xref: /openbmc/linux/drivers/infiniband/hw/hfi1/chip.c (revision 7d94ab16)
1 /*
2  * Copyright(c) 2015 - 2018 Intel Corporation.
3  *
4  * This file is provided under a dual BSD/GPLv2 license.  When using or
5  * redistributing this file, you may do so under either license.
6  *
7  * GPL LICENSE SUMMARY
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of version 2 of the GNU General Public License as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * General Public License for more details.
17  *
18  * BSD LICENSE
19  *
20  * Redistribution and use in source and binary forms, with or without
21  * modification, are permitted provided that the following conditions
22  * are met:
23  *
24  *  - Redistributions of source code must retain the above copyright
25  *    notice, this list of conditions and the following disclaimer.
26  *  - Redistributions in binary form must reproduce the above copyright
27  *    notice, this list of conditions and the following disclaimer in
28  *    the documentation and/or other materials provided with the
29  *    distribution.
30  *  - Neither the name of Intel Corporation nor the names of its
31  *    contributors may be used to endorse or promote products derived
32  *    from this software without specific prior written permission.
33  *
34  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45  *
46  */
47 
48 /*
49  * This file contains all of the code that is specific to the HFI chip
50  */
51 
52 #include <linux/pci.h>
53 #include <linux/delay.h>
54 #include <linux/interrupt.h>
55 #include <linux/module.h>
56 
57 #include "hfi.h"
58 #include "trace.h"
59 #include "mad.h"
60 #include "pio.h"
61 #include "sdma.h"
62 #include "eprom.h"
63 #include "efivar.h"
64 #include "platform.h"
65 #include "aspm.h"
66 #include "affinity.h"
67 #include "debugfs.h"
68 #include "fault.h"
69 
70 uint kdeth_qp;
71 module_param_named(kdeth_qp, kdeth_qp, uint, S_IRUGO);
72 MODULE_PARM_DESC(kdeth_qp, "Set the KDETH queue pair prefix");
73 
74 uint num_vls = HFI1_MAX_VLS_SUPPORTED;
75 module_param(num_vls, uint, S_IRUGO);
76 MODULE_PARM_DESC(num_vls, "Set number of Virtual Lanes to use (1-8)");
77 
78 /*
79  * Default time to aggregate two 10K packets from the idle state
80  * (timer not running). The timer starts at the end of the first packet,
81  * so only the time for one 10K packet and header plus a bit extra is needed.
82  * 10 * 1024 + 64 header byte = 10304 byte
83  * 10304 byte / 12.5 GB/s = 824.32ns
84  */
85 uint rcv_intr_timeout = (824 + 16); /* 16 is for coalescing interrupt */
86 module_param(rcv_intr_timeout, uint, S_IRUGO);
87 MODULE_PARM_DESC(rcv_intr_timeout, "Receive interrupt mitigation timeout in ns");
88 
89 uint rcv_intr_count = 16; /* same as qib */
90 module_param(rcv_intr_count, uint, S_IRUGO);
91 MODULE_PARM_DESC(rcv_intr_count, "Receive interrupt mitigation count");
92 
93 ushort link_crc_mask = SUPPORTED_CRCS;
94 module_param(link_crc_mask, ushort, S_IRUGO);
95 MODULE_PARM_DESC(link_crc_mask, "CRCs to use on the link");
96 
97 uint loopback;
98 module_param_named(loopback, loopback, uint, S_IRUGO);
99 MODULE_PARM_DESC(loopback, "Put into loopback mode (1 = serdes, 3 = external cable");
100 
101 /* Other driver tunables */
102 uint rcv_intr_dynamic = 1; /* enable dynamic mode for rcv int mitigation*/
103 static ushort crc_14b_sideband = 1;
104 static uint use_flr = 1;
105 uint quick_linkup; /* skip LNI */
106 
107 struct flag_table {
108 	u64 flag;	/* the flag */
109 	char *str;	/* description string */
110 	u16 extra;	/* extra information */
111 	u16 unused0;
112 	u32 unused1;
113 };
114 
115 /* str must be a string constant */
116 #define FLAG_ENTRY(str, extra, flag) {flag, str, extra}
117 #define FLAG_ENTRY0(str, flag) {flag, str, 0}
118 
119 /* Send Error Consequences */
120 #define SEC_WRITE_DROPPED	0x1
121 #define SEC_PACKET_DROPPED	0x2
122 #define SEC_SC_HALTED		0x4	/* per-context only */
123 #define SEC_SPC_FREEZE		0x8	/* per-HFI only */
124 
125 #define DEFAULT_KRCVQS		  2
126 #define MIN_KERNEL_KCTXTS         2
127 #define FIRST_KERNEL_KCTXT        1
128 
129 /*
130  * RSM instance allocation
131  *   0 - Verbs
132  *   1 - User Fecn Handling
133  *   2 - Vnic
134  */
135 #define RSM_INS_VERBS             0
136 #define RSM_INS_FECN              1
137 #define RSM_INS_VNIC              2
138 
139 /* Bit offset into the GUID which carries HFI id information */
140 #define GUID_HFI_INDEX_SHIFT     39
141 
142 /* extract the emulation revision */
143 #define emulator_rev(dd) ((dd)->irev >> 8)
144 /* parallel and serial emulation versions are 3 and 4 respectively */
145 #define is_emulator_p(dd) ((((dd)->irev) & 0xf) == 3)
146 #define is_emulator_s(dd) ((((dd)->irev) & 0xf) == 4)
147 
148 /* RSM fields for Verbs */
149 /* packet type */
150 #define IB_PACKET_TYPE         2ull
151 #define QW_SHIFT               6ull
152 /* QPN[7..1] */
153 #define QPN_WIDTH              7ull
154 
155 /* LRH.BTH: QW 0, OFFSET 48 - for match */
156 #define LRH_BTH_QW             0ull
157 #define LRH_BTH_BIT_OFFSET     48ull
158 #define LRH_BTH_OFFSET(off)    ((LRH_BTH_QW << QW_SHIFT) | (off))
159 #define LRH_BTH_MATCH_OFFSET   LRH_BTH_OFFSET(LRH_BTH_BIT_OFFSET)
160 #define LRH_BTH_SELECT
161 #define LRH_BTH_MASK           3ull
162 #define LRH_BTH_VALUE          2ull
163 
164 /* LRH.SC[3..0] QW 0, OFFSET 56 - for match */
165 #define LRH_SC_QW              0ull
166 #define LRH_SC_BIT_OFFSET      56ull
167 #define LRH_SC_OFFSET(off)     ((LRH_SC_QW << QW_SHIFT) | (off))
168 #define LRH_SC_MATCH_OFFSET    LRH_SC_OFFSET(LRH_SC_BIT_OFFSET)
169 #define LRH_SC_MASK            128ull
170 #define LRH_SC_VALUE           0ull
171 
172 /* SC[n..0] QW 0, OFFSET 60 - for select */
173 #define LRH_SC_SELECT_OFFSET  ((LRH_SC_QW << QW_SHIFT) | (60ull))
174 
175 /* QPN[m+n:1] QW 1, OFFSET 1 */
176 #define QPN_SELECT_OFFSET      ((1ull << QW_SHIFT) | (1ull))
177 
178 /* RSM fields for Vnic */
179 /* L2_TYPE: QW 0, OFFSET 61 - for match */
180 #define L2_TYPE_QW             0ull
181 #define L2_TYPE_BIT_OFFSET     61ull
182 #define L2_TYPE_OFFSET(off)    ((L2_TYPE_QW << QW_SHIFT) | (off))
183 #define L2_TYPE_MATCH_OFFSET   L2_TYPE_OFFSET(L2_TYPE_BIT_OFFSET)
184 #define L2_TYPE_MASK           3ull
185 #define L2_16B_VALUE           2ull
186 
187 /* L4_TYPE QW 1, OFFSET 0 - for match */
188 #define L4_TYPE_QW              1ull
189 #define L4_TYPE_BIT_OFFSET      0ull
190 #define L4_TYPE_OFFSET(off)     ((L4_TYPE_QW << QW_SHIFT) | (off))
191 #define L4_TYPE_MATCH_OFFSET    L4_TYPE_OFFSET(L4_TYPE_BIT_OFFSET)
192 #define L4_16B_TYPE_MASK        0xFFull
193 #define L4_16B_ETH_VALUE        0x78ull
194 
195 /* 16B VESWID - for select */
196 #define L4_16B_HDR_VESWID_OFFSET  ((2 << QW_SHIFT) | (16ull))
197 /* 16B ENTROPY - for select */
198 #define L2_16B_ENTROPY_OFFSET     ((1 << QW_SHIFT) | (32ull))
199 
200 /* defines to build power on SC2VL table */
201 #define SC2VL_VAL( \
202 	num, \
203 	sc0, sc0val, \
204 	sc1, sc1val, \
205 	sc2, sc2val, \
206 	sc3, sc3val, \
207 	sc4, sc4val, \
208 	sc5, sc5val, \
209 	sc6, sc6val, \
210 	sc7, sc7val) \
211 ( \
212 	((u64)(sc0val) << SEND_SC2VLT##num##_SC##sc0##_SHIFT) | \
213 	((u64)(sc1val) << SEND_SC2VLT##num##_SC##sc1##_SHIFT) | \
214 	((u64)(sc2val) << SEND_SC2VLT##num##_SC##sc2##_SHIFT) | \
215 	((u64)(sc3val) << SEND_SC2VLT##num##_SC##sc3##_SHIFT) | \
216 	((u64)(sc4val) << SEND_SC2VLT##num##_SC##sc4##_SHIFT) | \
217 	((u64)(sc5val) << SEND_SC2VLT##num##_SC##sc5##_SHIFT) | \
218 	((u64)(sc6val) << SEND_SC2VLT##num##_SC##sc6##_SHIFT) | \
219 	((u64)(sc7val) << SEND_SC2VLT##num##_SC##sc7##_SHIFT)   \
220 )
221 
222 #define DC_SC_VL_VAL( \
223 	range, \
224 	e0, e0val, \
225 	e1, e1val, \
226 	e2, e2val, \
227 	e3, e3val, \
228 	e4, e4val, \
229 	e5, e5val, \
230 	e6, e6val, \
231 	e7, e7val, \
232 	e8, e8val, \
233 	e9, e9val, \
234 	e10, e10val, \
235 	e11, e11val, \
236 	e12, e12val, \
237 	e13, e13val, \
238 	e14, e14val, \
239 	e15, e15val) \
240 ( \
241 	((u64)(e0val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e0##_SHIFT) | \
242 	((u64)(e1val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e1##_SHIFT) | \
243 	((u64)(e2val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e2##_SHIFT) | \
244 	((u64)(e3val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e3##_SHIFT) | \
245 	((u64)(e4val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e4##_SHIFT) | \
246 	((u64)(e5val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e5##_SHIFT) | \
247 	((u64)(e6val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e6##_SHIFT) | \
248 	((u64)(e7val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e7##_SHIFT) | \
249 	((u64)(e8val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e8##_SHIFT) | \
250 	((u64)(e9val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e9##_SHIFT) | \
251 	((u64)(e10val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e10##_SHIFT) | \
252 	((u64)(e11val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e11##_SHIFT) | \
253 	((u64)(e12val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e12##_SHIFT) | \
254 	((u64)(e13val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e13##_SHIFT) | \
255 	((u64)(e14val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e14##_SHIFT) | \
256 	((u64)(e15val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e15##_SHIFT) \
257 )
258 
259 /* all CceStatus sub-block freeze bits */
260 #define ALL_FROZE (CCE_STATUS_SDMA_FROZE_SMASK \
261 			| CCE_STATUS_RXE_FROZE_SMASK \
262 			| CCE_STATUS_TXE_FROZE_SMASK \
263 			| CCE_STATUS_TXE_PIO_FROZE_SMASK)
264 /* all CceStatus sub-block TXE pause bits */
265 #define ALL_TXE_PAUSE (CCE_STATUS_TXE_PIO_PAUSED_SMASK \
266 			| CCE_STATUS_TXE_PAUSED_SMASK \
267 			| CCE_STATUS_SDMA_PAUSED_SMASK)
268 /* all CceStatus sub-block RXE pause bits */
269 #define ALL_RXE_PAUSE CCE_STATUS_RXE_PAUSED_SMASK
270 
271 #define CNTR_MAX 0xFFFFFFFFFFFFFFFFULL
272 #define CNTR_32BIT_MAX 0x00000000FFFFFFFF
273 
274 /*
275  * CCE Error flags.
276  */
277 static struct flag_table cce_err_status_flags[] = {
278 /* 0*/	FLAG_ENTRY0("CceCsrParityErr",
279 		CCE_ERR_STATUS_CCE_CSR_PARITY_ERR_SMASK),
280 /* 1*/	FLAG_ENTRY0("CceCsrReadBadAddrErr",
281 		CCE_ERR_STATUS_CCE_CSR_READ_BAD_ADDR_ERR_SMASK),
282 /* 2*/	FLAG_ENTRY0("CceCsrWriteBadAddrErr",
283 		CCE_ERR_STATUS_CCE_CSR_WRITE_BAD_ADDR_ERR_SMASK),
284 /* 3*/	FLAG_ENTRY0("CceTrgtAsyncFifoParityErr",
285 		CCE_ERR_STATUS_CCE_TRGT_ASYNC_FIFO_PARITY_ERR_SMASK),
286 /* 4*/	FLAG_ENTRY0("CceTrgtAccessErr",
287 		CCE_ERR_STATUS_CCE_TRGT_ACCESS_ERR_SMASK),
288 /* 5*/	FLAG_ENTRY0("CceRspdDataParityErr",
289 		CCE_ERR_STATUS_CCE_RSPD_DATA_PARITY_ERR_SMASK),
290 /* 6*/	FLAG_ENTRY0("CceCli0AsyncFifoParityErr",
291 		CCE_ERR_STATUS_CCE_CLI0_ASYNC_FIFO_PARITY_ERR_SMASK),
292 /* 7*/	FLAG_ENTRY0("CceCsrCfgBusParityErr",
293 		CCE_ERR_STATUS_CCE_CSR_CFG_BUS_PARITY_ERR_SMASK),
294 /* 8*/	FLAG_ENTRY0("CceCli2AsyncFifoParityErr",
295 		CCE_ERR_STATUS_CCE_CLI2_ASYNC_FIFO_PARITY_ERR_SMASK),
296 /* 9*/	FLAG_ENTRY0("CceCli1AsyncFifoPioCrdtParityErr",
297 	    CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_PIO_CRDT_PARITY_ERR_SMASK),
298 /*10*/	FLAG_ENTRY0("CceCli1AsyncFifoPioCrdtParityErr",
299 	    CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_SDMA_HD_PARITY_ERR_SMASK),
300 /*11*/	FLAG_ENTRY0("CceCli1AsyncFifoRxdmaParityError",
301 	    CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_RXDMA_PARITY_ERROR_SMASK),
302 /*12*/	FLAG_ENTRY0("CceCli1AsyncFifoDbgParityError",
303 		CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_DBG_PARITY_ERROR_SMASK),
304 /*13*/	FLAG_ENTRY0("PcicRetryMemCorErr",
305 		CCE_ERR_STATUS_PCIC_RETRY_MEM_COR_ERR_SMASK),
306 /*14*/	FLAG_ENTRY0("PcicRetryMemCorErr",
307 		CCE_ERR_STATUS_PCIC_RETRY_SOT_MEM_COR_ERR_SMASK),
308 /*15*/	FLAG_ENTRY0("PcicPostHdQCorErr",
309 		CCE_ERR_STATUS_PCIC_POST_HD_QCOR_ERR_SMASK),
310 /*16*/	FLAG_ENTRY0("PcicPostHdQCorErr",
311 		CCE_ERR_STATUS_PCIC_POST_DAT_QCOR_ERR_SMASK),
312 /*17*/	FLAG_ENTRY0("PcicPostHdQCorErr",
313 		CCE_ERR_STATUS_PCIC_CPL_HD_QCOR_ERR_SMASK),
314 /*18*/	FLAG_ENTRY0("PcicCplDatQCorErr",
315 		CCE_ERR_STATUS_PCIC_CPL_DAT_QCOR_ERR_SMASK),
316 /*19*/	FLAG_ENTRY0("PcicNPostHQParityErr",
317 		CCE_ERR_STATUS_PCIC_NPOST_HQ_PARITY_ERR_SMASK),
318 /*20*/	FLAG_ENTRY0("PcicNPostDatQParityErr",
319 		CCE_ERR_STATUS_PCIC_NPOST_DAT_QPARITY_ERR_SMASK),
320 /*21*/	FLAG_ENTRY0("PcicRetryMemUncErr",
321 		CCE_ERR_STATUS_PCIC_RETRY_MEM_UNC_ERR_SMASK),
322 /*22*/	FLAG_ENTRY0("PcicRetrySotMemUncErr",
323 		CCE_ERR_STATUS_PCIC_RETRY_SOT_MEM_UNC_ERR_SMASK),
324 /*23*/	FLAG_ENTRY0("PcicPostHdQUncErr",
325 		CCE_ERR_STATUS_PCIC_POST_HD_QUNC_ERR_SMASK),
326 /*24*/	FLAG_ENTRY0("PcicPostDatQUncErr",
327 		CCE_ERR_STATUS_PCIC_POST_DAT_QUNC_ERR_SMASK),
328 /*25*/	FLAG_ENTRY0("PcicCplHdQUncErr",
329 		CCE_ERR_STATUS_PCIC_CPL_HD_QUNC_ERR_SMASK),
330 /*26*/	FLAG_ENTRY0("PcicCplDatQUncErr",
331 		CCE_ERR_STATUS_PCIC_CPL_DAT_QUNC_ERR_SMASK),
332 /*27*/	FLAG_ENTRY0("PcicTransmitFrontParityErr",
333 		CCE_ERR_STATUS_PCIC_TRANSMIT_FRONT_PARITY_ERR_SMASK),
334 /*28*/	FLAG_ENTRY0("PcicTransmitBackParityErr",
335 		CCE_ERR_STATUS_PCIC_TRANSMIT_BACK_PARITY_ERR_SMASK),
336 /*29*/	FLAG_ENTRY0("PcicReceiveParityErr",
337 		CCE_ERR_STATUS_PCIC_RECEIVE_PARITY_ERR_SMASK),
338 /*30*/	FLAG_ENTRY0("CceTrgtCplTimeoutErr",
339 		CCE_ERR_STATUS_CCE_TRGT_CPL_TIMEOUT_ERR_SMASK),
340 /*31*/	FLAG_ENTRY0("LATriggered",
341 		CCE_ERR_STATUS_LA_TRIGGERED_SMASK),
342 /*32*/	FLAG_ENTRY0("CceSegReadBadAddrErr",
343 		CCE_ERR_STATUS_CCE_SEG_READ_BAD_ADDR_ERR_SMASK),
344 /*33*/	FLAG_ENTRY0("CceSegWriteBadAddrErr",
345 		CCE_ERR_STATUS_CCE_SEG_WRITE_BAD_ADDR_ERR_SMASK),
346 /*34*/	FLAG_ENTRY0("CceRcplAsyncFifoParityErr",
347 		CCE_ERR_STATUS_CCE_RCPL_ASYNC_FIFO_PARITY_ERR_SMASK),
348 /*35*/	FLAG_ENTRY0("CceRxdmaConvFifoParityErr",
349 		CCE_ERR_STATUS_CCE_RXDMA_CONV_FIFO_PARITY_ERR_SMASK),
350 /*36*/	FLAG_ENTRY0("CceMsixTableCorErr",
351 		CCE_ERR_STATUS_CCE_MSIX_TABLE_COR_ERR_SMASK),
352 /*37*/	FLAG_ENTRY0("CceMsixTableUncErr",
353 		CCE_ERR_STATUS_CCE_MSIX_TABLE_UNC_ERR_SMASK),
354 /*38*/	FLAG_ENTRY0("CceIntMapCorErr",
355 		CCE_ERR_STATUS_CCE_INT_MAP_COR_ERR_SMASK),
356 /*39*/	FLAG_ENTRY0("CceIntMapUncErr",
357 		CCE_ERR_STATUS_CCE_INT_MAP_UNC_ERR_SMASK),
358 /*40*/	FLAG_ENTRY0("CceMsixCsrParityErr",
359 		CCE_ERR_STATUS_CCE_MSIX_CSR_PARITY_ERR_SMASK),
360 /*41-63 reserved*/
361 };
362 
363 /*
364  * Misc Error flags
365  */
366 #define MES(text) MISC_ERR_STATUS_MISC_##text##_ERR_SMASK
367 static struct flag_table misc_err_status_flags[] = {
368 /* 0*/	FLAG_ENTRY0("CSR_PARITY", MES(CSR_PARITY)),
369 /* 1*/	FLAG_ENTRY0("CSR_READ_BAD_ADDR", MES(CSR_READ_BAD_ADDR)),
370 /* 2*/	FLAG_ENTRY0("CSR_WRITE_BAD_ADDR", MES(CSR_WRITE_BAD_ADDR)),
371 /* 3*/	FLAG_ENTRY0("SBUS_WRITE_FAILED", MES(SBUS_WRITE_FAILED)),
372 /* 4*/	FLAG_ENTRY0("KEY_MISMATCH", MES(KEY_MISMATCH)),
373 /* 5*/	FLAG_ENTRY0("FW_AUTH_FAILED", MES(FW_AUTH_FAILED)),
374 /* 6*/	FLAG_ENTRY0("EFUSE_CSR_PARITY", MES(EFUSE_CSR_PARITY)),
375 /* 7*/	FLAG_ENTRY0("EFUSE_READ_BAD_ADDR", MES(EFUSE_READ_BAD_ADDR)),
376 /* 8*/	FLAG_ENTRY0("EFUSE_WRITE", MES(EFUSE_WRITE)),
377 /* 9*/	FLAG_ENTRY0("EFUSE_DONE_PARITY", MES(EFUSE_DONE_PARITY)),
378 /*10*/	FLAG_ENTRY0("INVALID_EEP_CMD", MES(INVALID_EEP_CMD)),
379 /*11*/	FLAG_ENTRY0("MBIST_FAIL", MES(MBIST_FAIL)),
380 /*12*/	FLAG_ENTRY0("PLL_LOCK_FAIL", MES(PLL_LOCK_FAIL))
381 };
382 
383 /*
384  * TXE PIO Error flags and consequences
385  */
386 static struct flag_table pio_err_status_flags[] = {
387 /* 0*/	FLAG_ENTRY("PioWriteBadCtxt",
388 	SEC_WRITE_DROPPED,
389 	SEND_PIO_ERR_STATUS_PIO_WRITE_BAD_CTXT_ERR_SMASK),
390 /* 1*/	FLAG_ENTRY("PioWriteAddrParity",
391 	SEC_SPC_FREEZE,
392 	SEND_PIO_ERR_STATUS_PIO_WRITE_ADDR_PARITY_ERR_SMASK),
393 /* 2*/	FLAG_ENTRY("PioCsrParity",
394 	SEC_SPC_FREEZE,
395 	SEND_PIO_ERR_STATUS_PIO_CSR_PARITY_ERR_SMASK),
396 /* 3*/	FLAG_ENTRY("PioSbMemFifo0",
397 	SEC_SPC_FREEZE,
398 	SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO0_ERR_SMASK),
399 /* 4*/	FLAG_ENTRY("PioSbMemFifo1",
400 	SEC_SPC_FREEZE,
401 	SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO1_ERR_SMASK),
402 /* 5*/	FLAG_ENTRY("PioPccFifoParity",
403 	SEC_SPC_FREEZE,
404 	SEND_PIO_ERR_STATUS_PIO_PCC_FIFO_PARITY_ERR_SMASK),
405 /* 6*/	FLAG_ENTRY("PioPecFifoParity",
406 	SEC_SPC_FREEZE,
407 	SEND_PIO_ERR_STATUS_PIO_PEC_FIFO_PARITY_ERR_SMASK),
408 /* 7*/	FLAG_ENTRY("PioSbrdctlCrrelParity",
409 	SEC_SPC_FREEZE,
410 	SEND_PIO_ERR_STATUS_PIO_SBRDCTL_CRREL_PARITY_ERR_SMASK),
411 /* 8*/	FLAG_ENTRY("PioSbrdctrlCrrelFifoParity",
412 	SEC_SPC_FREEZE,
413 	SEND_PIO_ERR_STATUS_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR_SMASK),
414 /* 9*/	FLAG_ENTRY("PioPktEvictFifoParityErr",
415 	SEC_SPC_FREEZE,
416 	SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_FIFO_PARITY_ERR_SMASK),
417 /*10*/	FLAG_ENTRY("PioSmPktResetParity",
418 	SEC_SPC_FREEZE,
419 	SEND_PIO_ERR_STATUS_PIO_SM_PKT_RESET_PARITY_ERR_SMASK),
420 /*11*/	FLAG_ENTRY("PioVlLenMemBank0Unc",
421 	SEC_SPC_FREEZE,
422 	SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_UNC_ERR_SMASK),
423 /*12*/	FLAG_ENTRY("PioVlLenMemBank1Unc",
424 	SEC_SPC_FREEZE,
425 	SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_UNC_ERR_SMASK),
426 /*13*/	FLAG_ENTRY("PioVlLenMemBank0Cor",
427 	0,
428 	SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_COR_ERR_SMASK),
429 /*14*/	FLAG_ENTRY("PioVlLenMemBank1Cor",
430 	0,
431 	SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_COR_ERR_SMASK),
432 /*15*/	FLAG_ENTRY("PioCreditRetFifoParity",
433 	SEC_SPC_FREEZE,
434 	SEND_PIO_ERR_STATUS_PIO_CREDIT_RET_FIFO_PARITY_ERR_SMASK),
435 /*16*/	FLAG_ENTRY("PioPpmcPblFifo",
436 	SEC_SPC_FREEZE,
437 	SEND_PIO_ERR_STATUS_PIO_PPMC_PBL_FIFO_ERR_SMASK),
438 /*17*/	FLAG_ENTRY("PioInitSmIn",
439 	0,
440 	SEND_PIO_ERR_STATUS_PIO_INIT_SM_IN_ERR_SMASK),
441 /*18*/	FLAG_ENTRY("PioPktEvictSmOrArbSm",
442 	SEC_SPC_FREEZE,
443 	SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_SM_OR_ARB_SM_ERR_SMASK),
444 /*19*/	FLAG_ENTRY("PioHostAddrMemUnc",
445 	SEC_SPC_FREEZE,
446 	SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_UNC_ERR_SMASK),
447 /*20*/	FLAG_ENTRY("PioHostAddrMemCor",
448 	0,
449 	SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_COR_ERR_SMASK),
450 /*21*/	FLAG_ENTRY("PioWriteDataParity",
451 	SEC_SPC_FREEZE,
452 	SEND_PIO_ERR_STATUS_PIO_WRITE_DATA_PARITY_ERR_SMASK),
453 /*22*/	FLAG_ENTRY("PioStateMachine",
454 	SEC_SPC_FREEZE,
455 	SEND_PIO_ERR_STATUS_PIO_STATE_MACHINE_ERR_SMASK),
456 /*23*/	FLAG_ENTRY("PioWriteQwValidParity",
457 	SEC_WRITE_DROPPED | SEC_SPC_FREEZE,
458 	SEND_PIO_ERR_STATUS_PIO_WRITE_QW_VALID_PARITY_ERR_SMASK),
459 /*24*/	FLAG_ENTRY("PioBlockQwCountParity",
460 	SEC_WRITE_DROPPED | SEC_SPC_FREEZE,
461 	SEND_PIO_ERR_STATUS_PIO_BLOCK_QW_COUNT_PARITY_ERR_SMASK),
462 /*25*/	FLAG_ENTRY("PioVlfVlLenParity",
463 	SEC_SPC_FREEZE,
464 	SEND_PIO_ERR_STATUS_PIO_VLF_VL_LEN_PARITY_ERR_SMASK),
465 /*26*/	FLAG_ENTRY("PioVlfSopParity",
466 	SEC_SPC_FREEZE,
467 	SEND_PIO_ERR_STATUS_PIO_VLF_SOP_PARITY_ERR_SMASK),
468 /*27*/	FLAG_ENTRY("PioVlFifoParity",
469 	SEC_SPC_FREEZE,
470 	SEND_PIO_ERR_STATUS_PIO_VL_FIFO_PARITY_ERR_SMASK),
471 /*28*/	FLAG_ENTRY("PioPpmcBqcMemParity",
472 	SEC_SPC_FREEZE,
473 	SEND_PIO_ERR_STATUS_PIO_PPMC_BQC_MEM_PARITY_ERR_SMASK),
474 /*29*/	FLAG_ENTRY("PioPpmcSopLen",
475 	SEC_SPC_FREEZE,
476 	SEND_PIO_ERR_STATUS_PIO_PPMC_SOP_LEN_ERR_SMASK),
477 /*30-31 reserved*/
478 /*32*/	FLAG_ENTRY("PioCurrentFreeCntParity",
479 	SEC_SPC_FREEZE,
480 	SEND_PIO_ERR_STATUS_PIO_CURRENT_FREE_CNT_PARITY_ERR_SMASK),
481 /*33*/	FLAG_ENTRY("PioLastReturnedCntParity",
482 	SEC_SPC_FREEZE,
483 	SEND_PIO_ERR_STATUS_PIO_LAST_RETURNED_CNT_PARITY_ERR_SMASK),
484 /*34*/	FLAG_ENTRY("PioPccSopHeadParity",
485 	SEC_SPC_FREEZE,
486 	SEND_PIO_ERR_STATUS_PIO_PCC_SOP_HEAD_PARITY_ERR_SMASK),
487 /*35*/	FLAG_ENTRY("PioPecSopHeadParityErr",
488 	SEC_SPC_FREEZE,
489 	SEND_PIO_ERR_STATUS_PIO_PEC_SOP_HEAD_PARITY_ERR_SMASK),
490 /*36-63 reserved*/
491 };
492 
493 /* TXE PIO errors that cause an SPC freeze */
494 #define ALL_PIO_FREEZE_ERR \
495 	(SEND_PIO_ERR_STATUS_PIO_WRITE_ADDR_PARITY_ERR_SMASK \
496 	| SEND_PIO_ERR_STATUS_PIO_CSR_PARITY_ERR_SMASK \
497 	| SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO0_ERR_SMASK \
498 	| SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO1_ERR_SMASK \
499 	| SEND_PIO_ERR_STATUS_PIO_PCC_FIFO_PARITY_ERR_SMASK \
500 	| SEND_PIO_ERR_STATUS_PIO_PEC_FIFO_PARITY_ERR_SMASK \
501 	| SEND_PIO_ERR_STATUS_PIO_SBRDCTL_CRREL_PARITY_ERR_SMASK \
502 	| SEND_PIO_ERR_STATUS_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR_SMASK \
503 	| SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_FIFO_PARITY_ERR_SMASK \
504 	| SEND_PIO_ERR_STATUS_PIO_SM_PKT_RESET_PARITY_ERR_SMASK \
505 	| SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_UNC_ERR_SMASK \
506 	| SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_UNC_ERR_SMASK \
507 	| SEND_PIO_ERR_STATUS_PIO_CREDIT_RET_FIFO_PARITY_ERR_SMASK \
508 	| SEND_PIO_ERR_STATUS_PIO_PPMC_PBL_FIFO_ERR_SMASK \
509 	| SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_SM_OR_ARB_SM_ERR_SMASK \
510 	| SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_UNC_ERR_SMASK \
511 	| SEND_PIO_ERR_STATUS_PIO_WRITE_DATA_PARITY_ERR_SMASK \
512 	| SEND_PIO_ERR_STATUS_PIO_STATE_MACHINE_ERR_SMASK \
513 	| SEND_PIO_ERR_STATUS_PIO_WRITE_QW_VALID_PARITY_ERR_SMASK \
514 	| SEND_PIO_ERR_STATUS_PIO_BLOCK_QW_COUNT_PARITY_ERR_SMASK \
515 	| SEND_PIO_ERR_STATUS_PIO_VLF_VL_LEN_PARITY_ERR_SMASK \
516 	| SEND_PIO_ERR_STATUS_PIO_VLF_SOP_PARITY_ERR_SMASK \
517 	| SEND_PIO_ERR_STATUS_PIO_VL_FIFO_PARITY_ERR_SMASK \
518 	| SEND_PIO_ERR_STATUS_PIO_PPMC_BQC_MEM_PARITY_ERR_SMASK \
519 	| SEND_PIO_ERR_STATUS_PIO_PPMC_SOP_LEN_ERR_SMASK \
520 	| SEND_PIO_ERR_STATUS_PIO_CURRENT_FREE_CNT_PARITY_ERR_SMASK \
521 	| SEND_PIO_ERR_STATUS_PIO_LAST_RETURNED_CNT_PARITY_ERR_SMASK \
522 	| SEND_PIO_ERR_STATUS_PIO_PCC_SOP_HEAD_PARITY_ERR_SMASK \
523 	| SEND_PIO_ERR_STATUS_PIO_PEC_SOP_HEAD_PARITY_ERR_SMASK)
524 
525 /*
526  * TXE SDMA Error flags
527  */
528 static struct flag_table sdma_err_status_flags[] = {
529 /* 0*/	FLAG_ENTRY0("SDmaRpyTagErr",
530 		SEND_DMA_ERR_STATUS_SDMA_RPY_TAG_ERR_SMASK),
531 /* 1*/	FLAG_ENTRY0("SDmaCsrParityErr",
532 		SEND_DMA_ERR_STATUS_SDMA_CSR_PARITY_ERR_SMASK),
533 /* 2*/	FLAG_ENTRY0("SDmaPcieReqTrackingUncErr",
534 		SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_UNC_ERR_SMASK),
535 /* 3*/	FLAG_ENTRY0("SDmaPcieReqTrackingCorErr",
536 		SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_COR_ERR_SMASK),
537 /*04-63 reserved*/
538 };
539 
540 /* TXE SDMA errors that cause an SPC freeze */
541 #define ALL_SDMA_FREEZE_ERR  \
542 		(SEND_DMA_ERR_STATUS_SDMA_RPY_TAG_ERR_SMASK \
543 		| SEND_DMA_ERR_STATUS_SDMA_CSR_PARITY_ERR_SMASK \
544 		| SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_UNC_ERR_SMASK)
545 
546 /* SendEgressErrInfo bits that correspond to a PortXmitDiscard counter */
547 #define PORT_DISCARD_EGRESS_ERRS \
548 	(SEND_EGRESS_ERR_INFO_TOO_LONG_IB_PACKET_ERR_SMASK \
549 	| SEND_EGRESS_ERR_INFO_VL_MAPPING_ERR_SMASK \
550 	| SEND_EGRESS_ERR_INFO_VL_ERR_SMASK)
551 
552 /*
553  * TXE Egress Error flags
554  */
555 #define SEES(text) SEND_EGRESS_ERR_STATUS_##text##_ERR_SMASK
556 static struct flag_table egress_err_status_flags[] = {
557 /* 0*/	FLAG_ENTRY0("TxPktIntegrityMemCorErr", SEES(TX_PKT_INTEGRITY_MEM_COR)),
558 /* 1*/	FLAG_ENTRY0("TxPktIntegrityMemUncErr", SEES(TX_PKT_INTEGRITY_MEM_UNC)),
559 /* 2 reserved */
560 /* 3*/	FLAG_ENTRY0("TxEgressFifoUnderrunOrParityErr",
561 		SEES(TX_EGRESS_FIFO_UNDERRUN_OR_PARITY)),
562 /* 4*/	FLAG_ENTRY0("TxLinkdownErr", SEES(TX_LINKDOWN)),
563 /* 5*/	FLAG_ENTRY0("TxIncorrectLinkStateErr", SEES(TX_INCORRECT_LINK_STATE)),
564 /* 6 reserved */
565 /* 7*/	FLAG_ENTRY0("TxPioLaunchIntfParityErr",
566 		SEES(TX_PIO_LAUNCH_INTF_PARITY)),
567 /* 8*/	FLAG_ENTRY0("TxSdmaLaunchIntfParityErr",
568 		SEES(TX_SDMA_LAUNCH_INTF_PARITY)),
569 /* 9-10 reserved */
570 /*11*/	FLAG_ENTRY0("TxSbrdCtlStateMachineParityErr",
571 		SEES(TX_SBRD_CTL_STATE_MACHINE_PARITY)),
572 /*12*/	FLAG_ENTRY0("TxIllegalVLErr", SEES(TX_ILLEGAL_VL)),
573 /*13*/	FLAG_ENTRY0("TxLaunchCsrParityErr", SEES(TX_LAUNCH_CSR_PARITY)),
574 /*14*/	FLAG_ENTRY0("TxSbrdCtlCsrParityErr", SEES(TX_SBRD_CTL_CSR_PARITY)),
575 /*15*/	FLAG_ENTRY0("TxConfigParityErr", SEES(TX_CONFIG_PARITY)),
576 /*16*/	FLAG_ENTRY0("TxSdma0DisallowedPacketErr",
577 		SEES(TX_SDMA0_DISALLOWED_PACKET)),
578 /*17*/	FLAG_ENTRY0("TxSdma1DisallowedPacketErr",
579 		SEES(TX_SDMA1_DISALLOWED_PACKET)),
580 /*18*/	FLAG_ENTRY0("TxSdma2DisallowedPacketErr",
581 		SEES(TX_SDMA2_DISALLOWED_PACKET)),
582 /*19*/	FLAG_ENTRY0("TxSdma3DisallowedPacketErr",
583 		SEES(TX_SDMA3_DISALLOWED_PACKET)),
584 /*20*/	FLAG_ENTRY0("TxSdma4DisallowedPacketErr",
585 		SEES(TX_SDMA4_DISALLOWED_PACKET)),
586 /*21*/	FLAG_ENTRY0("TxSdma5DisallowedPacketErr",
587 		SEES(TX_SDMA5_DISALLOWED_PACKET)),
588 /*22*/	FLAG_ENTRY0("TxSdma6DisallowedPacketErr",
589 		SEES(TX_SDMA6_DISALLOWED_PACKET)),
590 /*23*/	FLAG_ENTRY0("TxSdma7DisallowedPacketErr",
591 		SEES(TX_SDMA7_DISALLOWED_PACKET)),
592 /*24*/	FLAG_ENTRY0("TxSdma8DisallowedPacketErr",
593 		SEES(TX_SDMA8_DISALLOWED_PACKET)),
594 /*25*/	FLAG_ENTRY0("TxSdma9DisallowedPacketErr",
595 		SEES(TX_SDMA9_DISALLOWED_PACKET)),
596 /*26*/	FLAG_ENTRY0("TxSdma10DisallowedPacketErr",
597 		SEES(TX_SDMA10_DISALLOWED_PACKET)),
598 /*27*/	FLAG_ENTRY0("TxSdma11DisallowedPacketErr",
599 		SEES(TX_SDMA11_DISALLOWED_PACKET)),
600 /*28*/	FLAG_ENTRY0("TxSdma12DisallowedPacketErr",
601 		SEES(TX_SDMA12_DISALLOWED_PACKET)),
602 /*29*/	FLAG_ENTRY0("TxSdma13DisallowedPacketErr",
603 		SEES(TX_SDMA13_DISALLOWED_PACKET)),
604 /*30*/	FLAG_ENTRY0("TxSdma14DisallowedPacketErr",
605 		SEES(TX_SDMA14_DISALLOWED_PACKET)),
606 /*31*/	FLAG_ENTRY0("TxSdma15DisallowedPacketErr",
607 		SEES(TX_SDMA15_DISALLOWED_PACKET)),
608 /*32*/	FLAG_ENTRY0("TxLaunchFifo0UncOrParityErr",
609 		SEES(TX_LAUNCH_FIFO0_UNC_OR_PARITY)),
610 /*33*/	FLAG_ENTRY0("TxLaunchFifo1UncOrParityErr",
611 		SEES(TX_LAUNCH_FIFO1_UNC_OR_PARITY)),
612 /*34*/	FLAG_ENTRY0("TxLaunchFifo2UncOrParityErr",
613 		SEES(TX_LAUNCH_FIFO2_UNC_OR_PARITY)),
614 /*35*/	FLAG_ENTRY0("TxLaunchFifo3UncOrParityErr",
615 		SEES(TX_LAUNCH_FIFO3_UNC_OR_PARITY)),
616 /*36*/	FLAG_ENTRY0("TxLaunchFifo4UncOrParityErr",
617 		SEES(TX_LAUNCH_FIFO4_UNC_OR_PARITY)),
618 /*37*/	FLAG_ENTRY0("TxLaunchFifo5UncOrParityErr",
619 		SEES(TX_LAUNCH_FIFO5_UNC_OR_PARITY)),
620 /*38*/	FLAG_ENTRY0("TxLaunchFifo6UncOrParityErr",
621 		SEES(TX_LAUNCH_FIFO6_UNC_OR_PARITY)),
622 /*39*/	FLAG_ENTRY0("TxLaunchFifo7UncOrParityErr",
623 		SEES(TX_LAUNCH_FIFO7_UNC_OR_PARITY)),
624 /*40*/	FLAG_ENTRY0("TxLaunchFifo8UncOrParityErr",
625 		SEES(TX_LAUNCH_FIFO8_UNC_OR_PARITY)),
626 /*41*/	FLAG_ENTRY0("TxCreditReturnParityErr", SEES(TX_CREDIT_RETURN_PARITY)),
627 /*42*/	FLAG_ENTRY0("TxSbHdrUncErr", SEES(TX_SB_HDR_UNC)),
628 /*43*/	FLAG_ENTRY0("TxReadSdmaMemoryUncErr", SEES(TX_READ_SDMA_MEMORY_UNC)),
629 /*44*/	FLAG_ENTRY0("TxReadPioMemoryUncErr", SEES(TX_READ_PIO_MEMORY_UNC)),
630 /*45*/	FLAG_ENTRY0("TxEgressFifoUncErr", SEES(TX_EGRESS_FIFO_UNC)),
631 /*46*/	FLAG_ENTRY0("TxHcrcInsertionErr", SEES(TX_HCRC_INSERTION)),
632 /*47*/	FLAG_ENTRY0("TxCreditReturnVLErr", SEES(TX_CREDIT_RETURN_VL)),
633 /*48*/	FLAG_ENTRY0("TxLaunchFifo0CorErr", SEES(TX_LAUNCH_FIFO0_COR)),
634 /*49*/	FLAG_ENTRY0("TxLaunchFifo1CorErr", SEES(TX_LAUNCH_FIFO1_COR)),
635 /*50*/	FLAG_ENTRY0("TxLaunchFifo2CorErr", SEES(TX_LAUNCH_FIFO2_COR)),
636 /*51*/	FLAG_ENTRY0("TxLaunchFifo3CorErr", SEES(TX_LAUNCH_FIFO3_COR)),
637 /*52*/	FLAG_ENTRY0("TxLaunchFifo4CorErr", SEES(TX_LAUNCH_FIFO4_COR)),
638 /*53*/	FLAG_ENTRY0("TxLaunchFifo5CorErr", SEES(TX_LAUNCH_FIFO5_COR)),
639 /*54*/	FLAG_ENTRY0("TxLaunchFifo6CorErr", SEES(TX_LAUNCH_FIFO6_COR)),
640 /*55*/	FLAG_ENTRY0("TxLaunchFifo7CorErr", SEES(TX_LAUNCH_FIFO7_COR)),
641 /*56*/	FLAG_ENTRY0("TxLaunchFifo8CorErr", SEES(TX_LAUNCH_FIFO8_COR)),
642 /*57*/	FLAG_ENTRY0("TxCreditOverrunErr", SEES(TX_CREDIT_OVERRUN)),
643 /*58*/	FLAG_ENTRY0("TxSbHdrCorErr", SEES(TX_SB_HDR_COR)),
644 /*59*/	FLAG_ENTRY0("TxReadSdmaMemoryCorErr", SEES(TX_READ_SDMA_MEMORY_COR)),
645 /*60*/	FLAG_ENTRY0("TxReadPioMemoryCorErr", SEES(TX_READ_PIO_MEMORY_COR)),
646 /*61*/	FLAG_ENTRY0("TxEgressFifoCorErr", SEES(TX_EGRESS_FIFO_COR)),
647 /*62*/	FLAG_ENTRY0("TxReadSdmaMemoryCsrUncErr",
648 		SEES(TX_READ_SDMA_MEMORY_CSR_UNC)),
649 /*63*/	FLAG_ENTRY0("TxReadPioMemoryCsrUncErr",
650 		SEES(TX_READ_PIO_MEMORY_CSR_UNC)),
651 };
652 
653 /*
654  * TXE Egress Error Info flags
655  */
656 #define SEEI(text) SEND_EGRESS_ERR_INFO_##text##_ERR_SMASK
657 static struct flag_table egress_err_info_flags[] = {
658 /* 0*/	FLAG_ENTRY0("Reserved", 0ull),
659 /* 1*/	FLAG_ENTRY0("VLErr", SEEI(VL)),
660 /* 2*/	FLAG_ENTRY0("JobKeyErr", SEEI(JOB_KEY)),
661 /* 3*/	FLAG_ENTRY0("JobKeyErr", SEEI(JOB_KEY)),
662 /* 4*/	FLAG_ENTRY0("PartitionKeyErr", SEEI(PARTITION_KEY)),
663 /* 5*/	FLAG_ENTRY0("SLIDErr", SEEI(SLID)),
664 /* 6*/	FLAG_ENTRY0("OpcodeErr", SEEI(OPCODE)),
665 /* 7*/	FLAG_ENTRY0("VLMappingErr", SEEI(VL_MAPPING)),
666 /* 8*/	FLAG_ENTRY0("RawErr", SEEI(RAW)),
667 /* 9*/	FLAG_ENTRY0("RawIPv6Err", SEEI(RAW_IPV6)),
668 /*10*/	FLAG_ENTRY0("GRHErr", SEEI(GRH)),
669 /*11*/	FLAG_ENTRY0("BypassErr", SEEI(BYPASS)),
670 /*12*/	FLAG_ENTRY0("KDETHPacketsErr", SEEI(KDETH_PACKETS)),
671 /*13*/	FLAG_ENTRY0("NonKDETHPacketsErr", SEEI(NON_KDETH_PACKETS)),
672 /*14*/	FLAG_ENTRY0("TooSmallIBPacketsErr", SEEI(TOO_SMALL_IB_PACKETS)),
673 /*15*/	FLAG_ENTRY0("TooSmallBypassPacketsErr", SEEI(TOO_SMALL_BYPASS_PACKETS)),
674 /*16*/	FLAG_ENTRY0("PbcTestErr", SEEI(PBC_TEST)),
675 /*17*/	FLAG_ENTRY0("BadPktLenErr", SEEI(BAD_PKT_LEN)),
676 /*18*/	FLAG_ENTRY0("TooLongIBPacketErr", SEEI(TOO_LONG_IB_PACKET)),
677 /*19*/	FLAG_ENTRY0("TooLongBypassPacketsErr", SEEI(TOO_LONG_BYPASS_PACKETS)),
678 /*20*/	FLAG_ENTRY0("PbcStaticRateControlErr", SEEI(PBC_STATIC_RATE_CONTROL)),
679 /*21*/	FLAG_ENTRY0("BypassBadPktLenErr", SEEI(BAD_PKT_LEN)),
680 };
681 
682 /* TXE Egress errors that cause an SPC freeze */
683 #define ALL_TXE_EGRESS_FREEZE_ERR \
684 	(SEES(TX_EGRESS_FIFO_UNDERRUN_OR_PARITY) \
685 	| SEES(TX_PIO_LAUNCH_INTF_PARITY) \
686 	| SEES(TX_SDMA_LAUNCH_INTF_PARITY) \
687 	| SEES(TX_SBRD_CTL_STATE_MACHINE_PARITY) \
688 	| SEES(TX_LAUNCH_CSR_PARITY) \
689 	| SEES(TX_SBRD_CTL_CSR_PARITY) \
690 	| SEES(TX_CONFIG_PARITY) \
691 	| SEES(TX_LAUNCH_FIFO0_UNC_OR_PARITY) \
692 	| SEES(TX_LAUNCH_FIFO1_UNC_OR_PARITY) \
693 	| SEES(TX_LAUNCH_FIFO2_UNC_OR_PARITY) \
694 	| SEES(TX_LAUNCH_FIFO3_UNC_OR_PARITY) \
695 	| SEES(TX_LAUNCH_FIFO4_UNC_OR_PARITY) \
696 	| SEES(TX_LAUNCH_FIFO5_UNC_OR_PARITY) \
697 	| SEES(TX_LAUNCH_FIFO6_UNC_OR_PARITY) \
698 	| SEES(TX_LAUNCH_FIFO7_UNC_OR_PARITY) \
699 	| SEES(TX_LAUNCH_FIFO8_UNC_OR_PARITY) \
700 	| SEES(TX_CREDIT_RETURN_PARITY))
701 
702 /*
703  * TXE Send error flags
704  */
705 #define SES(name) SEND_ERR_STATUS_SEND_##name##_ERR_SMASK
706 static struct flag_table send_err_status_flags[] = {
707 /* 0*/	FLAG_ENTRY0("SendCsrParityErr", SES(CSR_PARITY)),
708 /* 1*/	FLAG_ENTRY0("SendCsrReadBadAddrErr", SES(CSR_READ_BAD_ADDR)),
709 /* 2*/	FLAG_ENTRY0("SendCsrWriteBadAddrErr", SES(CSR_WRITE_BAD_ADDR))
710 };
711 
712 /*
713  * TXE Send Context Error flags and consequences
714  */
715 static struct flag_table sc_err_status_flags[] = {
716 /* 0*/	FLAG_ENTRY("InconsistentSop",
717 		SEC_PACKET_DROPPED | SEC_SC_HALTED,
718 		SEND_CTXT_ERR_STATUS_PIO_INCONSISTENT_SOP_ERR_SMASK),
719 /* 1*/	FLAG_ENTRY("DisallowedPacket",
720 		SEC_PACKET_DROPPED | SEC_SC_HALTED,
721 		SEND_CTXT_ERR_STATUS_PIO_DISALLOWED_PACKET_ERR_SMASK),
722 /* 2*/	FLAG_ENTRY("WriteCrossesBoundary",
723 		SEC_WRITE_DROPPED | SEC_SC_HALTED,
724 		SEND_CTXT_ERR_STATUS_PIO_WRITE_CROSSES_BOUNDARY_ERR_SMASK),
725 /* 3*/	FLAG_ENTRY("WriteOverflow",
726 		SEC_WRITE_DROPPED | SEC_SC_HALTED,
727 		SEND_CTXT_ERR_STATUS_PIO_WRITE_OVERFLOW_ERR_SMASK),
728 /* 4*/	FLAG_ENTRY("WriteOutOfBounds",
729 		SEC_WRITE_DROPPED | SEC_SC_HALTED,
730 		SEND_CTXT_ERR_STATUS_PIO_WRITE_OUT_OF_BOUNDS_ERR_SMASK),
731 /* 5-63 reserved*/
732 };
733 
734 /*
735  * RXE Receive Error flags
736  */
737 #define RXES(name) RCV_ERR_STATUS_RX_##name##_ERR_SMASK
738 static struct flag_table rxe_err_status_flags[] = {
739 /* 0*/	FLAG_ENTRY0("RxDmaCsrCorErr", RXES(DMA_CSR_COR)),
740 /* 1*/	FLAG_ENTRY0("RxDcIntfParityErr", RXES(DC_INTF_PARITY)),
741 /* 2*/	FLAG_ENTRY0("RxRcvHdrUncErr", RXES(RCV_HDR_UNC)),
742 /* 3*/	FLAG_ENTRY0("RxRcvHdrCorErr", RXES(RCV_HDR_COR)),
743 /* 4*/	FLAG_ENTRY0("RxRcvDataUncErr", RXES(RCV_DATA_UNC)),
744 /* 5*/	FLAG_ENTRY0("RxRcvDataCorErr", RXES(RCV_DATA_COR)),
745 /* 6*/	FLAG_ENTRY0("RxRcvQpMapTableUncErr", RXES(RCV_QP_MAP_TABLE_UNC)),
746 /* 7*/	FLAG_ENTRY0("RxRcvQpMapTableCorErr", RXES(RCV_QP_MAP_TABLE_COR)),
747 /* 8*/	FLAG_ENTRY0("RxRcvCsrParityErr", RXES(RCV_CSR_PARITY)),
748 /* 9*/	FLAG_ENTRY0("RxDcSopEopParityErr", RXES(DC_SOP_EOP_PARITY)),
749 /*10*/	FLAG_ENTRY0("RxDmaFlagUncErr", RXES(DMA_FLAG_UNC)),
750 /*11*/	FLAG_ENTRY0("RxDmaFlagCorErr", RXES(DMA_FLAG_COR)),
751 /*12*/	FLAG_ENTRY0("RxRcvFsmEncodingErr", RXES(RCV_FSM_ENCODING)),
752 /*13*/	FLAG_ENTRY0("RxRbufFreeListUncErr", RXES(RBUF_FREE_LIST_UNC)),
753 /*14*/	FLAG_ENTRY0("RxRbufFreeListCorErr", RXES(RBUF_FREE_LIST_COR)),
754 /*15*/	FLAG_ENTRY0("RxRbufLookupDesRegUncErr", RXES(RBUF_LOOKUP_DES_REG_UNC)),
755 /*16*/	FLAG_ENTRY0("RxRbufLookupDesRegUncCorErr",
756 		RXES(RBUF_LOOKUP_DES_REG_UNC_COR)),
757 /*17*/	FLAG_ENTRY0("RxRbufLookupDesUncErr", RXES(RBUF_LOOKUP_DES_UNC)),
758 /*18*/	FLAG_ENTRY0("RxRbufLookupDesCorErr", RXES(RBUF_LOOKUP_DES_COR)),
759 /*19*/	FLAG_ENTRY0("RxRbufBlockListReadUncErr",
760 		RXES(RBUF_BLOCK_LIST_READ_UNC)),
761 /*20*/	FLAG_ENTRY0("RxRbufBlockListReadCorErr",
762 		RXES(RBUF_BLOCK_LIST_READ_COR)),
763 /*21*/	FLAG_ENTRY0("RxRbufCsrQHeadBufNumParityErr",
764 		RXES(RBUF_CSR_QHEAD_BUF_NUM_PARITY)),
765 /*22*/	FLAG_ENTRY0("RxRbufCsrQEntCntParityErr",
766 		RXES(RBUF_CSR_QENT_CNT_PARITY)),
767 /*23*/	FLAG_ENTRY0("RxRbufCsrQNextBufParityErr",
768 		RXES(RBUF_CSR_QNEXT_BUF_PARITY)),
769 /*24*/	FLAG_ENTRY0("RxRbufCsrQVldBitParityErr",
770 		RXES(RBUF_CSR_QVLD_BIT_PARITY)),
771 /*25*/	FLAG_ENTRY0("RxRbufCsrQHdPtrParityErr", RXES(RBUF_CSR_QHD_PTR_PARITY)),
772 /*26*/	FLAG_ENTRY0("RxRbufCsrQTlPtrParityErr", RXES(RBUF_CSR_QTL_PTR_PARITY)),
773 /*27*/	FLAG_ENTRY0("RxRbufCsrQNumOfPktParityErr",
774 		RXES(RBUF_CSR_QNUM_OF_PKT_PARITY)),
775 /*28*/	FLAG_ENTRY0("RxRbufCsrQEOPDWParityErr", RXES(RBUF_CSR_QEOPDW_PARITY)),
776 /*29*/	FLAG_ENTRY0("RxRbufCtxIdParityErr", RXES(RBUF_CTX_ID_PARITY)),
777 /*30*/	FLAG_ENTRY0("RxRBufBadLookupErr", RXES(RBUF_BAD_LOOKUP)),
778 /*31*/	FLAG_ENTRY0("RxRbufFullErr", RXES(RBUF_FULL)),
779 /*32*/	FLAG_ENTRY0("RxRbufEmptyErr", RXES(RBUF_EMPTY)),
780 /*33*/	FLAG_ENTRY0("RxRbufFlRdAddrParityErr", RXES(RBUF_FL_RD_ADDR_PARITY)),
781 /*34*/	FLAG_ENTRY0("RxRbufFlWrAddrParityErr", RXES(RBUF_FL_WR_ADDR_PARITY)),
782 /*35*/	FLAG_ENTRY0("RxRbufFlInitdoneParityErr",
783 		RXES(RBUF_FL_INITDONE_PARITY)),
784 /*36*/	FLAG_ENTRY0("RxRbufFlInitWrAddrParityErr",
785 		RXES(RBUF_FL_INIT_WR_ADDR_PARITY)),
786 /*37*/	FLAG_ENTRY0("RxRbufNextFreeBufUncErr", RXES(RBUF_NEXT_FREE_BUF_UNC)),
787 /*38*/	FLAG_ENTRY0("RxRbufNextFreeBufCorErr", RXES(RBUF_NEXT_FREE_BUF_COR)),
788 /*39*/	FLAG_ENTRY0("RxLookupDesPart1UncErr", RXES(LOOKUP_DES_PART1_UNC)),
789 /*40*/	FLAG_ENTRY0("RxLookupDesPart1UncCorErr",
790 		RXES(LOOKUP_DES_PART1_UNC_COR)),
791 /*41*/	FLAG_ENTRY0("RxLookupDesPart2ParityErr",
792 		RXES(LOOKUP_DES_PART2_PARITY)),
793 /*42*/	FLAG_ENTRY0("RxLookupRcvArrayUncErr", RXES(LOOKUP_RCV_ARRAY_UNC)),
794 /*43*/	FLAG_ENTRY0("RxLookupRcvArrayCorErr", RXES(LOOKUP_RCV_ARRAY_COR)),
795 /*44*/	FLAG_ENTRY0("RxLookupCsrParityErr", RXES(LOOKUP_CSR_PARITY)),
796 /*45*/	FLAG_ENTRY0("RxHqIntrCsrParityErr", RXES(HQ_INTR_CSR_PARITY)),
797 /*46*/	FLAG_ENTRY0("RxHqIntrFsmErr", RXES(HQ_INTR_FSM)),
798 /*47*/	FLAG_ENTRY0("RxRbufDescPart1UncErr", RXES(RBUF_DESC_PART1_UNC)),
799 /*48*/	FLAG_ENTRY0("RxRbufDescPart1CorErr", RXES(RBUF_DESC_PART1_COR)),
800 /*49*/	FLAG_ENTRY0("RxRbufDescPart2UncErr", RXES(RBUF_DESC_PART2_UNC)),
801 /*50*/	FLAG_ENTRY0("RxRbufDescPart2CorErr", RXES(RBUF_DESC_PART2_COR)),
802 /*51*/	FLAG_ENTRY0("RxDmaHdrFifoRdUncErr", RXES(DMA_HDR_FIFO_RD_UNC)),
803 /*52*/	FLAG_ENTRY0("RxDmaHdrFifoRdCorErr", RXES(DMA_HDR_FIFO_RD_COR)),
804 /*53*/	FLAG_ENTRY0("RxDmaDataFifoRdUncErr", RXES(DMA_DATA_FIFO_RD_UNC)),
805 /*54*/	FLAG_ENTRY0("RxDmaDataFifoRdCorErr", RXES(DMA_DATA_FIFO_RD_COR)),
806 /*55*/	FLAG_ENTRY0("RxRbufDataUncErr", RXES(RBUF_DATA_UNC)),
807 /*56*/	FLAG_ENTRY0("RxRbufDataCorErr", RXES(RBUF_DATA_COR)),
808 /*57*/	FLAG_ENTRY0("RxDmaCsrParityErr", RXES(DMA_CSR_PARITY)),
809 /*58*/	FLAG_ENTRY0("RxDmaEqFsmEncodingErr", RXES(DMA_EQ_FSM_ENCODING)),
810 /*59*/	FLAG_ENTRY0("RxDmaDqFsmEncodingErr", RXES(DMA_DQ_FSM_ENCODING)),
811 /*60*/	FLAG_ENTRY0("RxDmaCsrUncErr", RXES(DMA_CSR_UNC)),
812 /*61*/	FLAG_ENTRY0("RxCsrReadBadAddrErr", RXES(CSR_READ_BAD_ADDR)),
813 /*62*/	FLAG_ENTRY0("RxCsrWriteBadAddrErr", RXES(CSR_WRITE_BAD_ADDR)),
814 /*63*/	FLAG_ENTRY0("RxCsrParityErr", RXES(CSR_PARITY))
815 };
816 
817 /* RXE errors that will trigger an SPC freeze */
818 #define ALL_RXE_FREEZE_ERR  \
819 	(RCV_ERR_STATUS_RX_RCV_QP_MAP_TABLE_UNC_ERR_SMASK \
820 	| RCV_ERR_STATUS_RX_RCV_CSR_PARITY_ERR_SMASK \
821 	| RCV_ERR_STATUS_RX_DMA_FLAG_UNC_ERR_SMASK \
822 	| RCV_ERR_STATUS_RX_RCV_FSM_ENCODING_ERR_SMASK \
823 	| RCV_ERR_STATUS_RX_RBUF_FREE_LIST_UNC_ERR_SMASK \
824 	| RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_REG_UNC_ERR_SMASK \
825 	| RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_REG_UNC_COR_ERR_SMASK \
826 	| RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_UNC_ERR_SMASK \
827 	| RCV_ERR_STATUS_RX_RBUF_BLOCK_LIST_READ_UNC_ERR_SMASK \
828 	| RCV_ERR_STATUS_RX_RBUF_CSR_QHEAD_BUF_NUM_PARITY_ERR_SMASK \
829 	| RCV_ERR_STATUS_RX_RBUF_CSR_QENT_CNT_PARITY_ERR_SMASK \
830 	| RCV_ERR_STATUS_RX_RBUF_CSR_QNEXT_BUF_PARITY_ERR_SMASK \
831 	| RCV_ERR_STATUS_RX_RBUF_CSR_QVLD_BIT_PARITY_ERR_SMASK \
832 	| RCV_ERR_STATUS_RX_RBUF_CSR_QHD_PTR_PARITY_ERR_SMASK \
833 	| RCV_ERR_STATUS_RX_RBUF_CSR_QTL_PTR_PARITY_ERR_SMASK \
834 	| RCV_ERR_STATUS_RX_RBUF_CSR_QNUM_OF_PKT_PARITY_ERR_SMASK \
835 	| RCV_ERR_STATUS_RX_RBUF_CSR_QEOPDW_PARITY_ERR_SMASK \
836 	| RCV_ERR_STATUS_RX_RBUF_CTX_ID_PARITY_ERR_SMASK \
837 	| RCV_ERR_STATUS_RX_RBUF_BAD_LOOKUP_ERR_SMASK \
838 	| RCV_ERR_STATUS_RX_RBUF_FULL_ERR_SMASK \
839 	| RCV_ERR_STATUS_RX_RBUF_EMPTY_ERR_SMASK \
840 	| RCV_ERR_STATUS_RX_RBUF_FL_RD_ADDR_PARITY_ERR_SMASK \
841 	| RCV_ERR_STATUS_RX_RBUF_FL_WR_ADDR_PARITY_ERR_SMASK \
842 	| RCV_ERR_STATUS_RX_RBUF_FL_INITDONE_PARITY_ERR_SMASK \
843 	| RCV_ERR_STATUS_RX_RBUF_FL_INIT_WR_ADDR_PARITY_ERR_SMASK \
844 	| RCV_ERR_STATUS_RX_RBUF_NEXT_FREE_BUF_UNC_ERR_SMASK \
845 	| RCV_ERR_STATUS_RX_LOOKUP_DES_PART1_UNC_ERR_SMASK \
846 	| RCV_ERR_STATUS_RX_LOOKUP_DES_PART1_UNC_COR_ERR_SMASK \
847 	| RCV_ERR_STATUS_RX_LOOKUP_DES_PART2_PARITY_ERR_SMASK \
848 	| RCV_ERR_STATUS_RX_LOOKUP_RCV_ARRAY_UNC_ERR_SMASK \
849 	| RCV_ERR_STATUS_RX_LOOKUP_CSR_PARITY_ERR_SMASK \
850 	| RCV_ERR_STATUS_RX_HQ_INTR_CSR_PARITY_ERR_SMASK \
851 	| RCV_ERR_STATUS_RX_HQ_INTR_FSM_ERR_SMASK \
852 	| RCV_ERR_STATUS_RX_RBUF_DESC_PART1_UNC_ERR_SMASK \
853 	| RCV_ERR_STATUS_RX_RBUF_DESC_PART1_COR_ERR_SMASK \
854 	| RCV_ERR_STATUS_RX_RBUF_DESC_PART2_UNC_ERR_SMASK \
855 	| RCV_ERR_STATUS_RX_DMA_HDR_FIFO_RD_UNC_ERR_SMASK \
856 	| RCV_ERR_STATUS_RX_DMA_DATA_FIFO_RD_UNC_ERR_SMASK \
857 	| RCV_ERR_STATUS_RX_RBUF_DATA_UNC_ERR_SMASK \
858 	| RCV_ERR_STATUS_RX_DMA_CSR_PARITY_ERR_SMASK \
859 	| RCV_ERR_STATUS_RX_DMA_EQ_FSM_ENCODING_ERR_SMASK \
860 	| RCV_ERR_STATUS_RX_DMA_DQ_FSM_ENCODING_ERR_SMASK \
861 	| RCV_ERR_STATUS_RX_DMA_CSR_UNC_ERR_SMASK \
862 	| RCV_ERR_STATUS_RX_CSR_PARITY_ERR_SMASK)
863 
864 #define RXE_FREEZE_ABORT_MASK \
865 	(RCV_ERR_STATUS_RX_DMA_CSR_UNC_ERR_SMASK | \
866 	RCV_ERR_STATUS_RX_DMA_HDR_FIFO_RD_UNC_ERR_SMASK | \
867 	RCV_ERR_STATUS_RX_DMA_DATA_FIFO_RD_UNC_ERR_SMASK)
868 
869 /*
870  * DCC Error Flags
871  */
872 #define DCCE(name) DCC_ERR_FLG_##name##_SMASK
873 static struct flag_table dcc_err_flags[] = {
874 	FLAG_ENTRY0("bad_l2_err", DCCE(BAD_L2_ERR)),
875 	FLAG_ENTRY0("bad_sc_err", DCCE(BAD_SC_ERR)),
876 	FLAG_ENTRY0("bad_mid_tail_err", DCCE(BAD_MID_TAIL_ERR)),
877 	FLAG_ENTRY0("bad_preemption_err", DCCE(BAD_PREEMPTION_ERR)),
878 	FLAG_ENTRY0("preemption_err", DCCE(PREEMPTION_ERR)),
879 	FLAG_ENTRY0("preemptionvl15_err", DCCE(PREEMPTIONVL15_ERR)),
880 	FLAG_ENTRY0("bad_vl_marker_err", DCCE(BAD_VL_MARKER_ERR)),
881 	FLAG_ENTRY0("bad_dlid_target_err", DCCE(BAD_DLID_TARGET_ERR)),
882 	FLAG_ENTRY0("bad_lver_err", DCCE(BAD_LVER_ERR)),
883 	FLAG_ENTRY0("uncorrectable_err", DCCE(UNCORRECTABLE_ERR)),
884 	FLAG_ENTRY0("bad_crdt_ack_err", DCCE(BAD_CRDT_ACK_ERR)),
885 	FLAG_ENTRY0("unsup_pkt_type", DCCE(UNSUP_PKT_TYPE)),
886 	FLAG_ENTRY0("bad_ctrl_flit_err", DCCE(BAD_CTRL_FLIT_ERR)),
887 	FLAG_ENTRY0("event_cntr_parity_err", DCCE(EVENT_CNTR_PARITY_ERR)),
888 	FLAG_ENTRY0("event_cntr_rollover_err", DCCE(EVENT_CNTR_ROLLOVER_ERR)),
889 	FLAG_ENTRY0("link_err", DCCE(LINK_ERR)),
890 	FLAG_ENTRY0("misc_cntr_rollover_err", DCCE(MISC_CNTR_ROLLOVER_ERR)),
891 	FLAG_ENTRY0("bad_ctrl_dist_err", DCCE(BAD_CTRL_DIST_ERR)),
892 	FLAG_ENTRY0("bad_tail_dist_err", DCCE(BAD_TAIL_DIST_ERR)),
893 	FLAG_ENTRY0("bad_head_dist_err", DCCE(BAD_HEAD_DIST_ERR)),
894 	FLAG_ENTRY0("nonvl15_state_err", DCCE(NONVL15_STATE_ERR)),
895 	FLAG_ENTRY0("vl15_multi_err", DCCE(VL15_MULTI_ERR)),
896 	FLAG_ENTRY0("bad_pkt_length_err", DCCE(BAD_PKT_LENGTH_ERR)),
897 	FLAG_ENTRY0("unsup_vl_err", DCCE(UNSUP_VL_ERR)),
898 	FLAG_ENTRY0("perm_nvl15_err", DCCE(PERM_NVL15_ERR)),
899 	FLAG_ENTRY0("slid_zero_err", DCCE(SLID_ZERO_ERR)),
900 	FLAG_ENTRY0("dlid_zero_err", DCCE(DLID_ZERO_ERR)),
901 	FLAG_ENTRY0("length_mtu_err", DCCE(LENGTH_MTU_ERR)),
902 	FLAG_ENTRY0("rx_early_drop_err", DCCE(RX_EARLY_DROP_ERR)),
903 	FLAG_ENTRY0("late_short_err", DCCE(LATE_SHORT_ERR)),
904 	FLAG_ENTRY0("late_long_err", DCCE(LATE_LONG_ERR)),
905 	FLAG_ENTRY0("late_ebp_err", DCCE(LATE_EBP_ERR)),
906 	FLAG_ENTRY0("fpe_tx_fifo_ovflw_err", DCCE(FPE_TX_FIFO_OVFLW_ERR)),
907 	FLAG_ENTRY0("fpe_tx_fifo_unflw_err", DCCE(FPE_TX_FIFO_UNFLW_ERR)),
908 	FLAG_ENTRY0("csr_access_blocked_host", DCCE(CSR_ACCESS_BLOCKED_HOST)),
909 	FLAG_ENTRY0("csr_access_blocked_uc", DCCE(CSR_ACCESS_BLOCKED_UC)),
910 	FLAG_ENTRY0("tx_ctrl_parity_err", DCCE(TX_CTRL_PARITY_ERR)),
911 	FLAG_ENTRY0("tx_ctrl_parity_mbe_err", DCCE(TX_CTRL_PARITY_MBE_ERR)),
912 	FLAG_ENTRY0("tx_sc_parity_err", DCCE(TX_SC_PARITY_ERR)),
913 	FLAG_ENTRY0("rx_ctrl_parity_mbe_err", DCCE(RX_CTRL_PARITY_MBE_ERR)),
914 	FLAG_ENTRY0("csr_parity_err", DCCE(CSR_PARITY_ERR)),
915 	FLAG_ENTRY0("csr_inval_addr", DCCE(CSR_INVAL_ADDR)),
916 	FLAG_ENTRY0("tx_byte_shft_parity_err", DCCE(TX_BYTE_SHFT_PARITY_ERR)),
917 	FLAG_ENTRY0("rx_byte_shft_parity_err", DCCE(RX_BYTE_SHFT_PARITY_ERR)),
918 	FLAG_ENTRY0("fmconfig_err", DCCE(FMCONFIG_ERR)),
919 	FLAG_ENTRY0("rcvport_err", DCCE(RCVPORT_ERR)),
920 };
921 
922 /*
923  * LCB error flags
924  */
925 #define LCBE(name) DC_LCB_ERR_FLG_##name##_SMASK
926 static struct flag_table lcb_err_flags[] = {
927 /* 0*/	FLAG_ENTRY0("CSR_PARITY_ERR", LCBE(CSR_PARITY_ERR)),
928 /* 1*/	FLAG_ENTRY0("INVALID_CSR_ADDR", LCBE(INVALID_CSR_ADDR)),
929 /* 2*/	FLAG_ENTRY0("RST_FOR_FAILED_DESKEW", LCBE(RST_FOR_FAILED_DESKEW)),
930 /* 3*/	FLAG_ENTRY0("ALL_LNS_FAILED_REINIT_TEST",
931 		LCBE(ALL_LNS_FAILED_REINIT_TEST)),
932 /* 4*/	FLAG_ENTRY0("LOST_REINIT_STALL_OR_TOS", LCBE(LOST_REINIT_STALL_OR_TOS)),
933 /* 5*/	FLAG_ENTRY0("TX_LESS_THAN_FOUR_LNS", LCBE(TX_LESS_THAN_FOUR_LNS)),
934 /* 6*/	FLAG_ENTRY0("RX_LESS_THAN_FOUR_LNS", LCBE(RX_LESS_THAN_FOUR_LNS)),
935 /* 7*/	FLAG_ENTRY0("SEQ_CRC_ERR", LCBE(SEQ_CRC_ERR)),
936 /* 8*/	FLAG_ENTRY0("REINIT_FROM_PEER", LCBE(REINIT_FROM_PEER)),
937 /* 9*/	FLAG_ENTRY0("REINIT_FOR_LN_DEGRADE", LCBE(REINIT_FOR_LN_DEGRADE)),
938 /*10*/	FLAG_ENTRY0("CRC_ERR_CNT_HIT_LIMIT", LCBE(CRC_ERR_CNT_HIT_LIMIT)),
939 /*11*/	FLAG_ENTRY0("RCLK_STOPPED", LCBE(RCLK_STOPPED)),
940 /*12*/	FLAG_ENTRY0("UNEXPECTED_REPLAY_MARKER", LCBE(UNEXPECTED_REPLAY_MARKER)),
941 /*13*/	FLAG_ENTRY0("UNEXPECTED_ROUND_TRIP_MARKER",
942 		LCBE(UNEXPECTED_ROUND_TRIP_MARKER)),
943 /*14*/	FLAG_ENTRY0("ILLEGAL_NULL_LTP", LCBE(ILLEGAL_NULL_LTP)),
944 /*15*/	FLAG_ENTRY0("ILLEGAL_FLIT_ENCODING", LCBE(ILLEGAL_FLIT_ENCODING)),
945 /*16*/	FLAG_ENTRY0("FLIT_INPUT_BUF_OFLW", LCBE(FLIT_INPUT_BUF_OFLW)),
946 /*17*/	FLAG_ENTRY0("VL_ACK_INPUT_BUF_OFLW", LCBE(VL_ACK_INPUT_BUF_OFLW)),
947 /*18*/	FLAG_ENTRY0("VL_ACK_INPUT_PARITY_ERR", LCBE(VL_ACK_INPUT_PARITY_ERR)),
948 /*19*/	FLAG_ENTRY0("VL_ACK_INPUT_WRONG_CRC_MODE",
949 		LCBE(VL_ACK_INPUT_WRONG_CRC_MODE)),
950 /*20*/	FLAG_ENTRY0("FLIT_INPUT_BUF_MBE", LCBE(FLIT_INPUT_BUF_MBE)),
951 /*21*/	FLAG_ENTRY0("FLIT_INPUT_BUF_SBE", LCBE(FLIT_INPUT_BUF_SBE)),
952 /*22*/	FLAG_ENTRY0("REPLAY_BUF_MBE", LCBE(REPLAY_BUF_MBE)),
953 /*23*/	FLAG_ENTRY0("REPLAY_BUF_SBE", LCBE(REPLAY_BUF_SBE)),
954 /*24*/	FLAG_ENTRY0("CREDIT_RETURN_FLIT_MBE", LCBE(CREDIT_RETURN_FLIT_MBE)),
955 /*25*/	FLAG_ENTRY0("RST_FOR_LINK_TIMEOUT", LCBE(RST_FOR_LINK_TIMEOUT)),
956 /*26*/	FLAG_ENTRY0("RST_FOR_INCOMPLT_RND_TRIP",
957 		LCBE(RST_FOR_INCOMPLT_RND_TRIP)),
958 /*27*/	FLAG_ENTRY0("HOLD_REINIT", LCBE(HOLD_REINIT)),
959 /*28*/	FLAG_ENTRY0("NEG_EDGE_LINK_TRANSFER_ACTIVE",
960 		LCBE(NEG_EDGE_LINK_TRANSFER_ACTIVE)),
961 /*29*/	FLAG_ENTRY0("REDUNDANT_FLIT_PARITY_ERR",
962 		LCBE(REDUNDANT_FLIT_PARITY_ERR))
963 };
964 
965 /*
966  * DC8051 Error Flags
967  */
968 #define D8E(name) DC_DC8051_ERR_FLG_##name##_SMASK
969 static struct flag_table dc8051_err_flags[] = {
970 	FLAG_ENTRY0("SET_BY_8051", D8E(SET_BY_8051)),
971 	FLAG_ENTRY0("LOST_8051_HEART_BEAT", D8E(LOST_8051_HEART_BEAT)),
972 	FLAG_ENTRY0("CRAM_MBE", D8E(CRAM_MBE)),
973 	FLAG_ENTRY0("CRAM_SBE", D8E(CRAM_SBE)),
974 	FLAG_ENTRY0("DRAM_MBE", D8E(DRAM_MBE)),
975 	FLAG_ENTRY0("DRAM_SBE", D8E(DRAM_SBE)),
976 	FLAG_ENTRY0("IRAM_MBE", D8E(IRAM_MBE)),
977 	FLAG_ENTRY0("IRAM_SBE", D8E(IRAM_SBE)),
978 	FLAG_ENTRY0("UNMATCHED_SECURE_MSG_ACROSS_BCC_LANES",
979 		    D8E(UNMATCHED_SECURE_MSG_ACROSS_BCC_LANES)),
980 	FLAG_ENTRY0("INVALID_CSR_ADDR", D8E(INVALID_CSR_ADDR)),
981 };
982 
983 /*
984  * DC8051 Information Error flags
985  *
986  * Flags in DC8051_DBG_ERR_INFO_SET_BY_8051.ERROR field.
987  */
988 static struct flag_table dc8051_info_err_flags[] = {
989 	FLAG_ENTRY0("Spico ROM check failed",  SPICO_ROM_FAILED),
990 	FLAG_ENTRY0("Unknown frame received",  UNKNOWN_FRAME),
991 	FLAG_ENTRY0("Target BER not met",      TARGET_BER_NOT_MET),
992 	FLAG_ENTRY0("Serdes internal loopback failure",
993 		    FAILED_SERDES_INTERNAL_LOOPBACK),
994 	FLAG_ENTRY0("Failed SerDes init",      FAILED_SERDES_INIT),
995 	FLAG_ENTRY0("Failed LNI(Polling)",     FAILED_LNI_POLLING),
996 	FLAG_ENTRY0("Failed LNI(Debounce)",    FAILED_LNI_DEBOUNCE),
997 	FLAG_ENTRY0("Failed LNI(EstbComm)",    FAILED_LNI_ESTBCOMM),
998 	FLAG_ENTRY0("Failed LNI(OptEq)",       FAILED_LNI_OPTEQ),
999 	FLAG_ENTRY0("Failed LNI(VerifyCap_1)", FAILED_LNI_VERIFY_CAP1),
1000 	FLAG_ENTRY0("Failed LNI(VerifyCap_2)", FAILED_LNI_VERIFY_CAP2),
1001 	FLAG_ENTRY0("Failed LNI(ConfigLT)",    FAILED_LNI_CONFIGLT),
1002 	FLAG_ENTRY0("Host Handshake Timeout",  HOST_HANDSHAKE_TIMEOUT),
1003 	FLAG_ENTRY0("External Device Request Timeout",
1004 		    EXTERNAL_DEVICE_REQ_TIMEOUT),
1005 };
1006 
1007 /*
1008  * DC8051 Information Host Information flags
1009  *
1010  * Flags in DC8051_DBG_ERR_INFO_SET_BY_8051.HOST_MSG field.
1011  */
1012 static struct flag_table dc8051_info_host_msg_flags[] = {
1013 	FLAG_ENTRY0("Host request done", 0x0001),
1014 	FLAG_ENTRY0("BC PWR_MGM message", 0x0002),
1015 	FLAG_ENTRY0("BC SMA message", 0x0004),
1016 	FLAG_ENTRY0("BC Unknown message (BCC)", 0x0008),
1017 	FLAG_ENTRY0("BC Unknown message (LCB)", 0x0010),
1018 	FLAG_ENTRY0("External device config request", 0x0020),
1019 	FLAG_ENTRY0("VerifyCap all frames received", 0x0040),
1020 	FLAG_ENTRY0("LinkUp achieved", 0x0080),
1021 	FLAG_ENTRY0("Link going down", 0x0100),
1022 	FLAG_ENTRY0("Link width downgraded", 0x0200),
1023 };
1024 
1025 static u32 encoded_size(u32 size);
1026 static u32 chip_to_opa_lstate(struct hfi1_devdata *dd, u32 chip_lstate);
1027 static int set_physical_link_state(struct hfi1_devdata *dd, u64 state);
1028 static void read_vc_remote_phy(struct hfi1_devdata *dd, u8 *power_management,
1029 			       u8 *continuous);
1030 static void read_vc_remote_fabric(struct hfi1_devdata *dd, u8 *vau, u8 *z,
1031 				  u8 *vcu, u16 *vl15buf, u8 *crc_sizes);
1032 static void read_vc_remote_link_width(struct hfi1_devdata *dd,
1033 				      u8 *remote_tx_rate, u16 *link_widths);
1034 static void read_vc_local_link_mode(struct hfi1_devdata *dd, u8 *misc_bits,
1035 				    u8 *flag_bits, u16 *link_widths);
1036 static void read_remote_device_id(struct hfi1_devdata *dd, u16 *device_id,
1037 				  u8 *device_rev);
1038 static void read_local_lni(struct hfi1_devdata *dd, u8 *enable_lane_rx);
1039 static int read_tx_settings(struct hfi1_devdata *dd, u8 *enable_lane_tx,
1040 			    u8 *tx_polarity_inversion,
1041 			    u8 *rx_polarity_inversion, u8 *max_rate);
1042 static void handle_sdma_eng_err(struct hfi1_devdata *dd,
1043 				unsigned int context, u64 err_status);
1044 static void handle_qsfp_int(struct hfi1_devdata *dd, u32 source, u64 reg);
1045 static void handle_dcc_err(struct hfi1_devdata *dd,
1046 			   unsigned int context, u64 err_status);
1047 static void handle_lcb_err(struct hfi1_devdata *dd,
1048 			   unsigned int context, u64 err_status);
1049 static void handle_8051_interrupt(struct hfi1_devdata *dd, u32 unused, u64 reg);
1050 static void handle_cce_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1051 static void handle_rxe_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1052 static void handle_misc_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1053 static void handle_pio_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1054 static void handle_sdma_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1055 static void handle_egress_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1056 static void handle_txe_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1057 static void set_partition_keys(struct hfi1_pportdata *ppd);
1058 static const char *link_state_name(u32 state);
1059 static const char *link_state_reason_name(struct hfi1_pportdata *ppd,
1060 					  u32 state);
1061 static int do_8051_command(struct hfi1_devdata *dd, u32 type, u64 in_data,
1062 			   u64 *out_data);
1063 static int read_idle_sma(struct hfi1_devdata *dd, u64 *data);
1064 static int thermal_init(struct hfi1_devdata *dd);
1065 
1066 static void update_statusp(struct hfi1_pportdata *ppd, u32 state);
1067 static int wait_phys_link_offline_substates(struct hfi1_pportdata *ppd,
1068 					    int msecs);
1069 static int wait_logical_linkstate(struct hfi1_pportdata *ppd, u32 state,
1070 				  int msecs);
1071 static void log_state_transition(struct hfi1_pportdata *ppd, u32 state);
1072 static void log_physical_state(struct hfi1_pportdata *ppd, u32 state);
1073 static int wait_physical_linkstate(struct hfi1_pportdata *ppd, u32 state,
1074 				   int msecs);
1075 static int wait_phys_link_out_of_offline(struct hfi1_pportdata *ppd,
1076 					 int msecs);
1077 static void read_planned_down_reason_code(struct hfi1_devdata *dd, u8 *pdrrc);
1078 static void read_link_down_reason(struct hfi1_devdata *dd, u8 *ldr);
1079 static void handle_temp_err(struct hfi1_devdata *dd);
1080 static void dc_shutdown(struct hfi1_devdata *dd);
1081 static void dc_start(struct hfi1_devdata *dd);
1082 static int qos_rmt_entries(struct hfi1_devdata *dd, unsigned int *mp,
1083 			   unsigned int *np);
1084 static void clear_full_mgmt_pkey(struct hfi1_pportdata *ppd);
1085 static int wait_link_transfer_active(struct hfi1_devdata *dd, int wait_ms);
1086 static void clear_rsm_rule(struct hfi1_devdata *dd, u8 rule_index);
1087 static void update_xmit_counters(struct hfi1_pportdata *ppd, u16 link_width);
1088 
1089 /*
1090  * Error interrupt table entry.  This is used as input to the interrupt
1091  * "clear down" routine used for all second tier error interrupt register.
1092  * Second tier interrupt registers have a single bit representing them
1093  * in the top-level CceIntStatus.
1094  */
1095 struct err_reg_info {
1096 	u32 status;		/* status CSR offset */
1097 	u32 clear;		/* clear CSR offset */
1098 	u32 mask;		/* mask CSR offset */
1099 	void (*handler)(struct hfi1_devdata *dd, u32 source, u64 reg);
1100 	const char *desc;
1101 };
1102 
1103 #define NUM_MISC_ERRS (IS_GENERAL_ERR_END + 1 - IS_GENERAL_ERR_START)
1104 #define NUM_DC_ERRS (IS_DC_END + 1 - IS_DC_START)
1105 #define NUM_VARIOUS (IS_VARIOUS_END + 1 - IS_VARIOUS_START)
1106 
1107 /*
1108  * Helpers for building HFI and DC error interrupt table entries.  Different
1109  * helpers are needed because of inconsistent register names.
1110  */
1111 #define EE(reg, handler, desc) \
1112 	{ reg##_STATUS, reg##_CLEAR, reg##_MASK, \
1113 		handler, desc }
1114 #define DC_EE1(reg, handler, desc) \
1115 	{ reg##_FLG, reg##_FLG_CLR, reg##_FLG_EN, handler, desc }
1116 #define DC_EE2(reg, handler, desc) \
1117 	{ reg##_FLG, reg##_CLR, reg##_EN, handler, desc }
1118 
1119 /*
1120  * Table of the "misc" grouping of error interrupts.  Each entry refers to
1121  * another register containing more information.
1122  */
1123 static const struct err_reg_info misc_errs[NUM_MISC_ERRS] = {
1124 /* 0*/	EE(CCE_ERR,		handle_cce_err,    "CceErr"),
1125 /* 1*/	EE(RCV_ERR,		handle_rxe_err,    "RxeErr"),
1126 /* 2*/	EE(MISC_ERR,	handle_misc_err,   "MiscErr"),
1127 /* 3*/	{ 0, 0, 0, NULL }, /* reserved */
1128 /* 4*/	EE(SEND_PIO_ERR,    handle_pio_err,    "PioErr"),
1129 /* 5*/	EE(SEND_DMA_ERR,    handle_sdma_err,   "SDmaErr"),
1130 /* 6*/	EE(SEND_EGRESS_ERR, handle_egress_err, "EgressErr"),
1131 /* 7*/	EE(SEND_ERR,	handle_txe_err,    "TxeErr")
1132 	/* the rest are reserved */
1133 };
1134 
1135 /*
1136  * Index into the Various section of the interrupt sources
1137  * corresponding to the Critical Temperature interrupt.
1138  */
1139 #define TCRIT_INT_SOURCE 4
1140 
1141 /*
1142  * SDMA error interrupt entry - refers to another register containing more
1143  * information.
1144  */
1145 static const struct err_reg_info sdma_eng_err =
1146 	EE(SEND_DMA_ENG_ERR, handle_sdma_eng_err, "SDmaEngErr");
1147 
1148 static const struct err_reg_info various_err[NUM_VARIOUS] = {
1149 /* 0*/	{ 0, 0, 0, NULL }, /* PbcInt */
1150 /* 1*/	{ 0, 0, 0, NULL }, /* GpioAssertInt */
1151 /* 2*/	EE(ASIC_QSFP1,	handle_qsfp_int,	"QSFP1"),
1152 /* 3*/	EE(ASIC_QSFP2,	handle_qsfp_int,	"QSFP2"),
1153 /* 4*/	{ 0, 0, 0, NULL }, /* TCritInt */
1154 	/* rest are reserved */
1155 };
1156 
1157 /*
1158  * The DC encoding of mtu_cap for 10K MTU in the DCC_CFG_PORT_CONFIG
1159  * register can not be derived from the MTU value because 10K is not
1160  * a power of 2. Therefore, we need a constant. Everything else can
1161  * be calculated.
1162  */
1163 #define DCC_CFG_PORT_MTU_CAP_10240 7
1164 
1165 /*
1166  * Table of the DC grouping of error interrupts.  Each entry refers to
1167  * another register containing more information.
