1 /* 2 * Copyright(c) 2015, 2016 Intel Corporation. 3 * 4 * This file is provided under a dual BSD/GPLv2 license. When using or 5 * redistributing this file, you may do so under either license. 6 * 7 * GPL LICENSE SUMMARY 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of version 2 of the GNU General Public License as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, but 14 * WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 16 * General Public License for more details. 17 * 18 * BSD LICENSE 19 * 20 * Redistribution and use in source and binary forms, with or without 21 * modification, are permitted provided that the following conditions 22 * are met: 23 * 24 * - Redistributions of source code must retain the above copyright 25 * notice, this list of conditions and the following disclaimer. 26 * - Redistributions in binary form must reproduce the above copyright 27 * notice, this list of conditions and the following disclaimer in 28 * the documentation and/or other materials provided with the 29 * distribution. 30 * - Neither the name of Intel Corporation nor the names of its 31 * contributors may be used to endorse or promote products derived 32 * from this software without specific prior written permission. 33 * 34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 35 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 36 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 37 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 38 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 39 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 40 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 41 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 42 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 44 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 45 * 46 */ 47 48 /* 49 * This file contains all of the code that is specific to the HFI chip 50 */ 51 52 #include <linux/pci.h> 53 #include <linux/delay.h> 54 #include <linux/interrupt.h> 55 #include <linux/module.h> 56 57 #include "hfi.h" 58 #include "trace.h" 59 #include "mad.h" 60 #include "pio.h" 61 #include "sdma.h" 62 #include "eprom.h" 63 #include "efivar.h" 64 #include "platform.h" 65 #include "aspm.h" 66 #include "affinity.h" 67 68 #define NUM_IB_PORTS 1 69 70 uint kdeth_qp; 71 module_param_named(kdeth_qp, kdeth_qp, uint, S_IRUGO); 72 MODULE_PARM_DESC(kdeth_qp, "Set the KDETH queue pair prefix"); 73 74 uint num_vls = HFI1_MAX_VLS_SUPPORTED; 75 module_param(num_vls, uint, S_IRUGO); 76 MODULE_PARM_DESC(num_vls, "Set number of Virtual Lanes to use (1-8)"); 77 78 /* 79 * Default time to aggregate two 10K packets from the idle state 80 * (timer not running). The timer starts at the end of the first packet, 81 * so only the time for one 10K packet and header plus a bit extra is needed. 82 * 10 * 1024 + 64 header byte = 10304 byte 83 * 10304 byte / 12.5 GB/s = 824.32ns 84 */ 85 uint rcv_intr_timeout = (824 + 16); /* 16 is for coalescing interrupt */ 86 module_param(rcv_intr_timeout, uint, S_IRUGO); 87 MODULE_PARM_DESC(rcv_intr_timeout, "Receive interrupt mitigation timeout in ns"); 88 89 uint rcv_intr_count = 16; /* same as qib */ 90 module_param(rcv_intr_count, uint, S_IRUGO); 91 MODULE_PARM_DESC(rcv_intr_count, "Receive interrupt mitigation count"); 92 93 ushort link_crc_mask = SUPPORTED_CRCS; 94 module_param(link_crc_mask, ushort, S_IRUGO); 95 MODULE_PARM_DESC(link_crc_mask, "CRCs to use on the link"); 96 97 uint loopback; 98 module_param_named(loopback, loopback, uint, S_IRUGO); 99 MODULE_PARM_DESC(loopback, "Put into loopback mode (1 = serdes, 3 = external cable"); 100 101 /* Other driver tunables */ 102 uint rcv_intr_dynamic = 1; /* enable dynamic mode for rcv int mitigation*/ 103 static ushort crc_14b_sideband = 1; 104 static uint use_flr = 1; 105 uint quick_linkup; /* skip LNI */ 106 107 struct flag_table { 108 u64 flag; /* the flag */ 109 char *str; /* description string */ 110 u16 extra; /* extra information */ 111 u16 unused0; 112 u32 unused1; 113 }; 114 115 /* str must be a string constant */ 116 #define FLAG_ENTRY(str, extra, flag) {flag, str, extra} 117 #define FLAG_ENTRY0(str, flag) {flag, str, 0} 118 119 /* Send Error Consequences */ 120 #define SEC_WRITE_DROPPED 0x1 121 #define SEC_PACKET_DROPPED 0x2 122 #define SEC_SC_HALTED 0x4 /* per-context only */ 123 #define SEC_SPC_FREEZE 0x8 /* per-HFI only */ 124 125 #define DEFAULT_KRCVQS 2 126 #define MIN_KERNEL_KCTXTS 2 127 #define FIRST_KERNEL_KCTXT 1 128 /* sizes for both the QP and RSM map tables */ 129 #define NUM_MAP_ENTRIES 256 130 #define NUM_MAP_REGS 32 131 132 /* Bit offset into the GUID which carries HFI id information */ 133 #define GUID_HFI_INDEX_SHIFT 39 134 135 /* extract the emulation revision */ 136 #define emulator_rev(dd) ((dd)->irev >> 8) 137 /* parallel and serial emulation versions are 3 and 4 respectively */ 138 #define is_emulator_p(dd) ((((dd)->irev) & 0xf) == 3) 139 #define is_emulator_s(dd) ((((dd)->irev) & 0xf) == 4) 140 141 /* RSM fields */ 142 143 /* packet type */ 144 #define IB_PACKET_TYPE 2ull 145 #define QW_SHIFT 6ull 146 /* QPN[7..1] */ 147 #define QPN_WIDTH 7ull 148 149 /* LRH.BTH: QW 0, OFFSET 48 - for match */ 150 #define LRH_BTH_QW 0ull 151 #define LRH_BTH_BIT_OFFSET 48ull 152 #define LRH_BTH_OFFSET(off) ((LRH_BTH_QW << QW_SHIFT) | (off)) 153 #define LRH_BTH_MATCH_OFFSET LRH_BTH_OFFSET(LRH_BTH_BIT_OFFSET) 154 #define LRH_BTH_SELECT 155 #define LRH_BTH_MASK 3ull 156 #define LRH_BTH_VALUE 2ull 157 158 /* LRH.SC[3..0] QW 0, OFFSET 56 - for match */ 159 #define LRH_SC_QW 0ull 160 #define LRH_SC_BIT_OFFSET 56ull 161 #define LRH_SC_OFFSET(off) ((LRH_SC_QW << QW_SHIFT) | (off)) 162 #define LRH_SC_MATCH_OFFSET LRH_SC_OFFSET(LRH_SC_BIT_OFFSET) 163 #define LRH_SC_MASK 128ull 164 #define LRH_SC_VALUE 0ull 165 166 /* SC[n..0] QW 0, OFFSET 60 - for select */ 167 #define LRH_SC_SELECT_OFFSET ((LRH_SC_QW << QW_SHIFT) | (60ull)) 168 169 /* QPN[m+n:1] QW 1, OFFSET 1 */ 170 #define QPN_SELECT_OFFSET ((1ull << QW_SHIFT) | (1ull)) 171 172 /* defines to build power on SC2VL table */ 173 #define SC2VL_VAL( \ 174 num, \ 175 sc0, sc0val, \ 176 sc1, sc1val, \ 177 sc2, sc2val, \ 178 sc3, sc3val, \ 179 sc4, sc4val, \ 180 sc5, sc5val, \ 181 sc6, sc6val, \ 182 sc7, sc7val) \ 183 ( \ 184 ((u64)(sc0val) << SEND_SC2VLT##num##_SC##sc0##_SHIFT) | \ 185 ((u64)(sc1val) << SEND_SC2VLT##num##_SC##sc1##_SHIFT) | \ 186 ((u64)(sc2val) << SEND_SC2VLT##num##_SC##sc2##_SHIFT) | \ 187 ((u64)(sc3val) << SEND_SC2VLT##num##_SC##sc3##_SHIFT) | \ 188 ((u64)(sc4val) << SEND_SC2VLT##num##_SC##sc4##_SHIFT) | \ 189 ((u64)(sc5val) << SEND_SC2VLT##num##_SC##sc5##_SHIFT) | \ 190 ((u64)(sc6val) << SEND_SC2VLT##num##_SC##sc6##_SHIFT) | \ 191 ((u64)(sc7val) << SEND_SC2VLT##num##_SC##sc7##_SHIFT) \ 192 ) 193 194 #define DC_SC_VL_VAL( \ 195 range, \ 196 e0, e0val, \ 197 e1, e1val, \ 198 e2, e2val, \ 199 e3, e3val, \ 200 e4, e4val, \ 201 e5, e5val, \ 202 e6, e6val, \ 203 e7, e7val, \ 204 e8, e8val, \ 205 e9, e9val, \ 206 e10, e10val, \ 207 e11, e11val, \ 208 e12, e12val, \ 209 e13, e13val, \ 210 e14, e14val, \ 211 e15, e15val) \ 212 ( \ 213 ((u64)(e0val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e0##_SHIFT) | \ 214 ((u64)(e1val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e1##_SHIFT) | \ 215 ((u64)(e2val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e2##_SHIFT) | \ 216 ((u64)(e3val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e3##_SHIFT) | \ 217 ((u64)(e4val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e4##_SHIFT) | \ 218 ((u64)(e5val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e5##_SHIFT) | \ 219 ((u64)(e6val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e6##_SHIFT) | \ 220 ((u64)(e7val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e7##_SHIFT) | \ 221 ((u64)(e8val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e8##_SHIFT) | \ 222 ((u64)(e9val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e9##_SHIFT) | \ 223 ((u64)(e10val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e10##_SHIFT) | \ 224 ((u64)(e11val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e11##_SHIFT) | \ 225 ((u64)(e12val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e12##_SHIFT) | \ 226 ((u64)(e13val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e13##_SHIFT) | \ 227 ((u64)(e14val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e14##_SHIFT) | \ 228 ((u64)(e15val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e15##_SHIFT) \ 229 ) 230 231 /* all CceStatus sub-block freeze bits */ 232 #define ALL_FROZE (CCE_STATUS_SDMA_FROZE_SMASK \ 233 | CCE_STATUS_RXE_FROZE_SMASK \ 234 | CCE_STATUS_TXE_FROZE_SMASK \ 235 | CCE_STATUS_TXE_PIO_FROZE_SMASK) 236 /* all CceStatus sub-block TXE pause bits */ 237 #define ALL_TXE_PAUSE (CCE_STATUS_TXE_PIO_PAUSED_SMASK \ 238 | CCE_STATUS_TXE_PAUSED_SMASK \ 239 | CCE_STATUS_SDMA_PAUSED_SMASK) 240 /* all CceStatus sub-block RXE pause bits */ 241 #define ALL_RXE_PAUSE CCE_STATUS_RXE_PAUSED_SMASK 242 243 #define CNTR_MAX 0xFFFFFFFFFFFFFFFFULL 244 #define CNTR_32BIT_MAX 0x00000000FFFFFFFF 245 246 /* 247 * CCE Error flags. 248 */ 249 static struct flag_table cce_err_status_flags[] = { 250 /* 0*/ FLAG_ENTRY0("CceCsrParityErr", 251 CCE_ERR_STATUS_CCE_CSR_PARITY_ERR_SMASK), 252 /* 1*/ FLAG_ENTRY0("CceCsrReadBadAddrErr", 253 CCE_ERR_STATUS_CCE_CSR_READ_BAD_ADDR_ERR_SMASK), 254 /* 2*/ FLAG_ENTRY0("CceCsrWriteBadAddrErr", 255 CCE_ERR_STATUS_CCE_CSR_WRITE_BAD_ADDR_ERR_SMASK), 256 /* 3*/ FLAG_ENTRY0("CceTrgtAsyncFifoParityErr", 257 CCE_ERR_STATUS_CCE_TRGT_ASYNC_FIFO_PARITY_ERR_SMASK), 258 /* 4*/ FLAG_ENTRY0("CceTrgtAccessErr", 259 CCE_ERR_STATUS_CCE_TRGT_ACCESS_ERR_SMASK), 260 /* 5*/ FLAG_ENTRY0("CceRspdDataParityErr", 261 CCE_ERR_STATUS_CCE_RSPD_DATA_PARITY_ERR_SMASK), 262 /* 6*/ FLAG_ENTRY0("CceCli0AsyncFifoParityErr", 263 CCE_ERR_STATUS_CCE_CLI0_ASYNC_FIFO_PARITY_ERR_SMASK), 264 /* 7*/ FLAG_ENTRY0("CceCsrCfgBusParityErr", 265 CCE_ERR_STATUS_CCE_CSR_CFG_BUS_PARITY_ERR_SMASK), 266 /* 8*/ FLAG_ENTRY0("CceCli2AsyncFifoParityErr", 267 CCE_ERR_STATUS_CCE_CLI2_ASYNC_FIFO_PARITY_ERR_SMASK), 268 /* 9*/ FLAG_ENTRY0("CceCli1AsyncFifoPioCrdtParityErr", 269 CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_PIO_CRDT_PARITY_ERR_SMASK), 270 /*10*/ FLAG_ENTRY0("CceCli1AsyncFifoPioCrdtParityErr", 271 CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_SDMA_HD_PARITY_ERR_SMASK), 272 /*11*/ FLAG_ENTRY0("CceCli1AsyncFifoRxdmaParityError", 273 CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_RXDMA_PARITY_ERROR_SMASK), 274 /*12*/ FLAG_ENTRY0("CceCli1AsyncFifoDbgParityError", 275 CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_DBG_PARITY_ERROR_SMASK), 276 /*13*/ FLAG_ENTRY0("PcicRetryMemCorErr", 277 CCE_ERR_STATUS_PCIC_RETRY_MEM_COR_ERR_SMASK), 278 /*14*/ FLAG_ENTRY0("PcicRetryMemCorErr", 279 CCE_ERR_STATUS_PCIC_RETRY_SOT_MEM_COR_ERR_SMASK), 280 /*15*/ FLAG_ENTRY0("PcicPostHdQCorErr", 281 CCE_ERR_STATUS_PCIC_POST_HD_QCOR_ERR_SMASK), 282 /*16*/ FLAG_ENTRY0("PcicPostHdQCorErr", 283 CCE_ERR_STATUS_PCIC_POST_DAT_QCOR_ERR_SMASK), 284 /*17*/ FLAG_ENTRY0("PcicPostHdQCorErr", 285 CCE_ERR_STATUS_PCIC_CPL_HD_QCOR_ERR_SMASK), 286 /*18*/ FLAG_ENTRY0("PcicCplDatQCorErr", 287 CCE_ERR_STATUS_PCIC_CPL_DAT_QCOR_ERR_SMASK), 288 /*19*/ FLAG_ENTRY0("PcicNPostHQParityErr", 289 CCE_ERR_STATUS_PCIC_NPOST_HQ_PARITY_ERR_SMASK), 290 /*20*/ FLAG_ENTRY0("PcicNPostDatQParityErr", 291 CCE_ERR_STATUS_PCIC_NPOST_DAT_QPARITY_ERR_SMASK), 292 /*21*/ FLAG_ENTRY0("PcicRetryMemUncErr", 293 CCE_ERR_STATUS_PCIC_RETRY_MEM_UNC_ERR_SMASK), 294 /*22*/ FLAG_ENTRY0("PcicRetrySotMemUncErr", 295 CCE_ERR_STATUS_PCIC_RETRY_SOT_MEM_UNC_ERR_SMASK), 296 /*23*/ FLAG_ENTRY0("PcicPostHdQUncErr", 297 CCE_ERR_STATUS_PCIC_POST_HD_QUNC_ERR_SMASK), 298 /*24*/ FLAG_ENTRY0("PcicPostDatQUncErr", 299 CCE_ERR_STATUS_PCIC_POST_DAT_QUNC_ERR_SMASK), 300 /*25*/ FLAG_ENTRY0("PcicCplHdQUncErr", 301 CCE_ERR_STATUS_PCIC_CPL_HD_QUNC_ERR_SMASK), 302 /*26*/ FLAG_ENTRY0("PcicCplDatQUncErr", 303 CCE_ERR_STATUS_PCIC_CPL_DAT_QUNC_ERR_SMASK), 304 /*27*/ FLAG_ENTRY0("PcicTransmitFrontParityErr", 305 CCE_ERR_STATUS_PCIC_TRANSMIT_FRONT_PARITY_ERR_SMASK), 306 /*28*/ FLAG_ENTRY0("PcicTransmitBackParityErr", 307 CCE_ERR_STATUS_PCIC_TRANSMIT_BACK_PARITY_ERR_SMASK), 308 /*29*/ FLAG_ENTRY0("PcicReceiveParityErr", 309 CCE_ERR_STATUS_PCIC_RECEIVE_PARITY_ERR_SMASK), 310 /*30*/ FLAG_ENTRY0("CceTrgtCplTimeoutErr", 311 CCE_ERR_STATUS_CCE_TRGT_CPL_TIMEOUT_ERR_SMASK), 312 /*31*/ FLAG_ENTRY0("LATriggered", 313 CCE_ERR_STATUS_LA_TRIGGERED_SMASK), 314 /*32*/ FLAG_ENTRY0("CceSegReadBadAddrErr", 315 CCE_ERR_STATUS_CCE_SEG_READ_BAD_ADDR_ERR_SMASK), 316 /*33*/ FLAG_ENTRY0("CceSegWriteBadAddrErr", 317 CCE_ERR_STATUS_CCE_SEG_WRITE_BAD_ADDR_ERR_SMASK), 318 /*34*/ FLAG_ENTRY0("CceRcplAsyncFifoParityErr", 319 CCE_ERR_STATUS_CCE_RCPL_ASYNC_FIFO_PARITY_ERR_SMASK), 320 /*35*/ FLAG_ENTRY0("CceRxdmaConvFifoParityErr", 321 CCE_ERR_STATUS_CCE_RXDMA_CONV_FIFO_PARITY_ERR_SMASK), 322 /*36*/ FLAG_ENTRY0("CceMsixTableCorErr", 323 CCE_ERR_STATUS_CCE_MSIX_TABLE_COR_ERR_SMASK), 324 /*37*/ FLAG_ENTRY0("CceMsixTableUncErr", 325 CCE_ERR_STATUS_CCE_MSIX_TABLE_UNC_ERR_SMASK), 326 /*38*/ FLAG_ENTRY0("CceIntMapCorErr", 327 CCE_ERR_STATUS_CCE_INT_MAP_COR_ERR_SMASK), 328 /*39*/ FLAG_ENTRY0("CceIntMapUncErr", 329 CCE_ERR_STATUS_CCE_INT_MAP_UNC_ERR_SMASK), 330 /*40*/ FLAG_ENTRY0("CceMsixCsrParityErr", 331 CCE_ERR_STATUS_CCE_MSIX_CSR_PARITY_ERR_SMASK), 332 /*41-63 reserved*/ 333 }; 334 335 /* 336 * Misc Error flags 337 */ 338 #define MES(text) MISC_ERR_STATUS_MISC_##text##_ERR_SMASK 339 static struct flag_table misc_err_status_flags[] = { 340 /* 0*/ FLAG_ENTRY0("CSR_PARITY", MES(CSR_PARITY)), 341 /* 1*/ FLAG_ENTRY0("CSR_READ_BAD_ADDR", MES(CSR_READ_BAD_ADDR)), 342 /* 2*/ FLAG_ENTRY0("CSR_WRITE_BAD_ADDR", MES(CSR_WRITE_BAD_ADDR)), 343 /* 3*/ FLAG_ENTRY0("SBUS_WRITE_FAILED", MES(SBUS_WRITE_FAILED)), 344 /* 4*/ FLAG_ENTRY0("KEY_MISMATCH", MES(KEY_MISMATCH)), 345 /* 5*/ FLAG_ENTRY0("FW_AUTH_FAILED", MES(FW_AUTH_FAILED)), 346 /* 6*/ FLAG_ENTRY0("EFUSE_CSR_PARITY", MES(EFUSE_CSR_PARITY)), 347 /* 7*/ FLAG_ENTRY0("EFUSE_READ_BAD_ADDR", MES(EFUSE_READ_BAD_ADDR)), 348 /* 8*/ FLAG_ENTRY0("EFUSE_WRITE", MES(EFUSE_WRITE)), 349 /* 9*/ FLAG_ENTRY0("EFUSE_DONE_PARITY", MES(EFUSE_DONE_PARITY)), 350 /*10*/ FLAG_ENTRY0("INVALID_EEP_CMD", MES(INVALID_EEP_CMD)), 351 /*11*/ FLAG_ENTRY0("MBIST_FAIL", MES(MBIST_FAIL)), 352 /*12*/ FLAG_ENTRY0("PLL_LOCK_FAIL", MES(PLL_LOCK_FAIL)) 353 }; 354 355 /* 356 * TXE PIO Error flags and consequences 357 */ 358 static struct flag_table pio_err_status_flags[] = { 359 /* 0*/ FLAG_ENTRY("PioWriteBadCtxt", 360 SEC_WRITE_DROPPED, 361 SEND_PIO_ERR_STATUS_PIO_WRITE_BAD_CTXT_ERR_SMASK), 362 /* 1*/ FLAG_ENTRY("PioWriteAddrParity", 363 SEC_SPC_FREEZE, 364 SEND_PIO_ERR_STATUS_PIO_WRITE_ADDR_PARITY_ERR_SMASK), 365 /* 2*/ FLAG_ENTRY("PioCsrParity", 366 SEC_SPC_FREEZE, 367 SEND_PIO_ERR_STATUS_PIO_CSR_PARITY_ERR_SMASK), 368 /* 3*/ FLAG_ENTRY("PioSbMemFifo0", 369 SEC_SPC_FREEZE, 370 SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO0_ERR_SMASK), 371 /* 4*/ FLAG_ENTRY("PioSbMemFifo1", 372 SEC_SPC_FREEZE, 373 SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO1_ERR_SMASK), 374 /* 5*/ FLAG_ENTRY("PioPccFifoParity", 375 SEC_SPC_FREEZE, 376 SEND_PIO_ERR_STATUS_PIO_PCC_FIFO_PARITY_ERR_SMASK), 377 /* 6*/ FLAG_ENTRY("PioPecFifoParity", 378 SEC_SPC_FREEZE, 379 SEND_PIO_ERR_STATUS_PIO_PEC_FIFO_PARITY_ERR_SMASK), 380 /* 7*/ FLAG_ENTRY("PioSbrdctlCrrelParity", 381 SEC_SPC_FREEZE, 382 SEND_PIO_ERR_STATUS_PIO_SBRDCTL_CRREL_PARITY_ERR_SMASK), 383 /* 8*/ FLAG_ENTRY("PioSbrdctrlCrrelFifoParity", 384 SEC_SPC_FREEZE, 385 SEND_PIO_ERR_STATUS_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR_SMASK), 386 /* 9*/ FLAG_ENTRY("PioPktEvictFifoParityErr", 387 SEC_SPC_FREEZE, 388 SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_FIFO_PARITY_ERR_SMASK), 389 /*10*/ FLAG_ENTRY("PioSmPktResetParity", 390 SEC_SPC_FREEZE, 391 SEND_PIO_ERR_STATUS_PIO_SM_PKT_RESET_PARITY_ERR_SMASK), 392 /*11*/ FLAG_ENTRY("PioVlLenMemBank0Unc", 393 SEC_SPC_FREEZE, 394 SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_UNC_ERR_SMASK), 395 /*12*/ FLAG_ENTRY("PioVlLenMemBank1Unc", 396 SEC_SPC_FREEZE, 397 SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_UNC_ERR_SMASK), 398 /*13*/ FLAG_ENTRY("PioVlLenMemBank0Cor", 399 0, 400 SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_COR_ERR_SMASK), 401 /*14*/ FLAG_ENTRY("PioVlLenMemBank1Cor", 402 0, 403 SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_COR_ERR_SMASK), 404 /*15*/ FLAG_ENTRY("PioCreditRetFifoParity", 405 SEC_SPC_FREEZE, 406 SEND_PIO_ERR_STATUS_PIO_CREDIT_RET_FIFO_PARITY_ERR_SMASK), 407 /*16*/ FLAG_ENTRY("PioPpmcPblFifo", 408 SEC_SPC_FREEZE, 409 SEND_PIO_ERR_STATUS_PIO_PPMC_PBL_FIFO_ERR_SMASK), 410 /*17*/ FLAG_ENTRY("PioInitSmIn", 411 0, 412 SEND_PIO_ERR_STATUS_PIO_INIT_SM_IN_ERR_SMASK), 413 /*18*/ FLAG_ENTRY("PioPktEvictSmOrArbSm", 414 SEC_SPC_FREEZE, 415 SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_SM_OR_ARB_SM_ERR_SMASK), 416 /*19*/ FLAG_ENTRY("PioHostAddrMemUnc", 417 SEC_SPC_FREEZE, 418 SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_UNC_ERR_SMASK), 419 /*20*/ FLAG_ENTRY("PioHostAddrMemCor", 420 0, 421 SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_COR_ERR_SMASK), 422 /*21*/ FLAG_ENTRY("PioWriteDataParity", 423 SEC_SPC_FREEZE, 424 SEND_PIO_ERR_STATUS_PIO_WRITE_DATA_PARITY_ERR_SMASK), 425 /*22*/ FLAG_ENTRY("PioStateMachine", 426 SEC_SPC_FREEZE, 427 SEND_PIO_ERR_STATUS_PIO_STATE_MACHINE_ERR_SMASK), 428 /*23*/ FLAG_ENTRY("PioWriteQwValidParity", 429 SEC_WRITE_DROPPED | SEC_SPC_FREEZE, 430 SEND_PIO_ERR_STATUS_PIO_WRITE_QW_VALID_PARITY_ERR_SMASK), 431 /*24*/ FLAG_ENTRY("PioBlockQwCountParity", 432 SEC_WRITE_DROPPED | SEC_SPC_FREEZE, 433 SEND_PIO_ERR_STATUS_PIO_BLOCK_QW_COUNT_PARITY_ERR_SMASK), 434 /*25*/ FLAG_ENTRY("PioVlfVlLenParity", 435 SEC_SPC_FREEZE, 436 SEND_PIO_ERR_STATUS_PIO_VLF_VL_LEN_PARITY_ERR_SMASK), 437 /*26*/ FLAG_ENTRY("PioVlfSopParity", 438 SEC_SPC_FREEZE, 439 SEND_PIO_ERR_STATUS_PIO_VLF_SOP_PARITY_ERR_SMASK), 440 /*27*/ FLAG_ENTRY("PioVlFifoParity", 441 SEC_SPC_FREEZE, 442 SEND_PIO_ERR_STATUS_PIO_VL_FIFO_PARITY_ERR_SMASK), 443 /*28*/ FLAG_ENTRY("PioPpmcBqcMemParity", 444 SEC_SPC_FREEZE, 445 SEND_PIO_ERR_STATUS_PIO_PPMC_BQC_MEM_PARITY_ERR_SMASK), 446 /*29*/ FLAG_ENTRY("PioPpmcSopLen", 447 SEC_SPC_FREEZE, 448 SEND_PIO_ERR_STATUS_PIO_PPMC_SOP_LEN_ERR_SMASK), 449 /*30-31 reserved*/ 450 /*32*/ FLAG_ENTRY("PioCurrentFreeCntParity", 451 SEC_SPC_FREEZE, 452 SEND_PIO_ERR_STATUS_PIO_CURRENT_FREE_CNT_PARITY_ERR_SMASK), 453 /*33*/ FLAG_ENTRY("PioLastReturnedCntParity", 454 SEC_SPC_FREEZE, 455 SEND_PIO_ERR_STATUS_PIO_LAST_RETURNED_CNT_PARITY_ERR_SMASK), 456 /*34*/ FLAG_ENTRY("PioPccSopHeadParity", 457 SEC_SPC_FREEZE, 458 SEND_PIO_ERR_STATUS_PIO_PCC_SOP_HEAD_PARITY_ERR_SMASK), 459 /*35*/ FLAG_ENTRY("PioPecSopHeadParityErr", 460 SEC_SPC_FREEZE, 461 SEND_PIO_ERR_STATUS_PIO_PEC_SOP_HEAD_PARITY_ERR_SMASK), 462 /*36-63 reserved*/ 463 }; 464 465 /* TXE PIO errors that cause an SPC freeze */ 466 #define ALL_PIO_FREEZE_ERR \ 467 (SEND_PIO_ERR_STATUS_PIO_WRITE_ADDR_PARITY_ERR_SMASK \ 468 | SEND_PIO_ERR_STATUS_PIO_CSR_PARITY_ERR_SMASK \ 469 | SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO0_ERR_SMASK \ 470 | SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO1_ERR_SMASK \ 471 | SEND_PIO_ERR_STATUS_PIO_PCC_FIFO_PARITY_ERR_SMASK \ 472 | SEND_PIO_ERR_STATUS_PIO_PEC_FIFO_PARITY_ERR_SMASK \ 473 | SEND_PIO_ERR_STATUS_PIO_SBRDCTL_CRREL_PARITY_ERR_SMASK \ 474 | SEND_PIO_ERR_STATUS_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR_SMASK \ 475 | SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_FIFO_PARITY_ERR_SMASK \ 476 | SEND_PIO_ERR_STATUS_PIO_SM_PKT_RESET_PARITY_ERR_SMASK \ 477 | SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_UNC_ERR_SMASK \ 478 | SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_UNC_ERR_SMASK \ 479 | SEND_PIO_ERR_STATUS_PIO_CREDIT_RET_FIFO_PARITY_ERR_SMASK \ 480 | SEND_PIO_ERR_STATUS_PIO_PPMC_PBL_FIFO_ERR_SMASK \ 481 | SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_SM_OR_ARB_SM_ERR_SMASK \ 482 | SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_UNC_ERR_SMASK \ 483 | SEND_PIO_ERR_STATUS_PIO_WRITE_DATA_PARITY_ERR_SMASK \ 484 | SEND_PIO_ERR_STATUS_PIO_STATE_MACHINE_ERR_SMASK \ 485 | SEND_PIO_ERR_STATUS_PIO_WRITE_QW_VALID_PARITY_ERR_SMASK \ 486 | SEND_PIO_ERR_STATUS_PIO_BLOCK_QW_COUNT_PARITY_ERR_SMASK \ 487 | SEND_PIO_ERR_STATUS_PIO_VLF_VL_LEN_PARITY_ERR_SMASK \ 488 | SEND_PIO_ERR_STATUS_PIO_VLF_SOP_PARITY_ERR_SMASK \ 489 | SEND_PIO_ERR_STATUS_PIO_VL_FIFO_PARITY_ERR_SMASK \ 490 | SEND_PIO_ERR_STATUS_PIO_PPMC_BQC_MEM_PARITY_ERR_SMASK \ 491 | SEND_PIO_ERR_STATUS_PIO_PPMC_SOP_LEN_ERR_SMASK \ 492 | SEND_PIO_ERR_STATUS_PIO_CURRENT_FREE_CNT_PARITY_ERR_SMASK \ 493 | SEND_PIO_ERR_STATUS_PIO_LAST_RETURNED_CNT_PARITY_ERR_SMASK \ 494 | SEND_PIO_ERR_STATUS_PIO_PCC_SOP_HEAD_PARITY_ERR_SMASK \ 495 | SEND_PIO_ERR_STATUS_PIO_PEC_SOP_HEAD_PARITY_ERR_SMASK) 496 497 /* 498 * TXE SDMA Error flags 499 */ 500 static struct flag_table sdma_err_status_flags[] = { 501 /* 0*/ FLAG_ENTRY0("SDmaRpyTagErr", 502 SEND_DMA_ERR_STATUS_SDMA_RPY_TAG_ERR_SMASK), 503 /* 1*/ FLAG_ENTRY0("SDmaCsrParityErr", 504 SEND_DMA_ERR_STATUS_SDMA_CSR_PARITY_ERR_SMASK), 505 /* 2*/ FLAG_ENTRY0("SDmaPcieReqTrackingUncErr", 506 SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_UNC_ERR_SMASK), 507 /* 3*/ FLAG_ENTRY0("SDmaPcieReqTrackingCorErr", 508 SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_COR_ERR_SMASK), 509 /*04-63 reserved*/ 510 }; 511 512 /* TXE SDMA errors that cause an SPC freeze */ 513 #define ALL_SDMA_FREEZE_ERR \ 514 (SEND_DMA_ERR_STATUS_SDMA_RPY_TAG_ERR_SMASK \ 515 | SEND_DMA_ERR_STATUS_SDMA_CSR_PARITY_ERR_SMASK \ 516 | SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_UNC_ERR_SMASK) 517 518 /* SendEgressErrInfo bits that correspond to a PortXmitDiscard counter */ 519 #define PORT_DISCARD_EGRESS_ERRS \ 520 (SEND_EGRESS_ERR_INFO_TOO_LONG_IB_PACKET_ERR_SMASK \ 521 | SEND_EGRESS_ERR_INFO_VL_MAPPING_ERR_SMASK \ 522 | SEND_EGRESS_ERR_INFO_VL_ERR_SMASK) 523 524 /* 525 * TXE Egress Error flags 526 */ 527 #define SEES(text) SEND_EGRESS_ERR_STATUS_##text##_ERR_SMASK 528 static struct flag_table egress_err_status_flags[] = { 529 /* 0*/ FLAG_ENTRY0("TxPktIntegrityMemCorErr", SEES(TX_PKT_INTEGRITY_MEM_COR)), 530 /* 1*/ FLAG_ENTRY0("TxPktIntegrityMemUncErr", SEES(TX_PKT_INTEGRITY_MEM_UNC)), 531 /* 2 reserved */ 532 /* 3*/ FLAG_ENTRY0("TxEgressFifoUnderrunOrParityErr", 533 SEES(TX_EGRESS_FIFO_UNDERRUN_OR_PARITY)), 534 /* 4*/ FLAG_ENTRY0("TxLinkdownErr", SEES(TX_LINKDOWN)), 535 /* 5*/ FLAG_ENTRY0("TxIncorrectLinkStateErr", SEES(TX_INCORRECT_LINK_STATE)), 536 /* 6 reserved */ 537 /* 7*/ FLAG_ENTRY0("TxPioLaunchIntfParityErr", 538 SEES(TX_PIO_LAUNCH_INTF_PARITY)), 539 /* 8*/ FLAG_ENTRY0("TxSdmaLaunchIntfParityErr", 540 SEES(TX_SDMA_LAUNCH_INTF_PARITY)), 541 /* 9-10 reserved */ 542 /*11*/ FLAG_ENTRY0("TxSbrdCtlStateMachineParityErr", 543 SEES(TX_SBRD_CTL_STATE_MACHINE_PARITY)), 544 /*12*/ FLAG_ENTRY0("TxIllegalVLErr", SEES(TX_ILLEGAL_VL)), 545 /*13*/ FLAG_ENTRY0("TxLaunchCsrParityErr", SEES(TX_LAUNCH_CSR_PARITY)), 546 /*14*/ FLAG_ENTRY0("TxSbrdCtlCsrParityErr", SEES(TX_SBRD_CTL_CSR_PARITY)), 547 /*15*/ FLAG_ENTRY0("TxConfigParityErr", SEES(TX_CONFIG_PARITY)), 548 /*16*/ FLAG_ENTRY0("TxSdma0DisallowedPacketErr", 549 SEES(TX_SDMA0_DISALLOWED_PACKET)), 550 /*17*/ FLAG_ENTRY0("TxSdma1DisallowedPacketErr", 551 SEES(TX_SDMA1_DISALLOWED_PACKET)), 552 /*18*/ FLAG_ENTRY0("TxSdma2DisallowedPacketErr", 553 SEES(TX_SDMA2_DISALLOWED_PACKET)), 554 /*19*/ FLAG_ENTRY0("TxSdma3DisallowedPacketErr", 555 SEES(TX_SDMA3_DISALLOWED_PACKET)), 556 /*20*/ FLAG_ENTRY0("TxSdma4DisallowedPacketErr", 557 SEES(TX_SDMA4_DISALLOWED_PACKET)), 558 /*21*/ FLAG_ENTRY0("TxSdma5DisallowedPacketErr", 559 SEES(TX_SDMA5_DISALLOWED_PACKET)), 560 /*22*/ FLAG_ENTRY0("TxSdma6DisallowedPacketErr", 561 SEES(TX_SDMA6_DISALLOWED_PACKET)), 562 /*23*/ FLAG_ENTRY0("TxSdma7DisallowedPacketErr", 563 SEES(TX_SDMA7_DISALLOWED_PACKET)), 564 /*24*/ FLAG_ENTRY0("TxSdma8DisallowedPacketErr", 565 SEES(TX_SDMA8_DISALLOWED_PACKET)), 566 /*25*/ FLAG_ENTRY0("TxSdma9DisallowedPacketErr", 567 SEES(TX_SDMA9_DISALLOWED_PACKET)), 568 /*26*/ FLAG_ENTRY0("TxSdma10DisallowedPacketErr", 569 SEES(TX_SDMA10_DISALLOWED_PACKET)), 570 /*27*/ FLAG_ENTRY0("TxSdma11DisallowedPacketErr", 571 SEES(TX_SDMA11_DISALLOWED_PACKET)), 572 /*28*/ FLAG_ENTRY0("TxSdma12DisallowedPacketErr", 573 SEES(TX_SDMA12_DISALLOWED_PACKET)), 574 /*29*/ FLAG_ENTRY0("TxSdma13DisallowedPacketErr", 575 SEES(TX_SDMA13_DISALLOWED_PACKET)), 576 /*30*/ FLAG_ENTRY0("TxSdma14DisallowedPacketErr", 577 SEES(TX_SDMA14_DISALLOWED_PACKET)), 578 /*31*/ FLAG_ENTRY0("TxSdma15DisallowedPacketErr", 579 SEES(TX_SDMA15_DISALLOWED_PACKET)), 580 /*32*/ FLAG_ENTRY0("TxLaunchFifo0UncOrParityErr", 581 SEES(TX_LAUNCH_FIFO0_UNC_OR_PARITY)), 582 /*33*/ FLAG_ENTRY0("TxLaunchFifo1UncOrParityErr", 583 SEES(TX_LAUNCH_FIFO1_UNC_OR_PARITY)), 584 /*34*/ FLAG_ENTRY0("TxLaunchFifo2UncOrParityErr", 585 SEES(TX_LAUNCH_FIFO2_UNC_OR_PARITY)), 586 /*35*/ FLAG_ENTRY0("TxLaunchFifo3UncOrParityErr", 587 SEES(TX_LAUNCH_FIFO3_UNC_OR_PARITY)), 588 /*36*/ FLAG_ENTRY0("TxLaunchFifo4UncOrParityErr", 589 SEES(TX_LAUNCH_FIFO4_UNC_OR_PARITY)), 590 /*37*/ FLAG_ENTRY0("TxLaunchFifo5UncOrParityErr", 591 SEES(TX_LAUNCH_FIFO5_UNC_OR_PARITY)), 592 /*38*/ FLAG_ENTRY0("TxLaunchFifo6UncOrParityErr", 593 SEES(TX_LAUNCH_FIFO6_UNC_OR_PARITY)), 594 /*39*/ FLAG_ENTRY0("TxLaunchFifo7UncOrParityErr", 595 SEES(TX_LAUNCH_FIFO7_UNC_OR_PARITY)), 596 /*40*/ FLAG_ENTRY0("TxLaunchFifo8UncOrParityErr", 597 SEES(TX_LAUNCH_FIFO8_UNC_OR_PARITY)), 598 /*41*/ FLAG_ENTRY0("TxCreditReturnParityErr", SEES(TX_CREDIT_RETURN_PARITY)), 599 /*42*/ FLAG_ENTRY0("TxSbHdrUncErr", SEES(TX_SB_HDR_UNC)), 600 /*43*/ FLAG_ENTRY0("TxReadSdmaMemoryUncErr", SEES(TX_READ_SDMA_MEMORY_UNC)), 601 /*44*/ FLAG_ENTRY0("TxReadPioMemoryUncErr", SEES(TX_READ_PIO_MEMORY_UNC)), 602 /*45*/ FLAG_ENTRY0("TxEgressFifoUncErr", SEES(TX_EGRESS_FIFO_UNC)), 603 /*46*/ FLAG_ENTRY0("TxHcrcInsertionErr", SEES(TX_HCRC_INSERTION)), 604 /*47*/ FLAG_ENTRY0("TxCreditReturnVLErr", SEES(TX_CREDIT_RETURN_VL)), 605 /*48*/ FLAG_ENTRY0("TxLaunchFifo0CorErr", SEES(TX_LAUNCH_FIFO0_COR)), 606 /*49*/ FLAG_ENTRY0("TxLaunchFifo1CorErr", SEES(TX_LAUNCH_FIFO1_COR)), 607 /*50*/ FLAG_ENTRY0("TxLaunchFifo2CorErr", SEES(TX_LAUNCH_FIFO2_COR)), 608 /*51*/ FLAG_ENTRY0("TxLaunchFifo3CorErr", SEES(TX_LAUNCH_FIFO3_COR)), 609 /*52*/ FLAG_ENTRY0("TxLaunchFifo4CorErr", SEES(TX_LAUNCH_FIFO4_COR)), 610 /*53*/ FLAG_ENTRY0("TxLaunchFifo5CorErr", SEES(TX_LAUNCH_FIFO5_COR)), 611 /*54*/ FLAG_ENTRY0("TxLaunchFifo6CorErr", SEES(TX_LAUNCH_FIFO6_COR)), 612 /*55*/ FLAG_ENTRY0("TxLaunchFifo7CorErr", SEES(TX_LAUNCH_FIFO7_COR)), 613 /*56*/ FLAG_ENTRY0("TxLaunchFifo8CorErr", SEES(TX_LAUNCH_FIFO8_COR)), 614 /*57*/ FLAG_ENTRY0("TxCreditOverrunErr", SEES(TX_CREDIT_OVERRUN)), 615 /*58*/ FLAG_ENTRY0("TxSbHdrCorErr", SEES(TX_SB_HDR_COR)), 616 /*59*/ FLAG_ENTRY0("TxReadSdmaMemoryCorErr", SEES(TX_READ_SDMA_MEMORY_COR)), 617 /*60*/ FLAG_ENTRY0("TxReadPioMemoryCorErr", SEES(TX_READ_PIO_MEMORY_COR)), 618 /*61*/ FLAG_ENTRY0("TxEgressFifoCorErr", SEES(TX_EGRESS_FIFO_COR)), 619 /*62*/ FLAG_ENTRY0("TxReadSdmaMemoryCsrUncErr", 620 SEES(TX_READ_SDMA_MEMORY_CSR_UNC)), 621 /*63*/ FLAG_ENTRY0("TxReadPioMemoryCsrUncErr", 622 SEES(TX_READ_PIO_MEMORY_CSR_UNC)), 623 }; 624 625 /* 626 * TXE Egress Error Info flags 627 */ 628 #define SEEI(text) SEND_EGRESS_ERR_INFO_##text##_ERR_SMASK 629 static struct flag_table egress_err_info_flags[] = { 630 /* 0*/ FLAG_ENTRY0("Reserved", 0ull), 631 /* 1*/ FLAG_ENTRY0("VLErr", SEEI(VL)), 632 /* 2*/ FLAG_ENTRY0("JobKeyErr", SEEI(JOB_KEY)), 633 /* 3*/ FLAG_ENTRY0("JobKeyErr", SEEI(JOB_KEY)), 634 /* 4*/ FLAG_ENTRY0("PartitionKeyErr", SEEI(PARTITION_KEY)), 635 /* 5*/ FLAG_ENTRY0("SLIDErr", SEEI(SLID)), 636 /* 6*/ FLAG_ENTRY0("OpcodeErr", SEEI(OPCODE)), 637 /* 7*/ FLAG_ENTRY0("VLMappingErr", SEEI(VL_MAPPING)), 638 /* 8*/ FLAG_ENTRY0("RawErr", SEEI(RAW)), 639 /* 9*/ FLAG_ENTRY0("RawIPv6Err", SEEI(RAW_IPV6)), 640 /*10*/ FLAG_ENTRY0("GRHErr", SEEI(GRH)), 641 /*11*/ FLAG_ENTRY0("BypassErr", SEEI(BYPASS)), 642 /*12*/ FLAG_ENTRY0("KDETHPacketsErr", SEEI(KDETH_PACKETS)), 643 /*13*/ FLAG_ENTRY0("NonKDETHPacketsErr", SEEI(NON_KDETH_PACKETS)), 644 /*14*/ FLAG_ENTRY0("TooSmallIBPacketsErr", SEEI(TOO_SMALL_IB_PACKETS)), 645 /*15*/ FLAG_ENTRY0("TooSmallBypassPacketsErr", SEEI(TOO_SMALL_BYPASS_PACKETS)), 646 /*16*/ FLAG_ENTRY0("PbcTestErr", SEEI(PBC_TEST)), 647 /*17*/ FLAG_ENTRY0("BadPktLenErr", SEEI(BAD_PKT_LEN)), 648 /*18*/ FLAG_ENTRY0("TooLongIBPacketErr", SEEI(TOO_LONG_IB_PACKET)), 649 /*19*/ FLAG_ENTRY0("TooLongBypassPacketsErr", SEEI(TOO_LONG_BYPASS_PACKETS)), 650 /*20*/ FLAG_ENTRY0("PbcStaticRateControlErr", SEEI(PBC_STATIC_RATE_CONTROL)), 651 /*21*/ FLAG_ENTRY0("BypassBadPktLenErr", SEEI(BAD_PKT_LEN)), 652 }; 653 654 /* TXE Egress errors that cause an SPC freeze */ 655 #define ALL_TXE_EGRESS_FREEZE_ERR \ 656 (SEES(TX_EGRESS_FIFO_UNDERRUN_OR_PARITY) \ 657 | SEES(TX_PIO_LAUNCH_INTF_PARITY) \ 658 | SEES(TX_SDMA_LAUNCH_INTF_PARITY) \ 659 | SEES(TX_SBRD_CTL_STATE_MACHINE_PARITY) \ 660 | SEES(TX_LAUNCH_CSR_PARITY) \ 661 | SEES(TX_SBRD_CTL_CSR_PARITY) \ 662 | SEES(TX_CONFIG_PARITY) \ 663 | SEES(TX_LAUNCH_FIFO0_UNC_OR_PARITY) \ 664 | SEES(TX_LAUNCH_FIFO1_UNC_OR_PARITY) \ 665 | SEES(TX_LAUNCH_FIFO2_UNC_OR_PARITY) \ 666 | SEES(TX_LAUNCH_FIFO3_UNC_OR_PARITY) \ 667 | SEES(TX_LAUNCH_FIFO4_UNC_OR_PARITY) \ 668 | SEES(TX_LAUNCH_FIFO5_UNC_OR_PARITY) \ 669 | SEES(TX_LAUNCH_FIFO6_UNC_OR_PARITY) \ 670 | SEES(TX_LAUNCH_FIFO7_UNC_OR_PARITY) \ 671 | SEES(TX_LAUNCH_FIFO8_UNC_OR_PARITY) \ 672 | SEES(TX_CREDIT_RETURN_PARITY)) 673 674 /* 675 * TXE Send error flags 676 */ 677 #define SES(name) SEND_ERR_STATUS_SEND_##name##_ERR_SMASK 678 static struct flag_table send_err_status_flags[] = { 679 /* 0*/ FLAG_ENTRY0("SendCsrParityErr", SES(CSR_PARITY)), 680 /* 1*/ FLAG_ENTRY0("SendCsrReadBadAddrErr", SES(CSR_READ_BAD_ADDR)), 681 /* 2*/ FLAG_ENTRY0("SendCsrWriteBadAddrErr", SES(CSR_WRITE_BAD_ADDR)) 682 }; 683 684 /* 685 * TXE Send Context Error flags and consequences 686 */ 687 static struct flag_table sc_err_status_flags[] = { 688 /* 0*/ FLAG_ENTRY("InconsistentSop", 689 SEC_PACKET_DROPPED | SEC_SC_HALTED, 690 SEND_CTXT_ERR_STATUS_PIO_INCONSISTENT_SOP_ERR_SMASK), 691 /* 1*/ FLAG_ENTRY("DisallowedPacket", 692 SEC_PACKET_DROPPED | SEC_SC_HALTED, 693 SEND_CTXT_ERR_STATUS_PIO_DISALLOWED_PACKET_ERR_SMASK), 694 /* 2*/ FLAG_ENTRY("WriteCrossesBoundary", 695 SEC_WRITE_DROPPED | SEC_SC_HALTED, 696 SEND_CTXT_ERR_STATUS_PIO_WRITE_CROSSES_BOUNDARY_ERR_SMASK), 697 /* 3*/ FLAG_ENTRY("WriteOverflow", 698 SEC_WRITE_DROPPED | SEC_SC_HALTED, 699 SEND_CTXT_ERR_STATUS_PIO_WRITE_OVERFLOW_ERR_SMASK), 700 /* 4*/ FLAG_ENTRY("WriteOutOfBounds", 701 SEC_WRITE_DROPPED | SEC_SC_HALTED, 702 SEND_CTXT_ERR_STATUS_PIO_WRITE_OUT_OF_BOUNDS_ERR_SMASK), 703 /* 5-63 reserved*/ 704 }; 705 706 /* 707 * RXE Receive Error flags 708 */ 709 #define RXES(name) RCV_ERR_STATUS_RX_##name##_ERR_SMASK 710 static struct flag_table rxe_err_status_flags[] = { 711 /* 0*/ FLAG_ENTRY0("RxDmaCsrCorErr", RXES(DMA_CSR_COR)), 712 /* 1*/ FLAG_ENTRY0("RxDcIntfParityErr", RXES(DC_INTF_PARITY)), 713 /* 2*/ FLAG_ENTRY0("RxRcvHdrUncErr", RXES(RCV_HDR_UNC)), 714 /* 3*/ FLAG_ENTRY0("RxRcvHdrCorErr", RXES(RCV_HDR_COR)), 715 /* 4*/ FLAG_ENTRY0("RxRcvDataUncErr", RXES(RCV_DATA_UNC)), 716 /* 5*/ FLAG_ENTRY0("RxRcvDataCorErr", RXES(RCV_DATA_COR)), 717 /* 6*/ FLAG_ENTRY0("RxRcvQpMapTableUncErr", RXES(RCV_QP_MAP_TABLE_UNC)), 718 /* 7*/ FLAG_ENTRY0("RxRcvQpMapTableCorErr", RXES(RCV_QP_MAP_TABLE_COR)), 719 /* 8*/ FLAG_ENTRY0("RxRcvCsrParityErr", RXES(RCV_CSR_PARITY)), 720 /* 9*/ FLAG_ENTRY0("RxDcSopEopParityErr", RXES(DC_SOP_EOP_PARITY)), 721 /*10*/ FLAG_ENTRY0("RxDmaFlagUncErr", RXES(DMA_FLAG_UNC)), 722 /*11*/ FLAG_ENTRY0("RxDmaFlagCorErr", RXES(DMA_FLAG_COR)), 723 /*12*/ FLAG_ENTRY0("RxRcvFsmEncodingErr", RXES(RCV_FSM_ENCODING)), 724 /*13*/ FLAG_ENTRY0("RxRbufFreeListUncErr", RXES(RBUF_FREE_LIST_UNC)), 725 /*14*/ FLAG_ENTRY0("RxRbufFreeListCorErr", RXES(RBUF_FREE_LIST_COR)), 726 /*15*/ FLAG_ENTRY0("RxRbufLookupDesRegUncErr", RXES(RBUF_LOOKUP_DES_REG_UNC)), 727 /*16*/ FLAG_ENTRY0("RxRbufLookupDesRegUncCorErr", 728 RXES(RBUF_LOOKUP_DES_REG_UNC_COR)), 729 /*17*/ FLAG_ENTRY0("RxRbufLookupDesUncErr", RXES(RBUF_LOOKUP_DES_UNC)), 730 /*18*/ FLAG_ENTRY0("RxRbufLookupDesCorErr", RXES(RBUF_LOOKUP_DES_COR)), 731 /*19*/ FLAG_ENTRY0("RxRbufBlockListReadUncErr", 732 RXES(RBUF_BLOCK_LIST_READ_UNC)), 733 /*20*/ FLAG_ENTRY0("RxRbufBlockListReadCorErr", 734 RXES(RBUF_BLOCK_LIST_READ_COR)), 735 /*21*/ FLAG_ENTRY0("RxRbufCsrQHeadBufNumParityErr", 736 RXES(RBUF_CSR_QHEAD_BUF_NUM_PARITY)), 737 /*22*/ FLAG_ENTRY0("RxRbufCsrQEntCntParityErr", 738 RXES(RBUF_CSR_QENT_CNT_PARITY)), 739 /*23*/ FLAG_ENTRY0("RxRbufCsrQNextBufParityErr", 740 RXES(RBUF_CSR_QNEXT_BUF_PARITY)), 741 /*24*/ FLAG_ENTRY0("RxRbufCsrQVldBitParityErr", 742 RXES(RBUF_CSR_QVLD_BIT_PARITY)), 743 /*25*/ FLAG_ENTRY0("RxRbufCsrQHdPtrParityErr", RXES(RBUF_CSR_QHD_PTR_PARITY)), 744 /*26*/ FLAG_ENTRY0("RxRbufCsrQTlPtrParityErr", RXES(RBUF_CSR_QTL_PTR_PARITY)), 745 /*27*/ FLAG_ENTRY0("RxRbufCsrQNumOfPktParityErr", 746 RXES(RBUF_CSR_QNUM_OF_PKT_PARITY)), 747 /*28*/ FLAG_ENTRY0("RxRbufCsrQEOPDWParityErr", RXES(RBUF_CSR_QEOPDW_PARITY)), 748 /*29*/ FLAG_ENTRY0("RxRbufCtxIdParityErr", RXES(RBUF_CTX_ID_PARITY)), 749 /*30*/ FLAG_ENTRY0("RxRBufBadLookupErr", RXES(RBUF_BAD_LOOKUP)), 750 /*31*/ FLAG_ENTRY0("RxRbufFullErr", RXES(RBUF_FULL)), 751 /*32*/ FLAG_ENTRY0("RxRbufEmptyErr", RXES(RBUF_EMPTY)), 752 /*33*/ FLAG_ENTRY0("RxRbufFlRdAddrParityErr", RXES(RBUF_FL_RD_ADDR_PARITY)), 753 /*34*/ FLAG_ENTRY0("RxRbufFlWrAddrParityErr", RXES(RBUF_FL_WR_ADDR_PARITY)), 754 /*35*/ FLAG_ENTRY0("RxRbufFlInitdoneParityErr", 755 RXES(RBUF_FL_INITDONE_PARITY)), 756 /*36*/ FLAG_ENTRY0("RxRbufFlInitWrAddrParityErr", 757 RXES(RBUF_FL_INIT_WR_ADDR_PARITY)), 758 /*37*/ FLAG_ENTRY0("RxRbufNextFreeBufUncErr", RXES(RBUF_NEXT_FREE_BUF_UNC)), 759 /*38*/ FLAG_ENTRY0("RxRbufNextFreeBufCorErr", RXES(RBUF_NEXT_FREE_BUF_COR)), 760 /*39*/ FLAG_ENTRY0("RxLookupDesPart1UncErr", RXES(LOOKUP_DES_PART1_UNC)), 761 /*40*/ FLAG_ENTRY0("RxLookupDesPart1UncCorErr", 762 RXES(LOOKUP_DES_PART1_UNC_COR)), 763 /*41*/ FLAG_ENTRY0("RxLookupDesPart2ParityErr", 764 RXES(LOOKUP_DES_PART2_PARITY)), 765 /*42*/ FLAG_ENTRY0("RxLookupRcvArrayUncErr", RXES(LOOKUP_RCV_ARRAY_UNC)), 766 /*43*/ FLAG_ENTRY0("RxLookupRcvArrayCorErr", RXES(LOOKUP_RCV_ARRAY_COR)), 767 /*44*/ FLAG_ENTRY0("RxLookupCsrParityErr", RXES(LOOKUP_CSR_PARITY)), 768 /*45*/ FLAG_ENTRY0("RxHqIntrCsrParityErr", RXES(HQ_INTR_CSR_PARITY)), 769 /*46*/ FLAG_ENTRY0("RxHqIntrFsmErr", RXES(HQ_INTR_FSM)), 770 /*47*/ FLAG_ENTRY0("RxRbufDescPart1UncErr", RXES(RBUF_DESC_PART1_UNC)), 771 /*48*/ FLAG_ENTRY0("RxRbufDescPart1CorErr", RXES(RBUF_DESC_PART1_COR)), 772 /*49*/ FLAG_ENTRY0("RxRbufDescPart2UncErr", RXES(RBUF_DESC_PART2_UNC)), 773 /*50*/ FLAG_ENTRY0("RxRbufDescPart2CorErr", RXES(RBUF_DESC_PART2_COR)), 774 /*51*/ FLAG_ENTRY0("RxDmaHdrFifoRdUncErr", RXES(DMA_HDR_FIFO_RD_UNC)), 775 /*52*/ FLAG_ENTRY0("RxDmaHdrFifoRdCorErr", RXES(DMA_HDR_FIFO_RD_COR)), 776 /*53*/ FLAG_ENTRY0("RxDmaDataFifoRdUncErr", RXES(DMA_DATA_FIFO_RD_UNC)), 777 /*54*/ FLAG_ENTRY0("RxDmaDataFifoRdCorErr", RXES(DMA_DATA_FIFO_RD_COR)), 778 /*55*/ FLAG_ENTRY0("RxRbufDataUncErr", RXES(RBUF_DATA_UNC)), 779 /*56*/ FLAG_ENTRY0("RxRbufDataCorErr", RXES(RBUF_DATA_COR)), 780 /*57*/ FLAG_ENTRY0("RxDmaCsrParityErr", RXES(DMA_CSR_PARITY)), 781 /*58*/ FLAG_ENTRY0("RxDmaEqFsmEncodingErr", RXES(DMA_EQ_FSM_ENCODING)), 782 /*59*/ FLAG_ENTRY0("RxDmaDqFsmEncodingErr", RXES(DMA_DQ_FSM_ENCODING)), 783 /*60*/ FLAG_ENTRY0("RxDmaCsrUncErr", RXES(DMA_CSR_UNC)), 784 /*61*/ FLAG_ENTRY0("RxCsrReadBadAddrErr", RXES(CSR_READ_BAD_ADDR)), 785 /*62*/ FLAG_ENTRY0("RxCsrWriteBadAddrErr", RXES(CSR_WRITE_BAD_ADDR)), 786 /*63*/ FLAG_ENTRY0("RxCsrParityErr", RXES(CSR_PARITY)) 787 }; 788 789 /* RXE errors that will trigger an SPC freeze */ 790 #define ALL_RXE_FREEZE_ERR \ 791 (RCV_ERR_STATUS_RX_RCV_QP_MAP_TABLE_UNC_ERR_SMASK \ 792 | RCV_ERR_STATUS_RX_RCV_CSR_PARITY_ERR_SMASK \ 793 | RCV_ERR_STATUS_RX_DMA_FLAG_UNC_ERR_SMASK \ 794 | RCV_ERR_STATUS_RX_RCV_FSM_ENCODING_ERR_SMASK \ 795 | RCV_ERR_STATUS_RX_RBUF_FREE_LIST_UNC_ERR_SMASK \ 796 | RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_REG_UNC_ERR_SMASK \ 797 | RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_REG_UNC_COR_ERR_SMASK \ 798 | RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_UNC_ERR_SMASK \ 799 | RCV_ERR_STATUS_RX_RBUF_BLOCK_LIST_READ_UNC_ERR_SMASK \ 800 | RCV_ERR_STATUS_RX_RBUF_CSR_QHEAD_BUF_NUM_PARITY_ERR_SMASK \ 801 | RCV_ERR_STATUS_RX_RBUF_CSR_QENT_CNT_PARITY_ERR_SMASK \ 802 | RCV_ERR_STATUS_RX_RBUF_CSR_QNEXT_BUF_PARITY_ERR_SMASK \ 803 | RCV_ERR_STATUS_RX_RBUF_CSR_QVLD_BIT_PARITY_ERR_SMASK \ 804 | RCV_ERR_STATUS_RX_RBUF_CSR_QHD_PTR_PARITY_ERR_SMASK \ 805 | RCV_ERR_STATUS_RX_RBUF_CSR_QTL_PTR_PARITY_ERR_SMASK \ 806 | RCV_ERR_STATUS_RX_RBUF_CSR_QNUM_OF_PKT_PARITY_ERR_SMASK \ 807 | RCV_ERR_STATUS_RX_RBUF_CSR_QEOPDW_PARITY_ERR_SMASK \ 808 | RCV_ERR_STATUS_RX_RBUF_CTX_ID_PARITY_ERR_SMASK \ 809 | RCV_ERR_STATUS_RX_RBUF_BAD_LOOKUP_ERR_SMASK \ 810 | RCV_ERR_STATUS_RX_RBUF_FULL_ERR_SMASK \ 811 | RCV_ERR_STATUS_RX_RBUF_EMPTY_ERR_SMASK \ 812 | RCV_ERR_STATUS_RX_RBUF_FL_RD_ADDR_PARITY_ERR_SMASK \ 813 | RCV_ERR_STATUS_RX_RBUF_FL_WR_ADDR_PARITY_ERR_SMASK \ 814 | RCV_ERR_STATUS_RX_RBUF_FL_INITDONE_PARITY_ERR_SMASK \ 815 | RCV_ERR_STATUS_RX_RBUF_FL_INIT_WR_ADDR_PARITY_ERR_SMASK \ 816 | RCV_ERR_STATUS_RX_RBUF_NEXT_FREE_BUF_UNC_ERR_SMASK \ 817 | RCV_ERR_STATUS_RX_LOOKUP_DES_PART1_UNC_ERR_SMASK \ 818 | RCV_ERR_STATUS_RX_LOOKUP_DES_PART1_UNC_COR_ERR_SMASK \ 819 | RCV_ERR_STATUS_RX_LOOKUP_DES_PART2_PARITY_ERR_SMASK \ 820 | RCV_ERR_STATUS_RX_LOOKUP_RCV_ARRAY_UNC_ERR_SMASK \ 821 | RCV_ERR_STATUS_RX_LOOKUP_CSR_PARITY_ERR_SMASK \ 822 | RCV_ERR_STATUS_RX_HQ_INTR_CSR_PARITY_ERR_SMASK \ 823 | RCV_ERR_STATUS_RX_HQ_INTR_FSM_ERR_SMASK \ 824 | RCV_ERR_STATUS_RX_RBUF_DESC_PART1_UNC_ERR_SMASK \ 825 | RCV_ERR_STATUS_RX_RBUF_DESC_PART1_COR_ERR_SMASK \ 826 | RCV_ERR_STATUS_RX_RBUF_DESC_PART2_UNC_ERR_SMASK \ 827 | RCV_ERR_STATUS_RX_DMA_HDR_FIFO_RD_UNC_ERR_SMASK \ 828 | RCV_ERR_STATUS_RX_DMA_DATA_FIFO_RD_UNC_ERR_SMASK \ 829 | RCV_ERR_STATUS_RX_RBUF_DATA_UNC_ERR_SMASK \ 830 | RCV_ERR_STATUS_RX_DMA_CSR_PARITY_ERR_SMASK \ 831 | RCV_ERR_STATUS_RX_DMA_EQ_FSM_ENCODING_ERR_SMASK \ 832 | RCV_ERR_STATUS_RX_DMA_DQ_FSM_ENCODING_ERR_SMASK \ 833 | RCV_ERR_STATUS_RX_DMA_CSR_UNC_ERR_SMASK \ 834 | RCV_ERR_STATUS_RX_CSR_PARITY_ERR_SMASK) 835 836 #define RXE_FREEZE_ABORT_MASK \ 837 (RCV_ERR_STATUS_RX_DMA_CSR_UNC_ERR_SMASK | \ 838 RCV_ERR_STATUS_RX_DMA_HDR_FIFO_RD_UNC_ERR_SMASK | \ 839 RCV_ERR_STATUS_RX_DMA_DATA_FIFO_RD_UNC_ERR_SMASK) 840 841 /* 842 * DCC Error Flags 843 */ 844 #define DCCE(name) DCC_ERR_FLG_##name##_SMASK 845 static struct flag_table dcc_err_flags[] = { 846 FLAG_ENTRY0("bad_l2_err", DCCE(BAD_L2_ERR)), 847 FLAG_ENTRY0("bad_sc_err", DCCE(BAD_SC_ERR)), 848 FLAG_ENTRY0("bad_mid_tail_err", DCCE(BAD_MID_TAIL_ERR)), 849 FLAG_ENTRY0("bad_preemption_err", DCCE(BAD_PREEMPTION_ERR)), 850 FLAG_ENTRY0("preemption_err", DCCE(PREEMPTION_ERR)), 851 FLAG_ENTRY0("preemptionvl15_err", DCCE(PREEMPTIONVL15_ERR)), 852 FLAG_ENTRY0("bad_vl_marker_err", DCCE(BAD_VL_MARKER_ERR)), 853 FLAG_ENTRY0("bad_dlid_target_err", DCCE(BAD_DLID_TARGET_ERR)), 854 FLAG_ENTRY0("bad_lver_err", DCCE(BAD_LVER_ERR)), 855 FLAG_ENTRY0("uncorrectable_err", DCCE(UNCORRECTABLE_ERR)), 856 FLAG_ENTRY0("bad_crdt_ack_err", DCCE(BAD_CRDT_ACK_ERR)), 857 FLAG_ENTRY0("unsup_pkt_type", DCCE(UNSUP_PKT_TYPE)), 858 FLAG_ENTRY0("bad_ctrl_flit_err", DCCE(BAD_CTRL_FLIT_ERR)), 859 FLAG_ENTRY0("event_cntr_parity_err", DCCE(EVENT_CNTR_PARITY_ERR)), 860 FLAG_ENTRY0("event_cntr_rollover_err", DCCE(EVENT_CNTR_ROLLOVER_ERR)), 861 FLAG_ENTRY0("link_err", DCCE(LINK_ERR)), 862 FLAG_ENTRY0("misc_cntr_rollover_err", DCCE(MISC_CNTR_ROLLOVER_ERR)), 863 FLAG_ENTRY0("bad_ctrl_dist_err", DCCE(BAD_CTRL_DIST_ERR)), 864 FLAG_ENTRY0("bad_tail_dist_err", DCCE(BAD_TAIL_DIST_ERR)), 865 FLAG_ENTRY0("bad_head_dist_err", DCCE(BAD_HEAD_DIST_ERR)), 866 FLAG_ENTRY0("nonvl15_state_err", DCCE(NONVL15_STATE_ERR)), 867 FLAG_ENTRY0("vl15_multi_err", DCCE(VL15_MULTI_ERR)), 868 FLAG_ENTRY0("bad_pkt_length_err", DCCE(BAD_PKT_LENGTH_ERR)), 869 FLAG_ENTRY0("unsup_vl_err", DCCE(UNSUP_VL_ERR)), 870 FLAG_ENTRY0("perm_nvl15_err", DCCE(PERM_NVL15_ERR)), 871 FLAG_ENTRY0("slid_zero_err", DCCE(SLID_ZERO_ERR)), 872 FLAG_ENTRY0("dlid_zero_err", DCCE(DLID_ZERO_ERR)), 873 FLAG_ENTRY0("length_mtu_err", DCCE(LENGTH_MTU_ERR)), 874 FLAG_ENTRY0("rx_early_drop_err", DCCE(RX_EARLY_DROP_ERR)), 875 FLAG_ENTRY0("late_short_err", DCCE(LATE_SHORT_ERR)), 876 FLAG_ENTRY0("late_long_err", DCCE(LATE_LONG_ERR)), 877 FLAG_ENTRY0("late_ebp_err", DCCE(LATE_EBP_ERR)), 878 FLAG_ENTRY0("fpe_tx_fifo_ovflw_err", DCCE(FPE_TX_FIFO_OVFLW_ERR)), 879 FLAG_ENTRY0("fpe_tx_fifo_unflw_err", DCCE(FPE_TX_FIFO_UNFLW_ERR)), 880 FLAG_ENTRY0("csr_access_blocked_host", DCCE(CSR_ACCESS_BLOCKED_HOST)), 881 FLAG_ENTRY0("csr_access_blocked_uc", DCCE(CSR_ACCESS_BLOCKED_UC)), 882 FLAG_ENTRY0("tx_ctrl_parity_err", DCCE(TX_CTRL_PARITY_ERR)), 883 FLAG_ENTRY0("tx_ctrl_parity_mbe_err", DCCE(TX_CTRL_PARITY_MBE_ERR)), 884 FLAG_ENTRY0("tx_sc_parity_err", DCCE(TX_SC_PARITY_ERR)), 885 FLAG_ENTRY0("rx_ctrl_parity_mbe_err", DCCE(RX_CTRL_PARITY_MBE_ERR)), 886 FLAG_ENTRY0("csr_parity_err", DCCE(CSR_PARITY_ERR)), 887 FLAG_ENTRY0("csr_inval_addr", DCCE(CSR_INVAL_ADDR)), 888 FLAG_ENTRY0("tx_byte_shft_parity_err", DCCE(TX_BYTE_SHFT_PARITY_ERR)), 889 FLAG_ENTRY0("rx_byte_shft_parity_err", DCCE(RX_BYTE_SHFT_PARITY_ERR)), 890 FLAG_ENTRY0("fmconfig_err", DCCE(FMCONFIG_ERR)), 891 FLAG_ENTRY0("rcvport_err", DCCE(RCVPORT_ERR)), 892 }; 893 894 /* 895 * LCB error flags 896 */ 897 #define LCBE(name) DC_LCB_ERR_FLG_##name##_SMASK 898 static struct flag_table lcb_err_flags[] = { 899 /* 0*/ FLAG_ENTRY0("CSR_PARITY_ERR", LCBE(CSR_PARITY_ERR)), 900 /* 1*/ FLAG_ENTRY0("INVALID_CSR_ADDR", LCBE(INVALID_CSR_ADDR)), 901 /* 2*/ FLAG_ENTRY0("RST_FOR_FAILED_DESKEW", LCBE(RST_FOR_FAILED_DESKEW)), 902 /* 3*/ FLAG_ENTRY0("ALL_LNS_FAILED_REINIT_TEST", 903 LCBE(ALL_LNS_FAILED_REINIT_TEST)), 904 /* 4*/ FLAG_ENTRY0("LOST_REINIT_STALL_OR_TOS", LCBE(LOST_REINIT_STALL_OR_TOS)), 905 /* 5*/ FLAG_ENTRY0("TX_LESS_THAN_FOUR_LNS", LCBE(TX_LESS_THAN_FOUR_LNS)), 906 /* 6*/ FLAG_ENTRY0("RX_LESS_THAN_FOUR_LNS", LCBE(RX_LESS_THAN_FOUR_LNS)), 907 /* 7*/ FLAG_ENTRY0("SEQ_CRC_ERR", LCBE(SEQ_CRC_ERR)), 908 /* 8*/ FLAG_ENTRY0("REINIT_FROM_PEER", LCBE(REINIT_FROM_PEER)), 909 /* 9*/ FLAG_ENTRY0("REINIT_FOR_LN_DEGRADE", LCBE(REINIT_FOR_LN_DEGRADE)), 910 /*10*/ FLAG_ENTRY0("CRC_ERR_CNT_HIT_LIMIT", LCBE(CRC_ERR_CNT_HIT_LIMIT)), 911 /*11*/ FLAG_ENTRY0("RCLK_STOPPED", LCBE(RCLK_STOPPED)), 912 /*12*/ FLAG_ENTRY0("UNEXPECTED_REPLAY_MARKER", LCBE(UNEXPECTED_REPLAY_MARKER)), 913 /*13*/ FLAG_ENTRY0("UNEXPECTED_ROUND_TRIP_MARKER", 914 LCBE(UNEXPECTED_ROUND_TRIP_MARKER)), 915 /*14*/ FLAG_ENTRY0("ILLEGAL_NULL_LTP", LCBE(ILLEGAL_NULL_LTP)), 916 /*15*/ FLAG_ENTRY0("ILLEGAL_FLIT_ENCODING", LCBE(ILLEGAL_FLIT_ENCODING)), 917 /*16*/ FLAG_ENTRY0("FLIT_INPUT_BUF_OFLW", LCBE(FLIT_INPUT_BUF_OFLW)), 918 /*17*/ FLAG_ENTRY0("VL_ACK_INPUT_BUF_OFLW", LCBE(VL_ACK_INPUT_BUF_OFLW)), 919 /*18*/ FLAG_ENTRY0("VL_ACK_INPUT_PARITY_ERR", LCBE(VL_ACK_INPUT_PARITY_ERR)), 920 /*19*/ FLAG_ENTRY0("VL_ACK_INPUT_WRONG_CRC_MODE", 921 LCBE(VL_ACK_INPUT_WRONG_CRC_MODE)), 922 /*20*/ FLAG_ENTRY0("FLIT_INPUT_BUF_MBE", LCBE(FLIT_INPUT_BUF_MBE)), 923 /*21*/ FLAG_ENTRY0("FLIT_INPUT_BUF_SBE", LCBE(FLIT_INPUT_BUF_SBE)), 924 /*22*/ FLAG_ENTRY0("REPLAY_BUF_MBE", LCBE(REPLAY_BUF_MBE)), 925 /*23*/ FLAG_ENTRY0("REPLAY_BUF_SBE", LCBE(REPLAY_BUF_SBE)), 926 /*24*/ FLAG_ENTRY0("CREDIT_RETURN_FLIT_MBE", LCBE(CREDIT_RETURN_FLIT_MBE)), 927 /*25*/ FLAG_ENTRY0("RST_FOR_LINK_TIMEOUT", LCBE(RST_FOR_LINK_TIMEOUT)), 928 /*26*/ FLAG_ENTRY0("RST_FOR_INCOMPLT_RND_TRIP", 929 LCBE(RST_FOR_INCOMPLT_RND_TRIP)), 930 /*27*/ FLAG_ENTRY0("HOLD_REINIT", LCBE(HOLD_REINIT)), 931 /*28*/ FLAG_ENTRY0("NEG_EDGE_LINK_TRANSFER_ACTIVE", 932 LCBE(NEG_EDGE_LINK_TRANSFER_ACTIVE)), 933 /*29*/ FLAG_ENTRY0("REDUNDANT_FLIT_PARITY_ERR", 934 LCBE(REDUNDANT_FLIT_PARITY_ERR)) 935 }; 936 937 /* 938 * DC8051 Error Flags 939 */ 940 #define D8E(name) DC_DC8051_ERR_FLG_##name##_SMASK 941 static struct flag_table dc8051_err_flags[] = { 942 FLAG_ENTRY0("SET_BY_8051", D8E(SET_BY_8051)), 943 FLAG_ENTRY0("LOST_8051_HEART_BEAT", D8E(LOST_8051_HEART_BEAT)), 944 FLAG_ENTRY0("CRAM_MBE", D8E(CRAM_MBE)), 945 FLAG_ENTRY0("CRAM_SBE", D8E(CRAM_SBE)), 946 FLAG_ENTRY0("DRAM_MBE", D8E(DRAM_MBE)), 947 FLAG_ENTRY0("DRAM_SBE", D8E(DRAM_SBE)), 948 FLAG_ENTRY0("IRAM_MBE", D8E(IRAM_MBE)), 949 FLAG_ENTRY0("IRAM_SBE", D8E(IRAM_SBE)), 950 FLAG_ENTRY0("UNMATCHED_SECURE_MSG_ACROSS_BCC_LANES", 951 D8E(UNMATCHED_SECURE_MSG_ACROSS_BCC_LANES)), 952 FLAG_ENTRY0("INVALID_CSR_ADDR", D8E(INVALID_CSR_ADDR)), 953 }; 954 955 /* 956 * DC8051 Information Error flags 957 * 958 * Flags in DC8051_DBG_ERR_INFO_SET_BY_8051.ERROR field. 959 */ 960 static struct flag_table dc8051_info_err_flags[] = { 961 FLAG_ENTRY0("Spico ROM check failed", SPICO_ROM_FAILED), 962 FLAG_ENTRY0("Unknown frame received", UNKNOWN_FRAME), 963 FLAG_ENTRY0("Target BER not met", TARGET_BER_NOT_MET), 964 FLAG_ENTRY0("Serdes internal loopback failure", 965 FAILED_SERDES_INTERNAL_LOOPBACK), 966 FLAG_ENTRY0("Failed SerDes init", FAILED_SERDES_INIT), 967 FLAG_ENTRY0("Failed LNI(Polling)", FAILED_LNI_POLLING), 968 FLAG_ENTRY0("Failed LNI(Debounce)", FAILED_LNI_DEBOUNCE), 969 FLAG_ENTRY0("Failed LNI(EstbComm)", FAILED_LNI_ESTBCOMM), 970 FLAG_ENTRY0("Failed LNI(OptEq)", FAILED_LNI_OPTEQ), 971 FLAG_ENTRY0("Failed LNI(VerifyCap_1)", FAILED_LNI_VERIFY_CAP1), 972 FLAG_ENTRY0("Failed LNI(VerifyCap_2)", FAILED_LNI_VERIFY_CAP2), 973 FLAG_ENTRY0("Failed LNI(ConfigLT)", FAILED_LNI_CONFIGLT), 974 FLAG_ENTRY0("Host Handshake Timeout", HOST_HANDSHAKE_TIMEOUT), 975 FLAG_ENTRY0("External Device Request Timeout", 976 EXTERNAL_DEVICE_REQ_TIMEOUT), 977 }; 978 979 /* 980 * DC8051 Information Host Information flags 981 * 982 * Flags in DC8051_DBG_ERR_INFO_SET_BY_8051.HOST_MSG field. 983 */ 984 static struct flag_table dc8051_info_host_msg_flags[] = { 985 FLAG_ENTRY0("Host request done", 0x0001), 986 FLAG_ENTRY0("BC SMA message", 0x0002), 987 FLAG_ENTRY0("BC PWR_MGM message", 0x0004), 988 FLAG_ENTRY0("BC Unknown message (BCC)", 0x0008), 989 FLAG_ENTRY0("BC Unknown message (LCB)", 0x0010), 990 FLAG_ENTRY0("External device config request", 0x0020), 991 FLAG_ENTRY0("VerifyCap all frames received", 0x0040), 992 FLAG_ENTRY0("LinkUp achieved", 0x0080), 993 FLAG_ENTRY0("Link going down", 0x0100), 994 }; 995 996 static u32 encoded_size(u32 size); 997 static u32 chip_to_opa_lstate(struct hfi1_devdata *dd, u32 chip_lstate); 998 static int set_physical_link_state(struct hfi1_devdata *dd, u64 state); 999 static void read_vc_remote_phy(struct hfi1_devdata *dd, u8 *power_management, 1000 u8 *continuous); 1001 static void read_vc_remote_fabric(struct hfi1_devdata *dd, u8 *vau, u8 *z, 1002 u8 *vcu, u16 *vl15buf, u8 *crc_sizes); 1003 static void read_vc_remote_link_width(struct hfi1_devdata *dd, 1004 u8 *remote_tx_rate, u16 *link_widths); 1005 static void read_vc_local_link_width(struct hfi1_devdata *dd, u8 *misc_bits, 1006 u8 *flag_bits, u16 *link_widths); 1007 static void read_remote_device_id(struct hfi1_devdata *dd, u16 *device_id, 1008 u8 *device_rev); 1009 static void read_mgmt_allowed(struct hfi1_devdata *dd, u8 *mgmt_allowed); 1010 static void read_local_lni(struct hfi1_devdata *dd, u8 *enable_lane_rx); 1011 static int read_tx_settings(struct hfi1_devdata *dd, u8 *enable_lane_tx, 1012 u8 *tx_polarity_inversion, 1013 u8 *rx_polarity_inversion, u8 *max_rate); 1014 static void handle_sdma_eng_err(struct hfi1_devdata *dd, 1015 unsigned int context, u64 err_status); 1016 static void handle_qsfp_int(struct hfi1_devdata *dd, u32 source, u64 reg); 1017 static void handle_dcc_err(struct hfi1_devdata *dd, 1018 unsigned int context, u64 err_status); 1019 static void handle_lcb_err(struct hfi1_devdata *dd, 1020 unsigned int context, u64 err_status); 1021 static void handle_8051_interrupt(struct hfi1_devdata *dd, u32 unused, u64 reg); 1022 static void handle_cce_err(struct hfi1_devdata *dd, u32 unused, u64 reg); 1023 static void handle_rxe_err(struct hfi1_devdata *dd, u32 unused, u64 reg); 1024 static void handle_misc_err(struct hfi1_devdata *dd, u32 unused, u64 reg); 1025 static void handle_pio_err(struct hfi1_devdata *dd, u32 unused, u64 reg); 1026 static void handle_sdma_err(struct hfi1_devdata *dd, u32 unused, u64 reg); 1027 static void handle_egress_err(struct hfi1_devdata *dd, u32 unused, u64 reg); 1028 static void handle_txe_err(struct hfi1_devdata *dd, u32 unused, u64 reg); 1029 static void set_partition_keys(struct hfi1_pportdata *); 1030 static const char *link_state_name(u32 state); 1031 static const char *link_state_reason_name(struct hfi1_pportdata *ppd, 1032 u32 state); 1033 static int do_8051_command(struct hfi1_devdata *dd, u32 type, u64 in_data, 1034 u64 *out_data); 1035 static int read_idle_sma(struct hfi1_devdata *dd, u64 *data); 1036 static int thermal_init(struct hfi1_devdata *dd); 1037 1038 static int wait_logical_linkstate(struct hfi1_pportdata *ppd, u32 state, 1039 int msecs); 1040 static void read_planned_down_reason_code(struct hfi1_devdata *dd, u8 *pdrrc); 1041 static void read_link_down_reason(struct hfi1_devdata *dd, u8 *ldr); 1042 static void handle_temp_err(struct hfi1_devdata *); 1043 static void dc_shutdown(struct hfi1_devdata *); 1044 static void dc_start(struct hfi1_devdata *); 1045 static int qos_rmt_entries(struct hfi1_devdata *dd, unsigned int *mp, 1046 unsigned int *np); 1047 static void clear_full_mgmt_pkey(struct hfi1_pportdata *ppd); 1048 1049 /* 1050 * Error interrupt table entry. This is used as input to the interrupt 1051 * "clear down" routine used for all second tier error interrupt register. 1052 * Second tier interrupt registers have a single bit representing them 1053 * in the top-level CceIntStatus. 1054 */ 1055 struct err_reg_info { 1056 u32 status; /* status CSR offset */ 1057 u32 clear; /* clear CSR offset */ 1058 u32 mask; /* mask CSR offset */ 1059 void (*handler)(struct hfi1_devdata *dd, u32 source, u64 reg); 1060 const char *desc; 1061 }; 1062 1063 #define NUM_MISC_ERRS (IS_GENERAL_ERR_END - IS_GENERAL_ERR_START) 1064 #define NUM_DC_ERRS (IS_DC_END - IS_DC_START) 1065 #define NUM_VARIOUS (IS_VARIOUS_END - IS_VARIOUS_START) 1066 1067 /* 1068 * Helpers for building HFI and DC error interrupt table entries. Different 1069 * helpers are needed because of inconsistent register names. 1070 */ 1071 #define EE(reg, handler, desc) \ 1072 { reg##_STATUS, reg##_CLEAR, reg##_MASK, \ 1073 handler, desc } 1074 #define DC_EE1(reg, handler, desc) \ 1075 { reg##_FLG, reg##_FLG_CLR, reg##_FLG_EN, handler, desc } 1076 #define DC_EE2(reg, handler, desc) \ 1077 { reg##_FLG, reg##_CLR, reg##_EN, handler, desc } 1078 1079 /* 1080 * Table of the "misc" grouping of error interrupts. Each entry refers to 1081 * another register containing more information. 1082 */ 1083 static const struct err_reg_info misc_errs[NUM_MISC_ERRS] = { 1084 /* 0*/ EE(CCE_ERR, handle_cce_err, "CceErr"), 1085 /* 1*/ EE(RCV_ERR, handle_rxe_err, "RxeErr"), 1086 /* 2*/ EE(MISC_ERR, handle_misc_err, "MiscErr"), 1087 /* 3*/ { 0, 0, 0, NULL }, /* reserved */ 1088 /* 4*/ EE(SEND_PIO_ERR, handle_pio_err, "PioErr"), 1089 /* 5*/ EE(SEND_DMA_ERR, handle_sdma_err, "SDmaErr"), 1090 /* 6*/ EE(SEND_EGRESS_ERR, handle_egress_err, "EgressErr"), 1091 /* 7*/ EE(SEND_ERR, handle_txe_err, "TxeErr") 1092 /* the rest are reserved */ 1093 }; 1094 1095 /* 1096 * Index into the Various section of the interrupt sources 1097 * corresponding to the Critical Temperature interrupt. 1098 */ 1099 #define TCRIT_INT_SOURCE 4 1100 1101 /* 1102 * SDMA error interrupt entry - refers to another register containing more 1103 * information. 1104 */ 1105 static const struct err_reg_info sdma_eng_err = 1106 EE(SEND_DMA_ENG_ERR, handle_sdma_eng_err, "SDmaEngErr"); 1107 1108 static const struct err_reg_info various_err[NUM_VARIOUS] = { 1109 /* 0*/ { 0, 0, 0, NULL }, /* PbcInt */ 1110 /* 1*/ { 0, 0, 0, NULL }, /* GpioAssertInt */ 1111 /* 2*/ EE(ASIC_QSFP1, handle_qsfp_int, "QSFP1"), 1112 /* 3*/ EE(ASIC_QSFP2, handle_qsfp_int, "QSFP2"), 1113 /* 4*/ { 0, 0, 0, NULL }, /* TCritInt */ 1114 /* rest are reserved */ 1115 }; 1116 1117 /* 1118 * The DC encoding of mtu_cap for 10K MTU in the DCC_CFG_PORT_CONFIG 1119 * register can not be derived from the MTU value because 10K is not 1120 * a power of 2. Therefore, we need a constant. Everything else can 1121 * be calculated. 1122 */ 1123 #define DCC_CFG_PORT_MTU_CAP_10240 7 1124 1125 /* 1126 * Table of the DC grouping of error interrupts. Each entry refers to 1127 * another register containing more information. 1128 */ 1129 static const struct err_reg_info dc_errs[NUM_DC_ERRS] = { 1130 /* 0*/ DC_EE1(DCC_ERR, handle_dcc_err, "DCC Err"), 1131 /* 1*/ DC_EE2(DC_LCB_ERR, handle_lcb_err, "LCB Err"), 1132 /* 2*/ DC_EE2(DC_DC8051_ERR, handle_8051_interrupt, "DC8051 Interrupt"), 1133 /* 3*/ /* dc_lbm_int - special, see is_dc_int() */ 1134 /* the rest are reserved */ 1135 }; 1136 1137 struct cntr_entry { 1138 /* 1139 * counter name 1140 */ 1141 char *name; 1142 1143 /* 1144 * csr to read for name (if applicable) 1145 */ 1146 u64 csr; 1147 1148 /* 1149 * offset into dd or ppd to store the counter's value 1150 */ 1151 int offset; 1152 1153 /* 1154 * flags 1155 */ 1156 u8 flags; 1157 1158 /* 1159 * accessor for stat element, context either dd or ppd 1160 */ 1161 u64 (*rw_cntr)(const struct cntr_entry *, void *context, int vl, 1162 int mode, u64 data); 1163 }; 1164 1165 #define C_RCV_HDR_OVF_FIRST C_RCV_HDR_OVF_0 1166 #define C_RCV_HDR_OVF_LAST C_RCV_HDR_OVF_159 1167 1168 #define CNTR_ELEM(name, csr, offset, flags, accessor) \ 1169 { \ 1170 name, \ 1171 csr, \ 1172 offset, \ 1173 flags, \ 1174 accessor \ 1175 } 1176 1177 /* 32bit RXE */ 1178 #define RXE32_PORT_CNTR_ELEM(name, counter, flags) \ 1179 CNTR_ELEM(#name, \ 1180 (counter * 8 + RCV_COUNTER_ARRAY32), \ 1181 0, flags | CNTR_32BIT, \ 1182 port_access_u32_csr) 1183 1184 #define RXE32_DEV_CNTR_ELEM(name, counter, flags) \ 1185 CNTR_ELEM(#name, \ 1186 (counter * 8 + RCV_COUNTER_ARRAY32), \ 1187 0, flags | CNTR_32BIT, \ 1188 dev_access_u32_csr) 1189 1190 /* 64bit RXE */ 1191 #define RXE64_PORT_CNTR_ELEM(name, counter, flags) \ 1192 CNTR_ELEM(#name, \ 1193 (counter * 8 + RCV_COUNTER_ARRAY64), \ 1194 0, flags, \ 1195 port_access_u64_csr) 1196 1197 #define RXE64_DEV_CNTR_ELEM(name, counter, flags) \ 1198 CNTR_ELEM(#name, \ 1199 (counter * 8 + RCV_COUNTER_ARRAY64), \ 1200 0, flags, \ 1201 dev_access_u64_csr) 1202 1203 #define OVR_LBL(ctx) C_RCV_HDR_OVF_ ## ctx 1204 #define OVR_ELM(ctx) \ 1205 CNTR_ELEM("RcvHdrOvr" #ctx, \ 1206 (RCV_HDR_OVFL_CNT + ctx * 0x100), \ 1207 0, CNTR_NORMAL, port_access_u64_csr) 1208 1209 /* 32bit TXE */ 1210 #define TXE32_PORT_CNTR_ELEM(name, counter, flags) \ 1211 CNTR_ELEM(#name, \ 1212 (counter * 8 + SEND_COUNTER_ARRAY32), \ 1213 0, flags | CNTR_32BIT, \ 1214 port_access_u32_csr) 1215 1216 /* 64bit TXE */ 1217 #define TXE64_PORT_CNTR_ELEM(name, counter, flags) \ 1218 CNTR_ELEM(#name, \ 1219 (counter * 8 + SEND_COUNTER_ARRAY64), \ 1220 0, flags, \ 1221 port_access_u64_csr) 1222 1223 # define TX64_DEV_CNTR_ELEM(name, counter, flags) \ 1224 CNTR_ELEM(#name,\ 1225 counter * 8 + SEND_COUNTER_ARRAY64, \ 1226 0, \ 1227 flags, \ 1228 dev_access_u64_csr) 1229 1230 /* CCE */ 1231 #define CCE_PERF_DEV_CNTR_ELEM(name, counter, flags) \ 1232 CNTR_ELEM(#name, \ 1233 (counter * 8 + CCE_COUNTER_ARRAY32), \ 1234 0, flags | CNTR_32BIT, \ 1235 dev_access_u32_csr) 1236 1237 #define CCE_INT_DEV_CNTR_ELEM(name, counter, flags) \ 1238 CNTR_ELEM(#name, \ 1239 (counter * 8 + CCE_INT_COUNTER_ARRAY32), \ 1240 0, flags | CNTR_32BIT, \ 1241 dev_access_u32_csr) 1242 1243 /* DC */ 1244 #define DC_PERF_CNTR(name, counter, flags) \ 1245 CNTR_ELEM(#name, \ 1246 counter, \ 1247 0, \ 1248 flags, \ 1249 dev_access_u64_csr) 1250 1251 #define DC_PERF_CNTR_LCB(name, counter, flags) \ 1252 CNTR_ELEM(#name, \ 1253 counter, \ 1254 0, \ 1255 flags, \ 1256 dc_access_lcb_cntr) 1257 1258 /* ibp counters */ 1259 #define SW_IBP_CNTR(name, cntr) \ 1260 CNTR_ELEM(#name, \ 1261 0, \ 1262 0, \ 1263 CNTR_SYNTH, \ 1264 access_ibp_##cntr) 1265 1266 u64 read_csr(const struct hfi1_devdata *dd, u32 offset) 1267 { 1268 if (dd->flags & HFI1_PRESENT) { 1269 return readq((void __iomem *)dd->kregbase + offset); 1270 } 1271 return -1; 1272 } 1273 1274 void write_csr(const struct hfi1_devdata *dd, u32 offset, u64 value) 1275 { 1276 if (dd->flags & HFI1_PRESENT) 1277 writeq(value, (void __iomem *)dd->kregbase + offset); 1278 } 1279 1280 void __iomem *get_csr_addr( 1281 struct hfi1_devdata *dd, 1282 u32 offset) 1283 { 1284 return (void __iomem *)dd->kregbase + offset; 1285 } 1286 1287 static inline u64 read_write_csr(const struct hfi1_devdata *dd, u32 csr, 1288 int mode, u64 value) 1289 { 1290 u64 ret; 1291 1292 if (mode == CNTR_MODE_R) { 1293 ret = read_csr(dd, csr); 1294 } else if (mode == CNTR_MODE_W) { 1295 write_csr(dd, csr, value); 1296 ret = value; 1297 } else { 1298 dd_dev_err(dd, "Invalid cntr register access mode"); 1299 return 0; 1300 } 1301 1302 hfi1_cdbg(CNTR, "csr 0x%x val 0x%llx mode %d", csr, ret, mode); 1303 return ret; 1304 } 1305 1306 /* Dev Access */ 1307 static u64 dev_access_u32_csr(const struct cntr_entry *entry, 1308 void *context, int vl, int mode, u64 data) 1309 { 1310 struct hfi1_devdata *dd = context; 1311 u64 csr = entry->csr; 1312 1313 if (entry->flags & CNTR_SDMA) { 1314 if (vl == CNTR_INVALID_VL) 1315 return 0; 1316 csr += 0x100 * vl; 1317 } else { 1318 if (vl != CNTR_INVALID_VL) 1319 return 0; 1320 } 1321 return read_write_csr(dd, csr, mode, data); 1322 } 1323 1324 static u64 access_sde_err_cnt(const struct cntr_entry *entry, 1325 void *context, int idx, int mode, u64 data) 1326 { 1327 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1328 1329 if (dd->per_sdma && idx < dd->num_sdma) 1330 return dd->per_sdma[idx].err_cnt; 1331 return 0; 1332 } 1333 1334 static u64 access_sde_int_cnt(const struct cntr_entry *entry, 1335 void *context, int idx, int mode, u64 data) 1336 { 1337 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1338 1339 if (dd->per_sdma && idx < dd->num_sdma) 1340 return dd->per_sdma[idx].sdma_int_cnt; 1341 return 0; 1342 } 1343 1344 static u64 access_sde_idle_int_cnt(const struct cntr_entry *entry, 1345 void *context, int idx, int mode, u64 data) 1346 { 1347 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1348 1349 if (dd->per_sdma && idx < dd->num_sdma) 1350 return dd->per_sdma[idx].idle_int_cnt; 1351 return 0; 1352 } 1353 1354 static u64 access_sde_progress_int_cnt(const struct cntr_entry *entry, 1355 void *context, int idx, int mode, 1356 u64 data) 1357 { 1358 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1359 1360 if (dd->per_sdma && idx < dd->num_sdma) 1361 return dd->per_sdma[idx].progress_int_cnt; 1362 return 0; 1363 } 1364 1365 static u64 dev_access_u64_csr(const struct cntr_entry *entry, void *context, 1366 int vl, int mode, u64 data) 1367 { 1368 struct hfi1_devdata *dd = context; 1369 1370 u64 val = 0; 1371 u64 csr = entry->csr; 1372 1373 if (entry->flags & CNTR_VL) { 1374 if (vl == CNTR_INVALID_VL) 1375 return 0; 1376 csr += 8 * vl; 1377 } else { 1378 if (vl != CNTR_INVALID_VL) 1379 return 0; 1380 } 1381 1382 val = read_write_csr(dd, csr, mode, data); 1383 return val; 1384 } 1385 1386 static u64 dc_access_lcb_cntr(const struct cntr_entry *entry, void *context, 1387 int vl, int mode, u64 data) 1388 { 1389 struct hfi1_devdata *dd = context; 1390 u32 csr = entry->csr; 1391 int ret = 0; 1392 1393 if (vl != CNTR_INVALID_VL) 1394 return 0; 1395 if (mode == CNTR_MODE_R) 1396 ret = read_lcb_csr(dd, csr, &data); 1397 else if (mode == CNTR_MODE_W) 1398 ret = write_lcb_csr(dd, csr, data); 1399 1400 if (ret) { 1401 dd_dev_err(dd, "Could not acquire LCB for counter 0x%x", csr); 1402 return 0; 1403 } 1404 1405 hfi1_cdbg(CNTR, "csr 0x%x val 0x%llx mode %d", csr, data, mode); 1406 return data; 1407 } 1408 1409 /* Port Access */ 1410 static u64 port_access_u32_csr(const struct cntr_entry *entry, void *context, 1411 int vl, int mode, u64 data) 1412 { 1413 struct hfi1_pportdata *ppd = context; 1414 1415 if (vl != CNTR_INVALID_VL) 1416 return 0; 1417 return read_write_csr(ppd->dd, entry->csr, mode, data); 1418 } 1419 1420 static u64 port_access_u64_csr(const struct cntr_entry *entry, 1421 void *context, int vl, int mode, u64 data) 1422 { 1423 struct hfi1_pportdata *ppd = context; 1424 u64 val; 1425 u64 csr = entry->csr; 1426 1427 if (entry->flags & CNTR_VL) { 1428 if (vl == CNTR_INVALID_VL) 1429 return 0; 1430 csr += 8 * vl; 1431 } else { 1432 if (vl != CNTR_INVALID_VL) 1433 return 0; 1434 } 1435 val = read_write_csr(ppd->dd, csr, mode, data); 1436 return val; 1437 } 1438 1439 /* Software defined */ 1440 static inline u64 read_write_sw(struct hfi1_devdata *dd, u64 *cntr, int mode, 1441 u64 data) 1442 { 1443 u64 ret; 1444 1445 if (mode == CNTR_MODE_R) { 1446 ret = *cntr; 1447 } else if (mode == CNTR_MODE_W) { 1448 *cntr = data; 1449 ret = data; 1450 } else { 1451 dd_dev_err(dd, "Invalid cntr sw access mode"); 1452 return 0; 1453 } 1454 1455 hfi1_cdbg(CNTR, "val 0x%llx mode %d", ret, mode); 1456 1457 return ret; 1458 } 1459 1460 static u64 access_sw_link_dn_cnt(const struct cntr_entry *entry, void *context, 1461 int vl, int mode, u64 data) 1462 { 1463 struct hfi1_pportdata *ppd = context; 1464 1465 if (vl != CNTR_INVALID_VL) 1466 return 0; 1467 return read_write_sw(ppd->dd, &ppd->link_downed, mode, data); 1468 } 1469 1470 static u64 access_sw_link_up_cnt(const struct cntr_entry *entry, void *context, 1471 int vl, int mode, u64 data) 1472 { 1473 struct hfi1_pportdata *ppd = context; 1474 1475 if (vl != CNTR_INVALID_VL) 1476 return 0; 1477 return read_write_sw(ppd->dd, &ppd->link_up, mode, data); 1478 } 1479 1480 static u64 access_sw_unknown_frame_cnt(const struct cntr_entry *entry, 1481 void *context, int vl, int mode, 1482 u64 data) 1483 { 1484 struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context; 1485 1486 if (vl != CNTR_INVALID_VL) 1487 return 0; 1488 return read_write_sw(ppd->dd, &ppd->unknown_frame_count, mode, data); 1489 } 1490 1491 static u64 access_sw_xmit_discards(const struct cntr_entry *entry, 1492 void *context, int vl, int mode, u64 data) 1493 { 1494 struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context; 