) {
1532 		ret = *cntr;
1533 	} else if (mode == CNTR_MODE_W) {
1534 		*cntr = data;
1535 		ret = data;
1536 	} else {
1537 		dd_dev_err(dd, "Invalid cntr sw access mode");
1538 		return 0;
1539 	}
1540 
1541 	hfi1_cdbg(CNTR, "val 0x%llx mode %d", ret, mode);
1542 
1543 	return ret;
1544 }
1545 
1546 static u64 access_sw_link_dn_cnt(const struct cntr_entry *entry, void *context,
1547 				 int vl, int mode, u64 data)
1548 {
1549 	struct hfi1_pportdata *ppd = context;
1550 
1551 	if (vl != CNTR_INVALID_VL)
1552 		return 0;
1553 	return read_write_sw(ppd->dd, &ppd->link_downed, mode, data);
1554 }
1555 
1556 static u64 access_sw_link_up_cnt(const struct cntr_entry *entry, void *context,
1557 				 int vl, int mode, u64 data)
1558 {
1559 	struct hfi1_pportdata *ppd = context;
1560 
1561 	if (vl != CNTR_INVALID_VL)
1562 		return 0;
1563 	return read_write_sw(ppd->dd, &ppd->link_up, mode, data);
1564 }
1565 
1566 static u64 access_sw_unknown_frame_cnt(const struct cntr_entry *entry,
1567 				       void *context, int vl, int mode,
1568 				       u64 data)
1569 {
1570 	struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context;
1571 
1572 	if (vl != CNTR_INVALID_VL)
1573 		return 0;
1574 	return read_write_sw(ppd->dd, &ppd->unknown_frame_count, mode, data);
1575 }
1576 
1577 static u64 access_sw_xmit_discards(const struct cntr_entry *entry,
1578 				   void *context, int vl, int mode, u64 data)
1579 {
1580 	struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context;
1581 	u64 zero = 0;
1582 	u64 *counter;
1583 
1584 	if (vl == CNTR_INVALID_VL)
1585 		counter = &ppd->port_xmit_discards;
1586 	else if (vl >= 0 && vl < C_VL_COUNT)
1587 		counter = &ppd->port_xmit_discards_vl[vl];
1588 	else
1589 		counter = &zero;
1590 
1591 	return read_write_sw(ppd->dd, counter, mode, data);
1592 }
1593 
1594 static u64 access_xmit_constraint_errs(const struct cntr_entry *entry,
1595 				       void *context, int vl, int mode,
1596 				       u64 data)
1597 {
1598 	struct hfi1_pportdata *ppd = context;
1599 
1600 	if (vl != CNTR_INVALID_VL)
1601 		return 0;
1602 
1603 	return read_write_sw(ppd->dd, &ppd->port_xmit_constraint_errors,
1604 			     mode, data);
1605 }
1606 
1607 static u64 access_rcv_constraint_errs(const struct cntr_entry *entry,
1608 				      void *context, int vl, int mode, u64 data)
1609 {
1610 	struct hfi1_pportdata *ppd = context;
1611 
1612 	if (vl != CNTR_INVALID_VL)
1613 		return 0;
1614 
1615 	return read_write_sw(ppd->dd, &ppd->port_rcv_constraint_errors,
1616 			     mode, data);
1617 }
1618 
1619 u64 get_all_cpu_total(u64 __percpu *cntr)
1620 {
1621 	int cpu;
1622 	u64 counter = 0;
1623 
1624 	for_each_possible_cpu(cpu)
1625 		counter += *per_cpu_ptr(cntr, cpu);
1626 	return counter;
1627 }
1628 
1629 static u64 read_write_cpu(struct hfi1_devdata *dd, u64 *z_val,
1630 			  u64 __percpu *cntr,
1631 			  int vl, int mode, u64 data)
1632 {
1633 	u64 ret = 0;
1634 
1635 	if (vl != CNTR_INVALID_VL)
1636 		return 0;
1637 
1638 	if (mode == CNTR_MODE_R) {
1639 		ret = get_all_cpu_total(cntr) - *z_val;
1640 	} else if (mode == CNTR_MODE_W) {
1641 		/* A write can only zero the counter */
1642 		if (data == 0)
1643 			*z_val = get_all_cpu_total(cntr);
1644 		else
1645 			dd_dev_err(dd, "Per CPU cntrs can only be zeroed");
1646 	} else {
1647 		dd_dev_err(dd, "Invalid cntr sw cpu access mode");
1648 		return 0;
1649 	}
1650 
1651 	return ret;
1652 }
1653 
1654 static u64 access_sw_cpu_intr(const struct cntr_entry *entry,
1655 			      void *context, int vl, int mode, u64 data)
1656 {
1657 	struct hfi1_devdata *dd = context;
1658 
1659 	return read_write_cpu(dd, &dd->z_int_counter, dd->int_counter, vl,
1660 			      mode, data);
1661 }
1662 
1663 static u64 access_sw_cpu_rcv_limit(const struct cntr_entry *entry,
1664 				   void *context, int vl, int mode, u64 data)
1665 {
1666 	struct hfi1_devdata *dd = context;
1667 
1668 	return read_write_cpu(dd, &dd->z_rcv_limit, dd->rcv_limit, vl,
1669 			      mode, data);
1670 }
1671 
1672 static u64 access_sw_pio_wait(const struct cntr_entry *entry,
1673 			      void *context, int vl, int mode, u64 data)
1674 {
1675 	struct hfi1_devdata *dd = context;
1676 
1677 	return dd->verbs_dev.n_piowait;
1678 }
1679 
1680 static u64 access_sw_pio_drain(const struct cntr_entry *entry,
1681 			       void *context, int vl, int mode, u64 data)
1682 {
1683 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1684 
1685 	return dd->verbs_dev.n_piodrain;
1686 }
1687 
1688 static u64 access_sw_vtx_wait(const struct cntr_entry *entry,
1689 			      void *context, int vl, int mode, u64 data)
1690 {
1691 	struct hfi1_devdata *dd = context;
1692 
1693 	return dd->verbs_dev.n_txwait;
1694 }
1695 
1696 static u64 access_sw_kmem_wait(const struct cntr_entry *entry,
1697 			       void *context, int vl, int mode, u64 data)
1698 {
1699 	struct hfi1_devdata *dd = context;
1700 
1701 	return dd->verbs_dev.n_kmem_wait;
1702 }
1703 
1704 static u64 access_sw_send_schedule(const struct cntr_entry *entry,
1705 				   void *context, int vl, int mode, u64 data)
1706 {
1707 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1708 
1709 	return read_write_cpu(dd, &dd->z_send_schedule, dd->send_schedule, vl,
1710 			      mode, data);
1711 }
1712 
1713 /* Software counters for the error status bits within MISC_ERR_STATUS */
1714 static u64 access_misc_pll_lock_fail_err_cnt(const struct cntr_entry *entry,
1715 					     void *context, int vl, int mode,
1716 					     u64 data)
1717 {
1718 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1719 
1720 	return dd->misc_err_status_cnt[12];
1721 }
1722 
1723 static u64 access_misc_mbist_fail_err_cnt(const struct cntr_entry *entry,
1724 					  void *context, int vl, int mode,
1725 					  u64 data)
1726 {
1727 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1728 
1729 	return dd->misc_err_status_cnt[11];
1730 }
1731 
1732 static u64 access_misc_invalid_eep_cmd_err_cnt(const struct cntr_entry *entry,
1733 					       void *context, int vl, int mode,
1734 					       u64 data)
1735 {
1736 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1737 
1738 	return dd->misc_err_status_cnt[10];
1739 }
1740 
1741 static u64 access_misc_efuse_done_parity_err_cnt(const struct cntr_entry *entry,
1742 						 void *context, int vl,
1743 						 int mode, u64 data)
1744 {
1745 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1746 
1747 	return dd->misc_err_status_cnt[9];
1748 }
1749 
1750 static u64 access_misc_efuse_write_err_cnt(const struct cntr_entry *entry,
1751 					   void *context, int vl, int mode,
1752 					   u64 data)
1753 {
1754 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1755 
1756 	return dd->misc_err_status_cnt[8];
1757 }
1758 
1759 static u64 access_misc_efuse_read_bad_addr_err_cnt(
1760 				const struct cntr_entry *entry,
1761 				void *context, int vl, int mode, u64 data)
1762 {
1763 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1764 
1765 	return dd->misc_err_status_cnt[7];
1766 }
1767 
1768 static u64 access_misc_efuse_csr_parity_err_cnt(const struct cntr_entry *entry,
1769 						void *context, int vl,
1770 						int mode, u64 data)
1771 {
1772 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1773 
1774 	return dd->misc_err_status_cnt[6];
1775 }
1776 
1777 static u64 access_misc_fw_auth_failed_err_cnt(const struct cntr_entry *entry,
1778 					      void *context, int vl, int mode,
1779 					      u64 data)
1780 {
1781 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1782 
1783 	return dd->misc_err_status_cnt[5];
1784 }
1785 
1786 static u64 access_misc_key_mismatch_err_cnt(const struct cntr_entry *entry,
1787 					    void *context, int vl, int mode,
1788 					    u64 data)
1789 {
1790 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1791 
1792 	return dd->misc_err_status_cnt[4];
1793 }
1794 
1795 static u64 access_misc_sbus_write_failed_err_cnt(const struct cntr_entry *entry,
1796 						 void *context, int vl,
1797 						 int mode, u64 data)
1798 {
1799 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1800 
1801 	return dd->misc_err_status_cnt[3];
1802 }
1803 
1804 static u64 access_misc_csr_write_bad_addr_err_cnt(
1805 				const struct cntr_entry *entry,
1806 				void *context, int vl, int mode, u64 data)
1807 {
1808 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1809 
1810 	return dd->misc_err_status_cnt[2];
1811 }
1812 
1813 static u64 access_misc_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
1814 						 void *context, int vl,
1815 						 int mode, u64 data)
1816 {
1817 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1818 
1819 	return dd->misc_err_status_cnt[1];
1820 }
1821 
1822 static u64 access_misc_csr_parity_err_cnt(const struct cntr_entry *entry,
1823 					  void *context, int vl, int mode,
1824 					  u64 data)
1825 {
1826 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1827 
1828 	return dd->misc_err_status_cnt[0];
1829 }
1830 
1831 /*
1832  * Software counter for the aggregate of
1833  * individual CceErrStatus counters
1834  */
1835 static u64 access_sw_cce_err_status_aggregated_cnt(
1836 				const struct cntr_entry *entry,
1837 				void *context, int vl, int mode, u64 data)
1838 {
1839 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1840 
1841 	return dd->sw_cce_err_status_aggregate;
1842 }
1843 
1844 /*
1845  * Software counters corresponding to each of the
1846  * error status bits within CceErrStatus
1847  */
1848 static u64 access_cce_msix_csr_parity_err_cnt(const struct cntr_entry *entry,
1849 					      void *context, int vl, int mode,
1850 					      u64 data)
1851 {
1852 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1853 
1854 	return dd->cce_err_status_cnt[40];
1855 }
1856 
1857 static u64 access_cce_int_map_unc_err_cnt(const struct cntr_entry *entry,
1858 					  void *context, int vl, int mode,
1859 					  u64 data)
1860 {
1861 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1862 
1863 	return dd->cce_err_status_cnt[39];
1864 }
1865 
1866 static u64 access_cce_int_map_cor_err_cnt(const struct cntr_entry *entry,
1867 					  void *context, int vl, int mode,
1868 					  u64 data)
1869 {
1870 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1871 
1872 	return dd->cce_err_status_cnt[38];
1873 }
1874 
1875 static u64 access_cce_msix_table_unc_err_cnt(const struct cntr_entry *entry,
1876 					     void *context, int vl, int mode,
1877 					     u64 data)
1878 {
1879 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1880 
1881 	return dd->cce_err_status_cnt[37];
1882 }
1883 
1884 static u64 access_cce_msix_table_cor_err_cnt(const struct cntr_entry *entry,
1885 					     void *context, int vl, int mode,
1886 					     u64 data)
1887 {
1888 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1889 
1890 	return dd->cce_err_status_cnt[36];
1891 }
1892 
1893 static u64 access_cce_rxdma_conv_fifo_parity_err_cnt(
1894 				const struct cntr_entry *entry,
1895 				void *context, int vl, int mode, u64 data)
1896 {
1897 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1898 
1899 	return dd->cce_err_status_cnt[35];
1900 }
1901 
1902 static u64 access_cce_rcpl_async_fifo_parity_err_cnt(
1903 				const struct cntr_entry *entry,
1904 				void *context, int vl, int mode, u64 data)
1905 {
1906 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1907 
1908 	return dd->cce_err_status_cnt[34];
1909 }
1910 
1911 static u64 access_cce_seg_write_bad_addr_err_cnt(const struct cntr_entry *entry,
1912 						 void *context, int vl,
1913 						 int mode, u64 data)
1914 {
1915 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1916 
1917 	return dd->cce_err_status_cnt[33];
1918 }
1919 
1920 static u64 access_cce_seg_read_bad_addr_err_cnt(const struct cntr_entry *entry,
1921 						void *context, int vl, int mode,
1922 						u64 data)
1923 {
1924 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1925 
1926 	return dd->cce_err_status_cnt[32];
1927 }
1928 
1929 static u64 access_la_triggered_cnt(const struct cntr_entry *entry,
1930 				   void *context, int vl, int mode, u64 data)
1931 {
1932 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1933 
1934 	return dd->cce_err_status_cnt[31];
1935 }
1936 
1937 static u64 access_cce_trgt_cpl_timeout_err_cnt(const struct cntr_entry *entry,
1938 					       void *context, int vl, int mode,
1939 					       u64 data)
1940 {
1941 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1942 
1943 	return dd->cce_err_status_cnt[30];
1944 }
1945 
1946 static u64 access_pcic_receive_parity_err_cnt(const struct cntr_entry *entry,
1947 					      void *context, int vl, int mode,
1948 					      u64 data)
1949 {
1950 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1951 
1952 	return dd->cce_err_status_cnt[29];
1953 }
1954 
1955 static u64 access_pcic_transmit_back_parity_err_cnt(
1956 				const struct cntr_entry *entry,
1957 				void *context, int vl, int mode, u64 data)
1958 {
1959 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1960 
1961 	return dd->cce_err_status_cnt[28];
1962 }
1963 
1964 static u64 access_pcic_transmit_front_parity_err_cnt(
1965 				const struct cntr_entry *entry,
1966 				void *context, int vl, int mode, u64 data)
1967 {
1968 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1969 
1970 	return dd->cce_err_status_cnt[27];
1971 }
1972 
1973 static u64 access_pcic_cpl_dat_q_unc_err_cnt(const struct cntr_entry *entry,
1974 					     void *context, int vl, int mode,
1975 					     u64 data)
1976 {
1977 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1978 
1979 	return dd->cce_err_status_cnt[26];
1980 }
1981 
1982 static u64 access_pcic_cpl_hd_q_unc_err_cnt(const struct cntr_entry *entry,
1983 					    void *context, int vl, int mode,
1984 					    u64 data)
1985 {
1986 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1987 
1988 	return dd->cce_err_status_cnt[25];
1989 }
1990 
1991 static u64 access_pcic_post_dat_q_unc_err_cnt(const struct cntr_entry *entry,
1992 					      void *context, int vl, int mode,
1993 					      u64 data)
1994 {
1995 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1996 
1997 	return dd->cce_err_status_cnt[24];
1998 }
1999 
2000 static u64 access_pcic_post_hd_q_unc_err_cnt(const struct cntr_entry *entry,
2001 					     void *context, int vl, int mode,
2002 					     u64 data)
2003 {
2004 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2005 
2006 	return dd->cce_err_status_cnt[23];
2007 }
2008 
2009 static u64 access_pcic_retry_sot_mem_unc_err_cnt(const struct cntr_entry *entry,
2010 						 void *context, int vl,
2011 						 int mode, u64 data)
2012 {
2013 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2014 
2015 	return dd->cce_err_status_cnt[22];
2016 }
2017 
2018 static u64 access_pcic_retry_mem_unc_err(const struct cntr_entry *entry,
2019 					 void *context, int vl, int mode,
2020 					 u64 data)
2021 {
2022 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2023 
2024 	return dd->cce_err_status_cnt[21];
2025 }
2026 
2027 static u64 access_pcic_n_post_dat_q_parity_err_cnt(
2028 				const struct cntr_entry *entry,
2029 				void *context, int vl, int mode, u64 data)
2030 {
2031 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2032 
2033 	return dd->cce_err_status_cnt[20];
2034 }
2035 
2036 static u64 access_pcic_n_post_h_q_parity_err_cnt(const struct cntr_entry *entry,
2037 						 void *context, int vl,
2038 						 int mode, u64 data)
2039 {
2040 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2041 
2042 	return dd->cce_err_status_cnt[19];
2043 }
2044 
2045 static u64 access_pcic_cpl_dat_q_cor_err_cnt(const struct cntr_entry *entry,
2046 					     void *context, int vl, int mode,
2047 					     u64 data)
2048 {
2049 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2050 
2051 	return dd->cce_err_status_cnt[18];
2052 }
2053 
2054 static u64 access_pcic_cpl_hd_q_cor_err_cnt(const struct cntr_entry *entry,
2055 					    void *context, int vl, int mode,
2056 					    u64 data)
2057 {
2058 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2059 
2060 	return dd->cce_err_status_cnt[17];
2061 }
2062 
2063 static u64 access_pcic_post_dat_q_cor_err_cnt(const struct cntr_entry *entry,
2064 					      void *context, int vl, int mode,
2065 					      u64 data)
2066 {
2067 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2068 
2069 	return dd->cce_err_status_cnt[16];
2070 }
2071 
2072 static u64 access_pcic_post_hd_q_cor_err_cnt(const struct cntr_entry *entry,
2073 					     void *context, int vl, int mode,
2074 					     u64 data)
2075 {
2076 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2077 
2078 	return dd->cce_err_status_cnt[15];
2079 }
2080 
2081 static u64 access_pcic_retry_sot_mem_cor_err_cnt(const struct cntr_entry *entry,
2082 						 void *context, int vl,
2083 						 int mode, u64 data)
2084 {
2085 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2086 
2087 	return dd->cce_err_status_cnt[14];
2088 }
2089 
2090 static u64 access_pcic_retry_mem_cor_err_cnt(const struct cntr_entry *entry,
2091 					     void *context, int vl, int mode,
2092 					     u64 data)
2093 {
2094 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2095 
2096 	return dd->cce_err_status_cnt[13];
2097 }
2098 
2099 static u64 access_cce_cli1_async_fifo_dbg_parity_err_cnt(
2100 				const struct cntr_entry *entry,
2101 				void *context, int vl, int mode, u64 data)
2102 {
2103 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2104 
2105 	return dd->cce_err_status_cnt[12];
2106 }
2107 
2108 static u64 access_cce_cli1_async_fifo_rxdma_parity_err_cnt(
2109 				const struct cntr_entry *entry,
2110 				void *context, int vl, int mode, u64 data)
2111 {
2112 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2113 
2114 	return dd->cce_err_status_cnt[11];
2115 }
2116 
2117 static u64 access_cce_cli1_async_fifo_sdma_hd_parity_err_cnt(
2118 				const struct cntr_entry *entry,
2119 				void *context, int vl, int mode, u64 data)
2120 {
2121 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2122 
2123 	return dd->cce_err_status_cnt[10];
2124 }
2125 
2126 static u64 access_cce_cl1_async_fifo_pio_crdt_parity_err_cnt(
2127 				const struct cntr_entry *entry,
2128 				void *context, int vl, int mode, u64 data)
2129 {
2130 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2131 
2132 	return dd->cce_err_status_cnt[9];
2133 }
2134 
2135 static u64 access_cce_cli2_async_fifo_parity_err_cnt(
2136 				const struct cntr_entry *entry,
2137 				void *context, int vl, int mode, u64 data)
2138 {
2139 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2140 
2141 	return dd->cce_err_status_cnt[8];
2142 }
2143 
2144 static u64 access_cce_csr_cfg_bus_parity_err_cnt(const struct cntr_entry *entry,
2145 						 void *context, int vl,
2146 						 int mode, u64 data)
2147 {
2148 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2149 
2150 	return dd->cce_err_status_cnt[7];
2151 }
2152 
2153 static u64 access_cce_cli0_async_fifo_parity_err_cnt(
2154 				const struct cntr_entry *entry,
2155 				void *context, int vl, int mode, u64 data)
2156 {
2157 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2158 
2159 	return dd->cce_err_status_cnt[6];
2160 }
2161 
2162 static u64 access_cce_rspd_data_parity_err_cnt(const struct cntr_entry *entry,
2163 					       void *context, int vl, int mode,
2164 					       u64 data)
2165 {
2166 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2167 
2168 	return dd->cce_err_status_cnt[5];
2169 }
2170 
2171 static u64 access_cce_trgt_access_err_cnt(const struct cntr_entry *entry,
2172 					  void *context, int vl, int mode,
2173 					  u64 data)
2174 {
2175 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2176 
2177 	return dd->cce_err_status_cnt[4];
2178 }
2179 
2180 static u64 access_cce_trgt_async_fifo_parity_err_cnt(
2181 				const struct cntr_entry *entry,
2182 				void *context, int vl, int mode, u64 data)
2183 {
2184 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2185 
2186 	return dd->cce_err_status_cnt[3];
2187 }
2188 
2189 static u64 access_cce_csr_write_bad_addr_err_cnt(const struct cntr_entry *entry,
2190 						 void *context, int vl,
2191 						 int mode, u64 data)
2192 {
2193 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2194 
2195 	return dd->cce_err_status_cnt[2];
2196 }
2197 
2198 static u64 access_cce_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
2199 						void *context, int vl,
2200 						int mode, u64 data)
2201 {
2202 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2203 
2204 	return dd->cce_err_status_cnt[1];
2205 }
2206 
2207 static u64 access_ccs_csr_parity_err_cnt(const struct cntr_entry *entry,
2208 					 void *context, int vl, int mode,
2209 					 u64 data)
2210 {
2211 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2212 
2213 	return dd->cce_err_status_cnt[0];
2214 }
2215 
2216 /*
2217  * Software counters corresponding to each of the
2218  * error status bits within RcvErrStatus
2219  */
2220 static u64 access_rx_csr_parity_err_cnt(const struct cntr_entry *entry,
2221 					void *context, int vl, int mode,
2222 					u64 data)
2223 {
2224 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2225 
2226 	return dd->rcv_err_status_cnt[63];
2227 }
2228 
2229 static u64 access_rx_csr_write_bad_addr_err_cnt(const struct cntr_entry *entry,
2230 						void *context, int vl,
2231 						int mode, u64 data)
2232 {
2233 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2234 
2235 	return dd->rcv_err_status_cnt[62];
2236 }
2237 
2238 static u64 access_rx_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
2239 					       void *context, int vl, int mode,
2240 					       u64 data)
2241 {
2242 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2243 
2244 	return dd->rcv_err_status_cnt[61];
2245 }
2246 
2247 static u64 access_rx_dma_csr_unc_err_cnt(const struct cntr_entry *entry,
2248 					 void *context, int vl, int mode,
2249 					 u64 data)
2250 {
2251 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2252 
2253 	return dd->rcv_err_status_cnt[60];
2254 }
2255 
2256 static u64 access_rx_dma_dq_fsm_encoding_err_cnt(const struct cntr_entry *entry,
2257 						 void *context, int vl,
2258 						 int mode, u64 data)
2259 {
2260 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2261 
2262 	return dd->rcv_err_status_cnt[59];
2263 }
2264 
2265 static u64 access_rx_dma_eq_fsm_encoding_err_cnt(const struct cntr_entry *entry,
2266 						 void *context, int vl,
2267 						 int mode, u64 data)
2268 {
2269 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2270 
2271 	return dd->rcv_err_status_cnt[58];
2272 }
2273 
2274 static u64 access_rx_dma_csr_parity_err_cnt(const struct cntr_entry *entry,
2275 					    void *context, int vl, int mode,
2276 					    u64 data)
2277 {
2278 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2279 
2280 	return dd->rcv_err_status_cnt[57];
2281 }
2282 
2283 static u64 access_rx_rbuf_data_cor_err_cnt(const struct cntr_entry *entry,
2284 					   void *context, int vl, int mode,
2285 					   u64 data)
2286 {
2287 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2288 
2289 	return dd->rcv_err_status_cnt[56];
2290 }
2291 
2292 static u64 access_rx_rbuf_data_unc_err_cnt(const struct cntr_entry *entry,
2293 					   void *context, int vl, int mode,
2294 					   u64 data)
2295 {
2296 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2297 
2298 	return dd->rcv_err_status_cnt[55];
2299 }
2300 
2301 static u64 access_rx_dma_data_fifo_rd_cor_err_cnt(
2302 				const struct cntr_entry *entry,
2303 				void *context, int vl, int mode, u64 data)
2304 {
2305 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2306 
2307 	return dd->rcv_err_status_cnt[54];
2308 }
2309 
2310 static u64 access_rx_dma_data_fifo_rd_unc_err_cnt(
2311 				const struct cntr_entry *entry,
2312 				void *context, int vl, int mode, u64 data)
2313 {
2314 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2315 
2316 	return dd->rcv_err_status_cnt[53];
2317 }
2318 
2319 static u64 access_rx_dma_hdr_fifo_rd_cor_err_cnt(const struct cntr_entry *entry,
2320 						 void *context, int vl,
2321 						 int mode, u64 data)
2322 {
2323 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2324 
2325 	return dd->rcv_err_status_cnt[52];
2326 }
2327 
2328 static u64 access_rx_dma_hdr_fifo_rd_unc_err_cnt(const struct cntr_entry *entry,
2329 						 void *context, int vl,
2330 						 int mode, u64 data)
2331 {
2332 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2333 
2334 	return dd->rcv_err_status_cnt[51];
2335 }
2336 
2337 static u64 access_rx_rbuf_desc_part2_cor_err_cnt(const struct cntr_entry *entry,
2338 						 void *context, int vl,
2339 						 int mode, u64 data)
2340 {
2341 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2342 
2343 	return dd->rcv_err_status_cnt[50];
2344 }
2345 
2346 static u64 access_rx_rbuf_desc_part2_unc_err_cnt(const struct cntr_entry *entry,
2347 						 void *context, int vl,
2348 						 int mode, u64 data)
2349 {
2350 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2351 
2352 	return dd->rcv_err_status_cnt[49];
2353 }
2354 
2355 static u64 access_rx_rbuf_desc_part1_cor_err_cnt(const struct cntr_entry *entry,
2356 						 void *context, int vl,
2357 						 int mode, u64 data)
2358 {
2359 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2360 
2361 	return dd->rcv_err_status_cnt[48];
2362 }
2363 
2364 static u64 access_rx_rbuf_desc_part1_unc_err_cnt(const struct cntr_entry *entry,
2365 						 void *context, int vl,
2366 						 int mode, u64 data)
2367 {
2368 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2369 
2370 	return dd->rcv_err_status_cnt[47];
2371 }
2372 
2373 static u64 access_rx_hq_intr_fsm_err_cnt(const struct cntr_entry *entry,
2374 					 void *context, int vl, int mode,
2375 					 u64 data)
2376 {
2377 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2378 
2379 	return dd->rcv_err_status_cnt[46];
2380 }
2381 
2382 static u64 access_rx_hq_intr_csr_parity_err_cnt(
2383 				const struct cntr_entry *entry,
2384 				void *context, int vl, int mode, u64 data)
2385 {
2386 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2387 
2388 	return dd->rcv_err_status_cnt[45];
2389 }
2390 
2391 static u64 access_rx_lookup_csr_parity_err_cnt(
2392 				const struct cntr_entry *entry,
2393 				void *context, int vl, int mode, u64 data)
2394 {
2395 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2396 
2397 	return dd->rcv_err_status_cnt[44];
2398 }
2399 
2400 static u64 access_rx_lookup_rcv_array_cor_err_cnt(
2401 				const struct cntr_entry *entry,
2402 				void *context, int vl, int mode, u64 data)
2403 {
2404 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2405 
2406 	return dd->rcv_err_status_cnt[43];
2407 }
2408 
2409 static u64 access_rx_lookup_rcv_array_unc_err_cnt(
2410 				const struct cntr_entry *entry,
2411 				void *context, int vl, int mode, u64 data)
2412 {
2413 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2414 
2415 	return dd->rcv_err_status_cnt[42];
2416 }
2417 
2418 static u64 access_rx_lookup_des_part2_parity_err_cnt(
2419 				const struct cntr_entry *entry,
2420 				void *context, int vl, int mode, u64 data)
2421 {
2422 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2423 
2424 	return dd->rcv_err_status_cnt[41];
2425 }
2426 
2427 static u64 access_rx_lookup_des_part1_unc_cor_err_cnt(
2428 				const struct cntr_entry *entry,
2429 				void *context, int vl, int mode, u64 data)
2430 {
2431 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2432 
2433 	return dd->rcv_err_status_cnt[40];
2434 }
2435 
2436 static u64 access_rx_lookup_des_part1_unc_err_cnt(
2437 				const struct cntr_entry *entry,
2438 				void *context, int vl, int mode, u64 data)
2439 {
2440 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2441 
2442 	return dd->rcv_err_status_cnt[39];
2443 }
2444 
2445 static u64 access_rx_rbuf_next_free_buf_cor_err_cnt(
2446 				const struct cntr_entry *entry,
2447 				void *context, int vl, int mode, u64 data)
2448 {
2449 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2450 
2451 	return dd->rcv_err_status_cnt[38];
2452 }
2453 
2454 static u64 access_rx_rbuf_next_free_buf_unc_err_cnt(
2455 				const struct cntr_entry *entry,
2456 				void *context, int vl, int mode, u64 data)
2457 {
2458 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2459 
2460 	return dd->rcv_err_status_cnt[37];
2461 }
2462 
2463 static u64 access_rbuf_fl_init_wr_addr_parity_err_cnt(
2464 				const struct cntr_entry *entry,
2465 				void *context, int vl, int mode, u64 data)
2466 {
2467 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2468 
2469 	return dd->rcv_err_status_cnt[36];
2470 }
2471 
2472 static u64 access_rx_rbuf_fl_initdone_parity_err_cnt(
2473 				const struct cntr_entry *entry,
2474 				void *context, int vl, int mode, u64 data)
2475 {
2476 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2477 
2478 	return dd->rcv_err_status_cnt[35];
2479 }
2480 
2481 static u64 access_rx_rbuf_fl_write_addr_parity_err_cnt(
2482 				const struct cntr_entry *entry,
2483 				void *context, int vl, int mode, u64 data)
2484 {
2485 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2486 
2487 	return dd->rcv_err_status_cnt[34];
2488 }
2489 
2490 static u64 access_rx_rbuf_fl_rd_addr_parity_err_cnt(
2491 				const struct cntr_entry *entry,
2492 				void *context, int vl, int mode, u64 data)
2493 {
2494 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2495 
2496 	return dd->rcv_err_status_cnt[33];
2497 }
2498 
2499 static u64 access_rx_rbuf_empty_err_cnt(const struct cntr_entry *entry,
2500 					void *context, int vl, int mode,
2501 					u64 data)
2502 {
2503 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2504 
2505 	return dd->rcv_err_status_cnt[32];
2506 }
2507 
2508 static u64 access_rx_rbuf_full_err_cnt(const struct cntr_entry *entry,
2509 				       void *context, int vl, int mode,
2510 				       u64 data)
2511 {
2512 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2513 
2514 	return dd->rcv_err_status_cnt[31];
2515 }
2516 
2517 static u64 access_rbuf_bad_lookup_err_cnt(const struct cntr_entry *entry,
2518 					  void *context, int vl, int mode,
2519 					  u64 data)
2520 {
2521 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2522 
2523 	return dd->rcv_err_status_cnt[30];
2524 }
2525 
2526 static u64 access_rbuf_ctx_id_parity_err_cnt(const struct cntr_entry *entry,
2527 					     void *context, int vl, int mode,
2528 					     u64 data)
2529 {
2530 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2531 
2532 	return dd->rcv_err_status_cnt[29];
2533 }
2534 
2535 static u64 access_rbuf_csr_qeopdw_parity_err_cnt(const struct cntr_entry *entry,
2536 						 void *context, int vl,
2537 						 int mode, u64 data)
2538 {
2539 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2540 
2541 	return dd->rcv_err_status_cnt[28];
2542 }
2543 
2544 static u64 access_rx_rbuf_csr_q_num_of_pkt_parity_err_cnt(
2545 				const struct cntr_entry *entry,
2546 				void *context, int vl, int mode, u64 data)
2547 {
2548 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2549 
2550 	return dd->rcv_err_status_cnt[27];
2551 }
2552 
2553 static u64 access_rx_rbuf_csr_q_t1_ptr_parity_err_cnt(
2554 				const struct cntr_entry *entry,
2555 				void *context, int vl, int mode, u64 data)
2556 {
2557 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2558 
2559 	return dd->rcv_err_status_cnt[26];
2560 }
2561 
2562 static u64 access_rx_rbuf_csr_q_hd_ptr_parity_err_cnt(
2563 				const struct cntr_entry *entry,
2564 				void *context, int vl, int mode, u64 data)
2565 {
2566 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2567 
2568 	return dd->rcv_err_status_cnt[25];
2569 }
2570 
2571 static u64 access_rx_rbuf_csr_q_vld_bit_parity_err_cnt(
2572 				const struct cntr_entry *entry,
2573 				void *context, int vl, int mode, u64 data)
2574 {
2575 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2576 
2577 	return dd->rcv_err_status_cnt[24];
2578 }
2579 
2580 static u64 access_rx_rbuf_csr_q_next_buf_parity_err_cnt(
2581 				const struct cntr_entry *entry,
2582 				void *context, int vl, int mode, u64 data)
2583 {
2584 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2585 
2586 	return dd->rcv_err_status_cnt[23];
2587 }
2588 
2589 static u64 access_rx_rbuf_csr_q_ent_cnt_parity_err_cnt(
2590 				const struct cntr_entry *entry,
2591 				void *context, int vl, int mode, u64 data)
2592 {
2593 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2594 
2595 	return dd->rcv_err_status_cnt[22];
2596 }
2597 
2598 static u64 access_rx_rbuf_csr_q_head_buf_num_parity_err_cnt(
2599 				const struct cntr_entry *entry,
2600 				void *context, int vl, int mode, u64 data)
2601 {
2602 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2603 
2604 	return dd->rcv_err_status_cnt[21];
2605 }
2606 
2607 static u64 access_rx_rbuf_block_list_read_cor_err_cnt(
2608 				const struct cntr_entry *entry,
2609 				void *context, int vl, int mode, u64 data)
2610 {
2611 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2612 
2613 	return dd->rcv_err_status_cnt[20];
2614 }
2615 
2616 static u64 access_rx_rbuf_block_list_read_unc_err_cnt(
2617 				const struct cntr_entry *entry,
2618 				void *context, int vl, int mode, u64 data)
2619 {
2620 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2621 
2622 	return dd->rcv_err_status_cnt[19];
2623 }
2624 
2625 static u64 access_rx_rbuf_lookup_des_cor_err_cnt(const struct cntr_entry *entry,
2626 						 void *context, int vl,
2627 						 int mode, u64 data)
2628 {
2629 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2630 
2631 	return dd->rcv_err_status_cnt[18];
2632 }
2633 
2634 static u64 access_rx_rbuf_lookup_des_unc_err_cnt(const struct cntr_entry *entry,
2635 						 void *context, int vl,
2636 						 int mode, u64 data)
2637 {
2638 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2639 
2640 	return dd->rcv_err_status_cnt[17];
2641 }
2642 
2643 static u64 access_rx_rbuf_lookup_des_reg_unc_cor_err_cnt(
2644 				const struct cntr_entry *entry,
2645 				void *context, int vl, int mode, u64 data)
2646 {
2647 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2648 
2649 	return dd->rcv_err_status_cnt[16];
2650 }
2651 
2652 static u64 access_rx_rbuf_lookup_des_reg_unc_err_cnt(
2653 				const struct cntr_entry *entry,
2654 				void *context, int vl, int mode, u64 data)
2655 {
2656 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2657 
2658 	return dd->rcv_err_status_cnt[15];
2659 }
2660 
2661 static u64 access_rx_rbuf_free_list_cor_err_cnt(const struct cntr_entry *entry,
2662 						void *context, int vl,
2663 						int mode, u64 data)
2664 {
2665 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2666 
2667 	return dd->rcv_err_status_cnt[14];
2668 }
2669 
2670 static u64 access_rx_rbuf_free_list_unc_err_cnt(const struct cntr_entry *entry,
2671 						void *context, int vl,
2672 						int mode, u64 data)
2673 {
2674 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2675 
2676 	return dd->rcv_err_status_cnt[13];
2677 }
2678 
2679 static u64 access_rx_rcv_fsm_encoding_err_cnt(const struct cntr_entry *entry,
2680 					      void *context, int vl, int mode,
2681 					      u64 data)
2682 {
2683 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2684 
2685 	return dd->rcv_err_status_cnt[12];
2686 }
2687 
2688 static u64 access_rx_dma_flag_cor_err_cnt(const struct cntr_entry *entry,
2689 					  void *context, int vl, int mode,
2690 					  u64 data)
2691 {
2692 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2693 
2694 	return dd->rcv_err_status_cnt[11];
2695 }
2696 
2697 static u64 access_rx_dma_flag_unc_err_cnt(const struct cntr_entry *entry,
2698 					  void *context, int vl, int mode,
2699 					  u64 data)
2700 {
2701 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2702 
2703 	return dd->rcv_err_status_cnt[10];
2704 }
2705 
2706 static u64 access_rx_dc_sop_eop_parity_err_cnt(const struct cntr_entry *entry,
2707 					       void *context, int vl, int mode,
2708 					       u64 data)
2709 {
2710 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2711 
2712 	return dd->rcv_err_status_cnt[9];
2713 }
2714 
2715 static u64 access_rx_rcv_csr_parity_err_cnt(const struct cntr_entry *entry,
2716 					    void *context, int vl, int mode,
2717 					    u64 data)
2718 {
2719 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2720 
2721 	return dd->rcv_err_status_cnt[8];
2722 }
2723 
2724 static u64 access_rx_rcv_qp_map_table_cor_err_cnt(
2725 				const struct cntr_entry *entry,
2726 				void *context, int vl, int mode, u64 data)
2727 {
2728 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2729 
2730 	return dd->rcv_err_status_cnt[7];
2731 }
2732 
2733 static u64 access_rx_rcv_qp_map_table_unc_err_cnt(
2734 				const struct cntr_entry *entry,
2735 				void *context, int vl, int mode, u64 data)
2736 {
2737 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2738 
2739 	return dd->rcv_err_status_cnt[6];
2740 }
2741 
2742 static u64 access_rx_rcv_data_cor_err_cnt(const struct cntr_entry *entry,
2743 					  void *context, int vl, int mode,
2744 					  u64 data)
2745 {
2746 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2747 
2748 	return dd->rcv_err_status_cnt[5];
2749 }
2750 
2751 static u64 access_rx_rcv_data_unc_err_cnt(const struct cntr_entry *entry,
2752 					  void *context, int vl, int mode,
2753 					  u64 data)
2754 {
2755 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2756 
2757 	return dd->rcv_err_status_cnt[4];
2758 }
2759 
2760 static u64 access_rx_rcv_hdr_cor_err_cnt(const struct cntr_entry *entry,
2761 					 void *context, int vl, int mode,
2762 					 u64 data)
2763 {
2764 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2765 
2766 	return dd->rcv_err_status_cnt[3];
2767 }
2768 
2769 static u64 access_rx_rcv_hdr_unc_err_cnt(const struct cntr_entry *entry,
2770 					 void *context, int vl, int mode,
2771 					 u64 data)
2772 {
2773 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2774 
2775 	return dd->rcv_err_status_cnt[2];
2776 }
2777 
2778 static u64 access_rx_dc_intf_parity_err_cnt(const struct cntr_entry *entry,
2779 					    void *context, int vl, int mode,
2780 					    u64 data)
2781 {
2782 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2783 
2784 	return dd->rcv_err_status_cnt[1];
2785 }
2786 
2787 static u64 access_rx_dma_csr_cor_err_cnt(const struct cntr_entry *entry,
2788 					 void *context, int vl, int mode,
2789 					 u64 data)
2790 {
2791 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2792 
2793 	return dd->rcv_err_status_cnt[0];
2794 }
2795 
2796 /*
2797  * Software counters corresponding to each of the
2798  * error status bits within SendPioErrStatus
2799  */
2800 static u64 access_pio_pec_sop_head_parity_err_cnt(
2801 				const struct cntr_entry *entry,
2802 				void *context, int vl, int mode, u64 data)
2803 {
2804 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2805 
2806 	return dd->send_pio_err_status_cnt[35];
2807 }
2808 
2809 static u64 access_pio_pcc_sop_head_parity_err_cnt(
2810 				const struct cntr_entry *entry,
2811 				void *context, int vl, int mode, u64 data)
2812 {
2813 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2814 
2815 	return dd->send_pio_err_status_cnt[34];
2816 }
2817 
2818 static u64 access_pio_last_returned_cnt_parity_err_cnt(
2819 				const struct cntr_entry *entry,
2820 				void *context, int vl, int mode, u64 data)
2821 {
2822 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2823 
2824 	return dd->send_pio_err_status_cnt[33];
2825 }
2826 
2827 static u64 access_pio_current_free_cnt_parity_err_cnt(
2828 				const struct cntr_entry *entry,
2829 				void *context, int vl, int mode, u64 data)
2830 {
2831 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2832 
2833 	return dd->send_pio_err_status_cnt[32];
2834 }
2835 
2836 static u64 access_pio_reserved_31_err_cnt(const struct cntr_entry *entry,
2837 					  void *context, int vl, int mode,
2838 					  u64 data)
2839 {
2840 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2841 
2842 	return dd->send_pio_err_status_cnt[31];
2843 }
2844 
2845 static u64 access_pio_reserved_30_err_cnt(const struct cntr_entry *entry,
2846 					  void *context, int vl, int mode,
2847 					  u64 data)
2848 {
2849 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2850 
2851 	return dd->send_pio_err_status_cnt[30];
2852 }
2853 
2854 static u64 access_pio_ppmc_sop_len_err_cnt(const struct cntr_entry *entry,
2855 					   void *context, int vl, int mode,
2856 					   u64 data)
2857 {
2858 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2859 
2860 	return dd->send_pio_err_status_cnt[29];
2861 }
2862 
2863 static u64 access_pio_ppmc_bqc_mem_parity_err_cnt(
2864 				const struct cntr_entry *entry,
2865 				void *context, int vl, int mode, u64 data)
2866 {
2867 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2868 
2869 	return dd->send_pio_err_status_cnt[28];
2870 }
2871 
2872 static u64 access_pio_vl_fifo_parity_err_cnt(const struct cntr_entry *entry,
2873 					     void *context, int vl, int mode,
2874 					     u64 data)
2875 {
2876 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2877 
2878 	return dd->send_pio_err_status_cnt[27];
2879 }
2880 
2881 static u64 access_pio_vlf_sop_parity_err_cnt(const struct cntr_entry *entry,
2882 					     void *context, int vl, int mode,
2883 					     u64 data)
2884 {
2885 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2886 
2887 	return dd->send_pio_err_status_cnt[26];
2888 }
2889 
2890 static u64 access_pio_vlf_v1_len_parity_err_cnt(const struct cntr_entry *entry,
2891 						void *context, int vl,
2892 						int mode, u64 data)
2893 {
2894 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2895 
2896 	return dd->send_pio_err_status_cnt[25];
2897 }
2898 
2899 static u64 access_pio_block_qw_count_parity_err_cnt(
2900 				const struct cntr_entry *entry,
2901 				void *context, int vl, int mode, u64 data)
2902 {
2903 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2904 
2905 	return dd->send_pio_err_status_cnt[24];
2906 }
2907 
2908 static u64 access_pio_write_qw_valid_parity_err_cnt(
2909 				const struct cntr_entry *entry,
2910 				void *context, int vl, int mode, u64 data)
2911 {
2912 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2913 
2914 	return dd->send_pio_err_status_cnt[23];
2915 }
2916 
2917 static u64 access_pio_state_machine_err_cnt(const struct cntr_entry *entry,
2918 					    void *context, int vl, int mode,
2919 					    u64 data)
2920 {
2921 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2922 
2923 	return dd->send_pio_err_status_cnt[22];
2924 }
2925 
2926 static u64 access_pio_write_data_parity_err_cnt(const struct cntr_entry *entry,
2927 						void *context, int vl,
2928 						int mode, u64 data)
2929 {
2930 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2931 
2932 	return dd->send_pio_err_status_cnt[21];
2933 }
2934 
2935 static u64 access_pio_host_addr_mem_cor_err_cnt(const struct cntr_entry *entry,
2936 						void *context, int vl,
2937 						int mode, u64 data)
2938 {
2939 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2940 
2941 	return dd->send_pio_err_status_cnt[20];
2942 }
2943 
2944 static u64 access_pio_host_addr_mem_unc_err_cnt(const struct cntr_entry *entry,
2945 						void *context, int vl,
2946 						int mode, u64 data)
2947 {
2948 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2949 
2950 	return dd->send_pio_err_status_cnt[19];
2951 }
2952 
2953 static u64 access_pio_pkt_evict_sm_or_arb_sm_err_cnt(
2954 				const struct cntr_entry *entry,
2955 				void *context, int vl, int mode, u64 data)
2956 {
2957 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2958 
2959 	return dd->send_pio_err_status_cnt[18];
2960 }
2961 
2962 static u64 access_pio_init_sm_in_err_cnt(const struct cntr_entry *entry,
2963 					 void *context, int vl, int mode,
2964 					 u64 data)
2965 {
2966 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2967 
2968 	return dd->send_pio_err_status_cnt[17];
2969 }
2970 
2971 static u64 access_pio_ppmc_pbl_fifo_err_cnt(const struct cntr_entry *entry,
2972 					    void *context, int vl, int mode,
2973 					    u64 data)
2974 {
2975 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2976 
2977 	return dd->send_pio_err_status_cnt[16];
2978 }
2979 
2980 static u64 access_pio_credit_ret_fifo_parity_err_cnt(
2981 				const struct cntr_entry *entry,
2982 				void *context, int vl, int mode, u64 data)
2983 {
2984 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2985 
2986 	return dd->send_pio_err_status_cnt[15];
2987 }
2988 
2989 static u64 access_pio_v1_len_mem_bank1_cor_err_cnt(
2990 				const struct cntr_entry *entry,
2991 				void *context, int vl, int mode, u64 data)
2992 {
2993 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2994 
2995 	return dd->send_pio_err_status_cnt[14];
2996 }
2997 
2998 static u64 access_pio_v1_len_mem_bank0_cor_err_cnt(
2999 				const struct cntr_entry *entry,
3000 				void *context, int vl, int mode, u64 data)
3001 {
3002 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3003 
3004 	return dd->send_pio_err_status_cnt[13];
3005 }
3006 
3007 static u64 access_pio_v1_len_mem_bank1_unc_err_cnt(
3008 				const struct cntr_entry *entry,
3009 				void *context, int vl, int mode, u64 data)
3010 {
3011 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3012 
3013 	return dd->send_pio_err_status_cnt[12];
3014 }
3015 
3016 static u64 access_pio_v1_len_mem_bank0_unc_err_cnt(
3017 				const struct cntr_entry *entry,
3018 				void *context, int vl, int mode, u64 data)
3019 {
3020 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3021 
3022 	return dd->send_pio_err_status_cnt[11];
3023 }
3024 
3025 static u64 access_pio_sm_pkt_reset_parity_err_cnt(
3026 				const struct cntr_entry *entry,
3027 				void *context, int vl, int mode, u64 data)
3028 {
3029 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3030 
3031 	return dd->send_pio_err_status_cnt[10];
3032 }
3033 
3034 static u64 access_pio_pkt_evict_fifo_parity_err_cnt(
3035 				const struct cntr_entry *entry,
3036 				void *context, int vl, int mode, u64 data)
3037 {
3038 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3039 
3040 	return dd->send_pio_err_status_cnt[9];
3041 }
3042 
3043 static u64 access_pio_sbrdctrl_crrel_fifo_parity_err_cnt(
3044 				const struct cntr_entry *entry,
3045 				void *context, int vl, int mode, u64 data)
3046 {
3047 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3048 
3049 	return dd->send_pio_err_status_cnt[8];
3050 }
3051 
3052 static u64 access_pio_sbrdctl_crrel_parity_err_cnt(
3053 				const struct cntr_entry *entry,
3054 				void *context, int vl, int mode, u64 data)
3055 {
3056 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3057 
3058 	return dd->send_pio_err_status_cnt[7];
3059 }
3060 
3061 static u64 access_pio_pec_fifo_parity_err_cnt(const struct cntr_entry *entry,
3062 					      void *context, int vl, int mode,
3063 					      u64 data)
3064 {
3065 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3066 
3067 	return dd->send_pio_err_status_cnt[6];
3068 }
3069 
3070 static u64 access_pio_pcc_fifo_parity_err_cnt(const struct cntr_entry *entry,
3071 					      void *context, int vl, int mode,
3072 					      u64 data)
3073 {
3074 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3075 
3076 	return dd->send_pio_err_status_cnt[5];
3077 }
3078 
3079 static u64 access_pio_sb_mem_fifo1_err_cnt(const struct cntr_entry *entry,
3080 					   void *context, int vl, int mode,
3081 					   u64 data)
3082 {
3083 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3084 
3085 	return dd->send_pio_err_status_cnt[4];
3086 }
3087 
3088 static u64 access_pio_sb_mem_fifo0_err_cnt(const struct cntr_entry *entry,
3089 					   void *context, int vl, int mode,
3090 					   u64 data)
3091 {
3092 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3093 
3094 	return dd->send_pio_err_status_cnt[3];
3095 }
3096 
3097 static u64 access_pio_csr_parity_err_cnt(const struct cntr_entry *entry,
3098 					 void *context, int vl, int mode,
3099 					 u64 data)
3100 {
3101 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3102 
3103 	return dd->send_pio_err_status_cnt[2];
3104 }
3105 
3106 static u64 access_pio_write_addr_parity_err_cnt(const struct cntr_entry *entry,
3107 						void *context, int vl,
3108 						int mode, u64 data)
3109 {
3110 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3111 
3112 	return dd->send_pio_err_status_cnt[1];
3113 }
3114 
3115 static u64 access_pio_write_bad_ctxt_err_cnt(const struct cntr_entry *entry,
3116 					     void *context, int vl, int mode,
3117 					     u64 data)
3118 {
3119 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3120 
3121 	return dd->send_pio_err_status_cnt[0];
3122 }
3123 
3124 /*
3125  * Software counters corresponding to each of the
3126  * error status bits within SendDmaErrStatus
3127  */
3128 static u64 access_sdma_pcie_req_tracking_cor_err_cnt(
3129 				const struct cntr_entry *entry,
3130 				void *context, int vl, int mode, u64 data)
3131 {
3132 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3133 
3134 	return dd->send_dma_err_status_cnt[3];
3135 }
3136 
3137 static u64 access_sdma_pcie_req_tracking_unc_err_cnt(
3138 				const struct cntr_entry *entry,
3139 				void *context, int vl, int mode, u64 data)
3140 {
3141 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3142 
3143 	return dd->send_dma_err_status_cnt[2];
3144 }
3145 
3146 static u64 access_sdma_csr_parity_err_cnt(const struct cntr_entry *entry,
3147 					  void *context, int vl, int mode,
3148 					  u64 data)
3149 {
3150 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3151 
3152 	return dd->send_dma_err_status_cnt[1];
3153 }
3154 
3155 static u64 access_sdma_rpy_tag_err_cnt(const struct cntr_entry *entry,
3156 				       void *context, int vl, int mode,
3157 				       u64 data)
3158 {
3159 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3160 
3161 	return dd->send_dma_err_status_cnt[0];
3162 }
3163 
3164 /*
3165  * Software counters corresponding to each of the
3166  * error status bits within SendEgressErrStatus
3167  */
3168 static u64 access_tx_read_pio_memory_csr_unc_err_cnt(
3169 				const struct cntr_entry *entry,
3170 				void *context, int vl, int mode, u64 data)
3171 {
3172 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3173 
3174 	return dd->send_egress_err_status_cnt[63];
3175 }
3176 
3177 static u64 access_tx_read_sdma_memory_csr_err_cnt(
3178 				const struct cntr_entry *entry,
3179 				void *context, int vl, int mode, u64 data)
3180 {
3181 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3182 
3183 	return dd->send_egress_err_status_cnt[62];
3184 }
3185 
3186 static u64 access_tx_egress_fifo_cor_err_cnt(const struct cntr_entry *entry,
3187 					     void *context, int vl, int mode,
3188 					     u64 data)
3189 {
3190 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3191 
3192 	return dd->send_egress_err_status_cnt[61];
3193 }
3194 
3195 static u64 access_tx_read_pio_memory_cor_err_cnt(const struct cntr_entry *entry,
3196 						 void *context, int vl,
3197 						 int mode, u64 data)
3198 {
3199 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3200 
3201 	return dd->send_egress_err_status_cnt[60];
3202 }
3203 
3204 static u64 access_tx_read_sdma_memory_cor_err_cnt(
3205 				const struct cntr_entry *entry,
3206 				void *context, int vl, int mode, u64 data)
3207 {
3208 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3209 
3210 	return dd->send_egress_err_status_cnt[59];
3211 }
3212 
3213 static u64 access_tx_sb_hdr_cor_err_cnt(const struct cntr_entry *entry,
3214 					void *context, int vl, int mode,
3215 					u64 data)
3216 {
3217 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3218 
3219 	return dd->send_egress_err_status_cnt[58];
3220 }
3221 
3222 static u64 access_tx_credit_overrun_err_cnt(const struct cntr_entry *entry,
3223 					    void *context, int vl, int mode,
3224 					    u64 data)
3225 {
3226 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3227 
3228 	return dd->send_egress_err_status_cnt[57];
3229 }
3230 
3231 static u64 access_tx_launch_fifo8_cor_err_cnt(const struct cntr_entry *entry,
3232 					      void *context, int vl, int mode,
3233 					      u64 data)
3234 {
3235 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3236 
3237 	return dd->send_egress_err_status_cnt[56];
3238 }
3239 
3240 static u64 access_tx_launch_fifo7_cor_err_cnt(const struct cntr_entry *entry,
3241 					      void *context, int vl, int mode,
3242 					      u64 data)
3243 {
3244 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3245 
3246 	return dd->send_egress_err_status_cnt[55];
3247 }
3248 
3249 static u64 access_tx_launch_fifo6_cor_err_cnt(const struct cntr_entry *entry,
3250 					      void *context, int vl, int mode,
3251 					      u64 data)
3252 {
3253 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3254 
3255 	return dd->send_egress_err_status_cnt[54];
3256 }
3257 
3258 static u64 access_tx_launch_fifo5_cor_err_cnt(const struct cntr_entry *entry,
3259 					      void *context, int vl, int mode,
3260 					      u64 data)
3261 {
3262 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3263 
3264 	return dd->send_egress_err_status_cnt[53];
3265 }
3266 
3267 static u64 access_tx_launch_fifo4_cor_err_cnt(const struct cntr_entry *entry,
3268 					      void *context, int vl, int mode,
3269 					      u64 data)
3270 {
3271 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3272 
3273 	return dd->send_egress_err_status_cnt[52];
3274 }
3275 
3276 static u64 access_tx_launch_fifo3_cor_err_cnt(const struct cntr_entry *entry,
3277 					      void *context, int vl, int mode,
3278 					      u64 data)
3279 {
3280 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3281 
3282 	return dd->send_egress_err_status_cnt[51];
3283 }
3284 
3285 static u64 access_tx_launch_fifo2_cor_err_cnt(const struct cntr_entry *entry,
3286 					      void *context, int vl, int mode,
3287 					      u64 data)
3288 {
3289 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3290 
3291 	return dd->send_egress_err_status_cnt[50];
3292 }
3293 
3294 static u64 access_tx_launch_fifo1_cor_err_cnt(const struct cntr_entry *entry,
3295 					      void *context, int vl, int mode,
3296 					      u64 data)
3297 {
3298 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3299 
3300 	return dd->send_egress_err_status_cnt[49];
3301 }
3302 
3303 static u64 access_tx_launch_fifo0_cor_err_cnt(const struct cntr_entry *entry,
3304 					      void *context, int vl, int mode,
3305 					      u64 data)
3306 {
3307 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3308 
3309 	return dd->send_egress_err_status_cnt[48];
3310 }
3311 
3312 static u64 access_tx_credit_return_vl_err_cnt(const struct cntr_entry *entry,
3313 					      void *context, int vl, int mode,
3314 					      u64 data)
3315 {
3316 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3317 
3318 	return dd->send_egress_err_status_cnt[47];
3319 }
3320 
3321 static u64 access_tx_hcrc_insertion_err_cnt(const struct cntr_entry *entry,
3322 					    void *context, int vl, int mode,
3323 					    u64 data)
3324 {
3325 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3326 
3327 	return dd->send_egress_err_status_cnt[46];
3328 }
3329 
3330 static u64 access_tx_egress_fifo_unc_err_cnt(const struct cntr_entry *entry,
3331 					     void *context, int vl, int mode,
3332 					     u64 data)
3333 {
3334 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3335 
3336 	return dd->send_egress_err_status_cnt[45];
3337 }
3338 
3339 static u64 access_tx_read_pio_memory_unc_err_cnt(const struct cntr_entry *entry,
3340 						 void *context, int vl,
3341 						 int mode, u64 data)
3342 {
3343 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3344 
3345 	return dd->send_egress_err_status_cnt[44];
3346 }
3347 
3348 static u64 access_tx_read_sdma_memory_unc_err_cnt(
3349 				const struct cntr_entry *entry,
3350 				void *context, int vl, int mode, u64 data)
3351 {
3352 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3353 
3354 	return dd->send_egress_err_status_cnt[43];
3355 }
3356 
3357 static u64 access_tx_sb_hdr_unc_err_cnt(const struct cntr_entry *entry,
3358 					void *context, int vl, int mode,
3359 					u64 data)
3360 {
3361 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3362 
3363 	return dd->send_egress_err_status_cnt[42];
3364 }
3365 
3366 static u64 access_tx_credit_return_partiy_err_cnt(
3367 				const struct cntr_entry *entry,
3368 				void *context, int vl, int mode, u64 data)
3369 {
3370 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3371 
3372 	return dd->send_egress_err_status_cnt[41];
3373 }
3374 
3375 static u64 access_tx_launch_fifo8_unc_or_parity_err_cnt(
3376 				const struct cntr_entry *entry,
3377 				void *context, int vl, int mode, u64 data)
3378 {
3379 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3380 
3381 	return dd->send_egress_err_status_cnt[40];
3382 }
3383 
3384 static u64 access_tx_launch_fifo7_unc_or_parity_err_cnt(
3385 				const struct cntr_entry *entry,
3386 				void *context, int vl, int mode, u64 data)
3387 {
3388 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3389 
3390 	return dd->send_egress_err_status_cnt[39];
3391 }
3392 
3393 static u64 access_tx_launch_fifo6_unc_or_parity_err_cnt(
3394 				const struct cntr_entry *entry,
3395 				void *context, int vl, int mode, u64 data)
3396 {
3397 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3398 
3399 	return dd->send_egress_err_status_cnt[38];
3400 }
3401 
3402 static u64 access_tx_launch_fifo5_unc_or_parity_err_cnt(
3403 				const struct cntr_entry *entry,
3404 				void *context, int vl, int mode, u64 data)
3405 {
3406 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3407 
3408 	return dd->send_egress_err_status_cnt[37];
3409 }
3410 
3411 static u64 access_tx_launch_fifo4_unc_or_parity_err_cnt(
3412 				const struct cntr_entry *entry,
3413 				void *context, int vl, int mode, u64 data)
3414 {
3415 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3416 
3417 	return dd->send_egress_err_status_cnt[36];
3418 }
3419 
3420 static u64 access_tx_launch_fifo3_unc_or_parity_err_cnt(
3421 				const struct cntr_entry *entry,
3422 				void *context, int vl, int mode, u64 data)
3423 {
3424 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3425 
3426 	return dd->send_egress_err_status_cnt[35];
3427 }
3428 
3429 static u64 access_tx_launch_fifo2_unc_or_parity_err_cnt(
3430 				const struct cntr_entry *entry,
3431 				void *context, int vl, int mode, u64 data)
3432 {
3433 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3434 
3435 	return dd->send_egress_err_status_cnt[34];
3436 }
3437 
3438 static u64 access_tx_launch_fifo1_unc_or_parity_err_cnt(
3439 				const struct cntr_entry *entry,
3440 				void *context, int vl, int mode, u64 data)
3441 {
3442 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3443 
3444 	return dd->send_egress_err_status_cnt[33];
3445 }
3446 
3447 static u64 access_tx_launch_fifo0_unc_or_parity_err_cnt(
3448 				const struct cntr_entry *entry,
3449 				void *context, int vl, int mode, u64 data)
3450 {
3451 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3452 
3453 	return dd->send_egress_err_status_cnt[32];
3454 }
3455 
3456 static u64 access_tx_sdma15_disallowed_packet_err_cnt(
3457 				const struct cntr_entry *entry,
3458 				void *context, int vl, int mode, u64 data)
3459 {
3460 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3461 
3462 	return dd->send_egress_err_status_cnt[31];
3463 }
3464 
3465 static u64 access_tx_sdma14_disallowed_packet_err_cnt(
3466 				const struct cntr_entry *entry,
3467 				void *context, int vl, int mode, u64 data)
3468 {
3469 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3470 
3471 	return dd->send_egress_err_status_cnt[30];
3472 }
3473 
3474 static u64 access_tx_sdma13_disallowed_packet_err_cnt(
3475 				const struct cntr_entry *entry,
3476 				void *context, int vl, int mode, u64 data)
3477 {
3478 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3479 
3480 	return dd->send_egress_err_status_cnt[29];
3481 }
3482 
3483 static u64 access_tx_sdma12_disallowed_packet_err_cnt(
3484 				const struct cntr_entry *entry,
3485 				void *context, int vl, int mode, u64 data)
3486 {
3487 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3488 
3489 	return dd->send_egress_err_status_cnt[28];
3490 }
3491 
3492 static u64 access_tx_sdma11_disallowed_packet_err_cnt(
3493 				const struct cntr_entry *entry,
3494 				void *context, int vl, int mode, u64 data)
3495 {
3496 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3497 
3498 	return dd->send_egress_err_status_cnt[27];
3499 }
3500 
3501 static u64 access_tx_sdma10_disallowed_packet_err_cnt(
3502 				const struct cntr_entry *entry,
3503 				void *context, int vl, int mode, u64 data)
3504 {
3505 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3506 
3507 	return dd->send_egress_err_status_cnt[26];
3508 }
3509 
3510 static u64 access_tx_sdma9_disallowed_packet_err_cnt(
3511 				const struct cntr_entry *entry,
3512 				void *context, int vl, int mode, u64 data)
3513 {
3514 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3515 
3516 	return dd->send_egress_err_status_cnt[25];
3517 }
3518 
3519 static u64 access_tx_sdma8_disallowed_packet_err_cnt(
3520 				const struct cntr_entry *entry,
3521 				void *context, int vl, int mode, u64 data)
3522 {
3523 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3524 
3525 	return dd->send_egress_err_status_cnt[24];
3526 }
3527 
3528 static u64 access_tx_sdma7_disallowed_packet_err_cnt(
3529 				const struct cntr_entry *entry,
3530 				void *context, int vl, int mode, u64 data)
3531 {
3532 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3533 
3534 	return dd->send_egress_err_status_cnt[23];
3535 }
3536 
3537 static u64 access_tx_sdma6_disallowed_packet_err_cnt(
3538 				const struct cntr_entry *entry,
3539 				void *context, int vl, int mode, u64 data)
3540 {
3541 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3542 
3543 	return dd->send_egress_err_status_cnt[22];
3544 }
3545 
3546 static u64 access_tx_sdma5_disallowed_packet_err_cnt(
3547 				const struct cntr_entry *entry,
3548 				void *context, int vl, int mode, u64 data)
3549 {
3550 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3551 
3552 	return dd->send_egress_err_status_cnt[21];
3553 }
3554 
3555 static u64 access_tx_sdma4_disallowed_packet_err_cnt(
3556 				const struct cntr_entry *entry,
3557 				void *context, int vl, int mode, u64 data)
3558 {
3559 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3560 
3561 	return dd->send_egress_err_status_cnt[20];
3562 }
3563 
3564 static u64 access_tx_sdma3_disallowed_packet_err_cnt(
3565 				const struct cntr_entry *entry,
3566 				void *context, int vl, int mode, u64 data)
3567 {
3568 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3569 
3570 	return dd->send_egress_err_status_cnt[19];
3571 }
3572 
3573 static u64 access_tx_sdma2_disallowed_packet_err_cnt(
3574 				const struct cntr_entry *entry,
3575 				void *context, int vl, int mode, u64 data)
3576 {
3577 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3578 
3579 	return dd->send_egress_err_status_cnt[18];
3580 }
3581 
3582 static u64 access_tx_sdma1_disallowed_packet_err_cnt(
3583 				const struct cntr_entry *entry,
3584 				void *context, int vl, int mode, u64 data)
3585 {
3586 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3587 
3588 	return dd->send_egress_err_status_cnt[17];
3589 }
3590 
3591 static u64 access_tx_sdma0_disallowed_packet_err_cnt(
3592 				const struct cntr_entry *entry,
3593 				void *context, int vl, int mode, u64 data)
3594 {
3595 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3596 
3597 	return dd->send_egress_err_status_cnt[16];
3598 }
3599 
3600 static u64 access_tx_config_parity_err_cnt(const struct cntr_entry *entry,
3601 					   void *context, int vl, int mode,
3602 					   u64 data)
3603 {
3604 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3605 
3606 	return dd->send_egress_err_status_cnt[15];
3607 }
3608 
3609 static u64 access_tx_sbrd_ctl_csr_parity_err_cnt(const struct cntr_entry *entry,
3610 						 void *context, int vl,
3611 						 int mode, u64 data)
3612 {
3613 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3614 
3615 	return dd->send_egress_err_status_cnt[14];
3616 }
3617 
3618 static u64 access_tx_launch_csr_parity_err_cnt(const struct cntr_entry *entry,
3619 					       void *context, int vl, int mode,
3620 					       u64 data)
3621 {
3622 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3623 
3624 	return dd->send_egress_err_status_cnt[13];
3625 }
3626 
3627 static u64 access_tx_illegal_vl_err_cnt(const struct cntr_entry *entry,
3628 					void *context, int vl, int mode,
3629 					u64 data)
3630 {
3631 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3632 
3633 	return dd->send_egress_err_status_cnt[12];
3634 }
3635 
3636 static u64 access_tx_sbrd_ctl_state_machine_parity_err_cnt(
3637 				const struct cntr_entry *entry,
3638 				void *context, int vl, int mode, u64 data)
3639 {
3640 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3641 
3642 	return dd->send_egress_err_status_cnt[11];
3643 }
3644 
3645 static u64 access_egress_reserved_10_err_cnt(const struct cntr_entry *entry,
3646 					     void *context, int vl, int mode,
3647 					     u64 data)
3648 {
3649 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3650 
3651 	return dd->send_egress_err_status_cnt[10];
3652 }
3653 
3654 static u64 access_egress_reserved_9_err_cnt(const struct cntr_entry *entry,
3655 					    void *context, int vl, int mode,
3656 					    u64 data)
3657 {
3658 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3659 
3660 	return dd->send_egress_err_status_cnt[9];
3661 }
3662 
3663 static u64 access_tx_sdma_launch_intf_parity_err_cnt(
3664 				const struct cntr_entry *entry,
3665 				void *context, int vl, int mode, u64 data)
3666 {
3667 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3668 
3669 	return dd->send_egress_err_status_cnt[8];
3670 }
3671 
3672 static u64 access_tx_pio_launch_intf_parity_err_cnt(
3673 				const struct cntr_entry *entry,
3674 				void *context, int vl, int mode, u64 data)
3675 {
3676 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3677 
3678 	return dd->send_egress_err_status_cnt[7];
3679 }
3680 
3681 static u64 access_egress_reserved_6_err_cnt(const struct cntr_entry *entry,
3682 					    void *context, int vl, int mode,
3683 					    u64 data)
3684 {
3685 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3686 
3687 	return dd->send_egress_err_status_cnt[6];
3688 }
3689 
3690 static u64 access_tx_incorrect_link_state_err_cnt(
3691 				const struct cntr_entry *entry,
3692 				void *context, int vl, int mode, u64 data)
3693 {
3694 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3695 
3696 	return dd->send_egress_err_status_cnt[5];
3697 }
3698 
3699 static u64 access_tx_linkdown_err_cnt(const struct cntr_entry *entry,
3700 				      void *context, int vl, int mode,
3701 				      u64 data)
3702 {
3703 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3704 
3705 	return dd->send_egress_err_status_cnt[4];
3706 }
3707 
3708 static u64 access_tx_egress_fifi_underrun_or_parity_err_cnt(
3709 				const struct cntr_entry *entry,
3710 				void *context, int vl, int mode, u64 data)
3711 {
3712 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3713 
3714 	return dd->send_egress_err_status_cnt[3];
3715 }
3716 
3717 static u64 access_egress_reserved_2_err_cnt(const struct cntr_entry *entry,
3718 					    void *context, int vl, int mode,
3719 					    u64 data)
3720 {
3721 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3722 
3723 	return dd->send_egress_err_status_cnt[2];
3724 }
3725 
3726 static u64 access_tx_pkt_integrity_mem_unc_err_cnt(
3727 				const struct cntr_entry *entry,
3728 				void *context, int vl, int mode, u64 data)
3729 {
3730 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3731 
3732 	return dd->send_egress_err_status_cnt[1];
3733 }
3734 
3735 static u64 access_tx_pkt_integrity_mem_cor_err_cnt(
3736 				const struct cntr_entry *entry,
3737 				void *context, int vl, int mode, u64 data)
3738 {
3739 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3740 
3741 	return dd->send_egress_err_status_cnt[0];
3742 }
3743 
3744 /*
3745  * Software counters corresponding to each of the
3746  * error status bits within SendErrStatus
3747  */
3748 static u64 access_send_csr_write_bad_addr_err_cnt(
3749 				const struct cntr_entry *entry,
3750 				void *context, int vl, int mode, u64 data)
3751 {
3752 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3753 
3754 	return dd->send_err_status_cnt[2];
3755 }
3756 
3757 static u64 access_send_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
3758 						 void *context, int vl,
3759 						 int mode, u64 data)
3760 {
3761 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3762 
3763 	return dd->send_err_status_cnt[1];
3764 }
3765 
3766 static u64 access_send_csr_parity_cnt(const struct cntr_entry *entry,
3767 				      void *context, int vl, int mode,
3768 				      u64 data)
3769 {
3770 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3771 
3772 	return dd->send_err_status_cnt[0];
3773 }
3774 
3775 /*
3776  * Software counters corresponding to each of the
3777  * error status bits within SendCtxtErrStatus
3778  */
3779 static u64 access_pio_write_out_of_bounds_err_cnt(
3780 				const struct cntr_entry *entry,
3781 				void *context, int vl, int mode, u64 data)
3782 {
3783 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3784 
3785 	return dd->sw_ctxt_err_status_cnt[4];
3786 }
3787 
3788 static u64 access_pio_write_overflow_err_cnt(const struct cntr_entry *entry,
3789 					     void *context, int vl, int mode,
3790 					     u64 data)
3791 {
3792 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3793 
3794 	return dd->sw_ctxt_err_status_cnt[3];
3795 }
3796 
3797 static u64 access_pio_write_crosses_boundary_err_cnt(
3798 				const struct cntr_entry *entry,
3799 				void *context, int vl, int mode, u64 data)
3800 {
3801 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3802 
3803 	return dd->sw_ctxt_err_status_cnt[2];
3804 }
3805 
3806 static u64 access_pio_disallowed_packet_err_cnt(const struct cntr_entry *entry,
3807 						void *context, int vl,
3808 						int mode, u64 data)
3809 {
3810 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3811 
3812 	return dd->sw_ctxt_err_status_cnt[1];
3813 }
3814 
3815 static u64 access_pio_inconsistent_sop_err_cnt(const struct cntr_entry *entry,
3816 					       void *context, int vl, int mode,
3817 					       u64 data)
3818 {
3819 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3820 
3821 	return dd->sw_ctxt_err_status_cnt[0];
3822 }
3823 
3824 /*
3825  * Software counters corresponding to each of the
3826  * error status bits within SendDmaEngErrStatus
3827  */
3828 static u64 access_sdma_header_request_fifo_cor_err_cnt(
3829 				const struct cntr_entry *entry,
3830 				void *context, int vl, int mode, u64 data)
3831 {
3832 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3833 
3834 	return dd->sw_send_dma_eng_err_status_cnt[23];
3835 }
3836 
3837 static u64 access_sdma_header_storage_cor_err_cnt(
3838 				const struct cntr_entry *entry,
3839 				void *context, int vl, int mode, u64 data)
3840 {
3841 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3842 
3843 	return dd->sw_send_dma_eng_err_status_cnt[22];
3844 }
3845 
3846 static u64 access_sdma_packet_tracking_cor_err_cnt(
3847 				const struct cntr_entry *entry,
3848 				void *context, int vl, int mode, u64 data)
3849 {
3850 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3851 
3852 	return dd->sw_send_dma_eng_err_status_cnt[21];
3853 }
3854 
3855 static u64 access_sdma_assembly_cor_err_cnt(const struct cntr_entry *entry,
3856 					    void *context, int vl, int mode,
3857 					    u64 data)
3858 {
3859 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3860 
3861 	return dd->sw_send_dma_eng_err_status_cnt[20];
3862 }
3863 
3864 static u64 access_sdma_desc_table_cor_err_cnt(const struct cntr_entry *entry,
3865 					      void *context, int vl, int mode,
3866 					      u64 data)
3867 {
3868 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3869 
3870 	return dd->sw_send_dma_eng_err_status_cnt[19];
3871 }
3872 
3873 static u64 access_sdma_header_request_fifo_unc_err_cnt(
3874 				const struct cntr_entry *entry,
3875 				void *context, int vl, int mode, u64 data)
3876 {
3877 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3878 
3879 	return dd->sw_send_dma_eng_err_status_cnt[18];
3880 }
3881 
3882 static u64 access_sdma_header_storage_unc_err_cnt(
3883 				const struct cntr_entry *entry,
3884 				void *context, int vl, int mode, u64 data)
3885 {
3886 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3887 
3888 	return dd->sw_send_dma_eng_err_status_cnt[17];
3889 }
3890 
3891 static u64 access_sdma_packet_tracking_unc_err_cnt(
3892 				const struct cntr_entry *entry,
3893 				void *context, int vl, int mode, u64 data)
3894 {
3895 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3896 
3897 	return dd->sw_send_dma_eng_err_status_cnt[16];
3898 }
3899 
3900 static u64 access_sdma_assembly_unc_err_cnt(const struct cntr_entry *entry,
3901 					    void *context, int vl, int mode,
3902 					    u64 data)
3903 {
3904 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3905 
3906 	return dd->sw_send_dma_eng_err_status_cnt[15];
3907 }
3908 
3909 static u64 access_sdma_desc_table_unc_err_cnt(const struct cntr_entry *entry,
3910 					      void *context, int vl, int mode,
3911 					      u64 data)
3912 {
3913 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3914 
3915 	return dd->sw_send_dma_eng_err_status_cnt[14];
3916 }
3917 
3918 static u64 access_sdma_timeout_err_cnt(const struct cntr_entry *entry,
3919 				       void *context, int vl, int mode,
3920 				       u64 data)
3921 {
3922 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3923 
3924 	return dd->sw_send_dma_eng_err_status_cnt[13];
3925 }
3926 
3927 static u64 access_sdma_header_length_err_cnt(const struct cntr_entry *entry,
3928 					     void *context, int vl, int mode,
3929 					     u64 data)
3930 {
3931 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3932 
3933 	return dd->sw_send_dma_eng_err_status_cnt[12];
3934 }
3935 
3936 static u64 access_sdma_header_address_err_cnt(const struct cntr_entry *entry,
3937 					      void *context, int vl, int mode,
3938 					      u64 data)
3939 {
3940 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3941 
3942 	return dd->sw_send_dma_eng_err_status_cnt[11];
3943 }
3944 
3945 static u64 access_sdma_header_select_err_cnt(const struct cntr_entry *entry,
3946 					     void *context, int vl, int mode,
3947 					     u64 data)
3948 {
3949 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3950 
3951 	return dd->sw_send_dma_eng_err_status_cnt[10];
3952 }
3953 
3954 static u64 access_sdma_reserved_9_err_cnt(const struct cntr_entry *entry,
3955 					  void *context, int vl, int mode,
3956 					  u64 data)
3957 {
3958 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3959 
3960 	return dd->sw_send_dma_eng_err_status_cnt[9];
3961 }
3962 
3963 static u64 access_sdma_packet_desc_overflow_err_cnt(
3964 				const struct cntr_entry *entry,
3965 				void *context, int vl, int mode, u64 data)
3966 {
3967 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3968 
3969 	return dd->sw_send_dma_eng_err_status_cnt[8];
3970 }
3971 
3972 static u64 access_sdma_length_mismatch_err_cnt(const struct cntr_entry *entry,
3973 					       void *context, int vl,
3974 					       int mode, u64 data)
3975 {
3976 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3977 
3978 	return dd->sw_send_dma_eng_err_status_cnt[7];
3979 }
3980 
3981 static u64 access_sdma_halt_err_cnt(const struct cntr_entry *entry,
3982 				    void *context, int vl, int mode, u64 data)
3983 {
3984 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3985 
3986 	return dd->sw_send_dma_eng_err_status_cnt[6];
3987 }
3988 
3989 static u64 access_sdma_mem_read_err_cnt(const struct cntr_entry *entry,
3990 					void *context, int vl, int mode,
3991 					u64 data)
3992 {
3993 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3994 
3995 	return dd->sw_send_dma_eng_err_status_cnt[5];
3996 }
3997 
3998 static u64 access_sdma_first_desc_err_cnt(const struct cntr_entry *entry,
3999 					  void *context, int vl, int mode,
4000 					  u64 data)
4001 {
4002 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4003 
4004 	return dd->sw_send_dma_eng_err_status_cnt[4];
4005 }
4006 
4007 static u64 access_sdma_tail_out_of_bounds_err_cnt(
4008 				const struct cntr_entry *entry,
4009 				void *context, int vl, int mode, u64 data)
4010 {
4011 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4012 
4013 	return dd->sw_send_dma_eng_err_status_cnt[3];
4014 }
4015 
4016 static u64 access_sdma_too_long_err_cnt(const struct cntr_entry *entry,
4017 					void *context, int vl, int mode,
4018 					u64 data)
4019 {
4020 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4021 
4022 	return dd->sw_send_dma_eng_err_status_cnt[2];
4023 }
4024 
4025 static u64 access_sdma_gen_mismatch_err_cnt(const struct cntr_entry *entry,
4026 					    void *context, int vl, int mode,
4027 					    u64 data)
4028 {
4029 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4030 
4031 	return dd->sw_send_dma_eng_err_status_cnt[1];
4032 }
4033 
4034 static u64 access_sdma_wrong_dw_err_cnt(const struct cntr_entry *entry,
4035 					void *context, int vl, int mode,
4036 					u64 data)
4037 {
4038 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4039 
4040 	return dd->sw_send_dma_eng_err_status_cnt[0];
4041 }
4042 
4043 static u64 access_dc_rcv_err_cnt(const struct cntr_entry *entry,
4044 				 void *context, int vl, int mode,
4045 				 u64 data)
4046 {
4047 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4048 
4049 	u64 val = 0;
4050 	u64 csr = entry->csr;
4051 
4052 	val = read_write_csr(dd, csr, mode, data);
4053 	if (mode == CNTR_MODE_R) {
4054 		val = val > CNTR_MAX - dd->sw_rcv_bypass_packet_errors ?