1168  */
1169 static const struct err_reg_info dc_errs[NUM_DC_ERRS] = {
1170 /* 0*/	DC_EE1(DCC_ERR,		handle_dcc_err,	       "DCC Err"),
1171 /* 1*/	DC_EE2(DC_LCB_ERR,	handle_lcb_err,	       "LCB Err"),
1172 /* 2*/	DC_EE2(DC_DC8051_ERR,	handle_8051_interrupt, "DC8051 Interrupt"),
1173 /* 3*/	/* dc_lbm_int - special, see is_dc_int() */
1174 	/* the rest are reserved */
1175 };
1176 
1177 struct cntr_entry {
1178 	/*
1179 	 * counter name
1180 	 */
1181 	char *name;
1182 
1183 	/*
1184 	 * csr to read for name (if applicable)
1185 	 */
1186 	u64 csr;
1187 
1188 	/*
1189 	 * offset into dd or ppd to store the counter's value
1190 	 */
1191 	int offset;
1192 
1193 	/*
1194 	 * flags
1195 	 */
1196 	u8 flags;
1197 
1198 	/*
1199 	 * accessor for stat element, context either dd or ppd
1200 	 */
1201 	u64 (*rw_cntr)(const struct cntr_entry *, void *context, int vl,
1202 		       int mode, u64 data);
1203 };
1204 
1205 #define C_RCV_HDR_OVF_FIRST C_RCV_HDR_OVF_0
1206 #define C_RCV_HDR_OVF_LAST C_RCV_HDR_OVF_159
1207 
1208 #define CNTR_ELEM(name, csr, offset, flags, accessor) \
1209 { \
1210 	name, \
1211 	csr, \
1212 	offset, \
1213 	flags, \
1214 	accessor \
1215 }
1216 
1217 /* 32bit RXE */
1218 #define RXE32_PORT_CNTR_ELEM(name, counter, flags) \
1219 CNTR_ELEM(#name, \
1220 	  (counter * 8 + RCV_COUNTER_ARRAY32), \
1221 	  0, flags | CNTR_32BIT, \
1222 	  port_access_u32_csr)
1223 
1224 #define RXE32_DEV_CNTR_ELEM(name, counter, flags) \
1225 CNTR_ELEM(#name, \
1226 	  (counter * 8 + RCV_COUNTER_ARRAY32), \
1227 	  0, flags | CNTR_32BIT, \
1228 	  dev_access_u32_csr)
1229 
1230 /* 64bit RXE */
1231 #define RXE64_PORT_CNTR_ELEM(name, counter, flags) \
1232 CNTR_ELEM(#name, \
1233 	  (counter * 8 + RCV_COUNTER_ARRAY64), \
1234 	  0, flags, \
1235 	  port_access_u64_csr)
1236 
1237 #define RXE64_DEV_CNTR_ELEM(name, counter, flags) \
1238 CNTR_ELEM(#name, \
1239 	  (counter * 8 + RCV_COUNTER_ARRAY64), \
1240 	  0, flags, \
1241 	  dev_access_u64_csr)
1242 
1243 #define OVR_LBL(ctx) C_RCV_HDR_OVF_ ## ctx
1244 #define OVR_ELM(ctx) \
1245 CNTR_ELEM("RcvHdrOvr" #ctx, \
1246 	  (RCV_HDR_OVFL_CNT + ctx * 0x100), \
1247 	  0, CNTR_NORMAL, port_access_u64_csr)
1248 
1249 /* 32bit TXE */
1250 #define TXE32_PORT_CNTR_ELEM(name, counter, flags) \
1251 CNTR_ELEM(#name, \
1252 	  (counter * 8 + SEND_COUNTER_ARRAY32), \
1253 	  0, flags | CNTR_32BIT, \
1254 	  port_access_u32_csr)
1255 
1256 /* 64bit TXE */
1257 #define TXE64_PORT_CNTR_ELEM(name, counter, flags) \
1258 CNTR_ELEM(#name, \
1259 	  (counter * 8 + SEND_COUNTER_ARRAY64), \
1260 	  0, flags, \
1261 	  port_access_u64_csr)
1262 
1263 # define TX64_DEV_CNTR_ELEM(name, counter, flags) \
1264 CNTR_ELEM(#name,\
1265 	  counter * 8 + SEND_COUNTER_ARRAY64, \
1266 	  0, \
1267 	  flags, \
1268 	  dev_access_u64_csr)
1269 
1270 /* CCE */
1271 #define CCE_PERF_DEV_CNTR_ELEM(name, counter, flags) \
1272 CNTR_ELEM(#name, \
1273 	  (counter * 8 + CCE_COUNTER_ARRAY32), \
1274 	  0, flags | CNTR_32BIT, \
1275 	  dev_access_u32_csr)
1276 
1277 #define CCE_INT_DEV_CNTR_ELEM(name, counter, flags) \
1278 CNTR_ELEM(#name, \
1279 	  (counter * 8 + CCE_INT_COUNTER_ARRAY32), \
1280 	  0, flags | CNTR_32BIT, \
1281 	  dev_access_u32_csr)
1282 
1283 /* DC */
1284 #define DC_PERF_CNTR(name, counter, flags) \
1285 CNTR_ELEM(#name, \
1286 	  counter, \
1287 	  0, \
1288 	  flags, \
1289 	  dev_access_u64_csr)
1290 
1291 #define DC_PERF_CNTR_LCB(name, counter, flags) \
1292 CNTR_ELEM(#name, \
1293 	  counter, \
1294 	  0, \
1295 	  flags, \
1296 	  dc_access_lcb_cntr)
1297 
1298 /* ibp counters */
1299 #define SW_IBP_CNTR(name, cntr) \
1300 CNTR_ELEM(#name, \
1301 	  0, \
1302 	  0, \
1303 	  CNTR_SYNTH, \
1304 	  access_ibp_##cntr)
1305 
1306 /**
1307  * hfi_addr_from_offset - return addr for readq/writeq
1308  * @dd - the dd device
1309  * @offset - the offset of the CSR within bar0
1310  *
1311  * This routine selects the appropriate base address
1312  * based on the indicated offset.
1313  */
1314 static inline void __iomem *hfi1_addr_from_offset(
1315 	const struct hfi1_devdata *dd,
1316 	u32 offset)
1317 {
1318 	if (offset >= dd->base2_start)
1319 		return dd->kregbase2 + (offset - dd->base2_start);
1320 	return dd->kregbase1 + offset;
1321 }
1322 
1323 /**
1324  * read_csr - read CSR at the indicated offset
1325  * @dd - the dd device
1326  * @offset - the offset of the CSR within bar0
1327  *
1328  * Return: the value read or all FF's if there
1329  * is no mapping
1330  */
1331 u64 read_csr(const struct hfi1_devdata *dd, u32 offset)
1332 {
1333 	if (dd->flags & HFI1_PRESENT)
1334 		return readq(hfi1_addr_from_offset(dd, offset));
1335 	return -1;
1336 }
1337 
1338 /**
1339  * write_csr - write CSR at the indicated offset
1340  * @dd - the dd device
1341  * @offset - the offset of the CSR within bar0
1342  * @value - value to write
1343  */
1344 void write_csr(const struct hfi1_devdata *dd, u32 offset, u64 value)
1345 {
1346 	if (dd->flags & HFI1_PRESENT) {
1347 		void __iomem *base = hfi1_addr_from_offset(dd, offset);
1348 
1349 		/* avoid write to RcvArray */
1350 		if (WARN_ON(offset >= RCV_ARRAY && offset < dd->base2_start))
1351 			return;
1352 		writeq(value, base);
1353 	}
1354 }
1355 
1356 /**
1357  * get_csr_addr - return te iomem address for offset
1358  * @dd - the dd device
1359  * @offset - the offset of the CSR within bar0
1360  *
1361  * Return: The iomem address to use in subsequent
1362  * writeq/readq operations.
1363  */
1364 void __iomem *get_csr_addr(
1365 	const struct hfi1_devdata *dd,
1366 	u32 offset)
1367 {
1368 	if (dd->flags & HFI1_PRESENT)
1369 		return hfi1_addr_from_offset(dd, offset);
1370 	return NULL;
1371 }
1372 
1373 static inline u64 read_write_csr(const struct hfi1_devdata *dd, u32 csr,
1374 				 int mode, u64 value)
1375 {
1376 	u64 ret;
1377 
1378 	if (mode == CNTR_MODE_R) {
1379 		ret = read_csr(dd, csr);
1380 	} else if (mode == CNTR_MODE_W) {
1381 		write_csr(dd, csr, value);
1382 		ret = value;
1383 	} else {
1384 		dd_dev_err(dd, "Invalid cntr register access mode");
1385 		return 0;
1386 	}
1387 
1388 	hfi1_cdbg(CNTR, "csr 0x%x val 0x%llx mode %d", csr, ret, mode);
1389 	return ret;
1390 }
1391 
1392 /* Dev Access */
1393 static u64 dev_access_u32_csr(const struct cntr_entry *entry,
1394 			      void *context, int vl, int mode, u64 data)
1395 {
1396 	struct hfi1_devdata *dd = context;
1397 	u64 csr = entry->csr;
1398 
1399 	if (entry->flags & CNTR_SDMA) {
1400 		if (vl == CNTR_INVALID_VL)
1401 			return 0;
1402 		csr += 0x100 * vl;
1403 	} else {
1404 		if (vl != CNTR_INVALID_VL)
1405 			return 0;
1406 	}
1407 	return read_write_csr(dd, csr, mode, data);
1408 }
1409 
1410 static u64 access_sde_err_cnt(const struct cntr_entry *entry,
1411 			      void *context, int idx, int mode, u64 data)
1412 {
1413 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1414 
1415 	if (dd->per_sdma && idx < dd->num_sdma)
1416 		return dd->per_sdma[idx].err_cnt;
1417 	return 0;
1418 }
1419 
1420 static u64 access_sde_int_cnt(const struct cntr_entry *entry,
1421 			      void *context, int idx, int mode, u64 data)
1422 {
1423 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1424 
1425 	if (dd->per_sdma && idx < dd->num_sdma)
1426 		return dd->per_sdma[idx].sdma_int_cnt;
1427 	return 0;
1428 }
1429 
1430 static u64 access_sde_idle_int_cnt(const struct cntr_entry *entry,
1431 				   void *context, int idx, int mode, u64 data)
1432 {
1433 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1434 
1435 	if (dd->per_sdma && idx < dd->num_sdma)
1436 		return dd->per_sdma[idx].idle_int_cnt;
1437 	return 0;
1438 }
1439 
1440 static u64 access_sde_progress_int_cnt(const struct cntr_entry *entry,
1441 				       void *context, int idx, int mode,
1442 				       u64 data)
1443 {
1444 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1445 
1446 	if (dd->per_sdma && idx < dd->num_sdma)
1447 		return dd->per_sdma[idx].progress_int_cnt;
1448 	return 0;
1449 }
1450 
1451 static u64 dev_access_u64_csr(const struct cntr_entry *entry, void *context,
1452 			      int vl, int mode, u64 data)
1453 {
1454 	struct hfi1_devdata *dd = context;
1455 
1456 	u64 val = 0;
1457 	u64 csr = entry->csr;
1458 
1459 	if (entry->flags & CNTR_VL) {
1460 		if (vl == CNTR_INVALID_VL)
1461 			return 0;
1462 		csr += 8 * vl;
1463 	} else {
1464 		if (vl != CNTR_INVALID_VL)
1465 			return 0;
1466 	}
1467 
1468 	val = read_write_csr(dd, csr, mode, data);
1469 	return val;
1470 }
1471 
1472 static u64 dc_access_lcb_cntr(const struct cntr_entry *entry, void *context,
1473 			      int vl, int mode, u64 data)
1474 {
1475 	struct hfi1_devdata *dd = context;
1476 	u32 csr = entry->csr;
1477 	int ret = 0;
1478 
1479 	if (vl != CNTR_INVALID_VL)
1480 		return 0;
1481 	if (mode == CNTR_MODE_R)
1482 		ret = read_lcb_csr(dd, csr, &data);
1483 	else if (mode == CNTR_MODE_W)
1484 		ret = write_lcb_csr(dd, csr, data);
1485 
1486 	if (ret) {
1487 		dd_dev_err(dd, "Could not acquire LCB for counter 0x%x", csr);
1488 		return 0;
1489 	}
1490 
1491 	hfi1_cdbg(CNTR, "csr 0x%x val 0x%llx mode %d", csr, data, mode);
1492 	return data;
1493 }
1494 
1495 /* Port Access */
1496 static u64 port_access_u32_csr(const struct cntr_entry *entry, void *context,
1497 			       int vl, int mode, u64 data)
1498 {
1499 	struct hfi1_pportdata *ppd = context;
1500 
1501 	if (vl != CNTR_INVALID_VL)
1502 		return 0;
1503 	return read_write_csr(ppd->dd, entry->csr, mode, data);
1504 }
1505 
1506 static u64 port_access_u64_csr(const struct cntr_entry *entry,
1507 			       void *context, int vl, int mode, u64 data)
1508 {
1509 	struct hfi1_pportdata *ppd = context;
1510 	u64 val;
1511 	u64 csr = entry->csr;
1512 
1513 	if (entry->flags & CNTR_VL) {
1514 		if (vl == CNTR_INVALID_VL)
1515 			return 0;
1516 		csr += 8 * vl;
1517 	} else {
1518 		if (vl != CNTR_INVALID_VL)
1519 			return 0;
1520 	}
1521 	val = read_write_csr(ppd->dd, csr, mode, data);
1522 	return val;
1523 }
1524 
1525 /* Software defined */
1526 static inline u64 read_write_sw(struct hfi1_devdata *dd, u64 *cntr, int mode,
1527 				u64 data)
1528 {
1529 	u64 ret;
1530 
1531 	if (mode == CNTR_MODE_R) {
1532 		ret = *cntr;
1533 	} else if (mode == CNTR_MODE_W) {
1534 		*cntr = data;
1535 		ret = data;
1536 	} else {
1537 		dd_dev_err(dd, "Invalid cntr sw access mode");
1538 		return 0;
1539 	}
1540 
1541 	hfi1_cdbg(CNTR, "val 0x%llx mode %d", ret, mode);
1542 
1543 	return ret;
1544 }
1545 
1546 static u64 access_sw_link_dn_cnt(const struct cntr_entry *entry, void *context,
1547 				 int vl, int mode, u64 data)
1548 {
1549 	struct hfi1_pportdata *ppd = context;
1550 
1551 	if (vl != CNTR_INVALID_VL)
1552 		return 0;
1553 	return read_write_sw(ppd->dd, &ppd->link_downed, mode, data);
1554 }
1555 
1556 static u64 access_sw_link_up_cnt(const struct cntr_entry *entry, void *context,
1557 				 int vl, int mode, u64 data)
1558 {
1559 	struct hfi1_pportdata *ppd = context;
1560 
1561 	if (vl != CNTR_INVALID_VL)
1562 		return 0;
1563 	return read_write_sw(ppd->dd, &ppd->link_up, mode, data);
1564 }
1565 
1566 static u64 access_sw_unknown_frame_cnt(const struct cntr_entry *entry,
1567 				       void *context, int vl, int mode,
1568 				       u64 data)
1569 {
1570 	struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context;
1571 
1572 	if (vl != CNTR_INVALID_VL)
1573 		return 0;
1574 	return read_write_sw(ppd->dd, &ppd->unknown_frame_count, mode, data);
1575 }
1576 
1577 static u64 access_sw_xmit_discards(const struct cntr_entry *entry,
1578 				   void *context, int vl, int mode, u64 data)
1579 {
1580 	struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context;
1581 	u64 zero = 0;
1582 	u64 *counter;
1583 
1584 	if (vl == CNTR_INVALID_VL)
1585 		counter = &ppd->port_xmit_discards;
1586 	else if (vl >= 0 && vl < C_VL_COUNT)
1587 		counter = &ppd->port_xmit_discards_vl[vl];
1588 	else
1589 		counter = &zero;
1590 
1591 	return read_write_sw(ppd->dd, counter, mode, data);
1592 }
1593 
1594 static u64 access_xmit_constraint_errs(const struct cntr_entry *entry,
1595 				       void *context, int vl, int mode,
1596 				       u64 data)
1597 {
1598 	struct hfi1_pportdata *ppd = context;
1599 
1600 	if (vl != CNTR_INVALID_VL)
1601 		return 0;
1602 
1603 	return read_write_sw(ppd->dd, &ppd->port_xmit_constraint_errors,
1604 			     mode, data);
1605 }
1606 
1607 static u64 access_rcv_constraint_errs(const struct cntr_entry *entry,
1608 				      void *context, int vl, int mode, u64 data)
1609 {
1610 	struct hfi1_pportdata *ppd = context;
1611 
1612 	if (vl != CNTR_INVALID_VL)
1613 		return 0;
1614 
1615 	return read_write_sw(ppd->dd, &ppd->port_rcv_constraint_errors,
1616 			     mode, data);
1617 }
1618 
1619 u64 get_all_cpu_total(u64 __percpu *cntr)
1620 {
1621 	int cpu;
1622 	u64 counter = 0;
1623 
1624 	for_each_possible_cpu(cpu)
1625 		counter += *per_cpu_ptr(cntr, cpu);
1626 	return counter;
1627 }
1628 
1629 static u64 read_write_cpu(struct hfi1_devdata *dd, u64 *z_val,
1630 			  u64 __percpu *cntr,
1631 			  int vl, int mode, u64 data)
1632 {
1633 	u64 ret = 0;
1634 
1635 	if (vl != CNTR_INVALID_VL)
1636 		return 0;
1637 
1638 	if (mode == CNTR_MODE_R) {
1639 		ret = get_all_cpu_total(cntr) - *z_val;
1640 	} else if (mode == CNTR_MODE_W) {
1641 		/* A write can only zero the counter */
1642 		if (data == 0)
1643 			*z_val = get_all_cpu_total(cntr);
1644 		else
1645 			dd_dev_err(dd, "Per CPU cntrs can only be zeroed");
1646 	} else {
1647 		dd_dev_err(dd, "Invalid cntr sw cpu access mode");
1648 		return 0;
1649 	}
1650 
1651 	return ret;
1652 }
1653 
1654 static u64 access_sw_cpu_intr(const struct cntr_entry *entry,
1655 			      void *context, int vl, int mode, u64 data)
1656 {
1657 	struct hfi1_devdata *dd = context;
1658 
1659 	return read_write_cpu(dd, &dd->z_int_counter, dd->int_counter, vl,
1660 			      mode, data);
1661 }
1662 
1663 static u64 access_sw_cpu_rcv_limit(const struct cntr_entry *entry,
1664 				   void *context, int vl, int mode, u64 data)
1665 {
1666 	struct hfi1_devdata *dd = context;
1667 
1668 	return read_write_cpu(dd, &dd->z_rcv_limit, dd->rcv_limit, vl,
1669 			      mode, data);
1670 }
1671 
1672 static u64 access_sw_pio_wait(const struct cntr_entry *entry,
1673 			      void *context, int vl, int mode, u64 data)
1674 {
1675 	struct hfi1_devdata *dd = context;
1676 
1677 	return dd->verbs_dev.n_piowait;
1678 }
1679 
1680 static u64 access_sw_pio_drain(const struct cntr_entry *entry,
1681 			       void *context, int vl, int mode, u64 data)
1682 {
1683 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1684 
1685 	return dd->verbs_dev.n_piodrain;
1686 }
1687 
1688 static u64 access_sw_ctx0_seq_drop(const struct cntr_entry *entry,
1689 				   void *context, int vl, int mode, u64 data)
1690 {
1691 	struct hfi1_devdata *dd = context;
1692 
1693 	return dd->ctx0_seq_drop;
1694 }
1695 
1696 static u64 access_sw_vtx_wait(const struct cntr_entry *entry,
1697 			      void *context, int vl, int mode, u64 data)
1698 {
1699 	struct hfi1_devdata *dd = context;
1700 
1701 	return dd->verbs_dev.n_txwait;
1702 }
1703 
1704 static u64 access_sw_kmem_wait(const struct cntr_entry *entry,
1705 			       void *context, int vl, int mode, u64 data)
1706 {
1707 	struct hfi1_devdata *dd = context;
1708 
1709 	return dd->verbs_dev.n_kmem_wait;
1710 }
1711 
1712 static u64 access_sw_send_schedule(const struct cntr_entry *entry,
1713 				   void *context, int vl, int mode, u64 data)
1714 {
1715 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1716 
1717 	return read_write_cpu(dd, &dd->z_send_schedule, dd->send_schedule, vl,
1718 			      mode, data);
1719 }
1720 
1721 /* Software counters for the error status bits within MISC_ERR_STATUS */
1722 static u64 access_misc_pll_lock_fail_err_cnt(const struct cntr_entry *entry,
1723 					     void *context, int vl, int mode,
1724 					     u64 data)
1725 {
1726 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1727 
1728 	return dd->misc_err_status_cnt[12];
1729 }
1730 
1731 static u64 access_misc_mbist_fail_err_cnt(const struct cntr_entry *entry,
1732 					  void *context, int vl, int mode,
1733 					  u64 data)
1734 {
1735 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1736 
1737 	return dd->misc_err_status_cnt[11];
1738 }
1739 
1740 static u64 access_misc_invalid_eep_cmd_err_cnt(const struct cntr_entry *entry,
1741 					       void *context, int vl, int mode,
1742 					       u64 data)
1743 {
1744 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1745 
1746 	return dd->misc_err_status_cnt[10];
1747 }
1748 
1749 static u64 access_misc_efuse_done_parity_err_cnt(const struct cntr_entry *entry,
1750 						 void *context, int vl,
1751 						 int mode, u64 data)
1752 {
1753 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1754 
1755 	return dd->misc_err_status_cnt[9];
1756 }
1757 
1758 static u64 access_misc_efuse_write_err_cnt(const struct cntr_entry *entry,
1759 					   void *context, int vl, int mode,
1760 					   u64 data)
1761 {
1762 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1763 
1764 	return dd->misc_err_status_cnt[8];
1765 }
1766 
1767 static u64 access_misc_efuse_read_bad_addr_err_cnt(
1768 				const struct cntr_entry *entry,
1769 				void *context, int vl, int mode, u64 data)
1770 {
1771 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1772 
1773 	return dd->misc_err_status_cnt[7];
1774 }
1775 
1776 static u64 access_misc_efuse_csr_parity_err_cnt(const struct cntr_entry *entry,
1777 						void *context, int vl,
1778 						int mode, u64 data)
1779 {
1780 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1781 
1782 	return dd->misc_err_status_cnt[6];
1783 }
1784 
1785 static u64 access_misc_fw_auth_failed_err_cnt(const struct cntr_entry *entry,
1786 					      void *context, int vl, int mode,
1787 					      u64 data)
1788 {
1789 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1790 
1791 	return dd->misc_err_status_cnt[5];
1792 }
1793 
1794 static u64 access_misc_key_mismatch_err_cnt(const struct cntr_entry *entry,
1795 					    void *context, int vl, int mode,
1796 					    u64 data)
1797 {
1798 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1799 
1800 	return dd->misc_err_status_cnt[4];
1801 }
1802 
1803 static u64 access_misc_sbus_write_failed_err_cnt(const struct cntr_entry *entry,
1804 						 void *context, int vl,
1805 						 int mode, u64 data)
1806 {
1807 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1808 
1809 	return dd->misc_err_status_cnt[3];
1810 }
1811 
1812 static u64 access_misc_csr_write_bad_addr_err_cnt(
1813 				const struct cntr_entry *entry,
1814 				void *context, int vl, int mode, u64 data)
1815 {
1816 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1817 
1818 	return dd->misc_err_status_cnt[2];
1819 }
1820 
1821 static u64 access_misc_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
1822 						 void *context, int vl,
1823 						 int mode, u64 data)
1824 {
1825 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1826 
1827 	return dd->misc_err_status_cnt[1];
1828 }
1829 
1830 static u64 access_misc_csr_parity_err_cnt(const struct cntr_entry *entry,
1831 					  void *context, int vl, int mode,
1832 					  u64 data)
1833 {
1834 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1835 
1836 	return dd->misc_err_status_cnt[0];
1837 }
1838 
1839 /*
1840  * Software counter for the aggregate of
1841  * individual CceErrStatus counters
1842  */
1843 static u64 access_sw_cce_err_status_aggregated_cnt(
1844 				const struct cntr_entry *entry,
1845 				void *context, int vl, int mode, u64 data)
1846 {
1847 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1848 
1849 	return dd->sw_cce_err_status_aggregate;
1850 }
1851 
1852 /*
1853  * Software counters corresponding to each of the
1854  * error status bits within CceErrStatus
1855  */
1856 static u64 access_cce_msix_csr_parity_err_cnt(const struct cntr_entry *entry,
1857 					      void *context, int vl, int mode,
1858 					      u64 data)
1859 {
1860 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1861 
1862 	return dd->cce_err_status_cnt[40];
1863 }
1864 
1865 static u64 access_cce_int_map_unc_err_cnt(const struct cntr_entry *entry,
1866 					  void *context, int vl, int mode,
1867 					  u64 data)
1868 {
1869 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1870 
1871 	return dd->cce_err_status_cnt[39];
1872 }
1873 
1874 static u64 access_cce_int_map_cor_err_cnt(const struct cntr_entry *entry,
1875 					  void *context, int vl, int mode,
1876 					  u64 data)
1877 {
1878 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1879 
1880 	return dd->cce_err_status_cnt[38];
1881 }
1882 
1883 static u64 access_cce_msix_table_unc_err_cnt(const struct cntr_entry *entry,
1884 					     void *context, int vl, int mode,
1885 					     u64 data)
1886 {
1887 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1888 
1889 	return dd->cce_err_status_cnt[37];
1890 }
1891 
1892 static u64 access_cce_msix_table_cor_err_cnt(const struct cntr_entry *entry,
1893 					     void *context, int vl, int mode,
1894 					     u64 data)
1895 {
1896 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1897 
1898 	return dd->cce_err_status_cnt[36];
1899 }
1900 
1901 static u64 access_cce_rxdma_conv_fifo_parity_err_cnt(
1902 				const struct cntr_entry *entry,
1903 				void *context, int vl, int mode, u64 data)
1904 {
1905 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1906 
1907 	return dd->cce_err_status_cnt[35];
1908 }
1909 
1910 static u64 access_cce_rcpl_async_fifo_parity_err_cnt(
1911 				const struct cntr_entry *entry,
1912 				void *context, int vl, int mode, u64 data)
1913 {
1914 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1915 
1916 	return dd->cce_err_status_cnt[34];
1917 }
1918 
1919 static u64 access_cce_seg_write_bad_addr_err_cnt(const struct cntr_entry *entry,
1920 						 void *context, int vl,
1921 						 int mode, u64 data)
1922 {
1923 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1924 
1925 	return dd->cce_err_status_cnt[33];
1926 }
1927 
1928 static u64 access_cce_seg_read_bad_addr_err_cnt(const struct cntr_entry *entry,
1929 						void *context, int vl, int mode,
1930 						u64 data)
1931 {
1932 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1933 
1934 	return dd->cce_err_status_cnt[32];
1935 }
1936 
1937 static u64 access_la_triggered_cnt(const struct cntr_entry *entry,
1938 				   void *context, int vl, int mode, u64 data)
1939 {
1940 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1941 
1942 	return dd->cce_err_status_cnt[31];
1943 }
1944 
1945 static u64 access_cce_trgt_cpl_timeout_err_cnt(const struct cntr_entry *entry,
1946 					       void *context, int vl, int mode,
1947 					       u64 data)
1948 {
1949 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1950 
1951 	return dd->cce_err_status_cnt[30];
1952 }
1953 
1954 static u64 access_pcic_receive_parity_err_cnt(const struct cntr_entry *entry,
1955 					      void *context, int vl, int mode,
1956 					      u64 data)
1957 {
1958 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1959 
1960 	return dd->cce_err_status_cnt[29];
1961 }
1962 
1963 static u64 access_pcic_transmit_back_parity_err_cnt(
1964 				const struct cntr_entry *entry,
1965 				void *context, int vl, int mode, u64 data)
1966 {
1967 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1968 
1969 	return dd->cce_err_status_cnt[28];
1970 }
1971 
1972 static u64 access_pcic_transmit_front_parity_err_cnt(
1973 				const struct cntr_entry *entry,
1974 				void *context, int vl, int mode, u64 data)
1975 {
1976 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1977 
1978 	return dd->cce_err_status_cnt[27];
1979 }
1980 
1981 static u64 access_pcic_cpl_dat_q_unc_err_cnt(const struct cntr_entry *entry,
1982 					     void *context, int vl, int mode,
1983 					     u64 data)
1984 {
1985 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1986 
1987 	return dd->cce_err_status_cnt[26];
1988 }
1989 
1990 static u64 access_pcic_cpl_hd_q_unc_err_cnt(const struct cntr_entry *entry,
1991 					    void *context, int vl, int mode,
1992 					    u64 data)
1993 {
1994 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1995 
1996 	return dd->cce_err_status_cnt[25];
1997 }
1998 
1999 static u64 access_pcic_post_dat_q_unc_err_cnt(const struct cntr_entry *entry,
2000 					      void *context, int vl, int mode,
2001 					      u64 data)
2002 {
2003 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2004 
2005 	return dd->cce_err_status_cnt[24];
2006 }
2007 
2008 static u64 access_pcic_post_hd_q_unc_err_cnt(const struct cntr_entry *entry,
2009 					     void *context, int vl, int mode,
2010 					     u64 data)
2011 {
2012 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2013 
2014 	return dd->cce_err_status_cnt[23];
2015 }
2016 
2017 static u64 access_pcic_retry_sot_mem_unc_err_cnt(const struct cntr_entry *entry,
2018 						 void *context, int vl,
2019 						 int mode, u64 data)
2020 {
2021 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2022 
2023 	return dd->cce_err_status_cnt[22];
2024 }
2025 
2026 static u64 access_pcic_retry_mem_unc_err(const struct cntr_entry *entry,
2027 					 void *context, int vl, int mode,
2028 					 u64 data)
2029 {
2030 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2031 
2032 	return dd->cce_err_status_cnt[21];
2033 }
2034 
2035 static u64 access_pcic_n_post_dat_q_parity_err_cnt(
2036 				const struct cntr_entry *entry,
2037 				void *context, int vl, int mode, u64 data)
2038 {
2039 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2040 
2041 	return dd->cce_err_status_cnt[20];
2042 }
2043 
2044 static u64 access_pcic_n_post_h_q_parity_err_cnt(const struct cntr_entry *entry,
2045 						 void *context, int vl,
2046 						 int mode, u64 data)
2047 {
2048 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2049 
2050 	return dd->cce_err_status_cnt[19];
2051 }
2052 
2053 static u64 access_pcic_cpl_dat_q_cor_err_cnt(const struct cntr_entry *entry,
2054 					     void *context, int vl, int mode,
2055 					     u64 data)
2056 {
2057 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2058 
2059 	return dd->cce_err_status_cnt[18];
2060 }
2061 
2062 static u64 access_pcic_cpl_hd_q_cor_err_cnt(const struct cntr_entry *entry,
2063 					    void *context, int vl, int mode,
2064 					    u64 data)
2065 {
2066 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2067 
2068 	return dd->cce_err_status_cnt[17];
2069 }
2070 
2071 static u64 access_pcic_post_dat_q_cor_err_cnt(const struct cntr_entry *entry,
2072 					      void *context, int vl, int mode,
2073 					      u64 data)
2074 {
2075 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2076 
2077 	return dd->cce_err_status_cnt[16];
2078 }
2079 
2080 static u64 access_pcic_post_hd_q_cor_err_cnt(const struct cntr_entry *entry,
2081 					     void *context, int vl, int mode,
2082 					     u64 data)
2083 {
2084 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2085 
2086 	return dd->cce_err_status_cnt[15];
2087 }
2088 
2089 static u64 access_pcic_retry_sot_mem_cor_err_cnt(const struct cntr_entry *entry,
2090 						 void *context, int vl,
2091 						 int mode, u64 data)
2092 {
2093 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2094 
2095 	return dd->cce_err_status_cnt[14];
2096 }
2097 
2098 static u64 access_pcic_retry_mem_cor_err_cnt(const struct cntr_entry *entry,
2099 					     void *context, int vl, int mode,
2100 					     u64 data)
2101 {
2102 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2103 
2104 	return dd->cce_err_status_cnt[13];
2105 }
2106 
2107 static u64 access_cce_cli1_async_fifo_dbg_parity_err_cnt(
2108 				const struct cntr_entry *entry,
2109 				void *context, int vl, int mode, u64 data)
2110 {
2111 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2112 
2113 	return dd->cce_err_status_cnt[12];
2114 }
2115 
2116 static u64 access_cce_cli1_async_fifo_rxdma_parity_err_cnt(
2117 				const struct cntr_entry *entry,
2118 				void *context, int vl, int mode, u64 data)
2119 {
2120 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2121 
2122 	return dd->cce_err_status_cnt[11];
2123 }
2124 
2125 static u64 access_cce_cli1_async_fifo_sdma_hd_parity_err_cnt(
2126 				const struct cntr_entry *entry,
2127 				void *context, int vl, int mode, u64 data)
2128 {
2129 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2130 
2131 	return dd->cce_err_status_cnt[10];
2132 }
2133 
2134 static u64 access_cce_cl1_async_fifo_pio_crdt_parity_err_cnt(
2135 				const struct cntr_entry *entry,
2136 				void *context, int vl, int mode, u64 data)
2137 {
2138 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2139 
2140 	return dd->cce_err_status_cnt[9];
2141 }
2142 
2143 static u64 access_cce_cli2_async_fifo_parity_err_cnt(
2144 				const struct cntr_entry *entry,
2145 				void *context, int vl, int mode, u64 data)
2146 {
2147 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2148 
2149 	return dd->cce_err_status_cnt[8];
2150 }
2151 
2152 static u64 access_cce_csr_cfg_bus_parity_err_cnt(const struct cntr_entry *entry,
2153 						 void *context, int vl,
2154 						 int mode, u64 data)
2155 {
2156 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2157 
2158 	return dd->cce_err_status_cnt[7];
2159 }
2160 
2161 static u64 access_cce_cli0_async_fifo_parity_err_cnt(
2162 				const struct cntr_entry *entry,
2163 				void *context, int vl, int mode, u64 data)
2164 {
2165 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2166 
2167 	return dd->cce_err_status_cnt[6];
2168 }
2169 
2170 static u64 access_cce_rspd_data_parity_err_cnt(const struct cntr_entry *entry,
2171 					       void *context, int vl, int mode,
2172 					       u64 data)
2173 {
2174 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2175 
2176 	return dd->cce_err_status_cnt[5];
2177 }
2178 
2179 static u64 access_cce_trgt_access_err_cnt(const struct cntr_entry *entry,
2180 					  void *context, int vl, int mode,
2181 					  u64 data)
2182 {
2183 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2184 
2185 	return dd->cce_err_status_cnt[4];
2186 }
2187 
2188 static u64 access_cce_trgt_async_fifo_parity_err_cnt(
2189 				const struct cntr_entry *entry,
2190 				void *context, int vl, int mode, u64 data)
2191 {
2192 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2193 
2194 	return dd->cce_err_status_cnt[3];
2195 }
2196 
2197 static u64 access_cce_csr_write_bad_addr_err_cnt(const struct cntr_entry *entry,
2198 						 void *context, int vl,
2199 						 int mode, u64 data)
2200 {
2201 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2202 
2203 	return dd->cce_err_status_cnt[2];
2204 }
2205 
2206 static u64 access_cce_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
2207 						void *context, int vl,
2208 						int mode, u64 data)
2209 {
2210 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2211 
2212 	return dd->cce_err_status_cnt[1];
2213 }
2214 
2215 static u64 access_ccs_csr_parity_err_cnt(const struct cntr_entry *entry,
2216 					 void *context, int vl, int mode,
2217 					 u64 data)
2218 {
2219 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2220 
2221 	return dd->cce_err_status_cnt[0];
2222 }
2223 
2224 /*
2225  * Software counters corresponding to each of the
2226  * error status bits within RcvErrStatus
2227  */
2228 static u64 access_rx_csr_parity_err_cnt(const struct cntr_entry *entry,
2229 					void *context, int vl, int mode,
2230 					u64 data)
2231 {
2232 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2233 
2234 	return dd->rcv_err_status_cnt[63];
2235 }
2236 
2237 static u64 access_rx_csr_write_bad_addr_err_cnt(const struct cntr_entry *entry,
2238 						void *context, int vl,
2239 						int mode, u64 data)
2240 {
2241 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2242 
2243 	return dd->rcv_err_status_cnt[62];
2244 }
2245 
2246 static u64 access_rx_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
2247 					       void *context, int vl, int mode,
2248 					       u64 data)
2249 {
2250 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2251 
2252 	return dd->rcv_err_status_cnt[61];
2253 }
2254 
2255 static u64 access_rx_dma_csr_unc_err_cnt(const struct cntr_entry *entry,
2256 					 void *context, int vl, int mode,
2257 					 u64 data)
2258 {
2259 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2260 
2261 	return dd->rcv_err_status_cnt[60];
2262 }
2263 
2264 static u64 access_rx_dma_dq_fsm_encoding_err_cnt(const struct cntr_entry *entry,
2265 						 void *context, int vl,
2266 						 int mode, u64 data)
2267 {
2268 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2269 
2270 	return dd->rcv_err_status_cnt[59];
2271 }
2272 
2273 static u64 access_rx_dma_eq_fsm_encoding_err_cnt(const struct cntr_entry *entry,
2274 						 void *context, int vl,
2275 						 int mode, u64 data)
2276 {
2277 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2278 
2279 	return dd->rcv_err_status_cnt[58];
2280 }
2281 
2282 static u64 access_rx_dma_csr_parity_err_cnt(const struct cntr_entry *entry,
2283 					    void *context, int vl, int mode,
2284 					    u64 data)
2285 {
2286 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2287 
2288 	return dd->rcv_err_status_cnt[57];
2289 }
2290 
2291 static u64 access_rx_rbuf_data_cor_err_cnt(const struct cntr_entry *entry,
2292 					   void *context, int vl, int mode,
2293 					   u64 data)
2294 {
2295 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2296 
2297 	return dd->rcv_err_status_cnt[56];
2298 }
2299 
2300 static u64 access_rx_rbuf_data_unc_err_cnt(const struct cntr_entry *entry,
2301 					   void *context, int vl, int mode,
2302 					   u64 data)
2303 {
2304 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2305 
2306 	return dd->rcv_err_status_cnt[55];
2307 }
2308 
2309 static u64 access_rx_dma_data_fifo_rd_cor_err_cnt(
2310 				const struct cntr_entry *entry,
2311 				void *context, int vl, int mode, u64 data)
2312 {
2313 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2314 
2315 	return dd->rcv_err_status_cnt[54];
2316 }
2317 
2318 static u64 access_rx_dma_data_fifo_rd_unc_err_cnt(
2319 				const struct cntr_entry *entry,
2320 				void *context, int vl, int mode, u64 data)
2321 {
2322 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2323 
2324 	return dd->rcv_err_status_cnt[53];
2325 }
2326 
2327 static u64 access_rx_dma_hdr_fifo_rd_cor_err_cnt(const struct cntr_entry *entry,
2328 						 void *context, int vl,
2329 						 int mode, u64 data)
2330 {
2331 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2332 
2333 	return dd->rcv_err_status_cnt[52];
2334 }
2335 
2336 static u64 access_rx_dma_hdr_fifo_rd_unc_err_cnt(const struct cntr_entry *entry,
2337 						 void *context, int vl,
2338 						 int mode, u64 data)
2339 {
2340 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2341 
2342 	return dd->rcv_err_status_cnt[51];
2343 }
2344 
2345 static u64 access_rx_rbuf_desc_part2_cor_err_cnt(const struct cntr_entry *entry,
2346 						 void *context, int vl,
2347 						 int mode, u64 data)
2348 {
2349 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2350 
2351 	return dd->rcv_err_status_cnt[50];
2352 }
2353 
2354 static u64 access_rx_rbuf_desc_part2_unc_err_cnt(const struct cntr_entry *entry,
2355 						 void *context, int vl,
2356 						 int mode, u64 data)
2357 {
2358 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2359 
2360 	return dd->rcv_err_status_cnt[49];
2361 }
2362 
2363 static u64 access_rx_rbuf_desc_part1_cor_err_cnt(const struct cntr_entry *entry,
2364 						 void *context, int vl,
2365 						 int mode, u64 data)
2366 {
2367 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2368 
2369 	return dd->rcv_err_status_cnt[48];
2370 }
2371 
2372 static u64 access_rx_rbuf_desc_part1_unc_err_cnt(const struct cntr_entry *entry,
2373 						 void *context, int vl,
2374 						 int mode, u64 data)
2375 {
2376 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2377 
2378 	return dd->rcv_err_status_cnt[47];
2379 }
2380 
2381 static u64 access_rx_hq_intr_fsm_err_cnt(const struct cntr_entry *entry,
2382 					 void *context, int vl, int mode,
2383 					 u64 data)
2384 {
2385 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2386 
2387 	return dd->rcv_err_status_cnt[46];
2388 }
2389 
2390 static u64 access_rx_hq_intr_csr_parity_err_cnt(
2391 				const struct cntr_entry *entry,
2392 				void *context, int vl, int mode, u64 data)
2393 {
2394 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2395 
2396 	return dd->rcv_err_status_cnt[45];
2397 }
2398 
2399 static u64 access_rx_lookup_csr_parity_err_cnt(
2400 				const struct cntr_entry *entry,
2401 				void *context, int vl, int mode, u64 data)
2402 {
2403 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2404 
2405 	return dd->rcv_err_status_cnt[44];
2406 }
2407 
2408 static u64 access_rx_lookup_rcv_array_cor_err_cnt(
2409 				const struct cntr_entry *entry,
2410 				void *context, int vl, int mode, u64 data)
2411 {
2412 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2413 
2414 	return dd->rcv_err_status_cnt[43];
2415 }
2416 
2417 static u64 access_rx_lookup_rcv_array_unc_err_cnt(
2418 				const struct cntr_entry *entry,
2419 				void *context, int vl, int mode, u64 data)
2420 {
2421 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2422 
2423 	return dd->rcv_err_status_cnt[42];
2424 }
2425 
2426 static u64 access_rx_lookup_des_part2_parity_err_cnt(
2427 				const struct cntr_entry *entry,
2428 				void *context, int vl, int mode, u64 data)
2429 {
2430 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2431 
2432 	return dd->rcv_err_status_cnt[41];
2433 }
2434 
2435 static u64 access_rx_lookup_des_part1_unc_cor_err_cnt(
2436 				const struct cntr_entry *entry,
2437 				void *context, int vl, int mode, u64 data)
2438 {
2439 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2440 
2441 	return dd->rcv_err_status_cnt[40];
2442 }
2443 
2444 static u64 access_rx_lookup_des_part1_unc_err_cnt(
2445 				const struct cntr_entry *entry,
2446 				void *context, int vl, int mode, u64 data)
2447 {
2448 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2449 
2450 	return dd->rcv_err_status_cnt[39];
2451 }
2452 
2453 static u64 access_rx_rbuf_next_free_buf_cor_err_cnt(
2454 				const struct cntr_entry *entry,
2455 				void *context, int vl, int mode, u64 data)
2456 {
2457 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2458 
2459 	return dd->rcv_err_status_cnt[38];
2460 }
2461 
2462 static u64 access_rx_rbuf_next_free_buf_unc_err_cnt(
2463 				const struct cntr_entry *entry,
2464 				void *context, int vl, int mode, u64 data)
2465 {
2466 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2467 
2468 	return dd->rcv_err_status_cnt[37];
2469 }
2470 
2471 static u64 access_rbuf_fl_init_wr_addr_parity_err_cnt(
2472 				const struct cntr_entry *entry,
2473 				void *context, int vl, int mode, u64 data)
2474 {
2475 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2476 
2477 	return dd->rcv_err_status_cnt[36];
2478 }
2479 
2480 static u64 access_rx_rbuf_fl_initdone_parity_err_cnt(
2481 				const struct cntr_entry *entry,
2482 				void *context, int vl, int mode, u64 data)
2483 {
2484 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2485 
2486 	return dd->rcv_err_status_cnt[35];
2487 }
2488 
2489 static u64 access_rx_rbuf_fl_write_addr_parity_err_cnt(
2490 				const struct cntr_entry *entry,
2491 				void *context, int vl, int mode, u64 data)
2492 {
2493 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2494 
2495 	return dd->rcv_err_status_cnt[34];
2496 }
2497 
2498 static u64 access_rx_rbuf_fl_rd_addr_parity_err_cnt(
2499 				const struct cntr_entry *entry,
2500 				void *context, int vl, int mode, u64 data)
2501 {
2502 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2503 
2504 	return dd->rcv_err_status_cnt[33];
2505 }
2506 
2507 static u64 access_rx_rbuf_empty_err_cnt(const struct cntr_entry *entry,
2508 					void *context, int vl, int mode,
2509 					u64 data)
2510 {
2511 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2512 
2513 	return dd->rcv_err_status_cnt[32];
2514 }
2515 
2516 static u64 access_rx_rbuf_full_err_cnt(const struct cntr_entry *entry,
2517 				       void *context, int vl, int mode,
2518 				       u64 data)
2519 {
2520 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2521 
2522 	return dd->rcv_err_status_cnt[31];
2523 }
2524 
2525 static u64 access_rbuf_bad_lookup_err_cnt(const struct cntr_entry *entry,
2526 					  void *context, int vl, int mode,
2527 					  u64 data)
2528 {
2529 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2530 
2531 	return dd->rcv_err_status_cnt[30];
2532 }
2533 
2534 static u64 access_rbuf_ctx_id_parity_err_cnt(const struct cntr_entry *entry,
2535 					     void *context, int vl, int mode,
2536 					     u64 data)
2537 {
2538 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2539 
2540 	return dd->rcv_err_status_cnt[29];
2541 }
2542 
2543 static u64 access_rbuf_csr_qeopdw_parity_err_cnt(const struct cntr_entry *entry,
2544 						 void *context, int vl,
2545 						 int mode, u64 data)
2546 {
2547 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2548 
2549 	return dd->rcv_err_status_cnt[28];
2550 }
2551 
2552 static u64 access_rx_rbuf_csr_q_num_of_pkt_parity_err_cnt(
2553 				const struct cntr_entry *entry,
2554 				void *context, int vl, int mode, u64 data)
2555 {
2556 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2557 
2558 	return dd->rcv_err_status_cnt[27];
2559 }
2560 
2561 static u64 access_rx_rbuf_csr_q_t1_ptr_parity_err_cnt(
2562 				const struct cntr_entry *entry,
2563 				void *context, int vl, int mode, u64 data)
2564 {
2565 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2566 
2567 	return dd->rcv_err_status_cnt[26];
2568 }
2569 
2570 static u64 access_rx_rbuf_csr_q_hd_ptr_parity_err_cnt(
2571 				const struct cntr_entry *entry,
2572 				void *context, int vl, int mode, u64 data)
2573 {
2574 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2575 
2576 	return dd->rcv_err_status_cnt[25];
2577 }
2578 
2579 static u64 access_rx_rbuf_csr_q_vld_bit_parity_err_cnt(
2580 				const struct cntr_entry *entry,
2581 				void *context, int vl, int mode, u64 data)
2582 {
2583 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2584 
2585 	return dd->rcv_err_status_cnt[24];
2586 }
2587 
2588 static u64 access_rx_rbuf_csr_q_next_buf_parity_err_cnt(
2589 				const struct cntr_entry *entry,
2590 				void *context, int vl, int mode, u64 data)
2591 {
2592 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2593 
2594 	return dd->rcv_err_status_cnt[23];
2595 }
2596 
2597 static u64 access_rx_rbuf_csr_q_ent_cnt_parity_err_cnt(
2598 				const struct cntr_entry *entry,
2599 				void *context, int vl, int mode, u64 data)
2600 {
2601 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2602 
2603 	return dd->rcv_err_status_cnt[22];
2604 }
2605 
2606 static u64 access_rx_rbuf_csr_q_head_buf_num_parity_err_cnt(
2607 				const struct cntr_entry *entry,
2608 				void *context, int vl, int mode, u64 data)
2609 {
2610 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2611 
2612 	return dd->rcv_err_status_cnt[21];
2613 }
2614 
2615 static u64 access_rx_rbuf_block_list_read_cor_err_cnt(
2616 				const struct cntr_entry *entry,
2617 				void *context, int vl, int mode, u64 data)
2618 {
2619 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2620 
2621 	return dd->rcv_err_status_cnt[20];
2622 }
2623 
2624 static u64 access_rx_rbuf_block_list_read_unc_err_cnt(
2625 				const struct cntr_entry *entry,
2626 				void *context, int vl, int mode, u64 data)
2627 {
2628 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2629 
2630 	return dd->rcv_err_status_cnt[19];
2631 }
2632 
2633 static u64 access_rx_rbuf_lookup_des_cor_err_cnt(const struct cntr_entry *entry,
2634 						 void *context, int vl,
2635 						 int mode, u64 data)
2636 {
2637 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2638 
2639 	return dd->rcv_err_status_cnt[18];
2640 }
2641 
2642 static u64 access_rx_rbuf_lookup_des_unc_err_cnt(const struct cntr_entry *entry,
2643 						 void *context, int vl,
2644 						 int mode, u64 data)
2645 {
2646 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2647 
2648 	return dd->rcv_err_status_cnt[17];
2649 }
2650 
2651 static u64 access_rx_rbuf_lookup_des_reg_unc_cor_err_cnt(
2652 				const struct cntr_entry *entry,
2653 				void *context, int vl, int mode, u64 data)
2654 {
2655 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2656 
2657 	return dd->rcv_err_status_cnt[16];
2658 }
2659 
2660 static u64 access_rx_rbuf_lookup_des_reg_unc_err_cnt(
2661 				const struct cntr_entry *entry,
2662 				void *context, int vl, int mode, u64 data)
2663 {
2664 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2665 
2666 	return dd->rcv_err_status_cnt[15];
2667 }
2668 
2669 static u64 access_rx_rbuf_free_list_cor_err_cnt(const struct cntr_entry *entry,
2670 						void *context, int vl,
2671 						int mode, u64 data)
2672 {
2673 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2674 
2675 	return dd->rcv_err_status_cnt[14];
2676 }
2677 
2678 static u64 access_rx_rbuf_free_list_unc_err_cnt(const struct cntr_entry *entry,
2679 						void *context, int vl,
2680 						int mode, u64 data)
2681 {
2682 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2683 
2684 	return dd->rcv_err_status_cnt[13];
2685 }
2686 
2687 static u64 access_rx_rcv_fsm_encoding_err_cnt(const struct cntr_entry *entry,
2688 					      void *context, int vl, int mode,
2689 					      u64 data)
2690 {
2691 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2692 
2693 	return dd->rcv_err_status_cnt[12];
2694 }
2695 
2696 static u64 access_rx_dma_flag_cor_err_cnt(const struct cntr_entry *entry,
2697 					  void *context, int vl, int mode,
2698 					  u64 data)
2699 {
2700 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2701 
2702 	return dd->rcv_err_status_cnt[11];
2703 }
2704 
2705 static u64 access_rx_dma_flag_unc_err_cnt(const struct cntr_entry *entry,
2706 					  void *context, int vl, int mode,
2707 					  u64 data)
2708 {
2709 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2710 
2711 	return dd->rcv_err_status_cnt[10];
2712 }
2713 
2714 static u64 access_rx_dc_sop_eop_parity_err_cnt(const struct cntr_entry *entry,
2715 					       void *context, int vl, int mode,
2716 					       u64 data)
2717 {
2718 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2719 
2720 	return dd->rcv_err_status_cnt[9];
2721 }
2722 
2723 static u64 access_rx_rcv_csr_parity_err_cnt(const struct cntr_entry *entry,
2724 					    void *context, int vl, int mode,
2725 					    u64 data)
2726 {
2727 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2728 
2729 	return dd->rcv_err_status_cnt[8];
2730 }
2731 
2732 static u64 access_rx_rcv_qp_map_table_cor_err_cnt(
2733 				const struct cntr_entry *entry,
2734 				void *context, int vl, int mode, u64 data)
2735 {
2736 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2737 
2738 	return dd->rcv_err_status_cnt[7];
2739 }
2740 
2741 static u64 access_rx_rcv_qp_map_table_unc_err_cnt(
2742 				const struct cntr_entry *entry,
2743 				void *context, int vl, int mode, u64 data)
2744 {
2745 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2746 
2747 	return dd->rcv_err_status_cnt[6];
2748 }
2749 
2750 static u64 access_rx_rcv_data_cor_err_cnt(const struct cntr_entry *entry,
2751 					  void *context, int vl, int mode,
2752 					  u64 data)
2753 {
2754 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2755 
2756 	return dd->rcv_err_status_cnt[5];
2757 }
2758 
2759 static u64 access_rx_rcv_data_unc_err_cnt(const struct cntr_entry *entry,
2760 					  void *context, int vl, int mode,
2761 					  u64 data)
2762 {
2763 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2764 
2765 	return dd->rcv_err_status_cnt[4];
2766 }
2767 
2768 static u64 access_rx_rcv_hdr_cor_err_cnt(const struct cntr_entry *entry,
2769 					 void *context, int vl, int mode,
2770 					 u64 data)
2771 {
2772 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2773 
2774 	return dd->rcv_err_status_cnt[3];
2775 }
2776 
2777 static u64 access_rx_rcv_hdr_unc_err_cnt(const struct cntr_entry *entry,
2778 					 void *context, int vl, int mode,
2779 					 u64 data)
2780 {
2781 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2782 
2783 	return dd->rcv_err_status_cnt[2];
2784 }
2785 
2786 static u64 access_rx_dc_intf_parity_err_cnt(const struct cntr_entry *entry,
2787 					    void *context, int vl, int mode,
2788 					    u64 data)
2789 {
2790 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2791 
2792 	return dd->rcv_err_status_cnt[1];
2793 }
2794 
2795 static u64 access_rx_dma_csr_cor_err_cnt(const struct cntr_entry *entry,
2796 					 void *context, int vl, int mode,
2797 					 u64 data)
2798 {
2799 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2800 
2801 	return dd->rcv_err_status_cnt[0];
2802 }
2803 
2804 /*
2805  * Software counters corresponding to each of the
2806  * error status bits within SendPioErrStatus
2807  */
2808 static u64 access_pio_pec_sop_head_parity_err_cnt(
2809 				const struct cntr_entry *entry,
2810 				void *context, int vl, int mode, u64 data)
2811 {
2812 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2813 
2814 	return dd->send_pio_err_status_cnt[35];
2815 }
2816 
2817 static u64 access_pio_pcc_sop_head_parity_err_cnt(
2818 				const struct cntr_entry *entry,
2819 				void *context, int vl, int mode, u64 data)
2820 {
2821 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2822 
2823 	return dd->send_pio_err_status_cnt[34];
2824 }
2825 
2826 static u64 access_pio_last_returned_cnt_parity_err_cnt(
2827 				const struct cntr_entry *entry,
2828 				void *context, int vl, int mode, u64 data)
2829 {
2830 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2831 
2832 	return dd->send_pio_err_status_cnt[33];
2833 }
2834 
2835 static u64 access_pio_current_free_cnt_parity_err_cnt(
2836 				const struct cntr_entry *entry,
2837 				void *context, int vl, int mode, u64 data)
2838 {
2839 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2840 
2841 	return dd->send_pio_err_status_cnt[32];
2842 }
2843 
2844 static u64 access_pio_reserved_31_err_cnt(const struct cntr_entry *entry,
2845 					  void *context, int vl, int mode,
2846 					  u64 data)
2847 {
2848 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2849 
2850 	return dd->send_pio_err_status_cnt[31];
2851 }
2852 
2853 static u64 access_pio_reserved_30_err_cnt(const struct cntr_entry *entry,
2854 					  void *context, int vl, int mode,
2855 					  u64 data)
2856 {
2857 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2858 
2859 	return dd->send_pio_err_status_cnt[30];
2860 }
2861 
2862 static u64 access_pio_ppmc_sop_len_err_cnt(const struct cntr_entry *entry,
2863 					   void *context, int vl, int mode,
2864 					   u64 data)
2865 {
2866 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2867 
2868 	return dd->send_pio_err_status_cnt[29];
2869 }
2870 
2871 static u64 access_pio_ppmc_bqc_mem_parity_err_cnt(
2872 				const struct cntr_entry *entry,
2873 				void *context, int vl, int mode, u64 data)
2874 {
2875 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2876 
2877 	return dd->send_pio_err_status_cnt[28];
2878 }
2879 
2880 static u64 access_pio_vl_fifo_parity_err_cnt(const struct cntr_entry *entry,
2881 					     void *context, int vl, int mode,
2882 					     u64 data)
2883 {
2884 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2885 
2886 	return dd->send_pio_err_status_cnt[27];
2887 }
2888 
2889 static u64 access_pio_vlf_sop_parity_err_cnt(const struct cntr_entry *entry,
2890 					     void *context, int vl, int mode,
2891 					     u64 data)
2892 {
2893 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2894 
2895 	return dd->send_pio_err_status_cnt[26];
2896 }
2897 
2898 static u64 access_pio_vlf_v1_len_parity_err_cnt(const struct cntr_entry *entry,
2899 						void *context, int vl,
2900 						int mode, u64 data)
2901 {
2902 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2903 
2904 	return dd->send_pio_err_status_cnt[25];
2905 }
2906 
2907 static u64 access_pio_block_qw_count_parity_err_cnt(
2908 				const struct cntr_entry *entry,
2909 				void *context, int vl, int mode, u64 data)
2910 {
2911 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2912 
2913 	return dd->send_pio_err_status_cnt[24];
2914 }
2915 
2916 static u64 access_pio_write_qw_valid_parity_err_cnt(
2917 				const struct cntr_entry *entry,
2918 				void *context, int vl, int mode, u64 data)
2919 {
2920 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2921 
2922 	return dd->send_pio_err_status_cnt[23];
2923 }
2924 
2925 static u64 access_pio_state_machine_err_cnt(const struct cntr_entry *entry,
2926 					    void *context, int vl, int mode,
2927 					    u64 data)
2928 {
2929 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2930 
2931 	return dd->send_pio_err_status_cnt[22];
2932 }
2933 
2934 static u64 access_pio_write_data_parity_err_cnt(const struct cntr_entry *entry,
2935 						void *context, int vl,
2936 						int mode, u64 data)
2937 {
2938 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2939 
2940 	return dd->send_pio_err_status_cnt[21];
2941 }
2942 
2943 static u64 access_pio_host_addr_mem_cor_err_cnt(const struct cntr_entry *entry,
2944 						void *context, int vl,
2945 						int mode, u64 data)
2946 {
2947 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2948 
2949 	return dd->send_pio_err_status_cnt[20];
2950 }
2951 
2952 static u64 access_pio_host_addr_mem_unc_err_cnt(const struct cntr_entry *entry,
2953 						void *context, int vl,
2954 						int mode, u64 data)
2955 {
2956 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2957 
2958 	return dd->send_pio_err_status_cnt[19];
2959 }
2960 
2961 static u64 access_pio_pkt_evict_sm_or_arb_sm_err_cnt(
2962 				const struct cntr_entry *entry,
2963 				void *context, int vl, int mode, u64 data)
2964 {
2965 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2966 
2967 	return dd->send_pio_err_status_cnt[18];
2968 }
2969 
2970 static u64 access_pio_init_sm_in_err_cnt(const struct cntr_entry *entry,
2971 					 void *context, int vl, int mode,
2972 					 u64 data)
2973 {
2974 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2975 
2976 	return dd->send_pio_err_status_cnt[17];
2977 }
2978 
2979 static u64 access_pio_ppmc_pbl_fifo_err_cnt(const struct cntr_entry *entry,
2980 					    void *context, int vl, int mode,
2981 					    u64 data)
2982 {
2983 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2984 
2985 	return dd->send_pio_err_status_cnt[16];
2986 }
2987 
2988 static u64 access_pio_credit_ret_fifo_parity_err_cnt(
2989 				const struct cntr_entry *entry,
2990 				void *context, int vl, int mode, u64 data)
2991 {
2992 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2993 
2994 	return dd->send_pio_err_status_cnt[15];
2995 }
2996 
2997 static u64 access_pio_v1_len_mem_bank1_cor_err_cnt(
2998 				const struct cntr_entry *entry,
2999 				void *context, int vl, int mode, u64 data)
3000 {
3001 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3002 
3003 	return dd->send_pio_err_status_cnt[14];
3004 }
3005 
3006 static u64 access_pio_v1_len_mem_bank0_cor_err_cnt(
3007 				const struct cntr_entry *entry,
3008 				void *context, int vl, int mode, u64 data)
3009 {
3010 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3011 
3012 	return dd->send_pio_err_status_cnt[13];
3013 }
3014 
3015 static u64 access_pio_v1_len_mem_bank1_unc_err_cnt(
3016 				const struct cntr_entry *entry,
3017 				void *context, int vl, int mode, u64 data)
3018 {
3019 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3020 
3021 	return dd->send_pio_err_status_cnt[12];
3022 }
3023 
3024 static u64 access_pio_v1_len_mem_bank0_unc_err_cnt(
3025 				const struct cntr_entry *entry,
3026 				void *context, int vl, int mode, u64 data)
3027 {
3028 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3029 
3030 	return dd->send_pio_err_status_cnt[11];
3031 }
3032 
3033 static u64 access_pio_sm_pkt_reset_parity_err_cnt(
3034 				const struct cntr_entry *entry,
3035 				void *context, int vl, int mode, u64 data)
3036 {
3037 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3038 
3039 	return dd->send_pio_err_status_cnt[10];
3040 }
3041 
3042 static u64 access_pio_pkt_evict_fifo_parity_err_cnt(
3043 				const struct cntr_entry *entry,
3044 				void *context, int vl, int mode, u64 data)
3045 {
3046 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3047 
3048 	return dd->send_pio_err_status_cnt[9];
3049 }
3050 
3051 static u64 access_pio_sbrdctrl_crrel_fifo_parity_err_cnt(
3052 				const struct cntr_entry *entry,
3053 				void *context, int vl, int mode, u64 data)
3054 {
3055 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3056 
3057 	return dd->send_pio_err_status_cnt[8];
3058 }
3059 
3060 static u64 access_pio_sbrdctl_crrel_parity_err_cnt(
3061 				const struct cntr_entry *entry,
3062 				void *context, int vl, int mode, u64 data)
3063 {
3064 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3065 
3066 	return dd->send_pio_err_status_cnt[7];
3067 }
3068 
3069 static u64 access_pio_pec_fifo_parity_err_cnt(const struct cntr_entry *entry,
3070 					      void *context, int vl, int mode,
3071 					      u64 data)
3072 {
3073 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3074 
3075 	return dd->send_pio_err_status_cnt[6];
3076 }
3077 
3078 static u64 access_pio_pcc_fifo_parity_err_cnt(const struct cntr_entry *entry,
3079 					      void *context, int vl, int mode,
3080 					      u64 data)
3081 {
3082 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3083 
3084 	return dd->send_pio_err_status_cnt[5];
3085 }
3086 
3087 static u64 access_pio_sb_mem_fifo1_err_cnt(const struct cntr_entry *entry,
3088 					   void *context, int vl, int mode,
3089 					   u64 data)
3090 {
3091 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3092 
3093 	return dd->send_pio_err_status_cnt[4];
3094 }
3095 
3096 static u64 access_pio_sb_mem_fifo0_err_cnt(const struct cntr_entry *entry,
3097 					   void *context, int vl, int mode,
3098 					   u64 data)
3099 {
3100 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3101 
3102 	return dd->send_pio_err_status_cnt[3];
3103 }
3104 
3105 static u64 access_pio_csr_parity_err_cnt(const struct cntr_entry *entry,
3106 					 void *context, int vl, int mode,
3107 					 u64 data)
3108 {
3109 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3110 
3111 	return dd->send_pio_err_status_cnt[2];
3112 }
3113 
3114 static u64 access_pio_write_addr_parity_err_cnt(const struct cntr_entry *entry,
3115 						void *context, int vl,
3116 						int mode, u64 data)
3117 {
3118 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3119 
3120 	return dd->send_pio_err_status_cnt[1];
3121 }
3122 
3123 static u64 access_pio_write_bad_ctxt_err_cnt(const struct cntr_entry *entry,
3124 					     void *context, int vl, int mode,
3125 					     u64 data)
3126 {
3127 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3128 
3129 	return dd->send_pio_err_status_cnt[0];
3130 }
3131 
3132 /*
3133  * Software counters corresponding to each of the
3134  * error status bits within SendDmaErrStatus
3135  */
3136 static u64 access_sdma_pcie_req_tracking_cor_err_cnt(
3137 				const struct cntr_entry *entry,
3138 				void *context, int vl, int mode, u64 data)
3139 {
3140 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3141 
3142 	return dd->send_dma_err_status_cnt[3];
3143 }
3144 
3145 static u64 access_sdma_pcie_req_tracking_unc_err_cnt(
3146 				const struct cntr_entry *entry,
3147 				void *context, int vl, int mode, u64 data)
3148 {
3149 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3150 
3151 	return dd->send_dma_err_status_cnt[2];
3152 }
3153 
3154 static u64 access_sdma_csr_parity_err_cnt(const struct cntr_entry *entry,
3155 					  void *context, int vl, int mode,
3156 					  u64 data)
3157 {
3158 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3159 
3160 	return dd->send_dma_err_status_cnt[1];
3161 }
3162 
3163 static u64 access_sdma_rpy_tag_err_cnt(const struct cntr_entry *entry,
3164 				       void *context, int vl, int mode,
3165 				       u64 data)
3166 {
3167 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3168 
3169 	return dd->send_dma_err_status_cnt[0];
3170 }
3171 
3172 /*
3173  * Software counters corresponding to each of the
3174  * error status bits within SendEgressErrStatus
3175  */
3176 static u64 access_tx_read_pio_memory_csr_unc_err_cnt(
3177 				const struct cntr_entry *entry,
3178 				void *context, int vl, int mode, u64 data)
3179 {
3180 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3181 
3182 	return dd->send_egress_err_status_cnt[63];
3183 }
3184 
3185 static u64 access_tx_read_sdma_memory_csr_err_cnt(
3186 				const struct cntr_entry *entry,
3187 				void *context, int vl, int mode, u64 data)
3188 {
3189 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3190 
3191 	return dd->send_egress_err_status_cnt[62];
3192 }
3193 
3194 static u64 access_tx_egress_fifo_cor_err_cnt(const struct cntr_entry *entry,
3195 					     void *context, int vl, int mode,
3196 					     u64 data)
3197 {
3198 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3199 
3200 	return dd->send_egress_err_status_cnt[61];
3201 }
3202 
3203 static u64 access_tx_read_pio_memory_cor_err_cnt(const struct cntr_entry *entry,
3204 						 void *context, int vl,
3205 						 int mode, u64 data)
3206 {
3207 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3208 
3209 	return dd->send_egress_err_status_cnt[60];
3210 }
3211 
3212 static u64 access_tx_read_sdma_memory_cor_err_cnt(
3213 				const struct cntr_entry *entry,
3214 				void *context, int vl, int mode, u64 data)
3215 {
3216 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3217 
3218 	return dd->send_egress_err_status_cnt[59];
3219 }
3220 
3221 static u64 access_tx_sb_hdr_cor_err_cnt(const struct cntr_entry *entry,
3222 					void *context, int vl, int mode,
3223 					u64 data)
3224 {
3225 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3226 
3227 	return dd->send_egress_err_status_cnt[58];
3228 }
3229 
3230 static u64 access_tx_credit_overrun_err_cnt(const struct cntr_entry *entry,
3231 					    void *context, int vl, int mode,
3232 					    u64 data)
3233 {
3234 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3235 
3236 	return dd->send_egress_err_status_cnt[57];
3237 }
3238 
3239 static u64 access_tx_launch_fifo8_cor_err_cnt(const struct cntr_entry *entry,
3240 					      void *context, int vl, int mode,
3241 					      u64 data)
3242 {
3243 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3244 
3245 	return dd->send_egress_err_status_cnt[56];
3246 }
3247 
3248 static u64 access_tx_launch_fifo7_cor_err_cnt(const struct cntr_entry *entry,
3249 					      void *context, int vl, int mode,
3250 					      u64 data)
3251 {
3252 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3253 
3254 	return dd->send_egress_err_status_cnt[55];
3255 }
3256 
3257 static u64 access_tx_launch_fifo6_cor_err_cnt(const struct cntr_entry *entry,
3258 					      void *context, int vl, int mode,
3259 					      u64 data)
3260 {
3261 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3262 
3263 	return dd->send_egress_err_status_cnt[54];
3264 }
3265 
3266 static u64 access_tx_launch_fifo5_cor_err_cnt(const struct cntr_entry *entry,
3267 					      void *context, int vl, int mode,
3268 					      u64 data)
3269 {
3270 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3271 
3272 	return dd->send_egress_err_status_cnt[53];
3273 }
3274 
3275 static u64 access_tx_launch_fifo4_cor_err_cnt(const struct cntr_entry *entry,
3276 					      void *context, int vl, int mode,
3277 					      u64 data)
3278 {
3279 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3280 
3281 	return dd->send_egress_err_status_cnt[52];
3282 }
3283 
3284 static u64 access_tx_launch_fifo3_cor_err_cnt(const struct cntr_entry *entry,
3285 					      void *context, int vl, int mode,
3286 					      u64 data)
3287 {
3288 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3289 
3290 	return dd->send_egress_err_status_cnt[51];
3291 }
3292 
3293 static u64 access_tx_launch_fifo2_cor_err_cnt(const struct cntr_entry *entry,
3294 					      void *context, int vl, int mode,
3295 					      u64 data)
3296 {
3297 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3298 
3299 	return dd->send_egress_err_status_cnt[50];
3300 }
3301 
3302 static u64 access_tx_launch_fifo1_cor_err_cnt(const struct cntr_entry *entry,
3303 					      void *context, int vl, int mode,
3304 					      u64 data)
3305 {
3306 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3307 
3308 	return dd->send_egress_err_status_cnt[49];
3309 }
3310 
3311 static u64 access_tx_launch_fifo0_cor_err_cnt(const struct cntr_entry *entry,
3312 					      void *context, int vl, int mode,
3313 					      u64 data)
3314 {
3315 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3316 
3317 	return dd->send_egress_err_status_cnt[48];
3318 }
3319 
3320 static u64 access_tx_credit_return_vl_err_cnt(const struct cntr_entry *entry,
3321 					      void *context, int vl, int mode,
3322 					      u64 data)
3323 {
3324 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3325 
3326 	return dd->send_egress_err_status_cnt[47];
3327 }
3328 
3329 static u64 access_tx_hcrc_insertion_err_cnt(const struct cntr_entry *entry,
3330 					    void *context, int vl, int mode,
3331 					    u64 data)
3332 {
3333 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3334 
3335 	return dd->send_egress_err_status_cnt[46];
3336 }
3337 
3338 static u64 access_tx_egress_fifo_unc_err_cnt(const struct cntr_entry *entry,
3339 					     void *context, int vl, int mode,
3340 					     u64 data)
3341 {
3342 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3343 
3344 	return dd->send_egress_err_status_cnt[45];
3345 }
3346 
3347 static u64 access_tx_read_pio_memory_unc_err_cnt(const struct cntr_entry *entry,
3348 						 void *context, int vl,
3349 						 int mode, u64 data)
3350 {
3351 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3352 
3353 	return dd->send_egress_err_status_cnt[44];
3354 }
3355 
3356 static u64 access_tx_read_sdma_memory_unc_err_cnt(
3357 				const struct cntr_entry *entry,
3358 				void *context, int vl, int mode, u64 data)
3359 {
3360 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3361 
3362 	return dd->send_egress_err_status_cnt[43];
3363 }
3364 
3365 static u64 access_tx_sb_hdr_unc_err_cnt(const struct cntr_entry *entry,
3366 					void *context, int vl, int mode,
3367 					u64 data)
3368 {
3369 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3370 
3371 	return dd->send_egress_err_status_cnt[42];
3372 }
3373 
3374 static u64 access_tx_credit_return_partiy_err_cnt(
3375 				const struct cntr_entry *entry,
3376 				void *context, int vl, int mode, u64 data)
3377 {
3378 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3379 
3380 	return dd->send_egress_err_status_cnt[41];
3381 }
3382 
3383 static u64 access_tx_launch_fifo8_unc_or_parity_err_cnt(
3384 				const struct cntr_entry *entry,
3385 				void *context, int vl, int mode, u64 data)
3386 {
3387 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3388 
3389 	return dd->send_egress_err_status_cnt[40];
3390 }
3391 
3392 static u64 access_tx_launch_fifo7_unc_or_parity_err_cnt(
3393 				const struct cntr_entry *entry,
3394 				void *context, int vl, int mode, u64 data)
3395 {
3396 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3397 
3398 	return dd->send_egress_err_status_cnt[39];
3399 }
3400 
3401 static u64 access_tx_launch_fifo6_unc_or_parity_err_cnt(
3402 				const struct cntr_entry *entry,
3403 				void *context, int vl, int mode, u64 data)
3404 {
3405 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3406 
3407 	return dd->send_egress_err_status_cnt[38];
3408 }
3409 
3410 static u64 access_tx_launch_fifo5_unc_or_parity_err_cnt(
3411 				const struct cntr_entry *entry,
3412 				void *context, int vl, int mode, u64 data)
3413 {
3414 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3415 
3416 	return dd->send_egress_err_status_cnt[37];
3417 }
3418 
3419 static u64 access_tx_launch_fifo4_unc_or_parity_err_cnt(
3420 				const struct cntr_entry *entry,
3421 				void *context, int vl, int mode, u64 data)
3422 {
3423 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3424 
3425 	return dd->send_egress_err_status_cnt[36];
3426 }
3427 
3428 static u64 access_tx_launch_fifo3_unc_or_parity_err_cnt(
3429 				const struct cntr_entry *entry,
3430 				void *context, int vl, int mode, u64 data)
3431 {
3432 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3433 
3434 	return dd->send_egress_err_status_cnt[35];
3435 }
3436 
3437 static u64 access_tx_launch_fifo2_unc_or_parity_err_cnt(
3438 				const struct cntr_entry *entry,
3439 				void *context, int vl, int mode, u64 data)
3440 {
3441 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3442 
3443 	return dd->send_egress_err_status_cnt[34];
3444 }
3445 
3446 static u64 access_tx_launch_fifo1_unc_or_parity_err_cnt(
3447 				const struct cntr_entry *entry,
3448 				void *context, int vl, int mode, u64 data)
3449 {
3450 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3451 
3452 	return dd->send_egress_err_status_cnt[33];
3453 }
3454 
3455 static u64 access_tx_launch_fifo0_unc_or_parity_err_cnt(
3456 				const struct cntr_entry *entry,
3457 				void *context, int vl, int mode, u64 data)
3458 {
3459 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3460 
3461 	return dd->send_egress_err_status_cnt[32];
3462 }
3463 
3464 static u64 access_tx_sdma15_disallowed_packet_err_cnt(
3465 				const struct cntr_entry *entry,
3466 				void *context, int vl, int mode, u64 data)
3467 {
3468 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3469 
3470 	return dd->send_egress_err_status_cnt[31];
3471 }
3472 
3473 static u64 access_tx_sdma14_disallowed_packet_err_cnt(
3474 				const struct cntr_entry *entry,
3475 				void *context, int vl, int mode, u64 data)
3476 {
3477 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3478 
3479 	return dd->send_egress_err_status_cnt[30];
3480 }
3481 
3482 static u64 access_tx_sdma13_disallowed_packet_err_cnt(
3483 				const struct cntr_entry *entry,
3484 				void *context, int vl, int mode, u64 data)
3485 {
3486 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3487 
3488 	return dd->send_egress_err_status_cnt[29];
3489 }
3490 
3491 static u64 access_tx_sdma12_disallowed_packet_err_cnt(
3492 				const struct cntr_entry *entry,
3493 				void *context, int vl, int mode, u64 data)
3494 {
3495 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3496 
3497 	return dd->send_egress_err_status_cnt[28];
3498 }
3499 
3500 static u64 access_tx_sdma11_disallowed_packet_err_cnt(
3501 				const struct cntr_entry *entry,
3502 				void *context, int vl, int mode, u64 data)
3503 {
3504 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3505 
3506 	return dd->send_egress_err_status_cnt[27];
3507 }
3508 
3509 static u64 access_tx_sdma10_disallowed_packet_err_cnt(
3510 				const struct cntr_entry *entry,
3511 				void *context, int vl, int mode, u64 data)
3512 {
3513 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3514 
3515 	return dd->send_egress_err_status_cnt[26];
3516 }
3517 
3518 static u64 access_tx_sdma9_disallowed_packet_err_cnt(
3519 				const struct cntr_entry *entry,
3520 				void *context, int vl, int mode, u64 data)
3521 {
3522 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3523 
3524 	return dd->send_egress_err_status_cnt[25];
3525 }
3526 
3527 static u64 access_tx_sdma8_disallowed_packet_err_cnt(
3528 				const struct cntr_entry *entry,
3529 				void *context, int vl, int mode, u64 data)
3530 {
3531 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3532 
3533 	return dd->send_egress_err_status_cnt[24];
3534 }
3535 
3536 static u64 access_tx_sdma7_disallowed_packet_err_cnt(
3537 				const struct cntr_entry *entry,
3538 				void *context, int vl, int mode, u64 data)
3539 {
3540 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3541 
3542 	return dd->send_egress_err_status_cnt[23];
3543 }
3544 
3545 static u64 access_tx_sdma6_disallowed_packet_err_cnt(
3546 				const struct cntr_entry *entry,
3547 				void *context, int vl, int mode, u64 data)
3548 {
3549 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3550 
3551 	return dd->send_egress_err_status_cnt[22];
3552 }
3553 
3554 static u64 access_tx_sdma5_disallowed_packet_err_cnt(
3555 				const struct cntr_entry *entry,
3556 				void *context, int vl, int mode, u64 data)
3557 {
3558 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3559 
3560 	return dd->send_egress_err_status_cnt[21];
3561 }
3562 
3563 static u64 access_tx_sdma4_disallowed_packet_err_cnt(
3564 				const struct cntr_entry *entry,
3565 				void *context, int vl, int mode, u64 data)
3566 {
3567 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3568 
3569 	return dd->send_egress_err_status_cnt[20];
3570 }
3571 
3572 static u64 access_tx_sdma3_disallowed_packet_err_cnt(
3573 				const struct cntr_entry *entry,
3574 				void *context, int vl, int mode, u64 data)
3575 {
3576 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3577 
3578 	return dd->send_egress_err_status_cnt[19];
3579 }
3580 
3581 static u64 access_tx_sdma2_disallowed_packet_err_cnt(
3582 				const struct cntr_entry *entry,
3583 				void *context, int vl, int mode, u64 data)
3584 {
3585 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3586 
3587 	return dd->send_egress_err_status_cnt[18];
3588 }
3589 
3590 static u64 access_tx_sdma1_disallowed_packet_err_cnt(
3591 				const struct cntr_entry *entry,
3592 				void *context, int vl, int mode, u64 data)
3593 {
3594 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3595 
3596 	return dd->send_egress_err_status_cnt[17];
3597 }
3598 
3599 static u64 access_tx_sdma0_disallowed_packet_err_cnt(
3600 				const struct cntr_entry *entry,
3601 				void *context, int vl, int mode, u64 data)
3602 {
3603 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3604 
3605 	return dd->send_egress_err_status_cnt[16];
3606 }
3607 
3608 static u64 access_tx_config_parity_err_cnt(const struct cntr_entry *entry,
3609 					   void *context, int vl, int mode,
3610 					   u64 data)
3611 {
3612 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3613 
3614 	return dd->send_egress_err_status_cnt[15];
3615 }
3616 
3617 static u64 access_tx_sbrd_ctl_csr_parity_err_cnt(const struct cntr_entry *entry,
3618 						 void *context, int vl,
3619 						 int mode, u64 data)
3620 {
3621 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3622 
3623 	return dd->send_egress_err_status_cnt[14];
3624 }
3625 
3626 static u64 access_tx_launch_csr_parity_err_cnt(const struct cntr_entry *entry,
3627 					       void *context, int vl, int mode,
3628 					       u64 data)
3629 {
3630 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3631 
3632 	return dd->send_egress_err_status_cnt[13];
3633 }
3634 
3635 static u64 access_tx_illegal_vl_err_cnt(const struct cntr_entry *entry,
3636 					void *context, int vl, int mode,
3637 					u64 data)
3638 {
3639 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3640 
3641 	return dd->send_egress_err_status_cnt[12];
3642 }
3643 
3644 static u64 access_tx_sbrd_ctl_state_machine_parity_err_cnt(
3645 				const struct cntr_entry *entry,
3646 				void *context, int vl, int mode, u64 data)
3647 {
3648 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3649 
3650 	return dd->send_egress_err_status_cnt[11];
3651 }
3652 
3653 static u64 access_egress_reserved_10_err_cnt(const struct cntr_entry *entry,
3654 					     void *context, int vl, int mode,
3655 					     u64 data)
3656 {
3657 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3658 
3659 	return dd->send_egress_err_status_cnt[10];
3660 }
3661 
3662 static u64 access_egress_reserved_9_err_cnt(const struct cntr_entry *entry,
3663 					    void *context, int vl, int mode,
3664 					    u64 data)
3665 {
3666 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3667 
3668 	return dd->send_egress_err_status_cnt[9];
3669 }
3670 
3671 static u64 access_tx_sdma_launch_intf_parity_err_cnt(
3672 				const struct cntr_entry *entry,
3673 				void *context, int vl, int mode, u64 data)
3674 {
3675 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3676 
3677 	return dd->send_egress_err_status_cnt[8];
3678 }
3679 
3680 static u64 access_tx_pio_launch_intf_parity_err_cnt(
3681 				const struct cntr_entry *entry,
3682 				void *context, int vl, int mode, u64 data)
3683 {
3684 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3685 
3686 	return dd->send_egress_err_status_cnt[7];
3687 }
3688 
3689 static u64 access_egress_reserved_6_err_cnt(const struct cntr_entry *entry,
3690 					    void *context, int vl, int mode,
3691 					    u64 data)
3692 {
3693 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3694 
3695 	return dd->send_egress_err_status_cnt[6];
3696 }
3697 
3698 static u64 access_tx_incorrect_link_state_err_cnt(
3699 				const struct cntr_entry *entry,
3700 				void *context, int vl, int mode, u64 data)
3701 {
3702 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3703 
3704 	return dd->send_egress_err_status_cnt[5];
3705 }
3706 
3707 static u64 access_tx_linkdown_err_cnt(const struct cntr_entry *entry,
3708 				      void *context, int vl, int mode,
3709 				      u64 data)
3710 {
3711 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3712 
3713 	return dd->send_egress_err_status_cnt[4];
3714 }
3715 
3716 static u64 access_tx_egress_fifi_underrun_or_parity_err_cnt(
3717 				const struct cntr_entry *entry,
3718 				void *context, int vl, int mode, u64 data)
3719 {
3720 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3721 
3722 	return dd->send_egress_err_status_cnt[3];
3723 }
3724 
3725 static u64 access_egress_reserved_2_err_cnt(const struct cntr_entry *entry,
3726 					    void *context, int vl, int mode,
3727 					    u64 data)
3728 {
3729 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3730 
3731 	return dd->send_egress_err_status_cnt[2];
3732 }
3733 
3734 static u64 access_tx_pkt_integrity_mem_unc_err_cnt(
3735 				const struct cntr_entry *entry,
3736 				void *context, int vl, int mode, u64 data)
3737 {
3738 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3739 
3740 	return dd->send_egress_err_status_cnt[1];
3741 }
3742 
3743 static u64 access_tx_pkt_integrity_mem_cor_err_cnt(
3744 				const struct cntr_entry *entry,
3745 				void *context, int vl, int mode, u64 data)
3746 {
3747 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3748 
3749 	return dd->send_egress_err_status_cnt[0];
3750 }
3751 
3752 /*
3753  * Software counters corresponding to each of the
3754  * error status bits within SendErrStatus
3755  */
3756 static u64 access_send_csr_write_bad_addr_err_cnt(
3757 				const struct cntr_entry *entry,
3758 				void *context, int vl, int mode, u64 data)
3759 {
3760 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3761 
3762 	return dd->send_err_status_cnt[2];
3763 }
3764 
3765 static u64 access_send_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
3766 						 void *context, int vl,
3767 						 int mode, u64 data)
3768 {
3769 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3770 
3771 	return dd->send_err_status_cnt[1];
3772 }
3773 
3774 static u64 access_send_csr_parity_cnt(const struct cntr_entry *entry,
3775 				      void *context, int vl, int mode,
3776 				      u64 data)
3777 {
3778 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3779 
3780 	return dd->send_err_status_cnt[0];
3781 }
3782 
3783 /*
3784  * Software counters corresponding to each of the
3785  * error status bits within SendCtxtErrStatus
3786  */
3787 static u64 access_pio_write_out_of_bounds_err_cnt(
3788 				const struct cntr_entry *entry,
3789 				void *context, int vl, int mode, u64 data)
3790 {
3791 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3792 
3793 	return dd->sw_ctxt_err_status_cnt[4];
3794 }
3795 
3796 static u64 access_pio_write_overflow_err_cnt(const struct cntr_entry *entry,
3797 					     void *context, int vl, int mode,
3798 					     u64 data)
3799 {
3800 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3801 
3802 	return dd->sw_ctxt_err_status_cnt[3];
3803 }
3804 
3805 static u64 access_pio_write_crosses_boundary_err_cnt(
3806 				const struct cntr_entry *entry,
3807 				void *context, int vl, int mode, u64 data)
3808 {
3809 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3810 
3811 	return dd->sw_ctxt_err_status_cnt[2];
3812 }
3813 
3814 static u64 access_pio_disallowed_packet_err_cnt(const struct cntr_entry *entry,
3815 						void *context, int vl,
3816 						int mode, u64 data)
3817 {
3818 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3819 
3820 	return dd->sw_ctxt_err_status_cnt[1];
3821 }
3822 
3823 static u64 access_pio_inconsistent_sop_err_cnt(const struct cntr_entry *entry,
3824 					       void *context, int vl, int mode,
3825 					       u64 data)
3826 {
3827 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3828 
3829 	return dd->sw_ctxt_err_status_cnt[0];
3830 }
3831 
3832 /*
3833  * Software counters corresponding to each of the
3834  * error status bits within SendDmaEngErrStatus
3835  */
3836 static u64 access_sdma_header_request_fifo_cor_err_cnt(
3837 				const struct cntr_entry *entry,
3838 				void *context, int vl, int mode, u64 data)
3839 {
3840 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3841 
3842 	return dd->sw_send_dma_eng_err_status_cnt[23];
3843 }
3844 
3845 static u64 access_sdma_header_storage_cor_err_cnt(
3846 				const struct cntr_entry *entry,
3847 				void *context, int vl, int mode, u64 data)
3848 {
3849 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3850 
3851 	return dd->sw_send_dma_eng_err_status_cnt[22];
3852 }
3853 
3854 static u64 access_sdma_packet_tracking_cor_err_cnt(
3855 				const struct cntr_entry *entry,
3856 				void *context, int vl, int mode, u64 data)
3857 {
3858 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3859 
3860 	return dd->sw_send_dma_eng_err_status_cnt[21];
3861 }
3862 
3863 static u64 access_sdma_assembly_cor_err_cnt(const struct cntr_entry *entry,
3864 					    void *context, int vl, int mode,
3865 					    u64 data)
3866 {
3867 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3868 
3869 	return dd->sw_send_dma_eng_err_status_cnt[20];
3870 }
3871 
3872 static u64 access_sdma_desc_table_cor_err_cnt(const struct cntr_entry *entry,
3873 					      void *context, int vl, int mode,
3874 					      u64 data)
3875 {
3876 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3877 
3878 	return dd->sw_send_dma_eng_err_status_cnt[19];
3879 }
3880 
3881 static u64 access_sdma_header_request_fifo_unc_err_cnt(
3882 				const struct cntr_entry *entry,
3883 				void *context, int vl, int mode, u64 data)
3884 {
3885 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3886 
3887 	return dd->sw_send_dma_eng_err_status_cnt[18];
3888 }
3889 
3890 static u64 access_sdma_header_storage_unc_err_cnt(
3891 				const struct cntr_entry *entry,
3892 				void *context, int vl, int mode, u64 data)
3893 {
3894 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3895 
3896 	return dd->sw_send_dma_eng_err_status_cnt[17];
3897 }
3898 
3899 static u64 access_sdma_packet_tracking_unc_err_cnt(
3900 				const struct cntr_entry *entry,
3901 				void *context, int vl, int mode, u64 data)
3902 {
3903 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3904 
3905 	return dd->sw_send_dma_eng_err_status_cnt[16];
3906 }
3907 
3908 static u64 access_sdma_assembly_unc_err_cnt(const struct cntr_entry *entry,
3909 					    void *context, int vl, int mode,
3910 					    u64 data)
3911 {
3912 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3913 
3914 	return dd->sw_send_dma_eng_err_status_cnt[15];
3915 }
3916 
3917 static u64 access_sdma_desc_table_unc_err_cnt(const struct cntr_entry *entry,
3918 					      void *context, int vl, int mode,
3919 					      u64 data)
3920 {
3921 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3922 
3923 	return dd->sw_send_dma_eng_err_status_cnt[14];
3924 }
3925 
3926 static u64 access_sdma_timeout_err_cnt(const struct cntr_entry *entry,
3927 				       void *context, int vl, int mode,
3928 				       u64 data)
3929 {
3930 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3931 
3932 	return dd->sw_send_dma_eng_err_status_cnt[13];
3933 }
3934 
3935 static u64 access_sdma_header_length_err_cnt(const struct cntr_entry *entry,
3936 					     void *context, int vl, int mode,
3937 					     u64 data)
3938 {
3939 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3940 
3941 	return dd->sw_send_dma_eng_err_status_cnt[12];
3942 }
3943 
3944 static u64 access_sdma_header_address_err_cnt(const struct cntr_entry *entry,
3945 					      void *context, int vl, int mode,
3946 					      u64 data)
3947 {
3948 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3949 
3950 	return dd->sw_send_dma_eng_err_status_cnt[11];
3951 }
3952 
3953 static u64 access_sdma_header_select_err_cnt(const struct cntr_entry *entry,
3954 					     void *context, int vl, int mode,
3955 					     u64 data)
3956 {
3957 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3958 
3959 	return dd->sw_send_dma_eng_err_status_cnt[10];
3960 }
3961 
3962 static u64 access_sdma_reserved_9_err_cnt(const struct cntr_entry *entry,
3963 					  void *context, int vl, int mode,
3964 					  u64 data)
3965 {
3966 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3967 
3968 	return dd->sw_send_dma_eng_err_status_cnt[9];
3969 }
3970 
3971 static u64 access_sdma_packet_desc_overflow_err_cnt(
3972 				const struct cntr_entry *entry,
3973 				void *context, int vl, int mode, u64 data)
3974 {
3975 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3976 
3977 	return dd->sw_send_dma_eng_err_status_cnt[8];
3978 }
3979 
3980 static u64 access_sdma_length_mismatch_err_cnt(const struct cntr_entry *entry,
3981 					       void *context, int vl,
3982 					       int mode, u64 data)
3983 {
3984 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3985 
3986 	return dd->sw_send_dma_eng_err_status_cnt[7];
3987 }
3988 
3989 static u64 access_sdma_halt_err_cnt(const struct cntr_entry *entry,
3990 				    void *context, int vl, int mode, u64 data)
3991 {
3992 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3993 
3994 	return dd->sw_send_dma_eng_err_status_cnt[6];
3995 }
3996 
3997 static u64 access_sdma_mem_read_err_cnt(const struct cntr_entry *entry,
3998 					void *context, int vl, int mode,
3999 					u64 data)
4000 {
4001 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4002 
4003 	return dd->sw_send_dma_eng_err_status_cnt[5];
4004 }
4005 
4006 static u64 access_sdma_first_desc_err_cnt(const struct cntr_entry *entry,
4007 					  void *context, int vl, int mode,
4008 					  u64 data)
4009 {
4010 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4011 
4012 	return dd->sw_send_dma_eng_err_status_cnt[4];
4013 }
4014 
4015 static u64 access_sdma_tail_out_of_bounds_err_cnt(
4016 				const struct cntr_entry *entry,
4017 				void *context, int vl, int mode, u64 data)
4018 {
4019 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4020 
4021 	return dd->sw_send_dma_eng_err_status_cnt[3];
4022 }
4023 
4024 static u64 access_sdma_too_long_err_cnt(const struct cntr_entry *entry,
4025 					void *context, int vl, int mode,
4026 					u64 data)
4027 {
4028 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4029 
4030 	return dd->sw_send_dma_eng_err_status_cnt[2];
4031 }
4032 
4033 static u64 access_sdma_gen_mismatch_err_cnt(const struct cntr_entry *entry,
4034 					    void *context, int vl, int mode,
4035 					    u64 data)
4036 {
4037 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4038 
4039 	return dd->sw_send_dma_eng_err_status_cnt[1];
4040 }
4041 
4042 static u64 access_sdma_wrong_dw_err_cnt(const struct cntr_entry *entry,
4043 					void *context, int vl, int mode,
4044 					u64 data)
4045 {
4046 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4047 
4048 	return dd->sw_send_dma_eng_err_status_cnt[0];
4049 }
4050 
4051 static u64 access_dc_rcv_err_cnt(const struct cntr_entry *entry,
4052 				 void *context, int vl, int mode,
4053 				 u64 data)
4054 {
4055 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4056 
4057 	u64 val = 0;
4058 	u64 csr = entry->csr;
4059 
4060 	val = read_write_csr(dd, csr, mode, data);
4061 	if (mode == CNTR_MODE_R) {
4062 		val = val > CNTR_MAX - dd->sw_rcv_bypass_packet_errors ?