1495 u64 zero = 0; 1496 u64 *counter; 1497 1498 if (vl == CNTR_INVALID_VL) 1499 counter = &ppd->port_xmit_discards; 1500 else if (vl >= 0 && vl < C_VL_COUNT) 1501 counter = &ppd->port_xmit_discards_vl[vl]; 1502 else 1503 counter = &zero; 1504 1505 return read_write_sw(ppd->dd, counter, mode, data); 1506 } 1507 1508 static u64 access_xmit_constraint_errs(const struct cntr_entry *entry, 1509 void *context, int vl, int mode, 1510 u64 data) 1511 { 1512 struct hfi1_pportdata *ppd = context; 1513 1514 if (vl != CNTR_INVALID_VL) 1515 return 0; 1516 1517 return read_write_sw(ppd->dd, &ppd->port_xmit_constraint_errors, 1518 mode, data); 1519 } 1520 1521 static u64 access_rcv_constraint_errs(const struct cntr_entry *entry, 1522 void *context, int vl, int mode, u64 data) 1523 { 1524 struct hfi1_pportdata *ppd = context; 1525 1526 if (vl != CNTR_INVALID_VL) 1527 return 0; 1528 1529 return read_write_sw(ppd->dd, &ppd->port_rcv_constraint_errors, 1530 mode, data); 1531 } 1532 1533 u64 get_all_cpu_total(u64 __percpu *cntr) 1534 { 1535 int cpu; 1536 u64 counter = 0; 1537 1538 for_each_possible_cpu(cpu) 1539 counter += *per_cpu_ptr(cntr, cpu); 1540 return counter; 1541 } 1542 1543 static u64 read_write_cpu(struct hfi1_devdata *dd, u64 *z_val, 1544 u64 __percpu *cntr, 1545 int vl, int mode, u64 data) 1546 { 1547 u64 ret = 0; 1548 1549 if (vl != CNTR_INVALID_VL) 1550 return 0; 1551 1552 if (mode == CNTR_MODE_R) { 1553 ret = get_all_cpu_total(cntr) - *z_val; 1554 } else if (mode == CNTR_MODE_W) { 1555 /* A write can only zero the counter */ 1556 if (data == 0) 1557 *z_val = get_all_cpu_total(cntr); 1558 else 1559 dd_dev_err(dd, "Per CPU cntrs can only be zeroed"); 1560 } else { 1561 dd_dev_err(dd, "Invalid cntr sw cpu access mode"); 1562 return 0; 1563 } 1564 1565 return ret; 1566 } 1567 1568 static u64 access_sw_cpu_intr(const struct cntr_entry *entry, 1569 void *context, int vl, int mode, u64 data) 1570 { 1571 struct hfi1_devdata *dd = context; 1572 1573 return read_write_cpu(dd, &dd->z_int_counter, dd->int_counter, vl, 1574 mode, data); 1575 } 1576 1577 static u64 access_sw_cpu_rcv_limit(const struct cntr_entry *entry, 1578 void *context, int vl, int mode, u64 data) 1579 { 1580 struct hfi1_devdata *dd = context; 1581 1582 return read_write_cpu(dd, &dd->z_rcv_limit, dd->rcv_limit, vl, 1583 mode, data); 1584 } 1585 1586 static u64 access_sw_pio_wait(const struct cntr_entry *entry, 1587 void *context, int vl, int mode, u64 data) 1588 { 1589 struct hfi1_devdata *dd = context; 1590 1591 return dd->verbs_dev.n_piowait; 1592 } 1593 1594 static u64 access_sw_pio_drain(const struct cntr_entry *entry, 1595 void *context, int vl, int mode, u64 data) 1596 { 1597 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1598 1599 return dd->verbs_dev.n_piodrain; 1600 } 1601 1602 static u64 access_sw_vtx_wait(const struct cntr_entry *entry, 1603 void *context, int vl, int mode, u64 data) 1604 { 1605 struct hfi1_devdata *dd = context; 1606 1607 return dd->verbs_dev.n_txwait; 1608 } 1609 1610 static u64 access_sw_kmem_wait(const struct cntr_entry *entry, 1611 void *context, int vl, int mode, u64 data) 1612 { 1613 struct hfi1_devdata *dd = context; 1614 1615 return dd->verbs_dev.n_kmem_wait; 1616 } 1617 1618 static u64 access_sw_send_schedule(const struct cntr_entry *entry, 1619 void *context, int vl, int mode, u64 data) 1620 { 1621 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1622 1623 return read_write_cpu(dd, &dd->z_send_schedule, dd->send_schedule, vl, 1624 mode, data); 1625 } 1626 1627 /* Software counters for the error status bits within MISC_ERR_STATUS */ 1628 static u64 access_misc_pll_lock_fail_err_cnt(const struct cntr_entry *entry, 1629 void *context, int vl, int mode, 1630 u64 data) 1631 { 1632 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1633 1634 return dd->misc_err_status_cnt[12]; 1635 } 1636 1637 static u64 access_misc_mbist_fail_err_cnt(const struct cntr_entry *entry, 1638 void *context, int vl, int mode, 1639 u64 data) 1640 { 1641 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1642 1643 return dd->misc_err_status_cnt[11]; 1644 } 1645 1646 static u64 access_misc_invalid_eep_cmd_err_cnt(const struct cntr_entry *entry, 1647 void *context, int vl, int mode, 1648 u64 data) 1649 { 1650 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1651 1652 return dd->misc_err_status_cnt[10]; 1653 } 1654 1655 static u64 access_misc_efuse_done_parity_err_cnt(const struct cntr_entry *entry, 1656 void *context, int vl, 1657 int mode, u64 data) 1658 { 1659 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1660 1661 return dd->misc_err_status_cnt[9]; 1662 } 1663 1664 static u64 access_misc_efuse_write_err_cnt(const struct cntr_entry *entry, 1665 void *context, int vl, int mode, 1666 u64 data) 1667 { 1668 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1669 1670 return dd->misc_err_status_cnt[8]; 1671 } 1672 1673 static u64 access_misc_efuse_read_bad_addr_err_cnt( 1674 const struct cntr_entry *entry, 1675 void *context, int vl, int mode, u64 data) 1676 { 1677 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1678 1679 return dd->misc_err_status_cnt[7]; 1680 } 1681 1682 static u64 access_misc_efuse_csr_parity_err_cnt(const struct cntr_entry *entry, 1683 void *context, int vl, 1684 int mode, u64 data) 1685 { 1686 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1687 1688 return dd->misc_err_status_cnt[6]; 1689 } 1690 1691 static u64 access_misc_fw_auth_failed_err_cnt(const struct cntr_entry *entry, 1692 void *context, int vl, int mode, 1693 u64 data) 1694 { 1695 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1696 1697 return dd->misc_err_status_cnt[5]; 1698 } 1699 1700 static u64 access_misc_key_mismatch_err_cnt(const struct cntr_entry *entry, 1701 void *context, int vl, int mode, 1702 u64 data) 1703 { 1704 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1705 1706 return dd->misc_err_status_cnt[4]; 1707 } 1708 1709 static u64 access_misc_sbus_write_failed_err_cnt(const struct cntr_entry *entry, 1710 void *context, int vl, 1711 int mode, u64 data) 1712 { 1713 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1714 1715 return dd->misc_err_status_cnt[3]; 1716 } 1717 1718 static u64 access_misc_csr_write_bad_addr_err_cnt( 1719 const struct cntr_entry *entry, 1720 void *context, int vl, int mode, u64 data) 1721 { 1722 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1723 1724 return dd->misc_err_status_cnt[2]; 1725 } 1726 1727 static u64 access_misc_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry, 1728 void *context, int vl, 1729 int mode, u64 data) 1730 { 1731 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1732 1733 return dd->misc_err_status_cnt[1]; 1734 } 1735 1736 static u64 access_misc_csr_parity_err_cnt(const struct cntr_entry *entry, 1737 void *context, int vl, int mode, 1738 u64 data) 1739 { 1740 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1741 1742 return dd->misc_err_status_cnt[0]; 1743 } 1744 1745 /* 1746 * Software counter for the aggregate of 1747 * individual CceErrStatus counters 1748 */ 1749 static u64 access_sw_cce_err_status_aggregated_cnt( 1750 const struct cntr_entry *entry, 1751 void *context, int vl, int mode, u64 data) 1752 { 1753 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1754 1755 return dd->sw_cce_err_status_aggregate; 1756 } 1757 1758 /* 1759 * Software counters corresponding to each of the 1760 * error status bits within CceErrStatus 1761 */ 1762 static u64 access_cce_msix_csr_parity_err_cnt(const struct cntr_entry *entry, 1763 void *context, int vl, int mode, 1764 u64 data) 1765 { 1766 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1767 1768 return dd->cce_err_status_cnt[40]; 1769 } 1770 1771 static u64 access_cce_int_map_unc_err_cnt(const struct cntr_entry *entry, 1772 void *context, int vl, int mode, 1773 u64 data) 1774 { 1775 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1776 1777 return dd->cce_err_status_cnt[39]; 1778 } 1779 1780 static u64 access_cce_int_map_cor_err_cnt(const struct cntr_entry *entry, 1781 void *context, int vl, int mode, 1782 u64 data) 1783 { 1784 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1785 1786 return dd->cce_err_status_cnt[38]; 1787 } 1788 1789 static u64 access_cce_msix_table_unc_err_cnt(const struct cntr_entry *entry, 1790 void *context, int vl, int mode, 1791 u64 data) 1792 { 1793 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1794 1795 return dd->cce_err_status_cnt[37]; 1796 } 1797 1798 static u64 access_cce_msix_table_cor_err_cnt(const struct cntr_entry *entry, 1799 void *context, int vl, int mode, 1800 u64 data) 1801 { 1802 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1803 1804 return dd->cce_err_status_cnt[36]; 1805 } 1806 1807 static u64 access_cce_rxdma_conv_fifo_parity_err_cnt( 1808 const struct cntr_entry *entry, 1809 void *context, int vl, int mode, u64 data) 1810 { 1811 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1812 1813 return dd->cce_err_status_cnt[35]; 1814 } 1815 1816 static u64 access_cce_rcpl_async_fifo_parity_err_cnt( 1817 const struct cntr_entry *entry, 1818 void *context, int vl, int mode, u64 data) 1819 { 1820 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1821 1822 return dd->cce_err_status_cnt[34]; 1823 } 1824 1825 static u64 access_cce_seg_write_bad_addr_err_cnt(const struct cntr_entry *entry, 1826 void *context, int vl, 1827 int mode, u64 data) 1828 { 1829 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1830 1831 return dd->cce_err_status_cnt[33]; 1832 } 1833 1834 static u64 access_cce_seg_read_bad_addr_err_cnt(const struct cntr_entry *entry, 1835 void *context, int vl, int mode, 1836 u64 data) 1837 { 1838 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1839 1840 return dd->cce_err_status_cnt[32]; 1841 } 1842 1843 static u64 access_la_triggered_cnt(const struct cntr_entry *entry, 1844 void *context, int vl, int mode, u64 data) 1845 { 1846 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1847 1848 return dd->cce_err_status_cnt[31]; 1849 } 1850 1851 static u64 access_cce_trgt_cpl_timeout_err_cnt(const struct cntr_entry *entry, 1852 void *context, int vl, int mode, 1853 u64 data) 1854 { 1855 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1856 1857 return dd->cce_err_status_cnt[30]; 1858 } 1859 1860 static u64 access_pcic_receive_parity_err_cnt(const struct cntr_entry *entry, 1861 void *context, int vl, int mode, 1862 u64 data) 1863 { 1864 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1865 1866 return dd->cce_err_status_cnt[29]; 1867 } 1868 1869 static u64 access_pcic_transmit_back_parity_err_cnt( 1870 const struct cntr_entry *entry, 1871 void *context, int vl, int mode, u64 data) 1872 { 1873 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1874 1875 return dd->cce_err_status_cnt[28]; 1876 } 1877 1878 static u64 access_pcic_transmit_front_parity_err_cnt( 1879 const struct cntr_entry *entry, 1880 void *context, int vl, int mode, u64 data) 1881 { 1882 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1883 1884 return dd->cce_err_status_cnt[27]; 1885 } 1886 1887 static u64 access_pcic_cpl_dat_q_unc_err_cnt(const struct cntr_entry *entry, 1888 void *context, int vl, int mode, 1889 u64 data) 1890 { 1891 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1892 1893 return dd->cce_err_status_cnt[26]; 1894 } 1895 1896 static u64 access_pcic_cpl_hd_q_unc_err_cnt(const struct cntr_entry *entry, 1897 void *context, int vl, int mode, 1898 u64 data) 1899 { 1900 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1901 1902 return dd->cce_err_status_cnt[25]; 1903 } 1904 1905 static u64 access_pcic_post_dat_q_unc_err_cnt(const struct cntr_entry *entry, 1906 void *context, int vl, int mode, 1907 u64 data) 1908 { 1909 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1910 1911 return dd->cce_err_status_cnt[24]; 1912 } 1913 1914 static u64 access_pcic_post_hd_q_unc_err_cnt(const struct cntr_entry *entry, 1915 void *context, int vl, int mode, 1916 u64 data) 1917 { 1918 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1919 1920 return dd->cce_err_status_cnt[23]; 1921 } 1922 1923 static u64 access_pcic_retry_sot_mem_unc_err_cnt(const struct cntr_entry *entry, 1924 void *context, int vl, 1925 int mode, u64 data) 1926 { 1927 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1928 1929 return dd->cce_err_status_cnt[22]; 1930 } 1931 1932 static u64 access_pcic_retry_mem_unc_err(const struct cntr_entry *entry, 1933 void *context, int vl, int mode, 1934 u64 data) 1935 { 1936 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1937 1938 return dd->cce_err_status_cnt[21]; 1939 } 1940 1941 static u64 access_pcic_n_post_dat_q_parity_err_cnt( 1942 const struct cntr_entry *entry, 1943 void *context, int vl, int mode, u64 data) 1944 { 1945 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1946 1947 return dd->cce_err_status_cnt[20]; 1948 } 1949 1950 static u64 access_pcic_n_post_h_q_parity_err_cnt(const struct cntr_entry *entry, 1951 void *context, int vl, 1952 int mode, u64 data) 1953 { 1954 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1955 1956 return dd->cce_err_status_cnt[19]; 1957 } 1958 1959 static u64 access_pcic_cpl_dat_q_cor_err_cnt(const struct cntr_entry *entry, 1960 void *context, int vl, int mode, 1961 u64 data) 1962 { 1963 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1964 1965 return dd->cce_err_status_cnt[18]; 1966 } 1967 1968 static u64 access_pcic_cpl_hd_q_cor_err_cnt(const struct cntr_entry *entry, 1969 void *context, int vl, int mode, 1970 u64 data) 1971 { 1972 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1973 1974 return dd->cce_err_status_cnt[17]; 1975 } 1976 1977 static u64 access_pcic_post_dat_q_cor_err_cnt(const struct cntr_entry *entry, 1978 void *context, int vl, int mode, 1979 u64 data) 1980 { 1981 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1982 1983 return dd->cce_err_status_cnt[16]; 1984 } 1985 1986 static u64 access_pcic_post_hd_q_cor_err_cnt(const struct cntr_entry *entry, 1987 void *context, int vl, int mode, 1988 u64 data) 1989 { 1990 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1991 1992 return dd->cce_err_status_cnt[15]; 1993 } 1994 1995 static u64 access_pcic_retry_sot_mem_cor_err_cnt(const struct cntr_entry *entry, 1996 void *context, int vl, 1997 int mode, u64 data) 1998 { 1999 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2000 2001 return dd->cce_err_status_cnt[14]; 2002 } 2003 2004 static u64 access_pcic_retry_mem_cor_err_cnt(const struct cntr_entry *entry, 2005 void *context, int vl, int mode, 2006 u64 data) 2007 { 2008 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2009 2010 return dd->cce_err_status_cnt[13]; 2011 } 2012 2013 static u64 access_cce_cli1_async_fifo_dbg_parity_err_cnt( 2014 const struct cntr_entry *entry, 2015 void *context, int vl, int mode, u64 data) 2016 { 2017 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2018 2019 return dd->cce_err_status_cnt[12]; 2020 } 2021 2022 static u64 access_cce_cli1_async_fifo_rxdma_parity_err_cnt( 2023 const struct cntr_entry *entry, 2024 void *context, int vl, int mode, u64 data) 2025 { 2026 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2027 2028 return dd->cce_err_status_cnt[11]; 2029 } 2030 2031 static u64 access_cce_cli1_async_fifo_sdma_hd_parity_err_cnt( 2032 const struct cntr_entry *entry, 2033 void *context, int vl, int mode, u64 data) 2034 { 2035 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2036 2037 return dd->cce_err_status_cnt[10]; 2038 } 2039 2040 static u64 access_cce_cl1_async_fifo_pio_crdt_parity_err_cnt( 2041 const struct cntr_entry *entry, 2042 void *context, int vl, int mode, u64 data) 2043 { 2044 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2045 2046 return dd->cce_err_status_cnt[9]; 2047 } 2048 2049 static u64 access_cce_cli2_async_fifo_parity_err_cnt( 2050 const struct cntr_entry *entry, 2051 void *context, int vl, int mode, u64 data) 2052 { 2053 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2054 2055 return dd->cce_err_status_cnt[8]; 2056 } 2057 2058 static u64 access_cce_csr_cfg_bus_parity_err_cnt(const struct cntr_entry *entry, 2059 void *context, int vl, 2060 int mode, u64 data) 2061 { 2062 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2063 2064 return dd->cce_err_status_cnt[7]; 2065 } 2066 2067 static u64 access_cce_cli0_async_fifo_parity_err_cnt( 2068 const struct cntr_entry *entry, 2069 void *context, int vl, int mode, u64 data) 2070 { 2071 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2072 2073 return dd->cce_err_status_cnt[6]; 2074 } 2075 2076 static u64 access_cce_rspd_data_parity_err_cnt(const struct cntr_entry *entry, 2077 void *context, int vl, int mode, 2078 u64 data) 2079 { 2080 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2081 2082 return dd->cce_err_status_cnt[5]; 2083 } 2084 2085 static u64 access_cce_trgt_access_err_cnt(const struct cntr_entry *entry, 2086 void *context, int vl, int mode, 2087 u64 data) 2088 { 2089 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2090 2091 return dd->cce_err_status_cnt[4]; 2092 } 2093 2094 static u64 access_cce_trgt_async_fifo_parity_err_cnt( 2095 const struct cntr_entry *entry, 2096 void *context, int vl, int mode, u64 data) 2097 { 2098 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2099 2100 return dd->cce_err_status_cnt[3]; 2101 } 2102 2103 static u64 access_cce_csr_write_bad_addr_err_cnt(const struct cntr_entry *entry, 2104 void *context, int vl, 2105 int mode, u64 data) 2106 { 2107 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2108 2109 return dd->cce_err_status_cnt[2]; 2110 } 2111 2112 static u64 access_cce_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry, 2113 void *context, int vl, 2114 int mode, u64 data) 2115 { 2116 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2117 2118 return dd->cce_err_status_cnt[1]; 2119 } 2120 2121 static u64 access_ccs_csr_parity_err_cnt(const struct cntr_entry *entry, 2122 void *context, int vl, int mode, 2123 u64 data) 2124 { 2125 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2126 2127 return dd->cce_err_status_cnt[0]; 2128 } 2129 2130 /* 2131 * Software counters corresponding to each of the 2132 * error status bits within RcvErrStatus 2133 */ 2134 static u64 access_rx_csr_parity_err_cnt(const struct cntr_entry *entry, 2135 void *context, int vl, int mode, 2136 u64 data) 2137 { 2138 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2139 2140 return dd->rcv_err_status_cnt[63]; 2141 } 2142 2143 static u64 access_rx_csr_write_bad_addr_err_cnt(const struct cntr_entry *entry, 2144 void *context, int vl, 2145 int mode, u64 data) 2146 { 2147 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2148 2149 return dd->rcv_err_status_cnt[62]; 2150 } 2151 2152 static u64 access_rx_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry, 2153 void *context, int vl, int mode, 2154 u64 data) 2155 { 2156 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2157 2158 return dd->rcv_err_status_cnt[61]; 2159 } 2160 2161 static u64 access_rx_dma_csr_unc_err_cnt(const struct cntr_entry *entry, 2162 void *context, int vl, int mode, 2163 u64 data) 2164 { 2165 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2166 2167 return dd->rcv_err_status_cnt[60]; 2168 } 2169 2170 static u64 access_rx_dma_dq_fsm_encoding_err_cnt(const struct cntr_entry *entry, 2171 void *context, int vl, 2172 int mode, u64 data) 2173 { 2174 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2175 2176 return dd->rcv_err_status_cnt[59]; 2177 } 2178 2179 static u64 access_rx_dma_eq_fsm_encoding_err_cnt(const struct cntr_entry *entry, 2180 void *context, int vl, 2181 int mode, u64 data) 2182 { 2183 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2184 2185 return dd->rcv_err_status_cnt[58]; 2186 } 2187 2188 static u64 access_rx_dma_csr_parity_err_cnt(const struct cntr_entry *entry, 2189 void *context, int vl, int mode, 2190 u64 data) 2191 { 2192 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2193 2194 return dd->rcv_err_status_cnt[57]; 2195 } 2196 2197 static u64 access_rx_rbuf_data_cor_err_cnt(const struct cntr_entry *entry, 2198 void *context, int vl, int mode, 2199 u64 data) 2200 { 2201 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2202 2203 return dd->rcv_err_status_cnt[56]; 2204 } 2205 2206 static u64 access_rx_rbuf_data_unc_err_cnt(const struct cntr_entry *entry, 2207 void *context, int vl, int mode, 2208 u64 data) 2209 { 2210 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2211 2212 return dd->rcv_err_status_cnt[55]; 2213 } 2214 2215 static u64 access_rx_dma_data_fifo_rd_cor_err_cnt( 2216 const struct cntr_entry *entry, 2217 void *context, int vl, int mode, u64 data) 2218 { 2219 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2220 2221 return dd->rcv_err_status_cnt[54]; 2222 } 2223 2224 static u64 access_rx_dma_data_fifo_rd_unc_err_cnt( 2225 const struct cntr_entry *entry, 2226 void *context, int vl, int mode, u64 data) 2227 { 2228 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2229 2230 return dd->rcv_err_status_cnt[53]; 2231 } 2232 2233 static u64 access_rx_dma_hdr_fifo_rd_cor_err_cnt(const struct cntr_entry *entry, 2234 void *context, int vl, 2235 int mode, u64 data) 2236 { 2237 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2238 2239 return dd->rcv_err_status_cnt[52]; 2240 } 2241 2242 static u64 access_rx_dma_hdr_fifo_rd_unc_err_cnt(const struct cntr_entry *entry, 2243 void *context, int vl, 2244 int mode, u64 data) 2245 { 2246 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2247 2248 return dd->rcv_err_status_cnt[51]; 2249 } 2250 2251 static u64 access_rx_rbuf_desc_part2_cor_err_cnt(const struct cntr_entry *entry, 2252 void *context, int vl, 2253 int mode, u64 data) 2254 { 2255 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2256 2257 return dd->rcv_err_status_cnt[50]; 2258 } 2259 2260 static u64 access_rx_rbuf_desc_part2_unc_err_cnt(const struct cntr_entry *entry, 2261 void *context, int vl, 2262 int mode, u64 data) 2263 { 2264 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2265 2266 return dd->rcv_err_status_cnt[49]; 2267 } 2268 2269 static u64 access_rx_rbuf_desc_part1_cor_err_cnt(const struct cntr_entry *entry, 2270 void *context, int vl, 2271 int mode, u64 data) 2272 { 2273 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2274 2275 return dd->rcv_err_status_cnt[48]; 2276 } 2277 2278 static u64 access_rx_rbuf_desc_part1_unc_err_cnt(const struct cntr_entry *entry, 2279 void *context, int vl, 2280 int mode, u64 data) 2281 { 2282 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2283 2284 return dd->rcv_err_status_cnt[47]; 2285 } 2286 2287 static u64 access_rx_hq_intr_fsm_err_cnt(const struct cntr_entry *entry, 2288 void *context, int vl, int mode, 2289 u64 data) 2290 { 2291 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2292 2293 return dd->rcv_err_status_cnt[46]; 2294 } 2295 2296 static u64 access_rx_hq_intr_csr_parity_err_cnt( 2297 const struct cntr_entry *entry, 2298 void *context, int vl, int mode, u64 data) 2299 { 2300 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2301 2302 return dd->rcv_err_status_cnt[45]; 2303 } 2304 2305 static u64 access_rx_lookup_csr_parity_err_cnt( 2306 const struct cntr_entry *entry, 2307 void *context, int vl, int mode, u64 data) 2308 { 2309 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2310 2311 return dd->rcv_err_status_cnt[44]; 2312 } 2313 2314 static u64 access_rx_lookup_rcv_array_cor_err_cnt( 2315 const struct cntr_entry *entry, 2316 void *context, int vl, int mode, u64 data) 2317 { 2318 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2319 2320 return dd->rcv_err_status_cnt[43]; 2321 } 2322 2323 static u64 access_rx_lookup_rcv_array_unc_err_cnt( 2324 const struct cntr_entry *entry, 2325 void *context, int vl, int mode, u64 data) 2326 { 2327 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2328 2329 return dd->rcv_err_status_cnt[42]; 2330 } 2331 2332 static u64 access_rx_lookup_des_part2_parity_err_cnt( 2333 const struct cntr_entry *entry, 2334 void *context, int vl, int mode, u64 data) 2335 { 2336 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2337 2338 return dd->rcv_err_status_cnt[41]; 2339 } 2340 2341 static u64 access_rx_lookup_des_part1_unc_cor_err_cnt( 2342 const struct cntr_entry *entry, 2343 void *context, int vl, int mode, u64 data) 2344 { 2345 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2346 2347 return dd->rcv_err_status_cnt[40]; 2348 } 2349 2350 static u64 access_rx_lookup_des_part1_unc_err_cnt( 2351 const struct cntr_entry *entry, 2352 void *context, int vl, int mode, u64 data) 2353 { 2354 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2355 2356 return dd->rcv_err_status_cnt[39]; 2357 } 2358 2359 static u64 access_rx_rbuf_next_free_buf_cor_err_cnt( 2360 const struct cntr_entry *entry, 2361 void *context, int vl, int mode, u64 data) 2362 { 2363 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2364 2365 return dd->rcv_err_status_cnt[38]; 2366 } 2367 2368 static u64 access_rx_rbuf_next_free_buf_unc_err_cnt( 2369 const struct cntr_entry *entry, 2370 void *context, int vl, int mode, u64 data) 2371 { 2372 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2373 2374 return dd->rcv_err_status_cnt[37]; 2375 } 2376 2377 static u64 access_rbuf_fl_init_wr_addr_parity_err_cnt( 2378 const struct cntr_entry *entry, 2379 void *context, int vl, int mode, u64 data) 2380 { 2381 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2382 2383 return dd->rcv_err_status_cnt[36]; 2384 } 2385 2386 static u64 access_rx_rbuf_fl_initdone_parity_err_cnt( 2387 const struct cntr_entry *entry, 2388 void *context, int vl, int mode, u64 data) 2389 { 2390 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2391 2392 return dd->rcv_err_status_cnt[35]; 2393 } 2394 2395 static u64 access_rx_rbuf_fl_write_addr_parity_err_cnt( 2396 const struct cntr_entry *entry, 2397 void *context, int vl, int mode, u64 data) 2398 { 2399 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2400 2401 return dd->rcv_err_status_cnt[34]; 2402 } 2403 2404 static u64 access_rx_rbuf_fl_rd_addr_parity_err_cnt( 2405 const struct cntr_entry *entry, 2406 void *context, int vl, int mode, u64 data) 2407 { 2408 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2409 2410 return dd->rcv_err_status_cnt[33]; 2411 } 2412 2413 static u64 access_rx_rbuf_empty_err_cnt(const struct cntr_entry *entry, 2414 void *context, int vl, int mode, 2415 u64 data) 2416 { 2417 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2418 2419 return dd->rcv_err_status_cnt[32]; 2420 } 2421 2422 static u64 access_rx_rbuf_full_err_cnt(const struct cntr_entry *entry, 2423 void *context, int vl, int mode, 2424 u64 data) 2425 { 2426 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2427 2428 return dd->rcv_err_status_cnt[31]; 2429 } 2430 2431 static u64 access_rbuf_bad_lookup_err_cnt(const struct cntr_entry *entry, 2432 void *context, int vl, int mode, 2433 u64 data) 2434 { 2435 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2436 2437 return dd->rcv_err_status_cnt[30]; 2438 } 2439 2440 static u64 access_rbuf_ctx_id_parity_err_cnt(const struct cntr_entry *entry, 2441 void *context, int vl, int mode, 2442 u64 data) 2443 { 2444 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2445 2446 return dd->rcv_err_status_cnt[29]; 2447 } 2448 2449 static u64 access_rbuf_csr_qeopdw_parity_err_cnt(const struct cntr_entry *entry, 2450 void *context, int vl, 2451 int mode, u64 data) 2452 { 2453 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2454 2455 return dd->rcv_err_status_cnt[28]; 2456 } 2457 2458 static u64 access_rx_rbuf_csr_q_num_of_pkt_parity_err_cnt( 2459 const struct cntr_entry *entry, 2460 void *context, int vl, int mode, u64 data) 2461 { 2462 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2463 2464 return dd->rcv_err_status_cnt[27]; 2465 } 2466 2467 static u64 access_rx_rbuf_csr_q_t1_ptr_parity_err_cnt( 2468 const struct cntr_entry *entry, 2469 void *context, int vl, int mode, u64 data) 2470 { 2471 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2472 2473 return dd->rcv_err_status_cnt[26]; 2474 } 2475 2476 static u64 access_rx_rbuf_csr_q_hd_ptr_parity_err_cnt( 2477 const struct cntr_entry *entry, 2478 void *context, int vl, int mode, u64 data) 2479 { 2480 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2481 2482 return dd->rcv_err_status_cnt[25]; 2483 } 2484 2485 static u64 access_rx_rbuf_csr_q_vld_bit_parity_err_cnt( 2486 const struct cntr_entry *entry, 2487 void *context, int vl, int mode, u64 data) 2488 { 2489 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2490 2491 return dd->rcv_err_status_cnt[24]; 2492 } 2493 2494 static u64 access_rx_rbuf_csr_q_next_buf_parity_err_cnt( 2495 const struct cntr_entry *entry, 2496 void *context, int vl, int mode, u64 data) 2497 { 2498 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2499 2500 return dd->rcv_err_status_cnt[23]; 2501 } 2502 2503 static u64 access_rx_rbuf_csr_q_ent_cnt_parity_err_cnt( 2504 const struct cntr_entry *entry, 2505 void *context, int vl, int mode, u64 data) 2506 { 2507 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2508 2509 return dd->rcv_err_status_cnt[22]; 2510 } 2511 2512 static u64 access_rx_rbuf_csr_q_head_buf_num_parity_err_cnt( 2513 const struct cntr_entry *entry, 2514 void *context, int vl, int mode, u64 data) 2515 { 2516 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2517 2518 return dd->rcv_err_status_cnt[21]; 2519 } 2520 2521 static u64 access_rx_rbuf_block_list_read_cor_err_cnt( 2522 const struct cntr_entry *entry, 2523 void *context, int vl, int mode, u64 data) 2524 { 2525 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2526 2527 return dd->rcv_err_status_cnt[20]; 2528 } 2529 2530 static u64 access_rx_rbuf_block_list_read_unc_err_cnt( 2531 const struct cntr_entry *entry, 2532 void *context, int vl, int mode, u64 data) 2533 { 2534 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2535 2536 return dd->rcv_err_status_cnt[19]; 2537 } 2538 2539 static u64 access_rx_rbuf_lookup_des_cor_err_cnt(const struct cntr_entry *entry, 2540 void *context, int vl, 2541 int mode, u64 data) 2542 { 2543 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2544 2545 return dd->rcv_err_status_cnt[18]; 2546 } 2547 2548 static u64 access_rx_rbuf_lookup_des_unc_err_cnt(const struct cntr_entry *entry, 2549 void *context, int vl, 2550 int mode, u64 data) 2551 { 2552 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2553 2554 return dd->rcv_err_status_cnt[17]; 2555 } 2556 2557 static u64 access_rx_rbuf_lookup_des_reg_unc_cor_err_cnt( 2558 const struct cntr_entry *entry, 2559 void *context, int vl, int mode, u64 data) 2560 { 2561 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2562 2563 return dd->rcv_err_status_cnt[16]; 2564 } 2565 2566 static u64 access_rx_rbuf_lookup_des_reg_unc_err_cnt( 2567 const struct cntr_entry *entry, 2568 void *context, int vl, int mode, u64 data) 2569 { 2570 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2571 2572 return dd->rcv_err_status_cnt[15]; 2573 } 2574 2575 static u64 access_rx_rbuf_free_list_cor_err_cnt(const struct cntr_entry *entry, 2576 void *context, int vl, 2577 int mode, u64 data) 2578 { 2579 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2580 2581 return dd->rcv_err_status_cnt[14]; 2582 } 2583 2584 static u64 access_rx_rbuf_free_list_unc_err_cnt(const struct cntr_entry *entry, 2585 void *context, int vl, 2586 int mode, u64 data) 2587 { 2588 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2589 2590 return dd->rcv_err_status_cnt[13]; 2591 } 2592 2593 static u64 access_rx_rcv_fsm_encoding_err_cnt(const struct cntr_entry *entry, 2594 void *context, int vl, int mode, 2595 u64 data) 2596 { 2597 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2598 2599 return dd->rcv_err_status_cnt[12]; 2600 } 2601 2602 static u64 access_rx_dma_flag_cor_err_cnt(const struct cntr_entry *entry, 2603 void *context, int vl, int mode, 2604 u64 data) 2605 { 2606 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2607 2608 return dd->rcv_err_status_cnt[11]; 2609 } 2610 2611 static u64 access_rx_dma_flag_unc_err_cnt(const struct cntr_entry *entry, 2612 void *context, int vl, int mode, 2613 u64 data) 2614 { 2615 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2616 2617 return dd->rcv_err_status_cnt[10]; 2618 } 2619 2620 static u64 access_rx_dc_sop_eop_parity_err_cnt(const struct cntr_entry *entry, 2621 void *context, int vl, int mode, 2622 u64 data) 2623 { 2624 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2625 2626 return dd->rcv_err_status_cnt[9]; 2627 } 2628 2629 static u64 access_rx_rcv_csr_parity_err_cnt(const struct cntr_entry *entry, 2630 void *context, int vl, int mode, 2631 u64 data) 2632 { 2633 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2634 2635 return dd->rcv_err_status_cnt[8]; 2636 } 2637 2638 static u64 access_rx_rcv_qp_map_table_cor_err_cnt( 2639 const struct cntr_entry *entry, 2640 void *context, int vl, int mode, u64 data) 2641 { 2642 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2643 2644 return dd->rcv_err_status_cnt[7]; 2645 } 2646 2647 static u64 access_rx_rcv_qp_map_table_unc_err_cnt( 2648 const struct cntr_entry *entry, 2649 void *context, int vl, int mode, u64 data) 2650 { 2651 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2652 2653 return dd->rcv_err_status_cnt[6]; 2654 } 2655 2656 static u64 access_rx_rcv_data_cor_err_cnt(const struct cntr_entry *entry, 2657 void *context, int vl, int mode, 2658 u64 data) 2659 { 2660 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2661 2662 return dd->rcv_err_status_cnt[5]; 2663 } 2664 2665 static u64 access_rx_rcv_data_unc_err_cnt(const struct cntr_entry *entry, 2666 void *context, int vl, int mode, 2667 u64 data) 2668 { 2669 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2670 2671 return dd->rcv_err_status_cnt[4]; 2672 } 2673 2674 static u64 access_rx_rcv_hdr_cor_err_cnt(const struct cntr_entry *entry, 2675 void *context, int vl, int mode, 2676 u64 data) 2677 { 2678 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2679 2680 return dd->rcv_err_status_cnt[3]; 2681 } 2682 2683 static u64 access_rx_rcv_hdr_unc_err_cnt(const struct cntr_entry *entry, 2684 void *context, int vl, int mode, 2685 u64 data) 2686 { 2687 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2688 2689 return dd->rcv_err_status_cnt[2]; 2690 } 2691 2692 static u64 access_rx_dc_intf_parity_err_cnt(const struct cntr_entry *entry, 2693 void *context, int vl, int mode, 2694 u64 data) 2695 { 2696 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2697 2698 return dd->rcv_err_status_cnt[1]; 2699 } 2700 2701 static u64 access_rx_dma_csr_cor_err_cnt(const struct cntr_entry *entry, 2702 void *context, int vl, int mode, 2703 u64 data) 2704 { 2705 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2706 2707 return dd->rcv_err_status_cnt[0]; 2708 } 2709 2710 /* 2711 * Software counters corresponding to each of the 2712 * error status bits within SendPioErrStatus 2713 */ 2714 static u64 access_pio_pec_sop_head_parity_err_cnt( 2715 const struct cntr_entry *entry, 2716 void *context, int vl, int mode, u64 data) 2717 { 2718 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2719 2720 return dd->send_pio_err_status_cnt[35]; 2721 } 2722 2723 static u64 access_pio_pcc_sop_head_parity_err_cnt( 2724 const struct cntr_entry *entry, 2725 void *context, int vl, int mode, u64 data) 2726 { 2727 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2728 2729 return dd->send_pio_err_status_cnt[34]; 2730 } 2731 2732 static u64 access_pio_last_returned_cnt_parity_err_cnt( 2733 const struct cntr_entry *entry, 2734 void *context, int vl, int mode, u64 data) 2735 { 2736 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2737 2738 return dd->send_pio_err_status_cnt[33]; 2739 } 2740 2741 static u64 access_pio_current_free_cnt_parity_err_cnt( 2742 const struct cntr_entry *entry, 2743 void *context, int vl, int mode, u64 data) 2744 { 2745 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2746 2747 return dd->send_pio_err_status_cnt[32]; 2748 } 2749 2750 static u64 access_pio_reserved_31_err_cnt(const struct cntr_entry *entry, 2751 void *context, int vl, int mode, 2752 u64 data) 2753 { 2754 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2755 2756 return dd->send_pio_err_status_cnt[31]; 2757 } 2758 2759 static u64 access_pio_reserved_30_err_cnt(const struct cntr_entry *entry, 2760 void *context, int vl, int mode, 2761 u64 data) 2762 { 2763 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2764 2765 return dd->send_pio_err_status_cnt[30]; 2766 } 2767 2768 static u64 access_pio_ppmc_sop_len_err_cnt(const struct cntr_entry *entry, 2769 void *context, int vl, int mode, 2770 u64 data) 2771 { 2772 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2773 2774 return dd->send_pio_err_status_cnt[29]; 2775 } 2776 2777 static u64 access_pio_ppmc_bqc_mem_parity_err_cnt( 2778 const struct cntr_entry *entry, 2779 void *context, int vl, int mode, u64 data) 2780 { 2781 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2782 2783 return dd->send_pio_err_status_cnt[28]; 2784 } 2785 2786 static u64 access_pio_vl_fifo_parity_err_cnt(const struct cntr_entry *entry, 2787 void *context, int vl, int mode, 2788 u64 data) 2789 { 2790 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2791 2792 return dd->send_pio_err_status_cnt[27]; 2793 } 2794 2795 static u64 access_pio_vlf_sop_parity_err_cnt(const struct cntr_entry *entry, 2796 void *context, int vl, int mode, 2797 u64 data) 2798 { 2799 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2800 2801 return dd->send_pio_err_status_cnt[26]; 2802 } 2803 2804 static u64 access_pio_vlf_v1_len_parity_err_cnt(const struct cntr_entry *entry, 2805 void *context, int vl, 2806 int mode, u64 data) 2807 { 2808 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2809 2810 return dd->send_pio_err_status_cnt[25]; 2811 } 2812 2813 static u64 access_pio_block_qw_count_parity_err_cnt( 2814 const struct cntr_entry *entry, 2815 void *context, int vl, int mode, u64 data) 2816 { 2817 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2818 2819 return dd->send_pio_err_status_cnt[24]; 2820 } 2821 2822 static u64 access_pio_write_qw_valid_parity_err_cnt( 2823 const struct cntr_entry *entry, 2824 void *context, int vl, int mode, u64 data) 2825 { 2826 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2827 2828 return dd->send_pio_err_status_cnt[23]; 2829 } 2830 2831 static u64 access_pio_state_machine_err_cnt(const struct cntr_entry *entry, 2832 void *context, int vl, int mode, 2833 u64 data) 2834 { 2835 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2836 2837 return dd->send_pio_err_status_cnt[22]; 2838 } 2839 2840 static u64 access_pio_write_data_parity_err_cnt(const struct cntr_entry *entry, 2841 void *context, int vl, 2842 int mode, u64 data) 2843 { 2844 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2845 2846 return dd->send_pio_err_status_cnt[21]; 2847 } 2848 2849 static u64 access_pio_host_addr_mem_cor_err_cnt(const struct cntr_entry *entry, 2850 void *context, int vl, 2851 int mode, u64 data) 2852 { 2853 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2854 2855 return dd->send_pio_err_status_cnt[20]; 2856 } 2857 2858 static u64 access_pio_host_addr_mem_unc_err_cnt(const struct cntr_entry *entry, 2859 void *context, int vl, 2860 int mode, u64 data) 2861 { 2862 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2863 2864 return dd->send_pio_err_status_cnt[19]; 2865 } 2866 2867 static u64 access_pio_pkt_evict_sm_or_arb_sm_err_cnt( 2868 const struct cntr_entry *entry, 2869 void *context, int vl, int mode, u64 data) 2870 { 2871 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2872 2873 return dd->send_pio_err_status_cnt[18]; 2874 } 2875 2876 static u64 access_pio_init_sm_in_err_cnt(const struct cntr_entry *entry, 2877 void *context, int vl, int mode, 2878 u64 data) 2879 { 2880 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2881 2882 return dd->send_pio_err_status_cnt[17]; 2883 } 2884 2885 static u64 access_pio_ppmc_pbl_fifo_err_cnt(const struct cntr_entry *entry, 2886 void *context, int vl, int mode, 2887 u64 data) 2888 { 2889 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2890 2891 return dd->send_pio_err_status_cnt[16]; 2892 } 2893 2894 static u64 access_pio_credit_ret_fifo_parity_err_cnt( 2895 const struct cntr_entry *entry, 2896 void *context, int vl, int mode, u64 data) 2897 { 2898 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2899 2900 return dd->send_pio_err_status_cnt[15]; 2901 } 2902 2903 static u64 access_pio_v1_len_mem_bank1_cor_err_cnt( 2904 const struct cntr_entry *entry, 2905 void *context, int vl, int mode, u64 data) 2906 { 2907 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2908 2909 return dd->send_pio_err_status_cnt[14]; 2910 } 2911 2912 static u64 access_pio_v1_len_mem_bank0_cor_err_cnt( 2913 const struct cntr_entry *entry, 2914 void *context, int vl, int mode, u64 data) 2915 { 2916 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2917 2918 return dd->send_pio_err_status_cnt[13]; 2919 } 2920 2921 static u64 access_pio_v1_len_mem_bank1_unc_err_cnt( 2922 const struct cntr_entry *entry, 2923 void *context, int vl, int mode, u64 data) 2924 { 2925 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2926 2927 return dd->send_pio_err_status_cnt[12]; 2928 } 2929 2930 static u64 access_pio_v1_len_mem_bank0_unc_err_cnt( 2931 const struct cntr_entry *entry, 2932 void *context, int vl, int mode, u64 data) 2933 { 2934 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2935 2936 return dd->send_pio_err_status_cnt[11]; 2937 } 2938 2939 static u64 access_pio_sm_pkt_reset_parity_err_cnt( 2940 const struct cntr_entry *entry, 2941 void *context, int vl, int mode, u64 data) 2942 { 2943 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2944 2945 return dd->send_pio_err_status_cnt[10]; 2946 } 2947 2948 static u64 access_pio_pkt_evict_fifo_parity_err_cnt( 2949 const struct cntr_entry *entry, 2950 void *context, int vl, int mode, u64 data) 2951 { 2952 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2953 2954 return dd->send_pio_err_status_cnt[9]; 2955 } 2956 2957 static u64 access_pio_sbrdctrl_crrel_fifo_parity_err_cnt( 2958 const struct cntr_entry *entry, 2959 void *context, int vl, int mode, u64 data) 2960 { 2961 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2962 2963 return dd->send_pio_err_status_cnt[8]; 2964 } 2965 2966 static u64 access_pio_sbrdctl_crrel_parity_err_cnt( 2967 const struct cntr_entry *entry, 2968 void *context, int vl, int mode, u64 data) 2969 { 2970 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2971 2972 return dd->send_pio_err_status_cnt[7]; 2973 } 2974 2975 static u64 access_pio_pec_fifo_parity_err_cnt(const struct cntr_entry *entry, 2976 void *context, int vl, int mode, 2977 u64 data) 2978 { 2979 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2980 2981 return dd->send_pio_err_status_cnt[6]; 2982 } 2983 2984 static u64 access_pio_pcc_fifo_parity_err_cnt(const struct cntr_entry *entry, 2985 void *context, int vl, int mode, 2986 u64 data) 2987 { 2988 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2989 2990 return dd->send_pio_err_status_cnt[5]; 2991 } 2992 2993 static u64 access_pio_sb_mem_fifo1_err_cnt(const struct cntr_entry *entry, 2994 void *context, int vl, int mode, 2995 u64 data) 2996 { 2997 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2998 2999 return dd->send_pio_err_status_cnt[4]; 3000 } 3001 3002 static u64 access_pio_sb_mem_fifo0_err_cnt(const struct cntr_entry *entry, 3003 void *context, int vl, int mode, 3004 u64 data) 3005 { 3006 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3007 3008 return dd->send_pio_err_status_cnt[3]; 3009 } 3010 3011 static u64 access_pio_csr_parity_err_cnt(const struct cntr_entry *entry, 3012 void *context, int vl, int mode, 3013 u64 data) 3014 { 3015 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3016 3017 return dd->send_pio_err_status_cnt[2]; 3018 } 3019 3020 static u64 access_pio_write_addr_parity_err_cnt(const struct cntr_entry *entry, 3021 void *context, int vl, 3022 int mode, u64 data) 3023 { 3024 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3025 3026 return dd->send_pio_err_status_cnt[1]; 3027 } 3028 3029 static u64 access_pio_write_bad_ctxt_err_cnt(const struct cntr_entry *entry, 3030 void *context, int vl, int mode, 3031 u64 data) 3032 { 3033 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3034 3035 return dd->send_pio_err_status_cnt[0]; 3036 } 3037 3038 /* 3039 * Software counters corresponding to each of the 3040 * error status bits within SendDmaErrStatus 3041 */ 3042 static u64 access_sdma_pcie_req_tracking_cor_err_cnt( 3043 const struct cntr_entry *entry, 3044 void *context, int vl, int mode, u64 data) 3045 { 3046 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3047 3048 return dd->send_dma_err_status_cnt[3]; 3049 } 3050 3051 static u64 access_sdma_pcie_req_tracking_unc_err_cnt( 3052 const struct cntr_entry *entry, 3053 void *context, int vl, int mode, u64 data) 3054 { 3055 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3056 3057 return dd->send_dma_err_status_cnt[2]; 3058 } 3059 3060 static u64 access_sdma_csr_parity_err_cnt(const struct cntr_entry *entry, 3061 void *context, int vl, int mode, 3062 u64 data) 3063 { 3064 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3065 3066 return dd->send_dma_err_status_cnt[1]; 3067 } 3068 3069 static u64 access_sdma_rpy_tag_err_cnt(const struct cntr_entry *entry, 3070 void *context, int vl, int mode, 3071 u64 data) 3072 { 3073 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3074 3075 return dd->send_dma_err_status_cnt[0]; 3076 } 3077 3078 /* 3079 * Software counters corresponding to each of the 3080 * error status bits within SendEgressErrStatus 3081 */ 3082 static u64 access_tx_read_pio_memory_csr_unc_err_cnt( 3083 const struct cntr_entry *entry, 3084 void *context, int vl, int mode, u64 data) 3085 { 3086 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3087 3088 return dd->send_egress_err_status_cnt[63]; 3089 } 3090 3091 static u64 access_tx_read_sdma_memory_csr_err_cnt( 3092 const struct cntr_entry *entry, 3093 void *context, int vl, int mode, u64 data) 3094 { 3095 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3096 3097 return dd->send_egress_err_status_cnt[62]; 3098 } 3099 3100 static u64 access_tx_egress_fifo_cor_err_cnt(const struct cntr_entry *entry, 3101 void *context, int vl, int mode, 3102 u64 data) 3103 { 3104 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3105 3106 return dd->send_egress_err_status_cnt[61]; 3107 } 3108 3109 static u64 access_tx_read_pio_memory_cor_err_cnt(const struct cntr_entry *entry, 3110 void *context, int vl, 3111 int mode, u64 data) 3112 { 3113 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3114 3115 return dd->send_egress_err_status_cnt[60]; 3116 } 3117 3118 static u64 access_tx_read_sdma_memory_cor_err_cnt( 3119 const struct cntr_entry *entry, 3120 void *context, int vl, int mode, u64 data) 3121 { 3122 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3123 3124 return dd->send_egress_err_status_cnt[59]; 3125 } 3126 3127 static u64 access_tx_sb_hdr_cor_err_cnt(const struct cntr_entry *entry, 3128 void *context, int vl, int mode, 3129 u64 data) 3130 { 3131 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3132 3133 return dd->send_egress_err_status_cnt[58]; 3134 } 3135 3136 static u64 access_tx_credit_overrun_err_cnt(const struct cntr_entry *entry, 3137 void *context, int vl, int mode, 3138 u64 data) 3139 { 3140 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3141 3142 return dd->send_egress_err_status_cnt[57]; 3143 } 3144 3145 static u64 access_tx_launch_fifo8_cor_err_cnt(const struct cntr_entry *entry, 3146 void *context, int vl, int mode, 3147 u64 data) 3148 { 3149 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3150 3151 return dd->send_egress_err_status_cnt[56]; 3152 } 3153 3154 static u64 access_tx_launch_fifo7_cor_err_cnt(const struct cntr_entry *entry, 3155 void *context, int vl, int mode, 3156 u64 data) 3157 { 3158 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3159 3160 return dd->send_egress_err_status_cnt[55]; 3161 } 3162 3163 static u64 access_tx_launch_fifo6_cor_err_cnt(const struct cntr_entry *entry, 3164 void *context, int vl, int mode, 3165 u64 data) 3166 { 3167 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3168 3169 return dd->send_egress_err_status_cnt[54]; 3170 } 3171 3172 static u64 access_tx_launch_fifo5_cor_err_cnt(const struct cntr_entry *entry, 3173 void *context, int vl, int mode, 3174 u64 data) 3175 { 3176 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3177 3178 return dd->send_egress_err_status_cnt[53]; 3179 } 3180 3181 static u64 access_tx_launch_fifo4_cor_err_cnt(const struct cntr_entry *entry, 3182 void *context, int vl, int mode, 3183 u64 data) 3184 { 3185 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3186 3187 return dd->send_egress_err_status_cnt[52]; 3188 } 3189 3190 static u64 access_tx_launch_fifo3_cor_err_cnt(const struct cntr_entry *entry, 3191 void *context, int vl, int mode, 3192 u64 data) 3193 { 3194 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3195 3196 return dd->send_egress_err_status_cnt[51]; 3197 } 3198 3199 static u64 access_tx_launch_fifo2_cor_err_cnt(const struct cntr_entry *entry, 3200 void *context, int vl, int mode, 3201 u64 data) 3202 { 3203 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3204 3205 return dd->send_egress_err_status_cnt[50]; 3206 } 3207 3208 static u64 access_tx_launch_fifo1_cor_err_cnt(const struct cntr_entry *entry, 3209 void *context, int vl, int mode, 3210 u64 data) 3211 { 3212 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3213 3214 return dd->send_egress_err_status_cnt[49]; 3215 } 3216 3217 static u64 access_tx_launch_fifo0_cor_err_cnt(const struct cntr_entry *entry, 3218 void *context, int vl, int mode, 3219 u64 data) 3220 { 3221 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3222 3223 return dd->send_egress_err_status_cnt[48]; 3224 } 3225 3226 static u64 access_tx_credit_return_vl_err_cnt(const struct cntr_entry *entry, 3227 void *context, int vl, int mode, 3228 u64 data) 3229 { 3230 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3231 3232 return dd->send_egress_err_status_cnt[47]; 3233 } 3234 3235 static u64 access_tx_hcrc_insertion_err_cnt(const struct cntr_entry *entry, 3236 void *context, int vl, int mode, 3237 u64 data) 3238 { 3239 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3240 3241 return dd->send_egress_err_status_cnt[46]; 3242 } 3243 3244 static u64 access_tx_egress_fifo_unc_err_cnt(const struct cntr_entry *entry, 3245 void *context, int vl, int mode, 3246 u64 data) 3247 { 3248 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3249 3250 return dd->send_egress_err_status_cnt[45]; 3251 } 3252 3253 static u64 access_tx_read_pio_memory_unc_err_cnt(const struct cntr_entry *entry, 3254 void *context, int vl, 3255 int mode, u64 data) 3256 { 3257 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3258 3259 return dd->send_egress_err_status_cnt[44]; 3260 } 3261 3262 static u64 access_tx_read_sdma_memory_unc_err_cnt( 3263 const struct cntr_entry *entry, 3264 void *context, int vl, int mode, u64 data) 3265 { 3266 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3267 3268 return dd->send_egress_err_status_cnt[43]; 3269 } 3270 3271 static u64 access_tx_sb_hdr_unc_err_cnt(const struct cntr_entry *entry, 3272 void *context, int vl, int mode, 3273 u64 data) 3274 { 3275 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3276 3277 return dd->send_egress_err_status_cnt[42]; 3278 } 3279 3280 static u64 access_tx_credit_return_partiy_err_cnt( 3281 const struct cntr_entry *entry, 3282 void *context, int vl, int mode, u64 data) 3283 { 3284 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3285 3286 return dd->send_egress_err_status_cnt[41]; 3287 } 3288 3289 static u64 access_tx_launch_fifo8_unc_or_parity_err_cnt( 3290 const struct cntr_entry *entry, 3291 void *context, int vl, int mode, u64 data) 3292 { 3293 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3294 3295 return dd->send_egress_err_status_cnt[40]; 3296 } 3297 3298 static u64 access_tx_launch_fifo7_unc_or_parity_err_cnt( 3299 const struct cntr_entry *entry, 3300 void *context, int vl, int mode, u64 data) 3301 { 3302 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3303 3304 return dd->send_egress_err_status_cnt[39]; 3305 } 3306 3307 static u64 access_tx_launch_fifo6_unc_or_parity_err_cnt( 3308 const struct cntr_entry *entry, 3309 void *context, int vl, int mode, u64 data) 3310 { 3311 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3312 3313 return dd->send_egress_err_status_cnt[38]; 3314 } 3315 3316 static u64 access_tx_launch_fifo5_unc_or_parity_err_cnt( 3317 const struct cntr_entry *entry, 3318 void *context, int vl, int mode, u64 data) 3319 { 3320 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3321 3322 return dd->send_egress_err_status_cnt[37]; 3323 } 3324 3325 static u64 access_tx_launch_fifo4_unc_or_parity_err_cnt( 3326 const struct cntr_entry *entry, 3327 void *context, int vl, int mode, u64 data) 3328 { 3329 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3330 3331 return dd->send_egress_err_status_cnt[36]; 3332 } 3333 3334 static u64 access_tx_launch_fifo3_unc_or_parity_err_cnt( 3335 const struct cntr_entry *entry, 3336 void *context, int vl, int mode, u64 data) 3337 { 3338 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3339 3340 return dd->send_egress_err_status_cnt[35]; 3341 } 3342 3343 static u64 access_tx_launch_fifo2_unc_or_parity_err_cnt( 3344 const struct cntr_entry *entry, 3345 void *context, int vl, int mode, u64 data) 3346 { 3347 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3348 3349 return dd->send_egress_err_status_cnt[34]; 3350 } 3351 3352 static u64 access_tx_launch_fifo1_unc_or_parity_err_cnt( 3353 const struct cntr_entry *entry, 3354 void *context, int vl, int mode, u64 data) 3355 { 3356 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3357 3358 return dd->send_egress_err_status_cnt[33]; 3359 } 3360 3361 static u64 access_tx_launch_fifo0_unc_or_parity_err_cnt( 3362 const struct cntr_entry *entry, 3363 void *context, int vl, int mode, u64 data) 3364 { 3365 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3366 3367 return dd->send_egress_err_status_cnt[32]; 3368 } 3369 3370 static u64 access_tx_sdma15_disallowed_packet_err_cnt( 3371 const struct cntr_entry *entry, 3372 void *context, int vl, int mode, u64 data) 3373 { 3374 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3375 3376 return dd->send_egress_err_status_cnt[31]; 3377 } 3378 3379 static u64 access_tx_sdma14_disallowed_packet_err_cnt( 3380 const struct cntr_entry *entry, 3381 void *context, int vl, int mode, u64 data) 3382 { 3383 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3384 3385 return dd->send_egress_err_status_cnt[30]; 3386 } 3387 3388 static u64 access_tx_sdma13_disallowed_packet_err_cnt( 3389 const struct cntr_entry *entry, 3390 void *context, int vl, int mode, u64 data) 3391 { 3392 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3393 3394 return dd->send_egress_err_status_cnt[29]; 3395 } 3396 3397 static u64 access_tx_sdma12_disallowed_packet_err_cnt( 3398 const struct cntr_entry *entry, 3399 void *context, int vl, int mode, u64 data) 3400 { 3401 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3402 3403 return dd->send_egress_err_status_cnt[28]; 3404 } 3405 3406 static u64 access_tx_sdma11_disallowed_packet_err_cnt( 3407 const struct cntr_entry *entry, 3408 void *context, int vl, int mode, u64 data) 3409 { 3410 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3411 3412 return dd->send_egress_err_status_cnt[27]; 3413 } 3414 3415 static u64 access_tx_sdma10_disallowed_packet_err_cnt( 3416 const struct cntr_entry *entry, 3417 void *context, int vl, int mode, u64 data) 3418 { 3419 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3420 3421 return dd->send_egress_err_status_cnt[26]; 3422 } 3423 3424 static u64 access_tx_sdma9_disallowed_packet_err_cnt( 3425 const struct cntr_entry *entry, 3426 void *context, int vl, int mode, u64 data) 3427 { 3428 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3429 3430 return dd->send_egress_err_status_cnt[25]; 3431 } 3432 3433 static u64 access_tx_sdma8_disallowed_packet_err_cnt( 3434 const struct cntr_entry *entry, 3435 void *context, int vl, int mode, u64 data) 3436 { 3437 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3438 3439 return dd->send_egress_err_status_cnt[24]; 3440 } 3441 3442 static u64 access_tx_sdma7_disallowed_packet_err_cnt( 3443 const struct cntr_entry *entry, 3444 void *context, int vl, int mode, u64 data) 3445 { 3446 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3447 3448 return dd->send_egress_err_status_cnt[23]; 3449 } 3450 3451 static u64 access_tx_sdma6_disallowed_packet_err_cnt( 3452 const struct cntr_entry *entry, 3453 void *context, int vl, int mode, u64 data) 3454 { 3455 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3456 3457 return dd->send_egress_err_status_cnt[22]; 3458 } 3459 3460 static u64 access_tx_sdma5_disallowed_packet_err_cnt( 3461 const struct cntr_entry *entry, 3462 void *context, int vl, int mode, u64 data) 3463 { 3464 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3465 3466 return dd->send_egress_err_status_cnt[21]; 3467 } 3468 3469 static u64 access_tx_sdma4_disallowed_packet_err_cnt( 3470 const struct cntr_entry *entry, 3471 void *context, int vl, int mode, u64 data) 3472 { 3473 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3474 3475 return dd->send_egress_err_status_cnt[20]; 3476 } 3477 3478 static u64 access_tx_sdma3_disallowed_packet_err_cnt( 3479 const struct cntr_entry *entry, 3480 void *context, int vl, int mode, u64 data) 3481 { 3482 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3483 3484 return dd->send_egress_err_status_cnt[19]; 3485 } 3486 3487 static u64 access_tx_sdma2_disallowed_packet_err_cnt( 3488 const struct cntr_entry *entry, 3489 void *context, int vl, int mode, u64 data) 3490 { 3491 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3492 3493 return dd->send_egress_err_status_cnt[18]; 3494 } 3495 3496 static u64 access_tx_sdma1_disallowed_packet_err_cnt( 3497 const struct cntr_entry *entry, 3498 void *context, int vl, int mode, u64 data) 3499 { 3500 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3501 3502 return dd->send_egress_err_status_cnt[17]; 3503 } 3504 3505 static u64 access_tx_sdma0_disallowed_packet_err_cnt( 3506 const struct cntr_entry *entry, 3507 void *context, int vl, int mode, u64 data) 3508 { 3509 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3510 3511 return dd->send_egress_err_status_cnt[16]; 3512 } 3513 3514 static u64 access_tx_config_parity_err_cnt(const struct cntr_entry *entry, 3515 void *context, int vl, int mode, 3516 u64 data) 3517 { 3518 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3519 3520 return dd->send_egress_err_status_cnt[15]; 3521 } 3522 3523 static u64 access_tx_sbrd_ctl_csr_parity_err_cnt(const struct cntr_entry *entry, 3524 void *context, int vl, 3525 int mode, u64 data) 3526 { 3527 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3528 3529 return dd->send_egress_err_status_cnt[14]; 3530 } 3531 3532 static u64 access_tx_launch_csr_parity_err_cnt(const struct cntr_entry *entry, 3533 void *context, int vl, int mode, 3534 u64 data) 3535 { 3536 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3537 3538 return dd->send_egress_err_status_cnt[13]; 3539 } 3540 3541 static u64 access_tx_illegal_vl_err_cnt(const struct cntr_entry *entry, 3542 void *context, int vl, int mode, 3543 u64 data) 3544 { 3545 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3546 3547 return dd->send_egress_err_status_cnt[12]; 3548 } 3549 3550 static u64 access_tx_sbrd_ctl_state_machine_parity_err_cnt( 3551 const struct cntr_entry *entry, 3552 void *context, int vl, int mode, u64 data) 3553 { 3554 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3555 3556 return dd->send_egress_err_status_cnt[11]; 3557 } 3558 3559 static u64 access_egress_reserved_10_err_cnt(const struct cntr_entry *entry, 3560 void *context, int vl, int mode, 3561 u64 data) 3562 { 3563 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3564 3565 return dd->send_egress_err_status_cnt[10]; 3566 } 3567 3568 static u64 access_egress_reserved_9_err_cnt(const struct cntr_entry *entry, 3569 void *context, int vl, int mode, 3570 u64 data) 3571 { 3572 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3573 3574 return dd->send_egress_err_status_cnt[9]; 3575 } 3576 3577 static u64 access_tx_sdma_launch_intf_parity_err_cnt( 3578 const struct cntr_entry *entry, 3579 void *context, int vl, int mode, u64 data) 3580 { 3581 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3582 3583 return dd->send_egress_err_status_cnt[8]; 3584 } 3585 3586 static u64 access_tx_pio_launch_intf_parity_err_cnt( 3587 const struct cntr_entry *entry, 3588 void *context, int vl, int mode, u64 data) 3589 { 3590 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3591 3592 return dd->send_egress_err_status_cnt[7]; 3593 } 3594 3595 static u64 access_egress_reserved_6_err_cnt(const struct cntr_entry *entry, 3596 void *context, int vl, int mode, 3597 u64 data) 3598 { 3599 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3600 3601 return dd->send_egress_err_status_cnt[6]; 3602 } 3603 3604 static u64 access_tx_incorrect_link_state_err_cnt( 3605 const struct cntr_entry *entry, 3606 void *context, int vl, int mode, u64 data) 3607 { 3608 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3609 3610 return dd->send_egress_err_status_cnt[5]; 3611 } 3612 3613 static u64 access_tx_linkdown_err_cnt(const struct cntr_entry *entry, 3614 void *context, int vl, int mode, 3615 u64 data) 3616 { 3617 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3618 3619 return dd->send_egress_err_status_cnt[4]; 3620 } 3621 3622 static u64 access_tx_egress_fifi_underrun_or_parity_err_cnt( 3623 const struct cntr_entry *entry, 3624 void *context, int vl, int mode, u64 data) 3625 { 3626 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3627 3628 return dd->send_egress_err_status_cnt[3]; 3629 } 3630 3631 static u64 access_egress_reserved_2_err_cnt(const struct