xref: /openbmc/linux/drivers/infiniband/hw/hfi1/chip.c (revision 7bcae826)
1 /*
2  * Copyright(c) 2015, 2016 Intel Corporation.
3  *
4  * This file is provided under a dual BSD/GPLv2 license.  When using or
5  * redistributing this file, you may do so under either license.
6  *
7  * GPL LICENSE SUMMARY
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of version 2 of the GNU General Public License as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * General Public License for more details.
17  *
18  * BSD LICENSE
19  *
20  * Redistribution and use in source and binary forms, with or without
21  * modification, are permitted provided that the following conditions
22  * are met:
23  *
24  *  - Redistributions of source code must retain the above copyright
25  *    notice, this list of conditions and the following disclaimer.
26  *  - Redistributions in binary form must reproduce the above copyright
27  *    notice, this list of conditions and the following disclaimer in
28  *    the documentation and/or other materials provided with the
29  *    distribution.
30  *  - Neither the name of Intel Corporation nor the names of its
31  *    contributors may be used to endorse or promote products derived
32  *    from this software without specific prior written permission.
33  *
34  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45  *
46  */
47 
48 /*
49  * This file contains all of the code that is specific to the HFI chip
50  */
51 
52 #include <linux/pci.h>
53 #include <linux/delay.h>
54 #include <linux/interrupt.h>
55 #include <linux/module.h>
56 
57 #include "hfi.h"
58 #include "trace.h"
59 #include "mad.h"
60 #include "pio.h"
61 #include "sdma.h"
62 #include "eprom.h"
63 #include "efivar.h"
64 #include "platform.h"
65 #include "aspm.h"
66 #include "affinity.h"
67 
68 #define NUM_IB_PORTS 1
69 
70 uint kdeth_qp;
71 module_param_named(kdeth_qp, kdeth_qp, uint, S_IRUGO);
72 MODULE_PARM_DESC(kdeth_qp, "Set the KDETH queue pair prefix");
73 
74 uint num_vls = HFI1_MAX_VLS_SUPPORTED;
75 module_param(num_vls, uint, S_IRUGO);
76 MODULE_PARM_DESC(num_vls, "Set number of Virtual Lanes to use (1-8)");
77 
78 /*
79  * Default time to aggregate two 10K packets from the idle state
80  * (timer not running). The timer starts at the end of the first packet,
81  * so only the time for one 10K packet and header plus a bit extra is needed.
82  * 10 * 1024 + 64 header byte = 10304 byte
83  * 10304 byte / 12.5 GB/s = 824.32ns
84  */
85 uint rcv_intr_timeout = (824 + 16); /* 16 is for coalescing interrupt */
86 module_param(rcv_intr_timeout, uint, S_IRUGO);
87 MODULE_PARM_DESC(rcv_intr_timeout, "Receive interrupt mitigation timeout in ns");
88 
89 uint rcv_intr_count = 16; /* same as qib */
90 module_param(rcv_intr_count, uint, S_IRUGO);
91 MODULE_PARM_DESC(rcv_intr_count, "Receive interrupt mitigation count");
92 
93 ushort link_crc_mask = SUPPORTED_CRCS;
94 module_param(link_crc_mask, ushort, S_IRUGO);
95 MODULE_PARM_DESC(link_crc_mask, "CRCs to use on the link");
96 
97 uint loopback;
98 module_param_named(loopback, loopback, uint, S_IRUGO);
99 MODULE_PARM_DESC(loopback, "Put into loopback mode (1 = serdes, 3 = external cable");
100 
101 /* Other driver tunables */
102 uint rcv_intr_dynamic = 1; /* enable dynamic mode for rcv int mitigation*/
103 static ushort crc_14b_sideband = 1;
104 static uint use_flr = 1;
105 uint quick_linkup; /* skip LNI */
106 
107 struct flag_table {
108 	u64 flag;	/* the flag */
109 	char *str;	/* description string */
110 	u16 extra;	/* extra information */
111 	u16 unused0;
112 	u32 unused1;
113 };
114 
115 /* str must be a string constant */
116 #define FLAG_ENTRY(str, extra, flag) {flag, str, extra}
117 #define FLAG_ENTRY0(str, flag) {flag, str, 0}
118 
119 /* Send Error Consequences */
120 #define SEC_WRITE_DROPPED	0x1
121 #define SEC_PACKET_DROPPED	0x2
122 #define SEC_SC_HALTED		0x4	/* per-context only */
123 #define SEC_SPC_FREEZE		0x8	/* per-HFI only */
124 
125 #define DEFAULT_KRCVQS		  2
126 #define MIN_KERNEL_KCTXTS         2
127 #define FIRST_KERNEL_KCTXT        1
128 /* sizes for both the QP and RSM map tables */
129 #define NUM_MAP_ENTRIES		256
130 #define NUM_MAP_REGS             32
131 
132 /* Bit offset into the GUID which carries HFI id information */
133 #define GUID_HFI_INDEX_SHIFT     39
134 
135 /* extract the emulation revision */
136 #define emulator_rev(dd) ((dd)->irev >> 8)
137 /* parallel and serial emulation versions are 3 and 4 respectively */
138 #define is_emulator_p(dd) ((((dd)->irev) & 0xf) == 3)
139 #define is_emulator_s(dd) ((((dd)->irev) & 0xf) == 4)
140 
141 /* RSM fields */
142 
143 /* packet type */
144 #define IB_PACKET_TYPE         2ull
145 #define QW_SHIFT               6ull
146 /* QPN[7..1] */
147 #define QPN_WIDTH              7ull
148 
149 /* LRH.BTH: QW 0, OFFSET 48 - for match */
150 #define LRH_BTH_QW             0ull
151 #define LRH_BTH_BIT_OFFSET     48ull
152 #define LRH_BTH_OFFSET(off)    ((LRH_BTH_QW << QW_SHIFT) | (off))
153 #define LRH_BTH_MATCH_OFFSET   LRH_BTH_OFFSET(LRH_BTH_BIT_OFFSET)
154 #define LRH_BTH_SELECT
155 #define LRH_BTH_MASK           3ull
156 #define LRH_BTH_VALUE          2ull
157 
158 /* LRH.SC[3..0] QW 0, OFFSET 56 - for match */
159 #define LRH_SC_QW              0ull
160 #define LRH_SC_BIT_OFFSET      56ull
161 #define LRH_SC_OFFSET(off)     ((LRH_SC_QW << QW_SHIFT) | (off))
162 #define LRH_SC_MATCH_OFFSET    LRH_SC_OFFSET(LRH_SC_BIT_OFFSET)
163 #define LRH_SC_MASK            128ull
164 #define LRH_SC_VALUE           0ull
165 
166 /* SC[n..0] QW 0, OFFSET 60 - for select */
167 #define LRH_SC_SELECT_OFFSET  ((LRH_SC_QW << QW_SHIFT) | (60ull))
168 
169 /* QPN[m+n:1] QW 1, OFFSET 1 */
170 #define QPN_SELECT_OFFSET      ((1ull << QW_SHIFT) | (1ull))
171 
172 /* defines to build power on SC2VL table */
173 #define SC2VL_VAL( \
174 	num, \
175 	sc0, sc0val, \
176 	sc1, sc1val, \
177 	sc2, sc2val, \
178 	sc3, sc3val, \
179 	sc4, sc4val, \
180 	sc5, sc5val, \
181 	sc6, sc6val, \
182 	sc7, sc7val) \
183 ( \
184 	((u64)(sc0val) << SEND_SC2VLT##num##_SC##sc0##_SHIFT) | \
185 	((u64)(sc1val) << SEND_SC2VLT##num##_SC##sc1##_SHIFT) | \
186 	((u64)(sc2val) << SEND_SC2VLT##num##_SC##sc2##_SHIFT) | \
187 	((u64)(sc3val) << SEND_SC2VLT##num##_SC##sc3##_SHIFT) | \
188 	((u64)(sc4val) << SEND_SC2VLT##num##_SC##sc4##_SHIFT) | \
189 	((u64)(sc5val) << SEND_SC2VLT##num##_SC##sc5##_SHIFT) | \
190 	((u64)(sc6val) << SEND_SC2VLT##num##_SC##sc6##_SHIFT) | \
191 	((u64)(sc7val) << SEND_SC2VLT##num##_SC##sc7##_SHIFT)   \
192 )
193 
194 #define DC_SC_VL_VAL( \
195 	range, \
196 	e0, e0val, \
197 	e1, e1val, \
198 	e2, e2val, \
199 	e3, e3val, \
200 	e4, e4val, \
201 	e5, e5val, \
202 	e6, e6val, \
203 	e7, e7val, \
204 	e8, e8val, \
205 	e9, e9val, \
206 	e10, e10val, \
207 	e11, e11val, \
208 	e12, e12val, \
209 	e13, e13val, \
210 	e14, e14val, \
211 	e15, e15val) \
212 ( \
213 	((u64)(e0val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e0##_SHIFT) | \
214 	((u64)(e1val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e1##_SHIFT) | \
215 	((u64)(e2val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e2##_SHIFT) | \
216 	((u64)(e3val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e3##_SHIFT) | \
217 	((u64)(e4val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e4##_SHIFT) | \
218 	((u64)(e5val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e5##_SHIFT) | \
219 	((u64)(e6val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e6##_SHIFT) | \
220 	((u64)(e7val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e7##_SHIFT) | \
221 	((u64)(e8val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e8##_SHIFT) | \
222 	((u64)(e9val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e9##_SHIFT) | \
223 	((u64)(e10val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e10##_SHIFT) | \
224 	((u64)(e11val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e11##_SHIFT) | \
225 	((u64)(e12val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e12##_SHIFT) | \
226 	((u64)(e13val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e13##_SHIFT) | \
227 	((u64)(e14val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e14##_SHIFT) | \
228 	((u64)(e15val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e15##_SHIFT) \
229 )
230 
231 /* all CceStatus sub-block freeze bits */
232 #define ALL_FROZE (CCE_STATUS_SDMA_FROZE_SMASK \
233 			| CCE_STATUS_RXE_FROZE_SMASK \
234 			| CCE_STATUS_TXE_FROZE_SMASK \
235 			| CCE_STATUS_TXE_PIO_FROZE_SMASK)
236 /* all CceStatus sub-block TXE pause bits */
237 #define ALL_TXE_PAUSE (CCE_STATUS_TXE_PIO_PAUSED_SMASK \
238 			| CCE_STATUS_TXE_PAUSED_SMASK \
239 			| CCE_STATUS_SDMA_PAUSED_SMASK)
240 /* all CceStatus sub-block RXE pause bits */
241 #define ALL_RXE_PAUSE CCE_STATUS_RXE_PAUSED_SMASK
242 
243 #define CNTR_MAX 0xFFFFFFFFFFFFFFFFULL
244 #define CNTR_32BIT_MAX 0x00000000FFFFFFFF
245 
246 /*
247  * CCE Error flags.
248  */
249 static struct flag_table cce_err_status_flags[] = {
250 /* 0*/	FLAG_ENTRY0("CceCsrParityErr",
251 		CCE_ERR_STATUS_CCE_CSR_PARITY_ERR_SMASK),
252 /* 1*/	FLAG_ENTRY0("CceCsrReadBadAddrErr",
253 		CCE_ERR_STATUS_CCE_CSR_READ_BAD_ADDR_ERR_SMASK),
254 /* 2*/	FLAG_ENTRY0("CceCsrWriteBadAddrErr",
255 		CCE_ERR_STATUS_CCE_CSR_WRITE_BAD_ADDR_ERR_SMASK),
256 /* 3*/	FLAG_ENTRY0("CceTrgtAsyncFifoParityErr",
257 		CCE_ERR_STATUS_CCE_TRGT_ASYNC_FIFO_PARITY_ERR_SMASK),
258 /* 4*/	FLAG_ENTRY0("CceTrgtAccessErr",
259 		CCE_ERR_STATUS_CCE_TRGT_ACCESS_ERR_SMASK),
260 /* 5*/	FLAG_ENTRY0("CceRspdDataParityErr",
261 		CCE_ERR_STATUS_CCE_RSPD_DATA_PARITY_ERR_SMASK),
262 /* 6*/	FLAG_ENTRY0("CceCli0AsyncFifoParityErr",
263 		CCE_ERR_STATUS_CCE_CLI0_ASYNC_FIFO_PARITY_ERR_SMASK),
264 /* 7*/	FLAG_ENTRY0("CceCsrCfgBusParityErr",
265 		CCE_ERR_STATUS_CCE_CSR_CFG_BUS_PARITY_ERR_SMASK),
266 /* 8*/	FLAG_ENTRY0("CceCli2AsyncFifoParityErr",
267 		CCE_ERR_STATUS_CCE_CLI2_ASYNC_FIFO_PARITY_ERR_SMASK),
268 /* 9*/	FLAG_ENTRY0("CceCli1AsyncFifoPioCrdtParityErr",
269 	    CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_PIO_CRDT_PARITY_ERR_SMASK),
270 /*10*/	FLAG_ENTRY0("CceCli1AsyncFifoPioCrdtParityErr",
271 	    CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_SDMA_HD_PARITY_ERR_SMASK),
272 /*11*/	FLAG_ENTRY0("CceCli1AsyncFifoRxdmaParityError",
273 	    CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_RXDMA_PARITY_ERROR_SMASK),
274 /*12*/	FLAG_ENTRY0("CceCli1AsyncFifoDbgParityError",
275 		CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_DBG_PARITY_ERROR_SMASK),
276 /*13*/	FLAG_ENTRY0("PcicRetryMemCorErr",
277 		CCE_ERR_STATUS_PCIC_RETRY_MEM_COR_ERR_SMASK),
278 /*14*/	FLAG_ENTRY0("PcicRetryMemCorErr",
279 		CCE_ERR_STATUS_PCIC_RETRY_SOT_MEM_COR_ERR_SMASK),
280 /*15*/	FLAG_ENTRY0("PcicPostHdQCorErr",
281 		CCE_ERR_STATUS_PCIC_POST_HD_QCOR_ERR_SMASK),
282 /*16*/	FLAG_ENTRY0("PcicPostHdQCorErr",
283 		CCE_ERR_STATUS_PCIC_POST_DAT_QCOR_ERR_SMASK),
284 /*17*/	FLAG_ENTRY0("PcicPostHdQCorErr",
285 		CCE_ERR_STATUS_PCIC_CPL_HD_QCOR_ERR_SMASK),
286 /*18*/	FLAG_ENTRY0("PcicCplDatQCorErr",
287 		CCE_ERR_STATUS_PCIC_CPL_DAT_QCOR_ERR_SMASK),
288 /*19*/	FLAG_ENTRY0("PcicNPostHQParityErr",
289 		CCE_ERR_STATUS_PCIC_NPOST_HQ_PARITY_ERR_SMASK),
290 /*20*/	FLAG_ENTRY0("PcicNPostDatQParityErr",
291 		CCE_ERR_STATUS_PCIC_NPOST_DAT_QPARITY_ERR_SMASK),
292 /*21*/	FLAG_ENTRY0("PcicRetryMemUncErr",
293 		CCE_ERR_STATUS_PCIC_RETRY_MEM_UNC_ERR_SMASK),
294 /*22*/	FLAG_ENTRY0("PcicRetrySotMemUncErr",
295 		CCE_ERR_STATUS_PCIC_RETRY_SOT_MEM_UNC_ERR_SMASK),
296 /*23*/	FLAG_ENTRY0("PcicPostHdQUncErr",
297 		CCE_ERR_STATUS_PCIC_POST_HD_QUNC_ERR_SMASK),
298 /*24*/	FLAG_ENTRY0("PcicPostDatQUncErr",
299 		CCE_ERR_STATUS_PCIC_POST_DAT_QUNC_ERR_SMASK),
300 /*25*/	FLAG_ENTRY0("PcicCplHdQUncErr",
301 		CCE_ERR_STATUS_PCIC_CPL_HD_QUNC_ERR_SMASK),
302 /*26*/	FLAG_ENTRY0("PcicCplDatQUncErr",
303 		CCE_ERR_STATUS_PCIC_CPL_DAT_QUNC_ERR_SMASK),
304 /*27*/	FLAG_ENTRY0("PcicTransmitFrontParityErr",
305 		CCE_ERR_STATUS_PCIC_TRANSMIT_FRONT_PARITY_ERR_SMASK),
306 /*28*/	FLAG_ENTRY0("PcicTransmitBackParityErr",
307 		CCE_ERR_STATUS_PCIC_TRANSMIT_BACK_PARITY_ERR_SMASK),
308 /*29*/	FLAG_ENTRY0("PcicReceiveParityErr",
309 		CCE_ERR_STATUS_PCIC_RECEIVE_PARITY_ERR_SMASK),
310 /*30*/	FLAG_ENTRY0("CceTrgtCplTimeoutErr",
311 		CCE_ERR_STATUS_CCE_TRGT_CPL_TIMEOUT_ERR_SMASK),
312 /*31*/	FLAG_ENTRY0("LATriggered",
313 		CCE_ERR_STATUS_LA_TRIGGERED_SMASK),
314 /*32*/	FLAG_ENTRY0("CceSegReadBadAddrErr",
315 		CCE_ERR_STATUS_CCE_SEG_READ_BAD_ADDR_ERR_SMASK),
316 /*33*/	FLAG_ENTRY0("CceSegWriteBadAddrErr",
317 		CCE_ERR_STATUS_CCE_SEG_WRITE_BAD_ADDR_ERR_SMASK),
318 /*34*/	FLAG_ENTRY0("CceRcplAsyncFifoParityErr",
319 		CCE_ERR_STATUS_CCE_RCPL_ASYNC_FIFO_PARITY_ERR_SMASK),
320 /*35*/	FLAG_ENTRY0("CceRxdmaConvFifoParityErr",
321 		CCE_ERR_STATUS_CCE_RXDMA_CONV_FIFO_PARITY_ERR_SMASK),
322 /*36*/	FLAG_ENTRY0("CceMsixTableCorErr",
323 		CCE_ERR_STATUS_CCE_MSIX_TABLE_COR_ERR_SMASK),
324 /*37*/	FLAG_ENTRY0("CceMsixTableUncErr",
325 		CCE_ERR_STATUS_CCE_MSIX_TABLE_UNC_ERR_SMASK),
326 /*38*/	FLAG_ENTRY0("CceIntMapCorErr",
327 		CCE_ERR_STATUS_CCE_INT_MAP_COR_ERR_SMASK),
328 /*39*/	FLAG_ENTRY0("CceIntMapUncErr",
329 		CCE_ERR_STATUS_CCE_INT_MAP_UNC_ERR_SMASK),
330 /*40*/	FLAG_ENTRY0("CceMsixCsrParityErr",
331 		CCE_ERR_STATUS_CCE_MSIX_CSR_PARITY_ERR_SMASK),
332 /*41-63 reserved*/
333 };
334 
335 /*
336  * Misc Error flags
337  */
338 #define MES(text) MISC_ERR_STATUS_MISC_##text##_ERR_SMASK
339 static struct flag_table misc_err_status_flags[] = {
340 /* 0*/	FLAG_ENTRY0("CSR_PARITY", MES(CSR_PARITY)),
341 /* 1*/	FLAG_ENTRY0("CSR_READ_BAD_ADDR", MES(CSR_READ_BAD_ADDR)),
342 /* 2*/	FLAG_ENTRY0("CSR_WRITE_BAD_ADDR", MES(CSR_WRITE_BAD_ADDR)),
343 /* 3*/	FLAG_ENTRY0("SBUS_WRITE_FAILED", MES(SBUS_WRITE_FAILED)),
344 /* 4*/	FLAG_ENTRY0("KEY_MISMATCH", MES(KEY_MISMATCH)),
345 /* 5*/	FLAG_ENTRY0("FW_AUTH_FAILED", MES(FW_AUTH_FAILED)),
346 /* 6*/	FLAG_ENTRY0("EFUSE_CSR_PARITY", MES(EFUSE_CSR_PARITY)),
347 /* 7*/	FLAG_ENTRY0("EFUSE_READ_BAD_ADDR", MES(EFUSE_READ_BAD_ADDR)),
348 /* 8*/	FLAG_ENTRY0("EFUSE_WRITE", MES(EFUSE_WRITE)),
349 /* 9*/	FLAG_ENTRY0("EFUSE_DONE_PARITY", MES(EFUSE_DONE_PARITY)),
350 /*10*/	FLAG_ENTRY0("INVALID_EEP_CMD", MES(INVALID_EEP_CMD)),
351 /*11*/	FLAG_ENTRY0("MBIST_FAIL", MES(MBIST_FAIL)),
352 /*12*/	FLAG_ENTRY0("PLL_LOCK_FAIL", MES(PLL_LOCK_FAIL))
353 };
354 
355 /*
356  * TXE PIO Error flags and consequences
357  */
358 static struct flag_table pio_err_status_flags[] = {
359 /* 0*/	FLAG_ENTRY("PioWriteBadCtxt",
360 	SEC_WRITE_DROPPED,
361 	SEND_PIO_ERR_STATUS_PIO_WRITE_BAD_CTXT_ERR_SMASK),
362 /* 1*/	FLAG_ENTRY("PioWriteAddrParity",
363 	SEC_SPC_FREEZE,
364 	SEND_PIO_ERR_STATUS_PIO_WRITE_ADDR_PARITY_ERR_SMASK),
365 /* 2*/	FLAG_ENTRY("PioCsrParity",
366 	SEC_SPC_FREEZE,
367 	SEND_PIO_ERR_STATUS_PIO_CSR_PARITY_ERR_SMASK),
368 /* 3*/	FLAG_ENTRY("PioSbMemFifo0",
369 	SEC_SPC_FREEZE,
370 	SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO0_ERR_SMASK),
371 /* 4*/	FLAG_ENTRY("PioSbMemFifo1",
372 	SEC_SPC_FREEZE,
373 	SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO1_ERR_SMASK),
374 /* 5*/	FLAG_ENTRY("PioPccFifoParity",
375 	SEC_SPC_FREEZE,
376 	SEND_PIO_ERR_STATUS_PIO_PCC_FIFO_PARITY_ERR_SMASK),
377 /* 6*/	FLAG_ENTRY("PioPecFifoParity",
378 	SEC_SPC_FREEZE,
379 	SEND_PIO_ERR_STATUS_PIO_PEC_FIFO_PARITY_ERR_SMASK),
380 /* 7*/	FLAG_ENTRY("PioSbrdctlCrrelParity",
381 	SEC_SPC_FREEZE,
382 	SEND_PIO_ERR_STATUS_PIO_SBRDCTL_CRREL_PARITY_ERR_SMASK),
383 /* 8*/	FLAG_ENTRY("PioSbrdctrlCrrelFifoParity",
384 	SEC_SPC_FREEZE,
385 	SEND_PIO_ERR_STATUS_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR_SMASK),
386 /* 9*/	FLAG_ENTRY("PioPktEvictFifoParityErr",
387 	SEC_SPC_FREEZE,
388 	SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_FIFO_PARITY_ERR_SMASK),
389 /*10*/	FLAG_ENTRY("PioSmPktResetParity",
390 	SEC_SPC_FREEZE,
391 	SEND_PIO_ERR_STATUS_PIO_SM_PKT_RESET_PARITY_ERR_SMASK),
392 /*11*/	FLAG_ENTRY("PioVlLenMemBank0Unc",
393 	SEC_SPC_FREEZE,
394 	SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_UNC_ERR_SMASK),
395 /*12*/	FLAG_ENTRY("PioVlLenMemBank1Unc",
396 	SEC_SPC_FREEZE,
397 	SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_UNC_ERR_SMASK),
398 /*13*/	FLAG_ENTRY("PioVlLenMemBank0Cor",
399 	0,
400 	SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_COR_ERR_SMASK),
401 /*14*/	FLAG_ENTRY("PioVlLenMemBank1Cor",
402 	0,
403 	SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_COR_ERR_SMASK),
404 /*15*/	FLAG_ENTRY("PioCreditRetFifoParity",
405 	SEC_SPC_FREEZE,
406 	SEND_PIO_ERR_STATUS_PIO_CREDIT_RET_FIFO_PARITY_ERR_SMASK),
407 /*16*/	FLAG_ENTRY("PioPpmcPblFifo",
408 	SEC_SPC_FREEZE,
409 	SEND_PIO_ERR_STATUS_PIO_PPMC_PBL_FIFO_ERR_SMASK),
410 /*17*/	FLAG_ENTRY("PioInitSmIn",
411 	0,
412 	SEND_PIO_ERR_STATUS_PIO_INIT_SM_IN_ERR_SMASK),
413 /*18*/	FLAG_ENTRY("PioPktEvictSmOrArbSm",
414 	SEC_SPC_FREEZE,
415 	SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_SM_OR_ARB_SM_ERR_SMASK),
416 /*19*/	FLAG_ENTRY("PioHostAddrMemUnc",
417 	SEC_SPC_FREEZE,
418 	SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_UNC_ERR_SMASK),
419 /*20*/	FLAG_ENTRY("PioHostAddrMemCor",
420 	0,
421 	SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_COR_ERR_SMASK),
422 /*21*/	FLAG_ENTRY("PioWriteDataParity",
423 	SEC_SPC_FREEZE,
424 	SEND_PIO_ERR_STATUS_PIO_WRITE_DATA_PARITY_ERR_SMASK),
425 /*22*/	FLAG_ENTRY("PioStateMachine",
426 	SEC_SPC_FREEZE,
427 	SEND_PIO_ERR_STATUS_PIO_STATE_MACHINE_ERR_SMASK),
428 /*23*/	FLAG_ENTRY("PioWriteQwValidParity",
429 	SEC_WRITE_DROPPED | SEC_SPC_FREEZE,
430 	SEND_PIO_ERR_STATUS_PIO_WRITE_QW_VALID_PARITY_ERR_SMASK),
431 /*24*/	FLAG_ENTRY("PioBlockQwCountParity",
432 	SEC_WRITE_DROPPED | SEC_SPC_FREEZE,
433 	SEND_PIO_ERR_STATUS_PIO_BLOCK_QW_COUNT_PARITY_ERR_SMASK),
434 /*25*/	FLAG_ENTRY("PioVlfVlLenParity",
435 	SEC_SPC_FREEZE,