4063 			CNTR_MAX : val + dd->sw_rcv_bypass_packet_errors;
4064 	} else if (mode == CNTR_MODE_W) {
4065 		dd->sw_rcv_bypass_packet_errors = 0;
4066 	} else {
4067 		dd_dev_err(dd, "Invalid cntr register access mode");
4068 		return 0;
4069 	}
4070 	return val;
4071 }
4072 
4073 #define def_access_sw_cpu(cntr) \
4074 static u64 access_sw_cpu_##cntr(const struct cntr_entry *entry,		      \
4075 			      void *context, int vl, int mode, u64 data)      \
4076 {									      \
4077 	struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context;	      \
4078 	return read_write_cpu(ppd->dd, &ppd->ibport_data.rvp.z_ ##cntr,	      \
4079 			      ppd->ibport_data.rvp.cntr, vl,		      \
4080 			      mode, data);				      \
4081 }
4082 
4083 def_access_sw_cpu(rc_acks);
4084 def_access_sw_cpu(rc_qacks);
4085 def_access_sw_cpu(rc_delayed_comp);
4086 
4087 #define def_access_ibp_counter(cntr) \
4088 static u64 access_ibp_##cntr(const struct cntr_entry *entry,		      \
4089 				void *context, int vl, int mode, u64 data)    \
4090 {									      \
4091 	struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context;	      \
4092 									      \
4093 	if (vl != CNTR_INVALID_VL)					      \
4094 		return 0;						      \
4095 									      \
4096 	return read_write_sw(ppd->dd, &ppd->ibport_data.rvp.n_ ##cntr,	      \
4097 			     mode, data);				      \
4098 }
4099 
4100 def_access_ibp_counter(loop_pkts);
4101 def_access_ibp_counter(rc_resends);
4102 def_access_ibp_counter(rnr_naks);
4103 def_access_ibp_counter(other_naks);
4104 def_access_ibp_counter(rc_timeouts);
4105 def_access_ibp_counter(pkt_drops);
4106 def_access_ibp_counter(dmawait);
4107 def_access_ibp_counter(rc_seqnak);
4108 def_access_ibp_counter(rc_dupreq);
4109 def_access_ibp_counter(rdma_seq);
4110 def_access_ibp_counter(unaligned);
4111 def_access_ibp_counter(seq_naks);
4112 def_access_ibp_counter(rc_crwaits);
4113 
4114 static struct cntr_entry dev_cntrs[DEV_CNTR_LAST] = {
4115 [C_RCV_OVF] = RXE32_DEV_CNTR_ELEM(RcvOverflow, RCV_BUF_OVFL_CNT, CNTR_SYNTH),
4116 [C_RX_LEN_ERR] = RXE32_DEV_CNTR_ELEM(RxLenErr, RCV_LENGTH_ERR_CNT, CNTR_SYNTH),
4117 [C_RX_SHORT_ERR] = RXE32_DEV_CNTR_ELEM(RxShrErr, RCV_SHORT_ERR_CNT, CNTR_SYNTH),
4118 [C_RX_ICRC_ERR] = RXE32_DEV_CNTR_ELEM(RxICrcErr, RCV_ICRC_ERR_CNT, CNTR_SYNTH),
4119 [C_RX_EBP] = RXE32_DEV_CNTR_ELEM(RxEbpCnt, RCV_EBP_CNT, CNTR_SYNTH),
4120 [C_RX_TID_FULL] = RXE32_DEV_CNTR_ELEM(RxTIDFullEr, RCV_TID_FULL_ERR_CNT,
4121 			CNTR_NORMAL),
4122 [C_RX_TID_INVALID] = RXE32_DEV_CNTR_ELEM(RxTIDInvalid, RCV_TID_VALID_ERR_CNT,
4123 			CNTR_NORMAL),
4124 [C_RX_TID_FLGMS] = RXE32_DEV_CNTR_ELEM(RxTidFLGMs,
4125 			RCV_TID_FLOW_GEN_MISMATCH_CNT,
4126 			CNTR_NORMAL),
4127 [C_RX_CTX_EGRS] = RXE32_DEV_CNTR_ELEM(RxCtxEgrS, RCV_CONTEXT_EGR_STALL,
4128 			CNTR_NORMAL),
4129 [C_RCV_TID_FLSMS] = RXE32_DEV_CNTR_ELEM(RxTidFLSMs,
4130 			RCV_TID_FLOW_SEQ_MISMATCH_CNT, CNTR_NORMAL),
4131 [C_CCE_PCI_CR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePciCrSt,
4132 			CCE_PCIE_POSTED_CRDT_STALL_CNT, CNTR_NORMAL),
4133 [C_CCE_PCI_TR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePciTrSt, CCE_PCIE_TRGT_STALL_CNT,
4134 			CNTR_NORMAL),
4135 [C_CCE_PIO_WR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePioWrSt, CCE_PIO_WR_STALL_CNT,
4136 			CNTR_NORMAL),
4137 [C_CCE_ERR_INT] = CCE_INT_DEV_CNTR_ELEM(CceErrInt, CCE_ERR_INT_CNT,
4138 			CNTR_NORMAL),
4139 [C_CCE_SDMA_INT] = CCE_INT_DEV_CNTR_ELEM(CceSdmaInt, CCE_SDMA_INT_CNT,
4140 			CNTR_NORMAL),
4141 [C_CCE_MISC_INT] = CCE_INT_DEV_CNTR_ELEM(CceMiscInt, CCE_MISC_INT_CNT,
4142 			CNTR_NORMAL),
4143 [C_CCE_RCV_AV_INT] = CCE_INT_DEV_CNTR_ELEM(CceRcvAvInt, CCE_RCV_AVAIL_INT_CNT,
4144 			CNTR_NORMAL),
4145 [C_CCE_RCV_URG_INT] = CCE_INT_DEV_CNTR_ELEM(CceRcvUrgInt,
4146 			CCE_RCV_URGENT_INT_CNT,	CNTR_NORMAL),
4147 [C_CCE_SEND_CR_INT] = CCE_INT_DEV_CNTR_ELEM(CceSndCrInt,
4148 			CCE_SEND_CREDIT_INT_CNT, CNTR_NORMAL),
4149 [C_DC_UNC_ERR] = DC_PERF_CNTR(DcUnctblErr, DCC_ERR_UNCORRECTABLE_CNT,
4150 			      CNTR_SYNTH),
4151 [C_DC_RCV_ERR] = CNTR_ELEM("DcRecvErr", DCC_ERR_PORTRCV_ERR_CNT, 0, CNTR_SYNTH,
4152 			    access_dc_rcv_err_cnt),
4153 [C_DC_FM_CFG_ERR] = DC_PERF_CNTR(DcFmCfgErr, DCC_ERR_FMCONFIG_ERR_CNT,
4154 				 CNTR_SYNTH),
4155 [C_DC_RMT_PHY_ERR] = DC_PERF_CNTR(DcRmtPhyErr, DCC_ERR_RCVREMOTE_PHY_ERR_CNT,
4156 				  CNTR_SYNTH),
4157 [C_DC_DROPPED_PKT] = DC_PERF_CNTR(DcDroppedPkt, DCC_ERR_DROPPED_PKT_CNT,
4158 				  CNTR_SYNTH),
4159 [C_DC_MC_XMIT_PKTS] = DC_PERF_CNTR(DcMcXmitPkts,
4160 				   DCC_PRF_PORT_XMIT_MULTICAST_CNT, CNTR_SYNTH),
4161 [C_DC_MC_RCV_PKTS] = DC_PERF_CNTR(DcMcRcvPkts,
4162 				  DCC_PRF_PORT_RCV_MULTICAST_PKT_CNT,
4163 				  CNTR_SYNTH),
4164 [C_DC_XMIT_CERR] = DC_PERF_CNTR(DcXmitCorr,
4165 				DCC_PRF_PORT_XMIT_CORRECTABLE_CNT, CNTR_SYNTH),
4166 [C_DC_RCV_CERR] = DC_PERF_CNTR(DcRcvCorrCnt, DCC_PRF_PORT_RCV_CORRECTABLE_CNT,
4167 			       CNTR_SYNTH),
4168 [C_DC_RCV_FCC] = DC_PERF_CNTR(DcRxFCntl, DCC_PRF_RX_FLOW_CRTL_CNT,
4169 			      CNTR_SYNTH),
4170 [C_DC_XMIT_FCC] = DC_PERF_CNTR(DcXmitFCntl, DCC_PRF_TX_FLOW_CRTL_CNT,
4171 			       CNTR_SYNTH),
4172 [C_DC_XMIT_FLITS] = DC_PERF_CNTR(DcXmitFlits, DCC_PRF_PORT_XMIT_DATA_CNT,
4173 				 CNTR_SYNTH),
4174 [C_DC_RCV_FLITS] = DC_PERF_CNTR(DcRcvFlits, DCC_PRF_PORT_RCV_DATA_CNT,
4175 				CNTR_SYNTH),
4176 [C_DC_XMIT_PKTS] = DC_PERF_CNTR(DcXmitPkts, DCC_PRF_PORT_XMIT_PKTS_CNT,
4177 				CNTR_SYNTH),
4178 [C_DC_RCV_PKTS] = DC_PERF_CNTR(DcRcvPkts, DCC_PRF_PORT_RCV_PKTS_CNT,
4179 			       CNTR_SYNTH),
4180 [C_DC_RX_FLIT_VL] = DC_PERF_CNTR(DcRxFlitVl, DCC_PRF_PORT_VL_RCV_DATA_CNT,
4181 				 CNTR_SYNTH | CNTR_VL),
4182 [C_DC_RX_PKT_VL] = DC_PERF_CNTR(DcRxPktVl, DCC_PRF_PORT_VL_RCV_PKTS_CNT,
4183 				CNTR_SYNTH | CNTR_VL),
4184 [C_DC_RCV_FCN] = DC_PERF_CNTR(DcRcvFcn, DCC_PRF_PORT_RCV_FECN_CNT, CNTR_SYNTH),
4185 [C_DC_RCV_FCN_VL] = DC_PERF_CNTR(DcRcvFcnVl, DCC_PRF_PORT_VL_RCV_FECN_CNT,
4186 				 CNTR_SYNTH | CNTR_VL),
4187 [C_DC_RCV_BCN] = DC_PERF_CNTR(DcRcvBcn, DCC_PRF_PORT_RCV_BECN_CNT, CNTR_SYNTH),
4188 [C_DC_RCV_BCN_VL] = DC_PERF_CNTR(DcRcvBcnVl, DCC_PRF_PORT_VL_RCV_BECN_CNT,
4189 				 CNTR_SYNTH | CNTR_VL),
4190 [C_DC_RCV_BBL] = DC_PERF_CNTR(DcRcvBbl, DCC_PRF_PORT_RCV_BUBBLE_CNT,
4191 			      CNTR_SYNTH),
4192 [C_DC_RCV_BBL_VL] = DC_PERF_CNTR(DcRcvBblVl, DCC_PRF_PORT_VL_RCV_BUBBLE_CNT,
4193 				 CNTR_SYNTH | CNTR_VL),
4194 [C_DC_MARK_FECN] = DC_PERF_CNTR(DcMarkFcn, DCC_PRF_PORT_MARK_FECN_CNT,
4195 				CNTR_SYNTH),
4196 [C_DC_MARK_FECN_VL] = DC_PERF_CNTR(DcMarkFcnVl, DCC_PRF_PORT_VL_MARK_FECN_CNT,
4197 				   CNTR_SYNTH | CNTR_VL),
4198 [C_DC_TOTAL_CRC] =
4199 	DC_PERF_CNTR_LCB(DcTotCrc, DC_LCB_ERR_INFO_TOTAL_CRC_ERR,
4200 			 CNTR_SYNTH),
4201 [C_DC_CRC_LN0] = DC_PERF_CNTR_LCB(DcCrcLn0, DC_LCB_ERR_INFO_CRC_ERR_LN0,
4202 				  CNTR_SYNTH),
4203 [C_DC_CRC_LN1] = DC_PERF_CNTR_LCB(DcCrcLn1, DC_LCB_ERR_INFO_CRC_ERR_LN1,
4204 				  CNTR_SYNTH),
4205 [C_DC_CRC_LN2] = DC_PERF_CNTR_LCB(DcCrcLn2, DC_LCB_ERR_INFO_CRC_ERR_LN2,
4206 				  CNTR_SYNTH),
4207 [C_DC_CRC_LN3] = DC_PERF_CNTR_LCB(DcCrcLn3, DC_LCB_ERR_INFO_CRC_ERR_LN3,
4208 				  CNTR_SYNTH),
4209 [C_DC_CRC_MULT_LN] =
4210 	DC_PERF_CNTR_LCB(DcMultLn, DC_LCB_ERR_INFO_CRC_ERR_MULTI_LN,
4211 			 CNTR_SYNTH),
4212 [C_DC_TX_REPLAY] = DC_PERF_CNTR_LCB(DcTxReplay, DC_LCB_ERR_INFO_TX_REPLAY_CNT,
4213 				    CNTR_SYNTH),
4214 [C_DC_RX_REPLAY] = DC_PERF_CNTR_LCB(DcRxReplay, DC_LCB_ERR_INFO_RX_REPLAY_CNT,
4215 				    CNTR_SYNTH),
4216 [C_DC_SEQ_CRC_CNT] =
4217 	DC_PERF_CNTR_LCB(DcLinkSeqCrc, DC_LCB_ERR_INFO_SEQ_CRC_CNT,
4218 			 CNTR_SYNTH),
4219 [C_DC_ESC0_ONLY_CNT] =
4220 	DC_PERF_CNTR_LCB(DcEsc0, DC_LCB_ERR_INFO_ESCAPE_0_ONLY_CNT,
4221 			 CNTR_SYNTH),
4222 [C_DC_ESC0_PLUS1_CNT] =
4223 	DC_PERF_CNTR_LCB(DcEsc1, DC_LCB_ERR_INFO_ESCAPE_0_PLUS1_CNT,
4224 			 CNTR_SYNTH),
4225 [C_DC_ESC0_PLUS2_CNT] =
4226 	DC_PERF_CNTR_LCB(DcEsc0Plus2, DC_LCB_ERR_INFO_ESCAPE_0_PLUS2_CNT,
4227 			 CNTR_SYNTH),
4228 [C_DC_REINIT_FROM_PEER_CNT] =
4229 	DC_PERF_CNTR_LCB(DcReinitPeer, DC_LCB_ERR_INFO_REINIT_FROM_PEER_CNT,
4230 			 CNTR_SYNTH),
4231 [C_DC_SBE_CNT] = DC_PERF_CNTR_LCB(DcSbe, DC_LCB_ERR_INFO_SBE_CNT,
4232 				  CNTR_SYNTH),
4233 [C_DC_MISC_FLG_CNT] =
4234 	DC_PERF_CNTR_LCB(DcMiscFlg, DC_LCB_ERR_INFO_MISC_FLG_CNT,
4235 			 CNTR_SYNTH),
4236 [C_DC_PRF_GOOD_LTP_CNT] =
4237 	DC_PERF_CNTR_LCB(DcGoodLTP, DC_LCB_PRF_GOOD_LTP_CNT, CNTR_SYNTH),
4238 [C_DC_PRF_ACCEPTED_LTP_CNT] =
4239 	DC_PERF_CNTR_LCB(DcAccLTP, DC_LCB_PRF_ACCEPTED_LTP_CNT,
4240 			 CNTR_SYNTH),
4241 [C_DC_PRF_RX_FLIT_CNT] =
4242 	DC_PERF_CNTR_LCB(DcPrfRxFlit, DC_LCB_PRF_RX_FLIT_CNT, CNTR_SYNTH),
4243 [C_DC_PRF_TX_FLIT_CNT] =
4244 	DC_PERF_CNTR_LCB(DcPrfTxFlit, DC_LCB_PRF_TX_FLIT_CNT, CNTR_SYNTH),
4245 [C_DC_PRF_CLK_CNTR] =
4246 	DC_PERF_CNTR_LCB(DcPrfClk, DC_LCB_PRF_CLK_CNTR, CNTR_SYNTH),
4247 [C_DC_PG_DBG_FLIT_CRDTS_CNT] =
4248 	DC_PERF_CNTR_LCB(DcFltCrdts, DC_LCB_PG_DBG_FLIT_CRDTS_CNT, CNTR_SYNTH),
4249 [C_DC_PG_STS_PAUSE_COMPLETE_CNT] =
4250 	DC_PERF_CNTR_LCB(DcPauseComp, DC_LCB_PG_STS_PAUSE_COMPLETE_CNT,
4251 			 CNTR_SYNTH),
4252 [C_DC_PG_STS_TX_SBE_CNT] =
4253 	DC_PERF_CNTR_LCB(DcStsTxSbe, DC_LCB_PG_STS_TX_SBE_CNT, CNTR_SYNTH),
4254 [C_DC_PG_STS_TX_MBE_CNT] =
4255 	DC_PERF_CNTR_LCB(DcStsTxMbe, DC_LCB_PG_STS_TX_MBE_CNT,
4256 			 CNTR_SYNTH),
4257 [C_SW_CPU_INTR] = CNTR_ELEM("Intr", 0, 0, CNTR_NORMAL,
4258 			    access_sw_cpu_intr),
4259 [C_SW_CPU_RCV_LIM] = CNTR_ELEM("RcvLimit", 0, 0, CNTR_NORMAL,
4260 			    access_sw_cpu_rcv_limit),
4261 [C_SW_CTX0_SEQ_DROP] = CNTR_ELEM("SeqDrop0", 0, 0, CNTR_NORMAL,
4262 			    access_sw_ctx0_seq_drop),
4263 [C_SW_VTX_WAIT] = CNTR_ELEM("vTxWait", 0, 0, CNTR_NORMAL,
4264 			    access_sw_vtx_wait),
4265 [C_SW_PIO_WAIT] = CNTR_ELEM("PioWait", 0, 0, CNTR_NORMAL,
4266 			    access_sw_pio_wait),
4267 [C_SW_PIO_DRAIN] = CNTR_ELEM("PioDrain", 0, 0, CNTR_NORMAL,
4268 			    access_sw_pio_drain),
4269 [C_SW_KMEM_WAIT] = CNTR_ELEM("KmemWait", 0, 0, CNTR_NORMAL,
4270 			    access_sw_kmem_wait),
4271 [C_SW_TID_WAIT] = CNTR_ELEM("TidWait", 0, 0, CNTR_NORMAL,
4272 			    hfi1_access_sw_tid_wait),
4273 [C_SW_SEND_SCHED] = CNTR_ELEM("SendSched", 0, 0, CNTR_NORMAL,
4274 			    access_sw_send_schedule),
4275 [C_SDMA_DESC_FETCHED_CNT] = CNTR_ELEM("SDEDscFdCn",
4276 				      SEND_DMA_DESC_FETCHED_CNT, 0,
4277 				      CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4278 				      dev_access_u32_csr),
4279 [C_SDMA_INT_CNT] = CNTR_ELEM("SDMAInt", 0, 0,
4280 			     CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4281 			     access_sde_int_cnt),
4282 [C_SDMA_ERR_CNT] = CNTR_ELEM("SDMAErrCt", 0, 0,
4283 			     CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4284 			     access_sde_err_cnt),
4285 [C_SDMA_IDLE_INT_CNT] = CNTR_ELEM("SDMAIdInt", 0, 0,
4286 				  CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4287 				  access_sde_idle_int_cnt),
4288 [C_SDMA_PROGRESS_INT_CNT] = CNTR_ELEM("SDMAPrIntCn", 0, 0,
4289 				      CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4290 				      access_sde_progress_int_cnt),
4291 /* MISC_ERR_STATUS */
4292 [C_MISC_PLL_LOCK_FAIL_ERR] = CNTR_ELEM("MISC_PLL_LOCK_FAIL_ERR", 0, 0,
4293 				CNTR_NORMAL,
4294 				access_misc_pll_lock_fail_err_cnt),
4295 [C_MISC_MBIST_FAIL_ERR] = CNTR_ELEM("MISC_MBIST_FAIL_ERR", 0, 0,
4296 				CNTR_NORMAL,
4297 				access_misc_mbist_fail_err_cnt),
4298 [C_MISC_INVALID_EEP_CMD_ERR] = CNTR_ELEM("MISC_INVALID_EEP_CMD_ERR", 0, 0,
4299 				CNTR_NORMAL,
4300 				access_misc_invalid_eep_cmd_err_cnt),
4301 [C_MISC_EFUSE_DONE_PARITY_ERR] = CNTR_ELEM("MISC_EFUSE_DONE_PARITY_ERR", 0, 0,
4302 				CNTR_NORMAL,
4303 				access_misc_efuse_done_parity_err_cnt),
4304 [C_MISC_EFUSE_WRITE_ERR] = CNTR_ELEM("MISC_EFUSE_WRITE_ERR", 0, 0,
4305 				CNTR_NORMAL,
4306 				access_misc_efuse_write_err_cnt),
4307 [C_MISC_EFUSE_READ_BAD_ADDR_ERR] = CNTR_ELEM("MISC_EFUSE_READ_BAD_ADDR_ERR", 0,
4308 				0, CNTR_NORMAL,
4309 				access_misc_efuse_read_bad_addr_err_cnt),
4310 [C_MISC_EFUSE_CSR_PARITY_ERR] = CNTR_ELEM("MISC_EFUSE_CSR_PARITY_ERR", 0, 0,
4311 				CNTR_NORMAL,
4312 				access_misc_efuse_csr_parity_err_cnt),
4313 [C_MISC_FW_AUTH_FAILED_ERR] = CNTR_ELEM("MISC_FW_AUTH_FAILED_ERR", 0, 0,
4314 				CNTR_NORMAL,
4315 				access_misc_fw_auth_failed_err_cnt),
4316 [C_MISC_KEY_MISMATCH_ERR] = CNTR_ELEM("MISC_KEY_MISMATCH_ERR", 0, 0,
4317 				CNTR_NORMAL,
4318 				access_misc_key_mismatch_err_cnt),
4319 [C_MISC_SBUS_WRITE_FAILED_ERR] = CNTR_ELEM("MISC_SBUS_WRITE_FAILED_ERR", 0, 0,
4320 				CNTR_NORMAL,
4321 				access_misc_sbus_write_failed_err_cnt),
4322 [C_MISC_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("MISC_CSR_WRITE_BAD_ADDR_ERR", 0, 0,
4323 				CNTR_NORMAL,
4324 				access_misc_csr_write_bad_addr_err_cnt),
4325 [C_MISC_CSR_READ_BAD_ADDR_ERR] = CNTR_ELEM("MISC_CSR_READ_BAD_ADDR_ERR", 0, 0,
4326 				CNTR_NORMAL,
4327 				access_misc_csr_read_bad_addr_err_cnt),
4328 [C_MISC_CSR_PARITY_ERR] = CNTR_ELEM("MISC_CSR_PARITY_ERR", 0, 0,
4329 				CNTR_NORMAL,
4330 				access_misc_csr_parity_err_cnt),
4331 /* CceErrStatus */
4332 [C_CCE_ERR_STATUS_AGGREGATED_CNT] = CNTR_ELEM("CceErrStatusAggregatedCnt", 0, 0,
4333 				CNTR_NORMAL,
4334 				access_sw_cce_err_status_aggregated_cnt),
4335 [C_CCE_MSIX_CSR_PARITY_ERR] = CNTR_ELEM("CceMsixCsrParityErr", 0, 0,
4336 				CNTR_NORMAL,
4337 				access_cce_msix_csr_parity_err_cnt),
4338 [C_CCE_INT_MAP_UNC_ERR] = CNTR_ELEM("CceIntMapUncErr", 0, 0,
4339 				CNTR_NORMAL,
4340 				access_cce_int_map_unc_err_cnt),
4341 [C_CCE_INT_MAP_COR_ERR] = CNTR_ELEM("CceIntMapCorErr", 0, 0,
4342 				CNTR_NORMAL,
4343 				access_cce_int_map_cor_err_cnt),
4344 [C_CCE_MSIX_TABLE_UNC_ERR] = CNTR_ELEM("CceMsixTableUncErr", 0, 0,
4345 				CNTR_NORMAL,
4346 				access_cce_msix_table_unc_err_cnt),
4347 [C_CCE_MSIX_TABLE_COR_ERR] = CNTR_ELEM("CceMsixTableCorErr", 0, 0,
4348 				CNTR_NORMAL,
4349 				access_cce_msix_table_cor_err_cnt),
4350 [C_CCE_RXDMA_CONV_FIFO_PARITY_ERR] = CNTR_ELEM("CceRxdmaConvFifoParityErr", 0,
4351 				0, CNTR_NORMAL,
4352 				access_cce_rxdma_conv_fifo_parity_err_cnt),
4353 [C_CCE_RCPL_ASYNC_FIFO_PARITY_ERR] = CNTR_ELEM("CceRcplAsyncFifoParityErr", 0,
4354 				0, CNTR_NORMAL,
4355 				access_cce_rcpl_async_fifo_parity_err_cnt),
4356 [C_CCE_SEG_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("CceSegWriteBadAddrErr", 0, 0,
4357 				CNTR_NORMAL,
4358 				access_cce_seg_write_bad_addr_err_cnt),
4359 [C_CCE_SEG_READ_BAD_ADDR_ERR] = CNTR_ELEM("CceSegReadBadAddrErr", 0, 0,
4360 				CNTR_NORMAL,
4361 				access_cce_seg_read_bad_addr_err_cnt),
4362 [C_LA_TRIGGERED] = CNTR_ELEM("Cce LATriggered", 0, 0,
4363 				CNTR_NORMAL,
4364 				access_la_triggered_cnt),
4365 [C_CCE_TRGT_CPL_TIMEOUT_ERR] = CNTR_ELEM("CceTrgtCplTimeoutErr", 0, 0,
4366 				CNTR_NORMAL,
4367 				access_cce_trgt_cpl_timeout_err_cnt),
4368 [C_PCIC_RECEIVE_PARITY_ERR] = CNTR_ELEM("PcicReceiveParityErr", 0, 0,
4369 				CNTR_NORMAL,
4370 				access_pcic_receive_parity_err_cnt),
4371 [C_PCIC_TRANSMIT_BACK_PARITY_ERR] = CNTR_ELEM("PcicTransmitBackParityErr", 0, 0,
4372 				CNTR_NORMAL,
4373 				access_pcic_transmit_back_parity_err_cnt),
4374 [C_PCIC_TRANSMIT_FRONT_PARITY_ERR] = CNTR_ELEM("PcicTransmitFrontParityErr", 0,
4375 				0, CNTR_NORMAL,
4376 				access_pcic_transmit_front_parity_err_cnt),
4377 [C_PCIC_CPL_DAT_Q_UNC_ERR] = CNTR_ELEM("PcicCplDatQUncErr", 0, 0,
4378 				CNTR_NORMAL,
4379 				access_pcic_cpl_dat_q_unc_err_cnt),
4380 [C_PCIC_CPL_HD_Q_UNC_ERR] = CNTR_ELEM("PcicCplHdQUncErr", 0, 0,
4381 				CNTR_NORMAL,
4382 				access_pcic_cpl_hd_q_unc_err_cnt),
4383 [C_PCIC_POST_DAT_Q_UNC_ERR] = CNTR_ELEM("PcicPostDatQUncErr", 0, 0,
4384 				CNTR_NORMAL,
4385 				access_pcic_post_dat_q_unc_err_cnt),
4386 [C_PCIC_POST_HD_Q_UNC_ERR] = CNTR_ELEM("PcicPostHdQUncErr", 0, 0,
4387 				CNTR_NORMAL,
4388 				access_pcic_post_hd_q_unc_err_cnt),
4389 [C_PCIC_RETRY_SOT_MEM_UNC_ERR] = CNTR_ELEM("PcicRetrySotMemUncErr", 0, 0,
4390 				CNTR_NORMAL,
4391 				access_pcic_retry_sot_mem_unc_err_cnt),
4392 [C_PCIC_RETRY_MEM_UNC_ERR] = CNTR_ELEM("PcicRetryMemUncErr", 0, 0,
4393 				CNTR_NORMAL,
4394 				access_pcic_retry_mem_unc_err),
4395 [C_PCIC_N_POST_DAT_Q_PARITY_ERR] = CNTR_ELEM("PcicNPostDatQParityErr", 0, 0,
4396 				CNTR_NORMAL,
4397 				access_pcic_n_post_dat_q_parity_err_cnt),
4398 [C_PCIC_N_POST_H_Q_PARITY_ERR] = CNTR_ELEM("PcicNPostHQParityErr", 0, 0,
4399 				CNTR_NORMAL,
4400 				access_pcic_n_post_h_q_parity_err_cnt),
4401 [C_PCIC_CPL_DAT_Q_COR_ERR] = CNTR_ELEM("PcicCplDatQCorErr", 0, 0,
4402 				CNTR_NORMAL,
4403 				access_pcic_cpl_dat_q_cor_err_cnt),
4404 [C_PCIC_CPL_HD_Q_COR_ERR] = CNTR_ELEM("PcicCplHdQCorErr", 0, 0,
4405 				CNTR_NORMAL,
4406 				access_pcic_cpl_hd_q_cor_err_cnt),
4407 [C_PCIC_POST_DAT_Q_COR_ERR] = CNTR_ELEM("PcicPostDatQCorErr", 0, 0,
4408 				CNTR_NORMAL,
4409 				access_pcic_post_dat_q_cor_err_cnt),
4410 [C_PCIC_POST_HD_Q_COR_ERR] = CNTR_ELEM("PcicPostHdQCorErr", 0, 0,
4411 				CNTR_NORMAL,
4412 				access_pcic_post_hd_q_cor_err_cnt),
4413 [C_PCIC_RETRY_SOT_MEM_COR_ERR] = CNTR_ELEM("PcicRetrySotMemCorErr", 0, 0,
4414 				CNTR_NORMAL,
4415 				access_pcic_retry_sot_mem_cor_err_cnt),
4416 [C_PCIC_RETRY_MEM_COR_ERR] = CNTR_ELEM("PcicRetryMemCorErr", 0, 0,
4417 				CNTR_NORMAL,
4418 				access_pcic_retry_mem_cor_err_cnt),
4419 [C_CCE_CLI1_ASYNC_FIFO_DBG_PARITY_ERR] = CNTR_ELEM(
4420 				"CceCli1AsyncFifoDbgParityError", 0, 0,
4421 				CNTR_NORMAL,
4422 				access_cce_cli1_async_fifo_dbg_parity_err_cnt),
4423 [C_CCE_CLI1_ASYNC_FIFO_RXDMA_PARITY_ERR] = CNTR_ELEM(
4424 				"CceCli1AsyncFifoRxdmaParityError", 0, 0,
4425 				CNTR_NORMAL,
4426 				access_cce_cli1_async_fifo_rxdma_parity_err_cnt
4427 				),
4428 [C_CCE_CLI1_ASYNC_FIFO_SDMA_HD_PARITY_ERR] = CNTR_ELEM(
4429 			"CceCli1AsyncFifoSdmaHdParityErr", 0, 0,
4430 			CNTR_NORMAL,
4431 			access_cce_cli1_async_fifo_sdma_hd_parity_err_cnt),
4432 [C_CCE_CLI1_ASYNC_FIFO_PIO_CRDT_PARITY_ERR] = CNTR_ELEM(
4433 			"CceCli1AsyncFifoPioCrdtParityErr", 0, 0,
4434 			CNTR_NORMAL,
4435 			access_cce_cl1_async_fifo_pio_crdt_parity_err_cnt),
4436 [C_CCE_CLI2_ASYNC_FIFO_PARITY_ERR] = CNTR_ELEM("CceCli2AsyncFifoParityErr", 0,
4437 			0, CNTR_NORMAL,
4438 			access_cce_cli2_async_fifo_parity_err_cnt),
4439 [C_CCE_CSR_CFG_BUS_PARITY_ERR] = CNTR_ELEM("CceCsrCfgBusParityErr", 0, 0,
4440 			CNTR_NORMAL,
4441 			access_cce_csr_cfg_bus_parity_err_cnt),
4442 [C_CCE_CLI0_ASYNC_FIFO_PARTIY_ERR] = CNTR_ELEM("CceCli0AsyncFifoParityErr", 0,
4443 			0, CNTR_NORMAL,
4444 			access_cce_cli0_async_fifo_parity_err_cnt),
4445 [C_CCE_RSPD_DATA_PARITY_ERR] = CNTR_ELEM("CceRspdDataParityErr", 0, 0,
4446 			CNTR_NORMAL,
4447 			access_cce_rspd_data_parity_err_cnt),
4448 [C_CCE_TRGT_ACCESS_ERR] = CNTR_ELEM("CceTrgtAccessErr", 0, 0,
4449 			CNTR_NORMAL,
4450 			access_cce_trgt_access_err_cnt),
4451 [C_CCE_TRGT_ASYNC_FIFO_PARITY_ERR] = CNTR_ELEM("CceTrgtAsyncFifoParityErr", 0,
4452 			0, CNTR_NORMAL,
4453 			access_cce_trgt_async_fifo_parity_err_cnt),
4454 [C_CCE_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("CceCsrWriteBadAddrErr", 0, 0,
4455 			CNTR_NORMAL,
4456 			access_cce_csr_write_bad_addr_err_cnt),
4457 [C_CCE_CSR_READ_BAD_ADDR_ERR] = CNTR_ELEM("CceCsrReadBadAddrErr", 0, 0,
4458 			CNTR_NORMAL,
4459 			access_cce_csr_read_bad_addr_err_cnt),
4460 [C_CCE_CSR_PARITY_ERR] = CNTR_ELEM("CceCsrParityErr", 0, 0,
4461 			CNTR_NORMAL,
4462 			access_ccs_csr_parity_err_cnt),
4463 
4464 /* RcvErrStatus */
4465 [C_RX_CSR_PARITY_ERR] = CNTR_ELEM("RxCsrParityErr", 0, 0,
4466 			CNTR_NORMAL,
4467 			access_rx_csr_parity_err_cnt),
4468 [C_RX_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("RxCsrWriteBadAddrErr", 0, 0,
4469 			CNTR_NORMAL,
4470 			access_rx_csr_write_bad_addr_err_cnt),
4471 [C_RX_CSR_READ_BAD_ADDR_ERR] = CNTR_ELEM("RxCsrReadBadAddrErr", 0, 0,
4472 			CNTR_NORMAL,
4473 			access_rx_csr_read_bad_addr_err_cnt),
4474 [C_RX_DMA_CSR_UNC_ERR] = CNTR_ELEM("RxDmaCsrUncErr", 0, 0,
4475 			CNTR_NORMAL,
4476 			access_rx_dma_csr_unc_err_cnt),
4477 [C_RX_DMA_DQ_FSM_ENCODING_ERR] = CNTR_ELEM("RxDmaDqFsmEncodingErr", 0, 0,
4478 			CNTR_NORMAL,
4479 			access_rx_dma_dq_fsm_encoding_err_cnt),
4480 [C_RX_DMA_EQ_FSM_ENCODING_ERR] = CNTR_ELEM("RxDmaEqFsmEncodingErr", 0, 0,
4481 			CNTR_NORMAL,
4482 			access_rx_dma_eq_fsm_encoding_err_cnt),
4483 [C_RX_DMA_CSR_PARITY_ERR] = CNTR_ELEM("RxDmaCsrParityErr", 0, 0,
4484 			CNTR_NORMAL,
4485 			access_rx_dma_csr_parity_err_cnt),
4486 [C_RX_RBUF_DATA_COR_ERR] = CNTR_ELEM("RxRbufDataCorErr", 0, 0,
4487 			CNTR_NORMAL,
4488 			access_rx_rbuf_data_cor_err_cnt),
4489 [C_RX_RBUF_DATA_UNC_ERR] = CNTR_ELEM("RxRbufDataUncErr", 0, 0,
4490 			CNTR_NORMAL,
4491 			access_rx_rbuf_data_unc_err_cnt),
4492 [C_RX_DMA_DATA_FIFO_RD_COR_ERR] = CNTR_ELEM("RxDmaDataFifoRdCorErr", 0, 0,
4493 			CNTR_NORMAL,
4494 			access_rx_dma_data_fifo_rd_cor_err_cnt),
4495 [C_RX_DMA_DATA_FIFO_RD_UNC_ERR] = CNTR_ELEM("RxDmaDataFifoRdUncErr", 0, 0,
4496 			CNTR_NORMAL,
4497 			access_rx_dma_data_fifo_rd_unc_err_cnt),
4498 [C_RX_DMA_HDR_FIFO_RD_COR_ERR] = CNTR_ELEM("RxDmaHdrFifoRdCorErr", 0, 0,
4499 			CNTR_NORMAL,
4500 			access_rx_dma_hdr_fifo_rd_cor_err_cnt),
4501 [C_RX_DMA_HDR_FIFO_RD_UNC_ERR] = CNTR_ELEM("RxDmaHdrFifoRdUncErr", 0, 0,
4502 			CNTR_NORMAL,
4503 			access_rx_dma_hdr_fifo_rd_unc_err_cnt),
4504 [C_RX_RBUF_DESC_PART2_COR_ERR] = CNTR_ELEM("RxRbufDescPart2CorErr", 0, 0,
4505 			CNTR_NORMAL,
4506 			access_rx_rbuf_desc_part2_cor_err_cnt),
4507 [C_RX_RBUF_DESC_PART2_UNC_ERR] = CNTR_ELEM("RxRbufDescPart2UncErr", 0, 0,
4508 			CNTR_NORMAL,
4509 			access_rx_rbuf_desc_part2_unc_err_cnt),
4510 [C_RX_RBUF_DESC_PART1_COR_ERR] = CNTR_ELEM("RxRbufDescPart1CorErr", 0, 0,
4511 			CNTR_NORMAL,
4512 			access_rx_rbuf_desc_part1_cor_err_cnt),
4513 [C_RX_RBUF_DESC_PART1_UNC_ERR] = CNTR_ELEM("RxRbufDescPart1UncErr", 0, 0,
4514 			CNTR_NORMAL,
4515 			access_rx_rbuf_desc_part1_unc_err_cnt),
4516 [C_RX_HQ_INTR_FSM_ERR] = CNTR_ELEM("RxHqIntrFsmErr", 0, 0,
4517 			CNTR_NORMAL,
4518 			access_rx_hq_intr_fsm_err_cnt),
4519 [C_RX_HQ_INTR_CSR_PARITY_ERR] = CNTR_ELEM("RxHqIntrCsrParityErr", 0, 0,
4520 			CNTR_NORMAL,
4521 			access_rx_hq_intr_csr_parity_err_cnt),
4522 [C_RX_LOOKUP_CSR_PARITY_ERR] = CNTR_ELEM("RxLookupCsrParityErr", 0, 0,
4523 			CNTR_NORMAL,
4524 			access_rx_lookup_csr_parity_err_cnt),
4525 [C_RX_LOOKUP_RCV_ARRAY_COR_ERR] = CNTR_ELEM("RxLookupRcvArrayCorErr", 0, 0,
4526 			CNTR_NORMAL,
4527 			access_rx_lookup_rcv_array_cor_err_cnt),
4528 [C_RX_LOOKUP_RCV_ARRAY_UNC_ERR] = CNTR_ELEM("RxLookupRcvArrayUncErr", 0, 0,
4529 			CNTR_NORMAL,
4530 			access_rx_lookup_rcv_array_unc_err_cnt),
4531 [C_RX_LOOKUP_DES_PART2_PARITY_ERR] = CNTR_ELEM("RxLookupDesPart2ParityErr", 0,
4532 			0, CNTR_NORMAL,
4533 			access_rx_lookup_des_part2_parity_err_cnt),
4534 [C_RX_LOOKUP_DES_PART1_UNC_COR_ERR] = CNTR_ELEM("RxLookupDesPart1UncCorErr", 0,
4535 			0, CNTR_NORMAL,
4536 			access_rx_lookup_des_part1_unc_cor_err_cnt),
4537 [C_RX_LOOKUP_DES_PART1_UNC_ERR] = CNTR_ELEM("RxLookupDesPart1UncErr", 0, 0,
4538 			CNTR_NORMAL,
4539 			access_rx_lookup_des_part1_unc_err_cnt),
4540 [C_RX_RBUF_NEXT_FREE_BUF_COR_ERR] = CNTR_ELEM("RxRbufNextFreeBufCorErr", 0, 0,
4541 			CNTR_NORMAL,
4542 			access_rx_rbuf_next_free_buf_cor_err_cnt),
4543 [C_RX_RBUF_NEXT_FREE_BUF_UNC_ERR] = CNTR_ELEM("RxRbufNextFreeBufUncErr", 0, 0,
4544 			CNTR_NORMAL,
4545 			access_rx_rbuf_next_free_buf_unc_err_cnt),
4546 [C_RX_RBUF_FL_INIT_WR_ADDR_PARITY_ERR] = CNTR_ELEM(
4547 			"RxRbufFlInitWrAddrParityErr", 0, 0,
4548 			CNTR_NORMAL,
4549 			access_rbuf_fl_init_wr_addr_parity_err_cnt),
4550 [C_RX_RBUF_FL_INITDONE_PARITY_ERR] = CNTR_ELEM("RxRbufFlInitdoneParityErr", 0,
4551 			0, CNTR_NORMAL,
4552 			access_rx_rbuf_fl_initdone_parity_err_cnt),
4553 [C_RX_RBUF_FL_WRITE_ADDR_PARITY_ERR] = CNTR_ELEM("RxRbufFlWrAddrParityErr", 0,
4554 			0, CNTR_NORMAL,
4555 			access_rx_rbuf_fl_write_addr_parity_err_cnt),
4556 [C_RX_RBUF_FL_RD_ADDR_PARITY_ERR] = CNTR_ELEM("RxRbufFlRdAddrParityErr", 0, 0,
4557 			CNTR_NORMAL,
4558 			access_rx_rbuf_fl_rd_addr_parity_err_cnt),
4559 [C_RX_RBUF_EMPTY_ERR] = CNTR_ELEM("RxRbufEmptyErr", 0, 0,
4560 			CNTR_NORMAL,
4561 			access_rx_rbuf_empty_err_cnt),
4562 [C_RX_RBUF_FULL_ERR] = CNTR_ELEM("RxRbufFullErr", 0, 0,
4563 			CNTR_NORMAL,
4564 			access_rx_rbuf_full_err_cnt),
4565 [C_RX_RBUF_BAD_LOOKUP_ERR] = CNTR_ELEM("RxRBufBadLookupErr", 0, 0,
4566 			CNTR_NORMAL,
4567 			access_rbuf_bad_lookup_err_cnt),
4568 [C_RX_RBUF_CTX_ID_PARITY_ERR] = CNTR_ELEM("RxRbufCtxIdParityErr", 0, 0,
4569 			CNTR_NORMAL,
4570 			access_rbuf_ctx_id_parity_err_cnt),
4571 [C_RX_RBUF_CSR_QEOPDW_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQEOPDWParityErr", 0, 0,
4572 			CNTR_NORMAL,
4573 			access_rbuf_csr_qeopdw_parity_err_cnt),
4574 [C_RX_RBUF_CSR_Q_NUM_OF_PKT_PARITY_ERR] = CNTR_ELEM(
4575 			"RxRbufCsrQNumOfPktParityErr", 0, 0,
4576 			CNTR_NORMAL,
4577 			access_rx_rbuf_csr_q_num_of_pkt_parity_err_cnt),
4578 [C_RX_RBUF_CSR_Q_T1_PTR_PARITY_ERR] = CNTR_ELEM(
4579 			"RxRbufCsrQTlPtrParityErr", 0, 0,
4580 			CNTR_NORMAL,
4581 			access_rx_rbuf_csr_q_t1_ptr_parity_err_cnt),
4582 [C_RX_RBUF_CSR_Q_HD_PTR_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQHdPtrParityErr", 0,
4583 			0, CNTR_NORMAL,
4584 			access_rx_rbuf_csr_q_hd_ptr_parity_err_cnt),
4585 [C_RX_RBUF_CSR_Q_VLD_BIT_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQVldBitParityErr", 0,
4586 			0, CNTR_NORMAL,
4587 			access_rx_rbuf_csr_q_vld_bit_parity_err_cnt),
4588 [C_RX_RBUF_CSR_Q_NEXT_BUF_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQNextBufParityErr",
4589 			0, 0, CNTR_NORMAL,
4590 			access_rx_rbuf_csr_q_next_buf_parity_err_cnt),
4591 [C_RX_RBUF_CSR_Q_ENT_CNT_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQEntCntParityErr", 0,
4592 			0, CNTR_NORMAL,
4593 			access_rx_rbuf_csr_q_ent_cnt_parity_err_cnt),
4594 [C_RX_RBUF_CSR_Q_HEAD_BUF_NUM_PARITY_ERR] = CNTR_ELEM(
4595 			"RxRbufCsrQHeadBufNumParityErr", 0, 0,
4596 			CNTR_NORMAL,
4597 			access_rx_rbuf_csr_q_head_buf_num_parity_err_cnt),
4598 [C_RX_RBUF_BLOCK_LIST_READ_COR_ERR] = CNTR_ELEM("RxRbufBlockListReadCorErr", 0,
4599 			0, CNTR_NORMAL,
4600 			access_rx_rbuf_block_list_read_cor_err_cnt),
4601 [C_RX_RBUF_BLOCK_LIST_READ_UNC_ERR] = CNTR_ELEM("RxRbufBlockListReadUncErr", 0,
4602 			0, CNTR_NORMAL,
4603 			access_rx_rbuf_block_list_read_unc_err_cnt),
4604 [C_RX_RBUF_LOOKUP_DES_COR_ERR] = CNTR_ELEM("RxRbufLookupDesCorErr", 0, 0,
4605 			CNTR_NORMAL,
4606 			access_rx_rbuf_lookup_des_cor_err_cnt),
4607 [C_RX_RBUF_LOOKUP_DES_UNC_ERR] = CNTR_ELEM("RxRbufLookupDesUncErr", 0, 0,
4608 			CNTR_NORMAL,
4609 			access_rx_rbuf_lookup_des_unc_err_cnt),
4610 [C_RX_RBUF_LOOKUP_DES_REG_UNC_COR_ERR] = CNTR_ELEM(
4611 			"RxRbufLookupDesRegUncCorErr", 0, 0,
4612 			CNTR_NORMAL,
4613 			access_rx_rbuf_lookup_des_reg_unc_cor_err_cnt),
4614 [C_RX_RBUF_LOOKUP_DES_REG_UNC_ERR] = CNTR_ELEM("RxRbufLookupDesRegUncErr", 0, 0,
4615 			CNTR_NORMAL,
4616 			access_rx_rbuf_lookup_des_reg_unc_err_cnt),
4617 [C_RX_RBUF_FREE_LIST_COR_ERR] = CNTR_ELEM("RxRbufFreeListCorErr", 0, 0,
4618 			CNTR_NORMAL,
4619 			access_rx_rbuf_free_list_cor_err_cnt),
4620 [C_RX_RBUF_FREE_LIST_UNC_ERR] = CNTR_ELEM("RxRbufFreeListUncErr", 0, 0,
4621 			CNTR_NORMAL,
4622 			access_rx_rbuf_free_list_unc_err_cnt),
4623 [C_RX_RCV_FSM_ENCODING_ERR] = CNTR_ELEM("RxRcvFsmEncodingErr", 0, 0,
4624 			CNTR_NORMAL,
4625 			access_rx_rcv_fsm_encoding_err_cnt),
4626 [C_RX_DMA_FLAG_COR_ERR] = CNTR_ELEM("RxDmaFlagCorErr", 0, 0,
4627 			CNTR_NORMAL,
4628 			access_rx_dma_flag_cor_err_cnt),
4629 [C_RX_DMA_FLAG_UNC_ERR] = CNTR_ELEM("RxDmaFlagUncErr", 0, 0,
4630 			CNTR_NORMAL,
4631 			access_rx_dma_flag_unc_err_cnt),
4632 [C_RX_DC_SOP_EOP_PARITY_ERR] = CNTR_ELEM("RxDcSopEopParityErr", 0, 0,
4633 			CNTR_NORMAL,
4634 			access_rx_dc_sop_eop_parity_err_cnt),
4635 [C_RX_RCV_CSR_PARITY_ERR] = CNTR_ELEM("RxRcvCsrParityErr", 0, 0,
4636 			CNTR_NORMAL,
4637 			access_rx_rcv_csr_parity_err_cnt),
4638 [C_RX_RCV_QP_MAP_TABLE_COR_ERR] = CNTR_ELEM("RxRcvQpMapTableCorErr", 0, 0,
4639 			CNTR_NORMAL,
4640 			access_rx_rcv_qp_map_table_cor_err_cnt),
4641 [C_RX_RCV_QP_MAP_TABLE_UNC_ERR] = CNTR_ELEM("RxRcvQpMapTableUncErr", 0, 0,
4642 			CNTR_NORMAL,
4643 			access_rx_rcv_qp_map_table_unc_err_cnt),
4644 [C_RX_RCV_DATA_COR_ERR] = CNTR_ELEM("RxRcvDataCorErr", 0, 0,
4645 			CNTR_NORMAL,
4646 			access_rx_rcv_data_cor_err_cnt),
4647 [C_RX_RCV_DATA_UNC_ERR] = CNTR_ELEM("RxRcvDataUncErr", 0, 0,
4648 			CNTR_NORMAL,
4649 			access_rx_rcv_data_unc_err_cnt),
4650 [C_RX_RCV_HDR_COR_ERR] = CNTR_ELEM("RxRcvHdrCorErr", 0, 0,
4651 			CNTR_NORMAL,
4652 			access_rx_rcv_hdr_cor_err_cnt),
4653 [C_RX_RCV_HDR_UNC_ERR] = CNTR_ELEM("RxRcvHdrUncErr", 0, 0,
4654 			CNTR_NORMAL,
4655 			access_rx_rcv_hdr_unc_err_cnt),
4656 [C_RX_DC_INTF_PARITY_ERR] = CNTR_ELEM("RxDcIntfParityErr", 0, 0,
4657 			CNTR_NORMAL,
4658 			access_rx_dc_intf_parity_err_cnt),
4659 [C_RX_DMA_CSR_COR_ERR] = CNTR_ELEM("RxDmaCsrCorErr", 0, 0,
4660 			CNTR_NORMAL,
4661 			access_rx_dma_csr_cor_err_cnt),
4662 /* SendPioErrStatus */
4663 [C_PIO_PEC_SOP_HEAD_PARITY_ERR] = CNTR_ELEM("PioPecSopHeadParityErr", 0, 0,
4664 			CNTR_NORMAL,
4665 			access_pio_pec_sop_head_parity_err_cnt),
4666 [C_PIO_PCC_SOP_HEAD_PARITY_ERR] = CNTR_ELEM("PioPccSopHeadParityErr", 0, 0,
4667 			CNTR_NORMAL,
4668 			access_pio_pcc_sop_head_parity_err_cnt),
4669 [C_PIO_LAST_RETURNED_CNT_PARITY_ERR] = CNTR_ELEM("PioLastReturnedCntParityErr",
4670 			0, 0, CNTR_NORMAL,
4671 			access_pio_last_returned_cnt_parity_err_cnt),
4672 [C_PIO_CURRENT_FREE_CNT_PARITY_ERR] = CNTR_ELEM("PioCurrentFreeCntParityErr", 0,
4673 			0, CNTR_NORMAL,
4674 			access_pio_current_free_cnt_parity_err_cnt),
4675 [C_PIO_RSVD_31_ERR] = CNTR_ELEM("Pio Reserved 31", 0, 0,
4676 			CNTR_NORMAL,
4677 			access_pio_reserved_31_err_cnt),
4678 [C_PIO_RSVD_30_ERR] = CNTR_ELEM("Pio Reserved 30", 0, 0,
4679 			CNTR_NORMAL,
4680 			access_pio_reserved_30_err_cnt),
4681 [C_PIO_PPMC_SOP_LEN_ERR] = CNTR_ELEM("PioPpmcSopLenErr", 0, 0,
4682 			CNTR_NORMAL,
4683 			access_pio_ppmc_sop_len_err_cnt),
4684 [C_PIO_PPMC_BQC_MEM_PARITY_ERR] = CNTR_ELEM("PioPpmcBqcMemParityErr", 0, 0,
4685 			CNTR_NORMAL,
4686 			access_pio_ppmc_bqc_mem_parity_err_cnt),
4687 [C_PIO_VL_FIFO_PARITY_ERR] = CNTR_ELEM("PioVlFifoParityErr", 0, 0,
4688 			CNTR_NORMAL,
4689 			access_pio_vl_fifo_parity_err_cnt),
4690 [C_PIO_VLF_SOP_PARITY_ERR] = CNTR_ELEM("PioVlfSopParityErr", 0, 0,
4691 			CNTR_NORMAL,
4692 			access_pio_vlf_sop_parity_err_cnt),
4693 [C_PIO_VLF_V1_LEN_PARITY_ERR] = CNTR_ELEM("PioVlfVlLenParityErr", 0, 0,
4694 			CNTR_NORMAL,
4695 			access_pio_vlf_v1_len_parity_err_cnt),
4696 [C_PIO_BLOCK_QW_COUNT_PARITY_ERR] = CNTR_ELEM("PioBlockQwCountParityErr", 0, 0,
4697 			CNTR_NORMAL,
4698 			access_pio_block_qw_count_parity_err_cnt),
4699 [C_PIO_WRITE_QW_VALID_PARITY_ERR] = CNTR_ELEM("PioWriteQwValidParityErr", 0, 0,
4700 			CNTR_NORMAL,
4701 			access_pio_write_qw_valid_parity_err_cnt),
4702 [C_PIO_STATE_MACHINE_ERR] = CNTR_ELEM("PioStateMachineErr", 0, 0,
4703 			CNTR_NORMAL,
4704 			access_pio_state_machine_err_cnt),
4705 [C_PIO_WRITE_DATA_PARITY_ERR] = CNTR_ELEM("PioWriteDataParityErr", 0, 0,
4706 			CNTR_NORMAL,
4707 			access_pio_write_data_parity_err_cnt),
4708 [C_PIO_HOST_ADDR_MEM_COR_ERR] = CNTR_ELEM("PioHostAddrMemCorErr", 0, 0,
4709 			CNTR_NORMAL,
4710 			access_pio_host_addr_mem_cor_err_cnt),
4711 [C_PIO_HOST_ADDR_MEM_UNC_ERR] = CNTR_ELEM("PioHostAddrMemUncErr", 0, 0,
4712 			CNTR_NORMAL,
4713 			access_pio_host_addr_mem_unc_err_cnt),
4714 [C_PIO_PKT_EVICT_SM_OR_ARM_SM_ERR] = CNTR_ELEM("PioPktEvictSmOrArbSmErr", 0, 0,
4715 			CNTR_NORMAL,
4716 			access_pio_pkt_evict_sm_or_arb_sm_err_cnt),
4717 [C_PIO_INIT_SM_IN_ERR] = CNTR_ELEM("PioInitSmInErr", 0, 0,
4718 			CNTR_NORMAL,
4719 			access_pio_init_sm_in_err_cnt),
4720 [C_PIO_PPMC_PBL_FIFO_ERR] = CNTR_ELEM("PioPpmcPblFifoErr", 0, 0,
4721 			CNTR_NORMAL,
4722 			access_pio_ppmc_pbl_fifo_err_cnt),
4723 [C_PIO_CREDIT_RET_FIFO_PARITY_ERR] = CNTR_ELEM("PioCreditRetFifoParityErr", 0,
4724 			0, CNTR_NORMAL,
4725 			access_pio_credit_ret_fifo_parity_err_cnt),
4726 [C_PIO_V1_LEN_MEM_BANK1_COR_ERR] = CNTR_ELEM("PioVlLenMemBank1CorErr", 0, 0,
4727 			CNTR_NORMAL,
4728 			access_pio_v1_len_mem_bank1_cor_err_cnt),
4729 [C_PIO_V1_LEN_MEM_BANK0_COR_ERR] = CNTR_ELEM("PioVlLenMemBank0CorErr", 0, 0,
4730 			CNTR_NORMAL,
4731 			access_pio_v1_len_mem_bank0_cor_err_cnt),
4732 [C_PIO_V1_LEN_MEM_BANK1_UNC_ERR] = CNTR_ELEM("PioVlLenMemBank1UncErr", 0, 0,
4733 			CNTR_NORMAL,
4734 			access_pio_v1_len_mem_bank1_unc_err_cnt),
4735 [C_PIO_V1_LEN_MEM_BANK0_UNC_ERR] = CNTR_ELEM("PioVlLenMemBank0UncErr", 0, 0,
4736 			CNTR_NORMAL,
4737 			access_pio_v1_len_mem_bank0_unc_err_cnt),
4738 [C_PIO_SM_PKT_RESET_PARITY_ERR] = CNTR_ELEM("PioSmPktResetParityErr", 0, 0,
4739 			CNTR_NORMAL,
4740 			access_pio_sm_pkt_reset_parity_err_cnt),
4741 [C_PIO_PKT_EVICT_FIFO_PARITY_ERR] = CNTR_ELEM("PioPktEvictFifoParityErr", 0, 0,
4742 			CNTR_NORMAL,
4743 			access_pio_pkt_evict_fifo_parity_err_cnt),
4744 [C_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR] = CNTR_ELEM(
4745 			"PioSbrdctrlCrrelFifoParityErr", 0, 0,
4746 			CNTR_NORMAL,
4747 			access_pio_sbrdctrl_crrel_fifo_parity_err_cnt),
4748 [C_PIO_SBRDCTL_CRREL_PARITY_ERR] = CNTR_ELEM("PioSbrdctlCrrelParityErr", 0, 0,
4749 			CNTR_NORMAL,
4750 			access_pio_sbrdctl_crrel_parity_err_cnt),
4751 [C_PIO_PEC_FIFO_PARITY_ERR] = CNTR_ELEM("PioPecFifoParityErr", 0, 0,
4752 			CNTR_NORMAL,
4753 			access_pio_pec_fifo_parity_err_cnt),
4754 [C_PIO_PCC_FIFO_PARITY_ERR] = CNTR_ELEM("PioPccFifoParityErr", 0, 0,
4755 			CNTR_NORMAL,
4756 			access_pio_pcc_fifo_parity_err_cnt),
4757 [C_PIO_SB_MEM_FIFO1_ERR] = CNTR_ELEM("PioSbMemFifo1Err", 0, 0,
4758 			CNTR_NORMAL,
4759 			access_pio_sb_mem_fifo1_err_cnt),
4760 [C_PIO_SB_MEM_FIFO0_ERR] = CNTR_ELEM("PioSbMemFifo0Err", 0, 0,
4761 			CNTR_NORMAL,
4762 			access_pio_sb_mem_fifo0_err_cnt),
4763 [C_PIO_CSR_PARITY_ERR] = CNTR_ELEM("PioCsrParityErr", 0, 0,
4764 			CNTR_NORMAL,
4765 			access_pio_csr_parity_err_cnt),
4766 [C_PIO_WRITE_ADDR_PARITY_ERR] = CNTR_ELEM("PioWriteAddrParityErr", 0, 0,
4767 			CNTR_NORMAL,
4768 			access_pio_write_addr_parity_err_cnt),
4769 [C_PIO_WRITE_BAD_CTXT_ERR] = CNTR_ELEM("PioWriteBadCtxtErr", 0, 0,
4770 			CNTR_NORMAL,
4771 			access_pio_write_bad_ctxt_err_cnt),
4772 /* SendDmaErrStatus */
4773 [C_SDMA_PCIE_REQ_TRACKING_COR_ERR] = CNTR_ELEM("SDmaPcieReqTrackingCorErr", 0,
4774 			0, CNTR_NORMAL,
4775 			access_sdma_pcie_req_tracking_cor_err_cnt),
4776 [C_SDMA_PCIE_REQ_TRACKING_UNC_ERR] = CNTR_ELEM("SDmaPcieReqTrackingUncErr", 0,
4777 			0, CNTR_NORMAL,
4778 			access_sdma_pcie_req_tracking_unc_err_cnt),
4779 [C_SDMA_CSR_PARITY_ERR] = CNTR_ELEM("SDmaCsrParityErr", 0, 0,
4780 			CNTR_NORMAL,
4781 			access_sdma_csr_parity_err_cnt),
4782 [C_SDMA_RPY_TAG_ERR] = CNTR_ELEM("SDmaRpyTagErr", 0, 0,
4783 			CNTR_NORMAL,
4784 			access_sdma_rpy_tag_err_cnt),
4785 /* SendEgressErrStatus */
4786 [C_TX_READ_PIO_MEMORY_CSR_UNC_ERR] = CNTR_ELEM("TxReadPioMemoryCsrUncErr", 0, 0,
4787 			CNTR_NORMAL,
4788 			access_tx_read_pio_memory_csr_unc_err_cnt),
4789 [C_TX_READ_SDMA_MEMORY_CSR_UNC_ERR] = CNTR_ELEM("TxReadSdmaMemoryCsrUncErr", 0,
4790 			0, CNTR_NORMAL,
4791 			access_tx_read_sdma_memory_csr_err_cnt),
4792 [C_TX_EGRESS_FIFO_COR_ERR] = CNTR_ELEM("TxEgressFifoCorErr", 0, 0,
4793 			CNTR_NORMAL,
4794 			access_tx_egress_fifo_cor_err_cnt),
4795 [C_TX_READ_PIO_MEMORY_COR_ERR] = CNTR_ELEM("TxReadPioMemoryCorErr", 0, 0,
4796 			CNTR_NORMAL,
4797 			access_tx_read_pio_memory_cor_err_cnt),
4798 [C_TX_READ_SDMA_MEMORY_COR_ERR] = CNTR_ELEM("TxReadSdmaMemoryCorErr", 0, 0,
4799 			CNTR_NORMAL,
4800 			access_tx_read_sdma_memory_cor_err_cnt),
4801 [C_TX_SB_HDR_COR_ERR] = CNTR_ELEM("TxSbHdrCorErr", 0, 0,
4802 			CNTR_NORMAL,
4803 			access_tx_sb_hdr_cor_err_cnt),
4804 [C_TX_CREDIT_OVERRUN_ERR] = CNTR_ELEM("TxCreditOverrunErr", 0, 0,
4805 			CNTR_NORMAL,
4806 			access_tx_credit_overrun_err_cnt),
4807 [C_TX_LAUNCH_FIFO8_COR_ERR] = CNTR_ELEM("TxLaunchFifo8CorErr", 0, 0,
4808 			CNTR_NORMAL,
4809 			access_tx_launch_fifo8_cor_err_cnt),
4810 [C_TX_LAUNCH_FIFO7_COR_ERR] = CNTR_ELEM("TxLaunchFifo7CorErr", 0, 0,
4811 			CNTR_NORMAL,
4812 			access_tx_launch_fifo7_cor_err_cnt),
4813 [C_TX_LAUNCH_FIFO6_COR_ERR] = CNTR_ELEM("TxLaunchFifo6CorErr", 0, 0,
4814 			CNTR_NORMAL,
4815 			access_tx_launch_fifo6_cor_err_cnt),
4816 [C_TX_LAUNCH_FIFO5_COR_ERR] = CNTR_ELEM("TxLaunchFifo5CorErr", 0, 0,
4817 			CNTR_NORMAL,
4818 			access_tx_launch_fifo5_cor_err_cnt),
4819 [C_TX_LAUNCH_FIFO4_COR_ERR] = CNTR_ELEM("TxLaunchFifo4CorErr", 0, 0,
4820 			CNTR_NORMAL,
4821 			access_tx_launch_fifo4_cor_err_cnt),
4822 [C_TX_LAUNCH_FIFO3_COR_ERR] = CNTR_ELEM("TxLaunchFifo3CorErr", 0, 0,
4823 			CNTR_NORMAL,
4824 			access_tx_launch_fifo3_cor_err_cnt),
4825 [C_TX_LAUNCH_FIFO2_COR_ERR] = CNTR_ELEM("TxLaunchFifo2CorErr", 0, 0,
4826 			CNTR_NORMAL,
4827 			access_tx_launch_fifo2_cor_err_cnt),
4828 [C_TX_LAUNCH_FIFO1_COR_ERR] = CNTR_ELEM("TxLaunchFifo1CorErr", 0, 0,
4829 			CNTR_NORMAL,
4830 			access_tx_launch_fifo1_cor_err_cnt),
4831 [C_TX_LAUNCH_FIFO0_COR_ERR] = CNTR_ELEM("TxLaunchFifo0CorErr", 0, 0,
4832 			CNTR_NORMAL,
4833 			access_tx_launch_fifo0_cor_err_cnt),
4834 [C_TX_CREDIT_RETURN_VL_ERR] = CNTR_ELEM("TxCreditReturnVLErr", 0, 0,
4835 			CNTR_NORMAL,
4836 			access_tx_credit_return_vl_err_cnt),
4837 [C_TX_HCRC_INSERTION_ERR] = CNTR_ELEM("TxHcrcInsertionErr", 0, 0,
4838 			CNTR_NORMAL,
4839 			access_tx_hcrc_insertion_err_cnt),
4840 [C_TX_EGRESS_FIFI_UNC_ERR] = CNTR_ELEM("TxEgressFifoUncErr", 0, 0,
4841 			CNTR_NORMAL,
4842 			access_tx_egress_fifo_unc_err_cnt),
4843 [C_TX_READ_PIO_MEMORY_UNC_ERR] = CNTR_ELEM("TxReadPioMemoryUncErr", 0, 0,
4844 			CNTR_NORMAL,
4845 			access_tx_read_pio_memory_unc_err_cnt),
4846 [C_TX_READ_SDMA_MEMORY_UNC_ERR] = CNTR_ELEM("TxReadSdmaMemoryUncErr", 0, 0,
4847 			CNTR_NORMAL,
4848 			access_tx_read_sdma_memory_unc_err_cnt),
4849 [C_TX_SB_HDR_UNC_ERR] = CNTR_ELEM("TxSbHdrUncErr", 0, 0,
4850 			CNTR_NORMAL,
4851 			access_tx_sb_hdr_unc_err_cnt),
4852 [C_TX_CREDIT_RETURN_PARITY_ERR] = CNTR_ELEM("TxCreditReturnParityErr", 0, 0,
4853 			CNTR_NORMAL,
4854 			access_tx_credit_return_partiy_err_cnt),
4855 [C_TX_LAUNCH_FIFO8_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo8UncOrParityErr",
4856 			0, 0, CNTR_NORMAL,
4857 			access_tx_launch_fifo8_unc_or_parity_err_cnt),
4858 [C_TX_LAUNCH_FIFO7_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo7UncOrParityErr",
4859 			0, 0, CNTR_NORMAL,
4860 			access_tx_launch_fifo7_unc_or_parity_err_cnt),
4861 [C_TX_LAUNCH_FIFO6_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo6UncOrParityErr",
4862 			0, 0, CNTR_NORMAL,
4863 			access_tx_launch_fifo6_unc_or_parity_err_cnt),
4864 [C_TX_LAUNCH_FIFO5_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo5UncOrParityErr",
4865 			0, 0, CNTR_NORMAL,
4866 			access_tx_launch_fifo5_unc_or_parity_err_cnt),
4867 [C_TX_LAUNCH_FIFO4_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo4UncOrParityErr",
4868 			0, 0, CNTR_NORMAL,
4869 			access_tx_launch_fifo4_unc_or_parity_err_cnt),
4870 [C_TX_LAUNCH_FIFO3_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo3UncOrParityErr",
4871 			0, 0, CNTR_NORMAL,
4872 			access_tx_launch_fifo3_unc_or_parity_err_cnt),
4873 [C_TX_LAUNCH_FIFO2_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo2UncOrParityErr",
4874 			0, 0, CNTR_NORMAL,
4875 			access_tx_launch_fifo2_unc_or_parity_err_cnt),
4876 [C_TX_LAUNCH_FIFO1_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo1UncOrParityErr",
4877 			0, 0, CNTR_NORMAL,
4878 			access_tx_launch_fifo1_unc_or_parity_err_cnt),
4879 [C_TX_LAUNCH_FIFO0_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo0UncOrParityErr",
4880 			0, 0, CNTR_NORMAL,
4881 			access_tx_launch_fifo0_unc_or_parity_err_cnt),
4882 [C_TX_SDMA15_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma15DisallowedPacketErr",
4883 			0, 0, CNTR_NORMAL,
4884 			access_tx_sdma15_disallowed_packet_err_cnt),
4885 [C_TX_SDMA14_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma14DisallowedPacketErr",
4886 			0, 0, CNTR_NORMAL,
4887 			access_tx_sdma14_disallowed_packet_err_cnt),
4888 [C_TX_SDMA13_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma13DisallowedPacketErr",
4889 			0, 0, CNTR_NORMAL,
4890 			access_tx_sdma13_disallowed_packet_err_cnt),
4891 [C_TX_SDMA12_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma12DisallowedPacketErr",
4892 			0, 0, CNTR_NORMAL,
4893 			access_tx_sdma12_disallowed_packet_err_cnt),
4894 [C_TX_SDMA11_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma11DisallowedPacketErr",
4895 			0, 0, CNTR_NORMAL,
4896 			access_tx_sdma11_disallowed_packet_err_cnt),
4897 [C_TX_SDMA10_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma10DisallowedPacketErr",
4898 			0, 0, CNTR_NORMAL,
4899 			access_tx_sdma10_disallowed_packet_err_cnt),
4900 [C_TX_SDMA9_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma9DisallowedPacketErr",
4901 			0, 0, CNTR_NORMAL,
4902 			access_tx_sdma9_disallowed_packet_err_cnt),
4903 [C_TX_SDMA8_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma8DisallowedPacketErr",
4904 			0, 0, CNTR_NORMAL,
4905 			access_tx_sdma8_disallowed_packet_err_cnt),
4906 [C_TX_SDMA7_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma7DisallowedPacketErr",
4907 			0, 0, CNTR_NORMAL,
4908 			access_tx_sdma7_disallowed_packet_err_cnt),
4909 [C_TX_SDMA6_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma6DisallowedPacketErr",
4910 			0, 0, CNTR_NORMAL,
4911 			access_tx_sdma6_disallowed_packet_err_cnt),
4912 [C_TX_SDMA5_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma5DisallowedPacketErr",
4913 			0, 0, CNTR_NORMAL,
4914 			access_tx_sdma5_disallowed_packet_err_cnt),
4915 [C_TX_SDMA4_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma4DisallowedPacketErr",
4916 			0, 0, CNTR_NORMAL,
4917 			access_tx_sdma4_disallowed_packet_err_cnt),
4918 [C_TX_SDMA3_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma3DisallowedPacketErr",
4919 			0, 0, CNTR_NORMAL,
4920 			access_tx_sdma3_disallowed_packet_err_cnt),
4921 [C_TX_SDMA2_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma2DisallowedPacketErr",
4922 			0, 0, CNTR_NORMAL,
4923 			access_tx_sdma2_disallowed_packet_err_cnt),
4924 [C_TX_SDMA1_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma1DisallowedPacketErr",
4925 			0, 0, CNTR_NORMAL,
4926 			access_tx_sdma1_disallowed_packet_err_cnt),
4927 [C_TX_SDMA0_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma0DisallowedPacketErr",
4928 			0, 0, CNTR_NORMAL,
4929 			access_tx_sdma0_disallowed_packet_err_cnt),
4930 [C_TX_CONFIG_PARITY_ERR] = CNTR_ELEM("TxConfigParityErr", 0, 0,
4931 			CNTR_NORMAL,
4932 			access_tx_config_parity_err_cnt),
4933 [C_TX_SBRD_CTL_CSR_PARITY_ERR] = CNTR_ELEM("TxSbrdCtlCsrParityErr", 0, 0,
4934 			CNTR_NORMAL,
4935 			access_tx_sbrd_ctl_csr_parity_err_cnt),
4936 [C_TX_LAUNCH_CSR_PARITY_ERR] = CNTR_ELEM("TxLaunchCsrParityErr", 0, 0,
4937 			CNTR_NORMAL,
4938 			access_tx_launch_csr_parity_err_cnt),
4939 [C_TX_ILLEGAL_CL_ERR] = CNTR_ELEM("TxIllegalVLErr", 0, 0,
4940 			CNTR_NORMAL,
4941 			access_tx_illegal_vl_err_cnt),
4942 [C_TX_SBRD_CTL_STATE_MACHINE_PARITY_ERR] = CNTR_ELEM(
4943 			"TxSbrdCtlStateMachineParityErr", 0, 0,
4944 			CNTR_NORMAL,
4945 			access_tx_sbrd_ctl_state_machine_parity_err_cnt),
4946 [C_TX_RESERVED_10] = CNTR_ELEM("Tx Egress Reserved 10", 0, 0,
4947 			CNTR_NORMAL,
4948 			access_egress_reserved_10_err_cnt),
4949 [C_TX_RESERVED_9] = CNTR_ELEM("Tx Egress Reserved 9", 0, 0,
4950 			CNTR_NORMAL,
4951 			access_egress_reserved_9_err_cnt),
4952 [C_TX_SDMA_LAUNCH_INTF_PARITY_ERR] = CNTR_ELEM("TxSdmaLaunchIntfParityErr",
4953 			0, 0, CNTR_NORMAL,
4954 			access_tx_sdma_launch_intf_parity_err_cnt),
4955 [C_TX_PIO_LAUNCH_INTF_PARITY_ERR] = CNTR_ELEM("TxPioLaunchIntfParityErr", 0, 0,
4956 			CNTR_NORMAL,
4957 			access_tx_pio_launch_intf_parity_err_cnt),
4958 [C_TX_RESERVED_6] = CNTR_ELEM("Tx Egress Reserved 6", 0, 0,
4959 			CNTR_NORMAL,
4960 			access_egress_reserved_6_err_cnt),
4961 [C_TX_INCORRECT_LINK_STATE_ERR] = CNTR_ELEM("TxIncorrectLinkStateErr", 0, 0,
4962 			CNTR_NORMAL,
4963 			access_tx_incorrect_link_state_err_cnt),
4964 [C_TX_LINK_DOWN_ERR] = CNTR_ELEM("TxLinkdownErr", 0, 0,
4965 			CNTR_NORMAL,
4966 			access_tx_linkdown_err_cnt),
4967 [C_TX_EGRESS_FIFO_UNDERRUN_OR_PARITY_ERR] = CNTR_ELEM(
4968 			"EgressFifoUnderrunOrParityErr", 0, 0,
4969 			CNTR_NORMAL,
4970 			access_tx_egress_fifi_underrun_or_parity_err_cnt),
4971 [C_TX_RESERVED_2] = CNTR_ELEM("Tx Egress Reserved 2", 0, 0,
4972 			CNTR_NORMAL,
4973 			access_egress_reserved_2_err_cnt),
4974 [C_TX_PKT_INTEGRITY_MEM_UNC_ERR] = CNTR_ELEM("TxPktIntegrityMemUncErr", 0, 0,
4975 			CNTR_NORMAL,
4976 			access_tx_pkt_integrity_mem_unc_err_cnt),
4977 [C_TX_PKT_INTEGRITY_MEM_COR_ERR] = CNTR_ELEM("TxPktIntegrityMemCorErr", 0, 0,
4978 			CNTR_NORMAL,
4979 			access_tx_pkt_integrity_mem_cor_err_cnt),
4980 /* SendErrStatus */
4981 [C_SEND_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("SendCsrWriteBadAddrErr", 0, 0,
4982 			CNTR_NORMAL,
4983 			access_send_csr_write_bad_addr_err_cnt),
4984 [C_SEND_CSR_READ_BAD_ADD_ERR] = CNTR_ELEM("SendCsrReadBadAddrErr", 0, 0,
4985 			CNTR_NORMAL,
4986 			access_send_csr_read_bad_addr_err_cnt),
4987 [C_SEND_CSR_PARITY_ERR] = CNTR_ELEM("SendCsrParityErr", 0, 0,
4988 			CNTR_NORMAL,
4989 			access_send_csr_parity_cnt),
4990 /* SendCtxtErrStatus */
4991 [C_PIO_WRITE_OUT_OF_BOUNDS_ERR] = CNTR_ELEM("PioWriteOutOfBoundsErr", 0, 0,
4992 			CNTR_NORMAL,
4993 			access_pio_write_out_of_bounds_err_cnt),
4994 [C_PIO_WRITE_OVERFLOW_ERR] = CNTR_ELEM("PioWriteOverflowErr", 0, 0,
4995 			CNTR_NORMAL,
4996 			access_pio_write_overflow_err_cnt),
4997 [C_PIO_WRITE_CROSSES_BOUNDARY_ERR] = CNTR_ELEM("PioWriteCrossesBoundaryErr",
4998 			0, 0, CNTR_NORMAL,
4999 			access_pio_write_crosses_boundary_err_cnt),
5000 [C_PIO_DISALLOWED_PACKET_ERR] = CNTR_ELEM("PioDisallowedPacketErr", 0, 0,
5001 			CNTR_NORMAL,
5002 			access_pio_disallowed_packet_err_cnt),
5003 [C_PIO_INCONSISTENT_SOP_ERR] = CNTR_ELEM("PioInconsistentSopErr", 0, 0,
5004 			CNTR_NORMAL,
5005 			access_pio_inconsistent_sop_err_cnt),
5006 /* SendDmaEngErrStatus */
5007 [C_SDMA_HEADER_REQUEST_FIFO_COR_ERR] = CNTR_ELEM("SDmaHeaderRequestFifoCorErr",
5008 			0, 0, CNTR_NORMAL,
5009 			access_sdma_header_request_fifo_cor_err_cnt),
5010 [C_SDMA_HEADER_STORAGE_COR_ERR] = CNTR_ELEM("SDmaHeaderStorageCorErr", 0, 0,
5011 			CNTR_NORMAL,
5012 			access_sdma_header_storage_cor_err_cnt),
5013 [C_SDMA_PACKET_TRACKING_COR_ERR] = CNTR_ELEM("SDmaPacketTrackingCorErr", 0, 0,
5014 			CNTR_NORMAL,
5015 			access_sdma_packet_tracking_cor_err_cnt),
5016 [C_SDMA_ASSEMBLY_COR_ERR] = CNTR_ELEM("SDmaAssemblyCorErr", 0, 0,
5017 			CNTR_NORMAL,
5018 			access_sdma_assembly_cor_err_cnt),
5019 [C_SDMA_DESC_TABLE_COR_ERR] = CNTR_ELEM("SDmaDescTableCorErr", 0, 0,
5020 			CNTR_NORMAL,
5021 			access_sdma_desc_table_cor_err_cnt),
5022 [C_SDMA_HEADER_REQUEST_FIFO_UNC_ERR] = CNTR_ELEM("SDmaHeaderRequestFifoUncErr",
5023 			0, 0, CNTR_NORMAL,
5024 			access_sdma_header_request_fifo_unc_err_cnt),
5025 [C_SDMA_HEADER_STORAGE_UNC_ERR] = CNTR_ELEM("SDmaHeaderStorageUncErr", 0, 0,
5026 			CNTR_NORMAL,
5027 			access_sdma_header_storage_unc_err_cnt),
5028 [C_SDMA_PACKET_TRACKING_UNC_ERR] = CNTR_ELEM("SDmaPacketTrackingUncErr", 0, 0,
5029 			CNTR_NORMAL,
5030 			access_sdma_packet_tracking_unc_err_cnt),
5031 [C_SDMA_ASSEMBLY_UNC_ERR] = CNTR_ELEM("SDmaAssemblyUncErr", 0, 0,
5032 			CNTR_NORMAL,
5033 			access_sdma_assembly_unc_err_cnt),
5034 [C_SDMA_DESC_TABLE_UNC_ERR] = CNTR_ELEM("SDmaDescTableUncErr", 0, 0,
5035 			CNTR_NORMAL,
5036 			access_sdma_desc_table_unc_err_cnt),
5037 [C_SDMA_TIMEOUT_ERR] = CNTR_ELEM("SDmaTimeoutErr", 0, 0,
5038 			CNTR_NORMAL,
5039 			access_sdma_timeout_err_cnt),
5040 [C_SDMA_HEADER_LENGTH_ERR] = CNTR_ELEM("SDmaHeaderLengthErr", 0, 0,
5041 			CNTR_NORMAL,
5042 			access_sdma_header_length_err_cnt),
5043 [C_SDMA_HEADER_ADDRESS_ERR] = CNTR_ELEM("SDmaHeaderAddressErr", 0, 0,
5044 			CNTR_NORMAL,
5045 			access_sdma_header_address_err_cnt),
5046 [C_SDMA_HEADER_SELECT_ERR] = CNTR_ELEM("SDmaHeaderSelectErr", 0, 0,
5047 			CNTR_NORMAL,
5048 			access_sdma_header_select_err_cnt),
5049 [C_SMDA_RESERVED_9] = CNTR_ELEM("SDma Reserved 9", 0, 0,
5050 			CNTR_NORMAL,
5051 			access_sdma_reserved_9_err_cnt),
5052 [C_SDMA_PACKET_DESC_OVERFLOW_ERR] = CNTR_ELEM("SDmaPacketDescOverflowErr", 0, 0,
5053 			CNTR_NORMAL,
5054 			access_sdma_packet_desc_overflow_err_cnt),
5055 [C_SDMA_LENGTH_MISMATCH_ERR] = CNTR_ELEM("SDmaLengthMismatchErr", 0, 0,
5056 			CNTR_NORMAL,
5057 			access_sdma_length_mismatch_err_cnt),
5058 [C_SDMA_HALT_ERR] = CNTR_ELEM("SDmaHaltErr", 0, 0,
5059 			CNTR_NORMAL,
5060 			access_sdma_halt_err_cnt),
5061 [C_SDMA_MEM_READ_ERR] = CNTR_ELEM("SDmaMemReadErr", 0, 0,
5062 			CNTR_NORMAL,
5063 			access_sdma_mem_read_err_cnt),
5064 [C_SDMA_FIRST_DESC_ERR] = CNTR_ELEM("SDmaFirstDescErr", 0, 0,
5065 			CNTR_NORMAL,
5066 			access_sdma_first_desc_err_cnt),
5067 [C_SDMA_TAIL_OUT_OF_BOUNDS_ERR] = CNTR_ELEM("SDmaTailOutOfBoundsErr", 0, 0,
5068 			CNTR_NORMAL,
5069 			access_sdma_tail_out_of_bounds_err_cnt),
5070 [C_SDMA_TOO_LONG_ERR] = CNTR_ELEM("SDmaTooLongErr", 0, 0,
5071 			CNTR_NORMAL,
5072 			access_sdma_too_long_err_cnt),
5073 [C_SDMA_GEN_MISMATCH_ERR] = CNTR_ELEM("SDmaGenMismatchErr", 0, 0,
5074 			CNTR_NORMAL,
5075 			access_sdma_gen_mismatch_err_cnt),
5076 [C_SDMA_WRONG_DW_ERR] = CNTR_ELEM("SDmaWrongDwErr", 0, 0,
5077 			CNTR_NORMAL,
5078 			access_sdma_wrong_dw_err_cnt),
5079 };
5080 
5081 static struct cntr_entry port_cntrs[PORT_CNTR_LAST] = {
5082 [C_TX_UNSUP_VL] = TXE32_PORT_CNTR_ELEM(TxUnVLErr, SEND_UNSUP_VL_ERR_CNT,
5083 			CNTR_NORMAL),
5084 [C_TX_INVAL_LEN] = TXE32_PORT_CNTR_ELEM(TxInvalLen, SEND_LEN_ERR_CNT,
5085 			CNTR_NORMAL),
5086 [C_TX_MM_LEN_ERR] = TXE32_PORT_CNTR_ELEM(TxMMLenErr, SEND_MAX_MIN_LEN_ERR_CNT,
5087 			CNTR_NORMAL),
5088 [C_TX_UNDERRUN] = TXE32_PORT_CNTR_ELEM(TxUnderrun, SEND_UNDERRUN_CNT,
5089 			CNTR_NORMAL),
5090 [C_TX_FLOW_STALL] = TXE32_PORT_CNTR_ELEM(TxFlowStall, SEND_FLOW_STALL_CNT,
5091 			CNTR_NORMAL),
5092 [C_TX_DROPPED] = TXE32_PORT_CNTR_ELEM(TxDropped, SEND_DROPPED_PKT_CNT,
5093 			CNTR_NORMAL),
5094 [C_TX_HDR_ERR] = TXE32_PORT_CNTR_ELEM(TxHdrErr, SEND_HEADERS_ERR_CNT,
5095 			CNTR_NORMAL),
5096 [C_TX_PKT] = TXE64_PORT_CNTR_ELEM(TxPkt, SEND_DATA_PKT_CNT, CNTR_NORMAL),
5097 [C_TX_WORDS] = TXE64_PORT_CNTR_ELEM(TxWords, SEND_DWORD_CNT, CNTR_NORMAL),
5098 [C_TX_WAIT] = TXE64_PORT_CNTR_ELEM(TxWait, SEND_WAIT_CNT, CNTR_SYNTH),
5099 [C_TX_FLIT_VL] = TXE64_PORT_CNTR_ELEM(TxFlitVL, SEND_DATA_VL0_CNT,
5100 				      CNTR_SYNTH | CNTR_VL),
5101 [C_TX_PKT_VL] = TXE64_PORT_CNTR_ELEM(TxPktVL, SEND_DATA_PKT_VL0_CNT,
5102 				     CNTR_SYNTH | CNTR_VL),
5103 [C_TX_WAIT_VL] = TXE64_PORT_CNTR_ELEM(TxWaitVL, SEND_WAIT_VL0_CNT,
5104 				      CNTR_SYNTH | CNTR_VL),
5105 [C_RX_PKT] = RXE64_PORT_CNTR_ELEM(RxPkt, RCV_DATA_PKT_CNT, CNTR_NORMAL),
5106 [C_RX_WORDS] = RXE64_PORT_CNTR_ELEM(RxWords, RCV_DWORD_CNT, CNTR_NORMAL),
5107 [C_SW_LINK_DOWN] = CNTR_ELEM("SwLinkDown", 0, 0, CNTR_SYNTH | CNTR_32BIT,
5108 			     access_sw_link_dn_cnt),
5109 [C_SW_LINK_UP] = CNTR_ELEM("SwLinkUp", 0, 0, CNTR_SYNTH | CNTR_32BIT,
5110 			   access_sw_link_up_cnt),
5111 [C_SW_UNKNOWN_FRAME] = CNTR_ELEM("UnknownFrame", 0, 0, CNTR_NORMAL,
5112 				 access_sw_unknown_frame_cnt),
5113 [C_SW_XMIT_DSCD] = CNTR_ELEM("XmitDscd", 0, 0, CNTR_SYNTH | CNTR_32BIT,
5114 			     access_sw_xmit_discards),
5115 [C_SW_XMIT_DSCD_VL] = CNTR_ELEM("XmitDscdVl", 0, 0,
5116 				CNTR_SYNTH | CNTR_32BIT | CNTR_VL,
5117 				access_sw_xmit_discards),
5118 [C_SW_XMIT_CSTR_ERR] = CNTR_ELEM("XmitCstrErr", 0, 0, CNTR_SYNTH,
5119 				 access_xmit_constraint_errs),
5120 [C_SW_RCV_CSTR_ERR] = CNTR_ELEM("RcvCstrErr", 0, 0, CNTR_SYNTH,
5121 				access_rcv_constraint_errs),
5122 [C_SW_IBP_LOOP_PKTS] = SW_IBP_CNTR(LoopPkts, loop_pkts),
5123 [C_SW_IBP_RC_RESENDS] = SW_IBP_CNTR(RcResend, rc_resends),
5124 [C_SW_IBP_RNR_NAKS] = SW_IBP_CNTR(RnrNak, rnr_naks),
5125 [C_SW_IBP_OTHER_NAKS] = SW_IBP_CNTR(OtherNak, other_naks),
5126 [C_SW_IBP_RC_TIMEOUTS] = SW_IBP_CNTR(RcTimeOut, rc_timeouts),
5127 [C_SW_IBP_PKT_DROPS] = SW_IBP_CNTR(PktDrop, pkt_drops),
5128 [C_SW_IBP_DMA_WAIT] = SW_IBP_CNTR(DmaWait, dmawait),
5129 [C_SW_IBP_RC_SEQNAK] = SW_IBP_CNTR(RcSeqNak, rc_seqnak),
5130 [C_SW_IBP_RC_DUPREQ] = SW_IBP_CNTR(RcDupRew, rc_dupreq),
5131 [C_SW_IBP_RDMA_SEQ] = SW_IBP_CNTR(RdmaSeq, rdma_seq),
5132 [C_SW_IBP_UNALIGNED] = SW_IBP_CNTR(Unaligned, unaligned),
5133 [C_SW_IBP_SEQ_NAK] = SW_IBP_CNTR(SeqNak, seq_naks),
5134 [C_SW_IBP_RC_CRWAITS] = SW_IBP_CNTR(RcCrWait, rc_crwaits),
5135 [C_SW_CPU_RC_ACKS] = CNTR_ELEM("RcAcks", 0, 0, CNTR_NORMAL,
5136 			       access_sw_cpu_rc_acks),
5137 [C_SW_CPU_RC_QACKS] = CNTR_ELEM("RcQacks", 0, 0, CNTR_NORMAL,
5138 				access_sw_cpu_rc_qacks),
5139 [C_SW_CPU_RC_DELAYED_COMP] = CNTR_ELEM("RcDelayComp", 0, 0, CNTR_NORMAL,
5140 				       access_sw_cpu_rc_delayed_comp),
5141 [OVR_LBL(0)] = OVR_ELM(0), [OVR_LBL(1)] = OVR_ELM(1),
5142 [OVR_LBL(2)] = OVR_ELM(2), [OVR_LBL(3)] = OVR_ELM(3),
5143 [OVR_LBL(4)] = OVR_ELM(4), [OVR_LBL(5)] = OVR_ELM(5),
5144 [OVR_LBL(6)] = OVR_ELM(6), [OVR_LBL(7)] = OVR_ELM(7),
5145 [OVR_LBL(8)] = OVR_ELM(8), [OVR_LBL(9)] = OVR_ELM(9),
5146 [OVR_LBL(10)] = OVR_ELM(10), [OVR_LBL(11)] = OVR_ELM(11),
5147 [OVR_LBL(12)] = OVR_ELM(12), [OVR_LBL(13)] = OVR_ELM(13),
5148 [OVR_LBL(14)] = OVR_ELM(14), [OVR_LBL(15)] = OVR_ELM(15),
5149 [OVR_LBL(16)] = OVR_ELM(16), [OVR_LBL(17)] = OVR_ELM(17),
5150 [OVR_LBL(18)] = OVR_ELM(18), [OVR_LBL(19)] = OVR_ELM(19),
5151 [OVR_LBL(20)] = OVR_ELM(20), [OVR_LBL(21)] = OVR_ELM(21),
5152 [OVR_LBL(22)] = OVR_ELM(22), [OVR_LBL(23)] = OVR_ELM(23),
5153 [OVR_LBL(24)] = OVR_ELM(24), [OVR_LBL(25)] = OVR_ELM(25),
5154 [OVR_LBL(26)] = OVR_ELM(26), [OVR_LBL(27)] = OVR_ELM(27),
5155 [OVR_LBL(28)] = OVR_ELM(28), [OVR_LBL(29)] = OVR_ELM(29),
5156 [OVR_LBL(30)] = OVR_ELM(30), [OVR_LBL(31)] = OVR_ELM(31),
5157 [OVR_LBL(32)] = OVR_ELM(32), [OVR_LBL(33)] = OVR_ELM(33),
5158 [OVR_LBL(34)] = OVR_ELM(34), [OVR_LBL(35)] = OVR_ELM(35),
5159 [OVR_LBL(36)] = OVR_ELM(36), [OVR_LBL(37)] = OVR_ELM(37),
5160 [OVR_LBL(38)] = OVR_ELM(38), [OVR_LBL(39)] = OVR_ELM(39),
5161 [OVR_LBL(40)] = OVR_ELM(40), [OVR_LBL(41)] = OVR_ELM(41),
5162 [OVR_LBL(42)] = OVR_ELM(42), [OVR_LBL(43)] = OVR_ELM(43),
5163 [OVR_LBL(44)] = OVR_ELM(44), [OVR_LBL(45)] = OVR_ELM(45),
5164 [OVR_LBL(46)] = OVR_ELM(46), [OVR_LBL(47)] = OVR_ELM(47),
5165 [OVR_LBL(48)] = OVR_ELM(48), [OVR_LBL(49)] = OVR_ELM(49),
5166 [OVR_LBL(50)] = OVR_ELM(50), [OVR_LBL(51)] = OVR_ELM(51),
5167 [OVR_LBL(52)] = OVR_ELM(52), [OVR_LBL(53)] = OVR_ELM(53),
5168 [OVR_LBL(54)] = OVR_ELM(54), [OVR_LBL(55)] = OVR_ELM(55),
5169 [OVR_LBL(56)] = OVR_ELM(56), [OVR_LBL(57)] = OVR_ELM(57),
5170 [OVR_LBL(58)] = OVR_ELM(58), [OVR_LBL(59)] = OVR_ELM(59),
5171 [OVR_LBL(60)] = OVR_ELM(60), [OVR_LBL(61)] = OVR_ELM(61),
5172 [OVR_LBL(62)] = OVR_ELM(62), [OVR_LBL(63)] = OVR_ELM(63),
5173 [OVR_LBL(64)] = OVR_ELM(64), [OVR_LBL(65)] = OVR_ELM(65),
5174 [OVR_LBL(66)] = OVR_ELM(66), [OVR_LBL(67)] = OVR_ELM(67),
5175 [OVR_LBL(68)] = OVR_ELM(68), [OVR_LBL(69)] = OVR_ELM(69),
5176 [OVR_LBL(70)] = OVR_ELM(70), [OVR_LBL(71)] = OVR_ELM(71),
5177 [OVR_LBL(72)] = OVR_ELM(72), [OVR_LBL(73)] = OVR_ELM(73),
5178 [OVR_LBL(74)] = OVR_ELM(74), [OVR_LBL(75)] = OVR_ELM(75),
5179 [OVR_LBL(76)] = OVR_ELM(76), [OVR_LBL(77)] = OVR_ELM(77),
5180 [OVR_LBL(78)] = OVR_ELM(78), [OVR_LBL(79)] = OVR_ELM(79),
5181 [OVR_LBL(80)] = OVR_ELM(80), [OVR_LBL(81)] = OVR_ELM(81),
5182 [OVR_LBL(82)] = OVR_ELM(82), [OVR_LBL(83)] = OVR_ELM(83),
5183 [OVR_LBL(84)] = OVR_ELM(84), [OVR_LBL(85)] = OVR_ELM(85),
5184 [OVR_LBL(86)] = OVR_ELM(86), [OVR_LBL(87)] = OVR_ELM(87),
5185 [OVR_LBL(88)] = OVR_ELM(88), [OVR_LBL(89)] = OVR_ELM(89),
5186 [OVR_LBL(90)] = OVR_ELM(90), [OVR_LBL(91)] = OVR_ELM(91),
5187 [OVR_LBL(92)] = OVR_ELM(92), [OVR_LBL(93)] = OVR_ELM(93),
5188 [OVR_LBL(94)] = OVR_ELM(94), [OVR_LBL(95)] = OVR_ELM(95),
5189 [OVR_LBL(96)] = OVR_ELM(96), [OVR_LBL(97)] = OVR_ELM(97),
5190 [OVR_LBL(98)] = OVR_ELM(98), [OVR_LBL(99)] = OVR_ELM(99),
5191 [OVR_LBL(100)] = OVR_ELM(100), [OVR_LBL(101)] = OVR_ELM(101),
5192 [OVR_LBL(102)] = OVR_ELM(102), [OVR_LBL(103)] = OVR_ELM(103),
5193 [OVR_LBL(104)] = OVR_ELM(104), [OVR_LBL(105)] = OVR_ELM(105),
5194 [OVR_LBL(106)] = OVR_ELM(106), [OVR_LBL(107)] = OVR_ELM(107),
5195 [OVR_LBL(108)] = OVR_ELM(108), [OVR_LBL(109)] = OVR_ELM(109),
5196 [OVR_LBL(110)] = OVR_ELM(110), [OVR_LBL(111)] = OVR_ELM(111),
5197 [OVR_LBL(112)] = OVR_ELM(112), [OVR_LBL(113)] = OVR_ELM(113),
5198 [OVR_LBL(114)] = OVR_ELM(114), [OVR_LBL(115)] = OVR_ELM(115),
5199 [OVR_LBL(116)] = OVR_ELM(116), [OVR_LBL(117)] = OVR_ELM(117),
5200 [OVR_LBL(118)] = OVR_ELM(118), [OVR_LBL(119)] = OVR_ELM(119),
5201 [OVR_LBL(120)] = OVR_ELM(120), [OVR_LBL(121)] = OVR_ELM(121),
5202 [OVR_LBL(122)] = OVR_ELM(122), [OVR_LBL(123)] = OVR_ELM(123),
5203 [OVR_LBL(124)] = OVR_ELM(124), [OVR_LBL(125)] = OVR_ELM(125),
5204 [OVR_LBL(126)] = OVR_ELM(126), [OVR_LBL(127)] = OVR_ELM(127),
5205 [OVR_LBL(128)] = OVR_ELM(128), [OVR_LBL(129)] = OVR_ELM(129),
5206 [OVR_LBL(130)] = OVR_ELM(130), [OVR_LBL(131)] = OVR_ELM(131),
5207 [OVR_LBL(132)] = OVR_ELM(132), [OVR_LBL(133)] = OVR_ELM(133),
5208 [OVR_LBL(134)] = OVR_ELM(134), [OVR_LBL(135)] = OVR_ELM(135),
5209 [OVR_LBL(136)] = OVR_ELM(136), [OVR_LBL(137)] = OVR_ELM(137),
5210 [OVR_LBL(138)] = OVR_ELM(138), [OVR_LBL(139)] = OVR_ELM(139),
5211 [OVR_LBL(140)] = OVR_ELM(140), [OVR_LBL(141)] = OVR_ELM(141),
5212 [OVR_LBL(142)] = OVR_ELM(142), [OVR_LBL(143)] = OVR_ELM(143),
5213 [OVR_LBL(144)] = OVR_ELM(144), [OVR_LBL(145)] = OVR_ELM(145),
5214 [OVR_LBL(146)] = OVR_ELM(146), [OVR_LBL(147)] = OVR_ELM(147),
5215 [OVR_LBL(148)] = OVR_ELM(148), [OVR_LBL(149)] = OVR_ELM(149),
5216 [OVR_LBL(150)] = OVR_ELM(150), [OVR_LBL(151)] = OVR_ELM(151),
5217 [OVR_LBL(152)] = OVR_ELM(152), [OVR_LBL(153)] = OVR_ELM(153),
5218 [OVR_LBL(154)] = OVR_ELM(154), [OVR_LBL(155)] = OVR_ELM(155),
5219 [OVR_LBL(156)] = OVR_ELM(156), [OVR_LBL(157)] = OVR_ELM(157),
5220 [OVR_LBL(158)] = OVR_ELM(158), [OVR_LBL(159)] = OVR_ELM(159),
5221 };
5222 
5223 /* ======================================================================== */
5224 
5225 /* return true if this is chip revision revision a */
5226 int is_ax(struct hfi1_devdata *dd)
5227 {
5228 	u8 chip_rev_minor =
5229 		dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT
5230 			& CCE_REVISION_CHIP_REV_MINOR_MASK;
5231 	return (chip_rev_minor & 0xf0) == 0;
5232 }
5233 
5234 /* return true if this is chip revision revision b */
5235 int is_bx(struct hfi1_devdata *dd)
5236 {
5237 	u8 chip_rev_minor =
5238 		dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT
5239 			& CCE_REVISION_CHIP_REV_MINOR_MASK;
5240 	return (chip_rev_minor & 0xF0) == 0x10;
5241 }
5242 
5243 /* return true is kernel urg disabled for rcd */
5244 bool is_urg_masked(struct hfi1_ctxtdata *rcd)
5245 {
5246 	u64 mask;
5247 	u32 is = IS_RCVURGENT_START + rcd->ctxt;
5248 	u8 bit = is % 64;
5249 
5250 	mask = read_csr(rcd->dd, CCE_INT_MASK + (8 * (is / 64)));
5251 	return !(mask & BIT_ULL(bit));
5252 }
5253 
5254 /*
5255  * Append string s to buffer buf.  Arguments curp and len are the current
5256  * position and remaining length, respectively.