cntr_entry *entry, 3632 void *context, int vl, int mode, 3633 u64 data) 3634 { 3635 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3636 3637 return dd->send_egress_err_status_cnt[2]; 3638 } 3639 3640 static u64 access_tx_pkt_integrity_mem_unc_err_cnt( 3641 const struct cntr_entry *entry, 3642 void *context, int vl, int mode, u64 data) 3643 { 3644 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3645 3646 return dd->send_egress_err_status_cnt[1]; 3647 } 3648 3649 static u64 access_tx_pkt_integrity_mem_cor_err_cnt( 3650 const struct cntr_entry *entry, 3651 void *context, int vl, int mode, u64 data) 3652 { 3653 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3654 3655 return dd->send_egress_err_status_cnt[0]; 3656 } 3657 3658 /* 3659 * Software counters corresponding to each of the 3660 * error status bits within SendErrStatus 3661 */ 3662 static u64 access_send_csr_write_bad_addr_err_cnt( 3663 const struct cntr_entry *entry, 3664 void *context, int vl, int mode, u64 data) 3665 { 3666 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3667 3668 return dd->send_err_status_cnt[2]; 3669 } 3670 3671 static u64 access_send_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry, 3672 void *context, int vl, 3673 int mode, u64 data) 3674 { 3675 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3676 3677 return dd->send_err_status_cnt[1]; 3678 } 3679 3680 static u64 access_send_csr_parity_cnt(const struct cntr_entry *entry, 3681 void *context, int vl, int mode, 3682 u64 data) 3683 { 3684 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3685 3686 return dd->send_err_status_cnt[0]; 3687 } 3688 3689 /* 3690 * Software counters corresponding to each of the 3691 * error status bits within SendCtxtErrStatus 3692 */ 3693 static u64 access_pio_write_out_of_bounds_err_cnt( 3694 const struct cntr_entry *entry, 3695 void *context, int vl, int mode, u64 data) 3696 { 3697 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3698 3699 return dd->sw_ctxt_err_status_cnt[4]; 3700 } 3701 3702 static u64 access_pio_write_overflow_err_cnt(const struct cntr_entry *entry, 3703 void *context, int vl, int mode, 3704 u64 data) 3705 { 3706 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3707 3708 return dd->sw_ctxt_err_status_cnt[3]; 3709 } 3710 3711 static u64 access_pio_write_crosses_boundary_err_cnt( 3712 const struct cntr_entry *entry, 3713 void *context, int vl, int mode, u64 data) 3714 { 3715 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3716 3717 return dd->sw_ctxt_err_status_cnt[2]; 3718 } 3719 3720 static u64 access_pio_disallowed_packet_err_cnt(const struct cntr_entry *entry, 3721 void *context, int vl, 3722 int mode, u64 data) 3723 { 3724 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3725 3726 return dd->sw_ctxt_err_status_cnt[1]; 3727 } 3728 3729 static u64 access_pio_inconsistent_sop_err_cnt(const struct cntr_entry *entry, 3730 void *context, int vl, int mode, 3731 u64 data) 3732 { 3733 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3734 3735 return dd->sw_ctxt_err_status_cnt[0]; 3736 } 3737 3738 /* 3739 * Software counters corresponding to each of the 3740 * error status bits within SendDmaEngErrStatus 3741 */ 3742 static u64 access_sdma_header_request_fifo_cor_err_cnt( 3743 const struct cntr_entry *entry, 3744 void *context, int vl, int mode, u64 data) 3745 { 3746 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3747 3748 return dd->sw_send_dma_eng_err_status_cnt[23]; 3749 } 3750 3751 static u64 access_sdma_header_storage_cor_err_cnt( 3752 const struct cntr_entry *entry, 3753 void *context, int vl, int mode, u64 data) 3754 { 3755 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3756 3757 return dd->sw_send_dma_eng_err_status_cnt[22]; 3758 } 3759 3760 static u64 access_sdma_packet_tracking_cor_err_cnt( 3761 const struct cntr_entry *entry, 3762 void *context, int vl, int mode, u64 data) 3763 { 3764 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3765 3766 return dd->sw_send_dma_eng_err_status_cnt[21]; 3767 } 3768 3769 static u64 access_sdma_assembly_cor_err_cnt(const struct cntr_entry *entry, 3770 void *context, int vl, int mode, 3771 u64 data) 3772 { 3773 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3774 3775 return dd->sw_send_dma_eng_err_status_cnt[20]; 3776 } 3777 3778 static u64 access_sdma_desc_table_cor_err_cnt(const struct cntr_entry *entry, 3779 void *context, int vl, int mode, 3780 u64 data) 3781 { 3782 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3783 3784 return dd->sw_send_dma_eng_err_status_cnt[19]; 3785 } 3786 3787 static u64 access_sdma_header_request_fifo_unc_err_cnt( 3788 const struct cntr_entry *entry, 3789 void *context, int vl, int mode, u64 data) 3790 { 3791 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3792 3793 return dd->sw_send_dma_eng_err_status_cnt[18]; 3794 } 3795 3796 static u64 access_sdma_header_storage_unc_err_cnt( 3797 const struct cntr_entry *entry, 3798 void *context, int vl, int mode, u64 data) 3799 { 3800 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3801 3802 return dd->sw_send_dma_eng_err_status_cnt[17]; 3803 } 3804 3805 static u64 access_sdma_packet_tracking_unc_err_cnt( 3806 const struct cntr_entry *entry, 3807 void *context, int vl, int mode, u64 data) 3808 { 3809 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3810 3811 return dd->sw_send_dma_eng_err_status_cnt[16]; 3812 } 3813 3814 static u64 access_sdma_assembly_unc_err_cnt(const struct cntr_entry *entry, 3815 void *context, int vl, int mode, 3816 u64 data) 3817 { 3818 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3819 3820 return dd->sw_send_dma_eng_err_status_cnt[15]; 3821 } 3822 3823 static u64 access_sdma_desc_table_unc_err_cnt(const struct cntr_entry *entry, 3824 void *context, int vl, int mode, 3825 u64 data) 3826 { 3827 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3828 3829 return dd->sw_send_dma_eng_err_status_cnt[14]; 3830 } 3831 3832 static u64 access_sdma_timeout_err_cnt(const struct cntr_entry *entry, 3833 void *context, int vl, int mode, 3834 u64 data) 3835 { 3836 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3837 3838 return dd->sw_send_dma_eng_err_status_cnt[13]; 3839 } 3840 3841 static u64 access_sdma_header_length_err_cnt(const struct cntr_entry *entry, 3842 void *context, int vl, int mode, 3843 u64 data) 3844 { 3845 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3846 3847 return dd->sw_send_dma_eng_err_status_cnt[12]; 3848 } 3849 3850 static u64 access_sdma_header_address_err_cnt(const struct cntr_entry *entry, 3851 void *context, int vl, int mode, 3852 u64 data) 3853 { 3854 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3855 3856 return dd->sw_send_dma_eng_err_status_cnt[11]; 3857 } 3858 3859 static u64 access_sdma_header_select_err_cnt(const struct cntr_entry *entry, 3860 void *context, int vl, int mode, 3861 u64 data) 3862 { 3863 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3864 3865 return dd->sw_send_dma_eng_err_status_cnt[10]; 3866 } 3867 3868 static u64 access_sdma_reserved_9_err_cnt(const struct cntr_entry *entry, 3869 void *context, int vl, int mode, 3870 u64 data) 3871 { 3872 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3873 3874 return dd->sw_send_dma_eng_err_status_cnt[9]; 3875 } 3876 3877 static u64 access_sdma_packet_desc_overflow_err_cnt( 3878 const struct cntr_entry *entry, 3879 void *context, int vl, int mode, u64 data) 3880 { 3881 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3882 3883 return dd->sw_send_dma_eng_err_status_cnt[8]; 3884 } 3885 3886 static u64 access_sdma_length_mismatch_err_cnt(const struct cntr_entry *entry, 3887 void *context, int vl, 3888 int mode, u64 data) 3889 { 3890 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3891 3892 return dd->sw_send_dma_eng_err_status_cnt[7]; 3893 } 3894 3895 static u64 access_sdma_halt_err_cnt(const struct cntr_entry *entry, 3896 void *context, int vl, int mode, u64 data) 3897 { 3898 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3899 3900 return dd->sw_send_dma_eng_err_status_cnt[6]; 3901 } 3902 3903 static u64 access_sdma_mem_read_err_cnt(const struct cntr_entry *entry, 3904 void *context, int vl, int mode, 3905 u64 data) 3906 { 3907 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3908 3909 return dd->sw_send_dma_eng_err_status_cnt[5]; 3910 } 3911 3912 static u64 access_sdma_first_desc_err_cnt(const struct cntr_entry *entry, 3913 void *context, int vl, int mode, 3914 u64 data) 3915 { 3916 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3917 3918 return dd->sw_send_dma_eng_err_status_cnt[4]; 3919 } 3920 3921 static u64 access_sdma_tail_out_of_bounds_err_cnt( 3922 const struct cntr_entry *entry, 3923 void *context, int vl, int mode, u64 data) 3924 { 3925 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3926 3927 return dd->sw_send_dma_eng_err_status_cnt[3]; 3928 } 3929 3930 static u64 access_sdma_too_long_err_cnt(const struct cntr_entry *entry, 3931 void *context, int vl, int mode, 3932 u64 data) 3933 { 3934 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3935 3936 return dd->sw_send_dma_eng_err_status_cnt[2]; 3937 } 3938 3939 static u64 access_sdma_gen_mismatch_err_cnt(const struct cntr_entry *entry, 3940 void *context, int vl, int mode, 3941 u64 data) 3942 { 3943 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3944 3945 return dd->sw_send_dma_eng_err_status_cnt[1]; 3946 } 3947 3948 static u64 access_sdma_wrong_dw_err_cnt(const struct cntr_entry *entry, 3949 void *context, int vl, int mode, 3950 u64 data) 3951 { 3952 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3953 3954 return dd->sw_send_dma_eng_err_status_cnt[0]; 3955 } 3956 3957 static u64 access_dc_rcv_err_cnt(const struct cntr_entry *entry, 3958 void *context, int vl, int mode, 3959 u64 data) 3960 { 3961 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3962 3963 u64 val = 0; 3964 u64 csr = entry->csr; 3965 3966 val = read_write_csr(dd, csr, mode, data); 3967 if (mode == CNTR_MODE_R) { 3968 val = val > CNTR_MAX - dd->sw_rcv_bypass_packet_errors ? 3969 CNTR_MAX : val + dd->sw_rcv_bypass_packet_errors; 3970 } else if (mode == CNTR_MODE_W) { 3971 dd->sw_rcv_bypass_packet_errors = 0; 3972 } else { 3973 dd_dev_err(dd, "Invalid cntr register access mode"); 3974 return 0; 3975 } 3976 return val; 3977 } 3978 3979 #define def_access_sw_cpu(cntr) \ 3980 static u64 access_sw_cpu_##cntr(const struct cntr_entry *entry, \ 3981 void *context, int vl, int mode, u64 data) \ 3982 { \ 3983 struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context; \ 3984 return read_write_cpu(ppd->dd, &ppd->ibport_data.rvp.z_ ##cntr, \ 3985 ppd->ibport_data.rvp.cntr, vl, \ 3986 mode, data); \ 3987 } 3988 3989 def_access_sw_cpu(rc_acks); 3990 def_access_sw_cpu(rc_qacks); 3991 def_access_sw_cpu(rc_delayed_comp); 3992 3993 #define def_access_ibp_counter(cntr) \ 3994 static u64 access_ibp_##cntr(const struct cntr_entry *entry, \ 3995 void *context, int vl, int mode, u64 data) \ 3996 { \ 3997 struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context; \ 3998 \ 3999 if (vl != CNTR_INVALID_VL) \ 4000 return 0; \ 4001 \ 4002 return read_write_sw(ppd->dd, &ppd->ibport_data.rvp.n_ ##cntr, \ 4003 mode, data); \ 4004 } 4005 4006 def_access_ibp_counter(loop_pkts); 4007 def_access_ibp_counter(rc_resends); 4008 def_access_ibp_counter(rnr_naks); 4009 def_access_ibp_counter(other_naks); 4010 def_access_ibp_counter(rc_timeouts); 4011 def_access_ibp_counter(pkt_drops); 4012 def_access_ibp_counter(dmawait); 4013 def_access_ibp_counter(rc_seqnak); 4014 def_access_ibp_counter(rc_dupreq); 4015 def_access_ibp_counter(rdma_seq); 4016 def_access_ibp_counter(unaligned); 4017 def_access_ibp_counter(seq_naks); 4018 4019 static struct cntr_entry dev_cntrs[DEV_CNTR_LAST] = { 4020 [C_RCV_OVF] = RXE32_DEV_CNTR_ELEM(RcvOverflow, RCV_BUF_OVFL_CNT, CNTR_SYNTH), 4021 [C_RX_TID_FULL] = RXE32_DEV_CNTR_ELEM(RxTIDFullEr, RCV_TID_FULL_ERR_CNT, 4022 CNTR_NORMAL), 4023 [C_RX_TID_INVALID] = RXE32_DEV_CNTR_ELEM(RxTIDInvalid, RCV_TID_VALID_ERR_CNT, 4024 CNTR_NORMAL), 4025 [C_RX_TID_FLGMS] = RXE32_DEV_CNTR_ELEM(RxTidFLGMs, 4026 RCV_TID_FLOW_GEN_MISMATCH_CNT, 4027 CNTR_NORMAL), 4028 [C_RX_CTX_EGRS] = RXE32_DEV_CNTR_ELEM(RxCtxEgrS, RCV_CONTEXT_EGR_STALL, 4029 CNTR_NORMAL), 4030 [C_RCV_TID_FLSMS] = RXE32_DEV_CNTR_ELEM(RxTidFLSMs, 4031 RCV_TID_FLOW_SEQ_MISMATCH_CNT, CNTR_NORMAL), 4032 [C_CCE_PCI_CR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePciCrSt, 4033 CCE_PCIE_POSTED_CRDT_STALL_CNT, CNTR_NORMAL), 4034 [C_CCE_PCI_TR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePciTrSt, CCE_PCIE_TRGT_STALL_CNT, 4035 CNTR_NORMAL), 4036 [C_CCE_PIO_WR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePioWrSt, CCE_PIO_WR_STALL_CNT, 4037 CNTR_NORMAL), 4038 [C_CCE_ERR_INT] = CCE_INT_DEV_CNTR_ELEM(CceErrInt, CCE_ERR_INT_CNT, 4039 CNTR_NORMAL), 4040 [C_CCE_SDMA_INT] = CCE_INT_DEV_CNTR_ELEM(CceSdmaInt, CCE_SDMA_INT_CNT, 4041 CNTR_NORMAL), 4042 [C_CCE_MISC_INT] = CCE_INT_DEV_CNTR_ELEM(CceMiscInt, CCE_MISC_INT_CNT, 4043 CNTR_NORMAL), 4044 [C_CCE_RCV_AV_INT] = CCE_INT_DEV_CNTR_ELEM(CceRcvAvInt, CCE_RCV_AVAIL_INT_CNT, 4045 CNTR_NORMAL), 4046 [C_CCE_RCV_URG_INT] = CCE_INT_DEV_CNTR_ELEM(CceRcvUrgInt, 4047 CCE_RCV_URGENT_INT_CNT, CNTR_NORMAL), 4048 [C_CCE_SEND_CR_INT] = CCE_INT_DEV_CNTR_ELEM(CceSndCrInt, 4049 CCE_SEND_CREDIT_INT_CNT, CNTR_NORMAL), 4050 [C_DC_UNC_ERR] = DC_PERF_CNTR(DcUnctblErr, DCC_ERR_UNCORRECTABLE_CNT, 4051 CNTR_SYNTH), 4052 [C_DC_RCV_ERR] = CNTR_ELEM("DcRecvErr", DCC_ERR_PORTRCV_ERR_CNT, 0, CNTR_SYNTH, 4053 access_dc_rcv_err_cnt), 4054 [C_DC_FM_CFG_ERR] = DC_PERF_CNTR(DcFmCfgErr, DCC_ERR_FMCONFIG_ERR_CNT, 4055 CNTR_SYNTH), 4056 [C_DC_RMT_PHY_ERR] = DC_PERF_CNTR(DcRmtPhyErr, DCC_ERR_RCVREMOTE_PHY_ERR_CNT, 4057 CNTR_SYNTH), 4058 [C_DC_DROPPED_PKT] = DC_PERF_CNTR(DcDroppedPkt, DCC_ERR_DROPPED_PKT_CNT, 4059 CNTR_SYNTH), 4060 [C_DC_MC_XMIT_PKTS] = DC_PERF_CNTR(DcMcXmitPkts, 4061 DCC_PRF_PORT_XMIT_MULTICAST_CNT, CNTR_SYNTH), 4062 [C_DC_MC_RCV_PKTS] = DC_PERF_CNTR(DcMcRcvPkts, 4063 DCC_PRF_PORT_RCV_MULTICAST_PKT_CNT, 4064 CNTR_SYNTH), 4065 [C_DC_XMIT_CERR] = DC_PERF_CNTR(DcXmitCorr, 4066 DCC_PRF_PORT_XMIT_CORRECTABLE_CNT, CNTR_SYNTH), 4067 [C_DC_RCV_CERR] = DC_PERF_CNTR(DcRcvCorrCnt, DCC_PRF_PORT_RCV_CORRECTABLE_CNT, 4068 CNTR_SYNTH), 4069 [C_DC_RCV_FCC] = DC_PERF_CNTR(DcRxFCntl, DCC_PRF_RX_FLOW_CRTL_CNT, 4070 CNTR_SYNTH), 4071 [C_DC_XMIT_FCC] = DC_PERF_CNTR(DcXmitFCntl, DCC_PRF_TX_FLOW_CRTL_CNT, 4072 CNTR_SYNTH), 4073 [C_DC_XMIT_FLITS] = DC_PERF_CNTR(DcXmitFlits, DCC_PRF_PORT_XMIT_DATA_CNT, 4074 CNTR_SYNTH), 4075 [C_DC_RCV_FLITS] = DC_PERF_CNTR(DcRcvFlits, DCC_PRF_PORT_RCV_DATA_CNT, 4076 CNTR_SYNTH), 4077 [C_DC_XMIT_PKTS] = DC_PERF_CNTR(DcXmitPkts, DCC_PRF_PORT_XMIT_PKTS_CNT, 4078 CNTR_SYNTH), 4079 [C_DC_RCV_PKTS] = DC_PERF_CNTR(DcRcvPkts, DCC_PRF_PORT_RCV_PKTS_CNT, 4080 CNTR_SYNTH), 4081 [C_DC_RX_FLIT_VL] = DC_PERF_CNTR(DcRxFlitVl, DCC_PRF_PORT_VL_RCV_DATA_CNT, 4082 CNTR_SYNTH | CNTR_VL), 4083 [C_DC_RX_PKT_VL] = DC_PERF_CNTR(DcRxPktVl, DCC_PRF_PORT_VL_RCV_PKTS_CNT, 4084 CNTR_SYNTH | CNTR_VL), 4085 [C_DC_RCV_FCN] = DC_PERF_CNTR(DcRcvFcn, DCC_PRF_PORT_RCV_FECN_CNT, CNTR_SYNTH), 4086 [C_DC_RCV_FCN_VL] = DC_PERF_CNTR(DcRcvFcnVl, DCC_PRF_PORT_VL_RCV_FECN_CNT, 4087 CNTR_SYNTH | CNTR_VL), 4088 [C_DC_RCV_BCN] = DC_PERF_CNTR(DcRcvBcn, DCC_PRF_PORT_RCV_BECN_CNT, CNTR_SYNTH), 4089 [C_DC_RCV_BCN_VL] = DC_PERF_CNTR(DcRcvBcnVl, DCC_PRF_PORT_VL_RCV_BECN_CNT, 4090 CNTR_SYNTH | CNTR_VL), 4091 [C_DC_RCV_BBL] = DC_PERF_CNTR(DcRcvBbl, DCC_PRF_PORT_RCV_BUBBLE_CNT, 4092 CNTR_SYNTH), 4093 [C_DC_RCV_BBL_VL] = DC_PERF_CNTR(DcRcvBblVl, DCC_PRF_PORT_VL_RCV_BUBBLE_CNT, 4094 CNTR_SYNTH | CNTR_VL), 4095 [C_DC_MARK_FECN] = DC_PERF_CNTR(DcMarkFcn, DCC_PRF_PORT_MARK_FECN_CNT, 4096 CNTR_SYNTH), 4097 [C_DC_MARK_FECN_VL] = DC_PERF_CNTR(DcMarkFcnVl, DCC_PRF_PORT_VL_MARK_FECN_CNT, 4098 CNTR_SYNTH | CNTR_VL), 4099 [C_DC_TOTAL_CRC] = 4100 DC_PERF_CNTR_LCB(DcTotCrc, DC_LCB_ERR_INFO_TOTAL_CRC_ERR, 4101 CNTR_SYNTH), 4102 [C_DC_CRC_LN0] = DC_PERF_CNTR_LCB(DcCrcLn0, DC_LCB_ERR_INFO_CRC_ERR_LN0, 4103 CNTR_SYNTH), 4104 [C_DC_CRC_LN1] = DC_PERF_CNTR_LCB(DcCrcLn1, DC_LCB_ERR_INFO_CRC_ERR_LN1, 4105 CNTR_SYNTH), 4106 [C_DC_CRC_LN2] = DC_PERF_CNTR_LCB(DcCrcLn2, DC_LCB_ERR_INFO_CRC_ERR_LN2, 4107 CNTR_SYNTH), 4108 [C_DC_CRC_LN3] = DC_PERF_CNTR_LCB(DcCrcLn3, DC_LCB_ERR_INFO_CRC_ERR_LN3, 4109 CNTR_SYNTH), 4110 [C_DC_CRC_MULT_LN] = 4111 DC_PERF_CNTR_LCB(DcMultLn, DC_LCB_ERR_INFO_CRC_ERR_MULTI_LN, 4112 CNTR_SYNTH), 4113 [C_DC_TX_REPLAY] = DC_PERF_CNTR_LCB(DcTxReplay, DC_LCB_ERR_INFO_TX_REPLAY_CNT, 4114 CNTR_SYNTH), 4115 [C_DC_RX_REPLAY] = DC_PERF_CNTR_LCB(DcRxReplay, DC_LCB_ERR_INFO_RX_REPLAY_CNT, 4116 CNTR_SYNTH), 4117 [C_DC_SEQ_CRC_CNT] = 4118 DC_PERF_CNTR_LCB(DcLinkSeqCrc, DC_LCB_ERR_INFO_SEQ_CRC_CNT, 4119 CNTR_SYNTH), 4120 [C_DC_ESC0_ONLY_CNT] = 4121 DC_PERF_CNTR_LCB(DcEsc0, DC_LCB_ERR_INFO_ESCAPE_0_ONLY_CNT, 4122 CNTR_SYNTH), 4123 [C_DC_ESC0_PLUS1_CNT] = 4124 DC_PERF_CNTR_LCB(DcEsc1, DC_LCB_ERR_INFO_ESCAPE_0_PLUS1_CNT, 4125 CNTR_SYNTH), 4126 [C_DC_ESC0_PLUS2_CNT] = 4127 DC_PERF_CNTR_LCB(DcEsc0Plus2, DC_LCB_ERR_INFO_ESCAPE_0_PLUS2_CNT, 4128 CNTR_SYNTH), 4129 [C_DC_REINIT_FROM_PEER_CNT] = 4130 DC_PERF_CNTR_LCB(DcReinitPeer, DC_LCB_ERR_INFO_REINIT_FROM_PEER_CNT, 4131 CNTR_SYNTH), 4132 [C_DC_SBE_CNT] = DC_PERF_CNTR_LCB(DcSbe, DC_LCB_ERR_INFO_SBE_CNT, 4133 CNTR_SYNTH), 4134 [C_DC_MISC_FLG_CNT] = 4135 DC_PERF_CNTR_LCB(DcMiscFlg, DC_LCB_ERR_INFO_MISC_FLG_CNT, 4136 CNTR_SYNTH), 4137 [C_DC_PRF_GOOD_LTP_CNT] = 4138 DC_PERF_CNTR_LCB(DcGoodLTP, DC_LCB_PRF_GOOD_LTP_CNT, CNTR_SYNTH), 4139 [C_DC_PRF_ACCEPTED_LTP_CNT] = 4140 DC_PERF_CNTR_LCB(DcAccLTP, DC_LCB_PRF_ACCEPTED_LTP_CNT, 4141 CNTR_SYNTH), 4142 [C_DC_PRF_RX_FLIT_CNT] = 4143 DC_PERF_CNTR_LCB(DcPrfRxFlit, DC_LCB_PRF_RX_FLIT_CNT, CNTR_SYNTH), 4144 [C_DC_PRF_TX_FLIT_CNT] = 4145 DC_PERF_CNTR_LCB(DcPrfTxFlit, DC_LCB_PRF_TX_FLIT_CNT, CNTR_SYNTH), 4146 [C_DC_PRF_CLK_CNTR] = 4147 DC_PERF_CNTR_LCB(DcPrfClk, DC_LCB_PRF_CLK_CNTR, CNTR_SYNTH), 4148 [C_DC_PG_DBG_FLIT_CRDTS_CNT] = 4149 DC_PERF_CNTR_LCB(DcFltCrdts, DC_LCB_PG_DBG_FLIT_CRDTS_CNT, CNTR_SYNTH), 4150 [C_DC_PG_STS_PAUSE_COMPLETE_CNT] = 4151 DC_PERF_CNTR_LCB(DcPauseComp, DC_LCB_PG_STS_PAUSE_COMPLETE_CNT, 4152 CNTR_SYNTH), 4153 [C_DC_PG_STS_TX_SBE_CNT] = 4154 DC_PERF_CNTR_LCB(DcStsTxSbe, DC_LCB_PG_STS_TX_SBE_CNT, CNTR_SYNTH), 4155 [C_DC_PG_STS_TX_MBE_CNT] = 4156 DC_PERF_CNTR_LCB(DcStsTxMbe, DC_LCB_PG_STS_TX_MBE_CNT, 4157 CNTR_SYNTH), 4158 [C_SW_CPU_INTR] = CNTR_ELEM("Intr", 0, 0, CNTR_NORMAL, 4159 access_sw_cpu_intr), 4160 [C_SW_CPU_RCV_LIM] = CNTR_ELEM("RcvLimit", 0, 0, CNTR_NORMAL, 4161 access_sw_cpu_rcv_limit), 4162 [C_SW_VTX_WAIT] = CNTR_ELEM("vTxWait", 0, 0, CNTR_NORMAL, 4163 access_sw_vtx_wait), 4164 [C_SW_PIO_WAIT] = CNTR_ELEM("PioWait", 0, 0, CNTR_NORMAL, 4165 access_sw_pio_wait), 4166 [C_SW_PIO_DRAIN] = CNTR_ELEM("PioDrain", 0, 0, CNTR_NORMAL, 4167 access_sw_pio_drain), 4168 [C_SW_KMEM_WAIT] = CNTR_ELEM("KmemWait", 0, 0, CNTR_NORMAL, 4169 access_sw_kmem_wait), 4170 [C_SW_SEND_SCHED] = CNTR_ELEM("SendSched", 0, 0, CNTR_NORMAL, 4171 access_sw_send_schedule), 4172 [C_SDMA_DESC_FETCHED_CNT] = CNTR_ELEM("SDEDscFdCn", 4173 SEND_DMA_DESC_FETCHED_CNT, 0, 4174 CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA, 4175 dev_access_u32_csr), 4176 [C_SDMA_INT_CNT] = CNTR_ELEM("SDMAInt", 0, 0, 4177 CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA, 4178 access_sde_int_cnt), 4179 [C_SDMA_ERR_CNT] = CNTR_ELEM("SDMAErrCt", 0, 0, 4180 CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA, 4181 access_sde_err_cnt), 4182 [C_SDMA_IDLE_INT_CNT] = CNTR_ELEM("SDMAIdInt", 0, 0, 4183 CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA, 4184 access_sde_idle_int_cnt), 4185 [C_SDMA_PROGRESS_INT_CNT] = CNTR_ELEM("SDMAPrIntCn", 0, 0, 4186 CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA, 4187 access_sde_progress_int_cnt), 4188 /* MISC_ERR_STATUS */ 4189 [C_MISC_PLL_LOCK_FAIL_ERR] = CNTR_ELEM("MISC_PLL_LOCK_FAIL_ERR", 0, 0, 4190 CNTR_NORMAL, 4191 access_misc_pll_lock_fail_err_cnt), 4192 [C_MISC_MBIST_FAIL_ERR] = CNTR_ELEM("MISC_MBIST_FAIL_ERR", 0, 0, 4193 CNTR_NORMAL, 4194 access_misc_mbist_fail_err_cnt), 4195 [C_MISC_INVALID_EEP_CMD_ERR] = CNTR_ELEM("MISC_INVALID_EEP_CMD_ERR", 0, 0, 4196 CNTR_NORMAL, 4197 access_misc_invalid_eep_cmd_err_cnt), 4198 [C_MISC_EFUSE_DONE_PARITY_ERR] = CNTR_ELEM("MISC_EFUSE_DONE_PARITY_ERR", 0, 0, 4199 CNTR_NORMAL, 4200 access_misc_efuse_done_parity_err_cnt), 4201 [C_MISC_EFUSE_WRITE_ERR] = CNTR_ELEM("MISC_EFUSE_WRITE_ERR", 0, 0, 4202 CNTR_NORMAL, 4203 access_misc_efuse_write_err_cnt), 4204 [C_MISC_EFUSE_READ_BAD_ADDR_ERR] = CNTR_ELEM("MISC_EFUSE_READ_BAD_ADDR_ERR", 0, 4205 0, CNTR_NORMAL, 4206 access_misc_efuse_read_bad_addr_err_cnt), 4207 [C_MISC_EFUSE_CSR_PARITY_ERR] = CNTR_ELEM("MISC_EFUSE_CSR_PARITY_ERR", 0, 0, 4208 CNTR_NORMAL, 4209 access_misc_efuse_csr_parity_err_cnt), 4210 [C_MISC_FW_AUTH_FAILED_ERR] = CNTR_ELEM("MISC_FW_AUTH_FAILED_ERR", 0, 0, 4211 CNTR_NORMAL, 4212 access_misc_fw_auth_failed_err_cnt), 4213 [C_MISC_KEY_MISMATCH_ERR] = CNTR_ELEM("MISC_KEY_MISMATCH_ERR", 0, 0, 4214 CNTR_NORMAL, 4215 access_misc_key_mismatch_err_cnt), 4216 [C_MISC_SBUS_WRITE_FAILED_ERR] = CNTR_ELEM("MISC_SBUS_WRITE_FAILED_ERR", 0, 0, 4217 CNTR_NORMAL, 4218 access_misc_sbus_write_failed_err_cnt), 4219 [C_MISC_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("MISC_CSR_WRITE_BAD_ADDR_ERR", 0, 0, 4220 CNTR_NORMAL, 4221 access_misc_csr_write_bad_addr_err_cnt), 4222 [C_MISC_CSR_READ_BAD_ADDR_ERR] = CNTR_ELEM("MISC_CSR_READ_BAD_ADDR_ERR", 0, 0, 4223 CNTR_NORMAL, 4224 access_misc_csr_read_bad_addr_err_cnt), 4225 [C_MISC_CSR_PARITY_ERR] = CNTR_ELEM("MISC_CSR_PARITY_ERR", 0, 0, 4226 CNTR_NORMAL, 4227 access_misc_csr_parity_err_cnt), 4228 /* CceErrStatus */ 4229 [C_CCE_ERR_STATUS_AGGREGATED_CNT] = CNTR_ELEM("CceErrStatusAggregatedCnt", 0, 0, 4230 CNTR_NORMAL, 4231 access_sw_cce_err_status_aggregated_cnt), 4232 [C_CCE_MSIX_CSR_PARITY_ERR] = CNTR_ELEM("CceMsixCsrParityErr", 0, 0, 4233 CNTR_NORMAL, 4234 access_cce_msix_csr_parity_err_cnt), 4235 [C_CCE_INT_MAP_UNC_ERR] = CNTR_ELEM("CceIntMapUncErr", 0, 0, 4236 CNTR_NORMAL, 4237 access_cce_int_map_unc_err_cnt), 4238 [C_CCE_INT_MAP_COR_ERR] = CNTR_ELEM("CceIntMapCorErr", 0, 0, 4239 CNTR_NORMAL, 4240 access_cce_int_map_cor_err_cnt), 4241 [C_CCE_MSIX_TABLE_UNC_ERR] = CNTR_ELEM("CceMsixTableUncErr", 0, 0, 4242 CNTR_NORMAL, 4243 access_cce_msix_table_unc_err_cnt), 4244 [C_CCE_MSIX_TABLE_COR_ERR] = CNTR_ELEM("CceMsixTableCorErr", 0, 0, 4245 CNTR_NORMAL, 4246 access_cce_msix_table_cor_err_cnt), 4247 [C_CCE_RXDMA_CONV_FIFO_PARITY_ERR] = CNTR_ELEM("CceRxdmaConvFifoParityErr", 0, 4248 0, CNTR_NORMAL, 4249 access_cce_rxdma_conv_fifo_parity_err_cnt), 4250 [C_CCE_RCPL_ASYNC_FIFO_PARITY_ERR] = CNTR_ELEM("CceRcplAsyncFifoParityErr", 0, 4251 0, CNTR_NORMAL, 4252 access_cce_rcpl_async_fifo_parity_err_cnt), 4253 [C_CCE_SEG_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("CceSegWriteBadAddrErr", 0, 0, 4254 CNTR_NORMAL, 4255 access_cce_seg_write_bad_addr_err_cnt), 4256 [C_CCE_SEG_READ_BAD_ADDR_ERR] = CNTR_ELEM("CceSegReadBadAddrErr", 0, 0, 4257 CNTR_NORMAL, 4258 access_cce_seg_read_bad_addr_err_cnt), 4259 [C_LA_TRIGGERED] = CNTR_ELEM("Cce LATriggered", 0, 0, 4260 CNTR_NORMAL, 4261 access_la_triggered_cnt), 4262 [C_CCE_TRGT_CPL_TIMEOUT_ERR] = CNTR_ELEM("CceTrgtCplTimeoutErr", 0, 0, 4263 CNTR_NORMAL, 4264 access_cce_trgt_cpl_timeout_err_cnt), 4265 [C_PCIC_RECEIVE_PARITY_ERR] = CNTR_ELEM("PcicReceiveParityErr", 0, 0, 4266 CNTR_NORMAL, 4267 access_pcic_receive_parity_err_cnt), 4268 [C_PCIC_TRANSMIT_BACK_PARITY_ERR] = CNTR_ELEM("PcicTransmitBackParityErr", 0, 0, 4269 CNTR_NORMAL, 4270 access_pcic_transmit_back_parity_err_cnt), 4271 [C_PCIC_TRANSMIT_FRONT_PARITY_ERR] = CNTR_ELEM("PcicTransmitFrontParityErr", 0, 4272 0, CNTR_NORMAL, 4273 access_pcic_transmit_front_parity_err_cnt), 4274 [C_PCIC_CPL_DAT_Q_UNC_ERR] = CNTR_ELEM("PcicCplDatQUncErr", 0, 0, 4275 CNTR_NORMAL, 4276 access_pcic_cpl_dat_q_unc_err_cnt), 4277 [C_PCIC_CPL_HD_Q_UNC_ERR] = CNTR_ELEM("PcicCplHdQUncErr", 0, 0, 4278 CNTR_NORMAL, 4279 access_pcic_cpl_hd_q_unc_err_cnt), 4280 [C_PCIC_POST_DAT_Q_UNC_ERR] = CNTR_ELEM("PcicPostDatQUncErr", 0, 0, 4281 CNTR_NORMAL, 4282 access_pcic_post_dat_q_unc_err_cnt), 4283 [C_PCIC_POST_HD_Q_UNC_ERR] = CNTR_ELEM("PcicPostHdQUncErr", 0, 0, 4284 CNTR_NORMAL, 4285 access_pcic_post_hd_q_unc_err_cnt), 4286 [C_PCIC_RETRY_SOT_MEM_UNC_ERR] = CNTR_ELEM("PcicRetrySotMemUncErr", 0, 0, 4287 CNTR_NORMAL, 4288 access_pcic_retry_sot_mem_unc_err_cnt), 4289 [C_PCIC_RETRY_MEM_UNC_ERR] = CNTR_ELEM("PcicRetryMemUncErr", 0, 0, 4290 CNTR_NORMAL, 4291 access_pcic_retry_mem_unc_err), 4292 [C_PCIC_N_POST_DAT_Q_PARITY_ERR] = CNTR_ELEM("PcicNPostDatQParityErr", 0, 0, 4293 CNTR_NORMAL, 4294 access_pcic_n_post_dat_q_parity_err_cnt), 4295 [C_PCIC_N_POST_H_Q_PARITY_ERR] = CNTR_ELEM("PcicNPostHQParityErr", 0, 0, 4296 CNTR_NORMAL, 4297 access_pcic_n_post_h_q_parity_err_cnt), 4298 [C_PCIC_CPL_DAT_Q_COR_ERR] = CNTR_ELEM("PcicCplDatQCorErr", 0, 0, 4299 CNTR_NORMAL, 4300 access_pcic_cpl_dat_q_cor_err_cnt), 4301 [C_PCIC_CPL_HD_Q_COR_ERR] = CNTR_ELEM("PcicCplHdQCorErr", 0, 0, 4302 CNTR_NORMAL, 4303 access_pcic_cpl_hd_q_cor_err_cnt), 4304 [C_PCIC_POST_DAT_Q_COR_ERR] = CNTR_ELEM("PcicPostDatQCorErr", 0, 0, 4305 CNTR_NORMAL, 4306 access_pcic_post_dat_q_cor_err_cnt), 4307 [C_PCIC_POST_HD_Q_COR_ERR] = CNTR_ELEM("PcicPostHdQCorErr", 0, 0, 4308 CNTR_NORMAL, 4309 access_pcic_post_hd_q_cor_err_cnt), 4310 [C_PCIC_RETRY_SOT_MEM_COR_ERR] = CNTR_ELEM("PcicRetrySotMemCorErr", 0, 0, 4311 CNTR_NORMAL, 4312 access_pcic_retry_sot_mem_cor_err_cnt), 4313 [C_PCIC_RETRY_MEM_COR_ERR] = CNTR_ELEM("PcicRetryMemCorErr", 0, 0, 4314 CNTR_NORMAL, 4315 access_pcic_retry_mem_cor_err_cnt), 4316 [C_CCE_CLI1_ASYNC_FIFO_DBG_PARITY_ERR] = CNTR_ELEM( 4317 "CceCli1AsyncFifoDbgParityError", 0, 0, 4318 CNTR_NORMAL, 4319 access_cce_cli1_async_fifo_dbg_parity_err_cnt), 4320 [C_CCE_CLI1_ASYNC_FIFO_RXDMA_PARITY_ERR] = CNTR_ELEM( 4321 "CceCli1AsyncFifoRxdmaParityError", 0, 0, 4322 CNTR_NORMAL, 4323 access_cce_cli1_async_fifo_rxdma_parity_err_cnt 4324 ), 4325 [C_CCE_CLI1_ASYNC_FIFO_SDMA_HD_PARITY_ERR] = CNTR_ELEM( 4326 "CceCli1AsyncFifoSdmaHdParityErr", 0, 0, 4327 CNTR_NORMAL, 4328 access_cce_cli1_async_fifo_sdma_hd_parity_err_cnt), 4329 [C_CCE_CLI1_ASYNC_FIFO_PIO_CRDT_PARITY_ERR] = CNTR_ELEM( 4330 "CceCli1AsyncFifoPioCrdtParityErr", 0, 0, 4331 CNTR_NORMAL, 4332 access_cce_cl1_async_fifo_pio_crdt_parity_err_cnt), 4333 [C_CCE_CLI2_ASYNC_FIFO_PARITY_ERR] = CNTR_ELEM("CceCli2AsyncFifoParityErr", 0, 4334 0, CNTR_NORMAL, 4335 access_cce_cli2_async_fifo_parity_err_cnt), 4336 [C_CCE_CSR_CFG_BUS_PARITY_ERR] = CNTR_ELEM("CceCsrCfgBusParityErr", 0, 0, 4337 CNTR_NORMAL, 4338 access_cce_csr_cfg_bus_parity_err_cnt), 4339 [C_CCE_CLI0_ASYNC_FIFO_PARTIY_ERR] = CNTR_ELEM("CceCli0AsyncFifoParityErr", 0, 4340 0, CNTR_NORMAL, 4341 access_cce_cli0_async_fifo_parity_err_cnt), 4342 [C_CCE_RSPD_DATA_PARITY_ERR] = CNTR_ELEM("CceRspdDataParityErr", 0, 0, 4343 CNTR_NORMAL, 4344 access_cce_rspd_data_parity_err_cnt), 4345 [C_CCE_TRGT_ACCESS_ERR] = CNTR_ELEM("CceTrgtAccessErr", 0, 0, 4346 CNTR_NORMAL, 4347 access_cce_trgt_access_err_cnt), 4348 [C_CCE_TRGT_ASYNC_FIFO_PARITY_ERR] = CNTR_ELEM("CceTrgtAsyncFifoParityErr", 0, 4349 0, CNTR_NORMAL, 4350 access_cce_trgt_async_fifo_parity_err_cnt), 4351 [C_CCE_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("CceCsrWriteBadAddrErr", 0, 0, 4352 CNTR_NORMAL, 4353 access_cce_csr_write_bad_addr_err_cnt), 4354 [C_CCE_CSR_READ_BAD_ADDR_ERR] = CNTR_ELEM("CceCsrReadBadAddrErr", 0, 0, 4355 CNTR_NORMAL, 4356 access_cce_csr_read_bad_addr_err_cnt), 4357 [C_CCE_CSR_PARITY_ERR] = CNTR_ELEM("CceCsrParityErr", 0, 0, 4358 CNTR_NORMAL, 4359 access_ccs_csr_parity_err_cnt), 4360 4361 /* RcvErrStatus */ 4362 [C_RX_CSR_PARITY_ERR] = CNTR_ELEM("RxCsrParityErr", 0, 0, 4363 CNTR_NORMAL, 4364 access_rx_csr_parity_err_cnt), 4365 [C_RX_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("RxCsrWriteBadAddrErr", 0, 0, 4366 CNTR_NORMAL, 4367 access_rx_csr_write_bad_addr_err_cnt), 4368 [C_RX_CSR_READ_BAD_ADDR_ERR] = CNTR_ELEM("RxCsrReadBadAddrErr", 0, 0, 4369 CNTR_NORMAL, 4370 access_rx_csr_read_bad_addr_err_cnt), 4371 [C_RX_DMA_CSR_UNC_ERR] = CNTR_ELEM("RxDmaCsrUncErr", 0, 0, 4372 CNTR_NORMAL, 4373 access_rx_dma_csr_unc_err_cnt), 4374 [C_RX_DMA_DQ_FSM_ENCODING_ERR] = CNTR_ELEM("RxDmaDqFsmEncodingErr", 0, 0, 4375 CNTR_NORMAL, 4376 access_rx_dma_dq_fsm_encoding_err_cnt), 4377 [C_RX_DMA_EQ_FSM_ENCODING_ERR] = CNTR_ELEM("RxDmaEqFsmEncodingErr", 0, 0, 4378 CNTR_NORMAL, 4379 access_rx_dma_eq_fsm_encoding_err_cnt), 4380 [C_RX_DMA_CSR_PARITY_ERR] = CNTR_ELEM("RxDmaCsrParityErr", 0, 0, 4381 CNTR_NORMAL, 4382 access_rx_dma_csr_parity_err_cnt), 4383 [C_RX_RBUF_DATA_COR_ERR] = CNTR_ELEM("RxRbufDataCorErr", 0, 0, 4384 CNTR_NORMAL, 4385 access_rx_rbuf_data_cor_err_cnt), 4386 [C_RX_RBUF_DATA_UNC_ERR] = CNTR_ELEM("RxRbufDataUncErr", 0, 0, 4387 CNTR_NORMAL, 4388 access_rx_rbuf_data_unc_err_cnt), 4389 [C_RX_DMA_DATA_FIFO_RD_COR_ERR] = CNTR_ELEM("RxDmaDataFifoRdCorErr", 0, 0, 4390 CNTR_NORMAL, 4391 access_rx_dma_data_fifo_rd_cor_err_cnt), 4392 [C_RX_DMA_DATA_FIFO_RD_UNC_ERR] = CNTR_ELEM("RxDmaDataFifoRdUncErr", 0, 0, 4393 CNTR_NORMAL, 4394 access_rx_dma_data_fifo_rd_unc_err_cnt), 4395 [C_RX_DMA_HDR_FIFO_RD_COR_ERR] = CNTR_ELEM("RxDmaHdrFifoRdCorErr", 0, 0, 4396 CNTR_NORMAL, 4397 access_rx_dma_hdr_fifo_rd_cor_err_cnt), 4398 [C_RX_DMA_HDR_FIFO_RD_UNC_ERR] = CNTR_ELEM("RxDmaHdrFifoRdUncErr", 0, 0, 4399 CNTR_NORMAL, 4400 access_rx_dma_hdr_fifo_rd_unc_err_cnt), 4401 [C_RX_RBUF_DESC_PART2_COR_ERR] = CNTR_ELEM("RxRbufDescPart2CorErr", 0, 0, 4402 CNTR_NORMAL, 4403 access_rx_rbuf_desc_part2_cor_err_cnt), 4404 [C_RX_RBUF_DESC_PART2_UNC_ERR] = CNTR_ELEM("RxRbufDescPart2UncErr", 0, 0, 4405 CNTR_NORMAL, 4406 access_rx_rbuf_desc_part2_unc_err_cnt), 4407 [C_RX_RBUF_DESC_PART1_COR_ERR] = CNTR_ELEM("RxRbufDescPart1CorErr", 0, 0, 4408 CNTR_NORMAL, 4409 access_rx_rbuf_desc_part1_cor_err_cnt), 4410 [C_RX_RBUF_DESC_PART1_UNC_ERR] = CNTR_ELEM("RxRbufDescPart1UncErr", 0, 0, 4411 CNTR_NORMAL, 4412 access_rx_rbuf_desc_part1_unc_err_cnt), 4413 [C_RX_HQ_INTR_FSM_ERR] = CNTR_ELEM("RxHqIntrFsmErr", 0, 0, 4414 CNTR_NORMAL, 4415 access_rx_hq_intr_fsm_err_cnt), 4416 [C_RX_HQ_INTR_CSR_PARITY_ERR] = CNTR_ELEM("RxHqIntrCsrParityErr", 0, 0, 4417 CNTR_NORMAL, 4418 access_rx_hq_intr_csr_parity_err_cnt), 4419 [C_RX_LOOKUP_CSR_PARITY_ERR] = CNTR_ELEM("RxLookupCsrParityErr", 0, 0, 4420 CNTR_NORMAL, 4421 access_rx_lookup_csr_parity_err_cnt), 4422 [C_RX_LOOKUP_RCV_ARRAY_COR_ERR] = CNTR_ELEM("RxLookupRcvArrayCorErr", 0, 0, 4423 CNTR_NORMAL, 4424 access_rx_lookup_rcv_array_cor_err_cnt), 4425 [C_RX_LOOKUP_RCV_ARRAY_UNC_ERR] = CNTR_ELEM("RxLookupRcvArrayUncErr", 0, 0, 4426 CNTR_NORMAL, 4427 access_rx_lookup_rcv_array_unc_err_cnt), 4428 [C_RX_LOOKUP_DES_PART2_PARITY_ERR] = CNTR_ELEM("RxLookupDesPart2ParityErr", 0, 4429 0, CNTR_NORMAL, 4430 access_rx_lookup_des_part2_parity_err_cnt), 4431 [C_RX_LOOKUP_DES_PART1_UNC_COR_ERR] = CNTR_ELEM("RxLookupDesPart1UncCorErr", 0, 4432 0, CNTR_NORMAL, 4433 access_rx_lookup_des_part1_unc_cor_err_cnt), 4434 [C_RX_LOOKUP_DES_PART1_UNC_ERR] = CNTR_ELEM("RxLookupDesPart1UncErr", 0, 0, 4435 CNTR_NORMAL, 4436 access_rx_lookup_des_part1_unc_err_cnt), 4437 [C_RX_RBUF_NEXT_FREE_BUF_COR_ERR] = CNTR_ELEM("RxRbufNextFreeBufCorErr", 0, 0, 4438 CNTR_NORMAL, 4439 access_rx_rbuf_next_free_buf_cor_err_cnt), 4440 [C_RX_RBUF_NEXT_FREE_BUF_UNC_ERR] = CNTR_ELEM("RxRbufNextFreeBufUncErr", 0, 0, 4441 CNTR_NORMAL, 4442 access_rx_rbuf_next_free_buf_unc_err_cnt), 4443 [C_RX_RBUF_FL_INIT_WR_ADDR_PARITY_ERR] = CNTR_ELEM( 4444 "RxRbufFlInitWrAddrParityErr", 0, 0, 4445 CNTR_NORMAL, 4446 access_rbuf_fl_init_wr_addr_parity_err_cnt), 4447 [C_RX_RBUF_FL_INITDONE_PARITY_ERR] = CNTR_ELEM("RxRbufFlInitdoneParityErr", 0, 4448 0, CNTR_NORMAL, 4449 access_rx_rbuf_fl_initdone_parity_err_cnt), 4450 [C_RX_RBUF_FL_WRITE_ADDR_PARITY_ERR] = CNTR_ELEM("RxRbufFlWrAddrParityErr", 0, 4451 0, CNTR_NORMAL, 4452 access_rx_rbuf_fl_write_addr_parity_err_cnt), 4453 [C_RX_RBUF_FL_RD_ADDR_PARITY_ERR] = CNTR_ELEM("RxRbufFlRdAddrParityErr", 0, 0, 4454 CNTR_NORMAL, 4455 access_rx_rbuf_fl_rd_addr_parity_err_cnt), 4456 [C_RX_RBUF_EMPTY_ERR] = CNTR_ELEM("RxRbufEmptyErr", 0, 0, 4457 CNTR_NORMAL, 4458 access_rx_rbuf_empty_err_cnt), 4459 [C_RX_RBUF_FULL_ERR] = CNTR_ELEM("RxRbufFullErr", 0, 0, 4460 CNTR_NORMAL, 4461 access_rx_rbuf_full_err_cnt), 4462 [C_RX_RBUF_BAD_LOOKUP_ERR] = CNTR_ELEM("RxRBufBadLookupErr", 0, 0, 4463 CNTR_NORMAL, 4464 access_rbuf_bad_lookup_err_cnt), 4465 [C_RX_RBUF_CTX_ID_PARITY_ERR] = CNTR_ELEM("RxRbufCtxIdParityErr", 0, 0, 4466 CNTR_NORMAL, 4467 access_rbuf_ctx_id_parity_err_cnt), 4468 [C_RX_RBUF_CSR_QEOPDW_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQEOPDWParityErr", 0, 0, 4469 CNTR_NORMAL, 4470 access_rbuf_csr_qeopdw_parity_err_cnt), 4471 [C_RX_RBUF_CSR_Q_NUM_OF_PKT_PARITY_ERR] = CNTR_ELEM( 4472 "RxRbufCsrQNumOfPktParityErr", 0, 0, 4473 CNTR_NORMAL, 4474 access_rx_rbuf_csr_q_num_of_pkt_parity_err_cnt), 4475 [C_RX_RBUF_CSR_Q_T1_PTR_PARITY_ERR] = CNTR_ELEM( 4476 "RxRbufCsrQTlPtrParityErr", 0, 0, 4477 CNTR_NORMAL, 4478 access_rx_rbuf_csr_q_t1_ptr_parity_err_cnt), 4479 [C_RX_RBUF_CSR_Q_HD_PTR_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQHdPtrParityErr", 0, 4480 0, CNTR_NORMAL, 4481 access_rx_rbuf_csr_q_hd_ptr_parity_err_cnt), 4482 [C_RX_RBUF_CSR_Q_VLD_BIT_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQVldBitParityErr", 0, 4483 0, CNTR_NORMAL, 4484 access_rx_rbuf_csr_q_vld_bit_parity_err_cnt), 4485 [C_RX_RBUF_CSR_Q_NEXT_BUF_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQNextBufParityErr", 4486 0, 0, CNTR_NORMAL, 4487 access_rx_rbuf_csr_q_next_buf_parity_err_cnt), 4488 [C_RX_RBUF_CSR_Q_ENT_CNT_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQEntCntParityErr", 0, 4489 0, CNTR_NORMAL, 4490 access_rx_rbuf_csr_q_ent_cnt_parity_err_cnt), 4491 [C_RX_RBUF_CSR_Q_HEAD_BUF_NUM_PARITY_ERR] = CNTR_ELEM( 4492 "RxRbufCsrQHeadBufNumParityErr", 0, 0, 4493 CNTR_NORMAL, 4494 access_rx_rbuf_csr_q_head_buf_num_parity_err_cnt), 4495 [C_RX_RBUF_BLOCK_LIST_READ_COR_ERR] = CNTR_ELEM("RxRbufBlockListReadCorErr", 0, 4496 0, CNTR_NORMAL, 4497 access_rx_rbuf_block_list_read_cor_err_cnt), 4498 [C_RX_RBUF_BLOCK_LIST_READ_UNC_ERR] = CNTR_ELEM("RxRbufBlockListReadUncErr", 0, 4499 0, CNTR_NORMAL, 4500 access_rx_rbuf_block_list_read_unc_err_cnt), 4501 [C_RX_RBUF_LOOKUP_DES_COR_ERR] = CNTR_ELEM("RxRbufLookupDesCorErr", 0, 0, 4502 CNTR_NORMAL, 4503 access_rx_rbuf_lookup_des_cor_err_cnt), 4504 [C_RX_RBUF_LOOKUP_DES_UNC_ERR] = CNTR_ELEM("RxRbufLookupDesUncErr", 0, 0, 4505 CNTR_NORMAL, 4506 access_rx_rbuf_lookup_des_unc_err_cnt), 4507 [C_RX_RBUF_LOOKUP_DES_REG_UNC_COR_ERR] = CNTR_ELEM( 4508 "RxRbufLookupDesRegUncCorErr", 0, 0, 4509 CNTR_NORMAL, 4510 access_rx_rbuf_lookup_des_reg_unc_cor_err_cnt), 4511 [C_RX_RBUF_LOOKUP_DES_REG_UNC_ERR] = CNTR_ELEM("RxRbufLookupDesRegUncErr", 0, 0, 4512 CNTR_NORMAL, 4513 access_rx_rbuf_lookup_des_reg_unc_err_cnt), 4514 [C_RX_RBUF_FREE_LIST_COR_ERR] = CNTR_ELEM("RxRbufFreeListCorErr", 0, 0, 4515 CNTR_NORMAL, 4516 access_rx_rbuf_free_list_cor_err_cnt), 4517 [C_RX_RBUF_FREE_LIST_UNC_ERR] = CNTR_ELEM("RxRbufFreeListUncErr", 0, 0, 4518 CNTR_NORMAL, 4519 access_rx_rbuf_free_list_unc_err_cnt), 4520 [C_RX_RCV_FSM_ENCODING_ERR] = CNTR_ELEM("RxRcvFsmEncodingErr", 0, 0, 4521 CNTR_NORMAL, 4522 access_rx_rcv_fsm_encoding_err_cnt), 4523 [C_RX_DMA_FLAG_COR_ERR] = CNTR_ELEM("RxDmaFlagCorErr", 0, 0, 4524 CNTR_NORMAL, 4525 access_rx_dma_flag_cor_err_cnt), 4526 [C_RX_DMA_FLAG_UNC_ERR] = CNTR_ELEM("RxDmaFlagUncErr", 0, 0, 4527 CNTR_NORMAL, 4528 access_rx_dma_flag_unc_err_cnt), 4529 [C_RX_DC_SOP_EOP_PARITY_ERR] = CNTR_ELEM("RxDcSopEopParityErr", 0, 0, 4530 CNTR_NORMAL, 4531 access_rx_dc_sop_eop_parity_err_cnt), 4532 [C_RX_RCV_CSR_PARITY_ERR] = CNTR_ELEM("RxRcvCsrParityErr", 0, 0, 4533 CNTR_NORMAL, 4534 access_rx_rcv_csr_parity_err_cnt), 4535 [C_RX_RCV_QP_MAP_TABLE_COR_ERR] = CNTR_ELEM("RxRcvQpMapTableCorErr", 0, 0, 4536 CNTR_NORMAL, 4537 access_rx_rcv_qp_map_table_cor_err_cnt), 4538 [C_RX_RCV_QP_MAP_TABLE_UNC_ERR] = CNTR_ELEM("RxRcvQpMapTableUncErr", 0, 0, 4539 CNTR_NORMAL, 4540 access_rx_rcv_qp_map_table_unc_err_cnt), 4541 [C_RX_RCV_DATA_COR_ERR] = CNTR_ELEM("RxRcvDataCorErr", 0, 0, 4542 CNTR_NORMAL, 4543 access_rx_rcv_data_cor_err_cnt), 4544 [C_RX_RCV_DATA_UNC_ERR] = CNTR_ELEM("RxRcvDataUncErr", 0, 0, 4545 CNTR_NORMAL, 4546 access_rx_rcv_data_unc_err_cnt), 4547 [C_RX_RCV_HDR_COR_ERR] = CNTR_ELEM("RxRcvHdrCorErr", 0, 0, 4548 CNTR_NORMAL, 4549 access_rx_rcv_hdr_cor_err_cnt), 4550 [C_RX_RCV_HDR_UNC_ERR] = CNTR_ELEM("RxRcvHdrUncErr", 0, 0, 4551 CNTR_NORMAL, 4552 access_rx_rcv_hdr_unc_err_cnt), 4553 [C_RX_DC_INTF_PARITY_ERR] = CNTR_ELEM("RxDcIntfParityErr", 0, 0, 4554 CNTR_NORMAL, 4555 access_rx_dc_intf_parity_err_cnt), 4556 [C_RX_DMA_CSR_COR_ERR] = CNTR_ELEM("RxDmaCsrCorErr", 0, 0, 4557 CNTR_NORMAL, 4558 access_rx_dma_csr_cor_err_cnt), 4559 /* SendPioErrStatus */ 4560 [C_PIO_PEC_SOP_HEAD_PARITY_ERR] = CNTR_ELEM("PioPecSopHeadParityErr", 0, 0, 4561 CNTR_NORMAL, 4562 access_pio_pec_sop_head_parity_err_cnt), 4563 [C_PIO_PCC_SOP_HEAD_PARITY_ERR] = CNTR_ELEM("PioPccSopHeadParityErr", 0, 0, 4564 CNTR_NORMAL, 4565 access_pio_pcc_sop_head_parity_err_cnt), 4566 [C_PIO_LAST_RETURNED_CNT_PARITY_ERR] = CNTR_ELEM("PioLastReturnedCntParityErr", 4567 0, 0, CNTR_NORMAL, 4568 access_pio_last_returned_cnt_parity_err_cnt), 4569 [C_PIO_CURRENT_FREE_CNT_PARITY_ERR] = CNTR_ELEM("PioCurrentFreeCntParityErr", 0, 4570 0, CNTR_NORMAL, 4571 access_pio_current_free_cnt_parity_err_cnt), 4572 [C_PIO_RSVD_31_ERR] = CNTR_ELEM("Pio Reserved 31", 0, 0, 4573 CNTR_NORMAL, 4574 access_pio_reserved_31_err_cnt), 4575 [C_PIO_RSVD_30_ERR] = CNTR_ELEM("Pio Reserved 30", 0, 0, 4576 CNTR_NORMAL, 4577 access_pio_reserved_30_err_cnt), 4578 [C_PIO_PPMC_SOP_LEN_ERR] = CNTR_ELEM("PioPpmcSopLenErr", 0, 0, 4579 CNTR_NORMAL, 4580 access_pio_ppmc_sop_len_err_cnt), 4581 [C_PIO_PPMC_BQC_MEM_PARITY_ERR] = CNTR_ELEM("PioPpmcBqcMemParityErr", 0, 0, 4582 CNTR_NORMAL, 4583 access_pio_ppmc_bqc_mem_parity_err_cnt), 4584 [C_PIO_VL_FIFO_PARITY_ERR] = CNTR_ELEM("PioVlFifoParityErr", 0, 0, 4585 CNTR_NORMAL, 4586 access_pio_vl_fifo_parity_err_cnt), 4587 [C_PIO_VLF_SOP_PARITY_ERR] = CNTR_ELEM("PioVlfSopParityErr", 0, 0, 4588 CNTR_NORMAL, 4589 access_pio_vlf_sop_parity_err_cnt), 4590 [C_PIO_VLF_V1_LEN_PARITY_ERR] = CNTR_ELEM("PioVlfVlLenParityErr", 0, 0, 4591 CNTR_NORMAL, 4592 access_pio_vlf_v1_len_parity_err_cnt), 4593 [C_PIO_BLOCK_QW_COUNT_PARITY_ERR] = CNTR_ELEM("PioBlockQwCountParityErr", 0, 0, 4594 CNTR_NORMAL, 4595 access_pio_block_qw_count_parity_err_cnt), 4596 [C_PIO_WRITE_QW_VALID_PARITY_ERR] = CNTR_ELEM("PioWriteQwValidParityErr", 0, 0, 4597 CNTR_NORMAL, 4598 access_pio_write_qw_valid_parity_err_cnt), 4599 [C_PIO_STATE_MACHINE_ERR] = CNTR_ELEM("PioStateMachineErr", 0, 0, 4600 CNTR_NORMAL, 4601 access_pio_state_machine_err_cnt), 4602 [C_PIO_WRITE_DATA_PARITY_ERR] = CNTR_ELEM("PioWriteDataParityErr", 0, 0, 4603 CNTR_NORMAL, 4604 access_pio_write_data_parity_err_cnt), 4605 [C_PIO_HOST_ADDR_MEM_COR_ERR] = CNTR_ELEM("PioHostAddrMemCorErr", 0, 0, 4606 CNTR_NORMAL, 4607 access_pio_host_addr_mem_cor_err_cnt), 4608 [C_PIO_HOST_ADDR_MEM_UNC_ERR] = CNTR_ELEM("PioHostAddrMemUncErr", 0, 0, 4609 CNTR_NORMAL, 4610 access_pio_host_addr_mem_unc_err_cnt), 4611 [C_PIO_PKT_EVICT_SM_OR_ARM_SM_ERR] = CNTR_ELEM("PioPktEvictSmOrArbSmErr", 0, 0, 4612 CNTR_NORMAL, 4613 access_pio_pkt_evict_sm_or_arb_sm_err_cnt), 4614 [C_PIO_INIT_SM_IN_ERR] = CNTR_ELEM("PioInitSmInErr", 0, 0, 4615 CNTR_NORMAL, 4616 access_pio_init_sm_in_err_cnt), 4617 [C_PIO_PPMC_PBL_FIFO_ERR] = CNTR_ELEM("PioPpmcPblFifoErr", 0, 0, 4618 CNTR_NORMAL, 4619 access_pio_ppmc_pbl_fifo_err_cnt), 4620 [C_PIO_CREDIT_RET_FIFO_PARITY_ERR] = CNTR_ELEM("PioCreditRetFifoParityErr", 0, 4621 0, CNTR_NORMAL, 4622 access_pio_credit_ret_fifo_parity_err_cnt), 4623 [C_PIO_V1_LEN_MEM_BANK1_COR_ERR] = CNTR_ELEM("PioVlLenMemBank1CorErr", 0, 0, 4624 CNTR_NORMAL, 4625 access_pio_v1_len_mem_bank1_cor_err_cnt), 4626 [C_PIO_V1_LEN_MEM_BANK0_COR_ERR] = CNTR_ELEM("PioVlLenMemBank0CorErr", 0, 0, 4627 CNTR_NORMAL, 4628 access_pio_v1_len_mem_bank0_cor_err_cnt), 4629 [C_PIO_V1_LEN_MEM_BANK1_UNC_ERR] = CNTR_ELEM("PioVlLenMemBank1UncErr", 0, 0, 4630 CNTR_NORMAL, 4631 access_pio_v1_len_mem_bank1_unc_err_cnt), 4632 [C_PIO_V1_LEN_MEM_BANK0_UNC_ERR] = CNTR_ELEM("PioVlLenMemBank0UncErr", 0, 0, 4633 CNTR_NORMAL, 4634 access_pio_v1_len_mem_bank0_unc_err_cnt), 4635 [C_PIO_SM_PKT_RESET_PARITY_ERR] = CNTR_ELEM("PioSmPktResetParityErr", 0, 0, 4636 CNTR_NORMAL, 4637 access_pio_sm_pkt_reset_parity_err_cnt), 4638 [C_PIO_PKT_EVICT_FIFO_PARITY_ERR] = CNTR_ELEM("PioPktEvictFifoParityErr", 0, 0, 4639 CNTR_NORMAL, 4640 access_pio_pkt_evict_fifo_parity_err_cnt), 4641 [C_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR] = CNTR_ELEM( 4642 "PioSbrdctrlCrrelFifoParityErr", 0, 0, 4643 CNTR_NORMAL, 4644 access_pio_sbrdctrl_crrel_fifo_parity_err_cnt), 4645 [C_PIO_SBRDCTL_CRREL_PARITY_ERR] = CNTR_ELEM("PioSbrdctlCrrelParityErr", 0, 0, 4646 CNTR_NORMAL, 4647 access_pio_sbrdctl_crrel_parity_err_cnt), 4648 [C_PIO_PEC_FIFO_PARITY_ERR] = CNTR_ELEM("PioPecFifoParityErr", 0, 0, 4649 CNTR_NORMAL, 4650 access_pio_pec_fifo_parity_err_cnt), 4651 [C_PIO_PCC_FIFO_PARITY_ERR] = CNTR_ELEM("PioPccFifoParityErr", 0, 0, 4652 CNTR_NORMAL, 4653 access_pio_pcc_fifo_parity_err_cnt), 4654 [C_PIO_SB_MEM_FIFO1_ERR] = CNTR_ELEM("PioSbMemFifo1Err", 0, 0, 4655 CNTR_NORMAL, 4656 access_pio_sb_mem_fifo1_err_cnt), 4657 [C_PIO_SB_MEM_FIFO0_ERR] = CNTR_ELEM("PioSbMemFifo0Err", 0, 0, 4658 CNTR_NORMAL, 4659 access_pio_sb_mem_fifo0_err_cnt), 4660 [C_PIO_CSR_PARITY_ERR] = CNTR_ELEM("PioCsrParityErr", 0, 0, 4661 CNTR_NORMAL, 4662 access_pio_csr_parity_err_cnt), 4663 [C_PIO_WRITE_ADDR_PARITY_ERR] = CNTR_ELEM("PioWriteAddrParityErr", 0, 0, 4664 CNTR_NORMAL, 4665 access_pio_write_addr_parity_err_cnt), 4666 [C_PIO_WRITE_BAD_CTXT_ERR] = CNTR_ELEM("PioWriteBadCtxtErr", 0, 0, 4667 CNTR_NORMAL, 4668 access_pio_write_bad_ctxt_err_cnt), 4669 /* SendDmaErrStatus */ 4670 [C_SDMA_PCIE_REQ_TRACKING_COR_ERR] = CNTR_ELEM("SDmaPcieReqTrackingCorErr", 0, 4671 0, CNTR_NORMAL, 4672 access_sdma_pcie_req_tracking_cor_err_cnt), 4673 [C_SDMA_PCIE_REQ_TRACKING_UNC_ERR] = CNTR_ELEM("SDmaPcieReqTrackingUncErr", 0, 4674 0, CNTR_NORMAL, 4675 access_sdma_pcie_req_tracking_unc_err_cnt), 4676 [C_SDMA_CSR_PARITY_ERR] = CNTR_ELEM("SDmaCsrParityErr", 0, 0, 4677 CNTR_NORMAL, 4678 access_sdma_csr_parity_err_cnt), 4679 [C_SDMA_RPY_TAG_ERR] = CNTR_ELEM("SDmaRpyTagErr", 0, 0, 4680 CNTR_NORMAL, 4681 access_sdma_rpy_tag_err_cnt), 4682 /* SendEgressErrStatus */ 4683 [C_TX_READ_PIO_MEMORY_CSR_UNC_ERR] = CNTR_ELEM("TxReadPioMemoryCsrUncErr", 0, 0, 4684 CNTR_NORMAL, 4685 access_tx_read_pio_memory_csr_unc_err_cnt), 4686 [C_TX_READ_SDMA_MEMORY_CSR_UNC_ERR] = CNTR_ELEM("TxReadSdmaMemoryCsrUncErr", 0, 4687 0, CNTR_NORMAL, 4688 access_tx_read_sdma_memory_csr_err_cnt), 4689 [C_TX_EGRESS_FIFO_COR_ERR] = CNTR_ELEM("TxEgressFifoCorErr", 0, 0, 4690 CNTR_NORMAL, 4691 access_tx_egress_fifo_cor_err_cnt), 4692 [C_TX_READ_PIO_MEMORY_COR_ERR] = CNTR_ELEM("TxReadPioMemoryCorErr", 0, 0, 4693 CNTR_NORMAL, 4694 access_tx_read_pio_memory_cor_err_cnt), 4695 [C_TX_READ_SDMA_MEMORY_COR_ERR] = CNTR_ELEM("TxReadSdmaMemoryCorErr", 0, 0, 4696 CNTR_NORMAL, 4697 access_tx_read_sdma_memory_cor_err_cnt), 4698 [C_TX_SB_HDR_COR_ERR] = CNTR_ELEM("TxSbHdrCorErr", 0, 0, 4699 CNTR_NORMAL, 4700 access_tx_sb_hdr_cor_err_cnt), 4701 [C_TX_CREDIT_OVERRUN_ERR] = CNTR_ELEM("TxCreditOverrunErr", 0, 0, 4702 CNTR_NORMAL, 4703 access_tx_credit_overrun_err_cnt), 4704 [C_TX_LAUNCH_FIFO8_COR_ERR] = CNTR_ELEM("TxLaunchFifo8CorErr", 0, 0, 4705 CNTR_NORMAL, 4706 access_tx_launch_fifo8_cor_err_cnt), 4707 [C_TX_LAUNCH_FIFO7_COR_ERR] = CNTR_ELEM("TxLaunchFifo7CorErr", 0, 0, 4708 CNTR_NORMAL, 4709 access_tx_launch_fifo7_cor_err_cnt), 4710 [C_TX_LAUNCH_FIFO6_COR_ERR] = CNTR_ELEM("TxLaunchFifo6CorErr", 0, 0, 4711 CNTR_NORMAL, 4712 access_tx_launch_fifo6_cor_err_cnt), 4713 [C_TX_LAUNCH_FIFO5_COR_ERR] = CNTR_ELEM("TxLaunchFifo5CorErr", 0, 0, 4714 CNTR_NORMAL, 4715 access_tx_launch_fifo5_cor_err_cnt), 4716 [C_TX_LAUNCH_FIFO4_COR_ERR] = CNTR_ELEM("TxLaunchFifo4CorErr", 0, 0, 4717 CNTR_NORMAL, 4718 access_tx_launch_fifo4_cor_err_cnt), 4719 [C_TX_LAUNCH_FIFO3_COR_ERR] = CNTR_ELEM("TxLaunchFifo3CorErr", 0, 0, 4720 CNTR_NORMAL, 4721 access_tx_launch_fifo3_cor_err_cnt), 4722 [C_TX_LAUNCH_FIFO2_COR_ERR] = CNTR_ELEM("TxLaunchFifo2CorErr", 0, 0, 4723 CNTR_NORMAL, 4724 access_tx_launch_fifo2_cor_err_cnt), 4725 [C_TX_LAUNCH_FIFO1_COR_ERR] = CNTR_ELEM("TxLaunchFifo1CorErr", 0, 0, 4726 CNTR_NORMAL, 4727 access_tx_launch_fifo1_cor_err_cnt), 4728 [C_TX_LAUNCH_FIFO0_COR_ERR] = CNTR_ELEM("TxLaunchFifo0CorErr", 0, 0, 4729 CNTR_NORMAL, 4730 access_tx_launch_fifo0_cor_err_cnt), 4731 [C_TX_CREDIT_RETURN_VL_ERR] = CNTR_ELEM("TxCreditReturnVLErr", 0, 0, 4732 CNTR_NORMAL, 4733 access_tx_credit_return_vl_err_cnt), 4734 [C_TX_HCRC_INSERTION_ERR] = CNTR_ELEM("TxHcrcInsertionErr", 0, 0, 4735 CNTR_NORMAL, 4736 access_tx_hcrc_insertion_err_cnt), 4737 [C_TX_EGRESS_FIFI_UNC_ERR] = CNTR_ELEM("TxEgressFifoUncErr", 0, 0, 4738 CNTR_NORMAL, 4739 access_tx_egress_fifo_unc_err_cnt), 4740 [C_TX_READ_PIO_MEMORY_UNC_ERR] = CNTR_ELEM("TxReadPioMemoryUncErr", 0, 0, 4741 CNTR_NORMAL, 4742 access_tx_read_pio_memory_unc_err_cnt), 4743 [C_TX_READ_SDMA_MEMORY_UNC_ERR] = CNTR_ELEM("TxReadSdmaMemoryUncErr", 0, 0, 4744 CNTR_NORMAL, 4745 access_tx_read_sdma_memory_unc_err_cnt), 4746 [C_TX_SB_HDR_UNC_ERR] = CNTR_ELEM("TxSbHdrUncErr", 0, 0, 4747 CNTR_NORMAL, 4748 access_tx_sb_hdr_unc_err_cnt), 4749 [C_TX_CREDIT_RETURN_PARITY_ERR] = CNTR_ELEM("TxCreditReturnParityErr", 0, 0, 4750 CNTR_NORMAL, 4751 access_tx_credit_return_partiy_err_cnt), 4752 [C_TX_LAUNCH_FIFO8_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo8UncOrParityErr", 4753 0, 0, CNTR_NORMAL, 4754 access_tx_launch_fifo8_unc_or_parity_err_cnt), 4755 [C_TX_LAUNCH_FIFO7_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo7UncOrParityErr", 4756 0, 0, CNTR_NORMAL, 4757 access_tx_launch_fifo7_unc_or_parity_err_cnt), 4758 [C_TX_LAUNCH_FIFO6_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo6UncOrParityErr", 4759 0, 0, CNTR_NORMAL, 4760 access_tx_launch_fifo6_unc_or_parity_err_cnt), 4761 [C_TX_LAUNCH_FIFO5_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo5UncOrParityErr", 4762 0, 0, CNTR_NORMAL, 4763 access_tx_launch_fifo5_unc_or_parity_err_cnt), 4764 [C_TX_LAUNCH_FIFO4_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo4UncOrParityErr", 4765 0, 0, CNTR_NORMAL, 4766 access_tx_launch_fifo4_unc_or_parity_err_cnt), 4767 [C_TX_LAUNCH_FIFO3_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo3UncOrParityErr", 4768 0, 0, CNTR_NORMAL, 4769 access_tx_launch_fifo3_unc_or_parity_err_cnt), 4770 [C_TX_LAUNCH_FIFO2_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo2UncOrParityErr", 4771 0, 0, CNTR_NORMAL, 4772 access_tx_launch_fifo2_unc_or_parity_err_cnt), 4773 [C_TX_LAUNCH_FIFO1_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo1UncOrParityErr", 4774 0, 0, CNTR_NORMAL, 4775 access_tx_launch_fifo1_unc_or_parity_err_cnt), 4776 [C_TX_LAUNCH_FIFO0_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo0UncOrParityErr", 4777 0, 0, CNTR_NORMAL, 4778 access_tx_launch_fifo0_unc_or_parity_err_cnt), 4779 [C_TX_SDMA15_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma15DisallowedPacketErr", 4780 0, 0, CNTR_NORMAL, 4781 access_tx_sdma15_disallowed_packet_err_cnt), 4782 [C_TX_SDMA14_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma14DisallowedPacketErr", 4783 0, 0, CNTR_NORMAL, 4784 access_tx_sdma14_disallowed_packet_err_cnt), 4785 [C_TX_SDMA13_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma13DisallowedPacketErr", 4786 0, 0, CNTR_NORMAL, 4787 access_tx_sdma13_disallowed_packet_err_cnt), 4788 [C_TX_SDMA12_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma12DisallowedPacketErr", 4789 0, 0, CNTR_NORMAL, 4790 access_tx_sdma12_disallowed_packet_err_cnt), 4791 [C_TX_SDMA11_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma11DisallowedPacketErr", 4792 0, 0, CNTR_NORMAL, 4793 access_tx_sdma11_disallowed_packet_err_cnt), 4794 [C_TX_SDMA10_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma10DisallowedPacketErr", 4795 0, 0, CNTR_NORMAL, 4796 access_tx_sdma10_disallowed_packet_err_cnt), 4797 [C_TX_SDMA9_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma9DisallowedPacketErr", 4798 0, 0, CNTR_NORMAL, 4799 access_tx_sdma9_disallowed_packet_err_cnt), 4800 [C_TX_SDMA8_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma8DisallowedPacketErr", 4801 0, 0, CNTR_NORMAL, 4802 access_tx_sdma8_disallowed_packet_err_cnt), 4803 [C_TX_SDMA7_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma7DisallowedPacketErr", 4804 0, 0, CNTR_NORMAL, 4805 access_tx_sdma7_disallowed_packet_err_cnt), 4806 [C_TX_SDMA6_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma6DisallowedPacketErr", 4807 0, 0, CNTR_NORMAL, 4808 access_tx_sdma6_disallowed_packet_err_cnt), 4809 [C_TX_SDMA5_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma5DisallowedPacketErr", 4810 0, 0, CNTR_NORMAL, 4811 access_tx_sdma5_disallowed_packet_err_cnt), 4812 [C_TX_SDMA4_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma4DisallowedPacketErr", 4813 0, 0, CNTR_NORMAL, 4814 access_tx_sdma4_disallowed_packet_err_cnt), 4815 [C_TX_SDMA3_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma3DisallowedPacketErr", 4816 0, 0, CNTR_NORMAL, 4817 access_tx_sdma3_disallowed_packet_err_cnt), 4818 [C_TX_SDMA2_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma2DisallowedPacketErr", 4819 0, 0, CNTR_NORMAL, 4820 access_tx_sdma2_disallowed_packet_err_cnt), 4821 [C_TX_SDMA1_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma1DisallowedPacketErr", 4822 0, 0, CNTR_NORMAL, 4823 access_tx_sdma1_disallowed_packet_err_cnt), 4824 [C_TX_SDMA0_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma0DisallowedPacketErr", 4825 0, 0, CNTR_NORMAL, 4826 access_tx_sdma0_disallowed_packet_err_cnt), 4827 [C_TX_CONFIG_PARITY_ERR] = CNTR_ELEM("TxConfigParityErr", 0, 0, 4828 CNTR_NORMAL, 4829 access_tx_config_parity_err_cnt), 4830 [C_TX_SBRD_CTL_CSR_PARITY_ERR] = CNTR_ELEM("TxSbrdCtlCsrParityErr", 0, 0, 4831 CNTR_NORMAL, 4832 access_tx_sbrd_ctl_csr_parity_err_cnt), 4833 [C_TX_LAUNCH_CSR_PARITY_ERR] = CNTR_ELEM("TxLaunchCsrParityErr", 0, 0, 4834 CNTR_NORMAL, 4835 access_tx_launch_csr_parity_err_cnt), 4836 [C_TX_ILLEGAL_CL_ERR] = CNTR_ELEM("TxIllegalVLErr", 0, 0, 4837 CNTR_NORMAL, 4838 access_tx_illegal_vl_err_cnt), 4839 [C_TX_SBRD_CTL_STATE_MACHINE_PARITY_ERR] = CNTR_ELEM( 4840 "TxSbrdCtlStateMachineParityErr", 0, 0, 4841 CNTR_NORMAL, 4842 access_tx_sbrd_ctl_state_machine_parity_err_cnt), 4843 [C_TX_RESERVED_10] = CNTR_ELEM("Tx Egress Reserved 10", 0, 0, 4844 CNTR_NORMAL, 4845 access_egress_reserved_10_err_cnt), 4846 [C_TX_RESERVED_9] = CNTR_ELEM("Tx Egress Reserved 9", 0, 0, 4847 CNTR_NORMAL, 4848 access_egress_reserved_9_err_cnt), 4849 [C_TX_SDMA_LAUNCH_INTF_PARITY_ERR] = CNTR_ELEM("TxSdmaLaunchIntfParityErr", 4850 0, 0, CNTR_NORMAL, 4851 access_tx_sdma_launch_intf_parity_err_cnt), 4852 [C_TX_PIO_LAUNCH_INTF_PARITY_ERR] = CNTR_ELEM("TxPioLaunchIntfParityErr", 0, 0, 4853 CNTR_NORMAL, 4854 access_tx_pio_launch_intf_parity_err_cnt), 4855 [C_TX_RESERVED_6] = CNTR_ELEM("Tx Egress Reserved 6", 0, 0, 4856 CNTR_NORMAL, 4857 access_egress_reserved_6_err_cnt), 4858 [C_TX_INCORRECT_LINK_STATE_ERR] = CNTR_ELEM("TxIncorrectLinkStateErr", 0, 0, 4859 CNTR_NORMAL, 4860 access_tx_incorrect_link_state_err_cnt), 4861 [C_TX_LINK_DOWN_ERR] = CNTR_ELEM("TxLinkdownErr", 0, 0, 4862 CNTR_NORMAL, 4863 access_tx_linkdown_err_cnt), 4864 [C_TX_EGRESS_FIFO_UNDERRUN_OR_PARITY_ERR] = CNTR_ELEM( 4865 "EgressFifoUnderrunOrParityErr", 0, 0, 4866 CNTR_NORMAL, 4867 access_tx_egress_fifi_underrun_or_parity_err_cnt), 4868 [C_TX_RESERVED_2] = CNTR_ELEM("Tx Egress Reserved 2", 0, 0, 4869 CNTR_NORMAL, 4870 access_egress_reserved_2_err_cnt), 4871 [C_TX_PKT_INTEGRITY_MEM_UNC_ERR] = CNTR_ELEM("TxPktIntegrityMemUncErr", 0, 0, 4872 CNTR_NORMAL, 4873 access_tx_pkt_integrity_mem_unc_err_cnt), 4874 [C_TX_PKT_INTEGRITY_MEM_COR_ERR] = CNTR_ELEM("TxPktIntegrityMemCorErr", 0, 0, 4875 CNTR_NORMAL, 4876 access_tx_pkt_integrity_mem_cor_err_cnt), 4877 /* SendErrStatus */ 4878 [C_SEND_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("SendCsrWriteBadAddrErr", 0, 0, 4879 CNTR_NORMAL, 4880 access_send_csr_write_bad_addr_err_cnt), 4881 [C_SEND_CSR_READ_BAD_ADD_ERR] = CNTR_ELEM("SendCsrReadBadAddrErr", 0, 0, 4882 CNTR_NORMAL, 4883 access_send_csr_read_bad_addr_err_cnt), 4884 [C_SEND_CSR_PARITY_ERR] = CNTR_ELEM("SendCsrParityErr", 0, 0, 4885 CNTR_NORMAL, 4886 access_send_csr_parity_cnt), 4887 /* SendCtxtErrStatus */ 4888 [C_PIO_WRITE_OUT_OF_BOUNDS_ERR] = CNTR_ELEM("PioWriteOutOfBoundsErr", 0, 0, 4889 CNTR_NORMAL, 4890 access_pio_write_out_of_bounds_err_cnt), 4891 [C_PIO_WRITE_OVERFLOW_ERR] = CNTR_ELEM("PioWriteOverflowErr", 0, 0, 4892 CNTR_NORMAL, 4893 access_pio_write_overflow_err_cnt), 4894 [C_PIO_WRITE_CROSSES_BOUNDARY_ERR] = CNTR_ELEM("PioWriteCrossesBoundaryErr", 4895 0, 0, CNTR_NORMAL, 4896 access_pio_write_crosses_boundary_err_cnt), 4897 [C_PIO_DISALLOWED_PACKET_ERR] = CNTR_ELEM("PioDisallowedPacketErr", 0, 0, 4898 CNTR_NORMAL, 4899 access_pio_disallowed_packet_err_cnt), 4900 [C_PIO_INCONSISTENT_SOP_ERR] = CNTR_ELEM("PioInconsistentSopErr", 0, 0, 4901 CNTR_NORMAL, 4902 access_pio_inconsistent_sop_err_cnt), 4903 /* SendDmaEngErrStatus */ 4904 [C_SDMA_HEADER_REQUEST_FIFO_COR_ERR] = CNTR_ELEM("SDmaHeaderRequestFifoCorErr", 4905 0, 0, CNTR_NORMAL, 4906 access_sdma_header_request_fifo_cor_err_cnt), 4907 [C_SDMA_HEADER_STORAGE_COR_ERR] = CNTR_ELEM("SDmaHeaderStorageCorErr", 0, 0, 4908 CNTR_NORMAL, 4909 access_sdma_header_storage_cor_err_cnt), 4910 [C_SDMA_PACKET_TRACKING_COR_ERR] = CNTR_ELEM("SDmaPacketTrackingCorErr", 0, 0, 4911 CNTR_NORMAL, 4912 access_sdma_packet_tracking_cor_err_cnt), 4913 [C_SDMA_ASSEMBLY_COR_ERR] = CNTR_ELEM("SDmaAssemblyCorErr", 0, 0, 4914 CNTR_NORMAL, 4915 access_sdma_assembly_cor_err_cnt), 4916 [C_SDMA_DESC_TABLE_COR_ERR] = CNTR_ELEM("SDmaDescTableCorErr", 0, 0, 4917 CNTR_NORMAL, 4918 access_sdma_desc_table_cor_err_cnt), 4919 [C_SDMA_HEADER_REQUEST_FIFO_UNC_ERR] = CNTR_ELEM("SDmaHeaderRequestFifoUncErr", 4920 0, 0, CNTR_NORMAL, 4921 access_sdma_header_request_fifo_unc_err_cnt), 4922 [C_SDMA_HEADER_STORAGE_UNC_ERR] = CNTR_ELEM("SDmaHeaderStorageUncErr", 0, 0, 4923 CNTR_NORMAL, 4924 access_sdma_header_storage_unc_err_cnt), 4925 [C_SDMA_PACKET_TRACKING_UNC_ERR] = CNTR_ELEM("SDmaPacketTrackingUncErr", 0, 0, 4926 CNTR_NORMAL, 4927 access_sdma_packet_tracking_unc_err_cnt), 4928 [C_SDMA_ASSEMBLY_UNC_ERR] = CNTR_ELEM("SDmaAssemblyUncErr", 0, 0, 4929 CNTR_NORMAL, 4930 access_sdma_assembly_unc_err_cnt), 4931 [C_SDMA_DESC_TABLE_UNC_ERR] = CNTR_ELEM("SDmaDescTableUncErr", 0, 0, 4932 CNTR_NORMAL, 4933 access_sdma_desc_table_unc_err_cnt), 4934 [C_SDMA_TIMEOUT_ERR] = CNTR_ELEM("SDmaTimeoutErr", 0, 0, 4935 CNTR_NORMAL, 4936 access_sdma_timeout_err_cnt), 4937 [C_SDMA_HEADER_LENGTH_ERR] = CNTR_ELEM("SDmaHeaderLengthErr", 0, 0, 4938 CNTR_NORMAL, 4939 access_sdma_header_length_err_cnt), 4940 [C_SDMA_HEADER_ADDRESS_ERR] = CNTR_ELEM("SDmaHeaderAddressErr", 0, 0, 4941 CNTR_NORMAL, 4942 access_sdma_header_address_err_cnt), 4943 [C_SDMA_HEADER_SELECT_ERR] = CNTR_ELEM("SDmaHeaderSelectErr", 0, 0, 4944 CNTR_NORMAL, 4945 access_sdma_header_select_err_cnt), 4946 [C_SMDA_RESERVED_9] = CNTR_ELEM("SDma Reserved 9", 0, 0, 4947 CNTR_NORMAL, 4948 access_sdma_reserved_9_err_cnt), 4949 [C_SDMA_PACKET_DESC_OVERFLOW_ERR] = CNTR_ELEM("SDmaPacketDescOverflowErr", 0, 0, 4950 CNTR_NORMAL, 4951 access_sdma_packet_desc_overflow_err_cnt), 4952 [C_SDMA_LENGTH_MISMATCH_ERR] = CNTR_ELEM("SDmaLengthMismatchErr", 0, 0, 4953 CNTR_NORMAL, 4954 access_sdma_length_mismatch_err_cnt), 4955 [C_SDMA_HALT_ERR] = CNTR_ELEM("SDmaHaltErr", 0, 0, 4956 CNTR_NORMAL, 4957 access_sdma_halt_err_cnt), 4958 [C_SDMA_MEM_READ_ERR] = CNTR_ELEM("SDmaMemReadErr", 0, 0, 4959 CNTR_NORMAL, 4960 access_sdma_mem_read_err_cnt), 4961 [C_SDMA_FIRST_DESC_ERR] = CNTR_ELEM("SDmaFirstDescErr", 0, 0, 4962 CNTR_NORMAL, 4963 access_sdma_first_desc_err_cnt), 4964 [C_SDMA_TAIL_OUT_OF_BOUNDS_ERR] = CNTR_ELEM("SDmaTailOutOfBoundsErr", 0, 0, 4965 CNTR_NORMAL, 4966 access_sdma_tail_out_of_bounds_err_cnt), 4967 [C_SDMA_TOO_LONG_ERR] = CNTR_ELEM("SDmaTooLongErr", 0, 0, 4968 CNTR_NORMAL, 4969 access_sdma_too_long_err_cnt), 4970 [C_SDMA_GEN_MISMATCH_ERR] = CNTR_ELEM("SDmaGenMismatchErr", 0, 0, 4971 CNTR_NORMAL, 4972 access_sdma_gen_mismatch_err_cnt), 4973 [C_SDMA_WRONG_DW_ERR] = CNTR_ELEM("SDmaWrongDwErr", 0, 0, 4974 CNTR_NORMAL, 4975 access_sdma_wrong_dw_err_cnt), 4976 }; 4977 4978 static struct cntr_entry port_cntrs[PORT_CNTR_LAST] = { 4979 [C_TX_UNSUP_VL] = TXE32_PORT_CNTR_ELEM(TxUnVLErr, SEND_UNSUP_VL_ERR_CNT, 4980 CNTR_NORMAL), 4981 [C_TX_INVAL_LEN] = TXE32_PORT_CNTR_ELEM(TxInvalLen, SEND_LEN_ERR_CNT, 4982 CNTR_NORMAL), 4983 [C_TX_MM_LEN_ERR] = TXE32_PORT_CNTR_ELEM(TxMMLenErr, SEND_MAX_MIN_LEN_ERR_CNT, 4984 CNTR_NORMAL), 4985 [C_TX_UNDERRUN] = TXE32_PORT_CNTR_ELEM(TxUnderrun, SEND_UNDERRUN_CNT, 4986 CNTR_NORMAL), 4987 [C_TX_FLOW_STALL] = TXE32_PORT_CNTR_ELEM(TxFlowStall, SEND_FLOW_STALL_CNT, 4988 CNTR_NORMAL), 4989 [C_TX_DROPPED] = TXE32_PORT_CNTR_ELEM(TxDropped, SEND_DROPPED_PKT_CNT, 4990 CNTR_NORMAL), 4991 [C_TX_HDR_ERR] = TXE32_PORT_CNTR_ELEM(TxHdrErr, SEND_HEADERS_ERR_CNT, 4992 CNTR_NORMAL), 4993 [C_TX_PKT] = TXE64_PORT_CNTR_ELEM(TxPkt, SEND_DATA_PKT_CNT, CNTR_NORMAL), 4994 [C_TX_WORDS] = TXE64_PORT_CNTR_ELEM(TxWords, SEND_DWORD_CNT, CNTR_NORMAL), 4995 [C_TX_WAIT] = TXE64_PORT_CNTR_ELEM(TxWait, SEND_WAIT_CNT, CNTR_SYNTH), 4996 [C_TX_FLIT_VL] = TXE64_PORT_CNTR_ELEM(TxFlitVL, SEND_DATA_VL0_CNT, 4997 CNTR_SYNTH | CNTR_VL), 4998 [C_TX_PKT_VL] = TXE64_PORT_CNTR_ELEM(TxPktVL, SEND_DATA_PKT_VL0_CNT, 4999 CNTR_SYNTH | CNTR_VL), 5000 [C_TX_WAIT_VL] = TXE64_PORT_CNTR_ELEM(TxWaitVL, SEND_WAIT_VL0_CNT, 5001 CNTR_SYNTH | CNTR_VL), 5002 [C_RX_PKT] = RXE64_PORT_CNTR_ELEM(RxPkt, RCV_DATA_PKT_CNT, CNTR_NORMAL), 5003 [C_RX_WORDS] = RXE64_PORT_CNTR_ELEM(RxWords, RCV_DWORD_CNT, CNTR_NORMAL), 5004 [C_SW_LINK_DOWN] = CNTR_ELEM("SwLinkDown", 0, 0, CNTR_SYNTH | CNTR_32BIT, 5005 access_sw_link_dn_cnt), 5006 [C_SW_LINK_UP] = CNTR_ELEM("SwLinkUp", 0, 0, CNTR_SYNTH | CNTR_32BIT, 5007 access_sw_link_up_cnt), 5008 [C_SW_UNKNOWN_FRAME] = CNTR_ELEM("UnknownFrame", 0, 0, CNTR_NORMAL, 5009 access_sw_unknown_frame_cnt), 5010 [C_SW_XMIT_DSCD] = CNTR_ELEM("XmitDscd", 0, 0, CNTR_SYNTH | CNTR_32BIT, 5011 access_sw_xmit_discards), 5012 [C_SW_XMIT_DSCD_VL] = CNTR_ELEM("XmitDscdVl", 0, 0, 5013 CNTR_SYNTH | CNTR_32BIT | CNTR_VL, 5014 access_sw_xmit_discards), 5015 [C_SW_XMIT_CSTR_ERR] = CNTR_ELEM("XmitCstrErr", 0, 0, CNTR_SYNTH, 5016 access_xmit_constraint_errs), 5017 [C_SW_RCV_CSTR_ERR] = CNTR_ELEM("RcvCstrErr", 0, 0, CNTR_SYNTH, 5018 access_rcv_constraint_errs), 5019 [C_SW_IBP_LOOP_PKTS] = SW_IBP_CNTR(LoopPkts, loop_pkts), 5020 [C_SW_IBP_RC_RESENDS] = SW_IBP_CNTR(RcResend, rc_resends), 5021 [C_SW_IBP_RNR_NAKS] = SW_IBP_CNTR(RnrNak, rnr_naks), 5022 [C_SW_IBP_OTHER_NAKS] = SW_IBP_CNTR(OtherNak, other_naks), 5023 [C_SW_IBP_RC_TIMEOUTS] = SW_IBP_CNTR(RcTimeOut, rc_timeouts), 5024 [C_SW_IBP_PKT_DROPS] = SW_IBP_CNTR(PktDrop, pkt_drops), 5025 [C_SW_IBP_DMA_WAIT] = SW_IBP_CNTR(DmaWait, dmawait), 5026 [C_SW_IBP_RC_SEQNAK] = SW_IBP_CNTR(RcSeqNak, rc_seqnak), 5027 [C_SW_IBP_RC_DUPREQ] = SW_IBP_CNTR(RcDupRew, rc_dupreq), 5028 [C_SW_IBP_RDMA_SEQ] = SW_IBP_CNTR(RdmaSeq, rdma_seq), 5029 [C_SW_IBP_UNALIGNED] = SW_IBP_CNTR(Unaligned, unaligned), 5030 [C_SW_IBP_SEQ_NAK] = SW_IBP_CNTR(SeqNak, seq_naks), 5031 [C_SW_CPU_RC_ACKS] = CNTR_ELEM("RcAcks", 0, 0, CNTR_NORMAL, 5032 access_sw_cpu_rc_acks), 5033 [C_SW_CPU_RC_QACKS] = CNTR_ELEM("RcQacks", 0, 0, CNTR_NORMAL, 5034 access_sw_cpu_rc_qacks), 5035 [C_SW_CPU_RC_DELAYED_COMP] = CNTR_ELEM("RcDelayComp", 0, 0, CNTR_NORMAL, 5036 access_sw_cpu_rc_delayed_comp), 5037 [OVR_LBL(0)] = OVR_ELM(0), [OVR_LBL(1)] = OVR_ELM(1), 5038 [OVR_LBL(2)] = OVR_ELM(2), [OVR_LBL(3)] = OVR_ELM(3), 5039 [OVR_LBL(4)] = OVR_ELM(4), [OVR_LBL(5)] = OVR_ELM(5), 5040 [OVR_LBL(6)] = OVR_ELM(6), [OVR_LBL(7)] = OVR_ELM(7), 5041 [OVR_LBL(8)] = OVR_ELM(8), [OVR_LBL(9)] = OVR_ELM(9), 5042 [OVR_LBL(10)] = OVR_ELM(10), [OVR_LBL(11)] = OVR_ELM(11), 5043 [OVR_LBL(12)] = OVR_ELM(12), [OVR_LBL(13)] = OVR_ELM(13), 5044 [OVR_LBL(14)] = OVR_ELM(14), [OVR_LBL(15)] = OVR_ELM(15), 5045 [OVR_LBL(16)] = OVR_ELM(16), [OVR_LBL(17)] = OVR_ELM(17), 5046 [OVR_LBL(18)] = OVR_ELM(18), [OVR_LBL(19)] = OVR_ELM(19), 5047 [OVR_LBL(20)] = OVR_ELM(20), [OVR_LBL(21)] = OVR_ELM(21), 5048 [OVR_LBL(22)] = OVR_ELM(22), [OVR_LBL(23)] = OVR_ELM(23), 5049 [OVR_LBL(24)] = OVR_ELM(24), [OVR_LBL(25)] = OVR_ELM(25), 5050 [OVR_LBL(26)] = OVR_ELM(26), [OVR_LBL(27)] = OVR_ELM(27), 5051 [OVR_LBL(28)] = OVR_ELM(28), [OVR_LBL(29)] = OVR_ELM(29), 5052 [OVR_LBL(30)] = OVR_ELM(30), [OVR_LBL(31)] = OVR_ELM(31), 5053 [OVR_LBL(32)] = OVR_ELM(32), [OVR_LBL(33)] = OVR_ELM(33), 5054 [OVR_LBL(34)] = OVR_ELM(34), [OVR_LBL(35)] = OVR_ELM(35), 5055 [OVR_LBL(36)] = OVR_ELM(36), [OVR_LBL(37)] = OVR_ELM(37), 5056 [OVR_LBL(38)] = OVR_ELM(38), [OVR_LBL(39)] = OVR_ELM(39), 5057 [OVR_LBL(40)] = OVR_ELM(40), [OVR_LBL(41)] = OVR_ELM(41), 5058 [OVR_LBL(42)] = OVR_ELM(42), [OVR_LBL(43)] = OVR_ELM(43), 5059 [OVR_LBL(44)] = OVR_ELM(44), [OVR_LBL(45)] = OVR_ELM(45), 5060 [OVR_LBL(46)] = OVR_ELM(46), [OVR_LBL(47)] = OVR_ELM(47), 5061 [OVR_LBL(48)] = OVR_ELM(48), [OVR_LBL(49)] = OVR_ELM(49), 5062 [OVR_LBL(50)] = OVR_ELM(50), [OVR_LBL(51)] = OVR_ELM(51), 5063 [OVR_LBL(52)] = OVR_ELM(52), [OVR_LBL(53)] = OVR_ELM(53), 5064 [OVR_LBL(54)] = OVR_ELM(54), [OVR_LBL(55)] = OVR_ELM(55), 5065 [OVR_LBL(56)] = OVR_ELM(56), [OVR_LBL(57)] = OVR_ELM(57), 5066 [OVR_LBL(58)] = OVR_ELM(58), [OVR_LBL(59)] = OVR_ELM(59), 5067 [OVR_LBL(60)] = OVR_ELM(60), [OVR_LBL(61)] = OVR_ELM(61), 5068 [OVR_LBL(62)] = OVR_ELM(62), [OVR_LBL(63)] = OVR_ELM(63), 5069 [OVR_LBL(64)] = OVR_ELM(64), [OVR_LBL(65)] = OVR_ELM(65), 5070 [OVR_LBL(66)] = OVR_ELM(66), [OVR_LBL(67)] = OVR_ELM(67), 5071 [OVR_LBL(68)] = OVR_ELM(68), [OVR_LBL(69)] = OVR_ELM(69), 5072 [OVR_LBL(70)] = OVR_ELM(70), [OVR_LBL(71)] = OVR_ELM(71), 5073 [OVR_LBL(72)] = OVR_ELM(72), [OVR_LBL(73)] = OVR_ELM(73), 5074 [OVR_LBL(74)] = OVR_ELM(74), [OVR_LBL(75)] = OVR_ELM(75), 5075 [OVR_LBL(76)] = OVR_ELM(76), [OVR_LBL(77)] = OVR_ELM(77), 5076 [OVR_LBL(78)] = OVR_ELM(78), [OVR_LBL(79)] = OVR_ELM(79), 5077 [OVR_LBL(80)] = OVR_ELM(80), [OVR_LBL(81)] = OVR_ELM(81), 5078 [OVR_LBL(82)] = OVR_ELM(82), [OVR_LBL(83)] = OVR_ELM(83), 5079 [OVR_LBL(84)] = OVR_ELM(84), [OVR_LBL(85)] = OVR_ELM(85), 5080 [OVR_LBL(86)] = OVR_ELM(86), [OVR_LBL(87)] = OVR_ELM(87), 5081 [OVR_LBL(88)] = OVR_ELM(88), [OVR_LBL(89)] = OVR_ELM(89), 5082 [OVR_LBL(90)] = OVR_ELM(90), [OVR_LBL(91)] = OVR_ELM(91), 5083 [OVR_LBL(92)] = OVR_ELM(92), [OVR_LBL(93)] = OVR_ELM(93), 5084 [OVR_LBL(94)] = OVR_ELM(94), [OVR_LBL(95)] = OVR_ELM(95), 5085 [OVR_LBL(96)] = OVR_ELM(96), [OVR_LBL(97)] = OVR_ELM(97), 5086 [OVR_LBL(98)] = OVR_ELM(98), [OVR_LBL(99)] = OVR_ELM(99), 5087 [OVR_LBL(100)] = OVR_ELM(100), [OVR_LBL(101)] = OVR_ELM(101), 5088 [OVR_LBL(102)] = OVR_ELM(102), [OVR_LBL(103)] = OVR_ELM(103), 5089 [OVR_LBL(104)] = OVR_ELM(104), [OVR_LBL(105)] = OVR_ELM(105), 5090 [OVR_LBL(106)] = OVR_ELM(106), [OVR_LBL(107)] = OVR_ELM(107), 5091 [OVR_LBL(108)] = OVR_ELM(108), [OVR_LBL(109)] = OVR_ELM(109), 5092 [OVR_LBL(110)] = OVR_ELM(110), [OVR_LBL(111)] = OVR_ELM(111), 5093 [OVR_LBL(112)] = OVR_ELM(112), [OVR_LBL(113)] = OVR_ELM(113), 5094 [OVR_LBL(114)] = OVR_ELM(114), [OVR_LBL(115)] = OVR_ELM(115), 5095 [OVR_LBL(116)] = OVR_ELM(116), [OVR_LBL(117)] = OVR_ELM(117), 5096 [OVR_LBL(118)] = OVR_ELM(118), [OVR_LBL(119)] = OVR_ELM(119), 5097 [OVR_LBL(120)] = OVR_ELM(120), [OVR_LBL(121)] = OVR_ELM(121), 5098 [OVR_LBL(122)] = OVR_ELM(122), [OVR_LBL(123)] = OVR_ELM(123), 5099 [OVR_LBL(124)] = OVR_ELM(124), [OVR_LBL(125)] = OVR_ELM(125), 5100 [OVR_LBL(126)] = OVR_ELM(126), [OVR_LBL(127)] = OVR_ELM(127), 5101 [OVR_LBL(128)] = OVR_ELM(128), [OVR_LBL(129)] = OVR_ELM(129), 5102 [OVR_LBL(130)] = OVR_ELM(130), [OVR_LBL(131)] = OVR_ELM(131), 5103 [OVR_LBL(132)] = OVR_ELM(132), [OVR_LBL(133)] = OVR_ELM(133), 5104 [OVR_LBL(134)] = OVR_ELM(134), [OVR_LBL(135)] = OVR_ELM(135), 5105 [OVR_LBL(136)] = OVR_ELM(136), [OVR_LBL(137)] = OVR_ELM(137), 5106 [OVR_LBL(138)] = OVR_ELM(138), [OVR_LBL(139)] = OVR_ELM(139), 5107 [OVR_LBL(140)] = OVR_ELM(140), [OVR_LBL(141)] = OVR_ELM(141), 5108 [OVR_LBL(142)] = OVR_ELM(142), [OVR_LBL(143)] = OVR_ELM(143), 5109 [OVR_LBL(144)] = OVR_ELM(144), [OVR_LBL(145)] = OVR_ELM(145), 5110 [OVR_LBL(146)] = OVR_ELM(146), [OVR_LBL(147)] = OVR_ELM(147), 5111 [OVR_LBL(148)] = OVR_ELM(148), [OVR_LBL(149)] = OVR_ELM(149), 5112 [OVR_LBL(150)] = OVR_ELM(150), [OVR_LBL(151)] = OVR_ELM(151), 5113 [OVR_LBL(152)] = OVR_ELM(152), [OVR_LBL(153)] = OVR_ELM(153), 5114 [OVR_LBL(154)] = OVR_ELM(154), [OVR_LBL(155)] = OVR_ELM(155), 5115 [OVR_LBL(156)] = OVR_ELM(156), [OVR_LBL(157)] = OVR_ELM(157), 5116 [OVR_LBL(158)] = OVR_ELM(158), [OVR_LBL(159)] = OVR_ELM(159), 5117 }; 5118 5119 /* ======================================================================== */ 5120 5121 /* return true if this is chip revision revision a */ 5122 int is_ax(struct hfi1_devdata *dd) 5123 { 5124 u8 chip_rev_minor = 5125 dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT 5126 & CCE_REVISION_CHIP_REV_MINOR_MASK; 5127 return (chip_rev_minor & 0xf0) == 0; 5128 } 5129 5130 /* return true if this is chip revision revision b */ 5131 int is_bx(struct hfi1_devdata *dd) 5132 { 5133 u8 chip_rev_minor = 5134 dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT 5135 & CCE_REVISION_CHIP_REV_MINOR_MASK; 5136 return (chip_rev_minor & 0xF0) == 0x10; 5137 } 5138 5139 /* 5140 * Append string s to buffer buf. Arguments curp and len are the current 5141 * position and remaining length, respectively. 