4055 			CNTR_MAX : val + dd->sw_rcv_bypass_packet_errors;
4056 	} else if (mode == CNTR_MODE_W) {
4057 		dd->sw_rcv_bypass_packet_errors = 0;
4058 	} else {
4059 		dd_dev_err(dd, "Invalid cntr register access mode");
4060 		return 0;
4061 	}
4062 	return val;
4063 }
4064 
4065 #define def_access_sw_cpu(cntr) \
4066 static u64 access_sw_cpu_##cntr(const struct cntr_entry *entry,		      \
4067 			      void *context, int vl, int mode, u64 data)      \
4068 {									      \
4069 	struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context;	      \
4070 	return read_write_cpu(ppd->dd, &ppd->ibport_data.rvp.z_ ##cntr,	      \
4071 			      ppd->ibport_data.rvp.cntr, vl,		      \
4072 			      mode, data);				      \
4073 }
4074 
4075 def_access_sw_cpu(rc_acks);
4076 def_access_sw_cpu(rc_qacks);
4077 def_access_sw_cpu(rc_delayed_comp);
4078 
4079 #define def_access_ibp_counter(cntr) \
4080 static u64 access_ibp_##cntr(const struct cntr_entry *entry,		      \
4081 				void *context, int vl, int mode, u64 data)    \
4082 {									      \
4083 	struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context;	      \
4084 									      \
4085 	if (vl != CNTR_INVALID_VL)					      \
4086 		return 0;						      \
4087 									      \
4088 	return read_write_sw(ppd->dd, &ppd->ibport_data.rvp.n_ ##cntr,	      \
4089 			     mode, data);				      \
4090 }
4091 
4092 def_access_ibp_counter(loop_pkts);
4093 def_access_ibp_counter(rc_resends);
4094 def_access_ibp_counter(rnr_naks);
4095 def_access_ibp_counter(other_naks);
4096 def_access_ibp_counter(rc_timeouts);
4097 def_access_ibp_counter(pkt_drops);
4098 def_access_ibp_counter(dmawait);
4099 def_access_ibp_counter(rc_seqnak);
4100 def_access_ibp_counter(rc_dupreq);
4101 def_access_ibp_counter(rdma_seq);
4102 def_access_ibp_counter(unaligned);
4103 def_access_ibp_counter(seq_naks);
4104 
4105 static struct cntr_entry dev_cntrs[DEV_CNTR_LAST] = {
4106 [C_RCV_OVF] = RXE32_DEV_CNTR_ELEM(RcvOverflow, RCV_BUF_OVFL_CNT, CNTR_SYNTH),
4107 [C_RX_TID_FULL] = RXE32_DEV_CNTR_ELEM(RxTIDFullEr, RCV_TID_FULL_ERR_CNT,
4108 			CNTR_NORMAL),
4109 [C_RX_TID_INVALID] = RXE32_DEV_CNTR_ELEM(RxTIDInvalid, RCV_TID_VALID_ERR_CNT,
4110 			CNTR_NORMAL),
4111 [C_RX_TID_FLGMS] = RXE32_DEV_CNTR_ELEM(RxTidFLGMs,
4112 			RCV_TID_FLOW_GEN_MISMATCH_CNT,
4113 			CNTR_NORMAL),
4114 [C_RX_CTX_EGRS] = RXE32_DEV_CNTR_ELEM(RxCtxEgrS, RCV_CONTEXT_EGR_STALL,
4115 			CNTR_NORMAL),
4116 [C_RCV_TID_FLSMS] = RXE32_DEV_CNTR_ELEM(RxTidFLSMs,
4117 			RCV_TID_FLOW_SEQ_MISMATCH_CNT, CNTR_NORMAL),
4118 [C_CCE_PCI_CR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePciCrSt,
4119 			CCE_PCIE_POSTED_CRDT_STALL_CNT, CNTR_NORMAL),
4120 [C_CCE_PCI_TR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePciTrSt, CCE_PCIE_TRGT_STALL_CNT,
4121 			CNTR_NORMAL),
4122 [C_CCE_PIO_WR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePioWrSt, CCE_PIO_WR_STALL_CNT,
4123 			CNTR_NORMAL),
4124 [C_CCE_ERR_INT] = CCE_INT_DEV_CNTR_ELEM(CceErrInt, CCE_ERR_INT_CNT,
4125 			CNTR_NORMAL),
4126 [C_CCE_SDMA_INT] = CCE_INT_DEV_CNTR_ELEM(CceSdmaInt, CCE_SDMA_INT_CNT,
4127 			CNTR_NORMAL),
4128 [C_CCE_MISC_INT] = CCE_INT_DEV_CNTR_ELEM(CceMiscInt, CCE_MISC_INT_CNT,
4129 			CNTR_NORMAL),
4130 [C_CCE_RCV_AV_INT] = CCE_INT_DEV_CNTR_ELEM(CceRcvAvInt, CCE_RCV_AVAIL_INT_CNT,
4131 			CNTR_NORMAL),
4132 [C_CCE_RCV_URG_INT] = CCE_INT_DEV_CNTR_ELEM(CceRcvUrgInt,
4133 			CCE_RCV_URGENT_INT_CNT,	CNTR_NORMAL),
4134 [C_CCE_SEND_CR_INT] = CCE_INT_DEV_CNTR_ELEM(CceSndCrInt,
4135 			CCE_SEND_CREDIT_INT_CNT, CNTR_NORMAL),
4136 [C_DC_UNC_ERR] = DC_PERF_CNTR(DcUnctblErr, DCC_ERR_UNCORRECTABLE_CNT,
4137 			      CNTR_SYNTH),
4138 [C_DC_RCV_ERR] = CNTR_ELEM("DcRecvErr", DCC_ERR_PORTRCV_ERR_CNT, 0, CNTR_SYNTH,
4139 			    access_dc_rcv_err_cnt),
4140 [C_DC_FM_CFG_ERR] = DC_PERF_CNTR(DcFmCfgErr, DCC_ERR_FMCONFIG_ERR_CNT,
4141 				 CNTR_SYNTH),
4142 [C_DC_RMT_PHY_ERR] = DC_PERF_CNTR(DcRmtPhyErr, DCC_ERR_RCVREMOTE_PHY_ERR_CNT,
4143 				  CNTR_SYNTH),
4144 [C_DC_DROPPED_PKT] = DC_PERF_CNTR(DcDroppedPkt, DCC_ERR_DROPPED_PKT_CNT,
4145 				  CNTR_SYNTH),
4146 [C_DC_MC_XMIT_PKTS] = DC_PERF_CNTR(DcMcXmitPkts,
4147 				   DCC_PRF_PORT_XMIT_MULTICAST_CNT, CNTR_SYNTH),
4148 [C_DC_MC_RCV_PKTS] = DC_PERF_CNTR(DcMcRcvPkts,
4149 				  DCC_PRF_PORT_RCV_MULTICAST_PKT_CNT,
4150 				  CNTR_SYNTH),
4151 [C_DC_XMIT_CERR] = DC_PERF_CNTR(DcXmitCorr,
4152 				DCC_PRF_PORT_XMIT_CORRECTABLE_CNT, CNTR_SYNTH),
4153 [C_DC_RCV_CERR] = DC_PERF_CNTR(DcRcvCorrCnt, DCC_PRF_PORT_RCV_CORRECTABLE_CNT,
4154 			       CNTR_SYNTH),
4155 [C_DC_RCV_FCC] = DC_PERF_CNTR(DcRxFCntl, DCC_PRF_RX_FLOW_CRTL_CNT,
4156 			      CNTR_SYNTH),
4157 [C_DC_XMIT_FCC] = DC_PERF_CNTR(DcXmitFCntl, DCC_PRF_TX_FLOW_CRTL_CNT,
4158 			       CNTR_SYNTH),
4159 [C_DC_XMIT_FLITS] = DC_PERF_CNTR(DcXmitFlits, DCC_PRF_PORT_XMIT_DATA_CNT,
4160 				 CNTR_SYNTH),
4161 [C_DC_RCV_FLITS] = DC_PERF_CNTR(DcRcvFlits, DCC_PRF_PORT_RCV_DATA_CNT,
4162 				CNTR_SYNTH),
4163 [C_DC_XMIT_PKTS] = DC_PERF_CNTR(DcXmitPkts, DCC_PRF_PORT_XMIT_PKTS_CNT,
4164 				CNTR_SYNTH),
4165 [C_DC_RCV_PKTS] = DC_PERF_CNTR(DcRcvPkts, DCC_PRF_PORT_RCV_PKTS_CNT,
4166 			       CNTR_SYNTH),
4167 [C_DC_RX_FLIT_VL] = DC_PERF_CNTR(DcRxFlitVl, DCC_PRF_PORT_VL_RCV_DATA_CNT,
4168 				 CNTR_SYNTH | CNTR_VL),
4169 [C_DC_RX_PKT_VL] = DC_PERF_CNTR(DcRxPktVl, DCC_PRF_PORT_VL_RCV_PKTS_CNT,
4170 				CNTR_SYNTH | CNTR_VL),
4171 [C_DC_RCV_FCN] = DC_PERF_CNTR(DcRcvFcn, DCC_PRF_PORT_RCV_FECN_CNT, CNTR_SYNTH),
4172 [C_DC_RCV_FCN_VL] = DC_PERF_CNTR(DcRcvFcnVl, DCC_PRF_PORT_VL_RCV_FECN_CNT,
4173 				 CNTR_SYNTH | CNTR_VL),
4174 [C_DC_RCV_BCN] = DC_PERF_CNTR(DcRcvBcn, DCC_PRF_PORT_RCV_BECN_CNT, CNTR_SYNTH),
4175 [C_DC_RCV_BCN_VL] = DC_PERF_CNTR(DcRcvBcnVl, DCC_PRF_PORT_VL_RCV_BECN_CNT,
4176 				 CNTR_SYNTH | CNTR_VL),
4177 [C_DC_RCV_BBL] = DC_PERF_CNTR(DcRcvBbl, DCC_PRF_PORT_RCV_BUBBLE_CNT,
4178 			      CNTR_SYNTH),
4179 [C_DC_RCV_BBL_VL] = DC_PERF_CNTR(DcRcvBblVl, DCC_PRF_PORT_VL_RCV_BUBBLE_CNT,
4180 				 CNTR_SYNTH | CNTR_VL),
4181 [C_DC_MARK_FECN] = DC_PERF_CNTR(DcMarkFcn, DCC_PRF_PORT_MARK_FECN_CNT,
4182 				CNTR_SYNTH),
4183 [C_DC_MARK_FECN_VL] = DC_PERF_CNTR(DcMarkFcnVl, DCC_PRF_PORT_VL_MARK_FECN_CNT,
4184 				   CNTR_SYNTH | CNTR_VL),
4185 [C_DC_TOTAL_CRC] =
4186 	DC_PERF_CNTR_LCB(DcTotCrc, DC_LCB_ERR_INFO_TOTAL_CRC_ERR,
4187 			 CNTR_SYNTH),
4188 [C_DC_CRC_LN0] = DC_PERF_CNTR_LCB(DcCrcLn0, DC_LCB_ERR_INFO_CRC_ERR_LN0,
4189 				  CNTR_SYNTH),
4190 [C_DC_CRC_LN1] = DC_PERF_CNTR_LCB(DcCrcLn1, DC_LCB_ERR_INFO_CRC_ERR_LN1,
4191 				  CNTR_SYNTH),
4192 [C_DC_CRC_LN2] = DC_PERF_CNTR_LCB(DcCrcLn2, DC_LCB_ERR_INFO_CRC_ERR_LN2,
4193 				  CNTR_SYNTH),
4194 [C_DC_CRC_LN3] = DC_PERF_CNTR_LCB(DcCrcLn3, DC_LCB_ERR_INFO_CRC_ERR_LN3,
4195 				  CNTR_SYNTH),
4196 [C_DC_CRC_MULT_LN] =
4197 	DC_PERF_CNTR_LCB(DcMultLn, DC_LCB_ERR_INFO_CRC_ERR_MULTI_LN,
4198 			 CNTR_SYNTH),
4199 [C_DC_TX_REPLAY] = DC_PERF_CNTR_LCB(DcTxReplay, DC_LCB_ERR_INFO_TX_REPLAY_CNT,
4200 				    CNTR_SYNTH),
4201 [C_DC_RX_REPLAY] = DC_PERF_CNTR_LCB(DcRxReplay, DC_LCB_ERR_INFO_RX_REPLAY_CNT,
4202 				    CNTR_SYNTH),
4203 [C_DC_SEQ_CRC_CNT] =
4204 	DC_PERF_CNTR_LCB(DcLinkSeqCrc, DC_LCB_ERR_INFO_SEQ_CRC_CNT,
4205 			 CNTR_SYNTH),
4206 [C_DC_ESC0_ONLY_CNT] =
4207 	DC_PERF_CNTR_LCB(DcEsc0, DC_LCB_ERR_INFO_ESCAPE_0_ONLY_CNT,
4208 			 CNTR_SYNTH),
4209 [C_DC_ESC0_PLUS1_CNT] =
4210 	DC_PERF_CNTR_LCB(DcEsc1, DC_LCB_ERR_INFO_ESCAPE_0_PLUS1_CNT,
4211 			 CNTR_SYNTH),
4212 [C_DC_ESC0_PLUS2_CNT] =
4213 	DC_PERF_CNTR_LCB(DcEsc0Plus2, DC_LCB_ERR_INFO_ESCAPE_0_PLUS2_CNT,
4214 			 CNTR_SYNTH),
4215 [C_DC_REINIT_FROM_PEER_CNT] =
4216 	DC_PERF_CNTR_LCB(DcReinitPeer, DC_LCB_ERR_INFO_REINIT_FROM_PEER_CNT,
4217 			 CNTR_SYNTH),
4218 [C_DC_SBE_CNT] = DC_PERF_CNTR_LCB(DcSbe, DC_LCB_ERR_INFO_SBE_CNT,
4219 				  CNTR_SYNTH),
4220 [C_DC_MISC_FLG_CNT] =
4221 	DC_PERF_CNTR_LCB(DcMiscFlg, DC_LCB_ERR_INFO_MISC_FLG_CNT,
4222 			 CNTR_SYNTH),
4223 [C_DC_PRF_GOOD_LTP_CNT] =
4224 	DC_PERF_CNTR_LCB(DcGoodLTP, DC_LCB_PRF_GOOD_LTP_CNT, CNTR_SYNTH),
4225 [C_DC_PRF_ACCEPTED_LTP_CNT] =
4226 	DC_PERF_CNTR_LCB(DcAccLTP, DC_LCB_PRF_ACCEPTED_LTP_CNT,
4227 			 CNTR_SYNTH),
4228 [C_DC_PRF_RX_FLIT_CNT] =
4229 	DC_PERF_CNTR_LCB(DcPrfRxFlit, DC_LCB_PRF_RX_FLIT_CNT, CNTR_SYNTH),
4230 [C_DC_PRF_TX_FLIT_CNT] =
4231 	DC_PERF_CNTR_LCB(DcPrfTxFlit, DC_LCB_PRF_TX_FLIT_CNT, CNTR_SYNTH),
4232 [C_DC_PRF_CLK_CNTR] =
4233 	DC_PERF_CNTR_LCB(DcPrfClk, DC_LCB_PRF_CLK_CNTR, CNTR_SYNTH),
4234 [C_DC_PG_DBG_FLIT_CRDTS_CNT] =
4235 	DC_PERF_CNTR_LCB(DcFltCrdts, DC_LCB_PG_DBG_FLIT_CRDTS_CNT, CNTR_SYNTH),
4236 [C_DC_PG_STS_PAUSE_COMPLETE_CNT] =
4237 	DC_PERF_CNTR_LCB(DcPauseComp, DC_LCB_PG_STS_PAUSE_COMPLETE_CNT,
4238 			 CNTR_SYNTH),
4239 [C_DC_PG_STS_TX_SBE_CNT] =
4240 	DC_PERF_CNTR_LCB(DcStsTxSbe, DC_LCB_PG_STS_TX_SBE_CNT, CNTR_SYNTH),
4241 [C_DC_PG_STS_TX_MBE_CNT] =
4242 	DC_PERF_CNTR_LCB(DcStsTxMbe, DC_LCB_PG_STS_TX_MBE_CNT,
4243 			 CNTR_SYNTH),
4244 [C_SW_CPU_INTR] = CNTR_ELEM("Intr", 0, 0, CNTR_NORMAL,
4245 			    access_sw_cpu_intr),
4246 [C_SW_CPU_RCV_LIM] = CNTR_ELEM("RcvLimit", 0, 0, CNTR_NORMAL,
4247 			    access_sw_cpu_rcv_limit),
4248 [C_SW_VTX_WAIT] = CNTR_ELEM("vTxWait", 0, 0, CNTR_NORMAL,
4249 			    access_sw_vtx_wait),
4250 [C_SW_PIO_WAIT] = CNTR_ELEM("PioWait", 0, 0, CNTR_NORMAL,
4251 			    access_sw_pio_wait),
4252 [C_SW_PIO_DRAIN] = CNTR_ELEM("PioDrain", 0, 0, CNTR_NORMAL,
4253 			    access_sw_pio_drain),
4254 [C_SW_KMEM_WAIT] = CNTR_ELEM("KmemWait", 0, 0, CNTR_NORMAL,
4255 			    access_sw_kmem_wait),
4256 [C_SW_SEND_SCHED] = CNTR_ELEM("SendSched", 0, 0, CNTR_NORMAL,
4257 			    access_sw_send_schedule),
4258 [C_SDMA_DESC_FETCHED_CNT] = CNTR_ELEM("SDEDscFdCn",
4259 				      SEND_DMA_DESC_FETCHED_CNT, 0,
4260 				      CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4261 				      dev_access_u32_csr),
4262 [C_SDMA_INT_CNT] = CNTR_ELEM("SDMAInt", 0, 0,
4263 			     CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4264 			     access_sde_int_cnt),
4265 [C_SDMA_ERR_CNT] = CNTR_ELEM("SDMAErrCt", 0, 0,
4266 			     CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4267 			     access_sde_err_cnt),
4268 [C_SDMA_IDLE_INT_CNT] = CNTR_ELEM("SDMAIdInt", 0, 0,
4269 				  CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4270 				  access_sde_idle_int_cnt),
4271 [C_SDMA_PROGRESS_INT_CNT] = CNTR_ELEM("SDMAPrIntCn", 0, 0,
4272 				      CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4273 				      access_sde_progress_int_cnt),
4274 /* MISC_ERR_STATUS */
4275 [C_MISC_PLL_LOCK_FAIL_ERR] = CNTR_ELEM("MISC_PLL_LOCK_FAIL_ERR", 0, 0,
4276 				CNTR_NORMAL,
4277 				access_misc_pll_lock_fail_err_cnt),
4278 [C_MISC_MBIST_FAIL_ERR] = CNTR_ELEM("MISC_MBIST_FAIL_ERR", 0, 0,
4279 				CNTR_NORMAL,
4280 				access_misc_mbist_fail_err_cnt),
4281 [C_MISC_INVALID_EEP_CMD_ERR] = CNTR_ELEM("MISC_INVALID_EEP_CMD_ERR", 0, 0,
4282 				CNTR_NORMAL,
4283 				access_misc_invalid_eep_cmd_err_cnt),
4284 [C_MISC_EFUSE_DONE_PARITY_ERR] = CNTR_ELEM("MISC_EFUSE_DONE_PARITY_ERR", 0, 0,
4285 				CNTR_NORMAL,
4286 				access_misc_efuse_done_parity_err_cnt),
4287 [C_MISC_EFUSE_WRITE_ERR] = CNTR_ELEM("MISC_EFUSE_WRITE_ERR", 0, 0,
4288 				CNTR_NORMAL,
4289 				access_misc_efuse_write_err_cnt),
4290 [C_MISC_EFUSE_READ_BAD_ADDR_ERR] = CNTR_ELEM("MISC_EFUSE_READ_BAD_ADDR_ERR", 0,
4291 				0, CNTR_NORMAL,
4292 				access_misc_efuse_read_bad_addr_err_cnt),
4293 [C_MISC_EFUSE_CSR_PARITY_ERR] = CNTR_ELEM("MISC_EFUSE_CSR_PARITY_ERR", 0, 0,
4294 				CNTR_NORMAL,
4295 				access_misc_efuse_csr_parity_err_cnt),
4296 [C_MISC_FW_AUTH_FAILED_ERR] = CNTR_ELEM("MISC_FW_AUTH_FAILED_ERR", 0, 0,
4297 				CNTR_NORMAL,
4298 				access_misc_fw_auth_failed_err_cnt),
4299 [C_MISC_KEY_MISMATCH_ERR] = CNTR_ELEM("MISC_KEY_MISMATCH_ERR", 0, 0,
4300 				CNTR_NORMAL,
4301 				access_misc_key_mismatch_err_cnt),
4302 [C_MISC_SBUS_WRITE_FAILED_ERR] = CNTR_ELEM("MISC_SBUS_WRITE_FAILED_ERR", 0, 0,
4303 				CNTR_NORMAL,
4304 				access_misc_sbus_write_failed_err_cnt),
4305 [C_MISC_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("MISC_CSR_WRITE_BAD_ADDR_ERR", 0, 0,
4306 				CNTR_NORMAL,
4307 				access_misc_csr_write_bad_addr_err_cnt),
4308 [C_MISC_CSR_READ_BAD_ADDR_ERR] = CNTR_ELEM("MISC_CSR_READ_BAD_ADDR_ERR", 0, 0,
4309 				CNTR_NORMAL,
4310 				access_misc_csr_read_bad_addr_err_cnt),
4311 [C_MISC_CSR_PARITY_ERR] = CNTR_ELEM("MISC_CSR_PARITY_ERR", 0, 0,
4312 				CNTR_NORMAL,
4313 				access_misc_csr_parity_err_cnt),
4314 /* CceErrStatus */
4315 [C_CCE_ERR_STATUS_AGGREGATED_CNT] = CNTR_ELEM("CceErrStatusAggregatedCnt", 0, 0,
4316 				CNTR_NORMAL,
4317 				access_sw_cce_err_status_aggregated_cnt),
4318 [C_CCE_MSIX_CSR_PARITY_ERR] = CNTR_ELEM("CceMsixCsrParityErr", 0, 0,
4319 				CNTR_NORMAL,
4320 				access_cce_msix_csr_parity_err_cnt),
4321 [C_CCE_INT_MAP_UNC_ERR] = CNTR_ELEM("CceIntMapUncErr", 0, 0,
4322 				CNTR_NORMAL,
4323 				access_cce_int_map_unc_err_cnt),
4324 [C_CCE_INT_MAP_COR_ERR] = CNTR_ELEM("CceIntMapCorErr", 0, 0,
4325 				CNTR_NORMAL,
4326 				access_cce_int_map_cor_err_cnt),
4327 [C_CCE_MSIX_TABLE_UNC_ERR] = CNTR_ELEM("CceMsixTableUncErr", 0, 0,
4328 				CNTR_NORMAL,
4329 				access_cce_msix_table_unc_err_cnt),
4330 [C_CCE_MSIX_TABLE_COR_ERR] = CNTR_ELEM("CceMsixTableCorErr", 0, 0,
4331 				CNTR_NORMAL,
4332 				access_cce_msix_table_cor_err_cnt),
4333 [C_CCE_RXDMA_CONV_FIFO_PARITY_ERR] = CNTR_ELEM("CceRxdmaConvFifoParityErr", 0,
4334 				0, CNTR_NORMAL,
4335 				access_cce_rxdma_conv_fifo_parity_err_cnt),
4336 [C_CCE_RCPL_ASYNC_FIFO_PARITY_ERR] = CNTR_ELEM("CceRcplAsyncFifoParityErr", 0,
4337 				0, CNTR_NORMAL,
4338 				access_cce_rcpl_async_fifo_parity_err_cnt),
4339 [C_CCE_SEG_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("CceSegWriteBadAddrErr", 0, 0,
4340 				CNTR_NORMAL,
4341 				access_cce_seg_write_bad_addr_err_cnt),
4342 [C_CCE_SEG_READ_BAD_ADDR_ERR] = CNTR_ELEM("CceSegReadBadAddrErr", 0, 0,
4343 				CNTR_NORMAL,
4344 				access_cce_seg_read_bad_addr_err_cnt),
4345 [C_LA_TRIGGERED] = CNTR_ELEM("Cce LATriggered", 0, 0,
4346 				CNTR_NORMAL,
4347 				access_la_triggered_cnt),
4348 [C_CCE_TRGT_CPL_TIMEOUT_ERR] = CNTR_ELEM("CceTrgtCplTimeoutErr", 0, 0,
4349 				CNTR_NORMAL,
4350 				access_cce_trgt_cpl_timeout_err_cnt),
4351 [C_PCIC_RECEIVE_PARITY_ERR] = CNTR_ELEM("PcicReceiveParityErr", 0, 0,
4352 				CNTR_NORMAL,
4353 				access_pcic_receive_parity_err_cnt),
4354 [C_PCIC_TRANSMIT_BACK_PARITY_ERR] = CNTR_ELEM("PcicTransmitBackParityErr", 0, 0,
4355 				CNTR_NORMAL,
4356 				access_pcic_transmit_back_parity_err_cnt),
4357 [C_PCIC_TRANSMIT_FRONT_PARITY_ERR] = CNTR_ELEM("PcicTransmitFrontParityErr", 0,
4358 				0, CNTR_NORMAL,
4359 				access_pcic_transmit_front_parity_err_cnt),
4360 [C_PCIC_CPL_DAT_Q_UNC_ERR] = CNTR_ELEM("PcicCplDatQUncErr", 0, 0,
4361 				CNTR_NORMAL,
4362 				access_pcic_cpl_dat_q_unc_err_cnt),
4363 [C_PCIC_CPL_HD_Q_UNC_ERR] = CNTR_ELEM("PcicCplHdQUncErr", 0, 0,
4364 				CNTR_NORMAL,
4365 				access_pcic_cpl_hd_q_unc_err_cnt),
4366 [C_PCIC_POST_DAT_Q_UNC_ERR] = CNTR_ELEM("PcicPostDatQUncErr", 0, 0,
4367 				CNTR_NORMAL,
4368 				access_pcic_post_dat_q_unc_err_cnt),
4369 [C_PCIC_POST_HD_Q_UNC_ERR] = CNTR_ELEM("PcicPostHdQUncErr", 0, 0,
4370 				CNTR_NORMAL,
4371 				access_pcic_post_hd_q_unc_err_cnt),
4372 [C_PCIC_RETRY_SOT_MEM_UNC_ERR] = CNTR_ELEM("PcicRetrySotMemUncErr", 0, 0,
4373 				CNTR_NORMAL,
4374 				access_pcic_retry_sot_mem_unc_err_cnt),
4375 [C_PCIC_RETRY_MEM_UNC_ERR] = CNTR_ELEM("PcicRetryMemUncErr", 0, 0,
4376 				CNTR_NORMAL,
4377 				access_pcic_retry_mem_unc_err),
4378 [C_PCIC_N_POST_DAT_Q_PARITY_ERR] = CNTR_ELEM("PcicNPostDatQParityErr", 0, 0,
4379 				CNTR_NORMAL,
4380 				access_pcic_n_post_dat_q_parity_err_cnt),
4381 [C_PCIC_N_POST_H_Q_PARITY_ERR] = CNTR_ELEM("PcicNPostHQParityErr", 0, 0,
4382 				CNTR_NORMAL,
4383 				access_pcic_n_post_h_q_parity_err_cnt),
4384 [C_PCIC_CPL_DAT_Q_COR_ERR] = CNTR_ELEM("PcicCplDatQCorErr", 0, 0,
4385 				CNTR_NORMAL,
4386 				access_pcic_cpl_dat_q_cor_err_cnt),
4387 [C_PCIC_CPL_HD_Q_COR_ERR] = CNTR_ELEM("PcicCplHdQCorErr", 0, 0,
4388 				CNTR_NORMAL,
4389 				access_pcic_cpl_hd_q_cor_err_cnt),
4390 [C_PCIC_POST_DAT_Q_COR_ERR] = CNTR_ELEM("PcicPostDatQCorErr", 0, 0,
4391 				CNTR_NORMAL,
4392 				access_pcic_post_dat_q_cor_err_cnt),
4393 [C_PCIC_POST_HD_Q_COR_ERR] = CNTR_ELEM("PcicPostHdQCorErr", 0, 0,
4394 				CNTR_NORMAL,
4395 				access_pcic_post_hd_q_cor_err_cnt),
4396 [C_PCIC_RETRY_SOT_MEM_COR_ERR] = CNTR_ELEM("PcicRetrySotMemCorErr", 0, 0,
4397 				CNTR_NORMAL,
4398 				access_pcic_retry_sot_mem_cor_err_cnt),
4399 [C_PCIC_RETRY_MEM_COR_ERR] = CNTR_ELEM("PcicRetryMemCorErr", 0, 0,
4400 				CNTR_NORMAL,
4401 				access_pcic_retry_mem_cor_err_cnt),
4402 [C_CCE_CLI1_ASYNC_FIFO_DBG_PARITY_ERR] = CNTR_ELEM(
4403 				"CceCli1AsyncFifoDbgParityError", 0, 0,
4404 				CNTR_NORMAL,
4405 				access_cce_cli1_async_fifo_dbg_parity_err_cnt),
4406 [C_CCE_CLI1_ASYNC_FIFO_RXDMA_PARITY_ERR] = CNTR_ELEM(
4407 				"CceCli1AsyncFifoRxdmaParityError", 0, 0,
4408 				CNTR_NORMAL,
4409 				access_cce_cli1_async_fifo_rxdma_parity_err_cnt
4410 				),
4411 [C_CCE_CLI1_ASYNC_FIFO_SDMA_HD_PARITY_ERR] = CNTR_ELEM(
4412 			"CceCli1AsyncFifoSdmaHdParityErr", 0, 0,
4413 			CNTR_NORMAL,
4414 			access_cce_cli1_async_fifo_sdma_hd_parity_err_cnt),
4415 [C_CCE_CLI1_ASYNC_FIFO_PIO_CRDT_PARITY_ERR] = CNTR_ELEM(
4416 			"CceCli1AsyncFifoPioCrdtParityErr", 0, 0,
4417 			CNTR_NORMAL,
4418 			access_cce_cl1_async_fifo_pio_crdt_parity_err_cnt),
4419 [C_CCE_CLI2_ASYNC_FIFO_PARITY_ERR] = CNTR_ELEM("CceCli2AsyncFifoParityErr", 0,
4420 			0, CNTR_NORMAL,
4421 			access_cce_cli2_async_fifo_parity_err_cnt),
4422 [C_CCE_CSR_CFG_BUS_PARITY_ERR] = CNTR_ELEM("CceCsrCfgBusParityErr", 0, 0,
4423 			CNTR_NORMAL,
4424 			access_cce_csr_cfg_bus_parity_err_cnt),
4425 [C_CCE_CLI0_ASYNC_FIFO_PARTIY_ERR] = CNTR_ELEM("CceCli0AsyncFifoParityErr", 0,
4426 			0, CNTR_NORMAL,
4427 			access_cce_cli0_async_fifo_parity_err_cnt),
4428 [C_CCE_RSPD_DATA_PARITY_ERR] = CNTR_ELEM("CceRspdDataParityErr", 0, 0,
4429 			CNTR_NORMAL,
4430 			access_cce_rspd_data_parity_err_cnt),
4431 [C_CCE_TRGT_ACCESS_ERR] = CNTR_ELEM("CceTrgtAccessErr", 0, 0,
4432 			CNTR_NORMAL,
4433 			access_cce_trgt_access_err_cnt),
4434 [C_CCE_TRGT_ASYNC_FIFO_PARITY_ERR] = CNTR_ELEM("CceTrgtAsyncFifoParityErr", 0,
4435 			0, CNTR_NORMAL,
4436 			access_cce_trgt_async_fifo_parity_err_cnt),
4437 [C_CCE_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("CceCsrWriteBadAddrErr", 0, 0,
4438 			CNTR_NORMAL,
4439 			access_cce_csr_write_bad_addr_err_cnt),
4440 [C_CCE_CSR_READ_BAD_ADDR_ERR] = CNTR_ELEM("CceCsrReadBadAddrErr", 0, 0,
4441 			CNTR_NORMAL,
4442 			access_cce_csr_read_bad_addr_err_cnt),
4443 [C_CCE_CSR_PARITY_ERR] = CNTR_ELEM("CceCsrParityErr", 0, 0,
4444 			CNTR_NORMAL,
4445 			access_ccs_csr_parity_err_cnt),
4446 
4447 /* RcvErrStatus */
4448 [C_RX_CSR_PARITY_ERR] = CNTR_ELEM("RxCsrParityErr", 0, 0,
4449 			CNTR_NORMAL,
4450 			access_rx_csr_parity_err_cnt),
4451 [C_RX_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("RxCsrWriteBadAddrErr", 0, 0,
4452 			CNTR_NORMAL,
4453 			access_rx_csr_write_bad_addr_err_cnt),
4454 [C_RX_CSR_READ_BAD_ADDR_ERR] = CNTR_ELEM("RxCsrReadBadAddrErr", 0, 0,
4455 			CNTR_NORMAL,
4456 			access_rx_csr_read_bad_addr_err_cnt),
4457 [C_RX_DMA_CSR_UNC_ERR] = CNTR_ELEM("RxDmaCsrUncErr", 0, 0,
4458 			CNTR_NORMAL,
4459 			access_rx_dma_csr_unc_err_cnt),
4460 [C_RX_DMA_DQ_FSM_ENCODING_ERR] = CNTR_ELEM("RxDmaDqFsmEncodingErr", 0, 0,
4461 			CNTR_NORMAL,
4462 			access_rx_dma_dq_fsm_encoding_err_cnt),
4463 [C_RX_DMA_EQ_FSM_ENCODING_ERR] = CNTR_ELEM("RxDmaEqFsmEncodingErr", 0, 0,
4464 			CNTR_NORMAL,
4465 			access_rx_dma_eq_fsm_encoding_err_cnt),
4466 [C_RX_DMA_CSR_PARITY_ERR] = CNTR_ELEM("RxDmaCsrParityErr", 0, 0,
4467 			CNTR_NORMAL,
4468 			access_rx_dma_csr_parity_err_cnt),
4469 [C_RX_RBUF_DATA_COR_ERR] = CNTR_ELEM("RxRbufDataCorErr", 0, 0,
4470 			CNTR_NORMAL,
4471 			access_rx_rbuf_data_cor_err_cnt),
4472 [C_RX_RBUF_DATA_UNC_ERR] = CNTR_ELEM("RxRbufDataUncErr", 0, 0,
4473 			CNTR_NORMAL,
4474 			access_rx_rbuf_data_unc_err_cnt),
4475 [C_RX_DMA_DATA_FIFO_RD_COR_ERR] = CNTR_ELEM("RxDmaDataFifoRdCorErr", 0, 0,
4476 			CNTR_NORMAL,
4477 			access_rx_dma_data_fifo_rd_cor_err_cnt),
4478 [C_RX_DMA_DATA_FIFO_RD_UNC_ERR] = CNTR_ELEM("RxDmaDataFifoRdUncErr", 0, 0,
4479 			CNTR_NORMAL,
4480 			access_rx_dma_data_fifo_rd_unc_err_cnt),
4481 [C_RX_DMA_HDR_FIFO_RD_COR_ERR] = CNTR_ELEM("RxDmaHdrFifoRdCorErr", 0, 0,
4482 			CNTR_NORMAL,
4483 			access_rx_dma_hdr_fifo_rd_cor_err_cnt),
4484 [C_RX_DMA_HDR_FIFO_RD_UNC_ERR] = CNTR_ELEM("RxDmaHdrFifoRdUncErr", 0, 0,
4485 			CNTR_NORMAL,
4486 			access_rx_dma_hdr_fifo_rd_unc_err_cnt),
4487 [C_RX_RBUF_DESC_PART2_COR_ERR] = CNTR_ELEM("RxRbufDescPart2CorErr", 0, 0,
4488 			CNTR_NORMAL,
4489 			access_rx_rbuf_desc_part2_cor_err_cnt),
4490 [C_RX_RBUF_DESC_PART2_UNC_ERR] = CNTR_ELEM("RxRbufDescPart2UncErr", 0, 0,
4491 			CNTR_NORMAL,
4492 			access_rx_rbuf_desc_part2_unc_err_cnt),
4493 [C_RX_RBUF_DESC_PART1_COR_ERR] = CNTR_ELEM("RxRbufDescPart1CorErr", 0, 0,
4494 			CNTR_NORMAL,
4495 			access_rx_rbuf_desc_part1_cor_err_cnt),
4496 [C_RX_RBUF_DESC_PART1_UNC_ERR] = CNTR_ELEM("RxRbufDescPart1UncErr", 0, 0,
4497 			CNTR_NORMAL,
4498 			access_rx_rbuf_desc_part1_unc_err_cnt),
4499 [C_RX_HQ_INTR_FSM_ERR] = CNTR_ELEM("RxHqIntrFsmErr", 0, 0,
4500 			CNTR_NORMAL,
4501 			access_rx_hq_intr_fsm_err_cnt),
4502 [C_RX_HQ_INTR_CSR_PARITY_ERR] = CNTR_ELEM("RxHqIntrCsrParityErr", 0, 0,
4503 			CNTR_NORMAL,
4504 			access_rx_hq_intr_csr_parity_err_cnt),
4505 [C_RX_LOOKUP_CSR_PARITY_ERR] = CNTR_ELEM("RxLookupCsrParityErr", 0, 0,
4506 			CNTR_NORMAL,
4507 			access_rx_lookup_csr_parity_err_cnt),
4508 [C_RX_LOOKUP_RCV_ARRAY_COR_ERR] = CNTR_ELEM("RxLookupRcvArrayCorErr", 0, 0,
4509 			CNTR_NORMAL,
4510 			access_rx_lookup_rcv_array_cor_err_cnt),
4511 [C_RX_LOOKUP_RCV_ARRAY_UNC_ERR] = CNTR_ELEM("RxLookupRcvArrayUncErr", 0, 0,
4512 			CNTR_NORMAL,
4513 			access_rx_lookup_rcv_array_unc_err_cnt),
4514 [C_RX_LOOKUP_DES_PART2_PARITY_ERR] = CNTR_ELEM("RxLookupDesPart2ParityErr", 0,
4515 			0, CNTR_NORMAL,
4516 			access_rx_lookup_des_part2_parity_err_cnt),
4517 [C_RX_LOOKUP_DES_PART1_UNC_COR_ERR] = CNTR_ELEM("RxLookupDesPart1UncCorErr", 0,
4518 			0, CNTR_NORMAL,
4519 			access_rx_lookup_des_part1_unc_cor_err_cnt),
4520 [C_RX_LOOKUP_DES_PART1_UNC_ERR] = CNTR_ELEM("RxLookupDesPart1UncErr", 0, 0,
4521 			CNTR_NORMAL,
4522 			access_rx_lookup_des_part1_unc_err_cnt),
4523 [C_RX_RBUF_NEXT_FREE_BUF_COR_ERR] = CNTR_ELEM("RxRbufNextFreeBufCorErr", 0, 0,
4524 			CNTR_NORMAL,
4525 			access_rx_rbuf_next_free_buf_cor_err_cnt),
4526 [C_RX_RBUF_NEXT_FREE_BUF_UNC_ERR] = CNTR_ELEM("RxRbufNextFreeBufUncErr", 0, 0,
4527 			CNTR_NORMAL,
4528 			access_rx_rbuf_next_free_buf_unc_err_cnt),
4529 [C_RX_RBUF_FL_INIT_WR_ADDR_PARITY_ERR] = CNTR_ELEM(
4530 			"RxRbufFlInitWrAddrParityErr", 0, 0,
4531 			CNTR_NORMAL,
4532 			access_rbuf_fl_init_wr_addr_parity_err_cnt),
4533 [C_RX_RBUF_FL_INITDONE_PARITY_ERR] = CNTR_ELEM("RxRbufFlInitdoneParityErr", 0,
4534 			0, CNTR_NORMAL,
4535 			access_rx_rbuf_fl_initdone_parity_err_cnt),
4536 [C_RX_RBUF_FL_WRITE_ADDR_PARITY_ERR] = CNTR_ELEM("RxRbufFlWrAddrParityErr", 0,
4537 			0, CNTR_NORMAL,
4538 			access_rx_rbuf_fl_write_addr_parity_err_cnt),
4539 [C_RX_RBUF_FL_RD_ADDR_PARITY_ERR] = CNTR_ELEM("RxRbufFlRdAddrParityErr", 0, 0,
4540 			CNTR_NORMAL,
4541 			access_rx_rbuf_fl_rd_addr_parity_err_cnt),
4542 [C_RX_RBUF_EMPTY_ERR] = CNTR_ELEM("RxRbufEmptyErr", 0, 0,
4543 			CNTR_NORMAL,
4544 			access_rx_rbuf_empty_err_cnt),
4545 [C_RX_RBUF_FULL_ERR] = CNTR_ELEM("RxRbufFullErr", 0, 0,
4546 			CNTR_NORMAL,
4547 			access_rx_rbuf_full_err_cnt),
4548 [C_RX_RBUF_BAD_LOOKUP_ERR] = CNTR_ELEM("RxRBufBadLookupErr", 0, 0,
4549 			CNTR_NORMAL,
4550 			access_rbuf_bad_lookup_err_cnt),
4551 [C_RX_RBUF_CTX_ID_PARITY_ERR] = CNTR_ELEM("RxRbufCtxIdParityErr", 0, 0,
4552 			CNTR_NORMAL,
4553 			access_rbuf_ctx_id_parity_err_cnt),
4554 [C_RX_RBUF_CSR_QEOPDW_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQEOPDWParityErr", 0, 0,
4555 			CNTR_NORMAL,
4556 			access_rbuf_csr_qeopdw_parity_err_cnt),
4557 [C_RX_RBUF_CSR_Q_NUM_OF_PKT_PARITY_ERR] = CNTR_ELEM(
4558 			"RxRbufCsrQNumOfPktParityErr", 0, 0,
4559 			CNTR_NORMAL,
4560 			access_rx_rbuf_csr_q_num_of_pkt_parity_err_cnt),
4561 [C_RX_RBUF_CSR_Q_T1_PTR_PARITY_ERR] = CNTR_ELEM(
4562 			"RxRbufCsrQTlPtrParityErr", 0, 0,
4563 			CNTR_NORMAL,
4564 			access_rx_rbuf_csr_q_t1_ptr_parity_err_cnt),
4565 [C_RX_RBUF_CSR_Q_HD_PTR_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQHdPtrParityErr", 0,
4566 			0, CNTR_NORMAL,
4567 			access_rx_rbuf_csr_q_hd_ptr_parity_err_cnt),
4568 [C_RX_RBUF_CSR_Q_VLD_BIT_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQVldBitParityErr", 0,
4569 			0, CNTR_NORMAL,
4570 			access_rx_rbuf_csr_q_vld_bit_parity_err_cnt),
4571 [C_RX_RBUF_CSR_Q_NEXT_BUF_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQNextBufParityErr",
4572 			0, 0, CNTR_NORMAL,
4573 			access_rx_rbuf_csr_q_next_buf_parity_err_cnt),
4574 [C_RX_RBUF_CSR_Q_ENT_CNT_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQEntCntParityErr", 0,
4575 			0, CNTR_NORMAL,
4576 			access_rx_rbuf_csr_q_ent_cnt_parity_err_cnt),
4577 [C_RX_RBUF_CSR_Q_HEAD_BUF_NUM_PARITY_ERR] = CNTR_ELEM(
4578 			"RxRbufCsrQHeadBufNumParityErr", 0, 0,
4579 			CNTR_NORMAL,
4580 			access_rx_rbuf_csr_q_head_buf_num_parity_err_cnt),
4581 [C_RX_RBUF_BLOCK_LIST_READ_COR_ERR] = CNTR_ELEM("RxRbufBlockListReadCorErr", 0,
4582 			0, CNTR_NORMAL,
4583 			access_rx_rbuf_block_list_read_cor_err_cnt),
4584 [C_RX_RBUF_BLOCK_LIST_READ_UNC_ERR] = CNTR_ELEM("RxRbufBlockListReadUncErr", 0,
4585 			0, CNTR_NORMAL,
4586 			access_rx_rbuf_block_list_read_unc_err_cnt),
4587 [C_RX_RBUF_LOOKUP_DES_COR_ERR] = CNTR_ELEM("RxRbufLookupDesCorErr", 0, 0,
4588 			CNTR_NORMAL,
4589 			access_rx_rbuf_lookup_des_cor_err_cnt),
4590 [C_RX_RBUF_LOOKUP_DES_UNC_ERR] = CNTR_ELEM("RxRbufLookupDesUncErr", 0, 0,
4591 			CNTR_NORMAL,
4592 			access_rx_rbuf_lookup_des_unc_err_cnt),
4593 [C_RX_RBUF_LOOKUP_DES_REG_UNC_COR_ERR] = CNTR_ELEM(
4594 			"RxRbufLookupDesRegUncCorErr", 0, 0,
4595 			CNTR_NORMAL,
4596 			access_rx_rbuf_lookup_des_reg_unc_cor_err_cnt),
4597 [C_RX_RBUF_LOOKUP_DES_REG_UNC_ERR] = CNTR_ELEM("RxRbufLookupDesRegUncErr", 0, 0,
4598 			CNTR_NORMAL,
4599 			access_rx_rbuf_lookup_des_reg_unc_err_cnt),
4600 [C_RX_RBUF_FREE_LIST_COR_ERR] = CNTR_ELEM("RxRbufFreeListCorErr", 0, 0,
4601 			CNTR_NORMAL,
4602 			access_rx_rbuf_free_list_cor_err_cnt),
4603 [C_RX_RBUF_FREE_LIST_UNC_ERR] = CNTR_ELEM("RxRbufFreeListUncErr", 0, 0,
4604 			CNTR_NORMAL,
4605 			access_rx_rbuf_free_list_unc_err_cnt),
4606 [C_RX_RCV_FSM_ENCODING_ERR] = CNTR_ELEM("RxRcvFsmEncodingErr", 0, 0,
4607 			CNTR_NORMAL,
4608 			access_rx_rcv_fsm_encoding_err_cnt),
4609 [C_RX_DMA_FLAG_COR_ERR] = CNTR_ELEM("RxDmaFlagCorErr", 0, 0,
4610 			CNTR_NORMAL,
4611 			access_rx_dma_flag_cor_err_cnt),
4612 [C_RX_DMA_FLAG_UNC_ERR] = CNTR_ELEM("RxDmaFlagUncErr", 0, 0,
4613 			CNTR_NORMAL,
4614 			access_rx_dma_flag_unc_err_cnt),
4615 [C_RX_DC_SOP_EOP_PARITY_ERR] = CNTR_ELEM("RxDcSopEopParityErr", 0, 0,
4616 			CNTR_NORMAL,
4617 			access_rx_dc_sop_eop_parity_err_cnt),
4618 [C_RX_RCV_CSR_PARITY_ERR] = CNTR_ELEM("RxRcvCsrParityErr", 0, 0,
4619 			CNTR_NORMAL,
4620 			access_rx_rcv_csr_parity_err_cnt),
4621 [C_RX_RCV_QP_MAP_TABLE_COR_ERR] = CNTR_ELEM("RxRcvQpMapTableCorErr", 0, 0,
4622 			CNTR_NORMAL,
4623 			access_rx_rcv_qp_map_table_cor_err_cnt),
4624 [C_RX_RCV_QP_MAP_TABLE_UNC_ERR] = CNTR_ELEM("RxRcvQpMapTableUncErr", 0, 0,
4625 			CNTR_NORMAL,
4626 			access_rx_rcv_qp_map_table_unc_err_cnt),
4627 [C_RX_RCV_DATA_COR_ERR] = CNTR_ELEM("RxRcvDataCorErr", 0, 0,
4628 			CNTR_NORMAL,
4629 			access_rx_rcv_data_cor_err_cnt),
4630 [C_RX_RCV_DATA_UNC_ERR] = CNTR_ELEM("RxRcvDataUncErr", 0, 0,
4631 			CNTR_NORMAL,
4632 			access_rx_rcv_data_unc_err_cnt),
4633 [C_RX_RCV_HDR_COR_ERR] = CNTR_ELEM("RxRcvHdrCorErr", 0, 0,
4634 			CNTR_NORMAL,
4635 			access_rx_rcv_hdr_cor_err_cnt),
4636 [C_RX_RCV_HDR_UNC_ERR] = CNTR_ELEM("RxRcvHdrUncErr", 0, 0,
4637 			CNTR_NORMAL,
4638 			access_rx_rcv_hdr_unc_err_cnt),
4639 [C_RX_DC_INTF_PARITY_ERR] = CNTR_ELEM("RxDcIntfParityErr", 0, 0,
4640 			CNTR_NORMAL,
4641 			access_rx_dc_intf_parity_err_cnt),
4642 [C_RX_DMA_CSR_COR_ERR] = CNTR_ELEM("RxDmaCsrCorErr", 0, 0,
4643 			CNTR_NORMAL,
4644 			access_rx_dma_csr_cor_err_cnt),
4645 /* SendPioErrStatus */
4646 [C_PIO_PEC_SOP_HEAD_PARITY_ERR] = CNTR_ELEM("PioPecSopHeadParityErr", 0, 0,
4647 			CNTR_NORMAL,
4648 			access_pio_pec_sop_head_parity_err_cnt),
4649 [C_PIO_PCC_SOP_HEAD_PARITY_ERR] = CNTR_ELEM("PioPccSopHeadParityErr", 0, 0,
4650 			CNTR_NORMAL,
4651 			access_pio_pcc_sop_head_parity_err_cnt),
4652 [C_PIO_LAST_RETURNED_CNT_PARITY_ERR] = CNTR_ELEM("PioLastReturnedCntParityErr",
4653 			0, 0, CNTR_NORMAL,
4654 			access_pio_last_returned_cnt_parity_err_cnt),
4655 [C_PIO_CURRENT_FREE_CNT_PARITY_ERR] = CNTR_ELEM("PioCurrentFreeCntParityErr", 0,
4656 			0, CNTR_NORMAL,
4657 			access_pio_current_free_cnt_parity_err_cnt),
4658 [C_PIO_RSVD_31_ERR] = CNTR_ELEM("Pio Reserved 31", 0, 0,
4659 			CNTR_NORMAL,
4660 			access_pio_reserved_31_err_cnt),
4661 [C_PIO_RSVD_30_ERR] = CNTR_ELEM("Pio Reserved 30", 0, 0,
4662 			CNTR_NORMAL,
4663 			access_pio_reserved_30_err_cnt),
4664 [C_PIO_PPMC_SOP_LEN_ERR] = CNTR_ELEM("PioPpmcSopLenErr", 0, 0,
4665 			CNTR_NORMAL,
4666 			access_pio_ppmc_sop_len_err_cnt),
4667 [C_PIO_PPMC_BQC_MEM_PARITY_ERR] = CNTR_ELEM("PioPpmcBqcMemParityErr", 0, 0,
4668 			CNTR_NORMAL,
4669 			access_pio_ppmc_bqc_mem_parity_err_cnt),
4670 [C_PIO_VL_FIFO_PARITY_ERR] = CNTR_ELEM("PioVlFifoParityErr", 0, 0,
4671 			CNTR_NORMAL,
4672 			access_pio_vl_fifo_parity_err_cnt),
4673 [C_PIO_VLF_SOP_PARITY_ERR] = CNTR_ELEM("PioVlfSopParityErr", 0, 0,
4674 			CNTR_NORMAL,
4675 			access_pio_vlf_sop_parity_err_cnt),
4676 [C_PIO_VLF_V1_LEN_PARITY_ERR] = CNTR_ELEM("PioVlfVlLenParityErr", 0, 0,
4677 			CNTR_NORMAL,
4678 			access_pio_vlf_v1_len_parity_err_cnt),
4679 [C_PIO_BLOCK_QW_COUNT_PARITY_ERR] = CNTR_ELEM("PioBlockQwCountParityErr", 0, 0,
4680 			CNTR_NORMAL,
4681 			access_pio_block_qw_count_parity_err_cnt),
4682 [C_PIO_WRITE_QW_VALID_PARITY_ERR] = CNTR_ELEM("PioWriteQwValidParityErr", 0, 0,
4683 			CNTR_NORMAL,
4684 			access_pio_write_qw_valid_parity_err_cnt),
4685 [C_PIO_STATE_MACHINE_ERR] = CNTR_ELEM("PioStateMachineErr", 0, 0,
4686 			CNTR_NORMAL,
4687 			access_pio_state_machine_err_cnt),
4688 [C_PIO_WRITE_DATA_PARITY_ERR] = CNTR_ELEM("PioWriteDataParityErr", 0, 0,
4689 			CNTR_NORMAL,
4690 			access_pio_write_data_parity_err_cnt),
4691 [C_PIO_HOST_ADDR_MEM_COR_ERR] = CNTR_ELEM("PioHostAddrMemCorErr", 0, 0,
4692 			CNTR_NORMAL,
4693 			access_pio_host_addr_mem_cor_err_cnt),
4694 [C_PIO_HOST_ADDR_MEM_UNC_ERR] = CNTR_ELEM("PioHostAddrMemUncErr", 0, 0,
4695 			CNTR_NORMAL,
4696 			access_pio_host_addr_mem_unc_err_cnt),
4697 [C_PIO_PKT_EVICT_SM_OR_ARM_SM_ERR] = CNTR_ELEM("PioPktEvictSmOrArbSmErr", 0, 0,
4698 			CNTR_NORMAL,
4699 			access_pio_pkt_evict_sm_or_arb_sm_err_cnt),
4700 [C_PIO_INIT_SM_IN_ERR] = CNTR_ELEM("PioInitSmInErr", 0, 0,
4701 			CNTR_NORMAL,
4702 			access_pio_init_sm_in_err_cnt),
4703 [C_PIO_PPMC_PBL_FIFO_ERR] = CNTR_ELEM("PioPpmcPblFifoErr", 0, 0,
4704 			CNTR_NORMAL,
4705 			access_pio_ppmc_pbl_fifo_err_cnt),
4706 [C_PIO_CREDIT_RET_FIFO_PARITY_ERR] = CNTR_ELEM("PioCreditRetFifoParityErr", 0,
4707 			0, CNTR_NORMAL,
4708 			access_pio_credit_ret_fifo_parity_err_cnt),
4709 [C_PIO_V1_LEN_MEM_BANK1_COR_ERR] = CNTR_ELEM("PioVlLenMemBank1CorErr", 0, 0,
4710 			CNTR_NORMAL,
4711 			access_pio_v1_len_mem_bank1_cor_err_cnt),
4712 [C_PIO_V1_LEN_MEM_BANK0_COR_ERR] = CNTR_ELEM("PioVlLenMemBank0CorErr", 0, 0,
4713 			CNTR_NORMAL,
4714 			access_pio_v1_len_mem_bank0_cor_err_cnt),
4715 [C_PIO_V1_LEN_MEM_BANK1_UNC_ERR] = CNTR_ELEM("PioVlLenMemBank1UncErr", 0, 0,
4716 			CNTR_NORMAL,
4717 			access_pio_v1_len_mem_bank1_unc_err_cnt),
4718 [C_PIO_V1_LEN_MEM_BANK0_UNC_ERR] = CNTR_ELEM("PioVlLenMemBank0UncErr", 0, 0,
4719 			CNTR_NORMAL,
4720 			access_pio_v1_len_mem_bank0_unc_err_cnt),
4721 [C_PIO_SM_PKT_RESET_PARITY_ERR] = CNTR_ELEM("PioSmPktResetParityErr", 0, 0,
4722 			CNTR_NORMAL,
4723 			access_pio_sm_pkt_reset_parity_err_cnt),
4724 [C_PIO_PKT_EVICT_FIFO_PARITY_ERR] = CNTR_ELEM("PioPktEvictFifoParityErr", 0, 0,
4725 			CNTR_NORMAL,
4726 			access_pio_pkt_evict_fifo_parity_err_cnt),
4727 [C_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR] = CNTR_ELEM(
4728 			"PioSbrdctrlCrrelFifoParityErr", 0, 0,
4729 			CNTR_NORMAL,
4730 			access_pio_sbrdctrl_crrel_fifo_parity_err_cnt),
4731 [C_PIO_SBRDCTL_CRREL_PARITY_ERR] = CNTR_ELEM("PioSbrdctlCrrelParityErr", 0, 0,
4732 			CNTR_NORMAL,
4733 			access_pio_sbrdctl_crrel_parity_err_cnt),
4734 [C_PIO_PEC_FIFO_PARITY_ERR] = CNTR_ELEM("PioPecFifoParityErr", 0, 0,
4735 			CNTR_NORMAL,
4736 			access_pio_pec_fifo_parity_err_cnt),
4737 [C_PIO_PCC_FIFO_PARITY_ERR] = CNTR_ELEM("PioPccFifoParityErr", 0, 0,
4738 			CNTR_NORMAL,
4739 			access_pio_pcc_fifo_parity_err_cnt),
4740 [C_PIO_SB_MEM_FIFO1_ERR] = CNTR_ELEM("PioSbMemFifo1Err", 0, 0,
4741 			CNTR_NORMAL,
4742 			access_pio_sb_mem_fifo1_err_cnt),
4743 [C_PIO_SB_MEM_FIFO0_ERR] = CNTR_ELEM("PioSbMemFifo0Err", 0, 0,
4744 			CNTR_NORMAL,
4745 			access_pio_sb_mem_fifo0_err_cnt),
4746 [C_PIO_CSR_PARITY_ERR] = CNTR_ELEM("PioCsrParityErr", 0, 0,
4747 			CNTR_NORMAL,
4748 			access_pio_csr_parity_err_cnt),
4749 [C_PIO_WRITE_ADDR_PARITY_ERR] = CNTR_ELEM("PioWriteAddrParityErr", 0, 0,
4750 			CNTR_NORMAL,
4751 			access_pio_write_addr_parity_err_cnt),
4752 [C_PIO_WRITE_BAD_CTXT_ERR] = CNTR_ELEM("PioWriteBadCtxtErr", 0, 0,
4753 			CNTR_NORMAL,
4754 			access_pio_write_bad_ctxt_err_cnt),
4755 /* SendDmaErrStatus */
4756 [C_SDMA_PCIE_REQ_TRACKING_COR_ERR] = CNTR_ELEM("SDmaPcieReqTrackingCorErr", 0,
4757 			0, CNTR_NORMAL,
4758 			access_sdma_pcie_req_tracking_cor_err_cnt),
4759 [C_SDMA_PCIE_REQ_TRACKING_UNC_ERR] = CNTR_ELEM("SDmaPcieReqTrackingUncErr", 0,
4760 			0, CNTR_NORMAL,
4761 			access_sdma_pcie_req_tracking_unc_err_cnt),
4762 [C_SDMA_CSR_PARITY_ERR] = CNTR_ELEM("SDmaCsrParityErr", 0, 0,
4763 			CNTR_NORMAL,
4764 			access_sdma_csr_parity_err_cnt),
4765 [C_SDMA_RPY_TAG_ERR] = CNTR_ELEM("SDmaRpyTagErr", 0, 0,
4766 			CNTR_NORMAL,
4767 			access_sdma_rpy_tag_err_cnt),
4768 /* SendEgressErrStatus */
4769 [C_TX_READ_PIO_MEMORY_CSR_UNC_ERR] = CNTR_ELEM("TxReadPioMemoryCsrUncErr", 0, 0,
4770 			CNTR_NORMAL,
4771 			access_tx_read_pio_memory_csr_unc_err_cnt),
4772 [C_TX_READ_SDMA_MEMORY_CSR_UNC_ERR] = CNTR_ELEM("TxReadSdmaMemoryCsrUncErr", 0,
4773 			0, CNTR_NORMAL,
4774 			access_tx_read_sdma_memory_csr_err_cnt),
4775 [C_TX_EGRESS_FIFO_COR_ERR] = CNTR_ELEM("TxEgressFifoCorErr", 0, 0,
4776 			CNTR_NORMAL,
4777 			access_tx_egress_fifo_cor_err_cnt),
4778 [C_TX_READ_PIO_MEMORY_COR_ERR] = CNTR_ELEM("TxReadPioMemoryCorErr", 0, 0,
4779 			CNTR_NORMAL,
4780 			access_tx_read_pio_memory_cor_err_cnt),
4781 [C_TX_READ_SDMA_MEMORY_COR_ERR] = CNTR_ELEM("TxReadSdmaMemoryCorErr", 0, 0,
4782 			CNTR_NORMAL,
4783 			access_tx_read_sdma_memory_cor_err_cnt),
4784 [C_TX_SB_HDR_COR_ERR] = CNTR_ELEM("TxSbHdrCorErr", 0, 0,
4785 			CNTR_NORMAL,
4786 			access_tx_sb_hdr_cor_err_cnt),
4787 [C_TX_CREDIT_OVERRUN_ERR] = CNTR_ELEM("TxCreditOverrunErr", 0, 0,
4788 			CNTR_NORMAL,
4789 			access_tx_credit_overrun_err_cnt),
4790 [C_TX_LAUNCH_FIFO8_COR_ERR] = CNTR_ELEM("TxLaunchFifo8CorErr", 0, 0,
4791 			CNTR_NORMAL,
4792 			access_tx_launch_fifo8_cor_err_cnt),
4793 [C_TX_LAUNCH_FIFO7_COR_ERR] = CNTR_ELEM("TxLaunchFifo7CorErr", 0, 0,
4794 			CNTR_NORMAL,
4795 			access_tx_launch_fifo7_cor_err_cnt),
4796 [C_TX_LAUNCH_FIFO6_COR_ERR] = CNTR_ELEM("TxLaunchFifo6CorErr", 0, 0,
4797 			CNTR_NORMAL,
4798 			access_tx_launch_fifo6_cor_err_cnt),
4799 [C_TX_LAUNCH_FIFO5_COR_ERR] = CNTR_ELEM("TxLaunchFifo5CorErr", 0, 0,
4800 			CNTR_NORMAL,
4801 			access_tx_launch_fifo5_cor_err_cnt),
4802 [C_TX_LAUNCH_FIFO4_COR_ERR] = CNTR_ELEM("TxLaunchFifo4CorErr", 0, 0,
4803 			CNTR_NORMAL,
4804 			access_tx_launch_fifo4_cor_err_cnt),
4805 [C_TX_LAUNCH_FIFO3_COR_ERR] = CNTR_ELEM("TxLaunchFifo3CorErr", 0, 0,
4806 			CNTR_NORMAL,
4807 			access_tx_launch_fifo3_cor_err_cnt),
4808 [C_TX_LAUNCH_FIFO2_COR_ERR] = CNTR_ELEM("TxLaunchFifo2CorErr", 0, 0,
4809 			CNTR_NORMAL,
4810 			access_tx_launch_fifo2_cor_err_cnt),
4811 [C_TX_LAUNCH_FIFO1_COR_ERR] = CNTR_ELEM("TxLaunchFifo1CorErr", 0, 0,
4812 			CNTR_NORMAL,
4813 			access_tx_launch_fifo1_cor_err_cnt),
4814 [C_TX_LAUNCH_FIFO0_COR_ERR] = CNTR_ELEM("TxLaunchFifo0CorErr", 0, 0,
4815 			CNTR_NORMAL,
4816 			access_tx_launch_fifo0_cor_err_cnt),
4817 [C_TX_CREDIT_RETURN_VL_ERR] = CNTR_ELEM("TxCreditReturnVLErr", 0, 0,
4818 			CNTR_NORMAL,
4819 			access_tx_credit_return_vl_err_cnt),
4820 [C_TX_HCRC_INSERTION_ERR] = CNTR_ELEM("TxHcrcInsertionErr", 0, 0,
4821 			CNTR_NORMAL,
4822 			access_tx_hcrc_insertion_err_cnt),
4823 [C_TX_EGRESS_FIFI_UNC_ERR] = CNTR_ELEM("TxEgressFifoUncErr", 0, 0,
4824 			CNTR_NORMAL,
4825 			access_tx_egress_fifo_unc_err_cnt),
4826 [C_TX_READ_PIO_MEMORY_UNC_ERR] = CNTR_ELEM("TxReadPioMemoryUncErr", 0, 0,
4827 			CNTR_NORMAL,
4828 			access_tx_read_pio_memory_unc_err_cnt),
4829 [C_TX_READ_SDMA_MEMORY_UNC_ERR] = CNTR_ELEM("TxReadSdmaMemoryUncErr", 0, 0,
4830 			CNTR_NORMAL,
4831 			access_tx_read_sdma_memory_unc_err_cnt),
4832 [C_TX_SB_HDR_UNC_ERR] = CNTR_ELEM("TxSbHdrUncErr", 0, 0,
4833 			CNTR_NORMAL,
4834 			access_tx_sb_hdr_unc_err_cnt),
4835 [C_TX_CREDIT_RETURN_PARITY_ERR] = CNTR_ELEM("TxCreditReturnParityErr", 0, 0,
4836 			CNTR_NORMAL,
4837 			access_tx_credit_return_partiy_err_cnt),
4838 [C_TX_LAUNCH_FIFO8_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo8UncOrParityErr",
4839 			0, 0, CNTR_NORMAL,
4840 			access_tx_launch_fifo8_unc_or_parity_err_cnt),
4841 [C_TX_LAUNCH_FIFO7_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo7UncOrParityErr",
4842 			0, 0, CNTR_NORMAL,
4843 			access_tx_launch_fifo7_unc_or_parity_err_cnt),
4844 [C_TX_LAUNCH_FIFO6_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo6UncOrParityErr",
4845 			0, 0, CNTR_NORMAL,
4846 			access_tx_launch_fifo6_unc_or_parity_err_cnt),
4847 [C_TX_LAUNCH_FIFO5_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo5UncOrParityErr",
4848 			0, 0, CNTR_NORMAL,
4849 			access_tx_launch_fifo5_unc_or_parity_err_cnt),
4850 [C_TX_LAUNCH_FIFO4_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo4UncOrParityErr",
4851 			0, 0, CNTR_NORMAL,
4852 			access_tx_launch_fifo4_unc_or_parity_err_cnt),
4853 [C_TX_LAUNCH_FIFO3_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo3UncOrParityErr",
4854 			0, 0, CNTR_NORMAL,
4855 			access_tx_launch_fifo3_unc_or_parity_err_cnt),
4856 [C_TX_LAUNCH_FIFO2_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo2UncOrParityErr",
4857 			0, 0, CNTR_NORMAL,
4858 			access_tx_launch_fifo2_unc_or_parity_err_cnt),
4859 [C_TX_LAUNCH_FIFO1_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo1UncOrParityErr",
4860 			0, 0, CNTR_NORMAL,
4861 			access_tx_launch_fifo1_unc_or_parity_err_cnt),
4862 [C_TX_LAUNCH_FIFO0_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo0UncOrParityErr",
4863 			0, 0, CNTR_NORMAL,
4864 			access_tx_launch_fifo0_unc_or_parity_err_cnt),
4865 [C_TX_SDMA15_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma15DisallowedPacketErr",
4866 			0, 0, CNTR_NORMAL,
4867 			access_tx_sdma15_disallowed_packet_err_cnt),
4868 [C_TX_SDMA14_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma14DisallowedPacketErr",
4869 			0, 0, CNTR_NORMAL,
4870 			access_tx_sdma14_disallowed_packet_err_cnt),
4871 [C_TX_SDMA13_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma13DisallowedPacketErr",
4872 			0, 0, CNTR_NORMAL,
4873 			access_tx_sdma13_disallowed_packet_err_cnt),
4874 [C_TX_SDMA12_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma12DisallowedPacketErr",
4875 			0, 0, CNTR_NORMAL,
4876 			access_tx_sdma12_disallowed_packet_err_cnt),
4877 [C_TX_SDMA11_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma11DisallowedPacketErr",
4878 			0, 0, CNTR_NORMAL,
4879 			access_tx_sdma11_disallowed_packet_err_cnt),
4880 [C_TX_SDMA10_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma10DisallowedPacketErr",
4881 			0, 0, CNTR_NORMAL,
4882 			access_tx_sdma10_disallowed_packet_err_cnt),
4883 [C_TX_SDMA9_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma9DisallowedPacketErr",
4884 			0, 0, CNTR_NORMAL,
4885 			access_tx_sdma9_disallowed_packet_err_cnt),
4886 [C_TX_SDMA8_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma8DisallowedPacketErr",
4887 			0, 0, CNTR_NORMAL,
4888 			access_tx_sdma8_disallowed_packet_err_cnt),
4889 [C_TX_SDMA7_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma7DisallowedPacketErr",
4890 			0, 0, CNTR_NORMAL,
4891 			access_tx_sdma7_disallowed_packet_err_cnt),
4892 [C_TX_SDMA6_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma6DisallowedPacketErr",
4893 			0, 0, CNTR_NORMAL,
4894 			access_tx_sdma6_disallowed_packet_err_cnt),
4895 [C_TX_SDMA5_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma5DisallowedPacketErr",
4896 			0, 0, CNTR_NORMAL,
4897 			access_tx_sdma5_disallowed_packet_err_cnt),
4898 [C_TX_SDMA4_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma4DisallowedPacketErr",
4899 			0, 0, CNTR_NORMAL,
4900 			access_tx_sdma4_disallowed_packet_err_cnt),
4901 [C_TX_SDMA3_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma3DisallowedPacketErr",
4902 			0, 0, CNTR_NORMAL,
4903 			access_tx_sdma3_disallowed_packet_err_cnt),
4904 [C_TX_SDMA2_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma2DisallowedPacketErr",
4905 			0, 0, CNTR_NORMAL,
4906 			access_tx_sdma2_disallowed_packet_err_cnt),
4907 [C_TX_SDMA1_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma1DisallowedPacketErr",
4908 			0, 0, CNTR_NORMAL,
4909 			access_tx_sdma1_disallowed_packet_err_cnt),
4910 [C_TX_SDMA0_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma0DisallowedPacketErr",
4911 			0, 0, CNTR_NORMAL,
4912 			access_tx_sdma0_disallowed_packet_err_cnt),
4913 [C_TX_CONFIG_PARITY_ERR] = CNTR_ELEM("TxConfigParityErr", 0, 0,
4914 			CNTR_NORMAL,
4915 			access_tx_config_parity_err_cnt),
4916 [C_TX_SBRD_CTL_CSR_PARITY_ERR] = CNTR_ELEM("TxSbrdCtlCsrParityErr", 0, 0,
4917 			CNTR_NORMAL,
4918 			access_tx_sbrd_ctl_csr_parity_err_cnt),
4919 [C_TX_LAUNCH_CSR_PARITY_ERR] = CNTR_ELEM("TxLaunchCsrParityErr", 0, 0,
4920 			CNTR_NORMAL,
4921 			access_tx_launch_csr_parity_err_cnt),
4922 [C_TX_ILLEGAL_CL_ERR] = CNTR_ELEM("TxIllegalVLErr", 0, 0,
4923 			CNTR_NORMAL,
4924 			access_tx_illegal_vl_err_cnt),
4925 [C_TX_SBRD_CTL_STATE_MACHINE_PARITY_ERR] = CNTR_ELEM(
4926 			"TxSbrdCtlStateMachineParityErr", 0, 0,
4927 			CNTR_NORMAL,
4928 			access_tx_sbrd_ctl_state_machine_parity_err_cnt),
4929 [C_TX_RESERVED_10] = CNTR_ELEM("Tx Egress Reserved 10", 0, 0,
4930 			CNTR_NORMAL,
4931 			access_egress_reserved_10_err_cnt),
4932 [C_TX_RESERVED_9] = CNTR_ELEM("Tx Egress Reserved 9", 0, 0,
4933 			CNTR_NORMAL,
4934 			access_egress_reserved_9_err_cnt),
4935 [C_TX_SDMA_LAUNCH_INTF_PARITY_ERR] = CNTR_ELEM("TxSdmaLaunchIntfParityErr",
4936 			0, 0, CNTR_NORMAL,
4937 			access_tx_sdma_launch_intf_parity_err_cnt),
4938 [C_TX_PIO_LAUNCH_INTF_PARITY_ERR] = CNTR_ELEM("TxPioLaunchIntfParityErr", 0, 0,
4939 			CNTR_NORMAL,
4940 			access_tx_pio_launch_intf_parity_err_cnt),
4941 [C_TX_RESERVED_6] = CNTR_ELEM("Tx Egress Reserved 6", 0, 0,
4942 			CNTR_NORMAL,
4943 			access_egress_reserved_6_err_cnt),
4944 [C_TX_INCORRECT_LINK_STATE_ERR] = CNTR_ELEM("TxIncorrectLinkStateErr", 0, 0,
4945 			CNTR_NORMAL,
4946 			access_tx_incorrect_link_state_err_cnt),
4947 [C_TX_LINK_DOWN_ERR] = CNTR_ELEM("TxLinkdownErr", 0, 0,
4948 			CNTR_NORMAL,
4949 			access_tx_linkdown_err_cnt),
4950 [C_TX_EGRESS_FIFO_UNDERRUN_OR_PARITY_ERR] = CNTR_ELEM(
4951 			"EgressFifoUnderrunOrParityErr", 0, 0,
4952 			CNTR_NORMAL,
4953 			access_tx_egress_fifi_underrun_or_parity_err_cnt),
4954 [C_TX_RESERVED_2] = CNTR_ELEM("Tx Egress Reserved 2", 0, 0,
4955 			CNTR_NORMAL,
4956 			access_egress_reserved_2_err_cnt),
4957 [C_TX_PKT_INTEGRITY_MEM_UNC_ERR] = CNTR_ELEM("TxPktIntegrityMemUncErr", 0, 0,
4958 			CNTR_NORMAL,
4959 			access_tx_pkt_integrity_mem_unc_err_cnt),
4960 [C_TX_PKT_INTEGRITY_MEM_COR_ERR] = CNTR_ELEM("TxPktIntegrityMemCorErr", 0, 0,
4961 			CNTR_NORMAL,
4962 			access_tx_pkt_integrity_mem_cor_err_cnt),
4963 /* SendErrStatus */
4964 [C_SEND_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("SendCsrWriteBadAddrErr", 0, 0,
4965 			CNTR_NORMAL,
4966 			access_send_csr_write_bad_addr_err_cnt),
4967 [C_SEND_CSR_READ_BAD_ADD_ERR] = CNTR_ELEM("SendCsrReadBadAddrErr", 0, 0,
4968 			CNTR_NORMAL,
4969 			access_send_csr_read_bad_addr_err_cnt),
4970 [C_SEND_CSR_PARITY_ERR] = CNTR_ELEM("SendCsrParityErr", 0, 0,
4971 			CNTR_NORMAL,
4972 			access_send_csr_parity_cnt),
4973 /* SendCtxtErrStatus */
4974 [C_PIO_WRITE_OUT_OF_BOUNDS_ERR] = CNTR_ELEM("PioWriteOutOfBoundsErr", 0, 0,
4975 			CNTR_NORMAL,
4976 			access_pio_write_out_of_bounds_err_cnt),
4977 [C_PIO_WRITE_OVERFLOW_ERR] = CNTR_ELEM("PioWriteOverflowErr", 0, 0,
4978 			CNTR_NORMAL,
4979 			access_pio_write_overflow_err_cnt),
4980 [C_PIO_WRITE_CROSSES_BOUNDARY_ERR] = CNTR_ELEM("PioWriteCrossesBoundaryErr",
4981 			0, 0, CNTR_NORMAL,
4982 			access_pio_write_crosses_boundary_err_cnt),
4983 [C_PIO_DISALLOWED_PACKET_ERR] = CNTR_ELEM("PioDisallowedPacketErr", 0, 0,
4984 			CNTR_NORMAL,
4985 			access_pio_disallowed_packet_err_cnt),
4986 [C_PIO_INCONSISTENT_SOP_ERR] = CNTR_ELEM("PioInconsistentSopErr", 0, 0,
4987 			CNTR_NORMAL,
4988 			access_pio_inconsistent_sop_err_cnt),
4989 /* SendDmaEngErrStatus */
4990 [C_SDMA_HEADER_REQUEST_FIFO_COR_ERR] = CNTR_ELEM("SDmaHeaderRequestFifoCorErr",
4991 			0, 0, CNTR_NORMAL,
4992 			access_sdma_header_request_fifo_cor_err_cnt),
4993 [C_SDMA_HEADER_STORAGE_COR_ERR] = CNTR_ELEM("SDmaHeaderStorageCorErr", 0, 0,
4994 			CNTR_NORMAL,
4995 			access_sdma_header_storage_cor_err_cnt),
4996 [C_SDMA_PACKET_TRACKING_COR_ERR] = CNTR_ELEM("SDmaPacketTrackingCorErr", 0, 0,
4997 			CNTR_NORMAL,
4998 			access_sdma_packet_tracking_cor_err_cnt),
4999 [C_SDMA_ASSEMBLY_COR_ERR] = CNTR_ELEM("SDmaAssemblyCorErr", 0, 0,
5000 			CNTR_NORMAL,
5001 			access_sdma_assembly_cor_err_cnt),
5002 [C_SDMA_DESC_TABLE_COR_ERR] = CNTR_ELEM("SDmaDescTableCorErr", 0, 0,
5003 			CNTR_NORMAL,
5004 			access_sdma_desc_table_cor_err_cnt),
5005 [C_SDMA_HEADER_REQUEST_FIFO_UNC_ERR] = CNTR_ELEM("SDmaHeaderRequestFifoUncErr",
5006 			0, 0, CNTR_NORMAL,
5007 			access_sdma_header_request_fifo_unc_err_cnt),
5008 [C_SDMA_HEADER_STORAGE_UNC_ERR] = CNTR_ELEM("SDmaHeaderStorageUncErr", 0, 0,
5009 			CNTR_NORMAL,
5010 			access_sdma_header_storage_unc_err_cnt),
5011 [C_SDMA_PACKET_TRACKING_UNC_ERR] = CNTR_ELEM("SDmaPacketTrackingUncErr", 0, 0,
5012 			CNTR_NORMAL,
5013 			access_sdma_packet_tracking_unc_err_cnt),
5014 [C_SDMA_ASSEMBLY_UNC_ERR] = CNTR_ELEM("SDmaAssemblyUncErr", 0, 0,
5015 			CNTR_NORMAL,
5016 			access_sdma_assembly_unc_err_cnt),
5017 [C_SDMA_DESC_TABLE_UNC_ERR] = CNTR_ELEM("SDmaDescTableUncErr", 0, 0,
5018 			CNTR_NORMAL,
5019 			access_sdma_desc_table_unc_err_cnt),
5020 [C_SDMA_TIMEOUT_ERR] = CNTR_ELEM("SDmaTimeoutErr", 0, 0,
5021 			CNTR_NORMAL,
5022 			access_sdma_timeout_err_cnt),
5023 [C_SDMA_HEADER_LENGTH_ERR] = CNTR_ELEM("SDmaHeaderLengthErr", 0, 0,
5024 			CNTR_NORMAL,
5025 			access_sdma_header_length_err_cnt),
5026 [C_SDMA_HEADER_ADDRESS_ERR] = CNTR_ELEM("SDmaHeaderAddressErr", 0, 0,
5027 			CNTR_NORMAL,
5028 			access_sdma_header_address_err_cnt),
5029 [C_SDMA_HEADER_SELECT_ERR] = CNTR_ELEM("SDmaHeaderSelectErr", 0, 0,
5030 			CNTR_NORMAL,
5031 			access_sdma_header_select_err_cnt),
5032 [C_SMDA_RESERVED_9] = CNTR_ELEM("SDma Reserved 9", 0, 0,
5033 			CNTR_NORMAL,
5034 			access_sdma_reserved_9_err_cnt),
5035 [C_SDMA_PACKET_DESC_OVERFLOW_ERR] = CNTR_ELEM("SDmaPacketDescOverflowErr", 0, 0,
5036 			CNTR_NORMAL,
5037 			access_sdma_packet_desc_overflow_err_cnt),
5038 [C_SDMA_LENGTH_MISMATCH_ERR] = CNTR_ELEM("SDmaLengthMismatchErr", 0, 0,
5039 			CNTR_NORMAL,
5040 			access_sdma_length_mismatch_err_cnt),
5041 [C_SDMA_HALT_ERR] = CNTR_ELEM("SDmaHaltErr", 0, 0,
5042 			CNTR_NORMAL,
5043 			access_sdma_halt_err_cnt),
5044 [C_SDMA_MEM_READ_ERR] = CNTR_ELEM("SDmaMemReadErr", 0, 0,
5045 			CNTR_NORMAL,
5046 			access_sdma_mem_read_err_cnt),
5047 [C_SDMA_FIRST_DESC_ERR] = CNTR_ELEM("SDmaFirstDescErr", 0, 0,
5048 			CNTR_NORMAL,
5049 			access_sdma_first_desc_err_cnt),
5050 [C_SDMA_TAIL_OUT_OF_BOUNDS_ERR] = CNTR_ELEM("SDmaTailOutOfBoundsErr", 0, 0,
5051 			CNTR_NORMAL,
5052 			access_sdma_tail_out_of_bounds_err_cnt),
5053 [C_SDMA_TOO_LONG_ERR] = CNTR_ELEM("SDmaTooLongErr", 0, 0,
5054 			CNTR_NORMAL,
5055 			access_sdma_too_long_err_cnt),
5056 [C_SDMA_GEN_MISMATCH_ERR] = CNTR_ELEM("SDmaGenMismatchErr", 0, 0,
5057 			CNTR_NORMAL,
5058 			access_sdma_gen_mismatch_err_cnt),
5059 [C_SDMA_WRONG_DW_ERR] = CNTR_ELEM("SDmaWrongDwErr", 0, 0,
5060 			CNTR_NORMAL,
5061 			access_sdma_wrong_dw_err_cnt),
5062 };
5063 
5064 static struct cntr_entry port_cntrs[PORT_CNTR_LAST] = {
5065 [C_TX_UNSUP_VL] = TXE32_PORT_CNTR_ELEM(TxUnVLErr, SEND_UNSUP_VL_ERR_CNT,
5066 			CNTR_NORMAL),
5067 [C_TX_INVAL_LEN] = TXE32_PORT_CNTR_ELEM(TxInvalLen, SEND_LEN_ERR_CNT,
5068 			CNTR_NORMAL),
5069 [C_TX_MM_LEN_ERR] = TXE32_PORT_CNTR_ELEM(TxMMLenErr, SEND_MAX_MIN_LEN_ERR_CNT,
5070 			CNTR_NORMAL),
5071 [C_TX_UNDERRUN] = TXE32_PORT_CNTR_ELEM(TxUnderrun, SEND_UNDERRUN_CNT,
5072 			CNTR_NORMAL),
5073 [C_TX_FLOW_STALL] = TXE32_PORT_CNTR_ELEM(TxFlowStall, SEND_FLOW_STALL_CNT,
5074 			CNTR_NORMAL),
5075 [C_TX_DROPPED] = TXE32_PORT_CNTR_ELEM(TxDropped, SEND_DROPPED_PKT_CNT,
5076 			CNTR_NORMAL),
5077 [C_TX_HDR_ERR] = TXE32_PORT_CNTR_ELEM(TxHdrErr, SEND_HEADERS_ERR_CNT,
5078 			CNTR_NORMAL),
5079 [C_TX_PKT] = TXE64_PORT_CNTR_ELEM(TxPkt, SEND_DATA_PKT_CNT, CNTR_NORMAL),
5080 [C_TX_WORDS] = TXE64_PORT_CNTR_ELEM(TxWords, SEND_DWORD_CNT, CNTR_NORMAL),
5081 [C_TX_WAIT] = TXE64_PORT_CNTR_ELEM(TxWait, SEND_WAIT_CNT, CNTR_SYNTH),
5082 [C_TX_FLIT_VL] = TXE64_PORT_CNTR_ELEM(TxFlitVL, SEND_DATA_VL0_CNT,
5083 				      CNTR_SYNTH | CNTR_VL),
5084 [C_TX_PKT_VL] = TXE64_PORT_CNTR_ELEM(TxPktVL, SEND_DATA_PKT_VL0_CNT,
5085 				     CNTR_SYNTH | CNTR_VL),
5086 [C_TX_WAIT_VL] = TXE64_PORT_CNTR_ELEM(TxWaitVL, SEND_WAIT_VL0_CNT,
5087 				      CNTR_SYNTH | CNTR_VL),
5088 [C_RX_PKT] = RXE64_PORT_CNTR_ELEM(RxPkt, RCV_DATA_PKT_CNT, CNTR_NORMAL),
5089 [C_RX_WORDS] = RXE64_PORT_CNTR_ELEM(RxWords, RCV_DWORD_CNT, CNTR_NORMAL),
5090 [C_SW_LINK_DOWN] = CNTR_ELEM("SwLinkDown", 0, 0, CNTR_SYNTH | CNTR_32BIT,
5091 			     access_sw_link_dn_cnt),
5092 [C_SW_LINK_UP] = CNTR_ELEM("SwLinkUp", 0, 0, CNTR_SYNTH | CNTR_32BIT,
5093 			   access_sw_link_up_cnt),
5094 [C_SW_UNKNOWN_FRAME] = CNTR_ELEM("UnknownFrame", 0, 0, CNTR_NORMAL,
5095 				 access_sw_unknown_frame_cnt),
5096 [C_SW_XMIT_DSCD] = CNTR_ELEM("XmitDscd", 0, 0, CNTR_SYNTH | CNTR_32BIT,
5097 			     access_sw_xmit_discards),
5098 [C_SW_XMIT_DSCD_VL] = CNTR_ELEM("XmitDscdVl", 0, 0,
5099 				CNTR_SYNTH | CNTR_32BIT | CNTR_VL,
5100 				access_sw_xmit_discards),
5101 [C_SW_XMIT_CSTR_ERR] = CNTR_ELEM("XmitCstrErr", 0, 0, CNTR_SYNTH,
5102 				 access_xmit_constraint_errs),
5103 [C_SW_RCV_CSTR_ERR] = CNTR_ELEM("RcvCstrErr", 0, 0, CNTR_SYNTH,
5104 				access_rcv_constraint_errs),
5105 [C_SW_IBP_LOOP_PKTS] = SW_IBP_CNTR(LoopPkts, loop_pkts),
5106 [C_SW_IBP_RC_RESENDS] = SW_IBP_CNTR(RcResend, rc_resends),
5107 [C_SW_IBP_RNR_NAKS] = SW_IBP_CNTR(RnrNak, rnr_naks),
5108 [C_SW_IBP_OTHER_NAKS] = SW_IBP_CNTR(OtherNak, other_naks),
5109 [C_SW_IBP_RC_TIMEOUTS] = SW_IBP_CNTR(RcTimeOut, rc_timeouts),
5110 [C_SW_IBP_PKT_DROPS] = SW_IBP_CNTR(PktDrop, pkt_drops),
5111 [C_SW_IBP_DMA_WAIT] = SW_IBP_CNTR(DmaWait, dmawait),
5112 [C_SW_IBP_RC_SEQNAK] = SW_IBP_CNTR(RcSeqNak, rc_seqnak),
5113 [C_SW_IBP_RC_DUPREQ] = SW_IBP_CNTR(RcDupRew, rc_dupreq),
5114 [C_SW_IBP_RDMA_SEQ] = SW_IBP_CNTR(RdmaSeq, rdma_seq),
5115 [C_SW_IBP_UNALIGNED] = SW_IBP_CNTR(Unaligned, unaligned),
5116 [C_SW_IBP_SEQ_NAK] = SW_IBP_CNTR(SeqNak, seq_naks),
5117 [C_SW_CPU_RC_ACKS] = CNTR_ELEM("RcAcks", 0, 0, CNTR_NORMAL,
5118 			       access_sw_cpu_rc_acks),
5119 [C_SW_CPU_RC_QACKS] = CNTR_ELEM("RcQacks", 0, 0, CNTR_NORMAL,
5120 				access_sw_cpu_rc_qacks),
5121 [C_SW_CPU_RC_DELAYED_COMP] = CNTR_ELEM("RcDelayComp", 0, 0, CNTR_NORMAL,
5122 				       access_sw_cpu_rc_delayed_comp),
5123 [OVR_LBL(0)] = OVR_ELM(0), [OVR_LBL(1)] = OVR_ELM(1),
5124 [OVR_LBL(2)] = OVR_ELM(2), [OVR_LBL(3)] = OVR_ELM(3),
5125 [OVR_LBL(4)] = OVR_ELM(4), [OVR_LBL(5)] = OVR_ELM(5),
5126 [OVR_LBL(6)] = OVR_ELM(6), [OVR_LBL(7)] = OVR_ELM(7),
5127 [OVR_LBL(8)] = OVR_ELM(8), [OVR_LBL(9)] = OVR_ELM(9),
5128 [OVR_LBL(10)] = OVR_ELM(10), [OVR_LBL(11)] = OVR_ELM(11),
5129 [OVR_LBL(12)] = OVR_ELM(12), [OVR_LBL(13)] = OVR_ELM(13),
5130 [OVR_LBL(14)] = OVR_ELM(14), [OVR_LBL(15)] = OVR_ELM(15),
5131 [OVR_LBL(16)] = OVR_ELM(16), [OVR_LBL(17)] = OVR_ELM(17),
5132 [OVR_LBL(18)] = OVR_ELM(18), [OVR_LBL(19)] = OVR_ELM(19),
5133 [OVR_LBL(20)] = OVR_ELM(20), [OVR_LBL(21)] = OVR_ELM(21),
5134 [OVR_LBL(22)] = OVR_ELM(22), [OVR_LBL(23)] = OVR_ELM(23),
5135 [OVR_LBL(24)] = OVR_ELM(24), [OVR_LBL(25)] = OVR_ELM(25),
5136 [OVR_LBL(26)] = OVR_ELM(26), [OVR_LBL(27)] = OVR_ELM(27),
5137 [OVR_LBL(28)] = OVR_ELM(28), [OVR_LBL(29)] = OVR_ELM(29),
5138 [OVR_LBL(30)] = OVR_ELM(30), [OVR_LBL(31)] = OVR_ELM(31),
5139 [OVR_LBL(32)] = OVR_ELM(32), [OVR_LBL(33)] = OVR_ELM(33),
5140 [OVR_LBL(34)] = OVR_ELM(34), [OVR_LBL(35)] = OVR_ELM(35),
5141 [OVR_LBL(36)] = OVR_ELM(36), [OVR_LBL(37)] = OVR_ELM(37),
5142 [OVR_LBL(38)] = OVR_ELM(38), [OVR_LBL(39)] = OVR_ELM(39),
5143 [OVR_LBL(40)] = OVR_ELM(40), [OVR_LBL(41)] = OVR_ELM(41),
5144 [OVR_LBL(42)] = OVR_ELM(42), [OVR_LBL(43)] = OVR_ELM(43),
5145 [OVR_LBL(44)] = OVR_ELM(44), [OVR_LBL(45)] = OVR_ELM(45),
5146 [OVR_LBL(46)] = OVR_ELM(46), [OVR_LBL(47)] = OVR_ELM(47),
5147 [OVR_LBL(48)] = OVR_ELM(48), [OVR_LBL(49)] = OVR_ELM(49),
5148 [OVR_LBL(50)] = OVR_ELM(50), [OVR_LBL(51)] = OVR_ELM(51),
5149 [OVR_LBL(52)] = OVR_ELM(52), [OVR_LBL(53)] = OVR_ELM(53),
5150 [OVR_LBL(54)] = OVR_ELM(54), [OVR_LBL(55)] = OVR_ELM(55),
5151 [OVR_LBL(56)] = OVR_ELM(56), [OVR_LBL(57)] = OVR_ELM(57),
5152 [OVR_LBL(58)] = OVR_ELM(58), [OVR_LBL(59)] = OVR_ELM(59),
5153 [OVR_LBL(60)] = OVR_ELM(60), [OVR_LBL(61)] = OVR_ELM(61),
5154 [OVR_LBL(62)] = OVR_ELM(62), [OVR_LBL(63)] = OVR_ELM(63),
5155 [OVR_LBL(64)] = OVR_ELM(64), [OVR_LBL(65)] = OVR_ELM(65),
5156 [OVR_LBL(66)] = OVR_ELM(66), [OVR_LBL(67)] = OVR_ELM(67),
5157 [OVR_LBL(68)] = OVR_ELM(68), [OVR_LBL(69)] = OVR_ELM(69),
5158 [OVR_LBL(70)] = OVR_ELM(70), [OVR_LBL(71)] = OVR_ELM(71),
5159 [OVR_LBL(72)] = OVR_ELM(72), [OVR_LBL(73)] = OVR_ELM(73),
5160 [OVR_LBL(74)] = OVR_ELM(74), [OVR_LBL(75)] = OVR_ELM(75),
5161 [OVR_LBL(76)] = OVR_ELM(76), [OVR_LBL(77)] = OVR_ELM(77),
5162 [OVR_LBL(78)] = OVR_ELM(78), [OVR_LBL(79)] = OVR_ELM(79),
5163 [OVR_LBL(80)] = OVR_ELM(80), [OVR_LBL(81)] = OVR_ELM(81),
5164 [OVR_LBL(82)] = OVR_ELM(82), [OVR_LBL(83)] = OVR_ELM(83),
5165 [OVR_LBL(84)] = OVR_ELM(84), [OVR_LBL(85)] = OVR_ELM(85),
5166 [OVR_LBL(86)] = OVR_ELM(86), [OVR_LBL(87)] = OVR_ELM(87),
5167 [OVR_LBL(88)] = OVR_ELM(88), [OVR_LBL(89)] = OVR_ELM(89),
5168 [OVR_LBL(90)] = OVR_ELM(90), [OVR_LBL(91)] = OVR_ELM(91),
5169 [OVR_LBL(92)] = OVR_ELM(92), [OVR_LBL(93)] = OVR_ELM(93),
5170 [OVR_LBL(94)] = OVR_ELM(94), [OVR_LBL(95)] = OVR_ELM(95),
5171 [OVR_LBL(96)] = OVR_ELM(96), [OVR_LBL(97)] = OVR_ELM(97),
5172 [OVR_LBL(98)] = OVR_ELM(98), [OVR_LBL(99)] = OVR_ELM(99),
5173 [OVR_LBL(100)] = OVR_ELM(100), [OVR_LBL(101)] = OVR_ELM(101),
5174 [OVR_LBL(102)] = OVR_ELM(102), [OVR_LBL(103)] = OVR_ELM(103),
5175 [OVR_LBL(104)] = OVR_ELM(104), [OVR_LBL(105)] = OVR_ELM(105),
5176 [OVR_LBL(106)] = OVR_ELM(106), [OVR_LBL(107)] = OVR_ELM(107),
5177 [OVR_LBL(108)] = OVR_ELM(108), [OVR_LBL(109)] = OVR_ELM(109),
5178 [OVR_LBL(110)] = OVR_ELM(110), [OVR_LBL(111)] = OVR_ELM(111),
5179 [OVR_LBL(112)] = OVR_ELM(112), [OVR_LBL(113)] = OVR_ELM(113),
5180 [OVR_LBL(114)] = OVR_ELM(114), [OVR_LBL(115)] = OVR_ELM(115),
5181 [OVR_LBL(116)] = OVR_ELM(116), [OVR_LBL(117)] = OVR_ELM(117),
5182 [OVR_LBL(118)] = OVR_ELM(118), [OVR_LBL(119)] = OVR_ELM(119),
5183 [OVR_LBL(120)] = OVR_ELM(120), [OVR_LBL(121)] = OVR_ELM(121),
5184 [OVR_LBL(122)] = OVR_ELM(122), [OVR_LBL(123)] = OVR_ELM(123),
5185 [OVR_LBL(124)] = OVR_ELM(124), [OVR_LBL(125)] = OVR_ELM(125),
5186 [OVR_LBL(126)] = OVR_ELM(126), [OVR_LBL(127)] = OVR_ELM(127),
5187 [OVR_LBL(128)] = OVR_ELM(128), [OVR_LBL(129)] = OVR_ELM(129),
5188 [OVR_LBL(130)] = OVR_ELM(130), [OVR_LBL(131)] = OVR_ELM(131),
5189 [OVR_LBL(132)] = OVR_ELM(132), [OVR_LBL(133)] = OVR_ELM(133),
5190 [OVR_LBL(134)] = OVR_ELM(134), [OVR_LBL(135)] = OVR_ELM(135),
5191 [OVR_LBL(136)] = OVR_ELM(136), [OVR_LBL(137)] = OVR_ELM(137),
5192 [OVR_LBL(138)] = OVR_ELM(138), [OVR_LBL(139)] = OVR_ELM(139),
5193 [OVR_LBL(140)] = OVR_ELM(140), [OVR_LBL(141)] = OVR_ELM(141),
5194 [OVR_LBL(142)] = OVR_ELM(142), [OVR_LBL(143)] = OVR_ELM(143),
5195 [OVR_LBL(144)] = OVR_ELM(144), [OVR_LBL(145)] = OVR_ELM(145),
5196 [OVR_LBL(146)] = OVR_ELM(146), [OVR_LBL(147)] = OVR_ELM(147),
5197 [OVR_LBL(148)] = OVR_ELM(148), [OVR_LBL(149)] = OVR_ELM(149),
5198 [OVR_LBL(150)] = OVR_ELM(150), [OVR_LBL(151)] = OVR_ELM(151),
5199 [OVR_LBL(152)] = OVR_ELM(152), [OVR_LBL(153)] = OVR_ELM(153),
5200 [OVR_LBL(154)] = OVR_ELM(154), [OVR_LBL(155)] = OVR_ELM(155),
5201 [OVR_LBL(156)] = OVR_ELM(156), [OVR_LBL(157)] = OVR_ELM(157),
5202 [OVR_LBL(158)] = OVR_ELM(158), [OVR_LBL(159)] = OVR_ELM(159),
5203 };
5204 
5205 /* ======================================================================== */
5206 
5207 /* return true if this is chip revision revision a */
5208 int is_ax(struct hfi1_devdata *dd)
5209 {
5210 	u8 chip_rev_minor =
5211 		dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT
5212 			& CCE_REVISION_CHIP_REV_MINOR_MASK;
5213 	return (chip_rev_minor & 0xf0) == 0;
5214 }
5215 
5216 /* return true if this is chip revision revision b */
5217 int is_bx(struct hfi1_devdata *dd)
5218 {
5219 	u8 chip_rev_minor =
5220 		dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT
5221 			& CCE_REVISION_CHIP_REV_MINOR_MASK;
5222 	return (chip_rev_minor & 0xF0) == 0x10;
5223 }
5224 
5225 /*
5226  * Append string s to buffer buf.  Arguments curp and len are the current
5227  * position and remaining length, respectively.
