xref: /openbmc/linux/drivers/infiniband/hw/hfi1/chip.c (revision a36954f5)
1 /*
2  * Copyright(c) 2015 - 2017 Intel Corporation.
3  *
4  * This file is provided under a dual BSD/GPLv2 license.  When using or
5  * redistributing this file, you may do so under either license.
6  *
7  * GPL LICENSE SUMMARY
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of version 2 of the GNU General Public License as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * General Public License for more details.
17  *
18  * BSD LICENSE
19  *
20  * Redistribution and use in source and binary forms, with or without
21  * modification, are permitted provided that the following conditions
22  * are met:
23  *
24  *  - Redistributions of source code must retain the above copyright
25  *    notice, this list of conditions and the following disclaimer.
26  *  - Redistributions in binary form must reproduce the above copyright
27  *    notice, this list of conditions and the following disclaimer in
28  *    the documentation and/or other materials provided with the
29  *    distribution.
30  *  - Neither the name of Intel Corporation nor the names of its
31  *    contributors may be used to endorse or promote products derived
32  *    from this software without specific prior written permission.
33  *
34  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45  *
46  */
47 
48 /*
49  * This file contains all of the code that is specific to the HFI chip
50  */
51 
52 #include <linux/pci.h>
53 #include <linux/delay.h>
54 #include <linux/interrupt.h>
55 #include <linux/module.h>
56 
57 #include "hfi.h"
58 #include "trace.h"
59 #include "mad.h"
60 #include "pio.h"
61 #include "sdma.h"
62 #include "eprom.h"
63 #include "efivar.h"
64 #include "platform.h"
65 #include "aspm.h"
66 #include "affinity.h"
67 #include "debugfs.h"
68 
69 #define NUM_IB_PORTS 1
70 
71 uint kdeth_qp;
72 module_param_named(kdeth_qp, kdeth_qp, uint, S_IRUGO);
73 MODULE_PARM_DESC(kdeth_qp, "Set the KDETH queue pair prefix");
74 
75 uint num_vls = HFI1_MAX_VLS_SUPPORTED;
76 module_param(num_vls, uint, S_IRUGO);
77 MODULE_PARM_DESC(num_vls, "Set number of Virtual Lanes to use (1-8)");
78 
79 /*
80  * Default time to aggregate two 10K packets from the idle state
81  * (timer not running). The timer starts at the end of the first packet,
82  * so only the time for one 10K packet and header plus a bit extra is needed.
83  * 10 * 1024 + 64 header byte = 10304 byte
84  * 10304 byte / 12.5 GB/s = 824.32ns
85  */
86 uint rcv_intr_timeout = (824 + 16); /* 16 is for coalescing interrupt */
87 module_param(rcv_intr_timeout, uint, S_IRUGO);
88 MODULE_PARM_DESC(rcv_intr_timeout, "Receive interrupt mitigation timeout in ns");
89 
90 uint rcv_intr_count = 16; /* same as qib */
91 module_param(rcv_intr_count, uint, S_IRUGO);
92 MODULE_PARM_DESC(rcv_intr_count, "Receive interrupt mitigation count");
93 
94 ushort link_crc_mask = SUPPORTED_CRCS;
95 module_param(link_crc_mask, ushort, S_IRUGO);
96 MODULE_PARM_DESC(link_crc_mask, "CRCs to use on the link");
97 
98 uint loopback;
99 module_param_named(loopback, loopback, uint, S_IRUGO);
100 MODULE_PARM_DESC(loopback, "Put into loopback mode (1 = serdes, 3 = external cable");
101 
102 /* Other driver tunables */
103 uint rcv_intr_dynamic = 1; /* enable dynamic mode for rcv int mitigation*/
104 static ushort crc_14b_sideband = 1;
105 static uint use_flr = 1;
106 uint quick_linkup; /* skip LNI */
107 
108 struct flag_table {
109 	u64 flag;	/* the flag */
110 	char *str;	/* description string */
111 	u16 extra;	/* extra information */
112 	u16 unused0;
113 	u32 unused1;
114 };
115 
116 /* str must be a string constant */
117 #define FLAG_ENTRY(str, extra, flag) {flag, str, extra}
118 #define FLAG_ENTRY0(str, flag) {flag, str, 0}
119 
120 /* Send Error Consequences */
121 #define SEC_WRITE_DROPPED	0x1
122 #define SEC_PACKET_DROPPED	0x2
123 #define SEC_SC_HALTED		0x4	/* per-context only */
124 #define SEC_SPC_FREEZE		0x8	/* per-HFI only */
125 
126 #define DEFAULT_KRCVQS		  2
127 #define MIN_KERNEL_KCTXTS         2
128 #define FIRST_KERNEL_KCTXT        1
129 
130 /*
131  * RSM instance allocation
132  *   0 - Verbs
133  *   1 - User Fecn Handling
134  *   2 - Vnic
135  */
136 #define RSM_INS_VERBS             0
137 #define RSM_INS_FECN              1
138 #define RSM_INS_VNIC              2
139 
140 /* Bit offset into the GUID which carries HFI id information */
141 #define GUID_HFI_INDEX_SHIFT     39
142 
143 /* extract the emulation revision */
144 #define emulator_rev(dd) ((dd)->irev >> 8)
145 /* parallel and serial emulation versions are 3 and 4 respectively */
146 #define is_emulator_p(dd) ((((dd)->irev) & 0xf) == 3)
147 #define is_emulator_s(dd) ((((dd)->irev) & 0xf) == 4)
148 
149 /* RSM fields for Verbs */
150 /* packet type */
151 #define IB_PACKET_TYPE         2ull
152 #define QW_SHIFT               6ull
153 /* QPN[7..1] */
154 #define QPN_WIDTH              7ull
155 
156 /* LRH.BTH: QW 0, OFFSET 48 - for match */
157 #define LRH_BTH_QW             0ull
158 #define LRH_BTH_BIT_OFFSET     48ull
159 #define LRH_BTH_OFFSET(off)    ((LRH_BTH_QW << QW_SHIFT) | (off))
160 #define LRH_BTH_MATCH_OFFSET   LRH_BTH_OFFSET(LRH_BTH_BIT_OFFSET)
161 #define LRH_BTH_SELECT
162 #define LRH_BTH_MASK           3ull
163 #define LRH_BTH_VALUE          2ull
164 
165 /* LRH.SC[3..0] QW 0, OFFSET 56 - for match */
166 #define LRH_SC_QW              0ull
167 #define LRH_SC_BIT_OFFSET      56ull
168 #define LRH_SC_OFFSET(off)     ((LRH_SC_QW << QW_SHIFT) | (off))
169 #define LRH_SC_MATCH_OFFSET    LRH_SC_OFFSET(LRH_SC_BIT_OFFSET)
170 #define LRH_SC_MASK            128ull
171 #define LRH_SC_VALUE           0ull
172 
173 /* SC[n..0] QW 0, OFFSET 60 - for select */
174 #define LRH_SC_SELECT_OFFSET  ((LRH_SC_QW << QW_SHIFT) | (60ull))
175 
176 /* QPN[m+n:1] QW 1, OFFSET 1 */
177 #define QPN_SELECT_OFFSET      ((1ull << QW_SHIFT) | (1ull))
178 
179 /* RSM fields for Vnic */
180 /* L2_TYPE: QW 0, OFFSET 61 - for match */
181 #define L2_TYPE_QW             0ull
182 #define L2_TYPE_BIT_OFFSET     61ull
183 #define L2_TYPE_OFFSET(off)    ((L2_TYPE_QW << QW_SHIFT) | (off))
184 #define L2_TYPE_MATCH_OFFSET   L2_TYPE_OFFSET(L2_TYPE_BIT_OFFSET)
185 #define L2_TYPE_MASK           3ull
186 #define L2_16B_VALUE           2ull
187 
188 /* L4_TYPE QW 1, OFFSET 0 - for match */
189 #define L4_TYPE_QW              1ull
190 #define L4_TYPE_BIT_OFFSET      0ull
191 #define L4_TYPE_OFFSET(off)     ((L4_TYPE_QW << QW_SHIFT) | (off))
192 #define L4_TYPE_MATCH_OFFSET    L4_TYPE_OFFSET(L4_TYPE_BIT_OFFSET)
193 #define L4_16B_TYPE_MASK        0xFFull
194 #define L4_16B_ETH_VALUE        0x78ull
195 
196 /* 16B VESWID - for select */
197 #define L4_16B_HDR_VESWID_OFFSET  ((2 << QW_SHIFT) | (16ull))
198 /* 16B ENTROPY - for select */
199 #define L2_16B_ENTROPY_OFFSET     ((1 << QW_SHIFT) | (32ull))
200 
201 /* defines to build power on SC2VL table */
202 #define SC2VL_VAL( \
203 	num, \
204 	sc0, sc0val, \
205 	sc1, sc1val, \
206 	sc2, sc2val, \
207 	sc3, sc3val, \
208 	sc4, sc4val, \
209 	sc5, sc5val, \
210 	sc6, sc6val, \
211 	sc7, sc7val) \
212 ( \
213 	((u64)(sc0val) << SEND_SC2VLT##num##_SC##sc0##_SHIFT) | \
214 	((u64)(sc1val) << SEND_SC2VLT##num##_SC##sc1##_SHIFT) | \
215 	((u64)(sc2val) << SEND_SC2VLT##num##_SC##sc2##_SHIFT) | \
216 	((u64)(sc3val) << SEND_SC2VLT##num##_SC##sc3##_SHIFT) | \
217 	((u64)(sc4val) << SEND_SC2VLT##num##_SC##sc4##_SHIFT) | \
218 	((u64)(sc5val) << SEND_SC2VLT##num##_SC##sc5##_SHIFT) | \
219 	((u64)(sc6val) << SEND_SC2VLT##num##_SC##sc6##_SHIFT) | \
220 	((u64)(sc7val) << SEND_SC2VLT##num##_SC##sc7##_SHIFT)   \
221 )
222 
223 #define DC_SC_VL_VAL( \
224 	range, \
225 	e0, e0val, \
226 	e1, e1val, \
227 	e2, e2val, \
228 	e3, e3val, \
229 	e4, e4val, \
230 	e5, e5val, \
231 	e6, e6val, \
232 	e7, e7val, \
233 	e8, e8val, \
234 	e9, e9val, \
235 	e10, e10val, \
236 	e11, e11val, \
237 	e12, e12val, \
238 	e13, e13val, \
239 	e14, e14val, \
240 	e15, e15val) \
241 ( \
242 	((u64)(e0val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e0##_SHIFT) | \
243 	((u64)(e1val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e1##_SHIFT) | \
244 	((u64)(e2val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e2##_SHIFT) | \
245 	((u64)(e3val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e3##_SHIFT) | \
246 	((u64)(e4val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e4##_SHIFT) | \
247 	((u64)(e5val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e5##_SHIFT) | \
248 	((u64)(e6val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e6##_SHIFT) | \
249 	((u64)(e7val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e7##_SHIFT) | \
250 	((u64)(e8val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e8##_SHIFT) | \
251 	((u64)(e9val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e9##_SHIFT) | \
252 	((u64)(e10val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e10##_SHIFT) | \
253 	((u64)(e11val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e11##_SHIFT) | \
254 	((u64)(e12val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e12##_SHIFT) | \
255 	((u64)(e13val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e13##_SHIFT) | \
256 	((u64)(e14val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e14##_SHIFT) | \
257 	((u64)(e15val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e15##_SHIFT) \
258 )
259 
260 /* all CceStatus sub-block freeze bits */
261 #define ALL_FROZE (CCE_STATUS_SDMA_FROZE_SMASK \
262 			| CCE_STATUS_RXE_FROZE_SMASK \
263 			| CCE_STATUS_TXE_FROZE_SMASK \
264 			| CCE_STATUS_TXE_PIO_FROZE_SMASK)
265 /* all CceStatus sub-block TXE pause bits */
266 #define ALL_TXE_PAUSE (CCE_STATUS_TXE_PIO_PAUSED_SMASK \
267 			| CCE_STATUS_TXE_PAUSED_SMASK \
268 			| CCE_STATUS_SDMA_PAUSED_SMASK)
269 /* all CceStatus sub-block RXE pause bits */
270 #define ALL_RXE_PAUSE CCE_STATUS_RXE_PAUSED_SMASK
271 
272 #define CNTR_MAX 0xFFFFFFFFFFFFFFFFULL
273 #define CNTR_32BIT_MAX 0x00000000FFFFFFFF
274 
275 /*
276  * CCE Error flags.
277  */
278 static struct flag_table cce_err_status_flags[] = {
279 /* 0*/	FLAG_ENTRY0("CceCsrParityErr",
280 		CCE_ERR_STATUS_CCE_CSR_PARITY_ERR_SMASK),
281 /* 1*/	FLAG_ENTRY0("CceCsrReadBadAddrErr",
282 		CCE_ERR_STATUS_CCE_CSR_READ_BAD_ADDR_ERR_SMASK),
283 /* 2*/	FLAG_ENTRY0("CceCsrWriteBadAddrErr",
284 		CCE_ERR_STATUS_CCE_CSR_WRITE_BAD_ADDR_ERR_SMASK),
285 /* 3*/	FLAG_ENTRY0("CceTrgtAsyncFifoParityErr",
286 		CCE_ERR_STATUS_CCE_TRGT_ASYNC_FIFO_PARITY_ERR_SMASK),
287 /* 4*/	FLAG_ENTRY0("CceTrgtAccessErr",
288 		CCE_ERR_STATUS_CCE_TRGT_ACCESS_ERR_SMASK),
289 /* 5*/	FLAG_ENTRY0("CceRspdDataParityErr",
290 		CCE_ERR_STATUS_CCE_RSPD_DATA_PARITY_ERR_SMASK),
291 /* 6*/	FLAG_ENTRY0("CceCli0AsyncFifoParityErr",
292 		CCE_ERR_STATUS_CCE_CLI0_ASYNC_FIFO_PARITY_ERR_SMASK),
293 /* 7*/	FLAG_ENTRY0("CceCsrCfgBusParityErr",
294 		CCE_ERR_STATUS_CCE_CSR_CFG_BUS_PARITY_ERR_SMASK),
295 /* 8*/	FLAG_ENTRY0("CceCli2AsyncFifoParityErr",
296 		CCE_ERR_STATUS_CCE_CLI2_ASYNC_FIFO_PARITY_ERR_SMASK),
297 /* 9*/	FLAG_ENTRY0("CceCli1AsyncFifoPioCrdtParityErr",
298 	    CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_PIO_CRDT_PARITY_ERR_SMASK),
299 /*10*/	FLAG_ENTRY0("CceCli1AsyncFifoPioCrdtParityErr",
300 	    CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_SDMA_HD_PARITY_ERR_SMASK),
301 /*11*/	FLAG_ENTRY0("CceCli1AsyncFifoRxdmaParityError",
302 	    CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_RXDMA_PARITY_ERROR_SMASK),
303 /*12*/	FLAG_ENTRY0("CceCli1AsyncFifoDbgParityError",
304 		CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_DBG_PARITY_ERROR_SMASK),
305 /*13*/	FLAG_ENTRY0("PcicRetryMemCorErr",
306 		CCE_ERR_STATUS_PCIC_RETRY_MEM_COR_ERR_SMASK),
307 /*14*/	FLAG_ENTRY0("PcicRetryMemCorErr",
308 		CCE_ERR_STATUS_PCIC_RETRY_SOT_MEM_COR_ERR_SMASK),
309 /*15*/	FLAG_ENTRY0("PcicPostHdQCorErr",
310 		CCE_ERR_STATUS_PCIC_POST_HD_QCOR_ERR_SMASK),
311 /*16*/	FLAG_ENTRY0("PcicPostHdQCorErr",
312 		CCE_ERR_STATUS_PCIC_POST_DAT_QCOR_ERR_SMASK),
313 /*17*/	FLAG_ENTRY0("PcicPostHdQCorErr",
314 		CCE_ERR_STATUS_PCIC_CPL_HD_QCOR_ERR_SMASK),
315 /*18*/	FLAG_ENTRY0("PcicCplDatQCorErr",
316 		CCE_ERR_STATUS_PCIC_CPL_DAT_QCOR_ERR_SMASK),
317 /*19*/	FLAG_ENTRY0("PcicNPostHQParityErr",
318 		CCE_ERR_STATUS_PCIC_NPOST_HQ_PARITY_ERR_SMASK),
319 /*20*/	FLAG_ENTRY0("PcicNPostDatQParityErr",
320 		CCE_ERR_STATUS_PCIC_NPOST_DAT_QPARITY_ERR_SMASK),
321 /*21*/	FLAG_ENTRY0("PcicRetryMemUncErr",
322 		CCE_ERR_STATUS_PCIC_RETRY_MEM_UNC_ERR_SMASK),
323 /*22*/	FLAG_ENTRY0("PcicRetrySotMemUncErr",
324 		CCE_ERR_STATUS_PCIC_RETRY_SOT_MEM_UNC_ERR_SMASK),
325 /*23*/	FLAG_ENTRY0("PcicPostHdQUncErr",
326 		CCE_ERR_STATUS_PCIC_POST_HD_QUNC_ERR_SMASK),
327 /*24*/	FLAG_ENTRY0("PcicPostDatQUncErr",
328 		CCE_ERR_STATUS_PCIC_POST_DAT_QUNC_ERR_SMASK),
329 /*25*/	FLAG_ENTRY0("PcicCplHdQUncErr",
330 		CCE_ERR_STATUS_PCIC_CPL_HD_QUNC_ERR_SMASK),
331 /*26*/	FLAG_ENTRY0("PcicCplDatQUncErr",
332 		CCE_ERR_STATUS_PCIC_CPL_DAT_QUNC_ERR_SMASK),
333 /*27*/	FLAG_ENTRY0("PcicTransmitFrontParityErr",
334 		CCE_ERR_STATUS_PCIC_TRANSMIT_FRONT_PARITY_ERR_SMASK),
335 /*28*/	FLAG_ENTRY0("PcicTransmitBackParityErr",
336 		CCE_ERR_STATUS_PCIC_TRANSMIT_BACK_PARITY_ERR_SMASK),
337 /*29*/	FLAG_ENTRY0("PcicReceiveParityErr",
338 		CCE_ERR_STATUS_PCIC_RECEIVE_PARITY_ERR_SMASK),
339 /*30*/	FLAG_ENTRY0("CceTrgtCplTimeoutErr",
340 		CCE_ERR_STATUS_CCE_TRGT_CPL_TIMEOUT_ERR_SMASK),
341 /*31*/	FLAG_ENTRY0("LATriggered",
342 		CCE_ERR_STATUS_LA_TRIGGERED_SMASK),
343 /*32*/	FLAG_ENTRY0("CceSegReadBadAddrErr",
344 		CCE_ERR_STATUS_CCE_SEG_READ_BAD_ADDR_ERR_SMASK),
345 /*33*/	FLAG_ENTRY0("CceSegWriteBadAddrErr",
346 		CCE_ERR_STATUS_CCE_SEG_WRITE_BAD_ADDR_ERR_SMASK),
347 /*34*/	FLAG_ENTRY0("CceRcplAsyncFifoParityErr",
348 		CCE_ERR_STATUS_CCE_RCPL_ASYNC_FIFO_PARITY_ERR_SMASK),
349 /*35*/	FLAG_ENTRY0("CceRxdmaConvFifoParityErr",
350 		CCE_ERR_STATUS_CCE_RXDMA_CONV_FIFO_PARITY_ERR_SMASK),
351 /*36*/	FLAG_ENTRY0("CceMsixTableCorErr",
352 		CCE_ERR_STATUS_CCE_MSIX_TABLE_COR_ERR_SMASK),
353 /*37*/	FLAG_ENTRY0("CceMsixTableUncErr",
354 		CCE_ERR_STATUS_CCE_MSIX_TABLE_UNC_ERR_SMASK),
355 /*38*/	FLAG_ENTRY0("CceIntMapCorErr",
356 		CCE_ERR_STATUS_CCE_INT_MAP_COR_ERR_SMASK),
357 /*39*/	FLAG_ENTRY0("CceIntMapUncErr",
358 		CCE_ERR_STATUS_CCE_INT_MAP_UNC_ERR_SMASK),
359 /*40*/	FLAG_ENTRY0("CceMsixCsrParityErr",
360 		CCE_ERR_STATUS_CCE_MSIX_CSR_PARITY_ERR_SMASK),
361 /*41-63 reserved*/
362 };
363 
364 /*
365  * Misc Error flags
366  */
367 #define MES(text) MISC_ERR_STATUS_MISC_##text##_ERR_SMASK
368 static struct flag_table misc_err_status_flags[] = {
369 /* 0*/	FLAG_ENTRY0("CSR_PARITY", MES(CSR_PARITY)),
370 /* 1*/	FLAG_ENTRY0("CSR_READ_BAD_ADDR", MES(CSR_READ_BAD_ADDR)),
371 /* 2*/	FLAG_ENTRY0("CSR_WRITE_BAD_ADDR", MES(CSR_WRITE_BAD_ADDR)),
372 /* 3*/	FLAG_ENTRY0("SBUS_WRITE_FAILED", MES(SBUS_WRITE_FAILED)),
373 /* 4*/	FLAG_ENTRY0("KEY_MISMATCH", MES(KEY_MISMATCH)),
374 /* 5*/	FLAG_ENTRY0("FW_AUTH_FAILED", MES(FW_AUTH_FAILED)),
375 /* 6*/	FLAG_ENTRY0("EFUSE_CSR_PARITY", MES(EFUSE_CSR_PARITY)),
376 /* 7*/	FLAG_ENTRY0("EFUSE_READ_BAD_ADDR", MES(EFUSE_READ_BAD_ADDR)),
377 /* 8*/	FLAG_ENTRY0("EFUSE_WRITE", MES(EFUSE_WRITE)),
378 /* 9*/	FLAG_ENTRY0("EFUSE_DONE_PARITY", MES(EFUSE_DONE_PARITY)),
379 /*10*/	FLAG_ENTRY0("INVALID_EEP_CMD", MES(INVALID_EEP_CMD)),
380 /*11*/	FLAG_ENTRY0("MBIST_FAIL", MES(MBIST_FAIL)),
381 /*12*/	FLAG_ENTRY0("PLL_LOCK_FAIL", MES(PLL_LOCK_FAIL))
382 };
383 
384 /*
385  * TXE PIO Error flags and consequences
386  */
387 static struct flag_table pio_err_status_flags[] = {
388 /* 0*/	FLAG_ENTRY("PioWriteBadCtxt",
389 	SEC_WRITE_DROPPED,
390 	SEND_PIO_ERR_STATUS_PIO_WRITE_BAD_CTXT_ERR_SMASK),
391 /* 1*/	FLAG_ENTRY("PioWriteAddrParity",
392 	SEC_SPC_FREEZE,
393 	SEND_PIO_ERR_STATUS_PIO_WRITE_ADDR_PARITY_ERR_SMASK),
394 /* 2*/	FLAG_ENTRY("PioCsrParity",
395 	SEC_SPC_FREEZE,
396 	SEND_PIO_ERR_STATUS_PIO_CSR_PARITY_ERR_SMASK),
397 /* 3*/	FLAG_ENTRY("PioSbMemFifo0",
398 	SEC_SPC_FREEZE,
399 	SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO0_ERR_SMASK),
400 /* 4*/	FLAG_ENTRY("PioSbMemFifo1",
401 	SEC_SPC_FREEZE,
402 	SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO1_ERR_SMASK),
403 /* 5*/	FLAG_ENTRY("PioPccFifoParity",
404 	SEC_SPC_FREEZE,
405 	SEND_PIO_ERR_STATUS_PIO_PCC_FIFO_PARITY_ERR_SMASK),
406 /* 6*/	FLAG_ENTRY("PioPecFifoParity",
407 	SEC_SPC_FREEZE,
408 	SEND_PIO_ERR_STATUS_PIO_PEC_FIFO_PARITY_ERR_SMASK),
409 /* 7*/	FLAG_ENTRY("PioSbrdctlCrrelParity",
410 	SEC_SPC_FREEZE,
411 	SEND_PIO_ERR_STATUS_PIO_SBRDCTL_CRREL_PARITY_ERR_SMASK),
412 /* 8*/	FLAG_ENTRY("PioSbrdctrlCrrelFifoParity",
413 	SEC_SPC_FREEZE,
414 	SEND_PIO_ERR_STATUS_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR_SMASK),
415 /* 9*/	FLAG_ENTRY("PioPktEvictFifoParityErr",
416 	SEC_SPC_FREEZE,
417 	SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_FIFO_PARITY_ERR_SMASK),
418 /*10*/	FLAG_ENTRY("PioSmPktResetParity",
419 	SEC_SPC_FREEZE,
420 	SEND_PIO_ERR_STATUS_PIO_SM_PKT_RESET_PARITY_ERR_SMASK),
421 /*11*/	FLAG_ENTRY("PioVlLenMemBank0Unc",
422 	SEC_SPC_FREEZE,
423 	SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_UNC_ERR_SMASK),
424 /*12*/	FLAG_ENTRY("PioVlLenMemBank1Unc",
425 	SEC_SPC_FREEZE,
426 	SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_UNC_ERR_SMASK),
427 /*13*/	FLAG_ENTRY("PioVlLenMemBank0Cor",
428 	0,
429 	SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_COR_ERR_SMASK),
430 /*14*/	FLAG_ENTRY("PioVlLenMemBank1Cor",
431 	0,
432 	SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_COR_ERR_SMASK),
433 /*15*/	FLAG_ENTRY("PioCreditRetFifoParity",
434 	SEC_SPC_FREEZE,
435 	SEND_PIO_ERR_STATUS_PIO_CREDIT_RET_FIFO_PARITY_ERR_SMASK),
436 /*16*/	FLAG_ENTRY("PioPpmcPblFifo",
437 	SEC_SPC_FREEZE,
438 	SEND_PIO_ERR_STATUS_PIO_PPMC_PBL_FIFO_ERR_SMASK),
439 /*17*/	FLAG_ENTRY("PioInitSmIn",
440 	0,
441 	SEND_PIO_ERR_STATUS_PIO_INIT_SM_IN_ERR_SMASK),
442 /*18*/	FLAG_ENTRY("PioPktEvictSmOrArbSm",
443 	SEC_SPC_FREEZE,
444 	SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_SM_OR_ARB_SM_ERR_SMASK),
445 /*19*/	FLAG_ENTRY("PioHostAddrMemUnc",
446 	SEC_SPC_FREEZE,
447 	SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_UNC_ERR_SMASK),
448 /*20*/	FLAG_ENTRY("PioHostAddrMemCor",
449 	0,
450 	SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_COR_ERR_SMASK),
451 /*21*/	FLAG_ENTRY("PioWriteDataParity",
452 	SEC_SPC_FREEZE,
453 	SEND_PIO_ERR_STATUS_PIO_WRITE_DATA_PARITY_ERR_SMASK),
454 /*22*/	FLAG_ENTRY("PioStateMachine",
455 	SEC_SPC_FREEZE,
456 	SEND_PIO_ERR_STATUS_PIO_STATE_MACHINE_ERR_SMASK),
457 /*23*/	FLAG_ENTRY("PioWriteQwValidParity",
458 	SEC_WRITE_DROPPED | SEC_SPC_FREEZE,
459 	SEND_PIO_ERR_STATUS_PIO_WRITE_QW_VALID_PARITY_ERR_SMASK),
460 /*24*/	FLAG_ENTRY("PioBlockQwCountParity",
461 	SEC_WRITE_DROPPED | SEC_SPC_FREEZE,
462 	SEND_PIO_ERR_STATUS_PIO_BLOCK_QW_COUNT_PARITY_ERR_SMASK),
463 /*25*/	FLAG_ENTRY("PioVlfVlLenParity",
464 	SEC_SPC_FREEZE,
465 	SEND_PIO_ERR_STATUS_PIO_VLF_VL_LEN_PARITY_ERR_SMASK),
466 /*26*/	FLAG_ENTRY("PioVlfSopParity",
467 	SEC_SPC_FREEZE,
468 	SEND_PIO_ERR_STATUS_PIO_VLF_SOP_PARITY_ERR_SMASK),
469 /*27*/	FLAG_ENTRY("PioVlFifoParity",
470 	SEC_SPC_FREEZE,
471 	SEND_PIO_ERR_STATUS_PIO_VL_FIFO_PARITY_ERR_SMASK),
472 /*28*/	FLAG_ENTRY("PioPpmcBqcMemParity",
473 	SEC_SPC_FREEZE,
474 	SEND_PIO_ERR_STATUS_PIO_PPMC_BQC_MEM_PARITY_ERR_SMASK),
475 /*29*/	FLAG_ENTRY("PioPpmcSopLen",
476 	SEC_SPC_FREEZE,
477 	SEND_PIO_ERR_STATUS_PIO_PPMC_SOP_LEN_ERR_SMASK),
478 /*30-31 reserved*/
479 /*32*/	FLAG_ENTRY("PioCurrentFreeCntParity",
480 	SEC_SPC_FREEZE,
481 	SEND_PIO_ERR_STATUS_PIO_CURRENT_FREE_CNT_PARITY_ERR_SMASK),
482 /*33*/	FLAG_ENTRY("PioLastReturnedCntParity",
483 	SEC_SPC_FREEZE,
484 	SEND_PIO_ERR_STATUS_PIO_LAST_RETURNED_CNT_PARITY_ERR_SMASK),
485 /*34*/	FLAG_ENTRY("PioPccSopHeadParity",
486 	SEC_SPC_FREEZE,
487 	SEND_PIO_ERR_STATUS_PIO_PCC_SOP_HEAD_PARITY_ERR_SMASK),
488 /*35*/	FLAG_ENTRY("PioPecSopHeadParityErr",
489 	SEC_SPC_FREEZE,
490 	SEND_PIO_ERR_STATUS_PIO_PEC_SOP_HEAD_PARITY_ERR_SMASK),
491 /*36-63 reserved*/
492 };
493 
494 /* TXE PIO errors that cause an SPC freeze */
495 #define ALL_PIO_FREEZE_ERR \
496 	(SEND_PIO_ERR_STATUS_PIO_WRITE_ADDR_PARITY_ERR_SMASK \
497 	| SEND_PIO_ERR_STATUS_PIO_CSR_PARITY_ERR_SMASK \
498 	| SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO0_ERR_SMASK \
499 	| SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO1_ERR_SMASK \
500 	| SEND_PIO_ERR_STATUS_PIO_PCC_FIFO_PARITY_ERR_SMASK \
501 	| SEND_PIO_ERR_STATUS_PIO_PEC_FIFO_PARITY_ERR_SMASK \
502 	| SEND_PIO_ERR_STATUS_PIO_SBRDCTL_CRREL_PARITY_ERR_SMASK \
503 	| SEND_PIO_ERR_STATUS_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR_SMASK \
504 	| SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_FIFO_PARITY_ERR_SMASK \
505 	| SEND_PIO_ERR_STATUS_PIO_SM_PKT_RESET_PARITY_ERR_SMASK \
506 	| SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_UNC_ERR_SMASK \
507 	| SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_UNC_ERR_SMASK \
508 	| SEND_PIO_ERR_STATUS_PIO_CREDIT_RET_FIFO_PARITY_ERR_SMASK \
509 	| SEND_PIO_ERR_STATUS_PIO_PPMC_PBL_FIFO_ERR_SMASK \
510 	| SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_SM_OR_ARB_SM_ERR_SMASK \
511 	| SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_UNC_ERR_SMASK \
512 	| SEND_PIO_ERR_STATUS_PIO_WRITE_DATA_PARITY_ERR_SMASK \
513 	| SEND_PIO_ERR_STATUS_PIO_STATE_MACHINE_ERR_SMASK \
514 	| SEND_PIO_ERR_STATUS_PIO_WRITE_QW_VALID_PARITY_ERR_SMASK \
515 	| SEND_PIO_ERR_STATUS_PIO_BLOCK_QW_COUNT_PARITY_ERR_SMASK \
516 	| SEND_PIO_ERR_STATUS_PIO_VLF_VL_LEN_PARITY_ERR_SMASK \
517 	| SEND_PIO_ERR_STATUS_PIO_VLF_SOP_PARITY_ERR_SMASK \
518 	| SEND_PIO_ERR_STATUS_PIO_VL_FIFO_PARITY_ERR_SMASK \
519 	| SEND_PIO_ERR_STATUS_PIO_PPMC_BQC_MEM_PARITY_ERR_SMASK \
520 	| SEND_PIO_ERR_STATUS_PIO_PPMC_SOP_LEN_ERR_SMASK \
521 	| SEND_PIO_ERR_STATUS_PIO_CURRENT_FREE_CNT_PARITY_ERR_SMASK \
522 	| SEND_PIO_ERR_STATUS_PIO_LAST_RETURNED_CNT_PARITY_ERR_SMASK \
523 	| SEND_PIO_ERR_STATUS_PIO_PCC_SOP_HEAD_PARITY_ERR_SMASK \
524 	| SEND_PIO_ERR_STATUS_PIO_PEC_SOP_HEAD_PARITY_ERR_SMASK)
525 
526 /*
527  * TXE SDMA Error flags
528  */
529 static struct flag_table sdma_err_status_flags[] = {
530 /* 0*/	FLAG_ENTRY0("SDmaRpyTagErr",
531 		SEND_DMA_ERR_STATUS_SDMA_RPY_TAG_ERR_SMASK),
532 /* 1*/	FLAG_ENTRY0("SDmaCsrParityErr",
533 		SEND_DMA_ERR_STATUS_SDMA_CSR_PARITY_ERR_SMASK),
534 /* 2*/	FLAG_ENTRY0("SDmaPcieReqTrackingUncErr",
535 		SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_UNC_ERR_SMASK),
536 /* 3*/	FLAG_ENTRY0("SDmaPcieReqTrackingCorErr",
537 		SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_COR_ERR_SMASK),
538 /*04-63 reserved*/
539 };
540 
541 /* TXE SDMA errors that cause an SPC freeze */
542 #define ALL_SDMA_FREEZE_ERR  \
543 		(SEND_DMA_ERR_STATUS_SDMA_RPY_TAG_ERR_SMASK \
544 		| SEND_DMA_ERR_STATUS_SDMA_CSR_PARITY_ERR_SMASK \
545 		| SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_UNC_ERR_SMASK)
546 
547 /* SendEgressErrInfo bits that correspond to a PortXmitDiscard counter */
548 #define PORT_DISCARD_EGRESS_ERRS \
549 	(SEND_EGRESS_ERR_INFO_TOO_LONG_IB_PACKET_ERR_SMASK \
550 	| SEND_EGRESS_ERR_INFO_VL_MAPPING_ERR_SMASK \
551 	| SEND_EGRESS_ERR_INFO_VL_ERR_SMASK)
552 
553 /*
554  * TXE Egress Error flags
555  */
556 #define SEES(text) SEND_EGRESS_ERR_STATUS_##text##_ERR_SMASK
557 static struct flag_table egress_err_status_flags[] = {
558 /* 0*/	FLAG_ENTRY0("TxPktIntegrityMemCorErr", SEES(TX_PKT_INTEGRITY_MEM_COR)),
559 /* 1*/	FLAG_ENTRY0("TxPktIntegrityMemUncErr", SEES(TX_PKT_INTEGRITY_MEM_UNC)),
560 /* 2 reserved */
561 /* 3*/	FLAG_ENTRY0("TxEgressFifoUnderrunOrParityErr",
562 		SEES(TX_EGRESS_FIFO_UNDERRUN_OR_PARITY)),
563 /* 4*/	FLAG_ENTRY0("TxLinkdownErr", SEES(TX_LINKDOWN)),
564 /* 5*/	FLAG_ENTRY0("TxIncorrectLinkStateErr", SEES(TX_INCORRECT_LINK_STATE)),
565 /* 6 reserved */
566 /* 7*/	FLAG_ENTRY0("TxPioLaunchIntfParityErr",
567 		SEES(TX_PIO_LAUNCH_INTF_PARITY)),
568 /* 8*/	FLAG_ENTRY0("TxSdmaLaunchIntfParityErr",
569 		SEES(TX_SDMA_LAUNCH_INTF_PARITY)),
570 /* 9-10 reserved */
571 /*11*/	FLAG_ENTRY0("TxSbrdCtlStateMachineParityErr",
572 		SEES(TX_SBRD_CTL_STATE_MACHINE_PARITY)),
573 /*12*/	FLAG_ENTRY0("TxIllegalVLErr", SEES(TX_ILLEGAL_VL)),
574 /*13*/	FLAG_ENTRY0("TxLaunchCsrParityErr", SEES(TX_LAUNCH_CSR_PARITY)),
575 /*14*/	FLAG_ENTRY0("TxSbrdCtlCsrParityErr", SEES(TX_SBRD_CTL_CSR_PARITY)),
576 /*15*/	FLAG_ENTRY0("TxConfigParityErr", SEES(TX_CONFIG_PARITY)),
577 /*16*/	FLAG_ENTRY0("TxSdma0DisallowedPacketErr",
578 		SEES(TX_SDMA0_DISALLOWED_PACKET)),
579 /*17*/	FLAG_ENTRY0("TxSdma1DisallowedPacketErr",
580 		SEES(TX_SDMA1_DISALLOWED_PACKET)),
581 /*18*/	FLAG_ENTRY0("TxSdma2DisallowedPacketErr",
582 		SEES(TX_SDMA2_DISALLOWED_PACKET)),
583 /*19*/	FLAG_ENTRY0("TxSdma3DisallowedPacketErr",
584 		SEES(TX_SDMA3_DISALLOWED_PACKET)),
585 /*20*/	FLAG_ENTRY0("TxSdma4DisallowedPacketErr",
586 		SEES(TX_SDMA4_DISALLOWED_PACKET)),
587 /*21*/	FLAG_ENTRY0("TxSdma5DisallowedPacketErr",
588 		SEES(TX_SDMA5_DISALLOWED_PACKET)),
589 /*22*/	FLAG_ENTRY0("TxSdma6DisallowedPacketErr",
590 		SEES(TX_SDMA6_DISALLOWED_PACKET)),
591 /*23*/	FLAG_ENTRY0("TxSdma7DisallowedPacketErr",
592 		SEES(TX_SDMA7_DISALLOWED_PACKET)),
593 /*24*/	FLAG_ENTRY0("TxSdma8DisallowedPacketErr",
594 		SEES(TX_SDMA8_DISALLOWED_PACKET)),
595 /*25*/	FLAG_ENTRY0("TxSdma9DisallowedPacketErr",
596 		SEES(TX_SDMA9_DISALLOWED_PACKET)),
597 /*26*/	FLAG_ENTRY0("TxSdma10DisallowedPacketErr",
598 		SEES(TX_SDMA10_DISALLOWED_PACKET)),
599 /*27*/	FLAG_ENTRY0("TxSdma11DisallowedPacketErr",
600 		SEES(TX_SDMA11_DISALLOWED_PACKET)),
601 /*28*/	FLAG_ENTRY0("TxSdma12DisallowedPacketErr",
602 		SEES(TX_SDMA12_DISALLOWED_PACKET)),
603 /*29*/	FLAG_ENTRY0("TxSdma13DisallowedPacketErr",
604 		SEES(TX_SDMA13_DISALLOWED_PACKET)),
605 /*30*/	FLAG_ENTRY0("TxSdma14DisallowedPacketErr",
606 		SEES(TX_SDMA14_DISALLOWED_PACKET)),
607 /*31*/	FLAG_ENTRY0("TxSdma15DisallowedPacketErr",
608 		SEES(TX_SDMA15_DISALLOWED_PACKET)),
609 /*32*/	FLAG_ENTRY0("TxLaunchFifo0UncOrParityErr",
610 		SEES(TX_LAUNCH_FIFO0_UNC_OR_PARITY)),
611 /*33*/	FLAG_ENTRY0("TxLaunchFifo1UncOrParityErr",
612 		SEES(TX_LAUNCH_FIFO1_UNC_OR_PARITY)),
613 /*34*/	FLAG_ENTRY0("TxLaunchFifo2UncOrParityErr",
614 		SEES(TX_LAUNCH_FIFO2_UNC_OR_PARITY)),
615 /*35*/	FLAG_ENTRY0("TxLaunchFifo3UncOrParityErr",
616 		SEES(TX_LAUNCH_FIFO3_UNC_OR_PARITY)),
617 /*36*/	FLAG_ENTRY0("TxLaunchFifo4UncOrParityErr",
618 		SEES(TX_LAUNCH_FIFO4_UNC_OR_PARITY)),
619 /*37*/	FLAG_ENTRY0("TxLaunchFifo5UncOrParityErr",
620 		SEES(TX_LAUNCH_FIFO5_UNC_OR_PARITY)),
621 /*38*/	FLAG_ENTRY0("TxLaunchFifo6UncOrParityErr",
622 		SEES(TX_LAUNCH_FIFO6_UNC_OR_PARITY)),
623 /*39*/	FLAG_ENTRY0("TxLaunchFifo7UncOrParityErr",
624 		SEES(TX_LAUNCH_FIFO7_UNC_OR_PARITY)),
625 /*40*/	FLAG_ENTRY0("TxLaunchFifo8UncOrParityErr",
626 		SEES(TX_LAUNCH_FIFO8_UNC_OR_PARITY)),
627 /*41*/	FLAG_ENTRY0("TxCreditReturnParityErr", SEES(TX_CREDIT_RETURN_PARITY)),
628 /*42*/	FLAG_ENTRY0("TxSbHdrUncErr", SEES(TX_SB_HDR_UNC)),
629 /*43*/	FLAG_ENTRY0("TxReadSdmaMemoryUncErr", SEES(TX_READ_SDMA_MEMORY_UNC)),
630 /*44*/	FLAG_ENTRY0("TxReadPioMemoryUncErr", SEES(TX_READ_PIO_MEMORY_UNC)),
631 /*45*/	FLAG_ENTRY0("TxEgressFifoUncErr", SEES(TX_EGRESS_FIFO_UNC)),
632 /*46*/	FLAG_ENTRY0("TxHcrcInsertionErr", SEES(TX_HCRC_INSERTION)),
633 /*47*/	FLAG_ENTRY0("TxCreditReturnVLErr", SEES(TX_CREDIT_RETURN_VL)),
634 /*48*/	FLAG_ENTRY0("TxLaunchFifo0CorErr", SEES(TX_LAUNCH_FIFO0_COR)),
635 /*49*/	FLAG_ENTRY0("TxLaunchFifo1CorErr", SEES(TX_LAUNCH_FIFO1_COR)),
636 /*50*/	FLAG_ENTRY0("TxLaunchFifo2CorErr", SEES(TX_LAUNCH_FIFO2_COR)),
637 /*51*/	FLAG_ENTRY0("TxLaunchFifo3CorErr", SEES(TX_LAUNCH_FIFO3_COR)),
638 /*52*/	FLAG_ENTRY0("TxLaunchFifo4CorErr", SEES(TX_LAUNCH_FIFO4_COR)),
639 /*53*/	FLAG_ENTRY0("TxLaunchFifo5CorErr", SEES(TX_LAUNCH_FIFO5_COR)),
640 /*54*/	FLAG_ENTRY0("TxLaunchFifo6CorErr", SEES(TX_LAUNCH_FIFO6_COR)),
641 /*55*/	FLAG_ENTRY0("TxLaunchFifo7CorErr", SEES(TX_LAUNCH_FIFO7_COR)),
642 /*56*/	FLAG_ENTRY0("TxLaunchFifo8CorErr", SEES(TX_LAUNCH_FIFO8_COR)),
643 /*57*/	FLAG_ENTRY0("TxCreditOverrunErr", SEES(TX_CREDIT_OVERRUN)),
644 /*58*/	FLAG_ENTRY0("TxSbHdrCorErr", SEES(TX_SB_HDR_COR)),
645 /*59*/	FLAG_ENTRY0("TxReadSdmaMemoryCorErr", SEES(TX_READ_SDMA_MEMORY_COR)),
646 /*60*/	FLAG_ENTRY0("TxReadPioMemoryCorErr", SEES(TX_READ_PIO_MEMORY_COR)),
647 /*61*/	FLAG_ENTRY0("TxEgressFifoCorErr", SEES(TX_EGRESS_FIFO_COR)),
648 /*62*/	FLAG_ENTRY0("TxReadSdmaMemoryCsrUncErr",
649 		SEES(TX_READ_SDMA_MEMORY_CSR_UNC)),
650 /*63*/	FLAG_ENTRY0("TxReadPioMemoryCsrUncErr",
651 		SEES(TX_READ_PIO_MEMORY_CSR_UNC)),
652 };
653 
654 /*
655  * TXE Egress Error Info flags
656  */
657 #define SEEI(text) SEND_EGRESS_ERR_INFO_##text##_ERR_SMASK
658 static struct flag_table egress_err_info_flags[] = {
659 /* 0*/	FLAG_ENTRY0("Reserved", 0ull),
660 /* 1*/	FLAG_ENTRY0("VLErr", SEEI(VL)),
661 /* 2*/	FLAG_ENTRY0("JobKeyErr", SEEI(JOB_KEY)),
662 /* 3*/	FLAG_ENTRY0("JobKeyErr", SEEI(JOB_KEY)),
663 /* 4*/	FLAG_ENTRY0("PartitionKeyErr", SEEI(PARTITION_KEY)),
664 /* 5*/	FLAG_ENTRY0("SLIDErr", SEEI(SLID)),
665 /* 6*/	FLAG_ENTRY0("OpcodeErr", SEEI(OPCODE)),
666 /* 7*/	FLAG_ENTRY0("VLMappingErr", SEEI(VL_MAPPING)),
667 /* 8*/	FLAG_ENTRY0("RawErr", SEEI(RAW)),
668 /* 9*/	FLAG_ENTRY0("RawIPv6Err", SEEI(RAW_IPV6)),
669 /*10*/	FLAG_ENTRY0("GRHErr", SEEI(GRH)),
670 /*11*/	FLAG_ENTRY0("BypassErr", SEEI(BYPASS)),
671 /*12*/	FLAG_ENTRY0("KDETHPacketsErr", SEEI(KDETH_PACKETS)),
672 /*13*/	FLAG_ENTRY0("NonKDETHPacketsErr", SEEI(NON_KDETH_PACKETS)),
673 /*14*/	FLAG_ENTRY0("TooSmallIBPacketsErr", SEEI(TOO_SMALL_IB_PACKETS)),
674 /*15*/	FLAG_ENTRY0("TooSmallBypassPacketsErr", SEEI(TOO_SMALL_BYPASS_PACKETS)),
675 /*16*/	FLAG_ENTRY0("PbcTestErr", SEEI(PBC_TEST)),
676 /*17*/	FLAG_ENTRY0("BadPktLenErr", SEEI(BAD_PKT_LEN)),
677 /*18*/	FLAG_ENTRY0("TooLongIBPacketErr", SEEI(TOO_LONG_IB_PACKET)),
678 /*19*/	FLAG_ENTRY0("TooLongBypassPacketsErr", SEEI(TOO_LONG_BYPASS_PACKETS)),
679 /*20*/	FLAG_ENTRY0("PbcStaticRateControlErr", SEEI(PBC_STATIC_RATE_CONTROL)),
680 /*21*/	FLAG_ENTRY0("BypassBadPktLenErr", SEEI(BAD_PKT_LEN)),
681 };
682 
683 /* TXE Egress errors that cause an SPC freeze */
684 #define ALL_TXE_EGRESS_FREEZE_ERR \
685 	(SEES(TX_EGRESS_FIFO_UNDERRUN_OR_PARITY) \
686 	| SEES(TX_PIO_LAUNCH_INTF_PARITY) \
687 	| SEES(TX_SDMA_LAUNCH_INTF_PARITY) \
688 	| SEES(TX_SBRD_CTL_STATE_MACHINE_PARITY) \
689 	| SEES(TX_LAUNCH_CSR_PARITY) \
690 	| SEES(TX_SBRD_CTL_CSR_PARITY) \
691 	| SEES(TX_CONFIG_PARITY) \
692 	| SEES(TX_LAUNCH_FIFO0_UNC_OR_PARITY) \
693 	| SEES(TX_LAUNCH_FIFO1_UNC_OR_PARITY) \
694 	| SEES(TX_LAUNCH_FIFO2_UNC_OR_PARITY) \
695 	| SEES(TX_LAUNCH_FIFO3_UNC_OR_PARITY) \
696 	| SEES(TX_LAUNCH_FIFO4_UNC_OR_PARITY) \
697 	| SEES(TX_LAUNCH_FIFO5_UNC_OR_PARITY) \
698 	| SEES(TX_LAUNCH_FIFO6_UNC_OR_PARITY) \
699 	| SEES(TX_LAUNCH_FIFO7_UNC_OR_PARITY) \
700 	| SEES(TX_LAUNCH_FIFO8_UNC_OR_PARITY) \
701 	| SEES(TX_CREDIT_RETURN_PARITY))
702 
703 /*
704  * TXE Send error flags
705  */
706 #define SES(name) SEND_ERR_STATUS_SEND_##name##_ERR_SMASK
707 static struct flag_table send_err_status_flags[] = {
708 /* 0*/	FLAG_ENTRY0("SendCsrParityErr", SES(CSR_PARITY)),
709 /* 1*/	FLAG_ENTRY0("SendCsrReadBadAddrErr", SES(CSR_READ_BAD_ADDR)),
710 /* 2*/	FLAG_ENTRY0("SendCsrWriteBadAddrErr", SES(CSR_WRITE_BAD_ADDR))
711 };
712 
713 /*
714  * TXE Send Context Error flags and consequences
715  */
716 static struct flag_table sc_err_status_flags[] = {
717 /* 0*/	FLAG_ENTRY("InconsistentSop",
718 		SEC_PACKET_DROPPED | SEC_SC_HALTED,
719 		SEND_CTXT_ERR_STATUS_PIO_INCONSISTENT_SOP_ERR_SMASK),
720 /* 1*/	FLAG_ENTRY("DisallowedPacket",
721 		SEC_PACKET_DROPPED | SEC_SC_HALTED,
722 		SEND_CTXT_ERR_STATUS_PIO_DISALLOWED_PACKET_ERR_SMASK),
723 /* 2*/	FLAG_ENTRY("WriteCrossesBoundary",
724 		SEC_WRITE_DROPPED | SEC_SC_HALTED,
725 		SEND_CTXT_ERR_STATUS_PIO_WRITE_CROSSES_BOUNDARY_ERR_SMASK),
726 /* 3*/	FLAG_ENTRY("WriteOverflow",
727 		SEC_WRITE_DROPPED | SEC_SC_HALTED,
728 		SEND_CTXT_ERR_STATUS_PIO_WRITE_OVERFLOW_ERR_SMASK),
729 /* 4*/	FLAG_ENTRY("WriteOutOfBounds",
730 		SEC_WRITE_DROPPED | SEC_SC_HALTED,
731 		SEND_CTXT_ERR_STATUS_PIO_WRITE_OUT_OF_BOUNDS_ERR_SMASK),
732 /* 5-63 reserved*/
733 };
734 
735 /*
736  * RXE Receive Error flags
737  */
738 #define RXES(name) RCV_ERR_STATUS_RX_##name##_ERR_SMASK
739 static struct flag_table rxe_err_status_flags[] = {
740 /* 0*/	FLAG_ENTRY0("RxDmaCsrCorErr", RXES(DMA_CSR_COR)),
741 /* 1*/	FLAG_ENTRY0("RxDcIntfParityErr", RXES(DC_INTF_PARITY)),
742 /* 2*/	FLAG_ENTRY0("RxRcvHdrUncErr", RXES(RCV_HDR_UNC)),
743 /* 3*/	FLAG_ENTRY0("RxRcvHdrCorErr", RXES(RCV_HDR_COR)),
744 /* 4*/	FLAG_ENTRY0("RxRcvDataUncErr", RXES(RCV_DATA_UNC)),
745 /* 5*/	FLAG_ENTRY0("RxRcvDataCorErr", RXES(RCV_DATA_COR)),
746 /* 6*/	FLAG_ENTRY0("RxRcvQpMapTableUncErr", RXES(RCV_QP_MAP_TABLE_UNC)),
747 /* 7*/	FLAG_ENTRY0("RxRcvQpMapTableCorErr", RXES(RCV_QP_MAP_TABLE_COR)),
748 /* 8*/	FLAG_ENTRY0("RxRcvCsrParityErr", RXES(RCV_CSR_PARITY)),
749 /* 9*/	FLAG_ENTRY0("RxDcSopEopParityErr", RXES(DC_SOP_EOP_PARITY)),
750 /*10*/	FLAG_ENTRY0("RxDmaFlagUncErr", RXES(DMA_FLAG_UNC)),
751 /*11*/	FLAG_ENTRY0("RxDmaFlagCorErr", RXES(DMA_FLAG_COR)),
752 /*12*/	FLAG_ENTRY0("RxRcvFsmEncodingErr", RXES(RCV_FSM_ENCODING)),
753 /*13*/	FLAG_ENTRY0("RxRbufFreeListUncErr", RXES(RBUF_FREE_LIST_UNC)),
754 /*14*/	FLAG_ENTRY0("RxRbufFreeListCorErr", RXES(RBUF_FREE_LIST_COR)),
755 /*15*/	FLAG_ENTRY0("RxRbufLookupDesRegUncErr", RXES(RBUF_LOOKUP_DES_REG_UNC)),
756 /*16*/	FLAG_ENTRY0("RxRbufLookupDesRegUncCorErr",
757 		RXES(RBUF_LOOKUP_DES_REG_UNC_COR)),
758 /*17*/	FLAG_ENTRY0("RxRbufLookupDesUncErr", RXES(RBUF_LOOKUP_DES_UNC)),
759 /*18*/	FLAG_ENTRY0("RxRbufLookupDesCorErr", RXES(RBUF_LOOKUP_DES_COR)),
760 /*19*/	FLAG_ENTRY0("RxRbufBlockListReadUncErr",
761 		RXES(RBUF_BLOCK_LIST_READ_UNC)),
762 /*20*/	FLAG_ENTRY0("RxRbufBlockListReadCorErr",
763 		RXES(RBUF_BLOCK_LIST_READ_COR)),
764 /*21*/	FLAG_ENTRY0("RxRbufCsrQHeadBufNumParityErr",
765 		RXES(RBUF_CSR_QHEAD_BUF_NUM_PARITY)),
766 /*22*/	FLAG_ENTRY0("RxRbufCsrQEntCntParityErr",
767 		RXES(RBUF_CSR_QENT_CNT_PARITY)),
768 /*23*/	FLAG_ENTRY0("RxRbufCsrQNextBufParityErr",
769 		RXES(RBUF_CSR_QNEXT_BUF_PARITY)),
770 /*24*/	FLAG_ENTRY0("RxRbufCsrQVldBitParityErr",
771 		RXES(RBUF_CSR_QVLD_BIT_PARITY)),
772 /*25*/	FLAG_ENTRY0("RxRbufCsrQHdPtrParityErr", RXES(RBUF_CSR_QHD_PTR_PARITY)),
773 /*26*/	FLAG_ENTRY0("RxRbufCsrQTlPtrParityErr", RXES(RBUF_CSR_QTL_PTR_PARITY)),
774 /*27*/	FLAG_ENTRY0("RxRbufCsrQNumOfPktParityErr",
775 		RXES(RBUF_CSR_QNUM_OF_PKT_PARITY)),
776 /*28*/	FLAG_ENTRY0("RxRbufCsrQEOPDWParityErr", RXES(RBUF_CSR_QEOPDW_PARITY)),
777 /*29*/	FLAG_ENTRY0("RxRbufCtxIdParityErr", RXES(RBUF_CTX_ID_PARITY)),
778 /*30*/	FLAG_ENTRY0("RxRBufBadLookupErr", RXES(RBUF_BAD_LOOKUP)),
779 /*31*/	FLAG_ENTRY0("RxRbufFullErr", RXES(RBUF_FULL)),
780 /*32*/	FLAG_ENTRY0("RxRbufEmptyErr", RXES(RBUF_EMPTY)),
781 /*33*/	FLAG_ENTRY0("RxRbufFlRdAddrParityErr", RXES(RBUF_FL_RD_ADDR_PARITY)),
782 /*34*/	FLAG_ENTRY0("RxRbufFlWrAddrParityErr", RXES(RBUF_FL_WR_ADDR_PARITY)),
783 /*35*/	FLAG_ENTRY0("RxRbufFlInitdoneParityErr",
784 		RXES(RBUF_FL_INITDONE_PARITY)),
785 /*36*/	FLAG_ENTRY0("RxRbufFlInitWrAddrParityErr",
786 		RXES(RBUF_FL_INIT_WR_ADDR_PARITY)),
787 /*37*/	FLAG_ENTRY0("RxRbufNextFreeBufUncErr", RXES(RBUF_NEXT_FREE_BUF_UNC)),
788 /*38*/	FLAG_ENTRY0("RxRbufNextFreeBufCorErr", RXES(RBUF_NEXT_FREE_BUF_COR)),
789 /*39*/	FLAG_ENTRY0("RxLookupDesPart1UncErr", RXES(LOOKUP_DES_PART1_UNC)),
790 /*40*/	FLAG_ENTRY0("RxLookupDesPart1UncCorErr",
791 		RXES(LOOKUP_DES_PART1_UNC_COR)),
792 /*41*/	FLAG_ENTRY0("RxLookupDesPart2ParityErr",
793 		RXES(LOOKUP_DES_PART2_PARITY)),
794 /*42*/	FLAG_ENTRY0("RxLookupRcvArrayUncErr", RXES(LOOKUP_RCV_ARRAY_UNC)),
795 /*43*/	FLAG_ENTRY0("RxLookupRcvArrayCorErr", RXES(LOOKUP_RCV_ARRAY_COR)),
796 /*44*/	FLAG_ENTRY0("RxLookupCsrParityErr", RXES(LOOKUP_CSR_PARITY)),
797 /*45*/	FLAG_ENTRY0("RxHqIntrCsrParityErr", RXES(HQ_INTR_CSR_PARITY)),
798 /*46*/	FLAG_ENTRY0("RxHqIntrFsmErr", RXES(HQ_INTR_FSM)),
799 /*47*/	FLAG_ENTRY0("RxRbufDescPart1UncErr", RXES(RBUF_DESC_PART1_UNC)),
800 /*48*/	FLAG_ENTRY0("RxRbufDescPart1CorErr", RXES(RBUF_DESC_PART1_COR)),
801 /*49*/	FLAG_ENTRY0("RxRbufDescPart2UncErr", RXES(RBUF_DESC_PART2_UNC)),
802 /*50*/	FLAG_ENTRY0("RxRbufDescPart2CorErr", RXES(RBUF_DESC_PART2_COR)),
803 /*51*/	FLAG_ENTRY0("RxDmaHdrFifoRdUncErr", RXES(DMA_HDR_FIFO_RD_UNC)),
804 /*52*/	FLAG_ENTRY0("RxDmaHdrFifoRdCorErr", RXES(DMA_HDR_FIFO_RD_COR)),
805 /*53*/	FLAG_ENTRY0("RxDmaDataFifoRdUncErr", RXES(DMA_DATA_FIFO_RD_UNC)),
806 /*54*/	FLAG_ENTRY0("RxDmaDataFifoRdCorErr", RXES(DMA_DATA_FIFO_RD_COR)),
807 /*55*/	FLAG_ENTRY0("RxRbufDataUncErr", RXES(RBUF_DATA_UNC)),
808 /*56*/	FLAG_ENTRY0("RxRbufDataCorErr", RXES(RBUF_DATA_COR)),
809 /*57*/	FLAG_ENTRY0("RxDmaCsrParityErr", RXES(DMA_CSR_PARITY)),
810 /*58*/	FLAG_ENTRY0("RxDmaEqFsmEncodingErr", RXES(DMA_EQ_FSM_ENCODING)),
811 /*59*/	FLAG_ENTRY0("RxDmaDqFsmEncodingErr", RXES(DMA_DQ_FSM_ENCODING)),
812 /*60*/	FLAG_ENTRY0("RxDmaCsrUncErr", RXES(DMA_CSR_UNC)),
813 /*61*/	FLAG_ENTRY0("RxCsrReadBadAddrErr", RXES(CSR_READ_BAD_ADDR)),
814 /*62*/	FLAG_ENTRY0("RxCsrWriteBadAddrErr", RXES(CSR_WRITE_BAD_ADDR)),
815 /*63*/	FLAG_ENTRY0("RxCsrParityErr", RXES(CSR_PARITY))
816 };
817 
818 /* RXE errors that will trigger an SPC freeze */
819 #define ALL_RXE_FREEZE_ERR  \
820 	(RCV_ERR_STATUS_RX_RCV_QP_MAP_TABLE_UNC_ERR_SMASK \
821 	| RCV_ERR_STATUS_RX_RCV_CSR_PARITY_ERR_SMASK \
822 	| RCV_ERR_STATUS_RX_DMA_FLAG_UNC_ERR_SMASK \
823 	| RCV_ERR_STATUS_RX_RCV_FSM_ENCODING_ERR_SMASK \
824 	| RCV_ERR_STATUS_RX_RBUF_FREE_LIST_UNC_ERR_SMASK \
825 	| RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_REG_UNC_ERR_SMASK \
826 	| RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_REG_UNC_COR_ERR_SMASK \
827 	| RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_UNC_ERR_SMASK \
828 	| RCV_ERR_STATUS_RX_RBUF_BLOCK_LIST_READ_UNC_ERR_SMASK \
829 	| RCV_ERR_STATUS_RX_RBUF_CSR_QHEAD_BUF_NUM_PARITY_ERR_SMASK \
830 	| RCV_ERR_STATUS_RX_RBUF_CSR_QENT_CNT_PARITY_ERR_SMASK \
831 	| RCV_ERR_STATUS_RX_RBUF_CSR_QNEXT_BUF_PARITY_ERR_SMASK \
832 	| RCV_ERR_STATUS_RX_RBUF_CSR_QVLD_BIT_PARITY_ERR_SMASK \
833 	| RCV_ERR_STATUS_RX_RBUF_CSR_QHD_PTR_PARITY_ERR_SMASK \
834 	| RCV_ERR_STATUS_RX_RBUF_CSR_QTL_PTR_PARITY_ERR_SMASK \
835 	| RCV_ERR_STATUS_RX_RBUF_CSR_QNUM_OF_PKT_PARITY_ERR_SMASK \
836 	| RCV_ERR_STATUS_RX_RBUF_CSR_QEOPDW_PARITY_ERR_SMASK \
837 	| RCV_ERR_STATUS_RX_RBUF_CTX_ID_PARITY_ERR_SMASK \
838 	| RCV_ERR_STATUS_RX_RBUF_BAD_LOOKUP_ERR_SMASK \
839 	| RCV_ERR_STATUS_RX_RBUF_FULL_ERR_SMASK \
840 	| RCV_ERR_STATUS_RX_RBUF_EMPTY_ERR_SMASK \
841 	| RCV_ERR_STATUS_RX_RBUF_FL_RD_ADDR_PARITY_ERR_SMASK \
842 	| RCV_ERR_STATUS_RX_RBUF_FL_WR_ADDR_PARITY_ERR_SMASK \
843 	| RCV_ERR_STATUS_RX_RBUF_FL_INITDONE_PARITY_ERR_SMASK \
844 	| RCV_ERR_STATUS_RX_RBUF_FL_INIT_WR_ADDR_PARITY_ERR_SMASK \
845 	| RCV_ERR_STATUS_RX_RBUF_NEXT_FREE_BUF_UNC_ERR_SMASK \
846 	| RCV_ERR_STATUS_RX_LOOKUP_DES_PART1_UNC_ERR_SMASK \
847 	| RCV_ERR_STATUS_RX_LOOKUP_DES_PART1_UNC_COR_ERR_SMASK \
848 	| RCV_ERR_STATUS_RX_LOOKUP_DES_PART2_PARITY_ERR_SMASK \
849 	| RCV_ERR_STATUS_RX_LOOKUP_RCV_ARRAY_UNC_ERR_SMASK \
850 	| RCV_ERR_STATUS_RX_LOOKUP_CSR_PARITY_ERR_SMASK \
851 	| RCV_ERR_STATUS_RX_HQ_INTR_CSR_PARITY_ERR_SMASK \
852 	| RCV_ERR_STATUS_RX_HQ_INTR_FSM_ERR_SMASK \
853 	| RCV_ERR_STATUS_RX_RBUF_DESC_PART1_UNC_ERR_SMASK \
854 	| RCV_ERR_STATUS_RX_RBUF_DESC_PART1_COR_ERR_SMASK \
855 	| RCV_ERR_STATUS_RX_RBUF_DESC_PART2_UNC_ERR_SMASK \
856 	| RCV_ERR_STATUS_RX_DMA_HDR_FIFO_RD_UNC_ERR_SMASK \
857 	| RCV_ERR_STATUS_RX_DMA_DATA_FIFO_RD_UNC_ERR_SMASK \
858 	| RCV_ERR_STATUS_RX_RBUF_DATA_UNC_ERR_SMASK \
859 	| RCV_ERR_STATUS_RX_DMA_CSR_PARITY_ERR_SMASK \
860 	| RCV_ERR_STATUS_RX_DMA_EQ_FSM_ENCODING_ERR_SMASK \
861 	| RCV_ERR_STATUS_RX_DMA_DQ_FSM_ENCODING_ERR_SMASK \
862 	| RCV_ERR_STATUS_RX_DMA_CSR_UNC_ERR_SMASK \
863 	| RCV_ERR_STATUS_RX_CSR_PARITY_ERR_SMASK)
864 
865 #define RXE_FREEZE_ABORT_MASK \
866 	(RCV_ERR_STATUS_RX_DMA_CSR_UNC_ERR_SMASK | \
867 	RCV_ERR_STATUS_RX_DMA_HDR_FIFO_RD_UNC_ERR_SMASK | \
868 	RCV_ERR_STATUS_RX_DMA_DATA_FIFO_RD_UNC_ERR_SMASK)
869 
870 /*
871  * DCC Error Flags
872  */
873 #define DCCE(name) DCC_ERR_FLG_##name##_SMASK
874 static struct flag_table dcc_err_flags[] = {
875 	FLAG_ENTRY0("bad_l2_err", DCCE(BAD_L2_ERR)),
876 	FLAG_ENTRY0("bad_sc_err", DCCE(BAD_SC_ERR)),
877 	FLAG_ENTRY0("bad_mid_tail_err", DCCE(BAD_MID_TAIL_ERR)),
878 	FLAG_ENTRY0("bad_preemption_err", DCCE(BAD_PREEMPTION_ERR)),
879 	FLAG_ENTRY0("preemption_err", DCCE(PREEMPTION_ERR)),
880 	FLAG_ENTRY0("preemptionvl15_err", DCCE(PREEMPTIONVL15_ERR)),
881 	FLAG_ENTRY0("bad_vl_marker_err", DCCE(BAD_VL_MARKER_ERR)),
882 	FLAG_ENTRY0("bad_dlid_target_err", DCCE(BAD_DLID_TARGET_ERR)),
883 	FLAG_ENTRY0("bad_lver_err", DCCE(BAD_LVER_ERR)),
884 	FLAG_ENTRY0("uncorrectable_err", DCCE(UNCORRECTABLE_ERR)),
885 	FLAG_ENTRY0("bad_crdt_ack_err", DCCE(BAD_CRDT_ACK_ERR)),
886 	FLAG_ENTRY0("unsup_pkt_type", DCCE(UNSUP_PKT_TYPE)),
887 	FLAG_ENTRY0("bad_ctrl_flit_err", DCCE(BAD_CTRL_FLIT_ERR)),
888 	FLAG_ENTRY0("event_cntr_parity_err", DCCE(EVENT_CNTR_PARITY_ERR)),
889 	FLAG_ENTRY0("event_cntr_rollover_err", DCCE(EVENT_CNTR_ROLLOVER_ERR)),
890 	FLAG_ENTRY0("link_err", DCCE(LINK_ERR)),
891 	FLAG_ENTRY0("misc_cntr_rollover_err", DCCE(MISC_CNTR_ROLLOVER_ERR)),
892 	FLAG_ENTRY0("bad_ctrl_dist_err", DCCE(BAD_CTRL_DIST_ERR)),
893 	FLAG_ENTRY0("bad_tail_dist_err", DCCE(BAD_TAIL_DIST_ERR)),
894 	FLAG_ENTRY0("bad_head_dist_err", DCCE(BAD_HEAD_DIST_ERR)),
895 	FLAG_ENTRY0("nonvl15_state_err", DCCE(NONVL15_STATE_ERR)),
896 	FLAG_ENTRY0("vl15_multi_err", DCCE(VL15_MULTI_ERR)),
897 	FLAG_ENTRY0("bad_pkt_length_err", DCCE(BAD_PKT_LENGTH_ERR)),
898 	FLAG_ENTRY0("unsup_vl_err", DCCE(UNSUP_VL_ERR)),
899 	FLAG_ENTRY0("perm_nvl15_err", DCCE(PERM_NVL15_ERR)),
900 	FLAG_ENTRY0("slid_zero_err", DCCE(SLID_ZERO_ERR)),
901 	FLAG_ENTRY0("dlid_zero_err", DCCE(DLID_ZERO_ERR)),
902 	FLAG_ENTRY0("length_mtu_err", DCCE(LENGTH_MTU_ERR)),
903 	FLAG_ENTRY0("rx_early_drop_err", DCCE(RX_EARLY_DROP_ERR)),
904 	FLAG_ENTRY0("late_short_err", DCCE(LATE_SHORT_ERR)),
905 	FLAG_ENTRY0("late_long_err", DCCE(LATE_LONG_ERR)),
906 	FLAG_ENTRY0("late_ebp_err", DCCE(LATE_EBP_ERR)),
907 	FLAG_ENTRY0("fpe_tx_fifo_ovflw_err", DCCE(FPE_TX_FIFO_OVFLW_ERR)),
908 	FLAG_ENTRY0("fpe_tx_fifo_unflw_err", DCCE(FPE_TX_FIFO_UNFLW_ERR)),
909 	FLAG_ENTRY0("csr_access_blocked_host", DCCE(CSR_ACCESS_BLOCKED_HOST)),
910 	FLAG_ENTRY0("csr_access_blocked_uc", DCCE(CSR_ACCESS_BLOCKED_UC)),
911 	FLAG_ENTRY0("tx_ctrl_parity_err", DCCE(TX_CTRL_PARITY_ERR)),
912 	FLAG_ENTRY0("tx_ctrl_parity_mbe_err", DCCE(TX_CTRL_PARITY_MBE_ERR)),
913 	FLAG_ENTRY0("tx_sc_parity_err", DCCE(TX_SC_PARITY_ERR)),
914 	FLAG_ENTRY0("rx_ctrl_parity_mbe_err", DCCE(RX_CTRL_PARITY_MBE_ERR)),
915 	FLAG_ENTRY0("csr_parity_err", DCCE(CSR_PARITY_ERR)),
916 	FLAG_ENTRY0("csr_inval_addr", DCCE(CSR_INVAL_ADDR)),
917 	FLAG_ENTRY0("tx_byte_shft_parity_err", DCCE(TX_BYTE_SHFT_PARITY_ERR)),
918 	FLAG_ENTRY0("rx_byte_shft_parity_err", DCCE(RX_BYTE_SHFT_PARITY_ERR)),
919 	FLAG_ENTRY0("fmconfig_err", DCCE(FMCONFIG_ERR)),
920 	FLAG_ENTRY0("rcvport_err", DCCE(RCVPORT_ERR)),
921 };
922 
923 /*
924  * LCB error flags
925  */
926 #define LCBE(name) DC_LCB_ERR_FLG_##name##_SMASK
927 static struct flag_table lcb_err_flags[] = {
928 /* 0*/	FLAG_ENTRY0("CSR_PARITY_ERR", LCBE(CSR_PARITY_ERR)),
929 /* 1*/	FLAG_ENTRY0("INVALID_CSR_ADDR", LCBE(INVALID_CSR_ADDR)),
930 /* 2*/	FLAG_ENTRY0("RST_FOR_FAILED_DESKEW", LCBE(RST_FOR_FAILED_DESKEW)),
931 /* 3*/	FLAG_ENTRY0("ALL_LNS_FAILED_REINIT_TEST",
932 		LCBE(ALL_LNS_FAILED_REINIT_TEST)),
933 /* 4*/	FLAG_ENTRY0("LOST_REINIT_STALL_OR_TOS", LCBE(LOST_REINIT_STALL_OR_TOS)),
934 /* 5*/	FLAG_ENTRY0("TX_LESS_THAN_FOUR_LNS", LCBE(TX_LESS_THAN_FOUR_LNS)),
935 /* 6*/	FLAG_ENTRY0("RX_LESS_THAN_FOUR_LNS", LCBE(RX_LESS_THAN_FOUR_LNS)),
936 /* 7*/	FLAG_ENTRY0("SEQ_CRC_ERR", LCBE(SEQ_CRC_ERR)),
937 /* 8*/	FLAG_ENTRY0("REINIT_FROM_PEER", LCBE(REINIT_FROM_PEER)),
938 /* 9*/	FLAG_ENTRY0("REINIT_FOR_LN_DEGRADE", LCBE(REINIT_FOR_LN_DEGRADE)),
939 /*10*/	FLAG_ENTRY0("CRC_ERR_CNT_HIT_LIMIT", LCBE(CRC_ERR_CNT_HIT_LIMIT)),
940 /*11*/	FLAG_ENTRY0("RCLK_STOPPED", LCBE(RCLK_STOPPED)),
941 /*12*/	FLAG_ENTRY0("UNEXPECTED_REPLAY_MARKER", LCBE(UNEXPECTED_REPLAY_MARKER)),
942 /*13*/	FLAG_ENTRY0("UNEXPECTED_ROUND_TRIP_MARKER",
943 		LCBE(UNEXPECTED_ROUND_TRIP_MARKER)),
944 /*14*/	FLAG_ENTRY0("ILLEGAL_NULL_LTP", LCBE(ILLEGAL_NULL_LTP)),
945 /*15*/	FLAG_ENTRY0("ILLEGAL_FLIT_ENCODING", LCBE(ILLEGAL_FLIT_ENCODING)),
946 /*16*/	FLAG_ENTRY0("FLIT_INPUT_BUF_OFLW", LCBE(FLIT_INPUT_BUF_OFLW)),
947 /*17*/	FLAG_ENTRY0("VL_ACK_INPUT_BUF_OFLW", LCBE(VL_ACK_INPUT_BUF_OFLW)),
948 /*18*/	FLAG_ENTRY0("VL_ACK_INPUT_PARITY_ERR", LCBE(VL_ACK_INPUT_PARITY_ERR)),
949 /*19*/	FLAG_ENTRY0("VL_ACK_INPUT_WRONG_CRC_MODE",
950 		LCBE(VL_ACK_INPUT_WRONG_CRC_MODE)),
951 /*20*/	FLAG_ENTRY0("FLIT_INPUT_BUF_MBE", LCBE(FLIT_INPUT_BUF_MBE)),
952 /*21*/	FLAG_ENTRY0("FLIT_INPUT_BUF_SBE", LCBE(FLIT_INPUT_BUF_SBE)),
953 /*22*/	FLAG_ENTRY0("REPLAY_BUF_MBE", LCBE(REPLAY_BUF_MBE)),
954 /*23*/	FLAG_ENTRY0("REPLAY_BUF_SBE", LCBE(REPLAY_BUF_SBE)),
955 /*24*/	FLAG_ENTRY0("CREDIT_RETURN_FLIT_MBE", LCBE(CREDIT_RETURN_FLIT_MBE)),
956 /*25*/	FLAG_ENTRY0("RST_FOR_LINK_TIMEOUT", LCBE(RST_FOR_LINK_TIMEOUT)),
957 /*26*/	FLAG_ENTRY0("RST_FOR_INCOMPLT_RND_TRIP",
958 		LCBE(RST_FOR_INCOMPLT_RND_TRIP)),
959 /*27*/	FLAG_ENTRY0("HOLD_REINIT", LCBE(HOLD_REINIT)),
960 /*28*/	FLAG_ENTRY0("NEG_EDGE_LINK_TRANSFER_ACTIVE",
961 		LCBE(NEG_EDGE_LINK_TRANSFER_ACTIVE)),
962 /*29*/	FLAG_ENTRY0("REDUNDANT_FLIT_PARITY_ERR",
963 		LCBE(REDUNDANT_FLIT_PARITY_ERR))
964 };
965 
966 /*
967  * DC8051 Error Flags
968  */
969 #define D8E(name) DC_DC8051_ERR_FLG_##name##_SMASK
970 static struct flag_table dc8051_err_flags[] = {
971 	FLAG_ENTRY0("SET_BY_8051", D8E(SET_BY_8051)),
972 	FLAG_ENTRY0("LOST_8051_HEART_BEAT", D8E(LOST_8051_HEART_BEAT)),
973 	FLAG_ENTRY0("CRAM_MBE", D8E(CRAM_MBE)),
974 	FLAG_ENTRY0("CRAM_SBE", D8E(CRAM_SBE)),
975 	FLAG_ENTRY0("DRAM_MBE", D8E(DRAM_MBE)),
976 	FLAG_ENTRY0("DRAM_SBE", D8E(DRAM_SBE)),
977 	FLAG_ENTRY0("IRAM_MBE", D8E(IRAM_MBE)),
978 	FLAG_ENTRY0("IRAM_SBE", D8E(IRAM_SBE)),
979 	FLAG_ENTRY0("UNMATCHED_SECURE_MSG_ACROSS_BCC_LANES",
980 		    D8E(UNMATCHED_SECURE_MSG_ACROSS_BCC_LANES)),
981 	FLAG_ENTRY0("INVALID_CSR_ADDR", D8E(INVALID_CSR_ADDR)),
982 };
983 
984 /*
985  * DC8051 Information Error flags
986  *
987  * Flags in DC8051_DBG_ERR_INFO_SET_BY_8051.ERROR field.
988  */
989 static struct flag_table dc8051_info_err_flags[] = {
990 	FLAG_ENTRY0("Spico ROM check failed",  SPICO_ROM_FAILED),
991 	FLAG_ENTRY0("Unknown frame received",  UNKNOWN_FRAME),
992 	FLAG_ENTRY0("Target BER not met",      TARGET_BER_NOT_MET),
993 	FLAG_ENTRY0("Serdes internal loopback failure",
994 		    FAILED_SERDES_INTERNAL_LOOPBACK),
995 	FLAG_ENTRY0("Failed SerDes init",      FAILED_SERDES_INIT),
996 	FLAG_ENTRY0("Failed LNI(Polling)",     FAILED_LNI_POLLING),
997 	FLAG_ENTRY0("Failed LNI(Debounce)",    FAILED_LNI_DEBOUNCE),
998 	FLAG_ENTRY0("Failed LNI(EstbComm)",    FAILED_LNI_ESTBCOMM),
999 	FLAG_ENTRY0("Failed LNI(OptEq)",       FAILED_LNI_OPTEQ),
1000 	FLAG_ENTRY0("Failed LNI(VerifyCap_1)", FAILED_LNI_VERIFY_CAP1),
1001 	FLAG_ENTRY0("Failed LNI(VerifyCap_2)", FAILED_LNI_VERIFY_CAP2),
1002 	FLAG_ENTRY0("Failed LNI(ConfigLT)",    FAILED_LNI_CONFIGLT),
1003 	FLAG_ENTRY0("Host Handshake Timeout",  HOST_HANDSHAKE_TIMEOUT),
1004 	FLAG_ENTRY0("External Device Request Timeout",
1005 		    EXTERNAL_DEVICE_REQ_TIMEOUT),
1006 };
1007 
1008 /*
1009  * DC8051 Information Host Information flags
1010  *
1011  * Flags in DC8051_DBG_ERR_INFO_SET_BY_8051.HOST_MSG field.
1012  */
1013 static struct flag_table dc8051_info_host_msg_flags[] = {
1014 	FLAG_ENTRY0("Host request done", 0x0001),
1015 	FLAG_ENTRY0("BC SMA message", 0x0002),
1016 	FLAG_ENTRY0("BC PWR_MGM message", 0x0004),
1017 	FLAG_ENTRY0("BC Unknown message (BCC)", 0x0008),
1018 	FLAG_ENTRY0("BC Unknown message (LCB)", 0x0010),
1019 	FLAG_ENTRY0("External device config request", 0x0020),
1020 	FLAG_ENTRY0("VerifyCap all frames received", 0x0040),
1021 	FLAG_ENTRY0("LinkUp achieved", 0x0080),
1022 	FLAG_ENTRY0("Link going down", 0x0100),
1023 };
1024 
1025 static u32 encoded_size(u32 size);
1026 static u32 chip_to_opa_lstate(struct hfi1_devdata *dd, u32 chip_lstate);
1027 static int set_physical_link_state(struct hfi1_devdata *dd, u64 state);
1028 static void read_vc_remote_phy(struct hfi1_devdata *dd, u8 *power_management,
1029 			       u8 *continuous);
1030 static void read_vc_remote_fabric(struct hfi1_devdata *dd, u8 *vau, u8 *z,
1031 				  u8 *vcu, u16 *vl15buf, u8 *crc_sizes);
1032 static void read_vc_remote_link_width(struct hfi1_devdata *dd,
1033 				      u8 *remote_tx_rate, u16 *link_widths);
1034 static void read_vc_local_link_width(struct hfi1_devdata *dd, u8 *misc_bits,
1035 				     u8 *flag_bits, u16 *link_widths);
1036 static void read_remote_device_id(struct hfi1_devdata *dd, u16 *device_id,
1037 				  u8 *device_rev);
1038 static void read_mgmt_allowed(struct hfi1_devdata *dd, u8 *mgmt_allowed);
1039 static void read_local_lni(struct hfi1_devdata *dd, u8 *enable_lane_rx);
1040 static int read_tx_settings(struct hfi1_devdata *dd, u8 *enable_lane_tx,
1041 			    u8 *tx_polarity_inversion,
1042 			    u8 *rx_polarity_inversion, u8 *max_rate);
1043 static void handle_sdma_eng_err(struct hfi1_devdata *dd,
1044 				unsigned int context, u64 err_status);
1045 static void handle_qsfp_int(struct hfi1_devdata *dd, u32 source, u64 reg);
1046 static void handle_dcc_err(struct hfi1_devdata *dd,
1047 			   unsigned int context, u64 err_status);
1048 static void handle_lcb_err(struct hfi1_devdata *dd,
1049 			   unsigned int context, u64 err_status);
1050 static void handle_8051_interrupt(struct hfi1_devdata *dd, u32 unused, u64 reg);
1051 static void handle_cce_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1052 static void handle_rxe_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1053 static void handle_misc_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1054 static void handle_pio_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1055 static void handle_sdma_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1056 static void handle_egress_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1057 static void handle_txe_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1058 static void set_partition_keys(struct hfi1_pportdata *ppd);
1059 static const char *link_state_name(u32 state);
1060 static const char *link_state_reason_name(struct hfi1_pportdata *ppd,
1061 					  u32 state);
1062 static int do_8051_command(struct hfi1_devdata *dd, u32 type, u64 in_data,
1063 			   u64 *out_data);
1064 static int read_idle_sma(struct hfi1_devdata *dd, u64 *data);
1065 static int thermal_init(struct hfi1_devdata *dd);
1066 
1067 static int wait_logical_linkstate(struct hfi1_pportdata *ppd, u32 state,
1068 				  int msecs);
1069 static void read_planned_down_reason_code(struct hfi1_devdata *dd, u8 *pdrrc);
1070 static void read_link_down_reason(struct hfi1_devdata *dd, u8 *ldr);
1071 static void handle_temp_err(struct hfi1_devdata *dd);
1072 static void dc_shutdown(struct hfi1_devdata *dd);
1073 static void dc_start(struct hfi1_devdata *dd);
1074 static int qos_rmt_entries(struct hfi1_devdata *dd, unsigned int *mp,
1075 			   unsigned int *np);
1076 static void clear_full_mgmt_pkey(struct hfi1_pportdata *ppd);
1077 static int wait_link_transfer_active(struct hfi1_devdata *dd, int wait_ms);
1078 static void clear_rsm_rule(struct hfi1_devdata *dd, u8 rule_index);
1079 
1080 /*
1081  * Error interrupt table entry.  This is used as input to the interrupt
1082  * "clear down" routine used for all second tier error interrupt register.
1083  * Second tier interrupt registers have a single bit representing them
1084  * in the top-level CceIntStatus.
1085  */
1086 struct err_reg_info {
1087 	u32 status;		/* status CSR offset */
1088 	u32 clear;		/* clear CSR offset */
1089 	u32 mask;		/* mask CSR offset */
1090 	void (*handler)(struct hfi1_devdata *dd, u32 source, u64 reg);
1091 	const char *desc;
1092 };
1093 
1094 #define NUM_MISC_ERRS (IS_GENERAL_ERR_END - IS_GENERAL_ERR_START)
1095 #define NUM_DC_ERRS (IS_DC_END - IS_DC_START)
1096 #define NUM_VARIOUS (IS_VARIOUS_END - IS_VARIOUS_START)
1097 
1098 /*
1099  * Helpers for building HFI and DC error interrupt table entries.  Different
1100  * helpers are needed because of inconsistent register names.
1101  */
1102 #define EE(reg, handler, desc) \
1103 	{ reg##_STATUS, reg##_CLEAR, reg##_MASK, \
1104 		handler, desc }
1105 #define DC_EE1(reg, handler, desc) \
1106 	{ reg##_FLG, reg##_FLG_CLR, reg##_FLG_EN, handler, desc }
1107 #define DC_EE2(reg, handler, desc) \
1108 	{ reg##_FLG, reg##_CLR, reg##_EN, handler, desc }
1109 
1110 /*
1111  * Table of the "misc" grouping of error interrupts.  Each entry refers to
1112  * another register containing more information.
1113  */
1114 static const struct err_reg_info misc_errs[NUM_MISC_ERRS] = {
1115 /* 0*/	EE(CCE_ERR,		handle_cce_err,    "CceErr"),
1116 /* 1*/	EE(RCV_ERR,		handle_rxe_err,    "RxeErr"),
1117 /* 2*/	EE(MISC_ERR,	handle_misc_err,   "MiscErr"),
1118 /* 3*/	{ 0, 0, 0, NULL }, /* reserved */
1119 /* 4*/	EE(SEND_PIO_ERR,    handle_pio_err,    "PioErr"),
1120 /* 5*/	EE(SEND_DMA_ERR,    handle_sdma_err,   "SDmaErr"),
1121 /* 6*/	EE(SEND_EGRESS_ERR, handle_egress_err, "EgressErr"),
1122 /* 7*/	EE(SEND_ERR,	handle_txe_err,    "TxeErr")
1123 	/* the rest are reserved */
1124 };
1125 
1126 /*
1127  * Index into the Various section of the interrupt sources
1128  * corresponding to the Critical Temperature interrupt.
1129  */
1130 #define TCRIT_INT_SOURCE 4
1131 
1132 /*
1133  * SDMA error interrupt entry - refers to another register containing more
1134  * information.
1135  */
1136 static const struct err_reg_info sdma_eng_err =
1137 	EE(SEND_DMA_ENG_ERR, handle_sdma_eng_err, "SDmaEngErr");
1138 
1139 static const struct err_reg_info various_err[NUM_VARIOUS] = {
1140 /* 0*/	{ 0, 0, 0, NULL }, /* PbcInt */
1141 /* 1*/	{ 0, 0, 0, NULL }, /* GpioAssertInt */
1142 /* 2*/	EE(ASIC_QSFP1,	handle_qsfp_int,	"QSFP1"),
1143 /* 3*/	EE(ASIC_QSFP2,	handle_qsfp_int,	"QSFP2"),
1144 /* 4*/	{ 0, 0, 0, NULL }, /* TCritInt */
1145 	/* rest are reserved */
1146 };
1147 
1148 /*
1149  * The DC encoding of mtu_cap for 10K MTU in the DCC_CFG_PORT_CONFIG
1150  * register can not be derived from the MTU value because 10K is not
1151  * a power of 2. Therefore, we need a constant. Everything else can
1152  * be calculated.
1153  */
1154 #define DCC_CFG_PORT_MTU_CAP_10240 7
1155 
1156 /*
1157  * Table of the DC grouping of error interrupts.  Each entry refers to
1158  * another register containing more information.