5142 * 5143 * return 0 on success, 1 on out of room 5144 */ 5145 static int append_str(char *buf, char **curp, int *lenp, const char *s) 5146 { 5147 char *p = *curp; 5148 int len = *lenp; 5149 int result = 0; /* success */ 5150 char c; 5151 5152 /* add a comma, if first in the buffer */ 5153 if (p != buf) { 5154 if (len == 0) { 5155 result = 1; /* out of room */ 5156 goto done; 5157 } 5158 *p++ = ','; 5159 len--; 5160 } 5161 5162 /* copy the string */ 5163 while ((c = *s++) != 0) { 5164 if (len == 0) { 5165 result = 1; /* out of room */ 5166 goto done; 5167 } 5168 *p++ = c; 5169 len--; 5170 } 5171 5172 done: 5173 /* write return values */ 5174 *curp = p; 5175 *lenp = len; 5176 5177 return result; 5178 } 5179 5180 /* 5181 * Using the given flag table, print a comma separated string into 5182 * the buffer. End in '*' if the buffer is too short. 5183 */ 5184 static char *flag_string(char *buf, int buf_len, u64 flags, 5185 struct flag_table *table, int table_size) 5186 { 5187 char extra[32]; 5188 char *p = buf; 5189 int len = buf_len; 5190 int no_room = 0; 5191 int i; 5192 5193 /* make sure there is at least 2 so we can form "*" */ 5194 if (len < 2) 5195 return ""; 5196 5197 len--; /* leave room for a nul */ 5198 for (i = 0; i < table_size; i++) { 5199 if (flags & table[i].flag) { 5200 no_room = append_str(buf, &p, &len, table[i].str); 5201 if (no_room) 5202 break; 5203 flags &= ~table[i].flag; 5204 } 5205 } 5206 5207 /* any undocumented bits left? */ 5208 if (!no_room && flags) { 5209 snprintf(extra, sizeof(extra), "bits 0x%llx", flags); 5210 no_room = append_str(buf, &p, &len, extra); 5211 } 5212 5213 /* add * if ran out of room */ 5214 if (no_room) { 5215 /* may need to back up to add space for a '*' */ 5216 if (len == 0) 5217 --p; 5218 *p++ = '*'; 5219 } 5220 5221 /* add final nul - space already allocated above */ 5222 *p = 0; 5223 return buf; 5224 } 5225 5226 /* first 8 CCE error interrupt source names */ 5227 static const char * const cce_misc_names[] = { 5228 "CceErrInt", /* 0 */ 5229 "RxeErrInt", /* 1 */ 5230 "MiscErrInt", /* 2 */ 5231 "Reserved3", /* 3 */ 5232 "PioErrInt", /* 4 */ 5233 "SDmaErrInt", /* 5 */ 5234 "EgressErrInt", /* 6 */ 5235 "TxeErrInt" /* 7 */ 5236 }; 5237 5238 /* 5239 * Return the miscellaneous error interrupt name. 5240 */ 5241 static char *is_misc_err_name(char *buf, size_t bsize, unsigned int source) 5242 { 5243 if (source < ARRAY_SIZE(cce_misc_names)) 5244 strncpy(buf, cce_misc_names[source], bsize); 5245 else 5246 snprintf(buf, bsize, "Reserved%u", 5247 source + IS_GENERAL_ERR_START); 5248 5249 return buf; 5250 } 5251 5252 /* 5253 * Return the SDMA engine error interrupt name. 5254 */ 5255 static char *is_sdma_eng_err_name(char *buf, size_t bsize, unsigned int source) 5256 { 5257 snprintf(buf, bsize, "SDmaEngErrInt%u", source); 5258 return buf; 5259 } 5260 5261 /* 5262 * Return the send context error interrupt name. 5263 */ 5264 static char *is_sendctxt_err_name(char *buf, size_t bsize, unsigned int source) 5265 { 5266 snprintf(buf, bsize, "SendCtxtErrInt%u", source); 5267 return buf; 5268 } 5269 5270 static const char * const various_names[] = { 5271 "PbcInt", 5272 "GpioAssertInt", 5273 "Qsfp1Int", 5274 "Qsfp2Int", 5275 "TCritInt" 5276 }; 5277 5278 /* 5279 * Return the various interrupt name. 5280 */ 5281 static char *is_various_name(char *buf, size_t bsize, unsigned int source) 5282 { 5283 if (source < ARRAY_SIZE(various_names)) 5284 strncpy(buf, various_names[source], bsize); 5285 else 5286 snprintf(buf, bsize, "Reserved%u", source + IS_VARIOUS_START); 5287 return buf; 5288 } 5289 5290 /* 5291 * Return the DC interrupt name. 5292 */ 5293 static char *is_dc_name(char *buf, size_t bsize, unsigned int source) 5294 { 5295 static const char * const dc_int_names[] = { 5296 "common", 5297 "lcb", 5298 "8051", 5299 "lbm" /* local block merge */ 5300 }; 5301 5302 if (source < ARRAY_SIZE(dc_int_names)) 5303 snprintf(buf, bsize, "dc_%s_int", dc_int_names[source]); 5304 else 5305 snprintf(buf, bsize, "DCInt%u", source); 5306 return buf; 5307 } 5308 5309 static const char * const sdma_int_names[] = { 5310 "SDmaInt", 5311 "SdmaIdleInt", 5312 "SdmaProgressInt", 5313 }; 5314 5315 /* 5316 * Return the SDMA engine interrupt name. 5317 */ 5318 static char *is_sdma_eng_name(char *buf, size_t bsize, unsigned int source) 5319 { 5320 /* what interrupt */ 5321 unsigned int what = source / TXE_NUM_SDMA_ENGINES; 5322 /* which engine */ 5323 unsigned int which = source % TXE_NUM_SDMA_ENGINES; 5324 5325 if (likely(what < 3)) 5326 snprintf(buf, bsize, "%s%u", sdma_int_names[what], which); 5327 else 5328 snprintf(buf, bsize, "Invalid SDMA interrupt %u", source); 5329 return buf; 5330 } 5331 5332 /* 5333 * Return the receive available interrupt name. 5334 */ 5335 static char *is_rcv_avail_name(char *buf, size_t bsize, unsigned int source) 5336 { 5337 snprintf(buf, bsize, "RcvAvailInt%u", source); 5338 return buf; 5339 } 5340 5341 /* 5342 * Return the receive urgent interrupt name. 5343 */ 5344 static char *is_rcv_urgent_name(char *buf, size_t bsize, unsigned int source) 5345 { 5346 snprintf(buf, bsize, "RcvUrgentInt%u", source); 5347 return buf; 5348 } 5349 5350 /* 5351 * Return the send credit interrupt name. 5352 */ 5353 static char *is_send_credit_name(char *buf, size_t bsize, unsigned int source) 5354 { 5355 snprintf(buf, bsize, "SendCreditInt%u", source); 5356 return buf; 5357 } 5358 5359 /* 5360 * Return the reserved interrupt name. 5361 */ 5362 static char *is_reserved_name(char *buf, size_t bsize, unsigned int source) 5363 { 5364 snprintf(buf, bsize, "Reserved%u", source + IS_RESERVED_START); 5365 return buf; 5366 } 5367 5368 static char *cce_err_status_string(char *buf, int buf_len, u64 flags) 5369 { 5370 return flag_string(buf, buf_len, flags, 5371 cce_err_status_flags, 5372 ARRAY_SIZE(cce_err_status_flags)); 5373 } 5374 5375 static char *rxe_err_status_string(char *buf, int buf_len, u64 flags) 5376 { 5377 return flag_string(buf, buf_len, flags, 5378 rxe_err_status_flags, 5379 ARRAY_SIZE(rxe_err_status_flags)); 5380 } 5381 5382 static char *misc_err_status_string(char *buf, int buf_len, u64 flags) 5383 { 5384 return flag_string(buf, buf_len, flags, misc_err_status_flags, 5385 ARRAY_SIZE(misc_err_status_flags)); 5386 } 5387 5388 static char *pio_err_status_string(char *buf, int buf_len, u64 flags) 5389 { 5390 return flag_string(buf, buf_len, flags, 5391 pio_err_status_flags, 5392 ARRAY_SIZE(pio_err_status_flags)); 5393 } 5394 5395 static char *sdma_err_status_string(char *buf, int buf_len, u64 flags) 5396 { 5397 return flag_string(buf, buf_len, flags, 5398 sdma_err_status_flags, 5399 ARRAY_SIZE(sdma_err_status_flags)); 5400 } 5401 5402 static char *egress_err_status_string(char *buf, int buf_len, u64 flags) 5403 { 5404 return flag_string(buf, buf_len, flags, 5405 egress_err_status_flags, 5406 ARRAY_SIZE(egress_err_status_flags)); 5407 } 5408 5409 static char *egress_err_info_string(char *buf, int buf_len, u64 flags) 5410 { 5411 return flag_string(buf, buf_len, flags, 5412 egress_err_info_flags, 5413 ARRAY_SIZE(egress_err_info_flags)); 5414 } 5415 5416 static char *send_err_status_string(char *buf, int buf_len, u64 flags) 5417 { 5418 return flag_string(buf, buf_len, flags, 5419 send_err_status_flags, 5420 ARRAY_SIZE(send_err_status_flags)); 5421 } 5422 5423 static void handle_cce_err(struct hfi1_devdata *dd, u32 unused, u64 reg) 5424 { 5425 char buf[96]; 5426 int i = 0; 5427 5428 /* 5429 * For most these errors, there is nothing that can be done except 5430 * report or record it. 5431 */ 5432 dd_dev_info(dd, "CCE Error: %s\n", 5433 cce_err_status_string(buf, sizeof(buf), reg)); 5434 5435 if ((reg & CCE_ERR_STATUS_CCE_CLI2_ASYNC_FIFO_PARITY_ERR_SMASK) && 5436 is_ax(dd) && (dd->icode != ICODE_FUNCTIONAL_SIMULATOR)) { 5437 /* this error requires a manual drop into SPC freeze mode */ 5438 /* then a fix up */ 5439 start_freeze_handling(dd->pport, FREEZE_SELF); 5440 } 5441 5442 for (i = 0; i < NUM_CCE_ERR_STATUS_COUNTERS; i++) { 5443 if (reg & (1ull << i)) { 5444 incr_cntr64(&dd->cce_err_status_cnt[i]); 5445 /* maintain a counter over all cce_err_status errors */ 5446 incr_cntr64(&dd->sw_cce_err_status_aggregate); 5447 } 5448 } 5449 } 5450 5451 /* 5452 * Check counters for receive errors that do not have an interrupt 5453 * associated with them. 5454 */ 5455 #define RCVERR_CHECK_TIME 10 5456 static void update_rcverr_timer(unsigned long opaque) 5457 { 5458 struct hfi1_devdata *dd = (struct hfi1_devdata *)opaque; 5459 struct hfi1_pportdata *ppd = dd->pport; 5460 u32 cur_ovfl_cnt = read_dev_cntr(dd, C_RCV_OVF, CNTR_INVALID_VL); 5461 5462 if (dd->rcv_ovfl_cnt < cur_ovfl_cnt && 5463 ppd->port_error_action & OPA_PI_MASK_EX_BUFFER_OVERRUN) { 5464 dd_dev_info(dd, "%s: PortErrorAction bounce\n", __func__); 5465 set_link_down_reason( 5466 ppd, OPA_LINKDOWN_REASON_EXCESSIVE_BUFFER_OVERRUN, 0, 5467 OPA_LINKDOWN_REASON_EXCESSIVE_BUFFER_OVERRUN); 5468 queue_work(ppd->hfi1_wq, &ppd->link_bounce_work); 5469 } 5470 dd->rcv_ovfl_cnt = (u32)cur_ovfl_cnt; 5471 5472 mod_timer(&dd->rcverr_timer, jiffies + HZ * RCVERR_CHECK_TIME); 5473 } 5474 5475 static int init_rcverr(struct hfi1_devdata *dd) 5476 { 5477 setup_timer(&dd->rcverr_timer, update_rcverr_timer, (unsigned long)dd); 5478 /* Assume the hardware counter has been reset */ 5479 dd->rcv_ovfl_cnt = 0; 5480 return mod_timer(&dd->rcverr_timer, jiffies + HZ * RCVERR_CHECK_TIME); 5481 } 5482 5483 static void free_rcverr(struct hfi1_devdata *dd) 5484 { 5485 if (dd->rcverr_timer.data) 5486 del_timer_sync(&dd->rcverr_timer); 5487 dd->rcverr_timer.data = 0; 5488 } 5489 5490 static void handle_rxe_err(struct hfi1_devdata *dd, u32 unused, u64 reg) 5491 { 5492 char buf[96]; 5493 int i = 0; 5494 5495 dd_dev_info(dd, "Receive Error: %s\n", 5496 rxe_err_status_string(buf, sizeof(buf), reg)); 5497 5498 if (reg & ALL_RXE_FREEZE_ERR) { 5499 int flags = 0; 5500 5501 /* 5502 * Freeze mode recovery is disabled for the errors 5503 * in RXE_FREEZE_ABORT_MASK 5504 */ 5505 if (is_ax(dd) && (reg & RXE_FREEZE_ABORT_MASK)) 5506 flags = FREEZE_ABORT; 5507 5508 start_freeze_handling(dd->pport, flags); 5509 } 5510 5511 for (i = 0; i < NUM_RCV_ERR_STATUS_COUNTERS; i++) { 5512 if (reg & (1ull << i)) 5513 incr_cntr64(&dd->rcv_err_status_cnt[i]); 5514 } 5515 } 5516 5517 static void handle_misc_err(struct hfi1_devdata *dd, u32 unused, u64 reg) 5518 { 5519 char buf[96]; 5520 int i = 0; 5521 5522 dd_dev_info(dd, "Misc Error: %s", 5523 misc_err_status_string(buf, sizeof(buf), reg)); 5524 for (i = 0; i < NUM_MISC_ERR_STATUS_COUNTERS; i++) { 5525 if (reg & (1ull << i)) 5526 incr_cntr64(&dd->misc_err_status_cnt[i]); 5527 } 5528 } 5529 5530 static void handle_pio_err(struct hfi1_devdata *dd, u32 unused, u64 reg) 5531 { 5532 char buf[96]; 5533 int i = 0; 5534 5535 dd_dev_info(dd, "PIO Error: %s\n", 5536 pio_err_status_string(buf, sizeof(buf), reg)); 5537 5538 if (reg & ALL_PIO_FREEZE_ERR) 5539 start_freeze_handling(dd->pport, 0); 5540 5541 for (i = 0; i < NUM_SEND_PIO_ERR_STATUS_COUNTERS; i++) { 5542 if (reg & (1ull << i)) 5543 incr_cntr64(&dd->send_pio_err_status_cnt[i]); 5544 } 5545 } 5546 5547 static void handle_sdma_err(struct hfi1_devdata *dd, u32 unused, u64 reg) 5548 { 5549 char buf[96]; 5550 int i = 0; 5551 5552 dd_dev_info(dd, "SDMA Error: %s\n", 5553 sdma_err_status_string(buf, sizeof(buf), reg)); 5554 5555 if (reg & ALL_SDMA_FREEZE_ERR) 5556 start_freeze_handling(dd->pport, 0); 5557 5558 for (i = 0; i < NUM_SEND_DMA_ERR_STATUS_COUNTERS; i++) { 5559 if (reg & (1ull << i)) 5560 incr_cntr64(&dd->send_dma_err_status_cnt[i]); 5561 } 5562 } 5563 5564 static inline void __count_port_discards(struct hfi1_pportdata *ppd) 5565 { 5566 incr_cntr64(&ppd->port_xmit_discards); 5567 } 5568 5569 static void count_port_inactive(struct hfi1_devdata *dd) 5570 { 5571 __count_port_discards(dd->pport); 5572 } 5573 5574 /* 5575 * We have had a "disallowed packet" error during egress. Determine the 5576 * integrity check which failed, and update relevant error counter, etc. 5577 * 5578 * Note that the SEND_EGRESS_ERR_INFO register has only a single 5579 * bit of state per integrity check, and so we can miss the reason for an 5580 * egress error if more than one packet fails the same integrity check 5581 * since we cleared the corresponding bit in SEND_EGRESS_ERR_INFO. 5582 */ 5583 static void handle_send_egress_err_info(struct hfi1_devdata *dd, 5584 int vl) 5585 { 5586 struct hfi1_pportdata *ppd = dd->pport; 5587 u64 src = read_csr(dd, SEND_EGRESS_ERR_SOURCE); /* read first */ 5588 u64 info = read_csr(dd, SEND_EGRESS_ERR_INFO); 5589 char buf[96]; 5590 5591 /* clear down all observed info as quickly as possible after read */ 5592 write_csr(dd, SEND_EGRESS_ERR_INFO, info); 5593 5594 dd_dev_info(dd, 5595 "Egress Error Info: 0x%llx, %s Egress Error Src 0x%llx\n", 5596 info, egress_err_info_string(buf, sizeof(buf), info), src); 5597 5598 /* Eventually add other counters for each bit */ 5599 if (info & PORT_DISCARD_EGRESS_ERRS) { 5600 int weight, i; 5601 5602 /* 5603 * Count all applicable bits as individual errors and 5604 * attribute them to the packet that triggered this handler. 5605 * This may not be completely accurate due to limitations 5606 * on the available hardware error information. There is 5607 * a single information register and any number of error 5608 * packets may have occurred and contributed to it before 5609 * this routine is called. This means that: 5610 * a) If multiple packets with the same error occur before 5611 * this routine is called, earlier packets are missed. 5612 * There is only a single bit for each error type. 5613 * b) Errors may not be attributed to the correct VL. 5614 * The driver is attributing all bits in the info register 5615 * to the packet that triggered this call, but bits 5616 * could be an accumulation of different packets with 5617 * different VLs. 5618 * c) A single error packet may have multiple counts attached 5619 * to it. There is no way for the driver to know if 5620 * multiple bits set in the info register are due to a 5621 * single packet or multiple packets. The driver assumes 5622 * multiple packets. 5623 */ 5624 weight = hweight64(info & PORT_DISCARD_EGRESS_ERRS); 5625 for (i = 0; i < weight; i++) { 5626 __count_port_discards(ppd); 5627 if (vl >= 0 && vl < TXE_NUM_DATA_VL) 5628 incr_cntr64(&ppd->port_xmit_discards_vl[vl]); 5629 else if (vl == 15) 5630 incr_cntr64(&ppd->port_xmit_discards_vl 5631 [C_VL_15]); 5632 } 5633 } 5634 } 5635 5636 /* 5637 * Input value is a bit position within the SEND_EGRESS_ERR_STATUS 5638 * register. Does it represent a 'port inactive' error? 5639 */ 5640 static inline int port_inactive_err(u64 posn) 5641 { 5642 return (posn >= SEES(TX_LINKDOWN) && 5643 posn <= SEES(TX_INCORRECT_LINK_STATE)); 5644 } 5645 5646 /* 5647 * Input value is a bit position within the SEND_EGRESS_ERR_STATUS 5648 * register. Does it represent a 'disallowed packet' error? 5649 */ 5650 static inline int disallowed_pkt_err(int posn) 5651 { 5652 return (posn >= SEES(TX_SDMA0_DISALLOWED_PACKET) && 5653 posn <= SEES(TX_SDMA15_DISALLOWED_PACKET)); 5654 } 5655 5656 /* 5657 * Input value is a bit position of one of the SDMA engine disallowed 5658 * packet errors. Return which engine. Use of this must be guarded by 5659 * disallowed_pkt_err(). 5660 */ 5661 static inline int disallowed_pkt_engine(int posn) 5662 { 5663 return posn - SEES(TX_SDMA0_DISALLOWED_PACKET); 5664 } 5665 5666 /* 5667 * Translate an SDMA engine to a VL. Return -1 if the tranlation cannot 5668 * be done. 5669 */ 5670 static int engine_to_vl(struct hfi1_devdata *dd, int engine) 5671 { 5672 struct sdma_vl_map *m; 5673 int vl; 5674 5675 /* range check */ 5676 if (engine < 0 || engine >= TXE_NUM_SDMA_ENGINES) 5677 return -1; 5678 5679 rcu_read_lock(); 5680 m = rcu_dereference(dd->sdma_map); 5681 vl = m->engine_to_vl[engine]; 5682 rcu_read_unlock(); 5683 5684 return vl; 5685 } 5686 5687 /* 5688 * Translate the send context (sofware index) into a VL. Return -1 if the 5689 * translation cannot be done. 5690 */ 5691 static int sc_to_vl(struct hfi1_devdata *dd, int sw_index) 5692 { 5693 struct send_context_info *sci; 5694 struct send_context *sc; 5695 int i; 5696 5697 sci = &dd->send_contexts[sw_index]; 5698 5699 /* there is no information for user (PSM) and ack contexts */ 5700 if ((sci->type != SC_KERNEL) && (sci->type != SC_VL15)) 5701 return -1; 5702 5703 sc = sci->sc; 5704 if (!sc) 5705 return -1; 5706 if (dd->vld[15].sc == sc) 5707 return 15; 5708 for (i = 0; i < num_vls; i++) 5709 if (dd->vld[i].sc == sc) 5710 return i; 5711 5712 return -1; 5713 } 5714 5715 static void handle_egress_err(struct hfi1_devdata *dd, u32 unused, u64 reg) 5716 { 5717 u64 reg_copy = reg, handled = 0; 5718 char buf[96]; 5719 int i = 0; 5720 5721 if (reg & ALL_TXE_EGRESS_FREEZE_ERR) 5722 start_freeze_handling(dd->pport, 0); 5723 else if (is_ax(dd) && 5724 (reg & SEND_EGRESS_ERR_STATUS_TX_CREDIT_RETURN_VL_ERR_SMASK) && 5725 (dd->icode != ICODE_FUNCTIONAL_SIMULATOR)) 5726 start_freeze_handling(dd->pport, 0); 5727 5728 while (reg_copy) { 5729 int posn = fls64(reg_copy); 5730 /* fls64() returns a 1-based offset, we want it zero based */ 5731 int shift = posn - 1; 5732 u64 mask = 1ULL << shift; 5733 5734 if (port_inactive_err(shift)) { 5735 count_port_inactive(dd); 5736 handled |= mask; 5737 } else if (disallowed_pkt_err(shift)) { 5738 int vl = engine_to_vl(dd, disallowed_pkt_engine(shift)); 5739 5740 handle_send_egress_err_info(dd, vl); 5741 handled |= mask; 5742 } 5743 reg_copy &= ~mask; 5744 } 5745 5746 reg &= ~handled; 5747 5748 if (reg) 5749 dd_dev_info(dd, "Egress Error: %s\n", 5750 egress_err_status_string(buf, sizeof(buf), reg)); 5751 5752 for (i = 0; i < NUM_SEND_EGRESS_ERR_STATUS_COUNTERS; i++) { 5753 if (reg & (1ull << i)) 5754 incr_cntr64(&dd->send_egress_err_status_cnt[i]); 5755 } 5756 } 5757 5758 static void handle_txe_err(struct hfi1_devdata *dd, u32 unused, u64 reg) 5759 { 5760 char buf[96]; 5761 int i = 0; 5762 5763 dd_dev_info(dd, "Send Error: %s\n", 5764 send_err_status_string(buf, sizeof(buf), reg)); 5765 5766 for (i = 0; i < NUM_SEND_ERR_STATUS_COUNTERS; i++) { 5767 if (reg & (1ull << i)) 5768 incr_cntr64(&dd->send_err_status_cnt[i]); 5769 } 5770 } 5771 5772 /* 5773 * The maximum number of times the error clear down will loop before 5774 * blocking a repeating error. This value is arbitrary. 5775 */ 5776 #define MAX_CLEAR_COUNT 20 5777 5778 /* 5779 * Clear and handle an error register. All error interrupts are funneled 5780 * through here to have a central location to correctly handle single- 5781 * or multi-shot errors. 5782 * 5783 * For non per-context registers, call this routine with a context value 5784 * of 0 so the per-context offset is zero. 5785 * 5786 * If the handler loops too many times, assume that something is wrong 5787 * and can't be fixed, so mask the error bits. 5788 */ 5789 static void interrupt_clear_down(struct hfi1_devdata *dd, 5790 u32 context, 5791 const struct err_reg_info *eri) 5792 { 5793 u64 reg; 5794 u32 count; 5795 5796 /* read in a loop until no more errors are seen */ 5797 count = 0; 5798 while (1) { 5799 reg = read_kctxt_csr(dd, context, eri->status); 5800 if (reg == 0) 5801 break; 5802 write_kctxt_csr(dd, context, eri->clear, reg); 5803 if (likely(eri->handler)) 5804 eri->handler(dd, context, reg); 5805 count++; 5806 if (count > MAX_CLEAR_COUNT) { 5807 u64 mask; 5808 5809 dd_dev_err(dd, "Repeating %s bits 0x%llx - masking\n", 5810 eri->desc, reg); 5811 /* 5812 * Read-modify-write so any other masked bits 5813 * remain masked. 5814 */ 5815 mask = read_kctxt_csr(dd, context, eri->mask); 5816 mask &= ~reg; 5817 write_kctxt_csr(dd, context, eri->mask, mask); 5818 break; 5819 } 5820 } 5821 } 5822 5823 /* 5824 * CCE block "misc" interrupt. Source is < 16. 5825 */ 5826 static void is_misc_err_int(struct hfi1_devdata *dd, unsigned int source) 5827 { 5828 const struct err_reg_info *eri = &misc_errs[source]; 5829 5830 if (eri->handler) { 5831 interrupt_clear_down(dd, 0, eri); 5832 } else { 5833 dd_dev_err(dd, "Unexpected misc interrupt (%u) - reserved\n", 5834 source); 5835 } 5836 } 5837 5838 static char *send_context_err_status_string(char *buf, int buf_len, u64 flags) 5839 { 5840 return flag_string(buf, buf_len, flags, 5841 sc_err_status_flags, 5842 ARRAY_SIZE(sc_err_status_flags)); 5843 } 5844 5845 /* 5846 * Send context error interrupt. Source (hw_context) is < 160. 5847 * 5848 * All send context errors cause the send context to halt. The normal 5849 * clear-down mechanism cannot be used because we cannot clear the 5850 * error bits until several other long-running items are done first. 5851 * This is OK because with the context halted, nothing else is going 5852 * to happen on it anyway. 5853 */ 5854 static void is_sendctxt_err_int(struct hfi1_devdata *dd, 5855 unsigned int hw_context) 5856 { 5857 struct send_context_info *sci; 5858 struct send_context *sc; 5859 char flags[96]; 5860 u64 status; 5861 u32 sw_index; 5862 int i = 0; 5863 5864 sw_index = dd->hw_to_sw[hw_context]; 5865 if (sw_index >= dd->num_send_contexts) { 5866 dd_dev_err(dd, 5867 "out of range sw index %u for send context %u\n", 5868 sw_index, hw_context); 5869 return; 5870 } 5871 sci = &dd->send_contexts[sw_index]; 5872 sc = sci->sc; 5873 if (!sc) { 5874 dd_dev_err(dd, "%s: context %u(%u): no sc?\n", __func__, 5875 sw_index, hw_context); 5876 return; 5877 } 5878 5879 /* tell the software that a halt has begun */ 5880 sc_stop(sc, SCF_HALTED); 5881 5882 status = read_kctxt_csr(dd, hw_context, SEND_CTXT_ERR_STATUS); 5883 5884 dd_dev_info(dd, "Send Context %u(%u) Error: %s\n", sw_index, hw_context, 5885 send_context_err_status_string(flags, sizeof(flags), 5886 status)); 5887 5888 if (status & SEND_CTXT_ERR_STATUS_PIO_DISALLOWED_PACKET_ERR_SMASK) 5889 handle_send_egress_err_info(dd, sc_to_vl(dd, sw_index)); 5890 5891 /* 5892 * Automatically restart halted kernel contexts out of interrupt 5893 * context. User contexts must ask the driver to restart the context. 5894 */ 5895 if (sc->type != SC_USER) 5896 queue_work(dd->pport->hfi1_wq, &sc->halt_work); 5897 5898 /* 5899 * Update the counters for the corresponding status bits. 5900 * Note that these particular counters are aggregated over all 5901 * 160 contexts. 5902 */ 5903 for (i = 0; i < NUM_SEND_CTXT_ERR_STATUS_COUNTERS; i++) { 5904 if (status & (1ull << i)) 5905 incr_cntr64(&dd->sw_ctxt_err_status_cnt[i]); 5906 } 5907 } 5908 5909 static void handle_sdma_eng_err(struct hfi1_devdata *dd, 5910 unsigned int source, u64 status) 5911 { 5912 struct sdma_engine *sde; 5913 int i = 0; 5914 5915 sde = &dd->per_sdma[source]; 5916 #ifdef CONFIG_SDMA_VERBOSITY 5917 dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx, 5918 slashstrip(__FILE__), __LINE__, __func__); 5919 dd_dev_err(sde->dd, "CONFIG SDMA(%u) source: %u status 0x%llx\n", 5920 sde->this_idx, source, (unsigned long long)status); 5921 #endif 5922 sde->err_cnt++; 5923 sdma_engine_error(sde, status); 5924 5925 /* 5926 * Update the counters for the corresponding status bits. 5927 * Note that these particular counters are aggregated over 5928 * all 16 DMA engines. 5929 */ 5930 for (i = 0; i < NUM_SEND_DMA_ENG_ERR_STATUS_COUNTERS; i++) { 5931 if (status & (1ull << i)) 5932 incr_cntr64(&dd->sw_send_dma_eng_err_status_cnt[i]); 5933 } 5934 } 5935 5936 /* 5937 * CCE block SDMA error interrupt. Source is < 16. 5938 */ 5939 static void is_sdma_eng_err_int(struct hfi1_devdata *dd, unsigned int source) 5940 { 5941 #ifdef CONFIG_SDMA_VERBOSITY 5942 struct sdma_engine *sde = &dd->per_sdma[source]; 5943 5944 dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx, 5945 slashstrip(__FILE__), __LINE__, __func__); 5946 dd_dev_err(dd, "CONFIG SDMA(%u) source: %u\n", sde->this_idx, 5947 source); 5948 sdma_dumpstate(sde); 5949 #endif 5950 interrupt_clear_down(dd, source, &sdma_eng_err); 5951 } 5952 5953 /* 5954 * CCE block "various" interrupt. Source is < 8. 5955 */ 5956 static void is_various_int(struct hfi1_devdata *dd, unsigned int source) 5957 { 5958 const struct err_reg_info *eri = &various_err[source]; 5959 5960 /* 5961 * TCritInt cannot go through interrupt_clear_down() 5962 * because it is not a second tier interrupt. The handler 5963 * should be called directly. 5964 */ 5965 if (source == TCRIT_INT_SOURCE) 5966 handle_temp_err(dd); 5967 else if (eri->handler) 5968 interrupt_clear_down(dd, 0, eri); 5969 else 5970 dd_dev_info(dd, 5971 "%s: Unimplemented/reserved interrupt %d\n", 5972 __func__, source); 5973 } 5974 5975 static void handle_qsfp_int(struct hfi1_devdata *dd, u32 src_ctx, u64 reg) 5976 { 5977 /* src_ctx is always zero */ 5978 struct hfi1_pportdata *ppd = dd->pport; 5979 unsigned long flags; 5980 u64 qsfp_int_mgmt = (u64)(QSFP_HFI0_INT_N | QSFP_HFI0_MODPRST_N); 5981 5982 if (reg & QSFP_HFI0_MODPRST_N) { 5983 if (!qsfp_mod_present(ppd)) { 5984 dd_dev_info(dd, "%s: QSFP module removed\n", 5985 __func__); 5986 5987 ppd->driver_link_ready = 0; 5988 /* 5989 * Cable removed, reset all our information about the 5990 * cache and cable capabilities 5991 */ 5992 5993 spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags); 5994 /* 5995 * We don't set cache_refresh_required here as we expect 5996 * an interrupt when a cable is inserted 5997 */ 5998 ppd->qsfp_info.cache_valid = 0; 5999 ppd->qsfp_info.reset_needed = 0; 6000 ppd->qsfp_info.limiting_active = 0; 6001 spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock, 6002 flags); 6003 /* Invert the ModPresent pin now to detect plug-in */ 6004 write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_INVERT : 6005 ASIC_QSFP1_INVERT, qsfp_int_mgmt); 6006 6007 if ((ppd->offline_disabled_reason > 6008 HFI1_ODR_MASK( 6009 OPA_LINKDOWN_REASON_LOCAL_MEDIA_NOT_INSTALLED)) || 6010 (ppd->offline_disabled_reason == 6011 HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE))) 6012 ppd->offline_disabled_reason = 6013 HFI1_ODR_MASK( 6014 OPA_LINKDOWN_REASON_LOCAL_MEDIA_NOT_INSTALLED); 6015 6016 if (ppd->host_link_state == HLS_DN_POLL) { 6017 /* 6018 * The link is still in POLL. This means 6019 * that the normal link down processing 6020 * will not happen. We have to do it here 6021 * before turning the DC off. 6022 */ 6023 queue_work(ppd->hfi1_wq, &ppd->link_down_work); 6024 } 6025 } else { 6026 dd_dev_info(dd, "%s: QSFP module inserted\n", 6027 __func__); 6028 6029 spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags); 6030 ppd->qsfp_info.cache_valid = 0; 6031 ppd->qsfp_info.cache_refresh_required = 1; 6032 spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock, 6033 flags); 6034 6035 /* 6036 * Stop inversion of ModPresent pin to detect 6037 * removal of the cable 6038 */ 6039 qsfp_int_mgmt &= ~(u64)QSFP_HFI0_MODPRST_N; 6040 write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_INVERT : 6041 ASIC_QSFP1_INVERT, qsfp_int_mgmt); 6042 6043 ppd->offline_disabled_reason = 6044 HFI1_ODR_MASK(OPA_LINKDOWN_REASON_TRANSIENT); 6045 } 6046 } 6047 6048 if (reg & QSFP_HFI0_INT_N) { 6049 dd_dev_info(dd, "%s: Interrupt received from QSFP module\n", 6050 __func__); 6051 spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags); 6052 ppd->qsfp_info.check_interrupt_flags = 1; 6053 spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock, flags); 6054 } 6055 6056 /* Schedule the QSFP work only if there is a cable attached. */ 6057 if (qsfp_mod_present(ppd)) 6058 queue_work(ppd->hfi1_wq, &ppd->qsfp_info.qsfp_work); 6059 } 6060 6061 static int request_host_lcb_access(struct hfi1_devdata *dd) 6062 { 6063 int ret; 6064 6065 ret = do_8051_command(dd, HCMD_MISC, 6066 (u64)HCMD_MISC_REQUEST_LCB_ACCESS << 6067 LOAD_DATA_FIELD_ID_SHIFT, NULL); 6068 if (ret != HCMD_SUCCESS) { 6069 dd_dev_err(dd, "%s: command failed with error %d\n", 6070 __func__, ret); 6071 } 6072 return ret == HCMD_SUCCESS ? 0 : -EBUSY; 6073 } 6074 6075 static int request_8051_lcb_access(struct hfi1_devdata *dd) 6076 { 6077 int ret; 6078 6079 ret = do_8051_command(dd, HCMD_MISC, 6080 (u64)HCMD_MISC_GRANT_LCB_ACCESS << 6081 LOAD_DATA_FIELD_ID_SHIFT, NULL); 6082 if (ret != HCMD_SUCCESS) { 6083 dd_dev_err(dd, "%s: command failed with error %d\n", 6084 __func__, ret); 6085 } 6086 return ret == HCMD_SUCCESS ? 0 : -EBUSY; 6087 } 6088 6089 /* 6090 * Set the LCB selector - allow host access. The DCC selector always 6091 * points to the host. 6092 */ 6093 static inline void set_host_lcb_access(struct hfi1_devdata *dd) 6094 { 6095 write_csr(dd, DC_DC8051_CFG_CSR_ACCESS_SEL, 6096 DC_DC8051_CFG_CSR_ACCESS_SEL_DCC_SMASK | 6097 DC_DC8051_CFG_CSR_ACCESS_SEL_LCB_SMASK); 6098 } 6099 6100 /* 6101 * Clear the LCB selector - allow 8051 access. The DCC selector always 6102 * points to the host. 6103 */ 6104 static inline void set_8051_lcb_access(struct hfi1_devdata *dd) 6105 { 6106 write_csr(dd, DC_DC8051_CFG_CSR_ACCESS_SEL, 6107 DC_DC8051_CFG_CSR_ACCESS_SEL_DCC_SMASK); 6108 } 6109 6110 /* 6111 * Acquire LCB access from the 8051. If the host already has access, 6112 * just increment a counter. Otherwise, inform the 8051 that the 6113 * host is taking access. 6114 * 6115 * Returns: 6116 * 0 on success 6117 * -EBUSY if the 8051 has control and cannot be disturbed 6118 * -errno if unable to acquire access from the 8051 6119 */ 6120 int acquire_lcb_access(struct hfi1_devdata *dd, int sleep_ok) 6121 { 6122 struct hfi1_pportdata *ppd = dd->pport; 6123 int ret = 0; 6124 6125 /* 6126 * Use the host link state lock so the operation of this routine 6127 * { link state check, selector change, count increment } can occur 6128 * as a unit against a link state change. Otherwise there is a 6129 * race between the state change and the count increment. 6130 */ 6131 if (sleep_ok) { 6132 mutex_lock(&ppd->hls_lock); 6133 } else { 6134 while (!mutex_trylock(&ppd->hls_lock)) 6135 udelay(1); 6136 } 6137 6138 /* this access is valid only when the link is up */ 6139 if (ppd->host_link_state & HLS_DOWN) { 6140 dd_dev_info(dd, "%s: link state %s not up\n", 6141 __func__, link_state_name(ppd->host_link_state)); 6142 ret = -EBUSY; 6143 goto done; 6144 } 6145 6146 if (dd->lcb_access_count == 0) { 6147 ret = request_host_lcb_access(dd); 6148 if (ret) { 6149 dd_dev_err(dd, 6150 "%s: unable to acquire LCB access, err %d\n", 6151 __func__, ret); 6152 goto done; 6153 } 6154 set_host_lcb_access(dd); 6155 } 6156 dd->lcb_access_count++; 6157 done: 6158 mutex_unlock(&ppd->hls_lock); 6159 return ret; 6160 } 6161 6162 /* 6163 * Release LCB access by decrementing the use count. If the count is moving 6164 * from 1 to 0, inform 8051 that it has control back. 6165 * 6166 * Returns: 6167 * 0 on success 6168 * -errno if unable to release access to the 8051 6169 */ 6170 int release_lcb_access(struct hfi1_devdata *dd, int sleep_ok) 6171 { 6172 int ret = 0; 6173 6174 /* 6175 * Use the host link state lock because the acquire needed it. 6176 * Here, we only need to keep { selector change, count decrement } 6177 * as a unit. 6178 */ 6179 if (sleep_ok) { 6180 mutex_lock(&dd->pport->hls_lock); 6181 } else { 6182 while (!mutex_trylock(&dd->pport->hls_lock)) 6183 udelay(1); 6184 } 6185 6186 if (dd->lcb_access_count == 0) { 6187 dd_dev_err(dd, "%s: LCB access count is zero. Skipping.\n", 6188 __func__); 6189 goto done; 6190 } 6191 6192 if (dd->lcb_access_count == 1) { 6193 set_8051_lcb_access(dd); 6194 ret = request_8051_lcb_access(dd); 6195 if (ret) { 6196 dd_dev_err(dd, 6197 "%s: unable to release LCB access, err %d\n", 6198 __func__, ret); 6199 /* restore host access if the grant didn't work */ 6200 set_host_lcb_access(dd); 6201 goto done; 6202 } 6203 } 6204 dd->lcb_access_count--; 6205 done: 6206 mutex_unlock(&dd->pport->hls_lock); 6207 return ret; 6208 } 6209 6210 /* 6211 * Initialize LCB access variables and state. Called during driver load, 6212 * after most of the initialization is finished. 6213 * 6214 * The DC default is LCB access on for the host. The driver defaults to 6215 * leaving access to the 8051. Assign access now - this constrains the call 6216 * to this routine to be after all LCB set-up is done. In particular, after 6217 * hf1_init_dd() -> set_up_interrupts() -> clear_all_interrupts() 6218 */ 6219 static void init_lcb_access(struct hfi1_devdata *dd) 6220 { 6221 dd->lcb_access_count = 0; 6222 } 6223 6224 /* 6225 * Write a response back to a 8051 request. 6226 */ 6227 static void hreq_response(struct hfi1_devdata *dd, u8 return_code, u16 rsp_data) 6228 { 6229 write_csr(dd, DC_DC8051_CFG_EXT_DEV_0, 6230 DC_DC8051_CFG_EXT_DEV_0_COMPLETED_SMASK | 6231 (u64)return_code << 6232 DC_DC8051_CFG_EXT_DEV_0_RETURN_CODE_SHIFT | 6233 (u64)rsp_data << DC_DC8051_CFG_EXT_DEV_0_RSP_DATA_SHIFT); 6234 } 6235 6236 /* 6237 * Handle host requests from the 8051. 6238 */ 6239 static void handle_8051_request(struct hfi1_pportdata *ppd) 6240 { 6241 struct hfi1_devdata *dd = ppd->dd; 6242 u64 reg; 6243 u16 data = 0; 6244 u8 type; 6245 6246 reg = read_csr(dd, DC_DC8051_CFG_EXT_DEV_1); 6247 if ((reg & DC_DC8051_CFG_EXT_DEV_1_REQ_NEW_SMASK) == 0) 6248 return; /* no request */ 6249 6250 /* zero out COMPLETED so the response is seen */ 6251 write_csr(dd, DC_DC8051_CFG_EXT_DEV_0, 0); 6252 6253 /* extract request details */ 6254 type = (reg >> DC_DC8051_CFG_EXT_DEV_1_REQ_TYPE_SHIFT) 6255 & DC_DC8051_CFG_EXT_DEV_1_REQ_TYPE_MASK; 6256 data = (reg >> DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SHIFT) 6257 & DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_MASK; 6258 6259 switch (type) { 6260 case HREQ_LOAD_CONFIG: 6261 case HREQ_SAVE_CONFIG: 6262 case HREQ_READ_CONFIG: 6263 case HREQ_SET_TX_EQ_ABS: 6264 case HREQ_SET_TX_EQ_REL: 6265 case HREQ_ENABLE: 6266 dd_dev_info(dd, "8051 request: request 0x%x not supported\n", 6267 type); 6268 hreq_response(dd, HREQ_NOT_SUPPORTED, 0); 6269 break; 6270 case HREQ_CONFIG_DONE: 6271 hreq_response(dd, HREQ_SUCCESS, 0); 6272 break; 6273 6274 case HREQ_INTERFACE_TEST: 6275 hreq_response(dd, HREQ_SUCCESS, data); 6276 break; 6277 default: 6278 dd_dev_err(dd, "8051 request: unknown request 0x%x\n", type); 6279 hreq_response(dd, HREQ_NOT_SUPPORTED, 0); 6280 break; 6281 } 6282 } 6283 6284 static void write_global_credit(struct hfi1_devdata *dd, 6285 u8 vau, u16 total, u16 shared) 6286 { 6287 write_csr(dd, SEND_CM_GLOBAL_CREDIT, 6288 ((u64)total << 6289 SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT) | 6290 ((u64)shared << 6291 SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SHIFT) | 6292 ((u64)vau << SEND_CM_GLOBAL_CREDIT_AU_SHIFT)); 6293 } 6294 6295 /* 6296 * Set up initial VL15 credits of the remote. Assumes the rest of 6297 * the CM credit registers are zero from a previous global or credit reset . 6298 */ 6299 void set_up_vl15(struct hfi1_devdata *dd, u8 vau, u16 vl15buf) 6300 { 6301 /* leave shared count at zero for both global and VL15 */ 6302 write_global_credit(dd, vau, vl15buf, 0); 6303 6304 write_csr(dd, SEND_CM_CREDIT_VL15, (u64)vl15buf 6305 << SEND_CM_CREDIT_VL15_DEDICATED_LIMIT_VL_SHIFT); 6306 } 6307 6308 /* 6309 * Zero all credit details from the previous connection and 6310 * reset the CM manager's internal counters. 6311 */ 6312 void reset_link_credits(struct hfi1_devdata *dd) 6313 { 6314 int i; 6315 6316 /* remove all previous VL credit limits */ 6317 for (i = 0; i < TXE_NUM_DATA_VL; i++) 6318 write_csr(dd, SEND_CM_CREDIT_VL + (8 * i), 0); 6319 write_csr(dd, SEND_CM_CREDIT_VL15, 0); 6320 write_global_credit(dd, 0, 0, 0); 6321 /* reset the CM block */ 6322 pio_send_control(dd, PSC_CM_RESET); 6323 } 6324 6325 /* convert a vCU to a CU */ 6326 static u32 vcu_to_cu(u8 vcu) 6327 { 6328 return 1 << vcu; 6329 } 6330 6331 /* convert a CU to a vCU */ 6332 static u8 cu_to_vcu(u32 cu) 6333 { 6334 return ilog2(cu); 6335 } 6336 6337 /* convert a vAU to an AU */ 6338 static u32 vau_to_au(u8 vau) 6339 { 6340 return 8 * (1 << vau); 6341 } 6342 6343 static void set_linkup_defaults(struct hfi1_pportdata *ppd) 6344 { 6345 ppd->sm_trap_qp = 0x0; 6346 ppd->sa_qp = 0x1; 6347 } 6348 6349 /* 6350 * Graceful LCB shutdown. This leaves the LCB FIFOs in reset. 6351 */ 6352 static void lcb_shutdown(struct hfi1_devdata *dd, int abort) 6353 { 6354 u64 reg; 6355 6356 /* clear lcb run: LCB_CFG_RUN.EN = 0 */ 6357 write_csr(dd, DC_LCB_CFG_RUN, 0); 6358 /* set tx fifo reset: LCB_CFG_TX_FIFOS_RESET.VAL = 1 */ 6359 write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 6360 1ull << DC_LCB_CFG_TX_FIFOS_RESET_VAL_SHIFT); 6361 /* set dcc reset csr: DCC_CFG_RESET.{reset_lcb,reset_rx_fpe} = 1 */ 6362 dd->lcb_err_en = read_csr(dd, DC_LCB_ERR_EN); 6363 reg = read_csr(dd, DCC_CFG_RESET); 6364 write_csr(dd, DCC_CFG_RESET, reg | 6365 (1ull << DCC_CFG_RESET_RESET_LCB_SHIFT) | 6366 (1ull << DCC_CFG_RESET_RESET_RX_FPE_SHIFT)); 6367 (void)read_csr(dd, DCC_CFG_RESET); /* make sure the write completed */ 6368 if (!abort) { 6369 udelay(1); /* must hold for the longer of 16cclks or 20ns */ 6370 write_csr(dd, DCC_CFG_RESET, reg); 6371 write_csr(dd, DC_LCB_ERR_EN, dd->lcb_err_en); 6372 } 6373 } 6374 6375 /* 6376 * This routine should be called after the link has been transitioned to 6377 * OFFLINE (OFFLINE state has the side effect of putting the SerDes into 6378 * reset). 6379 * 6380 * The expectation is that the caller of this routine would have taken 6381 * care of properly transitioning the link into the correct state. 6382 */ 6383 static void dc_shutdown(struct hfi1_devdata *dd) 6384 { 6385 unsigned long flags; 6386 6387 spin_lock_irqsave(&dd->dc8051_lock, flags); 6388 if (dd->dc_shutdown) { 6389 spin_unlock_irqrestore(&dd->dc8051_lock, flags); 6390 return; 6391 } 6392 dd->dc_shutdown = 1; 6393 spin_unlock_irqrestore(&dd->dc8051_lock, flags); 6394 /* Shutdown the LCB */ 6395 lcb_shutdown(dd, 1); 6396 /* 6397 * Going to OFFLINE would have causes the 8051 to put the 6398 * SerDes into reset already. Just need to shut down the 8051, 6399 * itself. 6400 */ 6401 write_csr(dd, DC_DC8051_CFG_RST, 0x1); 6402 } 6403 6404 /* 6405 * Calling this after the DC has been brought out of reset should not 6406 * do any damage. 6407 */ 6408 static void dc_start(struct hfi1_devdata *dd) 6409 { 6410 unsigned long flags; 6411 int ret; 6412 6413 spin_lock_irqsave(&dd->dc8051_lock, flags); 6414 if (!dd->dc_shutdown) 6415 goto done; 6416 spin_unlock_irqrestore(&dd->dc8051_lock, flags); 6417 /* Take the 8051 out of reset */ 6418 write_csr(dd, DC_DC8051_CFG_RST, 0ull); 6419 /* Wait until 8051 is ready */ 6420 ret = wait_fm_ready(dd, TIMEOUT_8051_START); 6421 if (ret) { 6422 dd_dev_err(dd, "%s: timeout starting 8051 firmware\n", 6423 __func__); 6424 } 6425 /* Take away reset for LCB and RX FPE (set in lcb_shutdown). */ 6426 write_csr(dd, DCC_CFG_RESET, 0x10); 6427 /* lcb_shutdown() with abort=1 does not restore these */ 6428 write_csr(dd, DC_LCB_ERR_EN, dd->lcb_err_en); 6429 spin_lock_irqsave(&dd->dc8051_lock, flags); 6430 dd->dc_shutdown = 0; 6431 done: 6432 spin_unlock_irqrestore(&dd->dc8051_lock, flags); 6433 } 6434 6435 /* 6436 * These LCB adjustments are for the Aurora SerDes core in the FPGA. 6437 */ 6438 static void adjust_lcb_for_fpga_serdes(struct hfi1_devdata *dd) 6439 { 6440 u64 rx_radr, tx_radr; 6441 u32 version; 6442 6443 if (dd->icode != ICODE_FPGA_EMULATION) 6444 return; 6445 6446 /* 6447 * These LCB defaults on emulator _s are good, nothing to do here: 6448 * LCB_CFG_TX_FIFOS_RADR 6449 * LCB_CFG_RX_FIFOS_RADR 6450 * LCB_CFG_LN_DCLK 6451 * LCB_CFG_IGNORE_LOST_RCLK 6452 */ 6453 if (is_emulator_s(dd)) 6454 return; 6455 /* else this is _p */ 6456 6457 version = emulator_rev(dd); 6458 if (!is_ax(dd)) 6459 version = 0x2d; /* all B0 use 0x2d or higher settings */ 6460 6461 if (version <= 0x12) { 6462 /* release 0x12 and below */ 6463 6464 /* 6465 * LCB_CFG_RX_FIFOS_RADR.RST_VAL = 0x9 6466 * LCB_CFG_RX_FIFOS_RADR.OK_TO_JUMP_VAL = 0x9 6467 * LCB_CFG_RX_FIFOS_RADR.DO_NOT_JUMP_VAL = 0xa 6468 */ 6469 rx_radr = 6470 0xaull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT 6471 | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT 6472 | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT; 6473 /* 6474 * LCB_CFG_TX_FIFOS_RADR.ON_REINIT = 0 (default) 6475 * LCB_CFG_TX_FIFOS_RADR.RST_VAL = 6 6476 */ 6477 tx_radr = 6ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT; 6478 } else if (version <= 0x18) { 6479 /* release 0x13 up to 0x18 */ 6480 /* LCB_CFG_RX_FIFOS_RADR = 0x988 */ 6481 rx_radr = 6482 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT 6483 | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT 6484 | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT; 6485 tx_radr = 7ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT; 6486 } else if (version == 0x19) { 6487 /* release 0x19 */ 6488 /* LCB_CFG_RX_FIFOS_RADR = 0xa99 */ 6489 rx_radr = 6490 0xAull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT 6491 | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT 6492 | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT; 6493 tx_radr = 3ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT; 6494 } else if (version == 0x1a) { 6495 /* release 0x1a */ 6496 /* LCB_CFG_RX_FIFOS_RADR = 0x988 */ 6497 rx_radr = 6498 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT 6499 | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT 6500 | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT; 6501 tx_radr = 7ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT; 6502 write_csr(dd, DC_LCB_CFG_LN_DCLK, 1ull); 6503 } else { 6504 /* release 0x1b and higher */ 6505 /* LCB_CFG_RX_FIFOS_RADR = 0x877 */ 6506 rx_radr = 6507 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT 6508 | 0x7ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT 6509 | 0x7ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT; 6510 tx_radr = 3ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT; 6511 } 6512 6513 write_csr(dd, DC_LCB_CFG_RX_FIFOS_RADR, rx_radr); 6514 /* LCB_CFG_IGNORE_LOST_RCLK.EN = 1 */ 6515 write_csr(dd, DC_LCB_CFG_IGNORE_LOST_RCLK, 6516 DC_LCB_CFG_IGNORE_LOST_RCLK_EN_SMASK); 6517 write_csr(dd, DC_LCB_CFG_TX_FIFOS_RADR, tx_radr); 6518 } 6519 6520 /* 6521 * Handle a SMA idle message 6522 * 6523 * This is a work-queue function outside of the interrupt. 6524 */ 6525 void handle_sma_message(struct work_struct *work) 6526 { 6527 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata, 6528 sma_message_work); 6529 struct hfi1_devdata *dd = ppd->dd; 6530 u64 msg; 6531 int ret; 6532 6533 /* 6534 * msg is bytes 1-4 of the 40-bit idle message - the command code 6535 * is stripped off 6536 */ 6537 ret = read_idle_sma(dd, &msg); 6538 if (ret) 6539 return; 6540 dd_dev_info(dd, "%s: SMA message 0x%llx\n", __func__, msg); 6541 /* 6542 * React to the SMA message. Byte[1] (0 for us) is the command. 6543 */ 6544 switch (msg & 0xff) { 6545 case SMA_IDLE_ARM: 6546 /* 6547 * See OPAv1 table 9-14 - HFI and External Switch Ports Key 6548 * State Transitions 6549 * 6550 * Only expected in INIT or ARMED, discard otherwise. 6551 */ 6552 if (ppd->host_link_state & (HLS_UP_INIT | HLS_UP_ARMED)) 6553 ppd->neighbor_normal = 1; 6554 break; 6555 case SMA_IDLE_ACTIVE: 6556 /* 6557 * See OPAv1 table 9-14 - HFI and External Switch Ports Key 6558 * State Transitions 6559 * 6560 * Can activate the node. Discard otherwise. 6561 */ 6562 if (ppd->host_link_state == HLS_UP_ARMED && 6563 ppd->is_active_optimize_enabled) { 6564 ppd->neighbor_normal = 1; 6565 ret = set_link_state(ppd, HLS_UP_ACTIVE); 6566 if (ret) 6567 dd_dev_err( 6568 dd, 6569 "%s: received Active SMA idle message, couldn't set link to Active\n", 6570 __func__); 6571 } 6572 break; 6573 default: 6574 dd_dev_err(dd, 6575 "%s: received unexpected SMA idle message 0x%llx\n", 6576 __func__, msg); 6577 break; 6578 } 6579 } 6580 6581 static void adjust_rcvctrl(struct hfi1_devdata *dd, u64 add, u64 clear) 6582 { 6583 u64 rcvctrl; 6584 unsigned long flags; 6585 6586 spin_lock_irqsave(&dd->rcvctrl_lock, flags); 6587 rcvctrl = read_csr(dd, RCV_CTRL); 6588 rcvctrl |= add; 6589 rcvctrl &= ~clear; 6590 write_csr(dd, RCV_CTRL, rcvctrl); 6591 spin_unlock_irqrestore(&dd->rcvctrl_lock, flags); 6592 } 6593 6594 static inline void add_rcvctrl(struct hfi1_devdata *dd, u64 add) 6595 { 6596 adjust_rcvctrl(dd, add, 0); 6597 } 6598 6599 static inline void clear_rcvctrl(struct hfi1_devdata *dd, u64 clear) 6600 { 6601 adjust_rcvctrl(dd, 0, clear); 6602 } 6603 6604 /* 6605 * Called from all interrupt handlers to start handling an SPC freeze. 6606 */ 6607 void start_freeze_handling(struct hfi1_pportdata *ppd, int flags) 6608 { 6609 struct hfi1_devdata *dd = ppd->dd; 6610 struct send_context *sc; 6611 int i; 6612 6613 if (flags & FREEZE_SELF) 6614 write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_FREEZE_SMASK); 6615 6616 /* enter frozen mode */ 6617 dd->flags |= HFI1_FROZEN; 6618 6619 /* notify all SDMA engines that they are going into a freeze */ 6620 sdma_freeze_notify(dd, !!(flags & FREEZE_LINK_DOWN)); 6621 6622 /* do halt pre-handling on all enabled send contexts */ 6623 for (i = 0; i < dd->num_send_contexts; i++) { 6624 sc = dd->send_contexts[i].sc; 6625 if (sc && (sc->flags & SCF_ENABLED)) 6626 sc_stop(sc, SCF_FROZEN | SCF_HALTED); 6627 } 6628 6629 /* Send context are frozen. Notify user space */ 6630 hfi1_set_uevent_bits(ppd, _HFI1_EVENT_FROZEN_BIT); 6631 6632 if (flags & FREEZE_ABORT) { 6633 dd_dev_err(dd, 6634 "Aborted freeze recovery. Please REBOOT system\n"); 6635 return; 6636 } 6637 /* queue non-interrupt handler */ 6638 queue_work(ppd->hfi1_wq, &ppd->freeze_work); 6639 } 6640 6641 /* 6642 * Wait until all 4 sub-blocks indicate that they have frozen or unfrozen, 6643 * depending on the "freeze" parameter. 6644 * 6645 * No need to return an error if it times out, our only option 6646 * is to proceed anyway. 6647 */ 6648 static void wait_for_freeze_status(struct hfi1_devdata *dd, int freeze) 6649 { 6650 unsigned long timeout; 6651 u64 reg; 6652 6653 timeout = jiffies + msecs_to_jiffies(FREEZE_STATUS_TIMEOUT); 6654 while (1) { 6655 reg = read_csr(dd, CCE_STATUS); 6656 if (freeze) { 6657 /* waiting until all indicators are set */ 6658 if ((reg & ALL_FROZE) == ALL_FROZE) 6659 return; /* all done */ 6660 } else { 6661 /* waiting until all indicators are clear */ 6662 if ((reg & ALL_FROZE) == 0) 6663 return; /* all done */ 6664 } 6665 6666 if (time_after(jiffies, timeout)) { 6667 dd_dev_err(dd, 6668 "Time out waiting for SPC %sfreeze, bits 0x%llx, expecting 0x%llx, continuing", 6669 freeze ? "" : "un", reg & ALL_FROZE, 6670 freeze ? ALL_FROZE : 0ull); 6671 return; 6672 } 6673 usleep_range(80, 120); 6674 } 6675 } 6676 6677 /* 6678 * Do all freeze handling for the RXE block. 6679 */ 6680 static void rxe_freeze(struct hfi1_devdata *dd) 6681 { 6682 int i; 6683 6684 /* disable port */ 6685 clear_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK); 6686 6687 /* disable all receive contexts */ 6688 for (i = 0; i < dd->num_rcv_contexts; i++) 6689 hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_DIS, i); 6690 } 6691 6692 /* 6693 * Unfreeze handling for the RXE block - kernel contexts only. 6694 * This will also enable the port. User contexts will do unfreeze 6695 * handling on a per-context basis as they call into the driver. 6696 * 6697 */ 6698 static void rxe_kernel_unfreeze(struct hfi1_devdata *dd) 6699 { 6700 u32 rcvmask; 6701 int i; 6702 6703 /* enable all kernel contexts */ 6704 for (i = 0; i < dd->n_krcv_queues; i++) { 6705 rcvmask = HFI1_RCVCTRL_CTXT_ENB; 6706 /* HFI1_RCVCTRL_TAILUPD_[ENB|DIS] needs to be set explicitly */ 6707 rcvmask |= HFI1_CAP_KGET_MASK(dd->rcd[i]->flags, DMA_RTAIL) ? 6708 HFI1_RCVCTRL_TAILUPD_ENB : HFI1_RCVCTRL_TAILUPD_DIS; 6709 hfi1_rcvctrl(dd, rcvmask, i); 6710 } 6711 6712 /* enable port */ 6713 add_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK); 6714 } 6715 6716 /* 6717 * Non-interrupt SPC freeze handling. 6718 * 6719 * This is a work-queue function outside of the triggering interrupt. 6720 */ 6721 void handle_freeze(struct work_struct *work) 6722 { 6723 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata, 6724 freeze_work); 6725 struct hfi1_devdata *dd = ppd->dd; 6726 6727 /* wait for freeze indicators on all affected blocks */ 6728 wait_for_freeze_status(dd, 1); 6729 6730 /* SPC is now frozen */ 6731 6732 /* do send PIO freeze steps */ 6733 pio_freeze(dd); 6734 6735 /* do send DMA freeze steps */ 6736 sdma_freeze(dd); 6737 6738 /* do send egress freeze steps - nothing to do */ 6739 6740 /* do receive freeze steps */ 6741 rxe_freeze(dd); 6742 6743 /* 6744 * Unfreeze the hardware - clear the freeze, wait for each 6745 * block's frozen bit to clear, then clear the frozen flag. 6746 */ 6747 write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_UNFREEZE_SMASK); 6748 wait_for_freeze_status(dd, 0); 6749 6750 if (is_ax(dd)) { 6751 write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_FREEZE_SMASK); 6752 wait_for_freeze_status(dd, 1); 6753 write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_UNFREEZE_SMASK); 6754 wait_for_freeze_status(dd, 0); 6755 } 6756 6757 /* do send PIO unfreeze steps for kernel contexts */ 6758 pio_kernel_unfreeze(dd); 6759 6760 /* do send DMA unfreeze steps */ 6761 sdma_unfreeze(dd); 6762 6763 /* do send egress unfreeze steps - nothing to do */ 6764 6765 /* do receive unfreeze steps for kernel contexts */ 6766 rxe_kernel_unfreeze(dd); 6767 6768 /* 6769 * The unfreeze procedure touches global device registers when 6770 * it disables and re-enables RXE. Mark the device unfrozen 6771 * after all that is done so other parts of the driver waiting 6772 * for the device to unfreeze don't do things out of order. 6773 * 6774 * The above implies that the meaning of HFI1_FROZEN flag is 6775 * "Device has gone into freeze mode and freeze mode handling 6776 * is still in progress." 6777 * 6778 * The flag will be removed when freeze mode processing has 6779 * completed. 6780 */ 6781 dd->flags &= ~HFI1_FROZEN; 6782 wake_up(&dd->event_queue); 6783 6784 /* no longer frozen */ 6785 } 6786 6787 /* 6788 * Handle a link up interrupt from the 8051. 6789 * 6790 * This is a work-queue function outside of the interrupt. 6791 */ 6792 void handle_link_up(struct work_struct *work) 6793 { 6794 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata, 6795 link_up_work); 6796 set_link_state(ppd, HLS_UP_INIT); 6797 6798 /* cache the read of DC_LCB_STS_ROUND_TRIP_LTP_CNT */ 6799 read_ltp_rtt(ppd->dd); 6800 /* 6801 * OPA specifies that certain counters are cleared on a transition 6802 * to link up, so do that. 6803 */ 6804 clear_linkup_counters(ppd->dd); 6805 /* 6806 * And (re)set link up default values. 6807 */ 6808 set_linkup_defaults(ppd); 6809 6810 /* enforce link speed enabled */ 6811 if ((ppd->link_speed_active & ppd->link_speed_enabled) == 0) { 6812 /* oops - current speed is not enabled, bounce */ 6813 dd_dev_err(ppd->dd, 6814 "Link speed active 0x%x is outside enabled 0x%x, downing link\n", 6815 ppd->link_speed_active, ppd->link_speed_enabled); 6816 set_link_down_reason(ppd, OPA_LINKDOWN_REASON_SPEED_POLICY, 0, 6817 OPA_LINKDOWN_REASON_SPEED_POLICY); 6818 set_link_state(ppd, HLS_DN_OFFLINE); 6819 start_link(ppd); 6820 } 6821 } 6822 6823 /* 6824 * Several pieces of LNI information were cached for SMA in ppd. 6825 * Reset these on link down 6826 */ 6827 static void reset_neighbor_info(struct hfi1_pportdata *ppd) 6828 { 6829 ppd->neighbor_guid = 0; 6830 ppd->neighbor_port_number = 0; 6831 ppd->neighbor_type = 0; 6832 ppd->neighbor_fm_security = 0; 6833 } 6834 6835 static const char * const link_down_reason_strs[] = { 6836 [OPA_LINKDOWN_REASON_NONE] = "None", 6837 [OPA_LINKDOWN_REASON_RCV_ERROR_0] = "Recive error 0", 6838 [OPA_LINKDOWN_REASON_BAD_PKT_LEN] = "Bad packet length", 6839 [OPA_LINKDOWN_REASON_PKT_TOO_LONG] = "Packet too long", 6840 [OPA_LINKDOWN_REASON_PKT_TOO_SHORT] = "Packet too short", 6841 [OPA_LINKDOWN_REASON_BAD_SLID] = "Bad SLID", 6842 [OPA_LINKDOWN_REASON_BAD_DLID] = "Bad DLID", 6843 [OPA_LINKDOWN_REASON_BAD_L2] = "Bad L2", 6844 [OPA_LINKDOWN_REASON_BAD_SC] = "Bad SC", 6845 [OPA_LINKDOWN_REASON_RCV_ERROR_8] = "Receive error 8", 6846 [OPA_LINKDOWN_REASON_BAD_MID_TAIL] = "Bad mid tail", 6847 [OPA_LINKDOWN_REASON_RCV_ERROR_10] = "Receive error 10", 6848 [OPA_LINKDOWN_REASON_PREEMPT_ERROR] = "Preempt error", 6849 [OPA_LINKDOWN_REASON_PREEMPT_VL15] = "Preempt vl15", 6850 [OPA_LINKDOWN_REASON_BAD_VL_MARKER] = "Bad VL marker", 6851 [OPA_LINKDOWN_REASON_RCV_ERROR_14] = "Receive error 14", 6852 [OPA_LINKDOWN_REASON_RCV_ERROR_15] = "Receive error 15", 6853 [OPA_LINKDOWN_REASON_BAD_HEAD_DIST] = "Bad head distance", 6854 [OPA_LINKDOWN_REASON_BAD_TAIL_DIST] = "Bad tail distance", 6855 [OPA_LINKDOWN_REASON_BAD_CTRL_DIST] = "Bad control distance", 6856 [OPA_LINKDOWN_REASON_BAD_CREDIT_ACK] = "Bad credit ack", 6857 [OPA_LINKDOWN_REASON_UNSUPPORTED_VL_MARKER] = "Unsupported VL marker", 6858 [OPA_LINKDOWN_REASON_BAD_PREEMPT] = "Bad preempt", 6859 [OPA_LINKDOWN_REASON_BAD_CONTROL_FLIT] = "Bad control flit", 6860 [OPA_LINKDOWN_REASON_EXCEED_MULTICAST_LIMIT] = "Exceed multicast limit", 6861 [OPA_LINKDOWN_REASON_RCV_ERROR_24] = "Receive error 24", 6862 [OPA_LINKDOWN_REASON_RCV_ERROR_25] = "Receive error 25", 6863 [OPA_LINKDOWN_REASON_RCV_ERROR_26] = "Receive error 26", 6864 [OPA_LINKDOWN_REASON_RCV_ERROR_27] = "Receive error 27", 6865 [OPA_LINKDOWN_REASON_RCV_ERROR_28] = "Receive error 28", 6866 [OPA_LINKDOWN_REASON_RCV_ERROR_29] = "Receive error 29", 6867 [OPA_LINKDOWN_REASON_RCV_ERROR_30] = "Receive error 30", 6868 [OPA_LINKDOWN_REASON_EXCESSIVE_BUFFER_OVERRUN] = 6869 "Excessive buffer overrun", 6870 [OPA_LINKDOWN_REASON_UNKNOWN] = "Unknown", 6871 [OPA_LINKDOWN_REASON_REBOOT] = "Reboot", 6872 [OPA_LINKDOWN_REASON_NEIGHBOR_UNKNOWN] = "Neighbor unknown", 6873 [OPA_LINKDOWN_REASON_FM_BOUNCE] = "FM bounce", 6874 [OPA_LINKDOWN_REASON_SPEED_POLICY] = "Speed policy", 6875 [OPA_LINKDOWN_REASON_WIDTH_POLICY] = "Width policy", 6876 [OPA_LINKDOWN_REASON_DISCONNECTED] = "Disconnected", 6877 [OPA_LINKDOWN_REASON_LOCAL_MEDIA_NOT_INSTALLED] = 6878 "Local media not installed", 6879 [OPA_LINKDOWN_REASON_NOT_INSTALLED] = "Not installed", 6880 [OPA_LINKDOWN_REASON_CHASSIS_CONFIG] = "Chassis config", 6881 [OPA_LINKDOWN_REASON_END_TO_END_NOT_INSTALLED] = 6882 "End to end not installed", 6883 [OPA_LINKDOWN_REASON_POWER_POLICY] = "Power policy", 6884 [OPA_LINKDOWN_REASON_LINKSPEED_POLICY] = "Link speed policy", 6885 [OPA_LINKDOWN_REASON_LINKWIDTH_POLICY] = "Link width policy", 6886 [OPA_LINKDOWN_REASON_SWITCH_MGMT] = "Switch management", 6887 [OPA_LINKDOWN_REASON_SMA_DISABLED] = "SMA disabled", 6888 [OPA_LINKDOWN_REASON_TRANSIENT] = "Transient" 6889 }; 6890 6891 /* return the neighbor link down reason string */ 6892 static const char *link_down_reason_str(u8 reason) 6893 { 6894 const char *str = NULL; 6895 6896 if (reason < ARRAY_SIZE(link_down_reason_strs)) 6897 str = link_down_reason_strs[reason]; 6898 if (!str) 6899 str = "(invalid)"; 6900 6901 return str; 6902 } 6903 6904 /* 6905 * Handle a link down interrupt from the 8051. 6906 * 6907 * This is a work-queue function outside of the interrupt. 6908 */ 6909 void handle_link_down(struct work_struct *work) 6910 { 6911 u8 lcl_reason, neigh_reason = 0; 6912 u8 link_down_reason; 6913 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata, 6914 link_down_work); 6915 int was_up; 6916 static const char ldr_str[] = "Link down reason: "; 6917 6918 if ((ppd->host_link_state & 6919 (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) && 6920 ppd->port_type == PORT_TYPE_FIXED) 6921 ppd->offline_disabled_reason = 6922 HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NOT_INSTALLED); 6923 6924 /* Go offline first, then deal with reading/writing through 8051 */ 6925 was_up = !!(ppd->host_link_state & HLS_UP); 6926 set_link_state(ppd, HLS_DN_OFFLINE); 6927 6928 if (was_up) { 6929 lcl_reason = 0; 6930 /* link down reason is only valid if the link was up */ 6931 read_link_down_reason(ppd->dd, &link_down_reason); 6932 switch (link_down_reason) { 6933 case LDR_LINK_TRANSFER_ACTIVE_LOW: 6934 /* the link went down, no idle message reason */ 6935 dd_dev_info(ppd->dd, "%sUnexpected link down\n", 6936 ldr_str); 6937 break; 6938 case LDR_RECEIVED_LINKDOWN_IDLE_MSG: 6939 /* 6940 * The neighbor reason is only valid if an idle message 6941 * was received for it. 6942 */ 6943 read_planned_down_reason_code(ppd->dd, &neigh_reason); 6944 dd_dev_info(ppd->dd, 6945 "%sNeighbor link down message %d, %s\n", 6946 ldr_str, neigh_reason, 6947 link_down_reason_str(neigh_reason)); 6948 break; 6949 case LDR_RECEIVED_HOST_OFFLINE_REQ: 6950 dd_dev_info(ppd->dd, 6951 "%sHost requested link to go offline\n", 6952 ldr_str); 6953 break; 6954 default: 6955 dd_dev_info(ppd->dd, "%sUnknown reason 0x%x\n", 6956 ldr_str, link_down_reason); 6957 break; 6958 } 6959 6960 /* 6961 * If no reason, assume peer-initiated but missed 6962 * LinkGoingDown idle flits. 6963 */ 6964 if (neigh_reason == 0) 6965 lcl_reason = OPA_LINKDOWN_REASON_NEIGHBOR_UNKNOWN; 6966 } else { 6967 /* went down while polling or going up */ 6968 lcl_reason = OPA_LINKDOWN_REASON_TRANSIENT; 6969 } 6970 6971 set_link_down_reason(ppd, lcl_reason, neigh_reason, 0); 6972 6973 /* inform the SMA when the link transitions from up to down */ 6974 if (was_up && ppd->local_link_down_reason.sma == 0 && 6975 ppd->neigh_link_down_reason.sma == 0) { 6976 ppd->local_link_down_reason.sma = 6977 ppd->local_link_down_reason.latest; 6978 ppd->neigh_link_down_reason.sma = 6979 ppd->neigh_link_down_reason.latest; 6980 } 6981 6982 reset_neighbor_info(ppd); 6983 6984 /* disable the port */ 6985 clear_rcvctrl(ppd->dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK); 6986 6987 /* 6988 * If there is no cable attached, turn the DC off. Otherwise, 6989 * start the link bring up. 6990 */ 6991 if (ppd->port_type == PORT_TYPE_QSFP && !qsfp_mod_present(ppd)) 6992 dc_shutdown(ppd->dd); 6993 else 6994 start_link(ppd); 6995 } 6996 6997 void handle_link_bounce(struct work_struct *work) 6998 { 6999 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata, 7000 link_bounce_work); 7001 7002 /* 7003 * Only do something if the link is currently up. 7004 */ 7005 if (ppd->host_link_state & HLS_UP) { 7006 set_link_state(ppd, HLS_DN_OFFLINE); 7007 start_link(ppd); 7008 } else { 7009 dd_dev_info(ppd->dd, "%s: link not up (%s), nothing to do\n", 7010 __func__, link_state_name(ppd->host_link_state)); 7011 } 7012 } 7013 7014 /* 7015 * Mask conversion: Capability exchange to Port LTP. The capability 7016 * exchange has an implicit 16b CRC that is mandatory. 7017 */ 7018 static int cap_to_port_ltp(int cap) 7019 { 7020 int port_ltp = PORT_LTP_CRC_MODE_16; /* this mode is mandatory */ 7021 7022 if (cap & CAP_CRC_14B) 7023 port_ltp |= PORT_LTP_CRC_MODE_14; 7024 if (cap & CAP_CRC_48B) 7025 port_ltp |= PORT_LTP_CRC_MODE_48; 7026 if (cap & CAP_CRC_12B_16B_PER_LANE) 7027 port_ltp |= PORT_LTP_CRC_MODE_PER_LANE; 7028 7029 return port_ltp; 7030 } 7031 7032 /* 7033 * Convert an OPA Port LTP mask to capability mask 7034 */ 7035 int port_ltp_to_cap(int port_ltp) 7036 { 7037 int cap_mask = 0; 7038 7039 if (port_ltp & PORT_LTP_CRC_MODE_14) 7040 cap_mask |= CAP_CRC_14B; 7041 if (port_ltp & PORT_LTP_CRC_MODE_48) 7042 cap_mask |= CAP_CRC_48B; 7043 if (port_ltp & PORT_LTP_CRC_MODE_PER_LANE) 7044 cap_mask |= CAP_CRC_12B_16B_PER_LANE; 7045 7046 return cap_mask; 7047 } 7048 7049 /* 7050 * Convert a single DC LCB CRC mode to an OPA Port LTP mask. 7051 */ 7052 static int lcb_to_port_ltp(int lcb_crc) 7053 { 7054 int port_ltp = 0; 7055 7056 if (lcb_crc == LCB_CRC_12B_16B_PER_LANE) 7057 port_ltp = PORT_LTP_CRC_MODE_PER_LANE; 7058 else if (lcb_crc == LCB_CRC_48B) 7059 port_ltp = PORT_LTP_CRC_MODE_48; 7060 else if (lcb_crc == LCB_CRC_14B) 7061 port_ltp = PORT_LTP_CRC_MODE_14; 7062 else 7063 port_ltp = PORT_LTP_CRC_MODE_16; 7064 7065 return port_ltp; 7066 } 7067 7068 /* 7069 * Our neighbor has indicated that we are allowed to act as a fabric 7070 * manager, so place the full management partition key in the second 7071 * (0-based) pkey array position (see OPAv1, section 20.2.2.6.8). Note 7072 * that we should already have the limited management partition key in 7073 * array element 1, and also that the port is not yet up when 7074 * add_full_mgmt_pkey() is invoked. 