5228  *
5229  * return 0 on success, 1 on out of room
5230  */
5231 static int append_str(char *buf, char **curp, int *lenp, const char *s)
5232 {
5233 	char *p = *curp;
5234 	int len = *lenp;
5235 	int result = 0; /* success */
5236 	char c;
5237 
5238 	/* add a comma, if first in the buffer */
5239 	if (p != buf) {
5240 		if (len == 0) {
5241 			result = 1; /* out of room */
5242 			goto done;
5243 		}
5244 		*p++ = ',';
5245 		len--;
5246 	}
5247 
5248 	/* copy the string */
5249 	while ((c = *s++) != 0) {
5250 		if (len == 0) {
5251 			result = 1; /* out of room */
5252 			goto done;
5253 		}
5254 		*p++ = c;
5255 		len--;
5256 	}
5257 
5258 done:
5259 	/* write return values */
5260 	*curp = p;
5261 	*lenp = len;
5262 
5263 	return result;
5264 }
5265 
5266 /*
5267  * Using the given flag table, print a comma separated string into
5268  * the buffer.  End in '*' if the buffer is too short.
5269  */
5270 static char *flag_string(char *buf, int buf_len, u64 flags,
5271 			 struct flag_table *table, int table_size)
5272 {
5273 	char extra[32];
5274 	char *p = buf;
5275 	int len = buf_len;
5276 	int no_room = 0;
5277 	int i;
5278 
5279 	/* make sure there is at least 2 so we can form "*" */
5280 	if (len < 2)
5281 		return "";
5282 
5283 	len--;	/* leave room for a nul */
5284 	for (i = 0; i < table_size; i++) {
5285 		if (flags & table[i].flag) {
5286 			no_room = append_str(buf, &p, &len, table[i].str);
5287 			if (no_room)
5288 				break;
5289 			flags &= ~table[i].flag;
5290 		}
5291 	}
5292 
5293 	/* any undocumented bits left? */
5294 	if (!no_room && flags) {
5295 		snprintf(extra, sizeof(extra), "bits 0x%llx", flags);
5296 		no_room = append_str(buf, &p, &len, extra);
5297 	}
5298 
5299 	/* add * if ran out of room */
5300 	if (no_room) {
5301 		/* may need to back up to add space for a '*' */
5302 		if (len == 0)
5303 			--p;
5304 		*p++ = '*';
5305 	}
5306 
5307 	/* add final nul - space already allocated above */
5308 	*p = 0;
5309 	return buf;
5310 }
5311 
5312 /* first 8 CCE error interrupt source names */
5313 static const char * const cce_misc_names[] = {
5314 	"CceErrInt",		/* 0 */
5315 	"RxeErrInt",		/* 1 */
5316 	"MiscErrInt",		/* 2 */
5317 	"Reserved3",		/* 3 */
5318 	"PioErrInt",		/* 4 */
5319 	"SDmaErrInt",		/* 5 */
5320 	"EgressErrInt",		/* 6 */
5321 	"TxeErrInt"		/* 7 */
5322 };
5323 
5324 /*
5325  * Return the miscellaneous error interrupt name.
5326  */
5327 static char *is_misc_err_name(char *buf, size_t bsize, unsigned int source)
5328 {
5329 	if (source < ARRAY_SIZE(cce_misc_names))
5330 		strncpy(buf, cce_misc_names[source], bsize);
5331 	else
5332 		snprintf(buf, bsize, "Reserved%u",
5333 			 source + IS_GENERAL_ERR_START);
5334 
5335 	return buf;
5336 }
5337 
5338 /*
5339  * Return the SDMA engine error interrupt name.
5340  */
5341 static char *is_sdma_eng_err_name(char *buf, size_t bsize, unsigned int source)
5342 {
5343 	snprintf(buf, bsize, "SDmaEngErrInt%u", source);
5344 	return buf;
5345 }
5346 
5347 /*
5348  * Return the send context error interrupt name.
5349  */
5350 static char *is_sendctxt_err_name(char *buf, size_t bsize, unsigned int source)
5351 {
5352 	snprintf(buf, bsize, "SendCtxtErrInt%u", source);
5353 	return buf;
5354 }
5355 
5356 static const char * const various_names[] = {
5357 	"PbcInt",
5358 	"GpioAssertInt",
5359 	"Qsfp1Int",
5360 	"Qsfp2Int",
5361 	"TCritInt"
5362 };
5363 
5364 /*
5365  * Return the various interrupt name.
5366  */
5367 static char *is_various_name(char *buf, size_t bsize, unsigned int source)
5368 {
5369 	if (source < ARRAY_SIZE(various_names))
5370 		strncpy(buf, various_names[source], bsize);
5371 	else
5372 		snprintf(buf, bsize, "Reserved%u", source + IS_VARIOUS_START);
5373 	return buf;
5374 }
5375 
5376 /*
5377  * Return the DC interrupt name.
5378  */
5379 static char *is_dc_name(char *buf, size_t bsize, unsigned int source)
5380 {
5381 	static const char * const dc_int_names[] = {
5382 		"common",
5383 		"lcb",
5384 		"8051",
5385 		"lbm"	/* local block merge */
5386 	};
5387 
5388 	if (source < ARRAY_SIZE(dc_int_names))
5389 		snprintf(buf, bsize, "dc_%s_int", dc_int_names[source]);
5390 	else
5391 		snprintf(buf, bsize, "DCInt%u", source);
5392 	return buf;
5393 }
5394 
5395 static const char * const sdma_int_names[] = {
5396 	"SDmaInt",
5397 	"SdmaIdleInt",
5398 	"SdmaProgressInt",
5399 };
5400 
5401 /*
5402  * Return the SDMA engine interrupt name.
5403  */
5404 static char *is_sdma_eng_name(char *buf, size_t bsize, unsigned int source)
5405 {
5406 	/* what interrupt */
5407 	unsigned int what  = source / TXE_NUM_SDMA_ENGINES;
5408 	/* which engine */
5409 	unsigned int which = source % TXE_NUM_SDMA_ENGINES;
5410 
5411 	if (likely(what < 3))
5412 		snprintf(buf, bsize, "%s%u", sdma_int_names[what], which);
5413 	else
5414 		snprintf(buf, bsize, "Invalid SDMA interrupt %u", source);
5415 	return buf;
5416 }
5417 
5418 /*
5419  * Return the receive available interrupt name.
5420  */
5421 static char *is_rcv_avail_name(char *buf, size_t bsize, unsigned int source)
5422 {
5423 	snprintf(buf, bsize, "RcvAvailInt%u", source);
5424 	return buf;
5425 }
5426 
5427 /*
5428  * Return the receive urgent interrupt name.
5429  */
5430 static char *is_rcv_urgent_name(char *buf, size_t bsize, unsigned int source)
5431 {
5432 	snprintf(buf, bsize, "RcvUrgentInt%u", source);
5433 	return buf;
5434 }
5435 
5436 /*
5437  * Return the send credit interrupt name.
5438  */
5439 static char *is_send_credit_name(char *buf, size_t bsize, unsigned int source)
5440 {
5441 	snprintf(buf, bsize, "SendCreditInt%u", source);
5442 	return buf;
5443 }
5444 
5445 /*
5446  * Return the reserved interrupt name.
5447  */
5448 static char *is_reserved_name(char *buf, size_t bsize, unsigned int source)
5449 {
5450 	snprintf(buf, bsize, "Reserved%u", source + IS_RESERVED_START);
5451 	return buf;
5452 }
5453 
5454 static char *cce_err_status_string(char *buf, int buf_len, u64 flags)
5455 {
5456 	return flag_string(buf, buf_len, flags,
5457 			   cce_err_status_flags,
5458 			   ARRAY_SIZE(cce_err_status_flags));
5459 }
5460 
5461 static char *rxe_err_status_string(char *buf, int buf_len, u64 flags)
5462 {
5463 	return flag_string(buf, buf_len, flags,
5464 			   rxe_err_status_flags,
5465 			   ARRAY_SIZE(rxe_err_status_flags));
5466 }
5467 
5468 static char *misc_err_status_string(char *buf, int buf_len, u64 flags)
5469 {
5470 	return flag_string(buf, buf_len, flags, misc_err_status_flags,
5471 			   ARRAY_SIZE(misc_err_status_flags));
5472 }
5473 
5474 static char *pio_err_status_string(char *buf, int buf_len, u64 flags)
5475 {
5476 	return flag_string(buf, buf_len, flags,
5477 			   pio_err_status_flags,
5478 			   ARRAY_SIZE(pio_err_status_flags));
5479 }
5480 
5481 static char *sdma_err_status_string(char *buf, int buf_len, u64 flags)
5482 {
5483 	return flag_string(buf, buf_len, flags,
5484 			   sdma_err_status_flags,
5485 			   ARRAY_SIZE(sdma_err_status_flags));
5486 }
5487 
5488 static char *egress_err_status_string(char *buf, int buf_len, u64 flags)
5489 {
5490 	return flag_string(buf, buf_len, flags,
5491 			   egress_err_status_flags,
5492 			   ARRAY_SIZE(egress_err_status_flags));
5493 }
5494 
5495 static char *egress_err_info_string(char *buf, int buf_len, u64 flags)
5496 {
5497 	return flag_string(buf, buf_len, flags,
5498 			   egress_err_info_flags,
5499 			   ARRAY_SIZE(egress_err_info_flags));
5500 }
5501 
5502 static char *send_err_status_string(char *buf, int buf_len, u64 flags)
5503 {
5504 	return flag_string(buf, buf_len, flags,
5505 			   send_err_status_flags,
5506 			   ARRAY_SIZE(send_err_status_flags));
5507 }
5508 
5509 static void handle_cce_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5510 {
5511 	char buf[96];
5512 	int i = 0;
5513 
5514 	/*
5515 	 * For most these errors, there is nothing that can be done except
5516 	 * report or record it.
5517 	 */
5518 	dd_dev_info(dd, "CCE Error: %s\n",
5519 		    cce_err_status_string(buf, sizeof(buf), reg));
5520 
5521 	if ((reg & CCE_ERR_STATUS_CCE_CLI2_ASYNC_FIFO_PARITY_ERR_SMASK) &&
5522 	    is_ax(dd) && (dd->icode != ICODE_FUNCTIONAL_SIMULATOR)) {
5523 		/* this error requires a manual drop into SPC freeze mode */
5524 		/* then a fix up */
5525 		start_freeze_handling(dd->pport, FREEZE_SELF);
5526 	}
5527 
5528 	for (i = 0; i < NUM_CCE_ERR_STATUS_COUNTERS; i++) {
5529 		if (reg & (1ull << i)) {
5530 			incr_cntr64(&dd->cce_err_status_cnt[i]);
5531 			/* maintain a counter over all cce_err_status errors */
5532 			incr_cntr64(&dd->sw_cce_err_status_aggregate);
5533 		}
5534 	}
5535 }
5536 
5537 /*
5538  * Check counters for receive errors that do not have an interrupt
5539  * associated with them.
5540  */
5541 #define RCVERR_CHECK_TIME 10
5542 static void update_rcverr_timer(struct timer_list *t)
5543 {
5544 	struct hfi1_devdata *dd = from_timer(dd, t, rcverr_timer);
5545 	struct hfi1_pportdata *ppd = dd->pport;
5546 	u32 cur_ovfl_cnt = read_dev_cntr(dd, C_RCV_OVF, CNTR_INVALID_VL);
5547 
5548 	if (dd->rcv_ovfl_cnt < cur_ovfl_cnt &&
5549 	    ppd->port_error_action & OPA_PI_MASK_EX_BUFFER_OVERRUN) {
5550 		dd_dev_info(dd, "%s: PortErrorAction bounce\n", __func__);
5551 		set_link_down_reason(
5552 		ppd, OPA_LINKDOWN_REASON_EXCESSIVE_BUFFER_OVERRUN, 0,
5553 		OPA_LINKDOWN_REASON_EXCESSIVE_BUFFER_OVERRUN);
5554 		queue_work(ppd->link_wq, &ppd->link_bounce_work);
5555 	}
5556 	dd->rcv_ovfl_cnt = (u32)cur_ovfl_cnt;
5557 
5558 	mod_timer(&dd->rcverr_timer, jiffies + HZ * RCVERR_CHECK_TIME);
5559 }
5560 
5561 static int init_rcverr(struct hfi1_devdata *dd)
5562 {
5563 	timer_setup(&dd->rcverr_timer, update_rcverr_timer, 0);
5564 	/* Assume the hardware counter has been reset */
5565 	dd->rcv_ovfl_cnt = 0;
5566 	return mod_timer(&dd->rcverr_timer, jiffies + HZ * RCVERR_CHECK_TIME);
5567 }
5568 
5569 static void free_rcverr(struct hfi1_devdata *dd)
5570 {
5571 	if (dd->rcverr_timer.function)
5572 		del_timer_sync(&dd->rcverr_timer);
5573 }
5574 
5575 static void handle_rxe_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5576 {
5577 	char buf[96];
5578 	int i = 0;
5579 
5580 	dd_dev_info(dd, "Receive Error: %s\n",
5581 		    rxe_err_status_string(buf, sizeof(buf), reg));
5582 
5583 	if (reg & ALL_RXE_FREEZE_ERR) {
5584 		int flags = 0;
5585 
5586 		/*
5587 		 * Freeze mode recovery is disabled for the errors
5588 		 * in RXE_FREEZE_ABORT_MASK
5589 		 */
5590 		if (is_ax(dd) && (reg & RXE_FREEZE_ABORT_MASK))
5591 			flags = FREEZE_ABORT;
5592 
5593 		start_freeze_handling(dd->pport, flags);
5594 	}
5595 
5596 	for (i = 0; i < NUM_RCV_ERR_STATUS_COUNTERS; i++) {
5597 		if (reg & (1ull << i))
5598 			incr_cntr64(&dd->rcv_err_status_cnt[i]);
5599 	}
5600 }
5601 
5602 static void handle_misc_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5603 {
5604 	char buf[96];
5605 	int i = 0;
5606 
5607 	dd_dev_info(dd, "Misc Error: %s",
5608 		    misc_err_status_string(buf, sizeof(buf), reg));
5609 	for (i = 0; i < NUM_MISC_ERR_STATUS_COUNTERS; i++) {
5610 		if (reg & (1ull << i))
5611 			incr_cntr64(&dd->misc_err_status_cnt[i]);
5612 	}
5613 }
5614 
5615 static void handle_pio_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5616 {
5617 	char buf[96];
5618 	int i = 0;
5619 
5620 	dd_dev_info(dd, "PIO Error: %s\n",
5621 		    pio_err_status_string(buf, sizeof(buf), reg));
5622 
5623 	if (reg & ALL_PIO_FREEZE_ERR)
5624 		start_freeze_handling(dd->pport, 0);
5625 
5626 	for (i = 0; i < NUM_SEND_PIO_ERR_STATUS_COUNTERS; i++) {
5627 		if (reg & (1ull << i))
5628 			incr_cntr64(&dd->send_pio_err_status_cnt[i]);
5629 	}
5630 }
5631 
5632 static void handle_sdma_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5633 {
5634 	char buf[96];
5635 	int i = 0;
5636 
5637 	dd_dev_info(dd, "SDMA Error: %s\n",
5638 		    sdma_err_status_string(buf, sizeof(buf), reg));
5639 
5640 	if (reg & ALL_SDMA_FREEZE_ERR)
5641 		start_freeze_handling(dd->pport, 0);
5642 
5643 	for (i = 0; i < NUM_SEND_DMA_ERR_STATUS_COUNTERS; i++) {
5644 		if (reg & (1ull << i))
5645 			incr_cntr64(&dd->send_dma_err_status_cnt[i]);
5646 	}
5647 }
5648 
5649 static inline void __count_port_discards(struct hfi1_pportdata *ppd)
5650 {
5651 	incr_cntr64(&ppd->port_xmit_discards);
5652 }
5653 
5654 static void count_port_inactive(struct hfi1_devdata *dd)
5655 {
5656 	__count_port_discards(dd->pport);
5657 }
5658 
5659 /*
5660  * We have had a "disallowed packet" error during egress. Determine the
5661  * integrity check which failed, and update relevant error counter, etc.
5662  *
5663  * Note that the SEND_EGRESS_ERR_INFO register has only a single
5664  * bit of state per integrity check, and so we can miss the reason for an
5665  * egress error if more than one packet fails the same integrity check
5666  * since we cleared the corresponding bit in SEND_EGRESS_ERR_INFO.
5667  */
5668 static void handle_send_egress_err_info(struct hfi1_devdata *dd,
5669 					int vl)
5670 {
5671 	struct hfi1_pportdata *ppd = dd->pport;
5672 	u64 src = read_csr(dd, SEND_EGRESS_ERR_SOURCE); /* read first */
5673 	u64 info = read_csr(dd, SEND_EGRESS_ERR_INFO);
5674 	char buf[96];
5675 
5676 	/* clear down all observed info as quickly as possible after read */
5677 	write_csr(dd, SEND_EGRESS_ERR_INFO, info);
5678 
5679 	dd_dev_info(dd,
5680 		    "Egress Error Info: 0x%llx, %s Egress Error Src 0x%llx\n",
5681 		    info, egress_err_info_string(buf, sizeof(buf), info), src);
5682 
5683 	/* Eventually add other counters for each bit */
5684 	if (info & PORT_DISCARD_EGRESS_ERRS) {
5685 		int weight, i;
5686 
5687 		/*
5688 		 * Count all applicable bits as individual errors and
5689 		 * attribute them to the packet that triggered this handler.
5690 		 * This may not be completely accurate due to limitations
5691 		 * on the available hardware error information.  There is
5692 		 * a single information register and any number of error
5693 		 * packets may have occurred and contributed to it before
5694 		 * this routine is called.  This means that:
5695 		 * a) If multiple packets with the same error occur before
5696 		 *    this routine is called, earlier packets are missed.
5697 		 *    There is only a single bit for each error type.
5698 		 * b) Errors may not be attributed to the correct VL.
5699 		 *    The driver is attributing all bits in the info register
5700 		 *    to the packet that triggered this call, but bits
5701 		 *    could be an accumulation of different packets with
5702 		 *    different VLs.
5703 		 * c) A single error packet may have multiple counts attached
5704 		 *    to it.  There is no way for the driver to know if
5705 		 *    multiple bits set in the info register are due to a
5706 		 *    single packet or multiple packets.  The driver assumes
5707 		 *    multiple packets.
5708 		 */
5709 		weight = hweight64(info & PORT_DISCARD_EGRESS_ERRS);
5710 		for (i = 0; i < weight; i++) {
5711 			__count_port_discards(ppd);
5712 			if (vl >= 0 && vl < TXE_NUM_DATA_VL)
5713 				incr_cntr64(&ppd->port_xmit_discards_vl[vl]);
5714 			else if (vl == 15)
5715 				incr_cntr64(&ppd->port_xmit_discards_vl
5716 					    [C_VL_15]);
5717 		}
5718 	}
5719 }
5720 
5721 /*
5722  * Input value is a bit position within the SEND_EGRESS_ERR_STATUS
5723  * register. Does it represent a 'port inactive' error?
5724  */
5725 static inline int port_inactive_err(u64 posn)
5726 {
5727 	return (posn >= SEES(TX_LINKDOWN) &&
5728 		posn <= SEES(TX_INCORRECT_LINK_STATE));
5729 }
5730 
5731 /*
5732  * Input value is a bit position within the SEND_EGRESS_ERR_STATUS
5733  * register. Does it represent a 'disallowed packet' error?
5734  */
5735 static inline int disallowed_pkt_err(int posn)
5736 {
5737 	return (posn >= SEES(TX_SDMA0_DISALLOWED_PACKET) &&
5738 		posn <= SEES(TX_SDMA15_DISALLOWED_PACKET));
5739 }
5740 
5741 /*
5742  * Input value is a bit position of one of the SDMA engine disallowed
5743  * packet errors.  Return which engine.  Use of this must be guarded by
5744  * disallowed_pkt_err().
5745  */
5746 static inline int disallowed_pkt_engine(int posn)
5747 {
5748 	return posn - SEES(TX_SDMA0_DISALLOWED_PACKET);
5749 }
5750 
5751 /*
5752  * Translate an SDMA engine to a VL.  Return -1 if the tranlation cannot
5753  * be done.
5754  */
5755 static int engine_to_vl(struct hfi1_devdata *dd, int engine)
5756 {
5757 	struct sdma_vl_map *m;
5758 	int vl;
5759 
5760 	/* range check */
5761 	if (engine < 0 || engine >= TXE_NUM_SDMA_ENGINES)
5762 		return -1;
5763 
5764 	rcu_read_lock();
5765 	m = rcu_dereference(dd->sdma_map);
5766 	vl = m->engine_to_vl[engine];
5767 	rcu_read_unlock();
5768 
5769 	return vl;
5770 }
5771 
5772 /*
5773  * Translate the send context (sofware index) into a VL.  Return -1 if the
5774  * translation cannot be done.
5775  */
5776 static int sc_to_vl(struct hfi1_devdata *dd, int sw_index)
5777 {
5778 	struct send_context_info *sci;
5779 	struct send_context *sc;
5780 	int i;
5781 
5782 	sci = &dd->send_contexts[sw_index];
5783 
5784 	/* there is no information for user (PSM) and ack contexts */
5785 	if ((sci->type != SC_KERNEL) && (sci->type != SC_VL15))
5786 		return -1;
5787 
5788 	sc = sci->sc;
5789 	if (!sc)
5790 		return -1;
5791 	if (dd->vld[15].sc == sc)
5792 		return 15;
5793 	for (i = 0; i < num_vls; i++)
5794 		if (dd->vld[i].sc == sc)
5795 			return i;
5796 
5797 	return -1;
5798 }
5799 
5800 static void handle_egress_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5801 {
5802 	u64 reg_copy = reg, handled = 0;
5803 	char buf[96];
5804 	int i = 0;
5805 
5806 	if (reg & ALL_TXE_EGRESS_FREEZE_ERR)
5807 		start_freeze_handling(dd->pport, 0);
5808 	else if (is_ax(dd) &&
5809 		 (reg & SEND_EGRESS_ERR_STATUS_TX_CREDIT_RETURN_VL_ERR_SMASK) &&
5810 		 (dd->icode != ICODE_FUNCTIONAL_SIMULATOR))
5811 		start_freeze_handling(dd->pport, 0);
5812 
5813 	while (reg_copy) {
5814 		int posn = fls64(reg_copy);
5815 		/* fls64() returns a 1-based offset, we want it zero based */
5816 		int shift = posn - 1;
5817 		u64 mask = 1ULL << shift;
5818 
5819 		if (port_inactive_err(shift)) {
5820 			count_port_inactive(dd);
5821 			handled |= mask;
5822 		} else if (disallowed_pkt_err(shift)) {
5823 			int vl = engine_to_vl(dd, disallowed_pkt_engine(shift));
5824 
5825 			handle_send_egress_err_info(dd, vl);
5826 			handled |= mask;
5827 		}
5828 		reg_copy &= ~mask;
5829 	}
5830 
5831 	reg &= ~handled;
5832 
5833 	if (reg)
5834 		dd_dev_info(dd, "Egress Error: %s\n",
5835 			    egress_err_status_string(buf, sizeof(buf), reg));
5836 
5837 	for (i = 0; i < NUM_SEND_EGRESS_ERR_STATUS_COUNTERS; i++) {
5838 		if (reg & (1ull << i))
5839 			incr_cntr64(&dd->send_egress_err_status_cnt[i]);
5840 	}
5841 }
5842 
5843 static void handle_txe_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5844 {
5845 	char buf[96];
5846 	int i = 0;
5847 
5848 	dd_dev_info(dd, "Send Error: %s\n",
5849 		    send_err_status_string(buf, sizeof(buf), reg));
5850 
5851 	for (i = 0; i < NUM_SEND_ERR_STATUS_COUNTERS; i++) {
5852 		if (reg & (1ull << i))
5853 			incr_cntr64(&dd->send_err_status_cnt[i]);
5854 	}
5855 }
5856 
5857 /*
5858  * The maximum number of times the error clear down will loop before
5859  * blocking a repeating error.  This value is arbitrary.
5860  */
5861 #define MAX_CLEAR_COUNT 20
5862 
5863 /*
5864  * Clear and handle an error register.  All error interrupts are funneled
5865  * through here to have a central location to correctly handle single-
5866  * or multi-shot errors.
5867  *
5868  * For non per-context registers, call this routine with a context value
5869  * of 0 so the per-context offset is zero.
5870  *
5871  * If the handler loops too many times, assume that something is wrong
5872  * and can't be fixed, so mask the error bits.
5873  */
5874 static void interrupt_clear_down(struct hfi1_devdata *dd,
5875 				 u32 context,
5876 				 const struct err_reg_info *eri)
5877 {
5878 	u64 reg;
5879 	u32 count;
5880 
5881 	/* read in a loop until no more errors are seen */
5882 	count = 0;
5883 	while (1) {
5884 		reg = read_kctxt_csr(dd, context, eri->status);
5885 		if (reg == 0)
5886 			break;
5887 		write_kctxt_csr(dd, context, eri->clear, reg);
5888 		if (likely(eri->handler))
5889 			eri->handler(dd, context, reg);
5890 		count++;
5891 		if (count > MAX_CLEAR_COUNT) {
5892 			u64 mask;
5893 
5894 			dd_dev_err(dd, "Repeating %s bits 0x%llx - masking\n",
5895 				   eri->desc, reg);
5896 			/*
5897 			 * Read-modify-write so any other masked bits
5898 			 * remain masked.
5899 			 */
5900 			mask = read_kctxt_csr(dd, context, eri->mask);
5901 			mask &= ~reg;
5902 			write_kctxt_csr(dd, context, eri->mask, mask);
5903 			break;
5904 		}
5905 	}
5906 }
5907 
5908 /*
5909  * CCE block "misc" interrupt.  Source is < 16.
5910  */
5911 static void is_misc_err_int(struct hfi1_devdata *dd, unsigned int source)
5912 {
5913 	const struct err_reg_info *eri = &misc_errs[source];
5914 
5915 	if (eri->handler) {
5916 		interrupt_clear_down(dd, 0, eri);
5917 	} else {
5918 		dd_dev_err(dd, "Unexpected misc interrupt (%u) - reserved\n",
5919 			   source);
5920 	}
5921 }
5922 
5923 static char *send_context_err_status_string(char *buf, int buf_len, u64 flags)
5924 {
5925 	return flag_string(buf, buf_len, flags,
5926 			   sc_err_status_flags,
5927 			   ARRAY_SIZE(sc_err_status_flags));
5928 }
5929 
5930 /*
5931  * Send context error interrupt.  Source (hw_context) is < 160.
5932  *
5933  * All send context errors cause the send context to halt.  The normal
5934  * clear-down mechanism cannot be used because we cannot clear the
5935  * error bits until several other long-running items are done first.
5936  * This is OK because with the context halted, nothing else is going
5937  * to happen on it anyway.
5938  */
5939 static void is_sendctxt_err_int(struct hfi1_devdata *dd,
5940 				unsigned int hw_context)
5941 {
5942 	struct send_context_info *sci;
5943 	struct send_context *sc;
5944 	char flags[96];
5945 	u64 status;
5946 	u32 sw_index;
5947 	int i = 0;
5948 	unsigned long irq_flags;
5949 
5950 	sw_index = dd->hw_to_sw[hw_context];
5951 	if (sw_index >= dd->num_send_contexts) {
5952 		dd_dev_err(dd,
5953 			   "out of range sw index %u for send context %u\n",
5954 			   sw_index, hw_context);
5955 		return;
5956 	}
5957 	sci = &dd->send_contexts[sw_index];
5958 	spin_lock_irqsave(&dd->sc_lock, irq_flags);
5959 	sc = sci->sc;
5960 	if (!sc) {
5961 		dd_dev_err(dd, "%s: context %u(%u): no sc?\n", __func__,
5962 			   sw_index, hw_context);
5963 		spin_unlock_irqrestore(&dd->sc_lock, irq_flags);
5964 		return;
5965 	}
5966 
5967 	/* tell the software that a halt has begun */
5968 	sc_stop(sc, SCF_HALTED);
5969 
5970 	status = read_kctxt_csr(dd, hw_context, SEND_CTXT_ERR_STATUS);
5971 
5972 	dd_dev_info(dd, "Send Context %u(%u) Error: %s\n", sw_index, hw_context,
5973 		    send_context_err_status_string(flags, sizeof(flags),
5974 						   status));
5975 
5976 	if (status & SEND_CTXT_ERR_STATUS_PIO_DISALLOWED_PACKET_ERR_SMASK)
5977 		handle_send_egress_err_info(dd, sc_to_vl(dd, sw_index));
5978 
5979 	/*
5980 	 * Automatically restart halted kernel contexts out of interrupt
5981 	 * context.  User contexts must ask the driver to restart the context.
5982 	 */
5983 	if (sc->type != SC_USER)
5984 		queue_work(dd->pport->hfi1_wq, &sc->halt_work);
5985 	spin_unlock_irqrestore(&dd->sc_lock, irq_flags);
5986 
5987 	/*
5988 	 * Update the counters for the corresponding status bits.
5989 	 * Note that these particular counters are aggregated over all
5990 	 * 160 contexts.
5991 	 */
5992 	for (i = 0; i < NUM_SEND_CTXT_ERR_STATUS_COUNTERS; i++) {
5993 		if (status & (1ull << i))
5994 			incr_cntr64(&dd->sw_ctxt_err_status_cnt[i]);
5995 	}
5996 }
5997 
5998 static void handle_sdma_eng_err(struct hfi1_devdata *dd,
5999 				unsigned int source, u64 status)
6000 {
6001 	struct sdma_engine *sde;
6002 	int i = 0;
6003 
6004 	sde = &dd->per_sdma[source];
6005 #ifdef CONFIG_SDMA_VERBOSITY
6006 	dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
6007 		   slashstrip(__FILE__), __LINE__, __func__);
6008 	dd_dev_err(sde->dd, "CONFIG SDMA(%u) source: %u status 0x%llx\n",
6009 		   sde->this_idx, source, (unsigned long long)status);
6010 #endif
6011 	sde->err_cnt++;
6012 	sdma_engine_error(sde, status);
6013 
6014 	/*
6015 	* Update the counters for the corresponding status bits.
6016 	* Note that these particular counters are aggregated over
6017 	* all 16 DMA engines.
6018 	*/
6019 	for (i = 0; i < NUM_SEND_DMA_ENG_ERR_STATUS_COUNTERS; i++) {
6020 		if (status & (1ull << i))
6021 			incr_cntr64(&dd->sw_send_dma_eng_err_status_cnt[i]);
6022 	}
6023 }
6024 
6025 /*
6026  * CCE block SDMA error interrupt.  Source is < 16.
6027  */
6028 static void is_sdma_eng_err_int(struct hfi1_devdata *dd, unsigned int source)
6029 {
6030 #ifdef CONFIG_SDMA_VERBOSITY
6031 	struct sdma_engine *sde = &dd->per_sdma[source];
6032 
6033 	dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
6034 		   slashstrip(__FILE__), __LINE__, __func__);
6035 	dd_dev_err(dd, "CONFIG SDMA(%u) source: %u\n", sde->this_idx,
6036 		   source);
6037 	sdma_dumpstate(sde);
6038 #endif
6039 	interrupt_clear_down(dd, source, &sdma_eng_err);
6040 }
6041 
6042 /*
6043  * CCE block "various" interrupt.  Source is < 8.
6044  */
6045 static void is_various_int(struct hfi1_devdata *dd, unsigned int source)
6046 {
6047 	const struct err_reg_info *eri = &various_err[source];
6048 
6049 	/*
6050 	 * TCritInt cannot go through interrupt_clear_down()
6051 	 * because it is not a second tier interrupt. The handler
6052 	 * should be called directly.
6053 	 */
6054 	if (source == TCRIT_INT_SOURCE)
6055 		handle_temp_err(dd);
6056 	else if (eri->handler)
6057 		interrupt_clear_down(dd, 0, eri);
6058 	else
6059 		dd_dev_info(dd,
6060 			    "%s: Unimplemented/reserved interrupt %d\n",
6061 			    __func__, source);
6062 }
6063 
6064 static void handle_qsfp_int(struct hfi1_devdata *dd, u32 src_ctx, u64 reg)
6065 {
6066 	/* src_ctx is always zero */
6067 	struct hfi1_pportdata *ppd = dd->pport;
6068 	unsigned long flags;
6069 	u64 qsfp_int_mgmt = (u64)(QSFP_HFI0_INT_N | QSFP_HFI0_MODPRST_N);
6070 
6071 	if (reg & QSFP_HFI0_MODPRST_N) {
6072 		if (!qsfp_mod_present(ppd)) {
6073 			dd_dev_info(dd, "%s: QSFP module removed\n",
6074 				    __func__);
6075 
6076 			ppd->driver_link_ready = 0;
6077 			/*
6078 			 * Cable removed, reset all our information about the
6079 			 * cache and cable capabilities
6080 			 */
6081 
6082 			spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
6083 			/*
6084 			 * We don't set cache_refresh_required here as we expect
6085 			 * an interrupt when a cable is inserted
6086 			 */
6087 			ppd->qsfp_info.cache_valid = 0;
6088 			ppd->qsfp_info.reset_needed = 0;
6089 			ppd->qsfp_info.limiting_active = 0;
6090 			spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock,
6091 					       flags);
6092 			/* Invert the ModPresent pin now to detect plug-in */
6093 			write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_INVERT :
6094 				  ASIC_QSFP1_INVERT, qsfp_int_mgmt);
6095 
6096 			if ((ppd->offline_disabled_reason >
6097 			  HFI1_ODR_MASK(
6098 			  OPA_LINKDOWN_REASON_LOCAL_MEDIA_NOT_INSTALLED)) ||
6099 			  (ppd->offline_disabled_reason ==
6100 			  HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE)))
6101 				ppd->offline_disabled_reason =
6102 				HFI1_ODR_MASK(
6103 				OPA_LINKDOWN_REASON_LOCAL_MEDIA_NOT_INSTALLED);
6104 
6105 			if (ppd->host_link_state == HLS_DN_POLL) {
6106 				/*
6107 				 * The link is still in POLL. This means
6108 				 * that the normal link down processing
6109 				 * will not happen. We have to do it here
6110 				 * before turning the DC off.
6111 				 */
6112 				queue_work(ppd->link_wq, &ppd->link_down_work);
6113 			}
6114 		} else {
6115 			dd_dev_info(dd, "%s: QSFP module inserted\n",
6116 				    __func__);
6117 
6118 			spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
6119 			ppd->qsfp_info.cache_valid = 0;
6120 			ppd->qsfp_info.cache_refresh_required = 1;
6121 			spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock,
6122 					       flags);
6123 
6124 			/*
6125 			 * Stop inversion of ModPresent pin to detect
6126 			 * removal of the cable
6127 			 */
6128 			qsfp_int_mgmt &= ~(u64)QSFP_HFI0_MODPRST_N;
6129 			write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_INVERT :
6130 				  ASIC_QSFP1_INVERT, qsfp_int_mgmt);
6131 
6132 			ppd->offline_disabled_reason =
6133 				HFI1_ODR_MASK(OPA_LINKDOWN_REASON_TRANSIENT);
6134 		}
6135 	}
6136 
6137 	if (reg & QSFP_HFI0_INT_N) {
6138 		dd_dev_info(dd, "%s: Interrupt received from QSFP module\n",
6139 			    __func__);
6140 		spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
6141 		ppd->qsfp_info.check_interrupt_flags = 1;
6142 		spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock, flags);
6143 	}
6144 
6145 	/* Schedule the QSFP work only if there is a cable attached. */
6146 	if (qsfp_mod_present(ppd))
6147 		queue_work(ppd->link_wq, &ppd->qsfp_info.qsfp_work);
6148 }
6149 
6150 static int request_host_lcb_access(struct hfi1_devdata *dd)
6151 {
6152 	int ret;
6153 
6154 	ret = do_8051_command(dd, HCMD_MISC,
6155 			      (u64)HCMD_MISC_REQUEST_LCB_ACCESS <<
6156 			      LOAD_DATA_FIELD_ID_SHIFT, NULL);
6157 	if (ret != HCMD_SUCCESS) {
6158 		dd_dev_err(dd, "%s: command failed with error %d\n",
6159 			   __func__, ret);
6160 	}
6161 	return ret == HCMD_SUCCESS ? 0 : -EBUSY;
6162 }
6163 
6164 static int request_8051_lcb_access(struct hfi1_devdata *dd)
6165 {
6166 	int ret;
6167 
6168 	ret = do_8051_command(dd, HCMD_MISC,
6169 			      (u64)HCMD_MISC_GRANT_LCB_ACCESS <<
6170 			      LOAD_DATA_FIELD_ID_SHIFT, NULL);
6171 	if (ret != HCMD_SUCCESS) {
6172 		dd_dev_err(dd, "%s: command failed with error %d\n",
6173 			   __func__, ret);
6174 	}
6175 	return ret == HCMD_SUCCESS ? 0 : -EBUSY;
6176 }
6177 
6178 /*
6179  * Set the LCB selector - allow host access.  The DCC selector always
6180  * points to the host.
6181  */
6182 static inline void set_host_lcb_access(struct hfi1_devdata *dd)
6183 {
6184 	write_csr(dd, DC_DC8051_CFG_CSR_ACCESS_SEL,
6185 		  DC_DC8051_CFG_CSR_ACCESS_SEL_DCC_SMASK |
6186 		  DC_DC8051_CFG_CSR_ACCESS_SEL_LCB_SMASK);
6187 }
6188 
6189 /*
6190  * Clear the LCB selector - allow 8051 access.  The DCC selector always
6191  * points to the host.
6192  */
6193 static inline void set_8051_lcb_access(struct hfi1_devdata *dd)
6194 {
6195 	write_csr(dd, DC_DC8051_CFG_CSR_ACCESS_SEL,
6196 		  DC_DC8051_CFG_CSR_ACCESS_SEL_DCC_SMASK);
6197 }
6198 
6199 /*
6200  * Acquire LCB access from the 8051.  If the host already has access,
6201  * just increment a counter.  Otherwise, inform the 8051 that the
6202  * host is taking access.
6203  *
6204  * Returns:
6205  *	0 on success
6206  *	-EBUSY if the 8051 has control and cannot be disturbed
6207  *	-errno if unable to acquire access from the 8051
6208  */
6209 int acquire_lcb_access(struct hfi1_devdata *dd, int sleep_ok)
6210 {
6211 	struct hfi1_pportdata *ppd = dd->pport;
6212 	int ret = 0;
6213 
6214 	/*
6215 	 * Use the host link state lock so the operation of this routine
6216 	 * { link state check, selector change, count increment } can occur
6217 	 * as a unit against a link state change.  Otherwise there is a
6218 	 * race between the state change and the count increment.
6219 	 */
6220 	if (sleep_ok) {
6221 		mutex_lock(&ppd->hls_lock);
6222 	} else {
6223 		while (!mutex_trylock(&ppd->hls_lock))
6224 			udelay(1);
6225 	}
6226 
6227 	/* this access is valid only when the link is up */
6228 	if (ppd->host_link_state & HLS_DOWN) {
6229 		dd_dev_info(dd, "%s: link state %s not up\n",
6230 			    __func__, link_state_name(ppd->host_link_state));
6231 		ret = -EBUSY;
6232 		goto done;
6233 	}
6234 
6235 	if (dd->lcb_access_count == 0) {
6236 		ret = request_host_lcb_access(dd);
6237 		if (ret) {
6238 			dd_dev_err(dd,
6239 				   "%s: unable to acquire LCB access, err %d\n",
6240 				   __func__, ret);
6241 			goto done;
6242 		}
6243 		set_host_lcb_access(dd);
6244 	}
6245 	dd->lcb_access_count++;
6246 done:
6247 	mutex_unlock(&ppd->hls_lock);
6248 	return ret;
6249 }
6250 
6251 /*
6252  * Release LCB access by decrementing the use count.  If the count is moving
6253  * from 1 to 0, inform 8051 that it has control back.
6254  *
6255  * Returns:
6256  *	0 on success
6257  *	-errno if unable to release access to the 8051
6258  */
6259 int release_lcb_access(struct hfi1_devdata *dd, int sleep_ok)
6260 {
6261 	int ret = 0;
6262 
6263 	/*
6264 	 * Use the host link state lock because the acquire needed it.
6265 	 * Here, we only need to keep { selector change, count decrement }
6266 	 * as a unit.
6267 	 */
6268 	if (sleep_ok) {
6269 		mutex_lock(&dd->pport->hls_lock);
6270 	} else {
6271 		while (!mutex_trylock(&dd->pport->hls_lock))
6272 			udelay(1);
6273 	}
6274 
6275 	if (dd->lcb_access_count == 0) {
6276 		dd_dev_err(dd, "%s: LCB access count is zero.  Skipping.\n",
6277 			   __func__);
6278 		goto done;
6279 	}
6280 
6281 	if (dd->lcb_access_count == 1) {
6282 		set_8051_lcb_access(dd);
6283 		ret = request_8051_lcb_access(dd);
6284 		if (ret) {
6285 			dd_dev_err(dd,
6286 				   "%s: unable to release LCB access, err %d\n",
6287 				   __func__, ret);
6288 			/* restore host access if the grant didn't work */
6289 			set_host_lcb_access(dd);
6290 			goto done;
6291 		}
6292 	}
6293 	dd->lcb_access_count--;
6294 done:
6295 	mutex_unlock(&dd->pport->hls_lock);
6296 	return ret;
6297 }
6298 
6299 /*
6300  * Initialize LCB access variables and state.  Called during driver load,
6301  * after most of the initialization is finished.
6302  *
6303  * The DC default is LCB access on for the host.  The driver defaults to
6304  * leaving access to the 8051.  Assign access now - this constrains the call
6305  * to this routine to be after all LCB set-up is done.  In particular, after
6306  * hf1_init_dd() -> set_up_interrupts() -> clear_all_interrupts()
6307  */
6308 static void init_lcb_access(struct hfi1_devdata *dd)
6309 {
6310 	dd->lcb_access_count = 0;
6311 }
6312 
6313 /*
6314  * Write a response back to a 8051 request.
6315  */
6316 static void hreq_response(struct hfi1_devdata *dd, u8 return_code, u16 rsp_data)
6317 {
6318 	write_csr(dd, DC_DC8051_CFG_EXT_DEV_0,
6319 		  DC_DC8051_CFG_EXT_DEV_0_COMPLETED_SMASK |
6320 		  (u64)return_code <<
6321 		  DC_DC8051_CFG_EXT_DEV_0_RETURN_CODE_SHIFT |
6322 		  (u64)rsp_data << DC_DC8051_CFG_EXT_DEV_0_RSP_DATA_SHIFT);
6323 }
6324 
6325 /*
6326  * Handle host requests from the 8051.
6327  */
6328 static void handle_8051_request(struct hfi1_pportdata *ppd)
6329 {
6330 	struct hfi1_devdata *dd = ppd->dd;
6331 	u64 reg;
6332 	u16 data = 0;
6333 	u8 type;
6334 
6335 	reg = read_csr(dd, DC_DC8051_CFG_EXT_DEV_1);
6336 	if ((reg & DC_DC8051_CFG_EXT_DEV_1_REQ_NEW_SMASK) == 0)
6337 		return;	/* no request */
6338 
6339 	/* zero out COMPLETED so the response is seen */
6340 	write_csr(dd, DC_DC8051_CFG_EXT_DEV_0, 0);
6341 
6342 	/* extract request details */
6343 	type = (reg >> DC_DC8051_CFG_EXT_DEV_1_REQ_TYPE_SHIFT)
6344 			& DC_DC8051_CFG_EXT_DEV_1_REQ_TYPE_MASK;
6345 	data = (reg >> DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SHIFT)
6346 			& DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_MASK;
6347 
6348 	switch (type) {
6349 	case HREQ_LOAD_CONFIG:
6350 	case HREQ_SAVE_CONFIG:
6351 	case HREQ_READ_CONFIG:
6352 	case HREQ_SET_TX_EQ_ABS:
6353 	case HREQ_SET_TX_EQ_REL:
6354 	case HREQ_ENABLE:
6355 		dd_dev_info(dd, "8051 request: request 0x%x not supported\n",
6356 			    type);
6357 		hreq_response(dd, HREQ_NOT_SUPPORTED, 0);
6358 		break;
6359 	case HREQ_LCB_RESET:
6360 		/* Put the LCB, RX FPE and TX FPE into reset */
6361 		write_csr(dd, DCC_CFG_RESET, LCB_RX_FPE_TX_FPE_INTO_RESET);
6362 		/* Make sure the write completed */
6363 		(void)read_csr(dd, DCC_CFG_RESET);
6364 		/* Hold the reset long enough to take effect */
6365 		udelay(1);
6366 		/* Take the LCB, RX FPE and TX FPE out of reset */
6367 		write_csr(dd, DCC_CFG_RESET, LCB_RX_FPE_TX_FPE_OUT_OF_RESET);
6368 		hreq_response(dd, HREQ_SUCCESS, 0);
6369 
6370 		break;
6371 	case HREQ_CONFIG_DONE:
6372 		hreq_response(dd, HREQ_SUCCESS, 0);
6373 		break;
6374 
6375 	case HREQ_INTERFACE_TEST:
6376 		hreq_response(dd, HREQ_SUCCESS, data);
6377 		break;
6378 	default:
6379 		dd_dev_err(dd, "8051 request: unknown request 0x%x\n", type);
6380 		hreq_response(dd, HREQ_NOT_SUPPORTED, 0);
6381 		break;
6382 	}
6383 }
6384 
6385 /*
6386  * Set up allocation unit vaulue.
6387  */
6388 void set_up_vau(struct hfi1_devdata *dd, u8 vau)
6389 {
6390 	u64 reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
6391 
6392 	/* do not modify other values in the register */
6393 	reg &= ~SEND_CM_GLOBAL_CREDIT_AU_SMASK;
6394 	reg |= (u64)vau << SEND_CM_GLOBAL_CREDIT_AU_SHIFT;
6395 	write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg);
6396 }
6397 
6398 /*
6399  * Set up initial VL15 credits of the remote.  Assumes the rest of
6400  * the CM credit registers are zero from a previous global or credit reset.
6401  * Shared limit for VL15 will always be 0.
6402  */
6403 void set_up_vl15(struct hfi1_devdata *dd, u16 vl15buf)
6404 {
6405 	u64 reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
6406 
6407 	/* set initial values for total and shared credit limit */
6408 	reg &= ~(SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SMASK |
6409 		 SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SMASK);
6410 
6411 	/*
6412 	 * Set total limit to be equal to VL15 credits.
6413 	 * Leave shared limit at 0.
6414 	 */
6415 	reg |= (u64)vl15buf << SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT;
6416 	write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg);
6417 
6418 	write_csr(dd, SEND_CM_CREDIT_VL15, (u64)vl15buf
6419 		  << SEND_CM_CREDIT_VL15_DEDICATED_LIMIT_VL_SHIFT);
6420 }
6421 
6422 /*
6423  * Zero all credit details from the previous connection and
6424  * reset the CM manager's internal counters.
6425  */
6426 void reset_link_credits(struct hfi1_devdata *dd)
6427 {
6428 	int i;
6429 
6430 	/* remove all previous VL credit limits */
6431 	for (i = 0; i < TXE_NUM_DATA_VL; i++)
6432 		write_csr(dd, SEND_CM_CREDIT_VL + (8 * i), 0);
6433 	write_csr(dd, SEND_CM_CREDIT_VL15, 0);
6434 	write_csr(dd, SEND_CM_GLOBAL_CREDIT, 0);
6435 	/* reset the CM block */
6436 	pio_send_control(dd, PSC_CM_RESET);
6437 	/* reset cached value */
6438 	dd->vl15buf_cached = 0;
6439 }
6440 
6441 /* convert a vCU to a CU */
6442 static u32 vcu_to_cu(u8 vcu)
6443 {
6444 	return 1 << vcu;
6445 }
6446 
6447 /* convert a CU to a vCU */
6448 static u8 cu_to_vcu(u32 cu)
6449 {
6450 	return ilog2(cu);
6451 }
6452 
6453 /* convert a vAU to an AU */
6454 static u32 vau_to_au(u8 vau)
6455 {
6456 	return 8 * (1 << vau);
6457 }
6458 
6459 static void set_linkup_defaults(struct hfi1_pportdata *ppd)
6460 {
6461 	ppd->sm_trap_qp = 0x0;
6462 	ppd->sa_qp = 0x1;
6463 }
6464 
6465 /*
6466  * Graceful LCB shutdown.  This leaves the LCB FIFOs in reset.
6467  */
6468 static void lcb_shutdown(struct hfi1_devdata *dd, int abort)
6469 {
6470 	u64 reg;
6471 
6472 	/* clear lcb run: LCB_CFG_RUN.EN = 0 */
6473 	write_csr(dd, DC_LCB_CFG_RUN, 0);
6474 	/* set tx fifo reset: LCB_CFG_TX_FIFOS_RESET.VAL = 1 */
6475 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET,
6476 		  1ull << DC_LCB_CFG_TX_FIFOS_RESET_VAL_SHIFT);
6477 	/* set dcc reset csr: DCC_CFG_RESET.{reset_lcb,reset_rx_fpe} = 1 */
6478 	dd->lcb_err_en = read_csr(dd, DC_LCB_ERR_EN);
6479 	reg = read_csr(dd, DCC_CFG_RESET);
6480 	write_csr(dd, DCC_CFG_RESET, reg |
6481 		  DCC_CFG_RESET_RESET_LCB | DCC_CFG_RESET_RESET_RX_FPE);
6482 	(void)read_csr(dd, DCC_CFG_RESET); /* make sure the write completed */
6483 	if (!abort) {
6484 		udelay(1);    /* must hold for the longer of 16cclks or 20ns */
6485 		write_csr(dd, DCC_CFG_RESET, reg);
6486 		write_csr(dd, DC_LCB_ERR_EN, dd->lcb_err_en);
6487 	}
6488 }
6489 
6490 /*
6491  * This routine should be called after the link has been transitioned to
6492  * OFFLINE (OFFLINE state has the side effect of putting the SerDes into
6493  * reset).
6494  *
6495  * The expectation is that the caller of this routine would have taken
6496  * care of properly transitioning the link into the correct state.
6497  * NOTE: the caller needs to acquire the dd->dc8051_lock lock
6498  *       before calling this function.
6499  */
6500 static void _dc_shutdown(struct hfi1_devdata *dd)
6501 {
6502 	lockdep_assert_held(&dd->dc8051_lock);
6503 
6504 	if (dd->dc_shutdown)
6505 		return;
6506 
6507 	dd->dc_shutdown = 1;
6508 	/* Shutdown the LCB */
6509 	lcb_shutdown(dd, 1);
6510 	/*
6511 	 * Going to OFFLINE would have causes the 8051 to put the
6512 	 * SerDes into reset already. Just need to shut down the 8051,
6513 	 * itself.
6514 	 */
6515 	write_csr(dd, DC_DC8051_CFG_RST, 0x1);
6516 }
6517 
6518 static void dc_shutdown(struct hfi1_devdata *dd)
6519 {
6520 	mutex_lock(&dd->dc8051_lock);
6521 	_dc_shutdown(dd);
6522 	mutex_unlock(&dd->dc8051_lock);
6523 }
6524 
6525 /*
6526  * Calling this after the DC has been brought out of reset should not
6527  * do any damage.
6528  * NOTE: the caller needs to acquire the dd->dc8051_lock lock
6529  *       before calling this function.
6530  */
6531 static void _dc_start(struct hfi1_devdata *dd)
6532 {
6533 	lockdep_assert_held(&dd->dc8051_lock);
6534 
6535 	if (!dd->dc_shutdown)
6536 		return;
6537 
6538 	/* Take the 8051 out of reset */
6539 	write_csr(dd, DC_DC8051_CFG_RST, 0ull);
6540 	/* Wait until 8051 is ready */
6541 	if (wait_fm_ready(dd, TIMEOUT_8051_START))
6542 		dd_dev_err(dd, "%s: timeout starting 8051 firmware\n",
6543 			   __func__);
6544 
6545 	/* Take away reset for LCB and RX FPE (set in lcb_shutdown). */
6546 	write_csr(dd, DCC_CFG_RESET, LCB_RX_FPE_TX_FPE_OUT_OF_RESET);
6547 	/* lcb_shutdown() with abort=1 does not restore these */
6548 	write_csr(dd, DC_LCB_ERR_EN, dd->lcb_err_en);
6549 	dd->dc_shutdown = 0;
6550 }
6551 
6552 static void dc_start(struct hfi1_devdata *dd)
6553 {
6554 	mutex_lock(&dd->dc8051_lock);
6555 	_dc_start(dd);
6556 	mutex_unlock(&dd->dc8051_lock);
6557 }
6558 
6559 /*
6560  * These LCB adjustments are for the Aurora SerDes core in the FPGA.
6561  */
6562 static void adjust_lcb_for_fpga_serdes(struct hfi1_devdata *dd)
6563 {
6564 	u64 rx_radr, tx_radr;
6565 	u32 version;
6566 
6567 	if (dd->icode != ICODE_FPGA_EMULATION)
6568 		return;
6569 
6570 	/*
6571 	 * These LCB defaults on emulator _s are good, nothing to do here:
6572 	 *	LCB_CFG_TX_FIFOS_RADR
6573 	 *	LCB_CFG_RX_FIFOS_RADR
6574 	 *	LCB_CFG_LN_DCLK
6575 	 *	LCB_CFG_IGNORE_LOST_RCLK
6576 	 */
6577 	if (is_emulator_s(dd))
6578 		return;
6579 	/* else this is _p */
6580 
6581 	version = emulator_rev(dd);
6582 	if (!is_ax(dd))
6583 		version = 0x2d;	/* all B0 use 0x2d or higher settings */
6584 
6585 	if (version <= 0x12) {
6586 		/* release 0x12 and below */
6587 
6588 		/*
6589 		 * LCB_CFG_RX_FIFOS_RADR.RST_VAL = 0x9
6590 		 * LCB_CFG_RX_FIFOS_RADR.OK_TO_JUMP_VAL = 0x9
6591 		 * LCB_CFG_RX_FIFOS_RADR.DO_NOT_JUMP_VAL = 0xa
6592 		 */
6593 		rx_radr =
6594 		      0xaull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6595 		    | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6596 		    | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6597 		/*
6598 		 * LCB_CFG_TX_FIFOS_RADR.ON_REINIT = 0 (default)
6599 		 * LCB_CFG_TX_FIFOS_RADR.RST_VAL = 6
6600 		 */
6601 		tx_radr = 6ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6602 	} else if (version <= 0x18) {
6603 		/* release 0x13 up to 0x18 */
6604 		/* LCB_CFG_RX_FIFOS_RADR = 0x988 */
6605 		rx_radr =
6606 		      0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6607 		    | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6608 		    | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6609 		tx_radr = 7ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6610 	} else if (version == 0x19) {
6611 		/* release 0x19 */
6612 		/* LCB_CFG_RX_FIFOS_RADR = 0xa99 */
6613 		rx_radr =
6614 		      0xAull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6615 		    | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6616 		    | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6617 		tx_radr = 3ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6618 	} else if (version == 0x1a) {
6619 		/* release 0x1a */
6620 		/* LCB_CFG_RX_FIFOS_RADR = 0x988 */
6621 		rx_radr =
6622 		      0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6623 		    | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6624 		    | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6625 		tx_radr = 7ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6626 		write_csr(dd, DC_LCB_CFG_LN_DCLK, 1ull);
6627 	} else {
6628 		/* release 0x1b and higher */
6629 		/* LCB_CFG_RX_FIFOS_RADR = 0x877 */
6630 		rx_radr =
6631 		      0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6632 		    | 0x7ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6633 		    | 0x7ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6634 		tx_radr = 3ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6635 	}
6636 
6637 	write_csr(dd, DC_LCB_CFG_RX_FIFOS_RADR, rx_radr);
6638 	/* LCB_CFG_IGNORE_LOST_RCLK.EN = 1 */
6639 	write_csr(dd, DC_LCB_CFG_IGNORE_LOST_RCLK,
6640 		  DC_LCB_CFG_IGNORE_LOST_RCLK_EN_SMASK);
6641 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RADR, tx_radr);
6642 }
6643 
6644 /*
6645  * Handle a SMA idle message
6646  *
6647  * This is a work-queue function outside of the interrupt.