436 	SEND_PIO_ERR_STATUS_PIO_VLF_VL_LEN_PARITY_ERR_SMASK),
437 /*26*/	FLAG_ENTRY("PioVlfSopParity",
438 	SEC_SPC_FREEZE,
439 	SEND_PIO_ERR_STATUS_PIO_VLF_SOP_PARITY_ERR_SMASK),
440 /*27*/	FLAG_ENTRY("PioVlFifoParity",
441 	SEC_SPC_FREEZE,
442 	SEND_PIO_ERR_STATUS_PIO_VL_FIFO_PARITY_ERR_SMASK),
443 /*28*/	FLAG_ENTRY("PioPpmcBqcMemParity",
444 	SEC_SPC_FREEZE,
445 	SEND_PIO_ERR_STATUS_PIO_PPMC_BQC_MEM_PARITY_ERR_SMASK),
446 /*29*/	FLAG_ENTRY("PioPpmcSopLen",
447 	SEC_SPC_FREEZE,
448 	SEND_PIO_ERR_STATUS_PIO_PPMC_SOP_LEN_ERR_SMASK),
449 /*30-31 reserved*/
450 /*32*/	FLAG_ENTRY("PioCurrentFreeCntParity",
451 	SEC_SPC_FREEZE,
452 	SEND_PIO_ERR_STATUS_PIO_CURRENT_FREE_CNT_PARITY_ERR_SMASK),
453 /*33*/	FLAG_ENTRY("PioLastReturnedCntParity",
454 	SEC_SPC_FREEZE,
455 	SEND_PIO_ERR_STATUS_PIO_LAST_RETURNED_CNT_PARITY_ERR_SMASK),
456 /*34*/	FLAG_ENTRY("PioPccSopHeadParity",
457 	SEC_SPC_FREEZE,
458 	SEND_PIO_ERR_STATUS_PIO_PCC_SOP_HEAD_PARITY_ERR_SMASK),
459 /*35*/	FLAG_ENTRY("PioPecSopHeadParityErr",
460 	SEC_SPC_FREEZE,
461 	SEND_PIO_ERR_STATUS_PIO_PEC_SOP_HEAD_PARITY_ERR_SMASK),
462 /*36-63 reserved*/
463 };
464 
465 /* TXE PIO errors that cause an SPC freeze */
466 #define ALL_PIO_FREEZE_ERR \
467 	(SEND_PIO_ERR_STATUS_PIO_WRITE_ADDR_PARITY_ERR_SMASK \
468 	| SEND_PIO_ERR_STATUS_PIO_CSR_PARITY_ERR_SMASK \
469 	| SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO0_ERR_SMASK \
470 	| SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO1_ERR_SMASK \
471 	| SEND_PIO_ERR_STATUS_PIO_PCC_FIFO_PARITY_ERR_SMASK \
472 	| SEND_PIO_ERR_STATUS_PIO_PEC_FIFO_PARITY_ERR_SMASK \
473 	| SEND_PIO_ERR_STATUS_PIO_SBRDCTL_CRREL_PARITY_ERR_SMASK \
474 	| SEND_PIO_ERR_STATUS_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR_SMASK \
475 	| SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_FIFO_PARITY_ERR_SMASK \
476 	| SEND_PIO_ERR_STATUS_PIO_SM_PKT_RESET_PARITY_ERR_SMASK \
477 	| SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_UNC_ERR_SMASK \
478 	| SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_UNC_ERR_SMASK \
479 	| SEND_PIO_ERR_STATUS_PIO_CREDIT_RET_FIFO_PARITY_ERR_SMASK \
480 	| SEND_PIO_ERR_STATUS_PIO_PPMC_PBL_FIFO_ERR_SMASK \
481 	| SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_SM_OR_ARB_SM_ERR_SMASK \
482 	| SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_UNC_ERR_SMASK \
483 	| SEND_PIO_ERR_STATUS_PIO_WRITE_DATA_PARITY_ERR_SMASK \
484 	| SEND_PIO_ERR_STATUS_PIO_STATE_MACHINE_ERR_SMASK \
485 	| SEND_PIO_ERR_STATUS_PIO_WRITE_QW_VALID_PARITY_ERR_SMASK \
486 	| SEND_PIO_ERR_STATUS_PIO_BLOCK_QW_COUNT_PARITY_ERR_SMASK \
487 	| SEND_PIO_ERR_STATUS_PIO_VLF_VL_LEN_PARITY_ERR_SMASK \
488 	| SEND_PIO_ERR_STATUS_PIO_VLF_SOP_PARITY_ERR_SMASK \
489 	| SEND_PIO_ERR_STATUS_PIO_VL_FIFO_PARITY_ERR_SMASK \
490 	| SEND_PIO_ERR_STATUS_PIO_PPMC_BQC_MEM_PARITY_ERR_SMASK \
491 	| SEND_PIO_ERR_STATUS_PIO_PPMC_SOP_LEN_ERR_SMASK \
492 	| SEND_PIO_ERR_STATUS_PIO_CURRENT_FREE_CNT_PARITY_ERR_SMASK \
493 	| SEND_PIO_ERR_STATUS_PIO_LAST_RETURNED_CNT_PARITY_ERR_SMASK \
494 	| SEND_PIO_ERR_STATUS_PIO_PCC_SOP_HEAD_PARITY_ERR_SMASK \
495 	| SEND_PIO_ERR_STATUS_PIO_PEC_SOP_HEAD_PARITY_ERR_SMASK)
496 
497 /*
498  * TXE SDMA Error flags
499  */
500 static struct flag_table sdma_err_status_flags[] = {
501 /* 0*/	FLAG_ENTRY0("SDmaRpyTagErr",
502 		SEND_DMA_ERR_STATUS_SDMA_RPY_TAG_ERR_SMASK),
503 /* 1*/	FLAG_ENTRY0("SDmaCsrParityErr",
504 		SEND_DMA_ERR_STATUS_SDMA_CSR_PARITY_ERR_SMASK),
505 /* 2*/	FLAG_ENTRY0("SDmaPcieReqTrackingUncErr",
506 		SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_UNC_ERR_SMASK),
507 /* 3*/	FLAG_ENTRY0("SDmaPcieReqTrackingCorErr",
508 		SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_COR_ERR_SMASK),
509 /*04-63 reserved*/
510 };
511 
512 /* TXE SDMA errors that cause an SPC freeze */
513 #define ALL_SDMA_FREEZE_ERR  \
514 		(SEND_DMA_ERR_STATUS_SDMA_RPY_TAG_ERR_SMASK \
515 		| SEND_DMA_ERR_STATUS_SDMA_CSR_PARITY_ERR_SMASK \
516 		| SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_UNC_ERR_SMASK)
517 
518 /* SendEgressErrInfo bits that correspond to a PortXmitDiscard counter */
519 #define PORT_DISCARD_EGRESS_ERRS \
520 	(SEND_EGRESS_ERR_INFO_TOO_LONG_IB_PACKET_ERR_SMASK \
521 	| SEND_EGRESS_ERR_INFO_VL_MAPPING_ERR_SMASK \
522 	| SEND_EGRESS_ERR_INFO_VL_ERR_SMASK)
523 
524 /*
525  * TXE Egress Error flags
526  */
527 #define SEES(text) SEND_EGRESS_ERR_STATUS_##text##_ERR_SMASK
528 static struct flag_table egress_err_status_flags[] = {
529 /* 0*/	FLAG_ENTRY0("TxPktIntegrityMemCorErr", SEES(TX_PKT_INTEGRITY_MEM_COR)),
530 /* 1*/	FLAG_ENTRY0("TxPktIntegrityMemUncErr", SEES(TX_PKT_INTEGRITY_MEM_UNC)),
531 /* 2 reserved */
532 /* 3*/	FLAG_ENTRY0("TxEgressFifoUnderrunOrParityErr",
533 		SEES(TX_EGRESS_FIFO_UNDERRUN_OR_PARITY)),
534 /* 4*/	FLAG_ENTRY0("TxLinkdownErr", SEES(TX_LINKDOWN)),
535 /* 5*/	FLAG_ENTRY0("TxIncorrectLinkStateErr", SEES(TX_INCORRECT_LINK_STATE)),
536 /* 6 reserved */
537 /* 7*/	FLAG_ENTRY0("TxPioLaunchIntfParityErr",
538 		SEES(TX_PIO_LAUNCH_INTF_PARITY)),
539 /* 8*/	FLAG_ENTRY0("TxSdmaLaunchIntfParityErr",
540 		SEES(TX_SDMA_LAUNCH_INTF_PARITY)),
541 /* 9-10 reserved */
542 /*11*/	FLAG_ENTRY0("TxSbrdCtlStateMachineParityErr",
543 		SEES(TX_SBRD_CTL_STATE_MACHINE_PARITY)),
544 /*12*/	FLAG_ENTRY0("TxIllegalVLErr", SEES(TX_ILLEGAL_VL)),
545 /*13*/	FLAG_ENTRY0("TxLaunchCsrParityErr", SEES(TX_LAUNCH_CSR_PARITY)),
546 /*14*/	FLAG_ENTRY0("TxSbrdCtlCsrParityErr", SEES(TX_SBRD_CTL_CSR_PARITY)),
547 /*15*/	FLAG_ENTRY0("TxConfigParityErr", SEES(TX_CONFIG_PARITY)),
548 /*16*/	FLAG_ENTRY0("TxSdma0DisallowedPacketErr",
549 		SEES(TX_SDMA0_DISALLOWED_PACKET)),
550 /*17*/	FLAG_ENTRY0("TxSdma1DisallowedPacketErr",
551 		SEES(TX_SDMA1_DISALLOWED_PACKET)),
552 /*18*/	FLAG_ENTRY0("TxSdma2DisallowedPacketErr",
553 		SEES(TX_SDMA2_DISALLOWED_PACKET)),
554 /*19*/	FLAG_ENTRY0("TxSdma3DisallowedPacketErr",
555 		SEES(TX_SDMA3_DISALLOWED_PACKET)),
556 /*20*/	FLAG_ENTRY0("TxSdma4DisallowedPacketErr",
557 		SEES(TX_SDMA4_DISALLOWED_PACKET)),
558 /*21*/	FLAG_ENTRY0("TxSdma5DisallowedPacketErr",
559 		SEES(TX_SDMA5_DISALLOWED_PACKET)),
560 /*22*/	FLAG_ENTRY0("TxSdma6DisallowedPacketErr",
561 		SEES(TX_SDMA6_DISALLOWED_PACKET)),
562 /*23*/	FLAG_ENTRY0("TxSdma7DisallowedPacketErr",
563 		SEES(TX_SDMA7_DISALLOWED_PACKET)),
564 /*24*/	FLAG_ENTRY0("TxSdma8DisallowedPacketErr",
565 		SEES(TX_SDMA8_DISALLOWED_PACKET)),
566 /*25*/	FLAG_ENTRY0("TxSdma9DisallowedPacketErr",
567 		SEES(TX_SDMA9_DISALLOWED_PACKET)),
568 /*26*/	FLAG_ENTRY0("TxSdma10DisallowedPacketErr",
569 		SEES(TX_SDMA10_DISALLOWED_PACKET)),
570 /*27*/	FLAG_ENTRY0("TxSdma11DisallowedPacketErr",
571 		SEES(TX_SDMA11_DISALLOWED_PACKET)),
572 /*28*/	FLAG_ENTRY0("TxSdma12DisallowedPacketErr",
573 		SEES(TX_SDMA12_DISALLOWED_PACKET)),
574 /*29*/	FLAG_ENTRY0("TxSdma13DisallowedPacketErr",
575 		SEES(TX_SDMA13_DISALLOWED_PACKET)),
576 /*30*/	FLAG_ENTRY0("TxSdma14DisallowedPacketErr",
577 		SEES(TX_SDMA14_DISALLOWED_PACKET)),
578 /*31*/	FLAG_ENTRY0("TxSdma15DisallowedPacketErr",
579 		SEES(TX_SDMA15_DISALLOWED_PACKET)),
580 /*32*/	FLAG_ENTRY0("TxLaunchFifo0UncOrParityErr",
581 		SEES(TX_LAUNCH_FIFO0_UNC_OR_PARITY)),
582 /*33*/	FLAG_ENTRY0("TxLaunchFifo1UncOrParityErr",
583 		SEES(TX_LAUNCH_FIFO1_UNC_OR_PARITY)),
584 /*34*/	FLAG_ENTRY0("TxLaunchFifo2UncOrParityErr",
585 		SEES(TX_LAUNCH_FIFO2_UNC_OR_PARITY)),
586 /*35*/	FLAG_ENTRY0("TxLaunchFifo3UncOrParityErr",
587 		SEES(TX_LAUNCH_FIFO3_UNC_OR_PARITY)),
588 /*36*/	FLAG_ENTRY0("TxLaunchFifo4UncOrParityErr",
589 		SEES(TX_LAUNCH_FIFO4_UNC_OR_PARITY)),
590 /*37*/	FLAG_ENTRY0("TxLaunchFifo5UncOrParityErr",
591 		SEES(TX_LAUNCH_FIFO5_UNC_OR_PARITY)),
592 /*38*/	FLAG_ENTRY0("TxLaunchFifo6UncOrParityErr",
593 		SEES(TX_LAUNCH_FIFO6_UNC_OR_PARITY)),
594 /*39*/	FLAG_ENTRY0("TxLaunchFifo7UncOrParityErr",
595 		SEES(TX_LAUNCH_FIFO7_UNC_OR_PARITY)),
596 /*40*/	FLAG_ENTRY0("TxLaunchFifo8UncOrParityErr",
597 		SEES(TX_LAUNCH_FIFO8_UNC_OR_PARITY)),
598 /*41*/	FLAG_ENTRY0("TxCreditReturnParityErr", SEES(TX_CREDIT_RETURN_PARITY)),
599 /*42*/	FLAG_ENTRY0("TxSbHdrUncErr", SEES(TX_SB_HDR_UNC)),
600 /*43*/	FLAG_ENTRY0("TxReadSdmaMemoryUncErr", SEES(TX_READ_SDMA_MEMORY_UNC)),
601 /*44*/	FLAG_ENTRY0("TxReadPioMemoryUncErr", SEES(TX_READ_PIO_MEMORY_UNC)),
602 /*45*/	FLAG_ENTRY0("TxEgressFifoUncErr", SEES(TX_EGRESS_FIFO_UNC)),
603 /*46*/	FLAG_ENTRY0("TxHcrcInsertionErr", SEES(TX_HCRC_INSERTION)),
604 /*47*/	FLAG_ENTRY0("TxCreditReturnVLErr", SEES(TX_CREDIT_RETURN_VL)),
605 /*48*/	FLAG_ENTRY0("TxLaunchFifo0CorErr", SEES(TX_LAUNCH_FIFO0_COR)),
606 /*49*/	FLAG_ENTRY0("TxLaunchFifo1CorErr", SEES(TX_LAUNCH_FIFO1_COR)),
607 /*50*/	FLAG_ENTRY0("TxLaunchFifo2CorErr", SEES(TX_LAUNCH_FIFO2_COR)),
608 /*51*/	FLAG_ENTRY0("TxLaunchFifo3CorErr", SEES(TX_LAUNCH_FIFO3_COR)),
609 /*52*/	FLAG_ENTRY0("TxLaunchFifo4CorErr", SEES(TX_LAUNCH_FIFO4_COR)),
610 /*53*/	FLAG_ENTRY0("TxLaunchFifo5CorErr", SEES(TX_LAUNCH_FIFO5_COR)),
611 /*54*/	FLAG_ENTRY0("TxLaunchFifo6CorErr", SEES(TX_LAUNCH_FIFO6_COR)),
612 /*55*/	FLAG_ENTRY0("TxLaunchFifo7CorErr", SEES(TX_LAUNCH_FIFO7_COR)),
613 /*56*/	FLAG_ENTRY0("TxLaunchFifo8CorErr", SEES(TX_LAUNCH_FIFO8_COR)),
614 /*57*/	FLAG_ENTRY0("TxCreditOverrunErr", SEES(TX_CREDIT_OVERRUN)),
615 /*58*/	FLAG_ENTRY0("TxSbHdrCorErr", SEES(TX_SB_HDR_COR)),
616 /*59*/	FLAG_ENTRY0("TxReadSdmaMemoryCorErr", SEES(TX_READ_SDMA_MEMORY_COR)),
617 /*60*/	FLAG_ENTRY0("TxReadPioMemoryCorErr", SEES(TX_READ_PIO_MEMORY_COR)),
618 /*61*/	FLAG_ENTRY0("TxEgressFifoCorErr", SEES(TX_EGRESS_FIFO_COR)),
619 /*62*/	FLAG_ENTRY0("TxReadSdmaMemoryCsrUncErr",
620 		SEES(TX_READ_SDMA_MEMORY_CSR_UNC)),
621 /*63*/	FLAG_ENTRY0("TxReadPioMemoryCsrUncErr",
622 		SEES(TX_READ_PIO_MEMORY_CSR_UNC)),
623 };
624 
625 /*
626  * TXE Egress Error Info flags
627  */
628 #define SEEI(text) SEND_EGRESS_ERR_INFO_##text##_ERR_SMASK
629 static struct flag_table egress_err_info_flags[] = {
630 /* 0*/	FLAG_ENTRY0("Reserved", 0ull),
631 /* 1*/	FLAG_ENTRY0("VLErr", SEEI(VL)),
632 /* 2*/	FLAG_ENTRY0("JobKeyErr", SEEI(JOB_KEY)),
633 /* 3*/	FLAG_ENTRY0("JobKeyErr", SEEI(JOB_KEY)),
634 /* 4*/	FLAG_ENTRY0("PartitionKeyErr", SEEI(PARTITION_KEY)),
635 /* 5*/	FLAG_ENTRY0("SLIDErr", SEEI(SLID)),
636 /* 6*/	FLAG_ENTRY0("OpcodeErr", SEEI(OPCODE)),
637 /* 7*/	FLAG_ENTRY0("VLMappingErr", SEEI(VL_MAPPING)),
638 /* 8*/	FLAG_ENTRY0("RawErr", SEEI(RAW)),
639 /* 9*/	FLAG_ENTRY0("RawIPv6Err", SEEI(RAW_IPV6)),
640 /*10*/	FLAG_ENTRY0("GRHErr", SEEI(GRH)),
641 /*11*/	FLAG_ENTRY0("BypassErr", SEEI(BYPASS)),
642 /*12*/	FLAG_ENTRY0("KDETHPacketsErr", SEEI(KDETH_PACKETS)),
643 /*13*/	FLAG_ENTRY0("NonKDETHPacketsErr", SEEI(NON_KDETH_PACKETS)),
644 /*14*/	FLAG_ENTRY0("TooSmallIBPacketsErr", SEEI(TOO_SMALL_IB_PACKETS)),
645 /*15*/	FLAG_ENTRY0("TooSmallBypassPacketsErr", SEEI(TOO_SMALL_BYPASS_PACKETS)),
646 /*16*/	FLAG_ENTRY0("PbcTestErr", SEEI(PBC_TEST)),
647 /*17*/	FLAG_ENTRY0("BadPktLenErr", SEEI(BAD_PKT_LEN)),
648 /*18*/	FLAG_ENTRY0("TooLongIBPacketErr", SEEI(TOO_LONG_IB_PACKET)),
649 /*19*/	FLAG_ENTRY0("TooLongBypassPacketsErr", SEEI(TOO_LONG_BYPASS_PACKETS)),
650 /*20*/	FLAG_ENTRY0("PbcStaticRateControlErr", SEEI(PBC_STATIC_RATE_CONTROL)),
651 /*21*/	FLAG_ENTRY0("BypassBadPktLenErr", SEEI(BAD_PKT_LEN)),
652 };
653 
654 /* TXE Egress errors that cause an SPC freeze */
655 #define ALL_TXE_EGRESS_FREEZE_ERR \
656 	(SEES(TX_EGRESS_FIFO_UNDERRUN_OR_PARITY) \
657 	| SEES(TX_PIO_LAUNCH_INTF_PARITY) \
658 	| SEES(TX_SDMA_LAUNCH_INTF_PARITY) \
659 	| SEES(TX_SBRD_CTL_STATE_MACHINE_PARITY) \
660 	| SEES(TX_LAUNCH_CSR_PARITY) \
661 	| SEES(TX_SBRD_CTL_CSR_PARITY) \
662 	| SEES(TX_CONFIG_PARITY) \
663 	| SEES(TX_LAUNCH_FIFO0_UNC_OR_PARITY) \
664 	| SEES(TX_LAUNCH_FIFO1_UNC_OR_PARITY) \
665 	| SEES(TX_LAUNCH_FIFO2_UNC_OR_PARITY) \
666 	| SEES(TX_LAUNCH_FIFO3_UNC_OR_PARITY) \
667 	| SEES(TX_LAUNCH_FIFO4_UNC_OR_PARITY) \
668 	| SEES(TX_LAUNCH_FIFO5_UNC_OR_PARITY) \
669 	| SEES(TX_LAUNCH_FIFO6_UNC_OR_PARITY) \
670 	| SEES(TX_LAUNCH_FIFO7_UNC_OR_PARITY) \
671 	| SEES(TX_LAUNCH_FIFO8_UNC_OR_PARITY) \
672 	| SEES(TX_CREDIT_RETURN_PARITY))
673 
674 /*
675  * TXE Send error flags
676  */
677 #define SES(name) SEND_ERR_STATUS_SEND_##name##_ERR_SMASK
678 static struct flag_table send_err_status_flags[] = {
679 /* 0*/	FLAG_ENTRY0("SendCsrParityErr", SES(CSR_PARITY)),
680 /* 1*/	FLAG_ENTRY0("SendCsrReadBadAddrErr", SES(CSR_READ_BAD_ADDR)),
681 /* 2*/	FLAG_ENTRY0("SendCsrWriteBadAddrErr", SES(CSR_WRITE_BAD_ADDR))
682 };
683 
684 /*
685  * TXE Send Context Error flags and consequences
686  */
687 static struct flag_table sc_err_status_flags[] = {
688 /* 0*/	FLAG_ENTRY("InconsistentSop",
689 		SEC_PACKET_DROPPED | SEC_SC_HALTED,
690 		SEND_CTXT_ERR_STATUS_PIO_INCONSISTENT_SOP_ERR_SMASK),
691 /* 1*/	FLAG_ENTRY("DisallowedPacket",
692 		SEC_PACKET_DROPPED | SEC_SC_HALTED,
693 		SEND_CTXT_ERR_STATUS_PIO_DISALLOWED_PACKET_ERR_SMASK),
694 /* 2*/	FLAG_ENTRY("WriteCrossesBoundary",
695 		SEC_WRITE_DROPPED | SEC_SC_HALTED,
696 		SEND_CTXT_ERR_STATUS_PIO_WRITE_CROSSES_BOUNDARY_ERR_SMASK),
697 /* 3*/	FLAG_ENTRY("WriteOverflow",
698 		SEC_WRITE_DROPPED | SEC_SC_HALTED,
699 		SEND_CTXT_ERR_STATUS_PIO_WRITE_OVERFLOW_ERR_SMASK),
700 /* 4*/	FLAG_ENTRY("WriteOutOfBounds",
701 		SEC_WRITE_DROPPED | SEC_SC_HALTED,
702 		SEND_CTXT_ERR_STATUS_PIO_WRITE_OUT_OF_BOUNDS_ERR_SMASK),
703 /* 5-63 reserved*/
704 };
705 
706 /*
707  * RXE Receive Error flags
708  */
709 #define RXES(name) RCV_ERR_STATUS_RX_##name##_ERR_SMASK
710 static struct flag_table rxe_err_status_flags[] = {
711 /* 0*/	FLAG_ENTRY0("RxDmaCsrCorErr", RXES(DMA_CSR_COR)),
712 /* 1*/	FLAG_ENTRY0("RxDcIntfParityErr", RXES(DC_INTF_PARITY)),
713 /* 2*/	FLAG_ENTRY0("RxRcvHdrUncErr", RXES(RCV_HDR_UNC)),
714 /* 3*/	FLAG_ENTRY0("RxRcvHdrCorErr", RXES(RCV_HDR_COR)),
715 /* 4*/	FLAG_ENTRY0("RxRcvDataUncErr", RXES(RCV_DATA_UNC)),
716 /* 5*/	FLAG_ENTRY0("RxRcvDataCorErr", RXES(RCV_DATA_COR)),
717 /* 6*/	FLAG_ENTRY0("RxRcvQpMapTableUncErr", RXES(RCV_QP_MAP_TABLE_UNC)),
718 /* 7*/	FLAG_ENTRY0("RxRcvQpMapTableCorErr", RXES(RCV_QP_MAP_TABLE_COR)),
719 /* 8*/	FLAG_ENTRY0("RxRcvCsrParityErr", RXES(RCV_CSR_PARITY)),
720 /* 9*/	FLAG_ENTRY0("RxDcSopEopParityErr", RXES(DC_SOP_EOP_PARITY)),
721 /*10*/	FLAG_ENTRY0("RxDmaFlagUncErr", RXES(DMA_FLAG_UNC)),
722 /*11*/	FLAG_ENTRY0("RxDmaFlagCorErr", RXES(DMA_FLAG_COR)),
723 /*12*/	FLAG_ENTRY0("RxRcvFsmEncodingErr", RXES(RCV_FSM_ENCODING)),
724 /*13*/	FLAG_ENTRY0("RxRbufFreeListUncErr", RXES(RBUF_FREE_LIST_UNC)),
725 /*14*/	FLAG_ENTRY0("RxRbufFreeListCorErr", RXES(RBUF_FREE_LIST_COR)),
726 /*15*/	FLAG_ENTRY0("RxRbufLookupDesRegUncErr", RXES(RBUF_LOOKUP_DES_REG_UNC)),
727 /*16*/	FLAG_ENTRY0("RxRbufLookupDesRegUncCorErr",
728 		RXES(RBUF_LOOKUP_DES_REG_UNC_COR)),
729 /*17*/	FLAG_ENTRY0("RxRbufLookupDesUncErr", RXES(RBUF_LOOKUP_DES_UNC)),
730 /*18*/	FLAG_ENTRY0("RxRbufLookupDesCorErr", RXES(RBUF_LOOKUP_DES_COR)),
731 /*19*/	FLAG_ENTRY0("RxRbufBlockListReadUncErr",
732 		RXES(RBUF_BLOCK_LIST_READ_UNC)),
733 /*20*/	FLAG_ENTRY0("RxRbufBlockListReadCorErr",
734 		RXES(RBUF_BLOCK_LIST_READ_COR)),
735 /*21*/	FLAG_ENTRY0("RxRbufCsrQHeadBufNumParityErr",
736 		RXES(RBUF_CSR_QHEAD_BUF_NUM_PARITY)),
737 /*22*/	FLAG_ENTRY0("RxRbufCsrQEntCntParityErr",
738 		RXES(RBUF_CSR_QENT_CNT_PARITY)),
739 /*23*/	FLAG_ENTRY0("RxRbufCsrQNextBufParityErr",
740 		RXES(RBUF_CSR_QNEXT_BUF_PARITY)),
741 /*24*/	FLAG_ENTRY0("RxRbufCsrQVldBitParityErr",
742 		RXES(RBUF_CSR_QVLD_BIT_PARITY)),
743 /*25*/	FLAG_ENTRY0("RxRbufCsrQHdPtrParityErr", RXES(RBUF_CSR_QHD_PTR_PARITY)),
744 /*26*/	FLAG_ENTRY0("RxRbufCsrQTlPtrParityErr", RXES(RBUF_CSR_QTL_PTR_PARITY)),
745 /*27*/	FLAG_ENTRY0("RxRbufCsrQNumOfPktParityErr",
746 		RXES(RBUF_CSR_QNUM_OF_PKT_PARITY)),
747 /*28*/	FLAG_ENTRY0("RxRbufCsrQEOPDWParityErr", RXES(RBUF_CSR_QEOPDW_PARITY)),
748 /*29*/	FLAG_ENTRY0("RxRbufCtxIdParityErr", RXES(RBUF_CTX_ID_PARITY)),
749 /*30*/	FLAG_ENTRY0("RxRBufBadLookupErr", RXES(RBUF_BAD_LOOKUP)),
750 /*31*/	FLAG_ENTRY0("RxRbufFullErr", RXES(RBUF_FULL)),
751 /*32*/	FLAG_ENTRY0("RxRbufEmptyErr", RXES(RBUF_EMPTY)),
752 /*33*/	FLAG_ENTRY0("RxRbufFlRdAddrParityErr", RXES(RBUF_FL_RD_ADDR_PARITY)),
753 /*34*/	FLAG_ENTRY0("RxRbufFlWrAddrParityErr", RXES(RBUF_FL_WR_ADDR_PARITY)),
754 /*35*/	FLAG_ENTRY0("RxRbufFlInitdoneParityErr",
755 		RXES(RBUF_FL_INITDONE_PARITY)),
756 /*36*/	FLAG_ENTRY0("RxRbufFlInitWrAddrParityErr",
757 		RXES(RBUF_FL_INIT_WR_ADDR_PARITY)),
758 /*37*/	FLAG_ENTRY0("RxRbufNextFreeBufUncErr", RXES(RBUF_NEXT_FREE_BUF_UNC)),
759 /*38*/	FLAG_ENTRY0("RxRbufNextFreeBufCorErr", RXES(RBUF_NEXT_FREE_BUF_COR)),
760 /*39*/	FLAG_ENTRY0("RxLookupDesPart1UncErr", RXES(LOOKUP_DES_PART1_UNC)),
761 /*40*/	FLAG_ENTRY0("RxLookupDesPart1UncCorErr",
762 		RXES(LOOKUP_DES_PART1_UNC_COR)),
763 /*41*/	FLAG_ENTRY0("RxLookupDesPart2ParityErr",
764 		RXES(LOOKUP_DES_PART2_PARITY)),
765 /*42*/	FLAG_ENTRY0("RxLookupRcvArrayUncErr", RXES(LOOKUP_RCV_ARRAY_UNC)),
766 /*43*/	FLAG_ENTRY0("RxLookupRcvArrayCorErr", RXES(LOOKUP_RCV_ARRAY_COR)),
767 /*44*/	FLAG_ENTRY0("RxLookupCsrParityErr", RXES(LOOKUP_CSR_PARITY)),
768 /*45*/	FLAG_ENTRY0("RxHqIntrCsrParityErr", RXES(HQ_INTR_CSR_PARITY)),
769 /*46*/	FLAG_ENTRY0("RxHqIntrFsmErr", RXES(HQ_INTR_FSM)),
770 /*47*/	FLAG_ENTRY0("RxRbufDescPart1UncErr", RXES(RBUF_DESC_PART1_UNC)),
771 /*48*/	FLAG_ENTRY0("RxRbufDescPart1CorErr", RXES(RBUF_DESC_PART1_COR)),
772 /*49*/	FLAG_ENTRY0("RxRbufDescPart2UncErr", RXES(RBUF_DESC_PART2_UNC)),
773 /*50*/	FLAG_ENTRY0("RxRbufDescPart2CorErr", RXES(RBUF_DESC_PART2_COR)),
774 /*51*/	FLAG_ENTRY0("RxDmaHdrFifoRdUncErr", RXES(DMA_HDR_FIFO_RD_UNC)),
775 /*52*/	FLAG_ENTRY0("RxDmaHdrFifoRdCorErr", RXES(DMA_HDR_FIFO_RD_COR)),
776 /*53*/	FLAG_ENTRY0("RxDmaDataFifoRdUncErr", RXES(DMA_DATA_FIFO_RD_UNC)),
777 /*54*/	FLAG_ENTRY0("RxDmaDataFifoRdCorErr", RXES(DMA_DATA_FIFO_RD_COR)),
778 /*55*/	FLAG_ENTRY0("RxRbufDataUncErr", RXES(RBUF_DATA_UNC)),
779 /*56*/	FLAG_ENTRY0("RxRbufDataCorErr", RXES(RBUF_DATA_COR)),
780 /*57*/	FLAG_ENTRY0("RxDmaCsrParityErr", RXES(DMA_CSR_PARITY)),