5257  *
5258  * return 0 on success, 1 on out of room
5259  */
5260 static int append_str(char *buf, char **curp, int *lenp, const char *s)
5261 {
5262 	char *p = *curp;
5263 	int len = *lenp;
5264 	int result = 0; /* success */
5265 	char c;
5266 
5267 	/* add a comma, if first in the buffer */
5268 	if (p != buf) {
5269 		if (len == 0) {
5270 			result = 1; /* out of room */
5271 			goto done;
5272 		}
5273 		*p++ = ',';
5274 		len--;
5275 	}
5276 
5277 	/* copy the string */
5278 	while ((c = *s++) != 0) {
5279 		if (len == 0) {
5280 			result = 1; /* out of room */
5281 			goto done;
5282 		}
5283 		*p++ = c;
5284 		len--;
5285 	}
5286 
5287 done:
5288 	/* write return values */
5289 	*curp = p;
5290 	*lenp = len;
5291 
5292 	return result;
5293 }
5294 
5295 /*
5296  * Using the given flag table, print a comma separated string into
5297  * the buffer.  End in '*' if the buffer is too short.
5298  */
5299 static char *flag_string(char *buf, int buf_len, u64 flags,
5300 			 struct flag_table *table, int table_size)
5301 {
5302 	char extra[32];
5303 	char *p = buf;
5304 	int len = buf_len;
5305 	int no_room = 0;
5306 	int i;
5307 
5308 	/* make sure there is at least 2 so we can form "*" */
5309 	if (len < 2)
5310 		return "";
5311 
5312 	len--;	/* leave room for a nul */
5313 	for (i = 0; i < table_size; i++) {
5314 		if (flags & table[i].flag) {
5315 			no_room = append_str(buf, &p, &len, table[i].str);
5316 			if (no_room)
5317 				break;
5318 			flags &= ~table[i].flag;
5319 		}
5320 	}
5321 
5322 	/* any undocumented bits left? */
5323 	if (!no_room && flags) {
5324 		snprintf(extra, sizeof(extra), "bits 0x%llx", flags);
5325 		no_room = append_str(buf, &p, &len, extra);
5326 	}
5327 
5328 	/* add * if ran out of room */
5329 	if (no_room) {
5330 		/* may need to back up to add space for a '*' */
5331 		if (len == 0)
5332 			--p;
5333 		*p++ = '*';
5334 	}
5335 
5336 	/* add final nul - space already allocated above */
5337 	*p = 0;
5338 	return buf;
5339 }
5340 
5341 /* first 8 CCE error interrupt source names */
5342 static const char * const cce_misc_names[] = {
5343 	"CceErrInt",		/* 0 */
5344 	"RxeErrInt",		/* 1 */
5345 	"MiscErrInt",		/* 2 */
5346 	"Reserved3",		/* 3 */
5347 	"PioErrInt",		/* 4 */
5348 	"SDmaErrInt",		/* 5 */
5349 	"EgressErrInt",		/* 6 */
5350 	"TxeErrInt"		/* 7 */
5351 };
5352 
5353 /*
5354  * Return the miscellaneous error interrupt name.
5355  */
5356 static char *is_misc_err_name(char *buf, size_t bsize, unsigned int source)
5357 {
5358 	if (source < ARRAY_SIZE(cce_misc_names))
5359 		strncpy(buf, cce_misc_names[source], bsize);
5360 	else
5361 		snprintf(buf, bsize, "Reserved%u",
5362 			 source + IS_GENERAL_ERR_START);
5363 
5364 	return buf;
5365 }
5366 
5367 /*
5368  * Return the SDMA engine error interrupt name.
5369  */
5370 static char *is_sdma_eng_err_name(char *buf, size_t bsize, unsigned int source)
5371 {
5372 	snprintf(buf, bsize, "SDmaEngErrInt%u", source);
5373 	return buf;
5374 }
5375 
5376 /*
5377  * Return the send context error interrupt name.
5378  */
5379 static char *is_sendctxt_err_name(char *buf, size_t bsize, unsigned int source)
5380 {
5381 	snprintf(buf, bsize, "SendCtxtErrInt%u", source);
5382 	return buf;
5383 }
5384 
5385 static const char * const various_names[] = {
5386 	"PbcInt",
5387 	"GpioAssertInt",
5388 	"Qsfp1Int",
5389 	"Qsfp2Int",
5390 	"TCritInt"
5391 };
5392 
5393 /*
5394  * Return the various interrupt name.
5395  */
5396 static char *is_various_name(char *buf, size_t bsize, unsigned int source)
5397 {
5398 	if (source < ARRAY_SIZE(various_names))
5399 		strncpy(buf, various_names[source], bsize);
5400 	else
5401 		snprintf(buf, bsize, "Reserved%u", source + IS_VARIOUS_START);
5402 	return buf;
5403 }
5404 
5405 /*
5406  * Return the DC interrupt name.
5407  */
5408 static char *is_dc_name(char *buf, size_t bsize, unsigned int source)
5409 {
5410 	static const char * const dc_int_names[] = {
5411 		"common",
5412 		"lcb",
5413 		"8051",
5414 		"lbm"	/* local block merge */
5415 	};
5416 
5417 	if (source < ARRAY_SIZE(dc_int_names))
5418 		snprintf(buf, bsize, "dc_%s_int", dc_int_names[source]);
5419 	else
5420 		snprintf(buf, bsize, "DCInt%u", source);
5421 	return buf;
5422 }
5423 
5424 static const char * const sdma_int_names[] = {
5425 	"SDmaInt",
5426 	"SdmaIdleInt",
5427 	"SdmaProgressInt",
5428 };
5429 
5430 /*
5431  * Return the SDMA engine interrupt name.
5432  */
5433 static char *is_sdma_eng_name(char *buf, size_t bsize, unsigned int source)
5434 {
5435 	/* what interrupt */
5436 	unsigned int what  = source / TXE_NUM_SDMA_ENGINES;
5437 	/* which engine */
5438 	unsigned int which = source % TXE_NUM_SDMA_ENGINES;
5439 
5440 	if (likely(what < 3))
5441 		snprintf(buf, bsize, "%s%u", sdma_int_names[what], which);
5442 	else
5443 		snprintf(buf, bsize, "Invalid SDMA interrupt %u", source);
5444 	return buf;
5445 }
5446 
5447 /*
5448  * Return the receive available interrupt name.
5449  */
5450 static char *is_rcv_avail_name(char *buf, size_t bsize, unsigned int source)
5451 {
5452 	snprintf(buf, bsize, "RcvAvailInt%u", source);
5453 	return buf;
5454 }
5455 
5456 /*
5457  * Return the receive urgent interrupt name.
5458  */
5459 static char *is_rcv_urgent_name(char *buf, size_t bsize, unsigned int source)
5460 {
5461 	snprintf(buf, bsize, "RcvUrgentInt%u", source);
5462 	return buf;
5463 }
5464 
5465 /*
5466  * Return the send credit interrupt name.
5467  */
5468 static char *is_send_credit_name(char *buf, size_t bsize, unsigned int source)
5469 {
5470 	snprintf(buf, bsize, "SendCreditInt%u", source);
5471 	return buf;
5472 }
5473 
5474 /*
5475  * Return the reserved interrupt name.
5476  */
5477 static char *is_reserved_name(char *buf, size_t bsize, unsigned int source)
5478 {
5479 	snprintf(buf, bsize, "Reserved%u", source + IS_RESERVED_START);
5480 	return buf;
5481 }
5482 
5483 static char *cce_err_status_string(char *buf, int buf_len, u64 flags)
5484 {
5485 	return flag_string(buf, buf_len, flags,
5486 			   cce_err_status_flags,
5487 			   ARRAY_SIZE(cce_err_status_flags));
5488 }
5489 
5490 static char *rxe_err_status_string(char *buf, int buf_len, u64 flags)
5491 {
5492 	return flag_string(buf, buf_len, flags,
5493 			   rxe_err_status_flags,
5494 			   ARRAY_SIZE(rxe_err_status_flags));
5495 }
5496 
5497 static char *misc_err_status_string(char *buf, int buf_len, u64 flags)
5498 {
5499 	return flag_string(buf, buf_len, flags, misc_err_status_flags,
5500 			   ARRAY_SIZE(misc_err_status_flags));
5501 }
5502 
5503 static char *pio_err_status_string(char *buf, int buf_len, u64 flags)
5504 {
5505 	return flag_string(buf, buf_len, flags,
5506 			   pio_err_status_flags,
5507 			   ARRAY_SIZE(pio_err_status_flags));
5508 }
5509 
5510 static char *sdma_err_status_string(char *buf, int buf_len, u64 flags)
5511 {
5512 	return flag_string(buf, buf_len, flags,
5513 			   sdma_err_status_flags,
5514 			   ARRAY_SIZE(sdma_err_status_flags));
5515 }
5516 
5517 static char *egress_err_status_string(char *buf, int buf_len, u64 flags)
5518 {
5519 	return flag_string(buf, buf_len, flags,
5520 			   egress_err_status_flags,
5521 			   ARRAY_SIZE(egress_err_status_flags));
5522 }
5523 
5524 static char *egress_err_info_string(char *buf, int buf_len, u64 flags)
5525 {
5526 	return flag_string(buf, buf_len, flags,
5527 			   egress_err_info_flags,
5528 			   ARRAY_SIZE(egress_err_info_flags));
5529 }
5530 
5531 static char *send_err_status_string(char *buf, int buf_len, u64 flags)
5532 {
5533 	return flag_string(buf, buf_len, flags,
5534 			   send_err_status_flags,
5535 			   ARRAY_SIZE(send_err_status_flags));
5536 }
5537 
5538 static void handle_cce_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5539 {
5540 	char buf[96];
5541 	int i = 0;
5542 
5543 	/*
5544 	 * For most these errors, there is nothing that can be done except
5545 	 * report or record it.
5546 	 */
5547 	dd_dev_info(dd, "CCE Error: %s\n",
5548 		    cce_err_status_string(buf, sizeof(buf), reg));
5549 
5550 	if ((reg & CCE_ERR_STATUS_CCE_CLI2_ASYNC_FIFO_PARITY_ERR_SMASK) &&
5551 	    is_ax(dd) && (dd->icode != ICODE_FUNCTIONAL_SIMULATOR)) {
5552 		/* this error requires a manual drop into SPC freeze mode */
5553 		/* then a fix up */
5554 		start_freeze_handling(dd->pport, FREEZE_SELF);
5555 	}
5556 
5557 	for (i = 0; i < NUM_CCE_ERR_STATUS_COUNTERS; i++) {
5558 		if (reg & (1ull << i)) {
5559 			incr_cntr64(&dd->cce_err_status_cnt[i]);
5560 			/* maintain a counter over all cce_err_status errors */
5561 			incr_cntr64(&dd->sw_cce_err_status_aggregate);
5562 		}
5563 	}
5564 }
5565 
5566 /*
5567  * Check counters for receive errors that do not have an interrupt
5568  * associated with them.
5569  */
5570 #define RCVERR_CHECK_TIME 10
5571 static void update_rcverr_timer(struct timer_list *t)
5572 {
5573 	struct hfi1_devdata *dd = from_timer(dd, t, rcverr_timer);
5574 	struct hfi1_pportdata *ppd = dd->pport;
5575 	u32 cur_ovfl_cnt = read_dev_cntr(dd, C_RCV_OVF, CNTR_INVALID_VL);
5576 
5577 	if (dd->rcv_ovfl_cnt < cur_ovfl_cnt &&
5578 	    ppd->port_error_action & OPA_PI_MASK_EX_BUFFER_OVERRUN) {
5579 		dd_dev_info(dd, "%s: PortErrorAction bounce\n", __func__);
5580 		set_link_down_reason(
5581 		ppd, OPA_LINKDOWN_REASON_EXCESSIVE_BUFFER_OVERRUN, 0,
5582 		OPA_LINKDOWN_REASON_EXCESSIVE_BUFFER_OVERRUN);
5583 		queue_work(ppd->link_wq, &ppd->link_bounce_work);
5584 	}
5585 	dd->rcv_ovfl_cnt = (u32)cur_ovfl_cnt;
5586 
5587 	mod_timer(&dd->rcverr_timer, jiffies + HZ * RCVERR_CHECK_TIME);
5588 }
5589 
5590 static int init_rcverr(struct hfi1_devdata *dd)
5591 {
5592 	timer_setup(&dd->rcverr_timer, update_rcverr_timer, 0);
5593 	/* Assume the hardware counter has been reset */
5594 	dd->rcv_ovfl_cnt = 0;
5595 	return mod_timer(&dd->rcverr_timer, jiffies + HZ * RCVERR_CHECK_TIME);
5596 }
5597 
5598 static void free_rcverr(struct hfi1_devdata *dd)
5599 {
5600 	if (dd->rcverr_timer.function)
5601 		del_timer_sync(&dd->rcverr_timer);
5602 }
5603 
5604 static void handle_rxe_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5605 {
5606 	char buf[96];
5607 	int i = 0;
5608 
5609 	dd_dev_info(dd, "Receive Error: %s\n",
5610 		    rxe_err_status_string(buf, sizeof(buf), reg));
5611 
5612 	if (reg & ALL_RXE_FREEZE_ERR) {
5613 		int flags = 0;
5614 
5615 		/*
5616 		 * Freeze mode recovery is disabled for the errors
5617 		 * in RXE_FREEZE_ABORT_MASK
5618 		 */
5619 		if (is_ax(dd) && (reg & RXE_FREEZE_ABORT_MASK))
5620 			flags = FREEZE_ABORT;
5621 
5622 		start_freeze_handling(dd->pport, flags);
5623 	}
5624 
5625 	for (i = 0; i < NUM_RCV_ERR_STATUS_COUNTERS; i++) {
5626 		if (reg & (1ull << i))
5627 			incr_cntr64(&dd->rcv_err_status_cnt[i]);
5628 	}
5629 }
5630 
5631 static void handle_misc_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5632 {
5633 	char buf[96];
5634 	int i = 0;
5635 
5636 	dd_dev_info(dd, "Misc Error: %s",
5637 		    misc_err_status_string(buf, sizeof(buf), reg));
5638 	for (i = 0; i < NUM_MISC_ERR_STATUS_COUNTERS; i++) {
5639 		if (reg & (1ull << i))
5640 			incr_cntr64(&dd->misc_err_status_cnt[i]);
5641 	}
5642 }
5643 
5644 static void handle_pio_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5645 {
5646 	char buf[96];
5647 	int i = 0;
5648 
5649 	dd_dev_info(dd, "PIO Error: %s\n",
5650 		    pio_err_status_string(buf, sizeof(buf), reg));
5651 
5652 	if (reg & ALL_PIO_FREEZE_ERR)
5653 		start_freeze_handling(dd->pport, 0);
5654 
5655 	for (i = 0; i < NUM_SEND_PIO_ERR_STATUS_COUNTERS; i++) {
5656 		if (reg & (1ull << i))
5657 			incr_cntr64(&dd->send_pio_err_status_cnt[i]);
5658 	}
5659 }
5660 
5661 static void handle_sdma_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5662 {
5663 	char buf[96];
5664 	int i = 0;
5665 
5666 	dd_dev_info(dd, "SDMA Error: %s\n",
5667 		    sdma_err_status_string(buf, sizeof(buf), reg));
5668 
5669 	if (reg & ALL_SDMA_FREEZE_ERR)
5670 		start_freeze_handling(dd->pport, 0);
5671 
5672 	for (i = 0; i < NUM_SEND_DMA_ERR_STATUS_COUNTERS; i++) {
5673 		if (reg & (1ull << i))
5674 			incr_cntr64(&dd->send_dma_err_status_cnt[i]);
5675 	}
5676 }
5677 
5678 static inline void __count_port_discards(struct hfi1_pportdata *ppd)
5679 {
5680 	incr_cntr64(&ppd->port_xmit_discards);
5681 }
5682 
5683 static void count_port_inactive(struct hfi1_devdata *dd)
5684 {
5685 	__count_port_discards(dd->pport);
5686 }
5687 
5688 /*
5689  * We have had a "disallowed packet" error during egress. Determine the
5690  * integrity check which failed, and update relevant error counter, etc.
5691  *
5692  * Note that the SEND_EGRESS_ERR_INFO register has only a single
5693  * bit of state per integrity check, and so we can miss the reason for an
5694  * egress error if more than one packet fails the same integrity check
5695  * since we cleared the corresponding bit in SEND_EGRESS_ERR_INFO.
5696  */
5697 static void handle_send_egress_err_info(struct hfi1_devdata *dd,
5698 					int vl)
5699 {
5700 	struct hfi1_pportdata *ppd = dd->pport;
5701 	u64 src = read_csr(dd, SEND_EGRESS_ERR_SOURCE); /* read first */
5702 	u64 info = read_csr(dd, SEND_EGRESS_ERR_INFO);
5703 	char buf[96];
5704 
5705 	/* clear down all observed info as quickly as possible after read */
5706 	write_csr(dd, SEND_EGRESS_ERR_INFO, info);
5707 
5708 	dd_dev_info(dd,
5709 		    "Egress Error Info: 0x%llx, %s Egress Error Src 0x%llx\n",
5710 		    info, egress_err_info_string(buf, sizeof(buf), info), src);
5711 
5712 	/* Eventually add other counters for each bit */
5713 	if (info & PORT_DISCARD_EGRESS_ERRS) {
5714 		int weight, i;
5715 
5716 		/*
5717 		 * Count all applicable bits as individual errors and
5718 		 * attribute them to the packet that triggered this handler.
5719 		 * This may not be completely accurate due to limitations
5720 		 * on the available hardware error information.  There is
5721 		 * a single information register and any number of error
5722 		 * packets may have occurred and contributed to it before
5723 		 * this routine is called.  This means that:
5724 		 * a) If multiple packets with the same error occur before
5725 		 *    this routine is called, earlier packets are missed.
5726 		 *    There is only a single bit for each error type.
5727 		 * b) Errors may not be attributed to the correct VL.
5728 		 *    The driver is attributing all bits in the info register
5729 		 *    to the packet that triggered this call, but bits
5730 		 *    could be an accumulation of different packets with
5731 		 *    different VLs.
5732 		 * c) A single error packet may have multiple counts attached
5733 		 *    to it.  There is no way for the driver to know if
5734 		 *    multiple bits set in the info register are due to a
5735 		 *    single packet or multiple packets.  The driver assumes
5736 		 *    multiple packets.
5737 		 */
5738 		weight = hweight64(info & PORT_DISCARD_EGRESS_ERRS);
5739 		for (i = 0; i < weight; i++) {
5740 			__count_port_discards(ppd);
5741 			if (vl >= 0 && vl < TXE_NUM_DATA_VL)
5742 				incr_cntr64(&ppd->port_xmit_discards_vl[vl]);
5743 			else if (vl == 15)
5744 				incr_cntr64(&ppd->port_xmit_discards_vl
5745 					    [C_VL_15]);
5746 		}
5747 	}
5748 }
5749 
5750 /*
5751  * Input value is a bit position within the SEND_EGRESS_ERR_STATUS
5752  * register. Does it represent a 'port inactive' error?
5753  */
5754 static inline int port_inactive_err(u64 posn)
5755 {
5756 	return (posn >= SEES(TX_LINKDOWN) &&
5757 		posn <= SEES(TX_INCORRECT_LINK_STATE));
5758 }
5759 
5760 /*
5761  * Input value is a bit position within the SEND_EGRESS_ERR_STATUS
5762  * register. Does it represent a 'disallowed packet' error?
5763  */
5764 static inline int disallowed_pkt_err(int posn)
5765 {
5766 	return (posn >= SEES(TX_SDMA0_DISALLOWED_PACKET) &&
5767 		posn <= SEES(TX_SDMA15_DISALLOWED_PACKET));
5768 }
5769 
5770 /*
5771  * Input value is a bit position of one of the SDMA engine disallowed
5772  * packet errors.  Return which engine.  Use of this must be guarded by
5773  * disallowed_pkt_err().
5774  */
5775 static inline int disallowed_pkt_engine(int posn)
5776 {
5777 	return posn - SEES(TX_SDMA0_DISALLOWED_PACKET);
5778 }
5779 
5780 /*
5781  * Translate an SDMA engine to a VL.  Return -1 if the tranlation cannot
5782  * be done.
5783  */
5784 static int engine_to_vl(struct hfi1_devdata *dd, int engine)
5785 {
5786 	struct sdma_vl_map *m;
5787 	int vl;
5788 
5789 	/* range check */
5790 	if (engine < 0 || engine >= TXE_NUM_SDMA_ENGINES)
5791 		return -1;
5792 
5793 	rcu_read_lock();
5794 	m = rcu_dereference(dd->sdma_map);
5795 	vl = m->engine_to_vl[engine];
5796 	rcu_read_unlock();
5797 
5798 	return vl;
5799 }
5800 
5801 /*
5802  * Translate the send context (sofware index) into a VL.  Return -1 if the
5803  * translation cannot be done.
5804  */
5805 static int sc_to_vl(struct hfi1_devdata *dd, int sw_index)
5806 {
5807 	struct send_context_info *sci;
5808 	struct send_context *sc;
5809 	int i;
5810 
5811 	sci = &dd->send_contexts[sw_index];
5812 
5813 	/* there is no information for user (PSM) and ack contexts */
5814 	if ((sci->type != SC_KERNEL) && (sci->type != SC_VL15))
5815 		return -1;
5816 
5817 	sc = sci->sc;
5818 	if (!sc)
5819 		return -1;
5820 	if (dd->vld[15].sc == sc)
5821 		return 15;
5822 	for (i = 0; i < num_vls; i++)
5823 		if (dd->vld[i].sc == sc)
5824 			return i;
5825 
5826 	return -1;
5827 }
5828 
5829 static void handle_egress_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5830 {
5831 	u64 reg_copy = reg, handled = 0;
5832 	char buf[96];
5833 	int i = 0;
5834 
5835 	if (reg & ALL_TXE_EGRESS_FREEZE_ERR)
5836 		start_freeze_handling(dd->pport, 0);
5837 	else if (is_ax(dd) &&
5838 		 (reg & SEND_EGRESS_ERR_STATUS_TX_CREDIT_RETURN_VL_ERR_SMASK) &&
5839 		 (dd->icode != ICODE_FUNCTIONAL_SIMULATOR))
5840 		start_freeze_handling(dd->pport, 0);
5841 
5842 	while (reg_copy) {
5843 		int posn = fls64(reg_copy);
5844 		/* fls64() returns a 1-based offset, we want it zero based */
5845 		int shift = posn - 1;
5846 		u64 mask = 1ULL << shift;
5847 
5848 		if (port_inactive_err(shift)) {
5849 			count_port_inactive(dd);
5850 			handled |= mask;
5851 		} else if (disallowed_pkt_err(shift)) {
5852 			int vl = engine_to_vl(dd, disallowed_pkt_engine(shift));
5853 
5854 			handle_send_egress_err_info(dd, vl);
5855 			handled |= mask;
5856 		}
5857 		reg_copy &= ~mask;
5858 	}
5859 
5860 	reg &= ~handled;
5861 
5862 	if (reg)
5863 		dd_dev_info(dd, "Egress Error: %s\n",
5864 			    egress_err_status_string(buf, sizeof(buf), reg));
5865 
5866 	for (i = 0; i < NUM_SEND_EGRESS_ERR_STATUS_COUNTERS; i++) {
5867 		if (reg & (1ull << i))
5868 			incr_cntr64(&dd->send_egress_err_status_cnt[i]);
5869 	}
5870 }
5871 
5872 static void handle_txe_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5873 {
5874 	char buf[96];
5875 	int i = 0;
5876 
5877 	dd_dev_info(dd, "Send Error: %s\n",
5878 		    send_err_status_string(buf, sizeof(buf), reg));
5879 
5880 	for (i = 0; i < NUM_SEND_ERR_STATUS_COUNTERS; i++) {
5881 		if (reg & (1ull << i))
5882 			incr_cntr64(&dd->send_err_status_cnt[i]);
5883 	}
5884 }
5885 
5886 /*
5887  * The maximum number of times the error clear down will loop before
5888  * blocking a repeating error.  This value is arbitrary.
5889  */
5890 #define MAX_CLEAR_COUNT 20
5891 
5892 /*
5893  * Clear and handle an error register.  All error interrupts are funneled
5894  * through here to have a central location to correctly handle single-
5895  * or multi-shot errors.
5896  *
5897  * For non per-context registers, call this routine with a context value
5898  * of 0 so the per-context offset is zero.
5899  *
5900  * If the handler loops too many times, assume that something is wrong
5901  * and can't be fixed, so mask the error bits.
5902  */
5903 static void interrupt_clear_down(struct hfi1_devdata *dd,
5904 				 u32 context,
5905 				 const struct err_reg_info *eri)
5906 {
5907 	u64 reg;
5908 	u32 count;
5909 
5910 	/* read in a loop until no more errors are seen */
5911 	count = 0;
5912 	while (1) {
5913 		reg = read_kctxt_csr(dd, context, eri->status);
5914 		if (reg == 0)
5915 			break;
5916 		write_kctxt_csr(dd, context, eri->clear, reg);
5917 		if (likely(eri->handler))
5918 			eri->handler(dd, context, reg);
5919 		count++;
5920 		if (count > MAX_CLEAR_COUNT) {
5921 			u64 mask;
5922 
5923 			dd_dev_err(dd, "Repeating %s bits 0x%llx - masking\n",
5924 				   eri->desc, reg);
5925 			/*
5926 			 * Read-modify-write so any other masked bits
5927 			 * remain masked.
5928 			 */
5929 			mask = read_kctxt_csr(dd, context, eri->mask);
5930 			mask &= ~reg;
5931 			write_kctxt_csr(dd, context, eri->mask, mask);
5932 			break;
5933 		}
5934 	}
5935 }
5936 
5937 /*
5938  * CCE block "misc" interrupt.  Source is < 16.
5939  */
5940 static void is_misc_err_int(struct hfi1_devdata *dd, unsigned int source)
5941 {
5942 	const struct err_reg_info *eri = &misc_errs[source];
5943 
5944 	if (eri->handler) {
5945 		interrupt_clear_down(dd, 0, eri);
5946 	} else {
5947 		dd_dev_err(dd, "Unexpected misc interrupt (%u) - reserved\n",
5948 			   source);
5949 	}
5950 }
5951 
5952 static char *send_context_err_status_string(char *buf, int buf_len, u64 flags)
5953 {
5954 	return flag_string(buf, buf_len, flags,
5955 			   sc_err_status_flags,
5956 			   ARRAY_SIZE(sc_err_status_flags));
5957 }
5958 
5959 /*
5960  * Send context error interrupt.  Source (hw_context) is < 160.
5961  *
5962  * All send context errors cause the send context to halt.  The normal
5963  * clear-down mechanism cannot be used because we cannot clear the
5964  * error bits until several other long-running items are done first.
5965  * This is OK because with the context halted, nothing else is going
5966  * to happen on it anyway.
5967  */
5968 static void is_sendctxt_err_int(struct hfi1_devdata *dd,
5969 				unsigned int hw_context)
5970 {
5971 	struct send_context_info *sci;
5972 	struct send_context *sc;
5973 	char flags[96];
5974 	u64 status;
5975 	u32 sw_index;
5976 	int i = 0;
5977 	unsigned long irq_flags;
5978 
5979 	sw_index = dd->hw_to_sw[hw_context];
5980 	if (sw_index >= dd->num_send_contexts) {
5981 		dd_dev_err(dd,
5982 			   "out of range sw index %u for send context %u\n",
5983 			   sw_index, hw_context);
5984 		return;
5985 	}
5986 	sci = &dd->send_contexts[sw_index];
5987 	spin_lock_irqsave(&dd->sc_lock, irq_flags);
5988 	sc = sci->sc;
5989 	if (!sc) {
5990 		dd_dev_err(dd, "%s: context %u(%u): no sc?\n", __func__,
5991 			   sw_index, hw_context);
5992 		spin_unlock_irqrestore(&dd->sc_lock, irq_flags);
5993 		return;
5994 	}
5995 
5996 	/* tell the software that a halt has begun */
5997 	sc_stop(sc, SCF_HALTED);
5998 
5999 	status = read_kctxt_csr(dd, hw_context, SEND_CTXT_ERR_STATUS);
6000 
6001 	dd_dev_info(dd, "Send Context %u(%u) Error: %s\n", sw_index, hw_context,
6002 		    send_context_err_status_string(flags, sizeof(flags),
6003 						   status));
6004 
6005 	if (status & SEND_CTXT_ERR_STATUS_PIO_DISALLOWED_PACKET_ERR_SMASK)
6006 		handle_send_egress_err_info(dd, sc_to_vl(dd, sw_index));
6007 
6008 	/*
6009 	 * Automatically restart halted kernel contexts out of interrupt
6010 	 * context.  User contexts must ask the driver to restart the context.
6011 	 */
6012 	if (sc->type != SC_USER)
6013 		queue_work(dd->pport->hfi1_wq, &sc->halt_work);
6014 	spin_unlock_irqrestore(&dd->sc_lock, irq_flags);
6015 
6016 	/*
6017 	 * Update the counters for the corresponding status bits.
6018 	 * Note that these particular counters are aggregated over all
6019 	 * 160 contexts.
6020 	 */
6021 	for (i = 0; i < NUM_SEND_CTXT_ERR_STATUS_COUNTERS; i++) {
6022 		if (status & (1ull << i))
6023 			incr_cntr64(&dd->sw_ctxt_err_status_cnt[i]);
6024 	}
6025 }
6026 
6027 static void handle_sdma_eng_err(struct hfi1_devdata *dd,
6028 				unsigned int source, u64 status)
6029 {
6030 	struct sdma_engine *sde;
6031 	int i = 0;
6032 
6033 	sde = &dd->per_sdma[source];
6034 #ifdef CONFIG_SDMA_VERBOSITY
6035 	dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
6036 		   slashstrip(__FILE__), __LINE__, __func__);
6037 	dd_dev_err(sde->dd, "CONFIG SDMA(%u) source: %u status 0x%llx\n",
6038 		   sde->this_idx, source, (unsigned long long)status);
6039 #endif
6040 	sde->err_cnt++;
6041 	sdma_engine_error(sde, status);
6042 
6043 	/*
6044 	* Update the counters for the corresponding status bits.
6045 	* Note that these particular counters are aggregated over
6046 	* all 16 DMA engines.
6047 	*/
6048 	for (i = 0; i < NUM_SEND_DMA_ENG_ERR_STATUS_COUNTERS; i++) {
6049 		if (status & (1ull << i))
6050 			incr_cntr64(&dd->sw_send_dma_eng_err_status_cnt[i]);
6051 	}
6052 }
6053 
6054 /*
6055  * CCE block SDMA error interrupt.  Source is < 16.
6056  */
6057 static void is_sdma_eng_err_int(struct hfi1_devdata *dd, unsigned int source)
6058 {
6059 #ifdef CONFIG_SDMA_VERBOSITY
6060 	struct sdma_engine *sde = &dd->per_sdma[source];
6061 
6062 	dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
6063 		   slashstrip(__FILE__), __LINE__, __func__);
6064 	dd_dev_err(dd, "CONFIG SDMA(%u) source: %u\n", sde->this_idx,
6065 		   source);
6066 	sdma_dumpstate(sde);
6067 #endif
6068 	interrupt_clear_down(dd, source, &sdma_eng_err);
6069 }
6070 
6071 /*
6072  * CCE block "various" interrupt.  Source is < 8.
6073  */
6074 static void is_various_int(struct hfi1_devdata *dd, unsigned int source)
6075 {
6076 	const struct err_reg_info *eri = &various_err[source];
6077 
6078 	/*
6079 	 * TCritInt cannot go through interrupt_clear_down()
6080 	 * because it is not a second tier interrupt. The handler
6081 	 * should be called directly.
6082 	 */
6083 	if (source == TCRIT_INT_SOURCE)
6084 		handle_temp_err(dd);
6085 	else if (eri->handler)
6086 		interrupt_clear_down(dd, 0, eri);
6087 	else
6088 		dd_dev_info(dd,
6089 			    "%s: Unimplemented/reserved interrupt %d\n",
6090 			    __func__, source);
6091 }
6092 
6093 static void handle_qsfp_int(struct hfi1_devdata *dd, u32 src_ctx, u64 reg)
6094 {
6095 	/* src_ctx is always zero */
6096 	struct hfi1_pportdata *ppd = dd->pport;
6097 	unsigned long flags;
6098 	u64 qsfp_int_mgmt = (u64)(QSFP_HFI0_INT_N | QSFP_HFI0_MODPRST_N);
6099 
6100 	if (reg & QSFP_HFI0_MODPRST_N) {
6101 		if (!qsfp_mod_present(ppd)) {
6102 			dd_dev_info(dd, "%s: QSFP module removed\n",
6103 				    __func__);
6104 
6105 			ppd->driver_link_ready = 0;
6106 			/*
6107 			 * Cable removed, reset all our information about the
6108 			 * cache and cable capabilities
6109 			 */
6110 
6111 			spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
6112 			/*
6113 			 * We don't set cache_refresh_required here as we expect
6114 			 * an interrupt when a cable is inserted
6115 			 */
6116 			ppd->qsfp_info.cache_valid = 0;
6117 			ppd->qsfp_info.reset_needed = 0;
6118 			ppd->qsfp_info.limiting_active = 0;
6119 			spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock,
6120 					       flags);
6121 			/* Invert the ModPresent pin now to detect plug-in */
6122 			write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_INVERT :
6123 				  ASIC_QSFP1_INVERT, qsfp_int_mgmt);
6124 
6125 			if ((ppd->offline_disabled_reason >
6126 			  HFI1_ODR_MASK(
6127 			  OPA_LINKDOWN_REASON_LOCAL_MEDIA_NOT_INSTALLED)) ||
6128 			  (ppd->offline_disabled_reason ==
6129 			  HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE)))
6130 				ppd->offline_disabled_reason =
6131 				HFI1_ODR_MASK(
6132 				OPA_LINKDOWN_REASON_LOCAL_MEDIA_NOT_INSTALLED);
6133 
6134 			if (ppd->host_link_state == HLS_DN_POLL) {
6135 				/*
6136 				 * The link is still in POLL. This means
6137 				 * that the normal link down processing
6138 				 * will not happen. We have to do it here
6139 				 * before turning the DC off.
6140 				 */
6141 				queue_work(ppd->link_wq, &ppd->link_down_work);
6142 			}
6143 		} else {
6144 			dd_dev_info(dd, "%s: QSFP module inserted\n",
6145 				    __func__);
6146 
6147 			spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
6148 			ppd->qsfp_info.cache_valid = 0;
6149 			ppd->qsfp_info.cache_refresh_required = 1;
6150 			spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock,
6151 					       flags);
6152 
6153 			/*
6154 			 * Stop inversion of ModPresent pin to detect
6155 			 * removal of the cable
6156 			 */
6157 			qsfp_int_mgmt &= ~(u64)QSFP_HFI0_MODPRST_N;
6158 			write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_INVERT :
6159 				  ASIC_QSFP1_INVERT, qsfp_int_mgmt);
6160 
6161 			ppd->offline_disabled_reason =
6162 				HFI1_ODR_MASK(OPA_LINKDOWN_REASON_TRANSIENT);
6163 		}
6164 	}
6165 
6166 	if (reg & QSFP_HFI0_INT_N) {
6167 		dd_dev_info(dd, "%s: Interrupt received from QSFP module\n",
6168 			    __func__);
6169 		spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
6170 		ppd->qsfp_info.check_interrupt_flags = 1;
6171 		spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock, flags);
6172 	}
6173 
6174 	/* Schedule the QSFP work only if there is a cable attached. */
6175 	if (qsfp_mod_present(ppd))
6176 		queue_work(ppd->link_wq, &ppd->qsfp_info.qsfp_work);
6177 }
6178 
6179 static int request_host_lcb_access(struct hfi1_devdata *dd)
6180 {
6181 	int ret;
6182 
6183 	ret = do_8051_command(dd, HCMD_MISC,
6184 			      (u64)HCMD_MISC_REQUEST_LCB_ACCESS <<
6185 			      LOAD_DATA_FIELD_ID_SHIFT, NULL);
6186 	if (ret != HCMD_SUCCESS) {
6187 		dd_dev_err(dd, "%s: command failed with error %d\n",
6188 			   __func__, ret);
6189 	}
6190 	return ret == HCMD_SUCCESS ? 0 : -EBUSY;
6191 }
6192 
6193 static int request_8051_lcb_access(struct hfi1_devdata *dd)
6194 {
6195 	int ret;
6196 
6197 	ret = do_8051_command(dd, HCMD_MISC,
6198 			      (u64)HCMD_MISC_GRANT_LCB_ACCESS <<
6199 			      LOAD_DATA_FIELD_ID_SHIFT, NULL);
6200 	if (ret != HCMD_SUCCESS) {
6201 		dd_dev_err(dd, "%s: command failed with error %d\n",
6202 			   __func__, ret);
6203 	}
6204 	return ret == HCMD_SUCCESS ? 0 : -EBUSY;
6205 }
6206 
6207 /*
6208  * Set the LCB selector - allow host access.  The DCC selector always
6209  * points to the host.
6210  */
6211 static inline void set_host_lcb_access(struct hfi1_devdata *dd)
6212 {
6213 	write_csr(dd, DC_DC8051_CFG_CSR_ACCESS_SEL,
6214 		  DC_DC8051_CFG_CSR_ACCESS_SEL_DCC_SMASK |
6215 		  DC_DC8051_CFG_CSR_ACCESS_SEL_LCB_SMASK);
6216 }
6217 
6218 /*
6219  * Clear the LCB selector - allow 8051 access.  The DCC selector always
6220  * points to the host.
6221  */
6222 static inline void set_8051_lcb_access(struct hfi1_devdata *dd)
6223 {
6224 	write_csr(dd, DC_DC8051_CFG_CSR_ACCESS_SEL,
6225 		  DC_DC8051_CFG_CSR_ACCESS_SEL_DCC_SMASK);
6226 }
6227 
6228 /*
6229  * Acquire LCB access from the 8051.  If the host already has access,
6230  * just increment a counter.  Otherwise, inform the 8051 that the
6231  * host is taking access.
6232  *
6233  * Returns:
6234  *	0 on success
6235  *	-EBUSY if the 8051 has control and cannot be disturbed
6236  *	-errno if unable to acquire access from the 8051
6237  */
6238 int acquire_lcb_access(struct hfi1_devdata *dd, int sleep_ok)
6239 {
6240 	struct hfi1_pportdata *ppd = dd->pport;
6241 	int ret = 0;
6242 
6243 	/*
6244 	 * Use the host link state lock so the operation of this routine
6245 	 * { link state check, selector change, count increment } can occur
6246 	 * as a unit against a link state change.  Otherwise there is a
6247 	 * race between the state change and the count increment.
6248 	 */
6249 	if (sleep_ok) {
6250 		mutex_lock(&ppd->hls_lock);
6251 	} else {
6252 		while (!mutex_trylock(&ppd->hls_lock))
6253 			udelay(1);
6254 	}
6255 
6256 	/* this access is valid only when the link is up */
6257 	if (ppd->host_link_state & HLS_DOWN) {
6258 		dd_dev_info(dd, "%s: link state %s not up\n",
6259 			    __func__, link_state_name(ppd->host_link_state));
6260 		ret = -EBUSY;
6261 		goto done;
6262 	}
6263 
6264 	if (dd->lcb_access_count == 0) {
6265 		ret = request_host_lcb_access(dd);
6266 		if (ret) {
6267 			dd_dev_err(dd,
6268 				   "%s: unable to acquire LCB access, err %d\n",
6269 				   __func__, ret);
6270 			goto done;
6271 		}
6272 		set_host_lcb_access(dd);
6273 	}
6274 	dd->lcb_access_count++;
6275 done:
6276 	mutex_unlock(&ppd->hls_lock);
6277 	return ret;
6278 }
6279 
6280 /*
6281  * Release LCB access by decrementing the use count.  If the count is moving
6282  * from 1 to 0, inform 8051 that it has control back.
6283  *
6284  * Returns:
6285  *	0 on success
6286  *	-errno if unable to release access to the 8051
6287  */
6288 int release_lcb_access(struct hfi1_devdata *dd, int sleep_ok)
6289 {
6290 	int ret = 0;
6291 
6292 	/*
6293 	 * Use the host link state lock because the acquire needed it.
6294 	 * Here, we only need to keep { selector change, count decrement }
6295 	 * as a unit.
6296 	 */
6297 	if (sleep_ok) {
6298 		mutex_lock(&dd->pport->hls_lock);
6299 	} else {
6300 		while (!mutex_trylock(&dd->pport->hls_lock))
6301 			udelay(1);
6302 	}
6303 
6304 	if (dd->lcb_access_count == 0) {
6305 		dd_dev_err(dd, "%s: LCB access count is zero.  Skipping.\n",
6306 			   __func__);
6307 		goto done;
6308 	}
6309 
6310 	if (dd->lcb_access_count == 1) {
6311 		set_8051_lcb_access(dd);
6312 		ret = request_8051_lcb_access(dd);
6313 		if (ret) {
6314 			dd_dev_err(dd,
6315 				   "%s: unable to release LCB access, err %d\n",
6316 				   __func__, ret);
6317 			/* restore host access if the grant didn't work */
6318 			set_host_lcb_access(dd);
6319 			goto done;
6320 		}
6321 	}
6322 	dd->lcb_access_count--;
6323 done:
6324 	mutex_unlock(&dd->pport->hls_lock);
6325 	return ret;
6326 }
6327 
6328 /*
6329  * Initialize LCB access variables and state.  Called during driver load,
6330  * after most of the initialization is finished.
6331  *
6332  * The DC default is LCB access on for the host.  The driver defaults to
6333  * leaving access to the 8051.  Assign access now - this constrains the call
6334  * to this routine to be after all LCB set-up is done.  In particular, after
6335  * hf1_init_dd() -> set_up_interrupts() -> clear_all_interrupts()
6336  */
6337 static void init_lcb_access(struct hfi1_devdata *dd)
6338 {
6339 	dd->lcb_access_count = 0;
6340 }
6341 
6342 /*
6343  * Write a response back to a 8051 request.
6344  */
6345 static void hreq_response(struct hfi1_devdata *dd, u8 return_code, u16 rsp_data)
6346 {
6347 	write_csr(dd, DC_DC8051_CFG_EXT_DEV_0,
6348 		  DC_DC8051_CFG_EXT_DEV_0_COMPLETED_SMASK |
6349 		  (u64)return_code <<
6350 		  DC_DC8051_CFG_EXT_DEV_0_RETURN_CODE_SHIFT |
6351 		  (u64)rsp_data << DC_DC8051_CFG_EXT_DEV_0_RSP_DATA_SHIFT);
6352 }
6353 
6354 /*
6355  * Handle host requests from the 8051.
6356  */
6357 static void handle_8051_request(struct hfi1_pportdata *ppd)
6358 {
6359 	struct hfi1_devdata *dd = ppd->dd;
6360 	u64 reg;
6361 	u16 data = 0;
6362 	u8 type;
6363 
6364 	reg = read_csr(dd, DC_DC8051_CFG_EXT_DEV_1);
6365 	if ((reg & DC_DC8051_CFG_EXT_DEV_1_REQ_NEW_SMASK) == 0)
6366 		return;	/* no request */
6367 
6368 	/* zero out COMPLETED so the response is seen */
6369 	write_csr(dd, DC_DC8051_CFG_EXT_DEV_0, 0);
6370 
6371 	/* extract request details */
6372 	type = (reg >> DC_DC8051_CFG_EXT_DEV_1_REQ_TYPE_SHIFT)
6373 			& DC_DC8051_CFG_EXT_DEV_1_REQ_TYPE_MASK;
6374 	data = (reg >> DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SHIFT)
6375 			& DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_MASK;
6376 
6377 	switch (type) {
6378 	case HREQ_LOAD_CONFIG:
6379 	case HREQ_SAVE_CONFIG:
6380 	case HREQ_READ_CONFIG:
6381 	case HREQ_SET_TX_EQ_ABS:
6382 	case HREQ_SET_TX_EQ_REL:
6383 	case HREQ_ENABLE:
6384 		dd_dev_info(dd, "8051 request: request 0x%x not supported\n",
6385 			    type);
6386 		hreq_response(dd, HREQ_NOT_SUPPORTED, 0);
6387 		break;
6388 	case HREQ_LCB_RESET:
6389 		/* Put the LCB, RX FPE and TX FPE into reset */
6390 		write_csr(dd, DCC_CFG_RESET, LCB_RX_FPE_TX_FPE_INTO_RESET);
6391 		/* Make sure the write completed */
6392 		(void)read_csr(dd, DCC_CFG_RESET);
6393 		/* Hold the reset long enough to take effect */
6394 		udelay(1);
6395 		/* Take the LCB, RX FPE and TX FPE out of reset */
6396 		write_csr(dd, DCC_CFG_RESET, LCB_RX_FPE_TX_FPE_OUT_OF_RESET);
6397 		hreq_response(dd, HREQ_SUCCESS, 0);
6398 
6399 		break;
6400 	case HREQ_CONFIG_DONE:
6401 		hreq_response(dd, HREQ_SUCCESS, 0);
6402 		break;
6403 
6404 	case HREQ_INTERFACE_TEST:
6405 		hreq_response(dd, HREQ_SUCCESS, data);
6406 		break;
6407 	default:
6408 		dd_dev_err(dd, "8051 request: unknown request 0x%x\n", type);
6409 		hreq_response(dd, HREQ_NOT_SUPPORTED, 0);
6410 		break;
6411 	}
6412 }
6413 
6414 /*
6415  * Set up allocation unit vaulue.
6416  */
6417 void set_up_vau(struct hfi1_devdata *dd, u8 vau)
6418 {
6419 	u64 reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
6420 
6421 	/* do not modify other values in the register */
6422 	reg &= ~SEND_CM_GLOBAL_CREDIT_AU_SMASK;
6423 	reg |= (u64)vau << SEND_CM_GLOBAL_CREDIT_AU_SHIFT;
6424 	write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg);
6425 }
6426 
6427 /*
6428  * Set up initial VL15 credits of the remote.  Assumes the rest of
6429  * the CM credit registers are zero from a previous global or credit reset.
6430  * Shared limit for VL15 will always be 0.
6431  */
6432 void set_up_vl15(struct hfi1_devdata *dd, u16 vl15buf)
6433 {
6434 	u64 reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
6435 
6436 	/* set initial values for total and shared credit limit */
6437 	reg &= ~(SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SMASK |
6438 		 SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SMASK);
6439 
6440 	/*
6441 	 * Set total limit to be equal to VL15 credits.
6442 	 * Leave shared limit at 0.
6443 	 */
6444 	reg |= (u64)vl15buf << SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT;
6445 	write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg);
6446 
6447 	write_csr(dd, SEND_CM_CREDIT_VL15, (u64)vl15buf
6448 		  << SEND_CM_CREDIT_VL15_DEDICATED_LIMIT_VL_SHIFT);
6449 }
6450 
6451 /*
6452  * Zero all credit details from the previous connection and
6453  * reset the CM manager's internal counters.
6454  */
6455 void reset_link_credits(struct hfi1_devdata *dd)
6456 {
6457 	int i;
6458 
6459 	/* remove all previous VL credit limits */
6460 	for (i = 0; i < TXE_NUM_DATA_VL; i++)
6461 		write_csr(dd, SEND_CM_CREDIT_VL + (8 * i), 0);
6462 	write_csr(dd, SEND_CM_CREDIT_VL15, 0);
6463 	write_csr(dd, SEND_CM_GLOBAL_CREDIT, 0);
6464 	/* reset the CM block */
6465 	pio_send_control(dd, PSC_CM_RESET);
6466 	/* reset cached value */
6467 	dd->vl15buf_cached = 0;
6468 }
6469 
6470 /* convert a vCU to a CU */
6471 static u32 vcu_to_cu(u8 vcu)
6472 {
6473 	return 1 << vcu;
6474 }
6475 
6476 /* convert a CU to a vCU */
6477 static u8 cu_to_vcu(u32 cu)
6478 {
6479 	return ilog2(cu);
6480 }
6481 
6482 /* convert a vAU to an AU */
6483 static u32 vau_to_au(u8 vau)
6484 {
6485 	return 8 * (1 << vau);
6486 }
6487 
6488 static void set_linkup_defaults(struct hfi1_pportdata *ppd)
6489 {
6490 	ppd->sm_trap_qp = 0x0;
6491 	ppd->sa_qp = 0x1;
6492 }
6493 
6494 /*
6495  * Graceful LCB shutdown.  This leaves the LCB FIFOs in reset.
6496  */
6497 static void lcb_shutdown(struct hfi1_devdata *dd, int abort)
6498 {
6499 	u64 reg;
6500 
6501 	/* clear lcb run: LCB_CFG_RUN.EN = 0 */
6502 	write_csr(dd, DC_LCB_CFG_RUN, 0);
6503 	/* set tx fifo reset: LCB_CFG_TX_FIFOS_RESET.VAL = 1 */
6504 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET,
6505 		  1ull << DC_LCB_CFG_TX_FIFOS_RESET_VAL_SHIFT);
6506 	/* set dcc reset csr: DCC_CFG_RESET.{reset_lcb,reset_rx_fpe} = 1 */
6507 	dd->lcb_err_en = read_csr(dd, DC_LCB_ERR_EN);
6508 	reg = read_csr(dd, DCC_CFG_RESET);
6509 	write_csr(dd, DCC_CFG_RESET, reg |
6510 		  DCC_CFG_RESET_RESET_LCB | DCC_CFG_RESET_RESET_RX_FPE);
6511 	(void)read_csr(dd, DCC_CFG_RESET); /* make sure the write completed */
6512 	if (!abort) {
6513 		udelay(1);    /* must hold for the longer of 16cclks or 20ns */
6514 		write_csr(dd, DCC_CFG_RESET, reg);
6515 		write_csr(dd, DC_LCB_ERR_EN, dd->lcb_err_en);
6516 	}
6517 }
6518 
6519 /*
6520  * This routine should be called after the link has been transitioned to
6521  * OFFLINE (OFFLINE state has the side effect of putting the SerDes into
6522  * reset).
6523  *
6524  * The expectation is that the caller of this routine would have taken
6525  * care of properly transitioning the link into the correct state.
6526  * NOTE: the caller needs to acquire the dd->dc8051_lock lock
6527  *       before calling this function.
6528  */
6529 static void _dc_shutdown(struct hfi1_devdata *dd)
6530 {
6531 	lockdep_assert_held(&dd->dc8051_lock);
6532 
6533 	if (dd->dc_shutdown)
6534 		return;
6535 
6536 	dd->dc_shutdown = 1;
6537 	/* Shutdown the LCB */
6538 	lcb_shutdown(dd, 1);
6539 	/*
6540 	 * Going to OFFLINE would have causes the 8051 to put the
6541 	 * SerDes into reset already. Just need to shut down the 8051,
6542 	 * itself.
6543 	 */
6544 	write_csr(dd, DC_DC8051_CFG_RST, 0x1);
6545 }
6546 
6547 static void dc_shutdown(struct hfi1_devdata *dd)
6548 {
6549 	mutex_lock(&dd->dc8051_lock);
6550 	_dc_shutdown(dd);
6551 	mutex_unlock(&dd->dc8051_lock);
6552 }
6553 
6554 /*
6555  * Calling this after the DC has been brought out of reset should not
6556  * do any damage.
6557  * NOTE: the caller needs to acquire the dd->dc8051_lock lock
6558  *       before calling this function.
6559  */
6560 static void _dc_start(struct hfi1_devdata *dd)
6561 {
6562 	lockdep_assert_held(&dd->dc8051_lock);
6563 
6564 	if (!dd->dc_shutdown)
6565 		return;
6566 
6567 	/* Take the 8051 out of reset */
6568 	write_csr(dd, DC_DC8051_CFG_RST, 0ull);
6569 	/* Wait until 8051 is ready */
6570 	if (wait_fm_ready(dd, TIMEOUT_8051_START))
6571 		dd_dev_err(dd, "%s: timeout starting 8051 firmware\n",
6572 			   __func__);
6573 
6574 	/* Take away reset for LCB and RX FPE (set in lcb_shutdown). */
6575 	write_csr(dd, DCC_CFG_RESET, LCB_RX_FPE_TX_FPE_OUT_OF_RESET);
6576 	/* lcb_shutdown() with abort=1 does not restore these */
6577 	write_csr(dd, DC_LCB_ERR_EN, dd->lcb_err_en);
6578 	dd->dc_shutdown = 0;
6579 }
6580 
6581 static void dc_start(struct hfi1_devdata *dd)
6582 {
6583 	mutex_lock(&dd->dc8051_lock);
6584 	_dc_start(dd);
6585 	mutex_unlock(&dd->dc8051_lock);
6586 }
6587 
6588 /*
6589  * These LCB adjustments are for the Aurora SerDes core in the FPGA.
6590  */
6591 static void adjust_lcb_for_fpga_serdes(struct hfi1_devdata *dd)
6592 {
6593 	u64 rx_radr, tx_radr;
6594 	u32 version;
6595 
6596 	if (dd->icode != ICODE_FPGA_EMULATION)
6597 		return;
6598 
6599 	/*
6600 	 * These LCB defaults on emulator _s are good, nothing to do here:
6601 	 *	LCB_CFG_TX_FIFOS_RADR
6602 	 *	LCB_CFG_RX_FIFOS_RADR
6603 	 *	LCB_CFG_LN_DCLK
6604 	 *	LCB_CFG_IGNORE_LOST_RCLK
6605 	 */
6606 	if (is_emulator_s(dd))
6607 		return;
6608 	/* else this is _p */
6609 
6610 	version = emulator_rev(dd);
6611 	if (!is_ax(dd))
6612 		version = 0x2d;	/* all B0 use 0x2d or higher settings */
6613 
6614 	if (version <= 0x12) {
6615 		/* release 0x12 and below */
6616 
6617 		/*
6618 		 * LCB_CFG_RX_FIFOS_RADR.RST_VAL = 0x9
6619 		 * LCB_CFG_RX_FIFOS_RADR.OK_TO_JUMP_VAL = 0x9
6620 		 * LCB_CFG_RX_FIFOS_RADR.DO_NOT_JUMP_VAL = 0xa
6621 		 */
6622 		rx_radr =
6623 		      0xaull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6624 		    | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6625 		    | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6626 		/*
6627 		 * LCB_CFG_TX_FIFOS_RADR.ON_REINIT = 0 (default)
6628 		 * LCB_CFG_TX_FIFOS_RADR.RST_VAL = 6
6629 		 */
6630 		tx_radr = 6ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6631 	} else if (version <= 0x18) {
6632 		/* release 0x13 up to 0x18 */
6633 		/* LCB_CFG_RX_FIFOS_RADR = 0x988 */
6634 		rx_radr =
6635 		      0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6636 		    | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6637 		    | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6638 		tx_radr = 7ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6639 	} else if (version == 0x19) {
6640 		/* release 0x19 */
6641 		/* LCB_CFG_RX_FIFOS_RADR = 0xa99 */
6642 		rx_radr =
6643 		      0xAull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6644 		    | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6645 		    | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6646 		tx_radr = 3ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6647 	} else if (version == 0x1a) {
6648 		/* release 0x1a */
6649 		/* LCB_CFG_RX_FIFOS_RADR = 0x988 */
6650 		rx_radr =
6651 		      0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6652 		    | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6653 		    | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6654 		tx_radr = 7ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6655 		write_csr(dd, DC_LCB_CFG_LN_DCLK, 1ull);
6656 	} else {
6657 		/* release 0x1b and higher */
6658 		/* LCB_CFG_RX_FIFOS_RADR = 0x877 */
6659 		rx_radr =
6660 		      0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6661 		    | 0x7ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6662 		    | 0x7ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6663 		tx_radr = 3ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6664 	}
6665 
6666 	write_csr(dd, DC_LCB_CFG_RX_FIFOS_RADR, rx_radr);
6667 	/* LCB_CFG_IGNORE_LOST_RCLK.EN = 1 */
6668 	write_csr(dd, DC_LCB_CFG_IGNORE_LOST_RCLK,
6669 		  DC_LCB_CFG_IGNORE_LOST_RCLK_EN_SMASK);
6670 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RADR, tx_radr);
6671 }
6672 
6673 /*
6674  * Handle a SMA idle message
6675  *
6676  * This is a work-queue function outside of the interrupt.
6677  */
6678 void handle_sma_message(struct work_struct *work)
6679 {
6680 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
6681 							sma_message_work);
6682 	struct hfi1_devdata *dd = ppd->dd;
6683 	u64 msg;
6684 	int ret;
6685 
6686 	/*
6687 	 * msg is bytes 1-4 of the 40-bit idle message - the command code
6688 	 * is stripped off
6689 	 */
6690 	ret = read_idle_sma(dd, &msg);
6691 	if (ret)
6692 		return;
6693 	dd_dev_info(dd, "%s: SMA message 0x%llx\n", __func__, msg);
6694 	/*
6695 	 * React to the SMA message.  Byte[1] (0 for us) is the command.
6696 	 */
6697 	switch (msg & 0xff) {
6698 	case SMA_IDLE_ARM:
6699 		/*
6700 		 * See OPAv1 table 9-14 - HFI and External Switch Ports Key
6701 		 * State Transitions
6702 		 *
6703 		 * Only expected in INIT or ARMED, discard otherwise.
6704 		 */
6705 		if (ppd->host_link_state & (HLS_UP_INIT | HLS_UP_ARMED))
6706 			ppd->neighbor_normal = 1;
6707 		break;
6708 	case SMA_IDLE_ACTIVE:
6709 		/*
6710 		 * See OPAv1 table 9-14 - HFI and External Switch Ports Key
6711 		 * State Transitions
6712 		 *
6713 		 * Can activate the node.  Discard otherwise.
6714 		 */
6715 		if (ppd->host_link_state == HLS_UP_ARMED &&
6716 		    ppd->is_active_optimize_enabled) {
6717 			ppd->neighbor_normal = 1;
6718 			ret = set_link_state(ppd, HLS_UP_ACTIVE);
6719 			if (ret)
6720 				dd_dev_err(
6721 					dd,
6722 					"%s: received Active SMA idle message, couldn't set link to Active\n",
6723 					__func__);
6724 		}
6725 		break;
6726 	default:
6727 		dd_dev_err(dd,
6728 			   "%s: received unexpected SMA idle message 0x%llx\n",
6729 			   __func__, msg);
6730 		break;
6731 	}
6732 }
6733 
6734 static void adjust_rcvctrl(struct hfi1_devdata *dd, u64 add, u64 clear)
6735 {
6736 	u64 rcvctrl;
6737 	unsigned long flags;
6738 
6739 	spin_lock_irqsave(&dd->rcvctrl_lock, flags);
6740 	rcvctrl = read_csr(dd, RCV_CTRL);
6741 	rcvctrl |= add;
6742 	rcvctrl &= ~clear;
6743 	write_csr(dd, RCV_CTRL, rcvctrl);
6744 	spin_unlock_irqrestore(&dd->rcvctrl_lock, flags);
6745 }
6746 
6747 static inline void add_rcvctrl(struct hfi1_devdata *dd, u64 add)
6748 {
6749 	adjust_rcvctrl(dd, add, 0);
6750 }
6751 
6752 static inline void clear_rcvctrl(struct hfi1_devdata *dd, u64 clear)
6753 {
6754 	adjust_rcvctrl(dd, 0, clear);
6755 }
6756 
6757 /*
6758  * Called from all interrupt handlers to start handling an SPC freeze.
6759  */
6760 void start_freeze_handling(struct hfi1_pportdata *ppd, int flags)
6761 {
6762 	struct hfi1_devdata *dd = ppd->dd;
6763 	struct send_context *sc;
6764 	int i;
6765 	int sc_flags;
6766 
6767 	if (flags & FREEZE_SELF)
6768 		write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_FREEZE_SMASK);
6769 
6770 	/* enter frozen mode */
6771 	dd->flags |= HFI1_FROZEN;
6772 
6773 	/* notify all SDMA engines that they are going into a freeze */
6774 	sdma_freeze_notify(dd, !!(flags & FREEZE_LINK_DOWN));
6775 
6776 	sc_flags = SCF_FROZEN | SCF_HALTED | (flags & FREEZE_LINK_DOWN ?
6777 					      SCF_LINK_DOWN : 0);
6778 	/* do halt pre-handling on all enabled send contexts */
6779 	for (i = 0; i < dd->num_send_contexts; i++) {
6780 		sc = dd->send_contexts[i].sc;
6781 		if (sc && (sc->flags & SCF_ENABLED))
6782 			sc_stop(sc, sc_flags);
6783 	}
6784 
6785 	/* Send context are frozen. Notify user space */
6786 	hfi1_set_uevent_bits(ppd, _HFI1_EVENT_FROZEN_BIT);
6787 
6788 	if (flags & FREEZE_ABORT) {
6789 		dd_dev_err(dd,
6790 			   "Aborted freeze recovery. Please REBOOT system\n");
6791 		return;
6792 	}
6793 	/* queue non-interrupt handler */
6794 	queue_work(ppd->hfi1_wq, &ppd->freeze_work);
6795 }
6796 
6797 /*
6798  * Wait until all 4 sub-blocks indicate that they have frozen or unfrozen,
6799  * depending on the "freeze" parameter.
6800  *
6801  * No need to return an error if it times out, our only option
6802  * is to proceed anyway.
6803  */
6804 static void wait_for_freeze_status(struct hfi1_devdata *dd, int freeze)
6805 {
6806 	unsigned long timeout;
6807 	u64 reg;
6808 
6809 	timeout = jiffies + msecs_to_jiffies(FREEZE_STATUS_TIMEOUT);
6810 	while (1) {
6811 		reg = read_csr(dd, CCE_STATUS);
6812 		if (freeze) {
6813 			/* waiting until all indicators are set */
6814 			if ((reg & ALL_FROZE) == ALL_FROZE)
6815 				return;	/* all done */
6816 		} else {
6817 			/* waiting until all indicators are clear */
6818 			if ((reg & ALL_FROZE) == 0)
6819 				return; /* all done */
6820 		}
6821 
6822 		if (time_after(jiffies, timeout)) {
6823 			dd_dev_err(dd,
6824 				   "Time out waiting for SPC %sfreeze, bits 0x%llx, expecting 0x%llx, continuing",
6825 				   freeze ? "" : "un", reg & ALL_FROZE,
6826 				   freeze ? ALL_FROZE : 0ull);
6827 			return;
6828 		}
6829 		usleep_range(80, 120);
6830 	}
6831 }
6832 
6833 /*
6834  * Do all freeze handling for the RXE block.
6835  */
6836 static void rxe_freeze(struct hfi1_devdata *dd)
6837 {
6838 	int i;
6839 	struct hfi1_ctxtdata *rcd;
6840 
6841 	/* disable port */
6842 	clear_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
6843 
6844 	/* disable all receive contexts */
6845 	for (i = 0; i < dd->num_rcv_contexts; i++) {
6846 		rcd = hfi1_rcd_get_by_index(dd, i);
6847 		hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_DIS, rcd);
6848 		hfi1_rcd_put(rcd);
6849 	}
6850 }
6851 
6852 /*
6853  * Unfreeze handling for the RXE block - kernel contexts only.
6854  * This will also enable the port.  User contexts will do unfreeze
6855  * handling on a per-context basis as they call into the driver.
6856  *
6857  */
6858 static void rxe_kernel_unfreeze(struct hfi1_devdata *dd)
6859 {
6860 	u32 rcvmask;
6861 	u16 i;
6862 	struct hfi1_ctxtdata *rcd;
6863 
6864 	/* enable all kernel contexts */
6865 	for (i = 0; i < dd->num_rcv_contexts; i++) {
6866 		rcd = hfi1_rcd_get_by_index(dd, i);
6867 
6868 		/* Ensure all non-user contexts(including vnic) are enabled */
6869 		if (!rcd ||
6870 		    (i >= dd->first_dyn_alloc_ctxt && !rcd->is_vnic)) {
6871 			hfi1_rcd_put(rcd);
6872 			continue;
6873 		}
6874 		rcvmask = HFI1_RCVCTRL_CTXT_ENB;
6875 		/* HFI1_RCVCTRL_TAILUPD_[ENB|DIS] needs to be set explicitly */
6876 		rcvmask |= hfi1_rcvhdrtail_kvaddr(rcd) ?
6877 			HFI1_RCVCTRL_TAILUPD_ENB : HFI1_RCVCTRL_TAILUPD_DIS;
6878 		hfi1_rcvctrl(dd, rcvmask, rcd);
6879 		hfi1_rcd_put(rcd);
6880 	}
6881 
6882 	/* enable port */
6883 	add_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
6884 }
6885 
6886 /*
6887  * Non-interrupt SPC freeze handling.
6888  *
6889  * This is a work-queue function outside of the triggering interrupt.
6890  */
6891 void handle_freeze(struct work_struct *work)
6892 {
6893 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
6894 								freeze_work);
6895 	struct hfi1_devdata *dd = ppd->dd;
6896 
6897 	/* wait for freeze indicators on all affected blocks */
6898 	wait_for_freeze_status(dd, 1);
6899 
6900 	/* SPC is now frozen */
6901 
6902 	/* do send PIO freeze steps */
6903 	pio_freeze(dd);
6904 
6905 	/* do send DMA freeze steps */
6906 	sdma_freeze(dd);
6907 
6908 	/* do send egress freeze steps - nothing to do */
6909 
6910 	/* do receive freeze steps */
6911 	rxe_freeze(dd);
6912 
6913 	/*
6914 	 * Unfreeze the hardware - clear the freeze, wait for each
6915 	 * block's frozen bit to clear, then clear the frozen flag.
6916 	 */
6917 	write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_UNFREEZE_SMASK);
6918 	wait_for_freeze_status(dd, 0);
6919 
6920 	if (is_ax(dd)) {
6921 		write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_FREEZE_SMASK);
6922 		wait_for_freeze_status(dd, 1);
6923 		write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_UNFREEZE_SMASK);
6924 		wait_for_freeze_status(dd, 0);
6925 	}
6926 
6927 	/* do send PIO unfreeze steps for kernel contexts */
6928 	pio_kernel_unfreeze(dd);
6929 
6930 	/* do send DMA unfreeze steps */
6931 	sdma_unfreeze(dd);
6932 
6933 	/* do send egress unfreeze steps - nothing to do */
6934 
6935 	/* do receive unfreeze steps for kernel contexts */
6936 	rxe_kernel_unfreeze(dd);
6937 
6938 	/*
6939 	 * The unfreeze procedure touches global device registers when
6940 	 * it disables and re-enables RXE. Mark the device unfrozen
6941 	 * after all that is done so other parts of the driver waiting
6942 	 * for the device to unfreeze don't do things out of order.
6943 	 *
6944 	 * The above implies that the meaning of HFI1_FROZEN flag is
6945 	 * "Device has gone into freeze mode and freeze mode handling
6946 	 * is still in progress."
6947 	 *
6948 	 * The flag will be removed when freeze mode processing has
6949 	 * completed.
6950 	 */
6951 	dd->flags &= ~HFI1_FROZEN;
6952 	wake_up(&dd->event_queue);
6953 
6954 	/* no longer frozen */
6955 }
6956 
6957 /**
6958  * update_xmit_counters - update PortXmitWait/PortVlXmitWait
6959  * counters.
6960  * @ppd: info of physical Hfi port
6961  * @link_width: new link width after link up or downgrade
6962  *
6963  * Update the PortXmitWait and PortVlXmitWait counters after
6964  * a link up or downgrade event to reflect a link width change.
6965  */
6966 static void update_xmit_counters(struct hfi1_pportdata *ppd, u16 link_width)
6967 {
6968 	int i;
6969 	u16 tx_width;
6970 	u16 link_speed;
6971 
6972 	tx_width = tx_link_width(link_width);
6973 	link_speed = get_link_speed(ppd->link_speed_active);
6974 
6975 	/*
6976 	 * There are C_VL_COUNT number of PortVLXmitWait counters.
6977 	 * Adding 1 to C_VL_COUNT to include the PortXmitWait counter.
6978 	 */
6979 	for (i = 0; i < C_VL_COUNT + 1; i++)
6980 		get_xmit_wait_counters(ppd, tx_width, link_speed, i);
6981 }
6982 
6983 /*
6984  * Handle a link up interrupt from the 8051.
6985  *
6986  * This is a work-queue function outside of the interrupt.
6987  */
6988 void handle_link_up(struct work_struct *work)
6989 {
6990 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
6991 						  link_up_work);
6992 	struct hfi1_devdata *dd = ppd->dd;
6993 
6994 	set_link_state(ppd, HLS_UP_INIT);
6995 
6996 	/* cache the read of DC_LCB_STS_ROUND_TRIP_LTP_CNT */
6997 	read_ltp_rtt(dd);
6998 	/*
6999 	 * OPA specifies that certain counters are cleared on a transition
7000 	 * to link up, so do that.
7001 	 */
7002 	clear_linkup_counters(dd);
7003 	/*
7004 	 * And (re)set link up default values.
7005 	 */
7006 	set_linkup_defaults(ppd);
7007 
7008 	/*
7009 	 * Set VL15 credits. Use cached value from verify cap interrupt.
7010 	 * In case of quick linkup or simulator, vl15 value will be set by
7011 	 * handle_linkup_change. VerifyCap interrupt handler will not be
7012 	 * called in those scenarios.
7013 	 */
7014 	if (!(quick_linkup || dd->icode == ICODE_FUNCTIONAL_SIMULATOR))
7015 		set_up_vl15(dd, dd->vl15buf_cached);
7016 
7017 	/* enforce link speed enabled */
7018 	if ((ppd->link_speed_active & ppd->link_speed_enabled) == 0) {
7019 		/* oops - current speed is not enabled, bounce */
7020 		dd_dev_err(dd,
7021 			   "Link speed active 0x%x is outside enabled 0x%x, downing link\n",
7022 			   ppd->link_speed_active, ppd->link_speed_enabled);
7023 		set_link_down_reason(ppd, OPA_LINKDOWN_REASON_SPEED_POLICY, 0,
7024 				     OPA_LINKDOWN_REASON_SPEED_POLICY);
7025 		set_link_state(ppd, HLS_DN_OFFLINE);
7026 		start_link(ppd);
7027 	}
7028 }
7029 
7030 /*
7031  * Several pieces of LNI information were cached for SMA in ppd.
7032  * Reset these on link down
7033  */
7034 static void reset_neighbor_info(struct hfi1_pportdata *ppd)
7035 {
7036 	ppd->neighbor_guid = 0;
7037 	ppd->neighbor_port_number = 0;
7038 	ppd->neighbor_type = 0;
7039 	ppd->neighbor_fm_security = 0;
7040 }
7041 
7042 static const char * const link_down_reason_strs[] = {
7043 	[OPA_LINKDOWN_REASON_NONE] = "None",
7044 	[OPA_LINKDOWN_REASON_RCV_ERROR_0] = "Receive error 0",
7045 	[OPA_LINKDOWN_REASON_BAD_PKT_LEN] = "Bad packet length",
7046 	[OPA_LINKDOWN_REASON_PKT_TOO_LONG] = "Packet too long",
7047 	[OPA_LINKDOWN_REASON_PKT_TOO_SHORT] = "Packet too short",
7048 	[OPA_LINKDOWN_REASON_BAD_SLID] = "Bad SLID",
7049 	[OPA_LINKDOWN_REASON_BAD_DLID] = "Bad DLID",
7050 	[OPA_LINKDOWN_REASON_BAD_L2] = "Bad L2",
7051 	[OPA_LINKDOWN_REASON_BAD_SC] = "Bad SC",
7052 	[OPA_LINKDOWN_REASON_RCV_ERROR_8] = "Receive error 8",
7053 	[OPA_LINKDOWN_REASON_BAD_MID_TAIL] = "Bad mid tail",
7054 	[OPA_LINKDOWN_REASON_RCV_ERROR_10] = "Receive error 10",
7055 	[OPA_LINKDOWN_REASON_PREEMPT_ERROR] = "Preempt error",
7056 	[OPA_LINKDOWN_REASON_PREEMPT_VL15] = "Preempt vl15",
7057 	[OPA_LINKDOWN_REASON_BAD_VL_MARKER] = "Bad VL marker",
7058 	[OPA_LINKDOWN_REASON_RCV_ERROR_14] = "Receive error 14",
7059 	[OPA_LINKDOWN_REASON_RCV_ERROR_15] = "Receive error 15",
7060 	[OPA_LINKDOWN_REASON_BAD_HEAD_DIST] = "Bad head distance",
7061 	[OPA_LINKDOWN_REASON_BAD_TAIL_DIST] = "Bad tail distance",
7062 	[OPA_LINKDOWN_REASON_BAD_CTRL_DIST] = "Bad control distance",
7063 	[OPA_LINKDOWN_REASON_BAD_CREDIT_ACK] = "Bad credit ack",
7064 	[OPA_LINKDOWN_REASON_UNSUPPORTED_VL_MARKER] = "Unsupported VL marker",
7065 	[OPA_LINKDOWN_REASON_BAD_PREEMPT] = "Bad preempt",
7066 	[OPA_LINKDOWN_REASON_BAD_CONTROL_FLIT] = "Bad control flit",
7067 	[OPA_LINKDOWN_REASON_EXCEED_MULTICAST_LIMIT] = "Exceed multicast limit",
7068 	[OPA_LINKDOWN_REASON_RCV_ERROR_24] = "Receive error 24",
7069 	[OPA_LINKDOWN_REASON_RCV_ERROR_25] = "Receive error 25",
7070 	[OPA_LINKDOWN_REASON_RCV_ERROR_26] = "Receive error 26",
7071 	[OPA_LINKDOWN_REASON_RCV_ERROR_27] = "Receive error 27",
7072 	[OPA_LINKDOWN_REASON_RCV_ERROR_28] = "Receive error 28",
7073 	[OPA_LINKDOWN_REASON_RCV_ERROR_29] = "Receive error 29",
7074 	[OPA_LINKDOWN_REASON_RCV_ERROR_30] = "Receive error 30",
7075 	[OPA_LINKDOWN_REASON_EXCESSIVE_BUFFER_OVERRUN] =
7076 					"Excessive buffer overrun",
7077 	[OPA_LINKDOWN_REASON_UNKNOWN] = "Unknown",
7078 	[OPA_LINKDOWN_REASON_REBOOT] = "Reboot",
7079 	[OPA_LINKDOWN_REASON_NEIGHBOR_UNKNOWN] = "Neighbor unknown",
7080 	[OPA_LINKDOWN_REASON_FM_BOUNCE] = "FM bounce",
7081 	[OPA_LINKDOWN_REASON_SPEED_POLICY] = "Speed policy",
7082 	[OPA_LINKDOWN_REASON_WIDTH_POLICY] = "Width policy",
7083 	[OPA_LINKDOWN_REASON_DISCONNECTED] = "Disconnected",
7084 	[OPA_LINKDOWN_REASON_LOCAL_MEDIA_NOT_INSTALLED] =
7085 					"Local media not installed",
7086 	[OPA_LINKDOWN_REASON_NOT_INSTALLED] = "Not installed",
7087 	[OPA_LINKDOWN_REASON_CHASSIS_CONFIG] = "Chassis config",
7088 	[OPA_LINKDOWN_REASON_END_TO_END_NOT_INSTALLED] =
7089 					"End to end not installed",
7090 	[OPA_LINKDOWN_REASON_POWER_POLICY] = "Power policy",
7091 	[OPA_LINKDOWN_REASON_LINKSPEED_POLICY] = "Link speed policy",
7092 	[OPA_LINKDOWN_REASON_LINKWIDTH_POLICY] = "Link width policy",
7093 	[OPA_LINKDOWN_REASON_SWITCH_MGMT] = "Switch management",
7094 	[OPA_LINKDOWN_REASON_SMA_DISABLED] = "SMA disabled",
7095 	[OPA_LINKDOWN_REASON_TRANSIENT] = "Transient"
7096 };
7097 
7098 /* return the neighbor link down reason string */
7099 static const char *link_down_reason_str(u8 reason)
7100 {
7101 	const char *str = NULL;
7102 
7103 	if (reason < ARRAY_SIZE(link_down_reason_strs))
7104 		str = link_down_reason_strs[reason];
7105 	if (!str)
7106 		str = "(invalid)";
7107 
7108 	return str;
7109 }
7110 
7111 /*
7112  * Handle a link down interrupt from the 8051.
7113  *
7114  * This is a work-queue function outside of the interrupt.
7115  */
7116 void handle_link_down(struct work_struct *work)
7117 {
7118 	u8 lcl_reason, neigh_reason = 0;
7119 	u8 link_down_reason;
7120 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
7121 						  link_down_work);
7122 	int was_up;
7123 	static const char ldr_str[] = "Link down reason: ";
7124 
7125 	if ((ppd->host_link_state &
7126 	     (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) &&
7127 	     ppd->port_type == PORT_TYPE_FIXED)
7128 		ppd->offline_disabled_reason =
7129 			HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NOT_INSTALLED);
7130 
7131 	/* Go offline first, then deal with reading/writing through 8051 */
7132 	was_up = !!(ppd->host_link_state & HLS_UP);
7133 	set_link_state(ppd, HLS_DN_OFFLINE);
7134 	xchg(&ppd->is_link_down_queued, 0);
7135 
7136 	if (was_up) {
7137 		lcl_reason = 0;
7138 		/* link down reason is only valid if the link was up */
7139 		read_link_down_reason(ppd->dd, &link_down_reason);
7140 		switch (link_down_reason) {
7141 		case LDR_LINK_TRANSFER_ACTIVE_LOW:
7142 			/* the link went down, no idle message reason */
7143 			dd_dev_info(ppd->dd, "%sUnexpected link down\n",
7144 				    ldr_str);
7145 			break;
7146 		case LDR_RECEIVED_LINKDOWN_IDLE_MSG:
7147 			/*
7148 			 * The neighbor reason is only valid if an idle message
7149 			 * was received for it.
7150 			 */
7151 			read_planned_down_reason_code(ppd->dd, &neigh_reason);
7152 			dd_dev_info(ppd->dd,
7153 				    "%sNeighbor link down message %d, %s\n",
7154 				    ldr_str, neigh_reason,
7155 				    link_down_reason_str(neigh_reason));
7156 			break;
7157 		case LDR_RECEIVED_HOST_OFFLINE_REQ:
7158 			dd_dev_info(ppd->dd,
7159 				    "%sHost requested link to go offline\n",
7160 				    ldr_str);
7161 			break;
7162 		default:
7163 			dd_dev_info(ppd->dd, "%sUnknown reason 0x%x\n",
7164 				    ldr_str, link_down_reason);
7165 			break;
7166 		}
7167 
7168 		/*
7169 		 * If no reason, assume peer-initiated but missed
7170 		 * LinkGoingDown idle flits.
7171 		 */
7172 		if (neigh_reason == 0)
7173 			lcl_reason = OPA_LINKDOWN_REASON_NEIGHBOR_UNKNOWN;
7174 	} else {
7175 		/* went down while polling or going up */
7176 		lcl_reason = OPA_LINKDOWN_REASON_TRANSIENT;
7177 	}
7178 
7179 	set_link_down_reason(ppd, lcl_reason, neigh_reason, 0);
7180 
7181 	/* inform the SMA when the link transitions from up to down */
7182 	if (was_up && ppd->local_link_down_reason.sma == 0 &&
7183 	    ppd->neigh_link_down_reason.sma == 0) {
7184 		ppd->local_link_down_reason.sma =
7185 					ppd->local_link_down_reason.latest;
7186 		ppd->neigh_link_down_reason.sma =
7187 					ppd->neigh_link_down_reason.latest;
7188 	}
7189 
7190 	reset_neighbor_info(ppd);
7191 
7192 	/* disable the port */
7193 	clear_rcvctrl(ppd->dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
7194 
7195 	/*
7196 	 * If there is no cable attached, turn the DC off. Otherwise,
7197 	 * start the link bring up.
