1 /* 2 * Copyright(c) 2015, 2016 Intel Corporation. 3 * 4 * This file is provided under a dual BSD/GPLv2 license. When using or 5 * redistributing this file, you may do so under either license. 6 * 7 * GPL LICENSE SUMMARY 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of version 2 of the GNU General Public License as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, but 14 * WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 16 * General Public License for more details. 17 * 18 * BSD LICENSE 19 * 20 * Redistribution and use in source and binary forms, with or without 21 * modification, are permitted provided that the following conditions 22 * are met: 23 * 24 * - Redistributions of source code must retain the above copyright 25 * notice, this list of conditions and the following disclaimer. 26 * - Redistributions in binary form must reproduce the above copyright 27 * notice, this list of conditions and the following disclaimer in 28 * the documentation and/or other materials provided with the 29 * distribution. 30 * - Neither the name of Intel Corporation nor the names of its 31 * contributors may be used to endorse or promote products derived 32 * from this software without specific prior written permission. 33 * 34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 35 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 36 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 37 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 38 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 39 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 40 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 41 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 42 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 44 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 45 * 46 */ 47 48 /* 49 * This file contains all of the code that is specific to the HFI chip 50 */ 51 52 #include <linux/pci.h> 53 #include <linux/delay.h> 54 #include <linux/interrupt.h> 55 #include <linux/module.h> 56 57 #include "hfi.h" 58 #include "trace.h" 59 #include "mad.h" 60 #include "pio.h" 61 #include "sdma.h" 62 #include "eprom.h" 63 #include "efivar.h" 64 #include "platform.h" 65 #include "aspm.h" 66 #include "affinity.h" 67 68 #define NUM_IB_PORTS 1 69 70 uint kdeth_qp; 71 module_param_named(kdeth_qp, kdeth_qp, uint, S_IRUGO); 72 MODULE_PARM_DESC(kdeth_qp, "Set the KDETH queue pair prefix"); 73 74 uint num_vls = HFI1_MAX_VLS_SUPPORTED; 75 module_param(num_vls, uint, S_IRUGO); 76 MODULE_PARM_DESC(num_vls, "Set number of Virtual Lanes to use (1-8)"); 77 78 /* 79 * Default time to aggregate two 10K packets from the idle state 80 * (timer not running). The timer starts at the end of the first packet, 81 * so only the time for one 10K packet and header plus a bit extra is needed. 82 * 10 * 1024 + 64 header byte = 10304 byte 83 * 10304 byte / 12.5 GB/s = 824.32ns 84 */ 85 uint rcv_intr_timeout = (824 + 16); /* 16 is for coalescing interrupt */ 86 module_param(rcv_intr_timeout, uint, S_IRUGO); 87 MODULE_PARM_DESC(rcv_intr_timeout, "Receive interrupt mitigation timeout in ns"); 88 89 uint rcv_intr_count = 16; /* same as qib */ 90 module_param(rcv_intr_count, uint, S_IRUGO); 91 MODULE_PARM_DESC(rcv_intr_count, "Receive interrupt mitigation count"); 92 93 ushort link_crc_mask = SUPPORTED_CRCS; 94 module_param(link_crc_mask, ushort, S_IRUGO); 95 MODULE_PARM_DESC(link_crc_mask, "CRCs to use on the link"); 96 97 uint loopback; 98 module_param_named(loopback, loopback, uint, S_IRUGO); 99 MODULE_PARM_DESC(loopback, "Put into loopback mode (1 = serdes, 3 = external cable"); 100 101 /* Other driver tunables */ 102 uint rcv_intr_dynamic = 1; /* enable dynamic mode for rcv int mitigation*/ 103 static ushort crc_14b_sideband = 1; 104 static uint use_flr = 1; 105 uint quick_linkup; /* skip LNI */ 106 107 struct flag_table { 108 u64 flag; /* the flag */ 109 char *str; /* description string */ 110 u16 extra; /* extra information */ 111 u16 unused0; 112 u32 unused1; 113 }; 114 115 /* str must be a string constant */ 116 #define FLAG_ENTRY(str, extra, flag) {flag, str, extra} 117 #define FLAG_ENTRY0(str, flag) {flag, str, 0} 118 119 /* Send Error Consequences */ 120 #define SEC_WRITE_DROPPED 0x1 121 #define SEC_PACKET_DROPPED 0x2 122 #define SEC_SC_HALTED 0x4 /* per-context only */ 123 #define SEC_SPC_FREEZE 0x8 /* per-HFI only */ 124 125 #define DEFAULT_KRCVQS 2 126 #define MIN_KERNEL_KCTXTS 2 127 #define FIRST_KERNEL_KCTXT 1 128 /* sizes for both the QP and RSM map tables */ 129 #define NUM_MAP_ENTRIES 256 130 #define NUM_MAP_REGS 32 131 132 /* Bit offset into the GUID which carries HFI id information */ 133 #define GUID_HFI_INDEX_SHIFT 39 134 135 /* extract the emulation revision */ 136 #define emulator_rev(dd) ((dd)->irev >> 8) 137 /* parallel and serial emulation versions are 3 and 4 respectively */ 138 #define is_emulator_p(dd) ((((dd)->irev) & 0xf) == 3) 139 #define is_emulator_s(dd) ((((dd)->irev) & 0xf) == 4) 140 141 /* RSM fields */ 142 143 /* packet type */ 144 #define IB_PACKET_TYPE 2ull 145 #define QW_SHIFT 6ull 146 /* QPN[7..1] */ 147 #define QPN_WIDTH 7ull 148 149 /* LRH.BTH: QW 0, OFFSET 48 - for match */ 150 #define LRH_BTH_QW 0ull 151 #define LRH_BTH_BIT_OFFSET 48ull 152 #define LRH_BTH_OFFSET(off) ((LRH_BTH_QW << QW_SHIFT) | (off)) 153 #define LRH_BTH_MATCH_OFFSET LRH_BTH_OFFSET(LRH_BTH_BIT_OFFSET) 154 #define LRH_BTH_SELECT 155 #define LRH_BTH_MASK 3ull 156 #define LRH_BTH_VALUE 2ull 157 158 /* LRH.SC[3..0] QW 0, OFFSET 56 - for match */ 159 #define LRH_SC_QW 0ull 160 #define LRH_SC_BIT_OFFSET 56ull 161 #define LRH_SC_OFFSET(off) ((LRH_SC_QW << QW_SHIFT) | (off)) 162 #define LRH_SC_MATCH_OFFSET LRH_SC_OFFSET(LRH_SC_BIT_OFFSET) 163 #define LRH_SC_MASK 128ull 164 #define LRH_SC_VALUE 0ull 165 166 /* SC[n..0] QW 0, OFFSET 60 - for select */ 167 #define LRH_SC_SELECT_OFFSET ((LRH_SC_QW << QW_SHIFT) | (60ull)) 168 169 /* QPN[m+n:1] QW 1, OFFSET 1 */ 170 #define QPN_SELECT_OFFSET ((1ull << QW_SHIFT) | (1ull)) 171 172 /* defines to build power on SC2VL table */ 173 #define SC2VL_VAL( \ 174 num, \ 175 sc0, sc0val, \ 176 sc1, sc1val, \ 177 sc2, sc2val, \ 178 sc3, sc3val, \ 179 sc4, sc4val, \ 180 sc5, sc5val, \ 181 sc6, sc6val, \ 182 sc7, sc7val) \ 183 ( \ 184 ((u64)(sc0val) << SEND_SC2VLT##num##_SC##sc0##_SHIFT) | \ 185 ((u64)(sc1val) << SEND_SC2VLT##num##_SC##sc1##_SHIFT) | \ 186 ((u64)(sc2val) << SEND_SC2VLT##num##_SC##sc2##_SHIFT) | \ 187 ((u64)(sc3val) << SEND_SC2VLT##num##_SC##sc3##_SHIFT) | \ 188 ((u64)(sc4val) << SEND_SC2VLT##num##_SC##sc4##_SHIFT) | \ 189 ((u64)(sc5val) << SEND_SC2VLT##num##_SC##sc5##_SHIFT) | \ 190 ((u64)(sc6val) << SEND_SC2VLT##num##_SC##sc6##_SHIFT) | \ 191 ((u64)(sc7val) << SEND_SC2VLT##num##_SC##sc7##_SHIFT) \ 192 ) 193 194 #define DC_SC_VL_VAL( \ 195 range, \ 196 e0, e0val, \ 197 e1, e1val, \ 198 e2, e2val, \ 199 e3, e3val, \ 200 e4, e4val, \ 201 e5, e5val, \ 202 e6, e6val, \ 203 e7, e7val, \ 204 e8, e8val, \ 205 e9, e9val, \ 206 e10, e10val, \ 207 e11, e11val, \ 208 e12, e12val, \ 209 e13, e13val, \ 210 e14, e14val, \ 211 e15, e15val) \ 212 ( \ 213 ((u64)(e0val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e0##_SHIFT) | \ 214 ((u64)(e1val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e1##_SHIFT) | \ 215 ((u64)(e2val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e2##_SHIFT) | \ 216 ((u64)(e3val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e3##_SHIFT) | \ 217 ((u64)(e4val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e4##_SHIFT) | \ 218 ((u64)(e5val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e5##_SHIFT) | \ 219 ((u64)(e6val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e6##_SHIFT) | \ 220 ((u64)(e7val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e7##_SHIFT) | \ 221 ((u64)(e8val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e8##_SHIFT) | \ 222 ((u64)(e9val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e9##_SHIFT) | \ 223 ((u64)(e10val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e10##_SHIFT) | \ 224 ((u64)(e11val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e11##_SHIFT) | \ 225 ((u64)(e12val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e12##_SHIFT) | \ 226 ((u64)(e13val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e13##_SHIFT) | \ 227 ((u64)(e14val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e14##_SHIFT) | \ 228 ((u64)(e15val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e15##_SHIFT) \ 229 ) 230 231 /* all CceStatus sub-block freeze bits */ 232 #define ALL_FROZE (CCE_STATUS_SDMA_FROZE_SMASK \ 233 | CCE_STATUS_RXE_FROZE_SMASK \ 234 | CCE_STATUS_TXE_FROZE_SMASK \ 235 | CCE_STATUS_TXE_PIO_FROZE_SMASK) 236 /* all CceStatus sub-block TXE pause bits */ 237 #define ALL_TXE_PAUSE (CCE_STATUS_TXE_PIO_PAUSED_SMASK \ 238 | CCE_STATUS_TXE_PAUSED_SMASK \ 239 | CCE_STATUS_SDMA_PAUSED_SMASK) 240 /* all CceStatus sub-block RXE pause bits */ 241 #define ALL_RXE_PAUSE CCE_STATUS_RXE_PAUSED_SMASK 242 243 #define CNTR_MAX 0xFFFFFFFFFFFFFFFFULL 244 #define CNTR_32BIT_MAX 0x00000000FFFFFFFF 245 246 /* 247 * CCE Error flags. 248 */ 249 static struct flag_table cce_err_status_flags[] = { 250 /* 0*/ FLAG_ENTRY0("CceCsrParityErr", 251 CCE_ERR_STATUS_CCE_CSR_PARITY_ERR_SMASK), 252 /* 1*/ FLAG_ENTRY0("CceCsrReadBadAddrErr", 253 CCE_ERR_STATUS_CCE_CSR_READ_BAD_ADDR_ERR_SMASK), 254 /* 2*/ FLAG_ENTRY0("CceCsrWriteBadAddrErr", 255 CCE_ERR_STATUS_CCE_CSR_WRITE_BAD_ADDR_ERR_SMASK), 256 /* 3*/ FLAG_ENTRY0("CceTrgtAsyncFifoParityErr", 257 CCE_ERR_STATUS_CCE_TRGT_ASYNC_FIFO_PARITY_ERR_SMASK), 258 /* 4*/ FLAG_ENTRY0("CceTrgtAccessErr", 259 CCE_ERR_STATUS_CCE_TRGT_ACCESS_ERR_SMASK), 260 /* 5*/ FLAG_ENTRY0("CceRspdDataParityErr", 261 CCE_ERR_STATUS_CCE_RSPD_DATA_PARITY_ERR_SMASK), 262 /* 6*/ FLAG_ENTRY0("CceCli0AsyncFifoParityErr", 263 CCE_ERR_STATUS_CCE_CLI0_ASYNC_FIFO_PARITY_ERR_SMASK), 264 /* 7*/ FLAG_ENTRY0("CceCsrCfgBusParityErr", 265 CCE_ERR_STATUS_CCE_CSR_CFG_BUS_PARITY_ERR_SMASK), 266 /* 8*/ FLAG_ENTRY0("CceCli2AsyncFifoParityErr", 267 CCE_ERR_STATUS_CCE_CLI2_ASYNC_FIFO_PARITY_ERR_SMASK), 268 /* 9*/ FLAG_ENTRY0("CceCli1AsyncFifoPioCrdtParityErr", 269 CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_PIO_CRDT_PARITY_ERR_SMASK), 270 /*10*/ FLAG_ENTRY0("CceCli1AsyncFifoPioCrdtParityErr", 271 CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_SDMA_HD_PARITY_ERR_SMASK), 272 /*11*/ FLAG_ENTRY0("CceCli1AsyncFifoRxdmaParityError", 273 CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_RXDMA_PARITY_ERROR_SMASK), 274 /*12*/ FLAG_ENTRY0("CceCli1AsyncFifoDbgParityError", 275 CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_DBG_PARITY_ERROR_SMASK), 276 /*13*/ FLAG_ENTRY0("PcicRetryMemCorErr", 277 CCE_ERR_STATUS_PCIC_RETRY_MEM_COR_ERR_SMASK), 278 /*14*/ FLAG_ENTRY0("PcicRetryMemCorErr", 279 CCE_ERR_STATUS_PCIC_RETRY_SOT_MEM_COR_ERR_SMASK), 280 /*15*/ FLAG_ENTRY0("PcicPostHdQCorErr", 281 CCE_ERR_STATUS_PCIC_POST_HD_QCOR_ERR_SMASK), 282 /*16*/ FLAG_ENTRY0("PcicPostHdQCorErr", 283 CCE_ERR_STATUS_PCIC_POST_DAT_QCOR_ERR_SMASK), 284 /*17*/ FLAG_ENTRY0("PcicPostHdQCorErr", 285 CCE_ERR_STATUS_PCIC_CPL_HD_QCOR_ERR_SMASK), 286 /*18*/ FLAG_ENTRY0("PcicCplDatQCorErr", 287 CCE_ERR_STATUS_PCIC_CPL_DAT_QCOR_ERR_SMASK), 288 /*19*/ FLAG_ENTRY0("PcicNPostHQParityErr", 289 CCE_ERR_STATUS_PCIC_NPOST_HQ_PARITY_ERR_SMASK), 290 /*20*/ FLAG_ENTRY0("PcicNPostDatQParityErr", 291 CCE_ERR_STATUS_PCIC_NPOST_DAT_QPARITY_ERR_SMASK), 292 /*21*/ FLAG_ENTRY0("PcicRetryMemUncErr", 293 CCE_ERR_STATUS_PCIC_RETRY_MEM_UNC_ERR_SMASK), 294 /*22*/ FLAG_ENTRY0("PcicRetrySotMemUncErr", 295 CCE_ERR_STATUS_PCIC_RETRY_SOT_MEM_UNC_ERR_SMASK), 296 /*23*/ FLAG_ENTRY0("PcicPostHdQUncErr", 297 CCE_ERR_STATUS_PCIC_POST_HD_QUNC_ERR_SMASK), 298 /*24*/ FLAG_ENTRY0("PcicPostDatQUncErr", 299 CCE_ERR_STATUS_PCIC_POST_DAT_QUNC_ERR_SMASK), 300 /*25*/ FLAG_ENTRY0("PcicCplHdQUncErr", 301 CCE_ERR_STATUS_PCIC_CPL_HD_QUNC_ERR_SMASK), 302 /*26*/ FLAG_ENTRY0("PcicCplDatQUncErr", 303 CCE_ERR_STATUS_PCIC_CPL_DAT_QUNC_ERR_SMASK), 304 /*27*/ FLAG_ENTRY0("PcicTransmitFrontParityErr", 305 CCE_ERR_STATUS_PCIC_TRANSMIT_FRONT_PARITY_ERR_SMASK), 306 /*28*/ FLAG_ENTRY0("PcicTransmitBackParityErr", 307 CCE_ERR_STATUS_PCIC_TRANSMIT_BACK_PARITY_ERR_SMASK), 308 /*29*/ FLAG_ENTRY0("PcicReceiveParityErr", 309 CCE_ERR_STATUS_PCIC_RECEIVE_PARITY_ERR_SMASK), 310 /*30*/ FLAG_ENTRY0("CceTrgtCplTimeoutErr", 311 CCE_ERR_STATUS_CCE_TRGT_CPL_TIMEOUT_ERR_SMASK), 312 /*31*/ FLAG_ENTRY0("LATriggered", 313 CCE_ERR_STATUS_LA_TRIGGERED_SMASK), 314 /*32*/ FLAG_ENTRY0("CceSegReadBadAddrErr", 315 CCE_ERR_STATUS_CCE_SEG_READ_BAD_ADDR_ERR_SMASK), 316 /*33*/ FLAG_ENTRY0("CceSegWriteBadAddrErr", 317 CCE_ERR_STATUS_CCE_SEG_WRITE_BAD_ADDR_ERR_SMASK), 318 /*34*/ FLAG_ENTRY0("CceRcplAsyncFifoParityErr", 319 CCE_ERR_STATUS_CCE_RCPL_ASYNC_FIFO_PARITY_ERR_SMASK), 320 /*35*/ FLAG_ENTRY0("CceRxdmaConvFifoParityErr", 321 CCE_ERR_STATUS_CCE_RXDMA_CONV_FIFO_PARITY_ERR_SMASK), 322 /*36*/ FLAG_ENTRY0("CceMsixTableCorErr", 323 CCE_ERR_STATUS_CCE_MSIX_TABLE_COR_ERR_SMASK), 324 /*37*/ FLAG_ENTRY0("CceMsixTableUncErr", 325 CCE_ERR_STATUS_CCE_MSIX_TABLE_UNC_ERR_SMASK), 326 /*38*/ FLAG_ENTRY0("CceIntMapCorErr", 327 CCE_ERR_STATUS_CCE_INT_MAP_COR_ERR_SMASK), 328 /*39*/ FLAG_ENTRY0("CceIntMapUncErr", 329 CCE_ERR_STATUS_CCE_INT_MAP_UNC_ERR_SMASK), 330 /*40*/ FLAG_ENTRY0("CceMsixCsrParityErr", 331 CCE_ERR_STATUS_CCE_MSIX_CSR_PARITY_ERR_SMASK), 332 /*41-63 reserved*/ 333 }; 334 335 /* 336 * Misc Error flags 337 */ 338 #define MES(text) MISC_ERR_STATUS_MISC_##text##_ERR_SMASK 339 static struct flag_table misc_err_status_flags[] = { 340 /* 0*/ FLAG_ENTRY0("CSR_PARITY", MES(CSR_PARITY)), 341 /* 1*/ FLAG_ENTRY0("CSR_READ_BAD_ADDR", MES(CSR_READ_BAD_ADDR)), 342 /* 2*/ FLAG_ENTRY0("CSR_WRITE_BAD_ADDR", MES(CSR_WRITE_BAD_ADDR)), 343 /* 3*/ FLAG_ENTRY0("SBUS_WRITE_FAILED", MES(SBUS_WRITE_FAILED)), 344 /* 4*/ FLAG_ENTRY0("KEY_MISMATCH", MES(KEY_MISMATCH)), 345 /* 5*/ FLAG_ENTRY0("FW_AUTH_FAILED", MES(FW_AUTH_FAILED)), 346 /* 6*/ FLAG_ENTRY0("EFUSE_CSR_PARITY", MES(EFUSE_CSR_PARITY)), 347 /* 7*/ FLAG_ENTRY0("EFUSE_READ_BAD_ADDR", MES(EFUSE_READ_BAD_ADDR)), 348 /* 8*/ FLAG_ENTRY0("EFUSE_WRITE", MES(EFUSE_WRITE)), 349 /* 9*/ FLAG_ENTRY0("EFUSE_DONE_PARITY", MES(EFUSE_DONE_PARITY)), 350 /*10*/ FLAG_ENTRY0("INVALID_EEP_CMD", MES(INVALID_EEP_CMD)), 351 /*11*/ FLAG_ENTRY0("MBIST_FAIL", MES(MBIST_FAIL)), 352 /*12*/ FLAG_ENTRY0("PLL_LOCK_FAIL", MES(PLL_LOCK_FAIL)) 353 }; 354 355 /* 356 * TXE PIO Error flags and consequences 357 */ 358 static struct flag_table pio_err_status_flags[] = { 359 /* 0*/ FLAG_ENTRY("PioWriteBadCtxt", 360 SEC_WRITE_DROPPED, 361 SEND_PIO_ERR_STATUS_PIO_WRITE_BAD_CTXT_ERR_SMASK), 362 /* 1*/ FLAG_ENTRY("PioWriteAddrParity", 363 SEC_SPC_FREEZE, 364 SEND_PIO_ERR_STATUS_PIO_WRITE_ADDR_PARITY_ERR_SMASK), 365 /* 2*/ FLAG_ENTRY("PioCsrParity", 366 SEC_SPC_FREEZE, 367 SEND_PIO_ERR_STATUS_PIO_CSR_PARITY_ERR_SMASK), 368 /* 3*/ FLAG_ENTRY("PioSbMemFifo0", 369 SEC_SPC_FREEZE, 370 SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO0_ERR_SMASK), 371 /* 4*/ FLAG_ENTRY("PioSbMemFifo1", 372 SEC_SPC_FREEZE, 373 SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO1_ERR_SMASK), 374 /* 5*/ FLAG_ENTRY("PioPccFifoParity", 375 SEC_SPC_FREEZE, 376 SEND_PIO_ERR_STATUS_PIO_PCC_FIFO_PARITY_ERR_SMASK), 377 /* 6*/ FLAG_ENTRY("PioPecFifoParity", 378 SEC_SPC_FREEZE, 379 SEND_PIO_ERR_STATUS_PIO_PEC_FIFO_PARITY_ERR_SMASK), 380 /* 7*/ FLAG_ENTRY("PioSbrdctlCrrelParity", 381 SEC_SPC_FREEZE, 382 SEND_PIO_ERR_STATUS_PIO_SBRDCTL_CRREL_PARITY_ERR_SMASK), 383 /* 8*/ FLAG_ENTRY("PioSbrdctrlCrrelFifoParity", 384 SEC_SPC_FREEZE, 385 SEND_PIO_ERR_STATUS_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR_SMASK), 386 /* 9*/ FLAG_ENTRY("PioPktEvictFifoParityErr", 387 SEC_SPC_FREEZE, 388 SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_FIFO_PARITY_ERR_SMASK), 389 /*10*/ FLAG_ENTRY("PioSmPktResetParity", 390 SEC_SPC_FREEZE, 391 SEND_PIO_ERR_STATUS_PIO_SM_PKT_RESET_PARITY_ERR_SMASK), 392 /*11*/ FLAG_ENTRY("PioVlLenMemBank0Unc", 393 SEC_SPC_FREEZE, 394 SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_UNC_ERR_SMASK), 395 /*12*/ FLAG_ENTRY("PioVlLenMemBank1Unc", 396 SEC_SPC_FREEZE, 397 SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_UNC_ERR_SMASK), 398 /*13*/ FLAG_ENTRY("PioVlLenMemBank0Cor", 399 0, 400 SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_COR_ERR_SMASK), 401 /*14*/ FLAG_ENTRY("PioVlLenMemBank1Cor", 402 0, 403 SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_COR_ERR_SMASK), 404 /*15*/ FLAG_ENTRY("PioCreditRetFifoParity", 405 SEC_SPC_FREEZE, 406 SEND_PIO_ERR_STATUS_PIO_CREDIT_RET_FIFO_PARITY_ERR_SMASK), 407 /*16*/ FLAG_ENTRY("PioPpmcPblFifo", 408 SEC_SPC_FREEZE, 409 SEND_PIO_ERR_STATUS_PIO_PPMC_PBL_FIFO_ERR_SMASK), 410 /*17*/ FLAG_ENTRY("PioInitSmIn", 411 0, 412 SEND_PIO_ERR_STATUS_PIO_INIT_SM_IN_ERR_SMASK), 413 /*18*/ FLAG_ENTRY("PioPktEvictSmOrArbSm", 414 SEC_SPC_FREEZE, 415 SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_SM_OR_ARB_SM_ERR_SMASK), 416 /*19*/ FLAG_ENTRY("PioHostAddrMemUnc", 417 SEC_SPC_FREEZE, 418 SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_UNC_ERR_SMASK), 419 /*20*/ FLAG_ENTRY("PioHostAddrMemCor", 420 0, 421 SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_COR_ERR_SMASK), 422 /*21*/ FLAG_ENTRY("PioWriteDataParity", 423 SEC_SPC_FREEZE, 424 SEND_PIO_ERR_STATUS_PIO_WRITE_DATA_PARITY_ERR_SMASK), 425 /*22*/ FLAG_ENTRY("PioStateMachine", 426 SEC_SPC_FREEZE, 427 SEND_PIO_ERR_STATUS_PIO_STATE_MACHINE_ERR_SMASK), 428 /*23*/ FLAG_ENTRY("PioWriteQwValidParity", 429 SEC_WRITE_DROPPED | SEC_SPC_FREEZE, 430 SEND_PIO_ERR_STATUS_PIO_WRITE_QW_VALID_PARITY_ERR_SMASK), 431 /*24*/ FLAG_ENTRY("PioBlockQwCountParity", 432 SEC_WRITE_DROPPED | SEC_SPC_FREEZE, 433 SEND_PIO_ERR_STATUS_PIO_BLOCK_QW_COUNT_PARITY_ERR_SMASK), 434 /*25*/ FLAG_ENTRY("PioVlfVlLenParity", 435 SEC_SPC_FREEZE, 436 SEND_PIO_ERR_STATUS_PIO_VLF_VL_LEN_PARITY_ERR_SMASK), 437 /*26*/ FLAG_ENTRY("PioVlfSopParity", 438 SEC_SPC_FREEZE, 439 SEND_PIO_ERR_STATUS_PIO_VLF_SOP_PARITY_ERR_SMASK), 440 /*27*/ FLAG_ENTRY("PioVlFifoParity", 441 SEC_SPC_FREEZE, 442 SEND_PIO_ERR_STATUS_PIO_VL_FIFO_PARITY_ERR_SMASK), 443 /*28*/ FLAG_ENTRY("PioPpmcBqcMemParity", 444 SEC_SPC_FREEZE, 445 SEND_PIO_ERR_STATUS_PIO_PPMC_BQC_MEM_PARITY_ERR_SMASK), 446 /*29*/ FLAG_ENTRY("PioPpmcSopLen", 447 SEC_SPC_FREEZE, 448 SEND_PIO_ERR_STATUS_PIO_PPMC_SOP_LEN_ERR_SMASK), 449 /*30-31 reserved*/ 450 /*32*/ FLAG_ENTRY("PioCurrentFreeCntParity", 451 SEC_SPC_FREEZE, 452 SEND_PIO_ERR_STATUS_PIO_CURRENT_FREE_CNT_PARITY_ERR_SMASK), 453 /*33*/ FLAG_ENTRY("PioLastReturnedCntParity", 454 SEC_SPC_FREEZE, 455 SEND_PIO_ERR_STATUS_PIO_LAST_RETURNED_CNT_PARITY_ERR_SMASK), 456 /*34*/ FLAG_ENTRY("PioPccSopHeadParity", 457 SEC_SPC_FREEZE, 458 SEND_PIO_ERR_STATUS_PIO_PCC_SOP_HEAD_PARITY_ERR_SMASK), 459 /*35*/ FLAG_ENTRY("PioPecSopHeadParityErr", 460 SEC_SPC_FREEZE, 461 SEND_PIO_ERR_STATUS_PIO_PEC_SOP_HEAD_PARITY_ERR_SMASK), 462 /*36-63 reserved*/ 463 }; 464 465 /* TXE PIO errors that cause an SPC freeze */ 466 #define ALL_PIO_FREEZE_ERR \ 467 (SEND_PIO_ERR_STATUS_PIO_WRITE_ADDR_PARITY_ERR_SMASK \ 468 | SEND_PIO_ERR_STATUS_PIO_CSR_PARITY_ERR_SMASK \ 469 | SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO0_ERR_SMASK \ 470 | SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO1_ERR_SMASK \ 471 | SEND_PIO_ERR_STATUS_PIO_PCC_FIFO_PARITY_ERR_SMASK \ 472 | SEND_PIO_ERR_STATUS_PIO_PEC_FIFO_PARITY_ERR_SMASK \ 473 | SEND_PIO_ERR_STATUS_PIO_SBRDCTL_CRREL_PARITY_ERR_SMASK \ 474 | SEND_PIO_ERR_STATUS_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR_SMASK \ 475 | SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_FIFO_PARITY_ERR_SMASK \ 476 | SEND_PIO_ERR_STATUS_PIO_SM_PKT_RESET_PARITY_ERR_SMASK \ 477 | SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_UNC_ERR_SMASK \ 478 | SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_UNC_ERR_SMASK \ 479 | SEND_PIO_ERR_STATUS_PIO_CREDIT_RET_FIFO_PARITY_ERR_SMASK \ 480 | SEND_PIO_ERR_STATUS_PIO_PPMC_PBL_FIFO_ERR_SMASK \ 481 | SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_SM_OR_ARB_SM_ERR_SMASK \ 482 | SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_UNC_ERR_SMASK \ 483 | SEND_PIO_ERR_STATUS_PIO_WRITE_DATA_PARITY_ERR_SMASK \ 484 | SEND_PIO_ERR_STATUS_PIO_STATE_MACHINE_ERR_SMASK \ 485 | SEND_PIO_ERR_STATUS_PIO_WRITE_QW_VALID_PARITY_ERR_SMASK \ 486 | SEND_PIO_ERR_STATUS_PIO_BLOCK_QW_COUNT_PARITY_ERR_SMASK \ 487 | SEND_PIO_ERR_STATUS_PIO_VLF_VL_LEN_PARITY_ERR_SMASK \ 488 | SEND_PIO_ERR_STATUS_PIO_VLF_SOP_PARITY_ERR_SMASK \ 489 | SEND_PIO_ERR_STATUS_PIO_VL_FIFO_PARITY_ERR_SMASK \ 490 | SEND_PIO_ERR_STATUS_PIO_PPMC_BQC_MEM_PARITY_ERR_SMASK \ 491 | SEND_PIO_ERR_STATUS_PIO_PPMC_SOP_LEN_ERR_SMASK \ 492 | SEND_PIO_ERR_STATUS_PIO_CURRENT_FREE_CNT_PARITY_ERR_SMASK \ 493 | SEND_PIO_ERR_STATUS_PIO_LAST_RETURNED_CNT_PARITY_ERR_SMASK \ 494 | SEND_PIO_ERR_STATUS_PIO_PCC_SOP_HEAD_PARITY_ERR_SMASK \ 495 | SEND_PIO_ERR_STATUS_PIO_PEC_SOP_HEAD_PARITY_ERR_SMASK) 496 497 /* 498 * TXE SDMA Error flags 499 */ 500 static struct flag_table sdma_err_status_flags[] = { 501 /* 0*/ FLAG_ENTRY0("SDmaRpyTagErr", 502 SEND_DMA_ERR_STATUS_SDMA_RPY_TAG_ERR_SMASK), 503 /* 1*/ FLAG_ENTRY0("SDmaCsrParityErr", 504 SEND_DMA_ERR_STATUS_SDMA_CSR_PARITY_ERR_SMASK), 505 /* 2*/ FLAG_ENTRY0("SDmaPcieReqTrackingUncErr", 506 SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_UNC_ERR_SMASK), 507 /* 3*/ FLAG_ENTRY0("SDmaPcieReqTrackingCorErr", 508 SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_COR_ERR_SMASK), 509 /*04-63 reserved*/ 510 }; 511 512 /* TXE SDMA errors that cause an SPC freeze */ 513 #define ALL_SDMA_FREEZE_ERR \ 514 (SEND_DMA_ERR_STATUS_SDMA_RPY_TAG_ERR_SMASK \ 515 | SEND_DMA_ERR_STATUS_SDMA_CSR_PARITY_ERR_SMASK \ 516 | SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_UNC_ERR_SMASK) 517 518 /* SendEgressErrInfo bits that correspond to a PortXmitDiscard counter */ 519 #define PORT_DISCARD_EGRESS_ERRS \ 520 (SEND_EGRESS_ERR_INFO_TOO_LONG_IB_PACKET_ERR_SMASK \ 521 | SEND_EGRESS_ERR_INFO_VL_MAPPING_ERR_SMASK \ 522 | SEND_EGRESS_ERR_INFO_VL_ERR_SMASK) 523 524 /* 525 * TXE Egress Error flags 526 */ 527 #define SEES(text) SEND_EGRESS_ERR_STATUS_##text##_ERR_SMASK 528 static struct flag_table egress_err_status_flags[] = { 529 /* 0*/ FLAG_ENTRY0("TxPktIntegrityMemCorErr", SEES(TX_PKT_INTEGRITY_MEM_COR)), 530 /* 1*/ FLAG_ENTRY0("TxPktIntegrityMemUncErr", SEES(TX_PKT_INTEGRITY_MEM_UNC)), 531 /* 2 reserved */ 532 /* 3*/ FLAG_ENTRY0("TxEgressFifoUnderrunOrParityErr", 533 SEES(TX_EGRESS_FIFO_UNDERRUN_OR_PARITY)), 534 /* 4*/ FLAG_ENTRY0("TxLinkdownErr", SEES(TX_LINKDOWN)), 535 /* 5*/ FLAG_ENTRY0("TxIncorrectLinkStateErr", SEES(TX_INCORRECT_LINK_STATE)), 536 /* 6 reserved */ 537 /* 7*/ FLAG_ENTRY0("TxPioLaunchIntfParityErr", 538 SEES(TX_PIO_LAUNCH_INTF_PARITY)), 539 /* 8*/ FLAG_ENTRY0("TxSdmaLaunchIntfParityErr", 540 SEES(TX_SDMA_LAUNCH_INTF_PARITY)), 541 /* 9-10 reserved */ 542 /*11*/ FLAG_ENTRY0("TxSbrdCtlStateMachineParityErr", 543 SEES(TX_SBRD_CTL_STATE_MACHINE_PARITY)), 544 /*12*/ FLAG_ENTRY0("TxIllegalVLErr", SEES(TX_ILLEGAL_VL)), 545 /*13*/ FLAG_ENTRY0("TxLaunchCsrParityErr", SEES(TX_LAUNCH_CSR_PARITY)), 546 /*14*/ FLAG_ENTRY0("TxSbrdCtlCsrParityErr", SEES(TX_SBRD_CTL_CSR_PARITY)), 547 /*15*/ FLAG_ENTRY0("TxConfigParityErr", SEES(TX_CONFIG_PARITY)), 548 /*16*/ FLAG_ENTRY0("TxSdma0DisallowedPacketErr", 549 SEES(TX_SDMA0_DISALLOWED_PACKET)), 550 /*17*/ FLAG_ENTRY0("TxSdma1DisallowedPacketErr", 551 SEES(TX_SDMA1_DISALLOWED_PACKET)), 552 /*18*/ FLAG_ENTRY0("TxSdma2DisallowedPacketErr", 553 SEES(TX_SDMA2_DISALLOWED_PACKET)), 554 /*19*/ FLAG_ENTRY0("TxSdma3DisallowedPacketErr", 555 SEES(TX_SDMA3_DISALLOWED_PACKET)), 556 /*20*/ FLAG_ENTRY0("TxSdma4DisallowedPacketErr", 557 SEES(TX_SDMA4_DISALLOWED_PACKET)), 558 /*21*/ FLAG_ENTRY0("TxSdma5DisallowedPacketErr", 559 SEES(TX_SDMA5_DISALLOWED_PACKET)), 560 /*22*/ FLAG_ENTRY0("TxSdma6DisallowedPacketErr", 561 SEES(TX_SDMA6_DISALLOWED_PACKET)), 562 /*23*/ FLAG_ENTRY0("TxSdma7DisallowedPacketErr", 563 SEES(TX_SDMA7_DISALLOWED_PACKET)), 564 /*24*/ FLAG_ENTRY0("TxSdma8DisallowedPacketErr", 565 SEES(TX_SDMA8_DISALLOWED_PACKET)), 566 /*25*/ FLAG_ENTRY0("TxSdma9DisallowedPacketErr", 567 SEES(TX_SDMA9_DISALLOWED_PACKET)), 568 /*26*/ FLAG_ENTRY0("TxSdma10DisallowedPacketErr", 569 SEES(TX_SDMA10_DISALLOWED_PACKET)), 570 /*27*/ FLAG_ENTRY0("TxSdma11DisallowedPacketErr", 571 SEES(TX_SDMA11_DISALLOWED_PACKET)), 572 /*28*/ FLAG_ENTRY0("TxSdma12DisallowedPacketErr", 573 SEES(TX_SDMA12_DISALLOWED_PACKET)), 574 /*29*/ FLAG_ENTRY0("TxSdma13DisallowedPacketErr", 575 SEES(TX_SDMA13_DISALLOWED_PACKET)), 576 /*30*/ FLAG_ENTRY0("TxSdma14DisallowedPacketErr", 577 SEES(TX_SDMA14_DISALLOWED_PACKET)), 578 /*31*/ FLAG_ENTRY0("TxSdma15DisallowedPacketErr", 579 SEES(TX_SDMA15_DISALLOWED_PACKET)), 580 /*32*/ FLAG_ENTRY0("TxLaunchFifo0UncOrParityErr", 581 SEES(TX_LAUNCH_FIFO0_UNC_OR_PARITY)), 582 /*33*/ FLAG_ENTRY0("TxLaunchFifo1UncOrParityErr", 583 SEES(TX_LAUNCH_FIFO1_UNC_OR_PARITY)), 584 /*34*/ FLAG_ENTRY0("TxLaunchFifo2UncOrParityErr", 585 SEES(TX_LAUNCH_FIFO2_UNC_OR_PARITY)), 586 /*35*/ FLAG_ENTRY0("TxLaunchFifo3UncOrParityErr", 587 SEES(TX_LAUNCH_FIFO3_UNC_OR_PARITY)), 588 /*36*/ FLAG_ENTRY0("TxLaunchFifo4UncOrParityErr", 589 SEES(TX_LAUNCH_FIFO4_UNC_OR_PARITY)), 590 /*37*/ FLAG_ENTRY0("TxLaunchFifo5UncOrParityErr", 591 SEES(TX_LAUNCH_FIFO5_UNC_OR_PARITY)), 592 /*38*/ FLAG_ENTRY0("TxLaunchFifo6UncOrParityErr", 593 SEES(TX_LAUNCH_FIFO6_UNC_OR_PARITY)), 594 /*39*/ FLAG_ENTRY0("TxLaunchFifo7UncOrParityErr", 595 SEES(TX_LAUNCH_FIFO7_UNC_OR_PARITY)), 596 /*40*/ FLAG_ENTRY0("TxLaunchFifo8UncOrParityErr", 597 SEES(TX_LAUNCH_FIFO8_UNC_OR_PARITY)), 598 /*41*/ FLAG_ENTRY0("TxCreditReturnParityErr", SEES(TX_CREDIT_RETURN_PARITY)), 599 /*42*/ FLAG_ENTRY0("TxSbHdrUncErr", SEES(TX_SB_HDR_UNC)), 600 /*43*/ FLAG_ENTRY0("TxReadSdmaMemoryUncErr", SEES(TX_READ_SDMA_MEMORY_UNC)), 601 /*44*/ FLAG_ENTRY0("TxReadPioMemoryUncErr", SEES(TX_READ_PIO_MEMORY_UNC)), 602 /*45*/ FLAG_ENTRY0("TxEgressFifoUncErr", SEES(TX_EGRESS_FIFO_UNC)), 603 /*46*/ FLAG_ENTRY0("TxHcrcInsertionErr", SEES(TX_HCRC_INSERTION)), 604 /*47*/ FLAG_ENTRY0("TxCreditReturnVLErr", SEES(TX_CREDIT_RETURN_VL)), 605 /*48*/ FLAG_ENTRY0("TxLaunchFifo0CorErr", SEES(TX_LAUNCH_FIFO0_COR)), 606 /*49*/ FLAG_ENTRY0("TxLaunchFifo1CorErr", SEES(TX_LAUNCH_FIFO1_COR)), 607 /*50*/ FLAG_ENTRY0("TxLaunchFifo2CorErr", SEES(TX_LAUNCH_FIFO2_COR)), 608 /*51*/ FLAG_ENTRY0("TxLaunchFifo3CorErr", SEES(TX_LAUNCH_FIFO3_COR)), 609 /*52*/ FLAG_ENTRY0("TxLaunchFifo4CorErr", SEES(TX_LAUNCH_FIFO4_COR)), 610 /*53*/ FLAG_ENTRY0("TxLaunchFifo5CorErr", SEES(TX_LAUNCH_FIFO5_COR)), 611 /*54*/ FLAG_ENTRY0("TxLaunchFifo6CorErr", SEES(TX_LAUNCH_FIFO6_COR)), 612 /*55*/ FLAG_ENTRY0("TxLaunchFifo7CorErr", SEES(TX_LAUNCH_FIFO7_COR)), 613 /*56*/ FLAG_ENTRY0("TxLaunchFifo8CorErr", SEES(TX_LAUNCH_FIFO8_COR)), 614 /*57*/ FLAG_ENTRY0("TxCreditOverrunErr", SEES(TX_CREDIT_OVERRUN)), 615 /*58*/ FLAG_ENTRY0("TxSbHdrCorErr", SEES(TX_SB_HDR_COR)), 616 /*59*/ FLAG_ENTRY0("TxReadSdmaMemoryCorErr", SEES(TX_READ_SDMA_MEMORY_COR)), 617 /*60*/ FLAG_ENTRY0("TxReadPioMemoryCorErr", SEES(TX_READ_PIO_MEMORY_COR)), 618 /*61*/ FLAG_ENTRY0("TxEgressFifoCorErr", SEES(TX_EGRESS_FIFO_COR)), 619 /*62*/ FLAG_ENTRY0("TxReadSdmaMemoryCsrUncErr", 620 SEES(TX_READ_SDMA_MEMORY_CSR_UNC)), 621 /*63*/ FLAG_ENTRY0("TxReadPioMemoryCsrUncErr", 622 SEES(TX_READ_PIO_MEMORY_CSR_UNC)), 623 }; 624 625 /* 626 * TXE Egress Error Info flags 627 */ 628 #define SEEI(text) SEND_EGRESS_ERR_INFO_##text##_ERR_SMASK 629 static struct flag_table egress_err_info_flags[] = { 630 /* 0*/ FLAG_ENTRY0("Reserved", 0ull), 631 /* 1*/ FLAG_ENTRY0("VLErr", SEEI(VL)), 632 /* 2*/ FLAG_ENTRY0("JobKeyErr", SEEI(JOB_KEY)), 633 /* 3*/ FLAG_ENTRY0("JobKeyErr", SEEI(JOB_KEY)), 634 /* 4*/ FLAG_ENTRY0("PartitionKeyErr", SEEI(PARTITION_KEY)), 635 /* 5*/ FLAG_ENTRY0("SLIDErr", SEEI(SLID)), 636 /* 6*/ FLAG_ENTRY0("OpcodeErr", SEEI(OPCODE)), 637 /* 7*/ FLAG_ENTRY0("VLMappingErr", SEEI(VL_MAPPING)), 638 /* 8*/ FLAG_ENTRY0("RawErr", SEEI(RAW)), 639 /* 9*/ FLAG_ENTRY0("RawIPv6Err", SEEI(RAW_IPV6)), 640 /*10*/ FLAG_ENTRY0("GRHErr", SEEI(GRH)), 641 /*11*/ FLAG_ENTRY0("BypassErr", SEEI(BYPASS)), 642 /*12*/ FLAG_ENTRY0("KDETHPacketsErr", SEEI(KDETH_PACKETS)), 643 /*13*/ FLAG_ENTRY0("NonKDETHPacketsErr", SEEI(NON_KDETH_PACKETS)), 644 /*14*/ FLAG_ENTRY0("TooSmallIBPacketsErr", SEEI(TOO_SMALL_IB_PACKETS)), 645 /*15*/ FLAG_ENTRY0("TooSmallBypassPacketsErr", SEEI(TOO_SMALL_BYPASS_PACKETS)), 646 /*16*/ FLAG_ENTRY0("PbcTestErr", SEEI(PBC_TEST)), 647 /*17*/ FLAG_ENTRY0("BadPktLenErr", SEEI(BAD_PKT_LEN)), 648 /*18*/ FLAG_ENTRY0("TooLongIBPacketErr", SEEI(TOO_LONG_IB_PACKET)), 649 /*19*/ FLAG_ENTRY0("TooLongBypassPacketsErr", SEEI(TOO_LONG_BYPASS_PACKETS)), 650 /*20*/ FLAG_ENTRY0("PbcStaticRateControlErr", SEEI(PBC_STATIC_RATE_CONTROL)), 651 /*21*/ FLAG_ENTRY0("BypassBadPktLenErr", SEEI(BAD_PKT_LEN)), 652 }; 653 654 /* TXE Egress errors that cause an SPC freeze */ 655 #define ALL_TXE_EGRESS_FREEZE_ERR \ 656 (SEES(TX_EGRESS_FIFO_UNDERRUN_OR_PARITY) \ 657 | SEES(TX_PIO_LAUNCH_INTF_PARITY) \ 658 | SEES(TX_SDMA_LAUNCH_INTF_PARITY) \ 659 | SEES(TX_SBRD_CTL_STATE_MACHINE_PARITY) \ 660 | SEES(TX_LAUNCH_CSR_PARITY) \ 661 | SEES(TX_SBRD_CTL_CSR_PARITY) \ 662 | SEES(TX_CONFIG_PARITY) \ 663 | SEES(TX_LAUNCH_FIFO0_UNC_OR_PARITY) \ 664 | SEES(TX_LAUNCH_FIFO1_UNC_OR_PARITY) \ 665 | SEES(TX_LAUNCH_FIFO2_UNC_OR_PARITY) \ 666 | SEES(TX_LAUNCH_FIFO3_UNC_OR_PARITY) \ 667 | SEES(TX_LAUNCH_FIFO4_UNC_OR_PARITY) \ 668 | SEES(TX_LAUNCH_FIFO5_UNC_OR_PARITY) \ 669 | SEES(TX_LAUNCH_FIFO6_UNC_OR_PARITY) \ 670 | SEES(TX_LAUNCH_FIFO7_UNC_OR_PARITY) \ 671 | SEES(TX_LAUNCH_FIFO8_UNC_OR_PARITY) \ 672 | SEES(TX_CREDIT_RETURN_PARITY)) 673 674 /* 675 * TXE Send error flags 676 */ 677 #define SES(name) SEND_ERR_STATUS_SEND_##name##_ERR_SMASK 678 static struct flag_table send_err_status_flags[] = { 679 /* 0*/ FLAG_ENTRY0("SendCsrParityErr", SES(CSR_PARITY)), 680 /* 1*/ FLAG_ENTRY0("SendCsrReadBadAddrErr", SES(CSR_READ_BAD_ADDR)), 681 /* 2*/ FLAG_ENTRY0("SendCsrWriteBadAddrErr", SES(CSR_WRITE_BAD_ADDR)) 682 }; 683 684 /* 685 * TXE Send Context Error flags and consequences 686 */ 687 static struct flag_table sc_err_status_flags[] = { 688 /* 0*/ FLAG_ENTRY("InconsistentSop", 689 SEC_PACKET_DROPPED | SEC_SC_HALTED, 690 SEND_CTXT_ERR_STATUS_PIO_INCONSISTENT_SOP_ERR_SMASK), 691 /* 1*/ FLAG_ENTRY("DisallowedPacket", 692 SEC_PACKET_DROPPED | SEC_SC_HALTED, 693 SEND_CTXT_ERR_STATUS_PIO_DISALLOWED_PACKET_ERR_SMASK), 694 /* 2*/ FLAG_ENTRY("WriteCrossesBoundary", 695 SEC_WRITE_DROPPED | SEC_SC_HALTED, 696 SEND_CTXT_ERR_STATUS_PIO_WRITE_CROSSES_BOUNDARY_ERR_SMASK), 697 /* 3*/ FLAG_ENTRY("WriteOverflow", 698 SEC_WRITE_DROPPED | SEC_SC_HALTED, 699 SEND_CTXT_ERR_STATUS_PIO_WRITE_OVERFLOW_ERR_SMASK), 700 /* 4*/ FLAG_ENTRY("WriteOutOfBounds", 701 SEC_WRITE_DROPPED | SEC_SC_HALTED, 702 SEND_CTXT_ERR_STATUS_PIO_WRITE_OUT_OF_BOUNDS_ERR_SMASK), 703 /* 5-63 reserved*/ 704 }; 705 706 /* 707 * RXE Receive Error flags 708 */ 709 #define RXES(name) RCV_ERR_STATUS_RX_##name##_ERR_SMASK 710 static struct flag_table rxe_err_status_flags[] = { 711 /* 0*/ FLAG_ENTRY0("RxDmaCsrCorErr", RXES(DMA_CSR_COR)), 712 /* 1*/ FLAG_ENTRY0("RxDcIntfParityErr", RXES(DC_INTF_PARITY)), 713 /* 2*/ FLAG_ENTRY0("RxRcvHdrUncErr", RXES(RCV_HDR_UNC)), 714 /* 3*/ FLAG_ENTRY0("RxRcvHdrCorErr", RXES(RCV_HDR_COR)), 715 /* 4*/ FLAG_ENTRY0("RxRcvDataUncErr", RXES(RCV_DATA_UNC)), 716 /* 5*/ FLAG_ENTRY0("RxRcvDataCorErr", RXES(RCV_DATA_COR)), 717 /* 6*/ FLAG_ENTRY0("RxRcvQpMapTableUncErr", RXES(RCV_QP_MAP_TABLE_UNC)), 718 /* 7*/ FLAG_ENTRY0("RxRcvQpMapTableCorErr", RXES(RCV_QP_MAP_TABLE_COR)), 719 /* 8*/ FLAG_ENTRY0("RxRcvCsrParityErr", RXES(RCV_CSR_PARITY)), 720 /* 9*/ FLAG_ENTRY0("RxDcSopEopParityErr", RXES(DC_SOP_EOP_PARITY)), 721 /*10*/ FLAG_ENTRY0("RxDmaFlagUncErr", RXES(DMA_FLAG_UNC)), 722 /*11*/ FLAG_ENTRY0("RxDmaFlagCorErr", RXES(DMA_FLAG_COR)), 723 /*12*/ FLAG_ENTRY0("RxRcvFsmEncodingErr", RXES(RCV_FSM_ENCODING)), 724 /*13*/ FLAG_ENTRY0("RxRbufFreeListUncErr", RXES(RBUF_FREE_LIST_UNC)), 725 /*14*/ FLAG_ENTRY0("RxRbufFreeListCorErr", RXES(RBUF_FREE_LIST_COR)), 726 /*15*/ FLAG_ENTRY0("RxRbufLookupDesRegUncErr", RXES(RBUF_LOOKUP_DES_REG_UNC)), 727 /*16*/ FLAG_ENTRY0("RxRbufLookupDesRegUncCorErr", 728 RXES(RBUF_LOOKUP_DES_REG_UNC_COR)), 729 /*17*/ FLAG_ENTRY0("RxRbufLookupDesUncErr", RXES(RBUF_LOOKUP_DES_UNC)), 730 /*18*/ FLAG_ENTRY0("RxRbufLookupDesCorErr", RXES(RBUF_LOOKUP_DES_COR)), 731 /*19*/ FLAG_ENTRY0("RxRbufBlockListReadUncErr", 732 RXES(RBUF_BLOCK_LIST_READ_UNC)), 733 /*20*/ FLAG_ENTRY0("RxRbufBlockListReadCorErr", 734 RXES(RBUF_BLOCK_LIST_READ_COR)), 735 /*21*/ FLAG_ENTRY0("RxRbufCsrQHeadBufNumParityErr", 736 RXES(RBUF_CSR_QHEAD_BUF_NUM_PARITY)), 737 /*22*/ FLAG_ENTRY0("RxRbufCsrQEntCntParityErr", 738 RXES(RBUF_CSR_QENT_CNT_PARITY)), 739 /*23*/ FLAG_ENTRY0("RxRbufCsrQNextBufParityErr", 740 RXES(RBUF_CSR_QNEXT_BUF_PARITY)), 741 /*24*/ FLAG_ENTRY0("RxRbufCsrQVldBitParityErr", 742 RXES(RBUF_CSR_QVLD_BIT_PARITY)), 743 /*25*/ FLAG_ENTRY0("RxRbufCsrQHdPtrParityErr", RXES(RBUF_CSR_QHD_PTR_PARITY)), 744 /*26*/ FLAG_ENTRY0("RxRbufCsrQTlPtrParityErr", RXES(RBUF_CSR_QTL_PTR_PARITY)), 745 /*27*/ FLAG_ENTRY0("RxRbufCsrQNumOfPktParityErr", 746 RXES(RBUF_CSR_QNUM_OF_PKT_PARITY)), 747 /*28*/ FLAG_ENTRY0("RxRbufCsrQEOPDWParityErr", RXES(RBUF_CSR_QEOPDW_PARITY)), 748 /*29*/ FLAG_ENTRY0("RxRbufCtxIdParityErr", RXES(RBUF_CTX_ID_PARITY)), 749 /*30*/ FLAG_ENTRY0("RxRBufBadLookupErr", RXES(RBUF_BAD_LOOKUP)), 750 /*31*/ FLAG_ENTRY0("RxRbufFullErr", RXES(RBUF_FULL)), 751 /*32*/ FLAG_ENTRY0("RxRbufEmptyErr", RXES(RBUF_EMPTY)), 752 /*33*/ FLAG_ENTRY0("RxRbufFlRdAddrParityErr", RXES(RBUF_FL_RD_ADDR_PARITY)), 753 /*34*/ FLAG_ENTRY0("RxRbufFlWrAddrParityErr", RXES(RBUF_FL_WR_ADDR_PARITY)), 754 /*35*/ FLAG_ENTRY0("RxRbufFlInitdoneParityErr", 755 RXES(RBUF_FL_INITDONE_PARITY)), 756 /*36*/ FLAG_ENTRY0("RxRbufFlInitWrAddrParityErr", 757 RXES(RBUF_FL_INIT_WR_ADDR_PARITY)), 758 /*37*/ FLAG_ENTRY0("RxRbufNextFreeBufUncErr", RXES(RBUF_NEXT_FREE_BUF_UNC)), 759 /*38*/ FLAG_ENTRY0("RxRbufNextFreeBufCorErr", RXES(RBUF_NEXT_FREE_BUF_COR)), 760 /*39*/ FLAG_ENTRY0("RxLookupDesPart1UncErr", RXES(LOOKUP_DES_PART1_UNC)), 761 /*40*/ FLAG_ENTRY0("RxLookupDesPart1UncCorErr", 762 RXES(LOOKUP_DES_PART1_UNC_COR)), 763 /*41*/ FLAG_ENTRY0("RxLookupDesPart2ParityErr", 764 RXES(LOOKUP_DES_PART2_PARITY)), 765 /*42*/ FLAG_ENTRY0("RxLookupRcvArrayUncErr", RXES(LOOKUP_RCV_ARRAY_UNC)), 766 /*43*/ FLAG_ENTRY0("RxLookupRcvArrayCorErr", RXES(LOOKUP_RCV_ARRAY_COR)), 767 /*44*/ FLAG_ENTRY0("RxLookupCsrParityErr", RXES(LOOKUP_CSR_PARITY)), 768 /*45*/ FLAG_ENTRY0("RxHqIntrCsrParityErr", RXES(HQ_INTR_CSR_PARITY)), 769 /*46*/ FLAG_ENTRY0("RxHqIntrFsmErr", RXES(HQ_INTR_FSM)), 770 /*47*/ FLAG_ENTRY0("RxRbufDescPart1UncErr", RXES(RBUF_DESC_PART1_UNC)), 771 /*48*/ FLAG_ENTRY0("RxRbufDescPart1CorErr", RXES(RBUF_DESC_PART1_COR)), 772 /*49*/ FLAG_ENTRY0("RxRbufDescPart2UncErr", RXES(RBUF_DESC_PART2_UNC)), 773 /*50*/ FLAG_ENTRY0("RxRbufDescPart2CorErr", RXES(RBUF_DESC_PART2_COR)), 774 /*51*/ FLAG_ENTRY0("RxDmaHdrFifoRdUncErr", RXES(DMA_HDR_FIFO_RD_UNC)), 775 /*52*/ FLAG_ENTRY0("RxDmaHdrFifoRdCorErr", RXES(DMA_HDR_FIFO_RD_COR)), 776 /*53*/ FLAG_ENTRY0("RxDmaDataFifoRdUncErr", RXES(DMA_DATA_FIFO_RD_UNC)), 777 /*54*/ FLAG_ENTRY0("RxDmaDataFifoRdCorErr", RXES(DMA_DATA_FIFO_RD_COR)), 778 /*55*/ FLAG_ENTRY0("RxRbufDataUncErr", RXES(RBUF_DATA_UNC)), 779 /*56*/ FLAG_ENTRY0("RxRbufDataCorErr", RXES(RBUF_DATA_COR)), 780 /*57*/ FLAG_ENTRY0("RxDmaCsrParityErr", RXES(DMA_CSR_PARITY)), 781 /*58*/ FLAG_ENTRY0("RxDmaEqFsmEncodingErr", RXES(DMA_EQ_FSM_ENCODING)), 782 /*59*/ FLAG_ENTRY0("RxDmaDqFsmEncodingErr", RXES(DMA_DQ_FSM_ENCODING)), 783 /*60*/ FLAG_ENTRY0("RxDmaCsrUncErr", RXES(DMA_CSR_UNC)), 784 /*61*/ FLAG_ENTRY0("RxCsrReadBadAddrErr", RXES(CSR_READ_BAD_ADDR)), 785 /*62*/ FLAG_ENTRY0("RxCsrWriteBadAddrErr", RXES(CSR_WRITE_BAD_ADDR)), 786 /*63*/ FLAG_ENTRY0("RxCsrParityErr", RXES(CSR_PARITY)) 787 }; 788 789 /* RXE errors that will trigger an SPC freeze */ 790 #define ALL_RXE_FREEZE_ERR \ 791 (RCV_ERR_STATUS_RX_RCV_QP_MAP_TABLE_UNC_ERR_SMASK \ 792 | RCV_ERR_STATUS_RX_RCV_CSR_PARITY_ERR_SMASK \ 793 | RCV_ERR_STATUS_RX_DMA_FLAG_UNC_ERR_SMASK \ 794 | RCV_ERR_STATUS_RX_RCV_FSM_ENCODING_ERR_SMASK \ 795 | RCV_ERR_STATUS_RX_RBUF_FREE_LIST_UNC_ERR_SMASK \ 796 | RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_REG_UNC_ERR_SMASK \ 797 | RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_REG_UNC_COR_ERR_SMASK \ 798 | RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_UNC_ERR_SMASK \ 799 | RCV_ERR_STATUS_RX_RBUF_BLOCK_LIST_READ_UNC_ERR_SMASK \ 800 | RCV_ERR_STATUS_RX_RBUF_CSR_QHEAD_BUF_NUM_PARITY_ERR_SMASK \ 801 | RCV_ERR_STATUS_RX_RBUF_CSR_QENT_CNT_PARITY_ERR_SMASK \ 802 | RCV_ERR_STATUS_RX_RBUF_CSR_QNEXT_BUF_PARITY_ERR_SMASK \ 803 | RCV_ERR_STATUS_RX_RBUF_CSR_QVLD_BIT_PARITY_ERR_SMASK \ 804 | RCV_ERR_STATUS_RX_RBUF_CSR_QHD_PTR_PARITY_ERR_SMASK \ 805 | RCV_ERR_STATUS_RX_RBUF_CSR_QTL_PTR_PARITY_ERR_SMASK \ 806 | RCV_ERR_STATUS_RX_RBUF_CSR_QNUM_OF_PKT_PARITY_ERR_SMASK \ 807 | RCV_ERR_STATUS_RX_RBUF_CSR_QEOPDW_PARITY_ERR_SMASK \ 808 | RCV_ERR_STATUS_RX_RBUF_CTX_ID_PARITY_ERR_SMASK \ 809 | RCV_ERR_STATUS_RX_RBUF_BAD_LOOKUP_ERR_SMASK \ 810 | RCV_ERR_STATUS_RX_RBUF_FULL_ERR_SMASK \ 811 | RCV_ERR_STATUS_RX_RBUF_EMPTY_ERR_SMASK \ 812 | RCV_ERR_STATUS_RX_RBUF_FL_RD_ADDR_PARITY_ERR_SMASK \ 813 | RCV_ERR_STATUS_RX_RBUF_FL_WR_ADDR_PARITY_ERR_SMASK \ 814 | RCV_ERR_STATUS_RX_RBUF_FL_INITDONE_PARITY_ERR_SMASK \ 815 | RCV_ERR_STATUS_RX_RBUF_FL_INIT_WR_ADDR_PARITY_ERR_SMASK \ 816 | RCV_ERR_STATUS_RX_RBUF_NEXT_FREE_BUF_UNC_ERR_SMASK \ 817 | RCV_ERR_STATUS_RX_LOOKUP_DES_PART1_UNC_ERR_SMASK \ 818 | RCV_ERR_STATUS_RX_LOOKUP_DES_PART1_UNC_COR_ERR_SMASK \ 819 | RCV_ERR_STATUS_RX_LOOKUP_DES_PART2_PARITY_ERR_SMASK \ 820 | RCV_ERR_STATUS_RX_LOOKUP_RCV_ARRAY_UNC_ERR_SMASK \ 821 | RCV_ERR_STATUS_RX_LOOKUP_CSR_PARITY_ERR_SMASK \ 822 | RCV_ERR_STATUS_RX_HQ_INTR_CSR_PARITY_ERR_SMASK \ 823 | RCV_ERR_STATUS_RX_HQ_INTR_FSM_ERR_SMASK \ 824 | RCV_ERR_STATUS_RX_RBUF_DESC_PART1_UNC_ERR_SMASK \ 825 | RCV_ERR_STATUS_RX_RBUF_DESC_PART1_COR_ERR_SMASK \ 826 | RCV_ERR_STATUS_RX_RBUF_DESC_PART2_UNC_ERR_SMASK \ 827 | RCV_ERR_STATUS_RX_DMA_HDR_FIFO_RD_UNC_ERR_SMASK \ 828 | RCV_ERR_STATUS_RX_DMA_DATA_FIFO_RD_UNC_ERR_SMASK \ 829 | RCV_ERR_STATUS_RX_RBUF_DATA_UNC_ERR_SMASK \ 830 | RCV_ERR_STATUS_RX_DMA_CSR_PARITY_ERR_SMASK \ 831 | RCV_ERR_STATUS_RX_DMA_EQ_FSM_ENCODING_ERR_SMASK \ 832 | RCV_ERR_STATUS_RX_DMA_DQ_FSM_ENCODING_ERR_SMASK \ 833 | RCV_ERR_STATUS_RX_DMA_CSR_UNC_ERR_SMASK \ 834 | RCV_ERR_STATUS_RX_CSR_PARITY_ERR_SMASK) 835 836 #define RXE_FREEZE_ABORT_MASK \ 837 (RCV_ERR_STATUS_RX_DMA_CSR_UNC_ERR_SMASK | \ 838 RCV_ERR_STATUS_RX_DMA_HDR_FIFO_RD_UNC_ERR_SMASK | \ 839 RCV_ERR_STATUS_RX_DMA_DATA_FIFO_RD_UNC_ERR_SMASK) 840 841 /* 842 * DCC Error Flags 843 */ 844 #define DCCE(name) DCC_ERR_FLG_##name##_SMASK 845 static struct flag_table dcc_err_flags[] = { 846 FLAG_ENTRY0("bad_l2_err", DCCE(BAD_L2_ERR)), 847 FLAG_ENTRY0("bad_sc_err", DCCE(BAD_SC_ERR)), 848 FLAG_ENTRY0("bad_mid_tail_err", DCCE(BAD_MID_TAIL_ERR)), 849 FLAG_ENTRY0("bad_preemption_err", DCCE(BAD_PREEMPTION_ERR)), 850 FLAG_ENTRY0("preemption_err", DCCE(PREEMPTION_ERR)), 851 FLAG_ENTRY0("preemptionvl15_err", DCCE(PREEMPTIONVL15_ERR)), 852 FLAG_ENTRY0("bad_vl_marker_err", DCCE(BAD_VL_MARKER_ERR)), 853 FLAG_ENTRY0("bad_dlid_target_err", DCCE(BAD_DLID_TARGET_ERR)), 854 FLAG_ENTRY0("bad_lver_err", DCCE(BAD_LVER_ERR)), 855 FLAG_ENTRY0("uncorrectable_err", DCCE(UNCORRECTABLE_ERR)), 856 FLAG_ENTRY0("bad_crdt_ack_err", DCCE(BAD_CRDT_ACK_ERR)), 857 FLAG_ENTRY0("unsup_pkt_type", DCCE(UNSUP_PKT_TYPE)), 858 FLAG_ENTRY0("bad_ctrl_flit_err", DCCE(BAD_CTRL_FLIT_ERR)), 859 FLAG_ENTRY0("event_cntr_parity_err", DCCE(EVENT_CNTR_PARITY_ERR)), 860 FLAG_ENTRY0("event_cntr_rollover_err", DCCE(EVENT_CNTR_ROLLOVER_ERR)), 861 FLAG_ENTRY0("link_err", DCCE(LINK_ERR)), 862 FLAG_ENTRY0("misc_cntr_rollover_err", DCCE(MISC_CNTR_ROLLOVER_ERR)), 863 FLAG_ENTRY0("bad_ctrl_dist_err", DCCE(BAD_CTRL_DIST_ERR)), 864 FLAG_ENTRY0("bad_tail_dist_err", DCCE(BAD_TAIL_DIST_ERR)), 865 FLAG_ENTRY0("bad_head_dist_err", DCCE(BAD_HEAD_DIST_ERR)), 866 FLAG_ENTRY0("nonvl15_state_err", DCCE(NONVL15_STATE_ERR)), 867 FLAG_ENTRY0("vl15_multi_err", DCCE(VL15_MULTI_ERR)), 868 FLAG_ENTRY0("bad_pkt_length_err", DCCE(BAD_PKT_LENGTH_ERR)), 869 FLAG_ENTRY0("unsup_vl_err", DCCE(UNSUP_VL_ERR)), 870 FLAG_ENTRY0("perm_nvl15_err", DCCE(PERM_NVL15_ERR)), 871 FLAG_ENTRY0("slid_zero_err", DCCE(SLID_ZERO_ERR)), 872 FLAG_ENTRY0("dlid_zero_err", DCCE(DLID_ZERO_ERR)), 873 FLAG_ENTRY0("length_mtu_err", DCCE(LENGTH_MTU_ERR)), 874 FLAG_ENTRY0("rx_early_drop_err", DCCE(RX_EARLY_DROP_ERR)), 875 FLAG_ENTRY0("late_short_err", DCCE(LATE_SHORT_ERR)), 876 FLAG_ENTRY0("late_long_err", DCCE(LATE_LONG_ERR)), 877 FLAG_ENTRY0("late_ebp_err", DCCE(LATE_EBP_ERR)), 878 FLAG_ENTRY0("fpe_tx_fifo_ovflw_err", DCCE(FPE_TX_FIFO_OVFLW_ERR)), 879 FLAG_ENTRY0("fpe_tx_fifo_unflw_err", DCCE(FPE_TX_FIFO_UNFLW_ERR)), 880 FLAG_ENTRY0("csr_access_blocked_host", DCCE(CSR_ACCESS_BLOCKED_HOST)), 881 FLAG_ENTRY0("csr_access_blocked_uc", DCCE(CSR_ACCESS_BLOCKED_UC)), 882 FLAG_ENTRY0("tx_ctrl_parity_err", DCCE(TX_CTRL_PARITY_ERR)), 883 FLAG_ENTRY0("tx_ctrl_parity_mbe_err", DCCE(TX_CTRL_PARITY_MBE_ERR)), 884 FLAG_ENTRY0("tx_sc_parity_err", DCCE(TX_SC_PARITY_ERR)), 885 FLAG_ENTRY0("rx_ctrl_parity_mbe_err", DCCE(RX_CTRL_PARITY_MBE_ERR)), 886 FLAG_ENTRY0("csr_parity_err", DCCE(CSR_PARITY_ERR)), 887 FLAG_ENTRY0("csr_inval_addr", DCCE(CSR_INVAL_ADDR)), 888 FLAG_ENTRY0("tx_byte_shft_parity_err", DCCE(TX_BYTE_SHFT_PARITY_ERR)), 889 FLAG_ENTRY0("rx_byte_shft_parity_err", DCCE(RX_BYTE_SHFT_PARITY_ERR)), 890 FLAG_ENTRY0("fmconfig_err", DCCE(FMCONFIG_ERR)), 891 FLAG_ENTRY0("rcvport_err", DCCE(RCVPORT_ERR)), 892 }; 893 894 /* 895 * LCB error flags 896 */ 897 #define LCBE(name) DC_LCB_ERR_FLG_##name##_SMASK 898 static struct flag_table lcb_err_flags[] = { 899 /* 0*/ FLAG_ENTRY0("CSR_PARITY_ERR", LCBE(CSR_PARITY_ERR)), 900 /* 1*/ FLAG_ENTRY0("INVALID_CSR_ADDR", LCBE(INVALID_CSR_ADDR)), 901 /* 2*/ FLAG_ENTRY0("RST_FOR_FAILED_DESKEW", LCBE(RST_FOR_FAILED_DESKEW)), 902 /* 3*/ FLAG_ENTRY0("ALL_LNS_FAILED_REINIT_TEST", 903 LCBE(ALL_LNS_FAILED_REINIT_TEST)), 904 /* 4*/ FLAG_ENTRY0("LOST_REINIT_STALL_OR_TOS", LCBE(LOST_REINIT_STALL_OR_TOS)), 905 /* 5*/ FLAG_ENTRY0("TX_LESS_THAN_FOUR_LNS", LCBE(TX_LESS_THAN_FOUR_LNS)), 906 /* 6*/ FLAG_ENTRY0("RX_LESS_THAN_FOUR_LNS", LCBE(RX_LESS_THAN_FOUR_LNS)), 907 /* 7*/ FLAG_ENTRY0("SEQ_CRC_ERR", LCBE(SEQ_CRC_ERR)), 908 /* 8*/ FLAG_ENTRY0("REINIT_FROM_PEER", LCBE(REINIT_FROM_PEER)), 909 /* 9*/ FLAG_ENTRY0("REINIT_FOR_LN_DEGRADE", LCBE(REINIT_FOR_LN_DEGRADE)), 910 /*10*/ FLAG_ENTRY0("CRC_ERR_CNT_HIT_LIMIT", LCBE(CRC_ERR_CNT_HIT_LIMIT)), 911 /*11*/ FLAG_ENTRY0("RCLK_STOPPED", LCBE(RCLK_STOPPED)), 912 /*12*/ FLAG_ENTRY0("UNEXPECTED_REPLAY_MARKER", LCBE(UNEXPECTED_REPLAY_MARKER)), 913 /*13*/ FLAG_ENTRY0("UNEXPECTED_ROUND_TRIP_MARKER", 914 LCBE(UNEXPECTED_ROUND_TRIP_MARKER)), 915 /*14*/ FLAG_ENTRY0("ILLEGAL_NULL_LTP", LCBE(ILLEGAL_NULL_LTP)), 916 /*15*/ FLAG_ENTRY0("ILLEGAL_FLIT_ENCODING", LCBE(ILLEGAL_FLIT_ENCODING)), 917 /*16*/ FLAG_ENTRY0("FLIT_INPUT_BUF_OFLW", LCBE(FLIT_INPUT_BUF_OFLW)), 918 /*17*/ FLAG_ENTRY0("VL_ACK_INPUT_BUF_OFLW", LCBE(VL_ACK_INPUT_BUF_OFLW)), 919 /*18*/ FLAG_ENTRY0("VL_ACK_INPUT_PARITY_ERR", LCBE(VL_ACK_INPUT_PARITY_ERR)), 920 /*19*/ FLAG_ENTRY0("VL_ACK_INPUT_WRONG_CRC_MODE", 921 LCBE(VL_ACK_INPUT_WRONG_CRC_MODE)), 922 /*20*/ FLAG_ENTRY0("FLIT_INPUT_BUF_MBE", LCBE(FLIT_INPUT_BUF_MBE)), 923 /*21*/ FLAG_ENTRY0("FLIT_INPUT_BUF_SBE", LCBE(FLIT_INPUT_BUF_SBE)), 924 /*22*/ FLAG_ENTRY0("REPLAY_BUF_MBE", LCBE(REPLAY_BUF_MBE)), 925 /*23*/ FLAG_ENTRY0("REPLAY_BUF_SBE", LCBE(REPLAY_BUF_SBE)), 926 /*24*/ FLAG_ENTRY0("CREDIT_RETURN_FLIT_MBE", LCBE(CREDIT_RETURN_FLIT_MBE)), 927 /*25*/ FLAG_ENTRY0("RST_FOR_LINK_TIMEOUT", LCBE(RST_FOR_LINK_TIMEOUT)), 928 /*26*/ FLAG_ENTRY0("RST_FOR_INCOMPLT_RND_TRIP", 929 LCBE(RST_FOR_INCOMPLT_RND_TRIP)), 930 /*27*/ FLAG_ENTRY0("HOLD_REINIT", LCBE(HOLD_REINIT)), 931 /*28*/ FLAG_ENTRY0("NEG_EDGE_LINK_TRANSFER_ACTIVE", 932 LCBE(NEG_EDGE_LINK_TRANSFER_ACTIVE)), 933 /*29*/ FLAG_ENTRY0("REDUNDANT_FLIT_PARITY_ERR", 934 LCBE(REDUNDANT_FLIT_PARITY_ERR)) 935 }; 936 937 /* 938 * DC8051 Error Flags 939 */ 940 #define D8E(name) DC_DC8051_ERR_FLG_##name##_SMASK 941 static struct flag_table dc8051_err_flags[] = { 942 FLAG_ENTRY0("SET_BY_8051", D8E(SET_BY_8051)), 943 FLAG_ENTRY0("LOST_8051_HEART_BEAT", D8E(LOST_8051_HEART_BEAT)), 944 FLAG_ENTRY0("CRAM_MBE", D8E(CRAM_MBE)), 945 FLAG_ENTRY0("CRAM_SBE", D8E(CRAM_SBE)), 946 FLAG_ENTRY0("DRAM_MBE", D8E(DRAM_MBE)), 947 FLAG_ENTRY0("DRAM_SBE", D8E(DRAM_SBE)), 948 FLAG_ENTRY0("IRAM_MBE", D8E(IRAM_MBE)), 949 FLAG_ENTRY0("IRAM_SBE", D8E(IRAM_SBE)), 950 FLAG_ENTRY0("UNMATCHED_SECURE_MSG_ACROSS_BCC_LANES", 951 D8E(UNMATCHED_SECURE_MSG_ACROSS_BCC_LANES)), 952 FLAG_ENTRY0("INVALID_CSR_ADDR", D8E(INVALID_CSR_ADDR)), 953 }; 954 955 /* 956 * DC8051 Information Error flags 957 * 958 * Flags in DC8051_DBG_ERR_INFO_SET_BY_8051.ERROR field. 959 */ 960 static struct flag_table dc8051_info_err_flags[] = { 961 FLAG_ENTRY0("Spico ROM check failed", SPICO_ROM_FAILED), 962 FLAG_ENTRY0("Unknown frame received", UNKNOWN_FRAME), 963 FLAG_ENTRY0("Target BER not met", TARGET_BER_NOT_MET), 964 FLAG_ENTRY0("Serdes internal loopback failure", 965 FAILED_SERDES_INTERNAL_LOOPBACK), 966 FLAG_ENTRY0("Failed SerDes init", FAILED_SERDES_INIT), 967 FLAG_ENTRY0("Failed LNI(Polling)", FAILED_LNI_POLLING), 968 FLAG_ENTRY0("Failed LNI(Debounce)", FAILED_LNI_DEBOUNCE), 969 FLAG_ENTRY0("Failed LNI(EstbComm)", FAILED_LNI_ESTBCOMM), 970 FLAG_ENTRY0("Failed LNI(OptEq)", FAILED_LNI_OPTEQ), 971 FLAG_ENTRY0("Failed LNI(VerifyCap_1)", FAILED_LNI_VERIFY_CAP1), 972 FLAG_ENTRY0("Failed LNI(VerifyCap_2)", FAILED_LNI_VERIFY_CAP2), 973 FLAG_ENTRY0("Failed LNI(ConfigLT)", FAILED_LNI_CONFIGLT), 974 FLAG_ENTRY0("Host Handshake Timeout", HOST_HANDSHAKE_TIMEOUT), 975 FLAG_ENTRY0("External Device Request Timeout", 976 EXTERNAL_DEVICE_REQ_TIMEOUT), 977 }; 978 979 /* 980 * DC8051 Information Host Information flags 981 * 982 * Flags in DC8051_DBG_ERR_INFO_SET_BY_8051.HOST_MSG field. 983 */ 984 static struct flag_table dc8051_info_host_msg_flags[] = { 985 FLAG_ENTRY0("Host request done", 0x0001), 986 FLAG_ENTRY0("BC SMA message", 0x0002), 987 FLAG_ENTRY0("BC PWR_MGM message", 0x0004), 988 FLAG_ENTRY0("BC Unknown message (BCC)", 0x0008), 989 FLAG_ENTRY0("BC Unknown message (LCB)", 0x0010), 990 FLAG_ENTRY0("External device config request", 0x0020), 991 FLAG_ENTRY0("VerifyCap all frames received", 0x0040), 992 FLAG_ENTRY0("LinkUp achieved", 0x0080), 993 FLAG_ENTRY0("Link going down", 0x0100), 994 }; 995 996 static u32 encoded_size(u32 size); 997 static u32 chip_to_opa_lstate(struct hfi1_devdata *dd, u32 chip_lstate); 998 static int set_physical_link_state(struct hfi1_devdata *dd, u64 state); 999 static void read_vc_remote_phy(struct hfi1_devdata *dd, u8 *power_management, 1000 u8 *continuous); 1001 static void read_vc_remote_fabric(struct hfi1_devdata *dd, u8 *vau, u8 *z, 1002 u8 *vcu, u16 *vl15buf, u8 *crc_sizes); 1003 static void read_vc_remote_link_width(struct hfi1_devdata *dd, 1004 u8 *remote_tx_rate, u16 *link_widths); 1005 static void read_vc_local_link_width(struct hfi1_devdata *dd, u8 *misc_bits, 1006 u8 *flag_bits, u16 *link_widths); 1007 static void read_remote_device_id(struct hfi1_devdata *dd, u16 *device_id, 1008 u8 *device_rev); 1009 static void read_mgmt_allowed(struct hfi1_devdata *dd, u8 *mgmt_allowed); 1010 static void read_local_lni(struct hfi1_devdata *dd, u8 *enable_lane_rx); 1011 static int read_tx_settings(struct hfi1_devdata *dd, u8 *enable_lane_tx, 1012 u8 *tx_polarity_inversion, 1013 u8 *rx_polarity_inversion, u8 *max_rate); 1014 static void handle_sdma_eng_err(struct hfi1_devdata *dd, 1015 unsigned int context, u64 err_status); 1016 static void handle_qsfp_int(struct hfi1_devdata *dd, u32 source, u64 reg); 1017 static void handle_dcc_err(struct hfi1_devdata *dd, 1018 unsigned int context, u64 err_status); 1019 static void handle_lcb_err(struct hfi1_devdata *dd, 1020 unsigned int context, u64 err_status); 1021 static void handle_8051_interrupt(struct hfi1_devdata *dd, u32 unused, u64 reg); 1022 static void handle_cce_err(struct hfi1_devdata *dd, u32 unused, u64 reg); 1023 static void handle_rxe_err(struct hfi1_devdata *dd, u32 unused, u64 reg); 1024 static void handle_misc_err(struct hfi1_devdata *dd, u32 unused, u64 reg); 1025 static void handle_pio_err(struct hfi1_devdata *dd, u32 unused, u64 reg); 1026 static void handle_sdma_err(struct hfi1_devdata *dd, u32 unused, u64 reg); 1027 static void handle_egress_err(struct hfi1_devdata *dd, u32 unused, u64 reg); 1028 static void handle_txe_err(struct hfi1_devdata *dd, u32 unused, u64 reg); 1029 static void set_partition_keys(struct hfi1_pportdata *); 1030 static const char *link_state_name(u32 state); 1031 static const char *link_state_reason_name(struct hfi1_pportdata *ppd, 1032 u32 state); 1033 static int do_8051_command(struct hfi1_devdata *dd, u32 type, u64 in_data, 1034 u64 *out_data); 1035 static int read_idle_sma(struct hfi1_devdata *dd, u64 *data); 1036 static int thermal_init(struct hfi1_devdata *dd); 1037 1038 static int wait_logical_linkstate(struct hfi1_pportdata *ppd, u32 state, 1039 int msecs); 1040 static void read_planned_down_reason_code(struct hfi1_devdata *dd, u8 *pdrrc); 1041 static void read_link_down_reason(struct hfi1_devdata *dd, u8 *ldr); 1042 static void handle_temp_err(struct hfi1_devdata *); 1043 static void dc_shutdown(struct hfi1_devdata *); 1044 static void dc_start(struct hfi1_devdata *); 1045 static int qos_rmt_entries(struct hfi1_devdata *dd, unsigned int *mp, 1046 unsigned int *np); 1047 static void clear_full_mgmt_pkey(struct hfi1_pportdata *ppd); 1048 1049 /* 1050 * Error interrupt table entry. This is used as input to the interrupt 1051 * "clear down" routine used for all second tier error interrupt register. 1052 * Second tier interrupt registers have a single bit representing them 1053 * in the top-level CceIntStatus. 1054 */ 1055 struct err_reg_info { 1056 u32 status; /* status CSR offset */ 1057 u32 clear; /* clear CSR offset */ 1058 u32 mask; /* mask CSR offset */ 1059 void (*handler)(struct hfi1_devdata *dd, u32 source, u64 reg); 1060 const char *desc; 1061 }; 1062 1063 #define NUM_MISC_ERRS (IS_GENERAL_ERR_END - IS_GENERAL_ERR_START) 1064 #define NUM_DC_ERRS (IS_DC_END - IS_DC_START) 1065 #define NUM_VARIOUS (IS_VARIOUS_END - IS_VARIOUS_START) 1066 1067 /* 1068 * Helpers for building HFI and DC error interrupt table entries. Different 1069 * helpers are needed because of inconsistent register names. 1070 */ 1071 #define EE(reg, handler, desc) \ 1072 { reg##_STATUS, reg##_CLEAR, reg##_MASK, \ 1073 handler, desc } 1074 #define DC_EE1(reg, handler, desc) \ 1075 { reg##_FLG, reg##_FLG_CLR, reg##_FLG_EN, handler, desc } 1076 #define DC_EE2(reg, handler, desc) \ 1077 { reg##_FLG, reg##_CLR, reg##_EN, handler, desc } 1078 1079 /* 1080 * Table of the "misc" grouping of error interrupts. Each entry refers to 1081 * another register containing more information. 1082 */ 1083 static const struct err_reg_info misc_errs[NUM_MISC_ERRS] = { 1084 /* 0*/ EE(CCE_ERR, handle_cce_err, "CceErr"), 1085 /* 1*/ EE(RCV_ERR, handle_rxe_err, "RxeErr"), 1086 /* 2*/ EE(MISC_ERR, handle_misc_err, "MiscErr"), 1087 /* 3*/ { 0, 0, 0, NULL }, /* reserved */ 1088 /* 4*/ EE(SEND_PIO_ERR, handle_pio_err, "PioErr"), 1089 /* 5*/ EE(SEND_DMA_ERR, handle_sdma_err, "SDmaErr"), 1090 /* 6*/ EE(SEND_EGRESS_ERR, handle_egress_err, "EgressErr"), 1091 /* 7*/ EE(SEND_ERR, handle_txe_err, "TxeErr") 1092 /* the rest are reserved */ 1093 }; 1094 1095 /* 1096 * Index into the Various section of the interrupt sources 1097 * corresponding to the Critical Temperature interrupt. 1098 */ 1099 #define TCRIT_INT_SOURCE 4 1100 1101 /* 1102 * SDMA error interrupt entry - refers to another register containing more 1103 * information. 1104 */ 1105 static const struct err_reg_info sdma_eng_err = 1106 EE(SEND_DMA_ENG_ERR, handle_sdma_eng_err, "SDmaEngErr"); 1107 1108 static const struct err_reg_info various_err[NUM_VARIOUS] = { 1109 /* 0*/ { 0, 0, 0, NULL }, /* PbcInt */ 1110 /* 1*/ { 0, 0, 0, NULL }, /* GpioAssertInt */ 1111 /* 2*/ EE(ASIC_QSFP1, handle_qsfp_int, "QSFP1"), 1112 /* 3*/ EE(ASIC_QSFP2, handle_qsfp_int, "QSFP2"), 1113 /* 4*/ { 0, 0, 0, NULL }, /* TCritInt */ 1114 /* rest are reserved */ 1115 }; 1116 1117 /* 1118 * The DC encoding of mtu_cap for 10K MTU in the DCC_CFG_PORT_CONFIG 1119 * register can not be derived from the MTU value because 10K is not 1120 * a power of 2. Therefore, we need a constant. Everything else can 1121 * be calculated. 1122 */ 1123 #define DCC_CFG_PORT_MTU_CAP_10240 7 1124 1125 /* 1126 * Table of the DC grouping of error interrupts. Each entry refers to 1127 * another register containing more information. 1128 */ 1129 static const struct err_reg_info dc_errs[NUM_DC_ERRS] = { 1130 /* 0*/ DC_EE1(DCC_ERR, handle_dcc_err, "DCC Err"), 1131 /* 1*/ DC_EE2(DC_LCB_ERR, handle_lcb_err, "LCB Err"), 1132 /* 2*/ DC_EE2(DC_DC8051_ERR, handle_8051_interrupt, "DC8051 Interrupt"), 1133 /* 3*/ /* dc_lbm_int - special, see is_dc_int() */ 1134 /* the rest are reserved */ 1135 }; 1136 1137 struct cntr_entry { 1138 /* 1139 * counter name 1140 */ 1141 char *name; 1142 1143 /* 1144 * csr to read for name (if applicable) 1145 */ 1146 u64 csr; 1147 1148 /* 1149 * offset into dd or ppd to store the counter's value 1150 */ 1151 int offset; 1152 1153 /* 1154 * flags 1155 */ 1156 u8 flags; 1157 1158 /* 1159 * accessor for stat element, context either dd or ppd 1160 */ 1161 u64 (*rw_cntr)(const struct cntr_entry *, void *context, int vl, 1162 int mode, u64 data); 1163 }; 1164 1165 #define C_RCV_HDR_OVF_FIRST C_RCV_HDR_OVF_0 1166 #define C_RCV_HDR_OVF_LAST C_RCV_HDR_OVF_159 1167 1168 #define CNTR_ELEM(name, csr, offset, flags, accessor) \ 1169 { \ 1170 name, \ 1171 csr, \ 1172 offset, \ 1173 flags, \ 1174 accessor \ 1175 } 1176 1177 /* 32bit RXE */ 1178 #define RXE32_PORT_CNTR_ELEM(name, counter, flags) \ 1179 CNTR_ELEM(#name, \ 1180 (counter * 8 + RCV_COUNTER_ARRAY32), \ 1181 0, flags | CNTR_32BIT, \ 1182 port_access_u32_csr) 1183 1184 #define RXE32_DEV_CNTR_ELEM(name, counter, flags) \ 1185 CNTR_ELEM(#name, \ 1186 (counter * 8 + RCV_COUNTER_ARRAY32), \ 1187 0, flags | CNTR_32BIT, \ 1188 dev_access_u32_csr) 1189 1190 /* 64bit RXE */ 1191 #define RXE64_PORT_CNTR_ELEM(name, counter, flags) \ 1192 CNTR_ELEM(#name, \ 1193 (counter * 8 + RCV_COUNTER_ARRAY64), \ 1194 0, flags, \ 1195 port_access_u64_csr) 1196 1197 #define RXE64_DEV_CNTR_ELEM(name, counter, flags) \ 1198 CNTR_ELEM(#name, \ 1199 (counter * 8 + RCV_COUNTER_ARRAY64), \ 1200 0, flags, \ 1201 dev_access_u64_csr) 1202 1203 #define OVR_LBL(ctx) C_RCV_HDR_OVF_ ## ctx 1204 #define OVR_ELM(ctx) \ 1205 CNTR_ELEM("RcvHdrOvr" #ctx, \ 1206 (RCV_HDR_OVFL_CNT + ctx * 0x100), \ 1207 0, CNTR_NORMAL, port_access_u64_csr) 1208 1209 /* 32bit TXE */ 1210 #define TXE32_PORT_CNTR_ELEM(name, counter, flags) \ 1211 CNTR_ELEM(#name, \ 1212 (counter * 8 + SEND_COUNTER_ARRAY32), \ 1213 0, flags | CNTR_32BIT, \ 1214 port_access_u32_csr) 1215 1216 /* 64bit TXE */ 1217 #define TXE64_PORT_CNTR_ELEM(name, counter, flags) \ 1218 CNTR_ELEM(#name, \ 1219 (counter * 8 + SEND_COUNTER_ARRAY64), \ 1220 0, flags, \ 1221 port_access_u64_csr) 1222 1223 # define TX64_DEV_CNTR_ELEM(name, counter, flags) \ 1224 CNTR_ELEM(#name,\ 1225 counter * 8 + SEND_COUNTER_ARRAY64, \ 1226 0, \ 1227 flags, \ 1228 dev_access_u64_csr) 1229 1230 /* CCE */ 1231 #define CCE_PERF_DEV_CNTR_ELEM(name, counter, flags) \ 1232 CNTR_ELEM(#name, \ 1233 (counter * 8 + CCE_COUNTER_ARRAY32), \ 1234 0, flags | CNTR_32BIT, \ 1235 dev_access_u32_csr) 1236 1237 #define CCE_INT_DEV_CNTR_ELEM(name, counter, flags) \ 1238 CNTR_ELEM(#name, \ 1239 (counter * 8 + CCE_INT_COUNTER_ARRAY32), \ 1240 0, flags | CNTR_32BIT, \ 1241 dev_access_u32_csr) 1242 1243 /* DC */ 1244 #define DC_PERF_CNTR(name, counter, flags) \ 1245 CNTR_ELEM(#name, \ 1246 counter, \ 1247 0, \ 1248 flags, \ 1249 dev_access_u64_csr) 1250 1251 #define DC_PERF_CNTR_LCB(name, counter, flags) \ 1252 CNTR_ELEM(#name, \ 1253 counter, \ 1254 0, \ 1255 flags, \ 1256 dc_access_lcb_cntr) 1257 1258 /* ibp counters */ 1259 #define SW_IBP_CNTR(name, cntr) \ 1260 CNTR_ELEM(#name, \ 1261 0, \ 1262 0, \ 1263 CNTR_SYNTH, \ 1264 access_ibp_##cntr) 1265 1266 u64 read_csr(const struct hfi1_devdata *dd, u32 offset) 1267 { 1268 if (dd->flags & HFI1_PRESENT) { 1269 return readq((void __iomem *)dd->kregbase + offset); 1270 } 1271 return -1; 1272 } 1273 1274 void write_csr(const struct hfi1_devdata *dd, u32 offset, u64 value) 1275 { 1276 if (dd->flags & HFI1_PRESENT) 1277 writeq(value, (void __iomem *)dd->kregbase + offset); 1278 } 1279 1280 void __iomem *get_csr_addr( 1281 struct hfi1_devdata *dd, 1282 u32 offset) 1283 { 1284 return (void __iomem *)dd->kregbase + offset; 1285 } 1286 1287 static inline u64 read_write_csr(const struct hfi1_devdata *dd, u32 csr, 1288 int mode, u64 value) 1289 { 1290 u64 ret; 1291 1292 if (mode == CNTR_MODE_R) { 1293 ret = read_csr(dd, csr); 1294 } else if (mode == CNTR_MODE_W) { 1295 write_csr(dd, csr, value); 1296 ret = value; 1297 } else { 1298 dd_dev_err(dd, "Invalid cntr register access mode"); 1299 return 0; 1300 } 1301 1302 hfi1_cdbg(CNTR, "csr 0x%x val 0x%llx mode %d", csr, ret, mode); 1303 return ret; 1304 } 1305 1306 /* Dev Access */ 1307 static u64 dev_access_u32_csr(const struct cntr_entry *entry, 1308 void *context, int vl, int mode, u64 data) 1309 { 1310 struct hfi1_devdata *dd = context; 1311 u64 csr = entry->csr; 1312 1313 if (entry->flags & CNTR_SDMA) { 1314 if (vl == CNTR_INVALID_VL) 1315 return 0; 1316 csr += 0x100 * vl; 1317 } else { 1318 if (vl != CNTR_INVALID_VL) 1319 return 0; 1320 } 1321 return read_write_csr(dd, csr, mode, data); 1322 } 1323 1324 static u64 access_sde_err_cnt(const struct cntr_entry *entry, 1325 void *context, int idx, int mode, u64 data) 1326 { 1327 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1328 1329 if (dd->per_sdma && idx < dd->num_sdma) 1330 return dd->per_sdma[idx].err_cnt; 1331 return 0; 1332 } 1333 1334 static u64 access_sde_int_cnt(const struct cntr_entry *entry, 1335 void *context, int idx, int mode, u64 data) 1336 { 1337 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1338 1339 if (dd->per_sdma && idx < dd->num_sdma) 1340 return dd->per_sdma[idx].sdma_int_cnt; 1341 return 0; 1342 } 1343 1344 static u64 access_sde_idle_int_cnt(const struct cntr_entry *entry, 1345 void *context, int idx, int mode, u64 data) 1346 { 1347 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1348 1349 if (dd->per_sdma && idx < dd->num_sdma) 1350 return dd->per_sdma[idx].idle_int_cnt; 1351 return 0; 1352 } 1353 1354 static u64 access_sde_progress_int_cnt(const struct cntr_entry *entry, 1355 void *context, int idx, int mode, 1356 u64 data) 1357 { 1358 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1359 1360 if (dd->per_sdma && idx < dd->num_sdma) 1361 return dd->per_sdma[idx].progress_int_cnt; 1362 return 0; 1363 } 1364 1365 static u64 dev_access_u64_csr(const struct cntr_entry *entry, void *context, 1366 int vl, int mode, u64 data) 1367 { 1368 struct hfi1_devdata *dd = context; 1369 1370 u64 val = 0; 1371 u64 csr = entry->csr; 1372 1373 if (entry->flags & CNTR_VL) { 1374 if (vl == CNTR_INVALID_VL) 1375 return 0; 1376 csr += 8 * vl; 1377 } else { 1378 if (vl != CNTR_INVALID_VL) 1379 return 0; 1380 } 1381 1382 val = read_write_csr(dd, csr, mode, data); 1383 return val; 1384 } 1385 1386 static u64 dc_access_lcb_cntr(const struct cntr_entry *entry, void *context, 1387 int vl, int mode, u64 data) 1388 { 1389 struct hfi1_devdata *dd = context; 1390 u32 csr = entry->csr; 1391 int ret = 0; 1392 1393 if (vl != CNTR_INVALID_VL) 1394 return 0; 1395 if (mode == CNTR_MODE_R) 1396 ret = read_lcb_csr(dd, csr, &data); 1397 else if (mode == CNTR_MODE_W) 1398 ret = write_lcb_csr(dd, csr, data); 1399 1400 if (ret) { 1401 dd_dev_err(dd, "Could not acquire LCB for counter 0x%x", csr); 1402 return 0; 1403 } 1404 1405 hfi1_cdbg(CNTR, "csr 0x%x val 0x%llx mode %d", csr, data, mode); 1406 return data; 1407 } 1408 1409 /* Port Access */ 1410 static u64 port_access_u32_csr(const struct cntr_entry *entry, void *context, 1411 int vl, int mode, u64 data) 1412 { 1413 struct hfi1_pportdata *ppd = context; 1414 1415 if (vl != CNTR_INVALID_VL) 1416 return 0; 1417 return read_write_csr(ppd->dd, entry->csr, mode, data); 1418 } 1419 1420 static u64 port_access_u64_csr(const struct cntr_entry *entry, 1421 void *context, int vl, int mode, u64 data) 1422 { 1423 struct hfi1_pportdata *ppd = context; 1424 u64 val; 1425 u64 csr = entry->csr; 1426 1427 if (entry->flags & CNTR_VL) { 1428 if (vl == CNTR_INVALID_VL) 1429 return 0; 1430 csr += 8 * vl; 1431 } else { 1432 if (vl != CNTR_INVALID_VL) 1433 return 0; 1434 } 1435 val = read_write_csr(ppd->dd, csr, mode, data); 1436 return val; 1437 } 1438 1439 /* Software defined */ 1440 static inline u64 read_write_sw(struct hfi1_devdata *dd, u64 *cntr, int mode, 1441 u64 data) 1442 { 1443 u64 ret; 1444 1445 if (mode == CNTR_MODE_R) { 1446 ret = *cntr; 1447 } else if (mode == CNTR_MODE_W) { 1448 *cntr = data; 1449 ret = data; 1450 } else { 1451 dd_dev_err(dd, "Invalid cntr sw access mode"); 1452 return 0; 1453 } 1454 1455 hfi1_cdbg(CNTR, "val 0x%llx mode %d", ret, mode); 1456 1457 return ret; 1458 } 1459 1460 static u64 access_sw_link_dn_cnt(const struct cntr_entry *entry, void *context, 1461 int vl, int mode, u64 data) 1462 { 1463 struct hfi1_pportdata *ppd = context; 1464 1465 if (vl != CNTR_INVALID_VL) 1466 return 0; 1467 return read_write_sw(ppd->dd, &ppd->link_downed, mode, data); 1468 } 1469 1470 static u64 access_sw_link_up_cnt(const struct cntr_entry *entry, void *context, 1471 int vl, int mode, u64 data) 1472 { 1473 struct hfi1_pportdata *ppd = context; 1474 1475 if (vl != CNTR_INVALID_VL) 1476 return 0; 1477 return read_write_sw(ppd->dd, &ppd->link_up, mode, data); 1478 } 1479 1480 static u64 access_sw_unknown_frame_cnt(const struct cntr_entry *entry, 1481 void *context, int vl, int mode, 1482 u64 data) 1483 { 1484 struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context; 1485 1486 if (vl != CNTR_INVALID_VL) 1487 return 0; 1488 return read_write_sw(ppd->dd, &ppd->unknown_frame_count, mode, data); 1489 } 1490 1491 static u64 access_sw_xmit_discards(const struct cntr_entry *entry, 1492 void *context, int vl, int mode, u64 data) 1493 { 1494 struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context; 