6648  */
6649 void handle_sma_message(struct work_struct *work)
6650 {
6651 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
6652 							sma_message_work);
6653 	struct hfi1_devdata *dd = ppd->dd;
6654 	u64 msg;
6655 	int ret;
6656 
6657 	/*
6658 	 * msg is bytes 1-4 of the 40-bit idle message - the command code
6659 	 * is stripped off
6660 	 */
6661 	ret = read_idle_sma(dd, &msg);
6662 	if (ret)
6663 		return;
6664 	dd_dev_info(dd, "%s: SMA message 0x%llx\n", __func__, msg);
6665 	/*
6666 	 * React to the SMA message.  Byte[1] (0 for us) is the command.
6667 	 */
6668 	switch (msg & 0xff) {
6669 	case SMA_IDLE_ARM:
6670 		/*
6671 		 * See OPAv1 table 9-14 - HFI and External Switch Ports Key
6672 		 * State Transitions
6673 		 *
6674 		 * Only expected in INIT or ARMED, discard otherwise.
6675 		 */
6676 		if (ppd->host_link_state & (HLS_UP_INIT | HLS_UP_ARMED))
6677 			ppd->neighbor_normal = 1;
6678 		break;
6679 	case SMA_IDLE_ACTIVE:
6680 		/*
6681 		 * See OPAv1 table 9-14 - HFI and External Switch Ports Key
6682 		 * State Transitions
6683 		 *
6684 		 * Can activate the node.  Discard otherwise.
6685 		 */
6686 		if (ppd->host_link_state == HLS_UP_ARMED &&
6687 		    ppd->is_active_optimize_enabled) {
6688 			ppd->neighbor_normal = 1;
6689 			ret = set_link_state(ppd, HLS_UP_ACTIVE);
6690 			if (ret)
6691 				dd_dev_err(
6692 					dd,
6693 					"%s: received Active SMA idle message, couldn't set link to Active\n",
6694 					__func__);
6695 		}
6696 		break;
6697 	default:
6698 		dd_dev_err(dd,
6699 			   "%s: received unexpected SMA idle message 0x%llx\n",
6700 			   __func__, msg);
6701 		break;
6702 	}
6703 }
6704 
6705 static void adjust_rcvctrl(struct hfi1_devdata *dd, u64 add, u64 clear)
6706 {
6707 	u64 rcvctrl;
6708 	unsigned long flags;
6709 
6710 	spin_lock_irqsave(&dd->rcvctrl_lock, flags);
6711 	rcvctrl = read_csr(dd, RCV_CTRL);
6712 	rcvctrl |= add;
6713 	rcvctrl &= ~clear;
6714 	write_csr(dd, RCV_CTRL, rcvctrl);
6715 	spin_unlock_irqrestore(&dd->rcvctrl_lock, flags);
6716 }
6717 
6718 static inline void add_rcvctrl(struct hfi1_devdata *dd, u64 add)
6719 {
6720 	adjust_rcvctrl(dd, add, 0);
6721 }
6722 
6723 static inline void clear_rcvctrl(struct hfi1_devdata *dd, u64 clear)
6724 {
6725 	adjust_rcvctrl(dd, 0, clear);
6726 }
6727 
6728 /*
6729  * Called from all interrupt handlers to start handling an SPC freeze.
6730  */
6731 void start_freeze_handling(struct hfi1_pportdata *ppd, int flags)
6732 {
6733 	struct hfi1_devdata *dd = ppd->dd;
6734 	struct send_context *sc;
6735 	int i;
6736 
6737 	if (flags & FREEZE_SELF)
6738 		write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_FREEZE_SMASK);
6739 
6740 	/* enter frozen mode */
6741 	dd->flags |= HFI1_FROZEN;
6742 
6743 	/* notify all SDMA engines that they are going into a freeze */
6744 	sdma_freeze_notify(dd, !!(flags & FREEZE_LINK_DOWN));
6745 
6746 	/* do halt pre-handling on all enabled send contexts */
6747 	for (i = 0; i < dd->num_send_contexts; i++) {
6748 		sc = dd->send_contexts[i].sc;
6749 		if (sc && (sc->flags & SCF_ENABLED))
6750 			sc_stop(sc, SCF_FROZEN | SCF_HALTED);
6751 	}
6752 
6753 	/* Send context are frozen. Notify user space */
6754 	hfi1_set_uevent_bits(ppd, _HFI1_EVENT_FROZEN_BIT);
6755 
6756 	if (flags & FREEZE_ABORT) {
6757 		dd_dev_err(dd,
6758 			   "Aborted freeze recovery. Please REBOOT system\n");
6759 		return;
6760 	}
6761 	/* queue non-interrupt handler */
6762 	queue_work(ppd->hfi1_wq, &ppd->freeze_work);
6763 }
6764 
6765 /*
6766  * Wait until all 4 sub-blocks indicate that they have frozen or unfrozen,
6767  * depending on the "freeze" parameter.
6768  *
6769  * No need to return an error if it times out, our only option
6770  * is to proceed anyway.
6771  */
6772 static void wait_for_freeze_status(struct hfi1_devdata *dd, int freeze)
6773 {
6774 	unsigned long timeout;
6775 	u64 reg;
6776 
6777 	timeout = jiffies + msecs_to_jiffies(FREEZE_STATUS_TIMEOUT);
6778 	while (1) {
6779 		reg = read_csr(dd, CCE_STATUS);
6780 		if (freeze) {
6781 			/* waiting until all indicators are set */
6782 			if ((reg & ALL_FROZE) == ALL_FROZE)
6783 				return;	/* all done */
6784 		} else {
6785 			/* waiting until all indicators are clear */
6786 			if ((reg & ALL_FROZE) == 0)
6787 				return; /* all done */
6788 		}
6789 
6790 		if (time_after(jiffies, timeout)) {
6791 			dd_dev_err(dd,
6792 				   "Time out waiting for SPC %sfreeze, bits 0x%llx, expecting 0x%llx, continuing",
6793 				   freeze ? "" : "un", reg & ALL_FROZE,
6794 				   freeze ? ALL_FROZE : 0ull);
6795 			return;
6796 		}
6797 		usleep_range(80, 120);
6798 	}
6799 }
6800 
6801 /*
6802  * Do all freeze handling for the RXE block.
6803  */
6804 static void rxe_freeze(struct hfi1_devdata *dd)
6805 {
6806 	int i;
6807 	struct hfi1_ctxtdata *rcd;
6808 
6809 	/* disable port */
6810 	clear_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
6811 
6812 	/* disable all receive contexts */
6813 	for (i = 0; i < dd->num_rcv_contexts; i++) {
6814 		rcd = hfi1_rcd_get_by_index(dd, i);
6815 		hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_DIS, rcd);
6816 		hfi1_rcd_put(rcd);
6817 	}
6818 }
6819 
6820 /*
6821  * Unfreeze handling for the RXE block - kernel contexts only.
6822  * This will also enable the port.  User contexts will do unfreeze
6823  * handling on a per-context basis as they call into the driver.
6824  *
6825  */
6826 static void rxe_kernel_unfreeze(struct hfi1_devdata *dd)
6827 {
6828 	u32 rcvmask;
6829 	u16 i;
6830 	struct hfi1_ctxtdata *rcd;
6831 
6832 	/* enable all kernel contexts */
6833 	for (i = 0; i < dd->num_rcv_contexts; i++) {
6834 		rcd = hfi1_rcd_get_by_index(dd, i);
6835 
6836 		/* Ensure all non-user contexts(including vnic) are enabled */
6837 		if (!rcd ||
6838 		    (i >= dd->first_dyn_alloc_ctxt && !rcd->is_vnic)) {
6839 			hfi1_rcd_put(rcd);
6840 			continue;
6841 		}
6842 		rcvmask = HFI1_RCVCTRL_CTXT_ENB;
6843 		/* HFI1_RCVCTRL_TAILUPD_[ENB|DIS] needs to be set explicitly */
6844 		rcvmask |= rcd->rcvhdrtail_kvaddr ?
6845 			HFI1_RCVCTRL_TAILUPD_ENB : HFI1_RCVCTRL_TAILUPD_DIS;
6846 		hfi1_rcvctrl(dd, rcvmask, rcd);
6847 		hfi1_rcd_put(rcd);
6848 	}
6849 
6850 	/* enable port */
6851 	add_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
6852 }
6853 
6854 /*
6855  * Non-interrupt SPC freeze handling.
6856  *
6857  * This is a work-queue function outside of the triggering interrupt.
6858  */
6859 void handle_freeze(struct work_struct *work)
6860 {
6861 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
6862 								freeze_work);
6863 	struct hfi1_devdata *dd = ppd->dd;
6864 
6865 	/* wait for freeze indicators on all affected blocks */
6866 	wait_for_freeze_status(dd, 1);
6867 
6868 	/* SPC is now frozen */
6869 
6870 	/* do send PIO freeze steps */
6871 	pio_freeze(dd);
6872 
6873 	/* do send DMA freeze steps */
6874 	sdma_freeze(dd);
6875 
6876 	/* do send egress freeze steps - nothing to do */
6877 
6878 	/* do receive freeze steps */
6879 	rxe_freeze(dd);
6880 
6881 	/*
6882 	 * Unfreeze the hardware - clear the freeze, wait for each
6883 	 * block's frozen bit to clear, then clear the frozen flag.
6884 	 */
6885 	write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_UNFREEZE_SMASK);
6886 	wait_for_freeze_status(dd, 0);
6887 
6888 	if (is_ax(dd)) {
6889 		write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_FREEZE_SMASK);
6890 		wait_for_freeze_status(dd, 1);
6891 		write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_UNFREEZE_SMASK);
6892 		wait_for_freeze_status(dd, 0);
6893 	}
6894 
6895 	/* do send PIO unfreeze steps for kernel contexts */
6896 	pio_kernel_unfreeze(dd);
6897 
6898 	/* do send DMA unfreeze steps */
6899 	sdma_unfreeze(dd);
6900 
6901 	/* do send egress unfreeze steps - nothing to do */
6902 
6903 	/* do receive unfreeze steps for kernel contexts */
6904 	rxe_kernel_unfreeze(dd);
6905 
6906 	/*
6907 	 * The unfreeze procedure touches global device registers when
6908 	 * it disables and re-enables RXE. Mark the device unfrozen
6909 	 * after all that is done so other parts of the driver waiting
6910 	 * for the device to unfreeze don't do things out of order.
6911 	 *
6912 	 * The above implies that the meaning of HFI1_FROZEN flag is
6913 	 * "Device has gone into freeze mode and freeze mode handling
6914 	 * is still in progress."
6915 	 *
6916 	 * The flag will be removed when freeze mode processing has
6917 	 * completed.
6918 	 */
6919 	dd->flags &= ~HFI1_FROZEN;
6920 	wake_up(&dd->event_queue);
6921 
6922 	/* no longer frozen */
6923 }
6924 
6925 /**
6926  * update_xmit_counters - update PortXmitWait/PortVlXmitWait
6927  * counters.
6928  * @ppd: info of physical Hfi port
6929  * @link_width: new link width after link up or downgrade
6930  *
6931  * Update the PortXmitWait and PortVlXmitWait counters after
6932  * a link up or downgrade event to reflect a link width change.
6933  */
6934 static void update_xmit_counters(struct hfi1_pportdata *ppd, u16 link_width)
6935 {
6936 	int i;
6937 	u16 tx_width;
6938 	u16 link_speed;
6939 
6940 	tx_width = tx_link_width(link_width);
6941 	link_speed = get_link_speed(ppd->link_speed_active);
6942 
6943 	/*
6944 	 * There are C_VL_COUNT number of PortVLXmitWait counters.
6945 	 * Adding 1 to C_VL_COUNT to include the PortXmitWait counter.
6946 	 */
6947 	for (i = 0; i < C_VL_COUNT + 1; i++)
6948 		get_xmit_wait_counters(ppd, tx_width, link_speed, i);
6949 }
6950 
6951 /*
6952  * Handle a link up interrupt from the 8051.
6953  *
6954  * This is a work-queue function outside of the interrupt.
6955  */
6956 void handle_link_up(struct work_struct *work)
6957 {
6958 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
6959 						  link_up_work);
6960 	struct hfi1_devdata *dd = ppd->dd;
6961 
6962 	set_link_state(ppd, HLS_UP_INIT);
6963 
6964 	/* cache the read of DC_LCB_STS_ROUND_TRIP_LTP_CNT */
6965 	read_ltp_rtt(dd);
6966 	/*
6967 	 * OPA specifies that certain counters are cleared on a transition
6968 	 * to link up, so do that.
6969 	 */
6970 	clear_linkup_counters(dd);
6971 	/*
6972 	 * And (re)set link up default values.
6973 	 */
6974 	set_linkup_defaults(ppd);
6975 
6976 	/*
6977 	 * Set VL15 credits. Use cached value from verify cap interrupt.
6978 	 * In case of quick linkup or simulator, vl15 value will be set by
6979 	 * handle_linkup_change. VerifyCap interrupt handler will not be
6980 	 * called in those scenarios.
6981 	 */
6982 	if (!(quick_linkup || dd->icode == ICODE_FUNCTIONAL_SIMULATOR))
6983 		set_up_vl15(dd, dd->vl15buf_cached);
6984 
6985 	/* enforce link speed enabled */
6986 	if ((ppd->link_speed_active & ppd->link_speed_enabled) == 0) {
6987 		/* oops - current speed is not enabled, bounce */
6988 		dd_dev_err(dd,
6989 			   "Link speed active 0x%x is outside enabled 0x%x, downing link\n",
6990 			   ppd->link_speed_active, ppd->link_speed_enabled);
6991 		set_link_down_reason(ppd, OPA_LINKDOWN_REASON_SPEED_POLICY, 0,
6992 				     OPA_LINKDOWN_REASON_SPEED_POLICY);
6993 		set_link_state(ppd, HLS_DN_OFFLINE);
6994 		start_link(ppd);
6995 	}
6996 }
6997 
6998 /*
6999  * Several pieces of LNI information were cached for SMA in ppd.
7000  * Reset these on link down
7001  */
7002 static void reset_neighbor_info(struct hfi1_pportdata *ppd)
7003 {
7004 	ppd->neighbor_guid = 0;
7005 	ppd->neighbor_port_number = 0;
7006 	ppd->neighbor_type = 0;
7007 	ppd->neighbor_fm_security = 0;
7008 }
7009 
7010 static const char * const link_down_reason_strs[] = {
7011 	[OPA_LINKDOWN_REASON_NONE] = "None",
7012 	[OPA_LINKDOWN_REASON_RCV_ERROR_0] = "Receive error 0",
7013 	[OPA_LINKDOWN_REASON_BAD_PKT_LEN] = "Bad packet length",
7014 	[OPA_LINKDOWN_REASON_PKT_TOO_LONG] = "Packet too long",
7015 	[OPA_LINKDOWN_REASON_PKT_TOO_SHORT] = "Packet too short",
7016 	[OPA_LINKDOWN_REASON_BAD_SLID] = "Bad SLID",
7017 	[OPA_LINKDOWN_REASON_BAD_DLID] = "Bad DLID",
7018 	[OPA_LINKDOWN_REASON_BAD_L2] = "Bad L2",
7019 	[OPA_LINKDOWN_REASON_BAD_SC] = "Bad SC",
7020 	[OPA_LINKDOWN_REASON_RCV_ERROR_8] = "Receive error 8",
7021 	[OPA_LINKDOWN_REASON_BAD_MID_TAIL] = "Bad mid tail",
7022 	[OPA_LINKDOWN_REASON_RCV_ERROR_10] = "Receive error 10",
7023 	[OPA_LINKDOWN_REASON_PREEMPT_ERROR] = "Preempt error",
7024 	[OPA_LINKDOWN_REASON_PREEMPT_VL15] = "Preempt vl15",
7025 	[OPA_LINKDOWN_REASON_BAD_VL_MARKER] = "Bad VL marker",
7026 	[OPA_LINKDOWN_REASON_RCV_ERROR_14] = "Receive error 14",
7027 	[OPA_LINKDOWN_REASON_RCV_ERROR_15] = "Receive error 15",
7028 	[OPA_LINKDOWN_REASON_BAD_HEAD_DIST] = "Bad head distance",
7029 	[OPA_LINKDOWN_REASON_BAD_TAIL_DIST] = "Bad tail distance",
7030 	[OPA_LINKDOWN_REASON_BAD_CTRL_DIST] = "Bad control distance",
7031 	[OPA_LINKDOWN_REASON_BAD_CREDIT_ACK] = "Bad credit ack",
7032 	[OPA_LINKDOWN_REASON_UNSUPPORTED_VL_MARKER] = "Unsupported VL marker",
7033 	[OPA_LINKDOWN_REASON_BAD_PREEMPT] = "Bad preempt",
7034 	[OPA_LINKDOWN_REASON_BAD_CONTROL_FLIT] = "Bad control flit",
7035 	[OPA_LINKDOWN_REASON_EXCEED_MULTICAST_LIMIT] = "Exceed multicast limit",
7036 	[OPA_LINKDOWN_REASON_RCV_ERROR_24] = "Receive error 24",
7037 	[OPA_LINKDOWN_REASON_RCV_ERROR_25] = "Receive error 25",
7038 	[OPA_LINKDOWN_REASON_RCV_ERROR_26] = "Receive error 26",
7039 	[OPA_LINKDOWN_REASON_RCV_ERROR_27] = "Receive error 27",
7040 	[OPA_LINKDOWN_REASON_RCV_ERROR_28] = "Receive error 28",
7041 	[OPA_LINKDOWN_REASON_RCV_ERROR_29] = "Receive error 29",
7042 	[OPA_LINKDOWN_REASON_RCV_ERROR_30] = "Receive error 30",
7043 	[OPA_LINKDOWN_REASON_EXCESSIVE_BUFFER_OVERRUN] =
7044 					"Excessive buffer overrun",
7045 	[OPA_LINKDOWN_REASON_UNKNOWN] = "Unknown",
7046 	[OPA_LINKDOWN_REASON_REBOOT] = "Reboot",
7047 	[OPA_LINKDOWN_REASON_NEIGHBOR_UNKNOWN] = "Neighbor unknown",
7048 	[OPA_LINKDOWN_REASON_FM_BOUNCE] = "FM bounce",
7049 	[OPA_LINKDOWN_REASON_SPEED_POLICY] = "Speed policy",
7050 	[OPA_LINKDOWN_REASON_WIDTH_POLICY] = "Width policy",
7051 	[OPA_LINKDOWN_REASON_DISCONNECTED] = "Disconnected",
7052 	[OPA_LINKDOWN_REASON_LOCAL_MEDIA_NOT_INSTALLED] =
7053 					"Local media not installed",
7054 	[OPA_LINKDOWN_REASON_NOT_INSTALLED] = "Not installed",
7055 	[OPA_LINKDOWN_REASON_CHASSIS_CONFIG] = "Chassis config",
7056 	[OPA_LINKDOWN_REASON_END_TO_END_NOT_INSTALLED] =
7057 					"End to end not installed",
7058 	[OPA_LINKDOWN_REASON_POWER_POLICY] = "Power policy",
7059 	[OPA_LINKDOWN_REASON_LINKSPEED_POLICY] = "Link speed policy",
7060 	[OPA_LINKDOWN_REASON_LINKWIDTH_POLICY] = "Link width policy",
7061 	[OPA_LINKDOWN_REASON_SWITCH_MGMT] = "Switch management",
7062 	[OPA_LINKDOWN_REASON_SMA_DISABLED] = "SMA disabled",
7063 	[OPA_LINKDOWN_REASON_TRANSIENT] = "Transient"
7064 };
7065 
7066 /* return the neighbor link down reason string */
7067 static const char *link_down_reason_str(u8 reason)
7068 {
7069 	const char *str = NULL;
7070 
7071 	if (reason < ARRAY_SIZE(link_down_reason_strs))
7072 		str = link_down_reason_strs[reason];
7073 	if (!str)
7074 		str = "(invalid)";
7075 
7076 	return str;
7077 }
7078 
7079 /*
7080  * Handle a link down interrupt from the 8051.
7081  *
7082  * This is a work-queue function outside of the interrupt.
7083  */
7084 void handle_link_down(struct work_struct *work)
7085 {
7086 	u8 lcl_reason, neigh_reason = 0;
7087 	u8 link_down_reason;
7088 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
7089 						  link_down_work);
7090 	int was_up;
7091 	static const char ldr_str[] = "Link down reason: ";
7092 
7093 	if ((ppd->host_link_state &
7094 	     (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) &&
7095 	     ppd->port_type == PORT_TYPE_FIXED)
7096 		ppd->offline_disabled_reason =
7097 			HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NOT_INSTALLED);
7098 
7099 	/* Go offline first, then deal with reading/writing through 8051 */
7100 	was_up = !!(ppd->host_link_state & HLS_UP);
7101 	set_link_state(ppd, HLS_DN_OFFLINE);
7102 	xchg(&ppd->is_link_down_queued, 0);
7103 
7104 	if (was_up) {
7105 		lcl_reason = 0;
7106 		/* link down reason is only valid if the link was up */
7107 		read_link_down_reason(ppd->dd, &link_down_reason);
7108 		switch (link_down_reason) {
7109 		case LDR_LINK_TRANSFER_ACTIVE_LOW:
7110 			/* the link went down, no idle message reason */
7111 			dd_dev_info(ppd->dd, "%sUnexpected link down\n",
7112 				    ldr_str);
7113 			break;
7114 		case LDR_RECEIVED_LINKDOWN_IDLE_MSG:
7115 			/*
7116 			 * The neighbor reason is only valid if an idle message
7117 			 * was received for it.
7118 			 */
7119 			read_planned_down_reason_code(ppd->dd, &neigh_reason);
7120 			dd_dev_info(ppd->dd,
7121 				    "%sNeighbor link down message %d, %s\n",
7122 				    ldr_str, neigh_reason,
7123 				    link_down_reason_str(neigh_reason));
7124 			break;
7125 		case LDR_RECEIVED_HOST_OFFLINE_REQ:
7126 			dd_dev_info(ppd->dd,
7127 				    "%sHost requested link to go offline\n",
7128 				    ldr_str);
7129 			break;
7130 		default:
7131 			dd_dev_info(ppd->dd, "%sUnknown reason 0x%x\n",
7132 				    ldr_str, link_down_reason);
7133 			break;
7134 		}
7135 
7136 		/*
7137 		 * If no reason, assume peer-initiated but missed
7138 		 * LinkGoingDown idle flits.
7139 		 */
7140 		if (neigh_reason == 0)
7141 			lcl_reason = OPA_LINKDOWN_REASON_NEIGHBOR_UNKNOWN;
7142 	} else {
7143 		/* went down while polling or going up */
7144 		lcl_reason = OPA_LINKDOWN_REASON_TRANSIENT;
7145 	}
7146 
7147 	set_link_down_reason(ppd, lcl_reason, neigh_reason, 0);
7148 
7149 	/* inform the SMA when the link transitions from up to down */
7150 	if (was_up && ppd->local_link_down_reason.sma == 0 &&
7151 	    ppd->neigh_link_down_reason.sma == 0) {
7152 		ppd->local_link_down_reason.sma =
7153 					ppd->local_link_down_reason.latest;
7154 		ppd->neigh_link_down_reason.sma =
7155 					ppd->neigh_link_down_reason.latest;
7156 	}
7157 
7158 	reset_neighbor_info(ppd);
7159 
7160 	/* disable the port */
7161 	clear_rcvctrl(ppd->dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
7162 
7163 	/*
7164 	 * If there is no cable attached, turn the DC off. Otherwise,
7165 	 * start the link bring up.
7166 	 */
7167 	if (ppd->port_type == PORT_TYPE_QSFP && !qsfp_mod_present(ppd))
7168 		dc_shutdown(ppd->dd);
7169 	else
7170 		start_link(ppd);
7171 }
7172 
7173 void handle_link_bounce(struct work_struct *work)
7174 {
7175 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
7176 							link_bounce_work);
7177 
7178 	/*
7179 	 * Only do something if the link is currently up.
7180 	 */
7181 	if (ppd->host_link_state & HLS_UP) {
7182 		set_link_state(ppd, HLS_DN_OFFLINE);
7183 		start_link(ppd);
7184 	} else {
7185 		dd_dev_info(ppd->dd, "%s: link not up (%s), nothing to do\n",
7186 			    __func__, link_state_name(ppd->host_link_state));
7187 	}
7188 }
7189 
7190 /*
7191  * Mask conversion: Capability exchange to Port LTP.  The capability
7192  * exchange has an implicit 16b CRC that is mandatory.
7193  */
7194 static int cap_to_port_ltp(int cap)
7195 {
7196 	int port_ltp = PORT_LTP_CRC_MODE_16; /* this mode is mandatory */
7197 
7198 	if (cap & CAP_CRC_14B)
7199 		port_ltp |= PORT_LTP_CRC_MODE_14;
7200 	if (cap & CAP_CRC_48B)
7201 		port_ltp |= PORT_LTP_CRC_MODE_48;
7202 	if (cap & CAP_CRC_12B_16B_PER_LANE)
7203 		port_ltp |= PORT_LTP_CRC_MODE_PER_LANE;
7204 
7205 	return port_ltp;
7206 }
7207 
7208 /*
7209  * Convert an OPA Port LTP mask to capability mask
7210  */
7211 int port_ltp_to_cap(int port_ltp)
7212 {
7213 	int cap_mask = 0;
7214 
7215 	if (port_ltp & PORT_LTP_CRC_MODE_14)
7216 		cap_mask |= CAP_CRC_14B;
7217 	if (port_ltp & PORT_LTP_CRC_MODE_48)
7218 		cap_mask |= CAP_CRC_48B;
7219 	if (port_ltp & PORT_LTP_CRC_MODE_PER_LANE)
7220 		cap_mask |= CAP_CRC_12B_16B_PER_LANE;
7221 
7222 	return cap_mask;
7223 }
7224 
7225 /*
7226  * Convert a single DC LCB CRC mode to an OPA Port LTP mask.
7227  */
7228 static int lcb_to_port_ltp(int lcb_crc)
7229 {
7230 	int port_ltp = 0;
7231 
7232 	if (lcb_crc == LCB_CRC_12B_16B_PER_LANE)
7233 		port_ltp = PORT_LTP_CRC_MODE_PER_LANE;
7234 	else if (lcb_crc == LCB_CRC_48B)
7235 		port_ltp = PORT_LTP_CRC_MODE_48;
7236 	else if (lcb_crc == LCB_CRC_14B)
7237 		port_ltp = PORT_LTP_CRC_MODE_14;
7238 	else
7239 		port_ltp = PORT_LTP_CRC_MODE_16;
7240 
7241 	return port_ltp;
7242 }
7243 
7244 static void clear_full_mgmt_pkey(struct hfi1_pportdata *ppd)
7245 {
7246 	if (ppd->pkeys[2] != 0) {
7247 		ppd->pkeys[2] = 0;
7248 		(void)hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_PKEYS, 0);
7249 		hfi1_event_pkey_change(ppd->dd, ppd->port);
7250 	}
7251 }
7252 
7253 /*
7254  * Convert the given link width to the OPA link width bitmask.
7255  */
7256 static u16 link_width_to_bits(struct hfi1_devdata *dd, u16 width)
7257 {
7258 	switch (width) {
7259 	case 0:
7260 		/*
7261 		 * Simulator and quick linkup do not set the width.
7262 		 * Just set it to 4x without complaint.
7263 		 */
7264 		if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR || quick_linkup)
7265 			return OPA_LINK_WIDTH_4X;
7266 		return 0; /* no lanes up */
7267 	case 1: return OPA_LINK_WIDTH_1X;
7268 	case 2: return OPA_LINK_WIDTH_2X;
7269 	case 3: return OPA_LINK_WIDTH_3X;
7270 	default:
7271 		dd_dev_info(dd, "%s: invalid width %d, using 4\n",
7272 			    __func__, width);
7273 		/* fall through */
7274 	case 4: return OPA_LINK_WIDTH_4X;
7275 	}
7276 }
7277 
7278 /*
7279  * Do a population count on the bottom nibble.
7280  */
7281 static const u8 bit_counts[16] = {
7282 	0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4
7283 };
7284 
7285 static inline u8 nibble_to_count(u8 nibble)
7286 {
7287 	return bit_counts[nibble & 0xf];
7288 }
7289 
7290 /*
7291  * Read the active lane information from the 8051 registers and return
7292  * their widths.
7293  *
7294  * Active lane information is found in these 8051 registers:
7295  *	enable_lane_tx
7296  *	enable_lane_rx
7297  */
7298 static void get_link_widths(struct hfi1_devdata *dd, u16 *tx_width,
7299 			    u16 *rx_width)
7300 {
7301 	u16 tx, rx;
7302 	u8 enable_lane_rx;
7303 	u8 enable_lane_tx;
7304 	u8 tx_polarity_inversion;
7305 	u8 rx_polarity_inversion;
7306 	u8 max_rate;
7307 
7308 	/* read the active lanes */
7309 	read_tx_settings(dd, &enable_lane_tx, &tx_polarity_inversion,
7310 			 &rx_polarity_inversion, &max_rate);
7311 	read_local_lni(dd, &enable_lane_rx);
7312 
7313 	/* convert to counts */
7314 	tx = nibble_to_count(enable_lane_tx);
7315 	rx = nibble_to_count(enable_lane_rx);
7316 
7317 	/*
7318 	 * Set link_speed_active here, overriding what was set in
7319 	 * handle_verify_cap().  The ASIC 8051 firmware does not correctly
7320 	 * set the max_rate field in handle_verify_cap until v0.19.
7321 	 */
7322 	if ((dd->icode == ICODE_RTL_SILICON) &&
7323 	    (dd->dc8051_ver < dc8051_ver(0, 19, 0))) {
7324 		/* max_rate: 0 = 12.5G, 1 = 25G */
7325 		switch (max_rate) {
7326 		case 0:
7327 			dd->pport[0].link_speed_active = OPA_LINK_SPEED_12_5G;
7328 			break;
7329 		default:
7330 			dd_dev_err(dd,
7331 				   "%s: unexpected max rate %d, using 25Gb\n",
7332 				   __func__, (int)max_rate);
7333 			/* fall through */
7334 		case 1:
7335 			dd->pport[0].link_speed_active = OPA_LINK_SPEED_25G;
7336 			break;
7337 		}
7338 	}
7339 
7340 	dd_dev_info(dd,
7341 		    "Fabric active lanes (width): tx 0x%x (%d), rx 0x%x (%d)\n",
7342 		    enable_lane_tx, tx, enable_lane_rx, rx);
7343 	*tx_width = link_width_to_bits(dd, tx);
7344 	*rx_width = link_width_to_bits(dd, rx);
7345 }
7346 
7347 /*
7348  * Read verify_cap_local_fm_link_width[1] to obtain the link widths.
7349  * Valid after the end of VerifyCap and during LinkUp.  Does not change
7350  * after link up.  I.e. look elsewhere for downgrade information.
7351  *
7352  * Bits are:
7353  *	+ bits [7:4] contain the number of active transmitters
7354  *	+ bits [3:0] contain the number of active receivers
7355  * These are numbers 1 through 4 and can be different values if the
7356  * link is asymmetric.
7357  *
7358  * verify_cap_local_fm_link_width[0] retains its original value.
7359  */
7360 static void get_linkup_widths(struct hfi1_devdata *dd, u16 *tx_width,
7361 			      u16 *rx_width)
7362 {
7363 	u16 widths, tx, rx;
7364 	u8 misc_bits, local_flags;
7365 	u16 active_tx, active_rx;
7366 
7367 	read_vc_local_link_mode(dd, &misc_bits, &local_flags, &widths);
7368 	tx = widths >> 12;
7369 	rx = (widths >> 8) & 0xf;
7370 
7371 	*tx_width = link_width_to_bits(dd, tx);
7372 	*rx_width = link_width_to_bits(dd, rx);
7373 
7374 	/* print the active widths */
7375 	get_link_widths(dd, &active_tx, &active_rx);
7376 }
7377 
7378 /*
7379  * Set ppd->link_width_active and ppd->link_width_downgrade_active using
7380  * hardware information when the link first comes up.
7381  *
7382  * The link width is not available until after VerifyCap.AllFramesReceived
7383  * (the trigger for handle_verify_cap), so this is outside that routine
7384  * and should be called when the 8051 signals linkup.
7385  */
7386 void get_linkup_link_widths(struct hfi1_pportdata *ppd)
7387 {
7388 	u16 tx_width, rx_width;
7389 
7390 	/* get end-of-LNI link widths */
7391 	get_linkup_widths(ppd->dd, &tx_width, &rx_width);
7392 
7393 	/* use tx_width as the link is supposed to be symmetric on link up */
7394 	ppd->link_width_active = tx_width;
7395 	/* link width downgrade active (LWD.A) starts out matching LW.A */
7396 	ppd->link_width_downgrade_tx_active = ppd->link_width_active;
7397 	ppd->link_width_downgrade_rx_active = ppd->link_width_active;
7398 	/* per OPA spec, on link up LWD.E resets to LWD.S */
7399 	ppd->link_width_downgrade_enabled = ppd->link_width_downgrade_supported;
7400 	/* cache the active egress rate (units {10^6 bits/sec]) */
7401 	ppd->current_egress_rate = active_egress_rate(ppd);
7402 }
7403 
7404 /*
7405  * Handle a verify capabilities interrupt from the 8051.
7406  *
7407  * This is a work-queue function outside of the interrupt.
7408  */
7409 void handle_verify_cap(struct work_struct *work)
7410 {
7411 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
7412 								link_vc_work);
7413 	struct hfi1_devdata *dd = ppd->dd;
7414 	u64 reg;
7415 	u8 power_management;
7416 	u8 continuous;
7417 	u8 vcu;
7418 	u8 vau;
7419 	u8 z;
7420 	u16 vl15buf;
7421 	u16 link_widths;
7422 	u16 crc_mask;
7423 	u16 crc_val;
7424 	u16 device_id;
7425 	u16 active_tx, active_rx;
7426 	u8 partner_supported_crc;
7427 	u8 remote_tx_rate;
7428 	u8 device_rev;
7429 
7430 	set_link_state(ppd, HLS_VERIFY_CAP);
7431 
7432 	lcb_shutdown(dd, 0);
7433 	adjust_lcb_for_fpga_serdes(dd);
7434 
7435 	read_vc_remote_phy(dd, &power_management, &continuous);
7436 	read_vc_remote_fabric(dd, &vau, &z, &vcu, &vl15buf,
7437 			      &partner_supported_crc);
7438 	read_vc_remote_link_width(dd, &remote_tx_rate, &link_widths);
7439 	read_remote_device_id(dd, &device_id, &device_rev);
7440 
7441 	/* print the active widths */
7442 	get_link_widths(dd, &active_tx, &active_rx);
7443 	dd_dev_info(dd,
7444 		    "Peer PHY: power management 0x%x, continuous updates 0x%x\n",
7445 		    (int)power_management, (int)continuous);
7446 	dd_dev_info(dd,
7447 		    "Peer Fabric: vAU %d, Z %d, vCU %d, vl15 credits 0x%x, CRC sizes 0x%x\n",
7448 		    (int)vau, (int)z, (int)vcu, (int)vl15buf,
7449 		    (int)partner_supported_crc);
7450 	dd_dev_info(dd, "Peer Link Width: tx rate 0x%x, widths 0x%x\n",
7451 		    (u32)remote_tx_rate, (u32)link_widths);
7452 	dd_dev_info(dd, "Peer Device ID: 0x%04x, Revision 0x%02x\n",
7453 		    (u32)device_id, (u32)device_rev);
7454 	/*
7455 	 * The peer vAU value just read is the peer receiver value.  HFI does
7456 	 * not support a transmit vAU of 0 (AU == 8).  We advertised that
7457 	 * with Z=1 in the fabric capabilities sent to the peer.  The peer
7458 	 * will see our Z=1, and, if it advertised a vAU of 0, will move its
7459 	 * receive to vAU of 1 (AU == 16).  Do the same here.  We do not care
7460 	 * about the peer Z value - our sent vAU is 3 (hardwired) and is not
7461 	 * subject to the Z value exception.
7462 	 */
7463 	if (vau == 0)
7464 		vau = 1;
7465 	set_up_vau(dd, vau);
7466 
7467 	/*
7468 	 * Set VL15 credits to 0 in global credit register. Cache remote VL15
7469 	 * credits value and wait for link-up interrupt ot set it.
7470 	 */
7471 	set_up_vl15(dd, 0);
7472 	dd->vl15buf_cached = vl15buf;
7473 
7474 	/* set up the LCB CRC mode */
7475 	crc_mask = ppd->port_crc_mode_enabled & partner_supported_crc;
7476 
7477 	/* order is important: use the lowest bit in common */
7478 	if (crc_mask & CAP_CRC_14B)
7479 		crc_val = LCB_CRC_14B;
7480 	else if (crc_mask & CAP_CRC_48B)
7481 		crc_val = LCB_CRC_48B;
7482 	else if (crc_mask & CAP_CRC_12B_16B_PER_LANE)
7483 		crc_val = LCB_CRC_12B_16B_PER_LANE;
7484 	else
7485 		crc_val = LCB_CRC_16B;
7486 
7487 	dd_dev_info(dd, "Final LCB CRC mode: %d\n", (int)crc_val);
7488 	write_csr(dd, DC_LCB_CFG_CRC_MODE,
7489 		  (u64)crc_val << DC_LCB_CFG_CRC_MODE_TX_VAL_SHIFT);
7490 
7491 	/* set (14b only) or clear sideband credit */
7492 	reg = read_csr(dd, SEND_CM_CTRL);
7493 	if (crc_val == LCB_CRC_14B && crc_14b_sideband) {
7494 		write_csr(dd, SEND_CM_CTRL,
7495 			  reg | SEND_CM_CTRL_FORCE_CREDIT_MODE_SMASK);
7496 	} else {
7497 		write_csr(dd, SEND_CM_CTRL,
7498 			  reg & ~SEND_CM_CTRL_FORCE_CREDIT_MODE_SMASK);
7499 	}
7500 
7501 	ppd->link_speed_active = 0;	/* invalid value */
7502 	if (dd->dc8051_ver < dc8051_ver(0, 20, 0)) {
7503 		/* remote_tx_rate: 0 = 12.5G, 1 = 25G */
7504 		switch (remote_tx_rate) {
7505 		case 0:
7506 			ppd->link_speed_active = OPA_LINK_SPEED_12_5G;
7507 			break;
7508 		case 1:
7509 			ppd->link_speed_active = OPA_LINK_SPEED_25G;
7510 			break;
7511 		}
7512 	} else {
7513 		/* actual rate is highest bit of the ANDed rates */
7514 		u8 rate = remote_tx_rate & ppd->local_tx_rate;
7515 
7516 		if (rate & 2)
7517 			ppd->link_speed_active = OPA_LINK_SPEED_25G;
7518 		else if (rate & 1)
7519 			ppd->link_speed_active = OPA_LINK_SPEED_12_5G;
7520 	}
7521 	if (ppd->link_speed_active == 0) {
7522 		dd_dev_err(dd, "%s: unexpected remote tx rate %d, using 25Gb\n",
7523 			   __func__, (int)remote_tx_rate);
7524 		ppd->link_speed_active = OPA_LINK_SPEED_25G;
7525 	}
7526 
7527 	/*
7528 	 * Cache the values of the supported, enabled, and active
7529 	 * LTP CRC modes to return in 'portinfo' queries. But the bit
7530 	 * flags that are returned in the portinfo query differ from
7531 	 * what's in the link_crc_mask, crc_sizes, and crc_val
7532 	 * variables. Convert these here.
7533 	 */
7534 	ppd->port_ltp_crc_mode = cap_to_port_ltp(link_crc_mask) << 8;
7535 		/* supported crc modes */
7536 	ppd->port_ltp_crc_mode |=
7537 		cap_to_port_ltp(ppd->port_crc_mode_enabled) << 4;
7538 		/* enabled crc modes */
7539 	ppd->port_ltp_crc_mode |= lcb_to_port_ltp(crc_val);
7540 		/* active crc mode */
7541 
7542 	/* set up the remote credit return table */
7543 	assign_remote_cm_au_table(dd, vcu);
7544 
7545 	/*
7546 	 * The LCB is reset on entry to handle_verify_cap(), so this must
7547 	 * be applied on every link up.
7548 	 *
7549 	 * Adjust LCB error kill enable to kill the link if
7550 	 * these RBUF errors are seen:
7551 	 *	REPLAY_BUF_MBE_SMASK
7552 	 *	FLIT_INPUT_BUF_MBE_SMASK
7553 	 */
7554 	if (is_ax(dd)) {			/* fixed in B0 */
7555 		reg = read_csr(dd, DC_LCB_CFG_LINK_KILL_EN);
7556 		reg |= DC_LCB_CFG_LINK_KILL_EN_REPLAY_BUF_MBE_SMASK
7557 			| DC_LCB_CFG_LINK_KILL_EN_FLIT_INPUT_BUF_MBE_SMASK;
7558 		write_csr(dd, DC_LCB_CFG_LINK_KILL_EN, reg);
7559 	}
7560 
7561 	/* pull LCB fifos out of reset - all fifo clocks must be stable */
7562 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0);
7563 
7564 	/* give 8051 access to the LCB CSRs */
7565 	write_csr(dd, DC_LCB_ERR_EN, 0); /* mask LCB errors */
7566 	set_8051_lcb_access(dd);
7567 
7568 	/* tell the 8051 to go to LinkUp */
7569 	set_link_state(ppd, HLS_GOING_UP);
7570 }
7571 
7572 /**
7573  * apply_link_downgrade_policy - Apply the link width downgrade enabled
7574  * policy against the current active link widths.
7575  * @ppd: info of physical Hfi port
7576  * @refresh_widths: True indicates link downgrade event
7577  * @return: True indicates a successful link downgrade. False indicates
7578  *	    link downgrade event failed and the link will bounce back to
7579  *	    default link width.
7580  *
7581  * Called when the enabled policy changes or the active link widths
7582  * change.
7583  * Refresh_widths indicates that a link downgrade occurred. The
7584  * link_downgraded variable is set by refresh_widths and
7585  * determines the success/failure of the policy application.
7586  */
7587 bool apply_link_downgrade_policy(struct hfi1_pportdata *ppd,
7588 				 bool refresh_widths)
7589 {
7590 	int do_bounce = 0;
7591 	int tries;
7592 	u16 lwde;
7593 	u16 tx, rx;
7594 	bool link_downgraded = refresh_widths;
7595 
7596 	/* use the hls lock to avoid a race with actual link up */
7597 	tries = 0;
7598 retry:
7599 	mutex_lock(&ppd->hls_lock);
7600 	/* only apply if the link is up */
7601 	if (ppd->host_link_state & HLS_DOWN) {
7602 		/* still going up..wait and retry */
7603 		if (ppd->host_link_state & HLS_GOING_UP) {
7604 			if (++tries < 1000) {
7605 				mutex_unlock(&ppd->hls_lock);
7606 				usleep_range(100, 120); /* arbitrary */
7607 				goto retry;
7608 			}
7609 			dd_dev_err(ppd->dd,
7610 				   "%s: giving up waiting for link state change\n",
7611 				   __func__);
7612 		}
7613 		goto done;
7614 	}
7615 
7616 	lwde = ppd->link_width_downgrade_enabled;
7617 
7618 	if (refresh_widths) {
7619 		get_link_widths(ppd->dd, &tx, &rx);
7620 		ppd->link_width_downgrade_tx_active = tx;
7621 		ppd->link_width_downgrade_rx_active = rx;
7622 	}
7623 
7624 	if (ppd->link_width_downgrade_tx_active == 0 ||
7625 	    ppd->link_width_downgrade_rx_active == 0) {
7626 		/* the 8051 reported a dead link as a downgrade */
7627 		dd_dev_err(ppd->dd, "Link downgrade is really a link down, ignoring\n");
7628 		link_downgraded = false;
7629 	} else if (lwde == 0) {
7630 		/* downgrade is disabled */
7631 
7632 		/* bounce if not at starting active width */
7633 		if ((ppd->link_width_active !=
7634 		     ppd->link_width_downgrade_tx_active) ||
7635 		    (ppd->link_width_active !=
7636 		     ppd->link_width_downgrade_rx_active)) {
7637 			dd_dev_err(ppd->dd,
7638 				   "Link downgrade is disabled and link has downgraded, downing link\n");
7639 			dd_dev_err(ppd->dd,
7640 				   "  original 0x%x, tx active 0x%x, rx active 0x%x\n",
7641 				   ppd->link_width_active,
7642 				   ppd->link_width_downgrade_tx_active,
7643 				   ppd->link_width_downgrade_rx_active);
7644 			do_bounce = 1;
7645 			link_downgraded = false;
7646 		}
7647 	} else if ((lwde & ppd->link_width_downgrade_tx_active) == 0 ||
7648 		   (lwde & ppd->link_width_downgrade_rx_active) == 0) {
7649 		/* Tx or Rx is outside the enabled policy */
7650 		dd_dev_err(ppd->dd,
7651 			   "Link is outside of downgrade allowed, downing link\n");
7652 		dd_dev_err(ppd->dd,
7653 			   "  enabled 0x%x, tx active 0x%x, rx active 0x%x\n",
7654 			   lwde, ppd->link_width_downgrade_tx_active,
7655 			   ppd->link_width_downgrade_rx_active);
7656 		do_bounce = 1;
7657 		link_downgraded = false;
7658 	}
7659 
7660 done:
7661 	mutex_unlock(&ppd->hls_lock);
7662 
7663 	if (do_bounce) {
7664 		set_link_down_reason(ppd, OPA_LINKDOWN_REASON_WIDTH_POLICY, 0,
7665 				     OPA_LINKDOWN_REASON_WIDTH_POLICY);
7666 		set_link_state(ppd, HLS_DN_OFFLINE);
7667 		start_link(ppd);
7668 	}
7669 
7670 	return link_downgraded;
7671 }
7672 
7673 /*
7674  * Handle a link downgrade interrupt from the 8051.
7675  *
7676  * This is a work-queue function outside of the interrupt.
7677  */
7678 void handle_link_downgrade(struct work_struct *work)
7679 {
7680 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
7681 							link_downgrade_work);
7682 
7683 	dd_dev_info(ppd->dd, "8051: Link width downgrade\n");
7684 	if (apply_link_downgrade_policy(ppd, true))
7685 		update_xmit_counters(ppd, ppd->link_width_downgrade_tx_active);
7686 }
7687 
7688 static char *dcc_err_string(char *buf, int buf_len, u64 flags)
7689 {
7690 	return flag_string(buf, buf_len, flags, dcc_err_flags,
7691 		ARRAY_SIZE(dcc_err_flags));
7692 }
7693 
7694 static char *lcb_err_string(char *buf, int buf_len, u64 flags)
7695 {
7696 	return flag_string(buf, buf_len, flags, lcb_err_flags,
7697 		ARRAY_SIZE(lcb_err_flags));
7698 }
7699 
7700 static char *dc8051_err_string(char *buf, int buf_len, u64 flags)
7701 {
7702 	return flag_string(buf, buf_len, flags, dc8051_err_flags,
7703 		ARRAY_SIZE(dc8051_err_flags));
7704 }
7705 
7706 static char *dc8051_info_err_string(char *buf, int buf_len, u64 flags)
7707 {
7708 	return flag_string(buf, buf_len, flags, dc8051_info_err_flags,
7709 		ARRAY_SIZE(dc8051_info_err_flags));
7710 }
7711 
7712 static char *dc8051_info_host_msg_string(char *buf, int buf_len, u64 flags)
7713 {
7714 	return flag_string(buf, buf_len, flags, dc8051_info_host_msg_flags,
7715 		ARRAY_SIZE(dc8051_info_host_msg_flags));
7716 }
7717 
7718 static void handle_8051_interrupt(struct hfi1_devdata *dd, u32 unused, u64 reg)
7719 {
7720 	struct hfi1_pportdata *ppd = dd->pport;
7721 	u64 info, err, host_msg;
7722 	int queue_link_down = 0;
7723 	char buf[96];
7724 
7725 	/* look at the flags */
7726 	if (reg & DC_DC8051_ERR_FLG_SET_BY_8051_SMASK) {
7727 		/* 8051 information set by firmware */
7728 		/* read DC8051_DBG_ERR_INFO_SET_BY_8051 for details */
7729 		info = read_csr(dd, DC_DC8051_DBG_ERR_INFO_SET_BY_8051);
7730 		err = (info >> DC_DC8051_DBG_ERR_INFO_SET_BY_8051_ERROR_SHIFT)
7731 			& DC_DC8051_DBG_ERR_INFO_SET_BY_8051_ERROR_MASK;
7732 		host_msg = (info >>
7733 			DC_DC8051_DBG_ERR_INFO_SET_BY_8051_HOST_MSG_SHIFT)
7734 			& DC_DC8051_DBG_ERR_INFO_SET_BY_8051_HOST_MSG_MASK;
7735 
7736 		/*
7737 		 * Handle error flags.
7738 		 */
7739 		if (err & FAILED_LNI) {
7740 			/*
7741 			 * LNI error indications are cleared by the 8051
7742 			 * only when starting polling.  Only pay attention
7743 			 * to them when in the states that occur during
7744 			 * LNI.
7745 			 */
7746 			if (ppd->host_link_state
7747 			    & (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) {
7748 				queue_link_down = 1;
7749 				dd_dev_info(dd, "Link error: %s\n",
7750 					    dc8051_info_err_string(buf,
7751 								   sizeof(buf),
7752 								   err &
7753 								   FAILED_LNI));
7754 			}
7755 			err &= ~(u64)FAILED_LNI;
7756 		}
7757 		/* unknown frames can happen durning LNI, just count */
7758 		if (err & UNKNOWN_FRAME) {
7759 			ppd->unknown_frame_count++;
7760 			err &= ~(u64)UNKNOWN_FRAME;
7761 		}
7762 		if (err) {
7763 			/* report remaining errors, but do not do anything */
7764 			dd_dev_err(dd, "8051 info error: %s\n",
7765 				   dc8051_info_err_string(buf, sizeof(buf),
7766 							  err));
7767 		}
7768 
7769 		/*
7770 		 * Handle host message flags.
7771 		 */
7772 		if (host_msg & HOST_REQ_DONE) {
7773 			/*
7774 			 * Presently, the driver does a busy wait for
7775 			 * host requests to complete.  This is only an
7776 			 * informational message.
7777 			 * NOTE: The 8051 clears the host message
7778 			 * information *on the next 8051 command*.
7779 			 * Therefore, when linkup is achieved,
7780 			 * this flag will still be set.
7781 			 */
7782 			host_msg &= ~(u64)HOST_REQ_DONE;
7783 		}
7784 		if (host_msg & BC_SMA_MSG) {
7785 			queue_work(ppd->link_wq, &ppd->sma_message_work);
7786 			host_msg &= ~(u64)BC_SMA_MSG;
7787 		}
7788 		if (host_msg & LINKUP_ACHIEVED) {
7789 			dd_dev_info(dd, "8051: Link up\n");
7790 			queue_work(ppd->link_wq, &ppd->link_up_work);
7791 			host_msg &= ~(u64)LINKUP_ACHIEVED;
7792 		}
7793 		if (host_msg & EXT_DEVICE_CFG_REQ) {
7794 			handle_8051_request(ppd);
7795 			host_msg &= ~(u64)EXT_DEVICE_CFG_REQ;
7796 		}
7797 		if (host_msg & VERIFY_CAP_FRAME) {
7798 			queue_work(ppd->link_wq, &ppd->link_vc_work);
7799 			host_msg &= ~(u64)VERIFY_CAP_FRAME;
7800 		}
7801 		if (host_msg & LINK_GOING_DOWN) {
7802 			const char *extra = "";
7803 			/* no downgrade action needed if going down */
7804 			if (host_msg & LINK_WIDTH_DOWNGRADED) {
7805 				host_msg &= ~(u64)LINK_WIDTH_DOWNGRADED;
7806 				extra = " (ignoring downgrade)";
7807 			}
7808 			dd_dev_info(dd, "8051: Link down%s\n", extra);
7809 			queue_link_down = 1;
7810 			host_msg &= ~(u64)LINK_GOING_DOWN;
7811 		}
7812 		if (host_msg & LINK_WIDTH_DOWNGRADED) {
7813 			queue_work(ppd->link_wq, &ppd->link_downgrade_work);
7814 			host_msg &= ~(u64)LINK_WIDTH_DOWNGRADED;
7815 		}
7816 		if (host_msg) {
7817 			/* report remaining messages, but do not do anything */
7818 			dd_dev_info(dd, "8051 info host message: %s\n",
7819 				    dc8051_info_host_msg_string(buf,
7820 								sizeof(buf),
7821 								host_msg));
7822 		}
7823 
7824 		reg &= ~DC_DC8051_ERR_FLG_SET_BY_8051_SMASK;
7825 	}
7826 	if (reg & DC_DC8051_ERR_FLG_LOST_8051_HEART_BEAT_SMASK) {
7827 		/*
7828 		 * Lost the 8051 heartbeat.  If this happens, we
7829 		 * receive constant interrupts about it.  Disable
7830 		 * the interrupt after the first.
7831 		 */
7832 		dd_dev_err(dd, "Lost 8051 heartbeat\n");
7833 		write_csr(dd, DC_DC8051_ERR_EN,
7834 			  read_csr(dd, DC_DC8051_ERR_EN) &
7835 			  ~DC_DC8051_ERR_EN_LOST_8051_HEART_BEAT_SMASK);
7836 
7837 		reg &= ~DC_DC8051_ERR_FLG_LOST_8051_HEART_BEAT_SMASK;
7838 	}
7839 	if (reg) {
7840 		/* report the error, but do not do anything */
7841 		dd_dev_err(dd, "8051 error: %s\n",
7842 			   dc8051_err_string(buf, sizeof(buf), reg));
7843 	}
7844 
7845 	if (queue_link_down) {
7846 		/*
7847 		 * if the link is already going down or disabled, do not
7848 		 * queue another. If there's a link down entry already
7849 		 * queued, don't queue another one.
7850 		 */
7851 		if ((ppd->host_link_state &
7852 		    (HLS_GOING_OFFLINE | HLS_LINK_COOLDOWN)) ||
7853 		    ppd->link_enabled == 0) {
7854 			dd_dev_info(dd, "%s: not queuing link down. host_link_state %x, link_enabled %x\n",
7855 				    __func__, ppd->host_link_state,
7856 				    ppd->link_enabled);
7857 		} else {
7858 			if (xchg(&ppd->is_link_down_queued, 1) == 1)
7859 				dd_dev_info(dd,
7860 					    "%s: link down request already queued\n",
7861 					    __func__);
7862 			else
7863 				queue_work(ppd->link_wq, &ppd->link_down_work);
7864 		}
7865 	}
7866 }
7867 
7868 static const char * const fm_config_txt[] = {
7869 [0] =
7870 	"BadHeadDist: Distance violation between two head flits",
7871 [1] =
7872 	"BadTailDist: Distance violation between two tail flits",
7873 [2] =
7874 	"BadCtrlDist: Distance violation between two credit control flits",
7875 [3] =
7876 	"BadCrdAck: Credits return for unsupported VL",
7877 [4] =
7878 	"UnsupportedVLMarker: Received VL Marker",
7879 [5] =
7880 	"BadPreempt: Exceeded the preemption nesting level",
7881 [6] =
7882 	"BadControlFlit: Received unsupported control flit",
7883 /* no 7 */
7884 [8] =
7885 	"UnsupportedVLMarker: Received VL Marker for unconfigured or disabled VL",
7886 };
7887 
7888 static const char * const port_rcv_txt[] = {
7889 [1] =
7890 	"BadPktLen: Illegal PktLen",
7891 [2] =
7892 	"PktLenTooLong: Packet longer than PktLen",
7893 [3] =
7894 	"PktLenTooShort: Packet shorter than PktLen",
7895 [4] =
7896 	"BadSLID: Illegal SLID (0, using multicast as SLID, does not include security validation of SLID)",
7897 [5] =
7898 	"BadDLID: Illegal DLID (0, doesn't match HFI)",
7899 [6] =
7900 	"BadL2: Illegal L2 opcode",
7901 [7] =
7902 	"BadSC: Unsupported SC",
7903 [9] =
7904 	"BadRC: Illegal RC",
7905 [11] =
7906 	"PreemptError: Preempting with same VL",
7907 [12] =
7908 	"PreemptVL15: Preempting a VL15 packet",
7909 };
7910 
7911 #define OPA_LDR_FMCONFIG_OFFSET 16
7912 #define OPA_LDR_PORTRCV_OFFSET 0
7913 static void handle_dcc_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
7914 {
7915 	u64 info, hdr0, hdr1;
7916 	const char *extra;
7917 	char buf[96];
7918 	struct hfi1_pportdata *ppd = dd->pport;
7919 	u8 lcl_reason = 0;
7920 	int do_bounce = 0;
7921 
7922 	if (reg & DCC_ERR_FLG_UNCORRECTABLE_ERR_SMASK) {
7923 		if (!(dd->err_info_uncorrectable & OPA_EI_STATUS_SMASK)) {
7924 			info = read_csr(dd, DCC_ERR_INFO_UNCORRECTABLE);
7925 			dd->err_info_uncorrectable = info & OPA_EI_CODE_SMASK;
7926 			/* set status bit */
7927 			dd->err_info_uncorrectable |= OPA_EI_STATUS_SMASK;
7928 		}
7929 		reg &= ~DCC_ERR_FLG_UNCORRECTABLE_ERR_SMASK;
7930 	}
7931 
7932 	if (reg & DCC_ERR_FLG_LINK_ERR_SMASK) {
7933 		struct hfi1_pportdata *ppd = dd->pport;
7934 		/* this counter saturates at (2^32) - 1 */
7935 		if (ppd->link_downed < (u32)UINT_MAX)
7936 			ppd->link_downed++;
7937 		reg &= ~DCC_ERR_FLG_LINK_ERR_SMASK;
7938 	}
7939 
7940 	if (reg & DCC_ERR_FLG_FMCONFIG_ERR_SMASK) {
7941 		u8 reason_valid = 1;
7942 
7943 		info = read_csr(dd, DCC_ERR_INFO_FMCONFIG);
7944 		if (!(dd->err_info_fmconfig & OPA_EI_STATUS_SMASK)) {
7945 			dd->err_info_fmconfig = info & OPA_EI_CODE_SMASK;
7946 			/* set status bit */
7947 			dd->err_info_fmconfig |= OPA_EI_STATUS_SMASK;
7948 		}
7949 		switch (info) {
7950 		case 0:
7951 		case 1:
7952 		case 2:
7953 		case 3:
7954 		case 4:
7955 		case 5:
7956 		case 6:
7957 			extra = fm_config_txt[info];
7958 			break;
7959 		case 8:
7960 			extra = fm_config_txt[info];
7961 			if (ppd->port_error_action &
7962 			    OPA_PI_MASK_FM_CFG_UNSUPPORTED_VL_MARKER) {
7963 				do_bounce = 1;
7964 				/*
7965 				 * lcl_reason cannot be derived from info
7966 				 * for this error
7967 				 */
7968 				lcl_reason =
7969 				  OPA_LINKDOWN_REASON_UNSUPPORTED_VL_MARKER;
7970 			}
7971 			break;
7972 		default:
7973 			reason_valid = 0;
7974 			snprintf(buf, sizeof(buf), "reserved%lld", info);
7975 			extra = buf;
7976 			break;
7977 		}
7978 
7979 		if (reason_valid && !do_bounce) {
7980 			do_bounce = ppd->port_error_action &
7981 					(1 << (OPA_LDR_FMCONFIG_OFFSET + info));
7982 			lcl_reason = info + OPA_LINKDOWN_REASON_BAD_HEAD_DIST;
7983 		}
7984 
7985 		/* just report this */
7986 		dd_dev_info_ratelimited(dd, "DCC Error: fmconfig error: %s\n",
7987 					extra);
7988 		reg &= ~DCC_ERR_FLG_FMCONFIG_ERR_SMASK;
7989 	}
7990 
7991 	if (reg & DCC_ERR_FLG_RCVPORT_ERR_SMASK) {
7992 		u8 reason_valid = 1;
7993 
7994 		info = read_csr(dd, DCC_ERR_INFO_PORTRCV);
7995 		hdr0 = read_csr(dd, DCC_ERR_INFO_PORTRCV_HDR0);
7996 		hdr1 = read_csr(dd, DCC_ERR_INFO_PORTRCV_HDR1);
7997 		if (!(dd->err_info_rcvport.status_and_code &
7998 		      OPA_EI_STATUS_SMASK)) {
7999 			dd->err_info_rcvport.status_and_code =
8000 				info & OPA_EI_CODE_SMASK;
8001 			/* set status bit */
8002 			dd->err_info_rcvport.status_and_code |=
8003 				OPA_EI_STATUS_SMASK;
8004 			/*
8005 			 * save first 2 flits in the packet that caused
8006 			 * the error
8007 			 */
8008 			dd->err_info_rcvport.packet_flit1 = hdr0;
8009 			dd->err_info_rcvport.packet_flit2 = hdr1;
8010 		}
8011 		switch (info) {
8012 		case 1:
8013 		case 2:
8014 		case 3:
8015 		case 4:
8016 		case 5:
8017 		case 6:
8018 		case 7:
8019 		case 9:
8020 		case 11:
8021 		case 12:
8022 			extra = port_rcv_txt[info];
8023 			break;
8024 		default:
8025 			reason_valid = 0;
8026 			snprintf(buf, sizeof(buf), "reserved%lld", info);
8027 			extra = buf;
8028 			break;
8029 		}
8030 
8031 		if (reason_valid && !do_bounce) {
8032 			do_bounce = ppd->port_error_action &
8033 					(1 << (OPA_LDR_PORTRCV_OFFSET + info));
8034 			lcl_reason = info + OPA_LINKDOWN_REASON_RCV_ERROR_0;
8035 		}
8036 
8037 		/* just report this */
8038 		dd_dev_info_ratelimited(dd, "DCC Error: PortRcv error: %s\n"
8039 					"               hdr0 0x%llx, hdr1 0x%llx\n",
8040 					extra, hdr0, hdr1);
8041 
8042 		reg &= ~DCC_ERR_FLG_RCVPORT_ERR_SMASK;
8043 	}
8044 
8045 	if (reg & DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_UC_SMASK) {
8046 		/* informative only */
8047 		dd_dev_info_ratelimited(dd, "8051 access to LCB blocked\n");
8048 		reg &= ~DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_UC_SMASK;
8049 	}
8050 	if (reg & DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_HOST_SMASK) {
8051 		/* informative only */
8052 		dd_dev_info_ratelimited(dd, "host access to LCB blocked\n");
8053 		reg &= ~DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_HOST_SMASK;
8054 	}
8055 
8056 	if (unlikely(hfi1_dbg_fault_suppress_err(&dd->verbs_dev)))
8057 		reg &= ~DCC_ERR_FLG_LATE_EBP_ERR_SMASK;
8058 
8059 	/* report any remaining errors */
8060 	if (reg)
8061 		dd_dev_info_ratelimited(dd, "DCC Error: %s\n",
8062 					dcc_err_string(buf, sizeof(buf), reg));
8063 
8064 	if (lcl_reason == 0)
8065 		lcl_reason = OPA_LINKDOWN_REASON_UNKNOWN;
8066 
8067 	if (do_bounce) {
8068 		dd_dev_info_ratelimited(dd, "%s: PortErrorAction bounce\n",
8069 					__func__);
8070 		set_link_down_reason(ppd, lcl_reason, 0, lcl_reason);
8071 		queue_work(ppd->link_wq, &ppd->link_bounce_work);
8072 	}
8073 }
8074 
8075 static void handle_lcb_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
8076 {
8077 	char buf[96];
8078 
8079 	dd_dev_info(dd, "LCB Error: %s\n",
8080 		    lcb_err_string(buf, sizeof(buf), reg));
8081 }
8082 
8083 /*
8084  * CCE block DC interrupt.  Source is < 8.
8085  */
8086 static void is_dc_int(struct hfi1_devdata *dd, unsigned int source)
8087 {
8088 	const struct err_reg_info *eri = &dc_errs[source];
8089 
8090 	if (eri->handler) {
8091 		interrupt_clear_down(dd, 0, eri);
8092 	} else if (source == 3 /* dc_lbm_int */) {
8093 		/*
8094 		 * This indicates that a parity error has occurred on the
8095 		 * address/control lines presented to the LBM.  The error
8096 		 * is a single pulse, there is no associated error flag,
8097 		 * and it is non-maskable.  This is because if a parity
8098 		 * error occurs on the request the request is dropped.
8099 		 * This should never occur, but it is nice to know if it
8100 		 * ever does.
8101 		 */
8102 		dd_dev_err(dd, "Parity error in DC LBM block\n");
8103 	} else {
8104 		dd_dev_err(dd, "Invalid DC interrupt %u\n", source);
8105 	}
8106 }
8107 
8108 /*
8109  * TX block send credit interrupt.  Source is < 160.
8110  */
8111 static void is_send_credit_int(struct hfi1_devdata *dd, unsigned int source)
8112 {
8113 	sc_group_release_update(dd, source);
8114 }
8115 
8116 /*
8117  * TX block SDMA interrupt.  Source is < 48.
8118  *
8119  * SDMA interrupts are grouped by type:
8120  *
8121  *	 0 -  N-1 = SDma
8122  *	 N - 2N-1 = SDmaProgress
8123  *	2N - 3N-1 = SDmaIdle
8124  */
8125 static void is_sdma_eng_int(struct hfi1_devdata *dd, unsigned int source)
8126 {
8127 	/* what interrupt */
8128 	unsigned int what  = source / TXE_NUM_SDMA_ENGINES;
8129 	/* which engine */
8130 	unsigned int which = source % TXE_NUM_SDMA_ENGINES;
8131 
8132 #ifdef CONFIG_SDMA_VERBOSITY
8133 	dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", which,
8134 		   slashstrip(__FILE__), __LINE__, __func__);
8135 	sdma_dumpstate(&dd->per_sdma[which]);
8136 #endif
8137 
8138 	if (likely(what < 3 && which < dd->num_sdma)) {
8139 		sdma_engine_interrupt(&dd->per_sdma[which], 1ull << source);
8140 	} else {
8141 		/* should not happen */
8142 		dd_dev_err(dd, "Invalid SDMA interrupt 0x%x\n", source);
8143 	}
8144 }
8145 
8146 /*
8147  * RX block receive available interrupt.  Source is < 160.
8148  */
8149 static void is_rcv_avail_int(struct hfi1_devdata *dd, unsigned int source)
8150 {
8151 	struct hfi1_ctxtdata *rcd;
8152 	char *err_detail;
8153 
8154 	if (likely(source < dd->num_rcv_contexts)) {
8155 		rcd = hfi1_rcd_get_by_index(dd, source);
8156 		if (rcd) {
8157 			/* Check for non-user contexts, including vnic */
8158 			if (source < dd->first_dyn_alloc_ctxt || rcd->is_vnic)
8159 				rcd->do_interrupt(rcd, 0);
8160 			else
8161 				handle_user_interrupt(rcd);
8162 
8163 			hfi1_rcd_put(rcd);
8164 			return;	/* OK */
8165 		}
8166 		/* received an interrupt, but no rcd */
8167 		err_detail = "dataless";
8168 	} else {
8169 		/* received an interrupt, but are not using that context */
8170 		err_detail = "out of range";
8171 	}
8172 	dd_dev_err(dd, "unexpected %s receive available context interrupt %u\n",
8173 		   err_detail, source);
8174 }
8175 
8176 /*
8177  * RX block receive urgent interrupt.  Source is < 160.
8178  */
8179 static void is_rcv_urgent_int(struct hfi1_devdata *dd, unsigned int source)
8180 {
8181 	struct hfi1_ctxtdata *rcd;
8182 	char *err_detail;
8183 
8184 	if (likely(source < dd->num_rcv_contexts)) {
8185 		rcd = hfi1_rcd_get_by_index(dd, source);
8186 		if (rcd) {
8187 			/* only pay attention to user urgent interrupts */
8188 			if (source >= dd->first_dyn_alloc_ctxt &&
8189 			    !rcd->is_vnic)
8190 				handle_user_interrupt(rcd);
8191 
8192 			hfi1_rcd_put(rcd);
8193 			return;	/* OK */
8194 		}
8195 		/* received an interrupt, but no rcd */
8196 		err_detail = "dataless";
8197 	} else {
8198 		/* received an interrupt, but are not using that context */
8199 		err_detail = "out of range";
8200 	}
8201 	dd_dev_err(dd, "unexpected %s receive urgent context interrupt %u\n",
8202 		   err_detail, source);
8203 }
8204 
8205 /*
8206  * Reserved range interrupt.  Should not be called in normal operation.
8207  */
8208 static void is_reserved_int(struct hfi1_devdata *dd, unsigned int source)
8209 {
8210 	char name[64];
8211 
8212 	dd_dev_err(dd, "unexpected %s interrupt\n",
8213 		   is_reserved_name(name, sizeof(name), source));
8214 }
8215 
8216 static const struct is_table is_table[] = {
8217 /*
8218  * start		 end
8219  *				name func		interrupt func
8220  */
8221 { IS_GENERAL_ERR_START,  IS_GENERAL_ERR_END,
8222 				is_misc_err_name,	is_misc_err_int },
8223 { IS_SDMAENG_ERR_START,  IS_SDMAENG_ERR_END,
8224 				is_sdma_eng_err_name,	is_sdma_eng_err_int },
8225 { IS_SENDCTXT_ERR_START, IS_SENDCTXT_ERR_END,
8226 				is_sendctxt_err_name,	is_sendctxt_err_int },
8227 { IS_SDMA_START,	     IS_SDMA_END,
8228 				is_sdma_eng_name,	is_sdma_eng_int },
8229 { IS_VARIOUS_START,	     IS_VARIOUS_END,
8230 				is_various_name,	is_various_int },
8231 { IS_DC_START,	     IS_DC_END,
8232 				is_dc_name,		is_dc_int },
8233 { IS_RCVAVAIL_START,     IS_RCVAVAIL_END,
8234 				is_rcv_avail_name,	is_rcv_avail_int },
8235 { IS_RCVURGENT_START,    IS_RCVURGENT_END,
8236 				is_rcv_urgent_name,	is_rcv_urgent_int },
8237 { IS_SENDCREDIT_START,   IS_SENDCREDIT_END,
8238 				is_send_credit_name,	is_send_credit_int},
8239 { IS_RESERVED_START,     IS_RESERVED_END,
8240 				is_reserved_name,	is_reserved_int},
8241 };
8242 
8243 /*
8244  * Interrupt source interrupt - called when the given source has an interrupt.
8245  * Source is a bit index into an array of 64-bit integers.
8246  */
8247 static void is_interrupt(struct hfi1_devdata *dd, unsigned int source)
8248 {
8249 	const struct is_table *entry;
8250 
8251 	/* avoids a double compare by walking the table in-order */
8252 	for (entry = &is_table[0]; entry->is_name; entry++) {
8253 		if (source < entry->end) {
8254 			trace_hfi1_interrupt(dd, entry, source);
8255 			entry->is_int(dd, source - entry->start);
8256 			return;
8257 		}
8258 	}
8259 	/* fell off the end */
8260 	dd_dev_err(dd, "invalid interrupt source %u\n", source);
8261 }
8262 
8263 /*
8264  * General interrupt handler.  This is able to correctly handle
8265  * all interrupts in case INTx is used.
8266  */
8267 static irqreturn_t general_interrupt(int irq, void *data)
8268 {
8269 	struct hfi1_devdata *dd = data;
8270 	u64 regs[CCE_NUM_INT_CSRS];
8271 	u32 bit;
8272 	int i;
8273 	irqreturn_t handled = IRQ_NONE;
8274 
8275 	this_cpu_inc(*dd->int_counter);
8276 
8277 	/* phase 1: scan and clear all handled interrupts */
8278 	for (i = 0; i < CCE_NUM_INT_CSRS; i++) {
8279 		if (dd->gi_mask[i] == 0) {
8280 			regs[i] = 0;	/* used later */
8281 			continue;
8282 		}
8283 		regs[i] = read_csr(dd, CCE_INT_STATUS + (8 * i)) &
8284 				dd->gi_mask[i];
8285 		/* only clear if anything is set */
8286 		if (regs[i])
8287 			write_csr(dd, CCE_INT_CLEAR + (8 * i), regs[i]);
8288 	}
8289 
8290 	/* phase 2: call the appropriate handler */
8291 	for_each_set_bit(bit, (unsigned long *)&regs[0],
8292 			 CCE_NUM_INT_CSRS * 64) {
8293 		is_interrupt(dd, bit);
8294 		handled = IRQ_HANDLED;
8295 	}
8296 
8297 	return handled;
8298 }
8299 
8300 static irqreturn_t sdma_interrupt(int irq, void *data)
8301 {
8302 	struct sdma_engine *sde = data;
8303 	struct hfi1_devdata *dd = sde->dd;
8304 	u64 status;
8305 
8306 #ifdef CONFIG_SDMA_VERBOSITY
8307 	dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
8308 		   slashstrip(__FILE__), __LINE__, __func__);
8309 	sdma_dumpstate(sde);
8310 #endif
8311 
8312 	this_cpu_inc(*dd->int_counter);
8313 
8314 	/* This read_csr is really bad in the hot path */
8315 	status = read_csr(dd,
8316 			  CCE_INT_STATUS + (8 * (IS_SDMA_START / 64)))
8317 			  & sde->imask;
8318 	if (likely(status)) {
8319 		/* clear the interrupt(s) */
8320 		write_csr(dd,
8321 			  CCE_INT_CLEAR + (8 * (IS_SDMA_START / 64)),
8322 			  status);
8323 
8324 		/* handle the interrupt(s) */
8325 		sdma_engine_interrupt(sde, status);
8326 	} else {
8327 		dd_dev_info_ratelimited(dd, "SDMA engine %u interrupt, but no status bits set\n",
8328 					sde->this_idx);
8329 	}
8330 	return IRQ_HANDLED;
8331 }
8332 
8333 /*
8334  * Clear the receive interrupt.  Use a read of the interrupt clear CSR
8335  * to insure that the write completed.  This does NOT guarantee that
8336  * queued DMA writes to memory from the chip are pushed.
8337  */
8338 static inline void clear_recv_intr(struct hfi1_ctxtdata *rcd)
8339 {
8340 	struct hfi1_devdata *dd = rcd->dd;
8341 	u32 addr = CCE_INT_CLEAR + (8 * rcd->ireg);
8342 
8343 	mmiowb();	/* make sure everything before is written */
8344 	write_csr(dd, addr, rcd->imask);
8345 	/* force the above write on the chip and get a value back */
8346 	(void)read_csr(dd, addr);
8347 }
8348 
8349 /* force the receive interrupt */
8350 void force_recv_intr(struct hfi1_ctxtdata *rcd)
8351 {
8352 	write_csr(rcd->dd, CCE_INT_FORCE + (8 * rcd->ireg), rcd->imask);
8353 }
8354 
8355 /*
8356  * Return non-zero if a packet is present.
8357  *
8358  * This routine is called when rechecking for packets after the RcvAvail
8359  * interrupt has been cleared down.  First, do a quick check of memory for
8360  * a packet present.  If not found, use an expensive CSR read of the context
8361  * tail to determine the actual tail.  The CSR read is necessary because there
8362  * is no method to push pending DMAs to memory other than an interrupt and we
8363  * are trying to determine if we need to force an interrupt.
8364  */
8365 static inline int check_packet_present(struct hfi1_ctxtdata *rcd)
8366 {
8367 	u32 tail;
8368 	int present;
8369 
8370 	if (!rcd->rcvhdrtail_kvaddr)
8371 		present = (rcd->seq_cnt ==
8372 				rhf_rcv_seq(rhf_to_cpu(get_rhf_addr(rcd))));
8373 	else /* is RDMA rtail */
8374 		present = (rcd->head != get_rcvhdrtail(rcd));
8375 
8376 	if (present)
8377 		return 1;
8378 
8379 	/* fall back to a CSR read, correct indpendent of DMA_RTAIL */
8380 	tail = (u32)read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_TAIL);
8381 	return rcd->head != tail;
8382 }
8383 
8384 /*
8385  * Receive packet IRQ handler.  This routine expects to be on its own IRQ.
8386  * This routine will try to handle packets immediately (latency), but if
8387  * it finds too many, it will invoke the thread handler (bandwitdh).  The
8388  * chip receive interrupt is *not* cleared down until this or the thread (if
8389  * invoked) is finished.  The intent is to avoid extra interrupts while we
8390  * are processing packets anyway.
8391  */
8392 static irqreturn_t receive_context_interrupt(int irq, void *data)
8393 {
8394 	struct hfi1_ctxtdata *rcd = data;
8395 	struct hfi1_devdata *dd = rcd->dd;
8396 	int disposition;
8397 	int present;
8398 
8399 	trace_hfi1_receive_interrupt(dd, rcd);
8400 	this_cpu_inc(*dd->int_counter);
8401 	aspm_ctx_disable(rcd);
8402 
8403 	/* receive interrupt remains blocked while processing packets */
8404 	disposition = rcd->do_interrupt(rcd, 0);
8405 
8406 	/*
8407 	 * Too many packets were seen while processing packets in this
8408 	 * IRQ handler.  Invoke the handler thread.  The receive interrupt
8409 	 * remains blocked.
8410 	 */
8411 	if (disposition == RCV_PKT_LIMIT)
8412 		return IRQ_WAKE_THREAD;
8413 
8414 	/*
8415 	 * The packet processor detected no more packets.  Clear the receive
8416 	 * interrupt and recheck for a packet packet that may have arrived
8417 	 * after the previous check and interrupt clear.  If a packet arrived,
8418 	 * force another interrupt.
8419 	 */
8420 	clear_recv_intr(rcd);
8421 	present = check_packet_present(rcd);
8422 	if (present)
8423 		force_recv_intr(rcd);
8424 
8425 	return IRQ_HANDLED;
8426 }
8427 
8428 /*
8429  * Receive packet thread handler.  This expects to be invoked with the
8430  * receive interrupt still blocked.