7198 	 */
7199 	if (ppd->port_type == PORT_TYPE_QSFP && !qsfp_mod_present(ppd))
7200 		dc_shutdown(ppd->dd);
7201 	else
7202 		start_link(ppd);
7203 }
7204 
7205 void handle_link_bounce(struct work_struct *work)
7206 {
7207 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
7208 							link_bounce_work);
7209 
7210 	/*
7211 	 * Only do something if the link is currently up.
7212 	 */
7213 	if (ppd->host_link_state & HLS_UP) {
7214 		set_link_state(ppd, HLS_DN_OFFLINE);
7215 		start_link(ppd);
7216 	} else {
7217 		dd_dev_info(ppd->dd, "%s: link not up (%s), nothing to do\n",
7218 			    __func__, link_state_name(ppd->host_link_state));
7219 	}
7220 }
7221 
7222 /*
7223  * Mask conversion: Capability exchange to Port LTP.  The capability
7224  * exchange has an implicit 16b CRC that is mandatory.
7225  */
7226 static int cap_to_port_ltp(int cap)
7227 {
7228 	int port_ltp = PORT_LTP_CRC_MODE_16; /* this mode is mandatory */
7229 
7230 	if (cap & CAP_CRC_14B)
7231 		port_ltp |= PORT_LTP_CRC_MODE_14;
7232 	if (cap & CAP_CRC_48B)
7233 		port_ltp |= PORT_LTP_CRC_MODE_48;
7234 	if (cap & CAP_CRC_12B_16B_PER_LANE)
7235 		port_ltp |= PORT_LTP_CRC_MODE_PER_LANE;
7236 
7237 	return port_ltp;
7238 }
7239 
7240 /*
7241  * Convert an OPA Port LTP mask to capability mask
7242  */
7243 int port_ltp_to_cap(int port_ltp)
7244 {
7245 	int cap_mask = 0;
7246 
7247 	if (port_ltp & PORT_LTP_CRC_MODE_14)
7248 		cap_mask |= CAP_CRC_14B;
7249 	if (port_ltp & PORT_LTP_CRC_MODE_48)
7250 		cap_mask |= CAP_CRC_48B;
7251 	if (port_ltp & PORT_LTP_CRC_MODE_PER_LANE)
7252 		cap_mask |= CAP_CRC_12B_16B_PER_LANE;
7253 
7254 	return cap_mask;
7255 }
7256 
7257 /*
7258  * Convert a single DC LCB CRC mode to an OPA Port LTP mask.
7259  */
7260 static int lcb_to_port_ltp(int lcb_crc)
7261 {
7262 	int port_ltp = 0;
7263 
7264 	if (lcb_crc == LCB_CRC_12B_16B_PER_LANE)
7265 		port_ltp = PORT_LTP_CRC_MODE_PER_LANE;
7266 	else if (lcb_crc == LCB_CRC_48B)
7267 		port_ltp = PORT_LTP_CRC_MODE_48;
7268 	else if (lcb_crc == LCB_CRC_14B)
7269 		port_ltp = PORT_LTP_CRC_MODE_14;
7270 	else
7271 		port_ltp = PORT_LTP_CRC_MODE_16;
7272 
7273 	return port_ltp;
7274 }
7275 
7276 static void clear_full_mgmt_pkey(struct hfi1_pportdata *ppd)
7277 {
7278 	if (ppd->pkeys[2] != 0) {
7279 		ppd->pkeys[2] = 0;
7280 		(void)hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_PKEYS, 0);
7281 		hfi1_event_pkey_change(ppd->dd, ppd->port);
7282 	}
7283 }
7284 
7285 /*
7286  * Convert the given link width to the OPA link width bitmask.
7287  */
7288 static u16 link_width_to_bits(struct hfi1_devdata *dd, u16 width)
7289 {
7290 	switch (width) {
7291 	case 0:
7292 		/*
7293 		 * Simulator and quick linkup do not set the width.
7294 		 * Just set it to 4x without complaint.
7295 		 */
7296 		if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR || quick_linkup)
7297 			return OPA_LINK_WIDTH_4X;
7298 		return 0; /* no lanes up */
7299 	case 1: return OPA_LINK_WIDTH_1X;
7300 	case 2: return OPA_LINK_WIDTH_2X;
7301 	case 3: return OPA_LINK_WIDTH_3X;
7302 	default:
7303 		dd_dev_info(dd, "%s: invalid width %d, using 4\n",
7304 			    __func__, width);
7305 		/* fall through */
7306 	case 4: return OPA_LINK_WIDTH_4X;
7307 	}
7308 }
7309 
7310 /*
7311  * Do a population count on the bottom nibble.
7312  */
7313 static const u8 bit_counts[16] = {
7314 	0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4
7315 };
7316 
7317 static inline u8 nibble_to_count(u8 nibble)
7318 {
7319 	return bit_counts[nibble & 0xf];
7320 }
7321 
7322 /*
7323  * Read the active lane information from the 8051 registers and return
7324  * their widths.
7325  *
7326  * Active lane information is found in these 8051 registers:
7327  *	enable_lane_tx
7328  *	enable_lane_rx
7329  */
7330 static void get_link_widths(struct hfi1_devdata *dd, u16 *tx_width,
7331 			    u16 *rx_width)
7332 {
7333 	u16 tx, rx;
7334 	u8 enable_lane_rx;
7335 	u8 enable_lane_tx;
7336 	u8 tx_polarity_inversion;
7337 	u8 rx_polarity_inversion;
7338 	u8 max_rate;
7339 
7340 	/* read the active lanes */
7341 	read_tx_settings(dd, &enable_lane_tx, &tx_polarity_inversion,
7342 			 &rx_polarity_inversion, &max_rate);
7343 	read_local_lni(dd, &enable_lane_rx);
7344 
7345 	/* convert to counts */
7346 	tx = nibble_to_count(enable_lane_tx);
7347 	rx = nibble_to_count(enable_lane_rx);
7348 
7349 	/*
7350 	 * Set link_speed_active here, overriding what was set in
7351 	 * handle_verify_cap().  The ASIC 8051 firmware does not correctly
7352 	 * set the max_rate field in handle_verify_cap until v0.19.
7353 	 */
7354 	if ((dd->icode == ICODE_RTL_SILICON) &&
7355 	    (dd->dc8051_ver < dc8051_ver(0, 19, 0))) {
7356 		/* max_rate: 0 = 12.5G, 1 = 25G */
7357 		switch (max_rate) {
7358 		case 0:
7359 			dd->pport[0].link_speed_active = OPA_LINK_SPEED_12_5G;
7360 			break;
7361 		default:
7362 			dd_dev_err(dd,
7363 				   "%s: unexpected max rate %d, using 25Gb\n",
7364 				   __func__, (int)max_rate);
7365 			/* fall through */
7366 		case 1:
7367 			dd->pport[0].link_speed_active = OPA_LINK_SPEED_25G;
7368 			break;
7369 		}
7370 	}
7371 
7372 	dd_dev_info(dd,
7373 		    "Fabric active lanes (width): tx 0x%x (%d), rx 0x%x (%d)\n",
7374 		    enable_lane_tx, tx, enable_lane_rx, rx);
7375 	*tx_width = link_width_to_bits(dd, tx);
7376 	*rx_width = link_width_to_bits(dd, rx);
7377 }
7378 
7379 /*
7380  * Read verify_cap_local_fm_link_width[1] to obtain the link widths.
7381  * Valid after the end of VerifyCap and during LinkUp.  Does not change
7382  * after link up.  I.e. look elsewhere for downgrade information.
7383  *
7384  * Bits are:
7385  *	+ bits [7:4] contain the number of active transmitters
7386  *	+ bits [3:0] contain the number of active receivers
7387  * These are numbers 1 through 4 and can be different values if the
7388  * link is asymmetric.
7389  *
7390  * verify_cap_local_fm_link_width[0] retains its original value.
7391  */
7392 static void get_linkup_widths(struct hfi1_devdata *dd, u16 *tx_width,
7393 			      u16 *rx_width)
7394 {
7395 	u16 widths, tx, rx;
7396 	u8 misc_bits, local_flags;
7397 	u16 active_tx, active_rx;
7398 
7399 	read_vc_local_link_mode(dd, &misc_bits, &local_flags, &widths);
7400 	tx = widths >> 12;
7401 	rx = (widths >> 8) & 0xf;
7402 
7403 	*tx_width = link_width_to_bits(dd, tx);
7404 	*rx_width = link_width_to_bits(dd, rx);
7405 
7406 	/* print the active widths */
7407 	get_link_widths(dd, &active_tx, &active_rx);
7408 }
7409 
7410 /*
7411  * Set ppd->link_width_active and ppd->link_width_downgrade_active using
7412  * hardware information when the link first comes up.
7413  *
7414  * The link width is not available until after VerifyCap.AllFramesReceived
7415  * (the trigger for handle_verify_cap), so this is outside that routine
7416  * and should be called when the 8051 signals linkup.
7417  */
7418 void get_linkup_link_widths(struct hfi1_pportdata *ppd)
7419 {
7420 	u16 tx_width, rx_width;
7421 
7422 	/* get end-of-LNI link widths */
7423 	get_linkup_widths(ppd->dd, &tx_width, &rx_width);
7424 
7425 	/* use tx_width as the link is supposed to be symmetric on link up */
7426 	ppd->link_width_active = tx_width;
7427 	/* link width downgrade active (LWD.A) starts out matching LW.A */
7428 	ppd->link_width_downgrade_tx_active = ppd->link_width_active;
7429 	ppd->link_width_downgrade_rx_active = ppd->link_width_active;
7430 	/* per OPA spec, on link up LWD.E resets to LWD.S */
7431 	ppd->link_width_downgrade_enabled = ppd->link_width_downgrade_supported;
7432 	/* cache the active egress rate (units {10^6 bits/sec]) */
7433 	ppd->current_egress_rate = active_egress_rate(ppd);
7434 }
7435 
7436 /*
7437  * Handle a verify capabilities interrupt from the 8051.
7438  *
7439  * This is a work-queue function outside of the interrupt.
7440  */
7441 void handle_verify_cap(struct work_struct *work)
7442 {
7443 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
7444 								link_vc_work);
7445 	struct hfi1_devdata *dd = ppd->dd;
7446 	u64 reg;
7447 	u8 power_management;
7448 	u8 continuous;
7449 	u8 vcu;
7450 	u8 vau;
7451 	u8 z;
7452 	u16 vl15buf;
7453 	u16 link_widths;
7454 	u16 crc_mask;
7455 	u16 crc_val;
7456 	u16 device_id;
7457 	u16 active_tx, active_rx;
7458 	u8 partner_supported_crc;
7459 	u8 remote_tx_rate;
7460 	u8 device_rev;
7461 
7462 	set_link_state(ppd, HLS_VERIFY_CAP);
7463 
7464 	lcb_shutdown(dd, 0);
7465 	adjust_lcb_for_fpga_serdes(dd);
7466 
7467 	read_vc_remote_phy(dd, &power_management, &continuous);
7468 	read_vc_remote_fabric(dd, &vau, &z, &vcu, &vl15buf,
7469 			      &partner_supported_crc);
7470 	read_vc_remote_link_width(dd, &remote_tx_rate, &link_widths);
7471 	read_remote_device_id(dd, &device_id, &device_rev);
7472 
7473 	/* print the active widths */
7474 	get_link_widths(dd, &active_tx, &active_rx);
7475 	dd_dev_info(dd,
7476 		    "Peer PHY: power management 0x%x, continuous updates 0x%x\n",
7477 		    (int)power_management, (int)continuous);
7478 	dd_dev_info(dd,
7479 		    "Peer Fabric: vAU %d, Z %d, vCU %d, vl15 credits 0x%x, CRC sizes 0x%x\n",
7480 		    (int)vau, (int)z, (int)vcu, (int)vl15buf,
7481 		    (int)partner_supported_crc);
7482 	dd_dev_info(dd, "Peer Link Width: tx rate 0x%x, widths 0x%x\n",
7483 		    (u32)remote_tx_rate, (u32)link_widths);
7484 	dd_dev_info(dd, "Peer Device ID: 0x%04x, Revision 0x%02x\n",
7485 		    (u32)device_id, (u32)device_rev);
7486 	/*
7487 	 * The peer vAU value just read is the peer receiver value.  HFI does
7488 	 * not support a transmit vAU of 0 (AU == 8).  We advertised that
7489 	 * with Z=1 in the fabric capabilities sent to the peer.  The peer
7490 	 * will see our Z=1, and, if it advertised a vAU of 0, will move its
7491 	 * receive to vAU of 1 (AU == 16).  Do the same here.  We do not care
7492 	 * about the peer Z value - our sent vAU is 3 (hardwired) and is not
7493 	 * subject to the Z value exception.
7494 	 */
7495 	if (vau == 0)
7496 		vau = 1;
7497 	set_up_vau(dd, vau);
7498 
7499 	/*
7500 	 * Set VL15 credits to 0 in global credit register. Cache remote VL15
7501 	 * credits value and wait for link-up interrupt ot set it.
7502 	 */
7503 	set_up_vl15(dd, 0);
7504 	dd->vl15buf_cached = vl15buf;
7505 
7506 	/* set up the LCB CRC mode */
7507 	crc_mask = ppd->port_crc_mode_enabled & partner_supported_crc;
7508 
7509 	/* order is important: use the lowest bit in common */
7510 	if (crc_mask & CAP_CRC_14B)
7511 		crc_val = LCB_CRC_14B;
7512 	else if (crc_mask & CAP_CRC_48B)
7513 		crc_val = LCB_CRC_48B;
7514 	else if (crc_mask & CAP_CRC_12B_16B_PER_LANE)
7515 		crc_val = LCB_CRC_12B_16B_PER_LANE;
7516 	else
7517 		crc_val = LCB_CRC_16B;
7518 
7519 	dd_dev_info(dd, "Final LCB CRC mode: %d\n", (int)crc_val);
7520 	write_csr(dd, DC_LCB_CFG_CRC_MODE,
7521 		  (u64)crc_val << DC_LCB_CFG_CRC_MODE_TX_VAL_SHIFT);
7522 
7523 	/* set (14b only) or clear sideband credit */
7524 	reg = read_csr(dd, SEND_CM_CTRL);
7525 	if (crc_val == LCB_CRC_14B && crc_14b_sideband) {
7526 		write_csr(dd, SEND_CM_CTRL,
7527 			  reg | SEND_CM_CTRL_FORCE_CREDIT_MODE_SMASK);
7528 	} else {
7529 		write_csr(dd, SEND_CM_CTRL,
7530 			  reg & ~SEND_CM_CTRL_FORCE_CREDIT_MODE_SMASK);
7531 	}
7532 
7533 	ppd->link_speed_active = 0;	/* invalid value */
7534 	if (dd->dc8051_ver < dc8051_ver(0, 20, 0)) {
7535 		/* remote_tx_rate: 0 = 12.5G, 1 = 25G */
7536 		switch (remote_tx_rate) {
7537 		case 0:
7538 			ppd->link_speed_active = OPA_LINK_SPEED_12_5G;
7539 			break;
7540 		case 1:
7541 			ppd->link_speed_active = OPA_LINK_SPEED_25G;
7542 			break;
7543 		}
7544 	} else {
7545 		/* actual rate is highest bit of the ANDed rates */
7546 		u8 rate = remote_tx_rate & ppd->local_tx_rate;
7547 
7548 		if (rate & 2)
7549 			ppd->link_speed_active = OPA_LINK_SPEED_25G;
7550 		else if (rate & 1)
7551 			ppd->link_speed_active = OPA_LINK_SPEED_12_5G;
7552 	}
7553 	if (ppd->link_speed_active == 0) {
7554 		dd_dev_err(dd, "%s: unexpected remote tx rate %d, using 25Gb\n",
7555 			   __func__, (int)remote_tx_rate);
7556 		ppd->link_speed_active = OPA_LINK_SPEED_25G;
7557 	}
7558 
7559 	/*
7560 	 * Cache the values of the supported, enabled, and active
7561 	 * LTP CRC modes to return in 'portinfo' queries. But the bit
7562 	 * flags that are returned in the portinfo query differ from
7563 	 * what's in the link_crc_mask, crc_sizes, and crc_val
7564 	 * variables. Convert these here.
7565 	 */
7566 	ppd->port_ltp_crc_mode = cap_to_port_ltp(link_crc_mask) << 8;
7567 		/* supported crc modes */
7568 	ppd->port_ltp_crc_mode |=
7569 		cap_to_port_ltp(ppd->port_crc_mode_enabled) << 4;
7570 		/* enabled crc modes */
7571 	ppd->port_ltp_crc_mode |= lcb_to_port_ltp(crc_val);
7572 		/* active crc mode */
7573 
7574 	/* set up the remote credit return table */
7575 	assign_remote_cm_au_table(dd, vcu);
7576 
7577 	/*
7578 	 * The LCB is reset on entry to handle_verify_cap(), so this must
7579 	 * be applied on every link up.
7580 	 *
7581 	 * Adjust LCB error kill enable to kill the link if
7582 	 * these RBUF errors are seen:
7583 	 *	REPLAY_BUF_MBE_SMASK
7584 	 *	FLIT_INPUT_BUF_MBE_SMASK
7585 	 */
7586 	if (is_ax(dd)) {			/* fixed in B0 */
7587 		reg = read_csr(dd, DC_LCB_CFG_LINK_KILL_EN);
7588 		reg |= DC_LCB_CFG_LINK_KILL_EN_REPLAY_BUF_MBE_SMASK
7589 			| DC_LCB_CFG_LINK_KILL_EN_FLIT_INPUT_BUF_MBE_SMASK;
7590 		write_csr(dd, DC_LCB_CFG_LINK_KILL_EN, reg);
7591 	}
7592 
7593 	/* pull LCB fifos out of reset - all fifo clocks must be stable */
7594 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0);
7595 
7596 	/* give 8051 access to the LCB CSRs */
7597 	write_csr(dd, DC_LCB_ERR_EN, 0); /* mask LCB errors */
7598 	set_8051_lcb_access(dd);
7599 
7600 	/* tell the 8051 to go to LinkUp */
7601 	set_link_state(ppd, HLS_GOING_UP);
7602 }
7603 
7604 /**
7605  * apply_link_downgrade_policy - Apply the link width downgrade enabled
7606  * policy against the current active link widths.
7607  * @ppd: info of physical Hfi port
7608  * @refresh_widths: True indicates link downgrade event
7609  * @return: True indicates a successful link downgrade. False indicates
7610  *	    link downgrade event failed and the link will bounce back to
7611  *	    default link width.
7612  *
7613  * Called when the enabled policy changes or the active link widths
7614  * change.
7615  * Refresh_widths indicates that a link downgrade occurred. The
7616  * link_downgraded variable is set by refresh_widths and
7617  * determines the success/failure of the policy application.
7618  */
7619 bool apply_link_downgrade_policy(struct hfi1_pportdata *ppd,
7620 				 bool refresh_widths)
7621 {
7622 	int do_bounce = 0;
7623 	int tries;
7624 	u16 lwde;
7625 	u16 tx, rx;
7626 	bool link_downgraded = refresh_widths;
7627 
7628 	/* use the hls lock to avoid a race with actual link up */
7629 	tries = 0;
7630 retry:
7631 	mutex_lock(&ppd->hls_lock);
7632 	/* only apply if the link is up */
7633 	if (ppd->host_link_state & HLS_DOWN) {
7634 		/* still going up..wait and retry */
7635 		if (ppd->host_link_state & HLS_GOING_UP) {
7636 			if (++tries < 1000) {
7637 				mutex_unlock(&ppd->hls_lock);
7638 				usleep_range(100, 120); /* arbitrary */
7639 				goto retry;
7640 			}
7641 			dd_dev_err(ppd->dd,
7642 				   "%s: giving up waiting for link state change\n",
7643 				   __func__);
7644 		}
7645 		goto done;
7646 	}
7647 
7648 	lwde = ppd->link_width_downgrade_enabled;
7649 
7650 	if (refresh_widths) {
7651 		get_link_widths(ppd->dd, &tx, &rx);
7652 		ppd->link_width_downgrade_tx_active = tx;
7653 		ppd->link_width_downgrade_rx_active = rx;
7654 	}
7655 
7656 	if (ppd->link_width_downgrade_tx_active == 0 ||
7657 	    ppd->link_width_downgrade_rx_active == 0) {
7658 		/* the 8051 reported a dead link as a downgrade */
7659 		dd_dev_err(ppd->dd, "Link downgrade is really a link down, ignoring\n");
7660 		link_downgraded = false;
7661 	} else if (lwde == 0) {
7662 		/* downgrade is disabled */
7663 
7664 		/* bounce if not at starting active width */
7665 		if ((ppd->link_width_active !=
7666 		     ppd->link_width_downgrade_tx_active) ||
7667 		    (ppd->link_width_active !=
7668 		     ppd->link_width_downgrade_rx_active)) {
7669 			dd_dev_err(ppd->dd,
7670 				   "Link downgrade is disabled and link has downgraded, downing link\n");
7671 			dd_dev_err(ppd->dd,
7672 				   "  original 0x%x, tx active 0x%x, rx active 0x%x\n",
7673 				   ppd->link_width_active,
7674 				   ppd->link_width_downgrade_tx_active,
7675 				   ppd->link_width_downgrade_rx_active);
7676 			do_bounce = 1;
7677 			link_downgraded = false;
7678 		}
7679 	} else if ((lwde & ppd->link_width_downgrade_tx_active) == 0 ||
7680 		   (lwde & ppd->link_width_downgrade_rx_active) == 0) {
7681 		/* Tx or Rx is outside the enabled policy */
7682 		dd_dev_err(ppd->dd,
7683 			   "Link is outside of downgrade allowed, downing link\n");
7684 		dd_dev_err(ppd->dd,
7685 			   "  enabled 0x%x, tx active 0x%x, rx active 0x%x\n",
7686 			   lwde, ppd->link_width_downgrade_tx_active,
7687 			   ppd->link_width_downgrade_rx_active);
7688 		do_bounce = 1;
7689 		link_downgraded = false;
7690 	}
7691 
7692 done:
7693 	mutex_unlock(&ppd->hls_lock);
7694 
7695 	if (do_bounce) {
7696 		set_link_down_reason(ppd, OPA_LINKDOWN_REASON_WIDTH_POLICY, 0,
7697 				     OPA_LINKDOWN_REASON_WIDTH_POLICY);
7698 		set_link_state(ppd, HLS_DN_OFFLINE);
7699 		start_link(ppd);
7700 	}
7701 
7702 	return link_downgraded;
7703 }
7704 
7705 /*
7706  * Handle a link downgrade interrupt from the 8051.
7707  *
7708  * This is a work-queue function outside of the interrupt.
7709  */
7710 void handle_link_downgrade(struct work_struct *work)
7711 {
7712 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
7713 							link_downgrade_work);
7714 
7715 	dd_dev_info(ppd->dd, "8051: Link width downgrade\n");
7716 	if (apply_link_downgrade_policy(ppd, true))
7717 		update_xmit_counters(ppd, ppd->link_width_downgrade_tx_active);
7718 }
7719 
7720 static char *dcc_err_string(char *buf, int buf_len, u64 flags)
7721 {
7722 	return flag_string(buf, buf_len, flags, dcc_err_flags,
7723 		ARRAY_SIZE(dcc_err_flags));
7724 }
7725 
7726 static char *lcb_err_string(char *buf, int buf_len, u64 flags)
7727 {
7728 	return flag_string(buf, buf_len, flags, lcb_err_flags,
7729 		ARRAY_SIZE(lcb_err_flags));
7730 }
7731 
7732 static char *dc8051_err_string(char *buf, int buf_len, u64 flags)
7733 {
7734 	return flag_string(buf, buf_len, flags, dc8051_err_flags,
7735 		ARRAY_SIZE(dc8051_err_flags));
7736 }
7737 
7738 static char *dc8051_info_err_string(char *buf, int buf_len, u64 flags)
7739 {
7740 	return flag_string(buf, buf_len, flags, dc8051_info_err_flags,
7741 		ARRAY_SIZE(dc8051_info_err_flags));
7742 }
7743 
7744 static char *dc8051_info_host_msg_string(char *buf, int buf_len, u64 flags)
7745 {
7746 	return flag_string(buf, buf_len, flags, dc8051_info_host_msg_flags,
7747 		ARRAY_SIZE(dc8051_info_host_msg_flags));
7748 }
7749 
7750 static void handle_8051_interrupt(struct hfi1_devdata *dd, u32 unused, u64 reg)
7751 {
7752 	struct hfi1_pportdata *ppd = dd->pport;
7753 	u64 info, err, host_msg;
7754 	int queue_link_down = 0;
7755 	char buf[96];
7756 
7757 	/* look at the flags */
7758 	if (reg & DC_DC8051_ERR_FLG_SET_BY_8051_SMASK) {
7759 		/* 8051 information set by firmware */
7760 		/* read DC8051_DBG_ERR_INFO_SET_BY_8051 for details */
7761 		info = read_csr(dd, DC_DC8051_DBG_ERR_INFO_SET_BY_8051);
7762 		err = (info >> DC_DC8051_DBG_ERR_INFO_SET_BY_8051_ERROR_SHIFT)
7763 			& DC_DC8051_DBG_ERR_INFO_SET_BY_8051_ERROR_MASK;
7764 		host_msg = (info >>
7765 			DC_DC8051_DBG_ERR_INFO_SET_BY_8051_HOST_MSG_SHIFT)
7766 			& DC_DC8051_DBG_ERR_INFO_SET_BY_8051_HOST_MSG_MASK;
7767 
7768 		/*
7769 		 * Handle error flags.
7770 		 */
7771 		if (err & FAILED_LNI) {
7772 			/*
7773 			 * LNI error indications are cleared by the 8051
7774 			 * only when starting polling.  Only pay attention
7775 			 * to them when in the states that occur during
7776 			 * LNI.
7777 			 */
7778 			if (ppd->host_link_state
7779 			    & (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) {
7780 				queue_link_down = 1;
7781 				dd_dev_info(dd, "Link error: %s\n",
7782 					    dc8051_info_err_string(buf,
7783 								   sizeof(buf),
7784 								   err &
7785 								   FAILED_LNI));
7786 			}
7787 			err &= ~(u64)FAILED_LNI;
7788 		}
7789 		/* unknown frames can happen durning LNI, just count */
7790 		if (err & UNKNOWN_FRAME) {
7791 			ppd->unknown_frame_count++;
7792 			err &= ~(u64)UNKNOWN_FRAME;
7793 		}
7794 		if (err) {
7795 			/* report remaining errors, but do not do anything */
7796 			dd_dev_err(dd, "8051 info error: %s\n",
7797 				   dc8051_info_err_string(buf, sizeof(buf),
7798 							  err));
7799 		}
7800 
7801 		/*
7802 		 * Handle host message flags.
7803 		 */
7804 		if (host_msg & HOST_REQ_DONE) {
7805 			/*
7806 			 * Presently, the driver does a busy wait for
7807 			 * host requests to complete.  This is only an
7808 			 * informational message.
7809 			 * NOTE: The 8051 clears the host message
7810 			 * information *on the next 8051 command*.
7811 			 * Therefore, when linkup is achieved,
7812 			 * this flag will still be set.
7813 			 */
7814 			host_msg &= ~(u64)HOST_REQ_DONE;
7815 		}
7816 		if (host_msg & BC_SMA_MSG) {
7817 			queue_work(ppd->link_wq, &ppd->sma_message_work);
7818 			host_msg &= ~(u64)BC_SMA_MSG;
7819 		}
7820 		if (host_msg & LINKUP_ACHIEVED) {
7821 			dd_dev_info(dd, "8051: Link up\n");
7822 			queue_work(ppd->link_wq, &ppd->link_up_work);
7823 			host_msg &= ~(u64)LINKUP_ACHIEVED;
7824 		}
7825 		if (host_msg & EXT_DEVICE_CFG_REQ) {
7826 			handle_8051_request(ppd);
7827 			host_msg &= ~(u64)EXT_DEVICE_CFG_REQ;
7828 		}
7829 		if (host_msg & VERIFY_CAP_FRAME) {
7830 			queue_work(ppd->link_wq, &ppd->link_vc_work);
7831 			host_msg &= ~(u64)VERIFY_CAP_FRAME;
7832 		}
7833 		if (host_msg & LINK_GOING_DOWN) {
7834 			const char *extra = "";
7835 			/* no downgrade action needed if going down */
7836 			if (host_msg & LINK_WIDTH_DOWNGRADED) {
7837 				host_msg &= ~(u64)LINK_WIDTH_DOWNGRADED;
7838 				extra = " (ignoring downgrade)";
7839 			}
7840 			dd_dev_info(dd, "8051: Link down%s\n", extra);
7841 			queue_link_down = 1;
7842 			host_msg &= ~(u64)LINK_GOING_DOWN;
7843 		}
7844 		if (host_msg & LINK_WIDTH_DOWNGRADED) {
7845 			queue_work(ppd->link_wq, &ppd->link_downgrade_work);
7846 			host_msg &= ~(u64)LINK_WIDTH_DOWNGRADED;
7847 		}
7848 		if (host_msg) {
7849 			/* report remaining messages, but do not do anything */
7850 			dd_dev_info(dd, "8051 info host message: %s\n",
7851 				    dc8051_info_host_msg_string(buf,
7852 								sizeof(buf),
7853 								host_msg));
7854 		}
7855 
7856 		reg &= ~DC_DC8051_ERR_FLG_SET_BY_8051_SMASK;
7857 	}
7858 	if (reg & DC_DC8051_ERR_FLG_LOST_8051_HEART_BEAT_SMASK) {
7859 		/*
7860 		 * Lost the 8051 heartbeat.  If this happens, we
7861 		 * receive constant interrupts about it.  Disable
7862 		 * the interrupt after the first.
7863 		 */
7864 		dd_dev_err(dd, "Lost 8051 heartbeat\n");
7865 		write_csr(dd, DC_DC8051_ERR_EN,
7866 			  read_csr(dd, DC_DC8051_ERR_EN) &
7867 			  ~DC_DC8051_ERR_EN_LOST_8051_HEART_BEAT_SMASK);
7868 
7869 		reg &= ~DC_DC8051_ERR_FLG_LOST_8051_HEART_BEAT_SMASK;
7870 	}
7871 	if (reg) {
7872 		/* report the error, but do not do anything */
7873 		dd_dev_err(dd, "8051 error: %s\n",
7874 			   dc8051_err_string(buf, sizeof(buf), reg));
7875 	}
7876 
7877 	if (queue_link_down) {
7878 		/*
7879 		 * if the link is already going down or disabled, do not
7880 		 * queue another. If there's a link down entry already
7881 		 * queued, don't queue another one.
7882 		 */
7883 		if ((ppd->host_link_state &
7884 		    (HLS_GOING_OFFLINE | HLS_LINK_COOLDOWN)) ||
7885 		    ppd->link_enabled == 0) {
7886 			dd_dev_info(dd, "%s: not queuing link down. host_link_state %x, link_enabled %x\n",
7887 				    __func__, ppd->host_link_state,
7888 				    ppd->link_enabled);
7889 		} else {
7890 			if (xchg(&ppd->is_link_down_queued, 1) == 1)
7891 				dd_dev_info(dd,
7892 					    "%s: link down request already queued\n",
7893 					    __func__);
7894 			else
7895 				queue_work(ppd->link_wq, &ppd->link_down_work);
7896 		}
7897 	}
7898 }
7899 
7900 static const char * const fm_config_txt[] = {
7901 [0] =
7902 	"BadHeadDist: Distance violation between two head flits",
7903 [1] =
7904 	"BadTailDist: Distance violation between two tail flits",
7905 [2] =
7906 	"BadCtrlDist: Distance violation between two credit control flits",
7907 [3] =
7908 	"BadCrdAck: Credits return for unsupported VL",
7909 [4] =
7910 	"UnsupportedVLMarker: Received VL Marker",
7911 [5] =
7912 	"BadPreempt: Exceeded the preemption nesting level",
7913 [6] =
7914 	"BadControlFlit: Received unsupported control flit",
7915 /* no 7 */
7916 [8] =
7917 	"UnsupportedVLMarker: Received VL Marker for unconfigured or disabled VL",
7918 };
7919 
7920 static const char * const port_rcv_txt[] = {
7921 [1] =
7922 	"BadPktLen: Illegal PktLen",
7923 [2] =
7924 	"PktLenTooLong: Packet longer than PktLen",
7925 [3] =
7926 	"PktLenTooShort: Packet shorter than PktLen",
7927 [4] =
7928 	"BadSLID: Illegal SLID (0, using multicast as SLID, does not include security validation of SLID)",
7929 [5] =
7930 	"BadDLID: Illegal DLID (0, doesn't match HFI)",
7931 [6] =
7932 	"BadL2: Illegal L2 opcode",
7933 [7] =
7934 	"BadSC: Unsupported SC",
7935 [9] =
7936 	"BadRC: Illegal RC",
7937 [11] =
7938 	"PreemptError: Preempting with same VL",
7939 [12] =
7940 	"PreemptVL15: Preempting a VL15 packet",
7941 };
7942 
7943 #define OPA_LDR_FMCONFIG_OFFSET 16
7944 #define OPA_LDR_PORTRCV_OFFSET 0
7945 static void handle_dcc_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
7946 {
7947 	u64 info, hdr0, hdr1;
7948 	const char *extra;
7949 	char buf[96];
7950 	struct hfi1_pportdata *ppd = dd->pport;
7951 	u8 lcl_reason = 0;
7952 	int do_bounce = 0;
7953 
7954 	if (reg & DCC_ERR_FLG_UNCORRECTABLE_ERR_SMASK) {
7955 		if (!(dd->err_info_uncorrectable & OPA_EI_STATUS_SMASK)) {
7956 			info = read_csr(dd, DCC_ERR_INFO_UNCORRECTABLE);
7957 			dd->err_info_uncorrectable = info & OPA_EI_CODE_SMASK;
7958 			/* set status bit */
7959 			dd->err_info_uncorrectable |= OPA_EI_STATUS_SMASK;
7960 		}
7961 		reg &= ~DCC_ERR_FLG_UNCORRECTABLE_ERR_SMASK;
7962 	}
7963 
7964 	if (reg & DCC_ERR_FLG_LINK_ERR_SMASK) {
7965 		struct hfi1_pportdata *ppd = dd->pport;
7966 		/* this counter saturates at (2^32) - 1 */
7967 		if (ppd->link_downed < (u32)UINT_MAX)
7968 			ppd->link_downed++;
7969 		reg &= ~DCC_ERR_FLG_LINK_ERR_SMASK;
7970 	}
7971 
7972 	if (reg & DCC_ERR_FLG_FMCONFIG_ERR_SMASK) {
7973 		u8 reason_valid = 1;
7974 
7975 		info = read_csr(dd, DCC_ERR_INFO_FMCONFIG);
7976 		if (!(dd->err_info_fmconfig & OPA_EI_STATUS_SMASK)) {
7977 			dd->err_info_fmconfig = info & OPA_EI_CODE_SMASK;
7978 			/* set status bit */
7979 			dd->err_info_fmconfig |= OPA_EI_STATUS_SMASK;
7980 		}
7981 		switch (info) {
7982 		case 0:
7983 		case 1:
7984 		case 2:
7985 		case 3:
7986 		case 4:
7987 		case 5:
7988 		case 6:
7989 			extra = fm_config_txt[info];
7990 			break;
7991 		case 8:
7992 			extra = fm_config_txt[info];
7993 			if (ppd->port_error_action &
7994 			    OPA_PI_MASK_FM_CFG_UNSUPPORTED_VL_MARKER) {
7995 				do_bounce = 1;
7996 				/*
7997 				 * lcl_reason cannot be derived from info
7998 				 * for this error
7999 				 */
8000 				lcl_reason =
8001 				  OPA_LINKDOWN_REASON_UNSUPPORTED_VL_MARKER;
8002 			}
8003 			break;
8004 		default:
8005 			reason_valid = 0;
8006 			snprintf(buf, sizeof(buf), "reserved%lld", info);
8007 			extra = buf;
8008 			break;
8009 		}
8010 
8011 		if (reason_valid && !do_bounce) {
8012 			do_bounce = ppd->port_error_action &
8013 					(1 << (OPA_LDR_FMCONFIG_OFFSET + info));
8014 			lcl_reason = info + OPA_LINKDOWN_REASON_BAD_HEAD_DIST;
8015 		}
8016 
8017 		/* just report this */
8018 		dd_dev_info_ratelimited(dd, "DCC Error: fmconfig error: %s\n",
8019 					extra);
8020 		reg &= ~DCC_ERR_FLG_FMCONFIG_ERR_SMASK;
8021 	}
8022 
8023 	if (reg & DCC_ERR_FLG_RCVPORT_ERR_SMASK) {
8024 		u8 reason_valid = 1;
8025 
8026 		info = read_csr(dd, DCC_ERR_INFO_PORTRCV);
8027 		hdr0 = read_csr(dd, DCC_ERR_INFO_PORTRCV_HDR0);
8028 		hdr1 = read_csr(dd, DCC_ERR_INFO_PORTRCV_HDR1);
8029 		if (!(dd->err_info_rcvport.status_and_code &
8030 		      OPA_EI_STATUS_SMASK)) {
8031 			dd->err_info_rcvport.status_and_code =
8032 				info & OPA_EI_CODE_SMASK;
8033 			/* set status bit */
8034 			dd->err_info_rcvport.status_and_code |=
8035 				OPA_EI_STATUS_SMASK;
8036 			/*
8037 			 * save first 2 flits in the packet that caused
8038 			 * the error
8039 			 */
8040 			dd->err_info_rcvport.packet_flit1 = hdr0;
8041 			dd->err_info_rcvport.packet_flit2 = hdr1;
8042 		}
8043 		switch (info) {
8044 		case 1:
8045 		case 2:
8046 		case 3:
8047 		case 4:
8048 		case 5:
8049 		case 6:
8050 		case 7:
8051 		case 9:
8052 		case 11:
8053 		case 12:
8054 			extra = port_rcv_txt[info];
8055 			break;
8056 		default:
8057 			reason_valid = 0;
8058 			snprintf(buf, sizeof(buf), "reserved%lld", info);
8059 			extra = buf;
8060 			break;
8061 		}
8062 
8063 		if (reason_valid && !do_bounce) {
8064 			do_bounce = ppd->port_error_action &
8065 					(1 << (OPA_LDR_PORTRCV_OFFSET + info));
8066 			lcl_reason = info + OPA_LINKDOWN_REASON_RCV_ERROR_0;
8067 		}
8068 
8069 		/* just report this */
8070 		dd_dev_info_ratelimited(dd, "DCC Error: PortRcv error: %s\n"
8071 					"               hdr0 0x%llx, hdr1 0x%llx\n",
8072 					extra, hdr0, hdr1);
8073 
8074 		reg &= ~DCC_ERR_FLG_RCVPORT_ERR_SMASK;
8075 	}
8076 
8077 	if (reg & DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_UC_SMASK) {
8078 		/* informative only */
8079 		dd_dev_info_ratelimited(dd, "8051 access to LCB blocked\n");
8080 		reg &= ~DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_UC_SMASK;
8081 	}
8082 	if (reg & DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_HOST_SMASK) {
8083 		/* informative only */
8084 		dd_dev_info_ratelimited(dd, "host access to LCB blocked\n");
8085 		reg &= ~DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_HOST_SMASK;
8086 	}
8087 
8088 	if (unlikely(hfi1_dbg_fault_suppress_err(&dd->verbs_dev)))
8089 		reg &= ~DCC_ERR_FLG_LATE_EBP_ERR_SMASK;
8090 
8091 	/* report any remaining errors */
8092 	if (reg)
8093 		dd_dev_info_ratelimited(dd, "DCC Error: %s\n",
8094 					dcc_err_string(buf, sizeof(buf), reg));
8095 
8096 	if (lcl_reason == 0)
8097 		lcl_reason = OPA_LINKDOWN_REASON_UNKNOWN;
8098 
8099 	if (do_bounce) {
8100 		dd_dev_info_ratelimited(dd, "%s: PortErrorAction bounce\n",
8101 					__func__);
8102 		set_link_down_reason(ppd, lcl_reason, 0, lcl_reason);
8103 		queue_work(ppd->link_wq, &ppd->link_bounce_work);
8104 	}
8105 }
8106 
8107 static void handle_lcb_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
8108 {
8109 	char buf[96];
8110 
8111 	dd_dev_info(dd, "LCB Error: %s\n",
8112 		    lcb_err_string(buf, sizeof(buf), reg));
8113 }
8114 
8115 /*
8116  * CCE block DC interrupt.  Source is < 8.
8117  */
8118 static void is_dc_int(struct hfi1_devdata *dd, unsigned int source)
8119 {
8120 	const struct err_reg_info *eri = &dc_errs[source];
8121 
8122 	if (eri->handler) {
8123 		interrupt_clear_down(dd, 0, eri);
8124 	} else if (source == 3 /* dc_lbm_int */) {
8125 		/*
8126 		 * This indicates that a parity error has occurred on the
8127 		 * address/control lines presented to the LBM.  The error
8128 		 * is a single pulse, there is no associated error flag,
8129 		 * and it is non-maskable.  This is because if a parity
8130 		 * error occurs on the request the request is dropped.
8131 		 * This should never occur, but it is nice to know if it
8132 		 * ever does.
8133 		 */
8134 		dd_dev_err(dd, "Parity error in DC LBM block\n");
8135 	} else {
8136 		dd_dev_err(dd, "Invalid DC interrupt %u\n", source);
8137 	}
8138 }
8139 
8140 /*
8141  * TX block send credit interrupt.  Source is < 160.
8142  */
8143 static void is_send_credit_int(struct hfi1_devdata *dd, unsigned int source)
8144 {
8145 	sc_group_release_update(dd, source);
8146 }
8147 
8148 /*
8149  * TX block SDMA interrupt.  Source is < 48.
8150  *
8151  * SDMA interrupts are grouped by type:
8152  *
8153  *	 0 -  N-1 = SDma
8154  *	 N - 2N-1 = SDmaProgress
8155  *	2N - 3N-1 = SDmaIdle
8156  */
8157 static void is_sdma_eng_int(struct hfi1_devdata *dd, unsigned int source)
8158 {
8159 	/* what interrupt */
8160 	unsigned int what  = source / TXE_NUM_SDMA_ENGINES;
8161 	/* which engine */
8162 	unsigned int which = source % TXE_NUM_SDMA_ENGINES;
8163 
8164 #ifdef CONFIG_SDMA_VERBOSITY
8165 	dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", which,
8166 		   slashstrip(__FILE__), __LINE__, __func__);
8167 	sdma_dumpstate(&dd->per_sdma[which]);
8168 #endif
8169 
8170 	if (likely(what < 3 && which < dd->num_sdma)) {
8171 		sdma_engine_interrupt(&dd->per_sdma[which], 1ull << source);
8172 	} else {
8173 		/* should not happen */
8174 		dd_dev_err(dd, "Invalid SDMA interrupt 0x%x\n", source);
8175 	}
8176 }
8177 
8178 /**
8179  * is_rcv_avail_int() - User receive context available IRQ handler
8180  * @dd: valid dd
8181  * @source: logical IRQ source (offset from IS_RCVAVAIL_START)
8182  *
8183  * RX block receive available interrupt.  Source is < 160.
8184  *
8185  * This is the general interrupt handler for user (PSM) receive contexts,
8186  * and can only be used for non-threaded IRQs.
8187  */
8188 static void is_rcv_avail_int(struct hfi1_devdata *dd, unsigned int source)
8189 {
8190 	struct hfi1_ctxtdata *rcd;
8191 	char *err_detail;
8192 
8193 	if (likely(source < dd->num_rcv_contexts)) {
8194 		rcd = hfi1_rcd_get_by_index(dd, source);
8195 		if (rcd) {
8196 			handle_user_interrupt(rcd);
8197 			hfi1_rcd_put(rcd);
8198 			return;	/* OK */
8199 		}
8200 		/* received an interrupt, but no rcd */
8201 		err_detail = "dataless";
8202 	} else {
8203 		/* received an interrupt, but are not using that context */
8204 		err_detail = "out of range";
8205 	}
8206 	dd_dev_err(dd, "unexpected %s receive available context interrupt %u\n",
8207 		   err_detail, source);
8208 }
8209 
8210 /**
8211  * is_rcv_urgent_int() - User receive context urgent IRQ handler
8212  * @dd: valid dd
8213  * @source: logical IRQ source (offset from IS_RCVURGENT_START)
8214  *
8215  * RX block receive urgent interrupt.  Source is < 160.
8216  *
8217  * NOTE: kernel receive contexts specifically do NOT enable this IRQ.
8218  */
8219 static void is_rcv_urgent_int(struct hfi1_devdata *dd, unsigned int source)
8220 {
8221 	struct hfi1_ctxtdata *rcd;
8222 	char *err_detail;
8223 
8224 	if (likely(source < dd->num_rcv_contexts)) {
8225 		rcd = hfi1_rcd_get_by_index(dd, source);
8226 		if (rcd) {
8227 			handle_user_interrupt(rcd);
8228 			hfi1_rcd_put(rcd);
8229 			return;	/* OK */
8230 		}
8231 		/* received an interrupt, but no rcd */
8232 		err_detail = "dataless";
8233 	} else {
8234 		/* received an interrupt, but are not using that context */
8235 		err_detail = "out of range";
8236 	}
8237 	dd_dev_err(dd, "unexpected %s receive urgent context interrupt %u\n",
8238 		   err_detail, source);
8239 }
8240 
8241 /*
8242  * Reserved range interrupt.  Should not be called in normal operation.
8243  */
8244 static void is_reserved_int(struct hfi1_devdata *dd, unsigned int source)
8245 {
8246 	char name[64];
8247 
8248 	dd_dev_err(dd, "unexpected %s interrupt\n",
8249 		   is_reserved_name(name, sizeof(name), source));
8250 }
8251 
8252 static const struct is_table is_table[] = {
8253 /*
8254  * start		 end
8255  *				name func		interrupt func
8256  */
8257 { IS_GENERAL_ERR_START,  IS_GENERAL_ERR_END,
8258 				is_misc_err_name,	is_misc_err_int },
8259 { IS_SDMAENG_ERR_START,  IS_SDMAENG_ERR_END,
8260 				is_sdma_eng_err_name,	is_sdma_eng_err_int },
8261 { IS_SENDCTXT_ERR_START, IS_SENDCTXT_ERR_END,
8262 				is_sendctxt_err_name,	is_sendctxt_err_int },
8263 { IS_SDMA_START,	     IS_SDMA_IDLE_END,
8264 				is_sdma_eng_name,	is_sdma_eng_int },
8265 { IS_VARIOUS_START,	     IS_VARIOUS_END,
8266 				is_various_name,	is_various_int },
8267 { IS_DC_START,	     IS_DC_END,
8268 				is_dc_name,		is_dc_int },
8269 { IS_RCVAVAIL_START,     IS_RCVAVAIL_END,
8270 				is_rcv_avail_name,	is_rcv_avail_int },
8271 { IS_RCVURGENT_START,    IS_RCVURGENT_END,
8272 				is_rcv_urgent_name,	is_rcv_urgent_int },
8273 { IS_SENDCREDIT_START,   IS_SENDCREDIT_END,
8274 				is_send_credit_name,	is_send_credit_int},
8275 { IS_RESERVED_START,     IS_RESERVED_END,
8276 				is_reserved_name,	is_reserved_int},
8277 };
8278 
8279 /*
8280  * Interrupt source interrupt - called when the given source has an interrupt.
8281  * Source is a bit index into an array of 64-bit integers.
8282  */
8283 static void is_interrupt(struct hfi1_devdata *dd, unsigned int source)
8284 {
8285 	const struct is_table *entry;
8286 
8287 	/* avoids a double compare by walking the table in-order */
8288 	for (entry = &is_table[0]; entry->is_name; entry++) {
8289 		if (source <= entry->end) {
8290 			trace_hfi1_interrupt(dd, entry, source);
8291 			entry->is_int(dd, source - entry->start);
8292 			return;
8293 		}
8294 	}
8295 	/* fell off the end */
8296 	dd_dev_err(dd, "invalid interrupt source %u\n", source);
8297 }
8298 
8299 /**
8300  * gerneral_interrupt() -  General interrupt handler
8301  * @irq: MSIx IRQ vector
8302  * @data: hfi1 devdata
8303  *
8304  * This is able to correctly handle all non-threaded interrupts.  Receive
8305  * context DATA IRQs are threaded and are not supported by this handler.
8306  *
8307  */
8308 irqreturn_t general_interrupt(int irq, void *data)
8309 {
8310 	struct hfi1_devdata *dd = data;
8311 	u64 regs[CCE_NUM_INT_CSRS];
8312 	u32 bit;
8313 	int i;
8314 	irqreturn_t handled = IRQ_NONE;
8315 
8316 	this_cpu_inc(*dd->int_counter);
8317 
8318 	/* phase 1: scan and clear all handled interrupts */
8319 	for (i = 0; i < CCE_NUM_INT_CSRS; i++) {
8320 		if (dd->gi_mask[i] == 0) {
8321 			regs[i] = 0;	/* used later */
8322 			continue;
8323 		}
8324 		regs[i] = read_csr(dd, CCE_INT_STATUS + (8 * i)) &
8325 				dd->gi_mask[i];
8326 		/* only clear if anything is set */
8327 		if (regs[i])
8328 			write_csr(dd, CCE_INT_CLEAR + (8 * i), regs[i]);
8329 	}
8330 
8331 	/* phase 2: call the appropriate handler */
8332 	for_each_set_bit(bit, (unsigned long *)&regs[0],
8333 			 CCE_NUM_INT_CSRS * 64) {
8334 		is_interrupt(dd, bit);
8335 		handled = IRQ_HANDLED;
8336 	}
8337 
8338 	return handled;
8339 }
8340 
8341 irqreturn_t sdma_interrupt(int irq, void *data)
8342 {
8343 	struct sdma_engine *sde = data;
8344 	struct hfi1_devdata *dd = sde->dd;
8345 	u64 status;
8346 
8347 #ifdef CONFIG_SDMA_VERBOSITY
8348 	dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
8349 		   slashstrip(__FILE__), __LINE__, __func__);
8350 	sdma_dumpstate(sde);
8351 #endif
8352 
8353 	this_cpu_inc(*dd->int_counter);
8354 
8355 	/* This read_csr is really bad in the hot path */
8356 	status = read_csr(dd,
8357 			  CCE_INT_STATUS + (8 * (IS_SDMA_START / 64)))
8358 			  & sde->imask;
8359 	if (likely(status)) {
8360 		/* clear the interrupt(s) */
8361 		write_csr(dd,
8362 			  CCE_INT_CLEAR + (8 * (IS_SDMA_START / 64)),
8363 			  status);
8364 
8365 		/* handle the interrupt(s) */
8366 		sdma_engine_interrupt(sde, status);
8367 	} else {
8368 		dd_dev_info_ratelimited(dd, "SDMA engine %u interrupt, but no status bits set\n",
8369 					sde->this_idx);
8370 	}
8371 	return IRQ_HANDLED;
8372 }
8373 
8374 /*
8375  * Clear the receive interrupt.  Use a read of the interrupt clear CSR
8376  * to insure that the write completed.  This does NOT guarantee that
8377  * queued DMA writes to memory from the chip are pushed.
8378  */
8379 static inline void clear_recv_intr(struct hfi1_ctxtdata *rcd)
8380 {
8381 	struct hfi1_devdata *dd = rcd->dd;
8382 	u32 addr = CCE_INT_CLEAR + (8 * rcd->ireg);
8383 
8384 	write_csr(dd, addr, rcd->imask);
8385 	/* force the above write on the chip and get a value back */
8386 	(void)read_csr(dd, addr);
8387 }
8388 
8389 /* force the receive interrupt */
8390 void force_recv_intr(struct hfi1_ctxtdata *rcd)
8391 {
8392 	write_csr(rcd->dd, CCE_INT_FORCE + (8 * rcd->ireg), rcd->imask);
8393 }
8394 
8395 /*
8396  * Return non-zero if a packet is present.
8397  *
8398  * This routine is called when rechecking for packets after the RcvAvail
8399  * interrupt has been cleared down.  First, do a quick check of memory for
8400  * a packet present.  If not found, use an expensive CSR read of the context
8401  * tail to determine the actual tail.  The CSR read is necessary because there
8402  * is no method to push pending DMAs to memory other than an interrupt and we
8403  * are trying to determine if we need to force an interrupt.
8404  */
8405 static inline int check_packet_present(struct hfi1_ctxtdata *rcd)
8406 {
8407 	u32 tail;
8408 
8409 	if (hfi1_packet_present(rcd))
8410 		return 1;
8411 
8412 	/* fall back to a CSR read, correct indpendent of DMA_RTAIL */
8413 	tail = (u32)read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_TAIL);
8414 	return hfi1_rcd_head(rcd) != tail;
8415 }
8416 
8417 /**
8418  * Common code for receive contexts interrupt handlers.
8419  * Update traces, increment kernel IRQ counter and
8420  * setup ASPM when needed.
8421  */
8422 static void receive_interrupt_common(struct hfi1_ctxtdata *rcd)
8423 {
8424 	struct hfi1_devdata *dd = rcd->dd;
8425 
8426 	trace_hfi1_receive_interrupt(dd, rcd);
8427 	this_cpu_inc(*dd->int_counter);
8428 	aspm_ctx_disable(rcd);
8429 }
8430 
8431 /**
8432  * __hfi1_rcd_eoi_intr() - Make HW issue receive interrupt
8433  * when there are packets present in the queue. When calling
8434  * with interrupts enabled please use hfi1_rcd_eoi_intr.
8435  *
8436  * @rcd: valid receive context
8437  */
8438 static void __hfi1_rcd_eoi_intr(struct hfi1_ctxtdata *rcd)
8439 {
8440 	clear_recv_intr(rcd);
8441 	if (check_packet_present(rcd))
8442 		force_recv_intr(rcd);
8443 }
8444 
8445 /**
8446  * hfi1_rcd_eoi_intr() - End of Interrupt processing action
8447  *
8448  * @rcd: Ptr to hfi1_ctxtdata of receive context
8449  *
8450  *  Hold IRQs so we can safely clear the interrupt and
8451  *  recheck for a packet that may have arrived after the previous
8452  *  check and the interrupt clear.  If a packet arrived, force another
8453  *  interrupt. This routine can be called at the end of receive packet
8454  *  processing in interrupt service routines, interrupt service thread
8455  *  and softirqs
8456  */
8457 static void hfi1_rcd_eoi_intr(struct hfi1_ctxtdata *rcd)
8458 {
8459 	unsigned long flags;
8460 
8461 	local_irq_save(flags);
8462 	__hfi1_rcd_eoi_intr(rcd);
8463 	local_irq_restore(flags);
8464 }
8465 
8466 /*
8467  * Receive packet IRQ handler.  This routine expects to be on its own IRQ.
8468  * This routine will try to handle packets immediately (latency), but if
8469  * it finds too many, it will invoke the thread handler (bandwitdh).  The
8470  * chip receive interrupt is *not* cleared down until this or the thread (if
8471  * invoked) is finished.  The intent is to avoid extra interrupts while we
8472  * are processing packets anyway.
8473  */
8474 irqreturn_t receive_context_interrupt(int irq, void *data)
8475 {
8476 	struct hfi1_ctxtdata *rcd = data;
8477 	int disposition;
8478 
8479 	receive_interrupt_common(rcd);
8480 
8481 	/* receive interrupt remains blocked while processing packets */
8482 	disposition = rcd->do_interrupt(rcd, 0);
8483 
8484 	/*
8485 	 * Too many packets were seen while processing packets in this
8486 	 * IRQ handler.  Invoke the handler thread.  The receive interrupt
8487 	 * remains blocked.
8488 	 */
8489 	if (disposition == RCV_PKT_LIMIT)
8490 		return IRQ_WAKE_THREAD;
8491 
8492 	__hfi1_rcd_eoi_intr(rcd);
8493 	return IRQ_HANDLED;
8494 }
8495 
8496 /*
8497  * Receive packet thread handler.  This expects to be invoked with the
8498  * receive interrupt still blocked.
8499  */
8500 irqreturn_t receive_context_thread(int irq, void *data)
8501 {
8502 	struct hfi1_ctxtdata *rcd = data;
8503 
8504 	/* receive interrupt is still blocked from the IRQ handler */
8505 	(void)rcd->do_interrupt(rcd, 1);
8506 
8507 	hfi1_rcd_eoi_intr(rcd);
8508 
8509 	return IRQ_HANDLED;
8510 }
8511 
8512 /* ========================================================================= */
8513 
8514 u32 read_physical_state(struct hfi1_devdata *dd)
8515 {
8516 	u64 reg;
8517 
8518 	reg = read_csr(dd, DC_DC8051_STS_CUR_STATE);
8519 	return (reg >> DC_DC8051_STS_CUR_STATE_PORT_SHIFT)
8520 				& DC_DC8051_STS_CUR_STATE_PORT_MASK;
8521 }
8522 
8523 u32 read_logical_state(struct hfi1_devdata *dd)
8524 {
8525 	u64 reg;
8526 
8527 	reg = read_csr(dd, DCC_CFG_PORT_CONFIG);
8528 	return (reg >> DCC_CFG_PORT_CONFIG_LINK_STATE_SHIFT)
8529 				& DCC_CFG_PORT_CONFIG_LINK_STATE_MASK;
8530 }
8531 
8532 static void set_logical_state(struct hfi1_devdata *dd, u32 chip_lstate)
8533 {
8534 	u64 reg;
8535 
8536 	reg = read_csr(dd, DCC_CFG_PORT_CONFIG);
8537 	/* clear current state, set new state */
8538 	reg &= ~DCC_CFG_PORT_CONFIG_LINK_STATE_SMASK;
8539 	reg |= (u64)chip_lstate << DCC_CFG_PORT_CONFIG_LINK_STATE_SHIFT;
8540 	write_csr(dd, DCC_CFG_PORT_CONFIG, reg);
8541 }
8542 
8543 /*
8544  * Use the 8051 to read a LCB CSR.
8545  */
8546 static int read_lcb_via_8051(struct hfi1_devdata *dd, u32 addr, u64 *data)
8547 {
8548 	u32 regno;
8549 	int ret;
8550 
8551 	if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR) {
8552 		if (acquire_lcb_access(dd, 0) == 0) {
8553 			*data = read_csr(dd, addr);
8554 			release_lcb_access(dd, 0);
8555 			return 0;
8556 		}
8557 		return -EBUSY;
8558 	}
8559 
8560 	/* register is an index of LCB registers: (offset - base) / 8 */
8561 	regno = (addr - DC_LCB_CFG_RUN) >> 3;
8562 	ret = do_8051_command(dd, HCMD_READ_LCB_CSR, regno, data);
8563 	if (ret != HCMD_SUCCESS)
8564 		return -EBUSY;
8565 	return 0;
8566 }
8567 
8568 /*
8569  * Provide a cache for some of the LCB registers in case the LCB is
8570  * unavailable.
8571  * (The LCB is unavailable in certain link states, for example.)
8572  */
8573 struct lcb_datum {
8574 	u32 off;
8575 	u64 val;
8576 };
8577 
8578 static struct lcb_datum lcb_cache[] = {
8579 	{ DC_LCB_ERR_INFO_RX_REPLAY_CNT, 0},
8580 	{ DC_LCB_ERR_INFO_SEQ_CRC_CNT, 0 },
8581 	{ DC_LCB_ERR_INFO_REINIT_FROM_PEER_CNT, 0 },
8582 };
8583 
8584 static void update_lcb_cache(struct hfi1_devdata *dd)
8585 {
8586 	int i;
8587 	int ret;
8588 	u64 val;
8589 
8590 	for (i = 0; i < ARRAY_SIZE(lcb_cache); i++) {
8591 		ret = read_lcb_csr(dd, lcb_cache[i].off, &val);
8592 
8593 		/* Update if we get good data */
8594 		if (likely(ret != -EBUSY))
8595 			lcb_cache[i].val = val;
8596 	}
8597 }
8598 
8599 static int read_lcb_cache(u32 off, u64 *val)
8600 {
8601 	int i;
8602 
8603 	for (i = 0; i < ARRAY_SIZE(lcb_cache); i++) {
8604 		if (lcb_cache[i].off == off) {
8605 			*val = lcb_cache[i].val;
8606 			return 0;
8607 		}
8608 	}
8609 
8610 	pr_warn("%s bad offset 0x%x\n", __func__, off);
8611 	return -1;
8612 }
8613 
8614 /*
8615  * Read an LCB CSR.  Access may not be in host control, so check.
8616  * Return 0 on success, -EBUSY on failure.
8617  */
8618 int read_lcb_csr(struct hfi1_devdata *dd, u32 addr, u64 *data)
8619 {
8620 	struct hfi1_pportdata *ppd = dd->pport;
8621 
8622 	/* if up, go through the 8051 for the value */
8623 	if (ppd->host_link_state & HLS_UP)
8624 		return read_lcb_via_8051(dd, addr, data);
8625 	/* if going up or down, check the cache, otherwise, no access */
8626 	if (ppd->host_link_state & (HLS_GOING_UP | HLS_GOING_OFFLINE)) {
8627 		if (read_lcb_cache(addr, data))
8628 			return -EBUSY;
8629 		return 0;
8630 	}
8631 
8632 	/* otherwise, host has access */
8633 	*data = read_csr(dd, addr);
8634 	return 0;
8635 }
8636 
8637 /*
8638  * Use the 8051 to write a LCB CSR.
8639  */
8640 static int write_lcb_via_8051(struct hfi1_devdata *dd, u32 addr, u64 data)
8641 {
8642 	u32 regno;
8643 	int ret;
8644 
8645 	if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR ||
8646 	    (dd->dc8051_ver < dc8051_ver(0, 20, 0))) {
8647 		if (acquire_lcb_access(dd, 0) == 0) {
8648 			write_csr(dd, addr, data);
8649 			release_lcb_access(dd, 0);
8650 			return 0;
8651 		}
8652 		return -EBUSY;
8653 	}
8654 
8655 	/* register is an index of LCB registers: (offset - base) / 8 */
8656 	regno = (addr - DC_LCB_CFG_RUN) >> 3;
8657 	ret = do_8051_command(dd, HCMD_WRITE_LCB_CSR, regno, &data);
8658 	if (ret != HCMD_SUCCESS)
8659 		return -EBUSY;
8660 	return 0;
8661 }
8662 
8663 /*
8664  * Write an LCB CSR.  Access may not be in host control, so check.
8665  * Return 0 on success, -EBUSY on failure.
8666  */
8667 int write_lcb_csr(struct hfi1_devdata *dd, u32 addr, u64 data)
8668 {
8669 	struct hfi1_pportdata *ppd = dd->pport;
8670 
8671 	/* if up, go through the 8051 for the value */
8672 	if (ppd->host_link_state & HLS_UP)
8673 		return write_lcb_via_8051(dd, addr, data);
8674 	/* if going up or down, no access */
8675 	if (ppd->host_link_state & (HLS_GOING_UP | HLS_GOING_OFFLINE))
8676 		return -EBUSY;
8677 	/* otherwise, host has access */
8678 	write_csr(dd, addr, data);
8679 	return 0;
8680 }
8681 
8682 /*
8683  * Returns:
8684  *	< 0 = Linux error, not able to get access
8685  *	> 0 = 8051 command RETURN_CODE
8686  */
8687 static int do_8051_command(struct hfi1_devdata *dd, u32 type, u64 in_data,
8688 			   u64 *out_data)
8689 {
8690 	u64 reg, completed;
8691 	int return_code;
8692 	unsigned long timeout;
8693 
8694 	hfi1_cdbg(DC8051, "type %d, data 0x%012llx", type, in_data);
8695 
8696 	mutex_lock(&dd->dc8051_lock);
8697 
8698 	/* We can't send any commands to the 8051 if it's in reset */
8699 	if (dd->dc_shutdown) {
8700 		return_code = -ENODEV;
8701 		goto fail;
8702 	}
8703 
8704 	/*
8705 	 * If an 8051 host command timed out previously, then the 8051 is
8706 	 * stuck.
8707 	 *
8708 	 * On first timeout, attempt to reset and restart the entire DC
8709 	 * block (including 8051). (Is this too big of a hammer?)
8710 	 *
8711 	 * If the 8051 times out a second time, the reset did not bring it
8712 	 * back to healthy life. In that case, fail any subsequent commands.
8713 	 */
8714 	if (dd->dc8051_timed_out) {
8715 		if (dd->dc8051_timed_out > 1) {
8716 			dd_dev_err(dd,
8717 				   "Previous 8051 host command timed out, skipping command %u\n",
8718 				   type);
8719 			return_code = -ENXIO;
8720 			goto fail;
8721 		}
8722 		_dc_shutdown(dd);
8723 		_dc_start(dd);
8724 	}
8725 
8726 	/*
8727 	 * If there is no timeout, then the 8051 command interface is
8728 	 * waiting for a command.
8729 	 */
8730 
8731 	/*
8732 	 * When writing a LCB CSR, out_data contains the full value to
8733 	 * to be written, while in_data contains the relative LCB
8734 	 * address in 7:0.  Do the work here, rather than the caller,
8735 	 * of distrubting the write data to where it needs to go:
8736 	 *
8737 	 * Write data
8738 	 *   39:00 -> in_data[47:8]
8739 	 *   47:40 -> DC8051_CFG_EXT_DEV_0.RETURN_CODE
8740 	 *   63:48 -> DC8051_CFG_EXT_DEV_0.RSP_DATA
8741 	 */
8742 	if (type == HCMD_WRITE_LCB_CSR) {
8743 		in_data |= ((*out_data) & 0xffffffffffull) << 8;
8744 		/* must preserve COMPLETED - it is tied to hardware */
8745 		reg = read_csr(dd, DC_DC8051_CFG_EXT_DEV_0);
8746 		reg &= DC_DC8051_CFG_EXT_DEV_0_COMPLETED_SMASK;
8747 		reg |= ((((*out_data) >> 40) & 0xff) <<
8748 				DC_DC8051_CFG_EXT_DEV_0_RETURN_CODE_SHIFT)
8749 		      | ((((*out_data) >> 48) & 0xffff) <<
8750 				DC_DC8051_CFG_EXT_DEV_0_RSP_DATA_SHIFT);
8751 		write_csr(dd, DC_DC8051_CFG_EXT_DEV_0, reg);
8752 	}
8753 
8754 	/*
8755 	 * Do two writes: the first to stabilize the type and req_data, the
8756 	 * second to activate.
8757 	 */
8758 	reg = ((u64)type & DC_DC8051_CFG_HOST_CMD_0_REQ_TYPE_MASK)
8759 			<< DC_DC8051_CFG_HOST_CMD_0_REQ_TYPE_SHIFT
8760 		| (in_data & DC_DC8051_CFG_HOST_CMD_0_REQ_DATA_MASK)
8761 			<< DC_DC8051_CFG_HOST_CMD_0_REQ_DATA_SHIFT;
8762 	write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, reg);
8763 	reg |= DC_DC8051_CFG_HOST_CMD_0_REQ_NEW_SMASK;
8764 	write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, reg);
8765 
8766 	/* wait for completion, alternate: interrupt */
8767 	timeout = jiffies + msecs_to_jiffies(DC8051_COMMAND_TIMEOUT);
8768 	while (1) {
8769 		reg = read_csr(dd, DC_DC8051_CFG_HOST_CMD_1);
8770 		completed = reg & DC_DC8051_CFG_HOST_CMD_1_COMPLETED_SMASK;
8771 		if (completed)
8772 			break;
8773 		if (time_after(jiffies, timeout)) {
8774 			dd->dc8051_timed_out++;
8775 			dd_dev_err(dd, "8051 host command %u timeout\n", type);
8776 			if (out_data)
8777 				*out_data = 0;
8778 			return_code = -ETIMEDOUT;
8779 			goto fail;
8780 		}
8781 		udelay(2);
8782 	}
8783 
8784 	if (out_data) {
8785 		*out_data = (reg >> DC_DC8051_CFG_HOST_CMD_1_RSP_DATA_SHIFT)
8786 				& DC_DC8051_CFG_HOST_CMD_1_RSP_DATA_MASK;
8787 		if (type == HCMD_READ_LCB_CSR) {
8788 			/* top 16 bits are in a different register */
8789 			*out_data |= (read_csr(dd, DC_DC8051_CFG_EXT_DEV_1)
8790 				& DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SMASK)
8791 				<< (48
8792 				    - DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SHIFT);
8793 		}
8794 	}
8795 	return_code = (reg >> DC_DC8051_CFG_HOST_CMD_1_RETURN_CODE_SHIFT)
8796 				& DC_DC8051_CFG_HOST_CMD_1_RETURN_CODE_MASK;
8797 	dd->dc8051_timed_out = 0;
8798 	/*
8799 	 * Clear command for next user.
8800 	 */
8801 	write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, 0);
8802 
8803 fail:
8804 	mutex_unlock(&dd->dc8051_lock);
8805 	return return_code;
8806 }
8807 
8808 static int set_physical_link_state(struct hfi1_devdata *dd, u64 state)
8809 {
8810 	return do_8051_command(dd, HCMD_CHANGE_PHY_STATE, state, NULL);
8811 }
8812 
8813 int load_8051_config(struct hfi1_devdata *dd, u8 field_id,
8814 		     u8 lane_id, u32 config_data)
8815 {
8816 	u64 data;
8817 	int ret;
8818 
8819 	data = (u64)field_id << LOAD_DATA_FIELD_ID_SHIFT
8820 		| (u64)lane_id << LOAD_DATA_LANE_ID_SHIFT
8821 		| (u64)config_data << LOAD_DATA_DATA_SHIFT;
8822 	ret = do_8051_command(dd, HCMD_LOAD_CONFIG_DATA, data, NULL);
8823 	if (ret != HCMD_SUCCESS) {
8824 		dd_dev_err(dd,
8825 			   "load 8051 config: field id %d, lane %d, err %d\n",
8826 			   (int)field_id, (int)lane_id, ret);
8827 	}
8828 	return ret;
8829 }
8830 
8831 /*
8832  * Read the 8051 firmware "registers".  Use the RAM directly.  Always
8833  * set the result, even on error.
8834  * Return 0 on success, -errno on failure
8835  */
8836 int read_8051_config(struct hfi1_devdata *dd, u8 field_id, u8 lane_id,
8837 		     u32 *result)
8838 {
8839 	u64 big_data;
8840 	u32 addr;
8841 	int ret;
8842 
8843 	/* address start depends on the lane_id */
8844 	if (lane_id < 4)
8845 		addr = (4 * NUM_GENERAL_FIELDS)
8846 			+ (lane_id * 4 * NUM_LANE_FIELDS);
8847 	else
8848 		addr = 0;
8849 	addr += field_id * 4;
8850 
8851 	/* read is in 8-byte chunks, hardware will truncate the address down */
8852 	ret = read_8051_data(dd, addr, 8, &big_data);
8853 
8854 	if (ret == 0) {
8855 		/* extract the 4 bytes we want */
8856 		if (addr & 0x4)
8857 			*result = (u32)(big_data >> 32);
8858 		else
8859 			*result = (u32)big_data;
8860 	} else {
8861 		*result = 0;
8862 		dd_dev_err(dd, "%s: direct read failed, lane %d, field %d!\n",
8863 			   __func__, lane_id, field_id);
8864 	}
8865 
8866 	return ret;
8867 }
8868 
8869 static int write_vc_local_phy(struct hfi1_devdata *dd, u8 power_management,
8870 			      u8 continuous)
8871 {
8872 	u32 frame;
8873 
8874 	frame = continuous << CONTINIOUS_REMOTE_UPDATE_SUPPORT_SHIFT
8875 		| power_management << POWER_MANAGEMENT_SHIFT;
8876 	return load_8051_config(dd, VERIFY_CAP_LOCAL_PHY,
8877 				GENERAL_CONFIG, frame);
8878 }
8879 
8880 static int write_vc_local_fabric(struct hfi1_devdata *dd, u8 vau, u8 z, u8 vcu,
8881 				 u16 vl15buf, u8 crc_sizes)
8882 {
8883 	u32 frame;
8884 
8885 	frame = (u32)vau << VAU_SHIFT
8886 		| (u32)z << Z_SHIFT
8887 		| (u32)vcu << VCU_SHIFT
8888 		| (u32)vl15buf << VL15BUF_SHIFT
8889 		| (u32)crc_sizes << CRC_SIZES_SHIFT;
8890 	return load_8051_config(dd, VERIFY_CAP_LOCAL_FABRIC,
8891 				GENERAL_CONFIG, frame);
8892 }
8893 
8894 static void read_vc_local_link_mode(struct hfi1_devdata *dd, u8 *misc_bits,
8895 				    u8 *flag_bits, u16 *link_widths)
8896 {
8897 	u32 frame;
8898 
8899 	read_8051_config(dd, VERIFY_CAP_LOCAL_LINK_MODE, GENERAL_CONFIG,
8900 			 &frame);
8901 	*misc_bits = (frame >> MISC_CONFIG_BITS_SHIFT) & MISC_CONFIG_BITS_MASK;
8902 	*flag_bits = (frame >> LOCAL_FLAG_BITS_SHIFT) & LOCAL_FLAG_BITS_MASK;
8903 	*link_widths = (frame >> LINK_WIDTH_SHIFT) & LINK_WIDTH_MASK;
8904 }
8905 
8906 static int write_vc_local_link_mode(struct hfi1_devdata *dd,
8907 				    u8 misc_bits,
8908 				    u8 flag_bits,
8909 				    u16 link_widths)
8910 {
8911 	u32 frame;
8912 
8913 	frame = (u32)misc_bits << MISC_CONFIG_BITS_SHIFT
8914 		| (u32)flag_bits << LOCAL_FLAG_BITS_SHIFT
8915 		| (u32)link_widths << LINK_WIDTH_SHIFT;
8916 	return load_8051_config(dd, VERIFY_CAP_LOCAL_LINK_MODE, GENERAL_CONFIG,
8917 		     frame);
8918 }
8919 
8920 static int write_local_device_id(struct hfi1_devdata *dd, u16 device_id,
8921 				 u8 device_rev)
8922 {
8923 	u32 frame;
8924 
8925 	frame = ((u32)device_id << LOCAL_DEVICE_ID_SHIFT)
8926 		| ((u32)device_rev << LOCAL_DEVICE_REV_SHIFT);
8927 	return load_8051_config(dd, LOCAL_DEVICE_ID, GENERAL_CONFIG, frame);
8928 }
8929 
8930 static void read_remote_device_id(struct hfi1_devdata *dd, u16 *device_id,
8931 				  u8 *device_rev)
8932 {
8933 	u32 frame;
8934 
8935 	read_8051_config(dd, REMOTE_DEVICE_ID, GENERAL_CONFIG, &frame);
8936 	*device_id = (frame >> REMOTE_DEVICE_ID_SHIFT) & REMOTE_DEVICE_ID_MASK;
8937 	*device_rev = (frame >> REMOTE_DEVICE_REV_SHIFT)
8938 			& REMOTE_DEVICE_REV_MASK;
8939 }
8940 
8941 int write_host_interface_version(struct hfi1_devdata *dd, u8 version)
8942 {
8943 	u32 frame;
8944 	u32 mask;
8945 
8946 	mask = (HOST_INTERFACE_VERSION_MASK << HOST_INTERFACE_VERSION_SHIFT);
8947 	read_8051_config(dd, RESERVED_REGISTERS, GENERAL_CONFIG, &frame);
8948 	/* Clear, then set field */
8949 	frame &= ~mask;
8950 	frame |= ((u32)version << HOST_INTERFACE_VERSION_SHIFT);
8951 	return load_8051_config(dd, RESERVED_REGISTERS, GENERAL_CONFIG,
8952 				frame);
8953 }
8954 
8955 void read_misc_status(struct hfi1_devdata *dd, u8 *ver_major, u8 *ver_minor,
8956 		      u8 *ver_patch)
8957 {
8958 	u32 frame;
8959 
8960 	read_8051_config(dd, MISC_STATUS, GENERAL_CONFIG, &frame);
8961 	*ver_major = (frame >> STS_FM_VERSION_MAJOR_SHIFT) &
8962 		STS_FM_VERSION_MAJOR_MASK;
8963 	*ver_minor = (frame >> STS_FM_VERSION_MINOR_SHIFT) &
8964 		STS_FM_VERSION_MINOR_MASK;
8965 
8966 	read_8051_config(dd, VERSION_PATCH, GENERAL_CONFIG, &frame);
8967 	*ver_patch = (frame >> STS_FM_VERSION_PATCH_SHIFT) &
8968 		STS_FM_VERSION_PATCH_MASK;
8969 }
8970 
8971 static void read_vc_remote_phy(struct hfi1_devdata *dd, u8 *power_management,
8972 			       u8 *continuous)
8973 {
8974 	u32 frame;
8975 
8976 	read_8051_config(dd, VERIFY_CAP_REMOTE_PHY, GENERAL_CONFIG, &frame);
8977 	*power_management = (frame >> POWER_MANAGEMENT_SHIFT)
8978 					& POWER_MANAGEMENT_MASK;
8979 	*continuous = (frame >> CONTINIOUS_REMOTE_UPDATE_SUPPORT_SHIFT)
8980 					& CONTINIOUS_REMOTE_UPDATE_SUPPORT_MASK;
8981 }
8982 
8983 static void read_vc_remote_fabric(struct hfi1_devdata *dd, u8 *vau, u8 *z,
8984 				  u8 *vcu, u16 *vl15buf, u8 *crc_sizes)
8985 {
8986 	u32 frame;
8987 
8988 	read_8051_config(dd, VERIFY_CAP_REMOTE_FABRIC, GENERAL_CONFIG, &frame);
8989 	*vau = (frame >> VAU_SHIFT) & VAU_MASK;
8990 	*z = (frame >> Z_SHIFT) & Z_MASK;
8991 	*vcu = (frame >> VCU_SHIFT) & VCU_MASK;
8992 	*vl15buf = (frame >> VL15BUF_SHIFT) & VL15BUF_MASK;
8993 	*crc_sizes = (frame >> CRC_SIZES_SHIFT) & CRC_SIZES_MASK;
8994 }
8995 
8996 static void read_vc_remote_link_width(struct hfi1_devdata *dd,
8997 				      u8 *remote_tx_rate,
8998 				      u16 *link_widths)
8999 {
9000 	u32 frame;
9001 
9002 	read_8051_config(dd, VERIFY_CAP_REMOTE_LINK_WIDTH, GENERAL_CONFIG,
9003 			 &frame);
9004 	*remote_tx_rate = (frame >> REMOTE_TX_RATE_SHIFT)
9005 				& REMOTE_TX_RATE_MASK;
9006 	*link_widths = (frame >> LINK_WIDTH_SHIFT) & LINK_WIDTH_MASK;
9007 }
9008 
9009 static void read_local_lni(struct hfi1_devdata *dd, u8 *enable_lane_rx)
9010 {
9011 	u32 frame;
9012 
9013 	read_8051_config(dd, LOCAL_LNI_INFO, GENERAL_CONFIG, &frame);
9014 	*enable_lane_rx = (frame >> ENABLE_LANE_RX_SHIFT) & ENABLE_LANE_RX_MASK;
9015 }
9016 
9017 static void read_last_local_state(struct hfi1_devdata *dd, u32 *lls)
9018 {
9019 	read_8051_config(dd, LAST_LOCAL_STATE_COMPLETE, GENERAL_CONFIG, lls);
9020 }
9021 
9022 static void read_last_remote_state(struct hfi1_devdata *dd, u32 *lrs)
9023 {
9024 	read_8051_config(dd, LAST_REMOTE_STATE_COMPLETE, GENERAL_CONFIG, lrs);
9025 }
9026 
9027 void hfi1_read_link_quality(struct hfi1_devdata *dd, u8 *link_quality)
9028 {
9029 	u32 frame;
9030 	int ret;
9031 
9032 	*link_quality = 0;
9033 	if (dd->pport->host_link_state & HLS_UP) {
9034 		ret = read_8051_config(dd, LINK_QUALITY_INFO, GENERAL_CONFIG,
9035 				       &frame);
9036 		if (ret == 0)
9037 			*link_quality = (frame >> LINK_QUALITY_SHIFT)
9038 						& LINK_QUALITY_MASK;
9039 	}
9040 }
9041 
9042 static void read_planned_down_reason_code(struct hfi1_devdata *dd, u8 *pdrrc)
9043 {
9044 	u32 frame;
9045 
9046 	read_8051_config(dd, LINK_QUALITY_INFO, GENERAL_CONFIG, &frame);
9047 	*pdrrc = (frame >> DOWN_REMOTE_REASON_SHIFT) & DOWN_REMOTE_REASON_MASK;
9048 }
9049 
9050 static void read_link_down_reason(struct hfi1_devdata *dd, u8 *ldr)
9051 {
9052 	u32 frame;
9053 
9054 	read_8051_config(dd, LINK_DOWN_REASON, GENERAL_CONFIG, &frame);
9055 	*ldr = (frame & 0xff);
9056 }
9057 
9058 static int read_tx_settings(struct hfi1_devdata *dd,
9059 			    u8 *enable_lane_tx,
9060 			    u8 *tx_polarity_inversion,
9061 			    u8 *rx_polarity_inversion,
9062 			    u8 *max_rate)
9063 {
9064 	u32 frame;
9065 	int ret;
9066 
9067 	ret = read_8051_config(dd, TX_SETTINGS, GENERAL_CONFIG, &frame);
9068 	*enable_lane_tx = (frame >> ENABLE_LANE_TX_SHIFT)
9069 				& ENABLE_LANE_TX_MASK;
9070 	*tx_polarity_inversion = (frame >> TX_POLARITY_INVERSION_SHIFT)
9071 				& TX_POLARITY_INVERSION_MASK;
9072 	*rx_polarity_inversion = (frame >> RX_POLARITY_INVERSION_SHIFT)
9073 				& RX_POLARITY_INVERSION_MASK;
9074 	*max_rate = (frame >> MAX_RATE_SHIFT) & MAX_RATE_MASK;
9075 	return ret;
9076 }
9077 
9078 static int write_tx_settings(struct hfi1_devdata *dd,
9079 			     u8 enable_lane_tx,
9080 			     u8 tx_polarity_inversion,
9081 			     u8 rx_polarity_inversion,
9082 			     u8 max_rate)
9083 {
9084 	u32 frame;
9085 
9086 	/* no need to mask, all variable sizes match field widths */
9087 	frame = enable_lane_tx << ENABLE_LANE_TX_SHIFT
9088 		| tx_polarity_inversion << TX_POLARITY_INVERSION_SHIFT
9089 		| rx_polarity_inversion << RX_POLARITY_INVERSION_SHIFT
9090 		| max_rate << MAX_RATE_SHIFT;
9091 	return load_8051_config(dd, TX_SETTINGS, GENERAL_CONFIG, frame);
9092 }
9093 
9094 /*
9095  * Read an idle LCB message.
9096  *
9097  * Returns 0 on success, -EINVAL on error
9098  */
9099 static int read_idle_message(struct hfi1_devdata *dd, u64 type, u64 *data_out)
9100 {
9101 	int ret;
9102 
9103 	ret = do_8051_command(dd, HCMD_READ_LCB_IDLE_MSG, type, data_out);
9104 	if (ret != HCMD_SUCCESS) {
9105 		dd_dev_err(dd, "read idle message: type %d, err %d\n",
9106 			   (u32)type, ret);
9107 		return -EINVAL;
9108 	}
9109 	dd_dev_info(dd, "%s: read idle message 0x%llx\n", __func__, *data_out);
9110 	/* return only the payload as we already know the type */
9111 	*data_out >>= IDLE_PAYLOAD_SHIFT;
9112 	return 0;
9113 }
9114 
9115 /*
9116  * Read an idle SMA message.  To be done in response to a notification from
9117  * the 8051.
9118  *
9119  * Returns 0 on success, -EINVAL on error
9120  */
9121 static int read_idle_sma(struct hfi1_devdata *dd, u64 *data)
9122 {
9123 	return read_idle_message(dd, (u64)IDLE_SMA << IDLE_MSG_TYPE_SHIFT,
9124 				 data);
9125 }
9126 
9127 /*
9128  * Send an idle LCB message.
9129  *
9130  * Returns 0 on success, -EINVAL on error
9131  */
9132 static int send_idle_message(struct hfi1_devdata *dd, u64 data)
9133 {
9134 	int ret;
9135 
9136 	dd_dev_info(dd, "%s: sending idle message 0x%llx\n", __func__, data);
9137 	ret = do_8051_command(dd, HCMD_SEND_LCB_IDLE_MSG, data, NULL);
9138 	if (ret != HCMD_SUCCESS) {
9139 		dd_dev_err(dd, "send idle message: data 0x%llx, err %d\n",
9140 			   data, ret);
9141 		return -EINVAL;
9142 	}
9143 	return 0;
9144 }
9145 
9146 /*
9147  * Send an idle SMA message.
9148  *
9149  * Returns 0 on success, -EINVAL on error
9150  */
9151 int send_idle_sma(struct hfi1_devdata *dd, u64 message)
9152 {
9153 	u64 data;
9154 
9155 	data = ((message & IDLE_PAYLOAD_MASK) << IDLE_PAYLOAD_SHIFT) |
9156 		((u64)IDLE_SMA << IDLE_MSG_TYPE_SHIFT);
9157 	return send_idle_message(dd, data);
9158 }
9159 
9160 /*
9161  * Initialize the LCB then do a quick link up.  This may or may not be
9162  * in loopback.
9163  *
9164  * return 0 on success, -errno on error
9165  */
9166 static int do_quick_linkup(struct hfi1_devdata *dd)
9167 {
9168 	int ret;
9169 
9170 	lcb_shutdown(dd, 0);
9171 
9172 	if (loopback) {
9173 		/* LCB_CFG_LOOPBACK.VAL = 2 */
9174 		/* LCB_CFG_LANE_WIDTH.VAL = 0 */
9175 		write_csr(dd, DC_LCB_CFG_LOOPBACK,
9176 			  IB_PACKET_TYPE << DC_LCB_CFG_LOOPBACK_VAL_SHIFT);
9177 		write_csr(dd, DC_LCB_CFG_LANE_WIDTH, 0);
9178 	}
9179 
9180 	/* start the LCBs */
9181 	/* LCB_CFG_TX_FIFOS_RESET.VAL = 0 */
9182 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0);
9183 
9184 	/* simulator only loopback steps */
9185 	if (loopback && dd->icode == ICODE_FUNCTIONAL_SIMULATOR) {
9186 		/* LCB_CFG_RUN.EN = 1 */
9187 		write_csr(dd, DC_LCB_CFG_RUN,
9188 			  1ull << DC_LCB_CFG_RUN_EN_SHIFT);
9189 
9190 		ret = wait_link_transfer_active(dd, 10);
9191 		if (ret)
9192 			return ret;
9193 
9194 		write_csr(dd, DC_LCB_CFG_ALLOW_LINK_UP,
9195 			  1ull << DC_LCB_CFG_ALLOW_LINK_UP_VAL_SHIFT);
9196 	}
9197 
9198 	if (!loopback) {
9199 		/*
9200 		 * When doing quick linkup and not in loopback, both
9201 		 * sides must be done with LCB set-up before either
9202 		 * starts the quick linkup.  Put a delay here so that
9203 		 * both sides can be started and have a chance to be
9204 		 * done with LCB set up before resuming.
9205 		 */
9206 		dd_dev_err(dd,
9207 			   "Pausing for peer to be finished with LCB set up\n");
9208 		msleep(5000);
9209 		dd_dev_err(dd, "Continuing with quick linkup\n");
9210 	}
9211 
9212 	write_csr(dd, DC_LCB_ERR_EN, 0); /* mask LCB errors */
9213 	set_8051_lcb_access(dd);
9214 
9215 	/*
9216 	 * State "quick" LinkUp request sets the physical link state to
9217 	 * LinkUp without a verify capability sequence.
9218 	 * This state is in simulator v37 and later.
9219 	 */
9220 	ret = set_physical_link_state(dd, PLS_QUICK_LINKUP);
9221 	if (ret != HCMD_SUCCESS) {
9222 		dd_dev_err(dd,
9223 			   "%s: set physical link state to quick LinkUp failed with return %d\n",
9224 			   __func__, ret);
9225 
9226 		set_host_lcb_access(dd);
9227 		write_csr(dd, DC_LCB_ERR_EN, ~0ull); /* watch LCB errors */
9228 
9229 		if (ret >= 0)
9230 			ret = -EINVAL;
9231 		return ret;
9232 	}
9233 
9234 	return 0; /* success */
9235 }
9236 
9237 /*
9238  * Do all special steps to set up loopback.
9239  */
9240 static int init_loopback(struct hfi1_devdata *dd)
9241 {
9242 	dd_dev_info(dd, "Entering loopback mode\n");
9243 
9244 	/* all loopbacks should disable self GUID check */
9245 	write_csr(dd, DC_DC8051_CFG_MODE,
9246 		  (read_csr(dd, DC_DC8051_CFG_MODE) | DISABLE_SELF_GUID_CHECK));
9247 
9248 	/*
9249 	 * The simulator has only one loopback option - LCB.  Switch
9250 	 * to that option, which includes quick link up.
9251 	 *
9252 	 * Accept all valid loopback values.
9253 	 */
9254 	if ((dd->icode == ICODE_FUNCTIONAL_SIMULATOR) &&
9255 	    (loopback == LOOPBACK_SERDES || loopback == LOOPBACK_LCB ||
9256 	     loopback == LOOPBACK_CABLE)) {
9257 		loopback = LOOPBACK_LCB;
9258 		quick_linkup = 1;
9259 		return 0;
9260 	}
9261 
9262 	/*
9263 	 * SerDes loopback init sequence is handled in set_local_link_attributes
9264 	 */
9265 	if (loopback == LOOPBACK_SERDES)
9266 		return 0;
9267 
9268 	/* LCB loopback - handled at poll time */
9269 	if (loopback == LOOPBACK_LCB) {
9270 		quick_linkup = 1; /* LCB is always quick linkup */
9271 
9272 		/* not supported in emulation due to emulation RTL changes */
9273 		if (dd->icode == ICODE_FPGA_EMULATION) {
9274 			dd_dev_err(dd,
9275 				   "LCB loopback not supported in emulation\n");
9276 			return -EINVAL;
9277 		}
9278 		return 0;
9279 	}
9280 
9281 	/* external cable loopback requires no extra steps */
9282 	if (loopback == LOOPBACK_CABLE)
9283 		return 0;
9284 
9285 	dd_dev_err(dd, "Invalid loopback mode %d\n", loopback);
9286 	return -EINVAL;
9287 }
9288 
9289 /*
9290  * Translate from the OPA_LINK_WIDTH handed to us by the FM to bits
9291  * used in the Verify Capability link width attribute.