1159  */
1160 static const struct err_reg_info dc_errs[NUM_DC_ERRS] = {
1161 /* 0*/	DC_EE1(DCC_ERR,		handle_dcc_err,	       "DCC Err"),
1162 /* 1*/	DC_EE2(DC_LCB_ERR,	handle_lcb_err,	       "LCB Err"),
1163 /* 2*/	DC_EE2(DC_DC8051_ERR,	handle_8051_interrupt, "DC8051 Interrupt"),
1164 /* 3*/	/* dc_lbm_int - special, see is_dc_int() */
1165 	/* the rest are reserved */
1166 };
1167 
1168 struct cntr_entry {
1169 	/*
1170 	 * counter name
1171 	 */
1172 	char *name;
1173 
1174 	/*
1175 	 * csr to read for name (if applicable)
1176 	 */
1177 	u64 csr;
1178 
1179 	/*
1180 	 * offset into dd or ppd to store the counter's value
1181 	 */
1182 	int offset;
1183 
1184 	/*
1185 	 * flags
1186 	 */
1187 	u8 flags;
1188 
1189 	/*
1190 	 * accessor for stat element, context either dd or ppd
1191 	 */
1192 	u64 (*rw_cntr)(const struct cntr_entry *, void *context, int vl,
1193 		       int mode, u64 data);
1194 };
1195 
1196 #define C_RCV_HDR_OVF_FIRST C_RCV_HDR_OVF_0
1197 #define C_RCV_HDR_OVF_LAST C_RCV_HDR_OVF_159
1198 
1199 #define CNTR_ELEM(name, csr, offset, flags, accessor) \
1200 { \
1201 	name, \
1202 	csr, \
1203 	offset, \
1204 	flags, \
1205 	accessor \
1206 }
1207 
1208 /* 32bit RXE */
1209 #define RXE32_PORT_CNTR_ELEM(name, counter, flags) \
1210 CNTR_ELEM(#name, \
1211 	  (counter * 8 + RCV_COUNTER_ARRAY32), \
1212 	  0, flags | CNTR_32BIT, \
1213 	  port_access_u32_csr)
1214 
1215 #define RXE32_DEV_CNTR_ELEM(name, counter, flags) \
1216 CNTR_ELEM(#name, \
1217 	  (counter * 8 + RCV_COUNTER_ARRAY32), \
1218 	  0, flags | CNTR_32BIT, \
1219 	  dev_access_u32_csr)
1220 
1221 /* 64bit RXE */
1222 #define RXE64_PORT_CNTR_ELEM(name, counter, flags) \
1223 CNTR_ELEM(#name, \
1224 	  (counter * 8 + RCV_COUNTER_ARRAY64), \
1225 	  0, flags, \
1226 	  port_access_u64_csr)
1227 
1228 #define RXE64_DEV_CNTR_ELEM(name, counter, flags) \
1229 CNTR_ELEM(#name, \
1230 	  (counter * 8 + RCV_COUNTER_ARRAY64), \
1231 	  0, flags, \
1232 	  dev_access_u64_csr)
1233 
1234 #define OVR_LBL(ctx) C_RCV_HDR_OVF_ ## ctx
1235 #define OVR_ELM(ctx) \
1236 CNTR_ELEM("RcvHdrOvr" #ctx, \
1237 	  (RCV_HDR_OVFL_CNT + ctx * 0x100), \
1238 	  0, CNTR_NORMAL, port_access_u64_csr)
1239 
1240 /* 32bit TXE */
1241 #define TXE32_PORT_CNTR_ELEM(name, counter, flags) \
1242 CNTR_ELEM(#name, \
1243 	  (counter * 8 + SEND_COUNTER_ARRAY32), \
1244 	  0, flags | CNTR_32BIT, \
1245 	  port_access_u32_csr)
1246 
1247 /* 64bit TXE */
1248 #define TXE64_PORT_CNTR_ELEM(name, counter, flags) \
1249 CNTR_ELEM(#name, \
1250 	  (counter * 8 + SEND_COUNTER_ARRAY64), \
1251 	  0, flags, \
1252 	  port_access_u64_csr)
1253 
1254 # define TX64_DEV_CNTR_ELEM(name, counter, flags) \
1255 CNTR_ELEM(#name,\
1256 	  counter * 8 + SEND_COUNTER_ARRAY64, \
1257 	  0, \
1258 	  flags, \
1259 	  dev_access_u64_csr)
1260 
1261 /* CCE */
1262 #define CCE_PERF_DEV_CNTR_ELEM(name, counter, flags) \
1263 CNTR_ELEM(#name, \
1264 	  (counter * 8 + CCE_COUNTER_ARRAY32), \
1265 	  0, flags | CNTR_32BIT, \
1266 	  dev_access_u32_csr)
1267 
1268 #define CCE_INT_DEV_CNTR_ELEM(name, counter, flags) \
1269 CNTR_ELEM(#name, \
1270 	  (counter * 8 + CCE_INT_COUNTER_ARRAY32), \
1271 	  0, flags | CNTR_32BIT, \
1272 	  dev_access_u32_csr)
1273 
1274 /* DC */
1275 #define DC_PERF_CNTR(name, counter, flags) \
1276 CNTR_ELEM(#name, \
1277 	  counter, \
1278 	  0, \
1279 	  flags, \
1280 	  dev_access_u64_csr)
1281 
1282 #define DC_PERF_CNTR_LCB(name, counter, flags) \
1283 CNTR_ELEM(#name, \
1284 	  counter, \
1285 	  0, \
1286 	  flags, \
1287 	  dc_access_lcb_cntr)
1288 
1289 /* ibp counters */
1290 #define SW_IBP_CNTR(name, cntr) \
1291 CNTR_ELEM(#name, \
1292 	  0, \
1293 	  0, \
1294 	  CNTR_SYNTH, \
1295 	  access_ibp_##cntr)
1296 
1297 u64 read_csr(const struct hfi1_devdata *dd, u32 offset)
1298 {
1299 	if (dd->flags & HFI1_PRESENT) {
1300 		return readq((void __iomem *)dd->kregbase + offset);
1301 	}
1302 	return -1;
1303 }
1304 
1305 void write_csr(const struct hfi1_devdata *dd, u32 offset, u64 value)
1306 {
1307 	if (dd->flags & HFI1_PRESENT)
1308 		writeq(value, (void __iomem *)dd->kregbase + offset);
1309 }
1310 
1311 void __iomem *get_csr_addr(
1312 	struct hfi1_devdata *dd,
1313 	u32 offset)
1314 {
1315 	return (void __iomem *)dd->kregbase + offset;
1316 }
1317 
1318 static inline u64 read_write_csr(const struct hfi1_devdata *dd, u32 csr,
1319 				 int mode, u64 value)
1320 {
1321 	u64 ret;
1322 
1323 	if (mode == CNTR_MODE_R) {
1324 		ret = read_csr(dd, csr);
1325 	} else if (mode == CNTR_MODE_W) {
1326 		write_csr(dd, csr, value);
1327 		ret = value;
1328 	} else {
1329 		dd_dev_err(dd, "Invalid cntr register access mode");
1330 		return 0;
1331 	}
1332 
1333 	hfi1_cdbg(CNTR, "csr 0x%x val 0x%llx mode %d", csr, ret, mode);
1334 	return ret;
1335 }
1336 
1337 /* Dev Access */
1338 static u64 dev_access_u32_csr(const struct cntr_entry *entry,
1339 			      void *context, int vl, int mode, u64 data)
1340 {
1341 	struct hfi1_devdata *dd = context;
1342 	u64 csr = entry->csr;
1343 
1344 	if (entry->flags & CNTR_SDMA) {
1345 		if (vl == CNTR_INVALID_VL)
1346 			return 0;
1347 		csr += 0x100 * vl;
1348 	} else {
1349 		if (vl != CNTR_INVALID_VL)
1350 			return 0;
1351 	}
1352 	return read_write_csr(dd, csr, mode, data);
1353 }
1354 
1355 static u64 access_sde_err_cnt(const struct cntr_entry *entry,
1356 			      void *context, int idx, int mode, u64 data)
1357 {
1358 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1359 
1360 	if (dd->per_sdma && idx < dd->num_sdma)
1361 		return dd->per_sdma[idx].err_cnt;
1362 	return 0;
1363 }
1364 
1365 static u64 access_sde_int_cnt(const struct cntr_entry *entry,
1366 			      void *context, int idx, int mode, u64 data)
1367 {
1368 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1369 
1370 	if (dd->per_sdma && idx < dd->num_sdma)
1371 		return dd->per_sdma[idx].sdma_int_cnt;
1372 	return 0;
1373 }
1374 
1375 static u64 access_sde_idle_int_cnt(const struct cntr_entry *entry,
1376 				   void *context, int idx, int mode, u64 data)
1377 {
1378 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1379 
1380 	if (dd->per_sdma && idx < dd->num_sdma)
1381 		return dd->per_sdma[idx].idle_int_cnt;
1382 	return 0;
1383 }
1384 
1385 static u64 access_sde_progress_int_cnt(const struct cntr_entry *entry,
1386 				       void *context, int idx, int mode,
1387 				       u64 data)
1388 {
1389 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1390 
1391 	if (dd->per_sdma && idx < dd->num_sdma)
1392 		return dd->per_sdma[idx].progress_int_cnt;
1393 	return 0;
1394 }
1395 
1396 static u64 dev_access_u64_csr(const struct cntr_entry *entry, void *context,
1397 			      int vl, int mode, u64 data)
1398 {
1399 	struct hfi1_devdata *dd = context;
1400 
1401 	u64 val = 0;
1402 	u64 csr = entry->csr;
1403 
1404 	if (entry->flags & CNTR_VL) {
1405 		if (vl == CNTR_INVALID_VL)
1406 			return 0;
1407 		csr += 8 * vl;
1408 	} else {
1409 		if (vl != CNTR_INVALID_VL)
1410 			return 0;
1411 	}
1412 
1413 	val = read_write_csr(dd, csr, mode, data);
1414 	return val;
1415 }
1416 
1417 static u64 dc_access_lcb_cntr(const struct cntr_entry *entry, void *context,
1418 			      int vl, int mode, u64 data)
1419 {
1420 	struct hfi1_devdata *dd = context;
1421 	u32 csr = entry->csr;
1422 	int ret = 0;
1423 
1424 	if (vl != CNTR_INVALID_VL)
1425 		return 0;
1426 	if (mode == CNTR_MODE_R)
1427 		ret = read_lcb_csr(dd, csr, &data);
1428 	else if (mode == CNTR_MODE_W)
1429 		ret = write_lcb_csr(dd, csr, data);
1430 
1431 	if (ret) {
1432 		dd_dev_err(dd, "Could not acquire LCB for counter 0x%x", csr);
1433 		return 0;
1434 	}
1435 
1436 	hfi1_cdbg(CNTR, "csr 0x%x val 0x%llx mode %d", csr, data, mode);
1437 	return data;
1438 }
1439 
1440 /* Port Access */
1441 static u64 port_access_u32_csr(const struct cntr_entry *entry, void *context,
1442 			       int vl, int mode, u64 data)
1443 {
1444 	struct hfi1_pportdata *ppd = context;
1445 
1446 	if (vl != CNTR_INVALID_VL)
1447 		return 0;
1448 	return read_write_csr(ppd->dd, entry->csr, mode, data);
1449 }
1450 
1451 static u64 port_access_u64_csr(const struct cntr_entry *entry,
1452 			       void *context, int vl, int mode, u64 data)
1453 {
1454 	struct hfi1_pportdata *ppd = context;
1455 	u64 val;
1456 	u64 csr = entry->csr;
1457 
1458 	if (entry->flags & CNTR_VL) {
1459 		if (vl == CNTR_INVALID_VL)
1460 			return 0;
1461 		csr += 8 * vl;
1462 	} else {
1463 		if (vl != CNTR_INVALID_VL)
1464 			return 0;
1465 	}
1466 	val = read_write_csr(ppd->dd, csr, mode, data);
1467 	return val;
1468 }
1469 
1470 /* Software defined */
1471 static inline u64 read_write_sw(struct hfi1_devdata *dd, u64 *cntr, int mode,
1472 				u64 data)
1473 {
1474 	u64 ret;
1475 
1476 	if (mode == CNTR_MODE_R) {
1477 		ret = *cntr;
1478 	} else if (mode == CNTR_MODE_W) {
1479 		*cntr = data;
1480 		ret = data;
1481 	} else {
1482 		dd_dev_err(dd, "Invalid cntr sw access mode");
1483 		return 0;
1484 	}
1485 
1486 	hfi1_cdbg(CNTR, "val 0x%llx mode %d", ret, mode);
1487 
1488 	return ret;
1489 }
1490 
1491 static u64 access_sw_link_dn_cnt(const struct cntr_entry *entry, void *context,
1492 				 int vl, int mode, u64 data)
1493 {
1494 	struct hfi1_pportdata *ppd = context;
1495 
1496 	if (vl != CNTR_INVALID_VL)
1497 		return 0;
1498 	return read_write_sw(ppd->dd, &ppd->link_downed, mode, data);
1499 }
1500 
1501 static u64 access_sw_link_up_cnt(const struct cntr_entry *entry, void *context,
1502 				 int vl, int mode, u64 data)
1503 {
1504 	struct hfi1_pportdata *ppd = context;
1505 
1506 	if (vl != CNTR_INVALID_VL)
1507 		return 0;
1508 	return read_write_sw(ppd->dd, &ppd->link_up, mode, data);
1509 }
1510 
1511 static u64 access_sw_unknown_frame_cnt(const struct cntr_entry *entry,
1512 				       void *context, int vl, int mode,
1513 				       u64 data)
1514 {
1515 	struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context;
1516 
1517 	if (vl != CNTR_INVALID_VL)
1518 		return 0;
1519 	return read_write_sw(ppd->dd, &ppd->unknown_frame_count, mode, data);
1520 }
1521 
1522 static u64 access_sw_xmit_discards(const struct cntr_entry *entry,
1523 				   void *context, int vl, int mode, u64 data)
1524 {
1525 	struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context;
1526 	u64 zero = 0;
1527 	u64 *counter;
1528 
1529 	if (vl == CNTR_INVALID_VL)
1530 		counter = &ppd->port_xmit_discards;
1531 	else if (vl >= 0 && vl < C_VL_COUNT)
1532 		counter = &ppd->port_xmit_discards_vl[vl];
1533 	else
1534 		counter = &zero;
1535 
1536 	return read_write_sw(ppd->dd, counter, mode, data);
1537 }
1538 
1539 static u64 access_xmit_constraint_errs(const struct cntr_entry *entry,
1540 				       void *context, int vl, int mode,
1541 				       u64 data)
1542 {
1543 	struct hfi1_pportdata *ppd = context;
1544 
1545 	if (vl != CNTR_INVALID_VL)
1546 		return 0;
1547 
1548 	return read_write_sw(ppd->dd, &ppd->port_xmit_constraint_errors,
1549 			     mode, data);
1550 }
1551 
1552 static u64 access_rcv_constraint_errs(const struct cntr_entry *entry,
1553 				      void *context, int vl, int mode, u64 data)
1554 {
1555 	struct hfi1_pportdata *ppd = context;
1556 
1557 	if (vl != CNTR_INVALID_VL)
1558 		return 0;
1559 
1560 	return read_write_sw(ppd->dd, &ppd->port_rcv_constraint_errors,
1561 			     mode, data);
1562 }
1563 
1564 u64 get_all_cpu_total(u64 __percpu *cntr)
1565 {
1566 	int cpu;
1567 	u64 counter = 0;
1568 
1569 	for_each_possible_cpu(cpu)
1570 		counter += *per_cpu_ptr(cntr, cpu);
1571 	return counter;
1572 }
1573 
1574 static u64 read_write_cpu(struct hfi1_devdata *dd, u64 *z_val,
1575 			  u64 __percpu *cntr,
1576 			  int vl, int mode, u64 data)
1577 {
1578 	u64 ret = 0;
1579 
1580 	if (vl != CNTR_INVALID_VL)
1581 		return 0;
1582 
1583 	if (mode == CNTR_MODE_R) {
1584 		ret = get_all_cpu_total(cntr) - *z_val;
1585 	} else if (mode == CNTR_MODE_W) {
1586 		/* A write can only zero the counter */
1587 		if (data == 0)
1588 			*z_val = get_all_cpu_total(cntr);
1589 		else
1590 			dd_dev_err(dd, "Per CPU cntrs can only be zeroed");
1591 	} else {
1592 		dd_dev_err(dd, "Invalid cntr sw cpu access mode");
1593 		return 0;
1594 	}
1595 
1596 	return ret;
1597 }
1598 
1599 static u64 access_sw_cpu_intr(const struct cntr_entry *entry,
1600 			      void *context, int vl, int mode, u64 data)
1601 {
1602 	struct hfi1_devdata *dd = context;
1603 
1604 	return read_write_cpu(dd, &dd->z_int_counter, dd->int_counter, vl,
1605 			      mode, data);
1606 }
1607 
1608 static u64 access_sw_cpu_rcv_limit(const struct cntr_entry *entry,
1609 				   void *context, int vl, int mode, u64 data)
1610 {
1611 	struct hfi1_devdata *dd = context;
1612 
1613 	return read_write_cpu(dd, &dd->z_rcv_limit, dd->rcv_limit, vl,
1614 			      mode, data);
1615 }
1616 
1617 static u64 access_sw_pio_wait(const struct cntr_entry *entry,
1618 			      void *context, int vl, int mode, u64 data)
1619 {
1620 	struct hfi1_devdata *dd = context;
1621 
1622 	return dd->verbs_dev.n_piowait;
1623 }
1624 
1625 static u64 access_sw_pio_drain(const struct cntr_entry *entry,
1626 			       void *context, int vl, int mode, u64 data)
1627 {
1628 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1629 
1630 	return dd->verbs_dev.n_piodrain;
1631 }
1632 
1633 static u64 access_sw_vtx_wait(const struct cntr_entry *entry,
1634 			      void *context, int vl, int mode, u64 data)
1635 {
1636 	struct hfi1_devdata *dd = context;
1637 
1638 	return dd->verbs_dev.n_txwait;
1639 }
1640 
1641 static u64 access_sw_kmem_wait(const struct cntr_entry *entry,
1642 			       void *context, int vl, int mode, u64 data)
1643 {
1644 	struct hfi1_devdata *dd = context;
1645 
1646 	return dd->verbs_dev.n_kmem_wait;
1647 }
1648 
1649 static u64 access_sw_send_schedule(const struct cntr_entry *entry,
1650 				   void *context, int vl, int mode, u64 data)
1651 {
1652 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1653 
1654 	return read_write_cpu(dd, &dd->z_send_schedule, dd->send_schedule, vl,
1655 			      mode, data);
1656 }
1657 
1658 /* Software counters for the error status bits within MISC_ERR_STATUS */
1659 static u64 access_misc_pll_lock_fail_err_cnt(const struct cntr_entry *entry,
1660 					     void *context, int vl, int mode,
1661 					     u64 data)
1662 {
1663 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1664 
1665 	return dd->misc_err_status_cnt[12];
1666 }
1667 
1668 static u64 access_misc_mbist_fail_err_cnt(const struct cntr_entry *entry,
1669 					  void *context, int vl, int mode,
1670 					  u64 data)
1671 {
1672 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1673 
1674 	return dd->misc_err_status_cnt[11];
1675 }
1676 
1677 static u64 access_misc_invalid_eep_cmd_err_cnt(const struct cntr_entry *entry,
1678 					       void *context, int vl, int mode,
1679 					       u64 data)
1680 {
1681 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1682 
1683 	return dd->misc_err_status_cnt[10];
1684 }
1685 
1686 static u64 access_misc_efuse_done_parity_err_cnt(const struct cntr_entry *entry,
1687 						 void *context, int vl,
1688 						 int mode, u64 data)
1689 {
1690 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1691 
1692 	return dd->misc_err_status_cnt[9];
1693 }
1694 
1695 static u64 access_misc_efuse_write_err_cnt(const struct cntr_entry *entry,
1696 					   void *context, int vl, int mode,
1697 					   u64 data)
1698 {
1699 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1700 
1701 	return dd->misc_err_status_cnt[8];
1702 }
1703 
1704 static u64 access_misc_efuse_read_bad_addr_err_cnt(
1705 				const struct cntr_entry *entry,
1706 				void *context, int vl, int mode, u64 data)
1707 {
1708 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1709 
1710 	return dd->misc_err_status_cnt[7];
1711 }
1712 
1713 static u64 access_misc_efuse_csr_parity_err_cnt(const struct cntr_entry *entry,
1714 						void *context, int vl,
1715 						int mode, u64 data)
1716 {
1717 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1718 
1719 	return dd->misc_err_status_cnt[6];
1720 }
1721 
1722 static u64 access_misc_fw_auth_failed_err_cnt(const struct cntr_entry *entry,
1723 					      void *context, int vl, int mode,
1724 					      u64 data)
1725 {
1726 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1727 
1728 	return dd->misc_err_status_cnt[5];
1729 }
1730 
1731 static u64 access_misc_key_mismatch_err_cnt(const struct cntr_entry *entry,
1732 					    void *context, int vl, int mode,
1733 					    u64 data)
1734 {
1735 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1736 
1737 	return dd->misc_err_status_cnt[4];
1738 }
1739 
1740 static u64 access_misc_sbus_write_failed_err_cnt(const struct cntr_entry *entry,
1741 						 void *context, int vl,
1742 						 int mode, u64 data)
1743 {
1744 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1745 
1746 	return dd->misc_err_status_cnt[3];
1747 }
1748 
1749 static u64 access_misc_csr_write_bad_addr_err_cnt(
1750 				const struct cntr_entry *entry,
1751 				void *context, int vl, int mode, u64 data)
1752 {
1753 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1754 
1755 	return dd->misc_err_status_cnt[2];
1756 }
1757 
1758 static u64 access_misc_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
1759 						 void *context, int vl,
1760 						 int mode, u64 data)
1761 {
1762 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1763 
1764 	return dd->misc_err_status_cnt[1];
1765 }
1766 
1767 static u64 access_misc_csr_parity_err_cnt(const struct cntr_entry *entry,
1768 					  void *context, int vl, int mode,
1769 					  u64 data)
1770 {
1771 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1772 
1773 	return dd->misc_err_status_cnt[0];
1774 }
1775 
1776 /*
1777  * Software counter for the aggregate of
1778  * individual CceErrStatus counters
1779  */
1780 static u64 access_sw_cce_err_status_aggregated_cnt(
1781 				const struct cntr_entry *entry,
1782 				void *context, int vl, int mode, u64 data)
1783 {
1784 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1785 
1786 	return dd->sw_cce_err_status_aggregate;
1787 }
1788 
1789 /*
1790  * Software counters corresponding to each of the
1791  * error status bits within CceErrStatus
1792  */
1793 static u64 access_cce_msix_csr_parity_err_cnt(const struct cntr_entry *entry,
1794 					      void *context, int vl, int mode,
1795 					      u64 data)
1796 {
1797 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1798 
1799 	return dd->cce_err_status_cnt[40];
1800 }
1801 
1802 static u64 access_cce_int_map_unc_err_cnt(const struct cntr_entry *entry,
1803 					  void *context, int vl, int mode,
1804 					  u64 data)
1805 {
1806 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1807 
1808 	return dd->cce_err_status_cnt[39];
1809 }
1810 
1811 static u64 access_cce_int_map_cor_err_cnt(const struct cntr_entry *entry,
1812 					  void *context, int vl, int mode,
1813 					  u64 data)
1814 {
1815 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1816 
1817 	return dd->cce_err_status_cnt[38];
1818 }
1819 
1820 static u64 access_cce_msix_table_unc_err_cnt(const struct cntr_entry *entry,
1821 					     void *context, int vl, int mode,
1822 					     u64 data)
1823 {
1824 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1825 
1826 	return dd->cce_err_status_cnt[37];
1827 }
1828 
1829 static u64 access_cce_msix_table_cor_err_cnt(const struct cntr_entry *entry,
1830 					     void *context, int vl, int mode,
1831 					     u64 data)
1832 {
1833 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1834 
1835 	return dd->cce_err_status_cnt[36];
1836 }
1837 
1838 static u64 access_cce_rxdma_conv_fifo_parity_err_cnt(
1839 				const struct cntr_entry *entry,
1840 				void *context, int vl, int mode, u64 data)
1841 {
1842 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1843 
1844 	return dd->cce_err_status_cnt[35];
1845 }
1846 
1847 static u64 access_cce_rcpl_async_fifo_parity_err_cnt(
1848 				const struct cntr_entry *entry,
1849 				void *context, int vl, int mode, u64 data)
1850 {
1851 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1852 
1853 	return dd->cce_err_status_cnt[34];
1854 }
1855 
1856 static u64 access_cce_seg_write_bad_addr_err_cnt(const struct cntr_entry *entry,
1857 						 void *context, int vl,
1858 						 int mode, u64 data)
1859 {
1860 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1861 
1862 	return dd->cce_err_status_cnt[33];
1863 }
1864 
1865 static u64 access_cce_seg_read_bad_addr_err_cnt(const struct cntr_entry *entry,
1866 						void *context, int vl, int mode,
1867 						u64 data)
1868 {
1869 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1870 
1871 	return dd->cce_err_status_cnt[32];
1872 }
1873 
1874 static u64 access_la_triggered_cnt(const struct cntr_entry *entry,
1875 				   void *context, int vl, int mode, u64 data)
1876 {
1877 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1878 
1879 	return dd->cce_err_status_cnt[31];
1880 }
1881 
1882 static u64 access_cce_trgt_cpl_timeout_err_cnt(const struct cntr_entry *entry,
1883 					       void *context, int vl, int mode,
1884 					       u64 data)
1885 {
1886 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1887 
1888 	return dd->cce_err_status_cnt[30];
1889 }
1890 
1891 static u64 access_pcic_receive_parity_err_cnt(const struct cntr_entry *entry,
1892 					      void *context, int vl, int mode,
1893 					      u64 data)
1894 {
1895 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1896 
1897 	return dd->cce_err_status_cnt[29];
1898 }
1899 
1900 static u64 access_pcic_transmit_back_parity_err_cnt(
1901 				const struct cntr_entry *entry,
1902 				void *context, int vl, int mode, u64 data)
1903 {
1904 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1905 
1906 	return dd->cce_err_status_cnt[28];
1907 }
1908 
1909 static u64 access_pcic_transmit_front_parity_err_cnt(
1910 				const struct cntr_entry *entry,
1911 				void *context, int vl, int mode, u64 data)
1912 {
1913 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1914 
1915 	return dd->cce_err_status_cnt[27];
1916 }
1917 
1918 static u64 access_pcic_cpl_dat_q_unc_err_cnt(const struct cntr_entry *entry,
1919 					     void *context, int vl, int mode,
1920 					     u64 data)
1921 {
1922 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1923 
1924 	return dd->cce_err_status_cnt[26];
1925 }
1926 
1927 static u64 access_pcic_cpl_hd_q_unc_err_cnt(const struct cntr_entry *entry,
1928 					    void *context, int vl, int mode,
1929 					    u64 data)
1930 {
1931 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1932 
1933 	return dd->cce_err_status_cnt[25];
1934 }
1935 
1936 static u64 access_pcic_post_dat_q_unc_err_cnt(const struct cntr_entry *entry,
1937 					      void *context, int vl, int mode,
1938 					      u64 data)
1939 {
1940 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1941 
1942 	return dd->cce_err_status_cnt[24];
1943 }
1944 
1945 static u64 access_pcic_post_hd_q_unc_err_cnt(const struct cntr_entry *entry,
1946 					     void *context, int vl, int mode,
1947 					     u64 data)
1948 {
1949 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1950 
1951 	return dd->cce_err_status_cnt[23];
1952 }
1953 
1954 static u64 access_pcic_retry_sot_mem_unc_err_cnt(const struct cntr_entry *entry,
1955 						 void *context, int vl,
1956 						 int mode, u64 data)
1957 {
1958 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1959 
1960 	return dd->cce_err_status_cnt[22];
1961 }
1962 
1963 static u64 access_pcic_retry_mem_unc_err(const struct cntr_entry *entry,
1964 					 void *context, int vl, int mode,
1965 					 u64 data)
1966 {
1967 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1968 
1969 	return dd->cce_err_status_cnt[21];
1970 }
1971 
1972 static u64 access_pcic_n_post_dat_q_parity_err_cnt(
1973 				const struct cntr_entry *entry,
1974 				void *context, int vl, int mode, u64 data)
1975 {
1976 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1977 
1978 	return dd->cce_err_status_cnt[20];
1979 }
1980 
1981 static u64 access_pcic_n_post_h_q_parity_err_cnt(const struct cntr_entry *entry,
1982 						 void *context, int vl,
1983 						 int mode, u64 data)
1984 {
1985 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1986 
1987 	return dd->cce_err_status_cnt[19];
1988 }
1989 
1990 static u64 access_pcic_cpl_dat_q_cor_err_cnt(const struct cntr_entry *entry,
1991 					     void *context, int vl, int mode,
1992 					     u64 data)
1993 {
1994 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1995 
1996 	return dd->cce_err_status_cnt[18];
1997 }
1998 
1999 static u64 access_pcic_cpl_hd_q_cor_err_cnt(const struct cntr_entry *entry,
2000 					    void *context, int vl, int mode,
2001 					    u64 data)
2002 {
2003 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2004 
2005 	return dd->cce_err_status_cnt[17];
2006 }
2007 
2008 static u64 access_pcic_post_dat_q_cor_err_cnt(const struct cntr_entry *entry,
2009 					      void *context, int vl, int mode,
2010 					      u64 data)
2011 {
2012 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2013 
2014 	return dd->cce_err_status_cnt[16];
2015 }
2016 
2017 static u64 access_pcic_post_hd_q_cor_err_cnt(const struct cntr_entry *entry,
2018 					     void *context, int vl, int mode,
2019 					     u64 data)
2020 {
2021 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2022 
2023 	return dd->cce_err_status_cnt[15];
2024 }
2025 
2026 static u64 access_pcic_retry_sot_mem_cor_err_cnt(const struct cntr_entry *entry,
2027 						 void *context, int vl,
2028 						 int mode, u64 data)
2029 {
2030 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2031 
2032 	return dd->cce_err_status_cnt[14];
2033 }
2034 
2035 static u64 access_pcic_retry_mem_cor_err_cnt(const struct cntr_entry *entry,
2036 					     void *context, int vl, int mode,
2037 					     u64 data)
2038 {
2039 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2040 
2041 	return dd->cce_err_status_cnt[13];
2042 }
2043 
2044 static u64 access_cce_cli1_async_fifo_dbg_parity_err_cnt(
2045 				const struct cntr_entry *entry,
2046 				void *context, int vl, int mode, u64 data)
2047 {
2048 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2049 
2050 	return dd->cce_err_status_cnt[12];
2051 }
2052 
2053 static u64 access_cce_cli1_async_fifo_rxdma_parity_err_cnt(
2054 				const struct cntr_entry *entry,
2055 				void *context, int vl, int mode, u64 data)
2056 {
2057 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2058 
2059 	return dd->cce_err_status_cnt[11];
2060 }
2061 
2062 static u64 access_cce_cli1_async_fifo_sdma_hd_parity_err_cnt(
2063 				const struct cntr_entry *entry,
2064 				void *context, int vl, int mode, u64 data)
2065 {
2066 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2067 
2068 	return dd->cce_err_status_cnt[10];
2069 }
2070 
2071 static u64 access_cce_cl1_async_fifo_pio_crdt_parity_err_cnt(
2072 				const struct cntr_entry *entry,
2073 				void *context, int vl, int mode, u64 data)
2074 {
2075 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2076 
2077 	return dd->cce_err_status_cnt[9];
2078 }
2079 
2080 static u64 access_cce_cli2_async_fifo_parity_err_cnt(
2081 				const struct cntr_entry *entry,
2082 				void *context, int vl, int mode, u64 data)
2083 {
2084 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2085 
2086 	return dd->cce_err_status_cnt[8];
2087 }
2088 
2089 static u64 access_cce_csr_cfg_bus_parity_err_cnt(const struct cntr_entry *entry,
2090 						 void *context, int vl,
2091 						 int mode, u64 data)
2092 {
2093 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2094 
2095 	return dd->cce_err_status_cnt[7];
2096 }
2097 
2098 static u64 access_cce_cli0_async_fifo_parity_err_cnt(
2099 				const struct cntr_entry *entry,
2100 				void *context, int vl, int mode, u64 data)
2101 {
2102 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2103 
2104 	return dd->cce_err_status_cnt[6];
2105 }
2106 
2107 static u64 access_cce_rspd_data_parity_err_cnt(const struct cntr_entry *entry,
2108 					       void *context, int vl, int mode,
2109 					       u64 data)
2110 {
2111 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2112 
2113 	return dd->cce_err_status_cnt[5];
2114 }
2115 
2116 static u64 access_cce_trgt_access_err_cnt(const struct cntr_entry *entry,
2117 					  void *context, int vl, int mode,
2118 					  u64 data)
2119 {
2120 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2121 
2122 	return dd->cce_err_status_cnt[4];
2123 }
2124 
2125 static u64 access_cce_trgt_async_fifo_parity_err_cnt(
2126 				const struct cntr_entry *entry,
2127 				void *context, int vl, int mode, u64 data)
2128 {
2129 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2130 
2131 	return dd->cce_err_status_cnt[3];
2132 }
2133 
2134 static u64 access_cce_csr_write_bad_addr_err_cnt(const struct cntr_entry *entry,
2135 						 void *context, int vl,
2136 						 int mode, u64 data)
2137 {
2138 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2139 
2140 	return dd->cce_err_status_cnt[2];
2141 }
2142 
2143 static u64 access_cce_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
2144 						void *context, int vl,
2145 						int mode, u64 data)
2146 {
2147 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2148 
2149 	return dd->cce_err_status_cnt[1];
2150 }
2151 
2152 static u64 access_ccs_csr_parity_err_cnt(const struct cntr_entry *entry,
2153 					 void *context, int vl, int mode,
2154 					 u64 data)
2155 {
2156 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2157 
2158 	return dd->cce_err_status_cnt[0];
2159 }
2160 
2161 /*
2162  * Software counters corresponding to each of the
2163  * error status bits within RcvErrStatus
2164  */
2165 static u64 access_rx_csr_parity_err_cnt(const struct cntr_entry *entry,
2166 					void *context, int vl, int mode,
2167 					u64 data)
2168 {
2169 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2170 
2171 	return dd->rcv_err_status_cnt[63];
2172 }
2173 
2174 static u64 access_rx_csr_write_bad_addr_err_cnt(const struct cntr_entry *entry,
2175 						void *context, int vl,
2176 						int mode, u64 data)
2177 {
2178 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2179 
2180 	return dd->rcv_err_status_cnt[62];
2181 }
2182 
2183 static u64 access_rx_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
2184 					       void *context, int vl, int mode,
2185 					       u64 data)
2186 {
2187 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2188 
2189 	return dd->rcv_err_status_cnt[61];
2190 }
2191 
2192 static u64 access_rx_dma_csr_unc_err_cnt(const struct cntr_entry *entry,
2193 					 void *context, int vl, int mode,
2194 					 u64 data)
2195 {
2196 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2197 
2198 	return dd->rcv_err_status_cnt[60];
2199 }
2200 
2201 static u64 access_rx_dma_dq_fsm_encoding_err_cnt(const struct cntr_entry *entry,
2202 						 void *context, int vl,
2203 						 int mode, u64 data)
2204 {
2205 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2206 
2207 	return dd->rcv_err_status_cnt[59];
2208 }
2209 
2210 static u64 access_rx_dma_eq_fsm_encoding_err_cnt(const struct cntr_entry *entry,
2211 						 void *context, int vl,
2212 						 int mode, u64 data)
2213 {
2214 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2215 
2216 	return dd->rcv_err_status_cnt[58];
2217 }
2218 
2219 static u64 access_rx_dma_csr_parity_err_cnt(const struct cntr_entry *entry,
2220 					    void *context, int vl, int mode,
2221 					    u64 data)
2222 {
2223 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2224 
2225 	return dd->rcv_err_status_cnt[57];
2226 }
2227 
2228 static u64 access_rx_rbuf_data_cor_err_cnt(const struct cntr_entry *entry,
2229 					   void *context, int vl, int mode,
2230 					   u64 data)
2231 {
2232 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2233 
2234 	return dd->rcv_err_status_cnt[56];
2235 }
2236 
2237 static u64 access_rx_rbuf_data_unc_err_cnt(const struct cntr_entry *entry,
2238 					   void *context, int vl, int mode,
2239 					   u64 data)
2240 {
2241 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2242 
2243 	return dd->rcv_err_status_cnt[55];
2244 }
2245 
2246 static u64 access_rx_dma_data_fifo_rd_cor_err_cnt(
2247 				const struct cntr_entry *entry,
2248 				void *context, int vl, int mode, u64 data)
2249 {
2250 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2251 
2252 	return dd->rcv_err_status_cnt[54];
2253 }
2254 
2255 static u64 access_rx_dma_data_fifo_rd_unc_err_cnt(
2256 				const struct cntr_entry *entry,
2257 				void *context, int vl, int mode, u64 data)
2258 {
2259 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2260 
2261 	return dd->rcv_err_status_cnt[53];
2262 }
2263 
2264 static u64 access_rx_dma_hdr_fifo_rd_cor_err_cnt(const struct cntr_entry *entry,
2265 						 void *context, int vl,
2266 						 int mode, u64 data)
2267 {
2268 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2269 
2270 	return dd->rcv_err_status_cnt[52];
2271 }
2272 
2273 static u64 access_rx_dma_hdr_fifo_rd_unc_err_cnt(const struct cntr_entry *entry,
2274 						 void *context, int vl,
2275 						 int mode, u64 data)
2276 {
2277 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2278 
2279 	return dd->rcv_err_status_cnt[51];
2280 }
2281 
2282 static u64 access_rx_rbuf_desc_part2_cor_err_cnt(const struct cntr_entry *entry,
2283 						 void *context, int vl,
2284 						 int mode, u64 data)
2285 {
2286 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2287 
2288 	return dd->rcv_err_status_cnt[50];
2289 }
2290 
2291 static u64 access_rx_rbuf_desc_part2_unc_err_cnt(const struct cntr_entry *entry,
2292 						 void *context, int vl,
2293 						 int mode, u64 data)
2294 {
2295 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2296 
2297 	return dd->rcv_err_status_cnt[49];
2298 }
2299 
2300 static u64 access_rx_rbuf_desc_part1_cor_err_cnt(const struct cntr_entry *entry,
2301 						 void *context, int vl,
2302 						 int mode, u64 data)
2303 {
2304 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2305 
2306 	return dd->rcv_err_status_cnt[48];
2307 }
2308 
2309 static u64 access_rx_rbuf_desc_part1_unc_err_cnt(const struct cntr_entry *entry,
2310 						 void *context, int vl,
2311 						 int mode, u64 data)
2312 {
2313 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2314 
2315 	return dd->rcv_err_status_cnt[47];
2316 }
2317 
2318 static u64 access_rx_hq_intr_fsm_err_cnt(const struct cntr_entry *entry,
2319 					 void *context, int vl, int mode,
2320 					 u64 data)
2321 {
2322 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2323 
2324 	return dd->rcv_err_status_cnt[46];
2325 }
2326 
2327 static u64 access_rx_hq_intr_csr_parity_err_cnt(
2328 				const struct cntr_entry *entry,
2329 				void *context, int vl, int mode, u64 data)
2330 {
2331 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2332 
2333 	return dd->rcv_err_status_cnt[45];
2334 }
2335 
2336 static u64 access_rx_lookup_csr_parity_err_cnt(
2337 				const struct cntr_entry *entry,
2338 				void *context, int vl, int mode, u64 data)
2339 {
2340 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2341 
2342 	return dd->rcv_err_status_cnt[44];
2343 }
2344 
2345 static u64 access_rx_lookup_rcv_array_cor_err_cnt(
2346 				const struct cntr_entry *entry,
2347 				void *context, int vl, int mode, u64 data)
2348 {
2349 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2350 
2351 	return dd->rcv_err_status_cnt[43];
2352 }
2353 
2354 static u64 access_rx_lookup_rcv_array_unc_err_cnt(
2355 				const struct cntr_entry *entry,
2356 				void *context, int vl, int mode, u64 data)
2357 {
2358 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2359 
2360 	return dd->rcv_err_status_cnt[42];
2361 }
2362 
2363 static u64 access_rx_lookup_des_part2_parity_err_cnt(
2364 				const struct cntr_entry *entry,
2365 				void *context, int vl, int mode, u64 data)
2366 {
2367 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2368 
2369 	return dd->rcv_err_status_cnt[41];
2370 }
2371 
2372 static u64 access_rx_lookup_des_part1_unc_cor_err_cnt(
2373 				const struct cntr_entry *entry,
2374 				void *context, int vl, int mode, u64 data)
2375 {
2376 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2377 
2378 	return dd->rcv_err_status_cnt[40];
2379 }
2380 
2381 static u64 access_rx_lookup_des_part1_unc_err_cnt(
2382 				const struct cntr_entry *entry,
2383 				void *context, int vl, int mode, u64 data)
2384 {
2385 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2386 
2387 	return dd->rcv_err_status_cnt[39];
2388 }
2389 
2390 static u64 access_rx_rbuf_next_free_buf_cor_err_cnt(
2391 				const struct cntr_entry *entry,
2392 				void *context, int vl, int mode, u64 data)
2393 {
2394 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2395 
2396 	return dd->rcv_err_status_cnt[38];
2397 }
2398 
2399 static u64 access_rx_rbuf_next_free_buf_unc_err_cnt(
2400 				const struct cntr_entry *entry,
2401 				void *context, int vl, int mode, u64 data)
2402 {
2403 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2404 
2405 	return dd->rcv_err_status_cnt[37];
2406 }
2407 
2408 static u64 access_rbuf_fl_init_wr_addr_parity_err_cnt(
2409 				const struct cntr_entry *entry,
2410 				void *context, int vl, int mode, u64 data)
2411 {
2412 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2413 
2414 	return dd->rcv_err_status_cnt[36];
2415 }
2416 
2417 static u64 access_rx_rbuf_fl_initdone_parity_err_cnt(
2418 				const struct cntr_entry *entry,
2419 				void *context, int vl, int mode, u64 data)
2420 {
2421 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2422 
2423 	return dd->rcv_err_status_cnt[35];
2424 }
2425 
2426 static u64 access_rx_rbuf_fl_write_addr_parity_err_cnt(
2427 				const struct cntr_entry *entry,
2428 				void *context, int vl, int mode, u64 data)
2429 {
2430 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2431 
2432 	return dd->rcv_err_status_cnt[34];
2433 }
2434 
2435 static u64 access_rx_rbuf_fl_rd_addr_parity_err_cnt(
2436 				const struct cntr_entry *entry,
2437 				void *context, int vl, int mode, u64 data)
2438 {
2439 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2440 
2441 	return dd->rcv_err_status_cnt[33];
2442 }
2443 
2444 static u64 access_rx_rbuf_empty_err_cnt(const struct cntr_entry *entry,
2445 					void *context, int vl, int mode,
2446 					u64 data)
2447 {
2448 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2449 
2450 	return dd->rcv_err_status_cnt[32];
2451 }
2452 
2453 static u64 access_rx_rbuf_full_err_cnt(const struct cntr_entry *entry,
2454 				       void *context, int vl, int mode,
2455 				       u64 data)
2456 {
2457 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2458 
2459 	return dd->rcv_err_status_cnt[31];
2460 }
2461 
2462 static u64 access_rbuf_bad_lookup_err_cnt(const struct cntr_entry *entry,
2463 					  void *context, int vl, int mode,
2464 					  u64 data)
2465 {
2466 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2467 
2468 	return dd->rcv_err_status_cnt[30];
2469 }
2470 
2471 static u64 access_rbuf_ctx_id_parity_err_cnt(const struct cntr_entry *entry,
2472 					     void *context, int vl, int mode,
2473 					     u64 data)
2474 {
2475 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2476 
2477 	return dd->rcv_err_status_cnt[29];
2478 }
2479 
2480 static u64 access_rbuf_csr_qeopdw_parity_err_cnt(const struct cntr_entry *entry,
2481 						 void *context, int vl,
2482 						 int mode, u64 data)
2483 {
2484 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2485 
2486 	return dd->rcv_err_status_cnt[28];
2487 }
2488 
2489 static u64 access_rx_rbuf_csr_q_num_of_pkt_parity_err_cnt(
2490 				const struct cntr_entry *entry,
2491 				void *context, int vl, int mode, u64 data)
2492 {
2493 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2494 
2495 	return dd->rcv_err_status_cnt[27];
2496 }
2497 
2498 static u64 access_rx_rbuf_csr_q_t1_ptr_parity_err_cnt(
2499 				const struct cntr_entry *entry,
2500 				void *context, int vl, int mode, u64 data)
2501 {
2502 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2503 
2504 	return dd->rcv_err_status_cnt[26];
2505 }
2506 
2507 static u64 access_rx_rbuf_csr_q_hd_ptr_parity_err_cnt(
2508 				const struct cntr_entry *entry,
2509 				void *context, int vl, int mode, u64 data)
2510 {
2511 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2512 
2513 	return dd->rcv_err_status_cnt[25];
2514 }
2515 
2516 static u64 access_rx_rbuf_csr_q_vld_bit_parity_err_cnt(
2517 				const struct cntr_entry *entry,
2518 				void *context, int vl, int mode, u64 data)
2519 {
2520 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2521 
2522 	return dd->rcv_err_status_cnt[24];
2523 }
2524 
2525 static u64 access_rx_rbuf_csr_q_next_buf_parity_err_cnt(
2526 				const struct cntr_entry *entry,
2527 				void *context, int vl, int mode, u64 data)
2528 {
2529 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2530 
2531 	return dd->rcv_err_status_cnt[23];
2532 }
2533 
2534 static u64 access_rx_rbuf_csr_q_ent_cnt_parity_err_cnt(
2535 				const struct cntr_entry *entry,
2536 				void *context, int vl, int mode, u64 data)
2537 {
2538 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2539 
2540 	return dd->rcv_err_status_cnt[22];
2541 }
2542 
2543 static u64 access_rx_rbuf_csr_q_head_buf_num_parity_err_cnt(
2544 				const struct cntr_entry *entry,
2545 				void *context, int vl, int mode, u64 data)
2546 {
2547 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2548 
2549 	return dd->rcv_err_status_cnt[21];
2550 }
2551 
2552 static u64 access_rx_rbuf_block_list_read_cor_err_cnt(
2553 				const struct cntr_entry *entry,
2554 				void *context, int vl, int mode, u64 data)
2555 {
2556 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2557 
2558 	return dd->rcv_err_status_cnt[20];
2559 }
2560 
2561 static u64 access_rx_rbuf_block_list_read_unc_err_cnt(
2562 				const struct cntr_entry *entry,
2563 				void *context, int vl, int mode, u64 data)
2564 {
2565 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2566 
2567 	return dd->rcv_err_status_cnt[19];
2568 }
2569 
2570 static u64 access_rx_rbuf_lookup_des_cor_err_cnt(const struct cntr_entry *entry,
2571 						 void *context, int vl,
2572 						 int mode, u64 data)
2573 {
2574 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2575 
2576 	return dd->rcv_err_status_cnt[18];
2577 }
2578 
2579 static u64 access_rx_rbuf_lookup_des_unc_err_cnt(const struct cntr_entry *entry,
2580 						 void *context, int vl,
2581 						 int mode, u64 data)
2582 {
2583 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2584 
2585 	return dd->rcv_err_status_cnt[17];
2586 }
2587 
2588 static u64 access_rx_rbuf_lookup_des_reg_unc_cor_err_cnt(
2589 				const struct cntr_entry *entry,
2590 				void *context, int vl, int mode, u64 data)
2591 {
2592 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2593 
2594 	return dd->rcv_err_status_cnt[16];
2595 }
2596 
2597 static u64 access_rx_rbuf_lookup_des_reg_unc_err_cnt(
2598 				const struct cntr_entry *entry,
2599 				void *context, int vl, int mode, u64 data)
2600 {
2601 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2602 
2603 	return dd->rcv_err_status_cnt[15];
2604 }
2605 
2606 static u64 access_rx_rbuf_free_list_cor_err_cnt(const struct cntr_entry *entry,
2607 						void *context, int vl,
2608 						int mode, u64 data)
2609 {
2610 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2611 
2612 	return dd->rcv_err_status_cnt[14];
2613 }
2614 
2615 static u64 access_rx_rbuf_free_list_unc_err_cnt(const struct cntr_entry *entry,
2616 						void *context, int vl,
2617 						int mode, u64 data)
2618 {
2619 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2620 
2621 	return dd->rcv_err_status_cnt[13];
2622 }
2623 
2624 static u64 access_rx_rcv_fsm_encoding_err_cnt(const struct cntr_entry *entry,
2625 					      void *context, int vl, int mode,
2626 					      u64 data)
2627 {
2628 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2629 
2630 	return dd->rcv_err_status_cnt[12];
2631 }
2632 
2633 static u64 access_rx_dma_flag_cor_err_cnt(const struct cntr_entry *entry,
2634 					  void *context, int vl, int mode,
2635 					  u64 data)
2636 {
2637 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2638 
2639 	return dd->rcv_err_status_cnt[11];
2640 }
2641 
2642 static u64 access_rx_dma_flag_unc_err_cnt(const struct cntr_entry *entry,
2643 					  void *context, int vl, int mode,
2644 					  u64 data)
2645 {
2646 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2647 
2648 	return dd->rcv_err_status_cnt[10];
2649 }
2650 
2651 static u64 access_rx_dc_sop_eop_parity_err_cnt(const struct cntr_entry *entry,
2652 					       void *context, int vl, int mode,
2653 					       u64 data)
2654 {
2655 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2656 
2657 	return dd->rcv_err_status_cnt[9];
2658 }
2659 
2660 static u64 access_rx_rcv_csr_parity_err_cnt(const struct cntr_entry *entry,
2661 					    void *context, int vl, int mode,
2662 					    u64 data)
2663 {
2664 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2665 
2666 	return dd->rcv_err_status_cnt[8];
2667 }
2668 
2669 static u64 access_rx_rcv_qp_map_table_cor_err_cnt(
2670 				const struct cntr_entry *entry,
2671 				void *context, int vl, int mode, u64 data)
2672 {
2673 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2674 
2675 	return dd->rcv_err_status_cnt[7];
2676 }
2677 
2678 static u64 access_rx_rcv_qp_map_table_unc_err_cnt(
2679 				const struct cntr_entry *entry,
2680 				void *context, int vl, int mode, u64 data)
2681 {
2682 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2683 
2684 	return dd->rcv_err_status_cnt[6];
2685 }
2686 
2687 static u64 access_rx_rcv_data_cor_err_cnt(const struct cntr_entry *entry,
2688 					  void *context, int vl, int mode,
2689 					  u64 data)
2690 {
2691 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2692 
2693 	return dd->rcv_err_status_cnt[5];
2694 }
2695 
2696 static u64 access_rx_rcv_data_unc_err_cnt(const struct cntr_entry *entry,
2697 					  void *context, int vl, int mode,
2698 					  u64 data)
2699 {
2700 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2701 
2702 	return dd->rcv_err_status_cnt[4];
2703 }
2704 
2705 static u64 access_rx_rcv_hdr_cor_err_cnt(const struct cntr_entry *entry,
2706 					 void *context, int vl, int mode,
2707 					 u64 data)
2708 {
2709 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2710 
2711 	return dd->rcv_err_status_cnt[3];
2712 }
2713 
2714 static u64 access_rx_rcv_hdr_unc_err_cnt(const struct cntr_entry *entry,
2715 					 void *context, int vl, int mode,
2716 					 u64 data)
2717 {
2718 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2719 
2720 	return dd->rcv_err_status_cnt[2];
2721 }
2722 
2723 static u64 access_rx_dc_intf_parity_err_cnt(const struct cntr_entry *entry,
2724 					    void *context, int vl, int mode,
2725 					    u64 data)
2726 {
2727 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2728 
2729 	return dd->rcv_err_status_cnt[1];
2730 }
2731 
2732 static u64 access_rx_dma_csr_cor_err_cnt(const struct cntr_entry *entry,
2733 					 void *context, int vl, int mode,
2734 					 u64 data)
2735 {
2736 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2737 
2738 	return dd->rcv_err_status_cnt[0];
2739 }
2740 
2741 /*
2742  * Software counters corresponding to each of the
2743  * error status bits within SendPioErrStatus
2744  */
2745 static u64 access_pio_pec_sop_head_parity_err_cnt(
2746 				const struct cntr_entry *entry,
2747 				void *context, int vl, int mode, u64 data)
2748 {
2749 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2750 
2751 	return dd->send_pio_err_status_cnt[35];
2752 }
2753 
2754 static u64 access_pio_pcc_sop_head_parity_err_cnt(
2755 				const struct cntr_entry *entry,
2756 				void *context, int vl, int mode, u64 data)
2757 {
2758 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2759 
2760 	return dd->send_pio_err_status_cnt[34];
2761 }
2762 
2763 static u64 access_pio_last_returned_cnt_parity_err_cnt(
2764 				const struct cntr_entry *entry,
2765 				void *context, int vl, int mode, u64 data)
2766 {
2767 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2768 
2769 	return dd->send_pio_err_status_cnt[33];
2770 }
2771 
2772 static u64 access_pio_current_free_cnt_parity_err_cnt(
2773 				const struct cntr_entry *entry,
2774 				void *context, int vl, int mode, u64 data)
2775 {
2776 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2777 
2778 	return dd->send_pio_err_status_cnt[32];
2779 }
2780 
2781 static u64 access_pio_reserved_31_err_cnt(const struct cntr_entry *entry,
2782 					  void *context, int vl, int mode,
2783 					  u64 data)
2784 {
2785 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2786 
2787 	return dd->send_pio_err_status_cnt[31];
2788 }
2789 
2790 static u64 access_pio_reserved_30_err_cnt(const struct cntr_entry *entry,
2791 					  void *context, int vl, int mode,
2792 					  u64 data)
2793 {
2794 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2795 
2796 	return dd->send_pio_err_status_cnt[30];
2797 }
2798 
2799 static u64 access_pio_ppmc_sop_len_err_cnt(const struct cntr_entry *entry,
2800 					   void *context, int vl, int mode,
2801 					   u64 data)
2802 {
2803 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2804 
2805 	return dd->send_pio_err_status_cnt[29];
2806 }
2807 
2808 static u64 access_pio_ppmc_bqc_mem_parity_err_cnt(
2809 				const struct cntr_entry *entry,
2810 				void *context, int vl, int mode, u64 data)
2811 {
2812 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2813 
2814 	return dd->send_pio_err_status_cnt[28];
2815 }
2816 
2817 static u64 access_pio_vl_fifo_parity_err_cnt(const struct cntr_entry *entry,
2818 					     void *context, int vl, int mode,
2819 					     u64 data)
2820 {
2821 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2822 
2823 	return dd->send_pio_err_status_cnt[27];
2824 }
2825 
2826 static u64 access_pio_vlf_sop_parity_err_cnt(const struct cntr_entry *entry,
2827 					     void *context, int vl, int mode,
2828 					     u64 data)
2829 {
2830 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2831 
2832 	return dd->send_pio_err_status_cnt[26];
2833 }
2834 
2835 static u64 access_pio_vlf_v1_len_parity_err_cnt(const struct cntr_entry *entry,
2836 						void *context, int vl,
2837 						int mode, u64 data)
2838 {
2839 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2840 
2841 	return dd->send_pio_err_status_cnt[25];
2842 }
2843 
2844 static u64 access_pio_block_qw_count_parity_err_cnt(
2845 				const struct cntr_entry *entry,
2846 				void *context, int vl, int mode, u64 data)
2847 {
2848 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2849 
2850 	return dd->send_pio_err_status_cnt[24];
2851 }
2852 
2853 static u64 access_pio_write_qw_valid_parity_err_cnt(
2854 				const struct cntr_entry *entry,
2855 				void *context, int vl, int mode, u64 data)
2856 {
2857 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2858 
2859 	return dd->send_pio_err_status_cnt[23];
2860 }
2861 
2862 static u64 access_pio_state_machine_err_cnt(const struct cntr_entry *entry,
2863 					    void *context, int vl, int mode,
2864 					    u64 data)
2865 {
2866 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2867 
2868 	return dd->send_pio_err_status_cnt[22];
2869 }
2870 
2871 static u64 access_pio_write_data_parity_err_cnt(const struct cntr_entry *entry,
2872 						void *context, int vl,
2873 						int mode, u64 data)
2874 {
2875 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2876 
2877 	return dd->send_pio_err_status_cnt[21];
2878 }
2879 
2880 static u64 access_pio_host_addr_mem_cor_err_cnt(const struct cntr_entry *entry,
2881 						void *context, int vl,
2882 						int mode, u64 data)
2883 {
2884 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2885 
2886 	return dd->send_pio_err_status_cnt[20];
2887 }
2888 
2889 static u64 access_pio_host_addr_mem_unc_err_cnt(const struct cntr_entry *entry,
2890 						void *context, int vl,
2891 						int mode, u64 data)
2892 {
2893 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2894 
2895 	return dd->send_pio_err_status_cnt[19];
2896 }
2897 
2898 static u64 access_pio_pkt_evict_sm_or_arb_sm_err_cnt(
2899 				const struct cntr_entry *entry,
2900 				void *context, int vl, int mode, u64 data)
2901 {
2902 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2903 
2904 	return dd->send_pio_err_status_cnt[18];
2905 }
2906 
2907 static u64 access_pio_init_sm_in_err_cnt(const struct cntr_entry *entry,
2908 					 void *context, int vl, int mode,
2909 					 u64 data)
2910 {
2911 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2912 
2913 	return dd->send_pio_err_status_cnt[17];
2914 }
2915 
2916 static u64 access_pio_ppmc_pbl_fifo_err_cnt(const struct cntr_entry *entry,
2917 					    void *context, int vl, int mode,
2918 					    u64 data)
2919 {
2920 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2921 
2922 	return dd->send_pio_err_status_cnt[16];
2923 }
2924 
2925 static u64 access_pio_credit_ret_fifo_parity_err_cnt(
2926 				const struct cntr_entry *entry,
2927 				void *context, int vl, int mode, u64 data)
2928 {
2929 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2930 
2931 	return dd->send_pio_err_status_cnt[15];
2932 }
2933 
2934 static u64 access_pio_v1_len_mem_bank1_cor_err_cnt(
2935 				const struct cntr_entry *entry,
2936 				void *context, int vl, int mode, u64 data)
2937 {
2938 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2939 
2940 	return dd->send_pio_err_status_cnt[14];
2941 }
2942 
2943 static u64 access_pio_v1_len_mem_bank0_cor_err_cnt(
2944 				const struct cntr_entry *entry,
2945 				void *context, int vl, int mode, u64 data)
2946 {
2947 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2948 
2949 	return dd->send_pio_err_status_cnt[13];
2950 }
2951 
2952 static u64 access_pio_v1_len_mem_bank1_unc_err_cnt(
2953 				const struct cntr_entry *entry,
2954 				void *context, int vl, int mode, u64 data)
2955 {
2956 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2957 
2958 	return dd->send_pio_err_status_cnt[12];
2959 }
2960 
2961 static u64 access_pio_v1_len_mem_bank0_unc_err_cnt(
2962 				const struct cntr_entry *entry,
2963 				void *context, int vl, int mode, u64 data)
2964 {
2965 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2966 
2967 	return dd->send_pio_err_status_cnt[11];
2968 }
2969 
2970 static u64 access_pio_sm_pkt_reset_parity_err_cnt(
2971 				const struct cntr_entry *entry,
2972 				void *context, int vl, int mode, u64 data)
2973 {
2974 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2975 
2976 	return dd->send_pio_err_status_cnt[10];
2977 }
2978 
2979 static u64 access_pio_pkt_evict_fifo_parity_err_cnt(
2980 				const struct cntr_entry *entry,
2981 				void *context, int vl, int mode, u64 data)
2982 {
2983 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2984 
2985 	return dd->send_pio_err_status_cnt[9];
2986 }
2987 
2988 static u64 access_pio_sbrdctrl_crrel_fifo_parity_err_cnt(
2989 				const struct cntr_entry *entry,
2990 				void *context, int vl, int mode, u64 data)
2991 {
2992 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2993 
2994 	return dd->send_pio_err_status_cnt[8];
2995 }
2996 
2997 static u64 access_pio_sbrdctl_crrel_parity_err_cnt(
2998 				const struct cntr_entry *entry,
2999 				void *context, int vl, int mode, u64 data)
3000 {
3001 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3002 
3003 	return dd->send_pio_err_status_cnt[7];
3004 }
3005 
3006 static u64 access_pio_pec_fifo_parity_err_cnt(const struct cntr_entry *entry,
3007 					      void *context, int vl, int mode,
3008 					      u64 data)
3009 {
3010 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3011 
3012 	return dd->send_pio_err_status_cnt[6];
3013 }
3014 
3015 static u64 access_pio_pcc_fifo_parity_err_cnt(const struct cntr_entry *entry,
3016 					      void *context, int vl, int mode,
3017 					      u64 data)
3018 {
3019 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3020 
3021 	return dd->send_pio_err_status_cnt[5];
3022 }
3023 
3024 static u64 access_pio_sb_mem_fifo1_err_cnt(const struct cntr_entry *entry,
3025 					   void *context, int vl, int mode,
3026 					   u64 data)
3027 {
3028 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3029 
3030 	return dd->send_pio_err_status_cnt[4];
3031 }
3032 
3033 static u64 access_pio_sb_mem_fifo0_err_cnt(const struct cntr_entry *entry,
3034 					   void *context, int vl, int mode,
3035 					   u64 data)
3036 {
3037 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3038 
3039 	return dd->send_pio_err_status_cnt[3];
3040 }
3041 
3042 static u64 access_pio_csr_parity_err_cnt(const struct cntr_entry *entry,
3043 					 void *context, int vl, int mode,
3044 					 u64 data)
3045 {
3046 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3047 
3048 	return dd->send_pio_err_status_cnt[2];
3049 }
3050 
3051 static u64 access_pio_write_addr_parity_err_cnt(const struct cntr_entry *entry,
3052 						void *context, int vl,
3053 						int mode, u64 data)
3054 {
3055 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3056 
3057 	return dd->send_pio_err_status_cnt[1];
3058 }
3059 
3060 static u64 access_pio_write_bad_ctxt_err_cnt(const struct cntr_entry *entry,
3061 					     void *context, int vl, int mode,
3062 					     u64 data)
3063 {
3064 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3065 
3066 	return dd->send_pio_err_status_cnt[0];
3067 }
3068 
3069 /*
3070  * Software counters corresponding to each of the
3071  * error status bits within SendDmaErrStatus
3072  */
3073 static u64 access_sdma_pcie_req_tracking_cor_err_cnt(
3074 				const struct cntr_entry *entry,
3075 				void *context, int vl, int mode, u64 data)
3076 {
3077 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3078 
3079 	return dd->send_dma_err_status_cnt[3];
3080 }
3081 
3082 static u64 access_sdma_pcie_req_tracking_unc_err_cnt(
3083 				const struct cntr_entry *entry,
3084 				void *context, int vl, int mode, u64 data)
3085 {
3086 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3087 
3088 	return dd->send_dma_err_status_cnt[2];
3089 }
3090 
3091 static u64 access_sdma_csr_parity_err_cnt(const struct cntr_entry *entry,
3092 					  void *context, int vl, int mode,
3093 					  u64 data)
3094 {
3095 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3096 
3097 	return dd->send_dma_err_status_cnt[1];
3098 }
3099 
3100 static u64 access_sdma_rpy_tag_err_cnt(const struct cntr_entry *entry,
3101 				       void *context, int vl, int mode,
3102 				       u64 data)
3103 {
3104 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3105 
3106 	return dd->send_dma_err_status_cnt[0];
3107 }
3108 
3109 /*
3110  * Software counters corresponding to each of the
3111  * error status bits within SendEgressErrStatus
3112  */
3113 static u64 access_tx_read_pio_memory_csr_unc_err_cnt(
3114 				const struct cntr_entry *entry,
3115 				void *context, int vl, int mode, u64 data)
3116 {
3117 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3118 
3119 	return dd->send_egress_err_status_cnt[63];
3120 }
3121 
3122 static u64 access_tx_read_sdma_memory_csr_err_cnt(
3123 				const struct cntr_entry *entry,
3124 				void *context, int vl, int mode, u64 data)
3125 {
3126 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3127 
3128 	return dd->send_egress_err_status_cnt[62];
3129 }
3130 
3131 static u64 access_tx_egress_fifo_cor_err_cnt(const struct cntr_entry *entry,
3132 					     void *context, int vl, int mode,
3133 					     u64 data)
3134 {
3135 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3136 
3137 	return dd->send_egress_err_status_cnt[61];
3138 }
3139 
3140 static u64 access_tx_read_pio_memory_cor_err_cnt(const struct cntr_entry *entry,
3141 						 void *context, int vl,
3142 						 int mode, u64 data)
3143 {
3144 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3145 
3146 	return dd->send_egress_err_status_cnt[60];
3147 }
3148 
3149 static u64 access_tx_read_sdma_memory_cor_err_cnt(
3150 				const struct cntr_entry *entry,
3151 				void *context, int vl, int mode, u64 data)
3152 {
3153 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3154 
3155 	return dd->send_egress_err_status_cnt[59];
3156 }
3157 
3158 static u64 access_tx_sb_hdr_cor_err_cnt(const struct cntr_entry *entry,
3159 					void *context, int vl, int mode,
3160 					u64 data)
3161 {
3162 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3163 
3164 	return dd->send_egress_err_status_cnt[58];
3165 }
3166 
3167 static u64 access_tx_credit_overrun_err_cnt(const struct cntr_entry *entry,
3168 					    void *context, int vl, int mode,
3169 					    u64 data)
3170 {
3171 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3172 
3173 	return dd->send_egress_err_status_cnt[57];
3174 }
3175 
3176 static u64 access_tx_launch_fifo8_cor_err_cnt(const struct cntr_entry *entry,
3177 					      void *context, int vl, int mode,
3178 					      u64 data)
3179 {
3180 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3181 
3182 	return dd->send_egress_err_status_cnt[56];
3183 }
3184 
3185 static u64 access_tx_launch_fifo7_cor_err_cnt(const struct cntr_entry *entry,
3186 					      void *context, int vl, int mode,
3187 					      u64 data)
3188 {
3189 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3190 
3191 	return dd->send_egress_err_status_cnt[55];
3192 }
3193 
3194 static u64 access_tx_launch_fifo6_cor_err_cnt(const struct cntr_entry *entry,
3195 					      void *context, int vl, int mode,
3196 					      u64 data)
3197 {
3198 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3199 
3200 	return dd->send_egress_err_status_cnt[54];
3201 }
3202 
3203 static u64 access_tx_launch_fifo5_cor_err_cnt(const struct cntr_entry *entry,
3204 					      void *context, int vl, int mode,
3205 					      u64 data)
3206 {
3207 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3208 
3209 	return dd->send_egress_err_status_cnt[53];
3210 }
3211 
3212 static u64 access_tx_launch_fifo4_cor_err_cnt(const struct cntr_entry *entry,
3213 					      void *context, int vl, int mode,
3214 					      u64 data)
3215 {
3216 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3217 
3218 	return dd->send_egress_err_status_cnt[52];
3219 }
3220 
3221 static u64 access_tx_launch_fifo3_cor_err_cnt(const struct cntr_entry *entry,
3222 					      void *context, int vl, int mode,
3223 					      u64 data)
3224 {
3225 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3226 
3227 	return dd->send_egress_err_status_cnt[51];
3228 }
3229 
3230 static u64 access_tx_launch_fifo2_cor_err_cnt(const struct cntr_entry *entry,
3231 					      void *context, int vl, int mode,
3232 					      u64 data)
3233 {
3234 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3235 
3236 	return dd->send_egress_err_status_cnt[50];
3237 }
3238 
3239 static u64 access_tx_launch_fifo1_cor_err_cnt(const struct cntr_entry *entry,
3240 					      void *context, int vl, int mode,
3241 					      u64 data)
3242 {
3243 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3244 
3245 	return dd->send_egress_err_status_cnt[49];
3246 }
3247 
3248 static u64 access_tx_launch_fifo0_cor_err_cnt(const struct cntr_entry *entry,
3249 					      void *context, int vl, int mode,
3250 					      u64 data)
3251 {
3252 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3253 
3254 	return dd->send_egress_err_status_cnt[48];
3255 }
3256 
3257 static u64 access_tx_credit_return_vl_err_cnt(const struct cntr_entry *entry,
3258 					      void *context, int vl, int mode,
3259 					      u64 data)
3260 {
3261 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3262 
3263 	return dd->send_egress_err_status_cnt[47];
3264 }
3265 
3266 static u64 access_tx_hcrc_insertion_err_cnt(const struct cntr_entry *entry,
3267 					    void *context, int vl, int mode,
3268 					    u64 data)
3269 {
3270 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3271 
3272 	return dd->send_egress_err_status_cnt[46];
3273 }
3274 
3275 static u64 access_tx_egress_fifo_unc_err_cnt(const struct cntr_entry *entry,
3276 					     void *context, int vl, int mode,
3277 					     u64 data)
3278 {
3279 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3280 
3281 	return dd->send_egress_err_status_cnt[45];
3282 }
3283 
3284 static u64 access_tx_read_pio_memory_unc_err_cnt(const struct cntr_entry *entry,
3285 						 void *context, int vl,
3286 						 int mode, u64 data)
3287 {
3288 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3289 
3290 	return dd->send_egress_err_status_cnt[44];
3291 }
3292 
3293 static u64 access_tx_read_sdma_memory_unc_err_cnt(
3294 				const struct cntr_entry *entry,
3295 				void *context, int vl, int mode, u64 data)
3296 {
3297 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3298 
3299 	return dd->send_egress_err_status_cnt[43];
3300 }
3301 
3302 static u64 access_tx_sb_hdr_unc_err_cnt(const struct cntr_entry *entry,
3303 					void *context, int vl, int mode,
3304 					u64 data)
3305 {
3306 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3307 
3308 	return dd->send_egress_err_status_cnt[42];
3309 }
3310 
3311 static u64 access_tx_credit_return_partiy_err_cnt(
3312 				const struct cntr_entry *entry,
3313 				void *context, int vl, int mode, u64 data)
3314 {
3315 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3316 
3317 	return dd->send_egress_err_status_cnt[41];
3318 }
3319 
3320 static u64 access_tx_launch_fifo8_unc_or_parity_err_cnt(
3321 				const struct cntr_entry *entry,
3322 				void *context, int vl, int mode, u64 data)
3323 {
3324 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3325 
3326 	return dd->send_egress_err_status_cnt[40];
3327 }
3328 
3329 static u64 access_tx_launch_fifo7_unc_or_parity_err_cnt(
3330 				const struct cntr_entry *entry,
3331 				void *context, int vl, int mode, u64 data)
3332 {
3333 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3334 
3335 	return dd->send_egress_err_status_cnt[39];
3336 }
3337 
3338 static u64 access_tx_launch_fifo6_unc_or_parity_err_cnt(
3339 				const struct cntr_entry *entry,
3340 				void *context, int vl, int mode, u64 data)
3341 {
3342 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3343 
3344 	return dd->send_egress_err_status_cnt[38];
3345 }
3346 
3347 static u64 access_tx_launch_fifo5_unc_or_parity_err_cnt(
3348 				const struct cntr_entry *entry,
3349 				void *context, int vl, int mode, u64 data)
3350 {
3351 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3352 
3353 	return dd->send_egress_err_status_cnt[37];
3354 }
3355 
3356 static u64 access_tx_launch_fifo4_unc_or_parity_err_cnt(
3357 				const struct cntr_entry *entry,
3358 				void *context, int vl, int mode, u64 data)
3359 {
3360 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3361 
3362 	return dd->send_egress_err_status_cnt[36];
3363 }
3364 
3365 static u64 access_tx_launch_fifo3_unc_or_parity_err_cnt(
3366 				const struct cntr_entry *entry,
3367 				void *context, int vl, int mode, u64 data)
3368 {
3369 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3370 
3371 	return dd->send_egress_err_status_cnt[35];
3372 }
3373 
3374 static u64 access_tx_launch_fifo2_unc_or_parity_err_cnt(
3375 				const struct cntr_entry *entry,
3376 				void *context, int vl, int mode, u64 data)
3377 {
3378 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3379 
3380 	return dd->send_egress_err_status_cnt[34];
3381 }
3382 
3383 static u64 access_tx_launch_fifo1_unc_or_parity_err_cnt(
3384 				const struct cntr_entry *entry,
3385 				void *context, int vl, int mode, u64 data)
3386 {
3387 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3388 
3389 	return dd->send_egress_err_status_cnt[33];
3390 }
3391 
3392 static u64 access_tx_launch_fifo0_unc_or_parity_err_cnt(
3393 				const struct cntr_entry *entry,
3394 				void *context, int vl, int mode, u64 data)
3395 {
3396 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3397 
3398 	return dd->send_egress_err_status_cnt[32];
3399 }
3400 
3401 static u64 access_tx_sdma15_disallowed_packet_err_cnt(
3402 				const struct cntr_entry *entry,
3403 				void *context, int vl, int mode, u64 data)
3404 {
3405 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3406 
3407 	return dd->send_egress_err_status_cnt[31];
3408 }
3409 
3410 static u64 access_tx_sdma14_disallowed_packet_err_cnt(
3411 				const struct cntr_entry *entry,
3412 				void *context, int vl, int mode, u64 data)
3413 {
3414 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3415 
3416 	return dd->send_egress_err_status_cnt[30];
3417 }
3418 
3419 static u64 access_tx_sdma13_disallowed_packet_err_cnt(
3420 				const struct cntr_entry *entry,
3421 				void *context, int vl, int mode, u64 data)
3422 {
3423 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3424 
3425 	return dd->send_egress_err_status_cnt[29];
3426 }
3427 
3428 static u64 access_tx_sdma12_disallowed_packet_err_cnt(
3429 				const struct cntr_entry *entry,
3430 				void *context, int vl, int mode, u64 data)
3431 {
3432 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3433 
3434 	return dd->send_egress_err_status_cnt[28];
3435 }
3436 
3437 static u64 access_tx_sdma11_disallowed_packet_err_cnt(
3438 				const struct cntr_entry *entry,
3439 				void *context, int vl, int mode, u64 data)
3440 {
3441 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3442 
3443 	return dd->send_egress_err_status_cnt[27];
3444 }
3445 
3446 static u64 access_tx_sdma10_disallowed_packet_err_cnt(
3447 				const struct cntr_entry *entry,
3448 				void *context, int vl, int mode, u64 data)
3449 {
3450 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3451 
3452 	return dd->send_egress_err_status_cnt[26];
3453 }
3454 
3455 static u64 access_tx_sdma9_disallowed_packet_err_cnt(
3456 				const struct cntr_entry *entry,
3457 				void *context, int vl, int mode, u64 data)
3458 {
3459 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3460 
3461 	return dd->send_egress_err_status_cnt[25];
3462 }
3463 
3464 static u64 access_tx_sdma8_disallowed_packet_err_cnt(
3465 				const struct cntr_entry *entry,
3466 				void *context, int vl, int mode, u64 data)
3467 {
3468 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3469 
3470 	return dd->send_egress_err_status_cnt[24];
3471 }
3472 
3473 static u64 access_tx_sdma7_disallowed_packet_err_cnt(
3474 				const struct cntr_entry *entry,
3475 				void *context, int vl, int mode, u64 data)
3476 {
3477 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3478 
3479 	return dd->send_egress_err_status_cnt[23];
3480 }
3481 
3482 static u64 access_tx_sdma6_disallowed_packet_err_cnt(
3483 				const struct cntr_entry *entry,
3484 				void *context, int vl, int mode, u64 data)
3485 {
3486 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3487 
3488 	return dd->send_egress_err_status_cnt[22];
3489 }
3490 
3491 static u64 access_tx_sdma5_disallowed_packet_err_cnt(
3492 				const struct cntr_entry *entry,
3493 				void *context, int vl, int mode, u64 data)
3494 {
3495 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3496 
3497 	return dd->send_egress_err_status_cnt[21];
3498 }
3499 
3500 static u64 access_tx_sdma4_disallowed_packet_err_cnt(
3501 				const struct cntr_entry *entry,
3502 				void *context, int vl, int mode, u64 data)
3503 {
3504 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3505 
3506 	return dd->send_egress_err_status_cnt[20];
3507 }
3508 
3509 static u64 access_tx_sdma3_disallowed_packet_err_cnt(
3510 				const struct cntr_entry *entry,
3511 				void *context, int vl, int mode, u64 data)
3512 {
3513 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3514 
3515 	return dd->send_egress_err_status_cnt[19];
3516 }
3517 
3518 static u64 access_tx_sdma2_disallowed_packet_err_cnt(
3519 				const struct cntr_entry *entry,
3520 				void *context, int vl, int mode, u64 data)
3521 {
3522 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3523 
3524 	return dd->send_egress_err_status_cnt[18];
3525 }
3526 
3527 static u64 access_tx_sdma1_disallowed_packet_err_cnt(
3528 				const struct cntr_entry *entry,
3529 				void *context, int vl, int mode, u64 data)
3530 {
3531 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3532 
3533 	return dd->send_egress_err_status_cnt[17];
3534 }
3535 
3536 static u64 access_tx_sdma0_disallowed_packet_err_cnt(
3537 				const struct cntr_entry *entry,
3538 				void *context, int vl, int mode, u64 data)
3539 {
3540 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3541 
3542 	return dd->send_egress_err_status_cnt[16];
3543 }
3544 
3545 static u64 access_tx_config_parity_err_cnt(const struct cntr_entry *entry,
3546 					   void *context, int vl, int mode,
3547 					   u64 data)
3548 {
3549 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3550 
3551 	return dd->send_egress_err_status_cnt[15];
3552 }
3553 
3554 static u64 access_tx_sbrd_ctl_csr_parity_err_cnt(const struct cntr_entry *entry,
3555 						 void *context, int vl,
3556 						 int mode, u64 data)
3557 {
3558 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3559 
3560 	return dd->send_egress_err_status_cnt[14];
3561 }
3562 
3563 static u64 access_tx_launch_csr_parity_err_cnt(const struct cntr_entry *entry,
3564 					       void *context, int vl, int mode,
3565 					       u64 data)
3566 {
3567 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3568 
3569 	return dd->send_egress_err_status_cnt[13];
3570 }
3571 
3572 static u64 access_tx_illegal_vl_err_cnt(const struct cntr_entry *entry,
3573 					void *context, int vl, int mode,
3574 					u64 data)
3575 {
3576 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3577 
3578 	return dd->send_egress_err_status_cnt[12];
3579 }
3580 
3581 static u64 access_tx_sbrd_ctl_state_machine_parity_err_cnt(
3582 				const struct cntr_entry *entry,
3583 				void *context, int vl, int mode, u64 data)
3584 {
3585 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3586 
3587 	return dd->send_egress_err_status_cnt[11];
3588 }
3589 
3590 static u64 access_egress_reserved_10_err_cnt(const struct cntr_entry *entry,
3591 					     void *context, int vl, int mode,
3592 					     u64 data)
3593 {
3594 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3595 
3596 	return dd->send_egress_err_status_cnt[10];
3597 }
3598 
3599 static u64 access_egress_reserved_9_err_cnt(const struct cntr_entry *entry,
3600 					    void *context, int vl, int mode,
3601 					    u64 data)
3602 {
3603 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3604 
3605 	return dd->send_egress_err_status_cnt[9];
3606 }
3607 
3608 static u64 access_tx_sdma_launch_intf_parity_err_cnt(
3609 				const struct cntr_entry *entry,
3610 				void *context, int vl, int mode, u64 data)
3611 {
3612 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3613 
3614 	return dd->send_egress_err_status_cnt[8];
3615 }
3616 
3617 static u64 access_tx_pio_launch_intf_parity_err_cnt(
3618 				const struct cntr_entry *entry,
3619 				void *context, int vl, int mode, u64 data)
3620 {
3621 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3622 
3623 	return dd->send_egress_err_status_cnt[7];
3624 }
3625 
3626 static u64 access_egress_reserved_6_err_cnt(const struct cntr_entry *entry,
3627 					    void *context, int vl, int mode,
3628 					    u64 data)
3629 {
3630 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3631 
3632 	return dd->send_egress_err_status_cnt[6];
3633 }
3634 
3635 static u64 access_tx_incorrect_link_state_err_cnt(
3636 				const struct cntr_entry *entry,
3637 				void *context, int vl, int mode, u64 data)
3638 {
3639 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3640 
3641 	return dd->send_egress_err_status_cnt[5];
3642 }
3643 
3644 static u64 access_tx_linkdown_err_cnt(const struct cntr_entry *entry,
3645 				      void *context, int vl, int mode,
3646 				      u64 data)
3647 {
3648 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3649 
3650 	return dd->send_egress_err_status_cnt[4];
3651 }
3652 
3653 static u64 access_tx_egress_fifi_underrun_or_parity_err_cnt(
3654 				const struct cntr_entry *entry,
3655 				void *context, int vl, int mode, u64 data)
3656 {
3657 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3658 
3659 	return dd->send_egress_err_status_cnt[3];
3660 }
3661 
3662 static u64 access_egress_reserved_2_err_cnt(const struct cntr_entry *entry,
3663 					    void *context, int vl, int mode,
3664 					    u64 data)
3665 {
3666 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3667 
3668 	return dd->send_egress_err_status_cnt[2];
3669 }
3670 
3671 static u64 access_tx_pkt_integrity_mem_unc_err_cnt(
3672 				const struct cntr_entry *entry,
3673 				void *context, int vl, int mode, u64 data)
3674 {
3675 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3676 
3677 	return dd->send_egress_err_status_cnt[1];
3678 }
3679 
3680 static u64 access_tx_pkt_integrity_mem_cor_err_cnt(
3681 				const struct cntr_entry *entry,
3682 				void *context, int vl, int mode, u64 data)
3683 {
3684 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3685 
3686 	return dd->send_egress_err_status_cnt[0];
3687 }
3688 
3689 /*
3690  * Software counters corresponding to each of the
3691  * error status bits within SendErrStatus
3692  */
3693 static u64 access_send_csr_write_bad_addr_err_cnt(
3694 				const struct cntr_entry *entry,
3695 				void *context, int vl, int mode, u64 data)
3696 {
3697 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3698 
3699 	return dd->send_err_status_cnt[2];
3700 }
3701 
3702 static u64 access_send_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
3703 						 void *context, int vl,
3704 						 int mode, u64 data)
3705 {
3706 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3707 
3708 	return dd->send_err_status_cnt[1];
3709 }
3710 
3711 static u64 access_send_csr_parity_cnt(const struct cntr_entry *entry,
3712 				      void *context, int vl, int mode,
3713 				      u64 data)
3714 {
3715 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3716 
3717 	return dd->send_err_status_cnt[0];
3718 }
3719 
3720 /*
3721  * Software counters corresponding to each of the
3722  * error status bits within SendCtxtErrStatus
3723  */
3724 static u64 access_pio_write_out_of_bounds_err_cnt(
3725 				const struct cntr_entry *entry,
3726 				void *context, int vl, int mode, u64 data)
3727 {
3728 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3729 
3730 	return dd->sw_ctxt_err_status_cnt[4];
3731 }
3732 
3733 static u64 access_pio_write_overflow_err_cnt(const struct cntr_entry *entry,
3734 					     void *context, int vl, int mode,
3735 					     u64 data)
3736 {
3737 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3738 
3739 	return dd->sw_ctxt_err_status_cnt[3];
3740 }
3741 
3742 static u64 access_pio_write_crosses_boundary_err_cnt(
3743 				const struct cntr_entry *entry,
3744 				void *context, int vl, int mode, u64 data)
3745 {
3746 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3747 
3748 	return dd->sw_ctxt_err_status_cnt[2];
3749 }
3750 
3751 static u64 access_pio_disallowed_packet_err_cnt(const struct cntr_entry *entry,
3752 						void *context, int vl,
3753 						int mode, u64 data)
3754 {
3755 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3756 
3757 	return dd->sw_ctxt_err_status_cnt[1];
3758 }
3759 
3760 static u64 access_pio_inconsistent_sop_err_cnt(const struct cntr_entry *entry,
3761 					       void *context, int vl, int mode,
3762 					       u64 data)
3763 {
3764 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3765 
3766 	return dd->sw_ctxt_err_status_cnt[0];
3767 }
3768 
3769 /*
3770  * Software counters corresponding to each of the
3771  * error status bits within SendDmaEngErrStatus
3772  */
3773 static u64 access_sdma_header_request_fifo_cor_err_cnt(
3774 				const struct cntr_entry *entry,
3775 				void *context, int vl, int mode, u64 data)
3776 {
3777 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3778 
3779 	return dd->sw_send_dma_eng_err_status_cnt[23];
3780 }
3781 
3782 static u64 access_sdma_header_storage_cor_err_cnt(
3783 				const struct cntr_entry *entry,
3784 				void *context, int vl, int mode, u64 data)
3785 {
3786 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3787 
3788 	return dd->sw_send_dma_eng_err_status_cnt[22];
3789 }
3790 
3791 static u64 access_sdma_packet_tracking_cor_err_cnt(
3792 				const struct cntr_entry *entry,
3793 				void *context, int vl, int mode, u64 data)
3794 {
3795 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3796 
3797 	return dd->sw_send_dma_eng_err_status_cnt[21];
3798 }
3799 
3800 static u64 access_sdma_assembly_cor_err_cnt(const struct cntr_entry *entry,
3801 					    void *context, int vl, int mode,
3802 					    u64 data)
3803 {
3804 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3805 
3806 	return dd->sw_send_dma_eng_err_status_cnt[20];
3807 }
3808 
3809 static u64 access_sdma_desc_table_cor_err_cnt(const struct cntr_entry *entry,
3810 					      void *context, int vl, int mode,
3811 					      u64 data)
3812 {
3813 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3814 
3815 	return dd->sw_send_dma_eng_err_status_cnt[19];
3816 }
3817 
3818 static u64 access_sdma_header_request_fifo_unc_err_cnt(
3819 				const struct cntr_entry *entry,
3820 				void *context, int vl, int mode, u64 data)
3821 {
3822 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3823 
3824 	return dd->sw_send_dma_eng_err_status_cnt[18];
3825 }
3826 
3827 static u64 access_sdma_header_storage_unc_err_cnt(
3828 				const struct cntr_entry *entry,
3829 				void *context, int vl, int mode, u64 data)
3830 {
3831 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3832 
3833 	return dd->sw_send_dma_eng_err_status_cnt[17];
3834 }
3835 
3836 static u64 access_sdma_packet_tracking_unc_err_cnt(
3837 				const struct cntr_entry *entry,
3838 				void *context, int vl, int mode, u64 data)
3839 {
3840 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3841 
3842 	return dd->sw_send_dma_eng_err_status_cnt[16];
3843 }
3844 
3845 static u64 access_sdma_assembly_unc_err_cnt(const struct cntr_entry *entry,
3846 					    void *context, int vl, int mode,
3847 					    u64 data)
3848 {
3849 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3850 
3851 	return dd->sw_send_dma_eng_err_status_cnt[15];
3852 }
3853 
3854 static u64 access_sdma_desc_table_unc_err_cnt(const struct cntr_entry *entry,
3855 					      void *context, int vl, int mode,
3856 					      u64 data)
3857 {
3858 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3859 
3860 	return dd->sw_send_dma_eng_err_status_cnt[14];
3861 }
3862 
3863 static u64 access_sdma_timeout_err_cnt(const struct cntr_entry *entry,
3864 				       void *context, int vl, int mode,
3865 				       u64 data)
3866 {
3867 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3868 
3869 	return dd->sw_send_dma_eng_err_status_cnt[13];
3870 }
3871 
3872 static u64 access_sdma_header_length_err_cnt(const struct cntr_entry *entry,
3873 					     void *context, int vl, int mode,
3874 					     u64 data)
3875 {
3876 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3877 
3878 	return dd->sw_send_dma_eng_err_status_cnt[12];
3879 }
3880 
3881 static u64 access_sdma_header_address_err_cnt(const struct cntr_entry *entry,
3882 					      void *context, int vl, int mode,
3883 					      u64 data)
3884 {
3885 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3886 
3887 	return dd->sw_send_dma_eng_err_status_cnt[11];
3888 }
3889 
3890 static u64 access_sdma_header_select_err_cnt(const struct cntr_entry *entry,
3891 					     void *context, int vl, int mode,
3892 					     u64 data)
3893 {
3894 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3895 
3896 	return dd->sw_send_dma_eng_err_status_cnt[10];
3897 }
3898 
3899 static u64 access_sdma_reserved_9_err_cnt(const struct cntr_entry *entry,
3900 					  void *context, int vl, int mode,
3901 					  u64 data)
3902 {
3903 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3904 
3905 	return dd->sw_send_dma_eng_err_status_cnt[9];
3906 }
3907 
3908 static u64 access_sdma_packet_desc_overflow_err_cnt(
3909 				const struct cntr_entry *entry,
3910 				void *context, int vl, int mode, u64 data)
3911 {
3912 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3913 
3914 	return dd->sw_send_dma_eng_err_status_cnt[8];
3915 }
3916 
3917 static u64 access_sdma_length_mismatch_err_cnt(const struct cntr_entry *entry,
3918 					       void *context, int vl,
3919 					       int mode, u64 data)
3920 {
3921 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3922 
3923 	return dd->sw_send_dma_eng_err_status_cnt[7];
3924 }
3925 
3926 static u64 access_sdma_halt_err_cnt(const struct cntr_entry *entry,
3927 				    void *context, int vl, int mode, u64 data)
3928 {
3929 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3930 
3931 	return dd->sw_send_dma_eng_err_status_cnt[6];
3932 }
3933 
3934 static u64 access_sdma_mem_read_err_cnt(const struct cntr_entry *entry,
3935 					void *context, int vl, int mode,
3936 					u64 data)
3937 {
3938 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3939 
3940 	return dd->sw_send_dma_eng_err_status_cnt[5];
3941 }
3942 
3943 static u64 access_sdma_first_desc_err_cnt(const struct cntr_entry *entry,
3944 					  void *context, int vl, int mode,
3945 					  u64 data)
3946 {
3947 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3948 
3949 	return dd->sw_send_dma_eng_err_status_cnt[4];
3950 }
3951 
3952 static u64 access_sdma_tail_out_of_bounds_err_cnt(
3953 				const struct cntr_entry *entry,
3954 				void *context, int vl, int mode, u64 data)
3955 {
3956 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3957 
3958 	return dd->sw_send_dma_eng_err_status_cnt[3];
3959 }
3960 
3961 static u64 access_sdma_too_long_err_cnt(const struct cntr_entry *entry,
3962 					void *context, int vl, int mode,
3963 					u64 data)
3964 {
3965 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3966 
3967 	return dd->sw_send_dma_eng_err_status_cnt[2];
3968 }
3969 
3970 static u64 access_sdma_gen_mismatch_err_cnt(const struct cntr_entry *entry,
3971 					    void *context, int vl, int mode,
3972 					    u64 data)
3973 {
3974 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3975 
3976 	return dd->sw_send_dma_eng_err_status_cnt[1];
3977 }
3978 
3979 static u64 access_sdma_wrong_dw_err_cnt(const struct cntr_entry *entry,
3980 					void *context, int vl, int mode,
3981 					u64 data)
3982 {
3983 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3984 
3985 	return dd->sw_send_dma_eng_err_status_cnt[0];
3986 }
3987 
3988 static u64 access_dc_rcv_err_cnt(const struct cntr_entry *entry,
3989 				 void *context, int vl, int mode,
3990 				 u64 data)
3991 {
3992 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3993 
3994 	u64 val = 0;
3995 	u64 csr = entry->csr;
3996 
3997 	val = read_write_csr(dd, csr, mode, data);
3998 	if (mode == CNTR_MODE_R) {
3999 		val = val > CNTR_MAX - dd->sw_rcv_bypass_packet_errors ?