1495 u64 zero = 0; 1496 u64 *counter; 1497 1498 if (vl == CNTR_INVALID_VL) 1499 counter = &ppd->port_xmit_discards; 1500 else if (vl >= 0 && vl < C_VL_COUNT) 1501 counter = &ppd->port_xmit_discards_vl[vl]; 1502 else 1503 counter = &zero; 1504 1505 return read_write_sw(ppd->dd, counter, mode, data); 1506 } 1507 1508 static u64 access_xmit_constraint_errs(const struct cntr_entry *entry, 1509 void *context, int vl, int mode, 1510 u64 data) 1511 { 1512 struct hfi1_pportdata *ppd = context; 1513 1514 if (vl != CNTR_INVALID_VL) 1515 return 0; 1516 1517 return read_write_sw(ppd->dd, &ppd->port_xmit_constraint_errors, 1518 mode, data); 1519 } 1520 1521 static u64 access_rcv_constraint_errs(const struct cntr_entry *entry, 1522 void *context, int vl, int mode, u64 data) 1523 { 1524 struct hfi1_pportdata *ppd = context; 1525 1526 if (vl != CNTR_INVALID_VL) 1527 return 0; 1528 1529 return read_write_sw(ppd->dd, &ppd->port_rcv_constraint_errors, 1530 mode, data); 1531 } 1532 1533 u64 get_all_cpu_total(u64 __percpu *cntr) 1534 { 1535 int cpu; 1536 u64 counter = 0; 1537 1538 for_each_possible_cpu(cpu) 1539 counter += *per_cpu_ptr(cntr, cpu); 1540 return counter; 1541 } 1542 1543 static u64 read_write_cpu(struct hfi1_devdata *dd, u64 *z_val, 1544 u64 __percpu *cntr, 1545 int vl, int mode, u64 data) 1546 { 1547 u64 ret = 0; 1548 1549 if (vl != CNTR_INVALID_VL) 1550 return 0; 1551 1552 if (mode == CNTR_MODE_R) { 1553 ret = get_all_cpu_total(cntr) - *z_val; 1554 } else if (mode == CNTR_MODE_W) { 1555 /* A write can only zero the counter */ 1556 if (data == 0) 1557 *z_val = get_all_cpu_total(cntr); 1558 else 1559 dd_dev_err(dd, "Per CPU cntrs can only be zeroed"); 1560 } else { 1561 dd_dev_err(dd, "Invalid cntr sw cpu access mode"); 1562 return 0; 1563 } 1564 1565 return ret; 1566 } 1567 1568 static u64 access_sw_cpu_intr(const struct cntr_entry *entry, 1569 void *context, int vl, int mode, u64 data) 1570 { 1571 struct hfi1_devdata *dd = context; 1572 1573 return read_write_cpu(dd, &dd->z_int_counter, dd->int_counter, vl, 1574 mode, data); 1575 } 1576 1577 static u64 access_sw_cpu_rcv_limit(const struct cntr_entry *entry, 1578 void *context, int vl, int mode, u64 data) 1579 { 1580 struct hfi1_devdata *dd = context; 1581 1582 return read_write_cpu(dd, &dd->z_rcv_limit, dd->rcv_limit, vl, 1583 mode, data); 1584 } 1585 1586 static u64 access_sw_pio_wait(const struct cntr_entry *entry, 1587 void *context, int vl, int mode, u64 data) 1588 { 1589 struct hfi1_devdata *dd = context; 1590 1591 return dd->verbs_dev.n_piowait; 1592 } 1593 1594 static u64 access_sw_pio_drain(const struct cntr_entry *entry, 1595 void *context, int vl, int mode, u64 data) 1596 { 1597 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1598 1599 return dd->verbs_dev.n_piodrain; 1600 } 1601 1602 static u64 access_sw_vtx_wait(const struct cntr_entry *entry, 1603 void *context, int vl, int mode, u64 data) 1604 { 1605 struct hfi1_devdata *dd = context; 1606 1607 return dd->verbs_dev.n_txwait; 1608 } 1609 1610 static u64 access_sw_kmem_wait(const struct cntr_entry *entry, 1611 void *context, int vl, int mode, u64 data) 1612 { 1613 struct hfi1_devdata *dd = context; 1614 1615 return dd->verbs_dev.n_kmem_wait; 1616 } 1617 1618 static u64 access_sw_send_schedule(const struct cntr_entry *entry, 1619 void *context, int vl, int mode, u64 data) 1620 { 1621 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1622 1623 return read_write_cpu(dd, &dd->z_send_schedule, dd->send_schedule, vl, 1624 mode, data); 1625 } 1626 1627 /* Software counters for the error status bits within MISC_ERR_STATUS */ 1628 static u64 access_misc_pll_lock_fail_err_cnt(const struct cntr_entry *entry, 1629 void *context, int vl, int mode, 1630 u64 data) 1631 { 1632 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1633 1634 return dd->misc_err_status_cnt[12]; 1635 } 1636 1637 static u64 access_misc_mbist_fail_err_cnt(const struct cntr_entry *entry, 1638 void *context, int vl, int mode, 1639 u64 data) 1640 { 1641 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1642 1643 return dd->misc_err_status_cnt[11]; 1644 } 1645 1646 static u64 access_misc_invalid_eep_cmd_err_cnt(const struct cntr_entry *entry, 1647 void *context, int vl, int mode, 1648 u64 data) 1649 { 1650 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1651 1652 return dd->misc_err_status_cnt[10]; 1653 } 1654 1655 static u64 access_misc_efuse_done_parity_err_cnt(const struct cntr_entry *entry, 1656 void *context, int vl, 1657 int mode, u64 data) 1658 { 1659 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1660 1661 return dd->misc_err_status_cnt[9]; 1662 } 1663 1664 static u64 access_misc_efuse_write_err_cnt(const struct cntr_entry *entry, 1665 void *context, int vl, int mode, 1666 u64 data) 1667 { 1668 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1669 1670 return dd->misc_err_status_cnt[8]; 1671 } 1672 1673 static u64 access_misc_efuse_read_bad_addr_err_cnt( 1674 const struct cntr_entry *entry, 1675 void *context, int vl, int mode, u64 data) 1676 { 1677 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1678 1679 return dd->misc_err_status_cnt[7]; 1680 } 1681 1682 static u64 access_misc_efuse_csr_parity_err_cnt(const struct cntr_entry *entry, 1683 void *context, int vl, 1684 int mode, u64 data) 1685 { 1686 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1687 1688 return dd->misc_err_status_cnt[6]; 1689 } 1690 1691 static u64 access_misc_fw_auth_failed_err_cnt(const struct cntr_entry *entry, 1692 void *context, int vl, int mode, 1693 u64 data) 1694 { 1695 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1696 1697 return dd->misc_err_status_cnt[5]; 1698 } 1699 1700 static u64 access_misc_key_mismatch_err_cnt(const struct cntr_entry *entry, 1701 void *context, int vl, int mode, 1702 u64 data) 1703 { 1704 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1705 1706 return dd->misc_err_status_cnt[4]; 1707 } 1708 1709 static u64 access_misc_sbus_write_failed_err_cnt(const struct cntr_entry *entry, 1710 void *context, int vl, 1711 int mode, u64 data) 1712 { 1713 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1714 1715 return dd->misc_err_status_cnt[3]; 1716 } 1717 1718 static u64 access_misc_csr_write_bad_addr_err_cnt( 1719 const struct cntr_entry *entry, 1720 void *context, int vl, int mode, u64 data) 1721 { 1722 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1723 1724 return dd->misc_err_status_cnt[2]; 1725 } 1726 1727 static u64 access_misc_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry, 1728 void *context, int vl, 1729 int mode, u64 data) 1730 { 1731 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1732 1733 return dd->misc_err_status_cnt[1]; 1734 } 1735 1736 static u64 access_misc_csr_parity_err_cnt(const struct cntr_entry *entry, 1737 void *context, int vl, int mode, 1738 u64 data) 1739 { 1740 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1741 1742 return dd->misc_err_status_cnt[0]; 1743 } 1744 1745 /* 1746 * Software counter for the aggregate of 1747 * individual CceErrStatus counters 1748 */ 1749 static u64 access_sw_cce_err_status_aggregated_cnt( 1750 const struct cntr_entry *entry, 1751 void *context, int vl, int mode, u64 data) 1752 { 1753 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1754 1755 return dd->sw_cce_err_status_aggregate; 1756 } 1757 1758 /* 1759 * Software counters corresponding to each of the 1760 * error status bits within CceErrStatus 1761 */ 1762 static u64 access_cce_msix_csr_parity_err_cnt(const struct cntr_entry *entry, 1763 void *context, int vl, int mode, 1764 u64 data) 1765 { 1766 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1767 1768 return dd->cce_err_status_cnt[40]; 1769 } 1770 1771 static u64 access_cce_int_map_unc_err_cnt(const struct cntr_entry *entry, 1772 void *context, int vl, int mode, 1773 u64 data) 1774 { 1775 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1776 1777 return dd->cce_err_status_cnt[39]; 1778 } 1779 1780 static u64 access_cce_int_map_cor_err_cnt(const struct cntr_entry *entry, 1781 void *context, int vl, int mode, 1782 u64 data) 1783 { 1784 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1785 1786 return dd->cce_err_status_cnt[38]; 1787 } 1788 1789 static u64 access_cce_msix_table_unc_err_cnt(const struct cntr_entry *entry, 1790 void *context, int vl, int mode, 1791 u64 data) 1792 { 1793 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1794 1795 return dd->cce_err_status_cnt[37]; 1796 } 1797 1798 static u64 access_cce_msix_table_cor_err_cnt(const struct cntr_entry *entry, 1799 void *context, int vl, int mode, 1800 u64 data) 1801 { 1802 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1803 1804 return dd->cce_err_status_cnt[36]; 1805 } 1806 1807 static u64 access_cce_rxdma_conv_fifo_parity_err_cnt( 1808 const struct cntr_entry *entry, 1809 void *context, int vl, int mode, u64 data) 1810 { 1811 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1812 1813 return dd->cce_err_status_cnt[35]; 1814 } 1815 1816 static u64 access_cce_rcpl_async_fifo_parity_err_cnt( 1817 const struct cntr_entry *entry, 1818 void *context, int vl, int mode, u64 data) 1819 { 1820 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1821 1822 return dd->cce_err_status_cnt[34]; 1823 } 1824 1825 static u64 access_cce_seg_write_bad_addr_err_cnt(const struct cntr_entry *entry, 1826 void *context, int vl, 1827 int mode, u64 data) 1828 { 1829 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1830 1831 return dd->cce_err_status_cnt[33]; 1832 } 1833 1834 static u64 access_cce_seg_read_bad_addr_err_cnt(const struct cntr_entry *entry, 1835 void *context, int vl, int mode, 1836 u64 data) 1837 { 1838 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1839 1840 return dd->cce_err_status_cnt[32]; 1841 } 1842 1843 static u64 access_la_triggered_cnt(const struct cntr_entry *entry, 1844 void *context, int vl, int mode, u64 data) 1845 { 1846 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1847 1848 return dd->cce_err_status_cnt[31]; 1849 } 1850 1851 static u64 access_cce_trgt_cpl_timeout_err_cnt(const struct cntr_entry *entry, 1852 void *context, int vl, int mode, 1853 u64 data) 1854 { 1855 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1856 1857 return dd->cce_err_status_cnt[30]; 1858 } 1859 1860 static u64 access_pcic_receive_parity_err_cnt(const struct cntr_entry *entry, 1861 void *context, int vl, int mode, 1862 u64 data) 1863 { 1864 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1865 1866 return dd->cce_err_status_cnt[29]; 1867 } 1868 1869 static u64 access_pcic_transmit_back_parity_err_cnt( 1870 const struct cntr_entry *entry, 1871 void *context, int vl, int mode, u64 data) 1872 { 1873 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1874 1875 return dd->cce_err_status_cnt[28]; 1876 } 1877 1878 static u64 access_pcic_transmit_front_parity_err_cnt( 1879 const struct cntr_entry *entry, 1880 void *context, int vl, int mode, u64 data) 1881 { 1882 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1883 1884 return dd->cce_err_status_cnt[27]; 1885 } 1886 1887 static u64 access_pcic_cpl_dat_q_unc_err_cnt(const struct cntr_entry *entry, 1888 void *context, int vl, int mode, 1889 u64 data) 1890 { 1891 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1892 1893 return dd->cce_err_status_cnt[26]; 1894 } 1895 1896 static u64 access_pcic_cpl_hd_q_unc_err_cnt(const struct cntr_entry *entry, 1897 void *context, int vl, int mode, 1898 u64 data) 1899 { 1900 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1901 1902 return dd->cce_err_status_cnt[25]; 1903 } 1904 1905 static u64 access_pcic_post_dat_q_unc_err_cnt(const struct cntr_entry *entry, 1906 void *context, int vl, int mode, 1907 u64 data) 1908 { 1909 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1910 1911 return dd->cce_err_status_cnt[24]; 1912 } 1913 1914 static u64 access_pcic_post_hd_q_unc_err_cnt(const struct cntr_entry *entry, 1915 void *context, int vl, int mode, 1916 u64 data) 1917 { 1918 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1919 1920 return dd->cce_err_status_cnt[23]; 1921 } 1922 1923 static u64 access_pcic_retry_sot_mem_unc_err_cnt(const struct cntr_entry *entry, 1924 void *context, int vl, 1925 int mode, u64 data) 1926 { 1927 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1928 1929 return dd->cce_err_status_cnt[22]; 1930 } 1931 1932 static u64 access_pcic_retry_mem_unc_err(const struct cntr_entry *entry, 1933 void *context, int vl, int mode, 1934 u64 data) 1935 { 1936 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1937 1938 return dd->cce_err_status_cnt[21]; 1939 } 1940 1941 static u64 access_pcic_n_post_dat_q_parity_err_cnt( 1942 const struct cntr_entry *entry, 1943 void *context, int vl, int mode, u64 data) 1944 { 1945 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1946 1947 return dd->cce_err_status_cnt[20]; 1948 } 1949 1950 static u64 access_pcic_n_post_h_q_parity_err_cnt(const struct cntr_entry *entry, 1951 void *context, int vl, 1952 int mode, u64 data) 1953 { 1954 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1955 1956 return dd->cce_err_status_cnt[19]; 1957 } 1958 1959 static u64 access_pcic_cpl_dat_q_cor_err_cnt(const struct cntr_entry *entry, 1960 void *context, int vl, int mode, 1961 u64 data) 1962 { 1963 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1964 1965 return dd->cce_err_status_cnt[18]; 1966 } 1967 1968 static u64 access_pcic_cpl_hd_q_cor_err_cnt(const struct cntr_entry *entry, 1969 void *context, int vl, int mode, 1970 u64 data) 1971 { 1972 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1973 1974 return dd->cce_err_status_cnt[17]; 1975 } 1976 1977 static u64 access_pcic_post_dat_q_cor_err_cnt(const struct cntr_entry *entry, 1978 void *context, int vl, int mode, 1979 u64 data) 1980 { 1981 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1982 1983 return dd->cce_err_status_cnt[16]; 1984 } 1985 1986 static u64 access_pcic_post_hd_q_cor_err_cnt(const struct cntr_entry *entry, 1987 void *context, int vl, int mode, 1988 u64 data) 1989 { 1990 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1991 1992 return dd->cce_err_status_cnt[15]; 1993 } 1994 1995 static u64 access_pcic_retry_sot_mem_cor_err_cnt(const struct cntr_entry *entry, 1996 void *context, int vl, 1997 int mode, u64 data) 1998 { 1999 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2000 2001 return dd->cce_err_status_cnt[14]; 2002 } 2003 2004 static u64 access_pcic_retry_mem_cor_err_cnt(const struct cntr_entry *entry, 2005 void *context, int vl, int mode, 2006 u64 data) 2007 { 2008 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2009 2010 return dd->cce_err_status_cnt[13]; 2011 } 2012 2013 static u64 access_cce_cli1_async_fifo_dbg_parity_err_cnt( 2014 const struct cntr_entry *entry, 2015 void *context, int vl, int mode, u64 data) 2016 { 2017 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2018 2019 return dd->cce_err_status_cnt[12]; 2020 } 2021 2022 static u64 access_cce_cli1_async_fifo_rxdma_parity_err_cnt( 2023 const struct cntr_entry *entry, 2024 void *context, int vl, int mode, u64 data) 2025 { 2026 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2027 2028 return dd->cce_err_status_cnt[11]; 2029 } 2030 2031 static u64 access_cce_cli1_async_fifo_sdma_hd_parity_err_cnt( 2032 const struct cntr_entry *entry, 2033 void *context, int vl, int mode, u64 data) 2034 { 2035 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2036 2037 return dd->cce_err_status_cnt[10]; 2038 } 2039 2040 static u64 access_cce_cl1_async_fifo_pio_crdt_parity_err_cnt( 2041 const struct cntr_entry *entry, 2042 void *context, int vl, int mode, u64 data) 2043 { 2044 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2045 2046 return dd->cce_err_status_cnt[9]; 2047 } 2048 2049 static u64 access_cce_cli2_async_fifo_parity_err_cnt( 2050 const struct cntr_entry *entry, 2051 void *context, int vl, int mode, u64 data) 2052 { 2053 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2054 2055 return dd->cce_err_status_cnt[8]; 2056 } 2057 2058 static u64 access_cce_csr_cfg_bus_parity_err_cnt(const struct cntr_entry *entry, 2059 void *context, int vl, 2060 int mode, u64 data) 2061 { 2062 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2063 2064 return dd->cce_err_status_cnt[7]; 2065 } 2066 2067 static u64 access_cce_cli0_async_fifo_parity_err_cnt( 2068 const struct cntr_entry *entry, 2069 void *context, int vl, int mode, u64 data) 2070 { 2071 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2072 2073 return dd->cce_err_status_cnt[6]; 2074 } 2075 2076 static u64 access_cce_rspd_data_parity_err_cnt(const struct cntr_entry *entry, 2077 void *context, int vl, int mode, 2078 u64 data) 2079 { 2080 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2081 2082 return dd->cce_err_status_cnt[5]; 2083 } 2084 2085 static u64 access_cce_trgt_access_err_cnt(const struct cntr_entry *entry, 2086 void *context, int vl, int mode, 2087 u64 data) 2088 { 2089 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2090 2091 return dd->cce_err_status_cnt[4]; 2092 } 2093 2094 static u64 access_cce_trgt_async_fifo_parity_err_cnt( 2095 const struct cntr_entry *entry, 2096 void *context, int vl, int mode, u64 data) 2097 { 2098 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2099 2100 return dd->cce_err_status_cnt[3]; 2101 } 2102 2103 static u64 access_cce_csr_write_bad_addr_err_cnt(const struct cntr_entry *entry, 2104 void *context, int vl, 2105 int mode, u64 data) 2106 { 2107 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2108 2109 return dd->cce_err_status_cnt[2]; 2110 } 2111 2112 static u64 access_cce_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry, 2113 void *context, int vl, 2114 int mode, u64 data) 2115 { 2116 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2117 2118 return dd->cce_err_status_cnt[1]; 2119 } 2120 2121 static u64 access_ccs_csr_parity_err_cnt(const struct cntr_entry *entry, 2122 void *context, int vl, int mode, 2123 u64 data) 2124 { 2125 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2126 2127 return dd->cce_err_status_cnt[0]; 2128 } 2129 2130 /* 2131 * Software counters corresponding to each of the 2132 * error status bits within RcvErrStatus 2133 */ 2134 static u64 access_rx_csr_parity_err_cnt(const struct cntr_entry *entry, 2135 void *context, int vl, int mode, 2136 u64 data) 2137 { 2138 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2139 2140 return dd->rcv_err_status_cnt[63]; 2141 } 2142 2143 static u64 access_rx_csr_write_bad_addr_err_cnt(const struct cntr_entry *entry, 2144 void *context, int vl, 2145 int mode, u64 data) 2146 { 2147 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2148 2149 return dd->rcv_err_status_cnt[62]; 2150 } 2151 2152 static u64 access_rx_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry, 2153 void *context, int vl, int mode, 2154 u64 data) 2155 { 2156 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2157 2158 return dd->rcv_err_status_cnt[61]; 2159 } 2160 2161 static u64 access_rx_dma_csr_unc_err_cnt(const struct cntr_entry *entry, 2162 void *context, int vl, int mode, 2163 u64 data) 2164 { 2165 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2166 2167 return dd->rcv_err_status_cnt[60]; 2168 } 2169 2170 static u64 access_rx_dma_dq_fsm_encoding_err_cnt(const struct cntr_entry *entry, 2171 void *context, int vl, 2172 int mode, u64 data) 2173 { 2174 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2175 2176 return dd->rcv_err_status_cnt[59]; 2177 } 2178 2179 static u64 access_rx_dma_eq_fsm_encoding_err_cnt(const struct cntr_entry *entry, 2180 void *context, int vl, 2181 int mode, u64 data) 2182 { 2183 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2184 2185 return dd->rcv_err_status_cnt[58]; 2186 } 2187 2188 static u64 access_rx_dma_csr_parity_err_cnt(const struct cntr_entry *entry, 2189 void *context, int vl, int mode, 2190 u64 data) 2191 { 2192 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2193 2194 return dd->rcv_err_status_cnt[57]; 2195 } 2196 2197 static u64 access_rx_rbuf_data_cor_err_cnt(const struct cntr_entry *entry, 2198 void *context, int vl, int mode, 2199 u64 data) 2200 { 2201 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2202 2203 return dd->rcv_err_status_cnt[56]; 2204 } 2205 2206 static u64 access_rx_rbuf_data_unc_err_cnt(const struct cntr_entry *entry, 2207 void *context, int vl, int mode, 2208 u64 data) 2209 { 2210 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2211 2212 return dd->rcv_err_status_cnt[55]; 2213 } 2214 2215 static u64 access_rx_dma_data_fifo_rd_cor_err_cnt( 2216 const struct cntr_entry *entry, 2217 void *context, int vl, int mode, u64 data) 2218 { 2219 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2220 2221 return dd->rcv_err_status_cnt[54]; 2222 } 2223 2224 static u64 access_rx_dma_data_fifo_rd_unc_err_cnt( 2225 const struct cntr_entry *entry, 2226 void *context, int vl, int mode, u64 data) 2227 { 2228 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2229 2230 return dd->rcv_err_status_cnt[53]; 2231 } 2232 2233 static u64 access_rx_dma_hdr_fifo_rd_cor_err_cnt(const struct cntr_entry *entry, 2234 void *context, int vl, 2235 int mode, u64 data) 2236 { 2237 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2238 2239 return dd->rcv_err_status_cnt[52]; 2240 } 2241 2242 static u64 access_rx_dma_hdr_fifo_rd_unc_err_cnt(const struct cntr_entry *entry, 2243 void *context, int vl, 2244 int mode, u64 data) 2245 { 2246 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2247 2248 return dd->rcv_err_status_cnt[51]; 2249 } 2250 2251 static u64 access_rx_rbuf_desc_part2_cor_err_cnt(const struct cntr_entry *entry, 2252 void *context, int vl, 2253 int mode, u64 data) 2254 { 2255 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2256 2257 return dd->rcv_err_status_cnt[50]; 2258 } 2259 2260 static u64 access_rx_rbuf_desc_part2_unc_err_cnt(const struct cntr_entry *entry, 2261 void *context, int vl, 2262 int mode, u64 data) 2263 { 2264 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2265 2266 return dd->rcv_err_status_cnt[49]; 2267 } 2268 2269 static u64 access_rx_rbuf_desc_part1_cor_err_cnt(const struct cntr_entry *entry, 2270 void *context, int vl, 2271 int mode, u64 data) 2272 { 2273 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2274 2275 return dd->rcv_err_status_cnt[48]; 2276 } 2277 2278 static u64 access_rx_rbuf_desc_part1_unc_err_cnt(const struct cntr_entry *entry, 2279 void *context, int vl, 2280 int mode, u64 data) 2281 { 2282 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2283 2284 return dd->rcv_err_status_cnt[47]; 2285 } 2286 2287 static u64 access_rx_hq_intr_fsm_err_cnt(const struct cntr_entry *entry, 2288 void *context, int vl, int mode, 2289 u64 data) 2290 { 2291 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2292 2293 return dd->rcv_err_status_cnt[46]; 2294 } 2295 2296 static u64 access_rx_hq_intr_csr_parity_err_cnt( 2297 const struct cntr_entry *entry, 2298 void *context, int vl, int mode, u64 data) 2299 { 2300 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2301 2302 return dd->rcv_err_status_cnt[45]; 2303 } 2304 2305 static u64 access_rx_lookup_csr_parity_err_cnt( 2306 const struct cntr_entry *entry, 2307 void *context, int vl, int mode, u64 data) 2308 { 2309 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2310 2311 return dd->rcv_err_status_cnt[44]; 2312 } 2313 2314 static u64 access_rx_lookup_rcv_array_cor_err_cnt( 2315 const struct cntr_entry *entry, 2316 void *context, int vl, int mode, u64 data) 2317 { 2318 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2319 2320 return dd->rcv_err_status_cnt[43]; 2321 } 2322 2323 static u64 access_rx_lookup_rcv_array_unc_err_cnt( 2324 const struct cntr_entry *entry, 2325 void *context, int vl, int mode, u64 data) 2326 { 2327 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2328 2329 return dd->rcv_err_status_cnt[42]; 2330 } 2331 2332 static u64 access_rx_lookup_des_part2_parity_err_cnt( 2333 const struct cntr_entry *entry, 2334 void *context, int vl, int mode, u64 data) 2335 { 2336 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2337 2338 return dd->rcv_err_status_cnt[41]; 2339 } 2340 2341 static u64 access_rx_lookup_des_part1_unc_cor_err_cnt( 2342 const struct cntr_entry *entry, 2343 void *context, int vl, int mode, u64 data) 2344 { 2345 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2346 2347 return dd->rcv_err_status_cnt[40]; 2348 } 2349 2350 static u64 access_rx_lookup_des_part1_unc_err_cnt( 2351 const struct cntr_entry *entry, 2352 void *context, int vl, int mode, u64 data) 2353 { 2354 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2355 2356 return dd->rcv_err_status_cnt[39]; 2357 } 2358 2359 static u64 access_rx_rbuf_next_free_buf_cor_err_cnt( 2360 const struct cntr_entry *entry, 2361 void *context, int vl, int mode, u64 data) 2362 { 2363 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2364 2365 return dd->rcv_err_status_cnt[38]; 2366 } 2367 2368 static u64 access_rx_rbuf_next_free_buf_unc_err_cnt( 2369 const struct cntr_entry *entry, 2370 void *context, int vl, int mode, u64 data) 2371 { 2372 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2373 2374 return dd->rcv_err_status_cnt[37]; 2375 } 2376 2377 static u64 access_rbuf_fl_init_wr_addr_parity_err_cnt( 2378 const struct cntr_entry *entry, 2379 void *context, int vl, int mode, u64 data) 2380 { 2381 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2382 2383 return dd->rcv_err_status_cnt[36]; 2384 } 2385 2386 static u64 access_rx_rbuf_fl_initdone_parity_err_cnt( 2387 const struct cntr_entry *entry, 2388 void *context, int vl, int mode, u64 data) 2389 { 2390 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2391 2392 return dd->rcv_err_status_cnt[35]; 2393 } 2394 2395 static u64 access_rx_rbuf_fl_write_addr_parity_err_cnt( 2396 const struct cntr_entry *entry, 2397 void *context, int vl, int mode, u64 data) 2398 { 2399 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2400 2401 return dd->rcv_err_status_cnt[34]; 2402 } 2403 2404 static u64 access_rx_rbuf_fl_rd_addr_parity_err_cnt( 2405 const struct cntr_entry *entry, 2406 void *context, int vl, int mode, u64 data) 2407 { 2408 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2409 2410 return dd->rcv_err_status_cnt[33]; 2411 } 2412 2413 static u64 access_rx_rbuf_empty_err_cnt(const struct cntr_entry *entry, 2414 void *context, int vl, int mode, 2415 u64 data) 2416 { 2417 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2418 2419 return dd->rcv_err_status_cnt[32]; 2420 } 2421 2422 static u64 access_rx_rbuf_full_err_cnt(const struct cntr_entry *entry, 2423 void *context, int vl, int mode, 2424 u64 data) 2425 { 2426 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2427 2428 return dd->rcv_err_status_cnt[31]; 2429 } 2430 2431 static u64 access_rbuf_bad_lookup_err_cnt(const struct cntr_entry *entry, 2432 void *context, int vl, int mode, 2433 u64 data) 2434 { 2435 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2436 2437 return dd->rcv_err_status_cnt[30]; 2438 } 2439 2440 static u64 access_rbuf_ctx_id_parity_err_cnt(const struct cntr_entry *entry, 2441 void *context, int vl, int mode, 2442 u64 data) 2443 { 2444 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2445 2446 return dd->rcv_err_status_cnt[29]; 2447 } 2448 2449 static u64 access_rbuf_csr_qeopdw_parity_err_cnt(const struct cntr_entry *entry, 2450 void *context, int vl, 2451 int mode, u64 data) 2452 { 2453 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2454 2455 return dd->rcv_err_status_cnt[28]; 2456 } 2457 2458 static u64 access_rx_rbuf_csr_q_num_of_pkt_parity_err_cnt( 2459 const struct cntr_entry *entry, 2460 void *context, int vl, int mode, u64 data) 2461 { 2462 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2463 2464 return dd->rcv_err_status_cnt[27]; 2465 } 2466 2467 static u64 access_rx_rbuf_csr_q_t1_ptr_parity_err_cnt( 2468 const struct cntr_entry *entry, 2469 void *context, int vl, int mode, u64 data) 2470 { 2471 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2472 2473 return dd->rcv_err_status_cnt[26]; 2474 } 2475 2476 static u64 access_rx_rbuf_csr_q_hd_ptr_parity_err_cnt( 2477 const struct cntr_entry *entry, 2478 void *context, int vl, int mode, u64 data) 2479 { 2480 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2481 2482 return dd->rcv_err_status_cnt[25]; 2483 } 2484 2485 static u64 access_rx_rbuf_csr_q_vld_bit_parity_err_cnt( 2486 const struct cntr_entry *entry, 2487 void *context, int vl, int mode, u64 data) 2488 { 2489 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2490 2491 return dd->rcv_err_status_cnt[24]; 2492 } 2493 2494 static u64 access_rx_rbuf_csr_q_next_buf_parity_err_cnt( 2495 const struct cntr_entry *entry, 2496 void *context, int vl, int mode, u64 data) 2497 { 2498 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2499 2500 return dd->rcv_err_status_cnt[23]; 2501 } 2502 2503 static u64 access_rx_rbuf_csr_q_ent_cnt_parity_err_cnt( 2504 const struct cntr_entry *entry, 2505 void *context, int vl, int mode, u64 data) 2506 { 2507 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2508 2509 return dd->rcv_err_status_cnt[22]; 2510 } 2511 2512 static u64 access_rx_rbuf_csr_q_head_buf_num_parity_err_cnt( 2513 const struct cntr_entry *entry, 2514 void *context, int vl, int mode, u64 data) 2515 { 2516 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2517 2518 return dd->rcv_err_status_cnt[21]; 2519 } 2520 2521 static u64 access_rx_rbuf_block_list_read_cor_err_cnt( 2522 const struct cntr_entry *entry, 2523 void *context, int vl, int mode, u64 data) 2524 { 2525 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2526 2527 return dd->rcv_err_status_cnt[20]; 2528 } 2529 2530 static u64 access_rx_rbuf_block_list_read_unc_err_cnt( 2531 const struct cntr_entry *entry, 2532 void *context, int vl, int mode, u64 data) 2533 { 2534 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2535 2536 return dd->rcv_err_status_cnt[19]; 2537 } 2538 2539 static u64 access_rx_rbuf_lookup_des_cor_err_cnt(const struct cntr_entry *entry, 2540 void *context, int vl, 2541 int mode, u64 data) 2542 { 2543 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2544 2545 return dd->rcv_err_status_cnt[18]; 2546 } 2547 2548 static u64 access_rx_rbuf_lookup_des_unc_err_cnt(const struct cntr_entry *entry, 2549 void *context, int vl, 2550 int mode, u64 data) 2551 { 2552 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2553 2554 return dd->rcv_err_status_cnt[17]; 2555 } 2556 2557 static u64 access_rx_rbuf_lookup_des_reg_unc_cor_err_cnt( 2558 const struct cntr_entry *entry, 2559 void *context, int vl, int mode, u64 data) 2560 { 2561 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2562 2563 return dd->rcv_err_status_cnt[16]; 2564 } 2565 2566 static u64 access_rx_rbuf_lookup_des_reg_unc_err_cnt( 2567 const struct cntr_entry *entry, 2568 void *context, int vl, int mode, u64 data) 2569 { 2570 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2571 2572 return dd->rcv_err_status_cnt[15]; 2573 } 2574 2575 static u64 access_rx_rbuf_free_list_cor_err_cnt(const struct cntr_entry *entry, 2576 void *context, int vl, 2577 int mode, u64 data) 2578 { 2579 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2580 2581 return dd->rcv_err_status_cnt[14]; 2582 } 2583 2584 static u64 access_rx_rbuf_free_list_unc_err_cnt(const struct cntr_entry *entry, 2585 void *context, int vl, 2586 int mode, u64 data) 2587 { 2588 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2589 2590 return dd->rcv_err_status_cnt[13]; 2591 } 2592 2593 static u64 access_rx_rcv_fsm_encoding_err_cnt(const struct cntr_entry *entry, 2594 void *context, int vl, int mode, 2595 u64 data) 2596 { 2597 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2598 2599 return dd->rcv_err_status_cnt[12]; 2600 } 2601 2602 static u64 access_rx_dma_flag_cor_err_cnt(const struct cntr_entry *entry, 2603 void *context, int vl, int mode, 2604 u64 data) 2605 { 2606 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2607 2608 return dd->rcv_err_status_cnt[11]; 2609 } 2610 2611 static u64 access_rx_dma_flag_unc_err_cnt(const struct cntr_entry *entry, 2612 void *context, int vl, int mode, 2613 u64 data) 2614 { 2615 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2616 2617 return dd->rcv_err_status_cnt[10]; 2618 } 2619 2620 static u64 access_rx_dc_sop_eop_parity_err_cnt(const struct cntr_entry *entry, 2621 void *context, int vl, int mode, 2622 u64 data) 2623 { 2624 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2625 2626 return dd->rcv_err_status_cnt[9]; 2627 } 2628 2629 static u64 access_rx_rcv_csr_parity_err_cnt(const struct cntr_entry *entry, 2630 void *context, int vl, int mode, 2631 u64 data) 2632 { 2633 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2634 2635 return dd->rcv_err_status_cnt[8]; 2636 } 2637 2638 static u64 access_rx_rcv_qp_map_table_cor_err_cnt( 2639 const struct cntr_entry *entry, 2640 void *context, int vl, int mode, u64 data) 2641 { 2642 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2643 2644 return dd->rcv_err_status_cnt[7]; 2645 } 2646 2647 static u64 access_rx_rcv_qp_map_table_unc_err_cnt( 2648 const struct cntr_entry *entry, 2649 void *context, int vl, int mode, u64 data) 2650 { 2651 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2652 2653 return dd->rcv_err_status_cnt[6]; 2654 } 2655 2656 static u64 access_rx_rcv_data_cor_err_cnt(const struct cntr_entry *entry, 2657 void *context, int vl, int mode, 2658 u64 data) 2659 { 2660 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2661 2662 return dd->rcv_err_status_cnt[5]; 2663 } 2664 2665 static u64 access_rx_rcv_data_unc_err_cnt(const struct cntr_entry *entry, 2666 void *context, int vl, int mode, 2667 u64 data) 2668 { 2669 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2670 2671 return dd->rcv_err_status_cnt[4]; 2672 } 2673 2674 static u64 access_rx_rcv_hdr_cor_err_cnt(const struct cntr_entry *entry, 2675 void *context, int vl, int mode, 2676 u64 data) 2677 { 2678 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2679 2680 return dd->rcv_err_status_cnt[3]; 2681 } 2682 2683 static u64 access_rx_rcv_hdr_unc_err_cnt(const struct cntr_entry *entry, 2684 void *context, int vl, int mode, 2685 u64 data) 2686 { 2687 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2688 2689 return dd->rcv_err_status_cnt[2]; 2690 } 2691 2692 static u64 access_rx_dc_intf_parity_err_cnt(const struct cntr_entry *entry, 2693 void *context, int vl, int mode, 2694 u64 data) 2695 { 2696 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2697 2698 return dd->rcv_err_status_cnt[1]; 2699 } 2700 2701 static u64 access_rx_dma_csr_cor_err_cnt(const struct cntr_entry *entry, 2702 void *context, int vl, int mode, 2703 u64 data) 2704 { 2705 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2706 2707 return dd->rcv_err_status_cnt[0]; 2708 } 2709 2710 /* 2711 * Software counters corresponding to each of the 2712 * error status bits within SendPioErrStatus 2713 */ 2714 static u64 access_pio_pec_sop_head_parity_err_cnt( 2715 const struct cntr_entry *entry, 2716 void *context, int vl, int mode, u64 data) 2717 { 2718 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2719 2720 return dd->send_pio_err_status_cnt[35]; 2721 } 2722 2723 static u64 access_pio_pcc_sop_head_parity_err_cnt( 2724 const struct cntr_entry *entry, 2725 void *context, int vl, int mode, u64 data) 2726 { 2727 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2728 2729 return dd->send_pio_err_status_cnt[34]; 2730 } 2731 2732 static u64 access_pio_last_returned_cnt_parity_err_cnt( 2733 const struct cntr_entry *entry, 2734 void *context, int vl, int mode, u64 data) 2735 { 2736 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2737 2738 return dd->send_pio_err_status_cnt[33]; 2739 } 2740 2741 static u64 access_pio_current_free_cnt_parity_err_cnt( 2742 const struct cntr_entry *entry, 2743 void *context, int vl, int mode, u64 data) 2744 { 2745 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2746 2747 return dd->send_pio_err_status_cnt[32]; 2748 } 2749 2750 static u64 access_pio_reserved_31_err_cnt(const struct cntr_entry *entry, 2751 void *context, int vl, int mode, 2752 u64 data) 2753 { 2754 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2755 2756 return dd->send_pio_err_status_cnt[31]; 2757 } 2758 2759 static u64 access_pio_reserved_30_err_cnt(const struct cntr_entry *entry, 2760 void *context, int vl, int mode, 2761 u64 data) 2762 { 2763 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2764 2765 return dd->send_pio_err_status_cnt[30]; 2766 } 2767 2768 static u64 access_pio_ppmc_sop_len_err_cnt(const struct cntr_entry *entry, 2769 void *context, int vl, int mode, 2770 u64 data) 2771 { 2772 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2773 2774 return dd->send_pio_err_status_cnt[29]; 2775 } 2776 2777 static u64 access_pio_ppmc_bqc_mem_parity_err_cnt( 2778 const struct cntr_entry *entry, 2779 void *context, int vl, int mode, u64 data) 2780 { 2781 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2782 2783 return dd->send_pio_err_status_cnt[28]; 2784 } 2785 2786 static u64 access_pio_vl_fifo_parity_err_cnt(const struct cntr_entry *entry, 2787 void *context, int vl, int mode, 2788 u64 data) 2789 { 2790 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2791 2792 return dd->send_pio_err_status_cnt[27]; 2793 } 2794 2795 static u64 access_pio_vlf_sop_parity_err_cnt(const struct cntr_entry *entry, 2796 void *context, int vl, int mode, 2797 u64 data) 2798 { 2799 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2800 2801 return dd->send_pio_err_status_cnt[26]; 2802 } 2803 2804 static u64 access_pio_vlf_v1_len_parity_err_cnt(const struct cntr_entry *entry, 2805 void *context, int vl, 2806 int mode, u64 data) 2807 { 2808 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2809 2810 return dd->send_pio_err_status_cnt[25]; 2811 } 2812 2813 static u64 access_pio_block_qw_count_parity_err_cnt( 2814 const struct cntr_entry *entry, 2815 void *context, int vl, int mode, u64 data) 2816 { 2817 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2818 2819 return dd->send_pio_err_status_cnt[24]; 2820 } 2821 2822 static u64 access_pio_write_qw_valid_parity_err_cnt( 2823 const struct cntr_entry *entry, 2824 void *context, int vl, int mode, u64 data) 2825 { 2826 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2827 2828 return dd->send_pio_err_status_cnt[23]; 2829 } 2830 2831 static u64 access_pio_state_machine_err_cnt(const struct cntr_entry *entry, 2832 void *context, int vl, int mode, 2833 u64 data) 2834 { 2835 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2836 2837 return dd->send_pio_err_status_cnt[22]; 2838 } 2839 2840 static u64 access_pio_write_data_parity_err_cnt(const struct cntr_entry *entry, 2841 void *context, int vl, 2842 int mode, u64 data) 2843 { 2844 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2845 2846 return dd->send_pio_err_status_cnt[21]; 2847 } 2848 2849 static u64 access_pio_host_addr_mem_cor_err_cnt(const struct cntr_entry *entry, 2850 void *context, int vl, 2851 int mode, u64 data) 2852 { 2853 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2854 2855 return dd->send_pio_err_status_cnt[20]; 2856 } 2857 2858 static u64 access_pio_host_addr_mem_unc_err_cnt(const struct cntr_entry *entry, 2859 void *context, int vl, 2860 int mode, u64 data) 2861 { 2862 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2863 2864 return dd->send_pio_err_status_cnt[19]; 2865 } 2866 2867 static u64 access_pio_pkt_evict_sm_or_arb_sm_err_cnt( 2868 const struct cntr_entry *entry, 2869 void *context, int vl, int mode, u64 data) 2870 { 2871 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2872 2873 return dd->send_pio_err_status_cnt[18]; 2874 } 2875 2876 static u64 access_pio_init_sm_in_err_cnt(const struct cntr_entry *entry, 2877 void *context, int vl, int mode, 2878 u64 data) 2879 { 2880 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2881 2882 return dd->send_pio_err_status_cnt[17]; 2883 } 2884 2885 static u64 access_pio_ppmc_pbl_fifo_err_cnt(const struct cntr_entry *entry, 2886 void *context, int vl, int mode, 2887 u64 data) 2888 { 2889 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2890 2891 return dd->send_pio_err_status_cnt[16]; 2892 } 2893 2894 static u64 access_pio_credit_ret_fifo_parity_err_cnt( 2895 const struct cntr_entry *entry, 2896 void *context, int vl, int mode, u64 data) 2897 { 2898 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2899 2900 return dd->send_pio_err_status_cnt[15]; 2901 } 2902 2903 static u64 access_pio_v1_len_mem_bank1_cor_err_cnt( 2904 const struct cntr_entry *entry, 2905 void *context, int vl, int mode, u64 data) 2906 { 2907 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2908 2909 return dd->send_pio_err_status_cnt[14]; 2910 } 2911 2912 static u64 access_pio_v1_len_mem_bank0_cor_err_cnt( 2913 const struct cntr_entry *entry, 2914 void *context, int vl, int mode, u64 data) 2915 { 2916 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2917 2918 return dd->send_pio_err_status_cnt[13]; 2919 } 2920 2921 static u64 access_pio_v1_len_mem_bank1_unc_err_cnt( 2922 const struct cntr_entry *entry, 2923 void *context, int vl, int mode, u64 data) 2924 { 2925 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2926 2927 return dd->send_pio_err_status_cnt[12]; 2928 } 2929 2930 static u64 access_pio_v1_len_mem_bank0_unc_err_cnt( 2931 const struct cntr_entry *entry, 2932 void *context, int vl, int mode, u64 data) 2933 { 2934 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2935 2936 return dd->send_pio_err_status_cnt[11]; 2937 } 2938 2939 static u64 access_pio_sm_pkt_reset_parity_err_cnt( 2940 const struct cntr_entry *entry, 2941 void *context, int vl, int mode, u64 data) 2942 { 2943 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2944 2945 return dd->send_pio_err_status_cnt[10]; 2946 } 2947 2948 static u64 access_pio_pkt_evict_fifo_parity_err_cnt( 2949 const struct cntr_entry *entry, 2950 void *context, int vl, int mode, u64 data) 2951 { 2952 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2953 2954 return dd->send_pio_err_status_cnt[9]; 2955 } 2956 2957 static u64 access_pio_sbrdctrl_crrel_fifo_parity_err_cnt( 2958 const struct cntr_entry *entry, 2959 void *context, int vl, int mode, u64 data) 2960 { 2961 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2962 2963 return dd->send_pio_err_status_cnt[8]; 2964 } 2965 2966 static u64 access_pio_sbrdctl_crrel_parity_err_cnt( 2967 const struct cntr_entry *entry, 2968 void *context, int vl, int mode, u64 data) 2969 { 2970 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2971 2972 return dd->send_pio_err_status_cnt[7]; 2973 } 2974 2975 static u64 access_pio_pec_fifo_parity_err_cnt(const struct cntr_entry *entry, 2976 void *context, int vl, int mode, 2977 u64 data) 2978 { 2979 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2980 2981 return dd->send_pio_err_status_cnt[6]; 2982 } 2983 2984 static u64 access_pio_pcc_fifo_parity_err_cnt(const struct cntr_entry *entry, 2985 void *context, int vl, int mode, 2986 u64 data) 2987 { 2988 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2989 2990 return dd->send_pio_err_status_cnt[5]; 2991 } 2992 2993 static u64 access_pio_sb_mem_fifo1_err_cnt(const struct cntr_entry *entry, 2994 void *context, int vl, int mode, 2995 u64 data) 2996 { 2997 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2998 2999 return dd->send_pio_err_status_cnt[4]; 3000 } 3001 3002 static u64 access_pio_sb_mem_fifo0_err_cnt(const struct cntr_entry *entry, 3003 void *context, int vl, int mode, 3004 u64 data) 3005 { 3006 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3007 3008 return dd->send_pio_err_status_cnt[3]; 3009 } 3010 3011 static u64 access_pio_csr_parity_err_cnt(const struct cntr_entry *entry, 3012 void *context, int vl, int mode, 3013 u64 data) 3014 { 3015 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3016 3017 return dd->send_pio_err_status_cnt[2]; 3018 } 3019 3020 static u64 access_pio_write_addr_parity_err_cnt(const struct cntr_entry *entry, 3021 void *context, int vl, 3022 int mode, u64 data) 3023 { 3024 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3025 3026 return dd->send_pio_err_status_cnt[1]; 3027 } 3028 3029 static u64 access_pio_write_bad_ctxt_err_cnt(const struct cntr_entry *entry, 3030 void *context, int vl, int mode, 3031 u64 data) 3032 { 3033 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3034 3035 return dd->send_pio_err_status_cnt[0]; 3036 } 3037 3038 /* 3039 * Software counters corresponding to each of the 3040 * error status bits within SendDmaErrStatus 3041 */ 3042 static u64 access_sdma_pcie_req_tracking_cor_err_cnt( 3043 const struct cntr_entry *entry, 3044 void *context, int vl, int mode, u64 data) 3045 { 3046 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3047 3048 return dd->send_dma_err_status_cnt[3]; 3049 } 3050 3051 static u64 access_sdma_pcie_req_tracking_unc_err_cnt( 3052 const struct cntr_entry *entry, 3053 void *context, int vl, int mode, u64 data) 3054 { 3055 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3056 3057 return dd->send_dma_err_status_cnt[2]; 3058 } 3059 3060 static u64 access_sdma_csr_parity_err_cnt(const struct cntr_entry *entry, 3061 void *context, int vl, int mode, 3062 u64 data) 3063 { 3064 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3065 3066 return dd->send_dma_err_status_cnt[1]; 3067 } 3068 3069 static u64 access_sdma_rpy_tag_err_cnt(const struct cntr_entry *entry, 3070 void *context, int vl, int mode, 3071 u64 data) 3072 { 3073 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3074 3075 return dd->send_dma_err_status_cnt[0]; 3076 } 3077 3078 /* 3079 * Software counters corresponding to each of the 3080 * error status bits within SendEgressErrStatus 3081 */ 3082 static u64 access_tx_read_pio_memory_csr_unc_err_cnt( 3083 const struct cntr_entry *entry, 3084 void *context, int vl, int mode, u64 data) 3085 { 3086 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3087 3088 return dd->send_egress_err_status_cnt[63]; 3089 } 3090 3091 static u64 access_tx_read_sdma_memory_csr_err_cnt( 3092 const struct cntr_entry *entry, 3093 void *context, int vl, int mode, u64 data) 3094 { 3095 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3096 3097 return dd->send_egress_err_status_cnt[62]; 3098 } 3099 3100 static u64 access_tx_egress_fifo_cor_err_cnt(const struct cntr_entry *entry, 3101 void *context, int vl, int mode, 3102 u64 data) 3103 { 3104 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3105 3106 return dd->send_egress_err_status_cnt[61]; 3107 } 3108 3109 static u64 access_tx_read_pio_memory_cor_err_cnt(const struct cntr_entry *entry, 3110 void *context, int vl, 3111 int mode, u64 data) 3112 { 3113 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3114 3115 return dd->send_egress_err_status_cnt[60]; 3116 } 3117 3118 static u64 access_tx_read_sdma_memory_cor_err_cnt( 3119 const struct cntr_entry *entry, 3120 void *context, int vl, int mode, u64 data) 3121 { 3122 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3123 3124 return dd->send_egress_err_status_cnt[59]; 3125 } 3126 3127 static u64 access_tx_sb_hdr_cor_err_cnt(const struct cntr_entry *entry, 3128 void *context, int vl, int mode, 3129 u64 data) 3130 { 3131 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3132 3133 return dd->send_egress_err_status_cnt[58]; 3134 } 3135 3136 static u64 access_tx_credit_overrun_err_cnt(const struct cntr_entry *entry, 3137 void *context, int vl, int mode, 3138 u64 data) 3139 { 3140 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3141 3142 return dd->send_egress_err_status_cnt[57]; 3143 } 3144 3145 static u64 access_tx_launch_fifo8_cor_err_cnt(const struct cntr_entry *entry, 3146 void *context, int vl, int mode, 3147 u64 data) 3148 { 3149 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3150 3151 return dd->send_egress_err_status_cnt[56]; 3152 } 3153 3154 static u64 access_tx_launch_fifo7_cor_err_cnt(const struct cntr_entry *entry, 3155 void *context, int vl, int mode, 3156 u64 data) 3157 { 3158 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3159 3160 return dd->send_egress_err_status_cnt[55]; 3161 } 3162 3163 static u64 access_tx_launch_fifo6_cor_err_cnt(const struct cntr_entry *entry, 3164 void *context, int vl, int mode, 3165 u64 data) 3166 { 3167 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3168 3169 return dd->send_egress_err_status_cnt[54]; 3170 } 3171 3172 static u64 access_tx_launch_fifo5_cor_err_cnt(const struct cntr_entry *entry, 3173 void *context, int vl, int mode, 3174 u64 data) 3175 { 3176 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3177 3178 return dd->send_egress_err_status_cnt[53]; 3179 } 3180 3181 static u64 access_tx_launch_fifo4_cor_err_cnt(const struct cntr_entry *entry, 3182 void *context, int vl, int mode, 3183 u64 data) 3184 { 3185 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3186 3187 return dd->send_egress_err_status_cnt[52]; 3188 } 3189 3190 static u64 access_tx_launch_fifo3_cor_err_cnt(const struct cntr_entry *entry, 3191 void *context, int vl, int mode, 3192 u64 data) 3193 { 3194 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3195 3196 return dd->send_egress_err_status_cnt[51]; 3197 } 3198 3199 static u64 access_tx_launch_fifo2_cor_err_cnt(const struct cntr_entry *entry, 3200 void *context, int vl, int mode, 3201 u64 data) 3202 { 3203 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3204 3205 return dd->send_egress_err_status_cnt[50]; 3206 } 3207 3208 static u64 access_tx_launch_fifo1_cor_err_cnt(const struct cntr_entry *entry, 3209 void *context, int vl, int mode, 3210 u64 data) 3211 { 3212 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3213 3214 return dd->send_egress_err_status_cnt[49]; 3215 } 3216 3217 static u64 access_tx_launch_fifo0_cor_err_cnt(const struct cntr_entry *entry, 3218 void *context, int vl, int mode, 3219 u64 data) 3220 { 3221 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3222 3223 return dd->send_egress_err_status_cnt[48]; 3224 } 3225 3226 static u64 access_tx_credit_return_vl_err_cnt(const struct cntr_entry *entry, 3227 void *context, int vl, int mode, 3228 u64 data) 3229 { 3230 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3231 3232 return dd->send_egress_err_status_cnt[47]; 3233 } 3234 3235 static u64 access_tx_hcrc_insertion_err_cnt(const struct cntr_entry *entry, 3236 void *context, int vl, int mode, 3237 u64 data) 3238 { 3239 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3240 3241 return dd->send_egress_err_status_cnt[46]; 3242 } 3243 3244 static u64 access_tx_egress_fifo_unc_err_cnt(const struct cntr_entry *entry, 3245 void *context, int vl, int mode, 3246 u64 data) 3247 { 3248 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3249 3250 return dd->send_egress_err_status_cnt[45]; 3251 } 3252 3253 static u64 access_tx_read_pio_memory_unc_err_cnt(const struct cntr_entry *entry, 3254 void *context, int vl, 3255 int mode, u64 data) 3256 { 3257 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3258 3259 return dd->send_egress_err_status_cnt[44]; 3260 } 3261 3262 static u64 access_tx_read_sdma_memory_unc_err_cnt( 3263 const struct cntr_entry *entry, 3264 void *context, int vl, int mode, u64 data) 3265 { 3266 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3267 3268 return dd->send_egress_err_status_cnt[43]; 3269 } 3270 3271 static u64 access_tx_sb_hdr_unc_err_cnt(const struct cntr_entry *entry, 3272 void *context, int vl, int mode, 3273 u64 data) 3274 { 3275 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3276 3277 return dd->send_egress_err_status_cnt[42]; 3278 } 3279 3280 static u64 access_tx_credit_return_partiy_err_cnt( 3281 const struct cntr_entry *entry, 3282 void *context, int vl, int mode, u64 data) 3283 { 3284 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3285 3286 return dd->send_egress_err_status_cnt[41]; 3287 } 3288 3289 static u64 access_tx_launch_fifo8_unc_or_parity_err_cnt( 3290 const struct cntr_entry *entry, 3291 void *context, int vl, int mode, u64 data) 3292 { 3293 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3294 3295 return dd->send_egress_err_status_cnt[40]; 3296 } 3297 3298 static u64 access_tx_launch_fifo7_unc_or_parity_err_cnt( 3299 const struct cntr_entry *entry, 3300 void *context, int vl, int mode, u64 data) 3301 { 3302 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3303 3304 return dd->send_egress_err_status_cnt[39]; 3305 } 3306 3307 static u64 access_tx_launch_fifo6_unc_or_parity_err_cnt( 3308 const struct cntr_entry *entry, 3309 void *context, int vl, int mode, u64 data) 3310 { 3311 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3312 3313 return dd->send_egress_err_status_cnt[38]; 3314 } 3315 3316 static u64 access_tx_launch_fifo5_unc_or_parity_err_cnt( 3317 const struct cntr_entry *entry, 3318 void *context, int vl, int mode, u64 data) 3319 { 3320 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3321 3322 return dd->send_egress_err_status_cnt[37]; 3323 } 3324 3325 static u64 access_tx_launch_fifo4_unc_or_parity_err_cnt( 3326 const struct cntr_entry *entry, 3327 void *context, int vl, int mode, u64 data) 3328 { 3329 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3330 3331 return dd->send_egress_err_status_cnt[36]; 3332 } 3333 3334 static u64 access_tx_launch_fifo3_unc_or_parity_err_cnt( 3335 const struct cntr_entry *entry, 3336 void *context, int vl, int mode, u64 data) 3337 { 3338 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3339 3340 return dd->send_egress_err_status_cnt[35]; 3341 } 3342 3343 static u64 access_tx_launch_fifo2_unc_or_parity_err_cnt( 3344 const struct cntr_entry *entry, 3345 void *context, int vl, int mode, u64 data) 3346 { 3347 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3348 3349 return dd->send_egress_err_status_cnt[34]; 3350 } 3351 3352 static u64 access_tx_launch_fifo1_unc_or_parity_err_cnt( 3353 const struct cntr_entry *entry, 3354 void *context, int vl, int mode, u64 data) 3355 { 3356 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3357 3358 return dd->send_egress_err_status_cnt[33]; 3359 } 3360 3361 static u64 access_tx_launch_fifo0_unc_or_parity_err_cnt( 3362 const struct cntr_entry *entry, 3363 void *context, int vl, int mode, u64 data) 3364 { 3365 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3366 3367 return dd->send_egress_err_status_cnt[32]; 3368 } 3369 3370 static u64 access_tx_sdma15_disallowed_packet_err_cnt( 3371 const struct cntr_entry *entry, 3372 void *context, int vl, int mode, u64 data) 3373 { 3374 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3375 3376 return dd->send_egress_err_status_cnt[31]; 3377 } 3378 3379 static u64 access_tx_sdma14_disallowed_packet_err_cnt( 3380 const struct cntr_entry *entry, 3381 void *context, int vl, int mode, u64 data) 3382 { 3383 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3384 3385 return dd->send_egress_err_status_cnt[30]; 3386 } 3387 3388 static u64 access_tx_sdma13_disallowed_packet_err_cnt( 3389 const struct cntr_entry *entry, 3390 void *context, int vl, int mode, u64 data) 3391 { 3392 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3393 3394 return dd->send_egress_err_status_cnt[29]; 3395 } 3396 3397 static u64 access_tx_sdma12_disallowed_packet_err_cnt( 3398 const struct cntr_entry *entry, 3399 void *context, int vl, int mode, u64 data) 3400 { 3401 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3402 3403 return dd->send_egress_err_status_cnt[28]; 3404 } 3405 3406 static u64 access_tx_sdma11_disallowed_packet_err_cnt( 3407 const struct cntr_entry *entry, 3408 void *context, int vl, int mode, u64 data) 3409 { 3410 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3411 3412 return dd->send_egress_err_status_cnt[27]; 3413 } 3414 3415 static u64 access_tx_sdma10_disallowed_packet_err_cnt( 3416 const struct cntr_entry *entry, 3417 void *context, int vl, int mode, u64 data) 3418 { 3419 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3420 3421 return dd->send_egress_err_status_cnt[26]; 3422 } 3423 3424 static u64 access_tx_sdma9_disallowed_packet_err_cnt( 3425 const struct cntr_entry *entry, 3426 void *context, int vl, int mode, u64 data) 3427 { 3428 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3429 3430 return dd->send_egress_err_status_cnt[25]; 3431 } 3432 3433 static u64 access_tx_sdma8_disallowed_packet_err_cnt( 3434 const struct cntr_entry *entry, 3435 void *context, int vl, int mode, u64 data) 3436 { 3437 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3438 3439 return dd->send_egress_err_status_cnt[24]; 3440 } 3441 3442 static u64 access_tx_sdma7_disallowed_packet_err_cnt( 3443 const struct cntr_entry *entry, 3444 void *context, int vl, int mode, u64 data) 3445 { 3446 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3447 3448 return dd->send_egress_err_status_cnt[23]; 3449 } 3450 3451 static u64 access_tx_sdma6_disallowed_packet_err_cnt( 3452 const struct cntr_entry *entry, 3453 void *context, int vl, int mode, u64 data) 3454 { 3455 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3456 3457 return dd->send_egress_err_status_cnt[22]; 3458 } 3459 3460 static u64 access_tx_sdma5_disallowed_packet_err_cnt( 3461 const struct cntr_entry *entry, 3462 void *context, int vl, int mode, u64 data) 3463 { 3464 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3465 3466 return dd->send_egress_err_status_cnt[21]; 3467 } 3468 3469 static u64 access_tx_sdma4_disallowed_packet_err_cnt( 3470 const struct cntr_entry *entry, 3471 void *context, int vl, int mode, u64 data) 3472 { 3473 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3474 3475 return dd->send_egress_err_status_cnt[20]; 3476 } 3477 3478 static u64 access_tx_sdma3_disallowed_packet_err_cnt( 3479 const struct cntr_entry *entry, 3480 void *context, int vl, int mode, u64 data) 3481 { 3482 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3483 3484 return dd->send_egress_err_status_cnt[19]; 3485 } 3486 3487 static u64 access_tx_sdma2_disallowed_packet_err_cnt( 3488 const struct cntr_entry *entry, 3489 void *context, int vl, int mode, u64 data) 3490 { 3491 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3492 3493 return dd->send_egress_err_status_cnt[18]; 3494 } 3495 3496 static u64 access_tx_sdma1_disallowed_packet_err_cnt( 3497 const struct cntr_entry *entry, 3498 void *context, int vl, int mode, u64 data) 3499 { 3500 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3501 3502 return dd->send_egress_err_status_cnt[17]; 3503 } 3504 3505 static u64 access_tx_sdma0_disallowed_packet_err_cnt( 3506 const struct cntr_entry *entry, 3507 void *context, int vl, int mode, u64 data) 3508 { 3509 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3510 3511 return dd->send_egress_err_status_cnt[16]; 3512 } 3513 3514 static u64 access_tx_config_parity_err_cnt(const struct cntr_entry *entry, 3515 void *context, int vl, int mode, 3516 u64 data) 3517 { 3518 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3519 3520 return dd->send_egress_err_status_cnt[15]; 3521 } 3522 3523 static u64 access_tx_sbrd_ctl_csr_parity_err_cnt(const struct cntr_entry *entry, 3524 void *context, int vl, 3525 int mode, u64 data) 3526 { 3527 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3528 3529 return dd->send_egress_err_status_cnt[14]; 3530 } 3531 3532 static u64 access_tx_launch_csr_parity_err_cnt(const struct cntr_entry *entry, 3533 void *context, int vl, int mode, 3534 u64 data) 3535 { 3536 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3537 3538 return dd->send_egress_err_status_cnt[13]; 3539 } 3540 3541 static u64 access_tx_illegal_vl_err_cnt(const struct cntr_entry *entry, 3542 void *context, int vl, int mode, 3543 u64 data) 3544 { 3545 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3546 3547 return dd->send_egress_err_status_cnt[12]; 3548 } 3549 3550 static u64 access_tx_sbrd_ctl_state_machine_parity_err_cnt( 3551 const struct cntr_entry *entry, 3552 void *context, int vl, int mode, u64 data) 3553 { 3554 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3555 3556 return dd->send_egress_err_status_cnt[11]; 3557 } 3558 3559 static u64 access_egress_reserved_10_err_cnt(const struct cntr_entry *entry, 3560 void *context, int vl, int mode, 3561 u64 data) 3562 { 3563 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3564 3565 return dd->send_egress_err_status_cnt[10]; 3566 } 3567 3568 static u64 access_egress_reserved_9_err_cnt(const struct cntr_entry *entry, 3569 void *context, int vl, int mode, 3570 u64 data) 3571 { 3572 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3573 3574 return dd->send_egress_err_status_cnt[9]; 3575 } 3576 3577 static u64 access_tx_sdma_launch_intf_parity_err_cnt( 3578 const struct cntr_entry *entry, 3579 void *context, int vl, int mode, u64 data) 3580 { 3581 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3582 3583 return dd->send_egress_err_status_cnt[8]; 3584 } 3585 3586 static u64 access_tx_pio_launch_intf_parity_err_cnt( 3587 const struct cntr_entry *entry, 3588 void *context, int vl, int mode, u64 data) 3589 { 3590 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3591 3592 return dd->send_egress_err_status_cnt[7]; 3593 } 3594 3595 static u64 access_egress_reserved_6_err_cnt(const struct cntr_entry *entry, 3596 void *context, int vl, int mode, 3597 u64 data) 3598 { 3599 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3600 3601 return dd->send_egress_err_status_cnt[6]; 3602 } 3603 3604 static u64 access_tx_incorrect_link_state_err_cnt( 3605 const struct cntr_entry *entry, 3606 void *context, int vl, int mode, u64 data) 3607 { 3608 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3609 3610 return dd->send_egress_err_status_cnt[5]; 3611 } 3612 3613 static u64 access_tx_linkdown_err_cnt(const struct cntr_entry *entry, 3614 void *context, int vl, int mode, 3615 u64 data) 3616 { 3617 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3618 3619 return dd->send_egress_err_status_cnt[4]; 3620 } 3621 3622 static u64 access_tx_egress_fifi_underrun_or_parity_err_cnt( 3623 const struct cntr_entry *entry, 3624 void *context, int vl, int mode, u64 data) 3625 { 3626 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3627 3628 return dd->send_egress_err_status_cnt[3]; 3629 } 3630 3631 static u64 access_egress_reserved_2_err_cnt(const