7075 */ 7076 static void add_full_mgmt_pkey(struct hfi1_pportdata *ppd) 7077 { 7078 struct hfi1_devdata *dd = ppd->dd; 7079 7080 /* Sanity check - ppd->pkeys[2] should be 0, or already initalized */ 7081 if (!((ppd->pkeys[2] == 0) || (ppd->pkeys[2] == FULL_MGMT_P_KEY))) 7082 dd_dev_warn(dd, "%s pkey[2] already set to 0x%x, resetting it to 0x%x\n", 7083 __func__, ppd->pkeys[2], FULL_MGMT_P_KEY); 7084 ppd->pkeys[2] = FULL_MGMT_P_KEY; 7085 (void)hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_PKEYS, 0); 7086 hfi1_event_pkey_change(ppd->dd, ppd->port); 7087 } 7088 7089 static void clear_full_mgmt_pkey(struct hfi1_pportdata *ppd) 7090 { 7091 if (ppd->pkeys[2] != 0) { 7092 ppd->pkeys[2] = 0; 7093 (void)hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_PKEYS, 0); 7094 hfi1_event_pkey_change(ppd->dd, ppd->port); 7095 } 7096 } 7097 7098 /* 7099 * Convert the given link width to the OPA link width bitmask. 7100 */ 7101 static u16 link_width_to_bits(struct hfi1_devdata *dd, u16 width) 7102 { 7103 switch (width) { 7104 case 0: 7105 /* 7106 * Simulator and quick linkup do not set the width. 7107 * Just set it to 4x without complaint. 7108 */ 7109 if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR || quick_linkup) 7110 return OPA_LINK_WIDTH_4X; 7111 return 0; /* no lanes up */ 7112 case 1: return OPA_LINK_WIDTH_1X; 7113 case 2: return OPA_LINK_WIDTH_2X; 7114 case 3: return OPA_LINK_WIDTH_3X; 7115 default: 7116 dd_dev_info(dd, "%s: invalid width %d, using 4\n", 7117 __func__, width); 7118 /* fall through */ 7119 case 4: return OPA_LINK_WIDTH_4X; 7120 } 7121 } 7122 7123 /* 7124 * Do a population count on the bottom nibble. 7125 */ 7126 static const u8 bit_counts[16] = { 7127 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4 7128 }; 7129 7130 static inline u8 nibble_to_count(u8 nibble) 7131 { 7132 return bit_counts[nibble & 0xf]; 7133 } 7134 7135 /* 7136 * Read the active lane information from the 8051 registers and return 7137 * their widths. 7138 * 7139 * Active lane information is found in these 8051 registers: 7140 * enable_lane_tx 7141 * enable_lane_rx 7142 */ 7143 static void get_link_widths(struct hfi1_devdata *dd, u16 *tx_width, 7144 u16 *rx_width) 7145 { 7146 u16 tx, rx; 7147 u8 enable_lane_rx; 7148 u8 enable_lane_tx; 7149 u8 tx_polarity_inversion; 7150 u8 rx_polarity_inversion; 7151 u8 max_rate; 7152 7153 /* read the active lanes */ 7154 read_tx_settings(dd, &enable_lane_tx, &tx_polarity_inversion, 7155 &rx_polarity_inversion, &max_rate); 7156 read_local_lni(dd, &enable_lane_rx); 7157 7158 /* convert to counts */ 7159 tx = nibble_to_count(enable_lane_tx); 7160 rx = nibble_to_count(enable_lane_rx); 7161 7162 /* 7163 * Set link_speed_active here, overriding what was set in 7164 * handle_verify_cap(). The ASIC 8051 firmware does not correctly 7165 * set the max_rate field in handle_verify_cap until v0.19. 7166 */ 7167 if ((dd->icode == ICODE_RTL_SILICON) && 7168 (dd->dc8051_ver < dc8051_ver(0, 19))) { 7169 /* max_rate: 0 = 12.5G, 1 = 25G */ 7170 switch (max_rate) { 7171 case 0: 7172 dd->pport[0].link_speed_active = OPA_LINK_SPEED_12_5G; 7173 break; 7174 default: 7175 dd_dev_err(dd, 7176 "%s: unexpected max rate %d, using 25Gb\n", 7177 __func__, (int)max_rate); 7178 /* fall through */ 7179 case 1: 7180 dd->pport[0].link_speed_active = OPA_LINK_SPEED_25G; 7181 break; 7182 } 7183 } 7184 7185 dd_dev_info(dd, 7186 "Fabric active lanes (width): tx 0x%x (%d), rx 0x%x (%d)\n", 7187 enable_lane_tx, tx, enable_lane_rx, rx); 7188 *tx_width = link_width_to_bits(dd, tx); 7189 *rx_width = link_width_to_bits(dd, rx); 7190 } 7191 7192 /* 7193 * Read verify_cap_local_fm_link_width[1] to obtain the link widths. 7194 * Valid after the end of VerifyCap and during LinkUp. Does not change 7195 * after link up. I.e. look elsewhere for downgrade information. 7196 * 7197 * Bits are: 7198 * + bits [7:4] contain the number of active transmitters 7199 * + bits [3:0] contain the number of active receivers 7200 * These are numbers 1 through 4 and can be different values if the 7201 * link is asymmetric. 7202 * 7203 * verify_cap_local_fm_link_width[0] retains its original value. 7204 */ 7205 static void get_linkup_widths(struct hfi1_devdata *dd, u16 *tx_width, 7206 u16 *rx_width) 7207 { 7208 u16 widths, tx, rx; 7209 u8 misc_bits, local_flags; 7210 u16 active_tx, active_rx; 7211 7212 read_vc_local_link_width(dd, &misc_bits, &local_flags, &widths); 7213 tx = widths >> 12; 7214 rx = (widths >> 8) & 0xf; 7215 7216 *tx_width = link_width_to_bits(dd, tx); 7217 *rx_width = link_width_to_bits(dd, rx); 7218 7219 /* print the active widths */ 7220 get_link_widths(dd, &active_tx, &active_rx); 7221 } 7222 7223 /* 7224 * Set ppd->link_width_active and ppd->link_width_downgrade_active using 7225 * hardware information when the link first comes up. 7226 * 7227 * The link width is not available until after VerifyCap.AllFramesReceived 7228 * (the trigger for handle_verify_cap), so this is outside that routine 7229 * and should be called when the 8051 signals linkup. 7230 */ 7231 void get_linkup_link_widths(struct hfi1_pportdata *ppd) 7232 { 7233 u16 tx_width, rx_width; 7234 7235 /* get end-of-LNI link widths */ 7236 get_linkup_widths(ppd->dd, &tx_width, &rx_width); 7237 7238 /* use tx_width as the link is supposed to be symmetric on link up */ 7239 ppd->link_width_active = tx_width; 7240 /* link width downgrade active (LWD.A) starts out matching LW.A */ 7241 ppd->link_width_downgrade_tx_active = ppd->link_width_active; 7242 ppd->link_width_downgrade_rx_active = ppd->link_width_active; 7243 /* per OPA spec, on link up LWD.E resets to LWD.S */ 7244 ppd->link_width_downgrade_enabled = ppd->link_width_downgrade_supported; 7245 /* cache the active egress rate (units {10^6 bits/sec]) */ 7246 ppd->current_egress_rate = active_egress_rate(ppd); 7247 } 7248 7249 /* 7250 * Handle a verify capabilities interrupt from the 8051. 7251 * 7252 * This is a work-queue function outside of the interrupt. 7253 */ 7254 void handle_verify_cap(struct work_struct *work) 7255 { 7256 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata, 7257 link_vc_work); 7258 struct hfi1_devdata *dd = ppd->dd; 7259 u64 reg; 7260 u8 power_management; 7261 u8 continious; 7262 u8 vcu; 7263 u8 vau; 7264 u8 z; 7265 u16 vl15buf; 7266 u16 link_widths; 7267 u16 crc_mask; 7268 u16 crc_val; 7269 u16 device_id; 7270 u16 active_tx, active_rx; 7271 u8 partner_supported_crc; 7272 u8 remote_tx_rate; 7273 u8 device_rev; 7274 7275 set_link_state(ppd, HLS_VERIFY_CAP); 7276 7277 lcb_shutdown(dd, 0); 7278 adjust_lcb_for_fpga_serdes(dd); 7279 7280 /* 7281 * These are now valid: 7282 * remote VerifyCap fields in the general LNI config 7283 * CSR DC8051_STS_REMOTE_GUID 7284 * CSR DC8051_STS_REMOTE_NODE_TYPE 7285 * CSR DC8051_STS_REMOTE_FM_SECURITY 7286 * CSR DC8051_STS_REMOTE_PORT_NO 7287 */ 7288 7289 read_vc_remote_phy(dd, &power_management, &continious); 7290 read_vc_remote_fabric(dd, &vau, &z, &vcu, &vl15buf, 7291 &partner_supported_crc); 7292 read_vc_remote_link_width(dd, &remote_tx_rate, &link_widths); 7293 read_remote_device_id(dd, &device_id, &device_rev); 7294 /* 7295 * And the 'MgmtAllowed' information, which is exchanged during 7296 * LNI, is also be available at this point. 7297 */ 7298 read_mgmt_allowed(dd, &ppd->mgmt_allowed); 7299 /* print the active widths */ 7300 get_link_widths(dd, &active_tx, &active_rx); 7301 dd_dev_info(dd, 7302 "Peer PHY: power management 0x%x, continuous updates 0x%x\n", 7303 (int)power_management, (int)continious); 7304 dd_dev_info(dd, 7305 "Peer Fabric: vAU %d, Z %d, vCU %d, vl15 credits 0x%x, CRC sizes 0x%x\n", 7306 (int)vau, (int)z, (int)vcu, (int)vl15buf, 7307 (int)partner_supported_crc); 7308 dd_dev_info(dd, "Peer Link Width: tx rate 0x%x, widths 0x%x\n", 7309 (u32)remote_tx_rate, (u32)link_widths); 7310 dd_dev_info(dd, "Peer Device ID: 0x%04x, Revision 0x%02x\n", 7311 (u32)device_id, (u32)device_rev); 7312 /* 7313 * The peer vAU value just read is the peer receiver value. HFI does 7314 * not support a transmit vAU of 0 (AU == 8). We advertised that 7315 * with Z=1 in the fabric capabilities sent to the peer. The peer 7316 * will see our Z=1, and, if it advertised a vAU of 0, will move its 7317 * receive to vAU of 1 (AU == 16). Do the same here. We do not care 7318 * about the peer Z value - our sent vAU is 3 (hardwired) and is not 7319 * subject to the Z value exception. 7320 */ 7321 if (vau == 0) 7322 vau = 1; 7323 set_up_vl15(dd, vau, vl15buf); 7324 7325 /* set up the LCB CRC mode */ 7326 crc_mask = ppd->port_crc_mode_enabled & partner_supported_crc; 7327 7328 /* order is important: use the lowest bit in common */ 7329 if (crc_mask & CAP_CRC_14B) 7330 crc_val = LCB_CRC_14B; 7331 else if (crc_mask & CAP_CRC_48B) 7332 crc_val = LCB_CRC_48B; 7333 else if (crc_mask & CAP_CRC_12B_16B_PER_LANE) 7334 crc_val = LCB_CRC_12B_16B_PER_LANE; 7335 else 7336 crc_val = LCB_CRC_16B; 7337 7338 dd_dev_info(dd, "Final LCB CRC mode: %d\n", (int)crc_val); 7339 write_csr(dd, DC_LCB_CFG_CRC_MODE, 7340 (u64)crc_val << DC_LCB_CFG_CRC_MODE_TX_VAL_SHIFT); 7341 7342 /* set (14b only) or clear sideband credit */ 7343 reg = read_csr(dd, SEND_CM_CTRL); 7344 if (crc_val == LCB_CRC_14B && crc_14b_sideband) { 7345 write_csr(dd, SEND_CM_CTRL, 7346 reg | SEND_CM_CTRL_FORCE_CREDIT_MODE_SMASK); 7347 } else { 7348 write_csr(dd, SEND_CM_CTRL, 7349 reg & ~SEND_CM_CTRL_FORCE_CREDIT_MODE_SMASK); 7350 } 7351 7352 ppd->link_speed_active = 0; /* invalid value */ 7353 if (dd->dc8051_ver < dc8051_ver(0, 20)) { 7354 /* remote_tx_rate: 0 = 12.5G, 1 = 25G */ 7355 switch (remote_tx_rate) { 7356 case 0: 7357 ppd->link_speed_active = OPA_LINK_SPEED_12_5G; 7358 break; 7359 case 1: 7360 ppd->link_speed_active = OPA_LINK_SPEED_25G; 7361 break; 7362 } 7363 } else { 7364 /* actual rate is highest bit of the ANDed rates */ 7365 u8 rate = remote_tx_rate & ppd->local_tx_rate; 7366 7367 if (rate & 2) 7368 ppd->link_speed_active = OPA_LINK_SPEED_25G; 7369 else if (rate & 1) 7370 ppd->link_speed_active = OPA_LINK_SPEED_12_5G; 7371 } 7372 if (ppd->link_speed_active == 0) { 7373 dd_dev_err(dd, "%s: unexpected remote tx rate %d, using 25Gb\n", 7374 __func__, (int)remote_tx_rate); 7375 ppd->link_speed_active = OPA_LINK_SPEED_25G; 7376 } 7377 7378 /* 7379 * Cache the values of the supported, enabled, and active 7380 * LTP CRC modes to return in 'portinfo' queries. But the bit 7381 * flags that are returned in the portinfo query differ from 7382 * what's in the link_crc_mask, crc_sizes, and crc_val 7383 * variables. Convert these here. 7384 */ 7385 ppd->port_ltp_crc_mode = cap_to_port_ltp(link_crc_mask) << 8; 7386 /* supported crc modes */ 7387 ppd->port_ltp_crc_mode |= 7388 cap_to_port_ltp(ppd->port_crc_mode_enabled) << 4; 7389 /* enabled crc modes */ 7390 ppd->port_ltp_crc_mode |= lcb_to_port_ltp(crc_val); 7391 /* active crc mode */ 7392 7393 /* set up the remote credit return table */ 7394 assign_remote_cm_au_table(dd, vcu); 7395 7396 /* 7397 * The LCB is reset on entry to handle_verify_cap(), so this must 7398 * be applied on every link up. 7399 * 7400 * Adjust LCB error kill enable to kill the link if 7401 * these RBUF errors are seen: 7402 * REPLAY_BUF_MBE_SMASK 7403 * FLIT_INPUT_BUF_MBE_SMASK 7404 */ 7405 if (is_ax(dd)) { /* fixed in B0 */ 7406 reg = read_csr(dd, DC_LCB_CFG_LINK_KILL_EN); 7407 reg |= DC_LCB_CFG_LINK_KILL_EN_REPLAY_BUF_MBE_SMASK 7408 | DC_LCB_CFG_LINK_KILL_EN_FLIT_INPUT_BUF_MBE_SMASK; 7409 write_csr(dd, DC_LCB_CFG_LINK_KILL_EN, reg); 7410 } 7411 7412 /* pull LCB fifos out of reset - all fifo clocks must be stable */ 7413 write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0); 7414 7415 /* give 8051 access to the LCB CSRs */ 7416 write_csr(dd, DC_LCB_ERR_EN, 0); /* mask LCB errors */ 7417 set_8051_lcb_access(dd); 7418 7419 ppd->neighbor_guid = 7420 read_csr(dd, DC_DC8051_STS_REMOTE_GUID); 7421 ppd->neighbor_port_number = read_csr(dd, DC_DC8051_STS_REMOTE_PORT_NO) & 7422 DC_DC8051_STS_REMOTE_PORT_NO_VAL_SMASK; 7423 ppd->neighbor_type = 7424 read_csr(dd, DC_DC8051_STS_REMOTE_NODE_TYPE) & 7425 DC_DC8051_STS_REMOTE_NODE_TYPE_VAL_MASK; 7426 ppd->neighbor_fm_security = 7427 read_csr(dd, DC_DC8051_STS_REMOTE_FM_SECURITY) & 7428 DC_DC8051_STS_LOCAL_FM_SECURITY_DISABLED_MASK; 7429 dd_dev_info(dd, 7430 "Neighbor Guid: %llx Neighbor type %d MgmtAllowed %d FM security bypass %d\n", 7431 ppd->neighbor_guid, ppd->neighbor_type, 7432 ppd->mgmt_allowed, ppd->neighbor_fm_security); 7433 if (ppd->mgmt_allowed) 7434 add_full_mgmt_pkey(ppd); 7435 7436 /* tell the 8051 to go to LinkUp */ 7437 set_link_state(ppd, HLS_GOING_UP); 7438 } 7439 7440 /* 7441 * Apply the link width downgrade enabled policy against the current active 7442 * link widths. 7443 * 7444 * Called when the enabled policy changes or the active link widths change. 7445 */ 7446 void apply_link_downgrade_policy(struct hfi1_pportdata *ppd, int refresh_widths) 7447 { 7448 int do_bounce = 0; 7449 int tries; 7450 u16 lwde; 7451 u16 tx, rx; 7452 7453 /* use the hls lock to avoid a race with actual link up */ 7454 tries = 0; 7455 retry: 7456 mutex_lock(&ppd->hls_lock); 7457 /* only apply if the link is up */ 7458 if (ppd->host_link_state & HLS_DOWN) { 7459 /* still going up..wait and retry */ 7460 if (ppd->host_link_state & HLS_GOING_UP) { 7461 if (++tries < 1000) { 7462 mutex_unlock(&ppd->hls_lock); 7463 usleep_range(100, 120); /* arbitrary */ 7464 goto retry; 7465 } 7466 dd_dev_err(ppd->dd, 7467 "%s: giving up waiting for link state change\n", 7468 __func__); 7469 } 7470 goto done; 7471 } 7472 7473 lwde = ppd->link_width_downgrade_enabled; 7474 7475 if (refresh_widths) { 7476 get_link_widths(ppd->dd, &tx, &rx); 7477 ppd->link_width_downgrade_tx_active = tx; 7478 ppd->link_width_downgrade_rx_active = rx; 7479 } 7480 7481 if (ppd->link_width_downgrade_tx_active == 0 || 7482 ppd->link_width_downgrade_rx_active == 0) { 7483 /* the 8051 reported a dead link as a downgrade */ 7484 dd_dev_err(ppd->dd, "Link downgrade is really a link down, ignoring\n"); 7485 } else if (lwde == 0) { 7486 /* downgrade is disabled */ 7487 7488 /* bounce if not at starting active width */ 7489 if ((ppd->link_width_active != 7490 ppd->link_width_downgrade_tx_active) || 7491 (ppd->link_width_active != 7492 ppd->link_width_downgrade_rx_active)) { 7493 dd_dev_err(ppd->dd, 7494 "Link downgrade is disabled and link has downgraded, downing link\n"); 7495 dd_dev_err(ppd->dd, 7496 " original 0x%x, tx active 0x%x, rx active 0x%x\n", 7497 ppd->link_width_active, 7498 ppd->link_width_downgrade_tx_active, 7499 ppd->link_width_downgrade_rx_active); 7500 do_bounce = 1; 7501 } 7502 } else if ((lwde & ppd->link_width_downgrade_tx_active) == 0 || 7503 (lwde & ppd->link_width_downgrade_rx_active) == 0) { 7504 /* Tx or Rx is outside the enabled policy */ 7505 dd_dev_err(ppd->dd, 7506 "Link is outside of downgrade allowed, downing link\n"); 7507 dd_dev_err(ppd->dd, 7508 " enabled 0x%x, tx active 0x%x, rx active 0x%x\n", 7509 lwde, ppd->link_width_downgrade_tx_active, 7510 ppd->link_width_downgrade_rx_active); 7511 do_bounce = 1; 7512 } 7513 7514 done: 7515 mutex_unlock(&ppd->hls_lock); 7516 7517 if (do_bounce) { 7518 set_link_down_reason(ppd, OPA_LINKDOWN_REASON_WIDTH_POLICY, 0, 7519 OPA_LINKDOWN_REASON_WIDTH_POLICY); 7520 set_link_state(ppd, HLS_DN_OFFLINE); 7521 start_link(ppd); 7522 } 7523 } 7524 7525 /* 7526 * Handle a link downgrade interrupt from the 8051. 7527 * 7528 * This is a work-queue function outside of the interrupt. 7529 */ 7530 void handle_link_downgrade(struct work_struct *work) 7531 { 7532 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata, 7533 link_downgrade_work); 7534 7535 dd_dev_info(ppd->dd, "8051: Link width downgrade\n"); 7536 apply_link_downgrade_policy(ppd, 1); 7537 } 7538 7539 static char *dcc_err_string(char *buf, int buf_len, u64 flags) 7540 { 7541 return flag_string(buf, buf_len, flags, dcc_err_flags, 7542 ARRAY_SIZE(dcc_err_flags)); 7543 } 7544 7545 static char *lcb_err_string(char *buf, int buf_len, u64 flags) 7546 { 7547 return flag_string(buf, buf_len, flags, lcb_err_flags, 7548 ARRAY_SIZE(lcb_err_flags)); 7549 } 7550 7551 static char *dc8051_err_string(char *buf, int buf_len, u64 flags) 7552 { 7553 return flag_string(buf, buf_len, flags, dc8051_err_flags, 7554 ARRAY_SIZE(dc8051_err_flags)); 7555 } 7556 7557 static char *dc8051_info_err_string(char *buf, int buf_len, u64 flags) 7558 { 7559 return flag_string(buf, buf_len, flags, dc8051_info_err_flags, 7560 ARRAY_SIZE(dc8051_info_err_flags)); 7561 } 7562 7563 static char *dc8051_info_host_msg_string(char *buf, int buf_len, u64 flags) 7564 { 7565 return flag_string(buf, buf_len, flags, dc8051_info_host_msg_flags, 7566 ARRAY_SIZE(dc8051_info_host_msg_flags)); 7567 } 7568 7569 static void handle_8051_interrupt(struct hfi1_devdata *dd, u32 unused, u64 reg) 7570 { 7571 struct hfi1_pportdata *ppd = dd->pport; 7572 u64 info, err, host_msg; 7573 int queue_link_down = 0; 7574 char buf[96]; 7575 7576 /* look at the flags */ 7577 if (reg & DC_DC8051_ERR_FLG_SET_BY_8051_SMASK) { 7578 /* 8051 information set by firmware */ 7579 /* read DC8051_DBG_ERR_INFO_SET_BY_8051 for details */ 7580 info = read_csr(dd, DC_DC8051_DBG_ERR_INFO_SET_BY_8051); 7581 err = (info >> DC_DC8051_DBG_ERR_INFO_SET_BY_8051_ERROR_SHIFT) 7582 & DC_DC8051_DBG_ERR_INFO_SET_BY_8051_ERROR_MASK; 7583 host_msg = (info >> 7584 DC_DC8051_DBG_ERR_INFO_SET_BY_8051_HOST_MSG_SHIFT) 7585 & DC_DC8051_DBG_ERR_INFO_SET_BY_8051_HOST_MSG_MASK; 7586 7587 /* 7588 * Handle error flags. 7589 */ 7590 if (err & FAILED_LNI) { 7591 /* 7592 * LNI error indications are cleared by the 8051 7593 * only when starting polling. Only pay attention 7594 * to them when in the states that occur during 7595 * LNI. 7596 */ 7597 if (ppd->host_link_state 7598 & (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) { 7599 queue_link_down = 1; 7600 dd_dev_info(dd, "Link error: %s\n", 7601 dc8051_info_err_string(buf, 7602 sizeof(buf), 7603 err & 7604 FAILED_LNI)); 7605 } 7606 err &= ~(u64)FAILED_LNI; 7607 } 7608 /* unknown frames can happen durning LNI, just count */ 7609 if (err & UNKNOWN_FRAME) { 7610 ppd->unknown_frame_count++; 7611 err &= ~(u64)UNKNOWN_FRAME; 7612 } 7613 if (err) { 7614 /* report remaining errors, but do not do anything */ 7615 dd_dev_err(dd, "8051 info error: %s\n", 7616 dc8051_info_err_string(buf, sizeof(buf), 7617 err)); 7618 } 7619 7620 /* 7621 * Handle host message flags. 7622 */ 7623 if (host_msg & HOST_REQ_DONE) { 7624 /* 7625 * Presently, the driver does a busy wait for 7626 * host requests to complete. This is only an 7627 * informational message. 7628 * NOTE: The 8051 clears the host message 7629 * information *on the next 8051 command*. 7630 * Therefore, when linkup is achieved, 7631 * this flag will still be set. 7632 */ 7633 host_msg &= ~(u64)HOST_REQ_DONE; 7634 } 7635 if (host_msg & BC_SMA_MSG) { 7636 queue_work(ppd->hfi1_wq, &ppd->sma_message_work); 7637 host_msg &= ~(u64)BC_SMA_MSG; 7638 } 7639 if (host_msg & LINKUP_ACHIEVED) { 7640 dd_dev_info(dd, "8051: Link up\n"); 7641 queue_work(ppd->hfi1_wq, &ppd->link_up_work); 7642 host_msg &= ~(u64)LINKUP_ACHIEVED; 7643 } 7644 if (host_msg & EXT_DEVICE_CFG_REQ) { 7645 handle_8051_request(ppd); 7646 host_msg &= ~(u64)EXT_DEVICE_CFG_REQ; 7647 } 7648 if (host_msg & VERIFY_CAP_FRAME) { 7649 queue_work(ppd->hfi1_wq, &ppd->link_vc_work); 7650 host_msg &= ~(u64)VERIFY_CAP_FRAME; 7651 } 7652 if (host_msg & LINK_GOING_DOWN) { 7653 const char *extra = ""; 7654 /* no downgrade action needed if going down */ 7655 if (host_msg & LINK_WIDTH_DOWNGRADED) { 7656 host_msg &= ~(u64)LINK_WIDTH_DOWNGRADED; 7657 extra = " (ignoring downgrade)"; 7658 } 7659 dd_dev_info(dd, "8051: Link down%s\n", extra); 7660 queue_link_down = 1; 7661 host_msg &= ~(u64)LINK_GOING_DOWN; 7662 } 7663 if (host_msg & LINK_WIDTH_DOWNGRADED) { 7664 queue_work(ppd->hfi1_wq, &ppd->link_downgrade_work); 7665 host_msg &= ~(u64)LINK_WIDTH_DOWNGRADED; 7666 } 7667 if (host_msg) { 7668 /* report remaining messages, but do not do anything */ 7669 dd_dev_info(dd, "8051 info host message: %s\n", 7670 dc8051_info_host_msg_string(buf, 7671 sizeof(buf), 7672 host_msg)); 7673 } 7674 7675 reg &= ~DC_DC8051_ERR_FLG_SET_BY_8051_SMASK; 7676 } 7677 if (reg & DC_DC8051_ERR_FLG_LOST_8051_HEART_BEAT_SMASK) { 7678 /* 7679 * Lost the 8051 heartbeat. If this happens, we 7680 * receive constant interrupts about it. Disable 7681 * the interrupt after the first. 7682 */ 7683 dd_dev_err(dd, "Lost 8051 heartbeat\n"); 7684 write_csr(dd, DC_DC8051_ERR_EN, 7685 read_csr(dd, DC_DC8051_ERR_EN) & 7686 ~DC_DC8051_ERR_EN_LOST_8051_HEART_BEAT_SMASK); 7687 7688 reg &= ~DC_DC8051_ERR_FLG_LOST_8051_HEART_BEAT_SMASK; 7689 } 7690 if (reg) { 7691 /* report the error, but do not do anything */ 7692 dd_dev_err(dd, "8051 error: %s\n", 7693 dc8051_err_string(buf, sizeof(buf), reg)); 7694 } 7695 7696 if (queue_link_down) { 7697 /* 7698 * if the link is already going down or disabled, do not 7699 * queue another 7700 */ 7701 if ((ppd->host_link_state & 7702 (HLS_GOING_OFFLINE | HLS_LINK_COOLDOWN)) || 7703 ppd->link_enabled == 0) { 7704 dd_dev_info(dd, "%s: not queuing link down\n", 7705 __func__); 7706 } else { 7707 queue_work(ppd->hfi1_wq, &ppd->link_down_work); 7708 } 7709 } 7710 } 7711 7712 static const char * const fm_config_txt[] = { 7713 [0] = 7714 "BadHeadDist: Distance violation between two head flits", 7715 [1] = 7716 "BadTailDist: Distance violation between two tail flits", 7717 [2] = 7718 "BadCtrlDist: Distance violation between two credit control flits", 7719 [3] = 7720 "BadCrdAck: Credits return for unsupported VL", 7721 [4] = 7722 "UnsupportedVLMarker: Received VL Marker", 7723 [5] = 7724 "BadPreempt: Exceeded the preemption nesting level", 7725 [6] = 7726 "BadControlFlit: Received unsupported control flit", 7727 /* no 7 */ 7728 [8] = 7729 "UnsupportedVLMarker: Received VL Marker for unconfigured or disabled VL", 7730 }; 7731 7732 static const char * const port_rcv_txt[] = { 7733 [1] = 7734 "BadPktLen: Illegal PktLen", 7735 [2] = 7736 "PktLenTooLong: Packet longer than PktLen", 7737 [3] = 7738 "PktLenTooShort: Packet shorter than PktLen", 7739 [4] = 7740 "BadSLID: Illegal SLID (0, using multicast as SLID, does not include security validation of SLID)", 7741 [5] = 7742 "BadDLID: Illegal DLID (0, doesn't match HFI)", 7743 [6] = 7744 "BadL2: Illegal L2 opcode", 7745 [7] = 7746 "BadSC: Unsupported SC", 7747 [9] = 7748 "BadRC: Illegal RC", 7749 [11] = 7750 "PreemptError: Preempting with same VL", 7751 [12] = 7752 "PreemptVL15: Preempting a VL15 packet", 7753 }; 7754 7755 #define OPA_LDR_FMCONFIG_OFFSET 16 7756 #define OPA_LDR_PORTRCV_OFFSET 0 7757 static void handle_dcc_err(struct hfi1_devdata *dd, u32 unused, u64 reg) 7758 { 7759 u64 info, hdr0, hdr1; 7760 const char *extra; 7761 char buf[96]; 7762 struct hfi1_pportdata *ppd = dd->pport; 7763 u8 lcl_reason = 0; 7764 int do_bounce = 0; 7765 7766 if (reg & DCC_ERR_FLG_UNCORRECTABLE_ERR_SMASK) { 7767 if (!(dd->err_info_uncorrectable & OPA_EI_STATUS_SMASK)) { 7768 info = read_csr(dd, DCC_ERR_INFO_UNCORRECTABLE); 7769 dd->err_info_uncorrectable = info & OPA_EI_CODE_SMASK; 7770 /* set status bit */ 7771 dd->err_info_uncorrectable |= OPA_EI_STATUS_SMASK; 7772 } 7773 reg &= ~DCC_ERR_FLG_UNCORRECTABLE_ERR_SMASK; 7774 } 7775 7776 if (reg & DCC_ERR_FLG_LINK_ERR_SMASK) { 7777 struct hfi1_pportdata *ppd = dd->pport; 7778 /* this counter saturates at (2^32) - 1 */ 7779 if (ppd->link_downed < (u32)UINT_MAX) 7780 ppd->link_downed++; 7781 reg &= ~DCC_ERR_FLG_LINK_ERR_SMASK; 7782 } 7783 7784 if (reg & DCC_ERR_FLG_FMCONFIG_ERR_SMASK) { 7785 u8 reason_valid = 1; 7786 7787 info = read_csr(dd, DCC_ERR_INFO_FMCONFIG); 7788 if (!(dd->err_info_fmconfig & OPA_EI_STATUS_SMASK)) { 7789 dd->err_info_fmconfig = info & OPA_EI_CODE_SMASK; 7790 /* set status bit */ 7791 dd->err_info_fmconfig |= OPA_EI_STATUS_SMASK; 7792 } 7793 switch (info) { 7794 case 0: 7795 case 1: 7796 case 2: 7797 case 3: 7798 case 4: 7799 case 5: 7800 case 6: 7801 extra = fm_config_txt[info]; 7802 break; 7803 case 8: 7804 extra = fm_config_txt[info]; 7805 if (ppd->port_error_action & 7806 OPA_PI_MASK_FM_CFG_UNSUPPORTED_VL_MARKER) { 7807 do_bounce = 1; 7808 /* 7809 * lcl_reason cannot be derived from info 7810 * for this error 7811 */ 7812 lcl_reason = 7813 OPA_LINKDOWN_REASON_UNSUPPORTED_VL_MARKER; 7814 } 7815 break; 7816 default: 7817 reason_valid = 0; 7818 snprintf(buf, sizeof(buf), "reserved%lld", info); 7819 extra = buf; 7820 break; 7821 } 7822 7823 if (reason_valid && !do_bounce) { 7824 do_bounce = ppd->port_error_action & 7825 (1 << (OPA_LDR_FMCONFIG_OFFSET + info)); 7826 lcl_reason = info + OPA_LINKDOWN_REASON_BAD_HEAD_DIST; 7827 } 7828 7829 /* just report this */ 7830 dd_dev_info_ratelimited(dd, "DCC Error: fmconfig error: %s\n", 7831 extra); 7832 reg &= ~DCC_ERR_FLG_FMCONFIG_ERR_SMASK; 7833 } 7834 7835 if (reg & DCC_ERR_FLG_RCVPORT_ERR_SMASK) { 7836 u8 reason_valid = 1; 7837 7838 info = read_csr(dd, DCC_ERR_INFO_PORTRCV); 7839 hdr0 = read_csr(dd, DCC_ERR_INFO_PORTRCV_HDR0); 7840 hdr1 = read_csr(dd, DCC_ERR_INFO_PORTRCV_HDR1); 7841 if (!(dd->err_info_rcvport.status_and_code & 7842 OPA_EI_STATUS_SMASK)) { 7843 dd->err_info_rcvport.status_and_code = 7844 info & OPA_EI_CODE_SMASK; 7845 /* set status bit */ 7846 dd->err_info_rcvport.status_and_code |= 7847 OPA_EI_STATUS_SMASK; 7848 /* 7849 * save first 2 flits in the packet that caused 7850 * the error 7851 */ 7852 dd->err_info_rcvport.packet_flit1 = hdr0; 7853 dd->err_info_rcvport.packet_flit2 = hdr1; 7854 } 7855 switch (info) { 7856 case 1: 7857 case 2: 7858 case 3: 7859 case 4: 7860 case 5: 7861 case 6: 7862 case 7: 7863 case 9: 7864 case 11: 7865 case 12: 7866 extra = port_rcv_txt[info]; 7867 break; 7868 default: 7869 reason_valid = 0; 7870 snprintf(buf, sizeof(buf), "reserved%lld", info); 7871 extra = buf; 7872 break; 7873 } 7874 7875 if (reason_valid && !do_bounce) { 7876 do_bounce = ppd->port_error_action & 7877 (1 << (OPA_LDR_PORTRCV_OFFSET + info)); 7878 lcl_reason = info + OPA_LINKDOWN_REASON_RCV_ERROR_0; 7879 } 7880 7881 /* just report this */ 7882 dd_dev_info_ratelimited(dd, "DCC Error: PortRcv error: %s\n" 7883 " hdr0 0x%llx, hdr1 0x%llx\n", 7884 extra, hdr0, hdr1); 7885 7886 reg &= ~DCC_ERR_FLG_RCVPORT_ERR_SMASK; 7887 } 7888 7889 if (reg & DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_UC_SMASK) { 7890 /* informative only */ 7891 dd_dev_info_ratelimited(dd, "8051 access to LCB blocked\n"); 7892 reg &= ~DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_UC_SMASK; 7893 } 7894 if (reg & DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_HOST_SMASK) { 7895 /* informative only */ 7896 dd_dev_info_ratelimited(dd, "host access to LCB blocked\n"); 7897 reg &= ~DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_HOST_SMASK; 7898 } 7899 7900 /* report any remaining errors */ 7901 if (reg) 7902 dd_dev_info_ratelimited(dd, "DCC Error: %s\n", 7903 dcc_err_string(buf, sizeof(buf), reg)); 7904 7905 if (lcl_reason == 0) 7906 lcl_reason = OPA_LINKDOWN_REASON_UNKNOWN; 7907 7908 if (do_bounce) { 7909 dd_dev_info_ratelimited(dd, "%s: PortErrorAction bounce\n", 7910 __func__); 7911 set_link_down_reason(ppd, lcl_reason, 0, lcl_reason); 7912 queue_work(ppd->hfi1_wq, &ppd->link_bounce_work); 7913 } 7914 } 7915 7916 static void handle_lcb_err(struct hfi1_devdata *dd, u32 unused, u64 reg) 7917 { 7918 char buf[96]; 7919 7920 dd_dev_info(dd, "LCB Error: %s\n", 7921 lcb_err_string(buf, sizeof(buf), reg)); 7922 } 7923 7924 /* 7925 * CCE block DC interrupt. Source is < 8. 7926 */ 7927 static void is_dc_int(struct hfi1_devdata *dd, unsigned int source) 7928 { 7929 const struct err_reg_info *eri = &dc_errs[source]; 7930 7931 if (eri->handler) { 7932 interrupt_clear_down(dd, 0, eri); 7933 } else if (source == 3 /* dc_lbm_int */) { 7934 /* 7935 * This indicates that a parity error has occurred on the 7936 * address/control lines presented to the LBM. The error 7937 * is a single pulse, there is no associated error flag, 7938 * and it is non-maskable. This is because if a parity 7939 * error occurs on the request the request is dropped. 7940 * This should never occur, but it is nice to know if it 7941 * ever does. 7942 */ 7943 dd_dev_err(dd, "Parity error in DC LBM block\n"); 7944 } else { 7945 dd_dev_err(dd, "Invalid DC interrupt %u\n", source); 7946 } 7947 } 7948 7949 /* 7950 * TX block send credit interrupt. Source is < 160. 7951 */ 7952 static void is_send_credit_int(struct hfi1_devdata *dd, unsigned int source) 7953 { 7954 sc_group_release_update(dd, source); 7955 } 7956 7957 /* 7958 * TX block SDMA interrupt. Source is < 48. 7959 * 7960 * SDMA interrupts are grouped by type: 7961 * 7962 * 0 - N-1 = SDma 7963 * N - 2N-1 = SDmaProgress 7964 * 2N - 3N-1 = SDmaIdle 7965 */ 7966 static void is_sdma_eng_int(struct hfi1_devdata *dd, unsigned int source) 7967 { 7968 /* what interrupt */ 7969 unsigned int what = source / TXE_NUM_SDMA_ENGINES; 7970 /* which engine */ 7971 unsigned int which = source % TXE_NUM_SDMA_ENGINES; 7972 7973 #ifdef CONFIG_SDMA_VERBOSITY 7974 dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", which, 7975 slashstrip(__FILE__), __LINE__, __func__); 7976 sdma_dumpstate(&dd->per_sdma[which]); 7977 #endif 7978 7979 if (likely(what < 3 && which < dd->num_sdma)) { 7980 sdma_engine_interrupt(&dd->per_sdma[which], 1ull << source); 7981 } else { 7982 /* should not happen */ 7983 dd_dev_err(dd, "Invalid SDMA interrupt 0x%x\n", source); 7984 } 7985 } 7986 7987 /* 7988 * RX block receive available interrupt. Source is < 160. 7989 */ 7990 static void is_rcv_avail_int(struct hfi1_devdata *dd, unsigned int source) 7991 { 7992 struct hfi1_ctxtdata *rcd; 7993 char *err_detail; 7994 7995 if (likely(source < dd->num_rcv_contexts)) { 7996 rcd = dd->rcd[source]; 7997 if (rcd) { 7998 if (source < dd->first_user_ctxt) 7999 rcd->do_interrupt(rcd, 0); 8000 else 8001 handle_user_interrupt(rcd); 8002 return; /* OK */ 8003 } 8004 /* received an interrupt, but no rcd */ 8005 err_detail = "dataless"; 8006 } else { 8007 /* received an interrupt, but are not using that context */ 8008 err_detail = "out of range"; 8009 } 8010 dd_dev_err(dd, "unexpected %s receive available context interrupt %u\n", 8011 err_detail, source); 8012 } 8013 8014 /* 8015 * RX block receive urgent interrupt. Source is < 160. 8016 */ 8017 static void is_rcv_urgent_int(struct hfi1_devdata *dd, unsigned int source) 8018 { 8019 struct hfi1_ctxtdata *rcd; 8020 char *err_detail; 8021 8022 if (likely(source < dd->num_rcv_contexts)) { 8023 rcd = dd->rcd[source]; 8024 if (rcd) { 8025 /* only pay attention to user urgent interrupts */ 8026 if (source >= dd->first_user_ctxt) 8027 handle_user_interrupt(rcd); 8028 return; /* OK */ 8029 } 8030 /* received an interrupt, but no rcd */ 8031 err_detail = "dataless"; 8032 } else { 8033 /* received an interrupt, but are not using that context */ 8034 err_detail = "out of range"; 8035 } 8036 dd_dev_err(dd, "unexpected %s receive urgent context interrupt %u\n", 8037 err_detail, source); 8038 } 8039 8040 /* 8041 * Reserved range interrupt. Should not be called in normal operation. 8042 */ 8043 static void is_reserved_int(struct hfi1_devdata *dd, unsigned int source) 8044 { 8045 char name[64]; 8046 8047 dd_dev_err(dd, "unexpected %s interrupt\n", 8048 is_reserved_name(name, sizeof(name), source)); 8049 } 8050 8051 static const struct is_table is_table[] = { 8052 /* 8053 * start end 8054 * name func interrupt func 8055 */ 8056 { IS_GENERAL_ERR_START, IS_GENERAL_ERR_END, 8057 is_misc_err_name, is_misc_err_int }, 8058 { IS_SDMAENG_ERR_START, IS_SDMAENG_ERR_END, 8059 is_sdma_eng_err_name, is_sdma_eng_err_int }, 8060 { IS_SENDCTXT_ERR_START, IS_SENDCTXT_ERR_END, 8061 is_sendctxt_err_name, is_sendctxt_err_int }, 8062 { IS_SDMA_START, IS_SDMA_END, 8063 is_sdma_eng_name, is_sdma_eng_int }, 8064 { IS_VARIOUS_START, IS_VARIOUS_END, 8065 is_various_name, is_various_int }, 8066 { IS_DC_START, IS_DC_END, 8067 is_dc_name, is_dc_int }, 8068 { IS_RCVAVAIL_START, IS_RCVAVAIL_END, 8069 is_rcv_avail_name, is_rcv_avail_int }, 8070 { IS_RCVURGENT_START, IS_RCVURGENT_END, 8071 is_rcv_urgent_name, is_rcv_urgent_int }, 8072 { IS_SENDCREDIT_START, IS_SENDCREDIT_END, 8073 is_send_credit_name, is_send_credit_int}, 8074 { IS_RESERVED_START, IS_RESERVED_END, 8075 is_reserved_name, is_reserved_int}, 8076 }; 8077 8078 /* 8079 * Interrupt source interrupt - called when the given source has an interrupt. 8080 * Source is a bit index into an array of 64-bit integers. 8081 */ 8082 static void is_interrupt(struct hfi1_devdata *dd, unsigned int source) 8083 { 8084 const struct is_table *entry; 8085 8086 /* avoids a double compare by walking the table in-order */ 8087 for (entry = &is_table[0]; entry->is_name; entry++) { 8088 if (source < entry->end) { 8089 trace_hfi1_interrupt(dd, entry, source); 8090 entry->is_int(dd, source - entry->start); 8091 return; 8092 } 8093 } 8094 /* fell off the end */ 8095 dd_dev_err(dd, "invalid interrupt source %u\n", source); 8096 } 8097 8098 /* 8099 * General interrupt handler. This is able to correctly handle 8100 * all interrupts in case INTx is used. 8101 */ 8102 static irqreturn_t general_interrupt(int irq, void *data) 8103 { 8104 struct hfi1_devdata *dd = data; 8105 u64 regs[CCE_NUM_INT_CSRS]; 8106 u32 bit; 8107 int i; 8108 8109 this_cpu_inc(*dd->int_counter); 8110 8111 /* phase 1: scan and clear all handled interrupts */ 8112 for (i = 0; i < CCE_NUM_INT_CSRS; i++) { 8113 if (dd->gi_mask[i] == 0) { 8114 regs[i] = 0; /* used later */ 8115 continue; 8116 } 8117 regs[i] = read_csr(dd, CCE_INT_STATUS + (8 * i)) & 8118 dd->gi_mask[i]; 8119 /* only clear if anything is set */ 8120 if (regs[i]) 8121 write_csr(dd, CCE_INT_CLEAR + (8 * i), regs[i]); 8122 } 8123 8124 /* phase 2: call the appropriate handler */ 8125 for_each_set_bit(bit, (unsigned long *)®s[0], 8126 CCE_NUM_INT_CSRS * 64) { 8127 is_interrupt(dd, bit); 8128 } 8129 8130 return IRQ_HANDLED; 8131 } 8132 8133 static irqreturn_t sdma_interrupt(int irq, void *data) 8134 { 8135 struct sdma_engine *sde = data; 8136 struct hfi1_devdata *dd = sde->dd; 8137 u64 status; 8138 8139 #ifdef CONFIG_SDMA_VERBOSITY 8140 dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx, 8141 slashstrip(__FILE__), __LINE__, __func__); 8142 sdma_dumpstate(sde); 8143 #endif 8144 8145 this_cpu_inc(*dd->int_counter); 8146 8147 /* This read_csr is really bad in the hot path */ 8148 status = read_csr(dd, 8149 CCE_INT_STATUS + (8 * (IS_SDMA_START / 64))) 8150 & sde->imask; 8151 if (likely(status)) { 8152 /* clear the interrupt(s) */ 8153 write_csr(dd, 8154 CCE_INT_CLEAR + (8 * (IS_SDMA_START / 64)), 8155 status); 8156 8157 /* handle the interrupt(s) */ 8158 sdma_engine_interrupt(sde, status); 8159 } else 8160 dd_dev_err(dd, "SDMA engine %u interrupt, but no status bits set\n", 8161 sde->this_idx); 8162 8163 return IRQ_HANDLED; 8164 } 8165 8166 /* 8167 * Clear the receive interrupt. Use a read of the interrupt clear CSR 8168 * to insure that the write completed. This does NOT guarantee that 8169 * queued DMA writes to memory from the chip are pushed. 8170 */ 8171 static inline void clear_recv_intr(struct hfi1_ctxtdata *rcd) 8172 { 8173 struct hfi1_devdata *dd = rcd->dd; 8174 u32 addr = CCE_INT_CLEAR + (8 * rcd->ireg); 8175 8176 mmiowb(); /* make sure everything before is written */ 8177 write_csr(dd, addr, rcd->imask); 8178 /* force the above write on the chip and get a value back */ 8179 (void)read_csr(dd, addr); 8180 } 8181 8182 /* force the receive interrupt */ 8183 void force_recv_intr(struct hfi1_ctxtdata *rcd) 8184 { 8185 write_csr(rcd->dd, CCE_INT_FORCE + (8 * rcd->ireg), rcd->imask); 8186 } 8187 8188 /* 8189 * Return non-zero if a packet is present. 8190 * 8191 * This routine is called when rechecking for packets after the RcvAvail 8192 * interrupt has been cleared down. First, do a quick check of memory for 8193 * a packet present. If not found, use an expensive CSR read of the context 8194 * tail to determine the actual tail. The CSR read is necessary because there 8195 * is no method to push pending DMAs to memory other than an interrupt and we 8196 * are trying to determine if we need to force an interrupt. 8197 */ 8198 static inline int check_packet_present(struct hfi1_ctxtdata *rcd) 8199 { 8200 u32 tail; 8201 int present; 8202 8203 if (!HFI1_CAP_IS_KSET(DMA_RTAIL)) 8204 present = (rcd->seq_cnt == 8205 rhf_rcv_seq(rhf_to_cpu(get_rhf_addr(rcd)))); 8206 else /* is RDMA rtail */ 8207 present = (rcd->head != get_rcvhdrtail(rcd)); 8208 8209 if (present) 8210 return 1; 8211 8212 /* fall back to a CSR read, correct indpendent of DMA_RTAIL */ 8213 tail = (u32)read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_TAIL); 8214 return rcd->head != tail; 8215 } 8216 8217 /* 8218 * Receive packet IRQ handler. This routine expects to be on its own IRQ. 8219 * This routine will try to handle packets immediately (latency), but if 8220 * it finds too many, it will invoke the thread handler (bandwitdh). The 8221 * chip receive interrupt is *not* cleared down until this or the thread (if 8222 * invoked) is finished. The intent is to avoid extra interrupts while we 8223 * are processing packets anyway. 8224 */ 8225 static irqreturn_t receive_context_interrupt(int irq, void *data) 8226 { 8227 struct hfi1_ctxtdata *rcd = data; 8228 struct hfi1_devdata *dd = rcd->dd; 8229 int disposition; 8230 int present; 8231 8232 trace_hfi1_receive_interrupt(dd, rcd->ctxt); 8233 this_cpu_inc(*dd->int_counter); 8234 aspm_ctx_disable(rcd); 8235 8236 /* receive interrupt remains blocked while processing packets */ 8237 disposition = rcd->do_interrupt(rcd, 0); 8238 8239 /* 8240 * Too many packets were seen while processing packets in this 8241 * IRQ handler. Invoke the handler thread. The receive interrupt 8242 * remains blocked. 8243 */ 8244 if (disposition == RCV_PKT_LIMIT) 8245 return IRQ_WAKE_THREAD; 8246 8247 /* 8248 * The packet processor detected no more packets. Clear the receive 8249 * interrupt and recheck for a packet packet that may have arrived 8250 * after the previous check and interrupt clear. If a packet arrived, 8251 * force another interrupt. 8252 */ 8253 clear_recv_intr(rcd); 8254 present = check_packet_present(rcd); 8255 if (present) 8256 force_recv_intr(rcd); 8257 8258 return IRQ_HANDLED; 8259 } 8260 8261 /* 8262 * Receive packet thread handler. This expects to be invoked with the 8263 * receive interrupt still blocked. 8264 */ 8265 static irqreturn_t receive_context_thread(int irq, void *data) 8266 { 8267 struct hfi1_ctxtdata *rcd = data; 8268 int present; 8269 8270 /* receive interrupt is still blocked from the IRQ handler */ 8271 (void)rcd->do_interrupt(rcd, 1); 8272 8273 /* 8274 * The packet processor will only return if it detected no more 8275 * packets. Hold IRQs here so we can safely clear the interrupt and 8276 * recheck for a packet that may have arrived after the previous 8277 * check and the interrupt clear. If a packet arrived, force another 8278 * interrupt. 8279 */ 8280 local_irq_disable(); 8281 clear_recv_intr(rcd); 8282 present = check_packet_present(rcd); 8283 if (present) 8284 force_recv_intr(rcd); 8285 local_irq_enable(); 8286 8287 return IRQ_HANDLED; 8288 } 8289 8290 /* ========================================================================= */ 8291 8292 u32 read_physical_state(struct hfi1_devdata *dd) 8293 { 8294 u64 reg; 8295 8296 reg = read_csr(dd, DC_DC8051_STS_CUR_STATE); 8297 return (reg >> DC_DC8051_STS_CUR_STATE_PORT_SHIFT) 8298 & DC_DC8051_STS_CUR_STATE_PORT_MASK; 8299 } 8300 8301 u32 read_logical_state(struct hfi1_devdata *dd) 8302 { 8303 u64 reg; 8304 8305 reg = read_csr(dd, DCC_CFG_PORT_CONFIG); 8306 return (reg >> DCC_CFG_PORT_CONFIG_LINK_STATE_SHIFT) 8307 & DCC_CFG_PORT_CONFIG_LINK_STATE_MASK; 8308 } 8309 8310 static void set_logical_state(struct hfi1_devdata *dd, u32 chip_lstate) 8311 { 8312 u64 reg; 8313 8314 reg = read_csr(dd, DCC_CFG_PORT_CONFIG); 8315 /* clear current state, set new state */ 8316 reg &= ~DCC_CFG_PORT_CONFIG_LINK_STATE_SMASK; 8317 reg |= (u64)chip_lstate << DCC_CFG_PORT_CONFIG_LINK_STATE_SHIFT; 8318 write_csr(dd, DCC_CFG_PORT_CONFIG, reg); 8319 } 8320 8321 /* 8322 * Use the 8051 to read a LCB CSR. 8323 */ 8324 static int read_lcb_via_8051(struct hfi1_devdata *dd, u32 addr, u64 *data) 8325 { 8326 u32 regno; 8327 int ret; 8328 8329 if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR) { 8330 if (acquire_lcb_access(dd, 0) == 0) { 8331 *data = read_csr(dd, addr); 8332 release_lcb_access(dd, 0); 8333 return 0; 8334 } 8335 return -EBUSY; 8336 } 8337 8338 /* register is an index of LCB registers: (offset - base) / 8 */ 8339 regno = (addr - DC_LCB_CFG_RUN) >> 3; 8340 ret = do_8051_command(dd, HCMD_READ_LCB_CSR, regno, data); 8341 if (ret != HCMD_SUCCESS) 8342 return -EBUSY; 8343 return 0; 8344 } 8345 8346 /* 8347 * Read an LCB CSR. Access may not be in host control, so check. 8348 * Return 0 on success, -EBUSY on failure. 8349 */ 8350 int read_lcb_csr(struct hfi1_devdata *dd, u32 addr, u64 *data) 8351 { 8352 struct hfi1_pportdata *ppd = dd->pport; 8353 8354 /* if up, go through the 8051 for the value */ 8355 if (ppd->host_link_state & HLS_UP) 8356 return read_lcb_via_8051(dd, addr, data); 8357 /* if going up or down, no access */ 8358 if (ppd->host_link_state & (HLS_GOING_UP | HLS_GOING_OFFLINE)) 8359 return -EBUSY; 8360 /* otherwise, host has access */ 8361 *data = read_csr(dd, addr); 8362 return 0; 8363 } 8364 8365 /* 8366 * Use the 8051 to write a LCB CSR. 8367 */ 8368 static int write_lcb_via_8051(struct hfi1_devdata *dd, u32 addr, u64 data) 8369 { 8370 u32 regno; 8371 int ret; 8372 8373 if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR || 8374 (dd->dc8051_ver < dc8051_ver(0, 20))) { 8375 if (acquire_lcb_access(dd, 0) == 0) { 8376 write_csr(dd, addr, data); 8377 release_lcb_access(dd, 0); 8378 return 0; 8379 } 8380 return -EBUSY; 8381 } 8382 8383 /* register is an index of LCB registers: (offset - base) / 8 */ 8384 regno = (addr - DC_LCB_CFG_RUN) >> 3; 8385 ret = do_8051_command(dd, HCMD_WRITE_LCB_CSR, regno, &data); 8386 if (ret != HCMD_SUCCESS) 8387 return -EBUSY; 8388 return 0; 8389 } 8390 8391 /* 8392 * Write an LCB CSR. Access may not be in host control, so check. 8393 * Return 0 on success, -EBUSY on failure. 8394 */ 8395 int write_lcb_csr(struct hfi1_devdata *dd, u32 addr, u64 data) 8396 { 8397 struct hfi1_pportdata *ppd = dd->pport; 8398 8399 /* if up, go through the 8051 for the value */ 8400 if (ppd->host_link_state & HLS_UP) 8401 return write_lcb_via_8051(dd, addr, data); 8402 /* if going up or down, no access */ 8403 if (ppd->host_link_state & (HLS_GOING_UP | HLS_GOING_OFFLINE)) 8404 return -EBUSY; 8405 /* otherwise, host has access */ 8406 write_csr(dd, addr, data); 8407 return 0; 8408 } 8409 8410 /* 8411 * Returns: 8412 * < 0 = Linux error, not able to get access 8413 * > 0 = 8051 command RETURN_CODE 8414 */ 8415 static int do_8051_command( 8416 struct hfi1_devdata *dd, 8417 u32 type, 8418 u64 in_data, 8419 u64 *out_data) 8420 { 8421 u64 reg, completed; 8422 int return_code; 8423 unsigned long flags; 8424 unsigned long timeout; 8425 8426 hfi1_cdbg(DC8051, "type %d, data 0x%012llx", type, in_data); 8427 8428 /* 8429 * Alternative to holding the lock for a long time: 8430 * - keep busy wait - have other users bounce off 8431 */ 8432 spin_lock_irqsave(&dd->dc8051_lock, flags); 8433 8434 /* We can't send any commands to the 8051 if it's in reset */ 8435 if (dd->dc_shutdown) { 8436 return_code = -ENODEV; 8437 goto fail; 8438 } 8439 8440 /* 8441 * If an 8051 host command timed out previously, then the 8051 is 8442 * stuck. 8443 * 8444 * On first timeout, attempt to reset and restart the entire DC 8445 * block (including 8051). (Is this too big of a hammer?) 8446 * 8447 * If the 8051 times out a second time, the reset did not bring it 8448 * back to healthy life. In that case, fail any subsequent commands. 8449 */ 8450 if (dd->dc8051_timed_out) { 8451 if (dd->dc8051_timed_out > 1) { 8452 dd_dev_err(dd, 8453 "Previous 8051 host command timed out, skipping command %u\n", 8454 type); 8455 return_code = -ENXIO; 8456 goto fail; 8457 } 8458 spin_unlock_irqrestore(&dd->dc8051_lock, flags); 8459 dc_shutdown(dd); 8460 dc_start(dd); 8461 spin_lock_irqsave(&dd->dc8051_lock, flags); 8462 } 8463 8464 /* 8465 * If there is no timeout, then the 8051 command interface is 8466 * waiting for a command. 8467 */ 8468 8469 /* 8470 * When writing a LCB CSR, out_data contains the full value to 8471 * to be written, while in_data contains the relative LCB 8472 * address in 7:0. Do the work here, rather than the caller, 8473 * of distrubting the write data to where it needs to go: 8474 * 8475 * Write data 8476 * 39:00 -> in_data[47:8] 8477 * 47:40 -> DC8051_CFG_EXT_DEV_0.RETURN_CODE 8478 * 63:48 -> DC8051_CFG_EXT_DEV_0.RSP_DATA 8479 */ 8480 if (type == HCMD_WRITE_LCB_CSR) { 8481 in_data |= ((*out_data) & 0xffffffffffull) << 8; 8482 /* must preserve COMPLETED - it is tied to hardware */ 8483 reg = read_csr(dd, DC_DC8051_CFG_EXT_DEV_0); 8484 reg &= DC_DC8051_CFG_EXT_DEV_0_COMPLETED_SMASK; 8485 reg |= ((((*out_data) >> 40) & 0xff) << 8486 DC_DC8051_CFG_EXT_DEV_0_RETURN_CODE_SHIFT) 8487 | ((((*out_data) >> 48) & 0xffff) << 8488 DC_DC8051_CFG_EXT_DEV_0_RSP_DATA_SHIFT); 8489 write_csr(dd, DC_DC8051_CFG_EXT_DEV_0, reg); 8490 } 8491 8492 /* 8493 * Do two writes: the first to stabilize the type and req_data, the 8494 * second to activate. 8495 */ 8496 reg = ((u64)type & DC_DC8051_CFG_HOST_CMD_0_REQ_TYPE_MASK) 8497 << DC_DC8051_CFG_HOST_CMD_0_REQ_TYPE_SHIFT 8498 | (in_data & DC_DC8051_CFG_HOST_CMD_0_REQ_DATA_MASK) 8499 << DC_DC8051_CFG_HOST_CMD_0_REQ_DATA_SHIFT; 8500 write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, reg); 8501 reg |= DC_DC8051_CFG_HOST_CMD_0_REQ_NEW_SMASK; 8502 write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, reg); 8503 8504 /* wait for completion, alternate: interrupt */ 8505 timeout = jiffies + msecs_to_jiffies(DC8051_COMMAND_TIMEOUT); 8506 while (1) { 8507 reg = read_csr(dd, DC_DC8051_CFG_HOST_CMD_1); 8508 completed = reg & DC_DC8051_CFG_HOST_CMD_1_COMPLETED_SMASK; 8509 if (completed) 8510 break; 8511 if (time_after(jiffies, timeout)) { 8512 dd->dc8051_timed_out++; 8513 dd_dev_err(dd, "8051 host command %u timeout\n", type); 8514 if (out_data) 8515 *out_data = 0; 8516 return_code = -ETIMEDOUT; 8517 goto fail; 8518 } 8519 udelay(2); 8520 } 8521 8522 if (out_data) { 8523 *out_data = (reg >> DC_DC8051_CFG_HOST_CMD_1_RSP_DATA_SHIFT) 8524 & DC_DC8051_CFG_HOST_CMD_1_RSP_DATA_MASK; 8525 if (type == HCMD_READ_LCB_CSR) { 8526 /* top 16 bits are in a different register */ 8527 *out_data |= (read_csr(dd, DC_DC8051_CFG_EXT_DEV_1) 8528 & DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SMASK) 8529 << (48 8530 - DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SHIFT); 8531 } 8532 } 8533 return_code = (reg >> DC_DC8051_CFG_HOST_CMD_1_RETURN_CODE_SHIFT) 8534 & DC_DC8051_CFG_HOST_CMD_1_RETURN_CODE_MASK; 8535 dd->dc8051_timed_out = 0; 8536 /* 8537 * Clear command for next user. 8538 */ 8539 write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, 0); 8540 8541 fail: 8542 spin_unlock_irqrestore(&dd->dc8051_lock, flags); 8543 8544 return return_code; 8545 } 8546 8547 static int set_physical_link_state(struct hfi1_devdata *dd, u64 state) 8548 { 8549 return do_8051_command(dd, HCMD_CHANGE_PHY_STATE, state, NULL); 8550 } 8551 8552 int load_8051_config(struct hfi1_devdata *dd, u8 field_id, 8553 u8 lane_id, u32 config_data) 8554 { 8555 u64 data; 8556 int ret; 8557 8558 data = (u64)field_id << LOAD_DATA_FIELD_ID_SHIFT 8559 | (u64)lane_id << LOAD_DATA_LANE_ID_SHIFT 8560 | (u64)config_data << LOAD_DATA_DATA_SHIFT; 8561 ret = do_8051_command(dd, HCMD_LOAD_CONFIG_DATA, data, NULL); 8562 if (ret != HCMD_SUCCESS) { 8563 dd_dev_err(dd, 8564 "load 8051 config: field id %d, lane %d, err %d\n", 8565 (int)field_id, (int)lane_id, ret); 8566 } 8567 return ret; 8568 } 8569 8570 /* 8571 * Read the 8051 firmware "registers". Use the RAM directly. Always 8572 * set the result, even on error. 8573 * Return 0 on success, -errno on failure 8574 */ 8575 int read_8051_config(struct hfi1_devdata *dd, u8 field_id, u8 lane_id, 8576 u32 *result) 8577 { 8578 u64 big_data; 8579 u32 addr; 8580 int ret; 8581 8582 /* address start depends on the lane_id */ 8583 if (lane_id < 4) 8584 addr = (4 * NUM_GENERAL_FIELDS) 8585 + (lane_id * 4 * NUM_LANE_FIELDS); 8586 else 8587 addr = 0; 8588 addr += field_id * 4; 8589 8590 /* read is in 8-byte chunks, hardware will truncate the address down */ 8591 ret = read_8051_data(dd, addr, 8, &big_data); 8592 8593 if (ret == 0) { 8594 /* extract the 4 bytes we want */ 8595 if (addr & 0x4) 8596 *result = (u32)(big_data >> 32); 8597 else 8598 *result = (u32)big_data; 8599 } else { 8600 *result = 0; 8601 dd_dev_err(dd, "%s: direct read failed, lane %d, field %d!\n", 8602 __func__, lane_id, field_id); 8603 } 8604 8605 return ret; 8606 } 8607 8608 static int write_vc_local_phy(struct hfi1_devdata *dd, u8 power_management, 8609 u8 continuous) 8610 { 8611 u32 frame; 8612 8613 frame = continuous << CONTINIOUS_REMOTE_UPDATE_SUPPORT_SHIFT 8614 | power_management << POWER_MANAGEMENT_SHIFT; 8615 return load_8051_config(dd, VERIFY_CAP_LOCAL_PHY, 8616 GENERAL_CONFIG, frame); 8617 } 8618 8619 static int write_vc_local_fabric(struct hfi1_devdata *dd, u8 vau, u8 z, u8 vcu, 8620 u16 vl15buf, u8 crc_sizes) 8621 { 8622 u32 frame; 8623 8624 frame = (u32)vau << VAU_SHIFT 8625 | (u32)z << Z_SHIFT 8626 | (u32)vcu << VCU_SHIFT 8627 | (u32)vl15buf << VL15BUF_SHIFT 8628 | (u32)crc_sizes << CRC_SIZES_SHIFT; 8629 return load_8051_config(dd, VERIFY_CAP_LOCAL_FABRIC, 8630 GENERAL_CONFIG, frame); 8631 } 8632 8633 static void read_vc_local_link_width(struct hfi1_devdata *dd, u8 *misc_bits, 8634 u8 *flag_bits, u16 *link_widths) 8635 { 8636 u32 frame; 8637 8638 read_8051_config(dd, VERIFY_CAP_LOCAL_LINK_WIDTH, GENERAL_CONFIG, 8639 &frame); 8640 *misc_bits = (frame >> MISC_CONFIG_BITS_SHIFT) & MISC_CONFIG_BITS_MASK; 8641 *flag_bits = (frame >> LOCAL_FLAG_BITS_SHIFT) & LOCAL_FLAG_BITS_MASK; 8642 *link_widths = (frame >> LINK_WIDTH_SHIFT) & LINK_WIDTH_MASK; 8643 } 8644 8645 static int write_vc_local_link_width(struct hfi1_devdata *dd, 8646 u8 misc_bits, 8647 u8 flag_bits, 8648 u16 link_widths) 8649 { 8650 u32 frame; 8651 8652 frame = (u32)misc_bits << MISC_CONFIG_BITS_SHIFT 8653 | (u32)flag_bits << LOCAL_FLAG_BITS_SHIFT 8654 | (u32)link_widths << LINK_WIDTH_SHIFT; 8655 return load_8051_config(dd, VERIFY_CAP_LOCAL_LINK_WIDTH, GENERAL_CONFIG, 8656 frame); 8657 } 8658 8659 static int write_local_device_id(struct hfi1_devdata *dd, u16 device_id, 8660 u8 device_rev) 8661 { 8662 u32 frame; 8663 8664 frame = ((u32)device_id << LOCAL_DEVICE_ID_SHIFT) 8665 | ((u32)device_rev << LOCAL_DEVICE_REV_SHIFT); 8666 return load_8051_config(dd, LOCAL_DEVICE_ID, GENERAL_CONFIG, frame); 8667 } 8668 8669 static void read_remote_device_id(struct hfi1_devdata *dd, u16 *device_id, 8670 u8 *device_rev) 8671 { 8672 u32 frame; 8673 8674 read_8051_config(dd, REMOTE_DEVICE_ID, GENERAL_CONFIG, &frame); 8675 *device_id = (frame >> REMOTE_DEVICE_ID_SHIFT) & REMOTE_DEVICE_ID_MASK; 8676 *device_rev = (frame >> REMOTE_DEVICE_REV_SHIFT) 8677 & REMOTE_DEVICE_REV_MASK; 8678 } 8679 8680 void read_misc_status(struct hfi1_devdata *dd, u8 *ver_a, u8 *ver_b) 8681 { 8682 u32 frame; 8683 8684 read_8051_config(dd, MISC_STATUS, GENERAL_CONFIG, &frame); 8685 *ver_a = (frame >> STS_FM_VERSION_A_SHIFT) & STS_FM_VERSION_A_MASK; 8686 *ver_b = (frame >> STS_FM_VERSION_B_SHIFT) & STS_FM_VERSION_B_MASK; 8687 } 8688 8689 static void read_vc_remote_phy(struct hfi1_devdata *dd, u8 *power_management, 8690 u8 *continuous) 8691 { 8692 u32 frame; 8693 8694 read_8051_config(dd, VERIFY_CAP_REMOTE_PHY, GENERAL_CONFIG, &frame); 8695 *power_management = (frame >> POWER_MANAGEMENT_SHIFT) 8696 & POWER_MANAGEMENT_MASK; 8697 *continuous = (frame >> CONTINIOUS_REMOTE_UPDATE_SUPPORT_SHIFT) 8698 & CONTINIOUS_REMOTE_UPDATE_SUPPORT_MASK; 8699 } 8700 8701 static void read_vc_remote_fabric(struct hfi1_devdata *dd, u8 *vau, u8 *z, 8702 u8 *vcu, u16 *vl15buf, u8 *crc_sizes) 8703 { 8704 u32 frame; 8705 8706 read_8051_config(dd, VERIFY_CAP_REMOTE_FABRIC, GENERAL_CONFIG, &frame); 8707 *vau = (frame >> VAU_SHIFT) & VAU_MASK; 8708 *z = (frame >> Z_SHIFT) & Z_MASK; 8709 *vcu = (frame >> VCU_SHIFT) & VCU_MASK; 8710 *vl15buf = (frame >> VL15BUF_SHIFT) & VL15BUF_MASK; 8711 *crc_sizes = (frame >> CRC_SIZES_SHIFT) & CRC_SIZES_MASK; 8712 } 8713 8714 static void read_vc_remote_link_width(struct hfi1_devdata *dd, 8715 u8 *remote_tx_rate, 8716 u16 *link_widths) 8717 { 8718 u32 frame; 8719 8720 read_8051_config(dd, VERIFY_CAP_REMOTE_LINK_WIDTH, GENERAL_CONFIG, 8721 &frame); 8722 *remote_tx_rate = (frame >> REMOTE_TX_RATE_SHIFT) 8723 & REMOTE_TX_RATE_MASK; 8724 *link_widths = (frame >> LINK_WIDTH_SHIFT) & LINK_WIDTH_MASK; 8725 } 8726 8727 static void read_local_lni(struct hfi1_devdata *dd, u8 *enable_lane_rx) 8728 { 8729 u32 frame; 8730 8731 read_8051_config(dd, LOCAL_LNI_INFO, GENERAL_CONFIG, &frame); 8732 *enable_lane_rx = (frame >> ENABLE_LANE_RX_SHIFT) & ENABLE_LANE_RX_MASK; 8733 } 8734 8735 static void read_mgmt_allowed(struct hfi1_devdata *dd, u8 *mgmt_allowed) 8736 { 8737 u32 frame; 8738 8739 read_8051_config(dd, REMOTE_LNI_INFO, GENERAL_CONFIG, &frame); 8740 *mgmt_allowed = (frame >> MGMT_ALLOWED_SHIFT) & MGMT_ALLOWED_MASK; 8741 } 8742 8743 static void read_last_local_state(struct hfi1_devdata *dd, u32 *lls) 8744 { 8745 read_8051_config(dd, LAST_LOCAL_STATE_COMPLETE, GENERAL_CONFIG, lls); 8746 } 8747 8748 static void read_last_remote_state(struct hfi1_devdata *dd, u32 *lrs) 8749 { 8750 read_8051_config(dd, LAST_REMOTE_STATE_COMPLETE, GENERAL_CONFIG, lrs); 8751 } 8752 8753 void hfi1_read_link_quality(struct hfi1_devdata *dd, u8 *link_quality) 8754 { 8755 u32 frame; 8756 int ret; 8757 8758 *link_quality = 0; 8759 if (dd->pport->host_link_state & HLS_UP) { 8760 ret = read_8051_config(dd, LINK_QUALITY_INFO, GENERAL_CONFIG, 8761 &frame); 8762 if (ret == 0) 8763 *link_quality = (frame >> LINK_QUALITY_SHIFT) 8764 & LINK_QUALITY_MASK; 8765 } 8766 } 8767 8768 static void read_planned_down_reason_code(struct hfi1_devdata *dd, u8 *pdrrc) 8769 { 8770 u32 frame; 8771 8772 read_8051_config(dd, LINK_QUALITY_INFO, GENERAL_CONFIG, &frame); 8773 *pdrrc = (frame >> DOWN_REMOTE_REASON_SHIFT) & DOWN_REMOTE_REASON_MASK; 8774 } 8775 8776 static void read_link_down_reason(struct hfi1_devdata *dd, u8 *ldr) 8777 { 8778 u32 frame; 8779 8780 read_8051_config(dd, LINK_DOWN_REASON, GENERAL_CONFIG, &frame); 8781 *ldr = (frame & 0xff); 8782 } 8783 8784 static int read_tx_settings(struct hfi1_devdata *dd, 8785 u8 *enable_lane_tx, 8786 u8 *tx_polarity_inversion, 8787 u8 *rx_polarity_inversion, 8788 u8 *max_rate) 8789 { 8790 u32 frame; 8791 int ret; 8792 8793 ret = read_8051_config(dd, TX_SETTINGS, GENERAL_CONFIG, &frame); 8794 *enable_lane_tx = (frame >> ENABLE_LANE_TX_SHIFT) 8795 & ENABLE_LANE_TX_MASK; 8796 *tx_polarity_inversion = (frame >> TX_POLARITY_INVERSION_SHIFT) 8797 & TX_POLARITY_INVERSION_MASK; 8798 *rx_polarity_inversion = (frame >> RX_POLARITY_INVERSION_SHIFT) 8799 & RX_POLARITY_INVERSION_MASK; 8800 *max_rate = (frame >> MAX_RATE_SHIFT) & MAX_RATE_MASK; 8801 return ret; 8802 } 8803 8804 static int write_tx_settings(struct hfi1_devdata *dd, 8805 u8 enable_lane_tx, 8806 u8 tx_polarity_inversion, 8807 u8 rx_polarity_inversion, 8808 u8 max_rate) 8809 { 8810 u32 frame; 8811 8812 /* no need to mask, all variable sizes match field widths */ 8813 frame = enable_lane_tx << ENABLE_LANE_TX_SHIFT 8814 | tx_polarity_inversion << TX_POLARITY_INVERSION_SHIFT 8815 | rx_polarity_inversion << RX_POLARITY_INVERSION_SHIFT 8816 | max_rate << MAX_RATE_SHIFT; 8817 return load_8051_config(dd, TX_SETTINGS, GENERAL_CONFIG, frame); 8818 } 8819 8820 /* 8821 * Read an idle LCB message. 8822 * 8823 * Returns 0 on success, -EINVAL on error 8824 */ 8825 static int read_idle_message(struct hfi1_devdata *dd, u64 type, u64 *data_out) 8826 { 8827 int ret; 8828 8829 ret = do_8051_command(dd, HCMD_READ_LCB_IDLE_MSG, type, data_out); 8830 if (ret != HCMD_SUCCESS) { 8831 dd_dev_err(dd, "read idle message: type %d, err %d\n", 8832 (u32)type, ret); 8833 return -EINVAL; 8834 } 8835 dd_dev_info(dd, "%s: read idle message 0x%llx\n", __func__, *data_out); 8836 /* return only the payload as we already know the type */ 8837 *data_out >>= IDLE_PAYLOAD_SHIFT; 8838 return 0; 8839 } 8840 8841 /* 8842 * Read an idle SMA message. To be done in response to a notification from 8843 * the 8051. 8844 * 8845 * Returns 0 on success, -EINVAL on error 8846 */ 8847 static int read_idle_sma(struct hfi1_devdata *dd, u64 *data) 8848 { 8849 return read_idle_message(dd, (u64)IDLE_SMA << IDLE_MSG_TYPE_SHIFT, 8850 data); 8851 } 8852 8853 /* 8854 * Send an idle LCB message. 8855 * 8856 * Returns 0 on success, -EINVAL on error 8857 */ 8858 static int send_idle_message(struct hfi1_devdata *dd, u64 data) 8859 { 8860 int ret; 8861 8862 dd_dev_info(dd, "%s: sending idle message 0x%llx\n", __func__, data); 8863 ret = do_8051_command(dd, HCMD_SEND_LCB_IDLE_MSG, data, NULL); 8864 if (ret != HCMD_SUCCESS) { 8865 dd_dev_err(dd, "send idle message: data 0x%llx, err %d\n", 8866 data, ret); 8867 return -EINVAL; 8868 } 8869 return 0; 8870 } 8871 8872 /* 8873 * Send an idle SMA message. 8874 * 8875 * Returns 0 on success, -EINVAL on error 8876 */ 8877 int send_idle_sma(struct hfi1_devdata *dd, u64 message) 8878 { 8879 u64 data; 8880 8881 data = ((message & IDLE_PAYLOAD_MASK) << IDLE_PAYLOAD_SHIFT) | 8882 ((u64)IDLE_SMA << IDLE_MSG_TYPE_SHIFT); 8883 return send_idle_message(dd, data); 8884 } 8885 8886 /* 8887 * Initialize the LCB then do a quick link up. This may or may not be 8888 * in loopback. 8889 * 8890 * return 0 on success, -errno on error 8891 */ 8892 static int do_quick_linkup(struct hfi1_devdata *dd) 8893 { 8894 u64 reg; 8895 unsigned long timeout; 8896 int ret; 8897 8898 lcb_shutdown(dd, 0); 8899 8900 if (loopback) { 8901 /* LCB_CFG_LOOPBACK.VAL = 2 */ 8902 /* LCB_CFG_LANE_WIDTH.VAL = 0 */ 8903 write_csr(dd, DC_LCB_CFG_LOOPBACK, 8904 IB_PACKET_TYPE << DC_LCB_CFG_LOOPBACK_VAL_SHIFT); 8905 write_csr(dd, DC_LCB_CFG_LANE_WIDTH, 0); 8906 } 8907 8908 /* start the LCBs */ 8909 /* LCB_CFG_TX_FIFOS_RESET.VAL = 0 */ 8910 write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0); 8911 8912 /* simulator only loopback steps */ 8913 if (loopback && dd->icode == ICODE_FUNCTIONAL_SIMULATOR) { 8914 /* LCB_CFG_RUN.EN = 1 */ 8915 write_csr(dd, DC_LCB_CFG_RUN, 8916 1ull << DC_LCB_CFG_RUN_EN_SHIFT); 8917 8918 /* watch LCB_STS_LINK_TRANSFER_ACTIVE */ 8919 timeout = jiffies + msecs_to_jiffies(10); 8920 while (1) { 8921 reg = read_csr(dd, DC_LCB_STS_LINK_TRANSFER_ACTIVE); 8922 if (reg) 8923 break; 8924 if (time_after(jiffies, timeout)) { 8925 dd_dev_err(dd, 8926 "timeout waiting for LINK_TRANSFER_ACTIVE\n"); 8927 return -ETIMEDOUT; 8928 } 8929 udelay(2); 8930 } 8931 8932 write_csr(dd, DC_LCB_CFG_ALLOW_LINK_UP, 8933 1ull << DC_LCB_CFG_ALLOW_LINK_UP_VAL_SHIFT); 8934 } 8935 8936 if (!loopback) { 8937 /* 8938 * When doing quick linkup and not in loopback, both 8939 * sides must be done with LCB set-up before either 8940 * starts the quick linkup. Put a delay here so that 8941 * both sides can be started and have a chance to be 8942 * done with LCB set up before resuming. 8943 */ 8944 dd_dev_err(dd, 8945 "Pausing for peer to be finished with LCB set up\n"); 8946 msleep(5000); 8947 dd_dev_err(dd, "Continuing with quick linkup\n"); 8948 } 8949 8950 write_csr(dd, DC_LCB_ERR_EN, 0); /* mask LCB errors */ 8951 set_8051_lcb_access(dd); 8952 8953 /* 8954 * State "quick" LinkUp request sets the physical link state to 8955 * LinkUp without a verify capability sequence. 8956 * This state is in simulator v37 and later. 8957 */ 8958 ret = set_physical_link_state(dd, PLS_QUICK_LINKUP); 8959 if (ret != HCMD_SUCCESS) { 8960 dd_dev_err(dd, 8961 "%s: set physical link state to quick LinkUp failed with return %d\n", 8962 __func__, ret); 8963 8964 set_host_lcb_access(dd); 8965 write_csr(dd, DC_LCB_ERR_EN, ~0ull); /* watch LCB errors */ 8966 8967 if (ret >= 0) 8968 ret = -EINVAL; 8969 return ret; 8970 } 8971 8972 return 0; /* success */ 8973 } 8974 8975 /* 8976 * Set the SerDes to internal loopback mode. 8977 * Returns 0 on success, -errno on error. 8978 */ 8979 static int set_serdes_loopback_mode(struct hfi1_devdata *dd) 8980 { 8981 int ret; 8982 8983 ret = set_physical_link_state(dd, PLS_INTERNAL_SERDES_LOOPBACK); 8984 if (ret == HCMD_SUCCESS) 8985 return 0; 8986 dd_dev_err(dd, 8987 "Set physical link state to SerDes Loopback failed with return %d\n", 8988 ret); 8989 if (ret >= 0) 8990 ret = -EINVAL; 8991 return ret; 8992 } 8993 8994 /* 8995 * Do all special steps to set up loopback. 8996 */ 8997 static int init_loopback(struct hfi1_devdata *dd) 8998 { 8999 dd_dev_info(dd, "Entering loopback mode\n"); 9000 9001 /* all loopbacks should disable self GUID check */ 9002 write_csr(dd, DC_DC8051_CFG_MODE, 9003 (read_csr(dd, DC_DC8051_CFG_MODE) | DISABLE_SELF_GUID_CHECK)); 9004 9005 /* 9006 * The simulator has only one loopback option - LCB. Switch 9007 * to that option, which includes quick link up. 9008 * 9009 * Accept all valid loopback values. 9010 */ 9011 if ((dd->icode == ICODE_FUNCTIONAL_SIMULATOR) && 9012 (loopback == LOOPBACK_SERDES || loopback == LOOPBACK_LCB || 9013 loopback == LOOPBACK_CABLE)) { 9014 loopback = LOOPBACK_LCB; 9015 quick_linkup = 1; 9016 return 0; 9017 } 9018 9019 /* handle serdes loopback */ 9020 if (loopback == LOOPBACK_SERDES) { 9021 /* internal serdes loopack needs quick linkup on RTL */ 9022 if (dd->icode == ICODE_RTL_SILICON) 9023 quick_linkup = 1; 9024 return set_serdes_loopback_mode(dd); 9025 } 9026 9027 /* LCB loopback - handled at poll time */ 9028 if (loopback == LOOPBACK_LCB) { 9029 quick_linkup = 1; /* LCB is always quick linkup */ 9030 9031 /* not supported in emulation due to emulation RTL changes */ 9032 if (dd->icode == ICODE_FPGA_EMULATION) { 9033 dd_dev_err(dd, 9034 "LCB loopback not supported in emulation\n"); 9035 return -EINVAL; 9036 } 9037 return 0; 9038 } 9039 9040 /* external cable loopback requires no extra steps */ 9041 if (loopback == LOOPBACK_CABLE) 9042 return 0; 9043 9044 dd_dev_err(dd, "Invalid loopback mode %d\n", loopback); 9045 return -EINVAL; 9046 } 9047 9048 /* 9049 * Translate from the OPA_LINK_WIDTH handed to us by the FM to bits 9050 * used in the Verify Capability link width attribute. 