4000 			CNTR_MAX : val + dd->sw_rcv_bypass_packet_errors;
4001 	} else if (mode == CNTR_MODE_W) {
4002 		dd->sw_rcv_bypass_packet_errors = 0;
4003 	} else {
4004 		dd_dev_err(dd, "Invalid cntr register access mode");
4005 		return 0;
4006 	}
4007 	return val;
4008 }
4009 
4010 #define def_access_sw_cpu(cntr) \
4011 static u64 access_sw_cpu_##cntr(const struct cntr_entry *entry,		      \
4012 			      void *context, int vl, int mode, u64 data)      \
4013 {									      \
4014 	struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context;	      \
4015 	return read_write_cpu(ppd->dd, &ppd->ibport_data.rvp.z_ ##cntr,	      \
4016 			      ppd->ibport_data.rvp.cntr, vl,		      \
4017 			      mode, data);				      \
4018 }
4019 
4020 def_access_sw_cpu(rc_acks);
4021 def_access_sw_cpu(rc_qacks);
4022 def_access_sw_cpu(rc_delayed_comp);
4023 
4024 #define def_access_ibp_counter(cntr) \
4025 static u64 access_ibp_##cntr(const struct cntr_entry *entry,		      \
4026 				void *context, int vl, int mode, u64 data)    \
4027 {									      \
4028 	struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context;	      \
4029 									      \
4030 	if (vl != CNTR_INVALID_VL)					      \
4031 		return 0;						      \
4032 									      \
4033 	return read_write_sw(ppd->dd, &ppd->ibport_data.rvp.n_ ##cntr,	      \
4034 			     mode, data);				      \
4035 }
4036 
4037 def_access_ibp_counter(loop_pkts);
4038 def_access_ibp_counter(rc_resends);
4039 def_access_ibp_counter(rnr_naks);
4040 def_access_ibp_counter(other_naks);
4041 def_access_ibp_counter(rc_timeouts);
4042 def_access_ibp_counter(pkt_drops);
4043 def_access_ibp_counter(dmawait);
4044 def_access_ibp_counter(rc_seqnak);
4045 def_access_ibp_counter(rc_dupreq);
4046 def_access_ibp_counter(rdma_seq);
4047 def_access_ibp_counter(unaligned);
4048 def_access_ibp_counter(seq_naks);
4049 
4050 static struct cntr_entry dev_cntrs[DEV_CNTR_LAST] = {
4051 [C_RCV_OVF] = RXE32_DEV_CNTR_ELEM(RcvOverflow, RCV_BUF_OVFL_CNT, CNTR_SYNTH),
4052 [C_RX_TID_FULL] = RXE32_DEV_CNTR_ELEM(RxTIDFullEr, RCV_TID_FULL_ERR_CNT,
4053 			CNTR_NORMAL),
4054 [C_RX_TID_INVALID] = RXE32_DEV_CNTR_ELEM(RxTIDInvalid, RCV_TID_VALID_ERR_CNT,
4055 			CNTR_NORMAL),
4056 [C_RX_TID_FLGMS] = RXE32_DEV_CNTR_ELEM(RxTidFLGMs,
4057 			RCV_TID_FLOW_GEN_MISMATCH_CNT,
4058 			CNTR_NORMAL),
4059 [C_RX_CTX_EGRS] = RXE32_DEV_CNTR_ELEM(RxCtxEgrS, RCV_CONTEXT_EGR_STALL,
4060 			CNTR_NORMAL),
4061 [C_RCV_TID_FLSMS] = RXE32_DEV_CNTR_ELEM(RxTidFLSMs,
4062 			RCV_TID_FLOW_SEQ_MISMATCH_CNT, CNTR_NORMAL),
4063 [C_CCE_PCI_CR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePciCrSt,
4064 			CCE_PCIE_POSTED_CRDT_STALL_CNT, CNTR_NORMAL),
4065 [C_CCE_PCI_TR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePciTrSt, CCE_PCIE_TRGT_STALL_CNT,
4066 			CNTR_NORMAL),
4067 [C_CCE_PIO_WR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePioWrSt, CCE_PIO_WR_STALL_CNT,
4068 			CNTR_NORMAL),
4069 [C_CCE_ERR_INT] = CCE_INT_DEV_CNTR_ELEM(CceErrInt, CCE_ERR_INT_CNT,
4070 			CNTR_NORMAL),
4071 [C_CCE_SDMA_INT] = CCE_INT_DEV_CNTR_ELEM(CceSdmaInt, CCE_SDMA_INT_CNT,
4072 			CNTR_NORMAL),
4073 [C_CCE_MISC_INT] = CCE_INT_DEV_CNTR_ELEM(CceMiscInt, CCE_MISC_INT_CNT,
4074 			CNTR_NORMAL),
4075 [C_CCE_RCV_AV_INT] = CCE_INT_DEV_CNTR_ELEM(CceRcvAvInt, CCE_RCV_AVAIL_INT_CNT,
4076 			CNTR_NORMAL),
4077 [C_CCE_RCV_URG_INT] = CCE_INT_DEV_CNTR_ELEM(CceRcvUrgInt,
4078 			CCE_RCV_URGENT_INT_CNT,	CNTR_NORMAL),
4079 [C_CCE_SEND_CR_INT] = CCE_INT_DEV_CNTR_ELEM(CceSndCrInt,
4080 			CCE_SEND_CREDIT_INT_CNT, CNTR_NORMAL),
4081 [C_DC_UNC_ERR] = DC_PERF_CNTR(DcUnctblErr, DCC_ERR_UNCORRECTABLE_CNT,
4082 			      CNTR_SYNTH),
4083 [C_DC_RCV_ERR] = CNTR_ELEM("DcRecvErr", DCC_ERR_PORTRCV_ERR_CNT, 0, CNTR_SYNTH,
4084 			    access_dc_rcv_err_cnt),
4085 [C_DC_FM_CFG_ERR] = DC_PERF_CNTR(DcFmCfgErr, DCC_ERR_FMCONFIG_ERR_CNT,
4086 				 CNTR_SYNTH),
4087 [C_DC_RMT_PHY_ERR] = DC_PERF_CNTR(DcRmtPhyErr, DCC_ERR_RCVREMOTE_PHY_ERR_CNT,
4088 				  CNTR_SYNTH),
4089 [C_DC_DROPPED_PKT] = DC_PERF_CNTR(DcDroppedPkt, DCC_ERR_DROPPED_PKT_CNT,
4090 				  CNTR_SYNTH),
4091 [C_DC_MC_XMIT_PKTS] = DC_PERF_CNTR(DcMcXmitPkts,
4092 				   DCC_PRF_PORT_XMIT_MULTICAST_CNT, CNTR_SYNTH),
4093 [C_DC_MC_RCV_PKTS] = DC_PERF_CNTR(DcMcRcvPkts,
4094 				  DCC_PRF_PORT_RCV_MULTICAST_PKT_CNT,
4095 				  CNTR_SYNTH),
4096 [C_DC_XMIT_CERR] = DC_PERF_CNTR(DcXmitCorr,
4097 				DCC_PRF_PORT_XMIT_CORRECTABLE_CNT, CNTR_SYNTH),
4098 [C_DC_RCV_CERR] = DC_PERF_CNTR(DcRcvCorrCnt, DCC_PRF_PORT_RCV_CORRECTABLE_CNT,
4099 			       CNTR_SYNTH),
4100 [C_DC_RCV_FCC] = DC_PERF_CNTR(DcRxFCntl, DCC_PRF_RX_FLOW_CRTL_CNT,
4101 			      CNTR_SYNTH),
4102 [C_DC_XMIT_FCC] = DC_PERF_CNTR(DcXmitFCntl, DCC_PRF_TX_FLOW_CRTL_CNT,
4103 			       CNTR_SYNTH),
4104 [C_DC_XMIT_FLITS] = DC_PERF_CNTR(DcXmitFlits, DCC_PRF_PORT_XMIT_DATA_CNT,
4105 				 CNTR_SYNTH),
4106 [C_DC_RCV_FLITS] = DC_PERF_CNTR(DcRcvFlits, DCC_PRF_PORT_RCV_DATA_CNT,
4107 				CNTR_SYNTH),
4108 [C_DC_XMIT_PKTS] = DC_PERF_CNTR(DcXmitPkts, DCC_PRF_PORT_XMIT_PKTS_CNT,
4109 				CNTR_SYNTH),
4110 [C_DC_RCV_PKTS] = DC_PERF_CNTR(DcRcvPkts, DCC_PRF_PORT_RCV_PKTS_CNT,
4111 			       CNTR_SYNTH),
4112 [C_DC_RX_FLIT_VL] = DC_PERF_CNTR(DcRxFlitVl, DCC_PRF_PORT_VL_RCV_DATA_CNT,
4113 				 CNTR_SYNTH | CNTR_VL),
4114 [C_DC_RX_PKT_VL] = DC_PERF_CNTR(DcRxPktVl, DCC_PRF_PORT_VL_RCV_PKTS_CNT,
4115 				CNTR_SYNTH | CNTR_VL),
4116 [C_DC_RCV_FCN] = DC_PERF_CNTR(DcRcvFcn, DCC_PRF_PORT_RCV_FECN_CNT, CNTR_SYNTH),
4117 [C_DC_RCV_FCN_VL] = DC_PERF_CNTR(DcRcvFcnVl, DCC_PRF_PORT_VL_RCV_FECN_CNT,
4118 				 CNTR_SYNTH | CNTR_VL),
4119 [C_DC_RCV_BCN] = DC_PERF_CNTR(DcRcvBcn, DCC_PRF_PORT_RCV_BECN_CNT, CNTR_SYNTH),
4120 [C_DC_RCV_BCN_VL] = DC_PERF_CNTR(DcRcvBcnVl, DCC_PRF_PORT_VL_RCV_BECN_CNT,
4121 				 CNTR_SYNTH | CNTR_VL),
4122 [C_DC_RCV_BBL] = DC_PERF_CNTR(DcRcvBbl, DCC_PRF_PORT_RCV_BUBBLE_CNT,
4123 			      CNTR_SYNTH),
4124 [C_DC_RCV_BBL_VL] = DC_PERF_CNTR(DcRcvBblVl, DCC_PRF_PORT_VL_RCV_BUBBLE_CNT,
4125 				 CNTR_SYNTH | CNTR_VL),
4126 [C_DC_MARK_FECN] = DC_PERF_CNTR(DcMarkFcn, DCC_PRF_PORT_MARK_FECN_CNT,
4127 				CNTR_SYNTH),
4128 [C_DC_MARK_FECN_VL] = DC_PERF_CNTR(DcMarkFcnVl, DCC_PRF_PORT_VL_MARK_FECN_CNT,
4129 				   CNTR_SYNTH | CNTR_VL),
4130 [C_DC_TOTAL_CRC] =
4131 	DC_PERF_CNTR_LCB(DcTotCrc, DC_LCB_ERR_INFO_TOTAL_CRC_ERR,
4132 			 CNTR_SYNTH),
4133 [C_DC_CRC_LN0] = DC_PERF_CNTR_LCB(DcCrcLn0, DC_LCB_ERR_INFO_CRC_ERR_LN0,
4134 				  CNTR_SYNTH),
4135 [C_DC_CRC_LN1] = DC_PERF_CNTR_LCB(DcCrcLn1, DC_LCB_ERR_INFO_CRC_ERR_LN1,
4136 				  CNTR_SYNTH),
4137 [C_DC_CRC_LN2] = DC_PERF_CNTR_LCB(DcCrcLn2, DC_LCB_ERR_INFO_CRC_ERR_LN2,
4138 				  CNTR_SYNTH),
4139 [C_DC_CRC_LN3] = DC_PERF_CNTR_LCB(DcCrcLn3, DC_LCB_ERR_INFO_CRC_ERR_LN3,
4140 				  CNTR_SYNTH),
4141 [C_DC_CRC_MULT_LN] =
4142 	DC_PERF_CNTR_LCB(DcMultLn, DC_LCB_ERR_INFO_CRC_ERR_MULTI_LN,
4143 			 CNTR_SYNTH),
4144 [C_DC_TX_REPLAY] = DC_PERF_CNTR_LCB(DcTxReplay, DC_LCB_ERR_INFO_TX_REPLAY_CNT,
4145 				    CNTR_SYNTH),
4146 [C_DC_RX_REPLAY] = DC_PERF_CNTR_LCB(DcRxReplay, DC_LCB_ERR_INFO_RX_REPLAY_CNT,
4147 				    CNTR_SYNTH),
4148 [C_DC_SEQ_CRC_CNT] =
4149 	DC_PERF_CNTR_LCB(DcLinkSeqCrc, DC_LCB_ERR_INFO_SEQ_CRC_CNT,
4150 			 CNTR_SYNTH),
4151 [C_DC_ESC0_ONLY_CNT] =
4152 	DC_PERF_CNTR_LCB(DcEsc0, DC_LCB_ERR_INFO_ESCAPE_0_ONLY_CNT,
4153 			 CNTR_SYNTH),
4154 [C_DC_ESC0_PLUS1_CNT] =
4155 	DC_PERF_CNTR_LCB(DcEsc1, DC_LCB_ERR_INFO_ESCAPE_0_PLUS1_CNT,
4156 			 CNTR_SYNTH),
4157 [C_DC_ESC0_PLUS2_CNT] =
4158 	DC_PERF_CNTR_LCB(DcEsc0Plus2, DC_LCB_ERR_INFO_ESCAPE_0_PLUS2_CNT,
4159 			 CNTR_SYNTH),
4160 [C_DC_REINIT_FROM_PEER_CNT] =
4161 	DC_PERF_CNTR_LCB(DcReinitPeer, DC_LCB_ERR_INFO_REINIT_FROM_PEER_CNT,
4162 			 CNTR_SYNTH),
4163 [C_DC_SBE_CNT] = DC_PERF_CNTR_LCB(DcSbe, DC_LCB_ERR_INFO_SBE_CNT,
4164 				  CNTR_SYNTH),
4165 [C_DC_MISC_FLG_CNT] =
4166 	DC_PERF_CNTR_LCB(DcMiscFlg, DC_LCB_ERR_INFO_MISC_FLG_CNT,
4167 			 CNTR_SYNTH),
4168 [C_DC_PRF_GOOD_LTP_CNT] =
4169 	DC_PERF_CNTR_LCB(DcGoodLTP, DC_LCB_PRF_GOOD_LTP_CNT, CNTR_SYNTH),
4170 [C_DC_PRF_ACCEPTED_LTP_CNT] =
4171 	DC_PERF_CNTR_LCB(DcAccLTP, DC_LCB_PRF_ACCEPTED_LTP_CNT,
4172 			 CNTR_SYNTH),
4173 [C_DC_PRF_RX_FLIT_CNT] =
4174 	DC_PERF_CNTR_LCB(DcPrfRxFlit, DC_LCB_PRF_RX_FLIT_CNT, CNTR_SYNTH),
4175 [C_DC_PRF_TX_FLIT_CNT] =
4176 	DC_PERF_CNTR_LCB(DcPrfTxFlit, DC_LCB_PRF_TX_FLIT_CNT, CNTR_SYNTH),
4177 [C_DC_PRF_CLK_CNTR] =
4178 	DC_PERF_CNTR_LCB(DcPrfClk, DC_LCB_PRF_CLK_CNTR, CNTR_SYNTH),
4179 [C_DC_PG_DBG_FLIT_CRDTS_CNT] =
4180 	DC_PERF_CNTR_LCB(DcFltCrdts, DC_LCB_PG_DBG_FLIT_CRDTS_CNT, CNTR_SYNTH),
4181 [C_DC_PG_STS_PAUSE_COMPLETE_CNT] =
4182 	DC_PERF_CNTR_LCB(DcPauseComp, DC_LCB_PG_STS_PAUSE_COMPLETE_CNT,
4183 			 CNTR_SYNTH),
4184 [C_DC_PG_STS_TX_SBE_CNT] =
4185 	DC_PERF_CNTR_LCB(DcStsTxSbe, DC_LCB_PG_STS_TX_SBE_CNT, CNTR_SYNTH),
4186 [C_DC_PG_STS_TX_MBE_CNT] =
4187 	DC_PERF_CNTR_LCB(DcStsTxMbe, DC_LCB_PG_STS_TX_MBE_CNT,
4188 			 CNTR_SYNTH),
4189 [C_SW_CPU_INTR] = CNTR_ELEM("Intr", 0, 0, CNTR_NORMAL,
4190 			    access_sw_cpu_intr),
4191 [C_SW_CPU_RCV_LIM] = CNTR_ELEM("RcvLimit", 0, 0, CNTR_NORMAL,
4192 			    access_sw_cpu_rcv_limit),
4193 [C_SW_VTX_WAIT] = CNTR_ELEM("vTxWait", 0, 0, CNTR_NORMAL,
4194 			    access_sw_vtx_wait),
4195 [C_SW_PIO_WAIT] = CNTR_ELEM("PioWait", 0, 0, CNTR_NORMAL,
4196 			    access_sw_pio_wait),
4197 [C_SW_PIO_DRAIN] = CNTR_ELEM("PioDrain", 0, 0, CNTR_NORMAL,
4198 			    access_sw_pio_drain),
4199 [C_SW_KMEM_WAIT] = CNTR_ELEM("KmemWait", 0, 0, CNTR_NORMAL,
4200 			    access_sw_kmem_wait),
4201 [C_SW_SEND_SCHED] = CNTR_ELEM("SendSched", 0, 0, CNTR_NORMAL,
4202 			    access_sw_send_schedule),
4203 [C_SDMA_DESC_FETCHED_CNT] = CNTR_ELEM("SDEDscFdCn",
4204 				      SEND_DMA_DESC_FETCHED_CNT, 0,
4205 				      CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4206 				      dev_access_u32_csr),
4207 [C_SDMA_INT_CNT] = CNTR_ELEM("SDMAInt", 0, 0,
4208 			     CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4209 			     access_sde_int_cnt),
4210 [C_SDMA_ERR_CNT] = CNTR_ELEM("SDMAErrCt", 0, 0,
4211 			     CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4212 			     access_sde_err_cnt),
4213 [C_SDMA_IDLE_INT_CNT] = CNTR_ELEM("SDMAIdInt", 0, 0,
4214 				  CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4215 				  access_sde_idle_int_cnt),
4216 [C_SDMA_PROGRESS_INT_CNT] = CNTR_ELEM("SDMAPrIntCn", 0, 0,
4217 				      CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4218 				      access_sde_progress_int_cnt),
4219 /* MISC_ERR_STATUS */
4220 [C_MISC_PLL_LOCK_FAIL_ERR] = CNTR_ELEM("MISC_PLL_LOCK_FAIL_ERR", 0, 0,
4221 				CNTR_NORMAL,
4222 				access_misc_pll_lock_fail_err_cnt),
4223 [C_MISC_MBIST_FAIL_ERR] = CNTR_ELEM("MISC_MBIST_FAIL_ERR", 0, 0,
4224 				CNTR_NORMAL,
4225 				access_misc_mbist_fail_err_cnt),
4226 [C_MISC_INVALID_EEP_CMD_ERR] = CNTR_ELEM("MISC_INVALID_EEP_CMD_ERR", 0, 0,
4227 				CNTR_NORMAL,
4228 				access_misc_invalid_eep_cmd_err_cnt),
4229 [C_MISC_EFUSE_DONE_PARITY_ERR] = CNTR_ELEM("MISC_EFUSE_DONE_PARITY_ERR", 0, 0,
4230 				CNTR_NORMAL,
4231 				access_misc_efuse_done_parity_err_cnt),
4232 [C_MISC_EFUSE_WRITE_ERR] = CNTR_ELEM("MISC_EFUSE_WRITE_ERR", 0, 0,
4233 				CNTR_NORMAL,
4234 				access_misc_efuse_write_err_cnt),
4235 [C_MISC_EFUSE_READ_BAD_ADDR_ERR] = CNTR_ELEM("MISC_EFUSE_READ_BAD_ADDR_ERR", 0,
4236 				0, CNTR_NORMAL,
4237 				access_misc_efuse_read_bad_addr_err_cnt),
4238 [C_MISC_EFUSE_CSR_PARITY_ERR] = CNTR_ELEM("MISC_EFUSE_CSR_PARITY_ERR", 0, 0,
4239 				CNTR_NORMAL,
4240 				access_misc_efuse_csr_parity_err_cnt),
4241 [C_MISC_FW_AUTH_FAILED_ERR] = CNTR_ELEM("MISC_FW_AUTH_FAILED_ERR", 0, 0,
4242 				CNTR_NORMAL,
4243 				access_misc_fw_auth_failed_err_cnt),
4244 [C_MISC_KEY_MISMATCH_ERR] = CNTR_ELEM("MISC_KEY_MISMATCH_ERR", 0, 0,
4245 				CNTR_NORMAL,
4246 				access_misc_key_mismatch_err_cnt),
4247 [C_MISC_SBUS_WRITE_FAILED_ERR] = CNTR_ELEM("MISC_SBUS_WRITE_FAILED_ERR", 0, 0,
4248 				CNTR_NORMAL,
4249 				access_misc_sbus_write_failed_err_cnt),
4250 [C_MISC_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("MISC_CSR_WRITE_BAD_ADDR_ERR", 0, 0,
4251 				CNTR_NORMAL,
4252 				access_misc_csr_write_bad_addr_err_cnt),
4253 [C_MISC_CSR_READ_BAD_ADDR_ERR] = CNTR_ELEM("MISC_CSR_READ_BAD_ADDR_ERR", 0, 0,
4254 				CNTR_NORMAL,
4255 				access_misc_csr_read_bad_addr_err_cnt),
4256 [C_MISC_CSR_PARITY_ERR] = CNTR_ELEM("MISC_CSR_PARITY_ERR", 0, 0,
4257 				CNTR_NORMAL,
4258 				access_misc_csr_parity_err_cnt),
4259 /* CceErrStatus */
4260 [C_CCE_ERR_STATUS_AGGREGATED_CNT] = CNTR_ELEM("CceErrStatusAggregatedCnt", 0, 0,
4261 				CNTR_NORMAL,
4262 				access_sw_cce_err_status_aggregated_cnt),
4263 [C_CCE_MSIX_CSR_PARITY_ERR] = CNTR_ELEM("CceMsixCsrParityErr", 0, 0,
4264 				CNTR_NORMAL,
4265 				access_cce_msix_csr_parity_err_cnt),
4266 [C_CCE_INT_MAP_UNC_ERR] = CNTR_ELEM("CceIntMapUncErr", 0, 0,
4267 				CNTR_NORMAL,
4268 				access_cce_int_map_unc_err_cnt),
4269 [C_CCE_INT_MAP_COR_ERR] = CNTR_ELEM("CceIntMapCorErr", 0, 0,
4270 				CNTR_NORMAL,
4271 				access_cce_int_map_cor_err_cnt),
4272 [C_CCE_MSIX_TABLE_UNC_ERR] = CNTR_ELEM("CceMsixTableUncErr", 0, 0,
4273 				CNTR_NORMAL,
4274 				access_cce_msix_table_unc_err_cnt),
4275 [C_CCE_MSIX_TABLE_COR_ERR] = CNTR_ELEM("CceMsixTableCorErr", 0, 0,
4276 				CNTR_NORMAL,
4277 				access_cce_msix_table_cor_err_cnt),
4278 [C_CCE_RXDMA_CONV_FIFO_PARITY_ERR] = CNTR_ELEM("CceRxdmaConvFifoParityErr", 0,
4279 				0, CNTR_NORMAL,
4280 				access_cce_rxdma_conv_fifo_parity_err_cnt),
4281 [C_CCE_RCPL_ASYNC_FIFO_PARITY_ERR] = CNTR_ELEM("CceRcplAsyncFifoParityErr", 0,
4282 				0, CNTR_NORMAL,
4283 				access_cce_rcpl_async_fifo_parity_err_cnt),
4284 [C_CCE_SEG_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("CceSegWriteBadAddrErr", 0, 0,
4285 				CNTR_NORMAL,
4286 				access_cce_seg_write_bad_addr_err_cnt),
4287 [C_CCE_SEG_READ_BAD_ADDR_ERR] = CNTR_ELEM("CceSegReadBadAddrErr", 0, 0,
4288 				CNTR_NORMAL,
4289 				access_cce_seg_read_bad_addr_err_cnt),
4290 [C_LA_TRIGGERED] = CNTR_ELEM("Cce LATriggered", 0, 0,
4291 				CNTR_NORMAL,
4292 				access_la_triggered_cnt),
4293 [C_CCE_TRGT_CPL_TIMEOUT_ERR] = CNTR_ELEM("CceTrgtCplTimeoutErr", 0, 0,
4294 				CNTR_NORMAL,
4295 				access_cce_trgt_cpl_timeout_err_cnt),
4296 [C_PCIC_RECEIVE_PARITY_ERR] = CNTR_ELEM("PcicReceiveParityErr", 0, 0,
4297 				CNTR_NORMAL,
4298 				access_pcic_receive_parity_err_cnt),
4299 [C_PCIC_TRANSMIT_BACK_PARITY_ERR] = CNTR_ELEM("PcicTransmitBackParityErr", 0, 0,
4300 				CNTR_NORMAL,
4301 				access_pcic_transmit_back_parity_err_cnt),
4302 [C_PCIC_TRANSMIT_FRONT_PARITY_ERR] = CNTR_ELEM("PcicTransmitFrontParityErr", 0,
4303 				0, CNTR_NORMAL,
4304 				access_pcic_transmit_front_parity_err_cnt),
4305 [C_PCIC_CPL_DAT_Q_UNC_ERR] = CNTR_ELEM("PcicCplDatQUncErr", 0, 0,
4306 				CNTR_NORMAL,
4307 				access_pcic_cpl_dat_q_unc_err_cnt),
4308 [C_PCIC_CPL_HD_Q_UNC_ERR] = CNTR_ELEM("PcicCplHdQUncErr", 0, 0,
4309 				CNTR_NORMAL,
4310 				access_pcic_cpl_hd_q_unc_err_cnt),
4311 [C_PCIC_POST_DAT_Q_UNC_ERR] = CNTR_ELEM("PcicPostDatQUncErr", 0, 0,
4312 				CNTR_NORMAL,
4313 				access_pcic_post_dat_q_unc_err_cnt),
4314 [C_PCIC_POST_HD_Q_UNC_ERR] = CNTR_ELEM("PcicPostHdQUncErr", 0, 0,
4315 				CNTR_NORMAL,
4316 				access_pcic_post_hd_q_unc_err_cnt),
4317 [C_PCIC_RETRY_SOT_MEM_UNC_ERR] = CNTR_ELEM("PcicRetrySotMemUncErr", 0, 0,
4318 				CNTR_NORMAL,
4319 				access_pcic_retry_sot_mem_unc_err_cnt),
4320 [C_PCIC_RETRY_MEM_UNC_ERR] = CNTR_ELEM("PcicRetryMemUncErr", 0, 0,
4321 				CNTR_NORMAL,
4322 				access_pcic_retry_mem_unc_err),
4323 [C_PCIC_N_POST_DAT_Q_PARITY_ERR] = CNTR_ELEM("PcicNPostDatQParityErr", 0, 0,
4324 				CNTR_NORMAL,
4325 				access_pcic_n_post_dat_q_parity_err_cnt),
4326 [C_PCIC_N_POST_H_Q_PARITY_ERR] = CNTR_ELEM("PcicNPostHQParityErr", 0, 0,
4327 				CNTR_NORMAL,
4328 				access_pcic_n_post_h_q_parity_err_cnt),
4329 [C_PCIC_CPL_DAT_Q_COR_ERR] = CNTR_ELEM("PcicCplDatQCorErr", 0, 0,
4330 				CNTR_NORMAL,
4331 				access_pcic_cpl_dat_q_cor_err_cnt),
4332 [C_PCIC_CPL_HD_Q_COR_ERR] = CNTR_ELEM("PcicCplHdQCorErr", 0, 0,
4333 				CNTR_NORMAL,
4334 				access_pcic_cpl_hd_q_cor_err_cnt),
4335 [C_PCIC_POST_DAT_Q_COR_ERR] = CNTR_ELEM("PcicPostDatQCorErr", 0, 0,
4336 				CNTR_NORMAL,
4337 				access_pcic_post_dat_q_cor_err_cnt),
4338 [C_PCIC_POST_HD_Q_COR_ERR] = CNTR_ELEM("PcicPostHdQCorErr", 0, 0,
4339 				CNTR_NORMAL,
4340 				access_pcic_post_hd_q_cor_err_cnt),
4341 [C_PCIC_RETRY_SOT_MEM_COR_ERR] = CNTR_ELEM("PcicRetrySotMemCorErr", 0, 0,
4342 				CNTR_NORMAL,
4343 				access_pcic_retry_sot_mem_cor_err_cnt),
4344 [C_PCIC_RETRY_MEM_COR_ERR] = CNTR_ELEM("PcicRetryMemCorErr", 0, 0,
4345 				CNTR_NORMAL,
4346 				access_pcic_retry_mem_cor_err_cnt),
4347 [C_CCE_CLI1_ASYNC_FIFO_DBG_PARITY_ERR] = CNTR_ELEM(
4348 				"CceCli1AsyncFifoDbgParityError", 0, 0,
4349 				CNTR_NORMAL,
4350 				access_cce_cli1_async_fifo_dbg_parity_err_cnt),
4351 [C_CCE_CLI1_ASYNC_FIFO_RXDMA_PARITY_ERR] = CNTR_ELEM(
4352 				"CceCli1AsyncFifoRxdmaParityError", 0, 0,
4353 				CNTR_NORMAL,
4354 				access_cce_cli1_async_fifo_rxdma_parity_err_cnt
4355 				),
4356 [C_CCE_CLI1_ASYNC_FIFO_SDMA_HD_PARITY_ERR] = CNTR_ELEM(
4357 			"CceCli1AsyncFifoSdmaHdParityErr", 0, 0,
4358 			CNTR_NORMAL,
4359 			access_cce_cli1_async_fifo_sdma_hd_parity_err_cnt),
4360 [C_CCE_CLI1_ASYNC_FIFO_PIO_CRDT_PARITY_ERR] = CNTR_ELEM(
4361 			"CceCli1AsyncFifoPioCrdtParityErr", 0, 0,
4362 			CNTR_NORMAL,
4363 			access_cce_cl1_async_fifo_pio_crdt_parity_err_cnt),
4364 [C_CCE_CLI2_ASYNC_FIFO_PARITY_ERR] = CNTR_ELEM("CceCli2AsyncFifoParityErr", 0,
4365 			0, CNTR_NORMAL,
4366 			access_cce_cli2_async_fifo_parity_err_cnt),
4367 [C_CCE_CSR_CFG_BUS_PARITY_ERR] = CNTR_ELEM("CceCsrCfgBusParityErr", 0, 0,
4368 			CNTR_NORMAL,
4369 			access_cce_csr_cfg_bus_parity_err_cnt),
4370 [C_CCE_CLI0_ASYNC_FIFO_PARTIY_ERR] = CNTR_ELEM("CceCli0AsyncFifoParityErr", 0,
4371 			0, CNTR_NORMAL,
4372 			access_cce_cli0_async_fifo_parity_err_cnt),
4373 [C_CCE_RSPD_DATA_PARITY_ERR] = CNTR_ELEM("CceRspdDataParityErr", 0, 0,
4374 			CNTR_NORMAL,
4375 			access_cce_rspd_data_parity_err_cnt),
4376 [C_CCE_TRGT_ACCESS_ERR] = CNTR_ELEM("CceTrgtAccessErr", 0, 0,
4377 			CNTR_NORMAL,
4378 			access_cce_trgt_access_err_cnt),
4379 [C_CCE_TRGT_ASYNC_FIFO_PARITY_ERR] = CNTR_ELEM("CceTrgtAsyncFifoParityErr", 0,
4380 			0, CNTR_NORMAL,
4381 			access_cce_trgt_async_fifo_parity_err_cnt),
4382 [C_CCE_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("CceCsrWriteBadAddrErr", 0, 0,
4383 			CNTR_NORMAL,
4384 			access_cce_csr_write_bad_addr_err_cnt),
4385 [C_CCE_CSR_READ_BAD_ADDR_ERR] = CNTR_ELEM("CceCsrReadBadAddrErr", 0, 0,
4386 			CNTR_NORMAL,
4387 			access_cce_csr_read_bad_addr_err_cnt),
4388 [C_CCE_CSR_PARITY_ERR] = CNTR_ELEM("CceCsrParityErr", 0, 0,
4389 			CNTR_NORMAL,
4390 			access_ccs_csr_parity_err_cnt),
4391 
4392 /* RcvErrStatus */
4393 [C_RX_CSR_PARITY_ERR] = CNTR_ELEM("RxCsrParityErr", 0, 0,
4394 			CNTR_NORMAL,
4395 			access_rx_csr_parity_err_cnt),
4396 [C_RX_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("RxCsrWriteBadAddrErr", 0, 0,
4397 			CNTR_NORMAL,
4398 			access_rx_csr_write_bad_addr_err_cnt),
4399 [C_RX_CSR_READ_BAD_ADDR_ERR] = CNTR_ELEM("RxCsrReadBadAddrErr", 0, 0,
4400 			CNTR_NORMAL,
4401 			access_rx_csr_read_bad_addr_err_cnt),
4402 [C_RX_DMA_CSR_UNC_ERR] = CNTR_ELEM("RxDmaCsrUncErr", 0, 0,
4403 			CNTR_NORMAL,
4404 			access_rx_dma_csr_unc_err_cnt),
4405 [C_RX_DMA_DQ_FSM_ENCODING_ERR] = CNTR_ELEM("RxDmaDqFsmEncodingErr", 0, 0,
4406 			CNTR_NORMAL,
4407 			access_rx_dma_dq_fsm_encoding_err_cnt),
4408 [C_RX_DMA_EQ_FSM_ENCODING_ERR] = CNTR_ELEM("RxDmaEqFsmEncodingErr", 0, 0,
4409 			CNTR_NORMAL,
4410 			access_rx_dma_eq_fsm_encoding_err_cnt),
4411 [C_RX_DMA_CSR_PARITY_ERR] = CNTR_ELEM("RxDmaCsrParityErr", 0, 0,
4412 			CNTR_NORMAL,
4413 			access_rx_dma_csr_parity_err_cnt),
4414 [C_RX_RBUF_DATA_COR_ERR] = CNTR_ELEM("RxRbufDataCorErr", 0, 0,
4415 			CNTR_NORMAL,
4416 			access_rx_rbuf_data_cor_err_cnt),
4417 [C_RX_RBUF_DATA_UNC_ERR] = CNTR_ELEM("RxRbufDataUncErr", 0, 0,
4418 			CNTR_NORMAL,
4419 			access_rx_rbuf_data_unc_err_cnt),
4420 [C_RX_DMA_DATA_FIFO_RD_COR_ERR] = CNTR_ELEM("RxDmaDataFifoRdCorErr", 0, 0,
4421 			CNTR_NORMAL,
4422 			access_rx_dma_data_fifo_rd_cor_err_cnt),
4423 [C_RX_DMA_DATA_FIFO_RD_UNC_ERR] = CNTR_ELEM("RxDmaDataFifoRdUncErr", 0, 0,
4424 			CNTR_NORMAL,
4425 			access_rx_dma_data_fifo_rd_unc_err_cnt),
4426 [C_RX_DMA_HDR_FIFO_RD_COR_ERR] = CNTR_ELEM("RxDmaHdrFifoRdCorErr", 0, 0,
4427 			CNTR_NORMAL,
4428 			access_rx_dma_hdr_fifo_rd_cor_err_cnt),
4429 [C_RX_DMA_HDR_FIFO_RD_UNC_ERR] = CNTR_ELEM("RxDmaHdrFifoRdUncErr", 0, 0,
4430 			CNTR_NORMAL,
4431 			access_rx_dma_hdr_fifo_rd_unc_err_cnt),
4432 [C_RX_RBUF_DESC_PART2_COR_ERR] = CNTR_ELEM("RxRbufDescPart2CorErr", 0, 0,
4433 			CNTR_NORMAL,
4434 			access_rx_rbuf_desc_part2_cor_err_cnt),
4435 [C_RX_RBUF_DESC_PART2_UNC_ERR] = CNTR_ELEM("RxRbufDescPart2UncErr", 0, 0,
4436 			CNTR_NORMAL,
4437 			access_rx_rbuf_desc_part2_unc_err_cnt),
4438 [C_RX_RBUF_DESC_PART1_COR_ERR] = CNTR_ELEM("RxRbufDescPart1CorErr", 0, 0,
4439 			CNTR_NORMAL,
4440 			access_rx_rbuf_desc_part1_cor_err_cnt),
4441 [C_RX_RBUF_DESC_PART1_UNC_ERR] = CNTR_ELEM("RxRbufDescPart1UncErr", 0, 0,
4442 			CNTR_NORMAL,
4443 			access_rx_rbuf_desc_part1_unc_err_cnt),
4444 [C_RX_HQ_INTR_FSM_ERR] = CNTR_ELEM("RxHqIntrFsmErr", 0, 0,
4445 			CNTR_NORMAL,
4446 			access_rx_hq_intr_fsm_err_cnt),
4447 [C_RX_HQ_INTR_CSR_PARITY_ERR] = CNTR_ELEM("RxHqIntrCsrParityErr", 0, 0,
4448 			CNTR_NORMAL,
4449 			access_rx_hq_intr_csr_parity_err_cnt),
4450 [C_RX_LOOKUP_CSR_PARITY_ERR] = CNTR_ELEM("RxLookupCsrParityErr", 0, 0,
4451 			CNTR_NORMAL,
4452 			access_rx_lookup_csr_parity_err_cnt),
4453 [C_RX_LOOKUP_RCV_ARRAY_COR_ERR] = CNTR_ELEM("RxLookupRcvArrayCorErr", 0, 0,
4454 			CNTR_NORMAL,
4455 			access_rx_lookup_rcv_array_cor_err_cnt),
4456 [C_RX_LOOKUP_RCV_ARRAY_UNC_ERR] = CNTR_ELEM("RxLookupRcvArrayUncErr", 0, 0,
4457 			CNTR_NORMAL,
4458 			access_rx_lookup_rcv_array_unc_err_cnt),
4459 [C_RX_LOOKUP_DES_PART2_PARITY_ERR] = CNTR_ELEM("RxLookupDesPart2ParityErr", 0,
4460 			0, CNTR_NORMAL,
4461 			access_rx_lookup_des_part2_parity_err_cnt),
4462 [C_RX_LOOKUP_DES_PART1_UNC_COR_ERR] = CNTR_ELEM("RxLookupDesPart1UncCorErr", 0,
4463 			0, CNTR_NORMAL,
4464 			access_rx_lookup_des_part1_unc_cor_err_cnt),
4465 [C_RX_LOOKUP_DES_PART1_UNC_ERR] = CNTR_ELEM("RxLookupDesPart1UncErr", 0, 0,
4466 			CNTR_NORMAL,
4467 			access_rx_lookup_des_part1_unc_err_cnt),
4468 [C_RX_RBUF_NEXT_FREE_BUF_COR_ERR] = CNTR_ELEM("RxRbufNextFreeBufCorErr", 0, 0,
4469 			CNTR_NORMAL,
4470 			access_rx_rbuf_next_free_buf_cor_err_cnt),
4471 [C_RX_RBUF_NEXT_FREE_BUF_UNC_ERR] = CNTR_ELEM("RxRbufNextFreeBufUncErr", 0, 0,
4472 			CNTR_NORMAL,
4473 			access_rx_rbuf_next_free_buf_unc_err_cnt),
4474 [C_RX_RBUF_FL_INIT_WR_ADDR_PARITY_ERR] = CNTR_ELEM(
4475 			"RxRbufFlInitWrAddrParityErr", 0, 0,
4476 			CNTR_NORMAL,
4477 			access_rbuf_fl_init_wr_addr_parity_err_cnt),
4478 [C_RX_RBUF_FL_INITDONE_PARITY_ERR] = CNTR_ELEM("RxRbufFlInitdoneParityErr", 0,
4479 			0, CNTR_NORMAL,
4480 			access_rx_rbuf_fl_initdone_parity_err_cnt),
4481 [C_RX_RBUF_FL_WRITE_ADDR_PARITY_ERR] = CNTR_ELEM("RxRbufFlWrAddrParityErr", 0,
4482 			0, CNTR_NORMAL,
4483 			access_rx_rbuf_fl_write_addr_parity_err_cnt),
4484 [C_RX_RBUF_FL_RD_ADDR_PARITY_ERR] = CNTR_ELEM("RxRbufFlRdAddrParityErr", 0, 0,
4485 			CNTR_NORMAL,
4486 			access_rx_rbuf_fl_rd_addr_parity_err_cnt),
4487 [C_RX_RBUF_EMPTY_ERR] = CNTR_ELEM("RxRbufEmptyErr", 0, 0,
4488 			CNTR_NORMAL,
4489 			access_rx_rbuf_empty_err_cnt),
4490 [C_RX_RBUF_FULL_ERR] = CNTR_ELEM("RxRbufFullErr", 0, 0,
4491 			CNTR_NORMAL,
4492 			access_rx_rbuf_full_err_cnt),
4493 [C_RX_RBUF_BAD_LOOKUP_ERR] = CNTR_ELEM("RxRBufBadLookupErr", 0, 0,
4494 			CNTR_NORMAL,
4495 			access_rbuf_bad_lookup_err_cnt),
4496 [C_RX_RBUF_CTX_ID_PARITY_ERR] = CNTR_ELEM("RxRbufCtxIdParityErr", 0, 0,
4497 			CNTR_NORMAL,
4498 			access_rbuf_ctx_id_parity_err_cnt),
4499 [C_RX_RBUF_CSR_QEOPDW_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQEOPDWParityErr", 0, 0,
4500 			CNTR_NORMAL,
4501 			access_rbuf_csr_qeopdw_parity_err_cnt),
4502 [C_RX_RBUF_CSR_Q_NUM_OF_PKT_PARITY_ERR] = CNTR_ELEM(
4503 			"RxRbufCsrQNumOfPktParityErr", 0, 0,
4504 			CNTR_NORMAL,
4505 			access_rx_rbuf_csr_q_num_of_pkt_parity_err_cnt),
4506 [C_RX_RBUF_CSR_Q_T1_PTR_PARITY_ERR] = CNTR_ELEM(
4507 			"RxRbufCsrQTlPtrParityErr", 0, 0,
4508 			CNTR_NORMAL,
4509 			access_rx_rbuf_csr_q_t1_ptr_parity_err_cnt),
4510 [C_RX_RBUF_CSR_Q_HD_PTR_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQHdPtrParityErr", 0,
4511 			0, CNTR_NORMAL,
4512 			access_rx_rbuf_csr_q_hd_ptr_parity_err_cnt),
4513 [C_RX_RBUF_CSR_Q_VLD_BIT_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQVldBitParityErr", 0,
4514 			0, CNTR_NORMAL,
4515 			access_rx_rbuf_csr_q_vld_bit_parity_err_cnt),
4516 [C_RX_RBUF_CSR_Q_NEXT_BUF_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQNextBufParityErr",
4517 			0, 0, CNTR_NORMAL,
4518 			access_rx_rbuf_csr_q_next_buf_parity_err_cnt),
4519 [C_RX_RBUF_CSR_Q_ENT_CNT_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQEntCntParityErr", 0,
4520 			0, CNTR_NORMAL,
4521 			access_rx_rbuf_csr_q_ent_cnt_parity_err_cnt),
4522 [C_RX_RBUF_CSR_Q_HEAD_BUF_NUM_PARITY_ERR] = CNTR_ELEM(
4523 			"RxRbufCsrQHeadBufNumParityErr", 0, 0,
4524 			CNTR_NORMAL,
4525 			access_rx_rbuf_csr_q_head_buf_num_parity_err_cnt),
4526 [C_RX_RBUF_BLOCK_LIST_READ_COR_ERR] = CNTR_ELEM("RxRbufBlockListReadCorErr", 0,
4527 			0, CNTR_NORMAL,
4528 			access_rx_rbuf_block_list_read_cor_err_cnt),
4529 [C_RX_RBUF_BLOCK_LIST_READ_UNC_ERR] = CNTR_ELEM("RxRbufBlockListReadUncErr", 0,
4530 			0, CNTR_NORMAL,
4531 			access_rx_rbuf_block_list_read_unc_err_cnt),
4532 [C_RX_RBUF_LOOKUP_DES_COR_ERR] = CNTR_ELEM("RxRbufLookupDesCorErr", 0, 0,
4533 			CNTR_NORMAL,
4534 			access_rx_rbuf_lookup_des_cor_err_cnt),
4535 [C_RX_RBUF_LOOKUP_DES_UNC_ERR] = CNTR_ELEM("RxRbufLookupDesUncErr", 0, 0,
4536 			CNTR_NORMAL,
4537 			access_rx_rbuf_lookup_des_unc_err_cnt),
4538 [C_RX_RBUF_LOOKUP_DES_REG_UNC_COR_ERR] = CNTR_ELEM(
4539 			"RxRbufLookupDesRegUncCorErr", 0, 0,
4540 			CNTR_NORMAL,
4541 			access_rx_rbuf_lookup_des_reg_unc_cor_err_cnt),
4542 [C_RX_RBUF_LOOKUP_DES_REG_UNC_ERR] = CNTR_ELEM("RxRbufLookupDesRegUncErr", 0, 0,
4543 			CNTR_NORMAL,
4544 			access_rx_rbuf_lookup_des_reg_unc_err_cnt),
4545 [C_RX_RBUF_FREE_LIST_COR_ERR] = CNTR_ELEM("RxRbufFreeListCorErr", 0, 0,
4546 			CNTR_NORMAL,
4547 			access_rx_rbuf_free_list_cor_err_cnt),
4548 [C_RX_RBUF_FREE_LIST_UNC_ERR] = CNTR_ELEM("RxRbufFreeListUncErr", 0, 0,
4549 			CNTR_NORMAL,
4550 			access_rx_rbuf_free_list_unc_err_cnt),
4551 [C_RX_RCV_FSM_ENCODING_ERR] = CNTR_ELEM("RxRcvFsmEncodingErr", 0, 0,
4552 			CNTR_NORMAL,
4553 			access_rx_rcv_fsm_encoding_err_cnt),
4554 [C_RX_DMA_FLAG_COR_ERR] = CNTR_ELEM("RxDmaFlagCorErr", 0, 0,
4555 			CNTR_NORMAL,
4556 			access_rx_dma_flag_cor_err_cnt),
4557 [C_RX_DMA_FLAG_UNC_ERR] = CNTR_ELEM("RxDmaFlagUncErr", 0, 0,
4558 			CNTR_NORMAL,
4559 			access_rx_dma_flag_unc_err_cnt),
4560 [C_RX_DC_SOP_EOP_PARITY_ERR] = CNTR_ELEM("RxDcSopEopParityErr", 0, 0,
4561 			CNTR_NORMAL,
4562 			access_rx_dc_sop_eop_parity_err_cnt),
4563 [C_RX_RCV_CSR_PARITY_ERR] = CNTR_ELEM("RxRcvCsrParityErr", 0, 0,
4564 			CNTR_NORMAL,
4565 			access_rx_rcv_csr_parity_err_cnt),
4566 [C_RX_RCV_QP_MAP_TABLE_COR_ERR] = CNTR_ELEM("RxRcvQpMapTableCorErr", 0, 0,
4567 			CNTR_NORMAL,
4568 			access_rx_rcv_qp_map_table_cor_err_cnt),
4569 [C_RX_RCV_QP_MAP_TABLE_UNC_ERR] = CNTR_ELEM("RxRcvQpMapTableUncErr", 0, 0,
4570 			CNTR_NORMAL,
4571 			access_rx_rcv_qp_map_table_unc_err_cnt),
4572 [C_RX_RCV_DATA_COR_ERR] = CNTR_ELEM("RxRcvDataCorErr", 0, 0,
4573 			CNTR_NORMAL,
4574 			access_rx_rcv_data_cor_err_cnt),
4575 [C_RX_RCV_DATA_UNC_ERR] = CNTR_ELEM("RxRcvDataUncErr", 0, 0,
4576 			CNTR_NORMAL,
4577 			access_rx_rcv_data_unc_err_cnt),
4578 [C_RX_RCV_HDR_COR_ERR] = CNTR_ELEM("RxRcvHdrCorErr", 0, 0,
4579 			CNTR_NORMAL,
4580 			access_rx_rcv_hdr_cor_err_cnt),
4581 [C_RX_RCV_HDR_UNC_ERR] = CNTR_ELEM("RxRcvHdrUncErr", 0, 0,
4582 			CNTR_NORMAL,
4583 			access_rx_rcv_hdr_unc_err_cnt),
4584 [C_RX_DC_INTF_PARITY_ERR] = CNTR_ELEM("RxDcIntfParityErr", 0, 0,
4585 			CNTR_NORMAL,
4586 			access_rx_dc_intf_parity_err_cnt),
4587 [C_RX_DMA_CSR_COR_ERR] = CNTR_ELEM("RxDmaCsrCorErr", 0, 0,
4588 			CNTR_NORMAL,
4589 			access_rx_dma_csr_cor_err_cnt),
4590 /* SendPioErrStatus */
4591 [C_PIO_PEC_SOP_HEAD_PARITY_ERR] = CNTR_ELEM("PioPecSopHeadParityErr", 0, 0,
4592 			CNTR_NORMAL,
4593 			access_pio_pec_sop_head_parity_err_cnt),
4594 [C_PIO_PCC_SOP_HEAD_PARITY_ERR] = CNTR_ELEM("PioPccSopHeadParityErr", 0, 0,
4595 			CNTR_NORMAL,
4596 			access_pio_pcc_sop_head_parity_err_cnt),
4597 [C_PIO_LAST_RETURNED_CNT_PARITY_ERR] = CNTR_ELEM("PioLastReturnedCntParityErr",
4598 			0, 0, CNTR_NORMAL,
4599 			access_pio_last_returned_cnt_parity_err_cnt),
4600 [C_PIO_CURRENT_FREE_CNT_PARITY_ERR] = CNTR_ELEM("PioCurrentFreeCntParityErr", 0,
4601 			0, CNTR_NORMAL,
4602 			access_pio_current_free_cnt_parity_err_cnt),
4603 [C_PIO_RSVD_31_ERR] = CNTR_ELEM("Pio Reserved 31", 0, 0,
4604 			CNTR_NORMAL,
4605 			access_pio_reserved_31_err_cnt),
4606 [C_PIO_RSVD_30_ERR] = CNTR_ELEM("Pio Reserved 30", 0, 0,
4607 			CNTR_NORMAL,
4608 			access_pio_reserved_30_err_cnt),
4609 [C_PIO_PPMC_SOP_LEN_ERR] = CNTR_ELEM("PioPpmcSopLenErr", 0, 0,
4610 			CNTR_NORMAL,
4611 			access_pio_ppmc_sop_len_err_cnt),
4612 [C_PIO_PPMC_BQC_MEM_PARITY_ERR] = CNTR_ELEM("PioPpmcBqcMemParityErr", 0, 0,
4613 			CNTR_NORMAL,
4614 			access_pio_ppmc_bqc_mem_parity_err_cnt),
4615 [C_PIO_VL_FIFO_PARITY_ERR] = CNTR_ELEM("PioVlFifoParityErr", 0, 0,
4616 			CNTR_NORMAL,
4617 			access_pio_vl_fifo_parity_err_cnt),
4618 [C_PIO_VLF_SOP_PARITY_ERR] = CNTR_ELEM("PioVlfSopParityErr", 0, 0,
4619 			CNTR_NORMAL,
4620 			access_pio_vlf_sop_parity_err_cnt),
4621 [C_PIO_VLF_V1_LEN_PARITY_ERR] = CNTR_ELEM("PioVlfVlLenParityErr", 0, 0,
4622 			CNTR_NORMAL,
4623 			access_pio_vlf_v1_len_parity_err_cnt),
4624 [C_PIO_BLOCK_QW_COUNT_PARITY_ERR] = CNTR_ELEM("PioBlockQwCountParityErr", 0, 0,
4625 			CNTR_NORMAL,
4626 			access_pio_block_qw_count_parity_err_cnt),
4627 [C_PIO_WRITE_QW_VALID_PARITY_ERR] = CNTR_ELEM("PioWriteQwValidParityErr", 0, 0,
4628 			CNTR_NORMAL,
4629 			access_pio_write_qw_valid_parity_err_cnt),
4630 [C_PIO_STATE_MACHINE_ERR] = CNTR_ELEM("PioStateMachineErr", 0, 0,
4631 			CNTR_NORMAL,
4632 			access_pio_state_machine_err_cnt),
4633 [C_PIO_WRITE_DATA_PARITY_ERR] = CNTR_ELEM("PioWriteDataParityErr", 0, 0,
4634 			CNTR_NORMAL,
4635 			access_pio_write_data_parity_err_cnt),
4636 [C_PIO_HOST_ADDR_MEM_COR_ERR] = CNTR_ELEM("PioHostAddrMemCorErr", 0, 0,
4637 			CNTR_NORMAL,
4638 			access_pio_host_addr_mem_cor_err_cnt),
4639 [C_PIO_HOST_ADDR_MEM_UNC_ERR] = CNTR_ELEM("PioHostAddrMemUncErr", 0, 0,
4640 			CNTR_NORMAL,
4641 			access_pio_host_addr_mem_unc_err_cnt),
4642 [C_PIO_PKT_EVICT_SM_OR_ARM_SM_ERR] = CNTR_ELEM("PioPktEvictSmOrArbSmErr", 0, 0,
4643 			CNTR_NORMAL,
4644 			access_pio_pkt_evict_sm_or_arb_sm_err_cnt),
4645 [C_PIO_INIT_SM_IN_ERR] = CNTR_ELEM("PioInitSmInErr", 0, 0,
4646 			CNTR_NORMAL,
4647 			access_pio_init_sm_in_err_cnt),
4648 [C_PIO_PPMC_PBL_FIFO_ERR] = CNTR_ELEM("PioPpmcPblFifoErr", 0, 0,
4649 			CNTR_NORMAL,
4650 			access_pio_ppmc_pbl_fifo_err_cnt),
4651 [C_PIO_CREDIT_RET_FIFO_PARITY_ERR] = CNTR_ELEM("PioCreditRetFifoParityErr", 0,
4652 			0, CNTR_NORMAL,
4653 			access_pio_credit_ret_fifo_parity_err_cnt),
4654 [C_PIO_V1_LEN_MEM_BANK1_COR_ERR] = CNTR_ELEM("PioVlLenMemBank1CorErr", 0, 0,
4655 			CNTR_NORMAL,
4656 			access_pio_v1_len_mem_bank1_cor_err_cnt),
4657 [C_PIO_V1_LEN_MEM_BANK0_COR_ERR] = CNTR_ELEM("PioVlLenMemBank0CorErr", 0, 0,
4658 			CNTR_NORMAL,
4659 			access_pio_v1_len_mem_bank0_cor_err_cnt),
4660 [C_PIO_V1_LEN_MEM_BANK1_UNC_ERR] = CNTR_ELEM("PioVlLenMemBank1UncErr", 0, 0,
4661 			CNTR_NORMAL,
4662 			access_pio_v1_len_mem_bank1_unc_err_cnt),
4663 [C_PIO_V1_LEN_MEM_BANK0_UNC_ERR] = CNTR_ELEM("PioVlLenMemBank0UncErr", 0, 0,
4664 			CNTR_NORMAL,
4665 			access_pio_v1_len_mem_bank0_unc_err_cnt),
4666 [C_PIO_SM_PKT_RESET_PARITY_ERR] = CNTR_ELEM("PioSmPktResetParityErr", 0, 0,
4667 			CNTR_NORMAL,
4668 			access_pio_sm_pkt_reset_parity_err_cnt),
4669 [C_PIO_PKT_EVICT_FIFO_PARITY_ERR] = CNTR_ELEM("PioPktEvictFifoParityErr", 0, 0,
4670 			CNTR_NORMAL,
4671 			access_pio_pkt_evict_fifo_parity_err_cnt),
4672 [C_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR] = CNTR_ELEM(
4673 			"PioSbrdctrlCrrelFifoParityErr", 0, 0,
4674 			CNTR_NORMAL,
4675 			access_pio_sbrdctrl_crrel_fifo_parity_err_cnt),
4676 [C_PIO_SBRDCTL_CRREL_PARITY_ERR] = CNTR_ELEM("PioSbrdctlCrrelParityErr", 0, 0,
4677 			CNTR_NORMAL,
4678 			access_pio_sbrdctl_crrel_parity_err_cnt),
4679 [C_PIO_PEC_FIFO_PARITY_ERR] = CNTR_ELEM("PioPecFifoParityErr", 0, 0,
4680 			CNTR_NORMAL,
4681 			access_pio_pec_fifo_parity_err_cnt),
4682 [C_PIO_PCC_FIFO_PARITY_ERR] = CNTR_ELEM("PioPccFifoParityErr", 0, 0,
4683 			CNTR_NORMAL,
4684 			access_pio_pcc_fifo_parity_err_cnt),
4685 [C_PIO_SB_MEM_FIFO1_ERR] = CNTR_ELEM("PioSbMemFifo1Err", 0, 0,
4686 			CNTR_NORMAL,
4687 			access_pio_sb_mem_fifo1_err_cnt),
4688 [C_PIO_SB_MEM_FIFO0_ERR] = CNTR_ELEM("PioSbMemFifo0Err", 0, 0,
4689 			CNTR_NORMAL,
4690 			access_pio_sb_mem_fifo0_err_cnt),
4691 [C_PIO_CSR_PARITY_ERR] = CNTR_ELEM("PioCsrParityErr", 0, 0,
4692 			CNTR_NORMAL,
4693 			access_pio_csr_parity_err_cnt),
4694 [C_PIO_WRITE_ADDR_PARITY_ERR] = CNTR_ELEM("PioWriteAddrParityErr", 0, 0,
4695 			CNTR_NORMAL,
4696 			access_pio_write_addr_parity_err_cnt),
4697 [C_PIO_WRITE_BAD_CTXT_ERR] = CNTR_ELEM("PioWriteBadCtxtErr", 0, 0,
4698 			CNTR_NORMAL,
4699 			access_pio_write_bad_ctxt_err_cnt),
4700 /* SendDmaErrStatus */
4701 [C_SDMA_PCIE_REQ_TRACKING_COR_ERR] = CNTR_ELEM("SDmaPcieReqTrackingCorErr", 0,
4702 			0, CNTR_NORMAL,
4703 			access_sdma_pcie_req_tracking_cor_err_cnt),
4704 [C_SDMA_PCIE_REQ_TRACKING_UNC_ERR] = CNTR_ELEM("SDmaPcieReqTrackingUncErr", 0,
4705 			0, CNTR_NORMAL,
4706 			access_sdma_pcie_req_tracking_unc_err_cnt),
4707 [C_SDMA_CSR_PARITY_ERR] = CNTR_ELEM("SDmaCsrParityErr", 0, 0,
4708 			CNTR_NORMAL,
4709 			access_sdma_csr_parity_err_cnt),
4710 [C_SDMA_RPY_TAG_ERR] = CNTR_ELEM("SDmaRpyTagErr", 0, 0,
4711 			CNTR_NORMAL,
4712 			access_sdma_rpy_tag_err_cnt),
4713 /* SendEgressErrStatus */
4714 [C_TX_READ_PIO_MEMORY_CSR_UNC_ERR] = CNTR_ELEM("TxReadPioMemoryCsrUncErr", 0, 0,
4715 			CNTR_NORMAL,
4716 			access_tx_read_pio_memory_csr_unc_err_cnt),
4717 [C_TX_READ_SDMA_MEMORY_CSR_UNC_ERR] = CNTR_ELEM("TxReadSdmaMemoryCsrUncErr", 0,
4718 			0, CNTR_NORMAL,
4719 			access_tx_read_sdma_memory_csr_err_cnt),
4720 [C_TX_EGRESS_FIFO_COR_ERR] = CNTR_ELEM("TxEgressFifoCorErr", 0, 0,
4721 			CNTR_NORMAL,
4722 			access_tx_egress_fifo_cor_err_cnt),
4723 [C_TX_READ_PIO_MEMORY_COR_ERR] = CNTR_ELEM("TxReadPioMemoryCorErr", 0, 0,
4724 			CNTR_NORMAL,
4725 			access_tx_read_pio_memory_cor_err_cnt),
4726 [C_TX_READ_SDMA_MEMORY_COR_ERR] = CNTR_ELEM("TxReadSdmaMemoryCorErr", 0, 0,
4727 			CNTR_NORMAL,
4728 			access_tx_read_sdma_memory_cor_err_cnt),
4729 [C_TX_SB_HDR_COR_ERR] = CNTR_ELEM("TxSbHdrCorErr", 0, 0,
4730 			CNTR_NORMAL,
4731 			access_tx_sb_hdr_cor_err_cnt),
4732 [C_TX_CREDIT_OVERRUN_ERR] = CNTR_ELEM("TxCreditOverrunErr", 0, 0,
4733 			CNTR_NORMAL,
4734 			access_tx_credit_overrun_err_cnt),
4735 [C_TX_LAUNCH_FIFO8_COR_ERR] = CNTR_ELEM("TxLaunchFifo8CorErr", 0, 0,
4736 			CNTR_NORMAL,
4737 			access_tx_launch_fifo8_cor_err_cnt),
4738 [C_TX_LAUNCH_FIFO7_COR_ERR] = CNTR_ELEM("TxLaunchFifo7CorErr", 0, 0,
4739 			CNTR_NORMAL,
4740 			access_tx_launch_fifo7_cor_err_cnt),
4741 [C_TX_LAUNCH_FIFO6_COR_ERR] = CNTR_ELEM("TxLaunchFifo6CorErr", 0, 0,
4742 			CNTR_NORMAL,
4743 			access_tx_launch_fifo6_cor_err_cnt),
4744 [C_TX_LAUNCH_FIFO5_COR_ERR] = CNTR_ELEM("TxLaunchFifo5CorErr", 0, 0,
4745 			CNTR_NORMAL,
4746 			access_tx_launch_fifo5_cor_err_cnt),
4747 [C_TX_LAUNCH_FIFO4_COR_ERR] = CNTR_ELEM("TxLaunchFifo4CorErr", 0, 0,
4748 			CNTR_NORMAL,
4749 			access_tx_launch_fifo4_cor_err_cnt),
4750 [C_TX_LAUNCH_FIFO3_COR_ERR] = CNTR_ELEM("TxLaunchFifo3CorErr", 0, 0,
4751 			CNTR_NORMAL,
4752 			access_tx_launch_fifo3_cor_err_cnt),
4753 [C_TX_LAUNCH_FIFO2_COR_ERR] = CNTR_ELEM("TxLaunchFifo2CorErr", 0, 0,
4754 			CNTR_NORMAL,
4755 			access_tx_launch_fifo2_cor_err_cnt),
4756 [C_TX_LAUNCH_FIFO1_COR_ERR] = CNTR_ELEM("TxLaunchFifo1CorErr", 0, 0,
4757 			CNTR_NORMAL,
4758 			access_tx_launch_fifo1_cor_err_cnt),
4759 [C_TX_LAUNCH_FIFO0_COR_ERR] = CNTR_ELEM("TxLaunchFifo0CorErr", 0, 0,
4760 			CNTR_NORMAL,
4761 			access_tx_launch_fifo0_cor_err_cnt),
4762 [C_TX_CREDIT_RETURN_VL_ERR] = CNTR_ELEM("TxCreditReturnVLErr", 0, 0,
4763 			CNTR_NORMAL,
4764 			access_tx_credit_return_vl_err_cnt),
4765 [C_TX_HCRC_INSERTION_ERR] = CNTR_ELEM("TxHcrcInsertionErr", 0, 0,
4766 			CNTR_NORMAL,
4767 			access_tx_hcrc_insertion_err_cnt),
4768 [C_TX_EGRESS_FIFI_UNC_ERR] = CNTR_ELEM("TxEgressFifoUncErr", 0, 0,
4769 			CNTR_NORMAL,
4770 			access_tx_egress_fifo_unc_err_cnt),
4771 [C_TX_READ_PIO_MEMORY_UNC_ERR] = CNTR_ELEM("TxReadPioMemoryUncErr", 0, 0,
4772 			CNTR_NORMAL,
4773 			access_tx_read_pio_memory_unc_err_cnt),
4774 [C_TX_READ_SDMA_MEMORY_UNC_ERR] = CNTR_ELEM("TxReadSdmaMemoryUncErr", 0, 0,
4775 			CNTR_NORMAL,
4776 			access_tx_read_sdma_memory_unc_err_cnt),
4777 [C_TX_SB_HDR_UNC_ERR] = CNTR_ELEM("TxSbHdrUncErr", 0, 0,
4778 			CNTR_NORMAL,
4779 			access_tx_sb_hdr_unc_err_cnt),
4780 [C_TX_CREDIT_RETURN_PARITY_ERR] = CNTR_ELEM("TxCreditReturnParityErr", 0, 0,
4781 			CNTR_NORMAL,
4782 			access_tx_credit_return_partiy_err_cnt),
4783 [C_TX_LAUNCH_FIFO8_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo8UncOrParityErr",
4784 			0, 0, CNTR_NORMAL,
4785 			access_tx_launch_fifo8_unc_or_parity_err_cnt),
4786 [C_TX_LAUNCH_FIFO7_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo7UncOrParityErr",
4787 			0, 0, CNTR_NORMAL,
4788 			access_tx_launch_fifo7_unc_or_parity_err_cnt),
4789 [C_TX_LAUNCH_FIFO6_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo6UncOrParityErr",
4790 			0, 0, CNTR_NORMAL,
4791 			access_tx_launch_fifo6_unc_or_parity_err_cnt),
4792 [C_TX_LAUNCH_FIFO5_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo5UncOrParityErr",
4793 			0, 0, CNTR_NORMAL,
4794 			access_tx_launch_fifo5_unc_or_parity_err_cnt),
4795 [C_TX_LAUNCH_FIFO4_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo4UncOrParityErr",
4796 			0, 0, CNTR_NORMAL,
4797 			access_tx_launch_fifo4_unc_or_parity_err_cnt),
4798 [C_TX_LAUNCH_FIFO3_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo3UncOrParityErr",
4799 			0, 0, CNTR_NORMAL,
4800 			access_tx_launch_fifo3_unc_or_parity_err_cnt),
4801 [C_TX_LAUNCH_FIFO2_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo2UncOrParityErr",
4802 			0, 0, CNTR_NORMAL,
4803 			access_tx_launch_fifo2_unc_or_parity_err_cnt),
4804 [C_TX_LAUNCH_FIFO1_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo1UncOrParityErr",
4805 			0, 0, CNTR_NORMAL,
4806 			access_tx_launch_fifo1_unc_or_parity_err_cnt),
4807 [C_TX_LAUNCH_FIFO0_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo0UncOrParityErr",
4808 			0, 0, CNTR_NORMAL,
4809 			access_tx_launch_fifo0_unc_or_parity_err_cnt),
4810 [C_TX_SDMA15_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma15DisallowedPacketErr",
4811 			0, 0, CNTR_NORMAL,
4812 			access_tx_sdma15_disallowed_packet_err_cnt),
4813 [C_TX_SDMA14_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma14DisallowedPacketErr",
4814 			0, 0, CNTR_NORMAL,
4815 			access_tx_sdma14_disallowed_packet_err_cnt),
4816 [C_TX_SDMA13_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma13DisallowedPacketErr",
4817 			0, 0, CNTR_NORMAL,
4818 			access_tx_sdma13_disallowed_packet_err_cnt),
4819 [C_TX_SDMA12_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma12DisallowedPacketErr",
4820 			0, 0, CNTR_NORMAL,
4821 			access_tx_sdma12_disallowed_packet_err_cnt),
4822 [C_TX_SDMA11_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma11DisallowedPacketErr",
4823 			0, 0, CNTR_NORMAL,
4824 			access_tx_sdma11_disallowed_packet_err_cnt),
4825 [C_TX_SDMA10_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma10DisallowedPacketErr",
4826 			0, 0, CNTR_NORMAL,
4827 			access_tx_sdma10_disallowed_packet_err_cnt),
4828 [C_TX_SDMA9_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma9DisallowedPacketErr",
4829 			0, 0, CNTR_NORMAL,
4830 			access_tx_sdma9_disallowed_packet_err_cnt),
4831 [C_TX_SDMA8_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma8DisallowedPacketErr",
4832 			0, 0, CNTR_NORMAL,
4833 			access_tx_sdma8_disallowed_packet_err_cnt),
4834 [C_TX_SDMA7_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma7DisallowedPacketErr",
4835 			0, 0, CNTR_NORMAL,
4836 			access_tx_sdma7_disallowed_packet_err_cnt),
4837 [C_TX_SDMA6_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma6DisallowedPacketErr",
4838 			0, 0, CNTR_NORMAL,
4839 			access_tx_sdma6_disallowed_packet_err_cnt),
4840 [C_TX_SDMA5_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma5DisallowedPacketErr",
4841 			0, 0, CNTR_NORMAL,
4842 			access_tx_sdma5_disallowed_packet_err_cnt),
4843 [C_TX_SDMA4_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma4DisallowedPacketErr",
4844 			0, 0, CNTR_NORMAL,
4845 			access_tx_sdma4_disallowed_packet_err_cnt),
4846 [C_TX_SDMA3_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma3DisallowedPacketErr",
4847 			0, 0, CNTR_NORMAL,
4848 			access_tx_sdma3_disallowed_packet_err_cnt),
4849 [C_TX_SDMA2_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma2DisallowedPacketErr",
4850 			0, 0, CNTR_NORMAL,
4851 			access_tx_sdma2_disallowed_packet_err_cnt),
4852 [C_TX_SDMA1_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma1DisallowedPacketErr",
4853 			0, 0, CNTR_NORMAL,
4854 			access_tx_sdma1_disallowed_packet_err_cnt),
4855 [C_TX_SDMA0_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma0DisallowedPacketErr",
4856 			0, 0, CNTR_NORMAL,
4857 			access_tx_sdma0_disallowed_packet_err_cnt),
4858 [C_TX_CONFIG_PARITY_ERR] = CNTR_ELEM("TxConfigParityErr", 0, 0,
4859 			CNTR_NORMAL,
4860 			access_tx_config_parity_err_cnt),
4861 [C_TX_SBRD_CTL_CSR_PARITY_ERR] = CNTR_ELEM("TxSbrdCtlCsrParityErr", 0, 0,
4862 			CNTR_NORMAL,
4863 			access_tx_sbrd_ctl_csr_parity_err_cnt),
4864 [C_TX_LAUNCH_CSR_PARITY_ERR] = CNTR_ELEM("TxLaunchCsrParityErr", 0, 0,
4865 			CNTR_NORMAL,
4866 			access_tx_launch_csr_parity_err_cnt),
4867 [C_TX_ILLEGAL_CL_ERR] = CNTR_ELEM("TxIllegalVLErr", 0, 0,
4868 			CNTR_NORMAL,
4869 			access_tx_illegal_vl_err_cnt),
4870 [C_TX_SBRD_CTL_STATE_MACHINE_PARITY_ERR] = CNTR_ELEM(
4871 			"TxSbrdCtlStateMachineParityErr", 0, 0,
4872 			CNTR_NORMAL,
4873 			access_tx_sbrd_ctl_state_machine_parity_err_cnt),
4874 [C_TX_RESERVED_10] = CNTR_ELEM("Tx Egress Reserved 10", 0, 0,
4875 			CNTR_NORMAL,
4876 			access_egress_reserved_10_err_cnt),
4877 [C_TX_RESERVED_9] = CNTR_ELEM("Tx Egress Reserved 9", 0, 0,
4878 			CNTR_NORMAL,
4879 			access_egress_reserved_9_err_cnt),
4880 [C_TX_SDMA_LAUNCH_INTF_PARITY_ERR] = CNTR_ELEM("TxSdmaLaunchIntfParityErr",
4881 			0, 0, CNTR_NORMAL,
4882 			access_tx_sdma_launch_intf_parity_err_cnt),
4883 [C_TX_PIO_LAUNCH_INTF_PARITY_ERR] = CNTR_ELEM("TxPioLaunchIntfParityErr", 0, 0,
4884 			CNTR_NORMAL,
4885 			access_tx_pio_launch_intf_parity_err_cnt),
4886 [C_TX_RESERVED_6] = CNTR_ELEM("Tx Egress Reserved 6", 0, 0,
4887 			CNTR_NORMAL,
4888 			access_egress_reserved_6_err_cnt),
4889 [C_TX_INCORRECT_LINK_STATE_ERR] = CNTR_ELEM("TxIncorrectLinkStateErr", 0, 0,
4890 			CNTR_NORMAL,
4891 			access_tx_incorrect_link_state_err_cnt),
4892 [C_TX_LINK_DOWN_ERR] = CNTR_ELEM("TxLinkdownErr", 0, 0,
4893 			CNTR_NORMAL,
4894 			access_tx_linkdown_err_cnt),
4895 [C_TX_EGRESS_FIFO_UNDERRUN_OR_PARITY_ERR] = CNTR_ELEM(
4896 			"EgressFifoUnderrunOrParityErr", 0, 0,
4897 			CNTR_NORMAL,
4898 			access_tx_egress_fifi_underrun_or_parity_err_cnt),
4899 [C_TX_RESERVED_2] = CNTR_ELEM("Tx Egress Reserved 2", 0, 0,
4900 			CNTR_NORMAL,
4901 			access_egress_reserved_2_err_cnt),
4902 [C_TX_PKT_INTEGRITY_MEM_UNC_ERR] = CNTR_ELEM("TxPktIntegrityMemUncErr", 0, 0,
4903 			CNTR_NORMAL,
4904 			access_tx_pkt_integrity_mem_unc_err_cnt),
4905 [C_TX_PKT_INTEGRITY_MEM_COR_ERR] = CNTR_ELEM("TxPktIntegrityMemCorErr", 0, 0,
4906 			CNTR_NORMAL,
4907 			access_tx_pkt_integrity_mem_cor_err_cnt),
4908 /* SendErrStatus */
4909 [C_SEND_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("SendCsrWriteBadAddrErr", 0, 0,
4910 			CNTR_NORMAL,
4911 			access_send_csr_write_bad_addr_err_cnt),
4912 [C_SEND_CSR_READ_BAD_ADD_ERR] = CNTR_ELEM("SendCsrReadBadAddrErr", 0, 0,
4913 			CNTR_NORMAL,
4914 			access_send_csr_read_bad_addr_err_cnt),
4915 [C_SEND_CSR_PARITY_ERR] = CNTR_ELEM("SendCsrParityErr", 0, 0,
4916 			CNTR_NORMAL,
4917 			access_send_csr_parity_cnt),
4918 /* SendCtxtErrStatus */
4919 [C_PIO_WRITE_OUT_OF_BOUNDS_ERR] = CNTR_ELEM("PioWriteOutOfBoundsErr", 0, 0,
4920 			CNTR_NORMAL,
4921 			access_pio_write_out_of_bounds_err_cnt),
4922 [C_PIO_WRITE_OVERFLOW_ERR] = CNTR_ELEM("PioWriteOverflowErr", 0, 0,
4923 			CNTR_NORMAL,
4924 			access_pio_write_overflow_err_cnt),
4925 [C_PIO_WRITE_CROSSES_BOUNDARY_ERR] = CNTR_ELEM("PioWriteCrossesBoundaryErr",
4926 			0, 0, CNTR_NORMAL,
4927 			access_pio_write_crosses_boundary_err_cnt),
4928 [C_PIO_DISALLOWED_PACKET_ERR] = CNTR_ELEM("PioDisallowedPacketErr", 0, 0,
4929 			CNTR_NORMAL,
4930 			access_pio_disallowed_packet_err_cnt),
4931 [C_PIO_INCONSISTENT_SOP_ERR] = CNTR_ELEM("PioInconsistentSopErr", 0, 0,
4932 			CNTR_NORMAL,
4933 			access_pio_inconsistent_sop_err_cnt),
4934 /* SendDmaEngErrStatus */
4935 [C_SDMA_HEADER_REQUEST_FIFO_COR_ERR] = CNTR_ELEM("SDmaHeaderRequestFifoCorErr",
4936 			0, 0, CNTR_NORMAL,
4937 			access_sdma_header_request_fifo_cor_err_cnt),
4938 [C_SDMA_HEADER_STORAGE_COR_ERR] = CNTR_ELEM("SDmaHeaderStorageCorErr", 0, 0,
4939 			CNTR_NORMAL,
4940 			access_sdma_header_storage_cor_err_cnt),
4941 [C_SDMA_PACKET_TRACKING_COR_ERR] = CNTR_ELEM("SDmaPacketTrackingCorErr", 0, 0,
4942 			CNTR_NORMAL,
4943 			access_sdma_packet_tracking_cor_err_cnt),
4944 [C_SDMA_ASSEMBLY_COR_ERR] = CNTR_ELEM("SDmaAssemblyCorErr", 0, 0,
4945 			CNTR_NORMAL,
4946 			access_sdma_assembly_cor_err_cnt),
4947 [C_SDMA_DESC_TABLE_COR_ERR] = CNTR_ELEM("SDmaDescTableCorErr", 0, 0,
4948 			CNTR_NORMAL,
4949 			access_sdma_desc_table_cor_err_cnt),
4950 [C_SDMA_HEADER_REQUEST_FIFO_UNC_ERR] = CNTR_ELEM("SDmaHeaderRequestFifoUncErr",
4951 			0, 0, CNTR_NORMAL,
4952 			access_sdma_header_request_fifo_unc_err_cnt),
4953 [C_SDMA_HEADER_STORAGE_UNC_ERR] = CNTR_ELEM("SDmaHeaderStorageUncErr", 0, 0,
4954 			CNTR_NORMAL,
4955 			access_sdma_header_storage_unc_err_cnt),
4956 [C_SDMA_PACKET_TRACKING_UNC_ERR] = CNTR_ELEM("SDmaPacketTrackingUncErr", 0, 0,
4957 			CNTR_NORMAL,
4958 			access_sdma_packet_tracking_unc_err_cnt),
4959 [C_SDMA_ASSEMBLY_UNC_ERR] = CNTR_ELEM("SDmaAssemblyUncErr", 0, 0,
4960 			CNTR_NORMAL,
4961 			access_sdma_assembly_unc_err_cnt),
4962 [C_SDMA_DESC_TABLE_UNC_ERR] = CNTR_ELEM("SDmaDescTableUncErr", 0, 0,
4963 			CNTR_NORMAL,
4964 			access_sdma_desc_table_unc_err_cnt),
4965 [C_SDMA_TIMEOUT_ERR] = CNTR_ELEM("SDmaTimeoutErr", 0, 0,
4966 			CNTR_NORMAL,
4967 			access_sdma_timeout_err_cnt),
4968 [C_SDMA_HEADER_LENGTH_ERR] = CNTR_ELEM("SDmaHeaderLengthErr", 0, 0,
4969 			CNTR_NORMAL,
4970 			access_sdma_header_length_err_cnt),
4971 [C_SDMA_HEADER_ADDRESS_ERR] = CNTR_ELEM("SDmaHeaderAddressErr", 0, 0,
4972 			CNTR_NORMAL,
4973 			access_sdma_header_address_err_cnt),
4974 [C_SDMA_HEADER_SELECT_ERR] = CNTR_ELEM("SDmaHeaderSelectErr", 0, 0,
4975 			CNTR_NORMAL,
4976 			access_sdma_header_select_err_cnt),
4977 [C_SMDA_RESERVED_9] = CNTR_ELEM("SDma Reserved 9", 0, 0,
4978 			CNTR_NORMAL,
4979 			access_sdma_reserved_9_err_cnt),
4980 [C_SDMA_PACKET_DESC_OVERFLOW_ERR] = CNTR_ELEM("SDmaPacketDescOverflowErr", 0, 0,
4981 			CNTR_NORMAL,
4982 			access_sdma_packet_desc_overflow_err_cnt),
4983 [C_SDMA_LENGTH_MISMATCH_ERR] = CNTR_ELEM("SDmaLengthMismatchErr", 0, 0,
4984 			CNTR_NORMAL,
4985 			access_sdma_length_mismatch_err_cnt),
4986 [C_SDMA_HALT_ERR] = CNTR_ELEM("SDmaHaltErr", 0, 0,
4987 			CNTR_NORMAL,
4988 			access_sdma_halt_err_cnt),
4989 [C_SDMA_MEM_READ_ERR] = CNTR_ELEM("SDmaMemReadErr", 0, 0,
4990 			CNTR_NORMAL,
4991 			access_sdma_mem_read_err_cnt),
4992 [C_SDMA_FIRST_DESC_ERR] = CNTR_ELEM("SDmaFirstDescErr", 0, 0,
4993 			CNTR_NORMAL,
4994 			access_sdma_first_desc_err_cnt),
4995 [C_SDMA_TAIL_OUT_OF_BOUNDS_ERR] = CNTR_ELEM("SDmaTailOutOfBoundsErr", 0, 0,
4996 			CNTR_NORMAL,
4997 			access_sdma_tail_out_of_bounds_err_cnt),
4998 [C_SDMA_TOO_LONG_ERR] = CNTR_ELEM("SDmaTooLongErr", 0, 0,
4999 			CNTR_NORMAL,
5000 			access_sdma_too_long_err_cnt),
5001 [C_SDMA_GEN_MISMATCH_ERR] = CNTR_ELEM("SDmaGenMismatchErr", 0, 0,
5002 			CNTR_NORMAL,
5003 			access_sdma_gen_mismatch_err_cnt),
5004 [C_SDMA_WRONG_DW_ERR] = CNTR_ELEM("SDmaWrongDwErr", 0, 0,
5005 			CNTR_NORMAL,
5006 			access_sdma_wrong_dw_err_cnt),
5007 };
5008 
5009 static struct cntr_entry port_cntrs[PORT_CNTR_LAST] = {
5010 [C_TX_UNSUP_VL] = TXE32_PORT_CNTR_ELEM(TxUnVLErr, SEND_UNSUP_VL_ERR_CNT,
5011 			CNTR_NORMAL),
5012 [C_TX_INVAL_LEN] = TXE32_PORT_CNTR_ELEM(TxInvalLen, SEND_LEN_ERR_CNT,
5013 			CNTR_NORMAL),
5014 [C_TX_MM_LEN_ERR] = TXE32_PORT_CNTR_ELEM(TxMMLenErr, SEND_MAX_MIN_LEN_ERR_CNT,
5015 			CNTR_NORMAL),
5016 [C_TX_UNDERRUN] = TXE32_PORT_CNTR_ELEM(TxUnderrun, SEND_UNDERRUN_CNT,
5017 			CNTR_NORMAL),
5018 [C_TX_FLOW_STALL] = TXE32_PORT_CNTR_ELEM(TxFlowStall, SEND_FLOW_STALL_CNT,
5019 			CNTR_NORMAL),
5020 [C_TX_DROPPED] = TXE32_PORT_CNTR_ELEM(TxDropped, SEND_DROPPED_PKT_CNT,
5021 			CNTR_NORMAL),
5022 [C_TX_HDR_ERR] = TXE32_PORT_CNTR_ELEM(TxHdrErr, SEND_HEADERS_ERR_CNT,
5023 			CNTR_NORMAL),
5024 [C_TX_PKT] = TXE64_PORT_CNTR_ELEM(TxPkt, SEND_DATA_PKT_CNT, CNTR_NORMAL),
5025 [C_TX_WORDS] = TXE64_PORT_CNTR_ELEM(TxWords, SEND_DWORD_CNT, CNTR_NORMAL),
5026 [C_TX_WAIT] = TXE64_PORT_CNTR_ELEM(TxWait, SEND_WAIT_CNT, CNTR_SYNTH),
5027 [C_TX_FLIT_VL] = TXE64_PORT_CNTR_ELEM(TxFlitVL, SEND_DATA_VL0_CNT,
5028 				      CNTR_SYNTH | CNTR_VL),
5029 [C_TX_PKT_VL] = TXE64_PORT_CNTR_ELEM(TxPktVL, SEND_DATA_PKT_VL0_CNT,
5030 				     CNTR_SYNTH | CNTR_VL),
5031 [C_TX_WAIT_VL] = TXE64_PORT_CNTR_ELEM(TxWaitVL, SEND_WAIT_VL0_CNT,
5032 				      CNTR_SYNTH | CNTR_VL),
5033 [C_RX_PKT] = RXE64_PORT_CNTR_ELEM(RxPkt, RCV_DATA_PKT_CNT, CNTR_NORMAL),
5034 [C_RX_WORDS] = RXE64_PORT_CNTR_ELEM(RxWords, RCV_DWORD_CNT, CNTR_NORMAL),
5035 [C_SW_LINK_DOWN] = CNTR_ELEM("SwLinkDown", 0, 0, CNTR_SYNTH | CNTR_32BIT,
5036 			     access_sw_link_dn_cnt),
5037 [C_SW_LINK_UP] = CNTR_ELEM("SwLinkUp", 0, 0, CNTR_SYNTH | CNTR_32BIT,
5038 			   access_sw_link_up_cnt),
5039 [C_SW_UNKNOWN_FRAME] = CNTR_ELEM("UnknownFrame", 0, 0, CNTR_NORMAL,
5040 				 access_sw_unknown_frame_cnt),
5041 [C_SW_XMIT_DSCD] = CNTR_ELEM("XmitDscd", 0, 0, CNTR_SYNTH | CNTR_32BIT,
5042 			     access_sw_xmit_discards),
5043 [C_SW_XMIT_DSCD_VL] = CNTR_ELEM("XmitDscdVl", 0, 0,
5044 				CNTR_SYNTH | CNTR_32BIT | CNTR_VL,
5045 				access_sw_xmit_discards),
5046 [C_SW_XMIT_CSTR_ERR] = CNTR_ELEM("XmitCstrErr", 0, 0, CNTR_SYNTH,
5047 				 access_xmit_constraint_errs),
5048 [C_SW_RCV_CSTR_ERR] = CNTR_ELEM("RcvCstrErr", 0, 0, CNTR_SYNTH,
5049 				access_rcv_constraint_errs),
5050 [C_SW_IBP_LOOP_PKTS] = SW_IBP_CNTR(LoopPkts, loop_pkts),
5051 [C_SW_IBP_RC_RESENDS] = SW_IBP_CNTR(RcResend, rc_resends),
5052 [C_SW_IBP_RNR_NAKS] = SW_IBP_CNTR(RnrNak, rnr_naks),
5053 [C_SW_IBP_OTHER_NAKS] = SW_IBP_CNTR(OtherNak, other_naks),
5054 [C_SW_IBP_RC_TIMEOUTS] = SW_IBP_CNTR(RcTimeOut, rc_timeouts),
5055 [C_SW_IBP_PKT_DROPS] = SW_IBP_CNTR(PktDrop, pkt_drops),
5056 [C_SW_IBP_DMA_WAIT] = SW_IBP_CNTR(DmaWait, dmawait),
5057 [C_SW_IBP_RC_SEQNAK] = SW_IBP_CNTR(RcSeqNak, rc_seqnak),
5058 [C_SW_IBP_RC_DUPREQ] = SW_IBP_CNTR(RcDupRew, rc_dupreq),
5059 [C_SW_IBP_RDMA_SEQ] = SW_IBP_CNTR(RdmaSeq, rdma_seq),
5060 [C_SW_IBP_UNALIGNED] = SW_IBP_CNTR(Unaligned, unaligned),
5061 [C_SW_IBP_SEQ_NAK] = SW_IBP_CNTR(SeqNak, seq_naks),
5062 [C_SW_CPU_RC_ACKS] = CNTR_ELEM("RcAcks", 0, 0, CNTR_NORMAL,
5063 			       access_sw_cpu_rc_acks),
5064 [C_SW_CPU_RC_QACKS] = CNTR_ELEM("RcQacks", 0, 0, CNTR_NORMAL,
5065 				access_sw_cpu_rc_qacks),
5066 [C_SW_CPU_RC_DELAYED_COMP] = CNTR_ELEM("RcDelayComp", 0, 0, CNTR_NORMAL,
5067 				       access_sw_cpu_rc_delayed_comp),
5068 [OVR_LBL(0)] = OVR_ELM(0), [OVR_LBL(1)] = OVR_ELM(1),
5069 [OVR_LBL(2)] = OVR_ELM(2), [OVR_LBL(3)] = OVR_ELM(3),
5070 [OVR_LBL(4)] = OVR_ELM(4), [OVR_LBL(5)] = OVR_ELM(5),
5071 [OVR_LBL(6)] = OVR_ELM(6), [OVR_LBL(7)] = OVR_ELM(7),
5072 [OVR_LBL(8)] = OVR_ELM(8), [OVR_LBL(9)] = OVR_ELM(9),
5073 [OVR_LBL(10)] = OVR_ELM(10), [OVR_LBL(11)] = OVR_ELM(11),
5074 [OVR_LBL(12)] = OVR_ELM(12), [OVR_LBL(13)] = OVR_ELM(13),
5075 [OVR_LBL(14)] = OVR_ELM(14), [OVR_LBL(15)] = OVR_ELM(15),
5076 [OVR_LBL(16)] = OVR_ELM(16), [OVR_LBL(17)] = OVR_ELM(17),
5077 [OVR_LBL(18)] = OVR_ELM(18), [OVR_LBL(19)] = OVR_ELM(19),
5078 [OVR_LBL(20)] = OVR_ELM(20), [OVR_LBL(21)] = OVR_ELM(21),
5079 [OVR_LBL(22)] = OVR_ELM(22), [OVR_LBL(23)] = OVR_ELM(23),
5080 [OVR_LBL(24)] = OVR_ELM(24), [OVR_LBL(25)] = OVR_ELM(25),
5081 [OVR_LBL(26)] = OVR_ELM(26), [OVR_LBL(27)] = OVR_ELM(27),
5082 [OVR_LBL(28)] = OVR_ELM(28), [OVR_LBL(29)] = OVR_ELM(29),
5083 [OVR_LBL(30)] = OVR_ELM(30), [OVR_LBL(31)] = OVR_ELM(31),
5084 [OVR_LBL(32)] = OVR_ELM(32), [OVR_LBL(33)] = OVR_ELM(33),
5085 [OVR_LBL(34)] = OVR_ELM(34), [OVR_LBL(35)] = OVR_ELM(35),
5086 [OVR_LBL(36)] = OVR_ELM(36), [OVR_LBL(37)] = OVR_ELM(37),
5087 [OVR_LBL(38)] = OVR_ELM(38), [OVR_LBL(39)] = OVR_ELM(39),
5088 [OVR_LBL(40)] = OVR_ELM(40), [OVR_LBL(41)] = OVR_ELM(41),
5089 [OVR_LBL(42)] = OVR_ELM(42), [OVR_LBL(43)] = OVR_ELM(43),
5090 [OVR_LBL(44)] = OVR_ELM(44), [OVR_LBL(45)] = OVR_ELM(45),
5091 [OVR_LBL(46)] = OVR_ELM(46), [OVR_LBL(47)] = OVR_ELM(47),
5092 [OVR_LBL(48)] = OVR_ELM(48), [OVR_LBL(49)] = OVR_ELM(49),
5093 [OVR_LBL(50)] = OVR_ELM(50), [OVR_LBL(51)] = OVR_ELM(51),
5094 [OVR_LBL(52)] = OVR_ELM(52), [OVR_LBL(53)] = OVR_ELM(53),
5095 [OVR_LBL(54)] = OVR_ELM(54), [OVR_LBL(55)] = OVR_ELM(55),
5096 [OVR_LBL(56)] = OVR_ELM(56), [OVR_LBL(57)] = OVR_ELM(57),
5097 [OVR_LBL(58)] = OVR_ELM(58), [OVR_LBL(59)] = OVR_ELM(59),
5098 [OVR_LBL(60)] = OVR_ELM(60), [OVR_LBL(61)] = OVR_ELM(61),
5099 [OVR_LBL(62)] = OVR_ELM(62), [OVR_LBL(63)] = OVR_ELM(63),
5100 [OVR_LBL(64)] = OVR_ELM(64), [OVR_LBL(65)] = OVR_ELM(65),
5101 [OVR_LBL(66)] = OVR_ELM(66), [OVR_LBL(67)] = OVR_ELM(67),
5102 [OVR_LBL(68)] = OVR_ELM(68), [OVR_LBL(69)] = OVR_ELM(69),
5103 [OVR_LBL(70)] = OVR_ELM(70), [OVR_LBL(71)] = OVR_ELM(71),
5104 [OVR_LBL(72)] = OVR_ELM(72), [OVR_LBL(73)] = OVR_ELM(73),
5105 [OVR_LBL(74)] = OVR_ELM(74), [OVR_LBL(75)] = OVR_ELM(75),
5106 [OVR_LBL(76)] = OVR_ELM(76), [OVR_LBL(77)] = OVR_ELM(77),
5107 [OVR_LBL(78)] = OVR_ELM(78), [OVR_LBL(79)] = OVR_ELM(79),
5108 [OVR_LBL(80)] = OVR_ELM(80), [OVR_LBL(81)] = OVR_ELM(81),
5109 [OVR_LBL(82)] = OVR_ELM(82), [OVR_LBL(83)] = OVR_ELM(83),
5110 [OVR_LBL(84)] = OVR_ELM(84), [OVR_LBL(85)] = OVR_ELM(85),
5111 [OVR_LBL(86)] = OVR_ELM(86), [OVR_LBL(87)] = OVR_ELM(87),
5112 [OVR_LBL(88)] = OVR_ELM(88), [OVR_LBL(89)] = OVR_ELM(89),
5113 [OVR_LBL(90)] = OVR_ELM(90), [OVR_LBL(91)] = OVR_ELM(91),
5114 [OVR_LBL(92)] = OVR_ELM(92), [OVR_LBL(93)] = OVR_ELM(93),
5115 [OVR_LBL(94)] = OVR_ELM(94), [OVR_LBL(95)] = OVR_ELM(95),
5116 [OVR_LBL(96)] = OVR_ELM(96), [OVR_LBL(97)] = OVR_ELM(97),
5117 [OVR_LBL(98)] = OVR_ELM(98), [OVR_LBL(99)] = OVR_ELM(99),
5118 [OVR_LBL(100)] = OVR_ELM(100), [OVR_LBL(101)] = OVR_ELM(101),
5119 [OVR_LBL(102)] = OVR_ELM(102), [OVR_LBL(103)] = OVR_ELM(103),
5120 [OVR_LBL(104)] = OVR_ELM(104), [OVR_LBL(105)] = OVR_ELM(105),
5121 [OVR_LBL(106)] = OVR_ELM(106), [OVR_LBL(107)] = OVR_ELM(107),
5122 [OVR_LBL(108)] = OVR_ELM(108), [OVR_LBL(109)] = OVR_ELM(109),
5123 [OVR_LBL(110)] = OVR_ELM(110), [OVR_LBL(111)] = OVR_ELM(111),
5124 [OVR_LBL(112)] = OVR_ELM(112), [OVR_LBL(113)] = OVR_ELM(113),
5125 [OVR_LBL(114)] = OVR_ELM(114), [OVR_LBL(115)] = OVR_ELM(115),
5126 [OVR_LBL(116)] = OVR_ELM(116), [OVR_LBL(117)] = OVR_ELM(117),
5127 [OVR_LBL(118)] = OVR_ELM(118), [OVR_LBL(119)] = OVR_ELM(119),
5128 [OVR_LBL(120)] = OVR_ELM(120), [OVR_LBL(121)] = OVR_ELM(121),
5129 [OVR_LBL(122)] = OVR_ELM(122), [OVR_LBL(123)] = OVR_ELM(123),
5130 [OVR_LBL(124)] = OVR_ELM(124), [OVR_LBL(125)] = OVR_ELM(125),
5131 [OVR_LBL(126)] = OVR_ELM(126), [OVR_LBL(127)] = OVR_ELM(127),
5132 [OVR_LBL(128)] = OVR_ELM(128), [OVR_LBL(129)] = OVR_ELM(129),
5133 [OVR_LBL(130)] = OVR_ELM(130), [OVR_LBL(131)] = OVR_ELM(131),
5134 [OVR_LBL(132)] = OVR_ELM(132), [OVR_LBL(133)] = OVR_ELM(133),
5135 [OVR_LBL(134)] = OVR_ELM(134), [OVR_LBL(135)] = OVR_ELM(135),
5136 [OVR_LBL(136)] = OVR_ELM(136), [OVR_LBL(137)] = OVR_ELM(137),
5137 [OVR_LBL(138)] = OVR_ELM(138), [OVR_LBL(139)] = OVR_ELM(139),
5138 [OVR_LBL(140)] = OVR_ELM(140), [OVR_LBL(141)] = OVR_ELM(141),
5139 [OVR_LBL(142)] = OVR_ELM(142), [OVR_LBL(143)] = OVR_ELM(143),
5140 [OVR_LBL(144)] = OVR_ELM(144), [OVR_LBL(145)] = OVR_ELM(145),
5141 [OVR_LBL(146)] = OVR_ELM(146), [OVR_LBL(147)] = OVR_ELM(147),
5142 [OVR_LBL(148)] = OVR_ELM(148), [OVR_LBL(149)] = OVR_ELM(149),
5143 [OVR_LBL(150)] = OVR_ELM(150), [OVR_LBL(151)] = OVR_ELM(151),
5144 [OVR_LBL(152)] = OVR_ELM(152), [OVR_LBL(153)] = OVR_ELM(153),
5145 [OVR_LBL(154)] = OVR_ELM(154), [OVR_LBL(155)] = OVR_ELM(155),
5146 [OVR_LBL(156)] = OVR_ELM(156), [OVR_LBL(157)] = OVR_ELM(157),
5147 [OVR_LBL(158)] = OVR_ELM(158), [OVR_LBL(159)] = OVR_ELM(159),
5148 };
5149 
5150 /* ======================================================================== */
5151 
5152 /* return true if this is chip revision revision a */
5153 int is_ax(struct hfi1_devdata *dd)
5154 {
5155 	u8 chip_rev_minor =
5156 		dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT
5157 			& CCE_REVISION_CHIP_REV_MINOR_MASK;
5158 	return (chip_rev_minor & 0xf0) == 0;
5159 }
5160 
5161 /* return true if this is chip revision revision b */
5162 int is_bx(struct hfi1_devdata *dd)
5163 {
5164 	u8 chip_rev_minor =
5165 		dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT
5166 			& CCE_REVISION_CHIP_REV_MINOR_MASK;
5167 	return (chip_rev_minor & 0xF0) == 0x10;
5168 }
5169 
5170 /*
5171  * Append string s to buffer buf.  Arguments curp and len are the current
5172  * position and remaining length, respectively.