struct cntr_entry *entry, 3632 void *context, int vl, int mode, 3633 u64 data) 3634 { 3635 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3636 3637 return dd->send_egress_err_status_cnt[2]; 3638 } 3639 3640 static u64 access_tx_pkt_integrity_mem_unc_err_cnt( 3641 const struct cntr_entry *entry, 3642 void *context, int vl, int mode, u64 data) 3643 { 3644 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3645 3646 return dd->send_egress_err_status_cnt[1]; 3647 } 3648 3649 static u64 access_tx_pkt_integrity_mem_cor_err_cnt( 3650 const struct cntr_entry *entry, 3651 void *context, int vl, int mode, u64 data) 3652 { 3653 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3654 3655 return dd->send_egress_err_status_cnt[0]; 3656 } 3657 3658 /* 3659 * Software counters corresponding to each of the 3660 * error status bits within SendErrStatus 3661 */ 3662 static u64 access_send_csr_write_bad_addr_err_cnt( 3663 const struct cntr_entry *entry, 3664 void *context, int vl, int mode, u64 data) 3665 { 3666 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3667 3668 return dd->send_err_status_cnt[2]; 3669 } 3670 3671 static u64 access_send_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry, 3672 void *context, int vl, 3673 int mode, u64 data) 3674 { 3675 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3676 3677 return dd->send_err_status_cnt[1]; 3678 } 3679 3680 static u64 access_send_csr_parity_cnt(const struct cntr_entry *entry, 3681 void *context, int vl, int mode, 3682 u64 data) 3683 { 3684 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3685 3686 return dd->send_err_status_cnt[0]; 3687 } 3688 3689 /* 3690 * Software counters corresponding to each of the 3691 * error status bits within SendCtxtErrStatus 3692 */ 3693 static u64 access_pio_write_out_of_bounds_err_cnt( 3694 const struct cntr_entry *entry, 3695 void *context, int vl, int mode, u64 data) 3696 { 3697 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3698 3699 return dd->sw_ctxt_err_status_cnt[4]; 3700 } 3701 3702 static u64 access_pio_write_overflow_err_cnt(const struct cntr_entry *entry, 3703 void *context, int vl, int mode, 3704 u64 data) 3705 { 3706 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3707 3708 return dd->sw_ctxt_err_status_cnt[3]; 3709 } 3710 3711 static u64 access_pio_write_crosses_boundary_err_cnt( 3712 const struct cntr_entry *entry, 3713 void *context, int vl, int mode, u64 data) 3714 { 3715 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3716 3717 return dd->sw_ctxt_err_status_cnt[2]; 3718 } 3719 3720 static u64 access_pio_disallowed_packet_err_cnt(const struct cntr_entry *entry, 3721 void *context, int vl, 3722 int mode, u64 data) 3723 { 3724 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3725 3726 return dd->sw_ctxt_err_status_cnt[1]; 3727 } 3728 3729 static u64 access_pio_inconsistent_sop_err_cnt(const struct cntr_entry *entry, 3730 void *context, int vl, int mode, 3731 u64 data) 3732 { 3733 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3734 3735 return dd->sw_ctxt_err_status_cnt[0]; 3736 } 3737 3738 /* 3739 * Software counters corresponding to each of the 3740 * error status bits within SendDmaEngErrStatus 3741 */ 3742 static u64 access_sdma_header_request_fifo_cor_err_cnt( 3743 const struct cntr_entry *entry, 3744 void *context, int vl, int mode, u64 data) 3745 { 3746 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3747 3748 return dd->sw_send_dma_eng_err_status_cnt[23]; 3749 } 3750 3751 static u64 access_sdma_header_storage_cor_err_cnt( 3752 const struct cntr_entry *entry, 3753 void *context, int vl, int mode, u64 data) 3754 { 3755 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3756 3757 return dd->sw_send_dma_eng_err_status_cnt[22]; 3758 } 3759 3760 static u64 access_sdma_packet_tracking_cor_err_cnt( 3761 const struct cntr_entry *entry, 3762 void *context, int vl, int mode, u64 data) 3763 { 3764 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3765 3766 return dd->sw_send_dma_eng_err_status_cnt[21]; 3767 } 3768 3769 static u64 access_sdma_assembly_cor_err_cnt(const struct cntr_entry *entry, 3770 void *context, int vl, int mode, 3771 u64 data) 3772 { 3773 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3774 3775 return dd->sw_send_dma_eng_err_status_cnt[20]; 3776 } 3777 3778 static u64 access_sdma_desc_table_cor_err_cnt(const struct cntr_entry *entry, 3779 void *context, int vl, int mode, 3780 u64 data) 3781 { 3782 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3783 3784 return dd->sw_send_dma_eng_err_status_cnt[19]; 3785 } 3786 3787 static u64 access_sdma_header_request_fifo_unc_err_cnt( 3788 const struct cntr_entry *entry, 3789 void *context, int vl, int mode, u64 data) 3790 { 3791 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3792 3793 return dd->sw_send_dma_eng_err_status_cnt[18]; 3794 } 3795 3796 static u64 access_sdma_header_storage_unc_err_cnt( 3797 const struct cntr_entry *entry, 3798 void *context, int vl, int mode, u64 data) 3799 { 3800 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3801 3802 return dd->sw_send_dma_eng_err_status_cnt[17]; 3803 } 3804 3805 static u64 access_sdma_packet_tracking_unc_err_cnt( 3806 const struct cntr_entry *entry, 3807 void *context, int vl, int mode, u64 data) 3808 { 3809 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3810 3811 return dd->sw_send_dma_eng_err_status_cnt[16]; 3812 } 3813 3814 static u64 access_sdma_assembly_unc_err_cnt(const struct cntr_entry *entry, 3815 void *context, int vl, int mode, 3816 u64 data) 3817 { 3818 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3819 3820 return dd->sw_send_dma_eng_err_status_cnt[15]; 3821 } 3822 3823 static u64 access_sdma_desc_table_unc_err_cnt(const struct cntr_entry *entry, 3824 void *context, int vl, int mode, 3825 u64 data) 3826 { 3827 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3828 3829 return dd->sw_send_dma_eng_err_status_cnt[14]; 3830 } 3831 3832 static u64 access_sdma_timeout_err_cnt(const struct cntr_entry *entry, 3833 void *context, int vl, int mode, 3834 u64 data) 3835 { 3836 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3837 3838 return dd->sw_send_dma_eng_err_status_cnt[13]; 3839 } 3840 3841 static u64 access_sdma_header_length_err_cnt(const struct cntr_entry *entry, 3842 void *context, int vl, int mode, 3843 u64 data) 3844 { 3845 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3846 3847 return dd->sw_send_dma_eng_err_status_cnt[12]; 3848 } 3849 3850 static u64 access_sdma_header_address_err_cnt(const struct cntr_entry *entry, 3851 void *context, int vl, int mode, 3852 u64 data) 3853 { 3854 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3855 3856 return dd->sw_send_dma_eng_err_status_cnt[11]; 3857 } 3858 3859 static u64 access_sdma_header_select_err_cnt(const struct cntr_entry *entry, 3860 void *context, int vl, int mode, 3861 u64 data) 3862 { 3863 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3864 3865 return dd->sw_send_dma_eng_err_status_cnt[10]; 3866 } 3867 3868 static u64 access_sdma_reserved_9_err_cnt(const struct cntr_entry *entry, 3869 void *context, int vl, int mode, 3870 u64 data) 3871 { 3872 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3873 3874 return dd->sw_send_dma_eng_err_status_cnt[9]; 3875 } 3876 3877 static u64 access_sdma_packet_desc_overflow_err_cnt( 3878 const struct cntr_entry *entry, 3879 void *context, int vl, int mode, u64 data) 3880 { 3881 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3882 3883 return dd->sw_send_dma_eng_err_status_cnt[8]; 3884 } 3885 3886 static u64 access_sdma_length_mismatch_err_cnt(const struct cntr_entry *entry, 3887 void *context, int vl, 3888 int mode, u64 data) 3889 { 3890 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3891 3892 return dd->sw_send_dma_eng_err_status_cnt[7]; 3893 } 3894 3895 static u64 access_sdma_halt_err_cnt(const struct cntr_entry *entry, 3896 void *context, int vl, int mode, u64 data) 3897 { 3898 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3899 3900 return dd->sw_send_dma_eng_err_status_cnt[6]; 3901 } 3902 3903 static u64 access_sdma_mem_read_err_cnt(const struct cntr_entry *entry, 3904 void *context, int vl, int mode, 3905 u64 data) 3906 { 3907 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3908 3909 return dd->sw_send_dma_eng_err_status_cnt[5]; 3910 } 3911 3912 static u64 access_sdma_first_desc_err_cnt(const struct cntr_entry *entry, 3913 void *context, int vl, int mode, 3914 u64 data) 3915 { 3916 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3917 3918 return dd->sw_send_dma_eng_err_status_cnt[4]; 3919 } 3920 3921 static u64 access_sdma_tail_out_of_bounds_err_cnt( 3922 const struct cntr_entry *entry, 3923 void *context, int vl, int mode, u64 data) 3924 { 3925 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3926 3927 return dd->sw_send_dma_eng_err_status_cnt[3]; 3928 } 3929 3930 static u64 access_sdma_too_long_err_cnt(const struct cntr_entry *entry, 3931 void *context, int vl, int mode, 3932 u64 data) 3933 { 3934 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3935 3936 return dd->sw_send_dma_eng_err_status_cnt[2]; 3937 } 3938 3939 static u64 access_sdma_gen_mismatch_err_cnt(const struct cntr_entry *entry, 3940 void *context, int vl, int mode, 3941 u64 data) 3942 { 3943 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3944 3945 return dd->sw_send_dma_eng_err_status_cnt[1]; 3946 } 3947 3948 static u64 access_sdma_wrong_dw_err_cnt(const struct cntr_entry *entry, 3949 void *context, int vl, int mode, 3950 u64 data) 3951 { 3952 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3953 3954 return dd->sw_send_dma_eng_err_status_cnt[0]; 3955 } 3956 3957 static u64 access_dc_rcv_err_cnt(const struct cntr_entry *entry, 3958 void *context, int vl, int mode, 3959 u64 data) 3960 { 3961 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3962 3963 u64 val = 0; 3964 u64 csr = entry->csr; 3965 3966 val = read_write_csr(dd, csr, mode, data); 3967 if (mode == CNTR_MODE_R) { 3968 val = val > CNTR_MAX - dd->sw_rcv_bypass_packet_errors ? 3969 CNTR_MAX : val + dd->sw_rcv_bypass_packet_errors; 3970 } else if (mode == CNTR_MODE_W) { 3971 dd->sw_rcv_bypass_packet_errors = 0; 3972 } else { 3973 dd_dev_err(dd, "Invalid cntr register access mode"); 3974 return 0; 3975 } 3976 return val; 3977 } 3978 3979 #define def_access_sw_cpu(cntr) \ 3980 static u64 access_sw_cpu_##cntr(const struct cntr_entry *entry, \ 3981 void *context, int vl, int mode, u64 data) \ 3982 { \ 3983 struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context; \ 3984 return read_write_cpu(ppd->dd, &ppd->ibport_data.rvp.z_ ##cntr, \ 3985 ppd->ibport_data.rvp.cntr, vl, \ 3986 mode, data); \ 3987 } 3988 3989 def_access_sw_cpu(rc_acks); 3990 def_access_sw_cpu(rc_qacks); 3991 def_access_sw_cpu(rc_delayed_comp); 3992 3993 #define def_access_ibp_counter(cntr) \ 3994 static u64 access_ibp_##cntr(const struct cntr_entry *entry, \ 3995 void *context, int vl, int mode, u64 data) \ 3996 { \ 3997 struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context; \ 3998 \ 3999 if (vl != CNTR_INVALID_VL) \ 4000 return 0; \ 4001 \ 4002 return read_write_sw(ppd->dd, &ppd->ibport_data.rvp.n_ ##cntr, \ 4003 mode, data); \ 4004 } 4005 4006 def_access_ibp_counter(loop_pkts); 4007 def_access_ibp_counter(rc_resends); 4008 def_access_ibp_counter(rnr_naks); 4009 def_access_ibp_counter(other_naks); 4010 def_access_ibp_counter(rc_timeouts); 4011 def_access_ibp_counter(pkt_drops); 4012 def_access_ibp_counter(dmawait); 4013 def_access_ibp_counter(rc_seqnak); 4014 def_access_ibp_counter(rc_dupreq); 4015 def_access_ibp_counter(rdma_seq); 4016 def_access_ibp_counter(unaligned); 4017 def_access_ibp_counter(seq_naks); 4018 4019 static struct cntr_entry dev_cntrs[DEV_CNTR_LAST] = { 4020 [C_RCV_OVF] = RXE32_DEV_CNTR_ELEM(RcvOverflow, RCV_BUF_OVFL_CNT, CNTR_SYNTH), 4021 [C_RX_TID_FULL] = RXE32_DEV_CNTR_ELEM(RxTIDFullEr, RCV_TID_FULL_ERR_CNT, 4022 CNTR_NORMAL), 4023 [C_RX_TID_INVALID] = RXE32_DEV_CNTR_ELEM(RxTIDInvalid, RCV_TID_VALID_ERR_CNT, 4024 CNTR_NORMAL), 4025 [C_RX_TID_FLGMS] = RXE32_DEV_CNTR_ELEM(RxTidFLGMs, 4026 RCV_TID_FLOW_GEN_MISMATCH_CNT, 4027 CNTR_NORMAL), 4028 [C_RX_CTX_EGRS] = RXE32_DEV_CNTR_ELEM(RxCtxEgrS, RCV_CONTEXT_EGR_STALL, 4029 CNTR_NORMAL), 4030 [C_RCV_TID_FLSMS] = RXE32_DEV_CNTR_ELEM(RxTidFLSMs, 4031 RCV_TID_FLOW_SEQ_MISMATCH_CNT, CNTR_NORMAL), 4032 [C_CCE_PCI_CR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePciCrSt, 4033 CCE_PCIE_POSTED_CRDT_STALL_CNT, CNTR_NORMAL), 4034 [C_CCE_PCI_TR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePciTrSt, CCE_PCIE_TRGT_STALL_CNT, 4035 CNTR_NORMAL), 4036 [C_CCE_PIO_WR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePioWrSt, CCE_PIO_WR_STALL_CNT, 4037 CNTR_NORMAL), 4038 [C_CCE_ERR_INT] = CCE_INT_DEV_CNTR_ELEM(CceErrInt, CCE_ERR_INT_CNT, 4039 CNTR_NORMAL), 4040 [C_CCE_SDMA_INT] = CCE_INT_DEV_CNTR_ELEM(CceSdmaInt, CCE_SDMA_INT_CNT, 4041 CNTR_NORMAL), 4042 [C_CCE_MISC_INT] = CCE_INT_DEV_CNTR_ELEM(CceMiscInt, CCE_MISC_INT_CNT, 4043 CNTR_NORMAL), 4044 [C_CCE_RCV_AV_INT] = CCE_INT_DEV_CNTR_ELEM(CceRcvAvInt, CCE_RCV_AVAIL_INT_CNT, 4045 CNTR_NORMAL), 4046 [C_CCE_RCV_URG_INT] = CCE_INT_DEV_CNTR_ELEM(CceRcvUrgInt, 4047 CCE_RCV_URGENT_INT_CNT, CNTR_NORMAL), 4048 [C_CCE_SEND_CR_INT] = CCE_INT_DEV_CNTR_ELEM(CceSndCrInt, 4049 CCE_SEND_CREDIT_INT_CNT, CNTR_NORMAL), 4050 [C_DC_UNC_ERR] = DC_PERF_CNTR(DcUnctblErr, DCC_ERR_UNCORRECTABLE_CNT, 4051 CNTR_SYNTH), 4052 [C_DC_RCV_ERR] = CNTR_ELEM("DcRecvErr", DCC_ERR_PORTRCV_ERR_CNT, 0, CNTR_SYNTH, 4053 access_dc_rcv_err_cnt), 4054 [C_DC_FM_CFG_ERR] = DC_PERF_CNTR(DcFmCfgErr, DCC_ERR_FMCONFIG_ERR_CNT, 4055 CNTR_SYNTH), 4056 [C_DC_RMT_PHY_ERR] = DC_PERF_CNTR(DcRmtPhyErr, DCC_ERR_RCVREMOTE_PHY_ERR_CNT, 4057 CNTR_SYNTH), 4058 [C_DC_DROPPED_PKT] = DC_PERF_CNTR(DcDroppedPkt, DCC_ERR_DROPPED_PKT_CNT, 4059 CNTR_SYNTH), 4060 [C_DC_MC_XMIT_PKTS] = DC_PERF_CNTR(DcMcXmitPkts, 4061 DCC_PRF_PORT_XMIT_MULTICAST_CNT, CNTR_SYNTH), 4062 [C_DC_MC_RCV_PKTS] = DC_PERF_CNTR(DcMcRcvPkts, 4063 DCC_PRF_PORT_RCV_MULTICAST_PKT_CNT, 4064 CNTR_SYNTH), 4065 [C_DC_XMIT_CERR] = DC_PERF_CNTR(DcXmitCorr, 4066 DCC_PRF_PORT_XMIT_CORRECTABLE_CNT, CNTR_SYNTH), 4067 [C_DC_RCV_CERR] = DC_PERF_CNTR(DcRcvCorrCnt, DCC_PRF_PORT_RCV_CORRECTABLE_CNT, 4068 CNTR_SYNTH), 4069 [C_DC_RCV_FCC] = DC_PERF_CNTR(DcRxFCntl, DCC_PRF_RX_FLOW_CRTL_CNT, 4070 CNTR_SYNTH), 4071 [C_DC_XMIT_FCC] = DC_PERF_CNTR(DcXmitFCntl, DCC_PRF_TX_FLOW_CRTL_CNT, 4072 CNTR_SYNTH), 4073 [C_DC_XMIT_FLITS] = DC_PERF_CNTR(DcXmitFlits, DCC_PRF_PORT_XMIT_DATA_CNT, 4074 CNTR_SYNTH), 4075 [C_DC_RCV_FLITS] = DC_PERF_CNTR(DcRcvFlits, DCC_PRF_PORT_RCV_DATA_CNT, 4076 CNTR_SYNTH), 4077 [C_DC_XMIT_PKTS] = DC_PERF_CNTR(DcXmitPkts, DCC_PRF_PORT_XMIT_PKTS_CNT, 4078 CNTR_SYNTH), 4079 [C_DC_RCV_PKTS] = DC_PERF_CNTR(DcRcvPkts, DCC_PRF_PORT_RCV_PKTS_CNT, 4080 CNTR_SYNTH), 4081 [C_DC_RX_FLIT_VL] = DC_PERF_CNTR(DcRxFlitVl, DCC_PRF_PORT_VL_RCV_DATA_CNT, 4082 CNTR_SYNTH | CNTR_VL), 4083 [C_DC_RX_PKT_VL] = DC_PERF_CNTR(DcRxPktVl, DCC_PRF_PORT_VL_RCV_PKTS_CNT, 4084 CNTR_SYNTH | CNTR_VL), 4085 [C_DC_RCV_FCN] = DC_PERF_CNTR(DcRcvFcn, DCC_PRF_PORT_RCV_FECN_CNT, CNTR_SYNTH), 4086 [C_DC_RCV_FCN_VL] = DC_PERF_CNTR(DcRcvFcnVl, DCC_PRF_PORT_VL_RCV_FECN_CNT, 4087 CNTR_SYNTH | CNTR_VL), 4088 [C_DC_RCV_BCN] = DC_PERF_CNTR(DcRcvBcn, DCC_PRF_PORT_RCV_BECN_CNT, CNTR_SYNTH), 4089 [C_DC_RCV_BCN_VL] = DC_PERF_CNTR(DcRcvBcnVl, DCC_PRF_PORT_VL_RCV_BECN_CNT, 4090 CNTR_SYNTH | CNTR_VL), 4091 [C_DC_RCV_BBL] = DC_PERF_CNTR(DcRcvBbl, DCC_PRF_PORT_RCV_BUBBLE_CNT, 4092 CNTR_SYNTH), 4093 [C_DC_RCV_BBL_VL] = DC_PERF_CNTR(DcRcvBblVl, DCC_PRF_PORT_VL_RCV_BUBBLE_CNT, 4094 CNTR_SYNTH | CNTR_VL), 4095 [C_DC_MARK_FECN] = DC_PERF_CNTR(DcMarkFcn, DCC_PRF_PORT_MARK_FECN_CNT, 4096 CNTR_SYNTH), 4097 [C_DC_MARK_FECN_VL] = DC_PERF_CNTR(DcMarkFcnVl, DCC_PRF_PORT_VL_MARK_FECN_CNT, 4098 CNTR_SYNTH | CNTR_VL), 4099 [C_DC_TOTAL_CRC] = 4100 DC_PERF_CNTR_LCB(DcTotCrc, DC_LCB_ERR_INFO_TOTAL_CRC_ERR, 4101 CNTR_SYNTH), 4102 [C_DC_CRC_LN0] = DC_PERF_CNTR_LCB(DcCrcLn0, DC_LCB_ERR_INFO_CRC_ERR_LN0, 4103 CNTR_SYNTH), 4104 [C_DC_CRC_LN1] = DC_PERF_CNTR_LCB(DcCrcLn1, DC_LCB_ERR_INFO_CRC_ERR_LN1, 4105 CNTR_SYNTH), 4106 [C_DC_CRC_LN2] = DC_PERF_CNTR_LCB(DcCrcLn2, DC_LCB_ERR_INFO_CRC_ERR_LN2, 4107 CNTR_SYNTH), 4108 [C_DC_CRC_LN3] = DC_PERF_CNTR_LCB(DcCrcLn3, DC_LCB_ERR_INFO_CRC_ERR_LN3, 4109 CNTR_SYNTH), 4110 [C_DC_CRC_MULT_LN] = 4111 DC_PERF_CNTR_LCB(DcMultLn, DC_LCB_ERR_INFO_CRC_ERR_MULTI_LN, 4112 CNTR_SYNTH), 4113 [C_DC_TX_REPLAY] = DC_PERF_CNTR_LCB(DcTxReplay, DC_LCB_ERR_INFO_TX_REPLAY_CNT, 4114 CNTR_SYNTH), 4115 [C_DC_RX_REPLAY] = DC_PERF_CNTR_LCB(DcRxReplay, DC_LCB_ERR_INFO_RX_REPLAY_CNT, 4116 CNTR_SYNTH), 4117 [C_DC_SEQ_CRC_CNT] = 4118 DC_PERF_CNTR_LCB(DcLinkSeqCrc, DC_LCB_ERR_INFO_SEQ_CRC_CNT, 4119 CNTR_SYNTH), 4120 [C_DC_ESC0_ONLY_CNT] = 4121 DC_PERF_CNTR_LCB(DcEsc0, DC_LCB_ERR_INFO_ESCAPE_0_ONLY_CNT, 4122 CNTR_SYNTH), 4123 [C_DC_ESC0_PLUS1_CNT] = 4124 DC_PERF_CNTR_LCB(DcEsc1, DC_LCB_ERR_INFO_ESCAPE_0_PLUS1_CNT, 4125 CNTR_SYNTH), 4126 [C_DC_ESC0_PLUS2_CNT] = 4127 DC_PERF_CNTR_LCB(DcEsc0Plus2, DC_LCB_ERR_INFO_ESCAPE_0_PLUS2_CNT, 4128 CNTR_SYNTH), 4129 [C_DC_REINIT_FROM_PEER_CNT] = 4130 DC_PERF_CNTR_LCB(DcReinitPeer, DC_LCB_ERR_INFO_REINIT_FROM_PEER_CNT, 4131 CNTR_SYNTH), 4132 [C_DC_SBE_CNT] = DC_PERF_CNTR_LCB(DcSbe, DC_LCB_ERR_INFO_SBE_CNT, 4133 CNTR_SYNTH), 4134 [C_DC_MISC_FLG_CNT] = 4135 DC_PERF_CNTR_LCB(DcMiscFlg, DC_LCB_ERR_INFO_MISC_FLG_CNT, 4136 CNTR_SYNTH), 4137 [C_DC_PRF_GOOD_LTP_CNT] = 4138 DC_PERF_CNTR_LCB(DcGoodLTP, DC_LCB_PRF_GOOD_LTP_CNT, CNTR_SYNTH), 4139 [C_DC_PRF_ACCEPTED_LTP_CNT] = 4140 DC_PERF_CNTR_LCB(DcAccLTP, DC_LCB_PRF_ACCEPTED_LTP_CNT, 4141 CNTR_SYNTH), 4142 [C_DC_PRF_RX_FLIT_CNT] = 4143 DC_PERF_CNTR_LCB(DcPrfRxFlit, DC_LCB_PRF_RX_FLIT_CNT, CNTR_SYNTH), 4144 [C_DC_PRF_TX_FLIT_CNT] = 4145 DC_PERF_CNTR_LCB(DcPrfTxFlit, DC_LCB_PRF_TX_FLIT_CNT, CNTR_SYNTH), 4146 [C_DC_PRF_CLK_CNTR] = 4147 DC_PERF_CNTR_LCB(DcPrfClk, DC_LCB_PRF_CLK_CNTR, CNTR_SYNTH), 4148 [C_DC_PG_DBG_FLIT_CRDTS_CNT] = 4149 DC_PERF_CNTR_LCB(DcFltCrdts, DC_LCB_PG_DBG_FLIT_CRDTS_CNT, CNTR_SYNTH), 4150 [C_DC_PG_STS_PAUSE_COMPLETE_CNT] = 4151 DC_PERF_CNTR_LCB(DcPauseComp, DC_LCB_PG_STS_PAUSE_COMPLETE_CNT, 4152 CNTR_SYNTH), 4153 [C_DC_PG_STS_TX_SBE_CNT] = 4154 DC_PERF_CNTR_LCB(DcStsTxSbe, DC_LCB_PG_STS_TX_SBE_CNT, CNTR_SYNTH), 4155 [C_DC_PG_STS_TX_MBE_CNT] = 4156 DC_PERF_CNTR_LCB(DcStsTxMbe, DC_LCB_PG_STS_TX_MBE_CNT, 4157 CNTR_SYNTH), 4158 [C_SW_CPU_INTR] = CNTR_ELEM("Intr", 0, 0, CNTR_NORMAL, 4159 access_sw_cpu_intr), 4160 [C_SW_CPU_RCV_LIM] = CNTR_ELEM("RcvLimit", 0, 0, CNTR_NORMAL, 4161 access_sw_cpu_rcv_limit), 4162 [C_SW_VTX_WAIT] = CNTR_ELEM("vTxWait", 0, 0, CNTR_NORMAL, 4163 access_sw_vtx_wait), 4164 [C_SW_PIO_WAIT] = CNTR_ELEM("PioWait", 0, 0, CNTR_NORMAL, 4165 access_sw_pio_wait), 4166 [C_SW_PIO_DRAIN] = CNTR_ELEM("PioDrain", 0, 0, CNTR_NORMAL, 4167 access_sw_pio_drain), 4168 [C_SW_KMEM_WAIT] = CNTR_ELEM("KmemWait", 0, 0, CNTR_NORMAL, 4169 access_sw_kmem_wait), 4170 [C_SW_SEND_SCHED] = CNTR_ELEM("SendSched", 0, 0, CNTR_NORMAL, 4171 access_sw_send_schedule), 4172 [C_SDMA_DESC_FETCHED_CNT] = CNTR_ELEM("SDEDscFdCn", 4173 SEND_DMA_DESC_FETCHED_CNT, 0, 4174 CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA, 4175 dev_access_u32_csr), 4176 [C_SDMA_INT_CNT] = CNTR_ELEM("SDMAInt", 0, 0, 4177 CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA, 4178 access_sde_int_cnt), 4179 [C_SDMA_ERR_CNT] = CNTR_ELEM("SDMAErrCt", 0, 0, 4180 CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA, 4181 access_sde_err_cnt), 4182 [C_SDMA_IDLE_INT_CNT] = CNTR_ELEM("SDMAIdInt", 0, 0, 4183 CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA, 4184 access_sde_idle_int_cnt), 4185 [C_SDMA_PROGRESS_INT_CNT] = CNTR_ELEM("SDMAPrIntCn", 0, 0, 4186 CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA, 4187 access_sde_progress_int_cnt), 4188 /* MISC_ERR_STATUS */ 4189 [C_MISC_PLL_LOCK_FAIL_ERR] = CNTR_ELEM("MISC_PLL_LOCK_FAIL_ERR", 0, 0, 4190 CNTR_NORMAL, 4191 access_misc_pll_lock_fail_err_cnt), 4192 [C_MISC_MBIST_FAIL_ERR] = CNTR_ELEM("MISC_MBIST_FAIL_ERR", 0, 0, 4193 CNTR_NORMAL, 4194 access_misc_mbist_fail_err_cnt), 4195 [C_MISC_INVALID_EEP_CMD_ERR] = CNTR_ELEM("MISC_INVALID_EEP_CMD_ERR", 0, 0, 4196 CNTR_NORMAL, 4197 access_misc_invalid_eep_cmd_err_cnt), 4198 [C_MISC_EFUSE_DONE_PARITY_ERR] = CNTR_ELEM("MISC_EFUSE_DONE_PARITY_ERR", 0, 0, 4199 CNTR_NORMAL, 4200 access_misc_efuse_done_parity_err_cnt), 4201 [C_MISC_EFUSE_WRITE_ERR] = CNTR_ELEM("MISC_EFUSE_WRITE_ERR", 0, 0, 4202 CNTR_NORMAL, 4203 access_misc_efuse_write_err_cnt), 4204 [C_MISC_EFUSE_READ_BAD_ADDR_ERR] = CNTR_ELEM("MISC_EFUSE_READ_BAD_ADDR_ERR", 0, 4205 0, CNTR_NORMAL, 4206 access_misc_efuse_read_bad_addr_err_cnt), 4207 [C_MISC_EFUSE_CSR_PARITY_ERR] = CNTR_ELEM("MISC_EFUSE_CSR_PARITY_ERR", 0, 0, 4208 CNTR_NORMAL, 4209 access_misc_efuse_csr_parity_err_cnt), 4210 [C_MISC_FW_AUTH_FAILED_ERR] = CNTR_ELEM("MISC_FW_AUTH_FAILED_ERR", 0, 0, 4211 CNTR_NORMAL, 4212 access_misc_fw_auth_failed_err_cnt), 4213 [C_MISC_KEY_MISMATCH_ERR] = CNTR_ELEM("MISC_KEY_MISMATCH_ERR", 0, 0, 4214 CNTR_NORMAL, 4215 access_misc_key_mismatch_err_cnt), 4216 [C_MISC_SBUS_WRITE_FAILED_ERR] = CNTR_ELEM("MISC_SBUS_WRITE_FAILED_ERR", 0, 0, 4217 CNTR_NORMAL, 4218 access_misc_sbus_write_failed_err_cnt), 4219 [C_MISC_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("MISC_CSR_WRITE_BAD_ADDR_ERR", 0, 0, 4220 CNTR_NORMAL, 4221 access_misc_csr_write_bad_addr_err_cnt), 4222 [C_MISC_CSR_READ_BAD_ADDR_ERR] = CNTR_ELEM("MISC_CSR_READ_BAD_ADDR_ERR", 0, 0, 4223 CNTR_NORMAL, 4224 access_misc_csr_read_bad_addr_err_cnt), 4225 [C_MISC_CSR_PARITY_ERR] = CNTR_ELEM("MISC_CSR_PARITY_ERR", 0, 0, 4226 CNTR_NORMAL, 4227 access_misc_csr_parity_err_cnt), 4228 /* CceErrStatus */ 4229 [C_CCE_ERR_STATUS_AGGREGATED_CNT] = CNTR_ELEM("CceErrStatusAggregatedCnt", 0, 0, 4230 CNTR_NORMAL, 4231 access_sw_cce_err_status_aggregated_cnt), 4232 [C_CCE_MSIX_CSR_PARITY_ERR] = CNTR_ELEM("CceMsixCsrParityErr", 0, 0, 4233 CNTR_NORMAL, 4234 access_cce_msix_csr_parity_err_cnt), 4235 [C_CCE_INT_MAP_UNC_ERR] = CNTR_ELEM("CceIntMapUncErr", 0, 0, 4236 CNTR_NORMAL, 4237 access_cce_int_map_unc_err_cnt), 4238 [C_CCE_INT_MAP_COR_ERR] = CNTR_ELEM("CceIntMapCorErr", 0, 0, 4239 CNTR_NORMAL, 4240 access_cce_int_map_cor_err_cnt), 4241 [C_CCE_MSIX_TABLE_UNC_ERR] = CNTR_ELEM("CceMsixTableUncErr", 0, 0, 4242 CNTR_NORMAL, 4243 access_cce_msix_table_unc_err_cnt), 4244 [C_CCE_MSIX_TABLE_COR_ERR] = CNTR_ELEM("CceMsixTableCorErr", 0, 0, 4245 CNTR_NORMAL, 4246 access_cce_msix_table_cor_err_cnt), 4247 [C_CCE_RXDMA_CONV_FIFO_PARITY_ERR] = CNTR_ELEM("CceRxdmaConvFifoParityErr", 0, 4248 0, CNTR_NORMAL, 4249 access_cce_rxdma_conv_fifo_parity_err_cnt), 4250 [C_CCE_RCPL_ASYNC_FIFO_PARITY_ERR] = CNTR_ELEM("CceRcplAsyncFifoParityErr", 0, 4251 0, CNTR_NORMAL, 4252 access_cce_rcpl_async_fifo_parity_err_cnt), 4253 [C_CCE_SEG_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("CceSegWriteBadAddrErr", 0, 0, 4254 CNTR_NORMAL, 4255 access_cce_seg_write_bad_addr_err_cnt), 4256 [C_CCE_SEG_READ_BAD_ADDR_ERR] = CNTR_ELEM("CceSegReadBadAddrErr", 0, 0, 4257 CNTR_NORMAL, 4258 access_cce_seg_read_bad_addr_err_cnt), 4259 [C_LA_TRIGGERED] = CNTR_ELEM("Cce LATriggered", 0, 0, 4260 CNTR_NORMAL, 4261 access_la_triggered_cnt), 4262 [C_CCE_TRGT_CPL_TIMEOUT_ERR] = CNTR_ELEM("CceTrgtCplTimeoutErr", 0, 0, 4263 CNTR_NORMAL, 4264 access_cce_trgt_cpl_timeout_err_cnt), 4265 [C_PCIC_RECEIVE_PARITY_ERR] = CNTR_ELEM("PcicReceiveParityErr", 0, 0, 4266 CNTR_NORMAL, 4267 access_pcic_receive_parity_err_cnt), 4268 [C_PCIC_TRANSMIT_BACK_PARITY_ERR] = CNTR_ELEM("PcicTransmitBackParityErr", 0, 0, 4269 CNTR_NORMAL, 4270 access_pcic_transmit_back_parity_err_cnt), 4271 [C_PCIC_TRANSMIT_FRONT_PARITY_ERR] = CNTR_ELEM("PcicTransmitFrontParityErr", 0, 4272 0, CNTR_NORMAL, 4273 access_pcic_transmit_front_parity_err_cnt), 4274 [C_PCIC_CPL_DAT_Q_UNC_ERR] = CNTR_ELEM("PcicCplDatQUncErr", 0, 0, 4275 CNTR_NORMAL, 4276 access_pcic_cpl_dat_q_unc_err_cnt), 4277 [C_PCIC_CPL_HD_Q_UNC_ERR] = CNTR_ELEM("PcicCplHdQUncErr", 0, 0, 4278 CNTR_NORMAL, 4279 access_pcic_cpl_hd_q_unc_err_cnt), 4280 [C_PCIC_POST_DAT_Q_UNC_ERR] = CNTR_ELEM("PcicPostDatQUncErr", 0, 0, 4281 CNTR_NORMAL, 4282 access_pcic_post_dat_q_unc_err_cnt), 4283 [C_PCIC_POST_HD_Q_UNC_ERR] = CNTR_ELEM("PcicPostHdQUncErr", 0, 0, 4284 CNTR_NORMAL, 4285 access_pcic_post_hd_q_unc_err_cnt), 4286 [C_PCIC_RETRY_SOT_MEM_UNC_ERR] = CNTR_ELEM("PcicRetrySotMemUncErr", 0, 0, 4287 CNTR_NORMAL, 4288 access_pcic_retry_sot_mem_unc_err_cnt), 4289 [C_PCIC_RETRY_MEM_UNC_ERR] = CNTR_ELEM("PcicRetryMemUncErr", 0, 0, 4290 CNTR_NORMAL, 4291 access_pcic_retry_mem_unc_err), 4292 [C_PCIC_N_POST_DAT_Q_PARITY_ERR] = CNTR_ELEM("PcicNPostDatQParityErr", 0, 0, 4293 CNTR_NORMAL, 4294 access_pcic_n_post_dat_q_parity_err_cnt), 4295 [C_PCIC_N_POST_H_Q_PARITY_ERR] = CNTR_ELEM("PcicNPostHQParityErr", 0, 0, 4296 CNTR_NORMAL, 4297 access_pcic_n_post_h_q_parity_err_cnt), 4298 [C_PCIC_CPL_DAT_Q_COR_ERR] = CNTR_ELEM("PcicCplDatQCorErr", 0, 0, 4299 CNTR_NORMAL, 4300 access_pcic_cpl_dat_q_cor_err_cnt), 4301 [C_PCIC_CPL_HD_Q_COR_ERR] = CNTR_ELEM("PcicCplHdQCorErr", 0, 0, 4302 CNTR_NORMAL, 4303 access_pcic_cpl_hd_q_cor_err_cnt), 4304 [C_PCIC_POST_DAT_Q_COR_ERR] = CNTR_ELEM("PcicPostDatQCorErr", 0, 0, 4305 CNTR_NORMAL, 4306 access_pcic_post_dat_q_cor_err_cnt), 4307 [C_PCIC_POST_HD_Q_COR_ERR] = CNTR_ELEM("PcicPostHdQCorErr", 0, 0, 4308 CNTR_NORMAL, 4309 access_pcic_post_hd_q_cor_err_cnt), 4310 [C_PCIC_RETRY_SOT_MEM_COR_ERR] = CNTR_ELEM("PcicRetrySotMemCorErr", 0, 0, 4311 CNTR_NORMAL, 4312 access_pcic_retry_sot_mem_cor_err_cnt), 4313 [C_PCIC_RETRY_MEM_COR_ERR] = CNTR_ELEM("PcicRetryMemCorErr", 0, 0, 4314 CNTR_NORMAL, 4315 access_pcic_retry_mem_cor_err_cnt), 4316 [C_CCE_CLI1_ASYNC_FIFO_DBG_PARITY_ERR] = CNTR_ELEM( 4317 "CceCli1AsyncFifoDbgParityError", 0, 0, 4318 CNTR_NORMAL, 4319 access_cce_cli1_async_fifo_dbg_parity_err_cnt), 4320 [C_CCE_CLI1_ASYNC_FIFO_RXDMA_PARITY_ERR] = CNTR_ELEM( 4321 "CceCli1AsyncFifoRxdmaParityError", 0, 0, 4322 CNTR_NORMAL, 4323 access_cce_cli1_async_fifo_rxdma_parity_err_cnt 4324 ), 4325 [C_CCE_CLI1_ASYNC_FIFO_SDMA_HD_PARITY_ERR] = CNTR_ELEM( 4326 "CceCli1AsyncFifoSdmaHdParityErr", 0, 0, 4327 CNTR_NORMAL, 4328 access_cce_cli1_async_fifo_sdma_hd_parity_err_cnt), 4329 [C_CCE_CLI1_ASYNC_FIFO_PIO_CRDT_PARITY_ERR] = CNTR_ELEM( 4330 "CceCli1AsyncFifoPioCrdtParityErr", 0, 0, 4331 CNTR_NORMAL, 4332 access_cce_cl1_async_fifo_pio_crdt_parity_err_cnt), 4333 [C_CCE_CLI2_ASYNC_FIFO_PARITY_ERR] = CNTR_ELEM("CceCli2AsyncFifoParityErr", 0, 4334 0, CNTR_NORMAL, 4335 access_cce_cli2_async_fifo_parity_err_cnt), 4336 [C_CCE_CSR_CFG_BUS_PARITY_ERR] = CNTR_ELEM("CceCsrCfgBusParityErr", 0, 0, 4337 CNTR_NORMAL, 4338 access_cce_csr_cfg_bus_parity_err_cnt), 4339 [C_CCE_CLI0_ASYNC_FIFO_PARTIY_ERR] = CNTR_ELEM("CceCli0AsyncFifoParityErr", 0, 4340 0, CNTR_NORMAL, 4341 access_cce_cli0_async_fifo_parity_err_cnt), 4342 [C_CCE_RSPD_DATA_PARITY_ERR] = CNTR_ELEM("CceRspdDataParityErr", 0, 0, 4343 CNTR_NORMAL, 4344 access_cce_rspd_data_parity_err_cnt), 4345 [C_CCE_TRGT_ACCESS_ERR] = CNTR_ELEM("CceTrgtAccessErr", 0, 0, 4346 CNTR_NORMAL, 4347 access_cce_trgt_access_err_cnt), 4348 [C_CCE_TRGT_ASYNC_FIFO_PARITY_ERR] = CNTR_ELEM("CceTrgtAsyncFifoParityErr", 0, 4349 0, CNTR_NORMAL, 4350 access_cce_trgt_async_fifo_parity_err_cnt), 4351 [C_CCE_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("CceCsrWriteBadAddrErr", 0, 0, 4352 CNTR_NORMAL, 4353 access_cce_csr_write_bad_addr_err_cnt), 4354 [C_CCE_CSR_READ_BAD_ADDR_ERR] = CNTR_ELEM("CceCsrReadBadAddrErr", 0, 0, 4355 CNTR_NORMAL, 4356 access_cce_csr_read_bad_addr_err_cnt), 4357 [C_CCE_CSR_PARITY_ERR] = CNTR_ELEM("CceCsrParityErr", 0, 0, 4358 CNTR_NORMAL, 4359 access_ccs_csr_parity_err_cnt), 4360 4361 /* RcvErrStatus */ 4362 [C_RX_CSR_PARITY_ERR] = CNTR_ELEM("RxCsrParityErr", 0, 0, 4363 CNTR_NORMAL, 4364 access_rx_csr_parity_err_cnt), 4365 [C_RX_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("RxCsrWriteBadAddrErr", 0, 0, 4366 CNTR_NORMAL, 4367 access_rx_csr_write_bad_addr_err_cnt), 4368 [C_RX_CSR_READ_BAD_ADDR_ERR] = CNTR_ELEM("RxCsrReadBadAddrErr", 0, 0, 4369 CNTR_NORMAL, 4370 access_rx_csr_read_bad_addr_err_cnt), 4371 [C_RX_DMA_CSR_UNC_ERR] = CNTR_ELEM("RxDmaCsrUncErr", 0, 0, 4372 CNTR_NORMAL, 4373 access_rx_dma_csr_unc_err_cnt), 4374 [C_RX_DMA_DQ_FSM_ENCODING_ERR] = CNTR_ELEM("RxDmaDqFsmEncodingErr", 0, 0, 4375 CNTR_NORMAL, 4376 access_rx_dma_dq_fsm_encoding_err_cnt), 4377 [C_RX_DMA_EQ_FSM_ENCODING_ERR] = CNTR_ELEM("RxDmaEqFsmEncodingErr", 0, 0, 4378 CNTR_NORMAL, 4379 access_rx_dma_eq_fsm_encoding_err_cnt), 4380 [C_RX_DMA_CSR_PARITY_ERR] = CNTR_ELEM("RxDmaCsrParityErr", 0, 0, 4381 CNTR_NORMAL, 4382 access_rx_dma_csr_parity_err_cnt), 4383 [C_RX_RBUF_DATA_COR_ERR] = CNTR_ELEM("RxRbufDataCorErr", 0, 0, 4384 CNTR_NORMAL, 4385 access_rx_rbuf_data_cor_err_cnt), 4386 [C_RX_RBUF_DATA_UNC_ERR] = CNTR_ELEM("RxRbufDataUncErr", 0, 0, 4387 CNTR_NORMAL, 4388 access_rx_rbuf_data_unc_err_cnt), 4389 [C_RX_DMA_DATA_FIFO_RD_COR_ERR] = CNTR_ELEM("RxDmaDataFifoRdCorErr", 0, 0, 4390 CNTR_NORMAL, 4391 access_rx_dma_data_fifo_rd_cor_err_cnt), 4392 [C_RX_DMA_DATA_FIFO_RD_UNC_ERR] = CNTR_ELEM("RxDmaDataFifoRdUncErr", 0, 0, 4393 CNTR_NORMAL, 4394 access_rx_dma_data_fifo_rd_unc_err_cnt), 4395 [C_RX_DMA_HDR_FIFO_RD_COR_ERR] = CNTR_ELEM("RxDmaHdrFifoRdCorErr", 0, 0, 4396 CNTR_NORMAL, 4397 access_rx_dma_hdr_fifo_rd_cor_err_cnt), 4398 [C_RX_DMA_HDR_FIFO_RD_UNC_ERR] = CNTR_ELEM("RxDmaHdrFifoRdUncErr", 0, 0, 4399 CNTR_NORMAL, 4400 access_rx_dma_hdr_fifo_rd_unc_err_cnt), 4401 [C_RX_RBUF_DESC_PART2_COR_ERR] = CNTR_ELEM("RxRbufDescPart2CorErr", 0, 0, 4402 CNTR_NORMAL, 4403 access_rx_rbuf_desc_part2_cor_err_cnt), 4404 [C_RX_RBUF_DESC_PART2_UNC_ERR] = CNTR_ELEM("RxRbufDescPart2UncErr", 0, 0, 4405 CNTR_NORMAL, 4406 access_rx_rbuf_desc_part2_unc_err_cnt), 4407 [C_RX_RBUF_DESC_PART1_COR_ERR] = CNTR_ELEM("RxRbufDescPart1CorErr", 0, 0, 4408 CNTR_NORMAL, 4409 access_rx_rbuf_desc_part1_cor_err_cnt), 4410 [C_RX_RBUF_DESC_PART1_UNC_ERR] = CNTR_ELEM("RxRbufDescPart1UncErr", 0, 0, 4411 CNTR_NORMAL, 4412 access_rx_rbuf_desc_part1_unc_err_cnt), 4413 [C_RX_HQ_INTR_FSM_ERR] = CNTR_ELEM("RxHqIntrFsmErr", 0, 0, 4414 CNTR_NORMAL, 4415 access_rx_hq_intr_fsm_err_cnt), 4416 [C_RX_HQ_INTR_CSR_PARITY_ERR] = CNTR_ELEM("RxHqIntrCsrParityErr", 0, 0, 4417 CNTR_NORMAL, 4418 access_rx_hq_intr_csr_parity_err_cnt), 4419 [C_RX_LOOKUP_CSR_PARITY_ERR] = CNTR_ELEM("RxLookupCsrParityErr", 0, 0, 4420 CNTR_NORMAL, 4421 access_rx_lookup_csr_parity_err_cnt), 4422 [C_RX_LOOKUP_RCV_ARRAY_COR_ERR] = CNTR_ELEM("RxLookupRcvArrayCorErr", 0, 0, 4423 CNTR_NORMAL, 4424 access_rx_lookup_rcv_array_cor_err_cnt), 4425 [C_RX_LOOKUP_RCV_ARRAY_UNC_ERR] = CNTR_ELEM("RxLookupRcvArrayUncErr", 0, 0, 4426 CNTR_NORMAL, 4427 access_rx_lookup_rcv_array_unc_err_cnt), 4428 [C_RX_LOOKUP_DES_PART2_PARITY_ERR] = CNTR_ELEM("RxLookupDesPart2ParityErr", 0, 4429 0, CNTR_NORMAL, 4430 access_rx_lookup_des_part2_parity_err_cnt), 4431 [C_RX_LOOKUP_DES_PART1_UNC_COR_ERR] = CNTR_ELEM("RxLookupDesPart1UncCorErr", 0, 4432 0, CNTR_NORMAL, 4433 access_rx_lookup_des_part1_unc_cor_err_cnt), 4434 [C_RX_LOOKUP_DES_PART1_UNC_ERR] = CNTR_ELEM("RxLookupDesPart1UncErr", 0, 0, 4435 CNTR_NORMAL, 4436 access_rx_lookup_des_part1_unc_err_cnt), 4437 [C_RX_RBUF_NEXT_FREE_BUF_COR_ERR] = CNTR_ELEM("RxRbufNextFreeBufCorErr", 0, 0, 4438 CNTR_NORMAL, 4439 access_rx_rbuf_next_free_buf_cor_err_cnt), 4440 [C_RX_RBUF_NEXT_FREE_BUF_UNC_ERR] = CNTR_ELEM("RxRbufNextFreeBufUncErr", 0, 0, 4441 CNTR_NORMAL, 4442 access_rx_rbuf_next_free_buf_unc_err_cnt), 4443 [C_RX_RBUF_FL_INIT_WR_ADDR_PARITY_ERR] = CNTR_ELEM( 4444 "RxRbufFlInitWrAddrParityErr", 0, 0, 4445 CNTR_NORMAL, 4446 access_rbuf_fl_init_wr_addr_parity_err_cnt), 4447 [C_RX_RBUF_FL_INITDONE_PARITY_ERR] = CNTR_ELEM("RxRbufFlInitdoneParityErr", 0, 4448 0, CNTR_NORMAL, 4449 access_rx_rbuf_fl_initdone_parity_err_cnt), 4450 [C_RX_RBUF_FL_WRITE_ADDR_PARITY_ERR] = CNTR_ELEM("RxRbufFlWrAddrParityErr", 0, 4451 0, CNTR_NORMAL, 4452 access_rx_rbuf_fl_write_addr_parity_err_cnt), 4453 [C_RX_RBUF_FL_RD_ADDR_PARITY_ERR] = CNTR_ELEM("RxRbufFlRdAddrParityErr", 0, 0, 4454 CNTR_NORMAL, 4455 access_rx_rbuf_fl_rd_addr_parity_err_cnt), 4456 [C_RX_RBUF_EMPTY_ERR] = CNTR_ELEM("RxRbufEmptyErr", 0, 0, 4457 CNTR_NORMAL, 4458 access_rx_rbuf_empty_err_cnt), 4459 [C_RX_RBUF_FULL_ERR] = CNTR_ELEM("RxRbufFullErr", 0, 0, 4460 CNTR_NORMAL, 4461 access_rx_rbuf_full_err_cnt), 4462 [C_RX_RBUF_BAD_LOOKUP_ERR] = CNTR_ELEM("RxRBufBadLookupErr", 0, 0, 4463 CNTR_NORMAL, 4464 access_rbuf_bad_lookup_err_cnt), 4465 [C_RX_RBUF_CTX_ID_PARITY_ERR] = CNTR_ELEM("RxRbufCtxIdParityErr", 0, 0, 4466 CNTR_NORMAL, 4467 access_rbuf_ctx_id_parity_err_cnt), 4468 [C_RX_RBUF_CSR_QEOPDW_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQEOPDWParityErr", 0, 0, 4469 CNTR_NORMAL, 4470 access_rbuf_csr_qeopdw_parity_err_cnt), 4471 [C_RX_RBUF_CSR_Q_NUM_OF_PKT_PARITY_ERR] = CNTR_ELEM( 4472 "RxRbufCsrQNumOfPktParityErr", 0, 0, 4473 CNTR_NORMAL, 4474 access_rx_rbuf_csr_q_num_of_pkt_parity_err_cnt), 4475 [C_RX_RBUF_CSR_Q_T1_PTR_PARITY_ERR] = CNTR_ELEM( 4476 "RxRbufCsrQTlPtrParityErr", 0, 0, 4477 CNTR_NORMAL, 4478 access_rx_rbuf_csr_q_t1_ptr_parity_err_cnt), 4479 [C_RX_RBUF_CSR_Q_HD_PTR_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQHdPtrParityErr", 0, 4480 0, CNTR_NORMAL, 4481 access_rx_rbuf_csr_q_hd_ptr_parity_err_cnt), 4482 [C_RX_RBUF_CSR_Q_VLD_BIT_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQVldBitParityErr", 0, 4483 0, CNTR_NORMAL, 4484 access_rx_rbuf_csr_q_vld_bit_parity_err_cnt), 4485 [C_RX_RBUF_CSR_Q_NEXT_BUF_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQNextBufParityErr", 4486 0, 0, CNTR_NORMAL, 4487 access_rx_rbuf_csr_q_next_buf_parity_err_cnt), 4488 [C_RX_RBUF_CSR_Q_ENT_CNT_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQEntCntParityErr", 0, 4489 0, CNTR_NORMAL, 4490 access_rx_rbuf_csr_q_ent_cnt_parity_err_cnt), 4491 [C_RX_RBUF_CSR_Q_HEAD_BUF_NUM_PARITY_ERR] = CNTR_ELEM( 4492 "RxRbufCsrQHeadBufNumParityErr", 0, 0, 4493 CNTR_NORMAL, 4494 access_rx_rbuf_csr_q_head_buf_num_parity_err_cnt), 4495 [C_RX_RBUF_BLOCK_LIST_READ_COR_ERR] = CNTR_ELEM("RxRbufBlockListReadCorErr", 0, 4496 0, CNTR_NORMAL, 4497 access_rx_rbuf_block_list_read_cor_err_cnt), 4498 [C_RX_RBUF_BLOCK_LIST_READ_UNC_ERR] = CNTR_ELEM("RxRbufBlockListReadUncErr", 0, 4499 0, CNTR_NORMAL, 4500 access_rx_rbuf_block_list_read_unc_err_cnt), 4501 [C_RX_RBUF_LOOKUP_DES_COR_ERR] = CNTR_ELEM("RxRbufLookupDesCorErr", 0, 0, 4502 CNTR_NORMAL, 4503 access_rx_rbuf_lookup_des_cor_err_cnt), 4504 [C_RX_RBUF_LOOKUP_DES_UNC_ERR] = CNTR_ELEM("RxRbufLookupDesUncErr", 0, 0, 4505 CNTR_NORMAL, 4506 access_rx_rbuf_lookup_des_unc_err_cnt), 4507 [C_RX_RBUF_LOOKUP_DES_REG_UNC_COR_ERR] = CNTR_ELEM( 4508 "RxRbufLookupDesRegUncCorErr", 0, 0, 4509 CNTR_NORMAL, 4510 access_rx_rbuf_lookup_des_reg_unc_cor_err_cnt), 4511 [C_RX_RBUF_LOOKUP_DES_REG_UNC_ERR] = CNTR_ELEM("RxRbufLookupDesRegUncErr", 0, 0, 4512 CNTR_NORMAL, 4513 access_rx_rbuf_lookup_des_reg_unc_err_cnt), 4514 [C_RX_RBUF_FREE_LIST_COR_ERR] = CNTR_ELEM("RxRbufFreeListCorErr", 0, 0, 4515 CNTR_NORMAL, 4516 access_rx_rbuf_free_list_cor_err_cnt), 4517 [C_RX_RBUF_FREE_LIST_UNC_ERR] = CNTR_ELEM("RxRbufFreeListUncErr", 0, 0, 4518 CNTR_NORMAL, 4519 access_rx_rbuf_free_list_unc_err_cnt), 4520 [C_RX_RCV_FSM_ENCODING_ERR] = CNTR_ELEM("RxRcvFsmEncodingErr", 0, 0, 4521 CNTR_NORMAL, 4522 access_rx_rcv_fsm_encoding_err_cnt), 4523 [C_RX_DMA_FLAG_COR_ERR] = CNTR_ELEM("RxDmaFlagCorErr", 0, 0, 4524 CNTR_NORMAL, 4525 access_rx_dma_flag_cor_err_cnt), 4526 [C_RX_DMA_FLAG_UNC_ERR] = CNTR_ELEM("RxDmaFlagUncErr", 0, 0, 4527 CNTR_NORMAL, 4528 access_rx_dma_flag_unc_err_cnt), 4529 [C_RX_DC_SOP_EOP_PARITY_ERR] = CNTR_ELEM("RxDcSopEopParityErr", 0, 0, 4530 CNTR_NORMAL, 4531 access_rx_dc_sop_eop_parity_err_cnt), 4532 [C_RX_RCV_CSR_PARITY_ERR] = CNTR_ELEM("RxRcvCsrParityErr", 0, 0, 4533 CNTR_NORMAL, 4534 access_rx_rcv_csr_parity_err_cnt), 4535 [C_RX_RCV_QP_MAP_TABLE_COR_ERR] = CNTR_ELEM("RxRcvQpMapTableCorErr", 0, 0, 4536 CNTR_NORMAL, 4537 access_rx_rcv_qp_map_table_cor_err_cnt), 4538 [C_RX_RCV_QP_MAP_TABLE_UNC_ERR] = CNTR_ELEM("RxRcvQpMapTableUncErr", 0, 0, 4539 CNTR_NORMAL, 4540 access_rx_rcv_qp_map_table_unc_err_cnt), 4541 [C_RX_RCV_DATA_COR_ERR] = CNTR_ELEM("RxRcvDataCorErr", 0, 0, 4542 CNTR_NORMAL, 4543 access_rx_rcv_data_cor_err_cnt), 4544 [C_RX_RCV_DATA_UNC_ERR] = CNTR_ELEM("RxRcvDataUncErr", 0, 0, 4545 CNTR_NORMAL, 4546 access_rx_rcv_data_unc_err_cnt), 4547 [C_RX_RCV_HDR_COR_ERR] = CNTR_ELEM("RxRcvHdrCorErr", 0, 0, 4548 CNTR_NORMAL, 4549 access_rx_rcv_hdr_cor_err_cnt), 4550 [C_RX_RCV_HDR_UNC_ERR] = CNTR_ELEM("RxRcvHdrUncErr", 0, 0, 4551 CNTR_NORMAL, 4552 access_rx_rcv_hdr_unc_err_cnt), 4553 [C_RX_DC_INTF_PARITY_ERR] = CNTR_ELEM("RxDcIntfParityErr", 0, 0, 4554 CNTR_NORMAL, 4555 access_rx_dc_intf_parity_err_cnt), 4556 [C_RX_DMA_CSR_COR_ERR] = CNTR_ELEM("RxDmaCsrCorErr", 0, 0, 4557 CNTR_NORMAL, 4558 access_rx_dma_csr_cor_err_cnt), 4559 /* SendPioErrStatus */ 4560 [C_PIO_PEC_SOP_HEAD_PARITY_ERR] = CNTR_ELEM("PioPecSopHeadParityErr", 0, 0, 4561 CNTR_NORMAL, 4562 access_pio_pec_sop_head_parity_err_cnt), 4563 [C_PIO_PCC_SOP_HEAD_PARITY_ERR] = CNTR_ELEM("PioPccSopHeadParityErr", 0, 0, 4564 CNTR_NORMAL, 4565 access_pio_pcc_sop_head_parity_err_cnt), 4566 [C_PIO_LAST_RETURNED_CNT_PARITY_ERR] = CNTR_ELEM("PioLastReturnedCntParityErr", 4567 0, 0, CNTR_NORMAL, 4568 access_pio_last_returned_cnt_parity_err_cnt), 4569 [C_PIO_CURRENT_FREE_CNT_PARITY_ERR] = CNTR_ELEM("PioCurrentFreeCntParityErr", 0, 4570 0, CNTR_NORMAL, 4571 access_pio_current_free_cnt_parity_err_cnt), 4572 [C_PIO_RSVD_31_ERR] = CNTR_ELEM("Pio Reserved 31", 0, 0, 4573 CNTR_NORMAL, 4574 access_pio_reserved_31_err_cnt), 4575 [C_PIO_RSVD_30_ERR] = CNTR_ELEM("Pio Reserved 30", 0, 0, 4576 CNTR_NORMAL, 4577 access_pio_reserved_30_err_cnt), 4578 [C_PIO_PPMC_SOP_LEN_ERR] = CNTR_ELEM("PioPpmcSopLenErr", 0, 0, 4579 CNTR_NORMAL, 4580 access_pio_ppmc_sop_len_err_cnt), 4581 [C_PIO_PPMC_BQC_MEM_PARITY_ERR] = CNTR_ELEM("PioPpmcBqcMemParityErr", 0, 0, 4582 CNTR_NORMAL, 4583 access_pio_ppmc_bqc_mem_parity_err_cnt), 4584 [C_PIO_VL_FIFO_PARITY_ERR] = CNTR_ELEM("PioVlFifoParityErr", 0, 0, 4585 CNTR_NORMAL, 4586 access_pio_vl_fifo_parity_err_cnt), 4587 [C_PIO_VLF_SOP_PARITY_ERR] = CNTR_ELEM("PioVlfSopParityErr", 0, 0, 4588 CNTR_NORMAL, 4589 access_pio_vlf_sop_parity_err_cnt), 4590 [C_PIO_VLF_V1_LEN_PARITY_ERR] = CNTR_ELEM("PioVlfVlLenParityErr", 0, 0, 4591 CNTR_NORMAL, 4592 access_pio_vlf_v1_len_parity_err_cnt), 4593 [C_PIO_BLOCK_QW_COUNT_PARITY_ERR] = CNTR_ELEM("PioBlockQwCountParityErr", 0, 0, 4594 CNTR_NORMAL, 4595 access_pio_block_qw_count_parity_err_cnt), 4596 [C_PIO_WRITE_QW_VALID_PARITY_ERR] = CNTR_ELEM("PioWriteQwValidParityErr", 0, 0, 4597 CNTR_NORMAL, 4598 access_pio_write_qw_valid_parity_err_cnt), 4599 [C_PIO_STATE_MACHINE_ERR] = CNTR_ELEM("PioStateMachineErr", 0, 0, 4600 CNTR_NORMAL, 4601 access_pio_state_machine_err_cnt), 4602 [C_PIO_WRITE_DATA_PARITY_ERR] = CNTR_ELEM("PioWriteDataParityErr", 0, 0, 4603 CNTR_NORMAL, 4604 access_pio_write_data_parity_err_cnt), 4605 [C_PIO_HOST_ADDR_MEM_COR_ERR] = CNTR_ELEM("PioHostAddrMemCorErr", 0, 0, 4606 CNTR_NORMAL, 4607 access_pio_host_addr_mem_cor_err_cnt), 4608 [C_PIO_HOST_ADDR_MEM_UNC_ERR] = CNTR_ELEM("PioHostAddrMemUncErr", 0, 0, 4609 CNTR_NORMAL, 4610 access_pio_host_addr_mem_unc_err_cnt), 4611 [C_PIO_PKT_EVICT_SM_OR_ARM_SM_ERR] = CNTR_ELEM("PioPktEvictSmOrArbSmErr", 0, 0, 4612 CNTR_NORMAL, 4613 access_pio_pkt_evict_sm_or_arb_sm_err_cnt), 4614 [C_PIO_INIT_SM_IN_ERR] = CNTR_ELEM("PioInitSmInErr", 0, 0, 4615 CNTR_NORMAL, 4616 access_pio_init_sm_in_err_cnt), 4617 [C_PIO_PPMC_PBL_FIFO_ERR] = CNTR_ELEM("PioPpmcPblFifoErr", 0, 0, 4618 CNTR_NORMAL, 4619 access_pio_ppmc_pbl_fifo_err_cnt), 4620 [C_PIO_CREDIT_RET_FIFO_PARITY_ERR] = CNTR_ELEM("PioCreditRetFifoParityErr", 0, 4621 0, CNTR_NORMAL, 4622 access_pio_credit_ret_fifo_parity_err_cnt), 4623 [C_PIO_V1_LEN_MEM_BANK1_COR_ERR] = CNTR_ELEM("PioVlLenMemBank1CorErr", 0, 0, 4624 CNTR_NORMAL, 4625 access_pio_v1_len_mem_bank1_cor_err_cnt), 4626 [C_PIO_V1_LEN_MEM_BANK0_COR_ERR] = CNTR_ELEM("PioVlLenMemBank0CorErr", 0, 0, 4627 CNTR_NORMAL, 4628 access_pio_v1_len_mem_bank0_cor_err_cnt), 4629 [C_PIO_V1_LEN_MEM_BANK1_UNC_ERR] = CNTR_ELEM("PioVlLenMemBank1UncErr", 0, 0, 4630 CNTR_NORMAL, 4631 access_pio_v1_len_mem_bank1_unc_err_cnt), 4632 [C_PIO_V1_LEN_MEM_BANK0_UNC_ERR] = CNTR_ELEM("PioVlLenMemBank0UncErr", 0, 0, 4633 CNTR_NORMAL, 4634 access_pio_v1_len_mem_bank0_unc_err_cnt), 4635 [C_PIO_SM_PKT_RESET_PARITY_ERR] = CNTR_ELEM("PioSmPktResetParityErr", 0, 0, 4636 CNTR_NORMAL, 4637 access_pio_sm_pkt_reset_parity_err_cnt), 4638 [C_PIO_PKT_EVICT_FIFO_PARITY_ERR] = CNTR_ELEM("PioPktEvictFifoParityErr", 0, 0, 4639 CNTR_NORMAL, 4640 access_pio_pkt_evict_fifo_parity_err_cnt), 4641 [C_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR] = CNTR_ELEM( 4642 "PioSbrdctrlCrrelFifoParityErr", 0, 0, 4643 CNTR_NORMAL, 4644 access_pio_sbrdctrl_crrel_fifo_parity_err_cnt), 4645 [C_PIO_SBRDCTL_CRREL_PARITY_ERR] = CNTR_ELEM("PioSbrdctlCrrelParityErr", 0, 0, 4646 CNTR_NORMAL, 4647 access_pio_sbrdctl_crrel_parity_err_cnt), 4648 [C_PIO_PEC_FIFO_PARITY_ERR] = CNTR_ELEM("PioPecFifoParityErr", 0, 0, 4649 CNTR_NORMAL, 4650 access_pio_pec_fifo_parity_err_cnt), 4651 [C_PIO_PCC_FIFO_PARITY_ERR] = CNTR_ELEM("PioPccFifoParityErr", 0, 0, 4652 CNTR_NORMAL, 4653 access_pio_pcc_fifo_parity_err_cnt), 4654 [C_PIO_SB_MEM_FIFO1_ERR] = CNTR_ELEM("PioSbMemFifo1Err", 0, 0, 4655 CNTR_NORMAL, 4656 access_pio_sb_mem_fifo1_err_cnt), 4657 [C_PIO_SB_MEM_FIFO0_ERR] = CNTR_ELEM("PioSbMemFifo0Err", 0, 0, 4658 CNTR_NORMAL, 4659 access_pio_sb_mem_fifo0_err_cnt), 4660 [C_PIO_CSR_PARITY_ERR] = CNTR_ELEM("PioCsrParityErr", 0, 0, 4661 CNTR_NORMAL, 4662 access_pio_csr_parity_err_cnt), 4663 [C_PIO_WRITE_ADDR_PARITY_ERR] = CNTR_ELEM("PioWriteAddrParityErr", 0, 0, 4664 CNTR_NORMAL, 4665 access_pio_write_addr_parity_err_cnt), 4666 [C_PIO_WRITE_BAD_CTXT_ERR] = CNTR_ELEM("PioWriteBadCtxtErr", 0, 0, 4667 CNTR_NORMAL, 4668 access_pio_write_bad_ctxt_err_cnt), 4669 /* SendDmaErrStatus */ 4670 [C_SDMA_PCIE_REQ_TRACKING_COR_ERR] = CNTR_ELEM("SDmaPcieReqTrackingCorErr", 0, 4671 0, CNTR_NORMAL, 4672 access_sdma_pcie_req_tracking_cor_err_cnt), 4673 [C_SDMA_PCIE_REQ_TRACKING_UNC_ERR] = CNTR_ELEM("SDmaPcieReqTrackingUncErr", 0, 4674 0, CNTR_NORMAL, 4675 access_sdma_pcie_req_tracking_unc_err_cnt), 4676 [C_SDMA_CSR_PARITY_ERR] = CNTR_ELEM("SDmaCsrParityErr", 0, 0, 4677 CNTR_NORMAL, 4678 access_sdma_csr_parity_err_cnt), 4679 [C_SDMA_RPY_TAG_ERR] = CNTR_ELEM("SDmaRpyTagErr", 0, 0, 4680 CNTR_NORMAL, 4681 access_sdma_rpy_tag_err_cnt), 4682 /* SendEgressErrStatus */ 4683 [C_TX_READ_PIO_MEMORY_CSR_UNC_ERR] = CNTR_ELEM("TxReadPioMemoryCsrUncErr", 0, 0, 4684 CNTR_NORMAL, 4685 access_tx_read_pio_memory_csr_unc_err_cnt), 4686 [C_TX_READ_SDMA_MEMORY_CSR_UNC_ERR] = CNTR_ELEM("TxReadSdmaMemoryCsrUncErr", 0, 4687 0, CNTR_NORMAL, 4688 access_tx_read_sdma_memory_csr_err_cnt), 4689 [C_TX_EGRESS_FIFO_COR_ERR] = CNTR_ELEM("TxEgressFifoCorErr", 0, 0, 4690 CNTR_NORMAL, 4691 access_tx_egress_fifo_cor_err_cnt), 4692 [C_TX_READ_PIO_MEMORY_COR_ERR] = CNTR_ELEM("TxReadPioMemoryCorErr", 0, 0, 4693 CNTR_NORMAL, 4694 access_tx_read_pio_memory_cor_err_cnt), 4695 [C_TX_READ_SDMA_MEMORY_COR_ERR] = CNTR_ELEM("TxReadSdmaMemoryCorErr", 0, 0, 4696 CNTR_NORMAL, 4697 access_tx_read_sdma_memory_cor_err_cnt), 4698 [C_TX_SB_HDR_COR_ERR] = CNTR_ELEM("TxSbHdrCorErr", 0, 0, 4699 CNTR_NORMAL, 4700 access_tx_sb_hdr_cor_err_cnt), 4701 [C_TX_CREDIT_OVERRUN_ERR] = CNTR_ELEM("TxCreditOverrunErr", 0, 0, 4702 CNTR_NORMAL, 4703 access_tx_credit_overrun_err_cnt), 4704 [C_TX_LAUNCH_FIFO8_COR_ERR] = CNTR_ELEM("TxLaunchFifo8CorErr", 0, 0, 4705 CNTR_NORMAL, 4706 access_tx_launch_fifo8_cor_err_cnt), 4707 [C_TX_LAUNCH_FIFO7_COR_ERR] = CNTR_ELEM("TxLaunchFifo7CorErr", 0, 0, 4708 CNTR_NORMAL, 4709 access_tx_launch_fifo7_cor_err_cnt), 4710 [C_TX_LAUNCH_FIFO6_COR_ERR] = CNTR_ELEM("TxLaunchFifo6CorErr", 0, 0, 4711 CNTR_NORMAL, 4712 access_tx_launch_fifo6_cor_err_cnt), 4713 [C_TX_LAUNCH_FIFO5_COR_ERR] = CNTR_ELEM("TxLaunchFifo5CorErr", 0, 0, 4714 CNTR_NORMAL, 4715 access_tx_launch_fifo5_cor_err_cnt), 4716 [C_TX_LAUNCH_FIFO4_COR_ERR] = CNTR_ELEM("TxLaunchFifo4CorErr", 0, 0, 4717 CNTR_NORMAL, 4718 access_tx_launch_fifo4_cor_err_cnt), 4719 [C_TX_LAUNCH_FIFO3_COR_ERR] = CNTR_ELEM("TxLaunchFifo3CorErr", 0, 0, 4720 CNTR_NORMAL, 4721 access_tx_launch_fifo3_cor_err_cnt), 4722 [C_TX_LAUNCH_FIFO2_COR_ERR] = CNTR_ELEM("TxLaunchFifo2CorErr", 0, 0, 4723 CNTR_NORMAL, 4724 access_tx_launch_fifo2_cor_err_cnt), 4725 [C_TX_LAUNCH_FIFO1_COR_ERR] = CNTR_ELEM("TxLaunchFifo1CorErr", 0, 0, 4726 CNTR_NORMAL, 4727 access_tx_launch_fifo1_cor_err_cnt), 4728 [C_TX_LAUNCH_FIFO0_COR_ERR] = CNTR_ELEM("TxLaunchFifo0CorErr", 0, 0, 4729 CNTR_NORMAL, 4730 access_tx_launch_fifo0_cor_err_cnt), 4731 [C_TX_CREDIT_RETURN_VL_ERR] = CNTR_ELEM("TxCreditReturnVLErr", 0, 0, 4732 CNTR_NORMAL, 4733 access_tx_credit_return_vl_err_cnt), 4734 [C_TX_HCRC_INSERTION_ERR] = CNTR_ELEM("TxHcrcInsertionErr", 0, 0, 4735 CNTR_NORMAL, 4736 access_tx_hcrc_insertion_err_cnt), 4737 [C_TX_EGRESS_FIFI_UNC_ERR] = CNTR_ELEM("TxEgressFifoUncErr", 0, 0, 4738 CNTR_NORMAL, 4739 access_tx_egress_fifo_unc_err_cnt), 4740 [C_TX_READ_PIO_MEMORY_UNC_ERR] = CNTR_ELEM("TxReadPioMemoryUncErr", 0, 0, 4741 CNTR_NORMAL, 4742 access_tx_read_pio_memory_unc_err_cnt), 4743 [C_TX_READ_SDMA_MEMORY_UNC_ERR] = CNTR_ELEM("TxReadSdmaMemoryUncErr", 0, 0, 4744 CNTR_NORMAL, 4745 access_tx_read_sdma_memory_unc_err_cnt), 4746 [C_TX_SB_HDR_UNC_ERR] = CNTR_ELEM("TxSbHdrUncErr", 0, 0, 4747 CNTR_NORMAL, 4748 access_tx_sb_hdr_unc_err_cnt), 4749 [C_TX_CREDIT_RETURN_PARITY_ERR] = CNTR_ELEM("TxCreditReturnParityErr", 0, 0, 4750 CNTR_NORMAL, 4751 access_tx_credit_return_partiy_err_cnt), 4752 [C_TX_LAUNCH_FIFO8_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo8UncOrParityErr", 4753 0, 0, CNTR_NORMAL, 4754 access_tx_launch_fifo8_unc_or_parity_err_cnt), 4755 [C_TX_LAUNCH_FIFO7_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo7UncOrParityErr", 4756 0, 0, CNTR_NORMAL, 4757 access_tx_launch_fifo7_unc_or_parity_err_cnt), 4758 [C_TX_LAUNCH_FIFO6_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo6UncOrParityErr", 4759 0, 0, CNTR_NORMAL, 4760 access_tx_launch_fifo6_unc_or_parity_err_cnt), 4761 [C_TX_LAUNCH_FIFO5_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo5UncOrParityErr", 4762 0, 0, CNTR_NORMAL, 4763 access_tx_launch_fifo5_unc_or_parity_err_cnt), 4764 [C_TX_LAUNCH_FIFO4_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo4UncOrParityErr", 4765 0, 0, CNTR_NORMAL, 4766 access_tx_launch_fifo4_unc_or_parity_err_cnt), 4767 [C_TX_LAUNCH_FIFO3_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo3UncOrParityErr", 4768 0, 0, CNTR_NORMAL, 4769 access_tx_launch_fifo3_unc_or_parity_err_cnt), 4770 [C_TX_LAUNCH_FIFO2_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo2UncOrParityErr", 4771 0, 0, CNTR_NORMAL, 4772 access_tx_launch_fifo2_unc_or_parity_err_cnt), 4773 [C_TX_LAUNCH_FIFO1_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo1UncOrParityErr", 4774 0, 0, CNTR_NORMAL, 4775 access_tx_launch_fifo1_unc_or_parity_err_cnt), 4776 [C_TX_LAUNCH_FIFO0_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo0UncOrParityErr", 4777 0, 0, CNTR_NORMAL, 4778 access_tx_launch_fifo0_unc_or_parity_err_cnt), 4779 [C_TX_SDMA15_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma15DisallowedPacketErr", 4780 0, 0, CNTR_NORMAL, 4781 access_tx_sdma15_disallowed_packet_err_cnt), 4782 [C_TX_SDMA14_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma14DisallowedPacketErr", 4783 0, 0, CNTR_NORMAL, 4784 access_tx_sdma14_disallowed_packet_err_cnt), 4785 [C_TX_SDMA13_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma13DisallowedPacketErr", 4786 0, 0, CNTR_NORMAL, 4787 access_tx_sdma13_disallowed_packet_err_cnt), 4788 [C_TX_SDMA12_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma12DisallowedPacketErr", 4789 0, 0, CNTR_NORMAL, 4790 access_tx_sdma12_disallowed_packet_err_cnt), 4791 [C_TX_SDMA11_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma11DisallowedPacketErr", 4792 0, 0, CNTR_NORMAL, 4793 access_tx_sdma11_disallowed_packet_err_cnt), 4794 [C_TX_SDMA10_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma10DisallowedPacketErr", 4795 0, 0, CNTR_NORMAL, 4796 access_tx_sdma10_disallowed_packet_err_cnt), 4797 [C_TX_SDMA9_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma9DisallowedPacketErr", 4798 0, 0, CNTR_NORMAL, 4799 access_tx_sdma9_disallowed_packet_err_cnt), 4800 [C_TX_SDMA8_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma8DisallowedPacketErr", 4801 0, 0, CNTR_NORMAL, 4802 access_tx_sdma8_disallowed_packet_err_cnt), 4803 [C_TX_SDMA7_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma7DisallowedPacketErr", 4804 0, 0, CNTR_NORMAL, 4805 access_tx_sdma7_disallowed_packet_err_cnt), 4806 [C_TX_SDMA6_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma6DisallowedPacketErr", 4807 0, 0, CNTR_NORMAL, 4808 access_tx_sdma6_disallowed_packet_err_cnt), 4809 [C_TX_SDMA5_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma5DisallowedPacketErr", 4810 0, 0, CNTR_NORMAL, 4811 access_tx_sdma5_disallowed_packet_err_cnt), 4812 [C_TX_SDMA4_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma4DisallowedPacketErr", 4813 0, 0, CNTR_NORMAL, 4814 access_tx_sdma4_disallowed_packet_err_cnt), 4815 [C_TX_SDMA3_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma3DisallowedPacketErr", 4816 0, 0, CNTR_NORMAL, 4817 access_tx_sdma3_disallowed_packet_err_cnt), 4818 [C_TX_SDMA2_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma2DisallowedPacketErr", 4819 0, 0, CNTR_NORMAL, 4820 access_tx_sdma2_disallowed_packet_err_cnt), 4821 [C_TX_SDMA1_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma1DisallowedPacketErr", 4822 0, 0, CNTR_NORMAL, 4823 access_tx_sdma1_disallowed_packet_err_cnt), 4824 [C_TX_SDMA0_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma0DisallowedPacketErr", 4825 0, 0, CNTR_NORMAL, 4826 access_tx_sdma0_disallowed_packet_err_cnt), 4827 [C_TX_CONFIG_PARITY_ERR] = CNTR_ELEM("TxConfigParityErr", 0, 0, 4828 CNTR_NORMAL, 4829 access_tx_config_parity_err_cnt), 4830 [C_TX_SBRD_CTL_CSR_PARITY_ERR] = CNTR_ELEM("TxSbrdCtlCsrParityErr", 0, 0, 4831 CNTR_NORMAL, 4832 access_tx_sbrd_ctl_csr_parity_err_cnt), 4833 [C_TX_LAUNCH_CSR_PARITY_ERR] = CNTR_ELEM("TxLaunchCsrParityErr", 0, 0, 4834 CNTR_NORMAL, 4835 access_tx_launch_csr_parity_err_cnt), 4836 [C_TX_ILLEGAL_CL_ERR] = CNTR_ELEM("TxIllegalVLErr", 0, 0, 4837 CNTR_NORMAL, 4838 access_tx_illegal_vl_err_cnt), 4839 [C_TX_SBRD_CTL_STATE_MACHINE_PARITY_ERR] = CNTR_ELEM( 4840 "TxSbrdCtlStateMachineParityErr", 0, 0, 4841 CNTR_NORMAL, 4842 access_tx_sbrd_ctl_state_machine_parity_err_cnt), 4843 [C_TX_RESERVED_10] = CNTR_ELEM("Tx Egress Reserved 10", 0, 0, 4844 CNTR_NORMAL, 4845 access_egress_reserved_10_err_cnt), 4846 [C_TX_RESERVED_9] = CNTR_ELEM("Tx Egress Reserved 9", 0, 0, 4847 CNTR_NORMAL, 4848 access_egress_reserved_9_err_cnt), 4849 [C_TX_SDMA_LAUNCH_INTF_PARITY_ERR] = CNTR_ELEM("TxSdmaLaunchIntfParityErr", 4850 0, 0, CNTR_NORMAL, 4851 access_tx_sdma_launch_intf_parity_err_cnt), 4852 [C_TX_PIO_LAUNCH_INTF_PARITY_ERR] = CNTR_ELEM("TxPioLaunchIntfParityErr", 0, 0, 4853 CNTR_NORMAL, 4854 access_tx_pio_launch_intf_parity_err_cnt), 4855 [C_TX_RESERVED_6] = CNTR_ELEM("Tx Egress Reserved 6", 0, 0, 4856 CNTR_NORMAL, 4857 access_egress_reserved_6_err_cnt), 4858 [C_TX_INCORRECT_LINK_STATE_ERR] = CNTR_ELEM("TxIncorrectLinkStateErr", 0, 0, 4859 CNTR_NORMAL, 4860 access_tx_incorrect_link_state_err_cnt), 4861 [C_TX_LINK_DOWN_ERR] = CNTR_ELEM("TxLinkdownErr", 0, 0, 4862 CNTR_NORMAL, 4863 access_tx_linkdown_err_cnt), 4864 [C_TX_EGRESS_FIFO_UNDERRUN_OR_PARITY_ERR] = CNTR_ELEM( 4865 "EgressFifoUnderrunOrParityErr", 0, 0, 4866 CNTR_NORMAL, 4867 access_tx_egress_fifi_underrun_or_parity_err_cnt), 4868 [C_TX_RESERVED_2] = CNTR_ELEM("Tx Egress Reserved 2", 0, 0, 4869 CNTR_NORMAL, 4870 access_egress_reserved_2_err_cnt), 4871 [C_TX_PKT_INTEGRITY_MEM_UNC_ERR] = CNTR_ELEM("TxPktIntegrityMemUncErr", 0, 0, 4872 CNTR_NORMAL, 4873 access_tx_pkt_integrity_mem_unc_err_cnt), 4874 [C_TX_PKT_INTEGRITY_MEM_COR_ERR] = CNTR_ELEM("TxPktIntegrityMemCorErr", 0, 0, 4875 CNTR_NORMAL, 4876 access_tx_pkt_integrity_mem_cor_err_cnt), 4877 /* SendErrStatus */ 4878 [C_SEND_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("SendCsrWriteBadAddrErr", 0, 0, 4879 CNTR_NORMAL, 4880 access_send_csr_write_bad_addr_err_cnt), 4881 [C_SEND_CSR_READ_BAD_ADD_ERR] = CNTR_ELEM("SendCsrReadBadAddrErr", 0, 0, 4882 CNTR_NORMAL, 4883 access_send_csr_read_bad_addr_err_cnt), 4884 [C_SEND_CSR_PARITY_ERR] = CNTR_ELEM("SendCsrParityErr", 0, 0, 4885 CNTR_NORMAL, 4886 access_send_csr_parity_cnt), 4887 /* SendCtxtErrStatus */ 4888 [C_PIO_WRITE_OUT_OF_BOUNDS_ERR] = CNTR_ELEM("PioWriteOutOfBoundsErr", 0, 0, 4889 CNTR_NORMAL, 4890 access_pio_write_out_of_bounds_err_cnt), 4891 [C_PIO_WRITE_OVERFLOW_ERR] = CNTR_ELEM("PioWriteOverflowErr", 0, 0, 4892 CNTR_NORMAL, 4893 access_pio_write_overflow_err_cnt), 4894 [C_PIO_WRITE_CROSSES_BOUNDARY_ERR] = CNTR_ELEM("PioWriteCrossesBoundaryErr", 4895 0, 0, CNTR_NORMAL, 4896 access_pio_write_crosses_boundary_err_cnt), 4897 [C_PIO_DISALLOWED_PACKET_ERR] = CNTR_ELEM("PioDisallowedPacketErr", 0, 0, 4898 CNTR_NORMAL, 4899 access_pio_disallowed_packet_err_cnt), 4900 [C_PIO_INCONSISTENT_SOP_ERR] = CNTR_ELEM("PioInconsistentSopErr", 0, 0, 4901 CNTR_NORMAL, 4902 access_pio_inconsistent_sop_err_cnt), 4903 /* SendDmaEngErrStatus */ 4904 [C_SDMA_HEADER_REQUEST_FIFO_COR_ERR] = CNTR_ELEM("SDmaHeaderRequestFifoCorErr", 4905 0, 0, CNTR_NORMAL, 4906 access_sdma_header_request_fifo_cor_err_cnt), 4907 [C_SDMA_HEADER_STORAGE_COR_ERR] = CNTR_ELEM("SDmaHeaderStorageCorErr", 0, 0, 4908 CNTR_NORMAL, 4909 access_sdma_header_storage_cor_err_cnt), 4910 [C_SDMA_PACKET_TRACKING_COR_ERR] = CNTR_ELEM("SDmaPacketTrackingCorErr", 0, 0, 4911 CNTR_NORMAL, 4912 access_sdma_packet_tracking_cor_err_cnt), 4913 [C_SDMA_ASSEMBLY_COR_ERR] = CNTR_ELEM("SDmaAssemblyCorErr", 0, 0, 4914 CNTR_NORMAL, 4915 access_sdma_assembly_cor_err_cnt), 4916 [C_SDMA_DESC_TABLE_COR_ERR] = CNTR_ELEM("SDmaDescTableCorErr", 0, 0, 4917 CNTR_NORMAL, 4918 access_sdma_desc_table_cor_err_cnt), 4919 [C_SDMA_HEADER_REQUEST_FIFO_UNC_ERR] = CNTR_ELEM("SDmaHeaderRequestFifoUncErr", 4920 0, 0, CNTR_NORMAL, 4921 access_sdma_header_request_fifo_unc_err_cnt), 4922 [C_SDMA_HEADER_STORAGE_UNC_ERR] = CNTR_ELEM("SDmaHeaderStorageUncErr", 0, 0, 4923 CNTR_NORMAL, 4924 access_sdma_header_storage_unc_err_cnt), 4925 [C_SDMA_PACKET_TRACKING_UNC_ERR] = CNTR_ELEM("SDmaPacketTrackingUncErr", 0, 0, 4926 CNTR_NORMAL, 4927 access_sdma_packet_tracking_unc_err_cnt), 4928 [C_SDMA_ASSEMBLY_UNC_ERR] = CNTR_ELEM("SDmaAssemblyUncErr", 0, 0, 4929 CNTR_NORMAL, 4930 access_sdma_assembly_unc_err_cnt), 4931 [C_SDMA_DESC_TABLE_UNC_ERR] = CNTR_ELEM("SDmaDescTableUncErr", 0, 0, 4932 CNTR_NORMAL, 4933 access_sdma_desc_table_unc_err_cnt), 4934 [C_SDMA_TIMEOUT_ERR] = CNTR_ELEM("SDmaTimeoutErr", 0, 0, 4935 CNTR_NORMAL, 4936 access_sdma_timeout_err_cnt), 4937 [C_SDMA_HEADER_LENGTH_ERR] = CNTR_ELEM("SDmaHeaderLengthErr", 0, 0, 4938 CNTR_NORMAL, 4939 access_sdma_header_length_err_cnt), 4940 [C_SDMA_HEADER_ADDRESS_ERR] = CNTR_ELEM("SDmaHeaderAddressErr", 0, 0, 4941 CNTR_NORMAL, 4942 access_sdma_header_address_err_cnt), 4943 [C_SDMA_HEADER_SELECT_ERR] = CNTR_ELEM("SDmaHeaderSelectErr", 0, 0, 4944 CNTR_NORMAL, 4945 access_sdma_header_select_err_cnt), 4946 [C_SMDA_RESERVED_9] = CNTR_ELEM("SDma Reserved 9", 0, 0, 4947 CNTR_NORMAL, 4948 access_sdma_reserved_9_err_cnt), 4949 [C_SDMA_PACKET_DESC_OVERFLOW_ERR] = CNTR_ELEM("SDmaPacketDescOverflowErr", 0, 0, 4950 CNTR_NORMAL, 4951 access_sdma_packet_desc_overflow_err_cnt), 4952 [C_SDMA_LENGTH_MISMATCH_ERR] = CNTR_ELEM("SDmaLengthMismatchErr", 0, 0, 4953 CNTR_NORMAL, 4954 access_sdma_length_mismatch_err_cnt), 4955 [C_SDMA_HALT_ERR] = CNTR_ELEM("SDmaHaltErr", 0, 0, 4956 CNTR_NORMAL, 4957 access_sdma_halt_err_cnt), 4958 [C_SDMA_MEM_READ_ERR] = CNTR_ELEM("SDmaMemReadErr", 0, 0, 4959 CNTR_NORMAL, 4960 access_sdma_mem_read_err_cnt), 4961 [C_SDMA_FIRST_DESC_ERR] = CNTR_ELEM("SDmaFirstDescErr", 0, 0, 4962 CNTR_NORMAL, 4963 access_sdma_first_desc_err_cnt), 4964 [C_SDMA_TAIL_OUT_OF_BOUNDS_ERR] = CNTR_ELEM("SDmaTailOutOfBoundsErr", 0, 0, 4965 CNTR_NORMAL, 4966 access_sdma_tail_out_of_bounds_err_cnt), 4967 [C_SDMA_TOO_LONG_ERR] = CNTR_ELEM("SDmaTooLongErr", 0, 0, 4968 CNTR_NORMAL, 4969 access_sdma_too_long_err_cnt), 4970 [C_SDMA_GEN_MISMATCH_ERR] = CNTR_ELEM("SDmaGenMismatchErr", 0, 0, 4971 CNTR_NORMAL, 4972 access_sdma_gen_mismatch_err_cnt), 4973 [C_SDMA_WRONG_DW_ERR] = CNTR_ELEM("SDmaWrongDwErr", 0, 0, 4974 CNTR_NORMAL, 4975 access_sdma_wrong_dw_err_cnt), 4976 }; 4977 4978 static struct cntr_entry port_cntrs[PORT_CNTR_LAST] = { 4979 [C_TX_UNSUP_VL] = TXE32_PORT_CNTR_ELEM(TxUnVLErr, SEND_UNSUP_VL_ERR_CNT, 4980 CNTR_NORMAL), 4981 [C_TX_INVAL_LEN] = TXE32_PORT_CNTR_ELEM(TxInvalLen, SEND_LEN_ERR_CNT, 4982 CNTR_NORMAL), 4983 [C_TX_MM_LEN_ERR] = TXE32_PORT_CNTR_ELEM(TxMMLenErr, SEND_MAX_MIN_LEN_ERR_CNT, 4984 CNTR_NORMAL), 4985 [C_TX_UNDERRUN] = TXE32_PORT_CNTR_ELEM(TxUnderrun, SEND_UNDERRUN_CNT, 4986 CNTR_NORMAL), 4987 [C_TX_FLOW_STALL] = TXE32_PORT_CNTR_ELEM(TxFlowStall, SEND_FLOW_STALL_CNT, 4988 CNTR_NORMAL), 4989 [C_TX_DROPPED] = TXE32_PORT_CNTR_ELEM(TxDropped, SEND_DROPPED_PKT_CNT, 4990 CNTR_NORMAL), 4991 [C_TX_HDR_ERR] = TXE32_PORT_CNTR_ELEM(TxHdrErr, SEND_HEADERS_ERR_CNT, 4992 CNTR_NORMAL), 4993 [C_TX_PKT] = TXE64_PORT_CNTR_ELEM(TxPkt, SEND_DATA_PKT_CNT, CNTR_NORMAL), 4994 [C_TX_WORDS] = TXE64_PORT_CNTR_ELEM(TxWords, SEND_DWORD_CNT, CNTR_NORMAL), 4995 [C_TX_WAIT] = TXE64_PORT_CNTR_ELEM(TxWait, SEND_WAIT_CNT, CNTR_SYNTH), 4996 [C_TX_FLIT_VL] = TXE64_PORT_CNTR_ELEM(TxFlitVL, SEND_DATA_VL0_CNT, 4997 CNTR_SYNTH | CNTR_VL), 4998 [C_TX_PKT_VL] = TXE64_PORT_CNTR_ELEM(TxPktVL, SEND_DATA_PKT_VL0_CNT, 4999 CNTR_SYNTH | CNTR_VL), 5000 [C_TX_WAIT_VL] = TXE64_PORT_CNTR_ELEM(TxWaitVL, SEND_WAIT_VL0_CNT, 5001 CNTR_SYNTH | CNTR_VL), 5002 [C_RX_PKT] = RXE64_PORT_CNTR_ELEM(RxPkt, RCV_DATA_PKT_CNT, CNTR_NORMAL), 5003 [C_RX_WORDS] = RXE64_PORT_CNTR_ELEM(RxWords, RCV_DWORD_CNT, CNTR_NORMAL), 5004 [C_SW_LINK_DOWN] = CNTR_ELEM("SwLinkDown", 0, 0, CNTR_SYNTH | CNTR_32BIT, 5005 access_sw_link_dn_cnt), 5006 [C_SW_LINK_UP] = CNTR_ELEM("SwLinkUp", 0, 0, CNTR_SYNTH | CNTR_32BIT, 5007 access_sw_link_up_cnt), 5008 [C_SW_UNKNOWN_FRAME] = CNTR_ELEM("UnknownFrame", 0, 0, CNTR_NORMAL, 5009 access_sw_unknown_frame_cnt), 5010 [C_SW_XMIT_DSCD] = CNTR_ELEM("XmitDscd", 0, 0, CNTR_SYNTH | CNTR_32BIT, 5011 access_sw_xmit_discards), 5012 [C_SW_XMIT_DSCD_VL] = CNTR_ELEM("XmitDscdVl", 0, 0, 5013 CNTR_SYNTH | CNTR_32BIT | CNTR_VL, 5014 access_sw_xmit_discards), 5015 [C_SW_XMIT_CSTR_ERR] = CNTR_ELEM("XmitCstrErr", 0, 0, CNTR_SYNTH, 5016 access_xmit_constraint_errs), 5017 [C_SW_RCV_CSTR_ERR] = CNTR_ELEM("RcvCstrErr", 0, 0, CNTR_SYNTH, 5018 access_rcv_constraint_errs), 5019 [C_SW_IBP_LOOP_PKTS] = SW_IBP_CNTR(LoopPkts, loop_pkts), 5020 [C_SW_IBP_RC_RESENDS] = SW_IBP_CNTR(RcResend, rc_resends), 5021 [C_SW_IBP_RNR_NAKS] = SW_IBP_CNTR(RnrNak, rnr_naks), 5022 [C_SW_IBP_OTHER_NAKS] = SW_IBP_CNTR(OtherNak, other_naks), 5023 [C_SW_IBP_RC_TIMEOUTS] = SW_IBP_CNTR(RcTimeOut, rc_timeouts), 5024 [C_SW_IBP_PKT_DROPS] = SW_IBP_CNTR(PktDrop, pkt_drops), 5025 [C_SW_IBP_DMA_WAIT] = SW_IBP_CNTR(DmaWait, dmawait), 5026 [C_SW_IBP_RC_SEQNAK] = SW_IBP_CNTR(RcSeqNak, rc_seqnak), 5027 [C_SW_IBP_RC_DUPREQ] = SW_IBP_CNTR(RcDupRew, rc_dupreq), 5028 [C_SW_IBP_RDMA_SEQ] = SW_IBP_CNTR(RdmaSeq, rdma_seq), 5029 [C_SW_IBP_UNALIGNED] = SW_IBP_CNTR(Unaligned, unaligned), 5030 [C_SW_IBP_SEQ_NAK] = SW_IBP_CNTR(SeqNak, seq_naks), 5031 [C_SW_CPU_RC_ACKS] = CNTR_ELEM("RcAcks", 0, 0, CNTR_NORMAL, 5032 access_sw_cpu_rc_acks), 5033 [C_SW_CPU_RC_QACKS] = CNTR_ELEM("RcQacks", 0, 0, CNTR_NORMAL, 5034 access_sw_cpu_rc_qacks), 5035 [C_SW_CPU_RC_DELAYED_COMP] = CNTR_ELEM("RcDelayComp", 0, 0, CNTR_NORMAL, 5036 access_sw_cpu_rc_delayed_comp), 5037 [OVR_LBL(0)] = OVR_ELM(0), [OVR_LBL(1)] = OVR_ELM(1), 5038 [OVR_LBL(2)] = OVR_ELM(2), [OVR_LBL(3)] = OVR_ELM(3), 5039 [OVR_LBL(4)] = OVR_ELM(4), [OVR_LBL(5)] = OVR_ELM(5), 5040 [OVR_LBL(6)] = OVR_ELM(6), [OVR_LBL(7)] = OVR_ELM(7), 5041 [OVR_LBL(8)] = OVR_ELM(8), [OVR_LBL(9)] = OVR_ELM(9), 5042 [OVR_LBL(10)] = OVR_ELM(10), [OVR_LBL(11)] = OVR_ELM(11), 5043 [OVR_LBL(12)] = OVR_ELM(12), [OVR_LBL(13)] = OVR_ELM(13), 5044 [OVR_LBL(14)] = OVR_ELM(14), [OVR_LBL(15)] = OVR_ELM(15), 5045 [OVR_LBL(16)] = OVR_ELM(16), [OVR_LBL(17)] = OVR_ELM(17), 5046 [OVR_LBL(18)] = OVR_ELM(18), [OVR_LBL(19)] = OVR_ELM(19), 5047 [OVR_LBL(20)] = OVR_ELM(20), [OVR_LBL(21)] = OVR_ELM(21), 5048 [OVR_LBL(22)] = OVR_ELM(22), [OVR_LBL(23)] = OVR_ELM(23), 5049 [OVR_LBL(24)] = OVR_ELM(24), [OVR_LBL(25)] = OVR_ELM(25), 5050 [OVR_LBL(26)] = OVR_ELM(26), [OVR_LBL(27)] = OVR_ELM(27), 5051 [OVR_LBL(28)] = OVR_ELM(28), [OVR_LBL(29)] = OVR_ELM(29), 5052 [OVR_LBL(30)] = OVR_ELM(30), [OVR_LBL(31)] = OVR_ELM(31), 5053 [OVR_LBL(32)] = OVR_ELM(32), [OVR_LBL(33)] = OVR_ELM(33), 5054 [OVR_LBL(34)] = OVR_ELM(34), [OVR_LBL(35)] = OVR_ELM(35), 5055 [OVR_LBL(36)] = OVR_ELM(36), [OVR_LBL(37)] = OVR_ELM(37), 5056 [OVR_LBL(38)] = OVR_ELM(38), [OVR_LBL(39)] = OVR_ELM(39), 5057 [OVR_LBL(40)] = OVR_ELM(40), [OVR_LBL(41)] = OVR_ELM(41), 5058 [OVR_LBL(42)] = OVR_ELM(42), [OVR_LBL(43)] = OVR_ELM(43), 5059 [OVR_LBL(44)] = OVR_ELM(44), [OVR_LBL(45)] = OVR_ELM(45), 5060 [OVR_LBL(46)] = OVR_ELM(46), [OVR_LBL(47)] = OVR_ELM(47), 5061 [OVR_LBL(48)] = OVR_ELM(48), [OVR_LBL(49)] = OVR_ELM(49), 5062 [OVR_LBL(50)] = OVR_ELM(50), [OVR_LBL(51)] = OVR_ELM(51), 5063 [OVR_LBL(52)] = OVR_ELM(52), [OVR_LBL(53)] = OVR_ELM(53), 5064 [OVR_LBL(54)] = OVR_ELM(54), [OVR_LBL(55)] = OVR_ELM(55), 5065 [OVR_LBL(56)] = OVR_ELM(56), [OVR_LBL(57)] = OVR_ELM(57), 5066 [OVR_LBL(58)] = OVR_ELM(58), [OVR_LBL(59)] = OVR_ELM(59), 5067 [OVR_LBL(60)] = OVR_ELM(60), [OVR_LBL(61)] = OVR_ELM(61), 5068 [OVR_LBL(62)] = OVR_ELM(62), [OVR_LBL(63)] = OVR_ELM(63), 5069 [OVR_LBL(64)] = OVR_ELM(64), [OVR_LBL(65)] = OVR_ELM(65), 5070 [OVR_LBL(66)] = OVR_ELM(66), [OVR_LBL(67)] = OVR_ELM(67), 5071 [OVR_LBL(68)] = OVR_ELM(68), [OVR_LBL(69)] = OVR_ELM(69), 5072 [OVR_LBL(70)] = OVR_ELM(70), [OVR_LBL(71)] = OVR_ELM(71), 5073 [OVR_LBL(72)] = OVR_ELM(72), [OVR_LBL(73)] = OVR_ELM(73), 5074 [OVR_LBL(74)] = OVR_ELM(74), [OVR_LBL(75)] = OVR_ELM(75), 5075 [OVR_LBL(76)] = OVR_ELM(76), [OVR_LBL(77)] = OVR_ELM(77), 5076 [OVR_LBL(78)] = OVR_ELM(78), [OVR_LBL(79)] = OVR_ELM(79), 5077 [OVR_LBL(80)] = OVR_ELM(80), [OVR_LBL(81)] = OVR_ELM(81), 5078 [OVR_LBL(82)] = OVR_ELM(82), [OVR_LBL(83)] = OVR_ELM(83), 5079 [OVR_LBL(84)] = OVR_ELM(84), [OVR_LBL(85)] = OVR_ELM(85), 5080 [OVR_LBL(86)] = OVR_ELM(86), [OVR_LBL(87)] = OVR_ELM(87), 5081 [OVR_LBL(88)] = OVR_ELM(88), [OVR_LBL(89)] = OVR_ELM(89), 5082 [OVR_LBL(90)] = OVR_ELM(90), [OVR_LBL(91)] = OVR_ELM(91), 5083 [OVR_LBL(92)] = OVR_ELM(92), [OVR_LBL(93)] = OVR_ELM(93), 5084 [OVR_LBL(94)] = OVR_ELM(94), [OVR_LBL(95)] = OVR_ELM(95), 5085 [OVR_LBL(96)] = OVR_ELM(96), [OVR_LBL(97)] = OVR_ELM(97), 5086 [OVR_LBL(98)] = OVR_ELM(98), [OVR_LBL(99)] = OVR_ELM(99), 5087 [OVR_LBL(100)] = OVR_ELM(100), [OVR_LBL(101)] = OVR_ELM(101), 5088 [OVR_LBL(102)] = OVR_ELM(102), [OVR_LBL(103)] = OVR_ELM(103), 5089 [OVR_LBL(104)] = OVR_ELM(104), [OVR_LBL(105)] = OVR_ELM(105), 5090 [OVR_LBL(106)] = OVR_ELM(106), [OVR_LBL(107)] = OVR_ELM(107), 5091 [OVR_LBL(108)] = OVR_ELM(108), [OVR_LBL(109)] = OVR_ELM(109), 5092 [OVR_LBL(110)] = OVR_ELM(110), [OVR_LBL(111)] = OVR_ELM(111), 5093 [OVR_LBL(112)] = OVR_ELM(112), [OVR_LBL(113)] = OVR_ELM(113), 5094 [OVR_LBL(114)] = OVR_ELM(114), [OVR_LBL(115)] = OVR_ELM(115), 5095 [OVR_LBL(116)] = OVR_ELM(116), [OVR_LBL(117)] = OVR_ELM(117), 5096 [OVR_LBL(118)] = OVR_ELM(118), [OVR_LBL(119)] = OVR_ELM(119), 5097 [OVR_LBL(120)] = OVR_ELM(120), [OVR_LBL(121)] = OVR_ELM(121), 5098 [OVR_LBL(122)] = OVR_ELM(122), [OVR_LBL(123)] = OVR_ELM(123), 5099 [OVR_LBL(124)] = OVR_ELM(124), [OVR_LBL(125)] = OVR_ELM(125), 5100 [OVR_LBL(126)] = OVR_ELM(126), [OVR_LBL(127)] = OVR_ELM(127), 5101 [OVR_LBL(128)] = OVR_ELM(128), [OVR_LBL(129)] = OVR_ELM(129), 5102 [OVR_LBL(130)] = OVR_ELM(130), [OVR_LBL(131)] = OVR_ELM(131), 5103 [OVR_LBL(132)] = OVR_ELM(132), [OVR_LBL(133)] = OVR_ELM(133), 5104 [OVR_LBL(134)] = OVR_ELM(134), [OVR_LBL(135)] = OVR_ELM(135), 5105 [OVR_LBL(136)] = OVR_ELM(136), [OVR_LBL(137)] = OVR_ELM(137), 5106 [OVR_LBL(138)] = OVR_ELM(138), [OVR_LBL(139)] = OVR_ELM(139), 5107 [OVR_LBL(140)] = OVR_ELM(140), [OVR_LBL(141)] = OVR_ELM(141), 5108 [OVR_LBL(142)] = OVR_ELM(142), [OVR_LBL(143)] = OVR_ELM(143), 5109 [OVR_LBL(144)] = OVR_ELM(144), [OVR_LBL(145)] = OVR_ELM(145), 5110 [OVR_LBL(146)] = OVR_ELM(146), [OVR_LBL(147)] = OVR_ELM(147), 5111 [OVR_LBL(148)] = OVR_ELM(148), [OVR_LBL(149)] = OVR_ELM(149), 5112 [OVR_LBL(150)] = OVR_ELM(150), [OVR_LBL(151)] = OVR_ELM(151), 5113 [OVR_LBL(152)] = OVR_ELM(152), [OVR_LBL(153)] = OVR_ELM(153), 5114 [OVR_LBL(154)] = OVR_ELM(154), [OVR_LBL(155)] = OVR_ELM(155), 5115 [OVR_LBL(156)] = OVR_ELM(156), [OVR_LBL(157)] = OVR_ELM(157), 5116 [OVR_LBL(158)] = OVR_ELM(158), [OVR_LBL(159)] = OVR_ELM(159), 5117 }; 5118 5119 /* ======================================================================== */ 5120 5121 /* return true if this is chip revision revision a */ 5122 int is_ax(struct hfi1_devdata *dd) 5123 { 5124 u8 chip_rev_minor = 5125 dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT 5126 & CCE_REVISION_CHIP_REV_MINOR_MASK; 5127 return (chip_rev_minor & 0xf0) == 0; 5128 } 5129 5130 /* return true if this is chip revision revision b */ 5131 int is_bx(struct hfi1_devdata *dd) 5132 { 5133 u8 chip_rev_minor = 5134 dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT 5135 & CCE_REVISION_CHIP_REV_MINOR_MASK; 5136 return (chip_rev_minor & 0xF0) == 0x10; 5137 } 5138 5139 /* 5140 * Append string s to buffer buf. Arguments curp and len are the current 5141 * position and remaining length, respectively. 