8431  */
8432 static irqreturn_t receive_context_thread(int irq, void *data)
8433 {
8434 	struct hfi1_ctxtdata *rcd = data;
8435 	int present;
8436 
8437 	/* receive interrupt is still blocked from the IRQ handler */
8438 	(void)rcd->do_interrupt(rcd, 1);
8439 
8440 	/*
8441 	 * The packet processor will only return if it detected no more
8442 	 * packets.  Hold IRQs here so we can safely clear the interrupt and
8443 	 * recheck for a packet that may have arrived after the previous
8444 	 * check and the interrupt clear.  If a packet arrived, force another
8445 	 * interrupt.
8446 	 */
8447 	local_irq_disable();
8448 	clear_recv_intr(rcd);
8449 	present = check_packet_present(rcd);
8450 	if (present)
8451 		force_recv_intr(rcd);
8452 	local_irq_enable();
8453 
8454 	return IRQ_HANDLED;
8455 }
8456 
8457 /* ========================================================================= */
8458 
8459 u32 read_physical_state(struct hfi1_devdata *dd)
8460 {
8461 	u64 reg;
8462 
8463 	reg = read_csr(dd, DC_DC8051_STS_CUR_STATE);
8464 	return (reg >> DC_DC8051_STS_CUR_STATE_PORT_SHIFT)
8465 				& DC_DC8051_STS_CUR_STATE_PORT_MASK;
8466 }
8467 
8468 u32 read_logical_state(struct hfi1_devdata *dd)
8469 {
8470 	u64 reg;
8471 
8472 	reg = read_csr(dd, DCC_CFG_PORT_CONFIG);
8473 	return (reg >> DCC_CFG_PORT_CONFIG_LINK_STATE_SHIFT)
8474 				& DCC_CFG_PORT_CONFIG_LINK_STATE_MASK;
8475 }
8476 
8477 static void set_logical_state(struct hfi1_devdata *dd, u32 chip_lstate)
8478 {
8479 	u64 reg;
8480 
8481 	reg = read_csr(dd, DCC_CFG_PORT_CONFIG);
8482 	/* clear current state, set new state */
8483 	reg &= ~DCC_CFG_PORT_CONFIG_LINK_STATE_SMASK;
8484 	reg |= (u64)chip_lstate << DCC_CFG_PORT_CONFIG_LINK_STATE_SHIFT;
8485 	write_csr(dd, DCC_CFG_PORT_CONFIG, reg);
8486 }
8487 
8488 /*
8489  * Use the 8051 to read a LCB CSR.
8490  */
8491 static int read_lcb_via_8051(struct hfi1_devdata *dd, u32 addr, u64 *data)
8492 {
8493 	u32 regno;
8494 	int ret;
8495 
8496 	if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR) {
8497 		if (acquire_lcb_access(dd, 0) == 0) {
8498 			*data = read_csr(dd, addr);
8499 			release_lcb_access(dd, 0);
8500 			return 0;
8501 		}
8502 		return -EBUSY;
8503 	}
8504 
8505 	/* register is an index of LCB registers: (offset - base) / 8 */
8506 	regno = (addr - DC_LCB_CFG_RUN) >> 3;
8507 	ret = do_8051_command(dd, HCMD_READ_LCB_CSR, regno, data);
8508 	if (ret != HCMD_SUCCESS)
8509 		return -EBUSY;
8510 	return 0;
8511 }
8512 
8513 /*
8514  * Provide a cache for some of the LCB registers in case the LCB is
8515  * unavailable.
8516  * (The LCB is unavailable in certain link states, for example.)
8517  */
8518 struct lcb_datum {
8519 	u32 off;
8520 	u64 val;
8521 };
8522 
8523 static struct lcb_datum lcb_cache[] = {
8524 	{ DC_LCB_ERR_INFO_RX_REPLAY_CNT, 0},
8525 	{ DC_LCB_ERR_INFO_SEQ_CRC_CNT, 0 },
8526 	{ DC_LCB_ERR_INFO_REINIT_FROM_PEER_CNT, 0 },
8527 };
8528 
8529 static void update_lcb_cache(struct hfi1_devdata *dd)
8530 {
8531 	int i;
8532 	int ret;
8533 	u64 val;
8534 
8535 	for (i = 0; i < ARRAY_SIZE(lcb_cache); i++) {
8536 		ret = read_lcb_csr(dd, lcb_cache[i].off, &val);
8537 
8538 		/* Update if we get good data */
8539 		if (likely(ret != -EBUSY))
8540 			lcb_cache[i].val = val;
8541 	}
8542 }
8543 
8544 static int read_lcb_cache(u32 off, u64 *val)
8545 {
8546 	int i;
8547 
8548 	for (i = 0; i < ARRAY_SIZE(lcb_cache); i++) {
8549 		if (lcb_cache[i].off == off) {
8550 			*val = lcb_cache[i].val;
8551 			return 0;
8552 		}
8553 	}
8554 
8555 	pr_warn("%s bad offset 0x%x\n", __func__, off);
8556 	return -1;
8557 }
8558 
8559 /*
8560  * Read an LCB CSR.  Access may not be in host control, so check.
8561  * Return 0 on success, -EBUSY on failure.
8562  */
8563 int read_lcb_csr(struct hfi1_devdata *dd, u32 addr, u64 *data)
8564 {
8565 	struct hfi1_pportdata *ppd = dd->pport;
8566 
8567 	/* if up, go through the 8051 for the value */
8568 	if (ppd->host_link_state & HLS_UP)
8569 		return read_lcb_via_8051(dd, addr, data);
8570 	/* if going up or down, check the cache, otherwise, no access */
8571 	if (ppd->host_link_state & (HLS_GOING_UP | HLS_GOING_OFFLINE)) {
8572 		if (read_lcb_cache(addr, data))
8573 			return -EBUSY;
8574 		return 0;
8575 	}
8576 
8577 	/* otherwise, host has access */
8578 	*data = read_csr(dd, addr);
8579 	return 0;
8580 }
8581 
8582 /*
8583  * Use the 8051 to write a LCB CSR.
8584  */
8585 static int write_lcb_via_8051(struct hfi1_devdata *dd, u32 addr, u64 data)
8586 {
8587 	u32 regno;
8588 	int ret;
8589 
8590 	if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR ||
8591 	    (dd->dc8051_ver < dc8051_ver(0, 20, 0))) {
8592 		if (acquire_lcb_access(dd, 0) == 0) {
8593 			write_csr(dd, addr, data);
8594 			release_lcb_access(dd, 0);
8595 			return 0;
8596 		}
8597 		return -EBUSY;
8598 	}
8599 
8600 	/* register is an index of LCB registers: (offset - base) / 8 */
8601 	regno = (addr - DC_LCB_CFG_RUN) >> 3;
8602 	ret = do_8051_command(dd, HCMD_WRITE_LCB_CSR, regno, &data);
8603 	if (ret != HCMD_SUCCESS)
8604 		return -EBUSY;
8605 	return 0;
8606 }
8607 
8608 /*
8609  * Write an LCB CSR.  Access may not be in host control, so check.
8610  * Return 0 on success, -EBUSY on failure.
8611  */
8612 int write_lcb_csr(struct hfi1_devdata *dd, u32 addr, u64 data)
8613 {
8614 	struct hfi1_pportdata *ppd = dd->pport;
8615 
8616 	/* if up, go through the 8051 for the value */
8617 	if (ppd->host_link_state & HLS_UP)
8618 		return write_lcb_via_8051(dd, addr, data);
8619 	/* if going up or down, no access */
8620 	if (ppd->host_link_state & (HLS_GOING_UP | HLS_GOING_OFFLINE))
8621 		return -EBUSY;
8622 	/* otherwise, host has access */
8623 	write_csr(dd, addr, data);
8624 	return 0;
8625 }
8626 
8627 /*
8628  * Returns:
8629  *	< 0 = Linux error, not able to get access
8630  *	> 0 = 8051 command RETURN_CODE
8631  */
8632 static int do_8051_command(struct hfi1_devdata *dd, u32 type, u64 in_data,
8633 			   u64 *out_data)
8634 {
8635 	u64 reg, completed;
8636 	int return_code;
8637 	unsigned long timeout;
8638 
8639 	hfi1_cdbg(DC8051, "type %d, data 0x%012llx", type, in_data);
8640 
8641 	mutex_lock(&dd->dc8051_lock);
8642 
8643 	/* We can't send any commands to the 8051 if it's in reset */
8644 	if (dd->dc_shutdown) {
8645 		return_code = -ENODEV;
8646 		goto fail;
8647 	}
8648 
8649 	/*
8650 	 * If an 8051 host command timed out previously, then the 8051 is
8651 	 * stuck.
8652 	 *
8653 	 * On first timeout, attempt to reset and restart the entire DC
8654 	 * block (including 8051). (Is this too big of a hammer?)
8655 	 *
8656 	 * If the 8051 times out a second time, the reset did not bring it
8657 	 * back to healthy life. In that case, fail any subsequent commands.
8658 	 */
8659 	if (dd->dc8051_timed_out) {
8660 		if (dd->dc8051_timed_out > 1) {
8661 			dd_dev_err(dd,
8662 				   "Previous 8051 host command timed out, skipping command %u\n",
8663 				   type);
8664 			return_code = -ENXIO;
8665 			goto fail;
8666 		}
8667 		_dc_shutdown(dd);
8668 		_dc_start(dd);
8669 	}
8670 
8671 	/*
8672 	 * If there is no timeout, then the 8051 command interface is
8673 	 * waiting for a command.
8674 	 */
8675 
8676 	/*
8677 	 * When writing a LCB CSR, out_data contains the full value to
8678 	 * to be written, while in_data contains the relative LCB
8679 	 * address in 7:0.  Do the work here, rather than the caller,
8680 	 * of distrubting the write data to where it needs to go:
8681 	 *
8682 	 * Write data
8683 	 *   39:00 -> in_data[47:8]
8684 	 *   47:40 -> DC8051_CFG_EXT_DEV_0.RETURN_CODE
8685 	 *   63:48 -> DC8051_CFG_EXT_DEV_0.RSP_DATA
8686 	 */
8687 	if (type == HCMD_WRITE_LCB_CSR) {
8688 		in_data |= ((*out_data) & 0xffffffffffull) << 8;
8689 		/* must preserve COMPLETED - it is tied to hardware */
8690 		reg = read_csr(dd, DC_DC8051_CFG_EXT_DEV_0);
8691 		reg &= DC_DC8051_CFG_EXT_DEV_0_COMPLETED_SMASK;
8692 		reg |= ((((*out_data) >> 40) & 0xff) <<
8693 				DC_DC8051_CFG_EXT_DEV_0_RETURN_CODE_SHIFT)
8694 		      | ((((*out_data) >> 48) & 0xffff) <<
8695 				DC_DC8051_CFG_EXT_DEV_0_RSP_DATA_SHIFT);
8696 		write_csr(dd, DC_DC8051_CFG_EXT_DEV_0, reg);
8697 	}
8698 
8699 	/*
8700 	 * Do two writes: the first to stabilize the type and req_data, the
8701 	 * second to activate.
8702 	 */
8703 	reg = ((u64)type & DC_DC8051_CFG_HOST_CMD_0_REQ_TYPE_MASK)
8704 			<< DC_DC8051_CFG_HOST_CMD_0_REQ_TYPE_SHIFT
8705 		| (in_data & DC_DC8051_CFG_HOST_CMD_0_REQ_DATA_MASK)
8706 			<< DC_DC8051_CFG_HOST_CMD_0_REQ_DATA_SHIFT;
8707 	write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, reg);
8708 	reg |= DC_DC8051_CFG_HOST_CMD_0_REQ_NEW_SMASK;
8709 	write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, reg);
8710 
8711 	/* wait for completion, alternate: interrupt */
8712 	timeout = jiffies + msecs_to_jiffies(DC8051_COMMAND_TIMEOUT);
8713 	while (1) {
8714 		reg = read_csr(dd, DC_DC8051_CFG_HOST_CMD_1);
8715 		completed = reg & DC_DC8051_CFG_HOST_CMD_1_COMPLETED_SMASK;
8716 		if (completed)
8717 			break;
8718 		if (time_after(jiffies, timeout)) {
8719 			dd->dc8051_timed_out++;
8720 			dd_dev_err(dd, "8051 host command %u timeout\n", type);
8721 			if (out_data)
8722 				*out_data = 0;
8723 			return_code = -ETIMEDOUT;
8724 			goto fail;
8725 		}
8726 		udelay(2);
8727 	}
8728 
8729 	if (out_data) {
8730 		*out_data = (reg >> DC_DC8051_CFG_HOST_CMD_1_RSP_DATA_SHIFT)
8731 				& DC_DC8051_CFG_HOST_CMD_1_RSP_DATA_MASK;
8732 		if (type == HCMD_READ_LCB_CSR) {
8733 			/* top 16 bits are in a different register */
8734 			*out_data |= (read_csr(dd, DC_DC8051_CFG_EXT_DEV_1)
8735 				& DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SMASK)
8736 				<< (48
8737 				    - DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SHIFT);
8738 		}
8739 	}
8740 	return_code = (reg >> DC_DC8051_CFG_HOST_CMD_1_RETURN_CODE_SHIFT)
8741 				& DC_DC8051_CFG_HOST_CMD_1_RETURN_CODE_MASK;
8742 	dd->dc8051_timed_out = 0;
8743 	/*
8744 	 * Clear command for next user.
8745 	 */
8746 	write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, 0);
8747 
8748 fail:
8749 	mutex_unlock(&dd->dc8051_lock);
8750 	return return_code;
8751 }
8752 
8753 static int set_physical_link_state(struct hfi1_devdata *dd, u64 state)
8754 {
8755 	return do_8051_command(dd, HCMD_CHANGE_PHY_STATE, state, NULL);
8756 }
8757 
8758 int load_8051_config(struct hfi1_devdata *dd, u8 field_id,
8759 		     u8 lane_id, u32 config_data)
8760 {
8761 	u64 data;
8762 	int ret;
8763 
8764 	data = (u64)field_id << LOAD_DATA_FIELD_ID_SHIFT
8765 		| (u64)lane_id << LOAD_DATA_LANE_ID_SHIFT
8766 		| (u64)config_data << LOAD_DATA_DATA_SHIFT;
8767 	ret = do_8051_command(dd, HCMD_LOAD_CONFIG_DATA, data, NULL);
8768 	if (ret != HCMD_SUCCESS) {
8769 		dd_dev_err(dd,
8770 			   "load 8051 config: field id %d, lane %d, err %d\n",
8771 			   (int)field_id, (int)lane_id, ret);
8772 	}
8773 	return ret;
8774 }
8775 
8776 /*
8777  * Read the 8051 firmware "registers".  Use the RAM directly.  Always
8778  * set the result, even on error.
8779  * Return 0 on success, -errno on failure
8780  */
8781 int read_8051_config(struct hfi1_devdata *dd, u8 field_id, u8 lane_id,
8782 		     u32 *result)
8783 {
8784 	u64 big_data;
8785 	u32 addr;
8786 	int ret;
8787 
8788 	/* address start depends on the lane_id */
8789 	if (lane_id < 4)
8790 		addr = (4 * NUM_GENERAL_FIELDS)
8791 			+ (lane_id * 4 * NUM_LANE_FIELDS);
8792 	else
8793 		addr = 0;
8794 	addr += field_id * 4;
8795 
8796 	/* read is in 8-byte chunks, hardware will truncate the address down */
8797 	ret = read_8051_data(dd, addr, 8, &big_data);
8798 
8799 	if (ret == 0) {
8800 		/* extract the 4 bytes we want */
8801 		if (addr & 0x4)
8802 			*result = (u32)(big_data >> 32);
8803 		else
8804 			*result = (u32)big_data;
8805 	} else {
8806 		*result = 0;
8807 		dd_dev_err(dd, "%s: direct read failed, lane %d, field %d!\n",
8808 			   __func__, lane_id, field_id);
8809 	}
8810 
8811 	return ret;
8812 }
8813 
8814 static int write_vc_local_phy(struct hfi1_devdata *dd, u8 power_management,
8815 			      u8 continuous)
8816 {
8817 	u32 frame;
8818 
8819 	frame = continuous << CONTINIOUS_REMOTE_UPDATE_SUPPORT_SHIFT
8820 		| power_management << POWER_MANAGEMENT_SHIFT;
8821 	return load_8051_config(dd, VERIFY_CAP_LOCAL_PHY,
8822 				GENERAL_CONFIG, frame);
8823 }
8824 
8825 static int write_vc_local_fabric(struct hfi1_devdata *dd, u8 vau, u8 z, u8 vcu,
8826 				 u16 vl15buf, u8 crc_sizes)
8827 {
8828 	u32 frame;
8829 
8830 	frame = (u32)vau << VAU_SHIFT
8831 		| (u32)z << Z_SHIFT
8832 		| (u32)vcu << VCU_SHIFT
8833 		| (u32)vl15buf << VL15BUF_SHIFT
8834 		| (u32)crc_sizes << CRC_SIZES_SHIFT;
8835 	return load_8051_config(dd, VERIFY_CAP_LOCAL_FABRIC,
8836 				GENERAL_CONFIG, frame);
8837 }
8838 
8839 static void read_vc_local_link_mode(struct hfi1_devdata *dd, u8 *misc_bits,
8840 				    u8 *flag_bits, u16 *link_widths)
8841 {
8842 	u32 frame;
8843 
8844 	read_8051_config(dd, VERIFY_CAP_LOCAL_LINK_MODE, GENERAL_CONFIG,
8845 			 &frame);
8846 	*misc_bits = (frame >> MISC_CONFIG_BITS_SHIFT) & MISC_CONFIG_BITS_MASK;
8847 	*flag_bits = (frame >> LOCAL_FLAG_BITS_SHIFT) & LOCAL_FLAG_BITS_MASK;
8848 	*link_widths = (frame >> LINK_WIDTH_SHIFT) & LINK_WIDTH_MASK;
8849 }
8850 
8851 static int write_vc_local_link_mode(struct hfi1_devdata *dd,
8852 				    u8 misc_bits,
8853 				    u8 flag_bits,
8854 				    u16 link_widths)
8855 {
8856 	u32 frame;
8857 
8858 	frame = (u32)misc_bits << MISC_CONFIG_BITS_SHIFT
8859 		| (u32)flag_bits << LOCAL_FLAG_BITS_SHIFT
8860 		| (u32)link_widths << LINK_WIDTH_SHIFT;
8861 	return load_8051_config(dd, VERIFY_CAP_LOCAL_LINK_MODE, GENERAL_CONFIG,
8862 		     frame);
8863 }
8864 
8865 static int write_local_device_id(struct hfi1_devdata *dd, u16 device_id,
8866 				 u8 device_rev)
8867 {
8868 	u32 frame;
8869 
8870 	frame = ((u32)device_id << LOCAL_DEVICE_ID_SHIFT)
8871 		| ((u32)device_rev << LOCAL_DEVICE_REV_SHIFT);
8872 	return load_8051_config(dd, LOCAL_DEVICE_ID, GENERAL_CONFIG, frame);
8873 }
8874 
8875 static void read_remote_device_id(struct hfi1_devdata *dd, u16 *device_id,
8876 				  u8 *device_rev)
8877 {
8878 	u32 frame;
8879 
8880 	read_8051_config(dd, REMOTE_DEVICE_ID, GENERAL_CONFIG, &frame);
8881 	*device_id = (frame >> REMOTE_DEVICE_ID_SHIFT) & REMOTE_DEVICE_ID_MASK;
8882 	*device_rev = (frame >> REMOTE_DEVICE_REV_SHIFT)
8883 			& REMOTE_DEVICE_REV_MASK;
8884 }
8885 
8886 int write_host_interface_version(struct hfi1_devdata *dd, u8 version)
8887 {
8888 	u32 frame;
8889 	u32 mask;
8890 
8891 	mask = (HOST_INTERFACE_VERSION_MASK << HOST_INTERFACE_VERSION_SHIFT);
8892 	read_8051_config(dd, RESERVED_REGISTERS, GENERAL_CONFIG, &frame);
8893 	/* Clear, then set field */
8894 	frame &= ~mask;
8895 	frame |= ((u32)version << HOST_INTERFACE_VERSION_SHIFT);
8896 	return load_8051_config(dd, RESERVED_REGISTERS, GENERAL_CONFIG,
8897 				frame);
8898 }
8899 
8900 void read_misc_status(struct hfi1_devdata *dd, u8 *ver_major, u8 *ver_minor,
8901 		      u8 *ver_patch)
8902 {
8903 	u32 frame;
8904 
8905 	read_8051_config(dd, MISC_STATUS, GENERAL_CONFIG, &frame);
8906 	*ver_major = (frame >> STS_FM_VERSION_MAJOR_SHIFT) &
8907 		STS_FM_VERSION_MAJOR_MASK;
8908 	*ver_minor = (frame >> STS_FM_VERSION_MINOR_SHIFT) &
8909 		STS_FM_VERSION_MINOR_MASK;
8910 
8911 	read_8051_config(dd, VERSION_PATCH, GENERAL_CONFIG, &frame);
8912 	*ver_patch = (frame >> STS_FM_VERSION_PATCH_SHIFT) &
8913 		STS_FM_VERSION_PATCH_MASK;
8914 }
8915 
8916 static void read_vc_remote_phy(struct hfi1_devdata *dd, u8 *power_management,
8917 			       u8 *continuous)
8918 {
8919 	u32 frame;
8920 
8921 	read_8051_config(dd, VERIFY_CAP_REMOTE_PHY, GENERAL_CONFIG, &frame);
8922 	*power_management = (frame >> POWER_MANAGEMENT_SHIFT)
8923 					& POWER_MANAGEMENT_MASK;
8924 	*continuous = (frame >> CONTINIOUS_REMOTE_UPDATE_SUPPORT_SHIFT)
8925 					& CONTINIOUS_REMOTE_UPDATE_SUPPORT_MASK;
8926 }
8927 
8928 static void read_vc_remote_fabric(struct hfi1_devdata *dd, u8 *vau, u8 *z,
8929 				  u8 *vcu, u16 *vl15buf, u8 *crc_sizes)
8930 {
8931 	u32 frame;
8932 
8933 	read_8051_config(dd, VERIFY_CAP_REMOTE_FABRIC, GENERAL_CONFIG, &frame);
8934 	*vau = (frame >> VAU_SHIFT) & VAU_MASK;
8935 	*z = (frame >> Z_SHIFT) & Z_MASK;
8936 	*vcu = (frame >> VCU_SHIFT) & VCU_MASK;
8937 	*vl15buf = (frame >> VL15BUF_SHIFT) & VL15BUF_MASK;
8938 	*crc_sizes = (frame >> CRC_SIZES_SHIFT) & CRC_SIZES_MASK;
8939 }
8940 
8941 static void read_vc_remote_link_width(struct hfi1_devdata *dd,
8942 				      u8 *remote_tx_rate,
8943 				      u16 *link_widths)
8944 {
8945 	u32 frame;
8946 
8947 	read_8051_config(dd, VERIFY_CAP_REMOTE_LINK_WIDTH, GENERAL_CONFIG,
8948 			 &frame);
8949 	*remote_tx_rate = (frame >> REMOTE_TX_RATE_SHIFT)
8950 				& REMOTE_TX_RATE_MASK;
8951 	*link_widths = (frame >> LINK_WIDTH_SHIFT) & LINK_WIDTH_MASK;
8952 }
8953 
8954 static void read_local_lni(struct hfi1_devdata *dd, u8 *enable_lane_rx)
8955 {
8956 	u32 frame;
8957 
8958 	read_8051_config(dd, LOCAL_LNI_INFO, GENERAL_CONFIG, &frame);
8959 	*enable_lane_rx = (frame >> ENABLE_LANE_RX_SHIFT) & ENABLE_LANE_RX_MASK;
8960 }
8961 
8962 static void read_last_local_state(struct hfi1_devdata *dd, u32 *lls)
8963 {
8964 	read_8051_config(dd, LAST_LOCAL_STATE_COMPLETE, GENERAL_CONFIG, lls);
8965 }
8966 
8967 static void read_last_remote_state(struct hfi1_devdata *dd, u32 *lrs)
8968 {
8969 	read_8051_config(dd, LAST_REMOTE_STATE_COMPLETE, GENERAL_CONFIG, lrs);
8970 }
8971 
8972 void hfi1_read_link_quality(struct hfi1_devdata *dd, u8 *link_quality)
8973 {
8974 	u32 frame;
8975 	int ret;
8976 
8977 	*link_quality = 0;
8978 	if (dd->pport->host_link_state & HLS_UP) {
8979 		ret = read_8051_config(dd, LINK_QUALITY_INFO, GENERAL_CONFIG,
8980 				       &frame);
8981 		if (ret == 0)
8982 			*link_quality = (frame >> LINK_QUALITY_SHIFT)
8983 						& LINK_QUALITY_MASK;
8984 	}
8985 }
8986 
8987 static void read_planned_down_reason_code(struct hfi1_devdata *dd, u8 *pdrrc)
8988 {
8989 	u32 frame;
8990 
8991 	read_8051_config(dd, LINK_QUALITY_INFO, GENERAL_CONFIG, &frame);
8992 	*pdrrc = (frame >> DOWN_REMOTE_REASON_SHIFT) & DOWN_REMOTE_REASON_MASK;
8993 }
8994 
8995 static void read_link_down_reason(struct hfi1_devdata *dd, u8 *ldr)
8996 {
8997 	u32 frame;
8998 
8999 	read_8051_config(dd, LINK_DOWN_REASON, GENERAL_CONFIG, &frame);
9000 	*ldr = (frame & 0xff);
9001 }
9002 
9003 static int read_tx_settings(struct hfi1_devdata *dd,
9004 			    u8 *enable_lane_tx,
9005 			    u8 *tx_polarity_inversion,
9006 			    u8 *rx_polarity_inversion,
9007 			    u8 *max_rate)
9008 {
9009 	u32 frame;
9010 	int ret;
9011 
9012 	ret = read_8051_config(dd, TX_SETTINGS, GENERAL_CONFIG, &frame);
9013 	*enable_lane_tx = (frame >> ENABLE_LANE_TX_SHIFT)
9014 				& ENABLE_LANE_TX_MASK;
9015 	*tx_polarity_inversion = (frame >> TX_POLARITY_INVERSION_SHIFT)
9016 				& TX_POLARITY_INVERSION_MASK;
9017 	*rx_polarity_inversion = (frame >> RX_POLARITY_INVERSION_SHIFT)
9018 				& RX_POLARITY_INVERSION_MASK;
9019 	*max_rate = (frame >> MAX_RATE_SHIFT) & MAX_RATE_MASK;
9020 	return ret;
9021 }
9022 
9023 static int write_tx_settings(struct hfi1_devdata *dd,
9024 			     u8 enable_lane_tx,
9025 			     u8 tx_polarity_inversion,
9026 			     u8 rx_polarity_inversion,
9027 			     u8 max_rate)
9028 {
9029 	u32 frame;
9030 
9031 	/* no need to mask, all variable sizes match field widths */
9032 	frame = enable_lane_tx << ENABLE_LANE_TX_SHIFT
9033 		| tx_polarity_inversion << TX_POLARITY_INVERSION_SHIFT
9034 		| rx_polarity_inversion << RX_POLARITY_INVERSION_SHIFT
9035 		| max_rate << MAX_RATE_SHIFT;
9036 	return load_8051_config(dd, TX_SETTINGS, GENERAL_CONFIG, frame);
9037 }
9038 
9039 /*
9040  * Read an idle LCB message.
9041  *
9042  * Returns 0 on success, -EINVAL on error
9043  */
9044 static int read_idle_message(struct hfi1_devdata *dd, u64 type, u64 *data_out)
9045 {
9046 	int ret;
9047 
9048 	ret = do_8051_command(dd, HCMD_READ_LCB_IDLE_MSG, type, data_out);
9049 	if (ret != HCMD_SUCCESS) {
9050 		dd_dev_err(dd, "read idle message: type %d, err %d\n",
9051 			   (u32)type, ret);
9052 		return -EINVAL;
9053 	}
9054 	dd_dev_info(dd, "%s: read idle message 0x%llx\n", __func__, *data_out);
9055 	/* return only the payload as we already know the type */
9056 	*data_out >>= IDLE_PAYLOAD_SHIFT;
9057 	return 0;
9058 }
9059 
9060 /*
9061  * Read an idle SMA message.  To be done in response to a notification from
9062  * the 8051.
9063  *
9064  * Returns 0 on success, -EINVAL on error
9065  */
9066 static int read_idle_sma(struct hfi1_devdata *dd, u64 *data)
9067 {
9068 	return read_idle_message(dd, (u64)IDLE_SMA << IDLE_MSG_TYPE_SHIFT,
9069 				 data);
9070 }
9071 
9072 /*
9073  * Send an idle LCB message.
9074  *
9075  * Returns 0 on success, -EINVAL on error
9076  */
9077 static int send_idle_message(struct hfi1_devdata *dd, u64 data)
9078 {
9079 	int ret;
9080 
9081 	dd_dev_info(dd, "%s: sending idle message 0x%llx\n", __func__, data);
9082 	ret = do_8051_command(dd, HCMD_SEND_LCB_IDLE_MSG, data, NULL);
9083 	if (ret != HCMD_SUCCESS) {
9084 		dd_dev_err(dd, "send idle message: data 0x%llx, err %d\n",
9085 			   data, ret);
9086 		return -EINVAL;
9087 	}
9088 	return 0;
9089 }
9090 
9091 /*
9092  * Send an idle SMA message.
9093  *
9094  * Returns 0 on success, -EINVAL on error
9095  */
9096 int send_idle_sma(struct hfi1_devdata *dd, u64 message)
9097 {
9098 	u64 data;
9099 
9100 	data = ((message & IDLE_PAYLOAD_MASK) << IDLE_PAYLOAD_SHIFT) |
9101 		((u64)IDLE_SMA << IDLE_MSG_TYPE_SHIFT);
9102 	return send_idle_message(dd, data);
9103 }
9104 
9105 /*
9106  * Initialize the LCB then do a quick link up.  This may or may not be
9107  * in loopback.
9108  *
9109  * return 0 on success, -errno on error
9110  */
9111 static int do_quick_linkup(struct hfi1_devdata *dd)
9112 {
9113 	int ret;
9114 
9115 	lcb_shutdown(dd, 0);
9116 
9117 	if (loopback) {
9118 		/* LCB_CFG_LOOPBACK.VAL = 2 */
9119 		/* LCB_CFG_LANE_WIDTH.VAL = 0 */
9120 		write_csr(dd, DC_LCB_CFG_LOOPBACK,
9121 			  IB_PACKET_TYPE << DC_LCB_CFG_LOOPBACK_VAL_SHIFT);
9122 		write_csr(dd, DC_LCB_CFG_LANE_WIDTH, 0);
9123 	}
9124 
9125 	/* start the LCBs */
9126 	/* LCB_CFG_TX_FIFOS_RESET.VAL = 0 */
9127 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0);
9128 
9129 	/* simulator only loopback steps */
9130 	if (loopback && dd->icode == ICODE_FUNCTIONAL_SIMULATOR) {
9131 		/* LCB_CFG_RUN.EN = 1 */
9132 		write_csr(dd, DC_LCB_CFG_RUN,
9133 			  1ull << DC_LCB_CFG_RUN_EN_SHIFT);
9134 
9135 		ret = wait_link_transfer_active(dd, 10);
9136 		if (ret)
9137 			return ret;
9138 
9139 		write_csr(dd, DC_LCB_CFG_ALLOW_LINK_UP,
9140 			  1ull << DC_LCB_CFG_ALLOW_LINK_UP_VAL_SHIFT);
9141 	}
9142 
9143 	if (!loopback) {
9144 		/*
9145 		 * When doing quick linkup and not in loopback, both
9146 		 * sides must be done with LCB set-up before either
9147 		 * starts the quick linkup.  Put a delay here so that
9148 		 * both sides can be started and have a chance to be
9149 		 * done with LCB set up before resuming.
9150 		 */
9151 		dd_dev_err(dd,
9152 			   "Pausing for peer to be finished with LCB set up\n");
9153 		msleep(5000);
9154 		dd_dev_err(dd, "Continuing with quick linkup\n");
9155 	}
9156 
9157 	write_csr(dd, DC_LCB_ERR_EN, 0); /* mask LCB errors */
9158 	set_8051_lcb_access(dd);
9159 
9160 	/*
9161 	 * State "quick" LinkUp request sets the physical link state to
9162 	 * LinkUp without a verify capability sequence.
9163 	 * This state is in simulator v37 and later.
9164 	 */
9165 	ret = set_physical_link_state(dd, PLS_QUICK_LINKUP);
9166 	if (ret != HCMD_SUCCESS) {
9167 		dd_dev_err(dd,
9168 			   "%s: set physical link state to quick LinkUp failed with return %d\n",
9169 			   __func__, ret);
9170 
9171 		set_host_lcb_access(dd);
9172 		write_csr(dd, DC_LCB_ERR_EN, ~0ull); /* watch LCB errors */
9173 
9174 		if (ret >= 0)
9175 			ret = -EINVAL;
9176 		return ret;
9177 	}
9178 
9179 	return 0; /* success */
9180 }
9181 
9182 /*
9183  * Do all special steps to set up loopback.
9184  */
9185 static int init_loopback(struct hfi1_devdata *dd)
9186 {
9187 	dd_dev_info(dd, "Entering loopback mode\n");
9188 
9189 	/* all loopbacks should disable self GUID check */
9190 	write_csr(dd, DC_DC8051_CFG_MODE,
9191 		  (read_csr(dd, DC_DC8051_CFG_MODE) | DISABLE_SELF_GUID_CHECK));
9192 
9193 	/*
9194 	 * The simulator has only one loopback option - LCB.  Switch
9195 	 * to that option, which includes quick link up.
9196 	 *
9197 	 * Accept all valid loopback values.
9198 	 */
9199 	if ((dd->icode == ICODE_FUNCTIONAL_SIMULATOR) &&
9200 	    (loopback == LOOPBACK_SERDES || loopback == LOOPBACK_LCB ||
9201 	     loopback == LOOPBACK_CABLE)) {
9202 		loopback = LOOPBACK_LCB;
9203 		quick_linkup = 1;
9204 		return 0;
9205 	}
9206 
9207 	/*
9208 	 * SerDes loopback init sequence is handled in set_local_link_attributes
9209 	 */
9210 	if (loopback == LOOPBACK_SERDES)
9211 		return 0;
9212 
9213 	/* LCB loopback - handled at poll time */
9214 	if (loopback == LOOPBACK_LCB) {
9215 		quick_linkup = 1; /* LCB is always quick linkup */
9216 
9217 		/* not supported in emulation due to emulation RTL changes */
9218 		if (dd->icode == ICODE_FPGA_EMULATION) {
9219 			dd_dev_err(dd,
9220 				   "LCB loopback not supported in emulation\n");
9221 			return -EINVAL;
9222 		}
9223 		return 0;
9224 	}
9225 
9226 	/* external cable loopback requires no extra steps */
9227 	if (loopback == LOOPBACK_CABLE)
9228 		return 0;
9229 
9230 	dd_dev_err(dd, "Invalid loopback mode %d\n", loopback);
9231 	return -EINVAL;
9232 }
9233 
9234 /*
9235  * Translate from the OPA_LINK_WIDTH handed to us by the FM to bits
9236  * used in the Verify Capability link width attribute.
9237  */
9238 static u16 opa_to_vc_link_widths(u16 opa_widths)
9239 {
9240 	int i;
9241 	u16 result = 0;
9242 
9243 	static const struct link_bits {
9244 		u16 from;
9245 		u16 to;
9246 	} opa_link_xlate[] = {
9247 		{ OPA_LINK_WIDTH_1X, 1 << (1 - 1)  },
9248 		{ OPA_LINK_WIDTH_2X, 1 << (2 - 1)  },
9249 		{ OPA_LINK_WIDTH_3X, 1 << (3 - 1)  },
9250 		{ OPA_LINK_WIDTH_4X, 1 << (4 - 1)  },
9251 	};
9252 
9253 	for (i = 0; i < ARRAY_SIZE(opa_link_xlate); i++) {
9254 		if (opa_widths & opa_link_xlate[i].from)
9255 			result |= opa_link_xlate[i].to;
9256 	}
9257 	return result;
9258 }
9259 
9260 /*
9261  * Set link attributes before moving to polling.
9262  */
9263 static int set_local_link_attributes(struct hfi1_pportdata *ppd)
9264 {
9265 	struct hfi1_devdata *dd = ppd->dd;
9266 	u8 enable_lane_tx;
9267 	u8 tx_polarity_inversion;
9268 	u8 rx_polarity_inversion;
9269 	int ret;
9270 	u32 misc_bits = 0;
9271 	/* reset our fabric serdes to clear any lingering problems */
9272 	fabric_serdes_reset(dd);
9273 
9274 	/* set the local tx rate - need to read-modify-write */
9275 	ret = read_tx_settings(dd, &enable_lane_tx, &tx_polarity_inversion,
9276 			       &rx_polarity_inversion, &ppd->local_tx_rate);
9277 	if (ret)
9278 		goto set_local_link_attributes_fail;
9279 
9280 	if (dd->dc8051_ver < dc8051_ver(0, 20, 0)) {
9281 		/* set the tx rate to the fastest enabled */
9282 		if (ppd->link_speed_enabled & OPA_LINK_SPEED_25G)
9283 			ppd->local_tx_rate = 1;
9284 		else
9285 			ppd->local_tx_rate = 0;
9286 	} else {
9287 		/* set the tx rate to all enabled */
9288 		ppd->local_tx_rate = 0;
9289 		if (ppd->link_speed_enabled & OPA_LINK_SPEED_25G)
9290 			ppd->local_tx_rate |= 2;
9291 		if (ppd->link_speed_enabled & OPA_LINK_SPEED_12_5G)
9292 			ppd->local_tx_rate |= 1;
9293 	}
9294 
9295 	enable_lane_tx = 0xF; /* enable all four lanes */
9296 	ret = write_tx_settings(dd, enable_lane_tx, tx_polarity_inversion,
9297 				rx_polarity_inversion, ppd->local_tx_rate);
9298 	if (ret != HCMD_SUCCESS)
9299 		goto set_local_link_attributes_fail;
9300 
9301 	ret = write_host_interface_version(dd, HOST_INTERFACE_VERSION);
9302 	if (ret != HCMD_SUCCESS) {
9303 		dd_dev_err(dd,
9304 			   "Failed to set host interface version, return 0x%x\n",
9305 			   ret);
9306 		goto set_local_link_attributes_fail;
9307 	}
9308 
9309 	/*
9310 	 * DC supports continuous updates.
9311 	 */
9312 	ret = write_vc_local_phy(dd,
9313 				 0 /* no power management */,
9314 				 1 /* continuous updates */);
9315 	if (ret != HCMD_SUCCESS)
9316 		goto set_local_link_attributes_fail;
9317 
9318 	/* z=1 in the next call: AU of 0 is not supported by the hardware */
9319 	ret = write_vc_local_fabric(dd, dd->vau, 1, dd->vcu, dd->vl15_init,
9320 				    ppd->port_crc_mode_enabled);
9321 	if (ret != HCMD_SUCCESS)
9322 		goto set_local_link_attributes_fail;
9323 
9324 	/*
9325 	 * SerDes loopback init sequence requires
9326 	 * setting bit 0 of MISC_CONFIG_BITS
9327 	 */
9328 	if (loopback == LOOPBACK_SERDES)
9329 		misc_bits |= 1 << LOOPBACK_SERDES_CONFIG_BIT_MASK_SHIFT;
9330 
9331 	/*
9332 	 * An external device configuration request is used to reset the LCB
9333 	 * to retry to obtain operational lanes when the first attempt is
9334 	 * unsuccesful.
9335 	 */
9336 	if (dd->dc8051_ver >= dc8051_ver(1, 25, 0))
9337 		misc_bits |= 1 << EXT_CFG_LCB_RESET_SUPPORTED_SHIFT;
9338 
9339 	ret = write_vc_local_link_mode(dd, misc_bits, 0,
9340 				       opa_to_vc_link_widths(
9341 						ppd->link_width_enabled));
9342 	if (ret != HCMD_SUCCESS)
9343 		goto set_local_link_attributes_fail;
9344 
9345 	/* let peer know who we are */
9346 	ret = write_local_device_id(dd, dd->pcidev->device, dd->minrev);
9347 	if (ret == HCMD_SUCCESS)
9348 		return 0;
9349 
9350 set_local_link_attributes_fail:
9351 	dd_dev_err(dd,
9352 		   "Failed to set local link attributes, return 0x%x\n",
9353 		   ret);
9354 	return ret;
9355 }
9356 
9357 /*
9358  * Call this to start the link.
9359  * Do not do anything if the link is disabled.
9360  * Returns 0 if link is disabled, moved to polling, or the driver is not ready.
9361  */
9362 int start_link(struct hfi1_pportdata *ppd)
9363 {
9364 	/*
9365 	 * Tune the SerDes to a ballpark setting for optimal signal and bit
9366 	 * error rate.  Needs to be done before starting the link.
9367 	 */
9368 	tune_serdes(ppd);
9369 
9370 	if (!ppd->driver_link_ready) {
9371 		dd_dev_info(ppd->dd,
9372 			    "%s: stopping link start because driver is not ready\n",
9373 			    __func__);
9374 		return 0;
9375 	}
9376 
9377 	/*
9378 	 * FULL_MGMT_P_KEY is cleared from the pkey table, so that the
9379 	 * pkey table can be configured properly if the HFI unit is connected
9380 	 * to switch port with MgmtAllowed=NO
9381 	 */
9382 	clear_full_mgmt_pkey(ppd);
9383 
9384 	return set_link_state(ppd, HLS_DN_POLL);
9385 }
9386 
9387 static void wait_for_qsfp_init(struct hfi1_pportdata *ppd)
9388 {
9389 	struct hfi1_devdata *dd = ppd->dd;
9390 	u64 mask;
9391 	unsigned long timeout;
9392 
9393 	/*
9394 	 * Some QSFP cables have a quirk that asserts the IntN line as a side
9395 	 * effect of power up on plug-in. We ignore this false positive
9396 	 * interrupt until the module has finished powering up by waiting for
9397 	 * a minimum timeout of the module inrush initialization time of
9398 	 * 500 ms (SFF 8679 Table 5-6) to ensure the voltage rails in the
9399 	 * module have stabilized.
9400 	 */
9401 	msleep(500);
9402 
9403 	/*
9404 	 * Check for QSFP interrupt for t_init (SFF 8679 Table 8-1)
9405 	 */
9406 	timeout = jiffies + msecs_to_jiffies(2000);
9407 	while (1) {
9408 		mask = read_csr(dd, dd->hfi1_id ?
9409 				ASIC_QSFP2_IN : ASIC_QSFP1_IN);
9410 		if (!(mask & QSFP_HFI0_INT_N))
9411 			break;
9412 		if (time_after(jiffies, timeout)) {
9413 			dd_dev_info(dd, "%s: No IntN detected, reset complete\n",
9414 				    __func__);
9415 			break;
9416 		}
9417 		udelay(2);
9418 	}
9419 }
9420 
9421 static void set_qsfp_int_n(struct hfi1_pportdata *ppd, u8 enable)
9422 {
9423 	struct hfi1_devdata *dd = ppd->dd;
9424 	u64 mask;
9425 
9426 	mask = read_csr(dd, dd->hfi1_id ? ASIC_QSFP2_MASK : ASIC_QSFP1_MASK);
9427 	if (enable) {
9428 		/*
9429 		 * Clear the status register to avoid an immediate interrupt
9430 		 * when we re-enable the IntN pin
9431 		 */
9432 		write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_CLEAR : ASIC_QSFP1_CLEAR,
9433 			  QSFP_HFI0_INT_N);
9434 		mask |= (u64)QSFP_HFI0_INT_N;
9435 	} else {
9436 		mask &= ~(u64)QSFP_HFI0_INT_N;
9437 	}
9438 	write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_MASK : ASIC_QSFP1_MASK, mask);
9439 }
9440 
9441 int reset_qsfp(struct hfi1_pportdata *ppd)
9442 {
9443 	struct hfi1_devdata *dd = ppd->dd;
9444 	u64 mask, qsfp_mask;
9445 
9446 	/* Disable INT_N from triggering QSFP interrupts */
9447 	set_qsfp_int_n(ppd, 0);
9448 
9449 	/* Reset the QSFP */
9450 	mask = (u64)QSFP_HFI0_RESET_N;
9451 
9452 	qsfp_mask = read_csr(dd,
9453 			     dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT);
9454 	qsfp_mask &= ~mask;
9455 	write_csr(dd,
9456 		  dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT, qsfp_mask);
9457 
9458 	udelay(10);
9459 
9460 	qsfp_mask |= mask;
9461 	write_csr(dd,
9462 		  dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT, qsfp_mask);
9463 
9464 	wait_for_qsfp_init(ppd);
9465 
9466 	/*
9467 	 * Allow INT_N to trigger the QSFP interrupt to watch
9468 	 * for alarms and warnings
9469 	 */
9470 	set_qsfp_int_n(ppd, 1);
9471 
9472 	/*
9473 	 * After the reset, AOC transmitters are enabled by default. They need
9474 	 * to be turned off to complete the QSFP setup before they can be
9475 	 * enabled again.
9476 	 */
9477 	return set_qsfp_tx(ppd, 0);
9478 }
9479 
9480 static int handle_qsfp_error_conditions(struct hfi1_pportdata *ppd,
9481 					u8 *qsfp_interrupt_status)
9482 {
9483 	struct hfi1_devdata *dd = ppd->dd;
9484 
9485 	if ((qsfp_interrupt_status[0] & QSFP_HIGH_TEMP_ALARM) ||
9486 	    (qsfp_interrupt_status[0] & QSFP_HIGH_TEMP_WARNING))
9487 		dd_dev_err(dd, "%s: QSFP cable temperature too high\n",
9488 			   __func__);
9489 
9490 	if ((qsfp_interrupt_status[0] & QSFP_LOW_TEMP_ALARM) ||
9491 	    (qsfp_interrupt_status[0] & QSFP_LOW_TEMP_WARNING))
9492 		dd_dev_err(dd, "%s: QSFP cable temperature too low\n",
9493 			   __func__);
9494 
9495 	/*
9496 	 * The remaining alarms/warnings don't matter if the link is down.
9497 	 */
9498 	if (ppd->host_link_state & HLS_DOWN)
9499 		return 0;
9500 
9501 	if ((qsfp_interrupt_status[1] & QSFP_HIGH_VCC_ALARM) ||
9502 	    (qsfp_interrupt_status[1] & QSFP_HIGH_VCC_WARNING))
9503 		dd_dev_err(dd, "%s: QSFP supply voltage too high\n",
9504 			   __func__);
9505 
9506 	if ((qsfp_interrupt_status[1] & QSFP_LOW_VCC_ALARM) ||
9507 	    (qsfp_interrupt_status[1] & QSFP_LOW_VCC_WARNING))
9508 		dd_dev_err(dd, "%s: QSFP supply voltage too low\n",
9509 			   __func__);
9510 
9511 	/* Byte 2 is vendor specific */
9512 
9513 	if ((qsfp_interrupt_status[3] & QSFP_HIGH_POWER_ALARM) ||
9514 	    (qsfp_interrupt_status[3] & QSFP_HIGH_POWER_WARNING))
9515 		dd_dev_err(dd, "%s: Cable RX channel 1/2 power too high\n",
9516 			   __func__);
9517 
9518 	if ((qsfp_interrupt_status[3] & QSFP_LOW_POWER_ALARM) ||
9519 	    (qsfp_interrupt_status[3] & QSFP_LOW_POWER_WARNING))
9520 		dd_dev_err(dd, "%s: Cable RX channel 1/2 power too low\n",
9521 			   __func__);
9522 
9523 	if ((qsfp_interrupt_status[4] & QSFP_HIGH_POWER_ALARM) ||
9524 	    (qsfp_interrupt_status[4] & QSFP_HIGH_POWER_WARNING))
9525 		dd_dev_err(dd, "%s: Cable RX channel 3/4 power too high\n",
9526 			   __func__);
9527 
9528 	if ((qsfp_interrupt_status[4] & QSFP_LOW_POWER_ALARM) ||
9529 	    (qsfp_interrupt_status[4] & QSFP_LOW_POWER_WARNING))
9530 		dd_dev_err(dd, "%s: Cable RX channel 3/4 power too low\n",
9531 			   __func__);
9532 
9533 	if ((qsfp_interrupt_status[5] & QSFP_HIGH_BIAS_ALARM) ||
9534 	    (qsfp_interrupt_status[5] & QSFP_HIGH_BIAS_WARNING))
9535 		dd_dev_err(dd, "%s: Cable TX channel 1/2 bias too high\n",
9536 			   __func__);
9537 
9538 	if ((qsfp_interrupt_status[5] & QSFP_LOW_BIAS_ALARM) ||
9539 	    (qsfp_interrupt_status[5] & QSFP_LOW_BIAS_WARNING))
9540 		dd_dev_err(dd, "%s: Cable TX channel 1/2 bias too low\n",
9541 			   __func__);
9542 
9543 	if ((qsfp_interrupt_status[6] & QSFP_HIGH_BIAS_ALARM) ||
9544 	    (qsfp_interrupt_status[6] & QSFP_HIGH_BIAS_WARNING))
9545 		dd_dev_err(dd, "%s: Cable TX channel 3/4 bias too high\n",
9546 			   __func__);
9547 
9548 	if ((qsfp_interrupt_status[6] & QSFP_LOW_BIAS_ALARM) ||
9549 	    (qsfp_interrupt_status[6] & QSFP_LOW_BIAS_WARNING))
9550 		dd_dev_err(dd, "%s: Cable TX channel 3/4 bias too low\n",
9551 			   __func__);
9552 
9553 	if ((qsfp_interrupt_status[7] & QSFP_HIGH_POWER_ALARM) ||
9554 	    (qsfp_interrupt_status[7] & QSFP_HIGH_POWER_WARNING))
9555 		dd_dev_err(dd, "%s: Cable TX channel 1/2 power too high\n",
9556 			   __func__);
9557 
9558 	if ((qsfp_interrupt_status[7] & QSFP_LOW_POWER_ALARM) ||
9559 	    (qsfp_interrupt_status[7] & QSFP_LOW_POWER_WARNING))
9560 		dd_dev_err(dd, "%s: Cable TX channel 1/2 power too low\n",
9561 			   __func__);
9562 
9563 	if ((qsfp_interrupt_status[8] & QSFP_HIGH_POWER_ALARM) ||
9564 	    (qsfp_interrupt_status[8] & QSFP_HIGH_POWER_WARNING))
9565 		dd_dev_err(dd, "%s: Cable TX channel 3/4 power too high\n",
9566 			   __func__);
9567 
9568 	if ((qsfp_interrupt_status[8] & QSFP_LOW_POWER_ALARM) ||
9569 	    (qsfp_interrupt_status[8] & QSFP_LOW_POWER_WARNING))
9570 		dd_dev_err(dd, "%s: Cable TX channel 3/4 power too low\n",
9571 			   __func__);
9572 
9573 	/* Bytes 9-10 and 11-12 are reserved */
9574 	/* Bytes 13-15 are vendor specific */
9575 
9576 	return 0;
9577 }
9578 
9579 /* This routine will only be scheduled if the QSFP module present is asserted */
9580 void qsfp_event(struct work_struct *work)
9581 {
9582 	struct qsfp_data *qd;
9583 	struct hfi1_pportdata *ppd;
9584 	struct hfi1_devdata *dd;
9585 
9586 	qd = container_of(work, struct qsfp_data, qsfp_work);
9587 	ppd = qd->ppd;
9588 	dd = ppd->dd;
9589 
9590 	/* Sanity check */
9591 	if (!qsfp_mod_present(ppd))
9592 		return;
9593 
9594 	if (ppd->host_link_state == HLS_DN_DISABLE) {
9595 		dd_dev_info(ppd->dd,
9596 			    "%s: stopping link start because link is disabled\n",
9597 			    __func__);
9598 		return;
9599 	}
9600 
9601 	/*
9602 	 * Turn DC back on after cable has been re-inserted. Up until
9603 	 * now, the DC has been in reset to save power.
9604 	 */
9605 	dc_start(dd);
9606 
9607 	if (qd->cache_refresh_required) {
9608 		set_qsfp_int_n(ppd, 0);
9609 
9610 		wait_for_qsfp_init(ppd);
9611 
9612 		/*
9613 		 * Allow INT_N to trigger the QSFP interrupt to watch
9614 		 * for alarms and warnings
9615 		 */
9616 		set_qsfp_int_n(ppd, 1);
9617 
9618 		start_link(ppd);
9619 	}
9620 
9621 	if (qd->check_interrupt_flags) {
9622 		u8 qsfp_interrupt_status[16] = {0,};
9623 
9624 		if (one_qsfp_read(ppd, dd->hfi1_id, 6,
9625 				  &qsfp_interrupt_status[0], 16) != 16) {
9626 			dd_dev_info(dd,
9627 				    "%s: Failed to read status of QSFP module\n",
9628 				    __func__);
9629 		} else {
9630 			unsigned long flags;
9631 
9632 			handle_qsfp_error_conditions(
9633 					ppd, qsfp_interrupt_status);
9634 			spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
9635 			ppd->qsfp_info.check_interrupt_flags = 0;
9636 			spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock,
9637 					       flags);
9638 		}
9639 	}
9640 }
9641 
9642 static void init_qsfp_int(struct hfi1_devdata *dd)
9643 {
9644 	struct hfi1_pportdata *ppd = dd->pport;
9645 	u64 qsfp_mask, cce_int_mask;
9646 	const int qsfp1_int_smask = QSFP1_INT % 64;
9647 	const int qsfp2_int_smask = QSFP2_INT % 64;
9648 
9649 	/*
9650 	 * disable QSFP1 interrupts for HFI1, QSFP2 interrupts for HFI0
9651 	 * Qsfp1Int and Qsfp2Int are adjacent bits in the same CSR,
9652 	 * therefore just one of QSFP1_INT/QSFP2_INT can be used to find
9653 	 * the index of the appropriate CSR in the CCEIntMask CSR array
9654 	 */
9655 	cce_int_mask = read_csr(dd, CCE_INT_MASK +
9656 				(8 * (QSFP1_INT / 64)));
9657 	if (dd->hfi1_id) {
9658 		cce_int_mask &= ~((u64)1 << qsfp1_int_smask);
9659 		write_csr(dd, CCE_INT_MASK + (8 * (QSFP1_INT / 64)),
9660 			  cce_int_mask);
9661 	} else {
9662 		cce_int_mask &= ~((u64)1 << qsfp2_int_smask);
9663 		write_csr(dd, CCE_INT_MASK + (8 * (QSFP2_INT / 64)),
9664 			  cce_int_mask);
9665 	}
9666 
9667 	qsfp_mask = (u64)(QSFP_HFI0_INT_N | QSFP_HFI0_MODPRST_N);
9668 	/* Clear current status to avoid spurious interrupts */
9669 	write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_CLEAR : ASIC_QSFP1_CLEAR,
9670 		  qsfp_mask);
9671 	write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_MASK : ASIC_QSFP1_MASK,
9672 		  qsfp_mask);
9673 
9674 	set_qsfp_int_n(ppd, 0);
9675 
9676 	/* Handle active low nature of INT_N and MODPRST_N pins */
9677 	if (qsfp_mod_present(ppd))
9678 		qsfp_mask &= ~(u64)QSFP_HFI0_MODPRST_N;
9679 	write_csr(dd,
9680 		  dd->hfi1_id ? ASIC_QSFP2_INVERT : ASIC_QSFP1_INVERT,
9681 		  qsfp_mask);
9682 }
9683 
9684 /*
9685  * Do a one-time initialize of the LCB block.
9686  */
9687 static void init_lcb(struct hfi1_devdata *dd)
9688 {
9689 	/* simulator does not correctly handle LCB cclk loopback, skip */
9690 	if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR)
9691 		return;
9692 
9693 	/* the DC has been reset earlier in the driver load */
9694 
9695 	/* set LCB for cclk loopback on the port */
9696 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0x01);
9697 	write_csr(dd, DC_LCB_CFG_LANE_WIDTH, 0x00);
9698 	write_csr(dd, DC_LCB_CFG_REINIT_AS_SLAVE, 0x00);
9699 	write_csr(dd, DC_LCB_CFG_CNT_FOR_SKIP_STALL, 0x110);
9700 	write_csr(dd, DC_LCB_CFG_CLK_CNTR, 0x08);
9701 	write_csr(dd, DC_LCB_CFG_LOOPBACK, 0x02);
9702 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0x00);
9703 }
9704 
9705 /*
9706  * Perform a test read on the QSFP.  Return 0 on success, -ERRNO
9707  * on error.
9708  */
9709 static int test_qsfp_read(struct hfi1_pportdata *ppd)
9710 {
9711 	int ret;
9712 	u8 status;
9713 
9714 	/*
9715 	 * Report success if not a QSFP or, if it is a QSFP, but the cable is
9716 	 * not present
9717 	 */
9718 	if (ppd->port_type != PORT_TYPE_QSFP || !qsfp_mod_present(ppd))
9719 		return 0;
9720 
9721 	/* read byte 2, the status byte */
9722 	ret = one_qsfp_read(ppd, ppd->dd->hfi1_id, 2, &status, 1);
9723 	if (ret < 0)
9724 		return ret;
9725 	if (ret != 1)
9726 		return -EIO;
9727 
9728 	return 0; /* success */
9729 }
9730 
9731 /*
9732  * Values for QSFP retry.
9733  *
9734  * Give up after 10s (20 x 500ms).  The overall timeout was empirically
9735  * arrived at from experience on a large cluster.
9736  */
9737 #define MAX_QSFP_RETRIES 20
9738 #define QSFP_RETRY_WAIT 500 /* msec */
9739 
9740 /*
9741  * Try a QSFP read.  If it fails, schedule a retry for later.
9742  * Called on first link activation after driver load.
9743  */
9744 static void try_start_link(struct hfi1_pportdata *ppd)
9745 {
9746 	if (test_qsfp_read(ppd)) {
9747 		/* read failed */
9748 		if (ppd->qsfp_retry_count >= MAX_QSFP_RETRIES) {
9749 			dd_dev_err(ppd->dd, "QSFP not responding, giving up\n");
9750 			return;
9751 		}
9752 		dd_dev_info(ppd->dd,
9753 			    "QSFP not responding, waiting and retrying %d\n",
9754 			    (int)ppd->qsfp_retry_count);
9755 		ppd->qsfp_retry_count++;
9756 		queue_delayed_work(ppd->link_wq, &ppd->start_link_work,
9757 				   msecs_to_jiffies(QSFP_RETRY_WAIT));
9758 		return;
9759 	}
9760 	ppd->qsfp_retry_count = 0;
9761 
9762 	start_link(ppd);
9763 }
9764 
9765 /*
9766  * Workqueue function to start the link after a delay.
9767  */
9768 void handle_start_link(struct work_struct *work)
9769 {
9770 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
9771 						  start_link_work.work);
9772 	try_start_link(ppd);
9773 }
9774 
9775 int bringup_serdes(struct hfi1_pportdata *ppd)
9776 {
9777 	struct hfi1_devdata *dd = ppd->dd;
9778 	u64 guid;
9779 	int ret;
9780 
9781 	if (HFI1_CAP_IS_KSET(EXTENDED_PSN))
9782 		add_rcvctrl(dd, RCV_CTRL_RCV_EXTENDED_PSN_ENABLE_SMASK);
9783 
9784 	guid = ppd->guids[HFI1_PORT_GUID_INDEX];
9785 	if (!guid) {
9786 		if (dd->base_guid)
9787 			guid = dd->base_guid + ppd->port - 1;
9788 		ppd->guids[HFI1_PORT_GUID_INDEX] = guid;
9789 	}
9790 
9791 	/* Set linkinit_reason on power up per OPA spec */
9792 	ppd->linkinit_reason = OPA_LINKINIT_REASON_LINKUP;
9793 
9794 	/* one-time init of the LCB */
9795 	init_lcb(dd);
9796 
9797 	if (loopback) {
9798 		ret = init_loopback(dd);
9799 		if (ret < 0)
9800 			return ret;
9801 	}
9802 
9803 	get_port_type(ppd);
9804 	if (ppd->port_type == PORT_TYPE_QSFP) {
9805 		set_qsfp_int_n(ppd, 0);
9806 		wait_for_qsfp_init(ppd);
9807 		set_qsfp_int_n(ppd, 1);
9808 	}
9809 
9810 	try_start_link(ppd);
9811 	return 0;
9812 }
9813 
9814 void hfi1_quiet_serdes(struct hfi1_pportdata *ppd)
9815 {
9816 	struct hfi1_devdata *dd = ppd->dd;
9817 
9818 	/*
9819 	 * Shut down the link and keep it down.   First turn off that the
9820 	 * driver wants to allow the link to be up (driver_link_ready).
9821 	 * Then make sure the link is not automatically restarted
9822 	 * (link_enabled).  Cancel any pending restart.  And finally
9823 	 * go offline.
9824 	 */
9825 	ppd->driver_link_ready = 0;
9826 	ppd->link_enabled = 0;
9827 
9828 	ppd->qsfp_retry_count = MAX_QSFP_RETRIES; /* prevent more retries */
9829 	flush_delayed_work(&ppd->start_link_work);
9830 	cancel_delayed_work_sync(&ppd->start_link_work);
9831 
9832 	ppd->offline_disabled_reason =
9833 			HFI1_ODR_MASK(OPA_LINKDOWN_REASON_REBOOT);
9834 	set_link_down_reason(ppd, OPA_LINKDOWN_REASON_REBOOT, 0,
9835 			     OPA_LINKDOWN_REASON_REBOOT);
9836 	set_link_state(ppd, HLS_DN_OFFLINE);
9837 
9838 	/* disable the port */
9839 	clear_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
9840 }
9841 
9842 static inline int init_cpu_counters(struct hfi1_devdata *dd)
9843 {
9844 	struct hfi1_pportdata *ppd;
9845 	int i;
9846 
9847 	ppd = (struct hfi1_pportdata *)(dd + 1);
9848 	for (i = 0; i < dd->num_pports; i++, ppd++) {
9849 		ppd->ibport_data.rvp.rc_acks = NULL;
9850 		ppd->ibport_data.rvp.rc_qacks = NULL;
9851 		ppd->ibport_data.rvp.rc_acks = alloc_percpu(u64);
9852 		ppd->ibport_data.rvp.rc_qacks = alloc_percpu(u64);
9853 		ppd->ibport_data.rvp.rc_delayed_comp = alloc_percpu(u64);
9854 		if (!ppd->ibport_data.rvp.rc_acks ||
9855 		    !ppd->ibport_data.rvp.rc_delayed_comp ||
9856 		    !ppd->ibport_data.rvp.rc_qacks)
9857 			return -ENOMEM;
9858 	}
9859 
9860 	return 0;
9861 }
9862 
9863 /*
9864  * index is the index into the receive array
9865  */
9866 void hfi1_put_tid(struct hfi1_devdata *dd, u32 index,
9867 		  u32 type, unsigned long pa, u16 order)
9868 {
9869 	u64 reg;
9870 
9871 	if (!(dd->flags & HFI1_PRESENT))
9872 		goto done;
9873 
9874 	if (type == PT_INVALID || type == PT_INVALID_FLUSH) {
9875 		pa = 0;
9876 		order = 0;
9877 	} else if (type > PT_INVALID) {
9878 		dd_dev_err(dd,
9879 			   "unexpected receive array type %u for index %u, not handled\n",
9880 			   type, index);
9881 		goto done;
9882 	}
9883 	trace_hfi1_put_tid(dd, index, type, pa, order);
9884 
9885 #define RT_ADDR_SHIFT 12	/* 4KB kernel address boundary */
9886 	reg = RCV_ARRAY_RT_WRITE_ENABLE_SMASK
9887 		| (u64)order << RCV_ARRAY_RT_BUF_SIZE_SHIFT
9888 		| ((pa >> RT_ADDR_SHIFT) & RCV_ARRAY_RT_ADDR_MASK)
9889 					<< RCV_ARRAY_RT_ADDR_SHIFT;
9890 	trace_hfi1_write_rcvarray(dd->rcvarray_wc + (index * 8), reg);
9891 	writeq(reg, dd->rcvarray_wc + (index * 8));
9892 
9893 	if (type == PT_EAGER || type == PT_INVALID_FLUSH || (index & 3) == 3)
9894 		/*
9895 		 * Eager entries are written and flushed
9896 		 *
9897 		 * Expected entries are flushed every 4 writes
9898 		 */
9899 		flush_wc();
9900 done:
9901 	return;
9902 }
9903 
9904 void hfi1_clear_tids(struct hfi1_ctxtdata *rcd)
9905 {
9906 	struct hfi1_devdata *dd = rcd->dd;
9907 	u32 i;
9908 
9909 	/* this could be optimized */
9910 	for (i = rcd->eager_base; i < rcd->eager_base +
9911 		     rcd->egrbufs.alloced; i++)
9912 		hfi1_put_tid(dd, i, PT_INVALID, 0, 0);
9913 
9914 	for (i = rcd->expected_base;
9915 			i < rcd->expected_base + rcd->expected_count; i++)
9916 		hfi1_put_tid(dd, i, PT_INVALID, 0, 0);
9917 }
9918 
9919 static const char * const ib_cfg_name_strings[] = {
9920 	"HFI1_IB_CFG_LIDLMC",
9921 	"HFI1_IB_CFG_LWID_DG_ENB",
9922 	"HFI1_IB_CFG_LWID_ENB",
9923 	"HFI1_IB_CFG_LWID",
9924 	"HFI1_IB_CFG_SPD_ENB",
9925 	"HFI1_IB_CFG_SPD",
9926 	"HFI1_IB_CFG_RXPOL_ENB",
9927 	"HFI1_IB_CFG_LREV_ENB",
9928 	"HFI1_IB_CFG_LINKLATENCY",
9929 	"HFI1_IB_CFG_HRTBT",
9930 	"HFI1_IB_CFG_OP_VLS",
9931 	"HFI1_IB_CFG_VL_HIGH_CAP",
9932 	"HFI1_IB_CFG_VL_LOW_CAP",
9933 	"HFI1_IB_CFG_OVERRUN_THRESH",
9934 	"HFI1_IB_CFG_PHYERR_THRESH",
9935 	"HFI1_IB_CFG_LINKDEFAULT",
9936 	"HFI1_IB_CFG_PKEYS",
9937 	"HFI1_IB_CFG_MTU",
9938 	"HFI1_IB_CFG_LSTATE",
9939 	"HFI1_IB_CFG_VL_HIGH_LIMIT",
9940 	"HFI1_IB_CFG_PMA_TICKS",
9941 	"HFI1_IB_CFG_PORT"
9942 };
9943 
9944 static const char *ib_cfg_name(int which)
9945 {
9946 	if (which < 0 || which >= ARRAY_SIZE(ib_cfg_name_strings))
9947 		return "invalid";
9948 	return ib_cfg_name_strings[which];
9949 }
9950 
9951 int hfi1_get_ib_cfg(struct hfi1_pportdata *ppd, int which)
9952 {
9953 	struct hfi1_devdata *dd = ppd->dd;
9954 	int val = 0;
9955 
9956 	switch (which) {
9957 	case HFI1_IB_CFG_LWID_ENB: /* allowed Link-width */
9958 		val = ppd->link_width_enabled;
9959 		break;
9960 	case HFI1_IB_CFG_LWID: /* currently active Link-width */
9961 		val = ppd->link_width_active;
9962 		break;
9963 	case HFI1_IB_CFG_SPD_ENB: /* allowed Link speeds */
9964 		val = ppd->link_speed_enabled;
9965 		break;
9966 	case HFI1_IB_CFG_SPD: /* current Link speed */
9967 		val = ppd->link_speed_active;
9968 		break;
9969 
9970 	case HFI1_IB_CFG_RXPOL_ENB: /* Auto-RX-polarity enable */
9971 	case HFI1_IB_CFG_LREV_ENB: /* Auto-Lane-reversal enable */
9972 	case HFI1_IB_CFG_LINKLATENCY:
9973 		goto unimplemented;
9974 
9975 	case HFI1_IB_CFG_OP_VLS:
9976 		val = ppd->actual_vls_operational;
9977 		break;
9978 	case HFI1_IB_CFG_VL_HIGH_CAP: /* VL arb high priority table size */
9979 		val = VL_ARB_HIGH_PRIO_TABLE_SIZE;
9980 		break;
9981 	case HFI1_IB_CFG_VL_LOW_CAP: /* VL arb low priority table size */
9982 		val = VL_ARB_LOW_PRIO_TABLE_SIZE;
9983 		break;
9984 	case HFI1_IB_CFG_OVERRUN_THRESH: /* IB overrun threshold */
9985 		val = ppd->overrun_threshold;
9986 		break;
9987 	case HFI1_IB_CFG_PHYERR_THRESH: /* IB PHY error threshold */
9988 		val = ppd->phy_error_threshold;
9989 		break;
9990 	case HFI1_IB_CFG_LINKDEFAULT: /* IB link default (sleep/poll) */
9991 		val = HLS_DEFAULT;
9992 		break;
9993 
9994 	case HFI1_IB_CFG_HRTBT: /* Heartbeat off/enable/auto */
9995 	case HFI1_IB_CFG_PMA_TICKS:
9996 	default:
9997 unimplemented:
9998 		if (HFI1_CAP_IS_KSET(PRINT_UNIMPL))
9999 			dd_dev_info(
10000 				dd,
10001 				"%s: which %s: not implemented\n",
10002 				__func__,
10003 				ib_cfg_name(which));
10004 		break;
10005 	}
10006 
10007 	return val;
10008 }
10009 
10010 /*
10011  * The largest MAD packet size.
10012  */
10013 #define MAX_MAD_PACKET 2048
10014 
10015 /*
10016  * Return the maximum header bytes that can go on the _wire_
10017  * for this device. This count includes the ICRC which is
10018  * not part of the packet held in memory but it is appended
10019  * by the HW.
10020  * This is dependent on the device's receive header entry size.
10021  * HFI allows this to be set per-receive context, but the
10022  * driver presently enforces a global value.
10023  */
10024 u32 lrh_max_header_bytes(struct hfi1_devdata *dd)
10025 {
10026 	/*
10027 	 * The maximum non-payload (MTU) bytes in LRH.PktLen are
10028 	 * the Receive Header Entry Size minus the PBC (or RHF) size
10029 	 * plus one DW for the ICRC appended by HW.
10030 	 *
10031 	 * dd->rcd[0].rcvhdrqentsize is in DW.
10032 	 * We use rcd[0] as all context will have the same value. Also,
10033 	 * the first kernel context would have been allocated by now so
10034 	 * we are guaranteed a valid value.
10035 	 */
10036 	return (dd->rcd[0]->rcvhdrqentsize - 2/*PBC/RHF*/ + 1/*ICRC*/) << 2;
10037 }
10038 
10039 /*
10040  * Set Send Length
10041  * @ppd - per port data
10042  *
10043  * Set the MTU by limiting how many DWs may be sent.  The SendLenCheck*
10044  * registers compare against LRH.PktLen, so use the max bytes included
10045  * in the LRH.
10046  *
10047  * This routine changes all VL values except VL15, which it maintains at
10048  * the same value.
10049  */
10050 static void set_send_length(struct hfi1_pportdata *ppd)
10051 {
10052 	struct hfi1_devdata *dd = ppd->dd;
10053 	u32 max_hb = lrh_max_header_bytes(dd), dcmtu;
10054 	u32 maxvlmtu = dd->vld[15].mtu;
10055 	u64 len1 = 0, len2 = (((dd->vld[15].mtu + max_hb) >> 2)
10056 			      & SEND_LEN_CHECK1_LEN_VL15_MASK) <<
10057 		SEND_LEN_CHECK1_LEN_VL15_SHIFT;
10058 	int i, j;
10059 	u32 thres;
10060 
10061 	for (i = 0; i < ppd->vls_supported; i++) {
10062 		if (dd->vld[i].mtu > maxvlmtu)
10063 			maxvlmtu = dd->vld[i].mtu;
10064 		if (i <= 3)
10065 			len1 |= (((dd->vld[i].mtu + max_hb) >> 2)
10066 				 & SEND_LEN_CHECK0_LEN_VL0_MASK) <<
10067 				((i % 4) * SEND_LEN_CHECK0_LEN_VL1_SHIFT);
10068 		else
10069 			len2 |= (((dd->vld[i].mtu + max_hb) >> 2)
10070 				 & SEND_LEN_CHECK1_LEN_VL4_MASK) <<
10071 				((i % 4) * SEND_LEN_CHECK1_LEN_VL5_SHIFT);
10072 	}
10073 	write_csr(dd, SEND_LEN_CHECK0, len1);
10074 	write_csr(dd, SEND_LEN_CHECK1, len2);
10075 	/* adjust kernel credit return thresholds based on new MTUs */
10076 	/* all kernel receive contexts have the same hdrqentsize */
10077 	for (i = 0; i < ppd->vls_supported; i++) {
10078 		thres = min(sc_percent_to_threshold(dd->vld[i].sc, 50),
10079 			    sc_mtu_to_threshold(dd->vld[i].sc,
10080 						dd->vld[i].mtu,
10081 						dd->rcd[0]->rcvhdrqentsize));
10082 		for (j = 0; j < INIT_SC_PER_VL; j++)
10083 			sc_set_cr_threshold(
10084 					pio_select_send_context_vl(dd, j, i),
10085 					    thres);
10086 	}
10087 	thres = min(sc_percent_to_threshold(dd->vld[15].sc, 50),
10088 		    sc_mtu_to_threshold(dd->vld[15].sc,
10089 					dd->vld[15].mtu,
10090 					dd->rcd[0]->rcvhdrqentsize));
10091 	sc_set_cr_threshold(dd->vld[15].sc, thres);
10092 
10093 	/* Adjust maximum MTU for the port in DC */
10094 	dcmtu = maxvlmtu == 10240 ? DCC_CFG_PORT_MTU_CAP_10240 :
10095 		(ilog2(maxvlmtu >> 8) + 1);
10096 	len1 = read_csr(ppd->dd, DCC_CFG_PORT_CONFIG);
10097 	len1 &= ~DCC_CFG_PORT_CONFIG_MTU_CAP_SMASK;
10098 	len1 |= ((u64)dcmtu & DCC_CFG_PORT_CONFIG_MTU_CAP_MASK) <<
10099 		DCC_CFG_PORT_CONFIG_MTU_CAP_SHIFT;
10100 	write_csr(ppd->dd, DCC_CFG_PORT_CONFIG, len1);
10101 }
10102 
10103 static void set_lidlmc(struct hfi1_pportdata *ppd)
10104 {
10105 	int i;
10106 	u64 sreg = 0;
10107 	struct hfi1_devdata *dd = ppd->dd;
10108 	u32 mask = ~((1U << ppd->lmc) - 1);
10109 	u64 c1 = read_csr(ppd->dd, DCC_CFG_PORT_CONFIG1);
10110 	u32 lid;
10111 
10112 	/*
10113 	 * Program 0 in CSR if port lid is extended. This prevents
10114 	 * 9B packets being sent out for large lids.