781 /*58*/	FLAG_ENTRY0("RxDmaEqFsmEncodingErr", RXES(DMA_EQ_FSM_ENCODING)),
782 /*59*/	FLAG_ENTRY0("RxDmaDqFsmEncodingErr", RXES(DMA_DQ_FSM_ENCODING)),
783 /*60*/	FLAG_ENTRY0("RxDmaCsrUncErr", RXES(DMA_CSR_UNC)),
784 /*61*/	FLAG_ENTRY0("RxCsrReadBadAddrErr", RXES(CSR_READ_BAD_ADDR)),
785 /*62*/	FLAG_ENTRY0("RxCsrWriteBadAddrErr", RXES(CSR_WRITE_BAD_ADDR)),
786 /*63*/	FLAG_ENTRY0("RxCsrParityErr", RXES(CSR_PARITY))
787 };
788 
789 /* RXE errors that will trigger an SPC freeze */
790 #define ALL_RXE_FREEZE_ERR  \
791 	(RCV_ERR_STATUS_RX_RCV_QP_MAP_TABLE_UNC_ERR_SMASK \
792 	| RCV_ERR_STATUS_RX_RCV_CSR_PARITY_ERR_SMASK \
793 	| RCV_ERR_STATUS_RX_DMA_FLAG_UNC_ERR_SMASK \
794 	| RCV_ERR_STATUS_RX_RCV_FSM_ENCODING_ERR_SMASK \
795 	| RCV_ERR_STATUS_RX_RBUF_FREE_LIST_UNC_ERR_SMASK \
796 	| RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_REG_UNC_ERR_SMASK \
797 	| RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_REG_UNC_COR_ERR_SMASK \
798 	| RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_UNC_ERR_SMASK \
799 	| RCV_ERR_STATUS_RX_RBUF_BLOCK_LIST_READ_UNC_ERR_SMASK \
800 	| RCV_ERR_STATUS_RX_RBUF_CSR_QHEAD_BUF_NUM_PARITY_ERR_SMASK \
801 	| RCV_ERR_STATUS_RX_RBUF_CSR_QENT_CNT_PARITY_ERR_SMASK \
802 	| RCV_ERR_STATUS_RX_RBUF_CSR_QNEXT_BUF_PARITY_ERR_SMASK \
803 	| RCV_ERR_STATUS_RX_RBUF_CSR_QVLD_BIT_PARITY_ERR_SMASK \
804 	| RCV_ERR_STATUS_RX_RBUF_CSR_QHD_PTR_PARITY_ERR_SMASK \
805 	| RCV_ERR_STATUS_RX_RBUF_CSR_QTL_PTR_PARITY_ERR_SMASK \
806 	| RCV_ERR_STATUS_RX_RBUF_CSR_QNUM_OF_PKT_PARITY_ERR_SMASK \
807 	| RCV_ERR_STATUS_RX_RBUF_CSR_QEOPDW_PARITY_ERR_SMASK \
808 	| RCV_ERR_STATUS_RX_RBUF_CTX_ID_PARITY_ERR_SMASK \
809 	| RCV_ERR_STATUS_RX_RBUF_BAD_LOOKUP_ERR_SMASK \
810 	| RCV_ERR_STATUS_RX_RBUF_FULL_ERR_SMASK \
811 	| RCV_ERR_STATUS_RX_RBUF_EMPTY_ERR_SMASK \
812 	| RCV_ERR_STATUS_RX_RBUF_FL_RD_ADDR_PARITY_ERR_SMASK \
813 	| RCV_ERR_STATUS_RX_RBUF_FL_WR_ADDR_PARITY_ERR_SMASK \
814 	| RCV_ERR_STATUS_RX_RBUF_FL_INITDONE_PARITY_ERR_SMASK \
815 	| RCV_ERR_STATUS_RX_RBUF_FL_INIT_WR_ADDR_PARITY_ERR_SMASK \
816 	| RCV_ERR_STATUS_RX_RBUF_NEXT_FREE_BUF_UNC_ERR_SMASK \
817 	| RCV_ERR_STATUS_RX_LOOKUP_DES_PART1_UNC_ERR_SMASK \
818 	| RCV_ERR_STATUS_RX_LOOKUP_DES_PART1_UNC_COR_ERR_SMASK \
819 	| RCV_ERR_STATUS_RX_LOOKUP_DES_PART2_PARITY_ERR_SMASK \
820 	| RCV_ERR_STATUS_RX_LOOKUP_RCV_ARRAY_UNC_ERR_SMASK \
821 	| RCV_ERR_STATUS_RX_LOOKUP_CSR_PARITY_ERR_SMASK \
822 	| RCV_ERR_STATUS_RX_HQ_INTR_CSR_PARITY_ERR_SMASK \
823 	| RCV_ERR_STATUS_RX_HQ_INTR_FSM_ERR_SMASK \
824 	| RCV_ERR_STATUS_RX_RBUF_DESC_PART1_UNC_ERR_SMASK \
825 	| RCV_ERR_STATUS_RX_RBUF_DESC_PART1_COR_ERR_SMASK \
826 	| RCV_ERR_STATUS_RX_RBUF_DESC_PART2_UNC_ERR_SMASK \
827 	| RCV_ERR_STATUS_RX_DMA_HDR_FIFO_RD_UNC_ERR_SMASK \
828 	| RCV_ERR_STATUS_RX_DMA_DATA_FIFO_RD_UNC_ERR_SMASK \
829 	| RCV_ERR_STATUS_RX_RBUF_DATA_UNC_ERR_SMASK \
830 	| RCV_ERR_STATUS_RX_DMA_CSR_PARITY_ERR_SMASK \
831 	| RCV_ERR_STATUS_RX_DMA_EQ_FSM_ENCODING_ERR_SMASK \
832 	| RCV_ERR_STATUS_RX_DMA_DQ_FSM_ENCODING_ERR_SMASK \
833 	| RCV_ERR_STATUS_RX_DMA_CSR_UNC_ERR_SMASK \
834 	| RCV_ERR_STATUS_RX_CSR_PARITY_ERR_SMASK)
835 
836 #define RXE_FREEZE_ABORT_MASK \
837 	(RCV_ERR_STATUS_RX_DMA_CSR_UNC_ERR_SMASK | \
838 	RCV_ERR_STATUS_RX_DMA_HDR_FIFO_RD_UNC_ERR_SMASK | \
839 	RCV_ERR_STATUS_RX_DMA_DATA_FIFO_RD_UNC_ERR_SMASK)
840 
841 /*
842  * DCC Error Flags
843  */
844 #define DCCE(name) DCC_ERR_FLG_##name##_SMASK
845 static struct flag_table dcc_err_flags[] = {
846 	FLAG_ENTRY0("bad_l2_err", DCCE(BAD_L2_ERR)),
847 	FLAG_ENTRY0("bad_sc_err", DCCE(BAD_SC_ERR)),
848 	FLAG_ENTRY0("bad_mid_tail_err", DCCE(BAD_MID_TAIL_ERR)),
849 	FLAG_ENTRY0("bad_preemption_err", DCCE(BAD_PREEMPTION_ERR)),
850 	FLAG_ENTRY0("preemption_err", DCCE(PREEMPTION_ERR)),
851 	FLAG_ENTRY0("preemptionvl15_err", DCCE(PREEMPTIONVL15_ERR)),
852 	FLAG_ENTRY0("bad_vl_marker_err", DCCE(BAD_VL_MARKER_ERR)),
853 	FLAG_ENTRY0("bad_dlid_target_err", DCCE(BAD_DLID_TARGET_ERR)),
854 	FLAG_ENTRY0("bad_lver_err", DCCE(BAD_LVER_ERR)),
855 	FLAG_ENTRY0("uncorrectable_err", DCCE(UNCORRECTABLE_ERR)),
856 	FLAG_ENTRY0("bad_crdt_ack_err", DCCE(BAD_CRDT_ACK_ERR)),
857 	FLAG_ENTRY0("unsup_pkt_type", DCCE(UNSUP_PKT_TYPE)),
858 	FLAG_ENTRY0("bad_ctrl_flit_err", DCCE(BAD_CTRL_FLIT_ERR)),
859 	FLAG_ENTRY0("event_cntr_parity_err", DCCE(EVENT_CNTR_PARITY_ERR)),
860 	FLAG_ENTRY0("event_cntr_rollover_err", DCCE(EVENT_CNTR_ROLLOVER_ERR)),
861 	FLAG_ENTRY0("link_err", DCCE(LINK_ERR)),
862 	FLAG_ENTRY0("misc_cntr_rollover_err", DCCE(MISC_CNTR_ROLLOVER_ERR)),
863 	FLAG_ENTRY0("bad_ctrl_dist_err", DCCE(BAD_CTRL_DIST_ERR)),
864 	FLAG_ENTRY0("bad_tail_dist_err", DCCE(BAD_TAIL_DIST_ERR)),
865 	FLAG_ENTRY0("bad_head_dist_err", DCCE(BAD_HEAD_DIST_ERR)),
866 	FLAG_ENTRY0("nonvl15_state_err", DCCE(NONVL15_STATE_ERR)),
867 	FLAG_ENTRY0("vl15_multi_err", DCCE(VL15_MULTI_ERR)),
868 	FLAG_ENTRY0("bad_pkt_length_err", DCCE(BAD_PKT_LENGTH_ERR)),
869 	FLAG_ENTRY0("unsup_vl_err", DCCE(UNSUP_VL_ERR)),
870 	FLAG_ENTRY0("perm_nvl15_err", DCCE(PERM_NVL15_ERR)),
871 	FLAG_ENTRY0("slid_zero_err", DCCE(SLID_ZERO_ERR)),
872 	FLAG_ENTRY0("dlid_zero_err", DCCE(DLID_ZERO_ERR)),
873 	FLAG_ENTRY0("length_mtu_err", DCCE(LENGTH_MTU_ERR)),
874 	FLAG_ENTRY0("rx_early_drop_err", DCCE(RX_EARLY_DROP_ERR)),
875 	FLAG_ENTRY0("late_short_err", DCCE(LATE_SHORT_ERR)),
876 	FLAG_ENTRY0("late_long_err", DCCE(LATE_LONG_ERR)),
877 	FLAG_ENTRY0("late_ebp_err", DCCE(LATE_EBP_ERR)),
878 	FLAG_ENTRY0("fpe_tx_fifo_ovflw_err", DCCE(FPE_TX_FIFO_OVFLW_ERR)),
879 	FLAG_ENTRY0("fpe_tx_fifo_unflw_err", DCCE(FPE_TX_FIFO_UNFLW_ERR)),
880 	FLAG_ENTRY0("csr_access_blocked_host", DCCE(CSR_ACCESS_BLOCKED_HOST)),
881 	FLAG_ENTRY0("csr_access_blocked_uc", DCCE(CSR_ACCESS_BLOCKED_UC)),
882 	FLAG_ENTRY0("tx_ctrl_parity_err", DCCE(TX_CTRL_PARITY_ERR)),
883 	FLAG_ENTRY0("tx_ctrl_parity_mbe_err", DCCE(TX_CTRL_PARITY_MBE_ERR)),
884 	FLAG_ENTRY0("tx_sc_parity_err", DCCE(TX_SC_PARITY_ERR)),
885 	FLAG_ENTRY0("rx_ctrl_parity_mbe_err", DCCE(RX_CTRL_PARITY_MBE_ERR)),
886 	FLAG_ENTRY0("csr_parity_err", DCCE(CSR_PARITY_ERR)),
887 	FLAG_ENTRY0("csr_inval_addr", DCCE(CSR_INVAL_ADDR)),
888 	FLAG_ENTRY0("tx_byte_shft_parity_err", DCCE(TX_BYTE_SHFT_PARITY_ERR)),
889 	FLAG_ENTRY0("rx_byte_shft_parity_err", DCCE(RX_BYTE_SHFT_PARITY_ERR)),
890 	FLAG_ENTRY0("fmconfig_err", DCCE(FMCONFIG_ERR)),
891 	FLAG_ENTRY0("rcvport_err", DCCE(RCVPORT_ERR)),
892 };
893 
894 /*
895  * LCB error flags
896  */
897 #define LCBE(name) DC_LCB_ERR_FLG_##name##_SMASK
898 static struct flag_table lcb_err_flags[] = {
899 /* 0*/	FLAG_ENTRY0("CSR_PARITY_ERR", LCBE(CSR_PARITY_ERR)),
900 /* 1*/	FLAG_ENTRY0("INVALID_CSR_ADDR", LCBE(INVALID_CSR_ADDR)),
901 /* 2*/	FLAG_ENTRY0("RST_FOR_FAILED_DESKEW", LCBE(RST_FOR_FAILED_DESKEW)),
902 /* 3*/	FLAG_ENTRY0("ALL_LNS_FAILED_REINIT_TEST",
903 		LCBE(ALL_LNS_FAILED_REINIT_TEST)),
904 /* 4*/	FLAG_ENTRY0("LOST_REINIT_STALL_OR_TOS", LCBE(LOST_REINIT_STALL_OR_TOS)),
905 /* 5*/	FLAG_ENTRY0("TX_LESS_THAN_FOUR_LNS", LCBE(TX_LESS_THAN_FOUR_LNS)),
906 /* 6*/	FLAG_ENTRY0("RX_LESS_THAN_FOUR_LNS", LCBE(RX_LESS_THAN_FOUR_LNS)),
907 /* 7*/	FLAG_ENTRY0("SEQ_CRC_ERR", LCBE(SEQ_CRC_ERR)),
908 /* 8*/	FLAG_ENTRY0("REINIT_FROM_PEER", LCBE(REINIT_FROM_PEER)),
909 /* 9*/	FLAG_ENTRY0("REINIT_FOR_LN_DEGRADE", LCBE(REINIT_FOR_LN_DEGRADE)),
910 /*10*/	FLAG_ENTRY0("CRC_ERR_CNT_HIT_LIMIT", LCBE(CRC_ERR_CNT_HIT_LIMIT)),
911 /*11*/	FLAG_ENTRY0("RCLK_STOPPED", LCBE(RCLK_STOPPED)),
912 /*12*/	FLAG_ENTRY0("UNEXPECTED_REPLAY_MARKER", LCBE(UNEXPECTED_REPLAY_MARKER)),
913 /*13*/	FLAG_ENTRY0("UNEXPECTED_ROUND_TRIP_MARKER",
914 		LCBE(UNEXPECTED_ROUND_TRIP_MARKER)),
915 /*14*/	FLAG_ENTRY0("ILLEGAL_NULL_LTP", LCBE(ILLEGAL_NULL_LTP)),
916 /*15*/	FLAG_ENTRY0("ILLEGAL_FLIT_ENCODING", LCBE(ILLEGAL_FLIT_ENCODING)),
917 /*16*/	FLAG_ENTRY0("FLIT_INPUT_BUF_OFLW", LCBE(FLIT_INPUT_BUF_OFLW)),
918 /*17*/	FLAG_ENTRY0("VL_ACK_INPUT_BUF_OFLW", LCBE(VL_ACK_INPUT_BUF_OFLW)),
919 /*18*/	FLAG_ENTRY0("VL_ACK_INPUT_PARITY_ERR", LCBE(VL_ACK_INPUT_PARITY_ERR)),
920 /*19*/	FLAG_ENTRY0("VL_ACK_INPUT_WRONG_CRC_MODE",
921 		LCBE(VL_ACK_INPUT_WRONG_CRC_MODE)),
922 /*20*/	FLAG_ENTRY0("FLIT_INPUT_BUF_MBE", LCBE(FLIT_INPUT_BUF_MBE)),
923 /*21*/	FLAG_ENTRY0("FLIT_INPUT_BUF_SBE", LCBE(FLIT_INPUT_BUF_SBE)),
924 /*22*/	FLAG_ENTRY0("REPLAY_BUF_MBE", LCBE(REPLAY_BUF_MBE)),
925 /*23*/	FLAG_ENTRY0("REPLAY_BUF_SBE", LCBE(REPLAY_BUF_SBE)),
926 /*24*/	FLAG_ENTRY0("CREDIT_RETURN_FLIT_MBE", LCBE(CREDIT_RETURN_FLIT_MBE)),
927 /*25*/	FLAG_ENTRY0("RST_FOR_LINK_TIMEOUT", LCBE(RST_FOR_LINK_TIMEOUT)),
928 /*26*/	FLAG_ENTRY0("RST_FOR_INCOMPLT_RND_TRIP",
929 		LCBE(RST_FOR_INCOMPLT_RND_TRIP)),
930 /*27*/	FLAG_ENTRY0("HOLD_REINIT", LCBE(HOLD_REINIT)),
931 /*28*/	FLAG_ENTRY0("NEG_EDGE_LINK_TRANSFER_ACTIVE",
932 		LCBE(NEG_EDGE_LINK_TRANSFER_ACTIVE)),
933 /*29*/	FLAG_ENTRY0("REDUNDANT_FLIT_PARITY_ERR",
934 		LCBE(REDUNDANT_FLIT_PARITY_ERR))
935 };
936 
937 /*
938  * DC8051 Error Flags
939  */
940 #define D8E(name) DC_DC8051_ERR_FLG_##name##_SMASK
941 static struct flag_table dc8051_err_flags[] = {
942 	FLAG_ENTRY0("SET_BY_8051", D8E(SET_BY_8051)),
943 	FLAG_ENTRY0("LOST_8051_HEART_BEAT", D8E(LOST_8051_HEART_BEAT)),
944 	FLAG_ENTRY0("CRAM_MBE", D8E(CRAM_MBE)),
945 	FLAG_ENTRY0("CRAM_SBE", D8E(CRAM_SBE)),
946 	FLAG_ENTRY0("DRAM_MBE", D8E(DRAM_MBE)),
947 	FLAG_ENTRY0("DRAM_SBE", D8E(DRAM_SBE)),
948 	FLAG_ENTRY0("IRAM_MBE", D8E(IRAM_MBE)),
949 	FLAG_ENTRY0("IRAM_SBE", D8E(IRAM_SBE)),
950 	FLAG_ENTRY0("UNMATCHED_SECURE_MSG_ACROSS_BCC_LANES",
951 		    D8E(UNMATCHED_SECURE_MSG_ACROSS_BCC_LANES)),
952 	FLAG_ENTRY0("INVALID_CSR_ADDR", D8E(INVALID_CSR_ADDR)),
953 };
954 
955 /*
956  * DC8051 Information Error flags
957  *
958  * Flags in DC8051_DBG_ERR_INFO_SET_BY_8051.ERROR field.
959  */
960 static struct flag_table dc8051_info_err_flags[] = {
961 	FLAG_ENTRY0("Spico ROM check failed",  SPICO_ROM_FAILED),
962 	FLAG_ENTRY0("Unknown frame received",  UNKNOWN_FRAME),
963 	FLAG_ENTRY0("Target BER not met",      TARGET_BER_NOT_MET),
964 	FLAG_ENTRY0("Serdes internal loopback failure",
965 		    FAILED_SERDES_INTERNAL_LOOPBACK),
966 	FLAG_ENTRY0("Failed SerDes init",      FAILED_SERDES_INIT),
967 	FLAG_ENTRY0("Failed LNI(Polling)",     FAILED_LNI_POLLING),
968 	FLAG_ENTRY0("Failed LNI(Debounce)",    FAILED_LNI_DEBOUNCE),
969 	FLAG_ENTRY0("Failed LNI(EstbComm)",    FAILED_LNI_ESTBCOMM),
970 	FLAG_ENTRY0("Failed LNI(OptEq)",       FAILED_LNI_OPTEQ),
971 	FLAG_ENTRY0("Failed LNI(VerifyCap_1)", FAILED_LNI_VERIFY_CAP1),
972 	FLAG_ENTRY0("Failed LNI(VerifyCap_2)", FAILED_LNI_VERIFY_CAP2),
973 	FLAG_ENTRY0("Failed LNI(ConfigLT)",    FAILED_LNI_CONFIGLT),
974 	FLAG_ENTRY0("Host Handshake Timeout",  HOST_HANDSHAKE_TIMEOUT),
975 	FLAG_ENTRY0("External Device Request Timeout",
976 		    EXTERNAL_DEVICE_REQ_TIMEOUT),
977 };
978 
979 /*
980  * DC8051 Information Host Information flags
981  *
982  * Flags in DC8051_DBG_ERR_INFO_SET_BY_8051.HOST_MSG field.
983  */
984 static struct flag_table dc8051_info_host_msg_flags[] = {
985 	FLAG_ENTRY0("Host request done", 0x0001),
986 	FLAG_ENTRY0("BC SMA message", 0x0002),
987 	FLAG_ENTRY0("BC PWR_MGM message", 0x0004),
988 	FLAG_ENTRY0("BC Unknown message (BCC)", 0x0008),
989 	FLAG_ENTRY0("BC Unknown message (LCB)", 0x0010),
990 	FLAG_ENTRY0("External device config request", 0x0020),
991 	FLAG_ENTRY0("VerifyCap all frames received", 0x0040),
992 	FLAG_ENTRY0("LinkUp achieved", 0x0080),
993 	FLAG_ENTRY0("Link going down", 0x0100),
994 };
995 
996 static u32 encoded_size(u32 size);
997 static u32 chip_to_opa_lstate(struct hfi1_devdata *dd, u32 chip_lstate);
998 static int set_physical_link_state(struct hfi1_devdata *dd, u64 state);
999 static void read_vc_remote_phy(struct hfi1_devdata *dd, u8 *power_management,
1000 			       u8 *continuous);
1001 static void read_vc_remote_fabric(struct hfi1_devdata *dd, u8 *vau, u8 *z,
1002 				  u8 *vcu, u16 *vl15buf, u8 *crc_sizes);
1003 static void read_vc_remote_link_width(struct hfi1_devdata *dd,
1004 				      u8 *remote_tx_rate, u16 *link_widths);
1005 static void read_vc_local_link_width(struct hfi1_devdata *dd, u8 *misc_bits,
1006 				     u8 *flag_bits, u16 *link_widths);
1007 static void read_remote_device_id(struct hfi1_devdata *dd, u16 *device_id,
1008 				  u8 *device_rev);
1009 static void read_mgmt_allowed(struct hfi1_devdata *dd, u8 *mgmt_allowed);
1010 static void read_local_lni(struct hfi1_devdata *dd, u8 *enable_lane_rx);
1011 static int read_tx_settings(struct hfi1_devdata *dd, u8 *enable_lane_tx,
1012 			    u8 *tx_polarity_inversion,
1013 			    u8 *rx_polarity_inversion, u8 *max_rate);
1014 static void handle_sdma_eng_err(struct hfi1_devdata *dd,
1015 				unsigned int context, u64 err_status);
1016 static void handle_qsfp_int(struct hfi1_devdata *dd, u32 source, u64 reg);
1017 static void handle_dcc_err(struct hfi1_devdata *dd,
1018 			   unsigned int context, u64 err_status);
1019 static void handle_lcb_err(struct hfi1_devdata *dd,
1020 			   unsigned int context, u64 err_status);
1021 static void handle_8051_interrupt(struct hfi1_devdata *dd, u32 unused, u64 reg);
1022 static void handle_cce_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1023 static void handle_rxe_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1024 static void handle_misc_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1025 static void handle_pio_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1026 static void handle_sdma_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1027 static void handle_egress_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1028 static void handle_txe_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1029 static void set_partition_keys(struct hfi1_pportdata *);
1030 static const char *link_state_name(u32 state);
1031 static const char *link_state_reason_name(struct hfi1_pportdata *ppd,
1032 					  u32 state);
1033 static int do_8051_command(struct hfi1_devdata *dd, u32 type, u64 in_data,
1034 			   u64 *out_data);
1035 static int read_idle_sma(struct hfi1_devdata *dd, u64 *data);
1036 static int thermal_init(struct hfi1_devdata *dd);
1037 
1038 static int wait_logical_linkstate(struct hfi1_pportdata *ppd, u32 state,
1039 				  int msecs);
1040 static void read_planned_down_reason_code(struct hfi1_devdata *dd, u8 *pdrrc);
1041 static void read_link_down_reason(struct hfi1_devdata *dd, u8 *ldr);
1042 static void handle_temp_err(struct hfi1_devdata *);
1043 static void dc_shutdown(struct hfi1_devdata *);
1044 static void dc_start(struct hfi1_devdata *);
1045 static int qos_rmt_entries(struct hfi1_devdata *dd, unsigned int *mp,
1046 			   unsigned int *np);
1047 static void clear_full_mgmt_pkey(struct hfi1_pportdata *ppd);
1048 
1049 /*
1050  * Error interrupt table entry.  This is used as input to the interrupt
1051  * "clear down" routine used for all second tier error interrupt register.
1052  * Second tier interrupt registers have a single bit representing them
1053  * in the top-level CceIntStatus.
1054  */
1055 struct err_reg_info {
1056 	u32 status;		/* status CSR offset */
1057 	u32 clear;		/* clear CSR offset */
1058 	u32 mask;		/* mask CSR offset */
1059 	void (*handler)(struct hfi1_devdata *dd, u32 source, u64 reg);
1060 	const char *desc;
1061 };
1062 
1063 #define NUM_MISC_ERRS (IS_GENERAL_ERR_END - IS_GENERAL_ERR_START)
1064 #define NUM_DC_ERRS (IS_DC_END - IS_DC_START)
1065 #define NUM_VARIOUS (IS_VARIOUS_END - IS_VARIOUS_START)
1066 
1067 /*
1068  * Helpers for building HFI and DC error interrupt table entries.  Different
1069  * helpers are needed because of inconsistent register names.
1070  */
1071 #define EE(reg, handler, desc) \
1072 	{ reg##_STATUS, reg##_CLEAR, reg##_MASK, \
1073 		handler, desc }
1074 #define DC_EE1(reg, handler, desc) \
1075 	{ reg##_FLG, reg##_FLG_CLR, reg##_FLG_EN, handler, desc }
1076 #define DC_EE2(reg, handler, desc) \
1077 	{ reg##_FLG, reg##_CLR, reg##_EN, handler, desc }
1078 
1079 /*
1080  * Table of the "misc" grouping of error interrupts.  Each entry refers to
1081  * another register containing more information.
1082  */
1083 static const struct err_reg_info misc_errs[NUM_MISC_ERRS] = {
1084 /* 0*/	EE(CCE_ERR,		handle_cce_err,    "CceErr"),
1085 /* 1*/	EE(RCV_ERR,		handle_rxe_err,    "RxeErr"),
1086 /* 2*/	EE(MISC_ERR,	handle_misc_err,   "MiscErr"),
1087 /* 3*/	{ 0, 0, 0, NULL }, /* reserved */
1088 /* 4*/	EE(SEND_PIO_ERR,    handle_pio_err,    "PioErr"),
1089 /* 5*/	EE(SEND_DMA_ERR,    handle_sdma_err,   "SDmaErr"),
1090 /* 6*/	EE(SEND_EGRESS_ERR, handle_egress_err, "EgressErr"),
1091 /* 7*/	EE(SEND_ERR,	handle_txe_err,    "TxeErr")
1092 	/* the rest are reserved */
1093 };
1094 
1095 /*
1096  * Index into the Various section of the interrupt sources
1097  * corresponding to the Critical Temperature interrupt.
1098  */
1099 #define TCRIT_INT_SOURCE 4
1100 
1101 /*
1102  * SDMA error interrupt entry - refers to another register containing more
1103  * information.
1104  */
1105 static const struct err_reg_info sdma_eng_err =
1106 	EE(SEND_DMA_ENG_ERR, handle_sdma_eng_err, "SDmaEngErr");
1107 
1108 static const struct err_reg_info various_err[NUM_VARIOUS] = {
1109 /* 0*/	{ 0, 0, 0, NULL }, /* PbcInt */
1110 /* 1*/	{ 0, 0, 0, NULL }, /* GpioAssertInt */
1111 /* 2*/	EE(ASIC_QSFP1,	handle_qsfp_int,	"QSFP1"),
1112 /* 3*/	EE(ASIC_QSFP2,	handle_qsfp_int,	"QSFP2"),
1113 /* 4*/	{ 0, 0, 0, NULL }, /* TCritInt */
1114 	/* rest are reserved */
1115 };
1116 
1117 /*
1118  * The DC encoding of mtu_cap for 10K MTU in the DCC_CFG_PORT_CONFIG
1119  * register can not be derived from the MTU value because 10K is not
1120  * a power of 2. Therefore, we need a constant. Everything else can
1121  * be calculated.
1122  */
1123 #define DCC_CFG_PORT_MTU_CAP_10240 7
1124 
1125 /*
1126  * Table of the DC grouping of error interrupts.  Each entry refers to
1127  * another register containing more information.