5142 * 5143 * return 0 on success, 1 on out of room 5144 */ 5145 static int append_str(char *buf, char **curp, int *lenp, const char *s) 5146 { 5147 char *p = *curp; 5148 int len = *lenp; 5149 int result = 0; /* success */ 5150 char c; 5151 5152 /* add a comma, if first in the buffer */ 5153 if (p != buf) { 5154 if (len == 0) { 5155 result = 1; /* out of room */ 5156 goto done; 5157 } 5158 *p++ = ','; 5159 len--; 5160 } 5161 5162 /* copy the string */ 5163 while ((c = *s++) != 0) { 5164 if (len == 0) { 5165 result = 1; /* out of room */ 5166 goto done; 5167 } 5168 *p++ = c; 5169 len--; 5170 } 5171 5172 done: 5173 /* write return values */ 5174 *curp = p; 5175 *lenp = len; 5176 5177 return result; 5178 } 5179 5180 /* 5181 * Using the given flag table, print a comma separated string into 5182 * the buffer. End in '*' if the buffer is too short. 5183 */ 5184 static char *flag_string(char *buf, int buf_len, u64 flags, 5185 struct flag_table *table, int table_size) 5186 { 5187 char extra[32]; 5188 char *p = buf; 5189 int len = buf_len; 5190 int no_room = 0; 5191 int i; 5192 5193 /* make sure there is at least 2 so we can form "*" */ 5194 if (len < 2) 5195 return ""; 5196 5197 len--; /* leave room for a nul */ 5198 for (i = 0; i < table_size; i++) { 5199 if (flags & table[i].flag) { 5200 no_room = append_str(buf, &p, &len, table[i].str); 5201 if (no_room) 5202 break; 5203 flags &= ~table[i].flag; 5204 } 5205 } 5206 5207 /* any undocumented bits left? */ 5208 if (!no_room && flags) { 5209 snprintf(extra, sizeof(extra), "bits 0x%llx", flags); 5210 no_room = append_str(buf, &p, &len, extra); 5211 } 5212 5213 /* add * if ran out of room */ 5214 if (no_room) { 5215 /* may need to back up to add space for a '*' */ 5216 if (len == 0) 5217 --p; 5218 *p++ = '*'; 5219 } 5220 5221 /* add final nul - space already allocated above */ 5222 *p = 0; 5223 return buf; 5224 } 5225 5226 /* first 8 CCE error interrupt source names */ 5227 static const char * const cce_misc_names[] = { 5228 "CceErrInt", /* 0 */ 5229 "RxeErrInt", /* 1 */ 5230 "MiscErrInt", /* 2 */ 5231 "Reserved3", /* 3 */ 5232 "PioErrInt", /* 4 */ 5233 "SDmaErrInt", /* 5 */ 5234 "EgressErrInt", /* 6 */ 5235 "TxeErrInt" /* 7 */ 5236 }; 5237 5238 /* 5239 * Return the miscellaneous error interrupt name. 5240 */ 5241 static char *is_misc_err_name(char *buf, size_t bsize, unsigned int source) 5242 { 5243 if (source < ARRAY_SIZE(cce_misc_names)) 5244 strncpy(buf, cce_misc_names[source], bsize); 5245 else 5246 snprintf(buf, bsize, "Reserved%u", 5247 source + IS_GENERAL_ERR_START); 5248 5249 return buf; 5250 } 5251 5252 /* 5253 * Return the SDMA engine error interrupt name. 5254 */ 5255 static char *is_sdma_eng_err_name(char *buf, size_t bsize, unsigned int source) 5256 { 5257 snprintf(buf, bsize, "SDmaEngErrInt%u", source); 5258 return buf; 5259 } 5260 5261 /* 5262 * Return the send context error interrupt name. 5263 */ 5264 static char *is_sendctxt_err_name(char *buf, size_t bsize, unsigned int source) 5265 { 5266 snprintf(buf, bsize, "SendCtxtErrInt%u", source); 5267 return buf; 5268 } 5269 5270 static const char * const various_names[] = { 5271 "PbcInt", 5272 "GpioAssertInt", 5273 "Qsfp1Int", 5274 "Qsfp2Int", 5275 "TCritInt" 5276 }; 5277 5278 /* 5279 * Return the various interrupt name. 5280 */ 5281 static char *is_various_name(char *buf, size_t bsize, unsigned int source) 5282 { 5283 if (source < ARRAY_SIZE(various_names)) 5284 strncpy(buf, various_names[source], bsize); 5285 else 5286 snprintf(buf, bsize, "Reserved%u", source + IS_VARIOUS_START); 5287 return buf; 5288 } 5289 5290 /* 5291 * Return the DC interrupt name. 5292 */ 5293 static char *is_dc_name(char *buf, size_t bsize, unsigned int source) 5294 { 5295 static const char * const dc_int_names[] = { 5296 "common", 5297 "lcb", 5298 "8051", 5299 "lbm" /* local block merge */ 5300 }; 5301 5302 if (source < ARRAY_SIZE(dc_int_names)) 5303 snprintf(buf, bsize, "dc_%s_int", dc_int_names[source]); 5304 else 5305 snprintf(buf, bsize, "DCInt%u", source); 5306 return buf; 5307 } 5308 5309 static const char * const sdma_int_names[] = { 5310 "SDmaInt", 5311 "SdmaIdleInt", 5312 "SdmaProgressInt", 5313 }; 5314 5315 /* 5316 * Return the SDMA engine interrupt name. 5317 */ 5318 static char *is_sdma_eng_name(char *buf, size_t bsize, unsigned int source) 5319 { 5320 /* what interrupt */ 5321 unsigned int what = source / TXE_NUM_SDMA_ENGINES; 5322 /* which engine */ 5323 unsigned int which = source % TXE_NUM_SDMA_ENGINES; 5324 5325 if (likely(what < 3)) 5326 snprintf(buf, bsize, "%s%u", sdma_int_names[what], which); 5327 else 5328 snprintf(buf, bsize, "Invalid SDMA interrupt %u", source); 5329 return buf; 5330 } 5331 5332 /* 5333 * Return the receive available interrupt name. 5334 */ 5335 static char *is_rcv_avail_name(char *buf, size_t bsize, unsigned int source) 5336 { 5337 snprintf(buf, bsize, "RcvAvailInt%u", source); 5338 return buf; 5339 } 5340 5341 /* 5342 * Return the receive urgent interrupt name. 5343 */ 5344 static char *is_rcv_urgent_name(char *buf, size_t bsize, unsigned int source) 5345 { 5346 snprintf(buf, bsize, "RcvUrgentInt%u", source); 5347 return buf; 5348 } 5349 5350 /* 5351 * Return the send credit interrupt name. 5352 */ 5353 static char *is_send_credit_name(char *buf, size_t bsize, unsigned int source) 5354 { 5355 snprintf(buf, bsize, "SendCreditInt%u", source); 5356 return buf; 5357 } 5358 5359 /* 5360 * Return the reserved interrupt name. 5361 */ 5362 static char *is_reserved_name(char *buf, size_t bsize, unsigned int source) 5363 { 5364 snprintf(buf, bsize, "Reserved%u", source + IS_RESERVED_START); 5365 return buf; 5366 } 5367 5368 static char *cce_err_status_string(char *buf, int buf_len, u64 flags) 5369 { 5370 return flag_string(buf, buf_len, flags, 5371 cce_err_status_flags, 5372 ARRAY_SIZE(cce_err_status_flags)); 5373 } 5374 5375 static char *rxe_err_status_string(char *buf, int buf_len, u64 flags) 5376 { 5377 return flag_string(buf, buf_len, flags, 5378 rxe_err_status_flags, 5379 ARRAY_SIZE(rxe_err_status_flags)); 5380 } 5381 5382 static char *misc_err_status_string(char *buf, int buf_len, u64 flags) 5383 { 5384 return flag_string(buf, buf_len, flags, misc_err_status_flags, 5385 ARRAY_SIZE(misc_err_status_flags)); 5386 } 5387 5388 static char *pio_err_status_string(char *buf, int buf_len, u64 flags) 5389 { 5390 return flag_string(buf, buf_len, flags, 5391 pio_err_status_flags, 5392 ARRAY_SIZE(pio_err_status_flags)); 5393 } 5394 5395 static char *sdma_err_status_string(char *buf, int buf_len, u64 flags) 5396 { 5397 return flag_string(buf, buf_len, flags, 5398 sdma_err_status_flags, 5399 ARRAY_SIZE(sdma_err_status_flags)); 5400 } 5401 5402 static char *egress_err_status_string(char *buf, int buf_len, u64 flags) 5403 { 5404 return flag_string(buf, buf_len, flags, 5405 egress_err_status_flags, 5406 ARRAY_SIZE(egress_err_status_flags)); 5407 } 5408 5409 static char *egress_err_info_string(char *buf, int buf_len, u64 flags) 5410 { 5411 return flag_string(buf, buf_len, flags, 5412 egress_err_info_flags, 5413 ARRAY_SIZE(egress_err_info_flags)); 5414 } 5415 5416 static char *send_err_status_string(char *buf, int buf_len, u64 flags) 5417 { 5418 return flag_string(buf, buf_len, flags, 5419 send_err_status_flags, 5420 ARRAY_SIZE(send_err_status_flags)); 5421 } 5422 5423 static void handle_cce_err(struct hfi1_devdata *dd, u32 unused, u64 reg) 5424 { 5425 char buf[96]; 5426 int i = 0; 5427 5428 /* 5429 * For most these errors, there is nothing that can be done except 5430 * report or record it. 5431 */ 5432 dd_dev_info(dd, "CCE Error: %s\n", 5433 cce_err_status_string(buf, sizeof(buf), reg)); 5434 5435 if ((reg & CCE_ERR_STATUS_CCE_CLI2_ASYNC_FIFO_PARITY_ERR_SMASK) && 5436 is_ax(dd) && (dd->icode != ICODE_FUNCTIONAL_SIMULATOR)) { 5437 /* this error requires a manual drop into SPC freeze mode */ 5438 /* then a fix up */ 5439 start_freeze_handling(dd->pport, FREEZE_SELF); 5440 } 5441 5442 for (i = 0; i < NUM_CCE_ERR_STATUS_COUNTERS; i++) { 5443 if (reg & (1ull << i)) { 5444 incr_cntr64(&dd->cce_err_status_cnt[i]); 5445 /* maintain a counter over all cce_err_status errors */ 5446 incr_cntr64(&dd->sw_cce_err_status_aggregate); 5447 } 5448 } 5449 } 5450 5451 /* 5452 * Check counters for receive errors that do not have an interrupt 5453 * associated with them. 5454 */ 5455 #define RCVERR_CHECK_TIME 10 5456 static void update_rcverr_timer(unsigned long opaque) 5457 { 5458 struct hfi1_devdata *dd = (struct hfi1_devdata *)opaque; 5459 struct hfi1_pportdata *ppd = dd->pport; 5460 u32 cur_ovfl_cnt = read_dev_cntr(dd, C_RCV_OVF, CNTR_INVALID_VL); 5461 5462 if (dd->rcv_ovfl_cnt < cur_ovfl_cnt && 5463 ppd->port_error_action & OPA_PI_MASK_EX_BUFFER_OVERRUN) { 5464 dd_dev_info(dd, "%s: PortErrorAction bounce\n", __func__); 5465 set_link_down_reason( 5466 ppd, OPA_LINKDOWN_REASON_EXCESSIVE_BUFFER_OVERRUN, 0, 5467 OPA_LINKDOWN_REASON_EXCESSIVE_BUFFER_OVERRUN); 5468 queue_work(ppd->hfi1_wq, &ppd->link_bounce_work); 5469 } 5470 dd->rcv_ovfl_cnt = (u32)cur_ovfl_cnt; 5471 5472 mod_timer(&dd->rcverr_timer, jiffies + HZ * RCVERR_CHECK_TIME); 5473 } 5474 5475 static int init_rcverr(struct hfi1_devdata *dd) 5476 { 5477 setup_timer(&dd->rcverr_timer, update_rcverr_timer, (unsigned long)dd); 5478 /* Assume the hardware counter has been reset */ 5479 dd->rcv_ovfl_cnt = 0; 5480 return mod_timer(&dd->rcverr_timer, jiffies + HZ * RCVERR_CHECK_TIME); 5481 } 5482 5483 static void free_rcverr(struct hfi1_devdata *dd) 5484 { 5485 if (dd->rcverr_timer.data) 5486 del_timer_sync(&dd->rcverr_timer); 5487 dd->rcverr_timer.data = 0; 5488 } 5489 5490 static void handle_rxe_err(struct hfi1_devdata *dd, u32 unused, u64 reg) 5491 { 5492 char buf[96]; 5493 int i = 0; 5494 5495 dd_dev_info(dd, "Receive Error: %s\n", 5496 rxe_err_status_string(buf, sizeof(buf), reg)); 5497 5498 if (reg & ALL_RXE_FREEZE_ERR) { 5499 int flags = 0; 5500 5501 /* 5502 * Freeze mode recovery is disabled for the errors 5503 * in RXE_FREEZE_ABORT_MASK 5504 */ 5505 if (is_ax(dd) && (reg & RXE_FREEZE_ABORT_MASK)) 5506 flags = FREEZE_ABORT; 5507 5508 start_freeze_handling(dd->pport, flags); 5509 } 5510 5511 for (i = 0; i < NUM_RCV_ERR_STATUS_COUNTERS; i++) { 5512 if (reg & (1ull << i)) 5513 incr_cntr64(&dd->rcv_err_status_cnt[i]); 5514 } 5515 } 5516 5517 static void handle_misc_err(struct hfi1_devdata *dd, u32 unused, u64 reg) 5518 { 5519 char buf[96]; 5520 int i = 0; 5521 5522 dd_dev_info(dd, "Misc Error: %s", 5523 misc_err_status_string(buf, sizeof(buf), reg)); 5524 for (i = 0; i < NUM_MISC_ERR_STATUS_COUNTERS; i++) { 5525 if (reg & (1ull << i)) 5526 incr_cntr64(&dd->misc_err_status_cnt[i]); 5527 } 5528 } 5529 5530 static void handle_pio_err(struct hfi1_devdata *dd, u32 unused, u64 reg) 5531 { 5532 char buf[96]; 5533 int i = 0; 5534 5535 dd_dev_info(dd, "PIO Error: %s\n", 5536 pio_err_status_string(buf, sizeof(buf), reg)); 5537 5538 if (reg & ALL_PIO_FREEZE_ERR) 5539 start_freeze_handling(dd->pport, 0); 5540 5541 for (i = 0; i < NUM_SEND_PIO_ERR_STATUS_COUNTERS; i++) { 5542 if (reg & (1ull << i)) 5543 incr_cntr64(&dd->send_pio_err_status_cnt[i]); 5544 } 5545 } 5546 5547 static void handle_sdma_err(struct hfi1_devdata *dd, u32 unused, u64 reg) 5548 { 5549 char buf[96]; 5550 int i = 0; 5551 5552 dd_dev_info(dd, "SDMA Error: %s\n", 5553 sdma_err_status_string(buf, sizeof(buf), reg)); 5554 5555 if (reg & ALL_SDMA_FREEZE_ERR) 5556 start_freeze_handling(dd->pport, 0); 5557 5558 for (i = 0; i < NUM_SEND_DMA_ERR_STATUS_COUNTERS; i++) { 5559 if (reg & (1ull << i)) 5560 incr_cntr64(&dd->send_dma_err_status_cnt[i]); 5561 } 5562 } 5563 5564 static inline void __count_port_discards(struct hfi1_pportdata *ppd) 5565 { 5566 incr_cntr64(&ppd->port_xmit_discards); 5567 } 5568 5569 static void count_port_inactive(struct hfi1_devdata *dd) 5570 { 5571 __count_port_discards(dd->pport); 5572 } 5573 5574 /* 5575 * We have had a "disallowed packet" error during egress. Determine the 5576 * integrity check which failed, and update relevant error counter, etc. 5577 * 5578 * Note that the SEND_EGRESS_ERR_INFO register has only a single 5579 * bit of state per integrity check, and so we can miss the reason for an 5580 * egress error if more than one packet fails the same integrity check 5581 * since we cleared the corresponding bit in SEND_EGRESS_ERR_INFO. 5582 */ 5583 static void handle_send_egress_err_info(struct hfi1_devdata *dd, 5584 int vl) 5585 { 5586 struct hfi1_pportdata *ppd = dd->pport; 5587 u64 src = read_csr(dd, SEND_EGRESS_ERR_SOURCE); /* read first */ 5588 u64 info = read_csr(dd, SEND_EGRESS_ERR_INFO); 5589 char buf[96]; 5590 5591 /* clear down all observed info as quickly as possible after read */ 5592 write_csr(dd, SEND_EGRESS_ERR_INFO, info); 5593 5594 dd_dev_info(dd, 5595 "Egress Error Info: 0x%llx, %s Egress Error Src 0x%llx\n", 5596 info, egress_err_info_string(buf, sizeof(buf), info), src); 5597 5598 /* Eventually add other counters for each bit */ 5599 if (info & PORT_DISCARD_EGRESS_ERRS) { 5600 int weight, i; 5601 5602 /* 5603 * Count all applicable bits as individual errors and 5604 * attribute them to the packet that triggered this handler. 5605 * This may not be completely accurate due to limitations 5606 * on the available hardware error information. There is 5607 * a single information register and any number of error 5608 * packets may have occurred and contributed to it before 5609 * this routine is called. This means that: 5610 * a) If multiple packets with the same error occur before 5611 * this routine is called, earlier packets are missed. 5612 * There is only a single bit for each error type. 5613 * b) Errors may not be attributed to the correct VL. 5614 * The driver is attributing all bits in the info register 5615 * to the packet that triggered this call, but bits 5616 * could be an accumulation of different packets with 5617 * different VLs. 5618 * c) A single error packet may have multiple counts attached 5619 * to it. There is no way for the driver to know if 5620 * multiple bits set in the info register are due to a 5621 * single packet or multiple packets. The driver assumes 5622 * multiple packets. 5623 */ 5624 weight = hweight64(info & PORT_DISCARD_EGRESS_ERRS); 5625 for (i = 0; i < weight; i++) { 5626 __count_port_discards(ppd); 5627 if (vl >= 0 && vl < TXE_NUM_DATA_VL) 5628 incr_cntr64(&ppd->port_xmit_discards_vl[vl]); 5629 else if (vl == 15) 5630 incr_cntr64(&ppd->port_xmit_discards_vl 5631 [C_VL_15]); 5632 } 5633 } 5634 } 5635 5636 /* 5637 * Input value is a bit position within the SEND_EGRESS_ERR_STATUS 5638 * register. Does it represent a 'port inactive' error? 5639 */ 5640 static inline int port_inactive_err(u64 posn) 5641 { 5642 return (posn >= SEES(TX_LINKDOWN) && 5643 posn <= SEES(TX_INCORRECT_LINK_STATE)); 5644 } 5645 5646 /* 5647 * Input value is a bit position within the SEND_EGRESS_ERR_STATUS 5648 * register. Does it represent a 'disallowed packet' error? 5649 */ 5650 static inline int disallowed_pkt_err(int posn) 5651 { 5652 return (posn >= SEES(TX_SDMA0_DISALLOWED_PACKET) && 5653 posn <= SEES(TX_SDMA15_DISALLOWED_PACKET)); 5654 } 5655 5656 /* 5657 * Input value is a bit position of one of the SDMA engine disallowed 5658 * packet errors. Return which engine. Use of this must be guarded by 5659 * disallowed_pkt_err(). 5660 */ 5661 static inline int disallowed_pkt_engine(int posn) 5662 { 5663 return posn - SEES(TX_SDMA0_DISALLOWED_PACKET); 5664 } 5665 5666 /* 5667 * Translate an SDMA engine to a VL. Return -1 if the tranlation cannot 5668 * be done. 5669 */ 5670 static int engine_to_vl(struct hfi1_devdata *dd, int engine) 5671 { 5672 struct sdma_vl_map *m; 5673 int vl; 5674 5675 /* range check */ 5676 if (engine < 0 || engine >= TXE_NUM_SDMA_ENGINES) 5677 return -1; 5678 5679 rcu_read_lock(); 5680 m = rcu_dereference(dd->sdma_map); 5681 vl = m->engine_to_vl[engine]; 5682 rcu_read_unlock(); 5683 5684 return vl; 5685 } 5686 5687 /* 5688 * Translate the send context (sofware index) into a VL. Return -1 if the 5689 * translation cannot be done. 5690 */ 5691 static int sc_to_vl(struct hfi1_devdata *dd, int sw_index) 5692 { 5693 struct send_context_info *sci; 5694 struct send_context *sc; 5695 int i; 5696 5697 sci = &dd->send_contexts[sw_index]; 5698 5699 /* there is no information for user (PSM) and ack contexts */ 5700 if ((sci->type != SC_KERNEL) && (sci->type != SC_VL15)) 5701 return -1; 5702 5703 sc = sci->sc; 5704 if (!sc) 5705 return -1; 5706 if (dd->vld[15].sc == sc) 5707 return 15; 5708 for (i = 0; i < num_vls; i++) 5709 if (dd->vld[i].sc == sc) 5710 return i; 5711 5712 return -1; 5713 } 5714 5715 static void handle_egress_err(struct hfi1_devdata *dd, u32 unused, u64 reg) 5716 { 5717 u64 reg_copy = reg, handled = 0; 5718 char buf[96]; 5719 int i = 0; 5720 5721 if (reg & ALL_TXE_EGRESS_FREEZE_ERR) 5722 start_freeze_handling(dd->pport, 0); 5723 else if (is_ax(dd) && 5724 (reg & SEND_EGRESS_ERR_STATUS_TX_CREDIT_RETURN_VL_ERR_SMASK) && 5725 (dd->icode != ICODE_FUNCTIONAL_SIMULATOR)) 5726 start_freeze_handling(dd->pport, 0); 5727 5728 while (reg_copy) { 5729 int posn = fls64(reg_copy); 5730 /* fls64() returns a 1-based offset, we want it zero based */ 5731 int shift = posn - 1; 5732 u64 mask = 1ULL << shift; 5733 5734 if (port_inactive_err(shift)) { 5735 count_port_inactive(dd); 5736 handled |= mask; 5737 } else if (disallowed_pkt_err(shift)) { 5738 int vl = engine_to_vl(dd, disallowed_pkt_engine(shift)); 5739 5740 handle_send_egress_err_info(dd, vl); 5741 handled |= mask; 5742 } 5743 reg_copy &= ~mask; 5744 } 5745 5746 reg &= ~handled; 5747 5748 if (reg) 5749 dd_dev_info(dd, "Egress Error: %s\n", 5750 egress_err_status_string(buf, sizeof(buf), reg)); 5751 5752 for (i = 0; i < NUM_SEND_EGRESS_ERR_STATUS_COUNTERS; i++) { 5753 if (reg & (1ull << i)) 5754 incr_cntr64(&dd->send_egress_err_status_cnt[i]); 5755 } 5756 } 5757 5758 static void handle_txe_err(struct hfi1_devdata *dd, u32 unused, u64 reg) 5759 { 5760 char buf[96]; 5761 int i = 0; 5762 5763 dd_dev_info(dd, "Send Error: %s\n", 5764 send_err_status_string(buf, sizeof(buf), reg)); 5765 5766 for (i = 0; i < NUM_SEND_ERR_STATUS_COUNTERS; i++) { 5767 if (reg & (1ull << i)) 5768 incr_cntr64(&dd->send_err_status_cnt[i]); 5769 } 5770 } 5771 5772 /* 5773 * The maximum number of times the error clear down will loop before 5774 * blocking a repeating error. This value is arbitrary. 5775 */ 5776 #define MAX_CLEAR_COUNT 20 5777 5778 /* 5779 * Clear and handle an error register. All error interrupts are funneled 5780 * through here to have a central location to correctly handle single- 5781 * or multi-shot errors. 5782 * 5783 * For non per-context registers, call this routine with a context value 5784 * of 0 so the per-context offset is zero. 5785 * 5786 * If the handler loops too many times, assume that something is wrong 5787 * and can't be fixed, so mask the error bits. 5788 */ 5789 static void interrupt_clear_down(struct hfi1_devdata *dd, 5790 u32 context, 5791 const struct err_reg_info *eri) 5792 { 5793 u64 reg; 5794 u32 count; 5795 5796 /* read in a loop until no more errors are seen */ 5797 count = 0; 5798 while (1) { 5799 reg = read_kctxt_csr(dd, context, eri->status); 5800 if (reg == 0) 5801 break; 5802 write_kctxt_csr(dd, context, eri->clear, reg); 5803 if (likely(eri->handler)) 5804 eri->handler(dd, context, reg); 5805 count++; 5806 if (count > MAX_CLEAR_COUNT) { 5807 u64 mask; 5808 5809 dd_dev_err(dd, "Repeating %s bits 0x%llx - masking\n", 5810 eri->desc, reg); 5811 /* 5812 * Read-modify-write so any other masked bits 5813 * remain masked. 5814 */ 5815 mask = read_kctxt_csr(dd, context, eri->mask); 5816 mask &= ~reg; 5817 write_kctxt_csr(dd, context, eri->mask, mask); 5818 break; 5819 } 5820 } 5821 } 5822 5823 /* 5824 * CCE block "misc" interrupt. Source is < 16. 5825 */ 5826 static void is_misc_err_int(struct hfi1_devdata *dd, unsigned int source) 5827 { 5828 const struct err_reg_info *eri = &misc_errs[source]; 5829 5830 if (eri->handler) { 5831 interrupt_clear_down(dd, 0, eri); 5832 } else { 5833 dd_dev_err(dd, "Unexpected misc interrupt (%u) - reserved\n", 5834 source); 5835 } 5836 } 5837 5838 static char *send_context_err_status_string(char *buf, int buf_len, u64 flags) 5839 { 5840 return flag_string(buf, buf_len, flags, 5841 sc_err_status_flags, 5842 ARRAY_SIZE(sc_err_status_flags)); 5843 } 5844 5845 /* 5846 * Send context error interrupt. Source (hw_context) is < 160. 5847 * 5848 * All send context errors cause the send context to halt. The normal 5849 * clear-down mechanism cannot be used because we cannot clear the 5850 * error bits until several other long-running items are done first. 5851 * This is OK because with the context halted, nothing else is going 5852 * to happen on it anyway. 5853 */ 5854 static void is_sendctxt_err_int(struct hfi1_devdata *dd, 5855 unsigned int hw_context) 5856 { 5857 struct send_context_info *sci; 5858 struct send_context *sc; 5859 char flags[96]; 5860 u64 status; 5861 u32 sw_index; 5862 int i = 0; 5863 5864 sw_index = dd->hw_to_sw[hw_context]; 5865 if (sw_index >= dd->num_send_contexts) { 5866 dd_dev_err(dd, 5867 "out of range sw index %u for send context %u\n", 5868 sw_index, hw_context); 5869 return; 5870 } 5871 sci = &dd->send_contexts[sw_index]; 5872 sc = sci->sc; 5873 if (!sc) { 5874 dd_dev_err(dd, "%s: context %u(%u): no sc?\n", __func__, 5875 sw_index, hw_context); 5876 return; 5877 } 5878 5879 /* tell the software that a halt has begun */ 5880 sc_stop(sc, SCF_HALTED); 5881 5882 status = read_kctxt_csr(dd, hw_context, SEND_CTXT_ERR_STATUS); 5883 5884 dd_dev_info(dd, "Send Context %u(%u) Error: %s\n", sw_index, hw_context, 5885 send_context_err_status_string(flags, sizeof(flags), 5886 status)); 5887 5888 if (status & SEND_CTXT_ERR_STATUS_PIO_DISALLOWED_PACKET_ERR_SMASK) 5889 handle_send_egress_err_info(dd, sc_to_vl(dd, sw_index)); 5890 5891 /* 5892 * Automatically restart halted kernel contexts out of interrupt 5893 * context. User contexts must ask the driver to restart the context. 5894 */ 5895 if (sc->type != SC_USER) 5896 queue_work(dd->pport->hfi1_wq, &sc->halt_work); 5897 5898 /* 5899 * Update the counters for the corresponding status bits. 5900 * Note that these particular counters are aggregated over all 5901 * 160 contexts. 5902 */ 5903 for (i = 0; i < NUM_SEND_CTXT_ERR_STATUS_COUNTERS; i++) { 5904 if (status & (1ull << i)) 5905 incr_cntr64(&dd->sw_ctxt_err_status_cnt[i]); 5906 } 5907 } 5908 5909 static void handle_sdma_eng_err(struct hfi1_devdata *dd, 5910 unsigned int source, u64 status) 5911 { 5912 struct sdma_engine *sde; 5913 int i = 0; 5914 5915 sde = &dd->per_sdma[source]; 5916 #ifdef CONFIG_SDMA_VERBOSITY 5917 dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx, 5918 slashstrip(__FILE__), __LINE__, __func__); 5919 dd_dev_err(sde->dd, "CONFIG SDMA(%u) source: %u status 0x%llx\n", 5920 sde->this_idx, source, (unsigned long long)status); 5921 #endif 5922 sde->err_cnt++; 5923 sdma_engine_error(sde, status); 5924 5925 /* 5926 * Update the counters for the corresponding status bits. 5927 * Note that these particular counters are aggregated over 5928 * all 16 DMA engines. 5929 */ 5930 for (i = 0; i < NUM_SEND_DMA_ENG_ERR_STATUS_COUNTERS; i++) { 5931 if (status & (1ull << i)) 5932 incr_cntr64(&dd->sw_send_dma_eng_err_status_cnt[i]); 5933 } 5934 } 5935 5936 /* 5937 * CCE block SDMA error interrupt. Source is < 16. 5938 */ 5939 static void is_sdma_eng_err_int(struct hfi1_devdata *dd, unsigned int source) 5940 { 5941 #ifdef CONFIG_SDMA_VERBOSITY 5942 struct sdma_engine *sde = &dd->per_sdma[source]; 5943 5944 dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx, 5945 slashstrip(__FILE__), __LINE__, __func__); 5946 dd_dev_err(dd, "CONFIG SDMA(%u) source: %u\n", sde->this_idx, 5947 source); 5948 sdma_dumpstate(sde); 5949 #endif 5950 interrupt_clear_down(dd, source, &sdma_eng_err); 5951 } 5952 5953 /* 5954 * CCE block "various" interrupt. Source is < 8. 5955 */ 5956 static void is_various_int(struct hfi1_devdata *dd, unsigned int source) 5957 { 5958 const struct err_reg_info *eri = &various_err[source]; 5959 5960 /* 5961 * TCritInt cannot go through interrupt_clear_down() 5962 * because it is not a second tier interrupt. The handler 5963 * should be called directly. 5964 */ 5965 if (source == TCRIT_INT_SOURCE) 5966 handle_temp_err(dd); 5967 else if (eri->handler) 5968 interrupt_clear_down(dd, 0, eri); 5969 else 5970 dd_dev_info(dd, 5971 "%s: Unimplemented/reserved interrupt %d\n", 5972 __func__, source); 5973 } 5974 5975 static void handle_qsfp_int(struct hfi1_devdata *dd, u32 src_ctx, u64 reg) 5976 { 5977 /* src_ctx is always zero */ 5978 struct hfi1_pportdata *ppd = dd->pport; 5979 unsigned long flags; 5980 u64 qsfp_int_mgmt = (u64)(QSFP_HFI0_INT_N | QSFP_HFI0_MODPRST_N); 5981 5982 if (reg & QSFP_HFI0_MODPRST_N) { 5983 if (!qsfp_mod_present(ppd)) { 5984 dd_dev_info(dd, "%s: QSFP module removed\n", 5985 __func__); 5986 5987 ppd->driver_link_ready = 0; 5988 /* 5989 * Cable removed, reset all our information about the 5990 * cache and cable capabilities 5991 */ 5992 5993 spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags); 5994 /* 5995 * We don't set cache_refresh_required here as we expect 5996 * an interrupt when a cable is inserted 5997 */ 5998 ppd->qsfp_info.cache_valid = 0; 5999 ppd->qsfp_info.reset_needed = 0; 6000 ppd->qsfp_info.limiting_active = 0; 6001 spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock, 6002 flags); 6003 /* Invert the ModPresent pin now to detect plug-in */ 6004 write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_INVERT : 6005 ASIC_QSFP1_INVERT, qsfp_int_mgmt); 6006 6007 if ((ppd->offline_disabled_reason > 6008 HFI1_ODR_MASK( 6009 OPA_LINKDOWN_REASON_LOCAL_MEDIA_NOT_INSTALLED)) || 6010 (ppd->offline_disabled_reason == 6011 HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE))) 6012 ppd->offline_disabled_reason = 6013 HFI1_ODR_MASK( 6014 OPA_LINKDOWN_REASON_LOCAL_MEDIA_NOT_INSTALLED); 6015 6016 if (ppd->host_link_state == HLS_DN_POLL) { 6017 /* 6018 * The link is still in POLL. This means 6019 * that the normal link down processing 6020 * will not happen. We have to do it here 6021 * before turning the DC off. 6022 */ 6023 queue_work(ppd->hfi1_wq, &ppd->link_down_work); 6024 } 6025 } else { 6026 dd_dev_info(dd, "%s: QSFP module inserted\n", 6027 __func__); 6028 6029 spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags); 6030 ppd->qsfp_info.cache_valid = 0; 6031 ppd->qsfp_info.cache_refresh_required = 1; 6032 spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock, 6033 flags); 6034 6035 /* 6036 * Stop inversion of ModPresent pin to detect 6037 * removal of the cable 6038 */ 6039 qsfp_int_mgmt &= ~(u64)QSFP_HFI0_MODPRST_N; 6040 write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_INVERT : 6041 ASIC_QSFP1_INVERT, qsfp_int_mgmt); 6042 6043 ppd->offline_disabled_reason = 6044 HFI1_ODR_MASK(OPA_LINKDOWN_REASON_TRANSIENT); 6045 } 6046 } 6047 6048 if (reg & QSFP_HFI0_INT_N) { 6049 dd_dev_info(dd, "%s: Interrupt received from QSFP module\n", 6050 __func__); 6051 spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags); 6052 ppd->qsfp_info.check_interrupt_flags = 1; 6053 spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock, flags); 6054 } 6055 6056 /* Schedule the QSFP work only if there is a cable attached. */ 6057 if (qsfp_mod_present(ppd)) 6058 queue_work(ppd->hfi1_wq, &ppd->qsfp_info.qsfp_work); 6059 } 6060 6061 static int request_host_lcb_access(struct hfi1_devdata *dd) 6062 { 6063 int ret; 6064 6065 ret = do_8051_command(dd, HCMD_MISC, 6066 (u64)HCMD_MISC_REQUEST_LCB_ACCESS << 6067 LOAD_DATA_FIELD_ID_SHIFT, NULL); 6068 if (ret != HCMD_SUCCESS) { 6069 dd_dev_err(dd, "%s: command failed with error %d\n", 6070 __func__, ret); 6071 } 6072 return ret == HCMD_SUCCESS ? 0 : -EBUSY; 6073 } 6074 6075 static int request_8051_lcb_access(struct hfi1_devdata *dd) 6076 { 6077 int ret; 6078 6079 ret = do_8051_command(dd, HCMD_MISC, 6080 (u64)HCMD_MISC_GRANT_LCB_ACCESS << 6081 LOAD_DATA_FIELD_ID_SHIFT, NULL); 6082 if (ret != HCMD_SUCCESS) { 6083 dd_dev_err(dd, "%s: command failed with error %d\n", 6084 __func__, ret); 6085 } 6086 return ret == HCMD_SUCCESS ? 0 : -EBUSY; 6087 } 6088 6089 /* 6090 * Set the LCB selector - allow host access. The DCC selector always 6091 * points to the host. 6092 */ 6093 static inline void set_host_lcb_access(struct hfi1_devdata *dd) 6094 { 6095 write_csr(dd, DC_DC8051_CFG_CSR_ACCESS_SEL, 6096 DC_DC8051_CFG_CSR_ACCESS_SEL_DCC_SMASK | 6097 DC_DC8051_CFG_CSR_ACCESS_SEL_LCB_SMASK); 6098 } 6099 6100 /* 6101 * Clear the LCB selector - allow 8051 access. The DCC selector always 6102 * points to the host. 6103 */ 6104 static inline void set_8051_lcb_access(struct hfi1_devdata *dd) 6105 { 6106 write_csr(dd, DC_DC8051_CFG_CSR_ACCESS_SEL, 6107 DC_DC8051_CFG_CSR_ACCESS_SEL_DCC_SMASK); 6108 } 6109 6110 /* 6111 * Acquire LCB access from the 8051. If the host already has access, 6112 * just increment a counter. Otherwise, inform the 8051 that the 6113 * host is taking access. 6114 * 6115 * Returns: 6116 * 0 on success 6117 * -EBUSY if the 8051 has control and cannot be disturbed 6118 * -errno if unable to acquire access from the 8051 6119 */ 6120 int acquire_lcb_access(struct hfi1_devdata *dd, int sleep_ok) 6121 { 6122 struct hfi1_pportdata *ppd = dd->pport; 6123 int ret = 0; 6124 6125 /* 6126 * Use the host link state lock so the operation of this routine 6127 * { link state check, selector change, count increment } can occur 6128 * as a unit against a link state change. Otherwise there is a 6129 * race between the state change and the count increment. 6130 */ 6131 if (sleep_ok) { 6132 mutex_lock(&ppd->hls_lock); 6133 } else { 6134 while (!mutex_trylock(&ppd->hls_lock)) 6135 udelay(1); 6136 } 6137 6138 /* this access is valid only when the link is up */ 6139 if (ppd->host_link_state & HLS_DOWN) { 6140 dd_dev_info(dd, "%s: link state %s not up\n", 6141 __func__, link_state_name(ppd->host_link_state)); 6142 ret = -EBUSY; 6143 goto done; 6144 } 6145 6146 if (dd->lcb_access_count == 0) { 6147 ret = request_host_lcb_access(dd); 6148 if (ret) { 6149 dd_dev_err(dd, 6150 "%s: unable to acquire LCB access, err %d\n", 6151 __func__, ret); 6152 goto done; 6153 } 6154 set_host_lcb_access(dd); 6155 } 6156 dd->lcb_access_count++; 6157 done: 6158 mutex_unlock(&ppd->hls_lock); 6159 return ret; 6160 } 6161 6162 /* 6163 * Release LCB access by decrementing the use count. If the count is moving 6164 * from 1 to 0, inform 8051 that it has control back. 6165 * 6166 * Returns: 6167 * 0 on success 6168 * -errno if unable to release access to the 8051 6169 */ 6170 int release_lcb_access(struct hfi1_devdata *dd, int sleep_ok) 6171 { 6172 int ret = 0; 6173 6174 /* 6175 * Use the host link state lock because the acquire needed it. 6176 * Here, we only need to keep { selector change, count decrement } 6177 * as a unit. 6178 */ 6179 if (sleep_ok) { 6180 mutex_lock(&dd->pport->hls_lock); 6181 } else { 6182 while (!mutex_trylock(&dd->pport->hls_lock)) 6183 udelay(1); 6184 } 6185 6186 if (dd->lcb_access_count == 0) { 6187 dd_dev_err(dd, "%s: LCB access count is zero. Skipping.\n", 6188 __func__); 6189 goto done; 6190 } 6191 6192 if (dd->lcb_access_count == 1) { 6193 set_8051_lcb_access(dd); 6194 ret = request_8051_lcb_access(dd); 6195 if (ret) { 6196 dd_dev_err(dd, 6197 "%s: unable to release LCB access, err %d\n", 6198 __func__, ret); 6199 /* restore host access if the grant didn't work */ 6200 set_host_lcb_access(dd); 6201 goto done; 6202 } 6203 } 6204 dd->lcb_access_count--; 6205 done: 6206 mutex_unlock(&dd->pport->hls_lock); 6207 return ret; 6208 } 6209 6210 /* 6211 * Initialize LCB access variables and state. Called during driver load, 6212 * after most of the initialization is finished. 6213 * 6214 * The DC default is LCB access on for the host. The driver defaults to 6215 * leaving access to the 8051. Assign access now - this constrains the call 6216 * to this routine to be after all LCB set-up is done. In particular, after 6217 * hf1_init_dd() -> set_up_interrupts() -> clear_all_interrupts() 6218 */ 6219 static void init_lcb_access(struct hfi1_devdata *dd) 6220 { 6221 dd->lcb_access_count = 0; 6222 } 6223 6224 /* 6225 * Write a response back to a 8051 request. 6226 */ 6227 static void hreq_response(struct hfi1_devdata *dd, u8 return_code, u16 rsp_data) 6228 { 6229 write_csr(dd, DC_DC8051_CFG_EXT_DEV_0, 6230 DC_DC8051_CFG_EXT_DEV_0_COMPLETED_SMASK | 6231 (u64)return_code << 6232 DC_DC8051_CFG_EXT_DEV_0_RETURN_CODE_SHIFT | 6233 (u64)rsp_data << DC_DC8051_CFG_EXT_DEV_0_RSP_DATA_SHIFT); 6234 } 6235 6236 /* 6237 * Handle host requests from the 8051. 6238 */ 6239 static void handle_8051_request(struct hfi1_pportdata *ppd) 6240 { 6241 struct hfi1_devdata *dd = ppd->dd; 6242 u64 reg; 6243 u16 data = 0; 6244 u8 type; 6245 6246 reg = read_csr(dd, DC_DC8051_CFG_EXT_DEV_1); 6247 if ((reg & DC_DC8051_CFG_EXT_DEV_1_REQ_NEW_SMASK) == 0) 6248 return; /* no request */ 6249 6250 /* zero out COMPLETED so the response is seen */ 6251 write_csr(dd, DC_DC8051_CFG_EXT_DEV_0, 0); 6252 6253 /* extract request details */ 6254 type = (reg >> DC_DC8051_CFG_EXT_DEV_1_REQ_TYPE_SHIFT) 6255 & DC_DC8051_CFG_EXT_DEV_1_REQ_TYPE_MASK; 6256 data = (reg >> DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SHIFT) 6257 & DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_MASK; 6258 6259 switch (type) { 6260 case HREQ_LOAD_CONFIG: 6261 case HREQ_SAVE_CONFIG: 6262 case HREQ_READ_CONFIG: 6263 case HREQ_SET_TX_EQ_ABS: 6264 case HREQ_SET_TX_EQ_REL: 6265 case HREQ_ENABLE: 6266 dd_dev_info(dd, "8051 request: request 0x%x not supported\n", 6267 type); 6268 hreq_response(dd, HREQ_NOT_SUPPORTED, 0); 6269 break; 6270 case HREQ_CONFIG_DONE: 6271 hreq_response(dd, HREQ_SUCCESS, 0); 6272 break; 6273 6274 case HREQ_INTERFACE_TEST: 6275 hreq_response(dd, HREQ_SUCCESS, data); 6276 break; 6277 default: 6278 dd_dev_err(dd, "8051 request: unknown request 0x%x\n", type); 6279 hreq_response(dd, HREQ_NOT_SUPPORTED, 0); 6280 break; 6281 } 6282 } 6283 6284 static void write_global_credit(struct hfi1_devdata *dd, 6285 u8 vau, u16 total, u16 shared) 6286 { 6287 write_csr(dd, SEND_CM_GLOBAL_CREDIT, 6288 ((u64)total << 6289 SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT) | 6290 ((u64)shared << 6291 SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SHIFT) | 6292 ((u64)vau << SEND_CM_GLOBAL_CREDIT_AU_SHIFT)); 6293 } 6294 6295 /* 6296 * Set up initial VL15 credits of the remote. Assumes the rest of 6297 * the CM credit registers are zero from a previous global or credit reset . 6298 */ 6299 void set_up_vl15(struct hfi1_devdata *dd, u8 vau, u16 vl15buf) 6300 { 6301 /* leave shared count at zero for both global and VL15 */ 6302 write_global_credit(dd, vau, vl15buf, 0); 6303 6304 write_csr(dd, SEND_CM_CREDIT_VL15, (u64)vl15buf 6305 << SEND_CM_CREDIT_VL15_DEDICATED_LIMIT_VL_SHIFT); 6306 } 6307 6308 /* 6309 * Zero all credit details from the previous connection and 6310 * reset the CM manager's internal counters. 6311 */ 6312 void reset_link_credits(struct hfi1_devdata *dd) 6313 { 6314 int i; 6315 6316 /* remove all previous VL credit limits */ 6317 for (i = 0; i < TXE_NUM_DATA_VL; i++) 6318 write_csr(dd, SEND_CM_CREDIT_VL + (8 * i), 0); 6319 write_csr(dd, SEND_CM_CREDIT_VL15, 0); 6320 write_global_credit(dd, 0, 0, 0); 6321 /* reset the CM block */ 6322 pio_send_control(dd, PSC_CM_RESET); 6323 } 6324 6325 /* convert a vCU to a CU */ 6326 static u32 vcu_to_cu(u8 vcu) 6327 { 6328 return 1 << vcu; 6329 } 6330 6331 /* convert a CU to a vCU */ 6332 static u8 cu_to_vcu(u32 cu) 6333 { 6334 return ilog2(cu); 6335 } 6336 6337 /* convert a vAU to an AU */ 6338 static u32 vau_to_au(u8 vau) 6339 { 6340 return 8 * (1 << vau); 6341 } 6342 6343 static void set_linkup_defaults(struct hfi1_pportdata *ppd) 6344 { 6345 ppd->sm_trap_qp = 0x0; 6346 ppd->sa_qp = 0x1; 6347 } 6348 6349 /* 6350 * Graceful LCB shutdown. This leaves the LCB FIFOs in reset. 6351 */ 6352 static void lcb_shutdown(struct hfi1_devdata *dd, int abort) 6353 { 6354 u64 reg; 6355 6356 /* clear lcb run: LCB_CFG_RUN.EN = 0 */ 6357 write_csr(dd, DC_LCB_CFG_RUN, 0); 6358 /* set tx fifo reset: LCB_CFG_TX_FIFOS_RESET.VAL = 1 */ 6359 write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 6360 1ull << DC_LCB_CFG_TX_FIFOS_RESET_VAL_SHIFT); 6361 /* set dcc reset csr: DCC_CFG_RESET.{reset_lcb,reset_rx_fpe} = 1 */ 6362 dd->lcb_err_en = read_csr(dd, DC_LCB_ERR_EN); 6363 reg = read_csr(dd, DCC_CFG_RESET); 6364 write_csr(dd, DCC_CFG_RESET, reg | 6365 (1ull << DCC_CFG_RESET_RESET_LCB_SHIFT) | 6366 (1ull << DCC_CFG_RESET_RESET_RX_FPE_SHIFT)); 6367 (void)read_csr(dd, DCC_CFG_RESET); /* make sure the write completed */ 6368 if (!abort) { 6369 udelay(1); /* must hold for the longer of 16cclks or 20ns */ 6370 write_csr(dd, DCC_CFG_RESET, reg); 6371 write_csr(dd, DC_LCB_ERR_EN, dd->lcb_err_en); 6372 } 6373 } 6374 6375 /* 6376 * This routine should be called after the link has been transitioned to 6377 * OFFLINE (OFFLINE state has the side effect of putting the SerDes into 6378 * reset). 6379 * 6380 * The expectation is that the caller of this routine would have taken 6381 * care of properly transitioning the link into the correct state. 6382 */ 6383 static void dc_shutdown(struct hfi1_devdata *dd) 6384 { 6385 unsigned long flags; 6386 6387 spin_lock_irqsave(&dd->dc8051_lock, flags); 6388 if (dd->dc_shutdown) { 6389 spin_unlock_irqrestore(&dd->dc8051_lock, flags); 6390 return; 6391 } 6392 dd->dc_shutdown = 1; 6393 spin_unlock_irqrestore(&dd->dc8051_lock, flags); 6394 /* Shutdown the LCB */ 6395 lcb_shutdown(dd, 1); 6396 /* 6397 * Going to OFFLINE would have causes the 8051 to put the 6398 * SerDes into reset already. Just need to shut down the 8051, 6399 * itself. 6400 */ 6401 write_csr(dd, DC_DC8051_CFG_RST, 0x1); 6402 } 6403 6404 /* 6405 * Calling this after the DC has been brought out of reset should not 6406 * do any damage. 6407 */ 6408 static void dc_start(struct hfi1_devdata *dd) 6409 { 6410 unsigned long flags; 6411 int ret; 6412 6413 spin_lock_irqsave(&dd->dc8051_lock, flags); 6414 if (!dd->dc_shutdown) 6415 goto done; 6416 spin_unlock_irqrestore(&dd->dc8051_lock, flags); 6417 /* Take the 8051 out of reset */ 6418 write_csr(dd, DC_DC8051_CFG_RST, 0ull); 6419 /* Wait until 8051 is ready */ 6420 ret = wait_fm_ready(dd, TIMEOUT_8051_START); 6421 if (ret) { 6422 dd_dev_err(dd, "%s: timeout starting 8051 firmware\n", 6423 __func__); 6424 } 6425 /* Take away reset for LCB and RX FPE (set in lcb_shutdown). */ 6426 write_csr(dd, DCC_CFG_RESET, 0x10); 6427 /* lcb_shutdown() with abort=1 does not restore these */ 6428 write_csr(dd, DC_LCB_ERR_EN, dd->lcb_err_en); 6429 spin_lock_irqsave(&dd->dc8051_lock, flags); 6430 dd->dc_shutdown = 0; 6431 done: 6432 spin_unlock_irqrestore(&dd->dc8051_lock, flags); 6433 } 6434 6435 /* 6436 * These LCB adjustments are for the Aurora SerDes core in the FPGA. 6437 */ 6438 static void adjust_lcb_for_fpga_serdes(struct hfi1_devdata *dd) 6439 { 6440 u64 rx_radr, tx_radr; 6441 u32 version; 6442 6443 if (dd->icode != ICODE_FPGA_EMULATION) 6444 return; 6445 6446 /* 6447 * These LCB defaults on emulator _s are good, nothing to do here: 6448 * LCB_CFG_TX_FIFOS_RADR 6449 * LCB_CFG_RX_FIFOS_RADR 6450 * LCB_CFG_LN_DCLK 6451 * LCB_CFG_IGNORE_LOST_RCLK 6452 */ 6453 if (is_emulator_s(dd)) 6454 return; 6455 /* else this is _p */ 6456 6457 version = emulator_rev(dd); 6458 if (!is_ax(dd)) 6459 version = 0x2d; /* all B0 use 0x2d or higher settings */ 6460 6461 if (version <= 0x12) { 6462 /* release 0x12 and below */ 6463 6464 /* 6465 * LCB_CFG_RX_FIFOS_RADR.RST_VAL = 0x9 6466 * LCB_CFG_RX_FIFOS_RADR.OK_TO_JUMP_VAL = 0x9 6467 * LCB_CFG_RX_FIFOS_RADR.DO_NOT_JUMP_VAL = 0xa 6468 */ 6469 rx_radr = 6470 0xaull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT 6471 | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT 6472 | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT; 6473 /* 6474 * LCB_CFG_TX_FIFOS_RADR.ON_REINIT = 0 (default) 6475 * LCB_CFG_TX_FIFOS_RADR.RST_VAL = 6 6476 */ 6477 tx_radr = 6ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT; 6478 } else if (version <= 0x18) { 6479 /* release 0x13 up to 0x18 */ 6480 /* LCB_CFG_RX_FIFOS_RADR = 0x988 */ 6481 rx_radr = 6482 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT 6483 | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT 6484 | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT; 6485 tx_radr = 7ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT; 6486 } else if (version == 0x19) { 6487 /* release 0x19 */ 6488 /* LCB_CFG_RX_FIFOS_RADR = 0xa99 */ 6489 rx_radr = 6490 0xAull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT 6491 | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT 6492 | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT; 6493 tx_radr = 3ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT; 6494 } else if (version == 0x1a) { 6495 /* release 0x1a */ 6496 /* LCB_CFG_RX_FIFOS_RADR = 0x988 */ 6497 rx_radr = 6498 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT 6499 | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT 6500 | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT; 6501 tx_radr = 7ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT; 6502 write_csr(dd, DC_LCB_CFG_LN_DCLK, 1ull); 6503 } else { 6504 /* release 0x1b and higher */ 6505 /* LCB_CFG_RX_FIFOS_RADR = 0x877 */ 6506 rx_radr = 6507 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT 6508 | 0x7ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT 6509 | 0x7ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT; 6510 tx_radr = 3ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT; 6511 } 6512 6513 write_csr(dd, DC_LCB_CFG_RX_FIFOS_RADR, rx_radr); 6514 /* LCB_CFG_IGNORE_LOST_RCLK.EN = 1 */ 6515 write_csr(dd, DC_LCB_CFG_IGNORE_LOST_RCLK, 6516 DC_LCB_CFG_IGNORE_LOST_RCLK_EN_SMASK); 6517 write_csr(dd, DC_LCB_CFG_TX_FIFOS_RADR, tx_radr); 6518 } 6519 6520 /* 6521 * Handle a SMA idle message 6522 * 6523 * This is a work-queue function outside of the interrupt. 6524 */ 6525 void handle_sma_message(struct work_struct *work) 6526 { 6527 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata, 6528 sma_message_work); 6529 struct hfi1_devdata *dd = ppd->dd; 6530 u64 msg; 6531 int ret; 6532 6533 /* 6534 * msg is bytes 1-4 of the 40-bit idle message - the command code 6535 * is stripped off 6536 */ 6537 ret = read_idle_sma(dd, &msg); 6538 if (ret) 6539 return; 6540 dd_dev_info(dd, "%s: SMA message 0x%llx\n", __func__, msg); 6541 /* 6542 * React to the SMA message. Byte[1] (0 for us) is the command. 6543 */ 6544 switch (msg & 0xff) { 6545 case SMA_IDLE_ARM: 6546 /* 6547 * See OPAv1 table 9-14 - HFI and External Switch Ports Key 6548 * State Transitions 6549 * 6550 * Only expected in INIT or ARMED, discard otherwise. 6551 */ 6552 if (ppd->host_link_state & (HLS_UP_INIT | HLS_UP_ARMED)) 6553 ppd->neighbor_normal = 1; 6554 break; 6555 case SMA_IDLE_ACTIVE: 6556 /* 6557 * See OPAv1 table 9-14 - HFI and External Switch Ports Key 6558 * State Transitions 6559 * 6560 * Can activate the node. Discard otherwise. 6561 */ 6562 if (ppd->host_link_state == HLS_UP_ARMED && 6563 ppd->is_active_optimize_enabled) { 6564 ppd->neighbor_normal = 1; 6565 ret = set_link_state(ppd, HLS_UP_ACTIVE); 6566 if (ret) 6567 dd_dev_err( 6568 dd, 6569 "%s: received Active SMA idle message, couldn't set link to Active\n", 6570 __func__); 6571 } 6572 break; 6573 default: 6574 dd_dev_err(dd, 6575 "%s: received unexpected SMA idle message 0x%llx\n", 6576 __func__, msg); 6577 break; 6578 } 6579 } 6580 6581 static void adjust_rcvctrl(struct hfi1_devdata *dd, u64 add, u64 clear) 6582 { 6583 u64 rcvctrl; 6584 unsigned long flags; 6585 6586 spin_lock_irqsave(&dd->rcvctrl_lock, flags); 6587 rcvctrl = read_csr(dd, RCV_CTRL); 6588 rcvctrl |= add; 6589 rcvctrl &= ~clear; 6590 write_csr(dd, RCV_CTRL, rcvctrl); 6591 spin_unlock_irqrestore(&dd->rcvctrl_lock, flags); 6592 } 6593 6594 static inline void add_rcvctrl(struct hfi1_devdata *dd, u64 add) 6595 { 6596 adjust_rcvctrl(dd, add, 0); 6597 } 6598 6599 static inline void clear_rcvctrl(struct hfi1_devdata *dd, u64 clear) 6600 { 6601 adjust_rcvctrl(dd, 0, clear); 6602 } 6603 6604 /* 6605 * Called from all interrupt handlers to start handling an SPC freeze. 6606 */ 6607 void start_freeze_handling(struct hfi1_pportdata *ppd, int flags) 6608 { 6609 struct hfi1_devdata *dd = ppd->dd; 6610 struct send_context *sc; 6611 int i; 6612 6613 if (flags & FREEZE_SELF) 6614 write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_FREEZE_SMASK); 6615 6616 /* enter frozen mode */ 6617 dd->flags |= HFI1_FROZEN; 6618 6619 /* notify all SDMA engines that they are going into a freeze */ 6620 sdma_freeze_notify(dd, !!(flags & FREEZE_LINK_DOWN)); 6621 6622 /* do halt pre-handling on all enabled send contexts */ 6623 for (i = 0; i < dd->num_send_contexts; i++) { 6624 sc = dd->send_contexts[i].sc; 6625 if (sc && (sc->flags & SCF_ENABLED)) 6626 sc_stop(sc, SCF_FROZEN | SCF_HALTED); 6627 } 6628 6629 /* Send context are frozen. Notify user space */ 6630 hfi1_set_uevent_bits(ppd, _HFI1_EVENT_FROZEN_BIT); 6631 6632 if (flags & FREEZE_ABORT) { 6633 dd_dev_err(dd, 6634 "Aborted freeze recovery. Please REBOOT system\n"); 6635 return; 6636 } 6637 /* queue non-interrupt handler */ 6638 queue_work(ppd->hfi1_wq, &ppd->freeze_work); 6639 } 6640 6641 /* 6642 * Wait until all 4 sub-blocks indicate that they have frozen or unfrozen, 6643 * depending on the "freeze" parameter. 6644 * 6645 * No need to return an error if it times out, our only option 6646 * is to proceed anyway. 6647 */ 6648 static void wait_for_freeze_status(struct hfi1_devdata *dd, int freeze) 6649 { 6650 unsigned long timeout; 6651 u64 reg; 6652 6653 timeout = jiffies + msecs_to_jiffies(FREEZE_STATUS_TIMEOUT); 6654 while (1) { 6655 reg = read_csr(dd, CCE_STATUS); 6656 if (freeze) { 6657 /* waiting until all indicators are set */ 6658 if ((reg & ALL_FROZE) == ALL_FROZE) 6659 return; /* all done */ 6660 } else { 6661 /* waiting until all indicators are clear */ 6662 if ((reg & ALL_FROZE) == 0) 6663 return; /* all done */ 6664 } 6665 6666 if (time_after(jiffies, timeout)) { 6667 dd_dev_err(dd, 6668 "Time out waiting for SPC %sfreeze, bits 0x%llx, expecting 0x%llx, continuing", 6669 freeze ? "" : "un", reg & ALL_FROZE, 6670 freeze ? ALL_FROZE : 0ull); 6671 return; 6672 } 6673 usleep_range(80, 120); 6674 } 6675 } 6676 6677 /* 6678 * Do all freeze handling for the RXE block. 6679 */ 6680 static void rxe_freeze(struct hfi1_devdata *dd) 6681 { 6682 int i; 6683 6684 /* disable port */ 6685 clear_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK); 6686 6687 /* disable all receive contexts */ 6688 for (i = 0; i < dd->num_rcv_contexts; i++) 6689 hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_DIS, i); 6690 } 6691 6692 /* 6693 * Unfreeze handling for the RXE block - kernel contexts only. 6694 * This will also enable the port. User contexts will do unfreeze 6695 * handling on a per-context basis as they call into the driver. 6696 * 6697 */ 6698 static void rxe_kernel_unfreeze(struct hfi1_devdata *dd) 6699 { 6700 u32 rcvmask; 6701 int i; 6702 6703 /* enable all kernel contexts */ 6704 for (i = 0; i < dd->n_krcv_queues; i++) { 6705 rcvmask = HFI1_RCVCTRL_CTXT_ENB; 6706 /* HFI1_RCVCTRL_TAILUPD_[ENB|DIS] needs to be set explicitly */ 6707 rcvmask |= HFI1_CAP_KGET_MASK(dd->rcd[i]->flags, DMA_RTAIL) ? 6708 HFI1_RCVCTRL_TAILUPD_ENB : HFI1_RCVCTRL_TAILUPD_DIS; 6709 hfi1_rcvctrl(dd, rcvmask, i); 6710 } 6711 6712 /* enable port */ 6713 add_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK); 6714 } 6715 6716 /* 6717 * Non-interrupt SPC freeze handling. 6718 * 6719 * This is a work-queue function outside of the triggering interrupt. 6720 */ 6721 void handle_freeze(struct work_struct *work) 6722 { 6723 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata, 6724 freeze_work); 6725 struct hfi1_devdata *dd = ppd->dd; 6726 6727 /* wait for freeze indicators on all affected blocks */ 6728 wait_for_freeze_status(dd, 1); 6729 6730 /* SPC is now frozen */ 6731 6732 /* do send PIO freeze steps */ 6733 pio_freeze(dd); 6734 6735 /* do send DMA freeze steps */ 6736 sdma_freeze(dd); 6737 6738 /* do send egress freeze steps - nothing to do */ 6739 6740 /* do receive freeze steps */ 6741 rxe_freeze(dd); 6742 6743 /* 6744 * Unfreeze the hardware - clear the freeze, wait for each 6745 * block's frozen bit to clear, then clear the frozen flag. 6746 */ 6747 write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_UNFREEZE_SMASK); 6748 wait_for_freeze_status(dd, 0); 6749 6750 if (is_ax(dd)) { 6751 write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_FREEZE_SMASK); 6752 wait_for_freeze_status(dd, 1); 6753 write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_UNFREEZE_SMASK); 6754 wait_for_freeze_status(dd, 0); 6755 } 6756 6757 /* do send PIO unfreeze steps for kernel contexts */ 6758 pio_kernel_unfreeze(dd); 6759 6760 /* do send DMA unfreeze steps */ 6761 sdma_unfreeze(dd); 6762 6763 /* do send egress unfreeze steps - nothing to do */ 6764 6765 /* do receive unfreeze steps for kernel contexts */ 6766 rxe_kernel_unfreeze(dd); 6767 6768 /* 6769 * The unfreeze procedure touches global device registers when 6770 * it disables and re-enables RXE. Mark the device unfrozen 6771 * after all that is done so other parts of the driver waiting 6772 * for the device to unfreeze don't do things out of order. 6773 * 6774 * The above implies that the meaning of HFI1_FROZEN flag is 6775 * "Device has gone into freeze mode and freeze mode handling 6776 * is still in progress." 6777 * 6778 * The flag will be removed when freeze mode processing has 6779 * completed. 6780 */ 6781 dd->flags &= ~HFI1_FROZEN; 6782 wake_up(&dd->event_queue); 6783 6784 /* no longer frozen */ 6785 } 6786 6787 /* 6788 * Handle a link up interrupt from the 8051. 6789 * 6790 * This is a work-queue function outside of the interrupt. 6791 */ 6792 void handle_link_up(struct work_struct *work) 6793 { 6794 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata, 6795 link_up_work); 6796 set_link_state(ppd, HLS_UP_INIT); 6797 6798 /* cache the read of DC_LCB_STS_ROUND_TRIP_LTP_CNT */ 6799 read_ltp_rtt(ppd->dd); 6800 /* 6801 * OPA specifies that certain counters are cleared on a transition 6802 * to link up, so do that. 6803 */ 6804 clear_linkup_counters(ppd->dd); 6805 /* 6806 * And (re)set link up default values. 6807 */ 6808 set_linkup_defaults(ppd); 6809 6810 /* enforce link speed enabled */ 6811 if ((ppd->link_speed_active & ppd->link_speed_enabled) == 0) { 6812 /* oops - current speed is not enabled, bounce */ 6813 dd_dev_err(ppd->dd, 6814 "Link speed active 0x%x is outside enabled 0x%x, downing link\n", 6815 ppd->link_speed_active, ppd->link_speed_enabled); 6816 set_link_down_reason(ppd, OPA_LINKDOWN_REASON_SPEED_POLICY, 0, 6817 OPA_LINKDOWN_REASON_SPEED_POLICY); 6818 set_link_state(ppd, HLS_DN_OFFLINE); 6819 start_link(ppd); 6820 } 6821 } 6822 6823 /* 6824 * Several pieces of LNI information were cached for SMA in ppd. 6825 * Reset these on link down 6826 */ 6827 static void reset_neighbor_info(struct hfi1_pportdata *ppd) 6828 { 6829 ppd->neighbor_guid = 0; 6830 ppd->neighbor_port_number = 0; 6831 ppd->neighbor_type = 0; 6832 ppd->neighbor_fm_security = 0; 6833 } 6834 6835 static const char * const link_down_reason_strs[] = { 6836 [OPA_LINKDOWN_REASON_NONE] = "None", 6837 [OPA_LINKDOWN_REASON_RCV_ERROR_0] = "Recive error 0", 6838 [OPA_LINKDOWN_REASON_BAD_PKT_LEN] = "Bad packet length", 6839 [OPA_LINKDOWN_REASON_PKT_TOO_LONG] = "Packet too long", 6840 [OPA_LINKDOWN_REASON_PKT_TOO_SHORT] = "Packet too short", 6841 [OPA_LINKDOWN_REASON_BAD_SLID] = "Bad SLID", 6842 [OPA_LINKDOWN_REASON_BAD_DLID] = "Bad DLID", 6843 [OPA_LINKDOWN_REASON_BAD_L2] = "Bad L2", 6844 [OPA_LINKDOWN_REASON_BAD_SC] = "Bad SC", 6845 [OPA_LINKDOWN_REASON_RCV_ERROR_8] = "Receive error 8", 6846 [OPA_LINKDOWN_REASON_BAD_MID_TAIL] = "Bad mid tail", 6847 [OPA_LINKDOWN_REASON_RCV_ERROR_10] = "Receive error 10", 6848 [OPA_LINKDOWN_REASON_PREEMPT_ERROR] = "Preempt error", 6849 [OPA_LINKDOWN_REASON_PREEMPT_VL15] = "Preempt vl15", 6850 [OPA_LINKDOWN_REASON_BAD_VL_MARKER] = "Bad VL marker", 6851 [OPA_LINKDOWN_REASON_RCV_ERROR_14] = "Receive error 14", 6852 [OPA_LINKDOWN_REASON_RCV_ERROR_15] = "Receive error 15", 6853 [OPA_LINKDOWN_REASON_BAD_HEAD_DIST] = "Bad head distance", 6854 [OPA_LINKDOWN_REASON_BAD_TAIL_DIST] = "Bad tail distance", 6855 [OPA_LINKDOWN_REASON_BAD_CTRL_DIST] = "Bad control distance", 6856 [OPA_LINKDOWN_REASON_BAD_CREDIT_ACK] = "Bad credit ack", 6857 [OPA_LINKDOWN_REASON_UNSUPPORTED_VL_MARKER] = "Unsupported VL marker", 6858 [OPA_LINKDOWN_REASON_BAD_PREEMPT] = "Bad preempt", 6859 [OPA_LINKDOWN_REASON_BAD_CONTROL_FLIT] = "Bad control flit", 6860 [OPA_LINKDOWN_REASON_EXCEED_MULTICAST_LIMIT] = "Exceed multicast limit", 6861 [OPA_LINKDOWN_REASON_RCV_ERROR_24] = "Receive error 24", 6862 [OPA_LINKDOWN_REASON_RCV_ERROR_25] = "Receive error 25", 6863 [OPA_LINKDOWN_REASON_RCV_ERROR_26] = "Receive error 26", 6864 [OPA_LINKDOWN_REASON_RCV_ERROR_27] = "Receive error 27", 6865 [OPA_LINKDOWN_REASON_RCV_ERROR_28] = "Receive error 28", 6866 [OPA_LINKDOWN_REASON_RCV_ERROR_29] = "Receive error 29", 6867 [OPA_LINKDOWN_REASON_RCV_ERROR_30] = "Receive error 30", 6868 [OPA_LINKDOWN_REASON_EXCESSIVE_BUFFER_OVERRUN] = 6869 "Excessive buffer overrun", 6870 [OPA_LINKDOWN_REASON_UNKNOWN] = "Unknown", 6871 [OPA_LINKDOWN_REASON_REBOOT] = "Reboot", 6872 [OPA_LINKDOWN_REASON_NEIGHBOR_UNKNOWN] = "Neighbor unknown", 6873 [OPA_LINKDOWN_REASON_FM_BOUNCE] = "FM bounce", 6874 [OPA_LINKDOWN_REASON_SPEED_POLICY] = "Speed policy", 6875 [OPA_LINKDOWN_REASON_WIDTH_POLICY] = "Width policy", 6876 [OPA_LINKDOWN_REASON_DISCONNECTED] = "Disconnected", 6877 [OPA_LINKDOWN_REASON_LOCAL_MEDIA_NOT_INSTALLED] = 6878 "Local media not installed", 6879 [OPA_LINKDOWN_REASON_NOT_INSTALLED] = "Not installed", 6880 [OPA_LINKDOWN_REASON_CHASSIS_CONFIG] = "Chassis config", 6881 [OPA_LINKDOWN_REASON_END_TO_END_NOT_INSTALLED] = 6882 "End to end not installed", 6883 [OPA_LINKDOWN_REASON_POWER_POLICY] = "Power policy", 6884 [OPA_LINKDOWN_REASON_LINKSPEED_POLICY] = "Link speed policy", 6885 [OPA_LINKDOWN_REASON_LINKWIDTH_POLICY] = "Link width policy", 6886 [OPA_LINKDOWN_REASON_SWITCH_MGMT] = "Switch management", 6887 [OPA_LINKDOWN_REASON_SMA_DISABLED] = "SMA disabled", 6888 [OPA_LINKDOWN_REASON_TRANSIENT] = "Transient" 6889 }; 6890 6891 /* return the neighbor link down reason string */ 6892 static const char *link_down_reason_str(u8 reason) 6893 { 6894 const char *str = NULL; 6895 6896 if (reason < ARRAY_SIZE(link_down_reason_strs)) 6897 str = link_down_reason_strs[reason]; 6898 if (!str) 6899 str = "(invalid)"; 6900 6901 return str; 6902 } 6903 6904 /* 6905 * Handle a link down interrupt from the 8051. 6906 * 6907 * This is a work-queue function outside of the interrupt. 6908 */ 6909 void handle_link_down(struct work_struct *work) 6910 { 6911 u8 lcl_reason, neigh_reason = 0; 6912 u8 link_down_reason; 6913 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata, 6914 link_down_work); 6915 int was_up; 6916 static const char ldr_str[] = "Link down reason: "; 6917 6918 if ((ppd->host_link_state & 6919 (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) && 6920 ppd->port_type == PORT_TYPE_FIXED) 6921 ppd->offline_disabled_reason = 6922 HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NOT_INSTALLED); 6923 6924 /* Go offline first, then deal with reading/writing through 8051 */ 6925 was_up = !!(ppd->host_link_state & HLS_UP); 6926 set_link_state(ppd, HLS_DN_OFFLINE); 6927 6928 if (was_up) { 6929 lcl_reason = 0; 6930 /* link down reason is only valid if the link was up */ 6931 read_link_down_reason(ppd->dd, &link_down_reason); 6932 switch (link_down_reason) { 6933 case LDR_LINK_TRANSFER_ACTIVE_LOW: 6934 /* the link went down, no idle message reason */ 6935 dd_dev_info(ppd->dd, "%sUnexpected link down\n", 6936 ldr_str); 6937 break; 6938 case LDR_RECEIVED_LINKDOWN_IDLE_MSG: 6939 /* 6940 * The neighbor reason is only valid if an idle message 6941 * was received for it. 6942 */ 6943 read_planned_down_reason_code(ppd->dd, &neigh_reason); 6944 dd_dev_info(ppd->dd, 6945 "%sNeighbor link down message %d, %s\n", 6946 ldr_str, neigh_reason, 6947 link_down_reason_str(neigh_reason)); 6948 break; 6949 case LDR_RECEIVED_HOST_OFFLINE_REQ: 6950 dd_dev_info(ppd->dd, 6951 "%sHost requested link to go offline\n", 6952 ldr_str); 6953 break; 6954 default: 6955 dd_dev_info(ppd->dd, "%sUnknown reason 0x%x\n", 6956 ldr_str, link_down_reason); 6957 break; 6958 } 6959 6960 /* 6961 * If no reason, assume peer-initiated but missed 6962 * LinkGoingDown idle flits. 6963 */ 6964 if (neigh_reason == 0) 6965 lcl_reason = OPA_LINKDOWN_REASON_NEIGHBOR_UNKNOWN; 6966 } else { 6967 /* went down while polling or going up */ 6968 lcl_reason = OPA_LINKDOWN_REASON_TRANSIENT; 6969 } 6970 6971 set_link_down_reason(ppd, lcl_reason, neigh_reason, 0); 6972 6973 /* inform the SMA when the link transitions from up to down */ 6974 if (was_up && ppd->local_link_down_reason.sma == 0 && 6975 ppd->neigh_link_down_reason.sma == 0) { 6976 ppd->local_link_down_reason.sma = 6977 ppd->local_link_down_reason.latest; 6978 ppd->neigh_link_down_reason.sma = 6979 ppd->neigh_link_down_reason.latest; 6980 } 6981 6982 reset_neighbor_info(ppd); 6983 6984 /* disable the port */ 6985 clear_rcvctrl(ppd->dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK); 6986 6987 /* 6988 * If there is no cable attached, turn the DC off. Otherwise, 6989 * start the link bring up. 6990 */ 6991 if (ppd->port_type == PORT_TYPE_QSFP && !qsfp_mod_present(ppd)) 6992 dc_shutdown(ppd->dd); 6993 else 6994 start_link(ppd); 6995 } 6996 6997 void handle_link_bounce(struct work_struct *work) 6998 { 6999 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata, 7000 link_bounce_work); 7001 7002 /* 7003 * Only do something if the link is currently up. 7004 */ 7005 if (ppd->host_link_state & HLS_UP) { 7006 set_link_state(ppd, HLS_DN_OFFLINE); 7007 start_link(ppd); 7008 } else { 7009 dd_dev_info(ppd->dd, "%s: link not up (%s), nothing to do\n", 7010 __func__, link_state_name(ppd->host_link_state)); 7011 } 7012 } 7013 7014 /* 7015 * Mask conversion: Capability exchange to Port LTP. The capability 7016 * exchange has an implicit 16b CRC that is mandatory. 7017 */ 7018 static int cap_to_port_ltp(int cap) 7019 { 7020 int port_ltp = PORT_LTP_CRC_MODE_16; /* this mode is mandatory */ 7021 7022 if (cap & CAP_CRC_14B) 7023 port_ltp |= PORT_LTP_CRC_MODE_14; 7024 if (cap & CAP_CRC_48B) 7025 port_ltp |= PORT_LTP_CRC_MODE_48; 7026 if (cap & CAP_CRC_12B_16B_PER_LANE) 7027 port_ltp |= PORT_LTP_CRC_MODE_PER_LANE; 7028 7029 return port_ltp; 7030 } 7031 7032 /* 7033 * Convert an OPA Port LTP mask to capability mask 7034 */ 7035 int port_ltp_to_cap(int port_ltp) 7036 { 7037 int cap_mask = 0; 7038 7039 if (port_ltp & PORT_LTP_CRC_MODE_14) 7040 cap_mask |= CAP_CRC_14B; 7041 if (port_ltp & PORT_LTP_CRC_MODE_48) 7042 cap_mask |= CAP_CRC_48B; 7043 if (port_ltp & PORT_LTP_CRC_MODE_PER_LANE) 7044 cap_mask |= CAP_CRC_12B_16B_PER_LANE; 7045 7046 return cap_mask; 7047 } 7048 7049 /* 7050 * Convert a single DC LCB CRC mode to an OPA Port LTP mask. 7051 */ 7052 static int lcb_to_port_ltp(int lcb_crc) 7053 { 7054 int port_ltp = 0; 7055 7056 if (lcb_crc == LCB_CRC_12B_16B_PER_LANE) 7057 port_ltp = PORT_LTP_CRC_MODE_PER_LANE; 7058 else if (lcb_crc == LCB_CRC_48B) 7059 port_ltp = PORT_LTP_CRC_MODE_48; 7060 else if (lcb_crc == LCB_CRC_14B) 7061 port_ltp = PORT_LTP_CRC_MODE_14; 7062 else 7063 port_ltp = PORT_LTP_CRC_MODE_16; 7064 7065 return port_ltp; 7066 } 7067 7068 /* 7069 * Our neighbor has indicated that we are allowed to act as a fabric 7070 * manager, so place the full management partition key in the second 7071 * (0-based) pkey array position (see OPAv1, section 20.2.2.6.8). Note 7072 * that we should already have the limited management partition key in 7073 * array element 1, and also that the port is not yet up when 7074 * add_full_mgmt_pkey() is invoked. 