9051 */ 9052 static u16 opa_to_vc_link_widths(u16 opa_widths) 9053 { 9054 int i; 9055 u16 result = 0; 9056 9057 static const struct link_bits { 9058 u16 from; 9059 u16 to; 9060 } opa_link_xlate[] = { 9061 { OPA_LINK_WIDTH_1X, 1 << (1 - 1) }, 9062 { OPA_LINK_WIDTH_2X, 1 << (2 - 1) }, 9063 { OPA_LINK_WIDTH_3X, 1 << (3 - 1) }, 9064 { OPA_LINK_WIDTH_4X, 1 << (4 - 1) }, 9065 }; 9066 9067 for (i = 0; i < ARRAY_SIZE(opa_link_xlate); i++) { 9068 if (opa_widths & opa_link_xlate[i].from) 9069 result |= opa_link_xlate[i].to; 9070 } 9071 return result; 9072 } 9073 9074 /* 9075 * Set link attributes before moving to polling. 9076 */ 9077 static int set_local_link_attributes(struct hfi1_pportdata *ppd) 9078 { 9079 struct hfi1_devdata *dd = ppd->dd; 9080 u8 enable_lane_tx; 9081 u8 tx_polarity_inversion; 9082 u8 rx_polarity_inversion; 9083 int ret; 9084 9085 /* reset our fabric serdes to clear any lingering problems */ 9086 fabric_serdes_reset(dd); 9087 9088 /* set the local tx rate - need to read-modify-write */ 9089 ret = read_tx_settings(dd, &enable_lane_tx, &tx_polarity_inversion, 9090 &rx_polarity_inversion, &ppd->local_tx_rate); 9091 if (ret) 9092 goto set_local_link_attributes_fail; 9093 9094 if (dd->dc8051_ver < dc8051_ver(0, 20)) { 9095 /* set the tx rate to the fastest enabled */ 9096 if (ppd->link_speed_enabled & OPA_LINK_SPEED_25G) 9097 ppd->local_tx_rate = 1; 9098 else 9099 ppd->local_tx_rate = 0; 9100 } else { 9101 /* set the tx rate to all enabled */ 9102 ppd->local_tx_rate = 0; 9103 if (ppd->link_speed_enabled & OPA_LINK_SPEED_25G) 9104 ppd->local_tx_rate |= 2; 9105 if (ppd->link_speed_enabled & OPA_LINK_SPEED_12_5G) 9106 ppd->local_tx_rate |= 1; 9107 } 9108 9109 enable_lane_tx = 0xF; /* enable all four lanes */ 9110 ret = write_tx_settings(dd, enable_lane_tx, tx_polarity_inversion, 9111 rx_polarity_inversion, ppd->local_tx_rate); 9112 if (ret != HCMD_SUCCESS) 9113 goto set_local_link_attributes_fail; 9114 9115 /* 9116 * DC supports continuous updates. 9117 */ 9118 ret = write_vc_local_phy(dd, 9119 0 /* no power management */, 9120 1 /* continuous updates */); 9121 if (ret != HCMD_SUCCESS) 9122 goto set_local_link_attributes_fail; 9123 9124 /* z=1 in the next call: AU of 0 is not supported by the hardware */ 9125 ret = write_vc_local_fabric(dd, dd->vau, 1, dd->vcu, dd->vl15_init, 9126 ppd->port_crc_mode_enabled); 9127 if (ret != HCMD_SUCCESS) 9128 goto set_local_link_attributes_fail; 9129 9130 ret = write_vc_local_link_width(dd, 0, 0, 9131 opa_to_vc_link_widths( 9132 ppd->link_width_enabled)); 9133 if (ret != HCMD_SUCCESS) 9134 goto set_local_link_attributes_fail; 9135 9136 /* let peer know who we are */ 9137 ret = write_local_device_id(dd, dd->pcidev->device, dd->minrev); 9138 if (ret == HCMD_SUCCESS) 9139 return 0; 9140 9141 set_local_link_attributes_fail: 9142 dd_dev_err(dd, 9143 "Failed to set local link attributes, return 0x%x\n", 9144 ret); 9145 return ret; 9146 } 9147 9148 /* 9149 * Call this to start the link. 9150 * Do not do anything if the link is disabled. 9151 * Returns 0 if link is disabled, moved to polling, or the driver is not ready. 9152 */ 9153 int start_link(struct hfi1_pportdata *ppd) 9154 { 9155 /* 9156 * Tune the SerDes to a ballpark setting for optimal signal and bit 9157 * error rate. Needs to be done before starting the link. 9158 */ 9159 tune_serdes(ppd); 9160 9161 if (!ppd->link_enabled) { 9162 dd_dev_info(ppd->dd, 9163 "%s: stopping link start because link is disabled\n", 9164 __func__); 9165 return 0; 9166 } 9167 if (!ppd->driver_link_ready) { 9168 dd_dev_info(ppd->dd, 9169 "%s: stopping link start because driver is not ready\n", 9170 __func__); 9171 return 0; 9172 } 9173 9174 /* 9175 * FULL_MGMT_P_KEY is cleared from the pkey table, so that the 9176 * pkey table can be configured properly if the HFI unit is connected 9177 * to switch port with MgmtAllowed=NO 9178 */ 9179 clear_full_mgmt_pkey(ppd); 9180 9181 return set_link_state(ppd, HLS_DN_POLL); 9182 } 9183 9184 static void wait_for_qsfp_init(struct hfi1_pportdata *ppd) 9185 { 9186 struct hfi1_devdata *dd = ppd->dd; 9187 u64 mask; 9188 unsigned long timeout; 9189 9190 /* 9191 * Some QSFP cables have a quirk that asserts the IntN line as a side 9192 * effect of power up on plug-in. We ignore this false positive 9193 * interrupt until the module has finished powering up by waiting for 9194 * a minimum timeout of the module inrush initialization time of 9195 * 500 ms (SFF 8679 Table 5-6) to ensure the voltage rails in the 9196 * module have stabilized. 9197 */ 9198 msleep(500); 9199 9200 /* 9201 * Check for QSFP interrupt for t_init (SFF 8679 Table 8-1) 9202 */ 9203 timeout = jiffies + msecs_to_jiffies(2000); 9204 while (1) { 9205 mask = read_csr(dd, dd->hfi1_id ? 9206 ASIC_QSFP2_IN : ASIC_QSFP1_IN); 9207 if (!(mask & QSFP_HFI0_INT_N)) 9208 break; 9209 if (time_after(jiffies, timeout)) { 9210 dd_dev_info(dd, "%s: No IntN detected, reset complete\n", 9211 __func__); 9212 break; 9213 } 9214 udelay(2); 9215 } 9216 } 9217 9218 static void set_qsfp_int_n(struct hfi1_pportdata *ppd, u8 enable) 9219 { 9220 struct hfi1_devdata *dd = ppd->dd; 9221 u64 mask; 9222 9223 mask = read_csr(dd, dd->hfi1_id ? ASIC_QSFP2_MASK : ASIC_QSFP1_MASK); 9224 if (enable) { 9225 /* 9226 * Clear the status register to avoid an immediate interrupt 9227 * when we re-enable the IntN pin 9228 */ 9229 write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_CLEAR : ASIC_QSFP1_CLEAR, 9230 QSFP_HFI0_INT_N); 9231 mask |= (u64)QSFP_HFI0_INT_N; 9232 } else { 9233 mask &= ~(u64)QSFP_HFI0_INT_N; 9234 } 9235 write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_MASK : ASIC_QSFP1_MASK, mask); 9236 } 9237 9238 void reset_qsfp(struct hfi1_pportdata *ppd) 9239 { 9240 struct hfi1_devdata *dd = ppd->dd; 9241 u64 mask, qsfp_mask; 9242 9243 /* Disable INT_N from triggering QSFP interrupts */ 9244 set_qsfp_int_n(ppd, 0); 9245 9246 /* Reset the QSFP */ 9247 mask = (u64)QSFP_HFI0_RESET_N; 9248 9249 qsfp_mask = read_csr(dd, 9250 dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT); 9251 qsfp_mask &= ~mask; 9252 write_csr(dd, 9253 dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT, qsfp_mask); 9254 9255 udelay(10); 9256 9257 qsfp_mask |= mask; 9258 write_csr(dd, 9259 dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT, qsfp_mask); 9260 9261 wait_for_qsfp_init(ppd); 9262 9263 /* 9264 * Allow INT_N to trigger the QSFP interrupt to watch 9265 * for alarms and warnings 9266 */ 9267 set_qsfp_int_n(ppd, 1); 9268 } 9269 9270 static int handle_qsfp_error_conditions(struct hfi1_pportdata *ppd, 9271 u8 *qsfp_interrupt_status) 9272 { 9273 struct hfi1_devdata *dd = ppd->dd; 9274 9275 if ((qsfp_interrupt_status[0] & QSFP_HIGH_TEMP_ALARM) || 9276 (qsfp_interrupt_status[0] & QSFP_HIGH_TEMP_WARNING)) 9277 dd_dev_info(dd, "%s: QSFP cable on fire\n", 9278 __func__); 9279 9280 if ((qsfp_interrupt_status[0] & QSFP_LOW_TEMP_ALARM) || 9281 (qsfp_interrupt_status[0] & QSFP_LOW_TEMP_WARNING)) 9282 dd_dev_info(dd, "%s: QSFP cable temperature too low\n", 9283 __func__); 9284 9285 /* 9286 * The remaining alarms/warnings don't matter if the link is down. 9287 */ 9288 if (ppd->host_link_state & HLS_DOWN) 9289 return 0; 9290 9291 if ((qsfp_interrupt_status[1] & QSFP_HIGH_VCC_ALARM) || 9292 (qsfp_interrupt_status[1] & QSFP_HIGH_VCC_WARNING)) 9293 dd_dev_info(dd, "%s: QSFP supply voltage too high\n", 9294 __func__); 9295 9296 if ((qsfp_interrupt_status[1] & QSFP_LOW_VCC_ALARM) || 9297 (qsfp_interrupt_status[1] & QSFP_LOW_VCC_WARNING)) 9298 dd_dev_info(dd, "%s: QSFP supply voltage too low\n", 9299 __func__); 9300 9301 /* Byte 2 is vendor specific */ 9302 9303 if ((qsfp_interrupt_status[3] & QSFP_HIGH_POWER_ALARM) || 9304 (qsfp_interrupt_status[3] & QSFP_HIGH_POWER_WARNING)) 9305 dd_dev_info(dd, "%s: Cable RX channel 1/2 power too high\n", 9306 __func__); 9307 9308 if ((qsfp_interrupt_status[3] & QSFP_LOW_POWER_ALARM) || 9309 (qsfp_interrupt_status[3] & QSFP_LOW_POWER_WARNING)) 9310 dd_dev_info(dd, "%s: Cable RX channel 1/2 power too low\n", 9311 __func__); 9312 9313 if ((qsfp_interrupt_status[4] & QSFP_HIGH_POWER_ALARM) || 9314 (qsfp_interrupt_status[4] & QSFP_HIGH_POWER_WARNING)) 9315 dd_dev_info(dd, "%s: Cable RX channel 3/4 power too high\n", 9316 __func__); 9317 9318 if ((qsfp_interrupt_status[4] & QSFP_LOW_POWER_ALARM) || 9319 (qsfp_interrupt_status[4] & QSFP_LOW_POWER_WARNING)) 9320 dd_dev_info(dd, "%s: Cable RX channel 3/4 power too low\n", 9321 __func__); 9322 9323 if ((qsfp_interrupt_status[5] & QSFP_HIGH_BIAS_ALARM) || 9324 (qsfp_interrupt_status[5] & QSFP_HIGH_BIAS_WARNING)) 9325 dd_dev_info(dd, "%s: Cable TX channel 1/2 bias too high\n", 9326 __func__); 9327 9328 if ((qsfp_interrupt_status[5] & QSFP_LOW_BIAS_ALARM) || 9329 (qsfp_interrupt_status[5] & QSFP_LOW_BIAS_WARNING)) 9330 dd_dev_info(dd, "%s: Cable TX channel 1/2 bias too low\n", 9331 __func__); 9332 9333 if ((qsfp_interrupt_status[6] & QSFP_HIGH_BIAS_ALARM) || 9334 (qsfp_interrupt_status[6] & QSFP_HIGH_BIAS_WARNING)) 9335 dd_dev_info(dd, "%s: Cable TX channel 3/4 bias too high\n", 9336 __func__); 9337 9338 if ((qsfp_interrupt_status[6] & QSFP_LOW_BIAS_ALARM) || 9339 (qsfp_interrupt_status[6] & QSFP_LOW_BIAS_WARNING)) 9340 dd_dev_info(dd, "%s: Cable TX channel 3/4 bias too low\n", 9341 __func__); 9342 9343 if ((qsfp_interrupt_status[7] & QSFP_HIGH_POWER_ALARM) || 9344 (qsfp_interrupt_status[7] & QSFP_HIGH_POWER_WARNING)) 9345 dd_dev_info(dd, "%s: Cable TX channel 1/2 power too high\n", 9346 __func__); 9347 9348 if ((qsfp_interrupt_status[7] & QSFP_LOW_POWER_ALARM) || 9349 (qsfp_interrupt_status[7] & QSFP_LOW_POWER_WARNING)) 9350 dd_dev_info(dd, "%s: Cable TX channel 1/2 power too low\n", 9351 __func__); 9352 9353 if ((qsfp_interrupt_status[8] & QSFP_HIGH_POWER_ALARM) || 9354 (qsfp_interrupt_status[8] & QSFP_HIGH_POWER_WARNING)) 9355 dd_dev_info(dd, "%s: Cable TX channel 3/4 power too high\n", 9356 __func__); 9357 9358 if ((qsfp_interrupt_status[8] & QSFP_LOW_POWER_ALARM) || 9359 (qsfp_interrupt_status[8] & QSFP_LOW_POWER_WARNING)) 9360 dd_dev_info(dd, "%s: Cable TX channel 3/4 power too low\n", 9361 __func__); 9362 9363 /* Bytes 9-10 and 11-12 are reserved */ 9364 /* Bytes 13-15 are vendor specific */ 9365 9366 return 0; 9367 } 9368 9369 /* This routine will only be scheduled if the QSFP module present is asserted */ 9370 void qsfp_event(struct work_struct *work) 9371 { 9372 struct qsfp_data *qd; 9373 struct hfi1_pportdata *ppd; 9374 struct hfi1_devdata *dd; 9375 9376 qd = container_of(work, struct qsfp_data, qsfp_work); 9377 ppd = qd->ppd; 9378 dd = ppd->dd; 9379 9380 /* Sanity check */ 9381 if (!qsfp_mod_present(ppd)) 9382 return; 9383 9384 /* 9385 * Turn DC back on after cable has been re-inserted. Up until 9386 * now, the DC has been in reset to save power. 9387 */ 9388 dc_start(dd); 9389 9390 if (qd->cache_refresh_required) { 9391 set_qsfp_int_n(ppd, 0); 9392 9393 wait_for_qsfp_init(ppd); 9394 9395 /* 9396 * Allow INT_N to trigger the QSFP interrupt to watch 9397 * for alarms and warnings 9398 */ 9399 set_qsfp_int_n(ppd, 1); 9400 9401 start_link(ppd); 9402 } 9403 9404 if (qd->check_interrupt_flags) { 9405 u8 qsfp_interrupt_status[16] = {0,}; 9406 9407 if (one_qsfp_read(ppd, dd->hfi1_id, 6, 9408 &qsfp_interrupt_status[0], 16) != 16) { 9409 dd_dev_info(dd, 9410 "%s: Failed to read status of QSFP module\n", 9411 __func__); 9412 } else { 9413 unsigned long flags; 9414 9415 handle_qsfp_error_conditions( 9416 ppd, qsfp_interrupt_status); 9417 spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags); 9418 ppd->qsfp_info.check_interrupt_flags = 0; 9419 spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock, 9420 flags); 9421 } 9422 } 9423 } 9424 9425 static void init_qsfp_int(struct hfi1_devdata *dd) 9426 { 9427 struct hfi1_pportdata *ppd = dd->pport; 9428 u64 qsfp_mask, cce_int_mask; 9429 const int qsfp1_int_smask = QSFP1_INT % 64; 9430 const int qsfp2_int_smask = QSFP2_INT % 64; 9431 9432 /* 9433 * disable QSFP1 interrupts for HFI1, QSFP2 interrupts for HFI0 9434 * Qsfp1Int and Qsfp2Int are adjacent bits in the same CSR, 9435 * therefore just one of QSFP1_INT/QSFP2_INT can be used to find 9436 * the index of the appropriate CSR in the CCEIntMask CSR array 9437 */ 9438 cce_int_mask = read_csr(dd, CCE_INT_MASK + 9439 (8 * (QSFP1_INT / 64))); 9440 if (dd->hfi1_id) { 9441 cce_int_mask &= ~((u64)1 << qsfp1_int_smask); 9442 write_csr(dd, CCE_INT_MASK + (8 * (QSFP1_INT / 64)), 9443 cce_int_mask); 9444 } else { 9445 cce_int_mask &= ~((u64)1 << qsfp2_int_smask); 9446 write_csr(dd, CCE_INT_MASK + (8 * (QSFP2_INT / 64)), 9447 cce_int_mask); 9448 } 9449 9450 qsfp_mask = (u64)(QSFP_HFI0_INT_N | QSFP_HFI0_MODPRST_N); 9451 /* Clear current status to avoid spurious interrupts */ 9452 write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_CLEAR : ASIC_QSFP1_CLEAR, 9453 qsfp_mask); 9454 write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_MASK : ASIC_QSFP1_MASK, 9455 qsfp_mask); 9456 9457 set_qsfp_int_n(ppd, 0); 9458 9459 /* Handle active low nature of INT_N and MODPRST_N pins */ 9460 if (qsfp_mod_present(ppd)) 9461 qsfp_mask &= ~(u64)QSFP_HFI0_MODPRST_N; 9462 write_csr(dd, 9463 dd->hfi1_id ? ASIC_QSFP2_INVERT : ASIC_QSFP1_INVERT, 9464 qsfp_mask); 9465 } 9466 9467 /* 9468 * Do a one-time initialize of the LCB block. 9469 */ 9470 static void init_lcb(struct hfi1_devdata *dd) 9471 { 9472 /* simulator does not correctly handle LCB cclk loopback, skip */ 9473 if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR) 9474 return; 9475 9476 /* the DC has been reset earlier in the driver load */ 9477 9478 /* set LCB for cclk loopback on the port */ 9479 write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0x01); 9480 write_csr(dd, DC_LCB_CFG_LANE_WIDTH, 0x00); 9481 write_csr(dd, DC_LCB_CFG_REINIT_AS_SLAVE, 0x00); 9482 write_csr(dd, DC_LCB_CFG_CNT_FOR_SKIP_STALL, 0x110); 9483 write_csr(dd, DC_LCB_CFG_CLK_CNTR, 0x08); 9484 write_csr(dd, DC_LCB_CFG_LOOPBACK, 0x02); 9485 write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0x00); 9486 } 9487 9488 /* 9489 * Perform a test read on the QSFP. Return 0 on success, -ERRNO 9490 * on error. 9491 */ 9492 static int test_qsfp_read(struct hfi1_pportdata *ppd) 9493 { 9494 int ret; 9495 u8 status; 9496 9497 /* report success if not a QSFP */ 9498 if (ppd->port_type != PORT_TYPE_QSFP) 9499 return 0; 9500 9501 /* read byte 2, the status byte */ 9502 ret = one_qsfp_read(ppd, ppd->dd->hfi1_id, 2, &status, 1); 9503 if (ret < 0) 9504 return ret; 9505 if (ret != 1) 9506 return -EIO; 9507 9508 return 0; /* success */ 9509 } 9510 9511 /* 9512 * Values for QSFP retry. 9513 * 9514 * Give up after 10s (20 x 500ms). The overall timeout was empirically 9515 * arrived at from experience on a large cluster. 9516 */ 9517 #define MAX_QSFP_RETRIES 20 9518 #define QSFP_RETRY_WAIT 500 /* msec */ 9519 9520 /* 9521 * Try a QSFP read. If it fails, schedule a retry for later. 9522 * Called on first link activation after driver load. 9523 */ 9524 static void try_start_link(struct hfi1_pportdata *ppd) 9525 { 9526 if (test_qsfp_read(ppd)) { 9527 /* read failed */ 9528 if (ppd->qsfp_retry_count >= MAX_QSFP_RETRIES) { 9529 dd_dev_err(ppd->dd, "QSFP not responding, giving up\n"); 9530 return; 9531 } 9532 dd_dev_info(ppd->dd, 9533 "QSFP not responding, waiting and retrying %d\n", 9534 (int)ppd->qsfp_retry_count); 9535 ppd->qsfp_retry_count++; 9536 queue_delayed_work(ppd->hfi1_wq, &ppd->start_link_work, 9537 msecs_to_jiffies(QSFP_RETRY_WAIT)); 9538 return; 9539 } 9540 ppd->qsfp_retry_count = 0; 9541 9542 start_link(ppd); 9543 } 9544 9545 /* 9546 * Workqueue function to start the link after a delay. 9547 */ 9548 void handle_start_link(struct work_struct *work) 9549 { 9550 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata, 9551 start_link_work.work); 9552 try_start_link(ppd); 9553 } 9554 9555 int bringup_serdes(struct hfi1_pportdata *ppd) 9556 { 9557 struct hfi1_devdata *dd = ppd->dd; 9558 u64 guid; 9559 int ret; 9560 9561 if (HFI1_CAP_IS_KSET(EXTENDED_PSN)) 9562 add_rcvctrl(dd, RCV_CTRL_RCV_EXTENDED_PSN_ENABLE_SMASK); 9563 9564 guid = ppd->guids[HFI1_PORT_GUID_INDEX]; 9565 if (!guid) { 9566 if (dd->base_guid) 9567 guid = dd->base_guid + ppd->port - 1; 9568 ppd->guids[HFI1_PORT_GUID_INDEX] = guid; 9569 } 9570 9571 /* Set linkinit_reason on power up per OPA spec */ 9572 ppd->linkinit_reason = OPA_LINKINIT_REASON_LINKUP; 9573 9574 /* one-time init of the LCB */ 9575 init_lcb(dd); 9576 9577 if (loopback) { 9578 ret = init_loopback(dd); 9579 if (ret < 0) 9580 return ret; 9581 } 9582 9583 get_port_type(ppd); 9584 if (ppd->port_type == PORT_TYPE_QSFP) { 9585 set_qsfp_int_n(ppd, 0); 9586 wait_for_qsfp_init(ppd); 9587 set_qsfp_int_n(ppd, 1); 9588 } 9589 9590 try_start_link(ppd); 9591 return 0; 9592 } 9593 9594 void hfi1_quiet_serdes(struct hfi1_pportdata *ppd) 9595 { 9596 struct hfi1_devdata *dd = ppd->dd; 9597 9598 /* 9599 * Shut down the link and keep it down. First turn off that the 9600 * driver wants to allow the link to be up (driver_link_ready). 9601 * Then make sure the link is not automatically restarted 9602 * (link_enabled). Cancel any pending restart. And finally 9603 * go offline. 9604 */ 9605 ppd->driver_link_ready = 0; 9606 ppd->link_enabled = 0; 9607 9608 ppd->qsfp_retry_count = MAX_QSFP_RETRIES; /* prevent more retries */ 9609 flush_delayed_work(&ppd->start_link_work); 9610 cancel_delayed_work_sync(&ppd->start_link_work); 9611 9612 ppd->offline_disabled_reason = 9613 HFI1_ODR_MASK(OPA_LINKDOWN_REASON_SMA_DISABLED); 9614 set_link_down_reason(ppd, OPA_LINKDOWN_REASON_SMA_DISABLED, 0, 9615 OPA_LINKDOWN_REASON_SMA_DISABLED); 9616 set_link_state(ppd, HLS_DN_OFFLINE); 9617 9618 /* disable the port */ 9619 clear_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK); 9620 } 9621 9622 static inline int init_cpu_counters(struct hfi1_devdata *dd) 9623 { 9624 struct hfi1_pportdata *ppd; 9625 int i; 9626 9627 ppd = (struct hfi1_pportdata *)(dd + 1); 9628 for (i = 0; i < dd->num_pports; i++, ppd++) { 9629 ppd->ibport_data.rvp.rc_acks = NULL; 9630 ppd->ibport_data.rvp.rc_qacks = NULL; 9631 ppd->ibport_data.rvp.rc_acks = alloc_percpu(u64); 9632 ppd->ibport_data.rvp.rc_qacks = alloc_percpu(u64); 9633 ppd->ibport_data.rvp.rc_delayed_comp = alloc_percpu(u64); 9634 if (!ppd->ibport_data.rvp.rc_acks || 9635 !ppd->ibport_data.rvp.rc_delayed_comp || 9636 !ppd->ibport_data.rvp.rc_qacks) 9637 return -ENOMEM; 9638 } 9639 9640 return 0; 9641 } 9642 9643 static const char * const pt_names[] = { 9644 "expected", 9645 "eager", 9646 "invalid" 9647 }; 9648 9649 static const char *pt_name(u32 type) 9650 { 9651 return type >= ARRAY_SIZE(pt_names) ? "unknown" : pt_names[type]; 9652 } 9653 9654 /* 9655 * index is the index into the receive array 9656 */ 9657 void hfi1_put_tid(struct hfi1_devdata *dd, u32 index, 9658 u32 type, unsigned long pa, u16 order) 9659 { 9660 u64 reg; 9661 void __iomem *base = (dd->rcvarray_wc ? dd->rcvarray_wc : 9662 (dd->kregbase + RCV_ARRAY)); 9663 9664 if (!(dd->flags & HFI1_PRESENT)) 9665 goto done; 9666 9667 if (type == PT_INVALID) { 9668 pa = 0; 9669 } else if (type > PT_INVALID) { 9670 dd_dev_err(dd, 9671 "unexpected receive array type %u for index %u, not handled\n", 9672 type, index); 9673 goto done; 9674 } 9675 9676 hfi1_cdbg(TID, "type %s, index 0x%x, pa 0x%lx, bsize 0x%lx", 9677 pt_name(type), index, pa, (unsigned long)order); 9678 9679 #define RT_ADDR_SHIFT 12 /* 4KB kernel address boundary */ 9680 reg = RCV_ARRAY_RT_WRITE_ENABLE_SMASK 9681 | (u64)order << RCV_ARRAY_RT_BUF_SIZE_SHIFT 9682 | ((pa >> RT_ADDR_SHIFT) & RCV_ARRAY_RT_ADDR_MASK) 9683 << RCV_ARRAY_RT_ADDR_SHIFT; 9684 writeq(reg, base + (index * 8)); 9685 9686 if (type == PT_EAGER) 9687 /* 9688 * Eager entries are written one-by-one so we have to push them 9689 * after we write the entry. 9690 */ 9691 flush_wc(); 9692 done: 9693 return; 9694 } 9695 9696 void hfi1_clear_tids(struct hfi1_ctxtdata *rcd) 9697 { 9698 struct hfi1_devdata *dd = rcd->dd; 9699 u32 i; 9700 9701 /* this could be optimized */ 9702 for (i = rcd->eager_base; i < rcd->eager_base + 9703 rcd->egrbufs.alloced; i++) 9704 hfi1_put_tid(dd, i, PT_INVALID, 0, 0); 9705 9706 for (i = rcd->expected_base; 9707 i < rcd->expected_base + rcd->expected_count; i++) 9708 hfi1_put_tid(dd, i, PT_INVALID, 0, 0); 9709 } 9710 9711 struct ib_header *hfi1_get_msgheader( 9712 struct hfi1_devdata *dd, __le32 *rhf_addr) 9713 { 9714 u32 offset = rhf_hdrq_offset(rhf_to_cpu(rhf_addr)); 9715 9716 return (struct ib_header *) 9717 (rhf_addr - dd->rhf_offset + offset); 9718 } 9719 9720 static const char * const ib_cfg_name_strings[] = { 9721 "HFI1_IB_CFG_LIDLMC", 9722 "HFI1_IB_CFG_LWID_DG_ENB", 9723 "HFI1_IB_CFG_LWID_ENB", 9724 "HFI1_IB_CFG_LWID", 9725 "HFI1_IB_CFG_SPD_ENB", 9726 "HFI1_IB_CFG_SPD", 9727 "HFI1_IB_CFG_RXPOL_ENB", 9728 "HFI1_IB_CFG_LREV_ENB", 9729 "HFI1_IB_CFG_LINKLATENCY", 9730 "HFI1_IB_CFG_HRTBT", 9731 "HFI1_IB_CFG_OP_VLS", 9732 "HFI1_IB_CFG_VL_HIGH_CAP", 9733 "HFI1_IB_CFG_VL_LOW_CAP", 9734 "HFI1_IB_CFG_OVERRUN_THRESH", 9735 "HFI1_IB_CFG_PHYERR_THRESH", 9736 "HFI1_IB_CFG_LINKDEFAULT", 9737 "HFI1_IB_CFG_PKEYS", 9738 "HFI1_IB_CFG_MTU", 9739 "HFI1_IB_CFG_LSTATE", 9740 "HFI1_IB_CFG_VL_HIGH_LIMIT", 9741 "HFI1_IB_CFG_PMA_TICKS", 9742 "HFI1_IB_CFG_PORT" 9743 }; 9744 9745 static const char *ib_cfg_name(int which) 9746 { 9747 if (which < 0 || which >= ARRAY_SIZE(ib_cfg_name_strings)) 9748 return "invalid"; 9749 return ib_cfg_name_strings[which]; 9750 } 9751 9752 int hfi1_get_ib_cfg(struct hfi1_pportdata *ppd, int which) 9753 { 9754 struct hfi1_devdata *dd = ppd->dd; 9755 int val = 0; 9756 9757 switch (which) { 9758 case HFI1_IB_CFG_LWID_ENB: /* allowed Link-width */ 9759 val = ppd->link_width_enabled; 9760 break; 9761 case HFI1_IB_CFG_LWID: /* currently active Link-width */ 9762 val = ppd->link_width_active; 9763 break; 9764 case HFI1_IB_CFG_SPD_ENB: /* allowed Link speeds */ 9765 val = ppd->link_speed_enabled; 9766 break; 9767 case HFI1_IB_CFG_SPD: /* current Link speed */ 9768 val = ppd->link_speed_active; 9769 break; 9770 9771 case HFI1_IB_CFG_RXPOL_ENB: /* Auto-RX-polarity enable */ 9772 case HFI1_IB_CFG_LREV_ENB: /* Auto-Lane-reversal enable */ 9773 case HFI1_IB_CFG_LINKLATENCY: 9774 goto unimplemented; 9775 9776 case HFI1_IB_CFG_OP_VLS: 9777 val = ppd->vls_operational; 9778 break; 9779 case HFI1_IB_CFG_VL_HIGH_CAP: /* VL arb high priority table size */ 9780 val = VL_ARB_HIGH_PRIO_TABLE_SIZE; 9781 break; 9782 case HFI1_IB_CFG_VL_LOW_CAP: /* VL arb low priority table size */ 9783 val = VL_ARB_LOW_PRIO_TABLE_SIZE; 9784 break; 9785 case HFI1_IB_CFG_OVERRUN_THRESH: /* IB overrun threshold */ 9786 val = ppd->overrun_threshold; 9787 break; 9788 case HFI1_IB_CFG_PHYERR_THRESH: /* IB PHY error threshold */ 9789 val = ppd->phy_error_threshold; 9790 break; 9791 case HFI1_IB_CFG_LINKDEFAULT: /* IB link default (sleep/poll) */ 9792 val = dd->link_default; 9793 break; 9794 9795 case HFI1_IB_CFG_HRTBT: /* Heartbeat off/enable/auto */ 9796 case HFI1_IB_CFG_PMA_TICKS: 9797 default: 9798 unimplemented: 9799 if (HFI1_CAP_IS_KSET(PRINT_UNIMPL)) 9800 dd_dev_info( 9801 dd, 9802 "%s: which %s: not implemented\n", 9803 __func__, 9804 ib_cfg_name(which)); 9805 break; 9806 } 9807 9808 return val; 9809 } 9810 9811 /* 9812 * The largest MAD packet size. 9813 */ 9814 #define MAX_MAD_PACKET 2048 9815 9816 /* 9817 * Return the maximum header bytes that can go on the _wire_ 9818 * for this device. This count includes the ICRC which is 9819 * not part of the packet held in memory but it is appended 9820 * by the HW. 9821 * This is dependent on the device's receive header entry size. 9822 * HFI allows this to be set per-receive context, but the 9823 * driver presently enforces a global value. 9824 */ 9825 u32 lrh_max_header_bytes(struct hfi1_devdata *dd) 9826 { 9827 /* 9828 * The maximum non-payload (MTU) bytes in LRH.PktLen are 9829 * the Receive Header Entry Size minus the PBC (or RHF) size 9830 * plus one DW for the ICRC appended by HW. 9831 * 9832 * dd->rcd[0].rcvhdrqentsize is in DW. 9833 * We use rcd[0] as all context will have the same value. Also, 9834 * the first kernel context would have been allocated by now so 9835 * we are guaranteed a valid value. 9836 */ 9837 return (dd->rcd[0]->rcvhdrqentsize - 2/*PBC/RHF*/ + 1/*ICRC*/) << 2; 9838 } 9839 9840 /* 9841 * Set Send Length 9842 * @ppd - per port data 9843 * 9844 * Set the MTU by limiting how many DWs may be sent. The SendLenCheck* 9845 * registers compare against LRH.PktLen, so use the max bytes included 9846 * in the LRH. 9847 * 9848 * This routine changes all VL values except VL15, which it maintains at 9849 * the same value. 9850 */ 9851 static void set_send_length(struct hfi1_pportdata *ppd) 9852 { 9853 struct hfi1_devdata *dd = ppd->dd; 9854 u32 max_hb = lrh_max_header_bytes(dd), dcmtu; 9855 u32 maxvlmtu = dd->vld[15].mtu; 9856 u64 len1 = 0, len2 = (((dd->vld[15].mtu + max_hb) >> 2) 9857 & SEND_LEN_CHECK1_LEN_VL15_MASK) << 9858 SEND_LEN_CHECK1_LEN_VL15_SHIFT; 9859 int i, j; 9860 u32 thres; 9861 9862 for (i = 0; i < ppd->vls_supported; i++) { 9863 if (dd->vld[i].mtu > maxvlmtu) 9864 maxvlmtu = dd->vld[i].mtu; 9865 if (i <= 3) 9866 len1 |= (((dd->vld[i].mtu + max_hb) >> 2) 9867 & SEND_LEN_CHECK0_LEN_VL0_MASK) << 9868 ((i % 4) * SEND_LEN_CHECK0_LEN_VL1_SHIFT); 9869 else 9870 len2 |= (((dd->vld[i].mtu + max_hb) >> 2) 9871 & SEND_LEN_CHECK1_LEN_VL4_MASK) << 9872 ((i % 4) * SEND_LEN_CHECK1_LEN_VL5_SHIFT); 9873 } 9874 write_csr(dd, SEND_LEN_CHECK0, len1); 9875 write_csr(dd, SEND_LEN_CHECK1, len2); 9876 /* adjust kernel credit return thresholds based on new MTUs */ 9877 /* all kernel receive contexts have the same hdrqentsize */ 9878 for (i = 0; i < ppd->vls_supported; i++) { 9879 thres = min(sc_percent_to_threshold(dd->vld[i].sc, 50), 9880 sc_mtu_to_threshold(dd->vld[i].sc, 9881 dd->vld[i].mtu, 9882 dd->rcd[0]->rcvhdrqentsize)); 9883 for (j = 0; j < INIT_SC_PER_VL; j++) 9884 sc_set_cr_threshold( 9885 pio_select_send_context_vl(dd, j, i), 9886 thres); 9887 } 9888 thres = min(sc_percent_to_threshold(dd->vld[15].sc, 50), 9889 sc_mtu_to_threshold(dd->vld[15].sc, 9890 dd->vld[15].mtu, 9891 dd->rcd[0]->rcvhdrqentsize)); 9892 sc_set_cr_threshold(dd->vld[15].sc, thres); 9893 9894 /* Adjust maximum MTU for the port in DC */ 9895 dcmtu = maxvlmtu == 10240 ? DCC_CFG_PORT_MTU_CAP_10240 : 9896 (ilog2(maxvlmtu >> 8) + 1); 9897 len1 = read_csr(ppd->dd, DCC_CFG_PORT_CONFIG); 9898 len1 &= ~DCC_CFG_PORT_CONFIG_MTU_CAP_SMASK; 9899 len1 |= ((u64)dcmtu & DCC_CFG_PORT_CONFIG_MTU_CAP_MASK) << 9900 DCC_CFG_PORT_CONFIG_MTU_CAP_SHIFT; 9901 write_csr(ppd->dd, DCC_CFG_PORT_CONFIG, len1); 9902 } 9903 9904 static void set_lidlmc(struct hfi1_pportdata *ppd) 9905 { 9906 int i; 9907 u64 sreg = 0; 9908 struct hfi1_devdata *dd = ppd->dd; 9909 u32 mask = ~((1U << ppd->lmc) - 1); 9910 u64 c1 = read_csr(ppd->dd, DCC_CFG_PORT_CONFIG1); 9911 9912 c1 &= ~(DCC_CFG_PORT_CONFIG1_TARGET_DLID_SMASK 9913 | DCC_CFG_PORT_CONFIG1_DLID_MASK_SMASK); 9914 c1 |= ((ppd->lid & DCC_CFG_PORT_CONFIG1_TARGET_DLID_MASK) 9915 << DCC_CFG_PORT_CONFIG1_TARGET_DLID_SHIFT) | 9916 ((mask & DCC_CFG_PORT_CONFIG1_DLID_MASK_MASK) 9917 << DCC_CFG_PORT_CONFIG1_DLID_MASK_SHIFT); 9918 write_csr(ppd->dd, DCC_CFG_PORT_CONFIG1, c1); 9919 9920 /* 9921 * Iterate over all the send contexts and set their SLID check 9922 */ 9923 sreg = ((mask & SEND_CTXT_CHECK_SLID_MASK_MASK) << 9924 SEND_CTXT_CHECK_SLID_MASK_SHIFT) | 9925 (((ppd->lid & mask) & SEND_CTXT_CHECK_SLID_VALUE_MASK) << 9926 SEND_CTXT_CHECK_SLID_VALUE_SHIFT); 9927 9928 for (i = 0; i < dd->chip_send_contexts; i++) { 9929 hfi1_cdbg(LINKVERB, "SendContext[%d].SLID_CHECK = 0x%x", 9930 i, (u32)sreg); 9931 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_SLID, sreg); 9932 } 9933 9934 /* Now we have to do the same thing for the sdma engines */ 9935 sdma_update_lmc(dd, mask, ppd->lid); 9936 } 9937 9938 static int wait_phy_linkstate(struct hfi1_devdata *dd, u32 state, u32 msecs) 9939 { 9940 unsigned long timeout; 9941 u32 curr_state; 9942 9943 timeout = jiffies + msecs_to_jiffies(msecs); 9944 while (1) { 9945 curr_state = read_physical_state(dd); 9946 if (curr_state == state) 9947 break; 9948 if (time_after(jiffies, timeout)) { 9949 dd_dev_err(dd, 9950 "timeout waiting for phy link state 0x%x, current state is 0x%x\n", 9951 state, curr_state); 9952 return -ETIMEDOUT; 9953 } 9954 usleep_range(1950, 2050); /* sleep 2ms-ish */ 9955 } 9956 9957 return 0; 9958 } 9959 9960 static const char *state_completed_string(u32 completed) 9961 { 9962 static const char * const state_completed[] = { 9963 "EstablishComm", 9964 "OptimizeEQ", 9965 "VerifyCap" 9966 }; 9967 9968 if (completed < ARRAY_SIZE(state_completed)) 9969 return state_completed[completed]; 9970 9971 return "unknown"; 9972 } 9973 9974 static const char all_lanes_dead_timeout_expired[] = 9975 "All lanes were inactive – was the interconnect media removed?"; 9976 static const char tx_out_of_policy[] = 9977 "Passing lanes on local port do not meet the local link width policy"; 9978 static const char no_state_complete[] = 9979 "State timeout occurred before link partner completed the state"; 9980 static const char * const state_complete_reasons[] = { 9981 [0x00] = "Reason unknown", 9982 [0x01] = "Link was halted by driver, refer to LinkDownReason", 9983 [0x02] = "Link partner reported failure", 9984 [0x10] = "Unable to achieve frame sync on any lane", 9985 [0x11] = 9986 "Unable to find a common bit rate with the link partner", 9987 [0x12] = 9988 "Unable to achieve frame sync on sufficient lanes to meet the local link width policy", 9989 [0x13] = 9990 "Unable to identify preset equalization on sufficient lanes to meet the local link width policy", 9991 [0x14] = no_state_complete, 9992 [0x15] = 9993 "State timeout occurred before link partner identified equalization presets", 9994 [0x16] = 9995 "Link partner completed the EstablishComm state, but the passing lanes do not meet the local link width policy", 9996 [0x17] = tx_out_of_policy, 9997 [0x20] = all_lanes_dead_timeout_expired, 9998 [0x21] = 9999 "Unable to achieve acceptable BER on sufficient lanes to meet the local link width policy", 10000 [0x22] = no_state_complete, 10001 [0x23] = 10002 "Link partner completed the OptimizeEq state, but the passing lanes do not meet the local link width policy", 10003 [0x24] = tx_out_of_policy, 10004 [0x30] = all_lanes_dead_timeout_expired, 10005 [0x31] = 10006 "State timeout occurred waiting for host to process received frames", 10007 [0x32] = no_state_complete, 10008 [0x33] = 10009 "Link partner completed the VerifyCap state, but the passing lanes do not meet the local link width policy", 10010 [0x34] = tx_out_of_policy, 10011 }; 10012 10013 static const char *state_complete_reason_code_string(struct hfi1_pportdata *ppd, 10014 u32 code) 10015 { 10016 const char *str = NULL; 10017 10018 if (code < ARRAY_SIZE(state_complete_reasons)) 10019 str = state_complete_reasons[code]; 10020 10021 if (str) 10022 return str; 10023 return "Reserved"; 10024 } 10025 10026 /* describe the given last state complete frame */ 10027 static void decode_state_complete(struct hfi1_pportdata *ppd, u32 frame, 10028 const char *prefix) 10029 { 10030 struct hfi1_devdata *dd = ppd->dd; 10031 u32 success; 10032 u32 state; 10033 u32 reason; 10034 u32 lanes; 10035 10036 /* 10037 * Decode frame: 10038 * [ 0: 0] - success 10039 * [ 3: 1] - state 10040 * [ 7: 4] - next state timeout 10041 * [15: 8] - reason code 10042 * [31:16] - lanes 10043 */ 10044 success = frame & 0x1; 10045 state = (frame >> 1) & 0x7; 10046 reason = (frame >> 8) & 0xff; 10047 lanes = (frame >> 16) & 0xffff; 10048 10049 dd_dev_err(dd, "Last %s LNI state complete frame 0x%08x:\n", 10050 prefix, frame); 10051 dd_dev_err(dd, " last reported state state: %s (0x%x)\n", 10052 state_completed_string(state), state); 10053 dd_dev_err(dd, " state successfully completed: %s\n", 10054 success ? "yes" : "no"); 10055 dd_dev_err(dd, " fail reason 0x%x: %s\n", 10056 reason, state_complete_reason_code_string(ppd, reason)); 10057 dd_dev_err(dd, " passing lane mask: 0x%x", lanes); 10058 } 10059 10060 /* 10061 * Read the last state complete frames and explain them. This routine 10062 * expects to be called if the link went down during link negotiation 10063 * and initialization (LNI). That is, anywhere between polling and link up. 10064 */ 10065 static void check_lni_states(struct hfi1_pportdata *ppd) 10066 { 10067 u32 last_local_state; 10068 u32 last_remote_state; 10069 10070 read_last_local_state(ppd->dd, &last_local_state); 10071 read_last_remote_state(ppd->dd, &last_remote_state); 10072 10073 /* 10074 * Don't report anything if there is nothing to report. A value of 10075 * 0 means the link was taken down while polling and there was no 10076 * training in-process. 10077 */ 10078 if (last_local_state == 0 && last_remote_state == 0) 10079 return; 10080 10081 decode_state_complete(ppd, last_local_state, "transmitted"); 10082 decode_state_complete(ppd, last_remote_state, "received"); 10083 } 10084 10085 /* 10086 * Helper for set_link_state(). Do not call except from that routine. 10087 * Expects ppd->hls_mutex to be held. 10088 * 10089 * @rem_reason value to be sent to the neighbor 10090 * 10091 * LinkDownReasons only set if transition succeeds. 10092 */ 10093 static int goto_offline(struct hfi1_pportdata *ppd, u8 rem_reason) 10094 { 10095 struct hfi1_devdata *dd = ppd->dd; 10096 u32 pstate, previous_state; 10097 int ret; 10098 int do_transition; 10099 int do_wait; 10100 10101 previous_state = ppd->host_link_state; 10102 ppd->host_link_state = HLS_GOING_OFFLINE; 10103 pstate = read_physical_state(dd); 10104 if (pstate == PLS_OFFLINE) { 10105 do_transition = 0; /* in right state */ 10106 do_wait = 0; /* ...no need to wait */ 10107 } else if ((pstate & 0xff) == PLS_OFFLINE) { 10108 do_transition = 0; /* in an offline transient state */ 10109 do_wait = 1; /* ...wait for it to settle */ 10110 } else { 10111 do_transition = 1; /* need to move to offline */ 10112 do_wait = 1; /* ...will need to wait */ 10113 } 10114 10115 if (do_transition) { 10116 ret = set_physical_link_state(dd, 10117 (rem_reason << 8) | PLS_OFFLINE); 10118 10119 if (ret != HCMD_SUCCESS) { 10120 dd_dev_err(dd, 10121 "Failed to transition to Offline link state, return %d\n", 10122 ret); 10123 return -EINVAL; 10124 } 10125 if (ppd->offline_disabled_reason == 10126 HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE)) 10127 ppd->offline_disabled_reason = 10128 HFI1_ODR_MASK(OPA_LINKDOWN_REASON_TRANSIENT); 10129 } 10130 10131 if (do_wait) { 10132 /* it can take a while for the link to go down */ 10133 ret = wait_phy_linkstate(dd, PLS_OFFLINE, 10000); 10134 if (ret < 0) 10135 return ret; 10136 } 10137 10138 /* make sure the logical state is also down */ 10139 wait_logical_linkstate(ppd, IB_PORT_DOWN, 1000); 10140 10141 /* 10142 * Now in charge of LCB - must be after the physical state is 10143 * offline.quiet and before host_link_state is changed. 10144 */ 10145 set_host_lcb_access(dd); 10146 write_csr(dd, DC_LCB_ERR_EN, ~0ull); /* watch LCB errors */ 10147 ppd->host_link_state = HLS_LINK_COOLDOWN; /* LCB access allowed */ 10148 10149 if (ppd->port_type == PORT_TYPE_QSFP && 10150 ppd->qsfp_info.limiting_active && 10151 qsfp_mod_present(ppd)) { 10152 int ret; 10153 10154 ret = acquire_chip_resource(dd, qsfp_resource(dd), QSFP_WAIT); 10155 if (ret == 0) { 10156 set_qsfp_tx(ppd, 0); 10157 release_chip_resource(dd, qsfp_resource(dd)); 10158 } else { 10159 /* not fatal, but should warn */ 10160 dd_dev_err(dd, 10161 "Unable to acquire lock to turn off QSFP TX\n"); 10162 } 10163 } 10164 10165 /* 10166 * The LNI has a mandatory wait time after the physical state 10167 * moves to Offline.Quiet. The wait time may be different 10168 * depending on how the link went down. The 8051 firmware 10169 * will observe the needed wait time and only move to ready 10170 * when that is completed. The largest of the quiet timeouts 10171 * is 6s, so wait that long and then at least 0.5s more for 10172 * other transitions, and another 0.5s for a buffer. 10173 */ 10174 ret = wait_fm_ready(dd, 7000); 10175 if (ret) { 10176 dd_dev_err(dd, 10177 "After going offline, timed out waiting for the 8051 to become ready to accept host requests\n"); 10178 /* state is really offline, so make it so */ 10179 ppd->host_link_state = HLS_DN_OFFLINE; 10180 return ret; 10181 } 10182 10183 /* 10184 * The state is now offline and the 8051 is ready to accept host 10185 * requests. 10186 * - change our state 10187 * - notify others if we were previously in a linkup state 10188 */ 10189 ppd->host_link_state = HLS_DN_OFFLINE; 10190 if (previous_state & HLS_UP) { 10191 /* went down while link was up */ 10192 handle_linkup_change(dd, 0); 10193 } else if (previous_state 10194 & (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) { 10195 /* went down while attempting link up */ 10196 check_lni_states(ppd); 10197 } 10198 10199 /* the active link width (downgrade) is 0 on link down */ 10200 ppd->link_width_active = 0; 10201 ppd->link_width_downgrade_tx_active = 0; 10202 ppd->link_width_downgrade_rx_active = 0; 10203 ppd->current_egress_rate = 0; 10204 return 0; 10205 } 10206 10207 /* return the link state name */ 10208 static const char *link_state_name(u32 state) 10209 { 10210 const char *name; 10211 int n = ilog2(state); 10212 static const char * const names[] = { 10213 [__HLS_UP_INIT_BP] = "INIT", 10214 [__HLS_UP_ARMED_BP] = "ARMED", 10215 [__HLS_UP_ACTIVE_BP] = "ACTIVE", 10216 [__HLS_DN_DOWNDEF_BP] = "DOWNDEF", 10217 [__HLS_DN_POLL_BP] = "POLL", 10218 [__HLS_DN_DISABLE_BP] = "DISABLE", 10219 [__HLS_DN_OFFLINE_BP] = "OFFLINE", 10220 [__HLS_VERIFY_CAP_BP] = "VERIFY_CAP", 10221 [__HLS_GOING_UP_BP] = "GOING_UP", 10222 [__HLS_GOING_OFFLINE_BP] = "GOING_OFFLINE", 10223 [__HLS_LINK_COOLDOWN_BP] = "LINK_COOLDOWN" 10224 }; 10225 10226 name = n < ARRAY_SIZE(names) ? names[n] : NULL; 10227 return name ? name : "unknown"; 10228 } 10229 10230 /* return the link state reason name */ 10231 static const char *link_state_reason_name(struct hfi1_pportdata *ppd, u32 state) 10232 { 10233 if (state == HLS_UP_INIT) { 10234 switch (ppd->linkinit_reason) { 10235 case OPA_LINKINIT_REASON_LINKUP: 10236 return "(LINKUP)"; 10237 case OPA_LINKINIT_REASON_FLAPPING: 10238 return "(FLAPPING)"; 10239 case OPA_LINKINIT_OUTSIDE_POLICY: 10240 return "(OUTSIDE_POLICY)"; 10241 case OPA_LINKINIT_QUARANTINED: 10242 return "(QUARANTINED)"; 10243 case OPA_LINKINIT_INSUFIC_CAPABILITY: 10244 return "(INSUFIC_CAPABILITY)"; 10245 default: 10246 break; 10247 } 10248 } 10249 return ""; 10250 } 10251 10252 /* 10253 * driver_physical_state - convert the driver's notion of a port's 10254 * state (an HLS_*) into a physical state (a {IB,OPA}_PORTPHYSSTATE_*). 10255 * Return -1 (converted to a u32) to indicate error. 10256 */ 10257 u32 driver_physical_state(struct hfi1_pportdata *ppd) 10258 { 10259 switch (ppd->host_link_state) { 10260 case HLS_UP_INIT: 10261 case HLS_UP_ARMED: 10262 case HLS_UP_ACTIVE: 10263 return IB_PORTPHYSSTATE_LINKUP; 10264 case HLS_DN_POLL: 10265 return IB_PORTPHYSSTATE_POLLING; 10266 case HLS_DN_DISABLE: 10267 return IB_PORTPHYSSTATE_DISABLED; 10268 case HLS_DN_OFFLINE: 10269 return OPA_PORTPHYSSTATE_OFFLINE; 10270 case HLS_VERIFY_CAP: 10271 return IB_PORTPHYSSTATE_POLLING; 10272 case HLS_GOING_UP: 10273 return IB_PORTPHYSSTATE_POLLING; 10274 case HLS_GOING_OFFLINE: 10275 return OPA_PORTPHYSSTATE_OFFLINE; 10276 case HLS_LINK_COOLDOWN: 10277 return OPA_PORTPHYSSTATE_OFFLINE; 10278 case HLS_DN_DOWNDEF: 10279 default: 10280 dd_dev_err(ppd->dd, "invalid host_link_state 0x%x\n", 10281 ppd->host_link_state); 10282 return -1; 10283 } 10284 } 10285 10286 /* 10287 * driver_logical_state - convert the driver's notion of a port's 10288 * state (an HLS_*) into a logical state (a IB_PORT_*). Return -1 10289 * (converted to a u32) to indicate error. 10290 */ 10291 u32 driver_logical_state(struct hfi1_pportdata *ppd) 10292 { 10293 if (ppd->host_link_state && (ppd->host_link_state & HLS_DOWN)) 10294 return IB_PORT_DOWN; 10295 10296 switch (ppd->host_link_state & HLS_UP) { 10297 case HLS_UP_INIT: 10298 return IB_PORT_INIT; 10299 case HLS_UP_ARMED: 10300 return IB_PORT_ARMED; 10301 case HLS_UP_ACTIVE: 10302 return IB_PORT_ACTIVE; 10303 default: 10304 dd_dev_err(ppd->dd, "invalid host_link_state 0x%x\n", 10305 ppd->host_link_state); 10306 return -1; 10307 } 10308 } 10309 10310 void set_link_down_reason(struct hfi1_pportdata *ppd, u8 lcl_reason, 10311 u8 neigh_reason, u8 rem_reason) 10312 { 10313 if (ppd->local_link_down_reason.latest == 0 && 10314 ppd->neigh_link_down_reason.latest == 0) { 10315 ppd->local_link_down_reason.latest = lcl_reason; 10316 ppd->neigh_link_down_reason.latest = neigh_reason; 10317 ppd->remote_link_down_reason = rem_reason; 10318 } 10319 } 10320 10321 /* 10322 * Change the physical and/or logical link state. 10323 * 10324 * Do not call this routine while inside an interrupt. It contains 10325 * calls to routines that can take multiple seconds to finish. 10326 * 10327 * Returns 0 on success, -errno on failure. 10328 */ 10329 int set_link_state(struct hfi1_pportdata *ppd, u32 state) 10330 { 10331 struct hfi1_devdata *dd = ppd->dd; 10332 struct ib_event event = {.device = NULL}; 10333 int ret1, ret = 0; 10334 int orig_new_state, poll_bounce; 10335 10336 mutex_lock(&ppd->hls_lock); 10337 10338 orig_new_state = state; 10339 if (state == HLS_DN_DOWNDEF) 10340 state = dd->link_default; 10341 10342 /* interpret poll -> poll as a link bounce */ 10343 poll_bounce = ppd->host_link_state == HLS_DN_POLL && 10344 state == HLS_DN_POLL; 10345 10346 dd_dev_info(dd, "%s: current %s, new %s %s%s\n", __func__, 10347 link_state_name(ppd->host_link_state), 10348 link_state_name(orig_new_state), 10349 poll_bounce ? "(bounce) " : "", 10350 link_state_reason_name(ppd, state)); 10351 10352 /* 10353 * If we're going to a (HLS_*) link state that implies the logical 10354 * link state is neither of (IB_PORT_ARMED, IB_PORT_ACTIVE), then 10355 * reset is_sm_config_started to 0. 10356 */ 10357 if (!(state & (HLS_UP_ARMED | HLS_UP_ACTIVE))) 10358 ppd->is_sm_config_started = 0; 10359 10360 /* 10361 * Do nothing if the states match. Let a poll to poll link bounce 10362 * go through. 10363 */ 10364 if (ppd->host_link_state == state && !poll_bounce) 10365 goto done; 10366 10367 switch (state) { 10368 case HLS_UP_INIT: 10369 if (ppd->host_link_state == HLS_DN_POLL && 10370 (quick_linkup || dd->icode == ICODE_FUNCTIONAL_SIMULATOR)) { 10371 /* 10372 * Quick link up jumps from polling to here. 10373 * 10374 * Whether in normal or loopback mode, the 10375 * simulator jumps from polling to link up. 10376 * Accept that here. 10377 */ 10378 /* OK */ 10379 } else if (ppd->host_link_state != HLS_GOING_UP) { 10380 goto unexpected; 10381 } 10382 10383 ppd->host_link_state = HLS_UP_INIT; 10384 ret = wait_logical_linkstate(ppd, IB_PORT_INIT, 1000); 10385 if (ret) { 10386 /* logical state didn't change, stay at going_up */ 10387 ppd->host_link_state = HLS_GOING_UP; 10388 dd_dev_err(dd, 10389 "%s: logical state did not change to INIT\n", 10390 __func__); 10391 } else { 10392 /* clear old transient LINKINIT_REASON code */ 10393 if (ppd->linkinit_reason >= OPA_LINKINIT_REASON_CLEAR) 10394 ppd->linkinit_reason = 10395 OPA_LINKINIT_REASON_LINKUP; 10396 10397 /* enable the port */ 10398 add_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK); 10399 10400 handle_linkup_change(dd, 1); 10401 } 10402 break; 10403 case HLS_UP_ARMED: 10404 if (ppd->host_link_state != HLS_UP_INIT) 10405 goto unexpected; 10406 10407 ppd->host_link_state = HLS_UP_ARMED; 10408 set_logical_state(dd, LSTATE_ARMED); 10409 ret = wait_logical_linkstate(ppd, IB_PORT_ARMED, 1000); 10410 if (ret) { 10411 /* logical state didn't change, stay at init */ 10412 ppd->host_link_state = HLS_UP_INIT; 10413 dd_dev_err(dd, 10414 "%s: logical state did not change to ARMED\n", 10415 __func__); 10416 } 10417 /* 10418 * The simulator does not currently implement SMA messages, 10419 * so neighbor_normal is not set. Set it here when we first 10420 * move to Armed. 10421 */ 10422 if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR) 10423 ppd->neighbor_normal = 1; 10424 break; 10425 case HLS_UP_ACTIVE: 10426 if (ppd->host_link_state != HLS_UP_ARMED) 10427 goto unexpected; 10428 10429 ppd->host_link_state = HLS_UP_ACTIVE; 10430 set_logical_state(dd, LSTATE_ACTIVE); 10431 ret = wait_logical_linkstate(ppd, IB_PORT_ACTIVE, 1000); 10432 if (ret) { 10433 /* logical state didn't change, stay at armed */ 10434 ppd->host_link_state = HLS_UP_ARMED; 10435 dd_dev_err(dd, 10436 "%s: logical state did not change to ACTIVE\n", 10437 __func__); 10438 } else { 10439 /* tell all engines to go running */ 10440 sdma_all_running(dd); 10441 10442 /* Signal the IB layer that the port has went active */ 10443 event.device = &dd->verbs_dev.rdi.ibdev; 10444 event.element.port_num = ppd->port; 10445 event.event = IB_EVENT_PORT_ACTIVE; 10446 } 10447 break; 10448 case HLS_DN_POLL: 10449 if ((ppd->host_link_state == HLS_DN_DISABLE || 10450 ppd->host_link_state == HLS_DN_OFFLINE) && 10451 dd->dc_shutdown) 10452 dc_start(dd); 10453 /* Hand LED control to the DC */ 10454 write_csr(dd, DCC_CFG_LED_CNTRL, 0); 10455 10456 if (ppd->host_link_state != HLS_DN_OFFLINE) { 10457 u8 tmp = ppd->link_enabled; 10458 10459 ret = goto_offline(ppd, ppd->remote_link_down_reason); 10460 if (ret) { 10461 ppd->link_enabled = tmp; 10462 break; 10463 } 10464 ppd->remote_link_down_reason = 0; 10465 10466 if (ppd->driver_link_ready) 10467 ppd->link_enabled = 1; 10468 } 10469 10470 set_all_slowpath(ppd->dd); 10471 ret = set_local_link_attributes(ppd); 10472 if (ret) 10473 break; 10474 10475 ppd->port_error_action = 0; 10476 ppd->host_link_state = HLS_DN_POLL; 10477 10478 if (quick_linkup) { 10479 /* quick linkup does not go into polling */ 10480 ret = do_quick_linkup(dd); 10481 } else { 10482 ret1 = set_physical_link_state(dd, PLS_POLLING); 10483 if (ret1 != HCMD_SUCCESS) { 10484 dd_dev_err(dd, 10485 "Failed to transition to Polling link state, return 0x%x\n", 10486 ret1); 10487 ret = -EINVAL; 10488 } 10489 } 10490 ppd->offline_disabled_reason = 10491 HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE); 10492 /* 10493 * If an error occurred above, go back to offline. The 10494 * caller may reschedule another attempt. 10495 */ 10496 if (ret) 10497 goto_offline(ppd, 0); 10498 break; 10499 case HLS_DN_DISABLE: 10500 /* link is disabled */ 10501 ppd->link_enabled = 0; 10502 10503 /* allow any state to transition to disabled */ 10504 10505 /* must transition to offline first */ 10506 if (ppd->host_link_state != HLS_DN_OFFLINE) { 10507 ret = goto_offline(ppd, ppd->remote_link_down_reason); 10508 if (ret) 10509 break; 10510 ppd->remote_link_down_reason = 0; 10511 } 10512 10513 if (!dd->dc_shutdown) { 10514 ret1 = set_physical_link_state(dd, PLS_DISABLED); 10515 if (ret1 != HCMD_SUCCESS) { 10516 dd_dev_err(dd, 10517 "Failed to transition to Disabled link state, return 0x%x\n", 10518 ret1); 10519 ret = -EINVAL; 10520 break; 10521 } 10522 dc_shutdown(dd); 10523 } 10524 ppd->host_link_state = HLS_DN_DISABLE; 10525 break; 10526 case HLS_DN_OFFLINE: 10527 if (ppd->host_link_state == HLS_DN_DISABLE) 10528 dc_start(dd); 10529 10530 /* allow any state to transition to offline */ 10531 ret = goto_offline(ppd, ppd->remote_link_down_reason); 10532 if (!ret) 10533 ppd->remote_link_down_reason = 0; 10534 break; 10535 case HLS_VERIFY_CAP: 10536 if (ppd->host_link_state != HLS_DN_POLL) 10537 goto unexpected; 10538 ppd->host_link_state = HLS_VERIFY_CAP; 10539 break; 10540 case HLS_GOING_UP: 10541 if (ppd->host_link_state != HLS_VERIFY_CAP) 10542 goto unexpected; 10543 10544 ret1 = set_physical_link_state(dd, PLS_LINKUP); 10545 if (ret1 != HCMD_SUCCESS) { 10546 dd_dev_err(dd, 10547 "Failed to transition to link up state, return 0x%x\n", 10548 ret1); 10549 ret = -EINVAL; 10550 break; 10551 } 10552 ppd->host_link_state = HLS_GOING_UP; 10553 break; 10554 10555 case HLS_GOING_OFFLINE: /* transient within goto_offline() */ 10556 case HLS_LINK_COOLDOWN: /* transient within goto_offline() */ 10557 default: 10558 dd_dev_info(dd, "%s: state 0x%x: not supported\n", 10559 __func__, state); 10560 ret = -EINVAL; 10561 break; 10562 } 10563 10564 goto done; 10565 10566 unexpected: 10567 dd_dev_err(dd, "%s: unexpected state transition from %s to %s\n", 10568 __func__, link_state_name(ppd->host_link_state), 10569 link_state_name(state)); 10570 ret = -EINVAL; 10571 10572 done: 10573 mutex_unlock(&ppd->hls_lock); 10574 10575 if (event.device) 10576 ib_dispatch_event(&event); 10577 10578 return ret; 10579 } 10580 10581 int hfi1_set_ib_cfg(struct hfi1_pportdata *ppd, int which, u32 val) 10582 { 10583 u64 reg; 10584 int ret = 0; 10585 10586 switch (which) { 10587 case HFI1_IB_CFG_LIDLMC: 10588 set_lidlmc(ppd); 10589 break; 10590 case HFI1_IB_CFG_VL_HIGH_LIMIT: 10591 /* 10592 * The VL Arbitrator high limit is sent in units of 4k 10593 * bytes, while HFI stores it in units of 64 bytes. 10594 */ 10595 val *= 4096 / 64; 10596 reg = ((u64)val & SEND_HIGH_PRIORITY_LIMIT_LIMIT_MASK) 10597 << SEND_HIGH_PRIORITY_LIMIT_LIMIT_SHIFT; 10598 write_csr(ppd->dd, SEND_HIGH_PRIORITY_LIMIT, reg); 10599 break; 10600 case HFI1_IB_CFG_LINKDEFAULT: /* IB link default (sleep/poll) */ 10601 /* HFI only supports POLL as the default link down state */ 10602 if (val != HLS_DN_POLL) 10603 ret = -EINVAL; 10604 break; 10605 case HFI1_IB_CFG_OP_VLS: 10606 if (ppd->vls_operational != val) { 10607 ppd->vls_operational = val; 10608 if (!ppd->port) 10609 ret = -EINVAL; 10610 } 10611 break; 10612 /* 10613 * For link width, link width downgrade, and speed enable, always AND 10614 * the setting with what is actually supported. This has two benefits. 10615 * First, enabled can't have unsupported values, no matter what the 10616 * SM or FM might want. Second, the ALL_SUPPORTED wildcards that mean 10617 * "fill in with your supported value" have all the bits in the 10618 * field set, so simply ANDing with supported has the desired result. 10619 */ 10620 case HFI1_IB_CFG_LWID_ENB: /* set allowed Link-width */ 10621 ppd->link_width_enabled = val & ppd->link_width_supported; 10622 break; 10623 case HFI1_IB_CFG_LWID_DG_ENB: /* set allowed link width downgrade */ 10624 ppd->link_width_downgrade_enabled = 10625 val & ppd->link_width_downgrade_supported; 10626 break; 10627 case HFI1_IB_CFG_SPD_ENB: /* allowed Link speeds */ 10628 ppd->link_speed_enabled = val & ppd->link_speed_supported; 10629 break; 10630 case HFI1_IB_CFG_OVERRUN_THRESH: /* IB overrun threshold */ 10631 /* 10632 * HFI does not follow IB specs, save this value 10633 * so we can report it, if asked. 10634 */ 10635 ppd->overrun_threshold = val; 10636 break; 10637 case HFI1_IB_CFG_PHYERR_THRESH: /* IB PHY error threshold */ 10638 /* 10639 * HFI does not follow IB specs, save this value 10640 * so we can report it, if asked. 10641 */ 10642 ppd->phy_error_threshold = val; 10643 break; 10644 10645 case HFI1_IB_CFG_MTU: 10646 set_send_length(ppd); 10647 break; 10648 10649 case HFI1_IB_CFG_PKEYS: 10650 if (HFI1_CAP_IS_KSET(PKEY_CHECK)) 10651 set_partition_keys(ppd); 10652 break; 10653 10654 default: 10655 if (HFI1_CAP_IS_KSET(PRINT_UNIMPL)) 10656 dd_dev_info(ppd->dd, 10657 "%s: which %s, val 0x%x: not implemented\n", 10658 __func__, ib_cfg_name(which), val); 10659 break; 10660 } 10661 return ret; 10662 } 10663 10664 /* begin functions related to vl arbitration table caching */ 10665 static void init_vl_arb_caches(struct hfi1_pportdata *ppd) 10666 { 10667 int i; 10668 10669 BUILD_BUG_ON(VL_ARB_TABLE_SIZE != 10670 VL_ARB_LOW_PRIO_TABLE_SIZE); 10671 BUILD_BUG_ON(VL_ARB_TABLE_SIZE != 10672 VL_ARB_HIGH_PRIO_TABLE_SIZE); 10673 10674 /* 10675 * Note that we always return values directly from the 10676 * 'vl_arb_cache' (and do no CSR reads) in response to a 10677 * 'Get(VLArbTable)'. This is obviously correct after a 10678 * 'Set(VLArbTable)', since the cache will then be up to 10679 * date. But it's also correct prior to any 'Set(VLArbTable)' 10680 * since then both the cache, and the relevant h/w registers 10681 * will be zeroed. 10682 */ 10683 10684 for (i = 0; i < MAX_PRIO_TABLE; i++) 10685 spin_lock_init(&ppd->vl_arb_cache[i].lock); 10686 } 10687 10688 /* 10689 * vl_arb_lock_cache 10690 * 10691 * All other vl_arb_* functions should be called only after locking 10692 * the cache. 10693 */ 10694 static inline struct vl_arb_cache * 10695 vl_arb_lock_cache(struct hfi1_pportdata *ppd, int idx) 10696 { 10697 if (idx != LO_PRIO_TABLE && idx != HI_PRIO_TABLE) 10698 return NULL; 10699 spin_lock(&ppd->vl_arb_cache[idx].lock); 10700 return &ppd->vl_arb_cache[idx]; 10701 } 10702 10703 static inline void vl_arb_unlock_cache(struct hfi1_pportdata *ppd, int idx) 10704 { 10705 spin_unlock(&ppd->vl_arb_cache[idx].lock); 10706 } 10707 10708 static void vl_arb_get_cache(struct vl_arb_cache *cache, 10709 struct ib_vl_weight_elem *vl) 10710 { 10711 memcpy(vl, cache->table, VL_ARB_TABLE_SIZE * sizeof(*vl)); 10712 } 10713 10714 static void vl_arb_set_cache(struct vl_arb_cache *cache, 10715 struct ib_vl_weight_elem *vl) 10716 { 10717 memcpy(cache->table, vl, VL_ARB_TABLE_SIZE * sizeof(*vl)); 10718 } 10719 10720 static int vl_arb_match_cache(struct vl_arb_cache *cache, 10721 struct ib_vl_weight_elem *vl) 10722 { 10723 return !memcmp(cache->table, vl, VL_ARB_TABLE_SIZE * sizeof(*vl)); 10724 } 10725 10726 /* end functions related to vl arbitration table caching */ 10727 10728 static int set_vl_weights(struct hfi1_pportdata *ppd, u32 target, 10729 u32 size, struct ib_vl_weight_elem *vl) 10730 { 10731 struct hfi1_devdata *dd = ppd->dd; 10732 u64 reg; 10733 unsigned int i, is_up = 0; 10734 int drain, ret = 0; 10735 10736 mutex_lock(&ppd->hls_lock); 10737 10738 if (ppd->host_link_state & HLS_UP) 10739 is_up = 1; 10740 10741 drain = !is_ax(dd) && is_up; 10742 10743 if (drain) 10744 /* 10745 * Before adjusting VL arbitration weights, empty per-VL 10746 * FIFOs, otherwise a packet whose VL weight is being 10747 * set to 0 could get stuck in a FIFO with no chance to 10748 * egress. 10749 */ 10750 ret = stop_drain_data_vls(dd); 10751 10752 if (ret) { 10753 dd_dev_err( 10754 dd, 10755 "%s: cannot stop/drain VLs - refusing to change VL arbitration weights\n", 10756 __func__); 10757 goto err; 10758 } 10759 10760 for (i = 0; i < size; i++, vl++) { 10761 /* 10762 * NOTE: The low priority shift and mask are used here, but 10763 * they are the same for both the low and high registers. 10764 */ 10765 reg = (((u64)vl->vl & SEND_LOW_PRIORITY_LIST_VL_MASK) 10766 << SEND_LOW_PRIORITY_LIST_VL_SHIFT) 10767 | (((u64)vl->weight 10768 & SEND_LOW_PRIORITY_LIST_WEIGHT_MASK) 10769 << SEND_LOW_PRIORITY_LIST_WEIGHT_SHIFT); 10770 write_csr(dd, target + (i * 8), reg); 10771 } 10772 pio_send_control(dd, PSC_GLOBAL_VLARB_ENABLE); 10773 10774 if (drain) 10775 open_fill_data_vls(dd); /* reopen all VLs */ 10776 10777 err: 10778 mutex_unlock(&ppd->hls_lock); 10779 10780 return ret; 10781 } 10782 10783 /* 10784 * Read one credit merge VL register. 10785 */ 10786 static void read_one_cm_vl(struct hfi1_devdata *dd, u32 csr, 10787 struct vl_limit *vll) 10788 { 10789 u64 reg = read_csr(dd, csr); 10790 10791 vll->dedicated = cpu_to_be16( 10792 (reg >> SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SHIFT) 10793 & SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_MASK); 10794 vll->shared = cpu_to_be16( 10795 (reg >> SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SHIFT) 10796 & SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_MASK); 10797 } 10798 10799 /* 10800 * Read the current credit merge limits. 10801 */ 10802 static int get_buffer_control(struct hfi1_devdata *dd, 10803 struct buffer_control *bc, u16 *overall_limit) 10804 { 10805 u64 reg; 10806 int i; 10807 10808 /* not all entries are filled in */ 10809 memset(bc, 0, sizeof(*bc)); 10810 10811 /* OPA and HFI have a 1-1 mapping */ 10812 for (i = 0; i < TXE_NUM_DATA_VL; i++) 10813 read_one_cm_vl(dd, SEND_CM_CREDIT_VL + (8 * i), &bc->vl[i]); 10814 10815 /* NOTE: assumes that VL* and VL15 CSRs are bit-wise identical */ 10816 read_one_cm_vl(dd, SEND_CM_CREDIT_VL15, &bc->vl[15]); 10817 10818 reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT); 10819 bc->overall_shared_limit = cpu_to_be16( 10820 (reg >> SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SHIFT) 10821 & SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_MASK); 10822 if (overall_limit) 10823 *overall_limit = (reg 10824 >> SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT) 10825 & SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_MASK; 10826 return sizeof(struct buffer_control); 10827 } 10828 10829 static int get_sc2vlnt(struct hfi1_devdata *dd, struct sc2vlnt *dp) 10830 { 10831 u64 reg; 10832 int i; 10833 10834 /* each register contains 16 SC->VLnt mappings, 4 bits each */ 10835 reg = read_csr(dd, DCC_CFG_SC_VL_TABLE_15_0); 10836 for (i = 0; i < sizeof(u64); i++) { 10837 u8 byte = *(((u8 *)®) + i); 10838 10839 dp->vlnt[2 * i] = byte & 0xf; 10840 dp->vlnt[(2 * i) + 1] = (byte & 0xf0) >> 4; 10841 } 10842 10843 reg = read_csr(dd, DCC_CFG_SC_VL_TABLE_31_16); 10844 for (i = 0; i < sizeof(u64); i++) { 10845 u8 byte = *(((u8 *)®) + i); 10846 10847 dp->vlnt[16 + (2 * i)] = byte & 0xf; 10848 dp->vlnt[16 + (2 * i) + 1] = (byte & 0xf0) >> 4; 10849 } 10850 return sizeof(struct sc2vlnt); 10851 } 10852 10853 static void get_vlarb_preempt(struct hfi1_devdata *dd, u32 nelems, 10854 struct ib_vl_weight_elem *vl) 10855 { 10856 unsigned int i; 10857 10858 for (i = 0; i < nelems; i++, vl++) { 10859 vl->vl = 0xf; 10860 vl->weight = 0; 10861 } 10862 } 10863 10864 static void set_sc2vlnt(struct hfi1_devdata *dd, struct sc2vlnt *dp) 10865 { 10866 write_csr(dd, DCC_CFG_SC_VL_TABLE_15_0, 10867 DC_SC_VL_VAL(15_0, 10868 0, dp->vlnt[0] & 0xf, 10869 1, dp->vlnt[1] & 0xf, 10870 2, dp->vlnt[2] & 0xf, 10871 3, dp->vlnt[3] & 0xf, 10872 4, dp->vlnt[4] & 0xf, 10873 5, dp->vlnt[5] & 0xf, 10874 6, dp->vlnt[6] & 0xf, 10875 7, dp->vlnt[7] & 0xf, 10876 8, dp->vlnt[8] & 0xf, 10877 9, dp->vlnt[9] & 0xf, 10878 10, dp->vlnt[10] & 0xf, 10879 11, dp->vlnt[11] & 0xf, 10880 12, dp->vlnt[12] & 0xf, 10881 13, dp->vlnt[13] & 0xf, 10882 14, dp->vlnt[14] & 0xf, 10883 15, dp->vlnt[15] & 0xf)); 10884 write_csr(dd, DCC_CFG_SC_VL_TABLE_31_16, 10885 DC_SC_VL_VAL(31_16, 10886 16, dp->vlnt[16] & 0xf, 10887 17, dp->vlnt[17] & 0xf, 10888 18, dp->vlnt[18] & 0xf, 10889 19, dp->vlnt[19] & 0xf, 10890 20, dp->vlnt[20] & 0xf, 10891 21, dp->vlnt[21] & 0xf, 10892 22, dp->vlnt[22] & 0xf, 10893 23, dp->vlnt[23] & 0xf, 10894 24, dp->vlnt[24] & 0xf, 10895 25, dp->vlnt[25] & 0xf, 10896 26, dp->vlnt[26] & 0xf, 10897 27, dp->vlnt[27] & 0xf, 10898 28, dp->vlnt[28] & 0xf, 10899 29, dp->vlnt[29] & 0xf, 10900 30, dp->vlnt[30] & 0xf, 10901 31, dp->vlnt[31] & 0xf)); 10902 } 10903 10904 static void nonzero_msg(struct hfi1_devdata *dd, int idx, const char *what, 10905 u16 limit) 10906 { 10907 if (limit != 0) 10908 dd_dev_info(dd, "Invalid %s limit %d on VL %d, ignoring\n", 10909 what, (int)limit, idx); 10910 } 10911 10912 /* change only the shared limit portion of SendCmGLobalCredit */ 10913 static void set_global_shared(struct hfi1_devdata *dd, u16 limit) 10914 { 10915 u64 reg; 10916 10917 reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT); 10918 reg &= ~SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SMASK; 10919 reg |= (u64)limit << SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SHIFT; 10920 write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg); 10921 } 10922 10923 /* change only the total credit limit portion of SendCmGLobalCredit */ 10924 static void set_global_limit(struct hfi1_devdata *dd, u16 limit) 10925 { 10926 u64 reg; 10927 10928 reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT); 10929 reg &= ~SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SMASK; 10930 reg |= (u64)limit << SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT; 10931 write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg); 10932 } 10933 10934 /* set the given per-VL shared limit */ 10935 static void set_vl_shared(struct hfi1_devdata *dd, int vl, u16 limit) 10936 { 10937 u64 reg; 10938 u32 addr; 10939 10940 if (vl < TXE_NUM_DATA_VL) 10941 addr = SEND_CM_CREDIT_VL + (8 * vl); 10942 else 10943 addr = SEND_CM_CREDIT_VL15; 10944 10945 reg = read_csr(dd, addr); 10946 reg &= ~SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SMASK; 10947 reg |= (u64)limit << SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SHIFT; 10948 write_csr(dd, addr, reg); 10949 } 10950 10951 /* set the given per-VL dedicated limit */ 10952 static void set_vl_dedicated(struct hfi1_devdata *dd, int vl, u16 limit) 10953 { 10954 u64 reg; 10955 u32 addr; 10956 10957 if (vl < TXE_NUM_DATA_VL) 10958 addr = SEND_CM_CREDIT_VL + (8 * vl); 10959 else 10960 addr = SEND_CM_CREDIT_VL15; 10961 10962 reg = read_csr(dd, addr); 10963 reg &= ~SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SMASK; 10964 reg |= (u64)limit << SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SHIFT; 10965 write_csr(dd, addr, reg); 10966 } 10967 10968 /* spin until the given per-VL status mask bits clear */ 10969 static void wait_for_vl_status_clear(struct hfi1_devdata *dd, u64 mask, 10970 const char *which) 10971 { 10972 unsigned long timeout; 10973 u64 reg; 10974 10975 timeout = jiffies + msecs_to_jiffies(VL_STATUS_CLEAR_TIMEOUT); 10976 while (1) { 10977 reg = read_csr(dd, SEND_CM_CREDIT_USED_STATUS) & mask; 10978 10979 if (reg == 0) 10980 return; /* success */ 10981 if (time_after(jiffies, timeout)) 10982 break; /* timed out */ 10983 udelay(1); 10984 } 10985 10986 dd_dev_err(dd, 10987 "%s credit change status not clearing after %dms, mask 0x%llx, not clear 0x%llx\n", 10988 which, VL_STATUS_CLEAR_TIMEOUT, mask, reg); 10989 /* 10990 * If this occurs, it is likely there was a credit loss on the link. 10991 * The only recovery from that is a link bounce. 