5173  *
5174  * return 0 on success, 1 on out of room
5175  */
5176 static int append_str(char *buf, char **curp, int *lenp, const char *s)
5177 {
5178 	char *p = *curp;
5179 	int len = *lenp;
5180 	int result = 0; /* success */
5181 	char c;
5182 
5183 	/* add a comma, if first in the buffer */
5184 	if (p != buf) {
5185 		if (len == 0) {
5186 			result = 1; /* out of room */
5187 			goto done;
5188 		}
5189 		*p++ = ',';
5190 		len--;
5191 	}
5192 
5193 	/* copy the string */
5194 	while ((c = *s++) != 0) {
5195 		if (len == 0) {
5196 			result = 1; /* out of room */
5197 			goto done;
5198 		}
5199 		*p++ = c;
5200 		len--;
5201 	}
5202 
5203 done:
5204 	/* write return values */
5205 	*curp = p;
5206 	*lenp = len;
5207 
5208 	return result;
5209 }
5210 
5211 /*
5212  * Using the given flag table, print a comma separated string into
5213  * the buffer.  End in '*' if the buffer is too short.
5214  */
5215 static char *flag_string(char *buf, int buf_len, u64 flags,
5216 			 struct flag_table *table, int table_size)
5217 {
5218 	char extra[32];
5219 	char *p = buf;
5220 	int len = buf_len;
5221 	int no_room = 0;
5222 	int i;
5223 
5224 	/* make sure there is at least 2 so we can form "*" */
5225 	if (len < 2)
5226 		return "";
5227 
5228 	len--;	/* leave room for a nul */
5229 	for (i = 0; i < table_size; i++) {
5230 		if (flags & table[i].flag) {
5231 			no_room = append_str(buf, &p, &len, table[i].str);
5232 			if (no_room)
5233 				break;
5234 			flags &= ~table[i].flag;
5235 		}
5236 	}
5237 
5238 	/* any undocumented bits left? */
5239 	if (!no_room && flags) {
5240 		snprintf(extra, sizeof(extra), "bits 0x%llx", flags);
5241 		no_room = append_str(buf, &p, &len, extra);
5242 	}
5243 
5244 	/* add * if ran out of room */
5245 	if (no_room) {
5246 		/* may need to back up to add space for a '*' */
5247 		if (len == 0)
5248 			--p;
5249 		*p++ = '*';
5250 	}
5251 
5252 	/* add final nul - space already allocated above */
5253 	*p = 0;
5254 	return buf;
5255 }
5256 
5257 /* first 8 CCE error interrupt source names */
5258 static const char * const cce_misc_names[] = {
5259 	"CceErrInt",		/* 0 */
5260 	"RxeErrInt",		/* 1 */
5261 	"MiscErrInt",		/* 2 */
5262 	"Reserved3",		/* 3 */
5263 	"PioErrInt",		/* 4 */
5264 	"SDmaErrInt",		/* 5 */
5265 	"EgressErrInt",		/* 6 */
5266 	"TxeErrInt"		/* 7 */
5267 };
5268 
5269 /*
5270  * Return the miscellaneous error interrupt name.
5271  */
5272 static char *is_misc_err_name(char *buf, size_t bsize, unsigned int source)
5273 {
5274 	if (source < ARRAY_SIZE(cce_misc_names))
5275 		strncpy(buf, cce_misc_names[source], bsize);
5276 	else
5277 		snprintf(buf, bsize, "Reserved%u",
5278 			 source + IS_GENERAL_ERR_START);
5279 
5280 	return buf;
5281 }
5282 
5283 /*
5284  * Return the SDMA engine error interrupt name.
5285  */
5286 static char *is_sdma_eng_err_name(char *buf, size_t bsize, unsigned int source)
5287 {
5288 	snprintf(buf, bsize, "SDmaEngErrInt%u", source);
5289 	return buf;
5290 }
5291 
5292 /*
5293  * Return the send context error interrupt name.
5294  */
5295 static char *is_sendctxt_err_name(char *buf, size_t bsize, unsigned int source)
5296 {
5297 	snprintf(buf, bsize, "SendCtxtErrInt%u", source);
5298 	return buf;
5299 }
5300 
5301 static const char * const various_names[] = {
5302 	"PbcInt",
5303 	"GpioAssertInt",
5304 	"Qsfp1Int",
5305 	"Qsfp2Int",
5306 	"TCritInt"
5307 };
5308 
5309 /*
5310  * Return the various interrupt name.
5311  */
5312 static char *is_various_name(char *buf, size_t bsize, unsigned int source)
5313 {
5314 	if (source < ARRAY_SIZE(various_names))
5315 		strncpy(buf, various_names[source], bsize);
5316 	else
5317 		snprintf(buf, bsize, "Reserved%u", source + IS_VARIOUS_START);
5318 	return buf;
5319 }
5320 
5321 /*
5322  * Return the DC interrupt name.
5323  */
5324 static char *is_dc_name(char *buf, size_t bsize, unsigned int source)
5325 {
5326 	static const char * const dc_int_names[] = {
5327 		"common",
5328 		"lcb",
5329 		"8051",
5330 		"lbm"	/* local block merge */
5331 	};
5332 
5333 	if (source < ARRAY_SIZE(dc_int_names))
5334 		snprintf(buf, bsize, "dc_%s_int", dc_int_names[source]);
5335 	else
5336 		snprintf(buf, bsize, "DCInt%u", source);
5337 	return buf;
5338 }
5339 
5340 static const char * const sdma_int_names[] = {
5341 	"SDmaInt",
5342 	"SdmaIdleInt",
5343 	"SdmaProgressInt",
5344 };
5345 
5346 /*
5347  * Return the SDMA engine interrupt name.
5348  */
5349 static char *is_sdma_eng_name(char *buf, size_t bsize, unsigned int source)
5350 {
5351 	/* what interrupt */
5352 	unsigned int what  = source / TXE_NUM_SDMA_ENGINES;
5353 	/* which engine */
5354 	unsigned int which = source % TXE_NUM_SDMA_ENGINES;
5355 
5356 	if (likely(what < 3))
5357 		snprintf(buf, bsize, "%s%u", sdma_int_names[what], which);
5358 	else
5359 		snprintf(buf, bsize, "Invalid SDMA interrupt %u", source);
5360 	return buf;
5361 }
5362 
5363 /*
5364  * Return the receive available interrupt name.
5365  */
5366 static char *is_rcv_avail_name(char *buf, size_t bsize, unsigned int source)
5367 {
5368 	snprintf(buf, bsize, "RcvAvailInt%u", source);
5369 	return buf;
5370 }
5371 
5372 /*
5373  * Return the receive urgent interrupt name.
5374  */
5375 static char *is_rcv_urgent_name(char *buf, size_t bsize, unsigned int source)
5376 {
5377 	snprintf(buf, bsize, "RcvUrgentInt%u", source);
5378 	return buf;
5379 }
5380 
5381 /*
5382  * Return the send credit interrupt name.
5383  */
5384 static char *is_send_credit_name(char *buf, size_t bsize, unsigned int source)
5385 {
5386 	snprintf(buf, bsize, "SendCreditInt%u", source);
5387 	return buf;
5388 }
5389 
5390 /*
5391  * Return the reserved interrupt name.
5392  */
5393 static char *is_reserved_name(char *buf, size_t bsize, unsigned int source)
5394 {
5395 	snprintf(buf, bsize, "Reserved%u", source + IS_RESERVED_START);
5396 	return buf;
5397 }
5398 
5399 static char *cce_err_status_string(char *buf, int buf_len, u64 flags)
5400 {
5401 	return flag_string(buf, buf_len, flags,
5402 			   cce_err_status_flags,
5403 			   ARRAY_SIZE(cce_err_status_flags));
5404 }
5405 
5406 static char *rxe_err_status_string(char *buf, int buf_len, u64 flags)
5407 {
5408 	return flag_string(buf, buf_len, flags,
5409 			   rxe_err_status_flags,
5410 			   ARRAY_SIZE(rxe_err_status_flags));
5411 }
5412 
5413 static char *misc_err_status_string(char *buf, int buf_len, u64 flags)
5414 {
5415 	return flag_string(buf, buf_len, flags, misc_err_status_flags,
5416 			   ARRAY_SIZE(misc_err_status_flags));
5417 }
5418 
5419 static char *pio_err_status_string(char *buf, int buf_len, u64 flags)
5420 {
5421 	return flag_string(buf, buf_len, flags,
5422 			   pio_err_status_flags,
5423 			   ARRAY_SIZE(pio_err_status_flags));
5424 }
5425 
5426 static char *sdma_err_status_string(char *buf, int buf_len, u64 flags)
5427 {
5428 	return flag_string(buf, buf_len, flags,
5429 			   sdma_err_status_flags,
5430 			   ARRAY_SIZE(sdma_err_status_flags));
5431 }
5432 
5433 static char *egress_err_status_string(char *buf, int buf_len, u64 flags)
5434 {
5435 	return flag_string(buf, buf_len, flags,
5436 			   egress_err_status_flags,
5437 			   ARRAY_SIZE(egress_err_status_flags));
5438 }
5439 
5440 static char *egress_err_info_string(char *buf, int buf_len, u64 flags)
5441 {
5442 	return flag_string(buf, buf_len, flags,
5443 			   egress_err_info_flags,
5444 			   ARRAY_SIZE(egress_err_info_flags));
5445 }
5446 
5447 static char *send_err_status_string(char *buf, int buf_len, u64 flags)
5448 {
5449 	return flag_string(buf, buf_len, flags,
5450 			   send_err_status_flags,
5451 			   ARRAY_SIZE(send_err_status_flags));
5452 }
5453 
5454 static void handle_cce_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5455 {
5456 	char buf[96];
5457 	int i = 0;
5458 
5459 	/*
5460 	 * For most these errors, there is nothing that can be done except
5461 	 * report or record it.
5462 	 */
5463 	dd_dev_info(dd, "CCE Error: %s\n",
5464 		    cce_err_status_string(buf, sizeof(buf), reg));
5465 
5466 	if ((reg & CCE_ERR_STATUS_CCE_CLI2_ASYNC_FIFO_PARITY_ERR_SMASK) &&
5467 	    is_ax(dd) && (dd->icode != ICODE_FUNCTIONAL_SIMULATOR)) {
5468 		/* this error requires a manual drop into SPC freeze mode */
5469 		/* then a fix up */
5470 		start_freeze_handling(dd->pport, FREEZE_SELF);
5471 	}
5472 
5473 	for (i = 0; i < NUM_CCE_ERR_STATUS_COUNTERS; i++) {
5474 		if (reg & (1ull << i)) {
5475 			incr_cntr64(&dd->cce_err_status_cnt[i]);
5476 			/* maintain a counter over all cce_err_status errors */
5477 			incr_cntr64(&dd->sw_cce_err_status_aggregate);
5478 		}
5479 	}
5480 }
5481 
5482 /*
5483  * Check counters for receive errors that do not have an interrupt
5484  * associated with them.
5485  */
5486 #define RCVERR_CHECK_TIME 10
5487 static void update_rcverr_timer(unsigned long opaque)
5488 {
5489 	struct hfi1_devdata *dd = (struct hfi1_devdata *)opaque;
5490 	struct hfi1_pportdata *ppd = dd->pport;
5491 	u32 cur_ovfl_cnt = read_dev_cntr(dd, C_RCV_OVF, CNTR_INVALID_VL);
5492 
5493 	if (dd->rcv_ovfl_cnt < cur_ovfl_cnt &&
5494 	    ppd->port_error_action & OPA_PI_MASK_EX_BUFFER_OVERRUN) {
5495 		dd_dev_info(dd, "%s: PortErrorAction bounce\n", __func__);
5496 		set_link_down_reason(
5497 		ppd, OPA_LINKDOWN_REASON_EXCESSIVE_BUFFER_OVERRUN, 0,
5498 		OPA_LINKDOWN_REASON_EXCESSIVE_BUFFER_OVERRUN);
5499 		queue_work(ppd->hfi1_wq, &ppd->link_bounce_work);
5500 	}
5501 	dd->rcv_ovfl_cnt = (u32)cur_ovfl_cnt;
5502 
5503 	mod_timer(&dd->rcverr_timer, jiffies + HZ * RCVERR_CHECK_TIME);
5504 }
5505 
5506 static int init_rcverr(struct hfi1_devdata *dd)
5507 {
5508 	setup_timer(&dd->rcverr_timer, update_rcverr_timer, (unsigned long)dd);
5509 	/* Assume the hardware counter has been reset */
5510 	dd->rcv_ovfl_cnt = 0;
5511 	return mod_timer(&dd->rcverr_timer, jiffies + HZ * RCVERR_CHECK_TIME);
5512 }
5513 
5514 static void free_rcverr(struct hfi1_devdata *dd)
5515 {
5516 	if (dd->rcverr_timer.data)
5517 		del_timer_sync(&dd->rcverr_timer);
5518 	dd->rcverr_timer.data = 0;
5519 }
5520 
5521 static void handle_rxe_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5522 {
5523 	char buf[96];
5524 	int i = 0;
5525 
5526 	dd_dev_info(dd, "Receive Error: %s\n",
5527 		    rxe_err_status_string(buf, sizeof(buf), reg));
5528 
5529 	if (reg & ALL_RXE_FREEZE_ERR) {
5530 		int flags = 0;
5531 
5532 		/*
5533 		 * Freeze mode recovery is disabled for the errors
5534 		 * in RXE_FREEZE_ABORT_MASK
5535 		 */
5536 		if (is_ax(dd) && (reg & RXE_FREEZE_ABORT_MASK))
5537 			flags = FREEZE_ABORT;
5538 
5539 		start_freeze_handling(dd->pport, flags);
5540 	}
5541 
5542 	for (i = 0; i < NUM_RCV_ERR_STATUS_COUNTERS; i++) {
5543 		if (reg & (1ull << i))
5544 			incr_cntr64(&dd->rcv_err_status_cnt[i]);
5545 	}
5546 }
5547 
5548 static void handle_misc_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5549 {
5550 	char buf[96];
5551 	int i = 0;
5552 
5553 	dd_dev_info(dd, "Misc Error: %s",
5554 		    misc_err_status_string(buf, sizeof(buf), reg));
5555 	for (i = 0; i < NUM_MISC_ERR_STATUS_COUNTERS; i++) {
5556 		if (reg & (1ull << i))
5557 			incr_cntr64(&dd->misc_err_status_cnt[i]);
5558 	}
5559 }
5560 
5561 static void handle_pio_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5562 {
5563 	char buf[96];
5564 	int i = 0;
5565 
5566 	dd_dev_info(dd, "PIO Error: %s\n",
5567 		    pio_err_status_string(buf, sizeof(buf), reg));
5568 
5569 	if (reg & ALL_PIO_FREEZE_ERR)
5570 		start_freeze_handling(dd->pport, 0);
5571 
5572 	for (i = 0; i < NUM_SEND_PIO_ERR_STATUS_COUNTERS; i++) {
5573 		if (reg & (1ull << i))
5574 			incr_cntr64(&dd->send_pio_err_status_cnt[i]);
5575 	}
5576 }
5577 
5578 static void handle_sdma_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5579 {
5580 	char buf[96];
5581 	int i = 0;
5582 
5583 	dd_dev_info(dd, "SDMA Error: %s\n",
5584 		    sdma_err_status_string(buf, sizeof(buf), reg));
5585 
5586 	if (reg & ALL_SDMA_FREEZE_ERR)
5587 		start_freeze_handling(dd->pport, 0);
5588 
5589 	for (i = 0; i < NUM_SEND_DMA_ERR_STATUS_COUNTERS; i++) {
5590 		if (reg & (1ull << i))
5591 			incr_cntr64(&dd->send_dma_err_status_cnt[i]);
5592 	}
5593 }
5594 
5595 static inline void __count_port_discards(struct hfi1_pportdata *ppd)
5596 {
5597 	incr_cntr64(&ppd->port_xmit_discards);
5598 }
5599 
5600 static void count_port_inactive(struct hfi1_devdata *dd)
5601 {
5602 	__count_port_discards(dd->pport);
5603 }
5604 
5605 /*
5606  * We have had a "disallowed packet" error during egress. Determine the
5607  * integrity check which failed, and update relevant error counter, etc.
5608  *
5609  * Note that the SEND_EGRESS_ERR_INFO register has only a single
5610  * bit of state per integrity check, and so we can miss the reason for an
5611  * egress error if more than one packet fails the same integrity check
5612  * since we cleared the corresponding bit in SEND_EGRESS_ERR_INFO.
5613  */
5614 static void handle_send_egress_err_info(struct hfi1_devdata *dd,
5615 					int vl)
5616 {
5617 	struct hfi1_pportdata *ppd = dd->pport;
5618 	u64 src = read_csr(dd, SEND_EGRESS_ERR_SOURCE); /* read first */
5619 	u64 info = read_csr(dd, SEND_EGRESS_ERR_INFO);
5620 	char buf[96];
5621 
5622 	/* clear down all observed info as quickly as possible after read */
5623 	write_csr(dd, SEND_EGRESS_ERR_INFO, info);
5624 
5625 	dd_dev_info(dd,
5626 		    "Egress Error Info: 0x%llx, %s Egress Error Src 0x%llx\n",
5627 		    info, egress_err_info_string(buf, sizeof(buf), info), src);
5628 
5629 	/* Eventually add other counters for each bit */
5630 	if (info & PORT_DISCARD_EGRESS_ERRS) {
5631 		int weight, i;
5632 
5633 		/*
5634 		 * Count all applicable bits as individual errors and
5635 		 * attribute them to the packet that triggered this handler.
5636 		 * This may not be completely accurate due to limitations
5637 		 * on the available hardware error information.  There is
5638 		 * a single information register and any number of error
5639 		 * packets may have occurred and contributed to it before
5640 		 * this routine is called.  This means that:
5641 		 * a) If multiple packets with the same error occur before
5642 		 *    this routine is called, earlier packets are missed.
5643 		 *    There is only a single bit for each error type.
5644 		 * b) Errors may not be attributed to the correct VL.
5645 		 *    The driver is attributing all bits in the info register
5646 		 *    to the packet that triggered this call, but bits
5647 		 *    could be an accumulation of different packets with
5648 		 *    different VLs.
5649 		 * c) A single error packet may have multiple counts attached
5650 		 *    to it.  There is no way for the driver to know if
5651 		 *    multiple bits set in the info register are due to a
5652 		 *    single packet or multiple packets.  The driver assumes
5653 		 *    multiple packets.
5654 		 */
5655 		weight = hweight64(info & PORT_DISCARD_EGRESS_ERRS);
5656 		for (i = 0; i < weight; i++) {
5657 			__count_port_discards(ppd);
5658 			if (vl >= 0 && vl < TXE_NUM_DATA_VL)
5659 				incr_cntr64(&ppd->port_xmit_discards_vl[vl]);
5660 			else if (vl == 15)
5661 				incr_cntr64(&ppd->port_xmit_discards_vl
5662 					    [C_VL_15]);
5663 		}
5664 	}
5665 }
5666 
5667 /*
5668  * Input value is a bit position within the SEND_EGRESS_ERR_STATUS
5669  * register. Does it represent a 'port inactive' error?
5670  */
5671 static inline int port_inactive_err(u64 posn)
5672 {
5673 	return (posn >= SEES(TX_LINKDOWN) &&
5674 		posn <= SEES(TX_INCORRECT_LINK_STATE));
5675 }
5676 
5677 /*
5678  * Input value is a bit position within the SEND_EGRESS_ERR_STATUS
5679  * register. Does it represent a 'disallowed packet' error?
5680  */
5681 static inline int disallowed_pkt_err(int posn)
5682 {
5683 	return (posn >= SEES(TX_SDMA0_DISALLOWED_PACKET) &&
5684 		posn <= SEES(TX_SDMA15_DISALLOWED_PACKET));
5685 }
5686 
5687 /*
5688  * Input value is a bit position of one of the SDMA engine disallowed
5689  * packet errors.  Return which engine.  Use of this must be guarded by
5690  * disallowed_pkt_err().
5691  */
5692 static inline int disallowed_pkt_engine(int posn)
5693 {
5694 	return posn - SEES(TX_SDMA0_DISALLOWED_PACKET);
5695 }
5696 
5697 /*
5698  * Translate an SDMA engine to a VL.  Return -1 if the tranlation cannot
5699  * be done.
5700  */
5701 static int engine_to_vl(struct hfi1_devdata *dd, int engine)
5702 {
5703 	struct sdma_vl_map *m;
5704 	int vl;
5705 
5706 	/* range check */
5707 	if (engine < 0 || engine >= TXE_NUM_SDMA_ENGINES)
5708 		return -1;
5709 
5710 	rcu_read_lock();
5711 	m = rcu_dereference(dd->sdma_map);
5712 	vl = m->engine_to_vl[engine];
5713 	rcu_read_unlock();
5714 
5715 	return vl;
5716 }
5717 
5718 /*
5719  * Translate the send context (sofware index) into a VL.  Return -1 if the
5720  * translation cannot be done.
5721  */
5722 static int sc_to_vl(struct hfi1_devdata *dd, int sw_index)
5723 {
5724 	struct send_context_info *sci;
5725 	struct send_context *sc;
5726 	int i;
5727 
5728 	sci = &dd->send_contexts[sw_index];
5729 
5730 	/* there is no information for user (PSM) and ack contexts */
5731 	if ((sci->type != SC_KERNEL) && (sci->type != SC_VL15))
5732 		return -1;
5733 
5734 	sc = sci->sc;
5735 	if (!sc)
5736 		return -1;
5737 	if (dd->vld[15].sc == sc)
5738 		return 15;
5739 	for (i = 0; i < num_vls; i++)
5740 		if (dd->vld[i].sc == sc)
5741 			return i;
5742 
5743 	return -1;
5744 }
5745 
5746 static void handle_egress_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5747 {
5748 	u64 reg_copy = reg, handled = 0;
5749 	char buf[96];
5750 	int i = 0;
5751 
5752 	if (reg & ALL_TXE_EGRESS_FREEZE_ERR)
5753 		start_freeze_handling(dd->pport, 0);
5754 	else if (is_ax(dd) &&
5755 		 (reg & SEND_EGRESS_ERR_STATUS_TX_CREDIT_RETURN_VL_ERR_SMASK) &&
5756 		 (dd->icode != ICODE_FUNCTIONAL_SIMULATOR))
5757 		start_freeze_handling(dd->pport, 0);
5758 
5759 	while (reg_copy) {
5760 		int posn = fls64(reg_copy);
5761 		/* fls64() returns a 1-based offset, we want it zero based */
5762 		int shift = posn - 1;
5763 		u64 mask = 1ULL << shift;
5764 
5765 		if (port_inactive_err(shift)) {
5766 			count_port_inactive(dd);
5767 			handled |= mask;
5768 		} else if (disallowed_pkt_err(shift)) {
5769 			int vl = engine_to_vl(dd, disallowed_pkt_engine(shift));
5770 
5771 			handle_send_egress_err_info(dd, vl);
5772 			handled |= mask;
5773 		}
5774 		reg_copy &= ~mask;
5775 	}
5776 
5777 	reg &= ~handled;
5778 
5779 	if (reg)
5780 		dd_dev_info(dd, "Egress Error: %s\n",
5781 			    egress_err_status_string(buf, sizeof(buf), reg));
5782 
5783 	for (i = 0; i < NUM_SEND_EGRESS_ERR_STATUS_COUNTERS; i++) {
5784 		if (reg & (1ull << i))
5785 			incr_cntr64(&dd->send_egress_err_status_cnt[i]);
5786 	}
5787 }
5788 
5789 static void handle_txe_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5790 {
5791 	char buf[96];
5792 	int i = 0;
5793 
5794 	dd_dev_info(dd, "Send Error: %s\n",
5795 		    send_err_status_string(buf, sizeof(buf), reg));
5796 
5797 	for (i = 0; i < NUM_SEND_ERR_STATUS_COUNTERS; i++) {
5798 		if (reg & (1ull << i))
5799 			incr_cntr64(&dd->send_err_status_cnt[i]);
5800 	}
5801 }
5802 
5803 /*
5804  * The maximum number of times the error clear down will loop before
5805  * blocking a repeating error.  This value is arbitrary.
5806  */
5807 #define MAX_CLEAR_COUNT 20
5808 
5809 /*
5810  * Clear and handle an error register.  All error interrupts are funneled
5811  * through here to have a central location to correctly handle single-
5812  * or multi-shot errors.
5813  *
5814  * For non per-context registers, call this routine with a context value
5815  * of 0 so the per-context offset is zero.
5816  *
5817  * If the handler loops too many times, assume that something is wrong
5818  * and can't be fixed, so mask the error bits.
5819  */
5820 static void interrupt_clear_down(struct hfi1_devdata *dd,
5821 				 u32 context,
5822 				 const struct err_reg_info *eri)
5823 {
5824 	u64 reg;
5825 	u32 count;
5826 
5827 	/* read in a loop until no more errors are seen */
5828 	count = 0;
5829 	while (1) {
5830 		reg = read_kctxt_csr(dd, context, eri->status);
5831 		if (reg == 0)
5832 			break;
5833 		write_kctxt_csr(dd, context, eri->clear, reg);
5834 		if (likely(eri->handler))
5835 			eri->handler(dd, context, reg);
5836 		count++;
5837 		if (count > MAX_CLEAR_COUNT) {
5838 			u64 mask;
5839 
5840 			dd_dev_err(dd, "Repeating %s bits 0x%llx - masking\n",
5841 				   eri->desc, reg);
5842 			/*
5843 			 * Read-modify-write so any other masked bits
5844 			 * remain masked.
5845 			 */
5846 			mask = read_kctxt_csr(dd, context, eri->mask);
5847 			mask &= ~reg;
5848 			write_kctxt_csr(dd, context, eri->mask, mask);
5849 			break;
5850 		}
5851 	}
5852 }
5853 
5854 /*
5855  * CCE block "misc" interrupt.  Source is < 16.
5856  */
5857 static void is_misc_err_int(struct hfi1_devdata *dd, unsigned int source)
5858 {
5859 	const struct err_reg_info *eri = &misc_errs[source];
5860 
5861 	if (eri->handler) {
5862 		interrupt_clear_down(dd, 0, eri);
5863 	} else {
5864 		dd_dev_err(dd, "Unexpected misc interrupt (%u) - reserved\n",
5865 			   source);
5866 	}
5867 }
5868 
5869 static char *send_context_err_status_string(char *buf, int buf_len, u64 flags)
5870 {
5871 	return flag_string(buf, buf_len, flags,
5872 			   sc_err_status_flags,
5873 			   ARRAY_SIZE(sc_err_status_flags));
5874 }
5875 
5876 /*
5877  * Send context error interrupt.  Source (hw_context) is < 160.
5878  *
5879  * All send context errors cause the send context to halt.  The normal
5880  * clear-down mechanism cannot be used because we cannot clear the
5881  * error bits until several other long-running items are done first.
5882  * This is OK because with the context halted, nothing else is going
5883  * to happen on it anyway.
5884  */
5885 static void is_sendctxt_err_int(struct hfi1_devdata *dd,
5886 				unsigned int hw_context)
5887 {
5888 	struct send_context_info *sci;
5889 	struct send_context *sc;
5890 	char flags[96];
5891 	u64 status;
5892 	u32 sw_index;
5893 	int i = 0;
5894 
5895 	sw_index = dd->hw_to_sw[hw_context];
5896 	if (sw_index >= dd->num_send_contexts) {
5897 		dd_dev_err(dd,
5898 			   "out of range sw index %u for send context %u\n",
5899 			   sw_index, hw_context);
5900 		return;
5901 	}
5902 	sci = &dd->send_contexts[sw_index];
5903 	sc = sci->sc;
5904 	if (!sc) {
5905 		dd_dev_err(dd, "%s: context %u(%u): no sc?\n", __func__,
5906 			   sw_index, hw_context);
5907 		return;
5908 	}
5909 
5910 	/* tell the software that a halt has begun */
5911 	sc_stop(sc, SCF_HALTED);
5912 
5913 	status = read_kctxt_csr(dd, hw_context, SEND_CTXT_ERR_STATUS);
5914 
5915 	dd_dev_info(dd, "Send Context %u(%u) Error: %s\n", sw_index, hw_context,
5916 		    send_context_err_status_string(flags, sizeof(flags),
5917 						   status));
5918 
5919 	if (status & SEND_CTXT_ERR_STATUS_PIO_DISALLOWED_PACKET_ERR_SMASK)
5920 		handle_send_egress_err_info(dd, sc_to_vl(dd, sw_index));
5921 
5922 	/*
5923 	 * Automatically restart halted kernel contexts out of interrupt
5924 	 * context.  User contexts must ask the driver to restart the context.
5925 	 */
5926 	if (sc->type != SC_USER)
5927 		queue_work(dd->pport->hfi1_wq, &sc->halt_work);
5928 
5929 	/*
5930 	 * Update the counters for the corresponding status bits.
5931 	 * Note that these particular counters are aggregated over all
5932 	 * 160 contexts.
5933 	 */
5934 	for (i = 0; i < NUM_SEND_CTXT_ERR_STATUS_COUNTERS; i++) {
5935 		if (status & (1ull << i))
5936 			incr_cntr64(&dd->sw_ctxt_err_status_cnt[i]);
5937 	}
5938 }
5939 
5940 static void handle_sdma_eng_err(struct hfi1_devdata *dd,
5941 				unsigned int source, u64 status)
5942 {
5943 	struct sdma_engine *sde;
5944 	int i = 0;
5945 
5946 	sde = &dd->per_sdma[source];
5947 #ifdef CONFIG_SDMA_VERBOSITY
5948 	dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
5949 		   slashstrip(__FILE__), __LINE__, __func__);
5950 	dd_dev_err(sde->dd, "CONFIG SDMA(%u) source: %u status 0x%llx\n",
5951 		   sde->this_idx, source, (unsigned long long)status);
5952 #endif
5953 	sde->err_cnt++;
5954 	sdma_engine_error(sde, status);
5955 
5956 	/*
5957 	* Update the counters for the corresponding status bits.
5958 	* Note that these particular counters are aggregated over
5959 	* all 16 DMA engines.
5960 	*/
5961 	for (i = 0; i < NUM_SEND_DMA_ENG_ERR_STATUS_COUNTERS; i++) {
5962 		if (status & (1ull << i))
5963 			incr_cntr64(&dd->sw_send_dma_eng_err_status_cnt[i]);
5964 	}
5965 }
5966 
5967 /*
5968  * CCE block SDMA error interrupt.  Source is < 16.
5969  */
5970 static void is_sdma_eng_err_int(struct hfi1_devdata *dd, unsigned int source)
5971 {
5972 #ifdef CONFIG_SDMA_VERBOSITY
5973 	struct sdma_engine *sde = &dd->per_sdma[source];
5974 
5975 	dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
5976 		   slashstrip(__FILE__), __LINE__, __func__);
5977 	dd_dev_err(dd, "CONFIG SDMA(%u) source: %u\n", sde->this_idx,
5978 		   source);
5979 	sdma_dumpstate(sde);
5980 #endif
5981 	interrupt_clear_down(dd, source, &sdma_eng_err);
5982 }
5983 
5984 /*
5985  * CCE block "various" interrupt.  Source is < 8.
5986  */
5987 static void is_various_int(struct hfi1_devdata *dd, unsigned int source)
5988 {
5989 	const struct err_reg_info *eri = &various_err[source];
5990 
5991 	/*
5992 	 * TCritInt cannot go through interrupt_clear_down()
5993 	 * because it is not a second tier interrupt. The handler
5994 	 * should be called directly.
5995 	 */
5996 	if (source == TCRIT_INT_SOURCE)
5997 		handle_temp_err(dd);
5998 	else if (eri->handler)
5999 		interrupt_clear_down(dd, 0, eri);
6000 	else
6001 		dd_dev_info(dd,
6002 			    "%s: Unimplemented/reserved interrupt %d\n",
6003 			    __func__, source);
6004 }
6005 
6006 static void handle_qsfp_int(struct hfi1_devdata *dd, u32 src_ctx, u64 reg)
6007 {
6008 	/* src_ctx is always zero */
6009 	struct hfi1_pportdata *ppd = dd->pport;
6010 	unsigned long flags;
6011 	u64 qsfp_int_mgmt = (u64)(QSFP_HFI0_INT_N | QSFP_HFI0_MODPRST_N);
6012 
6013 	if (reg & QSFP_HFI0_MODPRST_N) {
6014 		if (!qsfp_mod_present(ppd)) {
6015 			dd_dev_info(dd, "%s: QSFP module removed\n",
6016 				    __func__);
6017 
6018 			ppd->driver_link_ready = 0;
6019 			/*
6020 			 * Cable removed, reset all our information about the
6021 			 * cache and cable capabilities
6022 			 */
6023 
6024 			spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
6025 			/*
6026 			 * We don't set cache_refresh_required here as we expect
6027 			 * an interrupt when a cable is inserted
6028 			 */
6029 			ppd->qsfp_info.cache_valid = 0;
6030 			ppd->qsfp_info.reset_needed = 0;
6031 			ppd->qsfp_info.limiting_active = 0;
6032 			spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock,
6033 					       flags);
6034 			/* Invert the ModPresent pin now to detect plug-in */
6035 			write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_INVERT :
6036 				  ASIC_QSFP1_INVERT, qsfp_int_mgmt);
6037 
6038 			if ((ppd->offline_disabled_reason >
6039 			  HFI1_ODR_MASK(
6040 			  OPA_LINKDOWN_REASON_LOCAL_MEDIA_NOT_INSTALLED)) ||
6041 			  (ppd->offline_disabled_reason ==
6042 			  HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE)))
6043 				ppd->offline_disabled_reason =
6044 				HFI1_ODR_MASK(
6045 				OPA_LINKDOWN_REASON_LOCAL_MEDIA_NOT_INSTALLED);
6046 
6047 			if (ppd->host_link_state == HLS_DN_POLL) {
6048 				/*
6049 				 * The link is still in POLL. This means
6050 				 * that the normal link down processing
6051 				 * will not happen. We have to do it here
6052 				 * before turning the DC off.
6053 				 */
6054 				queue_work(ppd->hfi1_wq, &ppd->link_down_work);
6055 			}
6056 		} else {
6057 			dd_dev_info(dd, "%s: QSFP module inserted\n",
6058 				    __func__);
6059 
6060 			spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
6061 			ppd->qsfp_info.cache_valid = 0;
6062 			ppd->qsfp_info.cache_refresh_required = 1;
6063 			spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock,
6064 					       flags);
6065 
6066 			/*
6067 			 * Stop inversion of ModPresent pin to detect
6068 			 * removal of the cable
6069 			 */
6070 			qsfp_int_mgmt &= ~(u64)QSFP_HFI0_MODPRST_N;
6071 			write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_INVERT :
6072 				  ASIC_QSFP1_INVERT, qsfp_int_mgmt);
6073 
6074 			ppd->offline_disabled_reason =
6075 				HFI1_ODR_MASK(OPA_LINKDOWN_REASON_TRANSIENT);
6076 		}
6077 	}
6078 
6079 	if (reg & QSFP_HFI0_INT_N) {
6080 		dd_dev_info(dd, "%s: Interrupt received from QSFP module\n",
6081 			    __func__);
6082 		spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
6083 		ppd->qsfp_info.check_interrupt_flags = 1;
6084 		spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock, flags);
6085 	}
6086 
6087 	/* Schedule the QSFP work only if there is a cable attached. */
6088 	if (qsfp_mod_present(ppd))
6089 		queue_work(ppd->hfi1_wq, &ppd->qsfp_info.qsfp_work);
6090 }
6091 
6092 static int request_host_lcb_access(struct hfi1_devdata *dd)
6093 {
6094 	int ret;
6095 
6096 	ret = do_8051_command(dd, HCMD_MISC,
6097 			      (u64)HCMD_MISC_REQUEST_LCB_ACCESS <<
6098 			      LOAD_DATA_FIELD_ID_SHIFT, NULL);
6099 	if (ret != HCMD_SUCCESS) {
6100 		dd_dev_err(dd, "%s: command failed with error %d\n",
6101 			   __func__, ret);
6102 	}
6103 	return ret == HCMD_SUCCESS ? 0 : -EBUSY;
6104 }
6105 
6106 static int request_8051_lcb_access(struct hfi1_devdata *dd)
6107 {
6108 	int ret;
6109 
6110 	ret = do_8051_command(dd, HCMD_MISC,
6111 			      (u64)HCMD_MISC_GRANT_LCB_ACCESS <<
6112 			      LOAD_DATA_FIELD_ID_SHIFT, NULL);
6113 	if (ret != HCMD_SUCCESS) {
6114 		dd_dev_err(dd, "%s: command failed with error %d\n",
6115 			   __func__, ret);
6116 	}
6117 	return ret == HCMD_SUCCESS ? 0 : -EBUSY;
6118 }
6119 
6120 /*
6121  * Set the LCB selector - allow host access.  The DCC selector always
6122  * points to the host.
6123  */
6124 static inline void set_host_lcb_access(struct hfi1_devdata *dd)
6125 {
6126 	write_csr(dd, DC_DC8051_CFG_CSR_ACCESS_SEL,
6127 		  DC_DC8051_CFG_CSR_ACCESS_SEL_DCC_SMASK |
6128 		  DC_DC8051_CFG_CSR_ACCESS_SEL_LCB_SMASK);
6129 }
6130 
6131 /*
6132  * Clear the LCB selector - allow 8051 access.  The DCC selector always
6133  * points to the host.
6134  */
6135 static inline void set_8051_lcb_access(struct hfi1_devdata *dd)
6136 {
6137 	write_csr(dd, DC_DC8051_CFG_CSR_ACCESS_SEL,
6138 		  DC_DC8051_CFG_CSR_ACCESS_SEL_DCC_SMASK);
6139 }
6140 
6141 /*
6142  * Acquire LCB access from the 8051.  If the host already has access,
6143  * just increment a counter.  Otherwise, inform the 8051 that the
6144  * host is taking access.
6145  *
6146  * Returns:
6147  *	0 on success
6148  *	-EBUSY if the 8051 has control and cannot be disturbed
6149  *	-errno if unable to acquire access from the 8051
6150  */
6151 int acquire_lcb_access(struct hfi1_devdata *dd, int sleep_ok)
6152 {
6153 	struct hfi1_pportdata *ppd = dd->pport;
6154 	int ret = 0;
6155 
6156 	/*
6157 	 * Use the host link state lock so the operation of this routine
6158 	 * { link state check, selector change, count increment } can occur
6159 	 * as a unit against a link state change.  Otherwise there is a
6160 	 * race between the state change and the count increment.
6161 	 */
6162 	if (sleep_ok) {
6163 		mutex_lock(&ppd->hls_lock);
6164 	} else {
6165 		while (!mutex_trylock(&ppd->hls_lock))
6166 			udelay(1);
6167 	}
6168 
6169 	/* this access is valid only when the link is up */
6170 	if (ppd->host_link_state & HLS_DOWN) {
6171 		dd_dev_info(dd, "%s: link state %s not up\n",
6172 			    __func__, link_state_name(ppd->host_link_state));
6173 		ret = -EBUSY;
6174 		goto done;
6175 	}
6176 
6177 	if (dd->lcb_access_count == 0) {
6178 		ret = request_host_lcb_access(dd);
6179 		if (ret) {
6180 			dd_dev_err(dd,
6181 				   "%s: unable to acquire LCB access, err %d\n",
6182 				   __func__, ret);
6183 			goto done;
6184 		}
6185 		set_host_lcb_access(dd);
6186 	}
6187 	dd->lcb_access_count++;
6188 done:
6189 	mutex_unlock(&ppd->hls_lock);
6190 	return ret;
6191 }
6192 
6193 /*
6194  * Release LCB access by decrementing the use count.  If the count is moving
6195  * from 1 to 0, inform 8051 that it has control back.
6196  *
6197  * Returns:
6198  *	0 on success
6199  *	-errno if unable to release access to the 8051
6200  */
6201 int release_lcb_access(struct hfi1_devdata *dd, int sleep_ok)
6202 {
6203 	int ret = 0;
6204 
6205 	/*
6206 	 * Use the host link state lock because the acquire needed it.
6207 	 * Here, we only need to keep { selector change, count decrement }
6208 	 * as a unit.
6209 	 */
6210 	if (sleep_ok) {
6211 		mutex_lock(&dd->pport->hls_lock);
6212 	} else {
6213 		while (!mutex_trylock(&dd->pport->hls_lock))
6214 			udelay(1);
6215 	}
6216 
6217 	if (dd->lcb_access_count == 0) {
6218 		dd_dev_err(dd, "%s: LCB access count is zero.  Skipping.\n",
6219 			   __func__);
6220 		goto done;
6221 	}
6222 
6223 	if (dd->lcb_access_count == 1) {
6224 		set_8051_lcb_access(dd);
6225 		ret = request_8051_lcb_access(dd);
6226 		if (ret) {
6227 			dd_dev_err(dd,
6228 				   "%s: unable to release LCB access, err %d\n",
6229 				   __func__, ret);
6230 			/* restore host access if the grant didn't work */
6231 			set_host_lcb_access(dd);
6232 			goto done;
6233 		}
6234 	}
6235 	dd->lcb_access_count--;
6236 done:
6237 	mutex_unlock(&dd->pport->hls_lock);
6238 	return ret;
6239 }
6240 
6241 /*
6242  * Initialize LCB access variables and state.  Called during driver load,
6243  * after most of the initialization is finished.
6244  *
6245  * The DC default is LCB access on for the host.  The driver defaults to
6246  * leaving access to the 8051.  Assign access now - this constrains the call
6247  * to this routine to be after all LCB set-up is done.  In particular, after
6248  * hf1_init_dd() -> set_up_interrupts() -> clear_all_interrupts()
6249  */
6250 static void init_lcb_access(struct hfi1_devdata *dd)
6251 {
6252 	dd->lcb_access_count = 0;
6253 }
6254 
6255 /*
6256  * Write a response back to a 8051 request.
6257  */
6258 static void hreq_response(struct hfi1_devdata *dd, u8 return_code, u16 rsp_data)
6259 {
6260 	write_csr(dd, DC_DC8051_CFG_EXT_DEV_0,
6261 		  DC_DC8051_CFG_EXT_DEV_0_COMPLETED_SMASK |
6262 		  (u64)return_code <<
6263 		  DC_DC8051_CFG_EXT_DEV_0_RETURN_CODE_SHIFT |
6264 		  (u64)rsp_data << DC_DC8051_CFG_EXT_DEV_0_RSP_DATA_SHIFT);
6265 }
6266 
6267 /*
6268  * Handle host requests from the 8051.
6269  */
6270 static void handle_8051_request(struct hfi1_pportdata *ppd)
6271 {
6272 	struct hfi1_devdata *dd = ppd->dd;
6273 	u64 reg;
6274 	u16 data = 0;
6275 	u8 type;
6276 
6277 	reg = read_csr(dd, DC_DC8051_CFG_EXT_DEV_1);
6278 	if ((reg & DC_DC8051_CFG_EXT_DEV_1_REQ_NEW_SMASK) == 0)
6279 		return;	/* no request */
6280 
6281 	/* zero out COMPLETED so the response is seen */
6282 	write_csr(dd, DC_DC8051_CFG_EXT_DEV_0, 0);
6283 
6284 	/* extract request details */
6285 	type = (reg >> DC_DC8051_CFG_EXT_DEV_1_REQ_TYPE_SHIFT)
6286 			& DC_DC8051_CFG_EXT_DEV_1_REQ_TYPE_MASK;
6287 	data = (reg >> DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SHIFT)
6288 			& DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_MASK;
6289 
6290 	switch (type) {
6291 	case HREQ_LOAD_CONFIG:
6292 	case HREQ_SAVE_CONFIG:
6293 	case HREQ_READ_CONFIG:
6294 	case HREQ_SET_TX_EQ_ABS:
6295 	case HREQ_SET_TX_EQ_REL:
6296 	case HREQ_ENABLE:
6297 		dd_dev_info(dd, "8051 request: request 0x%x not supported\n",
6298 			    type);
6299 		hreq_response(dd, HREQ_NOT_SUPPORTED, 0);
6300 		break;
6301 	case HREQ_CONFIG_DONE:
6302 		hreq_response(dd, HREQ_SUCCESS, 0);
6303 		break;
6304 
6305 	case HREQ_INTERFACE_TEST:
6306 		hreq_response(dd, HREQ_SUCCESS, data);
6307 		break;
6308 	default:
6309 		dd_dev_err(dd, "8051 request: unknown request 0x%x\n", type);
6310 		hreq_response(dd, HREQ_NOT_SUPPORTED, 0);
6311 		break;
6312 	}
6313 }
6314 
6315 static void write_global_credit(struct hfi1_devdata *dd,
6316 				u8 vau, u16 total, u16 shared)
6317 {
6318 	write_csr(dd, SEND_CM_GLOBAL_CREDIT,
6319 		  ((u64)total <<
6320 		   SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT) |
6321 		  ((u64)shared <<
6322 		   SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SHIFT) |
6323 		  ((u64)vau << SEND_CM_GLOBAL_CREDIT_AU_SHIFT));
6324 }
6325 
6326 /*
6327  * Set up initial VL15 credits of the remote.  Assumes the rest of
6328  * the CM credit registers are zero from a previous global or credit reset .
6329  */
6330 void set_up_vl15(struct hfi1_devdata *dd, u8 vau, u16 vl15buf)
6331 {
6332 	/* leave shared count at zero for both global and VL15 */
6333 	write_global_credit(dd, vau, vl15buf, 0);
6334 
6335 	write_csr(dd, SEND_CM_CREDIT_VL15, (u64)vl15buf
6336 		  << SEND_CM_CREDIT_VL15_DEDICATED_LIMIT_VL_SHIFT);
6337 }
6338 
6339 /*
6340  * Zero all credit details from the previous connection and
6341  * reset the CM manager's internal counters.
6342  */
6343 void reset_link_credits(struct hfi1_devdata *dd)
6344 {
6345 	int i;
6346 
6347 	/* remove all previous VL credit limits */
6348 	for (i = 0; i < TXE_NUM_DATA_VL; i++)
6349 		write_csr(dd, SEND_CM_CREDIT_VL + (8 * i), 0);
6350 	write_csr(dd, SEND_CM_CREDIT_VL15, 0);
6351 	write_global_credit(dd, 0, 0, 0);
6352 	/* reset the CM block */
6353 	pio_send_control(dd, PSC_CM_RESET);
6354 }
6355 
6356 /* convert a vCU to a CU */
6357 static u32 vcu_to_cu(u8 vcu)
6358 {
6359 	return 1 << vcu;
6360 }
6361 
6362 /* convert a CU to a vCU */
6363 static u8 cu_to_vcu(u32 cu)
6364 {
6365 	return ilog2(cu);
6366 }
6367 
6368 /* convert a vAU to an AU */
6369 static u32 vau_to_au(u8 vau)
6370 {
6371 	return 8 * (1 << vau);
6372 }
6373 
6374 static void set_linkup_defaults(struct hfi1_pportdata *ppd)
6375 {
6376 	ppd->sm_trap_qp = 0x0;
6377 	ppd->sa_qp = 0x1;
6378 }
6379 
6380 /*
6381  * Graceful LCB shutdown.  This leaves the LCB FIFOs in reset.
6382  */
6383 static void lcb_shutdown(struct hfi1_devdata *dd, int abort)
6384 {
6385 	u64 reg;
6386 
6387 	/* clear lcb run: LCB_CFG_RUN.EN = 0 */
6388 	write_csr(dd, DC_LCB_CFG_RUN, 0);
6389 	/* set tx fifo reset: LCB_CFG_TX_FIFOS_RESET.VAL = 1 */
6390 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET,
6391 		  1ull << DC_LCB_CFG_TX_FIFOS_RESET_VAL_SHIFT);
6392 	/* set dcc reset csr: DCC_CFG_RESET.{reset_lcb,reset_rx_fpe} = 1 */
6393 	dd->lcb_err_en = read_csr(dd, DC_LCB_ERR_EN);
6394 	reg = read_csr(dd, DCC_CFG_RESET);
6395 	write_csr(dd, DCC_CFG_RESET, reg |
6396 		  (1ull << DCC_CFG_RESET_RESET_LCB_SHIFT) |
6397 		  (1ull << DCC_CFG_RESET_RESET_RX_FPE_SHIFT));
6398 	(void)read_csr(dd, DCC_CFG_RESET); /* make sure the write completed */
6399 	if (!abort) {
6400 		udelay(1);    /* must hold for the longer of 16cclks or 20ns */
6401 		write_csr(dd, DCC_CFG_RESET, reg);
6402 		write_csr(dd, DC_LCB_ERR_EN, dd->lcb_err_en);
6403 	}
6404 }
6405 
6406 /*
6407  * This routine should be called after the link has been transitioned to
6408  * OFFLINE (OFFLINE state has the side effect of putting the SerDes into
6409  * reset).
6410  *
6411  * The expectation is that the caller of this routine would have taken
6412  * care of properly transitioning the link into the correct state.
6413  * NOTE: the caller needs to acquire the dd->dc8051_lock lock
6414  *       before calling this function.
6415  */
6416 static void _dc_shutdown(struct hfi1_devdata *dd)
6417 {
6418 	lockdep_assert_held(&dd->dc8051_lock);
6419 
6420 	if (dd->dc_shutdown)
6421 		return;
6422 
6423 	dd->dc_shutdown = 1;
6424 	/* Shutdown the LCB */
6425 	lcb_shutdown(dd, 1);
6426 	/*
6427 	 * Going to OFFLINE would have causes the 8051 to put the
6428 	 * SerDes into reset already. Just need to shut down the 8051,
6429 	 * itself.
6430 	 */
6431 	write_csr(dd, DC_DC8051_CFG_RST, 0x1);
6432 }
6433 
6434 static void dc_shutdown(struct hfi1_devdata *dd)
6435 {
6436 	mutex_lock(&dd->dc8051_lock);
6437 	_dc_shutdown(dd);
6438 	mutex_unlock(&dd->dc8051_lock);
6439 }
6440 
6441 /*
6442  * Calling this after the DC has been brought out of reset should not
6443  * do any damage.
6444  * NOTE: the caller needs to acquire the dd->dc8051_lock lock
6445  *       before calling this function.
6446  */
6447 static void _dc_start(struct hfi1_devdata *dd)
6448 {
6449 	lockdep_assert_held(&dd->dc8051_lock);
6450 
6451 	if (!dd->dc_shutdown)
6452 		return;
6453 
6454 	/* Take the 8051 out of reset */
6455 	write_csr(dd, DC_DC8051_CFG_RST, 0ull);
6456 	/* Wait until 8051 is ready */
6457 	if (wait_fm_ready(dd, TIMEOUT_8051_START))
6458 		dd_dev_err(dd, "%s: timeout starting 8051 firmware\n",
6459 			   __func__);
6460 
6461 	/* Take away reset for LCB and RX FPE (set in lcb_shutdown). */
6462 	write_csr(dd, DCC_CFG_RESET, 0x10);
6463 	/* lcb_shutdown() with abort=1 does not restore these */
6464 	write_csr(dd, DC_LCB_ERR_EN, dd->lcb_err_en);
6465 	dd->dc_shutdown = 0;
6466 }
6467 
6468 static void dc_start(struct hfi1_devdata *dd)
6469 {
6470 	mutex_lock(&dd->dc8051_lock);
6471 	_dc_start(dd);
6472 	mutex_unlock(&dd->dc8051_lock);
6473 }
6474 
6475 /*
6476  * These LCB adjustments are for the Aurora SerDes core in the FPGA.
6477  */
6478 static void adjust_lcb_for_fpga_serdes(struct hfi1_devdata *dd)
6479 {
6480 	u64 rx_radr, tx_radr;
6481 	u32 version;
6482 
6483 	if (dd->icode != ICODE_FPGA_EMULATION)
6484 		return;
6485 
6486 	/*
6487 	 * These LCB defaults on emulator _s are good, nothing to do here:
6488 	 *	LCB_CFG_TX_FIFOS_RADR
6489 	 *	LCB_CFG_RX_FIFOS_RADR
6490 	 *	LCB_CFG_LN_DCLK
6491 	 *	LCB_CFG_IGNORE_LOST_RCLK
6492 	 */
6493 	if (is_emulator_s(dd))
6494 		return;
6495 	/* else this is _p */
6496 
6497 	version = emulator_rev(dd);
6498 	if (!is_ax(dd))
6499 		version = 0x2d;	/* all B0 use 0x2d or higher settings */
6500 
6501 	if (version <= 0x12) {
6502 		/* release 0x12 and below */
6503 
6504 		/*
6505 		 * LCB_CFG_RX_FIFOS_RADR.RST_VAL = 0x9
6506 		 * LCB_CFG_RX_FIFOS_RADR.OK_TO_JUMP_VAL = 0x9
6507 		 * LCB_CFG_RX_FIFOS_RADR.DO_NOT_JUMP_VAL = 0xa
6508 		 */
6509 		rx_radr =
6510 		      0xaull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6511 		    | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6512 		    | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6513 		/*
6514 		 * LCB_CFG_TX_FIFOS_RADR.ON_REINIT = 0 (default)
6515 		 * LCB_CFG_TX_FIFOS_RADR.RST_VAL = 6
6516 		 */
6517 		tx_radr = 6ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6518 	} else if (version <= 0x18) {
6519 		/* release 0x13 up to 0x18 */
6520 		/* LCB_CFG_RX_FIFOS_RADR = 0x988 */
6521 		rx_radr =
6522 		      0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6523 		    | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6524 		    | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6525 		tx_radr = 7ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6526 	} else if (version == 0x19) {
6527 		/* release 0x19 */
6528 		/* LCB_CFG_RX_FIFOS_RADR = 0xa99 */
6529 		rx_radr =
6530 		      0xAull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6531 		    | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6532 		    | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6533 		tx_radr = 3ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6534 	} else if (version == 0x1a) {
6535 		/* release 0x1a */
6536 		/* LCB_CFG_RX_FIFOS_RADR = 0x988 */
6537 		rx_radr =
6538 		      0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6539 		    | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6540 		    | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6541 		tx_radr = 7ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6542 		write_csr(dd, DC_LCB_CFG_LN_DCLK, 1ull);
6543 	} else {
6544 		/* release 0x1b and higher */
6545 		/* LCB_CFG_RX_FIFOS_RADR = 0x877 */
6546 		rx_radr =
6547 		      0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6548 		    | 0x7ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6549 		    | 0x7ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6550 		tx_radr = 3ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6551 	}
6552 
6553 	write_csr(dd, DC_LCB_CFG_RX_FIFOS_RADR, rx_radr);
6554 	/* LCB_CFG_IGNORE_LOST_RCLK.EN = 1 */
6555 	write_csr(dd, DC_LCB_CFG_IGNORE_LOST_RCLK,
6556 		  DC_LCB_CFG_IGNORE_LOST_RCLK_EN_SMASK);
6557 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RADR, tx_radr);
6558 }
6559 
6560 /*
6561  * Handle a SMA idle message
6562  *
6563  * This is a work-queue function outside of the interrupt.
6564  */
6565 void handle_sma_message(struct work_struct *work)
6566 {
6567 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
6568 							sma_message_work);
6569 	struct hfi1_devdata *dd = ppd->dd;
6570 	u64 msg;
6571 	int ret;
6572 
6573 	/*
6574 	 * msg is bytes 1-4 of the 40-bit idle message - the command code
6575 	 * is stripped off
6576 	 */
6577 	ret = read_idle_sma(dd, &msg);
6578 	if (ret)
6579 		return;
6580 	dd_dev_info(dd, "%s: SMA message 0x%llx\n", __func__, msg);
6581 	/*
6582 	 * React to the SMA message.  Byte[1] (0 for us) is the command.
6583 	 */
6584 	switch (msg & 0xff) {
6585 	case SMA_IDLE_ARM:
6586 		/*
6587 		 * See OPAv1 table 9-14 - HFI and External Switch Ports Key
6588 		 * State Transitions
6589 		 *
6590 		 * Only expected in INIT or ARMED, discard otherwise.
6591 		 */
6592 		if (ppd->host_link_state & (HLS_UP_INIT | HLS_UP_ARMED))
6593 			ppd->neighbor_normal = 1;
6594 		break;
6595 	case SMA_IDLE_ACTIVE:
6596 		/*
6597 		 * See OPAv1 table 9-14 - HFI and External Switch Ports Key
6598 		 * State Transitions
6599 		 *
6600 		 * Can activate the node.  Discard otherwise.
6601 		 */
6602 		if (ppd->host_link_state == HLS_UP_ARMED &&
6603 		    ppd->is_active_optimize_enabled) {
6604 			ppd->neighbor_normal = 1;
6605 			ret = set_link_state(ppd, HLS_UP_ACTIVE);
6606 			if (ret)
6607 				dd_dev_err(
6608 					dd,
6609 					"%s: received Active SMA idle message, couldn't set link to Active\n",
6610 					__func__);
6611 		}
6612 		break;
6613 	default:
6614 		dd_dev_err(dd,
6615 			   "%s: received unexpected SMA idle message 0x%llx\n",
6616 			   __func__, msg);
6617 		break;
6618 	}
6619 }
6620 
6621 static void adjust_rcvctrl(struct hfi1_devdata *dd, u64 add, u64 clear)
6622 {
6623 	u64 rcvctrl;
6624 	unsigned long flags;
6625 
6626 	spin_lock_irqsave(&dd->rcvctrl_lock, flags);
6627 	rcvctrl = read_csr(dd, RCV_CTRL);
6628 	rcvctrl |= add;
6629 	rcvctrl &= ~clear;
6630 	write_csr(dd, RCV_CTRL, rcvctrl);
6631 	spin_unlock_irqrestore(&dd->rcvctrl_lock, flags);
6632 }
6633 
6634 static inline void add_rcvctrl(struct hfi1_devdata *dd, u64 add)
6635 {
6636 	adjust_rcvctrl(dd, add, 0);
6637 }
6638 
6639 static inline void clear_rcvctrl(struct hfi1_devdata *dd, u64 clear)
6640 {
6641 	adjust_rcvctrl(dd, 0, clear);
6642 }
6643 
6644 /*
6645  * Called from all interrupt handlers to start handling an SPC freeze.
6646  */
6647 void start_freeze_handling(struct hfi1_pportdata *ppd, int flags)
6648 {
6649 	struct hfi1_devdata *dd = ppd->dd;
6650 	struct send_context *sc;
6651 	int i;
6652 
6653 	if (flags & FREEZE_SELF)
6654 		write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_FREEZE_SMASK);
6655 
6656 	/* enter frozen mode */
6657 	dd->flags |= HFI1_FROZEN;
6658 
6659 	/* notify all SDMA engines that they are going into a freeze */
6660 	sdma_freeze_notify(dd, !!(flags & FREEZE_LINK_DOWN));
6661 
6662 	/* do halt pre-handling on all enabled send contexts */
6663 	for (i = 0; i < dd->num_send_contexts; i++) {
6664 		sc = dd->send_contexts[i].sc;
6665 		if (sc && (sc->flags & SCF_ENABLED))
6666 			sc_stop(sc, SCF_FROZEN | SCF_HALTED);
6667 	}
6668 
6669 	/* Send context are frozen. Notify user space */
6670 	hfi1_set_uevent_bits(ppd, _HFI1_EVENT_FROZEN_BIT);
6671 
6672 	if (flags & FREEZE_ABORT) {
6673 		dd_dev_err(dd,
6674 			   "Aborted freeze recovery. Please REBOOT system\n");
6675 		return;
6676 	}
6677 	/* queue non-interrupt handler */
6678 	queue_work(ppd->hfi1_wq, &ppd->freeze_work);
6679 }
6680 
6681 /*
6682  * Wait until all 4 sub-blocks indicate that they have frozen or unfrozen,
6683  * depending on the "freeze" parameter.
6684  *
6685  * No need to return an error if it times out, our only option
6686  * is to proceed anyway.
6687  */
6688 static void wait_for_freeze_status(struct hfi1_devdata *dd, int freeze)
6689 {
6690 	unsigned long timeout;
6691 	u64 reg;
6692 
6693 	timeout = jiffies + msecs_to_jiffies(FREEZE_STATUS_TIMEOUT);
6694 	while (1) {
6695 		reg = read_csr(dd, CCE_STATUS);
6696 		if (freeze) {
6697 			/* waiting until all indicators are set */
6698 			if ((reg & ALL_FROZE) == ALL_FROZE)
6699 				return;	/* all done */
6700 		} else {
6701 			/* waiting until all indicators are clear */
6702 			if ((reg & ALL_FROZE) == 0)
6703 				return; /* all done */
6704 		}
6705 
6706 		if (time_after(jiffies, timeout)) {
6707 			dd_dev_err(dd,
6708 				   "Time out waiting for SPC %sfreeze, bits 0x%llx, expecting 0x%llx, continuing",
6709 				   freeze ? "" : "un", reg & ALL_FROZE,
6710 				   freeze ? ALL_FROZE : 0ull);
6711 			return;
6712 		}
6713 		usleep_range(80, 120);
6714 	}
6715 }
6716 
6717 /*
6718  * Do all freeze handling for the RXE block.
6719  */
6720 static void rxe_freeze(struct hfi1_devdata *dd)
6721 {
6722 	int i;
6723 
6724 	/* disable port */
6725 	clear_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
6726 
6727 	/* disable all receive contexts */
6728 	for (i = 0; i < dd->num_rcv_contexts; i++)
6729 		hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_DIS, i);
6730 }
6731 
6732 /*
6733  * Unfreeze handling for the RXE block - kernel contexts only.
6734  * This will also enable the port.  User contexts will do unfreeze
6735  * handling on a per-context basis as they call into the driver.
6736  *
6737  */
6738 static void rxe_kernel_unfreeze(struct hfi1_devdata *dd)
6739 {
6740 	u32 rcvmask;
6741 	int i;
6742 
6743 	/* enable all kernel contexts */
6744 	for (i = 0; i < dd->num_rcv_contexts; i++) {
6745 		struct hfi1_ctxtdata *rcd = dd->rcd[i];
6746 
6747 		/* Ensure all non-user contexts(including vnic) are enabled */
6748 		if (!rcd || !rcd->sc || (rcd->sc->type == SC_USER))
6749 			continue;
6750 
6751 		rcvmask = HFI1_RCVCTRL_CTXT_ENB;
6752 		/* HFI1_RCVCTRL_TAILUPD_[ENB|DIS] needs to be set explicitly */
6753 		rcvmask |= HFI1_CAP_KGET_MASK(dd->rcd[i]->flags, DMA_RTAIL) ?
6754 			HFI1_RCVCTRL_TAILUPD_ENB : HFI1_RCVCTRL_TAILUPD_DIS;
6755 		hfi1_rcvctrl(dd, rcvmask, i);
6756 	}
6757 
6758 	/* enable port */
6759 	add_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
6760 }
6761 
6762 /*
6763  * Non-interrupt SPC freeze handling.
6764  *
6765  * This is a work-queue function outside of the triggering interrupt.
6766  */
6767 void handle_freeze(struct work_struct *work)
6768 {
6769 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
6770 								freeze_work);
6771 	struct hfi1_devdata *dd = ppd->dd;
6772 
6773 	/* wait for freeze indicators on all affected blocks */
6774 	wait_for_freeze_status(dd, 1);
6775 
6776 	/* SPC is now frozen */
6777 
6778 	/* do send PIO freeze steps */
6779 	pio_freeze(dd);
6780 
6781 	/* do send DMA freeze steps */
6782 	sdma_freeze(dd);
6783 
6784 	/* do send egress freeze steps - nothing to do */
6785 
6786 	/* do receive freeze steps */
6787 	rxe_freeze(dd);
6788 
6789 	/*
6790 	 * Unfreeze the hardware - clear the freeze, wait for each
6791 	 * block's frozen bit to clear, then clear the frozen flag.
6792 	 */
6793 	write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_UNFREEZE_SMASK);
6794 	wait_for_freeze_status(dd, 0);
6795 
6796 	if (is_ax(dd)) {
6797 		write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_FREEZE_SMASK);
6798 		wait_for_freeze_status(dd, 1);
6799 		write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_UNFREEZE_SMASK);
6800 		wait_for_freeze_status(dd, 0);
6801 	}
6802 
6803 	/* do send PIO unfreeze steps for kernel contexts */
6804 	pio_kernel_unfreeze(dd);
6805 
6806 	/* do send DMA unfreeze steps */
6807 	sdma_unfreeze(dd);
6808 
6809 	/* do send egress unfreeze steps - nothing to do */
6810 
6811 	/* do receive unfreeze steps for kernel contexts */
6812 	rxe_kernel_unfreeze(dd);
6813 
6814 	/*
6815 	 * The unfreeze procedure touches global device registers when
6816 	 * it disables and re-enables RXE. Mark the device unfrozen
6817 	 * after all that is done so other parts of the driver waiting
6818 	 * for the device to unfreeze don't do things out of order.
6819 	 *
6820 	 * The above implies that the meaning of HFI1_FROZEN flag is
6821 	 * "Device has gone into freeze mode and freeze mode handling
6822 	 * is still in progress."
6823 	 *
6824 	 * The flag will be removed when freeze mode processing has
6825 	 * completed.
6826 	 */
6827 	dd->flags &= ~HFI1_FROZEN;
6828 	wake_up(&dd->event_queue);
6829 
6830 	/* no longer frozen */
6831 }
6832 
6833 /*
6834  * Handle a link up interrupt from the 8051.
6835  *
6836  * This is a work-queue function outside of the interrupt.
6837  */
6838 void handle_link_up(struct work_struct *work)
6839 {
6840 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
6841 						  link_up_work);
6842 	set_link_state(ppd, HLS_UP_INIT);
6843 
6844 	/* cache the read of DC_LCB_STS_ROUND_TRIP_LTP_CNT */
6845 	read_ltp_rtt(ppd->dd);
6846 	/*
6847 	 * OPA specifies that certain counters are cleared on a transition
6848 	 * to link up, so do that.
6849 	 */
6850 	clear_linkup_counters(ppd->dd);
6851 	/*
6852 	 * And (re)set link up default values.
6853 	 */
6854 	set_linkup_defaults(ppd);
6855 
6856 	/* enforce link speed enabled */
6857 	if ((ppd->link_speed_active & ppd->link_speed_enabled) == 0) {
6858 		/* oops - current speed is not enabled, bounce */
6859 		dd_dev_err(ppd->dd,
6860 			   "Link speed active 0x%x is outside enabled 0x%x, downing link\n",
6861 			   ppd->link_speed_active, ppd->link_speed_enabled);
6862 		set_link_down_reason(ppd, OPA_LINKDOWN_REASON_SPEED_POLICY, 0,
6863 				     OPA_LINKDOWN_REASON_SPEED_POLICY);
6864 		set_link_state(ppd, HLS_DN_OFFLINE);
6865 		start_link(ppd);
6866 	}
6867 }
6868 
6869 /*
6870  * Several pieces of LNI information were cached for SMA in ppd.
6871  * Reset these on link down
6872  */
6873 static void reset_neighbor_info(struct hfi1_pportdata *ppd)
6874 {
6875 	ppd->neighbor_guid = 0;
6876 	ppd->neighbor_port_number = 0;
6877 	ppd->neighbor_type = 0;
6878 	ppd->neighbor_fm_security = 0;
6879 }
6880 
6881 static const char * const link_down_reason_strs[] = {
6882 	[OPA_LINKDOWN_REASON_NONE] = "None",
6883 	[OPA_LINKDOWN_REASON_RCV_ERROR_0] = "Recive error 0",
6884 	[OPA_LINKDOWN_REASON_BAD_PKT_LEN] = "Bad packet length",
6885 	[OPA_LINKDOWN_REASON_PKT_TOO_LONG] = "Packet too long",
6886 	[OPA_LINKDOWN_REASON_PKT_TOO_SHORT] = "Packet too short",
6887 	[OPA_LINKDOWN_REASON_BAD_SLID] = "Bad SLID",
6888 	[OPA_LINKDOWN_REASON_BAD_DLID] = "Bad DLID",
6889 	[OPA_LINKDOWN_REASON_BAD_L2] = "Bad L2",
6890 	[OPA_LINKDOWN_REASON_BAD_SC] = "Bad SC",
6891 	[OPA_LINKDOWN_REASON_RCV_ERROR_8] = "Receive error 8",
6892 	[OPA_LINKDOWN_REASON_BAD_MID_TAIL] = "Bad mid tail",
6893 	[OPA_LINKDOWN_REASON_RCV_ERROR_10] = "Receive error 10",
6894 	[OPA_LINKDOWN_REASON_PREEMPT_ERROR] = "Preempt error",
6895 	[OPA_LINKDOWN_REASON_PREEMPT_VL15] = "Preempt vl15",
6896 	[OPA_LINKDOWN_REASON_BAD_VL_MARKER] = "Bad VL marker",
6897 	[OPA_LINKDOWN_REASON_RCV_ERROR_14] = "Receive error 14",
6898 	[OPA_LINKDOWN_REASON_RCV_ERROR_15] = "Receive error 15",
6899 	[OPA_LINKDOWN_REASON_BAD_HEAD_DIST] = "Bad head distance",
6900 	[OPA_LINKDOWN_REASON_BAD_TAIL_DIST] = "Bad tail distance",
6901 	[OPA_LINKDOWN_REASON_BAD_CTRL_DIST] = "Bad control distance",
6902 	[OPA_LINKDOWN_REASON_BAD_CREDIT_ACK] = "Bad credit ack",
6903 	[OPA_LINKDOWN_REASON_UNSUPPORTED_VL_MARKER] = "Unsupported VL marker",
6904 	[OPA_LINKDOWN_REASON_BAD_PREEMPT] = "Bad preempt",
6905 	[OPA_LINKDOWN_REASON_BAD_CONTROL_FLIT] = "Bad control flit",
6906 	[OPA_LINKDOWN_REASON_EXCEED_MULTICAST_LIMIT] = "Exceed multicast limit",
6907 	[OPA_LINKDOWN_REASON_RCV_ERROR_24] = "Receive error 24",
6908 	[OPA_LINKDOWN_REASON_RCV_ERROR_25] = "Receive error 25",
6909 	[OPA_LINKDOWN_REASON_RCV_ERROR_26] = "Receive error 26",
6910 	[OPA_LINKDOWN_REASON_RCV_ERROR_27] = "Receive error 27",
6911 	[OPA_LINKDOWN_REASON_RCV_ERROR_28] = "Receive error 28",
6912 	[OPA_LINKDOWN_REASON_RCV_ERROR_29] = "Receive error 29",
6913 	[OPA_LINKDOWN_REASON_RCV_ERROR_30] = "Receive error 30",
6914 	[OPA_LINKDOWN_REASON_EXCESSIVE_BUFFER_OVERRUN] =
6915 					"Excessive buffer overrun",
6916 	[OPA_LINKDOWN_REASON_UNKNOWN] = "Unknown",
6917 	[OPA_LINKDOWN_REASON_REBOOT] = "Reboot",
6918 	[OPA_LINKDOWN_REASON_NEIGHBOR_UNKNOWN] = "Neighbor unknown",
6919 	[OPA_LINKDOWN_REASON_FM_BOUNCE] = "FM bounce",
6920 	[OPA_LINKDOWN_REASON_SPEED_POLICY] = "Speed policy",
6921 	[OPA_LINKDOWN_REASON_WIDTH_POLICY] = "Width policy",
6922 	[OPA_LINKDOWN_REASON_DISCONNECTED] = "Disconnected",
6923 	[OPA_LINKDOWN_REASON_LOCAL_MEDIA_NOT_INSTALLED] =
6924 					"Local media not installed",
6925 	[OPA_LINKDOWN_REASON_NOT_INSTALLED] = "Not installed",
6926 	[OPA_LINKDOWN_REASON_CHASSIS_CONFIG] = "Chassis config",
6927 	[OPA_LINKDOWN_REASON_END_TO_END_NOT_INSTALLED] =
6928 					"End to end not installed",
6929 	[OPA_LINKDOWN_REASON_POWER_POLICY] = "Power policy",
6930 	[OPA_LINKDOWN_REASON_LINKSPEED_POLICY] = "Link speed policy",
6931 	[OPA_LINKDOWN_REASON_LINKWIDTH_POLICY] = "Link width policy",
6932 	[OPA_LINKDOWN_REASON_SWITCH_MGMT] = "Switch management",
6933 	[OPA_LINKDOWN_REASON_SMA_DISABLED] = "SMA disabled",
6934 	[OPA_LINKDOWN_REASON_TRANSIENT] = "Transient"
6935 };
6936 
6937 /* return the neighbor link down reason string */
6938 static const char *link_down_reason_str(u8 reason)
6939 {
6940 	const char *str = NULL;
6941 
6942 	if (reason < ARRAY_SIZE(link_down_reason_strs))
6943 		str = link_down_reason_strs[reason];
6944 	if (!str)
6945 		str = "(invalid)";
6946 
6947 	return str;
6948 }
6949 
6950 /*
6951  * Handle a link down interrupt from the 8051.
6952  *
6953  * This is a work-queue function outside of the interrupt.
6954  */
6955 void handle_link_down(struct work_struct *work)
6956 {
6957 	u8 lcl_reason, neigh_reason = 0;
6958 	u8 link_down_reason;
6959 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
6960 						  link_down_work);
6961 	int was_up;
6962 	static const char ldr_str[] = "Link down reason: ";
6963 
6964 	if ((ppd->host_link_state &
6965 	     (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) &&
6966 	     ppd->port_type == PORT_TYPE_FIXED)
6967 		ppd->offline_disabled_reason =
6968 			HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NOT_INSTALLED);
6969 
6970 	/* Go offline first, then deal with reading/writing through 8051 */
6971 	was_up = !!(ppd->host_link_state & HLS_UP);
6972 	set_link_state(ppd, HLS_DN_OFFLINE);
6973 
6974 	if (was_up) {
6975 		lcl_reason = 0;
6976 		/* link down reason is only valid if the link was up */
6977 		read_link_down_reason(ppd->dd, &link_down_reason);
6978 		switch (link_down_reason) {
6979 		case LDR_LINK_TRANSFER_ACTIVE_LOW:
6980 			/* the link went down, no idle message reason */
6981 			dd_dev_info(ppd->dd, "%sUnexpected link down\n",
6982 				    ldr_str);
6983 			break;
6984 		case LDR_RECEIVED_LINKDOWN_IDLE_MSG:
6985 			/*
6986 			 * The neighbor reason is only valid if an idle message
6987 			 * was received for it.
6988 			 */
6989 			read_planned_down_reason_code(ppd->dd, &neigh_reason);
6990 			dd_dev_info(ppd->dd,
6991 				    "%sNeighbor link down message %d, %s\n",
6992 				    ldr_str, neigh_reason,
6993 				    link_down_reason_str(neigh_reason));
6994 			break;
6995 		case LDR_RECEIVED_HOST_OFFLINE_REQ:
6996 			dd_dev_info(ppd->dd,
6997 				    "%sHost requested link to go offline\n",
6998 				    ldr_str);
6999 			break;
7000 		default:
7001 			dd_dev_info(ppd->dd, "%sUnknown reason 0x%x\n",
7002 				    ldr_str, link_down_reason);
7003 			break;
7004 		}
7005 
7006 		/*
7007 		 * If no reason, assume peer-initiated but missed
7008 		 * LinkGoingDown idle flits.
7009 		 */
7010 		if (neigh_reason == 0)
7011 			lcl_reason = OPA_LINKDOWN_REASON_NEIGHBOR_UNKNOWN;
7012 	} else {
7013 		/* went down while polling or going up */
7014 		lcl_reason = OPA_LINKDOWN_REASON_TRANSIENT;
7015 	}
7016 
7017 	set_link_down_reason(ppd, lcl_reason, neigh_reason, 0);
7018 
7019 	/* inform the SMA when the link transitions from up to down */
7020 	if (was_up && ppd->local_link_down_reason.sma == 0 &&
7021 	    ppd->neigh_link_down_reason.sma == 0) {
7022 		ppd->local_link_down_reason.sma =
7023 					ppd->local_link_down_reason.latest;
7024 		ppd->neigh_link_down_reason.sma =
7025 					ppd->neigh_link_down_reason.latest;
7026 	}
7027 
7028 	reset_neighbor_info(ppd);
7029 
7030 	/* disable the port */
7031 	clear_rcvctrl(ppd->dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
7032 
7033 	/*
7034 	 * If there is no cable attached, turn the DC off. Otherwise,
7035 	 * start the link bring up.
7036 	 */
7037 	if (ppd->port_type == PORT_TYPE_QSFP && !qsfp_mod_present(ppd))
7038 		dc_shutdown(ppd->dd);
7039 	else
7040 		start_link(ppd);
7041 }
7042 
7043 void handle_link_bounce(struct work_struct *work)
7044 {
7045 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
7046 							link_bounce_work);
7047 
7048 	/*
7049 	 * Only do something if the link is currently up.
7050 	 */
7051 	if (ppd->host_link_state & HLS_UP) {
7052 		set_link_state(ppd, HLS_DN_OFFLINE);
7053 		start_link(ppd);
7054 	} else {
7055 		dd_dev_info(ppd->dd, "%s: link not up (%s), nothing to do\n",
7056 			    __func__, link_state_name(ppd->host_link_state));
7057 	}
7058 }
7059 
7060 /*
7061  * Mask conversion: Capability exchange to Port LTP.  The capability
7062  * exchange has an implicit 16b CRC that is mandatory.
7063  */
7064 static int cap_to_port_ltp(int cap)
7065 {
7066 	int port_ltp = PORT_LTP_CRC_MODE_16; /* this mode is mandatory */
7067 
7068 	if (cap & CAP_CRC_14B)
7069 		port_ltp |= PORT_LTP_CRC_MODE_14;
7070 	if (cap & CAP_CRC_48B)
7071 		port_ltp |= PORT_LTP_CRC_MODE_48;
7072 	if (cap & CAP_CRC_12B_16B_PER_LANE)
7073 		port_ltp |= PORT_LTP_CRC_MODE_PER_LANE;
7074 
7075 	return port_ltp;
7076 }
7077 
7078 /*
7079  * Convert an OPA Port LTP mask to capability mask
7080  */
7081 int port_ltp_to_cap(int port_ltp)
7082 {
7083 	int cap_mask = 0;
7084 
7085 	if (port_ltp & PORT_LTP_CRC_MODE_14)
7086 		cap_mask |= CAP_CRC_14B;
7087 	if (port_ltp & PORT_LTP_CRC_MODE_48)
7088 		cap_mask |= CAP_CRC_48B;
7089 	if (port_ltp & PORT_LTP_CRC_MODE_PER_LANE)
7090 		cap_mask |= CAP_CRC_12B_16B_PER_LANE;
7091 
7092 	return cap_mask;
7093 }
7094 
7095 /*
7096  * Convert a single DC LCB CRC mode to an OPA Port LTP mask.
7097  */
7098 static int lcb_to_port_ltp(int lcb_crc)
7099 {
7100 	int port_ltp = 0;
7101 
7102 	if (lcb_crc == LCB_CRC_12B_16B_PER_LANE)
7103 		port_ltp = PORT_LTP_CRC_MODE_PER_LANE;
7104 	else if (lcb_crc == LCB_CRC_48B)
7105 		port_ltp = PORT_LTP_CRC_MODE_48;
7106 	else if (lcb_crc == LCB_CRC_14B)
7107 		port_ltp = PORT_LTP_CRC_MODE_14;
7108 	else
7109 		port_ltp = PORT_LTP_CRC_MODE_16;
7110 
7111 	return port_ltp;
7112 }
7113 
7114 /*
7115  * Our neighbor has indicated that we are allowed to act as a fabric
7116  * manager, so place the full management partition key in the second
7117  * (0-based) pkey array position (see OPAv1, section 20.2.2.6.8). Note
7118  * that we should already have the limited management partition key in
7119  * array element 1, and also that the port is not yet up when
7120  * add_full_mgmt_pkey() is invoked.