9292  */
9293 static u16 opa_to_vc_link_widths(u16 opa_widths)
9294 {
9295 	int i;
9296 	u16 result = 0;
9297 
9298 	static const struct link_bits {
9299 		u16 from;
9300 		u16 to;
9301 	} opa_link_xlate[] = {
9302 		{ OPA_LINK_WIDTH_1X, 1 << (1 - 1)  },
9303 		{ OPA_LINK_WIDTH_2X, 1 << (2 - 1)  },
9304 		{ OPA_LINK_WIDTH_3X, 1 << (3 - 1)  },
9305 		{ OPA_LINK_WIDTH_4X, 1 << (4 - 1)  },
9306 	};
9307 
9308 	for (i = 0; i < ARRAY_SIZE(opa_link_xlate); i++) {
9309 		if (opa_widths & opa_link_xlate[i].from)
9310 			result |= opa_link_xlate[i].to;
9311 	}
9312 	return result;
9313 }
9314 
9315 /*
9316  * Set link attributes before moving to polling.
9317  */
9318 static int set_local_link_attributes(struct hfi1_pportdata *ppd)
9319 {
9320 	struct hfi1_devdata *dd = ppd->dd;
9321 	u8 enable_lane_tx;
9322 	u8 tx_polarity_inversion;
9323 	u8 rx_polarity_inversion;
9324 	int ret;
9325 	u32 misc_bits = 0;
9326 	/* reset our fabric serdes to clear any lingering problems */
9327 	fabric_serdes_reset(dd);
9328 
9329 	/* set the local tx rate - need to read-modify-write */
9330 	ret = read_tx_settings(dd, &enable_lane_tx, &tx_polarity_inversion,
9331 			       &rx_polarity_inversion, &ppd->local_tx_rate);
9332 	if (ret)
9333 		goto set_local_link_attributes_fail;
9334 
9335 	if (dd->dc8051_ver < dc8051_ver(0, 20, 0)) {
9336 		/* set the tx rate to the fastest enabled */
9337 		if (ppd->link_speed_enabled & OPA_LINK_SPEED_25G)
9338 			ppd->local_tx_rate = 1;
9339 		else
9340 			ppd->local_tx_rate = 0;
9341 	} else {
9342 		/* set the tx rate to all enabled */
9343 		ppd->local_tx_rate = 0;
9344 		if (ppd->link_speed_enabled & OPA_LINK_SPEED_25G)
9345 			ppd->local_tx_rate |= 2;
9346 		if (ppd->link_speed_enabled & OPA_LINK_SPEED_12_5G)
9347 			ppd->local_tx_rate |= 1;
9348 	}
9349 
9350 	enable_lane_tx = 0xF; /* enable all four lanes */
9351 	ret = write_tx_settings(dd, enable_lane_tx, tx_polarity_inversion,
9352 				rx_polarity_inversion, ppd->local_tx_rate);
9353 	if (ret != HCMD_SUCCESS)
9354 		goto set_local_link_attributes_fail;
9355 
9356 	ret = write_host_interface_version(dd, HOST_INTERFACE_VERSION);
9357 	if (ret != HCMD_SUCCESS) {
9358 		dd_dev_err(dd,
9359 			   "Failed to set host interface version, return 0x%x\n",
9360 			   ret);
9361 		goto set_local_link_attributes_fail;
9362 	}
9363 
9364 	/*
9365 	 * DC supports continuous updates.
9366 	 */
9367 	ret = write_vc_local_phy(dd,
9368 				 0 /* no power management */,
9369 				 1 /* continuous updates */);
9370 	if (ret != HCMD_SUCCESS)
9371 		goto set_local_link_attributes_fail;
9372 
9373 	/* z=1 in the next call: AU of 0 is not supported by the hardware */
9374 	ret = write_vc_local_fabric(dd, dd->vau, 1, dd->vcu, dd->vl15_init,
9375 				    ppd->port_crc_mode_enabled);
9376 	if (ret != HCMD_SUCCESS)
9377 		goto set_local_link_attributes_fail;
9378 
9379 	/*
9380 	 * SerDes loopback init sequence requires
9381 	 * setting bit 0 of MISC_CONFIG_BITS
9382 	 */
9383 	if (loopback == LOOPBACK_SERDES)
9384 		misc_bits |= 1 << LOOPBACK_SERDES_CONFIG_BIT_MASK_SHIFT;
9385 
9386 	/*
9387 	 * An external device configuration request is used to reset the LCB
9388 	 * to retry to obtain operational lanes when the first attempt is
9389 	 * unsuccesful.
9390 	 */
9391 	if (dd->dc8051_ver >= dc8051_ver(1, 25, 0))
9392 		misc_bits |= 1 << EXT_CFG_LCB_RESET_SUPPORTED_SHIFT;
9393 
9394 	ret = write_vc_local_link_mode(dd, misc_bits, 0,
9395 				       opa_to_vc_link_widths(
9396 						ppd->link_width_enabled));
9397 	if (ret != HCMD_SUCCESS)
9398 		goto set_local_link_attributes_fail;
9399 
9400 	/* let peer know who we are */
9401 	ret = write_local_device_id(dd, dd->pcidev->device, dd->minrev);
9402 	if (ret == HCMD_SUCCESS)
9403 		return 0;
9404 
9405 set_local_link_attributes_fail:
9406 	dd_dev_err(dd,
9407 		   "Failed to set local link attributes, return 0x%x\n",
9408 		   ret);
9409 	return ret;
9410 }
9411 
9412 /*
9413  * Call this to start the link.
9414  * Do not do anything if the link is disabled.
9415  * Returns 0 if link is disabled, moved to polling, or the driver is not ready.
9416  */
9417 int start_link(struct hfi1_pportdata *ppd)
9418 {
9419 	/*
9420 	 * Tune the SerDes to a ballpark setting for optimal signal and bit
9421 	 * error rate.  Needs to be done before starting the link.
9422 	 */
9423 	tune_serdes(ppd);
9424 
9425 	if (!ppd->driver_link_ready) {
9426 		dd_dev_info(ppd->dd,
9427 			    "%s: stopping link start because driver is not ready\n",
9428 			    __func__);
9429 		return 0;
9430 	}
9431 
9432 	/*
9433 	 * FULL_MGMT_P_KEY is cleared from the pkey table, so that the
9434 	 * pkey table can be configured properly if the HFI unit is connected
9435 	 * to switch port with MgmtAllowed=NO
9436 	 */
9437 	clear_full_mgmt_pkey(ppd);
9438 
9439 	return set_link_state(ppd, HLS_DN_POLL);
9440 }
9441 
9442 static void wait_for_qsfp_init(struct hfi1_pportdata *ppd)
9443 {
9444 	struct hfi1_devdata *dd = ppd->dd;
9445 	u64 mask;
9446 	unsigned long timeout;
9447 
9448 	/*
9449 	 * Some QSFP cables have a quirk that asserts the IntN line as a side
9450 	 * effect of power up on plug-in. We ignore this false positive
9451 	 * interrupt until the module has finished powering up by waiting for
9452 	 * a minimum timeout of the module inrush initialization time of
9453 	 * 500 ms (SFF 8679 Table 5-6) to ensure the voltage rails in the
9454 	 * module have stabilized.
9455 	 */
9456 	msleep(500);
9457 
9458 	/*
9459 	 * Check for QSFP interrupt for t_init (SFF 8679 Table 8-1)
9460 	 */
9461 	timeout = jiffies + msecs_to_jiffies(2000);
9462 	while (1) {
9463 		mask = read_csr(dd, dd->hfi1_id ?
9464 				ASIC_QSFP2_IN : ASIC_QSFP1_IN);
9465 		if (!(mask & QSFP_HFI0_INT_N))
9466 			break;
9467 		if (time_after(jiffies, timeout)) {
9468 			dd_dev_info(dd, "%s: No IntN detected, reset complete\n",
9469 				    __func__);
9470 			break;
9471 		}
9472 		udelay(2);
9473 	}
9474 }
9475 
9476 static void set_qsfp_int_n(struct hfi1_pportdata *ppd, u8 enable)
9477 {
9478 	struct hfi1_devdata *dd = ppd->dd;
9479 	u64 mask;
9480 
9481 	mask = read_csr(dd, dd->hfi1_id ? ASIC_QSFP2_MASK : ASIC_QSFP1_MASK);
9482 	if (enable) {
9483 		/*
9484 		 * Clear the status register to avoid an immediate interrupt
9485 		 * when we re-enable the IntN pin
9486 		 */
9487 		write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_CLEAR : ASIC_QSFP1_CLEAR,
9488 			  QSFP_HFI0_INT_N);
9489 		mask |= (u64)QSFP_HFI0_INT_N;
9490 	} else {
9491 		mask &= ~(u64)QSFP_HFI0_INT_N;
9492 	}
9493 	write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_MASK : ASIC_QSFP1_MASK, mask);
9494 }
9495 
9496 int reset_qsfp(struct hfi1_pportdata *ppd)
9497 {
9498 	struct hfi1_devdata *dd = ppd->dd;
9499 	u64 mask, qsfp_mask;
9500 
9501 	/* Disable INT_N from triggering QSFP interrupts */
9502 	set_qsfp_int_n(ppd, 0);
9503 
9504 	/* Reset the QSFP */
9505 	mask = (u64)QSFP_HFI0_RESET_N;
9506 
9507 	qsfp_mask = read_csr(dd,
9508 			     dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT);
9509 	qsfp_mask &= ~mask;
9510 	write_csr(dd,
9511 		  dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT, qsfp_mask);
9512 
9513 	udelay(10);
9514 
9515 	qsfp_mask |= mask;
9516 	write_csr(dd,
9517 		  dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT, qsfp_mask);
9518 
9519 	wait_for_qsfp_init(ppd);
9520 
9521 	/*
9522 	 * Allow INT_N to trigger the QSFP interrupt to watch
9523 	 * for alarms and warnings
9524 	 */
9525 	set_qsfp_int_n(ppd, 1);
9526 
9527 	/*
9528 	 * After the reset, AOC transmitters are enabled by default. They need
9529 	 * to be turned off to complete the QSFP setup before they can be
9530 	 * enabled again.
9531 	 */
9532 	return set_qsfp_tx(ppd, 0);
9533 }
9534 
9535 static int handle_qsfp_error_conditions(struct hfi1_pportdata *ppd,
9536 					u8 *qsfp_interrupt_status)
9537 {
9538 	struct hfi1_devdata *dd = ppd->dd;
9539 
9540 	if ((qsfp_interrupt_status[0] & QSFP_HIGH_TEMP_ALARM) ||
9541 	    (qsfp_interrupt_status[0] & QSFP_HIGH_TEMP_WARNING))
9542 		dd_dev_err(dd, "%s: QSFP cable temperature too high\n",
9543 			   __func__);
9544 
9545 	if ((qsfp_interrupt_status[0] & QSFP_LOW_TEMP_ALARM) ||
9546 	    (qsfp_interrupt_status[0] & QSFP_LOW_TEMP_WARNING))
9547 		dd_dev_err(dd, "%s: QSFP cable temperature too low\n",
9548 			   __func__);
9549 
9550 	/*
9551 	 * The remaining alarms/warnings don't matter if the link is down.
9552 	 */
9553 	if (ppd->host_link_state & HLS_DOWN)
9554 		return 0;
9555 
9556 	if ((qsfp_interrupt_status[1] & QSFP_HIGH_VCC_ALARM) ||
9557 	    (qsfp_interrupt_status[1] & QSFP_HIGH_VCC_WARNING))
9558 		dd_dev_err(dd, "%s: QSFP supply voltage too high\n",
9559 			   __func__);
9560 
9561 	if ((qsfp_interrupt_status[1] & QSFP_LOW_VCC_ALARM) ||
9562 	    (qsfp_interrupt_status[1] & QSFP_LOW_VCC_WARNING))
9563 		dd_dev_err(dd, "%s: QSFP supply voltage too low\n",
9564 			   __func__);
9565 
9566 	/* Byte 2 is vendor specific */
9567 
9568 	if ((qsfp_interrupt_status[3] & QSFP_HIGH_POWER_ALARM) ||
9569 	    (qsfp_interrupt_status[3] & QSFP_HIGH_POWER_WARNING))
9570 		dd_dev_err(dd, "%s: Cable RX channel 1/2 power too high\n",
9571 			   __func__);
9572 
9573 	if ((qsfp_interrupt_status[3] & QSFP_LOW_POWER_ALARM) ||
9574 	    (qsfp_interrupt_status[3] & QSFP_LOW_POWER_WARNING))
9575 		dd_dev_err(dd, "%s: Cable RX channel 1/2 power too low\n",
9576 			   __func__);
9577 
9578 	if ((qsfp_interrupt_status[4] & QSFP_HIGH_POWER_ALARM) ||
9579 	    (qsfp_interrupt_status[4] & QSFP_HIGH_POWER_WARNING))
9580 		dd_dev_err(dd, "%s: Cable RX channel 3/4 power too high\n",
9581 			   __func__);
9582 
9583 	if ((qsfp_interrupt_status[4] & QSFP_LOW_POWER_ALARM) ||
9584 	    (qsfp_interrupt_status[4] & QSFP_LOW_POWER_WARNING))
9585 		dd_dev_err(dd, "%s: Cable RX channel 3/4 power too low\n",
9586 			   __func__);
9587 
9588 	if ((qsfp_interrupt_status[5] & QSFP_HIGH_BIAS_ALARM) ||
9589 	    (qsfp_interrupt_status[5] & QSFP_HIGH_BIAS_WARNING))
9590 		dd_dev_err(dd, "%s: Cable TX channel 1/2 bias too high\n",
9591 			   __func__);
9592 
9593 	if ((qsfp_interrupt_status[5] & QSFP_LOW_BIAS_ALARM) ||
9594 	    (qsfp_interrupt_status[5] & QSFP_LOW_BIAS_WARNING))
9595 		dd_dev_err(dd, "%s: Cable TX channel 1/2 bias too low\n",
9596 			   __func__);
9597 
9598 	if ((qsfp_interrupt_status[6] & QSFP_HIGH_BIAS_ALARM) ||
9599 	    (qsfp_interrupt_status[6] & QSFP_HIGH_BIAS_WARNING))
9600 		dd_dev_err(dd, "%s: Cable TX channel 3/4 bias too high\n",
9601 			   __func__);
9602 
9603 	if ((qsfp_interrupt_status[6] & QSFP_LOW_BIAS_ALARM) ||
9604 	    (qsfp_interrupt_status[6] & QSFP_LOW_BIAS_WARNING))
9605 		dd_dev_err(dd, "%s: Cable TX channel 3/4 bias too low\n",
9606 			   __func__);
9607 
9608 	if ((qsfp_interrupt_status[7] & QSFP_HIGH_POWER_ALARM) ||
9609 	    (qsfp_interrupt_status[7] & QSFP_HIGH_POWER_WARNING))
9610 		dd_dev_err(dd, "%s: Cable TX channel 1/2 power too high\n",
9611 			   __func__);
9612 
9613 	if ((qsfp_interrupt_status[7] & QSFP_LOW_POWER_ALARM) ||
9614 	    (qsfp_interrupt_status[7] & QSFP_LOW_POWER_WARNING))
9615 		dd_dev_err(dd, "%s: Cable TX channel 1/2 power too low\n",
9616 			   __func__);
9617 
9618 	if ((qsfp_interrupt_status[8] & QSFP_HIGH_POWER_ALARM) ||
9619 	    (qsfp_interrupt_status[8] & QSFP_HIGH_POWER_WARNING))
9620 		dd_dev_err(dd, "%s: Cable TX channel 3/4 power too high\n",
9621 			   __func__);
9622 
9623 	if ((qsfp_interrupt_status[8] & QSFP_LOW_POWER_ALARM) ||
9624 	    (qsfp_interrupt_status[8] & QSFP_LOW_POWER_WARNING))
9625 		dd_dev_err(dd, "%s: Cable TX channel 3/4 power too low\n",
9626 			   __func__);
9627 
9628 	/* Bytes 9-10 and 11-12 are reserved */
9629 	/* Bytes 13-15 are vendor specific */
9630 
9631 	return 0;
9632 }
9633 
9634 /* This routine will only be scheduled if the QSFP module present is asserted */
9635 void qsfp_event(struct work_struct *work)
9636 {
9637 	struct qsfp_data *qd;
9638 	struct hfi1_pportdata *ppd;
9639 	struct hfi1_devdata *dd;
9640 
9641 	qd = container_of(work, struct qsfp_data, qsfp_work);
9642 	ppd = qd->ppd;
9643 	dd = ppd->dd;
9644 
9645 	/* Sanity check */
9646 	if (!qsfp_mod_present(ppd))
9647 		return;
9648 
9649 	if (ppd->host_link_state == HLS_DN_DISABLE) {
9650 		dd_dev_info(ppd->dd,
9651 			    "%s: stopping link start because link is disabled\n",
9652 			    __func__);
9653 		return;
9654 	}
9655 
9656 	/*
9657 	 * Turn DC back on after cable has been re-inserted. Up until
9658 	 * now, the DC has been in reset to save power.
9659 	 */
9660 	dc_start(dd);
9661 
9662 	if (qd->cache_refresh_required) {
9663 		set_qsfp_int_n(ppd, 0);
9664 
9665 		wait_for_qsfp_init(ppd);
9666 
9667 		/*
9668 		 * Allow INT_N to trigger the QSFP interrupt to watch
9669 		 * for alarms and warnings
9670 		 */
9671 		set_qsfp_int_n(ppd, 1);
9672 
9673 		start_link(ppd);
9674 	}
9675 
9676 	if (qd->check_interrupt_flags) {
9677 		u8 qsfp_interrupt_status[16] = {0,};
9678 
9679 		if (one_qsfp_read(ppd, dd->hfi1_id, 6,
9680 				  &qsfp_interrupt_status[0], 16) != 16) {
9681 			dd_dev_info(dd,
9682 				    "%s: Failed to read status of QSFP module\n",
9683 				    __func__);
9684 		} else {
9685 			unsigned long flags;
9686 
9687 			handle_qsfp_error_conditions(
9688 					ppd, qsfp_interrupt_status);
9689 			spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
9690 			ppd->qsfp_info.check_interrupt_flags = 0;
9691 			spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock,
9692 					       flags);
9693 		}
9694 	}
9695 }
9696 
9697 void init_qsfp_int(struct hfi1_devdata *dd)
9698 {
9699 	struct hfi1_pportdata *ppd = dd->pport;
9700 	u64 qsfp_mask;
9701 
9702 	qsfp_mask = (u64)(QSFP_HFI0_INT_N | QSFP_HFI0_MODPRST_N);
9703 	/* Clear current status to avoid spurious interrupts */
9704 	write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_CLEAR : ASIC_QSFP1_CLEAR,
9705 		  qsfp_mask);
9706 	write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_MASK : ASIC_QSFP1_MASK,
9707 		  qsfp_mask);
9708 
9709 	set_qsfp_int_n(ppd, 0);
9710 
9711 	/* Handle active low nature of INT_N and MODPRST_N pins */
9712 	if (qsfp_mod_present(ppd))
9713 		qsfp_mask &= ~(u64)QSFP_HFI0_MODPRST_N;
9714 	write_csr(dd,
9715 		  dd->hfi1_id ? ASIC_QSFP2_INVERT : ASIC_QSFP1_INVERT,
9716 		  qsfp_mask);
9717 
9718 	/* Enable the appropriate QSFP IRQ source */
9719 	if (!dd->hfi1_id)
9720 		set_intr_bits(dd, QSFP1_INT, QSFP1_INT, true);
9721 	else
9722 		set_intr_bits(dd, QSFP2_INT, QSFP2_INT, true);
9723 }
9724 
9725 /*
9726  * Do a one-time initialize of the LCB block.
9727  */
9728 static void init_lcb(struct hfi1_devdata *dd)
9729 {
9730 	/* simulator does not correctly handle LCB cclk loopback, skip */
9731 	if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR)
9732 		return;
9733 
9734 	/* the DC has been reset earlier in the driver load */
9735 
9736 	/* set LCB for cclk loopback on the port */
9737 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0x01);
9738 	write_csr(dd, DC_LCB_CFG_LANE_WIDTH, 0x00);
9739 	write_csr(dd, DC_LCB_CFG_REINIT_AS_SLAVE, 0x00);
9740 	write_csr(dd, DC_LCB_CFG_CNT_FOR_SKIP_STALL, 0x110);
9741 	write_csr(dd, DC_LCB_CFG_CLK_CNTR, 0x08);
9742 	write_csr(dd, DC_LCB_CFG_LOOPBACK, 0x02);
9743 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0x00);
9744 }
9745 
9746 /*
9747  * Perform a test read on the QSFP.  Return 0 on success, -ERRNO
9748  * on error.
9749  */
9750 static int test_qsfp_read(struct hfi1_pportdata *ppd)
9751 {
9752 	int ret;
9753 	u8 status;
9754 
9755 	/*
9756 	 * Report success if not a QSFP or, if it is a QSFP, but the cable is
9757 	 * not present
9758 	 */
9759 	if (ppd->port_type != PORT_TYPE_QSFP || !qsfp_mod_present(ppd))
9760 		return 0;
9761 
9762 	/* read byte 2, the status byte */
9763 	ret = one_qsfp_read(ppd, ppd->dd->hfi1_id, 2, &status, 1);
9764 	if (ret < 0)
9765 		return ret;
9766 	if (ret != 1)
9767 		return -EIO;
9768 
9769 	return 0; /* success */
9770 }
9771 
9772 /*
9773  * Values for QSFP retry.
9774  *
9775  * Give up after 10s (20 x 500ms).  The overall timeout was empirically
9776  * arrived at from experience on a large cluster.
9777  */
9778 #define MAX_QSFP_RETRIES 20
9779 #define QSFP_RETRY_WAIT 500 /* msec */
9780 
9781 /*
9782  * Try a QSFP read.  If it fails, schedule a retry for later.
9783  * Called on first link activation after driver load.
9784  */
9785 static void try_start_link(struct hfi1_pportdata *ppd)
9786 {
9787 	if (test_qsfp_read(ppd)) {
9788 		/* read failed */
9789 		if (ppd->qsfp_retry_count >= MAX_QSFP_RETRIES) {
9790 			dd_dev_err(ppd->dd, "QSFP not responding, giving up\n");
9791 			return;
9792 		}
9793 		dd_dev_info(ppd->dd,
9794 			    "QSFP not responding, waiting and retrying %d\n",
9795 			    (int)ppd->qsfp_retry_count);
9796 		ppd->qsfp_retry_count++;
9797 		queue_delayed_work(ppd->link_wq, &ppd->start_link_work,
9798 				   msecs_to_jiffies(QSFP_RETRY_WAIT));
9799 		return;
9800 	}
9801 	ppd->qsfp_retry_count = 0;
9802 
9803 	start_link(ppd);
9804 }
9805 
9806 /*
9807  * Workqueue function to start the link after a delay.
9808  */
9809 void handle_start_link(struct work_struct *work)
9810 {
9811 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
9812 						  start_link_work.work);
9813 	try_start_link(ppd);
9814 }
9815 
9816 int bringup_serdes(struct hfi1_pportdata *ppd)
9817 {
9818 	struct hfi1_devdata *dd = ppd->dd;
9819 	u64 guid;
9820 	int ret;
9821 
9822 	if (HFI1_CAP_IS_KSET(EXTENDED_PSN))
9823 		add_rcvctrl(dd, RCV_CTRL_RCV_EXTENDED_PSN_ENABLE_SMASK);
9824 
9825 	guid = ppd->guids[HFI1_PORT_GUID_INDEX];
9826 	if (!guid) {
9827 		if (dd->base_guid)
9828 			guid = dd->base_guid + ppd->port - 1;
9829 		ppd->guids[HFI1_PORT_GUID_INDEX] = guid;
9830 	}
9831 
9832 	/* Set linkinit_reason on power up per OPA spec */
9833 	ppd->linkinit_reason = OPA_LINKINIT_REASON_LINKUP;
9834 
9835 	/* one-time init of the LCB */
9836 	init_lcb(dd);
9837 
9838 	if (loopback) {
9839 		ret = init_loopback(dd);
9840 		if (ret < 0)
9841 			return ret;
9842 	}
9843 
9844 	get_port_type(ppd);
9845 	if (ppd->port_type == PORT_TYPE_QSFP) {
9846 		set_qsfp_int_n(ppd, 0);
9847 		wait_for_qsfp_init(ppd);
9848 		set_qsfp_int_n(ppd, 1);
9849 	}
9850 
9851 	try_start_link(ppd);
9852 	return 0;
9853 }
9854 
9855 void hfi1_quiet_serdes(struct hfi1_pportdata *ppd)
9856 {
9857 	struct hfi1_devdata *dd = ppd->dd;
9858 
9859 	/*
9860 	 * Shut down the link and keep it down.   First turn off that the
9861 	 * driver wants to allow the link to be up (driver_link_ready).
9862 	 * Then make sure the link is not automatically restarted
9863 	 * (link_enabled).  Cancel any pending restart.  And finally
9864 	 * go offline.
9865 	 */
9866 	ppd->driver_link_ready = 0;
9867 	ppd->link_enabled = 0;
9868 
9869 	ppd->qsfp_retry_count = MAX_QSFP_RETRIES; /* prevent more retries */
9870 	flush_delayed_work(&ppd->start_link_work);
9871 	cancel_delayed_work_sync(&ppd->start_link_work);
9872 
9873 	ppd->offline_disabled_reason =
9874 			HFI1_ODR_MASK(OPA_LINKDOWN_REASON_REBOOT);
9875 	set_link_down_reason(ppd, OPA_LINKDOWN_REASON_REBOOT, 0,
9876 			     OPA_LINKDOWN_REASON_REBOOT);
9877 	set_link_state(ppd, HLS_DN_OFFLINE);
9878 
9879 	/* disable the port */
9880 	clear_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
9881 	cancel_work_sync(&ppd->freeze_work);
9882 }
9883 
9884 static inline int init_cpu_counters(struct hfi1_devdata *dd)
9885 {
9886 	struct hfi1_pportdata *ppd;
9887 	int i;
9888 
9889 	ppd = (struct hfi1_pportdata *)(dd + 1);
9890 	for (i = 0; i < dd->num_pports; i++, ppd++) {
9891 		ppd->ibport_data.rvp.rc_acks = NULL;
9892 		ppd->ibport_data.rvp.rc_qacks = NULL;
9893 		ppd->ibport_data.rvp.rc_acks = alloc_percpu(u64);
9894 		ppd->ibport_data.rvp.rc_qacks = alloc_percpu(u64);
9895 		ppd->ibport_data.rvp.rc_delayed_comp = alloc_percpu(u64);
9896 		if (!ppd->ibport_data.rvp.rc_acks ||
9897 		    !ppd->ibport_data.rvp.rc_delayed_comp ||
9898 		    !ppd->ibport_data.rvp.rc_qacks)
9899 			return -ENOMEM;
9900 	}
9901 
9902 	return 0;
9903 }
9904 
9905 /*
9906  * index is the index into the receive array
9907  */
9908 void hfi1_put_tid(struct hfi1_devdata *dd, u32 index,
9909 		  u32 type, unsigned long pa, u16 order)
9910 {
9911 	u64 reg;
9912 
9913 	if (!(dd->flags & HFI1_PRESENT))
9914 		goto done;
9915 
9916 	if (type == PT_INVALID || type == PT_INVALID_FLUSH) {
9917 		pa = 0;
9918 		order = 0;
9919 	} else if (type > PT_INVALID) {
9920 		dd_dev_err(dd,
9921 			   "unexpected receive array type %u for index %u, not handled\n",
9922 			   type, index);
9923 		goto done;
9924 	}
9925 	trace_hfi1_put_tid(dd, index, type, pa, order);
9926 
9927 #define RT_ADDR_SHIFT 12	/* 4KB kernel address boundary */
9928 	reg = RCV_ARRAY_RT_WRITE_ENABLE_SMASK
9929 		| (u64)order << RCV_ARRAY_RT_BUF_SIZE_SHIFT
9930 		| ((pa >> RT_ADDR_SHIFT) & RCV_ARRAY_RT_ADDR_MASK)
9931 					<< RCV_ARRAY_RT_ADDR_SHIFT;
9932 	trace_hfi1_write_rcvarray(dd->rcvarray_wc + (index * 8), reg);
9933 	writeq(reg, dd->rcvarray_wc + (index * 8));
9934 
9935 	if (type == PT_EAGER || type == PT_INVALID_FLUSH || (index & 3) == 3)
9936 		/*
9937 		 * Eager entries are written and flushed
9938 		 *
9939 		 * Expected entries are flushed every 4 writes
9940 		 */
9941 		flush_wc();
9942 done:
9943 	return;
9944 }
9945 
9946 void hfi1_clear_tids(struct hfi1_ctxtdata *rcd)
9947 {
9948 	struct hfi1_devdata *dd = rcd->dd;
9949 	u32 i;
9950 
9951 	/* this could be optimized */
9952 	for (i = rcd->eager_base; i < rcd->eager_base +
9953 		     rcd->egrbufs.alloced; i++)
9954 		hfi1_put_tid(dd, i, PT_INVALID, 0, 0);
9955 
9956 	for (i = rcd->expected_base;
9957 			i < rcd->expected_base + rcd->expected_count; i++)
9958 		hfi1_put_tid(dd, i, PT_INVALID, 0, 0);
9959 }
9960 
9961 static const char * const ib_cfg_name_strings[] = {
9962 	"HFI1_IB_CFG_LIDLMC",
9963 	"HFI1_IB_CFG_LWID_DG_ENB",
9964 	"HFI1_IB_CFG_LWID_ENB",
9965 	"HFI1_IB_CFG_LWID",
9966 	"HFI1_IB_CFG_SPD_ENB",
9967 	"HFI1_IB_CFG_SPD",
9968 	"HFI1_IB_CFG_RXPOL_ENB",
9969 	"HFI1_IB_CFG_LREV_ENB",
9970 	"HFI1_IB_CFG_LINKLATENCY",
9971 	"HFI1_IB_CFG_HRTBT",
9972 	"HFI1_IB_CFG_OP_VLS",
9973 	"HFI1_IB_CFG_VL_HIGH_CAP",
9974 	"HFI1_IB_CFG_VL_LOW_CAP",
9975 	"HFI1_IB_CFG_OVERRUN_THRESH",
9976 	"HFI1_IB_CFG_PHYERR_THRESH",
9977 	"HFI1_IB_CFG_LINKDEFAULT",
9978 	"HFI1_IB_CFG_PKEYS",
9979 	"HFI1_IB_CFG_MTU",
9980 	"HFI1_IB_CFG_LSTATE",
9981 	"HFI1_IB_CFG_VL_HIGH_LIMIT",
9982 	"HFI1_IB_CFG_PMA_TICKS",
9983 	"HFI1_IB_CFG_PORT"
9984 };
9985 
9986 static const char *ib_cfg_name(int which)
9987 {
9988 	if (which < 0 || which >= ARRAY_SIZE(ib_cfg_name_strings))
9989 		return "invalid";
9990 	return ib_cfg_name_strings[which];
9991 }
9992 
9993 int hfi1_get_ib_cfg(struct hfi1_pportdata *ppd, int which)
9994 {
9995 	struct hfi1_devdata *dd = ppd->dd;
9996 	int val = 0;
9997 
9998 	switch (which) {
9999 	case HFI1_IB_CFG_LWID_ENB: /* allowed Link-width */
10000 		val = ppd->link_width_enabled;
10001 		break;
10002 	case HFI1_IB_CFG_LWID: /* currently active Link-width */
10003 		val = ppd->link_width_active;
10004 		break;
10005 	case HFI1_IB_CFG_SPD_ENB: /* allowed Link speeds */
10006 		val = ppd->link_speed_enabled;
10007 		break;
10008 	case HFI1_IB_CFG_SPD: /* current Link speed */
10009 		val = ppd->link_speed_active;
10010 		break;
10011 
10012 	case HFI1_IB_CFG_RXPOL_ENB: /* Auto-RX-polarity enable */
10013 	case HFI1_IB_CFG_LREV_ENB: /* Auto-Lane-reversal enable */
10014 	case HFI1_IB_CFG_LINKLATENCY:
10015 		goto unimplemented;
10016 
10017 	case HFI1_IB_CFG_OP_VLS:
10018 		val = ppd->actual_vls_operational;
10019 		break;
10020 	case HFI1_IB_CFG_VL_HIGH_CAP: /* VL arb high priority table size */
10021 		val = VL_ARB_HIGH_PRIO_TABLE_SIZE;
10022 		break;
10023 	case HFI1_IB_CFG_VL_LOW_CAP: /* VL arb low priority table size */
10024 		val = VL_ARB_LOW_PRIO_TABLE_SIZE;
10025 		break;
10026 	case HFI1_IB_CFG_OVERRUN_THRESH: /* IB overrun threshold */
10027 		val = ppd->overrun_threshold;
10028 		break;
10029 	case HFI1_IB_CFG_PHYERR_THRESH: /* IB PHY error threshold */
10030 		val = ppd->phy_error_threshold;
10031 		break;
10032 	case HFI1_IB_CFG_LINKDEFAULT: /* IB link default (sleep/poll) */
10033 		val = HLS_DEFAULT;
10034 		break;
10035 
10036 	case HFI1_IB_CFG_HRTBT: /* Heartbeat off/enable/auto */
10037 	case HFI1_IB_CFG_PMA_TICKS:
10038 	default:
10039 unimplemented:
10040 		if (HFI1_CAP_IS_KSET(PRINT_UNIMPL))
10041 			dd_dev_info(
10042 				dd,
10043 				"%s: which %s: not implemented\n",
10044 				__func__,
10045 				ib_cfg_name(which));
10046 		break;
10047 	}
10048 
10049 	return val;
10050 }
10051 
10052 /*
10053  * The largest MAD packet size.
10054  */
10055 #define MAX_MAD_PACKET 2048
10056 
10057 /*
10058  * Return the maximum header bytes that can go on the _wire_
10059  * for this device. This count includes the ICRC which is
10060  * not part of the packet held in memory but it is appended
10061  * by the HW.
10062  * This is dependent on the device's receive header entry size.
10063  * HFI allows this to be set per-receive context, but the
10064  * driver presently enforces a global value.
10065  */
10066 u32 lrh_max_header_bytes(struct hfi1_devdata *dd)
10067 {
10068 	/*
10069 	 * The maximum non-payload (MTU) bytes in LRH.PktLen are
10070 	 * the Receive Header Entry Size minus the PBC (or RHF) size
10071 	 * plus one DW for the ICRC appended by HW.
10072 	 *
10073 	 * dd->rcd[0].rcvhdrqentsize is in DW.
10074 	 * We use rcd[0] as all context will have the same value. Also,
10075 	 * the first kernel context would have been allocated by now so
10076 	 * we are guaranteed a valid value.
10077 	 */
10078 	return (get_hdrqentsize(dd->rcd[0]) - 2/*PBC/RHF*/ + 1/*ICRC*/) << 2;
10079 }
10080 
10081 /*
10082  * Set Send Length
10083  * @ppd - per port data
10084  *
10085  * Set the MTU by limiting how many DWs may be sent.  The SendLenCheck*
10086  * registers compare against LRH.PktLen, so use the max bytes included
10087  * in the LRH.
10088  *
10089  * This routine changes all VL values except VL15, which it maintains at
10090  * the same value.
10091  */
10092 static void set_send_length(struct hfi1_pportdata *ppd)
10093 {
10094 	struct hfi1_devdata *dd = ppd->dd;
10095 	u32 max_hb = lrh_max_header_bytes(dd), dcmtu;
10096 	u32 maxvlmtu = dd->vld[15].mtu;
10097 	u64 len1 = 0, len2 = (((dd->vld[15].mtu + max_hb) >> 2)
10098 			      & SEND_LEN_CHECK1_LEN_VL15_MASK) <<
10099 		SEND_LEN_CHECK1_LEN_VL15_SHIFT;
10100 	int i, j;
10101 	u32 thres;
10102 
10103 	for (i = 0; i < ppd->vls_supported; i++) {
10104 		if (dd->vld[i].mtu > maxvlmtu)
10105 			maxvlmtu = dd->vld[i].mtu;
10106 		if (i <= 3)
10107 			len1 |= (((dd->vld[i].mtu + max_hb) >> 2)
10108 				 & SEND_LEN_CHECK0_LEN_VL0_MASK) <<
10109 				((i % 4) * SEND_LEN_CHECK0_LEN_VL1_SHIFT);
10110 		else
10111 			len2 |= (((dd->vld[i].mtu + max_hb) >> 2)
10112 				 & SEND_LEN_CHECK1_LEN_VL4_MASK) <<
10113 				((i % 4) * SEND_LEN_CHECK1_LEN_VL5_SHIFT);
10114 	}
10115 	write_csr(dd, SEND_LEN_CHECK0, len1);
10116 	write_csr(dd, SEND_LEN_CHECK1, len2);
10117 	/* adjust kernel credit return thresholds based on new MTUs */
10118 	/* all kernel receive contexts have the same hdrqentsize */
10119 	for (i = 0; i < ppd->vls_supported; i++) {
10120 		thres = min(sc_percent_to_threshold(dd->vld[i].sc, 50),
10121 			    sc_mtu_to_threshold(dd->vld[i].sc,
10122 						dd->vld[i].mtu,
10123 						get_hdrqentsize(dd->rcd[0])));
10124 		for (j = 0; j < INIT_SC_PER_VL; j++)
10125 			sc_set_cr_threshold(
10126 					pio_select_send_context_vl(dd, j, i),
10127 					    thres);
10128 	}
10129 	thres = min(sc_percent_to_threshold(dd->vld[15].sc, 50),
10130 		    sc_mtu_to_threshold(dd->vld[15].sc,
10131 					dd->vld[15].mtu,
10132 					dd->rcd[0]->rcvhdrqentsize));
10133 	sc_set_cr_threshold(dd->vld[15].sc, thres);
10134 
10135 	/* Adjust maximum MTU for the port in DC */
10136 	dcmtu = maxvlmtu == 10240 ? DCC_CFG_PORT_MTU_CAP_10240 :
10137 		(ilog2(maxvlmtu >> 8) + 1);
10138 	len1 = read_csr(ppd->dd, DCC_CFG_PORT_CONFIG);
10139 	len1 &= ~DCC_CFG_PORT_CONFIG_MTU_CAP_SMASK;
10140 	len1 |= ((u64)dcmtu & DCC_CFG_PORT_CONFIG_MTU_CAP_MASK) <<
10141 		DCC_CFG_PORT_CONFIG_MTU_CAP_SHIFT;
10142 	write_csr(ppd->dd, DCC_CFG_PORT_CONFIG, len1);
10143 }
10144 
10145 static void set_lidlmc(struct hfi1_pportdata *ppd)
10146 {
10147 	int i;
10148 	u64 sreg = 0;
10149 	struct hfi1_devdata *dd = ppd->dd;
10150 	u32 mask = ~((1U << ppd->lmc) - 1);
10151 	u64 c1 = read_csr(ppd->dd, DCC_CFG_PORT_CONFIG1);
10152 	u32 lid;
10153 
10154 	/*
10155 	 * Program 0 in CSR if port lid is extended. This prevents
10156 	 * 9B packets being sent out for large lids.
10157 	 */
10158 	lid = (ppd->lid >= be16_to_cpu(IB_MULTICAST_LID_BASE)) ? 0 : ppd->lid;
10159 	c1 &= ~(DCC_CFG_PORT_CONFIG1_TARGET_DLID_SMASK
10160 		| DCC_CFG_PORT_CONFIG1_DLID_MASK_SMASK);
10161 	c1 |= ((lid & DCC_CFG_PORT_CONFIG1_TARGET_DLID_MASK)
10162 			<< DCC_CFG_PORT_CONFIG1_TARGET_DLID_SHIFT) |
10163 	      ((mask & DCC_CFG_PORT_CONFIG1_DLID_MASK_MASK)
10164 			<< DCC_CFG_PORT_CONFIG1_DLID_MASK_SHIFT);
10165 	write_csr(ppd->dd, DCC_CFG_PORT_CONFIG1, c1);
10166 
10167 	/*
10168 	 * Iterate over all the send contexts and set their SLID check
10169 	 */
10170 	sreg = ((mask & SEND_CTXT_CHECK_SLID_MASK_MASK) <<
10171 			SEND_CTXT_CHECK_SLID_MASK_SHIFT) |
10172 	       (((lid & mask) & SEND_CTXT_CHECK_SLID_VALUE_MASK) <<
10173 			SEND_CTXT_CHECK_SLID_VALUE_SHIFT);
10174 
10175 	for (i = 0; i < chip_send_contexts(dd); i++) {
10176 		hfi1_cdbg(LINKVERB, "SendContext[%d].SLID_CHECK = 0x%x",
10177 			  i, (u32)sreg);
10178 		write_kctxt_csr(dd, i, SEND_CTXT_CHECK_SLID, sreg);
10179 	}
10180 
10181 	/* Now we have to do the same thing for the sdma engines */
10182 	sdma_update_lmc(dd, mask, lid);
10183 }
10184 
10185 static const char *state_completed_string(u32 completed)
10186 {
10187 	static const char * const state_completed[] = {
10188 		"EstablishComm",
10189 		"OptimizeEQ",
10190 		"VerifyCap"
10191 	};
10192 
10193 	if (completed < ARRAY_SIZE(state_completed))
10194 		return state_completed[completed];
10195 
10196 	return "unknown";
10197 }
10198 
10199 static const char all_lanes_dead_timeout_expired[] =
10200 	"All lanes were inactive – was the interconnect media removed?";
10201 static const char tx_out_of_policy[] =
10202 	"Passing lanes on local port do not meet the local link width policy";
10203 static const char no_state_complete[] =
10204 	"State timeout occurred before link partner completed the state";
10205 static const char * const state_complete_reasons[] = {
10206 	[0x00] = "Reason unknown",
10207 	[0x01] = "Link was halted by driver, refer to LinkDownReason",
10208 	[0x02] = "Link partner reported failure",
10209 	[0x10] = "Unable to achieve frame sync on any lane",
10210 	[0x11] =
10211 	  "Unable to find a common bit rate with the link partner",
10212 	[0x12] =
10213 	  "Unable to achieve frame sync on sufficient lanes to meet the local link width policy",
10214 	[0x13] =
10215 	  "Unable to identify preset equalization on sufficient lanes to meet the local link width policy",
10216 	[0x14] = no_state_complete,
10217 	[0x15] =
10218 	  "State timeout occurred before link partner identified equalization presets",
10219 	[0x16] =
10220 	  "Link partner completed the EstablishComm state, but the passing lanes do not meet the local link width policy",
10221 	[0x17] = tx_out_of_policy,
10222 	[0x20] = all_lanes_dead_timeout_expired,
10223 	[0x21] =
10224 	  "Unable to achieve acceptable BER on sufficient lanes to meet the local link width policy",
10225 	[0x22] = no_state_complete,
10226 	[0x23] =
10227 	  "Link partner completed the OptimizeEq state, but the passing lanes do not meet the local link width policy",
10228 	[0x24] = tx_out_of_policy,
10229 	[0x30] = all_lanes_dead_timeout_expired,
10230 	[0x31] =
10231 	  "State timeout occurred waiting for host to process received frames",
10232 	[0x32] = no_state_complete,
10233 	[0x33] =
10234 	  "Link partner completed the VerifyCap state, but the passing lanes do not meet the local link width policy",
10235 	[0x34] = tx_out_of_policy,
10236 	[0x35] = "Negotiated link width is mutually exclusive",
10237 	[0x36] =
10238 	  "Timed out before receiving verifycap frames in VerifyCap.Exchange",
10239 	[0x37] = "Unable to resolve secure data exchange",
10240 };
10241 
10242 static const char *state_complete_reason_code_string(struct hfi1_pportdata *ppd,
10243 						     u32 code)
10244 {
10245 	const char *str = NULL;
10246 
10247 	if (code < ARRAY_SIZE(state_complete_reasons))
10248 		str = state_complete_reasons[code];
10249 
10250 	if (str)
10251 		return str;
10252 	return "Reserved";
10253 }
10254 
10255 /* describe the given last state complete frame */
10256 static void decode_state_complete(struct hfi1_pportdata *ppd, u32 frame,
10257 				  const char *prefix)
10258 {
10259 	struct hfi1_devdata *dd = ppd->dd;
10260 	u32 success;
10261 	u32 state;
10262 	u32 reason;
10263 	u32 lanes;
10264 
10265 	/*
10266 	 * Decode frame:
10267 	 *  [ 0: 0] - success
10268 	 *  [ 3: 1] - state
10269 	 *  [ 7: 4] - next state timeout
10270 	 *  [15: 8] - reason code
10271 	 *  [31:16] - lanes
10272 	 */
10273 	success = frame & 0x1;
10274 	state = (frame >> 1) & 0x7;
10275 	reason = (frame >> 8) & 0xff;
10276 	lanes = (frame >> 16) & 0xffff;
10277 
10278 	dd_dev_err(dd, "Last %s LNI state complete frame 0x%08x:\n",
10279 		   prefix, frame);
10280 	dd_dev_err(dd, "    last reported state state: %s (0x%x)\n",
10281 		   state_completed_string(state), state);
10282 	dd_dev_err(dd, "    state successfully completed: %s\n",
10283 		   success ? "yes" : "no");
10284 	dd_dev_err(dd, "    fail reason 0x%x: %s\n",
10285 		   reason, state_complete_reason_code_string(ppd, reason));
10286 	dd_dev_err(dd, "    passing lane mask: 0x%x", lanes);
10287 }
10288 
10289 /*
10290  * Read the last state complete frames and explain them.  This routine
10291  * expects to be called if the link went down during link negotiation
10292  * and initialization (LNI).  That is, anywhere between polling and link up.
10293  */
10294 static void check_lni_states(struct hfi1_pportdata *ppd)
10295 {
10296 	u32 last_local_state;
10297 	u32 last_remote_state;
10298 
10299 	read_last_local_state(ppd->dd, &last_local_state);
10300 	read_last_remote_state(ppd->dd, &last_remote_state);
10301 
10302 	/*
10303 	 * Don't report anything if there is nothing to report.  A value of
10304 	 * 0 means the link was taken down while polling and there was no
10305 	 * training in-process.
10306 	 */
10307 	if (last_local_state == 0 && last_remote_state == 0)
10308 		return;
10309 
10310 	decode_state_complete(ppd, last_local_state, "transmitted");
10311 	decode_state_complete(ppd, last_remote_state, "received");
10312 }
10313 
10314 /* wait for wait_ms for LINK_TRANSFER_ACTIVE to go to 1 */
10315 static int wait_link_transfer_active(struct hfi1_devdata *dd, int wait_ms)
10316 {
10317 	u64 reg;
10318 	unsigned long timeout;
10319 
10320 	/* watch LCB_STS_LINK_TRANSFER_ACTIVE */
10321 	timeout = jiffies + msecs_to_jiffies(wait_ms);
10322 	while (1) {
10323 		reg = read_csr(dd, DC_LCB_STS_LINK_TRANSFER_ACTIVE);
10324 		if (reg)
10325 			break;
10326 		if (time_after(jiffies, timeout)) {
10327 			dd_dev_err(dd,
10328 				   "timeout waiting for LINK_TRANSFER_ACTIVE\n");
10329 			return -ETIMEDOUT;
10330 		}
10331 		udelay(2);
10332 	}
10333 	return 0;
10334 }
10335 
10336 /* called when the logical link state is not down as it should be */
10337 static void force_logical_link_state_down(struct hfi1_pportdata *ppd)
10338 {
10339 	struct hfi1_devdata *dd = ppd->dd;
10340 
10341 	/*
10342 	 * Bring link up in LCB loopback
10343 	 */
10344 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 1);
10345 	write_csr(dd, DC_LCB_CFG_IGNORE_LOST_RCLK,
10346 		  DC_LCB_CFG_IGNORE_LOST_RCLK_EN_SMASK);
10347 
10348 	write_csr(dd, DC_LCB_CFG_LANE_WIDTH, 0);
10349 	write_csr(dd, DC_LCB_CFG_REINIT_AS_SLAVE, 0);
10350 	write_csr(dd, DC_LCB_CFG_CNT_FOR_SKIP_STALL, 0x110);
10351 	write_csr(dd, DC_LCB_CFG_LOOPBACK, 0x2);
10352 
10353 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0);
10354 	(void)read_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET);
10355 	udelay(3);
10356 	write_csr(dd, DC_LCB_CFG_ALLOW_LINK_UP, 1);
10357 	write_csr(dd, DC_LCB_CFG_RUN, 1ull << DC_LCB_CFG_RUN_EN_SHIFT);
10358 
10359 	wait_link_transfer_active(dd, 100);
10360 
10361 	/*
10362 	 * Bring the link down again.
10363 	 */
10364 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 1);
10365 	write_csr(dd, DC_LCB_CFG_ALLOW_LINK_UP, 0);
10366 	write_csr(dd, DC_LCB_CFG_IGNORE_LOST_RCLK, 0);
10367 
10368 	dd_dev_info(ppd->dd, "logical state forced to LINK_DOWN\n");
10369 }
10370 
10371 /*
10372  * Helper for set_link_state().  Do not call except from that routine.
10373  * Expects ppd->hls_mutex to be held.
10374  *
10375  * @rem_reason value to be sent to the neighbor
10376  *
10377  * LinkDownReasons only set if transition succeeds.
10378  */
10379 static int goto_offline(struct hfi1_pportdata *ppd, u8 rem_reason)
10380 {
10381 	struct hfi1_devdata *dd = ppd->dd;
10382 	u32 previous_state;
10383 	int offline_state_ret;
10384 	int ret;
10385 
10386 	update_lcb_cache(dd);
10387 
10388 	previous_state = ppd->host_link_state;
10389 	ppd->host_link_state = HLS_GOING_OFFLINE;
10390 
10391 	/* start offline transition */
10392 	ret = set_physical_link_state(dd, (rem_reason << 8) | PLS_OFFLINE);
10393 
10394 	if (ret != HCMD_SUCCESS) {
10395 		dd_dev_err(dd,
10396 			   "Failed to transition to Offline link state, return %d\n",
10397 			   ret);
10398 		return -EINVAL;
10399 	}
10400 	if (ppd->offline_disabled_reason ==
10401 			HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE))
10402 		ppd->offline_disabled_reason =
10403 		HFI1_ODR_MASK(OPA_LINKDOWN_REASON_TRANSIENT);
10404 
10405 	offline_state_ret = wait_phys_link_offline_substates(ppd, 10000);
10406 	if (offline_state_ret < 0)
10407 		return offline_state_ret;
10408 
10409 	/* Disabling AOC transmitters */
10410 	if (ppd->port_type == PORT_TYPE_QSFP &&
10411 	    ppd->qsfp_info.limiting_active &&
10412 	    qsfp_mod_present(ppd)) {
10413 		int ret;
10414 
10415 		ret = acquire_chip_resource(dd, qsfp_resource(dd), QSFP_WAIT);
10416 		if (ret == 0) {
10417 			set_qsfp_tx(ppd, 0);
10418 			release_chip_resource(dd, qsfp_resource(dd));
10419 		} else {
10420 			/* not fatal, but should warn */
10421 			dd_dev_err(dd,
10422 				   "Unable to acquire lock to turn off QSFP TX\n");
10423 		}
10424 	}
10425 
10426 	/*
10427 	 * Wait for the offline.Quiet transition if it hasn't happened yet. It
10428 	 * can take a while for the link to go down.
10429 	 */
10430 	if (offline_state_ret != PLS_OFFLINE_QUIET) {
10431 		ret = wait_physical_linkstate(ppd, PLS_OFFLINE, 30000);
10432 		if (ret < 0)
10433 			return ret;
10434 	}
10435 
10436 	/*
10437 	 * Now in charge of LCB - must be after the physical state is
10438 	 * offline.quiet and before host_link_state is changed.
10439 	 */
10440 	set_host_lcb_access(dd);
10441 	write_csr(dd, DC_LCB_ERR_EN, ~0ull); /* watch LCB errors */
10442 
10443 	/* make sure the logical state is also down */
10444 	ret = wait_logical_linkstate(ppd, IB_PORT_DOWN, 1000);
10445 	if (ret)
10446 		force_logical_link_state_down(ppd);
10447 
10448 	ppd->host_link_state = HLS_LINK_COOLDOWN; /* LCB access allowed */
10449 	update_statusp(ppd, IB_PORT_DOWN);
10450 
10451 	/*
10452 	 * The LNI has a mandatory wait time after the physical state
10453 	 * moves to Offline.Quiet.  The wait time may be different
10454 	 * depending on how the link went down.  The 8051 firmware
10455 	 * will observe the needed wait time and only move to ready
10456 	 * when that is completed.  The largest of the quiet timeouts
10457 	 * is 6s, so wait that long and then at least 0.5s more for
10458 	 * other transitions, and another 0.5s for a buffer.
10459 	 */
10460 	ret = wait_fm_ready(dd, 7000);
10461 	if (ret) {
10462 		dd_dev_err(dd,
10463 			   "After going offline, timed out waiting for the 8051 to become ready to accept host requests\n");
10464 		/* state is really offline, so make it so */
10465 		ppd->host_link_state = HLS_DN_OFFLINE;
10466 		return ret;
10467 	}
10468 
10469 	/*
10470 	 * The state is now offline and the 8051 is ready to accept host
10471 	 * requests.
10472 	 *	- change our state
10473 	 *	- notify others if we were previously in a linkup state
10474 	 */
10475 	ppd->host_link_state = HLS_DN_OFFLINE;
10476 	if (previous_state & HLS_UP) {
10477 		/* went down while link was up */
10478 		handle_linkup_change(dd, 0);
10479 	} else if (previous_state
10480 			& (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) {
10481 		/* went down while attempting link up */
10482 		check_lni_states(ppd);
10483 
10484 		/* The QSFP doesn't need to be reset on LNI failure */
10485 		ppd->qsfp_info.reset_needed = 0;
10486 	}
10487 
10488 	/* the active link width (downgrade) is 0 on link down */
10489 	ppd->link_width_active = 0;
10490 	ppd->link_width_downgrade_tx_active = 0;
10491 	ppd->link_width_downgrade_rx_active = 0;
10492 	ppd->current_egress_rate = 0;
10493 	return 0;
10494 }
10495 
10496 /* return the link state name */
10497 static const char *link_state_name(u32 state)
10498 {
10499 	const char *name;
10500 	int n = ilog2(state);
10501 	static const char * const names[] = {
10502 		[__HLS_UP_INIT_BP]	 = "INIT",
10503 		[__HLS_UP_ARMED_BP]	 = "ARMED",
10504 		[__HLS_UP_ACTIVE_BP]	 = "ACTIVE",
10505 		[__HLS_DN_DOWNDEF_BP]	 = "DOWNDEF",
10506 		[__HLS_DN_POLL_BP]	 = "POLL",
10507 		[__HLS_DN_DISABLE_BP]	 = "DISABLE",
10508 		[__HLS_DN_OFFLINE_BP]	 = "OFFLINE",
10509 		[__HLS_VERIFY_CAP_BP]	 = "VERIFY_CAP",
10510 		[__HLS_GOING_UP_BP]	 = "GOING_UP",
10511 		[__HLS_GOING_OFFLINE_BP] = "GOING_OFFLINE",
10512 		[__HLS_LINK_COOLDOWN_BP] = "LINK_COOLDOWN"
10513 	};
10514 
10515 	name = n < ARRAY_SIZE(names) ? names[n] : NULL;
10516 	return name ? name : "unknown";
10517 }
10518 
10519 /* return the link state reason name */
10520 static const char *link_state_reason_name(struct hfi1_pportdata *ppd, u32 state)
10521 {
10522 	if (state == HLS_UP_INIT) {
10523 		switch (ppd->linkinit_reason) {
10524 		case OPA_LINKINIT_REASON_LINKUP:
10525 			return "(LINKUP)";
10526 		case OPA_LINKINIT_REASON_FLAPPING:
10527 			return "(FLAPPING)";
10528 		case OPA_LINKINIT_OUTSIDE_POLICY:
10529 			return "(OUTSIDE_POLICY)";
10530 		case OPA_LINKINIT_QUARANTINED:
10531 			return "(QUARANTINED)";
10532 		case OPA_LINKINIT_INSUFIC_CAPABILITY:
10533 			return "(INSUFIC_CAPABILITY)";
10534 		default:
10535 			break;
10536 		}
10537 	}
10538 	return "";
10539 }
10540 
10541 /*
10542  * driver_pstate - convert the driver's notion of a port's
10543  * state (an HLS_*) into a physical state (a {IB,OPA}_PORTPHYSSTATE_*).
10544  * Return -1 (converted to a u32) to indicate error.
10545  */
10546 u32 driver_pstate(struct hfi1_pportdata *ppd)
10547 {
10548 	switch (ppd->host_link_state) {
10549 	case HLS_UP_INIT:
10550 	case HLS_UP_ARMED:
10551 	case HLS_UP_ACTIVE:
10552 		return IB_PORTPHYSSTATE_LINKUP;
10553 	case HLS_DN_POLL:
10554 		return IB_PORTPHYSSTATE_POLLING;
10555 	case HLS_DN_DISABLE:
10556 		return IB_PORTPHYSSTATE_DISABLED;
10557 	case HLS_DN_OFFLINE:
10558 		return OPA_PORTPHYSSTATE_OFFLINE;
10559 	case HLS_VERIFY_CAP:
10560 		return IB_PORTPHYSSTATE_TRAINING;
10561 	case HLS_GOING_UP:
10562 		return IB_PORTPHYSSTATE_TRAINING;
10563 	case HLS_GOING_OFFLINE:
10564 		return OPA_PORTPHYSSTATE_OFFLINE;
10565 	case HLS_LINK_COOLDOWN:
10566 		return OPA_PORTPHYSSTATE_OFFLINE;
10567 	case HLS_DN_DOWNDEF:
10568 	default:
10569 		dd_dev_err(ppd->dd, "invalid host_link_state 0x%x\n",
10570 			   ppd->host_link_state);
10571 		return  -1;
10572 	}
10573 }
10574 
10575 /*
10576  * driver_lstate - convert the driver's notion of a port's
10577  * state (an HLS_*) into a logical state (a IB_PORT_*). Return -1
10578  * (converted to a u32) to indicate error.
10579  */
10580 u32 driver_lstate(struct hfi1_pportdata *ppd)
10581 {
10582 	if (ppd->host_link_state && (ppd->host_link_state & HLS_DOWN))
10583 		return IB_PORT_DOWN;
10584 
10585 	switch (ppd->host_link_state & HLS_UP) {
10586 	case HLS_UP_INIT:
10587 		return IB_PORT_INIT;
10588 	case HLS_UP_ARMED:
10589 		return IB_PORT_ARMED;
10590 	case HLS_UP_ACTIVE:
10591 		return IB_PORT_ACTIVE;
10592 	default:
10593 		dd_dev_err(ppd->dd, "invalid host_link_state 0x%x\n",
10594 			   ppd->host_link_state);
10595 	return -1;
10596 	}
10597 }
10598 
10599 void set_link_down_reason(struct hfi1_pportdata *ppd, u8 lcl_reason,
10600 			  u8 neigh_reason, u8 rem_reason)
10601 {
10602 	if (ppd->local_link_down_reason.latest == 0 &&
10603 	    ppd->neigh_link_down_reason.latest == 0) {
10604 		ppd->local_link_down_reason.latest = lcl_reason;
10605 		ppd->neigh_link_down_reason.latest = neigh_reason;
10606 		ppd->remote_link_down_reason = rem_reason;
10607 	}
10608 }
10609 
10610 /**
10611  * data_vls_operational() - Verify if data VL BCT credits and MTU
10612  *			    are both set.
10613  * @ppd: pointer to hfi1_pportdata structure
10614  *
10615  * Return: true - Ok, false -otherwise.
10616  */
10617 static inline bool data_vls_operational(struct hfi1_pportdata *ppd)
10618 {
10619 	int i;
10620 	u64 reg;
10621 
10622 	if (!ppd->actual_vls_operational)
10623 		return false;
10624 
10625 	for (i = 0; i < ppd->vls_supported; i++) {
10626 		reg = read_csr(ppd->dd, SEND_CM_CREDIT_VL + (8 * i));
10627 		if ((reg && !ppd->dd->vld[i].mtu) ||
10628 		    (!reg && ppd->dd->vld[i].mtu))
10629 			return false;
10630 	}
10631 
10632 	return true;
10633 }
10634 
10635 /*
10636  * Change the physical and/or logical link state.
10637  *
10638  * Do not call this routine while inside an interrupt.  It contains
10639  * calls to routines that can take multiple seconds to finish.
10640  *
10641  * Returns 0 on success, -errno on failure.
10642  */
10643 int set_link_state(struct hfi1_pportdata *ppd, u32 state)
10644 {
10645 	struct hfi1_devdata *dd = ppd->dd;
10646 	struct ib_event event = {.device = NULL};
10647 	int ret1, ret = 0;
10648 	int orig_new_state, poll_bounce;
10649 
10650 	mutex_lock(&ppd->hls_lock);
10651 
10652 	orig_new_state = state;
10653 	if (state == HLS_DN_DOWNDEF)
10654 		state = HLS_DEFAULT;
10655 
10656 	/* interpret poll -> poll as a link bounce */
10657 	poll_bounce = ppd->host_link_state == HLS_DN_POLL &&
10658 		      state == HLS_DN_POLL;
10659 
10660 	dd_dev_info(dd, "%s: current %s, new %s %s%s\n", __func__,
10661 		    link_state_name(ppd->host_link_state),
10662 		    link_state_name(orig_new_state),
10663 		    poll_bounce ? "(bounce) " : "",
10664 		    link_state_reason_name(ppd, state));
10665 
10666 	/*
10667 	 * If we're going to a (HLS_*) link state that implies the logical
10668 	 * link state is neither of (IB_PORT_ARMED, IB_PORT_ACTIVE), then
10669 	 * reset is_sm_config_started to 0.
10670 	 */
10671 	if (!(state & (HLS_UP_ARMED | HLS_UP_ACTIVE)))
10672 		ppd->is_sm_config_started = 0;
10673 
10674 	/*
10675 	 * Do nothing if the states match.  Let a poll to poll link bounce
10676 	 * go through.
10677 	 */
10678 	if (ppd->host_link_state == state && !poll_bounce)
10679 		goto done;
10680 
10681 	switch (state) {
10682 	case HLS_UP_INIT:
10683 		if (ppd->host_link_state == HLS_DN_POLL &&
10684 		    (quick_linkup || dd->icode == ICODE_FUNCTIONAL_SIMULATOR)) {
10685 			/*
10686 			 * Quick link up jumps from polling to here.
10687 			 *
10688 			 * Whether in normal or loopback mode, the
10689 			 * simulator jumps from polling to link up.
10690 			 * Accept that here.
10691 			 */
10692 			/* OK */
10693 		} else if (ppd->host_link_state != HLS_GOING_UP) {
10694 			goto unexpected;
10695 		}
10696 
10697 		/*
10698 		 * Wait for Link_Up physical state.
10699 		 * Physical and Logical states should already be
10700 		 * be transitioned to LinkUp and LinkInit respectively.
10701 		 */
10702 		ret = wait_physical_linkstate(ppd, PLS_LINKUP, 1000);
10703 		if (ret) {
10704 			dd_dev_err(dd,
10705 				   "%s: physical state did not change to LINK-UP\n",
10706 				   __func__);
10707 			break;
10708 		}
10709 
10710 		ret = wait_logical_linkstate(ppd, IB_PORT_INIT, 1000);
10711 		if (ret) {
10712 			dd_dev_err(dd,
10713 				   "%s: logical state did not change to INIT\n",
10714 				   __func__);
10715 			break;
10716 		}
10717 
10718 		/* clear old transient LINKINIT_REASON code */
10719 		if (ppd->linkinit_reason >= OPA_LINKINIT_REASON_CLEAR)
10720 			ppd->linkinit_reason =
10721 				OPA_LINKINIT_REASON_LINKUP;
10722 
10723 		/* enable the port */
10724 		add_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
10725 
10726 		handle_linkup_change(dd, 1);
10727 		pio_kernel_linkup(dd);
10728 
10729 		/*
10730 		 * After link up, a new link width will have been set.
10731 		 * Update the xmit counters with regards to the new
10732 		 * link width.
10733 		 */
10734 		update_xmit_counters(ppd, ppd->link_width_active);
10735 
10736 		ppd->host_link_state = HLS_UP_INIT;
10737 		update_statusp(ppd, IB_PORT_INIT);
10738 		break;
10739 	case HLS_UP_ARMED:
10740 		if (ppd->host_link_state != HLS_UP_INIT)
10741 			goto unexpected;
10742 
10743 		if (!data_vls_operational(ppd)) {
10744 			dd_dev_err(dd,
10745 				   "%s: Invalid data VL credits or mtu\n",
10746 				   __func__);
10747 			ret = -EINVAL;
10748 			break;
10749 		}
10750 
10751 		set_logical_state(dd, LSTATE_ARMED);
10752 		ret = wait_logical_linkstate(ppd, IB_PORT_ARMED, 1000);
10753 		if (ret) {
10754 			dd_dev_err(dd,
10755 				   "%s: logical state did not change to ARMED\n",
10756 				   __func__);
10757 			break;
10758 		}
10759 		ppd->host_link_state = HLS_UP_ARMED;
10760 		update_statusp(ppd, IB_PORT_ARMED);
10761 		/*
10762 		 * The simulator does not currently implement SMA messages,
10763 		 * so neighbor_normal is not set.  Set it here when we first
10764 		 * move to Armed.
10765 		 */
10766 		if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR)
10767 			ppd->neighbor_normal = 1;
10768 		break;
10769 	case HLS_UP_ACTIVE:
10770 		if (ppd->host_link_state != HLS_UP_ARMED)
10771 			goto unexpected;
10772 
10773 		set_logical_state(dd, LSTATE_ACTIVE);
10774 		ret = wait_logical_linkstate(ppd, IB_PORT_ACTIVE, 1000);
10775 		if (ret) {
10776 			dd_dev_err(dd,
10777 				   "%s: logical state did not change to ACTIVE\n",
10778 				   __func__);
10779 		} else {
10780 			/* tell all engines to go running */
10781 			sdma_all_running(dd);
10782 			ppd->host_link_state = HLS_UP_ACTIVE;
10783 			update_statusp(ppd, IB_PORT_ACTIVE);
10784 
10785 			/* Signal the IB layer that the port has went active */
10786 			event.device = &dd->verbs_dev.rdi.ibdev;
10787 			event.element.port_num = ppd->port;
10788 			event.event = IB_EVENT_PORT_ACTIVE;
10789 		}
10790 		break;
10791 	case HLS_DN_POLL:
10792 		if ((ppd->host_link_state == HLS_DN_DISABLE ||
10793 		     ppd->host_link_state == HLS_DN_OFFLINE) &&
10794 		    dd->dc_shutdown)
10795 			dc_start(dd);
10796 		/* Hand LED control to the DC */
10797 		write_csr(dd, DCC_CFG_LED_CNTRL, 0);
10798 
10799 		if (ppd->host_link_state != HLS_DN_OFFLINE) {
10800 			u8 tmp = ppd->link_enabled;
10801 
10802 			ret = goto_offline(ppd, ppd->remote_link_down_reason);
10803 			if (ret) {
10804 				ppd->link_enabled = tmp;
10805 				break;
10806 			}
10807 			ppd->remote_link_down_reason = 0;
10808 
10809 			if (ppd->driver_link_ready)
10810 				ppd->link_enabled = 1;
10811 		}
10812 
10813 		set_all_slowpath(ppd->dd);
10814 		ret = set_local_link_attributes(ppd);
10815 		if (ret)
10816 			break;
10817 
10818 		ppd->port_error_action = 0;
10819 
10820 		if (quick_linkup) {
10821 			/* quick linkup does not go into polling */
10822 			ret = do_quick_linkup(dd);
10823 		} else {
10824 			ret1 = set_physical_link_state(dd, PLS_POLLING);
10825 			if (!ret1)
10826 				ret1 = wait_phys_link_out_of_offline(ppd,
10827 								     3000);
10828 			if (ret1 != HCMD_SUCCESS) {
10829 				dd_dev_err(dd,
10830 					   "Failed to transition to Polling link state, return 0x%x\n",
10831 					   ret1);
10832 				ret = -EINVAL;
10833 			}
10834 		}
10835 
10836 		/*
10837 		 * Change the host link state after requesting DC8051 to
10838 		 * change its physical state so that we can ignore any
10839 		 * interrupt with stale LNI(XX) error, which will not be
10840 		 * cleared until DC8051 transitions to Polling state.
10841 		 */
10842 		ppd->host_link_state = HLS_DN_POLL;
10843 		ppd->offline_disabled_reason =
10844 			HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE);
10845 		/*
10846 		 * If an error occurred above, go back to offline.  The
10847 		 * caller may reschedule another attempt.
10848 		 */
10849 		if (ret)
10850 			goto_offline(ppd, 0);
10851 		else
10852 			log_physical_state(ppd, PLS_POLLING);
10853 		break;
10854 	case HLS_DN_DISABLE:
10855 		/* link is disabled */
10856 		ppd->link_enabled = 0;
10857 
10858 		/* allow any state to transition to disabled */
10859 
10860 		/* must transition to offline first */
10861 		if (ppd->host_link_state != HLS_DN_OFFLINE) {
10862 			ret = goto_offline(ppd, ppd->remote_link_down_reason);
10863 			if (ret)
10864 				break;
10865 			ppd->remote_link_down_reason = 0;
10866 		}
10867 
10868 		if (!dd->dc_shutdown) {
10869 			ret1 = set_physical_link_state(dd, PLS_DISABLED);
10870 			if (ret1 != HCMD_SUCCESS) {
10871 				dd_dev_err(dd,
10872 					   "Failed to transition to Disabled link state, return 0x%x\n",
10873 					   ret1);
10874 				ret = -EINVAL;
10875 				break;
10876 			}
10877 			ret = wait_physical_linkstate(ppd, PLS_DISABLED, 10000);
10878 			if (ret) {
10879 				dd_dev_err(dd,
10880 					   "%s: physical state did not change to DISABLED\n",
10881 					   __func__);
10882 				break;
10883 			}
10884 			dc_shutdown(dd);
10885 		}
10886 		ppd->host_link_state = HLS_DN_DISABLE;
10887 		break;
10888 	case HLS_DN_OFFLINE:
10889 		if (ppd->host_link_state == HLS_DN_DISABLE)
10890 			dc_start(dd);
10891 
10892 		/* allow any state to transition to offline */
10893 		ret = goto_offline(ppd, ppd->remote_link_down_reason);
10894 		if (!ret)
10895 			ppd->remote_link_down_reason = 0;
10896 		break;
10897 	case HLS_VERIFY_CAP:
10898 		if (ppd->host_link_state != HLS_DN_POLL)
10899 			goto unexpected;
10900 		ppd->host_link_state = HLS_VERIFY_CAP;
10901 		log_physical_state(ppd, PLS_CONFIGPHY_VERIFYCAP);
10902 		break;
10903 	case HLS_GOING_UP:
10904 		if (ppd->host_link_state != HLS_VERIFY_CAP)
10905 			goto unexpected;
10906 
10907 		ret1 = set_physical_link_state(dd, PLS_LINKUP);
10908 		if (ret1 != HCMD_SUCCESS) {
10909 			dd_dev_err(dd,
10910 				   "Failed to transition to link up state, return 0x%x\n",
10911 				   ret1);
10912 			ret = -EINVAL;
10913 			break;
10914 		}
10915 		ppd->host_link_state = HLS_GOING_UP;
10916 		break;
10917 
10918 	case HLS_GOING_OFFLINE:		/* transient within goto_offline() */
10919 	case HLS_LINK_COOLDOWN:		/* transient within goto_offline() */
10920 	default:
10921 		dd_dev_info(dd, "%s: state 0x%x: not supported\n",
10922 			    __func__, state);
10923 		ret = -EINVAL;
10924 		break;
10925 	}
10926 
10927 	goto done;
10928 
10929 unexpected:
10930 	dd_dev_err(dd, "%s: unexpected state transition from %s to %s\n",
10931 		   __func__, link_state_name(ppd->host_link_state),
10932 		   link_state_name(state));
10933 	ret = -EINVAL;
10934 
10935 done:
10936 	mutex_unlock(&ppd->hls_lock);
10937 
10938 	if (event.device)
10939 		ib_dispatch_event(&event);
10940 
10941 	return ret;
10942 }
10943 
10944 int hfi1_set_ib_cfg(struct hfi1_pportdata *ppd, int which, u32 val)
10945 {
10946 	u64 reg;
10947 	int ret = 0;
10948 
10949 	switch (which) {
10950 	case HFI1_IB_CFG_LIDLMC:
10951 		set_lidlmc(ppd);
10952 		break;
10953 	case HFI1_IB_CFG_VL_HIGH_LIMIT:
10954 		/*
10955 		 * The VL Arbitrator high limit is sent in units of 4k
10956 		 * bytes, while HFI stores it in units of 64 bytes.
10957 		 */
10958 		val *= 4096 / 64;
10959 		reg = ((u64)val & SEND_HIGH_PRIORITY_LIMIT_LIMIT_MASK)
10960 			<< SEND_HIGH_PRIORITY_LIMIT_LIMIT_SHIFT;
10961 		write_csr(ppd->dd, SEND_HIGH_PRIORITY_LIMIT, reg);
10962 		break;
10963 	case HFI1_IB_CFG_LINKDEFAULT: /* IB link default (sleep/poll) */
10964 		/* HFI only supports POLL as the default link down state */
10965 		if (val != HLS_DN_POLL)
10966 			ret = -EINVAL;
10967 		break;
10968 	case HFI1_IB_CFG_OP_VLS:
10969 		if (ppd->vls_operational != val) {
10970 			ppd->vls_operational = val;
10971 			if (!ppd->port)
10972 				ret = -EINVAL;
10973 		}
10974 		break;
10975 	/*
10976 	 * For link width, link width downgrade, and speed enable, always AND
10977 	 * the setting with what is actually supported.  This has two benefits.
10978 	 * First, enabled can't have unsupported values, no matter what the
10979 	 * SM or FM might want.  Second, the ALL_SUPPORTED wildcards that mean
10980 	 * "fill in with your supported value" have all the bits in the
10981 	 * field set, so simply ANDing with supported has the desired result.
10982 	 */
10983 	case HFI1_IB_CFG_LWID_ENB: /* set allowed Link-width */
10984 		ppd->link_width_enabled = val & ppd->link_width_supported;
10985 		break;
10986 	case HFI1_IB_CFG_LWID_DG_ENB: /* set allowed link width downgrade */
10987 		ppd->link_width_downgrade_enabled =
10988 				val & ppd->link_width_downgrade_supported;
10989 		break;
10990 	case HFI1_IB_CFG_SPD_ENB: /* allowed Link speeds */
10991 		ppd->link_speed_enabled = val & ppd->link_speed_supported;
10992 		break;
10993 	case HFI1_IB_CFG_OVERRUN_THRESH: /* IB overrun threshold */
10994 		/*
10995 		 * HFI does not follow IB specs, save this value
10996 		 * so we can report it, if asked.
10997 		 */
10998 		ppd->overrun_threshold = val;
10999 		break;
11000 	case HFI1_IB_CFG_PHYERR_THRESH: /* IB PHY error threshold */
11001 		/*
11002 		 * HFI does not follow IB specs, save this value
11003 		 * so we can report it, if asked.
11004 		 */
11005 		ppd->phy_error_threshold = val;
11006 		break;
11007 
11008 	case HFI1_IB_CFG_MTU:
11009 		set_send_length(ppd);
11010 		break;
11011 
11012 	case HFI1_IB_CFG_PKEYS:
11013 		if (HFI1_CAP_IS_KSET(PKEY_CHECK))
11014 			set_partition_keys(ppd);
11015 		break;
11016 
11017 	default:
11018 		if (HFI1_CAP_IS_KSET(PRINT_UNIMPL))
11019 			dd_dev_info(ppd->dd,
11020 				    "%s: which %s, val 0x%x: not implemented\n",
11021 				    __func__, ib_cfg_name(which), val);
11022 		break;
11023 	}
11024 	return ret;
11025 }
11026 
11027 /* begin functions related to vl arbitration table caching */
11028 static void init_vl_arb_caches(struct hfi1_pportdata *ppd)
11029 {
11030 	int i;
11031 
11032 	BUILD_BUG_ON(VL_ARB_TABLE_SIZE !=
11033 			VL_ARB_LOW_PRIO_TABLE_SIZE);
11034 	BUILD_BUG_ON(VL_ARB_TABLE_SIZE !=
11035 			VL_ARB_HIGH_PRIO_TABLE_SIZE);
11036 
11037 	/*
11038 	 * Note that we always return values directly from the
11039 	 * 'vl_arb_cache' (and do no CSR reads) in response to a
11040 	 * 'Get(VLArbTable)'. This is obviously correct after a
11041 	 * 'Set(VLArbTable)', since the cache will then be up to
11042 	 * date. But it's also correct prior to any 'Set(VLArbTable)'
11043 	 * since then both the cache, and the relevant h/w registers
11044 	 * will be zeroed.
11045 	 */
11046 
11047 	for (i = 0; i < MAX_PRIO_TABLE; i++)
11048 		spin_lock_init(&ppd->vl_arb_cache[i].lock);
11049 }
11050 
11051 /*
11052  * vl_arb_lock_cache
11053  *
11054  * All other vl_arb_* functions should be called only after locking
11055  * the cache.
11056  */
11057 static inline struct vl_arb_cache *
11058 vl_arb_lock_cache(struct hfi1_pportdata *ppd, int idx)
11059 {
11060 	if (idx != LO_PRIO_TABLE && idx != HI_PRIO_TABLE)
11061 		return NULL;
11062 	spin_lock(&ppd->vl_arb_cache[idx].lock);
11063 	return &ppd->vl_arb_cache[idx];
11064 }
11065 
11066 static inline void vl_arb_unlock_cache(struct hfi1_pportdata *ppd, int idx)
11067 {
11068 	spin_unlock(&ppd->vl_arb_cache[idx].lock);
11069 }
11070 
11071 static void vl_arb_get_cache(struct vl_arb_cache *cache,
11072 			     struct ib_vl_weight_elem *vl)
11073 {
11074 	memcpy(vl, cache->table, VL_ARB_TABLE_SIZE * sizeof(*vl));
11075 }
11076 
11077 static void vl_arb_set_cache(struct vl_arb_cache *cache,
11078 			     struct ib_vl_weight_elem *vl)
11079 {
11080 	memcpy(cache->table, vl, VL_ARB_TABLE_SIZE * sizeof(*vl));
11081 }
11082 
11083 static int vl_arb_match_cache(struct vl_arb_cache *cache,
11084 			      struct ib_vl_weight_elem *vl)
11085 {
11086 	return !memcmp(cache->table, vl, VL_ARB_TABLE_SIZE * sizeof(*vl));
11087 }
11088 
11089 /* end functions related to vl arbitration table caching */
11090 
11091 static int set_vl_weights(struct hfi1_pportdata *ppd, u32 target,
11092 			  u32 size, struct ib_vl_weight_elem *vl)
11093 {
11094 	struct hfi1_devdata *dd = ppd->dd;
11095 	u64 reg;
11096 	unsigned int i, is_up = 0;
11097 	int drain, ret = 0;
11098 
11099 	mutex_lock(&ppd->hls_lock);
11100 
11101 	if (ppd->host_link_state & HLS_UP)
11102 		is_up = 1;
11103 
11104 	drain = !is_ax(dd) && is_up;
11105 
11106 	if (drain)
11107 		/*
11108 		 * Before adjusting VL arbitration weights, empty per-VL
11109 		 * FIFOs, otherwise a packet whose VL weight is being
11110 		 * set to 0 could get stuck in a FIFO with no chance to
11111 		 * egress.
11112 		 */
11113 		ret = stop_drain_data_vls(dd);
11114 
11115 	if (ret) {
11116 		dd_dev_err(
11117 			dd,
11118 			"%s: cannot stop/drain VLs - refusing to change VL arbitration weights\n",
11119 			__func__);
11120 		goto err;
11121 	}
11122 
11123 	for (i = 0; i < size; i++, vl++) {
11124 		/*
11125 		 * NOTE: The low priority shift and mask are used here, but
11126 		 * they are the same for both the low and high registers.
11127 		 */
11128 		reg = (((u64)vl->vl & SEND_LOW_PRIORITY_LIST_VL_MASK)
11129 				<< SEND_LOW_PRIORITY_LIST_VL_SHIFT)
11130 		      | (((u64)vl->weight
11131 				& SEND_LOW_PRIORITY_LIST_WEIGHT_MASK)
11132 				<< SEND_LOW_PRIORITY_LIST_WEIGHT_SHIFT);
11133 		write_csr(dd, target + (i * 8), reg);
11134 	}
11135 	pio_send_control(dd, PSC_GLOBAL_VLARB_ENABLE);
11136 
11137 	if (drain)
11138 		open_fill_data_vls(dd); /* reopen all VLs */
11139 
11140 err:
11141 	mutex_unlock(&ppd->hls_lock);
11142 
11143 	return ret;
11144 }
11145 
11146 /*
11147  * Read one credit merge VL register.
11148  */
11149 static void read_one_cm_vl(struct hfi1_devdata *dd, u32 csr,
11150 			   struct vl_limit *vll)
11151 {
11152 	u64 reg = read_csr(dd, csr);
11153 
11154 	vll->dedicated = cpu_to_be16(
11155 		(reg >> SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SHIFT)
11156 		& SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_MASK);
11157 	vll->shared = cpu_to_be16(
11158 		(reg >> SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SHIFT)
11159 		& SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_MASK);
11160 }
11161 
11162 /*
11163  * Read the current credit merge limits.
11164  */
11165 static int get_buffer_control(struct hfi1_devdata *dd,
11166 			      struct buffer_control *bc, u16 *overall_limit)
11167 {
11168 	u64 reg;
11169 	int i;
11170 
11171 	/* not all entries are filled in */
11172 	memset(bc, 0, sizeof(*bc));
11173 
11174 	/* OPA and HFI have a 1-1 mapping */
11175 	for (i = 0; i < TXE_NUM_DATA_VL; i++)
11176 		read_one_cm_vl(dd, SEND_CM_CREDIT_VL + (8 * i), &bc->vl[i]);
11177 
11178 	/* NOTE: assumes that VL* and VL15 CSRs are bit-wise identical */
11179 	read_one_cm_vl(dd, SEND_CM_CREDIT_VL15, &bc->vl[15]);
11180 
11181 	reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
11182 	bc->overall_shared_limit = cpu_to_be16(
11183 		(reg >> SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SHIFT)
11184 		& SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_MASK);
11185 	if (overall_limit)
11186 		*overall_limit = (reg
11187 			>> SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT)
11188 			& SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_MASK;
11189 	return sizeof(struct buffer_control);
11190 }
11191 
11192 static int get_sc2vlnt(struct hfi1_devdata *dd, struct sc2vlnt *dp)
11193 {
11194 	u64 reg;
11195 	int i;
11196 
11197 	/* each register contains 16 SC->VLnt mappings, 4 bits each */
11198 	reg = read_csr(dd, DCC_CFG_SC_VL_TABLE_15_0);
11199 	for (i = 0; i < sizeof(u64); i++) {
11200 		u8 byte = *(((u8 *)&reg) + i);
11201 
11202 		dp->vlnt[2 * i] = byte & 0xf;
11203 		dp->vlnt[(2 * i) + 1] = (byte & 0xf0) >> 4;
11204 	}
11205 
11206 	reg = read_csr(dd, DCC_CFG_SC_VL_TABLE_31_16);
11207 	for (i = 0; i < sizeof(u64); i++) {
11208 		u8 byte = *(((u8 *)&reg) + i);
11209 
11210 		dp->vlnt[16 + (2 * i)] = byte & 0xf;
11211 		dp->vlnt[16 + (2 * i) + 1] = (byte & 0xf0) >> 4;
11212 	}
11213 	return sizeof(struct sc2vlnt);
11214 }
11215 
11216 static void get_vlarb_preempt(struct hfi1_devdata *dd, u32 nelems,
11217 			      struct ib_vl_weight_elem *vl)
11218 {
11219 	unsigned int i;
11220 
11221 	for (i = 0; i < nelems; i++, vl++) {
11222 		vl->vl = 0xf;
11223 		vl->weight = 0;
11224 	}
11225 }
11226 
11227 static void set_sc2vlnt(struct hfi1_devdata *dd, struct sc2vlnt *dp)
11228 {
11229 	write_csr(dd, DCC_CFG_SC_VL_TABLE_15_0,
11230 		  DC_SC_VL_VAL(15_0,
11231 			       0, dp->vlnt[0] & 0xf,
11232 			       1, dp->vlnt[1] & 0xf,
11233 			       2, dp->vlnt[2] & 0xf,
11234 			       3, dp->vlnt[3] & 0xf,
11235 			       4, dp->vlnt[4] & 0xf,
11236 			       5, dp->vlnt[5] & 0xf,
11237 			       6, dp->vlnt[6] & 0xf,
11238 			       7, dp->vlnt[7] & 0xf,
11239 			       8, dp->vlnt[8] & 0xf,
11240 			       9, dp->vlnt[9] & 0xf,
11241 			       10, dp->vlnt[10] & 0xf,
11242 			       11, dp->vlnt[11] & 0xf,
11243 			       12, dp->vlnt[12] & 0xf,
11244 			       13, dp->vlnt[13] & 0xf,
11245 			       14, dp->vlnt[14] & 0xf,
11246 			       15, dp->vlnt[15] & 0xf));
11247 	write_csr(dd, DCC_CFG_SC_VL_TABLE_31_16,
11248 		  DC_SC_VL_VAL(31_16,
11249 			       16, dp->vlnt[16] & 0xf,
11250 			       17, dp->vlnt[17] & 0xf,
11251 			       18, dp->vlnt[18] & 0xf,
11252 			       19, dp->vlnt[19] & 0xf,
11253 			       20, dp->vlnt[20] & 0xf,
11254 			       21, dp->vlnt[21] & 0xf,
11255 			       22, dp->vlnt[22] & 0xf,
11256 			       23, dp->vlnt[23] & 0xf,
11257 			       24, dp->vlnt[24] & 0xf,
11258 			       25, dp->vlnt[25] & 0xf,
11259 			       26, dp->vlnt[26] & 0xf,
11260 			       27, dp->vlnt[27] & 0xf,
11261 			       28, dp->vlnt[28] & 0xf,
11262 			       29, dp->vlnt[29] & 0xf,
11263 			       30, dp->vlnt[30] & 0xf,
11264 			       31, dp->vlnt[31] & 0xf));
11265 }
11266 
11267 static void nonzero_msg(struct hfi1_devdata *dd, int idx, const char *what,
11268 			u16 limit)
11269 {
11270 	if (limit != 0)
11271 		dd_dev_info(dd, "Invalid %s limit %d on VL %d, ignoring\n",
11272 			    what, (int)limit, idx);
11273 }
11274 
11275 /* change only the shared limit portion of SendCmGLobalCredit */
11276 static void set_global_shared(struct hfi1_devdata *dd, u16 limit)
11277 {
11278 	u64 reg;
11279 
11280 	reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
11281 	reg &= ~SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SMASK;
11282 	reg |= (u64)limit << SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SHIFT;
11283 	write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg);
11284 }
11285 
11286 /* change only the total credit limit portion of SendCmGLobalCredit */
11287 static void set_global_limit(struct hfi1_devdata *dd, u16 limit)
11288 {
11289 	u64 reg;
11290 
11291 	reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
11292 	reg &= ~SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SMASK;
11293 	reg |= (u64)limit << SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT;
11294 	write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg);
11295 }
11296 
11297 /* set the given per-VL shared limit */
11298 static void set_vl_shared(struct hfi1_devdata *dd, int vl, u16 limit)
11299 {
11300 	u64 reg;
11301 	u32 addr;
11302 
11303 	if (vl < TXE_NUM_DATA_VL)
11304 		addr = SEND_CM_CREDIT_VL + (8 * vl);
11305 	else
11306 		addr = SEND_CM_CREDIT_VL15;
11307 
11308 	reg = read_csr(dd, addr);
11309 	reg &= ~SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SMASK;
11310 	reg |= (u64)limit << SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SHIFT;
11311 	write_csr(dd, addr, reg);
11312 }
11313 
11314 /* set the given per-VL dedicated limit */
11315 static void set_vl_dedicated(struct hfi1_devdata *dd, int vl, u16 limit)
11316 {
11317 	u64 reg;
11318 	u32 addr;
11319 
11320 	if (vl < TXE_NUM_DATA_VL)
11321 		addr = SEND_CM_CREDIT_VL + (8 * vl);
11322 	else
11323 		addr = SEND_CM_CREDIT_VL15;
11324 
11325 	reg = read_csr(dd, addr);
11326 	reg &= ~SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SMASK;
11327 	reg |= (u64)limit << SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SHIFT;
11328 	write_csr(dd, addr, reg);
11329 }
11330 
11331 /* spin until the given per-VL status mask bits clear */
11332 static void wait_for_vl_status_clear(struct hfi1_devdata *dd, u64 mask,
11333 				     const char *which)
11334 {
11335 	unsigned long timeout;
11336 	u64 reg;
11337 
11338 	timeout = jiffies + msecs_to_jiffies(VL_STATUS_CLEAR_TIMEOUT);
11339 	while (1) {
11340 		reg = read_csr(dd, SEND_CM_CREDIT_USED_STATUS) & mask;
11341 
11342 		if (reg == 0)
11343 			return;	/* success */
11344 		if (time_after(jiffies, timeout))
11345 			break;		/* timed out */
11346 		udelay(1);
11347 	}
11348 
11349 	dd_dev_err(dd,
11350 		   "%s credit change status not clearing after %dms, mask 0x%llx, not clear 0x%llx\n",
11351 		   which, VL_STATUS_CLEAR_TIMEOUT, mask, reg);
11352 	/*
11353 	 * If this occurs, it is likely there was a credit loss on the link.
11354 	 * The only recovery from that is a link bounce.
11355 	 */
11356 	dd_dev_err(dd,
11357 		   "Continuing anyway.  A credit loss may occur.  Suggest a link bounce\n");
11358 }
11359 
11360 /*
11361  * The number of credits on the VLs may be changed while everything
11362  * is "live", but the following algorithm must be followed due to
11363  * how the hardware is actually implemented.  In particular,
11364  * Return_Credit_Status[] is the only correct status check.