1128  */
1129 static const struct err_reg_info dc_errs[NUM_DC_ERRS] = {
1130 /* 0*/	DC_EE1(DCC_ERR,		handle_dcc_err,	       "DCC Err"),
1131 /* 1*/	DC_EE2(DC_LCB_ERR,	handle_lcb_err,	       "LCB Err"),
1132 /* 2*/	DC_EE2(DC_DC8051_ERR,	handle_8051_interrupt, "DC8051 Interrupt"),
1133 /* 3*/	/* dc_lbm_int - special, see is_dc_int() */
1134 	/* the rest are reserved */
1135 };
1136 
1137 struct cntr_entry {
1138 	/*
1139 	 * counter name
1140 	 */
1141 	char *name;
1142 
1143 	/*
1144 	 * csr to read for name (if applicable)
1145 	 */
1146 	u64 csr;
1147 
1148 	/*
1149 	 * offset into dd or ppd to store the counter's value
1150 	 */
1151 	int offset;
1152 
1153 	/*
1154 	 * flags
1155 	 */
1156 	u8 flags;
1157 
1158 	/*
1159 	 * accessor for stat element, context either dd or ppd
1160 	 */
1161 	u64 (*rw_cntr)(const struct cntr_entry *, void *context, int vl,
1162 		       int mode, u64 data);
1163 };
1164 
1165 #define C_RCV_HDR_OVF_FIRST C_RCV_HDR_OVF_0
1166 #define C_RCV_HDR_OVF_LAST C_RCV_HDR_OVF_159
1167 
1168 #define CNTR_ELEM(name, csr, offset, flags, accessor) \
1169 { \
1170 	name, \
1171 	csr, \
1172 	offset, \
1173 	flags, \
1174 	accessor \
1175 }
1176 
1177 /* 32bit RXE */
1178 #define RXE32_PORT_CNTR_ELEM(name, counter, flags) \
1179 CNTR_ELEM(#name, \
1180 	  (counter * 8 + RCV_COUNTER_ARRAY32), \
1181 	  0, flags | CNTR_32BIT, \
1182 	  port_access_u32_csr)
1183 
1184 #define RXE32_DEV_CNTR_ELEM(name, counter, flags) \
1185 CNTR_ELEM(#name, \
1186 	  (counter * 8 + RCV_COUNTER_ARRAY32), \
1187 	  0, flags | CNTR_32BIT, \
1188 	  dev_access_u32_csr)
1189 
1190 /* 64bit RXE */
1191 #define RXE64_PORT_CNTR_ELEM(name, counter, flags) \
1192 CNTR_ELEM(#name, \
1193 	  (counter * 8 + RCV_COUNTER_ARRAY64), \
1194 	  0, flags, \
1195 	  port_access_u64_csr)
1196 
1197 #define RXE64_DEV_CNTR_ELEM(name, counter, flags) \
1198 CNTR_ELEM(#name, \
1199 	  (counter * 8 + RCV_COUNTER_ARRAY64), \
1200 	  0, flags, \
1201 	  dev_access_u64_csr)
1202 
1203 #define OVR_LBL(ctx) C_RCV_HDR_OVF_ ## ctx
1204 #define OVR_ELM(ctx) \
1205 CNTR_ELEM("RcvHdrOvr" #ctx, \
1206 	  (RCV_HDR_OVFL_CNT + ctx * 0x100), \
1207 	  0, CNTR_NORMAL, port_access_u64_csr)
1208 
1209 /* 32bit TXE */
1210 #define TXE32_PORT_CNTR_ELEM(name, counter, flags) \
1211 CNTR_ELEM(#name, \
1212 	  (counter * 8 + SEND_COUNTER_ARRAY32), \
1213 	  0, flags | CNTR_32BIT, \
1214 	  port_access_u32_csr)
1215 
1216 /* 64bit TXE */
1217 #define TXE64_PORT_CNTR_ELEM(name, counter, flags) \
1218 CNTR_ELEM(#name, \
1219 	  (counter * 8 + SEND_COUNTER_ARRAY64), \
1220 	  0, flags, \
1221 	  port_access_u64_csr)
1222 
1223 # define TX64_DEV_CNTR_ELEM(name, counter, flags) \
1224 CNTR_ELEM(#name,\
1225 	  counter * 8 + SEND_COUNTER_ARRAY64, \
1226 	  0, \
1227 	  flags, \
1228 	  dev_access_u64_csr)
1229 
1230 /* CCE */
1231 #define CCE_PERF_DEV_CNTR_ELEM(name, counter, flags) \
1232 CNTR_ELEM(#name, \
1233 	  (counter * 8 + CCE_COUNTER_ARRAY32), \
1234 	  0, flags | CNTR_32BIT, \
1235 	  dev_access_u32_csr)
1236 
1237 #define CCE_INT_DEV_CNTR_ELEM(name, counter, flags) \
1238 CNTR_ELEM(#name, \
1239 	  (counter * 8 + CCE_INT_COUNTER_ARRAY32), \
1240 	  0, flags | CNTR_32BIT, \
1241 	  dev_access_u32_csr)
1242 
1243 /* DC */
1244 #define DC_PERF_CNTR(name, counter, flags) \
1245 CNTR_ELEM(#name, \
1246 	  counter, \
1247 	  0, \
1248 	  flags, \
1249 	  dev_access_u64_csr)
1250 
1251 #define DC_PERF_CNTR_LCB(name, counter, flags) \
1252 CNTR_ELEM(#name, \
1253 	  counter, \
1254 	  0, \
1255 	  flags, \
1256 	  dc_access_lcb_cntr)
1257 
1258 /* ibp counters */
1259 #define SW_IBP_CNTR(name, cntr) \
1260 CNTR_ELEM(#name, \
1261 	  0, \
1262 	  0, \
1263 	  CNTR_SYNTH, \
1264 	  access_ibp_##cntr)
1265 
1266 u64 read_csr(const struct hfi1_devdata *dd, u32 offset)
1267 {
1268 	if (dd->flags & HFI1_PRESENT) {
1269 		return readq((void __iomem *)dd->kregbase + offset);
1270 	}
1271 	return -1;
1272 }
1273 
1274 void write_csr(const struct hfi1_devdata *dd, u32 offset, u64 value)
1275 {
1276 	if (dd->flags & HFI1_PRESENT)
1277 		writeq(value, (void __iomem *)dd->kregbase + offset);
1278 }
1279 
1280 void __iomem *get_csr_addr(
1281 	struct hfi1_devdata *dd,
1282 	u32 offset)
1283 {
1284 	return (void __iomem *)dd->kregbase + offset;
1285 }
1286 
1287 static inline u64 read_write_csr(const struct hfi1_devdata *dd, u32 csr,
1288 				 int mode, u64 value)
1289 {
1290 	u64 ret;
1291 
1292 	if (mode == CNTR_MODE_R) {
1293 		ret = read_csr(dd, csr);
1294 	} else if (mode == CNTR_MODE_W) {
1295 		write_csr(dd, csr, value);
1296 		ret = value;
1297 	} else {
1298 		dd_dev_err(dd, "Invalid cntr register access mode");
1299 		return 0;
1300 	}
1301 
1302 	hfi1_cdbg(CNTR, "csr 0x%x val 0x%llx mode %d", csr, ret, mode);
1303 	return ret;
1304 }
1305 
1306 /* Dev Access */
1307 static u64 dev_access_u32_csr(const struct cntr_entry *entry,
1308 			      void *context, int vl, int mode, u64 data)
1309 {
1310 	struct hfi1_devdata *dd = context;
1311 	u64 csr = entry->csr;
1312 
1313 	if (entry->flags & CNTR_SDMA) {
1314 		if (vl == CNTR_INVALID_VL)
1315 			return 0;
1316 		csr += 0x100 * vl;
1317 	} else {
1318 		if (vl != CNTR_INVALID_VL)
1319 			return 0;
1320 	}
1321 	return read_write_csr(dd, csr, mode, data);
1322 }
1323 
1324 static u64 access_sde_err_cnt(const struct cntr_entry *entry,
1325 			      void *context, int idx, int mode, u64 data)
1326 {
1327 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1328 
1329 	if (dd->per_sdma && idx < dd->num_sdma)
1330 		return dd->per_sdma[idx].err_cnt;
1331 	return 0;
1332 }
1333 
1334 static u64 access_sde_int_cnt(const struct cntr_entry *entry,
1335 			      void *context, int idx, int mode, u64 data)
1336 {
1337 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1338 
1339 	if (dd->per_sdma && idx < dd->num_sdma)
1340 		return dd->per_sdma[idx].sdma_int_cnt;
1341 	return 0;
1342 }
1343 
1344 static u64 access_sde_idle_int_cnt(const struct cntr_entry *entry,
1345 				   void *context, int idx, int mode, u64 data)
1346 {
1347 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1348 
1349 	if (dd->per_sdma && idx < dd->num_sdma)
1350 		return dd->per_sdma[idx].idle_int_cnt;
1351 	return 0;
1352 }
1353 
1354 static u64 access_sde_progress_int_cnt(const struct cntr_entry *entry,
1355 				       void *context, int idx, int mode,
1356 				       u64 data)
1357 {
1358 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1359 
1360 	if (dd->per_sdma && idx < dd->num_sdma)
1361 		return dd->per_sdma[idx].progress_int_cnt;
1362 	return 0;
1363 }
1364 
1365 static u64 dev_access_u64_csr(const struct cntr_entry *entry, void *context,
1366 			      int vl, int mode, u64 data)
1367 {
1368 	struct hfi1_devdata *dd = context;
1369 
1370 	u64 val = 0;
1371 	u64 csr = entry->csr;
1372 
1373 	if (entry->flags & CNTR_VL) {
1374 		if (vl == CNTR_INVALID_VL)
1375 			return 0;
1376 		csr += 8 * vl;
1377 	} else {
1378 		if (vl != CNTR_INVALID_VL)
1379 			return 0;
1380 	}
1381 
1382 	val = read_write_csr(dd, csr, mode, data);
1383 	return val;
1384 }
1385 
1386 static u64 dc_access_lcb_cntr(const struct cntr_entry *entry, void *context,
1387 			      int vl, int mode, u64 data)
1388 {
1389 	struct hfi1_devdata *dd = context;
1390 	u32 csr = entry->csr;
1391 	int ret = 0;
1392 
1393 	if (vl != CNTR_INVALID_VL)
1394 		return 0;
1395 	if (mode == CNTR_MODE_R)
1396 		ret = read_lcb_csr(dd, csr, &data);
1397 	else if (mode == CNTR_MODE_W)
1398 		ret = write_lcb_csr(dd, csr, data);
1399 
1400 	if (ret) {
1401 		dd_dev_err(dd, "Could not acquire LCB for counter 0x%x", csr);
1402 		return 0;
1403 	}
1404 
1405 	hfi1_cdbg(CNTR, "csr 0x%x val 0x%llx mode %d", csr, data, mode);
1406 	return data;
1407 }
1408 
1409 /* Port Access */
1410 static u64 port_access_u32_csr(const struct cntr_entry *entry, void *context,
1411 			       int vl, int mode, u64 data)
1412 {
1413 	struct hfi1_pportdata *ppd = context;
1414 
1415 	if (vl != CNTR_INVALID_VL)
1416 		return 0;
1417 	return read_write_csr(ppd->dd, entry->csr, mode, data);
1418 }
1419 
1420 static u64 port_access_u64_csr(const struct cntr_entry *entry,
1421 			       void *context, int vl, int mode, u64 data)
1422 {
1423 	struct hfi1_pportdata *ppd = context;
1424 	u64 val;
1425 	u64 csr = entry->csr;
1426 
1427 	if (entry->flags & CNTR_VL) {
1428 		if (vl == CNTR_INVALID_VL)
1429 			return 0;
1430 		csr += 8 * vl;
1431 	} else {
1432 		if (vl != CNTR_INVALID_VL)
1433 			return 0;
1434 	}
1435 	val = read_write_csr(ppd->dd, csr, mode, data);
1436 	return val;
1437 }
1438 
1439 /* Software defined */
1440 static inline u64 read_write_sw(struct hfi1_devdata *dd, u64 *cntr, int mode,
1441 				u64 data)
1442 {
1443 	u64 ret;
1444 
1445 	if (mode == CNTR_MODE_R) {
1446 		ret = *cntr;
1447 	} else if (mode == CNTR_MODE_W) {
1448 		*cntr = data;
1449 		ret = data;
1450 	} else {
1451 		dd_dev_err(dd, "Invalid cntr sw access mode");
1452 		return 0;
1453 	}
1454 
1455 	hfi1_cdbg(CNTR, "val 0x%llx mode %d", ret, mode);
1456 
1457 	return ret;
1458 }
1459 
1460 static u64 access_sw_link_dn_cnt(const struct cntr_entry *entry, void *context,
1461 				 int vl, int mode, u64 data)
1462 {
1463 	struct hfi1_pportdata *ppd = context;
1464 
1465 	if (vl != CNTR_INVALID_VL)
1466 		return 0;
1467 	return read_write_sw(ppd->dd, &ppd->link_downed, mode, data);
1468 }
1469 
1470 static u64 access_sw_link_up_cnt(const struct cntr_entry *entry, void *context,
1471 				 int vl, int mode, u64 data)
1472 {
1473 	struct hfi1_pportdata *ppd = context;
1474 
1475 	if (vl != CNTR_INVALID_VL)
1476 		return 0;
1477 	return read_write_sw(ppd->dd, &ppd->link_up, mode, data);
1478 }
1479 
1480 static u64 access_sw_unknown_frame_cnt(const struct cntr_entry *entry,
1481 				       void *context, int vl, int mode,
1482 				       u64 data)
1483 {
1484 	struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context;
1485 
1486 	if (vl != CNTR_INVALID_VL)
1487 		return 0;
1488 	return read_write_sw(ppd->dd, &ppd->unknown_frame_count, mode, data);
1489 }
1490 
1491 static u64 access_sw_xmit_discards(const struct cntr_entry *entry,
1492 				   void *context, int vl, int mode, u64 data)
1493 {
1494 	struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context;
1495 	u64 zero = 0;
1496 	u64 *counter;
1497 
1498 	if (vl == CNTR_INVALID_VL)
1499 		counter = &ppd->port_xmit_discards;
1500 	else if (vl >= 0 && vl < C_VL_COUNT)
1501 		counter = &ppd->port_xmit_discards_vl[vl];
1502 	else
1503 		counter = &zero;
1504 
1505 	return read_write_sw(ppd->dd, counter, mode, data);
1506 }
1507 
1508 static u64 access_xmit_constraint_errs(const struct cntr_entry *entry,
1509 				       void *context, int vl, int mode,
1510 				       u64 data)
1511 {
1512 	struct hfi1_pportdata *ppd = context;
1513 
1514 	if (vl != CNTR_INVALID_VL)
1515 		return 0;
1516 
1517 	return read_write_sw(ppd->dd, &ppd->port_xmit_constraint_errors,
1518 			     mode, data);
1519 }
1520 
1521 static u64 access_rcv_constraint_errs(const struct cntr_entry *entry,
1522 				      void *context, int vl, int mode, u64 data)
1523 {
1524 	struct hfi1_pportdata *ppd = context;
1525 
1526 	if (vl != CNTR_INVALID_VL)
1527 		return 0;
1528 
1529 	return read_write_sw(ppd->dd, &ppd->port_rcv_constraint_errors,
1530 			     mode, data);
1531 }
1532 
1533 u64 get_all_cpu_total(u64 __percpu *cntr)
1534 {
1535 	int cpu;
1536 	u64 counter = 0;
1537 
1538 	for_each_possible_cpu(cpu)
1539 		counter += *per_cpu_ptr(cntr, cpu);
1540 	return counter;
1541 }
1542 
1543 static u64 read_write_cpu(struct hfi1_devdata *dd, u64 *z_val,
1544 			  u64 __percpu *cntr,
1545 			  int vl, int mode, u64 data)
1546 {
1547 	u64 ret = 0;
1548 
1549 	if (vl != CNTR_INVALID_VL)
1550 		return 0;
1551 
1552 	if (mode == CNTR_MODE_R) {
1553 		ret = get_all_cpu_total(cntr) - *z_val;
1554 	} else if (mode == CNTR_MODE_W) {
1555 		/* A write can only zero the counter */
1556 		if (data == 0)
1557 			*z_val = get_all_cpu_total(cntr);
1558 		else
1559 			dd_dev_err(dd, "Per CPU cntrs can only be zeroed");
1560 	} else {
1561 		dd_dev_err(dd, "Invalid cntr sw cpu access mode");
1562 		return 0;
1563 	}
1564 
1565 	return ret;
1566 }
1567 
1568 static u64 access_sw_cpu_intr(const struct cntr_entry *entry,
1569 			      void *context, int vl, int mode, u64 data)
1570 {
1571 	struct hfi1_devdata *dd = context;
1572 
1573 	return read_write_cpu(dd, &dd->z_int_counter, dd->int_counter, vl,
1574 			      mode, data);
1575 }
1576 
1577 static u64 access_sw_cpu_rcv_limit(const struct cntr_entry *entry,
1578 				   void *context, int vl, int mode, u64 data)
1579 {
1580 	struct hfi1_devdata *dd = context;
1581 
1582 	return read_write_cpu(dd, &dd->z_rcv_limit, dd->rcv_limit, vl,
1583 			      mode, data);
1584 }
1585 
1586 static u64 access_sw_pio_wait(const struct cntr_entry *entry,
1587 			      void *context, int vl, int mode, u64 data)
1588 {
1589 	struct hfi1_devdata *dd = context;
1590 
1591 	return dd->verbs_dev.n_piowait;
1592 }
1593 
1594 static u64 access_sw_pio_drain(const struct cntr_entry *entry,
1595 			       void *context, int vl, int mode, u64 data)
1596 {
1597 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1598 
1599 	return dd->verbs_dev.n_piodrain;
1600 }
1601 
1602 static u64 access_sw_vtx_wait(const struct cntr_entry *entry,
1603 			      void *context, int vl, int mode, u64 data)
1604 {
1605 	struct hfi1_devdata *dd = context;
1606 
1607 	return dd->verbs_dev.n_txwait;
1608 }
1609 
1610 static u64 access_sw_kmem_wait(const struct cntr_entry *entry,
1611 			       void *context, int vl, int mode, u64 data)
1612 {
1613 	struct hfi1_devdata *dd = context;
1614 
1615 	return dd->verbs_dev.n_kmem_wait;
1616 }
1617 
1618 static u64 access_sw_send_schedule(const struct cntr_entry *entry,
1619 				   void *context, int vl, int mode, u64 data)
1620 {
1621 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1622 
1623 	return read_write_cpu(dd, &dd->z_send_schedule, dd->send_schedule, vl,
1624 			      mode, data);
1625 }
1626 
1627 /* Software counters for the error status bits within MISC_ERR_STATUS */
1628 static u64 access_misc_pll_lock_fail_err_cnt(const struct cntr_entry *entry,
1629 					     void *context, int vl, int mode,
1630 					     u64 data)
1631 {
1632 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1633 
1634 	return dd->misc_err_status_cnt[12];
1635 }
1636 
1637 static u64 access_misc_mbist_fail_err_cnt(const struct cntr_entry *entry,
1638 					  void *context, int vl, int mode,
1639 					  u64 data)
1640 {
1641 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1642 
1643 	return dd->misc_err_status_cnt[11];
1644 }
1645 
1646 static u64 access_misc_invalid_eep_cmd_err_cnt(const struct cntr_entry *entry,
1647 					       void *context, int vl, int mode,
1648 					       u64 data)
1649 {
1650 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1651 
1652 	return dd->misc_err_status_cnt[10];
1653 }
1654 
1655 static u64 access_misc_efuse_done_parity_err_cnt(const struct cntr_entry *entry,
1656 						 void *context, int vl,
1657 						 int mode, u64 data)
1658 {
1659 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1660 
1661 	return dd->misc_err_status_cnt[9];
1662 }
1663 
1664 static u64 access_misc_efuse_write_err_cnt(const struct cntr_entry *entry,
1665 					   void *context, int vl, int mode,
1666 					   u64 data)
1667 {
1668 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1669 
1670 	return dd->misc_err_status_cnt[8];
1671 }
1672 
1673 static u64 access_misc_efuse_read_bad_addr_err_cnt(
1674 				const struct cntr_entry *entry,
1675 				void *context, int vl, int mode, u64 data)
1676 {
1677 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1678 
1679 	return dd->misc_err_status_cnt[7];
1680 }
1681 
1682 static u64 access_misc_efuse_csr_parity_err_cnt(const struct cntr_entry *entry,
1683 						void *context, int vl,
1684 						int mode, u64 data)
1685 {
1686 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1687 
1688 	return dd->misc_err_status_cnt[6];
1689 }
1690 
1691 static u64 access_misc_fw_auth_failed_err_cnt(const struct cntr_entry *entry,
1692 					      void *context, int vl, int mode,
1693 					      u64 data)
1694 {
1695 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1696 
1697 	return dd->misc_err_status_cnt[5];
1698 }
1699 
1700 static u64 access_misc_key_mismatch_err_cnt(const struct cntr_entry *entry,
1701 					    void *context, int vl, int mode,
1702 					    u64 data)
1703 {
1704 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1705 
1706 	return dd->misc_err_status_cnt[4];
1707 }
1708 
1709 static u64 access_misc_sbus_write_failed_err_cnt(const struct cntr_entry *entry,
1710 						 void *context, int vl,
1711 						 int mode, u64 data)
1712 {
1713 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1714 
1715 	return dd->misc_err_status_cnt[3];
1716 }
1717 
1718 static u64 access_misc_csr_write_bad_addr_err_cnt(
1719 				const struct cntr_entry *entry,
1720 				void *context, int vl, int mode, u64 data)
1721 {
1722 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1723 
1724 	return dd->misc_err_status_cnt[2];
1725 }
1726 
1727 static u64 access_misc_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
1728 						 void *context, int vl,
1729 						 int mode, u64 data)
1730 {
1731 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1732 
1733 	return dd->misc_err_status_cnt[1];
1734 }
1735 
1736 static u64 access_misc_csr_parity_err_cnt(const struct cntr_entry *entry,
1737 					  void *context, int vl, int mode,
1738 					  u64 data)
1739 {
1740 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1741 
1742 	return dd->misc_err_status_cnt[0];
1743 }
1744 
1745 /*
1746  * Software counter for the aggregate of
1747  * individual CceErrStatus counters
1748  */
1749 static u64 access_sw_cce_err_status_aggregated_cnt(
1750 				const struct cntr_entry *entry,
1751 				void *context, int vl, int mode, u64 data)
1752 {
1753 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1754 
1755 	return dd->sw_cce_err_status_aggregate;
1756 }
1757 
1758 /*
1759  * Software counters corresponding to each of the
1760  * error status bits within CceErrStatus
1761  */
1762 static u64 access_cce_msix_csr_parity_err_cnt(const struct cntr_entry *entry,
1763 					      void *context, int vl, int mode,
1764 					      u64 data)
1765 {
1766 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1767 
1768 	return dd->cce_err_status_cnt[40];
1769 }
1770 
1771 static u64 access_cce_int_map_unc_err_cnt(const struct cntr_entry *entry,
1772 					  void *context, int vl, int mode,
1773 					  u64 data)
1774 {
1775 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1776 
1777 	return dd->cce_err_status_cnt[39];
1778 }
1779 
1780 static u64 access_cce_int_map_cor_err_cnt(const struct cntr_entry *entry,
1781 					  void *context, int vl, int mode,
1782 					  u64 data)
1783 {
1784 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1785 
1786 	return dd->cce_err_status_cnt[38];
1787 }
1788 
1789 static u64 access_cce_msix_table_unc_err_cnt(const struct cntr_entry *entry,
1790 					     void *context, int vl, int mode,
1791 					     u64 data)
1792 {
1793 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1794 
1795 	return dd->cce_err_status_cnt[37];
1796 }
1797 
1798 static u64 access_cce_msix_table_cor_err_cnt(const struct cntr_entry *entry,
1799 					     void *context, int vl, int mode,
1800 					     u64 data)
1801 {
1802 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1803 
1804 	return dd->cce_err_status_cnt[36];
1805 }
1806 
1807 static u64 access_cce_rxdma_conv_fifo_parity_err_cnt(
1808 				const struct cntr_entry *entry,
1809 				void *context, int vl, int mode, u64 data)
1810 {
1811 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1812 
1813 	return dd->cce_err_status_cnt[35];
1814 }
1815 
1816 static u64 access_cce_rcpl_async_fifo_parity_err_cnt(
1817 				const struct cntr_entry *entry,
1818 				void *context, int vl, int mode, u64 data)
1819 {
1820 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1821 
1822 	return dd->cce_err_status_cnt[34];
1823 }
1824 
1825 static u64 access_cce_seg_write_bad_addr_err_cnt(const struct cntr_entry *entry,
1826 						 void *context, int vl,
1827 						 int mode, u64 data)
1828 {
1829 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1830 
1831 	return dd->cce_err_status_cnt[33];
1832 }
1833 
1834 static u64 access_cce_seg_read_bad_addr_err_cnt(const struct cntr_entry *entry,
1835 						void *context, int vl, int mode,
1836 						u64 data)
1837 {
1838 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1839 
1840 	return dd->cce_err_status_cnt[32];
1841 }
1842 
1843 static u64 access_la_triggered_cnt(const struct cntr_entry *entry,
1844 				   void *context, int vl, int mode, u64 data)
1845 {
1846 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1847 
1848 	return dd->cce_err_status_cnt[31];
1849 }
1850 
1851 static u64 access_cce_trgt_cpl_timeout_err_cnt(const struct cntr_entry *entry,
1852 					       void *context, int vl, int mode,
1853 					       u64 data)
1854 {
1855 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1856 
1857 	return dd->cce_err_status_cnt[30];
1858 }
1859 
1860 static u64 access_pcic_receive_parity_err_cnt(const struct cntr_entry *entry,
1861 					      void *context, int vl, int mode,
1862 					      u64 data)
1863 {
1864 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1865 
1866 	return dd->cce_err_status_cnt[29];
1867 }
1868 
1869 static u64 access_pcic_transmit_back_parity_err_cnt(
1870 				const struct cntr_entry *entry,
1871 				void *context, int vl, int mode, u64 data)
1872 {
1873 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1874 
1875 	return dd->cce_err_status_cnt[28];
1876 }
1877 
1878 static u64 access_pcic_transmit_front_parity_err_cnt(
1879 				const struct cntr_entry *entry,
1880 				void *context, int vl, int mode, u64 data)
1881 {
1882 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1883 
1884 	return dd->cce_err_status_cnt[27];
1885 }
1886 
1887 static u64 access_pcic_cpl_dat_q_unc_err_cnt(const struct cntr_entry *entry,
1888 					     void *context, int vl, int mode,
1889 					     u64 data)
1890 {
1891 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1892 
1893 	return dd->cce_err_status_cnt[26];
1894 }
1895 
1896 static u64 access_pcic_cpl_hd_q_unc_err_cnt(const struct cntr_entry *entry,
1897 					    void *context, int vl, int mode,
1898 					    u64 data)
1899 {
1900 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1901 
1902 	return dd->cce_err_status_cnt[25];
1903 }
1904 
1905 static u64 access_pcic_post_dat_q_unc_err_cnt(const struct cntr_entry *entry,
1906 					      void *context, int vl, int mode,
1907 					      u64 data)
1908 {
1909 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1910 
1911 	return dd->cce_err_status_cnt[24];
1912 }
1913 
1914 static u64 access_pcic_post_hd_q_unc_err_cnt(const struct cntr_entry *entry,
1915 					     void *context, int vl, int mode,
1916 					     u64 data)
1917 {
1918 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1919 
1920 	return dd->cce_err_status_cnt[23];
1921 }
1922 
1923 static u64 access_pcic_retry_sot_mem_unc_err_cnt(const struct cntr_entry *entry,
1924 						 void *context, int vl,
1925 						 int mode, u64 data)
1926 {
1927 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1928 
1929 	return dd->cce_err_status_cnt[22];
1930 }
1931 
1932 static u64 access_pcic_retry_mem_unc_err(const struct cntr_entry *entry,
1933 					 void *context, int vl, int mode,
1934 					 u64 data)
1935 {
1936 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1937 
1938 	return dd->cce_err_status_cnt[21];
1939 }
1940 
1941 static u64 access_pcic_n_post_dat_q_parity_err_cnt(
1942 				const struct cntr_entry *entry,
1943 				void *context, int vl, int mode, u64 data)
1944 {
1945 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1946 
1947 	return dd->cce_err_status_cnt[20];
1948 }
1949 
1950 static u64 access_pcic_n_post_h_q_parity_err_cnt(const struct cntr_entry *entry,
1951 						 void *context, int vl,
1952 						 int mode, u64 data)
1953 {
1954 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1955 
1956 	return dd->cce_err_status_cnt[19];
1957 }
1958 
1959 static u64 access_pcic_cpl_dat_q_cor_err_cnt(const struct cntr_entry *entry,
1960 					     void *context, int vl, int mode,
1961 					     u64 data)
1962 {
1963 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1964 
1965 	return dd->cce_err_status_cnt[18];
1966 }
1967 
1968 static u64 access_pcic_cpl_hd_q_cor_err_cnt(const struct cntr_entry *entry,
1969 					    void *context, int vl, int mode,
1970 					    u64 data)
1971 {
1972 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1973 
1974 	return dd->cce_err_status_cnt[17];
1975 }
1976 
1977 static u64 access_pcic_post_dat_q_cor_err_cnt(const struct cntr_entry *entry,
1978 					      void *context, int vl, int mode,
1979 					      u64 data)
1980 {
1981 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1982 
1983 	return dd->cce_err_status_cnt[16];
1984 }
1985 
1986 static u64 access_pcic_post_hd_q_cor_err_cnt(const struct cntr_entry *entry,
1987 					     void *context, int vl, int mode,
1988 					     u64 data)
1989 {
1990 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1991 
1992 	return dd->cce_err_status_cnt[15];
1993 }
1994 
1995 static u64 access_pcic_retry_sot_mem_cor_err_cnt(const struct cntr_entry *entry,
1996 						 void *context, int vl,
1997 						 int mode, u64 data)
1998 {
1999 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2000 
2001 	return dd->cce_err_status_cnt[14];
2002 }
2003 
2004 static u64 access_pcic_retry_mem_cor_err_cnt(const struct cntr_entry *entry,
2005 					     void *context, int vl, int mode,
2006 					     u64 data)
2007 {
2008 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2009 
2010 	return dd->cce_err_status_cnt[13];
2011 }
2012 
2013 static u64 access_cce_cli1_async_fifo_dbg_parity_err_cnt(
2014 				const struct cntr_entry *entry,
2015 				void *context, int vl, int mode, u64 data)
2016 {
2017 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2018 
2019 	return dd->cce_err_status_cnt[12];
2020 }
2021 
2022 static u64 access_cce_cli1_async_fifo_rxdma_parity_err_cnt(
2023 				const struct cntr_entry *entry,
2024 				void *context, int vl, int mode, u64 data)
2025 {
2026 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2027 
2028 	return dd->cce_err_status_cnt[11];
2029 }
2030 
2031 static u64 access_cce_cli1_async_fifo_sdma_hd_parity_err_cnt(
2032 				const struct cntr_entry *entry,
2033 				void *context, int vl, int mode, u64 data)
2034 {
2035 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2036 
2037 	return dd->cce_err_status_cnt[10];
2038 }
2039 
2040 static u64 access_cce_cl1_async_fifo_pio_crdt_parity_err_cnt(
2041 				const struct cntr_entry *entry,
2042 				void *context, int vl, int mode, u64 data)
2043 {
2044 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2045 
2046 	return dd->cce_err_status_cnt[9];
2047 }
2048 
2049 static u64 access_cce_cli2_async_fifo_parity_err_cnt(
2050 				const struct cntr_entry *entry,
2051 				void *context, int vl, int mode, u64 data)
2052 {
2053 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2054 
2055 	return dd->cce_err_status_cnt[8];
2056 }
2057 
2058 static u64 access_cce_csr_cfg_bus_parity_err_cnt(const struct cntr_entry *entry,
2059 						 void *context, int vl,
2060 						 int mode, u64 data)
2061 {
2062 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2063 
2064 	return dd->cce_err_status_cnt[7];
2065 }
2066 
2067 static u64 access_cce_cli0_async_fifo_parity_err_cnt(
2068 				const struct cntr_entry *entry,
2069 				void *context, int vl, int mode, u64 data)
2070 {
2071 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2072 
2073 	return dd->cce_err_status_cnt[6];
2074 }
2075 
2076 static u64 access_cce_rspd_data_parity_err_cnt(const struct cntr_entry *entry,
2077 					       void *context, int vl, int mode,
2078 					       u64 data)
2079 {
2080 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2081 
2082 	return dd->cce_err_status_cnt[5];
2083 }
2084 
2085 static u64 access_cce_trgt_access_err_cnt(const struct cntr_entry *entry,
2086 					  void *context, int vl, int mode,
2087 					  u64 data)
2088 {
2089 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2090 
2091 	return dd->cce_err_status_cnt[4];
2092 }
2093 
2094 static u64 access_cce_trgt_async_fifo_parity_err_cnt(
2095 				const struct cntr_entry *entry,
2096 				void *context, int vl, int mode, u64 data)
2097 {
2098 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2099 
2100 	return dd->cce_err_status_cnt[3];
2101 }
2102 
2103 static u64 access_cce_csr_write_bad_addr_err_cnt(const struct cntr_entry *entry,
2104 						 void *context, int vl,
2105 						 int mode, u64 data)
2106 {
2107 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2108 
2109 	return dd->cce_err_status_cnt[2];
2110 }
2111 