10115 	 */
10116 	lid = (ppd->lid >= be16_to_cpu(IB_MULTICAST_LID_BASE)) ? 0 : ppd->lid;
10117 	c1 &= ~(DCC_CFG_PORT_CONFIG1_TARGET_DLID_SMASK
10118 		| DCC_CFG_PORT_CONFIG1_DLID_MASK_SMASK);
10119 	c1 |= ((lid & DCC_CFG_PORT_CONFIG1_TARGET_DLID_MASK)
10120 			<< DCC_CFG_PORT_CONFIG1_TARGET_DLID_SHIFT) |
10121 	      ((mask & DCC_CFG_PORT_CONFIG1_DLID_MASK_MASK)
10122 			<< DCC_CFG_PORT_CONFIG1_DLID_MASK_SHIFT);
10123 	write_csr(ppd->dd, DCC_CFG_PORT_CONFIG1, c1);
10124 
10125 	/*
10126 	 * Iterate over all the send contexts and set their SLID check
10127 	 */
10128 	sreg = ((mask & SEND_CTXT_CHECK_SLID_MASK_MASK) <<
10129 			SEND_CTXT_CHECK_SLID_MASK_SHIFT) |
10130 	       (((lid & mask) & SEND_CTXT_CHECK_SLID_VALUE_MASK) <<
10131 			SEND_CTXT_CHECK_SLID_VALUE_SHIFT);
10132 
10133 	for (i = 0; i < dd->chip_send_contexts; i++) {
10134 		hfi1_cdbg(LINKVERB, "SendContext[%d].SLID_CHECK = 0x%x",
10135 			  i, (u32)sreg);
10136 		write_kctxt_csr(dd, i, SEND_CTXT_CHECK_SLID, sreg);
10137 	}
10138 
10139 	/* Now we have to do the same thing for the sdma engines */
10140 	sdma_update_lmc(dd, mask, lid);
10141 }
10142 
10143 static const char *state_completed_string(u32 completed)
10144 {
10145 	static const char * const state_completed[] = {
10146 		"EstablishComm",
10147 		"OptimizeEQ",
10148 		"VerifyCap"
10149 	};
10150 
10151 	if (completed < ARRAY_SIZE(state_completed))
10152 		return state_completed[completed];
10153 
10154 	return "unknown";
10155 }
10156 
10157 static const char all_lanes_dead_timeout_expired[] =
10158 	"All lanes were inactive – was the interconnect media removed?";
10159 static const char tx_out_of_policy[] =
10160 	"Passing lanes on local port do not meet the local link width policy";
10161 static const char no_state_complete[] =
10162 	"State timeout occurred before link partner completed the state";
10163 static const char * const state_complete_reasons[] = {
10164 	[0x00] = "Reason unknown",
10165 	[0x01] = "Link was halted by driver, refer to LinkDownReason",
10166 	[0x02] = "Link partner reported failure",
10167 	[0x10] = "Unable to achieve frame sync on any lane",
10168 	[0x11] =
10169 	  "Unable to find a common bit rate with the link partner",
10170 	[0x12] =
10171 	  "Unable to achieve frame sync on sufficient lanes to meet the local link width policy",
10172 	[0x13] =
10173 	  "Unable to identify preset equalization on sufficient lanes to meet the local link width policy",
10174 	[0x14] = no_state_complete,
10175 	[0x15] =
10176 	  "State timeout occurred before link partner identified equalization presets",
10177 	[0x16] =
10178 	  "Link partner completed the EstablishComm state, but the passing lanes do not meet the local link width policy",
10179 	[0x17] = tx_out_of_policy,
10180 	[0x20] = all_lanes_dead_timeout_expired,
10181 	[0x21] =
10182 	  "Unable to achieve acceptable BER on sufficient lanes to meet the local link width policy",
10183 	[0x22] = no_state_complete,
10184 	[0x23] =
10185 	  "Link partner completed the OptimizeEq state, but the passing lanes do not meet the local link width policy",
10186 	[0x24] = tx_out_of_policy,
10187 	[0x30] = all_lanes_dead_timeout_expired,
10188 	[0x31] =
10189 	  "State timeout occurred waiting for host to process received frames",
10190 	[0x32] = no_state_complete,
10191 	[0x33] =
10192 	  "Link partner completed the VerifyCap state, but the passing lanes do not meet the local link width policy",
10193 	[0x34] = tx_out_of_policy,
10194 	[0x35] = "Negotiated link width is mutually exclusive",
10195 	[0x36] =
10196 	  "Timed out before receiving verifycap frames in VerifyCap.Exchange",
10197 	[0x37] = "Unable to resolve secure data exchange",
10198 };
10199 
10200 static const char *state_complete_reason_code_string(struct hfi1_pportdata *ppd,
10201 						     u32 code)
10202 {
10203 	const char *str = NULL;
10204 
10205 	if (code < ARRAY_SIZE(state_complete_reasons))
10206 		str = state_complete_reasons[code];
10207 
10208 	if (str)
10209 		return str;
10210 	return "Reserved";
10211 }
10212 
10213 /* describe the given last state complete frame */
10214 static void decode_state_complete(struct hfi1_pportdata *ppd, u32 frame,
10215 				  const char *prefix)
10216 {
10217 	struct hfi1_devdata *dd = ppd->dd;
10218 	u32 success;
10219 	u32 state;
10220 	u32 reason;
10221 	u32 lanes;
10222 
10223 	/*
10224 	 * Decode frame:
10225 	 *  [ 0: 0] - success
10226 	 *  [ 3: 1] - state
10227 	 *  [ 7: 4] - next state timeout
10228 	 *  [15: 8] - reason code
10229 	 *  [31:16] - lanes
10230 	 */
10231 	success = frame & 0x1;
10232 	state = (frame >> 1) & 0x7;
10233 	reason = (frame >> 8) & 0xff;
10234 	lanes = (frame >> 16) & 0xffff;
10235 
10236 	dd_dev_err(dd, "Last %s LNI state complete frame 0x%08x:\n",
10237 		   prefix, frame);
10238 	dd_dev_err(dd, "    last reported state state: %s (0x%x)\n",
10239 		   state_completed_string(state), state);
10240 	dd_dev_err(dd, "    state successfully completed: %s\n",
10241 		   success ? "yes" : "no");
10242 	dd_dev_err(dd, "    fail reason 0x%x: %s\n",
10243 		   reason, state_complete_reason_code_string(ppd, reason));
10244 	dd_dev_err(dd, "    passing lane mask: 0x%x", lanes);
10245 }
10246 
10247 /*
10248  * Read the last state complete frames and explain them.  This routine
10249  * expects to be called if the link went down during link negotiation
10250  * and initialization (LNI).  That is, anywhere between polling and link up.
10251  */
10252 static void check_lni_states(struct hfi1_pportdata *ppd)
10253 {
10254 	u32 last_local_state;
10255 	u32 last_remote_state;
10256 
10257 	read_last_local_state(ppd->dd, &last_local_state);
10258 	read_last_remote_state(ppd->dd, &last_remote_state);
10259 
10260 	/*
10261 	 * Don't report anything if there is nothing to report.  A value of
10262 	 * 0 means the link was taken down while polling and there was no
10263 	 * training in-process.
10264 	 */
10265 	if (last_local_state == 0 && last_remote_state == 0)
10266 		return;
10267 
10268 	decode_state_complete(ppd, last_local_state, "transmitted");
10269 	decode_state_complete(ppd, last_remote_state, "received");
10270 }
10271 
10272 /* wait for wait_ms for LINK_TRANSFER_ACTIVE to go to 1 */
10273 static int wait_link_transfer_active(struct hfi1_devdata *dd, int wait_ms)
10274 {
10275 	u64 reg;
10276 	unsigned long timeout;
10277 
10278 	/* watch LCB_STS_LINK_TRANSFER_ACTIVE */
10279 	timeout = jiffies + msecs_to_jiffies(wait_ms);
10280 	while (1) {
10281 		reg = read_csr(dd, DC_LCB_STS_LINK_TRANSFER_ACTIVE);
10282 		if (reg)
10283 			break;
10284 		if (time_after(jiffies, timeout)) {
10285 			dd_dev_err(dd,
10286 				   "timeout waiting for LINK_TRANSFER_ACTIVE\n");
10287 			return -ETIMEDOUT;
10288 		}
10289 		udelay(2);
10290 	}
10291 	return 0;
10292 }
10293 
10294 /* called when the logical link state is not down as it should be */
10295 static void force_logical_link_state_down(struct hfi1_pportdata *ppd)
10296 {
10297 	struct hfi1_devdata *dd = ppd->dd;
10298 
10299 	/*
10300 	 * Bring link up in LCB loopback
10301 	 */
10302 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 1);
10303 	write_csr(dd, DC_LCB_CFG_IGNORE_LOST_RCLK,
10304 		  DC_LCB_CFG_IGNORE_LOST_RCLK_EN_SMASK);
10305 
10306 	write_csr(dd, DC_LCB_CFG_LANE_WIDTH, 0);
10307 	write_csr(dd, DC_LCB_CFG_REINIT_AS_SLAVE, 0);
10308 	write_csr(dd, DC_LCB_CFG_CNT_FOR_SKIP_STALL, 0x110);
10309 	write_csr(dd, DC_LCB_CFG_LOOPBACK, 0x2);
10310 
10311 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0);
10312 	(void)read_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET);
10313 	udelay(3);
10314 	write_csr(dd, DC_LCB_CFG_ALLOW_LINK_UP, 1);
10315 	write_csr(dd, DC_LCB_CFG_RUN, 1ull << DC_LCB_CFG_RUN_EN_SHIFT);
10316 
10317 	wait_link_transfer_active(dd, 100);
10318 
10319 	/*
10320 	 * Bring the link down again.
10321 	 */
10322 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 1);
10323 	write_csr(dd, DC_LCB_CFG_ALLOW_LINK_UP, 0);
10324 	write_csr(dd, DC_LCB_CFG_IGNORE_LOST_RCLK, 0);
10325 
10326 	dd_dev_info(ppd->dd, "logical state forced to LINK_DOWN\n");
10327 }
10328 
10329 /*
10330  * Helper for set_link_state().  Do not call except from that routine.
10331  * Expects ppd->hls_mutex to be held.
10332  *
10333  * @rem_reason value to be sent to the neighbor
10334  *
10335  * LinkDownReasons only set if transition succeeds.
10336  */
10337 static int goto_offline(struct hfi1_pportdata *ppd, u8 rem_reason)
10338 {
10339 	struct hfi1_devdata *dd = ppd->dd;
10340 	u32 previous_state;
10341 	int offline_state_ret;
10342 	int ret;
10343 
10344 	update_lcb_cache(dd);
10345 
10346 	previous_state = ppd->host_link_state;
10347 	ppd->host_link_state = HLS_GOING_OFFLINE;
10348 
10349 	/* start offline transition */
10350 	ret = set_physical_link_state(dd, (rem_reason << 8) | PLS_OFFLINE);
10351 
10352 	if (ret != HCMD_SUCCESS) {
10353 		dd_dev_err(dd,
10354 			   "Failed to transition to Offline link state, return %d\n",
10355 			   ret);
10356 		return -EINVAL;
10357 	}
10358 	if (ppd->offline_disabled_reason ==
10359 			HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE))
10360 		ppd->offline_disabled_reason =
10361 		HFI1_ODR_MASK(OPA_LINKDOWN_REASON_TRANSIENT);
10362 
10363 	offline_state_ret = wait_phys_link_offline_substates(ppd, 10000);
10364 	if (offline_state_ret < 0)
10365 		return offline_state_ret;
10366 
10367 	/* Disabling AOC transmitters */
10368 	if (ppd->port_type == PORT_TYPE_QSFP &&
10369 	    ppd->qsfp_info.limiting_active &&
10370 	    qsfp_mod_present(ppd)) {
10371 		int ret;
10372 
10373 		ret = acquire_chip_resource(dd, qsfp_resource(dd), QSFP_WAIT);
10374 		if (ret == 0) {
10375 			set_qsfp_tx(ppd, 0);
10376 			release_chip_resource(dd, qsfp_resource(dd));
10377 		} else {
10378 			/* not fatal, but should warn */
10379 			dd_dev_err(dd,
10380 				   "Unable to acquire lock to turn off QSFP TX\n");
10381 		}
10382 	}
10383 
10384 	/*
10385 	 * Wait for the offline.Quiet transition if it hasn't happened yet. It
10386 	 * can take a while for the link to go down.
10387 	 */
10388 	if (offline_state_ret != PLS_OFFLINE_QUIET) {
10389 		ret = wait_physical_linkstate(ppd, PLS_OFFLINE, 30000);
10390 		if (ret < 0)
10391 			return ret;
10392 	}
10393 
10394 	/*
10395 	 * Now in charge of LCB - must be after the physical state is
10396 	 * offline.quiet and before host_link_state is changed.
10397 	 */
10398 	set_host_lcb_access(dd);
10399 	write_csr(dd, DC_LCB_ERR_EN, ~0ull); /* watch LCB errors */
10400 
10401 	/* make sure the logical state is also down */
10402 	ret = wait_logical_linkstate(ppd, IB_PORT_DOWN, 1000);
10403 	if (ret)
10404 		force_logical_link_state_down(ppd);
10405 
10406 	ppd->host_link_state = HLS_LINK_COOLDOWN; /* LCB access allowed */
10407 	update_statusp(ppd, IB_PORT_DOWN);
10408 
10409 	/*
10410 	 * The LNI has a mandatory wait time after the physical state
10411 	 * moves to Offline.Quiet.  The wait time may be different
10412 	 * depending on how the link went down.  The 8051 firmware
10413 	 * will observe the needed wait time and only move to ready
10414 	 * when that is completed.  The largest of the quiet timeouts
10415 	 * is 6s, so wait that long and then at least 0.5s more for
10416 	 * other transitions, and another 0.5s for a buffer.
10417 	 */
10418 	ret = wait_fm_ready(dd, 7000);
10419 	if (ret) {
10420 		dd_dev_err(dd,
10421 			   "After going offline, timed out waiting for the 8051 to become ready to accept host requests\n");
10422 		/* state is really offline, so make it so */
10423 		ppd->host_link_state = HLS_DN_OFFLINE;
10424 		return ret;
10425 	}
10426 
10427 	/*
10428 	 * The state is now offline and the 8051 is ready to accept host
10429 	 * requests.
10430 	 *	- change our state
10431 	 *	- notify others if we were previously in a linkup state
10432 	 */
10433 	ppd->host_link_state = HLS_DN_OFFLINE;
10434 	if (previous_state & HLS_UP) {
10435 		/* went down while link was up */
10436 		handle_linkup_change(dd, 0);
10437 	} else if (previous_state
10438 			& (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) {
10439 		/* went down while attempting link up */
10440 		check_lni_states(ppd);
10441 
10442 		/* The QSFP doesn't need to be reset on LNI failure */
10443 		ppd->qsfp_info.reset_needed = 0;
10444 	}
10445 
10446 	/* the active link width (downgrade) is 0 on link down */
10447 	ppd->link_width_active = 0;
10448 	ppd->link_width_downgrade_tx_active = 0;
10449 	ppd->link_width_downgrade_rx_active = 0;
10450 	ppd->current_egress_rate = 0;
10451 	return 0;
10452 }
10453 
10454 /* return the link state name */
10455 static const char *link_state_name(u32 state)
10456 {
10457 	const char *name;
10458 	int n = ilog2(state);
10459 	static const char * const names[] = {
10460 		[__HLS_UP_INIT_BP]	 = "INIT",
10461 		[__HLS_UP_ARMED_BP]	 = "ARMED",
10462 		[__HLS_UP_ACTIVE_BP]	 = "ACTIVE",
10463 		[__HLS_DN_DOWNDEF_BP]	 = "DOWNDEF",
10464 		[__HLS_DN_POLL_BP]	 = "POLL",
10465 		[__HLS_DN_DISABLE_BP]	 = "DISABLE",
10466 		[__HLS_DN_OFFLINE_BP]	 = "OFFLINE",
10467 		[__HLS_VERIFY_CAP_BP]	 = "VERIFY_CAP",
10468 		[__HLS_GOING_UP_BP]	 = "GOING_UP",
10469 		[__HLS_GOING_OFFLINE_BP] = "GOING_OFFLINE",
10470 		[__HLS_LINK_COOLDOWN_BP] = "LINK_COOLDOWN"
10471 	};
10472 
10473 	name = n < ARRAY_SIZE(names) ? names[n] : NULL;
10474 	return name ? name : "unknown";
10475 }
10476 
10477 /* return the link state reason name */
10478 static const char *link_state_reason_name(struct hfi1_pportdata *ppd, u32 state)
10479 {
10480 	if (state == HLS_UP_INIT) {
10481 		switch (ppd->linkinit_reason) {
10482 		case OPA_LINKINIT_REASON_LINKUP:
10483 			return "(LINKUP)";
10484 		case OPA_LINKINIT_REASON_FLAPPING:
10485 			return "(FLAPPING)";
10486 		case OPA_LINKINIT_OUTSIDE_POLICY:
10487 			return "(OUTSIDE_POLICY)";
10488 		case OPA_LINKINIT_QUARANTINED:
10489 			return "(QUARANTINED)";
10490 		case OPA_LINKINIT_INSUFIC_CAPABILITY:
10491 			return "(INSUFIC_CAPABILITY)";
10492 		default:
10493 			break;
10494 		}
10495 	}
10496 	return "";
10497 }
10498 
10499 /*
10500  * driver_pstate - convert the driver's notion of a port's
10501  * state (an HLS_*) into a physical state (a {IB,OPA}_PORTPHYSSTATE_*).
10502  * Return -1 (converted to a u32) to indicate error.
10503  */
10504 u32 driver_pstate(struct hfi1_pportdata *ppd)
10505 {
10506 	switch (ppd->host_link_state) {
10507 	case HLS_UP_INIT:
10508 	case HLS_UP_ARMED:
10509 	case HLS_UP_ACTIVE:
10510 		return IB_PORTPHYSSTATE_LINKUP;
10511 	case HLS_DN_POLL:
10512 		return IB_PORTPHYSSTATE_POLLING;
10513 	case HLS_DN_DISABLE:
10514 		return IB_PORTPHYSSTATE_DISABLED;
10515 	case HLS_DN_OFFLINE:
10516 		return OPA_PORTPHYSSTATE_OFFLINE;
10517 	case HLS_VERIFY_CAP:
10518 		return IB_PORTPHYSSTATE_TRAINING;
10519 	case HLS_GOING_UP:
10520 		return IB_PORTPHYSSTATE_TRAINING;
10521 	case HLS_GOING_OFFLINE:
10522 		return OPA_PORTPHYSSTATE_OFFLINE;
10523 	case HLS_LINK_COOLDOWN:
10524 		return OPA_PORTPHYSSTATE_OFFLINE;
10525 	case HLS_DN_DOWNDEF:
10526 	default:
10527 		dd_dev_err(ppd->dd, "invalid host_link_state 0x%x\n",
10528 			   ppd->host_link_state);
10529 		return  -1;
10530 	}
10531 }
10532 
10533 /*
10534  * driver_lstate - convert the driver's notion of a port's
10535  * state (an HLS_*) into a logical state (a IB_PORT_*). Return -1
10536  * (converted to a u32) to indicate error.
10537  */
10538 u32 driver_lstate(struct hfi1_pportdata *ppd)
10539 {
10540 	if (ppd->host_link_state && (ppd->host_link_state & HLS_DOWN))
10541 		return IB_PORT_DOWN;
10542 
10543 	switch (ppd->host_link_state & HLS_UP) {
10544 	case HLS_UP_INIT:
10545 		return IB_PORT_INIT;
10546 	case HLS_UP_ARMED:
10547 		return IB_PORT_ARMED;
10548 	case HLS_UP_ACTIVE:
10549 		return IB_PORT_ACTIVE;
10550 	default:
10551 		dd_dev_err(ppd->dd, "invalid host_link_state 0x%x\n",
10552 			   ppd->host_link_state);
10553 	return -1;
10554 	}
10555 }
10556 
10557 void set_link_down_reason(struct hfi1_pportdata *ppd, u8 lcl_reason,
10558 			  u8 neigh_reason, u8 rem_reason)
10559 {
10560 	if (ppd->local_link_down_reason.latest == 0 &&
10561 	    ppd->neigh_link_down_reason.latest == 0) {
10562 		ppd->local_link_down_reason.latest = lcl_reason;
10563 		ppd->neigh_link_down_reason.latest = neigh_reason;
10564 		ppd->remote_link_down_reason = rem_reason;
10565 	}
10566 }
10567 
10568 /*
10569  * Verify if BCT for data VLs is non-zero.
10570  */
10571 static inline bool data_vls_operational(struct hfi1_pportdata *ppd)
10572 {
10573 	return !!ppd->actual_vls_operational;
10574 }
10575 
10576 /*
10577  * Change the physical and/or logical link state.
10578  *
10579  * Do not call this routine while inside an interrupt.  It contains
10580  * calls to routines that can take multiple seconds to finish.
10581  *
10582  * Returns 0 on success, -errno on failure.
10583  */
10584 int set_link_state(struct hfi1_pportdata *ppd, u32 state)
10585 {
10586 	struct hfi1_devdata *dd = ppd->dd;
10587 	struct ib_event event = {.device = NULL};
10588 	int ret1, ret = 0;
10589 	int orig_new_state, poll_bounce;
10590 
10591 	mutex_lock(&ppd->hls_lock);
10592 
10593 	orig_new_state = state;
10594 	if (state == HLS_DN_DOWNDEF)
10595 		state = HLS_DEFAULT;
10596 
10597 	/* interpret poll -> poll as a link bounce */
10598 	poll_bounce = ppd->host_link_state == HLS_DN_POLL &&
10599 		      state == HLS_DN_POLL;
10600 
10601 	dd_dev_info(dd, "%s: current %s, new %s %s%s\n", __func__,
10602 		    link_state_name(ppd->host_link_state),
10603 		    link_state_name(orig_new_state),
10604 		    poll_bounce ? "(bounce) " : "",
10605 		    link_state_reason_name(ppd, state));
10606 
10607 	/*
10608 	 * If we're going to a (HLS_*) link state that implies the logical
10609 	 * link state is neither of (IB_PORT_ARMED, IB_PORT_ACTIVE), then
10610 	 * reset is_sm_config_started to 0.
10611 	 */
10612 	if (!(state & (HLS_UP_ARMED | HLS_UP_ACTIVE)))
10613 		ppd->is_sm_config_started = 0;
10614 
10615 	/*
10616 	 * Do nothing if the states match.  Let a poll to poll link bounce
10617 	 * go through.
10618 	 */
10619 	if (ppd->host_link_state == state && !poll_bounce)
10620 		goto done;
10621 
10622 	switch (state) {
10623 	case HLS_UP_INIT:
10624 		if (ppd->host_link_state == HLS_DN_POLL &&
10625 		    (quick_linkup || dd->icode == ICODE_FUNCTIONAL_SIMULATOR)) {
10626 			/*
10627 			 * Quick link up jumps from polling to here.
10628 			 *
10629 			 * Whether in normal or loopback mode, the
10630 			 * simulator jumps from polling to link up.
10631 			 * Accept that here.
10632 			 */
10633 			/* OK */
10634 		} else if (ppd->host_link_state != HLS_GOING_UP) {
10635 			goto unexpected;
10636 		}
10637 
10638 		/*
10639 		 * Wait for Link_Up physical state.
10640 		 * Physical and Logical states should already be
10641 		 * be transitioned to LinkUp and LinkInit respectively.
10642 		 */
10643 		ret = wait_physical_linkstate(ppd, PLS_LINKUP, 1000);
10644 		if (ret) {
10645 			dd_dev_err(dd,
10646 				   "%s: physical state did not change to LINK-UP\n",
10647 				   __func__);
10648 			break;
10649 		}
10650 
10651 		ret = wait_logical_linkstate(ppd, IB_PORT_INIT, 1000);
10652 		if (ret) {
10653 			dd_dev_err(dd,
10654 				   "%s: logical state did not change to INIT\n",
10655 				   __func__);
10656 			break;
10657 		}
10658 
10659 		/* clear old transient LINKINIT_REASON code */
10660 		if (ppd->linkinit_reason >= OPA_LINKINIT_REASON_CLEAR)
10661 			ppd->linkinit_reason =
10662 				OPA_LINKINIT_REASON_LINKUP;
10663 
10664 		/* enable the port */
10665 		add_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
10666 
10667 		handle_linkup_change(dd, 1);
10668 
10669 		/*
10670 		 * After link up, a new link width will have been set.
10671 		 * Update the xmit counters with regards to the new
10672 		 * link width.
10673 		 */
10674 		update_xmit_counters(ppd, ppd->link_width_active);
10675 
10676 		ppd->host_link_state = HLS_UP_INIT;
10677 		update_statusp(ppd, IB_PORT_INIT);
10678 		break;
10679 	case HLS_UP_ARMED:
10680 		if (ppd->host_link_state != HLS_UP_INIT)
10681 			goto unexpected;
10682 
10683 		if (!data_vls_operational(ppd)) {
10684 			dd_dev_err(dd,
10685 				   "%s: data VLs not operational\n", __func__);
10686 			ret = -EINVAL;
10687 			break;
10688 		}
10689 
10690 		set_logical_state(dd, LSTATE_ARMED);
10691 		ret = wait_logical_linkstate(ppd, IB_PORT_ARMED, 1000);
10692 		if (ret) {
10693 			dd_dev_err(dd,
10694 				   "%s: logical state did not change to ARMED\n",
10695 				   __func__);
10696 			break;
10697 		}
10698 		ppd->host_link_state = HLS_UP_ARMED;
10699 		update_statusp(ppd, IB_PORT_ARMED);
10700 		/*
10701 		 * The simulator does not currently implement SMA messages,
10702 		 * so neighbor_normal is not set.  Set it here when we first
10703 		 * move to Armed.
10704 		 */
10705 		if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR)
10706 			ppd->neighbor_normal = 1;
10707 		break;
10708 	case HLS_UP_ACTIVE:
10709 		if (ppd->host_link_state != HLS_UP_ARMED)
10710 			goto unexpected;
10711 
10712 		set_logical_state(dd, LSTATE_ACTIVE);
10713 		ret = wait_logical_linkstate(ppd, IB_PORT_ACTIVE, 1000);
10714 		if (ret) {
10715 			dd_dev_err(dd,
10716 				   "%s: logical state did not change to ACTIVE\n",
10717 				   __func__);
10718 		} else {
10719 			/* tell all engines to go running */
10720 			sdma_all_running(dd);
10721 			ppd->host_link_state = HLS_UP_ACTIVE;
10722 			update_statusp(ppd, IB_PORT_ACTIVE);
10723 
10724 			/* Signal the IB layer that the port has went active */
10725 			event.device = &dd->verbs_dev.rdi.ibdev;
10726 			event.element.port_num = ppd->port;
10727 			event.event = IB_EVENT_PORT_ACTIVE;
10728 		}
10729 		break;
10730 	case HLS_DN_POLL:
10731 		if ((ppd->host_link_state == HLS_DN_DISABLE ||
10732 		     ppd->host_link_state == HLS_DN_OFFLINE) &&
10733 		    dd->dc_shutdown)
10734 			dc_start(dd);
10735 		/* Hand LED control to the DC */
10736 		write_csr(dd, DCC_CFG_LED_CNTRL, 0);
10737 
10738 		if (ppd->host_link_state != HLS_DN_OFFLINE) {
10739 			u8 tmp = ppd->link_enabled;
10740 
10741 			ret = goto_offline(ppd, ppd->remote_link_down_reason);
10742 			if (ret) {
10743 				ppd->link_enabled = tmp;
10744 				break;
10745 			}
10746 			ppd->remote_link_down_reason = 0;
10747 
10748 			if (ppd->driver_link_ready)
10749 				ppd->link_enabled = 1;
10750 		}
10751 
10752 		set_all_slowpath(ppd->dd);
10753 		ret = set_local_link_attributes(ppd);
10754 		if (ret)
10755 			break;
10756 
10757 		ppd->port_error_action = 0;
10758 		ppd->host_link_state = HLS_DN_POLL;
10759 
10760 		if (quick_linkup) {
10761 			/* quick linkup does not go into polling */
10762 			ret = do_quick_linkup(dd);
10763 		} else {
10764 			ret1 = set_physical_link_state(dd, PLS_POLLING);
10765 			if (ret1 != HCMD_SUCCESS) {
10766 				dd_dev_err(dd,
10767 					   "Failed to transition to Polling link state, return 0x%x\n",
10768 					   ret1);
10769 				ret = -EINVAL;
10770 			}
10771 		}
10772 		ppd->offline_disabled_reason =
10773 			HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE);
10774 		/*
10775 		 * If an error occurred above, go back to offline.  The
10776 		 * caller may reschedule another attempt.
10777 		 */
10778 		if (ret)
10779 			goto_offline(ppd, 0);
10780 		else
10781 			log_physical_state(ppd, PLS_POLLING);
10782 		break;
10783 	case HLS_DN_DISABLE:
10784 		/* link is disabled */
10785 		ppd->link_enabled = 0;
10786 
10787 		/* allow any state to transition to disabled */
10788 
10789 		/* must transition to offline first */
10790 		if (ppd->host_link_state != HLS_DN_OFFLINE) {
10791 			ret = goto_offline(ppd, ppd->remote_link_down_reason);
10792 			if (ret)
10793 				break;
10794 			ppd->remote_link_down_reason = 0;
10795 		}
10796 
10797 		if (!dd->dc_shutdown) {
10798 			ret1 = set_physical_link_state(dd, PLS_DISABLED);
10799 			if (ret1 != HCMD_SUCCESS) {
10800 				dd_dev_err(dd,
10801 					   "Failed to transition to Disabled link state, return 0x%x\n",
10802 					   ret1);
10803 				ret = -EINVAL;
10804 				break;
10805 			}
10806 			ret = wait_physical_linkstate(ppd, PLS_DISABLED, 10000);
10807 			if (ret) {
10808 				dd_dev_err(dd,
10809 					   "%s: physical state did not change to DISABLED\n",
10810 					   __func__);
10811 				break;
10812 			}
10813 			dc_shutdown(dd);
10814 		}
10815 		ppd->host_link_state = HLS_DN_DISABLE;
10816 		break;
10817 	case HLS_DN_OFFLINE:
10818 		if (ppd->host_link_state == HLS_DN_DISABLE)
10819 			dc_start(dd);
10820 
10821 		/* allow any state to transition to offline */
10822 		ret = goto_offline(ppd, ppd->remote_link_down_reason);
10823 		if (!ret)
10824 			ppd->remote_link_down_reason = 0;
10825 		break;
10826 	case HLS_VERIFY_CAP:
10827 		if (ppd->host_link_state != HLS_DN_POLL)
10828 			goto unexpected;
10829 		ppd->host_link_state = HLS_VERIFY_CAP;
10830 		log_physical_state(ppd, PLS_CONFIGPHY_VERIFYCAP);
10831 		break;
10832 	case HLS_GOING_UP:
10833 		if (ppd->host_link_state != HLS_VERIFY_CAP)
10834 			goto unexpected;
10835 
10836 		ret1 = set_physical_link_state(dd, PLS_LINKUP);
10837 		if (ret1 != HCMD_SUCCESS) {
10838 			dd_dev_err(dd,
10839 				   "Failed to transition to link up state, return 0x%x\n",
10840 				   ret1);
10841 			ret = -EINVAL;
10842 			break;
10843 		}
10844 		ppd->host_link_state = HLS_GOING_UP;
10845 		break;
10846 
10847 	case HLS_GOING_OFFLINE:		/* transient within goto_offline() */
10848 	case HLS_LINK_COOLDOWN:		/* transient within goto_offline() */
10849 	default:
10850 		dd_dev_info(dd, "%s: state 0x%x: not supported\n",
10851 			    __func__, state);
10852 		ret = -EINVAL;
10853 		break;
10854 	}
10855 
10856 	goto done;
10857 
10858 unexpected:
10859 	dd_dev_err(dd, "%s: unexpected state transition from %s to %s\n",
10860 		   __func__, link_state_name(ppd->host_link_state),
10861 		   link_state_name(state));
10862 	ret = -EINVAL;
10863 
10864 done:
10865 	mutex_unlock(&ppd->hls_lock);
10866 
10867 	if (event.device)
10868 		ib_dispatch_event(&event);
10869 
10870 	return ret;
10871 }
10872 
10873 int hfi1_set_ib_cfg(struct hfi1_pportdata *ppd, int which, u32 val)
10874 {
10875 	u64 reg;
10876 	int ret = 0;
10877 
10878 	switch (which) {
10879 	case HFI1_IB_CFG_LIDLMC:
10880 		set_lidlmc(ppd);
10881 		break;
10882 	case HFI1_IB_CFG_VL_HIGH_LIMIT:
10883 		/*
10884 		 * The VL Arbitrator high limit is sent in units of 4k
10885 		 * bytes, while HFI stores it in units of 64 bytes.
10886 		 */
10887 		val *= 4096 / 64;
10888 		reg = ((u64)val & SEND_HIGH_PRIORITY_LIMIT_LIMIT_MASK)
10889 			<< SEND_HIGH_PRIORITY_LIMIT_LIMIT_SHIFT;
10890 		write_csr(ppd->dd, SEND_HIGH_PRIORITY_LIMIT, reg);
10891 		break;
10892 	case HFI1_IB_CFG_LINKDEFAULT: /* IB link default (sleep/poll) */
10893 		/* HFI only supports POLL as the default link down state */
10894 		if (val != HLS_DN_POLL)
10895 			ret = -EINVAL;
10896 		break;
10897 	case HFI1_IB_CFG_OP_VLS:
10898 		if (ppd->vls_operational != val) {
10899 			ppd->vls_operational = val;
10900 			if (!ppd->port)
10901 				ret = -EINVAL;
10902 		}
10903 		break;
10904 	/*
10905 	 * For link width, link width downgrade, and speed enable, always AND
10906 	 * the setting with what is actually supported.  This has two benefits.
10907 	 * First, enabled can't have unsupported values, no matter what the
10908 	 * SM or FM might want.  Second, the ALL_SUPPORTED wildcards that mean
10909 	 * "fill in with your supported value" have all the bits in the
10910 	 * field set, so simply ANDing with supported has the desired result.
10911 	 */
10912 	case HFI1_IB_CFG_LWID_ENB: /* set allowed Link-width */
10913 		ppd->link_width_enabled = val & ppd->link_width_supported;
10914 		break;
10915 	case HFI1_IB_CFG_LWID_DG_ENB: /* set allowed link width downgrade */
10916 		ppd->link_width_downgrade_enabled =
10917 				val & ppd->link_width_downgrade_supported;
10918 		break;
10919 	case HFI1_IB_CFG_SPD_ENB: /* allowed Link speeds */
10920 		ppd->link_speed_enabled = val & ppd->link_speed_supported;
10921 		break;
10922 	case HFI1_IB_CFG_OVERRUN_THRESH: /* IB overrun threshold */
10923 		/*
10924 		 * HFI does not follow IB specs, save this value
10925 		 * so we can report it, if asked.
10926 		 */
10927 		ppd->overrun_threshold = val;
10928 		break;
10929 	case HFI1_IB_CFG_PHYERR_THRESH: /* IB PHY error threshold */
10930 		/*
10931 		 * HFI does not follow IB specs, save this value
10932 		 * so we can report it, if asked.
10933 		 */
10934 		ppd->phy_error_threshold = val;
10935 		break;
10936 
10937 	case HFI1_IB_CFG_MTU:
10938 		set_send_length(ppd);
10939 		break;
10940 
10941 	case HFI1_IB_CFG_PKEYS:
10942 		if (HFI1_CAP_IS_KSET(PKEY_CHECK))
10943 			set_partition_keys(ppd);
10944 		break;
10945 
10946 	default:
10947 		if (HFI1_CAP_IS_KSET(PRINT_UNIMPL))
10948 			dd_dev_info(ppd->dd,
10949 				    "%s: which %s, val 0x%x: not implemented\n",
10950 				    __func__, ib_cfg_name(which), val);
10951 		break;
10952 	}
10953 	return ret;
10954 }
10955 
10956 /* begin functions related to vl arbitration table caching */
10957 static void init_vl_arb_caches(struct hfi1_pportdata *ppd)
10958 {
10959 	int i;
10960 
10961 	BUILD_BUG_ON(VL_ARB_TABLE_SIZE !=
10962 			VL_ARB_LOW_PRIO_TABLE_SIZE);
10963 	BUILD_BUG_ON(VL_ARB_TABLE_SIZE !=
10964 			VL_ARB_HIGH_PRIO_TABLE_SIZE);
10965 
10966 	/*
10967 	 * Note that we always return values directly from the
10968 	 * 'vl_arb_cache' (and do no CSR reads) in response to a
10969 	 * 'Get(VLArbTable)'. This is obviously correct after a
10970 	 * 'Set(VLArbTable)', since the cache will then be up to
10971 	 * date. But it's also correct prior to any 'Set(VLArbTable)'
10972 	 * since then both the cache, and the relevant h/w registers
10973 	 * will be zeroed.
10974 	 */
10975 
10976 	for (i = 0; i < MAX_PRIO_TABLE; i++)
10977 		spin_lock_init(&ppd->vl_arb_cache[i].lock);
10978 }
10979 
10980 /*
10981  * vl_arb_lock_cache
10982  *
10983  * All other vl_arb_* functions should be called only after locking
10984  * the cache.
10985  */
10986 static inline struct vl_arb_cache *
10987 vl_arb_lock_cache(struct hfi1_pportdata *ppd, int idx)
10988 {
10989 	if (idx != LO_PRIO_TABLE && idx != HI_PRIO_TABLE)
10990 		return NULL;
10991 	spin_lock(&ppd->vl_arb_cache[idx].lock);
10992 	return &ppd->vl_arb_cache[idx];
10993 }
10994 
10995 static inline void vl_arb_unlock_cache(struct hfi1_pportdata *ppd, int idx)
10996 {
10997 	spin_unlock(&ppd->vl_arb_cache[idx].lock);
10998 }
10999 
11000 static void vl_arb_get_cache(struct vl_arb_cache *cache,
11001 			     struct ib_vl_weight_elem *vl)
11002 {
11003 	memcpy(vl, cache->table, VL_ARB_TABLE_SIZE * sizeof(*vl));
11004 }
11005 
11006 static void vl_arb_set_cache(struct vl_arb_cache *cache,
11007 			     struct ib_vl_weight_elem *vl)
11008 {
11009 	memcpy(cache->table, vl, VL_ARB_TABLE_SIZE * sizeof(*vl));
11010 }
11011 
11012 static int vl_arb_match_cache(struct vl_arb_cache *cache,
11013 			      struct ib_vl_weight_elem *vl)
11014 {
11015 	return !memcmp(cache->table, vl, VL_ARB_TABLE_SIZE * sizeof(*vl));
11016 }
11017 
11018 /* end functions related to vl arbitration table caching */
11019 
11020 static int set_vl_weights(struct hfi1_pportdata *ppd, u32 target,
11021 			  u32 size, struct ib_vl_weight_elem *vl)
11022 {
11023 	struct hfi1_devdata *dd = ppd->dd;
11024 	u64 reg;
11025 	unsigned int i, is_up = 0;
11026 	int drain, ret = 0;
11027 
11028 	mutex_lock(&ppd->hls_lock);
11029 
11030 	if (ppd->host_link_state & HLS_UP)
11031 		is_up = 1;
11032 
11033 	drain = !is_ax(dd) && is_up;
11034 
11035 	if (drain)
11036 		/*
11037 		 * Before adjusting VL arbitration weights, empty per-VL
11038 		 * FIFOs, otherwise a packet whose VL weight is being
11039 		 * set to 0 could get stuck in a FIFO with no chance to
11040 		 * egress.
11041 		 */
11042 		ret = stop_drain_data_vls(dd);
11043 
11044 	if (ret) {
11045 		dd_dev_err(
11046 			dd,
11047 			"%s: cannot stop/drain VLs - refusing to change VL arbitration weights\n",
11048 			__func__);
11049 		goto err;
11050 	}
11051 
11052 	for (i = 0; i < size; i++, vl++) {
11053 		/*
11054 		 * NOTE: The low priority shift and mask are used here, but
11055 		 * they are the same for both the low and high registers.
11056 		 */
11057 		reg = (((u64)vl->vl & SEND_LOW_PRIORITY_LIST_VL_MASK)
11058 				<< SEND_LOW_PRIORITY_LIST_VL_SHIFT)
11059 		      | (((u64)vl->weight
11060 				& SEND_LOW_PRIORITY_LIST_WEIGHT_MASK)
11061 				<< SEND_LOW_PRIORITY_LIST_WEIGHT_SHIFT);
11062 		write_csr(dd, target + (i * 8), reg);
11063 	}
11064 	pio_send_control(dd, PSC_GLOBAL_VLARB_ENABLE);
11065 
11066 	if (drain)
11067 		open_fill_data_vls(dd); /* reopen all VLs */
11068 
11069 err:
11070 	mutex_unlock(&ppd->hls_lock);
11071 
11072 	return ret;
11073 }
11074 
11075 /*
11076  * Read one credit merge VL register.
11077  */
11078 static void read_one_cm_vl(struct hfi1_devdata *dd, u32 csr,
11079 			   struct vl_limit *vll)
11080 {
11081 	u64 reg = read_csr(dd, csr);
11082 
11083 	vll->dedicated = cpu_to_be16(
11084 		(reg >> SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SHIFT)
11085 		& SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_MASK);
11086 	vll->shared = cpu_to_be16(
11087 		(reg >> SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SHIFT)
11088 		& SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_MASK);
11089 }
11090 
11091 /*
11092  * Read the current credit merge limits.
11093  */
11094 static int get_buffer_control(struct hfi1_devdata *dd,
11095 			      struct buffer_control *bc, u16 *overall_limit)
11096 {
11097 	u64 reg;
11098 	int i;
11099 
11100 	/* not all entries are filled in */
11101 	memset(bc, 0, sizeof(*bc));
11102 
11103 	/* OPA and HFI have a 1-1 mapping */
11104 	for (i = 0; i < TXE_NUM_DATA_VL; i++)
11105 		read_one_cm_vl(dd, SEND_CM_CREDIT_VL + (8 * i), &bc->vl[i]);
11106 
11107 	/* NOTE: assumes that VL* and VL15 CSRs are bit-wise identical */
11108 	read_one_cm_vl(dd, SEND_CM_CREDIT_VL15, &bc->vl[15]);
11109 
11110 	reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
11111 	bc->overall_shared_limit = cpu_to_be16(
11112 		(reg >> SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SHIFT)
11113 		& SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_MASK);
11114 	if (overall_limit)
11115 		*overall_limit = (reg
11116 			>> SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT)
11117 			& SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_MASK;
11118 	return sizeof(struct buffer_control);
11119 }
11120 
11121 static int get_sc2vlnt(struct hfi1_devdata *dd, struct sc2vlnt *dp)
11122 {
11123 	u64 reg;
11124 	int i;
11125 
11126 	/* each register contains 16 SC->VLnt mappings, 4 bits each */
11127 	reg = read_csr(dd, DCC_CFG_SC_VL_TABLE_15_0);
11128 	for (i = 0; i < sizeof(u64); i++) {
11129 		u8 byte = *(((u8 *)&reg) + i);
11130 
11131 		dp->vlnt[2 * i] = byte & 0xf;
11132 		dp->vlnt[(2 * i) + 1] = (byte & 0xf0) >> 4;
11133 	}
11134 
11135 	reg = read_csr(dd, DCC_CFG_SC_VL_TABLE_31_16);
11136 	for (i = 0; i < sizeof(u64); i++) {
11137 		u8 byte = *(((u8 *)&reg) + i);
11138 
11139 		dp->vlnt[16 + (2 * i)] = byte & 0xf;
11140 		dp->vlnt[16 + (2 * i) + 1] = (byte & 0xf0) >> 4;
11141 	}
11142 	return sizeof(struct sc2vlnt);
11143 }
11144 
11145 static void get_vlarb_preempt(struct hfi1_devdata *dd, u32 nelems,
11146 			      struct ib_vl_weight_elem *vl)
11147 {
11148 	unsigned int i;
11149 
11150 	for (i = 0; i < nelems; i++, vl++) {
11151 		vl->vl = 0xf;
11152 		vl->weight = 0;
11153 	}
11154 }
11155 
11156 static void set_sc2vlnt(struct hfi1_devdata *dd, struct sc2vlnt *dp)
11157 {
11158 	write_csr(dd, DCC_CFG_SC_VL_TABLE_15_0,
11159 		  DC_SC_VL_VAL(15_0,
11160 			       0, dp->vlnt[0] & 0xf,
11161 			       1, dp->vlnt[1] & 0xf,
11162 			       2, dp->vlnt[2] & 0xf,
11163 			       3, dp->vlnt[3] & 0xf,
11164 			       4, dp->vlnt[4] & 0xf,
11165 			       5, dp->vlnt[5] & 0xf,
11166 			       6, dp->vlnt[6] & 0xf,
11167 			       7, dp->vlnt[7] & 0xf,
11168 			       8, dp->vlnt[8] & 0xf,
11169 			       9, dp->vlnt[9] & 0xf,
11170 			       10, dp->vlnt[10] & 0xf,
11171 			       11, dp->vlnt[11] & 0xf,
11172 			       12, dp->vlnt[12] & 0xf,
11173 			       13, dp->vlnt[13] & 0xf,
11174 			       14, dp->vlnt[14] & 0xf,
11175 			       15, dp->vlnt[15] & 0xf));
11176 	write_csr(dd, DCC_CFG_SC_VL_TABLE_31_16,
11177 		  DC_SC_VL_VAL(31_16,
11178 			       16, dp->vlnt[16] & 0xf,
11179 			       17, dp->vlnt[17] & 0xf,
11180 			       18, dp->vlnt[18] & 0xf,
11181 			       19, dp->vlnt[19] & 0xf,
11182 			       20, dp->vlnt[20] & 0xf,
11183 			       21, dp->vlnt[21] & 0xf,
11184 			       22, dp->vlnt[22] & 0xf,
11185 			       23, dp->vlnt[23] & 0xf,
11186 			       24, dp->vlnt[24] & 0xf,
11187 			       25, dp->vlnt[25] & 0xf,
11188 			       26, dp->vlnt[26] & 0xf,
11189 			       27, dp->vlnt[27] & 0xf,
11190 			       28, dp->vlnt[28] & 0xf,
11191 			       29, dp->vlnt[29] & 0xf,
11192 			       30, dp->vlnt[30] & 0xf,
11193 			       31, dp->vlnt[31] & 0xf));
11194 }
11195 
11196 static void nonzero_msg(struct hfi1_devdata *dd, int idx, const char *what,
11197 			u16 limit)
11198 {
11199 	if (limit != 0)
11200 		dd_dev_info(dd, "Invalid %s limit %d on VL %d, ignoring\n",
11201 			    what, (int)limit, idx);
11202 }
11203 
11204 /* change only the shared limit portion of SendCmGLobalCredit */
11205 static void set_global_shared(struct hfi1_devdata *dd, u16 limit)
11206 {
11207 	u64 reg;
11208 
11209 	reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
11210 	reg &= ~SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SMASK;
11211 	reg |= (u64)limit << SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SHIFT;
11212 	write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg);
11213 }
11214 
11215 /* change only the total credit limit portion of SendCmGLobalCredit */
11216 static void set_global_limit(struct hfi1_devdata *dd, u16 limit)
11217 {
11218 	u64 reg;
11219 
11220 	reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
11221 	reg &= ~SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SMASK;
11222 	reg |= (u64)limit << SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT;
11223 	write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg);
11224 }
11225 
11226 /* set the given per-VL shared limit */
11227 static void set_vl_shared(struct hfi1_devdata *dd, int vl, u16 limit)
11228 {
11229 	u64 reg;
11230 	u32 addr;
11231 
11232 	if (vl < TXE_NUM_DATA_VL)
11233 		addr = SEND_CM_CREDIT_VL + (8 * vl);
11234 	else
11235 		addr = SEND_CM_CREDIT_VL15;
11236 
11237 	reg = read_csr(dd, addr);
11238 	reg &= ~SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SMASK;
11239 	reg |= (u64)limit << SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SHIFT;
11240 	write_csr(dd, addr, reg);
11241 }
11242 
11243 /* set the given per-VL dedicated limit */
11244 static void set_vl_dedicated(struct hfi1_devdata *dd, int vl, u16 limit)
11245 {
11246 	u64 reg;
11247 	u32 addr;
11248 
11249 	if (vl < TXE_NUM_DATA_VL)
11250 		addr = SEND_CM_CREDIT_VL + (8 * vl);
11251 	else
11252 		addr = SEND_CM_CREDIT_VL15;
11253 
11254 	reg = read_csr(dd, addr);
11255 	reg &= ~SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SMASK;
11256 	reg |= (u64)limit << SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SHIFT;
11257 	write_csr(dd, addr, reg);
11258 }
11259 
11260 /* spin until the given per-VL status mask bits clear */
11261 static void wait_for_vl_status_clear(struct hfi1_devdata *dd, u64 mask,
11262 				     const char *which)
11263 {
11264 	unsigned long timeout;
11265 	u64 reg;
11266 
11267 	timeout = jiffies + msecs_to_jiffies(VL_STATUS_CLEAR_TIMEOUT);
11268 	while (1) {
11269 		reg = read_csr(dd, SEND_CM_CREDIT_USED_STATUS) & mask;
11270 
11271 		if (reg == 0)
11272 			return;	/* success */
11273 		if (time_after(jiffies, timeout))
11274 			break;		/* timed out */
11275 		udelay(1);
11276 	}
11277 
11278 	dd_dev_err(dd,
11279 		   "%s credit change status not clearing after %dms, mask 0x%llx, not clear 0x%llx\n",
11280 		   which, VL_STATUS_CLEAR_TIMEOUT, mask, reg);
11281 	/*
11282 	 * If this occurs, it is likely there was a credit loss on the link.
11283 	 * The only recovery from that is a link bounce.
11284 	 */
11285 	dd_dev_err(dd,
11286 		   "Continuing anyway.  A credit loss may occur.  Suggest a link bounce\n");
11287 }
11288 
11289 /*
11290  * The number of credits on the VLs may be changed while everything
11291  * is "live", but the following algorithm must be followed due to
11292  * how the hardware is actually implemented.  In particular,
11293  * Return_Credit_Status[] is the only correct status check.
11294  *
11295  * if (reducing Global_Shared_Credit_Limit or any shared limit changing)
11296  *     set Global_Shared_Credit_Limit = 0
11297  *     use_all_vl = 1
11298  * mask0 = all VLs that are changing either dedicated or shared limits
11299  * set Shared_Limit[mask0] = 0
11300  * spin until Return_Credit_Status[use_all_vl ? all VL : mask0] == 0
11301  * if (changing any dedicated limit)
11302  *     mask1 = all VLs that are lowering dedicated limits
11303  *     lower Dedicated_Limit[mask1]
11304  *     spin until Return_Credit_Status[mask1] == 0
11305  *     raise Dedicated_Limits
11306  * raise Shared_Limits
11307  * raise Global_Shared_Credit_Limit
11308  *
11309  * lower = if the new limit is lower, set the limit to the new value
11310  * raise = if the new limit is higher than the current value (may be changed
11311  *	earlier in the algorithm), set the new limit to the new value
11312  */
11313 int set_buffer_control(struct hfi1_pportdata *ppd,
11314 		       struct buffer_control *new_bc)
11315 {
11316 	struct hfi1_devdata *dd = ppd->dd;
11317 	u64 changing_mask, ld_mask, stat_mask;
11318 	int change_count;
11319 	int i, use_all_mask;
11320 	int this_shared_changing;
11321 	int vl_count = 0, ret;
11322 	/*
11323 	 * A0: add the variable any_shared_limit_changing below and in the
11324 	 * algorithm above.  If removing A0 support, it can be removed.
11325 	 */
11326 	int any_shared_limit_changing;
11327 	struct buffer_control cur_bc;
11328 	u8 changing[OPA_MAX_VLS];
11329 	u8 lowering_dedicated[OPA_MAX_VLS];
11330 	u16 cur_total;
11331 	u32 new_total = 0;
11332 	const u64 all_mask =
11333 	SEND_CM_CREDIT_USED_STATUS_VL0_RETURN_CREDIT_STATUS_SMASK
11334 	 | SEND_CM_CREDIT_USED_STATUS_VL1_RETURN_CREDIT_STATUS_SMASK
11335 	 | SEND_CM_CREDIT_USED_STATUS_VL2_RETURN_CREDIT_STATUS_SMASK
11336 	 | SEND_CM_CREDIT_USED_STATUS_VL3_RETURN_CREDIT_STATUS_SMASK
11337 	 | SEND_CM_CREDIT_USED_STATUS_VL4_RETURN_CREDIT_STATUS_SMASK
11338 	 | SEND_CM_CREDIT_USED_STATUS_VL5_RETURN_CREDIT_STATUS_SMASK
11339 	 | SEND_CM_CREDIT_USED_STATUS_VL6_RETURN_CREDIT_STATUS_SMASK
11340 	 | SEND_CM_CREDIT_USED_STATUS_VL7_RETURN_CREDIT_STATUS_SMASK
11341 	 | SEND_CM_CREDIT_USED_STATUS_VL15_RETURN_CREDIT_STATUS_SMASK;
11342 
11343 #define valid_vl(idx) ((idx) < TXE_NUM_DATA_VL || (idx) == 15)
11344 #define NUM_USABLE_VLS 16	/* look at VL15 and less */
11345 
11346 	/* find the new total credits, do sanity check on unused VLs */
11347 	for (i = 0; i < OPA_MAX_VLS; i++) {
11348 		if (valid_vl(i)) {
11349 			new_total += be16_to_cpu(new_bc->vl[i].dedicated);
11350 			continue;
11351 		}
11352 		nonzero_msg(dd, i, "dedicated",
11353 			    be16_to_cpu(new_bc->vl[i].dedicated));
11354 		nonzero_msg(dd, i, "shared",
11355 			    be16_to_cpu(new_bc->vl[i].shared));
11356 		new_bc->vl[i].dedicated = 0;
11357 		new_bc->vl[i].shared = 0;
11358 	}
11359 	new_total += be16_to_cpu(new_bc->overall_shared_limit);
11360 
11361 	/* fetch the current values */
11362 	get_buffer_control(dd, &cur_bc, &cur_total);
11363 
11364 	/*
11365 	 * Create the masks we will use.
11366 	 */
11367 	memset(changing, 0, sizeof(changing));
11368 	memset(lowering_dedicated, 0, sizeof(lowering_dedicated));
11369 	/*
11370 	 * NOTE: Assumes that the individual VL bits are adjacent and in
11371 	 * increasing order
11372 	 */
11373 	stat_mask =
11374 		SEND_CM_CREDIT_USED_STATUS_VL0_RETURN_CREDIT_STATUS_SMASK;
11375 	changing_mask = 0;
11376 	ld_mask = 0;
11377 	change_count = 0;
11378 	any_shared_limit_changing = 0;
11379 	for (i = 0; i < NUM_USABLE_VLS; i++, stat_mask <<= 1) {
11380 		if (!valid_vl(i))
11381 			continue;
11382 		this_shared_changing = new_bc->vl[i].shared
11383 						!= cur_bc.vl[i].shared;
11384 		if (this_shared_changing)
11385 			any_shared_limit_changing = 1;
11386 		if (new_bc->vl[i].dedicated != cur_bc.vl[i].dedicated ||
11387 		    this_shared_changing) {
11388 			changing[i] = 1;
11389 			changing_mask |= stat_mask;
11390 			change_count++;
11391 		}
11392 		if (be16_to_cpu(new_bc->vl[i].dedicated) <
11393 					be16_to_cpu(cur_bc.vl[i].dedicated)) {
11394 			lowering_dedicated[i] = 1;
11395 			ld_mask |= stat_mask;
11396 		}
11397 	}
11398 
11399 	/* bracket the credit change with a total adjustment */
11400 	if (new_total > cur_total)
11401 		set_global_limit(dd, new_total);
11402 
11403 	/*
11404 	 * Start the credit change algorithm.
11405 	 */
11406 	use_all_mask = 0;
11407 	if ((be16_to_cpu(new_bc->overall_shared_limit) <
11408 	     be16_to_cpu(cur_bc.overall_shared_limit)) ||
11409 	    (is_ax(dd) && any_shared_limit_changing)) {
11410 		set_global_shared(dd, 0);
11411 		cur_bc.overall_shared_limit = 0;
11412 		use_all_mask = 1;
11413 	}
11414 
11415 	for (i = 0; i < NUM_USABLE_VLS; i++) {
11416 		if (!valid_vl(i))
11417 			continue;
11418 
11419 		if (changing[i]) {
11420 			set_vl_shared(dd, i, 0);
11421 			cur_bc.vl[i].shared = 0;
11422 		}
11423 	}
11424 
11425 	wait_for_vl_status_clear(dd, use_all_mask ? all_mask : changing_mask,
11426 				 "shared");
11427 
11428 	if (change_count > 0) {
11429 		for (i = 0; i < NUM_USABLE_VLS; i++) {
11430 			if (!valid_vl(i))
11431 				continue;
11432 
11433 			if (lowering_dedicated[i]) {
11434 				set_vl_dedicated(dd, i,
11435 						 be16_to_cpu(new_bc->
11436 							     vl[i].dedicated));
11437 				cur_bc.vl[i].dedicated =
11438 						new_bc->vl[i].dedicated;
11439 			}
11440 		}
11441 
11442 		wait_for_vl_status_clear(dd, ld_mask, "dedicated");
11443 
11444 		/* now raise all dedicated that are going up */
11445 		for (i = 0; i < NUM_USABLE_VLS; i++) {
11446 			if (!valid_vl(i))
11447 				continue;
11448 
11449 			if (be16_to_cpu(new_bc->vl[i].dedicated) >
11450 					be16_to_cpu(cur_bc.vl[i].dedicated))
11451 				set_vl_dedicated(dd, i,
11452 						 be16_to_cpu(new_bc->
11453 							     vl[i].dedicated));
11454 		}
11455 	}
11456 
11457 	/* next raise all shared that are going up */
11458 	for (i = 0; i < NUM_USABLE_VLS; i++) {
11459 		if (!valid_vl(i))
11460 			continue;
11461 
11462 		if (be16_to_cpu(new_bc->vl[i].shared) >
11463 				be16_to_cpu(cur_bc.vl[i].shared))
11464 			set_vl_shared(dd, i, be16_to_cpu(new_bc->vl[i].shared));
11465 	}
11466 
11467 	/* finally raise the global shared */
11468 	if (be16_to_cpu(new_bc->overall_shared_limit) >
11469 	    be16_to_cpu(cur_bc.overall_shared_limit))
11470 		set_global_shared(dd,
11471 				  be16_to_cpu(new_bc->overall_shared_limit));
11472 
11473 	/* bracket the credit change with a total adjustment */
11474 	if (new_total < cur_total)
11475 		set_global_limit(dd, new_total);
11476 
11477 	/*
11478 	 * Determine the actual number of operational VLS using the number of
11479 	 * dedicated and shared credits for each VL.
11480 	 */
11481 	if (change_count > 0) {
11482 		for (i = 0; i < TXE_NUM_DATA_VL; i++)
11483 			if (be16_to_cpu(new_bc->vl[i].dedicated) > 0 ||
11484 			    be16_to_cpu(new_bc->vl[i].shared) > 0)
11485 				vl_count++;
11486 		ppd->actual_vls_operational = vl_count;
11487 		ret = sdma_map_init(dd, ppd->port - 1, vl_count ?
11488 				    ppd->actual_vls_operational :
11489 				    ppd->vls_operational,
11490 				    NULL);
11491 		if (ret == 0)
11492 			ret = pio_map_init(dd, ppd->port - 1, vl_count ?
11493 					   ppd->actual_vls_operational :
11494 					   ppd->vls_operational, NULL);
11495 		if (ret)
11496 			return ret;
11497 	}
11498 	return 0;
11499 }
11500 
11501 /*
11502  * Read the given fabric manager table. Return the size of the
11503  * table (in bytes) on success, and a negative error code on
11504  * failure.
11505  */
11506 int fm_get_table(struct hfi1_pportdata *ppd, int which, void *t)
11507 
11508 {
11509 	int size;
11510 	struct vl_arb_cache *vlc;
11511 
11512 	switch (which) {
11513 	case FM_TBL_VL_HIGH_ARB:
11514 		size = 256;
11515 		/*
11516 		 * OPA specifies 128 elements (of 2 bytes each), though
11517 		 * HFI supports only 16 elements in h/w.
11518 		 */
11519 		vlc = vl_arb_lock_cache(ppd, HI_PRIO_TABLE);
11520 		vl_arb_get_cache(vlc, t);
11521 		vl_arb_unlock_cache(ppd, HI_PRIO_TABLE);
11522 		break;
11523 	case FM_TBL_VL_LOW_ARB:
11524 		size = 256;
11525 		/*
11526 		 * OPA specifies 128 elements (of 2 bytes each), though
11527 		 * HFI supports only 16 elements in h/w.
11528 		 */
11529 		vlc = vl_arb_lock_cache(ppd, LO_PRIO_TABLE);
11530 		vl_arb_get_cache(vlc, t);
11531 		vl_arb_unlock_cache(ppd, LO_PRIO_TABLE);
11532 		break;
11533 	case FM_TBL_BUFFER_CONTROL:
11534 		size = get_buffer_control(ppd->dd, t, NULL);
11535 		break;
11536 	case FM_TBL_SC2VLNT:
11537 		size = get_sc2vlnt(ppd->dd, t);
11538 		break;
11539 	case FM_TBL_VL_PREEMPT_ELEMS:
11540 		size = 256;
11541 		/* OPA specifies 128 elements, of 2 bytes each */
11542 		get_vlarb_preempt(ppd->dd, OPA_MAX_VLS, t);
11543 		break;
11544 	case FM_TBL_VL_PREEMPT_MATRIX:
11545 		size = 256;
11546 		/*
11547 		 * OPA specifies that this is the same size as the VL
11548 		 * arbitration tables (i.e., 256 bytes).
11549 		 */
11550 		break;
11551 	default:
11552 		return -EINVAL;
11553 	}
11554 	return size;
11555 }
11556 
11557 /*
11558  * Write the given fabric manager table.
11559  */
11560 int fm_set_table(struct hfi1_pportdata *ppd, int which, void *t)
11561 {
11562 	int ret = 0;
11563 	struct vl_arb_cache *vlc;
11564 
11565 	switch (which) {
11566 	case FM_TBL_VL_HIGH_ARB:
11567 		vlc = vl_arb_lock_cache(ppd, HI_PRIO_TABLE);
11568 		if (vl_arb_match_cache(vlc, t)) {
11569 			vl_arb_unlock_cache(ppd, HI_PRIO_TABLE);
11570 			break;
11571 		}
11572 		vl_arb_set_cache(vlc, t);
11573 		vl_arb_unlock_cache(ppd, HI_PRIO_TABLE);
11574 		ret = set_vl_weights(ppd, SEND_HIGH_PRIORITY_LIST,
11575 				     VL_ARB_HIGH_PRIO_TABLE_SIZE, t);
11576 		break;
11577 	case FM_TBL_VL_LOW_ARB:
11578 		vlc = vl_arb_lock_cache(ppd, LO_PRIO_TABLE);
11579 		if (vl_arb_match_cache(vlc, t)) {
11580 			vl_arb_unlock_cache(ppd, LO_PRIO_TABLE);
11581 			break;
11582 		}
11583 		vl_arb_set_cache(vlc, t);
11584 		vl_arb_unlock_cache(ppd, LO_PRIO_TABLE);
11585 		ret = set_vl_weights(ppd, SEND_LOW_PRIORITY_LIST,
11586 				     VL_ARB_LOW_PRIO_TABLE_SIZE, t);
11587 		break;
11588 	case FM_TBL_BUFFER_CONTROL:
11589 		ret = set_buffer_control(ppd, t);
11590 		break;
11591 	case FM_TBL_SC2VLNT:
11592 		set_sc2vlnt(ppd->dd, t);
11593 		break;
11594 	default:
11595 		ret = -EINVAL;
11596 	}
11597 	return ret;
11598 }
11599 
11600 /*
11601  * Disable all data VLs.
11602  *
11603  * Return 0 if disabled, non-zero if the VLs cannot be disabled.
11604  */
11605 static int disable_data_vls(struct hfi1_devdata *dd)
11606 {
11607 	if (is_ax(dd))
11608 		return 1;
11609 
11610 	pio_send_control(dd, PSC_DATA_VL_DISABLE);
11611 
11612 	return 0;
11613 }
11614 
11615 /*
11616  * open_fill_data_vls() - the counterpart to stop_drain_data_vls().
11617  * Just re-enables all data VLs (the "fill" part happens
11618  * automatically - the name was chosen for symmetry with
11619  * stop_drain_data_vls()).
11620  *
11621  * Return 0 if successful, non-zero if the VLs cannot be enabled.
11622  */
11623 int open_fill_data_vls(struct hfi1_devdata *dd)
11624 {
11625 	if (is_ax(dd))
11626 		return 1;
11627 
11628 	pio_send_control(dd, PSC_DATA_VL_ENABLE);
11629 
11630 	return 0;
11631 }
11632 
11633 /*
11634  * drain_data_vls() - assumes that disable_data_vls() has been called,
11635  * wait for occupancy (of per-VL FIFOs) for all contexts, and SDMA
11636  * engines to drop to 0.
11637  */
11638 static void drain_data_vls(struct hfi1_devdata *dd)
11639 {
11640 	sc_wait(dd);
11641 	sdma_wait(dd);
11642 	pause_for_credit_return(dd);
11643 }
11644 
11645 /*
11646  * stop_drain_data_vls() - disable, then drain all per-VL fifos.
11647  *
11648  * Use open_fill_data_vls() to resume using data VLs.  This pair is
11649  * meant to be used like this:
11650  *
11651  * stop_drain_data_vls(dd);
11652  * // do things with per-VL resources
11653  * open_fill_data_vls(dd);
11654  */
11655 int stop_drain_data_vls(struct hfi1_devdata *dd)
11656 {
11657 	int ret;
11658 
11659 	ret = disable_data_vls(dd);
11660 	if (ret == 0)
11661 		drain_data_vls(dd);
11662 
11663 	return ret;
11664 }
11665 
11666 /*
11667  * Convert a nanosecond time to a cclock count.  No matter how slow
11668  * the cclock, a non-zero ns will always have a non-zero result.
11669  */
11670 u32 ns_to_cclock(struct hfi1_devdata *dd, u32 ns)
11671 {
11672 	u32 cclocks;
11673 
11674 	if (dd->icode == ICODE_FPGA_EMULATION)
11675 		cclocks = (ns * 1000) / FPGA_CCLOCK_PS;
11676 	else  /* simulation pretends to be ASIC */
11677 		cclocks = (ns * 1000) / ASIC_CCLOCK_PS;
11678 	if (ns && !cclocks)	/* if ns nonzero, must be at least 1 */
11679 		cclocks = 1;
11680 	return cclocks;
11681 }
11682 
11683 /*
11684  * Convert a cclock count to nanoseconds. Not matter how slow
11685  * the cclock, a non-zero cclocks will always have a non-zero result.
11686  */
11687 u32 cclock_to_ns(struct hfi1_devdata *dd, u32 cclocks)
11688 {
11689 	u32 ns;
11690 
11691 	if (dd->icode == ICODE_FPGA_EMULATION)
11692 		ns = (cclocks * FPGA_CCLOCK_PS) / 1000;
11693 	else  /* simulation pretends to be ASIC */
11694 		ns = (cclocks * ASIC_CCLOCK_PS) / 1000;
11695 	if (cclocks && !ns)
11696 		ns = 1;
11697 	return ns;
11698 }
11699 
11700 /*
11701  * Dynamically adjust the receive interrupt timeout for a context based on
11702  * incoming packet rate.
11703  *
11704  * NOTE: Dynamic adjustment does not allow rcv_intr_count to be zero.
11705  */
11706 static void adjust_rcv_timeout(struct hfi1_ctxtdata *rcd, u32 npkts)
11707 {
11708 	struct hfi1_devdata *dd = rcd->dd;
11709 	u32 timeout = rcd->rcvavail_timeout;
11710 
11711 	/*
11712 	 * This algorithm doubles or halves the timeout depending on whether
11713 	 * the number of packets received in this interrupt were less than or
11714 	 * greater equal the interrupt count.
11715 	 *
11716 	 * The calculations below do not allow a steady state to be achieved.
11717 	 * Only at the endpoints it is possible to have an unchanging
11718 	 * timeout.
11719 	 */
11720 	if (npkts < rcv_intr_count) {
11721 		/*
11722 		 * Not enough packets arrived before the timeout, adjust
11723 		 * timeout downward.
11724 		 */
11725 		if (timeout < 2) /* already at minimum? */
11726 			return;
11727 		timeout >>= 1;
11728 	} else {
11729 		/*
11730 		 * More than enough packets arrived before the timeout, adjust
11731 		 * timeout upward.
11732 		 */
11733 		if (timeout >= dd->rcv_intr_timeout_csr) /* already at max? */
11734 			return;
11735 		timeout = min(timeout << 1, dd->rcv_intr_timeout_csr);
11736 	}
11737 
11738 	rcd->rcvavail_timeout = timeout;
11739 	/*
11740 	 * timeout cannot be larger than rcv_intr_timeout_csr which has already
11741 	 * been verified to be in range
11742 	 */
11743 	write_kctxt_csr(dd, rcd->ctxt, RCV_AVAIL_TIME_OUT,
11744 			(u64)timeout <<
11745 			RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_SHIFT);
11746 }
11747 
11748 void update_usrhead(struct hfi1_ctxtdata *rcd, u32 hd, u32 updegr, u32 egrhd,
11749 		    u32 intr_adjust, u32 npkts)
11750 {
11751 	struct hfi1_devdata *dd = rcd->dd;
11752 	u64 reg;
11753 	u32 ctxt = rcd->ctxt;
11754 
11755 	/*
11756 	 * Need to write timeout register before updating RcvHdrHead to ensure
11757 	 * that a new value is used when the HW decides to restart counting.
11758 	 */
11759 	if (intr_adjust)
11760 		adjust_rcv_timeout(rcd, npkts);
11761 	if (updegr) {
11762 		reg = (egrhd & RCV_EGR_INDEX_HEAD_HEAD_MASK)
11763 			<< RCV_EGR_INDEX_HEAD_HEAD_SHIFT;
11764 		write_uctxt_csr(dd, ctxt, RCV_EGR_INDEX_HEAD, reg);
11765 	}
11766 	mmiowb();
11767 	reg = ((u64)rcv_intr_count << RCV_HDR_HEAD_COUNTER_SHIFT) |
11768 		(((u64)hd & RCV_HDR_HEAD_HEAD_MASK)
11769 			<< RCV_HDR_HEAD_HEAD_SHIFT);
11770 	write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, reg);
11771 	mmiowb();
11772 }
11773 
11774 u32 hdrqempty(struct hfi1_ctxtdata *rcd)
11775 {
11776 	u32 head, tail;
11777 
11778 	head = (read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_HEAD)
11779 		& RCV_HDR_HEAD_HEAD_SMASK) >> RCV_HDR_HEAD_HEAD_SHIFT;
11780 
11781 	if (rcd->rcvhdrtail_kvaddr)
11782 		tail = get_rcvhdrtail(rcd);
11783 	else
11784 		tail = read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_TAIL);
11785 
11786 	return head == tail;
11787 }
11788 
11789 /*
11790  * Context Control and Receive Array encoding for buffer size:
11791  *	0x0 invalid
11792  *	0x1   4 KB
11793  *	0x2   8 KB
11794  *	0x3  16 KB
11795  *	0x4  32 KB
11796  *	0x5  64 KB
11797  *	0x6 128 KB
11798  *	0x7 256 KB
11799  *	0x8 512 KB (Receive Array only)
11800  *	0x9   1 MB (Receive Array only)
11801  *	0xa   2 MB (Receive Array only)
11802  *
11803  *	0xB-0xF - reserved (Receive Array only)
11804  *
11805  *
11806  * This routine assumes that the value has already been sanity checked.
11807  */
11808 static u32 encoded_size(u32 size)
11809 {
11810 	switch (size) {
11811 	case   4 * 1024: return 0x1;
11812 	case   8 * 1024: return 0x2;
11813 	case  16 * 1024: return 0x3;
11814 	case  32 * 1024: return 0x4;
11815 	case  64 * 1024: return 0x5;
11816 	case 128 * 1024: return 0x6;
11817 	case 256 * 1024: return 0x7;
11818 	case 512 * 1024: return 0x8;
11819 	case   1 * 1024 * 1024: return 0x9;
11820 	case   2 * 1024 * 1024: return 0xa;
11821 	}
11822 	return 0x1;	/* if invalid, go with the minimum size */
11823 }
11824 
11825 void hfi1_rcvctrl(struct hfi1_devdata *dd, unsigned int op,
11826 		  struct hfi1_ctxtdata *rcd)
11827 {
11828 	u64 rcvctrl, reg;
11829 	int did_enable = 0;
11830 	u16 ctxt;
11831 
11832 	if (!rcd)
11833 		return;
11834 
11835 	ctxt = rcd->ctxt;
11836 
11837 	hfi1_cdbg(RCVCTRL, "ctxt %d op 0x%x", ctxt, op);
11838 
11839 	rcvctrl = read_kctxt_csr(dd, ctxt, RCV_CTXT_CTRL);
11840 	/* if the context already enabled, don't do the extra steps */
11841 	if ((op & HFI1_RCVCTRL_CTXT_ENB) &&
11842 	    !(rcvctrl & RCV_CTXT_CTRL_ENABLE_SMASK)) {
11843 		/* reset the tail and hdr addresses, and sequence count */
11844 		write_kctxt_csr(dd, ctxt, RCV_HDR_ADDR,
11845 				rcd->rcvhdrq_dma);
11846 		if (rcd->rcvhdrtail_kvaddr)
11847 			write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR,
11848 					rcd->rcvhdrqtailaddr_dma);
11849 		rcd->seq_cnt = 1;
11850 
11851 		/* reset the cached receive header queue head value */
11852 		rcd->head = 0;
11853 
11854 		/*
11855 		 * Zero the receive header queue so we don't get false
11856 		 * positives when checking the sequence number.  The
11857 		 * sequence numbers could land exactly on the same spot.
11858 		 * E.g. a rcd restart before the receive header wrapped.
11859 		 */
11860 		memset(rcd->rcvhdrq, 0, rcd->rcvhdrq_size);
11861 
11862 		/* starting timeout */
11863 		rcd->rcvavail_timeout = dd->rcv_intr_timeout_csr;
11864 
11865 		/* enable the context */
11866 		rcvctrl |= RCV_CTXT_CTRL_ENABLE_SMASK;
11867 
11868 		/* clean the egr buffer size first */
11869 		rcvctrl &= ~RCV_CTXT_CTRL_EGR_BUF_SIZE_SMASK;
11870 		rcvctrl |= ((u64)encoded_size(rcd->egrbufs.rcvtid_size)
11871 				& RCV_CTXT_CTRL_EGR_BUF_SIZE_MASK)
11872 					<< RCV_CTXT_CTRL_EGR_BUF_SIZE_SHIFT;
11873 
11874 		/* zero RcvHdrHead - set RcvHdrHead.Counter after enable */
11875 		write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0);
11876 		did_enable = 1;
11877 
11878 		/* zero RcvEgrIndexHead */
11879 		write_uctxt_csr(dd, ctxt, RCV_EGR_INDEX_HEAD, 0);
11880 
11881 		/* set eager count and base index */
11882 		reg = (((u64)(rcd->egrbufs.alloced >> RCV_SHIFT)
11883 			& RCV_EGR_CTRL_EGR_CNT_MASK)
11884 		       << RCV_EGR_CTRL_EGR_CNT_SHIFT) |
11885 			(((rcd->eager_base >> RCV_SHIFT)
11886 			  & RCV_EGR_CTRL_EGR_BASE_INDEX_MASK)
11887 			 << RCV_EGR_CTRL_EGR_BASE_INDEX_SHIFT);
11888 		write_kctxt_csr(dd, ctxt, RCV_EGR_CTRL, reg);
11889 
11890 		/*
11891 		 * Set TID (expected) count and base index.
11892 		 * rcd->expected_count is set to individual RcvArray entries,
11893 		 * not pairs, and the CSR takes a pair-count in groups of
11894 		 * four, so divide by 8.
11895 		 */
11896 		reg = (((rcd->expected_count >> RCV_SHIFT)
11897 					& RCV_TID_CTRL_TID_PAIR_CNT_MASK)
11898 				<< RCV_TID_CTRL_TID_PAIR_CNT_SHIFT) |
11899 		      (((rcd->expected_base >> RCV_SHIFT)
11900 					& RCV_TID_CTRL_TID_BASE_INDEX_MASK)
11901 				<< RCV_TID_CTRL_TID_BASE_INDEX_SHIFT);
11902 		write_kctxt_csr(dd, ctxt, RCV_TID_CTRL, reg);
11903 		if (ctxt == HFI1_CTRL_CTXT)
11904 			write_csr(dd, RCV_VL15, HFI1_CTRL_CTXT);
11905 	}
11906 	if (op & HFI1_RCVCTRL_CTXT_DIS) {
11907 		write_csr(dd, RCV_VL15, 0);
11908 		/*
11909 		 * When receive context is being disabled turn on tail
11910 		 * update with a dummy tail address and then disable
11911 		 * receive context.
11912 		 */
11913 		if (dd->rcvhdrtail_dummy_dma) {
11914 			write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR,
11915 					dd->rcvhdrtail_dummy_dma);
11916 			/* Enabling RcvCtxtCtrl.TailUpd is intentional. */
11917 			rcvctrl |= RCV_CTXT_CTRL_TAIL_UPD_SMASK;
11918 		}
11919 
11920 		rcvctrl &= ~RCV_CTXT_CTRL_ENABLE_SMASK;
11921 	}
11922 	if (op & HFI1_RCVCTRL_INTRAVAIL_ENB)
11923 		rcvctrl |= RCV_CTXT_CTRL_INTR_AVAIL_SMASK;
11924 	if (op & HFI1_RCVCTRL_INTRAVAIL_DIS)
11925 		rcvctrl &= ~RCV_CTXT_CTRL_INTR_AVAIL_SMASK;
11926 	if ((op & HFI1_RCVCTRL_TAILUPD_ENB) && rcd->rcvhdrtail_kvaddr)
11927 		rcvctrl |= RCV_CTXT_CTRL_TAIL_UPD_SMASK;
11928 	if (op & HFI1_RCVCTRL_TAILUPD_DIS) {
11929 		/* See comment on RcvCtxtCtrl.TailUpd above */
11930 		if (!(op & HFI1_RCVCTRL_CTXT_DIS))
11931 			rcvctrl &= ~RCV_CTXT_CTRL_TAIL_UPD_SMASK;
11932 	}
11933 	if (op & HFI1_RCVCTRL_TIDFLOW_ENB)
11934 		rcvctrl |= RCV_CTXT_CTRL_TID_FLOW_ENABLE_SMASK;
11935 	if (op & HFI1_RCVCTRL_TIDFLOW_DIS)
11936 		rcvctrl &= ~RCV_CTXT_CTRL_TID_FLOW_ENABLE_SMASK;
11937 	if (op & HFI1_RCVCTRL_ONE_PKT_EGR_ENB) {
11938 		/*
11939 		 * In one-packet-per-eager mode, the size comes from
11940 		 * the RcvArray entry.
11941 		 */
11942 		rcvctrl &= ~RCV_CTXT_CTRL_EGR_BUF_SIZE_SMASK;
11943 		rcvctrl |= RCV_CTXT_CTRL_ONE_PACKET_PER_EGR_BUFFER_SMASK;
11944 	}
11945 	if (op & HFI1_RCVCTRL_ONE_PKT_EGR_DIS)
11946 		rcvctrl &= ~RCV_CTXT_CTRL_ONE_PACKET_PER_EGR_BUFFER_SMASK;
11947 	if (op & HFI1_RCVCTRL_NO_RHQ_DROP_ENB)
11948 		rcvctrl |= RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK;
11949 	if (op & HFI1_RCVCTRL_NO_RHQ_DROP_DIS)
11950 		rcvctrl &= ~RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK;
11951 	if (op & HFI1_RCVCTRL_NO_EGR_DROP_ENB)
11952 		rcvctrl |= RCV_CTXT_CTRL_DONT_DROP_EGR_FULL_SMASK;
11953 	if (op & HFI1_RCVCTRL_NO_EGR_DROP_DIS)
11954 		rcvctrl &= ~RCV_CTXT_CTRL_DONT_DROP_EGR_FULL_SMASK;
11955 	rcd->rcvctrl = rcvctrl;
11956 	hfi1_cdbg(RCVCTRL, "ctxt %d rcvctrl 0x%llx\n", ctxt, rcvctrl);
11957 	write_kctxt_csr(dd, ctxt, RCV_CTXT_CTRL, rcd->rcvctrl);
11958 
11959 	/* work around sticky RcvCtxtStatus.BlockedRHQFull */
11960 	if (did_enable &&
11961 	    (rcvctrl & RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK)) {
11962 		reg = read_kctxt_csr(dd, ctxt, RCV_CTXT_STATUS);
11963 		if (reg != 0) {
11964 			dd_dev_info(dd, "ctxt %d status %lld (blocked)\n",
11965 				    ctxt, reg);
11966 			read_uctxt_csr(dd, ctxt, RCV_HDR_HEAD);
11967 			write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0x10);
11968 			write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0x00);
11969 			read_uctxt_csr(dd, ctxt, RCV_HDR_HEAD);
11970 			reg = read_kctxt_csr(dd, ctxt, RCV_CTXT_STATUS);
11971 			dd_dev_info(dd, "ctxt %d status %lld (%s blocked)\n",
11972 				    ctxt, reg, reg == 0 ? "not" : "still");
11973 		}
11974 	}
11975 
11976 	if (did_enable) {
11977 		/*
11978 		 * The interrupt timeout and count must be set after
11979 		 * the context is enabled to take effect.