7075 */ 7076 static void add_full_mgmt_pkey(struct hfi1_pportdata *ppd) 7077 { 7078 struct hfi1_devdata *dd = ppd->dd; 7079 7080 /* Sanity check - ppd->pkeys[2] should be 0, or already initalized */ 7081 if (!((ppd->pkeys[2] == 0) || (ppd->pkeys[2] == FULL_MGMT_P_KEY))) 7082 dd_dev_warn(dd, "%s pkey[2] already set to 0x%x, resetting it to 0x%x\n", 7083 __func__, ppd->pkeys[2], FULL_MGMT_P_KEY); 7084 ppd->pkeys[2] = FULL_MGMT_P_KEY; 7085 (void)hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_PKEYS, 0); 7086 hfi1_event_pkey_change(ppd->dd, ppd->port); 7087 } 7088 7089 static void clear_full_mgmt_pkey(struct hfi1_pportdata *ppd) 7090 { 7091 if (ppd->pkeys[2] != 0) { 7092 ppd->pkeys[2] = 0; 7093 (void)hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_PKEYS, 0); 7094 hfi1_event_pkey_change(ppd->dd, ppd->port); 7095 } 7096 } 7097 7098 /* 7099 * Convert the given link width to the OPA link width bitmask. 7100 */ 7101 static u16 link_width_to_bits(struct hfi1_devdata *dd, u16 width) 7102 { 7103 switch (width) { 7104 case 0: 7105 /* 7106 * Simulator and quick linkup do not set the width. 7107 * Just set it to 4x without complaint. 7108 */ 7109 if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR || quick_linkup) 7110 return OPA_LINK_WIDTH_4X; 7111 return 0; /* no lanes up */ 7112 case 1: return OPA_LINK_WIDTH_1X; 7113 case 2: return OPA_LINK_WIDTH_2X; 7114 case 3: return OPA_LINK_WIDTH_3X; 7115 default: 7116 dd_dev_info(dd, "%s: invalid width %d, using 4\n", 7117 __func__, width); 7118 /* fall through */ 7119 case 4: return OPA_LINK_WIDTH_4X; 7120 } 7121 } 7122 7123 /* 7124 * Do a population count on the bottom nibble. 7125 */ 7126 static const u8 bit_counts[16] = { 7127 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4 7128 }; 7129 7130 static inline u8 nibble_to_count(u8 nibble) 7131 { 7132 return bit_counts[nibble & 0xf]; 7133 } 7134 7135 /* 7136 * Read the active lane information from the 8051 registers and return 7137 * their widths. 7138 * 7139 * Active lane information is found in these 8051 registers: 7140 * enable_lane_tx 7141 * enable_lane_rx 7142 */ 7143 static void get_link_widths(struct hfi1_devdata *dd, u16 *tx_width, 7144 u16 *rx_width) 7145 { 7146 u16 tx, rx; 7147 u8 enable_lane_rx; 7148 u8 enable_lane_tx; 7149 u8 tx_polarity_inversion; 7150 u8 rx_polarity_inversion; 7151 u8 max_rate; 7152 7153 /* read the active lanes */ 7154 read_tx_settings(dd, &enable_lane_tx, &tx_polarity_inversion, 7155 &rx_polarity_inversion, &max_rate); 7156 read_local_lni(dd, &enable_lane_rx); 7157 7158 /* convert to counts */ 7159 tx = nibble_to_count(enable_lane_tx); 7160 rx = nibble_to_count(enable_lane_rx); 7161 7162 /* 7163 * Set link_speed_active here, overriding what was set in 7164 * handle_verify_cap(). The ASIC 8051 firmware does not correctly 7165 * set the max_rate field in handle_verify_cap until v0.19. 7166 */ 7167 if ((dd->icode == ICODE_RTL_SILICON) && 7168 (dd->dc8051_ver < dc8051_ver(0, 19))) { 7169 /* max_rate: 0 = 12.5G, 1 = 25G */ 7170 switch (max_rate) { 7171 case 0: 7172 dd->pport[0].link_speed_active = OPA_LINK_SPEED_12_5G; 7173 break; 7174 default: 7175 dd_dev_err(dd, 7176 "%s: unexpected max rate %d, using 25Gb\n", 7177 __func__, (int)max_rate); 7178 /* fall through */ 7179 case 1: 7180 dd->pport[0].link_speed_active = OPA_LINK_SPEED_25G; 7181 break; 7182 } 7183 } 7184 7185 dd_dev_info(dd, 7186 "Fabric active lanes (width): tx 0x%x (%d), rx 0x%x (%d)\n", 7187 enable_lane_tx, tx, enable_lane_rx, rx); 7188 *tx_width = link_width_to_bits(dd, tx); 7189 *rx_width = link_width_to_bits(dd, rx); 7190 } 7191 7192 /* 7193 * Read verify_cap_local_fm_link_width[1] to obtain the link widths. 7194 * Valid after the end of VerifyCap and during LinkUp. Does not change 7195 * after link up. I.e. look elsewhere for downgrade information. 7196 * 7197 * Bits are: 7198 * + bits [7:4] contain the number of active transmitters 7199 * + bits [3:0] contain the number of active receivers 7200 * These are numbers 1 through 4 and can be different values if the 7201 * link is asymmetric. 7202 * 7203 * verify_cap_local_fm_link_width[0] retains its original value. 7204 */ 7205 static void get_linkup_widths(struct hfi1_devdata *dd, u16 *tx_width, 7206 u16 *rx_width) 7207 { 7208 u16 widths, tx, rx; 7209 u8 misc_bits, local_flags; 7210 u16 active_tx, active_rx; 7211 7212 read_vc_local_link_width(dd, &misc_bits, &local_flags, &widths); 7213 tx = widths >> 12; 7214 rx = (widths >> 8) & 0xf; 7215 7216 *tx_width = link_width_to_bits(dd, tx); 7217 *rx_width = link_width_to_bits(dd, rx); 7218 7219 /* print the active widths */ 7220 get_link_widths(dd, &active_tx, &active_rx); 7221 } 7222 7223 /* 7224 * Set ppd->link_width_active and ppd->link_width_downgrade_active using 7225 * hardware information when the link first comes up. 7226 * 7227 * The link width is not available until after VerifyCap.AllFramesReceived 7228 * (the trigger for handle_verify_cap), so this is outside that routine 7229 * and should be called when the 8051 signals linkup. 7230 */ 7231 void get_linkup_link_widths(struct hfi1_pportdata *ppd) 7232 { 7233 u16 tx_width, rx_width; 7234 7235 /* get end-of-LNI link widths */ 7236 get_linkup_widths(ppd->dd, &tx_width, &rx_width); 7237 7238 /* use tx_width as the link is supposed to be symmetric on link up */ 7239 ppd->link_width_active = tx_width; 7240 /* link width downgrade active (LWD.A) starts out matching LW.A */ 7241 ppd->link_width_downgrade_tx_active = ppd->link_width_active; 7242 ppd->link_width_downgrade_rx_active = ppd->link_width_active; 7243 /* per OPA spec, on link up LWD.E resets to LWD.S */ 7244 ppd->link_width_downgrade_enabled = ppd->link_width_downgrade_supported; 7245 /* cache the active egress rate (units {10^6 bits/sec]) */ 7246 ppd->current_egress_rate = active_egress_rate(ppd); 7247 } 7248 7249 /* 7250 * Handle a verify capabilities interrupt from the 8051. 7251 * 7252 * This is a work-queue function outside of the interrupt. 7253 */ 7254 void handle_verify_cap(struct work_struct *work) 7255 { 7256 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata, 7257 link_vc_work); 7258 struct hfi1_devdata *dd = ppd->dd; 7259 u64 reg; 7260 u8 power_management; 7261 u8 continious; 7262 u8 vcu; 7263 u8 vau; 7264 u8 z; 7265 u16 vl15buf; 7266 u16 link_widths; 7267 u16 crc_mask; 7268 u16 crc_val; 7269 u16 device_id; 7270 u16 active_tx, active_rx; 7271 u8 partner_supported_crc; 7272 u8 remote_tx_rate; 7273 u8 device_rev; 7274 7275 set_link_state(ppd, HLS_VERIFY_CAP); 7276 7277 lcb_shutdown(dd, 0); 7278 adjust_lcb_for_fpga_serdes(dd); 7279 7280 /* 7281 * These are now valid: 7282 * remote VerifyCap fields in the general LNI config 7283 * CSR DC8051_STS_REMOTE_GUID 7284 * CSR DC8051_STS_REMOTE_NODE_TYPE 7285 * CSR DC8051_STS_REMOTE_FM_SECURITY 7286 * CSR DC8051_STS_REMOTE_PORT_NO 7287 */ 7288 7289 read_vc_remote_phy(dd, &power_management, &continious); 7290 read_vc_remote_fabric(dd, &vau, &z, &vcu, &vl15buf, 7291 &partner_supported_crc); 7292 read_vc_remote_link_width(dd, &remote_tx_rate, &link_widths); 7293 read_remote_device_id(dd, &device_id, &device_rev); 7294 /* 7295 * And the 'MgmtAllowed' information, which is exchanged during 7296 * LNI, is also be available at this point. 7297 */ 7298 read_mgmt_allowed(dd, &ppd->mgmt_allowed); 7299 /* print the active widths */ 7300 get_link_widths(dd, &active_tx, &active_rx); 7301 dd_dev_info(dd, 7302 "Peer PHY: power management 0x%x, continuous updates 0x%x\n", 7303 (int)power_management, (int)continious); 7304 dd_dev_info(dd, 7305 "Peer Fabric: vAU %d, Z %d, vCU %d, vl15 credits 0x%x, CRC sizes 0x%x\n", 7306 (int)vau, (int)z, (int)vcu, (int)vl15buf, 7307 (int)partner_supported_crc); 7308 dd_dev_info(dd, "Peer Link Width: tx rate 0x%x, widths 0x%x\n", 7309 (u32)remote_tx_rate, (u32)link_widths); 7310 dd_dev_info(dd, "Peer Device ID: 0x%04x, Revision 0x%02x\n", 7311 (u32)device_id, (u32)device_rev); 7312 /* 7313 * The peer vAU value just read is the peer receiver value. HFI does 7314 * not support a transmit vAU of 0 (AU == 8). We advertised that 7315 * with Z=1 in the fabric capabilities sent to the peer. The peer 7316 * will see our Z=1, and, if it advertised a vAU of 0, will move its 7317 * receive to vAU of 1 (AU == 16). Do the same here. We do not care 7318 * about the peer Z value - our sent vAU is 3 (hardwired) and is not 7319 * subject to the Z value exception. 7320 */ 7321 if (vau == 0) 7322 vau = 1; 7323 set_up_vl15(dd, vau, vl15buf); 7324 7325 /* set up the LCB CRC mode */ 7326 crc_mask = ppd->port_crc_mode_enabled & partner_supported_crc; 7327 7328 /* order is important: use the lowest bit in common */ 7329 if (crc_mask & CAP_CRC_14B) 7330 crc_val = LCB_CRC_14B; 7331 else if (crc_mask & CAP_CRC_48B) 7332 crc_val = LCB_CRC_48B; 7333 else if (crc_mask & CAP_CRC_12B_16B_PER_LANE) 7334 crc_val = LCB_CRC_12B_16B_PER_LANE; 7335 else 7336 crc_val = LCB_CRC_16B; 7337 7338 dd_dev_info(dd, "Final LCB CRC mode: %d\n", (int)crc_val); 7339 write_csr(dd, DC_LCB_CFG_CRC_MODE, 7340 (u64)crc_val << DC_LCB_CFG_CRC_MODE_TX_VAL_SHIFT); 7341 7342 /* set (14b only) or clear sideband credit */ 7343 reg = read_csr(dd, SEND_CM_CTRL); 7344 if (crc_val == LCB_CRC_14B && crc_14b_sideband) { 7345 write_csr(dd, SEND_CM_CTRL, 7346 reg | SEND_CM_CTRL_FORCE_CREDIT_MODE_SMASK); 7347 } else { 7348 write_csr(dd, SEND_CM_CTRL, 7349 reg & ~SEND_CM_CTRL_FORCE_CREDIT_MODE_SMASK); 7350 } 7351 7352 ppd->link_speed_active = 0; /* invalid value */ 7353 if (dd->dc8051_ver < dc8051_ver(0, 20)) { 7354 /* remote_tx_rate: 0 = 12.5G, 1 = 25G */ 7355 switch (remote_tx_rate) { 7356 case 0: 7357 ppd->link_speed_active = OPA_LINK_SPEED_12_5G; 7358 break; 7359 case 1: 7360 ppd->link_speed_active = OPA_LINK_SPEED_25G; 7361 break; 7362 } 7363 } else { 7364 /* actual rate is highest bit of the ANDed rates */ 7365 u8 rate = remote_tx_rate & ppd->local_tx_rate; 7366 7367 if (rate & 2) 7368 ppd->link_speed_active = OPA_LINK_SPEED_25G; 7369 else if (rate & 1) 7370 ppd->link_speed_active = OPA_LINK_SPEED_12_5G; 7371 } 7372 if (ppd->link_speed_active == 0) { 7373 dd_dev_err(dd, "%s: unexpected remote tx rate %d, using 25Gb\n", 7374 __func__, (int)remote_tx_rate); 7375 ppd->link_speed_active = OPA_LINK_SPEED_25G; 7376 } 7377 7378 /* 7379 * Cache the values of the supported, enabled, and active 7380 * LTP CRC modes to return in 'portinfo' queries. But the bit 7381 * flags that are returned in the portinfo query differ from 7382 * what's in the link_crc_mask, crc_sizes, and crc_val 7383 * variables. Convert these here. 7384 */ 7385 ppd->port_ltp_crc_mode = cap_to_port_ltp(link_crc_mask) << 8; 7386 /* supported crc modes */ 7387 ppd->port_ltp_crc_mode |= 7388 cap_to_port_ltp(ppd->port_crc_mode_enabled) << 4; 7389 /* enabled crc modes */ 7390 ppd->port_ltp_crc_mode |= lcb_to_port_ltp(crc_val); 7391 /* active crc mode */ 7392 7393 /* set up the remote credit return table */ 7394 assign_remote_cm_au_table(dd, vcu); 7395 7396 /* 7397 * The LCB is reset on entry to handle_verify_cap(), so this must 7398 * be applied on every link up. 7399 * 7400 * Adjust LCB error kill enable to kill the link if 7401 * these RBUF errors are seen: 7402 * REPLAY_BUF_MBE_SMASK 7403 * FLIT_INPUT_BUF_MBE_SMASK 7404 */ 7405 if (is_ax(dd)) { /* fixed in B0 */ 7406 reg = read_csr(dd, DC_LCB_CFG_LINK_KILL_EN); 7407 reg |= DC_LCB_CFG_LINK_KILL_EN_REPLAY_BUF_MBE_SMASK 7408 | DC_LCB_CFG_LINK_KILL_EN_FLIT_INPUT_BUF_MBE_SMASK; 7409 write_csr(dd, DC_LCB_CFG_LINK_KILL_EN, reg); 7410 } 7411 7412 /* pull LCB fifos out of reset - all fifo clocks must be stable */ 7413 write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0); 7414 7415 /* give 8051 access to the LCB CSRs */ 7416 write_csr(dd, DC_LCB_ERR_EN, 0); /* mask LCB errors */ 7417 set_8051_lcb_access(dd); 7418 7419 ppd->neighbor_guid = 7420 read_csr(dd, DC_DC8051_STS_REMOTE_GUID); 7421 ppd->neighbor_port_number = read_csr(dd, DC_DC8051_STS_REMOTE_PORT_NO) & 7422 DC_DC8051_STS_REMOTE_PORT_NO_VAL_SMASK; 7423 ppd->neighbor_type = 7424 read_csr(dd, DC_DC8051_STS_REMOTE_NODE_TYPE) & 7425 DC_DC8051_STS_REMOTE_NODE_TYPE_VAL_MASK; 7426 ppd->neighbor_fm_security = 7427 read_csr(dd, DC_DC8051_STS_REMOTE_FM_SECURITY) & 7428 DC_DC8051_STS_LOCAL_FM_SECURITY_DISABLED_MASK; 7429 dd_dev_info(dd, 7430 "Neighbor Guid: %llx Neighbor type %d MgmtAllowed %d FM security bypass %d\n", 7431 ppd->neighbor_guid, ppd->neighbor_type, 7432 ppd->mgmt_allowed, ppd->neighbor_fm_security); 7433 if (ppd->mgmt_allowed) 7434 add_full_mgmt_pkey(ppd); 7435 7436 /* tell the 8051 to go to LinkUp */ 7437 set_link_state(ppd, HLS_GOING_UP); 7438 } 7439 7440 /* 7441 * Apply the link width downgrade enabled policy against the current active 7442 * link widths. 7443 * 7444 * Called when the enabled policy changes or the active link widths change. 7445 */ 7446 void apply_link_downgrade_policy(struct hfi1_pportdata *ppd, int refresh_widths) 7447 { 7448 int do_bounce = 0; 7449 int tries; 7450 u16 lwde; 7451 u16 tx, rx; 7452 7453 /* use the hls lock to avoid a race with actual link up */ 7454 tries = 0; 7455 retry: 7456 mutex_lock(&ppd->hls_lock); 7457 /* only apply if the link is up */ 7458 if (ppd->host_link_state & HLS_DOWN) { 7459 /* still going up..wait and retry */ 7460 if (ppd->host_link_state & HLS_GOING_UP) { 7461 if (++tries < 1000) { 7462 mutex_unlock(&ppd->hls_lock); 7463 usleep_range(100, 120); /* arbitrary */ 7464 goto retry; 7465 } 7466 dd_dev_err(ppd->dd, 7467 "%s: giving up waiting for link state change\n", 7468 __func__); 7469 } 7470 goto done; 7471 } 7472 7473 lwde = ppd->link_width_downgrade_enabled; 7474 7475 if (refresh_widths) { 7476 get_link_widths(ppd->dd, &tx, &rx); 7477 ppd->link_width_downgrade_tx_active = tx; 7478 ppd->link_width_downgrade_rx_active = rx; 7479 } 7480 7481 if (ppd->link_width_downgrade_tx_active == 0 || 7482 ppd->link_width_downgrade_rx_active == 0) { 7483 /* the 8051 reported a dead link as a downgrade */ 7484 dd_dev_err(ppd->dd, "Link downgrade is really a link down, ignoring\n"); 7485 } else if (lwde == 0) { 7486 /* downgrade is disabled */ 7487 7488 /* bounce if not at starting active width */ 7489 if ((ppd->link_width_active != 7490 ppd->link_width_downgrade_tx_active) || 7491 (ppd->link_width_active != 7492 ppd->link_width_downgrade_rx_active)) { 7493 dd_dev_err(ppd->dd, 7494 "Link downgrade is disabled and link has downgraded, downing link\n"); 7495 dd_dev_err(ppd->dd, 7496 " original 0x%x, tx active 0x%x, rx active 0x%x\n", 7497 ppd->link_width_active, 7498 ppd->link_width_downgrade_tx_active, 7499 ppd->link_width_downgrade_rx_active); 7500 do_bounce = 1; 7501 } 7502 } else if ((lwde & ppd->link_width_downgrade_tx_active) == 0 || 7503 (lwde & ppd->link_width_downgrade_rx_active) == 0) { 7504 /* Tx or Rx is outside the enabled policy */ 7505 dd_dev_err(ppd->dd, 7506 "Link is outside of downgrade allowed, downing link\n"); 7507 dd_dev_err(ppd->dd, 7508 " enabled 0x%x, tx active 0x%x, rx active 0x%x\n", 7509 lwde, ppd->link_width_downgrade_tx_active, 7510 ppd->link_width_downgrade_rx_active); 7511 do_bounce = 1; 7512 } 7513 7514 done: 7515 mutex_unlock(&ppd->hls_lock); 7516 7517 if (do_bounce) { 7518 set_link_down_reason(ppd, OPA_LINKDOWN_REASON_WIDTH_POLICY, 0, 7519 OPA_LINKDOWN_REASON_WIDTH_POLICY); 7520 set_link_state(ppd, HLS_DN_OFFLINE); 7521 start_link(ppd); 7522 } 7523 } 7524 7525 /* 7526 * Handle a link downgrade interrupt from the 8051. 7527 * 7528 * This is a work-queue function outside of the interrupt. 7529 */ 7530 void handle_link_downgrade(struct work_struct *work) 7531 { 7532 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata, 7533 link_downgrade_work); 7534 7535 dd_dev_info(ppd->dd, "8051: Link width downgrade\n"); 7536 apply_link_downgrade_policy(ppd, 1); 7537 } 7538 7539 static char *dcc_err_string(char *buf, int buf_len, u64 flags) 7540 { 7541 return flag_string(buf, buf_len, flags, dcc_err_flags, 7542 ARRAY_SIZE(dcc_err_flags)); 7543 } 7544 7545 static char *lcb_err_string(char *buf, int buf_len, u64 flags) 7546 { 7547 return flag_string(buf, buf_len, flags, lcb_err_flags, 7548 ARRAY_SIZE(lcb_err_flags)); 7549 } 7550 7551 static char *dc8051_err_string(char *buf, int buf_len, u64 flags) 7552 { 7553 return flag_string(buf, buf_len, flags, dc8051_err_flags, 7554 ARRAY_SIZE(dc8051_err_flags)); 7555 } 7556 7557 static char *dc8051_info_err_string(char *buf, int buf_len, u64 flags) 7558 { 7559 return flag_string(buf, buf_len, flags, dc8051_info_err_flags, 7560 ARRAY_SIZE(dc8051_info_err_flags)); 7561 } 7562 7563 static char *dc8051_info_host_msg_string(char *buf, int buf_len, u64 flags) 7564 { 7565 return flag_string(buf, buf_len, flags, dc8051_info_host_msg_flags, 7566 ARRAY_SIZE(dc8051_info_host_msg_flags)); 7567 } 7568 7569 static void handle_8051_interrupt(struct hfi1_devdata *dd, u32 unused, u64 reg) 7570 { 7571 struct hfi1_pportdata *ppd = dd->pport; 7572 u64 info, err, host_msg; 7573 int queue_link_down = 0; 7574 char buf[96]; 7575 7576 /* look at the flags */ 7577 if (reg & DC_DC8051_ERR_FLG_SET_BY_8051_SMASK) { 7578 /* 8051 information set by firmware */ 7579 /* read DC8051_DBG_ERR_INFO_SET_BY_8051 for details */ 7580 info = read_csr(dd, DC_DC8051_DBG_ERR_INFO_SET_BY_8051); 7581 err = (info >> DC_DC8051_DBG_ERR_INFO_SET_BY_8051_ERROR_SHIFT) 7582 & DC_DC8051_DBG_ERR_INFO_SET_BY_8051_ERROR_MASK; 7583 host_msg = (info >> 7584 DC_DC8051_DBG_ERR_INFO_SET_BY_8051_HOST_MSG_SHIFT) 7585 & DC_DC8051_DBG_ERR_INFO_SET_BY_8051_HOST_MSG_MASK; 7586 7587 /* 7588 * Handle error flags. 7589 */ 7590 if (err & FAILED_LNI) { 7591 /* 7592 * LNI error indications are cleared by the 8051 7593 * only when starting polling. Only pay attention 7594 * to them when in the states that occur during 7595 * LNI. 7596 */ 7597 if (ppd->host_link_state 7598 & (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) { 7599 queue_link_down = 1; 7600 dd_dev_info(dd, "Link error: %s\n", 7601 dc8051_info_err_string(buf, 7602 sizeof(buf), 7603 err & 7604 FAILED_LNI)); 7605 } 7606 err &= ~(u64)FAILED_LNI; 7607 } 7608 /* unknown frames can happen durning LNI, just count */ 7609 if (err & UNKNOWN_FRAME) { 7610 ppd->unknown_frame_count++; 7611 err &= ~(u64)UNKNOWN_FRAME; 7612 } 7613 if (err) { 7614 /* report remaining errors, but do not do anything */ 7615 dd_dev_err(dd, "8051 info error: %s\n", 7616 dc8051_info_err_string(buf, sizeof(buf), 7617 err)); 7618 } 7619 7620 /* 7621 * Handle host message flags. 7622 */ 7623 if (host_msg & HOST_REQ_DONE) { 7624 /* 7625 * Presently, the driver does a busy wait for 7626 * host requests to complete. This is only an 7627 * informational message. 7628 * NOTE: The 8051 clears the host message 7629 * information *on the next 8051 command*. 7630 * Therefore, when linkup is achieved, 7631 * this flag will still be set. 7632 */ 7633 host_msg &= ~(u64)HOST_REQ_DONE; 7634 } 7635 if (host_msg & BC_SMA_MSG) { 7636 queue_work(ppd->hfi1_wq, &ppd->sma_message_work); 7637 host_msg &= ~(u64)BC_SMA_MSG; 7638 } 7639 if (host_msg & LINKUP_ACHIEVED) { 7640 dd_dev_info(dd, "8051: Link up\n"); 7641 queue_work(ppd->hfi1_wq, &ppd->link_up_work); 7642 host_msg &= ~(u64)LINKUP_ACHIEVED; 7643 } 7644 if (host_msg & EXT_DEVICE_CFG_REQ) { 7645 handle_8051_request(ppd); 7646 host_msg &= ~(u64)EXT_DEVICE_CFG_REQ; 7647 } 7648 if (host_msg & VERIFY_CAP_FRAME) { 7649 queue_work(ppd->hfi1_wq, &ppd->link_vc_work); 7650 host_msg &= ~(u64)VERIFY_CAP_FRAME; 7651 } 7652 if (host_msg & LINK_GOING_DOWN) { 7653 const char *extra = ""; 7654 /* no downgrade action needed if going down */ 7655 if (host_msg & LINK_WIDTH_DOWNGRADED) { 7656 host_msg &= ~(u64)LINK_WIDTH_DOWNGRADED; 7657 extra = " (ignoring downgrade)"; 7658 } 7659 dd_dev_info(dd, "8051: Link down%s\n", extra); 7660 queue_link_down = 1; 7661 host_msg &= ~(u64)LINK_GOING_DOWN; 7662 } 7663 if (host_msg & LINK_WIDTH_DOWNGRADED) { 7664 queue_work(ppd->hfi1_wq, &ppd->link_downgrade_work); 7665 host_msg &= ~(u64)LINK_WIDTH_DOWNGRADED; 7666 } 7667 if (host_msg) { 7668 /* report remaining messages, but do not do anything */ 7669 dd_dev_info(dd, "8051 info host message: %s\n", 7670 dc8051_info_host_msg_string(buf, 7671 sizeof(buf), 7672 host_msg)); 7673 } 7674 7675 reg &= ~DC_DC8051_ERR_FLG_SET_BY_8051_SMASK; 7676 } 7677 if (reg & DC_DC8051_ERR_FLG_LOST_8051_HEART_BEAT_SMASK) { 7678 /* 7679 * Lost the 8051 heartbeat. If this happens, we 7680 * receive constant interrupts about it. Disable 7681 * the interrupt after the first. 7682 */ 7683 dd_dev_err(dd, "Lost 8051 heartbeat\n"); 7684 write_csr(dd, DC_DC8051_ERR_EN, 7685 read_csr(dd, DC_DC8051_ERR_EN) & 7686 ~DC_DC8051_ERR_EN_LOST_8051_HEART_BEAT_SMASK); 7687 7688 reg &= ~DC_DC8051_ERR_FLG_LOST_8051_HEART_BEAT_SMASK; 7689 } 7690 if (reg) { 7691 /* report the error, but do not do anything */ 7692 dd_dev_err(dd, "8051 error: %s\n", 7693 dc8051_err_string(buf, sizeof(buf), reg)); 7694 } 7695 7696 if (queue_link_down) { 7697 /* 7698 * if the link is already going down or disabled, do not 7699 * queue another 7700 */ 7701 if ((ppd->host_link_state & 7702 (HLS_GOING_OFFLINE | HLS_LINK_COOLDOWN)) || 7703 ppd->link_enabled == 0) { 7704 dd_dev_info(dd, "%s: not queuing link down\n", 7705 __func__); 7706 } else { 7707 queue_work(ppd->hfi1_wq, &ppd->link_down_work); 7708 } 7709 } 7710 } 7711 7712 static const char * const fm_config_txt[] = { 7713 [0] = 7714 "BadHeadDist: Distance violation between two head flits", 7715 [1] = 7716 "BadTailDist: Distance violation between two tail flits", 7717 [2] = 7718 "BadCtrlDist: Distance violation between two credit control flits", 7719 [3] = 7720 "BadCrdAck: Credits return for unsupported VL", 7721 [4] = 7722 "UnsupportedVLMarker: Received VL Marker", 7723 [5] = 7724 "BadPreempt: Exceeded the preemption nesting level", 7725 [6] = 7726 "BadControlFlit: Received unsupported control flit", 7727 /* no 7 */ 7728 [8] = 7729 "UnsupportedVLMarker: Received VL Marker for unconfigured or disabled VL", 7730 }; 7731 7732 static const char * const port_rcv_txt[] = { 7733 [1] = 7734 "BadPktLen: Illegal PktLen", 7735 [2] = 7736 "PktLenTooLong: Packet longer than PktLen", 7737 [3] = 7738 "PktLenTooShort: Packet shorter than PktLen", 7739 [4] = 7740 "BadSLID: Illegal SLID (0, using multicast as SLID, does not include security validation of SLID)", 7741 [5] = 7742 "BadDLID: Illegal DLID (0, doesn't match HFI)", 7743 [6] = 7744 "BadL2: Illegal L2 opcode", 7745 [7] = 7746 "BadSC: Unsupported SC", 7747 [9] = 7748 "BadRC: Illegal RC", 7749 [11] = 7750 "PreemptError: Preempting with same VL", 7751 [12] = 7752 "PreemptVL15: Preempting a VL15 packet", 7753 }; 7754 7755 #define OPA_LDR_FMCONFIG_OFFSET 16 7756 #define OPA_LDR_PORTRCV_OFFSET 0 7757 static void handle_dcc_err(struct hfi1_devdata *dd, u32 unused, u64 reg) 7758 { 7759 u64 info, hdr0, hdr1; 7760 const char *extra; 7761 char buf[96]; 7762 struct hfi1_pportdata *ppd = dd->pport; 7763 u8 lcl_reason = 0; 7764 int do_bounce = 0; 7765 7766 if (reg & DCC_ERR_FLG_UNCORRECTABLE_ERR_SMASK) { 7767 if (!(dd->err_info_uncorrectable & OPA_EI_STATUS_SMASK)) { 7768 info = read_csr(dd, DCC_ERR_INFO_UNCORRECTABLE); 7769 dd->err_info_uncorrectable = info & OPA_EI_CODE_SMASK; 7770 /* set status bit */ 7771 dd->err_info_uncorrectable |= OPA_EI_STATUS_SMASK; 7772 } 7773 reg &= ~DCC_ERR_FLG_UNCORRECTABLE_ERR_SMASK; 7774 } 7775 7776 if (reg & DCC_ERR_FLG_LINK_ERR_SMASK) { 7777 struct hfi1_pportdata *ppd = dd->pport; 7778 /* this counter saturates at (2^32) - 1 */ 7779 if (ppd->link_downed < (u32)UINT_MAX) 7780 ppd->link_downed++; 7781 reg &= ~DCC_ERR_FLG_LINK_ERR_SMASK; 7782 } 7783 7784 if (reg & DCC_ERR_FLG_FMCONFIG_ERR_SMASK) { 7785 u8 reason_valid = 1; 7786 7787 info = read_csr(dd, DCC_ERR_INFO_FMCONFIG); 7788 if (!(dd->err_info_fmconfig & OPA_EI_STATUS_SMASK)) { 7789 dd->err_info_fmconfig = info & OPA_EI_CODE_SMASK; 7790 /* set status bit */ 7791 dd->err_info_fmconfig |= OPA_EI_STATUS_SMASK; 7792 } 7793 switch (info) { 7794 case 0: 7795 case 1: 7796 case 2: 7797 case 3: 7798 case 4: 7799 case 5: 7800 case 6: 7801 extra = fm_config_txt[info]; 7802 break; 7803 case 8: 7804 extra = fm_config_txt[info]; 7805 if (ppd->port_error_action & 7806 OPA_PI_MASK_FM_CFG_UNSUPPORTED_VL_MARKER) { 7807 do_bounce = 1; 7808 /* 7809 * lcl_reason cannot be derived from info 7810 * for this error 7811 */ 7812 lcl_reason = 7813 OPA_LINKDOWN_REASON_UNSUPPORTED_VL_MARKER; 7814 } 7815 break; 7816 default: 7817 reason_valid = 0; 7818 snprintf(buf, sizeof(buf), "reserved%lld", info); 7819 extra = buf; 7820 break; 7821 } 7822 7823 if (reason_valid && !do_bounce) { 7824 do_bounce = ppd->port_error_action & 7825 (1 << (OPA_LDR_FMCONFIG_OFFSET + info)); 7826 lcl_reason = info + OPA_LINKDOWN_REASON_BAD_HEAD_DIST; 7827 } 7828 7829 /* just report this */ 7830 dd_dev_info(dd, "DCC Error: fmconfig error: %s\n", extra); 7831 reg &= ~DCC_ERR_FLG_FMCONFIG_ERR_SMASK; 7832 } 7833 7834 if (reg & DCC_ERR_FLG_RCVPORT_ERR_SMASK) { 7835 u8 reason_valid = 1; 7836 7837 info = read_csr(dd, DCC_ERR_INFO_PORTRCV); 7838 hdr0 = read_csr(dd, DCC_ERR_INFO_PORTRCV_HDR0); 7839 hdr1 = read_csr(dd, DCC_ERR_INFO_PORTRCV_HDR1); 7840 if (!(dd->err_info_rcvport.status_and_code & 7841 OPA_EI_STATUS_SMASK)) { 7842 dd->err_info_rcvport.status_and_code = 7843 info & OPA_EI_CODE_SMASK; 7844 /* set status bit */ 7845 dd->err_info_rcvport.status_and_code |= 7846 OPA_EI_STATUS_SMASK; 7847 /* 7848 * save first 2 flits in the packet that caused 7849 * the error 7850 */ 7851 dd->err_info_rcvport.packet_flit1 = hdr0; 7852 dd->err_info_rcvport.packet_flit2 = hdr1; 7853 } 7854 switch (info) { 7855 case 1: 7856 case 2: 7857 case 3: 7858 case 4: 7859 case 5: 7860 case 6: 7861 case 7: 7862 case 9: 7863 case 11: 7864 case 12: 7865 extra = port_rcv_txt[info]; 7866 break; 7867 default: 7868 reason_valid = 0; 7869 snprintf(buf, sizeof(buf), "reserved%lld", info); 7870 extra = buf; 7871 break; 7872 } 7873 7874 if (reason_valid && !do_bounce) { 7875 do_bounce = ppd->port_error_action & 7876 (1 << (OPA_LDR_PORTRCV_OFFSET + info)); 7877 lcl_reason = info + OPA_LINKDOWN_REASON_RCV_ERROR_0; 7878 } 7879 7880 /* just report this */ 7881 dd_dev_info(dd, "DCC Error: PortRcv error: %s\n", extra); 7882 dd_dev_info(dd, " hdr0 0x%llx, hdr1 0x%llx\n", 7883 hdr0, hdr1); 7884 7885 reg &= ~DCC_ERR_FLG_RCVPORT_ERR_SMASK; 7886 } 7887 7888 if (reg & DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_UC_SMASK) { 7889 /* informative only */ 7890 dd_dev_info(dd, "8051 access to LCB blocked\n"); 7891 reg &= ~DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_UC_SMASK; 7892 } 7893 if (reg & DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_HOST_SMASK) { 7894 /* informative only */ 7895 dd_dev_info(dd, "host access to LCB blocked\n"); 7896 reg &= ~DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_HOST_SMASK; 7897 } 7898 7899 /* report any remaining errors */ 7900 if (reg) 7901 dd_dev_info(dd, "DCC Error: %s\n", 7902 dcc_err_string(buf, sizeof(buf), reg)); 7903 7904 if (lcl_reason == 0) 7905 lcl_reason = OPA_LINKDOWN_REASON_UNKNOWN; 7906 7907 if (do_bounce) { 7908 dd_dev_info(dd, "%s: PortErrorAction bounce\n", __func__); 7909 set_link_down_reason(ppd, lcl_reason, 0, lcl_reason); 7910 queue_work(ppd->hfi1_wq, &ppd->link_bounce_work); 7911 } 7912 } 7913 7914 static void handle_lcb_err(struct hfi1_devdata *dd, u32 unused, u64 reg) 7915 { 7916 char buf[96]; 7917 7918 dd_dev_info(dd, "LCB Error: %s\n", 7919 lcb_err_string(buf, sizeof(buf), reg)); 7920 } 7921 7922 /* 7923 * CCE block DC interrupt. Source is < 8. 7924 */ 7925 static void is_dc_int(struct hfi1_devdata *dd, unsigned int source) 7926 { 7927 const struct err_reg_info *eri = &dc_errs[source]; 7928 7929 if (eri->handler) { 7930 interrupt_clear_down(dd, 0, eri); 7931 } else if (source == 3 /* dc_lbm_int */) { 7932 /* 7933 * This indicates that a parity error has occurred on the 7934 * address/control lines presented to the LBM. The error 7935 * is a single pulse, there is no associated error flag, 7936 * and it is non-maskable. This is because if a parity 7937 * error occurs on the request the request is dropped. 7938 * This should never occur, but it is nice to know if it 7939 * ever does. 7940 */ 7941 dd_dev_err(dd, "Parity error in DC LBM block\n"); 7942 } else { 7943 dd_dev_err(dd, "Invalid DC interrupt %u\n", source); 7944 } 7945 } 7946 7947 /* 7948 * TX block send credit interrupt. Source is < 160. 7949 */ 7950 static void is_send_credit_int(struct hfi1_devdata *dd, unsigned int source) 7951 { 7952 sc_group_release_update(dd, source); 7953 } 7954 7955 /* 7956 * TX block SDMA interrupt. Source is < 48. 7957 * 7958 * SDMA interrupts are grouped by type: 7959 * 7960 * 0 - N-1 = SDma 7961 * N - 2N-1 = SDmaProgress 7962 * 2N - 3N-1 = SDmaIdle 7963 */ 7964 static void is_sdma_eng_int(struct hfi1_devdata *dd, unsigned int source) 7965 { 7966 /* what interrupt */ 7967 unsigned int what = source / TXE_NUM_SDMA_ENGINES; 7968 /* which engine */ 7969 unsigned int which = source % TXE_NUM_SDMA_ENGINES; 7970 7971 #ifdef CONFIG_SDMA_VERBOSITY 7972 dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", which, 7973 slashstrip(__FILE__), __LINE__, __func__); 7974 sdma_dumpstate(&dd->per_sdma[which]); 7975 #endif 7976 7977 if (likely(what < 3 && which < dd->num_sdma)) { 7978 sdma_engine_interrupt(&dd->per_sdma[which], 1ull << source); 7979 } else { 7980 /* should not happen */ 7981 dd_dev_err(dd, "Invalid SDMA interrupt 0x%x\n", source); 7982 } 7983 } 7984 7985 /* 7986 * RX block receive available interrupt. Source is < 160. 7987 */ 7988 static void is_rcv_avail_int(struct hfi1_devdata *dd, unsigned int source) 7989 { 7990 struct hfi1_ctxtdata *rcd; 7991 char *err_detail; 7992 7993 if (likely(source < dd->num_rcv_contexts)) { 7994 rcd = dd->rcd[source]; 7995 if (rcd) { 7996 if (source < dd->first_user_ctxt) 7997 rcd->do_interrupt(rcd, 0); 7998 else 7999 handle_user_interrupt(rcd); 8000 return; /* OK */ 8001 } 8002 /* received an interrupt, but no rcd */ 8003 err_detail = "dataless"; 8004 } else { 8005 /* received an interrupt, but are not using that context */ 8006 err_detail = "out of range"; 8007 } 8008 dd_dev_err(dd, "unexpected %s receive available context interrupt %u\n", 8009 err_detail, source); 8010 } 8011 8012 /* 8013 * RX block receive urgent interrupt. Source is < 160. 8014 */ 8015 static void is_rcv_urgent_int(struct hfi1_devdata *dd, unsigned int source) 8016 { 8017 struct hfi1_ctxtdata *rcd; 8018 char *err_detail; 8019 8020 if (likely(source < dd->num_rcv_contexts)) { 8021 rcd = dd->rcd[source]; 8022 if (rcd) { 8023 /* only pay attention to user urgent interrupts */ 8024 if (source >= dd->first_user_ctxt) 8025 handle_user_interrupt(rcd); 8026 return; /* OK */ 8027 } 8028 /* received an interrupt, but no rcd */ 8029 err_detail = "dataless"; 8030 } else { 8031 /* received an interrupt, but are not using that context */ 8032 err_detail = "out of range"; 8033 } 8034 dd_dev_err(dd, "unexpected %s receive urgent context interrupt %u\n", 8035 err_detail, source); 8036 } 8037 8038 /* 8039 * Reserved range interrupt. Should not be called in normal operation. 8040 */ 8041 static void is_reserved_int(struct hfi1_devdata *dd, unsigned int source) 8042 { 8043 char name[64]; 8044 8045 dd_dev_err(dd, "unexpected %s interrupt\n", 8046 is_reserved_name(name, sizeof(name), source)); 8047 } 8048 8049 static const struct is_table is_table[] = { 8050 /* 8051 * start end 8052 * name func interrupt func 8053 */ 8054 { IS_GENERAL_ERR_START, IS_GENERAL_ERR_END, 8055 is_misc_err_name, is_misc_err_int }, 8056 { IS_SDMAENG_ERR_START, IS_SDMAENG_ERR_END, 8057 is_sdma_eng_err_name, is_sdma_eng_err_int }, 8058 { IS_SENDCTXT_ERR_START, IS_SENDCTXT_ERR_END, 8059 is_sendctxt_err_name, is_sendctxt_err_int }, 8060 { IS_SDMA_START, IS_SDMA_END, 8061 is_sdma_eng_name, is_sdma_eng_int }, 8062 { IS_VARIOUS_START, IS_VARIOUS_END, 8063 is_various_name, is_various_int }, 8064 { IS_DC_START, IS_DC_END, 8065 is_dc_name, is_dc_int }, 8066 { IS_RCVAVAIL_START, IS_RCVAVAIL_END, 8067 is_rcv_avail_name, is_rcv_avail_int }, 8068 { IS_RCVURGENT_START, IS_RCVURGENT_END, 8069 is_rcv_urgent_name, is_rcv_urgent_int }, 8070 { IS_SENDCREDIT_START, IS_SENDCREDIT_END, 8071 is_send_credit_name, is_send_credit_int}, 8072 { IS_RESERVED_START, IS_RESERVED_END, 8073 is_reserved_name, is_reserved_int}, 8074 }; 8075 8076 /* 8077 * Interrupt source interrupt - called when the given source has an interrupt. 8078 * Source is a bit index into an array of 64-bit integers. 8079 */ 8080 static void is_interrupt(struct hfi1_devdata *dd, unsigned int source) 8081 { 8082 const struct is_table *entry; 8083 8084 /* avoids a double compare by walking the table in-order */ 8085 for (entry = &is_table[0]; entry->is_name; entry++) { 8086 if (source < entry->end) { 8087 trace_hfi1_interrupt(dd, entry, source); 8088 entry->is_int(dd, source - entry->start); 8089 return; 8090 } 8091 } 8092 /* fell off the end */ 8093 dd_dev_err(dd, "invalid interrupt source %u\n", source); 8094 } 8095 8096 /* 8097 * General interrupt handler. This is able to correctly handle 8098 * all interrupts in case INTx is used. 8099 */ 8100 static irqreturn_t general_interrupt(int irq, void *data) 8101 { 8102 struct hfi1_devdata *dd = data; 8103 u64 regs[CCE_NUM_INT_CSRS]; 8104 u32 bit; 8105 int i; 8106 8107 this_cpu_inc(*dd->int_counter); 8108 8109 /* phase 1: scan and clear all handled interrupts */ 8110 for (i = 0; i < CCE_NUM_INT_CSRS; i++) { 8111 if (dd->gi_mask[i] == 0) { 8112 regs[i] = 0; /* used later */ 8113 continue; 8114 } 8115 regs[i] = read_csr(dd, CCE_INT_STATUS + (8 * i)) & 8116 dd->gi_mask[i]; 8117 /* only clear if anything is set */ 8118 if (regs[i]) 8119 write_csr(dd, CCE_INT_CLEAR + (8 * i), regs[i]); 8120 } 8121 8122 /* phase 2: call the appropriate handler */ 8123 for_each_set_bit(bit, (unsigned long *)®s[0], 8124 CCE_NUM_INT_CSRS * 64) { 8125 is_interrupt(dd, bit); 8126 } 8127 8128 return IRQ_HANDLED; 8129 } 8130 8131 static irqreturn_t sdma_interrupt(int irq, void *data) 8132 { 8133 struct sdma_engine *sde = data; 8134 struct hfi1_devdata *dd = sde->dd; 8135 u64 status; 8136 8137 #ifdef CONFIG_SDMA_VERBOSITY 8138 dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx, 8139 slashstrip(__FILE__), __LINE__, __func__); 8140 sdma_dumpstate(sde); 8141 #endif 8142 8143 this_cpu_inc(*dd->int_counter); 8144 8145 /* This read_csr is really bad in the hot path */ 8146 status = read_csr(dd, 8147 CCE_INT_STATUS + (8 * (IS_SDMA_START / 64))) 8148 & sde->imask; 8149 if (likely(status)) { 8150 /* clear the interrupt(s) */ 8151 write_csr(dd, 8152 CCE_INT_CLEAR + (8 * (IS_SDMA_START / 64)), 8153 status); 8154 8155 /* handle the interrupt(s) */ 8156 sdma_engine_interrupt(sde, status); 8157 } else 8158 dd_dev_err(dd, "SDMA engine %u interrupt, but no status bits set\n", 8159 sde->this_idx); 8160 8161 return IRQ_HANDLED; 8162 } 8163 8164 /* 8165 * Clear the receive interrupt. Use a read of the interrupt clear CSR 8166 * to insure that the write completed. This does NOT guarantee that 8167 * queued DMA writes to memory from the chip are pushed. 8168 */ 8169 static inline void clear_recv_intr(struct hfi1_ctxtdata *rcd) 8170 { 8171 struct hfi1_devdata *dd = rcd->dd; 8172 u32 addr = CCE_INT_CLEAR + (8 * rcd->ireg); 8173 8174 mmiowb(); /* make sure everything before is written */ 8175 write_csr(dd, addr, rcd->imask); 8176 /* force the above write on the chip and get a value back */ 8177 (void)read_csr(dd, addr); 8178 } 8179 8180 /* force the receive interrupt */ 8181 void force_recv_intr(struct hfi1_ctxtdata *rcd) 8182 { 8183 write_csr(rcd->dd, CCE_INT_FORCE + (8 * rcd->ireg), rcd->imask); 8184 } 8185 8186 /* 8187 * Return non-zero if a packet is present. 8188 * 8189 * This routine is called when rechecking for packets after the RcvAvail 8190 * interrupt has been cleared down. First, do a quick check of memory for 8191 * a packet present. If not found, use an expensive CSR read of the context 8192 * tail to determine the actual tail. The CSR read is necessary because there 8193 * is no method to push pending DMAs to memory other than an interrupt and we 8194 * are trying to determine if we need to force an interrupt. 8195 */ 8196 static inline int check_packet_present(struct hfi1_ctxtdata *rcd) 8197 { 8198 u32 tail; 8199 int present; 8200 8201 if (!HFI1_CAP_IS_KSET(DMA_RTAIL)) 8202 present = (rcd->seq_cnt == 8203 rhf_rcv_seq(rhf_to_cpu(get_rhf_addr(rcd)))); 8204 else /* is RDMA rtail */ 8205 present = (rcd->head != get_rcvhdrtail(rcd)); 8206 8207 if (present) 8208 return 1; 8209 8210 /* fall back to a CSR read, correct indpendent of DMA_RTAIL */ 8211 tail = (u32)read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_TAIL); 8212 return rcd->head != tail; 8213 } 8214 8215 /* 8216 * Receive packet IRQ handler. This routine expects to be on its own IRQ. 8217 * This routine will try to handle packets immediately (latency), but if 8218 * it finds too many, it will invoke the thread handler (bandwitdh). The 8219 * chip receive interrupt is *not* cleared down until this or the thread (if 8220 * invoked) is finished. The intent is to avoid extra interrupts while we 8221 * are processing packets anyway. 8222 */ 8223 static irqreturn_t receive_context_interrupt(int irq, void *data) 8224 { 8225 struct hfi1_ctxtdata *rcd = data; 8226 struct hfi1_devdata *dd = rcd->dd; 8227 int disposition; 8228 int present; 8229 8230 trace_hfi1_receive_interrupt(dd, rcd->ctxt); 8231 this_cpu_inc(*dd->int_counter); 8232 aspm_ctx_disable(rcd); 8233 8234 /* receive interrupt remains blocked while processing packets */ 8235 disposition = rcd->do_interrupt(rcd, 0); 8236 8237 /* 8238 * Too many packets were seen while processing packets in this 8239 * IRQ handler. Invoke the handler thread. The receive interrupt 8240 * remains blocked. 8241 */ 8242 if (disposition == RCV_PKT_LIMIT) 8243 return IRQ_WAKE_THREAD; 8244 8245 /* 8246 * The packet processor detected no more packets. Clear the receive 8247 * interrupt and recheck for a packet packet that may have arrived 8248 * after the previous check and interrupt clear. If a packet arrived, 8249 * force another interrupt. 8250 */ 8251 clear_recv_intr(rcd); 8252 present = check_packet_present(rcd); 8253 if (present) 8254 force_recv_intr(rcd); 8255 8256 return IRQ_HANDLED; 8257 } 8258 8259 /* 8260 * Receive packet thread handler. This expects to be invoked with the 8261 * receive interrupt still blocked. 8262 */ 8263 static irqreturn_t receive_context_thread(int irq, void *data) 8264 { 8265 struct hfi1_ctxtdata *rcd = data; 8266 int present; 8267 8268 /* receive interrupt is still blocked from the IRQ handler */ 8269 (void)rcd->do_interrupt(rcd, 1); 8270 8271 /* 8272 * The packet processor will only return if it detected no more 8273 * packets. Hold IRQs here so we can safely clear the interrupt and 8274 * recheck for a packet that may have arrived after the previous 8275 * check and the interrupt clear. If a packet arrived, force another 8276 * interrupt. 8277 */ 8278 local_irq_disable(); 8279 clear_recv_intr(rcd); 8280 present = check_packet_present(rcd); 8281 if (present) 8282 force_recv_intr(rcd); 8283 local_irq_enable(); 8284 8285 return IRQ_HANDLED; 8286 } 8287 8288 /* ========================================================================= */ 8289 8290 u32 read_physical_state(struct hfi1_devdata *dd) 8291 { 8292 u64 reg; 8293 8294 reg = read_csr(dd, DC_DC8051_STS_CUR_STATE); 8295 return (reg >> DC_DC8051_STS_CUR_STATE_PORT_SHIFT) 8296 & DC_DC8051_STS_CUR_STATE_PORT_MASK; 8297 } 8298 8299 u32 read_logical_state(struct hfi1_devdata *dd) 8300 { 8301 u64 reg; 8302 8303 reg = read_csr(dd, DCC_CFG_PORT_CONFIG); 8304 return (reg >> DCC_CFG_PORT_CONFIG_LINK_STATE_SHIFT) 8305 & DCC_CFG_PORT_CONFIG_LINK_STATE_MASK; 8306 } 8307 8308 static void set_logical_state(struct hfi1_devdata *dd, u32 chip_lstate) 8309 { 8310 u64 reg; 8311 8312 reg = read_csr(dd, DCC_CFG_PORT_CONFIG); 8313 /* clear current state, set new state */ 8314 reg &= ~DCC_CFG_PORT_CONFIG_LINK_STATE_SMASK; 8315 reg |= (u64)chip_lstate << DCC_CFG_PORT_CONFIG_LINK_STATE_SHIFT; 8316 write_csr(dd, DCC_CFG_PORT_CONFIG, reg); 8317 } 8318 8319 /* 8320 * Use the 8051 to read a LCB CSR. 8321 */ 8322 static int read_lcb_via_8051(struct hfi1_devdata *dd, u32 addr, u64 *data) 8323 { 8324 u32 regno; 8325 int ret; 8326 8327 if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR) { 8328 if (acquire_lcb_access(dd, 0) == 0) { 8329 *data = read_csr(dd, addr); 8330 release_lcb_access(dd, 0); 8331 return 0; 8332 } 8333 return -EBUSY; 8334 } 8335 8336 /* register is an index of LCB registers: (offset - base) / 8 */ 8337 regno = (addr - DC_LCB_CFG_RUN) >> 3; 8338 ret = do_8051_command(dd, HCMD_READ_LCB_CSR, regno, data); 8339 if (ret != HCMD_SUCCESS) 8340 return -EBUSY; 8341 return 0; 8342 } 8343 8344 /* 8345 * Read an LCB CSR. Access may not be in host control, so check. 8346 * Return 0 on success, -EBUSY on failure. 8347 */ 8348 int read_lcb_csr(struct hfi1_devdata *dd, u32 addr, u64 *data) 8349 { 8350 struct hfi1_pportdata *ppd = dd->pport; 8351 8352 /* if up, go through the 8051 for the value */ 8353 if (ppd->host_link_state & HLS_UP) 8354 return read_lcb_via_8051(dd, addr, data); 8355 /* if going up or down, no access */ 8356 if (ppd->host_link_state & (HLS_GOING_UP | HLS_GOING_OFFLINE)) 8357 return -EBUSY; 8358 /* otherwise, host has access */ 8359 *data = read_csr(dd, addr); 8360 return 0; 8361 } 8362 8363 /* 8364 * Use the 8051 to write a LCB CSR. 8365 */ 8366 static int write_lcb_via_8051(struct hfi1_devdata *dd, u32 addr, u64 data) 8367 { 8368 u32 regno; 8369 int ret; 8370 8371 if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR || 8372 (dd->dc8051_ver < dc8051_ver(0, 20))) { 8373 if (acquire_lcb_access(dd, 0) == 0) { 8374 write_csr(dd, addr, data); 8375 release_lcb_access(dd, 0); 8376 return 0; 8377 } 8378 return -EBUSY; 8379 } 8380 8381 /* register is an index of LCB registers: (offset - base) / 8 */ 8382 regno = (addr - DC_LCB_CFG_RUN) >> 3; 8383 ret = do_8051_command(dd, HCMD_WRITE_LCB_CSR, regno, &data); 8384 if (ret != HCMD_SUCCESS) 8385 return -EBUSY; 8386 return 0; 8387 } 8388 8389 /* 8390 * Write an LCB CSR. Access may not be in host control, so check. 8391 * Return 0 on success, -EBUSY on failure. 8392 */ 8393 int write_lcb_csr(struct hfi1_devdata *dd, u32 addr, u64 data) 8394 { 8395 struct hfi1_pportdata *ppd = dd->pport; 8396 8397 /* if up, go through the 8051 for the value */ 8398 if (ppd->host_link_state & HLS_UP) 8399 return write_lcb_via_8051(dd, addr, data); 8400 /* if going up or down, no access */ 8401 if (ppd->host_link_state & (HLS_GOING_UP | HLS_GOING_OFFLINE)) 8402 return -EBUSY; 8403 /* otherwise, host has access */ 8404 write_csr(dd, addr, data); 8405 return 0; 8406 } 8407 8408 /* 8409 * Returns: 8410 * < 0 = Linux error, not able to get access 8411 * > 0 = 8051 command RETURN_CODE 8412 */ 8413 static int do_8051_command( 8414 struct hfi1_devdata *dd, 8415 u32 type, 8416 u64 in_data, 8417 u64 *out_data) 8418 { 8419 u64 reg, completed; 8420 int return_code; 8421 unsigned long flags; 8422 unsigned long timeout; 8423 8424 hfi1_cdbg(DC8051, "type %d, data 0x%012llx", type, in_data); 8425 8426 /* 8427 * Alternative to holding the lock for a long time: 8428 * - keep busy wait - have other users bounce off 8429 */ 8430 spin_lock_irqsave(&dd->dc8051_lock, flags); 8431 8432 /* We can't send any commands to the 8051 if it's in reset */ 8433 if (dd->dc_shutdown) { 8434 return_code = -ENODEV; 8435 goto fail; 8436 } 8437 8438 /* 8439 * If an 8051 host command timed out previously, then the 8051 is 8440 * stuck. 8441 * 8442 * On first timeout, attempt to reset and restart the entire DC 8443 * block (including 8051). (Is this too big of a hammer?) 8444 * 8445 * If the 8051 times out a second time, the reset did not bring it 8446 * back to healthy life. In that case, fail any subsequent commands. 8447 */ 8448 if (dd->dc8051_timed_out) { 8449 if (dd->dc8051_timed_out > 1) { 8450 dd_dev_err(dd, 8451 "Previous 8051 host command timed out, skipping command %u\n", 8452 type); 8453 return_code = -ENXIO; 8454 goto fail; 8455 } 8456 spin_unlock_irqrestore(&dd->dc8051_lock, flags); 8457 dc_shutdown(dd); 8458 dc_start(dd); 8459 spin_lock_irqsave(&dd->dc8051_lock, flags); 8460 } 8461 8462 /* 8463 * If there is no timeout, then the 8051 command interface is 8464 * waiting for a command. 8465 */ 8466 8467 /* 8468 * When writing a LCB CSR, out_data contains the full value to 8469 * to be written, while in_data contains the relative LCB 8470 * address in 7:0. Do the work here, rather than the caller, 8471 * of distrubting the write data to where it needs to go: 8472 * 8473 * Write data 8474 * 39:00 -> in_data[47:8] 8475 * 47:40 -> DC8051_CFG_EXT_DEV_0.RETURN_CODE 8476 * 63:48 -> DC8051_CFG_EXT_DEV_0.RSP_DATA 8477 */ 8478 if (type == HCMD_WRITE_LCB_CSR) { 8479 in_data |= ((*out_data) & 0xffffffffffull) << 8; 8480 /* must preserve COMPLETED - it is tied to hardware */ 8481 reg = read_csr(dd, DC_DC8051_CFG_EXT_DEV_0); 8482 reg &= DC_DC8051_CFG_EXT_DEV_0_COMPLETED_SMASK; 8483 reg |= ((((*out_data) >> 40) & 0xff) << 8484 DC_DC8051_CFG_EXT_DEV_0_RETURN_CODE_SHIFT) 8485 | ((((*out_data) >> 48) & 0xffff) << 8486 DC_DC8051_CFG_EXT_DEV_0_RSP_DATA_SHIFT); 8487 write_csr(dd, DC_DC8051_CFG_EXT_DEV_0, reg); 8488 } 8489 8490 /* 8491 * Do two writes: the first to stabilize the type and req_data, the 8492 * second to activate. 8493 */ 8494 reg = ((u64)type & DC_DC8051_CFG_HOST_CMD_0_REQ_TYPE_MASK) 8495 << DC_DC8051_CFG_HOST_CMD_0_REQ_TYPE_SHIFT 8496 | (in_data & DC_DC8051_CFG_HOST_CMD_0_REQ_DATA_MASK) 8497 << DC_DC8051_CFG_HOST_CMD_0_REQ_DATA_SHIFT; 8498 write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, reg); 8499 reg |= DC_DC8051_CFG_HOST_CMD_0_REQ_NEW_SMASK; 8500 write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, reg); 8501 8502 /* wait for completion, alternate: interrupt */ 8503 timeout = jiffies + msecs_to_jiffies(DC8051_COMMAND_TIMEOUT); 8504 while (1) { 8505 reg = read_csr(dd, DC_DC8051_CFG_HOST_CMD_1); 8506 completed = reg & DC_DC8051_CFG_HOST_CMD_1_COMPLETED_SMASK; 8507 if (completed) 8508 break; 8509 if (time_after(jiffies, timeout)) { 8510 dd->dc8051_timed_out++; 8511 dd_dev_err(dd, "8051 host command %u timeout\n", type); 8512 if (out_data) 8513 *out_data = 0; 8514 return_code = -ETIMEDOUT; 8515 goto fail; 8516 } 8517 udelay(2); 8518 } 8519 8520 if (out_data) { 8521 *out_data = (reg >> DC_DC8051_CFG_HOST_CMD_1_RSP_DATA_SHIFT) 8522 & DC_DC8051_CFG_HOST_CMD_1_RSP_DATA_MASK; 8523 if (type == HCMD_READ_LCB_CSR) { 8524 /* top 16 bits are in a different register */ 8525 *out_data |= (read_csr(dd, DC_DC8051_CFG_EXT_DEV_1) 8526 & DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SMASK) 8527 << (48 8528 - DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SHIFT); 8529 } 8530 } 8531 return_code = (reg >> DC_DC8051_CFG_HOST_CMD_1_RETURN_CODE_SHIFT) 8532 & DC_DC8051_CFG_HOST_CMD_1_RETURN_CODE_MASK; 8533 dd->dc8051_timed_out = 0; 8534 /* 8535 * Clear command for next user. 8536 */ 8537 write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, 0); 8538 8539 fail: 8540 spin_unlock_irqrestore(&dd->dc8051_lock, flags); 8541 8542 return return_code; 8543 } 8544 8545 static int set_physical_link_state(struct hfi1_devdata *dd, u64 state) 8546 { 8547 return do_8051_command(dd, HCMD_CHANGE_PHY_STATE, state, NULL); 8548 } 8549 8550 int load_8051_config(struct hfi1_devdata *dd, u8 field_id, 8551 u8 lane_id, u32 config_data) 8552 { 8553 u64 data; 8554 int ret; 8555 8556 data = (u64)field_id << LOAD_DATA_FIELD_ID_SHIFT 8557 | (u64)lane_id << LOAD_DATA_LANE_ID_SHIFT 8558 | (u64)config_data << LOAD_DATA_DATA_SHIFT; 8559 ret = do_8051_command(dd, HCMD_LOAD_CONFIG_DATA, data, NULL); 8560 if (ret != HCMD_SUCCESS) { 8561 dd_dev_err(dd, 8562 "load 8051 config: field id %d, lane %d, err %d\n", 8563 (int)field_id, (int)lane_id, ret); 8564 } 8565 return ret; 8566 } 8567 8568 /* 8569 * Read the 8051 firmware "registers". Use the RAM directly. Always 8570 * set the result, even on error. 8571 * Return 0 on success, -errno on failure 8572 */ 8573 int read_8051_config(struct hfi1_devdata *dd, u8 field_id, u8 lane_id, 8574 u32 *result) 8575 { 8576 u64 big_data; 8577 u32 addr; 8578 int ret; 8579 8580 /* address start depends on the lane_id */ 8581 if (lane_id < 4) 8582 addr = (4 * NUM_GENERAL_FIELDS) 8583 + (lane_id * 4 * NUM_LANE_FIELDS); 8584 else 8585 addr = 0; 8586 addr += field_id * 4; 8587 8588 /* read is in 8-byte chunks, hardware will truncate the address down */ 8589 ret = read_8051_data(dd, addr, 8, &big_data); 8590 8591 if (ret == 0) { 8592 /* extract the 4 bytes we want */ 8593 if (addr & 0x4) 8594 *result = (u32)(big_data >> 32); 8595 else 8596 *result = (u32)big_data; 8597 } else { 8598 *result = 0; 8599 dd_dev_err(dd, "%s: direct read failed, lane %d, field %d!\n", 8600 __func__, lane_id, field_id); 8601 } 8602 8603 return ret; 8604 } 8605 8606 static int write_vc_local_phy(struct hfi1_devdata *dd, u8 power_management, 8607 u8 continuous) 8608 { 8609 u32 frame; 8610 8611 frame = continuous << CONTINIOUS_REMOTE_UPDATE_SUPPORT_SHIFT 8612 | power_management << POWER_MANAGEMENT_SHIFT; 8613 return load_8051_config(dd, VERIFY_CAP_LOCAL_PHY, 8614 GENERAL_CONFIG, frame); 8615 } 8616 8617 static int write_vc_local_fabric(struct hfi1_devdata *dd, u8 vau, u8 z, u8 vcu, 8618 u16 vl15buf, u8 crc_sizes) 8619 { 8620 u32 frame; 8621 8622 frame = (u32)vau << VAU_SHIFT 8623 | (u32)z << Z_SHIFT 8624 | (u32)vcu << VCU_SHIFT 8625 | (u32)vl15buf << VL15BUF_SHIFT 8626 | (u32)crc_sizes << CRC_SIZES_SHIFT; 8627 return load_8051_config(dd, VERIFY_CAP_LOCAL_FABRIC, 8628 GENERAL_CONFIG, frame); 8629 } 8630 8631 static void read_vc_local_link_width(struct hfi1_devdata *dd, u8 *misc_bits, 8632 u8 *flag_bits, u16 *link_widths) 8633 { 8634 u32 frame; 8635 8636 read_8051_config(dd, VERIFY_CAP_LOCAL_LINK_WIDTH, GENERAL_CONFIG, 8637 &frame); 8638 *misc_bits = (frame >> MISC_CONFIG_BITS_SHIFT) & MISC_CONFIG_BITS_MASK; 8639 *flag_bits = (frame >> LOCAL_FLAG_BITS_SHIFT) & LOCAL_FLAG_BITS_MASK; 8640 *link_widths = (frame >> LINK_WIDTH_SHIFT) & LINK_WIDTH_MASK; 8641 } 8642 8643 static int write_vc_local_link_width(struct hfi1_devdata *dd, 8644 u8 misc_bits, 8645 u8 flag_bits, 8646 u16 link_widths) 8647 { 8648 u32 frame; 8649 8650 frame = (u32)misc_bits << MISC_CONFIG_BITS_SHIFT 8651 | (u32)flag_bits << LOCAL_FLAG_BITS_SHIFT 8652 | (u32)link_widths << LINK_WIDTH_SHIFT; 8653 return load_8051_config(dd, VERIFY_CAP_LOCAL_LINK_WIDTH, GENERAL_CONFIG, 8654 frame); 8655 } 8656 8657 static int write_local_device_id(struct hfi1_devdata *dd, u16 device_id, 8658 u8 device_rev) 8659 { 8660 u32 frame; 8661 8662 frame = ((u32)device_id << LOCAL_DEVICE_ID_SHIFT) 8663 | ((u32)device_rev << LOCAL_DEVICE_REV_SHIFT); 8664 return load_8051_config(dd, LOCAL_DEVICE_ID, GENERAL_CONFIG, frame); 8665 } 8666 8667 static void read_remote_device_id(struct hfi1_devdata *dd, u16 *device_id, 8668 u8 *device_rev) 8669 { 8670 u32 frame; 8671 8672 read_8051_config(dd, REMOTE_DEVICE_ID, GENERAL_CONFIG, &frame); 8673 *device_id = (frame >> REMOTE_DEVICE_ID_SHIFT) & REMOTE_DEVICE_ID_MASK; 8674 *device_rev = (frame >> REMOTE_DEVICE_REV_SHIFT) 8675 & REMOTE_DEVICE_REV_MASK; 8676 } 8677 8678 void read_misc_status(struct hfi1_devdata *dd, u8 *ver_a, u8 *ver_b) 8679 { 8680 u32 frame; 8681 8682 read_8051_config(dd, MISC_STATUS, GENERAL_CONFIG, &frame); 8683 *ver_a = (frame >> STS_FM_VERSION_A_SHIFT) & STS_FM_VERSION_A_MASK; 8684 *ver_b = (frame >> STS_FM_VERSION_B_SHIFT) & STS_FM_VERSION_B_MASK; 8685 } 8686 8687 static void read_vc_remote_phy(struct hfi1_devdata *dd, u8 *power_management, 8688 u8 *continuous) 8689 { 8690 u32 frame; 8691 8692 read_8051_config(dd, VERIFY_CAP_REMOTE_PHY, GENERAL_CONFIG, &frame); 8693 *power_management = (frame >> POWER_MANAGEMENT_SHIFT) 8694 & POWER_MANAGEMENT_MASK; 8695 *continuous = (frame >> CONTINIOUS_REMOTE_UPDATE_SUPPORT_SHIFT) 8696 & CONTINIOUS_REMOTE_UPDATE_SUPPORT_MASK; 8697 } 8698 8699 static void read_vc_remote_fabric(struct hfi1_devdata *dd, u8 *vau, u8 *z, 8700 u8 *vcu, u16 *vl15buf, u8 *crc_sizes) 8701 { 8702 u32 frame; 8703 8704 read_8051_config(dd, VERIFY_CAP_REMOTE_FABRIC, GENERAL_CONFIG, &frame); 8705 *vau = (frame >> VAU_SHIFT) & VAU_MASK; 8706 *z = (frame >> Z_SHIFT) & Z_MASK; 8707 *vcu = (frame >> VCU_SHIFT) & VCU_MASK; 8708 *vl15buf = (frame >> VL15BUF_SHIFT) & VL15BUF_MASK; 8709 *crc_sizes = (frame >> CRC_SIZES_SHIFT) & CRC_SIZES_MASK; 8710 } 8711 8712 static void read_vc_remote_link_width(struct hfi1_devdata *dd, 8713 u8 *remote_tx_rate, 8714 u16 *link_widths) 8715 { 8716 u32 frame; 8717 8718 read_8051_config(dd, VERIFY_CAP_REMOTE_LINK_WIDTH, GENERAL_CONFIG, 8719 &frame); 8720 *remote_tx_rate = (frame >> REMOTE_TX_RATE_SHIFT) 8721 & REMOTE_TX_RATE_MASK; 8722 *link_widths = (frame >> LINK_WIDTH_SHIFT) & LINK_WIDTH_MASK; 8723 } 8724 8725 static void read_local_lni(struct hfi1_devdata *dd, u8 *enable_lane_rx) 8726 { 8727 u32 frame; 8728 8729 read_8051_config(dd, LOCAL_LNI_INFO, GENERAL_CONFIG, &frame); 8730 *enable_lane_rx = (frame >> ENABLE_LANE_RX_SHIFT) & ENABLE_LANE_RX_MASK; 8731 } 8732 8733 static void read_mgmt_allowed(struct hfi1_devdata *dd, u8 *mgmt_allowed) 8734 { 8735 u32 frame; 8736 8737 read_8051_config(dd, REMOTE_LNI_INFO, GENERAL_CONFIG, &frame); 8738 *mgmt_allowed = (frame >> MGMT_ALLOWED_SHIFT) & MGMT_ALLOWED_MASK; 8739 } 8740 8741 static void read_last_local_state(struct hfi1_devdata *dd, u32 *lls) 8742 { 8743 read_8051_config(dd, LAST_LOCAL_STATE_COMPLETE, GENERAL_CONFIG, lls); 8744 } 8745 8746 static void read_last_remote_state(struct hfi1_devdata *dd, u32 *lrs) 8747 { 8748 read_8051_config(dd, LAST_REMOTE_STATE_COMPLETE, GENERAL_CONFIG, lrs); 8749 } 8750 8751 void hfi1_read_link_quality(struct hfi1_devdata *dd, u8 *link_quality) 8752 { 8753 u32 frame; 8754 int ret; 8755 8756 *link_quality = 0; 8757 if (dd->pport->host_link_state & HLS_UP) { 8758 ret = read_8051_config(dd, LINK_QUALITY_INFO, GENERAL_CONFIG, 8759 &frame); 8760 if (ret == 0) 8761 *link_quality = (frame >> LINK_QUALITY_SHIFT) 8762 & LINK_QUALITY_MASK; 8763 } 8764 } 8765 8766 static void read_planned_down_reason_code(struct hfi1_devdata *dd, u8 *pdrrc) 8767 { 8768 u32 frame; 8769 8770 read_8051_config(dd, LINK_QUALITY_INFO, GENERAL_CONFIG, &frame); 8771 *pdrrc = (frame >> DOWN_REMOTE_REASON_SHIFT) & DOWN_REMOTE_REASON_MASK; 8772 } 8773 8774 static void read_link_down_reason(struct hfi1_devdata *dd, u8 *ldr) 8775 { 8776 u32 frame; 8777 8778 read_8051_config(dd, LINK_DOWN_REASON, GENERAL_CONFIG, &frame); 8779 *ldr = (frame & 0xff); 8780 } 8781 8782 static int read_tx_settings(struct hfi1_devdata *dd, 8783 u8 *enable_lane_tx, 8784 u8 *tx_polarity_inversion, 8785 u8 *rx_polarity_inversion, 8786 u8 *max_rate) 8787 { 8788 u32 frame; 8789 int ret; 8790 8791 ret = read_8051_config(dd, TX_SETTINGS, GENERAL_CONFIG, &frame); 8792 *enable_lane_tx = (frame >> ENABLE_LANE_TX_SHIFT) 8793 & ENABLE_LANE_TX_MASK; 8794 *tx_polarity_inversion = (frame >> TX_POLARITY_INVERSION_SHIFT) 8795 & TX_POLARITY_INVERSION_MASK; 8796 *rx_polarity_inversion = (frame >> RX_POLARITY_INVERSION_SHIFT) 8797 & RX_POLARITY_INVERSION_MASK; 8798 *max_rate = (frame >> MAX_RATE_SHIFT) & MAX_RATE_MASK; 8799 return ret; 8800 } 8801 8802 static int write_tx_settings(struct hfi1_devdata *dd, 8803 u8 enable_lane_tx, 8804 u8 tx_polarity_inversion, 8805 u8 rx_polarity_inversion, 8806 u8 max_rate) 8807 { 8808 u32 frame; 8809 8810 /* no need to mask, all variable sizes match field widths */ 8811 frame = enable_lane_tx << ENABLE_LANE_TX_SHIFT 8812 | tx_polarity_inversion << TX_POLARITY_INVERSION_SHIFT 8813 | rx_polarity_inversion << RX_POLARITY_INVERSION_SHIFT 8814 | max_rate << MAX_RATE_SHIFT; 8815 return load_8051_config(dd, TX_SETTINGS, GENERAL_CONFIG, frame); 8816 } 8817 8818 /* 8819 * Read an idle LCB message. 8820 * 8821 * Returns 0 on success, -EINVAL on error 8822 */ 8823 static int read_idle_message(struct hfi1_devdata *dd, u64 type, u64 *data_out) 8824 { 8825 int ret; 8826 8827 ret = do_8051_command(dd, HCMD_READ_LCB_IDLE_MSG, type, data_out); 8828 if (ret != HCMD_SUCCESS) { 8829 dd_dev_err(dd, "read idle message: type %d, err %d\n", 8830 (u32)type, ret); 8831 return -EINVAL; 8832 } 8833 dd_dev_info(dd, "%s: read idle message 0x%llx\n", __func__, *data_out); 8834 /* return only the payload as we already know the type */ 8835 *data_out >>= IDLE_PAYLOAD_SHIFT; 8836 return 0; 8837 } 8838 8839 /* 8840 * Read an idle SMA message. To be done in response to a notification from 8841 * the 8051. 8842 * 8843 * Returns 0 on success, -EINVAL on error 8844 */ 8845 static int read_idle_sma(struct hfi1_devdata *dd, u64 *data) 8846 { 8847 return read_idle_message(dd, (u64)IDLE_SMA << IDLE_MSG_TYPE_SHIFT, 8848 data); 8849 } 8850 8851 /* 8852 * Send an idle LCB message. 8853 * 8854 * Returns 0 on success, -EINVAL on error 8855 */ 8856 static int send_idle_message(struct hfi1_devdata *dd, u64 data) 8857 { 8858 int ret; 8859 8860 dd_dev_info(dd, "%s: sending idle message 0x%llx\n", __func__, data); 8861 ret = do_8051_command(dd, HCMD_SEND_LCB_IDLE_MSG, data, NULL); 8862 if (ret != HCMD_SUCCESS) { 8863 dd_dev_err(dd, "send idle message: data 0x%llx, err %d\n", 8864 data, ret); 8865 return -EINVAL; 8866 } 8867 return 0; 8868 } 8869 8870 /* 8871 * Send an idle SMA message. 8872 * 8873 * Returns 0 on success, -EINVAL on error 8874 */ 8875 int send_idle_sma(struct hfi1_devdata *dd, u64 message) 8876 { 8877 u64 data; 8878 8879 data = ((message & IDLE_PAYLOAD_MASK) << IDLE_PAYLOAD_SHIFT) | 8880 ((u64)IDLE_SMA << IDLE_MSG_TYPE_SHIFT); 8881 return send_idle_message(dd, data); 8882 } 8883 8884 /* 8885 * Initialize the LCB then do a quick link up. This may or may not be 8886 * in loopback. 8887 * 8888 * return 0 on success, -errno on error 8889 */ 8890 static int do_quick_linkup(struct hfi1_devdata *dd) 8891 { 8892 u64 reg; 8893 unsigned long timeout; 8894 int ret; 8895 8896 lcb_shutdown(dd, 0); 8897 8898 if (loopback) { 8899 /* LCB_CFG_LOOPBACK.VAL = 2 */ 8900 /* LCB_CFG_LANE_WIDTH.VAL = 0 */ 8901 write_csr(dd, DC_LCB_CFG_LOOPBACK, 8902 IB_PACKET_TYPE << DC_LCB_CFG_LOOPBACK_VAL_SHIFT); 8903 write_csr(dd, DC_LCB_CFG_LANE_WIDTH, 0); 8904 } 8905 8906 /* start the LCBs */ 8907 /* LCB_CFG_TX_FIFOS_RESET.VAL = 0 */ 8908 write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0); 8909 8910 /* simulator only loopback steps */ 8911 if (loopback && dd->icode == ICODE_FUNCTIONAL_SIMULATOR) { 8912 /* LCB_CFG_RUN.EN = 1 */ 8913 write_csr(dd, DC_LCB_CFG_RUN, 8914 1ull << DC_LCB_CFG_RUN_EN_SHIFT); 8915 8916 /* watch LCB_STS_LINK_TRANSFER_ACTIVE */ 8917 timeout = jiffies + msecs_to_jiffies(10); 8918 while (1) { 8919 reg = read_csr(dd, DC_LCB_STS_LINK_TRANSFER_ACTIVE); 8920 if (reg) 8921 break; 8922 if (time_after(jiffies, timeout)) { 8923 dd_dev_err(dd, 8924 "timeout waiting for LINK_TRANSFER_ACTIVE\n"); 8925 return -ETIMEDOUT; 8926 } 8927 udelay(2); 8928 } 8929 8930 write_csr(dd, DC_LCB_CFG_ALLOW_LINK_UP, 8931 1ull << DC_LCB_CFG_ALLOW_LINK_UP_VAL_SHIFT); 8932 } 8933 8934 if (!loopback) { 8935 /* 8936 * When doing quick linkup and not in loopback, both 8937 * sides must be done with LCB set-up before either 8938 * starts the quick linkup. Put a delay here so that 8939 * both sides can be started and have a chance to be 8940 * done with LCB set up before resuming. 8941 */ 8942 dd_dev_err(dd, 8943 "Pausing for peer to be finished with LCB set up\n"); 8944 msleep(5000); 8945 dd_dev_err(dd, "Continuing with quick linkup\n"); 8946 } 8947 8948 write_csr(dd, DC_LCB_ERR_EN, 0); /* mask LCB errors */ 8949 set_8051_lcb_access(dd); 8950 8951 /* 8952 * State "quick" LinkUp request sets the physical link state to 8953 * LinkUp without a verify capability sequence. 8954 * This state is in simulator v37 and later. 8955 */ 8956 ret = set_physical_link_state(dd, PLS_QUICK_LINKUP); 8957 if (ret != HCMD_SUCCESS) { 8958 dd_dev_err(dd, 8959 "%s: set physical link state to quick LinkUp failed with return %d\n", 8960 __func__, ret); 8961 8962 set_host_lcb_access(dd); 8963 write_csr(dd, DC_LCB_ERR_EN, ~0ull); /* watch LCB errors */ 8964 8965 if (ret >= 0) 8966 ret = -EINVAL; 8967 return ret; 8968 } 8969 8970 return 0; /* success */ 8971 } 8972 8973 /* 8974 * Set the SerDes to internal loopback mode. 8975 * Returns 0 on success, -errno on error. 8976 */ 8977 static int set_serdes_loopback_mode(struct hfi1_devdata *dd) 8978 { 8979 int ret; 8980 8981 ret = set_physical_link_state(dd, PLS_INTERNAL_SERDES_LOOPBACK); 8982 if (ret == HCMD_SUCCESS) 8983 return 0; 8984 dd_dev_err(dd, 8985 "Set physical link state to SerDes Loopback failed with return %d\n", 8986 ret); 8987 if (ret >= 0) 8988 ret = -EINVAL; 8989 return ret; 8990 } 8991 8992 /* 8993 * Do all special steps to set up loopback. 8994 */ 8995 static int init_loopback(struct hfi1_devdata *dd) 8996 { 8997 dd_dev_info(dd, "Entering loopback mode\n"); 8998 8999 /* all loopbacks should disable self GUID check */ 9000 write_csr(dd, DC_DC8051_CFG_MODE, 9001 (read_csr(dd, DC_DC8051_CFG_MODE) | DISABLE_SELF_GUID_CHECK)); 9002 9003 /* 9004 * The simulator has only one loopback option - LCB. Switch 9005 * to that option, which includes quick link up. 9006 * 9007 * Accept all valid loopback values. 9008 */ 9009 if ((dd->icode == ICODE_FUNCTIONAL_SIMULATOR) && 9010 (loopback == LOOPBACK_SERDES || loopback == LOOPBACK_LCB || 9011 loopback == LOOPBACK_CABLE)) { 9012 loopback = LOOPBACK_LCB; 9013 quick_linkup = 1; 9014 return 0; 9015 } 9016 9017 /* handle serdes loopback */ 9018 if (loopback == LOOPBACK_SERDES) { 9019 /* internal serdes loopack needs quick linkup on RTL */ 9020 if (dd->icode == ICODE_RTL_SILICON) 9021 quick_linkup = 1; 9022 return set_serdes_loopback_mode(dd); 9023 } 9024 9025 /* LCB loopback - handled at poll time */ 9026 if (loopback == LOOPBACK_LCB) { 9027 quick_linkup = 1; /* LCB is always quick linkup */ 9028 9029 /* not supported in emulation due to emulation RTL changes */ 9030 if (dd->icode == ICODE_FPGA_EMULATION) { 9031 dd_dev_err(dd, 9032 "LCB loopback not supported in emulation\n"); 9033 return -EINVAL; 9034 } 9035 return 0; 9036 } 9037 9038 /* external cable loopback requires no extra steps */ 9039 if (loopback == LOOPBACK_CABLE) 9040 return 0; 9041 9042 dd_dev_err(dd, "Invalid loopback mode %d\n", loopback); 9043 return -EINVAL; 9044 } 9045 9046 /* 9047 * Translate from the OPA_LINK_WIDTH handed to us by the FM to bits 9048 * used in the Verify Capability link width attribute. 