2112 static u64 access_cce_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
2113 						void *context, int vl,
2114 						int mode, u64 data)
2115 {
2116 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2117 
2118 	return dd->cce_err_status_cnt[1];
2119 }
2120 
2121 static u64 access_ccs_csr_parity_err_cnt(const struct cntr_entry *entry,
2122 					 void *context, int vl, int mode,
2123 					 u64 data)
2124 {
2125 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2126 
2127 	return dd->cce_err_status_cnt[0];
2128 }
2129 
2130 /*
2131  * Software counters corresponding to each of the
2132  * error status bits within RcvErrStatus
2133  */
2134 static u64 access_rx_csr_parity_err_cnt(const struct cntr_entry *entry,
2135 					void *context, int vl, int mode,
2136 					u64 data)
2137 {
2138 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2139 
2140 	return dd->rcv_err_status_cnt[63];
2141 }
2142 
2143 static u64 access_rx_csr_write_bad_addr_err_cnt(const struct cntr_entry *entry,
2144 						void *context, int vl,
2145 						int mode, u64 data)
2146 {
2147 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2148 
2149 	return dd->rcv_err_status_cnt[62];
2150 }
2151 
2152 static u64 access_rx_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
2153 					       void *context, int vl, int mode,
2154 					       u64 data)
2155 {
2156 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2157 
2158 	return dd->rcv_err_status_cnt[61];
2159 }
2160 
2161 static u64 access_rx_dma_csr_unc_err_cnt(const struct cntr_entry *entry,
2162 					 void *context, int vl, int mode,
2163 					 u64 data)
2164 {
2165 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2166 
2167 	return dd->rcv_err_status_cnt[60];
2168 }
2169 
2170 static u64 access_rx_dma_dq_fsm_encoding_err_cnt(const struct cntr_entry *entry,
2171 						 void *context, int vl,
2172 						 int mode, u64 data)
2173 {
2174 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2175 
2176 	return dd->rcv_err_status_cnt[59];
2177 }
2178 
2179 static u64 access_rx_dma_eq_fsm_encoding_err_cnt(const struct cntr_entry *entry,
2180 						 void *context, int vl,
2181 						 int mode, u64 data)
2182 {
2183 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2184 
2185 	return dd->rcv_err_status_cnt[58];
2186 }
2187 
2188 static u64 access_rx_dma_csr_parity_err_cnt(const struct cntr_entry *entry,
2189 					    void *context, int vl, int mode,
2190 					    u64 data)
2191 {
2192 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2193 
2194 	return dd->rcv_err_status_cnt[57];
2195 }
2196 
2197 static u64 access_rx_rbuf_data_cor_err_cnt(const struct cntr_entry *entry,
2198 					   void *context, int vl, int mode,
2199 					   u64 data)
2200 {
2201 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2202 
2203 	return dd->rcv_err_status_cnt[56];
2204 }
2205 
2206 static u64 access_rx_rbuf_data_unc_err_cnt(const struct cntr_entry *entry,
2207 					   void *context, int vl, int mode,
2208 					   u64 data)
2209 {
2210 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2211 
2212 	return dd->rcv_err_status_cnt[55];
2213 }
2214 
2215 static u64 access_rx_dma_data_fifo_rd_cor_err_cnt(
2216 				const struct cntr_entry *entry,
2217 				void *context, int vl, int mode, u64 data)
2218 {
2219 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2220 
2221 	return dd->rcv_err_status_cnt[54];
2222 }
2223 
2224 static u64 access_rx_dma_data_fifo_rd_unc_err_cnt(
2225 				const struct cntr_entry *entry,
2226 				void *context, int vl, int mode, u64 data)
2227 {
2228 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2229 
2230 	return dd->rcv_err_status_cnt[53];
2231 }
2232 
2233 static u64 access_rx_dma_hdr_fifo_rd_cor_err_cnt(const struct cntr_entry *entry,
2234 						 void *context, int vl,
2235 						 int mode, u64 data)
2236 {
2237 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2238 
2239 	return dd->rcv_err_status_cnt[52];
2240 }
2241 
2242 static u64 access_rx_dma_hdr_fifo_rd_unc_err_cnt(const struct cntr_entry *entry,
2243 						 void *context, int vl,
2244 						 int mode, u64 data)
2245 {
2246 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2247 
2248 	return dd->rcv_err_status_cnt[51];
2249 }
2250 
2251 static u64 access_rx_rbuf_desc_part2_cor_err_cnt(const struct cntr_entry *entry,
2252 						 void *context, int vl,
2253 						 int mode, u64 data)
2254 {
2255 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2256 
2257 	return dd->rcv_err_status_cnt[50];
2258 }
2259 
2260 static u64 access_rx_rbuf_desc_part2_unc_err_cnt(const struct cntr_entry *entry,
2261 						 void *context, int vl,
2262 						 int mode, u64 data)
2263 {
2264 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2265 
2266 	return dd->rcv_err_status_cnt[49];
2267 }
2268 
2269 static u64 access_rx_rbuf_desc_part1_cor_err_cnt(const struct cntr_entry *entry,
2270 						 void *context, int vl,
2271 						 int mode, u64 data)
2272 {
2273 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2274 
2275 	return dd->rcv_err_status_cnt[48];
2276 }
2277 
2278 static u64 access_rx_rbuf_desc_part1_unc_err_cnt(const struct cntr_entry *entry,
2279 						 void *context, int vl,
2280 						 int mode, u64 data)
2281 {
2282 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2283 
2284 	return dd->rcv_err_status_cnt[47];
2285 }
2286 
2287 static u64 access_rx_hq_intr_fsm_err_cnt(const struct cntr_entry *entry,
2288 					 void *context, int vl, int mode,
2289 					 u64 data)
2290 {
2291 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2292 
2293 	return dd->rcv_err_status_cnt[46];
2294 }
2295 
2296 static u64 access_rx_hq_intr_csr_parity_err_cnt(
2297 				const struct cntr_entry *entry,
2298 				void *context, int vl, int mode, u64 data)
2299 {
2300 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2301 
2302 	return dd->rcv_err_status_cnt[45];
2303 }
2304 
2305 static u64 access_rx_lookup_csr_parity_err_cnt(
2306 				const struct cntr_entry *entry,
2307 				void *context, int vl, int mode, u64 data)
2308 {
2309 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2310 
2311 	return dd->rcv_err_status_cnt[44];
2312 }
2313 
2314 static u64 access_rx_lookup_rcv_array_cor_err_cnt(
2315 				const struct cntr_entry *entry,
2316 				void *context, int vl, int mode, u64 data)
2317 {
2318 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2319 
2320 	return dd->rcv_err_status_cnt[43];
2321 }
2322 
2323 static u64 access_rx_lookup_rcv_array_unc_err_cnt(
2324 				const struct cntr_entry *entry,
2325 				void *context, int vl, int mode, u64 data)
2326 {
2327 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2328 
2329 	return dd->rcv_err_status_cnt[42];
2330 }
2331 
2332 static u64 access_rx_lookup_des_part2_parity_err_cnt(
2333 				const struct cntr_entry *entry,
2334 				void *context, int vl, int mode, u64 data)
2335 {
2336 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2337 
2338 	return dd->rcv_err_status_cnt[41];
2339 }
2340 
2341 static u64 access_rx_lookup_des_part1_unc_cor_err_cnt(
2342 				const struct cntr_entry *entry,
2343 				void *context, int vl, int mode, u64 data)
2344 {
2345 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2346 
2347 	return dd->rcv_err_status_cnt[40];
2348 }
2349 
2350 static u64 access_rx_lookup_des_part1_unc_err_cnt(
2351 				const struct cntr_entry *entry,
2352 				void *context, int vl, int mode, u64 data)
2353 {
2354 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2355 
2356 	return dd->rcv_err_status_cnt[39];
2357 }
2358 
2359 static u64 access_rx_rbuf_next_free_buf_cor_err_cnt(
2360 				const struct cntr_entry *entry,
2361 				void *context, int vl, int mode, u64 data)
2362 {
2363 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2364 
2365 	return dd->rcv_err_status_cnt[38];
2366 }
2367 
2368 static u64 access_rx_rbuf_next_free_buf_unc_err_cnt(
2369 				const struct cntr_entry *entry,
2370 				void *context, int vl, int mode, u64 data)
2371 {
2372 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2373 
2374 	return dd->rcv_err_status_cnt[37];
2375 }
2376 
2377 static u64 access_rbuf_fl_init_wr_addr_parity_err_cnt(
2378 				const struct cntr_entry *entry,
2379 				void *context, int vl, int mode, u64 data)
2380 {
2381 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2382 
2383 	return dd->rcv_err_status_cnt[36];
2384 }
2385 
2386 static u64 access_rx_rbuf_fl_initdone_parity_err_cnt(
2387 				const struct cntr_entry *entry,
2388 				void *context, int vl, int mode, u64 data)
2389 {
2390 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2391 
2392 	return dd->rcv_err_status_cnt[35];
2393 }
2394 
2395 static u64 access_rx_rbuf_fl_write_addr_parity_err_cnt(
2396 				const struct cntr_entry *entry,
2397 				void *context, int vl, int mode, u64 data)
2398 {
2399 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2400 
2401 	return dd->rcv_err_status_cnt[34];
2402 }
2403 
2404 static u64 access_rx_rbuf_fl_rd_addr_parity_err_cnt(
2405 				const struct cntr_entry *entry,
2406 				void *context, int vl, int mode, u64 data)
2407 {
2408 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2409 
2410 	return dd->rcv_err_status_cnt[33];
2411 }
2412 
2413 static u64 access_rx_rbuf_empty_err_cnt(const struct cntr_entry *entry,
2414 					void *context, int vl, int mode,
2415 					u64 data)
2416 {
2417 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2418 
2419 	return dd->rcv_err_status_cnt[32];
2420 }
2421 
2422 static u64 access_rx_rbuf_full_err_cnt(const struct cntr_entry *entry,
2423 				       void *context, int vl, int mode,
2424 				       u64 data)
2425 {
2426 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2427 
2428 	return dd->rcv_err_status_cnt[31];
2429 }
2430 
2431 static u64 access_rbuf_bad_lookup_err_cnt(const struct cntr_entry *entry,
2432 					  void *context, int vl, int mode,
2433 					  u64 data)
2434 {
2435 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2436 
2437 	return dd->rcv_err_status_cnt[30];
2438 }
2439 
2440 static u64 access_rbuf_ctx_id_parity_err_cnt(const struct cntr_entry *entry,
2441 					     void *context, int vl, int mode,
2442 					     u64 data)
2443 {
2444 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2445 
2446 	return dd->rcv_err_status_cnt[29];
2447 }
2448 
2449 static u64 access_rbuf_csr_qeopdw_parity_err_cnt(const struct cntr_entry *entry,
2450 						 void *context, int vl,
2451 						 int mode, u64 data)
2452 {
2453 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2454 
2455 	return dd->rcv_err_status_cnt[28];
2456 }
2457 
2458 static u64 access_rx_rbuf_csr_q_num_of_pkt_parity_err_cnt(
2459 				const struct cntr_entry *entry,
2460 				void *context, int vl, int mode, u64 data)
2461 {
2462 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2463 
2464 	return dd->rcv_err_status_cnt[27];
2465 }
2466 
2467 static u64 access_rx_rbuf_csr_q_t1_ptr_parity_err_cnt(
2468 				const struct cntr_entry *entry,
2469 				void *context, int vl, int mode, u64 data)
2470 {
2471 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2472 
2473 	return dd->rcv_err_status_cnt[26];
2474 }
2475 
2476 static u64 access_rx_rbuf_csr_q_hd_ptr_parity_err_cnt(
2477 				const struct cntr_entry *entry,
2478 				void *context, int vl, int mode, u64 data)
2479 {
2480 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2481 
2482 	return dd->rcv_err_status_cnt[25];
2483 }
2484 
2485 static u64 access_rx_rbuf_csr_q_vld_bit_parity_err_cnt(
2486 				const struct cntr_entry *entry,
2487 				void *context, int vl, int mode, u64 data)
2488 {
2489 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2490 
2491 	return dd->rcv_err_status_cnt[24];
2492 }
2493 
2494 static u64 access_rx_rbuf_csr_q_next_buf_parity_err_cnt(
2495 				const struct cntr_entry *entry,
2496 				void *context, int vl, int mode, u64 data)
2497 {
2498 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2499 
2500 	return dd->rcv_err_status_cnt[23];
2501 }
2502 
2503 static u64 access_rx_rbuf_csr_q_ent_cnt_parity_err_cnt(
2504 				const struct cntr_entry *entry,
2505 				void *context, int vl, int mode, u64 data)
2506 {
2507 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2508 
2509 	return dd->rcv_err_status_cnt[22];
2510 }
2511 
2512 static u64 access_rx_rbuf_csr_q_head_buf_num_parity_err_cnt(
2513 				const struct cntr_entry *entry,
2514 				void *context, int vl, int mode, u64 data)
2515 {
2516 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2517 
2518 	return dd->rcv_err_status_cnt[21];
2519 }
2520 
2521 static u64 access_rx_rbuf_block_list_read_cor_err_cnt(
2522 				const struct cntr_entry *entry,
2523 				void *context, int vl, int mode, u64 data)
2524 {
2525 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2526 
2527 	return dd->rcv_err_status_cnt[20];
2528 }
2529 
2530 static u64 access_rx_rbuf_block_list_read_unc_err_cnt(
2531 				const struct cntr_entry *entry,
2532 				void *context, int vl, int mode, u64 data)
2533 {
2534 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2535 
2536 	return dd->rcv_err_status_cnt[19];
2537 }
2538 
2539 static u64 access_rx_rbuf_lookup_des_cor_err_cnt(const struct cntr_entry *entry,
2540 						 void *context, int vl,
2541 						 int mode, u64 data)
2542 {
2543 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2544 
2545 	return dd->rcv_err_status_cnt[18];
2546 }
2547 
2548 static u64 access_rx_rbuf_lookup_des_unc_err_cnt(const struct cntr_entry *entry,
2549 						 void *context, int vl,
2550 						 int mode, u64 data)
2551 {
2552 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2553 
2554 	return dd->rcv_err_status_cnt[17];
2555 }
2556 
2557 static u64 access_rx_rbuf_lookup_des_reg_unc_cor_err_cnt(
2558 				const struct cntr_entry *entry,
2559 				void *context, int vl, int mode, u64 data)
2560 {
2561 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2562 
2563 	return dd->rcv_err_status_cnt[16];
2564 }
2565 
2566 static u64 access_rx_rbuf_lookup_des_reg_unc_err_cnt(
2567 				const struct cntr_entry *entry,
2568 				void *context, int vl, int mode, u64 data)
2569 {
2570 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2571 
2572 	return dd->rcv_err_status_cnt[15];
2573 }
2574 
2575 static u64 access_rx_rbuf_free_list_cor_err_cnt(const struct cntr_entry *entry,
2576 						void *context, int vl,
2577 						int mode, u64 data)
2578 {
2579 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2580 
2581 	return dd->rcv_err_status_cnt[14];
2582 }
2583 
2584 static u64 access_rx_rbuf_free_list_unc_err_cnt(const struct cntr_entry *entry,
2585 						void *context, int vl,
2586 						int mode, u64 data)
2587 {
2588 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2589 
2590 	return dd->rcv_err_status_cnt[13];
2591 }
2592 
2593 static u64 access_rx_rcv_fsm_encoding_err_cnt(const struct cntr_entry *entry,
2594 					      void *context, int vl, int mode,
2595 					      u64 data)
2596 {
2597 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2598 
2599 	return dd->rcv_err_status_cnt[12];
2600 }
2601 
2602 static u64 access_rx_dma_flag_cor_err_cnt(const struct cntr_entry *entry,
2603 					  void *context, int vl, int mode,
2604 					  u64 data)
2605 {
2606 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2607 
2608 	return dd->rcv_err_status_cnt[11];
2609 }
2610 
2611 static u64 access_rx_dma_flag_unc_err_cnt(const struct cntr_entry *entry,
2612 					  void *context, int vl, int mode,
2613 					  u64 data)
2614 {
2615 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2616 
2617 	return dd->rcv_err_status_cnt[10];
2618 }
2619 
2620 static u64 access_rx_dc_sop_eop_parity_err_cnt(const struct cntr_entry *entry,
2621 					       void *context, int vl, int mode,
2622 					       u64 data)
2623 {
2624 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2625 
2626 	return dd->rcv_err_status_cnt[9];
2627 }
2628 
2629 static u64 access_rx_rcv_csr_parity_err_cnt(const struct cntr_entry *entry,
2630 					    void *context, int vl, int mode,
2631 					    u64 data)
2632 {
2633 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2634 
2635 	return dd->rcv_err_status_cnt[8];
2636 }
2637 
2638 static u64 access_rx_rcv_qp_map_table_cor_err_cnt(
2639 				const struct cntr_entry *entry,
2640 				void *context, int vl, int mode, u64 data)
2641 {
2642 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2643 
2644 	return dd->rcv_err_status_cnt[7];
2645 }
2646 
2647 static u64 access_rx_rcv_qp_map_table_unc_err_cnt(
2648 				const struct cntr_entry *entry,
2649 				void *context, int vl, int mode, u64 data)
2650 {
2651 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2652 
2653 	return dd->rcv_err_status_cnt[6];
2654 }
2655 
2656 static u64 access_rx_rcv_data_cor_err_cnt(const struct cntr_entry *entry,
2657 					  void *context, int vl, int mode,
2658 					  u64 data)
2659 {
2660 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2661 
2662 	return dd->rcv_err_status_cnt[5];
2663 }
2664 
2665 static u64 access_rx_rcv_data_unc_err_cnt(const struct cntr_entry *entry,
2666 					  void *context, int vl, int mode,
2667 					  u64 data)
2668 {
2669 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2670 
2671 	return dd->rcv_err_status_cnt[4];
2672 }
2673 
2674 static u64 access_rx_rcv_hdr_cor_err_cnt(const struct cntr_entry *entry,
2675 					 void *context, int vl, int mode,
2676 					 u64 data)
2677 {
2678 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2679 
2680 	return dd->rcv_err_status_cnt[3];
2681 }
2682 
2683 static u64 access_rx_rcv_hdr_unc_err_cnt(const struct cntr_entry *entry,
2684 					 void *context, int vl, int mode,
2685 					 u64 data)
2686 {
2687 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2688 
2689 	return dd->rcv_err_status_cnt[2];
2690 }
2691 
2692 static u64 access_rx_dc_intf_parity_err_cnt(const struct cntr_entry *entry,
2693 					    void *context, int vl, int mode,
2694 					    u64 data)
2695 {
2696 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2697 
2698 	return dd->rcv_err_status_cnt[1];
2699 }
2700 
2701 static u64 access_rx_dma_csr_cor_err_cnt(const struct cntr_entry *entry,
2702 					 void *context, int vl, int mode,
2703 					 u64 data)
2704 {
2705 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2706 
2707 	return dd->rcv_err_status_cnt[0];
2708 }
2709 
2710 /*
2711  * Software counters corresponding to each of the
2712  * error status bits within SendPioErrStatus
2713  */
2714 static u64 access_pio_pec_sop_head_parity_err_cnt(
2715 				const struct cntr_entry *entry,
2716 				void *context, int vl, int mode, u64 data)
2717 {
2718 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2719 
2720 	return dd->send_pio_err_status_cnt[35];
2721 }
2722 
2723 static u64 access_pio_pcc_sop_head_parity_err_cnt(
2724 				const struct cntr_entry *entry,
2725 				void *context, int vl, int mode, u64 data)
2726 {
2727 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2728 
2729 	return dd->send_pio_err_status_cnt[34];
2730 }
2731 
2732 static u64 access_pio_last_returned_cnt_parity_err_cnt(
2733 				const struct cntr_entry *entry,
2734 				void *context, int vl, int mode, u64 data)
2735 {
2736 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2737 
2738 	return dd->send_pio_err_status_cnt[33];
2739 }
2740 
2741 static u64 access_pio_current_free_cnt_parity_err_cnt(
2742 				const struct cntr_entry *entry,
2743 				void *context, int vl, int mode, u64 data)
2744 {
2745 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2746 
2747 	return dd->send_pio_err_status_cnt[32];
2748 }
2749 
2750 static u64 access_pio_reserved_31_err_cnt(const struct cntr_entry *entry,
2751 					  void *context, int vl, int mode,
2752 					  u64 data)
2753 {
2754 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2755 
2756 	return dd->send_pio_err_status_cnt[31];
2757 }
2758 
2759 static u64 access_pio_reserved_30_err_cnt(const struct cntr_entry *entry,
2760 					  void *context, int vl, int mode,
2761 					  u64 data)
2762 {
2763 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2764 
2765 	return dd->send_pio_err_status_cnt[30];
2766 }
2767 
2768 static u64 access_pio_ppmc_sop_len_err_cnt(const struct cntr_entry *entry,
2769 					   void *context, int vl, int mode,
2770 					   u64 data)
2771 {
2772 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2773 
2774 	return dd->send_pio_err_status_cnt[29];
2775 }
2776 
2777 static u64 access_pio_ppmc_bqc_mem_parity_err_cnt(
2778 				const struct cntr_entry *entry,
2779 				void *context, int vl, int mode, u64 data)
2780 {
2781 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2782 
2783 	return dd->send_pio_err_status_cnt[28];
2784 }
2785 
2786 static u64 access_pio_vl_fifo_parity_err_cnt(const struct cntr_entry *entry,
2787 					     void *context, int vl, int mode,
2788 					     u64 data)
2789 {
2790 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2791 
2792 	return dd->send_pio_err_status_cnt[27];
2793 }
2794 
2795 static u64 access_pio_vlf_sop_parity_err_cnt(const struct cntr_entry *entry,
2796 					     void *context, int vl, int mode,
2797 					     u64 data)
2798 {
2799 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2800 
2801 	return dd->send_pio_err_status_cnt[26];
2802 }
2803 
2804 static u64 access_pio_vlf_v1_len_parity_err_cnt(const struct cntr_entry *entry,
2805 						void *context, int vl,
2806 						int mode, u64 data)
2807 {
2808 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2809 
2810 	return dd->send_pio_err_status_cnt[25];
2811 }
2812 
2813 static u64 access_pio_block_qw_count_parity_err_cnt(
2814 				const struct cntr_entry *entry,
2815 				void *context, int vl, int mode, u64 data)
2816 {
2817 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2818 
2819 	return dd->send_pio_err_status_cnt[24];
2820 }
2821 
2822 static u64 access_pio_write_qw_valid_parity_err_cnt(
2823 				const struct cntr_entry *entry,
2824 				void *context, int vl, int mode, u64 data)
2825 {
2826 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2827 
2828 	return dd->send_pio_err_status_cnt[23];
2829 }
2830 
2831 static u64 access_pio_state_machine_err_cnt(const struct cntr_entry *entry,
2832 					    void *context, int vl, int mode,
2833 					    u64 data)
2834 {
2835 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2836 
2837 	return dd->send_pio_err_status_cnt[22];
2838 }
2839 
2840 static u64 access_pio_write_data_parity_err_cnt(const struct cntr_entry *entry,
2841 						void *context, int vl,
2842 						int mode, u64 data)
2843 {
2844 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2845 
2846 	return dd->send_pio_err_status_cnt[21];
2847 }
2848 
2849 static u64 access_pio_host_addr_mem_cor_err_cnt(const struct cntr_entry *entry,
2850 						void *context, int vl,
2851 						int mode, u64 data)
2852 {
2853 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2854 
2855 	return dd->send_pio_err_status_cnt[20];
2856 }
2857 
2858 static u64 access_pio_host_addr_mem_unc_err_cnt(const struct cntr_entry *entry,
2859 						void *context, int vl,
2860 						int mode, u64 data)
2861 {
2862 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2863 
2864 	return dd->send_pio_err_status_cnt[19];
2865 }
2866 
2867 static u64 access_pio_pkt_evict_sm_or_arb_sm_err_cnt(
2868 				const struct cntr_entry *entry,
2869 				void *context, int vl, int mode, u64 data)
2870 {
2871 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2872 
2873 	return dd->send_pio_err_status_cnt[18];
2874 }
2875 
2876 static u64 access_pio_init_sm_in_err_cnt(const struct cntr_entry *entry,
2877 					 void *context, int vl, int mode,
2878 					 u64 data)
2879 {
2880 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2881 
2882 	return dd->send_pio_err_status_cnt[17];
2883 }
2884 
2885 static u64 access_pio_ppmc_pbl_fifo_err_cnt(const struct cntr_entry *entry,
2886 					    void *context, int vl, int mode,
2887 					    u64 data)
2888 {
2889 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2890 
2891 	return dd->send_pio_err_status_cnt[16];
2892 }
2893 
2894 static u64 access_pio_credit_ret_fifo_parity_err_cnt(
2895 				const struct cntr_entry *entry,
2896 				void *context, int vl, int mode, u64 data)
2897 {
2898 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2899 
2900 	return dd->send_pio_err_status_cnt[15];
2901 }
2902 
2903 static u64 access_pio_v1_len_mem_bank1_cor_err_cnt(
2904 				const struct cntr_entry *entry,
2905 				void *context, int vl, int mode, u64 data)
2906 {
2907 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2908 
2909 	return dd->send_pio_err_status_cnt[14];
2910 }
2911 
2912 static u64 access_pio_v1_len_mem_bank0_cor_err_cnt(
2913 				const struct cntr_entry *entry,
2914 				void *context, int vl, int mode, u64 data)
2915 {
2916 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2917 
2918 	return dd->send_pio_err_status_cnt[13];
2919 }
2920 
2921 static u64 access_pio_v1_len_mem_bank1_unc_err_cnt(
2922 				const struct cntr_entry *entry,
2923 				void *context, int vl, int mode, u64 data)
2924 {
2925 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2926 
2927 	return dd->send_pio_err_status_cnt[12];
2928 }
2929 
2930 static u64 access_pio_v1_len_mem_bank0_unc_err_cnt(
2931 				const struct cntr_entry *entry,
2932 				void *context, int vl, int mode, u64 data)
2933 {
2934 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2935 
2936 	return dd->send_pio_err_status_cnt[11];
2937 }
2938 
2939 static u64 access_pio_sm_pkt_reset_parity_err_cnt(
2940 				const struct cntr_entry *entry,
2941 				void *context, int vl, int mode, u64 data)
2942 {
2943 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2944 
2945 	return dd->send_pio_err_status_cnt[10];
2946 }
2947 
2948 static u64 access_pio_pkt_evict_fifo_parity_err_cnt(
2949 				const struct cntr_entry *entry,
2950 				void *context, int vl, int mode, u64 data)
2951 {
2952 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2953 
2954 	return dd->send_pio_err_status_cnt[9];
2955 }
2956 
2957 static u64 access_pio_sbrdctrl_crrel_fifo_parity_err_cnt(
2958 				const struct cntr_entry *entry,
2959 				void *context, int vl, int mode, u64 data)
2960 {
2961 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2962 
2963 	return dd->send_pio_err_status_cnt[8];
2964 }
2965 
2966 static u64 access_pio_sbrdctl_crrel_parity_err_cnt(
2967 				const struct cntr_entry *entry,
2968 				void *context, int vl, int mode, u64 data)
2969 {
2970 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2971 
2972 	return dd->send_pio_err_status_cnt[7];
2973 }
2974 
2975 static u64 access_pio_pec_fifo_parity_err_cnt(const struct cntr_entry *entry,
2976 					      void *context, int vl, int mode,
2977 					      u64 data)
2978 {
2979 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2980 
2981 	return dd->send_pio_err_status_cnt[6];
2982 }
2983 
2984 static u64 access_pio_pcc_fifo_parity_err_cnt(const struct cntr_entry *entry,
2985 					      void *context, int vl, int mode,
2986 					      u64 data)
2987 {
2988 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2989 
2990 	return dd->send_pio_err_status_cnt[5];
2991 }
2992 
2993 static u64 access_pio_sb_mem_fifo1_err_cnt(const struct cntr_entry *entry,
2994 					   void *context, int vl, int mode,
2995 					   u64 data)
2996 {
2997 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2998 
2999 	return dd->send_pio_err_status_cnt[4];
3000 }
3001 
3002 static u64 access_pio_sb_mem_fifo0_err_cnt(const struct cntr_entry *entry,
3003 					   void *context, int vl, int mode,
3004 					   u64 data)
3005 {
3006 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3007 
3008 	return dd->send_pio_err_status_cnt[3];
3009 }
3010 
3011 static u64 access_pio_csr_parity_err_cnt(const struct cntr_entry *entry,
3012 					 void *context, int vl, int mode,
3013 					 u64 data)
3014 {
3015 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3016 
3017 	return dd->send_pio_err_status_cnt[2];
3018 }
3019 
3020 static u64 access_pio_write_addr_parity_err_cnt(const struct cntr_entry *entry,
3021 						void *context, int vl,
3022 						int mode, u64 data)
3023 {
3024 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3025 
3026 	return dd->send_pio_err_status_cnt[1];
3027 }
3028 
3029 static u64 access_pio_write_bad_ctxt_err_cnt(const struct cntr_entry *entry,
3030 					     void *context, int vl, int mode,
3031 					     u64 data)
3032 {
3033 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3034 
3035 	return dd->send_pio_err_status_cnt[0];
3036 }
3037 
3038 /*
3039  * Software counters corresponding to each of the
3040  * error status bits within SendDmaErrStatus
3041  */
3042 static u64 access_sdma_pcie_req_tracking_cor_err_cnt(
3043 				const struct cntr_entry *entry,
3044 				void *context, int vl, int mode, u64 data)
3045 {
3046 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3047 
3048 	return dd->send_dma_err_status_cnt[3];
3049 }
3050 
3051 static u64 access_sdma_pcie_req_tracking_unc_err_cnt(
3052 				const struct cntr_entry *entry,