11365  *
11366  * if (reducing Global_Shared_Credit_Limit or any shared limit changing)
11367  *     set Global_Shared_Credit_Limit = 0
11368  *     use_all_vl = 1
11369  * mask0 = all VLs that are changing either dedicated or shared limits
11370  * set Shared_Limit[mask0] = 0
11371  * spin until Return_Credit_Status[use_all_vl ? all VL : mask0] == 0
11372  * if (changing any dedicated limit)
11373  *     mask1 = all VLs that are lowering dedicated limits
11374  *     lower Dedicated_Limit[mask1]
11375  *     spin until Return_Credit_Status[mask1] == 0
11376  *     raise Dedicated_Limits
11377  * raise Shared_Limits
11378  * raise Global_Shared_Credit_Limit
11379  *
11380  * lower = if the new limit is lower, set the limit to the new value
11381  * raise = if the new limit is higher than the current value (may be changed
11382  *	earlier in the algorithm), set the new limit to the new value
11383  */
11384 int set_buffer_control(struct hfi1_pportdata *ppd,
11385 		       struct buffer_control *new_bc)
11386 {
11387 	struct hfi1_devdata *dd = ppd->dd;
11388 	u64 changing_mask, ld_mask, stat_mask;
11389 	int change_count;
11390 	int i, use_all_mask;
11391 	int this_shared_changing;
11392 	int vl_count = 0, ret;
11393 	/*
11394 	 * A0: add the variable any_shared_limit_changing below and in the
11395 	 * algorithm above.  If removing A0 support, it can be removed.
11396 	 */
11397 	int any_shared_limit_changing;
11398 	struct buffer_control cur_bc;
11399 	u8 changing[OPA_MAX_VLS];
11400 	u8 lowering_dedicated[OPA_MAX_VLS];
11401 	u16 cur_total;
11402 	u32 new_total = 0;
11403 	const u64 all_mask =
11404 	SEND_CM_CREDIT_USED_STATUS_VL0_RETURN_CREDIT_STATUS_SMASK
11405 	 | SEND_CM_CREDIT_USED_STATUS_VL1_RETURN_CREDIT_STATUS_SMASK
11406 	 | SEND_CM_CREDIT_USED_STATUS_VL2_RETURN_CREDIT_STATUS_SMASK
11407 	 | SEND_CM_CREDIT_USED_STATUS_VL3_RETURN_CREDIT_STATUS_SMASK
11408 	 | SEND_CM_CREDIT_USED_STATUS_VL4_RETURN_CREDIT_STATUS_SMASK
11409 	 | SEND_CM_CREDIT_USED_STATUS_VL5_RETURN_CREDIT_STATUS_SMASK
11410 	 | SEND_CM_CREDIT_USED_STATUS_VL6_RETURN_CREDIT_STATUS_SMASK
11411 	 | SEND_CM_CREDIT_USED_STATUS_VL7_RETURN_CREDIT_STATUS_SMASK
11412 	 | SEND_CM_CREDIT_USED_STATUS_VL15_RETURN_CREDIT_STATUS_SMASK;
11413 
11414 #define valid_vl(idx) ((idx) < TXE_NUM_DATA_VL || (idx) == 15)
11415 #define NUM_USABLE_VLS 16	/* look at VL15 and less */
11416 
11417 	/* find the new total credits, do sanity check on unused VLs */
11418 	for (i = 0; i < OPA_MAX_VLS; i++) {
11419 		if (valid_vl(i)) {
11420 			new_total += be16_to_cpu(new_bc->vl[i].dedicated);
11421 			continue;
11422 		}
11423 		nonzero_msg(dd, i, "dedicated",
11424 			    be16_to_cpu(new_bc->vl[i].dedicated));
11425 		nonzero_msg(dd, i, "shared",
11426 			    be16_to_cpu(new_bc->vl[i].shared));
11427 		new_bc->vl[i].dedicated = 0;
11428 		new_bc->vl[i].shared = 0;
11429 	}
11430 	new_total += be16_to_cpu(new_bc->overall_shared_limit);
11431 
11432 	/* fetch the current values */
11433 	get_buffer_control(dd, &cur_bc, &cur_total);
11434 
11435 	/*
11436 	 * Create the masks we will use.
11437 	 */
11438 	memset(changing, 0, sizeof(changing));
11439 	memset(lowering_dedicated, 0, sizeof(lowering_dedicated));
11440 	/*
11441 	 * NOTE: Assumes that the individual VL bits are adjacent and in
11442 	 * increasing order
11443 	 */
11444 	stat_mask =
11445 		SEND_CM_CREDIT_USED_STATUS_VL0_RETURN_CREDIT_STATUS_SMASK;
11446 	changing_mask = 0;
11447 	ld_mask = 0;
11448 	change_count = 0;
11449 	any_shared_limit_changing = 0;
11450 	for (i = 0; i < NUM_USABLE_VLS; i++, stat_mask <<= 1) {
11451 		if (!valid_vl(i))
11452 			continue;
11453 		this_shared_changing = new_bc->vl[i].shared
11454 						!= cur_bc.vl[i].shared;
11455 		if (this_shared_changing)
11456 			any_shared_limit_changing = 1;
11457 		if (new_bc->vl[i].dedicated != cur_bc.vl[i].dedicated ||
11458 		    this_shared_changing) {
11459 			changing[i] = 1;
11460 			changing_mask |= stat_mask;
11461 			change_count++;
11462 		}
11463 		if (be16_to_cpu(new_bc->vl[i].dedicated) <
11464 					be16_to_cpu(cur_bc.vl[i].dedicated)) {
11465 			lowering_dedicated[i] = 1;
11466 			ld_mask |= stat_mask;
11467 		}
11468 	}
11469 
11470 	/* bracket the credit change with a total adjustment */
11471 	if (new_total > cur_total)
11472 		set_global_limit(dd, new_total);
11473 
11474 	/*
11475 	 * Start the credit change algorithm.
11476 	 */
11477 	use_all_mask = 0;
11478 	if ((be16_to_cpu(new_bc->overall_shared_limit) <
11479 	     be16_to_cpu(cur_bc.overall_shared_limit)) ||
11480 	    (is_ax(dd) && any_shared_limit_changing)) {
11481 		set_global_shared(dd, 0);
11482 		cur_bc.overall_shared_limit = 0;
11483 		use_all_mask = 1;
11484 	}
11485 
11486 	for (i = 0; i < NUM_USABLE_VLS; i++) {
11487 		if (!valid_vl(i))
11488 			continue;
11489 
11490 		if (changing[i]) {
11491 			set_vl_shared(dd, i, 0);
11492 			cur_bc.vl[i].shared = 0;
11493 		}
11494 	}
11495 
11496 	wait_for_vl_status_clear(dd, use_all_mask ? all_mask : changing_mask,
11497 				 "shared");
11498 
11499 	if (change_count > 0) {
11500 		for (i = 0; i < NUM_USABLE_VLS; i++) {
11501 			if (!valid_vl(i))
11502 				continue;
11503 
11504 			if (lowering_dedicated[i]) {
11505 				set_vl_dedicated(dd, i,
11506 						 be16_to_cpu(new_bc->
11507 							     vl[i].dedicated));
11508 				cur_bc.vl[i].dedicated =
11509 						new_bc->vl[i].dedicated;
11510 			}
11511 		}
11512 
11513 		wait_for_vl_status_clear(dd, ld_mask, "dedicated");
11514 
11515 		/* now raise all dedicated that are going up */
11516 		for (i = 0; i < NUM_USABLE_VLS; i++) {
11517 			if (!valid_vl(i))
11518 				continue;
11519 
11520 			if (be16_to_cpu(new_bc->vl[i].dedicated) >
11521 					be16_to_cpu(cur_bc.vl[i].dedicated))
11522 				set_vl_dedicated(dd, i,
11523 						 be16_to_cpu(new_bc->
11524 							     vl[i].dedicated));
11525 		}
11526 	}
11527 
11528 	/* next raise all shared that are going up */
11529 	for (i = 0; i < NUM_USABLE_VLS; i++) {
11530 		if (!valid_vl(i))
11531 			continue;
11532 
11533 		if (be16_to_cpu(new_bc->vl[i].shared) >
11534 				be16_to_cpu(cur_bc.vl[i].shared))
11535 			set_vl_shared(dd, i, be16_to_cpu(new_bc->vl[i].shared));
11536 	}
11537 
11538 	/* finally raise the global shared */
11539 	if (be16_to_cpu(new_bc->overall_shared_limit) >
11540 	    be16_to_cpu(cur_bc.overall_shared_limit))
11541 		set_global_shared(dd,
11542 				  be16_to_cpu(new_bc->overall_shared_limit));
11543 
11544 	/* bracket the credit change with a total adjustment */
11545 	if (new_total < cur_total)
11546 		set_global_limit(dd, new_total);
11547 
11548 	/*
11549 	 * Determine the actual number of operational VLS using the number of
11550 	 * dedicated and shared credits for each VL.
11551 	 */
11552 	if (change_count > 0) {
11553 		for (i = 0; i < TXE_NUM_DATA_VL; i++)
11554 			if (be16_to_cpu(new_bc->vl[i].dedicated) > 0 ||
11555 			    be16_to_cpu(new_bc->vl[i].shared) > 0)
11556 				vl_count++;
11557 		ppd->actual_vls_operational = vl_count;
11558 		ret = sdma_map_init(dd, ppd->port - 1, vl_count ?
11559 				    ppd->actual_vls_operational :
11560 				    ppd->vls_operational,
11561 				    NULL);
11562 		if (ret == 0)
11563 			ret = pio_map_init(dd, ppd->port - 1, vl_count ?
11564 					   ppd->actual_vls_operational :
11565 					   ppd->vls_operational, NULL);
11566 		if (ret)
11567 			return ret;
11568 	}
11569 	return 0;
11570 }
11571 
11572 /*
11573  * Read the given fabric manager table. Return the size of the
11574  * table (in bytes) on success, and a negative error code on
11575  * failure.
11576  */
11577 int fm_get_table(struct hfi1_pportdata *ppd, int which, void *t)
11578 
11579 {
11580 	int size;
11581 	struct vl_arb_cache *vlc;
11582 
11583 	switch (which) {
11584 	case FM_TBL_VL_HIGH_ARB:
11585 		size = 256;
11586 		/*
11587 		 * OPA specifies 128 elements (of 2 bytes each), though
11588 		 * HFI supports only 16 elements in h/w.
11589 		 */
11590 		vlc = vl_arb_lock_cache(ppd, HI_PRIO_TABLE);
11591 		vl_arb_get_cache(vlc, t);
11592 		vl_arb_unlock_cache(ppd, HI_PRIO_TABLE);
11593 		break;
11594 	case FM_TBL_VL_LOW_ARB:
11595 		size = 256;
11596 		/*
11597 		 * OPA specifies 128 elements (of 2 bytes each), though
11598 		 * HFI supports only 16 elements in h/w.
11599 		 */
11600 		vlc = vl_arb_lock_cache(ppd, LO_PRIO_TABLE);
11601 		vl_arb_get_cache(vlc, t);
11602 		vl_arb_unlock_cache(ppd, LO_PRIO_TABLE);
11603 		break;
11604 	case FM_TBL_BUFFER_CONTROL:
11605 		size = get_buffer_control(ppd->dd, t, NULL);
11606 		break;
11607 	case FM_TBL_SC2VLNT:
11608 		size = get_sc2vlnt(ppd->dd, t);
11609 		break;
11610 	case FM_TBL_VL_PREEMPT_ELEMS:
11611 		size = 256;
11612 		/* OPA specifies 128 elements, of 2 bytes each */
11613 		get_vlarb_preempt(ppd->dd, OPA_MAX_VLS, t);
11614 		break;
11615 	case FM_TBL_VL_PREEMPT_MATRIX:
11616 		size = 256;
11617 		/*
11618 		 * OPA specifies that this is the same size as the VL
11619 		 * arbitration tables (i.e., 256 bytes).
11620 		 */
11621 		break;
11622 	default:
11623 		return -EINVAL;
11624 	}
11625 	return size;
11626 }
11627 
11628 /*
11629  * Write the given fabric manager table.
11630  */
11631 int fm_set_table(struct hfi1_pportdata *ppd, int which, void *t)
11632 {
11633 	int ret = 0;
11634 	struct vl_arb_cache *vlc;
11635 
11636 	switch (which) {
11637 	case FM_TBL_VL_HIGH_ARB:
11638 		vlc = vl_arb_lock_cache(ppd, HI_PRIO_TABLE);
11639 		if (vl_arb_match_cache(vlc, t)) {
11640 			vl_arb_unlock_cache(ppd, HI_PRIO_TABLE);
11641 			break;
11642 		}
11643 		vl_arb_set_cache(vlc, t);
11644 		vl_arb_unlock_cache(ppd, HI_PRIO_TABLE);
11645 		ret = set_vl_weights(ppd, SEND_HIGH_PRIORITY_LIST,
11646 				     VL_ARB_HIGH_PRIO_TABLE_SIZE, t);
11647 		break;
11648 	case FM_TBL_VL_LOW_ARB:
11649 		vlc = vl_arb_lock_cache(ppd, LO_PRIO_TABLE);
11650 		if (vl_arb_match_cache(vlc, t)) {
11651 			vl_arb_unlock_cache(ppd, LO_PRIO_TABLE);
11652 			break;
11653 		}
11654 		vl_arb_set_cache(vlc, t);
11655 		vl_arb_unlock_cache(ppd, LO_PRIO_TABLE);
11656 		ret = set_vl_weights(ppd, SEND_LOW_PRIORITY_LIST,
11657 				     VL_ARB_LOW_PRIO_TABLE_SIZE, t);
11658 		break;
11659 	case FM_TBL_BUFFER_CONTROL:
11660 		ret = set_buffer_control(ppd, t);
11661 		break;
11662 	case FM_TBL_SC2VLNT:
11663 		set_sc2vlnt(ppd->dd, t);
11664 		break;
11665 	default:
11666 		ret = -EINVAL;
11667 	}
11668 	return ret;
11669 }
11670 
11671 /*
11672  * Disable all data VLs.
11673  *
11674  * Return 0 if disabled, non-zero if the VLs cannot be disabled.
11675  */
11676 static int disable_data_vls(struct hfi1_devdata *dd)
11677 {
11678 	if (is_ax(dd))
11679 		return 1;
11680 
11681 	pio_send_control(dd, PSC_DATA_VL_DISABLE);
11682 
11683 	return 0;
11684 }
11685 
11686 /*
11687  * open_fill_data_vls() - the counterpart to stop_drain_data_vls().
11688  * Just re-enables all data VLs (the "fill" part happens
11689  * automatically - the name was chosen for symmetry with
11690  * stop_drain_data_vls()).
11691  *
11692  * Return 0 if successful, non-zero if the VLs cannot be enabled.
11693  */
11694 int open_fill_data_vls(struct hfi1_devdata *dd)
11695 {
11696 	if (is_ax(dd))
11697 		return 1;
11698 
11699 	pio_send_control(dd, PSC_DATA_VL_ENABLE);
11700 
11701 	return 0;
11702 }
11703 
11704 /*
11705  * drain_data_vls() - assumes that disable_data_vls() has been called,
11706  * wait for occupancy (of per-VL FIFOs) for all contexts, and SDMA
11707  * engines to drop to 0.
11708  */
11709 static void drain_data_vls(struct hfi1_devdata *dd)
11710 {
11711 	sc_wait(dd);
11712 	sdma_wait(dd);
11713 	pause_for_credit_return(dd);
11714 }
11715 
11716 /*
11717  * stop_drain_data_vls() - disable, then drain all per-VL fifos.
11718  *
11719  * Use open_fill_data_vls() to resume using data VLs.  This pair is
11720  * meant to be used like this:
11721  *
11722  * stop_drain_data_vls(dd);
11723  * // do things with per-VL resources
11724  * open_fill_data_vls(dd);
11725  */
11726 int stop_drain_data_vls(struct hfi1_devdata *dd)
11727 {
11728 	int ret;
11729 
11730 	ret = disable_data_vls(dd);
11731 	if (ret == 0)
11732 		drain_data_vls(dd);
11733 
11734 	return ret;
11735 }
11736 
11737 /*
11738  * Convert a nanosecond time to a cclock count.  No matter how slow
11739  * the cclock, a non-zero ns will always have a non-zero result.
11740  */
11741 u32 ns_to_cclock(struct hfi1_devdata *dd, u32 ns)
11742 {
11743 	u32 cclocks;
11744 
11745 	if (dd->icode == ICODE_FPGA_EMULATION)
11746 		cclocks = (ns * 1000) / FPGA_CCLOCK_PS;
11747 	else  /* simulation pretends to be ASIC */
11748 		cclocks = (ns * 1000) / ASIC_CCLOCK_PS;
11749 	if (ns && !cclocks)	/* if ns nonzero, must be at least 1 */
11750 		cclocks = 1;
11751 	return cclocks;
11752 }
11753 
11754 /*
11755  * Convert a cclock count to nanoseconds. Not matter how slow
11756  * the cclock, a non-zero cclocks will always have a non-zero result.
11757  */
11758 u32 cclock_to_ns(struct hfi1_devdata *dd, u32 cclocks)
11759 {
11760 	u32 ns;
11761 
11762 	if (dd->icode == ICODE_FPGA_EMULATION)
11763 		ns = (cclocks * FPGA_CCLOCK_PS) / 1000;
11764 	else  /* simulation pretends to be ASIC */
11765 		ns = (cclocks * ASIC_CCLOCK_PS) / 1000;
11766 	if (cclocks && !ns)
11767 		ns = 1;
11768 	return ns;
11769 }
11770 
11771 /*
11772  * Dynamically adjust the receive interrupt timeout for a context based on
11773  * incoming packet rate.
11774  *
11775  * NOTE: Dynamic adjustment does not allow rcv_intr_count to be zero.
11776  */
11777 static void adjust_rcv_timeout(struct hfi1_ctxtdata *rcd, u32 npkts)
11778 {
11779 	struct hfi1_devdata *dd = rcd->dd;
11780 	u32 timeout = rcd->rcvavail_timeout;
11781 
11782 	/*
11783 	 * This algorithm doubles or halves the timeout depending on whether
11784 	 * the number of packets received in this interrupt were less than or
11785 	 * greater equal the interrupt count.
11786 	 *
11787 	 * The calculations below do not allow a steady state to be achieved.
11788 	 * Only at the endpoints it is possible to have an unchanging
11789 	 * timeout.
11790 	 */
11791 	if (npkts < rcv_intr_count) {
11792 		/*
11793 		 * Not enough packets arrived before the timeout, adjust
11794 		 * timeout downward.
11795 		 */
11796 		if (timeout < 2) /* already at minimum? */
11797 			return;
11798 		timeout >>= 1;
11799 	} else {
11800 		/*
11801 		 * More than enough packets arrived before the timeout, adjust
11802 		 * timeout upward.
11803 		 */
11804 		if (timeout >= dd->rcv_intr_timeout_csr) /* already at max? */
11805 			return;
11806 		timeout = min(timeout << 1, dd->rcv_intr_timeout_csr);
11807 	}
11808 
11809 	rcd->rcvavail_timeout = timeout;
11810 	/*
11811 	 * timeout cannot be larger than rcv_intr_timeout_csr which has already
11812 	 * been verified to be in range
11813 	 */
11814 	write_kctxt_csr(dd, rcd->ctxt, RCV_AVAIL_TIME_OUT,
11815 			(u64)timeout <<
11816 			RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_SHIFT);
11817 }
11818 
11819 void update_usrhead(struct hfi1_ctxtdata *rcd, u32 hd, u32 updegr, u32 egrhd,
11820 		    u32 intr_adjust, u32 npkts)
11821 {
11822 	struct hfi1_devdata *dd = rcd->dd;
11823 	u64 reg;
11824 	u32 ctxt = rcd->ctxt;
11825 
11826 	/*
11827 	 * Need to write timeout register before updating RcvHdrHead to ensure
11828 	 * that a new value is used when the HW decides to restart counting.
11829 	 */
11830 	if (intr_adjust)
11831 		adjust_rcv_timeout(rcd, npkts);
11832 	if (updegr) {
11833 		reg = (egrhd & RCV_EGR_INDEX_HEAD_HEAD_MASK)
11834 			<< RCV_EGR_INDEX_HEAD_HEAD_SHIFT;
11835 		write_uctxt_csr(dd, ctxt, RCV_EGR_INDEX_HEAD, reg);
11836 	}
11837 	reg = ((u64)rcv_intr_count << RCV_HDR_HEAD_COUNTER_SHIFT) |
11838 		(((u64)hd & RCV_HDR_HEAD_HEAD_MASK)
11839 			<< RCV_HDR_HEAD_HEAD_SHIFT);
11840 	write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, reg);
11841 }
11842 
11843 u32 hdrqempty(struct hfi1_ctxtdata *rcd)
11844 {
11845 	u32 head, tail;
11846 
11847 	head = (read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_HEAD)
11848 		& RCV_HDR_HEAD_HEAD_SMASK) >> RCV_HDR_HEAD_HEAD_SHIFT;
11849 
11850 	if (hfi1_rcvhdrtail_kvaddr(rcd))
11851 		tail = get_rcvhdrtail(rcd);
11852 	else
11853 		tail = read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_TAIL);
11854 
11855 	return head == tail;
11856 }
11857 
11858 /*
11859  * Context Control and Receive Array encoding for buffer size:
11860  *	0x0 invalid
11861  *	0x1   4 KB
11862  *	0x2   8 KB
11863  *	0x3  16 KB
11864  *	0x4  32 KB
11865  *	0x5  64 KB
11866  *	0x6 128 KB
11867  *	0x7 256 KB
11868  *	0x8 512 KB (Receive Array only)
11869  *	0x9   1 MB (Receive Array only)
11870  *	0xa   2 MB (Receive Array only)
11871  *
11872  *	0xB-0xF - reserved (Receive Array only)
11873  *
11874  *
11875  * This routine assumes that the value has already been sanity checked.
11876  */
11877 static u32 encoded_size(u32 size)
11878 {
11879 	switch (size) {
11880 	case   4 * 1024: return 0x1;
11881 	case   8 * 1024: return 0x2;
11882 	case  16 * 1024: return 0x3;
11883 	case  32 * 1024: return 0x4;
11884 	case  64 * 1024: return 0x5;
11885 	case 128 * 1024: return 0x6;
11886 	case 256 * 1024: return 0x7;
11887 	case 512 * 1024: return 0x8;
11888 	case   1 * 1024 * 1024: return 0x9;
11889 	case   2 * 1024 * 1024: return 0xa;
11890 	}
11891 	return 0x1;	/* if invalid, go with the minimum size */
11892 }
11893 
11894 /**
11895  * encode_rcv_header_entry_size - return chip specific encoding for size
11896  * @size: size in dwords
11897  *
11898  * Convert a receive header entry size that to the encoding used in the CSR.
11899  *
11900  * Return a zero if the given size is invalid, otherwise the encoding.
11901  */
11902 u8 encode_rcv_header_entry_size(u8 size)
11903 {
11904 	/* there are only 3 valid receive header entry sizes */
11905 	if (size == 2)
11906 		return 1;
11907 	if (size == 16)
11908 		return 2;
11909 	if (size == 32)
11910 		return 4;
11911 	return 0; /* invalid */
11912 }
11913 
11914 /**
11915  * hfi1_validate_rcvhdrcnt - validate hdrcnt
11916  * @dd: the device data
11917  * @thecnt: the header count
11918  */
11919 int hfi1_validate_rcvhdrcnt(struct hfi1_devdata *dd, uint thecnt)
11920 {
11921 	if (thecnt <= HFI1_MIN_HDRQ_EGRBUF_CNT) {
11922 		dd_dev_err(dd, "Receive header queue count too small\n");
11923 		return -EINVAL;
11924 	}
11925 
11926 	if (thecnt > HFI1_MAX_HDRQ_EGRBUF_CNT) {
11927 		dd_dev_err(dd,
11928 			   "Receive header queue count cannot be greater than %u\n",
11929 			   HFI1_MAX_HDRQ_EGRBUF_CNT);
11930 		return -EINVAL;
11931 	}
11932 
11933 	if (thecnt % HDRQ_INCREMENT) {
11934 		dd_dev_err(dd, "Receive header queue count %d must be divisible by %lu\n",
11935 			   thecnt, HDRQ_INCREMENT);
11936 		return -EINVAL;
11937 	}
11938 
11939 	return 0;
11940 }
11941 
11942 /**
11943  * set_hdrq_regs - set header queue registers for context
11944  * @dd: the device data
11945  * @ctxt: the context
11946  * @entsize: the dword entry size
11947  * @hdrcnt: the number of header entries
11948  */
11949 void set_hdrq_regs(struct hfi1_devdata *dd, u8 ctxt, u8 entsize, u16 hdrcnt)
11950 {
11951 	u64 reg;
11952 
11953 	reg = (((u64)hdrcnt >> HDRQ_SIZE_SHIFT) & RCV_HDR_CNT_CNT_MASK) <<
11954 	      RCV_HDR_CNT_CNT_SHIFT;
11955 	write_kctxt_csr(dd, ctxt, RCV_HDR_CNT, reg);
11956 	reg = ((u64)encode_rcv_header_entry_size(entsize) &
11957 	       RCV_HDR_ENT_SIZE_ENT_SIZE_MASK) <<
11958 	      RCV_HDR_ENT_SIZE_ENT_SIZE_SHIFT;
11959 	write_kctxt_csr(dd, ctxt, RCV_HDR_ENT_SIZE, reg);
11960 	reg = ((u64)DEFAULT_RCVHDRSIZE & RCV_HDR_SIZE_HDR_SIZE_MASK) <<
11961 	      RCV_HDR_SIZE_HDR_SIZE_SHIFT;
11962 	write_kctxt_csr(dd, ctxt, RCV_HDR_SIZE, reg);
11963 
11964 	/*
11965 	 * Program dummy tail address for every receive context
11966 	 * before enabling any receive context
11967 	 */
11968 	write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR,
11969 			dd->rcvhdrtail_dummy_dma);
11970 }
11971 
11972 void hfi1_rcvctrl(struct hfi1_devdata *dd, unsigned int op,
11973 		  struct hfi1_ctxtdata *rcd)
11974 {
11975 	u64 rcvctrl, reg;
11976 	int did_enable = 0;
11977 	u16 ctxt;
11978 
11979 	if (!rcd)
11980 		return;
11981 
11982 	ctxt = rcd->ctxt;
11983 
11984 	hfi1_cdbg(RCVCTRL, "ctxt %d op 0x%x", ctxt, op);
11985 
11986 	rcvctrl = read_kctxt_csr(dd, ctxt, RCV_CTXT_CTRL);
11987 	/* if the context already enabled, don't do the extra steps */
11988 	if ((op & HFI1_RCVCTRL_CTXT_ENB) &&
11989 	    !(rcvctrl & RCV_CTXT_CTRL_ENABLE_SMASK)) {
11990 		/* reset the tail and hdr addresses, and sequence count */
11991 		write_kctxt_csr(dd, ctxt, RCV_HDR_ADDR,
11992 				rcd->rcvhdrq_dma);
11993 		if (hfi1_rcvhdrtail_kvaddr(rcd))
11994 			write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR,
11995 					rcd->rcvhdrqtailaddr_dma);
11996 		hfi1_set_seq_cnt(rcd, 1);
11997 
11998 		/* reset the cached receive header queue head value */
11999 		hfi1_set_rcd_head(rcd, 0);
12000 
12001 		/*
12002 		 * Zero the receive header queue so we don't get false
12003 		 * positives when checking the sequence number.  The
12004 		 * sequence numbers could land exactly on the same spot.
12005 		 * E.g. a rcd restart before the receive header wrapped.
12006 		 */
12007 		memset(rcd->rcvhdrq, 0, rcvhdrq_size(rcd));
12008 
12009 		/* starting timeout */
12010 		rcd->rcvavail_timeout = dd->rcv_intr_timeout_csr;
12011 
12012 		/* enable the context */
12013 		rcvctrl |= RCV_CTXT_CTRL_ENABLE_SMASK;
12014 
12015 		/* clean the egr buffer size first */
12016 		rcvctrl &= ~RCV_CTXT_CTRL_EGR_BUF_SIZE_SMASK;
12017 		rcvctrl |= ((u64)encoded_size(rcd->egrbufs.rcvtid_size)
12018 				& RCV_CTXT_CTRL_EGR_BUF_SIZE_MASK)
12019 					<< RCV_CTXT_CTRL_EGR_BUF_SIZE_SHIFT;
12020 
12021 		/* zero RcvHdrHead - set RcvHdrHead.Counter after enable */
12022 		write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0);
12023 		did_enable = 1;
12024 
12025 		/* zero RcvEgrIndexHead */
12026 		write_uctxt_csr(dd, ctxt, RCV_EGR_INDEX_HEAD, 0);
12027 
12028 		/* set eager count and base index */
12029 		reg = (((u64)(rcd->egrbufs.alloced >> RCV_SHIFT)
12030 			& RCV_EGR_CTRL_EGR_CNT_MASK)
12031 		       << RCV_EGR_CTRL_EGR_CNT_SHIFT) |
12032 			(((rcd->eager_base >> RCV_SHIFT)
12033 			  & RCV_EGR_CTRL_EGR_BASE_INDEX_MASK)
12034 			 << RCV_EGR_CTRL_EGR_BASE_INDEX_SHIFT);
12035 		write_kctxt_csr(dd, ctxt, RCV_EGR_CTRL, reg);
12036 
12037 		/*
12038 		 * Set TID (expected) count and base index.
12039 		 * rcd->expected_count is set to individual RcvArray entries,
12040 		 * not pairs, and the CSR takes a pair-count in groups of
12041 		 * four, so divide by 8.
12042 		 */
12043 		reg = (((rcd->expected_count >> RCV_SHIFT)
12044 					& RCV_TID_CTRL_TID_PAIR_CNT_MASK)
12045 				<< RCV_TID_CTRL_TID_PAIR_CNT_SHIFT) |
12046 		      (((rcd->expected_base >> RCV_SHIFT)
12047 					& RCV_TID_CTRL_TID_BASE_INDEX_MASK)
12048 				<< RCV_TID_CTRL_TID_BASE_INDEX_SHIFT);
12049 		write_kctxt_csr(dd, ctxt, RCV_TID_CTRL, reg);
12050 		if (ctxt == HFI1_CTRL_CTXT)
12051 			write_csr(dd, RCV_VL15, HFI1_CTRL_CTXT);
12052 	}
12053 	if (op & HFI1_RCVCTRL_CTXT_DIS) {
12054 		write_csr(dd, RCV_VL15, 0);
12055 		/*
12056 		 * When receive context is being disabled turn on tail
12057 		 * update with a dummy tail address and then disable
12058 		 * receive context.
12059 		 */
12060 		if (dd->rcvhdrtail_dummy_dma) {
12061 			write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR,
12062 					dd->rcvhdrtail_dummy_dma);
12063 			/* Enabling RcvCtxtCtrl.TailUpd is intentional. */
12064 			rcvctrl |= RCV_CTXT_CTRL_TAIL_UPD_SMASK;
12065 		}
12066 
12067 		rcvctrl &= ~RCV_CTXT_CTRL_ENABLE_SMASK;
12068 	}
12069 	if (op & HFI1_RCVCTRL_INTRAVAIL_ENB) {
12070 		set_intr_bits(dd, IS_RCVAVAIL_START + rcd->ctxt,
12071 			      IS_RCVAVAIL_START + rcd->ctxt, true);
12072 		rcvctrl |= RCV_CTXT_CTRL_INTR_AVAIL_SMASK;
12073 	}
12074 	if (op & HFI1_RCVCTRL_INTRAVAIL_DIS) {
12075 		set_intr_bits(dd, IS_RCVAVAIL_START + rcd->ctxt,
12076 			      IS_RCVAVAIL_START + rcd->ctxt, false);
12077 		rcvctrl &= ~RCV_CTXT_CTRL_INTR_AVAIL_SMASK;
12078 	}
12079 	if ((op & HFI1_RCVCTRL_TAILUPD_ENB) && hfi1_rcvhdrtail_kvaddr(rcd))
12080 		rcvctrl |= RCV_CTXT_CTRL_TAIL_UPD_SMASK;
12081 	if (op & HFI1_RCVCTRL_TAILUPD_DIS) {
12082 		/* See comment on RcvCtxtCtrl.TailUpd above */
12083 		if (!(op & HFI1_RCVCTRL_CTXT_DIS))
12084 			rcvctrl &= ~RCV_CTXT_CTRL_TAIL_UPD_SMASK;
12085 	}
12086 	if (op & HFI1_RCVCTRL_TIDFLOW_ENB)
12087 		rcvctrl |= RCV_CTXT_CTRL_TID_FLOW_ENABLE_SMASK;
12088 	if (op & HFI1_RCVCTRL_TIDFLOW_DIS)
12089 		rcvctrl &= ~RCV_CTXT_CTRL_TID_FLOW_ENABLE_SMASK;
12090 	if (op & HFI1_RCVCTRL_ONE_PKT_EGR_ENB) {
12091 		/*
12092 		 * In one-packet-per-eager mode, the size comes from
12093 		 * the RcvArray entry.
12094 		 */
12095 		rcvctrl &= ~RCV_CTXT_CTRL_EGR_BUF_SIZE_SMASK;
12096 		rcvctrl |= RCV_CTXT_CTRL_ONE_PACKET_PER_EGR_BUFFER_SMASK;
12097 	}
12098 	if (op & HFI1_RCVCTRL_ONE_PKT_EGR_DIS)
12099 		rcvctrl &= ~RCV_CTXT_CTRL_ONE_PACKET_PER_EGR_BUFFER_SMASK;
12100 	if (op & HFI1_RCVCTRL_NO_RHQ_DROP_ENB)
12101 		rcvctrl |= RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK;
12102 	if (op & HFI1_RCVCTRL_NO_RHQ_DROP_DIS)
12103 		rcvctrl &= ~RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK;
12104 	if (op & HFI1_RCVCTRL_NO_EGR_DROP_ENB)
12105 		rcvctrl |= RCV_CTXT_CTRL_DONT_DROP_EGR_FULL_SMASK;
12106 	if (op & HFI1_RCVCTRL_NO_EGR_DROP_DIS)
12107 		rcvctrl &= ~RCV_CTXT_CTRL_DONT_DROP_EGR_FULL_SMASK;
12108 	if (op & HFI1_RCVCTRL_URGENT_ENB)
12109 		set_intr_bits(dd, IS_RCVURGENT_START + rcd->ctxt,
12110 			      IS_RCVURGENT_START + rcd->ctxt, true);
12111 	if (op & HFI1_RCVCTRL_URGENT_DIS)
12112 		set_intr_bits(dd, IS_RCVURGENT_START + rcd->ctxt,
12113 			      IS_RCVURGENT_START + rcd->ctxt, false);
12114 
12115 	hfi1_cdbg(RCVCTRL, "ctxt %d rcvctrl 0x%llx\n", ctxt, rcvctrl);
12116 	write_kctxt_csr(dd, ctxt, RCV_CTXT_CTRL, rcvctrl);
12117 
12118 	/* work around sticky RcvCtxtStatus.BlockedRHQFull */
12119 	if (did_enable &&
12120 	    (rcvctrl & RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK)) {
12121 		reg = read_kctxt_csr(dd, ctxt, RCV_CTXT_STATUS);
12122 		if (reg != 0) {
12123 			dd_dev_info(dd, "ctxt %d status %lld (blocked)\n",
12124 				    ctxt, reg);
12125 			read_uctxt_csr(dd, ctxt, RCV_HDR_HEAD);
12126 			write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0x10);
12127 			write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0x00);
12128 			read_uctxt_csr(dd, ctxt, RCV_HDR_HEAD);
12129 			reg = read_kctxt_csr(dd, ctxt, RCV_CTXT_STATUS);
12130 			dd_dev_info(dd, "ctxt %d status %lld (%s blocked)\n",
12131 				    ctxt, reg, reg == 0 ? "not" : "still");
12132 		}
12133 	}
12134 
12135 	if (did_enable) {
12136 		/*
12137 		 * The interrupt timeout and count must be set after
12138 		 * the context is enabled to take effect.
12139 		 */
12140 		/* set interrupt timeout */
12141 		write_kctxt_csr(dd, ctxt, RCV_AVAIL_TIME_OUT,
12142 				(u64)rcd->rcvavail_timeout <<
12143 				RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_SHIFT);
12144 
12145 		/* set RcvHdrHead.Counter, zero RcvHdrHead.Head (again) */
12146 		reg = (u64)rcv_intr_count << RCV_HDR_HEAD_COUNTER_SHIFT;
12147 		write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, reg);
12148 	}
12149 
12150 	if (op & (HFI1_RCVCTRL_TAILUPD_DIS | HFI1_RCVCTRL_CTXT_DIS))
12151 		/*
12152 		 * If the context has been disabled and the Tail Update has
12153 		 * been cleared, set the RCV_HDR_TAIL_ADDR CSR to dummy address
12154 		 * so it doesn't contain an address that is invalid.
12155 		 */
12156 		write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR,
12157 				dd->rcvhdrtail_dummy_dma);
12158 }
12159 
12160 u32 hfi1_read_cntrs(struct hfi1_devdata *dd, char **namep, u64 **cntrp)
12161 {
12162 	int ret;
12163 	u64 val = 0;
12164 
12165 	if (namep) {
12166 		ret = dd->cntrnameslen;
12167 		*namep = dd->cntrnames;
12168 	} else {
12169 		const struct cntr_entry *entry;
12170 		int i, j;
12171 
12172 		ret = (dd->ndevcntrs) * sizeof(u64);
12173 
12174 		/* Get the start of the block of counters */
12175 		*cntrp = dd->cntrs;
12176 
12177 		/*
12178 		 * Now go and fill in each counter in the block.
12179 		 */
12180 		for (i = 0; i < DEV_CNTR_LAST; i++) {
12181 			entry = &dev_cntrs[i];
12182 			hfi1_cdbg(CNTR, "reading %s", entry->name);
12183 			if (entry->flags & CNTR_DISABLED) {
12184 				/* Nothing */
12185 				hfi1_cdbg(CNTR, "\tDisabled\n");
12186 			} else {
12187 				if (entry->flags & CNTR_VL) {
12188 					hfi1_cdbg(CNTR, "\tPer VL\n");
12189 					for (j = 0; j < C_VL_COUNT; j++) {
12190 						val = entry->rw_cntr(entry,
12191 								  dd, j,
12192 								  CNTR_MODE_R,
12193 								  0);
12194 						hfi1_cdbg(
12195 						   CNTR,
12196 						   "\t\tRead 0x%llx for %d\n",
12197 						   val, j);
12198 						dd->cntrs[entry->offset + j] =
12199 									    val;
12200 					}
12201 				} else if (entry->flags & CNTR_SDMA) {
12202 					hfi1_cdbg(CNTR,
12203 						  "\t Per SDMA Engine\n");
12204 					for (j = 0; j < chip_sdma_engines(dd);
12205 					     j++) {
12206 						val =
12207 						entry->rw_cntr(entry, dd, j,
12208 							       CNTR_MODE_R, 0);
12209 						hfi1_cdbg(CNTR,
12210 							  "\t\tRead 0x%llx for %d\n",
12211 							  val, j);
12212 						dd->cntrs[entry->offset + j] =
12213 									val;
12214 					}
12215 				} else {
12216 					val = entry->rw_cntr(entry, dd,
12217 							CNTR_INVALID_VL,
12218 							CNTR_MODE_R, 0);
12219 					dd->cntrs[entry->offset] = val;
12220 					hfi1_cdbg(CNTR, "\tRead 0x%llx", val);
12221 				}
12222 			}
12223 		}
12224 	}
12225 	return ret;
12226 }
12227 
12228 /*
12229  * Used by sysfs to create files for hfi stats to read
12230  */
12231 u32 hfi1_read_portcntrs(struct hfi1_pportdata *ppd, char **namep, u64 **cntrp)
12232 {
12233 	int ret;
12234 	u64 val = 0;
12235 
12236 	if (namep) {
12237 		ret = ppd->dd->portcntrnameslen;
12238 		*namep = ppd->dd->portcntrnames;
12239 	} else {
12240 		const struct cntr_entry *entry;
12241 		int i, j;
12242 
12243 		ret = ppd->dd->nportcntrs * sizeof(u64);
12244 		*cntrp = ppd->cntrs;
12245 
12246 		for (i = 0; i < PORT_CNTR_LAST; i++) {
12247 			entry = &port_cntrs[i];
12248 			hfi1_cdbg(CNTR, "reading %s", entry->name);
12249 			if (entry->flags & CNTR_DISABLED) {
12250 				/* Nothing */
12251 				hfi1_cdbg(CNTR, "\tDisabled\n");
12252 				continue;
12253 			}
12254 
12255 			if (entry->flags & CNTR_VL) {
12256 				hfi1_cdbg(CNTR, "\tPer VL");
12257 				for (j = 0; j < C_VL_COUNT; j++) {
12258 					val = entry->rw_cntr(entry, ppd, j,
12259 							       CNTR_MODE_R,
12260 							       0);
12261 					hfi1_cdbg(
12262 					   CNTR,
12263 					   "\t\tRead 0x%llx for %d",
12264 					   val, j);
12265 					ppd->cntrs[entry->offset + j] = val;
12266 				}
12267 			} else {
12268 				val = entry->rw_cntr(entry, ppd,
12269 						       CNTR_INVALID_VL,
12270 						       CNTR_MODE_R,
12271 						       0);
12272 				ppd->cntrs[entry->offset] = val;
12273 				hfi1_cdbg(CNTR, "\tRead 0x%llx", val);
12274 			}
12275 		}
12276 	}
12277 	return ret;
12278 }
12279 
12280 static void free_cntrs(struct hfi1_devdata *dd)
12281 {
12282 	struct hfi1_pportdata *ppd;
12283 	int i;
12284 
12285 	if (dd->synth_stats_timer.function)
12286 		del_timer_sync(&dd->synth_stats_timer);
12287 	ppd = (struct hfi1_pportdata *)(dd + 1);
12288 	for (i = 0; i < dd->num_pports; i++, ppd++) {
12289 		kfree(ppd->cntrs);
12290 		kfree(ppd->scntrs);
12291 		free_percpu(ppd->ibport_data.rvp.rc_acks);
12292 		free_percpu(ppd->ibport_data.rvp.rc_qacks);
12293 		free_percpu(ppd->ibport_data.rvp.rc_delayed_comp);
12294 		ppd->cntrs = NULL;
12295 		ppd->scntrs = NULL;
12296 		ppd->ibport_data.rvp.rc_acks = NULL;
12297 		ppd->ibport_data.rvp.rc_qacks = NULL;
12298 		ppd->ibport_data.rvp.rc_delayed_comp = NULL;
12299 	}
12300 	kfree(dd->portcntrnames);
12301 	dd->portcntrnames = NULL;
12302 	kfree(dd->cntrs);
12303 	dd->cntrs = NULL;
12304 	kfree(dd->scntrs);
12305 	dd->scntrs = NULL;
12306 	kfree(dd->cntrnames);
12307 	dd->cntrnames = NULL;
12308 	if (dd->update_cntr_wq) {
12309 		destroy_workqueue(dd->update_cntr_wq);
12310 		dd->update_cntr_wq = NULL;
12311 	}
12312 }
12313 
12314 static u64 read_dev_port_cntr(struct hfi1_devdata *dd, struct cntr_entry *entry,
12315 			      u64 *psval, void *context, int vl)
12316 {
12317 	u64 val;
12318 	u64 sval = *psval;
12319 
12320 	if (entry->flags & CNTR_DISABLED) {
12321 		dd_dev_err(dd, "Counter %s not enabled", entry->name);
12322 		return 0;
12323 	}
12324 
12325 	hfi1_cdbg(CNTR, "cntr: %s vl %d psval 0x%llx", entry->name, vl, *psval);
12326 
12327 	val = entry->rw_cntr(entry, context, vl, CNTR_MODE_R, 0);
12328 
12329 	/* If its a synthetic counter there is more work we need to do */
12330 	if (entry->flags & CNTR_SYNTH) {
12331 		if (sval == CNTR_MAX) {
12332 			/* No need to read already saturated */
12333 			return CNTR_MAX;
12334 		}
12335 
12336 		if (entry->flags & CNTR_32BIT) {
12337 			/* 32bit counters can wrap multiple times */
12338 			u64 upper = sval >> 32;
12339 			u64 lower = (sval << 32) >> 32;
12340 
12341 			if (lower > val) { /* hw wrapped */
12342 				if (upper == CNTR_32BIT_MAX)
12343 					val = CNTR_MAX;
12344 				else
12345 					upper++;
12346 			}
12347 
12348 			if (val != CNTR_MAX)
12349 				val = (upper << 32) | val;
12350 
12351 		} else {
12352 			/* If we rolled we are saturated */
12353 			if ((val < sval) || (val > CNTR_MAX))
12354 				val = CNTR_MAX;
12355 		}
12356 	}
12357 
12358 	*psval = val;
12359 
12360 	hfi1_cdbg(CNTR, "\tNew val=0x%llx", val);
12361 
12362 	return val;
12363 }
12364 
12365 static u64 write_dev_port_cntr(struct hfi1_devdata *dd,
12366 			       struct cntr_entry *entry,
12367 			       u64 *psval, void *context, int vl, u64 data)
12368 {
12369 	u64 val;
12370 
12371 	if (entry->flags & CNTR_DISABLED) {
12372 		dd_dev_err(dd, "Counter %s not enabled", entry->name);
12373 		return 0;
12374 	}
12375 
12376 	hfi1_cdbg(CNTR, "cntr: %s vl %d psval 0x%llx", entry->name, vl, *psval);
12377 
12378 	if (entry->flags & CNTR_SYNTH) {
12379 		*psval = data;
12380 		if (entry->flags & CNTR_32BIT) {
12381 			val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W,
12382 					     (data << 32) >> 32);
12383 			val = data; /* return the full 64bit value */
12384 		} else {
12385 			val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W,
12386 					     data);
12387 		}
12388 	} else {
12389 		val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W, data);
12390 	}
12391 
12392 	*psval = val;
12393 
12394 	hfi1_cdbg(CNTR, "\tNew val=0x%llx", val);
12395 
12396 	return val;
12397 }
12398 
12399 u64 read_dev_cntr(struct hfi1_devdata *dd, int index, int vl)
12400 {
12401 	struct cntr_entry *entry;
12402 	u64 *sval;
12403 
12404 	entry = &dev_cntrs[index];
12405 	sval = dd->scntrs + entry->offset;
12406 
12407 	if (vl != CNTR_INVALID_VL)
12408 		sval += vl;
12409 
12410 	return read_dev_port_cntr(dd, entry, sval, dd, vl);
12411 }
12412 
12413 u64 write_dev_cntr(struct hfi1_devdata *dd, int index, int vl, u64 data)
12414 {
12415 	struct cntr_entry *entry;
12416 	u64 *sval;
12417 
12418 	entry = &dev_cntrs[index];
12419 	sval = dd->scntrs + entry->offset;
12420 
12421 	if (vl != CNTR_INVALID_VL)
12422 		sval += vl;
12423 
12424 	return write_dev_port_cntr(dd, entry, sval, dd, vl, data);
12425 }
12426 
12427 u64 read_port_cntr(struct hfi1_pportdata *ppd, int index, int vl)
12428 {
12429 	struct cntr_entry *entry;
12430 	u64 *sval;
12431 
12432 	entry = &port_cntrs[index];
12433 	sval = ppd->scntrs + entry->offset;
12434 
12435 	if (vl != CNTR_INVALID_VL)
12436 		sval += vl;
12437 
12438 	if ((index >= C_RCV_HDR_OVF_FIRST + ppd->dd->num_rcv_contexts) &&
12439 	    (index <= C_RCV_HDR_OVF_LAST)) {
12440 		/* We do not want to bother for disabled contexts */
12441 		return 0;
12442 	}
12443 
12444 	return read_dev_port_cntr(ppd->dd, entry, sval, ppd, vl);
12445 }
12446 
12447 u64 write_port_cntr(struct hfi1_pportdata *ppd, int index, int vl, u64 data)
12448 {
12449 	struct cntr_entry *entry;
12450 	u64 *sval;
12451 
12452 	entry = &port_cntrs[index];
12453 	sval = ppd->scntrs + entry->offset;
12454 
12455 	if (vl != CNTR_INVALID_VL)
12456 		sval += vl;
12457 
12458 	if ((index >= C_RCV_HDR_OVF_FIRST + ppd->dd->num_rcv_contexts) &&
12459 	    (index <= C_RCV_HDR_OVF_LAST)) {
12460 		/* We do not want to bother for disabled contexts */
12461 		return 0;
12462 	}
12463 
12464 	return write_dev_port_cntr(ppd->dd, entry, sval, ppd, vl, data);
12465 }
12466 
12467 static void do_update_synth_timer(struct work_struct *work)
12468 {
12469 	u64 cur_tx;
12470 	u64 cur_rx;
12471 	u64 total_flits;
12472 	u8 update = 0;
12473 	int i, j, vl;
12474 	struct hfi1_pportdata *ppd;
12475 	struct cntr_entry *entry;
12476 	struct hfi1_devdata *dd = container_of(work, struct hfi1_devdata,
12477 					       update_cntr_work);
12478 
12479 	/*
12480 	 * Rather than keep beating on the CSRs pick a minimal set that we can
12481 	 * check to watch for potential roll over. We can do this by looking at
12482 	 * the number of flits sent/recv. If the total flits exceeds 32bits then
12483 	 * we have to iterate all the counters and update.
12484 	 */
12485 	entry = &dev_cntrs[C_DC_RCV_FLITS];
12486 	cur_rx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL, CNTR_MODE_R, 0);
12487 
12488 	entry = &dev_cntrs[C_DC_XMIT_FLITS];
12489 	cur_tx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL, CNTR_MODE_R, 0);
12490 
12491 	hfi1_cdbg(
12492 	    CNTR,
12493 	    "[%d] curr tx=0x%llx rx=0x%llx :: last tx=0x%llx rx=0x%llx\n",
12494 	    dd->unit, cur_tx, cur_rx, dd->last_tx, dd->last_rx);
12495 
12496 	if ((cur_tx < dd->last_tx) || (cur_rx < dd->last_rx)) {
12497 		/*
12498 		 * May not be strictly necessary to update but it won't hurt and
12499 		 * simplifies the logic here.
12500 		 */
12501 		update = 1;
12502 		hfi1_cdbg(CNTR, "[%d] Tripwire counter rolled, updating",
12503 			  dd->unit);
12504 	} else {
12505 		total_flits = (cur_tx - dd->last_tx) + (cur_rx - dd->last_rx);
12506 		hfi1_cdbg(CNTR,
12507 			  "[%d] total flits 0x%llx limit 0x%llx\n", dd->unit,
12508 			  total_flits, (u64)CNTR_32BIT_MAX);
12509 		if (total_flits >= CNTR_32BIT_MAX) {
12510 			hfi1_cdbg(CNTR, "[%d] 32bit limit hit, updating",
12511 				  dd->unit);
12512 			update = 1;
12513 		}
12514 	}
12515 
12516 	if (update) {
12517 		hfi1_cdbg(CNTR, "[%d] Updating dd and ppd counters", dd->unit);
12518 		for (i = 0; i < DEV_CNTR_LAST; i++) {
12519 			entry = &dev_cntrs[i];
12520 			if (entry->flags & CNTR_VL) {
12521 				for (vl = 0; vl < C_VL_COUNT; vl++)
12522 					read_dev_cntr(dd, i, vl);
12523 			} else {
12524 				read_dev_cntr(dd, i, CNTR_INVALID_VL);
12525 			}
12526 		}
12527 		ppd = (struct hfi1_pportdata *)(dd + 1);
12528 		for (i = 0; i < dd->num_pports; i++, ppd++) {
12529 			for (j = 0; j < PORT_CNTR_LAST; j++) {
12530 				entry = &port_cntrs[j];
12531 				if (entry->flags & CNTR_VL) {
12532 					for (vl = 0; vl < C_VL_COUNT; vl++)
12533 						read_port_cntr(ppd, j, vl);
12534 				} else {
12535 					read_port_cntr(ppd, j, CNTR_INVALID_VL);
12536 				}
12537 			}
12538 		}
12539 
12540 		/*
12541 		 * We want the value in the register. The goal is to keep track
12542 		 * of the number of "ticks" not the counter value. In other
12543 		 * words if the register rolls we want to notice it and go ahead
12544 		 * and force an update.
12545 		 */
12546 		entry = &dev_cntrs[C_DC_XMIT_FLITS];
12547 		dd->last_tx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL,
12548 						CNTR_MODE_R, 0);
12549 
12550 		entry = &dev_cntrs[C_DC_RCV_FLITS];
12551 		dd->last_rx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL,
12552 						CNTR_MODE_R, 0);
12553 
12554 		hfi1_cdbg(CNTR, "[%d] setting last tx/rx to 0x%llx 0x%llx",
12555 			  dd->unit, dd->last_tx, dd->last_rx);
12556 
12557 	} else {
12558 		hfi1_cdbg(CNTR, "[%d] No update necessary", dd->unit);
12559 	}
12560 }
12561 
12562 static void update_synth_timer(struct timer_list *t)
12563 {
12564 	struct hfi1_devdata *dd = from_timer(dd, t, synth_stats_timer);
12565 
12566 	queue_work(dd->update_cntr_wq, &dd->update_cntr_work);
12567 	mod_timer(&dd->synth_stats_timer, jiffies + HZ * SYNTH_CNT_TIME);
12568 }
12569 
12570 #define C_MAX_NAME 16 /* 15 chars + one for /0 */
12571 static int init_cntrs(struct hfi1_devdata *dd)
12572 {
12573 	int i, rcv_ctxts, j;
12574 	size_t sz;
12575 	char *p;
12576 	char name[C_MAX_NAME];
12577 	struct hfi1_pportdata *ppd;
12578 	const char *bit_type_32 = ",32";
12579 	const int bit_type_32_sz = strlen(bit_type_32);
12580 	u32 sdma_engines = chip_sdma_engines(dd);
12581 
12582 	/* set up the stats timer; the add_timer is done at the end */
12583 	timer_setup(&dd->synth_stats_timer, update_synth_timer, 0);
12584 
12585 	/***********************/
12586 	/* per device counters */
12587 	/***********************/
12588 
12589 	/* size names and determine how many we have*/
12590 	dd->ndevcntrs = 0;
12591 	sz = 0;
12592 
12593 	for (i = 0; i < DEV_CNTR_LAST; i++) {
12594 		if (dev_cntrs[i].flags & CNTR_DISABLED) {
12595 			hfi1_dbg_early("\tSkipping %s\n", dev_cntrs[i].name);
12596 			continue;
12597 		}
12598 
12599 		if (dev_cntrs[i].flags & CNTR_VL) {
12600 			dev_cntrs[i].offset = dd->ndevcntrs;
12601 			for (j = 0; j < C_VL_COUNT; j++) {
12602 				snprintf(name, C_MAX_NAME, "%s%d",
12603 					 dev_cntrs[i].name, vl_from_idx(j));
12604 				sz += strlen(name);
12605 				/* Add ",32" for 32-bit counters */
12606 				if (dev_cntrs[i].flags & CNTR_32BIT)
12607 					sz += bit_type_32_sz;
12608 				sz++;
12609 				dd->ndevcntrs++;
12610 			}
12611 		} else if (dev_cntrs[i].flags & CNTR_SDMA) {
12612 			dev_cntrs[i].offset = dd->ndevcntrs;
12613 			for (j = 0; j < sdma_engines; j++) {
12614 				snprintf(name, C_MAX_NAME, "%s%d",
12615 					 dev_cntrs[i].name, j);
12616 				sz += strlen(name);
12617 				/* Add ",32" for 32-bit counters */
12618 				if (dev_cntrs[i].flags & CNTR_32BIT)
12619 					sz += bit_type_32_sz;
12620 				sz++;
12621 				dd->ndevcntrs++;
12622 			}
12623 		} else {
12624 			/* +1 for newline. */
12625 			sz += strlen(dev_cntrs[i].name) + 1;
12626 			/* Add ",32" for 32-bit counters */
12627 			if (dev_cntrs[i].flags & CNTR_32BIT)
12628 				sz += bit_type_32_sz;
12629 			dev_cntrs[i].offset = dd->ndevcntrs;
12630 			dd->ndevcntrs++;
12631 		}
12632 	}
12633 
12634 	/* allocate space for the counter values */
12635 	dd->cntrs = kcalloc(dd->ndevcntrs + num_driver_cntrs, sizeof(u64),
12636 			    GFP_KERNEL);
12637 	if (!dd->cntrs)
12638 		goto bail;
12639 
12640 	dd->scntrs = kcalloc(dd->ndevcntrs, sizeof(u64), GFP_KERNEL);
12641 	if (!dd->scntrs)
12642 		goto bail;
12643 
12644 	/* allocate space for the counter names */
12645 	dd->cntrnameslen = sz;
12646 	dd->cntrnames = kmalloc(sz, GFP_KERNEL);
12647 	if (!dd->cntrnames)
12648 		goto bail;
12649 
12650 	/* fill in the names */
12651 	for (p = dd->cntrnames, i = 0; i < DEV_CNTR_LAST; i++) {
12652 		if (dev_cntrs[i].flags & CNTR_DISABLED) {
12653 			/* Nothing */
12654 		} else if (dev_cntrs[i].flags & CNTR_VL) {
12655 			for (j = 0; j < C_VL_COUNT; j++) {
12656 				snprintf(name, C_MAX_NAME, "%s%d",
12657 					 dev_cntrs[i].name,
12658 					 vl_from_idx(j));
12659 				memcpy(p, name, strlen(name));
12660 				p += strlen(name);
12661 
12662 				/* Counter is 32 bits */
12663 				if (dev_cntrs[i].flags & CNTR_32BIT) {
12664 					memcpy(p, bit_type_32, bit_type_32_sz);
12665 					p += bit_type_32_sz;
12666 				}
12667 
12668 				*p++ = '\n';
12669 			}
12670 		} else if (dev_cntrs[i].flags & CNTR_SDMA) {
12671 			for (j = 0; j < sdma_engines; j++) {
12672 				snprintf(name, C_MAX_NAME, "%s%d",
12673 					 dev_cntrs[i].name, j);
12674 				memcpy(p, name, strlen(name));
12675 				p += strlen(name);
12676 
12677 				/* Counter is 32 bits */
12678 				if (dev_cntrs[i].flags & CNTR_32BIT) {
12679 					memcpy(p, bit_type_32, bit_type_32_sz);
12680 					p += bit_type_32_sz;
12681 				}
12682 
12683 				*p++ = '\n';
12684 			}
12685 		} else {
12686 			memcpy(p, dev_cntrs[i].name, strlen(dev_cntrs[i].name));
12687 			p += strlen(dev_cntrs[i].name);
12688 
12689 			/* Counter is 32 bits */
12690 			if (dev_cntrs[i].flags & CNTR_32BIT) {
12691 				memcpy(p, bit_type_32, bit_type_32_sz);
12692 				p += bit_type_32_sz;
12693 			}
12694 
12695 			*p++ = '\n';
12696 		}
12697 	}
12698 
12699 	/*********************/
12700 	/* per port counters */
12701 	/*********************/
12702 
12703 	/*
12704 	 * Go through the counters for the overflows and disable the ones we
12705 	 * don't need. This varies based on platform so we need to do it
12706 	 * dynamically here.
12707 	 */
12708 	rcv_ctxts = dd->num_rcv_contexts;
12709 	for (i = C_RCV_HDR_OVF_FIRST + rcv_ctxts;
12710 	     i <= C_RCV_HDR_OVF_LAST; i++) {
12711 		port_cntrs[i].flags |= CNTR_DISABLED;
12712 	}
12713 
12714 	/* size port counter names and determine how many we have*/
12715 	sz = 0;
12716 	dd->nportcntrs = 0;
12717 	for (i = 0; i < PORT_CNTR_LAST; i++) {
12718 		if (port_cntrs[i].flags & CNTR_DISABLED) {
12719 			hfi1_dbg_early("\tSkipping %s\n", port_cntrs[i].name);
12720 			continue;
12721 		}
12722 
12723 		if (port_cntrs[i].flags & CNTR_VL) {
12724 			port_cntrs[i].offset = dd->nportcntrs;
12725 			for (j = 0; j < C_VL_COUNT; j++) {
12726 				snprintf(name, C_MAX_NAME, "%s%d",
12727 					 port_cntrs[i].name, vl_from_idx(j));
12728 				sz += strlen(name);
12729 				/* Add ",32" for 32-bit counters */
12730 				if (port_cntrs[i].flags & CNTR_32BIT)
12731 					sz += bit_type_32_sz;
12732 				sz++;
12733 				dd->nportcntrs++;
12734 			}
12735 		} else {
12736 			/* +1 for newline */
12737 			sz += strlen(port_cntrs[i].name) + 1;
12738 			/* Add ",32" for 32-bit counters */
12739 			if (port_cntrs[i].flags & CNTR_32BIT)
12740 				sz += bit_type_32_sz;
12741 			port_cntrs[i].offset = dd->nportcntrs;
12742 			dd->nportcntrs++;
12743 		}
12744 	}
12745 
12746 	/* allocate space for the counter names */
12747 	dd->portcntrnameslen = sz;
12748 	dd->portcntrnames = kmalloc(sz, GFP_KERNEL);
12749 	if (!dd->portcntrnames)
12750 		goto bail;
12751 
12752 	/* fill in port cntr names */
12753 	for (p = dd->portcntrnames, i = 0; i < PORT_CNTR_LAST; i++) {
12754 		if (port_cntrs[i].flags & CNTR_DISABLED)
12755 			continue;
12756 
12757 		if (port_cntrs[i].flags & CNTR_VL) {
12758 			for (j = 0; j < C_VL_COUNT; j++) {
12759 				snprintf(name, C_MAX_NAME, "%s%d",
12760 					 port_cntrs[i].name, vl_from_idx(j));
12761 				memcpy(p, name, strlen(name));
12762 				p += strlen(name);
12763 
12764 				/* Counter is 32 bits */
12765 				if (port_cntrs[i].flags & CNTR_32BIT) {
12766 					memcpy(p, bit_type_32, bit_type_32_sz);
12767 					p += bit_type_32_sz;
12768 				}
12769 
12770 				*p++ = '\n';
12771 			}
12772 		} else {
12773 			memcpy(p, port_cntrs[i].name,
12774 			       strlen(port_cntrs[i].name));
12775 			p += strlen(port_cntrs[i].name);
12776 
12777 			/* Counter is 32 bits */
12778 			if (port_cntrs[i].flags & CNTR_32BIT) {
12779 				memcpy(p, bit_type_32, bit_type_32_sz);
12780 				p += bit_type_32_sz;
12781 			}
12782 
12783 			*p++ = '\n';
12784 		}
12785 	}
12786 
12787 	/* allocate per port storage for counter values */
12788 	ppd = (struct hfi1_pportdata *)(dd + 1);
12789 	for (i = 0; i < dd->num_pports; i++, ppd++) {
12790 		ppd->cntrs = kcalloc(dd->nportcntrs, sizeof(u64), GFP_KERNEL);
12791 		if (!ppd->cntrs)
12792 			goto bail;
12793 
12794 		ppd->scntrs = kcalloc(dd->nportcntrs, sizeof(u64), GFP_KERNEL);
12795 		if (!ppd->scntrs)
12796 			goto bail;
12797 	}
12798 
12799 	/* CPU counters need to be allocated and zeroed */
12800 	if (init_cpu_counters(dd))
12801 		goto bail;
12802 
12803 	dd->update_cntr_wq = alloc_ordered_workqueue("hfi1_update_cntr_%d",
12804 						     WQ_MEM_RECLAIM, dd->unit);
12805 	if (!dd->update_cntr_wq)
12806 		goto bail;
12807 
12808 	INIT_WORK(&dd->update_cntr_work, do_update_synth_timer);
12809 
12810 	mod_timer(&dd->synth_stats_timer, jiffies + HZ * SYNTH_CNT_TIME);
12811 	return 0;
12812 bail:
12813 	free_cntrs(dd);
12814 	return -ENOMEM;
12815 }
12816 
12817 static u32 chip_to_opa_lstate(struct hfi1_devdata *dd, u32 chip_lstate)
12818 {
12819 	switch (chip_lstate) {
12820 	default:
12821 		dd_dev_err(dd,
12822 			   "Unknown logical state 0x%x, reporting IB_PORT_DOWN\n",
12823 			   chip_lstate);
12824 		/* fall through */
12825 	case LSTATE_DOWN:
12826 		return IB_PORT_DOWN;
12827 	case LSTATE_INIT:
12828 		return IB_PORT_INIT;
12829 	case LSTATE_ARMED:
12830 		return IB_PORT_ARMED;
12831 	case LSTATE_ACTIVE:
12832 		return IB_PORT_ACTIVE;
12833 	}
12834 }
12835 
12836 u32 chip_to_opa_pstate(struct hfi1_devdata *dd, u32 chip_pstate)
12837 {
12838 	/* look at the HFI meta-states only */
12839 	switch (chip_pstate & 0xf0) {
12840 	default:
12841 		dd_dev_err(dd, "Unexpected chip physical state of 0x%x\n",
12842 			   chip_pstate);
12843 		/* fall through */
12844 	case PLS_DISABLED:
12845 		return IB_PORTPHYSSTATE_DISABLED;
12846 	case PLS_OFFLINE:
12847 		return OPA_PORTPHYSSTATE_OFFLINE;
12848 	case PLS_POLLING:
12849 		return IB_PORTPHYSSTATE_POLLING;
12850 	case PLS_CONFIGPHY:
12851 		return IB_PORTPHYSSTATE_TRAINING;
12852 	case PLS_LINKUP:
12853 		return IB_PORTPHYSSTATE_LINKUP;
12854 	case PLS_PHYTEST:
12855 		return IB_PORTPHYSSTATE_PHY_TEST;
12856 	}
12857 }
12858 
12859 /* return the OPA port logical state name */
12860 const char *opa_lstate_name(u32 lstate)
12861 {
12862 	static const char * const port_logical_names[] = {
12863 		"PORT_NOP",
12864 		"PORT_DOWN",
12865 		"PORT_INIT",
12866 		"PORT_ARMED",
12867 		"PORT_ACTIVE",
12868 		"PORT_ACTIVE_DEFER",
12869 	};
12870 	if (lstate < ARRAY_SIZE(port_logical_names))
12871 		return port_logical_names[lstate];
12872 	return "unknown";
12873 }
12874 
12875 /* return the OPA port physical state name */
12876 const char *opa_pstate_name(u32 pstate)
12877 {
12878 	static const char * const port_physical_names[] = {
12879 		"PHYS_NOP",
12880 		"reserved1",
12881 		"PHYS_POLL",
12882 		"PHYS_DISABLED",
12883 		"PHYS_TRAINING",
12884 		"PHYS_LINKUP",
12885 		"PHYS_LINK_ERR_RECOVER",
12886 		"PHYS_PHY_TEST",
12887 		"reserved8",
12888 		"PHYS_OFFLINE",
12889 		"PHYS_GANGED",
12890 		"PHYS_TEST",
12891 	};
12892 	if (pstate < ARRAY_SIZE(port_physical_names))
12893 		return port_physical_names[pstate];
12894 	return "unknown";
12895 }
12896 
12897 /**
12898  * update_statusp - Update userspace status flag
12899  * @ppd: Port data structure
12900  * @state: port state information
12901  *
12902  * Actual port status is determined by the host_link_state value
12903  * in the ppd.
12904  *
12905  * host_link_state MUST be updated before updating the user space
12906  * statusp.
12907  */
12908 static void update_statusp(struct hfi1_pportdata *ppd, u32 state)
12909 {
12910 	/*
12911 	 * Set port status flags in the page mapped into userspace
12912 	 * memory. Do it here to ensure a reliable state - this is
12913 	 * the only function called by all state handling code.
12914 	 * Always set the flags due to the fact that the cache value
12915 	 * might have been changed explicitly outside of this
12916 	 * function.
12917 	 */
12918 	if (ppd->statusp) {
12919 		switch (state) {
12920 		case IB_PORT_DOWN:
12921 		case IB_PORT_INIT:
12922 			*ppd->statusp &= ~(HFI1_STATUS_IB_CONF |
12923 					   HFI1_STATUS_IB_READY);
12924 			break;
12925 		case IB_PORT_ARMED:
12926 			*ppd->statusp |= HFI1_STATUS_IB_CONF;
12927 			break;
12928 		case IB_PORT_ACTIVE:
12929 			*ppd->statusp |= HFI1_STATUS_IB_READY;
12930 			break;
12931 		}
12932 	}
12933 	dd_dev_info(ppd->dd, "logical state changed to %s (0x%x)\n",
12934 		    opa_lstate_name(state), state);
12935 }
12936 
12937 /**
12938  * wait_logical_linkstate - wait for an IB link state change to occur
12939  * @ppd: port device
12940  * @state: the state to wait for
12941  * @msecs: the number of milliseconds to wait
12942  *
12943  * Wait up to msecs milliseconds for IB link state change to occur.
12944  * For now, take the easy polling route.
12945  * Returns 0 if state reached, otherwise -ETIMEDOUT.
12946  */
12947 static int wait_logical_linkstate(struct hfi1_pportdata *ppd, u32 state,
12948 				  int msecs)
12949 {
12950 	unsigned long timeout;
12951 	u32 new_state;
12952 
12953 	timeout = jiffies + msecs_to_jiffies(msecs);
12954 	while (1) {
12955 		new_state = chip_to_opa_lstate(ppd->dd,
12956 					       read_logical_state(ppd->dd));
12957 		if (new_state == state)
12958 			break;
12959 		if (time_after(jiffies, timeout)) {
12960 			dd_dev_err(ppd->dd,
12961 				   "timeout waiting for link state 0x%x\n",
12962 				   state);
12963 			return -ETIMEDOUT;
12964 		}
12965 		msleep(20);
12966 	}
12967 
12968 	return 0;
12969 }
12970 
12971 static void log_state_transition(struct hfi1_pportdata *ppd, u32 state)
12972 {
12973 	u32 ib_pstate = chip_to_opa_pstate(ppd->dd, state);
12974 
12975 	dd_dev_info(ppd->dd,
12976 		    "physical state changed to %s (0x%x), phy 0x%x\n",
12977 		    opa_pstate_name(ib_pstate), ib_pstate, state);
12978 }
12979 
12980 /*
12981  * Read the physical hardware link state and check if it matches host
12982  * drivers anticipated state.
12983  */
12984 static void log_physical_state(struct hfi1_pportdata *ppd, u32 state)
12985 {
12986 	u32 read_state = read_physical_state(ppd->dd);
12987 
12988 	if (read_state == state) {
12989 		log_state_transition(ppd, state);
12990 	} else {
12991 		dd_dev_err(ppd->dd,
12992 			   "anticipated phy link state 0x%x, read 0x%x\n",
12993 			   state, read_state);
12994 	}
12995 }
12996 
12997 /*
12998  * wait_physical_linkstate - wait for an physical link state change to occur
12999  * @ppd: port device
13000  * @state: the state to wait for
13001  * @msecs: the number of milliseconds to wait
13002  *
13003  * Wait up to msecs milliseconds for physical link state change to occur.
13004  * Returns 0 if state reached, otherwise -ETIMEDOUT.
13005  */
13006 static int wait_physical_linkstate(struct hfi1_pportdata *ppd, u32 state,
13007 				   int msecs)
13008 {
13009 	u32 read_state;
13010 	unsigned long timeout;
13011 
13012 	timeout = jiffies + msecs_to_jiffies(msecs);
13013 	while (1) {
13014 		read_state = read_physical_state(ppd->dd);
13015 		if (read_state == state)
13016 			break;
13017 		if (time_after(jiffies, timeout)) {
13018 			dd_dev_err(ppd->dd,
13019 				   "timeout waiting for phy link state 0x%x\n",
13020 				   state);
13021 			return -ETIMEDOUT;
13022 		}
13023 		usleep_range(1950, 2050); /* sleep 2ms-ish */
13024 	}
13025 
13026 	log_state_transition(ppd, state);
13027 	return 0;
13028 }
13029 
13030 /*
13031  * wait_phys_link_offline_quiet_substates - wait for any offline substate
13032  * @ppd: port device
13033  * @msecs: the number of milliseconds to wait
13034  *
13035  * Wait up to msecs milliseconds for any offline physical link
13036  * state change to occur.
13037  * Returns 0 if at least one state is reached, otherwise -ETIMEDOUT.
13038  */
13039 static int wait_phys_link_offline_substates(struct hfi1_pportdata *ppd,
13040 					    int msecs)
13041 {
13042 	u32 read_state;
13043 	unsigned long timeout;
13044 
13045 	timeout = jiffies + msecs_to_jiffies(msecs);
13046 	while (1) {
13047 		read_state = read_physical_state(ppd->dd);
13048 		if ((read_state & 0xF0) == PLS_OFFLINE)
13049 			break;
13050 		if (time_after(jiffies, timeout)) {
13051 			dd_dev_err(ppd->dd,
13052 				   "timeout waiting for phy link offline.quiet substates. Read state 0x%x, %dms\n",
13053 				   read_state, msecs);
13054 			return -ETIMEDOUT;
13055 		}
13056 		usleep_range(1950, 2050); /* sleep 2ms-ish */
13057 	}
13058 
13059 	log_state_transition(ppd, read_state);
13060 	return read_state;
13061 }
13062 
13063 /*
13064  * wait_phys_link_out_of_offline - wait for any out of offline state
13065  * @ppd: port device
13066  * @msecs: the number of milliseconds to wait
13067  *
13068  * Wait up to msecs milliseconds for any out of offline physical link
13069  * state change to occur.
13070  * Returns 0 if at least one state is reached, otherwise -ETIMEDOUT.
13071  */
13072 static int wait_phys_link_out_of_offline(struct hfi1_pportdata *ppd,
13073 					 int msecs)
13074 {
13075 	u32 read_state;
13076 	unsigned long timeout;
13077 
13078 	timeout = jiffies + msecs_to_jiffies(msecs);
13079 	while (1) {
13080 		read_state = read_physical_state(ppd->dd);
13081 		if ((read_state & 0xF0) != PLS_OFFLINE)
13082 			break;
13083 		if (time_after(jiffies, timeout)) {
13084 			dd_dev_err(ppd->dd,
13085 				   "timeout waiting for phy link out of offline. Read state 0x%x, %dms\n",
13086 				   read_state, msecs);
13087 			return -ETIMEDOUT;
13088 		}
13089 		usleep_range(1950, 2050); /* sleep 2ms-ish */
13090 	}
13091 
13092 	log_state_transition(ppd, read_state);
13093 	return read_state;
13094 }
13095 
13096 #define CLEAR_STATIC_RATE_CONTROL_SMASK(r) \
13097 (r &= ~SEND_CTXT_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK)
13098 
13099 #define SET_STATIC_RATE_CONTROL_SMASK(r) \
13100 (r |= SEND_CTXT_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK)
13101 
13102 void hfi1_init_ctxt(struct send_context *sc)
13103 {
13104 	if (sc) {
13105 		struct hfi1_devdata *dd = sc->dd;
13106 		u64 reg;
13107 		u8 set = (sc->type == SC_USER ?
13108 			  HFI1_CAP_IS_USET(STATIC_RATE_CTRL) :
13109 			  HFI1_CAP_IS_KSET(STATIC_RATE_CTRL));
13110 		reg = read_kctxt_csr(dd, sc->hw_context,
13111 				     SEND_CTXT_CHECK_ENABLE);
13112 		if (set)
13113 			CLEAR_STATIC_RATE_CONTROL_SMASK(reg);
13114 		else
13115 			SET_STATIC_RATE_CONTROL_SMASK(reg);
13116 		write_kctxt_csr(dd, sc->hw_context,
13117 				SEND_CTXT_CHECK_ENABLE, reg);
13118 	}
13119 }
13120 
13121 int hfi1_tempsense_rd(struct hfi1_devdata *dd, struct hfi1_temp *temp)
13122 {
13123 	int ret = 0;
13124 	u64 reg;
13125 
13126 	if (dd->icode != ICODE_RTL_SILICON) {
13127 		if (HFI1_CAP_IS_KSET(PRINT_UNIMPL))
13128 			dd_dev_info(dd, "%s: tempsense not supported by HW\n",
13129 				    __func__);
13130 		return -EINVAL;
13131 	}
13132 	reg = read_csr(dd, ASIC_STS_THERM);
13133 	temp->curr = ((reg >> ASIC_STS_THERM_CURR_TEMP_SHIFT) &
13134 		      ASIC_STS_THERM_CURR_TEMP_MASK);
13135 	temp->lo_lim = ((reg >> ASIC_STS_THERM_LO_TEMP_SHIFT) &
13136 			ASIC_STS_THERM_LO_TEMP_MASK);
13137 	temp->hi_lim = ((reg >> ASIC_STS_THERM_HI_TEMP_SHIFT) &
13138 			ASIC_STS_THERM_HI_TEMP_MASK);
13139 	temp->crit_lim = ((reg >> ASIC_STS_THERM_CRIT_TEMP_SHIFT) &
13140 			  ASIC_STS_THERM_CRIT_TEMP_MASK);
13141 	/* triggers is a 3-bit value - 1 bit per trigger. */
13142 	temp->triggers = (u8)((reg >> ASIC_STS_THERM_LOW_SHIFT) & 0x7);
13143 
13144 	return ret;
13145 }
13146 
13147 /* ========================================================================= */
13148 
13149 /**
13150  * read_mod_write() - Calculate the IRQ register index and set/clear the bits
13151  * @dd: valid devdata
13152  * @src: IRQ source to determine register index from
13153  * @bits: the bits to set or clear
13154  * @set: true == set the bits, false == clear the bits
13155  *
13156  */
13157 static void read_mod_write(struct hfi1_devdata *dd, u16 src, u64 bits,
13158 			   bool set)
13159 {
13160 	u64 reg;
13161 	u16 idx = src / BITS_PER_REGISTER;
13162 
13163 	spin_lock(&dd->irq_src_lock);
13164 	reg = read_csr(dd, CCE_INT_MASK + (8 * idx));
13165 	if (set)
13166 		reg |= bits;
13167 	else
13168 		reg &= ~bits;
13169 	write_csr(dd, CCE_INT_MASK + (8 * idx), reg);
13170 	spin_unlock(&dd->irq_src_lock);
13171 }
13172 
13173 /**
13174  * set_intr_bits() - Enable/disable a range (one or more) IRQ sources
13175  * @dd: valid devdata
13176  * @first: first IRQ source to set/clear
13177  * @last: last IRQ source (inclusive) to set/clear
13178  * @set: true == set the bits, false == clear the bits
13179  *
13180  * If first == last, set the exact source.
13181  */
13182 int set_intr_bits(struct hfi1_devdata *dd, u16 first, u16 last, bool set)
13183 {
13184 	u64 bits = 0;
13185 	u64 bit;
13186 	u16 src;
13187 
13188 	if (first > NUM_INTERRUPT_SOURCES || last > NUM_INTERRUPT_SOURCES)
13189 		return -EINVAL;
13190 
13191 	if (last < first)
13192 		return -ERANGE;
13193 
13194 	for (src = first; src <= last; src++) {
13195 		bit = src % BITS_PER_REGISTER;
13196 		/* wrapped to next register? */
13197 		if (!bit && bits) {
13198 			read_mod_write(dd, src - 1, bits, set);
13199 			bits = 0;
13200 		}
13201 		bits |= BIT_ULL(bit);
13202 	}
13203 	read_mod_write(dd, last, bits, set);
13204 
13205 	return 0;
13206 }
13207 
13208 /*
13209  * Clear all interrupt sources on the chip.
13210  */
13211 void clear_all_interrupts(struct hfi1_devdata *dd)
13212 {
13213 	int i;
13214 
13215 	for (i = 0; i < CCE_NUM_INT_CSRS; i++)
13216 		write_csr(dd, CCE_INT_CLEAR + (8 * i), ~(u64)0);
13217 
13218 	write_csr(dd, CCE_ERR_CLEAR, ~(u64)0);
13219 	write_csr(dd, MISC_ERR_CLEAR, ~(u64)0);
13220 	write_csr(dd, RCV_ERR_CLEAR, ~(u64)0);
13221 	write_csr(dd, SEND_ERR_CLEAR, ~(u64)0);
13222 	write_csr(dd, SEND_PIO_ERR_CLEAR, ~(u64)0);
13223 	write_csr(dd, SEND_DMA_ERR_CLEAR, ~(u64)0);
13224 	write_csr(dd, SEND_EGRESS_ERR_CLEAR, ~(u64)0);
13225 	for (i = 0; i < chip_send_contexts(dd); i++)
13226 		write_kctxt_csr(dd, i, SEND_CTXT_ERR_CLEAR, ~(u64)0);
13227 	for (i = 0; i < chip_sdma_engines(dd); i++)
13228 		write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_CLEAR, ~(u64)0);
13229 
13230 	write_csr(dd, DCC_ERR_FLG_CLR, ~(u64)0);
13231 	write_csr(dd, DC_LCB_ERR_CLR, ~(u64)0);
13232 	write_csr(dd, DC_DC8051_ERR_CLR, ~(u64)0);
13233 }
13234 
13235 /*
13236  * Remap the interrupt source from the general handler to the given MSI-X
13237  * interrupt.
13238  */
13239 void remap_intr(struct hfi1_devdata *dd, int isrc, int msix_intr)
13240 {
13241 	u64 reg;
13242 	int m, n;
13243 
13244 	/* clear from the handled mask of the general interrupt */
13245 	m = isrc / 64;
13246 	n = isrc % 64;
13247 	if (likely(m < CCE_NUM_INT_CSRS)) {
13248 		dd->gi_mask[m] &= ~((u64)1 << n);
13249 	} else {
13250 		dd_dev_err(dd, "remap interrupt err\n");
13251 		return;
13252 	}
13253 
13254 	/* direct the chip source to the given MSI-X interrupt */
13255 	m = isrc / 8;
13256 	n = isrc % 8;
13257 	reg = read_csr(dd, CCE_INT_MAP + (8 * m));
13258 	reg &= ~((u64)0xff << (8 * n));
13259 	reg |= ((u64)msix_intr & 0xff) << (8 * n);
13260 	write_csr(dd, CCE_INT_MAP + (8 * m), reg);
13261 }
13262 
13263 void remap_sdma_interrupts(struct hfi1_devdata *dd, int engine, int msix_intr)
13264 {
13265 	/*
13266 	 * SDMA engine interrupt sources grouped by type, rather than
13267 	 * engine.  Per-engine interrupts are as follows:
13268 	 *	SDMA
13269 	 *	SDMAProgress
13270 	 *	SDMAIdle
13271 	 */
13272 	remap_intr(dd, IS_SDMA_START + engine, msix_intr);
13273 	remap_intr(dd, IS_SDMA_PROGRESS_START + engine, msix_intr);
13274 	remap_intr(dd, IS_SDMA_IDLE_START + engine, msix_intr);
13275 }
13276 
13277 /*
13278  * Set the general handler to accept all interrupts, remap all
13279  * chip interrupts back to MSI-X 0.
13280  */
13281 void reset_interrupts(struct hfi1_devdata *dd)
13282 {
13283 	int i;
13284 
13285 	/* all interrupts handled by the general handler */
13286 	for (i = 0; i < CCE_NUM_INT_CSRS; i++)
13287 		dd->gi_mask[i] = ~(u64)0;
13288 
13289 	/* all chip interrupts map to MSI-X 0 */
13290 	for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++)
13291 		write_csr(dd, CCE_INT_MAP + (8 * i), 0);
13292 }
13293 
13294 /**
13295  * set_up_interrupts() - Initialize the IRQ resources and state
13296  * @dd: valid devdata
13297  *
13298  */
13299 static int set_up_interrupts(struct hfi1_devdata *dd)
13300 {
13301 	int ret;
13302 
13303 	/* mask all interrupts */
13304 	set_intr_bits(dd, IS_FIRST_SOURCE, IS_LAST_SOURCE, false);
13305 
13306 	/* clear all pending interrupts */
13307 	clear_all_interrupts(dd);
13308 
13309 	/* reset general handler mask, chip MSI-X mappings */
13310 	reset_interrupts(dd);
13311 
13312 	/* ask for MSI-X interrupts */
13313 	ret = msix_initialize(dd);
13314 	if (ret)
13315 		return ret;
13316 
13317 	ret = msix_request_irqs(dd);
13318 	if (ret)
13319 		msix_clean_up_interrupts(dd);
13320 
13321 	return ret;
13322 }
13323 
13324 /*
13325  * Set up context values in dd.  Sets:
13326  *
13327  *	num_rcv_contexts - number of contexts being used
13328  *	n_krcv_queues - number of kernel contexts
13329  *	first_dyn_alloc_ctxt - first dynamically allocated context
13330  *                             in array of contexts
13331  *	freectxts  - number of free user contexts
13332  *	num_send_contexts - number of PIO send contexts being used
13333  *	num_vnic_contexts - number of contexts reserved for VNIC
13334  */
13335 static int set_up_context_variables(struct hfi1_devdata *dd)
13336 {
13337 	unsigned long num_kernel_contexts;
13338 	u16 num_vnic_contexts = HFI1_NUM_VNIC_CTXT;
13339 	int total_contexts;
13340 	int ret;
13341 	unsigned ngroups;
13342 	int rmt_count;
13343 	int user_rmt_reduced;
13344 	u32 n_usr_ctxts;
13345 	u32 send_contexts = chip_send_contexts(dd);
13346 	u32 rcv_contexts = chip_rcv_contexts(dd);
13347 
13348 	/*
13349 	 * Kernel receive contexts:
13350 	 * - Context 0 - control context (VL15/multicast/error)
13351 	 * - Context 1 - first kernel context
13352 	 * - Context 2 - second kernel context
13353 	 * ...
13354 	 */
13355 	if (n_krcvqs)
13356 		/*
13357 		 * n_krcvqs is the sum of module parameter kernel receive
13358 		 * contexts, krcvqs[].  It does not include the control
13359 		 * context, so add that.
13360 		 */
13361 		num_kernel_contexts = n_krcvqs + 1;
13362 	else
13363 		num_kernel_contexts = DEFAULT_KRCVQS + 1;
13364 	/*
13365 	 * Every kernel receive context needs an ACK send context.
13366 	 * one send context is allocated for each VL{0-7} and VL15
13367 	 */
13368 	if (num_kernel_contexts > (send_contexts - num_vls - 1)) {
13369 		dd_dev_err(dd,
13370 			   "Reducing # kernel rcv contexts to: %d, from %lu\n",
13371 			   send_contexts - num_vls - 1,
13372 			   num_kernel_contexts);
13373 		num_kernel_contexts = send_contexts - num_vls - 1;
13374 	}
13375 
13376 	/* Accommodate VNIC contexts if possible */
13377 	if ((num_kernel_contexts + num_vnic_contexts) > rcv_contexts) {
13378 		dd_dev_err(dd, "No receive contexts available for VNIC\n");
13379 		num_vnic_contexts = 0;
13380 	}
13381 	total_contexts = num_kernel_contexts + num_vnic_contexts;
13382 
13383 	/*
13384 	 * User contexts:
13385 	 *	- default to 1 user context per real (non-HT) CPU core if
13386 	 *	  num_user_contexts is negative
13387 	 */
13388 	if (num_user_contexts < 0)
13389 		n_usr_ctxts = cpumask_weight(&node_affinity.real_cpu_mask);
13390 	else
13391 		n_usr_ctxts = num_user_contexts;
13392 	/*
13393 	 * Adjust the counts given a global max.
13394 	 */
13395 	if (total_contexts + n_usr_ctxts > rcv_contexts) {
13396 		dd_dev_err(dd,
13397 			   "Reducing # user receive contexts to: %d, from %u\n",
13398 			   rcv_contexts - total_contexts,
13399 			   n_usr_ctxts);
13400 		/* recalculate */
13401 		n_usr_ctxts = rcv_contexts - total_contexts;
13402 	}
13403 
13404 	/*
13405 	 * The RMT entries are currently allocated as shown below:
13406 	 * 1. QOS (0 to 128 entries);
13407 	 * 2. FECN (num_kernel_context - 1 + num_user_contexts +
13408 	 *    num_vnic_contexts);
13409 	 * 3. VNIC (num_vnic_contexts).
13410 	 * It should be noted that FECN oversubscribe num_vnic_contexts
13411 	 * entries of RMT because both VNIC and PSM could allocate any receive
13412 	 * context between dd->first_dyn_alloc_text and dd->num_rcv_contexts,
13413 	 * and PSM FECN must reserve an RMT entry for each possible PSM receive
13414 	 * context.
13415 	 */
13416 	rmt_count = qos_rmt_entries(dd, NULL, NULL) + (num_vnic_contexts * 2);
13417 	if (HFI1_CAP_IS_KSET(TID_RDMA))
13418 		rmt_count += num_kernel_contexts - 1;
13419 	if (rmt_count + n_usr_ctxts > NUM_MAP_ENTRIES) {
13420 		user_rmt_reduced = NUM_MAP_ENTRIES - rmt_count;
13421 		dd_dev_err(dd,
13422 			   "RMT size is reducing the number of user receive contexts from %u to %d\n",
13423 			   n_usr_ctxts,
13424 			   user_rmt_reduced);
13425 		/* recalculate */
13426 		n_usr_ctxts = user_rmt_reduced;
13427 	}
13428 
13429 	total_contexts += n_usr_ctxts;
13430 
13431 	/* the first N are kernel contexts, the rest are user/vnic contexts */
13432 	dd->num_rcv_contexts = total_contexts;
13433 	dd->n_krcv_queues = num_kernel_contexts;
13434 	dd->first_dyn_alloc_ctxt = num_kernel_contexts;
13435 	dd->num_vnic_contexts = num_vnic_contexts;
13436 	dd->num_user_contexts = n_usr_ctxts;
13437 	dd->freectxts = n_usr_ctxts;
13438 	dd_dev_info(dd,
13439 		    "rcv contexts: chip %d, used %d (kernel %d, vnic %u, user %u)\n",
13440 		    rcv_contexts,
13441 		    (int)dd->num_rcv_contexts,
13442 		    (int)dd->n_krcv_queues,
13443 		    dd->num_vnic_contexts,
13444 		    dd->num_user_contexts);
13445 
13446 	/*
13447 	 * Receive array allocation:
13448 	 *   All RcvArray entries are divided into groups of 8. This
13449 	 *   is required by the hardware and will speed up writes to
13450 	 *   consecutive entries by using write-combining of the entire
13451 	 *   cacheline.
13452 	 *
13453 	 *   The number of groups are evenly divided among all contexts.
13454 	 *   any left over groups will be given to the first N user
13455 	 *   contexts.