9049 */ 9050 static u16 opa_to_vc_link_widths(u16 opa_widths) 9051 { 9052 int i; 9053 u16 result = 0; 9054 9055 static const struct link_bits { 9056 u16 from; 9057 u16 to; 9058 } opa_link_xlate[] = { 9059 { OPA_LINK_WIDTH_1X, 1 << (1 - 1) }, 9060 { OPA_LINK_WIDTH_2X, 1 << (2 - 1) }, 9061 { OPA_LINK_WIDTH_3X, 1 << (3 - 1) }, 9062 { OPA_LINK_WIDTH_4X, 1 << (4 - 1) }, 9063 }; 9064 9065 for (i = 0; i < ARRAY_SIZE(opa_link_xlate); i++) { 9066 if (opa_widths & opa_link_xlate[i].from) 9067 result |= opa_link_xlate[i].to; 9068 } 9069 return result; 9070 } 9071 9072 /* 9073 * Set link attributes before moving to polling. 9074 */ 9075 static int set_local_link_attributes(struct hfi1_pportdata *ppd) 9076 { 9077 struct hfi1_devdata *dd = ppd->dd; 9078 u8 enable_lane_tx; 9079 u8 tx_polarity_inversion; 9080 u8 rx_polarity_inversion; 9081 int ret; 9082 9083 /* reset our fabric serdes to clear any lingering problems */ 9084 fabric_serdes_reset(dd); 9085 9086 /* set the local tx rate - need to read-modify-write */ 9087 ret = read_tx_settings(dd, &enable_lane_tx, &tx_polarity_inversion, 9088 &rx_polarity_inversion, &ppd->local_tx_rate); 9089 if (ret) 9090 goto set_local_link_attributes_fail; 9091 9092 if (dd->dc8051_ver < dc8051_ver(0, 20)) { 9093 /* set the tx rate to the fastest enabled */ 9094 if (ppd->link_speed_enabled & OPA_LINK_SPEED_25G) 9095 ppd->local_tx_rate = 1; 9096 else 9097 ppd->local_tx_rate = 0; 9098 } else { 9099 /* set the tx rate to all enabled */ 9100 ppd->local_tx_rate = 0; 9101 if (ppd->link_speed_enabled & OPA_LINK_SPEED_25G) 9102 ppd->local_tx_rate |= 2; 9103 if (ppd->link_speed_enabled & OPA_LINK_SPEED_12_5G) 9104 ppd->local_tx_rate |= 1; 9105 } 9106 9107 enable_lane_tx = 0xF; /* enable all four lanes */ 9108 ret = write_tx_settings(dd, enable_lane_tx, tx_polarity_inversion, 9109 rx_polarity_inversion, ppd->local_tx_rate); 9110 if (ret != HCMD_SUCCESS) 9111 goto set_local_link_attributes_fail; 9112 9113 /* 9114 * DC supports continuous updates. 9115 */ 9116 ret = write_vc_local_phy(dd, 9117 0 /* no power management */, 9118 1 /* continuous updates */); 9119 if (ret != HCMD_SUCCESS) 9120 goto set_local_link_attributes_fail; 9121 9122 /* z=1 in the next call: AU of 0 is not supported by the hardware */ 9123 ret = write_vc_local_fabric(dd, dd->vau, 1, dd->vcu, dd->vl15_init, 9124 ppd->port_crc_mode_enabled); 9125 if (ret != HCMD_SUCCESS) 9126 goto set_local_link_attributes_fail; 9127 9128 ret = write_vc_local_link_width(dd, 0, 0, 9129 opa_to_vc_link_widths( 9130 ppd->link_width_enabled)); 9131 if (ret != HCMD_SUCCESS) 9132 goto set_local_link_attributes_fail; 9133 9134 /* let peer know who we are */ 9135 ret = write_local_device_id(dd, dd->pcidev->device, dd->minrev); 9136 if (ret == HCMD_SUCCESS) 9137 return 0; 9138 9139 set_local_link_attributes_fail: 9140 dd_dev_err(dd, 9141 "Failed to set local link attributes, return 0x%x\n", 9142 ret); 9143 return ret; 9144 } 9145 9146 /* 9147 * Call this to start the link. 9148 * Do not do anything if the link is disabled. 9149 * Returns 0 if link is disabled, moved to polling, or the driver is not ready. 9150 */ 9151 int start_link(struct hfi1_pportdata *ppd) 9152 { 9153 /* 9154 * Tune the SerDes to a ballpark setting for optimal signal and bit 9155 * error rate. Needs to be done before starting the link. 9156 */ 9157 tune_serdes(ppd); 9158 9159 if (!ppd->link_enabled) { 9160 dd_dev_info(ppd->dd, 9161 "%s: stopping link start because link is disabled\n", 9162 __func__); 9163 return 0; 9164 } 9165 if (!ppd->driver_link_ready) { 9166 dd_dev_info(ppd->dd, 9167 "%s: stopping link start because driver is not ready\n", 9168 __func__); 9169 return 0; 9170 } 9171 9172 /* 9173 * FULL_MGMT_P_KEY is cleared from the pkey table, so that the 9174 * pkey table can be configured properly if the HFI unit is connected 9175 * to switch port with MgmtAllowed=NO 9176 */ 9177 clear_full_mgmt_pkey(ppd); 9178 9179 return set_link_state(ppd, HLS_DN_POLL); 9180 } 9181 9182 static void wait_for_qsfp_init(struct hfi1_pportdata *ppd) 9183 { 9184 struct hfi1_devdata *dd = ppd->dd; 9185 u64 mask; 9186 unsigned long timeout; 9187 9188 /* 9189 * Some QSFP cables have a quirk that asserts the IntN line as a side 9190 * effect of power up on plug-in. We ignore this false positive 9191 * interrupt until the module has finished powering up by waiting for 9192 * a minimum timeout of the module inrush initialization time of 9193 * 500 ms (SFF 8679 Table 5-6) to ensure the voltage rails in the 9194 * module have stabilized. 9195 */ 9196 msleep(500); 9197 9198 /* 9199 * Check for QSFP interrupt for t_init (SFF 8679 Table 8-1) 9200 */ 9201 timeout = jiffies + msecs_to_jiffies(2000); 9202 while (1) { 9203 mask = read_csr(dd, dd->hfi1_id ? 9204 ASIC_QSFP2_IN : ASIC_QSFP1_IN); 9205 if (!(mask & QSFP_HFI0_INT_N)) 9206 break; 9207 if (time_after(jiffies, timeout)) { 9208 dd_dev_info(dd, "%s: No IntN detected, reset complete\n", 9209 __func__); 9210 break; 9211 } 9212 udelay(2); 9213 } 9214 } 9215 9216 static void set_qsfp_int_n(struct hfi1_pportdata *ppd, u8 enable) 9217 { 9218 struct hfi1_devdata *dd = ppd->dd; 9219 u64 mask; 9220 9221 mask = read_csr(dd, dd->hfi1_id ? ASIC_QSFP2_MASK : ASIC_QSFP1_MASK); 9222 if (enable) { 9223 /* 9224 * Clear the status register to avoid an immediate interrupt 9225 * when we re-enable the IntN pin 9226 */ 9227 write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_CLEAR : ASIC_QSFP1_CLEAR, 9228 QSFP_HFI0_INT_N); 9229 mask |= (u64)QSFP_HFI0_INT_N; 9230 } else { 9231 mask &= ~(u64)QSFP_HFI0_INT_N; 9232 } 9233 write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_MASK : ASIC_QSFP1_MASK, mask); 9234 } 9235 9236 void reset_qsfp(struct hfi1_pportdata *ppd) 9237 { 9238 struct hfi1_devdata *dd = ppd->dd; 9239 u64 mask, qsfp_mask; 9240 9241 /* Disable INT_N from triggering QSFP interrupts */ 9242 set_qsfp_int_n(ppd, 0); 9243 9244 /* Reset the QSFP */ 9245 mask = (u64)QSFP_HFI0_RESET_N; 9246 9247 qsfp_mask = read_csr(dd, 9248 dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT); 9249 qsfp_mask &= ~mask; 9250 write_csr(dd, 9251 dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT, qsfp_mask); 9252 9253 udelay(10); 9254 9255 qsfp_mask |= mask; 9256 write_csr(dd, 9257 dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT, qsfp_mask); 9258 9259 wait_for_qsfp_init(ppd); 9260 9261 /* 9262 * Allow INT_N to trigger the QSFP interrupt to watch 9263 * for alarms and warnings 9264 */ 9265 set_qsfp_int_n(ppd, 1); 9266 } 9267 9268 static int handle_qsfp_error_conditions(struct hfi1_pportdata *ppd, 9269 u8 *qsfp_interrupt_status) 9270 { 9271 struct hfi1_devdata *dd = ppd->dd; 9272 9273 if ((qsfp_interrupt_status[0] & QSFP_HIGH_TEMP_ALARM) || 9274 (qsfp_interrupt_status[0] & QSFP_HIGH_TEMP_WARNING)) 9275 dd_dev_info(dd, "%s: QSFP cable on fire\n", 9276 __func__); 9277 9278 if ((qsfp_interrupt_status[0] & QSFP_LOW_TEMP_ALARM) || 9279 (qsfp_interrupt_status[0] & QSFP_LOW_TEMP_WARNING)) 9280 dd_dev_info(dd, "%s: QSFP cable temperature too low\n", 9281 __func__); 9282 9283 /* 9284 * The remaining alarms/warnings don't matter if the link is down. 9285 */ 9286 if (ppd->host_link_state & HLS_DOWN) 9287 return 0; 9288 9289 if ((qsfp_interrupt_status[1] & QSFP_HIGH_VCC_ALARM) || 9290 (qsfp_interrupt_status[1] & QSFP_HIGH_VCC_WARNING)) 9291 dd_dev_info(dd, "%s: QSFP supply voltage too high\n", 9292 __func__); 9293 9294 if ((qsfp_interrupt_status[1] & QSFP_LOW_VCC_ALARM) || 9295 (qsfp_interrupt_status[1] & QSFP_LOW_VCC_WARNING)) 9296 dd_dev_info(dd, "%s: QSFP supply voltage too low\n", 9297 __func__); 9298 9299 /* Byte 2 is vendor specific */ 9300 9301 if ((qsfp_interrupt_status[3] & QSFP_HIGH_POWER_ALARM) || 9302 (qsfp_interrupt_status[3] & QSFP_HIGH_POWER_WARNING)) 9303 dd_dev_info(dd, "%s: Cable RX channel 1/2 power too high\n", 9304 __func__); 9305 9306 if ((qsfp_interrupt_status[3] & QSFP_LOW_POWER_ALARM) || 9307 (qsfp_interrupt_status[3] & QSFP_LOW_POWER_WARNING)) 9308 dd_dev_info(dd, "%s: Cable RX channel 1/2 power too low\n", 9309 __func__); 9310 9311 if ((qsfp_interrupt_status[4] & QSFP_HIGH_POWER_ALARM) || 9312 (qsfp_interrupt_status[4] & QSFP_HIGH_POWER_WARNING)) 9313 dd_dev_info(dd, "%s: Cable RX channel 3/4 power too high\n", 9314 __func__); 9315 9316 if ((qsfp_interrupt_status[4] & QSFP_LOW_POWER_ALARM) || 9317 (qsfp_interrupt_status[4] & QSFP_LOW_POWER_WARNING)) 9318 dd_dev_info(dd, "%s: Cable RX channel 3/4 power too low\n", 9319 __func__); 9320 9321 if ((qsfp_interrupt_status[5] & QSFP_HIGH_BIAS_ALARM) || 9322 (qsfp_interrupt_status[5] & QSFP_HIGH_BIAS_WARNING)) 9323 dd_dev_info(dd, "%s: Cable TX channel 1/2 bias too high\n", 9324 __func__); 9325 9326 if ((qsfp_interrupt_status[5] & QSFP_LOW_BIAS_ALARM) || 9327 (qsfp_interrupt_status[5] & QSFP_LOW_BIAS_WARNING)) 9328 dd_dev_info(dd, "%s: Cable TX channel 1/2 bias too low\n", 9329 __func__); 9330 9331 if ((qsfp_interrupt_status[6] & QSFP_HIGH_BIAS_ALARM) || 9332 (qsfp_interrupt_status[6] & QSFP_HIGH_BIAS_WARNING)) 9333 dd_dev_info(dd, "%s: Cable TX channel 3/4 bias too high\n", 9334 __func__); 9335 9336 if ((qsfp_interrupt_status[6] & QSFP_LOW_BIAS_ALARM) || 9337 (qsfp_interrupt_status[6] & QSFP_LOW_BIAS_WARNING)) 9338 dd_dev_info(dd, "%s: Cable TX channel 3/4 bias too low\n", 9339 __func__); 9340 9341 if ((qsfp_interrupt_status[7] & QSFP_HIGH_POWER_ALARM) || 9342 (qsfp_interrupt_status[7] & QSFP_HIGH_POWER_WARNING)) 9343 dd_dev_info(dd, "%s: Cable TX channel 1/2 power too high\n", 9344 __func__); 9345 9346 if ((qsfp_interrupt_status[7] & QSFP_LOW_POWER_ALARM) || 9347 (qsfp_interrupt_status[7] & QSFP_LOW_POWER_WARNING)) 9348 dd_dev_info(dd, "%s: Cable TX channel 1/2 power too low\n", 9349 __func__); 9350 9351 if ((qsfp_interrupt_status[8] & QSFP_HIGH_POWER_ALARM) || 9352 (qsfp_interrupt_status[8] & QSFP_HIGH_POWER_WARNING)) 9353 dd_dev_info(dd, "%s: Cable TX channel 3/4 power too high\n", 9354 __func__); 9355 9356 if ((qsfp_interrupt_status[8] & QSFP_LOW_POWER_ALARM) || 9357 (qsfp_interrupt_status[8] & QSFP_LOW_POWER_WARNING)) 9358 dd_dev_info(dd, "%s: Cable TX channel 3/4 power too low\n", 9359 __func__); 9360 9361 /* Bytes 9-10 and 11-12 are reserved */ 9362 /* Bytes 13-15 are vendor specific */ 9363 9364 return 0; 9365 } 9366 9367 /* This routine will only be scheduled if the QSFP module present is asserted */ 9368 void qsfp_event(struct work_struct *work) 9369 { 9370 struct qsfp_data *qd; 9371 struct hfi1_pportdata *ppd; 9372 struct hfi1_devdata *dd; 9373 9374 qd = container_of(work, struct qsfp_data, qsfp_work); 9375 ppd = qd->ppd; 9376 dd = ppd->dd; 9377 9378 /* Sanity check */ 9379 if (!qsfp_mod_present(ppd)) 9380 return; 9381 9382 /* 9383 * Turn DC back on after cable has been re-inserted. Up until 9384 * now, the DC has been in reset to save power. 9385 */ 9386 dc_start(dd); 9387 9388 if (qd->cache_refresh_required) { 9389 set_qsfp_int_n(ppd, 0); 9390 9391 wait_for_qsfp_init(ppd); 9392 9393 /* 9394 * Allow INT_N to trigger the QSFP interrupt to watch 9395 * for alarms and warnings 9396 */ 9397 set_qsfp_int_n(ppd, 1); 9398 9399 start_link(ppd); 9400 } 9401 9402 if (qd->check_interrupt_flags) { 9403 u8 qsfp_interrupt_status[16] = {0,}; 9404 9405 if (one_qsfp_read(ppd, dd->hfi1_id, 6, 9406 &qsfp_interrupt_status[0], 16) != 16) { 9407 dd_dev_info(dd, 9408 "%s: Failed to read status of QSFP module\n", 9409 __func__); 9410 } else { 9411 unsigned long flags; 9412 9413 handle_qsfp_error_conditions( 9414 ppd, qsfp_interrupt_status); 9415 spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags); 9416 ppd->qsfp_info.check_interrupt_flags = 0; 9417 spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock, 9418 flags); 9419 } 9420 } 9421 } 9422 9423 static void init_qsfp_int(struct hfi1_devdata *dd) 9424 { 9425 struct hfi1_pportdata *ppd = dd->pport; 9426 u64 qsfp_mask, cce_int_mask; 9427 const int qsfp1_int_smask = QSFP1_INT % 64; 9428 const int qsfp2_int_smask = QSFP2_INT % 64; 9429 9430 /* 9431 * disable QSFP1 interrupts for HFI1, QSFP2 interrupts for HFI0 9432 * Qsfp1Int and Qsfp2Int are adjacent bits in the same CSR, 9433 * therefore just one of QSFP1_INT/QSFP2_INT can be used to find 9434 * the index of the appropriate CSR in the CCEIntMask CSR array 9435 */ 9436 cce_int_mask = read_csr(dd, CCE_INT_MASK + 9437 (8 * (QSFP1_INT / 64))); 9438 if (dd->hfi1_id) { 9439 cce_int_mask &= ~((u64)1 << qsfp1_int_smask); 9440 write_csr(dd, CCE_INT_MASK + (8 * (QSFP1_INT / 64)), 9441 cce_int_mask); 9442 } else { 9443 cce_int_mask &= ~((u64)1 << qsfp2_int_smask); 9444 write_csr(dd, CCE_INT_MASK + (8 * (QSFP2_INT / 64)), 9445 cce_int_mask); 9446 } 9447 9448 qsfp_mask = (u64)(QSFP_HFI0_INT_N | QSFP_HFI0_MODPRST_N); 9449 /* Clear current status to avoid spurious interrupts */ 9450 write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_CLEAR : ASIC_QSFP1_CLEAR, 9451 qsfp_mask); 9452 write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_MASK : ASIC_QSFP1_MASK, 9453 qsfp_mask); 9454 9455 set_qsfp_int_n(ppd, 0); 9456 9457 /* Handle active low nature of INT_N and MODPRST_N pins */ 9458 if (qsfp_mod_present(ppd)) 9459 qsfp_mask &= ~(u64)QSFP_HFI0_MODPRST_N; 9460 write_csr(dd, 9461 dd->hfi1_id ? ASIC_QSFP2_INVERT : ASIC_QSFP1_INVERT, 9462 qsfp_mask); 9463 } 9464 9465 /* 9466 * Do a one-time initialize of the LCB block. 9467 */ 9468 static void init_lcb(struct hfi1_devdata *dd) 9469 { 9470 /* simulator does not correctly handle LCB cclk loopback, skip */ 9471 if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR) 9472 return; 9473 9474 /* the DC has been reset earlier in the driver load */ 9475 9476 /* set LCB for cclk loopback on the port */ 9477 write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0x01); 9478 write_csr(dd, DC_LCB_CFG_LANE_WIDTH, 0x00); 9479 write_csr(dd, DC_LCB_CFG_REINIT_AS_SLAVE, 0x00); 9480 write_csr(dd, DC_LCB_CFG_CNT_FOR_SKIP_STALL, 0x110); 9481 write_csr(dd, DC_LCB_CFG_CLK_CNTR, 0x08); 9482 write_csr(dd, DC_LCB_CFG_LOOPBACK, 0x02); 9483 write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0x00); 9484 } 9485 9486 /* 9487 * Perform a test read on the QSFP. Return 0 on success, -ERRNO 9488 * on error. 9489 */ 9490 static int test_qsfp_read(struct hfi1_pportdata *ppd) 9491 { 9492 int ret; 9493 u8 status; 9494 9495 /* report success if not a QSFP */ 9496 if (ppd->port_type != PORT_TYPE_QSFP) 9497 return 0; 9498 9499 /* read byte 2, the status byte */ 9500 ret = one_qsfp_read(ppd, ppd->dd->hfi1_id, 2, &status, 1); 9501 if (ret < 0) 9502 return ret; 9503 if (ret != 1) 9504 return -EIO; 9505 9506 return 0; /* success */ 9507 } 9508 9509 /* 9510 * Values for QSFP retry. 9511 * 9512 * Give up after 10s (20 x 500ms). The overall timeout was empirically 9513 * arrived at from experience on a large cluster. 9514 */ 9515 #define MAX_QSFP_RETRIES 20 9516 #define QSFP_RETRY_WAIT 500 /* msec */ 9517 9518 /* 9519 * Try a QSFP read. If it fails, schedule a retry for later. 9520 * Called on first link activation after driver load. 9521 */ 9522 static void try_start_link(struct hfi1_pportdata *ppd) 9523 { 9524 if (test_qsfp_read(ppd)) { 9525 /* read failed */ 9526 if (ppd->qsfp_retry_count >= MAX_QSFP_RETRIES) { 9527 dd_dev_err(ppd->dd, "QSFP not responding, giving up\n"); 9528 return; 9529 } 9530 dd_dev_info(ppd->dd, 9531 "QSFP not responding, waiting and retrying %d\n", 9532 (int)ppd->qsfp_retry_count); 9533 ppd->qsfp_retry_count++; 9534 queue_delayed_work(ppd->hfi1_wq, &ppd->start_link_work, 9535 msecs_to_jiffies(QSFP_RETRY_WAIT)); 9536 return; 9537 } 9538 ppd->qsfp_retry_count = 0; 9539 9540 start_link(ppd); 9541 } 9542 9543 /* 9544 * Workqueue function to start the link after a delay. 9545 */ 9546 void handle_start_link(struct work_struct *work) 9547 { 9548 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata, 9549 start_link_work.work); 9550 try_start_link(ppd); 9551 } 9552 9553 int bringup_serdes(struct hfi1_pportdata *ppd) 9554 { 9555 struct hfi1_devdata *dd = ppd->dd; 9556 u64 guid; 9557 int ret; 9558 9559 if (HFI1_CAP_IS_KSET(EXTENDED_PSN)) 9560 add_rcvctrl(dd, RCV_CTRL_RCV_EXTENDED_PSN_ENABLE_SMASK); 9561 9562 guid = ppd->guids[HFI1_PORT_GUID_INDEX]; 9563 if (!guid) { 9564 if (dd->base_guid) 9565 guid = dd->base_guid + ppd->port - 1; 9566 ppd->guids[HFI1_PORT_GUID_INDEX] = guid; 9567 } 9568 9569 /* Set linkinit_reason on power up per OPA spec */ 9570 ppd->linkinit_reason = OPA_LINKINIT_REASON_LINKUP; 9571 9572 /* one-time init of the LCB */ 9573 init_lcb(dd); 9574 9575 if (loopback) { 9576 ret = init_loopback(dd); 9577 if (ret < 0) 9578 return ret; 9579 } 9580 9581 get_port_type(ppd); 9582 if (ppd->port_type == PORT_TYPE_QSFP) { 9583 set_qsfp_int_n(ppd, 0); 9584 wait_for_qsfp_init(ppd); 9585 set_qsfp_int_n(ppd, 1); 9586 } 9587 9588 try_start_link(ppd); 9589 return 0; 9590 } 9591 9592 void hfi1_quiet_serdes(struct hfi1_pportdata *ppd) 9593 { 9594 struct hfi1_devdata *dd = ppd->dd; 9595 9596 /* 9597 * Shut down the link and keep it down. First turn off that the 9598 * driver wants to allow the link to be up (driver_link_ready). 9599 * Then make sure the link is not automatically restarted 9600 * (link_enabled). Cancel any pending restart. And finally 9601 * go offline. 9602 */ 9603 ppd->driver_link_ready = 0; 9604 ppd->link_enabled = 0; 9605 9606 ppd->qsfp_retry_count = MAX_QSFP_RETRIES; /* prevent more retries */ 9607 flush_delayed_work(&ppd->start_link_work); 9608 cancel_delayed_work_sync(&ppd->start_link_work); 9609 9610 ppd->offline_disabled_reason = 9611 HFI1_ODR_MASK(OPA_LINKDOWN_REASON_SMA_DISABLED); 9612 set_link_down_reason(ppd, OPA_LINKDOWN_REASON_SMA_DISABLED, 0, 9613 OPA_LINKDOWN_REASON_SMA_DISABLED); 9614 set_link_state(ppd, HLS_DN_OFFLINE); 9615 9616 /* disable the port */ 9617 clear_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK); 9618 } 9619 9620 static inline int init_cpu_counters(struct hfi1_devdata *dd) 9621 { 9622 struct hfi1_pportdata *ppd; 9623 int i; 9624 9625 ppd = (struct hfi1_pportdata *)(dd + 1); 9626 for (i = 0; i < dd->num_pports; i++, ppd++) { 9627 ppd->ibport_data.rvp.rc_acks = NULL; 9628 ppd->ibport_data.rvp.rc_qacks = NULL; 9629 ppd->ibport_data.rvp.rc_acks = alloc_percpu(u64); 9630 ppd->ibport_data.rvp.rc_qacks = alloc_percpu(u64); 9631 ppd->ibport_data.rvp.rc_delayed_comp = alloc_percpu(u64); 9632 if (!ppd->ibport_data.rvp.rc_acks || 9633 !ppd->ibport_data.rvp.rc_delayed_comp || 9634 !ppd->ibport_data.rvp.rc_qacks) 9635 return -ENOMEM; 9636 } 9637 9638 return 0; 9639 } 9640 9641 static const char * const pt_names[] = { 9642 "expected", 9643 "eager", 9644 "invalid" 9645 }; 9646 9647 static const char *pt_name(u32 type) 9648 { 9649 return type >= ARRAY_SIZE(pt_names) ? "unknown" : pt_names[type]; 9650 } 9651 9652 /* 9653 * index is the index into the receive array 9654 */ 9655 void hfi1_put_tid(struct hfi1_devdata *dd, u32 index, 9656 u32 type, unsigned long pa, u16 order) 9657 { 9658 u64 reg; 9659 void __iomem *base = (dd->rcvarray_wc ? dd->rcvarray_wc : 9660 (dd->kregbase + RCV_ARRAY)); 9661 9662 if (!(dd->flags & HFI1_PRESENT)) 9663 goto done; 9664 9665 if (type == PT_INVALID) { 9666 pa = 0; 9667 } else if (type > PT_INVALID) { 9668 dd_dev_err(dd, 9669 "unexpected receive array type %u for index %u, not handled\n", 9670 type, index); 9671 goto done; 9672 } 9673 9674 hfi1_cdbg(TID, "type %s, index 0x%x, pa 0x%lx, bsize 0x%lx", 9675 pt_name(type), index, pa, (unsigned long)order); 9676 9677 #define RT_ADDR_SHIFT 12 /* 4KB kernel address boundary */ 9678 reg = RCV_ARRAY_RT_WRITE_ENABLE_SMASK 9679 | (u64)order << RCV_ARRAY_RT_BUF_SIZE_SHIFT 9680 | ((pa >> RT_ADDR_SHIFT) & RCV_ARRAY_RT_ADDR_MASK) 9681 << RCV_ARRAY_RT_ADDR_SHIFT; 9682 writeq(reg, base + (index * 8)); 9683 9684 if (type == PT_EAGER) 9685 /* 9686 * Eager entries are written one-by-one so we have to push them 9687 * after we write the entry. 9688 */ 9689 flush_wc(); 9690 done: 9691 return; 9692 } 9693 9694 void hfi1_clear_tids(struct hfi1_ctxtdata *rcd) 9695 { 9696 struct hfi1_devdata *dd = rcd->dd; 9697 u32 i; 9698 9699 /* this could be optimized */ 9700 for (i = rcd->eager_base; i < rcd->eager_base + 9701 rcd->egrbufs.alloced; i++) 9702 hfi1_put_tid(dd, i, PT_INVALID, 0, 0); 9703 9704 for (i = rcd->expected_base; 9705 i < rcd->expected_base + rcd->expected_count; i++) 9706 hfi1_put_tid(dd, i, PT_INVALID, 0, 0); 9707 } 9708 9709 struct ib_header *hfi1_get_msgheader( 9710 struct hfi1_devdata *dd, __le32 *rhf_addr) 9711 { 9712 u32 offset = rhf_hdrq_offset(rhf_to_cpu(rhf_addr)); 9713 9714 return (struct ib_header *) 9715 (rhf_addr - dd->rhf_offset + offset); 9716 } 9717 9718 static const char * const ib_cfg_name_strings[] = { 9719 "HFI1_IB_CFG_LIDLMC", 9720 "HFI1_IB_CFG_LWID_DG_ENB", 9721 "HFI1_IB_CFG_LWID_ENB", 9722 "HFI1_IB_CFG_LWID", 9723 "HFI1_IB_CFG_SPD_ENB", 9724 "HFI1_IB_CFG_SPD", 9725 "HFI1_IB_CFG_RXPOL_ENB", 9726 "HFI1_IB_CFG_LREV_ENB", 9727 "HFI1_IB_CFG_LINKLATENCY", 9728 "HFI1_IB_CFG_HRTBT", 9729 "HFI1_IB_CFG_OP_VLS", 9730 "HFI1_IB_CFG_VL_HIGH_CAP", 9731 "HFI1_IB_CFG_VL_LOW_CAP", 9732 "HFI1_IB_CFG_OVERRUN_THRESH", 9733 "HFI1_IB_CFG_PHYERR_THRESH", 9734 "HFI1_IB_CFG_LINKDEFAULT", 9735 "HFI1_IB_CFG_PKEYS", 9736 "HFI1_IB_CFG_MTU", 9737 "HFI1_IB_CFG_LSTATE", 9738 "HFI1_IB_CFG_VL_HIGH_LIMIT", 9739 "HFI1_IB_CFG_PMA_TICKS", 9740 "HFI1_IB_CFG_PORT" 9741 }; 9742 9743 static const char *ib_cfg_name(int which) 9744 { 9745 if (which < 0 || which >= ARRAY_SIZE(ib_cfg_name_strings)) 9746 return "invalid"; 9747 return ib_cfg_name_strings[which]; 9748 } 9749 9750 int hfi1_get_ib_cfg(struct hfi1_pportdata *ppd, int which) 9751 { 9752 struct hfi1_devdata *dd = ppd->dd; 9753 int val = 0; 9754 9755 switch (which) { 9756 case HFI1_IB_CFG_LWID_ENB: /* allowed Link-width */ 9757 val = ppd->link_width_enabled; 9758 break; 9759 case HFI1_IB_CFG_LWID: /* currently active Link-width */ 9760 val = ppd->link_width_active; 9761 break; 9762 case HFI1_IB_CFG_SPD_ENB: /* allowed Link speeds */ 9763 val = ppd->link_speed_enabled; 9764 break; 9765 case HFI1_IB_CFG_SPD: /* current Link speed */ 9766 val = ppd->link_speed_active; 9767 break; 9768 9769 case HFI1_IB_CFG_RXPOL_ENB: /* Auto-RX-polarity enable */ 9770 case HFI1_IB_CFG_LREV_ENB: /* Auto-Lane-reversal enable */ 9771 case HFI1_IB_CFG_LINKLATENCY: 9772 goto unimplemented; 9773 9774 case HFI1_IB_CFG_OP_VLS: 9775 val = ppd->vls_operational; 9776 break; 9777 case HFI1_IB_CFG_VL_HIGH_CAP: /* VL arb high priority table size */ 9778 val = VL_ARB_HIGH_PRIO_TABLE_SIZE; 9779 break; 9780 case HFI1_IB_CFG_VL_LOW_CAP: /* VL arb low priority table size */ 9781 val = VL_ARB_LOW_PRIO_TABLE_SIZE; 9782 break; 9783 case HFI1_IB_CFG_OVERRUN_THRESH: /* IB overrun threshold */ 9784 val = ppd->overrun_threshold; 9785 break; 9786 case HFI1_IB_CFG_PHYERR_THRESH: /* IB PHY error threshold */ 9787 val = ppd->phy_error_threshold; 9788 break; 9789 case HFI1_IB_CFG_LINKDEFAULT: /* IB link default (sleep/poll) */ 9790 val = dd->link_default; 9791 break; 9792 9793 case HFI1_IB_CFG_HRTBT: /* Heartbeat off/enable/auto */ 9794 case HFI1_IB_CFG_PMA_TICKS: 9795 default: 9796 unimplemented: 9797 if (HFI1_CAP_IS_KSET(PRINT_UNIMPL)) 9798 dd_dev_info( 9799 dd, 9800 "%s: which %s: not implemented\n", 9801 __func__, 9802 ib_cfg_name(which)); 9803 break; 9804 } 9805 9806 return val; 9807 } 9808 9809 /* 9810 * The largest MAD packet size. 9811 */ 9812 #define MAX_MAD_PACKET 2048 9813 9814 /* 9815 * Return the maximum header bytes that can go on the _wire_ 9816 * for this device. This count includes the ICRC which is 9817 * not part of the packet held in memory but it is appended 9818 * by the HW. 9819 * This is dependent on the device's receive header entry size. 9820 * HFI allows this to be set per-receive context, but the 9821 * driver presently enforces a global value. 9822 */ 9823 u32 lrh_max_header_bytes(struct hfi1_devdata *dd) 9824 { 9825 /* 9826 * The maximum non-payload (MTU) bytes in LRH.PktLen are 9827 * the Receive Header Entry Size minus the PBC (or RHF) size 9828 * plus one DW for the ICRC appended by HW. 9829 * 9830 * dd->rcd[0].rcvhdrqentsize is in DW. 9831 * We use rcd[0] as all context will have the same value. Also, 9832 * the first kernel context would have been allocated by now so 9833 * we are guaranteed a valid value. 9834 */ 9835 return (dd->rcd[0]->rcvhdrqentsize - 2/*PBC/RHF*/ + 1/*ICRC*/) << 2; 9836 } 9837 9838 /* 9839 * Set Send Length 9840 * @ppd - per port data 9841 * 9842 * Set the MTU by limiting how many DWs may be sent. The SendLenCheck* 9843 * registers compare against LRH.PktLen, so use the max bytes included 9844 * in the LRH. 9845 * 9846 * This routine changes all VL values except VL15, which it maintains at 9847 * the same value. 9848 */ 9849 static void set_send_length(struct hfi1_pportdata *ppd) 9850 { 9851 struct hfi1_devdata *dd = ppd->dd; 9852 u32 max_hb = lrh_max_header_bytes(dd), dcmtu; 9853 u32 maxvlmtu = dd->vld[15].mtu; 9854 u64 len1 = 0, len2 = (((dd->vld[15].mtu + max_hb) >> 2) 9855 & SEND_LEN_CHECK1_LEN_VL15_MASK) << 9856 SEND_LEN_CHECK1_LEN_VL15_SHIFT; 9857 int i, j; 9858 u32 thres; 9859 9860 for (i = 0; i < ppd->vls_supported; i++) { 9861 if (dd->vld[i].mtu > maxvlmtu) 9862 maxvlmtu = dd->vld[i].mtu; 9863 if (i <= 3) 9864 len1 |= (((dd->vld[i].mtu + max_hb) >> 2) 9865 & SEND_LEN_CHECK0_LEN_VL0_MASK) << 9866 ((i % 4) * SEND_LEN_CHECK0_LEN_VL1_SHIFT); 9867 else 9868 len2 |= (((dd->vld[i].mtu + max_hb) >> 2) 9869 & SEND_LEN_CHECK1_LEN_VL4_MASK) << 9870 ((i % 4) * SEND_LEN_CHECK1_LEN_VL5_SHIFT); 9871 } 9872 write_csr(dd, SEND_LEN_CHECK0, len1); 9873 write_csr(dd, SEND_LEN_CHECK1, len2); 9874 /* adjust kernel credit return thresholds based on new MTUs */ 9875 /* all kernel receive contexts have the same hdrqentsize */ 9876 for (i = 0; i < ppd->vls_supported; i++) { 9877 thres = min(sc_percent_to_threshold(dd->vld[i].sc, 50), 9878 sc_mtu_to_threshold(dd->vld[i].sc, 9879 dd->vld[i].mtu, 9880 dd->rcd[0]->rcvhdrqentsize)); 9881 for (j = 0; j < INIT_SC_PER_VL; j++) 9882 sc_set_cr_threshold( 9883 pio_select_send_context_vl(dd, j, i), 9884 thres); 9885 } 9886 thres = min(sc_percent_to_threshold(dd->vld[15].sc, 50), 9887 sc_mtu_to_threshold(dd->vld[15].sc, 9888 dd->vld[15].mtu, 9889 dd->rcd[0]->rcvhdrqentsize)); 9890 sc_set_cr_threshold(dd->vld[15].sc, thres); 9891 9892 /* Adjust maximum MTU for the port in DC */ 9893 dcmtu = maxvlmtu == 10240 ? DCC_CFG_PORT_MTU_CAP_10240 : 9894 (ilog2(maxvlmtu >> 8) + 1); 9895 len1 = read_csr(ppd->dd, DCC_CFG_PORT_CONFIG); 9896 len1 &= ~DCC_CFG_PORT_CONFIG_MTU_CAP_SMASK; 9897 len1 |= ((u64)dcmtu & DCC_CFG_PORT_CONFIG_MTU_CAP_MASK) << 9898 DCC_CFG_PORT_CONFIG_MTU_CAP_SHIFT; 9899 write_csr(ppd->dd, DCC_CFG_PORT_CONFIG, len1); 9900 } 9901 9902 static void set_lidlmc(struct hfi1_pportdata *ppd) 9903 { 9904 int i; 9905 u64 sreg = 0; 9906 struct hfi1_devdata *dd = ppd->dd; 9907 u32 mask = ~((1U << ppd->lmc) - 1); 9908 u64 c1 = read_csr(ppd->dd, DCC_CFG_PORT_CONFIG1); 9909 9910 c1 &= ~(DCC_CFG_PORT_CONFIG1_TARGET_DLID_SMASK 9911 | DCC_CFG_PORT_CONFIG1_DLID_MASK_SMASK); 9912 c1 |= ((ppd->lid & DCC_CFG_PORT_CONFIG1_TARGET_DLID_MASK) 9913 << DCC_CFG_PORT_CONFIG1_TARGET_DLID_SHIFT) | 9914 ((mask & DCC_CFG_PORT_CONFIG1_DLID_MASK_MASK) 9915 << DCC_CFG_PORT_CONFIG1_DLID_MASK_SHIFT); 9916 write_csr(ppd->dd, DCC_CFG_PORT_CONFIG1, c1); 9917 9918 /* 9919 * Iterate over all the send contexts and set their SLID check 9920 */ 9921 sreg = ((mask & SEND_CTXT_CHECK_SLID_MASK_MASK) << 9922 SEND_CTXT_CHECK_SLID_MASK_SHIFT) | 9923 (((ppd->lid & mask) & SEND_CTXT_CHECK_SLID_VALUE_MASK) << 9924 SEND_CTXT_CHECK_SLID_VALUE_SHIFT); 9925 9926 for (i = 0; i < dd->chip_send_contexts; i++) { 9927 hfi1_cdbg(LINKVERB, "SendContext[%d].SLID_CHECK = 0x%x", 9928 i, (u32)sreg); 9929 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_SLID, sreg); 9930 } 9931 9932 /* Now we have to do the same thing for the sdma engines */ 9933 sdma_update_lmc(dd, mask, ppd->lid); 9934 } 9935 9936 static int wait_phy_linkstate(struct hfi1_devdata *dd, u32 state, u32 msecs) 9937 { 9938 unsigned long timeout; 9939 u32 curr_state; 9940 9941 timeout = jiffies + msecs_to_jiffies(msecs); 9942 while (1) { 9943 curr_state = read_physical_state(dd); 9944 if (curr_state == state) 9945 break; 9946 if (time_after(jiffies, timeout)) { 9947 dd_dev_err(dd, 9948 "timeout waiting for phy link state 0x%x, current state is 0x%x\n", 9949 state, curr_state); 9950 return -ETIMEDOUT; 9951 } 9952 usleep_range(1950, 2050); /* sleep 2ms-ish */ 9953 } 9954 9955 return 0; 9956 } 9957 9958 static const char *state_completed_string(u32 completed) 9959 { 9960 static const char * const state_completed[] = { 9961 "EstablishComm", 9962 "OptimizeEQ", 9963 "VerifyCap" 9964 }; 9965 9966 if (completed < ARRAY_SIZE(state_completed)) 9967 return state_completed[completed]; 9968 9969 return "unknown"; 9970 } 9971 9972 static const char all_lanes_dead_timeout_expired[] = 9973 "All lanes were inactive – was the interconnect media removed?"; 9974 static const char tx_out_of_policy[] = 9975 "Passing lanes on local port do not meet the local link width policy"; 9976 static const char no_state_complete[] = 9977 "State timeout occurred before link partner completed the state"; 9978 static const char * const state_complete_reasons[] = { 9979 [0x00] = "Reason unknown", 9980 [0x01] = "Link was halted by driver, refer to LinkDownReason", 9981 [0x02] = "Link partner reported failure", 9982 [0x10] = "Unable to achieve frame sync on any lane", 9983 [0x11] = 9984 "Unable to find a common bit rate with the link partner", 9985 [0x12] = 9986 "Unable to achieve frame sync on sufficient lanes to meet the local link width policy", 9987 [0x13] = 9988 "Unable to identify preset equalization on sufficient lanes to meet the local link width policy", 9989 [0x14] = no_state_complete, 9990 [0x15] = 9991 "State timeout occurred before link partner identified equalization presets", 9992 [0x16] = 9993 "Link partner completed the EstablishComm state, but the passing lanes do not meet the local link width policy", 9994 [0x17] = tx_out_of_policy, 9995 [0x20] = all_lanes_dead_timeout_expired, 9996 [0x21] = 9997 "Unable to achieve acceptable BER on sufficient lanes to meet the local link width policy", 9998 [0x22] = no_state_complete, 9999 [0x23] = 10000 "Link partner completed the OptimizeEq state, but the passing lanes do not meet the local link width policy", 10001 [0x24] = tx_out_of_policy, 10002 [0x30] = all_lanes_dead_timeout_expired, 10003 [0x31] = 10004 "State timeout occurred waiting for host to process received frames", 10005 [0x32] = no_state_complete, 10006 [0x33] = 10007 "Link partner completed the VerifyCap state, but the passing lanes do not meet the local link width policy", 10008 [0x34] = tx_out_of_policy, 10009 }; 10010 10011 static const char *state_complete_reason_code_string(struct hfi1_pportdata *ppd, 10012 u32 code) 10013 { 10014 const char *str = NULL; 10015 10016 if (code < ARRAY_SIZE(state_complete_reasons)) 10017 str = state_complete_reasons[code]; 10018 10019 if (str) 10020 return str; 10021 return "Reserved"; 10022 } 10023 10024 /* describe the given last state complete frame */ 10025 static void decode_state_complete(struct hfi1_pportdata *ppd, u32 frame, 10026 const char *prefix) 10027 { 10028 struct hfi1_devdata *dd = ppd->dd; 10029 u32 success; 10030 u32 state; 10031 u32 reason; 10032 u32 lanes; 10033 10034 /* 10035 * Decode frame: 10036 * [ 0: 0] - success 10037 * [ 3: 1] - state 10038 * [ 7: 4] - next state timeout 10039 * [15: 8] - reason code 10040 * [31:16] - lanes 10041 */ 10042 success = frame & 0x1; 10043 state = (frame >> 1) & 0x7; 10044 reason = (frame >> 8) & 0xff; 10045 lanes = (frame >> 16) & 0xffff; 10046 10047 dd_dev_err(dd, "Last %s LNI state complete frame 0x%08x:\n", 10048 prefix, frame); 10049 dd_dev_err(dd, " last reported state state: %s (0x%x)\n", 10050 state_completed_string(state), state); 10051 dd_dev_err(dd, " state successfully completed: %s\n", 10052 success ? "yes" : "no"); 10053 dd_dev_err(dd, " fail reason 0x%x: %s\n", 10054 reason, state_complete_reason_code_string(ppd, reason)); 10055 dd_dev_err(dd, " passing lane mask: 0x%x", lanes); 10056 } 10057 10058 /* 10059 * Read the last state complete frames and explain them. This routine 10060 * expects to be called if the link went down during link negotiation 10061 * and initialization (LNI). That is, anywhere between polling and link up. 10062 */ 10063 static void check_lni_states(struct hfi1_pportdata *ppd) 10064 { 10065 u32 last_local_state; 10066 u32 last_remote_state; 10067 10068 read_last_local_state(ppd->dd, &last_local_state); 10069 read_last_remote_state(ppd->dd, &last_remote_state); 10070 10071 /* 10072 * Don't report anything if there is nothing to report. A value of 10073 * 0 means the link was taken down while polling and there was no 10074 * training in-process. 10075 */ 10076 if (last_local_state == 0 && last_remote_state == 0) 10077 return; 10078 10079 decode_state_complete(ppd, last_local_state, "transmitted"); 10080 decode_state_complete(ppd, last_remote_state, "received"); 10081 } 10082 10083 /* 10084 * Helper for set_link_state(). Do not call except from that routine. 10085 * Expects ppd->hls_mutex to be held. 10086 * 10087 * @rem_reason value to be sent to the neighbor 10088 * 10089 * LinkDownReasons only set if transition succeeds. 10090 */ 10091 static int goto_offline(struct hfi1_pportdata *ppd, u8 rem_reason) 10092 { 10093 struct hfi1_devdata *dd = ppd->dd; 10094 u32 pstate, previous_state; 10095 int ret; 10096 int do_transition; 10097 int do_wait; 10098 10099 previous_state = ppd->host_link_state; 10100 ppd->host_link_state = HLS_GOING_OFFLINE; 10101 pstate = read_physical_state(dd); 10102 if (pstate == PLS_OFFLINE) { 10103 do_transition = 0; /* in right state */ 10104 do_wait = 0; /* ...no need to wait */ 10105 } else if ((pstate & 0xff) == PLS_OFFLINE) { 10106 do_transition = 0; /* in an offline transient state */ 10107 do_wait = 1; /* ...wait for it to settle */ 10108 } else { 10109 do_transition = 1; /* need to move to offline */ 10110 do_wait = 1; /* ...will need to wait */ 10111 } 10112 10113 if (do_transition) { 10114 ret = set_physical_link_state(dd, 10115 (rem_reason << 8) | PLS_OFFLINE); 10116 10117 if (ret != HCMD_SUCCESS) { 10118 dd_dev_err(dd, 10119 "Failed to transition to Offline link state, return %d\n", 10120 ret); 10121 return -EINVAL; 10122 } 10123 if (ppd->offline_disabled_reason == 10124 HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE)) 10125 ppd->offline_disabled_reason = 10126 HFI1_ODR_MASK(OPA_LINKDOWN_REASON_TRANSIENT); 10127 } 10128 10129 if (do_wait) { 10130 /* it can take a while for the link to go down */ 10131 ret = wait_phy_linkstate(dd, PLS_OFFLINE, 10000); 10132 if (ret < 0) 10133 return ret; 10134 } 10135 10136 /* make sure the logical state is also down */ 10137 wait_logical_linkstate(ppd, IB_PORT_DOWN, 1000); 10138 10139 /* 10140 * Now in charge of LCB - must be after the physical state is 10141 * offline.quiet and before host_link_state is changed. 10142 */ 10143 set_host_lcb_access(dd); 10144 write_csr(dd, DC_LCB_ERR_EN, ~0ull); /* watch LCB errors */ 10145 ppd->host_link_state = HLS_LINK_COOLDOWN; /* LCB access allowed */ 10146 10147 if (ppd->port_type == PORT_TYPE_QSFP && 10148 ppd->qsfp_info.limiting_active && 10149 qsfp_mod_present(ppd)) { 10150 int ret; 10151 10152 ret = acquire_chip_resource(dd, qsfp_resource(dd), QSFP_WAIT); 10153 if (ret == 0) { 10154 set_qsfp_tx(ppd, 0); 10155 release_chip_resource(dd, qsfp_resource(dd)); 10156 } else { 10157 /* not fatal, but should warn */ 10158 dd_dev_err(dd, 10159 "Unable to acquire lock to turn off QSFP TX\n"); 10160 } 10161 } 10162 10163 /* 10164 * The LNI has a mandatory wait time after the physical state 10165 * moves to Offline.Quiet. The wait time may be different 10166 * depending on how the link went down. The 8051 firmware 10167 * will observe the needed wait time and only move to ready 10168 * when that is completed. The largest of the quiet timeouts 10169 * is 6s, so wait that long and then at least 0.5s more for 10170 * other transitions, and another 0.5s for a buffer. 10171 */ 10172 ret = wait_fm_ready(dd, 7000); 10173 if (ret) { 10174 dd_dev_err(dd, 10175 "After going offline, timed out waiting for the 8051 to become ready to accept host requests\n"); 10176 /* state is really offline, so make it so */ 10177 ppd->host_link_state = HLS_DN_OFFLINE; 10178 return ret; 10179 } 10180 10181 /* 10182 * The state is now offline and the 8051 is ready to accept host 10183 * requests. 10184 * - change our state 10185 * - notify others if we were previously in a linkup state 10186 */ 10187 ppd->host_link_state = HLS_DN_OFFLINE; 10188 if (previous_state & HLS_UP) { 10189 /* went down while link was up */ 10190 handle_linkup_change(dd, 0); 10191 } else if (previous_state 10192 & (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) { 10193 /* went down while attempting link up */ 10194 check_lni_states(ppd); 10195 } 10196 10197 /* the active link width (downgrade) is 0 on link down */ 10198 ppd->link_width_active = 0; 10199 ppd->link_width_downgrade_tx_active = 0; 10200 ppd->link_width_downgrade_rx_active = 0; 10201 ppd->current_egress_rate = 0; 10202 return 0; 10203 } 10204 10205 /* return the link state name */ 10206 static const char *link_state_name(u32 state) 10207 { 10208 const char *name; 10209 int n = ilog2(state); 10210 static const char * const names[] = { 10211 [__HLS_UP_INIT_BP] = "INIT", 10212 [__HLS_UP_ARMED_BP] = "ARMED", 10213 [__HLS_UP_ACTIVE_BP] = "ACTIVE", 10214 [__HLS_DN_DOWNDEF_BP] = "DOWNDEF", 10215 [__HLS_DN_POLL_BP] = "POLL", 10216 [__HLS_DN_DISABLE_BP] = "DISABLE", 10217 [__HLS_DN_OFFLINE_BP] = "OFFLINE", 10218 [__HLS_VERIFY_CAP_BP] = "VERIFY_CAP", 10219 [__HLS_GOING_UP_BP] = "GOING_UP", 10220 [__HLS_GOING_OFFLINE_BP] = "GOING_OFFLINE", 10221 [__HLS_LINK_COOLDOWN_BP] = "LINK_COOLDOWN" 10222 }; 10223 10224 name = n < ARRAY_SIZE(names) ? names[n] : NULL; 10225 return name ? name : "unknown"; 10226 } 10227 10228 /* return the link state reason name */ 10229 static const char *link_state_reason_name(struct hfi1_pportdata *ppd, u32 state) 10230 { 10231 if (state == HLS_UP_INIT) { 10232 switch (ppd->linkinit_reason) { 10233 case OPA_LINKINIT_REASON_LINKUP: 10234 return "(LINKUP)"; 10235 case OPA_LINKINIT_REASON_FLAPPING: 10236 return "(FLAPPING)"; 10237 case OPA_LINKINIT_OUTSIDE_POLICY: 10238 return "(OUTSIDE_POLICY)"; 10239 case OPA_LINKINIT_QUARANTINED: 10240 return "(QUARANTINED)"; 10241 case OPA_LINKINIT_INSUFIC_CAPABILITY: 10242 return "(INSUFIC_CAPABILITY)"; 10243 default: 10244 break; 10245 } 10246 } 10247 return ""; 10248 } 10249 10250 /* 10251 * driver_physical_state - convert the driver's notion of a port's 10252 * state (an HLS_*) into a physical state (a {IB,OPA}_PORTPHYSSTATE_*). 10253 * Return -1 (converted to a u32) to indicate error. 10254 */ 10255 u32 driver_physical_state(struct hfi1_pportdata *ppd) 10256 { 10257 switch (ppd->host_link_state) { 10258 case HLS_UP_INIT: 10259 case HLS_UP_ARMED: 10260 case HLS_UP_ACTIVE: 10261 return IB_PORTPHYSSTATE_LINKUP; 10262 case HLS_DN_POLL: 10263 return IB_PORTPHYSSTATE_POLLING; 10264 case HLS_DN_DISABLE: 10265 return IB_PORTPHYSSTATE_DISABLED; 10266 case HLS_DN_OFFLINE: 10267 return OPA_PORTPHYSSTATE_OFFLINE; 10268 case HLS_VERIFY_CAP: 10269 return IB_PORTPHYSSTATE_POLLING; 10270 case HLS_GOING_UP: 10271 return IB_PORTPHYSSTATE_POLLING; 10272 case HLS_GOING_OFFLINE: 10273 return OPA_PORTPHYSSTATE_OFFLINE; 10274 case HLS_LINK_COOLDOWN: 10275 return OPA_PORTPHYSSTATE_OFFLINE; 10276 case HLS_DN_DOWNDEF: 10277 default: 10278 dd_dev_err(ppd->dd, "invalid host_link_state 0x%x\n", 10279 ppd->host_link_state); 10280 return -1; 10281 } 10282 } 10283 10284 /* 10285 * driver_logical_state - convert the driver's notion of a port's 10286 * state (an HLS_*) into a logical state (a IB_PORT_*). Return -1 10287 * (converted to a u32) to indicate error. 10288 */ 10289 u32 driver_logical_state(struct hfi1_pportdata *ppd) 10290 { 10291 if (ppd->host_link_state && (ppd->host_link_state & HLS_DOWN)) 10292 return IB_PORT_DOWN; 10293 10294 switch (ppd->host_link_state & HLS_UP) { 10295 case HLS_UP_INIT: 10296 return IB_PORT_INIT; 10297 case HLS_UP_ARMED: 10298 return IB_PORT_ARMED; 10299 case HLS_UP_ACTIVE: 10300 return IB_PORT_ACTIVE; 10301 default: 10302 dd_dev_err(ppd->dd, "invalid host_link_state 0x%x\n", 10303 ppd->host_link_state); 10304 return -1; 10305 } 10306 } 10307 10308 void set_link_down_reason(struct hfi1_pportdata *ppd, u8 lcl_reason, 10309 u8 neigh_reason, u8 rem_reason) 10310 { 10311 if (ppd->local_link_down_reason.latest == 0 && 10312 ppd->neigh_link_down_reason.latest == 0) { 10313 ppd->local_link_down_reason.latest = lcl_reason; 10314 ppd->neigh_link_down_reason.latest = neigh_reason; 10315 ppd->remote_link_down_reason = rem_reason; 10316 } 10317 } 10318 10319 /* 10320 * Change the physical and/or logical link state. 10321 * 10322 * Do not call this routine while inside an interrupt. It contains 10323 * calls to routines that can take multiple seconds to finish. 10324 * 10325 * Returns 0 on success, -errno on failure. 10326 */ 10327 int set_link_state(struct hfi1_pportdata *ppd, u32 state) 10328 { 10329 struct hfi1_devdata *dd = ppd->dd; 10330 struct ib_event event = {.device = NULL}; 10331 int ret1, ret = 0; 10332 int orig_new_state, poll_bounce; 10333 10334 mutex_lock(&ppd->hls_lock); 10335 10336 orig_new_state = state; 10337 if (state == HLS_DN_DOWNDEF) 10338 state = dd->link_default; 10339 10340 /* interpret poll -> poll as a link bounce */ 10341 poll_bounce = ppd->host_link_state == HLS_DN_POLL && 10342 state == HLS_DN_POLL; 10343 10344 dd_dev_info(dd, "%s: current %s, new %s %s%s\n", __func__, 10345 link_state_name(ppd->host_link_state), 10346 link_state_name(orig_new_state), 10347 poll_bounce ? "(bounce) " : "", 10348 link_state_reason_name(ppd, state)); 10349 10350 /* 10351 * If we're going to a (HLS_*) link state that implies the logical 10352 * link state is neither of (IB_PORT_ARMED, IB_PORT_ACTIVE), then 10353 * reset is_sm_config_started to 0. 10354 */ 10355 if (!(state & (HLS_UP_ARMED | HLS_UP_ACTIVE))) 10356 ppd->is_sm_config_started = 0; 10357 10358 /* 10359 * Do nothing if the states match. Let a poll to poll link bounce 10360 * go through. 10361 */ 10362 if (ppd->host_link_state == state && !poll_bounce) 10363 goto done; 10364 10365 switch (state) { 10366 case HLS_UP_INIT: 10367 if (ppd->host_link_state == HLS_DN_POLL && 10368 (quick_linkup || dd->icode == ICODE_FUNCTIONAL_SIMULATOR)) { 10369 /* 10370 * Quick link up jumps from polling to here. 10371 * 10372 * Whether in normal or loopback mode, the 10373 * simulator jumps from polling to link up. 10374 * Accept that here. 10375 */ 10376 /* OK */ 10377 } else if (ppd->host_link_state != HLS_GOING_UP) { 10378 goto unexpected; 10379 } 10380 10381 ppd->host_link_state = HLS_UP_INIT; 10382 ret = wait_logical_linkstate(ppd, IB_PORT_INIT, 1000); 10383 if (ret) { 10384 /* logical state didn't change, stay at going_up */ 10385 ppd->host_link_state = HLS_GOING_UP; 10386 dd_dev_err(dd, 10387 "%s: logical state did not change to INIT\n", 10388 __func__); 10389 } else { 10390 /* clear old transient LINKINIT_REASON code */ 10391 if (ppd->linkinit_reason >= OPA_LINKINIT_REASON_CLEAR) 10392 ppd->linkinit_reason = 10393 OPA_LINKINIT_REASON_LINKUP; 10394 10395 /* enable the port */ 10396 add_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK); 10397 10398 handle_linkup_change(dd, 1); 10399 } 10400 break; 10401 case HLS_UP_ARMED: 10402 if (ppd->host_link_state != HLS_UP_INIT) 10403 goto unexpected; 10404 10405 ppd->host_link_state = HLS_UP_ARMED; 10406 set_logical_state(dd, LSTATE_ARMED); 10407 ret = wait_logical_linkstate(ppd, IB_PORT_ARMED, 1000); 10408 if (ret) { 10409 /* logical state didn't change, stay at init */ 10410 ppd->host_link_state = HLS_UP_INIT; 10411 dd_dev_err(dd, 10412 "%s: logical state did not change to ARMED\n", 10413 __func__); 10414 } 10415 /* 10416 * The simulator does not currently implement SMA messages, 10417 * so neighbor_normal is not set. Set it here when we first 10418 * move to Armed. 10419 */ 10420 if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR) 10421 ppd->neighbor_normal = 1; 10422 break; 10423 case HLS_UP_ACTIVE: 10424 if (ppd->host_link_state != HLS_UP_ARMED) 10425 goto unexpected; 10426 10427 ppd->host_link_state = HLS_UP_ACTIVE; 10428 set_logical_state(dd, LSTATE_ACTIVE); 10429 ret = wait_logical_linkstate(ppd, IB_PORT_ACTIVE, 1000); 10430 if (ret) { 10431 /* logical state didn't change, stay at armed */ 10432 ppd->host_link_state = HLS_UP_ARMED; 10433 dd_dev_err(dd, 10434 "%s: logical state did not change to ACTIVE\n", 10435 __func__); 10436 } else { 10437 /* tell all engines to go running */ 10438 sdma_all_running(dd); 10439 10440 /* Signal the IB layer that the port has went active */ 10441 event.device = &dd->verbs_dev.rdi.ibdev; 10442 event.element.port_num = ppd->port; 10443 event.event = IB_EVENT_PORT_ACTIVE; 10444 } 10445 break; 10446 case HLS_DN_POLL: 10447 if ((ppd->host_link_state == HLS_DN_DISABLE || 10448 ppd->host_link_state == HLS_DN_OFFLINE) && 10449 dd->dc_shutdown) 10450 dc_start(dd); 10451 /* Hand LED control to the DC */ 10452 write_csr(dd, DCC_CFG_LED_CNTRL, 0); 10453 10454 if (ppd->host_link_state != HLS_DN_OFFLINE) { 10455 u8 tmp = ppd->link_enabled; 10456 10457 ret = goto_offline(ppd, ppd->remote_link_down_reason); 10458 if (ret) { 10459 ppd->link_enabled = tmp; 10460 break; 10461 } 10462 ppd->remote_link_down_reason = 0; 10463 10464 if (ppd->driver_link_ready) 10465 ppd->link_enabled = 1; 10466 } 10467 10468 set_all_slowpath(ppd->dd); 10469 ret = set_local_link_attributes(ppd); 10470 if (ret) 10471 break; 10472 10473 ppd->port_error_action = 0; 10474 ppd->host_link_state = HLS_DN_POLL; 10475 10476 if (quick_linkup) { 10477 /* quick linkup does not go into polling */ 10478 ret = do_quick_linkup(dd); 10479 } else { 10480 ret1 = set_physical_link_state(dd, PLS_POLLING); 10481 if (ret1 != HCMD_SUCCESS) { 10482 dd_dev_err(dd, 10483 "Failed to transition to Polling link state, return 0x%x\n", 10484 ret1); 10485 ret = -EINVAL; 10486 } 10487 } 10488 ppd->offline_disabled_reason = 10489 HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE); 10490 /* 10491 * If an error occurred above, go back to offline. The 10492 * caller may reschedule another attempt. 10493 */ 10494 if (ret) 10495 goto_offline(ppd, 0); 10496 break; 10497 case HLS_DN_DISABLE: 10498 /* link is disabled */ 10499 ppd->link_enabled = 0; 10500 10501 /* allow any state to transition to disabled */ 10502 10503 /* must transition to offline first */ 10504 if (ppd->host_link_state != HLS_DN_OFFLINE) { 10505 ret = goto_offline(ppd, ppd->remote_link_down_reason); 10506 if (ret) 10507 break; 10508 ppd->remote_link_down_reason = 0; 10509 } 10510 10511 ret1 = set_physical_link_state(dd, PLS_DISABLED); 10512 if (ret1 != HCMD_SUCCESS) { 10513 dd_dev_err(dd, 10514 "Failed to transition to Disabled link state, return 0x%x\n", 10515 ret1); 10516 ret = -EINVAL; 10517 break; 10518 } 10519 ppd->host_link_state = HLS_DN_DISABLE; 10520 dc_shutdown(dd); 10521 break; 10522 case HLS_DN_OFFLINE: 10523 if (ppd->host_link_state == HLS_DN_DISABLE) 10524 dc_start(dd); 10525 10526 /* allow any state to transition to offline */ 10527 ret = goto_offline(ppd, ppd->remote_link_down_reason); 10528 if (!ret) 10529 ppd->remote_link_down_reason = 0; 10530 break; 10531 case HLS_VERIFY_CAP: 10532 if (ppd->host_link_state != HLS_DN_POLL) 10533 goto unexpected; 10534 ppd->host_link_state = HLS_VERIFY_CAP; 10535 break; 10536 case HLS_GOING_UP: 10537 if (ppd->host_link_state != HLS_VERIFY_CAP) 10538 goto unexpected; 10539 10540 ret1 = set_physical_link_state(dd, PLS_LINKUP); 10541 if (ret1 != HCMD_SUCCESS) { 10542 dd_dev_err(dd, 10543 "Failed to transition to link up state, return 0x%x\n", 10544 ret1); 10545 ret = -EINVAL; 10546 break; 10547 } 10548 ppd->host_link_state = HLS_GOING_UP; 10549 break; 10550 10551 case HLS_GOING_OFFLINE: /* transient within goto_offline() */ 10552 case HLS_LINK_COOLDOWN: /* transient within goto_offline() */ 10553 default: 10554 dd_dev_info(dd, "%s: state 0x%x: not supported\n", 10555 __func__, state); 10556 ret = -EINVAL; 10557 break; 10558 } 10559 10560 goto done; 10561 10562 unexpected: 10563 dd_dev_err(dd, "%s: unexpected state transition from %s to %s\n", 10564 __func__, link_state_name(ppd->host_link_state), 10565 link_state_name(state)); 10566 ret = -EINVAL; 10567 10568 done: 10569 mutex_unlock(&ppd->hls_lock); 10570 10571 if (event.device) 10572 ib_dispatch_event(&event); 10573 10574 return ret; 10575 } 10576 10577 int hfi1_set_ib_cfg(struct hfi1_pportdata *ppd, int which, u32 val) 10578 { 10579 u64 reg; 10580 int ret = 0; 10581 10582 switch (which) { 10583 case HFI1_IB_CFG_LIDLMC: 10584 set_lidlmc(ppd); 10585 break; 10586 case HFI1_IB_CFG_VL_HIGH_LIMIT: 10587 /* 10588 * The VL Arbitrator high limit is sent in units of 4k 10589 * bytes, while HFI stores it in units of 64 bytes. 10590 */ 10591 val *= 4096 / 64; 10592 reg = ((u64)val & SEND_HIGH_PRIORITY_LIMIT_LIMIT_MASK) 10593 << SEND_HIGH_PRIORITY_LIMIT_LIMIT_SHIFT; 10594 write_csr(ppd->dd, SEND_HIGH_PRIORITY_LIMIT, reg); 10595 break; 10596 case HFI1_IB_CFG_LINKDEFAULT: /* IB link default (sleep/poll) */ 10597 /* HFI only supports POLL as the default link down state */ 10598 if (val != HLS_DN_POLL) 10599 ret = -EINVAL; 10600 break; 10601 case HFI1_IB_CFG_OP_VLS: 10602 if (ppd->vls_operational != val) { 10603 ppd->vls_operational = val; 10604 if (!ppd->port) 10605 ret = -EINVAL; 10606 } 10607 break; 10608 /* 10609 * For link width, link width downgrade, and speed enable, always AND 10610 * the setting with what is actually supported. This has two benefits. 10611 * First, enabled can't have unsupported values, no matter what the 10612 * SM or FM might want. Second, the ALL_SUPPORTED wildcards that mean 10613 * "fill in with your supported value" have all the bits in the 10614 * field set, so simply ANDing with supported has the desired result. 10615 */ 10616 case HFI1_IB_CFG_LWID_ENB: /* set allowed Link-width */ 10617 ppd->link_width_enabled = val & ppd->link_width_supported; 10618 break; 10619 case HFI1_IB_CFG_LWID_DG_ENB: /* set allowed link width downgrade */ 10620 ppd->link_width_downgrade_enabled = 10621 val & ppd->link_width_downgrade_supported; 10622 break; 10623 case HFI1_IB_CFG_SPD_ENB: /* allowed Link speeds */ 10624 ppd->link_speed_enabled = val & ppd->link_speed_supported; 10625 break; 10626 case HFI1_IB_CFG_OVERRUN_THRESH: /* IB overrun threshold */ 10627 /* 10628 * HFI does not follow IB specs, save this value 10629 * so we can report it, if asked. 10630 */ 10631 ppd->overrun_threshold = val; 10632 break; 10633 case HFI1_IB_CFG_PHYERR_THRESH: /* IB PHY error threshold */ 10634 /* 10635 * HFI does not follow IB specs, save this value 10636 * so we can report it, if asked. 10637 */ 10638 ppd->phy_error_threshold = val; 10639 break; 10640 10641 case HFI1_IB_CFG_MTU: 10642 set_send_length(ppd); 10643 break; 10644 10645 case HFI1_IB_CFG_PKEYS: 10646 if (HFI1_CAP_IS_KSET(PKEY_CHECK)) 10647 set_partition_keys(ppd); 10648 break; 10649 10650 default: 10651 if (HFI1_CAP_IS_KSET(PRINT_UNIMPL)) 10652 dd_dev_info(ppd->dd, 10653 "%s: which %s, val 0x%x: not implemented\n", 10654 __func__, ib_cfg_name(which), val); 10655 break; 10656 } 10657 return ret; 10658 } 10659 10660 /* begin functions related to vl arbitration table caching */ 10661 static void init_vl_arb_caches(struct hfi1_pportdata *ppd) 10662 { 10663 int i; 10664 10665 BUILD_BUG_ON(VL_ARB_TABLE_SIZE != 10666 VL_ARB_LOW_PRIO_TABLE_SIZE); 10667 BUILD_BUG_ON(VL_ARB_TABLE_SIZE != 10668 VL_ARB_HIGH_PRIO_TABLE_SIZE); 10669 10670 /* 10671 * Note that we always return values directly from the 10672 * 'vl_arb_cache' (and do no CSR reads) in response to a 10673 * 'Get(VLArbTable)'. This is obviously correct after a 10674 * 'Set(VLArbTable)', since the cache will then be up to 10675 * date. But it's also correct prior to any 'Set(VLArbTable)' 10676 * since then both the cache, and the relevant h/w registers 10677 * will be zeroed. 10678 */ 10679 10680 for (i = 0; i < MAX_PRIO_TABLE; i++) 10681 spin_lock_init(&ppd->vl_arb_cache[i].lock); 10682 } 10683 10684 /* 10685 * vl_arb_lock_cache 10686 * 10687 * All other vl_arb_* functions should be called only after locking 10688 * the cache. 10689 */ 10690 static inline struct vl_arb_cache * 10691 vl_arb_lock_cache(struct hfi1_pportdata *ppd, int idx) 10692 { 10693 if (idx != LO_PRIO_TABLE && idx != HI_PRIO_TABLE) 10694 return NULL; 10695 spin_lock(&ppd->vl_arb_cache[idx].lock); 10696 return &ppd->vl_arb_cache[idx]; 10697 } 10698 10699 static inline void vl_arb_unlock_cache(struct hfi1_pportdata *ppd, int idx) 10700 { 10701 spin_unlock(&ppd->vl_arb_cache[idx].lock); 10702 } 10703 10704 static void vl_arb_get_cache(struct vl_arb_cache *cache, 10705 struct ib_vl_weight_elem *vl) 10706 { 10707 memcpy(vl, cache->table, VL_ARB_TABLE_SIZE * sizeof(*vl)); 10708 } 10709 10710 static void vl_arb_set_cache(struct vl_arb_cache *cache, 10711 struct ib_vl_weight_elem *vl) 10712 { 10713 memcpy(cache->table, vl, VL_ARB_TABLE_SIZE * sizeof(*vl)); 10714 } 10715 10716 static int vl_arb_match_cache(struct vl_arb_cache *cache, 10717 struct ib_vl_weight_elem *vl) 10718 { 10719 return !memcmp(cache->table, vl, VL_ARB_TABLE_SIZE * sizeof(*vl)); 10720 } 10721 10722 /* end functions related to vl arbitration table caching */ 10723 10724 static int set_vl_weights(struct hfi1_pportdata *ppd, u32 target, 10725 u32 size, struct ib_vl_weight_elem *vl) 10726 { 10727 struct hfi1_devdata *dd = ppd->dd; 10728 u64 reg; 10729 unsigned int i, is_up = 0; 10730 int drain, ret = 0; 10731 10732 mutex_lock(&ppd->hls_lock); 10733 10734 if (ppd->host_link_state & HLS_UP) 10735 is_up = 1; 10736 10737 drain = !is_ax(dd) && is_up; 10738 10739 if (drain) 10740 /* 10741 * Before adjusting VL arbitration weights, empty per-VL 10742 * FIFOs, otherwise a packet whose VL weight is being 10743 * set to 0 could get stuck in a FIFO with no chance to 10744 * egress. 10745 */ 10746 ret = stop_drain_data_vls(dd); 10747 10748 if (ret) { 10749 dd_dev_err( 10750 dd, 10751 "%s: cannot stop/drain VLs - refusing to change VL arbitration weights\n", 10752 __func__); 10753 goto err; 10754 } 10755 10756 for (i = 0; i < size; i++, vl++) { 10757 /* 10758 * NOTE: The low priority shift and mask are used here, but 10759 * they are the same for both the low and high registers. 10760 */ 10761 reg = (((u64)vl->vl & SEND_LOW_PRIORITY_LIST_VL_MASK) 10762 << SEND_LOW_PRIORITY_LIST_VL_SHIFT) 10763 | (((u64)vl->weight 10764 & SEND_LOW_PRIORITY_LIST_WEIGHT_MASK) 10765 << SEND_LOW_PRIORITY_LIST_WEIGHT_SHIFT); 10766 write_csr(dd, target + (i * 8), reg); 10767 } 10768 pio_send_control(dd, PSC_GLOBAL_VLARB_ENABLE); 10769 10770 if (drain) 10771 open_fill_data_vls(dd); /* reopen all VLs */ 10772 10773 err: 10774 mutex_unlock(&ppd->hls_lock); 10775 10776 return ret; 10777 } 10778 10779 /* 10780 * Read one credit merge VL register. 10781 */ 10782 static void read_one_cm_vl(struct hfi1_devdata *dd, u32 csr, 10783 struct vl_limit *vll) 10784 { 10785 u64 reg = read_csr(dd, csr); 10786 10787 vll->dedicated = cpu_to_be16( 10788 (reg >> SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SHIFT) 10789 & SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_MASK); 10790 vll->shared = cpu_to_be16( 10791 (reg >> SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SHIFT) 10792 & SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_MASK); 10793 } 10794 10795 /* 10796 * Read the current credit merge limits. 10797 */ 10798 static int get_buffer_control(struct hfi1_devdata *dd, 10799 struct buffer_control *bc, u16 *overall_limit) 10800 { 10801 u64 reg; 10802 int i; 10803 10804 /* not all entries are filled in */ 10805 memset(bc, 0, sizeof(*bc)); 10806 10807 /* OPA and HFI have a 1-1 mapping */ 10808 for (i = 0; i < TXE_NUM_DATA_VL; i++) 10809 read_one_cm_vl(dd, SEND_CM_CREDIT_VL + (8 * i), &bc->vl[i]); 10810 10811 /* NOTE: assumes that VL* and VL15 CSRs are bit-wise identical */ 10812 read_one_cm_vl(dd, SEND_CM_CREDIT_VL15, &bc->vl[15]); 10813 10814 reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT); 10815 bc->overall_shared_limit = cpu_to_be16( 10816 (reg >> SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SHIFT) 10817 & SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_MASK); 10818 if (overall_limit) 10819 *overall_limit = (reg 10820 >> SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT) 10821 & SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_MASK; 10822 return sizeof(struct buffer_control); 10823 } 10824 10825 static int get_sc2vlnt(struct hfi1_devdata *dd, struct sc2vlnt *dp) 10826 { 10827 u64 reg; 10828 int i; 10829 10830 /* each register contains 16 SC->VLnt mappings, 4 bits each */ 10831 reg = read_csr(dd, DCC_CFG_SC_VL_TABLE_15_0); 10832 for (i = 0; i < sizeof(u64); i++) { 10833 u8 byte = *(((u8 *)®) + i); 10834 10835 dp->vlnt[2 * i] = byte & 0xf; 10836 dp->vlnt[(2 * i) + 1] = (byte & 0xf0) >> 4; 10837 } 10838 10839 reg = read_csr(dd, DCC_CFG_SC_VL_TABLE_31_16); 10840 for (i = 0; i < sizeof(u64); i++) { 10841 u8 byte = *(((u8 *)®) + i); 10842 10843 dp->vlnt[16 + (2 * i)] = byte & 0xf; 10844 dp->vlnt[16 + (2 * i) + 1] = (byte & 0xf0) >> 4; 10845 } 10846 return sizeof(struct sc2vlnt); 10847 } 10848 10849 static void get_vlarb_preempt(struct hfi1_devdata *dd, u32 nelems, 10850 struct ib_vl_weight_elem *vl) 10851 { 10852 unsigned int i; 10853 10854 for (i = 0; i < nelems; i++, vl++) { 10855 vl->vl = 0xf; 10856 vl->weight = 0; 10857 } 10858 } 10859 10860 static void set_sc2vlnt(struct hfi1_devdata *dd, struct sc2vlnt *dp) 10861 { 10862 write_csr(dd, DCC_CFG_SC_VL_TABLE_15_0, 10863 DC_SC_VL_VAL(15_0, 10864 0, dp->vlnt[0] & 0xf, 10865 1, dp->vlnt[1] & 0xf, 10866 2, dp->vlnt[2] & 0xf, 10867 3, dp->vlnt[3] & 0xf, 10868 4, dp->vlnt[4] & 0xf, 10869 5, dp->vlnt[5] & 0xf, 10870 6, dp->vlnt[6] & 0xf, 10871 7, dp->vlnt[7] & 0xf, 10872 8, dp->vlnt[8] & 0xf, 10873 9, dp->vlnt[9] & 0xf, 10874 10, dp->vlnt[10] & 0xf, 10875 11, dp->vlnt[11] & 0xf, 10876 12, dp->vlnt[12] & 0xf, 10877 13, dp->vlnt[13] & 0xf, 10878 14, dp->vlnt[14] & 0xf, 10879 15, dp->vlnt[15] & 0xf)); 10880 write_csr(dd, DCC_CFG_SC_VL_TABLE_31_16, 10881 DC_SC_VL_VAL(31_16, 10882 16, dp->vlnt[16] & 0xf, 10883 17, dp->vlnt[17] & 0xf, 10884 18, dp->vlnt[18] & 0xf, 10885 19, dp->vlnt[19] & 0xf, 10886 20, dp->vlnt[20] & 0xf, 10887 21, dp->vlnt[21] & 0xf, 10888 22, dp->vlnt[22] & 0xf, 10889 23, dp->vlnt[23] & 0xf, 10890 24, dp->vlnt[24] & 0xf, 10891 25, dp->vlnt[25] & 0xf, 10892 26, dp->vlnt[26] & 0xf, 10893 27, dp->vlnt[27] & 0xf, 10894 28, dp->vlnt[28] & 0xf, 10895 29, dp->vlnt[29] & 0xf, 10896 30, dp->vlnt[30] & 0xf, 10897 31, dp->vlnt[31] & 0xf)); 10898 } 10899 10900 static void nonzero_msg(struct hfi1_devdata *dd, int idx, const char *what, 10901 u16 limit) 10902 { 10903 if (limit != 0) 10904 dd_dev_info(dd, "Invalid %s limit %d on VL %d, ignoring\n", 10905 what, (int)limit, idx); 10906 } 10907 10908 /* change only the shared limit portion of SendCmGLobalCredit */ 10909 static void set_global_shared(struct hfi1_devdata *dd, u16 limit) 10910 { 10911 u64 reg; 10912 10913 reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT); 10914 reg &= ~SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SMASK; 10915 reg |= (u64)limit << SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SHIFT; 10916 write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg); 10917 } 10918 10919 /* change only the total credit limit portion of SendCmGLobalCredit */ 10920 static void set_global_limit(struct hfi1_devdata *dd, u16 limit) 10921 { 10922 u64 reg; 10923 10924 reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT); 10925 reg &= ~SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SMASK; 10926 reg |= (u64)limit << SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT; 10927 write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg); 10928 } 10929 10930 /* set the given per-VL shared limit */ 10931 static void set_vl_shared(struct hfi1_devdata *dd, int vl, u16 limit) 10932 { 10933 u64 reg; 10934 u32 addr; 10935 10936 if (vl < TXE_NUM_DATA_VL) 10937 addr = SEND_CM_CREDIT_VL + (8 * vl); 10938 else 10939 addr = SEND_CM_CREDIT_VL15; 10940 10941 reg = read_csr(dd, addr); 10942 reg &= ~SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SMASK; 10943 reg |= (u64)limit << SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SHIFT; 10944 write_csr(dd, addr, reg); 10945 } 10946 10947 /* set the given per-VL dedicated limit */ 10948 static void set_vl_dedicated(struct hfi1_devdata *dd, int vl, u16 limit) 10949 { 10950 u64 reg; 10951 u32 addr; 10952 10953 if (vl < TXE_NUM_DATA_VL) 10954 addr = SEND_CM_CREDIT_VL + (8 * vl); 10955 else 10956 addr = SEND_CM_CREDIT_VL15; 10957 10958 reg = read_csr(dd, addr); 10959 reg &= ~SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SMASK; 10960 reg |= (u64)limit << SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SHIFT; 10961 write_csr(dd, addr, reg); 10962 } 10963 10964 /* spin until the given per-VL status mask bits clear */ 10965 static void wait_for_vl_status_clear(struct hfi1_devdata *dd, u64 mask, 10966 const char *which) 10967 { 10968 unsigned long timeout; 10969 u64 reg; 10970 10971 timeout = jiffies + msecs_to_jiffies(VL_STATUS_CLEAR_TIMEOUT); 10972 while (1) { 10973 reg = read_csr(dd, SEND_CM_CREDIT_USED_STATUS) & mask; 10974 10975 if (reg == 0) 10976 return; /* success */ 10977 if (time_after(jiffies, timeout)) 10978 break; /* timed out */ 10979 udelay(1); 10980 } 10981 10982 dd_dev_err(dd, 10983 "%s credit change status not clearing after %dms, mask 0x%llx, not clear 0x%llx\n", 10984 which, VL_STATUS_CLEAR_TIMEOUT, mask, reg); 10985 /* 10986 * If this occurs, it is likely there was a credit loss on the link. 10987 * The only recovery from that is a link bounce. 