3053 				void *context, int vl, int mode, u64 data)
3054 {
3055 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3056 
3057 	return dd->send_dma_err_status_cnt[2];
3058 }
3059 
3060 static u64 access_sdma_csr_parity_err_cnt(const struct cntr_entry *entry,
3061 					  void *context, int vl, int mode,
3062 					  u64 data)
3063 {
3064 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3065 
3066 	return dd->send_dma_err_status_cnt[1];
3067 }
3068 
3069 static u64 access_sdma_rpy_tag_err_cnt(const struct cntr_entry *entry,
3070 				       void *context, int vl, int mode,
3071 				       u64 data)
3072 {
3073 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3074 
3075 	return dd->send_dma_err_status_cnt[0];
3076 }
3077 
3078 /*
3079  * Software counters corresponding to each of the
3080  * error status bits within SendEgressErrStatus
3081  */
3082 static u64 access_tx_read_pio_memory_csr_unc_err_cnt(
3083 				const struct cntr_entry *entry,
3084 				void *context, int vl, int mode, u64 data)
3085 {
3086 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3087 
3088 	return dd->send_egress_err_status_cnt[63];
3089 }
3090 
3091 static u64 access_tx_read_sdma_memory_csr_err_cnt(
3092 				const struct cntr_entry *entry,
3093 				void *context, int vl, int mode, u64 data)
3094 {
3095 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3096 
3097 	return dd->send_egress_err_status_cnt[62];
3098 }
3099 
3100 static u64 access_tx_egress_fifo_cor_err_cnt(const struct cntr_entry *entry,
3101 					     void *context, int vl, int mode,
3102 					     u64 data)
3103 {
3104 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3105 
3106 	return dd->send_egress_err_status_cnt[61];
3107 }
3108 
3109 static u64 access_tx_read_pio_memory_cor_err_cnt(const struct cntr_entry *entry,
3110 						 void *context, int vl,
3111 						 int mode, u64 data)
3112 {
3113 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3114 
3115 	return dd->send_egress_err_status_cnt[60];
3116 }
3117 
3118 static u64 access_tx_read_sdma_memory_cor_err_cnt(
3119 				const struct cntr_entry *entry,
3120 				void *context, int vl, int mode, u64 data)
3121 {
3122 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3123 
3124 	return dd->send_egress_err_status_cnt[59];
3125 }
3126 
3127 static u64 access_tx_sb_hdr_cor_err_cnt(const struct cntr_entry *entry,
3128 					void *context, int vl, int mode,
3129 					u64 data)
3130 {
3131 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3132 
3133 	return dd->send_egress_err_status_cnt[58];
3134 }
3135 
3136 static u64 access_tx_credit_overrun_err_cnt(const struct cntr_entry *entry,
3137 					    void *context, int vl, int mode,
3138 					    u64 data)
3139 {
3140 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3141 
3142 	return dd->send_egress_err_status_cnt[57];
3143 }
3144 
3145 static u64 access_tx_launch_fifo8_cor_err_cnt(const struct cntr_entry *entry,
3146 					      void *context, int vl, int mode,
3147 					      u64 data)
3148 {
3149 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3150 
3151 	return dd->send_egress_err_status_cnt[56];
3152 }
3153 
3154 static u64 access_tx_launch_fifo7_cor_err_cnt(const struct cntr_entry *entry,
3155 					      void *context, int vl, int mode,
3156 					      u64 data)
3157 {
3158 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3159 
3160 	return dd->send_egress_err_status_cnt[55];
3161 }
3162 
3163 static u64 access_tx_launch_fifo6_cor_err_cnt(const struct cntr_entry *entry,
3164 					      void *context, int vl, int mode,
3165 					      u64 data)
3166 {
3167 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3168 
3169 	return dd->send_egress_err_status_cnt[54];
3170 }
3171 
3172 static u64 access_tx_launch_fifo5_cor_err_cnt(const struct cntr_entry *entry,
3173 					      void *context, int vl, int mode,
3174 					      u64 data)
3175 {
3176 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3177 
3178 	return dd->send_egress_err_status_cnt[53];
3179 }
3180 
3181 static u64 access_tx_launch_fifo4_cor_err_cnt(const struct cntr_entry *entry,
3182 					      void *context, int vl, int mode,
3183 					      u64 data)
3184 {
3185 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3186 
3187 	return dd->send_egress_err_status_cnt[52];
3188 }
3189 
3190 static u64 access_tx_launch_fifo3_cor_err_cnt(const struct cntr_entry *entry,
3191 					      void *context, int vl, int mode,
3192 					      u64 data)
3193 {
3194 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3195 
3196 	return dd->send_egress_err_status_cnt[51];
3197 }
3198 
3199 static u64 access_tx_launch_fifo2_cor_err_cnt(const struct cntr_entry *entry,
3200 					      void *context, int vl, int mode,
3201 					      u64 data)
3202 {
3203 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3204 
3205 	return dd->send_egress_err_status_cnt[50];
3206 }
3207 
3208 static u64 access_tx_launch_fifo1_cor_err_cnt(const struct cntr_entry *entry,
3209 					      void *context, int vl, int mode,
3210 					      u64 data)
3211 {
3212 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3213 
3214 	return dd->send_egress_err_status_cnt[49];
3215 }
3216 
3217 static u64 access_tx_launch_fifo0_cor_err_cnt(const struct cntr_entry *entry,
3218 					      void *context, int vl, int mode,
3219 					      u64 data)
3220 {
3221 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3222 
3223 	return dd->send_egress_err_status_cnt[48];
3224 }
3225 
3226 static u64 access_tx_credit_return_vl_err_cnt(const struct cntr_entry *entry,
3227 					      void *context, int vl, int mode,
3228 					      u64 data)
3229 {
3230 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3231 
3232 	return dd->send_egress_err_status_cnt[47];
3233 }
3234 
3235 static u64 access_tx_hcrc_insertion_err_cnt(const struct cntr_entry *entry,
3236 					    void *context, int vl, int mode,
3237 					    u64 data)
3238 {
3239 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3240 
3241 	return dd->send_egress_err_status_cnt[46];
3242 }
3243 
3244 static u64 access_tx_egress_fifo_unc_err_cnt(const struct cntr_entry *entry,
3245 					     void *context, int vl, int mode,
3246 					     u64 data)
3247 {
3248 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3249 
3250 	return dd->send_egress_err_status_cnt[45];
3251 }
3252 
3253 static u64 access_tx_read_pio_memory_unc_err_cnt(const struct cntr_entry *entry,
3254 						 void *context, int vl,
3255 						 int mode, u64 data)
3256 {
3257 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3258 
3259 	return dd->send_egress_err_status_cnt[44];
3260 }
3261 
3262 static u64 access_tx_read_sdma_memory_unc_err_cnt(
3263 				const struct cntr_entry *entry,
3264 				void *context, int vl, int mode, u64 data)
3265 {
3266 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3267 
3268 	return dd->send_egress_err_status_cnt[43];
3269 }
3270 
3271 static u64 access_tx_sb_hdr_unc_err_cnt(const struct cntr_entry *entry,
3272 					void *context, int vl, int mode,
3273 					u64 data)
3274 {
3275 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3276 
3277 	return dd->send_egress_err_status_cnt[42];
3278 }
3279 
3280 static u64 access_tx_credit_return_partiy_err_cnt(
3281 				const struct cntr_entry *entry,
3282 				void *context, int vl, int mode, u64 data)
3283 {
3284 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3285 
3286 	return dd->send_egress_err_status_cnt[41];
3287 }
3288 
3289 static u64 access_tx_launch_fifo8_unc_or_parity_err_cnt(
3290 				const struct cntr_entry *entry,
3291 				void *context, int vl, int mode, u64 data)
3292 {
3293 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3294 
3295 	return dd->send_egress_err_status_cnt[40];
3296 }
3297 
3298 static u64 access_tx_launch_fifo7_unc_or_parity_err_cnt(
3299 				const struct cntr_entry *entry,
3300 				void *context, int vl, int mode, u64 data)
3301 {
3302 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3303 
3304 	return dd->send_egress_err_status_cnt[39];
3305 }
3306 
3307 static u64 access_tx_launch_fifo6_unc_or_parity_err_cnt(
3308 				const struct cntr_entry *entry,
3309 				void *context, int vl, int mode, u64 data)
3310 {
3311 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3312 
3313 	return dd->send_egress_err_status_cnt[38];
3314 }
3315 
3316 static u64 access_tx_launch_fifo5_unc_or_parity_err_cnt(
3317 				const struct cntr_entry *entry,
3318 				void *context, int vl, int mode, u64 data)
3319 {
3320 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3321 
3322 	return dd->send_egress_err_status_cnt[37];
3323 }
3324 
3325 static u64 access_tx_launch_fifo4_unc_or_parity_err_cnt(
3326 				const struct cntr_entry *entry,
3327 				void *context, int vl, int mode, u64 data)
3328 {
3329 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3330 
3331 	return dd->send_egress_err_status_cnt[36];
3332 }
3333 
3334 static u64 access_tx_launch_fifo3_unc_or_parity_err_cnt(
3335 				const struct cntr_entry *entry,
3336 				void *context, int vl, int mode, u64 data)
3337 {
3338 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3339 
3340 	return dd->send_egress_err_status_cnt[35];
3341 }
3342 
3343 static u64 access_tx_launch_fifo2_unc_or_parity_err_cnt(
3344 				const struct cntr_entry *entry,
3345 				void *context, int vl, int mode, u64 data)
3346 {
3347 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3348 
3349 	return dd->send_egress_err_status_cnt[34];
3350 }
3351 
3352 static u64 access_tx_launch_fifo1_unc_or_parity_err_cnt(
3353 				const struct cntr_entry *entry,
3354 				void *context, int vl, int mode, u64 data)
3355 {
3356 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3357 
3358 	return dd->send_egress_err_status_cnt[33];
3359 }
3360 
3361 static u64 access_tx_launch_fifo0_unc_or_parity_err_cnt(
3362 				const struct cntr_entry *entry,
3363 				void *context, int vl, int mode, u64 data)
3364 {
3365 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3366 
3367 	return dd->send_egress_err_status_cnt[32];
3368 }
3369 
3370 static u64 access_tx_sdma15_disallowed_packet_err_cnt(
3371 				const struct cntr_entry *entry,
3372 				void *context, int vl, int mode, u64 data)
3373 {
3374 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3375 
3376 	return dd->send_egress_err_status_cnt[31];
3377 }
3378 
3379 static u64 access_tx_sdma14_disallowed_packet_err_cnt(
3380 				const struct cntr_entry *entry,
3381 				void *context, int vl, int mode, u64 data)
3382 {
3383 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3384 
3385 	return dd->send_egress_err_status_cnt[30];
3386 }
3387 
3388 static u64 access_tx_sdma13_disallowed_packet_err_cnt(
3389 				const struct cntr_entry *entry,
3390 				void *context, int vl, int mode, u64 data)
3391 {
3392 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3393 
3394 	return dd->send_egress_err_status_cnt[29];
3395 }
3396 
3397 static u64 access_tx_sdma12_disallowed_packet_err_cnt(
3398 				const struct cntr_entry *entry,
3399 				void *context, int vl, int mode, u64 data)
3400 {
3401 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3402 
3403 	return dd->send_egress_err_status_cnt[28];
3404 }
3405 
3406 static u64 access_tx_sdma11_disallowed_packet_err_cnt(
3407 				const struct cntr_entry *entry,
3408 				void *context, int vl, int mode, u64 data)
3409 {
3410 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3411 
3412 	return dd->send_egress_err_status_cnt[27];
3413 }
3414 
3415 static u64 access_tx_sdma10_disallowed_packet_err_cnt(
3416 				const struct cntr_entry *entry,
3417 				void *context, int vl, int mode, u64 data)
3418 {
3419 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3420 
3421 	return dd->send_egress_err_status_cnt[26];
3422 }
3423 
3424 static u64 access_tx_sdma9_disallowed_packet_err_cnt(
3425 				const struct cntr_entry *entry,
3426 				void *context, int vl, int mode, u64 data)
3427 {
3428 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3429 
3430 	return dd->send_egress_err_status_cnt[25];
3431 }
3432 
3433 static u64 access_tx_sdma8_disallowed_packet_err_cnt(
3434 				const struct cntr_entry *entry,
3435 				void *context, int vl, int mode, u64 data)
3436 {
3437 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3438 
3439 	return dd->send_egress_err_status_cnt[24];
3440 }
3441 
3442 static u64 access_tx_sdma7_disallowed_packet_err_cnt(
3443 				const struct cntr_entry *entry,
3444 				void *context, int vl, int mode, u64 data)
3445 {
3446 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3447 
3448 	return dd->send_egress_err_status_cnt[23];
3449 }
3450 
3451 static u64 access_tx_sdma6_disallowed_packet_err_cnt(
3452 				const struct cntr_entry *entry,
3453 				void *context, int vl, int mode, u64 data)
3454 {
3455 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3456 
3457 	return dd->send_egress_err_status_cnt[22];
3458 }
3459 
3460 static u64 access_tx_sdma5_disallowed_packet_err_cnt(
3461 				const struct cntr_entry *entry,
3462 				void *context, int vl, int mode, u64 data)
3463 {
3464 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3465 
3466 	return dd->send_egress_err_status_cnt[21];
3467 }
3468 
3469 static u64 access_tx_sdma4_disallowed_packet_err_cnt(
3470 				const struct cntr_entry *entry,
3471 				void *context, int vl, int mode, u64 data)
3472 {
3473 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3474 
3475 	return dd->send_egress_err_status_cnt[20];
3476 }
3477 
3478 static u64 access_tx_sdma3_disallowed_packet_err_cnt(
3479 				const struct cntr_entry *entry,
3480 				void *context, int vl, int mode, u64 data)
3481 {
3482 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3483 
3484 	return dd->send_egress_err_status_cnt[19];
3485 }
3486 
3487 static u64 access_tx_sdma2_disallowed_packet_err_cnt(
3488 				const struct cntr_entry *entry,
3489 				void *context, int vl, int mode, u64 data)
3490 {
3491 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3492 
3493 	return dd->send_egress_err_status_cnt[18];
3494 }
3495 
3496 static u64 access_tx_sdma1_disallowed_packet_err_cnt(
3497 				const struct cntr_entry *entry,
3498 				void *context, int vl, int mode, u64 data)
3499 {
3500 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3501 
3502 	return dd->send_egress_err_status_cnt[17];
3503 }
3504 
3505 static u64 access_tx_sdma0_disallowed_packet_err_cnt(
3506 				const struct cntr_entry *entry,
3507 				void *context, int vl, int mode, u64 data)
3508 {
3509 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3510 
3511 	return dd->send_egress_err_status_cnt[16];
3512 }
3513 
3514 static u64 access_tx_config_parity_err_cnt(const struct cntr_entry *entry,
3515 					   void *context, int vl, int mode,
3516 					   u64 data)
3517 {
3518 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3519 
3520 	return dd->send_egress_err_status_cnt[15];
3521 }
3522 
3523 static u64 access_tx_sbrd_ctl_csr_parity_err_cnt(const struct cntr_entry *entry,
3524 						 void *context, int vl,
3525 						 int mode, u64 data)
3526 {
3527 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3528 
3529 	return dd->send_egress_err_status_cnt[14];
3530 }
3531 
3532 static u64 access_tx_launch_csr_parity_err_cnt(const struct cntr_entry *entry,
3533 					       void *context, int vl, int mode,
3534 					       u64 data)
3535 {
3536 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3537 
3538 	return dd->send_egress_err_status_cnt[13];
3539 }
3540 
3541 static u64 access_tx_illegal_vl_err_cnt(const struct cntr_entry *entry,
3542 					void *context, int vl, int mode,
3543 					u64 data)
3544 {
3545 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3546 
3547 	return dd->send_egress_err_status_cnt[12];
3548 }
3549 
3550 static u64 access_tx_sbrd_ctl_state_machine_parity_err_cnt(
3551 				const struct cntr_entry *entry,
3552 				void *context, int vl, int mode, u64 data)
3553 {
3554 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3555 
3556 	return dd->send_egress_err_status_cnt[11];
3557 }
3558 
3559 static u64 access_egress_reserved_10_err_cnt(const struct cntr_entry *entry,
3560 					     void *context, int vl, int mode,
3561 					     u64 data)
3562 {
3563 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3564 
3565 	return dd->send_egress_err_status_cnt[10];
3566 }
3567 
3568 static u64 access_egress_reserved_9_err_cnt(const struct cntr_entry *entry,
3569 					    void *context, int vl, int mode,
3570 					    u64 data)
3571 {
3572 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3573 
3574 	return dd->send_egress_err_status_cnt[9];
3575 }
3576 
3577 static u64 access_tx_sdma_launch_intf_parity_err_cnt(
3578 				const struct cntr_entry *entry,
3579 				void *context, int vl, int mode, u64 data)
3580 {
3581 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3582 
3583 	return dd->send_egress_err_status_cnt[8];
3584 }
3585 
3586 static u64 access_tx_pio_launch_intf_parity_err_cnt(
3587 				const struct cntr_entry *entry,
3588 				void *context, int vl, int mode, u64 data)
3589 {
3590 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3591 
3592 	return dd->send_egress_err_status_cnt[7];
3593 }
3594 
3595 static u64 access_egress_reserved_6_err_cnt(const struct cntr_entry *entry,
3596 					    void *context, int vl, int mode,
3597 					    u64 data)
3598 {
3599 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3600 
3601 	return dd->send_egress_err_status_cnt[6];
3602 }
3603 
3604 static u64 access_tx_incorrect_link_state_err_cnt(
3605 				const struct cntr_entry *entry,
3606 				void *context, int vl, int mode, u64 data)
3607 {
3608 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3609 
3610 	return dd->send_egress_err_status_cnt[5];
3611 }
3612 
3613 static u64 access_tx_linkdown_err_cnt(const struct cntr_entry *entry,
3614 				      void *context, int vl, int mode,
3615 				      u64 data)
3616 {
3617 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3618 
3619 	return dd->send_egress_err_status_cnt[4];
3620 }
3621 
3622 static u64 access_tx_egress_fifi_underrun_or_parity_err_cnt(
3623 				const struct cntr_entry *entry,
3624 				void *context, int vl, int mode, u64 data)
3625 {
3626 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3627 
3628 	return dd->send_egress_err_status_cnt[3];
3629 }
3630 
3631 static u64 access_egress_reserved_2_err_cnt(const struct cntr_entry *entry,
3632 					    void *context, int vl, int mode,
3633 					    u64 data)
3634 {
3635 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3636 
3637 	return dd->send_egress_err_status_cnt[2];
3638 }
3639 
3640 static u64 access_tx_pkt_integrity_mem_unc_err_cnt(
3641 				const struct cntr_entry *entry,
3642 				void *context, int vl, int mode, u64 data)
3643 {
3644 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3645 
3646 	return dd->send_egress_err_status_cnt[1];
3647 }
3648 
3649 static u64 access_tx_pkt_integrity_mem_cor_err_cnt(
3650 				const struct cntr_entry *entry,
3651 				void *context, int vl, int mode, u64 data)
3652 {
3653 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3654 
3655 	return dd->send_egress_err_status_cnt[0];
3656 }
3657 
3658 /*
3659  * Software counters corresponding to each of the
3660  * error status bits within SendErrStatus
3661  */
3662 static u64 access_send_csr_write_bad_addr_err_cnt(
3663 				const struct cntr_entry *entry,
3664 				void *context, int vl, int mode, u64 data)
3665 {
3666 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3667 
3668 	return dd->send_err_status_cnt[2];
3669 }
3670 
3671 static u64 access_send_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
3672 						 void *context, int vl,
3673 						 int mode, u64 data)
3674 {
3675 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3676 
3677 	return dd->send_err_status_cnt[1];
3678 }
3679 
3680 static u64 access_send_csr_parity_cnt(const struct cntr_entry *entry,
3681 				      void *context, int vl, int mode,
3682 				      u64 data)
3683 {
3684 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3685 
3686 	return dd->send_err_status_cnt[0];
3687 }
3688 
3689 /*
3690  * Software counters corresponding to each of the
3691  * error status bits within SendCtxtErrStatus
3692  */
3693 static u64 access_pio_write_out_of_bounds_err_cnt(
3694 				const struct cntr_entry *entry,
3695 				void *context, int vl, int mode, u64 data)
3696 {
3697 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3698 
3699 	return dd->sw_ctxt_err_status_cnt[4];
3700 }
3701 
3702 static u64 access_pio_write_overflow_err_cnt(const struct cntr_entry *entry,
3703 					     void *context, int vl, int mode,
3704 					     u64 data)
3705 {
3706 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3707 
3708 	return dd->sw_ctxt_err_status_cnt[3];
3709 }
3710 
3711 static u64 access_pio_write_crosses_boundary_err_cnt(
3712 				const struct cntr_entry *entry,
3713 				void *context, int vl, int mode, u64 data)
3714 {
3715 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3716 
3717 	return dd->sw_ctxt_err_status_cnt[2];
3718 }
3719 
3720 static u64 access_pio_disallowed_packet_err_cnt(const struct cntr_entry *entry,
3721 						void *context, int vl,
3722 						int mode, u64 data)
3723 {
3724 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3725 
3726 	return dd->sw_ctxt_err_status_cnt[1];
3727 }
3728 
3729 static u64 access_pio_inconsistent_sop_err_cnt(const struct cntr_entry *entry,
3730 					       void *context, int vl, int mode,
3731 					       u64 data)
3732 {
3733 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3734 
3735 	return dd->sw_ctxt_err_status_cnt[0];
3736 }
3737 
3738 /*
3739  * Software counters corresponding to each of the
3740  * error status bits within SendDmaEngErrStatus
3741  */
3742 static u64 access_sdma_header_request_fifo_cor_err_cnt(
3743 				const struct cntr_entry *entry,
3744 				void *context, int vl, int mode, u64 data)
3745 {
3746 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3747 
3748 	return dd->sw_send_dma_eng_err_status_cnt[23];
3749 }
3750 
3751 static u64 access_sdma_header_storage_cor_err_cnt(
3752 				const struct cntr_entry *entry,
3753 				void *context, int vl, int mode, u64 data)
3754 {
3755 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3756 
3757 	return dd->sw_send_dma_eng_err_status_cnt[22];
3758 }
3759 
3760 static u64 access_sdma_packet_tracking_cor_err_cnt(
3761 				const struct cntr_entry *entry,
3762 				void *context, int vl, int mode, u64 data)
3763 {
3764 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3765 
3766 	return dd->sw_send_dma_eng_err_status_cnt[21];
3767 }
3768 
3769 static u64 access_sdma_assembly_cor_err_cnt(const struct cntr_entry *entry,
3770 					    void *context, int vl, int mode,
3771 					    u64 data)
3772 {
3773 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3774 
3775 	return dd->sw_send_dma_eng_err_status_cnt[20];
3776 }
3777 
3778 static u64 access_sdma_desc_table_cor_err_cnt(const struct cntr_entry *entry,
3779 					      void *context, int vl, int mode,
3780 					      u64 data)
3781 {
3782 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3783 
3784 	return dd->sw_send_dma_eng_err_status_cnt[19];
3785 }
3786 
3787 static u64 access_sdma_header_request_fifo_unc_err_cnt(
3788 				const struct cntr_entry *entry,
3789 				void *context, int vl, int mode, u64 data)
3790 {
3791 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3792 
3793 	return dd->sw_send_dma_eng_err_status_cnt[18];
3794 }
3795 
3796 static u64 access_sdma_header_storage_unc_err_cnt(
3797 				const struct cntr_entry *entry,
3798 				void *context, int vl, int mode, u64 data)
3799 {
3800 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3801 
3802 	return dd->sw_send_dma_eng_err_status_cnt[17];
3803 }
3804 
3805 static u64 access_sdma_packet_tracking_unc_err_cnt(
3806 				const struct cntr_entry *entry,
3807 				void *context, int vl, int mode, u64 data)
3808 {
3809 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3810 
3811 	return dd->sw_send_dma_eng_err_status_cnt[16];
3812 }
3813 
3814 static u64 access_sdma_assembly_unc_err_cnt(const struct cntr_entry *entry,
3815 					    void *context, int vl, int mode,
3816 					    u64 data)
3817 {
3818 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3819 
3820 	return dd->sw_send_dma_eng_err_status_cnt[15];
3821 }
3822 
3823 static u64 access_sdma_desc_table_unc_err_cnt(const struct cntr_entry *entry,
3824 					      void *context, int vl, int mode,
3825 					      u64 data)
3826 {
3827 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3828 
3829 	return dd->sw_send_dma_eng_err_status_cnt[14];
3830 }
3831 
3832 static u64 access_sdma_timeout_err_cnt(const struct cntr_entry *entry,
3833 				       void *context, int vl, int mode,
3834 				       u64 data)
3835 {
3836 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3837 
3838 	return dd->sw_send_dma_eng_err_status_cnt[13];
3839 }
3840 
3841 static u64 access_sdma_header_length_err_cnt(const struct cntr_entry *entry,
3842 					     void *context, int vl, int mode,
3843 					     u64 data)
3844 {
3845 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3846 
3847 	return dd->sw_send_dma_eng_err_status_cnt[12];
3848 }
3849 
3850 static u64 access_sdma_header_address_err_cnt(const struct cntr_entry *entry,
3851 					      void *context, int vl, int mode,
3852 					      u64 data)
3853 {
3854 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3855 
3856 	return dd->sw_send_dma_eng_err_status_cnt[11];
3857 }
3858 
3859 static u64 access_sdma_header_select_err_cnt(const struct cntr_entry *entry,
3860 					     void *context, int vl, int mode,
3861 					     u64 data)
3862 {
3863 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3864 
3865 	return dd->sw_send_dma_eng_err_status_cnt[10];
3866 }
3867 
3868 static u64 access_sdma_reserved_9_err_cnt(const struct cntr_entry *entry,
3869 					  void *context, int vl, int mode,
3870 					  u64 data)
3871 {
3872 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3873 
3874 	return dd->sw_send_dma_eng_err_status_cnt[9];
3875 }
3876 
3877 static u64 access_sdma_packet_desc_overflow_err_cnt(
3878 				const struct cntr_entry *entry,
3879 				void *context, int vl, int mode, u64 data)
3880 {
3881 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3882 
3883 	return dd->sw_send_dma_eng_err_status_cnt[8];
3884 }
3885 
3886 static u64 access_sdma_length_mismatch_err_cnt(const struct cntr_entry *entry,
3887 					       void *context, int vl,
3888 					       int mode, u64 data)
3889 {
3890 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3891 
3892 	return dd->sw_send_dma_eng_err_status_cnt[7];
3893 }
3894 
3895 static u64 access_sdma_halt_err_cnt(const struct cntr_entry *entry,
3896 				    void *context, int vl, int mode, u64 data)
3897 {
3898 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3899 
3900 	return dd->sw_send_dma_eng_err_status_cnt[6];
3901 }
3902 
3903 static u64 access_sdma_mem_read_err_cnt(const struct cntr_entry *entry,
3904 					void *context, int vl, int mode,
3905 					u64 data)
3906 {
3907 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3908 
3909 	return dd->sw_send_dma_eng_err_status_cnt[5];
3910 }
3911 
3912 static u64 access_sdma_first_desc_err_cnt(const struct cntr_entry *entry,
3913 					  void *context, int vl, int mode,
3914 					  u64 data)
3915 {
3916 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3917 
3918 	return dd->sw_send_dma_eng_err_status_cnt[4];
3919 }
3920 
3921 static u64 access_sdma_tail_out_of_bounds_err_cnt(
3922 				const struct cntr_entry *entry,
3923 				void *context, int vl, int mode, u64 data)
3924 {
3925 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3926 
3927 	return dd->sw_send_dma_eng_err_status_cnt[3];
3928 }
3929 
3930 static u64 access_sdma_too_long_err_cnt(const struct cntr_entry *entry,
3931 					void *context, int vl, int mode,
3932 					u64 data)
3933 {
3934 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3935 
3936 	return dd->sw_send_dma_eng_err_status_cnt[2];
3937 }
3938 
3939 static u64 access_sdma_gen_mismatch_err_cnt(const struct cntr_entry *entry,
3940 					    void *context, int vl, int mode,
3941 					    u64 data)
3942 {
3943 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3944 
3945 	return dd->sw_send_dma_eng_err_status_cnt[1];
3946 }
3947 
3948 static u64 access_sdma_wrong_dw_err_cnt(const struct cntr_entry *entry,
3949 					void *context, int vl, int mode,
3950 					u64 data)
3951 {
3952 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3953 
3954 	return dd->sw_send_dma_eng_err_status_cnt[0];
3955 }
3956 
3957 static u64 access_dc_rcv_err_cnt(const struct cntr_entry *entry,
3958 				 void *context, int vl, int mode,
3959 				 u64 data)
3960 {
3961 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3962 
3963 	u64 val = 0;
3964 	u64 csr = entry->csr;
3965 
3966 	val = read_write_csr(dd, csr, mode, data);
3967 	if (mode == CNTR_MODE_R) {
3968 		val = val > CNTR_MAX - dd->sw_rcv_bypass_packet_errors ?