10992 */ 10993 dd_dev_err(dd, 10994 "Continuing anyway. A credit loss may occur. Suggest a link bounce\n"); 10995 } 10996 10997 /* 10998 * The number of credits on the VLs may be changed while everything 10999 * is "live", but the following algorithm must be followed due to 11000 * how the hardware is actually implemented. In particular, 11001 * Return_Credit_Status[] is the only correct status check. 11002 * 11003 * if (reducing Global_Shared_Credit_Limit or any shared limit changing) 11004 * set Global_Shared_Credit_Limit = 0 11005 * use_all_vl = 1 11006 * mask0 = all VLs that are changing either dedicated or shared limits 11007 * set Shared_Limit[mask0] = 0 11008 * spin until Return_Credit_Status[use_all_vl ? all VL : mask0] == 0 11009 * if (changing any dedicated limit) 11010 * mask1 = all VLs that are lowering dedicated limits 11011 * lower Dedicated_Limit[mask1] 11012 * spin until Return_Credit_Status[mask1] == 0 11013 * raise Dedicated_Limits 11014 * raise Shared_Limits 11015 * raise Global_Shared_Credit_Limit 11016 * 11017 * lower = if the new limit is lower, set the limit to the new value 11018 * raise = if the new limit is higher than the current value (may be changed 11019 * earlier in the algorithm), set the new limit to the new value 11020 */ 11021 int set_buffer_control(struct hfi1_pportdata *ppd, 11022 struct buffer_control *new_bc) 11023 { 11024 struct hfi1_devdata *dd = ppd->dd; 11025 u64 changing_mask, ld_mask, stat_mask; 11026 int change_count; 11027 int i, use_all_mask; 11028 int this_shared_changing; 11029 int vl_count = 0, ret; 11030 /* 11031 * A0: add the variable any_shared_limit_changing below and in the 11032 * algorithm above. If removing A0 support, it can be removed. 11033 */ 11034 int any_shared_limit_changing; 11035 struct buffer_control cur_bc; 11036 u8 changing[OPA_MAX_VLS]; 11037 u8 lowering_dedicated[OPA_MAX_VLS]; 11038 u16 cur_total; 11039 u32 new_total = 0; 11040 const u64 all_mask = 11041 SEND_CM_CREDIT_USED_STATUS_VL0_RETURN_CREDIT_STATUS_SMASK 11042 | SEND_CM_CREDIT_USED_STATUS_VL1_RETURN_CREDIT_STATUS_SMASK 11043 | SEND_CM_CREDIT_USED_STATUS_VL2_RETURN_CREDIT_STATUS_SMASK 11044 | SEND_CM_CREDIT_USED_STATUS_VL3_RETURN_CREDIT_STATUS_SMASK 11045 | SEND_CM_CREDIT_USED_STATUS_VL4_RETURN_CREDIT_STATUS_SMASK 11046 | SEND_CM_CREDIT_USED_STATUS_VL5_RETURN_CREDIT_STATUS_SMASK 11047 | SEND_CM_CREDIT_USED_STATUS_VL6_RETURN_CREDIT_STATUS_SMASK 11048 | SEND_CM_CREDIT_USED_STATUS_VL7_RETURN_CREDIT_STATUS_SMASK 11049 | SEND_CM_CREDIT_USED_STATUS_VL15_RETURN_CREDIT_STATUS_SMASK; 11050 11051 #define valid_vl(idx) ((idx) < TXE_NUM_DATA_VL || (idx) == 15) 11052 #define NUM_USABLE_VLS 16 /* look at VL15 and less */ 11053 11054 /* find the new total credits, do sanity check on unused VLs */ 11055 for (i = 0; i < OPA_MAX_VLS; i++) { 11056 if (valid_vl(i)) { 11057 new_total += be16_to_cpu(new_bc->vl[i].dedicated); 11058 continue; 11059 } 11060 nonzero_msg(dd, i, "dedicated", 11061 be16_to_cpu(new_bc->vl[i].dedicated)); 11062 nonzero_msg(dd, i, "shared", 11063 be16_to_cpu(new_bc->vl[i].shared)); 11064 new_bc->vl[i].dedicated = 0; 11065 new_bc->vl[i].shared = 0; 11066 } 11067 new_total += be16_to_cpu(new_bc->overall_shared_limit); 11068 11069 /* fetch the current values */ 11070 get_buffer_control(dd, &cur_bc, &cur_total); 11071 11072 /* 11073 * Create the masks we will use. 11074 */ 11075 memset(changing, 0, sizeof(changing)); 11076 memset(lowering_dedicated, 0, sizeof(lowering_dedicated)); 11077 /* 11078 * NOTE: Assumes that the individual VL bits are adjacent and in 11079 * increasing order 11080 */ 11081 stat_mask = 11082 SEND_CM_CREDIT_USED_STATUS_VL0_RETURN_CREDIT_STATUS_SMASK; 11083 changing_mask = 0; 11084 ld_mask = 0; 11085 change_count = 0; 11086 any_shared_limit_changing = 0; 11087 for (i = 0; i < NUM_USABLE_VLS; i++, stat_mask <<= 1) { 11088 if (!valid_vl(i)) 11089 continue; 11090 this_shared_changing = new_bc->vl[i].shared 11091 != cur_bc.vl[i].shared; 11092 if (this_shared_changing) 11093 any_shared_limit_changing = 1; 11094 if (new_bc->vl[i].dedicated != cur_bc.vl[i].dedicated || 11095 this_shared_changing) { 11096 changing[i] = 1; 11097 changing_mask |= stat_mask; 11098 change_count++; 11099 } 11100 if (be16_to_cpu(new_bc->vl[i].dedicated) < 11101 be16_to_cpu(cur_bc.vl[i].dedicated)) { 11102 lowering_dedicated[i] = 1; 11103 ld_mask |= stat_mask; 11104 } 11105 } 11106 11107 /* bracket the credit change with a total adjustment */ 11108 if (new_total > cur_total) 11109 set_global_limit(dd, new_total); 11110 11111 /* 11112 * Start the credit change algorithm. 11113 */ 11114 use_all_mask = 0; 11115 if ((be16_to_cpu(new_bc->overall_shared_limit) < 11116 be16_to_cpu(cur_bc.overall_shared_limit)) || 11117 (is_ax(dd) && any_shared_limit_changing)) { 11118 set_global_shared(dd, 0); 11119 cur_bc.overall_shared_limit = 0; 11120 use_all_mask = 1; 11121 } 11122 11123 for (i = 0; i < NUM_USABLE_VLS; i++) { 11124 if (!valid_vl(i)) 11125 continue; 11126 11127 if (changing[i]) { 11128 set_vl_shared(dd, i, 0); 11129 cur_bc.vl[i].shared = 0; 11130 } 11131 } 11132 11133 wait_for_vl_status_clear(dd, use_all_mask ? all_mask : changing_mask, 11134 "shared"); 11135 11136 if (change_count > 0) { 11137 for (i = 0; i < NUM_USABLE_VLS; i++) { 11138 if (!valid_vl(i)) 11139 continue; 11140 11141 if (lowering_dedicated[i]) { 11142 set_vl_dedicated(dd, i, 11143 be16_to_cpu(new_bc-> 11144 vl[i].dedicated)); 11145 cur_bc.vl[i].dedicated = 11146 new_bc->vl[i].dedicated; 11147 } 11148 } 11149 11150 wait_for_vl_status_clear(dd, ld_mask, "dedicated"); 11151 11152 /* now raise all dedicated that are going up */ 11153 for (i = 0; i < NUM_USABLE_VLS; i++) { 11154 if (!valid_vl(i)) 11155 continue; 11156 11157 if (be16_to_cpu(new_bc->vl[i].dedicated) > 11158 be16_to_cpu(cur_bc.vl[i].dedicated)) 11159 set_vl_dedicated(dd, i, 11160 be16_to_cpu(new_bc-> 11161 vl[i].dedicated)); 11162 } 11163 } 11164 11165 /* next raise all shared that are going up */ 11166 for (i = 0; i < NUM_USABLE_VLS; i++) { 11167 if (!valid_vl(i)) 11168 continue; 11169 11170 if (be16_to_cpu(new_bc->vl[i].shared) > 11171 be16_to_cpu(cur_bc.vl[i].shared)) 11172 set_vl_shared(dd, i, be16_to_cpu(new_bc->vl[i].shared)); 11173 } 11174 11175 /* finally raise the global shared */ 11176 if (be16_to_cpu(new_bc->overall_shared_limit) > 11177 be16_to_cpu(cur_bc.overall_shared_limit)) 11178 set_global_shared(dd, 11179 be16_to_cpu(new_bc->overall_shared_limit)); 11180 11181 /* bracket the credit change with a total adjustment */ 11182 if (new_total < cur_total) 11183 set_global_limit(dd, new_total); 11184 11185 /* 11186 * Determine the actual number of operational VLS using the number of 11187 * dedicated and shared credits for each VL. 11188 */ 11189 if (change_count > 0) { 11190 for (i = 0; i < TXE_NUM_DATA_VL; i++) 11191 if (be16_to_cpu(new_bc->vl[i].dedicated) > 0 || 11192 be16_to_cpu(new_bc->vl[i].shared) > 0) 11193 vl_count++; 11194 ppd->actual_vls_operational = vl_count; 11195 ret = sdma_map_init(dd, ppd->port - 1, vl_count ? 11196 ppd->actual_vls_operational : 11197 ppd->vls_operational, 11198 NULL); 11199 if (ret == 0) 11200 ret = pio_map_init(dd, ppd->port - 1, vl_count ? 11201 ppd->actual_vls_operational : 11202 ppd->vls_operational, NULL); 11203 if (ret) 11204 return ret; 11205 } 11206 return 0; 11207 } 11208 11209 /* 11210 * Read the given fabric manager table. Return the size of the 11211 * table (in bytes) on success, and a negative error code on 11212 * failure. 11213 */ 11214 int fm_get_table(struct hfi1_pportdata *ppd, int which, void *t) 11215 11216 { 11217 int size; 11218 struct vl_arb_cache *vlc; 11219 11220 switch (which) { 11221 case FM_TBL_VL_HIGH_ARB: 11222 size = 256; 11223 /* 11224 * OPA specifies 128 elements (of 2 bytes each), though 11225 * HFI supports only 16 elements in h/w. 11226 */ 11227 vlc = vl_arb_lock_cache(ppd, HI_PRIO_TABLE); 11228 vl_arb_get_cache(vlc, t); 11229 vl_arb_unlock_cache(ppd, HI_PRIO_TABLE); 11230 break; 11231 case FM_TBL_VL_LOW_ARB: 11232 size = 256; 11233 /* 11234 * OPA specifies 128 elements (of 2 bytes each), though 11235 * HFI supports only 16 elements in h/w. 11236 */ 11237 vlc = vl_arb_lock_cache(ppd, LO_PRIO_TABLE); 11238 vl_arb_get_cache(vlc, t); 11239 vl_arb_unlock_cache(ppd, LO_PRIO_TABLE); 11240 break; 11241 case FM_TBL_BUFFER_CONTROL: 11242 size = get_buffer_control(ppd->dd, t, NULL); 11243 break; 11244 case FM_TBL_SC2VLNT: 11245 size = get_sc2vlnt(ppd->dd, t); 11246 break; 11247 case FM_TBL_VL_PREEMPT_ELEMS: 11248 size = 256; 11249 /* OPA specifies 128 elements, of 2 bytes each */ 11250 get_vlarb_preempt(ppd->dd, OPA_MAX_VLS, t); 11251 break; 11252 case FM_TBL_VL_PREEMPT_MATRIX: 11253 size = 256; 11254 /* 11255 * OPA specifies that this is the same size as the VL 11256 * arbitration tables (i.e., 256 bytes). 11257 */ 11258 break; 11259 default: 11260 return -EINVAL; 11261 } 11262 return size; 11263 } 11264 11265 /* 11266 * Write the given fabric manager table. 11267 */ 11268 int fm_set_table(struct hfi1_pportdata *ppd, int which, void *t) 11269 { 11270 int ret = 0; 11271 struct vl_arb_cache *vlc; 11272 11273 switch (which) { 11274 case FM_TBL_VL_HIGH_ARB: 11275 vlc = vl_arb_lock_cache(ppd, HI_PRIO_TABLE); 11276 if (vl_arb_match_cache(vlc, t)) { 11277 vl_arb_unlock_cache(ppd, HI_PRIO_TABLE); 11278 break; 11279 } 11280 vl_arb_set_cache(vlc, t); 11281 vl_arb_unlock_cache(ppd, HI_PRIO_TABLE); 11282 ret = set_vl_weights(ppd, SEND_HIGH_PRIORITY_LIST, 11283 VL_ARB_HIGH_PRIO_TABLE_SIZE, t); 11284 break; 11285 case FM_TBL_VL_LOW_ARB: 11286 vlc = vl_arb_lock_cache(ppd, LO_PRIO_TABLE); 11287 if (vl_arb_match_cache(vlc, t)) { 11288 vl_arb_unlock_cache(ppd, LO_PRIO_TABLE); 11289 break; 11290 } 11291 vl_arb_set_cache(vlc, t); 11292 vl_arb_unlock_cache(ppd, LO_PRIO_TABLE); 11293 ret = set_vl_weights(ppd, SEND_LOW_PRIORITY_LIST, 11294 VL_ARB_LOW_PRIO_TABLE_SIZE, t); 11295 break; 11296 case FM_TBL_BUFFER_CONTROL: 11297 ret = set_buffer_control(ppd, t); 11298 break; 11299 case FM_TBL_SC2VLNT: 11300 set_sc2vlnt(ppd->dd, t); 11301 break; 11302 default: 11303 ret = -EINVAL; 11304 } 11305 return ret; 11306 } 11307 11308 /* 11309 * Disable all data VLs. 11310 * 11311 * Return 0 if disabled, non-zero if the VLs cannot be disabled. 11312 */ 11313 static int disable_data_vls(struct hfi1_devdata *dd) 11314 { 11315 if (is_ax(dd)) 11316 return 1; 11317 11318 pio_send_control(dd, PSC_DATA_VL_DISABLE); 11319 11320 return 0; 11321 } 11322 11323 /* 11324 * open_fill_data_vls() - the counterpart to stop_drain_data_vls(). 11325 * Just re-enables all data VLs (the "fill" part happens 11326 * automatically - the name was chosen for symmetry with 11327 * stop_drain_data_vls()). 11328 * 11329 * Return 0 if successful, non-zero if the VLs cannot be enabled. 11330 */ 11331 int open_fill_data_vls(struct hfi1_devdata *dd) 11332 { 11333 if (is_ax(dd)) 11334 return 1; 11335 11336 pio_send_control(dd, PSC_DATA_VL_ENABLE); 11337 11338 return 0; 11339 } 11340 11341 /* 11342 * drain_data_vls() - assumes that disable_data_vls() has been called, 11343 * wait for occupancy (of per-VL FIFOs) for all contexts, and SDMA 11344 * engines to drop to 0. 11345 */ 11346 static void drain_data_vls(struct hfi1_devdata *dd) 11347 { 11348 sc_wait(dd); 11349 sdma_wait(dd); 11350 pause_for_credit_return(dd); 11351 } 11352 11353 /* 11354 * stop_drain_data_vls() - disable, then drain all per-VL fifos. 11355 * 11356 * Use open_fill_data_vls() to resume using data VLs. This pair is 11357 * meant to be used like this: 11358 * 11359 * stop_drain_data_vls(dd); 11360 * // do things with per-VL resources 11361 * open_fill_data_vls(dd); 11362 */ 11363 int stop_drain_data_vls(struct hfi1_devdata *dd) 11364 { 11365 int ret; 11366 11367 ret = disable_data_vls(dd); 11368 if (ret == 0) 11369 drain_data_vls(dd); 11370 11371 return ret; 11372 } 11373 11374 /* 11375 * Convert a nanosecond time to a cclock count. No matter how slow 11376 * the cclock, a non-zero ns will always have a non-zero result. 11377 */ 11378 u32 ns_to_cclock(struct hfi1_devdata *dd, u32 ns) 11379 { 11380 u32 cclocks; 11381 11382 if (dd->icode == ICODE_FPGA_EMULATION) 11383 cclocks = (ns * 1000) / FPGA_CCLOCK_PS; 11384 else /* simulation pretends to be ASIC */ 11385 cclocks = (ns * 1000) / ASIC_CCLOCK_PS; 11386 if (ns && !cclocks) /* if ns nonzero, must be at least 1 */ 11387 cclocks = 1; 11388 return cclocks; 11389 } 11390 11391 /* 11392 * Convert a cclock count to nanoseconds. Not matter how slow 11393 * the cclock, a non-zero cclocks will always have a non-zero result. 11394 */ 11395 u32 cclock_to_ns(struct hfi1_devdata *dd, u32 cclocks) 11396 { 11397 u32 ns; 11398 11399 if (dd->icode == ICODE_FPGA_EMULATION) 11400 ns = (cclocks * FPGA_CCLOCK_PS) / 1000; 11401 else /* simulation pretends to be ASIC */ 11402 ns = (cclocks * ASIC_CCLOCK_PS) / 1000; 11403 if (cclocks && !ns) 11404 ns = 1; 11405 return ns; 11406 } 11407 11408 /* 11409 * Dynamically adjust the receive interrupt timeout for a context based on 11410 * incoming packet rate. 11411 * 11412 * NOTE: Dynamic adjustment does not allow rcv_intr_count to be zero. 11413 */ 11414 static void adjust_rcv_timeout(struct hfi1_ctxtdata *rcd, u32 npkts) 11415 { 11416 struct hfi1_devdata *dd = rcd->dd; 11417 u32 timeout = rcd->rcvavail_timeout; 11418 11419 /* 11420 * This algorithm doubles or halves the timeout depending on whether 11421 * the number of packets received in this interrupt were less than or 11422 * greater equal the interrupt count. 11423 * 11424 * The calculations below do not allow a steady state to be achieved. 11425 * Only at the endpoints it is possible to have an unchanging 11426 * timeout. 11427 */ 11428 if (npkts < rcv_intr_count) { 11429 /* 11430 * Not enough packets arrived before the timeout, adjust 11431 * timeout downward. 11432 */ 11433 if (timeout < 2) /* already at minimum? */ 11434 return; 11435 timeout >>= 1; 11436 } else { 11437 /* 11438 * More than enough packets arrived before the timeout, adjust 11439 * timeout upward. 11440 */ 11441 if (timeout >= dd->rcv_intr_timeout_csr) /* already at max? */ 11442 return; 11443 timeout = min(timeout << 1, dd->rcv_intr_timeout_csr); 11444 } 11445 11446 rcd->rcvavail_timeout = timeout; 11447 /* 11448 * timeout cannot be larger than rcv_intr_timeout_csr which has already 11449 * been verified to be in range 11450 */ 11451 write_kctxt_csr(dd, rcd->ctxt, RCV_AVAIL_TIME_OUT, 11452 (u64)timeout << 11453 RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_SHIFT); 11454 } 11455 11456 void update_usrhead(struct hfi1_ctxtdata *rcd, u32 hd, u32 updegr, u32 egrhd, 11457 u32 intr_adjust, u32 npkts) 11458 { 11459 struct hfi1_devdata *dd = rcd->dd; 11460 u64 reg; 11461 u32 ctxt = rcd->ctxt; 11462 11463 /* 11464 * Need to write timeout register before updating RcvHdrHead to ensure 11465 * that a new value is used when the HW decides to restart counting. 11466 */ 11467 if (intr_adjust) 11468 adjust_rcv_timeout(rcd, npkts); 11469 if (updegr) { 11470 reg = (egrhd & RCV_EGR_INDEX_HEAD_HEAD_MASK) 11471 << RCV_EGR_INDEX_HEAD_HEAD_SHIFT; 11472 write_uctxt_csr(dd, ctxt, RCV_EGR_INDEX_HEAD, reg); 11473 } 11474 mmiowb(); 11475 reg = ((u64)rcv_intr_count << RCV_HDR_HEAD_COUNTER_SHIFT) | 11476 (((u64)hd & RCV_HDR_HEAD_HEAD_MASK) 11477 << RCV_HDR_HEAD_HEAD_SHIFT); 11478 write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, reg); 11479 mmiowb(); 11480 } 11481 11482 u32 hdrqempty(struct hfi1_ctxtdata *rcd) 11483 { 11484 u32 head, tail; 11485 11486 head = (read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_HEAD) 11487 & RCV_HDR_HEAD_HEAD_SMASK) >> RCV_HDR_HEAD_HEAD_SHIFT; 11488 11489 if (rcd->rcvhdrtail_kvaddr) 11490 tail = get_rcvhdrtail(rcd); 11491 else 11492 tail = read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_TAIL); 11493 11494 return head == tail; 11495 } 11496 11497 /* 11498 * Context Control and Receive Array encoding for buffer size: 11499 * 0x0 invalid 11500 * 0x1 4 KB 11501 * 0x2 8 KB 11502 * 0x3 16 KB 11503 * 0x4 32 KB 11504 * 0x5 64 KB 11505 * 0x6 128 KB 11506 * 0x7 256 KB 11507 * 0x8 512 KB (Receive Array only) 11508 * 0x9 1 MB (Receive Array only) 11509 * 0xa 2 MB (Receive Array only) 11510 * 11511 * 0xB-0xF - reserved (Receive Array only) 11512 * 11513 * 11514 * This routine assumes that the value has already been sanity checked. 11515 */ 11516 static u32 encoded_size(u32 size) 11517 { 11518 switch (size) { 11519 case 4 * 1024: return 0x1; 11520 case 8 * 1024: return 0x2; 11521 case 16 * 1024: return 0x3; 11522 case 32 * 1024: return 0x4; 11523 case 64 * 1024: return 0x5; 11524 case 128 * 1024: return 0x6; 11525 case 256 * 1024: return 0x7; 11526 case 512 * 1024: return 0x8; 11527 case 1 * 1024 * 1024: return 0x9; 11528 case 2 * 1024 * 1024: return 0xa; 11529 } 11530 return 0x1; /* if invalid, go with the minimum size */ 11531 } 11532 11533 void hfi1_rcvctrl(struct hfi1_devdata *dd, unsigned int op, int ctxt) 11534 { 11535 struct hfi1_ctxtdata *rcd; 11536 u64 rcvctrl, reg; 11537 int did_enable = 0; 11538 11539 rcd = dd->rcd[ctxt]; 11540 if (!rcd) 11541 return; 11542 11543 hfi1_cdbg(RCVCTRL, "ctxt %d op 0x%x", ctxt, op); 11544 11545 rcvctrl = read_kctxt_csr(dd, ctxt, RCV_CTXT_CTRL); 11546 /* if the context already enabled, don't do the extra steps */ 11547 if ((op & HFI1_RCVCTRL_CTXT_ENB) && 11548 !(rcvctrl & RCV_CTXT_CTRL_ENABLE_SMASK)) { 11549 /* reset the tail and hdr addresses, and sequence count */ 11550 write_kctxt_csr(dd, ctxt, RCV_HDR_ADDR, 11551 rcd->rcvhdrq_dma); 11552 if (HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL)) 11553 write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR, 11554 rcd->rcvhdrqtailaddr_dma); 11555 rcd->seq_cnt = 1; 11556 11557 /* reset the cached receive header queue head value */ 11558 rcd->head = 0; 11559 11560 /* 11561 * Zero the receive header queue so we don't get false 11562 * positives when checking the sequence number. The 11563 * sequence numbers could land exactly on the same spot. 11564 * E.g. a rcd restart before the receive header wrapped. 11565 */ 11566 memset(rcd->rcvhdrq, 0, rcd->rcvhdrq_size); 11567 11568 /* starting timeout */ 11569 rcd->rcvavail_timeout = dd->rcv_intr_timeout_csr; 11570 11571 /* enable the context */ 11572 rcvctrl |= RCV_CTXT_CTRL_ENABLE_SMASK; 11573 11574 /* clean the egr buffer size first */ 11575 rcvctrl &= ~RCV_CTXT_CTRL_EGR_BUF_SIZE_SMASK; 11576 rcvctrl |= ((u64)encoded_size(rcd->egrbufs.rcvtid_size) 11577 & RCV_CTXT_CTRL_EGR_BUF_SIZE_MASK) 11578 << RCV_CTXT_CTRL_EGR_BUF_SIZE_SHIFT; 11579 11580 /* zero RcvHdrHead - set RcvHdrHead.Counter after enable */ 11581 write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0); 11582 did_enable = 1; 11583 11584 /* zero RcvEgrIndexHead */ 11585 write_uctxt_csr(dd, ctxt, RCV_EGR_INDEX_HEAD, 0); 11586 11587 /* set eager count and base index */ 11588 reg = (((u64)(rcd->egrbufs.alloced >> RCV_SHIFT) 11589 & RCV_EGR_CTRL_EGR_CNT_MASK) 11590 << RCV_EGR_CTRL_EGR_CNT_SHIFT) | 11591 (((rcd->eager_base >> RCV_SHIFT) 11592 & RCV_EGR_CTRL_EGR_BASE_INDEX_MASK) 11593 << RCV_EGR_CTRL_EGR_BASE_INDEX_SHIFT); 11594 write_kctxt_csr(dd, ctxt, RCV_EGR_CTRL, reg); 11595 11596 /* 11597 * Set TID (expected) count and base index. 11598 * rcd->expected_count is set to individual RcvArray entries, 11599 * not pairs, and the CSR takes a pair-count in groups of 11600 * four, so divide by 8. 11601 */ 11602 reg = (((rcd->expected_count >> RCV_SHIFT) 11603 & RCV_TID_CTRL_TID_PAIR_CNT_MASK) 11604 << RCV_TID_CTRL_TID_PAIR_CNT_SHIFT) | 11605 (((rcd->expected_base >> RCV_SHIFT) 11606 & RCV_TID_CTRL_TID_BASE_INDEX_MASK) 11607 << RCV_TID_CTRL_TID_BASE_INDEX_SHIFT); 11608 write_kctxt_csr(dd, ctxt, RCV_TID_CTRL, reg); 11609 if (ctxt == HFI1_CTRL_CTXT) 11610 write_csr(dd, RCV_VL15, HFI1_CTRL_CTXT); 11611 } 11612 if (op & HFI1_RCVCTRL_CTXT_DIS) { 11613 write_csr(dd, RCV_VL15, 0); 11614 /* 11615 * When receive context is being disabled turn on tail 11616 * update with a dummy tail address and then disable 11617 * receive context. 11618 */ 11619 if (dd->rcvhdrtail_dummy_dma) { 11620 write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR, 11621 dd->rcvhdrtail_dummy_dma); 11622 /* Enabling RcvCtxtCtrl.TailUpd is intentional. */ 11623 rcvctrl |= RCV_CTXT_CTRL_TAIL_UPD_SMASK; 11624 } 11625 11626 rcvctrl &= ~RCV_CTXT_CTRL_ENABLE_SMASK; 11627 } 11628 if (op & HFI1_RCVCTRL_INTRAVAIL_ENB) 11629 rcvctrl |= RCV_CTXT_CTRL_INTR_AVAIL_SMASK; 11630 if (op & HFI1_RCVCTRL_INTRAVAIL_DIS) 11631 rcvctrl &= ~RCV_CTXT_CTRL_INTR_AVAIL_SMASK; 11632 if (op & HFI1_RCVCTRL_TAILUPD_ENB && rcd->rcvhdrqtailaddr_dma) 11633 rcvctrl |= RCV_CTXT_CTRL_TAIL_UPD_SMASK; 11634 if (op & HFI1_RCVCTRL_TAILUPD_DIS) { 11635 /* See comment on RcvCtxtCtrl.TailUpd above */ 11636 if (!(op & HFI1_RCVCTRL_CTXT_DIS)) 11637 rcvctrl &= ~RCV_CTXT_CTRL_TAIL_UPD_SMASK; 11638 } 11639 if (op & HFI1_RCVCTRL_TIDFLOW_ENB) 11640 rcvctrl |= RCV_CTXT_CTRL_TID_FLOW_ENABLE_SMASK; 11641 if (op & HFI1_RCVCTRL_TIDFLOW_DIS) 11642 rcvctrl &= ~RCV_CTXT_CTRL_TID_FLOW_ENABLE_SMASK; 11643 if (op & HFI1_RCVCTRL_ONE_PKT_EGR_ENB) { 11644 /* 11645 * In one-packet-per-eager mode, the size comes from 11646 * the RcvArray entry. 11647 */ 11648 rcvctrl &= ~RCV_CTXT_CTRL_EGR_BUF_SIZE_SMASK; 11649 rcvctrl |= RCV_CTXT_CTRL_ONE_PACKET_PER_EGR_BUFFER_SMASK; 11650 } 11651 if (op & HFI1_RCVCTRL_ONE_PKT_EGR_DIS) 11652 rcvctrl &= ~RCV_CTXT_CTRL_ONE_PACKET_PER_EGR_BUFFER_SMASK; 11653 if (op & HFI1_RCVCTRL_NO_RHQ_DROP_ENB) 11654 rcvctrl |= RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK; 11655 if (op & HFI1_RCVCTRL_NO_RHQ_DROP_DIS) 11656 rcvctrl &= ~RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK; 11657 if (op & HFI1_RCVCTRL_NO_EGR_DROP_ENB) 11658 rcvctrl |= RCV_CTXT_CTRL_DONT_DROP_EGR_FULL_SMASK; 11659 if (op & HFI1_RCVCTRL_NO_EGR_DROP_DIS) 11660 rcvctrl &= ~RCV_CTXT_CTRL_DONT_DROP_EGR_FULL_SMASK; 11661 rcd->rcvctrl = rcvctrl; 11662 hfi1_cdbg(RCVCTRL, "ctxt %d rcvctrl 0x%llx\n", ctxt, rcvctrl); 11663 write_kctxt_csr(dd, ctxt, RCV_CTXT_CTRL, rcd->rcvctrl); 11664 11665 /* work around sticky RcvCtxtStatus.BlockedRHQFull */ 11666 if (did_enable && 11667 (rcvctrl & RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK)) { 11668 reg = read_kctxt_csr(dd, ctxt, RCV_CTXT_STATUS); 11669 if (reg != 0) { 11670 dd_dev_info(dd, "ctxt %d status %lld (blocked)\n", 11671 ctxt, reg); 11672 read_uctxt_csr(dd, ctxt, RCV_HDR_HEAD); 11673 write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0x10); 11674 write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0x00); 11675 read_uctxt_csr(dd, ctxt, RCV_HDR_HEAD); 11676 reg = read_kctxt_csr(dd, ctxt, RCV_CTXT_STATUS); 11677 dd_dev_info(dd, "ctxt %d status %lld (%s blocked)\n", 11678 ctxt, reg, reg == 0 ? "not" : "still"); 11679 } 11680 } 11681 11682 if (did_enable) { 11683 /* 11684 * The interrupt timeout and count must be set after 11685 * the context is enabled to take effect. 11686 */ 11687 /* set interrupt timeout */ 11688 write_kctxt_csr(dd, ctxt, RCV_AVAIL_TIME_OUT, 11689 (u64)rcd->rcvavail_timeout << 11690 RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_SHIFT); 11691 11692 /* set RcvHdrHead.Counter, zero RcvHdrHead.Head (again) */ 11693 reg = (u64)rcv_intr_count << RCV_HDR_HEAD_COUNTER_SHIFT; 11694 write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, reg); 11695 } 11696 11697 if (op & (HFI1_RCVCTRL_TAILUPD_DIS | HFI1_RCVCTRL_CTXT_DIS)) 11698 /* 11699 * If the context has been disabled and the Tail Update has 11700 * been cleared, set the RCV_HDR_TAIL_ADDR CSR to dummy address 11701 * so it doesn't contain an address that is invalid. 11702 */ 11703 write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR, 11704 dd->rcvhdrtail_dummy_dma); 11705 } 11706 11707 u32 hfi1_read_cntrs(struct hfi1_devdata *dd, char **namep, u64 **cntrp) 11708 { 11709 int ret; 11710 u64 val = 0; 11711 11712 if (namep) { 11713 ret = dd->cntrnameslen; 11714 *namep = dd->cntrnames; 11715 } else { 11716 const struct cntr_entry *entry; 11717 int i, j; 11718 11719 ret = (dd->ndevcntrs) * sizeof(u64); 11720 11721 /* Get the start of the block of counters */ 11722 *cntrp = dd->cntrs; 11723 11724 /* 11725 * Now go and fill in each counter in the block. 11726 */ 11727 for (i = 0; i < DEV_CNTR_LAST; i++) { 11728 entry = &dev_cntrs[i]; 11729 hfi1_cdbg(CNTR, "reading %s", entry->name); 11730 if (entry->flags & CNTR_DISABLED) { 11731 /* Nothing */ 11732 hfi1_cdbg(CNTR, "\tDisabled\n"); 11733 } else { 11734 if (entry->flags & CNTR_VL) { 11735 hfi1_cdbg(CNTR, "\tPer VL\n"); 11736 for (j = 0; j < C_VL_COUNT; j++) { 11737 val = entry->rw_cntr(entry, 11738 dd, j, 11739 CNTR_MODE_R, 11740 0); 11741 hfi1_cdbg( 11742 CNTR, 11743 "\t\tRead 0x%llx for %d\n", 11744 val, j); 11745 dd->cntrs[entry->offset + j] = 11746 val; 11747 } 11748 } else if (entry->flags & CNTR_SDMA) { 11749 hfi1_cdbg(CNTR, 11750 "\t Per SDMA Engine\n"); 11751 for (j = 0; j < dd->chip_sdma_engines; 11752 j++) { 11753 val = 11754 entry->rw_cntr(entry, dd, j, 11755 CNTR_MODE_R, 0); 11756 hfi1_cdbg(CNTR, 11757 "\t\tRead 0x%llx for %d\n", 11758 val, j); 11759 dd->cntrs[entry->offset + j] = 11760 val; 11761 } 11762 } else { 11763 val = entry->rw_cntr(entry, dd, 11764 CNTR_INVALID_VL, 11765 CNTR_MODE_R, 0); 11766 dd->cntrs[entry->offset] = val; 11767 hfi1_cdbg(CNTR, "\tRead 0x%llx", val); 11768 } 11769 } 11770 } 11771 } 11772 return ret; 11773 } 11774 11775 /* 11776 * Used by sysfs to create files for hfi stats to read 11777 */ 11778 u32 hfi1_read_portcntrs(struct hfi1_pportdata *ppd, char **namep, u64 **cntrp) 11779 { 11780 int ret; 11781 u64 val = 0; 11782 11783 if (namep) { 11784 ret = ppd->dd->portcntrnameslen; 11785 *namep = ppd->dd->portcntrnames; 11786 } else { 11787 const struct cntr_entry *entry; 11788 int i, j; 11789 11790 ret = ppd->dd->nportcntrs * sizeof(u64); 11791 *cntrp = ppd->cntrs; 11792 11793 for (i = 0; i < PORT_CNTR_LAST; i++) { 11794 entry = &port_cntrs[i]; 11795 hfi1_cdbg(CNTR, "reading %s", entry->name); 11796 if (entry->flags & CNTR_DISABLED) { 11797 /* Nothing */ 11798 hfi1_cdbg(CNTR, "\tDisabled\n"); 11799 continue; 11800 } 11801 11802 if (entry->flags & CNTR_VL) { 11803 hfi1_cdbg(CNTR, "\tPer VL"); 11804 for (j = 0; j < C_VL_COUNT; j++) { 11805 val = entry->rw_cntr(entry, ppd, j, 11806 CNTR_MODE_R, 11807 0); 11808 hfi1_cdbg( 11809 CNTR, 11810 "\t\tRead 0x%llx for %d", 11811 val, j); 11812 ppd->cntrs[entry->offset + j] = val; 11813 } 11814 } else { 11815 val = entry->rw_cntr(entry, ppd, 11816 CNTR_INVALID_VL, 11817 CNTR_MODE_R, 11818 0); 11819 ppd->cntrs[entry->offset] = val; 11820 hfi1_cdbg(CNTR, "\tRead 0x%llx", val); 11821 } 11822 } 11823 } 11824 return ret; 11825 } 11826 11827 static void free_cntrs(struct hfi1_devdata *dd) 11828 { 11829 struct hfi1_pportdata *ppd; 11830 int i; 11831 11832 if (dd->synth_stats_timer.data) 11833 del_timer_sync(&dd->synth_stats_timer); 11834 dd->synth_stats_timer.data = 0; 11835 ppd = (struct hfi1_pportdata *)(dd + 1); 11836 for (i = 0; i < dd->num_pports; i++, ppd++) { 11837 kfree(ppd->cntrs); 11838 kfree(ppd->scntrs); 11839 free_percpu(ppd->ibport_data.rvp.rc_acks); 11840 free_percpu(ppd->ibport_data.rvp.rc_qacks); 11841 free_percpu(ppd->ibport_data.rvp.rc_delayed_comp); 11842 ppd->cntrs = NULL; 11843 ppd->scntrs = NULL; 11844 ppd->ibport_data.rvp.rc_acks = NULL; 11845 ppd->ibport_data.rvp.rc_qacks = NULL; 11846 ppd->ibport_data.rvp.rc_delayed_comp = NULL; 11847 } 11848 kfree(dd->portcntrnames); 11849 dd->portcntrnames = NULL; 11850 kfree(dd->cntrs); 11851 dd->cntrs = NULL; 11852 kfree(dd->scntrs); 11853 dd->scntrs = NULL; 11854 kfree(dd->cntrnames); 11855 dd->cntrnames = NULL; 11856 } 11857 11858 static u64 read_dev_port_cntr(struct hfi1_devdata *dd, struct cntr_entry *entry, 11859 u64 *psval, void *context, int vl) 11860 { 11861 u64 val; 11862 u64 sval = *psval; 11863 11864 if (entry->flags & CNTR_DISABLED) { 11865 dd_dev_err(dd, "Counter %s not enabled", entry->name); 11866 return 0; 11867 } 11868 11869 hfi1_cdbg(CNTR, "cntr: %s vl %d psval 0x%llx", entry->name, vl, *psval); 11870 11871 val = entry->rw_cntr(entry, context, vl, CNTR_MODE_R, 0); 11872 11873 /* If its a synthetic counter there is more work we need to do */ 11874 if (entry->flags & CNTR_SYNTH) { 11875 if (sval == CNTR_MAX) { 11876 /* No need to read already saturated */ 11877 return CNTR_MAX; 11878 } 11879 11880 if (entry->flags & CNTR_32BIT) { 11881 /* 32bit counters can wrap multiple times */ 11882 u64 upper = sval >> 32; 11883 u64 lower = (sval << 32) >> 32; 11884 11885 if (lower > val) { /* hw wrapped */ 11886 if (upper == CNTR_32BIT_MAX) 11887 val = CNTR_MAX; 11888 else 11889 upper++; 11890 } 11891 11892 if (val != CNTR_MAX) 11893 val = (upper << 32) | val; 11894 11895 } else { 11896 /* If we rolled we are saturated */ 11897 if ((val < sval) || (val > CNTR_MAX)) 11898 val = CNTR_MAX; 11899 } 11900 } 11901 11902 *psval = val; 11903 11904 hfi1_cdbg(CNTR, "\tNew val=0x%llx", val); 11905 11906 return val; 11907 } 11908 11909 static u64 write_dev_port_cntr(struct hfi1_devdata *dd, 11910 struct cntr_entry *entry, 11911 u64 *psval, void *context, int vl, u64 data) 11912 { 11913 u64 val; 11914 11915 if (entry->flags & CNTR_DISABLED) { 11916 dd_dev_err(dd, "Counter %s not enabled", entry->name); 11917 return 0; 11918 } 11919 11920 hfi1_cdbg(CNTR, "cntr: %s vl %d psval 0x%llx", entry->name, vl, *psval); 11921 11922 if (entry->flags & CNTR_SYNTH) { 11923 *psval = data; 11924 if (entry->flags & CNTR_32BIT) { 11925 val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W, 11926 (data << 32) >> 32); 11927 val = data; /* return the full 64bit value */ 11928 } else { 11929 val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W, 11930 data); 11931 } 11932 } else { 11933 val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W, data); 11934 } 11935 11936 *psval = val; 11937 11938 hfi1_cdbg(CNTR, "\tNew val=0x%llx", val); 11939 11940 return val; 11941 } 11942 11943 u64 read_dev_cntr(struct hfi1_devdata *dd, int index, int vl) 11944 { 11945 struct cntr_entry *entry; 11946 u64 *sval; 11947 11948 entry = &dev_cntrs[index]; 11949 sval = dd->scntrs + entry->offset; 11950 11951 if (vl != CNTR_INVALID_VL) 11952 sval += vl; 11953 11954 return read_dev_port_cntr(dd, entry, sval, dd, vl); 11955 } 11956 11957 u64 write_dev_cntr(struct hfi1_devdata *dd, int index, int vl, u64 data) 11958 { 11959 struct cntr_entry *entry; 11960 u64 *sval; 11961 11962 entry = &dev_cntrs[index]; 11963 sval = dd->scntrs + entry->offset; 11964 11965 if (vl != CNTR_INVALID_VL) 11966 sval += vl; 11967 11968 return write_dev_port_cntr(dd, entry, sval, dd, vl, data); 11969 } 11970 11971 u64 read_port_cntr(struct hfi1_pportdata *ppd, int index, int vl) 11972 { 11973 struct cntr_entry *entry; 11974 u64 *sval; 11975 11976 entry = &port_cntrs[index]; 11977 sval = ppd->scntrs + entry->offset; 11978 11979 if (vl != CNTR_INVALID_VL) 11980 sval += vl; 11981 11982 if ((index >= C_RCV_HDR_OVF_FIRST + ppd->dd->num_rcv_contexts) && 11983 (index <= C_RCV_HDR_OVF_LAST)) { 11984 /* We do not want to bother for disabled contexts */ 11985 return 0; 11986 } 11987 11988 return read_dev_port_cntr(ppd->dd, entry, sval, ppd, vl); 11989 } 11990 11991 u64 write_port_cntr(struct hfi1_pportdata *ppd, int index, int vl, u64 data) 11992 { 11993 struct cntr_entry *entry; 11994 u64 *sval; 11995 11996 entry = &port_cntrs[index]; 11997 sval = ppd->scntrs + entry->offset; 11998 11999 if (vl != CNTR_INVALID_VL) 12000 sval += vl; 12001 12002 if ((index >= C_RCV_HDR_OVF_FIRST + ppd->dd->num_rcv_contexts) && 12003 (index <= C_RCV_HDR_OVF_LAST)) { 12004 /* We do not want to bother for disabled contexts */ 12005 return 0; 12006 } 12007 12008 return write_dev_port_cntr(ppd->dd, entry, sval, ppd, vl, data); 12009 } 12010 12011 static void update_synth_timer(unsigned long opaque) 12012 { 12013 u64 cur_tx; 12014 u64 cur_rx; 12015 u64 total_flits; 12016 u8 update = 0; 12017 int i, j, vl; 12018 struct hfi1_pportdata *ppd; 12019 struct cntr_entry *entry; 12020 12021 struct hfi1_devdata *dd = (struct hfi1_devdata *)opaque; 12022 12023 /* 12024 * Rather than keep beating on the CSRs pick a minimal set that we can 12025 * check to watch for potential roll over. We can do this by looking at 12026 * the number of flits sent/recv. If the total flits exceeds 32bits then 12027 * we have to iterate all the counters and update. 12028 */ 12029 entry = &dev_cntrs[C_DC_RCV_FLITS]; 12030 cur_rx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL, CNTR_MODE_R, 0); 12031 12032 entry = &dev_cntrs[C_DC_XMIT_FLITS]; 12033 cur_tx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL, CNTR_MODE_R, 0); 12034 12035 hfi1_cdbg( 12036 CNTR, 12037 "[%d] curr tx=0x%llx rx=0x%llx :: last tx=0x%llx rx=0x%llx\n", 12038 dd->unit, cur_tx, cur_rx, dd->last_tx, dd->last_rx); 12039 12040 if ((cur_tx < dd->last_tx) || (cur_rx < dd->last_rx)) { 12041 /* 12042 * May not be strictly necessary to update but it won't hurt and 12043 * simplifies the logic here. 12044 */ 12045 update = 1; 12046 hfi1_cdbg(CNTR, "[%d] Tripwire counter rolled, updating", 12047 dd->unit); 12048 } else { 12049 total_flits = (cur_tx - dd->last_tx) + (cur_rx - dd->last_rx); 12050 hfi1_cdbg(CNTR, 12051 "[%d] total flits 0x%llx limit 0x%llx\n", dd->unit, 12052 total_flits, (u64)CNTR_32BIT_MAX); 12053 if (total_flits >= CNTR_32BIT_MAX) { 12054 hfi1_cdbg(CNTR, "[%d] 32bit limit hit, updating", 12055 dd->unit); 12056 update = 1; 12057 } 12058 } 12059 12060 if (update) { 12061 hfi1_cdbg(CNTR, "[%d] Updating dd and ppd counters", dd->unit); 12062 for (i = 0; i < DEV_CNTR_LAST; i++) { 12063 entry = &dev_cntrs[i]; 12064 if (entry->flags & CNTR_VL) { 12065 for (vl = 0; vl < C_VL_COUNT; vl++) 12066 read_dev_cntr(dd, i, vl); 12067 } else { 12068 read_dev_cntr(dd, i, CNTR_INVALID_VL); 12069 } 12070 } 12071 ppd = (struct hfi1_pportdata *)(dd + 1); 12072 for (i = 0; i < dd->num_pports; i++, ppd++) { 12073 for (j = 0; j < PORT_CNTR_LAST; j++) { 12074 entry = &port_cntrs[j]; 12075 if (entry->flags & CNTR_VL) { 12076 for (vl = 0; vl < C_VL_COUNT; vl++) 12077 read_port_cntr(ppd, j, vl); 12078 } else { 12079 read_port_cntr(ppd, j, CNTR_INVALID_VL); 12080 } 12081 } 12082 } 12083 12084 /* 12085 * We want the value in the register. The goal is to keep track 12086 * of the number of "ticks" not the counter value. In other 12087 * words if the register rolls we want to notice it and go ahead 12088 * and force an update. 12089 */ 12090 entry = &dev_cntrs[C_DC_XMIT_FLITS]; 12091 dd->last_tx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL, 12092 CNTR_MODE_R, 0); 12093 12094 entry = &dev_cntrs[C_DC_RCV_FLITS]; 12095 dd->last_rx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL, 12096 CNTR_MODE_R, 0); 12097 12098 hfi1_cdbg(CNTR, "[%d] setting last tx/rx to 0x%llx 0x%llx", 12099 dd->unit, dd->last_tx, dd->last_rx); 12100 12101 } else { 12102 hfi1_cdbg(CNTR, "[%d] No update necessary", dd->unit); 12103 } 12104 12105 mod_timer(&dd->synth_stats_timer, jiffies + HZ * SYNTH_CNT_TIME); 12106 } 12107 12108 #define C_MAX_NAME 16 /* 15 chars + one for /0 */ 12109 static int init_cntrs(struct hfi1_devdata *dd) 12110 { 12111 int i, rcv_ctxts, j; 12112 size_t sz; 12113 char *p; 12114 char name[C_MAX_NAME]; 12115 struct hfi1_pportdata *ppd; 12116 const char *bit_type_32 = ",32"; 12117 const int bit_type_32_sz = strlen(bit_type_32); 12118 12119 /* set up the stats timer; the add_timer is done at the end */ 12120 setup_timer(&dd->synth_stats_timer, update_synth_timer, 12121 (unsigned long)dd); 12122 12123 /***********************/ 12124 /* per device counters */ 12125 /***********************/ 12126 12127 /* size names and determine how many we have*/ 12128 dd->ndevcntrs = 0; 12129 sz = 0; 12130 12131 for (i = 0; i < DEV_CNTR_LAST; i++) { 12132 if (dev_cntrs[i].flags & CNTR_DISABLED) { 12133 hfi1_dbg_early("\tSkipping %s\n", dev_cntrs[i].name); 12134 continue; 12135 } 12136 12137 if (dev_cntrs[i].flags & CNTR_VL) { 12138 dev_cntrs[i].offset = dd->ndevcntrs; 12139 for (j = 0; j < C_VL_COUNT; j++) { 12140 snprintf(name, C_MAX_NAME, "%s%d", 12141 dev_cntrs[i].name, vl_from_idx(j)); 12142 sz += strlen(name); 12143 /* Add ",32" for 32-bit counters */ 12144 if (dev_cntrs[i].flags & CNTR_32BIT) 12145 sz += bit_type_32_sz; 12146 sz++; 12147 dd->ndevcntrs++; 12148 } 12149 } else if (dev_cntrs[i].flags & CNTR_SDMA) { 12150 dev_cntrs[i].offset = dd->ndevcntrs; 12151 for (j = 0; j < dd->chip_sdma_engines; j++) { 12152 snprintf(name, C_MAX_NAME, "%s%d", 12153 dev_cntrs[i].name, j); 12154 sz += strlen(name); 12155 /* Add ",32" for 32-bit counters */ 12156 if (dev_cntrs[i].flags & CNTR_32BIT) 12157 sz += bit_type_32_sz; 12158 sz++; 12159 dd->ndevcntrs++; 12160 } 12161 } else { 12162 /* +1 for newline. */ 12163 sz += strlen(dev_cntrs[i].name) + 1; 12164 /* Add ",32" for 32-bit counters */ 12165 if (dev_cntrs[i].flags & CNTR_32BIT) 12166 sz += bit_type_32_sz; 12167 dev_cntrs[i].offset = dd->ndevcntrs; 12168 dd->ndevcntrs++; 12169 } 12170 } 12171 12172 /* allocate space for the counter values */ 12173 dd->cntrs = kcalloc(dd->ndevcntrs, sizeof(u64), GFP_KERNEL); 12174 if (!dd->cntrs) 12175 goto bail; 12176 12177 dd->scntrs = kcalloc(dd->ndevcntrs, sizeof(u64), GFP_KERNEL); 12178 if (!dd->scntrs) 12179 goto bail; 12180 12181 /* allocate space for the counter names */ 12182 dd->cntrnameslen = sz; 12183 dd->cntrnames = kmalloc(sz, GFP_KERNEL); 12184 if (!dd->cntrnames) 12185 goto bail; 12186 12187 /* fill in the names */ 12188 for (p = dd->cntrnames, i = 0; i < DEV_CNTR_LAST; i++) { 12189 if (dev_cntrs[i].flags & CNTR_DISABLED) { 12190 /* Nothing */ 12191 } else if (dev_cntrs[i].flags & CNTR_VL) { 12192 for (j = 0; j < C_VL_COUNT; j++) { 12193 snprintf(name, C_MAX_NAME, "%s%d", 12194 dev_cntrs[i].name, 12195 vl_from_idx(j)); 12196 memcpy(p, name, strlen(name)); 12197 p += strlen(name); 12198 12199 /* Counter is 32 bits */ 12200 if (dev_cntrs[i].flags & CNTR_32BIT) { 12201 memcpy(p, bit_type_32, bit_type_32_sz); 12202 p += bit_type_32_sz; 12203 } 12204 12205 *p++ = '\n'; 12206 } 12207 } else if (dev_cntrs[i].flags & CNTR_SDMA) { 12208 for (j = 0; j < dd->chip_sdma_engines; j++) { 12209 snprintf(name, C_MAX_NAME, "%s%d", 12210 dev_cntrs[i].name, j); 12211 memcpy(p, name, strlen(name)); 12212 p += strlen(name); 12213 12214 /* Counter is 32 bits */ 12215 if (dev_cntrs[i].flags & CNTR_32BIT) { 12216 memcpy(p, bit_type_32, bit_type_32_sz); 12217 p += bit_type_32_sz; 12218 } 12219 12220 *p++ = '\n'; 12221 } 12222 } else { 12223 memcpy(p, dev_cntrs[i].name, strlen(dev_cntrs[i].name)); 12224 p += strlen(dev_cntrs[i].name); 12225 12226 /* Counter is 32 bits */ 12227 if (dev_cntrs[i].flags & CNTR_32BIT) { 12228 memcpy(p, bit_type_32, bit_type_32_sz); 12229 p += bit_type_32_sz; 12230 } 12231 12232 *p++ = '\n'; 12233 } 12234 } 12235 12236 /*********************/ 12237 /* per port counters */ 12238 /*********************/ 12239 12240 /* 12241 * Go through the counters for the overflows and disable the ones we 12242 * don't need. This varies based on platform so we need to do it 12243 * dynamically here. 12244 */ 12245 rcv_ctxts = dd->num_rcv_contexts; 12246 for (i = C_RCV_HDR_OVF_FIRST + rcv_ctxts; 12247 i <= C_RCV_HDR_OVF_LAST; i++) { 12248 port_cntrs[i].flags |= CNTR_DISABLED; 12249 } 12250 12251 /* size port counter names and determine how many we have*/ 12252 sz = 0; 12253 dd->nportcntrs = 0; 12254 for (i = 0; i < PORT_CNTR_LAST; i++) { 12255 if (port_cntrs[i].flags & CNTR_DISABLED) { 12256 hfi1_dbg_early("\tSkipping %s\n", port_cntrs[i].name); 12257 continue; 12258 } 12259 12260 if (port_cntrs[i].flags & CNTR_VL) { 12261 port_cntrs[i].offset = dd->nportcntrs; 12262 for (j = 0; j < C_VL_COUNT; j++) { 12263 snprintf(name, C_MAX_NAME, "%s%d", 12264 port_cntrs[i].name, vl_from_idx(j)); 12265 sz += strlen(name); 12266 /* Add ",32" for 32-bit counters */ 12267 if (port_cntrs[i].flags & CNTR_32BIT) 12268 sz += bit_type_32_sz; 12269 sz++; 12270 dd->nportcntrs++; 12271 } 12272 } else { 12273 /* +1 for newline */ 12274 sz += strlen(port_cntrs[i].name) + 1; 12275 /* Add ",32" for 32-bit counters */ 12276 if (port_cntrs[i].flags & CNTR_32BIT) 12277 sz += bit_type_32_sz; 12278 port_cntrs[i].offset = dd->nportcntrs; 12279 dd->nportcntrs++; 12280 } 12281 } 12282 12283 /* allocate space for the counter names */ 12284 dd->portcntrnameslen = sz; 12285 dd->portcntrnames = kmalloc(sz, GFP_KERNEL); 12286 if (!dd->portcntrnames) 12287 goto bail; 12288 12289 /* fill in port cntr names */ 12290 for (p = dd->portcntrnames, i = 0; i < PORT_CNTR_LAST; i++) { 12291 if (port_cntrs[i].flags & CNTR_DISABLED) 12292 continue; 12293 12294 if (port_cntrs[i].flags & CNTR_VL) { 12295 for (j = 0; j < C_VL_COUNT; j++) { 12296 snprintf(name, C_MAX_NAME, "%s%d", 12297 port_cntrs[i].name, vl_from_idx(j)); 12298 memcpy(p, name, strlen(name)); 12299 p += strlen(name); 12300 12301 /* Counter is 32 bits */ 12302 if (port_cntrs[i].flags & CNTR_32BIT) { 12303 memcpy(p, bit_type_32, bit_type_32_sz); 12304 p += bit_type_32_sz; 12305 } 12306 12307 *p++ = '\n'; 12308 } 12309 } else { 12310 memcpy(p, port_cntrs[i].name, 12311 strlen(port_cntrs[i].name)); 12312 p += strlen(port_cntrs[i].name); 12313 12314 /* Counter is 32 bits */ 12315 if (port_cntrs[i].flags & CNTR_32BIT) { 12316 memcpy(p, bit_type_32, bit_type_32_sz); 12317 p += bit_type_32_sz; 12318 } 12319 12320 *p++ = '\n'; 12321 } 12322 } 12323 12324 /* allocate per port storage for counter values */ 12325 ppd = (struct hfi1_pportdata *)(dd + 1); 12326 for (i = 0; i < dd->num_pports; i++, ppd++) { 12327 ppd->cntrs = kcalloc(dd->nportcntrs, sizeof(u64), GFP_KERNEL); 12328 if (!ppd->cntrs) 12329 goto bail; 12330 12331 ppd->scntrs = kcalloc(dd->nportcntrs, sizeof(u64), GFP_KERNEL); 12332 if (!ppd->scntrs) 12333 goto bail; 12334 } 12335 12336 /* CPU counters need to be allocated and zeroed */ 12337 if (init_cpu_counters(dd)) 12338 goto bail; 12339 12340 mod_timer(&dd->synth_stats_timer, jiffies + HZ * SYNTH_CNT_TIME); 12341 return 0; 12342 bail: 12343 free_cntrs(dd); 12344 return -ENOMEM; 12345 } 12346 12347 static u32 chip_to_opa_lstate(struct hfi1_devdata *dd, u32 chip_lstate) 12348 { 12349 switch (chip_lstate) { 12350 default: 12351 dd_dev_err(dd, 12352 "Unknown logical state 0x%x, reporting IB_PORT_DOWN\n", 12353 chip_lstate); 12354 /* fall through */ 12355 case LSTATE_DOWN: 12356 return IB_PORT_DOWN; 12357 case LSTATE_INIT: 12358 return IB_PORT_INIT; 12359 case LSTATE_ARMED: 12360 return IB_PORT_ARMED; 12361 case LSTATE_ACTIVE: 12362 return IB_PORT_ACTIVE; 12363 } 12364 } 12365 12366 u32 chip_to_opa_pstate(struct hfi1_devdata *dd, u32 chip_pstate) 12367 { 12368 /* look at the HFI meta-states only */ 12369 switch (chip_pstate & 0xf0) { 12370 default: 12371 dd_dev_err(dd, "Unexpected chip physical state of 0x%x\n", 12372 chip_pstate); 12373 /* fall through */ 12374 case PLS_DISABLED: 12375 return IB_PORTPHYSSTATE_DISABLED; 12376 case PLS_OFFLINE: 12377 return OPA_PORTPHYSSTATE_OFFLINE; 12378 case PLS_POLLING: 12379 return IB_PORTPHYSSTATE_POLLING; 12380 case PLS_CONFIGPHY: 12381 return IB_PORTPHYSSTATE_TRAINING; 12382 case PLS_LINKUP: 12383 return IB_PORTPHYSSTATE_LINKUP; 12384 case PLS_PHYTEST: 12385 return IB_PORTPHYSSTATE_PHY_TEST; 12386 } 12387 } 12388 12389 /* return the OPA port logical state name */ 12390 const char *opa_lstate_name(u32 lstate) 12391 { 12392 static const char * const port_logical_names[] = { 12393 "PORT_NOP", 12394 "PORT_DOWN", 12395 "PORT_INIT", 12396 "PORT_ARMED", 12397 "PORT_ACTIVE", 12398 "PORT_ACTIVE_DEFER", 12399 }; 12400 if (lstate < ARRAY_SIZE(port_logical_names)) 12401 return port_logical_names[lstate]; 12402 return "unknown"; 12403 } 12404 12405 /* return the OPA port physical state name */ 12406 const char *opa_pstate_name(u32 pstate) 12407 { 12408 static const char * const port_physical_names[] = { 12409 "PHYS_NOP", 12410 "reserved1", 12411 "PHYS_POLL", 12412 "PHYS_DISABLED", 12413 "PHYS_TRAINING", 12414 "PHYS_LINKUP", 12415 "PHYS_LINK_ERR_RECOVER", 12416 "PHYS_PHY_TEST", 12417 "reserved8", 12418 "PHYS_OFFLINE", 12419 "PHYS_GANGED", 12420 "PHYS_TEST", 12421 }; 12422 if (pstate < ARRAY_SIZE(port_physical_names)) 12423 return port_physical_names[pstate]; 12424 return "unknown"; 12425 } 12426 12427 /* 12428 * Read the hardware link state and set the driver's cached value of it. 12429 * Return the (new) current value. 12430 */ 12431 u32 get_logical_state(struct hfi1_pportdata *ppd) 12432 { 12433 u32 new_state; 12434 12435 new_state = chip_to_opa_lstate(ppd->dd, read_logical_state(ppd->dd)); 12436 if (new_state != ppd->lstate) { 12437 dd_dev_info(ppd->dd, "logical state changed to %s (0x%x)\n", 12438 opa_lstate_name(new_state), new_state); 12439 ppd->lstate = new_state; 12440 } 12441 /* 12442 * Set port status flags in the page mapped into userspace 12443 * memory. Do it here to ensure a reliable state - this is 12444 * the only function called by all state handling code. 12445 * Always set the flags due to the fact that the cache value 12446 * might have been changed explicitly outside of this 12447 * function. 12448 */ 12449 if (ppd->statusp) { 12450 switch (ppd->lstate) { 12451 case IB_PORT_DOWN: 12452 case IB_PORT_INIT: 12453 *ppd->statusp &= ~(HFI1_STATUS_IB_CONF | 12454 HFI1_STATUS_IB_READY); 12455 break; 12456 case IB_PORT_ARMED: 12457 *ppd->statusp |= HFI1_STATUS_IB_CONF; 12458 break; 12459 case IB_PORT_ACTIVE: 12460 *ppd->statusp |= HFI1_STATUS_IB_READY; 12461 break; 12462 } 12463 } 12464 return ppd->lstate; 12465 } 12466 12467 /** 12468 * wait_logical_linkstate - wait for an IB link state change to occur 12469 * @ppd: port device 12470 * @state: the state to wait for 12471 * @msecs: the number of milliseconds to wait 12472 * 12473 * Wait up to msecs milliseconds for IB link state change to occur. 12474 * For now, take the easy polling route. 12475 * Returns 0 if state reached, otherwise -ETIMEDOUT. 12476 */ 12477 static int wait_logical_linkstate(struct hfi1_pportdata *ppd, u32 state, 12478 int msecs) 12479 { 12480 unsigned long timeout; 12481 12482 timeout = jiffies + msecs_to_jiffies(msecs); 12483 while (1) { 12484 if (get_logical_state(ppd) == state) 12485 return 0; 12486 if (time_after(jiffies, timeout)) 12487 break; 12488 msleep(20); 12489 } 12490 dd_dev_err(ppd->dd, "timeout waiting for link state 0x%x\n", state); 12491 12492 return -ETIMEDOUT; 12493 } 12494 12495 u8 hfi1_ibphys_portstate(struct hfi1_pportdata *ppd) 12496 { 12497 u32 pstate; 12498 u32 ib_pstate; 12499 12500 pstate = read_physical_state(ppd->dd); 12501 ib_pstate = chip_to_opa_pstate(ppd->dd, pstate); 12502 if (ppd->last_pstate != ib_pstate) { 12503 dd_dev_info(ppd->dd, 12504 "%s: physical state changed to %s (0x%x), phy 0x%x\n", 12505 __func__, opa_pstate_name(ib_pstate), ib_pstate, 12506 pstate); 12507 ppd->last_pstate = ib_pstate; 12508 } 12509 return ib_pstate; 12510 } 12511 12512 #define CLEAR_STATIC_RATE_CONTROL_SMASK(r) \ 12513 (r &= ~SEND_CTXT_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK) 12514 12515 #define SET_STATIC_RATE_CONTROL_SMASK(r) \ 12516 (r |= SEND_CTXT_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK) 12517 12518 int hfi1_init_ctxt(struct send_context *sc) 12519 { 12520 if (sc) { 12521 struct hfi1_devdata *dd = sc->dd; 12522 u64 reg; 12523 u8 set = (sc->type == SC_USER ? 12524 HFI1_CAP_IS_USET(STATIC_RATE_CTRL) : 12525 HFI1_CAP_IS_KSET(STATIC_RATE_CTRL)); 12526 reg = read_kctxt_csr(dd, sc->hw_context, 12527 SEND_CTXT_CHECK_ENABLE); 12528 if (set) 12529 CLEAR_STATIC_RATE_CONTROL_SMASK(reg); 12530 else 12531 SET_STATIC_RATE_CONTROL_SMASK(reg); 12532 write_kctxt_csr(dd, sc->hw_context, 12533 SEND_CTXT_CHECK_ENABLE, reg); 12534 } 12535 return 0; 12536 } 12537 12538 int hfi1_tempsense_rd(struct hfi1_devdata *dd, struct hfi1_temp *temp) 12539 { 12540 int ret = 0; 12541 u64 reg; 12542 12543 if (dd->icode != ICODE_RTL_SILICON) { 12544 if (HFI1_CAP_IS_KSET(PRINT_UNIMPL)) 12545 dd_dev_info(dd, "%s: tempsense not supported by HW\n", 12546 __func__); 12547 return -EINVAL; 12548 } 12549 reg = read_csr(dd, ASIC_STS_THERM); 12550 temp->curr = ((reg >> ASIC_STS_THERM_CURR_TEMP_SHIFT) & 12551 ASIC_STS_THERM_CURR_TEMP_MASK); 12552 temp->lo_lim = ((reg >> ASIC_STS_THERM_LO_TEMP_SHIFT) & 12553 ASIC_STS_THERM_LO_TEMP_MASK); 12554 temp->hi_lim = ((reg >> ASIC_STS_THERM_HI_TEMP_SHIFT) & 12555 ASIC_STS_THERM_HI_TEMP_MASK); 12556 temp->crit_lim = ((reg >> ASIC_STS_THERM_CRIT_TEMP_SHIFT) & 12557 ASIC_STS_THERM_CRIT_TEMP_MASK); 12558 /* triggers is a 3-bit value - 1 bit per trigger. */ 12559 temp->triggers = (u8)((reg >> ASIC_STS_THERM_LOW_SHIFT) & 0x7); 12560 12561 return ret; 12562 } 12563 12564 /* ========================================================================= */ 12565 12566 /* 12567 * Enable/disable chip from delivering interrupts. 12568 */ 12569 void set_intr_state(struct hfi1_devdata *dd, u32 enable) 12570 { 12571 int i; 12572 12573 /* 12574 * In HFI, the mask needs to be 1 to allow interrupts. 12575 */ 12576 if (enable) { 12577 /* enable all interrupts */ 12578 for (i = 0; i < CCE_NUM_INT_CSRS; i++) 12579 write_csr(dd, CCE_INT_MASK + (8 * i), ~(u64)0); 12580 12581 init_qsfp_int(dd); 12582 } else { 12583 for (i = 0; i < CCE_NUM_INT_CSRS; i++) 12584 write_csr(dd, CCE_INT_MASK + (8 * i), 0ull); 12585 } 12586 } 12587 12588 /* 12589 * Clear all interrupt sources on the chip. 12590 */ 12591 static void clear_all_interrupts(struct hfi1_devdata *dd) 12592 { 12593 int i; 12594 12595 for (i = 0; i < CCE_NUM_INT_CSRS; i++) 12596 write_csr(dd, CCE_INT_CLEAR + (8 * i), ~(u64)0); 12597 12598 write_csr(dd, CCE_ERR_CLEAR, ~(u64)0); 12599 write_csr(dd, MISC_ERR_CLEAR, ~(u64)0); 12600 write_csr(dd, RCV_ERR_CLEAR, ~(u64)0); 12601 write_csr(dd, SEND_ERR_CLEAR, ~(u64)0); 12602 write_csr(dd, SEND_PIO_ERR_CLEAR, ~(u64)0); 12603 write_csr(dd, SEND_DMA_ERR_CLEAR, ~(u64)0); 12604 write_csr(dd, SEND_EGRESS_ERR_CLEAR, ~(u64)0); 12605 for (i = 0; i < dd->chip_send_contexts; i++) 12606 write_kctxt_csr(dd, i, SEND_CTXT_ERR_CLEAR, ~(u64)0); 12607 for (i = 0; i < dd->chip_sdma_engines; i++) 12608 write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_CLEAR, ~(u64)0); 12609 12610 write_csr(dd, DCC_ERR_FLG_CLR, ~(u64)0); 12611 write_csr(dd, DC_LCB_ERR_CLR, ~(u64)0); 12612 write_csr(dd, DC_DC8051_ERR_CLR, ~(u64)0); 12613 } 12614 12615 /* Move to pcie.c? */ 12616 static void disable_intx(struct pci_dev *pdev) 12617 { 12618 pci_intx(pdev, 0); 12619 } 12620 12621 static void clean_up_interrupts(struct hfi1_devdata *dd) 12622 { 12623 int i; 12624 12625 /* remove irqs - must happen before disabling/turning off */ 12626 if (dd->num_msix_entries) { 12627 /* MSI-X */ 12628 struct hfi1_msix_entry *me = dd->msix_entries; 12629 12630 for (i = 0; i < dd->num_msix_entries; i++, me++) { 12631 if (!me->arg) /* => no irq, no affinity */ 12632 continue; 12633 hfi1_put_irq_affinity(dd, &dd->msix_entries[i]); 12634 free_irq(me->msix.vector, me->arg); 12635 } 12636 } else { 12637 /* INTx */ 12638 if (dd->requested_intx_irq) { 12639 free_irq(dd->pcidev->irq, dd); 12640 dd->requested_intx_irq = 0; 12641 } 12642 } 12643 12644 /* turn off interrupts */ 12645 if (dd->num_msix_entries) { 12646 /* MSI-X */ 12647 pci_disable_msix(dd->pcidev); 12648 } else { 12649 /* INTx */ 12650 disable_intx(dd->pcidev); 12651 } 12652 12653 /* clean structures */ 12654 kfree(dd->msix_entries); 12655 dd->msix_entries = NULL; 12656 dd->num_msix_entries = 0; 12657 } 12658 12659 /* 12660 * Remap the interrupt source from the general handler to the given MSI-X 12661 * interrupt. 12662 */ 12663 static void remap_intr(struct hfi1_devdata *dd, int isrc, int msix_intr) 12664 { 12665 u64 reg; 12666 int m, n; 12667 12668 /* clear from the handled mask of the general interrupt */ 12669 m = isrc / 64; 12670 n = isrc % 64; 12671 dd->gi_mask[m] &= ~((u64)1 << n); 12672 12673 /* direct the chip source to the given MSI-X interrupt */ 12674 m = isrc / 8; 12675 n = isrc % 8; 12676 reg = read_csr(dd, CCE_INT_MAP + (8 * m)); 12677 reg &= ~((u64)0xff << (8 * n)); 12678 reg |= ((u64)msix_intr & 0xff) << (8 * n); 12679 write_csr(dd, CCE_INT_MAP + (8 * m), reg); 12680 } 12681 12682 static void remap_sdma_interrupts(struct hfi1_devdata *dd, 12683 int engine, int msix_intr) 12684 { 12685 /* 12686 * SDMA engine interrupt sources grouped by type, rather than 12687 * engine. Per-engine interrupts are as follows: 12688 * SDMA 12689 * SDMAProgress 12690 * SDMAIdle 12691 */ 12692 remap_intr(dd, IS_SDMA_START + 0 * TXE_NUM_SDMA_ENGINES + engine, 12693 msix_intr); 12694 remap_intr(dd, IS_SDMA_START + 1 * TXE_NUM_SDMA_ENGINES + engine, 12695 msix_intr); 12696 remap_intr(dd, IS_SDMA_START + 2 * TXE_NUM_SDMA_ENGINES + engine, 12697 msix_intr); 12698 } 12699 12700 static int request_intx_irq(struct hfi1_devdata *dd) 12701 { 12702 int ret; 12703 12704 snprintf(dd->intx_name, sizeof(dd->intx_name), DRIVER_NAME "_%d", 12705 dd->unit); 12706 ret = request_irq(dd->pcidev->irq, general_interrupt, 12707 IRQF_SHARED, dd->intx_name, dd); 12708 if (ret) 12709 dd_dev_err(dd, "unable to request INTx interrupt, err %d\n", 12710 ret); 12711 else 12712 dd->requested_intx_irq = 1; 12713 return ret; 12714 } 12715 12716 static int request_msix_irqs(struct hfi1_devdata *dd) 12717 { 12718 int first_general, last_general; 12719 int first_sdma, last_sdma; 12720 int first_rx, last_rx; 12721 int i, ret = 0; 12722 12723 /* calculate the ranges we are going to use */ 12724 first_general = 0; 12725 last_general = first_general + 1; 12726 first_sdma = last_general; 12727 last_sdma = first_sdma + dd->num_sdma; 12728 first_rx = last_sdma; 12729 last_rx = first_rx + dd->n_krcv_queues; 12730 12731 /* 12732 * Sanity check - the code expects all SDMA chip source 12733 * interrupts to be in the same CSR, starting at bit 0. Verify 12734 * that this is true by checking the bit location of the start. 12735 */ 12736 BUILD_BUG_ON(IS_SDMA_START % 64); 12737 12738 for (i = 0; i < dd->num_msix_entries; i++) { 12739 struct hfi1_msix_entry *me = &dd->msix_entries[i]; 12740 const char *err_info; 12741 irq_handler_t handler; 12742 irq_handler_t thread = NULL; 12743 void *arg; 12744 int idx; 12745 struct hfi1_ctxtdata *rcd = NULL; 12746 struct sdma_engine *sde = NULL; 12747 12748 /* obtain the arguments to request_irq */ 12749 if (first_general <= i && i < last_general) { 12750 idx = i - first_general; 12751 handler = general_interrupt; 12752 arg = dd; 12753 snprintf(me->name, sizeof(me->name), 12754 DRIVER_NAME "_%d", dd->unit); 12755 err_info = "general"; 12756 me->type = IRQ_GENERAL; 12757 } else if (first_sdma <= i && i < last_sdma) { 12758 idx = i - first_sdma; 12759 sde = &dd->per_sdma[idx]; 12760 handler = sdma_interrupt; 12761 arg = sde; 12762 snprintf(me->name, sizeof(me->name), 12763 DRIVER_NAME "_%d sdma%d", dd->unit, idx); 12764 err_info = "sdma"; 12765 remap_sdma_interrupts(dd, idx, i); 12766 me->type = IRQ_SDMA; 12767 } else if (first_rx <= i && i < last_rx) { 12768 idx = i - first_rx; 12769 rcd = dd->rcd[idx]; 12770 /* no interrupt if no rcd */ 12771 if (!rcd) 12772 continue; 12773 /* 12774 * Set the interrupt register and mask for this 12775 * context's interrupt. 12776 */ 12777 rcd->ireg = (IS_RCVAVAIL_START + idx) / 64; 12778 rcd->imask = ((u64)1) << 12779 ((IS_RCVAVAIL_START + idx) % 64); 12780 handler = receive_context_interrupt; 12781 thread = receive_context_thread; 12782 arg = rcd; 12783 snprintf(me->name, sizeof(me->name), 12784 DRIVER_NAME "_%d kctxt%d", dd->unit, idx); 12785 err_info = "receive context"; 12786 remap_intr(dd, IS_RCVAVAIL_START + idx, i); 12787 me->type = IRQ_RCVCTXT; 12788 } else { 12789 /* not in our expected range - complain, then 12790 * ignore it 12791 */ 12792 dd_dev_err(dd, 12793 "Unexpected extra MSI-X interrupt %d\n", i); 12794 continue; 12795 } 12796 /* no argument, no interrupt */ 12797 if (!arg) 12798 continue; 12799 /* make sure the name is terminated */ 12800 me->name[sizeof(me->name) - 1] = 0; 12801 12802 ret = request_threaded_irq(me->msix.vector, handler, thread, 0, 12803 me->name, arg); 12804 if (ret) { 12805 dd_dev_err(dd, 12806 "unable to allocate %s interrupt, vector %d, index %d, err %d\n", 12807 err_info, me->msix.vector, idx, ret); 12808 return ret; 12809 } 12810 /* 12811 * assign arg after request_irq call, so it will be 12812 * cleaned up 12813 */ 12814 me->arg = arg; 12815 12816 ret = hfi1_get_irq_affinity(dd, me); 12817 if (ret) 12818 dd_dev_err(dd, 12819 "unable to pin IRQ %d\n", ret); 12820 } 12821 12822 return ret; 12823 } 12824 12825 /* 12826 * Set the general handler to accept all interrupts, remap all 12827 * chip interrupts back to MSI-X 0. 12828 */ 12829 static void reset_interrupts(struct hfi1_devdata *dd) 12830 { 12831 int i; 12832 12833 /* all interrupts handled by the general handler */ 12834 for (i = 0; i < CCE_NUM_INT_CSRS; i++) 12835 dd->gi_mask[i] = ~(u64)0; 12836 12837 /* all chip interrupts map to MSI-X 0 */ 12838 for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++) 12839 write_csr(dd, CCE_INT_MAP + (8 * i), 0); 12840 } 12841 12842 static int set_up_interrupts(struct hfi1_devdata *dd) 12843 { 12844 struct hfi1_msix_entry *entries; 12845 u32 total, request; 12846 int i, ret; 12847 int single_interrupt = 0; /* we expect to have all the interrupts */ 12848 12849 /* 12850 * Interrupt count: 12851 * 1 general, "slow path" interrupt (includes the SDMA engines 12852 * slow source, SDMACleanupDone) 12853 * N interrupts - one per used SDMA engine 12854 * M interrupt - one per kernel receive context 12855 */ 12856 total = 1 + dd->num_sdma + dd->n_krcv_queues; 12857 12858 entries = kcalloc(total, sizeof(*entries), GFP_KERNEL); 12859 if (!entries) { 12860 ret = -ENOMEM; 12861 goto fail; 12862 } 12863 /* 1-1 MSI-X entry assignment */ 12864 for (i = 0; i < total; i++) 12865 entries[i].msix.entry = i; 12866 12867 /* ask for MSI-X interrupts */ 12868 request = total; 12869 request_msix(dd, &request, entries); 12870 12871 if (request == 0) { 12872 /* using INTx */ 12873 /* dd->num_msix_entries already zero */ 12874 kfree(entries); 12875 single_interrupt = 1; 12876 dd_dev_err(dd, "MSI-X failed, using INTx interrupts\n"); 12877 } else { 12878 /* using MSI-X */ 12879 dd->num_msix_entries = request; 12880 dd->msix_entries = entries; 12881 12882 if (request != total) { 12883 /* using MSI-X, with reduced interrupts */ 12884 dd_dev_err( 12885 dd, 12886 "cannot handle reduced interrupt case, want %u, got %u\n", 12887 total, request); 12888 ret = -EINVAL; 12889 goto fail; 12890 } 12891 dd_dev_info(dd, "%u MSI-X interrupts allocated\n", total); 12892 } 12893 12894 /* mask all interrupts */ 12895 set_intr_state(dd, 0); 12896 /* clear all pending interrupts */ 12897 clear_all_interrupts(dd); 12898 12899 /* reset general handler mask, chip MSI-X mappings */ 12900 reset_interrupts(dd); 12901 12902 if (single_interrupt) 12903 ret = request_intx_irq(dd); 12904 else 12905 ret = request_msix_irqs(dd); 12906 if (ret) 12907 goto fail; 12908 12909 return 0; 12910 12911 fail: 12912 clean_up_interrupts(dd); 12913 return ret; 12914 } 12915 12916 /* 12917 * Set up context values in dd. Sets: 12918 * 12919 * num_rcv_contexts - number of contexts being used 12920 * n_krcv_queues - number of kernel contexts 12921 * first_user_ctxt - first non-kernel context in array of contexts 12922 * freectxts - number of free user contexts 12923 * num_send_contexts - number of PIO send contexts being used 12924 */ 12925 static int set_up_context_variables(struct hfi1_devdata *dd) 12926 { 12927 unsigned long num_kernel_contexts; 12928 int total_contexts; 12929 int ret; 12930 unsigned ngroups; 12931 int qos_rmt_count; 12932 int user_rmt_reduced; 12933 12934 /* 12935 * Kernel receive contexts: 12936 * - Context 0 - control context (VL15/multicast/error) 12937 * - Context 1 - first kernel context 12938 * - Context 2 - second kernel context 12939 * ... 12940 */ 12941 if (n_krcvqs) 12942 /* 12943 * n_krcvqs is the sum of module parameter kernel receive 12944 * contexts, krcvqs[]. It does not include the control 12945 * context, so add that. 12946 */ 12947 num_kernel_contexts = n_krcvqs + 1; 12948 else 12949 num_kernel_contexts = DEFAULT_KRCVQS + 1; 12950 /* 12951 * Every kernel receive context needs an ACK send context. 12952 * one send context is allocated for each VL{0-7} and VL15 12953 */ 12954 if (num_kernel_contexts > (dd->chip_send_contexts - num_vls - 1)) { 12955 dd_dev_err(dd, 12956 "Reducing # kernel rcv contexts to: %d, from %lu\n", 12957 (int)(dd->chip_send_contexts - num_vls - 1), 12958 num_kernel_contexts); 12959 num_kernel_contexts = dd->chip_send_contexts - num_vls - 1; 12960 } 12961 /* 12962 * User contexts: 12963 * - default to 1 user context per real (non-HT) CPU core if 12964 * num_user_contexts is negative 12965 */ 12966 if (num_user_contexts < 0) 12967 num_user_contexts = 12968 cpumask_weight(&node_affinity.real_cpu_mask); 12969 12970 total_contexts = num_kernel_contexts + num_user_contexts; 12971 12972 /* 12973 * Adjust the counts given a global max. 12974 */ 12975 if (total_contexts > dd->chip_rcv_contexts) { 12976 dd_dev_err(dd, 12977 "Reducing # user receive contexts to: %d, from %d\n", 12978 (int)(dd->chip_rcv_contexts - num_kernel_contexts), 12979 (int)num_user_contexts); 12980 num_user_contexts = dd->chip_rcv_contexts - num_kernel_contexts; 12981 /* recalculate */ 12982 total_contexts = num_kernel_contexts + num_user_contexts; 12983 } 12984 12985 /* each user context requires an entry in the RMT */ 12986 qos_rmt_count = qos_rmt_entries(dd, NULL, NULL); 12987 if (qos_rmt_count + num_user_contexts > NUM_MAP_ENTRIES) { 12988 user_rmt_reduced = NUM_MAP_ENTRIES - qos_rmt_count; 12989 dd_dev_err(dd, 12990 "RMT size is reducing the number of user receive contexts from %d to %d\n", 12991 (int)num_user_contexts, 12992 user_rmt_reduced); 12993 /* recalculate */ 12994 num_user_contexts = user_rmt_reduced; 12995 total_contexts = num_kernel_contexts + num_user_contexts; 12996 } 12997 12998 /* the first N are kernel contexts, the rest are user contexts */ 12999 dd->num_rcv_contexts = total_contexts; 13000 dd->n_krcv_queues = num_kernel_contexts; 13001 dd->first_user_ctxt = num_kernel_contexts; 13002 dd->num_user_contexts = num_user_contexts; 13003 dd->freectxts = num_user_contexts; 13004 dd_dev_info(dd, 13005 "rcv contexts: chip %d, used %d (kernel %d, user %d)\n", 13006 (int)dd->chip_rcv_contexts, 13007 (int)dd->num_rcv_contexts, 13008 (int)dd->n_krcv_queues, 13009 (int)dd->num_rcv_contexts - dd->n_krcv_queues); 13010 13011 /* 13012 * Receive array allocation: 13013 * All RcvArray entries are divided into groups of 8. This 13014 * is required by the hardware and will speed up writes to 13015 * consecutive entries by using write-combining of the entire 13016 * cacheline. 13017 * 13018 * The number of groups are evenly divided among all contexts. 