7121  */
7122 static void add_full_mgmt_pkey(struct hfi1_pportdata *ppd)
7123 {
7124 	struct hfi1_devdata *dd = ppd->dd;
7125 
7126 	/* Sanity check - ppd->pkeys[2] should be 0, or already initialized */
7127 	if (!((ppd->pkeys[2] == 0) || (ppd->pkeys[2] == FULL_MGMT_P_KEY)))
7128 		dd_dev_warn(dd, "%s pkey[2] already set to 0x%x, resetting it to 0x%x\n",
7129 			    __func__, ppd->pkeys[2], FULL_MGMT_P_KEY);
7130 	ppd->pkeys[2] = FULL_MGMT_P_KEY;
7131 	(void)hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_PKEYS, 0);
7132 	hfi1_event_pkey_change(ppd->dd, ppd->port);
7133 }
7134 
7135 static void clear_full_mgmt_pkey(struct hfi1_pportdata *ppd)
7136 {
7137 	if (ppd->pkeys[2] != 0) {
7138 		ppd->pkeys[2] = 0;
7139 		(void)hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_PKEYS, 0);
7140 		hfi1_event_pkey_change(ppd->dd, ppd->port);
7141 	}
7142 }
7143 
7144 /*
7145  * Convert the given link width to the OPA link width bitmask.
7146  */
7147 static u16 link_width_to_bits(struct hfi1_devdata *dd, u16 width)
7148 {
7149 	switch (width) {
7150 	case 0:
7151 		/*
7152 		 * Simulator and quick linkup do not set the width.
7153 		 * Just set it to 4x without complaint.
7154 		 */
7155 		if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR || quick_linkup)
7156 			return OPA_LINK_WIDTH_4X;
7157 		return 0; /* no lanes up */
7158 	case 1: return OPA_LINK_WIDTH_1X;
7159 	case 2: return OPA_LINK_WIDTH_2X;
7160 	case 3: return OPA_LINK_WIDTH_3X;
7161 	default:
7162 		dd_dev_info(dd, "%s: invalid width %d, using 4\n",
7163 			    __func__, width);
7164 		/* fall through */
7165 	case 4: return OPA_LINK_WIDTH_4X;
7166 	}
7167 }
7168 
7169 /*
7170  * Do a population count on the bottom nibble.
7171  */
7172 static const u8 bit_counts[16] = {
7173 	0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4
7174 };
7175 
7176 static inline u8 nibble_to_count(u8 nibble)
7177 {
7178 	return bit_counts[nibble & 0xf];
7179 }
7180 
7181 /*
7182  * Read the active lane information from the 8051 registers and return
7183  * their widths.
7184  *
7185  * Active lane information is found in these 8051 registers:
7186  *	enable_lane_tx
7187  *	enable_lane_rx
7188  */
7189 static void get_link_widths(struct hfi1_devdata *dd, u16 *tx_width,
7190 			    u16 *rx_width)
7191 {
7192 	u16 tx, rx;
7193 	u8 enable_lane_rx;
7194 	u8 enable_lane_tx;
7195 	u8 tx_polarity_inversion;
7196 	u8 rx_polarity_inversion;
7197 	u8 max_rate;
7198 
7199 	/* read the active lanes */
7200 	read_tx_settings(dd, &enable_lane_tx, &tx_polarity_inversion,
7201 			 &rx_polarity_inversion, &max_rate);
7202 	read_local_lni(dd, &enable_lane_rx);
7203 
7204 	/* convert to counts */
7205 	tx = nibble_to_count(enable_lane_tx);
7206 	rx = nibble_to_count(enable_lane_rx);
7207 
7208 	/*
7209 	 * Set link_speed_active here, overriding what was set in
7210 	 * handle_verify_cap().  The ASIC 8051 firmware does not correctly
7211 	 * set the max_rate field in handle_verify_cap until v0.19.
7212 	 */
7213 	if ((dd->icode == ICODE_RTL_SILICON) &&
7214 	    (dd->dc8051_ver < dc8051_ver(0, 19, 0))) {
7215 		/* max_rate: 0 = 12.5G, 1 = 25G */
7216 		switch (max_rate) {
7217 		case 0:
7218 			dd->pport[0].link_speed_active = OPA_LINK_SPEED_12_5G;
7219 			break;
7220 		default:
7221 			dd_dev_err(dd,
7222 				   "%s: unexpected max rate %d, using 25Gb\n",
7223 				   __func__, (int)max_rate);
7224 			/* fall through */
7225 		case 1:
7226 			dd->pport[0].link_speed_active = OPA_LINK_SPEED_25G;
7227 			break;
7228 		}
7229 	}
7230 
7231 	dd_dev_info(dd,
7232 		    "Fabric active lanes (width): tx 0x%x (%d), rx 0x%x (%d)\n",
7233 		    enable_lane_tx, tx, enable_lane_rx, rx);
7234 	*tx_width = link_width_to_bits(dd, tx);
7235 	*rx_width = link_width_to_bits(dd, rx);
7236 }
7237 
7238 /*
7239  * Read verify_cap_local_fm_link_width[1] to obtain the link widths.
7240  * Valid after the end of VerifyCap and during LinkUp.  Does not change
7241  * after link up.  I.e. look elsewhere for downgrade information.
7242  *
7243  * Bits are:
7244  *	+ bits [7:4] contain the number of active transmitters
7245  *	+ bits [3:0] contain the number of active receivers
7246  * These are numbers 1 through 4 and can be different values if the
7247  * link is asymmetric.
7248  *
7249  * verify_cap_local_fm_link_width[0] retains its original value.
7250  */
7251 static void get_linkup_widths(struct hfi1_devdata *dd, u16 *tx_width,
7252 			      u16 *rx_width)
7253 {
7254 	u16 widths, tx, rx;
7255 	u8 misc_bits, local_flags;
7256 	u16 active_tx, active_rx;
7257 
7258 	read_vc_local_link_width(dd, &misc_bits, &local_flags, &widths);
7259 	tx = widths >> 12;
7260 	rx = (widths >> 8) & 0xf;
7261 
7262 	*tx_width = link_width_to_bits(dd, tx);
7263 	*rx_width = link_width_to_bits(dd, rx);
7264 
7265 	/* print the active widths */
7266 	get_link_widths(dd, &active_tx, &active_rx);
7267 }
7268 
7269 /*
7270  * Set ppd->link_width_active and ppd->link_width_downgrade_active using
7271  * hardware information when the link first comes up.
7272  *
7273  * The link width is not available until after VerifyCap.AllFramesReceived
7274  * (the trigger for handle_verify_cap), so this is outside that routine
7275  * and should be called when the 8051 signals linkup.
7276  */
7277 void get_linkup_link_widths(struct hfi1_pportdata *ppd)
7278 {
7279 	u16 tx_width, rx_width;
7280 
7281 	/* get end-of-LNI link widths */
7282 	get_linkup_widths(ppd->dd, &tx_width, &rx_width);
7283 
7284 	/* use tx_width as the link is supposed to be symmetric on link up */
7285 	ppd->link_width_active = tx_width;
7286 	/* link width downgrade active (LWD.A) starts out matching LW.A */
7287 	ppd->link_width_downgrade_tx_active = ppd->link_width_active;
7288 	ppd->link_width_downgrade_rx_active = ppd->link_width_active;
7289 	/* per OPA spec, on link up LWD.E resets to LWD.S */
7290 	ppd->link_width_downgrade_enabled = ppd->link_width_downgrade_supported;
7291 	/* cache the active egress rate (units {10^6 bits/sec]) */
7292 	ppd->current_egress_rate = active_egress_rate(ppd);
7293 }
7294 
7295 /*
7296  * Handle a verify capabilities interrupt from the 8051.
7297  *
7298  * This is a work-queue function outside of the interrupt.
7299  */
7300 void handle_verify_cap(struct work_struct *work)
7301 {
7302 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
7303 								link_vc_work);
7304 	struct hfi1_devdata *dd = ppd->dd;
7305 	u64 reg;
7306 	u8 power_management;
7307 	u8 continious;
7308 	u8 vcu;
7309 	u8 vau;
7310 	u8 z;
7311 	u16 vl15buf;
7312 	u16 link_widths;
7313 	u16 crc_mask;
7314 	u16 crc_val;
7315 	u16 device_id;
7316 	u16 active_tx, active_rx;
7317 	u8 partner_supported_crc;
7318 	u8 remote_tx_rate;
7319 	u8 device_rev;
7320 
7321 	set_link_state(ppd, HLS_VERIFY_CAP);
7322 
7323 	lcb_shutdown(dd, 0);
7324 	adjust_lcb_for_fpga_serdes(dd);
7325 
7326 	read_vc_remote_phy(dd, &power_management, &continious);
7327 	read_vc_remote_fabric(dd, &vau, &z, &vcu, &vl15buf,
7328 			      &partner_supported_crc);
7329 	read_vc_remote_link_width(dd, &remote_tx_rate, &link_widths);
7330 	read_remote_device_id(dd, &device_id, &device_rev);
7331 	/*
7332 	 * And the 'MgmtAllowed' information, which is exchanged during
7333 	 * LNI, is also be available at this point.
7334 	 */
7335 	read_mgmt_allowed(dd, &ppd->mgmt_allowed);
7336 	/* print the active widths */
7337 	get_link_widths(dd, &active_tx, &active_rx);
7338 	dd_dev_info(dd,
7339 		    "Peer PHY: power management 0x%x, continuous updates 0x%x\n",
7340 		    (int)power_management, (int)continious);
7341 	dd_dev_info(dd,
7342 		    "Peer Fabric: vAU %d, Z %d, vCU %d, vl15 credits 0x%x, CRC sizes 0x%x\n",
7343 		    (int)vau, (int)z, (int)vcu, (int)vl15buf,
7344 		    (int)partner_supported_crc);
7345 	dd_dev_info(dd, "Peer Link Width: tx rate 0x%x, widths 0x%x\n",
7346 		    (u32)remote_tx_rate, (u32)link_widths);
7347 	dd_dev_info(dd, "Peer Device ID: 0x%04x, Revision 0x%02x\n",
7348 		    (u32)device_id, (u32)device_rev);
7349 	/*
7350 	 * The peer vAU value just read is the peer receiver value.  HFI does
7351 	 * not support a transmit vAU of 0 (AU == 8).  We advertised that
7352 	 * with Z=1 in the fabric capabilities sent to the peer.  The peer
7353 	 * will see our Z=1, and, if it advertised a vAU of 0, will move its
7354 	 * receive to vAU of 1 (AU == 16).  Do the same here.  We do not care
7355 	 * about the peer Z value - our sent vAU is 3 (hardwired) and is not
7356 	 * subject to the Z value exception.
7357 	 */
7358 	if (vau == 0)
7359 		vau = 1;
7360 	set_up_vl15(dd, vau, vl15buf);
7361 
7362 	/* set up the LCB CRC mode */
7363 	crc_mask = ppd->port_crc_mode_enabled & partner_supported_crc;
7364 
7365 	/* order is important: use the lowest bit in common */
7366 	if (crc_mask & CAP_CRC_14B)
7367 		crc_val = LCB_CRC_14B;
7368 	else if (crc_mask & CAP_CRC_48B)
7369 		crc_val = LCB_CRC_48B;
7370 	else if (crc_mask & CAP_CRC_12B_16B_PER_LANE)
7371 		crc_val = LCB_CRC_12B_16B_PER_LANE;
7372 	else
7373 		crc_val = LCB_CRC_16B;
7374 
7375 	dd_dev_info(dd, "Final LCB CRC mode: %d\n", (int)crc_val);
7376 	write_csr(dd, DC_LCB_CFG_CRC_MODE,
7377 		  (u64)crc_val << DC_LCB_CFG_CRC_MODE_TX_VAL_SHIFT);
7378 
7379 	/* set (14b only) or clear sideband credit */
7380 	reg = read_csr(dd, SEND_CM_CTRL);
7381 	if (crc_val == LCB_CRC_14B && crc_14b_sideband) {
7382 		write_csr(dd, SEND_CM_CTRL,
7383 			  reg | SEND_CM_CTRL_FORCE_CREDIT_MODE_SMASK);
7384 	} else {
7385 		write_csr(dd, SEND_CM_CTRL,
7386 			  reg & ~SEND_CM_CTRL_FORCE_CREDIT_MODE_SMASK);
7387 	}
7388 
7389 	ppd->link_speed_active = 0;	/* invalid value */
7390 	if (dd->dc8051_ver < dc8051_ver(0, 20, 0)) {
7391 		/* remote_tx_rate: 0 = 12.5G, 1 = 25G */
7392 		switch (remote_tx_rate) {
7393 		case 0:
7394 			ppd->link_speed_active = OPA_LINK_SPEED_12_5G;
7395 			break;
7396 		case 1:
7397 			ppd->link_speed_active = OPA_LINK_SPEED_25G;
7398 			break;
7399 		}
7400 	} else {
7401 		/* actual rate is highest bit of the ANDed rates */
7402 		u8 rate = remote_tx_rate & ppd->local_tx_rate;
7403 
7404 		if (rate & 2)
7405 			ppd->link_speed_active = OPA_LINK_SPEED_25G;
7406 		else if (rate & 1)
7407 			ppd->link_speed_active = OPA_LINK_SPEED_12_5G;
7408 	}
7409 	if (ppd->link_speed_active == 0) {
7410 		dd_dev_err(dd, "%s: unexpected remote tx rate %d, using 25Gb\n",
7411 			   __func__, (int)remote_tx_rate);
7412 		ppd->link_speed_active = OPA_LINK_SPEED_25G;
7413 	}
7414 
7415 	/*
7416 	 * Cache the values of the supported, enabled, and active
7417 	 * LTP CRC modes to return in 'portinfo' queries. But the bit
7418 	 * flags that are returned in the portinfo query differ from
7419 	 * what's in the link_crc_mask, crc_sizes, and crc_val
7420 	 * variables. Convert these here.
7421 	 */
7422 	ppd->port_ltp_crc_mode = cap_to_port_ltp(link_crc_mask) << 8;
7423 		/* supported crc modes */
7424 	ppd->port_ltp_crc_mode |=
7425 		cap_to_port_ltp(ppd->port_crc_mode_enabled) << 4;
7426 		/* enabled crc modes */
7427 	ppd->port_ltp_crc_mode |= lcb_to_port_ltp(crc_val);
7428 		/* active crc mode */
7429 
7430 	/* set up the remote credit return table */
7431 	assign_remote_cm_au_table(dd, vcu);
7432 
7433 	/*
7434 	 * The LCB is reset on entry to handle_verify_cap(), so this must
7435 	 * be applied on every link up.
7436 	 *
7437 	 * Adjust LCB error kill enable to kill the link if
7438 	 * these RBUF errors are seen:
7439 	 *	REPLAY_BUF_MBE_SMASK
7440 	 *	FLIT_INPUT_BUF_MBE_SMASK
7441 	 */
7442 	if (is_ax(dd)) {			/* fixed in B0 */
7443 		reg = read_csr(dd, DC_LCB_CFG_LINK_KILL_EN);
7444 		reg |= DC_LCB_CFG_LINK_KILL_EN_REPLAY_BUF_MBE_SMASK
7445 			| DC_LCB_CFG_LINK_KILL_EN_FLIT_INPUT_BUF_MBE_SMASK;
7446 		write_csr(dd, DC_LCB_CFG_LINK_KILL_EN, reg);
7447 	}
7448 
7449 	/* pull LCB fifos out of reset - all fifo clocks must be stable */
7450 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0);
7451 
7452 	/* give 8051 access to the LCB CSRs */
7453 	write_csr(dd, DC_LCB_ERR_EN, 0); /* mask LCB errors */
7454 	set_8051_lcb_access(dd);
7455 
7456 	if (ppd->mgmt_allowed)
7457 		add_full_mgmt_pkey(ppd);
7458 
7459 	/* tell the 8051 to go to LinkUp */
7460 	set_link_state(ppd, HLS_GOING_UP);
7461 }
7462 
7463 /*
7464  * Apply the link width downgrade enabled policy against the current active
7465  * link widths.
7466  *
7467  * Called when the enabled policy changes or the active link widths change.
7468  */
7469 void apply_link_downgrade_policy(struct hfi1_pportdata *ppd, int refresh_widths)
7470 {
7471 	int do_bounce = 0;
7472 	int tries;
7473 	u16 lwde;
7474 	u16 tx, rx;
7475 
7476 	/* use the hls lock to avoid a race with actual link up */
7477 	tries = 0;
7478 retry:
7479 	mutex_lock(&ppd->hls_lock);
7480 	/* only apply if the link is up */
7481 	if (ppd->host_link_state & HLS_DOWN) {
7482 		/* still going up..wait and retry */
7483 		if (ppd->host_link_state & HLS_GOING_UP) {
7484 			if (++tries < 1000) {
7485 				mutex_unlock(&ppd->hls_lock);
7486 				usleep_range(100, 120); /* arbitrary */
7487 				goto retry;
7488 			}
7489 			dd_dev_err(ppd->dd,
7490 				   "%s: giving up waiting for link state change\n",
7491 				   __func__);
7492 		}
7493 		goto done;
7494 	}
7495 
7496 	lwde = ppd->link_width_downgrade_enabled;
7497 
7498 	if (refresh_widths) {
7499 		get_link_widths(ppd->dd, &tx, &rx);
7500 		ppd->link_width_downgrade_tx_active = tx;
7501 		ppd->link_width_downgrade_rx_active = rx;
7502 	}
7503 
7504 	if (ppd->link_width_downgrade_tx_active == 0 ||
7505 	    ppd->link_width_downgrade_rx_active == 0) {
7506 		/* the 8051 reported a dead link as a downgrade */
7507 		dd_dev_err(ppd->dd, "Link downgrade is really a link down, ignoring\n");
7508 	} else if (lwde == 0) {
7509 		/* downgrade is disabled */
7510 
7511 		/* bounce if not at starting active width */
7512 		if ((ppd->link_width_active !=
7513 		     ppd->link_width_downgrade_tx_active) ||
7514 		    (ppd->link_width_active !=
7515 		     ppd->link_width_downgrade_rx_active)) {
7516 			dd_dev_err(ppd->dd,
7517 				   "Link downgrade is disabled and link has downgraded, downing link\n");
7518 			dd_dev_err(ppd->dd,
7519 				   "  original 0x%x, tx active 0x%x, rx active 0x%x\n",
7520 				   ppd->link_width_active,
7521 				   ppd->link_width_downgrade_tx_active,
7522 				   ppd->link_width_downgrade_rx_active);
7523 			do_bounce = 1;
7524 		}
7525 	} else if ((lwde & ppd->link_width_downgrade_tx_active) == 0 ||
7526 		   (lwde & ppd->link_width_downgrade_rx_active) == 0) {
7527 		/* Tx or Rx is outside the enabled policy */
7528 		dd_dev_err(ppd->dd,
7529 			   "Link is outside of downgrade allowed, downing link\n");
7530 		dd_dev_err(ppd->dd,
7531 			   "  enabled 0x%x, tx active 0x%x, rx active 0x%x\n",
7532 			   lwde, ppd->link_width_downgrade_tx_active,
7533 			   ppd->link_width_downgrade_rx_active);
7534 		do_bounce = 1;
7535 	}
7536 
7537 done:
7538 	mutex_unlock(&ppd->hls_lock);
7539 
7540 	if (do_bounce) {
7541 		set_link_down_reason(ppd, OPA_LINKDOWN_REASON_WIDTH_POLICY, 0,
7542 				     OPA_LINKDOWN_REASON_WIDTH_POLICY);
7543 		set_link_state(ppd, HLS_DN_OFFLINE);
7544 		start_link(ppd);
7545 	}
7546 }
7547 
7548 /*
7549  * Handle a link downgrade interrupt from the 8051.
7550  *
7551  * This is a work-queue function outside of the interrupt.
7552  */
7553 void handle_link_downgrade(struct work_struct *work)
7554 {
7555 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
7556 							link_downgrade_work);
7557 
7558 	dd_dev_info(ppd->dd, "8051: Link width downgrade\n");
7559 	apply_link_downgrade_policy(ppd, 1);
7560 }
7561 
7562 static char *dcc_err_string(char *buf, int buf_len, u64 flags)
7563 {
7564 	return flag_string(buf, buf_len, flags, dcc_err_flags,
7565 		ARRAY_SIZE(dcc_err_flags));
7566 }
7567 
7568 static char *lcb_err_string(char *buf, int buf_len, u64 flags)
7569 {
7570 	return flag_string(buf, buf_len, flags, lcb_err_flags,
7571 		ARRAY_SIZE(lcb_err_flags));
7572 }
7573 
7574 static char *dc8051_err_string(char *buf, int buf_len, u64 flags)
7575 {
7576 	return flag_string(buf, buf_len, flags, dc8051_err_flags,
7577 		ARRAY_SIZE(dc8051_err_flags));
7578 }
7579 
7580 static char *dc8051_info_err_string(char *buf, int buf_len, u64 flags)
7581 {
7582 	return flag_string(buf, buf_len, flags, dc8051_info_err_flags,
7583 		ARRAY_SIZE(dc8051_info_err_flags));
7584 }
7585 
7586 static char *dc8051_info_host_msg_string(char *buf, int buf_len, u64 flags)
7587 {
7588 	return flag_string(buf, buf_len, flags, dc8051_info_host_msg_flags,
7589 		ARRAY_SIZE(dc8051_info_host_msg_flags));
7590 }
7591 
7592 static void handle_8051_interrupt(struct hfi1_devdata *dd, u32 unused, u64 reg)
7593 {
7594 	struct hfi1_pportdata *ppd = dd->pport;
7595 	u64 info, err, host_msg;
7596 	int queue_link_down = 0;
7597 	char buf[96];
7598 
7599 	/* look at the flags */
7600 	if (reg & DC_DC8051_ERR_FLG_SET_BY_8051_SMASK) {
7601 		/* 8051 information set by firmware */
7602 		/* read DC8051_DBG_ERR_INFO_SET_BY_8051 for details */
7603 		info = read_csr(dd, DC_DC8051_DBG_ERR_INFO_SET_BY_8051);
7604 		err = (info >> DC_DC8051_DBG_ERR_INFO_SET_BY_8051_ERROR_SHIFT)
7605 			& DC_DC8051_DBG_ERR_INFO_SET_BY_8051_ERROR_MASK;
7606 		host_msg = (info >>
7607 			DC_DC8051_DBG_ERR_INFO_SET_BY_8051_HOST_MSG_SHIFT)
7608 			& DC_DC8051_DBG_ERR_INFO_SET_BY_8051_HOST_MSG_MASK;
7609 
7610 		/*
7611 		 * Handle error flags.
7612 		 */
7613 		if (err & FAILED_LNI) {
7614 			/*
7615 			 * LNI error indications are cleared by the 8051
7616 			 * only when starting polling.  Only pay attention
7617 			 * to them when in the states that occur during
7618 			 * LNI.
7619 			 */
7620 			if (ppd->host_link_state
7621 			    & (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) {
7622 				queue_link_down = 1;
7623 				dd_dev_info(dd, "Link error: %s\n",
7624 					    dc8051_info_err_string(buf,
7625 								   sizeof(buf),
7626 								   err &
7627 								   FAILED_LNI));
7628 			}
7629 			err &= ~(u64)FAILED_LNI;
7630 		}
7631 		/* unknown frames can happen durning LNI, just count */
7632 		if (err & UNKNOWN_FRAME) {
7633 			ppd->unknown_frame_count++;
7634 			err &= ~(u64)UNKNOWN_FRAME;
7635 		}
7636 		if (err) {
7637 			/* report remaining errors, but do not do anything */
7638 			dd_dev_err(dd, "8051 info error: %s\n",
7639 				   dc8051_info_err_string(buf, sizeof(buf),
7640 							  err));
7641 		}
7642 
7643 		/*
7644 		 * Handle host message flags.
7645 		 */
7646 		if (host_msg & HOST_REQ_DONE) {
7647 			/*
7648 			 * Presently, the driver does a busy wait for
7649 			 * host requests to complete.  This is only an
7650 			 * informational message.
7651 			 * NOTE: The 8051 clears the host message
7652 			 * information *on the next 8051 command*.
7653 			 * Therefore, when linkup is achieved,
7654 			 * this flag will still be set.
7655 			 */
7656 			host_msg &= ~(u64)HOST_REQ_DONE;
7657 		}
7658 		if (host_msg & BC_SMA_MSG) {
7659 			queue_work(ppd->hfi1_wq, &ppd->sma_message_work);
7660 			host_msg &= ~(u64)BC_SMA_MSG;
7661 		}
7662 		if (host_msg & LINKUP_ACHIEVED) {
7663 			dd_dev_info(dd, "8051: Link up\n");
7664 			queue_work(ppd->hfi1_wq, &ppd->link_up_work);
7665 			host_msg &= ~(u64)LINKUP_ACHIEVED;
7666 		}
7667 		if (host_msg & EXT_DEVICE_CFG_REQ) {
7668 			handle_8051_request(ppd);
7669 			host_msg &= ~(u64)EXT_DEVICE_CFG_REQ;
7670 		}
7671 		if (host_msg & VERIFY_CAP_FRAME) {
7672 			queue_work(ppd->hfi1_wq, &ppd->link_vc_work);
7673 			host_msg &= ~(u64)VERIFY_CAP_FRAME;
7674 		}
7675 		if (host_msg & LINK_GOING_DOWN) {
7676 			const char *extra = "";
7677 			/* no downgrade action needed if going down */
7678 			if (host_msg & LINK_WIDTH_DOWNGRADED) {
7679 				host_msg &= ~(u64)LINK_WIDTH_DOWNGRADED;
7680 				extra = " (ignoring downgrade)";
7681 			}
7682 			dd_dev_info(dd, "8051: Link down%s\n", extra);
7683 			queue_link_down = 1;
7684 			host_msg &= ~(u64)LINK_GOING_DOWN;
7685 		}
7686 		if (host_msg & LINK_WIDTH_DOWNGRADED) {
7687 			queue_work(ppd->hfi1_wq, &ppd->link_downgrade_work);
7688 			host_msg &= ~(u64)LINK_WIDTH_DOWNGRADED;
7689 		}
7690 		if (host_msg) {
7691 			/* report remaining messages, but do not do anything */
7692 			dd_dev_info(dd, "8051 info host message: %s\n",
7693 				    dc8051_info_host_msg_string(buf,
7694 								sizeof(buf),
7695 								host_msg));
7696 		}
7697 
7698 		reg &= ~DC_DC8051_ERR_FLG_SET_BY_8051_SMASK;
7699 	}
7700 	if (reg & DC_DC8051_ERR_FLG_LOST_8051_HEART_BEAT_SMASK) {
7701 		/*
7702 		 * Lost the 8051 heartbeat.  If this happens, we
7703 		 * receive constant interrupts about it.  Disable
7704 		 * the interrupt after the first.
7705 		 */
7706 		dd_dev_err(dd, "Lost 8051 heartbeat\n");
7707 		write_csr(dd, DC_DC8051_ERR_EN,
7708 			  read_csr(dd, DC_DC8051_ERR_EN) &
7709 			  ~DC_DC8051_ERR_EN_LOST_8051_HEART_BEAT_SMASK);
7710 
7711 		reg &= ~DC_DC8051_ERR_FLG_LOST_8051_HEART_BEAT_SMASK;
7712 	}
7713 	if (reg) {
7714 		/* report the error, but do not do anything */
7715 		dd_dev_err(dd, "8051 error: %s\n",
7716 			   dc8051_err_string(buf, sizeof(buf), reg));
7717 	}
7718 
7719 	if (queue_link_down) {
7720 		/*
7721 		 * if the link is already going down or disabled, do not
7722 		 * queue another
7723 		 */
7724 		if ((ppd->host_link_state &
7725 		    (HLS_GOING_OFFLINE | HLS_LINK_COOLDOWN)) ||
7726 		    ppd->link_enabled == 0) {
7727 			dd_dev_info(dd, "%s: not queuing link down\n",
7728 				    __func__);
7729 		} else {
7730 			queue_work(ppd->hfi1_wq, &ppd->link_down_work);
7731 		}
7732 	}
7733 }
7734 
7735 static const char * const fm_config_txt[] = {
7736 [0] =
7737 	"BadHeadDist: Distance violation between two head flits",
7738 [1] =
7739 	"BadTailDist: Distance violation between two tail flits",
7740 [2] =
7741 	"BadCtrlDist: Distance violation between two credit control flits",
7742 [3] =
7743 	"BadCrdAck: Credits return for unsupported VL",
7744 [4] =
7745 	"UnsupportedVLMarker: Received VL Marker",
7746 [5] =
7747 	"BadPreempt: Exceeded the preemption nesting level",
7748 [6] =
7749 	"BadControlFlit: Received unsupported control flit",
7750 /* no 7 */
7751 [8] =
7752 	"UnsupportedVLMarker: Received VL Marker for unconfigured or disabled VL",
7753 };
7754 
7755 static const char * const port_rcv_txt[] = {
7756 [1] =
7757 	"BadPktLen: Illegal PktLen",
7758 [2] =
7759 	"PktLenTooLong: Packet longer than PktLen",
7760 [3] =
7761 	"PktLenTooShort: Packet shorter than PktLen",
7762 [4] =
7763 	"BadSLID: Illegal SLID (0, using multicast as SLID, does not include security validation of SLID)",
7764 [5] =
7765 	"BadDLID: Illegal DLID (0, doesn't match HFI)",
7766 [6] =
7767 	"BadL2: Illegal L2 opcode",
7768 [7] =
7769 	"BadSC: Unsupported SC",
7770 [9] =
7771 	"BadRC: Illegal RC",
7772 [11] =
7773 	"PreemptError: Preempting with same VL",
7774 [12] =
7775 	"PreemptVL15: Preempting a VL15 packet",
7776 };
7777 
7778 #define OPA_LDR_FMCONFIG_OFFSET 16
7779 #define OPA_LDR_PORTRCV_OFFSET 0
7780 static void handle_dcc_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
7781 {
7782 	u64 info, hdr0, hdr1;
7783 	const char *extra;
7784 	char buf[96];
7785 	struct hfi1_pportdata *ppd = dd->pport;
7786 	u8 lcl_reason = 0;
7787 	int do_bounce = 0;
7788 
7789 	if (reg & DCC_ERR_FLG_UNCORRECTABLE_ERR_SMASK) {
7790 		if (!(dd->err_info_uncorrectable & OPA_EI_STATUS_SMASK)) {
7791 			info = read_csr(dd, DCC_ERR_INFO_UNCORRECTABLE);
7792 			dd->err_info_uncorrectable = info & OPA_EI_CODE_SMASK;
7793 			/* set status bit */
7794 			dd->err_info_uncorrectable |= OPA_EI_STATUS_SMASK;
7795 		}
7796 		reg &= ~DCC_ERR_FLG_UNCORRECTABLE_ERR_SMASK;
7797 	}
7798 
7799 	if (reg & DCC_ERR_FLG_LINK_ERR_SMASK) {
7800 		struct hfi1_pportdata *ppd = dd->pport;
7801 		/* this counter saturates at (2^32) - 1 */
7802 		if (ppd->link_downed < (u32)UINT_MAX)
7803 			ppd->link_downed++;
7804 		reg &= ~DCC_ERR_FLG_LINK_ERR_SMASK;
7805 	}
7806 
7807 	if (reg & DCC_ERR_FLG_FMCONFIG_ERR_SMASK) {
7808 		u8 reason_valid = 1;
7809 
7810 		info = read_csr(dd, DCC_ERR_INFO_FMCONFIG);
7811 		if (!(dd->err_info_fmconfig & OPA_EI_STATUS_SMASK)) {
7812 			dd->err_info_fmconfig = info & OPA_EI_CODE_SMASK;
7813 			/* set status bit */
7814 			dd->err_info_fmconfig |= OPA_EI_STATUS_SMASK;
7815 		}
7816 		switch (info) {
7817 		case 0:
7818 		case 1:
7819 		case 2:
7820 		case 3:
7821 		case 4:
7822 		case 5:
7823 		case 6:
7824 			extra = fm_config_txt[info];
7825 			break;
7826 		case 8:
7827 			extra = fm_config_txt[info];
7828 			if (ppd->port_error_action &
7829 			    OPA_PI_MASK_FM_CFG_UNSUPPORTED_VL_MARKER) {
7830 				do_bounce = 1;
7831 				/*
7832 				 * lcl_reason cannot be derived from info
7833 				 * for this error
7834 				 */
7835 				lcl_reason =
7836 				  OPA_LINKDOWN_REASON_UNSUPPORTED_VL_MARKER;
7837 			}
7838 			break;
7839 		default:
7840 			reason_valid = 0;
7841 			snprintf(buf, sizeof(buf), "reserved%lld", info);
7842 			extra = buf;
7843 			break;
7844 		}
7845 
7846 		if (reason_valid && !do_bounce) {
7847 			do_bounce = ppd->port_error_action &
7848 					(1 << (OPA_LDR_FMCONFIG_OFFSET + info));
7849 			lcl_reason = info + OPA_LINKDOWN_REASON_BAD_HEAD_DIST;
7850 		}
7851 
7852 		/* just report this */
7853 		dd_dev_info_ratelimited(dd, "DCC Error: fmconfig error: %s\n",
7854 					extra);
7855 		reg &= ~DCC_ERR_FLG_FMCONFIG_ERR_SMASK;
7856 	}
7857 
7858 	if (reg & DCC_ERR_FLG_RCVPORT_ERR_SMASK) {
7859 		u8 reason_valid = 1;
7860 
7861 		info = read_csr(dd, DCC_ERR_INFO_PORTRCV);
7862 		hdr0 = read_csr(dd, DCC_ERR_INFO_PORTRCV_HDR0);
7863 		hdr1 = read_csr(dd, DCC_ERR_INFO_PORTRCV_HDR1);
7864 		if (!(dd->err_info_rcvport.status_and_code &
7865 		      OPA_EI_STATUS_SMASK)) {
7866 			dd->err_info_rcvport.status_and_code =
7867 				info & OPA_EI_CODE_SMASK;
7868 			/* set status bit */
7869 			dd->err_info_rcvport.status_and_code |=
7870 				OPA_EI_STATUS_SMASK;
7871 			/*
7872 			 * save first 2 flits in the packet that caused
7873 			 * the error
7874 			 */
7875 			dd->err_info_rcvport.packet_flit1 = hdr0;
7876 			dd->err_info_rcvport.packet_flit2 = hdr1;
7877 		}
7878 		switch (info) {
7879 		case 1:
7880 		case 2:
7881 		case 3:
7882 		case 4:
7883 		case 5:
7884 		case 6:
7885 		case 7:
7886 		case 9:
7887 		case 11:
7888 		case 12:
7889 			extra = port_rcv_txt[info];
7890 			break;
7891 		default:
7892 			reason_valid = 0;
7893 			snprintf(buf, sizeof(buf), "reserved%lld", info);
7894 			extra = buf;
7895 			break;
7896 		}
7897 
7898 		if (reason_valid && !do_bounce) {
7899 			do_bounce = ppd->port_error_action &
7900 					(1 << (OPA_LDR_PORTRCV_OFFSET + info));
7901 			lcl_reason = info + OPA_LINKDOWN_REASON_RCV_ERROR_0;
7902 		}
7903 
7904 		/* just report this */
7905 		dd_dev_info_ratelimited(dd, "DCC Error: PortRcv error: %s\n"
7906 					"               hdr0 0x%llx, hdr1 0x%llx\n",
7907 					extra, hdr0, hdr1);
7908 
7909 		reg &= ~DCC_ERR_FLG_RCVPORT_ERR_SMASK;
7910 	}
7911 
7912 	if (reg & DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_UC_SMASK) {
7913 		/* informative only */
7914 		dd_dev_info_ratelimited(dd, "8051 access to LCB blocked\n");
7915 		reg &= ~DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_UC_SMASK;
7916 	}
7917 	if (reg & DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_HOST_SMASK) {
7918 		/* informative only */
7919 		dd_dev_info_ratelimited(dd, "host access to LCB blocked\n");
7920 		reg &= ~DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_HOST_SMASK;
7921 	}
7922 
7923 	if (unlikely(hfi1_dbg_fault_suppress_err(&dd->verbs_dev)))
7924 		reg &= ~DCC_ERR_FLG_LATE_EBP_ERR_SMASK;
7925 
7926 	/* report any remaining errors */
7927 	if (reg)
7928 		dd_dev_info_ratelimited(dd, "DCC Error: %s\n",
7929 					dcc_err_string(buf, sizeof(buf), reg));
7930 
7931 	if (lcl_reason == 0)
7932 		lcl_reason = OPA_LINKDOWN_REASON_UNKNOWN;
7933 
7934 	if (do_bounce) {
7935 		dd_dev_info_ratelimited(dd, "%s: PortErrorAction bounce\n",
7936 					__func__);
7937 		set_link_down_reason(ppd, lcl_reason, 0, lcl_reason);
7938 		queue_work(ppd->hfi1_wq, &ppd->link_bounce_work);
7939 	}
7940 }
7941 
7942 static void handle_lcb_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
7943 {
7944 	char buf[96];
7945 
7946 	dd_dev_info(dd, "LCB Error: %s\n",
7947 		    lcb_err_string(buf, sizeof(buf), reg));
7948 }
7949 
7950 /*
7951  * CCE block DC interrupt.  Source is < 8.
7952  */
7953 static void is_dc_int(struct hfi1_devdata *dd, unsigned int source)
7954 {
7955 	const struct err_reg_info *eri = &dc_errs[source];
7956 
7957 	if (eri->handler) {
7958 		interrupt_clear_down(dd, 0, eri);
7959 	} else if (source == 3 /* dc_lbm_int */) {
7960 		/*
7961 		 * This indicates that a parity error has occurred on the
7962 		 * address/control lines presented to the LBM.  The error
7963 		 * is a single pulse, there is no associated error flag,
7964 		 * and it is non-maskable.  This is because if a parity
7965 		 * error occurs on the request the request is dropped.
7966 		 * This should never occur, but it is nice to know if it
7967 		 * ever does.
7968 		 */
7969 		dd_dev_err(dd, "Parity error in DC LBM block\n");
7970 	} else {
7971 		dd_dev_err(dd, "Invalid DC interrupt %u\n", source);
7972 	}
7973 }
7974 
7975 /*
7976  * TX block send credit interrupt.  Source is < 160.
7977  */
7978 static void is_send_credit_int(struct hfi1_devdata *dd, unsigned int source)
7979 {
7980 	sc_group_release_update(dd, source);
7981 }
7982 
7983 /*
7984  * TX block SDMA interrupt.  Source is < 48.
7985  *
7986  * SDMA interrupts are grouped by type:
7987  *
7988  *	 0 -  N-1 = SDma
7989  *	 N - 2N-1 = SDmaProgress
7990  *	2N - 3N-1 = SDmaIdle
7991  */
7992 static void is_sdma_eng_int(struct hfi1_devdata *dd, unsigned int source)
7993 {
7994 	/* what interrupt */
7995 	unsigned int what  = source / TXE_NUM_SDMA_ENGINES;
7996 	/* which engine */
7997 	unsigned int which = source % TXE_NUM_SDMA_ENGINES;
7998 
7999 #ifdef CONFIG_SDMA_VERBOSITY
8000 	dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", which,
8001 		   slashstrip(__FILE__), __LINE__, __func__);
8002 	sdma_dumpstate(&dd->per_sdma[which]);
8003 #endif
8004 
8005 	if (likely(what < 3 && which < dd->num_sdma)) {
8006 		sdma_engine_interrupt(&dd->per_sdma[which], 1ull << source);
8007 	} else {
8008 		/* should not happen */
8009 		dd_dev_err(dd, "Invalid SDMA interrupt 0x%x\n", source);
8010 	}
8011 }
8012 
8013 /*
8014  * RX block receive available interrupt.  Source is < 160.
8015  */
8016 static void is_rcv_avail_int(struct hfi1_devdata *dd, unsigned int source)
8017 {
8018 	struct hfi1_ctxtdata *rcd;
8019 	char *err_detail;
8020 
8021 	if (likely(source < dd->num_rcv_contexts)) {
8022 		rcd = dd->rcd[source];
8023 		if (rcd) {
8024 			/* Check for non-user contexts, including vnic */
8025 			if ((source < dd->first_dyn_alloc_ctxt) ||
8026 			    (rcd->sc && (rcd->sc->type == SC_KERNEL)))
8027 				rcd->do_interrupt(rcd, 0);
8028 			else
8029 				handle_user_interrupt(rcd);
8030 			return;	/* OK */
8031 		}
8032 		/* received an interrupt, but no rcd */
8033 		err_detail = "dataless";
8034 	} else {
8035 		/* received an interrupt, but are not using that context */
8036 		err_detail = "out of range";
8037 	}
8038 	dd_dev_err(dd, "unexpected %s receive available context interrupt %u\n",
8039 		   err_detail, source);
8040 }
8041 
8042 /*
8043  * RX block receive urgent interrupt.  Source is < 160.
8044  */
8045 static void is_rcv_urgent_int(struct hfi1_devdata *dd, unsigned int source)
8046 {
8047 	struct hfi1_ctxtdata *rcd;
8048 	char *err_detail;
8049 
8050 	if (likely(source < dd->num_rcv_contexts)) {
8051 		rcd = dd->rcd[source];
8052 		if (rcd) {
8053 			/* only pay attention to user urgent interrupts */
8054 			if ((source >= dd->first_dyn_alloc_ctxt) &&
8055 			    (!rcd->sc || (rcd->sc->type == SC_USER)))
8056 				handle_user_interrupt(rcd);
8057 			return;	/* OK */
8058 		}
8059 		/* received an interrupt, but no rcd */
8060 		err_detail = "dataless";
8061 	} else {
8062 		/* received an interrupt, but are not using that context */
8063 		err_detail = "out of range";
8064 	}
8065 	dd_dev_err(dd, "unexpected %s receive urgent context interrupt %u\n",
8066 		   err_detail, source);
8067 }
8068 
8069 /*
8070  * Reserved range interrupt.  Should not be called in normal operation.
8071  */
8072 static void is_reserved_int(struct hfi1_devdata *dd, unsigned int source)
8073 {
8074 	char name[64];
8075 
8076 	dd_dev_err(dd, "unexpected %s interrupt\n",
8077 		   is_reserved_name(name, sizeof(name), source));
8078 }
8079 
8080 static const struct is_table is_table[] = {
8081 /*
8082  * start		 end
8083  *				name func		interrupt func
8084  */
8085 { IS_GENERAL_ERR_START,  IS_GENERAL_ERR_END,
8086 				is_misc_err_name,	is_misc_err_int },
8087 { IS_SDMAENG_ERR_START,  IS_SDMAENG_ERR_END,
8088 				is_sdma_eng_err_name,	is_sdma_eng_err_int },
8089 { IS_SENDCTXT_ERR_START, IS_SENDCTXT_ERR_END,
8090 				is_sendctxt_err_name,	is_sendctxt_err_int },
8091 { IS_SDMA_START,	     IS_SDMA_END,
8092 				is_sdma_eng_name,	is_sdma_eng_int },
8093 { IS_VARIOUS_START,	     IS_VARIOUS_END,
8094 				is_various_name,	is_various_int },
8095 { IS_DC_START,	     IS_DC_END,
8096 				is_dc_name,		is_dc_int },
8097 { IS_RCVAVAIL_START,     IS_RCVAVAIL_END,
8098 				is_rcv_avail_name,	is_rcv_avail_int },
8099 { IS_RCVURGENT_START,    IS_RCVURGENT_END,
8100 				is_rcv_urgent_name,	is_rcv_urgent_int },
8101 { IS_SENDCREDIT_START,   IS_SENDCREDIT_END,
8102 				is_send_credit_name,	is_send_credit_int},
8103 { IS_RESERVED_START,     IS_RESERVED_END,
8104 				is_reserved_name,	is_reserved_int},
8105 };
8106 
8107 /*
8108  * Interrupt source interrupt - called when the given source has an interrupt.
8109  * Source is a bit index into an array of 64-bit integers.
8110  */
8111 static void is_interrupt(struct hfi1_devdata *dd, unsigned int source)
8112 {
8113 	const struct is_table *entry;
8114 
8115 	/* avoids a double compare by walking the table in-order */
8116 	for (entry = &is_table[0]; entry->is_name; entry++) {
8117 		if (source < entry->end) {
8118 			trace_hfi1_interrupt(dd, entry, source);
8119 			entry->is_int(dd, source - entry->start);
8120 			return;
8121 		}
8122 	}
8123 	/* fell off the end */
8124 	dd_dev_err(dd, "invalid interrupt source %u\n", source);
8125 }
8126 
8127 /*
8128  * General interrupt handler.  This is able to correctly handle
8129  * all interrupts in case INTx is used.
8130  */
8131 static irqreturn_t general_interrupt(int irq, void *data)
8132 {
8133 	struct hfi1_devdata *dd = data;
8134 	u64 regs[CCE_NUM_INT_CSRS];
8135 	u32 bit;
8136 	int i;
8137 
8138 	this_cpu_inc(*dd->int_counter);
8139 
8140 	/* phase 1: scan and clear all handled interrupts */
8141 	for (i = 0; i < CCE_NUM_INT_CSRS; i++) {
8142 		if (dd->gi_mask[i] == 0) {
8143 			regs[i] = 0;	/* used later */
8144 			continue;
8145 		}
8146 		regs[i] = read_csr(dd, CCE_INT_STATUS + (8 * i)) &
8147 				dd->gi_mask[i];
8148 		/* only clear if anything is set */
8149 		if (regs[i])
8150 			write_csr(dd, CCE_INT_CLEAR + (8 * i), regs[i]);
8151 	}
8152 
8153 	/* phase 2: call the appropriate handler */
8154 	for_each_set_bit(bit, (unsigned long *)&regs[0],
8155 			 CCE_NUM_INT_CSRS * 64) {
8156 		is_interrupt(dd, bit);
8157 	}
8158 
8159 	return IRQ_HANDLED;
8160 }
8161 
8162 static irqreturn_t sdma_interrupt(int irq, void *data)
8163 {
8164 	struct sdma_engine *sde = data;
8165 	struct hfi1_devdata *dd = sde->dd;
8166 	u64 status;
8167 
8168 #ifdef CONFIG_SDMA_VERBOSITY
8169 	dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
8170 		   slashstrip(__FILE__), __LINE__, __func__);
8171 	sdma_dumpstate(sde);
8172 #endif
8173 
8174 	this_cpu_inc(*dd->int_counter);
8175 
8176 	/* This read_csr is really bad in the hot path */
8177 	status = read_csr(dd,
8178 			  CCE_INT_STATUS + (8 * (IS_SDMA_START / 64)))
8179 			  & sde->imask;
8180 	if (likely(status)) {
8181 		/* clear the interrupt(s) */
8182 		write_csr(dd,
8183 			  CCE_INT_CLEAR + (8 * (IS_SDMA_START / 64)),
8184 			  status);
8185 
8186 		/* handle the interrupt(s) */
8187 		sdma_engine_interrupt(sde, status);
8188 	} else {
8189 		dd_dev_err(dd, "SDMA engine %u interrupt, but no status bits set\n",
8190 			   sde->this_idx);
8191 	}
8192 	return IRQ_HANDLED;
8193 }
8194 
8195 /*
8196  * Clear the receive interrupt.  Use a read of the interrupt clear CSR
8197  * to insure that the write completed.  This does NOT guarantee that
8198  * queued DMA writes to memory from the chip are pushed.
8199  */
8200 static inline void clear_recv_intr(struct hfi1_ctxtdata *rcd)
8201 {
8202 	struct hfi1_devdata *dd = rcd->dd;
8203 	u32 addr = CCE_INT_CLEAR + (8 * rcd->ireg);
8204 
8205 	mmiowb();	/* make sure everything before is written */
8206 	write_csr(dd, addr, rcd->imask);
8207 	/* force the above write on the chip and get a value back */
8208 	(void)read_csr(dd, addr);
8209 }
8210 
8211 /* force the receive interrupt */
8212 void force_recv_intr(struct hfi1_ctxtdata *rcd)
8213 {
8214 	write_csr(rcd->dd, CCE_INT_FORCE + (8 * rcd->ireg), rcd->imask);
8215 }
8216 
8217 /*
8218  * Return non-zero if a packet is present.
8219  *
8220  * This routine is called when rechecking for packets after the RcvAvail
8221  * interrupt has been cleared down.  First, do a quick check of memory for
8222  * a packet present.  If not found, use an expensive CSR read of the context
8223  * tail to determine the actual tail.  The CSR read is necessary because there
8224  * is no method to push pending DMAs to memory other than an interrupt and we
8225  * are trying to determine if we need to force an interrupt.
8226  */
8227 static inline int check_packet_present(struct hfi1_ctxtdata *rcd)
8228 {
8229 	u32 tail;
8230 	int present;
8231 
8232 	if (!HFI1_CAP_IS_KSET(DMA_RTAIL))
8233 		present = (rcd->seq_cnt ==
8234 				rhf_rcv_seq(rhf_to_cpu(get_rhf_addr(rcd))));
8235 	else /* is RDMA rtail */
8236 		present = (rcd->head != get_rcvhdrtail(rcd));
8237 
8238 	if (present)
8239 		return 1;
8240 
8241 	/* fall back to a CSR read, correct indpendent of DMA_RTAIL */
8242 	tail = (u32)read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_TAIL);
8243 	return rcd->head != tail;
8244 }
8245 
8246 /*
8247  * Receive packet IRQ handler.  This routine expects to be on its own IRQ.
8248  * This routine will try to handle packets immediately (latency), but if
8249  * it finds too many, it will invoke the thread handler (bandwitdh).  The
8250  * chip receive interrupt is *not* cleared down until this or the thread (if
8251  * invoked) is finished.  The intent is to avoid extra interrupts while we
8252  * are processing packets anyway.
8253  */
8254 static irqreturn_t receive_context_interrupt(int irq, void *data)
8255 {
8256 	struct hfi1_ctxtdata *rcd = data;
8257 	struct hfi1_devdata *dd = rcd->dd;
8258 	int disposition;
8259 	int present;
8260 
8261 	trace_hfi1_receive_interrupt(dd, rcd->ctxt);
8262 	this_cpu_inc(*dd->int_counter);
8263 	aspm_ctx_disable(rcd);
8264 
8265 	/* receive interrupt remains blocked while processing packets */
8266 	disposition = rcd->do_interrupt(rcd, 0);
8267 
8268 	/*
8269 	 * Too many packets were seen while processing packets in this
8270 	 * IRQ handler.  Invoke the handler thread.  The receive interrupt
8271 	 * remains blocked.
8272 	 */
8273 	if (disposition == RCV_PKT_LIMIT)
8274 		return IRQ_WAKE_THREAD;
8275 
8276 	/*
8277 	 * The packet processor detected no more packets.  Clear the receive
8278 	 * interrupt and recheck for a packet packet that may have arrived
8279 	 * after the previous check and interrupt clear.  If a packet arrived,
8280 	 * force another interrupt.
8281 	 */
8282 	clear_recv_intr(rcd);
8283 	present = check_packet_present(rcd);
8284 	if (present)
8285 		force_recv_intr(rcd);
8286 
8287 	return IRQ_HANDLED;
8288 }
8289 
8290 /*
8291  * Receive packet thread handler.  This expects to be invoked with the
8292  * receive interrupt still blocked.
8293  */
8294 static irqreturn_t receive_context_thread(int irq, void *data)
8295 {
8296 	struct hfi1_ctxtdata *rcd = data;
8297 	int present;
8298 
8299 	/* receive interrupt is still blocked from the IRQ handler */
8300 	(void)rcd->do_interrupt(rcd, 1);
8301 
8302 	/*
8303 	 * The packet processor will only return if it detected no more
8304 	 * packets.  Hold IRQs here so we can safely clear the interrupt and
8305 	 * recheck for a packet that may have arrived after the previous
8306 	 * check and the interrupt clear.  If a packet arrived, force another
8307 	 * interrupt.
8308 	 */
8309 	local_irq_disable();
8310 	clear_recv_intr(rcd);
8311 	present = check_packet_present(rcd);
8312 	if (present)
8313 		force_recv_intr(rcd);
8314 	local_irq_enable();
8315 
8316 	return IRQ_HANDLED;
8317 }
8318 
8319 /* ========================================================================= */
8320 
8321 u32 read_physical_state(struct hfi1_devdata *dd)
8322 {
8323 	u64 reg;
8324 
8325 	reg = read_csr(dd, DC_DC8051_STS_CUR_STATE);
8326 	return (reg >> DC_DC8051_STS_CUR_STATE_PORT_SHIFT)
8327 				& DC_DC8051_STS_CUR_STATE_PORT_MASK;
8328 }
8329 
8330 u32 read_logical_state(struct hfi1_devdata *dd)
8331 {
8332 	u64 reg;
8333 
8334 	reg = read_csr(dd, DCC_CFG_PORT_CONFIG);
8335 	return (reg >> DCC_CFG_PORT_CONFIG_LINK_STATE_SHIFT)
8336 				& DCC_CFG_PORT_CONFIG_LINK_STATE_MASK;
8337 }
8338 
8339 static void set_logical_state(struct hfi1_devdata *dd, u32 chip_lstate)
8340 {
8341 	u64 reg;
8342 
8343 	reg = read_csr(dd, DCC_CFG_PORT_CONFIG);
8344 	/* clear current state, set new state */
8345 	reg &= ~DCC_CFG_PORT_CONFIG_LINK_STATE_SMASK;
8346 	reg |= (u64)chip_lstate << DCC_CFG_PORT_CONFIG_LINK_STATE_SHIFT;
8347 	write_csr(dd, DCC_CFG_PORT_CONFIG, reg);
8348 }
8349 
8350 /*
8351  * Use the 8051 to read a LCB CSR.
8352  */
8353 static int read_lcb_via_8051(struct hfi1_devdata *dd, u32 addr, u64 *data)
8354 {
8355 	u32 regno;
8356 	int ret;
8357 
8358 	if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR) {
8359 		if (acquire_lcb_access(dd, 0) == 0) {
8360 			*data = read_csr(dd, addr);
8361 			release_lcb_access(dd, 0);
8362 			return 0;
8363 		}
8364 		return -EBUSY;
8365 	}
8366 
8367 	/* register is an index of LCB registers: (offset - base) / 8 */
8368 	regno = (addr - DC_LCB_CFG_RUN) >> 3;
8369 	ret = do_8051_command(dd, HCMD_READ_LCB_CSR, regno, data);
8370 	if (ret != HCMD_SUCCESS)
8371 		return -EBUSY;
8372 	return 0;
8373 }
8374 
8375 /*
8376  * Provide a cache for some of the LCB registers in case the LCB is
8377  * unavailable.
8378  * (The LCB is unavailable in certain link states, for example.)
8379  */
8380 struct lcb_datum {
8381 	u32 off;
8382 	u64 val;
8383 };
8384 
8385 static struct lcb_datum lcb_cache[] = {
8386 	{ DC_LCB_ERR_INFO_RX_REPLAY_CNT, 0},
8387 	{ DC_LCB_ERR_INFO_SEQ_CRC_CNT, 0 },
8388 	{ DC_LCB_ERR_INFO_REINIT_FROM_PEER_CNT, 0 },
8389 };
8390 
8391 static void update_lcb_cache(struct hfi1_devdata *dd)
8392 {
8393 	int i;
8394 	int ret;
8395 	u64 val;
8396 
8397 	for (i = 0; i < ARRAY_SIZE(lcb_cache); i++) {
8398 		ret = read_lcb_csr(dd, lcb_cache[i].off, &val);
8399 
8400 		/* Update if we get good data */
8401 		if (likely(ret != -EBUSY))
8402 			lcb_cache[i].val = val;
8403 	}
8404 }
8405 
8406 static int read_lcb_cache(u32 off, u64 *val)
8407 {
8408 	int i;
8409 
8410 	for (i = 0; i < ARRAY_SIZE(lcb_cache); i++) {
8411 		if (lcb_cache[i].off == off) {
8412 			*val = lcb_cache[i].val;
8413 			return 0;
8414 		}
8415 	}
8416 
8417 	pr_warn("%s bad offset 0x%x\n", __func__, off);
8418 	return -1;
8419 }
8420 
8421 /*
8422  * Read an LCB CSR.  Access may not be in host control, so check.
8423  * Return 0 on success, -EBUSY on failure.
8424  */
8425 int read_lcb_csr(struct hfi1_devdata *dd, u32 addr, u64 *data)
8426 {
8427 	struct hfi1_pportdata *ppd = dd->pport;
8428 
8429 	/* if up, go through the 8051 for the value */
8430 	if (ppd->host_link_state & HLS_UP)
8431 		return read_lcb_via_8051(dd, addr, data);
8432 	/* if going up or down, check the cache, otherwise, no access */
8433 	if (ppd->host_link_state & (HLS_GOING_UP | HLS_GOING_OFFLINE)) {
8434 		if (read_lcb_cache(addr, data))
8435 			return -EBUSY;
8436 		return 0;
8437 	}
8438 
8439 	/* otherwise, host has access */
8440 	*data = read_csr(dd, addr);
8441 	return 0;
8442 }
8443 
8444 /*
8445  * Use the 8051 to write a LCB CSR.
8446  */
8447 static int write_lcb_via_8051(struct hfi1_devdata *dd, u32 addr, u64 data)
8448 {
8449 	u32 regno;
8450 	int ret;
8451 
8452 	if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR ||
8453 	    (dd->dc8051_ver < dc8051_ver(0, 20, 0))) {
8454 		if (acquire_lcb_access(dd, 0) == 0) {
8455 			write_csr(dd, addr, data);
8456 			release_lcb_access(dd, 0);
8457 			return 0;
8458 		}
8459 		return -EBUSY;
8460 	}
8461 
8462 	/* register is an index of LCB registers: (offset - base) / 8 */
8463 	regno = (addr - DC_LCB_CFG_RUN) >> 3;
8464 	ret = do_8051_command(dd, HCMD_WRITE_LCB_CSR, regno, &data);
8465 	if (ret != HCMD_SUCCESS)
8466 		return -EBUSY;
8467 	return 0;
8468 }
8469 
8470 /*
8471  * Write an LCB CSR.  Access may not be in host control, so check.
8472  * Return 0 on success, -EBUSY on failure.
8473  */
8474 int write_lcb_csr(struct hfi1_devdata *dd, u32 addr, u64 data)
8475 {
8476 	struct hfi1_pportdata *ppd = dd->pport;
8477 
8478 	/* if up, go through the 8051 for the value */
8479 	if (ppd->host_link_state & HLS_UP)
8480 		return write_lcb_via_8051(dd, addr, data);
8481 	/* if going up or down, no access */
8482 	if (ppd->host_link_state & (HLS_GOING_UP | HLS_GOING_OFFLINE))
8483 		return -EBUSY;
8484 	/* otherwise, host has access */
8485 	write_csr(dd, addr, data);
8486 	return 0;
8487 }
8488 
8489 /*
8490  * Returns:
8491  *	< 0 = Linux error, not able to get access
8492  *	> 0 = 8051 command RETURN_CODE
8493  */
8494 static int do_8051_command(
8495 	struct hfi1_devdata *dd,
8496 	u32 type,
8497 	u64 in_data,
8498 	u64 *out_data)
8499 {
8500 	u64 reg, completed;
8501 	int return_code;
8502 	unsigned long timeout;
8503 
8504 	hfi1_cdbg(DC8051, "type %d, data 0x%012llx", type, in_data);
8505 
8506 	mutex_lock(&dd->dc8051_lock);
8507 
8508 	/* We can't send any commands to the 8051 if it's in reset */
8509 	if (dd->dc_shutdown) {
8510 		return_code = -ENODEV;
8511 		goto fail;
8512 	}
8513 
8514 	/*
8515 	 * If an 8051 host command timed out previously, then the 8051 is
8516 	 * stuck.
8517 	 *
8518 	 * On first timeout, attempt to reset and restart the entire DC
8519 	 * block (including 8051). (Is this too big of a hammer?)
8520 	 *
8521 	 * If the 8051 times out a second time, the reset did not bring it
8522 	 * back to healthy life. In that case, fail any subsequent commands.
8523 	 */
8524 	if (dd->dc8051_timed_out) {
8525 		if (dd->dc8051_timed_out > 1) {
8526 			dd_dev_err(dd,
8527 				   "Previous 8051 host command timed out, skipping command %u\n",
8528 				   type);
8529 			return_code = -ENXIO;
8530 			goto fail;
8531 		}
8532 		_dc_shutdown(dd);
8533 		_dc_start(dd);
8534 	}
8535 
8536 	/*
8537 	 * If there is no timeout, then the 8051 command interface is
8538 	 * waiting for a command.
8539 	 */
8540 
8541 	/*
8542 	 * When writing a LCB CSR, out_data contains the full value to
8543 	 * to be written, while in_data contains the relative LCB
8544 	 * address in 7:0.  Do the work here, rather than the caller,
8545 	 * of distrubting the write data to where it needs to go:
8546 	 *
8547 	 * Write data
8548 	 *   39:00 -> in_data[47:8]
8549 	 *   47:40 -> DC8051_CFG_EXT_DEV_0.RETURN_CODE
8550 	 *   63:48 -> DC8051_CFG_EXT_DEV_0.RSP_DATA
8551 	 */
8552 	if (type == HCMD_WRITE_LCB_CSR) {
8553 		in_data |= ((*out_data) & 0xffffffffffull) << 8;
8554 		/* must preserve COMPLETED - it is tied to hardware */
8555 		reg = read_csr(dd, DC_DC8051_CFG_EXT_DEV_0);
8556 		reg &= DC_DC8051_CFG_EXT_DEV_0_COMPLETED_SMASK;
8557 		reg |= ((((*out_data) >> 40) & 0xff) <<
8558 				DC_DC8051_CFG_EXT_DEV_0_RETURN_CODE_SHIFT)
8559 		      | ((((*out_data) >> 48) & 0xffff) <<
8560 				DC_DC8051_CFG_EXT_DEV_0_RSP_DATA_SHIFT);
8561 		write_csr(dd, DC_DC8051_CFG_EXT_DEV_0, reg);
8562 	}
8563 
8564 	/*
8565 	 * Do two writes: the first to stabilize the type and req_data, the
8566 	 * second to activate.
8567 	 */
8568 	reg = ((u64)type & DC_DC8051_CFG_HOST_CMD_0_REQ_TYPE_MASK)
8569 			<< DC_DC8051_CFG_HOST_CMD_0_REQ_TYPE_SHIFT
8570 		| (in_data & DC_DC8051_CFG_HOST_CMD_0_REQ_DATA_MASK)
8571 			<< DC_DC8051_CFG_HOST_CMD_0_REQ_DATA_SHIFT;
8572 	write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, reg);
8573 	reg |= DC_DC8051_CFG_HOST_CMD_0_REQ_NEW_SMASK;
8574 	write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, reg);
8575 
8576 	/* wait for completion, alternate: interrupt */
8577 	timeout = jiffies + msecs_to_jiffies(DC8051_COMMAND_TIMEOUT);
8578 	while (1) {
8579 		reg = read_csr(dd, DC_DC8051_CFG_HOST_CMD_1);
8580 		completed = reg & DC_DC8051_CFG_HOST_CMD_1_COMPLETED_SMASK;
8581 		if (completed)
8582 			break;
8583 		if (time_after(jiffies, timeout)) {
8584 			dd->dc8051_timed_out++;
8585 			dd_dev_err(dd, "8051 host command %u timeout\n", type);
8586 			if (out_data)
8587 				*out_data = 0;
8588 			return_code = -ETIMEDOUT;
8589 			goto fail;
8590 		}
8591 		udelay(2);
8592 	}
8593 
8594 	if (out_data) {
8595 		*out_data = (reg >> DC_DC8051_CFG_HOST_CMD_1_RSP_DATA_SHIFT)
8596 				& DC_DC8051_CFG_HOST_CMD_1_RSP_DATA_MASK;
8597 		if (type == HCMD_READ_LCB_CSR) {
8598 			/* top 16 bits are in a different register */
8599 			*out_data |= (read_csr(dd, DC_DC8051_CFG_EXT_DEV_1)
8600 				& DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SMASK)
8601 				<< (48
8602 				    - DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SHIFT);
8603 		}
8604 	}
8605 	return_code = (reg >> DC_DC8051_CFG_HOST_CMD_1_RETURN_CODE_SHIFT)
8606 				& DC_DC8051_CFG_HOST_CMD_1_RETURN_CODE_MASK;
8607 	dd->dc8051_timed_out = 0;
8608 	/*
8609 	 * Clear command for next user.
8610 	 */
8611 	write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, 0);
8612 
8613 fail:
8614 	mutex_unlock(&dd->dc8051_lock);
8615 	return return_code;
8616 }
8617 
8618 static int set_physical_link_state(struct hfi1_devdata *dd, u64 state)
8619 {
8620 	return do_8051_command(dd, HCMD_CHANGE_PHY_STATE, state, NULL);
8621 }
8622 
8623 int load_8051_config(struct hfi1_devdata *dd, u8 field_id,
8624 		     u8 lane_id, u32 config_data)
8625 {
8626 	u64 data;
8627 	int ret;
8628 
8629 	data = (u64)field_id << LOAD_DATA_FIELD_ID_SHIFT
8630 		| (u64)lane_id << LOAD_DATA_LANE_ID_SHIFT
8631 		| (u64)config_data << LOAD_DATA_DATA_SHIFT;
8632 	ret = do_8051_command(dd, HCMD_LOAD_CONFIG_DATA, data, NULL);
8633 	if (ret != HCMD_SUCCESS) {
8634 		dd_dev_err(dd,
8635 			   "load 8051 config: field id %d, lane %d, err %d\n",
8636 			   (int)field_id, (int)lane_id, ret);
8637 	}
8638 	return ret;
8639 }
8640 
8641 /*
8642  * Read the 8051 firmware "registers".  Use the RAM directly.  Always
8643  * set the result, even on error.
8644  * Return 0 on success, -errno on failure
8645  */
8646 int read_8051_config(struct hfi1_devdata *dd, u8 field_id, u8 lane_id,
8647 		     u32 *result)
8648 {
8649 	u64 big_data;
8650 	u32 addr;
8651 	int ret;
8652 
8653 	/* address start depends on the lane_id */
8654 	if (lane_id < 4)
8655 		addr = (4 * NUM_GENERAL_FIELDS)
8656 			+ (lane_id * 4 * NUM_LANE_FIELDS);
8657 	else
8658 		addr = 0;
8659 	addr += field_id * 4;
8660 
8661 	/* read is in 8-byte chunks, hardware will truncate the address down */
8662 	ret = read_8051_data(dd, addr, 8, &big_data);
8663 
8664 	if (ret == 0) {
8665 		/* extract the 4 bytes we want */
8666 		if (addr & 0x4)
8667 			*result = (u32)(big_data >> 32);
8668 		else
8669 			*result = (u32)big_data;
8670 	} else {
8671 		*result = 0;
8672 		dd_dev_err(dd, "%s: direct read failed, lane %d, field %d!\n",
8673 			   __func__, lane_id, field_id);
8674 	}
8675 
8676 	return ret;
8677 }
8678 
8679 static int write_vc_local_phy(struct hfi1_devdata *dd, u8 power_management,
8680 			      u8 continuous)
8681 {
8682 	u32 frame;
8683 
8684 	frame = continuous << CONTINIOUS_REMOTE_UPDATE_SUPPORT_SHIFT
8685 		| power_management << POWER_MANAGEMENT_SHIFT;
8686 	return load_8051_config(dd, VERIFY_CAP_LOCAL_PHY,
8687 				GENERAL_CONFIG, frame);
8688 }
8689 
8690 static int write_vc_local_fabric(struct hfi1_devdata *dd, u8 vau, u8 z, u8 vcu,
8691 				 u16 vl15buf, u8 crc_sizes)
8692 {
8693 	u32 frame;
8694 
8695 	frame = (u32)vau << VAU_SHIFT
8696 		| (u32)z << Z_SHIFT
8697 		| (u32)vcu << VCU_SHIFT
8698 		| (u32)vl15buf << VL15BUF_SHIFT
8699 		| (u32)crc_sizes << CRC_SIZES_SHIFT;
8700 	return load_8051_config(dd, VERIFY_CAP_LOCAL_FABRIC,
8701 				GENERAL_CONFIG, frame);
8702 }
8703 
8704 static void read_vc_local_link_width(struct hfi1_devdata *dd, u8 *misc_bits,
8705 				     u8 *flag_bits, u16 *link_widths)
8706 {
8707 	u32 frame;
8708 
8709 	read_8051_config(dd, VERIFY_CAP_LOCAL_LINK_WIDTH, GENERAL_CONFIG,
8710 			 &frame);
8711 	*misc_bits = (frame >> MISC_CONFIG_BITS_SHIFT) & MISC_CONFIG_BITS_MASK;
8712 	*flag_bits = (frame >> LOCAL_FLAG_BITS_SHIFT) & LOCAL_FLAG_BITS_MASK;
8713 	*link_widths = (frame >> LINK_WIDTH_SHIFT) & LINK_WIDTH_MASK;
8714 }
8715 
8716 static int write_vc_local_link_width(struct hfi1_devdata *dd,
8717 				     u8 misc_bits,
8718 				     u8 flag_bits,
8719 				     u16 link_widths)
8720 {
8721 	u32 frame;
8722 
8723 	frame = (u32)misc_bits << MISC_CONFIG_BITS_SHIFT
8724 		| (u32)flag_bits << LOCAL_FLAG_BITS_SHIFT
8725 		| (u32)link_widths << LINK_WIDTH_SHIFT;
8726 	return load_8051_config(dd, VERIFY_CAP_LOCAL_LINK_WIDTH, GENERAL_CONFIG,
8727 		     frame);
8728 }
8729 
8730 static int write_local_device_id(struct hfi1_devdata *dd, u16 device_id,
8731 				 u8 device_rev)
8732 {
8733 	u32 frame;
8734 
8735 	frame = ((u32)device_id << LOCAL_DEVICE_ID_SHIFT)
8736 		| ((u32)device_rev << LOCAL_DEVICE_REV_SHIFT);
8737 	return load_8051_config(dd, LOCAL_DEVICE_ID, GENERAL_CONFIG, frame);
8738 }
8739 
8740 static void read_remote_device_id(struct hfi1_devdata *dd, u16 *device_id,
8741 				  u8 *device_rev)
8742 {
8743 	u32 frame;
8744 
8745 	read_8051_config(dd, REMOTE_DEVICE_ID, GENERAL_CONFIG, &frame);
8746 	*device_id = (frame >> REMOTE_DEVICE_ID_SHIFT) & REMOTE_DEVICE_ID_MASK;
8747 	*device_rev = (frame >> REMOTE_DEVICE_REV_SHIFT)
8748 			& REMOTE_DEVICE_REV_MASK;
8749 }
8750 
8751 void read_misc_status(struct hfi1_devdata *dd, u8 *ver_major, u8 *ver_minor,
8752 		      u8 *ver_patch)
8753 {
8754 	u32 frame;
8755 
8756 	read_8051_config(dd, MISC_STATUS, GENERAL_CONFIG, &frame);
8757 	*ver_major = (frame >> STS_FM_VERSION_MAJOR_SHIFT) &
8758 		STS_FM_VERSION_MAJOR_MASK;
8759 	*ver_minor = (frame >> STS_FM_VERSION_MINOR_SHIFT) &
8760 		STS_FM_VERSION_MINOR_MASK;
8761 
8762 	read_8051_config(dd, VERSION_PATCH, GENERAL_CONFIG, &frame);
8763 	*ver_patch = (frame >> STS_FM_VERSION_PATCH_SHIFT) &
8764 		STS_FM_VERSION_PATCH_MASK;
8765 }
8766 
8767 static void read_vc_remote_phy(struct hfi1_devdata *dd, u8 *power_management,
8768 			       u8 *continuous)
8769 {
8770 	u32 frame;
8771 
8772 	read_8051_config(dd, VERIFY_CAP_REMOTE_PHY, GENERAL_CONFIG, &frame);
8773 	*power_management = (frame >> POWER_MANAGEMENT_SHIFT)
8774 					& POWER_MANAGEMENT_MASK;
8775 	*continuous = (frame >> CONTINIOUS_REMOTE_UPDATE_SUPPORT_SHIFT)
8776 					& CONTINIOUS_REMOTE_UPDATE_SUPPORT_MASK;
8777 }
8778 
8779 static void read_vc_remote_fabric(struct hfi1_devdata *dd, u8 *vau, u8 *z,
8780 				  u8 *vcu, u16 *vl15buf, u8 *crc_sizes)
8781 {
8782 	u32 frame;
8783 
8784 	read_8051_config(dd, VERIFY_CAP_REMOTE_FABRIC, GENERAL_CONFIG, &frame);
8785 	*vau = (frame >> VAU_SHIFT) & VAU_MASK;
8786 	*z = (frame >> Z_SHIFT) & Z_MASK;
8787 	*vcu = (frame >> VCU_SHIFT) & VCU_MASK;
8788 	*vl15buf = (frame >> VL15BUF_SHIFT) & VL15BUF_MASK;
8789 	*crc_sizes = (frame >> CRC_SIZES_SHIFT) & CRC_SIZES_MASK;
8790 }
8791 
8792 static void read_vc_remote_link_width(struct hfi1_devdata *dd,
8793 				      u8 *remote_tx_rate,
8794 				      u16 *link_widths)
8795 {
8796 	u32 frame;
8797 
8798 	read_8051_config(dd, VERIFY_CAP_REMOTE_LINK_WIDTH, GENERAL_CONFIG,
8799 			 &frame);
8800 	*remote_tx_rate = (frame >> REMOTE_TX_RATE_SHIFT)
8801 				& REMOTE_TX_RATE_MASK;
8802 	*link_widths = (frame >> LINK_WIDTH_SHIFT) & LINK_WIDTH_MASK;
8803 }
8804 
8805 static void read_local_lni(struct hfi1_devdata *dd, u8 *enable_lane_rx)
8806 {
8807 	u32 frame;
8808 
8809 	read_8051_config(dd, LOCAL_LNI_INFO, GENERAL_CONFIG, &frame);
8810 	*enable_lane_rx = (frame >> ENABLE_LANE_RX_SHIFT) & ENABLE_LANE_RX_MASK;
8811 }
8812 
8813 static void read_mgmt_allowed(struct hfi1_devdata *dd, u8 *mgmt_allowed)
8814 {
8815 	u32 frame;
8816 
8817 	read_8051_config(dd, REMOTE_LNI_INFO, GENERAL_CONFIG, &frame);
8818 	*mgmt_allowed = (frame >> MGMT_ALLOWED_SHIFT) & MGMT_ALLOWED_MASK;
8819 }
8820 
8821 static void read_last_local_state(struct hfi1_devdata *dd, u32 *lls)
8822 {
8823 	read_8051_config(dd, LAST_LOCAL_STATE_COMPLETE, GENERAL_CONFIG, lls);
8824 }
8825 
8826 static void read_last_remote_state(struct hfi1_devdata *dd, u32 *lrs)
8827 {
8828 	read_8051_config(dd, LAST_REMOTE_STATE_COMPLETE, GENERAL_CONFIG, lrs);
8829 }
8830 
8831 void hfi1_read_link_quality(struct hfi1_devdata *dd, u8 *link_quality)
8832 {
8833 	u32 frame;
8834 	int ret;
8835 
8836 	*link_quality = 0;
8837 	if (dd->pport->host_link_state & HLS_UP) {
8838 		ret = read_8051_config(dd, LINK_QUALITY_INFO, GENERAL_CONFIG,
8839 				       &frame);
8840 		if (ret == 0)
8841 			*link_quality = (frame >> LINK_QUALITY_SHIFT)
8842 						& LINK_QUALITY_MASK;
8843 	}
8844 }
8845 
8846 static void read_planned_down_reason_code(struct hfi1_devdata *dd, u8 *pdrrc)
8847 {
8848 	u32 frame;
8849 
8850 	read_8051_config(dd, LINK_QUALITY_INFO, GENERAL_CONFIG, &frame);
8851 	*pdrrc = (frame >> DOWN_REMOTE_REASON_SHIFT) & DOWN_REMOTE_REASON_MASK;
8852 }
8853 
8854 static void read_link_down_reason(struct hfi1_devdata *dd, u8 *ldr)
8855 {
8856 	u32 frame;
8857 
8858 	read_8051_config(dd, LINK_DOWN_REASON, GENERAL_CONFIG, &frame);
8859 	*ldr = (frame & 0xff);
8860 }
8861 
8862 static int read_tx_settings(struct hfi1_devdata *dd,
8863 			    u8 *enable_lane_tx,
8864 			    u8 *tx_polarity_inversion,
8865 			    u8 *rx_polarity_inversion,
8866 			    u8 *max_rate)
8867 {
8868 	u32 frame;
8869 	int ret;
8870 
8871 	ret = read_8051_config(dd, TX_SETTINGS, GENERAL_CONFIG, &frame);
8872 	*enable_lane_tx = (frame >> ENABLE_LANE_TX_SHIFT)
8873 				& ENABLE_LANE_TX_MASK;
8874 	*tx_polarity_inversion = (frame >> TX_POLARITY_INVERSION_SHIFT)
8875 				& TX_POLARITY_INVERSION_MASK;
8876 	*rx_polarity_inversion = (frame >> RX_POLARITY_INVERSION_SHIFT)
8877 				& RX_POLARITY_INVERSION_MASK;
8878 	*max_rate = (frame >> MAX_RATE_SHIFT) & MAX_RATE_MASK;
8879 	return ret;
8880 }
8881 
8882 static int write_tx_settings(struct hfi1_devdata *dd,
8883 			     u8 enable_lane_tx,
8884 			     u8 tx_polarity_inversion,
8885 			     u8 rx_polarity_inversion,
8886 			     u8 max_rate)
8887 {
8888 	u32 frame;
8889 
8890 	/* no need to mask, all variable sizes match field widths */
8891 	frame = enable_lane_tx << ENABLE_LANE_TX_SHIFT
8892 		| tx_polarity_inversion << TX_POLARITY_INVERSION_SHIFT
8893 		| rx_polarity_inversion << RX_POLARITY_INVERSION_SHIFT
8894 		| max_rate << MAX_RATE_SHIFT;
8895 	return load_8051_config(dd, TX_SETTINGS, GENERAL_CONFIG, frame);
8896 }
8897 
8898 /*
8899  * Read an idle LCB message.
8900  *
8901  * Returns 0 on success, -EINVAL on error
8902  */
8903 static int read_idle_message(struct hfi1_devdata *dd, u64 type, u64 *data_out)
8904 {
8905 	int ret;
8906 
8907 	ret = do_8051_command(dd, HCMD_READ_LCB_IDLE_MSG, type, data_out);
8908 	if (ret != HCMD_SUCCESS) {
8909 		dd_dev_err(dd, "read idle message: type %d, err %d\n",
8910 			   (u32)type, ret);
8911 		return -EINVAL;
8912 	}
8913 	dd_dev_info(dd, "%s: read idle message 0x%llx\n", __func__, *data_out);
8914 	/* return only the payload as we already know the type */
8915 	*data_out >>= IDLE_PAYLOAD_SHIFT;
8916 	return 0;
8917 }
8918 
8919 /*
8920  * Read an idle SMA message.  To be done in response to a notification from
8921  * the 8051.
8922  *
8923  * Returns 0 on success, -EINVAL on error
8924  */
8925 static int read_idle_sma(struct hfi1_devdata *dd, u64 *data)
8926 {
8927 	return read_idle_message(dd, (u64)IDLE_SMA << IDLE_MSG_TYPE_SHIFT,
8928 				 data);
8929 }
8930 
8931 /*
8932  * Send an idle LCB message.
8933  *
8934  * Returns 0 on success, -EINVAL on error
8935  */
8936 static int send_idle_message(struct hfi1_devdata *dd, u64 data)
8937 {
8938 	int ret;
8939 
8940 	dd_dev_info(dd, "%s: sending idle message 0x%llx\n", __func__, data);
8941 	ret = do_8051_command(dd, HCMD_SEND_LCB_IDLE_MSG, data, NULL);
8942 	if (ret != HCMD_SUCCESS) {
8943 		dd_dev_err(dd, "send idle message: data 0x%llx, err %d\n",
8944 			   data, ret);
8945 		return -EINVAL;
8946 	}
8947 	return 0;
8948 }
8949 
8950 /*
8951  * Send an idle SMA message.
8952  *
8953  * Returns 0 on success, -EINVAL on error
8954  */
8955 int send_idle_sma(struct hfi1_devdata *dd, u64 message)
8956 {
8957 	u64 data;
8958 
8959 	data = ((message & IDLE_PAYLOAD_MASK) << IDLE_PAYLOAD_SHIFT) |
8960 		((u64)IDLE_SMA << IDLE_MSG_TYPE_SHIFT);
8961 	return send_idle_message(dd, data);
8962 }
8963 
8964 /*
8965  * Initialize the LCB then do a quick link up.  This may or may not be
8966  * in loopback.
8967  *
8968  * return 0 on success, -errno on error
8969  */
8970 static int do_quick_linkup(struct hfi1_devdata *dd)
8971 {
8972 	int ret;
8973 
8974 	lcb_shutdown(dd, 0);
8975 
8976 	if (loopback) {
8977 		/* LCB_CFG_LOOPBACK.VAL = 2 */
8978 		/* LCB_CFG_LANE_WIDTH.VAL = 0 */
8979 		write_csr(dd, DC_LCB_CFG_LOOPBACK,
8980 			  IB_PACKET_TYPE << DC_LCB_CFG_LOOPBACK_VAL_SHIFT);
8981 		write_csr(dd, DC_LCB_CFG_LANE_WIDTH, 0);
8982 	}
8983 
8984 	/* start the LCBs */
8985 	/* LCB_CFG_TX_FIFOS_RESET.VAL = 0 */
8986 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0);
8987 
8988 	/* simulator only loopback steps */
8989 	if (loopback && dd->icode == ICODE_FUNCTIONAL_SIMULATOR) {
8990 		/* LCB_CFG_RUN.EN = 1 */
8991 		write_csr(dd, DC_LCB_CFG_RUN,
8992 			  1ull << DC_LCB_CFG_RUN_EN_SHIFT);
8993 
8994 		ret = wait_link_transfer_active(dd, 10);
8995 		if (ret)
8996 			return ret;
8997 
8998 		write_csr(dd, DC_LCB_CFG_ALLOW_LINK_UP,
8999 			  1ull << DC_LCB_CFG_ALLOW_LINK_UP_VAL_SHIFT);
9000 	}
9001 
9002 	if (!loopback) {
9003 		/*
9004 		 * When doing quick linkup and not in loopback, both
9005 		 * sides must be done with LCB set-up before either
9006 		 * starts the quick linkup.  Put a delay here so that
9007 		 * both sides can be started and have a chance to be
9008 		 * done with LCB set up before resuming.
9009 		 */
9010 		dd_dev_err(dd,
9011 			   "Pausing for peer to be finished with LCB set up\n");
9012 		msleep(5000);
9013 		dd_dev_err(dd, "Continuing with quick linkup\n");
9014 	}
9015 
9016 	write_csr(dd, DC_LCB_ERR_EN, 0); /* mask LCB errors */
9017 	set_8051_lcb_access(dd);
9018 
9019 	/*
9020 	 * State "quick" LinkUp request sets the physical link state to
9021 	 * LinkUp without a verify capability sequence.
9022 	 * This state is in simulator v37 and later.
9023 	 */
9024 	ret = set_physical_link_state(dd, PLS_QUICK_LINKUP);
9025 	if (ret != HCMD_SUCCESS) {
9026 		dd_dev_err(dd,
9027 			   "%s: set physical link state to quick LinkUp failed with return %d\n",
9028 			   __func__, ret);
9029 
9030 		set_host_lcb_access(dd);
9031 		write_csr(dd, DC_LCB_ERR_EN, ~0ull); /* watch LCB errors */
9032 
9033 		if (ret >= 0)
9034 			ret = -EINVAL;
9035 		return ret;
9036 	}
9037 
9038 	return 0; /* success */
9039 }
9040 
9041 /*
9042  * Set the SerDes to internal loopback mode.
9043  * Returns 0 on success, -errno on error.
9044  */
9045 static int set_serdes_loopback_mode(struct hfi1_devdata *dd)
9046 {
9047 	int ret;
9048 
9049 	ret = set_physical_link_state(dd, PLS_INTERNAL_SERDES_LOOPBACK);
9050 	if (ret == HCMD_SUCCESS)
9051 		return 0;
9052 	dd_dev_err(dd,
9053 		   "Set physical link state to SerDes Loopback failed with return %d\n",
9054 		   ret);
9055 	if (ret >= 0)
9056 		ret = -EINVAL;
9057 	return ret;
9058 }
9059 
9060 /*
9061  * Do all special steps to set up loopback.
9062  */
9063 static int init_loopback(struct hfi1_devdata *dd)
9064 {
9065 	dd_dev_info(dd, "Entering loopback mode\n");
9066 
9067 	/* all loopbacks should disable self GUID check */
9068 	write_csr(dd, DC_DC8051_CFG_MODE,
9069 		  (read_csr(dd, DC_DC8051_CFG_MODE) | DISABLE_SELF_GUID_CHECK));
9070 
9071 	/*
9072 	 * The simulator has only one loopback option - LCB.  Switch
9073 	 * to that option, which includes quick link up.
9074 	 *
9075 	 * Accept all valid loopback values.
9076 	 */
9077 	if ((dd->icode == ICODE_FUNCTIONAL_SIMULATOR) &&
9078 	    (loopback == LOOPBACK_SERDES || loopback == LOOPBACK_LCB ||
9079 	     loopback == LOOPBACK_CABLE)) {
9080 		loopback = LOOPBACK_LCB;
9081 		quick_linkup = 1;
9082 		return 0;
9083 	}
9084 
9085 	/* handle serdes loopback */
9086 	if (loopback == LOOPBACK_SERDES) {
9087 		/* internal serdes loopack needs quick linkup on RTL */
9088 		if (dd->icode == ICODE_RTL_SILICON)
9089 			quick_linkup = 1;
9090 		return set_serdes_loopback_mode(dd);
9091 	}
9092 
9093 	/* LCB loopback - handled at poll time */
9094 	if (loopback == LOOPBACK_LCB) {
9095 		quick_linkup = 1; /* LCB is always quick linkup */
9096 
9097 		/* not supported in emulation due to emulation RTL changes */
9098 		if (dd->icode == ICODE_FPGA_EMULATION) {
9099 			dd_dev_err(dd,
9100 				   "LCB loopback not supported in emulation\n");
9101 			return -EINVAL;
9102 		}
9103 		return 0;
9104 	}
9105 
9106 	/* external cable loopback requires no extra steps */
9107 	if (loopback == LOOPBACK_CABLE)
9108 		return 0;
9109 
9110 	dd_dev_err(dd, "Invalid loopback mode %d\n", loopback);
9111 	return -EINVAL;
9112 }
9113 
9114 /*
9115  * Translate from the OPA_LINK_WIDTH handed to us by the FM to bits
9116  * used in the Verify Capability link width attribute.
9117  */
9118 static u16 opa_to_vc_link_widths(u16 opa_widths)
9119 {
9120 	int i;
9121 	u16 result = 0;
9122 
9123 	static const struct link_bits {
9124 		u16 from;
9125 		u16 to;
9126 	} opa_link_xlate[] = {
9127 		{ OPA_LINK_WIDTH_1X, 1 << (1 - 1)  },
9128 		{ OPA_LINK_WIDTH_2X, 1 << (2 - 1)  },
9129 		{ OPA_LINK_WIDTH_3X, 1 << (3 - 1)  },
9130 		{ OPA_LINK_WIDTH_4X, 1 << (4 - 1)  },
9131 	};
9132 
9133 	for (i = 0; i < ARRAY_SIZE(opa_link_xlate); i++) {
9134 		if (opa_widths & opa_link_xlate[i].from)
9135 			result |= opa_link_xlate[i].to;
9136 	}
9137 	return result;
9138 }
9139 
9140 /*
9141  * Set link attributes before moving to polling.
9142  */
9143 static int set_local_link_attributes(struct hfi1_pportdata *ppd)
9144 {
9145 	struct hfi1_devdata *dd = ppd->dd;
9146 	u8 enable_lane_tx;
9147 	u8 tx_polarity_inversion;
9148 	u8 rx_polarity_inversion;
9149 	int ret;
9150 
9151 	/* reset our fabric serdes to clear any lingering problems */
9152 	fabric_serdes_reset(dd);
9153 
9154 	/* set the local tx rate - need to read-modify-write */
9155 	ret = read_tx_settings(dd, &enable_lane_tx, &tx_polarity_inversion,
9156 			       &rx_polarity_inversion, &ppd->local_tx_rate);
9157 	if (ret)
9158 		goto set_local_link_attributes_fail;
9159 
9160 	if (dd->dc8051_ver < dc8051_ver(0, 20, 0)) {
9161 		/* set the tx rate to the fastest enabled */
9162 		if (ppd->link_speed_enabled & OPA_LINK_SPEED_25G)
9163 			ppd->local_tx_rate = 1;
9164 		else
9165 			ppd->local_tx_rate = 0;
9166 	} else {
9167 		/* set the tx rate to all enabled */
9168 		ppd->local_tx_rate = 0;
9169 		if (ppd->link_speed_enabled & OPA_LINK_SPEED_25G)
9170 			ppd->local_tx_rate |= 2;
9171 		if (ppd->link_speed_enabled & OPA_LINK_SPEED_12_5G)
9172 			ppd->local_tx_rate |= 1;
9173 	}
9174 
9175 	enable_lane_tx = 0xF; /* enable all four lanes */
9176 	ret = write_tx_settings(dd, enable_lane_tx, tx_polarity_inversion,
9177 				rx_polarity_inversion, ppd->local_tx_rate);
9178 	if (ret != HCMD_SUCCESS)
9179 		goto set_local_link_attributes_fail;
9180 
9181 	/*
9182 	 * DC supports continuous updates.