3969 			CNTR_MAX : val + dd->sw_rcv_bypass_packet_errors;
3970 	} else if (mode == CNTR_MODE_W) {
3971 		dd->sw_rcv_bypass_packet_errors = 0;
3972 	} else {
3973 		dd_dev_err(dd, "Invalid cntr register access mode");
3974 		return 0;
3975 	}
3976 	return val;
3977 }
3978 
3979 #define def_access_sw_cpu(cntr) \
3980 static u64 access_sw_cpu_##cntr(const struct cntr_entry *entry,		      \
3981 			      void *context, int vl, int mode, u64 data)      \
3982 {									      \
3983 	struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context;	      \
3984 	return read_write_cpu(ppd->dd, &ppd->ibport_data.rvp.z_ ##cntr,	      \
3985 			      ppd->ibport_data.rvp.cntr, vl,		      \
3986 			      mode, data);				      \
3987 }
3988 
3989 def_access_sw_cpu(rc_acks);
3990 def_access_sw_cpu(rc_qacks);
3991 def_access_sw_cpu(rc_delayed_comp);
3992 
3993 #define def_access_ibp_counter(cntr) \
3994 static u64 access_ibp_##cntr(const struct cntr_entry *entry,		      \
3995 				void *context, int vl, int mode, u64 data)    \
3996 {									      \
3997 	struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context;	      \
3998 									      \
3999 	if (vl != CNTR_INVALID_VL)					      \
4000 		return 0;						      \
4001 									      \
4002 	return read_write_sw(ppd->dd, &ppd->ibport_data.rvp.n_ ##cntr,	      \
4003 			     mode, data);				      \
4004 }
4005 
4006 def_access_ibp_counter(loop_pkts);
4007 def_access_ibp_counter(rc_resends);
4008 def_access_ibp_counter(rnr_naks);
4009 def_access_ibp_counter(other_naks);
4010 def_access_ibp_counter(rc_timeouts);
4011 def_access_ibp_counter(pkt_drops);
4012 def_access_ibp_counter(dmawait);
4013 def_access_ibp_counter(rc_seqnak);
4014 def_access_ibp_counter(rc_dupreq);
4015 def_access_ibp_counter(rdma_seq);
4016 def_access_ibp_counter(unaligned);
4017 def_access_ibp_counter(seq_naks);
4018 
4019 static struct cntr_entry dev_cntrs[DEV_CNTR_LAST] = {
4020 [C_RCV_OVF] = RXE32_DEV_CNTR_ELEM(RcvOverflow, RCV_BUF_OVFL_CNT, CNTR_SYNTH),
4021 [C_RX_TID_FULL] = RXE32_DEV_CNTR_ELEM(RxTIDFullEr, RCV_TID_FULL_ERR_CNT,
4022 			CNTR_NORMAL),
4023 [C_RX_TID_INVALID] = RXE32_DEV_CNTR_ELEM(RxTIDInvalid, RCV_TID_VALID_ERR_CNT,
4024 			CNTR_NORMAL),
4025 [C_RX_TID_FLGMS] = RXE32_DEV_CNTR_ELEM(RxTidFLGMs,
4026 			RCV_TID_FLOW_GEN_MISMATCH_CNT,
4027 			CNTR_NORMAL),
4028 [C_RX_CTX_EGRS] = RXE32_DEV_CNTR_ELEM(RxCtxEgrS, RCV_CONTEXT_EGR_STALL,
4029 			CNTR_NORMAL),
4030 [C_RCV_TID_FLSMS] = RXE32_DEV_CNTR_ELEM(RxTidFLSMs,
4031 			RCV_TID_FLOW_SEQ_MISMATCH_CNT, CNTR_NORMAL),
4032 [C_CCE_PCI_CR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePciCrSt,
4033 			CCE_PCIE_POSTED_CRDT_STALL_CNT, CNTR_NORMAL),
4034 [C_CCE_PCI_TR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePciTrSt, CCE_PCIE_TRGT_STALL_CNT,
4035 			CNTR_NORMAL),
4036 [C_CCE_PIO_WR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePioWrSt, CCE_PIO_WR_STALL_CNT,
4037 			CNTR_NORMAL),
4038 [C_CCE_ERR_INT] = CCE_INT_DEV_CNTR_ELEM(CceErrInt, CCE_ERR_INT_CNT,
4039 			CNTR_NORMAL),
4040 [C_CCE_SDMA_INT] = CCE_INT_DEV_CNTR_ELEM(CceSdmaInt, CCE_SDMA_INT_CNT,
4041 			CNTR_NORMAL),
4042 [C_CCE_MISC_INT] = CCE_INT_DEV_CNTR_ELEM(CceMiscInt, CCE_MISC_INT_CNT,
4043 			CNTR_NORMAL),
4044 [C_CCE_RCV_AV_INT] = CCE_INT_DEV_CNTR_ELEM(CceRcvAvInt, CCE_RCV_AVAIL_INT_CNT,
4045 			CNTR_NORMAL),
4046 [C_CCE_RCV_URG_INT] = CCE_INT_DEV_CNTR_ELEM(CceRcvUrgInt,
4047 			CCE_RCV_URGENT_INT_CNT,	CNTR_NORMAL),
4048 [C_CCE_SEND_CR_INT] = CCE_INT_DEV_CNTR_ELEM(CceSndCrInt,
4049 			CCE_SEND_CREDIT_INT_CNT, CNTR_NORMAL),
4050 [C_DC_UNC_ERR] = DC_PERF_CNTR(DcUnctblErr, DCC_ERR_UNCORRECTABLE_CNT,
4051 			      CNTR_SYNTH),
4052 [C_DC_RCV_ERR] = CNTR_ELEM("DcRecvErr", DCC_ERR_PORTRCV_ERR_CNT, 0, CNTR_SYNTH,
4053 			    access_dc_rcv_err_cnt),
4054 [C_DC_FM_CFG_ERR] = DC_PERF_CNTR(DcFmCfgErr, DCC_ERR_FMCONFIG_ERR_CNT,
4055 				 CNTR_SYNTH),
4056 [C_DC_RMT_PHY_ERR] = DC_PERF_CNTR(DcRmtPhyErr, DCC_ERR_RCVREMOTE_PHY_ERR_CNT,
4057 				  CNTR_SYNTH),
4058 [C_DC_DROPPED_PKT] = DC_PERF_CNTR(DcDroppedPkt, DCC_ERR_DROPPED_PKT_CNT,
4059 				  CNTR_SYNTH),
4060 [C_DC_MC_XMIT_PKTS] = DC_PERF_CNTR(DcMcXmitPkts,
4061 				   DCC_PRF_PORT_XMIT_MULTICAST_CNT, CNTR_SYNTH),
4062 [C_DC_MC_RCV_PKTS] = DC_PERF_CNTR(DcMcRcvPkts,
4063 				  DCC_PRF_PORT_RCV_MULTICAST_PKT_CNT,
4064 				  CNTR_SYNTH),
4065 [C_DC_XMIT_CERR] = DC_PERF_CNTR(DcXmitCorr,
4066 				DCC_PRF_PORT_XMIT_CORRECTABLE_CNT, CNTR_SYNTH),
4067 [C_DC_RCV_CERR] = DC_PERF_CNTR(DcRcvCorrCnt, DCC_PRF_PORT_RCV_CORRECTABLE_CNT,
4068 			       CNTR_SYNTH),
4069 [C_DC_RCV_FCC] = DC_PERF_CNTR(DcRxFCntl, DCC_PRF_RX_FLOW_CRTL_CNT,
4070 			      CNTR_SYNTH),
4071 [C_DC_XMIT_FCC] = DC_PERF_CNTR(DcXmitFCntl, DCC_PRF_TX_FLOW_CRTL_CNT,
4072 			       CNTR_SYNTH),
4073 [C_DC_XMIT_FLITS] = DC_PERF_CNTR(DcXmitFlits, DCC_PRF_PORT_XMIT_DATA_CNT,
4074 				 CNTR_SYNTH),
4075 [C_DC_RCV_FLITS] = DC_PERF_CNTR(DcRcvFlits, DCC_PRF_PORT_RCV_DATA_CNT,
4076 				CNTR_SYNTH),
4077 [C_DC_XMIT_PKTS] = DC_PERF_CNTR(DcXmitPkts, DCC_PRF_PORT_XMIT_PKTS_CNT,
4078 				CNTR_SYNTH),
4079 [C_DC_RCV_PKTS] = DC_PERF_CNTR(DcRcvPkts, DCC_PRF_PORT_RCV_PKTS_CNT,
4080 			       CNTR_SYNTH),
4081 [C_DC_RX_FLIT_VL] = DC_PERF_CNTR(DcRxFlitVl, DCC_PRF_PORT_VL_RCV_DATA_CNT,
4082 				 CNTR_SYNTH | CNTR_VL),
4083 [C_DC_RX_PKT_VL] = DC_PERF_CNTR(DcRxPktVl, DCC_PRF_PORT_VL_RCV_PKTS_CNT,
4084 				CNTR_SYNTH | CNTR_VL),
4085 [C_DC_RCV_FCN] = DC_PERF_CNTR(DcRcvFcn, DCC_PRF_PORT_RCV_FECN_CNT, CNTR_SYNTH),
4086 [C_DC_RCV_FCN_VL] = DC_PERF_CNTR(DcRcvFcnVl, DCC_PRF_PORT_VL_RCV_FECN_CNT,
4087 				 CNTR_SYNTH | CNTR_VL),
4088 [C_DC_RCV_BCN] = DC_PERF_CNTR(DcRcvBcn, DCC_PRF_PORT_RCV_BECN_CNT, CNTR_SYNTH),
4089 [C_DC_RCV_BCN_VL] = DC_PERF_CNTR(DcRcvBcnVl, DCC_PRF_PORT_VL_RCV_BECN_CNT,
4090 				 CNTR_SYNTH | CNTR_VL),
4091 [C_DC_RCV_BBL] = DC_PERF_CNTR(DcRcvBbl, DCC_PRF_PORT_RCV_BUBBLE_CNT,
4092 			      CNTR_SYNTH),
4093 [C_DC_RCV_BBL_VL] = DC_PERF_CNTR(DcRcvBblVl, DCC_PRF_PORT_VL_RCV_BUBBLE_CNT,
4094 				 CNTR_SYNTH | CNTR_VL),
4095 [C_DC_MARK_FECN] = DC_PERF_CNTR(DcMarkFcn, DCC_PRF_PORT_MARK_FECN_CNT,
4096 				CNTR_SYNTH),
4097 [C_DC_MARK_FECN_VL] = DC_PERF_CNTR(DcMarkFcnVl, DCC_PRF_PORT_VL_MARK_FECN_CNT,
4098 				   CNTR_SYNTH | CNTR_VL),
4099 [C_DC_TOTAL_CRC] =
4100 	DC_PERF_CNTR_LCB(DcTotCrc, DC_LCB_ERR_INFO_TOTAL_CRC_ERR,
4101 			 CNTR_SYNTH),
4102 [C_DC_CRC_LN0] = DC_PERF_CNTR_LCB(DcCrcLn0, DC_LCB_ERR_INFO_CRC_ERR_LN0,
4103 				  CNTR_SYNTH),
4104 [C_DC_CRC_LN1] = DC_PERF_CNTR_LCB(DcCrcLn1, DC_LCB_ERR_INFO_CRC_ERR_LN1,
4105 				  CNTR_SYNTH),
4106 [C_DC_CRC_LN2] = DC_PERF_CNTR_LCB(DcCrcLn2, DC_LCB_ERR_INFO_CRC_ERR_LN2,
4107 				  CNTR_SYNTH),
4108 [C_DC_CRC_LN3] = DC_PERF_CNTR_LCB(DcCrcLn3, DC_LCB_ERR_INFO_CRC_ERR_LN3,
4109 				  CNTR_SYNTH),
4110 [C_DC_CRC_MULT_LN] =
4111 	DC_PERF_CNTR_LCB(DcMultLn, DC_LCB_ERR_INFO_CRC_ERR_MULTI_LN,
4112 			 CNTR_SYNTH),
4113 [C_DC_TX_REPLAY] = DC_PERF_CNTR_LCB(DcTxReplay, DC_LCB_ERR_INFO_TX_REPLAY_CNT,
4114 				    CNTR_SYNTH),
4115 [C_DC_RX_REPLAY] = DC_PERF_CNTR_LCB(DcRxReplay, DC_LCB_ERR_INFO_RX_REPLAY_CNT,
4116 				    CNTR_SYNTH),
4117 [C_DC_SEQ_CRC_CNT] =
4118 	DC_PERF_CNTR_LCB(DcLinkSeqCrc, DC_LCB_ERR_INFO_SEQ_CRC_CNT,
4119 			 CNTR_SYNTH),
4120 [C_DC_ESC0_ONLY_CNT] =
4121 	DC_PERF_CNTR_LCB(DcEsc0, DC_LCB_ERR_INFO_ESCAPE_0_ONLY_CNT,
4122 			 CNTR_SYNTH),
4123 [C_DC_ESC0_PLUS1_CNT] =
4124 	DC_PERF_CNTR_LCB(DcEsc1, DC_LCB_ERR_INFO_ESCAPE_0_PLUS1_CNT,
4125 			 CNTR_SYNTH),
4126 [C_DC_ESC0_PLUS2_CNT] =
4127 	DC_PERF_CNTR_LCB(DcEsc0Plus2, DC_LCB_ERR_INFO_ESCAPE_0_PLUS2_CNT,
4128 			 CNTR_SYNTH),
4129 [C_DC_REINIT_FROM_PEER_CNT] =
4130 	DC_PERF_CNTR_LCB(DcReinitPeer, DC_LCB_ERR_INFO_REINIT_FROM_PEER_CNT,
4131 			 CNTR_SYNTH),
4132 [C_DC_SBE_CNT] = DC_PERF_CNTR_LCB(DcSbe, DC_LCB_ERR_INFO_SBE_CNT,
4133 				  CNTR_SYNTH),
4134 [C_DC_MISC_FLG_CNT] =
4135 	DC_PERF_CNTR_LCB(DcMiscFlg, DC_LCB_ERR_INFO_MISC_FLG_CNT,
4136 			 CNTR_SYNTH),
4137 [C_DC_PRF_GOOD_LTP_CNT] =
4138 	DC_PERF_CNTR_LCB(DcGoodLTP, DC_LCB_PRF_GOOD_LTP_CNT, CNTR_SYNTH),
4139 [C_DC_PRF_ACCEPTED_LTP_CNT] =
4140 	DC_PERF_CNTR_LCB(DcAccLTP, DC_LCB_PRF_ACCEPTED_LTP_CNT,
4141 			 CNTR_SYNTH),
4142 [C_DC_PRF_RX_FLIT_CNT] =
4143 	DC_PERF_CNTR_LCB(DcPrfRxFlit, DC_LCB_PRF_RX_FLIT_CNT, CNTR_SYNTH),
4144 [C_DC_PRF_TX_FLIT_CNT] =
4145 	DC_PERF_CNTR_LCB(DcPrfTxFlit, DC_LCB_PRF_TX_FLIT_CNT, CNTR_SYNTH),
4146 [C_DC_PRF_CLK_CNTR] =
4147 	DC_PERF_CNTR_LCB(DcPrfClk, DC_LCB_PRF_CLK_CNTR, CNTR_SYNTH),
4148 [C_DC_PG_DBG_FLIT_CRDTS_CNT] =
4149 	DC_PERF_CNTR_LCB(DcFltCrdts, DC_LCB_PG_DBG_FLIT_CRDTS_CNT, CNTR_SYNTH),
4150 [C_DC_PG_STS_PAUSE_COMPLETE_CNT] =
4151 	DC_PERF_CNTR_LCB(DcPauseComp, DC_LCB_PG_STS_PAUSE_COMPLETE_CNT,
4152 			 CNTR_SYNTH),
4153 [C_DC_PG_STS_TX_SBE_CNT] =
4154 	DC_PERF_CNTR_LCB(DcStsTxSbe, DC_LCB_PG_STS_TX_SBE_CNT, CNTR_SYNTH),
4155 [C_DC_PG_STS_TX_MBE_CNT] =
4156 	DC_PERF_CNTR_LCB(DcStsTxMbe, DC_LCB_PG_STS_TX_MBE_CNT,
4157 			 CNTR_SYNTH),
4158 [C_SW_CPU_INTR] = CNTR_ELEM("Intr", 0, 0, CNTR_NORMAL,
4159 			    access_sw_cpu_intr),
4160 [C_SW_CPU_RCV_LIM] = CNTR_ELEM("RcvLimit", 0, 0, CNTR_NORMAL,
4161 			    access_sw_cpu_rcv_limit),
4162 [C_SW_VTX_WAIT] = CNTR_ELEM("vTxWait", 0, 0, CNTR_NORMAL,
4163 			    access_sw_vtx_wait),
4164 [C_SW_PIO_WAIT] = CNTR_ELEM("PioWait", 0, 0, CNTR_NORMAL,
4165 			    access_sw_pio_wait),
4166 [C_SW_PIO_DRAIN] = CNTR_ELEM("PioDrain", 0, 0, CNTR_NORMAL,
4167 			    access_sw_pio_drain),
4168 [C_SW_KMEM_WAIT] = CNTR_ELEM("KmemWait", 0, 0, CNTR_NORMAL,
4169 			    access_sw_kmem_wait),
4170 [C_SW_SEND_SCHED] = CNTR_ELEM("SendSched", 0, 0, CNTR_NORMAL,
4171 			    access_sw_send_schedule),
4172 [C_SDMA_DESC_FETCHED_CNT] = CNTR_ELEM("SDEDscFdCn",
4173 				      SEND_DMA_DESC_FETCHED_CNT, 0,
4174 				      CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4175 				      dev_access_u32_csr),
4176 [C_SDMA_INT_CNT] = CNTR_ELEM("SDMAInt", 0, 0,
4177 			     CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4178 			     access_sde_int_cnt),
4179 [C_SDMA_ERR_CNT] = CNTR_ELEM("SDMAErrCt", 0, 0,
4180 			     CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4181 			     access_sde_err_cnt),
4182 [C_SDMA_IDLE_INT_CNT] = CNTR_ELEM("SDMAIdInt", 0, 0,
4183 				  CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4184 				  access_sde_idle_int_cnt),
4185 [C_SDMA_PROGRESS_INT_CNT] = CNTR_ELEM("SDMAPrIntCn", 0, 0,
4186 				      CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4187 				      access_sde_progress_int_cnt),
4188 /* MISC_ERR_STATUS */
4189 [C_MISC_PLL_LOCK_FAIL_ERR] = CNTR_ELEM("MISC_PLL_LOCK_FAIL_ERR", 0, 0,
4190 				CNTR_NORMAL,
4191 				access_misc_pll_lock_fail_err_cnt),
4192 [C_MISC_MBIST_FAIL_ERR] = CNTR_ELEM("MISC_MBIST_FAIL_ERR", 0, 0,
4193 				CNTR_NORMAL,
4194 				access_misc_mbist_fail_err_cnt),
4195 [C_MISC_INVALID_EEP_CMD_ERR] = CNTR_ELEM("MISC_INVALID_EEP_CMD_ERR", 0, 0,
4196 				CNTR_NORMAL,
4197 				access_misc_invalid_eep_cmd_err_cnt),
4198 [C_MISC_EFUSE_DONE_PARITY_ERR] = CNTR_ELEM("MISC_EFUSE_DONE_PARITY_ERR", 0, 0,
4199 				CNTR_NORMAL,
4200 				access_misc_efuse_done_parity_err_cnt),
4201 [C_MISC_EFUSE_WRITE_ERR] = CNTR_ELEM("MISC_EFUSE_WRITE_ERR", 0, 0,
4202 				CNTR_NORMAL,
4203 				access_misc_efuse_write_err_cnt),
4204 [C_MISC_EFUSE_READ_BAD_ADDR_ERR] = CNTR_ELEM("MISC_EFUSE_READ_BAD_ADDR_ERR", 0,
4205 				0, CNTR_NORMAL,
4206 				access_misc_efuse_read_bad_addr_err_cnt),
4207 [C_MISC_EFUSE_CSR_PARITY_ERR] = CNTR_ELEM("MISC_EFUSE_CSR_PARITY_ERR", 0, 0,
4208 				CNTR_NORMAL,
4209 				access_misc_efuse_csr_parity_err_cnt),
4210 [C_MISC_FW_AUTH_FAILED_ERR] = CNTR_ELEM("MISC_FW_AUTH_FAILED_ERR", 0, 0,
4211 				CNTR_NORMAL,
4212 				access_misc_fw_auth_failed_err_cnt),
4213 [C_MISC_KEY_MISMATCH_ERR] = CNTR_ELEM("MISC_KEY_MISMATCH_ERR", 0, 0,
4214 				CNTR_NORMAL,
4215 				access_misc_key_mismatch_err_cnt),
4216 [C_MISC_SBUS_WRITE_FAILED_ERR] = CNTR_ELEM("MISC_SBUS_WRITE_FAILED_ERR", 0, 0,
4217 				CNTR_NORMAL,
4218 				access_misc_sbus_write_failed_err_cnt),
4219 [C_MISC_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("MISC_CSR_WRITE_BAD_ADDR_ERR", 0, 0,
4220 				CNTR_NORMAL,
4221 				access_misc_csr_write_bad_addr_err_cnt),
4222 [C_MISC_CSR_READ_BAD_ADDR_ERR] = CNTR_ELEM("MISC_CSR_READ_BAD_ADDR_ERR", 0, 0,
4223 				CNTR_NORMAL,
4224 				access_misc_csr_read_bad_addr_err_cnt),
4225 [C_MISC_CSR_PARITY_ERR] = CNTR_ELEM("MISC_CSR_PARITY_ERR", 0, 0,
4226 				CNTR_NORMAL,
4227 				access_misc_csr_parity_err_cnt),
4228 /* CceErrStatus */
4229 [C_CCE_ERR_STATUS_AGGREGATED_CNT] = CNTR_ELEM("CceErrStatusAggregatedCnt", 0, 0,
4230 				CNTR_NORMAL,
4231 				access_sw_cce_err_status_aggregated_cnt),
4232 [C_CCE_MSIX_CSR_PARITY_ERR] = CNTR_ELEM("CceMsixCsrParityErr", 0, 0,
4233 				CNTR_NORMAL,
4234 				access_cce_msix_csr_parity_err_cnt),
4235 [C_CCE_INT_MAP_UNC_ERR] = CNTR_ELEM("CceIntMapUncErr", 0, 0,
4236 				CNTR_NORMAL,
4237 				access_cce_int_map_unc_err_cnt),
4238 [C_CCE_INT_MAP_COR_ERR] = CNTR_ELEM("CceIntMapCorErr", 0, 0,
4239 				CNTR_NORMAL,
4240 				access_cce_int_map_cor_err_cnt),
4241 [C_CCE_MSIX_TABLE_UNC_ERR] = CNTR_ELEM("CceMsixTableUncErr", 0, 0,
4242 				CNTR_NORMAL,
4243 				access_cce_msix_table_unc_err_cnt),
4244 [C_CCE_MSIX_TABLE_COR_ERR] = CNTR_ELEM("CceMsixTableCorErr", 0, 0,
4245 				CNTR_NORMAL,
4246 				access_cce_msix_table_cor_err_cnt),
4247 [C_CCE_RXDMA_CONV_FIFO_PARITY_ERR] = CNTR_ELEM("CceRxdmaConvFifoParityErr", 0,
4248 				0, CNTR_NORMAL,
4249 				access_cce_rxdma_conv_fifo_parity_err_cnt),
4250 [C_CCE_RCPL_ASYNC_FIFO_PARITY_ERR] = CNTR_ELEM("CceRcplAsyncFifoParityErr", 0,
4251 				0, CNTR_NORMAL,
4252 				access_cce_rcpl_async_fifo_parity_err_cnt),
4253 [C_CCE_SEG_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("CceSegWriteBadAddrErr", 0, 0,
4254 				CNTR_NORMAL,
4255 				access_cce_seg_write_bad_addr_err_cnt),
4256 [C_CCE_SEG_READ_BAD_ADDR_ERR] = CNTR_ELEM("CceSegReadBadAddrErr", 0, 0,
4257 				CNTR_NORMAL,
4258 				access_cce_seg_read_bad_addr_err_cnt),
4259 [C_LA_TRIGGERED] = CNTR_ELEM("Cce LATriggered", 0, 0,
4260 				CNTR_NORMAL,
4261 				access_la_triggered_cnt),
4262 [C_CCE_TRGT_CPL_TIMEOUT_ERR] = CNTR_ELEM("CceTrgtCplTimeoutErr", 0, 0,
4263 				CNTR_NORMAL,
4264 				access_cce_trgt_cpl_timeout_err_cnt),
4265 [C_PCIC_RECEIVE_PARITY_ERR] = CNTR_ELEM("PcicReceiveParityErr", 0, 0,
4266 				CNTR_NORMAL,
4267 				access_pcic_receive_parity_err_cnt),
4268 [C_PCIC_TRANSMIT_BACK_PARITY_ERR] = CNTR_ELEM("PcicTransmitBackParityErr", 0, 0,
4269 				CNTR_NORMAL,
4270 				access_pcic_transmit_back_parity_err_cnt),
4271 [C_PCIC_TRANSMIT_FRONT_PARITY_ERR] = CNTR_ELEM("PcicTransmitFrontParityErr", 0,
4272 				0, CNTR_NORMAL,
4273 				access_pcic_transmit_front_parity_err_cnt),
4274 [C_PCIC_CPL_DAT_Q_UNC_ERR] = CNTR_ELEM("PcicCplDatQUncErr", 0, 0,
4275 				CNTR_NORMAL,
4276 				access_pcic_cpl_dat_q_unc_err_cnt),
4277 [C_PCIC_CPL_HD_Q_UNC_ERR] = CNTR_ELEM("PcicCplHdQUncErr", 0, 0,
4278 				CNTR_NORMAL,
4279 				access_pcic_cpl_hd_q_unc_err_cnt),
4280 [C_PCIC_POST_DAT_Q_UNC_ERR] = CNTR_ELEM("PcicPostDatQUncErr", 0, 0,
4281 				CNTR_NORMAL,
4282 				access_pcic_post_dat_q_unc_err_cnt),
4283 [C_PCIC_POST_HD_Q_UNC_ERR] = CNTR_ELEM("PcicPostHdQUncErr", 0, 0,
4284 				CNTR_NORMAL,
4285 				access_pcic_post_hd_q_unc_err_cnt),
4286 [C_PCIC_RETRY_SOT_MEM_UNC_ERR] = CNTR_ELEM("PcicRetrySotMemUncErr", 0, 0,
4287 				CNTR_NORMAL,
4288 				access_pcic_retry_sot_mem_unc_err_cnt),
4289 [C_PCIC_RETRY_MEM_UNC_ERR] = CNTR_ELEM("PcicRetryMemUncErr", 0, 0,
4290 				CNTR_NORMAL,
4291 				access_pcic_retry_mem_unc_err),
4292 [C_PCIC_N_POST_DAT_Q_PARITY_ERR] = CNTR_ELEM("PcicNPostDatQParityErr", 0, 0,
4293 				CNTR_NORMAL,
4294 				access_pcic_n_post_dat_q_parity_err_cnt),
4295 [C_PCIC_N_POST_H_Q_PARITY_ERR] = CNTR_ELEM("PcicNPostHQParityErr", 0, 0,
4296 				CNTR_NORMAL,
4297 				access_pcic_n_post_h_q_parity_err_cnt),
4298 [C_PCIC_CPL_DAT_Q_COR_ERR] = CNTR_ELEM("PcicCplDatQCorErr", 0, 0,
4299 				CNTR_NORMAL,
4300 				access_pcic_cpl_dat_q_cor_err_cnt),
4301 [C_PCIC_CPL_HD_Q_COR_ERR] = CNTR_ELEM("PcicCplHdQCorErr", 0, 0,
4302 				CNTR_NORMAL,
4303 				access_pcic_cpl_hd_q_cor_err_cnt),
4304 [C_PCIC_POST_DAT_Q_COR_ERR] = CNTR_ELEM("PcicPostDatQCorErr", 0, 0,
4305 				CNTR_NORMAL,
4306 				access_pcic_post_dat_q_cor_err_cnt),
4307 [C_PCIC_POST_HD_Q_COR_ERR] = CNTR_ELEM("PcicPostHdQCorErr", 0, 0,
4308 				CNTR_NORMAL,
4309 				access_pcic_post_hd_q_cor_err_cnt),
4310 [C_PCIC_RETRY_SOT_MEM_COR_ERR] = CNTR_ELEM("PcicRetrySotMemCorErr", 0, 0,
4311 				CNTR_NORMAL,