10988 */ 10989 dd_dev_err(dd, 10990 "Continuing anyway. A credit loss may occur. Suggest a link bounce\n"); 10991 } 10992 10993 /* 10994 * The number of credits on the VLs may be changed while everything 10995 * is "live", but the following algorithm must be followed due to 10996 * how the hardware is actually implemented. In particular, 10997 * Return_Credit_Status[] is the only correct status check. 10998 * 10999 * if (reducing Global_Shared_Credit_Limit or any shared limit changing) 11000 * set Global_Shared_Credit_Limit = 0 11001 * use_all_vl = 1 11002 * mask0 = all VLs that are changing either dedicated or shared limits 11003 * set Shared_Limit[mask0] = 0 11004 * spin until Return_Credit_Status[use_all_vl ? all VL : mask0] == 0 11005 * if (changing any dedicated limit) 11006 * mask1 = all VLs that are lowering dedicated limits 11007 * lower Dedicated_Limit[mask1] 11008 * spin until Return_Credit_Status[mask1] == 0 11009 * raise Dedicated_Limits 11010 * raise Shared_Limits 11011 * raise Global_Shared_Credit_Limit 11012 * 11013 * lower = if the new limit is lower, set the limit to the new value 11014 * raise = if the new limit is higher than the current value (may be changed 11015 * earlier in the algorithm), set the new limit to the new value 11016 */ 11017 int set_buffer_control(struct hfi1_pportdata *ppd, 11018 struct buffer_control *new_bc) 11019 { 11020 struct hfi1_devdata *dd = ppd->dd; 11021 u64 changing_mask, ld_mask, stat_mask; 11022 int change_count; 11023 int i, use_all_mask; 11024 int this_shared_changing; 11025 int vl_count = 0, ret; 11026 /* 11027 * A0: add the variable any_shared_limit_changing below and in the 11028 * algorithm above. If removing A0 support, it can be removed. 11029 */ 11030 int any_shared_limit_changing; 11031 struct buffer_control cur_bc; 11032 u8 changing[OPA_MAX_VLS]; 11033 u8 lowering_dedicated[OPA_MAX_VLS]; 11034 u16 cur_total; 11035 u32 new_total = 0; 11036 const u64 all_mask = 11037 SEND_CM_CREDIT_USED_STATUS_VL0_RETURN_CREDIT_STATUS_SMASK 11038 | SEND_CM_CREDIT_USED_STATUS_VL1_RETURN_CREDIT_STATUS_SMASK 11039 | SEND_CM_CREDIT_USED_STATUS_VL2_RETURN_CREDIT_STATUS_SMASK 11040 | SEND_CM_CREDIT_USED_STATUS_VL3_RETURN_CREDIT_STATUS_SMASK 11041 | SEND_CM_CREDIT_USED_STATUS_VL4_RETURN_CREDIT_STATUS_SMASK 11042 | SEND_CM_CREDIT_USED_STATUS_VL5_RETURN_CREDIT_STATUS_SMASK 11043 | SEND_CM_CREDIT_USED_STATUS_VL6_RETURN_CREDIT_STATUS_SMASK 11044 | SEND_CM_CREDIT_USED_STATUS_VL7_RETURN_CREDIT_STATUS_SMASK 11045 | SEND_CM_CREDIT_USED_STATUS_VL15_RETURN_CREDIT_STATUS_SMASK; 11046 11047 #define valid_vl(idx) ((idx) < TXE_NUM_DATA_VL || (idx) == 15) 11048 #define NUM_USABLE_VLS 16 /* look at VL15 and less */ 11049 11050 /* find the new total credits, do sanity check on unused VLs */ 11051 for (i = 0; i < OPA_MAX_VLS; i++) { 11052 if (valid_vl(i)) { 11053 new_total += be16_to_cpu(new_bc->vl[i].dedicated); 11054 continue; 11055 } 11056 nonzero_msg(dd, i, "dedicated", 11057 be16_to_cpu(new_bc->vl[i].dedicated)); 11058 nonzero_msg(dd, i, "shared", 11059 be16_to_cpu(new_bc->vl[i].shared)); 11060 new_bc->vl[i].dedicated = 0; 11061 new_bc->vl[i].shared = 0; 11062 } 11063 new_total += be16_to_cpu(new_bc->overall_shared_limit); 11064 11065 /* fetch the current values */ 11066 get_buffer_control(dd, &cur_bc, &cur_total); 11067 11068 /* 11069 * Create the masks we will use. 11070 */ 11071 memset(changing, 0, sizeof(changing)); 11072 memset(lowering_dedicated, 0, sizeof(lowering_dedicated)); 11073 /* 11074 * NOTE: Assumes that the individual VL bits are adjacent and in 11075 * increasing order 11076 */ 11077 stat_mask = 11078 SEND_CM_CREDIT_USED_STATUS_VL0_RETURN_CREDIT_STATUS_SMASK; 11079 changing_mask = 0; 11080 ld_mask = 0; 11081 change_count = 0; 11082 any_shared_limit_changing = 0; 11083 for (i = 0; i < NUM_USABLE_VLS; i++, stat_mask <<= 1) { 11084 if (!valid_vl(i)) 11085 continue; 11086 this_shared_changing = new_bc->vl[i].shared 11087 != cur_bc.vl[i].shared; 11088 if (this_shared_changing) 11089 any_shared_limit_changing = 1; 11090 if (new_bc->vl[i].dedicated != cur_bc.vl[i].dedicated || 11091 this_shared_changing) { 11092 changing[i] = 1; 11093 changing_mask |= stat_mask; 11094 change_count++; 11095 } 11096 if (be16_to_cpu(new_bc->vl[i].dedicated) < 11097 be16_to_cpu(cur_bc.vl[i].dedicated)) { 11098 lowering_dedicated[i] = 1; 11099 ld_mask |= stat_mask; 11100 } 11101 } 11102 11103 /* bracket the credit change with a total adjustment */ 11104 if (new_total > cur_total) 11105 set_global_limit(dd, new_total); 11106 11107 /* 11108 * Start the credit change algorithm. 11109 */ 11110 use_all_mask = 0; 11111 if ((be16_to_cpu(new_bc->overall_shared_limit) < 11112 be16_to_cpu(cur_bc.overall_shared_limit)) || 11113 (is_ax(dd) && any_shared_limit_changing)) { 11114 set_global_shared(dd, 0); 11115 cur_bc.overall_shared_limit = 0; 11116 use_all_mask = 1; 11117 } 11118 11119 for (i = 0; i < NUM_USABLE_VLS; i++) { 11120 if (!valid_vl(i)) 11121 continue; 11122 11123 if (changing[i]) { 11124 set_vl_shared(dd, i, 0); 11125 cur_bc.vl[i].shared = 0; 11126 } 11127 } 11128 11129 wait_for_vl_status_clear(dd, use_all_mask ? all_mask : changing_mask, 11130 "shared"); 11131 11132 if (change_count > 0) { 11133 for (i = 0; i < NUM_USABLE_VLS; i++) { 11134 if (!valid_vl(i)) 11135 continue; 11136 11137 if (lowering_dedicated[i]) { 11138 set_vl_dedicated(dd, i, 11139 be16_to_cpu(new_bc-> 11140 vl[i].dedicated)); 11141 cur_bc.vl[i].dedicated = 11142 new_bc->vl[i].dedicated; 11143 } 11144 } 11145 11146 wait_for_vl_status_clear(dd, ld_mask, "dedicated"); 11147 11148 /* now raise all dedicated that are going up */ 11149 for (i = 0; i < NUM_USABLE_VLS; i++) { 11150 if (!valid_vl(i)) 11151 continue; 11152 11153 if (be16_to_cpu(new_bc->vl[i].dedicated) > 11154 be16_to_cpu(cur_bc.vl[i].dedicated)) 11155 set_vl_dedicated(dd, i, 11156 be16_to_cpu(new_bc-> 11157 vl[i].dedicated)); 11158 } 11159 } 11160 11161 /* next raise all shared that are going up */ 11162 for (i = 0; i < NUM_USABLE_VLS; i++) { 11163 if (!valid_vl(i)) 11164 continue; 11165 11166 if (be16_to_cpu(new_bc->vl[i].shared) > 11167 be16_to_cpu(cur_bc.vl[i].shared)) 11168 set_vl_shared(dd, i, be16_to_cpu(new_bc->vl[i].shared)); 11169 } 11170 11171 /* finally raise the global shared */ 11172 if (be16_to_cpu(new_bc->overall_shared_limit) > 11173 be16_to_cpu(cur_bc.overall_shared_limit)) 11174 set_global_shared(dd, 11175 be16_to_cpu(new_bc->overall_shared_limit)); 11176 11177 /* bracket the credit change with a total adjustment */ 11178 if (new_total < cur_total) 11179 set_global_limit(dd, new_total); 11180 11181 /* 11182 * Determine the actual number of operational VLS using the number of 11183 * dedicated and shared credits for each VL. 11184 */ 11185 if (change_count > 0) { 11186 for (i = 0; i < TXE_NUM_DATA_VL; i++) 11187 if (be16_to_cpu(new_bc->vl[i].dedicated) > 0 || 11188 be16_to_cpu(new_bc->vl[i].shared) > 0) 11189 vl_count++; 11190 ppd->actual_vls_operational = vl_count; 11191 ret = sdma_map_init(dd, ppd->port - 1, vl_count ? 11192 ppd->actual_vls_operational : 11193 ppd->vls_operational, 11194 NULL); 11195 if (ret == 0) 11196 ret = pio_map_init(dd, ppd->port - 1, vl_count ? 11197 ppd->actual_vls_operational : 11198 ppd->vls_operational, NULL); 11199 if (ret) 11200 return ret; 11201 } 11202 return 0; 11203 } 11204 11205 /* 11206 * Read the given fabric manager table. Return the size of the 11207 * table (in bytes) on success, and a negative error code on 11208 * failure. 11209 */ 11210 int fm_get_table(struct hfi1_pportdata *ppd, int which, void *t) 11211 11212 { 11213 int size; 11214 struct vl_arb_cache *vlc; 11215 11216 switch (which) { 11217 case FM_TBL_VL_HIGH_ARB: 11218 size = 256; 11219 /* 11220 * OPA specifies 128 elements (of 2 bytes each), though 11221 * HFI supports only 16 elements in h/w. 11222 */ 11223 vlc = vl_arb_lock_cache(ppd, HI_PRIO_TABLE); 11224 vl_arb_get_cache(vlc, t); 11225 vl_arb_unlock_cache(ppd, HI_PRIO_TABLE); 11226 break; 11227 case FM_TBL_VL_LOW_ARB: 11228 size = 256; 11229 /* 11230 * OPA specifies 128 elements (of 2 bytes each), though 11231 * HFI supports only 16 elements in h/w. 11232 */ 11233 vlc = vl_arb_lock_cache(ppd, LO_PRIO_TABLE); 11234 vl_arb_get_cache(vlc, t); 11235 vl_arb_unlock_cache(ppd, LO_PRIO_TABLE); 11236 break; 11237 case FM_TBL_BUFFER_CONTROL: 11238 size = get_buffer_control(ppd->dd, t, NULL); 11239 break; 11240 case FM_TBL_SC2VLNT: 11241 size = get_sc2vlnt(ppd->dd, t); 11242 break; 11243 case FM_TBL_VL_PREEMPT_ELEMS: 11244 size = 256; 11245 /* OPA specifies 128 elements, of 2 bytes each */ 11246 get_vlarb_preempt(ppd->dd, OPA_MAX_VLS, t); 11247 break; 11248 case FM_TBL_VL_PREEMPT_MATRIX: 11249 size = 256; 11250 /* 11251 * OPA specifies that this is the same size as the VL 11252 * arbitration tables (i.e., 256 bytes). 11253 */ 11254 break; 11255 default: 11256 return -EINVAL; 11257 } 11258 return size; 11259 } 11260 11261 /* 11262 * Write the given fabric manager table. 11263 */ 11264 int fm_set_table(struct hfi1_pportdata *ppd, int which, void *t) 11265 { 11266 int ret = 0; 11267 struct vl_arb_cache *vlc; 11268 11269 switch (which) { 11270 case FM_TBL_VL_HIGH_ARB: 11271 vlc = vl_arb_lock_cache(ppd, HI_PRIO_TABLE); 11272 if (vl_arb_match_cache(vlc, t)) { 11273 vl_arb_unlock_cache(ppd, HI_PRIO_TABLE); 11274 break; 11275 } 11276 vl_arb_set_cache(vlc, t); 11277 vl_arb_unlock_cache(ppd, HI_PRIO_TABLE); 11278 ret = set_vl_weights(ppd, SEND_HIGH_PRIORITY_LIST, 11279 VL_ARB_HIGH_PRIO_TABLE_SIZE, t); 11280 break; 11281 case FM_TBL_VL_LOW_ARB: 11282 vlc = vl_arb_lock_cache(ppd, LO_PRIO_TABLE); 11283 if (vl_arb_match_cache(vlc, t)) { 11284 vl_arb_unlock_cache(ppd, LO_PRIO_TABLE); 11285 break; 11286 } 11287 vl_arb_set_cache(vlc, t); 11288 vl_arb_unlock_cache(ppd, LO_PRIO_TABLE); 11289 ret = set_vl_weights(ppd, SEND_LOW_PRIORITY_LIST, 11290 VL_ARB_LOW_PRIO_TABLE_SIZE, t); 11291 break; 11292 case FM_TBL_BUFFER_CONTROL: 11293 ret = set_buffer_control(ppd, t); 11294 break; 11295 case FM_TBL_SC2VLNT: 11296 set_sc2vlnt(ppd->dd, t); 11297 break; 11298 default: 11299 ret = -EINVAL; 11300 } 11301 return ret; 11302 } 11303 11304 /* 11305 * Disable all data VLs. 11306 * 11307 * Return 0 if disabled, non-zero if the VLs cannot be disabled. 11308 */ 11309 static int disable_data_vls(struct hfi1_devdata *dd) 11310 { 11311 if (is_ax(dd)) 11312 return 1; 11313 11314 pio_send_control(dd, PSC_DATA_VL_DISABLE); 11315 11316 return 0; 11317 } 11318 11319 /* 11320 * open_fill_data_vls() - the counterpart to stop_drain_data_vls(). 11321 * Just re-enables all data VLs (the "fill" part happens 11322 * automatically - the name was chosen for symmetry with 11323 * stop_drain_data_vls()). 11324 * 11325 * Return 0 if successful, non-zero if the VLs cannot be enabled. 11326 */ 11327 int open_fill_data_vls(struct hfi1_devdata *dd) 11328 { 11329 if (is_ax(dd)) 11330 return 1; 11331 11332 pio_send_control(dd, PSC_DATA_VL_ENABLE); 11333 11334 return 0; 11335 } 11336 11337 /* 11338 * drain_data_vls() - assumes that disable_data_vls() has been called, 11339 * wait for occupancy (of per-VL FIFOs) for all contexts, and SDMA 11340 * engines to drop to 0. 11341 */ 11342 static void drain_data_vls(struct hfi1_devdata *dd) 11343 { 11344 sc_wait(dd); 11345 sdma_wait(dd); 11346 pause_for_credit_return(dd); 11347 } 11348 11349 /* 11350 * stop_drain_data_vls() - disable, then drain all per-VL fifos. 11351 * 11352 * Use open_fill_data_vls() to resume using data VLs. This pair is 11353 * meant to be used like this: 11354 * 11355 * stop_drain_data_vls(dd); 11356 * // do things with per-VL resources 11357 * open_fill_data_vls(dd); 11358 */ 11359 int stop_drain_data_vls(struct hfi1_devdata *dd) 11360 { 11361 int ret; 11362 11363 ret = disable_data_vls(dd); 11364 if (ret == 0) 11365 drain_data_vls(dd); 11366 11367 return ret; 11368 } 11369 11370 /* 11371 * Convert a nanosecond time to a cclock count. No matter how slow 11372 * the cclock, a non-zero ns will always have a non-zero result. 11373 */ 11374 u32 ns_to_cclock(struct hfi1_devdata *dd, u32 ns) 11375 { 11376 u32 cclocks; 11377 11378 if (dd->icode == ICODE_FPGA_EMULATION) 11379 cclocks = (ns * 1000) / FPGA_CCLOCK_PS; 11380 else /* simulation pretends to be ASIC */ 11381 cclocks = (ns * 1000) / ASIC_CCLOCK_PS; 11382 if (ns && !cclocks) /* if ns nonzero, must be at least 1 */ 11383 cclocks = 1; 11384 return cclocks; 11385 } 11386 11387 /* 11388 * Convert a cclock count to nanoseconds. Not matter how slow 11389 * the cclock, a non-zero cclocks will always have a non-zero result. 11390 */ 11391 u32 cclock_to_ns(struct hfi1_devdata *dd, u32 cclocks) 11392 { 11393 u32 ns; 11394 11395 if (dd->icode == ICODE_FPGA_EMULATION) 11396 ns = (cclocks * FPGA_CCLOCK_PS) / 1000; 11397 else /* simulation pretends to be ASIC */ 11398 ns = (cclocks * ASIC_CCLOCK_PS) / 1000; 11399 if (cclocks && !ns) 11400 ns = 1; 11401 return ns; 11402 } 11403 11404 /* 11405 * Dynamically adjust the receive interrupt timeout for a context based on 11406 * incoming packet rate. 11407 * 11408 * NOTE: Dynamic adjustment does not allow rcv_intr_count to be zero. 11409 */ 11410 static void adjust_rcv_timeout(struct hfi1_ctxtdata *rcd, u32 npkts) 11411 { 11412 struct hfi1_devdata *dd = rcd->dd; 11413 u32 timeout = rcd->rcvavail_timeout; 11414 11415 /* 11416 * This algorithm doubles or halves the timeout depending on whether 11417 * the number of packets received in this interrupt were less than or 11418 * greater equal the interrupt count. 11419 * 11420 * The calculations below do not allow a steady state to be achieved. 11421 * Only at the endpoints it is possible to have an unchanging 11422 * timeout. 11423 */ 11424 if (npkts < rcv_intr_count) { 11425 /* 11426 * Not enough packets arrived before the timeout, adjust 11427 * timeout downward. 11428 */ 11429 if (timeout < 2) /* already at minimum? */ 11430 return; 11431 timeout >>= 1; 11432 } else { 11433 /* 11434 * More than enough packets arrived before the timeout, adjust 11435 * timeout upward. 11436 */ 11437 if (timeout >= dd->rcv_intr_timeout_csr) /* already at max? */ 11438 return; 11439 timeout = min(timeout << 1, dd->rcv_intr_timeout_csr); 11440 } 11441 11442 rcd->rcvavail_timeout = timeout; 11443 /* 11444 * timeout cannot be larger than rcv_intr_timeout_csr which has already 11445 * been verified to be in range 11446 */ 11447 write_kctxt_csr(dd, rcd->ctxt, RCV_AVAIL_TIME_OUT, 11448 (u64)timeout << 11449 RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_SHIFT); 11450 } 11451 11452 void update_usrhead(struct hfi1_ctxtdata *rcd, u32 hd, u32 updegr, u32 egrhd, 11453 u32 intr_adjust, u32 npkts) 11454 { 11455 struct hfi1_devdata *dd = rcd->dd; 11456 u64 reg; 11457 u32 ctxt = rcd->ctxt; 11458 11459 /* 11460 * Need to write timeout register before updating RcvHdrHead to ensure 11461 * that a new value is used when the HW decides to restart counting. 11462 */ 11463 if (intr_adjust) 11464 adjust_rcv_timeout(rcd, npkts); 11465 if (updegr) { 11466 reg = (egrhd & RCV_EGR_INDEX_HEAD_HEAD_MASK) 11467 << RCV_EGR_INDEX_HEAD_HEAD_SHIFT; 11468 write_uctxt_csr(dd, ctxt, RCV_EGR_INDEX_HEAD, reg); 11469 } 11470 mmiowb(); 11471 reg = ((u64)rcv_intr_count << RCV_HDR_HEAD_COUNTER_SHIFT) | 11472 (((u64)hd & RCV_HDR_HEAD_HEAD_MASK) 11473 << RCV_HDR_HEAD_HEAD_SHIFT); 11474 write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, reg); 11475 mmiowb(); 11476 } 11477 11478 u32 hdrqempty(struct hfi1_ctxtdata *rcd) 11479 { 11480 u32 head, tail; 11481 11482 head = (read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_HEAD) 11483 & RCV_HDR_HEAD_HEAD_SMASK) >> RCV_HDR_HEAD_HEAD_SHIFT; 11484 11485 if (rcd->rcvhdrtail_kvaddr) 11486 tail = get_rcvhdrtail(rcd); 11487 else 11488 tail = read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_TAIL); 11489 11490 return head == tail; 11491 } 11492 11493 /* 11494 * Context Control and Receive Array encoding for buffer size: 11495 * 0x0 invalid 11496 * 0x1 4 KB 11497 * 0x2 8 KB 11498 * 0x3 16 KB 11499 * 0x4 32 KB 11500 * 0x5 64 KB 11501 * 0x6 128 KB 11502 * 0x7 256 KB 11503 * 0x8 512 KB (Receive Array only) 11504 * 0x9 1 MB (Receive Array only) 11505 * 0xa 2 MB (Receive Array only) 11506 * 11507 * 0xB-0xF - reserved (Receive Array only) 11508 * 11509 * 11510 * This routine assumes that the value has already been sanity checked. 11511 */ 11512 static u32 encoded_size(u32 size) 11513 { 11514 switch (size) { 11515 case 4 * 1024: return 0x1; 11516 case 8 * 1024: return 0x2; 11517 case 16 * 1024: return 0x3; 11518 case 32 * 1024: return 0x4; 11519 case 64 * 1024: return 0x5; 11520 case 128 * 1024: return 0x6; 11521 case 256 * 1024: return 0x7; 11522 case 512 * 1024: return 0x8; 11523 case 1 * 1024 * 1024: return 0x9; 11524 case 2 * 1024 * 1024: return 0xa; 11525 } 11526 return 0x1; /* if invalid, go with the minimum size */ 11527 } 11528 11529 void hfi1_rcvctrl(struct hfi1_devdata *dd, unsigned int op, int ctxt) 11530 { 11531 struct hfi1_ctxtdata *rcd; 11532 u64 rcvctrl, reg; 11533 int did_enable = 0; 11534 11535 rcd = dd->rcd[ctxt]; 11536 if (!rcd) 11537 return; 11538 11539 hfi1_cdbg(RCVCTRL, "ctxt %d op 0x%x", ctxt, op); 11540 11541 rcvctrl = read_kctxt_csr(dd, ctxt, RCV_CTXT_CTRL); 11542 /* if the context already enabled, don't do the extra steps */ 11543 if ((op & HFI1_RCVCTRL_CTXT_ENB) && 11544 !(rcvctrl & RCV_CTXT_CTRL_ENABLE_SMASK)) { 11545 /* reset the tail and hdr addresses, and sequence count */ 11546 write_kctxt_csr(dd, ctxt, RCV_HDR_ADDR, 11547 rcd->rcvhdrq_dma); 11548 if (HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL)) 11549 write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR, 11550 rcd->rcvhdrqtailaddr_dma); 11551 rcd->seq_cnt = 1; 11552 11553 /* reset the cached receive header queue head value */ 11554 rcd->head = 0; 11555 11556 /* 11557 * Zero the receive header queue so we don't get false 11558 * positives when checking the sequence number. The 11559 * sequence numbers could land exactly on the same spot. 11560 * E.g. a rcd restart before the receive header wrapped. 11561 */ 11562 memset(rcd->rcvhdrq, 0, rcd->rcvhdrq_size); 11563 11564 /* starting timeout */ 11565 rcd->rcvavail_timeout = dd->rcv_intr_timeout_csr; 11566 11567 /* enable the context */ 11568 rcvctrl |= RCV_CTXT_CTRL_ENABLE_SMASK; 11569 11570 /* clean the egr buffer size first */ 11571 rcvctrl &= ~RCV_CTXT_CTRL_EGR_BUF_SIZE_SMASK; 11572 rcvctrl |= ((u64)encoded_size(rcd->egrbufs.rcvtid_size) 11573 & RCV_CTXT_CTRL_EGR_BUF_SIZE_MASK) 11574 << RCV_CTXT_CTRL_EGR_BUF_SIZE_SHIFT; 11575 11576 /* zero RcvHdrHead - set RcvHdrHead.Counter after enable */ 11577 write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0); 11578 did_enable = 1; 11579 11580 /* zero RcvEgrIndexHead */ 11581 write_uctxt_csr(dd, ctxt, RCV_EGR_INDEX_HEAD, 0); 11582 11583 /* set eager count and base index */ 11584 reg = (((u64)(rcd->egrbufs.alloced >> RCV_SHIFT) 11585 & RCV_EGR_CTRL_EGR_CNT_MASK) 11586 << RCV_EGR_CTRL_EGR_CNT_SHIFT) | 11587 (((rcd->eager_base >> RCV_SHIFT) 11588 & RCV_EGR_CTRL_EGR_BASE_INDEX_MASK) 11589 << RCV_EGR_CTRL_EGR_BASE_INDEX_SHIFT); 11590 write_kctxt_csr(dd, ctxt, RCV_EGR_CTRL, reg); 11591 11592 /* 11593 * Set TID (expected) count and base index. 11594 * rcd->expected_count is set to individual RcvArray entries, 11595 * not pairs, and the CSR takes a pair-count in groups of 11596 * four, so divide by 8. 11597 */ 11598 reg = (((rcd->expected_count >> RCV_SHIFT) 11599 & RCV_TID_CTRL_TID_PAIR_CNT_MASK) 11600 << RCV_TID_CTRL_TID_PAIR_CNT_SHIFT) | 11601 (((rcd->expected_base >> RCV_SHIFT) 11602 & RCV_TID_CTRL_TID_BASE_INDEX_MASK) 11603 << RCV_TID_CTRL_TID_BASE_INDEX_SHIFT); 11604 write_kctxt_csr(dd, ctxt, RCV_TID_CTRL, reg); 11605 if (ctxt == HFI1_CTRL_CTXT) 11606 write_csr(dd, RCV_VL15, HFI1_CTRL_CTXT); 11607 } 11608 if (op & HFI1_RCVCTRL_CTXT_DIS) { 11609 write_csr(dd, RCV_VL15, 0); 11610 /* 11611 * When receive context is being disabled turn on tail 11612 * update with a dummy tail address and then disable 11613 * receive context. 11614 */ 11615 if (dd->rcvhdrtail_dummy_dma) { 11616 write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR, 11617 dd->rcvhdrtail_dummy_dma); 11618 /* Enabling RcvCtxtCtrl.TailUpd is intentional. */ 11619 rcvctrl |= RCV_CTXT_CTRL_TAIL_UPD_SMASK; 11620 } 11621 11622 rcvctrl &= ~RCV_CTXT_CTRL_ENABLE_SMASK; 11623 } 11624 if (op & HFI1_RCVCTRL_INTRAVAIL_ENB) 11625 rcvctrl |= RCV_CTXT_CTRL_INTR_AVAIL_SMASK; 11626 if (op & HFI1_RCVCTRL_INTRAVAIL_DIS) 11627 rcvctrl &= ~RCV_CTXT_CTRL_INTR_AVAIL_SMASK; 11628 if (op & HFI1_RCVCTRL_TAILUPD_ENB && rcd->rcvhdrqtailaddr_dma) 11629 rcvctrl |= RCV_CTXT_CTRL_TAIL_UPD_SMASK; 11630 if (op & HFI1_RCVCTRL_TAILUPD_DIS) { 11631 /* See comment on RcvCtxtCtrl.TailUpd above */ 11632 if (!(op & HFI1_RCVCTRL_CTXT_DIS)) 11633 rcvctrl &= ~RCV_CTXT_CTRL_TAIL_UPD_SMASK; 11634 } 11635 if (op & HFI1_RCVCTRL_TIDFLOW_ENB) 11636 rcvctrl |= RCV_CTXT_CTRL_TID_FLOW_ENABLE_SMASK; 11637 if (op & HFI1_RCVCTRL_TIDFLOW_DIS) 11638 rcvctrl &= ~RCV_CTXT_CTRL_TID_FLOW_ENABLE_SMASK; 11639 if (op & HFI1_RCVCTRL_ONE_PKT_EGR_ENB) { 11640 /* 11641 * In one-packet-per-eager mode, the size comes from 11642 * the RcvArray entry. 11643 */ 11644 rcvctrl &= ~RCV_CTXT_CTRL_EGR_BUF_SIZE_SMASK; 11645 rcvctrl |= RCV_CTXT_CTRL_ONE_PACKET_PER_EGR_BUFFER_SMASK; 11646 } 11647 if (op & HFI1_RCVCTRL_ONE_PKT_EGR_DIS) 11648 rcvctrl &= ~RCV_CTXT_CTRL_ONE_PACKET_PER_EGR_BUFFER_SMASK; 11649 if (op & HFI1_RCVCTRL_NO_RHQ_DROP_ENB) 11650 rcvctrl |= RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK; 11651 if (op & HFI1_RCVCTRL_NO_RHQ_DROP_DIS) 11652 rcvctrl &= ~RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK; 11653 if (op & HFI1_RCVCTRL_NO_EGR_DROP_ENB) 11654 rcvctrl |= RCV_CTXT_CTRL_DONT_DROP_EGR_FULL_SMASK; 11655 if (op & HFI1_RCVCTRL_NO_EGR_DROP_DIS) 11656 rcvctrl &= ~RCV_CTXT_CTRL_DONT_DROP_EGR_FULL_SMASK; 11657 rcd->rcvctrl = rcvctrl; 11658 hfi1_cdbg(RCVCTRL, "ctxt %d rcvctrl 0x%llx\n", ctxt, rcvctrl); 11659 write_kctxt_csr(dd, ctxt, RCV_CTXT_CTRL, rcd->rcvctrl); 11660 11661 /* work around sticky RcvCtxtStatus.BlockedRHQFull */ 11662 if (did_enable && 11663 (rcvctrl & RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK)) { 11664 reg = read_kctxt_csr(dd, ctxt, RCV_CTXT_STATUS); 11665 if (reg != 0) { 11666 dd_dev_info(dd, "ctxt %d status %lld (blocked)\n", 11667 ctxt, reg); 11668 read_uctxt_csr(dd, ctxt, RCV_HDR_HEAD); 11669 write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0x10); 11670 write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0x00); 11671 read_uctxt_csr(dd, ctxt, RCV_HDR_HEAD); 11672 reg = read_kctxt_csr(dd, ctxt, RCV_CTXT_STATUS); 11673 dd_dev_info(dd, "ctxt %d status %lld (%s blocked)\n", 11674 ctxt, reg, reg == 0 ? "not" : "still"); 11675 } 11676 } 11677 11678 if (did_enable) { 11679 /* 11680 * The interrupt timeout and count must be set after 11681 * the context is enabled to take effect. 11682 */ 11683 /* set interrupt timeout */ 11684 write_kctxt_csr(dd, ctxt, RCV_AVAIL_TIME_OUT, 11685 (u64)rcd->rcvavail_timeout << 11686 RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_SHIFT); 11687 11688 /* set RcvHdrHead.Counter, zero RcvHdrHead.Head (again) */ 11689 reg = (u64)rcv_intr_count << RCV_HDR_HEAD_COUNTER_SHIFT; 11690 write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, reg); 11691 } 11692 11693 if (op & (HFI1_RCVCTRL_TAILUPD_DIS | HFI1_RCVCTRL_CTXT_DIS)) 11694 /* 11695 * If the context has been disabled and the Tail Update has 11696 * been cleared, set the RCV_HDR_TAIL_ADDR CSR to dummy address 11697 * so it doesn't contain an address that is invalid. 11698 */ 11699 write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR, 11700 dd->rcvhdrtail_dummy_dma); 11701 } 11702 11703 u32 hfi1_read_cntrs(struct hfi1_devdata *dd, char **namep, u64 **cntrp) 11704 { 11705 int ret; 11706 u64 val = 0; 11707 11708 if (namep) { 11709 ret = dd->cntrnameslen; 11710 *namep = dd->cntrnames; 11711 } else { 11712 const struct cntr_entry *entry; 11713 int i, j; 11714 11715 ret = (dd->ndevcntrs) * sizeof(u64); 11716 11717 /* Get the start of the block of counters */ 11718 *cntrp = dd->cntrs; 11719 11720 /* 11721 * Now go and fill in each counter in the block. 11722 */ 11723 for (i = 0; i < DEV_CNTR_LAST; i++) { 11724 entry = &dev_cntrs[i]; 11725 hfi1_cdbg(CNTR, "reading %s", entry->name); 11726 if (entry->flags & CNTR_DISABLED) { 11727 /* Nothing */ 11728 hfi1_cdbg(CNTR, "\tDisabled\n"); 11729 } else { 11730 if (entry->flags & CNTR_VL) { 11731 hfi1_cdbg(CNTR, "\tPer VL\n"); 11732 for (j = 0; j < C_VL_COUNT; j++) { 11733 val = entry->rw_cntr(entry, 11734 dd, j, 11735 CNTR_MODE_R, 11736 0); 11737 hfi1_cdbg( 11738 CNTR, 11739 "\t\tRead 0x%llx for %d\n", 11740 val, j); 11741 dd->cntrs[entry->offset + j] = 11742 val; 11743 } 11744 } else if (entry->flags & CNTR_SDMA) { 11745 hfi1_cdbg(CNTR, 11746 "\t Per SDMA Engine\n"); 11747 for (j = 0; j < dd->chip_sdma_engines; 11748 j++) { 11749 val = 11750 entry->rw_cntr(entry, dd, j, 11751 CNTR_MODE_R, 0); 11752 hfi1_cdbg(CNTR, 11753 "\t\tRead 0x%llx for %d\n", 11754 val, j); 11755 dd->cntrs[entry->offset + j] = 11756 val; 11757 } 11758 } else { 11759 val = entry->rw_cntr(entry, dd, 11760 CNTR_INVALID_VL, 11761 CNTR_MODE_R, 0); 11762 dd->cntrs[entry->offset] = val; 11763 hfi1_cdbg(CNTR, "\tRead 0x%llx", val); 11764 } 11765 } 11766 } 11767 } 11768 return ret; 11769 } 11770 11771 /* 11772 * Used by sysfs to create files for hfi stats to read 11773 */ 11774 u32 hfi1_read_portcntrs(struct hfi1_pportdata *ppd, char **namep, u64 **cntrp) 11775 { 11776 int ret; 11777 u64 val = 0; 11778 11779 if (namep) { 11780 ret = ppd->dd->portcntrnameslen; 11781 *namep = ppd->dd->portcntrnames; 11782 } else { 11783 const struct cntr_entry *entry; 11784 int i, j; 11785 11786 ret = ppd->dd->nportcntrs * sizeof(u64); 11787 *cntrp = ppd->cntrs; 11788 11789 for (i = 0; i < PORT_CNTR_LAST; i++) { 11790 entry = &port_cntrs[i]; 11791 hfi1_cdbg(CNTR, "reading %s", entry->name); 11792 if (entry->flags & CNTR_DISABLED) { 11793 /* Nothing */ 11794 hfi1_cdbg(CNTR, "\tDisabled\n"); 11795 continue; 11796 } 11797 11798 if (entry->flags & CNTR_VL) { 11799 hfi1_cdbg(CNTR, "\tPer VL"); 11800 for (j = 0; j < C_VL_COUNT; j++) { 11801 val = entry->rw_cntr(entry, ppd, j, 11802 CNTR_MODE_R, 11803 0); 11804 hfi1_cdbg( 11805 CNTR, 11806 "\t\tRead 0x%llx for %d", 11807 val, j); 11808 ppd->cntrs[entry->offset + j] = val; 11809 } 11810 } else { 11811 val = entry->rw_cntr(entry, ppd, 11812 CNTR_INVALID_VL, 11813 CNTR_MODE_R, 11814 0); 11815 ppd->cntrs[entry->offset] = val; 11816 hfi1_cdbg(CNTR, "\tRead 0x%llx", val); 11817 } 11818 } 11819 } 11820 return ret; 11821 } 11822 11823 static void free_cntrs(struct hfi1_devdata *dd) 11824 { 11825 struct hfi1_pportdata *ppd; 11826 int i; 11827 11828 if (dd->synth_stats_timer.data) 11829 del_timer_sync(&dd->synth_stats_timer); 11830 dd->synth_stats_timer.data = 0; 11831 ppd = (struct hfi1_pportdata *)(dd + 1); 11832 for (i = 0; i < dd->num_pports; i++, ppd++) { 11833 kfree(ppd->cntrs); 11834 kfree(ppd->scntrs); 11835 free_percpu(ppd->ibport_data.rvp.rc_acks); 11836 free_percpu(ppd->ibport_data.rvp.rc_qacks); 11837 free_percpu(ppd->ibport_data.rvp.rc_delayed_comp); 11838 ppd->cntrs = NULL; 11839 ppd->scntrs = NULL; 11840 ppd->ibport_data.rvp.rc_acks = NULL; 11841 ppd->ibport_data.rvp.rc_qacks = NULL; 11842 ppd->ibport_data.rvp.rc_delayed_comp = NULL; 11843 } 11844 kfree(dd->portcntrnames); 11845 dd->portcntrnames = NULL; 11846 kfree(dd->cntrs); 11847 dd->cntrs = NULL; 11848 kfree(dd->scntrs); 11849 dd->scntrs = NULL; 11850 kfree(dd->cntrnames); 11851 dd->cntrnames = NULL; 11852 } 11853 11854 static u64 read_dev_port_cntr(struct hfi1_devdata *dd, struct cntr_entry *entry, 11855 u64 *psval, void *context, int vl) 11856 { 11857 u64 val; 11858 u64 sval = *psval; 11859 11860 if (entry->flags & CNTR_DISABLED) { 11861 dd_dev_err(dd, "Counter %s not enabled", entry->name); 11862 return 0; 11863 } 11864 11865 hfi1_cdbg(CNTR, "cntr: %s vl %d psval 0x%llx", entry->name, vl, *psval); 11866 11867 val = entry->rw_cntr(entry, context, vl, CNTR_MODE_R, 0); 11868 11869 /* If its a synthetic counter there is more work we need to do */ 11870 if (entry->flags & CNTR_SYNTH) { 11871 if (sval == CNTR_MAX) { 11872 /* No need to read already saturated */ 11873 return CNTR_MAX; 11874 } 11875 11876 if (entry->flags & CNTR_32BIT) { 11877 /* 32bit counters can wrap multiple times */ 11878 u64 upper = sval >> 32; 11879 u64 lower = (sval << 32) >> 32; 11880 11881 if (lower > val) { /* hw wrapped */ 11882 if (upper == CNTR_32BIT_MAX) 11883 val = CNTR_MAX; 11884 else 11885 upper++; 11886 } 11887 11888 if (val != CNTR_MAX) 11889 val = (upper << 32) | val; 11890 11891 } else { 11892 /* If we rolled we are saturated */ 11893 if ((val < sval) || (val > CNTR_MAX)) 11894 val = CNTR_MAX; 11895 } 11896 } 11897 11898 *psval = val; 11899 11900 hfi1_cdbg(CNTR, "\tNew val=0x%llx", val); 11901 11902 return val; 11903 } 11904 11905 static u64 write_dev_port_cntr(struct hfi1_devdata *dd, 11906 struct cntr_entry *entry, 11907 u64 *psval, void *context, int vl, u64 data) 11908 { 11909 u64 val; 11910 11911 if (entry->flags & CNTR_DISABLED) { 11912 dd_dev_err(dd, "Counter %s not enabled", entry->name); 11913 return 0; 11914 } 11915 11916 hfi1_cdbg(CNTR, "cntr: %s vl %d psval 0x%llx", entry->name, vl, *psval); 11917 11918 if (entry->flags & CNTR_SYNTH) { 11919 *psval = data; 11920 if (entry->flags & CNTR_32BIT) { 11921 val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W, 11922 (data << 32) >> 32); 11923 val = data; /* return the full 64bit value */ 11924 } else { 11925 val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W, 11926 data); 11927 } 11928 } else { 11929 val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W, data); 11930 } 11931 11932 *psval = val; 11933 11934 hfi1_cdbg(CNTR, "\tNew val=0x%llx", val); 11935 11936 return val; 11937 } 11938 11939 u64 read_dev_cntr(struct hfi1_devdata *dd, int index, int vl) 11940 { 11941 struct cntr_entry *entry; 11942 u64 *sval; 11943 11944 entry = &dev_cntrs[index]; 11945 sval = dd->scntrs + entry->offset; 11946 11947 if (vl != CNTR_INVALID_VL) 11948 sval += vl; 11949 11950 return read_dev_port_cntr(dd, entry, sval, dd, vl); 11951 } 11952 11953 u64 write_dev_cntr(struct hfi1_devdata *dd, int index, int vl, u64 data) 11954 { 11955 struct cntr_entry *entry; 11956 u64 *sval; 11957 11958 entry = &dev_cntrs[index]; 11959 sval = dd->scntrs + entry->offset; 11960 11961 if (vl != CNTR_INVALID_VL) 11962 sval += vl; 11963 11964 return write_dev_port_cntr(dd, entry, sval, dd, vl, data); 11965 } 11966 11967 u64 read_port_cntr(struct hfi1_pportdata *ppd, int index, int vl) 11968 { 11969 struct cntr_entry *entry; 11970 u64 *sval; 11971 11972 entry = &port_cntrs[index]; 11973 sval = ppd->scntrs + entry->offset; 11974 11975 if (vl != CNTR_INVALID_VL) 11976 sval += vl; 11977 11978 if ((index >= C_RCV_HDR_OVF_FIRST + ppd->dd->num_rcv_contexts) && 11979 (index <= C_RCV_HDR_OVF_LAST)) { 11980 /* We do not want to bother for disabled contexts */ 11981 return 0; 11982 } 11983 11984 return read_dev_port_cntr(ppd->dd, entry, sval, ppd, vl); 11985 } 11986 11987 u64 write_port_cntr(struct hfi1_pportdata *ppd, int index, int vl, u64 data) 11988 { 11989 struct cntr_entry *entry; 11990 u64 *sval; 11991 11992 entry = &port_cntrs[index]; 11993 sval = ppd->scntrs + entry->offset; 11994 11995 if (vl != CNTR_INVALID_VL) 11996 sval += vl; 11997 11998 if ((index >= C_RCV_HDR_OVF_FIRST + ppd->dd->num_rcv_contexts) && 11999 (index <= C_RCV_HDR_OVF_LAST)) { 12000 /* We do not want to bother for disabled contexts */ 12001 return 0; 12002 } 12003 12004 return write_dev_port_cntr(ppd->dd, entry, sval, ppd, vl, data); 12005 } 12006 12007 static void update_synth_timer(unsigned long opaque) 12008 { 12009 u64 cur_tx; 12010 u64 cur_rx; 12011 u64 total_flits; 12012 u8 update = 0; 12013 int i, j, vl; 12014 struct hfi1_pportdata *ppd; 12015 struct cntr_entry *entry; 12016 12017 struct hfi1_devdata *dd = (struct hfi1_devdata *)opaque; 12018 12019 /* 12020 * Rather than keep beating on the CSRs pick a minimal set that we can 12021 * check to watch for potential roll over. We can do this by looking at 12022 * the number of flits sent/recv. If the total flits exceeds 32bits then 12023 * we have to iterate all the counters and update. 12024 */ 12025 entry = &dev_cntrs[C_DC_RCV_FLITS]; 12026 cur_rx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL, CNTR_MODE_R, 0); 12027 12028 entry = &dev_cntrs[C_DC_XMIT_FLITS]; 12029 cur_tx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL, CNTR_MODE_R, 0); 12030 12031 hfi1_cdbg( 12032 CNTR, 12033 "[%d] curr tx=0x%llx rx=0x%llx :: last tx=0x%llx rx=0x%llx\n", 12034 dd->unit, cur_tx, cur_rx, dd->last_tx, dd->last_rx); 12035 12036 if ((cur_tx < dd->last_tx) || (cur_rx < dd->last_rx)) { 12037 /* 12038 * May not be strictly necessary to update but it won't hurt and 12039 * simplifies the logic here. 12040 */ 12041 update = 1; 12042 hfi1_cdbg(CNTR, "[%d] Tripwire counter rolled, updating", 12043 dd->unit); 12044 } else { 12045 total_flits = (cur_tx - dd->last_tx) + (cur_rx - dd->last_rx); 12046 hfi1_cdbg(CNTR, 12047 "[%d] total flits 0x%llx limit 0x%llx\n", dd->unit, 12048 total_flits, (u64)CNTR_32BIT_MAX); 12049 if (total_flits >= CNTR_32BIT_MAX) { 12050 hfi1_cdbg(CNTR, "[%d] 32bit limit hit, updating", 12051 dd->unit); 12052 update = 1; 12053 } 12054 } 12055 12056 if (update) { 12057 hfi1_cdbg(CNTR, "[%d] Updating dd and ppd counters", dd->unit); 12058 for (i = 0; i < DEV_CNTR_LAST; i++) { 12059 entry = &dev_cntrs[i]; 12060 if (entry->flags & CNTR_VL) { 12061 for (vl = 0; vl < C_VL_COUNT; vl++) 12062 read_dev_cntr(dd, i, vl); 12063 } else { 12064 read_dev_cntr(dd, i, CNTR_INVALID_VL); 12065 } 12066 } 12067 ppd = (struct hfi1_pportdata *)(dd + 1); 12068 for (i = 0; i < dd->num_pports; i++, ppd++) { 12069 for (j = 0; j < PORT_CNTR_LAST; j++) { 12070 entry = &port_cntrs[j]; 12071 if (entry->flags & CNTR_VL) { 12072 for (vl = 0; vl < C_VL_COUNT; vl++) 12073 read_port_cntr(ppd, j, vl); 12074 } else { 12075 read_port_cntr(ppd, j, CNTR_INVALID_VL); 12076 } 12077 } 12078 } 12079 12080 /* 12081 * We want the value in the register. The goal is to keep track 12082 * of the number of "ticks" not the counter value. In other 12083 * words if the register rolls we want to notice it and go ahead 12084 * and force an update. 12085 */ 12086 entry = &dev_cntrs[C_DC_XMIT_FLITS]; 12087 dd->last_tx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL, 12088 CNTR_MODE_R, 0); 12089 12090 entry = &dev_cntrs[C_DC_RCV_FLITS]; 12091 dd->last_rx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL, 12092 CNTR_MODE_R, 0); 12093 12094 hfi1_cdbg(CNTR, "[%d] setting last tx/rx to 0x%llx 0x%llx", 12095 dd->unit, dd->last_tx, dd->last_rx); 12096 12097 } else { 12098 hfi1_cdbg(CNTR, "[%d] No update necessary", dd->unit); 12099 } 12100 12101 mod_timer(&dd->synth_stats_timer, jiffies + HZ * SYNTH_CNT_TIME); 12102 } 12103 12104 #define C_MAX_NAME 16 /* 15 chars + one for /0 */ 12105 static int init_cntrs(struct hfi1_devdata *dd) 12106 { 12107 int i, rcv_ctxts, j; 12108 size_t sz; 12109 char *p; 12110 char name[C_MAX_NAME]; 12111 struct hfi1_pportdata *ppd; 12112 const char *bit_type_32 = ",32"; 12113 const int bit_type_32_sz = strlen(bit_type_32); 12114 12115 /* set up the stats timer; the add_timer is done at the end */ 12116 setup_timer(&dd->synth_stats_timer, update_synth_timer, 12117 (unsigned long)dd); 12118 12119 /***********************/ 12120 /* per device counters */ 12121 /***********************/ 12122 12123 /* size names and determine how many we have*/ 12124 dd->ndevcntrs = 0; 12125 sz = 0; 12126 12127 for (i = 0; i < DEV_CNTR_LAST; i++) { 12128 if (dev_cntrs[i].flags & CNTR_DISABLED) { 12129 hfi1_dbg_early("\tSkipping %s\n", dev_cntrs[i].name); 12130 continue; 12131 } 12132 12133 if (dev_cntrs[i].flags & CNTR_VL) { 12134 dev_cntrs[i].offset = dd->ndevcntrs; 12135 for (j = 0; j < C_VL_COUNT; j++) { 12136 snprintf(name, C_MAX_NAME, "%s%d", 12137 dev_cntrs[i].name, vl_from_idx(j)); 12138 sz += strlen(name); 12139 /* Add ",32" for 32-bit counters */ 12140 if (dev_cntrs[i].flags & CNTR_32BIT) 12141 sz += bit_type_32_sz; 12142 sz++; 12143 dd->ndevcntrs++; 12144 } 12145 } else if (dev_cntrs[i].flags & CNTR_SDMA) { 12146 dev_cntrs[i].offset = dd->ndevcntrs; 12147 for (j = 0; j < dd->chip_sdma_engines; j++) { 12148 snprintf(name, C_MAX_NAME, "%s%d", 12149 dev_cntrs[i].name, j); 12150 sz += strlen(name); 12151 /* Add ",32" for 32-bit counters */ 12152 if (dev_cntrs[i].flags & CNTR_32BIT) 12153 sz += bit_type_32_sz; 12154 sz++; 12155 dd->ndevcntrs++; 12156 } 12157 } else { 12158 /* +1 for newline. */ 12159 sz += strlen(dev_cntrs[i].name) + 1; 12160 /* Add ",32" for 32-bit counters */ 12161 if (dev_cntrs[i].flags & CNTR_32BIT) 12162 sz += bit_type_32_sz; 12163 dev_cntrs[i].offset = dd->ndevcntrs; 12164 dd->ndevcntrs++; 12165 } 12166 } 12167 12168 /* allocate space for the counter values */ 12169 dd->cntrs = kcalloc(dd->ndevcntrs, sizeof(u64), GFP_KERNEL); 12170 if (!dd->cntrs) 12171 goto bail; 12172 12173 dd->scntrs = kcalloc(dd->ndevcntrs, sizeof(u64), GFP_KERNEL); 12174 if (!dd->scntrs) 12175 goto bail; 12176 12177 /* allocate space for the counter names */ 12178 dd->cntrnameslen = sz; 12179 dd->cntrnames = kmalloc(sz, GFP_KERNEL); 12180 if (!dd->cntrnames) 12181 goto bail; 12182 12183 /* fill in the names */ 12184 for (p = dd->cntrnames, i = 0; i < DEV_CNTR_LAST; i++) { 12185 if (dev_cntrs[i].flags & CNTR_DISABLED) { 12186 /* Nothing */ 12187 } else if (dev_cntrs[i].flags & CNTR_VL) { 12188 for (j = 0; j < C_VL_COUNT; j++) { 12189 snprintf(name, C_MAX_NAME, "%s%d", 12190 dev_cntrs[i].name, 12191 vl_from_idx(j)); 12192 memcpy(p, name, strlen(name)); 12193 p += strlen(name); 12194 12195 /* Counter is 32 bits */ 12196 if (dev_cntrs[i].flags & CNTR_32BIT) { 12197 memcpy(p, bit_type_32, bit_type_32_sz); 12198 p += bit_type_32_sz; 12199 } 12200 12201 *p++ = '\n'; 12202 } 12203 } else if (dev_cntrs[i].flags & CNTR_SDMA) { 12204 for (j = 0; j < dd->chip_sdma_engines; j++) { 12205 snprintf(name, C_MAX_NAME, "%s%d", 12206 dev_cntrs[i].name, j); 12207 memcpy(p, name, strlen(name)); 12208 p += strlen(name); 12209 12210 /* Counter is 32 bits */ 12211 if (dev_cntrs[i].flags & CNTR_32BIT) { 12212 memcpy(p, bit_type_32, bit_type_32_sz); 12213 p += bit_type_32_sz; 12214 } 12215 12216 *p++ = '\n'; 12217 } 12218 } else { 12219 memcpy(p, dev_cntrs[i].name, strlen(dev_cntrs[i].name)); 12220 p += strlen(dev_cntrs[i].name); 12221 12222 /* Counter is 32 bits */ 12223 if (dev_cntrs[i].flags & CNTR_32BIT) { 12224 memcpy(p, bit_type_32, bit_type_32_sz); 12225 p += bit_type_32_sz; 12226 } 12227 12228 *p++ = '\n'; 12229 } 12230 } 12231 12232 /*********************/ 12233 /* per port counters */ 12234 /*********************/ 12235 12236 /* 12237 * Go through the counters for the overflows and disable the ones we 12238 * don't need. This varies based on platform so we need to do it 12239 * dynamically here. 12240 */ 12241 rcv_ctxts = dd->num_rcv_contexts; 12242 for (i = C_RCV_HDR_OVF_FIRST + rcv_ctxts; 12243 i <= C_RCV_HDR_OVF_LAST; i++) { 12244 port_cntrs[i].flags |= CNTR_DISABLED; 12245 } 12246 12247 /* size port counter names and determine how many we have*/ 12248 sz = 0; 12249 dd->nportcntrs = 0; 12250 for (i = 0; i < PORT_CNTR_LAST; i++) { 12251 if (port_cntrs[i].flags & CNTR_DISABLED) { 12252 hfi1_dbg_early("\tSkipping %s\n", port_cntrs[i].name); 12253 continue; 12254 } 12255 12256 if (port_cntrs[i].flags & CNTR_VL) { 12257 port_cntrs[i].offset = dd->nportcntrs; 12258 for (j = 0; j < C_VL_COUNT; j++) { 12259 snprintf(name, C_MAX_NAME, "%s%d", 12260 port_cntrs[i].name, vl_from_idx(j)); 12261 sz += strlen(name); 12262 /* Add ",32" for 32-bit counters */ 12263 if (port_cntrs[i].flags & CNTR_32BIT) 12264 sz += bit_type_32_sz; 12265 sz++; 12266 dd->nportcntrs++; 12267 } 12268 } else { 12269 /* +1 for newline */ 12270 sz += strlen(port_cntrs[i].name) + 1; 12271 /* Add ",32" for 32-bit counters */ 12272 if (port_cntrs[i].flags & CNTR_32BIT) 12273 sz += bit_type_32_sz; 12274 port_cntrs[i].offset = dd->nportcntrs; 12275 dd->nportcntrs++; 12276 } 12277 } 12278 12279 /* allocate space for the counter names */ 12280 dd->portcntrnameslen = sz; 12281 dd->portcntrnames = kmalloc(sz, GFP_KERNEL); 12282 if (!dd->portcntrnames) 12283 goto bail; 12284 12285 /* fill in port cntr names */ 12286 for (p = dd->portcntrnames, i = 0; i < PORT_CNTR_LAST; i++) { 12287 if (port_cntrs[i].flags & CNTR_DISABLED) 12288 continue; 12289 12290 if (port_cntrs[i].flags & CNTR_VL) { 12291 for (j = 0; j < C_VL_COUNT; j++) { 12292 snprintf(name, C_MAX_NAME, "%s%d", 12293 port_cntrs[i].name, vl_from_idx(j)); 12294 memcpy(p, name, strlen(name)); 12295 p += strlen(name); 12296 12297 /* Counter is 32 bits */ 12298 if (port_cntrs[i].flags & CNTR_32BIT) { 12299 memcpy(p, bit_type_32, bit_type_32_sz); 12300 p += bit_type_32_sz; 12301 } 12302 12303 *p++ = '\n'; 12304 } 12305 } else { 12306 memcpy(p, port_cntrs[i].name, 12307 strlen(port_cntrs[i].name)); 12308 p += strlen(port_cntrs[i].name); 12309 12310 /* Counter is 32 bits */ 12311 if (port_cntrs[i].flags & CNTR_32BIT) { 12312 memcpy(p, bit_type_32, bit_type_32_sz); 12313 p += bit_type_32_sz; 12314 } 12315 12316 *p++ = '\n'; 12317 } 12318 } 12319 12320 /* allocate per port storage for counter values */ 12321 ppd = (struct hfi1_pportdata *)(dd + 1); 12322 for (i = 0; i < dd->num_pports; i++, ppd++) { 12323 ppd->cntrs = kcalloc(dd->nportcntrs, sizeof(u64), GFP_KERNEL); 12324 if (!ppd->cntrs) 12325 goto bail; 12326 12327 ppd->scntrs = kcalloc(dd->nportcntrs, sizeof(u64), GFP_KERNEL); 12328 if (!ppd->scntrs) 12329 goto bail; 12330 } 12331 12332 /* CPU counters need to be allocated and zeroed */ 12333 if (init_cpu_counters(dd)) 12334 goto bail; 12335 12336 mod_timer(&dd->synth_stats_timer, jiffies + HZ * SYNTH_CNT_TIME); 12337 return 0; 12338 bail: 12339 free_cntrs(dd); 12340 return -ENOMEM; 12341 } 12342 12343 static u32 chip_to_opa_lstate(struct hfi1_devdata *dd, u32 chip_lstate) 12344 { 12345 switch (chip_lstate) { 12346 default: 12347 dd_dev_err(dd, 12348 "Unknown logical state 0x%x, reporting IB_PORT_DOWN\n", 12349 chip_lstate); 12350 /* fall through */ 12351 case LSTATE_DOWN: 12352 return IB_PORT_DOWN; 12353 case LSTATE_INIT: 12354 return IB_PORT_INIT; 12355 case LSTATE_ARMED: 12356 return IB_PORT_ARMED; 12357 case LSTATE_ACTIVE: 12358 return IB_PORT_ACTIVE; 12359 } 12360 } 12361 12362 u32 chip_to_opa_pstate(struct hfi1_devdata *dd, u32 chip_pstate) 12363 { 12364 /* look at the HFI meta-states only */ 12365 switch (chip_pstate & 0xf0) { 12366 default: 12367 dd_dev_err(dd, "Unexpected chip physical state of 0x%x\n", 12368 chip_pstate); 12369 /* fall through */ 12370 case PLS_DISABLED: 12371 return IB_PORTPHYSSTATE_DISABLED; 12372 case PLS_OFFLINE: 12373 return OPA_PORTPHYSSTATE_OFFLINE; 12374 case PLS_POLLING: 12375 return IB_PORTPHYSSTATE_POLLING; 12376 case PLS_CONFIGPHY: 12377 return IB_PORTPHYSSTATE_TRAINING; 12378 case PLS_LINKUP: 12379 return IB_PORTPHYSSTATE_LINKUP; 12380 case PLS_PHYTEST: 12381 return IB_PORTPHYSSTATE_PHY_TEST; 12382 } 12383 } 12384 12385 /* return the OPA port logical state name */ 12386 const char *opa_lstate_name(u32 lstate) 12387 { 12388 static const char * const port_logical_names[] = { 12389 "PORT_NOP", 12390 "PORT_DOWN", 12391 "PORT_INIT", 12392 "PORT_ARMED", 12393 "PORT_ACTIVE", 12394 "PORT_ACTIVE_DEFER", 12395 }; 12396 if (lstate < ARRAY_SIZE(port_logical_names)) 12397 return port_logical_names[lstate]; 12398 return "unknown"; 12399 } 12400 12401 /* return the OPA port physical state name */ 12402 const char *opa_pstate_name(u32 pstate) 12403 { 12404 static const char * const port_physical_names[] = { 12405 "PHYS_NOP", 12406 "reserved1", 12407 "PHYS_POLL", 12408 "PHYS_DISABLED", 12409 "PHYS_TRAINING", 12410 "PHYS_LINKUP", 12411 "PHYS_LINK_ERR_RECOVER", 12412 "PHYS_PHY_TEST", 12413 "reserved8", 12414 "PHYS_OFFLINE", 12415 "PHYS_GANGED", 12416 "PHYS_TEST", 12417 }; 12418 if (pstate < ARRAY_SIZE(port_physical_names)) 12419 return port_physical_names[pstate]; 12420 return "unknown"; 12421 } 12422 12423 /* 12424 * Read the hardware link state and set the driver's cached value of it. 12425 * Return the (new) current value. 12426 */ 12427 u32 get_logical_state(struct hfi1_pportdata *ppd) 12428 { 12429 u32 new_state; 12430 12431 new_state = chip_to_opa_lstate(ppd->dd, read_logical_state(ppd->dd)); 12432 if (new_state != ppd->lstate) { 12433 dd_dev_info(ppd->dd, "logical state changed to %s (0x%x)\n", 12434 opa_lstate_name(new_state), new_state); 12435 ppd->lstate = new_state; 12436 } 12437 /* 12438 * Set port status flags in the page mapped into userspace 12439 * memory. Do it here to ensure a reliable state - this is 12440 * the only function called by all state handling code. 12441 * Always set the flags due to the fact that the cache value 12442 * might have been changed explicitly outside of this 12443 * function. 12444 */ 12445 if (ppd->statusp) { 12446 switch (ppd->lstate) { 12447 case IB_PORT_DOWN: 12448 case IB_PORT_INIT: 12449 *ppd->statusp &= ~(HFI1_STATUS_IB_CONF | 12450 HFI1_STATUS_IB_READY); 12451 break; 12452 case IB_PORT_ARMED: 12453 *ppd->statusp |= HFI1_STATUS_IB_CONF; 12454 break; 12455 case IB_PORT_ACTIVE: 12456 *ppd->statusp |= HFI1_STATUS_IB_READY; 12457 break; 12458 } 12459 } 12460 return ppd->lstate; 12461 } 12462 12463 /** 12464 * wait_logical_linkstate - wait for an IB link state change to occur 12465 * @ppd: port device 12466 * @state: the state to wait for 12467 * @msecs: the number of milliseconds to wait 12468 * 12469 * Wait up to msecs milliseconds for IB link state change to occur. 12470 * For now, take the easy polling route. 12471 * Returns 0 if state reached, otherwise -ETIMEDOUT. 12472 */ 12473 static int wait_logical_linkstate(struct hfi1_pportdata *ppd, u32 state, 12474 int msecs) 12475 { 12476 unsigned long timeout; 12477 12478 timeout = jiffies + msecs_to_jiffies(msecs); 12479 while (1) { 12480 if (get_logical_state(ppd) == state) 12481 return 0; 12482 if (time_after(jiffies, timeout)) 12483 break; 12484 msleep(20); 12485 } 12486 dd_dev_err(ppd->dd, "timeout waiting for link state 0x%x\n", state); 12487 12488 return -ETIMEDOUT; 12489 } 12490 12491 u8 hfi1_ibphys_portstate(struct hfi1_pportdata *ppd) 12492 { 12493 u32 pstate; 12494 u32 ib_pstate; 12495 12496 pstate = read_physical_state(ppd->dd); 12497 ib_pstate = chip_to_opa_pstate(ppd->dd, pstate); 12498 if (ppd->last_pstate != ib_pstate) { 12499 dd_dev_info(ppd->dd, 12500 "%s: physical state changed to %s (0x%x), phy 0x%x\n", 12501 __func__, opa_pstate_name(ib_pstate), ib_pstate, 12502 pstate); 12503 ppd->last_pstate = ib_pstate; 12504 } 12505 return ib_pstate; 12506 } 12507 12508 #define CLEAR_STATIC_RATE_CONTROL_SMASK(r) \ 12509 (r &= ~SEND_CTXT_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK) 12510 12511 #define SET_STATIC_RATE_CONTROL_SMASK(r) \ 12512 (r |= SEND_CTXT_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK) 12513 12514 int hfi1_init_ctxt(struct send_context *sc) 12515 { 12516 if (sc) { 12517 struct hfi1_devdata *dd = sc->dd; 12518 u64 reg; 12519 u8 set = (sc->type == SC_USER ? 12520 HFI1_CAP_IS_USET(STATIC_RATE_CTRL) : 12521 HFI1_CAP_IS_KSET(STATIC_RATE_CTRL)); 12522 reg = read_kctxt_csr(dd, sc->hw_context, 12523 SEND_CTXT_CHECK_ENABLE); 12524 if (set) 12525 CLEAR_STATIC_RATE_CONTROL_SMASK(reg); 12526 else 12527 SET_STATIC_RATE_CONTROL_SMASK(reg); 12528 write_kctxt_csr(dd, sc->hw_context, 12529 SEND_CTXT_CHECK_ENABLE, reg); 12530 } 12531 return 0; 12532 } 12533 12534 int hfi1_tempsense_rd(struct hfi1_devdata *dd, struct hfi1_temp *temp) 12535 { 12536 int ret = 0; 12537 u64 reg; 12538 12539 if (dd->icode != ICODE_RTL_SILICON) { 12540 if (HFI1_CAP_IS_KSET(PRINT_UNIMPL)) 12541 dd_dev_info(dd, "%s: tempsense not supported by HW\n", 12542 __func__); 12543 return -EINVAL; 12544 } 12545 reg = read_csr(dd, ASIC_STS_THERM); 12546 temp->curr = ((reg >> ASIC_STS_THERM_CURR_TEMP_SHIFT) & 12547 ASIC_STS_THERM_CURR_TEMP_MASK); 12548 temp->lo_lim = ((reg >> ASIC_STS_THERM_LO_TEMP_SHIFT) & 12549 ASIC_STS_THERM_LO_TEMP_MASK); 12550 temp->hi_lim = ((reg >> ASIC_STS_THERM_HI_TEMP_SHIFT) & 12551 ASIC_STS_THERM_HI_TEMP_MASK); 12552 temp->crit_lim = ((reg >> ASIC_STS_THERM_CRIT_TEMP_SHIFT) & 12553 ASIC_STS_THERM_CRIT_TEMP_MASK); 12554 /* triggers is a 3-bit value - 1 bit per trigger. */ 12555 temp->triggers = (u8)((reg >> ASIC_STS_THERM_LOW_SHIFT) & 0x7); 12556 12557 return ret; 12558 } 12559 12560 /* ========================================================================= */ 12561 12562 /* 12563 * Enable/disable chip from delivering interrupts. 12564 */ 12565 void set_intr_state(struct hfi1_devdata *dd, u32 enable) 12566 { 12567 int i; 12568 12569 /* 12570 * In HFI, the mask needs to be 1 to allow interrupts. 12571 */ 12572 if (enable) { 12573 /* enable all interrupts */ 12574 for (i = 0; i < CCE_NUM_INT_CSRS; i++) 12575 write_csr(dd, CCE_INT_MASK + (8 * i), ~(u64)0); 12576 12577 init_qsfp_int(dd); 12578 } else { 12579 for (i = 0; i < CCE_NUM_INT_CSRS; i++) 12580 write_csr(dd, CCE_INT_MASK + (8 * i), 0ull); 12581 } 12582 } 12583 12584 /* 12585 * Clear all interrupt sources on the chip. 12586 */ 12587 static void clear_all_interrupts(struct hfi1_devdata *dd) 12588 { 12589 int i; 12590 12591 for (i = 0; i < CCE_NUM_INT_CSRS; i++) 12592 write_csr(dd, CCE_INT_CLEAR + (8 * i), ~(u64)0); 12593 12594 write_csr(dd, CCE_ERR_CLEAR, ~(u64)0); 12595 write_csr(dd, MISC_ERR_CLEAR, ~(u64)0); 12596 write_csr(dd, RCV_ERR_CLEAR, ~(u64)0); 12597 write_csr(dd, SEND_ERR_CLEAR, ~(u64)0); 12598 write_csr(dd, SEND_PIO_ERR_CLEAR, ~(u64)0); 12599 write_csr(dd, SEND_DMA_ERR_CLEAR, ~(u64)0); 12600 write_csr(dd, SEND_EGRESS_ERR_CLEAR, ~(u64)0); 12601 for (i = 0; i < dd->chip_send_contexts; i++) 12602 write_kctxt_csr(dd, i, SEND_CTXT_ERR_CLEAR, ~(u64)0); 12603 for (i = 0; i < dd->chip_sdma_engines; i++) 12604 write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_CLEAR, ~(u64)0); 12605 12606 write_csr(dd, DCC_ERR_FLG_CLR, ~(u64)0); 12607 write_csr(dd, DC_LCB_ERR_CLR, ~(u64)0); 12608 write_csr(dd, DC_DC8051_ERR_CLR, ~(u64)0); 12609 } 12610 12611 /* Move to pcie.c? */ 12612 static void disable_intx(struct pci_dev *pdev) 12613 { 12614 pci_intx(pdev, 0); 12615 } 12616 12617 static void clean_up_interrupts(struct hfi1_devdata *dd) 12618 { 12619 int i; 12620 12621 /* remove irqs - must happen before disabling/turning off */ 12622 if (dd->num_msix_entries) { 12623 /* MSI-X */ 12624 struct hfi1_msix_entry *me = dd->msix_entries; 12625 12626 for (i = 0; i < dd->num_msix_entries; i++, me++) { 12627 if (!me->arg) /* => no irq, no affinity */ 12628 continue; 12629 hfi1_put_irq_affinity(dd, &dd->msix_entries[i]); 12630 free_irq(me->msix.vector, me->arg); 12631 } 12632 } else { 12633 /* INTx */ 12634 if (dd->requested_intx_irq) { 12635 free_irq(dd->pcidev->irq, dd); 12636 dd->requested_intx_irq = 0; 12637 } 12638 } 12639 12640 /* turn off interrupts */ 12641 if (dd->num_msix_entries) { 12642 /* MSI-X */ 12643 pci_disable_msix(dd->pcidev); 12644 } else { 12645 /* INTx */ 12646 disable_intx(dd->pcidev); 12647 } 12648 12649 /* clean structures */ 12650 kfree(dd->msix_entries); 12651 dd->msix_entries = NULL; 12652 dd->num_msix_entries = 0; 12653 } 12654 12655 /* 12656 * Remap the interrupt source from the general handler to the given MSI-X 12657 * interrupt. 12658 */ 12659 static void remap_intr(struct hfi1_devdata *dd, int isrc, int msix_intr) 12660 { 12661 u64 reg; 12662 int m, n; 12663 12664 /* clear from the handled mask of the general interrupt */ 12665 m = isrc / 64; 12666 n = isrc % 64; 12667 dd->gi_mask[m] &= ~((u64)1 << n); 12668 12669 /* direct the chip source to the given MSI-X interrupt */ 12670 m = isrc / 8; 12671 n = isrc % 8; 12672 reg = read_csr(dd, CCE_INT_MAP + (8 * m)); 12673 reg &= ~((u64)0xff << (8 * n)); 12674 reg |= ((u64)msix_intr & 0xff) << (8 * n); 12675 write_csr(dd, CCE_INT_MAP + (8 * m), reg); 12676 } 12677 12678 static void remap_sdma_interrupts(struct hfi1_devdata *dd, 12679 int engine, int msix_intr) 12680 { 12681 /* 12682 * SDMA engine interrupt sources grouped by type, rather than 12683 * engine. Per-engine interrupts are as follows: 12684 * SDMA 12685 * SDMAProgress 12686 * SDMAIdle 12687 */ 12688 remap_intr(dd, IS_SDMA_START + 0 * TXE_NUM_SDMA_ENGINES + engine, 12689 msix_intr); 12690 remap_intr(dd, IS_SDMA_START + 1 * TXE_NUM_SDMA_ENGINES + engine, 12691 msix_intr); 12692 remap_intr(dd, IS_SDMA_START + 2 * TXE_NUM_SDMA_ENGINES + engine, 12693 msix_intr); 12694 } 12695 12696 static int request_intx_irq(struct hfi1_devdata *dd) 12697 { 12698 int ret; 12699 12700 snprintf(dd->intx_name, sizeof(dd->intx_name), DRIVER_NAME "_%d", 12701 dd->unit); 12702 ret = request_irq(dd->pcidev->irq, general_interrupt, 12703 IRQF_SHARED, dd->intx_name, dd); 12704 if (ret) 12705 dd_dev_err(dd, "unable to request INTx interrupt, err %d\n", 12706 ret); 12707 else 12708 dd->requested_intx_irq = 1; 12709 return ret; 12710 } 12711 12712 static int request_msix_irqs(struct hfi1_devdata *dd) 12713 { 12714 int first_general, last_general; 12715 int first_sdma, last_sdma; 12716 int first_rx, last_rx; 12717 int i, ret = 0; 12718 12719 /* calculate the ranges we are going to use */ 12720 first_general = 0; 12721 last_general = first_general + 1; 12722 first_sdma = last_general; 12723 last_sdma = first_sdma + dd->num_sdma; 12724 first_rx = last_sdma; 12725 last_rx = first_rx + dd->n_krcv_queues; 12726 12727 /* 12728 * Sanity check - the code expects all SDMA chip source 12729 * interrupts to be in the same CSR, starting at bit 0. Verify 12730 * that this is true by checking the bit location of the start. 12731 */ 12732 BUILD_BUG_ON(IS_SDMA_START % 64); 12733 12734 for (i = 0; i < dd->num_msix_entries; i++) { 12735 struct hfi1_msix_entry *me = &dd->msix_entries[i]; 12736 const char *err_info; 12737 irq_handler_t handler; 12738 irq_handler_t thread = NULL; 12739 void *arg; 12740 int idx; 12741 struct hfi1_ctxtdata *rcd = NULL; 12742 struct sdma_engine *sde = NULL; 12743 12744 /* obtain the arguments to request_irq */ 12745 if (first_general <= i && i < last_general) { 12746 idx = i - first_general; 12747 handler = general_interrupt; 12748 arg = dd; 12749 snprintf(me->name, sizeof(me->name), 12750 DRIVER_NAME "_%d", dd->unit); 12751 err_info = "general"; 12752 me->type = IRQ_GENERAL; 12753 } else if (first_sdma <= i && i < last_sdma) { 12754 idx = i - first_sdma; 12755 sde = &dd->per_sdma[idx]; 12756 handler = sdma_interrupt; 12757 arg = sde; 12758 snprintf(me->name, sizeof(me->name), 12759 DRIVER_NAME "_%d sdma%d", dd->unit, idx); 12760 err_info = "sdma"; 12761 remap_sdma_interrupts(dd, idx, i); 12762 me->type = IRQ_SDMA; 12763 } else if (first_rx <= i && i < last_rx) { 12764 idx = i - first_rx; 12765 rcd = dd->rcd[idx]; 12766 /* no interrupt if no rcd */ 12767 if (!rcd) 12768 continue; 12769 /* 12770 * Set the interrupt register and mask for this 12771 * context's interrupt. 12772 */ 12773 rcd->ireg = (IS_RCVAVAIL_START + idx) / 64; 12774 rcd->imask = ((u64)1) << 12775 ((IS_RCVAVAIL_START + idx) % 64); 12776 handler = receive_context_interrupt; 12777 thread = receive_context_thread; 12778 arg = rcd; 12779 snprintf(me->name, sizeof(me->name), 12780 DRIVER_NAME "_%d kctxt%d", dd->unit, idx); 12781 err_info = "receive context"; 12782 remap_intr(dd, IS_RCVAVAIL_START + idx, i); 12783 me->type = IRQ_RCVCTXT; 12784 } else { 12785 /* not in our expected range - complain, then 12786 * ignore it 12787 */ 12788 dd_dev_err(dd, 12789 "Unexpected extra MSI-X interrupt %d\n", i); 12790 continue; 12791 } 12792 /* no argument, no interrupt */ 12793 if (!arg) 12794 continue; 12795 /* make sure the name is terminated */ 12796 me->name[sizeof(me->name) - 1] = 0; 12797 12798 ret = request_threaded_irq(me->msix.vector, handler, thread, 0, 12799 me->name, arg); 12800 if (ret) { 12801 dd_dev_err(dd, 12802 "unable to allocate %s interrupt, vector %d, index %d, err %d\n", 12803 err_info, me->msix.vector, idx, ret); 12804 return ret; 12805 } 12806 /* 12807 * assign arg after request_irq call, so it will be 12808 * cleaned up 12809 */ 12810 me->arg = arg; 12811 12812 ret = hfi1_get_irq_affinity(dd, me); 12813 if (ret) 12814 dd_dev_err(dd, 12815 "unable to pin IRQ %d\n", ret); 12816 } 12817 12818 return ret; 12819 } 12820 12821 /* 12822 * Set the general handler to accept all interrupts, remap all 12823 * chip interrupts back to MSI-X 0. 12824 */ 12825 static void reset_interrupts(struct hfi1_devdata *dd) 12826 { 12827 int i; 12828 12829 /* all interrupts handled by the general handler */ 12830 for (i = 0; i < CCE_NUM_INT_CSRS; i++) 12831 dd->gi_mask[i] = ~(u64)0; 12832 12833 /* all chip interrupts map to MSI-X 0 */ 12834 for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++) 12835 write_csr(dd, CCE_INT_MAP + (8 * i), 0); 12836 } 12837 12838 static int set_up_interrupts(struct hfi1_devdata *dd) 12839 { 12840 struct hfi1_msix_entry *entries; 12841 u32 total, request; 12842 int i, ret; 12843 int single_interrupt = 0; /* we expect to have all the interrupts */ 12844 12845 /* 12846 * Interrupt count: 12847 * 1 general, "slow path" interrupt (includes the SDMA engines 12848 * slow source, SDMACleanupDone) 12849 * N interrupts - one per used SDMA engine 12850 * M interrupt - one per kernel receive context 12851 */ 12852 total = 1 + dd->num_sdma + dd->n_krcv_queues; 12853 12854 entries = kcalloc(total, sizeof(*entries), GFP_KERNEL); 12855 if (!entries) { 12856 ret = -ENOMEM; 12857 goto fail; 12858 } 12859 /* 1-1 MSI-X entry assignment */ 12860 for (i = 0; i < total; i++) 12861 entries[i].msix.entry = i; 12862 12863 /* ask for MSI-X interrupts */ 12864 request = total; 12865 request_msix(dd, &request, entries); 12866 12867 if (request == 0) { 12868 /* using INTx */ 12869 /* dd->num_msix_entries already zero */ 12870 kfree(entries); 12871 single_interrupt = 1; 12872 dd_dev_err(dd, "MSI-X failed, using INTx interrupts\n"); 12873 } else { 12874 /* using MSI-X */ 12875 dd->num_msix_entries = request; 12876 dd->msix_entries = entries; 12877 12878 if (request != total) { 12879 /* using MSI-X, with reduced interrupts */ 12880 dd_dev_err( 12881 dd, 12882 "cannot handle reduced interrupt case, want %u, got %u\n", 12883 total, request); 12884 ret = -EINVAL; 12885 goto fail; 12886 } 12887 dd_dev_info(dd, "%u MSI-X interrupts allocated\n", total); 12888 } 12889 12890 /* mask all interrupts */ 12891 set_intr_state(dd, 0); 12892 /* clear all pending interrupts */ 12893 clear_all_interrupts(dd); 12894 12895 /* reset general handler mask, chip MSI-X mappings */ 12896 reset_interrupts(dd); 12897 12898 if (single_interrupt) 12899 ret = request_intx_irq(dd); 12900 else 12901 ret = request_msix_irqs(dd); 12902 if (ret) 12903 goto fail; 12904 12905 return 0; 12906 12907 fail: 12908 clean_up_interrupts(dd); 12909 return ret; 12910 } 12911 12912 /* 12913 * Set up context values in dd. Sets: 12914 * 12915 * num_rcv_contexts - number of contexts being used 12916 * n_krcv_queues - number of kernel contexts 12917 * first_user_ctxt - first non-kernel context in array of contexts 12918 * freectxts - number of free user contexts 12919 * num_send_contexts - number of PIO send contexts being used 12920 */ 12921 static int set_up_context_variables(struct hfi1_devdata *dd) 12922 { 12923 unsigned long num_kernel_contexts; 12924 int total_contexts; 12925 int ret; 12926 unsigned ngroups; 12927 int qos_rmt_count; 12928 int user_rmt_reduced; 12929 12930 /* 12931 * Kernel receive contexts: 12932 * - Context 0 - control context (VL15/multicast/error) 12933 * - Context 1 - first kernel context 12934 * - Context 2 - second kernel context 12935 * ... 12936 */ 12937 if (n_krcvqs) 12938 /* 12939 * n_krcvqs is the sum of module parameter kernel receive 12940 * contexts, krcvqs[]. It does not include the control 12941 * context, so add that. 12942 */ 12943 num_kernel_contexts = n_krcvqs + 1; 12944 else 12945 num_kernel_contexts = DEFAULT_KRCVQS + 1; 12946 /* 12947 * Every kernel receive context needs an ACK send context. 12948 * one send context is allocated for each VL{0-7} and VL15 12949 */ 12950 if (num_kernel_contexts > (dd->chip_send_contexts - num_vls - 1)) { 12951 dd_dev_err(dd, 12952 "Reducing # kernel rcv contexts to: %d, from %lu\n", 12953 (int)(dd->chip_send_contexts - num_vls - 1), 12954 num_kernel_contexts); 12955 num_kernel_contexts = dd->chip_send_contexts - num_vls - 1; 12956 } 12957 /* 12958 * User contexts: 12959 * - default to 1 user context per real (non-HT) CPU core if 12960 * num_user_contexts is negative 12961 */ 12962 if (num_user_contexts < 0) 12963 num_user_contexts = 12964 cpumask_weight(&node_affinity.real_cpu_mask); 12965 12966 total_contexts = num_kernel_contexts + num_user_contexts; 12967 12968 /* 12969 * Adjust the counts given a global max. 12970 */ 12971 if (total_contexts > dd->chip_rcv_contexts) { 12972 dd_dev_err(dd, 12973 "Reducing # user receive contexts to: %d, from %d\n", 12974 (int)(dd->chip_rcv_contexts - num_kernel_contexts), 12975 (int)num_user_contexts); 12976 num_user_contexts = dd->chip_rcv_contexts - num_kernel_contexts; 12977 /* recalculate */ 12978 total_contexts = num_kernel_contexts + num_user_contexts; 12979 } 12980 12981 /* each user context requires an entry in the RMT */ 12982 qos_rmt_count = qos_rmt_entries(dd, NULL, NULL); 12983 if (qos_rmt_count + num_user_contexts > NUM_MAP_ENTRIES) { 12984 user_rmt_reduced = NUM_MAP_ENTRIES - qos_rmt_count; 12985 dd_dev_err(dd, 12986 "RMT size is reducing the number of user receive contexts from %d to %d\n", 12987 (int)num_user_contexts, 12988 user_rmt_reduced); 12989 /* recalculate */ 12990 num_user_contexts = user_rmt_reduced; 12991 total_contexts = num_kernel_contexts + num_user_contexts; 12992 } 12993 12994 /* the first N are kernel contexts, the rest are user contexts */ 12995 dd->num_rcv_contexts = total_contexts; 12996 dd->n_krcv_queues = num_kernel_contexts; 12997 dd->first_user_ctxt = num_kernel_contexts; 12998 dd->num_user_contexts = num_user_contexts; 12999 dd->freectxts = num_user_contexts; 13000 dd_dev_info(dd, 13001 "rcv contexts: chip %d, used %d (kernel %d, user %d)\n", 13002 (int)dd->chip_rcv_contexts, 13003 (int)dd->num_rcv_contexts, 13004 (int)dd->n_krcv_queues, 13005 (int)dd->num_rcv_contexts - dd->n_krcv_queues); 13006 13007 /* 13008 * Receive array allocation: 13009 * All RcvArray entries are divided into groups of 8. This 13010 * is required by the hardware and will speed up writes to 13011 * consecutive entries by using write-combining of the entire 13012 * cacheline. 13013 * 13014 * The number of groups are evenly divided among all contexts. 13015 * any left over groups will be given to the first N user 13016 * contexts. 