9183 	 */
9184 	ret = write_vc_local_phy(dd,
9185 				 0 /* no power management */,
9186 				 1 /* continuous updates */);
9187 	if (ret != HCMD_SUCCESS)
9188 		goto set_local_link_attributes_fail;
9189 
9190 	/* z=1 in the next call: AU of 0 is not supported by the hardware */
9191 	ret = write_vc_local_fabric(dd, dd->vau, 1, dd->vcu, dd->vl15_init,
9192 				    ppd->port_crc_mode_enabled);
9193 	if (ret != HCMD_SUCCESS)
9194 		goto set_local_link_attributes_fail;
9195 
9196 	ret = write_vc_local_link_width(dd, 0, 0,
9197 					opa_to_vc_link_widths(
9198 						ppd->link_width_enabled));
9199 	if (ret != HCMD_SUCCESS)
9200 		goto set_local_link_attributes_fail;
9201 
9202 	/* let peer know who we are */
9203 	ret = write_local_device_id(dd, dd->pcidev->device, dd->minrev);
9204 	if (ret == HCMD_SUCCESS)
9205 		return 0;
9206 
9207 set_local_link_attributes_fail:
9208 	dd_dev_err(dd,
9209 		   "Failed to set local link attributes, return 0x%x\n",
9210 		   ret);
9211 	return ret;
9212 }
9213 
9214 /*
9215  * Call this to start the link.
9216  * Do not do anything if the link is disabled.
9217  * Returns 0 if link is disabled, moved to polling, or the driver is not ready.
9218  */
9219 int start_link(struct hfi1_pportdata *ppd)
9220 {
9221 	/*
9222 	 * Tune the SerDes to a ballpark setting for optimal signal and bit
9223 	 * error rate.  Needs to be done before starting the link.
9224 	 */
9225 	tune_serdes(ppd);
9226 
9227 	if (!ppd->link_enabled) {
9228 		dd_dev_info(ppd->dd,
9229 			    "%s: stopping link start because link is disabled\n",
9230 			    __func__);
9231 		return 0;
9232 	}
9233 	if (!ppd->driver_link_ready) {
9234 		dd_dev_info(ppd->dd,
9235 			    "%s: stopping link start because driver is not ready\n",
9236 			    __func__);
9237 		return 0;
9238 	}
9239 
9240 	/*
9241 	 * FULL_MGMT_P_KEY is cleared from the pkey table, so that the
9242 	 * pkey table can be configured properly if the HFI unit is connected
9243 	 * to switch port with MgmtAllowed=NO
9244 	 */
9245 	clear_full_mgmt_pkey(ppd);
9246 
9247 	return set_link_state(ppd, HLS_DN_POLL);
9248 }
9249 
9250 static void wait_for_qsfp_init(struct hfi1_pportdata *ppd)
9251 {
9252 	struct hfi1_devdata *dd = ppd->dd;
9253 	u64 mask;
9254 	unsigned long timeout;
9255 
9256 	/*
9257 	 * Some QSFP cables have a quirk that asserts the IntN line as a side
9258 	 * effect of power up on plug-in. We ignore this false positive
9259 	 * interrupt until the module has finished powering up by waiting for
9260 	 * a minimum timeout of the module inrush initialization time of
9261 	 * 500 ms (SFF 8679 Table 5-6) to ensure the voltage rails in the
9262 	 * module have stabilized.
9263 	 */
9264 	msleep(500);
9265 
9266 	/*
9267 	 * Check for QSFP interrupt for t_init (SFF 8679 Table 8-1)
9268 	 */
9269 	timeout = jiffies + msecs_to_jiffies(2000);
9270 	while (1) {
9271 		mask = read_csr(dd, dd->hfi1_id ?
9272 				ASIC_QSFP2_IN : ASIC_QSFP1_IN);
9273 		if (!(mask & QSFP_HFI0_INT_N))
9274 			break;
9275 		if (time_after(jiffies, timeout)) {
9276 			dd_dev_info(dd, "%s: No IntN detected, reset complete\n",
9277 				    __func__);
9278 			break;
9279 		}
9280 		udelay(2);
9281 	}
9282 }
9283 
9284 static void set_qsfp_int_n(struct hfi1_pportdata *ppd, u8 enable)
9285 {
9286 	struct hfi1_devdata *dd = ppd->dd;
9287 	u64 mask;
9288 
9289 	mask = read_csr(dd, dd->hfi1_id ? ASIC_QSFP2_MASK : ASIC_QSFP1_MASK);
9290 	if (enable) {
9291 		/*
9292 		 * Clear the status register to avoid an immediate interrupt
9293 		 * when we re-enable the IntN pin
9294 		 */
9295 		write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_CLEAR : ASIC_QSFP1_CLEAR,
9296 			  QSFP_HFI0_INT_N);
9297 		mask |= (u64)QSFP_HFI0_INT_N;
9298 	} else {
9299 		mask &= ~(u64)QSFP_HFI0_INT_N;
9300 	}
9301 	write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_MASK : ASIC_QSFP1_MASK, mask);
9302 }
9303 
9304 void reset_qsfp(struct hfi1_pportdata *ppd)
9305 {
9306 	struct hfi1_devdata *dd = ppd->dd;
9307 	u64 mask, qsfp_mask;
9308 
9309 	/* Disable INT_N from triggering QSFP interrupts */
9310 	set_qsfp_int_n(ppd, 0);
9311 
9312 	/* Reset the QSFP */
9313 	mask = (u64)QSFP_HFI0_RESET_N;
9314 
9315 	qsfp_mask = read_csr(dd,
9316 			     dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT);
9317 	qsfp_mask &= ~mask;
9318 	write_csr(dd,
9319 		  dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT, qsfp_mask);
9320 
9321 	udelay(10);
9322 
9323 	qsfp_mask |= mask;
9324 	write_csr(dd,
9325 		  dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT, qsfp_mask);
9326 
9327 	wait_for_qsfp_init(ppd);
9328 
9329 	/*
9330 	 * Allow INT_N to trigger the QSFP interrupt to watch
9331 	 * for alarms and warnings
9332 	 */
9333 	set_qsfp_int_n(ppd, 1);
9334 }
9335 
9336 static int handle_qsfp_error_conditions(struct hfi1_pportdata *ppd,
9337 					u8 *qsfp_interrupt_status)
9338 {
9339 	struct hfi1_devdata *dd = ppd->dd;
9340 
9341 	if ((qsfp_interrupt_status[0] & QSFP_HIGH_TEMP_ALARM) ||
9342 	    (qsfp_interrupt_status[0] & QSFP_HIGH_TEMP_WARNING))
9343 		dd_dev_info(dd, "%s: QSFP cable temperature too high\n",
9344 			    __func__);
9345 
9346 	if ((qsfp_interrupt_status[0] & QSFP_LOW_TEMP_ALARM) ||
9347 	    (qsfp_interrupt_status[0] & QSFP_LOW_TEMP_WARNING))
9348 		dd_dev_info(dd, "%s: QSFP cable temperature too low\n",
9349 			    __func__);
9350 
9351 	/*
9352 	 * The remaining alarms/warnings don't matter if the link is down.
9353 	 */
9354 	if (ppd->host_link_state & HLS_DOWN)
9355 		return 0;
9356 
9357 	if ((qsfp_interrupt_status[1] & QSFP_HIGH_VCC_ALARM) ||
9358 	    (qsfp_interrupt_status[1] & QSFP_HIGH_VCC_WARNING))
9359 		dd_dev_info(dd, "%s: QSFP supply voltage too high\n",
9360 			    __func__);
9361 
9362 	if ((qsfp_interrupt_status[1] & QSFP_LOW_VCC_ALARM) ||
9363 	    (qsfp_interrupt_status[1] & QSFP_LOW_VCC_WARNING))
9364 		dd_dev_info(dd, "%s: QSFP supply voltage too low\n",
9365 			    __func__);
9366 
9367 	/* Byte 2 is vendor specific */
9368 
9369 	if ((qsfp_interrupt_status[3] & QSFP_HIGH_POWER_ALARM) ||
9370 	    (qsfp_interrupt_status[3] & QSFP_HIGH_POWER_WARNING))
9371 		dd_dev_info(dd, "%s: Cable RX channel 1/2 power too high\n",
9372 			    __func__);
9373 
9374 	if ((qsfp_interrupt_status[3] & QSFP_LOW_POWER_ALARM) ||
9375 	    (qsfp_interrupt_status[3] & QSFP_LOW_POWER_WARNING))
9376 		dd_dev_info(dd, "%s: Cable RX channel 1/2 power too low\n",
9377 			    __func__);
9378 
9379 	if ((qsfp_interrupt_status[4] & QSFP_HIGH_POWER_ALARM) ||
9380 	    (qsfp_interrupt_status[4] & QSFP_HIGH_POWER_WARNING))
9381 		dd_dev_info(dd, "%s: Cable RX channel 3/4 power too high\n",
9382 			    __func__);
9383 
9384 	if ((qsfp_interrupt_status[4] & QSFP_LOW_POWER_ALARM) ||
9385 	    (qsfp_interrupt_status[4] & QSFP_LOW_POWER_WARNING))
9386 		dd_dev_info(dd, "%s: Cable RX channel 3/4 power too low\n",
9387 			    __func__);
9388 
9389 	if ((qsfp_interrupt_status[5] & QSFP_HIGH_BIAS_ALARM) ||
9390 	    (qsfp_interrupt_status[5] & QSFP_HIGH_BIAS_WARNING))
9391 		dd_dev_info(dd, "%s: Cable TX channel 1/2 bias too high\n",
9392 			    __func__);
9393 
9394 	if ((qsfp_interrupt_status[5] & QSFP_LOW_BIAS_ALARM) ||
9395 	    (qsfp_interrupt_status[5] & QSFP_LOW_BIAS_WARNING))
9396 		dd_dev_info(dd, "%s: Cable TX channel 1/2 bias too low\n",
9397 			    __func__);
9398 
9399 	if ((qsfp_interrupt_status[6] & QSFP_HIGH_BIAS_ALARM) ||
9400 	    (qsfp_interrupt_status[6] & QSFP_HIGH_BIAS_WARNING))
9401 		dd_dev_info(dd, "%s: Cable TX channel 3/4 bias too high\n",
9402 			    __func__);
9403 
9404 	if ((qsfp_interrupt_status[6] & QSFP_LOW_BIAS_ALARM) ||
9405 	    (qsfp_interrupt_status[6] & QSFP_LOW_BIAS_WARNING))
9406 		dd_dev_info(dd, "%s: Cable TX channel 3/4 bias too low\n",
9407 			    __func__);
9408 
9409 	if ((qsfp_interrupt_status[7] & QSFP_HIGH_POWER_ALARM) ||
9410 	    (qsfp_interrupt_status[7] & QSFP_HIGH_POWER_WARNING))
9411 		dd_dev_info(dd, "%s: Cable TX channel 1/2 power too high\n",
9412 			    __func__);
9413 
9414 	if ((qsfp_interrupt_status[7] & QSFP_LOW_POWER_ALARM) ||
9415 	    (qsfp_interrupt_status[7] & QSFP_LOW_POWER_WARNING))
9416 		dd_dev_info(dd, "%s: Cable TX channel 1/2 power too low\n",
9417 			    __func__);
9418 
9419 	if ((qsfp_interrupt_status[8] & QSFP_HIGH_POWER_ALARM) ||
9420 	    (qsfp_interrupt_status[8] & QSFP_HIGH_POWER_WARNING))
9421 		dd_dev_info(dd, "%s: Cable TX channel 3/4 power too high\n",
9422 			    __func__);
9423 
9424 	if ((qsfp_interrupt_status[8] & QSFP_LOW_POWER_ALARM) ||
9425 	    (qsfp_interrupt_status[8] & QSFP_LOW_POWER_WARNING))
9426 		dd_dev_info(dd, "%s: Cable TX channel 3/4 power too low\n",
9427 			    __func__);
9428 
9429 	/* Bytes 9-10 and 11-12 are reserved */
9430 	/* Bytes 13-15 are vendor specific */
9431 
9432 	return 0;
9433 }
9434 
9435 /* This routine will only be scheduled if the QSFP module present is asserted */
9436 void qsfp_event(struct work_struct *work)
9437 {
9438 	struct qsfp_data *qd;
9439 	struct hfi1_pportdata *ppd;
9440 	struct hfi1_devdata *dd;
9441 
9442 	qd = container_of(work, struct qsfp_data, qsfp_work);
9443 	ppd = qd->ppd;
9444 	dd = ppd->dd;
9445 
9446 	/* Sanity check */
9447 	if (!qsfp_mod_present(ppd))
9448 		return;
9449 
9450 	/*
9451 	 * Turn DC back on after cable has been re-inserted. Up until
9452 	 * now, the DC has been in reset to save power.
9453 	 */
9454 	dc_start(dd);
9455 
9456 	if (qd->cache_refresh_required) {
9457 		set_qsfp_int_n(ppd, 0);
9458 
9459 		wait_for_qsfp_init(ppd);
9460 
9461 		/*
9462 		 * Allow INT_N to trigger the QSFP interrupt to watch
9463 		 * for alarms and warnings
9464 		 */
9465 		set_qsfp_int_n(ppd, 1);
9466 
9467 		start_link(ppd);
9468 	}
9469 
9470 	if (qd->check_interrupt_flags) {
9471 		u8 qsfp_interrupt_status[16] = {0,};
9472 
9473 		if (one_qsfp_read(ppd, dd->hfi1_id, 6,
9474 				  &qsfp_interrupt_status[0], 16) != 16) {
9475 			dd_dev_info(dd,
9476 				    "%s: Failed to read status of QSFP module\n",
9477 				    __func__);
9478 		} else {
9479 			unsigned long flags;
9480 
9481 			handle_qsfp_error_conditions(
9482 					ppd, qsfp_interrupt_status);
9483 			spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
9484 			ppd->qsfp_info.check_interrupt_flags = 0;
9485 			spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock,
9486 					       flags);
9487 		}
9488 	}
9489 }
9490 
9491 static void init_qsfp_int(struct hfi1_devdata *dd)
9492 {
9493 	struct hfi1_pportdata *ppd = dd->pport;
9494 	u64 qsfp_mask, cce_int_mask;
9495 	const int qsfp1_int_smask = QSFP1_INT % 64;
9496 	const int qsfp2_int_smask = QSFP2_INT % 64;
9497 
9498 	/*
9499 	 * disable QSFP1 interrupts for HFI1, QSFP2 interrupts for HFI0
9500 	 * Qsfp1Int and Qsfp2Int are adjacent bits in the same CSR,
9501 	 * therefore just one of QSFP1_INT/QSFP2_INT can be used to find
9502 	 * the index of the appropriate CSR in the CCEIntMask CSR array
9503 	 */
9504 	cce_int_mask = read_csr(dd, CCE_INT_MASK +
9505 				(8 * (QSFP1_INT / 64)));
9506 	if (dd->hfi1_id) {
9507 		cce_int_mask &= ~((u64)1 << qsfp1_int_smask);
9508 		write_csr(dd, CCE_INT_MASK + (8 * (QSFP1_INT / 64)),
9509 			  cce_int_mask);
9510 	} else {
9511 		cce_int_mask &= ~((u64)1 << qsfp2_int_smask);
9512 		write_csr(dd, CCE_INT_MASK + (8 * (QSFP2_INT / 64)),
9513 			  cce_int_mask);
9514 	}
9515 
9516 	qsfp_mask = (u64)(QSFP_HFI0_INT_N | QSFP_HFI0_MODPRST_N);
9517 	/* Clear current status to avoid spurious interrupts */
9518 	write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_CLEAR : ASIC_QSFP1_CLEAR,
9519 		  qsfp_mask);
9520 	write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_MASK : ASIC_QSFP1_MASK,
9521 		  qsfp_mask);
9522 
9523 	set_qsfp_int_n(ppd, 0);
9524 
9525 	/* Handle active low nature of INT_N and MODPRST_N pins */
9526 	if (qsfp_mod_present(ppd))
9527 		qsfp_mask &= ~(u64)QSFP_HFI0_MODPRST_N;
9528 	write_csr(dd,
9529 		  dd->hfi1_id ? ASIC_QSFP2_INVERT : ASIC_QSFP1_INVERT,
9530 		  qsfp_mask);
9531 }
9532 
9533 /*
9534  * Do a one-time initialize of the LCB block.
9535  */
9536 static void init_lcb(struct hfi1_devdata *dd)
9537 {
9538 	/* simulator does not correctly handle LCB cclk loopback, skip */
9539 	if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR)
9540 		return;
9541 
9542 	/* the DC has been reset earlier in the driver load */
9543 
9544 	/* set LCB for cclk loopback on the port */
9545 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0x01);
9546 	write_csr(dd, DC_LCB_CFG_LANE_WIDTH, 0x00);
9547 	write_csr(dd, DC_LCB_CFG_REINIT_AS_SLAVE, 0x00);
9548 	write_csr(dd, DC_LCB_CFG_CNT_FOR_SKIP_STALL, 0x110);
9549 	write_csr(dd, DC_LCB_CFG_CLK_CNTR, 0x08);
9550 	write_csr(dd, DC_LCB_CFG_LOOPBACK, 0x02);
9551 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0x00);
9552 }
9553 
9554 /*
9555  * Perform a test read on the QSFP.  Return 0 on success, -ERRNO
9556  * on error.
9557  */
9558 static int test_qsfp_read(struct hfi1_pportdata *ppd)
9559 {
9560 	int ret;
9561 	u8 status;
9562 
9563 	/*
9564 	 * Report success if not a QSFP or, if it is a QSFP, but the cable is
9565 	 * not present
9566 	 */
9567 	if (ppd->port_type != PORT_TYPE_QSFP || !qsfp_mod_present(ppd))
9568 		return 0;
9569 
9570 	/* read byte 2, the status byte */
9571 	ret = one_qsfp_read(ppd, ppd->dd->hfi1_id, 2, &status, 1);
9572 	if (ret < 0)
9573 		return ret;
9574 	if (ret != 1)
9575 		return -EIO;
9576 
9577 	return 0; /* success */
9578 }
9579 
9580 /*
9581  * Values for QSFP retry.
9582  *
9583  * Give up after 10s (20 x 500ms).  The overall timeout was empirically
9584  * arrived at from experience on a large cluster.
9585  */
9586 #define MAX_QSFP_RETRIES 20
9587 #define QSFP_RETRY_WAIT 500 /* msec */
9588 
9589 /*
9590  * Try a QSFP read.  If it fails, schedule a retry for later.
9591  * Called on first link activation after driver load.
9592  */
9593 static void try_start_link(struct hfi1_pportdata *ppd)
9594 {
9595 	if (test_qsfp_read(ppd)) {
9596 		/* read failed */
9597 		if (ppd->qsfp_retry_count >= MAX_QSFP_RETRIES) {
9598 			dd_dev_err(ppd->dd, "QSFP not responding, giving up\n");
9599 			return;
9600 		}
9601 		dd_dev_info(ppd->dd,
9602 			    "QSFP not responding, waiting and retrying %d\n",
9603 			    (int)ppd->qsfp_retry_count);
9604 		ppd->qsfp_retry_count++;
9605 		queue_delayed_work(ppd->hfi1_wq, &ppd->start_link_work,
9606 				   msecs_to_jiffies(QSFP_RETRY_WAIT));
9607 		return;
9608 	}
9609 	ppd->qsfp_retry_count = 0;
9610 
9611 	start_link(ppd);
9612 }
9613 
9614 /*
9615  * Workqueue function to start the link after a delay.
9616  */
9617 void handle_start_link(struct work_struct *work)
9618 {
9619 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
9620 						  start_link_work.work);
9621 	try_start_link(ppd);
9622 }
9623 
9624 int bringup_serdes(struct hfi1_pportdata *ppd)
9625 {
9626 	struct hfi1_devdata *dd = ppd->dd;
9627 	u64 guid;
9628 	int ret;
9629 
9630 	if (HFI1_CAP_IS_KSET(EXTENDED_PSN))
9631 		add_rcvctrl(dd, RCV_CTRL_RCV_EXTENDED_PSN_ENABLE_SMASK);
9632 
9633 	guid = ppd->guids[HFI1_PORT_GUID_INDEX];
9634 	if (!guid) {
9635 		if (dd->base_guid)
9636 			guid = dd->base_guid + ppd->port - 1;
9637 		ppd->guids[HFI1_PORT_GUID_INDEX] = guid;
9638 	}
9639 
9640 	/* Set linkinit_reason on power up per OPA spec */
9641 	ppd->linkinit_reason = OPA_LINKINIT_REASON_LINKUP;
9642 
9643 	/* one-time init of the LCB */
9644 	init_lcb(dd);
9645 
9646 	if (loopback) {
9647 		ret = init_loopback(dd);
9648 		if (ret < 0)
9649 			return ret;
9650 	}
9651 
9652 	get_port_type(ppd);
9653 	if (ppd->port_type == PORT_TYPE_QSFP) {
9654 		set_qsfp_int_n(ppd, 0);
9655 		wait_for_qsfp_init(ppd);
9656 		set_qsfp_int_n(ppd, 1);
9657 	}
9658 
9659 	try_start_link(ppd);
9660 	return 0;
9661 }
9662 
9663 void hfi1_quiet_serdes(struct hfi1_pportdata *ppd)
9664 {
9665 	struct hfi1_devdata *dd = ppd->dd;
9666 
9667 	/*
9668 	 * Shut down the link and keep it down.   First turn off that the
9669 	 * driver wants to allow the link to be up (driver_link_ready).
9670 	 * Then make sure the link is not automatically restarted
9671 	 * (link_enabled).  Cancel any pending restart.  And finally
9672 	 * go offline.
9673 	 */
9674 	ppd->driver_link_ready = 0;
9675 	ppd->link_enabled = 0;
9676 
9677 	ppd->qsfp_retry_count = MAX_QSFP_RETRIES; /* prevent more retries */
9678 	flush_delayed_work(&ppd->start_link_work);
9679 	cancel_delayed_work_sync(&ppd->start_link_work);
9680 
9681 	ppd->offline_disabled_reason =
9682 			HFI1_ODR_MASK(OPA_LINKDOWN_REASON_SMA_DISABLED);
9683 	set_link_down_reason(ppd, OPA_LINKDOWN_REASON_SMA_DISABLED, 0,
9684 			     OPA_LINKDOWN_REASON_SMA_DISABLED);
9685 	set_link_state(ppd, HLS_DN_OFFLINE);
9686 
9687 	/* disable the port */
9688 	clear_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
9689 }
9690 
9691 static inline int init_cpu_counters(struct hfi1_devdata *dd)
9692 {
9693 	struct hfi1_pportdata *ppd;
9694 	int i;
9695 
9696 	ppd = (struct hfi1_pportdata *)(dd + 1);
9697 	for (i = 0; i < dd->num_pports; i++, ppd++) {
9698 		ppd->ibport_data.rvp.rc_acks = NULL;
9699 		ppd->ibport_data.rvp.rc_qacks = NULL;
9700 		ppd->ibport_data.rvp.rc_acks = alloc_percpu(u64);
9701 		ppd->ibport_data.rvp.rc_qacks = alloc_percpu(u64);
9702 		ppd->ibport_data.rvp.rc_delayed_comp = alloc_percpu(u64);
9703 		if (!ppd->ibport_data.rvp.rc_acks ||
9704 		    !ppd->ibport_data.rvp.rc_delayed_comp ||
9705 		    !ppd->ibport_data.rvp.rc_qacks)
9706 			return -ENOMEM;
9707 	}
9708 
9709 	return 0;
9710 }
9711 
9712 static const char * const pt_names[] = {
9713 	"expected",
9714 	"eager",
9715 	"invalid"
9716 };
9717 
9718 static const char *pt_name(u32 type)
9719 {
9720 	return type >= ARRAY_SIZE(pt_names) ? "unknown" : pt_names[type];
9721 }
9722 
9723 /*
9724  * index is the index into the receive array
9725  */
9726 void hfi1_put_tid(struct hfi1_devdata *dd, u32 index,
9727 		  u32 type, unsigned long pa, u16 order)
9728 {
9729 	u64 reg;
9730 	void __iomem *base = (dd->rcvarray_wc ? dd->rcvarray_wc :
9731 			      (dd->kregbase + RCV_ARRAY));
9732 
9733 	if (!(dd->flags & HFI1_PRESENT))
9734 		goto done;
9735 
9736 	if (type == PT_INVALID) {
9737 		pa = 0;
9738 	} else if (type > PT_INVALID) {
9739 		dd_dev_err(dd,
9740 			   "unexpected receive array type %u for index %u, not handled\n",
9741 			   type, index);
9742 		goto done;
9743 	}
9744 
9745 	hfi1_cdbg(TID, "type %s, index 0x%x, pa 0x%lx, bsize 0x%lx",
9746 		  pt_name(type), index, pa, (unsigned long)order);
9747 
9748 #define RT_ADDR_SHIFT 12	/* 4KB kernel address boundary */
9749 	reg = RCV_ARRAY_RT_WRITE_ENABLE_SMASK
9750 		| (u64)order << RCV_ARRAY_RT_BUF_SIZE_SHIFT
9751 		| ((pa >> RT_ADDR_SHIFT) & RCV_ARRAY_RT_ADDR_MASK)
9752 					<< RCV_ARRAY_RT_ADDR_SHIFT;
9753 	writeq(reg, base + (index * 8));
9754 
9755 	if (type == PT_EAGER)
9756 		/*
9757 		 * Eager entries are written one-by-one so we have to push them
9758 		 * after we write the entry.
9759 		 */
9760 		flush_wc();
9761 done:
9762 	return;
9763 }
9764 
9765 void hfi1_clear_tids(struct hfi1_ctxtdata *rcd)
9766 {
9767 	struct hfi1_devdata *dd = rcd->dd;
9768 	u32 i;
9769 
9770 	/* this could be optimized */
9771 	for (i = rcd->eager_base; i < rcd->eager_base +
9772 		     rcd->egrbufs.alloced; i++)
9773 		hfi1_put_tid(dd, i, PT_INVALID, 0, 0);
9774 
9775 	for (i = rcd->expected_base;
9776 			i < rcd->expected_base + rcd->expected_count; i++)
9777 		hfi1_put_tid(dd, i, PT_INVALID, 0, 0);
9778 }
9779 
9780 struct ib_header *hfi1_get_msgheader(
9781 	struct hfi1_devdata *dd, __le32 *rhf_addr)
9782 {
9783 	u32 offset = rhf_hdrq_offset(rhf_to_cpu(rhf_addr));
9784 
9785 	return (struct ib_header *)
9786 		(rhf_addr - dd->rhf_offset + offset);
9787 }
9788 
9789 static const char * const ib_cfg_name_strings[] = {
9790 	"HFI1_IB_CFG_LIDLMC",
9791 	"HFI1_IB_CFG_LWID_DG_ENB",
9792 	"HFI1_IB_CFG_LWID_ENB",
9793 	"HFI1_IB_CFG_LWID",
9794 	"HFI1_IB_CFG_SPD_ENB",
9795 	"HFI1_IB_CFG_SPD",
9796 	"HFI1_IB_CFG_RXPOL_ENB",
9797 	"HFI1_IB_CFG_LREV_ENB",
9798 	"HFI1_IB_CFG_LINKLATENCY",
9799 	"HFI1_IB_CFG_HRTBT",
9800 	"HFI1_IB_CFG_OP_VLS",
9801 	"HFI1_IB_CFG_VL_HIGH_CAP",
9802 	"HFI1_IB_CFG_VL_LOW_CAP",
9803 	"HFI1_IB_CFG_OVERRUN_THRESH",
9804 	"HFI1_IB_CFG_PHYERR_THRESH",
9805 	"HFI1_IB_CFG_LINKDEFAULT",
9806 	"HFI1_IB_CFG_PKEYS",
9807 	"HFI1_IB_CFG_MTU",
9808 	"HFI1_IB_CFG_LSTATE",
9809 	"HFI1_IB_CFG_VL_HIGH_LIMIT",
9810 	"HFI1_IB_CFG_PMA_TICKS",
9811 	"HFI1_IB_CFG_PORT"
9812 };
9813 
9814 static const char *ib_cfg_name(int which)
9815 {
9816 	if (which < 0 || which >= ARRAY_SIZE(ib_cfg_name_strings))
9817 		return "invalid";
9818 	return ib_cfg_name_strings[which];
9819 }
9820 
9821 int hfi1_get_ib_cfg(struct hfi1_pportdata *ppd, int which)
9822 {
9823 	struct hfi1_devdata *dd = ppd->dd;
9824 	int val = 0;
9825 
9826 	switch (which) {
9827 	case HFI1_IB_CFG_LWID_ENB: /* allowed Link-width */
9828 		val = ppd->link_width_enabled;
9829 		break;
9830 	case HFI1_IB_CFG_LWID: /* currently active Link-width */
9831 		val = ppd->link_width_active;
9832 		break;
9833 	case HFI1_IB_CFG_SPD_ENB: /* allowed Link speeds */
9834 		val = ppd->link_speed_enabled;
9835 		break;
9836 	case HFI1_IB_CFG_SPD: /* current Link speed */
9837 		val = ppd->link_speed_active;
9838 		break;
9839 
9840 	case HFI1_IB_CFG_RXPOL_ENB: /* Auto-RX-polarity enable */
9841 	case HFI1_IB_CFG_LREV_ENB: /* Auto-Lane-reversal enable */
9842 	case HFI1_IB_CFG_LINKLATENCY:
9843 		goto unimplemented;
9844 
9845 	case HFI1_IB_CFG_OP_VLS:
9846 		val = ppd->vls_operational;
9847 		break;
9848 	case HFI1_IB_CFG_VL_HIGH_CAP: /* VL arb high priority table size */
9849 		val = VL_ARB_HIGH_PRIO_TABLE_SIZE;
9850 		break;
9851 	case HFI1_IB_CFG_VL_LOW_CAP: /* VL arb low priority table size */
9852 		val = VL_ARB_LOW_PRIO_TABLE_SIZE;
9853 		break;
9854 	case HFI1_IB_CFG_OVERRUN_THRESH: /* IB overrun threshold */
9855 		val = ppd->overrun_threshold;
9856 		break;
9857 	case HFI1_IB_CFG_PHYERR_THRESH: /* IB PHY error threshold */
9858 		val = ppd->phy_error_threshold;
9859 		break;
9860 	case HFI1_IB_CFG_LINKDEFAULT: /* IB link default (sleep/poll) */
9861 		val = dd->link_default;
9862 		break;
9863 
9864 	case HFI1_IB_CFG_HRTBT: /* Heartbeat off/enable/auto */
9865 	case HFI1_IB_CFG_PMA_TICKS:
9866 	default:
9867 unimplemented:
9868 		if (HFI1_CAP_IS_KSET(PRINT_UNIMPL))
9869 			dd_dev_info(
9870 				dd,
9871 				"%s: which %s: not implemented\n",
9872 				__func__,
9873 				ib_cfg_name(which));
9874 		break;
9875 	}
9876 
9877 	return val;
9878 }
9879 
9880 /*
9881  * The largest MAD packet size.
9882  */
9883 #define MAX_MAD_PACKET 2048
9884 
9885 /*
9886  * Return the maximum header bytes that can go on the _wire_
9887  * for this device. This count includes the ICRC which is
9888  * not part of the packet held in memory but it is appended
9889  * by the HW.
9890  * This is dependent on the device's receive header entry size.
9891  * HFI allows this to be set per-receive context, but the
9892  * driver presently enforces a global value.
9893  */
9894 u32 lrh_max_header_bytes(struct hfi1_devdata *dd)
9895 {
9896 	/*
9897 	 * The maximum non-payload (MTU) bytes in LRH.PktLen are
9898 	 * the Receive Header Entry Size minus the PBC (or RHF) size
9899 	 * plus one DW for the ICRC appended by HW.
9900 	 *
9901 	 * dd->rcd[0].rcvhdrqentsize is in DW.
9902 	 * We use rcd[0] as all context will have the same value. Also,
9903 	 * the first kernel context would have been allocated by now so
9904 	 * we are guaranteed a valid value.
9905 	 */
9906 	return (dd->rcd[0]->rcvhdrqentsize - 2/*PBC/RHF*/ + 1/*ICRC*/) << 2;
9907 }
9908 
9909 /*
9910  * Set Send Length
9911  * @ppd - per port data
9912  *
9913  * Set the MTU by limiting how many DWs may be sent.  The SendLenCheck*
9914  * registers compare against LRH.PktLen, so use the max bytes included
9915  * in the LRH.
9916  *
9917  * This routine changes all VL values except VL15, which it maintains at
9918  * the same value.
9919  */
9920 static void set_send_length(struct hfi1_pportdata *ppd)
9921 {
9922 	struct hfi1_devdata *dd = ppd->dd;
9923 	u32 max_hb = lrh_max_header_bytes(dd), dcmtu;
9924 	u32 maxvlmtu = dd->vld[15].mtu;
9925 	u64 len1 = 0, len2 = (((dd->vld[15].mtu + max_hb) >> 2)
9926 			      & SEND_LEN_CHECK1_LEN_VL15_MASK) <<
9927 		SEND_LEN_CHECK1_LEN_VL15_SHIFT;
9928 	int i, j;
9929 	u32 thres;
9930 
9931 	for (i = 0; i < ppd->vls_supported; i++) {
9932 		if (dd->vld[i].mtu > maxvlmtu)
9933 			maxvlmtu = dd->vld[i].mtu;
9934 		if (i <= 3)
9935 			len1 |= (((dd->vld[i].mtu + max_hb) >> 2)
9936 				 & SEND_LEN_CHECK0_LEN_VL0_MASK) <<
9937 				((i % 4) * SEND_LEN_CHECK0_LEN_VL1_SHIFT);
9938 		else
9939 			len2 |= (((dd->vld[i].mtu + max_hb) >> 2)
9940 				 & SEND_LEN_CHECK1_LEN_VL4_MASK) <<
9941 				((i % 4) * SEND_LEN_CHECK1_LEN_VL5_SHIFT);
9942 	}
9943 	write_csr(dd, SEND_LEN_CHECK0, len1);
9944 	write_csr(dd, SEND_LEN_CHECK1, len2);
9945 	/* adjust kernel credit return thresholds based on new MTUs */
9946 	/* all kernel receive contexts have the same hdrqentsize */
9947 	for (i = 0; i < ppd->vls_supported; i++) {
9948 		thres = min(sc_percent_to_threshold(dd->vld[i].sc, 50),
9949 			    sc_mtu_to_threshold(dd->vld[i].sc,
9950 						dd->vld[i].mtu,
9951 						dd->rcd[0]->rcvhdrqentsize));
9952 		for (j = 0; j < INIT_SC_PER_VL; j++)
9953 			sc_set_cr_threshold(
9954 					pio_select_send_context_vl(dd, j, i),
9955 					    thres);
9956 	}
9957 	thres = min(sc_percent_to_threshold(dd->vld[15].sc, 50),
9958 		    sc_mtu_to_threshold(dd->vld[15].sc,
9959 					dd->vld[15].mtu,
9960 					dd->rcd[0]->rcvhdrqentsize));
9961 	sc_set_cr_threshold(dd->vld[15].sc, thres);
9962 
9963 	/* Adjust maximum MTU for the port in DC */
9964 	dcmtu = maxvlmtu == 10240 ? DCC_CFG_PORT_MTU_CAP_10240 :
9965 		(ilog2(maxvlmtu >> 8) + 1);
9966 	len1 = read_csr(ppd->dd, DCC_CFG_PORT_CONFIG);
9967 	len1 &= ~DCC_CFG_PORT_CONFIG_MTU_CAP_SMASK;
9968 	len1 |= ((u64)dcmtu & DCC_CFG_PORT_CONFIG_MTU_CAP_MASK) <<
9969 		DCC_CFG_PORT_CONFIG_MTU_CAP_SHIFT;
9970 	write_csr(ppd->dd, DCC_CFG_PORT_CONFIG, len1);
9971 }
9972 
9973 static void set_lidlmc(struct hfi1_pportdata *ppd)
9974 {
9975 	int i;
9976 	u64 sreg = 0;
9977 	struct hfi1_devdata *dd = ppd->dd;
9978 	u32 mask = ~((1U << ppd->lmc) - 1);
9979 	u64 c1 = read_csr(ppd->dd, DCC_CFG_PORT_CONFIG1);
9980 
9981 	c1 &= ~(DCC_CFG_PORT_CONFIG1_TARGET_DLID_SMASK
9982 		| DCC_CFG_PORT_CONFIG1_DLID_MASK_SMASK);
9983 	c1 |= ((ppd->lid & DCC_CFG_PORT_CONFIG1_TARGET_DLID_MASK)
9984 			<< DCC_CFG_PORT_CONFIG1_TARGET_DLID_SHIFT) |
9985 	      ((mask & DCC_CFG_PORT_CONFIG1_DLID_MASK_MASK)
9986 			<< DCC_CFG_PORT_CONFIG1_DLID_MASK_SHIFT);
9987 	write_csr(ppd->dd, DCC_CFG_PORT_CONFIG1, c1);
9988 
9989 	/*
9990 	 * Iterate over all the send contexts and set their SLID check
9991 	 */
9992 	sreg = ((mask & SEND_CTXT_CHECK_SLID_MASK_MASK) <<
9993 			SEND_CTXT_CHECK_SLID_MASK_SHIFT) |
9994 	       (((ppd->lid & mask) & SEND_CTXT_CHECK_SLID_VALUE_MASK) <<
9995 			SEND_CTXT_CHECK_SLID_VALUE_SHIFT);
9996 
9997 	for (i = 0; i < dd->chip_send_contexts; i++) {
9998 		hfi1_cdbg(LINKVERB, "SendContext[%d].SLID_CHECK = 0x%x",
9999 			  i, (u32)sreg);
10000 		write_kctxt_csr(dd, i, SEND_CTXT_CHECK_SLID, sreg);
10001 	}
10002 
10003 	/* Now we have to do the same thing for the sdma engines */
10004 	sdma_update_lmc(dd, mask, ppd->lid);
10005 }
10006 
10007 static int wait_phy_linkstate(struct hfi1_devdata *dd, u32 state, u32 msecs)
10008 {
10009 	unsigned long timeout;
10010 	u32 curr_state;
10011 
10012 	timeout = jiffies + msecs_to_jiffies(msecs);
10013 	while (1) {
10014 		curr_state = read_physical_state(dd);
10015 		if (curr_state == state)
10016 			break;
10017 		if (time_after(jiffies, timeout)) {
10018 			dd_dev_err(dd,
10019 				   "timeout waiting for phy link state 0x%x, current state is 0x%x\n",
10020 				   state, curr_state);
10021 			return -ETIMEDOUT;
10022 		}
10023 		usleep_range(1950, 2050); /* sleep 2ms-ish */
10024 	}
10025 
10026 	return 0;
10027 }
10028 
10029 static const char *state_completed_string(u32 completed)
10030 {
10031 	static const char * const state_completed[] = {
10032 		"EstablishComm",
10033 		"OptimizeEQ",
10034 		"VerifyCap"
10035 	};
10036 
10037 	if (completed < ARRAY_SIZE(state_completed))
10038 		return state_completed[completed];
10039 
10040 	return "unknown";
10041 }
10042 
10043 static const char all_lanes_dead_timeout_expired[] =
10044 	"All lanes were inactive – was the interconnect media removed?";
10045 static const char tx_out_of_policy[] =
10046 	"Passing lanes on local port do not meet the local link width policy";
10047 static const char no_state_complete[] =
10048 	"State timeout occurred before link partner completed the state";
10049 static const char * const state_complete_reasons[] = {
10050 	[0x00] = "Reason unknown",
10051 	[0x01] = "Link was halted by driver, refer to LinkDownReason",
10052 	[0x02] = "Link partner reported failure",
10053 	[0x10] = "Unable to achieve frame sync on any lane",
10054 	[0x11] =
10055 	  "Unable to find a common bit rate with the link partner",
10056 	[0x12] =
10057 	  "Unable to achieve frame sync on sufficient lanes to meet the local link width policy",
10058 	[0x13] =
10059 	  "Unable to identify preset equalization on sufficient lanes to meet the local link width policy",
10060 	[0x14] = no_state_complete,
10061 	[0x15] =
10062 	  "State timeout occurred before link partner identified equalization presets",
10063 	[0x16] =
10064 	  "Link partner completed the EstablishComm state, but the passing lanes do not meet the local link width policy",
10065 	[0x17] = tx_out_of_policy,
10066 	[0x20] = all_lanes_dead_timeout_expired,
10067 	[0x21] =
10068 	  "Unable to achieve acceptable BER on sufficient lanes to meet the local link width policy",
10069 	[0x22] = no_state_complete,
10070 	[0x23] =
10071 	  "Link partner completed the OptimizeEq state, but the passing lanes do not meet the local link width policy",
10072 	[0x24] = tx_out_of_policy,
10073 	[0x30] = all_lanes_dead_timeout_expired,
10074 	[0x31] =
10075 	  "State timeout occurred waiting for host to process received frames",
10076 	[0x32] = no_state_complete,
10077 	[0x33] =
10078 	  "Link partner completed the VerifyCap state, but the passing lanes do not meet the local link width policy",
10079 	[0x34] = tx_out_of_policy,
10080 };
10081 
10082 static const char *state_complete_reason_code_string(struct hfi1_pportdata *ppd,
10083 						     u32 code)
10084 {
10085 	const char *str = NULL;
10086 
10087 	if (code < ARRAY_SIZE(state_complete_reasons))
10088 		str = state_complete_reasons[code];
10089 
10090 	if (str)
10091 		return str;
10092 	return "Reserved";
10093 }
10094 
10095 /* describe the given last state complete frame */
10096 static void decode_state_complete(struct hfi1_pportdata *ppd, u32 frame,
10097 				  const char *prefix)
10098 {
10099 	struct hfi1_devdata *dd = ppd->dd;
10100 	u32 success;
10101 	u32 state;
10102 	u32 reason;
10103 	u32 lanes;
10104 
10105 	/*
10106 	 * Decode frame:
10107 	 *  [ 0: 0] - success
10108 	 *  [ 3: 1] - state
10109 	 *  [ 7: 4] - next state timeout
10110 	 *  [15: 8] - reason code
10111 	 *  [31:16] - lanes
10112 	 */
10113 	success = frame & 0x1;
10114 	state = (frame >> 1) & 0x7;
10115 	reason = (frame >> 8) & 0xff;
10116 	lanes = (frame >> 16) & 0xffff;
10117 
10118 	dd_dev_err(dd, "Last %s LNI state complete frame 0x%08x:\n",
10119 		   prefix, frame);
10120 	dd_dev_err(dd, "    last reported state state: %s (0x%x)\n",
10121 		   state_completed_string(state), state);
10122 	dd_dev_err(dd, "    state successfully completed: %s\n",
10123 		   success ? "yes" : "no");
10124 	dd_dev_err(dd, "    fail reason 0x%x: %s\n",
10125 		   reason, state_complete_reason_code_string(ppd, reason));
10126 	dd_dev_err(dd, "    passing lane mask: 0x%x", lanes);
10127 }
10128 
10129 /*
10130  * Read the last state complete frames and explain them.  This routine
10131  * expects to be called if the link went down during link negotiation
10132  * and initialization (LNI).  That is, anywhere between polling and link up.
10133  */
10134 static void check_lni_states(struct hfi1_pportdata *ppd)
10135 {
10136 	u32 last_local_state;
10137 	u32 last_remote_state;
10138 
10139 	read_last_local_state(ppd->dd, &last_local_state);
10140 	read_last_remote_state(ppd->dd, &last_remote_state);
10141 
10142 	/*
10143 	 * Don't report anything if there is nothing to report.  A value of
10144 	 * 0 means the link was taken down while polling and there was no
10145 	 * training in-process.
10146 	 */
10147 	if (last_local_state == 0 && last_remote_state == 0)
10148 		return;
10149 
10150 	decode_state_complete(ppd, last_local_state, "transmitted");
10151 	decode_state_complete(ppd, last_remote_state, "received");
10152 }
10153 
10154 /* wait for wait_ms for LINK_TRANSFER_ACTIVE to go to 1 */
10155 static int wait_link_transfer_active(struct hfi1_devdata *dd, int wait_ms)
10156 {
10157 	u64 reg;
10158 	unsigned long timeout;
10159 
10160 	/* watch LCB_STS_LINK_TRANSFER_ACTIVE */
10161 	timeout = jiffies + msecs_to_jiffies(wait_ms);
10162 	while (1) {
10163 		reg = read_csr(dd, DC_LCB_STS_LINK_TRANSFER_ACTIVE);
10164 		if (reg)
10165 			break;
10166 		if (time_after(jiffies, timeout)) {
10167 			dd_dev_err(dd,
10168 				   "timeout waiting for LINK_TRANSFER_ACTIVE\n");
10169 			return -ETIMEDOUT;
10170 		}
10171 		udelay(2);
10172 	}
10173 	return 0;
10174 }
10175 
10176 /* called when the logical link state is not down as it should be */
10177 static void force_logical_link_state_down(struct hfi1_pportdata *ppd)
10178 {
10179 	struct hfi1_devdata *dd = ppd->dd;
10180 
10181 	/*
10182 	 * Bring link up in LCB loopback
10183 	 */
10184 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 1);
10185 	write_csr(dd, DC_LCB_CFG_IGNORE_LOST_RCLK,
10186 		  DC_LCB_CFG_IGNORE_LOST_RCLK_EN_SMASK);
10187 
10188 	write_csr(dd, DC_LCB_CFG_LANE_WIDTH, 0);
10189 	write_csr(dd, DC_LCB_CFG_REINIT_AS_SLAVE, 0);
10190 	write_csr(dd, DC_LCB_CFG_CNT_FOR_SKIP_STALL, 0x110);
10191 	write_csr(dd, DC_LCB_CFG_LOOPBACK, 0x2);
10192 
10193 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0);
10194 	(void)read_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET);
10195 	udelay(3);
10196 	write_csr(dd, DC_LCB_CFG_ALLOW_LINK_UP, 1);
10197 	write_csr(dd, DC_LCB_CFG_RUN, 1ull << DC_LCB_CFG_RUN_EN_SHIFT);
10198 
10199 	wait_link_transfer_active(dd, 100);
10200 
10201 	/*
10202 	 * Bring the link down again.
10203 	 */
10204 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 1);
10205 	write_csr(dd, DC_LCB_CFG_ALLOW_LINK_UP, 0);
10206 	write_csr(dd, DC_LCB_CFG_IGNORE_LOST_RCLK, 0);
10207 
10208 	/* call again to adjust ppd->statusp, if needed */
10209 	get_logical_state(ppd);
10210 }
10211 
10212 /*
10213  * Helper for set_link_state().  Do not call except from that routine.
10214  * Expects ppd->hls_mutex to be held.
10215  *
10216  * @rem_reason value to be sent to the neighbor
10217  *
10218  * LinkDownReasons only set if transition succeeds.
10219  */
10220 static int goto_offline(struct hfi1_pportdata *ppd, u8 rem_reason)
10221 {
10222 	struct hfi1_devdata *dd = ppd->dd;
10223 	u32 pstate, previous_state;
10224 	int ret;
10225 	int do_transition;
10226 	int do_wait;
10227 
10228 	update_lcb_cache(dd);
10229 
10230 	previous_state = ppd->host_link_state;
10231 	ppd->host_link_state = HLS_GOING_OFFLINE;
10232 	pstate = read_physical_state(dd);
10233 	if (pstate == PLS_OFFLINE) {
10234 		do_transition = 0;	/* in right state */
10235 		do_wait = 0;		/* ...no need to wait */
10236 	} else if ((pstate & 0xf0) == PLS_OFFLINE) {
10237 		do_transition = 0;	/* in an offline transient state */
10238 		do_wait = 1;		/* ...wait for it to settle */
10239 	} else {
10240 		do_transition = 1;	/* need to move to offline */
10241 		do_wait = 1;		/* ...will need to wait */
10242 	}
10243 
10244 	if (do_transition) {
10245 		ret = set_physical_link_state(dd,
10246 					      (rem_reason << 8) | PLS_OFFLINE);
10247 
10248 		if (ret != HCMD_SUCCESS) {
10249 			dd_dev_err(dd,
10250 				   "Failed to transition to Offline link state, return %d\n",
10251 				   ret);
10252 			return -EINVAL;
10253 		}
10254 		if (ppd->offline_disabled_reason ==
10255 				HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE))
10256 			ppd->offline_disabled_reason =
10257 			HFI1_ODR_MASK(OPA_LINKDOWN_REASON_TRANSIENT);
10258 	}
10259 
10260 	if (do_wait) {
10261 		/* it can take a while for the link to go down */
10262 		ret = wait_phy_linkstate(dd, PLS_OFFLINE, 10000);
10263 		if (ret < 0)
10264 			return ret;
10265 	}
10266 
10267 	/*
10268 	 * Now in charge of LCB - must be after the physical state is
10269 	 * offline.quiet and before host_link_state is changed.
10270 	 */
10271 	set_host_lcb_access(dd);
10272 	write_csr(dd, DC_LCB_ERR_EN, ~0ull); /* watch LCB errors */
10273 
10274 	/* make sure the logical state is also down */
10275 	ret = wait_logical_linkstate(ppd, IB_PORT_DOWN, 1000);
10276 	if (ret)
10277 		force_logical_link_state_down(ppd);
10278 
10279 	ppd->host_link_state = HLS_LINK_COOLDOWN; /* LCB access allowed */
10280 
10281 	if (ppd->port_type == PORT_TYPE_QSFP &&
10282 	    ppd->qsfp_info.limiting_active &&
10283 	    qsfp_mod_present(ppd)) {
10284 		int ret;
10285 
10286 		ret = acquire_chip_resource(dd, qsfp_resource(dd), QSFP_WAIT);
10287 		if (ret == 0) {
10288 			set_qsfp_tx(ppd, 0);
10289 			release_chip_resource(dd, qsfp_resource(dd));
10290 		} else {
10291 			/* not fatal, but should warn */
10292 			dd_dev_err(dd,
10293 				   "Unable to acquire lock to turn off QSFP TX\n");
10294 		}
10295 	}
10296 
10297 	/*
10298 	 * The LNI has a mandatory wait time after the physical state
10299 	 * moves to Offline.Quiet.  The wait time may be different
10300 	 * depending on how the link went down.  The 8051 firmware
10301 	 * will observe the needed wait time and only move to ready
10302 	 * when that is completed.  The largest of the quiet timeouts
10303 	 * is 6s, so wait that long and then at least 0.5s more for
10304 	 * other transitions, and another 0.5s for a buffer.
10305 	 */
10306 	ret = wait_fm_ready(dd, 7000);
10307 	if (ret) {
10308 		dd_dev_err(dd,
10309 			   "After going offline, timed out waiting for the 8051 to become ready to accept host requests\n");
10310 		/* state is really offline, so make it so */
10311 		ppd->host_link_state = HLS_DN_OFFLINE;
10312 		return ret;
10313 	}
10314 
10315 	/*
10316 	 * The state is now offline and the 8051 is ready to accept host
10317 	 * requests.
10318 	 *	- change our state
10319 	 *	- notify others if we were previously in a linkup state
10320 	 */
10321 	ppd->host_link_state = HLS_DN_OFFLINE;
10322 	if (previous_state & HLS_UP) {
10323 		/* went down while link was up */
10324 		handle_linkup_change(dd, 0);
10325 	} else if (previous_state
10326 			& (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) {
10327 		/* went down while attempting link up */
10328 		check_lni_states(ppd);
10329 	}
10330 
10331 	/* the active link width (downgrade) is 0 on link down */
10332 	ppd->link_width_active = 0;
10333 	ppd->link_width_downgrade_tx_active = 0;
10334 	ppd->link_width_downgrade_rx_active = 0;
10335 	ppd->current_egress_rate = 0;
10336 	return 0;
10337 }
10338 
10339 /* return the link state name */
10340 static const char *link_state_name(u32 state)
10341 {
10342 	const char *name;
10343 	int n = ilog2(state);
10344 	static const char * const names[] = {
10345 		[__HLS_UP_INIT_BP]	 = "INIT",
10346 		[__HLS_UP_ARMED_BP]	 = "ARMED",
10347 		[__HLS_UP_ACTIVE_BP]	 = "ACTIVE",
10348 		[__HLS_DN_DOWNDEF_BP]	 = "DOWNDEF",
10349 		[__HLS_DN_POLL_BP]	 = "POLL",
10350 		[__HLS_DN_DISABLE_BP]	 = "DISABLE",
10351 		[__HLS_DN_OFFLINE_BP]	 = "OFFLINE",
10352 		[__HLS_VERIFY_CAP_BP]	 = "VERIFY_CAP",
10353 		[__HLS_GOING_UP_BP]	 = "GOING_UP",
10354 		[__HLS_GOING_OFFLINE_BP] = "GOING_OFFLINE",
10355 		[__HLS_LINK_COOLDOWN_BP] = "LINK_COOLDOWN"
10356 	};
10357 
10358 	name = n < ARRAY_SIZE(names) ? names[n] : NULL;
10359 	return name ? name : "unknown";
10360 }
10361 
10362 /* return the link state reason name */
10363 static const char *link_state_reason_name(struct hfi1_pportdata *ppd, u32 state)
10364 {
10365 	if (state == HLS_UP_INIT) {
10366 		switch (ppd->linkinit_reason) {
10367 		case OPA_LINKINIT_REASON_LINKUP:
10368 			return "(LINKUP)";
10369 		case OPA_LINKINIT_REASON_FLAPPING:
10370 			return "(FLAPPING)";
10371 		case OPA_LINKINIT_OUTSIDE_POLICY:
10372 			return "(OUTSIDE_POLICY)";
10373 		case OPA_LINKINIT_QUARANTINED:
10374 			return "(QUARANTINED)";
10375 		case OPA_LINKINIT_INSUFIC_CAPABILITY:
10376 			return "(INSUFIC_CAPABILITY)";
10377 		default:
10378 			break;
10379 		}
10380 	}
10381 	return "";
10382 }
10383 
10384 /*
10385  * driver_physical_state - convert the driver's notion of a port's
10386  * state (an HLS_*) into a physical state (a {IB,OPA}_PORTPHYSSTATE_*).
10387  * Return -1 (converted to a u32) to indicate error.
10388  */
10389 u32 driver_physical_state(struct hfi1_pportdata *ppd)
10390 {
10391 	switch (ppd->host_link_state) {
10392 	case HLS_UP_INIT:
10393 	case HLS_UP_ARMED:
10394 	case HLS_UP_ACTIVE:
10395 		return IB_PORTPHYSSTATE_LINKUP;
10396 	case HLS_DN_POLL:
10397 		return IB_PORTPHYSSTATE_POLLING;
10398 	case HLS_DN_DISABLE:
10399 		return IB_PORTPHYSSTATE_DISABLED;
10400 	case HLS_DN_OFFLINE:
10401 		return OPA_PORTPHYSSTATE_OFFLINE;
10402 	case HLS_VERIFY_CAP:
10403 		return IB_PORTPHYSSTATE_POLLING;
10404 	case HLS_GOING_UP:
10405 		return IB_PORTPHYSSTATE_POLLING;
10406 	case HLS_GOING_OFFLINE:
10407 		return OPA_PORTPHYSSTATE_OFFLINE;
10408 	case HLS_LINK_COOLDOWN:
10409 		return OPA_PORTPHYSSTATE_OFFLINE;
10410 	case HLS_DN_DOWNDEF:
10411 	default:
10412 		dd_dev_err(ppd->dd, "invalid host_link_state 0x%x\n",
10413 			   ppd->host_link_state);
10414 		return  -1;
10415 	}
10416 }
10417 
10418 /*
10419  * driver_logical_state - convert the driver's notion of a port's
10420  * state (an HLS_*) into a logical state (a IB_PORT_*). Return -1
10421  * (converted to a u32) to indicate error.
10422  */
10423 u32 driver_logical_state(struct hfi1_pportdata *ppd)
10424 {
10425 	if (ppd->host_link_state && (ppd->host_link_state & HLS_DOWN))
10426 		return IB_PORT_DOWN;
10427 
10428 	switch (ppd->host_link_state & HLS_UP) {
10429 	case HLS_UP_INIT:
10430 		return IB_PORT_INIT;
10431 	case HLS_UP_ARMED:
10432 		return IB_PORT_ARMED;
10433 	case HLS_UP_ACTIVE:
10434 		return IB_PORT_ACTIVE;
10435 	default:
10436 		dd_dev_err(ppd->dd, "invalid host_link_state 0x%x\n",
10437 			   ppd->host_link_state);
10438 	return -1;
10439 	}
10440 }
10441 
10442 void set_link_down_reason(struct hfi1_pportdata *ppd, u8 lcl_reason,
10443 			  u8 neigh_reason, u8 rem_reason)
10444 {
10445 	if (ppd->local_link_down_reason.latest == 0 &&
10446 	    ppd->neigh_link_down_reason.latest == 0) {
10447 		ppd->local_link_down_reason.latest = lcl_reason;
10448 		ppd->neigh_link_down_reason.latest = neigh_reason;
10449 		ppd->remote_link_down_reason = rem_reason;
10450 	}
10451 }
10452 
10453 /*
10454  * Change the physical and/or logical link state.
10455  *
10456  * Do not call this routine while inside an interrupt.  It contains
10457  * calls to routines that can take multiple seconds to finish.
10458  *
10459  * Returns 0 on success, -errno on failure.
10460  */
10461 int set_link_state(struct hfi1_pportdata *ppd, u32 state)
10462 {
10463 	struct hfi1_devdata *dd = ppd->dd;
10464 	struct ib_event event = {.device = NULL};
10465 	int ret1, ret = 0;
10466 	int orig_new_state, poll_bounce;
10467 
10468 	mutex_lock(&ppd->hls_lock);
10469 
10470 	orig_new_state = state;
10471 	if (state == HLS_DN_DOWNDEF)
10472 		state = dd->link_default;
10473 
10474 	/* interpret poll -> poll as a link bounce */
10475 	poll_bounce = ppd->host_link_state == HLS_DN_POLL &&
10476 		      state == HLS_DN_POLL;
10477 
10478 	dd_dev_info(dd, "%s: current %s, new %s %s%s\n", __func__,
10479 		    link_state_name(ppd->host_link_state),
10480 		    link_state_name(orig_new_state),
10481 		    poll_bounce ? "(bounce) " : "",
10482 		    link_state_reason_name(ppd, state));
10483 
10484 	/*
10485 	 * If we're going to a (HLS_*) link state that implies the logical
10486 	 * link state is neither of (IB_PORT_ARMED, IB_PORT_ACTIVE), then
10487 	 * reset is_sm_config_started to 0.
10488 	 */
10489 	if (!(state & (HLS_UP_ARMED | HLS_UP_ACTIVE)))
10490 		ppd->is_sm_config_started = 0;
10491 
10492 	/*
10493 	 * Do nothing if the states match.  Let a poll to poll link bounce
10494 	 * go through.
10495 	 */
10496 	if (ppd->host_link_state == state && !poll_bounce)
10497 		goto done;
10498 
10499 	switch (state) {
10500 	case HLS_UP_INIT:
10501 		if (ppd->host_link_state == HLS_DN_POLL &&
10502 		    (quick_linkup || dd->icode == ICODE_FUNCTIONAL_SIMULATOR)) {
10503 			/*
10504 			 * Quick link up jumps from polling to here.
10505 			 *
10506 			 * Whether in normal or loopback mode, the
10507 			 * simulator jumps from polling to link up.
10508 			 * Accept that here.
10509 			 */
10510 			/* OK */
10511 		} else if (ppd->host_link_state != HLS_GOING_UP) {
10512 			goto unexpected;
10513 		}
10514 
10515 		ret = wait_logical_linkstate(ppd, IB_PORT_INIT, 1000);
10516 		if (ret) {
10517 			dd_dev_err(dd,
10518 				   "%s: logical state did not change to INIT\n",
10519 				   __func__);
10520 		} else {
10521 			/* clear old transient LINKINIT_REASON code */
10522 			if (ppd->linkinit_reason >= OPA_LINKINIT_REASON_CLEAR)
10523 				ppd->linkinit_reason =
10524 					OPA_LINKINIT_REASON_LINKUP;
10525 
10526 			/* enable the port */
10527 			add_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
10528 
10529 			handle_linkup_change(dd, 1);
10530 			ppd->host_link_state = HLS_UP_INIT;
10531 		}
10532 		break;
10533 	case HLS_UP_ARMED:
10534 		if (ppd->host_link_state != HLS_UP_INIT)
10535 			goto unexpected;
10536 
10537 		ppd->host_link_state = HLS_UP_ARMED;
10538 		set_logical_state(dd, LSTATE_ARMED);
10539 		ret = wait_logical_linkstate(ppd, IB_PORT_ARMED, 1000);
10540 		if (ret) {
10541 			/* logical state didn't change, stay at init */
10542 			ppd->host_link_state = HLS_UP_INIT;
10543 			dd_dev_err(dd,
10544 				   "%s: logical state did not change to ARMED\n",
10545 				   __func__);
10546 		}
10547 		/*
10548 		 * The simulator does not currently implement SMA messages,
10549 		 * so neighbor_normal is not set.  Set it here when we first
10550 		 * move to Armed.
10551 		 */
10552 		if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR)
10553 			ppd->neighbor_normal = 1;
10554 		break;
10555 	case HLS_UP_ACTIVE:
10556 		if (ppd->host_link_state != HLS_UP_ARMED)
10557 			goto unexpected;
10558 
10559 		ppd->host_link_state = HLS_UP_ACTIVE;
10560 		set_logical_state(dd, LSTATE_ACTIVE);
10561 		ret = wait_logical_linkstate(ppd, IB_PORT_ACTIVE, 1000);
10562 		if (ret) {
10563 			/* logical state didn't change, stay at armed */
10564 			ppd->host_link_state = HLS_UP_ARMED;
10565 			dd_dev_err(dd,
10566 				   "%s: logical state did not change to ACTIVE\n",
10567 				   __func__);
10568 		} else {
10569 			/* tell all engines to go running */
10570 			sdma_all_running(dd);
10571 
10572 			/* Signal the IB layer that the port has went active */
10573 			event.device = &dd->verbs_dev.rdi.ibdev;
10574 			event.element.port_num = ppd->port;
10575 			event.event = IB_EVENT_PORT_ACTIVE;
10576 		}
10577 		break;
10578 	case HLS_DN_POLL:
10579 		if ((ppd->host_link_state == HLS_DN_DISABLE ||
10580 		     ppd->host_link_state == HLS_DN_OFFLINE) &&
10581 		    dd->dc_shutdown)
10582 			dc_start(dd);
10583 		/* Hand LED control to the DC */
10584 		write_csr(dd, DCC_CFG_LED_CNTRL, 0);
10585 
10586 		if (ppd->host_link_state != HLS_DN_OFFLINE) {
10587 			u8 tmp = ppd->link_enabled;
10588 
10589 			ret = goto_offline(ppd, ppd->remote_link_down_reason);
10590 			if (ret) {
10591 				ppd->link_enabled = tmp;
10592 				break;
10593 			}
10594 			ppd->remote_link_down_reason = 0;
10595 
10596 			if (ppd->driver_link_ready)
10597 				ppd->link_enabled = 1;
10598 		}
10599 
10600 		set_all_slowpath(ppd->dd);
10601 		ret = set_local_link_attributes(ppd);
10602 		if (ret)
10603 			break;
10604 
10605 		ppd->port_error_action = 0;
10606 		ppd->host_link_state = HLS_DN_POLL;
10607 
10608 		if (quick_linkup) {
10609 			/* quick linkup does not go into polling */
10610 			ret = do_quick_linkup(dd);
10611 		} else {
10612 			ret1 = set_physical_link_state(dd, PLS_POLLING);
10613 			if (ret1 != HCMD_SUCCESS) {
10614 				dd_dev_err(dd,
10615 					   "Failed to transition to Polling link state, return 0x%x\n",
10616 					   ret1);
10617 				ret = -EINVAL;
10618 			}
10619 		}
10620 		ppd->offline_disabled_reason =
10621 			HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE);
10622 		/*
10623 		 * If an error occurred above, go back to offline.  The
10624 		 * caller may reschedule another attempt.
10625 		 */
10626 		if (ret)
10627 			goto_offline(ppd, 0);
10628 		break;
10629 	case HLS_DN_DISABLE:
10630 		/* link is disabled */
10631 		ppd->link_enabled = 0;
10632 
10633 		/* allow any state to transition to disabled */
10634 
10635 		/* must transition to offline first */
10636 		if (ppd->host_link_state != HLS_DN_OFFLINE) {
10637 			ret = goto_offline(ppd, ppd->remote_link_down_reason);
10638 			if (ret)
10639 				break;
10640 			ppd->remote_link_down_reason = 0;
10641 		}
10642 
10643 		if (!dd->dc_shutdown) {
10644 			ret1 = set_physical_link_state(dd, PLS_DISABLED);
10645 			if (ret1 != HCMD_SUCCESS) {
10646 				dd_dev_err(dd,
10647 					   "Failed to transition to Disabled link state, return 0x%x\n",
10648 					   ret1);
10649 				ret = -EINVAL;
10650 				break;
10651 			}
10652 			dc_shutdown(dd);
10653 		}
10654 		ppd->host_link_state = HLS_DN_DISABLE;
10655 		break;
10656 	case HLS_DN_OFFLINE:
10657 		if (ppd->host_link_state == HLS_DN_DISABLE)
10658 			dc_start(dd);
10659 
10660 		/* allow any state to transition to offline */
10661 		ret = goto_offline(ppd, ppd->remote_link_down_reason);
10662 		if (!ret)
10663 			ppd->remote_link_down_reason = 0;
10664 		break;
10665 	case HLS_VERIFY_CAP:
10666 		if (ppd->host_link_state != HLS_DN_POLL)
10667 			goto unexpected;
10668 		ppd->host_link_state = HLS_VERIFY_CAP;
10669 		break;
10670 	case HLS_GOING_UP:
10671 		if (ppd->host_link_state != HLS_VERIFY_CAP)
10672 			goto unexpected;
10673 
10674 		ret1 = set_physical_link_state(dd, PLS_LINKUP);
10675 		if (ret1 != HCMD_SUCCESS) {
10676 			dd_dev_err(dd,
10677 				   "Failed to transition to link up state, return 0x%x\n",
10678 				   ret1);
10679 			ret = -EINVAL;
10680 			break;
10681 		}
10682 		ppd->host_link_state = HLS_GOING_UP;
10683 		break;
10684 
10685 	case HLS_GOING_OFFLINE:		/* transient within goto_offline() */
10686 	case HLS_LINK_COOLDOWN:		/* transient within goto_offline() */
10687 	default:
10688 		dd_dev_info(dd, "%s: state 0x%x: not supported\n",
10689 			    __func__, state);
10690 		ret = -EINVAL;
10691 		break;
10692 	}
10693 
10694 	goto done;
10695 
10696 unexpected:
10697 	dd_dev_err(dd, "%s: unexpected state transition from %s to %s\n",
10698 		   __func__, link_state_name(ppd->host_link_state),
10699 		   link_state_name(state));
10700 	ret = -EINVAL;
10701 
10702 done:
10703 	mutex_unlock(&ppd->hls_lock);
10704 
10705 	if (event.device)
10706 		ib_dispatch_event(&event);
10707 
10708 	return ret;
10709 }
10710 
10711 int hfi1_set_ib_cfg(struct hfi1_pportdata *ppd, int which, u32 val)
10712 {
10713 	u64 reg;
10714 	int ret = 0;
10715 
10716 	switch (which) {
10717 	case HFI1_IB_CFG_LIDLMC:
10718 		set_lidlmc(ppd);
10719 		break;
10720 	case HFI1_IB_CFG_VL_HIGH_LIMIT:
10721 		/*
10722 		 * The VL Arbitrator high limit is sent in units of 4k
10723 		 * bytes, while HFI stores it in units of 64 bytes.
10724 		 */
10725 		val *= 4096 / 64;
10726 		reg = ((u64)val & SEND_HIGH_PRIORITY_LIMIT_LIMIT_MASK)
10727 			<< SEND_HIGH_PRIORITY_LIMIT_LIMIT_SHIFT;
10728 		write_csr(ppd->dd, SEND_HIGH_PRIORITY_LIMIT, reg);
10729 		break;
10730 	case HFI1_IB_CFG_LINKDEFAULT: /* IB link default (sleep/poll) */
10731 		/* HFI only supports POLL as the default link down state */
10732 		if (val != HLS_DN_POLL)
10733 			ret = -EINVAL;
10734 		break;
10735 	case HFI1_IB_CFG_OP_VLS:
10736 		if (ppd->vls_operational != val) {
10737 			ppd->vls_operational = val;
10738 			if (!ppd->port)
10739 				ret = -EINVAL;
10740 		}
10741 		break;
10742 	/*
10743 	 * For link width, link width downgrade, and speed enable, always AND
10744 	 * the setting with what is actually supported.  This has two benefits.
10745 	 * First, enabled can't have unsupported values, no matter what the
10746 	 * SM or FM might want.  Second, the ALL_SUPPORTED wildcards that mean
10747 	 * "fill in with your supported value" have all the bits in the
10748 	 * field set, so simply ANDing with supported has the desired result.
10749 	 */
10750 	case HFI1_IB_CFG_LWID_ENB: /* set allowed Link-width */
10751 		ppd->link_width_enabled = val & ppd->link_width_supported;
10752 		break;
10753 	case HFI1_IB_CFG_LWID_DG_ENB: /* set allowed link width downgrade */
10754 		ppd->link_width_downgrade_enabled =
10755 				val & ppd->link_width_downgrade_supported;
10756 		break;
10757 	case HFI1_IB_CFG_SPD_ENB: /* allowed Link speeds */
10758 		ppd->link_speed_enabled = val & ppd->link_speed_supported;
10759 		break;
10760 	case HFI1_IB_CFG_OVERRUN_THRESH: /* IB overrun threshold */
10761 		/*
10762 		 * HFI does not follow IB specs, save this value
10763 		 * so we can report it, if asked.
10764 		 */
10765 		ppd->overrun_threshold = val;
10766 		break;
10767 	case HFI1_IB_CFG_PHYERR_THRESH: /* IB PHY error threshold */
10768 		/*
10769 		 * HFI does not follow IB specs, save this value
10770 		 * so we can report it, if asked.
10771 		 */
10772 		ppd->phy_error_threshold = val;
10773 		break;
10774 
10775 	case HFI1_IB_CFG_MTU:
10776 		set_send_length(ppd);
10777 		break;
10778 
10779 	case HFI1_IB_CFG_PKEYS:
10780 		if (HFI1_CAP_IS_KSET(PKEY_CHECK))
10781 			set_partition_keys(ppd);
10782 		break;
10783 
10784 	default:
10785 		if (HFI1_CAP_IS_KSET(PRINT_UNIMPL))
10786 			dd_dev_info(ppd->dd,
10787 				    "%s: which %s, val 0x%x: not implemented\n",
10788 				    __func__, ib_cfg_name(which), val);
10789 		break;
10790 	}
10791 	return ret;
10792 }
10793 
10794 /* begin functions related to vl arbitration table caching */
10795 static void init_vl_arb_caches(struct hfi1_pportdata *ppd)
10796 {
10797 	int i;
10798 
10799 	BUILD_BUG_ON(VL_ARB_TABLE_SIZE !=
10800 			VL_ARB_LOW_PRIO_TABLE_SIZE);
10801 	BUILD_BUG_ON(VL_ARB_TABLE_SIZE !=
10802 			VL_ARB_HIGH_PRIO_TABLE_SIZE);
10803 
10804 	/*
10805 	 * Note that we always return values directly from the
10806 	 * 'vl_arb_cache' (and do no CSR reads) in response to a
10807 	 * 'Get(VLArbTable)'. This is obviously correct after a
10808 	 * 'Set(VLArbTable)', since the cache will then be up to
10809 	 * date. But it's also correct prior to any 'Set(VLArbTable)'
10810 	 * since then both the cache, and the relevant h/w registers
10811 	 * will be zeroed.
10812 	 */
10813 
10814 	for (i = 0; i < MAX_PRIO_TABLE; i++)
10815 		spin_lock_init(&ppd->vl_arb_cache[i].lock);
10816 }
10817 
10818 /*
10819  * vl_arb_lock_cache
10820  *
10821  * All other vl_arb_* functions should be called only after locking
10822  * the cache.
10823  */
10824 static inline struct vl_arb_cache *
10825 vl_arb_lock_cache(struct hfi1_pportdata *ppd, int idx)
10826 {
10827 	if (idx != LO_PRIO_TABLE && idx != HI_PRIO_TABLE)
10828 		return NULL;
10829 	spin_lock(&ppd->vl_arb_cache[idx].lock);
10830 	return &ppd->vl_arb_cache[idx];
10831 }
10832 
10833 static inline void vl_arb_unlock_cache(struct hfi1_pportdata *ppd, int idx)
10834 {
10835 	spin_unlock(&ppd->vl_arb_cache[idx].lock);
10836 }
10837 
10838 static void vl_arb_get_cache(struct vl_arb_cache *cache,
10839 			     struct ib_vl_weight_elem *vl)
10840 {
10841 	memcpy(vl, cache->table, VL_ARB_TABLE_SIZE * sizeof(*vl));
10842 }
10843 
10844 static void vl_arb_set_cache(struct vl_arb_cache *cache,
10845 			     struct ib_vl_weight_elem *vl)
10846 {
10847 	memcpy(cache->table, vl, VL_ARB_TABLE_SIZE * sizeof(*vl));
10848 }
10849 
10850 static int vl_arb_match_cache(struct vl_arb_cache *cache,
10851 			      struct ib_vl_weight_elem *vl)
10852 {
10853 	return !memcmp(cache->table, vl, VL_ARB_TABLE_SIZE * sizeof(*vl));
10854 }
10855 
10856 /* end functions related to vl arbitration table caching */
10857 
10858 static int set_vl_weights(struct hfi1_pportdata *ppd, u32 target,
10859 			  u32 size, struct ib_vl_weight_elem *vl)
10860 {
10861 	struct hfi1_devdata *dd = ppd->dd;
10862 	u64 reg;
10863 	unsigned int i, is_up = 0;
10864 	int drain, ret = 0;
10865 
10866 	mutex_lock(&ppd->hls_lock);
10867 
10868 	if (ppd->host_link_state & HLS_UP)
10869 		is_up = 1;
10870 
10871 	drain = !is_ax(dd) && is_up;
10872 
10873 	if (drain)
10874 		/*
10875 		 * Before adjusting VL arbitration weights, empty per-VL
10876 		 * FIFOs, otherwise a packet whose VL weight is being
10877 		 * set to 0 could get stuck in a FIFO with no chance to
10878 		 * egress.
10879 		 */
10880 		ret = stop_drain_data_vls(dd);
10881 
10882 	if (ret) {
10883 		dd_dev_err(
10884 			dd,
10885 			"%s: cannot stop/drain VLs - refusing to change VL arbitration weights\n",
10886 			__func__);
10887 		goto err;
10888 	}
10889 
10890 	for (i = 0; i < size; i++, vl++) {
10891 		/*
10892 		 * NOTE: The low priority shift and mask are used here, but
10893 		 * they are the same for both the low and high registers.
10894 		 */
10895 		reg = (((u64)vl->vl & SEND_LOW_PRIORITY_LIST_VL_MASK)
10896 				<< SEND_LOW_PRIORITY_LIST_VL_SHIFT)
10897 		      | (((u64)vl->weight
10898 				& SEND_LOW_PRIORITY_LIST_WEIGHT_MASK)
10899 				<< SEND_LOW_PRIORITY_LIST_WEIGHT_SHIFT);
10900 		write_csr(dd, target + (i * 8), reg);
10901 	}
10902 	pio_send_control(dd, PSC_GLOBAL_VLARB_ENABLE);
10903 
10904 	if (drain)
10905 		open_fill_data_vls(dd); /* reopen all VLs */
10906 
10907 err:
10908 	mutex_unlock(&ppd->hls_lock);
10909 
10910 	return ret;
10911 }
10912 
10913 /*
10914  * Read one credit merge VL register.
10915  */
10916 static void read_one_cm_vl(struct hfi1_devdata *dd, u32 csr,
10917 			   struct vl_limit *vll)
10918 {
10919 	u64 reg = read_csr(dd, csr);
10920 
10921 	vll->dedicated = cpu_to_be16(
10922 		(reg >> SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SHIFT)
10923 		& SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_MASK);
10924 	vll->shared = cpu_to_be16(
10925 		(reg >> SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SHIFT)
10926 		& SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_MASK);
10927 }
10928 
10929 /*
10930  * Read the current credit merge limits.
10931  */
10932 static int get_buffer_control(struct hfi1_devdata *dd,
10933 			      struct buffer_control *bc, u16 *overall_limit)
10934 {
10935 	u64 reg;
10936 	int i;
10937 
10938 	/* not all entries are filled in */
10939 	memset(bc, 0, sizeof(*bc));
10940 
10941 	/* OPA and HFI have a 1-1 mapping */
10942 	for (i = 0; i < TXE_NUM_DATA_VL; i++)
10943 		read_one_cm_vl(dd, SEND_CM_CREDIT_VL + (8 * i), &bc->vl[i]);
10944 
10945 	/* NOTE: assumes that VL* and VL15 CSRs are bit-wise identical */
10946 	read_one_cm_vl(dd, SEND_CM_CREDIT_VL15, &bc->vl[15]);
10947 
10948 	reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
10949 	bc->overall_shared_limit = cpu_to_be16(
10950 		(reg >> SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SHIFT)
10951 		& SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_MASK);
10952 	if (overall_limit)
10953 		*overall_limit = (reg
10954 			>> SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT)
10955 			& SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_MASK;
10956 	return sizeof(struct buffer_control);
10957 }
10958 
10959 static int get_sc2vlnt(struct hfi1_devdata *dd, struct sc2vlnt *dp)
10960 {
10961 	u64 reg;
10962 	int i;
10963 
10964 	/* each register contains 16 SC->VLnt mappings, 4 bits each */
10965 	reg = read_csr(dd, DCC_CFG_SC_VL_TABLE_15_0);
10966 	for (i = 0; i < sizeof(u64); i++) {
10967 		u8 byte = *(((u8 *)&reg) + i);
10968 
10969 		dp->vlnt[2 * i] = byte & 0xf;
10970 		dp->vlnt[(2 * i) + 1] = (byte & 0xf0) >> 4;
10971 	}
10972 
10973 	reg = read_csr(dd, DCC_CFG_SC_VL_TABLE_31_16);
10974 	for (i = 0; i < sizeof(u64); i++) {
10975 		u8 byte = *(((u8 *)&reg) + i);
10976 
10977 		dp->vlnt[16 + (2 * i)] = byte & 0xf;
10978 		dp->vlnt[16 + (2 * i) + 1] = (byte & 0xf0) >> 4;
10979 	}
10980 	return sizeof(struct sc2vlnt);
10981 }
10982 
10983 static void get_vlarb_preempt(struct hfi1_devdata *dd, u32 nelems,
10984 			      struct ib_vl_weight_elem *vl)
10985 {
10986 	unsigned int i;
10987 
10988 	for (i = 0; i < nelems; i++, vl++) {
10989 		vl->vl = 0xf;
10990 		vl->weight = 0;
10991 	}
10992 }
10993 
10994 static void set_sc2vlnt(struct hfi1_devdata *dd, struct sc2vlnt *dp)
10995 {
10996 	write_csr(dd, DCC_CFG_SC_VL_TABLE_15_0,
10997 		  DC_SC_VL_VAL(15_0,
10998 			       0, dp->vlnt[0] & 0xf,
10999 			       1, dp->vlnt[1] & 0xf,
11000 			       2, dp->vlnt[2] & 0xf,
11001 			       3, dp->vlnt[3] & 0xf,
11002 			       4, dp->vlnt[4] & 0xf,
11003 			       5, dp->vlnt[5] & 0xf,
11004 			       6, dp->vlnt[6] & 0xf,
11005 			       7, dp->vlnt[7] & 0xf,
11006 			       8, dp->vlnt[8] & 0xf,
11007 			       9, dp->vlnt[9] & 0xf,
11008 			       10, dp->vlnt[10] & 0xf,
11009 			       11, dp->vlnt[11] & 0xf,
11010 			       12, dp->vlnt[12] & 0xf,
11011 			       13, dp->vlnt[13] & 0xf,
11012 			       14, dp->vlnt[14] & 0xf,
11013 			       15, dp->vlnt[15] & 0xf));
11014 	write_csr(dd, DCC_CFG_SC_VL_TABLE_31_16,
11015 		  DC_SC_VL_VAL(31_16,
11016 			       16, dp->vlnt[16] & 0xf,
11017 			       17, dp->vlnt[17] & 0xf,
11018 			       18, dp->vlnt[18] & 0xf,
11019 			       19, dp->vlnt[19] & 0xf,
11020 			       20, dp->vlnt[20] & 0xf,
11021 			       21, dp->vlnt[21] & 0xf,
11022 			       22, dp->vlnt[22] & 0xf,
11023 			       23, dp->vlnt[23] & 0xf,
11024 			       24, dp->vlnt[24] & 0xf,
11025 			       25, dp->vlnt[25] & 0xf,
11026 			       26, dp->vlnt[26] & 0xf,
11027 			       27, dp->vlnt[27] & 0xf,
11028 			       28, dp->vlnt[28] & 0xf,
11029 			       29, dp->vlnt[29] & 0xf,
11030 			       30, dp->vlnt[30] & 0xf,
11031 			       31, dp->vlnt[31] & 0xf));
11032 }
11033 
11034 static void nonzero_msg(struct hfi1_devdata *dd, int idx, const char *what,
11035 			u16 limit)
11036 {
11037 	if (limit != 0)
11038 		dd_dev_info(dd, "Invalid %s limit %d on VL %d, ignoring\n",
11039 			    what, (int)limit, idx);
11040 }
11041 
11042 /* change only the shared limit portion of SendCmGLobalCredit */
11043 static void set_global_shared(struct hfi1_devdata *dd, u16 limit)
11044 {
11045 	u64 reg;
11046 
11047 	reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
11048 	reg &= ~SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SMASK;
11049 	reg |= (u64)limit << SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SHIFT;
11050 	write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg);
11051 }
11052 
11053 /* change only the total credit limit portion of SendCmGLobalCredit */
11054 static void set_global_limit(struct hfi1_devdata *dd, u16 limit)
11055 {
11056 	u64 reg;
11057 
11058 	reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
11059 	reg &= ~SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SMASK;
11060 	reg |= (u64)limit << SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT;
11061 	write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg);
11062 }
11063 
11064 /* set the given per-VL shared limit */
11065 static void set_vl_shared(struct hfi1_devdata *dd, int vl, u16 limit)
11066 {
11067 	u64 reg;
11068 	u32 addr;
11069 
11070 	if (vl < TXE_NUM_DATA_VL)
11071 		addr = SEND_CM_CREDIT_VL + (8 * vl);
11072 	else
11073 		addr = SEND_CM_CREDIT_VL15;
11074 
11075 	reg = read_csr(dd, addr);
11076 	reg &= ~SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SMASK;
11077 	reg |= (u64)limit << SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SHIFT;
11078 	write_csr(dd, addr, reg);
11079 }
11080 
11081 /* set the given per-VL dedicated limit */
11082 static void set_vl_dedicated(struct hfi1_devdata *dd, int vl, u16 limit)
11083 {
11084 	u64 reg;
11085 	u32 addr;
11086 
11087 	if (vl < TXE_NUM_DATA_VL)
11088 		addr = SEND_CM_CREDIT_VL + (8 * vl);
11089 	else
11090 		addr = SEND_CM_CREDIT_VL15;
11091 
11092 	reg = read_csr(dd, addr);
11093 	reg &= ~SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SMASK;
11094 	reg |= (u64)limit << SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SHIFT;
11095 	write_csr(dd, addr, reg);
11096 }
11097 
11098 /* spin until the given per-VL status mask bits clear */
11099 static void wait_for_vl_status_clear(struct hfi1_devdata *dd, u64 mask,
11100 				     const char *which)
11101 {
11102 	unsigned long timeout;
11103 	u64 reg;
11104 
11105 	timeout = jiffies + msecs_to_jiffies(VL_STATUS_CLEAR_TIMEOUT);
11106 	while (1) {
11107 		reg = read_csr(dd, SEND_CM_CREDIT_USED_STATUS) & mask;
11108 
11109 		if (reg == 0)
11110 			return;	/* success */
11111 		if (time_after(jiffies, timeout))
11112 			break;		/* timed out */
11113 		udelay(1);
11114 	}
11115 
11116 	dd_dev_err(dd,
11117 		   "%s credit change status not clearing after %dms, mask 0x%llx, not clear 0x%llx\n",
11118 		   which, VL_STATUS_CLEAR_TIMEOUT, mask, reg);
11119 	/*
11120 	 * If this occurs, it is likely there was a credit loss on the link.
11121 	 * The only recovery from that is a link bounce.
11122 	 */
11123 	dd_dev_err(dd,
11124 		   "Continuing anyway.  A credit loss may occur.  Suggest a link bounce\n");
11125 }
11126 
11127 /*
11128  * The number of credits on the VLs may be changed while everything
11129  * is "live", but the following algorithm must be followed due to
11130  * how the hardware is actually implemented.  In particular,
11131  * Return_Credit_Status[] is the only correct status check.
11132  *
11133  * if (reducing Global_Shared_Credit_Limit or any shared limit changing)
11134  *     set Global_Shared_Credit_Limit = 0
11135  *     use_all_vl = 1
11136  * mask0 = all VLs that are changing either dedicated or shared limits
11137  * set Shared_Limit[mask0] = 0
11138  * spin until Return_Credit_Status[use_all_vl ? all VL : mask0] == 0
11139  * if (changing any dedicated limit)
11140  *     mask1 = all VLs that are lowering dedicated limits
11141  *     lower Dedicated_Limit[mask1]
11142  *     spin until Return_Credit_Status[mask1] == 0
11143  *     raise Dedicated_Limits
11144  * raise Shared_Limits
11145  * raise Global_Shared_Credit_Limit
11146  *
11147  * lower = if the new limit is lower, set the limit to the new value
11148  * raise = if the new limit is higher than the current value (may be changed
11149  *	earlier in the algorithm), set the new limit to the new value
11150  */
11151 int set_buffer_control(struct hfi1_pportdata *ppd,
11152 		       struct buffer_control *new_bc)
11153 {
11154 	struct hfi1_devdata *dd = ppd->dd;
11155 	u64 changing_mask, ld_mask, stat_mask;
11156 	int change_count;
11157 	int i, use_all_mask;
11158 	int this_shared_changing;
11159 	int vl_count = 0, ret;
11160 	/*
11161 	 * A0: add the variable any_shared_limit_changing below and in the
11162 	 * algorithm above.  If removing A0 support, it can be removed.
11163 	 */
11164 	int any_shared_limit_changing;
11165 	struct buffer_control cur_bc;
11166 	u8 changing[OPA_MAX_VLS];
11167 	u8 lowering_dedicated[OPA_MAX_VLS];
11168 	u16 cur_total;
11169 	u32 new_total = 0;
11170 	const u64 all_mask =
11171 	SEND_CM_CREDIT_USED_STATUS_VL0_RETURN_CREDIT_STATUS_SMASK
11172 	 | SEND_CM_CREDIT_USED_STATUS_VL1_RETURN_CREDIT_STATUS_SMASK
11173 	 | SEND_CM_CREDIT_USED_STATUS_VL2_RETURN_CREDIT_STATUS_SMASK
11174 	 | SEND_CM_CREDIT_USED_STATUS_VL3_RETURN_CREDIT_STATUS_SMASK
11175 	 | SEND_CM_CREDIT_USED_STATUS_VL4_RETURN_CREDIT_STATUS_SMASK
11176 	 | SEND_CM_CREDIT_USED_STATUS_VL5_RETURN_CREDIT_STATUS_SMASK
11177 	 | SEND_CM_CREDIT_USED_STATUS_VL6_RETURN_CREDIT_STATUS_SMASK
11178 	 | SEND_CM_CREDIT_USED_STATUS_VL7_RETURN_CREDIT_STATUS_SMASK
11179 	 | SEND_CM_CREDIT_USED_STATUS_VL15_RETURN_CREDIT_STATUS_SMASK;
11180 
11181 #define valid_vl(idx) ((idx) < TXE_NUM_DATA_VL || (idx) == 15)
11182 #define NUM_USABLE_VLS 16	/* look at VL15 and less */
11183 
11184 	/* find the new total credits, do sanity check on unused VLs */
11185 	for (i = 0; i < OPA_MAX_VLS; i++) {
11186 		if (valid_vl(i)) {
11187 			new_total += be16_to_cpu(new_bc->vl[i].dedicated);
11188 			continue;
11189 		}
11190 		nonzero_msg(dd, i, "dedicated",
11191 			    be16_to_cpu(new_bc->vl[i].dedicated));
11192 		nonzero_msg(dd, i, "shared",
11193 			    be16_to_cpu(new_bc->vl[i].shared));
11194 		new_bc->vl[i].dedicated = 0;
11195 		new_bc->vl[i].shared = 0;
11196 	}
11197 	new_total += be16_to_cpu(new_bc->overall_shared_limit);
11198 
11199 	/* fetch the current values */
11200 	get_buffer_control(dd, &cur_bc, &cur_total);
11201 
11202 	/*
11203 	 * Create the masks we will use.