13019 * any left over groups will be given to the first N user 13020 * contexts. 13021 */ 13022 dd->rcv_entries.group_size = RCV_INCREMENT; 13023 ngroups = dd->chip_rcv_array_count / dd->rcv_entries.group_size; 13024 dd->rcv_entries.ngroups = ngroups / dd->num_rcv_contexts; 13025 dd->rcv_entries.nctxt_extra = ngroups - 13026 (dd->num_rcv_contexts * dd->rcv_entries.ngroups); 13027 dd_dev_info(dd, "RcvArray groups %u, ctxts extra %u\n", 13028 dd->rcv_entries.ngroups, 13029 dd->rcv_entries.nctxt_extra); 13030 if (dd->rcv_entries.ngroups * dd->rcv_entries.group_size > 13031 MAX_EAGER_ENTRIES * 2) { 13032 dd->rcv_entries.ngroups = (MAX_EAGER_ENTRIES * 2) / 13033 dd->rcv_entries.group_size; 13034 dd_dev_info(dd, 13035 "RcvArray group count too high, change to %u\n", 13036 dd->rcv_entries.ngroups); 13037 dd->rcv_entries.nctxt_extra = 0; 13038 } 13039 /* 13040 * PIO send contexts 13041 */ 13042 ret = init_sc_pools_and_sizes(dd); 13043 if (ret >= 0) { /* success */ 13044 dd->num_send_contexts = ret; 13045 dd_dev_info( 13046 dd, 13047 "send contexts: chip %d, used %d (kernel %d, ack %d, user %d, vl15 %d)\n", 13048 dd->chip_send_contexts, 13049 dd->num_send_contexts, 13050 dd->sc_sizes[SC_KERNEL].count, 13051 dd->sc_sizes[SC_ACK].count, 13052 dd->sc_sizes[SC_USER].count, 13053 dd->sc_sizes[SC_VL15].count); 13054 ret = 0; /* success */ 13055 } 13056 13057 return ret; 13058 } 13059 13060 /* 13061 * Set the device/port partition key table. The MAD code 13062 * will ensure that, at least, the partial management 13063 * partition key is present in the table. 13064 */ 13065 static void set_partition_keys(struct hfi1_pportdata *ppd) 13066 { 13067 struct hfi1_devdata *dd = ppd->dd; 13068 u64 reg = 0; 13069 int i; 13070 13071 dd_dev_info(dd, "Setting partition keys\n"); 13072 for (i = 0; i < hfi1_get_npkeys(dd); i++) { 13073 reg |= (ppd->pkeys[i] & 13074 RCV_PARTITION_KEY_PARTITION_KEY_A_MASK) << 13075 ((i % 4) * 13076 RCV_PARTITION_KEY_PARTITION_KEY_B_SHIFT); 13077 /* Each register holds 4 PKey values. */ 13078 if ((i % 4) == 3) { 13079 write_csr(dd, RCV_PARTITION_KEY + 13080 ((i - 3) * 2), reg); 13081 reg = 0; 13082 } 13083 } 13084 13085 /* Always enable HW pkeys check when pkeys table is set */ 13086 add_rcvctrl(dd, RCV_CTRL_RCV_PARTITION_KEY_ENABLE_SMASK); 13087 } 13088 13089 /* 13090 * These CSRs and memories are uninitialized on reset and must be 13091 * written before reading to set the ECC/parity bits. 13092 * 13093 * NOTE: All user context CSRs that are not mmaped write-only 13094 * (e.g. the TID flows) must be initialized even if the driver never 13095 * reads them. 13096 */ 13097 static void write_uninitialized_csrs_and_memories(struct hfi1_devdata *dd) 13098 { 13099 int i, j; 13100 13101 /* CceIntMap */ 13102 for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++) 13103 write_csr(dd, CCE_INT_MAP + (8 * i), 0); 13104 13105 /* SendCtxtCreditReturnAddr */ 13106 for (i = 0; i < dd->chip_send_contexts; i++) 13107 write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_RETURN_ADDR, 0); 13108 13109 /* PIO Send buffers */ 13110 /* SDMA Send buffers */ 13111 /* 13112 * These are not normally read, and (presently) have no method 13113 * to be read, so are not pre-initialized 13114 */ 13115 13116 /* RcvHdrAddr */ 13117 /* RcvHdrTailAddr */ 13118 /* RcvTidFlowTable */ 13119 for (i = 0; i < dd->chip_rcv_contexts; i++) { 13120 write_kctxt_csr(dd, i, RCV_HDR_ADDR, 0); 13121 write_kctxt_csr(dd, i, RCV_HDR_TAIL_ADDR, 0); 13122 for (j = 0; j < RXE_NUM_TID_FLOWS; j++) 13123 write_uctxt_csr(dd, i, RCV_TID_FLOW_TABLE + (8 * j), 0); 13124 } 13125 13126 /* RcvArray */ 13127 for (i = 0; i < dd->chip_rcv_array_count; i++) 13128 write_csr(dd, RCV_ARRAY + (8 * i), 13129 RCV_ARRAY_RT_WRITE_ENABLE_SMASK); 13130 13131 /* RcvQPMapTable */ 13132 for (i = 0; i < 32; i++) 13133 write_csr(dd, RCV_QP_MAP_TABLE + (8 * i), 0); 13134 } 13135 13136 /* 13137 * Use the ctrl_bits in CceCtrl to clear the status_bits in CceStatus. 13138 */ 13139 static void clear_cce_status(struct hfi1_devdata *dd, u64 status_bits, 13140 u64 ctrl_bits) 13141 { 13142 unsigned long timeout; 13143 u64 reg; 13144 13145 /* is the condition present? */ 13146 reg = read_csr(dd, CCE_STATUS); 13147 if ((reg & status_bits) == 0) 13148 return; 13149 13150 /* clear the condition */ 13151 write_csr(dd, CCE_CTRL, ctrl_bits); 13152 13153 /* wait for the condition to clear */ 13154 timeout = jiffies + msecs_to_jiffies(CCE_STATUS_TIMEOUT); 13155 while (1) { 13156 reg = read_csr(dd, CCE_STATUS); 13157 if ((reg & status_bits) == 0) 13158 return; 13159 if (time_after(jiffies, timeout)) { 13160 dd_dev_err(dd, 13161 "Timeout waiting for CceStatus to clear bits 0x%llx, remaining 0x%llx\n", 13162 status_bits, reg & status_bits); 13163 return; 13164 } 13165 udelay(1); 13166 } 13167 } 13168 13169 /* set CCE CSRs to chip reset defaults */ 13170 static void reset_cce_csrs(struct hfi1_devdata *dd) 13171 { 13172 int i; 13173 13174 /* CCE_REVISION read-only */ 13175 /* CCE_REVISION2 read-only */ 13176 /* CCE_CTRL - bits clear automatically */ 13177 /* CCE_STATUS read-only, use CceCtrl to clear */ 13178 clear_cce_status(dd, ALL_FROZE, CCE_CTRL_SPC_UNFREEZE_SMASK); 13179 clear_cce_status(dd, ALL_TXE_PAUSE, CCE_CTRL_TXE_RESUME_SMASK); 13180 clear_cce_status(dd, ALL_RXE_PAUSE, CCE_CTRL_RXE_RESUME_SMASK); 13181 for (i = 0; i < CCE_NUM_SCRATCH; i++) 13182 write_csr(dd, CCE_SCRATCH + (8 * i), 0); 13183 /* CCE_ERR_STATUS read-only */ 13184 write_csr(dd, CCE_ERR_MASK, 0); 13185 write_csr(dd, CCE_ERR_CLEAR, ~0ull); 13186 /* CCE_ERR_FORCE leave alone */ 13187 for (i = 0; i < CCE_NUM_32_BIT_COUNTERS; i++) 13188 write_csr(dd, CCE_COUNTER_ARRAY32 + (8 * i), 0); 13189 write_csr(dd, CCE_DC_CTRL, CCE_DC_CTRL_RESETCSR); 13190 /* CCE_PCIE_CTRL leave alone */ 13191 for (i = 0; i < CCE_NUM_MSIX_VECTORS; i++) { 13192 write_csr(dd, CCE_MSIX_TABLE_LOWER + (8 * i), 0); 13193 write_csr(dd, CCE_MSIX_TABLE_UPPER + (8 * i), 13194 CCE_MSIX_TABLE_UPPER_RESETCSR); 13195 } 13196 for (i = 0; i < CCE_NUM_MSIX_PBAS; i++) { 13197 /* CCE_MSIX_PBA read-only */ 13198 write_csr(dd, CCE_MSIX_INT_GRANTED, ~0ull); 13199 write_csr(dd, CCE_MSIX_VEC_CLR_WITHOUT_INT, ~0ull); 13200 } 13201 for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++) 13202 write_csr(dd, CCE_INT_MAP, 0); 13203 for (i = 0; i < CCE_NUM_INT_CSRS; i++) { 13204 /* CCE_INT_STATUS read-only */ 13205 write_csr(dd, CCE_INT_MASK + (8 * i), 0); 13206 write_csr(dd, CCE_INT_CLEAR + (8 * i), ~0ull); 13207 /* CCE_INT_FORCE leave alone */ 13208 /* CCE_INT_BLOCKED read-only */ 13209 } 13210 for (i = 0; i < CCE_NUM_32_BIT_INT_COUNTERS; i++) 13211 write_csr(dd, CCE_INT_COUNTER_ARRAY32 + (8 * i), 0); 13212 } 13213 13214 /* set MISC CSRs to chip reset defaults */ 13215 static void reset_misc_csrs(struct hfi1_devdata *dd) 13216 { 13217 int i; 13218 13219 for (i = 0; i < 32; i++) { 13220 write_csr(dd, MISC_CFG_RSA_R2 + (8 * i), 0); 13221 write_csr(dd, MISC_CFG_RSA_SIGNATURE + (8 * i), 0); 13222 write_csr(dd, MISC_CFG_RSA_MODULUS + (8 * i), 0); 13223 } 13224 /* 13225 * MISC_CFG_SHA_PRELOAD leave alone - always reads 0 and can 13226 * only be written 128-byte chunks 13227 */ 13228 /* init RSA engine to clear lingering errors */ 13229 write_csr(dd, MISC_CFG_RSA_CMD, 1); 13230 write_csr(dd, MISC_CFG_RSA_MU, 0); 13231 write_csr(dd, MISC_CFG_FW_CTRL, 0); 13232 /* MISC_STS_8051_DIGEST read-only */ 13233 /* MISC_STS_SBM_DIGEST read-only */ 13234 /* MISC_STS_PCIE_DIGEST read-only */ 13235 /* MISC_STS_FAB_DIGEST read-only */ 13236 /* MISC_ERR_STATUS read-only */ 13237 write_csr(dd, MISC_ERR_MASK, 0); 13238 write_csr(dd, MISC_ERR_CLEAR, ~0ull); 13239 /* MISC_ERR_FORCE leave alone */ 13240 } 13241 13242 /* set TXE CSRs to chip reset defaults */ 13243 static void reset_txe_csrs(struct hfi1_devdata *dd) 13244 { 13245 int i; 13246 13247 /* 13248 * TXE Kernel CSRs 13249 */ 13250 write_csr(dd, SEND_CTRL, 0); 13251 __cm_reset(dd, 0); /* reset CM internal state */ 13252 /* SEND_CONTEXTS read-only */ 13253 /* SEND_DMA_ENGINES read-only */ 13254 /* SEND_PIO_MEM_SIZE read-only */ 13255 /* SEND_DMA_MEM_SIZE read-only */ 13256 write_csr(dd, SEND_HIGH_PRIORITY_LIMIT, 0); 13257 pio_reset_all(dd); /* SEND_PIO_INIT_CTXT */ 13258 /* SEND_PIO_ERR_STATUS read-only */ 13259 write_csr(dd, SEND_PIO_ERR_MASK, 0); 13260 write_csr(dd, SEND_PIO_ERR_CLEAR, ~0ull); 13261 /* SEND_PIO_ERR_FORCE leave alone */ 13262 /* SEND_DMA_ERR_STATUS read-only */ 13263 write_csr(dd, SEND_DMA_ERR_MASK, 0); 13264 write_csr(dd, SEND_DMA_ERR_CLEAR, ~0ull); 13265 /* SEND_DMA_ERR_FORCE leave alone */ 13266 /* SEND_EGRESS_ERR_STATUS read-only */ 13267 write_csr(dd, SEND_EGRESS_ERR_MASK, 0); 13268 write_csr(dd, SEND_EGRESS_ERR_CLEAR, ~0ull); 13269 /* SEND_EGRESS_ERR_FORCE leave alone */ 13270 write_csr(dd, SEND_BTH_QP, 0); 13271 write_csr(dd, SEND_STATIC_RATE_CONTROL, 0); 13272 write_csr(dd, SEND_SC2VLT0, 0); 13273 write_csr(dd, SEND_SC2VLT1, 0); 13274 write_csr(dd, SEND_SC2VLT2, 0); 13275 write_csr(dd, SEND_SC2VLT3, 0); 13276 write_csr(dd, SEND_LEN_CHECK0, 0); 13277 write_csr(dd, SEND_LEN_CHECK1, 0); 13278 /* SEND_ERR_STATUS read-only */ 13279 write_csr(dd, SEND_ERR_MASK, 0); 13280 write_csr(dd, SEND_ERR_CLEAR, ~0ull); 13281 /* SEND_ERR_FORCE read-only */ 13282 for (i = 0; i < VL_ARB_LOW_PRIO_TABLE_SIZE; i++) 13283 write_csr(dd, SEND_LOW_PRIORITY_LIST + (8 * i), 0); 13284 for (i = 0; i < VL_ARB_HIGH_PRIO_TABLE_SIZE; i++) 13285 write_csr(dd, SEND_HIGH_PRIORITY_LIST + (8 * i), 0); 13286 for (i = 0; i < dd->chip_send_contexts / NUM_CONTEXTS_PER_SET; i++) 13287 write_csr(dd, SEND_CONTEXT_SET_CTRL + (8 * i), 0); 13288 for (i = 0; i < TXE_NUM_32_BIT_COUNTER; i++) 13289 write_csr(dd, SEND_COUNTER_ARRAY32 + (8 * i), 0); 13290 for (i = 0; i < TXE_NUM_64_BIT_COUNTER; i++) 13291 write_csr(dd, SEND_COUNTER_ARRAY64 + (8 * i), 0); 13292 write_csr(dd, SEND_CM_CTRL, SEND_CM_CTRL_RESETCSR); 13293 write_csr(dd, SEND_CM_GLOBAL_CREDIT, SEND_CM_GLOBAL_CREDIT_RESETCSR); 13294 /* SEND_CM_CREDIT_USED_STATUS read-only */ 13295 write_csr(dd, SEND_CM_TIMER_CTRL, 0); 13296 write_csr(dd, SEND_CM_LOCAL_AU_TABLE0_TO3, 0); 13297 write_csr(dd, SEND_CM_LOCAL_AU_TABLE4_TO7, 0); 13298 write_csr(dd, SEND_CM_REMOTE_AU_TABLE0_TO3, 0); 13299 write_csr(dd, SEND_CM_REMOTE_AU_TABLE4_TO7, 0); 13300 for (i = 0; i < TXE_NUM_DATA_VL; i++) 13301 write_csr(dd, SEND_CM_CREDIT_VL + (8 * i), 0); 13302 write_csr(dd, SEND_CM_CREDIT_VL15, 0); 13303 /* SEND_CM_CREDIT_USED_VL read-only */ 13304 /* SEND_CM_CREDIT_USED_VL15 read-only */ 13305 /* SEND_EGRESS_CTXT_STATUS read-only */ 13306 /* SEND_EGRESS_SEND_DMA_STATUS read-only */ 13307 write_csr(dd, SEND_EGRESS_ERR_INFO, ~0ull); 13308 /* SEND_EGRESS_ERR_INFO read-only */ 13309 /* SEND_EGRESS_ERR_SOURCE read-only */ 13310 13311 /* 13312 * TXE Per-Context CSRs 13313 */ 13314 for (i = 0; i < dd->chip_send_contexts; i++) { 13315 write_kctxt_csr(dd, i, SEND_CTXT_CTRL, 0); 13316 write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_CTRL, 0); 13317 write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_RETURN_ADDR, 0); 13318 write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_FORCE, 0); 13319 write_kctxt_csr(dd, i, SEND_CTXT_ERR_MASK, 0); 13320 write_kctxt_csr(dd, i, SEND_CTXT_ERR_CLEAR, ~0ull); 13321 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_ENABLE, 0); 13322 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_VL, 0); 13323 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_JOB_KEY, 0); 13324 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_PARTITION_KEY, 0); 13325 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_SLID, 0); 13326 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_OPCODE, 0); 13327 } 13328 13329 /* 13330 * TXE Per-SDMA CSRs 13331 */ 13332 for (i = 0; i < dd->chip_sdma_engines; i++) { 13333 write_kctxt_csr(dd, i, SEND_DMA_CTRL, 0); 13334 /* SEND_DMA_STATUS read-only */ 13335 write_kctxt_csr(dd, i, SEND_DMA_BASE_ADDR, 0); 13336 write_kctxt_csr(dd, i, SEND_DMA_LEN_GEN, 0); 13337 write_kctxt_csr(dd, i, SEND_DMA_TAIL, 0); 13338 /* SEND_DMA_HEAD read-only */ 13339 write_kctxt_csr(dd, i, SEND_DMA_HEAD_ADDR, 0); 13340 write_kctxt_csr(dd, i, SEND_DMA_PRIORITY_THLD, 0); 13341 /* SEND_DMA_IDLE_CNT read-only */ 13342 write_kctxt_csr(dd, i, SEND_DMA_RELOAD_CNT, 0); 13343 write_kctxt_csr(dd, i, SEND_DMA_DESC_CNT, 0); 13344 /* SEND_DMA_DESC_FETCHED_CNT read-only */ 13345 /* SEND_DMA_ENG_ERR_STATUS read-only */ 13346 write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_MASK, 0); 13347 write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_CLEAR, ~0ull); 13348 /* SEND_DMA_ENG_ERR_FORCE leave alone */ 13349 write_kctxt_csr(dd, i, SEND_DMA_CHECK_ENABLE, 0); 13350 write_kctxt_csr(dd, i, SEND_DMA_CHECK_VL, 0); 13351 write_kctxt_csr(dd, i, SEND_DMA_CHECK_JOB_KEY, 0); 13352 write_kctxt_csr(dd, i, SEND_DMA_CHECK_PARTITION_KEY, 0); 13353 write_kctxt_csr(dd, i, SEND_DMA_CHECK_SLID, 0); 13354 write_kctxt_csr(dd, i, SEND_DMA_CHECK_OPCODE, 0); 13355 write_kctxt_csr(dd, i, SEND_DMA_MEMORY, 0); 13356 } 13357 } 13358 13359 /* 13360 * Expect on entry: 13361 * o Packet ingress is disabled, i.e. RcvCtrl.RcvPortEnable == 0 13362 */ 13363 static void init_rbufs(struct hfi1_devdata *dd) 13364 { 13365 u64 reg; 13366 int count; 13367 13368 /* 13369 * Wait for DMA to stop: RxRbufPktPending and RxPktInProgress are 13370 * clear. 13371 */ 13372 count = 0; 13373 while (1) { 13374 reg = read_csr(dd, RCV_STATUS); 13375 if ((reg & (RCV_STATUS_RX_RBUF_PKT_PENDING_SMASK 13376 | RCV_STATUS_RX_PKT_IN_PROGRESS_SMASK)) == 0) 13377 break; 13378 /* 13379 * Give up after 1ms - maximum wait time. 13380 * 13381 * RBuf size is 136KiB. Slowest possible is PCIe Gen1 x1 at 13382 * 250MB/s bandwidth. Lower rate to 66% for overhead to get: 13383 * 136 KB / (66% * 250MB/s) = 844us 13384 */ 13385 if (count++ > 500) { 13386 dd_dev_err(dd, 13387 "%s: in-progress DMA not clearing: RcvStatus 0x%llx, continuing\n", 13388 __func__, reg); 13389 break; 13390 } 13391 udelay(2); /* do not busy-wait the CSR */ 13392 } 13393 13394 /* start the init - expect RcvCtrl to be 0 */ 13395 write_csr(dd, RCV_CTRL, RCV_CTRL_RX_RBUF_INIT_SMASK); 13396 13397 /* 13398 * Read to force the write of Rcvtrl.RxRbufInit. There is a brief 13399 * period after the write before RcvStatus.RxRbufInitDone is valid. 13400 * The delay in the first run through the loop below is sufficient and 13401 * required before the first read of RcvStatus.RxRbufInintDone. 13402 */ 13403 read_csr(dd, RCV_CTRL); 13404 13405 /* wait for the init to finish */ 13406 count = 0; 13407 while (1) { 13408 /* delay is required first time through - see above */ 13409 udelay(2); /* do not busy-wait the CSR */ 13410 reg = read_csr(dd, RCV_STATUS); 13411 if (reg & (RCV_STATUS_RX_RBUF_INIT_DONE_SMASK)) 13412 break; 13413 13414 /* give up after 100us - slowest possible at 33MHz is 73us */ 13415 if (count++ > 50) { 13416 dd_dev_err(dd, 13417 "%s: RcvStatus.RxRbufInit not set, continuing\n", 13418 __func__); 13419 break; 13420 } 13421 } 13422 } 13423 13424 /* set RXE CSRs to chip reset defaults */ 13425 static void reset_rxe_csrs(struct hfi1_devdata *dd) 13426 { 13427 int i, j; 13428 13429 /* 13430 * RXE Kernel CSRs 13431 */ 13432 write_csr(dd, RCV_CTRL, 0); 13433 init_rbufs(dd); 13434 /* RCV_STATUS read-only */ 13435 /* RCV_CONTEXTS read-only */ 13436 /* RCV_ARRAY_CNT read-only */ 13437 /* RCV_BUF_SIZE read-only */ 13438 write_csr(dd, RCV_BTH_QP, 0); 13439 write_csr(dd, RCV_MULTICAST, 0); 13440 write_csr(dd, RCV_BYPASS, 0); 13441 write_csr(dd, RCV_VL15, 0); 13442 /* this is a clear-down */ 13443 write_csr(dd, RCV_ERR_INFO, 13444 RCV_ERR_INFO_RCV_EXCESS_BUFFER_OVERRUN_SMASK); 13445 /* RCV_ERR_STATUS read-only */ 13446 write_csr(dd, RCV_ERR_MASK, 0); 13447 write_csr(dd, RCV_ERR_CLEAR, ~0ull); 13448 /* RCV_ERR_FORCE leave alone */ 13449 for (i = 0; i < 32; i++) 13450 write_csr(dd, RCV_QP_MAP_TABLE + (8 * i), 0); 13451 for (i = 0; i < 4; i++) 13452 write_csr(dd, RCV_PARTITION_KEY + (8 * i), 0); 13453 for (i = 0; i < RXE_NUM_32_BIT_COUNTERS; i++) 13454 write_csr(dd, RCV_COUNTER_ARRAY32 + (8 * i), 0); 13455 for (i = 0; i < RXE_NUM_64_BIT_COUNTERS; i++) 13456 write_csr(dd, RCV_COUNTER_ARRAY64 + (8 * i), 0); 13457 for (i = 0; i < RXE_NUM_RSM_INSTANCES; i++) { 13458 write_csr(dd, RCV_RSM_CFG + (8 * i), 0); 13459 write_csr(dd, RCV_RSM_SELECT + (8 * i), 0); 13460 write_csr(dd, RCV_RSM_MATCH + (8 * i), 0); 13461 } 13462 for (i = 0; i < 32; i++) 13463 write_csr(dd, RCV_RSM_MAP_TABLE + (8 * i), 0); 13464 13465 /* 13466 * RXE Kernel and User Per-Context CSRs 13467 */ 13468 for (i = 0; i < dd->chip_rcv_contexts; i++) { 13469 /* kernel */ 13470 write_kctxt_csr(dd, i, RCV_CTXT_CTRL, 0); 13471 /* RCV_CTXT_STATUS read-only */ 13472 write_kctxt_csr(dd, i, RCV_EGR_CTRL, 0); 13473 write_kctxt_csr(dd, i, RCV_TID_CTRL, 0); 13474 write_kctxt_csr(dd, i, RCV_KEY_CTRL, 0); 13475 write_kctxt_csr(dd, i, RCV_HDR_ADDR, 0); 13476 write_kctxt_csr(dd, i, RCV_HDR_CNT, 0); 13477 write_kctxt_csr(dd, i, RCV_HDR_ENT_SIZE, 0); 13478 write_kctxt_csr(dd, i, RCV_HDR_SIZE, 0); 13479 write_kctxt_csr(dd, i, RCV_HDR_TAIL_ADDR, 0); 13480 write_kctxt_csr(dd, i, RCV_AVAIL_TIME_OUT, 0); 13481 write_kctxt_csr(dd, i, RCV_HDR_OVFL_CNT, 0); 13482 13483 /* user */ 13484 /* RCV_HDR_TAIL read-only */ 13485 write_uctxt_csr(dd, i, RCV_HDR_HEAD, 0); 13486 /* RCV_EGR_INDEX_TAIL read-only */ 13487 write_uctxt_csr(dd, i, RCV_EGR_INDEX_HEAD, 0); 13488 /* RCV_EGR_OFFSET_TAIL read-only */ 13489 for (j = 0; j < RXE_NUM_TID_FLOWS; j++) { 13490 write_uctxt_csr(dd, i, 13491 RCV_TID_FLOW_TABLE + (8 * j), 0); 13492 } 13493 } 13494 } 13495 13496 /* 13497 * Set sc2vl tables. 13498 * 13499 * They power on to zeros, so to avoid send context errors 13500 * they need to be set: 13501 * 13502 * SC 0-7 -> VL 0-7 (respectively) 13503 * SC 15 -> VL 15 13504 * otherwise 13505 * -> VL 0 13506 */ 13507 static void init_sc2vl_tables(struct hfi1_devdata *dd) 13508 { 13509 int i; 13510 /* init per architecture spec, constrained by hardware capability */ 13511 13512 /* HFI maps sent packets */ 13513 write_csr(dd, SEND_SC2VLT0, SC2VL_VAL( 13514 0, 13515 0, 0, 1, 1, 13516 2, 2, 3, 3, 13517 4, 4, 5, 5, 13518 6, 6, 7, 7)); 13519 write_csr(dd, SEND_SC2VLT1, SC2VL_VAL( 13520 1, 13521 8, 0, 9, 0, 13522 10, 0, 11, 0, 13523 12, 0, 13, 0, 13524 14, 0, 15, 15)); 13525 write_csr(dd, SEND_SC2VLT2, SC2VL_VAL( 13526 2, 13527 16, 0, 17, 0, 13528 18, 0, 19, 0, 13529 20, 0, 21, 0, 13530 22, 0, 23, 0)); 13531 write_csr(dd, SEND_SC2VLT3, SC2VL_VAL( 13532 3, 13533 24, 0, 25, 0, 13534 26, 0, 27, 0, 13535 28, 0, 29, 0, 13536 30, 0, 31, 0)); 13537 13538 /* DC maps received packets */ 13539 write_csr(dd, DCC_CFG_SC_VL_TABLE_15_0, DC_SC_VL_VAL( 13540 15_0, 13541 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 13542 8, 0, 9, 0, 10, 0, 11, 0, 12, 0, 13, 0, 14, 0, 15, 15)); 13543 write_csr(dd, DCC_CFG_SC_VL_TABLE_31_16, DC_SC_VL_VAL( 13544 31_16, 13545 16, 0, 17, 0, 18, 0, 19, 0, 20, 0, 21, 0, 22, 0, 23, 0, 13546 24, 0, 25, 0, 26, 0, 27, 0, 28, 0, 29, 0, 30, 0, 31, 0)); 13547 13548 /* initialize the cached sc2vl values consistently with h/w */ 13549 for (i = 0; i < 32; i++) { 13550 if (i < 8 || i == 15) 13551 *((u8 *)(dd->sc2vl) + i) = (u8)i; 13552 else 13553 *((u8 *)(dd->sc2vl) + i) = 0; 13554 } 13555 } 13556 13557 /* 13558 * Read chip sizes and then reset parts to sane, disabled, values. We cannot 13559 * depend on the chip going through a power-on reset - a driver may be loaded 13560 * and unloaded many times. 13561 * 13562 * Do not write any CSR values to the chip in this routine - there may be 13563 * a reset following the (possible) FLR in this routine. 13564 * 13565 */ 13566 static void init_chip(struct hfi1_devdata *dd) 13567 { 13568 int i; 13569 13570 /* 13571 * Put the HFI CSRs in a known state. 13572 * Combine this with a DC reset. 13573 * 13574 * Stop the device from doing anything while we do a 13575 * reset. We know there are no other active users of 13576 * the device since we are now in charge. Turn off 13577 * off all outbound and inbound traffic and make sure 13578 * the device does not generate any interrupts. 13579 */ 13580 13581 /* disable send contexts and SDMA engines */ 13582 write_csr(dd, SEND_CTRL, 0); 13583 for (i = 0; i < dd->chip_send_contexts; i++) 13584 write_kctxt_csr(dd, i, SEND_CTXT_CTRL, 0); 13585 for (i = 0; i < dd->chip_sdma_engines; i++) 13586 write_kctxt_csr(dd, i, SEND_DMA_CTRL, 0); 13587 /* disable port (turn off RXE inbound traffic) and contexts */ 13588 write_csr(dd, RCV_CTRL, 0); 13589 for (i = 0; i < dd->chip_rcv_contexts; i++) 13590 write_csr(dd, RCV_CTXT_CTRL, 0); 13591 /* mask all interrupt sources */ 13592 for (i = 0; i < CCE_NUM_INT_CSRS; i++) 13593 write_csr(dd, CCE_INT_MASK + (8 * i), 0ull); 13594 13595 /* 13596 * DC Reset: do a full DC reset before the register clear. 13597 * A recommended length of time to hold is one CSR read, 13598 * so reread the CceDcCtrl. Then, hold the DC in reset 13599 * across the clear. 13600 */ 13601 write_csr(dd, CCE_DC_CTRL, CCE_DC_CTRL_DC_RESET_SMASK); 13602 (void)read_csr(dd, CCE_DC_CTRL); 13603 13604 if (use_flr) { 13605 /* 13606 * A FLR will reset the SPC core and part of the PCIe. 13607 * The parts that need to be restored have already been 13608 * saved. 13609 */ 13610 dd_dev_info(dd, "Resetting CSRs with FLR\n"); 13611 13612 /* do the FLR, the DC reset will remain */ 13613 hfi1_pcie_flr(dd); 13614 13615 /* restore command and BARs */ 13616 restore_pci_variables(dd); 13617 13618 if (is_ax(dd)) { 13619 dd_dev_info(dd, "Resetting CSRs with FLR\n"); 13620 hfi1_pcie_flr(dd); 13621 restore_pci_variables(dd); 13622 } 13623 } else { 13624 dd_dev_info(dd, "Resetting CSRs with writes\n"); 13625 reset_cce_csrs(dd); 13626 reset_txe_csrs(dd); 13627 reset_rxe_csrs(dd); 13628 reset_misc_csrs(dd); 13629 } 13630 /* clear the DC reset */ 13631 write_csr(dd, CCE_DC_CTRL, 0); 13632 13633 /* Set the LED off */ 13634 setextled(dd, 0); 13635 13636 /* 13637 * Clear the QSFP reset. 13638 * An FLR enforces a 0 on all out pins. The driver does not touch 13639 * ASIC_QSFPn_OUT otherwise. This leaves RESET_N low and 13640 * anything plugged constantly in reset, if it pays attention 13641 * to RESET_N. 13642 * Prime examples of this are optical cables. Set all pins high. 13643 * I2CCLK and I2CDAT will change per direction, and INT_N and 13644 * MODPRS_N are input only and their value is ignored. 13645 */ 13646 write_csr(dd, ASIC_QSFP1_OUT, 0x1f); 13647 write_csr(dd, ASIC_QSFP2_OUT, 0x1f); 13648 init_chip_resources(dd); 13649 } 13650 13651 static void init_early_variables(struct hfi1_devdata *dd) 13652 { 13653 int i; 13654 13655 /* assign link credit variables */ 13656 dd->vau = CM_VAU; 13657 dd->link_credits = CM_GLOBAL_CREDITS; 13658 if (is_ax(dd)) 13659 dd->link_credits--; 13660 dd->vcu = cu_to_vcu(hfi1_cu); 13661 /* enough room for 8 MAD packets plus header - 17K */ 13662 dd->vl15_init = (8 * (2048 + 128)) / vau_to_au(dd->vau); 13663 if (dd->vl15_init > dd->link_credits) 13664 dd->vl15_init = dd->link_credits; 13665 13666 write_uninitialized_csrs_and_memories(dd); 13667 13668 if (HFI1_CAP_IS_KSET(PKEY_CHECK)) 13669 for (i = 0; i < dd->num_pports; i++) { 13670 struct hfi1_pportdata *ppd = &dd->pport[i]; 13671 13672 set_partition_keys(ppd); 13673 } 13674 init_sc2vl_tables(dd); 13675 } 13676 13677 static void init_kdeth_qp(struct hfi1_devdata *dd) 13678 { 13679 /* user changed the KDETH_QP */ 13680 if (kdeth_qp != 0 && kdeth_qp >= 0xff) { 13681 /* out of range or illegal value */ 13682 dd_dev_err(dd, "Invalid KDETH queue pair prefix, ignoring"); 13683 kdeth_qp = 0; 13684 } 13685 if (kdeth_qp == 0) /* not set, or failed range check */ 13686 kdeth_qp = DEFAULT_KDETH_QP; 13687 13688 write_csr(dd, SEND_BTH_QP, 13689 (kdeth_qp & SEND_BTH_QP_KDETH_QP_MASK) << 13690 SEND_BTH_QP_KDETH_QP_SHIFT); 13691 13692 write_csr(dd, RCV_BTH_QP, 13693 (kdeth_qp & RCV_BTH_QP_KDETH_QP_MASK) << 13694 RCV_BTH_QP_KDETH_QP_SHIFT); 13695 } 13696 13697 /** 13698 * init_qpmap_table 13699 * @dd - device data 13700 * @first_ctxt - first context 13701 * @last_ctxt - first context 13702 * 13703 * This return sets the qpn mapping table that 13704 * is indexed by qpn[8:1]. 13705 * 13706 * The routine will round robin the 256 settings 13707 * from first_ctxt to last_ctxt. 13708 * 13709 * The first/last looks ahead to having specialized 13710 * receive contexts for mgmt and bypass. Normal 13711 * verbs traffic will assumed to be on a range 13712 * of receive contexts. 13713 */ 13714 static void init_qpmap_table(struct hfi1_devdata *dd, 13715 u32 first_ctxt, 13716 u32 last_ctxt) 13717 { 13718 u64 reg = 0; 13719 u64 regno = RCV_QP_MAP_TABLE; 13720 int i; 13721 u64 ctxt = first_ctxt; 13722 13723 for (i = 0; i < 256; i++) { 13724 reg |= ctxt << (8 * (i % 8)); 13725 ctxt++; 13726 if (ctxt > last_ctxt) 13727 ctxt = first_ctxt; 13728 if (i % 8 == 7) { 13729 write_csr(dd, regno, reg); 13730 reg = 0; 13731 regno += 8; 13732 } 13733 } 13734 13735 add_rcvctrl(dd, RCV_CTRL_RCV_QP_MAP_ENABLE_SMASK 13736 | RCV_CTRL_RCV_BYPASS_ENABLE_SMASK); 13737 } 13738 13739 struct rsm_map_table { 13740 u64 map[NUM_MAP_REGS]; 13741 unsigned int used; 13742 }; 13743 13744 struct rsm_rule_data { 13745 u8 offset; 13746 u8 pkt_type; 13747 u32 field1_off; 13748 u32 field2_off; 13749 u32 index1_off; 13750 u32 index1_width; 13751 u32 index2_off; 13752 u32 index2_width; 13753 u32 mask1; 13754 u32 value1; 13755 u32 mask2; 13756 u32 value2; 13757 }; 13758 13759 /* 13760 * Return an initialized RMT map table for users to fill in. OK if it 13761 * returns NULL, indicating no table. 13762 */ 13763 static struct rsm_map_table *alloc_rsm_map_table(struct hfi1_devdata *dd) 13764 { 13765 struct rsm_map_table *rmt; 13766 u8 rxcontext = is_ax(dd) ? 0 : 0xff; /* 0 is default if a0 ver. */ 13767 13768 rmt = kmalloc(sizeof(*rmt), GFP_KERNEL); 13769 if (rmt) { 13770 memset(rmt->map, rxcontext, sizeof(rmt->map)); 13771 rmt->used = 0; 13772 } 13773 13774 return rmt; 13775 } 13776 13777 /* 13778 * Write the final RMT map table to the chip and free the table. OK if 13779 * table is NULL. 13780 */ 13781 static void complete_rsm_map_table(struct hfi1_devdata *dd, 13782 struct rsm_map_table *rmt) 13783 { 13784 int i; 13785 13786 if (rmt) { 13787 /* write table to chip */ 13788 for (i = 0; i < NUM_MAP_REGS; i++) 13789 write_csr(dd, RCV_RSM_MAP_TABLE + (8 * i), rmt->map[i]); 13790 13791 /* enable RSM */ 13792 add_rcvctrl(dd, RCV_CTRL_RCV_RSM_ENABLE_SMASK); 13793 } 13794 } 13795 13796 /* 13797 * Add a receive side mapping rule. 13798 */ 13799 static void add_rsm_rule(struct hfi1_devdata *dd, u8 rule_index, 13800 struct rsm_rule_data *rrd) 13801 { 13802 write_csr(dd, RCV_RSM_CFG + (8 * rule_index), 13803 (u64)rrd->offset << RCV_RSM_CFG_OFFSET_SHIFT | 13804 1ull << rule_index | /* enable bit */ 13805 (u64)rrd->pkt_type << RCV_RSM_CFG_PACKET_TYPE_SHIFT); 13806 write_csr(dd, RCV_RSM_SELECT + (8 * rule_index), 13807 (u64)rrd->field1_off << RCV_RSM_SELECT_FIELD1_OFFSET_SHIFT | 13808 (u64)rrd->field2_off << RCV_RSM_SELECT_FIELD2_OFFSET_SHIFT | 13809 (u64)rrd->index1_off << RCV_RSM_SELECT_INDEX1_OFFSET_SHIFT | 13810 (u64)rrd->index1_width << RCV_RSM_SELECT_INDEX1_WIDTH_SHIFT | 13811 (u64)rrd->index2_off << RCV_RSM_SELECT_INDEX2_OFFSET_SHIFT | 13812 (u64)rrd->index2_width << RCV_RSM_SELECT_INDEX2_WIDTH_SHIFT); 13813 write_csr(dd, RCV_RSM_MATCH + (8 * rule_index), 13814 (u64)rrd->mask1 << RCV_RSM_MATCH_MASK1_SHIFT | 13815 (u64)rrd->value1 << RCV_RSM_MATCH_VALUE1_SHIFT | 13816 (u64)rrd->mask2 << RCV_RSM_MATCH_MASK2_SHIFT | 13817 (u64)rrd->value2 << RCV_RSM_MATCH_VALUE2_SHIFT); 13818 } 13819 13820 /* return the number of RSM map table entries that will be used for QOS */ 13821 static int qos_rmt_entries(struct hfi1_devdata *dd, unsigned int *mp, 13822 unsigned int *np) 13823 { 13824 int i; 13825 unsigned int m, n; 13826 u8 max_by_vl = 0; 13827 13828 /* is QOS active at all? */ 13829 if (dd->n_krcv_queues <= MIN_KERNEL_KCTXTS || 13830 num_vls == 1 || 13831 krcvqsset <= 1) 13832 goto no_qos; 13833 13834 /* determine bits for qpn */ 13835 for (i = 0; i < min_t(unsigned int, num_vls, krcvqsset); i++) 13836 if (krcvqs[i] > max_by_vl) 13837 max_by_vl = krcvqs[i]; 13838 if (max_by_vl > 32) 13839 goto no_qos; 13840 m = ilog2(__roundup_pow_of_two(max_by_vl)); 13841 13842 /* determine bits for vl */ 13843 n = ilog2(__roundup_pow_of_two(num_vls)); 13844 13845 /* reject if too much is used */ 13846 if ((m + n) > 7) 13847 goto no_qos; 13848 13849 if (mp) 13850 *mp = m; 13851 if (np) 13852 *np = n; 13853 13854 return 1 << (m + n); 13855 13856 no_qos: 13857 if (mp) 13858 *mp = 0; 13859 if (np) 13860 *np = 0; 13861 return 0; 13862 } 13863 13864 /** 13865 * init_qos - init RX qos 13866 * @dd - device data 13867 * @rmt - RSM map table 13868 * 13869 * This routine initializes Rule 0 and the RSM map table to implement 13870 * quality of service (qos). 13871 * 13872 * If all of the limit tests succeed, qos is applied based on the array 13873 * interpretation of krcvqs where entry 0 is VL0. 13874 * 13875 * The number of vl bits (n) and the number of qpn bits (m) are computed to 13876 * feed both the RSM map table and the single rule. 13877 */ 13878 static void init_qos(struct hfi1_devdata *dd, struct rsm_map_table *rmt) 13879 { 13880 struct rsm_rule_data rrd; 13881 unsigned qpns_per_vl, ctxt, i, qpn, n = 1, m; 13882 unsigned int rmt_entries; 13883 u64 reg; 13884 13885 if (!rmt) 13886 goto bail; 13887 rmt_entries = qos_rmt_entries(dd, &m, &n); 13888 if (rmt_entries == 0) 13889 goto bail; 13890 qpns_per_vl = 1 << m; 13891 13892 /* enough room in the map table? */ 13893 rmt_entries = 1 << (m + n); 13894 if (rmt->used + rmt_entries >= NUM_MAP_ENTRIES) 13895 goto bail; 13896 13897 /* add qos entries to the the RSM map table */ 13898 for (i = 0, ctxt = FIRST_KERNEL_KCTXT; i < num_vls; i++) { 13899 unsigned tctxt; 13900 13901 for (qpn = 0, tctxt = ctxt; 13902 krcvqs[i] && qpn < qpns_per_vl; qpn++) { 13903 unsigned idx, regoff, regidx; 13904 13905 /* generate the index the hardware will produce */ 13906 idx = rmt->used + ((qpn << n) ^ i); 13907 regoff = (idx % 8) * 8; 13908 regidx = idx / 8; 13909 /* replace default with context number */ 13910 reg = rmt->map[regidx]; 13911 reg &= ~(RCV_RSM_MAP_TABLE_RCV_CONTEXT_A_MASK 13912 << regoff); 13913 reg |= (u64)(tctxt++) << regoff; 13914 rmt->map[regidx] = reg; 13915 if (tctxt == ctxt + krcvqs[i]) 13916 tctxt = ctxt; 13917 } 13918 ctxt += krcvqs[i]; 13919 } 13920 13921 rrd.offset = rmt->used; 13922 rrd.pkt_type = 2; 13923 rrd.field1_off = LRH_BTH_MATCH_OFFSET; 13924 rrd.field2_off = LRH_SC_MATCH_OFFSET; 13925 rrd.index1_off = LRH_SC_SELECT_OFFSET; 13926 rrd.index1_width = n; 13927 rrd.index2_off = QPN_SELECT_OFFSET; 13928 rrd.index2_width = m + n; 13929 rrd.mask1 = LRH_BTH_MASK; 13930 rrd.value1 = LRH_BTH_VALUE; 13931 rrd.mask2 = LRH_SC_MASK; 13932 rrd.value2 = LRH_SC_VALUE; 13933 13934 /* add rule 0 */ 13935 add_rsm_rule(dd, 0, &rrd); 13936 13937 /* mark RSM map entries as used */ 13938 rmt->used += rmt_entries; 13939 /* map everything else to the mcast/err/vl15 context */ 13940 init_qpmap_table(dd, HFI1_CTRL_CTXT, HFI1_CTRL_CTXT); 13941 dd->qos_shift = n + 1; 13942 return; 13943 bail: 13944 dd->qos_shift = 1; 13945 init_qpmap_table(dd, FIRST_KERNEL_KCTXT, dd->n_krcv_queues - 1); 13946 } 13947 13948 static void init_user_fecn_handling(struct hfi1_devdata *dd, 13949 struct rsm_map_table *rmt) 13950 { 13951 struct rsm_rule_data rrd; 13952 u64 reg; 13953 int i, idx, regoff, regidx; 13954 u8 offset; 13955 13956 /* there needs to be enough room in the map table */ 13957 if (rmt->used + dd->num_user_contexts >= NUM_MAP_ENTRIES) { 13958 dd_dev_err(dd, "User FECN handling disabled - too many user contexts allocated\n"); 13959 return; 13960 } 13961 13962 /* 13963 * RSM will extract the destination context as an index into the 13964 * map table. The destination contexts are a sequential block 13965 * in the range first_user_ctxt...num_rcv_contexts-1 (inclusive). 13966 * Map entries are accessed as offset + extracted value. Adjust 13967 * the added offset so this sequence can be placed anywhere in 13968 * the table - as long as the entries themselves do not wrap. 13969 * There are only enough bits in offset for the table size, so 13970 * start with that to allow for a "negative" offset. 13971 */ 13972 offset = (u8)(NUM_MAP_ENTRIES + (int)rmt->used - 13973 (int)dd->first_user_ctxt); 13974 13975 for (i = dd->first_user_ctxt, idx = rmt->used; 13976 i < dd->num_rcv_contexts; i++, idx++) { 13977 /* replace with identity mapping */ 13978 regoff = (idx % 8) * 8; 13979 regidx = idx / 8; 13980 reg = rmt->map[regidx]; 13981 reg &= ~(RCV_RSM_MAP_TABLE_RCV_CONTEXT_A_MASK << regoff); 13982 reg |= (u64)i << regoff; 13983 rmt->map[regidx] = reg; 13984 } 13985 13986 /* 13987 * For RSM intercept of Expected FECN packets: 13988 * o packet type 0 - expected 13989 * o match on F (bit 95), using select/match 1, and 13990 * o match on SH (bit 133), using select/match 2. 13991 * 13992 * Use index 1 to extract the 8-bit receive context from DestQP 13993 * (start at bit 64). Use that as the RSM map table index. 13994 */ 13995 rrd.offset = offset; 13996 rrd.pkt_type = 0; 13997 rrd.field1_off = 95; 13998 rrd.field2_off = 133; 13999 rrd.index1_off = 64; 14000 rrd.index1_width = 8; 14001 rrd.index2_off = 0; 14002 rrd.index2_width = 0; 14003 rrd.mask1 = 1; 14004 rrd.value1 = 1; 14005 rrd.mask2 = 1; 14006 rrd.value2 = 1; 14007 14008 /* add rule 1 */ 14009 add_rsm_rule(dd, 1, &rrd); 14010 14011 rmt->used += dd->num_user_contexts; 14012 } 14013 14014 static void init_rxe(struct hfi1_devdata *dd) 14015 { 14016 struct rsm_map_table *rmt; 14017 14018 /* enable all receive errors */ 14019 write_csr(dd, RCV_ERR_MASK, ~0ull); 14020 14021 rmt = alloc_rsm_map_table(dd); 14022 /* set up QOS, including the QPN map table */ 14023 init_qos(dd, rmt); 14024 init_user_fecn_handling(dd, rmt); 14025 complete_rsm_map_table(dd, rmt); 14026 kfree(rmt); 14027 14028 /* 14029 * make sure RcvCtrl.RcvWcb <= PCIe Device Control 14030 * Register Max_Payload_Size (PCI_EXP_DEVCTL in Linux PCIe config 14031 * space, PciCfgCap2.MaxPayloadSize in HFI). There is only one 14032 * invalid configuration: RcvCtrl.RcvWcb set to its max of 256 and 14033 * Max_PayLoad_Size set to its minimum of 128. 14034 * 14035 * Presently, RcvCtrl.RcvWcb is not modified from its default of 0 14036 * (64 bytes). Max_Payload_Size is possibly modified upward in 14037 * tune_pcie_caps() which is called after this routine. 14038 */ 14039 } 14040 14041 static void init_other(struct hfi1_devdata *dd) 14042 { 14043 /* enable all CCE errors */ 14044 write_csr(dd, CCE_ERR_MASK, ~0ull); 14045 /* enable *some* Misc errors */ 14046 write_csr(dd, MISC_ERR_MASK, DRIVER_MISC_MASK); 14047 /* enable all DC errors, except LCB */ 14048 write_csr(dd, DCC_ERR_FLG_EN, ~0ull); 14049 write_csr(dd, DC_DC8051_ERR_EN, ~0ull); 14050 } 14051 14052 /* 14053 * Fill out the given AU table using the given CU. A CU is defined in terms 14054 * AUs. The table is a an encoding: given the index, how many AUs does that 14055 * represent? 14056 * 14057 * NOTE: Assumes that the register layout is the same for the 14058 * local and remote tables. 14059 */ 14060 static void assign_cm_au_table(struct hfi1_devdata *dd, u32 cu, 14061 u32 csr0to3, u32 csr4to7) 14062 { 14063 write_csr(dd, csr0to3, 14064 0ull << SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE0_SHIFT | 14065 1ull << SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE1_SHIFT | 14066 2ull * cu << 14067 SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE2_SHIFT | 14068 4ull * cu << 14069 SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE3_SHIFT); 14070 write_csr(dd, csr4to7, 14071 8ull * cu << 14072 SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE4_SHIFT | 14073 16ull * cu << 14074 SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE5_SHIFT | 14075 32ull * cu << 14076 SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE6_SHIFT | 14077 64ull * cu << 14078 SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE7_SHIFT); 14079 } 14080 14081 static void assign_local_cm_au_table(struct hfi1_devdata *dd, u8 vcu) 14082 { 14083 assign_cm_au_table(dd, vcu_to_cu(vcu), SEND_CM_LOCAL_AU_TABLE0_TO3, 14084 SEND_CM_LOCAL_AU_TABLE4_TO7); 14085 } 14086 14087 void assign_remote_cm_au_table(struct hfi1_devdata *dd, u8 vcu) 14088 { 14089 assign_cm_au_table(dd, vcu_to_cu(vcu), SEND_CM_REMOTE_AU_TABLE0_TO3, 14090 SEND_CM_REMOTE_AU_TABLE4_TO7); 14091 } 14092 14093 static void init_txe(struct hfi1_devdata *dd) 14094 { 14095 int i; 14096 14097 /* enable all PIO, SDMA, general, and Egress errors */ 14098 write_csr(dd, SEND_PIO_ERR_MASK, ~0ull); 14099 write_csr(dd, SEND_DMA_ERR_MASK, ~0ull); 14100 write_csr(dd, SEND_ERR_MASK, ~0ull); 14101 write_csr(dd, SEND_EGRESS_ERR_MASK, ~0ull); 14102 14103 /* enable all per-context and per-SDMA engine errors */ 14104 for (i = 0; i < dd->chip_send_contexts; i++) 14105 write_kctxt_csr(dd, i, SEND_CTXT_ERR_MASK, ~0ull); 14106 for (i = 0; i < dd->chip_sdma_engines; i++) 14107 write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_MASK, ~0ull); 14108 14109 /* set the local CU to AU mapping */ 14110 assign_local_cm_au_table(dd, dd->vcu); 14111 14112 /* 14113 * Set reasonable default for Credit Return Timer 14114 * Don't set on Simulator - causes it to choke. 14115 */ 14116 if (dd->icode != ICODE_FUNCTIONAL_SIMULATOR) 14117 write_csr(dd, SEND_CM_TIMER_CTRL, HFI1_CREDIT_RETURN_RATE); 14118 } 14119 14120 int hfi1_set_ctxt_jkey(struct hfi1_devdata *dd, unsigned ctxt, u16 jkey) 14121 { 14122 struct hfi1_ctxtdata *rcd = dd->rcd[ctxt]; 14123 unsigned sctxt; 14124 int ret = 0; 14125 u64 reg; 14126 14127 if (!rcd || !rcd->sc) { 14128 ret = -EINVAL; 14129 goto done; 14130 } 14131 sctxt = rcd->sc->hw_context; 14132 reg = SEND_CTXT_CHECK_JOB_KEY_MASK_SMASK | /* mask is always 1's */ 14133 ((jkey & SEND_CTXT_CHECK_JOB_KEY_VALUE_MASK) << 14134 SEND_CTXT_CHECK_JOB_KEY_VALUE_SHIFT); 14135 /* JOB_KEY_ALLOW_PERMISSIVE is not allowed by default */ 14136 if (HFI1_CAP_KGET_MASK(rcd->flags, ALLOW_PERM_JKEY)) 14137 reg |= SEND_CTXT_CHECK_JOB_KEY_ALLOW_PERMISSIVE_SMASK; 14138 write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_JOB_KEY, reg); 14139 /* 14140 * Enable send-side J_KEY integrity check, unless this is A0 h/w 14141 */ 14142 if (!is_ax(dd)) { 14143 reg = read_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE); 14144 reg |= SEND_CTXT_CHECK_ENABLE_CHECK_JOB_KEY_SMASK; 14145 write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE, reg); 14146 } 14147 14148 /* Enable J_KEY check on receive context. */ 14149 reg = RCV_KEY_CTRL_JOB_KEY_ENABLE_SMASK | 14150 ((jkey & RCV_KEY_CTRL_JOB_KEY_VALUE_MASK) << 14151 RCV_KEY_CTRL_JOB_KEY_VALUE_SHIFT); 14152 write_kctxt_csr(dd, ctxt, RCV_KEY_CTRL, reg); 14153 done: 14154 return ret; 14155 } 14156 14157 int hfi1_clear_ctxt_jkey(struct hfi1_devdata *dd, unsigned ctxt) 14158 { 14159 struct hfi1_ctxtdata *rcd = dd->rcd[ctxt]; 14160 unsigned sctxt; 14161 int ret = 0; 14162 u64 reg; 14163 14164 if (!rcd || !rcd->sc) { 14165 ret = -EINVAL; 14166 goto done; 14167 } 14168 sctxt = rcd->sc->hw_context; 14169 write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_JOB_KEY, 0); 14170 /* 14171 * Disable send-side J_KEY integrity check, unless this is A0 h/w. 14172 * This check would not have been enabled for A0 h/w, see 14173 * set_ctxt_jkey(). 14174 */ 14175 if (!is_ax(dd)) { 14176 reg = read_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE); 14177 reg &= ~SEND_CTXT_CHECK_ENABLE_CHECK_JOB_KEY_SMASK; 14178 write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE, reg); 14179 } 14180 /* Turn off the J_KEY on the receive side */ 14181 write_kctxt_csr(dd, ctxt, RCV_KEY_CTRL, 0); 14182 done: 14183 return ret; 14184 } 14185 14186 int hfi1_set_ctxt_pkey(struct hfi1_devdata *dd, unsigned ctxt, u16 pkey) 14187 { 14188 struct hfi1_ctxtdata *rcd; 14189 unsigned sctxt; 14190 int ret = 0; 14191 u64 reg; 14192 14193 if (ctxt < dd->num_rcv_contexts) { 14194 rcd = dd->rcd[ctxt]; 14195 } else { 14196 ret = -EINVAL; 14197 goto done; 14198 } 14199 if (!rcd || !rcd->sc) { 14200 ret = -EINVAL; 14201 goto done; 14202 } 14203 sctxt = rcd->sc->hw_context; 14204 reg = ((u64)pkey & SEND_CTXT_CHECK_PARTITION_KEY_VALUE_MASK) << 14205 SEND_CTXT_CHECK_PARTITION_KEY_VALUE_SHIFT; 14206 write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_PARTITION_KEY, reg); 14207 reg = read_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE); 14208 reg |= SEND_CTXT_CHECK_ENABLE_CHECK_PARTITION_KEY_SMASK; 14209 reg &= ~SEND_CTXT_CHECK_ENABLE_DISALLOW_KDETH_PACKETS_SMASK; 14210 write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE, reg); 14211 done: 14212 return ret; 14213 } 14214 14215 int hfi1_clear_ctxt_pkey(struct hfi1_devdata *dd, unsigned ctxt) 14216 { 14217 struct hfi1_ctxtdata *rcd; 14218 unsigned sctxt; 14219 int ret = 0; 14220 u64 reg; 14221 14222 if (ctxt < dd->num_rcv_contexts) { 14223 rcd = dd->rcd[ctxt]; 14224 } else { 14225 ret = -EINVAL; 14226 goto done; 14227 } 14228 if (!rcd || !rcd->sc) { 14229 ret = -EINVAL; 14230 goto done; 14231 } 14232 sctxt = rcd->sc->hw_context; 14233 reg = read_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE); 14234 reg &= ~SEND_CTXT_CHECK_ENABLE_CHECK_PARTITION_KEY_SMASK; 14235 write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE, reg); 14236 write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_PARTITION_KEY, 0); 14237 done: 14238 return ret; 14239 } 14240 14241 /* 14242 * Start doing the clean up the the chip. Our clean up happens in multiple 14243 * stages and this is just the first. 14244 */ 14245 void hfi1_start_cleanup(struct hfi1_devdata *dd) 14246 { 14247 aspm_exit(dd); 14248 free_cntrs(dd); 14249 free_rcverr(dd); 14250 clean_up_interrupts(dd); 14251 finish_chip_resources(dd); 14252 } 14253 14254 #define HFI_BASE_GUID(dev) \ 14255 ((dev)->base_guid & ~(1ULL << GUID_HFI_INDEX_SHIFT)) 14256 14257 /* 14258 * Information can be shared between the two HFIs on the same ASIC 14259 * in the same OS. This function finds the peer device and sets 14260 * up a shared structure. 14261 */ 14262 static int init_asic_data(struct hfi1_devdata *dd) 14263 { 14264 unsigned long flags; 14265 struct hfi1_devdata *tmp, *peer = NULL; 14266 struct hfi1_asic_data *asic_data; 14267 int ret = 0; 14268 14269 /* pre-allocate the asic structure in case we are the first device */ 14270 asic_data = kzalloc(sizeof(*dd->asic_data), GFP_KERNEL); 14271 if (!asic_data) 14272 return -ENOMEM; 14273 14274 spin_lock_irqsave(&hfi1_devs_lock, flags); 14275 /* Find our peer device */ 14276 list_for_each_entry(tmp, &hfi1_dev_list, list) { 14277 if ((HFI_BASE_GUID(dd) == HFI_BASE_GUID(tmp)) && 14278 dd->unit != tmp->unit) { 14279 peer = tmp; 14280 break; 14281 } 14282 } 14283 14284 if (peer) { 14285 /* use already allocated structure */ 14286 dd->asic_data = peer->asic_data; 14287 kfree(asic_data); 14288 } else { 14289 dd->asic_data = asic_data; 14290 mutex_init(&dd->asic_data->asic_resource_mutex); 14291 } 14292 dd->asic_data->dds[dd->hfi1_id] = dd; /* self back-pointer */ 14293 spin_unlock_irqrestore(&hfi1_devs_lock, flags); 14294 14295 /* first one through - set up i2c devices */ 14296 if (!peer) 14297 ret = set_up_i2c(dd, dd->asic_data); 14298 14299 return ret; 14300 } 14301 14302 /* 14303 * Set dd->boardname. Use a generic name if a name is not returned from 14304 * EFI variable space. 14305 * 14306 * Return 0 on success, -ENOMEM if space could not be allocated. 14307 */ 14308 static int obtain_boardname(struct hfi1_devdata *dd) 14309 { 14310 /* generic board description */ 14311 const char generic[] = 14312 "Intel Omni-Path Host Fabric Interface Adapter 100 Series"; 14313 unsigned long size; 14314 int ret; 14315 14316 ret = read_hfi1_efi_var(dd, "description", &size, 14317 (void **)&dd->boardname); 14318 if (ret) { 14319 dd_dev_info(dd, "Board description not found\n"); 14320 /* use generic description */ 14321 dd->boardname = kstrdup(generic, GFP_KERNEL); 14322 if (!dd->boardname) 14323 return -ENOMEM; 14324 } 14325 return 0; 14326 } 14327 14328 /* 14329 * Check the interrupt registers to make sure that they are mapped correctly. 14330 * It is intended to help user identify any mismapping by VMM when the driver 14331 * is running in a VM. This function should only be called before interrupt 14332 * is set up properly. 14333 * 14334 * Return 0 on success, -EINVAL on failure. 14335 */ 14336 static int check_int_registers(struct hfi1_devdata *dd) 14337 { 14338 u64 reg; 14339 u64 all_bits = ~(u64)0; 14340 u64 mask; 14341 14342 /* Clear CceIntMask[0] to avoid raising any interrupts */ 14343 mask = read_csr(dd, CCE_INT_MASK); 14344 write_csr(dd, CCE_INT_MASK, 0ull); 14345 reg = read_csr(dd, CCE_INT_MASK); 14346 if (reg) 14347 goto err_exit; 14348 14349 /* Clear all interrupt status bits */ 14350 write_csr(dd, CCE_INT_CLEAR, all_bits); 14351 reg = read_csr(dd, CCE_INT_STATUS); 14352 if (reg) 14353 goto err_exit; 14354 14355 /* Set all interrupt status bits */ 14356 write_csr(dd, CCE_INT_FORCE, all_bits); 14357 reg = read_csr(dd, CCE_INT_STATUS); 14358 if (reg != all_bits) 14359 goto err_exit; 14360 14361 /* Restore the interrupt mask */ 14362 write_csr(dd, CCE_INT_CLEAR, all_bits); 14363 write_csr(dd, CCE_INT_MASK, mask); 14364 14365 return 0; 14366 err_exit: 14367 write_csr(dd, CCE_INT_MASK, mask); 14368 dd_dev_err(dd, "Interrupt registers not properly mapped by VMM\n"); 14369 return -EINVAL; 14370 } 14371 14372 /** 14373 * Allocate and initialize the device structure for the hfi. 14374 * @dev: the pci_dev for hfi1_ib device 14375 * @ent: pci_device_id struct for this dev 14376 * 14377 * Also allocates, initializes, and returns the devdata struct for this 14378 * device instance 14379 * 14380 * This is global, and is called directly at init to set up the 14381 * chip-specific function pointers for later use. 14382 */ 14383 struct hfi1_devdata *hfi1_init_dd(struct pci_dev *pdev, 14384 const struct pci_device_id *ent) 14385 { 14386 struct hfi1_devdata *dd; 14387 struct hfi1_pportdata *ppd; 14388 u64 reg; 14389 int i, ret; 14390 static const char * const inames[] = { /* implementation names */ 14391 "RTL silicon", 14392 "RTL VCS simulation", 14393 "RTL FPGA emulation", 14394 "Functional simulator" 14395 }; 14396 struct pci_dev *parent = pdev->bus->self; 14397 14398 dd = hfi1_alloc_devdata(pdev, NUM_IB_PORTS * 14399 sizeof(struct hfi1_pportdata)); 14400 if (IS_ERR(dd)) 14401 goto bail; 14402 ppd = dd->pport; 14403 for (i = 0; i < dd->num_pports; i++, ppd++) { 14404 int vl; 14405 /* init common fields */ 14406 hfi1_init_pportdata(pdev, ppd, dd, 0, 1); 14407 /* DC supports 4 link widths */ 14408 ppd->link_width_supported = 14409 OPA_LINK_WIDTH_1X | OPA_LINK_WIDTH_2X | 14410 OPA_LINK_WIDTH_3X | OPA_LINK_WIDTH_4X; 14411 ppd->link_width_downgrade_supported = 14412 ppd->link_width_supported; 14413 /* start out enabling only 4X */ 14414 ppd->link_width_enabled = OPA_LINK_WIDTH_4X; 14415 ppd->link_width_downgrade_enabled = 14416 ppd->link_width_downgrade_supported; 14417 /* link width active is 0 when link is down */ 14418 /* link width downgrade active is 0 when link is down */ 14419 14420 if (num_vls < HFI1_MIN_VLS_SUPPORTED || 14421 num_vls > HFI1_MAX_VLS_SUPPORTED) { 14422 hfi1_early_err(&pdev->dev, 14423 "Invalid num_vls %u, using %u VLs\n", 14424 num_vls, HFI1_MAX_VLS_SUPPORTED); 14425 num_vls = HFI1_MAX_VLS_SUPPORTED; 14426 } 14427 ppd->vls_supported = num_vls; 14428 ppd->vls_operational = ppd->vls_supported; 14429 ppd->actual_vls_operational = ppd->vls_supported; 14430 /* Set the default MTU. */ 14431 for (vl = 0; vl < num_vls; vl++) 14432 dd->vld[vl].mtu = hfi1_max_mtu; 14433 dd->vld[15].mtu = MAX_MAD_PACKET; 14434 /* 14435 * Set the initial values to reasonable default, will be set 14436 * for real when link is up. 14437 */ 14438 ppd->lstate = IB_PORT_DOWN; 14439 ppd->overrun_threshold = 0x4; 14440 ppd->phy_error_threshold = 0xf; 14441 ppd->port_crc_mode_enabled = link_crc_mask; 14442 /* initialize supported LTP CRC mode */ 14443 ppd->port_ltp_crc_mode = cap_to_port_ltp(link_crc_mask) << 8; 14444 /* initialize enabled LTP CRC mode */ 14445 ppd->port_ltp_crc_mode |= cap_to_port_ltp(link_crc_mask) << 4; 14446 /* start in offline */ 14447 ppd->host_link_state = HLS_DN_OFFLINE; 14448 init_vl_arb_caches(ppd); 14449 ppd->last_pstate = 0xff; /* invalid value */ 14450 } 14451 14452 dd->link_default = HLS_DN_POLL; 14453 14454 /* 14455 * Do remaining PCIe setup and save PCIe values in dd. 14456 * Any error printing is already done by the init code. 14457 * On return, we have the chip mapped. 14458 */ 14459 ret = hfi1_pcie_ddinit(dd, pdev); 14460 if (ret < 0) 14461 goto bail_free; 14462 14463 /* verify that reads actually work, save revision for reset check */ 14464 dd->revision = read_csr(dd, CCE_REVISION); 14465 if (dd->revision == ~(u64)0) { 14466 dd_dev_err(dd, "cannot read chip CSRs\n"); 14467 ret = -EINVAL; 14468 goto bail_cleanup; 14469 } 14470 dd->majrev = (dd->revision >> CCE_REVISION_CHIP_REV_MAJOR_SHIFT) 14471 & CCE_REVISION_CHIP_REV_MAJOR_MASK; 14472 dd->minrev = (dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT) 14473 & CCE_REVISION_CHIP_REV_MINOR_MASK; 14474 14475 /* 14476 * Check interrupt registers mapping if the driver has no access to 14477 * the upstream component. In this case, it is likely that the driver 14478 * is running in a VM. 14479 */ 14480 if (!parent) { 14481 ret = check_int_registers(dd); 14482 if (ret) 14483 goto bail_cleanup; 14484 } 14485 14486 /* 14487 * obtain the hardware ID - NOT related to unit, which is a 14488 * software enumeration 14489 */ 14490 reg = read_csr(dd, CCE_REVISION2); 14491 dd->hfi1_id = (reg >> CCE_REVISION2_HFI_ID_SHIFT) 14492 & CCE_REVISION2_HFI_ID_MASK; 14493 /* the variable size will remove unwanted bits */ 14494 dd->icode = reg >> CCE_REVISION2_IMPL_CODE_SHIFT; 14495 dd->irev = reg >> CCE_REVISION2_IMPL_REVISION_SHIFT; 14496 dd_dev_info(dd, "Implementation: %s, revision 0x%x\n", 14497 dd->icode < ARRAY_SIZE(inames) ? 14498 inames[dd->icode] : "unknown", (int)dd->irev); 14499 14500 /* speeds the hardware can support */ 14501 dd->pport->link_speed_supported = OPA_LINK_SPEED_25G; 14502 /* speeds allowed to run at */ 14503 dd->pport->link_speed_enabled = dd->pport->link_speed_supported; 14504 /* give a reasonable active value, will be set on link up */ 14505 dd->pport->link_speed_active = OPA_LINK_SPEED_25G; 14506 14507 dd->chip_rcv_contexts = read_csr(dd, RCV_CONTEXTS); 14508 dd->chip_send_contexts = read_csr(dd, SEND_CONTEXTS); 14509 dd->chip_sdma_engines = read_csr(dd, SEND_DMA_ENGINES); 14510 dd->chip_pio_mem_size = read_csr(dd, SEND_PIO_MEM_SIZE); 14511 dd->chip_sdma_mem_size = read_csr(dd, SEND_DMA_MEM_SIZE); 14512 /* fix up link widths for emulation _p */ 14513 ppd = dd->pport; 14514 if (dd->icode == ICODE_FPGA_EMULATION && is_emulator_p(dd)) { 14515 ppd->link_width_supported = 14516 ppd->link_width_enabled = 14517 ppd->link_width_downgrade_supported = 14518 ppd->link_width_downgrade_enabled = 14519 OPA_LINK_WIDTH_1X; 14520 } 14521 /* insure num_vls isn't larger than number of sdma engines */ 14522 if (HFI1_CAP_IS_KSET(SDMA) && num_vls > dd->chip_sdma_engines) { 14523 dd_dev_err(dd, "num_vls %u too large, using %u VLs\n", 14524 num_vls, dd->chip_sdma_engines); 14525 num_vls = dd->chip_sdma_engines; 14526 ppd->vls_supported = dd->chip_sdma_engines; 14527 ppd->vls_operational = ppd->vls_supported; 14528 } 14529 14530 /* 14531 * Convert the ns parameter to the 64 * cclocks used in the CSR. 14532 * Limit the max if larger than the field holds. If timeout is 14533 * non-zero, then the calculated field will be at least 1. 14534 * 14535 * Must be after icode is set up - the cclock rate depends 14536 * on knowing the hardware being used. 14537 */ 14538 dd->rcv_intr_timeout_csr = ns_to_cclock(dd, rcv_intr_timeout) / 64; 14539 if (dd->rcv_intr_timeout_csr > 14540 RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_MASK) 14541 dd->rcv_intr_timeout_csr = 14542 RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_MASK; 14543 else if (dd->rcv_intr_timeout_csr == 0 && rcv_intr_timeout) 14544 dd->rcv_intr_timeout_csr = 1; 14545 14546 /* needs to be done before we look for the peer device */ 14547 read_guid(dd); 14548 14549 /* set up shared ASIC data with peer device */ 14550 ret = init_asic_data(dd); 14551 if (ret) 14552 goto bail_cleanup; 14553 14554 /* obtain chip sizes, reset chip CSRs */ 14555 init_chip(dd); 14556 14557 /* read in the PCIe link speed information */ 14558 ret = pcie_speeds(dd); 14559 if (ret) 14560 goto bail_cleanup; 14561 14562 /* call before get_platform_config(), after init_chip_resources() */ 14563 ret = eprom_init(dd); 14564 if (ret) 14565 goto bail_free_rcverr; 14566 14567 /* Needs to be called before hfi1_firmware_init */ 14568 get_platform_config(dd); 14569 14570 /* read in firmware */ 14571 ret = hfi1_firmware_init(dd); 14572 if (ret) 14573 goto bail_cleanup; 14574 14575 /* 14576 * In general, the PCIe Gen3 transition must occur after the 14577 * chip has been idled (so it won't initiate any PCIe transactions 14578 * e.g. an interrupt) and before the driver changes any registers 14579 * (the transition will reset the registers). 14580 * 14581 * In particular, place this call after: 14582 * - init_chip() - the chip will not initiate any PCIe transactions 14583 * - pcie_speeds() - reads the current link speed 14584 * - hfi1_firmware_init() - the needed firmware is ready to be 14585 * downloaded 14586 */ 14587 ret = do_pcie_gen3_transition(dd); 14588 if (ret) 14589 goto bail_cleanup; 14590 14591 /* start setting dd values and adjusting CSRs */ 14592 init_early_variables(dd); 14593 14594 parse_platform_config(dd); 14595 14596 ret = obtain_boardname(dd); 14597 if (ret) 14598 goto bail_cleanup; 14599 14600 snprintf(dd->boardversion, BOARD_VERS_MAX, 14601 "ChipABI %u.%u, ChipRev %u.%u, SW Compat %llu\n", 14602 HFI1_CHIP_VERS_MAJ, HFI1_CHIP_VERS_MIN, 14603 (u32)dd->majrev, 14604 (u32)dd->minrev, 14605 (dd->revision >> CCE_REVISION_SW_SHIFT) 14606 & CCE_REVISION_SW_MASK); 14607 14608 ret = set_up_context_variables(dd); 14609 if (ret) 14610 goto bail_cleanup; 14611 14612 /* set initial RXE CSRs */ 14613 init_rxe(dd); 14614 /* set initial TXE CSRs */ 14615 init_txe(dd); 14616 /* set initial non-RXE, non-TXE CSRs */ 14617 init_other(dd); 14618 /* set up KDETH QP prefix in both RX and TX CSRs */ 14619 init_kdeth_qp(dd); 14620 14621 ret = hfi1_dev_affinity_init(dd); 14622 if (ret) 14623 goto bail_cleanup; 14624 14625 /* send contexts must be set up before receive contexts */ 14626 ret = init_send_contexts(dd); 14627 if (ret) 14628 goto bail_cleanup; 14629 14630 ret = hfi1_create_ctxts(dd); 14631 if (ret) 14632 goto bail_cleanup; 14633 14634 dd->rcvhdrsize = DEFAULT_RCVHDRSIZE; 14635 /* 14636 * rcd[0] is guaranteed to be valid by this point. Also, all 14637 * context are using the same value, as per the module parameter. 14638 */ 14639 dd->rhf_offset = dd->rcd[0]->rcvhdrqentsize - sizeof(u64) / sizeof(u32); 14640 14641 ret = init_pervl_scs(dd); 14642 if (ret) 14643 goto bail_cleanup; 14644 14645 /* sdma init */ 14646 for (i = 0; i < dd->num_pports; ++i) { 14647 ret = sdma_init(dd, i); 14648 if (ret) 14649 goto bail_cleanup; 14650 } 14651 14652 /* use contexts created by hfi1_create_ctxts */ 14653 ret = set_up_interrupts(dd); 14654 if (ret) 14655 goto bail_cleanup; 14656 14657 /* set up LCB access - must be after set_up_interrupts() */ 14658 init_lcb_access(dd); 14659 14660 /* 14661 * Serial number is created from the base guid: 14662 * [27:24] = base guid [38:35] 14663 * [23: 0] = base guid [23: 0] 14664 */ 14665 snprintf(dd->serial, SERIAL_MAX, "0x%08llx\n", 14666 (dd->base_guid & 0xFFFFFF) | 14667 ((dd->base_guid >> 11) & 0xF000000)); 14668 14669 dd->oui1 = dd->base_guid >> 56 & 0xFF; 14670 dd->oui2 = dd->base_guid >> 48 & 0xFF; 14671 dd->oui3 = dd->base_guid >> 40 & 0xFF; 14672 14673 ret = load_firmware(dd); /* asymmetric with dispose_firmware() */ 14674 if (ret) 14675 goto bail_clear_intr; 14676 14677 thermal_init(dd); 14678 14679 ret = init_cntrs(dd); 14680 if (ret) 14681 goto bail_clear_intr; 14682 14683 ret = init_rcverr(dd); 14684 if (ret) 14685 goto bail_free_cntrs; 14686 14687 init_completion(&dd->user_comp); 14688 14689 /* The user refcount starts with one to inidicate an active device */ 14690 atomic_set(&dd->user_refcount, 1); 14691 14692 goto bail; 14693 14694 bail_free_rcverr: 14695 free_rcverr(dd); 14696 bail_free_cntrs: 14697 free_cntrs(dd); 14698 bail_clear_intr: 14699 clean_up_interrupts(dd); 14700 bail_cleanup: 14701 hfi1_pcie_ddcleanup(dd); 14702 bail_free: 14703 hfi1_free_devdata(dd); 14704 dd = ERR_PTR(ret); 14705 bail: 14706 return dd; 14707 } 14708 14709 static u16 delay_cycles(struct hfi1_pportdata *ppd, u32 desired_egress_rate, 14710 u32 dw_len) 14711 { 14712 u32 delta_cycles; 14713 u32 current_egress_rate = ppd->current_egress_rate; 14714 /* rates here are in units of 10^6 bits/sec */ 14715 14716 if (desired_egress_rate == -1) 14717 return 0; /* shouldn't happen */ 14718 14719 if (desired_egress_rate >= current_egress_rate) 14720 return 0; /* we can't help go faster, only slower */ 14721 14722 delta_cycles = egress_cycles(dw_len * 4, desired_egress_rate) - 14723 egress_cycles(dw_len * 4, current_egress_rate); 14724 14725 return (u16)delta_cycles; 14726 } 14727 14728 /** 14729 * create_pbc - build a pbc for transmission 14730 * @flags: special case flags or-ed in built pbc 14731 * @srate: static rate 14732 * @vl: vl 14733 * @dwlen: dword length (header words + data words + pbc words) 14734 * 14735 * Create a PBC with the given flags, rate, VL, and length. 14736 * 14737 * NOTE: The PBC created will not insert any HCRC - all callers but one are 14738 * for verbs, which does not use this PSM feature. The lone other caller 14739 * is for the diagnostic interface which calls this if the user does not 14740 * supply their own PBC. 14741 */ 14742 u64 create_pbc(struct hfi1_pportdata *ppd, u64 flags, int srate_mbs, u32 vl, 14743 u32 dw_len) 14744 { 14745 u64 pbc, delay = 0; 14746 14747 if (unlikely(srate_mbs)) 14748 delay = delay_cycles(ppd, srate_mbs, dw_len); 14749 14750 pbc = flags 14751 | (delay << PBC_STATIC_RATE_CONTROL_COUNT_SHIFT) 14752 | ((u64)PBC_IHCRC_NONE << PBC_INSERT_HCRC_SHIFT) 14753 | (vl & PBC_VL_MASK) << PBC_VL_SHIFT 14754 | (dw_len & PBC_LENGTH_DWS_MASK) 14755 << PBC_LENGTH_DWS_SHIFT; 14756 14757 return pbc; 14758 } 14759 14760 #define SBUS_THERMAL 0x4f 14761 #define SBUS_THERM_MONITOR_MODE 0x1 14762 14763 #define THERM_FAILURE(dev, ret, reason) \ 14764 dd_dev_err((dd), \ 14765 "Thermal sensor initialization failed: %s (%d)\n", \ 14766 (reason), (ret)) 14767 14768 /* 14769 * Initialize the thermal sensor. 14770 * 14771 * After initialization, enable polling of thermal sensor through 14772 * SBus interface. In order for this to work, the SBus Master 14773 * firmware has to be loaded due to the fact that the HW polling 14774 * logic uses SBus interrupts, which are not supported with 14775 * default firmware. Otherwise, no data will be returned through 14776 * the ASIC_STS_THERM CSR. 14777 */ 14778 static int thermal_init(struct hfi1_devdata *dd) 14779 { 14780 int ret = 0; 14781 14782 if (dd->icode != ICODE_RTL_SILICON || 14783 check_chip_resource(dd, CR_THERM_INIT, NULL)) 14784 return ret; 14785 14786 ret = acquire_chip_resource(dd, CR_SBUS, SBUS_TIMEOUT); 14787 if (ret) { 14788 THERM_FAILURE(dd, ret, "Acquire SBus"); 14789 return ret; 14790 } 14791 14792 dd_dev_info(dd, "Initializing thermal sensor\n"); 14793 /* Disable polling of thermal readings */ 14794 write_csr(dd, ASIC_CFG_THERM_POLL_EN, 0x0); 14795 msleep(100); 14796 /* Thermal Sensor Initialization */ 14797 /* Step 1: Reset the Thermal SBus Receiver */ 14798 ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0, 14799 RESET_SBUS_RECEIVER, 0); 14800 if (ret) { 14801 THERM_FAILURE(dd, ret, "Bus Reset"); 14802 goto done; 14803 } 14804 /* Step 2: Set Reset bit in Thermal block */ 14805 ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0, 14806 WRITE_SBUS_RECEIVER, 0x1); 14807 if (ret) { 14808 THERM_FAILURE(dd, ret, "Therm Block Reset"); 14809 goto done; 14810 } 14811 /* Step 3: Write clock divider value (100MHz -> 2MHz) */ 14812 ret = sbus_request_slow(dd, SBUS_THERMAL, 0x1, 14813 WRITE_SBUS_RECEIVER, 0x32); 14814 if (ret) { 14815 THERM_FAILURE(dd, ret, "Write Clock Div"); 14816 goto done; 14817 } 14818 /* Step 4: Select temperature mode */ 14819 ret = sbus_request_slow(dd, SBUS_THERMAL, 0x3, 14820 WRITE_SBUS_RECEIVER, 14821 SBUS_THERM_MONITOR_MODE); 14822 if (ret) { 14823 THERM_FAILURE(dd, ret, "Write Mode Sel"); 14824 goto done; 14825 } 14826 /* Step 5: De-assert block reset and start conversion */ 14827 ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0, 14828 WRITE_SBUS_RECEIVER, 0x2); 14829 if (ret) { 14830 THERM_FAILURE(dd, ret, "Write Reset Deassert"); 14831 goto done; 14832 } 14833 /* Step 5.1: Wait for first conversion (21.5ms per spec) */ 14834 msleep(22); 14835 14836 /* Enable polling of thermal readings */ 14837 write_csr(dd, ASIC_CFG_THERM_POLL_EN, 0x1); 14838 14839 /* Set initialized flag */ 14840 ret = acquire_chip_resource(dd, CR_THERM_INIT, 0); 14841 if (ret) 14842 THERM_FAILURE(dd, ret, "Unable to set thermal init flag"); 14843 14844 done: 14845 release_chip_resource(dd, CR_SBUS); 14846 return ret; 14847 } 14848 14849 static void handle_temp_err(struct hfi1_devdata *dd) 14850 { 14851 struct hfi1_pportdata *ppd = &dd->pport[0]; 14852 /* 14853 * Thermal Critical Interrupt 14854 * Put the device into forced freeze mode, take link down to 14855 * offline, and put DC into reset. 14856 */ 14857 dd_dev_emerg(dd, 14858 "Critical temperature reached! Forcing device into freeze mode!\n"); 14859 dd->flags |= HFI1_FORCED_FREEZE; 14860 start_freeze_handling(ppd, FREEZE_SELF | FREEZE_ABORT); 14861 /* 14862 * Shut DC down as much and as quickly as possible. 14863 * 14864 * Step 1: Take the link down to OFFLINE. This will cause the 14865 * 8051 to put the Serdes in reset. However, we don't want to 14866 * go through the entire link state machine since we want to 14867 * shutdown ASAP. Furthermore, this is not a graceful shutdown 14868 * but rather an attempt to save the chip. 14869 * Code below is almost the same as quiet_serdes() but avoids 14870 * all the extra work and the sleeps. 14871 */ 14872 ppd->driver_link_ready = 0; 14873 ppd->link_enabled = 0; 14874 set_physical_link_state(dd, (OPA_LINKDOWN_REASON_SMA_DISABLED << 8) | 14875 PLS_OFFLINE); 14876 /* 14877 * Step 2: Shutdown LCB and 8051 14878 * After shutdown, do not restore DC_CFG_RESET value. 14879 */ 14880 dc_shutdown(dd); 14881 } 14882