11980 		 */
11981 		/* set interrupt timeout */
11982 		write_kctxt_csr(dd, ctxt, RCV_AVAIL_TIME_OUT,
11983 				(u64)rcd->rcvavail_timeout <<
11984 				RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_SHIFT);
11985 
11986 		/* set RcvHdrHead.Counter, zero RcvHdrHead.Head (again) */
11987 		reg = (u64)rcv_intr_count << RCV_HDR_HEAD_COUNTER_SHIFT;
11988 		write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, reg);
11989 	}
11990 
11991 	if (op & (HFI1_RCVCTRL_TAILUPD_DIS | HFI1_RCVCTRL_CTXT_DIS))
11992 		/*
11993 		 * If the context has been disabled and the Tail Update has
11994 		 * been cleared, set the RCV_HDR_TAIL_ADDR CSR to dummy address
11995 		 * so it doesn't contain an address that is invalid.
11996 		 */
11997 		write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR,
11998 				dd->rcvhdrtail_dummy_dma);
11999 }
12000 
12001 u32 hfi1_read_cntrs(struct hfi1_devdata *dd, char **namep, u64 **cntrp)
12002 {
12003 	int ret;
12004 	u64 val = 0;
12005 
12006 	if (namep) {
12007 		ret = dd->cntrnameslen;
12008 		*namep = dd->cntrnames;
12009 	} else {
12010 		const struct cntr_entry *entry;
12011 		int i, j;
12012 
12013 		ret = (dd->ndevcntrs) * sizeof(u64);
12014 
12015 		/* Get the start of the block of counters */
12016 		*cntrp = dd->cntrs;
12017 
12018 		/*
12019 		 * Now go and fill in each counter in the block.
12020 		 */
12021 		for (i = 0; i < DEV_CNTR_LAST; i++) {
12022 			entry = &dev_cntrs[i];
12023 			hfi1_cdbg(CNTR, "reading %s", entry->name);
12024 			if (entry->flags & CNTR_DISABLED) {
12025 				/* Nothing */
12026 				hfi1_cdbg(CNTR, "\tDisabled\n");
12027 			} else {
12028 				if (entry->flags & CNTR_VL) {
12029 					hfi1_cdbg(CNTR, "\tPer VL\n");
12030 					for (j = 0; j < C_VL_COUNT; j++) {
12031 						val = entry->rw_cntr(entry,
12032 								  dd, j,
12033 								  CNTR_MODE_R,
12034 								  0);
12035 						hfi1_cdbg(
12036 						   CNTR,
12037 						   "\t\tRead 0x%llx for %d\n",
12038 						   val, j);
12039 						dd->cntrs[entry->offset + j] =
12040 									    val;
12041 					}
12042 				} else if (entry->flags & CNTR_SDMA) {
12043 					hfi1_cdbg(CNTR,
12044 						  "\t Per SDMA Engine\n");
12045 					for (j = 0; j < dd->chip_sdma_engines;
12046 					     j++) {
12047 						val =
12048 						entry->rw_cntr(entry, dd, j,
12049 							       CNTR_MODE_R, 0);
12050 						hfi1_cdbg(CNTR,
12051 							  "\t\tRead 0x%llx for %d\n",
12052 							  val, j);
12053 						dd->cntrs[entry->offset + j] =
12054 									val;
12055 					}
12056 				} else {
12057 					val = entry->rw_cntr(entry, dd,
12058 							CNTR_INVALID_VL,
12059 							CNTR_MODE_R, 0);
12060 					dd->cntrs[entry->offset] = val;
12061 					hfi1_cdbg(CNTR, "\tRead 0x%llx", val);
12062 				}
12063 			}
12064 		}
12065 	}
12066 	return ret;
12067 }
12068 
12069 /*
12070  * Used by sysfs to create files for hfi stats to read
12071  */
12072 u32 hfi1_read_portcntrs(struct hfi1_pportdata *ppd, char **namep, u64 **cntrp)
12073 {
12074 	int ret;
12075 	u64 val = 0;
12076 
12077 	if (namep) {
12078 		ret = ppd->dd->portcntrnameslen;
12079 		*namep = ppd->dd->portcntrnames;
12080 	} else {
12081 		const struct cntr_entry *entry;
12082 		int i, j;
12083 
12084 		ret = ppd->dd->nportcntrs * sizeof(u64);
12085 		*cntrp = ppd->cntrs;
12086 
12087 		for (i = 0; i < PORT_CNTR_LAST; i++) {
12088 			entry = &port_cntrs[i];
12089 			hfi1_cdbg(CNTR, "reading %s", entry->name);
12090 			if (entry->flags & CNTR_DISABLED) {
12091 				/* Nothing */
12092 				hfi1_cdbg(CNTR, "\tDisabled\n");
12093 				continue;
12094 			}
12095 
12096 			if (entry->flags & CNTR_VL) {
12097 				hfi1_cdbg(CNTR, "\tPer VL");
12098 				for (j = 0; j < C_VL_COUNT; j++) {
12099 					val = entry->rw_cntr(entry, ppd, j,
12100 							       CNTR_MODE_R,
12101 							       0);
12102 					hfi1_cdbg(
12103 					   CNTR,
12104 					   "\t\tRead 0x%llx for %d",
12105 					   val, j);
12106 					ppd->cntrs[entry->offset + j] = val;
12107 				}
12108 			} else {
12109 				val = entry->rw_cntr(entry, ppd,
12110 						       CNTR_INVALID_VL,
12111 						       CNTR_MODE_R,
12112 						       0);
12113 				ppd->cntrs[entry->offset] = val;
12114 				hfi1_cdbg(CNTR, "\tRead 0x%llx", val);
12115 			}
12116 		}
12117 	}
12118 	return ret;
12119 }
12120 
12121 static void free_cntrs(struct hfi1_devdata *dd)
12122 {
12123 	struct hfi1_pportdata *ppd;
12124 	int i;
12125 
12126 	if (dd->synth_stats_timer.function)
12127 		del_timer_sync(&dd->synth_stats_timer);
12128 	ppd = (struct hfi1_pportdata *)(dd + 1);
12129 	for (i = 0; i < dd->num_pports; i++, ppd++) {
12130 		kfree(ppd->cntrs);
12131 		kfree(ppd->scntrs);
12132 		free_percpu(ppd->ibport_data.rvp.rc_acks);
12133 		free_percpu(ppd->ibport_data.rvp.rc_qacks);
12134 		free_percpu(ppd->ibport_data.rvp.rc_delayed_comp);
12135 		ppd->cntrs = NULL;
12136 		ppd->scntrs = NULL;
12137 		ppd->ibport_data.rvp.rc_acks = NULL;
12138 		ppd->ibport_data.rvp.rc_qacks = NULL;
12139 		ppd->ibport_data.rvp.rc_delayed_comp = NULL;
12140 	}
12141 	kfree(dd->portcntrnames);
12142 	dd->portcntrnames = NULL;
12143 	kfree(dd->cntrs);
12144 	dd->cntrs = NULL;
12145 	kfree(dd->scntrs);
12146 	dd->scntrs = NULL;
12147 	kfree(dd->cntrnames);
12148 	dd->cntrnames = NULL;
12149 	if (dd->update_cntr_wq) {
12150 		destroy_workqueue(dd->update_cntr_wq);
12151 		dd->update_cntr_wq = NULL;
12152 	}
12153 }
12154 
12155 static u64 read_dev_port_cntr(struct hfi1_devdata *dd, struct cntr_entry *entry,
12156 			      u64 *psval, void *context, int vl)
12157 {
12158 	u64 val;
12159 	u64 sval = *psval;
12160 
12161 	if (entry->flags & CNTR_DISABLED) {
12162 		dd_dev_err(dd, "Counter %s not enabled", entry->name);
12163 		return 0;
12164 	}
12165 
12166 	hfi1_cdbg(CNTR, "cntr: %s vl %d psval 0x%llx", entry->name, vl, *psval);
12167 
12168 	val = entry->rw_cntr(entry, context, vl, CNTR_MODE_R, 0);
12169 
12170 	/* If its a synthetic counter there is more work we need to do */
12171 	if (entry->flags & CNTR_SYNTH) {
12172 		if (sval == CNTR_MAX) {
12173 			/* No need to read already saturated */
12174 			return CNTR_MAX;
12175 		}
12176 
12177 		if (entry->flags & CNTR_32BIT) {
12178 			/* 32bit counters can wrap multiple times */
12179 			u64 upper = sval >> 32;
12180 			u64 lower = (sval << 32) >> 32;
12181 
12182 			if (lower > val) { /* hw wrapped */
12183 				if (upper == CNTR_32BIT_MAX)
12184 					val = CNTR_MAX;
12185 				else
12186 					upper++;
12187 			}
12188 
12189 			if (val != CNTR_MAX)
12190 				val = (upper << 32) | val;
12191 
12192 		} else {
12193 			/* If we rolled we are saturated */
12194 			if ((val < sval) || (val > CNTR_MAX))
12195 				val = CNTR_MAX;
12196 		}
12197 	}
12198 
12199 	*psval = val;
12200 
12201 	hfi1_cdbg(CNTR, "\tNew val=0x%llx", val);
12202 
12203 	return val;
12204 }
12205 
12206 static u64 write_dev_port_cntr(struct hfi1_devdata *dd,
12207 			       struct cntr_entry *entry,
12208 			       u64 *psval, void *context, int vl, u64 data)
12209 {
12210 	u64 val;
12211 
12212 	if (entry->flags & CNTR_DISABLED) {
12213 		dd_dev_err(dd, "Counter %s not enabled", entry->name);
12214 		return 0;
12215 	}
12216 
12217 	hfi1_cdbg(CNTR, "cntr: %s vl %d psval 0x%llx", entry->name, vl, *psval);
12218 
12219 	if (entry->flags & CNTR_SYNTH) {
12220 		*psval = data;
12221 		if (entry->flags & CNTR_32BIT) {
12222 			val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W,
12223 					     (data << 32) >> 32);
12224 			val = data; /* return the full 64bit value */
12225 		} else {
12226 			val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W,
12227 					     data);
12228 		}
12229 	} else {
12230 		val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W, data);
12231 	}
12232 
12233 	*psval = val;
12234 
12235 	hfi1_cdbg(CNTR, "\tNew val=0x%llx", val);
12236 
12237 	return val;
12238 }
12239 
12240 u64 read_dev_cntr(struct hfi1_devdata *dd, int index, int vl)
12241 {
12242 	struct cntr_entry *entry;
12243 	u64 *sval;
12244 
12245 	entry = &dev_cntrs[index];
12246 	sval = dd->scntrs + entry->offset;
12247 
12248 	if (vl != CNTR_INVALID_VL)
12249 		sval += vl;
12250 
12251 	return read_dev_port_cntr(dd, entry, sval, dd, vl);
12252 }
12253 
12254 u64 write_dev_cntr(struct hfi1_devdata *dd, int index, int vl, u64 data)
12255 {
12256 	struct cntr_entry *entry;
12257 	u64 *sval;
12258 
12259 	entry = &dev_cntrs[index];
12260 	sval = dd->scntrs + entry->offset;
12261 
12262 	if (vl != CNTR_INVALID_VL)
12263 		sval += vl;
12264 
12265 	return write_dev_port_cntr(dd, entry, sval, dd, vl, data);
12266 }
12267 
12268 u64 read_port_cntr(struct hfi1_pportdata *ppd, int index, int vl)
12269 {
12270 	struct cntr_entry *entry;
12271 	u64 *sval;
12272 
12273 	entry = &port_cntrs[index];
12274 	sval = ppd->scntrs + entry->offset;
12275 
12276 	if (vl != CNTR_INVALID_VL)
12277 		sval += vl;
12278 
12279 	if ((index >= C_RCV_HDR_OVF_FIRST + ppd->dd->num_rcv_contexts) &&
12280 	    (index <= C_RCV_HDR_OVF_LAST)) {
12281 		/* We do not want to bother for disabled contexts */
12282 		return 0;
12283 	}
12284 
12285 	return read_dev_port_cntr(ppd->dd, entry, sval, ppd, vl);
12286 }
12287 
12288 u64 write_port_cntr(struct hfi1_pportdata *ppd, int index, int vl, u64 data)
12289 {
12290 	struct cntr_entry *entry;
12291 	u64 *sval;
12292 
12293 	entry = &port_cntrs[index];
12294 	sval = ppd->scntrs + entry->offset;
12295 
12296 	if (vl != CNTR_INVALID_VL)
12297 		sval += vl;
12298 
12299 	if ((index >= C_RCV_HDR_OVF_FIRST + ppd->dd->num_rcv_contexts) &&
12300 	    (index <= C_RCV_HDR_OVF_LAST)) {
12301 		/* We do not want to bother for disabled contexts */
12302 		return 0;
12303 	}
12304 
12305 	return write_dev_port_cntr(ppd->dd, entry, sval, ppd, vl, data);
12306 }
12307 
12308 static void do_update_synth_timer(struct work_struct *work)
12309 {
12310 	u64 cur_tx;
12311 	u64 cur_rx;
12312 	u64 total_flits;
12313 	u8 update = 0;
12314 	int i, j, vl;
12315 	struct hfi1_pportdata *ppd;
12316 	struct cntr_entry *entry;
12317 	struct hfi1_devdata *dd = container_of(work, struct hfi1_devdata,
12318 					       update_cntr_work);
12319 
12320 	/*
12321 	 * Rather than keep beating on the CSRs pick a minimal set that we can
12322 	 * check to watch for potential roll over. We can do this by looking at
12323 	 * the number of flits sent/recv. If the total flits exceeds 32bits then
12324 	 * we have to iterate all the counters and update.
12325 	 */
12326 	entry = &dev_cntrs[C_DC_RCV_FLITS];
12327 	cur_rx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL, CNTR_MODE_R, 0);
12328 
12329 	entry = &dev_cntrs[C_DC_XMIT_FLITS];
12330 	cur_tx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL, CNTR_MODE_R, 0);
12331 
12332 	hfi1_cdbg(
12333 	    CNTR,
12334 	    "[%d] curr tx=0x%llx rx=0x%llx :: last tx=0x%llx rx=0x%llx\n",
12335 	    dd->unit, cur_tx, cur_rx, dd->last_tx, dd->last_rx);
12336 
12337 	if ((cur_tx < dd->last_tx) || (cur_rx < dd->last_rx)) {
12338 		/*
12339 		 * May not be strictly necessary to update but it won't hurt and
12340 		 * simplifies the logic here.
12341 		 */
12342 		update = 1;
12343 		hfi1_cdbg(CNTR, "[%d] Tripwire counter rolled, updating",
12344 			  dd->unit);
12345 	} else {
12346 		total_flits = (cur_tx - dd->last_tx) + (cur_rx - dd->last_rx);
12347 		hfi1_cdbg(CNTR,
12348 			  "[%d] total flits 0x%llx limit 0x%llx\n", dd->unit,
12349 			  total_flits, (u64)CNTR_32BIT_MAX);
12350 		if (total_flits >= CNTR_32BIT_MAX) {
12351 			hfi1_cdbg(CNTR, "[%d] 32bit limit hit, updating",
12352 				  dd->unit);
12353 			update = 1;
12354 		}
12355 	}
12356 
12357 	if (update) {
12358 		hfi1_cdbg(CNTR, "[%d] Updating dd and ppd counters", dd->unit);
12359 		for (i = 0; i < DEV_CNTR_LAST; i++) {
12360 			entry = &dev_cntrs[i];
12361 			if (entry->flags & CNTR_VL) {
12362 				for (vl = 0; vl < C_VL_COUNT; vl++)
12363 					read_dev_cntr(dd, i, vl);
12364 			} else {
12365 				read_dev_cntr(dd, i, CNTR_INVALID_VL);
12366 			}
12367 		}
12368 		ppd = (struct hfi1_pportdata *)(dd + 1);
12369 		for (i = 0; i < dd->num_pports; i++, ppd++) {
12370 			for (j = 0; j < PORT_CNTR_LAST; j++) {
12371 				entry = &port_cntrs[j];
12372 				if (entry->flags & CNTR_VL) {
12373 					for (vl = 0; vl < C_VL_COUNT; vl++)
12374 						read_port_cntr(ppd, j, vl);
12375 				} else {
12376 					read_port_cntr(ppd, j, CNTR_INVALID_VL);
12377 				}
12378 			}
12379 		}
12380 
12381 		/*
12382 		 * We want the value in the register. The goal is to keep track
12383 		 * of the number of "ticks" not the counter value. In other
12384 		 * words if the register rolls we want to notice it and go ahead
12385 		 * and force an update.
12386 		 */
12387 		entry = &dev_cntrs[C_DC_XMIT_FLITS];
12388 		dd->last_tx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL,
12389 						CNTR_MODE_R, 0);
12390 
12391 		entry = &dev_cntrs[C_DC_RCV_FLITS];
12392 		dd->last_rx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL,
12393 						CNTR_MODE_R, 0);
12394 
12395 		hfi1_cdbg(CNTR, "[%d] setting last tx/rx to 0x%llx 0x%llx",
12396 			  dd->unit, dd->last_tx, dd->last_rx);
12397 
12398 	} else {
12399 		hfi1_cdbg(CNTR, "[%d] No update necessary", dd->unit);
12400 	}
12401 }
12402 
12403 static void update_synth_timer(struct timer_list *t)
12404 {
12405 	struct hfi1_devdata *dd = from_timer(dd, t, synth_stats_timer);
12406 
12407 	queue_work(dd->update_cntr_wq, &dd->update_cntr_work);
12408 	mod_timer(&dd->synth_stats_timer, jiffies + HZ * SYNTH_CNT_TIME);
12409 }
12410 
12411 #define C_MAX_NAME 16 /* 15 chars + one for /0 */
12412 static int init_cntrs(struct hfi1_devdata *dd)
12413 {
12414 	int i, rcv_ctxts, j;
12415 	size_t sz;
12416 	char *p;
12417 	char name[C_MAX_NAME];
12418 	struct hfi1_pportdata *ppd;
12419 	const char *bit_type_32 = ",32";
12420 	const int bit_type_32_sz = strlen(bit_type_32);
12421 
12422 	/* set up the stats timer; the add_timer is done at the end */
12423 	timer_setup(&dd->synth_stats_timer, update_synth_timer, 0);
12424 
12425 	/***********************/
12426 	/* per device counters */
12427 	/***********************/
12428 
12429 	/* size names and determine how many we have*/
12430 	dd->ndevcntrs = 0;
12431 	sz = 0;
12432 
12433 	for (i = 0; i < DEV_CNTR_LAST; i++) {
12434 		if (dev_cntrs[i].flags & CNTR_DISABLED) {
12435 			hfi1_dbg_early("\tSkipping %s\n", dev_cntrs[i].name);
12436 			continue;
12437 		}
12438 
12439 		if (dev_cntrs[i].flags & CNTR_VL) {
12440 			dev_cntrs[i].offset = dd->ndevcntrs;
12441 			for (j = 0; j < C_VL_COUNT; j++) {
12442 				snprintf(name, C_MAX_NAME, "%s%d",
12443 					 dev_cntrs[i].name, vl_from_idx(j));
12444 				sz += strlen(name);
12445 				/* Add ",32" for 32-bit counters */
12446 				if (dev_cntrs[i].flags & CNTR_32BIT)
12447 					sz += bit_type_32_sz;
12448 				sz++;
12449 				dd->ndevcntrs++;
12450 			}
12451 		} else if (dev_cntrs[i].flags & CNTR_SDMA) {
12452 			dev_cntrs[i].offset = dd->ndevcntrs;
12453 			for (j = 0; j < dd->chip_sdma_engines; j++) {
12454 				snprintf(name, C_MAX_NAME, "%s%d",
12455 					 dev_cntrs[i].name, j);
12456 				sz += strlen(name);
12457 				/* Add ",32" for 32-bit counters */
12458 				if (dev_cntrs[i].flags & CNTR_32BIT)
12459 					sz += bit_type_32_sz;
12460 				sz++;
12461 				dd->ndevcntrs++;
12462 			}
12463 		} else {
12464 			/* +1 for newline. */
12465 			sz += strlen(dev_cntrs[i].name) + 1;
12466 			/* Add ",32" for 32-bit counters */
12467 			if (dev_cntrs[i].flags & CNTR_32BIT)
12468 				sz += bit_type_32_sz;
12469 			dev_cntrs[i].offset = dd->ndevcntrs;
12470 			dd->ndevcntrs++;
12471 		}
12472 	}
12473 
12474 	/* allocate space for the counter values */
12475 	dd->cntrs = kcalloc(dd->ndevcntrs, sizeof(u64), GFP_KERNEL);
12476 	if (!dd->cntrs)
12477 		goto bail;
12478 
12479 	dd->scntrs = kcalloc(dd->ndevcntrs, sizeof(u64), GFP_KERNEL);
12480 	if (!dd->scntrs)
12481 		goto bail;
12482 
12483 	/* allocate space for the counter names */
12484 	dd->cntrnameslen = sz;
12485 	dd->cntrnames = kmalloc(sz, GFP_KERNEL);
12486 	if (!dd->cntrnames)
12487 		goto bail;
12488 
12489 	/* fill in the names */
12490 	for (p = dd->cntrnames, i = 0; i < DEV_CNTR_LAST; i++) {
12491 		if (dev_cntrs[i].flags & CNTR_DISABLED) {
12492 			/* Nothing */
12493 		} else if (dev_cntrs[i].flags & CNTR_VL) {
12494 			for (j = 0; j < C_VL_COUNT; j++) {
12495 				snprintf(name, C_MAX_NAME, "%s%d",
12496 					 dev_cntrs[i].name,
12497 					 vl_from_idx(j));
12498 				memcpy(p, name, strlen(name));
12499 				p += strlen(name);
12500 
12501 				/* Counter is 32 bits */
12502 				if (dev_cntrs[i].flags & CNTR_32BIT) {
12503 					memcpy(p, bit_type_32, bit_type_32_sz);
12504 					p += bit_type_32_sz;
12505 				}
12506 
12507 				*p++ = '\n';
12508 			}
12509 		} else if (dev_cntrs[i].flags & CNTR_SDMA) {
12510 			for (j = 0; j < dd->chip_sdma_engines; j++) {
12511 				snprintf(name, C_MAX_NAME, "%s%d",
12512 					 dev_cntrs[i].name, j);
12513 				memcpy(p, name, strlen(name));
12514 				p += strlen(name);
12515 
12516 				/* Counter is 32 bits */
12517 				if (dev_cntrs[i].flags & CNTR_32BIT) {
12518 					memcpy(p, bit_type_32, bit_type_32_sz);
12519 					p += bit_type_32_sz;
12520 				}
12521 
12522 				*p++ = '\n';
12523 			}
12524 		} else {
12525 			memcpy(p, dev_cntrs[i].name, strlen(dev_cntrs[i].name));
12526 			p += strlen(dev_cntrs[i].name);
12527 
12528 			/* Counter is 32 bits */
12529 			if (dev_cntrs[i].flags & CNTR_32BIT) {
12530 				memcpy(p, bit_type_32, bit_type_32_sz);
12531 				p += bit_type_32_sz;
12532 			}
12533 
12534 			*p++ = '\n';
12535 		}
12536 	}
12537 
12538 	/*********************/
12539 	/* per port counters */
12540 	/*********************/
12541 
12542 	/*
12543 	 * Go through the counters for the overflows and disable the ones we
12544 	 * don't need. This varies based on platform so we need to do it
12545 	 * dynamically here.
12546 	 */
12547 	rcv_ctxts = dd->num_rcv_contexts;
12548 	for (i = C_RCV_HDR_OVF_FIRST + rcv_ctxts;
12549 	     i <= C_RCV_HDR_OVF_LAST; i++) {
12550 		port_cntrs[i].flags |= CNTR_DISABLED;
12551 	}
12552 
12553 	/* size port counter names and determine how many we have*/
12554 	sz = 0;
12555 	dd->nportcntrs = 0;
12556 	for (i = 0; i < PORT_CNTR_LAST; i++) {
12557 		if (port_cntrs[i].flags & CNTR_DISABLED) {
12558 			hfi1_dbg_early("\tSkipping %s\n", port_cntrs[i].name);
12559 			continue;
12560 		}
12561 
12562 		if (port_cntrs[i].flags & CNTR_VL) {
12563 			port_cntrs[i].offset = dd->nportcntrs;
12564 			for (j = 0; j < C_VL_COUNT; j++) {
12565 				snprintf(name, C_MAX_NAME, "%s%d",
12566 					 port_cntrs[i].name, vl_from_idx(j));
12567 				sz += strlen(name);
12568 				/* Add ",32" for 32-bit counters */
12569 				if (port_cntrs[i].flags & CNTR_32BIT)
12570 					sz += bit_type_32_sz;
12571 				sz++;
12572 				dd->nportcntrs++;
12573 			}
12574 		} else {
12575 			/* +1 for newline */
12576 			sz += strlen(port_cntrs[i].name) + 1;
12577 			/* Add ",32" for 32-bit counters */
12578 			if (port_cntrs[i].flags & CNTR_32BIT)
12579 				sz += bit_type_32_sz;
12580 			port_cntrs[i].offset = dd->nportcntrs;
12581 			dd->nportcntrs++;
12582 		}
12583 	}
12584 
12585 	/* allocate space for the counter names */
12586 	dd->portcntrnameslen = sz;
12587 	dd->portcntrnames = kmalloc(sz, GFP_KERNEL);
12588 	if (!dd->portcntrnames)
12589 		goto bail;
12590 
12591 	/* fill in port cntr names */
12592 	for (p = dd->portcntrnames, i = 0; i < PORT_CNTR_LAST; i++) {
12593 		if (port_cntrs[i].flags & CNTR_DISABLED)
12594 			continue;
12595 
12596 		if (port_cntrs[i].flags & CNTR_VL) {
12597 			for (j = 0; j < C_VL_COUNT; j++) {
12598 				snprintf(name, C_MAX_NAME, "%s%d",
12599 					 port_cntrs[i].name, vl_from_idx(j));
12600 				memcpy(p, name, strlen(name));
12601 				p += strlen(name);
12602 
12603 				/* Counter is 32 bits */
12604 				if (port_cntrs[i].flags & CNTR_32BIT) {
12605 					memcpy(p, bit_type_32, bit_type_32_sz);
12606 					p += bit_type_32_sz;
12607 				}
12608 
12609 				*p++ = '\n';
12610 			}
12611 		} else {
12612 			memcpy(p, port_cntrs[i].name,
12613 			       strlen(port_cntrs[i].name));
12614 			p += strlen(port_cntrs[i].name);
12615 
12616 			/* Counter is 32 bits */
12617 			if (port_cntrs[i].flags & CNTR_32BIT) {
12618 				memcpy(p, bit_type_32, bit_type_32_sz);
12619 				p += bit_type_32_sz;
12620 			}
12621 
12622 			*p++ = '\n';
12623 		}
12624 	}
12625 
12626 	/* allocate per port storage for counter values */
12627 	ppd = (struct hfi1_pportdata *)(dd + 1);
12628 	for (i = 0; i < dd->num_pports; i++, ppd++) {
12629 		ppd->cntrs = kcalloc(dd->nportcntrs, sizeof(u64), GFP_KERNEL);
12630 		if (!ppd->cntrs)
12631 			goto bail;
12632 
12633 		ppd->scntrs = kcalloc(dd->nportcntrs, sizeof(u64), GFP_KERNEL);
12634 		if (!ppd->scntrs)
12635 			goto bail;
12636 	}
12637 
12638 	/* CPU counters need to be allocated and zeroed */
12639 	if (init_cpu_counters(dd))
12640 		goto bail;
12641 
12642 	dd->update_cntr_wq = alloc_ordered_workqueue("hfi1_update_cntr_%d",
12643 						     WQ_MEM_RECLAIM, dd->unit);
12644 	if (!dd->update_cntr_wq)
12645 		goto bail;
12646 
12647 	INIT_WORK(&dd->update_cntr_work, do_update_synth_timer);
12648 
12649 	mod_timer(&dd->synth_stats_timer, jiffies + HZ * SYNTH_CNT_TIME);
12650 	return 0;
12651 bail:
12652 	free_cntrs(dd);
12653 	return -ENOMEM;
12654 }
12655 
12656 static u32 chip_to_opa_lstate(struct hfi1_devdata *dd, u32 chip_lstate)
12657 {
12658 	switch (chip_lstate) {
12659 	default:
12660 		dd_dev_err(dd,
12661 			   "Unknown logical state 0x%x, reporting IB_PORT_DOWN\n",
12662 			   chip_lstate);
12663 		/* fall through */
12664 	case LSTATE_DOWN:
12665 		return IB_PORT_DOWN;
12666 	case LSTATE_INIT:
12667 		return IB_PORT_INIT;
12668 	case LSTATE_ARMED:
12669 		return IB_PORT_ARMED;
12670 	case LSTATE_ACTIVE:
12671 		return IB_PORT_ACTIVE;
12672 	}
12673 }
12674 
12675 u32 chip_to_opa_pstate(struct hfi1_devdata *dd, u32 chip_pstate)
12676 {
12677 	/* look at the HFI meta-states only */
12678 	switch (chip_pstate & 0xf0) {
12679 	default:
12680 		dd_dev_err(dd, "Unexpected chip physical state of 0x%x\n",
12681 			   chip_pstate);
12682 		/* fall through */
12683 	case PLS_DISABLED:
12684 		return IB_PORTPHYSSTATE_DISABLED;
12685 	case PLS_OFFLINE:
12686 		return OPA_PORTPHYSSTATE_OFFLINE;
12687 	case PLS_POLLING:
12688 		return IB_PORTPHYSSTATE_POLLING;
12689 	case PLS_CONFIGPHY:
12690 		return IB_PORTPHYSSTATE_TRAINING;
12691 	case PLS_LINKUP:
12692 		return IB_PORTPHYSSTATE_LINKUP;
12693 	case PLS_PHYTEST:
12694 		return IB_PORTPHYSSTATE_PHY_TEST;
12695 	}
12696 }
12697 
12698 /* return the OPA port logical state name */
12699 const char *opa_lstate_name(u32 lstate)
12700 {
12701 	static const char * const port_logical_names[] = {
12702 		"PORT_NOP",
12703 		"PORT_DOWN",
12704 		"PORT_INIT",
12705 		"PORT_ARMED",
12706 		"PORT_ACTIVE",
12707 		"PORT_ACTIVE_DEFER",
12708 	};
12709 	if (lstate < ARRAY_SIZE(port_logical_names))
12710 		return port_logical_names[lstate];
12711 	return "unknown";
12712 }
12713 
12714 /* return the OPA port physical state name */
12715 const char *opa_pstate_name(u32 pstate)
12716 {
12717 	static const char * const port_physical_names[] = {
12718 		"PHYS_NOP",
12719 		"reserved1",
12720 		"PHYS_POLL",
12721 		"PHYS_DISABLED",
12722 		"PHYS_TRAINING",
12723 		"PHYS_LINKUP",
12724 		"PHYS_LINK_ERR_RECOVER",
12725 		"PHYS_PHY_TEST",
12726 		"reserved8",
12727 		"PHYS_OFFLINE",
12728 		"PHYS_GANGED",
12729 		"PHYS_TEST",
12730 	};
12731 	if (pstate < ARRAY_SIZE(port_physical_names))
12732 		return port_physical_names[pstate];
12733 	return "unknown";
12734 }
12735 
12736 /**
12737  * update_statusp - Update userspace status flag
12738  * @ppd: Port data structure
12739  * @state: port state information
12740  *
12741  * Actual port status is determined by the host_link_state value
12742  * in the ppd.
12743  *
12744  * host_link_state MUST be updated before updating the user space
12745  * statusp.
12746  */
12747 static void update_statusp(struct hfi1_pportdata *ppd, u32 state)
12748 {
12749 	/*
12750 	 * Set port status flags in the page mapped into userspace
12751 	 * memory. Do it here to ensure a reliable state - this is
12752 	 * the only function called by all state handling code.
12753 	 * Always set the flags due to the fact that the cache value
12754 	 * might have been changed explicitly outside of this
12755 	 * function.
12756 	 */
12757 	if (ppd->statusp) {
12758 		switch (state) {
12759 		case IB_PORT_DOWN:
12760 		case IB_PORT_INIT:
12761 			*ppd->statusp &= ~(HFI1_STATUS_IB_CONF |
12762 					   HFI1_STATUS_IB_READY);
12763 			break;
12764 		case IB_PORT_ARMED:
12765 			*ppd->statusp |= HFI1_STATUS_IB_CONF;
12766 			break;
12767 		case IB_PORT_ACTIVE:
12768 			*ppd->statusp |= HFI1_STATUS_IB_READY;
12769 			break;
12770 		}
12771 	}
12772 	dd_dev_info(ppd->dd, "logical state changed to %s (0x%x)\n",
12773 		    opa_lstate_name(state), state);
12774 }
12775 
12776 /**
12777  * wait_logical_linkstate - wait for an IB link state change to occur
12778  * @ppd: port device
12779  * @state: the state to wait for
12780  * @msecs: the number of milliseconds to wait
12781  *
12782  * Wait up to msecs milliseconds for IB link state change to occur.
12783  * For now, take the easy polling route.
12784  * Returns 0 if state reached, otherwise -ETIMEDOUT.
12785  */
12786 static int wait_logical_linkstate(struct hfi1_pportdata *ppd, u32 state,
12787 				  int msecs)
12788 {
12789 	unsigned long timeout;
12790 	u32 new_state;
12791 
12792 	timeout = jiffies + msecs_to_jiffies(msecs);
12793 	while (1) {
12794 		new_state = chip_to_opa_lstate(ppd->dd,
12795 					       read_logical_state(ppd->dd));
12796 		if (new_state == state)
12797 			break;
12798 		if (time_after(jiffies, timeout)) {
12799 			dd_dev_err(ppd->dd,
12800 				   "timeout waiting for link state 0x%x\n",
12801 				   state);
12802 			return -ETIMEDOUT;
12803 		}
12804 		msleep(20);
12805 	}
12806 
12807 	return 0;
12808 }
12809 
12810 static void log_state_transition(struct hfi1_pportdata *ppd, u32 state)
12811 {
12812 	u32 ib_pstate = chip_to_opa_pstate(ppd->dd, state);
12813 
12814 	dd_dev_info(ppd->dd,
12815 		    "physical state changed to %s (0x%x), phy 0x%x\n",
12816 		    opa_pstate_name(ib_pstate), ib_pstate, state);
12817 }
12818 
12819 /*
12820  * Read the physical hardware link state and check if it matches host
12821  * drivers anticipated state.
12822  */
12823 static void log_physical_state(struct hfi1_pportdata *ppd, u32 state)
12824 {
12825 	u32 read_state = read_physical_state(ppd->dd);
12826 
12827 	if (read_state == state) {
12828 		log_state_transition(ppd, state);
12829 	} else {
12830 		dd_dev_err(ppd->dd,
12831 			   "anticipated phy link state 0x%x, read 0x%x\n",
12832 			   state, read_state);
12833 	}
12834 }
12835 
12836 /*
12837  * wait_physical_linkstate - wait for an physical link state change to occur
12838  * @ppd: port device
12839  * @state: the state to wait for
12840  * @msecs: the number of milliseconds to wait
12841  *
12842  * Wait up to msecs milliseconds for physical link state change to occur.
12843  * Returns 0 if state reached, otherwise -ETIMEDOUT.
12844  */
12845 static int wait_physical_linkstate(struct hfi1_pportdata *ppd, u32 state,
12846 				   int msecs)
12847 {
12848 	u32 read_state;
12849 	unsigned long timeout;
12850 
12851 	timeout = jiffies + msecs_to_jiffies(msecs);
12852 	while (1) {
12853 		read_state = read_physical_state(ppd->dd);
12854 		if (read_state == state)
12855 			break;
12856 		if (time_after(jiffies, timeout)) {
12857 			dd_dev_err(ppd->dd,
12858 				   "timeout waiting for phy link state 0x%x\n",
12859 				   state);
12860 			return -ETIMEDOUT;
12861 		}
12862 		usleep_range(1950, 2050); /* sleep 2ms-ish */
12863 	}
12864 
12865 	log_state_transition(ppd, state);
12866 	return 0;
12867 }
12868 
12869 /*
12870  * wait_phys_link_offline_quiet_substates - wait for any offline substate
12871  * @ppd: port device
12872  * @msecs: the number of milliseconds to wait
12873  *
12874  * Wait up to msecs milliseconds for any offline physical link
12875  * state change to occur.
12876  * Returns 0 if at least one state is reached, otherwise -ETIMEDOUT.
12877  */
12878 static int wait_phys_link_offline_substates(struct hfi1_pportdata *ppd,
12879 					    int msecs)
12880 {
12881 	u32 read_state;
12882 	unsigned long timeout;
12883 
12884 	timeout = jiffies + msecs_to_jiffies(msecs);
12885 	while (1) {
12886 		read_state = read_physical_state(ppd->dd);
12887 		if ((read_state & 0xF0) == PLS_OFFLINE)
12888 			break;
12889 		if (time_after(jiffies, timeout)) {
12890 			dd_dev_err(ppd->dd,
12891 				   "timeout waiting for phy link offline.quiet substates. Read state 0x%x, %dms\n",
12892 				   read_state, msecs);
12893 			return -ETIMEDOUT;
12894 		}
12895 		usleep_range(1950, 2050); /* sleep 2ms-ish */
12896 	}
12897 
12898 	log_state_transition(ppd, read_state);
12899 	return read_state;
12900 }
12901 
12902 #define CLEAR_STATIC_RATE_CONTROL_SMASK(r) \
12903 (r &= ~SEND_CTXT_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK)
12904 
12905 #define SET_STATIC_RATE_CONTROL_SMASK(r) \
12906 (r |= SEND_CTXT_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK)
12907 
12908 void hfi1_init_ctxt(struct send_context *sc)
12909 {
12910 	if (sc) {
12911 		struct hfi1_devdata *dd = sc->dd;
12912 		u64 reg;
12913 		u8 set = (sc->type == SC_USER ?
12914 			  HFI1_CAP_IS_USET(STATIC_RATE_CTRL) :
12915 			  HFI1_CAP_IS_KSET(STATIC_RATE_CTRL));
12916 		reg = read_kctxt_csr(dd, sc->hw_context,
12917 				     SEND_CTXT_CHECK_ENABLE);
12918 		if (set)
12919 			CLEAR_STATIC_RATE_CONTROL_SMASK(reg);
12920 		else
12921 			SET_STATIC_RATE_CONTROL_SMASK(reg);
12922 		write_kctxt_csr(dd, sc->hw_context,
12923 				SEND_CTXT_CHECK_ENABLE, reg);
12924 	}
12925 }
12926 
12927 int hfi1_tempsense_rd(struct hfi1_devdata *dd, struct hfi1_temp *temp)
12928 {
12929 	int ret = 0;
12930 	u64 reg;
12931 
12932 	if (dd->icode != ICODE_RTL_SILICON) {
12933 		if (HFI1_CAP_IS_KSET(PRINT_UNIMPL))
12934 			dd_dev_info(dd, "%s: tempsense not supported by HW\n",
12935 				    __func__);
12936 		return -EINVAL;
12937 	}
12938 	reg = read_csr(dd, ASIC_STS_THERM);
12939 	temp->curr = ((reg >> ASIC_STS_THERM_CURR_TEMP_SHIFT) &
12940 		      ASIC_STS_THERM_CURR_TEMP_MASK);
12941 	temp->lo_lim = ((reg >> ASIC_STS_THERM_LO_TEMP_SHIFT) &
12942 			ASIC_STS_THERM_LO_TEMP_MASK);
12943 	temp->hi_lim = ((reg >> ASIC_STS_THERM_HI_TEMP_SHIFT) &
12944 			ASIC_STS_THERM_HI_TEMP_MASK);
12945 	temp->crit_lim = ((reg >> ASIC_STS_THERM_CRIT_TEMP_SHIFT) &
12946 			  ASIC_STS_THERM_CRIT_TEMP_MASK);
12947 	/* triggers is a 3-bit value - 1 bit per trigger. */
12948 	temp->triggers = (u8)((reg >> ASIC_STS_THERM_LOW_SHIFT) & 0x7);
12949 
12950 	return ret;
12951 }
12952 
12953 /**
12954  * get_int_mask - get 64 bit int mask
12955  * @dd - the devdata
12956  * @i - the csr (relative to CCE_INT_MASK)
12957  *
12958  * Returns the mask with the urgent interrupt mask
12959  * bit clear for kernel receive contexts.
12960  */
12961 static u64 get_int_mask(struct hfi1_devdata *dd, u32 i)
12962 {
12963 	u64 mask = U64_MAX; /* default to no change */
12964 
12965 	if (i >= (IS_RCVURGENT_START / 64) && i < (IS_RCVURGENT_END / 64)) {
12966 		int j = (i - (IS_RCVURGENT_START / 64)) * 64;
12967 		int k = !j ? IS_RCVURGENT_START % 64 : 0;
12968 
12969 		if (j)
12970 			j -= IS_RCVURGENT_START % 64;
12971 		/* j = 0..dd->first_dyn_alloc_ctxt - 1,k = 0..63 */
12972 		for (; j < dd->first_dyn_alloc_ctxt && k < 64; j++, k++)
12973 			/* convert to bit in mask and clear */
12974 			mask &= ~BIT_ULL(k);
12975 	}
12976 	return mask;
12977 }
12978 
12979 /* ========================================================================= */
12980 
12981 /*
12982  * Enable/disable chip from delivering interrupts.
12983  */
12984 void set_intr_state(struct hfi1_devdata *dd, u32 enable)
12985 {
12986 	int i;
12987 
12988 	/*
12989 	 * In HFI, the mask needs to be 1 to allow interrupts.
12990 	 */
12991 	if (enable) {
12992 		/* enable all interrupts but urgent on kernel contexts */
12993 		for (i = 0; i < CCE_NUM_INT_CSRS; i++) {
12994 			u64 mask = get_int_mask(dd, i);
12995 
12996 			write_csr(dd, CCE_INT_MASK + (8 * i), mask);
12997 		}
12998 
12999 		init_qsfp_int(dd);
13000 	} else {
13001 		for (i = 0; i < CCE_NUM_INT_CSRS; i++)
13002 			write_csr(dd, CCE_INT_MASK + (8 * i), 0ull);
13003 	}
13004 }
13005 
13006 /*
13007  * Clear all interrupt sources on the chip.
13008  */
13009 static void clear_all_interrupts(struct hfi1_devdata *dd)
13010 {
13011 	int i;
13012 
13013 	for (i = 0; i < CCE_NUM_INT_CSRS; i++)
13014 		write_csr(dd, CCE_INT_CLEAR + (8 * i), ~(u64)0);
13015 
13016 	write_csr(dd, CCE_ERR_CLEAR, ~(u64)0);
13017 	write_csr(dd, MISC_ERR_CLEAR, ~(u64)0);
13018 	write_csr(dd, RCV_ERR_CLEAR, ~(u64)0);
13019 	write_csr(dd, SEND_ERR_CLEAR, ~(u64)0);
13020 	write_csr(dd, SEND_PIO_ERR_CLEAR, ~(u64)0);
13021 	write_csr(dd, SEND_DMA_ERR_CLEAR, ~(u64)0);
13022 	write_csr(dd, SEND_EGRESS_ERR_CLEAR, ~(u64)0);
13023 	for (i = 0; i < dd->chip_send_contexts; i++)
13024 		write_kctxt_csr(dd, i, SEND_CTXT_ERR_CLEAR, ~(u64)0);
13025 	for (i = 0; i < dd->chip_sdma_engines; i++)
13026 		write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_CLEAR, ~(u64)0);
13027 
13028 	write_csr(dd, DCC_ERR_FLG_CLR, ~(u64)0);
13029 	write_csr(dd, DC_LCB_ERR_CLR, ~(u64)0);
13030 	write_csr(dd, DC_DC8051_ERR_CLR, ~(u64)0);
13031 }
13032 
13033 /* Move to pcie.c? */
13034 static void disable_intx(struct pci_dev *pdev)
13035 {
13036 	pci_intx(pdev, 0);
13037 }
13038 
13039 /**
13040  * hfi1_clean_up_interrupts() - Free all IRQ resources
13041  * @dd: valid device data data structure
13042  *
13043  * Free the MSI or INTx IRQs and assoicated PCI resources,
13044  * if they have been allocated.
13045  */
13046 void hfi1_clean_up_interrupts(struct hfi1_devdata *dd)
13047 {
13048 	int i;
13049 
13050 	/* remove irqs - must happen before disabling/turning off */
13051 	if (dd->num_msix_entries) {
13052 		/* MSI-X */
13053 		struct hfi1_msix_entry *me = dd->msix_entries;
13054 
13055 		for (i = 0; i < dd->num_msix_entries; i++, me++) {
13056 			if (!me->arg) /* => no irq, no affinity */
13057 				continue;
13058 			hfi1_put_irq_affinity(dd, me);
13059 			pci_free_irq(dd->pcidev, i, me->arg);
13060 		}
13061 
13062 		/* clean structures */
13063 		kfree(dd->msix_entries);
13064 		dd->msix_entries = NULL;
13065 		dd->num_msix_entries = 0;
13066 	} else {
13067 		/* INTx */
13068 		if (dd->requested_intx_irq) {
13069 			pci_free_irq(dd->pcidev, 0, dd);
13070 			dd->requested_intx_irq = 0;
13071 		}
13072 		disable_intx(dd->pcidev);
13073 	}
13074 
13075 	pci_free_irq_vectors(dd->pcidev);
13076 }
13077 
13078 /*
13079  * Remap the interrupt source from the general handler to the given MSI-X
13080  * interrupt.
13081  */
13082 static void remap_intr(struct hfi1_devdata *dd, int isrc, int msix_intr)
13083 {
13084 	u64 reg;
13085 	int m, n;
13086 
13087 	/* clear from the handled mask of the general interrupt */
13088 	m = isrc / 64;
13089 	n = isrc % 64;
13090 	if (likely(m < CCE_NUM_INT_CSRS)) {
13091 		dd->gi_mask[m] &= ~((u64)1 << n);
13092 	} else {
13093 		dd_dev_err(dd, "remap interrupt err\n");
13094 		return;
13095 	}
13096 
13097 	/* direct the chip source to the given MSI-X interrupt */
13098 	m = isrc / 8;
13099 	n = isrc % 8;
13100 	reg = read_csr(dd, CCE_INT_MAP + (8 * m));
13101 	reg &= ~((u64)0xff << (8 * n));
13102 	reg |= ((u64)msix_intr & 0xff) << (8 * n);
13103 	write_csr(dd, CCE_INT_MAP + (8 * m), reg);
13104 }
13105 
13106 static void remap_sdma_interrupts(struct hfi1_devdata *dd,
13107 				  int engine, int msix_intr)
13108 {
13109 	/*
13110 	 * SDMA engine interrupt sources grouped by type, rather than
13111 	 * engine.  Per-engine interrupts are as follows:
13112 	 *	SDMA
13113 	 *	SDMAProgress
13114 	 *	SDMAIdle
13115 	 */
13116 	remap_intr(dd, IS_SDMA_START + 0 * TXE_NUM_SDMA_ENGINES + engine,
13117 		   msix_intr);
13118 	remap_intr(dd, IS_SDMA_START + 1 * TXE_NUM_SDMA_ENGINES + engine,
13119 		   msix_intr);
13120 	remap_intr(dd, IS_SDMA_START + 2 * TXE_NUM_SDMA_ENGINES + engine,
13121 		   msix_intr);
13122 }
13123 
13124 static int request_intx_irq(struct hfi1_devdata *dd)
13125 {
13126 	int ret;
13127 
13128 	ret = pci_request_irq(dd->pcidev, 0, general_interrupt, NULL, dd,
13129 			      DRIVER_NAME "_%d", dd->unit);
13130 	if (ret)
13131 		dd_dev_err(dd, "unable to request INTx interrupt, err %d\n",
13132 			   ret);
13133 	else
13134 		dd->requested_intx_irq = 1;
13135 	return ret;
13136 }
13137 
13138 static int request_msix_irqs(struct hfi1_devdata *dd)
13139 {
13140 	int first_general, last_general;
13141 	int first_sdma, last_sdma;
13142 	int first_rx, last_rx;
13143 	int i, ret = 0;
13144 
13145 	/* calculate the ranges we are going to use */
13146 	first_general = 0;
13147 	last_general = first_general + 1;
13148 	first_sdma = last_general;
13149 	last_sdma = first_sdma + dd->num_sdma;
13150 	first_rx = last_sdma;
13151 	last_rx = first_rx + dd->n_krcv_queues + dd->num_vnic_contexts;
13152 
13153 	/* VNIC MSIx interrupts get mapped when VNIC contexts are created */
13154 	dd->first_dyn_msix_idx = first_rx + dd->n_krcv_queues;
13155 
13156 	/*
13157 	 * Sanity check - the code expects all SDMA chip source
13158 	 * interrupts to be in the same CSR, starting at bit 0.  Verify
13159 	 * that this is true by checking the bit location of the start.
13160 	 */
13161 	BUILD_BUG_ON(IS_SDMA_START % 64);
13162 
13163 	for (i = 0; i < dd->num_msix_entries; i++) {
13164 		struct hfi1_msix_entry *me = &dd->msix_entries[i];
13165 		const char *err_info;
13166 		irq_handler_t handler;
13167 		irq_handler_t thread = NULL;
13168 		void *arg = NULL;
13169 		int idx;
13170 		struct hfi1_ctxtdata *rcd = NULL;
13171 		struct sdma_engine *sde = NULL;
13172 		char name[MAX_NAME_SIZE];
13173 
13174 		/* obtain the arguments to pci_request_irq */
13175 		if (first_general <= i && i < last_general) {
13176 			idx = i - first_general;
13177 			handler = general_interrupt;
13178 			arg = dd;
13179 			snprintf(name, sizeof(name),
13180 				 DRIVER_NAME "_%d", dd->unit);
13181 			err_info = "general";
13182 			me->type = IRQ_GENERAL;
13183 		} else if (first_sdma <= i && i < last_sdma) {
13184 			idx = i - first_sdma;
13185 			sde = &dd->per_sdma[idx];
13186 			handler = sdma_interrupt;
13187 			arg = sde;
13188 			snprintf(name, sizeof(name),
13189 				 DRIVER_NAME "_%d sdma%d", dd->unit, idx);
13190 			err_info = "sdma";
13191 			remap_sdma_interrupts(dd, idx, i);
13192 			me->type = IRQ_SDMA;
13193 		} else if (first_rx <= i && i < last_rx) {
13194 			idx = i - first_rx;
13195 			rcd = hfi1_rcd_get_by_index_safe(dd, idx);
13196 			if (rcd) {
13197 				/*
13198 				 * Set the interrupt register and mask for this
13199 				 * context's interrupt.
13200 				 */
13201 				rcd->ireg = (IS_RCVAVAIL_START + idx) / 64;
13202 				rcd->imask = ((u64)1) <<
13203 					  ((IS_RCVAVAIL_START + idx) % 64);
13204 				handler = receive_context_interrupt;
13205 				thread = receive_context_thread;
13206 				arg = rcd;
13207 				snprintf(name, sizeof(name),
13208 					 DRIVER_NAME "_%d kctxt%d",
13209 					 dd->unit, idx);
13210 				err_info = "receive context";
13211 				remap_intr(dd, IS_RCVAVAIL_START + idx, i);
13212 				me->type = IRQ_RCVCTXT;
13213 				rcd->msix_intr = i;
13214 				hfi1_rcd_put(rcd);
13215 			}
13216 		} else {
13217 			/* not in our expected range - complain, then
13218 			 * ignore it
13219 			 */
13220 			dd_dev_err(dd,
13221 				   "Unexpected extra MSI-X interrupt %d\n", i);
13222 			continue;
13223 		}
13224 		/* no argument, no interrupt */
13225 		if (!arg)
13226 			continue;
13227 		/* make sure the name is terminated */
13228 		name[sizeof(name) - 1] = 0;
13229 		me->irq = pci_irq_vector(dd->pcidev, i);
13230 		ret = pci_request_irq(dd->pcidev, i, handler, thread, arg,
13231 				      name);
13232 		if (ret) {
13233 			dd_dev_err(dd,
13234 				   "unable to allocate %s interrupt, irq %d, index %d, err %d\n",
13235 				   err_info, me->irq, idx, ret);
13236 			return ret;
13237 		}
13238 		/*
13239 		 * assign arg after pci_request_irq call, so it will be
13240 		 * cleaned up
13241 		 */
13242 		me->arg = arg;
13243 
13244 		ret = hfi1_get_irq_affinity(dd, me);
13245 		if (ret)
13246 			dd_dev_err(dd, "unable to pin IRQ %d\n", ret);
13247 	}
13248 
13249 	return ret;
13250 }
13251 
13252 void hfi1_vnic_synchronize_irq(struct hfi1_devdata *dd)
13253 {
13254 	int i;
13255 
13256 	if (!dd->num_msix_entries) {
13257 		synchronize_irq(pci_irq_vector(dd->pcidev, 0));
13258 		return;
13259 	}
13260 
13261 	for (i = 0; i < dd->vnic.num_ctxt; i++) {
13262 		struct hfi1_ctxtdata *rcd = dd->vnic.ctxt[i];
13263 		struct hfi1_msix_entry *me = &dd->msix_entries[rcd->msix_intr];
13264 
13265 		synchronize_irq(me->irq);
13266 	}
13267 }
13268 
13269 void hfi1_reset_vnic_msix_info(struct hfi1_ctxtdata *rcd)
13270 {
13271 	struct hfi1_devdata *dd = rcd->dd;
13272 	struct hfi1_msix_entry *me = &dd->msix_entries[rcd->msix_intr];
13273 
13274 	if (!me->arg) /* => no irq, no affinity */
13275 		return;
13276 
13277 	hfi1_put_irq_affinity(dd, me);
13278 	pci_free_irq(dd->pcidev, rcd->msix_intr, me->arg);
13279 
13280 	me->arg = NULL;
13281 }
13282 
13283 void hfi1_set_vnic_msix_info(struct hfi1_ctxtdata *rcd)
13284 {
13285 	struct hfi1_devdata *dd = rcd->dd;
13286 	struct hfi1_msix_entry *me;
13287 	int idx = rcd->ctxt;
13288 	void *arg = rcd;
13289 	int ret;
13290 
13291 	rcd->msix_intr = dd->vnic.msix_idx++;
13292 	me = &dd->msix_entries[rcd->msix_intr];
13293 
13294 	/*
13295 	 * Set the interrupt register and mask for this
13296 	 * context's interrupt.
13297 	 */
13298 	rcd->ireg = (IS_RCVAVAIL_START + idx) / 64;
13299 	rcd->imask = ((u64)1) <<
13300 		  ((IS_RCVAVAIL_START + idx) % 64);
13301 	me->type = IRQ_RCVCTXT;
13302 	me->irq = pci_irq_vector(dd->pcidev, rcd->msix_intr);
13303 	remap_intr(dd, IS_RCVAVAIL_START + idx, rcd->msix_intr);
13304 
13305 	ret = pci_request_irq(dd->pcidev, rcd->msix_intr,
13306 			      receive_context_interrupt,
13307 			      receive_context_thread, arg,
13308 			      DRIVER_NAME "_%d kctxt%d", dd->unit, idx);
13309 	if (ret) {
13310 		dd_dev_err(dd, "vnic irq request (irq %d, idx %d) fail %d\n",
13311 			   me->irq, idx, ret);
13312 		return;
13313 	}
13314 	/*
13315 	 * assign arg after pci_request_irq call, so it will be
13316 	 * cleaned up
13317 	 */
13318 	me->arg = arg;
13319 
13320 	ret = hfi1_get_irq_affinity(dd, me);
13321 	if (ret) {
13322 		dd_dev_err(dd,
13323 			   "unable to pin IRQ %d\n", ret);
13324 		pci_free_irq(dd->pcidev, rcd->msix_intr, me->arg);
13325 	}
13326 }
13327 
13328 /*
13329  * Set the general handler to accept all interrupts, remap all
13330  * chip interrupts back to MSI-X 0.
13331  */
13332 static void reset_interrupts(struct hfi1_devdata *dd)
13333 {
13334 	int i;
13335 
13336 	/* all interrupts handled by the general handler */
13337 	for (i = 0; i < CCE_NUM_INT_CSRS; i++)
13338 		dd->gi_mask[i] = ~(u64)0;
13339 
13340 	/* all chip interrupts map to MSI-X 0 */
13341 	for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++)
13342 		write_csr(dd, CCE_INT_MAP + (8 * i), 0);
13343 }
13344 
13345 static int set_up_interrupts(struct hfi1_devdata *dd)
13346 {
13347 	u32 total;
13348 	int ret, request;
13349 	int single_interrupt = 0; /* we expect to have all the interrupts */
13350 
13351 	/*
13352 	 * Interrupt count:
13353 	 *	1 general, "slow path" interrupt (includes the SDMA engines
13354 	 *		slow source, SDMACleanupDone)
13355 	 *	N interrupts - one per used SDMA engine
13356 	 *	M interrupt - one per kernel receive context
13357 	 *	V interrupt - one for each VNIC context
13358 	 */
13359 	total = 1 + dd->num_sdma + dd->n_krcv_queues + dd->num_vnic_contexts;
13360 
13361 	/* ask for MSI-X interrupts */
13362 	request = request_msix(dd, total);
13363 	if (request < 0) {
13364 		ret = request;
13365 		goto fail;
13366 	} else if (request == 0) {
13367 		/* using INTx */
13368 		/* dd->num_msix_entries already zero */
13369 		single_interrupt = 1;
13370 		dd_dev_err(dd, "MSI-X failed, using INTx interrupts\n");
13371 	} else if (request < total) {
13372 		/* using MSI-X, with reduced interrupts */
13373 		dd_dev_err(dd, "reduced interrupt found, wanted %u, got %u\n",
13374 			   total, request);
13375 		ret = -EINVAL;
13376 		goto fail;
13377 	} else {
13378 		dd->msix_entries = kcalloc(total, sizeof(*dd->msix_entries),
13379 					   GFP_KERNEL);
13380 		if (!dd->msix_entries) {
13381 			ret = -ENOMEM;
13382 			goto fail;
13383 		}
13384 		/* using MSI-X */
13385 		dd->num_msix_entries = total;
13386 		dd_dev_info(dd, "%u MSI-X interrupts allocated\n", total);
13387 	}
13388 
13389 	/* mask all interrupts */
13390 	set_intr_state(dd, 0);
13391 	/* clear all pending interrupts */
13392 	clear_all_interrupts(dd);
13393 
13394 	/* reset general handler mask, chip MSI-X mappings */
13395 	reset_interrupts(dd);
13396 
13397 	if (single_interrupt)
13398 		ret = request_intx_irq(dd);
13399 	else
13400 		ret = request_msix_irqs(dd);
13401 	if (ret)
13402 		goto fail;
13403 
13404 	return 0;
13405 
13406 fail:
13407 	hfi1_clean_up_interrupts(dd);
13408 	return ret;
13409 }
13410 
13411 /*
13412  * Set up context values in dd.  Sets:
13413  *
13414  *	num_rcv_contexts - number of contexts being used
13415  *	n_krcv_queues - number of kernel contexts
13416  *	first_dyn_alloc_ctxt - first dynamically allocated context
13417  *                             in array of contexts
13418  *	freectxts  - number of free user contexts
13419  *	num_send_contexts - number of PIO send contexts being used
13420  *	num_vnic_contexts - number of contexts reserved for VNIC
13421  */
13422 static int set_up_context_variables(struct hfi1_devdata *dd)
13423 {
13424 	unsigned long num_kernel_contexts;
13425 	u16 num_vnic_contexts = HFI1_NUM_VNIC_CTXT;
13426 	int total_contexts;
13427 	int ret;
13428 	unsigned ngroups;
13429 	int qos_rmt_count;
13430 	int user_rmt_reduced;
13431 	u32 n_usr_ctxts;
13432 
13433 	/*
13434 	 * Kernel receive contexts:
13435 	 * - Context 0 - control context (VL15/multicast/error)
13436 	 * - Context 1 - first kernel context
13437 	 * - Context 2 - second kernel context
13438 	 * ...
13439 	 */
13440 	if (n_krcvqs)
13441 		/*
13442 		 * n_krcvqs is the sum of module parameter kernel receive
13443 		 * contexts, krcvqs[].  It does not include the control
13444 		 * context, so add that.
13445 		 */
13446 		num_kernel_contexts = n_krcvqs + 1;
13447 	else
13448 		num_kernel_contexts = DEFAULT_KRCVQS + 1;
13449 	/*
13450 	 * Every kernel receive context needs an ACK send context.
13451 	 * one send context is allocated for each VL{0-7} and VL15
13452 	 */
13453 	if (num_kernel_contexts > (dd->chip_send_contexts - num_vls - 1)) {
13454 		dd_dev_err(dd,
13455 			   "Reducing # kernel rcv contexts to: %d, from %lu\n",
13456 			   (int)(dd->chip_send_contexts - num_vls - 1),
13457 			   num_kernel_contexts);
13458 		num_kernel_contexts = dd->chip_send_contexts - num_vls - 1;
13459 	}
13460 
13461 	/* Accommodate VNIC contexts if possible */
13462 	if ((num_kernel_contexts + num_vnic_contexts) > dd->chip_rcv_contexts) {
13463 		dd_dev_err(dd, "No receive contexts available for VNIC\n");
13464 		num_vnic_contexts = 0;
13465 	}
13466 	total_contexts = num_kernel_contexts + num_vnic_contexts;
13467 
13468 	/*
13469 	 * User contexts:
13470 	 *	- default to 1 user context per real (non-HT) CPU core if
13471 	 *	  num_user_contexts is negative
13472 	 */
13473 	if (num_user_contexts < 0)
13474 		n_usr_ctxts = cpumask_weight(&node_affinity.real_cpu_mask);
13475 	else
13476 		n_usr_ctxts = num_user_contexts;
13477 	/*
13478 	 * Adjust the counts given a global max.
13479 	 */
13480 	if (total_contexts + n_usr_ctxts > dd->chip_rcv_contexts) {
13481 		dd_dev_err(dd,
13482 			   "Reducing # user receive contexts to: %d, from %u\n",
13483 			   (int)(dd->chip_rcv_contexts - total_contexts),
13484 			   n_usr_ctxts);
13485 		/* recalculate */
13486 		n_usr_ctxts = dd->chip_rcv_contexts - total_contexts;
13487 	}
13488 
13489 	/* each user context requires an entry in the RMT */
13490 	qos_rmt_count = qos_rmt_entries(dd, NULL, NULL);
13491 	if (qos_rmt_count + n_usr_ctxts > NUM_MAP_ENTRIES) {
13492 		user_rmt_reduced = NUM_MAP_ENTRIES - qos_rmt_count;
13493 		dd_dev_err(dd,
13494 			   "RMT size is reducing the number of user receive contexts from %u to %d\n",
13495 			   n_usr_ctxts,
13496 			   user_rmt_reduced);
13497 		/* recalculate */
13498 		n_usr_ctxts = user_rmt_reduced;
13499 	}
13500 
13501 	total_contexts += n_usr_ctxts;
13502 
13503 	/* the first N are kernel contexts, the rest are user/vnic contexts */
13504 	dd->num_rcv_contexts = total_contexts;
13505 	dd->n_krcv_queues = num_kernel_contexts;
13506 	dd->first_dyn_alloc_ctxt = num_kernel_contexts;
13507 	dd->num_vnic_contexts = num_vnic_contexts;
13508 	dd->num_user_contexts = n_usr_ctxts;
13509 	dd->freectxts = n_usr_ctxts;
13510 	dd_dev_info(dd,
13511 		    "rcv contexts: chip %d, used %d (kernel %d, vnic %u, user %u)\n",
13512 		    (int)dd->chip_rcv_contexts,
13513 		    (int)dd->num_rcv_contexts,
13514 		    (int)dd->n_krcv_queues,
13515 		    dd->num_vnic_contexts,
13516 		    dd->num_user_contexts);
13517 
13518 	/*
13519 	 * Receive array allocation:
13520 	 *   All RcvArray entries are divided into groups of 8. This
13521 	 *   is required by the hardware and will speed up writes to
13522 	 *   consecutive entries by using write-combining of the entire
13523 	 *   cacheline.
13524 	 *
13525 	 *   The number of groups are evenly divided among all contexts.
13526 	 *   any left over groups will be given to the first N user
13527 	 *   contexts.
13528 	 */
13529 	dd->rcv_entries.group_size = RCV_INCREMENT;
13530 	ngroups = dd->chip_rcv_array_count / dd->rcv_entries.group_size;
13531 	dd->rcv_entries.ngroups = ngroups / dd->num_rcv_contexts;
13532 	dd->rcv_entries.nctxt_extra = ngroups -
13533 		(dd->num_rcv_contexts * dd->rcv_entries.ngroups);
13534 	dd_dev_info(dd, "RcvArray groups %u, ctxts extra %u\n",
13535 		    dd->rcv_entries.ngroups,
13536 		    dd->rcv_entries.nctxt_extra);
13537 	if (dd->rcv_entries.ngroups * dd->rcv_entries.group_size >
13538 	    MAX_EAGER_ENTRIES * 2) {
13539 		dd->rcv_entries.ngroups = (MAX_EAGER_ENTRIES * 2) /
13540 			dd->rcv_entries.group_size;
13541 		dd_dev_info(dd,
13542 			    "RcvArray group count too high, change to %u\n",
13543 			    dd->rcv_entries.ngroups);
13544 		dd->rcv_entries.nctxt_extra = 0;
13545 	}
13546 	/*
13547 	 * PIO send contexts
13548 	 */
13549 	ret = init_sc_pools_and_sizes(dd);
13550 	if (ret >= 0) {	/* success */
13551 		dd->num_send_contexts = ret;
13552 		dd_dev_info(
13553 			dd,
13554 			"send contexts: chip %d, used %d (kernel %d, ack %d, user %d, vl15 %d)\n",
13555 			dd->chip_send_contexts,
13556 			dd->num_send_contexts,
13557 			dd->sc_sizes[SC_KERNEL].count,
13558 			dd->sc_sizes[SC_ACK].count,
13559 			dd->sc_sizes[SC_USER].count,
13560 			dd->sc_sizes[SC_VL15].count);
13561 		ret = 0;	/* success */
13562 	}
13563 
13564 	return ret;
13565 }
13566 
13567 /*
13568  * Set the device/port partition key table. The MAD code
13569  * will ensure that, at least, the partial management
13570  * partition key is present in the table.
13571  */
13572 static void set_partition_keys(struct hfi1_pportdata *ppd)
13573 {
13574 	struct hfi1_devdata *dd = ppd->dd;
13575 	u64 reg = 0;
13576 	int i;
13577 
13578 	dd_dev_info(dd, "Setting partition keys\n");
13579 	for (i = 0; i < hfi1_get_npkeys(dd); i++) {
13580 		reg |= (ppd->pkeys[i] &
13581 			RCV_PARTITION_KEY_PARTITION_KEY_A_MASK) <<
13582 			((i % 4) *
13583 			 RCV_PARTITION_KEY_PARTITION_KEY_B_SHIFT);
13584 		/* Each register holds 4 PKey values. */
13585 		if ((i % 4) == 3) {
13586 			write_csr(dd, RCV_PARTITION_KEY +
13587 				  ((i - 3) * 2), reg);
13588 			reg = 0;
13589 		}
13590 	}
13591 
13592 	/* Always enable HW pkeys check when pkeys table is set */
13593 	add_rcvctrl(dd, RCV_CTRL_RCV_PARTITION_KEY_ENABLE_SMASK);
13594 }
13595 
13596 /*
13597  * These CSRs and memories are uninitialized on reset and must be
13598  * written before reading to set the ECC/parity bits.
13599  *
13600  * NOTE: All user context CSRs that are not mmaped write-only
13601  * (e.g. the TID flows) must be initialized even if the driver never
13602  * reads them.
13603  */
13604 static void write_uninitialized_csrs_and_memories(struct hfi1_devdata *dd)
13605 {
13606 	int i, j;
13607 
13608 	/* CceIntMap */
13609 	for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++)
13610 		write_csr(dd, CCE_INT_MAP + (8 * i), 0);
13611 
13612 	/* SendCtxtCreditReturnAddr */
13613 	for (i = 0; i < dd->chip_send_contexts; i++)
13614 		write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_RETURN_ADDR, 0);
13615 
13616 	/* PIO Send buffers */
13617 	/* SDMA Send buffers */
13618 	/*
13619 	 * These are not normally read, and (presently) have no method
13620 	 * to be read, so are not pre-initialized
13621 	 */
13622 
13623 	/* RcvHdrAddr */
13624 	/* RcvHdrTailAddr */
13625 	/* RcvTidFlowTable */
13626 	for (i = 0; i < dd->chip_rcv_contexts; i++) {
13627 		write_kctxt_csr(dd, i, RCV_HDR_ADDR, 0);
13628 		write_kctxt_csr(dd, i, RCV_HDR_TAIL_ADDR, 0);
13629 		for (j = 0; j < RXE_NUM_TID_FLOWS; j++)
13630 			write_uctxt_csr(dd, i, RCV_TID_FLOW_TABLE + (8 * j), 0);
13631 	}
13632 
13633 	/* RcvArray */
13634 	for (i = 0; i < dd->chip_rcv_array_count; i++)
13635 		hfi1_put_tid(dd, i, PT_INVALID_FLUSH, 0, 0);
13636 
13637 	/* RcvQPMapTable */
13638 	for (i = 0; i < 32; i++)
13639 		write_csr(dd, RCV_QP_MAP_TABLE + (8 * i), 0);
13640 }
13641 
13642 /*
13643  * Use the ctrl_bits in CceCtrl to clear the status_bits in CceStatus.
13644  */
13645 static void clear_cce_status(struct hfi1_devdata *dd, u64 status_bits,
13646 			     u64 ctrl_bits)
13647 {
13648 	unsigned long timeout;
13649 	u64 reg;
13650 
13651 	/* is the condition present? */
13652 	reg = read_csr(dd, CCE_STATUS);
13653 	if ((reg & status_bits) == 0)
13654 		return;
13655 
13656 	/* clear the condition */
13657 	write_csr(dd, CCE_CTRL, ctrl_bits);
13658 
13659 	/* wait for the condition to clear */
13660 	timeout = jiffies + msecs_to_jiffies(CCE_STATUS_TIMEOUT);
13661 	while (1) {
13662 		reg = read_csr(dd, CCE_STATUS);
13663 		if ((reg & status_bits) == 0)
13664 			return;
13665 		if (time_after(jiffies, timeout)) {
13666 			dd_dev_err(dd,
13667 				   "Timeout waiting for CceStatus to clear bits 0x%llx, remaining 0x%llx\n",
13668 				   status_bits, reg & status_bits);
13669 			return;
13670 		}
13671 		udelay(1);
13672 	}
13673 }
13674 
13675 /* set CCE CSRs to chip reset defaults */
13676 static void reset_cce_csrs(struct hfi1_devdata *dd)
13677 {
13678 	int i;
13679 
13680 	/* CCE_REVISION read-only */
13681 	/* CCE_REVISION2 read-only */
13682 	/* CCE_CTRL - bits clear automatically */
13683 	/* CCE_STATUS read-only, use CceCtrl to clear */
13684 	clear_cce_status(dd, ALL_FROZE, CCE_CTRL_SPC_UNFREEZE_SMASK);
13685 	clear_cce_status(dd, ALL_TXE_PAUSE, CCE_CTRL_TXE_RESUME_SMASK);
13686 	clear_cce_status(dd, ALL_RXE_PAUSE, CCE_CTRL_RXE_RESUME_SMASK);
13687 	for (i = 0; i < CCE_NUM_SCRATCH; i++)
13688 		write_csr(dd, CCE_SCRATCH + (8 * i), 0);
13689 	/* CCE_ERR_STATUS read-only */
13690 	write_csr(dd, CCE_ERR_MASK, 0);
13691 	write_csr(dd, CCE_ERR_CLEAR, ~0ull);
13692 	/* CCE_ERR_FORCE leave alone */
13693 	for (i = 0; i < CCE_NUM_32_BIT_COUNTERS; i++)
13694 		write_csr(dd, CCE_COUNTER_ARRAY32 + (8 * i), 0);
13695 	write_csr(dd, CCE_DC_CTRL, CCE_DC_CTRL_RESETCSR);
13696 	/* CCE_PCIE_CTRL leave alone */
13697 	for (i = 0; i < CCE_NUM_MSIX_VECTORS; i++) {
13698 		write_csr(dd, CCE_MSIX_TABLE_LOWER + (8 * i), 0);
13699 		write_csr(dd, CCE_MSIX_TABLE_UPPER + (8 * i),
13700 			  CCE_MSIX_TABLE_UPPER_RESETCSR);
13701 	}
13702 	for (i = 0; i < CCE_NUM_MSIX_PBAS; i++) {
13703 		/* CCE_MSIX_PBA read-only */
13704 		write_csr(dd, CCE_MSIX_INT_GRANTED, ~0ull);
13705 		write_csr(dd, CCE_MSIX_VEC_CLR_WITHOUT_INT, ~0ull);
13706 	}
13707 	for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++)
13708 		write_csr(dd, CCE_INT_MAP, 0);
13709 	for (i = 0; i < CCE_NUM_INT_CSRS; i++) {
13710 		/* CCE_INT_STATUS read-only */
13711 		write_csr(dd, CCE_INT_MASK + (8 * i), 0);
13712 		write_csr(dd, CCE_INT_CLEAR + (8 * i), ~0ull);
13713 		/* CCE_INT_FORCE leave alone */
13714 		/* CCE_INT_BLOCKED read-only */
13715 	}
13716 	for (i = 0; i < CCE_NUM_32_BIT_INT_COUNTERS; i++)
13717 		write_csr(dd, CCE_INT_COUNTER_ARRAY32 + (8 * i), 0);
13718 }
13719 
13720 /* set MISC CSRs to chip reset defaults */
13721 static void reset_misc_csrs(struct hfi1_devdata *dd)
13722 {
13723 	int i;
13724 
13725 	for (i = 0; i < 32; i++) {
13726 		write_csr(dd, MISC_CFG_RSA_R2 + (8 * i), 0);
13727 		write_csr(dd, MISC_CFG_RSA_SIGNATURE + (8 * i), 0);
13728 		write_csr(dd, MISC_CFG_RSA_MODULUS + (8 * i), 0);
13729 	}
13730 	/*
13731 	 * MISC_CFG_SHA_PRELOAD leave alone - always reads 0 and can
13732 	 * only be written 128-byte chunks
13733 	 */
13734 	/* init RSA engine to clear lingering errors */
13735 	write_csr(dd, MISC_CFG_RSA_CMD, 1);
13736 	write_csr(dd, MISC_CFG_RSA_MU, 0);
13737 	write_csr(dd, MISC_CFG_FW_CTRL, 0);
13738 	/* MISC_STS_8051_DIGEST read-only */
13739 	/* MISC_STS_SBM_DIGEST read-only */
13740 	/* MISC_STS_PCIE_DIGEST read-only */
13741 	/* MISC_STS_FAB_DIGEST read-only */
13742 	/* MISC_ERR_STATUS read-only */
13743 	write_csr(dd, MISC_ERR_MASK, 0);
13744 	write_csr(dd, MISC_ERR_CLEAR, ~0ull);
13745 	/* MISC_ERR_FORCE leave alone */
13746 }
13747 
13748 /* set TXE CSRs to chip reset defaults */
13749 static void reset_txe_csrs(struct hfi1_devdata *dd)
13750 {
13751 	int i;
13752 
13753 	/*
13754 	 * TXE Kernel CSRs
13755 	 */
13756 	write_csr(dd, SEND_CTRL, 0);
13757 	__cm_reset(dd, 0);	/* reset CM internal state */
13758 	/* SEND_CONTEXTS read-only */
13759 	/* SEND_DMA_ENGINES read-only */
13760 	/* SEND_PIO_MEM_SIZE read-only */
13761 	/* SEND_DMA_MEM_SIZE read-only */
13762 	write_csr(dd, SEND_HIGH_PRIORITY_LIMIT, 0);
13763 	pio_reset_all(dd);	/* SEND_PIO_INIT_CTXT */
13764 	/* SEND_PIO_ERR_STATUS read-only */
13765 	write_csr(dd, SEND_PIO_ERR_MASK, 0);
13766 	write_csr(dd, SEND_PIO_ERR_CLEAR, ~0ull);
13767 	/* SEND_PIO_ERR_FORCE leave alone */
13768 	/* SEND_DMA_ERR_STATUS read-only */
13769 	write_csr(dd, SEND_DMA_ERR_MASK, 0);
13770 	write_csr(dd, SEND_DMA_ERR_CLEAR, ~0ull);
13771 	/* SEND_DMA_ERR_FORCE leave alone */
13772 	/* SEND_EGRESS_ERR_STATUS read-only */
13773 	write_csr(dd, SEND_EGRESS_ERR_MASK, 0);
13774 	write_csr(dd, SEND_EGRESS_ERR_CLEAR, ~0ull);
13775 	/* SEND_EGRESS_ERR_FORCE leave alone */
13776 	write_csr(dd, SEND_BTH_QP, 0);
13777 	write_csr(dd, SEND_STATIC_RATE_CONTROL, 0);
13778 	write_csr(dd, SEND_SC2VLT0, 0);
13779 	write_csr(dd, SEND_SC2VLT1, 0);
13780 	write_csr(dd, SEND_SC2VLT2, 0);
13781 	write_csr(dd, SEND_SC2VLT3, 0);
13782 	write_csr(dd, SEND_LEN_CHECK0, 0);
13783 	write_csr(dd, SEND_LEN_CHECK1, 0);
13784 	/* SEND_ERR_STATUS read-only */
13785 	write_csr(dd, SEND_ERR_MASK, 0);
13786 	write_csr(dd, SEND_ERR_CLEAR, ~0ull);
13787 	/* SEND_ERR_FORCE read-only */
13788 	for (i = 0; i < VL_ARB_LOW_PRIO_TABLE_SIZE; i++)
13789 		write_csr(dd, SEND_LOW_PRIORITY_LIST + (8 * i), 0);
13790 	for (i = 0; i < VL_ARB_HIGH_PRIO_TABLE_SIZE; i++)
13791 		write_csr(dd, SEND_HIGH_PRIORITY_LIST + (8 * i), 0);
13792 	for (i = 0; i < dd->chip_send_contexts / NUM_CONTEXTS_PER_SET; i++)
13793 		write_csr(dd, SEND_CONTEXT_SET_CTRL + (8 * i), 0);
13794 	for (i = 0; i < TXE_NUM_32_BIT_COUNTER; i++)
13795 		write_csr(dd, SEND_COUNTER_ARRAY32 + (8 * i), 0);
13796 	for (i = 0; i < TXE_NUM_64_BIT_COUNTER; i++)
13797 		write_csr(dd, SEND_COUNTER_ARRAY64 + (8 * i), 0);
13798 	write_csr(dd, SEND_CM_CTRL, SEND_CM_CTRL_RESETCSR);
13799 	write_csr(dd, SEND_CM_GLOBAL_CREDIT, SEND_CM_GLOBAL_CREDIT_RESETCSR);
13800 	/* SEND_CM_CREDIT_USED_STATUS read-only */
13801 	write_csr(dd, SEND_CM_TIMER_CTRL, 0);
13802 	write_csr(dd, SEND_CM_LOCAL_AU_TABLE0_TO3, 0);
13803 	write_csr(dd, SEND_CM_LOCAL_AU_TABLE4_TO7, 0);
13804 	write_csr(dd, SEND_CM_REMOTE_AU_TABLE0_TO3, 0);
13805 	write_csr(dd, SEND_CM_REMOTE_AU_TABLE4_TO7, 0);
13806 	for (i = 0; i < TXE_NUM_DATA_VL; i++)
13807 		write_csr(dd, SEND_CM_CREDIT_VL + (8 * i), 0);
13808 	write_csr(dd, SEND_CM_CREDIT_VL15, 0);
13809 	/* SEND_CM_CREDIT_USED_VL read-only */
13810 	/* SEND_CM_CREDIT_USED_VL15 read-only */
13811 	/* SEND_EGRESS_CTXT_STATUS read-only */
13812 	/* SEND_EGRESS_SEND_DMA_STATUS read-only */
13813 	write_csr(dd, SEND_EGRESS_ERR_INFO, ~0ull);
13814 	/* SEND_EGRESS_ERR_INFO read-only */
13815 	/* SEND_EGRESS_ERR_SOURCE read-only */
13816 
13817 	/*
13818 	 * TXE Per-Context CSRs
13819 	 */
13820 	for (i = 0; i < dd->chip_send_contexts; i++) {
13821 		write_kctxt_csr(dd, i, SEND_CTXT_CTRL, 0);
13822 		write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_CTRL, 0);
13823 		write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_RETURN_ADDR, 0);
13824 		write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_FORCE, 0);
13825 		write_kctxt_csr(dd, i, SEND_CTXT_ERR_MASK, 0);
13826 		write_kctxt_csr(dd, i, SEND_CTXT_ERR_CLEAR, ~0ull);
13827 		write_kctxt_csr(dd, i, SEND_CTXT_CHECK_ENABLE, 0);
13828 		write_kctxt_csr(dd, i, SEND_CTXT_CHECK_VL, 0);
13829 		write_kctxt_csr(dd, i, SEND_CTXT_CHECK_JOB_KEY, 0);
13830 		write_kctxt_csr(dd, i, SEND_CTXT_CHECK_PARTITION_KEY, 0);
13831 		write_kctxt_csr(dd, i, SEND_CTXT_CHECK_SLID, 0);
13832 		write_kctxt_csr(dd, i, SEND_CTXT_CHECK_OPCODE, 0);
13833 	}
13834 
13835 	/*
13836 	 * TXE Per-SDMA CSRs
13837 	 */
13838 	for (i = 0; i < dd->chip_sdma_engines; i++) {
13839 		write_kctxt_csr(dd, i, SEND_DMA_CTRL, 0);
13840 		/* SEND_DMA_STATUS read-only */
13841 		write_kctxt_csr(dd, i, SEND_DMA_BASE_ADDR, 0);
13842 		write_kctxt_csr(dd, i, SEND_DMA_LEN_GEN, 0);
13843 		write_kctxt_csr(dd, i, SEND_DMA_TAIL, 0);
13844 		/* SEND_DMA_HEAD read-only */
13845 		write_kctxt_csr(dd, i, SEND_DMA_HEAD_ADDR, 0);
13846 		write_kctxt_csr(dd, i, SEND_DMA_PRIORITY_THLD, 0);
13847 		/* SEND_DMA_IDLE_CNT read-only */
13848 		write_kctxt_csr(dd, i, SEND_DMA_RELOAD_CNT, 0);
13849 		write_kctxt_csr(dd, i, SEND_DMA_DESC_CNT, 0);
13850 		/* SEND_DMA_DESC_FETCHED_CNT read-only */
13851 		/* SEND_DMA_ENG_ERR_STATUS read-only */
13852 		write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_MASK, 0);
13853 		write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_CLEAR, ~0ull);
13854 		/* SEND_DMA_ENG_ERR_FORCE leave alone */
13855 		write_kctxt_csr(dd, i, SEND_DMA_CHECK_ENABLE, 0);
13856 		write_kctxt_csr(dd, i, SEND_DMA_CHECK_VL, 0);
13857 		write_kctxt_csr(dd, i, SEND_DMA_CHECK_JOB_KEY, 0);
13858 		write_kctxt_csr(dd, i, SEND_DMA_CHECK_PARTITION_KEY, 0);
13859 		write_kctxt_csr(dd, i, SEND_DMA_CHECK_SLID, 0);
13860 		write_kctxt_csr(dd, i, SEND_DMA_CHECK_OPCODE, 0);
13861 		write_kctxt_csr(dd, i, SEND_DMA_MEMORY, 0);
13862 	}
13863 }
13864 
13865 /*
13866  * Expect on entry:
13867  * o Packet ingress is disabled, i.e. RcvCtrl.RcvPortEnable == 0
13868  */
13869 static void init_rbufs(struct hfi1_devdata *dd)
13870 {
13871 	u64 reg;
13872 	int count;
13873 
13874 	/*
13875 	 * Wait for DMA to stop: RxRbufPktPending and RxPktInProgress are
13876 	 * clear.