11204 	 */
11205 	memset(changing, 0, sizeof(changing));
11206 	memset(lowering_dedicated, 0, sizeof(lowering_dedicated));
11207 	/*
11208 	 * NOTE: Assumes that the individual VL bits are adjacent and in
11209 	 * increasing order
11210 	 */
11211 	stat_mask =
11212 		SEND_CM_CREDIT_USED_STATUS_VL0_RETURN_CREDIT_STATUS_SMASK;
11213 	changing_mask = 0;
11214 	ld_mask = 0;
11215 	change_count = 0;
11216 	any_shared_limit_changing = 0;
11217 	for (i = 0; i < NUM_USABLE_VLS; i++, stat_mask <<= 1) {
11218 		if (!valid_vl(i))
11219 			continue;
11220 		this_shared_changing = new_bc->vl[i].shared
11221 						!= cur_bc.vl[i].shared;
11222 		if (this_shared_changing)
11223 			any_shared_limit_changing = 1;
11224 		if (new_bc->vl[i].dedicated != cur_bc.vl[i].dedicated ||
11225 		    this_shared_changing) {
11226 			changing[i] = 1;
11227 			changing_mask |= stat_mask;
11228 			change_count++;
11229 		}
11230 		if (be16_to_cpu(new_bc->vl[i].dedicated) <
11231 					be16_to_cpu(cur_bc.vl[i].dedicated)) {
11232 			lowering_dedicated[i] = 1;
11233 			ld_mask |= stat_mask;
11234 		}
11235 	}
11236 
11237 	/* bracket the credit change with a total adjustment */
11238 	if (new_total > cur_total)
11239 		set_global_limit(dd, new_total);
11240 
11241 	/*
11242 	 * Start the credit change algorithm.
11243 	 */
11244 	use_all_mask = 0;
11245 	if ((be16_to_cpu(new_bc->overall_shared_limit) <
11246 	     be16_to_cpu(cur_bc.overall_shared_limit)) ||
11247 	    (is_ax(dd) && any_shared_limit_changing)) {
11248 		set_global_shared(dd, 0);
11249 		cur_bc.overall_shared_limit = 0;
11250 		use_all_mask = 1;
11251 	}
11252 
11253 	for (i = 0; i < NUM_USABLE_VLS; i++) {
11254 		if (!valid_vl(i))
11255 			continue;
11256 
11257 		if (changing[i]) {
11258 			set_vl_shared(dd, i, 0);
11259 			cur_bc.vl[i].shared = 0;
11260 		}
11261 	}
11262 
11263 	wait_for_vl_status_clear(dd, use_all_mask ? all_mask : changing_mask,
11264 				 "shared");
11265 
11266 	if (change_count > 0) {
11267 		for (i = 0; i < NUM_USABLE_VLS; i++) {
11268 			if (!valid_vl(i))
11269 				continue;
11270 
11271 			if (lowering_dedicated[i]) {
11272 				set_vl_dedicated(dd, i,
11273 						 be16_to_cpu(new_bc->
11274 							     vl[i].dedicated));
11275 				cur_bc.vl[i].dedicated =
11276 						new_bc->vl[i].dedicated;
11277 			}
11278 		}
11279 
11280 		wait_for_vl_status_clear(dd, ld_mask, "dedicated");
11281 
11282 		/* now raise all dedicated that are going up */
11283 		for (i = 0; i < NUM_USABLE_VLS; i++) {
11284 			if (!valid_vl(i))
11285 				continue;
11286 
11287 			if (be16_to_cpu(new_bc->vl[i].dedicated) >
11288 					be16_to_cpu(cur_bc.vl[i].dedicated))
11289 				set_vl_dedicated(dd, i,
11290 						 be16_to_cpu(new_bc->
11291 							     vl[i].dedicated));
11292 		}
11293 	}
11294 
11295 	/* next raise all shared that are going up */
11296 	for (i = 0; i < NUM_USABLE_VLS; i++) {
11297 		if (!valid_vl(i))
11298 			continue;
11299 
11300 		if (be16_to_cpu(new_bc->vl[i].shared) >
11301 				be16_to_cpu(cur_bc.vl[i].shared))
11302 			set_vl_shared(dd, i, be16_to_cpu(new_bc->vl[i].shared));
11303 	}
11304 
11305 	/* finally raise the global shared */
11306 	if (be16_to_cpu(new_bc->overall_shared_limit) >
11307 	    be16_to_cpu(cur_bc.overall_shared_limit))
11308 		set_global_shared(dd,
11309 				  be16_to_cpu(new_bc->overall_shared_limit));
11310 
11311 	/* bracket the credit change with a total adjustment */
11312 	if (new_total < cur_total)
11313 		set_global_limit(dd, new_total);
11314 
11315 	/*
11316 	 * Determine the actual number of operational VLS using the number of
11317 	 * dedicated and shared credits for each VL.
11318 	 */
11319 	if (change_count > 0) {
11320 		for (i = 0; i < TXE_NUM_DATA_VL; i++)
11321 			if (be16_to_cpu(new_bc->vl[i].dedicated) > 0 ||
11322 			    be16_to_cpu(new_bc->vl[i].shared) > 0)
11323 				vl_count++;
11324 		ppd->actual_vls_operational = vl_count;
11325 		ret = sdma_map_init(dd, ppd->port - 1, vl_count ?
11326 				    ppd->actual_vls_operational :
11327 				    ppd->vls_operational,
11328 				    NULL);
11329 		if (ret == 0)
11330 			ret = pio_map_init(dd, ppd->port - 1, vl_count ?
11331 					   ppd->actual_vls_operational :
11332 					   ppd->vls_operational, NULL);
11333 		if (ret)
11334 			return ret;
11335 	}
11336 	return 0;
11337 }
11338 
11339 /*
11340  * Read the given fabric manager table. Return the size of the
11341  * table (in bytes) on success, and a negative error code on
11342  * failure.
11343  */
11344 int fm_get_table(struct hfi1_pportdata *ppd, int which, void *t)
11345 
11346 {
11347 	int size;
11348 	struct vl_arb_cache *vlc;
11349 
11350 	switch (which) {
11351 	case FM_TBL_VL_HIGH_ARB:
11352 		size = 256;
11353 		/*
11354 		 * OPA specifies 128 elements (of 2 bytes each), though
11355 		 * HFI supports only 16 elements in h/w.
11356 		 */
11357 		vlc = vl_arb_lock_cache(ppd, HI_PRIO_TABLE);
11358 		vl_arb_get_cache(vlc, t);
11359 		vl_arb_unlock_cache(ppd, HI_PRIO_TABLE);
11360 		break;
11361 	case FM_TBL_VL_LOW_ARB:
11362 		size = 256;
11363 		/*
11364 		 * OPA specifies 128 elements (of 2 bytes each), though
11365 		 * HFI supports only 16 elements in h/w.
11366 		 */
11367 		vlc = vl_arb_lock_cache(ppd, LO_PRIO_TABLE);
11368 		vl_arb_get_cache(vlc, t);
11369 		vl_arb_unlock_cache(ppd, LO_PRIO_TABLE);
11370 		break;
11371 	case FM_TBL_BUFFER_CONTROL:
11372 		size = get_buffer_control(ppd->dd, t, NULL);
11373 		break;
11374 	case FM_TBL_SC2VLNT:
11375 		size = get_sc2vlnt(ppd->dd, t);
11376 		break;
11377 	case FM_TBL_VL_PREEMPT_ELEMS:
11378 		size = 256;
11379 		/* OPA specifies 128 elements, of 2 bytes each */
11380 		get_vlarb_preempt(ppd->dd, OPA_MAX_VLS, t);
11381 		break;
11382 	case FM_TBL_VL_PREEMPT_MATRIX:
11383 		size = 256;
11384 		/*
11385 		 * OPA specifies that this is the same size as the VL
11386 		 * arbitration tables (i.e., 256 bytes).
11387 		 */
11388 		break;
11389 	default:
11390 		return -EINVAL;
11391 	}
11392 	return size;
11393 }
11394 
11395 /*
11396  * Write the given fabric manager table.
11397  */
11398 int fm_set_table(struct hfi1_pportdata *ppd, int which, void *t)
11399 {
11400 	int ret = 0;
11401 	struct vl_arb_cache *vlc;
11402 
11403 	switch (which) {
11404 	case FM_TBL_VL_HIGH_ARB:
11405 		vlc = vl_arb_lock_cache(ppd, HI_PRIO_TABLE);
11406 		if (vl_arb_match_cache(vlc, t)) {
11407 			vl_arb_unlock_cache(ppd, HI_PRIO_TABLE);
11408 			break;
11409 		}
11410 		vl_arb_set_cache(vlc, t);
11411 		vl_arb_unlock_cache(ppd, HI_PRIO_TABLE);
11412 		ret = set_vl_weights(ppd, SEND_HIGH_PRIORITY_LIST,
11413 				     VL_ARB_HIGH_PRIO_TABLE_SIZE, t);
11414 		break;
11415 	case FM_TBL_VL_LOW_ARB:
11416 		vlc = vl_arb_lock_cache(ppd, LO_PRIO_TABLE);
11417 		if (vl_arb_match_cache(vlc, t)) {
11418 			vl_arb_unlock_cache(ppd, LO_PRIO_TABLE);
11419 			break;
11420 		}
11421 		vl_arb_set_cache(vlc, t);
11422 		vl_arb_unlock_cache(ppd, LO_PRIO_TABLE);
11423 		ret = set_vl_weights(ppd, SEND_LOW_PRIORITY_LIST,
11424 				     VL_ARB_LOW_PRIO_TABLE_SIZE, t);
11425 		break;
11426 	case FM_TBL_BUFFER_CONTROL:
11427 		ret = set_buffer_control(ppd, t);
11428 		break;
11429 	case FM_TBL_SC2VLNT:
11430 		set_sc2vlnt(ppd->dd, t);
11431 		break;
11432 	default:
11433 		ret = -EINVAL;
11434 	}
11435 	return ret;
11436 }
11437 
11438 /*
11439  * Disable all data VLs.
11440  *
11441  * Return 0 if disabled, non-zero if the VLs cannot be disabled.
11442  */
11443 static int disable_data_vls(struct hfi1_devdata *dd)
11444 {
11445 	if (is_ax(dd))
11446 		return 1;
11447 
11448 	pio_send_control(dd, PSC_DATA_VL_DISABLE);
11449 
11450 	return 0;
11451 }
11452 
11453 /*
11454  * open_fill_data_vls() - the counterpart to stop_drain_data_vls().
11455  * Just re-enables all data VLs (the "fill" part happens
11456  * automatically - the name was chosen for symmetry with
11457  * stop_drain_data_vls()).
11458  *
11459  * Return 0 if successful, non-zero if the VLs cannot be enabled.
11460  */
11461 int open_fill_data_vls(struct hfi1_devdata *dd)
11462 {
11463 	if (is_ax(dd))
11464 		return 1;
11465 
11466 	pio_send_control(dd, PSC_DATA_VL_ENABLE);
11467 
11468 	return 0;
11469 }
11470 
11471 /*
11472  * drain_data_vls() - assumes that disable_data_vls() has been called,
11473  * wait for occupancy (of per-VL FIFOs) for all contexts, and SDMA
11474  * engines to drop to 0.
11475  */
11476 static void drain_data_vls(struct hfi1_devdata *dd)
11477 {
11478 	sc_wait(dd);
11479 	sdma_wait(dd);
11480 	pause_for_credit_return(dd);
11481 }
11482 
11483 /*
11484  * stop_drain_data_vls() - disable, then drain all per-VL fifos.
11485  *
11486  * Use open_fill_data_vls() to resume using data VLs.  This pair is
11487  * meant to be used like this:
11488  *
11489  * stop_drain_data_vls(dd);
11490  * // do things with per-VL resources
11491  * open_fill_data_vls(dd);
11492  */
11493 int stop_drain_data_vls(struct hfi1_devdata *dd)
11494 {
11495 	int ret;
11496 
11497 	ret = disable_data_vls(dd);
11498 	if (ret == 0)
11499 		drain_data_vls(dd);
11500 
11501 	return ret;
11502 }
11503 
11504 /*
11505  * Convert a nanosecond time to a cclock count.  No matter how slow
11506  * the cclock, a non-zero ns will always have a non-zero result.
11507  */
11508 u32 ns_to_cclock(struct hfi1_devdata *dd, u32 ns)
11509 {
11510 	u32 cclocks;
11511 
11512 	if (dd->icode == ICODE_FPGA_EMULATION)
11513 		cclocks = (ns * 1000) / FPGA_CCLOCK_PS;
11514 	else  /* simulation pretends to be ASIC */
11515 		cclocks = (ns * 1000) / ASIC_CCLOCK_PS;
11516 	if (ns && !cclocks)	/* if ns nonzero, must be at least 1 */
11517 		cclocks = 1;
11518 	return cclocks;
11519 }
11520 
11521 /*
11522  * Convert a cclock count to nanoseconds. Not matter how slow
11523  * the cclock, a non-zero cclocks will always have a non-zero result.
11524  */
11525 u32 cclock_to_ns(struct hfi1_devdata *dd, u32 cclocks)
11526 {
11527 	u32 ns;
11528 
11529 	if (dd->icode == ICODE_FPGA_EMULATION)
11530 		ns = (cclocks * FPGA_CCLOCK_PS) / 1000;
11531 	else  /* simulation pretends to be ASIC */
11532 		ns = (cclocks * ASIC_CCLOCK_PS) / 1000;
11533 	if (cclocks && !ns)
11534 		ns = 1;
11535 	return ns;
11536 }
11537 
11538 /*
11539  * Dynamically adjust the receive interrupt timeout for a context based on
11540  * incoming packet rate.
11541  *
11542  * NOTE: Dynamic adjustment does not allow rcv_intr_count to be zero.
11543  */
11544 static void adjust_rcv_timeout(struct hfi1_ctxtdata *rcd, u32 npkts)
11545 {
11546 	struct hfi1_devdata *dd = rcd->dd;
11547 	u32 timeout = rcd->rcvavail_timeout;
11548 
11549 	/*
11550 	 * This algorithm doubles or halves the timeout depending on whether
11551 	 * the number of packets received in this interrupt were less than or
11552 	 * greater equal the interrupt count.
11553 	 *
11554 	 * The calculations below do not allow a steady state to be achieved.
11555 	 * Only at the endpoints it is possible to have an unchanging
11556 	 * timeout.
11557 	 */
11558 	if (npkts < rcv_intr_count) {
11559 		/*
11560 		 * Not enough packets arrived before the timeout, adjust
11561 		 * timeout downward.
11562 		 */
11563 		if (timeout < 2) /* already at minimum? */
11564 			return;
11565 		timeout >>= 1;
11566 	} else {
11567 		/*
11568 		 * More than enough packets arrived before the timeout, adjust
11569 		 * timeout upward.
11570 		 */
11571 		if (timeout >= dd->rcv_intr_timeout_csr) /* already at max? */
11572 			return;
11573 		timeout = min(timeout << 1, dd->rcv_intr_timeout_csr);
11574 	}
11575 
11576 	rcd->rcvavail_timeout = timeout;
11577 	/*
11578 	 * timeout cannot be larger than rcv_intr_timeout_csr which has already
11579 	 * been verified to be in range
11580 	 */
11581 	write_kctxt_csr(dd, rcd->ctxt, RCV_AVAIL_TIME_OUT,
11582 			(u64)timeout <<
11583 			RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_SHIFT);
11584 }
11585 
11586 void update_usrhead(struct hfi1_ctxtdata *rcd, u32 hd, u32 updegr, u32 egrhd,
11587 		    u32 intr_adjust, u32 npkts)
11588 {
11589 	struct hfi1_devdata *dd = rcd->dd;
11590 	u64 reg;
11591 	u32 ctxt = rcd->ctxt;
11592 
11593 	/*
11594 	 * Need to write timeout register before updating RcvHdrHead to ensure
11595 	 * that a new value is used when the HW decides to restart counting.
11596 	 */
11597 	if (intr_adjust)
11598 		adjust_rcv_timeout(rcd, npkts);
11599 	if (updegr) {
11600 		reg = (egrhd & RCV_EGR_INDEX_HEAD_HEAD_MASK)
11601 			<< RCV_EGR_INDEX_HEAD_HEAD_SHIFT;
11602 		write_uctxt_csr(dd, ctxt, RCV_EGR_INDEX_HEAD, reg);
11603 	}
11604 	mmiowb();
11605 	reg = ((u64)rcv_intr_count << RCV_HDR_HEAD_COUNTER_SHIFT) |
11606 		(((u64)hd & RCV_HDR_HEAD_HEAD_MASK)
11607 			<< RCV_HDR_HEAD_HEAD_SHIFT);
11608 	write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, reg);
11609 	mmiowb();
11610 }
11611 
11612 u32 hdrqempty(struct hfi1_ctxtdata *rcd)
11613 {
11614 	u32 head, tail;
11615 
11616 	head = (read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_HEAD)
11617 		& RCV_HDR_HEAD_HEAD_SMASK) >> RCV_HDR_HEAD_HEAD_SHIFT;
11618 
11619 	if (rcd->rcvhdrtail_kvaddr)
11620 		tail = get_rcvhdrtail(rcd);
11621 	else
11622 		tail = read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_TAIL);
11623 
11624 	return head == tail;
11625 }
11626 
11627 /*
11628  * Context Control and Receive Array encoding for buffer size:
11629  *	0x0 invalid
11630  *	0x1   4 KB
11631  *	0x2   8 KB
11632  *	0x3  16 KB
11633  *	0x4  32 KB
11634  *	0x5  64 KB
11635  *	0x6 128 KB
11636  *	0x7 256 KB
11637  *	0x8 512 KB (Receive Array only)
11638  *	0x9   1 MB (Receive Array only)
11639  *	0xa   2 MB (Receive Array only)
11640  *
11641  *	0xB-0xF - reserved (Receive Array only)
11642  *
11643  *
11644  * This routine assumes that the value has already been sanity checked.
11645  */
11646 static u32 encoded_size(u32 size)
11647 {
11648 	switch (size) {
11649 	case   4 * 1024: return 0x1;
11650 	case   8 * 1024: return 0x2;
11651 	case  16 * 1024: return 0x3;
11652 	case  32 * 1024: return 0x4;
11653 	case  64 * 1024: return 0x5;
11654 	case 128 * 1024: return 0x6;
11655 	case 256 * 1024: return 0x7;
11656 	case 512 * 1024: return 0x8;
11657 	case   1 * 1024 * 1024: return 0x9;
11658 	case   2 * 1024 * 1024: return 0xa;
11659 	}
11660 	return 0x1;	/* if invalid, go with the minimum size */
11661 }
11662 
11663 void hfi1_rcvctrl(struct hfi1_devdata *dd, unsigned int op, int ctxt)
11664 {
11665 	struct hfi1_ctxtdata *rcd;
11666 	u64 rcvctrl, reg;
11667 	int did_enable = 0;
11668 
11669 	rcd = dd->rcd[ctxt];
11670 	if (!rcd)
11671 		return;
11672 
11673 	hfi1_cdbg(RCVCTRL, "ctxt %d op 0x%x", ctxt, op);
11674 
11675 	rcvctrl = read_kctxt_csr(dd, ctxt, RCV_CTXT_CTRL);
11676 	/* if the context already enabled, don't do the extra steps */
11677 	if ((op & HFI1_RCVCTRL_CTXT_ENB) &&
11678 	    !(rcvctrl & RCV_CTXT_CTRL_ENABLE_SMASK)) {
11679 		/* reset the tail and hdr addresses, and sequence count */
11680 		write_kctxt_csr(dd, ctxt, RCV_HDR_ADDR,
11681 				rcd->rcvhdrq_dma);
11682 		if (HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL))
11683 			write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR,
11684 					rcd->rcvhdrqtailaddr_dma);
11685 		rcd->seq_cnt = 1;
11686 
11687 		/* reset the cached receive header queue head value */
11688 		rcd->head = 0;
11689 
11690 		/*
11691 		 * Zero the receive header queue so we don't get false
11692 		 * positives when checking the sequence number.  The
11693 		 * sequence numbers could land exactly on the same spot.
11694 		 * E.g. a rcd restart before the receive header wrapped.
11695 		 */
11696 		memset(rcd->rcvhdrq, 0, rcd->rcvhdrq_size);
11697 
11698 		/* starting timeout */
11699 		rcd->rcvavail_timeout = dd->rcv_intr_timeout_csr;
11700 
11701 		/* enable the context */
11702 		rcvctrl |= RCV_CTXT_CTRL_ENABLE_SMASK;
11703 
11704 		/* clean the egr buffer size first */
11705 		rcvctrl &= ~RCV_CTXT_CTRL_EGR_BUF_SIZE_SMASK;
11706 		rcvctrl |= ((u64)encoded_size(rcd->egrbufs.rcvtid_size)
11707 				& RCV_CTXT_CTRL_EGR_BUF_SIZE_MASK)
11708 					<< RCV_CTXT_CTRL_EGR_BUF_SIZE_SHIFT;
11709 
11710 		/* zero RcvHdrHead - set RcvHdrHead.Counter after enable */
11711 		write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0);
11712 		did_enable = 1;
11713 
11714 		/* zero RcvEgrIndexHead */
11715 		write_uctxt_csr(dd, ctxt, RCV_EGR_INDEX_HEAD, 0);
11716 
11717 		/* set eager count and base index */
11718 		reg = (((u64)(rcd->egrbufs.alloced >> RCV_SHIFT)
11719 			& RCV_EGR_CTRL_EGR_CNT_MASK)
11720 		       << RCV_EGR_CTRL_EGR_CNT_SHIFT) |
11721 			(((rcd->eager_base >> RCV_SHIFT)
11722 			  & RCV_EGR_CTRL_EGR_BASE_INDEX_MASK)
11723 			 << RCV_EGR_CTRL_EGR_BASE_INDEX_SHIFT);
11724 		write_kctxt_csr(dd, ctxt, RCV_EGR_CTRL, reg);
11725 
11726 		/*
11727 		 * Set TID (expected) count and base index.
11728 		 * rcd->expected_count is set to individual RcvArray entries,
11729 		 * not pairs, and the CSR takes a pair-count in groups of
11730 		 * four, so divide by 8.
11731 		 */
11732 		reg = (((rcd->expected_count >> RCV_SHIFT)
11733 					& RCV_TID_CTRL_TID_PAIR_CNT_MASK)
11734 				<< RCV_TID_CTRL_TID_PAIR_CNT_SHIFT) |
11735 		      (((rcd->expected_base >> RCV_SHIFT)
11736 					& RCV_TID_CTRL_TID_BASE_INDEX_MASK)
11737 				<< RCV_TID_CTRL_TID_BASE_INDEX_SHIFT);
11738 		write_kctxt_csr(dd, ctxt, RCV_TID_CTRL, reg);
11739 		if (ctxt == HFI1_CTRL_CTXT)
11740 			write_csr(dd, RCV_VL15, HFI1_CTRL_CTXT);
11741 	}
11742 	if (op & HFI1_RCVCTRL_CTXT_DIS) {
11743 		write_csr(dd, RCV_VL15, 0);
11744 		/*
11745 		 * When receive context is being disabled turn on tail
11746 		 * update with a dummy tail address and then disable
11747 		 * receive context.
11748 		 */
11749 		if (dd->rcvhdrtail_dummy_dma) {
11750 			write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR,
11751 					dd->rcvhdrtail_dummy_dma);
11752 			/* Enabling RcvCtxtCtrl.TailUpd is intentional. */
11753 			rcvctrl |= RCV_CTXT_CTRL_TAIL_UPD_SMASK;
11754 		}
11755 
11756 		rcvctrl &= ~RCV_CTXT_CTRL_ENABLE_SMASK;
11757 	}
11758 	if (op & HFI1_RCVCTRL_INTRAVAIL_ENB)
11759 		rcvctrl |= RCV_CTXT_CTRL_INTR_AVAIL_SMASK;
11760 	if (op & HFI1_RCVCTRL_INTRAVAIL_DIS)
11761 		rcvctrl &= ~RCV_CTXT_CTRL_INTR_AVAIL_SMASK;
11762 	if (op & HFI1_RCVCTRL_TAILUPD_ENB && rcd->rcvhdrqtailaddr_dma)
11763 		rcvctrl |= RCV_CTXT_CTRL_TAIL_UPD_SMASK;
11764 	if (op & HFI1_RCVCTRL_TAILUPD_DIS) {
11765 		/* See comment on RcvCtxtCtrl.TailUpd above */
11766 		if (!(op & HFI1_RCVCTRL_CTXT_DIS))
11767 			rcvctrl &= ~RCV_CTXT_CTRL_TAIL_UPD_SMASK;
11768 	}
11769 	if (op & HFI1_RCVCTRL_TIDFLOW_ENB)
11770 		rcvctrl |= RCV_CTXT_CTRL_TID_FLOW_ENABLE_SMASK;
11771 	if (op & HFI1_RCVCTRL_TIDFLOW_DIS)
11772 		rcvctrl &= ~RCV_CTXT_CTRL_TID_FLOW_ENABLE_SMASK;
11773 	if (op & HFI1_RCVCTRL_ONE_PKT_EGR_ENB) {
11774 		/*
11775 		 * In one-packet-per-eager mode, the size comes from
11776 		 * the RcvArray entry.
11777 		 */
11778 		rcvctrl &= ~RCV_CTXT_CTRL_EGR_BUF_SIZE_SMASK;
11779 		rcvctrl |= RCV_CTXT_CTRL_ONE_PACKET_PER_EGR_BUFFER_SMASK;
11780 	}
11781 	if (op & HFI1_RCVCTRL_ONE_PKT_EGR_DIS)
11782 		rcvctrl &= ~RCV_CTXT_CTRL_ONE_PACKET_PER_EGR_BUFFER_SMASK;
11783 	if (op & HFI1_RCVCTRL_NO_RHQ_DROP_ENB)
11784 		rcvctrl |= RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK;
11785 	if (op & HFI1_RCVCTRL_NO_RHQ_DROP_DIS)
11786 		rcvctrl &= ~RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK;
11787 	if (op & HFI1_RCVCTRL_NO_EGR_DROP_ENB)
11788 		rcvctrl |= RCV_CTXT_CTRL_DONT_DROP_EGR_FULL_SMASK;
11789 	if (op & HFI1_RCVCTRL_NO_EGR_DROP_DIS)
11790 		rcvctrl &= ~RCV_CTXT_CTRL_DONT_DROP_EGR_FULL_SMASK;
11791 	rcd->rcvctrl = rcvctrl;
11792 	hfi1_cdbg(RCVCTRL, "ctxt %d rcvctrl 0x%llx\n", ctxt, rcvctrl);
11793 	write_kctxt_csr(dd, ctxt, RCV_CTXT_CTRL, rcd->rcvctrl);
11794 
11795 	/* work around sticky RcvCtxtStatus.BlockedRHQFull */
11796 	if (did_enable &&
11797 	    (rcvctrl & RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK)) {
11798 		reg = read_kctxt_csr(dd, ctxt, RCV_CTXT_STATUS);
11799 		if (reg != 0) {
11800 			dd_dev_info(dd, "ctxt %d status %lld (blocked)\n",
11801 				    ctxt, reg);
11802 			read_uctxt_csr(dd, ctxt, RCV_HDR_HEAD);
11803 			write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0x10);
11804 			write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0x00);
11805 			read_uctxt_csr(dd, ctxt, RCV_HDR_HEAD);
11806 			reg = read_kctxt_csr(dd, ctxt, RCV_CTXT_STATUS);
11807 			dd_dev_info(dd, "ctxt %d status %lld (%s blocked)\n",
11808 				    ctxt, reg, reg == 0 ? "not" : "still");
11809 		}
11810 	}
11811 
11812 	if (did_enable) {
11813 		/*
11814 		 * The interrupt timeout and count must be set after
11815 		 * the context is enabled to take effect.
11816 		 */
11817 		/* set interrupt timeout */
11818 		write_kctxt_csr(dd, ctxt, RCV_AVAIL_TIME_OUT,
11819 				(u64)rcd->rcvavail_timeout <<
11820 				RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_SHIFT);
11821 
11822 		/* set RcvHdrHead.Counter, zero RcvHdrHead.Head (again) */
11823 		reg = (u64)rcv_intr_count << RCV_HDR_HEAD_COUNTER_SHIFT;
11824 		write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, reg);
11825 	}
11826 
11827 	if (op & (HFI1_RCVCTRL_TAILUPD_DIS | HFI1_RCVCTRL_CTXT_DIS))
11828 		/*
11829 		 * If the context has been disabled and the Tail Update has
11830 		 * been cleared, set the RCV_HDR_TAIL_ADDR CSR to dummy address
11831 		 * so it doesn't contain an address that is invalid.
11832 		 */
11833 		write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR,
11834 				dd->rcvhdrtail_dummy_dma);
11835 }
11836 
11837 u32 hfi1_read_cntrs(struct hfi1_devdata *dd, char **namep, u64 **cntrp)
11838 {
11839 	int ret;
11840 	u64 val = 0;
11841 
11842 	if (namep) {
11843 		ret = dd->cntrnameslen;
11844 		*namep = dd->cntrnames;
11845 	} else {
11846 		const struct cntr_entry *entry;
11847 		int i, j;
11848 
11849 		ret = (dd->ndevcntrs) * sizeof(u64);
11850 
11851 		/* Get the start of the block of counters */
11852 		*cntrp = dd->cntrs;
11853 
11854 		/*
11855 		 * Now go and fill in each counter in the block.
11856 		 */
11857 		for (i = 0; i < DEV_CNTR_LAST; i++) {
11858 			entry = &dev_cntrs[i];
11859 			hfi1_cdbg(CNTR, "reading %s", entry->name);
11860 			if (entry->flags & CNTR_DISABLED) {
11861 				/* Nothing */
11862 				hfi1_cdbg(CNTR, "\tDisabled\n");
11863 			} else {
11864 				if (entry->flags & CNTR_VL) {
11865 					hfi1_cdbg(CNTR, "\tPer VL\n");
11866 					for (j = 0; j < C_VL_COUNT; j++) {
11867 						val = entry->rw_cntr(entry,
11868 								  dd, j,
11869 								  CNTR_MODE_R,
11870 								  0);
11871 						hfi1_cdbg(
11872 						   CNTR,
11873 						   "\t\tRead 0x%llx for %d\n",
11874 						   val, j);
11875 						dd->cntrs[entry->offset + j] =
11876 									    val;
11877 					}
11878 				} else if (entry->flags & CNTR_SDMA) {
11879 					hfi1_cdbg(CNTR,
11880 						  "\t Per SDMA Engine\n");
11881 					for (j = 0; j < dd->chip_sdma_engines;
11882 					     j++) {
11883 						val =
11884 						entry->rw_cntr(entry, dd, j,
11885 							       CNTR_MODE_R, 0);
11886 						hfi1_cdbg(CNTR,
11887 							  "\t\tRead 0x%llx for %d\n",
11888 							  val, j);
11889 						dd->cntrs[entry->offset + j] =
11890 									val;
11891 					}
11892 				} else {
11893 					val = entry->rw_cntr(entry, dd,
11894 							CNTR_INVALID_VL,
11895 							CNTR_MODE_R, 0);
11896 					dd->cntrs[entry->offset] = val;
11897 					hfi1_cdbg(CNTR, "\tRead 0x%llx", val);
11898 				}
11899 			}
11900 		}
11901 	}
11902 	return ret;
11903 }
11904 
11905 /*
11906  * Used by sysfs to create files for hfi stats to read
11907  */
11908 u32 hfi1_read_portcntrs(struct hfi1_pportdata *ppd, char **namep, u64 **cntrp)
11909 {
11910 	int ret;
11911 	u64 val = 0;
11912 
11913 	if (namep) {
11914 		ret = ppd->dd->portcntrnameslen;
11915 		*namep = ppd->dd->portcntrnames;
11916 	} else {
11917 		const struct cntr_entry *entry;
11918 		int i, j;
11919 
11920 		ret = ppd->dd->nportcntrs * sizeof(u64);
11921 		*cntrp = ppd->cntrs;
11922 
11923 		for (i = 0; i < PORT_CNTR_LAST; i++) {
11924 			entry = &port_cntrs[i];
11925 			hfi1_cdbg(CNTR, "reading %s", entry->name);
11926 			if (entry->flags & CNTR_DISABLED) {
11927 				/* Nothing */
11928 				hfi1_cdbg(CNTR, "\tDisabled\n");
11929 				continue;
11930 			}
11931 
11932 			if (entry->flags & CNTR_VL) {
11933 				hfi1_cdbg(CNTR, "\tPer VL");
11934 				for (j = 0; j < C_VL_COUNT; j++) {
11935 					val = entry->rw_cntr(entry, ppd, j,
11936 							       CNTR_MODE_R,
11937 							       0);
11938 					hfi1_cdbg(
11939 					   CNTR,
11940 					   "\t\tRead 0x%llx for %d",
11941 					   val, j);
11942 					ppd->cntrs[entry->offset + j] = val;
11943 				}
11944 			} else {
11945 				val = entry->rw_cntr(entry, ppd,
11946 						       CNTR_INVALID_VL,
11947 						       CNTR_MODE_R,
11948 						       0);
11949 				ppd->cntrs[entry->offset] = val;
11950 				hfi1_cdbg(CNTR, "\tRead 0x%llx", val);
11951 			}
11952 		}
11953 	}
11954 	return ret;
11955 }
11956 
11957 static void free_cntrs(struct hfi1_devdata *dd)
11958 {
11959 	struct hfi1_pportdata *ppd;
11960 	int i;
11961 
11962 	if (dd->synth_stats_timer.data)
11963 		del_timer_sync(&dd->synth_stats_timer);
11964 	dd->synth_stats_timer.data = 0;
11965 	ppd = (struct hfi1_pportdata *)(dd + 1);
11966 	for (i = 0; i < dd->num_pports; i++, ppd++) {
11967 		kfree(ppd->cntrs);
11968 		kfree(ppd->scntrs);
11969 		free_percpu(ppd->ibport_data.rvp.rc_acks);
11970 		free_percpu(ppd->ibport_data.rvp.rc_qacks);
11971 		free_percpu(ppd->ibport_data.rvp.rc_delayed_comp);
11972 		ppd->cntrs = NULL;
11973 		ppd->scntrs = NULL;
11974 		ppd->ibport_data.rvp.rc_acks = NULL;
11975 		ppd->ibport_data.rvp.rc_qacks = NULL;
11976 		ppd->ibport_data.rvp.rc_delayed_comp = NULL;
11977 	}
11978 	kfree(dd->portcntrnames);
11979 	dd->portcntrnames = NULL;
11980 	kfree(dd->cntrs);
11981 	dd->cntrs = NULL;
11982 	kfree(dd->scntrs);
11983 	dd->scntrs = NULL;
11984 	kfree(dd->cntrnames);
11985 	dd->cntrnames = NULL;
11986 	if (dd->update_cntr_wq) {
11987 		destroy_workqueue(dd->update_cntr_wq);
11988 		dd->update_cntr_wq = NULL;
11989 	}
11990 }
11991 
11992 static u64 read_dev_port_cntr(struct hfi1_devdata *dd, struct cntr_entry *entry,
11993 			      u64 *psval, void *context, int vl)
11994 {
11995 	u64 val;
11996 	u64 sval = *psval;
11997 
11998 	if (entry->flags & CNTR_DISABLED) {
11999 		dd_dev_err(dd, "Counter %s not enabled", entry->name);
12000 		return 0;
12001 	}
12002 
12003 	hfi1_cdbg(CNTR, "cntr: %s vl %d psval 0x%llx", entry->name, vl, *psval);
12004 
12005 	val = entry->rw_cntr(entry, context, vl, CNTR_MODE_R, 0);
12006 
12007 	/* If its a synthetic counter there is more work we need to do */
12008 	if (entry->flags & CNTR_SYNTH) {
12009 		if (sval == CNTR_MAX) {
12010 			/* No need to read already saturated */
12011 			return CNTR_MAX;
12012 		}
12013 
12014 		if (entry->flags & CNTR_32BIT) {
12015 			/* 32bit counters can wrap multiple times */
12016 			u64 upper = sval >> 32;
12017 			u64 lower = (sval << 32) >> 32;
12018 
12019 			if (lower > val) { /* hw wrapped */
12020 				if (upper == CNTR_32BIT_MAX)
12021 					val = CNTR_MAX;
12022 				else
12023 					upper++;
12024 			}
12025 
12026 			if (val != CNTR_MAX)
12027 				val = (upper << 32) | val;
12028 
12029 		} else {
12030 			/* If we rolled we are saturated */
12031 			if ((val < sval) || (val > CNTR_MAX))
12032 				val = CNTR_MAX;
12033 		}
12034 	}
12035 
12036 	*psval = val;
12037 
12038 	hfi1_cdbg(CNTR, "\tNew val=0x%llx", val);
12039 
12040 	return val;
12041 }
12042 
12043 static u64 write_dev_port_cntr(struct hfi1_devdata *dd,
12044 			       struct cntr_entry *entry,
12045 			       u64 *psval, void *context, int vl, u64 data)
12046 {
12047 	u64 val;
12048 
12049 	if (entry->flags & CNTR_DISABLED) {
12050 		dd_dev_err(dd, "Counter %s not enabled", entry->name);
12051 		return 0;
12052 	}
12053 
12054 	hfi1_cdbg(CNTR, "cntr: %s vl %d psval 0x%llx", entry->name, vl, *psval);
12055 
12056 	if (entry->flags & CNTR_SYNTH) {
12057 		*psval = data;
12058 		if (entry->flags & CNTR_32BIT) {
12059 			val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W,
12060 					     (data << 32) >> 32);
12061 			val = data; /* return the full 64bit value */
12062 		} else {
12063 			val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W,
12064 					     data);
12065 		}
12066 	} else {
12067 		val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W, data);
12068 	}
12069 
12070 	*psval = val;
12071 
12072 	hfi1_cdbg(CNTR, "\tNew val=0x%llx", val);
12073 
12074 	return val;
12075 }
12076 
12077 u64 read_dev_cntr(struct hfi1_devdata *dd, int index, int vl)
12078 {
12079 	struct cntr_entry *entry;
12080 	u64 *sval;
12081 
12082 	entry = &dev_cntrs[index];
12083 	sval = dd->scntrs + entry->offset;
12084 
12085 	if (vl != CNTR_INVALID_VL)
12086 		sval += vl;
12087 
12088 	return read_dev_port_cntr(dd, entry, sval, dd, vl);
12089 }
12090 
12091 u64 write_dev_cntr(struct hfi1_devdata *dd, int index, int vl, u64 data)
12092 {
12093 	struct cntr_entry *entry;
12094 	u64 *sval;
12095 
12096 	entry = &dev_cntrs[index];
12097 	sval = dd->scntrs + entry->offset;
12098 
12099 	if (vl != CNTR_INVALID_VL)
12100 		sval += vl;
12101 
12102 	return write_dev_port_cntr(dd, entry, sval, dd, vl, data);
12103 }
12104 
12105 u64 read_port_cntr(struct hfi1_pportdata *ppd, int index, int vl)
12106 {
12107 	struct cntr_entry *entry;
12108 	u64 *sval;
12109 
12110 	entry = &port_cntrs[index];
12111 	sval = ppd->scntrs + entry->offset;
12112 
12113 	if (vl != CNTR_INVALID_VL)
12114 		sval += vl;
12115 
12116 	if ((index >= C_RCV_HDR_OVF_FIRST + ppd->dd->num_rcv_contexts) &&
12117 	    (index <= C_RCV_HDR_OVF_LAST)) {
12118 		/* We do not want to bother for disabled contexts */
12119 		return 0;
12120 	}
12121 
12122 	return read_dev_port_cntr(ppd->dd, entry, sval, ppd, vl);
12123 }
12124 
12125 u64 write_port_cntr(struct hfi1_pportdata *ppd, int index, int vl, u64 data)
12126 {
12127 	struct cntr_entry *entry;
12128 	u64 *sval;
12129 
12130 	entry = &port_cntrs[index];
12131 	sval = ppd->scntrs + entry->offset;
12132 
12133 	if (vl != CNTR_INVALID_VL)
12134 		sval += vl;
12135 
12136 	if ((index >= C_RCV_HDR_OVF_FIRST + ppd->dd->num_rcv_contexts) &&
12137 	    (index <= C_RCV_HDR_OVF_LAST)) {
12138 		/* We do not want to bother for disabled contexts */
12139 		return 0;
12140 	}
12141 
12142 	return write_dev_port_cntr(ppd->dd, entry, sval, ppd, vl, data);
12143 }
12144 
12145 static void do_update_synth_timer(struct work_struct *work)
12146 {
12147 	u64 cur_tx;
12148 	u64 cur_rx;
12149 	u64 total_flits;
12150 	u8 update = 0;
12151 	int i, j, vl;
12152 	struct hfi1_pportdata *ppd;
12153 	struct cntr_entry *entry;
12154 	struct hfi1_devdata *dd = container_of(work, struct hfi1_devdata,
12155 					       update_cntr_work);
12156 
12157 	/*
12158 	 * Rather than keep beating on the CSRs pick a minimal set that we can
12159 	 * check to watch for potential roll over. We can do this by looking at
12160 	 * the number of flits sent/recv. If the total flits exceeds 32bits then
12161 	 * we have to iterate all the counters and update.
12162 	 */
12163 	entry = &dev_cntrs[C_DC_RCV_FLITS];
12164 	cur_rx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL, CNTR_MODE_R, 0);
12165 
12166 	entry = &dev_cntrs[C_DC_XMIT_FLITS];
12167 	cur_tx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL, CNTR_MODE_R, 0);
12168 
12169 	hfi1_cdbg(
12170 	    CNTR,
12171 	    "[%d] curr tx=0x%llx rx=0x%llx :: last tx=0x%llx rx=0x%llx\n",
12172 	    dd->unit, cur_tx, cur_rx, dd->last_tx, dd->last_rx);
12173 
12174 	if ((cur_tx < dd->last_tx) || (cur_rx < dd->last_rx)) {
12175 		/*
12176 		 * May not be strictly necessary to update but it won't hurt and
12177 		 * simplifies the logic here.
12178 		 */
12179 		update = 1;
12180 		hfi1_cdbg(CNTR, "[%d] Tripwire counter rolled, updating",
12181 			  dd->unit);
12182 	} else {
12183 		total_flits = (cur_tx - dd->last_tx) + (cur_rx - dd->last_rx);
12184 		hfi1_cdbg(CNTR,
12185 			  "[%d] total flits 0x%llx limit 0x%llx\n", dd->unit,
12186 			  total_flits, (u64)CNTR_32BIT_MAX);
12187 		if (total_flits >= CNTR_32BIT_MAX) {
12188 			hfi1_cdbg(CNTR, "[%d] 32bit limit hit, updating",
12189 				  dd->unit);
12190 			update = 1;
12191 		}
12192 	}
12193 
12194 	if (update) {
12195 		hfi1_cdbg(CNTR, "[%d] Updating dd and ppd counters", dd->unit);
12196 		for (i = 0; i < DEV_CNTR_LAST; i++) {
12197 			entry = &dev_cntrs[i];
12198 			if (entry->flags & CNTR_VL) {
12199 				for (vl = 0; vl < C_VL_COUNT; vl++)
12200 					read_dev_cntr(dd, i, vl);
12201 			} else {
12202 				read_dev_cntr(dd, i, CNTR_INVALID_VL);
12203 			}
12204 		}
12205 		ppd = (struct hfi1_pportdata *)(dd + 1);
12206 		for (i = 0; i < dd->num_pports; i++, ppd++) {
12207 			for (j = 0; j < PORT_CNTR_LAST; j++) {
12208 				entry = &port_cntrs[j];
12209 				if (entry->flags & CNTR_VL) {
12210 					for (vl = 0; vl < C_VL_COUNT; vl++)
12211 						read_port_cntr(ppd, j, vl);
12212 				} else {
12213 					read_port_cntr(ppd, j, CNTR_INVALID_VL);
12214 				}
12215 			}
12216 		}
12217 
12218 		/*
12219 		 * We want the value in the register. The goal is to keep track
12220 		 * of the number of "ticks" not the counter value. In other
12221 		 * words if the register rolls we want to notice it and go ahead
12222 		 * and force an update.
12223 		 */
12224 		entry = &dev_cntrs[C_DC_XMIT_FLITS];
12225 		dd->last_tx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL,
12226 						CNTR_MODE_R, 0);
12227 
12228 		entry = &dev_cntrs[C_DC_RCV_FLITS];
12229 		dd->last_rx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL,
12230 						CNTR_MODE_R, 0);
12231 
12232 		hfi1_cdbg(CNTR, "[%d] setting last tx/rx to 0x%llx 0x%llx",
12233 			  dd->unit, dd->last_tx, dd->last_rx);
12234 
12235 	} else {
12236 		hfi1_cdbg(CNTR, "[%d] No update necessary", dd->unit);
12237 	}
12238 }
12239 
12240 static void update_synth_timer(unsigned long opaque)
12241 {
12242 	struct hfi1_devdata *dd = (struct hfi1_devdata *)opaque;
12243 
12244 	queue_work(dd->update_cntr_wq, &dd->update_cntr_work);
12245 	mod_timer(&dd->synth_stats_timer, jiffies + HZ * SYNTH_CNT_TIME);
12246 }
12247 
12248 #define C_MAX_NAME 16 /* 15 chars + one for /0 */
12249 static int init_cntrs(struct hfi1_devdata *dd)
12250 {
12251 	int i, rcv_ctxts, j;
12252 	size_t sz;
12253 	char *p;
12254 	char name[C_MAX_NAME];
12255 	struct hfi1_pportdata *ppd;
12256 	const char *bit_type_32 = ",32";
12257 	const int bit_type_32_sz = strlen(bit_type_32);
12258 
12259 	/* set up the stats timer; the add_timer is done at the end */
12260 	setup_timer(&dd->synth_stats_timer, update_synth_timer,
12261 		    (unsigned long)dd);
12262 
12263 	/***********************/
12264 	/* per device counters */
12265 	/***********************/
12266 
12267 	/* size names and determine how many we have*/
12268 	dd->ndevcntrs = 0;
12269 	sz = 0;
12270 
12271 	for (i = 0; i < DEV_CNTR_LAST; i++) {
12272 		if (dev_cntrs[i].flags & CNTR_DISABLED) {
12273 			hfi1_dbg_early("\tSkipping %s\n", dev_cntrs[i].name);
12274 			continue;
12275 		}
12276 
12277 		if (dev_cntrs[i].flags & CNTR_VL) {
12278 			dev_cntrs[i].offset = dd->ndevcntrs;
12279 			for (j = 0; j < C_VL_COUNT; j++) {
12280 				snprintf(name, C_MAX_NAME, "%s%d",
12281 					 dev_cntrs[i].name, vl_from_idx(j));
12282 				sz += strlen(name);
12283 				/* Add ",32" for 32-bit counters */
12284 				if (dev_cntrs[i].flags & CNTR_32BIT)
12285 					sz += bit_type_32_sz;
12286 				sz++;
12287 				dd->ndevcntrs++;
12288 			}
12289 		} else if (dev_cntrs[i].flags & CNTR_SDMA) {
12290 			dev_cntrs[i].offset = dd->ndevcntrs;
12291 			for (j = 0; j < dd->chip_sdma_engines; j++) {
12292 				snprintf(name, C_MAX_NAME, "%s%d",
12293 					 dev_cntrs[i].name, j);
12294 				sz += strlen(name);
12295 				/* Add ",32" for 32-bit counters */
12296 				if (dev_cntrs[i].flags & CNTR_32BIT)
12297 					sz += bit_type_32_sz;
12298 				sz++;
12299 				dd->ndevcntrs++;
12300 			}
12301 		} else {
12302 			/* +1 for newline. */
12303 			sz += strlen(dev_cntrs[i].name) + 1;
12304 			/* Add ",32" for 32-bit counters */
12305 			if (dev_cntrs[i].flags & CNTR_32BIT)
12306 				sz += bit_type_32_sz;
12307 			dev_cntrs[i].offset = dd->ndevcntrs;
12308 			dd->ndevcntrs++;
12309 		}
12310 	}
12311 
12312 	/* allocate space for the counter values */
12313 	dd->cntrs = kcalloc(dd->ndevcntrs, sizeof(u64), GFP_KERNEL);
12314 	if (!dd->cntrs)
12315 		goto bail;
12316 
12317 	dd->scntrs = kcalloc(dd->ndevcntrs, sizeof(u64), GFP_KERNEL);
12318 	if (!dd->scntrs)
12319 		goto bail;
12320 
12321 	/* allocate space for the counter names */
12322 	dd->cntrnameslen = sz;
12323 	dd->cntrnames = kmalloc(sz, GFP_KERNEL);
12324 	if (!dd->cntrnames)
12325 		goto bail;
12326 
12327 	/* fill in the names */
12328 	for (p = dd->cntrnames, i = 0; i < DEV_CNTR_LAST; i++) {
12329 		if (dev_cntrs[i].flags & CNTR_DISABLED) {
12330 			/* Nothing */
12331 		} else if (dev_cntrs[i].flags & CNTR_VL) {
12332 			for (j = 0; j < C_VL_COUNT; j++) {
12333 				snprintf(name, C_MAX_NAME, "%s%d",
12334 					 dev_cntrs[i].name,
12335 					 vl_from_idx(j));
12336 				memcpy(p, name, strlen(name));
12337 				p += strlen(name);
12338 
12339 				/* Counter is 32 bits */
12340 				if (dev_cntrs[i].flags & CNTR_32BIT) {
12341 					memcpy(p, bit_type_32, bit_type_32_sz);
12342 					p += bit_type_32_sz;
12343 				}
12344 
12345 				*p++ = '\n';
12346 			}
12347 		} else if (dev_cntrs[i].flags & CNTR_SDMA) {
12348 			for (j = 0; j < dd->chip_sdma_engines; j++) {
12349 				snprintf(name, C_MAX_NAME, "%s%d",
12350 					 dev_cntrs[i].name, j);
12351 				memcpy(p, name, strlen(name));
12352 				p += strlen(name);
12353 
12354 				/* Counter is 32 bits */
12355 				if (dev_cntrs[i].flags & CNTR_32BIT) {
12356 					memcpy(p, bit_type_32, bit_type_32_sz);
12357 					p += bit_type_32_sz;
12358 				}
12359 
12360 				*p++ = '\n';
12361 			}
12362 		} else {
12363 			memcpy(p, dev_cntrs[i].name, strlen(dev_cntrs[i].name));
12364 			p += strlen(dev_cntrs[i].name);
12365 
12366 			/* Counter is 32 bits */
12367 			if (dev_cntrs[i].flags & CNTR_32BIT) {
12368 				memcpy(p, bit_type_32, bit_type_32_sz);
12369 				p += bit_type_32_sz;
12370 			}
12371 
12372 			*p++ = '\n';
12373 		}
12374 	}
12375 
12376 	/*********************/
12377 	/* per port counters */
12378 	/*********************/
12379 
12380 	/*
12381 	 * Go through the counters for the overflows and disable the ones we
12382 	 * don't need. This varies based on platform so we need to do it
12383 	 * dynamically here.
12384 	 */
12385 	rcv_ctxts = dd->num_rcv_contexts;
12386 	for (i = C_RCV_HDR_OVF_FIRST + rcv_ctxts;
12387 	     i <= C_RCV_HDR_OVF_LAST; i++) {
12388 		port_cntrs[i].flags |= CNTR_DISABLED;
12389 	}
12390 
12391 	/* size port counter names and determine how many we have*/
12392 	sz = 0;
12393 	dd->nportcntrs = 0;
12394 	for (i = 0; i < PORT_CNTR_LAST; i++) {
12395 		if (port_cntrs[i].flags & CNTR_DISABLED) {
12396 			hfi1_dbg_early("\tSkipping %s\n", port_cntrs[i].name);
12397 			continue;
12398 		}
12399 
12400 		if (port_cntrs[i].flags & CNTR_VL) {
12401 			port_cntrs[i].offset = dd->nportcntrs;
12402 			for (j = 0; j < C_VL_COUNT; j++) {
12403 				snprintf(name, C_MAX_NAME, "%s%d",
12404 					 port_cntrs[i].name, vl_from_idx(j));
12405 				sz += strlen(name);
12406 				/* Add ",32" for 32-bit counters */
12407 				if (port_cntrs[i].flags & CNTR_32BIT)
12408 					sz += bit_type_32_sz;
12409 				sz++;
12410 				dd->nportcntrs++;
12411 			}
12412 		} else {
12413 			/* +1 for newline */
12414 			sz += strlen(port_cntrs[i].name) + 1;
12415 			/* Add ",32" for 32-bit counters */
12416 			if (port_cntrs[i].flags & CNTR_32BIT)
12417 				sz += bit_type_32_sz;
12418 			port_cntrs[i].offset = dd->nportcntrs;
12419 			dd->nportcntrs++;
12420 		}
12421 	}
12422 
12423 	/* allocate space for the counter names */
12424 	dd->portcntrnameslen = sz;
12425 	dd->portcntrnames = kmalloc(sz, GFP_KERNEL);
12426 	if (!dd->portcntrnames)
12427 		goto bail;
12428 
12429 	/* fill in port cntr names */
12430 	for (p = dd->portcntrnames, i = 0; i < PORT_CNTR_LAST; i++) {
12431 		if (port_cntrs[i].flags & CNTR_DISABLED)
12432 			continue;
12433 
12434 		if (port_cntrs[i].flags & CNTR_VL) {
12435 			for (j = 0; j < C_VL_COUNT; j++) {
12436 				snprintf(name, C_MAX_NAME, "%s%d",
12437 					 port_cntrs[i].name, vl_from_idx(j));
12438 				memcpy(p, name, strlen(name));
12439 				p += strlen(name);
12440 
12441 				/* Counter is 32 bits */
12442 				if (port_cntrs[i].flags & CNTR_32BIT) {
12443 					memcpy(p, bit_type_32, bit_type_32_sz);
12444 					p += bit_type_32_sz;
12445 				}
12446 
12447 				*p++ = '\n';
12448 			}
12449 		} else {
12450 			memcpy(p, port_cntrs[i].name,
12451 			       strlen(port_cntrs[i].name));
12452 			p += strlen(port_cntrs[i].name);
12453 
12454 			/* Counter is 32 bits */
12455 			if (port_cntrs[i].flags & CNTR_32BIT) {
12456 				memcpy(p, bit_type_32, bit_type_32_sz);
12457 				p += bit_type_32_sz;
12458 			}
12459 
12460 			*p++ = '\n';
12461 		}
12462 	}
12463 
12464 	/* allocate per port storage for counter values */
12465 	ppd = (struct hfi1_pportdata *)(dd + 1);
12466 	for (i = 0; i < dd->num_pports; i++, ppd++) {
12467 		ppd->cntrs = kcalloc(dd->nportcntrs, sizeof(u64), GFP_KERNEL);
12468 		if (!ppd->cntrs)
12469 			goto bail;
12470 
12471 		ppd->scntrs = kcalloc(dd->nportcntrs, sizeof(u64), GFP_KERNEL);
12472 		if (!ppd->scntrs)
12473 			goto bail;
12474 	}
12475 
12476 	/* CPU counters need to be allocated and zeroed */
12477 	if (init_cpu_counters(dd))
12478 		goto bail;
12479 
12480 	dd->update_cntr_wq = alloc_ordered_workqueue("hfi1_update_cntr_%d",
12481 						     WQ_MEM_RECLAIM, dd->unit);
12482 	if (!dd->update_cntr_wq)
12483 		goto bail;
12484 
12485 	INIT_WORK(&dd->update_cntr_work, do_update_synth_timer);
12486 
12487 	mod_timer(&dd->synth_stats_timer, jiffies + HZ * SYNTH_CNT_TIME);
12488 	return 0;
12489 bail:
12490 	free_cntrs(dd);
12491 	return -ENOMEM;
12492 }
12493 
12494 static u32 chip_to_opa_lstate(struct hfi1_devdata *dd, u32 chip_lstate)
12495 {
12496 	switch (chip_lstate) {
12497 	default:
12498 		dd_dev_err(dd,
12499 			   "Unknown logical state 0x%x, reporting IB_PORT_DOWN\n",
12500 			   chip_lstate);
12501 		/* fall through */
12502 	case LSTATE_DOWN:
12503 		return IB_PORT_DOWN;
12504 	case LSTATE_INIT:
12505 		return IB_PORT_INIT;
12506 	case LSTATE_ARMED:
12507 		return IB_PORT_ARMED;
12508 	case LSTATE_ACTIVE:
12509 		return IB_PORT_ACTIVE;
12510 	}
12511 }
12512 
12513 u32 chip_to_opa_pstate(struct hfi1_devdata *dd, u32 chip_pstate)
12514 {
12515 	/* look at the HFI meta-states only */
12516 	switch (chip_pstate & 0xf0) {
12517 	default:
12518 		dd_dev_err(dd, "Unexpected chip physical state of 0x%x\n",
12519 			   chip_pstate);
12520 		/* fall through */
12521 	case PLS_DISABLED:
12522 		return IB_PORTPHYSSTATE_DISABLED;
12523 	case PLS_OFFLINE:
12524 		return OPA_PORTPHYSSTATE_OFFLINE;
12525 	case PLS_POLLING:
12526 		return IB_PORTPHYSSTATE_POLLING;
12527 	case PLS_CONFIGPHY:
12528 		return IB_PORTPHYSSTATE_TRAINING;
12529 	case PLS_LINKUP:
12530 		return IB_PORTPHYSSTATE_LINKUP;
12531 	case PLS_PHYTEST:
12532 		return IB_PORTPHYSSTATE_PHY_TEST;
12533 	}
12534 }
12535 
12536 /* return the OPA port logical state name */
12537 const char *opa_lstate_name(u32 lstate)
12538 {
12539 	static const char * const port_logical_names[] = {
12540 		"PORT_NOP",
12541 		"PORT_DOWN",
12542 		"PORT_INIT",
12543 		"PORT_ARMED",
12544 		"PORT_ACTIVE",
12545 		"PORT_ACTIVE_DEFER",
12546 	};
12547 	if (lstate < ARRAY_SIZE(port_logical_names))
12548 		return port_logical_names[lstate];
12549 	return "unknown";
12550 }
12551 
12552 /* return the OPA port physical state name */
12553 const char *opa_pstate_name(u32 pstate)
12554 {
12555 	static const char * const port_physical_names[] = {
12556 		"PHYS_NOP",
12557 		"reserved1",
12558 		"PHYS_POLL",
12559 		"PHYS_DISABLED",
12560 		"PHYS_TRAINING",
12561 		"PHYS_LINKUP",
12562 		"PHYS_LINK_ERR_RECOVER",
12563 		"PHYS_PHY_TEST",
12564 		"reserved8",
12565 		"PHYS_OFFLINE",
12566 		"PHYS_GANGED",
12567 		"PHYS_TEST",
12568 	};
12569 	if (pstate < ARRAY_SIZE(port_physical_names))
12570 		return port_physical_names[pstate];
12571 	return "unknown";
12572 }
12573 
12574 /*
12575  * Read the hardware link state and set the driver's cached value of it.
12576  * Return the (new) current value.
12577  */
12578 u32 get_logical_state(struct hfi1_pportdata *ppd)
12579 {
12580 	u32 new_state;
12581 
12582 	new_state = chip_to_opa_lstate(ppd->dd, read_logical_state(ppd->dd));
12583 	if (new_state != ppd->lstate) {
12584 		dd_dev_info(ppd->dd, "logical state changed to %s (0x%x)\n",
12585 			    opa_lstate_name(new_state), new_state);
12586 		ppd->lstate = new_state;
12587 	}
12588 	/*
12589 	 * Set port status flags in the page mapped into userspace
12590 	 * memory. Do it here to ensure a reliable state - this is
12591 	 * the only function called by all state handling code.
12592 	 * Always set the flags due to the fact that the cache value
12593 	 * might have been changed explicitly outside of this
12594 	 * function.
12595 	 */
12596 	if (ppd->statusp) {
12597 		switch (ppd->lstate) {
12598 		case IB_PORT_DOWN:
12599 		case IB_PORT_INIT:
12600 			*ppd->statusp &= ~(HFI1_STATUS_IB_CONF |
12601 					   HFI1_STATUS_IB_READY);
12602 			break;
12603 		case IB_PORT_ARMED:
12604 			*ppd->statusp |= HFI1_STATUS_IB_CONF;
12605 			break;
12606 		case IB_PORT_ACTIVE:
12607 			*ppd->statusp |= HFI1_STATUS_IB_READY;
12608 			break;
12609 		}
12610 	}
12611 	return ppd->lstate;
12612 }
12613 
12614 /**
12615  * wait_logical_linkstate - wait for an IB link state change to occur
12616  * @ppd: port device
12617  * @state: the state to wait for
12618  * @msecs: the number of milliseconds to wait
12619  *
12620  * Wait up to msecs milliseconds for IB link state change to occur.
12621  * For now, take the easy polling route.
12622  * Returns 0 if state reached, otherwise -ETIMEDOUT.
12623  */
12624 static int wait_logical_linkstate(struct hfi1_pportdata *ppd, u32 state,
12625 				  int msecs)
12626 {
12627 	unsigned long timeout;
12628 
12629 	timeout = jiffies + msecs_to_jiffies(msecs);
12630 	while (1) {
12631 		if (get_logical_state(ppd) == state)
12632 			return 0;
12633 		if (time_after(jiffies, timeout))
12634 			break;
12635 		msleep(20);
12636 	}
12637 	dd_dev_err(ppd->dd, "timeout waiting for link state 0x%x\n", state);
12638 
12639 	return -ETIMEDOUT;
12640 }
12641 
12642 u8 hfi1_ibphys_portstate(struct hfi1_pportdata *ppd)
12643 {
12644 	u32 pstate;
12645 	u32 ib_pstate;
12646 
12647 	pstate = read_physical_state(ppd->dd);
12648 	ib_pstate = chip_to_opa_pstate(ppd->dd, pstate);
12649 	if (ppd->last_pstate != ib_pstate) {
12650 		dd_dev_info(ppd->dd,
12651 			    "%s: physical state changed to %s (0x%x), phy 0x%x\n",
12652 			    __func__, opa_pstate_name(ib_pstate), ib_pstate,
12653 			    pstate);
12654 		ppd->last_pstate = ib_pstate;
12655 	}
12656 	return ib_pstate;
12657 }
12658 
12659 #define CLEAR_STATIC_RATE_CONTROL_SMASK(r) \
12660 (r &= ~SEND_CTXT_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK)
12661 
12662 #define SET_STATIC_RATE_CONTROL_SMASK(r) \
12663 (r |= SEND_CTXT_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK)
12664 
12665 void hfi1_init_ctxt(struct send_context *sc)
12666 {
12667 	if (sc) {
12668 		struct hfi1_devdata *dd = sc->dd;
12669 		u64 reg;
12670 		u8 set = (sc->type == SC_USER ?
12671 			  HFI1_CAP_IS_USET(STATIC_RATE_CTRL) :
12672 			  HFI1_CAP_IS_KSET(STATIC_RATE_CTRL));
12673 		reg = read_kctxt_csr(dd, sc->hw_context,
12674 				     SEND_CTXT_CHECK_ENABLE);
12675 		if (set)
12676 			CLEAR_STATIC_RATE_CONTROL_SMASK(reg);
12677 		else
12678 			SET_STATIC_RATE_CONTROL_SMASK(reg);
12679 		write_kctxt_csr(dd, sc->hw_context,
12680 				SEND_CTXT_CHECK_ENABLE, reg);
12681 	}
12682 }
12683 
12684 int hfi1_tempsense_rd(struct hfi1_devdata *dd, struct hfi1_temp *temp)
12685 {
12686 	int ret = 0;
12687 	u64 reg;
12688 
12689 	if (dd->icode != ICODE_RTL_SILICON) {
12690 		if (HFI1_CAP_IS_KSET(PRINT_UNIMPL))
12691 			dd_dev_info(dd, "%s: tempsense not supported by HW\n",
12692 				    __func__);
12693 		return -EINVAL;
12694 	}
12695 	reg = read_csr(dd, ASIC_STS_THERM);
12696 	temp->curr = ((reg >> ASIC_STS_THERM_CURR_TEMP_SHIFT) &
12697 		      ASIC_STS_THERM_CURR_TEMP_MASK);
12698 	temp->lo_lim = ((reg >> ASIC_STS_THERM_LO_TEMP_SHIFT) &
12699 			ASIC_STS_THERM_LO_TEMP_MASK);
12700 	temp->hi_lim = ((reg >> ASIC_STS_THERM_HI_TEMP_SHIFT) &
12701 			ASIC_STS_THERM_HI_TEMP_MASK);
12702 	temp->crit_lim = ((reg >> ASIC_STS_THERM_CRIT_TEMP_SHIFT) &
12703 			  ASIC_STS_THERM_CRIT_TEMP_MASK);
12704 	/* triggers is a 3-bit value - 1 bit per trigger. */
12705 	temp->triggers = (u8)((reg >> ASIC_STS_THERM_LOW_SHIFT) & 0x7);
12706 
12707 	return ret;
12708 }
12709 
12710 /* ========================================================================= */
12711 
12712 /*
12713  * Enable/disable chip from delivering interrupts.
12714  */
12715 void set_intr_state(struct hfi1_devdata *dd, u32 enable)
12716 {
12717 	int i;
12718 
12719 	/*
12720 	 * In HFI, the mask needs to be 1 to allow interrupts.
12721 	 */
12722 	if (enable) {
12723 		/* enable all interrupts */
12724 		for (i = 0; i < CCE_NUM_INT_CSRS; i++)
12725 			write_csr(dd, CCE_INT_MASK + (8 * i), ~(u64)0);
12726 
12727 		init_qsfp_int(dd);
12728 	} else {
12729 		for (i = 0; i < CCE_NUM_INT_CSRS; i++)
12730 			write_csr(dd, CCE_INT_MASK + (8 * i), 0ull);
12731 	}
12732 }
12733 
12734 /*
12735  * Clear all interrupt sources on the chip.
12736  */
12737 static void clear_all_interrupts(struct hfi1_devdata *dd)
12738 {
12739 	int i;
12740 
12741 	for (i = 0; i < CCE_NUM_INT_CSRS; i++)
12742 		write_csr(dd, CCE_INT_CLEAR + (8 * i), ~(u64)0);
12743 
12744 	write_csr(dd, CCE_ERR_CLEAR, ~(u64)0);
12745 	write_csr(dd, MISC_ERR_CLEAR, ~(u64)0);
12746 	write_csr(dd, RCV_ERR_CLEAR, ~(u64)0);
12747 	write_csr(dd, SEND_ERR_CLEAR, ~(u64)0);
12748 	write_csr(dd, SEND_PIO_ERR_CLEAR, ~(u64)0);
12749 	write_csr(dd, SEND_DMA_ERR_CLEAR, ~(u64)0);
12750 	write_csr(dd, SEND_EGRESS_ERR_CLEAR, ~(u64)0);
12751 	for (i = 0; i < dd->chip_send_contexts; i++)
12752 		write_kctxt_csr(dd, i, SEND_CTXT_ERR_CLEAR, ~(u64)0);
12753 	for (i = 0; i < dd->chip_sdma_engines; i++)
12754 		write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_CLEAR, ~(u64)0);
12755 
12756 	write_csr(dd, DCC_ERR_FLG_CLR, ~(u64)0);
12757 	write_csr(dd, DC_LCB_ERR_CLR, ~(u64)0);
12758 	write_csr(dd, DC_DC8051_ERR_CLR, ~(u64)0);
12759 }
12760 
12761 /* Move to pcie.c? */
12762 static void disable_intx(struct pci_dev *pdev)
12763 {
12764 	pci_intx(pdev, 0);
12765 }
12766 
12767 static void clean_up_interrupts(struct hfi1_devdata *dd)
12768 {
12769 	int i;
12770 
12771 	/* remove irqs - must happen before disabling/turning off */
12772 	if (dd->num_msix_entries) {
12773 		/* MSI-X */
12774 		struct hfi1_msix_entry *me = dd->msix_entries;
12775 
12776 		for (i = 0; i < dd->num_msix_entries; i++, me++) {
12777 			if (!me->arg) /* => no irq, no affinity */
12778 				continue;
12779 			hfi1_put_irq_affinity(dd, &dd->msix_entries[i]);
12780 			free_irq(me->msix.vector, me->arg);
12781 		}
12782 	} else {
12783 		/* INTx */
12784 		if (dd->requested_intx_irq) {
12785 			free_irq(dd->pcidev->irq, dd);
12786 			dd->requested_intx_irq = 0;
12787 		}
12788 	}
12789 
12790 	/* turn off interrupts */
12791 	if (dd->num_msix_entries) {
12792 		/* MSI-X */
12793 		pci_disable_msix(dd->pcidev);
12794 	} else {
12795 		/* INTx */
12796 		disable_intx(dd->pcidev);
12797 	}
12798 
12799 	/* clean structures */
12800 	kfree(dd->msix_entries);
12801 	dd->msix_entries = NULL;
12802 	dd->num_msix_entries = 0;
12803 }
12804 
12805 /*
12806  * Remap the interrupt source from the general handler to the given MSI-X
12807  * interrupt.
12808  */
12809 static void remap_intr(struct hfi1_devdata *dd, int isrc, int msix_intr)
12810 {
12811 	u64 reg;
12812 	int m, n;
12813 
12814 	/* clear from the handled mask of the general interrupt */
12815 	m = isrc / 64;
12816 	n = isrc % 64;
12817 	dd->gi_mask[m] &= ~((u64)1 << n);
12818 
12819 	/* direct the chip source to the given MSI-X interrupt */
12820 	m = isrc / 8;
12821 	n = isrc % 8;
12822 	reg = read_csr(dd, CCE_INT_MAP + (8 * m));
12823 	reg &= ~((u64)0xff << (8 * n));
12824 	reg |= ((u64)msix_intr & 0xff) << (8 * n);
12825 	write_csr(dd, CCE_INT_MAP + (8 * m), reg);
12826 }
12827 
12828 static void remap_sdma_interrupts(struct hfi1_devdata *dd,
12829 				  int engine, int msix_intr)
12830 {
12831 	/*
12832 	 * SDMA engine interrupt sources grouped by type, rather than
12833 	 * engine.  Per-engine interrupts are as follows:
12834 	 *	SDMA
12835 	 *	SDMAProgress
12836 	 *	SDMAIdle
12837 	 */
12838 	remap_intr(dd, IS_SDMA_START + 0 * TXE_NUM_SDMA_ENGINES + engine,
12839 		   msix_intr);
12840 	remap_intr(dd, IS_SDMA_START + 1 * TXE_NUM_SDMA_ENGINES + engine,
12841 		   msix_intr);
12842 	remap_intr(dd, IS_SDMA_START + 2 * TXE_NUM_SDMA_ENGINES + engine,
12843 		   msix_intr);
12844 }
12845 
12846 static int request_intx_irq(struct hfi1_devdata *dd)
12847 {
12848 	int ret;
12849 
12850 	snprintf(dd->intx_name, sizeof(dd->intx_name), DRIVER_NAME "_%d",
12851 		 dd->unit);
12852 	ret = request_irq(dd->pcidev->irq, general_interrupt,
12853 			  IRQF_SHARED, dd->intx_name, dd);
12854 	if (ret)
12855 		dd_dev_err(dd, "unable to request INTx interrupt, err %d\n",
12856 			   ret);
12857 	else
12858 		dd->requested_intx_irq = 1;
12859 	return ret;
12860 }
12861 
12862 static int request_msix_irqs(struct hfi1_devdata *dd)
12863 {
12864 	int first_general, last_general;
12865 	int first_sdma, last_sdma;
12866 	int first_rx, last_rx;
12867 	int i, ret = 0;
12868 
12869 	/* calculate the ranges we are going to use */
12870 	first_general = 0;
12871 	last_general = first_general + 1;
12872 	first_sdma = last_general;
12873 	last_sdma = first_sdma + dd->num_sdma;
12874 	first_rx = last_sdma;
12875 	last_rx = first_rx + dd->n_krcv_queues + HFI1_NUM_VNIC_CTXT;
12876 
12877 	/* VNIC MSIx interrupts get mapped when VNIC contexts are created */
12878 	dd->first_dyn_msix_idx = first_rx + dd->n_krcv_queues;
12879 
12880 	/*
12881 	 * Sanity check - the code expects all SDMA chip source
12882 	 * interrupts to be in the same CSR, starting at bit 0.  Verify
12883 	 * that this is true by checking the bit location of the start.
12884 	 */
12885 	BUILD_BUG_ON(IS_SDMA_START % 64);
12886 
12887 	for (i = 0; i < dd->num_msix_entries; i++) {
12888 		struct hfi1_msix_entry *me = &dd->msix_entries[i];
12889 		const char *err_info;
12890 		irq_handler_t handler;
12891 		irq_handler_t thread = NULL;
12892 		void *arg = NULL;
12893 		int idx;
12894 		struct hfi1_ctxtdata *rcd = NULL;
12895 		struct sdma_engine *sde = NULL;
12896 
12897 		/* obtain the arguments to request_irq */
12898 		if (first_general <= i && i < last_general) {
12899 			idx = i - first_general;
12900 			handler = general_interrupt;
12901 			arg = dd;
12902 			snprintf(me->name, sizeof(me->name),
12903 				 DRIVER_NAME "_%d", dd->unit);
12904 			err_info = "general";
12905 			me->type = IRQ_GENERAL;
12906 		} else if (first_sdma <= i && i < last_sdma) {
12907 			idx = i - first_sdma;
12908 			sde = &dd->per_sdma[idx];
12909 			handler = sdma_interrupt;
12910 			arg = sde;
12911 			snprintf(me->name, sizeof(me->name),
12912 				 DRIVER_NAME "_%d sdma%d", dd->unit, idx);
12913 			err_info = "sdma";
12914 			remap_sdma_interrupts(dd, idx, i);
12915 			me->type = IRQ_SDMA;
12916 		} else if (first_rx <= i && i < last_rx) {
12917 			idx = i - first_rx;
12918 			rcd = dd->rcd[idx];
12919 			if (rcd) {
12920 				/*
12921 				 * Set the interrupt register and mask for this
12922 				 * context's interrupt.
12923 				 */
12924 				rcd->ireg = (IS_RCVAVAIL_START + idx) / 64;
12925 				rcd->imask = ((u64)1) <<
12926 					  ((IS_RCVAVAIL_START + idx) % 64);
12927 				handler = receive_context_interrupt;
12928 				thread = receive_context_thread;
12929 				arg = rcd;
12930 				snprintf(me->name, sizeof(me->name),
12931 					 DRIVER_NAME "_%d kctxt%d",
12932 					 dd->unit, idx);
12933 				err_info = "receive context";
12934 				remap_intr(dd, IS_RCVAVAIL_START + idx, i);
12935 				me->type = IRQ_RCVCTXT;
12936 				rcd->msix_intr = i;
12937 			}
12938 		} else {
12939 			/* not in our expected range - complain, then
12940 			 * ignore it
12941 			 */
12942 			dd_dev_err(dd,
12943 				   "Unexpected extra MSI-X interrupt %d\n", i);
12944 			continue;
12945 		}
12946 		/* no argument, no interrupt */
12947 		if (!arg)
12948 			continue;
12949 		/* make sure the name is terminated */
12950 		me->name[sizeof(me->name) - 1] = 0;
12951 
12952 		ret = request_threaded_irq(me->msix.vector, handler, thread, 0,
12953 					   me->name, arg);
12954 		if (ret) {
12955 			dd_dev_err(dd,
12956 				   "unable to allocate %s interrupt, vector %d, index %d, err %d\n",
12957 				   err_info, me->msix.vector, idx, ret);
12958 			return ret;
12959 		}
12960 		/*
12961 		 * assign arg after request_irq call, so it will be
12962 		 * cleaned up
12963 		 */
12964 		me->arg = arg;
12965 
12966 		ret = hfi1_get_irq_affinity(dd, me);
12967 		if (ret)
12968 			dd_dev_err(dd,
12969 				   "unable to pin IRQ %d\n", ret);
12970 	}
12971 
12972 	return ret;
12973 }
12974 
12975 void hfi1_vnic_synchronize_irq(struct hfi1_devdata *dd)
12976 {
12977 	int i;
12978 
12979 	if (!dd->num_msix_entries) {
12980 		synchronize_irq(dd->pcidev->irq);
12981 		return;
12982 	}
12983 
12984 	for (i = 0; i < dd->vnic.num_ctxt; i++) {
12985 		struct hfi1_ctxtdata *rcd = dd->vnic.ctxt[i];
12986 		struct hfi1_msix_entry *me = &dd->msix_entries[rcd->msix_intr];
12987 
12988 		synchronize_irq(me->msix.vector);
12989 	}
12990 }
12991 
12992 void hfi1_reset_vnic_msix_info(struct hfi1_ctxtdata *rcd)
12993 {
12994 	struct hfi1_devdata *dd = rcd->dd;
12995 	struct hfi1_msix_entry *me = &dd->msix_entries[rcd->msix_intr];
12996 
12997 	if (!me->arg) /* => no irq, no affinity */
12998 		return;
12999 
13000 	hfi1_put_irq_affinity(dd, me);
13001 	free_irq(me->msix.vector, me->arg);
13002 
13003 	me->arg = NULL;
13004 }
13005 
13006 void hfi1_set_vnic_msix_info(struct hfi1_ctxtdata *rcd)
13007 {
13008 	struct hfi1_devdata *dd = rcd->dd;
13009 	struct hfi1_msix_entry *me;
13010 	int idx = rcd->ctxt;
13011 	void *arg = rcd;
13012 	int ret;
13013 
13014 	rcd->msix_intr = dd->vnic.msix_idx++;
13015 	me = &dd->msix_entries[rcd->msix_intr];
13016 
13017 	/*
13018 	 * Set the interrupt register and mask for this
13019 	 * context's interrupt.
13020 	 */
13021 	rcd->ireg = (IS_RCVAVAIL_START + idx) / 64;
13022 	rcd->imask = ((u64)1) <<
13023 		  ((IS_RCVAVAIL_START + idx) % 64);
13024 
13025 	snprintf(me->name, sizeof(me->name),
13026 		 DRIVER_NAME "_%d kctxt%d", dd->unit, idx);
13027 	me->name[sizeof(me->name) - 1] = 0;
13028 	me->type = IRQ_RCVCTXT;
13029 
13030 	remap_intr(dd, IS_RCVAVAIL_START + idx, rcd->msix_intr);
13031 
13032 	ret = request_threaded_irq(me->msix.vector, receive_context_interrupt,
13033 				   receive_context_thread, 0, me->name, arg);
13034 	if (ret) {
13035 		dd_dev_err(dd, "vnic irq request (vector %d, idx %d) fail %d\n",
13036 			   me->msix.vector, idx, ret);
13037 		return;
13038 	}
13039 	/*
13040 	 * assign arg after request_irq call, so it will be
13041 	 * cleaned up
13042 	 */
13043 	me->arg = arg;
13044 
13045 	ret = hfi1_get_irq_affinity(dd, me);
13046 	if (ret) {
13047 		dd_dev_err(dd,
13048 			   "unable to pin IRQ %d\n", ret);
13049 		free_irq(me->msix.vector, me->arg);
13050 	}
13051 }
13052 
13053 /*
13054  * Set the general handler to accept all interrupts, remap all
13055  * chip interrupts back to MSI-X 0.
13056  */
13057 static void reset_interrupts(struct hfi1_devdata *dd)
13058 {
13059 	int i;
13060 
13061 	/* all interrupts handled by the general handler */
13062 	for (i = 0; i < CCE_NUM_INT_CSRS; i++)
13063 		dd->gi_mask[i] = ~(u64)0;
13064 
13065 	/* all chip interrupts map to MSI-X 0 */
13066 	for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++)
13067 		write_csr(dd, CCE_INT_MAP + (8 * i), 0);
13068 }
13069 
13070 static int set_up_interrupts(struct hfi1_devdata *dd)
13071 {
13072 	struct hfi1_msix_entry *entries;
13073 	u32 total, request;
13074 	int i, ret;
13075 	int single_interrupt = 0; /* we expect to have all the interrupts */
13076 
13077 	/*
13078 	 * Interrupt count:
13079 	 *	1 general, "slow path" interrupt (includes the SDMA engines
13080 	 *		slow source, SDMACleanupDone)
13081 	 *	N interrupts - one per used SDMA engine
13082 	 *	M interrupt - one per kernel receive context
13083 	 */
13084 	total = 1 + dd->num_sdma + dd->n_krcv_queues + HFI1_NUM_VNIC_CTXT;
13085 
13086 	entries = kcalloc(total, sizeof(*entries), GFP_KERNEL);
13087 	if (!entries) {
13088 		ret = -ENOMEM;
13089 		goto fail;
13090 	}
13091 	/* 1-1 MSI-X entry assignment */
13092 	for (i = 0; i < total; i++)
13093 		entries[i].msix.entry = i;
13094 
13095 	/* ask for MSI-X interrupts */
13096 	request = total;
13097 	request_msix(dd, &request, entries);
13098 
13099 	if (request == 0) {
13100 		/* using INTx */
13101 		/* dd->num_msix_entries already zero */
13102 		kfree(entries);
13103 		single_interrupt = 1;
13104 		dd_dev_err(dd, "MSI-X failed, using INTx interrupts\n");
13105 	} else {
13106 		/* using MSI-X */
13107 		dd->num_msix_entries = request;
13108 		dd->msix_entries = entries;
13109 
13110 		if (request != total) {
13111 			/* using MSI-X, with reduced interrupts */
13112 			dd_dev_err(
13113 				dd,
13114 				"cannot handle reduced interrupt case, want %u, got %u\n",
13115 				total, request);
13116 			ret = -EINVAL;
13117 			goto fail;
13118 		}
13119 		dd_dev_info(dd, "%u MSI-X interrupts allocated\n", total);
13120 	}
13121 
13122 	/* mask all interrupts */
13123 	set_intr_state(dd, 0);
13124 	/* clear all pending interrupts */
13125 	clear_all_interrupts(dd);
13126 
13127 	/* reset general handler mask, chip MSI-X mappings */
13128 	reset_interrupts(dd);
13129 
13130 	if (single_interrupt)
13131 		ret = request_intx_irq(dd);
13132 	else
13133 		ret = request_msix_irqs(dd);
13134 	if (ret)
13135 		goto fail;
13136 
13137 	return 0;
13138 
13139 fail:
13140 	clean_up_interrupts(dd);
13141 	return ret;
13142 }
13143 
13144 /*
13145  * Set up context values in dd.  Sets:
13146  *
13147  *	num_rcv_contexts - number of contexts being used
13148  *	n_krcv_queues - number of kernel contexts
13149  *	first_dyn_alloc_ctxt - first dynamically allocated context
13150  *                             in array of contexts
13151  *	freectxts  - number of free user contexts
13152  *	num_send_contexts - number of PIO send contexts being used
13153  */
13154 static int set_up_context_variables(struct hfi1_devdata *dd)
13155 {
13156 	unsigned long num_kernel_contexts;
13157 	int total_contexts;
13158 	int ret;
13159 	unsigned ngroups;
13160 	int qos_rmt_count;
13161 	int user_rmt_reduced;
13162 
13163 	/*
13164 	 * Kernel receive contexts:
13165 	 * - Context 0 - control context (VL15/multicast/error)
13166 	 * - Context 1 - first kernel context
13167 	 * - Context 2 - second kernel context
13168 	 * ...
13169 	 */
13170 	if (n_krcvqs)
13171 		/*
13172 		 * n_krcvqs is the sum of module parameter kernel receive
13173 		 * contexts, krcvqs[].  It does not include the control
13174 		 * context, so add that.
13175 		 */
13176 		num_kernel_contexts = n_krcvqs + 1;
13177 	else
13178 		num_kernel_contexts = DEFAULT_KRCVQS + 1;
13179 	/*
13180 	 * Every kernel receive context needs an ACK send context.
13181 	 * one send context is allocated for each VL{0-7} and VL15
13182 	 */
13183 	if (num_kernel_contexts > (dd->chip_send_contexts - num_vls - 1)) {
13184 		dd_dev_err(dd,
13185 			   "Reducing # kernel rcv contexts to: %d, from %lu\n",
13186 			   (int)(dd->chip_send_contexts - num_vls - 1),
13187 			   num_kernel_contexts);
13188 		num_kernel_contexts = dd->chip_send_contexts - num_vls - 1;
13189 	}
13190 	/*
13191 	 * User contexts:
13192 	 *	- default to 1 user context per real (non-HT) CPU core if
13193 	 *	  num_user_contexts is negative
13194 	 */
13195 	if (num_user_contexts < 0)
13196 		num_user_contexts =
13197 			cpumask_weight(&node_affinity.real_cpu_mask);
13198 
13199 	total_contexts = num_kernel_contexts + num_user_contexts;
13200 
13201 	/*
13202 	 * Adjust the counts given a global max.
13203 	 */
13204 	if (total_contexts > dd->chip_rcv_contexts) {
13205 		dd_dev_err(dd,
13206 			   "Reducing # user receive contexts to: %d, from %d\n",
13207 			   (int)(dd->chip_rcv_contexts - num_kernel_contexts),
13208 			   (int)num_user_contexts);
13209 		num_user_contexts = dd->chip_rcv_contexts - num_kernel_contexts;
13210 		/* recalculate */
13211 		total_contexts = num_kernel_contexts + num_user_contexts;
13212 	}
13213 
13214 	/* each user context requires an entry in the RMT */
13215 	qos_rmt_count = qos_rmt_entries(dd, NULL, NULL);
13216 	if (qos_rmt_count + num_user_contexts > NUM_MAP_ENTRIES) {
13217 		user_rmt_reduced = NUM_MAP_ENTRIES - qos_rmt_count;
13218 		dd_dev_err(dd,
13219 			   "RMT size is reducing the number of user receive contexts from %d to %d\n",
13220 			   (int)num_user_contexts,
13221 			   user_rmt_reduced);
13222 		/* recalculate */
13223 		num_user_contexts = user_rmt_reduced;
13224 		total_contexts = num_kernel_contexts + num_user_contexts;
13225 	}
13226 
13227 	/* Accommodate VNIC contexts */
13228 	if ((total_contexts + HFI1_NUM_VNIC_CTXT) <= dd->chip_rcv_contexts)
13229 		total_contexts += HFI1_NUM_VNIC_CTXT;
13230 
13231 	/* the first N are kernel contexts, the rest are user/vnic contexts */
13232 	dd->num_rcv_contexts = total_contexts;
13233 	dd->n_krcv_queues = num_kernel_contexts;
13234 	dd->first_dyn_alloc_ctxt = num_kernel_contexts;
13235 	dd->num_user_contexts = num_user_contexts;
13236 	dd->freectxts = num_user_contexts;
13237 	dd_dev_info(dd,
13238 		    "rcv contexts: chip %d, used %d (kernel %d, user %d)\n",
13239 		    (int)dd->chip_rcv_contexts,
13240 		    (int)dd->num_rcv_contexts,
13241 		    (int)dd->n_krcv_queues,
13242 		    (int)dd->num_rcv_contexts - dd->n_krcv_queues);
13243 
13244 	/*
13245 	 * Receive array allocation:
13246 	 *   All RcvArray entries are divided into groups of 8. This
13247 	 *   is required by the hardware and will speed up writes to
13248 	 *   consecutive entries by using write-combining of the entire
13249 	 *   cacheline.
13250 	 *
13251 	 *   The number of groups are evenly divided among all contexts.
13252 	 *   any left over groups will be given to the first N user
13253 	 *   contexts.
13254 	 */
13255 	dd->rcv_entries.group_size = RCV_INCREMENT;
13256 	ngroups = dd->chip_rcv_array_count / dd->rcv_entries.group_size;
13257 	dd->rcv_entries.ngroups = ngroups / dd->num_rcv_contexts;
13258 	dd->rcv_entries.nctxt_extra = ngroups -
13259 		(dd->num_rcv_contexts * dd->rcv_entries.ngroups);
13260 	dd_dev_info(dd, "RcvArray groups %u, ctxts extra %u\n",
13261 		    dd->rcv_entries.ngroups,
13262 		    dd->rcv_entries.nctxt_extra);
13263 	if (dd->rcv_entries.ngroups * dd->rcv_entries.group_size >
13264 	    MAX_EAGER_ENTRIES * 2) {
13265 		dd->rcv_entries.ngroups = (MAX_EAGER_ENTRIES * 2) /
13266 			dd->rcv_entries.group_size;
13267 		dd_dev_info(dd,
13268 			    "RcvArray group count too high, change to %u\n",
13269 			    dd->rcv_entries.ngroups);
13270 		dd->rcv_entries.nctxt_extra = 0;
13271 	}
13272 	/*
13273 	 * PIO send contexts
13274 	 */
13275 	ret = init_sc_pools_and_sizes(dd);
13276 	if (ret >= 0) {	/* success */
13277 		dd->num_send_contexts = ret;
13278 		dd_dev_info(
13279 			dd,
13280 			"send contexts: chip %d, used %d (kernel %d, ack %d, user %d, vl15 %d)\n",
13281 			dd->chip_send_contexts,
13282 			dd->num_send_contexts,
13283 			dd->sc_sizes[SC_KERNEL].count,
13284 			dd->sc_sizes[SC_ACK].count,
13285 			dd->sc_sizes[SC_USER].count,
13286 			dd->sc_sizes[SC_VL15].count);
13287 		ret = 0;	/* success */
13288 	}
13289 
13290 	return ret;
13291 }
13292 
13293 /*
13294  * Set the device/port partition key table. The MAD code
13295  * will ensure that, at least, the partial management
13296  * partition key is present in the table.