13017 */ 13018 dd->rcv_entries.group_size = RCV_INCREMENT; 13019 ngroups = dd->chip_rcv_array_count / dd->rcv_entries.group_size; 13020 dd->rcv_entries.ngroups = ngroups / dd->num_rcv_contexts; 13021 dd->rcv_entries.nctxt_extra = ngroups - 13022 (dd->num_rcv_contexts * dd->rcv_entries.ngroups); 13023 dd_dev_info(dd, "RcvArray groups %u, ctxts extra %u\n", 13024 dd->rcv_entries.ngroups, 13025 dd->rcv_entries.nctxt_extra); 13026 if (dd->rcv_entries.ngroups * dd->rcv_entries.group_size > 13027 MAX_EAGER_ENTRIES * 2) { 13028 dd->rcv_entries.ngroups = (MAX_EAGER_ENTRIES * 2) / 13029 dd->rcv_entries.group_size; 13030 dd_dev_info(dd, 13031 "RcvArray group count too high, change to %u\n", 13032 dd->rcv_entries.ngroups); 13033 dd->rcv_entries.nctxt_extra = 0; 13034 } 13035 /* 13036 * PIO send contexts 13037 */ 13038 ret = init_sc_pools_and_sizes(dd); 13039 if (ret >= 0) { /* success */ 13040 dd->num_send_contexts = ret; 13041 dd_dev_info( 13042 dd, 13043 "send contexts: chip %d, used %d (kernel %d, ack %d, user %d, vl15 %d)\n", 13044 dd->chip_send_contexts, 13045 dd->num_send_contexts, 13046 dd->sc_sizes[SC_KERNEL].count, 13047 dd->sc_sizes[SC_ACK].count, 13048 dd->sc_sizes[SC_USER].count, 13049 dd->sc_sizes[SC_VL15].count); 13050 ret = 0; /* success */ 13051 } 13052 13053 return ret; 13054 } 13055 13056 /* 13057 * Set the device/port partition key table. The MAD code 13058 * will ensure that, at least, the partial management 13059 * partition key is present in the table. 13060 */ 13061 static void set_partition_keys(struct hfi1_pportdata *ppd) 13062 { 13063 struct hfi1_devdata *dd = ppd->dd; 13064 u64 reg = 0; 13065 int i; 13066 13067 dd_dev_info(dd, "Setting partition keys\n"); 13068 for (i = 0; i < hfi1_get_npkeys(dd); i++) { 13069 reg |= (ppd->pkeys[i] & 13070 RCV_PARTITION_KEY_PARTITION_KEY_A_MASK) << 13071 ((i % 4) * 13072 RCV_PARTITION_KEY_PARTITION_KEY_B_SHIFT); 13073 /* Each register holds 4 PKey values. */ 13074 if ((i % 4) == 3) { 13075 write_csr(dd, RCV_PARTITION_KEY + 13076 ((i - 3) * 2), reg); 13077 reg = 0; 13078 } 13079 } 13080 13081 /* Always enable HW pkeys check when pkeys table is set */ 13082 add_rcvctrl(dd, RCV_CTRL_RCV_PARTITION_KEY_ENABLE_SMASK); 13083 } 13084 13085 /* 13086 * These CSRs and memories are uninitialized on reset and must be 13087 * written before reading to set the ECC/parity bits. 13088 * 13089 * NOTE: All user context CSRs that are not mmaped write-only 13090 * (e.g. the TID flows) must be initialized even if the driver never 13091 * reads them. 13092 */ 13093 static void write_uninitialized_csrs_and_memories(struct hfi1_devdata *dd) 13094 { 13095 int i, j; 13096 13097 /* CceIntMap */ 13098 for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++) 13099 write_csr(dd, CCE_INT_MAP + (8 * i), 0); 13100 13101 /* SendCtxtCreditReturnAddr */ 13102 for (i = 0; i < dd->chip_send_contexts; i++) 13103 write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_RETURN_ADDR, 0); 13104 13105 /* PIO Send buffers */ 13106 /* SDMA Send buffers */ 13107 /* 13108 * These are not normally read, and (presently) have no method 13109 * to be read, so are not pre-initialized 13110 */ 13111 13112 /* RcvHdrAddr */ 13113 /* RcvHdrTailAddr */ 13114 /* RcvTidFlowTable */ 13115 for (i = 0; i < dd->chip_rcv_contexts; i++) { 13116 write_kctxt_csr(dd, i, RCV_HDR_ADDR, 0); 13117 write_kctxt_csr(dd, i, RCV_HDR_TAIL_ADDR, 0); 13118 for (j = 0; j < RXE_NUM_TID_FLOWS; j++) 13119 write_uctxt_csr(dd, i, RCV_TID_FLOW_TABLE + (8 * j), 0); 13120 } 13121 13122 /* RcvArray */ 13123 for (i = 0; i < dd->chip_rcv_array_count; i++) 13124 write_csr(dd, RCV_ARRAY + (8 * i), 13125 RCV_ARRAY_RT_WRITE_ENABLE_SMASK); 13126 13127 /* RcvQPMapTable */ 13128 for (i = 0; i < 32; i++) 13129 write_csr(dd, RCV_QP_MAP_TABLE + (8 * i), 0); 13130 } 13131 13132 /* 13133 * Use the ctrl_bits in CceCtrl to clear the status_bits in CceStatus. 13134 */ 13135 static void clear_cce_status(struct hfi1_devdata *dd, u64 status_bits, 13136 u64 ctrl_bits) 13137 { 13138 unsigned long timeout; 13139 u64 reg; 13140 13141 /* is the condition present? */ 13142 reg = read_csr(dd, CCE_STATUS); 13143 if ((reg & status_bits) == 0) 13144 return; 13145 13146 /* clear the condition */ 13147 write_csr(dd, CCE_CTRL, ctrl_bits); 13148 13149 /* wait for the condition to clear */ 13150 timeout = jiffies + msecs_to_jiffies(CCE_STATUS_TIMEOUT); 13151 while (1) { 13152 reg = read_csr(dd, CCE_STATUS); 13153 if ((reg & status_bits) == 0) 13154 return; 13155 if (time_after(jiffies, timeout)) { 13156 dd_dev_err(dd, 13157 "Timeout waiting for CceStatus to clear bits 0x%llx, remaining 0x%llx\n", 13158 status_bits, reg & status_bits); 13159 return; 13160 } 13161 udelay(1); 13162 } 13163 } 13164 13165 /* set CCE CSRs to chip reset defaults */ 13166 static void reset_cce_csrs(struct hfi1_devdata *dd) 13167 { 13168 int i; 13169 13170 /* CCE_REVISION read-only */ 13171 /* CCE_REVISION2 read-only */ 13172 /* CCE_CTRL - bits clear automatically */ 13173 /* CCE_STATUS read-only, use CceCtrl to clear */ 13174 clear_cce_status(dd, ALL_FROZE, CCE_CTRL_SPC_UNFREEZE_SMASK); 13175 clear_cce_status(dd, ALL_TXE_PAUSE, CCE_CTRL_TXE_RESUME_SMASK); 13176 clear_cce_status(dd, ALL_RXE_PAUSE, CCE_CTRL_RXE_RESUME_SMASK); 13177 for (i = 0; i < CCE_NUM_SCRATCH; i++) 13178 write_csr(dd, CCE_SCRATCH + (8 * i), 0); 13179 /* CCE_ERR_STATUS read-only */ 13180 write_csr(dd, CCE_ERR_MASK, 0); 13181 write_csr(dd, CCE_ERR_CLEAR, ~0ull); 13182 /* CCE_ERR_FORCE leave alone */ 13183 for (i = 0; i < CCE_NUM_32_BIT_COUNTERS; i++) 13184 write_csr(dd, CCE_COUNTER_ARRAY32 + (8 * i), 0); 13185 write_csr(dd, CCE_DC_CTRL, CCE_DC_CTRL_RESETCSR); 13186 /* CCE_PCIE_CTRL leave alone */ 13187 for (i = 0; i < CCE_NUM_MSIX_VECTORS; i++) { 13188 write_csr(dd, CCE_MSIX_TABLE_LOWER + (8 * i), 0); 13189 write_csr(dd, CCE_MSIX_TABLE_UPPER + (8 * i), 13190 CCE_MSIX_TABLE_UPPER_RESETCSR); 13191 } 13192 for (i = 0; i < CCE_NUM_MSIX_PBAS; i++) { 13193 /* CCE_MSIX_PBA read-only */ 13194 write_csr(dd, CCE_MSIX_INT_GRANTED, ~0ull); 13195 write_csr(dd, CCE_MSIX_VEC_CLR_WITHOUT_INT, ~0ull); 13196 } 13197 for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++) 13198 write_csr(dd, CCE_INT_MAP, 0); 13199 for (i = 0; i < CCE_NUM_INT_CSRS; i++) { 13200 /* CCE_INT_STATUS read-only */ 13201 write_csr(dd, CCE_INT_MASK + (8 * i), 0); 13202 write_csr(dd, CCE_INT_CLEAR + (8 * i), ~0ull); 13203 /* CCE_INT_FORCE leave alone */ 13204 /* CCE_INT_BLOCKED read-only */ 13205 } 13206 for (i = 0; i < CCE_NUM_32_BIT_INT_COUNTERS; i++) 13207 write_csr(dd, CCE_INT_COUNTER_ARRAY32 + (8 * i), 0); 13208 } 13209 13210 /* set MISC CSRs to chip reset defaults */ 13211 static void reset_misc_csrs(struct hfi1_devdata *dd) 13212 { 13213 int i; 13214 13215 for (i = 0; i < 32; i++) { 13216 write_csr(dd, MISC_CFG_RSA_R2 + (8 * i), 0); 13217 write_csr(dd, MISC_CFG_RSA_SIGNATURE + (8 * i), 0); 13218 write_csr(dd, MISC_CFG_RSA_MODULUS + (8 * i), 0); 13219 } 13220 /* 13221 * MISC_CFG_SHA_PRELOAD leave alone - always reads 0 and can 13222 * only be written 128-byte chunks 13223 */ 13224 /* init RSA engine to clear lingering errors */ 13225 write_csr(dd, MISC_CFG_RSA_CMD, 1); 13226 write_csr(dd, MISC_CFG_RSA_MU, 0); 13227 write_csr(dd, MISC_CFG_FW_CTRL, 0); 13228 /* MISC_STS_8051_DIGEST read-only */ 13229 /* MISC_STS_SBM_DIGEST read-only */ 13230 /* MISC_STS_PCIE_DIGEST read-only */ 13231 /* MISC_STS_FAB_DIGEST read-only */ 13232 /* MISC_ERR_STATUS read-only */ 13233 write_csr(dd, MISC_ERR_MASK, 0); 13234 write_csr(dd, MISC_ERR_CLEAR, ~0ull); 13235 /* MISC_ERR_FORCE leave alone */ 13236 } 13237 13238 /* set TXE CSRs to chip reset defaults */ 13239 static void reset_txe_csrs(struct hfi1_devdata *dd) 13240 { 13241 int i; 13242 13243 /* 13244 * TXE Kernel CSRs 13245 */ 13246 write_csr(dd, SEND_CTRL, 0); 13247 __cm_reset(dd, 0); /* reset CM internal state */ 13248 /* SEND_CONTEXTS read-only */ 13249 /* SEND_DMA_ENGINES read-only */ 13250 /* SEND_PIO_MEM_SIZE read-only */ 13251 /* SEND_DMA_MEM_SIZE read-only */ 13252 write_csr(dd, SEND_HIGH_PRIORITY_LIMIT, 0); 13253 pio_reset_all(dd); /* SEND_PIO_INIT_CTXT */ 13254 /* SEND_PIO_ERR_STATUS read-only */ 13255 write_csr(dd, SEND_PIO_ERR_MASK, 0); 13256 write_csr(dd, SEND_PIO_ERR_CLEAR, ~0ull); 13257 /* SEND_PIO_ERR_FORCE leave alone */ 13258 /* SEND_DMA_ERR_STATUS read-only */ 13259 write_csr(dd, SEND_DMA_ERR_MASK, 0); 13260 write_csr(dd, SEND_DMA_ERR_CLEAR, ~0ull); 13261 /* SEND_DMA_ERR_FORCE leave alone */ 13262 /* SEND_EGRESS_ERR_STATUS read-only */ 13263 write_csr(dd, SEND_EGRESS_ERR_MASK, 0); 13264 write_csr(dd, SEND_EGRESS_ERR_CLEAR, ~0ull); 13265 /* SEND_EGRESS_ERR_FORCE leave alone */ 13266 write_csr(dd, SEND_BTH_QP, 0); 13267 write_csr(dd, SEND_STATIC_RATE_CONTROL, 0); 13268 write_csr(dd, SEND_SC2VLT0, 0); 13269 write_csr(dd, SEND_SC2VLT1, 0); 13270 write_csr(dd, SEND_SC2VLT2, 0); 13271 write_csr(dd, SEND_SC2VLT3, 0); 13272 write_csr(dd, SEND_LEN_CHECK0, 0); 13273 write_csr(dd, SEND_LEN_CHECK1, 0); 13274 /* SEND_ERR_STATUS read-only */ 13275 write_csr(dd, SEND_ERR_MASK, 0); 13276 write_csr(dd, SEND_ERR_CLEAR, ~0ull); 13277 /* SEND_ERR_FORCE read-only */ 13278 for (i = 0; i < VL_ARB_LOW_PRIO_TABLE_SIZE; i++) 13279 write_csr(dd, SEND_LOW_PRIORITY_LIST + (8 * i), 0); 13280 for (i = 0; i < VL_ARB_HIGH_PRIO_TABLE_SIZE; i++) 13281 write_csr(dd, SEND_HIGH_PRIORITY_LIST + (8 * i), 0); 13282 for (i = 0; i < dd->chip_send_contexts / NUM_CONTEXTS_PER_SET; i++) 13283 write_csr(dd, SEND_CONTEXT_SET_CTRL + (8 * i), 0); 13284 for (i = 0; i < TXE_NUM_32_BIT_COUNTER; i++) 13285 write_csr(dd, SEND_COUNTER_ARRAY32 + (8 * i), 0); 13286 for (i = 0; i < TXE_NUM_64_BIT_COUNTER; i++) 13287 write_csr(dd, SEND_COUNTER_ARRAY64 + (8 * i), 0); 13288 write_csr(dd, SEND_CM_CTRL, SEND_CM_CTRL_RESETCSR); 13289 write_csr(dd, SEND_CM_GLOBAL_CREDIT, SEND_CM_GLOBAL_CREDIT_RESETCSR); 13290 /* SEND_CM_CREDIT_USED_STATUS read-only */ 13291 write_csr(dd, SEND_CM_TIMER_CTRL, 0); 13292 write_csr(dd, SEND_CM_LOCAL_AU_TABLE0_TO3, 0); 13293 write_csr(dd, SEND_CM_LOCAL_AU_TABLE4_TO7, 0); 13294 write_csr(dd, SEND_CM_REMOTE_AU_TABLE0_TO3, 0); 13295 write_csr(dd, SEND_CM_REMOTE_AU_TABLE4_TO7, 0); 13296 for (i = 0; i < TXE_NUM_DATA_VL; i++) 13297 write_csr(dd, SEND_CM_CREDIT_VL + (8 * i), 0); 13298 write_csr(dd, SEND_CM_CREDIT_VL15, 0); 13299 /* SEND_CM_CREDIT_USED_VL read-only */ 13300 /* SEND_CM_CREDIT_USED_VL15 read-only */ 13301 /* SEND_EGRESS_CTXT_STATUS read-only */ 13302 /* SEND_EGRESS_SEND_DMA_STATUS read-only */ 13303 write_csr(dd, SEND_EGRESS_ERR_INFO, ~0ull); 13304 /* SEND_EGRESS_ERR_INFO read-only */ 13305 /* SEND_EGRESS_ERR_SOURCE read-only */ 13306 13307 /* 13308 * TXE Per-Context CSRs 13309 */ 13310 for (i = 0; i < dd->chip_send_contexts; i++) { 13311 write_kctxt_csr(dd, i, SEND_CTXT_CTRL, 0); 13312 write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_CTRL, 0); 13313 write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_RETURN_ADDR, 0); 13314 write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_FORCE, 0); 13315 write_kctxt_csr(dd, i, SEND_CTXT_ERR_MASK, 0); 13316 write_kctxt_csr(dd, i, SEND_CTXT_ERR_CLEAR, ~0ull); 13317 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_ENABLE, 0); 13318 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_VL, 0); 13319 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_JOB_KEY, 0); 13320 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_PARTITION_KEY, 0); 13321 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_SLID, 0); 13322 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_OPCODE, 0); 13323 } 13324 13325 /* 13326 * TXE Per-SDMA CSRs 13327 */ 13328 for (i = 0; i < dd->chip_sdma_engines; i++) { 13329 write_kctxt_csr(dd, i, SEND_DMA_CTRL, 0); 13330 /* SEND_DMA_STATUS read-only */ 13331 write_kctxt_csr(dd, i, SEND_DMA_BASE_ADDR, 0); 13332 write_kctxt_csr(dd, i, SEND_DMA_LEN_GEN, 0); 13333 write_kctxt_csr(dd, i, SEND_DMA_TAIL, 0); 13334 /* SEND_DMA_HEAD read-only */ 13335 write_kctxt_csr(dd, i, SEND_DMA_HEAD_ADDR, 0); 13336 write_kctxt_csr(dd, i, SEND_DMA_PRIORITY_THLD, 0); 13337 /* SEND_DMA_IDLE_CNT read-only */ 13338 write_kctxt_csr(dd, i, SEND_DMA_RELOAD_CNT, 0); 13339 write_kctxt_csr(dd, i, SEND_DMA_DESC_CNT, 0); 13340 /* SEND_DMA_DESC_FETCHED_CNT read-only */ 13341 /* SEND_DMA_ENG_ERR_STATUS read-only */ 13342 write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_MASK, 0); 13343 write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_CLEAR, ~0ull); 13344 /* SEND_DMA_ENG_ERR_FORCE leave alone */ 13345 write_kctxt_csr(dd, i, SEND_DMA_CHECK_ENABLE, 0); 13346 write_kctxt_csr(dd, i, SEND_DMA_CHECK_VL, 0); 13347 write_kctxt_csr(dd, i, SEND_DMA_CHECK_JOB_KEY, 0); 13348 write_kctxt_csr(dd, i, SEND_DMA_CHECK_PARTITION_KEY, 0); 13349 write_kctxt_csr(dd, i, SEND_DMA_CHECK_SLID, 0); 13350 write_kctxt_csr(dd, i, SEND_DMA_CHECK_OPCODE, 0); 13351 write_kctxt_csr(dd, i, SEND_DMA_MEMORY, 0); 13352 } 13353 } 13354 13355 /* 13356 * Expect on entry: 13357 * o Packet ingress is disabled, i.e. RcvCtrl.RcvPortEnable == 0 13358 */ 13359 static void init_rbufs(struct hfi1_devdata *dd) 13360 { 13361 u64 reg; 13362 int count; 13363 13364 /* 13365 * Wait for DMA to stop: RxRbufPktPending and RxPktInProgress are 13366 * clear. 13367 */ 13368 count = 0; 13369 while (1) { 13370 reg = read_csr(dd, RCV_STATUS); 13371 if ((reg & (RCV_STATUS_RX_RBUF_PKT_PENDING_SMASK 13372 | RCV_STATUS_RX_PKT_IN_PROGRESS_SMASK)) == 0) 13373 break; 13374 /* 13375 * Give up after 1ms - maximum wait time. 13376 * 13377 * RBuf size is 136KiB. Slowest possible is PCIe Gen1 x1 at 13378 * 250MB/s bandwidth. Lower rate to 66% for overhead to get: 13379 * 136 KB / (66% * 250MB/s) = 844us 13380 */ 13381 if (count++ > 500) { 13382 dd_dev_err(dd, 13383 "%s: in-progress DMA not clearing: RcvStatus 0x%llx, continuing\n", 13384 __func__, reg); 13385 break; 13386 } 13387 udelay(2); /* do not busy-wait the CSR */ 13388 } 13389 13390 /* start the init - expect RcvCtrl to be 0 */ 13391 write_csr(dd, RCV_CTRL, RCV_CTRL_RX_RBUF_INIT_SMASK); 13392 13393 /* 13394 * Read to force the write of Rcvtrl.RxRbufInit. There is a brief 13395 * period after the write before RcvStatus.RxRbufInitDone is valid. 13396 * The delay in the first run through the loop below is sufficient and 13397 * required before the first read of RcvStatus.RxRbufInintDone. 13398 */ 13399 read_csr(dd, RCV_CTRL); 13400 13401 /* wait for the init to finish */ 13402 count = 0; 13403 while (1) { 13404 /* delay is required first time through - see above */ 13405 udelay(2); /* do not busy-wait the CSR */ 13406 reg = read_csr(dd, RCV_STATUS); 13407 if (reg & (RCV_STATUS_RX_RBUF_INIT_DONE_SMASK)) 13408 break; 13409 13410 /* give up after 100us - slowest possible at 33MHz is 73us */ 13411 if (count++ > 50) { 13412 dd_dev_err(dd, 13413 "%s: RcvStatus.RxRbufInit not set, continuing\n", 13414 __func__); 13415 break; 13416 } 13417 } 13418 } 13419 13420 /* set RXE CSRs to chip reset defaults */ 13421 static void reset_rxe_csrs(struct hfi1_devdata *dd) 13422 { 13423 int i, j; 13424 13425 /* 13426 * RXE Kernel CSRs 13427 */ 13428 write_csr(dd, RCV_CTRL, 0); 13429 init_rbufs(dd); 13430 /* RCV_STATUS read-only */ 13431 /* RCV_CONTEXTS read-only */ 13432 /* RCV_ARRAY_CNT read-only */ 13433 /* RCV_BUF_SIZE read-only */ 13434 write_csr(dd, RCV_BTH_QP, 0); 13435 write_csr(dd, RCV_MULTICAST, 0); 13436 write_csr(dd, RCV_BYPASS, 0); 13437 write_csr(dd, RCV_VL15, 0); 13438 /* this is a clear-down */ 13439 write_csr(dd, RCV_ERR_INFO, 13440 RCV_ERR_INFO_RCV_EXCESS_BUFFER_OVERRUN_SMASK); 13441 /* RCV_ERR_STATUS read-only */ 13442 write_csr(dd, RCV_ERR_MASK, 0); 13443 write_csr(dd, RCV_ERR_CLEAR, ~0ull); 13444 /* RCV_ERR_FORCE leave alone */ 13445 for (i = 0; i < 32; i++) 13446 write_csr(dd, RCV_QP_MAP_TABLE + (8 * i), 0); 13447 for (i = 0; i < 4; i++) 13448 write_csr(dd, RCV_PARTITION_KEY + (8 * i), 0); 13449 for (i = 0; i < RXE_NUM_32_BIT_COUNTERS; i++) 13450 write_csr(dd, RCV_COUNTER_ARRAY32 + (8 * i), 0); 13451 for (i = 0; i < RXE_NUM_64_BIT_COUNTERS; i++) 13452 write_csr(dd, RCV_COUNTER_ARRAY64 + (8 * i), 0); 13453 for (i = 0; i < RXE_NUM_RSM_INSTANCES; i++) { 13454 write_csr(dd, RCV_RSM_CFG + (8 * i), 0); 13455 write_csr(dd, RCV_RSM_SELECT + (8 * i), 0); 13456 write_csr(dd, RCV_RSM_MATCH + (8 * i), 0); 13457 } 13458 for (i = 0; i < 32; i++) 13459 write_csr(dd, RCV_RSM_MAP_TABLE + (8 * i), 0); 13460 13461 /* 13462 * RXE Kernel and User Per-Context CSRs 13463 */ 13464 for (i = 0; i < dd->chip_rcv_contexts; i++) { 13465 /* kernel */ 13466 write_kctxt_csr(dd, i, RCV_CTXT_CTRL, 0); 13467 /* RCV_CTXT_STATUS read-only */ 13468 write_kctxt_csr(dd, i, RCV_EGR_CTRL, 0); 13469 write_kctxt_csr(dd, i, RCV_TID_CTRL, 0); 13470 write_kctxt_csr(dd, i, RCV_KEY_CTRL, 0); 13471 write_kctxt_csr(dd, i, RCV_HDR_ADDR, 0); 13472 write_kctxt_csr(dd, i, RCV_HDR_CNT, 0); 13473 write_kctxt_csr(dd, i, RCV_HDR_ENT_SIZE, 0); 13474 write_kctxt_csr(dd, i, RCV_HDR_SIZE, 0); 13475 write_kctxt_csr(dd, i, RCV_HDR_TAIL_ADDR, 0); 13476 write_kctxt_csr(dd, i, RCV_AVAIL_TIME_OUT, 0); 13477 write_kctxt_csr(dd, i, RCV_HDR_OVFL_CNT, 0); 13478 13479 /* user */ 13480 /* RCV_HDR_TAIL read-only */ 13481 write_uctxt_csr(dd, i, RCV_HDR_HEAD, 0); 13482 /* RCV_EGR_INDEX_TAIL read-only */ 13483 write_uctxt_csr(dd, i, RCV_EGR_INDEX_HEAD, 0); 13484 /* RCV_EGR_OFFSET_TAIL read-only */ 13485 for (j = 0; j < RXE_NUM_TID_FLOWS; j++) { 13486 write_uctxt_csr(dd, i, 13487 RCV_TID_FLOW_TABLE + (8 * j), 0); 13488 } 13489 } 13490 } 13491 13492 /* 13493 * Set sc2vl tables. 13494 * 13495 * They power on to zeros, so to avoid send context errors 13496 * they need to be set: 13497 * 13498 * SC 0-7 -> VL 0-7 (respectively) 13499 * SC 15 -> VL 15 13500 * otherwise 13501 * -> VL 0 13502 */ 13503 static void init_sc2vl_tables(struct hfi1_devdata *dd) 13504 { 13505 int i; 13506 /* init per architecture spec, constrained by hardware capability */ 13507 13508 /* HFI maps sent packets */ 13509 write_csr(dd, SEND_SC2VLT0, SC2VL_VAL( 13510 0, 13511 0, 0, 1, 1, 13512 2, 2, 3, 3, 13513 4, 4, 5, 5, 13514 6, 6, 7, 7)); 13515 write_csr(dd, SEND_SC2VLT1, SC2VL_VAL( 13516 1, 13517 8, 0, 9, 0, 13518 10, 0, 11, 0, 13519 12, 0, 13, 0, 13520 14, 0, 15, 15)); 13521 write_csr(dd, SEND_SC2VLT2, SC2VL_VAL( 13522 2, 13523 16, 0, 17, 0, 13524 18, 0, 19, 0, 13525 20, 0, 21, 0, 13526 22, 0, 23, 0)); 13527 write_csr(dd, SEND_SC2VLT3, SC2VL_VAL( 13528 3, 13529 24, 0, 25, 0, 13530 26, 0, 27, 0, 13531 28, 0, 29, 0, 13532 30, 0, 31, 0)); 13533 13534 /* DC maps received packets */ 13535 write_csr(dd, DCC_CFG_SC_VL_TABLE_15_0, DC_SC_VL_VAL( 13536 15_0, 13537 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 13538 8, 0, 9, 0, 10, 0, 11, 0, 12, 0, 13, 0, 14, 0, 15, 15)); 13539 write_csr(dd, DCC_CFG_SC_VL_TABLE_31_16, DC_SC_VL_VAL( 13540 31_16, 13541 16, 0, 17, 0, 18, 0, 19, 0, 20, 0, 21, 0, 22, 0, 23, 0, 13542 24, 0, 25, 0, 26, 0, 27, 0, 28, 0, 29, 0, 30, 0, 31, 0)); 13543 13544 /* initialize the cached sc2vl values consistently with h/w */ 13545 for (i = 0; i < 32; i++) { 13546 if (i < 8 || i == 15) 13547 *((u8 *)(dd->sc2vl) + i) = (u8)i; 13548 else 13549 *((u8 *)(dd->sc2vl) + i) = 0; 13550 } 13551 } 13552 13553 /* 13554 * Read chip sizes and then reset parts to sane, disabled, values. We cannot 13555 * depend on the chip going through a power-on reset - a driver may be loaded 13556 * and unloaded many times. 13557 * 13558 * Do not write any CSR values to the chip in this routine - there may be 13559 * a reset following the (possible) FLR in this routine. 13560 * 13561 */ 13562 static void init_chip(struct hfi1_devdata *dd) 13563 { 13564 int i; 13565 13566 /* 13567 * Put the HFI CSRs in a known state. 13568 * Combine this with a DC reset. 13569 * 13570 * Stop the device from doing anything while we do a 13571 * reset. We know there are no other active users of 13572 * the device since we are now in charge. Turn off 13573 * off all outbound and inbound traffic and make sure 13574 * the device does not generate any interrupts. 13575 */ 13576 13577 /* disable send contexts and SDMA engines */ 13578 write_csr(dd, SEND_CTRL, 0); 13579 for (i = 0; i < dd->chip_send_contexts; i++) 13580 write_kctxt_csr(dd, i, SEND_CTXT_CTRL, 0); 13581 for (i = 0; i < dd->chip_sdma_engines; i++) 13582 write_kctxt_csr(dd, i, SEND_DMA_CTRL, 0); 13583 /* disable port (turn off RXE inbound traffic) and contexts */ 13584 write_csr(dd, RCV_CTRL, 0); 13585 for (i = 0; i < dd->chip_rcv_contexts; i++) 13586 write_csr(dd, RCV_CTXT_CTRL, 0); 13587 /* mask all interrupt sources */ 13588 for (i = 0; i < CCE_NUM_INT_CSRS; i++) 13589 write_csr(dd, CCE_INT_MASK + (8 * i), 0ull); 13590 13591 /* 13592 * DC Reset: do a full DC reset before the register clear. 13593 * A recommended length of time to hold is one CSR read, 13594 * so reread the CceDcCtrl. Then, hold the DC in reset 13595 * across the clear. 13596 */ 13597 write_csr(dd, CCE_DC_CTRL, CCE_DC_CTRL_DC_RESET_SMASK); 13598 (void)read_csr(dd, CCE_DC_CTRL); 13599 13600 if (use_flr) { 13601 /* 13602 * A FLR will reset the SPC core and part of the PCIe. 13603 * The parts that need to be restored have already been 13604 * saved. 13605 */ 13606 dd_dev_info(dd, "Resetting CSRs with FLR\n"); 13607 13608 /* do the FLR, the DC reset will remain */ 13609 hfi1_pcie_flr(dd); 13610 13611 /* restore command and BARs */ 13612 restore_pci_variables(dd); 13613 13614 if (is_ax(dd)) { 13615 dd_dev_info(dd, "Resetting CSRs with FLR\n"); 13616 hfi1_pcie_flr(dd); 13617 restore_pci_variables(dd); 13618 } 13619 } else { 13620 dd_dev_info(dd, "Resetting CSRs with writes\n"); 13621 reset_cce_csrs(dd); 13622 reset_txe_csrs(dd); 13623 reset_rxe_csrs(dd); 13624 reset_misc_csrs(dd); 13625 } 13626 /* clear the DC reset */ 13627 write_csr(dd, CCE_DC_CTRL, 0); 13628 13629 /* Set the LED off */ 13630 setextled(dd, 0); 13631 13632 /* 13633 * Clear the QSFP reset. 13634 * An FLR enforces a 0 on all out pins. The driver does not touch 13635 * ASIC_QSFPn_OUT otherwise. This leaves RESET_N low and 13636 * anything plugged constantly in reset, if it pays attention 13637 * to RESET_N. 13638 * Prime examples of this are optical cables. Set all pins high. 13639 * I2CCLK and I2CDAT will change per direction, and INT_N and 13640 * MODPRS_N are input only and their value is ignored. 13641 */ 13642 write_csr(dd, ASIC_QSFP1_OUT, 0x1f); 13643 write_csr(dd, ASIC_QSFP2_OUT, 0x1f); 13644 init_chip_resources(dd); 13645 } 13646 13647 static void init_early_variables(struct hfi1_devdata *dd) 13648 { 13649 int i; 13650 13651 /* assign link credit variables */ 13652 dd->vau = CM_VAU; 13653 dd->link_credits = CM_GLOBAL_CREDITS; 13654 if (is_ax(dd)) 13655 dd->link_credits--; 13656 dd->vcu = cu_to_vcu(hfi1_cu); 13657 /* enough room for 8 MAD packets plus header - 17K */ 13658 dd->vl15_init = (8 * (2048 + 128)) / vau_to_au(dd->vau); 13659 if (dd->vl15_init > dd->link_credits) 13660 dd->vl15_init = dd->link_credits; 13661 13662 write_uninitialized_csrs_and_memories(dd); 13663 13664 if (HFI1_CAP_IS_KSET(PKEY_CHECK)) 13665 for (i = 0; i < dd->num_pports; i++) { 13666 struct hfi1_pportdata *ppd = &dd->pport[i]; 13667 13668 set_partition_keys(ppd); 13669 } 13670 init_sc2vl_tables(dd); 13671 } 13672 13673 static void init_kdeth_qp(struct hfi1_devdata *dd) 13674 { 13675 /* user changed the KDETH_QP */ 13676 if (kdeth_qp != 0 && kdeth_qp >= 0xff) { 13677 /* out of range or illegal value */ 13678 dd_dev_err(dd, "Invalid KDETH queue pair prefix, ignoring"); 13679 kdeth_qp = 0; 13680 } 13681 if (kdeth_qp == 0) /* not set, or failed range check */ 13682 kdeth_qp = DEFAULT_KDETH_QP; 13683 13684 write_csr(dd, SEND_BTH_QP, 13685 (kdeth_qp & SEND_BTH_QP_KDETH_QP_MASK) << 13686 SEND_BTH_QP_KDETH_QP_SHIFT); 13687 13688 write_csr(dd, RCV_BTH_QP, 13689 (kdeth_qp & RCV_BTH_QP_KDETH_QP_MASK) << 13690 RCV_BTH_QP_KDETH_QP_SHIFT); 13691 } 13692 13693 /** 13694 * init_qpmap_table 13695 * @dd - device data 13696 * @first_ctxt - first context 13697 * @last_ctxt - first context 13698 * 13699 * This return sets the qpn mapping table that 13700 * is indexed by qpn[8:1]. 13701 * 13702 * The routine will round robin the 256 settings 13703 * from first_ctxt to last_ctxt. 13704 * 13705 * The first/last looks ahead to having specialized 13706 * receive contexts for mgmt and bypass. Normal 13707 * verbs traffic will assumed to be on a range 13708 * of receive contexts. 13709 */ 13710 static void init_qpmap_table(struct hfi1_devdata *dd, 13711 u32 first_ctxt, 13712 u32 last_ctxt) 13713 { 13714 u64 reg = 0; 13715 u64 regno = RCV_QP_MAP_TABLE; 13716 int i; 13717 u64 ctxt = first_ctxt; 13718 13719 for (i = 0; i < 256; i++) { 13720 reg |= ctxt << (8 * (i % 8)); 13721 ctxt++; 13722 if (ctxt > last_ctxt) 13723 ctxt = first_ctxt; 13724 if (i % 8 == 7) { 13725 write_csr(dd, regno, reg); 13726 reg = 0; 13727 regno += 8; 13728 } 13729 } 13730 13731 add_rcvctrl(dd, RCV_CTRL_RCV_QP_MAP_ENABLE_SMASK 13732 | RCV_CTRL_RCV_BYPASS_ENABLE_SMASK); 13733 } 13734 13735 struct rsm_map_table { 13736 u64 map[NUM_MAP_REGS]; 13737 unsigned int used; 13738 }; 13739 13740 struct rsm_rule_data { 13741 u8 offset; 13742 u8 pkt_type; 13743 u32 field1_off; 13744 u32 field2_off; 13745 u32 index1_off; 13746 u32 index1_width; 13747 u32 index2_off; 13748 u32 index2_width; 13749 u32 mask1; 13750 u32 value1; 13751 u32 mask2; 13752 u32 value2; 13753 }; 13754 13755 /* 13756 * Return an initialized RMT map table for users to fill in. OK if it 13757 * returns NULL, indicating no table. 13758 */ 13759 static struct rsm_map_table *alloc_rsm_map_table(struct hfi1_devdata *dd) 13760 { 13761 struct rsm_map_table *rmt; 13762 u8 rxcontext = is_ax(dd) ? 0 : 0xff; /* 0 is default if a0 ver. */ 13763 13764 rmt = kmalloc(sizeof(*rmt), GFP_KERNEL); 13765 if (rmt) { 13766 memset(rmt->map, rxcontext, sizeof(rmt->map)); 13767 rmt->used = 0; 13768 } 13769 13770 return rmt; 13771 } 13772 13773 /* 13774 * Write the final RMT map table to the chip and free the table. OK if 13775 * table is NULL. 13776 */ 13777 static void complete_rsm_map_table(struct hfi1_devdata *dd, 13778 struct rsm_map_table *rmt) 13779 { 13780 int i; 13781 13782 if (rmt) { 13783 /* write table to chip */ 13784 for (i = 0; i < NUM_MAP_REGS; i++) 13785 write_csr(dd, RCV_RSM_MAP_TABLE + (8 * i), rmt->map[i]); 13786 13787 /* enable RSM */ 13788 add_rcvctrl(dd, RCV_CTRL_RCV_RSM_ENABLE_SMASK); 13789 } 13790 } 13791 13792 /* 13793 * Add a receive side mapping rule. 13794 */ 13795 static void add_rsm_rule(struct hfi1_devdata *dd, u8 rule_index, 13796 struct rsm_rule_data *rrd) 13797 { 13798 write_csr(dd, RCV_RSM_CFG + (8 * rule_index), 13799 (u64)rrd->offset << RCV_RSM_CFG_OFFSET_SHIFT | 13800 1ull << rule_index | /* enable bit */ 13801 (u64)rrd->pkt_type << RCV_RSM_CFG_PACKET_TYPE_SHIFT); 13802 write_csr(dd, RCV_RSM_SELECT + (8 * rule_index), 13803 (u64)rrd->field1_off << RCV_RSM_SELECT_FIELD1_OFFSET_SHIFT | 13804 (u64)rrd->field2_off << RCV_RSM_SELECT_FIELD2_OFFSET_SHIFT | 13805 (u64)rrd->index1_off << RCV_RSM_SELECT_INDEX1_OFFSET_SHIFT | 13806 (u64)rrd->index1_width << RCV_RSM_SELECT_INDEX1_WIDTH_SHIFT | 13807 (u64)rrd->index2_off << RCV_RSM_SELECT_INDEX2_OFFSET_SHIFT | 13808 (u64)rrd->index2_width << RCV_RSM_SELECT_INDEX2_WIDTH_SHIFT); 13809 write_csr(dd, RCV_RSM_MATCH + (8 * rule_index), 13810 (u64)rrd->mask1 << RCV_RSM_MATCH_MASK1_SHIFT | 13811 (u64)rrd->value1 << RCV_RSM_MATCH_VALUE1_SHIFT | 13812 (u64)rrd->mask2 << RCV_RSM_MATCH_MASK2_SHIFT | 13813 (u64)rrd->value2 << RCV_RSM_MATCH_VALUE2_SHIFT); 13814 } 13815 13816 /* return the number of RSM map table entries that will be used for QOS */ 13817 static int qos_rmt_entries(struct hfi1_devdata *dd, unsigned int *mp, 13818 unsigned int *np) 13819 { 13820 int i; 13821 unsigned int m, n; 13822 u8 max_by_vl = 0; 13823 13824 /* is QOS active at all? */ 13825 if (dd->n_krcv_queues <= MIN_KERNEL_KCTXTS || 13826 num_vls == 1 || 13827 krcvqsset <= 1) 13828 goto no_qos; 13829 13830 /* determine bits for qpn */ 13831 for (i = 0; i < min_t(unsigned int, num_vls, krcvqsset); i++) 13832 if (krcvqs[i] > max_by_vl) 13833 max_by_vl = krcvqs[i]; 13834 if (max_by_vl > 32) 13835 goto no_qos; 13836 m = ilog2(__roundup_pow_of_two(max_by_vl)); 13837 13838 /* determine bits for vl */ 13839 n = ilog2(__roundup_pow_of_two(num_vls)); 13840 13841 /* reject if too much is used */ 13842 if ((m + n) > 7) 13843 goto no_qos; 13844 13845 if (mp) 13846 *mp = m; 13847 if (np) 13848 *np = n; 13849 13850 return 1 << (m + n); 13851 13852 no_qos: 13853 if (mp) 13854 *mp = 0; 13855 if (np) 13856 *np = 0; 13857 return 0; 13858 } 13859 13860 /** 13861 * init_qos - init RX qos 13862 * @dd - device data 13863 * @rmt - RSM map table 13864 * 13865 * This routine initializes Rule 0 and the RSM map table to implement 13866 * quality of service (qos). 13867 * 13868 * If all of the limit tests succeed, qos is applied based on the array 13869 * interpretation of krcvqs where entry 0 is VL0. 13870 * 13871 * The number of vl bits (n) and the number of qpn bits (m) are computed to 13872 * feed both the RSM map table and the single rule. 13873 */ 13874 static void init_qos(struct hfi1_devdata *dd, struct rsm_map_table *rmt) 13875 { 13876 struct rsm_rule_data rrd; 13877 unsigned qpns_per_vl, ctxt, i, qpn, n = 1, m; 13878 unsigned int rmt_entries; 13879 u64 reg; 13880 13881 if (!rmt) 13882 goto bail; 13883 rmt_entries = qos_rmt_entries(dd, &m, &n); 13884 if (rmt_entries == 0) 13885 goto bail; 13886 qpns_per_vl = 1 << m; 13887 13888 /* enough room in the map table? */ 13889 rmt_entries = 1 << (m + n); 13890 if (rmt->used + rmt_entries >= NUM_MAP_ENTRIES) 13891 goto bail; 13892 13893 /* add qos entries to the the RSM map table */ 13894 for (i = 0, ctxt = FIRST_KERNEL_KCTXT; i < num_vls; i++) { 13895 unsigned tctxt; 13896 13897 for (qpn = 0, tctxt = ctxt; 13898 krcvqs[i] && qpn < qpns_per_vl; qpn++) { 13899 unsigned idx, regoff, regidx; 13900 13901 /* generate the index the hardware will produce */ 13902 idx = rmt->used + ((qpn << n) ^ i); 13903 regoff = (idx % 8) * 8; 13904 regidx = idx / 8; 13905 /* replace default with context number */ 13906 reg = rmt->map[regidx]; 13907 reg &= ~(RCV_RSM_MAP_TABLE_RCV_CONTEXT_A_MASK 13908 << regoff); 13909 reg |= (u64)(tctxt++) << regoff; 13910 rmt->map[regidx] = reg; 13911 if (tctxt == ctxt + krcvqs[i]) 13912 tctxt = ctxt; 13913 } 13914 ctxt += krcvqs[i]; 13915 } 13916 13917 rrd.offset = rmt->used; 13918 rrd.pkt_type = 2; 13919 rrd.field1_off = LRH_BTH_MATCH_OFFSET; 13920 rrd.field2_off = LRH_SC_MATCH_OFFSET; 13921 rrd.index1_off = LRH_SC_SELECT_OFFSET; 13922 rrd.index1_width = n; 13923 rrd.index2_off = QPN_SELECT_OFFSET; 13924 rrd.index2_width = m + n; 13925 rrd.mask1 = LRH_BTH_MASK; 13926 rrd.value1 = LRH_BTH_VALUE; 13927 rrd.mask2 = LRH_SC_MASK; 13928 rrd.value2 = LRH_SC_VALUE; 13929 13930 /* add rule 0 */ 13931 add_rsm_rule(dd, 0, &rrd); 13932 13933 /* mark RSM map entries as used */ 13934 rmt->used += rmt_entries; 13935 /* map everything else to the mcast/err/vl15 context */ 13936 init_qpmap_table(dd, HFI1_CTRL_CTXT, HFI1_CTRL_CTXT); 13937 dd->qos_shift = n + 1; 13938 return; 13939 bail: 13940 dd->qos_shift = 1; 13941 init_qpmap_table(dd, FIRST_KERNEL_KCTXT, dd->n_krcv_queues - 1); 13942 } 13943 13944 static void init_user_fecn_handling(struct hfi1_devdata *dd, 13945 struct rsm_map_table *rmt) 13946 { 13947 struct rsm_rule_data rrd; 13948 u64 reg; 13949 int i, idx, regoff, regidx; 13950 u8 offset; 13951 13952 /* there needs to be enough room in the map table */ 13953 if (rmt->used + dd->num_user_contexts >= NUM_MAP_ENTRIES) { 13954 dd_dev_err(dd, "User FECN handling disabled - too many user contexts allocated\n"); 13955 return; 13956 } 13957 13958 /* 13959 * RSM will extract the destination context as an index into the 13960 * map table. The destination contexts are a sequential block 13961 * in the range first_user_ctxt...num_rcv_contexts-1 (inclusive). 13962 * Map entries are accessed as offset + extracted value. Adjust 13963 * the added offset so this sequence can be placed anywhere in 13964 * the table - as long as the entries themselves do not wrap. 13965 * There are only enough bits in offset for the table size, so 13966 * start with that to allow for a "negative" offset. 13967 */ 13968 offset = (u8)(NUM_MAP_ENTRIES + (int)rmt->used - 13969 (int)dd->first_user_ctxt); 13970 13971 for (i = dd->first_user_ctxt, idx = rmt->used; 13972 i < dd->num_rcv_contexts; i++, idx++) { 13973 /* replace with identity mapping */ 13974 regoff = (idx % 8) * 8; 13975 regidx = idx / 8; 13976 reg = rmt->map[regidx]; 13977 reg &= ~(RCV_RSM_MAP_TABLE_RCV_CONTEXT_A_MASK << regoff); 13978 reg |= (u64)i << regoff; 13979 rmt->map[regidx] = reg; 13980 } 13981 13982 /* 13983 * For RSM intercept of Expected FECN packets: 13984 * o packet type 0 - expected 13985 * o match on F (bit 95), using select/match 1, and 13986 * o match on SH (bit 133), using select/match 2. 13987 * 13988 * Use index 1 to extract the 8-bit receive context from DestQP 13989 * (start at bit 64). Use that as the RSM map table index. 13990 */ 13991 rrd.offset = offset; 13992 rrd.pkt_type = 0; 13993 rrd.field1_off = 95; 13994 rrd.field2_off = 133; 13995 rrd.index1_off = 64; 13996 rrd.index1_width = 8; 13997 rrd.index2_off = 0; 13998 rrd.index2_width = 0; 13999 rrd.mask1 = 1; 14000 rrd.value1 = 1; 14001 rrd.mask2 = 1; 14002 rrd.value2 = 1; 14003 14004 /* add rule 1 */ 14005 add_rsm_rule(dd, 1, &rrd); 14006 14007 rmt->used += dd->num_user_contexts; 14008 } 14009 14010 static void init_rxe(struct hfi1_devdata *dd) 14011 { 14012 struct rsm_map_table *rmt; 14013 14014 /* enable all receive errors */ 14015 write_csr(dd, RCV_ERR_MASK, ~0ull); 14016 14017 rmt = alloc_rsm_map_table(dd); 14018 /* set up QOS, including the QPN map table */ 14019 init_qos(dd, rmt); 14020 init_user_fecn_handling(dd, rmt); 14021 complete_rsm_map_table(dd, rmt); 14022 kfree(rmt); 14023 14024 /* 14025 * make sure RcvCtrl.RcvWcb <= PCIe Device Control 14026 * Register Max_Payload_Size (PCI_EXP_DEVCTL in Linux PCIe config 14027 * space, PciCfgCap2.MaxPayloadSize in HFI). There is only one 14028 * invalid configuration: RcvCtrl.RcvWcb set to its max of 256 and 14029 * Max_PayLoad_Size set to its minimum of 128. 14030 * 14031 * Presently, RcvCtrl.RcvWcb is not modified from its default of 0 14032 * (64 bytes). Max_Payload_Size is possibly modified upward in 14033 * tune_pcie_caps() which is called after this routine. 14034 */ 14035 } 14036 14037 static void init_other(struct hfi1_devdata *dd) 14038 { 14039 /* enable all CCE errors */ 14040 write_csr(dd, CCE_ERR_MASK, ~0ull); 14041 /* enable *some* Misc errors */ 14042 write_csr(dd, MISC_ERR_MASK, DRIVER_MISC_MASK); 14043 /* enable all DC errors, except LCB */ 14044 write_csr(dd, DCC_ERR_FLG_EN, ~0ull); 14045 write_csr(dd, DC_DC8051_ERR_EN, ~0ull); 14046 } 14047 14048 /* 14049 * Fill out the given AU table using the given CU. A CU is defined in terms 14050 * AUs. The table is a an encoding: given the index, how many AUs does that 14051 * represent? 14052 * 14053 * NOTE: Assumes that the register layout is the same for the 14054 * local and remote tables. 14055 */ 14056 static void assign_cm_au_table(struct hfi1_devdata *dd, u32 cu, 14057 u32 csr0to3, u32 csr4to7) 14058 { 14059 write_csr(dd, csr0to3, 14060 0ull << SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE0_SHIFT | 14061 1ull << SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE1_SHIFT | 14062 2ull * cu << 14063 SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE2_SHIFT | 14064 4ull * cu << 14065 SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE3_SHIFT); 14066 write_csr(dd, csr4to7, 14067 8ull * cu << 14068 SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE4_SHIFT | 14069 16ull * cu << 14070 SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE5_SHIFT | 14071 32ull * cu << 14072 SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE6_SHIFT | 14073 64ull * cu << 14074 SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE7_SHIFT); 14075 } 14076 14077 static void assign_local_cm_au_table(struct hfi1_devdata *dd, u8 vcu) 14078 { 14079 assign_cm_au_table(dd, vcu_to_cu(vcu), SEND_CM_LOCAL_AU_TABLE0_TO3, 14080 SEND_CM_LOCAL_AU_TABLE4_TO7); 14081 } 14082 14083 void assign_remote_cm_au_table(struct hfi1_devdata *dd, u8 vcu) 14084 { 14085 assign_cm_au_table(dd, vcu_to_cu(vcu), SEND_CM_REMOTE_AU_TABLE0_TO3, 14086 SEND_CM_REMOTE_AU_TABLE4_TO7); 14087 } 14088 14089 static void init_txe(struct hfi1_devdata *dd) 14090 { 14091 int i; 14092 14093 /* enable all PIO, SDMA, general, and Egress errors */ 14094 write_csr(dd, SEND_PIO_ERR_MASK, ~0ull); 14095 write_csr(dd, SEND_DMA_ERR_MASK, ~0ull); 14096 write_csr(dd, SEND_ERR_MASK, ~0ull); 14097 write_csr(dd, SEND_EGRESS_ERR_MASK, ~0ull); 14098 14099 /* enable all per-context and per-SDMA engine errors */ 14100 for (i = 0; i < dd->chip_send_contexts; i++) 14101 write_kctxt_csr(dd, i, SEND_CTXT_ERR_MASK, ~0ull); 14102 for (i = 0; i < dd->chip_sdma_engines; i++) 14103 write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_MASK, ~0ull); 14104 14105 /* set the local CU to AU mapping */ 14106 assign_local_cm_au_table(dd, dd->vcu); 14107 14108 /* 14109 * Set reasonable default for Credit Return Timer 14110 * Don't set on Simulator - causes it to choke. 14111 */ 14112 if (dd->icode != ICODE_FUNCTIONAL_SIMULATOR) 14113 write_csr(dd, SEND_CM_TIMER_CTRL, HFI1_CREDIT_RETURN_RATE); 14114 } 14115 14116 int hfi1_set_ctxt_jkey(struct hfi1_devdata *dd, unsigned ctxt, u16 jkey) 14117 { 14118 struct hfi1_ctxtdata *rcd = dd->rcd[ctxt]; 14119 unsigned sctxt; 14120 int ret = 0; 14121 u64 reg; 14122 14123 if (!rcd || !rcd->sc) { 14124 ret = -EINVAL; 14125 goto done; 14126 } 14127 sctxt = rcd->sc->hw_context; 14128 reg = SEND_CTXT_CHECK_JOB_KEY_MASK_SMASK | /* mask is always 1's */ 14129 ((jkey & SEND_CTXT_CHECK_JOB_KEY_VALUE_MASK) << 14130 SEND_CTXT_CHECK_JOB_KEY_VALUE_SHIFT); 14131 /* JOB_KEY_ALLOW_PERMISSIVE is not allowed by default */ 14132 if (HFI1_CAP_KGET_MASK(rcd->flags, ALLOW_PERM_JKEY)) 14133 reg |= SEND_CTXT_CHECK_JOB_KEY_ALLOW_PERMISSIVE_SMASK; 14134 write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_JOB_KEY, reg); 14135 /* 14136 * Enable send-side J_KEY integrity check, unless this is A0 h/w 14137 */ 14138 if (!is_ax(dd)) { 14139 reg = read_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE); 14140 reg |= SEND_CTXT_CHECK_ENABLE_CHECK_JOB_KEY_SMASK; 14141 write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE, reg); 14142 } 14143 14144 /* Enable J_KEY check on receive context. */ 14145 reg = RCV_KEY_CTRL_JOB_KEY_ENABLE_SMASK | 14146 ((jkey & RCV_KEY_CTRL_JOB_KEY_VALUE_MASK) << 14147 RCV_KEY_CTRL_JOB_KEY_VALUE_SHIFT); 14148 write_kctxt_csr(dd, ctxt, RCV_KEY_CTRL, reg); 14149 done: 14150 return ret; 14151 } 14152 14153 int hfi1_clear_ctxt_jkey(struct hfi1_devdata *dd, unsigned ctxt) 14154 { 14155 struct hfi1_ctxtdata *rcd = dd->rcd[ctxt]; 14156 unsigned sctxt; 14157 int ret = 0; 14158 u64 reg; 14159 14160 if (!rcd || !rcd->sc) { 14161 ret = -EINVAL; 14162 goto done; 14163 } 14164 sctxt = rcd->sc->hw_context; 14165 write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_JOB_KEY, 0); 14166 /* 14167 * Disable send-side J_KEY integrity check, unless this is A0 h/w. 14168 * This check would not have been enabled for A0 h/w, see 14169 * set_ctxt_jkey(). 14170 */ 14171 if (!is_ax(dd)) { 14172 reg = read_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE); 14173 reg &= ~SEND_CTXT_CHECK_ENABLE_CHECK_JOB_KEY_SMASK; 14174 write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE, reg); 14175 } 14176 /* Turn off the J_KEY on the receive side */ 14177 write_kctxt_csr(dd, ctxt, RCV_KEY_CTRL, 0); 14178 done: 14179 return ret; 14180 } 14181 14182 int hfi1_set_ctxt_pkey(struct hfi1_devdata *dd, unsigned ctxt, u16 pkey) 14183 { 14184 struct hfi1_ctxtdata *rcd; 14185 unsigned sctxt; 14186 int ret = 0; 14187 u64 reg; 14188 14189 if (ctxt < dd->num_rcv_contexts) { 14190 rcd = dd->rcd[ctxt]; 14191 } else { 14192 ret = -EINVAL; 14193 goto done; 14194 } 14195 if (!rcd || !rcd->sc) { 14196 ret = -EINVAL; 14197 goto done; 14198 } 14199 sctxt = rcd->sc->hw_context; 14200 reg = ((u64)pkey & SEND_CTXT_CHECK_PARTITION_KEY_VALUE_MASK) << 14201 SEND_CTXT_CHECK_PARTITION_KEY_VALUE_SHIFT; 14202 write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_PARTITION_KEY, reg); 14203 reg = read_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE); 14204 reg |= SEND_CTXT_CHECK_ENABLE_CHECK_PARTITION_KEY_SMASK; 14205 reg &= ~SEND_CTXT_CHECK_ENABLE_DISALLOW_KDETH_PACKETS_SMASK; 14206 write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE, reg); 14207 done: 14208 return ret; 14209 } 14210 14211 int hfi1_clear_ctxt_pkey(struct hfi1_devdata *dd, unsigned ctxt) 14212 { 14213 struct hfi1_ctxtdata *rcd; 14214 unsigned sctxt; 14215 int ret = 0; 14216 u64 reg; 14217 14218 if (ctxt < dd->num_rcv_contexts) { 14219 rcd = dd->rcd[ctxt]; 14220 } else { 14221 ret = -EINVAL; 14222 goto done; 14223 } 14224 if (!rcd || !rcd->sc) { 14225 ret = -EINVAL; 14226 goto done; 14227 } 14228 sctxt = rcd->sc->hw_context; 14229 reg = read_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE); 14230 reg &= ~SEND_CTXT_CHECK_ENABLE_CHECK_PARTITION_KEY_SMASK; 14231 write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE, reg); 14232 write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_PARTITION_KEY, 0); 14233 done: 14234 return ret; 14235 } 14236 14237 /* 14238 * Start doing the clean up the the chip. Our clean up happens in multiple 14239 * stages and this is just the first. 14240 */ 14241 void hfi1_start_cleanup(struct hfi1_devdata *dd) 14242 { 14243 aspm_exit(dd); 14244 free_cntrs(dd); 14245 free_rcverr(dd); 14246 clean_up_interrupts(dd); 14247 finish_chip_resources(dd); 14248 } 14249 14250 #define HFI_BASE_GUID(dev) \ 14251 ((dev)->base_guid & ~(1ULL << GUID_HFI_INDEX_SHIFT)) 14252 14253 /* 14254 * Information can be shared between the two HFIs on the same ASIC 14255 * in the same OS. This function finds the peer device and sets 14256 * up a shared structure. 14257 */ 14258 static int init_asic_data(struct hfi1_devdata *dd) 14259 { 14260 unsigned long flags; 14261 struct hfi1_devdata *tmp, *peer = NULL; 14262 struct hfi1_asic_data *asic_data; 14263 int ret = 0; 14264 14265 /* pre-allocate the asic structure in case we are the first device */ 14266 asic_data = kzalloc(sizeof(*dd->asic_data), GFP_KERNEL); 14267 if (!asic_data) 14268 return -ENOMEM; 14269 14270 spin_lock_irqsave(&hfi1_devs_lock, flags); 14271 /* Find our peer device */ 14272 list_for_each_entry(tmp, &hfi1_dev_list, list) { 14273 if ((HFI_BASE_GUID(dd) == HFI_BASE_GUID(tmp)) && 14274 dd->unit != tmp->unit) { 14275 peer = tmp; 14276 break; 14277 } 14278 } 14279 14280 if (peer) { 14281 /* use already allocated structure */ 14282 dd->asic_data = peer->asic_data; 14283 kfree(asic_data); 14284 } else { 14285 dd->asic_data = asic_data; 14286 mutex_init(&dd->asic_data->asic_resource_mutex); 14287 } 14288 dd->asic_data->dds[dd->hfi1_id] = dd; /* self back-pointer */ 14289 spin_unlock_irqrestore(&hfi1_devs_lock, flags); 14290 14291 /* first one through - set up i2c devices */ 14292 if (!peer) 14293 ret = set_up_i2c(dd, dd->asic_data); 14294 14295 return ret; 14296 } 14297 14298 /* 14299 * Set dd->boardname. Use a generic name if a name is not returned from 14300 * EFI variable space. 14301 * 14302 * Return 0 on success, -ENOMEM if space could not be allocated. 14303 */ 14304 static int obtain_boardname(struct hfi1_devdata *dd) 14305 { 14306 /* generic board description */ 14307 const char generic[] = 14308 "Intel Omni-Path Host Fabric Interface Adapter 100 Series"; 14309 unsigned long size; 14310 int ret; 14311 14312 ret = read_hfi1_efi_var(dd, "description", &size, 14313 (void **)&dd->boardname); 14314 if (ret) { 14315 dd_dev_info(dd, "Board description not found\n"); 14316 /* use generic description */ 14317 dd->boardname = kstrdup(generic, GFP_KERNEL); 14318 if (!dd->boardname) 14319 return -ENOMEM; 14320 } 14321 return 0; 14322 } 14323 14324 /* 14325 * Check the interrupt registers to make sure that they are mapped correctly. 14326 * It is intended to help user identify any mismapping by VMM when the driver 14327 * is running in a VM. This function should only be called before interrupt 14328 * is set up properly. 14329 * 14330 * Return 0 on success, -EINVAL on failure. 14331 */ 14332 static int check_int_registers(struct hfi1_devdata *dd) 14333 { 14334 u64 reg; 14335 u64 all_bits = ~(u64)0; 14336 u64 mask; 14337 14338 /* Clear CceIntMask[0] to avoid raising any interrupts */ 14339 mask = read_csr(dd, CCE_INT_MASK); 14340 write_csr(dd, CCE_INT_MASK, 0ull); 14341 reg = read_csr(dd, CCE_INT_MASK); 14342 if (reg) 14343 goto err_exit; 14344 14345 /* Clear all interrupt status bits */ 14346 write_csr(dd, CCE_INT_CLEAR, all_bits); 14347 reg = read_csr(dd, CCE_INT_STATUS); 14348 if (reg) 14349 goto err_exit; 14350 14351 /* Set all interrupt status bits */ 14352 write_csr(dd, CCE_INT_FORCE, all_bits); 14353 reg = read_csr(dd, CCE_INT_STATUS); 14354 if (reg != all_bits) 14355 goto err_exit; 14356 14357 /* Restore the interrupt mask */ 14358 write_csr(dd, CCE_INT_CLEAR, all_bits); 14359 write_csr(dd, CCE_INT_MASK, mask); 14360 14361 return 0; 14362 err_exit: 14363 write_csr(dd, CCE_INT_MASK, mask); 14364 dd_dev_err(dd, "Interrupt registers not properly mapped by VMM\n"); 14365 return -EINVAL; 14366 } 14367 14368 /** 14369 * Allocate and initialize the device structure for the hfi. 14370 * @dev: the pci_dev for hfi1_ib device 14371 * @ent: pci_device_id struct for this dev 14372 * 14373 * Also allocates, initializes, and returns the devdata struct for this 14374 * device instance 14375 * 14376 * This is global, and is called directly at init to set up the 14377 * chip-specific function pointers for later use. 14378 */ 14379 struct hfi1_devdata *hfi1_init_dd(struct pci_dev *pdev, 14380 const struct pci_device_id *ent) 14381 { 14382 struct hfi1_devdata *dd; 14383 struct hfi1_pportdata *ppd; 14384 u64 reg; 14385 int i, ret; 14386 static const char * const inames[] = { /* implementation names */ 14387 "RTL silicon", 14388 "RTL VCS simulation", 14389 "RTL FPGA emulation", 14390 "Functional simulator" 14391 }; 14392 struct pci_dev *parent = pdev->bus->self; 14393 14394 dd = hfi1_alloc_devdata(pdev, NUM_IB_PORTS * 14395 sizeof(struct hfi1_pportdata)); 14396 if (IS_ERR(dd)) 14397 goto bail; 14398 ppd = dd->pport; 14399 for (i = 0; i < dd->num_pports; i++, ppd++) { 14400 int vl; 14401 /* init common fields */ 14402 hfi1_init_pportdata(pdev, ppd, dd, 0, 1); 14403 /* DC supports 4 link widths */ 14404 ppd->link_width_supported = 14405 OPA_LINK_WIDTH_1X | OPA_LINK_WIDTH_2X | 14406 OPA_LINK_WIDTH_3X | OPA_LINK_WIDTH_4X; 14407 ppd->link_width_downgrade_supported = 14408 ppd->link_width_supported; 14409 /* start out enabling only 4X */ 14410 ppd->link_width_enabled = OPA_LINK_WIDTH_4X; 14411 ppd->link_width_downgrade_enabled = 14412 ppd->link_width_downgrade_supported; 14413 /* link width active is 0 when link is down */ 14414 /* link width downgrade active is 0 when link is down */ 14415 14416 if (num_vls < HFI1_MIN_VLS_SUPPORTED || 14417 num_vls > HFI1_MAX_VLS_SUPPORTED) { 14418 hfi1_early_err(&pdev->dev, 14419 "Invalid num_vls %u, using %u VLs\n", 14420 num_vls, HFI1_MAX_VLS_SUPPORTED); 14421 num_vls = HFI1_MAX_VLS_SUPPORTED; 14422 } 14423 ppd->vls_supported = num_vls; 14424 ppd->vls_operational = ppd->vls_supported; 14425 ppd->actual_vls_operational = ppd->vls_supported; 14426 /* Set the default MTU. */ 14427 for (vl = 0; vl < num_vls; vl++) 14428 dd->vld[vl].mtu = hfi1_max_mtu; 14429 dd->vld[15].mtu = MAX_MAD_PACKET; 14430 /* 14431 * Set the initial values to reasonable default, will be set 14432 * for real when link is up. 14433 */ 14434 ppd->lstate = IB_PORT_DOWN; 14435 ppd->overrun_threshold = 0x4; 14436 ppd->phy_error_threshold = 0xf; 14437 ppd->port_crc_mode_enabled = link_crc_mask; 14438 /* initialize supported LTP CRC mode */ 14439 ppd->port_ltp_crc_mode = cap_to_port_ltp(link_crc_mask) << 8; 14440 /* initialize enabled LTP CRC mode */ 14441 ppd->port_ltp_crc_mode |= cap_to_port_ltp(link_crc_mask) << 4; 14442 /* start in offline */ 14443 ppd->host_link_state = HLS_DN_OFFLINE; 14444 init_vl_arb_caches(ppd); 14445 ppd->last_pstate = 0xff; /* invalid value */ 14446 } 14447 14448 dd->link_default = HLS_DN_POLL; 14449 14450 /* 14451 * Do remaining PCIe setup and save PCIe values in dd. 14452 * Any error printing is already done by the init code. 14453 * On return, we have the chip mapped. 14454 */ 14455 ret = hfi1_pcie_ddinit(dd, pdev); 14456 if (ret < 0) 14457 goto bail_free; 14458 14459 /* verify that reads actually work, save revision for reset check */ 14460 dd->revision = read_csr(dd, CCE_REVISION); 14461 if (dd->revision == ~(u64)0) { 14462 dd_dev_err(dd, "cannot read chip CSRs\n"); 14463 ret = -EINVAL; 14464 goto bail_cleanup; 14465 } 14466 dd->majrev = (dd->revision >> CCE_REVISION_CHIP_REV_MAJOR_SHIFT) 14467 & CCE_REVISION_CHIP_REV_MAJOR_MASK; 14468 dd->minrev = (dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT) 14469 & CCE_REVISION_CHIP_REV_MINOR_MASK; 14470 14471 /* 14472 * Check interrupt registers mapping if the driver has no access to 14473 * the upstream component. In this case, it is likely that the driver 14474 * is running in a VM. 14475 */ 14476 if (!parent) { 14477 ret = check_int_registers(dd); 14478 if (ret) 14479 goto bail_cleanup; 14480 } 14481 14482 /* 14483 * obtain the hardware ID - NOT related to unit, which is a 14484 * software enumeration 14485 */ 14486 reg = read_csr(dd, CCE_REVISION2); 14487 dd->hfi1_id = (reg >> CCE_REVISION2_HFI_ID_SHIFT) 14488 & CCE_REVISION2_HFI_ID_MASK; 14489 /* the variable size will remove unwanted bits */ 14490 dd->icode = reg >> CCE_REVISION2_IMPL_CODE_SHIFT; 14491 dd->irev = reg >> CCE_REVISION2_IMPL_REVISION_SHIFT; 14492 dd_dev_info(dd, "Implementation: %s, revision 0x%x\n", 14493 dd->icode < ARRAY_SIZE(inames) ? 14494 inames[dd->icode] : "unknown", (int)dd->irev); 14495 14496 /* speeds the hardware can support */ 14497 dd->pport->link_speed_supported = OPA_LINK_SPEED_25G; 14498 /* speeds allowed to run at */ 14499 dd->pport->link_speed_enabled = dd->pport->link_speed_supported; 14500 /* give a reasonable active value, will be set on link up */ 14501 dd->pport->link_speed_active = OPA_LINK_SPEED_25G; 14502 14503 dd->chip_rcv_contexts = read_csr(dd, RCV_CONTEXTS); 14504 dd->chip_send_contexts = read_csr(dd, SEND_CONTEXTS); 14505 dd->chip_sdma_engines = read_csr(dd, SEND_DMA_ENGINES); 14506 dd->chip_pio_mem_size = read_csr(dd, SEND_PIO_MEM_SIZE); 14507 dd->chip_sdma_mem_size = read_csr(dd, SEND_DMA_MEM_SIZE); 14508 /* fix up link widths for emulation _p */ 14509 ppd = dd->pport; 14510 if (dd->icode == ICODE_FPGA_EMULATION && is_emulator_p(dd)) { 14511 ppd->link_width_supported = 14512 ppd->link_width_enabled = 14513 ppd->link_width_downgrade_supported = 14514 ppd->link_width_downgrade_enabled = 14515 OPA_LINK_WIDTH_1X; 14516 } 14517 /* insure num_vls isn't larger than number of sdma engines */ 14518 if (HFI1_CAP_IS_KSET(SDMA) && num_vls > dd->chip_sdma_engines) { 14519 dd_dev_err(dd, "num_vls %u too large, using %u VLs\n", 14520 num_vls, dd->chip_sdma_engines); 14521 num_vls = dd->chip_sdma_engines; 14522 ppd->vls_supported = dd->chip_sdma_engines; 14523 ppd->vls_operational = ppd->vls_supported; 14524 } 14525 14526 /* 14527 * Convert the ns parameter to the 64 * cclocks used in the CSR. 14528 * Limit the max if larger than the field holds. If timeout is 14529 * non-zero, then the calculated field will be at least 1. 14530 * 14531 * Must be after icode is set up - the cclock rate depends 14532 * on knowing the hardware being used. 14533 */ 14534 dd->rcv_intr_timeout_csr = ns_to_cclock(dd, rcv_intr_timeout) / 64; 14535 if (dd->rcv_intr_timeout_csr > 14536 RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_MASK) 14537 dd->rcv_intr_timeout_csr = 14538 RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_MASK; 14539 else if (dd->rcv_intr_timeout_csr == 0 && rcv_intr_timeout) 14540 dd->rcv_intr_timeout_csr = 1; 14541 14542 /* needs to be done before we look for the peer device */ 14543 read_guid(dd); 14544 14545 /* set up shared ASIC data with peer device */ 14546 ret = init_asic_data(dd); 14547 if (ret) 14548 goto bail_cleanup; 14549 14550 /* obtain chip sizes, reset chip CSRs */ 14551 init_chip(dd); 14552 14553 /* read in the PCIe link speed information */ 14554 ret = pcie_speeds(dd); 14555 if (ret) 14556 goto bail_cleanup; 14557 14558 /* call before get_platform_config(), after init_chip_resources() */ 14559 ret = eprom_init(dd); 14560 if (ret) 14561 goto bail_free_rcverr; 14562 14563 /* Needs to be called before hfi1_firmware_init */ 14564 get_platform_config(dd); 14565 14566 /* read in firmware */ 14567 ret = hfi1_firmware_init(dd); 14568 if (ret) 14569 goto bail_cleanup; 14570 14571 /* 14572 * In general, the PCIe Gen3 transition must occur after the 14573 * chip has been idled (so it won't initiate any PCIe transactions 14574 * e.g. an interrupt) and before the driver changes any registers 14575 * (the transition will reset the registers). 14576 * 14577 * In particular, place this call after: 14578 * - init_chip() - the chip will not initiate any PCIe transactions 14579 * - pcie_speeds() - reads the current link speed 14580 * - hfi1_firmware_init() - the needed firmware is ready to be 14581 * downloaded 14582 */ 14583 ret = do_pcie_gen3_transition(dd); 14584 if (ret) 14585 goto bail_cleanup; 14586 14587 /* start setting dd values and adjusting CSRs */ 14588 init_early_variables(dd); 14589 14590 parse_platform_config(dd); 14591 14592 ret = obtain_boardname(dd); 14593 if (ret) 14594 goto bail_cleanup; 14595 14596 snprintf(dd->boardversion, BOARD_VERS_MAX, 14597 "ChipABI %u.%u, ChipRev %u.%u, SW Compat %llu\n", 14598 HFI1_CHIP_VERS_MAJ, HFI1_CHIP_VERS_MIN, 14599 (u32)dd->majrev, 14600 (u32)dd->minrev, 14601 (dd->revision >> CCE_REVISION_SW_SHIFT) 14602 & CCE_REVISION_SW_MASK); 14603 14604 ret = set_up_context_variables(dd); 14605 if (ret) 14606 goto bail_cleanup; 14607 14608 /* set initial RXE CSRs */ 14609 init_rxe(dd); 14610 /* set initial TXE CSRs */ 14611 init_txe(dd); 14612 /* set initial non-RXE, non-TXE CSRs */ 14613 init_other(dd); 14614 /* set up KDETH QP prefix in both RX and TX CSRs */ 14615 init_kdeth_qp(dd); 14616 14617 ret = hfi1_dev_affinity_init(dd); 14618 if (ret) 14619 goto bail_cleanup; 14620 14621 /* send contexts must be set up before receive contexts */ 14622 ret = init_send_contexts(dd); 14623 if (ret) 14624 goto bail_cleanup; 14625 14626 ret = hfi1_create_ctxts(dd); 14627 if (ret) 14628 goto bail_cleanup; 14629 14630 dd->rcvhdrsize = DEFAULT_RCVHDRSIZE; 14631 /* 14632 * rcd[0] is guaranteed to be valid by this point. Also, all 14633 * context are using the same value, as per the module parameter. 14634 */ 14635 dd->rhf_offset = dd->rcd[0]->rcvhdrqentsize - sizeof(u64) / sizeof(u32); 14636 14637 ret = init_pervl_scs(dd); 14638 if (ret) 14639 goto bail_cleanup; 14640 14641 /* sdma init */ 14642 for (i = 0; i < dd->num_pports; ++i) { 14643 ret = sdma_init(dd, i); 14644 if (ret) 14645 goto bail_cleanup; 14646 } 14647 14648 /* use contexts created by hfi1_create_ctxts */ 14649 ret = set_up_interrupts(dd); 14650 if (ret) 14651 goto bail_cleanup; 14652 14653 /* set up LCB access - must be after set_up_interrupts() */ 14654 init_lcb_access(dd); 14655 14656 /* 14657 * Serial number is created from the base guid: 14658 * [27:24] = base guid [38:35] 14659 * [23: 0] = base guid [23: 0] 14660 */ 14661 snprintf(dd->serial, SERIAL_MAX, "0x%08llx\n", 14662 (dd->base_guid & 0xFFFFFF) | 14663 ((dd->base_guid >> 11) & 0xF000000)); 14664 14665 dd->oui1 = dd->base_guid >> 56 & 0xFF; 14666 dd->oui2 = dd->base_guid >> 48 & 0xFF; 14667 dd->oui3 = dd->base_guid >> 40 & 0xFF; 14668 14669 ret = load_firmware(dd); /* asymmetric with dispose_firmware() */ 14670 if (ret) 14671 goto bail_clear_intr; 14672 14673 thermal_init(dd); 14674 14675 ret = init_cntrs(dd); 14676 if (ret) 14677 goto bail_clear_intr; 14678 14679 ret = init_rcverr(dd); 14680 if (ret) 14681 goto bail_free_cntrs; 14682 14683 init_completion(&dd->user_comp); 14684 14685 /* The user refcount starts with one to inidicate an active device */ 14686 atomic_set(&dd->user_refcount, 1); 14687 14688 goto bail; 14689 14690 bail_free_rcverr: 14691 free_rcverr(dd); 14692 bail_free_cntrs: 14693 free_cntrs(dd); 14694 bail_clear_intr: 14695 clean_up_interrupts(dd); 14696 bail_cleanup: 14697 hfi1_pcie_ddcleanup(dd); 14698 bail_free: 14699 hfi1_free_devdata(dd); 14700 dd = ERR_PTR(ret); 14701 bail: 14702 return dd; 14703 } 14704 14705 static u16 delay_cycles(struct hfi1_pportdata *ppd, u32 desired_egress_rate, 14706 u32 dw_len) 14707 { 14708 u32 delta_cycles; 14709 u32 current_egress_rate = ppd->current_egress_rate; 14710 /* rates here are in units of 10^6 bits/sec */ 14711 14712 if (desired_egress_rate == -1) 14713 return 0; /* shouldn't happen */ 14714 14715 if (desired_egress_rate >= current_egress_rate) 14716 return 0; /* we can't help go faster, only slower */ 14717 14718 delta_cycles = egress_cycles(dw_len * 4, desired_egress_rate) - 14719 egress_cycles(dw_len * 4, current_egress_rate); 14720 14721 return (u16)delta_cycles; 14722 } 14723 14724 /** 14725 * create_pbc - build a pbc for transmission 14726 * @flags: special case flags or-ed in built pbc 14727 * @srate: static rate 14728 * @vl: vl 14729 * @dwlen: dword length (header words + data words + pbc words) 14730 * 14731 * Create a PBC with the given flags, rate, VL, and length. 14732 * 14733 * NOTE: The PBC created will not insert any HCRC - all callers but one are 14734 * for verbs, which does not use this PSM feature. The lone other caller 14735 * is for the diagnostic interface which calls this if the user does not 14736 * supply their own PBC. 14737 */ 14738 u64 create_pbc(struct hfi1_pportdata *ppd, u64 flags, int srate_mbs, u32 vl, 14739 u32 dw_len) 14740 { 14741 u64 pbc, delay = 0; 14742 14743 if (unlikely(srate_mbs)) 14744 delay = delay_cycles(ppd, srate_mbs, dw_len); 14745 14746 pbc = flags 14747 | (delay << PBC_STATIC_RATE_CONTROL_COUNT_SHIFT) 14748 | ((u64)PBC_IHCRC_NONE << PBC_INSERT_HCRC_SHIFT) 14749 | (vl & PBC_VL_MASK) << PBC_VL_SHIFT 14750 | (dw_len & PBC_LENGTH_DWS_MASK) 14751 << PBC_LENGTH_DWS_SHIFT; 14752 14753 return pbc; 14754 } 14755 14756 #define SBUS_THERMAL 0x4f 14757 #define SBUS_THERM_MONITOR_MODE 0x1 14758 14759 #define THERM_FAILURE(dev, ret, reason) \ 14760 dd_dev_err((dd), \ 14761 "Thermal sensor initialization failed: %s (%d)\n", \ 14762 (reason), (ret)) 14763 14764 /* 14765 * Initialize the thermal sensor. 14766 * 14767 * After initialization, enable polling of thermal sensor through 14768 * SBus interface. In order for this to work, the SBus Master 14769 * firmware has to be loaded due to the fact that the HW polling 14770 * logic uses SBus interrupts, which are not supported with 14771 * default firmware. Otherwise, no data will be returned through 14772 * the ASIC_STS_THERM CSR. 14773 */ 14774 static int thermal_init(struct hfi1_devdata *dd) 14775 { 14776 int ret = 0; 14777 14778 if (dd->icode != ICODE_RTL_SILICON || 14779 check_chip_resource(dd, CR_THERM_INIT, NULL)) 14780 return ret; 14781 14782 ret = acquire_chip_resource(dd, CR_SBUS, SBUS_TIMEOUT); 14783 if (ret) { 14784 THERM_FAILURE(dd, ret, "Acquire SBus"); 14785 return ret; 14786 } 14787 14788 dd_dev_info(dd, "Initializing thermal sensor\n"); 14789 /* Disable polling of thermal readings */ 14790 write_csr(dd, ASIC_CFG_THERM_POLL_EN, 0x0); 14791 msleep(100); 14792 /* Thermal Sensor Initialization */ 14793 /* Step 1: Reset the Thermal SBus Receiver */ 14794 ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0, 14795 RESET_SBUS_RECEIVER, 0); 14796 if (ret) { 14797 THERM_FAILURE(dd, ret, "Bus Reset"); 14798 goto done; 14799 } 14800 /* Step 2: Set Reset bit in Thermal block */ 14801 ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0, 14802 WRITE_SBUS_RECEIVER, 0x1); 14803 if (ret) { 14804 THERM_FAILURE(dd, ret, "Therm Block Reset"); 14805 goto done; 14806 } 14807 /* Step 3: Write clock divider value (100MHz -> 2MHz) */ 14808 ret = sbus_request_slow(dd, SBUS_THERMAL, 0x1, 14809 WRITE_SBUS_RECEIVER, 0x32); 14810 if (ret) { 14811 THERM_FAILURE(dd, ret, "Write Clock Div"); 14812 goto done; 14813 } 14814 /* Step 4: Select temperature mode */ 14815 ret = sbus_request_slow(dd, SBUS_THERMAL, 0x3, 14816 WRITE_SBUS_RECEIVER, 14817 SBUS_THERM_MONITOR_MODE); 14818 if (ret) { 14819 THERM_FAILURE(dd, ret, "Write Mode Sel"); 14820 goto done; 14821 } 14822 /* Step 5: De-assert block reset and start conversion */ 14823 ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0, 14824 WRITE_SBUS_RECEIVER, 0x2); 14825 if (ret) { 14826 THERM_FAILURE(dd, ret, "Write Reset Deassert"); 14827 goto done; 14828 } 14829 /* Step 5.1: Wait for first conversion (21.5ms per spec) */ 14830 msleep(22); 14831 14832 /* Enable polling of thermal readings */ 14833 write_csr(dd, ASIC_CFG_THERM_POLL_EN, 0x1); 14834 14835 /* Set initialized flag */ 14836 ret = acquire_chip_resource(dd, CR_THERM_INIT, 0); 14837 if (ret) 14838 THERM_FAILURE(dd, ret, "Unable to set thermal init flag"); 14839 14840 done: 14841 release_chip_resource(dd, CR_SBUS); 14842 return ret; 14843 } 14844 14845 static void handle_temp_err(struct hfi1_devdata *dd) 14846 { 14847 struct hfi1_pportdata *ppd = &dd->pport[0]; 14848 /* 14849 * Thermal Critical Interrupt 14850 * Put the device into forced freeze mode, take link down to 14851 * offline, and put DC into reset. 14852 */ 14853 dd_dev_emerg(dd, 14854 "Critical temperature reached! Forcing device into freeze mode!\n"); 14855 dd->flags |= HFI1_FORCED_FREEZE; 14856 start_freeze_handling(ppd, FREEZE_SELF | FREEZE_ABORT); 14857 /* 14858 * Shut DC down as much and as quickly as possible. 14859 * 14860 * Step 1: Take the link down to OFFLINE. This will cause the 14861 * 8051 to put the Serdes in reset. However, we don't want to 14862 * go through the entire link state machine since we want to 14863 * shutdown ASAP. Furthermore, this is not a graceful shutdown 14864 * but rather an attempt to save the chip. 14865 * Code below is almost the same as quiet_serdes() but avoids 14866 * all the extra work and the sleeps. 14867 */ 14868 ppd->driver_link_ready = 0; 14869 ppd->link_enabled = 0; 14870 set_physical_link_state(dd, (OPA_LINKDOWN_REASON_SMA_DISABLED << 8) | 14871 PLS_OFFLINE); 14872 /* 14873 * Step 2: Shutdown LCB and 8051 14874 * After shutdown, do not restore DC_CFG_RESET value. 14875 */ 14876 dc_shutdown(dd); 14877 } 14878