13456 	 */
13457 	dd->rcv_entries.group_size = RCV_INCREMENT;
13458 	ngroups = chip_rcv_array_count(dd) / dd->rcv_entries.group_size;
13459 	dd->rcv_entries.ngroups = ngroups / dd->num_rcv_contexts;
13460 	dd->rcv_entries.nctxt_extra = ngroups -
13461 		(dd->num_rcv_contexts * dd->rcv_entries.ngroups);
13462 	dd_dev_info(dd, "RcvArray groups %u, ctxts extra %u\n",
13463 		    dd->rcv_entries.ngroups,
13464 		    dd->rcv_entries.nctxt_extra);
13465 	if (dd->rcv_entries.ngroups * dd->rcv_entries.group_size >
13466 	    MAX_EAGER_ENTRIES * 2) {
13467 		dd->rcv_entries.ngroups = (MAX_EAGER_ENTRIES * 2) /
13468 			dd->rcv_entries.group_size;
13469 		dd_dev_info(dd,
13470 			    "RcvArray group count too high, change to %u\n",
13471 			    dd->rcv_entries.ngroups);
13472 		dd->rcv_entries.nctxt_extra = 0;
13473 	}
13474 	/*
13475 	 * PIO send contexts
13476 	 */
13477 	ret = init_sc_pools_and_sizes(dd);
13478 	if (ret >= 0) {	/* success */
13479 		dd->num_send_contexts = ret;
13480 		dd_dev_info(
13481 			dd,
13482 			"send contexts: chip %d, used %d (kernel %d, ack %d, user %d, vl15 %d)\n",
13483 			send_contexts,
13484 			dd->num_send_contexts,
13485 			dd->sc_sizes[SC_KERNEL].count,
13486 			dd->sc_sizes[SC_ACK].count,
13487 			dd->sc_sizes[SC_USER].count,
13488 			dd->sc_sizes[SC_VL15].count);
13489 		ret = 0;	/* success */
13490 	}
13491 
13492 	return ret;
13493 }
13494 
13495 /*
13496  * Set the device/port partition key table. The MAD code
13497  * will ensure that, at least, the partial management
13498  * partition key is present in the table.
13499  */
13500 static void set_partition_keys(struct hfi1_pportdata *ppd)
13501 {
13502 	struct hfi1_devdata *dd = ppd->dd;
13503 	u64 reg = 0;
13504 	int i;
13505 
13506 	dd_dev_info(dd, "Setting partition keys\n");
13507 	for (i = 0; i < hfi1_get_npkeys(dd); i++) {
13508 		reg |= (ppd->pkeys[i] &
13509 			RCV_PARTITION_KEY_PARTITION_KEY_A_MASK) <<
13510 			((i % 4) *
13511 			 RCV_PARTITION_KEY_PARTITION_KEY_B_SHIFT);
13512 		/* Each register holds 4 PKey values. */
13513 		if ((i % 4) == 3) {
13514 			write_csr(dd, RCV_PARTITION_KEY +
13515 				  ((i - 3) * 2), reg);
13516 			reg = 0;
13517 		}
13518 	}
13519 
13520 	/* Always enable HW pkeys check when pkeys table is set */
13521 	add_rcvctrl(dd, RCV_CTRL_RCV_PARTITION_KEY_ENABLE_SMASK);
13522 }
13523 
13524 /*
13525  * These CSRs and memories are uninitialized on reset and must be
13526  * written before reading to set the ECC/parity bits.
13527  *
13528  * NOTE: All user context CSRs that are not mmaped write-only
13529  * (e.g. the TID flows) must be initialized even if the driver never
13530  * reads them.
13531  */
13532 static void write_uninitialized_csrs_and_memories(struct hfi1_devdata *dd)
13533 {
13534 	int i, j;
13535 
13536 	/* CceIntMap */
13537 	for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++)
13538 		write_csr(dd, CCE_INT_MAP + (8 * i), 0);
13539 
13540 	/* SendCtxtCreditReturnAddr */
13541 	for (i = 0; i < chip_send_contexts(dd); i++)
13542 		write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_RETURN_ADDR, 0);
13543 
13544 	/* PIO Send buffers */
13545 	/* SDMA Send buffers */
13546 	/*
13547 	 * These are not normally read, and (presently) have no method
13548 	 * to be read, so are not pre-initialized
13549 	 */
13550 
13551 	/* RcvHdrAddr */
13552 	/* RcvHdrTailAddr */
13553 	/* RcvTidFlowTable */
13554 	for (i = 0; i < chip_rcv_contexts(dd); i++) {
13555 		write_kctxt_csr(dd, i, RCV_HDR_ADDR, 0);
13556 		write_kctxt_csr(dd, i, RCV_HDR_TAIL_ADDR, 0);
13557 		for (j = 0; j < RXE_NUM_TID_FLOWS; j++)
13558 			write_uctxt_csr(dd, i, RCV_TID_FLOW_TABLE + (8 * j), 0);
13559 	}
13560 
13561 	/* RcvArray */
13562 	for (i = 0; i < chip_rcv_array_count(dd); i++)
13563 		hfi1_put_tid(dd, i, PT_INVALID_FLUSH, 0, 0);
13564 
13565 	/* RcvQPMapTable */
13566 	for (i = 0; i < 32; i++)
13567 		write_csr(dd, RCV_QP_MAP_TABLE + (8 * i), 0);
13568 }
13569 
13570 /*
13571  * Use the ctrl_bits in CceCtrl to clear the status_bits in CceStatus.
13572  */
13573 static void clear_cce_status(struct hfi1_devdata *dd, u64 status_bits,
13574 			     u64 ctrl_bits)
13575 {
13576 	unsigned long timeout;
13577 	u64 reg;
13578 
13579 	/* is the condition present? */
13580 	reg = read_csr(dd, CCE_STATUS);
13581 	if ((reg & status_bits) == 0)
13582 		return;
13583 
13584 	/* clear the condition */
13585 	write_csr(dd, CCE_CTRL, ctrl_bits);
13586 
13587 	/* wait for the condition to clear */
13588 	timeout = jiffies + msecs_to_jiffies(CCE_STATUS_TIMEOUT);
13589 	while (1) {
13590 		reg = read_csr(dd, CCE_STATUS);
13591 		if ((reg & status_bits) == 0)
13592 			return;
13593 		if (time_after(jiffies, timeout)) {
13594 			dd_dev_err(dd,
13595 				   "Timeout waiting for CceStatus to clear bits 0x%llx, remaining 0x%llx\n",
13596 				   status_bits, reg & status_bits);
13597 			return;
13598 		}
13599 		udelay(1);
13600 	}
13601 }
13602 
13603 /* set CCE CSRs to chip reset defaults */
13604 static void reset_cce_csrs(struct hfi1_devdata *dd)
13605 {
13606 	int i;
13607 
13608 	/* CCE_REVISION read-only */
13609 	/* CCE_REVISION2 read-only */
13610 	/* CCE_CTRL - bits clear automatically */
13611 	/* CCE_STATUS read-only, use CceCtrl to clear */
13612 	clear_cce_status(dd, ALL_FROZE, CCE_CTRL_SPC_UNFREEZE_SMASK);
13613 	clear_cce_status(dd, ALL_TXE_PAUSE, CCE_CTRL_TXE_RESUME_SMASK);
13614 	clear_cce_status(dd, ALL_RXE_PAUSE, CCE_CTRL_RXE_RESUME_SMASK);
13615 	for (i = 0; i < CCE_NUM_SCRATCH; i++)
13616 		write_csr(dd, CCE_SCRATCH + (8 * i), 0);
13617 	/* CCE_ERR_STATUS read-only */
13618 	write_csr(dd, CCE_ERR_MASK, 0);
13619 	write_csr(dd, CCE_ERR_CLEAR, ~0ull);
13620 	/* CCE_ERR_FORCE leave alone */
13621 	for (i = 0; i < CCE_NUM_32_BIT_COUNTERS; i++)
13622 		write_csr(dd, CCE_COUNTER_ARRAY32 + (8 * i), 0);
13623 	write_csr(dd, CCE_DC_CTRL, CCE_DC_CTRL_RESETCSR);
13624 	/* CCE_PCIE_CTRL leave alone */
13625 	for (i = 0; i < CCE_NUM_MSIX_VECTORS; i++) {
13626 		write_csr(dd, CCE_MSIX_TABLE_LOWER + (8 * i), 0);
13627 		write_csr(dd, CCE_MSIX_TABLE_UPPER + (8 * i),
13628 			  CCE_MSIX_TABLE_UPPER_RESETCSR);
13629 	}
13630 	for (i = 0; i < CCE_NUM_MSIX_PBAS; i++) {
13631 		/* CCE_MSIX_PBA read-only */
13632 		write_csr(dd, CCE_MSIX_INT_GRANTED, ~0ull);
13633 		write_csr(dd, CCE_MSIX_VEC_CLR_WITHOUT_INT, ~0ull);
13634 	}
13635 	for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++)
13636 		write_csr(dd, CCE_INT_MAP, 0);
13637 	for (i = 0; i < CCE_NUM_INT_CSRS; i++) {
13638 		/* CCE_INT_STATUS read-only */
13639 		write_csr(dd, CCE_INT_MASK + (8 * i), 0);
13640 		write_csr(dd, CCE_INT_CLEAR + (8 * i), ~0ull);
13641 		/* CCE_INT_FORCE leave alone */
13642 		/* CCE_INT_BLOCKED read-only */
13643 	}
13644 	for (i = 0; i < CCE_NUM_32_BIT_INT_COUNTERS; i++)
13645 		write_csr(dd, CCE_INT_COUNTER_ARRAY32 + (8 * i), 0);
13646 }
13647 
13648 /* set MISC CSRs to chip reset defaults */
13649 static void reset_misc_csrs(struct hfi1_devdata *dd)
13650 {
13651 	int i;
13652 
13653 	for (i = 0; i < 32; i++) {
13654 		write_csr(dd, MISC_CFG_RSA_R2 + (8 * i), 0);
13655 		write_csr(dd, MISC_CFG_RSA_SIGNATURE + (8 * i), 0);
13656 		write_csr(dd, MISC_CFG_RSA_MODULUS + (8 * i), 0);
13657 	}
13658 	/*
13659 	 * MISC_CFG_SHA_PRELOAD leave alone - always reads 0 and can
13660 	 * only be written 128-byte chunks
13661 	 */
13662 	/* init RSA engine to clear lingering errors */
13663 	write_csr(dd, MISC_CFG_RSA_CMD, 1);
13664 	write_csr(dd, MISC_CFG_RSA_MU, 0);
13665 	write_csr(dd, MISC_CFG_FW_CTRL, 0);
13666 	/* MISC_STS_8051_DIGEST read-only */
13667 	/* MISC_STS_SBM_DIGEST read-only */
13668 	/* MISC_STS_PCIE_DIGEST read-only */
13669 	/* MISC_STS_FAB_DIGEST read-only */
13670 	/* MISC_ERR_STATUS read-only */
13671 	write_csr(dd, MISC_ERR_MASK, 0);
13672 	write_csr(dd, MISC_ERR_CLEAR, ~0ull);
13673 	/* MISC_ERR_FORCE leave alone */
13674 }
13675 
13676 /* set TXE CSRs to chip reset defaults */
13677 static void reset_txe_csrs(struct hfi1_devdata *dd)
13678 {
13679 	int i;
13680 
13681 	/*
13682 	 * TXE Kernel CSRs
13683 	 */
13684 	write_csr(dd, SEND_CTRL, 0);
13685 	__cm_reset(dd, 0);	/* reset CM internal state */
13686 	/* SEND_CONTEXTS read-only */
13687 	/* SEND_DMA_ENGINES read-only */
13688 	/* SEND_PIO_MEM_SIZE read-only */
13689 	/* SEND_DMA_MEM_SIZE read-only */
13690 	write_csr(dd, SEND_HIGH_PRIORITY_LIMIT, 0);
13691 	pio_reset_all(dd);	/* SEND_PIO_INIT_CTXT */
13692 	/* SEND_PIO_ERR_STATUS read-only */
13693 	write_csr(dd, SEND_PIO_ERR_MASK, 0);
13694 	write_csr(dd, SEND_PIO_ERR_CLEAR, ~0ull);
13695 	/* SEND_PIO_ERR_FORCE leave alone */
13696 	/* SEND_DMA_ERR_STATUS read-only */
13697 	write_csr(dd, SEND_DMA_ERR_MASK, 0);
13698 	write_csr(dd, SEND_DMA_ERR_CLEAR, ~0ull);
13699 	/* SEND_DMA_ERR_FORCE leave alone */
13700 	/* SEND_EGRESS_ERR_STATUS read-only */
13701 	write_csr(dd, SEND_EGRESS_ERR_MASK, 0);
13702 	write_csr(dd, SEND_EGRESS_ERR_CLEAR, ~0ull);
13703 	/* SEND_EGRESS_ERR_FORCE leave alone */
13704 	write_csr(dd, SEND_BTH_QP, 0);
13705 	write_csr(dd, SEND_STATIC_RATE_CONTROL, 0);
13706 	write_csr(dd, SEND_SC2VLT0, 0);
13707 	write_csr(dd, SEND_SC2VLT1, 0);
13708 	write_csr(dd, SEND_SC2VLT2, 0);
13709 	write_csr(dd, SEND_SC2VLT3, 0);
13710 	write_csr(dd, SEND_LEN_CHECK0, 0);
13711 	write_csr(dd, SEND_LEN_CHECK1, 0);
13712 	/* SEND_ERR_STATUS read-only */
13713 	write_csr(dd, SEND_ERR_MASK, 0);
13714 	write_csr(dd, SEND_ERR_CLEAR, ~0ull);
13715 	/* SEND_ERR_FORCE read-only */
13716 	for (i = 0; i < VL_ARB_LOW_PRIO_TABLE_SIZE; i++)
13717 		write_csr(dd, SEND_LOW_PRIORITY_LIST + (8 * i), 0);
13718 	for (i = 0; i < VL_ARB_HIGH_PRIO_TABLE_SIZE; i++)
13719 		write_csr(dd, SEND_HIGH_PRIORITY_LIST + (8 * i), 0);
13720 	for (i = 0; i < chip_send_contexts(dd) / NUM_CONTEXTS_PER_SET; i++)
13721 		write_csr(dd, SEND_CONTEXT_SET_CTRL + (8 * i), 0);
13722 	for (i = 0; i < TXE_NUM_32_BIT_COUNTER; i++)
13723 		write_csr(dd, SEND_COUNTER_ARRAY32 + (8 * i), 0);
13724 	for (i = 0; i < TXE_NUM_64_BIT_COUNTER; i++)
13725 		write_csr(dd, SEND_COUNTER_ARRAY64 + (8 * i), 0);
13726 	write_csr(dd, SEND_CM_CTRL, SEND_CM_CTRL_RESETCSR);
13727 	write_csr(dd, SEND_CM_GLOBAL_CREDIT, SEND_CM_GLOBAL_CREDIT_RESETCSR);
13728 	/* SEND_CM_CREDIT_USED_STATUS read-only */
13729 	write_csr(dd, SEND_CM_TIMER_CTRL, 0);
13730 	write_csr(dd, SEND_CM_LOCAL_AU_TABLE0_TO3, 0);
13731 	write_csr(dd, SEND_CM_LOCAL_AU_TABLE4_TO7, 0);
13732 	write_csr(dd, SEND_CM_REMOTE_AU_TABLE0_TO3, 0);
13733 	write_csr(dd, SEND_CM_REMOTE_AU_TABLE4_TO7, 0);
13734 	for (i = 0; i < TXE_NUM_DATA_VL; i++)
13735 		write_csr(dd, SEND_CM_CREDIT_VL + (8 * i), 0);
13736 	write_csr(dd, SEND_CM_CREDIT_VL15, 0);
13737 	/* SEND_CM_CREDIT_USED_VL read-only */
13738 	/* SEND_CM_CREDIT_USED_VL15 read-only */
13739 	/* SEND_EGRESS_CTXT_STATUS read-only */
13740 	/* SEND_EGRESS_SEND_DMA_STATUS read-only */
13741 	write_csr(dd, SEND_EGRESS_ERR_INFO, ~0ull);
13742 	/* SEND_EGRESS_ERR_INFO read-only */
13743 	/* SEND_EGRESS_ERR_SOURCE read-only */
13744 
13745 	/*
13746 	 * TXE Per-Context CSRs
13747 	 */
13748 	for (i = 0; i < chip_send_contexts(dd); i++) {
13749 		write_kctxt_csr(dd, i, SEND_CTXT_CTRL, 0);
13750 		write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_CTRL, 0);
13751 		write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_RETURN_ADDR, 0);
13752 		write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_FORCE, 0);
13753 		write_kctxt_csr(dd, i, SEND_CTXT_ERR_MASK, 0);
13754 		write_kctxt_csr(dd, i, SEND_CTXT_ERR_CLEAR, ~0ull);
13755 		write_kctxt_csr(dd, i, SEND_CTXT_CHECK_ENABLE, 0);
13756 		write_kctxt_csr(dd, i, SEND_CTXT_CHECK_VL, 0);
13757 		write_kctxt_csr(dd, i, SEND_CTXT_CHECK_JOB_KEY, 0);
13758 		write_kctxt_csr(dd, i, SEND_CTXT_CHECK_PARTITION_KEY, 0);
13759 		write_kctxt_csr(dd, i, SEND_CTXT_CHECK_SLID, 0);
13760 		write_kctxt_csr(dd, i, SEND_CTXT_CHECK_OPCODE, 0);
13761 	}
13762 
13763 	/*
13764 	 * TXE Per-SDMA CSRs
13765 	 */
13766 	for (i = 0; i < chip_sdma_engines(dd); i++) {
13767 		write_kctxt_csr(dd, i, SEND_DMA_CTRL, 0);
13768 		/* SEND_DMA_STATUS read-only */
13769 		write_kctxt_csr(dd, i, SEND_DMA_BASE_ADDR, 0);
13770 		write_kctxt_csr(dd, i, SEND_DMA_LEN_GEN, 0);
13771 		write_kctxt_csr(dd, i, SEND_DMA_TAIL, 0);
13772 		/* SEND_DMA_HEAD read-only */
13773 		write_kctxt_csr(dd, i, SEND_DMA_HEAD_ADDR, 0);
13774 		write_kctxt_csr(dd, i, SEND_DMA_PRIORITY_THLD, 0);
13775 		/* SEND_DMA_IDLE_CNT read-only */
13776 		write_kctxt_csr(dd, i, SEND_DMA_RELOAD_CNT, 0);
13777 		write_kctxt_csr(dd, i, SEND_DMA_DESC_CNT, 0);
13778 		/* SEND_DMA_DESC_FETCHED_CNT read-only */
13779 		/* SEND_DMA_ENG_ERR_STATUS read-only */
13780 		write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_MASK, 0);
13781 		write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_CLEAR, ~0ull);
13782 		/* SEND_DMA_ENG_ERR_FORCE leave alone */
13783 		write_kctxt_csr(dd, i, SEND_DMA_CHECK_ENABLE, 0);
13784 		write_kctxt_csr(dd, i, SEND_DMA_CHECK_VL, 0);
13785 		write_kctxt_csr(dd, i, SEND_DMA_CHECK_JOB_KEY, 0);
13786 		write_kctxt_csr(dd, i, SEND_DMA_CHECK_PARTITION_KEY, 0);
13787 		write_kctxt_csr(dd, i, SEND_DMA_CHECK_SLID, 0);
13788 		write_kctxt_csr(dd, i, SEND_DMA_CHECK_OPCODE, 0);
13789 		write_kctxt_csr(dd, i, SEND_DMA_MEMORY, 0);
13790 	}
13791 }
13792 
13793 /*
13794  * Expect on entry:
13795  * o Packet ingress is disabled, i.e. RcvCtrl.RcvPortEnable == 0
13796  */
13797 static void init_rbufs(struct hfi1_devdata *dd)
13798 {
13799 	u64 reg;
13800 	int count;
13801 
13802 	/*
13803 	 * Wait for DMA to stop: RxRbufPktPending and RxPktInProgress are
13804 	 * clear.
13805 	 */
13806 	count = 0;
13807 	while (1) {
13808 		reg = read_csr(dd, RCV_STATUS);
13809 		if ((reg & (RCV_STATUS_RX_RBUF_PKT_PENDING_SMASK
13810 			    | RCV_STATUS_RX_PKT_IN_PROGRESS_SMASK)) == 0)
13811 			break;
13812 		/*
13813 		 * Give up after 1ms - maximum wait time.
13814 		 *
13815 		 * RBuf size is 136KiB.  Slowest possible is PCIe Gen1 x1 at
13816 		 * 250MB/s bandwidth.  Lower rate to 66% for overhead to get:
13817 		 *	136 KB / (66% * 250MB/s) = 844us
13818 		 */
13819 		if (count++ > 500) {
13820 			dd_dev_err(dd,
13821 				   "%s: in-progress DMA not clearing: RcvStatus 0x%llx, continuing\n",
13822 				   __func__, reg);
13823 			break;
13824 		}
13825 		udelay(2); /* do not busy-wait the CSR */
13826 	}
13827 
13828 	/* start the init - expect RcvCtrl to be 0 */
13829 	write_csr(dd, RCV_CTRL, RCV_CTRL_RX_RBUF_INIT_SMASK);
13830 
13831 	/*
13832 	 * Read to force the write of Rcvtrl.RxRbufInit.  There is a brief
13833 	 * period after the write before RcvStatus.RxRbufInitDone is valid.
13834 	 * The delay in the first run through the loop below is sufficient and
13835 	 * required before the first read of RcvStatus.RxRbufInintDone.
13836 	 */
13837 	read_csr(dd, RCV_CTRL);
13838 
13839 	/* wait for the init to finish */
13840 	count = 0;
13841 	while (1) {
13842 		/* delay is required first time through - see above */
13843 		udelay(2); /* do not busy-wait the CSR */
13844 		reg = read_csr(dd, RCV_STATUS);
13845 		if (reg & (RCV_STATUS_RX_RBUF_INIT_DONE_SMASK))
13846 			break;
13847 
13848 		/* give up after 100us - slowest possible at 33MHz is 73us */
13849 		if (count++ > 50) {
13850 			dd_dev_err(dd,
13851 				   "%s: RcvStatus.RxRbufInit not set, continuing\n",
13852 				   __func__);
13853 			break;
13854 		}
13855 	}
13856 }
13857 
13858 /* set RXE CSRs to chip reset defaults */
13859 static void reset_rxe_csrs(struct hfi1_devdata *dd)
13860 {
13861 	int i, j;
13862 
13863 	/*
13864 	 * RXE Kernel CSRs
13865 	 */
13866 	write_csr(dd, RCV_CTRL, 0);
13867 	init_rbufs(dd);
13868 	/* RCV_STATUS read-only */
13869 	/* RCV_CONTEXTS read-only */
13870 	/* RCV_ARRAY_CNT read-only */
13871 	/* RCV_BUF_SIZE read-only */
13872 	write_csr(dd, RCV_BTH_QP, 0);
13873 	write_csr(dd, RCV_MULTICAST, 0);
13874 	write_csr(dd, RCV_BYPASS, 0);
13875 	write_csr(dd, RCV_VL15, 0);
13876 	/* this is a clear-down */
13877 	write_csr(dd, RCV_ERR_INFO,
13878 		  RCV_ERR_INFO_RCV_EXCESS_BUFFER_OVERRUN_SMASK);
13879 	/* RCV_ERR_STATUS read-only */
13880 	write_csr(dd, RCV_ERR_MASK, 0);
13881 	write_csr(dd, RCV_ERR_CLEAR, ~0ull);
13882 	/* RCV_ERR_FORCE leave alone */
13883 	for (i = 0; i < 32; i++)
13884 		write_csr(dd, RCV_QP_MAP_TABLE + (8 * i), 0);
13885 	for (i = 0; i < 4; i++)
13886 		write_csr(dd, RCV_PARTITION_KEY + (8 * i), 0);
13887 	for (i = 0; i < RXE_NUM_32_BIT_COUNTERS; i++)
13888 		write_csr(dd, RCV_COUNTER_ARRAY32 + (8 * i), 0);
13889 	for (i = 0; i < RXE_NUM_64_BIT_COUNTERS; i++)
13890 		write_csr(dd, RCV_COUNTER_ARRAY64 + (8 * i), 0);
13891 	for (i = 0; i < RXE_NUM_RSM_INSTANCES; i++)
13892 		clear_rsm_rule(dd, i);
13893 	for (i = 0; i < 32; i++)
13894 		write_csr(dd, RCV_RSM_MAP_TABLE + (8 * i), 0);
13895 
13896 	/*
13897 	 * RXE Kernel and User Per-Context CSRs
13898 	 */
13899 	for (i = 0; i < chip_rcv_contexts(dd); i++) {
13900 		/* kernel */
13901 		write_kctxt_csr(dd, i, RCV_CTXT_CTRL, 0);
13902 		/* RCV_CTXT_STATUS read-only */
13903 		write_kctxt_csr(dd, i, RCV_EGR_CTRL, 0);
13904 		write_kctxt_csr(dd, i, RCV_TID_CTRL, 0);
13905 		write_kctxt_csr(dd, i, RCV_KEY_CTRL, 0);
13906 		write_kctxt_csr(dd, i, RCV_HDR_ADDR, 0);
13907 		write_kctxt_csr(dd, i, RCV_HDR_CNT, 0);
13908 		write_kctxt_csr(dd, i, RCV_HDR_ENT_SIZE, 0);
13909 		write_kctxt_csr(dd, i, RCV_HDR_SIZE, 0);
13910 		write_kctxt_csr(dd, i, RCV_HDR_TAIL_ADDR, 0);
13911 		write_kctxt_csr(dd, i, RCV_AVAIL_TIME_OUT, 0);
13912 		write_kctxt_csr(dd, i, RCV_HDR_OVFL_CNT, 0);
13913 
13914 		/* user */
13915 		/* RCV_HDR_TAIL read-only */
13916 		write_uctxt_csr(dd, i, RCV_HDR_HEAD, 0);
13917 		/* RCV_EGR_INDEX_TAIL read-only */
13918 		write_uctxt_csr(dd, i, RCV_EGR_INDEX_HEAD, 0);
13919 		/* RCV_EGR_OFFSET_TAIL read-only */
13920 		for (j = 0; j < RXE_NUM_TID_FLOWS; j++) {
13921 			write_uctxt_csr(dd, i,
13922 					RCV_TID_FLOW_TABLE + (8 * j), 0);
13923 		}
13924 	}
13925 }
13926 
13927 /*
13928  * Set sc2vl tables.
13929  *
13930  * They power on to zeros, so to avoid send context errors
13931  * they need to be set:
13932  *
13933  * SC 0-7 -> VL 0-7 (respectively)
13934  * SC 15  -> VL 15
13935  * otherwise
13936  *        -> VL 0
13937  */
13938 static void init_sc2vl_tables(struct hfi1_devdata *dd)
13939 {
13940 	int i;
13941 	/* init per architecture spec, constrained by hardware capability */
13942 
13943 	/* HFI maps sent packets */
13944 	write_csr(dd, SEND_SC2VLT0, SC2VL_VAL(
13945 		0,
13946 		0, 0, 1, 1,
13947 		2, 2, 3, 3,
13948 		4, 4, 5, 5,
13949 		6, 6, 7, 7));
13950 	write_csr(dd, SEND_SC2VLT1, SC2VL_VAL(
13951 		1,
13952 		8, 0, 9, 0,
13953 		10, 0, 11, 0,
13954 		12, 0, 13, 0,
13955 		14, 0, 15, 15));
13956 	write_csr(dd, SEND_SC2VLT2, SC2VL_VAL(
13957 		2,
13958 		16, 0, 17, 0,
13959 		18, 0, 19, 0,
13960 		20, 0, 21, 0,
13961 		22, 0, 23, 0));
13962 	write_csr(dd, SEND_SC2VLT3, SC2VL_VAL(
13963 		3,
13964 		24, 0, 25, 0,
13965 		26, 0, 27, 0,
13966 		28, 0, 29, 0,
13967 		30, 0, 31, 0));
13968 
13969 	/* DC maps received packets */
13970 	write_csr(dd, DCC_CFG_SC_VL_TABLE_15_0, DC_SC_VL_VAL(
13971 		15_0,
13972 		0, 0, 1, 1,  2, 2,  3, 3,  4, 4,  5, 5,  6, 6,  7,  7,
13973 		8, 0, 9, 0, 10, 0, 11, 0, 12, 0, 13, 0, 14, 0, 15, 15));
13974 	write_csr(dd, DCC_CFG_SC_VL_TABLE_31_16, DC_SC_VL_VAL(
13975 		31_16,
13976 		16, 0, 17, 0, 18, 0, 19, 0, 20, 0, 21, 0, 22, 0, 23, 0,
13977 		24, 0, 25, 0, 26, 0, 27, 0, 28, 0, 29, 0, 30, 0, 31, 0));
13978 
13979 	/* initialize the cached sc2vl values consistently with h/w */
13980 	for (i = 0; i < 32; i++) {
13981 		if (i < 8 || i == 15)
13982 			*((u8 *)(dd->sc2vl) + i) = (u8)i;
13983 		else
13984 			*((u8 *)(dd->sc2vl) + i) = 0;
13985 	}
13986 }
13987 
13988 /*
13989  * Read chip sizes and then reset parts to sane, disabled, values.  We cannot
13990  * depend on the chip going through a power-on reset - a driver may be loaded
13991  * and unloaded many times.
13992  *
13993  * Do not write any CSR values to the chip in this routine - there may be
13994  * a reset following the (possible) FLR in this routine.
13995  *
13996  */
13997 static int init_chip(struct hfi1_devdata *dd)
13998 {
13999 	int i;
14000 	int ret = 0;
14001 
14002 	/*
14003 	 * Put the HFI CSRs in a known state.
14004 	 * Combine this with a DC reset.
14005 	 *
14006 	 * Stop the device from doing anything while we do a
14007 	 * reset.  We know there are no other active users of
14008 	 * the device since we are now in charge.  Turn off
14009 	 * off all outbound and inbound traffic and make sure
14010 	 * the device does not generate any interrupts.
14011 	 */
14012 
14013 	/* disable send contexts and SDMA engines */
14014 	write_csr(dd, SEND_CTRL, 0);
14015 	for (i = 0; i < chip_send_contexts(dd); i++)
14016 		write_kctxt_csr(dd, i, SEND_CTXT_CTRL, 0);
14017 	for (i = 0; i < chip_sdma_engines(dd); i++)
14018 		write_kctxt_csr(dd, i, SEND_DMA_CTRL, 0);
14019 	/* disable port (turn off RXE inbound traffic) and contexts */
14020 	write_csr(dd, RCV_CTRL, 0);
14021 	for (i = 0; i < chip_rcv_contexts(dd); i++)
14022 		write_csr(dd, RCV_CTXT_CTRL, 0);
14023 	/* mask all interrupt sources */
14024 	for (i = 0; i < CCE_NUM_INT_CSRS; i++)
14025 		write_csr(dd, CCE_INT_MASK + (8 * i), 0ull);
14026 
14027 	/*
14028 	 * DC Reset: do a full DC reset before the register clear.
14029 	 * A recommended length of time to hold is one CSR read,
14030 	 * so reread the CceDcCtrl.  Then, hold the DC in reset
14031 	 * across the clear.
14032 	 */
14033 	write_csr(dd, CCE_DC_CTRL, CCE_DC_CTRL_DC_RESET_SMASK);
14034 	(void)read_csr(dd, CCE_DC_CTRL);
14035 
14036 	if (use_flr) {
14037 		/*
14038 		 * A FLR will reset the SPC core and part of the PCIe.
14039 		 * The parts that need to be restored have already been
14040 		 * saved.
14041 		 */
14042 		dd_dev_info(dd, "Resetting CSRs with FLR\n");
14043 
14044 		/* do the FLR, the DC reset will remain */
14045 		pcie_flr(dd->pcidev);
14046 
14047 		/* restore command and BARs */
14048 		ret = restore_pci_variables(dd);
14049 		if (ret) {
14050 			dd_dev_err(dd, "%s: Could not restore PCI variables\n",
14051 				   __func__);
14052 			return ret;
14053 		}
14054 
14055 		if (is_ax(dd)) {
14056 			dd_dev_info(dd, "Resetting CSRs with FLR\n");
14057 			pcie_flr(dd->pcidev);
14058 			ret = restore_pci_variables(dd);
14059 			if (ret) {
14060 				dd_dev_err(dd, "%s: Could not restore PCI variables\n",
14061 					   __func__);
14062 				return ret;
14063 			}
14064 		}
14065 	} else {
14066 		dd_dev_info(dd, "Resetting CSRs with writes\n");
14067 		reset_cce_csrs(dd);
14068 		reset_txe_csrs(dd);
14069 		reset_rxe_csrs(dd);
14070 		reset_misc_csrs(dd);
14071 	}
14072 	/* clear the DC reset */
14073 	write_csr(dd, CCE_DC_CTRL, 0);
14074 
14075 	/* Set the LED off */
14076 	setextled(dd, 0);
14077 
14078 	/*
14079 	 * Clear the QSFP reset.
14080 	 * An FLR enforces a 0 on all out pins. The driver does not touch
14081 	 * ASIC_QSFPn_OUT otherwise.  This leaves RESET_N low and
14082 	 * anything plugged constantly in reset, if it pays attention
14083 	 * to RESET_N.
14084 	 * Prime examples of this are optical cables. Set all pins high.
14085 	 * I2CCLK and I2CDAT will change per direction, and INT_N and
14086 	 * MODPRS_N are input only and their value is ignored.
14087 	 */
14088 	write_csr(dd, ASIC_QSFP1_OUT, 0x1f);
14089 	write_csr(dd, ASIC_QSFP2_OUT, 0x1f);
14090 	init_chip_resources(dd);
14091 	return ret;
14092 }
14093 
14094 static void init_early_variables(struct hfi1_devdata *dd)
14095 {
14096 	int i;
14097 
14098 	/* assign link credit variables */
14099 	dd->vau = CM_VAU;
14100 	dd->link_credits = CM_GLOBAL_CREDITS;
14101 	if (is_ax(dd))
14102 		dd->link_credits--;
14103 	dd->vcu = cu_to_vcu(hfi1_cu);
14104 	/* enough room for 8 MAD packets plus header - 17K */
14105 	dd->vl15_init = (8 * (2048 + 128)) / vau_to_au(dd->vau);
14106 	if (dd->vl15_init > dd->link_credits)
14107 		dd->vl15_init = dd->link_credits;
14108 
14109 	write_uninitialized_csrs_and_memories(dd);
14110 
14111 	if (HFI1_CAP_IS_KSET(PKEY_CHECK))
14112 		for (i = 0; i < dd->num_pports; i++) {
14113 			struct hfi1_pportdata *ppd = &dd->pport[i];
14114 
14115 			set_partition_keys(ppd);
14116 		}
14117 	init_sc2vl_tables(dd);
14118 }
14119 
14120 static void init_kdeth_qp(struct hfi1_devdata *dd)
14121 {
14122 	/* user changed the KDETH_QP */
14123 	if (kdeth_qp != 0 && kdeth_qp >= 0xff) {
14124 		/* out of range or illegal value */
14125 		dd_dev_err(dd, "Invalid KDETH queue pair prefix, ignoring");
14126 		kdeth_qp = 0;
14127 	}
14128 	if (kdeth_qp == 0)	/* not set, or failed range check */
14129 		kdeth_qp = DEFAULT_KDETH_QP;
14130 
14131 	write_csr(dd, SEND_BTH_QP,
14132 		  (kdeth_qp & SEND_BTH_QP_KDETH_QP_MASK) <<
14133 		  SEND_BTH_QP_KDETH_QP_SHIFT);
14134 
14135 	write_csr(dd, RCV_BTH_QP,
14136 		  (kdeth_qp & RCV_BTH_QP_KDETH_QP_MASK) <<
14137 		  RCV_BTH_QP_KDETH_QP_SHIFT);
14138 }
14139 
14140 /**
14141  * hfi1_get_qp_map
14142  * @dd: device data
14143  * @idx: index to read
14144  */
14145 u8 hfi1_get_qp_map(struct hfi1_devdata *dd, u8 idx)
14146 {
14147 	u64 reg = read_csr(dd, RCV_QP_MAP_TABLE + (idx / 8) * 8);
14148 
14149 	reg >>= (idx % 8) * 8;
14150 	return reg;
14151 }
14152 
14153 /**
14154  * init_qpmap_table
14155  * @dd - device data
14156  * @first_ctxt - first context
14157  * @last_ctxt - first context
14158  *
14159  * This return sets the qpn mapping table that
14160  * is indexed by qpn[8:1].
14161  *
14162  * The routine will round robin the 256 settings
14163  * from first_ctxt to last_ctxt.
14164  *
14165  * The first/last looks ahead to having specialized
14166  * receive contexts for mgmt and bypass.  Normal
14167  * verbs traffic will assumed to be on a range
14168  * of receive contexts.
14169  */
14170 static void init_qpmap_table(struct hfi1_devdata *dd,
14171 			     u32 first_ctxt,
14172 			     u32 last_ctxt)
14173 {
14174 	u64 reg = 0;
14175 	u64 regno = RCV_QP_MAP_TABLE;
14176 	int i;
14177 	u64 ctxt = first_ctxt;
14178 
14179 	for (i = 0; i < 256; i++) {
14180 		reg |= ctxt << (8 * (i % 8));
14181 		ctxt++;
14182 		if (ctxt > last_ctxt)
14183 			ctxt = first_ctxt;
14184 		if (i % 8 == 7) {
14185 			write_csr(dd, regno, reg);
14186 			reg = 0;
14187 			regno += 8;
14188 		}
14189 	}
14190 
14191 	add_rcvctrl(dd, RCV_CTRL_RCV_QP_MAP_ENABLE_SMASK
14192 			| RCV_CTRL_RCV_BYPASS_ENABLE_SMASK);
14193 }
14194 
14195 struct rsm_map_table {
14196 	u64 map[NUM_MAP_REGS];
14197 	unsigned int used;
14198 };
14199 
14200 struct rsm_rule_data {
14201 	u8 offset;
14202 	u8 pkt_type;
14203 	u32 field1_off;
14204 	u32 field2_off;
14205 	u32 index1_off;
14206 	u32 index1_width;
14207 	u32 index2_off;
14208 	u32 index2_width;
14209 	u32 mask1;
14210 	u32 value1;
14211 	u32 mask2;
14212 	u32 value2;
14213 };
14214 
14215 /*
14216  * Return an initialized RMT map table for users to fill in.  OK if it
14217  * returns NULL, indicating no table.
14218  */
14219 static struct rsm_map_table *alloc_rsm_map_table(struct hfi1_devdata *dd)
14220 {
14221 	struct rsm_map_table *rmt;
14222 	u8 rxcontext = is_ax(dd) ? 0 : 0xff;  /* 0 is default if a0 ver. */
14223 
14224 	rmt = kmalloc(sizeof(*rmt), GFP_KERNEL);
14225 	if (rmt) {
14226 		memset(rmt->map, rxcontext, sizeof(rmt->map));
14227 		rmt->used = 0;
14228 	}
14229 
14230 	return rmt;
14231 }
14232 
14233 /*
14234  * Write the final RMT map table to the chip and free the table.  OK if
14235  * table is NULL.
14236  */
14237 static void complete_rsm_map_table(struct hfi1_devdata *dd,
14238 				   struct rsm_map_table *rmt)
14239 {
14240 	int i;
14241 
14242 	if (rmt) {
14243 		/* write table to chip */
14244 		for (i = 0; i < NUM_MAP_REGS; i++)
14245 			write_csr(dd, RCV_RSM_MAP_TABLE + (8 * i), rmt->map[i]);
14246 
14247 		/* enable RSM */
14248 		add_rcvctrl(dd, RCV_CTRL_RCV_RSM_ENABLE_SMASK);
14249 	}
14250 }
14251 
14252 /*
14253  * Add a receive side mapping rule.
14254  */
14255 static void add_rsm_rule(struct hfi1_devdata *dd, u8 rule_index,
14256 			 struct rsm_rule_data *rrd)
14257 {
14258 	write_csr(dd, RCV_RSM_CFG + (8 * rule_index),
14259 		  (u64)rrd->offset << RCV_RSM_CFG_OFFSET_SHIFT |
14260 		  1ull << rule_index | /* enable bit */
14261 		  (u64)rrd->pkt_type << RCV_RSM_CFG_PACKET_TYPE_SHIFT);
14262 	write_csr(dd, RCV_RSM_SELECT + (8 * rule_index),
14263 		  (u64)rrd->field1_off << RCV_RSM_SELECT_FIELD1_OFFSET_SHIFT |
14264 		  (u64)rrd->field2_off << RCV_RSM_SELECT_FIELD2_OFFSET_SHIFT |
14265 		  (u64)rrd->index1_off << RCV_RSM_SELECT_INDEX1_OFFSET_SHIFT |
14266 		  (u64)rrd->index1_width << RCV_RSM_SELECT_INDEX1_WIDTH_SHIFT |
14267 		  (u64)rrd->index2_off << RCV_RSM_SELECT_INDEX2_OFFSET_SHIFT |
14268 		  (u64)rrd->index2_width << RCV_RSM_SELECT_INDEX2_WIDTH_SHIFT);
14269 	write_csr(dd, RCV_RSM_MATCH + (8 * rule_index),
14270 		  (u64)rrd->mask1 << RCV_RSM_MATCH_MASK1_SHIFT |
14271 		  (u64)rrd->value1 << RCV_RSM_MATCH_VALUE1_SHIFT |
14272 		  (u64)rrd->mask2 << RCV_RSM_MATCH_MASK2_SHIFT |
14273 		  (u64)rrd->value2 << RCV_RSM_MATCH_VALUE2_SHIFT);
14274 }
14275 
14276 /*
14277  * Clear a receive side mapping rule.
14278  */
14279 static void clear_rsm_rule(struct hfi1_devdata *dd, u8 rule_index)
14280 {
14281 	write_csr(dd, RCV_RSM_CFG + (8 * rule_index), 0);
14282 	write_csr(dd, RCV_RSM_SELECT + (8 * rule_index), 0);
14283 	write_csr(dd, RCV_RSM_MATCH + (8 * rule_index), 0);
14284 }
14285 
14286 /* return the number of RSM map table entries that will be used for QOS */
14287 static int qos_rmt_entries(struct hfi1_devdata *dd, unsigned int *mp,
14288 			   unsigned int *np)
14289 {
14290 	int i;
14291 	unsigned int m, n;
14292 	u8 max_by_vl = 0;
14293 
14294 	/* is QOS active at all? */
14295 	if (dd->n_krcv_queues <= MIN_KERNEL_KCTXTS ||
14296 	    num_vls == 1 ||
14297 	    krcvqsset <= 1)
14298 		goto no_qos;
14299 
14300 	/* determine bits for qpn */
14301 	for (i = 0; i < min_t(unsigned int, num_vls, krcvqsset); i++)
14302 		if (krcvqs[i] > max_by_vl)
14303 			max_by_vl = krcvqs[i];
14304 	if (max_by_vl > 32)
14305 		goto no_qos;
14306 	m = ilog2(__roundup_pow_of_two(max_by_vl));
14307 
14308 	/* determine bits for vl */
14309 	n = ilog2(__roundup_pow_of_two(num_vls));
14310 
14311 	/* reject if too much is used */
14312 	if ((m + n) > 7)
14313 		goto no_qos;
14314 
14315 	if (mp)
14316 		*mp = m;
14317 	if (np)
14318 		*np = n;
14319 
14320 	return 1 << (m + n);
14321 
14322 no_qos:
14323 	if (mp)
14324 		*mp = 0;
14325 	if (np)
14326 		*np = 0;
14327 	return 0;
14328 }
14329 
14330 /**
14331  * init_qos - init RX qos
14332  * @dd - device data
14333  * @rmt - RSM map table
14334  *
14335  * This routine initializes Rule 0 and the RSM map table to implement
14336  * quality of service (qos).
14337  *
14338  * If all of the limit tests succeed, qos is applied based on the array
14339  * interpretation of krcvqs where entry 0 is VL0.
14340  *
14341  * The number of vl bits (n) and the number of qpn bits (m) are computed to
14342  * feed both the RSM map table and the single rule.
14343  */
14344 static void init_qos(struct hfi1_devdata *dd, struct rsm_map_table *rmt)
14345 {
14346 	struct rsm_rule_data rrd;
14347 	unsigned qpns_per_vl, ctxt, i, qpn, n = 1, m;
14348 	unsigned int rmt_entries;
14349 	u64 reg;
14350 
14351 	if (!rmt)
14352 		goto bail;
14353 	rmt_entries = qos_rmt_entries(dd, &m, &n);
14354 	if (rmt_entries == 0)
14355 		goto bail;
14356 	qpns_per_vl = 1 << m;
14357 
14358 	/* enough room in the map table? */
14359 	rmt_entries = 1 << (m + n);
14360 	if (rmt->used + rmt_entries >= NUM_MAP_ENTRIES)
14361 		goto bail;
14362 
14363 	/* add qos entries to the the RSM map table */
14364 	for (i = 0, ctxt = FIRST_KERNEL_KCTXT; i < num_vls; i++) {
14365 		unsigned tctxt;
14366 
14367 		for (qpn = 0, tctxt = ctxt;
14368 		     krcvqs[i] && qpn < qpns_per_vl; qpn++) {
14369 			unsigned idx, regoff, regidx;
14370 
14371 			/* generate the index the hardware will produce */
14372 			idx = rmt->used + ((qpn << n) ^ i);
14373 			regoff = (idx % 8) * 8;
14374 			regidx = idx / 8;
14375 			/* replace default with context number */
14376 			reg = rmt->map[regidx];
14377 			reg &= ~(RCV_RSM_MAP_TABLE_RCV_CONTEXT_A_MASK
14378 				<< regoff);
14379 			reg |= (u64)(tctxt++) << regoff;
14380 			rmt->map[regidx] = reg;
14381 			if (tctxt == ctxt + krcvqs[i])
14382 				tctxt = ctxt;
14383 		}
14384 		ctxt += krcvqs[i];
14385 	}
14386 
14387 	rrd.offset = rmt->used;
14388 	rrd.pkt_type = 2;
14389 	rrd.field1_off = LRH_BTH_MATCH_OFFSET;
14390 	rrd.field2_off = LRH_SC_MATCH_OFFSET;
14391 	rrd.index1_off = LRH_SC_SELECT_OFFSET;
14392 	rrd.index1_width = n;
14393 	rrd.index2_off = QPN_SELECT_OFFSET;
14394 	rrd.index2_width = m + n;
14395 	rrd.mask1 = LRH_BTH_MASK;
14396 	rrd.value1 = LRH_BTH_VALUE;
14397 	rrd.mask2 = LRH_SC_MASK;
14398 	rrd.value2 = LRH_SC_VALUE;
14399 
14400 	/* add rule 0 */
14401 	add_rsm_rule(dd, RSM_INS_VERBS, &rrd);
14402 
14403 	/* mark RSM map entries as used */
14404 	rmt->used += rmt_entries;
14405 	/* map everything else to the mcast/err/vl15 context */
14406 	init_qpmap_table(dd, HFI1_CTRL_CTXT, HFI1_CTRL_CTXT);
14407 	dd->qos_shift = n + 1;
14408 	return;
14409 bail:
14410 	dd->qos_shift = 1;
14411 	init_qpmap_table(dd, FIRST_KERNEL_KCTXT, dd->n_krcv_queues - 1);
14412 }
14413 
14414 static void init_fecn_handling(struct hfi1_devdata *dd,
14415 			       struct rsm_map_table *rmt)
14416 {
14417 	struct rsm_rule_data rrd;
14418 	u64 reg;
14419 	int i, idx, regoff, regidx, start;
14420 	u8 offset;
14421 	u32 total_cnt;
14422 
14423 	if (HFI1_CAP_IS_KSET(TID_RDMA))
14424 		/* Exclude context 0 */
14425 		start = 1;
14426 	else
14427 		start = dd->first_dyn_alloc_ctxt;
14428 
14429 	total_cnt = dd->num_rcv_contexts - start;
14430 
14431 	/* there needs to be enough room in the map table */
14432 	if (rmt->used + total_cnt >= NUM_MAP_ENTRIES) {
14433 		dd_dev_err(dd, "FECN handling disabled - too many contexts allocated\n");
14434 		return;
14435 	}
14436 
14437 	/*
14438 	 * RSM will extract the destination context as an index into the
14439 	 * map table.  The destination contexts are a sequential block
14440 	 * in the range start...num_rcv_contexts-1 (inclusive).
14441 	 * Map entries are accessed as offset + extracted value.  Adjust
14442 	 * the added offset so this sequence can be placed anywhere in
14443 	 * the table - as long as the entries themselves do not wrap.
14444 	 * There are only enough bits in offset for the table size, so
14445 	 * start with that to allow for a "negative" offset.
14446 	 */
14447 	offset = (u8)(NUM_MAP_ENTRIES + rmt->used - start);
14448 
14449 	for (i = start, idx = rmt->used; i < dd->num_rcv_contexts;
14450 	     i++, idx++) {
14451 		/* replace with identity mapping */
14452 		regoff = (idx % 8) * 8;
14453 		regidx = idx / 8;
14454 		reg = rmt->map[regidx];
14455 		reg &= ~(RCV_RSM_MAP_TABLE_RCV_CONTEXT_A_MASK << regoff);
14456 		reg |= (u64)i << regoff;
14457 		rmt->map[regidx] = reg;
14458 	}
14459 
14460 	/*
14461 	 * For RSM intercept of Expected FECN packets:
14462 	 * o packet type 0 - expected
14463 	 * o match on F (bit 95), using select/match 1, and
14464 	 * o match on SH (bit 133), using select/match 2.
14465 	 *
14466 	 * Use index 1 to extract the 8-bit receive context from DestQP
14467 	 * (start at bit 64).  Use that as the RSM map table index.
14468 	 */
14469 	rrd.offset = offset;
14470 	rrd.pkt_type = 0;
14471 	rrd.field1_off = 95;
14472 	rrd.field2_off = 133;
14473 	rrd.index1_off = 64;
14474 	rrd.index1_width = 8;
14475 	rrd.index2_off = 0;
14476 	rrd.index2_width = 0;
14477 	rrd.mask1 = 1;
14478 	rrd.value1 = 1;
14479 	rrd.mask2 = 1;
14480 	rrd.value2 = 1;
14481 
14482 	/* add rule 1 */
14483 	add_rsm_rule(dd, RSM_INS_FECN, &rrd);
14484 
14485 	rmt->used += total_cnt;
14486 }
14487 
14488 /* Initialize RSM for VNIC */
14489 void hfi1_init_vnic_rsm(struct hfi1_devdata *dd)
14490 {
14491 	u8 i, j;
14492 	u8 ctx_id = 0;
14493 	u64 reg;
14494 	u32 regoff;
14495 	struct rsm_rule_data rrd;
14496 
14497 	if (hfi1_vnic_is_rsm_full(dd, NUM_VNIC_MAP_ENTRIES)) {
14498 		dd_dev_err(dd, "Vnic RSM disabled, rmt entries used = %d\n",
14499 			   dd->vnic.rmt_start);
14500 		return;
14501 	}
14502 
14503 	dev_dbg(&(dd)->pcidev->dev, "Vnic rsm start = %d, end %d\n",
14504 		dd->vnic.rmt_start,
14505 		dd->vnic.rmt_start + NUM_VNIC_MAP_ENTRIES);
14506 
14507 	/* Update RSM mapping table, 32 regs, 256 entries - 1 ctx per byte */
14508 	regoff = RCV_RSM_MAP_TABLE + (dd->vnic.rmt_start / 8) * 8;
14509 	reg = read_csr(dd, regoff);
14510 	for (i = 0; i < NUM_VNIC_MAP_ENTRIES; i++) {
14511 		/* Update map register with vnic context */
14512 		j = (dd->vnic.rmt_start + i) % 8;
14513 		reg &= ~(0xffllu << (j * 8));
14514 		reg |= (u64)dd->vnic.ctxt[ctx_id++]->ctxt << (j * 8);
14515 		/* Wrap up vnic ctx index */
14516 		ctx_id %= dd->vnic.num_ctxt;
14517 		/* Write back map register */
14518 		if (j == 7 || ((i + 1) == NUM_VNIC_MAP_ENTRIES)) {
14519 			dev_dbg(&(dd)->pcidev->dev,
14520 				"Vnic rsm map reg[%d] =0x%llx\n",
14521 				regoff - RCV_RSM_MAP_TABLE, reg);
14522 
14523 			write_csr(dd, regoff, reg);
14524 			regoff += 8;
14525 			if (i < (NUM_VNIC_MAP_ENTRIES - 1))
14526 				reg = read_csr(dd, regoff);
14527 		}
14528 	}
14529 
14530 	/* Add rule for vnic */
14531 	rrd.offset = dd->vnic.rmt_start;
14532 	rrd.pkt_type = 4;
14533 	/* Match 16B packets */
14534 	rrd.field1_off = L2_TYPE_MATCH_OFFSET;
14535 	rrd.mask1 = L2_TYPE_MASK;
14536 	rrd.value1 = L2_16B_VALUE;
14537 	/* Match ETH L4 packets */
14538 	rrd.field2_off = L4_TYPE_MATCH_OFFSET;
14539 	rrd.mask2 = L4_16B_TYPE_MASK;
14540 	rrd.value2 = L4_16B_ETH_VALUE;
14541 	/* Calc context from veswid and entropy */
14542 	rrd.index1_off = L4_16B_HDR_VESWID_OFFSET;
14543 	rrd.index1_width = ilog2(NUM_VNIC_MAP_ENTRIES);
14544 	rrd.index2_off = L2_16B_ENTROPY_OFFSET;
14545 	rrd.index2_width = ilog2(NUM_VNIC_MAP_ENTRIES);
14546 	add_rsm_rule(dd, RSM_INS_VNIC, &rrd);
14547 
14548 	/* Enable RSM if not already enabled */
14549 	add_rcvctrl(dd, RCV_CTRL_RCV_RSM_ENABLE_SMASK);
14550 }
14551 
14552 void hfi1_deinit_vnic_rsm(struct hfi1_devdata *dd)
14553 {
14554 	clear_rsm_rule(dd, RSM_INS_VNIC);
14555 
14556 	/* Disable RSM if used only by vnic */
14557 	if (dd->vnic.rmt_start == 0)
14558 		clear_rcvctrl(dd, RCV_CTRL_RCV_RSM_ENABLE_SMASK);
14559 }
14560 
14561 static int init_rxe(struct hfi1_devdata *dd)
14562 {
14563 	struct rsm_map_table *rmt;
14564 	u64 val;
14565 
14566 	/* enable all receive errors */
14567 	write_csr(dd, RCV_ERR_MASK, ~0ull);
14568 
14569 	rmt = alloc_rsm_map_table(dd);
14570 	if (!rmt)
14571 		return -ENOMEM;
14572 
14573 	/* set up QOS, including the QPN map table */
14574 	init_qos(dd, rmt);
14575 	init_fecn_handling(dd, rmt);
14576 	complete_rsm_map_table(dd, rmt);
14577 	/* record number of used rsm map entries for vnic */
14578 	dd->vnic.rmt_start = rmt->used;
14579 	kfree(rmt);
14580 
14581 	/*
14582 	 * make sure RcvCtrl.RcvWcb <= PCIe Device Control
14583 	 * Register Max_Payload_Size (PCI_EXP_DEVCTL in Linux PCIe config
14584 	 * space, PciCfgCap2.MaxPayloadSize in HFI).  There is only one
14585 	 * invalid configuration: RcvCtrl.RcvWcb set to its max of 256 and
14586 	 * Max_PayLoad_Size set to its minimum of 128.
14587 	 *
14588 	 * Presently, RcvCtrl.RcvWcb is not modified from its default of 0
14589 	 * (64 bytes).  Max_Payload_Size is possibly modified upward in
14590 	 * tune_pcie_caps() which is called after this routine.
14591 	 */
14592 
14593 	/* Have 16 bytes (4DW) of bypass header available in header queue */
14594 	val = read_csr(dd, RCV_BYPASS);
14595 	val &= ~RCV_BYPASS_HDR_SIZE_SMASK;
14596 	val |= ((4ull & RCV_BYPASS_HDR_SIZE_MASK) <<
14597 		RCV_BYPASS_HDR_SIZE_SHIFT);
14598 	write_csr(dd, RCV_BYPASS, val);
14599 	return 0;
14600 }
14601 
14602 static void init_other(struct hfi1_devdata *dd)
14603 {
14604 	/* enable all CCE errors */
14605 	write_csr(dd, CCE_ERR_MASK, ~0ull);
14606 	/* enable *some* Misc errors */
14607 	write_csr(dd, MISC_ERR_MASK, DRIVER_MISC_MASK);
14608 	/* enable all DC errors, except LCB */
14609 	write_csr(dd, DCC_ERR_FLG_EN, ~0ull);
14610 	write_csr(dd, DC_DC8051_ERR_EN, ~0ull);
14611 }
14612 
14613 /*
14614  * Fill out the given AU table using the given CU.  A CU is defined in terms
14615  * AUs.  The table is a an encoding: given the index, how many AUs does that
14616  * represent?
14617  *
14618  * NOTE: Assumes that the register layout is the same for the
14619  * local and remote tables.
14620  */
14621 static void assign_cm_au_table(struct hfi1_devdata *dd, u32 cu,
14622 			       u32 csr0to3, u32 csr4to7)
14623 {
14624 	write_csr(dd, csr0to3,
14625 		  0ull << SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE0_SHIFT |
14626 		  1ull << SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE1_SHIFT |
14627 		  2ull * cu <<
14628 		  SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE2_SHIFT |
14629 		  4ull * cu <<
14630 		  SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE3_SHIFT);
14631 	write_csr(dd, csr4to7,
14632 		  8ull * cu <<
14633 		  SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE4_SHIFT |
14634 		  16ull * cu <<
14635 		  SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE5_SHIFT |
14636 		  32ull * cu <<
14637 		  SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE6_SHIFT |
14638 		  64ull * cu <<
14639 		  SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE7_SHIFT);
14640 }
14641 
14642 static void assign_local_cm_au_table(struct hfi1_devdata *dd, u8 vcu)
14643 {
14644 	assign_cm_au_table(dd, vcu_to_cu(vcu), SEND_CM_LOCAL_AU_TABLE0_TO3,
14645 			   SEND_CM_LOCAL_AU_TABLE4_TO7);
14646 }
14647 
14648 void assign_remote_cm_au_table(struct hfi1_devdata *dd, u8 vcu)
14649 {
14650 	assign_cm_au_table(dd, vcu_to_cu(vcu), SEND_CM_REMOTE_AU_TABLE0_TO3,
14651 			   SEND_CM_REMOTE_AU_TABLE4_TO7);
14652 }
14653 
14654 static void init_txe(struct hfi1_devdata *dd)
14655 {
14656 	int i;
14657 
14658 	/* enable all PIO, SDMA, general, and Egress errors */
14659 	write_csr(dd, SEND_PIO_ERR_MASK, ~0ull);
14660 	write_csr(dd, SEND_DMA_ERR_MASK, ~0ull);
14661 	write_csr(dd, SEND_ERR_MASK, ~0ull);
14662 	write_csr(dd, SEND_EGRESS_ERR_MASK, ~0ull);
14663 
14664 	/* enable all per-context and per-SDMA engine errors */
14665 	for (i = 0; i < chip_send_contexts(dd); i++)
14666 		write_kctxt_csr(dd, i, SEND_CTXT_ERR_MASK, ~0ull);
14667 	for (i = 0; i < chip_sdma_engines(dd); i++)
14668 		write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_MASK, ~0ull);
14669 
14670 	/* set the local CU to AU mapping */
14671 	assign_local_cm_au_table(dd, dd->vcu);
14672 
14673 	/*
14674 	 * Set reasonable default for Credit Return Timer
14675 	 * Don't set on Simulator - causes it to choke.
14676 	 */
14677 	if (dd->icode != ICODE_FUNCTIONAL_SIMULATOR)
14678 		write_csr(dd, SEND_CM_TIMER_CTRL, HFI1_CREDIT_RETURN_RATE);
14679 }
14680 
14681 int hfi1_set_ctxt_jkey(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd,
14682 		       u16 jkey)
14683 {
14684 	u8 hw_ctxt;
14685 	u64 reg;
14686 
14687 	if (!rcd || !rcd->sc)
14688 		return -EINVAL;
14689 
14690 	hw_ctxt = rcd->sc->hw_context;
14691 	reg = SEND_CTXT_CHECK_JOB_KEY_MASK_SMASK | /* mask is always 1's */
14692 		((jkey & SEND_CTXT_CHECK_JOB_KEY_VALUE_MASK) <<
14693 		 SEND_CTXT_CHECK_JOB_KEY_VALUE_SHIFT);
14694 	/* JOB_KEY_ALLOW_PERMISSIVE is not allowed by default */
14695 	if (HFI1_CAP_KGET_MASK(rcd->flags, ALLOW_PERM_JKEY))
14696 		reg |= SEND_CTXT_CHECK_JOB_KEY_ALLOW_PERMISSIVE_SMASK;
14697 	write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_JOB_KEY, reg);
14698 	/*
14699 	 * Enable send-side J_KEY integrity check, unless this is A0 h/w
14700 	 */
14701 	if (!is_ax(dd)) {
14702 		reg = read_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE);
14703 		reg |= SEND_CTXT_CHECK_ENABLE_CHECK_JOB_KEY_SMASK;
14704 		write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE, reg);
14705 	}
14706 
14707 	/* Enable J_KEY check on receive context. */
14708 	reg = RCV_KEY_CTRL_JOB_KEY_ENABLE_SMASK |
14709 		((jkey & RCV_KEY_CTRL_JOB_KEY_VALUE_MASK) <<
14710 		 RCV_KEY_CTRL_JOB_KEY_VALUE_SHIFT);
14711 	write_kctxt_csr(dd, rcd->ctxt, RCV_KEY_CTRL, reg);
14712 
14713 	return 0;
14714 }
14715 
14716 int hfi1_clear_ctxt_jkey(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd)
14717 {
14718 	u8 hw_ctxt;
14719 	u64 reg;
14720 
14721 	if (!rcd || !rcd->sc)
14722 		return -EINVAL;
14723 
14724 	hw_ctxt = rcd->sc->hw_context;
14725 	write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_JOB_KEY, 0);
14726 	/*
14727 	 * Disable send-side J_KEY integrity check, unless this is A0 h/w.
14728 	 * This check would not have been enabled for A0 h/w, see
14729 	 * set_ctxt_jkey().
14730 	 */
14731 	if (!is_ax(dd)) {
14732 		reg = read_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE);
14733 		reg &= ~SEND_CTXT_CHECK_ENABLE_CHECK_JOB_KEY_SMASK;
14734 		write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE, reg);
14735 	}
14736 	/* Turn off the J_KEY on the receive side */
14737 	write_kctxt_csr(dd, rcd->ctxt, RCV_KEY_CTRL, 0);
14738 
14739 	return 0;
14740 }
14741 
14742 int hfi1_set_ctxt_pkey(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd,
14743 		       u16 pkey)
14744 {
14745 	u8 hw_ctxt;
14746 	u64 reg;
14747 
14748 	if (!rcd || !rcd->sc)
14749 		return -EINVAL;
14750 
14751 	hw_ctxt = rcd->sc->hw_context;
14752 	reg = ((u64)pkey & SEND_CTXT_CHECK_PARTITION_KEY_VALUE_MASK) <<
14753 		SEND_CTXT_CHECK_PARTITION_KEY_VALUE_SHIFT;
14754 	write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_PARTITION_KEY, reg);
14755 	reg = read_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE);
14756 	reg |= SEND_CTXT_CHECK_ENABLE_CHECK_PARTITION_KEY_SMASK;
14757 	reg &= ~SEND_CTXT_CHECK_ENABLE_DISALLOW_KDETH_PACKETS_SMASK;
14758 	write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE, reg);
14759 
14760 	return 0;
14761 }
14762 
14763 int hfi1_clear_ctxt_pkey(struct hfi1_devdata *dd, struct hfi1_ctxtdata *ctxt)
14764 {
14765 	u8 hw_ctxt;
14766 	u64 reg;
14767 
14768 	if (!ctxt || !ctxt->sc)
14769 		return -EINVAL;
14770 
14771 	hw_ctxt = ctxt->sc->hw_context;
14772 	reg = read_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE);
14773 	reg &= ~SEND_CTXT_CHECK_ENABLE_CHECK_PARTITION_KEY_SMASK;
14774 	write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE, reg);
14775 	write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_PARTITION_KEY, 0);
14776 
14777 	return 0;
14778 }
14779 
14780 /*
14781  * Start doing the clean up the the chip. Our clean up happens in multiple
14782  * stages and this is just the first.
14783  */
14784 void hfi1_start_cleanup(struct hfi1_devdata *dd)
14785 {
14786 	aspm_exit(dd);
14787 	free_cntrs(dd);
14788 	free_rcverr(dd);
14789 	finish_chip_resources(dd);
14790 }
14791 
14792 #define HFI_BASE_GUID(dev) \
14793 	((dev)->base_guid & ~(1ULL << GUID_HFI_INDEX_SHIFT))
14794 
14795 /*
14796  * Information can be shared between the two HFIs on the same ASIC
14797  * in the same OS.  This function finds the peer device and sets
14798  * up a shared structure.
14799  */
14800 static int init_asic_data(struct hfi1_devdata *dd)
14801 {
14802 	unsigned long index;
14803 	struct hfi1_devdata *peer;
14804 	struct hfi1_asic_data *asic_data;
14805 	int ret = 0;
14806 
14807 	/* pre-allocate the asic structure in case we are the first device */
14808 	asic_data = kzalloc(sizeof(*dd->asic_data), GFP_KERNEL);
14809 	if (!asic_data)
14810 		return -ENOMEM;
14811 
14812 	xa_lock_irq(&hfi1_dev_table);
14813 	/* Find our peer device */
14814 	xa_for_each(&hfi1_dev_table, index, peer) {
14815 		if ((HFI_BASE_GUID(dd) == HFI_BASE_GUID(peer)) &&
14816 		    dd->unit != peer->unit)
14817 			break;
14818 	}
14819 
14820 	if (peer) {
14821 		/* use already allocated structure */
14822 		dd->asic_data = peer->asic_data;
14823 		kfree(asic_data);
14824 	} else {
14825 		dd->asic_data = asic_data;
14826 		mutex_init(&dd->asic_data->asic_resource_mutex);
14827 	}
14828 	dd->asic_data->dds[dd->hfi1_id] = dd; /* self back-pointer */
14829 	xa_unlock_irq(&hfi1_dev_table);
14830 
14831 	/* first one through - set up i2c devices */
14832 	if (!peer)
14833 		ret = set_up_i2c(dd, dd->asic_data);
14834 
14835 	return ret;
14836 }
14837 
14838 /*
14839  * Set dd->boardname.  Use a generic name if a name is not returned from
14840  * EFI variable space.
14841  *
14842  * Return 0 on success, -ENOMEM if space could not be allocated.
14843  */
14844 static int obtain_boardname(struct hfi1_devdata *dd)
14845 {
14846 	/* generic board description */
14847 	const char generic[] =
14848 		"Intel Omni-Path Host Fabric Interface Adapter 100 Series";
14849 	unsigned long size;
14850 	int ret;
14851 
14852 	ret = read_hfi1_efi_var(dd, "description", &size,
14853 				(void **)&dd->boardname);
14854 	if (ret) {
14855 		dd_dev_info(dd, "Board description not found\n");
14856 		/* use generic description */
14857 		dd->boardname = kstrdup(generic, GFP_KERNEL);
14858 		if (!dd->boardname)
14859 			return -ENOMEM;
14860 	}
14861 	return 0;
14862 }
14863 
14864 /*
14865  * Check the interrupt registers to make sure that they are mapped correctly.
14866  * It is intended to help user identify any mismapping by VMM when the driver
14867  * is running in a VM. This function should only be called before interrupt
14868  * is set up properly.
14869  *
14870  * Return 0 on success, -EINVAL on failure.
14871  */
14872 static int check_int_registers(struct hfi1_devdata *dd)
14873 {
14874 	u64 reg;
14875 	u64 all_bits = ~(u64)0;
14876 	u64 mask;
14877 
14878 	/* Clear CceIntMask[0] to avoid raising any interrupts */
14879 	mask = read_csr(dd, CCE_INT_MASK);
14880 	write_csr(dd, CCE_INT_MASK, 0ull);
14881 	reg = read_csr(dd, CCE_INT_MASK);
14882 	if (reg)
14883 		goto err_exit;
14884 
14885 	/* Clear all interrupt status bits */
14886 	write_csr(dd, CCE_INT_CLEAR, all_bits);
14887 	reg = read_csr(dd, CCE_INT_STATUS);
14888 	if (reg)
14889 		goto err_exit;
14890 
14891 	/* Set all interrupt status bits */
14892 	write_csr(dd, CCE_INT_FORCE, all_bits);
14893 	reg = read_csr(dd, CCE_INT_STATUS);
14894 	if (reg != all_bits)
14895 		goto err_exit;
14896 
14897 	/* Restore the interrupt mask */
14898 	write_csr(dd, CCE_INT_CLEAR, all_bits);
14899 	write_csr(dd, CCE_INT_MASK, mask);
14900 
14901 	return 0;
14902 err_exit:
14903 	write_csr(dd, CCE_INT_MASK, mask);
14904 	dd_dev_err(dd, "Interrupt registers not properly mapped by VMM\n");
14905 	return -EINVAL;
14906 }
14907 
14908 /**
14909  * hfi1_init_dd() - Initialize most of the dd structure.
14910  * @dev: the pci_dev for hfi1_ib device
14911  * @ent: pci_device_id struct for this dev
14912  *
14913  * This is global, and is called directly at init to set up the
14914  * chip-specific function pointers for later use.
14915  */
14916 int hfi1_init_dd(struct hfi1_devdata *dd)
14917 {
14918 	struct pci_dev *pdev = dd->pcidev;
14919 	struct hfi1_pportdata *ppd;
14920 	u64 reg;
14921 	int i, ret;
14922 	static const char * const inames[] = { /* implementation names */
14923 		"RTL silicon",
14924 		"RTL VCS simulation",
14925 		"RTL FPGA emulation",
14926 		"Functional simulator"
14927 	};
14928 	struct pci_dev *parent = pdev->bus->self;
14929 	u32 sdma_engines = chip_sdma_engines(dd);
14930 
14931 	ppd = dd->pport;
14932 	for (i = 0; i < dd->num_pports; i++, ppd++) {
14933 		int vl;
14934 		/* init common fields */
14935 		hfi1_init_pportdata(pdev, ppd, dd, 0, 1);
14936 		/* DC supports 4 link widths */
14937 		ppd->link_width_supported =
14938 			OPA_LINK_WIDTH_1X | OPA_LINK_WIDTH_2X |
14939 			OPA_LINK_WIDTH_3X | OPA_LINK_WIDTH_4X;
14940 		ppd->link_width_downgrade_supported =
14941 			ppd->link_width_supported;
14942 		/* start out enabling only 4X */
14943 		ppd->link_width_enabled = OPA_LINK_WIDTH_4X;
14944 		ppd->link_width_downgrade_enabled =
14945 					ppd->link_width_downgrade_supported;
14946 		/* link width active is 0 when link is down */
14947 		/* link width downgrade active is 0 when link is down */
14948 
14949 		if (num_vls < HFI1_MIN_VLS_SUPPORTED ||
14950 		    num_vls > HFI1_MAX_VLS_SUPPORTED) {
14951 			dd_dev_err(dd, "Invalid num_vls %u, using %u VLs\n",
14952 				   num_vls, HFI1_MAX_VLS_SUPPORTED);
14953 			num_vls = HFI1_MAX_VLS_SUPPORTED;
14954 		}
14955 		ppd->vls_supported = num_vls;
14956 		ppd->vls_operational = ppd->vls_supported;
14957 		/* Set the default MTU. */
14958 		for (vl = 0; vl < num_vls; vl++)
14959 			dd->vld[vl].mtu = hfi1_max_mtu;
14960 		dd->vld[15].mtu = MAX_MAD_PACKET;
14961 		/*
14962 		 * Set the initial values to reasonable default, will be set
14963 		 * for real when link is up.
14964 		 */
14965 		ppd->overrun_threshold = 0x4;
14966 		ppd->phy_error_threshold = 0xf;
14967 		ppd->port_crc_mode_enabled = link_crc_mask;
14968 		/* initialize supported LTP CRC mode */
14969 		ppd->port_ltp_crc_mode = cap_to_port_ltp(link_crc_mask) << 8;
14970 		/* initialize enabled LTP CRC mode */
14971 		ppd->port_ltp_crc_mode |= cap_to_port_ltp(link_crc_mask) << 4;
14972 		/* start in offline */
14973 		ppd->host_link_state = HLS_DN_OFFLINE;
14974 		init_vl_arb_caches(ppd);
14975 	}
14976 
14977 	/*
14978 	 * Do remaining PCIe setup and save PCIe values in dd.
14979 	 * Any error printing is already done by the init code.
14980 	 * On return, we have the chip mapped.
14981 	 */
14982 	ret = hfi1_pcie_ddinit(dd, pdev);
14983 	if (ret < 0)
14984 		goto bail_free;
14985 
14986 	/* Save PCI space registers to rewrite after device reset */
14987 	ret = save_pci_variables(dd);
14988 	if (ret < 0)
14989 		goto bail_cleanup;
14990 
14991 	dd->majrev = (dd->revision >> CCE_REVISION_CHIP_REV_MAJOR_SHIFT)
14992 			& CCE_REVISION_CHIP_REV_MAJOR_MASK;
14993 	dd->minrev = (dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT)
14994 			& CCE_REVISION_CHIP_REV_MINOR_MASK;
14995 
14996 	/*
14997 	 * Check interrupt registers mapping if the driver has no access to
14998 	 * the upstream component. In this case, it is likely that the driver
14999 	 * is running in a VM.
15000 	 */
15001 	if (!parent) {
15002 		ret = check_int_registers(dd);
15003 		if (ret)
15004 			goto bail_cleanup;
15005 	}
15006 
15007 	/*
15008 	 * obtain the hardware ID - NOT related to unit, which is a
15009 	 * software enumeration
15010 	 */
15011 	reg = read_csr(dd, CCE_REVISION2);
15012 	dd->hfi1_id = (reg >> CCE_REVISION2_HFI_ID_SHIFT)
15013 					& CCE_REVISION2_HFI_ID_MASK;
15014 	/* the variable size will remove unwanted bits */
15015 	dd->icode = reg >> CCE_REVISION2_IMPL_CODE_SHIFT;
15016 	dd->irev = reg >> CCE_REVISION2_IMPL_REVISION_SHIFT;
15017 	dd_dev_info(dd, "Implementation: %s, revision 0x%x\n",
15018 		    dd->icode < ARRAY_SIZE(inames) ?
15019 		    inames[dd->icode] : "unknown", (int)dd->irev);
15020 
15021 	/* speeds the hardware can support */
15022 	dd->pport->link_speed_supported = OPA_LINK_SPEED_25G;
15023 	/* speeds allowed to run at */
15024 	dd->pport->link_speed_enabled = dd->pport->link_speed_supported;
15025 	/* give a reasonable active value, will be set on link up */
15026 	dd->pport->link_speed_active = OPA_LINK_SPEED_25G;
15027 
15028 	/* fix up link widths for emulation _p */
15029 	ppd = dd->pport;
15030 	if (dd->icode == ICODE_FPGA_EMULATION && is_emulator_p(dd)) {
15031 		ppd->link_width_supported =
15032 			ppd->link_width_enabled =
15033 			ppd->link_width_downgrade_supported =
15034 			ppd->link_width_downgrade_enabled =
15035 				OPA_LINK_WIDTH_1X;
15036 	}
15037 	/* insure num_vls isn't larger than number of sdma engines */
15038 	if (HFI1_CAP_IS_KSET(SDMA) && num_vls > sdma_engines) {
15039 		dd_dev_err(dd, "num_vls %u too large, using %u VLs\n",
15040 			   num_vls, sdma_engines);
15041 		num_vls = sdma_engines;
15042 		ppd->vls_supported = sdma_engines;
15043 		ppd->vls_operational = ppd->vls_supported;
15044 	}
15045 
15046 	/*
15047 	 * Convert the ns parameter to the 64 * cclocks used in the CSR.
15048 	 * Limit the max if larger than the field holds.  If timeout is
15049 	 * non-zero, then the calculated field will be at least 1.
15050 	 *
15051 	 * Must be after icode is set up - the cclock rate depends
15052 	 * on knowing the hardware being used.
15053 	 */
15054 	dd->rcv_intr_timeout_csr = ns_to_cclock(dd, rcv_intr_timeout) / 64;
15055 	if (dd->rcv_intr_timeout_csr >
15056 			RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_MASK)
15057 		dd->rcv_intr_timeout_csr =
15058 			RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_MASK;
15059 	else if (dd->rcv_intr_timeout_csr == 0 && rcv_intr_timeout)
15060 		dd->rcv_intr_timeout_csr = 1;
15061 
15062 	/* needs to be done before we look for the peer device */
15063 	read_guid(dd);
15064 
15065 	/* set up shared ASIC data with peer device */
15066 	ret = init_asic_data(dd);
15067 	if (ret)
15068 		goto bail_cleanup;
15069 
15070 	/* obtain chip sizes, reset chip CSRs */
15071 	ret = init_chip(dd);
15072 	if (ret)
15073 		goto bail_cleanup;
15074 
15075 	/* read in the PCIe link speed information */
15076 	ret = pcie_speeds(dd);
15077 	if (ret)
15078 		goto bail_cleanup;
15079 
15080 	/* call before get_platform_config(), after init_chip_resources() */
15081 	ret = eprom_init(dd);
15082 	if (ret)
15083 		goto bail_free_rcverr;
15084 
15085 	/* Needs to be called before hfi1_firmware_init */
15086 	get_platform_config(dd);
15087 
15088 	/* read in firmware */
15089 	ret = hfi1_firmware_init(dd);
15090 	if (ret)
15091 		goto bail_cleanup;
15092 
15093 	/*
15094 	 * In general, the PCIe Gen3 transition must occur after the
15095 	 * chip has been idled (so it won't initiate any PCIe transactions
15096 	 * e.g. an interrupt) and before the driver changes any registers
15097 	 * (the transition will reset the registers).
15098 	 *
15099 	 * In particular, place this call after:
15100 	 * - init_chip()     - the chip will not initiate any PCIe transactions
15101 	 * - pcie_speeds()   - reads the current link speed
15102 	 * - hfi1_firmware_init() - the needed firmware is ready to be
15103 	 *			    downloaded
15104 	 */
15105 	ret = do_pcie_gen3_transition(dd);
15106 	if (ret)
15107 		goto bail_cleanup;
15108 
15109 	/*
15110 	 * This should probably occur in hfi1_pcie_init(), but historically
15111 	 * occurs after the do_pcie_gen3_transition() code.
15112 	 */
15113 	tune_pcie_caps(dd);
15114 
15115 	/* start setting dd values and adjusting CSRs */
15116 	init_early_variables(dd);
15117 
15118 	parse_platform_config(dd);
15119 
15120 	ret = obtain_boardname(dd);
15121 	if (ret)
15122 		goto bail_cleanup;
15123 
15124 	snprintf(dd->boardversion, BOARD_VERS_MAX,
15125 		 "ChipABI %u.%u, ChipRev %u.%u, SW Compat %llu\n",
15126 		 HFI1_CHIP_VERS_MAJ, HFI1_CHIP_VERS_MIN,
15127 		 (u32)dd->majrev,
15128 		 (u32)dd->minrev,
15129 		 (dd->revision >> CCE_REVISION_SW_SHIFT)
15130 		    & CCE_REVISION_SW_MASK);
15131 
15132 	ret = set_up_context_variables(dd);
15133 	if (ret)
15134 		goto bail_cleanup;
15135 
15136 	/* set initial RXE CSRs */
15137 	ret = init_rxe(dd);
15138 	if (ret)
15139 		goto bail_cleanup;
15140 
15141 	/* set initial TXE CSRs */
15142 	init_txe(dd);
15143 	/* set initial non-RXE, non-TXE CSRs */
15144 	init_other(dd);
15145 	/* set up KDETH QP prefix in both RX and TX CSRs */
15146 	init_kdeth_qp(dd);
15147 
15148 	ret = hfi1_dev_affinity_init(dd);
15149 	if (ret)
15150 		goto bail_cleanup;
15151 
15152 	/* send contexts must be set up before receive contexts */
15153 	ret = init_send_contexts(dd);
15154 	if (ret)
15155 		goto bail_cleanup;
15156 
15157 	ret = hfi1_create_kctxts(dd);
15158 	if (ret)
15159 		goto bail_cleanup;
15160 
15161 	/*
15162 	 * Initialize aspm, to be done after gen3 transition and setting up
15163 	 * contexts and before enabling interrupts
15164 	 */
15165 	aspm_init(dd);
15166 
15167 	ret = init_pervl_scs(dd);
15168 	if (ret)
15169 		goto bail_cleanup;
15170 
15171 	/* sdma init */
15172 	for (i = 0; i < dd->num_pports; ++i) {
15173 		ret = sdma_init(dd, i);
15174 		if (ret)
15175 			goto bail_cleanup;
15176 	}
15177 
15178 	/* use contexts created by hfi1_create_kctxts */
15179 	ret = set_up_interrupts(dd);
15180 	if (ret)
15181 		goto bail_cleanup;
15182 
15183 	ret = hfi1_comp_vectors_set_up(dd);
15184 	if (ret)
15185 		goto bail_clear_intr;
15186 
15187 	/* set up LCB access - must be after set_up_interrupts() */
15188 	init_lcb_access(dd);
15189 
15190 	/*
15191 	 * Serial number is created from the base guid:
15192 	 * [27:24] = base guid [38:35]
15193 	 * [23: 0] = base guid [23: 0]
15194 	 */
15195 	snprintf(dd->serial, SERIAL_MAX, "0x%08llx\n",
15196 		 (dd->base_guid & 0xFFFFFF) |
15197 		     ((dd->base_guid >> 11) & 0xF000000));
15198 
15199 	dd->oui1 = dd->base_guid >> 56 & 0xFF;
15200 	dd->oui2 = dd->base_guid >> 48 & 0xFF;
15201 	dd->oui3 = dd->base_guid >> 40 & 0xFF;
15202 
15203 	ret = load_firmware(dd); /* asymmetric with dispose_firmware() */
15204 	if (ret)
15205 		goto bail_clear_intr;
15206 
15207 	thermal_init(dd);
15208 
15209 	ret = init_cntrs(dd);
15210 	if (ret)
15211 		goto bail_clear_intr;
15212 
15213 	ret = init_rcverr(dd);
15214 	if (ret)
15215 		goto bail_free_cntrs;
15216 
15217 	init_completion(&dd->user_comp);
15218 
15219 	/* The user refcount starts with one to inidicate an active device */
15220 	atomic_set(&dd->user_refcount, 1);
15221 
15222 	goto bail;
15223 
15224 bail_free_rcverr:
15225 	free_rcverr(dd);
15226 bail_free_cntrs:
15227 	free_cntrs(dd);
15228 bail_clear_intr:
15229 	hfi1_comp_vectors_clean_up(dd);
15230 	msix_clean_up_interrupts(dd);
15231 bail_cleanup:
15232 	hfi1_pcie_ddcleanup(dd);
15233 bail_free:
15234 	hfi1_free_devdata(dd);
15235 bail:
15236 	return ret;
15237 }
15238 
15239 static u16 delay_cycles(struct hfi1_pportdata *ppd, u32 desired_egress_rate,
15240 			u32 dw_len)
15241 {
15242 	u32 delta_cycles;
15243 	u32 current_egress_rate = ppd->current_egress_rate;
15244 	/* rates here are in units of 10^6 bits/sec */
15245 
15246 	if (desired_egress_rate == -1)
15247 		return 0; /* shouldn't happen */
15248 
15249 	if (desired_egress_rate >= current_egress_rate)
15250 		return 0; /* we can't help go faster, only slower */
15251 
15252 	delta_cycles = egress_cycles(dw_len * 4, desired_egress_rate) -
15253 			egress_cycles(dw_len * 4, current_egress_rate);
15254 
15255 	return (u16)delta_cycles;
15256 }
15257 
15258 /**
15259  * create_pbc - build a pbc for transmission
15260  * @flags: special case flags or-ed in built pbc
15261  * @srate: static rate
15262  * @vl: vl
15263  * @dwlen: dword length (header words + data words + pbc words)
15264  *
15265  * Create a PBC with the given flags, rate, VL, and length.
15266  *
15267  * NOTE: The PBC created will not insert any HCRC - all callers but one are
15268  * for verbs, which does not use this PSM feature.  The lone other caller
15269  * is for the diagnostic interface which calls this if the user does not
15270  * supply their own PBC.
15271  */
15272 u64 create_pbc(struct hfi1_pportdata *ppd, u64 flags, int srate_mbs, u32 vl,
15273 	       u32 dw_len)
15274 {
15275 	u64 pbc, delay = 0;
15276 
15277 	if (unlikely(srate_mbs))
15278 		delay = delay_cycles(ppd, srate_mbs, dw_len);
15279 
15280 	pbc = flags
15281 		| (delay << PBC_STATIC_RATE_CONTROL_COUNT_SHIFT)
15282 		| ((u64)PBC_IHCRC_NONE << PBC_INSERT_HCRC_SHIFT)
15283 		| (vl & PBC_VL_MASK) << PBC_VL_SHIFT
15284 		| (dw_len & PBC_LENGTH_DWS_MASK)
15285 			<< PBC_LENGTH_DWS_SHIFT;
15286 
15287 	return pbc;
15288 }
15289 
15290 #define SBUS_THERMAL    0x4f
15291 #define SBUS_THERM_MONITOR_MODE 0x1
15292 
15293 #define THERM_FAILURE(dev, ret, reason) \
15294 	dd_dev_err((dd),						\
15295 		   "Thermal sensor initialization failed: %s (%d)\n",	\
15296 		   (reason), (ret))
15297 
15298 /*
15299  * Initialize the thermal sensor.
15300  *
15301  * After initialization, enable polling of thermal sensor through
15302  * SBus interface. In order for this to work, the SBus Master
15303  * firmware has to be loaded due to the fact that the HW polling
15304  * logic uses SBus interrupts, which are not supported with
15305  * default firmware. Otherwise, no data will be returned through
15306  * the ASIC_STS_THERM CSR.
15307  */
15308 static int thermal_init(struct hfi1_devdata *dd)
15309 {
15310 	int ret = 0;
15311 
15312 	if (dd->icode != ICODE_RTL_SILICON ||
15313 	    check_chip_resource(dd, CR_THERM_INIT, NULL))
15314 		return ret;
15315 
15316 	ret = acquire_chip_resource(dd, CR_SBUS, SBUS_TIMEOUT);
15317 	if (ret) {
15318 		THERM_FAILURE(dd, ret, "Acquire SBus");
15319 		return ret;
15320 	}
15321 
15322 	dd_dev_info(dd, "Initializing thermal sensor\n");
15323 	/* Disable polling of thermal readings */
15324 	write_csr(dd, ASIC_CFG_THERM_POLL_EN, 0x0);
15325 	msleep(100);
15326 	/* Thermal Sensor Initialization */
15327 	/*    Step 1: Reset the Thermal SBus Receiver */
15328 	ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0,
15329 				RESET_SBUS_RECEIVER, 0);
15330 	if (ret) {
15331 		THERM_FAILURE(dd, ret, "Bus Reset");
15332 		goto done;
15333 	}
15334 	/*    Step 2: Set Reset bit in Thermal block */
15335 	ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0,
15336 				WRITE_SBUS_RECEIVER, 0x1);
15337 	if (ret) {
15338 		THERM_FAILURE(dd, ret, "Therm Block Reset");
15339 		goto done;
15340 	}
15341 	/*    Step 3: Write clock divider value (100MHz -> 2MHz) */
15342 	ret = sbus_request_slow(dd, SBUS_THERMAL, 0x1,
15343 				WRITE_SBUS_RECEIVER, 0x32);
15344 	if (ret) {
15345 		THERM_FAILURE(dd, ret, "Write Clock Div");
15346 		goto done;
15347 	}
15348 	/*    Step 4: Select temperature mode */
15349 	ret = sbus_request_slow(dd, SBUS_THERMAL, 0x3,
15350 				WRITE_SBUS_RECEIVER,
15351 				SBUS_THERM_MONITOR_MODE);
15352 	if (ret) {
15353 		THERM_FAILURE(dd, ret, "Write Mode Sel");
15354 		goto done;
15355 	}
15356 	/*    Step 5: De-assert block reset and start conversion */
15357 	ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0,
15358 				WRITE_SBUS_RECEIVER, 0x2);
15359 	if (ret) {
15360 		THERM_FAILURE(dd, ret, "Write Reset Deassert");
15361 		goto done;
15362 	}
15363 	/*    Step 5.1: Wait for first conversion (21.5ms per spec) */
15364 	msleep(22);
15365 
15366 	/* Enable polling of thermal readings */
15367 	write_csr(dd, ASIC_CFG_THERM_POLL_EN, 0x1);
15368 
15369 	/* Set initialized flag */
15370 	ret = acquire_chip_resource(dd, CR_THERM_INIT, 0);
15371 	if (ret)
15372 		THERM_FAILURE(dd, ret, "Unable to set thermal init flag");
15373 
15374 done:
15375 	release_chip_resource(dd, CR_SBUS);
15376 	return ret;
15377 }
15378 
15379 static void handle_temp_err(struct hfi1_devdata *dd)
15380 {
15381 	struct hfi1_pportdata *ppd = &dd->pport[0];
15382 	/*
15383 	 * Thermal Critical Interrupt
15384 	 * Put the device into forced freeze mode, take link down to
15385 	 * offline, and put DC into reset.
15386 	 */
15387 	dd_dev_emerg(dd,
15388 		     "Critical temperature reached! Forcing device into freeze mode!\n");
15389 	dd->flags |= HFI1_FORCED_FREEZE;
15390 	start_freeze_handling(ppd, FREEZE_SELF | FREEZE_ABORT);
15391 	/*
15392 	 * Shut DC down as much and as quickly as possible.
15393 	 *
15394 	 * Step 1: Take the link down to OFFLINE. This will cause the
15395 	 *         8051 to put the Serdes in reset. However, we don't want to
15396 	 *         go through the entire link state machine since we want to
15397 	 *         shutdown ASAP. Furthermore, this is not a graceful shutdown
15398 	 *         but rather an attempt to save the chip.
15399 	 *         Code below is almost the same as quiet_serdes() but avoids
15400 	 *         all the extra work and the sleeps.
15401 	 */
15402 	ppd->driver_link_ready = 0;
15403 	ppd->link_enabled = 0;
15404 	set_physical_link_state(dd, (OPA_LINKDOWN_REASON_SMA_DISABLED << 8) |
15405 				PLS_OFFLINE);
15406 	/*
15407 	 * Step 2: Shutdown LCB and 8051
15408 	 *         After shutdown, do not restore DC_CFG_RESET value.
15409 	 */
15410 	dc_shutdown(dd);
15411 }
15412