13297  */
13298 static void set_partition_keys(struct hfi1_pportdata *ppd)
13299 {
13300 	struct hfi1_devdata *dd = ppd->dd;
13301 	u64 reg = 0;
13302 	int i;
13303 
13304 	dd_dev_info(dd, "Setting partition keys\n");
13305 	for (i = 0; i < hfi1_get_npkeys(dd); i++) {
13306 		reg |= (ppd->pkeys[i] &
13307 			RCV_PARTITION_KEY_PARTITION_KEY_A_MASK) <<
13308 			((i % 4) *
13309 			 RCV_PARTITION_KEY_PARTITION_KEY_B_SHIFT);
13310 		/* Each register holds 4 PKey values. */
13311 		if ((i % 4) == 3) {
13312 			write_csr(dd, RCV_PARTITION_KEY +
13313 				  ((i - 3) * 2), reg);
13314 			reg = 0;
13315 		}
13316 	}
13317 
13318 	/* Always enable HW pkeys check when pkeys table is set */
13319 	add_rcvctrl(dd, RCV_CTRL_RCV_PARTITION_KEY_ENABLE_SMASK);
13320 }
13321 
13322 /*
13323  * These CSRs and memories are uninitialized on reset and must be
13324  * written before reading to set the ECC/parity bits.
13325  *
13326  * NOTE: All user context CSRs that are not mmaped write-only
13327  * (e.g. the TID flows) must be initialized even if the driver never
13328  * reads them.
13329  */
13330 static void write_uninitialized_csrs_and_memories(struct hfi1_devdata *dd)
13331 {
13332 	int i, j;
13333 
13334 	/* CceIntMap */
13335 	for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++)
13336 		write_csr(dd, CCE_INT_MAP + (8 * i), 0);
13337 
13338 	/* SendCtxtCreditReturnAddr */
13339 	for (i = 0; i < dd->chip_send_contexts; i++)
13340 		write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_RETURN_ADDR, 0);
13341 
13342 	/* PIO Send buffers */
13343 	/* SDMA Send buffers */
13344 	/*
13345 	 * These are not normally read, and (presently) have no method
13346 	 * to be read, so are not pre-initialized
13347 	 */
13348 
13349 	/* RcvHdrAddr */
13350 	/* RcvHdrTailAddr */
13351 	/* RcvTidFlowTable */
13352 	for (i = 0; i < dd->chip_rcv_contexts; i++) {
13353 		write_kctxt_csr(dd, i, RCV_HDR_ADDR, 0);
13354 		write_kctxt_csr(dd, i, RCV_HDR_TAIL_ADDR, 0);
13355 		for (j = 0; j < RXE_NUM_TID_FLOWS; j++)
13356 			write_uctxt_csr(dd, i, RCV_TID_FLOW_TABLE + (8 * j), 0);
13357 	}
13358 
13359 	/* RcvArray */
13360 	for (i = 0; i < dd->chip_rcv_array_count; i++)
13361 		write_csr(dd, RCV_ARRAY + (8 * i),
13362 			  RCV_ARRAY_RT_WRITE_ENABLE_SMASK);
13363 
13364 	/* RcvQPMapTable */
13365 	for (i = 0; i < 32; i++)
13366 		write_csr(dd, RCV_QP_MAP_TABLE + (8 * i), 0);
13367 }
13368 
13369 /*
13370  * Use the ctrl_bits in CceCtrl to clear the status_bits in CceStatus.
13371  */
13372 static void clear_cce_status(struct hfi1_devdata *dd, u64 status_bits,
13373 			     u64 ctrl_bits)
13374 {
13375 	unsigned long timeout;
13376 	u64 reg;
13377 
13378 	/* is the condition present? */
13379 	reg = read_csr(dd, CCE_STATUS);
13380 	if ((reg & status_bits) == 0)
13381 		return;
13382 
13383 	/* clear the condition */
13384 	write_csr(dd, CCE_CTRL, ctrl_bits);
13385 
13386 	/* wait for the condition to clear */
13387 	timeout = jiffies + msecs_to_jiffies(CCE_STATUS_TIMEOUT);
13388 	while (1) {
13389 		reg = read_csr(dd, CCE_STATUS);
13390 		if ((reg & status_bits) == 0)
13391 			return;
13392 		if (time_after(jiffies, timeout)) {
13393 			dd_dev_err(dd,
13394 				   "Timeout waiting for CceStatus to clear bits 0x%llx, remaining 0x%llx\n",
13395 				   status_bits, reg & status_bits);
13396 			return;
13397 		}
13398 		udelay(1);
13399 	}
13400 }
13401 
13402 /* set CCE CSRs to chip reset defaults */
13403 static void reset_cce_csrs(struct hfi1_devdata *dd)
13404 {
13405 	int i;
13406 
13407 	/* CCE_REVISION read-only */
13408 	/* CCE_REVISION2 read-only */
13409 	/* CCE_CTRL - bits clear automatically */
13410 	/* CCE_STATUS read-only, use CceCtrl to clear */
13411 	clear_cce_status(dd, ALL_FROZE, CCE_CTRL_SPC_UNFREEZE_SMASK);
13412 	clear_cce_status(dd, ALL_TXE_PAUSE, CCE_CTRL_TXE_RESUME_SMASK);
13413 	clear_cce_status(dd, ALL_RXE_PAUSE, CCE_CTRL_RXE_RESUME_SMASK);
13414 	for (i = 0; i < CCE_NUM_SCRATCH; i++)
13415 		write_csr(dd, CCE_SCRATCH + (8 * i), 0);
13416 	/* CCE_ERR_STATUS read-only */
13417 	write_csr(dd, CCE_ERR_MASK, 0);
13418 	write_csr(dd, CCE_ERR_CLEAR, ~0ull);
13419 	/* CCE_ERR_FORCE leave alone */
13420 	for (i = 0; i < CCE_NUM_32_BIT_COUNTERS; i++)
13421 		write_csr(dd, CCE_COUNTER_ARRAY32 + (8 * i), 0);
13422 	write_csr(dd, CCE_DC_CTRL, CCE_DC_CTRL_RESETCSR);
13423 	/* CCE_PCIE_CTRL leave alone */
13424 	for (i = 0; i < CCE_NUM_MSIX_VECTORS; i++) {
13425 		write_csr(dd, CCE_MSIX_TABLE_LOWER + (8 * i), 0);
13426 		write_csr(dd, CCE_MSIX_TABLE_UPPER + (8 * i),
13427 			  CCE_MSIX_TABLE_UPPER_RESETCSR);
13428 	}
13429 	for (i = 0; i < CCE_NUM_MSIX_PBAS; i++) {
13430 		/* CCE_MSIX_PBA read-only */
13431 		write_csr(dd, CCE_MSIX_INT_GRANTED, ~0ull);
13432 		write_csr(dd, CCE_MSIX_VEC_CLR_WITHOUT_INT, ~0ull);
13433 	}
13434 	for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++)
13435 		write_csr(dd, CCE_INT_MAP, 0);
13436 	for (i = 0; i < CCE_NUM_INT_CSRS; i++) {
13437 		/* CCE_INT_STATUS read-only */
13438 		write_csr(dd, CCE_INT_MASK + (8 * i), 0);
13439 		write_csr(dd, CCE_INT_CLEAR + (8 * i), ~0ull);
13440 		/* CCE_INT_FORCE leave alone */
13441 		/* CCE_INT_BLOCKED read-only */
13442 	}
13443 	for (i = 0; i < CCE_NUM_32_BIT_INT_COUNTERS; i++)
13444 		write_csr(dd, CCE_INT_COUNTER_ARRAY32 + (8 * i), 0);
13445 }
13446 
13447 /* set MISC CSRs to chip reset defaults */
13448 static void reset_misc_csrs(struct hfi1_devdata *dd)
13449 {
13450 	int i;
13451 
13452 	for (i = 0; i < 32; i++) {
13453 		write_csr(dd, MISC_CFG_RSA_R2 + (8 * i), 0);
13454 		write_csr(dd, MISC_CFG_RSA_SIGNATURE + (8 * i), 0);
13455 		write_csr(dd, MISC_CFG_RSA_MODULUS + (8 * i), 0);
13456 	}
13457 	/*
13458 	 * MISC_CFG_SHA_PRELOAD leave alone - always reads 0 and can
13459 	 * only be written 128-byte chunks
13460 	 */
13461 	/* init RSA engine to clear lingering errors */
13462 	write_csr(dd, MISC_CFG_RSA_CMD, 1);
13463 	write_csr(dd, MISC_CFG_RSA_MU, 0);
13464 	write_csr(dd, MISC_CFG_FW_CTRL, 0);
13465 	/* MISC_STS_8051_DIGEST read-only */
13466 	/* MISC_STS_SBM_DIGEST read-only */
13467 	/* MISC_STS_PCIE_DIGEST read-only */
13468 	/* MISC_STS_FAB_DIGEST read-only */
13469 	/* MISC_ERR_STATUS read-only */
13470 	write_csr(dd, MISC_ERR_MASK, 0);
13471 	write_csr(dd, MISC_ERR_CLEAR, ~0ull);
13472 	/* MISC_ERR_FORCE leave alone */
13473 }
13474 
13475 /* set TXE CSRs to chip reset defaults */
13476 static void reset_txe_csrs(struct hfi1_devdata *dd)
13477 {
13478 	int i;
13479 
13480 	/*
13481 	 * TXE Kernel CSRs
13482 	 */
13483 	write_csr(dd, SEND_CTRL, 0);
13484 	__cm_reset(dd, 0);	/* reset CM internal state */
13485 	/* SEND_CONTEXTS read-only */
13486 	/* SEND_DMA_ENGINES read-only */
13487 	/* SEND_PIO_MEM_SIZE read-only */
13488 	/* SEND_DMA_MEM_SIZE read-only */
13489 	write_csr(dd, SEND_HIGH_PRIORITY_LIMIT, 0);
13490 	pio_reset_all(dd);	/* SEND_PIO_INIT_CTXT */
13491 	/* SEND_PIO_ERR_STATUS read-only */
13492 	write_csr(dd, SEND_PIO_ERR_MASK, 0);
13493 	write_csr(dd, SEND_PIO_ERR_CLEAR, ~0ull);
13494 	/* SEND_PIO_ERR_FORCE leave alone */
13495 	/* SEND_DMA_ERR_STATUS read-only */
13496 	write_csr(dd, SEND_DMA_ERR_MASK, 0);
13497 	write_csr(dd, SEND_DMA_ERR_CLEAR, ~0ull);
13498 	/* SEND_DMA_ERR_FORCE leave alone */
13499 	/* SEND_EGRESS_ERR_STATUS read-only */
13500 	write_csr(dd, SEND_EGRESS_ERR_MASK, 0);
13501 	write_csr(dd, SEND_EGRESS_ERR_CLEAR, ~0ull);
13502 	/* SEND_EGRESS_ERR_FORCE leave alone */
13503 	write_csr(dd, SEND_BTH_QP, 0);
13504 	write_csr(dd, SEND_STATIC_RATE_CONTROL, 0);
13505 	write_csr(dd, SEND_SC2VLT0, 0);
13506 	write_csr(dd, SEND_SC2VLT1, 0);
13507 	write_csr(dd, SEND_SC2VLT2, 0);
13508 	write_csr(dd, SEND_SC2VLT3, 0);
13509 	write_csr(dd, SEND_LEN_CHECK0, 0);
13510 	write_csr(dd, SEND_LEN_CHECK1, 0);
13511 	/* SEND_ERR_STATUS read-only */
13512 	write_csr(dd, SEND_ERR_MASK, 0);
13513 	write_csr(dd, SEND_ERR_CLEAR, ~0ull);
13514 	/* SEND_ERR_FORCE read-only */
13515 	for (i = 0; i < VL_ARB_LOW_PRIO_TABLE_SIZE; i++)
13516 		write_csr(dd, SEND_LOW_PRIORITY_LIST + (8 * i), 0);
13517 	for (i = 0; i < VL_ARB_HIGH_PRIO_TABLE_SIZE; i++)
13518 		write_csr(dd, SEND_HIGH_PRIORITY_LIST + (8 * i), 0);
13519 	for (i = 0; i < dd->chip_send_contexts / NUM_CONTEXTS_PER_SET; i++)
13520 		write_csr(dd, SEND_CONTEXT_SET_CTRL + (8 * i), 0);
13521 	for (i = 0; i < TXE_NUM_32_BIT_COUNTER; i++)
13522 		write_csr(dd, SEND_COUNTER_ARRAY32 + (8 * i), 0);
13523 	for (i = 0; i < TXE_NUM_64_BIT_COUNTER; i++)
13524 		write_csr(dd, SEND_COUNTER_ARRAY64 + (8 * i), 0);
13525 	write_csr(dd, SEND_CM_CTRL, SEND_CM_CTRL_RESETCSR);
13526 	write_csr(dd, SEND_CM_GLOBAL_CREDIT, SEND_CM_GLOBAL_CREDIT_RESETCSR);
13527 	/* SEND_CM_CREDIT_USED_STATUS read-only */
13528 	write_csr(dd, SEND_CM_TIMER_CTRL, 0);
13529 	write_csr(dd, SEND_CM_LOCAL_AU_TABLE0_TO3, 0);
13530 	write_csr(dd, SEND_CM_LOCAL_AU_TABLE4_TO7, 0);
13531 	write_csr(dd, SEND_CM_REMOTE_AU_TABLE0_TO3, 0);
13532 	write_csr(dd, SEND_CM_REMOTE_AU_TABLE4_TO7, 0);
13533 	for (i = 0; i < TXE_NUM_DATA_VL; i++)
13534 		write_csr(dd, SEND_CM_CREDIT_VL + (8 * i), 0);
13535 	write_csr(dd, SEND_CM_CREDIT_VL15, 0);
13536 	/* SEND_CM_CREDIT_USED_VL read-only */
13537 	/* SEND_CM_CREDIT_USED_VL15 read-only */
13538 	/* SEND_EGRESS_CTXT_STATUS read-only */
13539 	/* SEND_EGRESS_SEND_DMA_STATUS read-only */
13540 	write_csr(dd, SEND_EGRESS_ERR_INFO, ~0ull);
13541 	/* SEND_EGRESS_ERR_INFO read-only */
13542 	/* SEND_EGRESS_ERR_SOURCE read-only */
13543 
13544 	/*
13545 	 * TXE Per-Context CSRs
13546 	 */
13547 	for (i = 0; i < dd->chip_send_contexts; i++) {
13548 		write_kctxt_csr(dd, i, SEND_CTXT_CTRL, 0);
13549 		write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_CTRL, 0);
13550 		write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_RETURN_ADDR, 0);
13551 		write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_FORCE, 0);
13552 		write_kctxt_csr(dd, i, SEND_CTXT_ERR_MASK, 0);
13553 		write_kctxt_csr(dd, i, SEND_CTXT_ERR_CLEAR, ~0ull);
13554 		write_kctxt_csr(dd, i, SEND_CTXT_CHECK_ENABLE, 0);
13555 		write_kctxt_csr(dd, i, SEND_CTXT_CHECK_VL, 0);
13556 		write_kctxt_csr(dd, i, SEND_CTXT_CHECK_JOB_KEY, 0);
13557 		write_kctxt_csr(dd, i, SEND_CTXT_CHECK_PARTITION_KEY, 0);
13558 		write_kctxt_csr(dd, i, SEND_CTXT_CHECK_SLID, 0);
13559 		write_kctxt_csr(dd, i, SEND_CTXT_CHECK_OPCODE, 0);
13560 	}
13561 
13562 	/*
13563 	 * TXE Per-SDMA CSRs
13564 	 */
13565 	for (i = 0; i < dd->chip_sdma_engines; i++) {
13566 		write_kctxt_csr(dd, i, SEND_DMA_CTRL, 0);
13567 		/* SEND_DMA_STATUS read-only */
13568 		write_kctxt_csr(dd, i, SEND_DMA_BASE_ADDR, 0);
13569 		write_kctxt_csr(dd, i, SEND_DMA_LEN_GEN, 0);
13570 		write_kctxt_csr(dd, i, SEND_DMA_TAIL, 0);
13571 		/* SEND_DMA_HEAD read-only */
13572 		write_kctxt_csr(dd, i, SEND_DMA_HEAD_ADDR, 0);
13573 		write_kctxt_csr(dd, i, SEND_DMA_PRIORITY_THLD, 0);
13574 		/* SEND_DMA_IDLE_CNT read-only */
13575 		write_kctxt_csr(dd, i, SEND_DMA_RELOAD_CNT, 0);
13576 		write_kctxt_csr(dd, i, SEND_DMA_DESC_CNT, 0);
13577 		/* SEND_DMA_DESC_FETCHED_CNT read-only */
13578 		/* SEND_DMA_ENG_ERR_STATUS read-only */
13579 		write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_MASK, 0);
13580 		write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_CLEAR, ~0ull);
13581 		/* SEND_DMA_ENG_ERR_FORCE leave alone */
13582 		write_kctxt_csr(dd, i, SEND_DMA_CHECK_ENABLE, 0);
13583 		write_kctxt_csr(dd, i, SEND_DMA_CHECK_VL, 0);
13584 		write_kctxt_csr(dd, i, SEND_DMA_CHECK_JOB_KEY, 0);
13585 		write_kctxt_csr(dd, i, SEND_DMA_CHECK_PARTITION_KEY, 0);
13586 		write_kctxt_csr(dd, i, SEND_DMA_CHECK_SLID, 0);
13587 		write_kctxt_csr(dd, i, SEND_DMA_CHECK_OPCODE, 0);
13588 		write_kctxt_csr(dd, i, SEND_DMA_MEMORY, 0);
13589 	}
13590 }
13591 
13592 /*
13593  * Expect on entry:
13594  * o Packet ingress is disabled, i.e. RcvCtrl.RcvPortEnable == 0
13595  */
13596 static void init_rbufs(struct hfi1_devdata *dd)
13597 {
13598 	u64 reg;
13599 	int count;
13600 
13601 	/*
13602 	 * Wait for DMA to stop: RxRbufPktPending and RxPktInProgress are
13603 	 * clear.
13604 	 */
13605 	count = 0;
13606 	while (1) {
13607 		reg = read_csr(dd, RCV_STATUS);
13608 		if ((reg & (RCV_STATUS_RX_RBUF_PKT_PENDING_SMASK
13609 			    | RCV_STATUS_RX_PKT_IN_PROGRESS_SMASK)) == 0)
13610 			break;
13611 		/*
13612 		 * Give up after 1ms - maximum wait time.
13613 		 *
13614 		 * RBuf size is 136KiB.  Slowest possible is PCIe Gen1 x1 at
13615 		 * 250MB/s bandwidth.  Lower rate to 66% for overhead to get:
13616 		 *	136 KB / (66% * 250MB/s) = 844us
13617 		 */
13618 		if (count++ > 500) {
13619 			dd_dev_err(dd,
13620 				   "%s: in-progress DMA not clearing: RcvStatus 0x%llx, continuing\n",
13621 				   __func__, reg);
13622 			break;
13623 		}
13624 		udelay(2); /* do not busy-wait the CSR */
13625 	}
13626 
13627 	/* start the init - expect RcvCtrl to be 0 */
13628 	write_csr(dd, RCV_CTRL, RCV_CTRL_RX_RBUF_INIT_SMASK);
13629 
13630 	/*
13631 	 * Read to force the write of Rcvtrl.RxRbufInit.  There is a brief
13632 	 * period after the write before RcvStatus.RxRbufInitDone is valid.
13633 	 * The delay in the first run through the loop below is sufficient and
13634 	 * required before the first read of RcvStatus.RxRbufInintDone.
13635 	 */
13636 	read_csr(dd, RCV_CTRL);
13637 
13638 	/* wait for the init to finish */
13639 	count = 0;
13640 	while (1) {
13641 		/* delay is required first time through - see above */
13642 		udelay(2); /* do not busy-wait the CSR */
13643 		reg = read_csr(dd, RCV_STATUS);
13644 		if (reg & (RCV_STATUS_RX_RBUF_INIT_DONE_SMASK))
13645 			break;
13646 
13647 		/* give up after 100us - slowest possible at 33MHz is 73us */
13648 		if (count++ > 50) {
13649 			dd_dev_err(dd,
13650 				   "%s: RcvStatus.RxRbufInit not set, continuing\n",
13651 				   __func__);
13652 			break;
13653 		}
13654 	}
13655 }
13656 
13657 /* set RXE CSRs to chip reset defaults */
13658 static void reset_rxe_csrs(struct hfi1_devdata *dd)
13659 {
13660 	int i, j;
13661 
13662 	/*
13663 	 * RXE Kernel CSRs
13664 	 */
13665 	write_csr(dd, RCV_CTRL, 0);
13666 	init_rbufs(dd);
13667 	/* RCV_STATUS read-only */
13668 	/* RCV_CONTEXTS read-only */
13669 	/* RCV_ARRAY_CNT read-only */
13670 	/* RCV_BUF_SIZE read-only */
13671 	write_csr(dd, RCV_BTH_QP, 0);
13672 	write_csr(dd, RCV_MULTICAST, 0);
13673 	write_csr(dd, RCV_BYPASS, 0);
13674 	write_csr(dd, RCV_VL15, 0);
13675 	/* this is a clear-down */
13676 	write_csr(dd, RCV_ERR_INFO,
13677 		  RCV_ERR_INFO_RCV_EXCESS_BUFFER_OVERRUN_SMASK);
13678 	/* RCV_ERR_STATUS read-only */
13679 	write_csr(dd, RCV_ERR_MASK, 0);
13680 	write_csr(dd, RCV_ERR_CLEAR, ~0ull);
13681 	/* RCV_ERR_FORCE leave alone */
13682 	for (i = 0; i < 32; i++)
13683 		write_csr(dd, RCV_QP_MAP_TABLE + (8 * i), 0);
13684 	for (i = 0; i < 4; i++)
13685 		write_csr(dd, RCV_PARTITION_KEY + (8 * i), 0);
13686 	for (i = 0; i < RXE_NUM_32_BIT_COUNTERS; i++)
13687 		write_csr(dd, RCV_COUNTER_ARRAY32 + (8 * i), 0);
13688 	for (i = 0; i < RXE_NUM_64_BIT_COUNTERS; i++)
13689 		write_csr(dd, RCV_COUNTER_ARRAY64 + (8 * i), 0);
13690 	for (i = 0; i < RXE_NUM_RSM_INSTANCES; i++)
13691 		clear_rsm_rule(dd, i);
13692 	for (i = 0; i < 32; i++)
13693 		write_csr(dd, RCV_RSM_MAP_TABLE + (8 * i), 0);
13694 
13695 	/*
13696 	 * RXE Kernel and User Per-Context CSRs
13697 	 */
13698 	for (i = 0; i < dd->chip_rcv_contexts; i++) {
13699 		/* kernel */
13700 		write_kctxt_csr(dd, i, RCV_CTXT_CTRL, 0);
13701 		/* RCV_CTXT_STATUS read-only */
13702 		write_kctxt_csr(dd, i, RCV_EGR_CTRL, 0);
13703 		write_kctxt_csr(dd, i, RCV_TID_CTRL, 0);
13704 		write_kctxt_csr(dd, i, RCV_KEY_CTRL, 0);
13705 		write_kctxt_csr(dd, i, RCV_HDR_ADDR, 0);
13706 		write_kctxt_csr(dd, i, RCV_HDR_CNT, 0);
13707 		write_kctxt_csr(dd, i, RCV_HDR_ENT_SIZE, 0);
13708 		write_kctxt_csr(dd, i, RCV_HDR_SIZE, 0);
13709 		write_kctxt_csr(dd, i, RCV_HDR_TAIL_ADDR, 0);
13710 		write_kctxt_csr(dd, i, RCV_AVAIL_TIME_OUT, 0);
13711 		write_kctxt_csr(dd, i, RCV_HDR_OVFL_CNT, 0);
13712 
13713 		/* user */
13714 		/* RCV_HDR_TAIL read-only */
13715 		write_uctxt_csr(dd, i, RCV_HDR_HEAD, 0);
13716 		/* RCV_EGR_INDEX_TAIL read-only */
13717 		write_uctxt_csr(dd, i, RCV_EGR_INDEX_HEAD, 0);
13718 		/* RCV_EGR_OFFSET_TAIL read-only */
13719 		for (j = 0; j < RXE_NUM_TID_FLOWS; j++) {
13720 			write_uctxt_csr(dd, i,
13721 					RCV_TID_FLOW_TABLE + (8 * j), 0);
13722 		}
13723 	}
13724 }
13725 
13726 /*
13727  * Set sc2vl tables.
13728  *
13729  * They power on to zeros, so to avoid send context errors
13730  * they need to be set:
13731  *
13732  * SC 0-7 -> VL 0-7 (respectively)
13733  * SC 15  -> VL 15
13734  * otherwise
13735  *        -> VL 0
13736  */
13737 static void init_sc2vl_tables(struct hfi1_devdata *dd)
13738 {
13739 	int i;
13740 	/* init per architecture spec, constrained by hardware capability */
13741 
13742 	/* HFI maps sent packets */
13743 	write_csr(dd, SEND_SC2VLT0, SC2VL_VAL(
13744 		0,
13745 		0, 0, 1, 1,
13746 		2, 2, 3, 3,
13747 		4, 4, 5, 5,
13748 		6, 6, 7, 7));
13749 	write_csr(dd, SEND_SC2VLT1, SC2VL_VAL(
13750 		1,
13751 		8, 0, 9, 0,
13752 		10, 0, 11, 0,
13753 		12, 0, 13, 0,
13754 		14, 0, 15, 15));
13755 	write_csr(dd, SEND_SC2VLT2, SC2VL_VAL(
13756 		2,
13757 		16, 0, 17, 0,
13758 		18, 0, 19, 0,
13759 		20, 0, 21, 0,
13760 		22, 0, 23, 0));
13761 	write_csr(dd, SEND_SC2VLT3, SC2VL_VAL(
13762 		3,
13763 		24, 0, 25, 0,
13764 		26, 0, 27, 0,
13765 		28, 0, 29, 0,
13766 		30, 0, 31, 0));
13767 
13768 	/* DC maps received packets */
13769 	write_csr(dd, DCC_CFG_SC_VL_TABLE_15_0, DC_SC_VL_VAL(
13770 		15_0,
13771 		0, 0, 1, 1,  2, 2,  3, 3,  4, 4,  5, 5,  6, 6,  7,  7,
13772 		8, 0, 9, 0, 10, 0, 11, 0, 12, 0, 13, 0, 14, 0, 15, 15));
13773 	write_csr(dd, DCC_CFG_SC_VL_TABLE_31_16, DC_SC_VL_VAL(
13774 		31_16,
13775 		16, 0, 17, 0, 18, 0, 19, 0, 20, 0, 21, 0, 22, 0, 23, 0,
13776 		24, 0, 25, 0, 26, 0, 27, 0, 28, 0, 29, 0, 30, 0, 31, 0));
13777 
13778 	/* initialize the cached sc2vl values consistently with h/w */
13779 	for (i = 0; i < 32; i++) {
13780 		if (i < 8 || i == 15)
13781 			*((u8 *)(dd->sc2vl) + i) = (u8)i;
13782 		else
13783 			*((u8 *)(dd->sc2vl) + i) = 0;
13784 	}
13785 }
13786 
13787 /*
13788  * Read chip sizes and then reset parts to sane, disabled, values.  We cannot
13789  * depend on the chip going through a power-on reset - a driver may be loaded
13790  * and unloaded many times.
13791  *
13792  * Do not write any CSR values to the chip in this routine - there may be
13793  * a reset following the (possible) FLR in this routine.
13794  *
13795  */
13796 static void init_chip(struct hfi1_devdata *dd)
13797 {
13798 	int i;
13799 
13800 	/*
13801 	 * Put the HFI CSRs in a known state.
13802 	 * Combine this with a DC reset.
13803 	 *
13804 	 * Stop the device from doing anything while we do a
13805 	 * reset.  We know there are no other active users of
13806 	 * the device since we are now in charge.  Turn off
13807 	 * off all outbound and inbound traffic and make sure
13808 	 * the device does not generate any interrupts.
13809 	 */
13810 
13811 	/* disable send contexts and SDMA engines */
13812 	write_csr(dd, SEND_CTRL, 0);
13813 	for (i = 0; i < dd->chip_send_contexts; i++)
13814 		write_kctxt_csr(dd, i, SEND_CTXT_CTRL, 0);
13815 	for (i = 0; i < dd->chip_sdma_engines; i++)
13816 		write_kctxt_csr(dd, i, SEND_DMA_CTRL, 0);
13817 	/* disable port (turn off RXE inbound traffic) and contexts */
13818 	write_csr(dd, RCV_CTRL, 0);
13819 	for (i = 0; i < dd->chip_rcv_contexts; i++)
13820 		write_csr(dd, RCV_CTXT_CTRL, 0);
13821 	/* mask all interrupt sources */
13822 	for (i = 0; i < CCE_NUM_INT_CSRS; i++)
13823 		write_csr(dd, CCE_INT_MASK + (8 * i), 0ull);
13824 
13825 	/*
13826 	 * DC Reset: do a full DC reset before the register clear.
13827 	 * A recommended length of time to hold is one CSR read,
13828 	 * so reread the CceDcCtrl.  Then, hold the DC in reset
13829 	 * across the clear.
13830 	 */
13831 	write_csr(dd, CCE_DC_CTRL, CCE_DC_CTRL_DC_RESET_SMASK);
13832 	(void)read_csr(dd, CCE_DC_CTRL);
13833 
13834 	if (use_flr) {
13835 		/*
13836 		 * A FLR will reset the SPC core and part of the PCIe.
13837 		 * The parts that need to be restored have already been
13838 		 * saved.
13839 		 */
13840 		dd_dev_info(dd, "Resetting CSRs with FLR\n");
13841 
13842 		/* do the FLR, the DC reset will remain */
13843 		pcie_flr(dd->pcidev);
13844 
13845 		/* restore command and BARs */
13846 		restore_pci_variables(dd);
13847 
13848 		if (is_ax(dd)) {
13849 			dd_dev_info(dd, "Resetting CSRs with FLR\n");
13850 			pcie_flr(dd->pcidev);
13851 			restore_pci_variables(dd);
13852 		}
13853 	} else {
13854 		dd_dev_info(dd, "Resetting CSRs with writes\n");
13855 		reset_cce_csrs(dd);
13856 		reset_txe_csrs(dd);
13857 		reset_rxe_csrs(dd);
13858 		reset_misc_csrs(dd);
13859 	}
13860 	/* clear the DC reset */
13861 	write_csr(dd, CCE_DC_CTRL, 0);
13862 
13863 	/* Set the LED off */
13864 	setextled(dd, 0);
13865 
13866 	/*
13867 	 * Clear the QSFP reset.
13868 	 * An FLR enforces a 0 on all out pins. The driver does not touch
13869 	 * ASIC_QSFPn_OUT otherwise.  This leaves RESET_N low and
13870 	 * anything plugged constantly in reset, if it pays attention
13871 	 * to RESET_N.
13872 	 * Prime examples of this are optical cables. Set all pins high.
13873 	 * I2CCLK and I2CDAT will change per direction, and INT_N and
13874 	 * MODPRS_N are input only and their value is ignored.
13875 	 */
13876 	write_csr(dd, ASIC_QSFP1_OUT, 0x1f);
13877 	write_csr(dd, ASIC_QSFP2_OUT, 0x1f);
13878 	init_chip_resources(dd);
13879 }
13880 
13881 static void init_early_variables(struct hfi1_devdata *dd)
13882 {
13883 	int i;
13884 
13885 	/* assign link credit variables */
13886 	dd->vau = CM_VAU;
13887 	dd->link_credits = CM_GLOBAL_CREDITS;
13888 	if (is_ax(dd))
13889 		dd->link_credits--;
13890 	dd->vcu = cu_to_vcu(hfi1_cu);
13891 	/* enough room for 8 MAD packets plus header - 17K */
13892 	dd->vl15_init = (8 * (2048 + 128)) / vau_to_au(dd->vau);
13893 	if (dd->vl15_init > dd->link_credits)
13894 		dd->vl15_init = dd->link_credits;
13895 
13896 	write_uninitialized_csrs_and_memories(dd);
13897 
13898 	if (HFI1_CAP_IS_KSET(PKEY_CHECK))
13899 		for (i = 0; i < dd->num_pports; i++) {
13900 			struct hfi1_pportdata *ppd = &dd->pport[i];
13901 
13902 			set_partition_keys(ppd);
13903 		}
13904 	init_sc2vl_tables(dd);
13905 }
13906 
13907 static void init_kdeth_qp(struct hfi1_devdata *dd)
13908 {
13909 	/* user changed the KDETH_QP */
13910 	if (kdeth_qp != 0 && kdeth_qp >= 0xff) {
13911 		/* out of range or illegal value */
13912 		dd_dev_err(dd, "Invalid KDETH queue pair prefix, ignoring");
13913 		kdeth_qp = 0;
13914 	}
13915 	if (kdeth_qp == 0)	/* not set, or failed range check */
13916 		kdeth_qp = DEFAULT_KDETH_QP;
13917 
13918 	write_csr(dd, SEND_BTH_QP,
13919 		  (kdeth_qp & SEND_BTH_QP_KDETH_QP_MASK) <<
13920 		  SEND_BTH_QP_KDETH_QP_SHIFT);
13921 
13922 	write_csr(dd, RCV_BTH_QP,
13923 		  (kdeth_qp & RCV_BTH_QP_KDETH_QP_MASK) <<
13924 		  RCV_BTH_QP_KDETH_QP_SHIFT);
13925 }
13926 
13927 /**
13928  * init_qpmap_table
13929  * @dd - device data
13930  * @first_ctxt - first context
13931  * @last_ctxt - first context
13932  *
13933  * This return sets the qpn mapping table that
13934  * is indexed by qpn[8:1].
13935  *
13936  * The routine will round robin the 256 settings
13937  * from first_ctxt to last_ctxt.
13938  *
13939  * The first/last looks ahead to having specialized
13940  * receive contexts for mgmt and bypass.  Normal
13941  * verbs traffic will assumed to be on a range
13942  * of receive contexts.
13943  */
13944 static void init_qpmap_table(struct hfi1_devdata *dd,
13945 			     u32 first_ctxt,
13946 			     u32 last_ctxt)
13947 {
13948 	u64 reg = 0;
13949 	u64 regno = RCV_QP_MAP_TABLE;
13950 	int i;
13951 	u64 ctxt = first_ctxt;
13952 
13953 	for (i = 0; i < 256; i++) {
13954 		reg |= ctxt << (8 * (i % 8));
13955 		ctxt++;
13956 		if (ctxt > last_ctxt)
13957 			ctxt = first_ctxt;
13958 		if (i % 8 == 7) {
13959 			write_csr(dd, regno, reg);
13960 			reg = 0;
13961 			regno += 8;
13962 		}
13963 	}
13964 
13965 	add_rcvctrl(dd, RCV_CTRL_RCV_QP_MAP_ENABLE_SMASK
13966 			| RCV_CTRL_RCV_BYPASS_ENABLE_SMASK);
13967 }
13968 
13969 struct rsm_map_table {
13970 	u64 map[NUM_MAP_REGS];
13971 	unsigned int used;
13972 };
13973 
13974 struct rsm_rule_data {
13975 	u8 offset;
13976 	u8 pkt_type;
13977 	u32 field1_off;
13978 	u32 field2_off;
13979 	u32 index1_off;
13980 	u32 index1_width;
13981 	u32 index2_off;
13982 	u32 index2_width;
13983 	u32 mask1;
13984 	u32 value1;
13985 	u32 mask2;
13986 	u32 value2;
13987 };
13988 
13989 /*
13990  * Return an initialized RMT map table for users to fill in.  OK if it
13991  * returns NULL, indicating no table.
13992  */
13993 static struct rsm_map_table *alloc_rsm_map_table(struct hfi1_devdata *dd)
13994 {
13995 	struct rsm_map_table *rmt;
13996 	u8 rxcontext = is_ax(dd) ? 0 : 0xff;  /* 0 is default if a0 ver. */
13997 
13998 	rmt = kmalloc(sizeof(*rmt), GFP_KERNEL);
13999 	if (rmt) {
14000 		memset(rmt->map, rxcontext, sizeof(rmt->map));
14001 		rmt->used = 0;
14002 	}
14003 
14004 	return rmt;
14005 }
14006 
14007 /*
14008  * Write the final RMT map table to the chip and free the table.  OK if
14009  * table is NULL.
14010  */
14011 static void complete_rsm_map_table(struct hfi1_devdata *dd,
14012 				   struct rsm_map_table *rmt)
14013 {
14014 	int i;
14015 
14016 	if (rmt) {
14017 		/* write table to chip */
14018 		for (i = 0; i < NUM_MAP_REGS; i++)
14019 			write_csr(dd, RCV_RSM_MAP_TABLE + (8 * i), rmt->map[i]);
14020 
14021 		/* enable RSM */
14022 		add_rcvctrl(dd, RCV_CTRL_RCV_RSM_ENABLE_SMASK);
14023 	}
14024 }
14025 
14026 /*
14027  * Add a receive side mapping rule.
14028  */
14029 static void add_rsm_rule(struct hfi1_devdata *dd, u8 rule_index,
14030 			 struct rsm_rule_data *rrd)
14031 {
14032 	write_csr(dd, RCV_RSM_CFG + (8 * rule_index),
14033 		  (u64)rrd->offset << RCV_RSM_CFG_OFFSET_SHIFT |
14034 		  1ull << rule_index | /* enable bit */
14035 		  (u64)rrd->pkt_type << RCV_RSM_CFG_PACKET_TYPE_SHIFT);
14036 	write_csr(dd, RCV_RSM_SELECT + (8 * rule_index),
14037 		  (u64)rrd->field1_off << RCV_RSM_SELECT_FIELD1_OFFSET_SHIFT |
14038 		  (u64)rrd->field2_off << RCV_RSM_SELECT_FIELD2_OFFSET_SHIFT |
14039 		  (u64)rrd->index1_off << RCV_RSM_SELECT_INDEX1_OFFSET_SHIFT |
14040 		  (u64)rrd->index1_width << RCV_RSM_SELECT_INDEX1_WIDTH_SHIFT |
14041 		  (u64)rrd->index2_off << RCV_RSM_SELECT_INDEX2_OFFSET_SHIFT |
14042 		  (u64)rrd->index2_width << RCV_RSM_SELECT_INDEX2_WIDTH_SHIFT);
14043 	write_csr(dd, RCV_RSM_MATCH + (8 * rule_index),
14044 		  (u64)rrd->mask1 << RCV_RSM_MATCH_MASK1_SHIFT |
14045 		  (u64)rrd->value1 << RCV_RSM_MATCH_VALUE1_SHIFT |
14046 		  (u64)rrd->mask2 << RCV_RSM_MATCH_MASK2_SHIFT |
14047 		  (u64)rrd->value2 << RCV_RSM_MATCH_VALUE2_SHIFT);
14048 }
14049 
14050 /*
14051  * Clear a receive side mapping rule.
14052  */
14053 static void clear_rsm_rule(struct hfi1_devdata *dd, u8 rule_index)
14054 {
14055 	write_csr(dd, RCV_RSM_CFG + (8 * rule_index), 0);
14056 	write_csr(dd, RCV_RSM_SELECT + (8 * rule_index), 0);
14057 	write_csr(dd, RCV_RSM_MATCH + (8 * rule_index), 0);
14058 }
14059 
14060 /* return the number of RSM map table entries that will be used for QOS */
14061 static int qos_rmt_entries(struct hfi1_devdata *dd, unsigned int *mp,
14062 			   unsigned int *np)
14063 {
14064 	int i;
14065 	unsigned int m, n;
14066 	u8 max_by_vl = 0;
14067 
14068 	/* is QOS active at all? */
14069 	if (dd->n_krcv_queues <= MIN_KERNEL_KCTXTS ||
14070 	    num_vls == 1 ||
14071 	    krcvqsset <= 1)
14072 		goto no_qos;
14073 
14074 	/* determine bits for qpn */
14075 	for (i = 0; i < min_t(unsigned int, num_vls, krcvqsset); i++)
14076 		if (krcvqs[i] > max_by_vl)
14077 			max_by_vl = krcvqs[i];
14078 	if (max_by_vl > 32)
14079 		goto no_qos;
14080 	m = ilog2(__roundup_pow_of_two(max_by_vl));
14081 
14082 	/* determine bits for vl */
14083 	n = ilog2(__roundup_pow_of_two(num_vls));
14084 
14085 	/* reject if too much is used */
14086 	if ((m + n) > 7)
14087 		goto no_qos;
14088 
14089 	if (mp)
14090 		*mp = m;
14091 	if (np)
14092 		*np = n;
14093 
14094 	return 1 << (m + n);
14095 
14096 no_qos:
14097 	if (mp)
14098 		*mp = 0;
14099 	if (np)
14100 		*np = 0;
14101 	return 0;
14102 }
14103 
14104 /**
14105  * init_qos - init RX qos
14106  * @dd - device data
14107  * @rmt - RSM map table
14108  *
14109  * This routine initializes Rule 0 and the RSM map table to implement
14110  * quality of service (qos).
14111  *
14112  * If all of the limit tests succeed, qos is applied based on the array
14113  * interpretation of krcvqs where entry 0 is VL0.
14114  *
14115  * The number of vl bits (n) and the number of qpn bits (m) are computed to
14116  * feed both the RSM map table and the single rule.
14117  */
14118 static void init_qos(struct hfi1_devdata *dd, struct rsm_map_table *rmt)
14119 {
14120 	struct rsm_rule_data rrd;
14121 	unsigned qpns_per_vl, ctxt, i, qpn, n = 1, m;
14122 	unsigned int rmt_entries;
14123 	u64 reg;
14124 
14125 	if (!rmt)
14126 		goto bail;
14127 	rmt_entries = qos_rmt_entries(dd, &m, &n);
14128 	if (rmt_entries == 0)
14129 		goto bail;
14130 	qpns_per_vl = 1 << m;
14131 
14132 	/* enough room in the map table? */
14133 	rmt_entries = 1 << (m + n);
14134 	if (rmt->used + rmt_entries >= NUM_MAP_ENTRIES)
14135 		goto bail;
14136 
14137 	/* add qos entries to the the RSM map table */
14138 	for (i = 0, ctxt = FIRST_KERNEL_KCTXT; i < num_vls; i++) {
14139 		unsigned tctxt;
14140 
14141 		for (qpn = 0, tctxt = ctxt;
14142 		     krcvqs[i] && qpn < qpns_per_vl; qpn++) {
14143 			unsigned idx, regoff, regidx;
14144 
14145 			/* generate the index the hardware will produce */
14146 			idx = rmt->used + ((qpn << n) ^ i);
14147 			regoff = (idx % 8) * 8;
14148 			regidx = idx / 8;
14149 			/* replace default with context number */
14150 			reg = rmt->map[regidx];
14151 			reg &= ~(RCV_RSM_MAP_TABLE_RCV_CONTEXT_A_MASK
14152 				<< regoff);
14153 			reg |= (u64)(tctxt++) << regoff;
14154 			rmt->map[regidx] = reg;
14155 			if (tctxt == ctxt + krcvqs[i])
14156 				tctxt = ctxt;
14157 		}
14158 		ctxt += krcvqs[i];
14159 	}
14160 
14161 	rrd.offset = rmt->used;
14162 	rrd.pkt_type = 2;
14163 	rrd.field1_off = LRH_BTH_MATCH_OFFSET;
14164 	rrd.field2_off = LRH_SC_MATCH_OFFSET;
14165 	rrd.index1_off = LRH_SC_SELECT_OFFSET;
14166 	rrd.index1_width = n;
14167 	rrd.index2_off = QPN_SELECT_OFFSET;
14168 	rrd.index2_width = m + n;
14169 	rrd.mask1 = LRH_BTH_MASK;
14170 	rrd.value1 = LRH_BTH_VALUE;
14171 	rrd.mask2 = LRH_SC_MASK;
14172 	rrd.value2 = LRH_SC_VALUE;
14173 
14174 	/* add rule 0 */
14175 	add_rsm_rule(dd, RSM_INS_VERBS, &rrd);
14176 
14177 	/* mark RSM map entries as used */
14178 	rmt->used += rmt_entries;
14179 	/* map everything else to the mcast/err/vl15 context */
14180 	init_qpmap_table(dd, HFI1_CTRL_CTXT, HFI1_CTRL_CTXT);
14181 	dd->qos_shift = n + 1;
14182 	return;
14183 bail:
14184 	dd->qos_shift = 1;
14185 	init_qpmap_table(dd, FIRST_KERNEL_KCTXT, dd->n_krcv_queues - 1);
14186 }
14187 
14188 static void init_user_fecn_handling(struct hfi1_devdata *dd,
14189 				    struct rsm_map_table *rmt)
14190 {
14191 	struct rsm_rule_data rrd;
14192 	u64 reg;
14193 	int i, idx, regoff, regidx;
14194 	u8 offset;
14195 
14196 	/* there needs to be enough room in the map table */
14197 	if (rmt->used + dd->num_user_contexts >= NUM_MAP_ENTRIES) {
14198 		dd_dev_err(dd, "User FECN handling disabled - too many user contexts allocated\n");
14199 		return;
14200 	}
14201 
14202 	/*
14203 	 * RSM will extract the destination context as an index into the
14204 	 * map table.  The destination contexts are a sequential block
14205 	 * in the range first_dyn_alloc_ctxt...num_rcv_contexts-1 (inclusive).
14206 	 * Map entries are accessed as offset + extracted value.  Adjust
14207 	 * the added offset so this sequence can be placed anywhere in
14208 	 * the table - as long as the entries themselves do not wrap.
14209 	 * There are only enough bits in offset for the table size, so
14210 	 * start with that to allow for a "negative" offset.
14211 	 */
14212 	offset = (u8)(NUM_MAP_ENTRIES + (int)rmt->used -
14213 						(int)dd->first_dyn_alloc_ctxt);
14214 
14215 	for (i = dd->first_dyn_alloc_ctxt, idx = rmt->used;
14216 				i < dd->num_rcv_contexts; i++, idx++) {
14217 		/* replace with identity mapping */
14218 		regoff = (idx % 8) * 8;
14219 		regidx = idx / 8;
14220 		reg = rmt->map[regidx];
14221 		reg &= ~(RCV_RSM_MAP_TABLE_RCV_CONTEXT_A_MASK << regoff);
14222 		reg |= (u64)i << regoff;
14223 		rmt->map[regidx] = reg;
14224 	}
14225 
14226 	/*
14227 	 * For RSM intercept of Expected FECN packets:
14228 	 * o packet type 0 - expected
14229 	 * o match on F (bit 95), using select/match 1, and
14230 	 * o match on SH (bit 133), using select/match 2.
14231 	 *
14232 	 * Use index 1 to extract the 8-bit receive context from DestQP
14233 	 * (start at bit 64).  Use that as the RSM map table index.
14234 	 */
14235 	rrd.offset = offset;
14236 	rrd.pkt_type = 0;
14237 	rrd.field1_off = 95;
14238 	rrd.field2_off = 133;
14239 	rrd.index1_off = 64;
14240 	rrd.index1_width = 8;
14241 	rrd.index2_off = 0;
14242 	rrd.index2_width = 0;
14243 	rrd.mask1 = 1;
14244 	rrd.value1 = 1;
14245 	rrd.mask2 = 1;
14246 	rrd.value2 = 1;
14247 
14248 	/* add rule 1 */
14249 	add_rsm_rule(dd, RSM_INS_FECN, &rrd);
14250 
14251 	rmt->used += dd->num_user_contexts;
14252 }
14253 
14254 /* Initialize RSM for VNIC */
14255 void hfi1_init_vnic_rsm(struct hfi1_devdata *dd)
14256 {
14257 	u8 i, j;
14258 	u8 ctx_id = 0;
14259 	u64 reg;
14260 	u32 regoff;
14261 	struct rsm_rule_data rrd;
14262 
14263 	if (hfi1_vnic_is_rsm_full(dd, NUM_VNIC_MAP_ENTRIES)) {
14264 		dd_dev_err(dd, "Vnic RSM disabled, rmt entries used = %d\n",
14265 			   dd->vnic.rmt_start);
14266 		return;
14267 	}
14268 
14269 	dev_dbg(&(dd)->pcidev->dev, "Vnic rsm start = %d, end %d\n",
14270 		dd->vnic.rmt_start,
14271 		dd->vnic.rmt_start + NUM_VNIC_MAP_ENTRIES);
14272 
14273 	/* Update RSM mapping table, 32 regs, 256 entries - 1 ctx per byte */
14274 	regoff = RCV_RSM_MAP_TABLE + (dd->vnic.rmt_start / 8) * 8;
14275 	reg = read_csr(dd, regoff);
14276 	for (i = 0; i < NUM_VNIC_MAP_ENTRIES; i++) {
14277 		/* Update map register with vnic context */
14278 		j = (dd->vnic.rmt_start + i) % 8;
14279 		reg &= ~(0xffllu << (j * 8));
14280 		reg |= (u64)dd->vnic.ctxt[ctx_id++]->ctxt << (j * 8);
14281 		/* Wrap up vnic ctx index */
14282 		ctx_id %= dd->vnic.num_ctxt;
14283 		/* Write back map register */
14284 		if (j == 7 || ((i + 1) == NUM_VNIC_MAP_ENTRIES)) {
14285 			dev_dbg(&(dd)->pcidev->dev,
14286 				"Vnic rsm map reg[%d] =0x%llx\n",
14287 				regoff - RCV_RSM_MAP_TABLE, reg);
14288 
14289 			write_csr(dd, regoff, reg);
14290 			regoff += 8;
14291 			if (i < (NUM_VNIC_MAP_ENTRIES - 1))
14292 				reg = read_csr(dd, regoff);
14293 		}
14294 	}
14295 
14296 	/* Add rule for vnic */
14297 	rrd.offset = dd->vnic.rmt_start;
14298 	rrd.pkt_type = 4;
14299 	/* Match 16B packets */
14300 	rrd.field1_off = L2_TYPE_MATCH_OFFSET;
14301 	rrd.mask1 = L2_TYPE_MASK;
14302 	rrd.value1 = L2_16B_VALUE;
14303 	/* Match ETH L4 packets */
14304 	rrd.field2_off = L4_TYPE_MATCH_OFFSET;
14305 	rrd.mask2 = L4_16B_TYPE_MASK;
14306 	rrd.value2 = L4_16B_ETH_VALUE;
14307 	/* Calc context from veswid and entropy */
14308 	rrd.index1_off = L4_16B_HDR_VESWID_OFFSET;
14309 	rrd.index1_width = ilog2(NUM_VNIC_MAP_ENTRIES);
14310 	rrd.index2_off = L2_16B_ENTROPY_OFFSET;
14311 	rrd.index2_width = ilog2(NUM_VNIC_MAP_ENTRIES);
14312 	add_rsm_rule(dd, RSM_INS_VNIC, &rrd);
14313 
14314 	/* Enable RSM if not already enabled */
14315 	add_rcvctrl(dd, RCV_CTRL_RCV_RSM_ENABLE_SMASK);
14316 }
14317 
14318 void hfi1_deinit_vnic_rsm(struct hfi1_devdata *dd)
14319 {
14320 	clear_rsm_rule(dd, RSM_INS_VNIC);
14321 
14322 	/* Disable RSM if used only by vnic */
14323 	if (dd->vnic.rmt_start == 0)
14324 		clear_rcvctrl(dd, RCV_CTRL_RCV_RSM_ENABLE_SMASK);
14325 }
14326 
14327 static void init_rxe(struct hfi1_devdata *dd)
14328 {
14329 	struct rsm_map_table *rmt;
14330 
14331 	/* enable all receive errors */
14332 	write_csr(dd, RCV_ERR_MASK, ~0ull);
14333 
14334 	rmt = alloc_rsm_map_table(dd);
14335 	/* set up QOS, including the QPN map table */
14336 	init_qos(dd, rmt);
14337 	init_user_fecn_handling(dd, rmt);
14338 	complete_rsm_map_table(dd, rmt);
14339 	/* record number of used rsm map entries for vnic */
14340 	dd->vnic.rmt_start = rmt->used;
14341 	kfree(rmt);
14342 
14343 	/*
14344 	 * make sure RcvCtrl.RcvWcb <= PCIe Device Control
14345 	 * Register Max_Payload_Size (PCI_EXP_DEVCTL in Linux PCIe config
14346 	 * space, PciCfgCap2.MaxPayloadSize in HFI).  There is only one
14347 	 * invalid configuration: RcvCtrl.RcvWcb set to its max of 256 and
14348 	 * Max_PayLoad_Size set to its minimum of 128.
14349 	 *
14350 	 * Presently, RcvCtrl.RcvWcb is not modified from its default of 0
14351 	 * (64 bytes).  Max_Payload_Size is possibly modified upward in
14352 	 * tune_pcie_caps() which is called after this routine.
14353 	 */
14354 }
14355 
14356 static void init_other(struct hfi1_devdata *dd)
14357 {
14358 	/* enable all CCE errors */
14359 	write_csr(dd, CCE_ERR_MASK, ~0ull);
14360 	/* enable *some* Misc errors */
14361 	write_csr(dd, MISC_ERR_MASK, DRIVER_MISC_MASK);
14362 	/* enable all DC errors, except LCB */
14363 	write_csr(dd, DCC_ERR_FLG_EN, ~0ull);
14364 	write_csr(dd, DC_DC8051_ERR_EN, ~0ull);
14365 }
14366 
14367 /*
14368  * Fill out the given AU table using the given CU.  A CU is defined in terms
14369  * AUs.  The table is a an encoding: given the index, how many AUs does that
14370  * represent?
14371  *
14372  * NOTE: Assumes that the register layout is the same for the
14373  * local and remote tables.
14374  */
14375 static void assign_cm_au_table(struct hfi1_devdata *dd, u32 cu,
14376 			       u32 csr0to3, u32 csr4to7)
14377 {
14378 	write_csr(dd, csr0to3,
14379 		  0ull << SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE0_SHIFT |
14380 		  1ull << SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE1_SHIFT |
14381 		  2ull * cu <<
14382 		  SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE2_SHIFT |
14383 		  4ull * cu <<
14384 		  SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE3_SHIFT);
14385 	write_csr(dd, csr4to7,
14386 		  8ull * cu <<
14387 		  SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE4_SHIFT |
14388 		  16ull * cu <<
14389 		  SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE5_SHIFT |
14390 		  32ull * cu <<
14391 		  SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE6_SHIFT |
14392 		  64ull * cu <<
14393 		  SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE7_SHIFT);
14394 }
14395 
14396 static void assign_local_cm_au_table(struct hfi1_devdata *dd, u8 vcu)
14397 {
14398 	assign_cm_au_table(dd, vcu_to_cu(vcu), SEND_CM_LOCAL_AU_TABLE0_TO3,
14399 			   SEND_CM_LOCAL_AU_TABLE4_TO7);
14400 }
14401 
14402 void assign_remote_cm_au_table(struct hfi1_devdata *dd, u8 vcu)
14403 {
14404 	assign_cm_au_table(dd, vcu_to_cu(vcu), SEND_CM_REMOTE_AU_TABLE0_TO3,
14405 			   SEND_CM_REMOTE_AU_TABLE4_TO7);
14406 }
14407 
14408 static void init_txe(struct hfi1_devdata *dd)
14409 {
14410 	int i;
14411 
14412 	/* enable all PIO, SDMA, general, and Egress errors */
14413 	write_csr(dd, SEND_PIO_ERR_MASK, ~0ull);
14414 	write_csr(dd, SEND_DMA_ERR_MASK, ~0ull);
14415 	write_csr(dd, SEND_ERR_MASK, ~0ull);
14416 	write_csr(dd, SEND_EGRESS_ERR_MASK, ~0ull);
14417 
14418 	/* enable all per-context and per-SDMA engine errors */
14419 	for (i = 0; i < dd->chip_send_contexts; i++)
14420 		write_kctxt_csr(dd, i, SEND_CTXT_ERR_MASK, ~0ull);
14421 	for (i = 0; i < dd->chip_sdma_engines; i++)
14422 		write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_MASK, ~0ull);
14423 
14424 	/* set the local CU to AU mapping */
14425 	assign_local_cm_au_table(dd, dd->vcu);
14426 
14427 	/*
14428 	 * Set reasonable default for Credit Return Timer
14429 	 * Don't set on Simulator - causes it to choke.
14430 	 */
14431 	if (dd->icode != ICODE_FUNCTIONAL_SIMULATOR)
14432 		write_csr(dd, SEND_CM_TIMER_CTRL, HFI1_CREDIT_RETURN_RATE);
14433 }
14434 
14435 int hfi1_set_ctxt_jkey(struct hfi1_devdata *dd, unsigned ctxt, u16 jkey)
14436 {
14437 	struct hfi1_ctxtdata *rcd = dd->rcd[ctxt];
14438 	unsigned sctxt;
14439 	int ret = 0;
14440 	u64 reg;
14441 
14442 	if (!rcd || !rcd->sc) {
14443 		ret = -EINVAL;
14444 		goto done;
14445 	}
14446 	sctxt = rcd->sc->hw_context;
14447 	reg = SEND_CTXT_CHECK_JOB_KEY_MASK_SMASK | /* mask is always 1's */
14448 		((jkey & SEND_CTXT_CHECK_JOB_KEY_VALUE_MASK) <<
14449 		 SEND_CTXT_CHECK_JOB_KEY_VALUE_SHIFT);
14450 	/* JOB_KEY_ALLOW_PERMISSIVE is not allowed by default */
14451 	if (HFI1_CAP_KGET_MASK(rcd->flags, ALLOW_PERM_JKEY))
14452 		reg |= SEND_CTXT_CHECK_JOB_KEY_ALLOW_PERMISSIVE_SMASK;
14453 	write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_JOB_KEY, reg);
14454 	/*
14455 	 * Enable send-side J_KEY integrity check, unless this is A0 h/w
14456 	 */
14457 	if (!is_ax(dd)) {
14458 		reg = read_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE);
14459 		reg |= SEND_CTXT_CHECK_ENABLE_CHECK_JOB_KEY_SMASK;
14460 		write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE, reg);
14461 	}
14462 
14463 	/* Enable J_KEY check on receive context. */
14464 	reg = RCV_KEY_CTRL_JOB_KEY_ENABLE_SMASK |
14465 		((jkey & RCV_KEY_CTRL_JOB_KEY_VALUE_MASK) <<
14466 		 RCV_KEY_CTRL_JOB_KEY_VALUE_SHIFT);
14467 	write_kctxt_csr(dd, ctxt, RCV_KEY_CTRL, reg);
14468 done:
14469 	return ret;
14470 }
14471 
14472 int hfi1_clear_ctxt_jkey(struct hfi1_devdata *dd, unsigned ctxt)
14473 {
14474 	struct hfi1_ctxtdata *rcd = dd->rcd[ctxt];
14475 	unsigned sctxt;
14476 	int ret = 0;
14477 	u64 reg;
14478 
14479 	if (!rcd || !rcd->sc) {
14480 		ret = -EINVAL;
14481 		goto done;
14482 	}
14483 	sctxt = rcd->sc->hw_context;
14484 	write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_JOB_KEY, 0);
14485 	/*
14486 	 * Disable send-side J_KEY integrity check, unless this is A0 h/w.
14487 	 * This check would not have been enabled for A0 h/w, see
14488 	 * set_ctxt_jkey().
14489 	 */
14490 	if (!is_ax(dd)) {
14491 		reg = read_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE);
14492 		reg &= ~SEND_CTXT_CHECK_ENABLE_CHECK_JOB_KEY_SMASK;
14493 		write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE, reg);
14494 	}
14495 	/* Turn off the J_KEY on the receive side */
14496 	write_kctxt_csr(dd, ctxt, RCV_KEY_CTRL, 0);
14497 done:
14498 	return ret;
14499 }
14500 
14501 int hfi1_set_ctxt_pkey(struct hfi1_devdata *dd, unsigned ctxt, u16 pkey)
14502 {
14503 	struct hfi1_ctxtdata *rcd;
14504 	unsigned sctxt;
14505 	int ret = 0;
14506 	u64 reg;
14507 
14508 	if (ctxt < dd->num_rcv_contexts) {
14509 		rcd = dd->rcd[ctxt];
14510 	} else {
14511 		ret = -EINVAL;
14512 		goto done;
14513 	}
14514 	if (!rcd || !rcd->sc) {
14515 		ret = -EINVAL;
14516 		goto done;
14517 	}
14518 	sctxt = rcd->sc->hw_context;
14519 	reg = ((u64)pkey & SEND_CTXT_CHECK_PARTITION_KEY_VALUE_MASK) <<
14520 		SEND_CTXT_CHECK_PARTITION_KEY_VALUE_SHIFT;
14521 	write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_PARTITION_KEY, reg);
14522 	reg = read_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE);
14523 	reg |= SEND_CTXT_CHECK_ENABLE_CHECK_PARTITION_KEY_SMASK;
14524 	reg &= ~SEND_CTXT_CHECK_ENABLE_DISALLOW_KDETH_PACKETS_SMASK;
14525 	write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE, reg);
14526 done:
14527 	return ret;
14528 }
14529 
14530 int hfi1_clear_ctxt_pkey(struct hfi1_devdata *dd, struct hfi1_ctxtdata *ctxt)
14531 {
14532 	u8 hw_ctxt;
14533 	u64 reg;
14534 
14535 	if (!ctxt || !ctxt->sc)
14536 		return -EINVAL;
14537 
14538 	if (ctxt->ctxt >= dd->num_rcv_contexts)
14539 		return -EINVAL;
14540 
14541 	hw_ctxt = ctxt->sc->hw_context;
14542 	reg = read_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE);
14543 	reg &= ~SEND_CTXT_CHECK_ENABLE_CHECK_PARTITION_KEY_SMASK;
14544 	write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE, reg);
14545 	write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_PARTITION_KEY, 0);
14546 
14547 	return 0;
14548 }
14549 
14550 /*
14551  * Start doing the clean up the the chip. Our clean up happens in multiple
14552  * stages and this is just the first.
14553  */
14554 void hfi1_start_cleanup(struct hfi1_devdata *dd)
14555 {
14556 	aspm_exit(dd);
14557 	free_cntrs(dd);
14558 	free_rcverr(dd);
14559 	clean_up_interrupts(dd);
14560 	finish_chip_resources(dd);
14561 }
14562 
14563 #define HFI_BASE_GUID(dev) \
14564 	((dev)->base_guid & ~(1ULL << GUID_HFI_INDEX_SHIFT))
14565 
14566 /*
14567  * Information can be shared between the two HFIs on the same ASIC
14568  * in the same OS.  This function finds the peer device and sets
14569  * up a shared structure.
14570  */
14571 static int init_asic_data(struct hfi1_devdata *dd)
14572 {
14573 	unsigned long flags;
14574 	struct hfi1_devdata *tmp, *peer = NULL;
14575 	struct hfi1_asic_data *asic_data;
14576 	int ret = 0;
14577 
14578 	/* pre-allocate the asic structure in case we are the first device */
14579 	asic_data = kzalloc(sizeof(*dd->asic_data), GFP_KERNEL);
14580 	if (!asic_data)
14581 		return -ENOMEM;
14582 
14583 	spin_lock_irqsave(&hfi1_devs_lock, flags);
14584 	/* Find our peer device */
14585 	list_for_each_entry(tmp, &hfi1_dev_list, list) {
14586 		if ((HFI_BASE_GUID(dd) == HFI_BASE_GUID(tmp)) &&
14587 		    dd->unit != tmp->unit) {
14588 			peer = tmp;
14589 			break;
14590 		}
14591 	}
14592 
14593 	if (peer) {
14594 		/* use already allocated structure */
14595 		dd->asic_data = peer->asic_data;
14596 		kfree(asic_data);
14597 	} else {
14598 		dd->asic_data = asic_data;
14599 		mutex_init(&dd->asic_data->asic_resource_mutex);
14600 	}
14601 	dd->asic_data->dds[dd->hfi1_id] = dd; /* self back-pointer */
14602 	spin_unlock_irqrestore(&hfi1_devs_lock, flags);
14603 
14604 	/* first one through - set up i2c devices */
14605 	if (!peer)
14606 		ret = set_up_i2c(dd, dd->asic_data);
14607 
14608 	return ret;
14609 }
14610 
14611 /*
14612  * Set dd->boardname.  Use a generic name if a name is not returned from
14613  * EFI variable space.
14614  *
14615  * Return 0 on success, -ENOMEM if space could not be allocated.
14616  */
14617 static int obtain_boardname(struct hfi1_devdata *dd)
14618 {
14619 	/* generic board description */
14620 	const char generic[] =
14621 		"Intel Omni-Path Host Fabric Interface Adapter 100 Series";
14622 	unsigned long size;
14623 	int ret;
14624 
14625 	ret = read_hfi1_efi_var(dd, "description", &size,
14626 				(void **)&dd->boardname);
14627 	if (ret) {
14628 		dd_dev_info(dd, "Board description not found\n");
14629 		/* use generic description */
14630 		dd->boardname = kstrdup(generic, GFP_KERNEL);
14631 		if (!dd->boardname)
14632 			return -ENOMEM;
14633 	}
14634 	return 0;
14635 }
14636 
14637 /*
14638  * Check the interrupt registers to make sure that they are mapped correctly.
14639  * It is intended to help user identify any mismapping by VMM when the driver
14640  * is running in a VM. This function should only be called before interrupt
14641  * is set up properly.
14642  *
14643  * Return 0 on success, -EINVAL on failure.
14644  */
14645 static int check_int_registers(struct hfi1_devdata *dd)
14646 {
14647 	u64 reg;
14648 	u64 all_bits = ~(u64)0;
14649 	u64 mask;
14650 
14651 	/* Clear CceIntMask[0] to avoid raising any interrupts */
14652 	mask = read_csr(dd, CCE_INT_MASK);
14653 	write_csr(dd, CCE_INT_MASK, 0ull);
14654 	reg = read_csr(dd, CCE_INT_MASK);
14655 	if (reg)
14656 		goto err_exit;
14657 
14658 	/* Clear all interrupt status bits */
14659 	write_csr(dd, CCE_INT_CLEAR, all_bits);
14660 	reg = read_csr(dd, CCE_INT_STATUS);
14661 	if (reg)
14662 		goto err_exit;
14663 
14664 	/* Set all interrupt status bits */
14665 	write_csr(dd, CCE_INT_FORCE, all_bits);
14666 	reg = read_csr(dd, CCE_INT_STATUS);
14667 	if (reg != all_bits)
14668 		goto err_exit;
14669 
14670 	/* Restore the interrupt mask */
14671 	write_csr(dd, CCE_INT_CLEAR, all_bits);
14672 	write_csr(dd, CCE_INT_MASK, mask);
14673 
14674 	return 0;
14675 err_exit:
14676 	write_csr(dd, CCE_INT_MASK, mask);
14677 	dd_dev_err(dd, "Interrupt registers not properly mapped by VMM\n");
14678 	return -EINVAL;
14679 }
14680 
14681 /**
14682  * Allocate and initialize the device structure for the hfi.
14683  * @dev: the pci_dev for hfi1_ib device
14684  * @ent: pci_device_id struct for this dev
14685  *
14686  * Also allocates, initializes, and returns the devdata struct for this
14687  * device instance
14688  *
14689  * This is global, and is called directly at init to set up the
14690  * chip-specific function pointers for later use.
14691  */
14692 struct hfi1_devdata *hfi1_init_dd(struct pci_dev *pdev,
14693 				  const struct pci_device_id *ent)
14694 {
14695 	struct hfi1_devdata *dd;
14696 	struct hfi1_pportdata *ppd;
14697 	u64 reg;
14698 	int i, ret;
14699 	static const char * const inames[] = { /* implementation names */
14700 		"RTL silicon",
14701 		"RTL VCS simulation",
14702 		"RTL FPGA emulation",
14703 		"Functional simulator"
14704 	};
14705 	struct pci_dev *parent = pdev->bus->self;
14706 
14707 	dd = hfi1_alloc_devdata(pdev, NUM_IB_PORTS *
14708 				sizeof(struct hfi1_pportdata));
14709 	if (IS_ERR(dd))
14710 		goto bail;
14711 	ppd = dd->pport;
14712 	for (i = 0; i < dd->num_pports; i++, ppd++) {
14713 		int vl;
14714 		/* init common fields */
14715 		hfi1_init_pportdata(pdev, ppd, dd, 0, 1);
14716 		/* DC supports 4 link widths */
14717 		ppd->link_width_supported =
14718 			OPA_LINK_WIDTH_1X | OPA_LINK_WIDTH_2X |
14719 			OPA_LINK_WIDTH_3X | OPA_LINK_WIDTH_4X;
14720 		ppd->link_width_downgrade_supported =
14721 			ppd->link_width_supported;
14722 		/* start out enabling only 4X */
14723 		ppd->link_width_enabled = OPA_LINK_WIDTH_4X;
14724 		ppd->link_width_downgrade_enabled =
14725 					ppd->link_width_downgrade_supported;
14726 		/* link width active is 0 when link is down */
14727 		/* link width downgrade active is 0 when link is down */
14728 
14729 		if (num_vls < HFI1_MIN_VLS_SUPPORTED ||
14730 		    num_vls > HFI1_MAX_VLS_SUPPORTED) {
14731 			hfi1_early_err(&pdev->dev,
14732 				       "Invalid num_vls %u, using %u VLs\n",
14733 				    num_vls, HFI1_MAX_VLS_SUPPORTED);
14734 			num_vls = HFI1_MAX_VLS_SUPPORTED;
14735 		}
14736 		ppd->vls_supported = num_vls;
14737 		ppd->vls_operational = ppd->vls_supported;
14738 		ppd->actual_vls_operational = ppd->vls_supported;
14739 		/* Set the default MTU. */
14740 		for (vl = 0; vl < num_vls; vl++)
14741 			dd->vld[vl].mtu = hfi1_max_mtu;
14742 		dd->vld[15].mtu = MAX_MAD_PACKET;
14743 		/*
14744 		 * Set the initial values to reasonable default, will be set
14745 		 * for real when link is up.
14746 		 */
14747 		ppd->lstate = IB_PORT_DOWN;
14748 		ppd->overrun_threshold = 0x4;
14749 		ppd->phy_error_threshold = 0xf;
14750 		ppd->port_crc_mode_enabled = link_crc_mask;
14751 		/* initialize supported LTP CRC mode */
14752 		ppd->port_ltp_crc_mode = cap_to_port_ltp(link_crc_mask) << 8;
14753 		/* initialize enabled LTP CRC mode */
14754 		ppd->port_ltp_crc_mode |= cap_to_port_ltp(link_crc_mask) << 4;
14755 		/* start in offline */
14756 		ppd->host_link_state = HLS_DN_OFFLINE;
14757 		init_vl_arb_caches(ppd);
14758 		ppd->last_pstate = 0xff; /* invalid value */
14759 	}
14760 
14761 	dd->link_default = HLS_DN_POLL;
14762 
14763 	/*
14764 	 * Do remaining PCIe setup and save PCIe values in dd.
14765 	 * Any error printing is already done by the init code.
14766 	 * On return, we have the chip mapped.
14767 	 */
14768 	ret = hfi1_pcie_ddinit(dd, pdev);
14769 	if (ret < 0)
14770 		goto bail_free;
14771 
14772 	/* verify that reads actually work, save revision for reset check */
14773 	dd->revision = read_csr(dd, CCE_REVISION);
14774 	if (dd->revision == ~(u64)0) {
14775 		dd_dev_err(dd, "cannot read chip CSRs\n");
14776 		ret = -EINVAL;
14777 		goto bail_cleanup;
14778 	}
14779 	dd->majrev = (dd->revision >> CCE_REVISION_CHIP_REV_MAJOR_SHIFT)
14780 			& CCE_REVISION_CHIP_REV_MAJOR_MASK;
14781 	dd->minrev = (dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT)
14782 			& CCE_REVISION_CHIP_REV_MINOR_MASK;
14783 
14784 	/*
14785 	 * Check interrupt registers mapping if the driver has no access to
14786 	 * the upstream component. In this case, it is likely that the driver
14787 	 * is running in a VM.
14788 	 */
14789 	if (!parent) {
14790 		ret = check_int_registers(dd);
14791 		if (ret)
14792 			goto bail_cleanup;
14793 	}
14794 
14795 	/*
14796 	 * obtain the hardware ID - NOT related to unit, which is a
14797 	 * software enumeration
14798 	 */
14799 	reg = read_csr(dd, CCE_REVISION2);
14800 	dd->hfi1_id = (reg >> CCE_REVISION2_HFI_ID_SHIFT)
14801 					& CCE_REVISION2_HFI_ID_MASK;
14802 	/* the variable size will remove unwanted bits */
14803 	dd->icode = reg >> CCE_REVISION2_IMPL_CODE_SHIFT;
14804 	dd->irev = reg >> CCE_REVISION2_IMPL_REVISION_SHIFT;
14805 	dd_dev_info(dd, "Implementation: %s, revision 0x%x\n",
14806 		    dd->icode < ARRAY_SIZE(inames) ?
14807 		    inames[dd->icode] : "unknown", (int)dd->irev);
14808 
14809 	/* speeds the hardware can support */
14810 	dd->pport->link_speed_supported = OPA_LINK_SPEED_25G;
14811 	/* speeds allowed to run at */
14812 	dd->pport->link_speed_enabled = dd->pport->link_speed_supported;
14813 	/* give a reasonable active value, will be set on link up */
14814 	dd->pport->link_speed_active = OPA_LINK_SPEED_25G;
14815 
14816 	dd->chip_rcv_contexts = read_csr(dd, RCV_CONTEXTS);
14817 	dd->chip_send_contexts = read_csr(dd, SEND_CONTEXTS);
14818 	dd->chip_sdma_engines = read_csr(dd, SEND_DMA_ENGINES);
14819 	dd->chip_pio_mem_size = read_csr(dd, SEND_PIO_MEM_SIZE);
14820 	dd->chip_sdma_mem_size = read_csr(dd, SEND_DMA_MEM_SIZE);
14821 	/* fix up link widths for emulation _p */
14822 	ppd = dd->pport;
14823 	if (dd->icode == ICODE_FPGA_EMULATION && is_emulator_p(dd)) {
14824 		ppd->link_width_supported =
14825 			ppd->link_width_enabled =
14826 			ppd->link_width_downgrade_supported =
14827 			ppd->link_width_downgrade_enabled =
14828 				OPA_LINK_WIDTH_1X;
14829 	}
14830 	/* insure num_vls isn't larger than number of sdma engines */
14831 	if (HFI1_CAP_IS_KSET(SDMA) && num_vls > dd->chip_sdma_engines) {
14832 		dd_dev_err(dd, "num_vls %u too large, using %u VLs\n",
14833 			   num_vls, dd->chip_sdma_engines);
14834 		num_vls = dd->chip_sdma_engines;
14835 		ppd->vls_supported = dd->chip_sdma_engines;
14836 		ppd->vls_operational = ppd->vls_supported;
14837 	}
14838 
14839 	/*
14840 	 * Convert the ns parameter to the 64 * cclocks used in the CSR.
14841 	 * Limit the max if larger than the field holds.  If timeout is
14842 	 * non-zero, then the calculated field will be at least 1.
14843 	 *
14844 	 * Must be after icode is set up - the cclock rate depends
14845 	 * on knowing the hardware being used.
14846 	 */
14847 	dd->rcv_intr_timeout_csr = ns_to_cclock(dd, rcv_intr_timeout) / 64;
14848 	if (dd->rcv_intr_timeout_csr >
14849 			RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_MASK)
14850 		dd->rcv_intr_timeout_csr =
14851 			RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_MASK;
14852 	else if (dd->rcv_intr_timeout_csr == 0 && rcv_intr_timeout)
14853 		dd->rcv_intr_timeout_csr = 1;
14854 
14855 	/* needs to be done before we look for the peer device */
14856 	read_guid(dd);
14857 
14858 	/* set up shared ASIC data with peer device */
14859 	ret = init_asic_data(dd);
14860 	if (ret)
14861 		goto bail_cleanup;
14862 
14863 	/* obtain chip sizes, reset chip CSRs */
14864 	init_chip(dd);
14865 
14866 	/* read in the PCIe link speed information */
14867 	ret = pcie_speeds(dd);
14868 	if (ret)
14869 		goto bail_cleanup;
14870 
14871 	/* call before get_platform_config(), after init_chip_resources() */
14872 	ret = eprom_init(dd);
14873 	if (ret)
14874 		goto bail_free_rcverr;
14875 
14876 	/* Needs to be called before hfi1_firmware_init */
14877 	get_platform_config(dd);
14878 
14879 	/* read in firmware */
14880 	ret = hfi1_firmware_init(dd);
14881 	if (ret)
14882 		goto bail_cleanup;
14883 
14884 	/*
14885 	 * In general, the PCIe Gen3 transition must occur after the
14886 	 * chip has been idled (so it won't initiate any PCIe transactions
14887 	 * e.g. an interrupt) and before the driver changes any registers
14888 	 * (the transition will reset the registers).
14889 	 *
14890 	 * In particular, place this call after:
14891 	 * - init_chip()     - the chip will not initiate any PCIe transactions
14892 	 * - pcie_speeds()   - reads the current link speed
14893 	 * - hfi1_firmware_init() - the needed firmware is ready to be
14894 	 *			    downloaded
14895 	 */
14896 	ret = do_pcie_gen3_transition(dd);
14897 	if (ret)
14898 		goto bail_cleanup;
14899 
14900 	/* start setting dd values and adjusting CSRs */
14901 	init_early_variables(dd);
14902 
14903 	parse_platform_config(dd);
14904 
14905 	ret = obtain_boardname(dd);
14906 	if (ret)
14907 		goto bail_cleanup;
14908 
14909 	snprintf(dd->boardversion, BOARD_VERS_MAX,
14910 		 "ChipABI %u.%u, ChipRev %u.%u, SW Compat %llu\n",
14911 		 HFI1_CHIP_VERS_MAJ, HFI1_CHIP_VERS_MIN,
14912 		 (u32)dd->majrev,
14913 		 (u32)dd->minrev,
14914 		 (dd->revision >> CCE_REVISION_SW_SHIFT)
14915 		    & CCE_REVISION_SW_MASK);
14916 
14917 	ret = set_up_context_variables(dd);
14918 	if (ret)
14919 		goto bail_cleanup;
14920 
14921 	/* set initial RXE CSRs */
14922 	init_rxe(dd);
14923 	/* set initial TXE CSRs */
14924 	init_txe(dd);
14925 	/* set initial non-RXE, non-TXE CSRs */
14926 	init_other(dd);
14927 	/* set up KDETH QP prefix in both RX and TX CSRs */
14928 	init_kdeth_qp(dd);
14929 
14930 	ret = hfi1_dev_affinity_init(dd);
14931 	if (ret)
14932 		goto bail_cleanup;
14933 
14934 	/* send contexts must be set up before receive contexts */
14935 	ret = init_send_contexts(dd);
14936 	if (ret)
14937 		goto bail_cleanup;
14938 
14939 	ret = hfi1_create_ctxts(dd);
14940 	if (ret)
14941 		goto bail_cleanup;
14942 
14943 	dd->rcvhdrsize = DEFAULT_RCVHDRSIZE;
14944 	/*
14945 	 * rcd[0] is guaranteed to be valid by this point. Also, all
14946 	 * context are using the same value, as per the module parameter.
14947 	 */
14948 	dd->rhf_offset = dd->rcd[0]->rcvhdrqentsize - sizeof(u64) / sizeof(u32);
14949 
14950 	ret = init_pervl_scs(dd);
14951 	if (ret)
14952 		goto bail_cleanup;
14953 
14954 	/* sdma init */
14955 	for (i = 0; i < dd->num_pports; ++i) {
14956 		ret = sdma_init(dd, i);
14957 		if (ret)
14958 			goto bail_cleanup;
14959 	}
14960 
14961 	/* use contexts created by hfi1_create_ctxts */
14962 	ret = set_up_interrupts(dd);
14963 	if (ret)
14964 		goto bail_cleanup;
14965 
14966 	/* set up LCB access - must be after set_up_interrupts() */
14967 	init_lcb_access(dd);
14968 
14969 	/*
14970 	 * Serial number is created from the base guid:
14971 	 * [27:24] = base guid [38:35]
14972 	 * [23: 0] = base guid [23: 0]
14973 	 */
14974 	snprintf(dd->serial, SERIAL_MAX, "0x%08llx\n",
14975 		 (dd->base_guid & 0xFFFFFF) |
14976 		     ((dd->base_guid >> 11) & 0xF000000));
14977 
14978 	dd->oui1 = dd->base_guid >> 56 & 0xFF;
14979 	dd->oui2 = dd->base_guid >> 48 & 0xFF;
14980 	dd->oui3 = dd->base_guid >> 40 & 0xFF;
14981 
14982 	ret = load_firmware(dd); /* asymmetric with dispose_firmware() */
14983 	if (ret)
14984 		goto bail_clear_intr;
14985 
14986 	thermal_init(dd);
14987 
14988 	ret = init_cntrs(dd);
14989 	if (ret)
14990 		goto bail_clear_intr;
14991 
14992 	ret = init_rcverr(dd);
14993 	if (ret)
14994 		goto bail_free_cntrs;
14995 
14996 	init_completion(&dd->user_comp);
14997 
14998 	/* The user refcount starts with one to inidicate an active device */
14999 	atomic_set(&dd->user_refcount, 1);
15000 
15001 	goto bail;
15002 
15003 bail_free_rcverr:
15004 	free_rcverr(dd);
15005 bail_free_cntrs:
15006 	free_cntrs(dd);
15007 bail_clear_intr:
15008 	clean_up_interrupts(dd);
15009 bail_cleanup:
15010 	hfi1_pcie_ddcleanup(dd);
15011 bail_free:
15012 	hfi1_free_devdata(dd);
15013 	dd = ERR_PTR(ret);
15014 bail:
15015 	return dd;
15016 }
15017 
15018 static u16 delay_cycles(struct hfi1_pportdata *ppd, u32 desired_egress_rate,
15019 			u32 dw_len)
15020 {
15021 	u32 delta_cycles;
15022 	u32 current_egress_rate = ppd->current_egress_rate;
15023 	/* rates here are in units of 10^6 bits/sec */
15024 
15025 	if (desired_egress_rate == -1)
15026 		return 0; /* shouldn't happen */
15027 
15028 	if (desired_egress_rate >= current_egress_rate)
15029 		return 0; /* we can't help go faster, only slower */
15030 
15031 	delta_cycles = egress_cycles(dw_len * 4, desired_egress_rate) -
15032 			egress_cycles(dw_len * 4, current_egress_rate);
15033 
15034 	return (u16)delta_cycles;
15035 }
15036 
15037 /**
15038  * create_pbc - build a pbc for transmission
15039  * @flags: special case flags or-ed in built pbc
15040  * @srate: static rate
15041  * @vl: vl
15042  * @dwlen: dword length (header words + data words + pbc words)
15043  *
15044  * Create a PBC with the given flags, rate, VL, and length.
15045  *
15046  * NOTE: The PBC created will not insert any HCRC - all callers but one are
15047  * for verbs, which does not use this PSM feature.  The lone other caller
15048  * is for the diagnostic interface which calls this if the user does not
15049  * supply their own PBC.
15050  */
15051 u64 create_pbc(struct hfi1_pportdata *ppd, u64 flags, int srate_mbs, u32 vl,
15052 	       u32 dw_len)
15053 {
15054 	u64 pbc, delay = 0;
15055 
15056 	if (unlikely(srate_mbs))
15057 		delay = delay_cycles(ppd, srate_mbs, dw_len);
15058 
15059 	pbc = flags
15060 		| (delay << PBC_STATIC_RATE_CONTROL_COUNT_SHIFT)
15061 		| ((u64)PBC_IHCRC_NONE << PBC_INSERT_HCRC_SHIFT)
15062 		| (vl & PBC_VL_MASK) << PBC_VL_SHIFT
15063 		| (dw_len & PBC_LENGTH_DWS_MASK)
15064 			<< PBC_LENGTH_DWS_SHIFT;
15065 
15066 	return pbc;
15067 }
15068 
15069 #define SBUS_THERMAL    0x4f
15070 #define SBUS_THERM_MONITOR_MODE 0x1
15071 
15072 #define THERM_FAILURE(dev, ret, reason) \
15073 	dd_dev_err((dd),						\
15074 		   "Thermal sensor initialization failed: %s (%d)\n",	\
15075 		   (reason), (ret))
15076 
15077 /*
15078  * Initialize the thermal sensor.
15079  *
15080  * After initialization, enable polling of thermal sensor through
15081  * SBus interface. In order for this to work, the SBus Master
15082  * firmware has to be loaded due to the fact that the HW polling
15083  * logic uses SBus interrupts, which are not supported with
15084  * default firmware. Otherwise, no data will be returned through
15085  * the ASIC_STS_THERM CSR.
15086  */
15087 static int thermal_init(struct hfi1_devdata *dd)
15088 {
15089 	int ret = 0;
15090 
15091 	if (dd->icode != ICODE_RTL_SILICON ||
15092 	    check_chip_resource(dd, CR_THERM_INIT, NULL))
15093 		return ret;
15094 
15095 	ret = acquire_chip_resource(dd, CR_SBUS, SBUS_TIMEOUT);
15096 	if (ret) {
15097 		THERM_FAILURE(dd, ret, "Acquire SBus");
15098 		return ret;
15099 	}
15100 
15101 	dd_dev_info(dd, "Initializing thermal sensor\n");
15102 	/* Disable polling of thermal readings */
15103 	write_csr(dd, ASIC_CFG_THERM_POLL_EN, 0x0);
15104 	msleep(100);
15105 	/* Thermal Sensor Initialization */
15106 	/*    Step 1: Reset the Thermal SBus Receiver */
15107 	ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0,
15108 				RESET_SBUS_RECEIVER, 0);
15109 	if (ret) {
15110 		THERM_FAILURE(dd, ret, "Bus Reset");
15111 		goto done;
15112 	}
15113 	/*    Step 2: Set Reset bit in Thermal block */
15114 	ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0,
15115 				WRITE_SBUS_RECEIVER, 0x1);
15116 	if (ret) {
15117 		THERM_FAILURE(dd, ret, "Therm Block Reset");
15118 		goto done;
15119 	}
15120 	/*    Step 3: Write clock divider value (100MHz -> 2MHz) */
15121 	ret = sbus_request_slow(dd, SBUS_THERMAL, 0x1,
15122 				WRITE_SBUS_RECEIVER, 0x32);
15123 	if (ret) {
15124 		THERM_FAILURE(dd, ret, "Write Clock Div");
15125 		goto done;
15126 	}
15127 	/*    Step 4: Select temperature mode */
15128 	ret = sbus_request_slow(dd, SBUS_THERMAL, 0x3,
15129 				WRITE_SBUS_RECEIVER,
15130 				SBUS_THERM_MONITOR_MODE);
15131 	if (ret) {
15132 		THERM_FAILURE(dd, ret, "Write Mode Sel");
15133 		goto done;
15134 	}
15135 	/*    Step 5: De-assert block reset and start conversion */
15136 	ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0,
15137 				WRITE_SBUS_RECEIVER, 0x2);
15138 	if (ret) {
15139 		THERM_FAILURE(dd, ret, "Write Reset Deassert");
15140 		goto done;
15141 	}
15142 	/*    Step 5.1: Wait for first conversion (21.5ms per spec) */
15143 	msleep(22);
15144 
15145 	/* Enable polling of thermal readings */
15146 	write_csr(dd, ASIC_CFG_THERM_POLL_EN, 0x1);
15147 
15148 	/* Set initialized flag */
15149 	ret = acquire_chip_resource(dd, CR_THERM_INIT, 0);
15150 	if (ret)
15151 		THERM_FAILURE(dd, ret, "Unable to set thermal init flag");
15152 
15153 done:
15154 	release_chip_resource(dd, CR_SBUS);
15155 	return ret;
15156 }
15157 
15158 static void handle_temp_err(struct hfi1_devdata *dd)
15159 {
15160 	struct hfi1_pportdata *ppd = &dd->pport[0];
15161 	/*
15162 	 * Thermal Critical Interrupt
15163 	 * Put the device into forced freeze mode, take link down to
15164 	 * offline, and put DC into reset.
15165 	 */
15166 	dd_dev_emerg(dd,
15167 		     "Critical temperature reached! Forcing device into freeze mode!\n");
15168 	dd->flags |= HFI1_FORCED_FREEZE;
15169 	start_freeze_handling(ppd, FREEZE_SELF | FREEZE_ABORT);
15170 	/*
15171 	 * Shut DC down as much and as quickly as possible.
15172 	 *
15173 	 * Step 1: Take the link down to OFFLINE. This will cause the
15174 	 *         8051 to put the Serdes in reset. However, we don't want to
15175 	 *         go through the entire link state machine since we want to
15176 	 *         shutdown ASAP. Furthermore, this is not a graceful shutdown
15177 	 *         but rather an attempt to save the chip.
15178 	 *         Code below is almost the same as quiet_serdes() but avoids
15179 	 *         all the extra work and the sleeps.
15180 	 */
15181 	ppd->driver_link_ready = 0;
15182 	ppd->link_enabled = 0;
15183 	set_physical_link_state(dd, (OPA_LINKDOWN_REASON_SMA_DISABLED << 8) |
15184 				PLS_OFFLINE);
15185 	/*
15186 	 * Step 2: Shutdown LCB and 8051
15187 	 *         After shutdown, do not restore DC_CFG_RESET value.
15188 	 */
15189 	dc_shutdown(dd);
15190 }
15191