13877 	 */
13878 	count = 0;
13879 	while (1) {
13880 		reg = read_csr(dd, RCV_STATUS);
13881 		if ((reg & (RCV_STATUS_RX_RBUF_PKT_PENDING_SMASK
13882 			    | RCV_STATUS_RX_PKT_IN_PROGRESS_SMASK)) == 0)
13883 			break;
13884 		/*
13885 		 * Give up after 1ms - maximum wait time.
13886 		 *
13887 		 * RBuf size is 136KiB.  Slowest possible is PCIe Gen1 x1 at
13888 		 * 250MB/s bandwidth.  Lower rate to 66% for overhead to get:
13889 		 *	136 KB / (66% * 250MB/s) = 844us
13890 		 */
13891 		if (count++ > 500) {
13892 			dd_dev_err(dd,
13893 				   "%s: in-progress DMA not clearing: RcvStatus 0x%llx, continuing\n",
13894 				   __func__, reg);
13895 			break;
13896 		}
13897 		udelay(2); /* do not busy-wait the CSR */
13898 	}
13899 
13900 	/* start the init - expect RcvCtrl to be 0 */
13901 	write_csr(dd, RCV_CTRL, RCV_CTRL_RX_RBUF_INIT_SMASK);
13902 
13903 	/*
13904 	 * Read to force the write of Rcvtrl.RxRbufInit.  There is a brief
13905 	 * period after the write before RcvStatus.RxRbufInitDone is valid.
13906 	 * The delay in the first run through the loop below is sufficient and
13907 	 * required before the first read of RcvStatus.RxRbufInintDone.
13908 	 */
13909 	read_csr(dd, RCV_CTRL);
13910 
13911 	/* wait for the init to finish */
13912 	count = 0;
13913 	while (1) {
13914 		/* delay is required first time through - see above */
13915 		udelay(2); /* do not busy-wait the CSR */
13916 		reg = read_csr(dd, RCV_STATUS);
13917 		if (reg & (RCV_STATUS_RX_RBUF_INIT_DONE_SMASK))
13918 			break;
13919 
13920 		/* give up after 100us - slowest possible at 33MHz is 73us */
13921 		if (count++ > 50) {
13922 			dd_dev_err(dd,
13923 				   "%s: RcvStatus.RxRbufInit not set, continuing\n",
13924 				   __func__);
13925 			break;
13926 		}
13927 	}
13928 }
13929 
13930 /* set RXE CSRs to chip reset defaults */
13931 static void reset_rxe_csrs(struct hfi1_devdata *dd)
13932 {
13933 	int i, j;
13934 
13935 	/*
13936 	 * RXE Kernel CSRs
13937 	 */
13938 	write_csr(dd, RCV_CTRL, 0);
13939 	init_rbufs(dd);
13940 	/* RCV_STATUS read-only */
13941 	/* RCV_CONTEXTS read-only */
13942 	/* RCV_ARRAY_CNT read-only */
13943 	/* RCV_BUF_SIZE read-only */
13944 	write_csr(dd, RCV_BTH_QP, 0);
13945 	write_csr(dd, RCV_MULTICAST, 0);
13946 	write_csr(dd, RCV_BYPASS, 0);
13947 	write_csr(dd, RCV_VL15, 0);
13948 	/* this is a clear-down */
13949 	write_csr(dd, RCV_ERR_INFO,
13950 		  RCV_ERR_INFO_RCV_EXCESS_BUFFER_OVERRUN_SMASK);
13951 	/* RCV_ERR_STATUS read-only */
13952 	write_csr(dd, RCV_ERR_MASK, 0);
13953 	write_csr(dd, RCV_ERR_CLEAR, ~0ull);
13954 	/* RCV_ERR_FORCE leave alone */
13955 	for (i = 0; i < 32; i++)
13956 		write_csr(dd, RCV_QP_MAP_TABLE + (8 * i), 0);
13957 	for (i = 0; i < 4; i++)
13958 		write_csr(dd, RCV_PARTITION_KEY + (8 * i), 0);
13959 	for (i = 0; i < RXE_NUM_32_BIT_COUNTERS; i++)
13960 		write_csr(dd, RCV_COUNTER_ARRAY32 + (8 * i), 0);
13961 	for (i = 0; i < RXE_NUM_64_BIT_COUNTERS; i++)
13962 		write_csr(dd, RCV_COUNTER_ARRAY64 + (8 * i), 0);
13963 	for (i = 0; i < RXE_NUM_RSM_INSTANCES; i++)
13964 		clear_rsm_rule(dd, i);
13965 	for (i = 0; i < 32; i++)
13966 		write_csr(dd, RCV_RSM_MAP_TABLE + (8 * i), 0);
13967 
13968 	/*
13969 	 * RXE Kernel and User Per-Context CSRs
13970 	 */
13971 	for (i = 0; i < dd->chip_rcv_contexts; i++) {
13972 		/* kernel */
13973 		write_kctxt_csr(dd, i, RCV_CTXT_CTRL, 0);
13974 		/* RCV_CTXT_STATUS read-only */
13975 		write_kctxt_csr(dd, i, RCV_EGR_CTRL, 0);
13976 		write_kctxt_csr(dd, i, RCV_TID_CTRL, 0);
13977 		write_kctxt_csr(dd, i, RCV_KEY_CTRL, 0);
13978 		write_kctxt_csr(dd, i, RCV_HDR_ADDR, 0);
13979 		write_kctxt_csr(dd, i, RCV_HDR_CNT, 0);
13980 		write_kctxt_csr(dd, i, RCV_HDR_ENT_SIZE, 0);
13981 		write_kctxt_csr(dd, i, RCV_HDR_SIZE, 0);
13982 		write_kctxt_csr(dd, i, RCV_HDR_TAIL_ADDR, 0);
13983 		write_kctxt_csr(dd, i, RCV_AVAIL_TIME_OUT, 0);
13984 		write_kctxt_csr(dd, i, RCV_HDR_OVFL_CNT, 0);
13985 
13986 		/* user */
13987 		/* RCV_HDR_TAIL read-only */
13988 		write_uctxt_csr(dd, i, RCV_HDR_HEAD, 0);
13989 		/* RCV_EGR_INDEX_TAIL read-only */
13990 		write_uctxt_csr(dd, i, RCV_EGR_INDEX_HEAD, 0);
13991 		/* RCV_EGR_OFFSET_TAIL read-only */
13992 		for (j = 0; j < RXE_NUM_TID_FLOWS; j++) {
13993 			write_uctxt_csr(dd, i,
13994 					RCV_TID_FLOW_TABLE + (8 * j), 0);
13995 		}
13996 	}
13997 }
13998 
13999 /*
14000  * Set sc2vl tables.
14001  *
14002  * They power on to zeros, so to avoid send context errors
14003  * they need to be set:
14004  *
14005  * SC 0-7 -> VL 0-7 (respectively)
14006  * SC 15  -> VL 15
14007  * otherwise
14008  *        -> VL 0
14009  */
14010 static void init_sc2vl_tables(struct hfi1_devdata *dd)
14011 {
14012 	int i;
14013 	/* init per architecture spec, constrained by hardware capability */
14014 
14015 	/* HFI maps sent packets */
14016 	write_csr(dd, SEND_SC2VLT0, SC2VL_VAL(
14017 		0,
14018 		0, 0, 1, 1,
14019 		2, 2, 3, 3,
14020 		4, 4, 5, 5,
14021 		6, 6, 7, 7));
14022 	write_csr(dd, SEND_SC2VLT1, SC2VL_VAL(
14023 		1,
14024 		8, 0, 9, 0,
14025 		10, 0, 11, 0,
14026 		12, 0, 13, 0,
14027 		14, 0, 15, 15));
14028 	write_csr(dd, SEND_SC2VLT2, SC2VL_VAL(
14029 		2,
14030 		16, 0, 17, 0,
14031 		18, 0, 19, 0,
14032 		20, 0, 21, 0,
14033 		22, 0, 23, 0));
14034 	write_csr(dd, SEND_SC2VLT3, SC2VL_VAL(
14035 		3,
14036 		24, 0, 25, 0,
14037 		26, 0, 27, 0,
14038 		28, 0, 29, 0,
14039 		30, 0, 31, 0));
14040 
14041 	/* DC maps received packets */
14042 	write_csr(dd, DCC_CFG_SC_VL_TABLE_15_0, DC_SC_VL_VAL(
14043 		15_0,
14044 		0, 0, 1, 1,  2, 2,  3, 3,  4, 4,  5, 5,  6, 6,  7,  7,
14045 		8, 0, 9, 0, 10, 0, 11, 0, 12, 0, 13, 0, 14, 0, 15, 15));
14046 	write_csr(dd, DCC_CFG_SC_VL_TABLE_31_16, DC_SC_VL_VAL(
14047 		31_16,
14048 		16, 0, 17, 0, 18, 0, 19, 0, 20, 0, 21, 0, 22, 0, 23, 0,
14049 		24, 0, 25, 0, 26, 0, 27, 0, 28, 0, 29, 0, 30, 0, 31, 0));
14050 
14051 	/* initialize the cached sc2vl values consistently with h/w */
14052 	for (i = 0; i < 32; i++) {
14053 		if (i < 8 || i == 15)
14054 			*((u8 *)(dd->sc2vl) + i) = (u8)i;
14055 		else
14056 			*((u8 *)(dd->sc2vl) + i) = 0;
14057 	}
14058 }
14059 
14060 /*
14061  * Read chip sizes and then reset parts to sane, disabled, values.  We cannot
14062  * depend on the chip going through a power-on reset - a driver may be loaded
14063  * and unloaded many times.
14064  *
14065  * Do not write any CSR values to the chip in this routine - there may be
14066  * a reset following the (possible) FLR in this routine.
14067  *
14068  */
14069 static int init_chip(struct hfi1_devdata *dd)
14070 {
14071 	int i;
14072 	int ret = 0;
14073 
14074 	/*
14075 	 * Put the HFI CSRs in a known state.
14076 	 * Combine this with a DC reset.
14077 	 *
14078 	 * Stop the device from doing anything while we do a
14079 	 * reset.  We know there are no other active users of
14080 	 * the device since we are now in charge.  Turn off
14081 	 * off all outbound and inbound traffic and make sure
14082 	 * the device does not generate any interrupts.
14083 	 */
14084 
14085 	/* disable send contexts and SDMA engines */
14086 	write_csr(dd, SEND_CTRL, 0);
14087 	for (i = 0; i < dd->chip_send_contexts; i++)
14088 		write_kctxt_csr(dd, i, SEND_CTXT_CTRL, 0);
14089 	for (i = 0; i < dd->chip_sdma_engines; i++)
14090 		write_kctxt_csr(dd, i, SEND_DMA_CTRL, 0);
14091 	/* disable port (turn off RXE inbound traffic) and contexts */
14092 	write_csr(dd, RCV_CTRL, 0);
14093 	for (i = 0; i < dd->chip_rcv_contexts; i++)
14094 		write_csr(dd, RCV_CTXT_CTRL, 0);
14095 	/* mask all interrupt sources */
14096 	for (i = 0; i < CCE_NUM_INT_CSRS; i++)
14097 		write_csr(dd, CCE_INT_MASK + (8 * i), 0ull);
14098 
14099 	/*
14100 	 * DC Reset: do a full DC reset before the register clear.
14101 	 * A recommended length of time to hold is one CSR read,
14102 	 * so reread the CceDcCtrl.  Then, hold the DC in reset
14103 	 * across the clear.
14104 	 */
14105 	write_csr(dd, CCE_DC_CTRL, CCE_DC_CTRL_DC_RESET_SMASK);
14106 	(void)read_csr(dd, CCE_DC_CTRL);
14107 
14108 	if (use_flr) {
14109 		/*
14110 		 * A FLR will reset the SPC core and part of the PCIe.
14111 		 * The parts that need to be restored have already been
14112 		 * saved.
14113 		 */
14114 		dd_dev_info(dd, "Resetting CSRs with FLR\n");
14115 
14116 		/* do the FLR, the DC reset will remain */
14117 		pcie_flr(dd->pcidev);
14118 
14119 		/* restore command and BARs */
14120 		ret = restore_pci_variables(dd);
14121 		if (ret) {
14122 			dd_dev_err(dd, "%s: Could not restore PCI variables\n",
14123 				   __func__);
14124 			return ret;
14125 		}
14126 
14127 		if (is_ax(dd)) {
14128 			dd_dev_info(dd, "Resetting CSRs with FLR\n");
14129 			pcie_flr(dd->pcidev);
14130 			ret = restore_pci_variables(dd);
14131 			if (ret) {
14132 				dd_dev_err(dd, "%s: Could not restore PCI variables\n",
14133 					   __func__);
14134 				return ret;
14135 			}
14136 		}
14137 	} else {
14138 		dd_dev_info(dd, "Resetting CSRs with writes\n");
14139 		reset_cce_csrs(dd);
14140 		reset_txe_csrs(dd);
14141 		reset_rxe_csrs(dd);
14142 		reset_misc_csrs(dd);
14143 	}
14144 	/* clear the DC reset */
14145 	write_csr(dd, CCE_DC_CTRL, 0);
14146 
14147 	/* Set the LED off */
14148 	setextled(dd, 0);
14149 
14150 	/*
14151 	 * Clear the QSFP reset.
14152 	 * An FLR enforces a 0 on all out pins. The driver does not touch
14153 	 * ASIC_QSFPn_OUT otherwise.  This leaves RESET_N low and
14154 	 * anything plugged constantly in reset, if it pays attention
14155 	 * to RESET_N.
14156 	 * Prime examples of this are optical cables. Set all pins high.
14157 	 * I2CCLK and I2CDAT will change per direction, and INT_N and
14158 	 * MODPRS_N are input only and their value is ignored.
14159 	 */
14160 	write_csr(dd, ASIC_QSFP1_OUT, 0x1f);
14161 	write_csr(dd, ASIC_QSFP2_OUT, 0x1f);
14162 	init_chip_resources(dd);
14163 	return ret;
14164 }
14165 
14166 static void init_early_variables(struct hfi1_devdata *dd)
14167 {
14168 	int i;
14169 
14170 	/* assign link credit variables */
14171 	dd->vau = CM_VAU;
14172 	dd->link_credits = CM_GLOBAL_CREDITS;
14173 	if (is_ax(dd))
14174 		dd->link_credits--;
14175 	dd->vcu = cu_to_vcu(hfi1_cu);
14176 	/* enough room for 8 MAD packets plus header - 17K */
14177 	dd->vl15_init = (8 * (2048 + 128)) / vau_to_au(dd->vau);
14178 	if (dd->vl15_init > dd->link_credits)
14179 		dd->vl15_init = dd->link_credits;
14180 
14181 	write_uninitialized_csrs_and_memories(dd);
14182 
14183 	if (HFI1_CAP_IS_KSET(PKEY_CHECK))
14184 		for (i = 0; i < dd->num_pports; i++) {
14185 			struct hfi1_pportdata *ppd = &dd->pport[i];
14186 
14187 			set_partition_keys(ppd);
14188 		}
14189 	init_sc2vl_tables(dd);
14190 }
14191 
14192 static void init_kdeth_qp(struct hfi1_devdata *dd)
14193 {
14194 	/* user changed the KDETH_QP */
14195 	if (kdeth_qp != 0 && kdeth_qp >= 0xff) {
14196 		/* out of range or illegal value */
14197 		dd_dev_err(dd, "Invalid KDETH queue pair prefix, ignoring");
14198 		kdeth_qp = 0;
14199 	}
14200 	if (kdeth_qp == 0)	/* not set, or failed range check */
14201 		kdeth_qp = DEFAULT_KDETH_QP;
14202 
14203 	write_csr(dd, SEND_BTH_QP,
14204 		  (kdeth_qp & SEND_BTH_QP_KDETH_QP_MASK) <<
14205 		  SEND_BTH_QP_KDETH_QP_SHIFT);
14206 
14207 	write_csr(dd, RCV_BTH_QP,
14208 		  (kdeth_qp & RCV_BTH_QP_KDETH_QP_MASK) <<
14209 		  RCV_BTH_QP_KDETH_QP_SHIFT);
14210 }
14211 
14212 /**
14213  * init_qpmap_table
14214  * @dd - device data
14215  * @first_ctxt - first context
14216  * @last_ctxt - first context
14217  *
14218  * This return sets the qpn mapping table that
14219  * is indexed by qpn[8:1].
14220  *
14221  * The routine will round robin the 256 settings
14222  * from first_ctxt to last_ctxt.
14223  *
14224  * The first/last looks ahead to having specialized
14225  * receive contexts for mgmt and bypass.  Normal
14226  * verbs traffic will assumed to be on a range
14227  * of receive contexts.
14228  */
14229 static void init_qpmap_table(struct hfi1_devdata *dd,
14230 			     u32 first_ctxt,
14231 			     u32 last_ctxt)
14232 {
14233 	u64 reg = 0;
14234 	u64 regno = RCV_QP_MAP_TABLE;
14235 	int i;
14236 	u64 ctxt = first_ctxt;
14237 
14238 	for (i = 0; i < 256; i++) {
14239 		reg |= ctxt << (8 * (i % 8));
14240 		ctxt++;
14241 		if (ctxt > last_ctxt)
14242 			ctxt = first_ctxt;
14243 		if (i % 8 == 7) {
14244 			write_csr(dd, regno, reg);
14245 			reg = 0;
14246 			regno += 8;
14247 		}
14248 	}
14249 
14250 	add_rcvctrl(dd, RCV_CTRL_RCV_QP_MAP_ENABLE_SMASK
14251 			| RCV_CTRL_RCV_BYPASS_ENABLE_SMASK);
14252 }
14253 
14254 struct rsm_map_table {
14255 	u64 map[NUM_MAP_REGS];
14256 	unsigned int used;
14257 };
14258 
14259 struct rsm_rule_data {
14260 	u8 offset;
14261 	u8 pkt_type;
14262 	u32 field1_off;
14263 	u32 field2_off;
14264 	u32 index1_off;
14265 	u32 index1_width;
14266 	u32 index2_off;
14267 	u32 index2_width;
14268 	u32 mask1;
14269 	u32 value1;
14270 	u32 mask2;
14271 	u32 value2;
14272 };
14273 
14274 /*
14275  * Return an initialized RMT map table for users to fill in.  OK if it
14276  * returns NULL, indicating no table.
14277  */
14278 static struct rsm_map_table *alloc_rsm_map_table(struct hfi1_devdata *dd)
14279 {
14280 	struct rsm_map_table *rmt;
14281 	u8 rxcontext = is_ax(dd) ? 0 : 0xff;  /* 0 is default if a0 ver. */
14282 
14283 	rmt = kmalloc(sizeof(*rmt), GFP_KERNEL);
14284 	if (rmt) {
14285 		memset(rmt->map, rxcontext, sizeof(rmt->map));
14286 		rmt->used = 0;
14287 	}
14288 
14289 	return rmt;
14290 }
14291 
14292 /*
14293  * Write the final RMT map table to the chip and free the table.  OK if
14294  * table is NULL.
14295  */
14296 static void complete_rsm_map_table(struct hfi1_devdata *dd,
14297 				   struct rsm_map_table *rmt)
14298 {
14299 	int i;
14300 
14301 	if (rmt) {
14302 		/* write table to chip */
14303 		for (i = 0; i < NUM_MAP_REGS; i++)
14304 			write_csr(dd, RCV_RSM_MAP_TABLE + (8 * i), rmt->map[i]);
14305 
14306 		/* enable RSM */
14307 		add_rcvctrl(dd, RCV_CTRL_RCV_RSM_ENABLE_SMASK);
14308 	}
14309 }
14310 
14311 /*
14312  * Add a receive side mapping rule.
14313  */
14314 static void add_rsm_rule(struct hfi1_devdata *dd, u8 rule_index,
14315 			 struct rsm_rule_data *rrd)
14316 {
14317 	write_csr(dd, RCV_RSM_CFG + (8 * rule_index),
14318 		  (u64)rrd->offset << RCV_RSM_CFG_OFFSET_SHIFT |
14319 		  1ull << rule_index | /* enable bit */
14320 		  (u64)rrd->pkt_type << RCV_RSM_CFG_PACKET_TYPE_SHIFT);
14321 	write_csr(dd, RCV_RSM_SELECT + (8 * rule_index),
14322 		  (u64)rrd->field1_off << RCV_RSM_SELECT_FIELD1_OFFSET_SHIFT |
14323 		  (u64)rrd->field2_off << RCV_RSM_SELECT_FIELD2_OFFSET_SHIFT |
14324 		  (u64)rrd->index1_off << RCV_RSM_SELECT_INDEX1_OFFSET_SHIFT |
14325 		  (u64)rrd->index1_width << RCV_RSM_SELECT_INDEX1_WIDTH_SHIFT |
14326 		  (u64)rrd->index2_off << RCV_RSM_SELECT_INDEX2_OFFSET_SHIFT |
14327 		  (u64)rrd->index2_width << RCV_RSM_SELECT_INDEX2_WIDTH_SHIFT);
14328 	write_csr(dd, RCV_RSM_MATCH + (8 * rule_index),
14329 		  (u64)rrd->mask1 << RCV_RSM_MATCH_MASK1_SHIFT |
14330 		  (u64)rrd->value1 << RCV_RSM_MATCH_VALUE1_SHIFT |
14331 		  (u64)rrd->mask2 << RCV_RSM_MATCH_MASK2_SHIFT |
14332 		  (u64)rrd->value2 << RCV_RSM_MATCH_VALUE2_SHIFT);
14333 }
14334 
14335 /*
14336  * Clear a receive side mapping rule.
14337  */
14338 static void clear_rsm_rule(struct hfi1_devdata *dd, u8 rule_index)
14339 {
14340 	write_csr(dd, RCV_RSM_CFG + (8 * rule_index), 0);
14341 	write_csr(dd, RCV_RSM_SELECT + (8 * rule_index), 0);
14342 	write_csr(dd, RCV_RSM_MATCH + (8 * rule_index), 0);
14343 }
14344 
14345 /* return the number of RSM map table entries that will be used for QOS */
14346 static int qos_rmt_entries(struct hfi1_devdata *dd, unsigned int *mp,
14347 			   unsigned int *np)
14348 {
14349 	int i;
14350 	unsigned int m, n;
14351 	u8 max_by_vl = 0;
14352 
14353 	/* is QOS active at all? */
14354 	if (dd->n_krcv_queues <= MIN_KERNEL_KCTXTS ||
14355 	    num_vls == 1 ||
14356 	    krcvqsset <= 1)
14357 		goto no_qos;
14358 
14359 	/* determine bits for qpn */
14360 	for (i = 0; i < min_t(unsigned int, num_vls, krcvqsset); i++)
14361 		if (krcvqs[i] > max_by_vl)
14362 			max_by_vl = krcvqs[i];
14363 	if (max_by_vl > 32)
14364 		goto no_qos;
14365 	m = ilog2(__roundup_pow_of_two(max_by_vl));
14366 
14367 	/* determine bits for vl */
14368 	n = ilog2(__roundup_pow_of_two(num_vls));
14369 
14370 	/* reject if too much is used */
14371 	if ((m + n) > 7)
14372 		goto no_qos;
14373 
14374 	if (mp)
14375 		*mp = m;
14376 	if (np)
14377 		*np = n;
14378 
14379 	return 1 << (m + n);
14380 
14381 no_qos:
14382 	if (mp)
14383 		*mp = 0;
14384 	if (np)
14385 		*np = 0;
14386 	return 0;
14387 }
14388 
14389 /**
14390  * init_qos - init RX qos
14391  * @dd - device data
14392  * @rmt - RSM map table
14393  *
14394  * This routine initializes Rule 0 and the RSM map table to implement
14395  * quality of service (qos).
14396  *
14397  * If all of the limit tests succeed, qos is applied based on the array
14398  * interpretation of krcvqs where entry 0 is VL0.
14399  *
14400  * The number of vl bits (n) and the number of qpn bits (m) are computed to
14401  * feed both the RSM map table and the single rule.
14402  */
14403 static void init_qos(struct hfi1_devdata *dd, struct rsm_map_table *rmt)
14404 {
14405 	struct rsm_rule_data rrd;
14406 	unsigned qpns_per_vl, ctxt, i, qpn, n = 1, m;
14407 	unsigned int rmt_entries;
14408 	u64 reg;
14409 
14410 	if (!rmt)
14411 		goto bail;
14412 	rmt_entries = qos_rmt_entries(dd, &m, &n);
14413 	if (rmt_entries == 0)
14414 		goto bail;
14415 	qpns_per_vl = 1 << m;
14416 
14417 	/* enough room in the map table? */
14418 	rmt_entries = 1 << (m + n);
14419 	if (rmt->used + rmt_entries >= NUM_MAP_ENTRIES)
14420 		goto bail;
14421 
14422 	/* add qos entries to the the RSM map table */
14423 	for (i = 0, ctxt = FIRST_KERNEL_KCTXT; i < num_vls; i++) {
14424 		unsigned tctxt;
14425 
14426 		for (qpn = 0, tctxt = ctxt;
14427 		     krcvqs[i] && qpn < qpns_per_vl; qpn++) {
14428 			unsigned idx, regoff, regidx;
14429 
14430 			/* generate the index the hardware will produce */
14431 			idx = rmt->used + ((qpn << n) ^ i);
14432 			regoff = (idx % 8) * 8;
14433 			regidx = idx / 8;
14434 			/* replace default with context number */
14435 			reg = rmt->map[regidx];
14436 			reg &= ~(RCV_RSM_MAP_TABLE_RCV_CONTEXT_A_MASK
14437 				<< regoff);
14438 			reg |= (u64)(tctxt++) << regoff;
14439 			rmt->map[regidx] = reg;
14440 			if (tctxt == ctxt + krcvqs[i])
14441 				tctxt = ctxt;
14442 		}
14443 		ctxt += krcvqs[i];
14444 	}
14445 
14446 	rrd.offset = rmt->used;
14447 	rrd.pkt_type = 2;
14448 	rrd.field1_off = LRH_BTH_MATCH_OFFSET;
14449 	rrd.field2_off = LRH_SC_MATCH_OFFSET;
14450 	rrd.index1_off = LRH_SC_SELECT_OFFSET;
14451 	rrd.index1_width = n;
14452 	rrd.index2_off = QPN_SELECT_OFFSET;
14453 	rrd.index2_width = m + n;
14454 	rrd.mask1 = LRH_BTH_MASK;
14455 	rrd.value1 = LRH_BTH_VALUE;
14456 	rrd.mask2 = LRH_SC_MASK;
14457 	rrd.value2 = LRH_SC_VALUE;
14458 
14459 	/* add rule 0 */
14460 	add_rsm_rule(dd, RSM_INS_VERBS, &rrd);
14461 
14462 	/* mark RSM map entries as used */
14463 	rmt->used += rmt_entries;
14464 	/* map everything else to the mcast/err/vl15 context */
14465 	init_qpmap_table(dd, HFI1_CTRL_CTXT, HFI1_CTRL_CTXT);
14466 	dd->qos_shift = n + 1;
14467 	return;
14468 bail:
14469 	dd->qos_shift = 1;
14470 	init_qpmap_table(dd, FIRST_KERNEL_KCTXT, dd->n_krcv_queues - 1);
14471 }
14472 
14473 static void init_user_fecn_handling(struct hfi1_devdata *dd,
14474 				    struct rsm_map_table *rmt)
14475 {
14476 	struct rsm_rule_data rrd;
14477 	u64 reg;
14478 	int i, idx, regoff, regidx;
14479 	u8 offset;
14480 
14481 	/* there needs to be enough room in the map table */
14482 	if (rmt->used + dd->num_user_contexts >= NUM_MAP_ENTRIES) {
14483 		dd_dev_err(dd, "User FECN handling disabled - too many user contexts allocated\n");
14484 		return;
14485 	}
14486 
14487 	/*
14488 	 * RSM will extract the destination context as an index into the
14489 	 * map table.  The destination contexts are a sequential block
14490 	 * in the range first_dyn_alloc_ctxt...num_rcv_contexts-1 (inclusive).
14491 	 * Map entries are accessed as offset + extracted value.  Adjust
14492 	 * the added offset so this sequence can be placed anywhere in
14493 	 * the table - as long as the entries themselves do not wrap.
14494 	 * There are only enough bits in offset for the table size, so
14495 	 * start with that to allow for a "negative" offset.
14496 	 */
14497 	offset = (u8)(NUM_MAP_ENTRIES + (int)rmt->used -
14498 						(int)dd->first_dyn_alloc_ctxt);
14499 
14500 	for (i = dd->first_dyn_alloc_ctxt, idx = rmt->used;
14501 				i < dd->num_rcv_contexts; i++, idx++) {
14502 		/* replace with identity mapping */
14503 		regoff = (idx % 8) * 8;
14504 		regidx = idx / 8;
14505 		reg = rmt->map[regidx];
14506 		reg &= ~(RCV_RSM_MAP_TABLE_RCV_CONTEXT_A_MASK << regoff);
14507 		reg |= (u64)i << regoff;
14508 		rmt->map[regidx] = reg;
14509 	}
14510 
14511 	/*
14512 	 * For RSM intercept of Expected FECN packets:
14513 	 * o packet type 0 - expected
14514 	 * o match on F (bit 95), using select/match 1, and
14515 	 * o match on SH (bit 133), using select/match 2.
14516 	 *
14517 	 * Use index 1 to extract the 8-bit receive context from DestQP
14518 	 * (start at bit 64).  Use that as the RSM map table index.
14519 	 */
14520 	rrd.offset = offset;
14521 	rrd.pkt_type = 0;
14522 	rrd.field1_off = 95;
14523 	rrd.field2_off = 133;
14524 	rrd.index1_off = 64;
14525 	rrd.index1_width = 8;
14526 	rrd.index2_off = 0;
14527 	rrd.index2_width = 0;
14528 	rrd.mask1 = 1;
14529 	rrd.value1 = 1;
14530 	rrd.mask2 = 1;
14531 	rrd.value2 = 1;
14532 
14533 	/* add rule 1 */
14534 	add_rsm_rule(dd, RSM_INS_FECN, &rrd);
14535 
14536 	rmt->used += dd->num_user_contexts;
14537 }
14538 
14539 /* Initialize RSM for VNIC */
14540 void hfi1_init_vnic_rsm(struct hfi1_devdata *dd)
14541 {
14542 	u8 i, j;
14543 	u8 ctx_id = 0;
14544 	u64 reg;
14545 	u32 regoff;
14546 	struct rsm_rule_data rrd;
14547 
14548 	if (hfi1_vnic_is_rsm_full(dd, NUM_VNIC_MAP_ENTRIES)) {
14549 		dd_dev_err(dd, "Vnic RSM disabled, rmt entries used = %d\n",
14550 			   dd->vnic.rmt_start);
14551 		return;
14552 	}
14553 
14554 	dev_dbg(&(dd)->pcidev->dev, "Vnic rsm start = %d, end %d\n",
14555 		dd->vnic.rmt_start,
14556 		dd->vnic.rmt_start + NUM_VNIC_MAP_ENTRIES);
14557 
14558 	/* Update RSM mapping table, 32 regs, 256 entries - 1 ctx per byte */
14559 	regoff = RCV_RSM_MAP_TABLE + (dd->vnic.rmt_start / 8) * 8;
14560 	reg = read_csr(dd, regoff);
14561 	for (i = 0; i < NUM_VNIC_MAP_ENTRIES; i++) {
14562 		/* Update map register with vnic context */
14563 		j = (dd->vnic.rmt_start + i) % 8;
14564 		reg &= ~(0xffllu << (j * 8));
14565 		reg |= (u64)dd->vnic.ctxt[ctx_id++]->ctxt << (j * 8);
14566 		/* Wrap up vnic ctx index */
14567 		ctx_id %= dd->vnic.num_ctxt;
14568 		/* Write back map register */
14569 		if (j == 7 || ((i + 1) == NUM_VNIC_MAP_ENTRIES)) {
14570 			dev_dbg(&(dd)->pcidev->dev,
14571 				"Vnic rsm map reg[%d] =0x%llx\n",
14572 				regoff - RCV_RSM_MAP_TABLE, reg);
14573 
14574 			write_csr(dd, regoff, reg);
14575 			regoff += 8;
14576 			if (i < (NUM_VNIC_MAP_ENTRIES - 1))
14577 				reg = read_csr(dd, regoff);
14578 		}
14579 	}
14580 
14581 	/* Add rule for vnic */
14582 	rrd.offset = dd->vnic.rmt_start;
14583 	rrd.pkt_type = 4;
14584 	/* Match 16B packets */
14585 	rrd.field1_off = L2_TYPE_MATCH_OFFSET;
14586 	rrd.mask1 = L2_TYPE_MASK;
14587 	rrd.value1 = L2_16B_VALUE;
14588 	/* Match ETH L4 packets */
14589 	rrd.field2_off = L4_TYPE_MATCH_OFFSET;
14590 	rrd.mask2 = L4_16B_TYPE_MASK;
14591 	rrd.value2 = L4_16B_ETH_VALUE;
14592 	/* Calc context from veswid and entropy */
14593 	rrd.index1_off = L4_16B_HDR_VESWID_OFFSET;
14594 	rrd.index1_width = ilog2(NUM_VNIC_MAP_ENTRIES);
14595 	rrd.index2_off = L2_16B_ENTROPY_OFFSET;
14596 	rrd.index2_width = ilog2(NUM_VNIC_MAP_ENTRIES);
14597 	add_rsm_rule(dd, RSM_INS_VNIC, &rrd);
14598 
14599 	/* Enable RSM if not already enabled */
14600 	add_rcvctrl(dd, RCV_CTRL_RCV_RSM_ENABLE_SMASK);
14601 }
14602 
14603 void hfi1_deinit_vnic_rsm(struct hfi1_devdata *dd)
14604 {
14605 	clear_rsm_rule(dd, RSM_INS_VNIC);
14606 
14607 	/* Disable RSM if used only by vnic */
14608 	if (dd->vnic.rmt_start == 0)
14609 		clear_rcvctrl(dd, RCV_CTRL_RCV_RSM_ENABLE_SMASK);
14610 }
14611 
14612 static void init_rxe(struct hfi1_devdata *dd)
14613 {
14614 	struct rsm_map_table *rmt;
14615 	u64 val;
14616 
14617 	/* enable all receive errors */
14618 	write_csr(dd, RCV_ERR_MASK, ~0ull);
14619 
14620 	rmt = alloc_rsm_map_table(dd);
14621 	/* set up QOS, including the QPN map table */
14622 	init_qos(dd, rmt);
14623 	init_user_fecn_handling(dd, rmt);
14624 	complete_rsm_map_table(dd, rmt);
14625 	/* record number of used rsm map entries for vnic */
14626 	dd->vnic.rmt_start = rmt->used;
14627 	kfree(rmt);
14628 
14629 	/*
14630 	 * make sure RcvCtrl.RcvWcb <= PCIe Device Control
14631 	 * Register Max_Payload_Size (PCI_EXP_DEVCTL in Linux PCIe config
14632 	 * space, PciCfgCap2.MaxPayloadSize in HFI).  There is only one
14633 	 * invalid configuration: RcvCtrl.RcvWcb set to its max of 256 and
14634 	 * Max_PayLoad_Size set to its minimum of 128.
14635 	 *
14636 	 * Presently, RcvCtrl.RcvWcb is not modified from its default of 0
14637 	 * (64 bytes).  Max_Payload_Size is possibly modified upward in
14638 	 * tune_pcie_caps() which is called after this routine.
14639 	 */
14640 
14641 	/* Have 16 bytes (4DW) of bypass header available in header queue */
14642 	val = read_csr(dd, RCV_BYPASS);
14643 	val &= ~RCV_BYPASS_HDR_SIZE_SMASK;
14644 	val |= ((4ull & RCV_BYPASS_HDR_SIZE_MASK) <<
14645 		RCV_BYPASS_HDR_SIZE_SHIFT);
14646 	write_csr(dd, RCV_BYPASS, val);
14647 }
14648 
14649 static void init_other(struct hfi1_devdata *dd)
14650 {
14651 	/* enable all CCE errors */
14652 	write_csr(dd, CCE_ERR_MASK, ~0ull);
14653 	/* enable *some* Misc errors */
14654 	write_csr(dd, MISC_ERR_MASK, DRIVER_MISC_MASK);
14655 	/* enable all DC errors, except LCB */
14656 	write_csr(dd, DCC_ERR_FLG_EN, ~0ull);
14657 	write_csr(dd, DC_DC8051_ERR_EN, ~0ull);
14658 }
14659 
14660 /*
14661  * Fill out the given AU table using the given CU.  A CU is defined in terms
14662  * AUs.  The table is a an encoding: given the index, how many AUs does that
14663  * represent?
14664  *
14665  * NOTE: Assumes that the register layout is the same for the
14666  * local and remote tables.
14667  */
14668 static void assign_cm_au_table(struct hfi1_devdata *dd, u32 cu,
14669 			       u32 csr0to3, u32 csr4to7)
14670 {
14671 	write_csr(dd, csr0to3,
14672 		  0ull << SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE0_SHIFT |
14673 		  1ull << SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE1_SHIFT |
14674 		  2ull * cu <<
14675 		  SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE2_SHIFT |
14676 		  4ull * cu <<
14677 		  SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE3_SHIFT);
14678 	write_csr(dd, csr4to7,
14679 		  8ull * cu <<
14680 		  SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE4_SHIFT |
14681 		  16ull * cu <<
14682 		  SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE5_SHIFT |
14683 		  32ull * cu <<
14684 		  SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE6_SHIFT |
14685 		  64ull * cu <<
14686 		  SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE7_SHIFT);
14687 }
14688 
14689 static void assign_local_cm_au_table(struct hfi1_devdata *dd, u8 vcu)
14690 {
14691 	assign_cm_au_table(dd, vcu_to_cu(vcu), SEND_CM_LOCAL_AU_TABLE0_TO3,
14692 			   SEND_CM_LOCAL_AU_TABLE4_TO7);
14693 }
14694 
14695 void assign_remote_cm_au_table(struct hfi1_devdata *dd, u8 vcu)
14696 {
14697 	assign_cm_au_table(dd, vcu_to_cu(vcu), SEND_CM_REMOTE_AU_TABLE0_TO3,
14698 			   SEND_CM_REMOTE_AU_TABLE4_TO7);
14699 }
14700 
14701 static void init_txe(struct hfi1_devdata *dd)
14702 {
14703 	int i;
14704 
14705 	/* enable all PIO, SDMA, general, and Egress errors */
14706 	write_csr(dd, SEND_PIO_ERR_MASK, ~0ull);
14707 	write_csr(dd, SEND_DMA_ERR_MASK, ~0ull);
14708 	write_csr(dd, SEND_ERR_MASK, ~0ull);
14709 	write_csr(dd, SEND_EGRESS_ERR_MASK, ~0ull);
14710 
14711 	/* enable all per-context and per-SDMA engine errors */
14712 	for (i = 0; i < dd->chip_send_contexts; i++)
14713 		write_kctxt_csr(dd, i, SEND_CTXT_ERR_MASK, ~0ull);
14714 	for (i = 0; i < dd->chip_sdma_engines; i++)
14715 		write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_MASK, ~0ull);
14716 
14717 	/* set the local CU to AU mapping */
14718 	assign_local_cm_au_table(dd, dd->vcu);
14719 
14720 	/*
14721 	 * Set reasonable default for Credit Return Timer
14722 	 * Don't set on Simulator - causes it to choke.
14723 	 */
14724 	if (dd->icode != ICODE_FUNCTIONAL_SIMULATOR)
14725 		write_csr(dd, SEND_CM_TIMER_CTRL, HFI1_CREDIT_RETURN_RATE);
14726 }
14727 
14728 int hfi1_set_ctxt_jkey(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd,
14729 		       u16 jkey)
14730 {
14731 	u8 hw_ctxt;
14732 	u64 reg;
14733 
14734 	if (!rcd || !rcd->sc)
14735 		return -EINVAL;
14736 
14737 	hw_ctxt = rcd->sc->hw_context;
14738 	reg = SEND_CTXT_CHECK_JOB_KEY_MASK_SMASK | /* mask is always 1's */
14739 		((jkey & SEND_CTXT_CHECK_JOB_KEY_VALUE_MASK) <<
14740 		 SEND_CTXT_CHECK_JOB_KEY_VALUE_SHIFT);
14741 	/* JOB_KEY_ALLOW_PERMISSIVE is not allowed by default */
14742 	if (HFI1_CAP_KGET_MASK(rcd->flags, ALLOW_PERM_JKEY))
14743 		reg |= SEND_CTXT_CHECK_JOB_KEY_ALLOW_PERMISSIVE_SMASK;
14744 	write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_JOB_KEY, reg);
14745 	/*
14746 	 * Enable send-side J_KEY integrity check, unless this is A0 h/w
14747 	 */
14748 	if (!is_ax(dd)) {
14749 		reg = read_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE);
14750 		reg |= SEND_CTXT_CHECK_ENABLE_CHECK_JOB_KEY_SMASK;
14751 		write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE, reg);
14752 	}
14753 
14754 	/* Enable J_KEY check on receive context. */
14755 	reg = RCV_KEY_CTRL_JOB_KEY_ENABLE_SMASK |
14756 		((jkey & RCV_KEY_CTRL_JOB_KEY_VALUE_MASK) <<
14757 		 RCV_KEY_CTRL_JOB_KEY_VALUE_SHIFT);
14758 	write_kctxt_csr(dd, rcd->ctxt, RCV_KEY_CTRL, reg);
14759 
14760 	return 0;
14761 }
14762 
14763 int hfi1_clear_ctxt_jkey(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd)
14764 {
14765 	u8 hw_ctxt;
14766 	u64 reg;
14767 
14768 	if (!rcd || !rcd->sc)
14769 		return -EINVAL;
14770 
14771 	hw_ctxt = rcd->sc->hw_context;
14772 	write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_JOB_KEY, 0);
14773 	/*
14774 	 * Disable send-side J_KEY integrity check, unless this is A0 h/w.
14775 	 * This check would not have been enabled for A0 h/w, see
14776 	 * set_ctxt_jkey().
14777 	 */
14778 	if (!is_ax(dd)) {
14779 		reg = read_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE);
14780 		reg &= ~SEND_CTXT_CHECK_ENABLE_CHECK_JOB_KEY_SMASK;
14781 		write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE, reg);
14782 	}
14783 	/* Turn off the J_KEY on the receive side */
14784 	write_kctxt_csr(dd, rcd->ctxt, RCV_KEY_CTRL, 0);
14785 
14786 	return 0;
14787 }
14788 
14789 int hfi1_set_ctxt_pkey(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd,
14790 		       u16 pkey)
14791 {
14792 	u8 hw_ctxt;
14793 	u64 reg;
14794 
14795 	if (!rcd || !rcd->sc)
14796 		return -EINVAL;
14797 
14798 	hw_ctxt = rcd->sc->hw_context;
14799 	reg = ((u64)pkey & SEND_CTXT_CHECK_PARTITION_KEY_VALUE_MASK) <<
14800 		SEND_CTXT_CHECK_PARTITION_KEY_VALUE_SHIFT;
14801 	write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_PARTITION_KEY, reg);
14802 	reg = read_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE);
14803 	reg |= SEND_CTXT_CHECK_ENABLE_CHECK_PARTITION_KEY_SMASK;
14804 	reg &= ~SEND_CTXT_CHECK_ENABLE_DISALLOW_KDETH_PACKETS_SMASK;
14805 	write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE, reg);
14806 
14807 	return 0;
14808 }
14809 
14810 int hfi1_clear_ctxt_pkey(struct hfi1_devdata *dd, struct hfi1_ctxtdata *ctxt)
14811 {
14812 	u8 hw_ctxt;
14813 	u64 reg;
14814 
14815 	if (!ctxt || !ctxt->sc)
14816 		return -EINVAL;
14817 
14818 	hw_ctxt = ctxt->sc->hw_context;
14819 	reg = read_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE);
14820 	reg &= ~SEND_CTXT_CHECK_ENABLE_CHECK_PARTITION_KEY_SMASK;
14821 	write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE, reg);
14822 	write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_PARTITION_KEY, 0);
14823 
14824 	return 0;
14825 }
14826 
14827 /*
14828  * Start doing the clean up the the chip. Our clean up happens in multiple
14829  * stages and this is just the first.
14830  */
14831 void hfi1_start_cleanup(struct hfi1_devdata *dd)
14832 {
14833 	aspm_exit(dd);
14834 	free_cntrs(dd);
14835 	free_rcverr(dd);
14836 	finish_chip_resources(dd);
14837 }
14838 
14839 #define HFI_BASE_GUID(dev) \
14840 	((dev)->base_guid & ~(1ULL << GUID_HFI_INDEX_SHIFT))
14841 
14842 /*
14843  * Information can be shared between the two HFIs on the same ASIC
14844  * in the same OS.  This function finds the peer device and sets
14845  * up a shared structure.
14846  */
14847 static int init_asic_data(struct hfi1_devdata *dd)
14848 {
14849 	unsigned long flags;
14850 	struct hfi1_devdata *tmp, *peer = NULL;
14851 	struct hfi1_asic_data *asic_data;
14852 	int ret = 0;
14853 
14854 	/* pre-allocate the asic structure in case we are the first device */
14855 	asic_data = kzalloc(sizeof(*dd->asic_data), GFP_KERNEL);
14856 	if (!asic_data)
14857 		return -ENOMEM;
14858 
14859 	spin_lock_irqsave(&hfi1_devs_lock, flags);
14860 	/* Find our peer device */
14861 	list_for_each_entry(tmp, &hfi1_dev_list, list) {
14862 		if ((HFI_BASE_GUID(dd) == HFI_BASE_GUID(tmp)) &&
14863 		    dd->unit != tmp->unit) {
14864 			peer = tmp;
14865 			break;
14866 		}
14867 	}
14868 
14869 	if (peer) {
14870 		/* use already allocated structure */
14871 		dd->asic_data = peer->asic_data;
14872 		kfree(asic_data);
14873 	} else {
14874 		dd->asic_data = asic_data;
14875 		mutex_init(&dd->asic_data->asic_resource_mutex);
14876 	}
14877 	dd->asic_data->dds[dd->hfi1_id] = dd; /* self back-pointer */
14878 	spin_unlock_irqrestore(&hfi1_devs_lock, flags);
14879 
14880 	/* first one through - set up i2c devices */
14881 	if (!peer)
14882 		ret = set_up_i2c(dd, dd->asic_data);
14883 
14884 	return ret;
14885 }
14886 
14887 /*
14888  * Set dd->boardname.  Use a generic name if a name is not returned from
14889  * EFI variable space.
14890  *
14891  * Return 0 on success, -ENOMEM if space could not be allocated.
14892  */
14893 static int obtain_boardname(struct hfi1_devdata *dd)
14894 {
14895 	/* generic board description */
14896 	const char generic[] =
14897 		"Intel Omni-Path Host Fabric Interface Adapter 100 Series";
14898 	unsigned long size;
14899 	int ret;
14900 
14901 	ret = read_hfi1_efi_var(dd, "description", &size,
14902 				(void **)&dd->boardname);
14903 	if (ret) {
14904 		dd_dev_info(dd, "Board description not found\n");
14905 		/* use generic description */
14906 		dd->boardname = kstrdup(generic, GFP_KERNEL);
14907 		if (!dd->boardname)
14908 			return -ENOMEM;
14909 	}
14910 	return 0;
14911 }
14912 
14913 /*
14914  * Check the interrupt registers to make sure that they are mapped correctly.
14915  * It is intended to help user identify any mismapping by VMM when the driver
14916  * is running in a VM. This function should only be called before interrupt
14917  * is set up properly.
14918  *
14919  * Return 0 on success, -EINVAL on failure.
14920  */
14921 static int check_int_registers(struct hfi1_devdata *dd)
14922 {
14923 	u64 reg;
14924 	u64 all_bits = ~(u64)0;
14925 	u64 mask;
14926 
14927 	/* Clear CceIntMask[0] to avoid raising any interrupts */
14928 	mask = read_csr(dd, CCE_INT_MASK);
14929 	write_csr(dd, CCE_INT_MASK, 0ull);
14930 	reg = read_csr(dd, CCE_INT_MASK);
14931 	if (reg)
14932 		goto err_exit;
14933 
14934 	/* Clear all interrupt status bits */
14935 	write_csr(dd, CCE_INT_CLEAR, all_bits);
14936 	reg = read_csr(dd, CCE_INT_STATUS);
14937 	if (reg)
14938 		goto err_exit;
14939 
14940 	/* Set all interrupt status bits */
14941 	write_csr(dd, CCE_INT_FORCE, all_bits);
14942 	reg = read_csr(dd, CCE_INT_STATUS);
14943 	if (reg != all_bits)
14944 		goto err_exit;
14945 
14946 	/* Restore the interrupt mask */
14947 	write_csr(dd, CCE_INT_CLEAR, all_bits);
14948 	write_csr(dd, CCE_INT_MASK, mask);
14949 
14950 	return 0;
14951 err_exit:
14952 	write_csr(dd, CCE_INT_MASK, mask);
14953 	dd_dev_err(dd, "Interrupt registers not properly mapped by VMM\n");
14954 	return -EINVAL;
14955 }
14956 
14957 /**
14958  * Allocate and initialize the device structure for the hfi.
14959  * @dev: the pci_dev for hfi1_ib device
14960  * @ent: pci_device_id struct for this dev
14961  *
14962  * Also allocates, initializes, and returns the devdata struct for this
14963  * device instance
14964  *
14965  * This is global, and is called directly at init to set up the
14966  * chip-specific function pointers for later use.
14967  */
14968 struct hfi1_devdata *hfi1_init_dd(struct pci_dev *pdev,
14969 				  const struct pci_device_id *ent)
14970 {
14971 	struct hfi1_devdata *dd;
14972 	struct hfi1_pportdata *ppd;
14973 	u64 reg;
14974 	int i, ret;
14975 	static const char * const inames[] = { /* implementation names */
14976 		"RTL silicon",
14977 		"RTL VCS simulation",
14978 		"RTL FPGA emulation",
14979 		"Functional simulator"
14980 	};
14981 	struct pci_dev *parent = pdev->bus->self;
14982 
14983 	dd = hfi1_alloc_devdata(pdev, NUM_IB_PORTS *
14984 				sizeof(struct hfi1_pportdata));
14985 	if (IS_ERR(dd))
14986 		goto bail;
14987 	ppd = dd->pport;
14988 	for (i = 0; i < dd->num_pports; i++, ppd++) {
14989 		int vl;
14990 		/* init common fields */
14991 		hfi1_init_pportdata(pdev, ppd, dd, 0, 1);
14992 		/* DC supports 4 link widths */
14993 		ppd->link_width_supported =
14994 			OPA_LINK_WIDTH_1X | OPA_LINK_WIDTH_2X |
14995 			OPA_LINK_WIDTH_3X | OPA_LINK_WIDTH_4X;
14996 		ppd->link_width_downgrade_supported =
14997 			ppd->link_width_supported;
14998 		/* start out enabling only 4X */
14999 		ppd->link_width_enabled = OPA_LINK_WIDTH_4X;
15000 		ppd->link_width_downgrade_enabled =
15001 					ppd->link_width_downgrade_supported;
15002 		/* link width active is 0 when link is down */
15003 		/* link width downgrade active is 0 when link is down */
15004 
15005 		if (num_vls < HFI1_MIN_VLS_SUPPORTED ||
15006 		    num_vls > HFI1_MAX_VLS_SUPPORTED) {
15007 			dd_dev_err(dd, "Invalid num_vls %u, using %u VLs\n",
15008 				   num_vls, HFI1_MAX_VLS_SUPPORTED);
15009 			num_vls = HFI1_MAX_VLS_SUPPORTED;
15010 		}
15011 		ppd->vls_supported = num_vls;
15012 		ppd->vls_operational = ppd->vls_supported;
15013 		/* Set the default MTU. */
15014 		for (vl = 0; vl < num_vls; vl++)
15015 			dd->vld[vl].mtu = hfi1_max_mtu;
15016 		dd->vld[15].mtu = MAX_MAD_PACKET;
15017 		/*
15018 		 * Set the initial values to reasonable default, will be set
15019 		 * for real when link is up.
15020 		 */
15021 		ppd->overrun_threshold = 0x4;
15022 		ppd->phy_error_threshold = 0xf;
15023 		ppd->port_crc_mode_enabled = link_crc_mask;
15024 		/* initialize supported LTP CRC mode */
15025 		ppd->port_ltp_crc_mode = cap_to_port_ltp(link_crc_mask) << 8;
15026 		/* initialize enabled LTP CRC mode */
15027 		ppd->port_ltp_crc_mode |= cap_to_port_ltp(link_crc_mask) << 4;
15028 		/* start in offline */
15029 		ppd->host_link_state = HLS_DN_OFFLINE;
15030 		init_vl_arb_caches(ppd);
15031 	}
15032 
15033 	/*
15034 	 * Do remaining PCIe setup and save PCIe values in dd.
15035 	 * Any error printing is already done by the init code.
15036 	 * On return, we have the chip mapped.
15037 	 */
15038 	ret = hfi1_pcie_ddinit(dd, pdev);
15039 	if (ret < 0)
15040 		goto bail_free;
15041 
15042 	/* Save PCI space registers to rewrite after device reset */
15043 	ret = save_pci_variables(dd);
15044 	if (ret < 0)
15045 		goto bail_cleanup;
15046 
15047 	dd->majrev = (dd->revision >> CCE_REVISION_CHIP_REV_MAJOR_SHIFT)
15048 			& CCE_REVISION_CHIP_REV_MAJOR_MASK;
15049 	dd->minrev = (dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT)
15050 			& CCE_REVISION_CHIP_REV_MINOR_MASK;
15051 
15052 	/*
15053 	 * Check interrupt registers mapping if the driver has no access to
15054 	 * the upstream component. In this case, it is likely that the driver
15055 	 * is running in a VM.
15056 	 */
15057 	if (!parent) {
15058 		ret = check_int_registers(dd);
15059 		if (ret)
15060 			goto bail_cleanup;
15061 	}
15062 
15063 	/*
15064 	 * obtain the hardware ID - NOT related to unit, which is a
15065 	 * software enumeration
15066 	 */
15067 	reg = read_csr(dd, CCE_REVISION2);
15068 	dd->hfi1_id = (reg >> CCE_REVISION2_HFI_ID_SHIFT)
15069 					& CCE_REVISION2_HFI_ID_MASK;
15070 	/* the variable size will remove unwanted bits */
15071 	dd->icode = reg >> CCE_REVISION2_IMPL_CODE_SHIFT;
15072 	dd->irev = reg >> CCE_REVISION2_IMPL_REVISION_SHIFT;
15073 	dd_dev_info(dd, "Implementation: %s, revision 0x%x\n",
15074 		    dd->icode < ARRAY_SIZE(inames) ?
15075 		    inames[dd->icode] : "unknown", (int)dd->irev);
15076 
15077 	/* speeds the hardware can support */
15078 	dd->pport->link_speed_supported = OPA_LINK_SPEED_25G;
15079 	/* speeds allowed to run at */
15080 	dd->pport->link_speed_enabled = dd->pport->link_speed_supported;
15081 	/* give a reasonable active value, will be set on link up */
15082 	dd->pport->link_speed_active = OPA_LINK_SPEED_25G;
15083 
15084 	dd->chip_rcv_contexts = read_csr(dd, RCV_CONTEXTS);
15085 	dd->chip_send_contexts = read_csr(dd, SEND_CONTEXTS);
15086 	dd->chip_sdma_engines = read_csr(dd, SEND_DMA_ENGINES);
15087 	dd->chip_pio_mem_size = read_csr(dd, SEND_PIO_MEM_SIZE);
15088 	dd->chip_sdma_mem_size = read_csr(dd, SEND_DMA_MEM_SIZE);
15089 	/* fix up link widths for emulation _p */
15090 	ppd = dd->pport;
15091 	if (dd->icode == ICODE_FPGA_EMULATION && is_emulator_p(dd)) {
15092 		ppd->link_width_supported =
15093 			ppd->link_width_enabled =
15094 			ppd->link_width_downgrade_supported =
15095 			ppd->link_width_downgrade_enabled =
15096 				OPA_LINK_WIDTH_1X;
15097 	}
15098 	/* insure num_vls isn't larger than number of sdma engines */
15099 	if (HFI1_CAP_IS_KSET(SDMA) && num_vls > dd->chip_sdma_engines) {
15100 		dd_dev_err(dd, "num_vls %u too large, using %u VLs\n",
15101 			   num_vls, dd->chip_sdma_engines);
15102 		num_vls = dd->chip_sdma_engines;
15103 		ppd->vls_supported = dd->chip_sdma_engines;
15104 		ppd->vls_operational = ppd->vls_supported;
15105 	}
15106 
15107 	/*
15108 	 * Convert the ns parameter to the 64 * cclocks used in the CSR.
15109 	 * Limit the max if larger than the field holds.  If timeout is
15110 	 * non-zero, then the calculated field will be at least 1.
15111 	 *
15112 	 * Must be after icode is set up - the cclock rate depends
15113 	 * on knowing the hardware being used.
15114 	 */
15115 	dd->rcv_intr_timeout_csr = ns_to_cclock(dd, rcv_intr_timeout) / 64;
15116 	if (dd->rcv_intr_timeout_csr >
15117 			RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_MASK)
15118 		dd->rcv_intr_timeout_csr =
15119 			RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_MASK;
15120 	else if (dd->rcv_intr_timeout_csr == 0 && rcv_intr_timeout)
15121 		dd->rcv_intr_timeout_csr = 1;
15122 
15123 	/* needs to be done before we look for the peer device */
15124 	read_guid(dd);
15125 
15126 	/* set up shared ASIC data with peer device */
15127 	ret = init_asic_data(dd);
15128 	if (ret)
15129 		goto bail_cleanup;
15130 
15131 	/* obtain chip sizes, reset chip CSRs */
15132 	ret = init_chip(dd);
15133 	if (ret)
15134 		goto bail_cleanup;
15135 
15136 	/* read in the PCIe link speed information */
15137 	ret = pcie_speeds(dd);
15138 	if (ret)
15139 		goto bail_cleanup;
15140 
15141 	/* call before get_platform_config(), after init_chip_resources() */
15142 	ret = eprom_init(dd);
15143 	if (ret)
15144 		goto bail_free_rcverr;
15145 
15146 	/* Needs to be called before hfi1_firmware_init */
15147 	get_platform_config(dd);
15148 
15149 	/* read in firmware */
15150 	ret = hfi1_firmware_init(dd);
15151 	if (ret)
15152 		goto bail_cleanup;
15153 
15154 	/*
15155 	 * In general, the PCIe Gen3 transition must occur after the
15156 	 * chip has been idled (so it won't initiate any PCIe transactions
15157 	 * e.g. an interrupt) and before the driver changes any registers
15158 	 * (the transition will reset the registers).
15159 	 *
15160 	 * In particular, place this call after:
15161 	 * - init_chip()     - the chip will not initiate any PCIe transactions
15162 	 * - pcie_speeds()   - reads the current link speed
15163 	 * - hfi1_firmware_init() - the needed firmware is ready to be
15164 	 *			    downloaded
15165 	 */
15166 	ret = do_pcie_gen3_transition(dd);
15167 	if (ret)
15168 		goto bail_cleanup;
15169 
15170 	/* start setting dd values and adjusting CSRs */
15171 	init_early_variables(dd);
15172 
15173 	parse_platform_config(dd);
15174 
15175 	ret = obtain_boardname(dd);
15176 	if (ret)
15177 		goto bail_cleanup;
15178 
15179 	snprintf(dd->boardversion, BOARD_VERS_MAX,
15180 		 "ChipABI %u.%u, ChipRev %u.%u, SW Compat %llu\n",
15181 		 HFI1_CHIP_VERS_MAJ, HFI1_CHIP_VERS_MIN,
15182 		 (u32)dd->majrev,
15183 		 (u32)dd->minrev,
15184 		 (dd->revision >> CCE_REVISION_SW_SHIFT)
15185 		    & CCE_REVISION_SW_MASK);
15186 
15187 	ret = set_up_context_variables(dd);
15188 	if (ret)
15189 		goto bail_cleanup;
15190 
15191 	/* set initial RXE CSRs */
15192 	init_rxe(dd);
15193 	/* set initial TXE CSRs */
15194 	init_txe(dd);
15195 	/* set initial non-RXE, non-TXE CSRs */
15196 	init_other(dd);
15197 	/* set up KDETH QP prefix in both RX and TX CSRs */
15198 	init_kdeth_qp(dd);
15199 
15200 	ret = hfi1_dev_affinity_init(dd);
15201 	if (ret)
15202 		goto bail_cleanup;
15203 
15204 	/* send contexts must be set up before receive contexts */
15205 	ret = init_send_contexts(dd);
15206 	if (ret)
15207 		goto bail_cleanup;
15208 
15209 	ret = hfi1_create_kctxts(dd);
15210 	if (ret)
15211 		goto bail_cleanup;
15212 
15213 	/*
15214 	 * Initialize aspm, to be done after gen3 transition and setting up
15215 	 * contexts and before enabling interrupts
15216 	 */
15217 	aspm_init(dd);
15218 
15219 	dd->rcvhdrsize = DEFAULT_RCVHDRSIZE;
15220 	/*
15221 	 * rcd[0] is guaranteed to be valid by this point. Also, all
15222 	 * context are using the same value, as per the module parameter.
15223 	 */
15224 	dd->rhf_offset = dd->rcd[0]->rcvhdrqentsize - sizeof(u64) / sizeof(u32);
15225 
15226 	ret = init_pervl_scs(dd);
15227 	if (ret)
15228 		goto bail_cleanup;
15229 
15230 	/* sdma init */
15231 	for (i = 0; i < dd->num_pports; ++i) {
15232 		ret = sdma_init(dd, i);
15233 		if (ret)
15234 			goto bail_cleanup;
15235 	}
15236 
15237 	/* use contexts created by hfi1_create_kctxts */
15238 	ret = set_up_interrupts(dd);
15239 	if (ret)
15240 		goto bail_cleanup;
15241 
15242 	ret = hfi1_comp_vectors_set_up(dd);
15243 	if (ret)
15244 		goto bail_clear_intr;
15245 
15246 	/* set up LCB access - must be after set_up_interrupts() */
15247 	init_lcb_access(dd);
15248 
15249 	/*
15250 	 * Serial number is created from the base guid:
15251 	 * [27:24] = base guid [38:35]
15252 	 * [23: 0] = base guid [23: 0]
15253 	 */
15254 	snprintf(dd->serial, SERIAL_MAX, "0x%08llx\n",
15255 		 (dd->base_guid & 0xFFFFFF) |
15256 		     ((dd->base_guid >> 11) & 0xF000000));
15257 
15258 	dd->oui1 = dd->base_guid >> 56 & 0xFF;
15259 	dd->oui2 = dd->base_guid >> 48 & 0xFF;
15260 	dd->oui3 = dd->base_guid >> 40 & 0xFF;
15261 
15262 	ret = load_firmware(dd); /* asymmetric with dispose_firmware() */
15263 	if (ret)
15264 		goto bail_clear_intr;
15265 
15266 	thermal_init(dd);
15267 
15268 	ret = init_cntrs(dd);
15269 	if (ret)
15270 		goto bail_clear_intr;
15271 
15272 	ret = init_rcverr(dd);
15273 	if (ret)
15274 		goto bail_free_cntrs;
15275 
15276 	init_completion(&dd->user_comp);
15277 
15278 	/* The user refcount starts with one to inidicate an active device */
15279 	atomic_set(&dd->user_refcount, 1);
15280 
15281 	goto bail;
15282 
15283 bail_free_rcverr:
15284 	free_rcverr(dd);
15285 bail_free_cntrs:
15286 	free_cntrs(dd);
15287 bail_clear_intr:
15288 	hfi1_comp_vectors_clean_up(dd);
15289 	hfi1_clean_up_interrupts(dd);
15290 bail_cleanup:
15291 	hfi1_pcie_ddcleanup(dd);
15292 bail_free:
15293 	hfi1_free_devdata(dd);
15294 	dd = ERR_PTR(ret);
15295 bail:
15296 	return dd;
15297 }
15298 
15299 static u16 delay_cycles(struct hfi1_pportdata *ppd, u32 desired_egress_rate,
15300 			u32 dw_len)
15301 {
15302 	u32 delta_cycles;
15303 	u32 current_egress_rate = ppd->current_egress_rate;
15304 	/* rates here are in units of 10^6 bits/sec */
15305 
15306 	if (desired_egress_rate == -1)
15307 		return 0; /* shouldn't happen */
15308 
15309 	if (desired_egress_rate >= current_egress_rate)
15310 		return 0; /* we can't help go faster, only slower */
15311 
15312 	delta_cycles = egress_cycles(dw_len * 4, desired_egress_rate) -
15313 			egress_cycles(dw_len * 4, current_egress_rate);
15314 
15315 	return (u16)delta_cycles;
15316 }
15317 
15318 /**
15319  * create_pbc - build a pbc for transmission
15320  * @flags: special case flags or-ed in built pbc
15321  * @srate: static rate
15322  * @vl: vl
15323  * @dwlen: dword length (header words + data words + pbc words)
15324  *
15325  * Create a PBC with the given flags, rate, VL, and length.
15326  *
15327  * NOTE: The PBC created will not insert any HCRC - all callers but one are
15328  * for verbs, which does not use this PSM feature.  The lone other caller
15329  * is for the diagnostic interface which calls this if the user does not
15330  * supply their own PBC.
15331  */
15332 u64 create_pbc(struct hfi1_pportdata *ppd, u64 flags, int srate_mbs, u32 vl,
15333 	       u32 dw_len)
15334 {
15335 	u64 pbc, delay = 0;
15336 
15337 	if (unlikely(srate_mbs))
15338 		delay = delay_cycles(ppd, srate_mbs, dw_len);
15339 
15340 	pbc = flags
15341 		| (delay << PBC_STATIC_RATE_CONTROL_COUNT_SHIFT)
15342 		| ((u64)PBC_IHCRC_NONE << PBC_INSERT_HCRC_SHIFT)
15343 		| (vl & PBC_VL_MASK) << PBC_VL_SHIFT
15344 		| (dw_len & PBC_LENGTH_DWS_MASK)
15345 			<< PBC_LENGTH_DWS_SHIFT;
15346 
15347 	return pbc;
15348 }
15349 
15350 #define SBUS_THERMAL    0x4f
15351 #define SBUS_THERM_MONITOR_MODE 0x1
15352 
15353 #define THERM_FAILURE(dev, ret, reason) \
15354 	dd_dev_err((dd),						\
15355 		   "Thermal sensor initialization failed: %s (%d)\n",	\
15356 		   (reason), (ret))
15357 
15358 /*
15359  * Initialize the thermal sensor.
15360  *
15361  * After initialization, enable polling of thermal sensor through
15362  * SBus interface. In order for this to work, the SBus Master
15363  * firmware has to be loaded due to the fact that the HW polling
15364  * logic uses SBus interrupts, which are not supported with
15365  * default firmware. Otherwise, no data will be returned through
15366  * the ASIC_STS_THERM CSR.
15367  */
15368 static int thermal_init(struct hfi1_devdata *dd)
15369 {
15370 	int ret = 0;
15371 
15372 	if (dd->icode != ICODE_RTL_SILICON ||
15373 	    check_chip_resource(dd, CR_THERM_INIT, NULL))
15374 		return ret;
15375 
15376 	ret = acquire_chip_resource(dd, CR_SBUS, SBUS_TIMEOUT);
15377 	if (ret) {
15378 		THERM_FAILURE(dd, ret, "Acquire SBus");
15379 		return ret;
15380 	}
15381 
15382 	dd_dev_info(dd, "Initializing thermal sensor\n");
15383 	/* Disable polling of thermal readings */
15384 	write_csr(dd, ASIC_CFG_THERM_POLL_EN, 0x0);
15385 	msleep(100);
15386 	/* Thermal Sensor Initialization */
15387 	/*    Step 1: Reset the Thermal SBus Receiver */
15388 	ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0,
15389 				RESET_SBUS_RECEIVER, 0);
15390 	if (ret) {
15391 		THERM_FAILURE(dd, ret, "Bus Reset");
15392 		goto done;
15393 	}
15394 	/*    Step 2: Set Reset bit in Thermal block */
15395 	ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0,
15396 				WRITE_SBUS_RECEIVER, 0x1);
15397 	if (ret) {
15398 		THERM_FAILURE(dd, ret, "Therm Block Reset");
15399 		goto done;
15400 	}
15401 	/*    Step 3: Write clock divider value (100MHz -> 2MHz) */
15402 	ret = sbus_request_slow(dd, SBUS_THERMAL, 0x1,
15403 				WRITE_SBUS_RECEIVER, 0x32);
15404 	if (ret) {
15405 		THERM_FAILURE(dd, ret, "Write Clock Div");
15406 		goto done;
15407 	}
15408 	/*    Step 4: Select temperature mode */
15409 	ret = sbus_request_slow(dd, SBUS_THERMAL, 0x3,
15410 				WRITE_SBUS_RECEIVER,
15411 				SBUS_THERM_MONITOR_MODE);
15412 	if (ret) {
15413 		THERM_FAILURE(dd, ret, "Write Mode Sel");
15414 		goto done;
15415 	}
15416 	/*    Step 5: De-assert block reset and start conversion */
15417 	ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0,
15418 				WRITE_SBUS_RECEIVER, 0x2);
15419 	if (ret) {
15420 		THERM_FAILURE(dd, ret, "Write Reset Deassert");
15421 		goto done;
15422 	}
15423 	/*    Step 5.1: Wait for first conversion (21.5ms per spec) */
15424 	msleep(22);
15425 
15426 	/* Enable polling of thermal readings */
15427 	write_csr(dd, ASIC_CFG_THERM_POLL_EN, 0x1);
15428 
15429 	/* Set initialized flag */
15430 	ret = acquire_chip_resource(dd, CR_THERM_INIT, 0);
15431 	if (ret)
15432 		THERM_FAILURE(dd, ret, "Unable to set thermal init flag");
15433 
15434 done:
15435 	release_chip_resource(dd, CR_SBUS);
15436 	return ret;
15437 }
15438 
15439 static void handle_temp_err(struct hfi1_devdata *dd)
15440 {
15441 	struct hfi1_pportdata *ppd = &dd->pport[0];
15442 	/*
15443 	 * Thermal Critical Interrupt
15444 	 * Put the device into forced freeze mode, take link down to
15445 	 * offline, and put DC into reset.
15446 	 */
15447 	dd_dev_emerg(dd,
15448 		     "Critical temperature reached! Forcing device into freeze mode!\n");
15449 	dd->flags |= HFI1_FORCED_FREEZE;
15450 	start_freeze_handling(ppd, FREEZE_SELF | FREEZE_ABORT);
15451 	/*
15452 	 * Shut DC down as much and as quickly as possible.
15453 	 *
15454 	 * Step 1: Take the link down to OFFLINE. This will cause the
15455 	 *         8051 to put the Serdes in reset. However, we don't want to
15456 	 *         go through the entire link state machine since we want to
15457 	 *         shutdown ASAP. Furthermore, this is not a graceful shutdown
15458 	 *         but rather an attempt to save the chip.
15459 	 *         Code below is almost the same as quiet_serdes() but avoids
15460 	 *         all the extra work and the sleeps.
15461 	 */
15462 	ppd->driver_link_ready = 0;
15463 	ppd->link_enabled = 0;
15464 	set_physical_link_state(dd, (OPA_LINKDOWN_REASON_SMA_DISABLED << 8) |
15465 				PLS_OFFLINE);
15466 	/*
15467 	 * Step 2: Shutdown LCB and 8051
15468 	 *         After shutdown, do not restore DC_CFG_RESET value.
15469 	 */
15470 	dc_shutdown(dd);
15471 }
15472