4312 				access_pcic_retry_sot_mem_cor_err_cnt),
4313 [C_PCIC_RETRY_MEM_COR_ERR] = CNTR_ELEM("PcicRetryMemCorErr", 0, 0,
4314 				CNTR_NORMAL,
4315 				access_pcic_retry_mem_cor_err_cnt),
4316 [C_CCE_CLI1_ASYNC_FIFO_DBG_PARITY_ERR] = CNTR_ELEM(
4317 				"CceCli1AsyncFifoDbgParityError", 0, 0,
4318 				CNTR_NORMAL,
4319 				access_cce_cli1_async_fifo_dbg_parity_err_cnt),
4320 [C_CCE_CLI1_ASYNC_FIFO_RXDMA_PARITY_ERR] = CNTR_ELEM(
4321 				"CceCli1AsyncFifoRxdmaParityError", 0, 0,
4322 				CNTR_NORMAL,
4323 				access_cce_cli1_async_fifo_rxdma_parity_err_cnt
4324 				),
4325 [C_CCE_CLI1_ASYNC_FIFO_SDMA_HD_PARITY_ERR] = CNTR_ELEM(
4326 			"CceCli1AsyncFifoSdmaHdParityErr", 0, 0,
4327 			CNTR_NORMAL,
4328 			access_cce_cli1_async_fifo_sdma_hd_parity_err_cnt),
4329 [C_CCE_CLI1_ASYNC_FIFO_PIO_CRDT_PARITY_ERR] = CNTR_ELEM(
4330 			"CceCli1AsyncFifoPioCrdtParityErr", 0, 0,
4331 			CNTR_NORMAL,
4332 			access_cce_cl1_async_fifo_pio_crdt_parity_err_cnt),
4333 [C_CCE_CLI2_ASYNC_FIFO_PARITY_ERR] = CNTR_ELEM("CceCli2AsyncFifoParityErr", 0,
4334 			0, CNTR_NORMAL,
4335 			access_cce_cli2_async_fifo_parity_err_cnt),
4336 [C_CCE_CSR_CFG_BUS_PARITY_ERR] = CNTR_ELEM("CceCsrCfgBusParityErr", 0, 0,
4337 			CNTR_NORMAL,
4338 			access_cce_csr_cfg_bus_parity_err_cnt),
4339 [C_CCE_CLI0_ASYNC_FIFO_PARTIY_ERR] = CNTR_ELEM("CceCli0AsyncFifoParityErr", 0,
4340 			0, CNTR_NORMAL,
4341 			access_cce_cli0_async_fifo_parity_err_cnt),
4342 [C_CCE_RSPD_DATA_PARITY_ERR] = CNTR_ELEM("CceRspdDataParityErr", 0, 0,
4343 			CNTR_NORMAL,
4344 			access_cce_rspd_data_parity_err_cnt),
4345 [C_CCE_TRGT_ACCESS_ERR] = CNTR_ELEM("CceTrgtAccessErr", 0, 0,
4346 			CNTR_NORMAL,
4347 			access_cce_trgt_access_err_cnt),
4348 [C_CCE_TRGT_ASYNC_FIFO_PARITY_ERR] = CNTR_ELEM("CceTrgtAsyncFifoParityErr", 0,
4349 			0, CNTR_NORMAL,
4350 			access_cce_trgt_async_fifo_parity_err_cnt),
4351 [C_CCE_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("CceCsrWriteBadAddrErr", 0, 0,
4352 			CNTR_NORMAL,
4353 			access_cce_csr_write_bad_addr_err_cnt),
4354 [C_CCE_CSR_READ_BAD_ADDR_ERR] = CNTR_ELEM("CceCsrReadBadAddrErr", 0, 0,
4355 			CNTR_NORMAL,
4356 			access_cce_csr_read_bad_addr_err_cnt),
4357 [C_CCE_CSR_PARITY_ERR] = CNTR_ELEM("CceCsrParityErr", 0, 0,
4358 			CNTR_NORMAL,
4359 			access_ccs_csr_parity_err_cnt),
4360 
4361 /* RcvErrStatus */
4362 [C_RX_CSR_PARITY_ERR] = CNTR_ELEM("RxCsrParityErr", 0, 0,
4363 			CNTR_NORMAL,
4364 			access_rx_csr_parity_err_cnt),
4365 [C_RX_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("RxCsrWriteBadAddrErr", 0, 0,
4366 			CNTR_NORMAL,
4367 			access_rx_csr_write_bad_addr_err_cnt),
4368 [C_RX_CSR_READ_BAD_ADDR_ERR] = CNTR_ELEM("RxCsrReadBadAddrErr", 0, 0,
4369 			CNTR_NORMAL,
4370 			access_rx_csr_read_bad_addr_err_cnt),
4371 [C_RX_DMA_CSR_UNC_ERR] = CNTR_ELEM("RxDmaCsrUncErr", 0, 0,
4372 			CNTR_NORMAL,
4373 			access_rx_dma_csr_unc_err_cnt),
4374 [C_RX_DMA_DQ_FSM_ENCODING_ERR] = CNTR_ELEM("RxDmaDqFsmEncodingErr", 0, 0,
4375 			CNTR_NORMAL,
4376 			access_rx_dma_dq_fsm_encoding_err_cnt),
4377 [C_RX_DMA_EQ_FSM_ENCODING_ERR] = CNTR_ELEM("RxDmaEqFsmEncodingErr", 0, 0,
4378 			CNTR_NORMAL,
4379 			access_rx_dma_eq_fsm_encoding_err_cnt),
4380 [C_RX_DMA_CSR_PARITY_ERR] = CNTR_ELEM("RxDmaCsrParityErr", 0, 0,
4381 			CNTR_NORMAL,
4382 			access_rx_dma_csr_parity_err_cnt),
4383 [C_RX_RBUF_DATA_COR_ERR] = CNTR_ELEM("RxRbufDataCorErr", 0, 0,
4384 			CNTR_NORMAL,
4385 			access_rx_rbuf_data_cor_err_cnt),
4386 [C_RX_RBUF_DATA_UNC_ERR] = CNTR_ELEM("RxRbufDataUncErr", 0, 0,
4387 			CNTR_NORMAL,
4388 			access_rx_rbuf_data_unc_err_cnt),
4389 [C_RX_DMA_DATA_FIFO_RD_COR_ERR] = CNTR_ELEM("RxDmaDataFifoRdCorErr", 0, 0,
4390 			CNTR_NORMAL,
4391 			access_rx_dma_data_fifo_rd_cor_err_cnt),
4392 [C_RX_DMA_DATA_FIFO_RD_UNC_ERR] = CNTR_ELEM("RxDmaDataFifoRdUncErr", 0, 0,
4393 			CNTR_NORMAL,
4394 			access_rx_dma_data_fifo_rd_unc_err_cnt),
4395 [C_RX_DMA_HDR_FIFO_RD_COR_ERR] = CNTR_ELEM("RxDmaHdrFifoRdCorErr", 0, 0,
4396 			CNTR_NORMAL,
4397 			access_rx_dma_hdr_fifo_rd_cor_err_cnt),
4398 [C_RX_DMA_HDR_FIFO_RD_UNC_ERR] = CNTR_ELEM("RxDmaHdrFifoRdUncErr", 0, 0,
4399 			CNTR_NORMAL,
4400 			access_rx_dma_hdr_fifo_rd_unc_err_cnt),
4401 [C_RX_RBUF_DESC_PART2_COR_ERR] = CNTR_ELEM("RxRbufDescPart2CorErr", 0, 0,
4402 			CNTR_NORMAL,
4403 			access_rx_rbuf_desc_part2_cor_err_cnt),
4404 [C_RX_RBUF_DESC_PART2_UNC_ERR] = CNTR_ELEM("RxRbufDescPart2UncErr", 0, 0,
4405 			CNTR_NORMAL,
4406 			access_rx_rbuf_desc_part2_unc_err_cnt),
4407 [C_RX_RBUF_DESC_PART1_COR_ERR] = CNTR_ELEM("RxRbufDescPart1CorErr", 0, 0,
4408 			CNTR_NORMAL,
4409 			access_rx_rbuf_desc_part1_cor_err_cnt),
4410 [C_RX_RBUF_DESC_PART1_UNC_ERR] = CNTR_ELEM("RxRbufDescPart1UncErr", 0, 0,
4411 			CNTR_NORMAL,
4412 			access_rx_rbuf_desc_part1_unc_err_cnt),
4413 [C_RX_HQ_INTR_FSM_ERR] = CNTR_ELEM("RxHqIntrFsmErr", 0, 0,
4414 			CNTR_NORMAL,
4415 			access_rx_hq_intr_fsm_err_cnt),
4416 [C_RX_HQ_INTR_CSR_PARITY_ERR] = CNTR_ELEM("RxHqIntrCsrParityErr", 0, 0,
4417 			CNTR_NORMAL,
4418 			access_rx_hq_intr_csr_parity_err_cnt),
4419 [C_RX_LOOKUP_CSR_PARITY_ERR] = CNTR_ELEM("RxLookupCsrParityErr", 0, 0,
4420 			CNTR_NORMAL,
4421 			access_rx_lookup_csr_parity_err_cnt),
4422 [C_RX_LOOKUP_RCV_ARRAY_COR_ERR] = CNTR_ELEM("RxLookupRcvArrayCorErr", 0, 0,
4423 			CNTR_NORMAL,
4424 			access_rx_lookup_rcv_array_cor_err_cnt),
4425 [C_RX_LOOKUP_RCV_ARRAY_UNC_ERR] = CNTR_ELEM("RxLookupRcvArrayUncErr", 0, 0,
4426 			CNTR_NORMAL,
4427 			access_rx_lookup_rcv_array_unc_err_cnt),
4428 [C_RX_LOOKUP_DES_PART2_PARITY_ERR] = CNTR_ELEM("RxLookupDesPart2ParityErr", 0,
4429 			0, CNTR_NORMAL,
4430 			access_rx_lookup_des_part2_parity_err_cnt),
4431 [C_RX_LOOKUP_DES_PART1_UNC_COR_ERR] = CNTR_ELEM("RxLookupDesPart1UncCorErr", 0,
4432 			0, CNTR_NORMAL,
4433 			access_rx_lookup_des_part1_unc_cor_err_cnt),
4434 [C_RX_LOOKUP_DES_PART1_UNC_ERR] = CNTR_ELEM("RxLookupDesPart1UncErr", 0, 0,
4435 			CNTR_NORMAL,
4436 			access_rx_lookup_des_part1_unc_err_cnt),
4437 [C_RX_RBUF_NEXT_FREE_BUF_COR_ERR] = CNTR_ELEM("RxRbufNextFreeBufCorErr", 0, 0,
4438 			CNTR_NORMAL,
4439 			access_rx_rbuf_next_free_buf_cor_err_cnt),
4440 [C_RX_RBUF_NEXT_FREE_BUF_UNC_ERR] = CNTR_ELEM("RxRbufNextFreeBufUncErr", 0, 0,
4441 			CNTR_NORMAL,
4442 			access_rx_rbuf_next_free_buf_unc_err_cnt),
4443 [C_RX_RBUF_FL_INIT_WR_ADDR_PARITY_ERR] = CNTR_ELEM(
4444 			"RxRbufFlInitWrAddrParityErr", 0, 0,
4445 			CNTR_NORMAL,
4446 			access_rbuf_fl_init_wr_addr_parity_err_cnt),
4447 [C_RX_RBUF_FL_INITDONE_PARITY_ERR] = CNTR_ELEM("RxRbufFlInitdoneParityErr", 0,
4448 			0, CNTR_NORMAL,
4449 			access_rx_rbuf_fl_initdone_parity_err_cnt),
4450 [C_RX_RBUF_FL_WRITE_ADDR_PARITY_ERR] = CNTR_ELEM("RxRbufFlWrAddrParityErr", 0,
4451 			0, CNTR_NORMAL,
4452 			access_rx_rbuf_fl_write_addr_parity_err_cnt),
4453 [C_RX_RBUF_FL_RD_ADDR_PARITY_ERR] = CNTR_ELEM("RxRbufFlRdAddrParityErr", 0, 0,
4454 			CNTR_NORMAL,
4455 			access_rx_rbuf_fl_rd_addr_parity_err_cnt),
4456 [C_RX_RBUF_EMPTY_ERR] = CNTR_ELEM("RxRbufEmptyErr", 0, 0,
4457 			CNTR_NORMAL,
4458 			access_rx_rbuf_empty_err_cnt),
4459 [C_RX_RBUF_FULL_ERR] = CNTR_ELEM("RxRbufFullErr", 0, 0,
4460 			CNTR_NORMAL,
4461 			access_rx_rbuf_full_err_cnt),
4462 [C_RX_RBUF_BAD_LOOKUP_ERR] = CNTR_ELEM("RxRBufBadLookupErr", 0, 0,
4463 			CNTR_NORMAL,
4464 			access_rbuf_bad_lookup_err_cnt),
4465 [C_RX_RBUF_CTX_ID_PARITY_ERR] = CNTR_ELEM("RxRbufCtxIdParityErr", 0, 0,
4466 			CNTR_NORMAL,
4467 			access_rbuf_ctx_id_parity_err_cnt),
4468 [C_RX_RBUF_CSR_QEOPDW_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQEOPDWParityErr", 0, 0,
4469 			CNTR_NORMAL,
4470 			access_rbuf_csr_qeopdw_parity_err_cnt),
4471 [C_RX_RBUF_CSR_Q_NUM_OF_PKT_PARITY_ERR] = CNTR_ELEM(
4472 			"RxRbufCsrQNumOfPktParityErr", 0, 0,
4473 			CNTR_NORMAL,
4474 			access_rx_rbuf_csr_q_num_of_pkt_parity_err_cnt),
4475 [C_RX_RBUF_CSR_Q_T1_PTR_PARITY_ERR] = CNTR_ELEM(
4476 			"RxRbufCsrQTlPtrParityErr", 0, 0,
4477 			CNTR_NORMAL,
4478 			access_rx_rbuf_csr_q_t1_ptr_parity_err_cnt),
4479 [C_RX_RBUF_CSR_Q_HD_PTR_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQHdPtrParityErr", 0,
4480 			0, CNTR_NORMAL,
4481 			access_rx_rbuf_csr_q_hd_ptr_parity_err_cnt),
4482 [C_RX_RBUF_CSR_Q_VLD_BIT_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQVldBitParityErr", 0,
4483 			0, CNTR_NORMAL,
4484 			access_rx_rbuf_csr_q_vld_bit_parity_err_cnt),
4485 [C_RX_RBUF_CSR_Q_NEXT_BUF_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQNextBufParityErr",
4486 			0, 0, CNTR_NORMAL,
4487 			access_rx_rbuf_csr_q_next_buf_parity_err_cnt),
4488 [C_RX_RBUF_CSR_Q_ENT_CNT_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQEntCntParityErr", 0,
4489 			0, CNTR_NORMAL,
4490 			access_rx_rbuf_csr_q_ent_cnt_parity_err_cnt),
4491 [C_RX_RBUF_CSR_Q_HEAD_BUF_NUM_PARITY_ERR] = CNTR_ELEM(
4492 			"RxRbufCsrQHeadBufNumParityErr", 0, 0,
4493 			CNTR_NORMAL,
4494 			access_rx_rbuf_csr_q_head_buf_num_parity_err_cnt),
4495 [C_RX_RBUF_BLOCK_LIST_READ_COR_ERR] = CNTR_ELEM("RxRbufBlockListReadCorErr", 0,
4496 			0, CNTR_NORMAL,
4497 			access_rx_rbuf_block_list_read_cor_err_cnt),
4498 [C_RX_RBUF_BLOCK_LIST_READ_UNC_ERR] = CNTR_ELEM("RxRbufBlockListReadUncErr", 0,
4499 			0, CNTR_NORMAL,
4500 			access_rx_rbuf_block_list_read_unc_err_cnt),
4501 [C_RX_RBUF_LOOKUP_DES_COR_ERR] = CNTR_ELEM("RxRbufLookupDesCorErr", 0, 0,
4502 			CNTR_NORMAL,
4503 			access_rx_rbuf_lookup_des_cor_err_cnt),
4504 [C_RX_RBUF_LOOKUP_DES_UNC_ERR] = CNTR_ELEM("RxRbufLookupDesUncErr", 0, 0,
4505 			CNTR_NORMAL,
4506 			access_rx_rbuf_lookup_des_unc_err_cnt),
4507 [C_RX_RBUF_LOOKUP_DES_REG_UNC_COR_ERR] = CNTR_ELEM(
4508 			"RxRbufLookupDesRegUncCorErr", 0, 0,
4509 			CNTR_NORMAL,
4510 			access_rx_rbuf_lookup_des_reg_unc_cor_err_cnt),
4511 [C_RX_RBUF_LOOKUP_DES_REG_UNC_ERR] = CNTR_ELEM("RxRbufLookupDesRegUncErr", 0, 0,
4512 			CNTR_NORMAL,
4513 			access_rx_rbuf_lookup_des_reg_unc_err_cnt),
4514 [C_RX_RBUF_FREE_LIST_COR_ERR] = CNTR_ELEM("RxRbufFreeListCorErr", 0, 0,
4515 			CNTR_NORMAL,
4516 			access_rx_rbuf_free_list_cor_err_cnt),
4517 [C_RX_RBUF_FREE_LIST_UNC_ERR] = CNTR_ELEM("RxRbufFreeListUncErr", 0, 0,
4518 			CNTR_NORMAL,
4519 			access_rx_rbuf_free_list_unc_err_cnt),
4520 [C_RX_RCV_FSM_ENCODING_ERR] = CNTR_ELEM("RxRcvFsmEncodingErr", 0, 0,
4521 			CNTR_NORMAL,
4522 			access_rx_rcv_fsm_encoding_err_cnt),
4523 [C_RX_DMA_FLAG_COR_ERR] = CNTR_ELEM("RxDmaFlagCorErr", 0, 0,
4524 			CNTR_NORMAL,
4525 			access_rx_dma_flag_cor_err_cnt),
4526 [C_RX_DMA_FLAG_UNC_ERR] = CNTR_ELEM("RxDmaFlagUncErr", 0, 0,
4527 			CNTR_NORMAL,
4528 			access_rx_dma_flag_unc_err_cnt),
4529 [C_RX_DC_SOP_EOP_PARITY_ERR] = CNTR_ELEM("RxDcSopEopParityErr", 0, 0,
4530 			CNTR_NORMAL,
4531 			access_rx_dc_sop_eop_parity_err_cnt),
4532 [C_RX_RCV_CSR_PARITY_ERR] = CNTR_ELEM("RxRcvCsrParityErr", 0, 0,
4533 			CNTR_NORMAL,
4534 			access_rx_rcv_csr_parity_err_cnt),
4535 [C_RX_RCV_QP_MAP_TABLE_COR_ERR] = CNTR_ELEM("RxRcvQpMapTableCorErr", 0, 0,
4536 			CNTR_NORMAL,
4537 			access_rx_rcv_qp_map_table_cor_err_cnt),
4538 [C_RX_RCV_QP_MAP_TABLE_UNC_ERR] = CNTR_ELEM("RxRcvQpMapTableUncErr", 0, 0,
4539 			CNTR_NORMAL,
4540 			access_rx_rcv_qp_map_table_unc_err_cnt),
4541 [C_RX_RCV_DATA_COR_ERR] = CNTR_ELEM("RxRcvDataCorErr", 0, 0,
4542 			CNTR_NORMAL,
4543 			access_rx_rcv_data_cor_err_cnt),
4544 [C_RX_RCV_DATA_UNC_ERR] = CNTR_ELEM("RxRcvDataUncErr", 0, 0,
4545 			CNTR_NORMAL,
4546 			access_rx_rcv_data_unc_err_cnt),
4547 [C_RX_RCV_HDR_COR_ERR] = CNTR_ELEM("RxRcvHdrCorErr", 0, 0,
4548 			CNTR_NORMAL,
4549 			access_rx_rcv_hdr_cor_err_cnt),
4550 [C_RX_RCV_HDR_UNC_ERR] = CNTR_ELEM("RxRcvHdrUncErr", 0, 0,
4551 			CNTR_NORMAL,
4552 			access_rx_rcv_hdr_unc_err_cnt),
4553 [C_RX_DC_INTF_PARITY_ERR] = CNTR_ELEM("RxDcIntfParityErr", 0, 0,
4554 			CNTR_NORMAL,
4555 			access_rx_dc_intf_parity_err_cnt),
4556 [C_RX_DMA_CSR_COR_ERR] = CNTR_ELEM("RxDmaCsrCorErr", 0, 0,
4557 			CNTR_NORMAL,
4558 			access_rx_dma_csr_cor_err_cnt),
4559 /* SendPioErrStatus */
4560 [C_PIO_PEC_SOP_HEAD_PARITY_ERR] = CNTR_ELEM("PioPecSopHeadParityErr", 0, 0,
4561 			CNTR_NORMAL,
4562 			access_pio_pec_sop_head_parity_err_cnt),
4563 [C_PIO_PCC_SOP_HEAD_PARITY_ERR] = CNTR_ELEM("PioPccSopHeadParityErr", 0, 0,
4564 			CNTR_NORMAL,
4565 			access_pio_pcc_sop_head_parity_err_cnt),
4566 [C_PIO_LAST_RETURNED_CNT_PARITY_ERR] = CNTR_ELEM("PioLastReturnedCntParityErr",
4567 			0, 0, CNTR_NORMAL,
4568 			access_pio_last_returned_cnt_parity_err_cnt),
4569 [C_PIO_CURRENT_FREE_CNT_PARITY_ERR] = CNTR_ELEM("PioCurrentFreeCntParityErr", 0,
4570 			0, CNTR_NORMAL,
4571 			access_pio_current_free_cnt_parity_err_cnt),
4572 [C_PIO_RSVD_31_ERR] = CNTR_ELEM("Pio Reserved 31", 0, 0,
4573 			CNTR_NORMAL,
4574 			access_pio_reserved_31_err_cnt),
4575 [C_PIO_RSVD_30_ERR] = CNTR_ELEM("Pio Reserved 30", 0, 0,
4576 			CNTR_NORMAL,
4577 			access_pio_reserved_30_err_cnt),
4578 [C_PIO_PPMC_SOP_LEN_ERR] = CNTR_ELEM("PioPpmcSopLenErr", 0, 0,
4579 			CNTR_NORMAL,
4580 			access_pio_ppmc_sop_len_err_cnt),
4581 [C_PIO_PPMC_BQC_MEM_PARITY_ERR] = CNTR_ELEM("PioPpmcBqcMemParityErr", 0, 0,
4582 			CNTR_NORMAL,
4583 			access_pio_ppmc_bqc_mem_parity_err_cnt),
4584 [C_PIO_VL_FIFO_PARITY_ERR] = CNTR_ELEM("PioVlFifoParityErr", 0, 0,
4585 			CNTR_NORMAL,
4586 			access_pio_vl_fifo_parity_err_cnt),
4587 [C_PIO_VLF_SOP_PARITY_ERR] = CNTR_ELEM("PioVlfSopParityErr", 0, 0,
4588 			CNTR_NORMAL,
4589 			access_pio_vlf_sop_parity_err_cnt),
4590 [C_PIO_VLF_V1_LEN_PARITY_ERR] = CNTR_ELEM("PioVlfVlLenParityErr", 0, 0,
4591 			CNTR_NORMAL,
4592 			access_pio_vlf_v1_len_parity_err_cnt),
4593 [C_PIO_BLOCK_QW_COUNT_PARITY_ERR] = CNTR_ELEM("PioBlockQwCountParityErr", 0, 0,
4594 			CNTR_NORMAL,
4595 			access_pio_block_qw_count_parity_err_cnt),
4596 [C_PIO_WRITE_QW_VALID_PARITY_ERR] = CNTR_ELEM("PioWriteQwValidParityErr", 0, 0,
4597 			CNTR_NORMAL,
4598 			access_pio_write_qw_valid_parity_err_cnt),
4599 [C_PIO_STATE_MACHINE_ERR] = CNTR_ELEM("PioStateMachineErr", 0, 0,
4600 			CNTR_NORMAL,
4601 			access_pio_state_machine_err_cnt),
4602 [C_PIO_WRITE_DATA_PARITY_ERR] = CNTR_ELEM("PioWriteDataParityErr", 0, 0,
4603 			CNTR_NORMAL,
4604 			access_pio_write_data_parity_err_cnt),
4605 [C_PIO_HOST_ADDR_MEM_COR_ERR] = CNTR_ELEM("PioHostAddrMemCorErr", 0, 0,
4606 			CNTR_NORMAL,
4607 			access_pio_host_addr_mem_cor_err_cnt),
4608 [C_PIO_HOST_ADDR_MEM_UNC_ERR] = CNTR_ELEM("PioHostAddrMemUncErr", 0, 0,
4609 			CNTR_NORMAL,
4610 			access_pio_host_addr_mem_unc_err_cnt),
4611 [C_PIO_PKT_EVICT_SM_OR_ARM_SM_ERR] = CNTR_ELEM("PioPktEvictSmOrArbSmErr", 0, 0,
4612 			CNTR_NORMAL,
4613 			access_pio_pkt_evict_sm_or_arb_sm_err_cnt),
4614 [C_PIO_INIT_SM_IN_ERR] = CNTR_ELEM("PioInitSmInErr", 0, 0,
4615 			CNTR_NORMAL,
4616 			access_pio_init_sm_in_err_cnt),
4617 [C_PIO_PPMC_PBL_FIFO_ERR] = CNTR_ELEM("PioPpmcPblFifoErr", 0, 0,
4618 			CNTR_NORMAL,
4619 			access_pio_ppmc_pbl_fifo_err_cnt),
4620 [C_PIO_CREDIT_RET_FIFO_PARITY_ERR] = CNTR_ELEM("PioCreditRetFifoParityErr", 0,
4621 			0, CNTR_NORMAL,
4622 			access_pio_credit_ret_fifo_parity_err_cnt),
4623 [C_PIO_V1_LEN_MEM_BANK1_COR_ERR] = CNTR_ELEM("PioVlLenMemBank1CorErr", 0, 0,
4624 			CNTR_NORMAL,
4625 			access_pio_v1_len_mem_bank1_cor_err_cnt),
4626 [C_PIO_V1_LEN_MEM_BANK0_COR_ERR] = CNTR_ELEM("PioVlLenMemBank0CorErr", 0, 0,
4627 			CNTR_NORMAL,
4628 			access_pio_v1_len_mem_bank0_cor_err_cnt),
4629 [C_PIO_V1_LEN_MEM_BANK1_UNC_ERR] = CNTR_ELEM("PioVlLenMemBank1UncErr", 0, 0,
4630 			CNTR_NORMAL,
4631 			access_pio_v1_len_mem_bank1_unc_err_cnt),
4632 [C_PIO_V1_LEN_MEM_BANK0_UNC_ERR] = CNTR_ELEM("PioVlLenMemBank0UncErr", 0, 0,
4633 			CNTR_NORMAL,
4634 			access_pio_v1_len_mem_bank0_unc_err_cnt),
4635 [C_PIO_SM_PKT_RESET_PARITY_ERR] = CNTR_ELEM("PioSmPktResetParityErr", 0, 0,
4636 			CNTR_NORMAL,
4637 			access_pio_sm_pkt_reset_parity_err_cnt),
4638 [C_PIO_PKT_EVICT_FIFO_PARITY_ERR] = CNTR_ELEM("PioPktEvictFifoParityErr", 0, 0,
4639 			CNTR_NORMAL,
4640 			access_pio_pkt_evict_fifo_parity_err_cnt),
4641 [C_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR] = CNTR_ELEM(
4642 			"PioSbrdctrlCrrelFifoParityErr", 0, 0,
4643 			CNTR_NORMAL,
4644 			access_pio_sbrdctrl_crrel_fifo_parity_err_cnt),
4645 [C_PIO_SBRDCTL_CRREL_PARITY_ERR] = CNTR_ELEM("PioSbrdctlCrrelParityErr", 0, 0,
4646 			CNTR_NORMAL,
4647 			access_pio_sbrdctl_crrel_parity_err_cnt),
4648 [C_PIO_PEC_FIFO_PARITY_ERR] = CNTR_ELEM("PioPecFifoParityErr", 0, 0,
4649 			CNTR_NORMAL,
4650 			access_pio_pec_fifo_parity_err_cnt),
4651 [C_PIO_PCC_FIFO_PARITY_ERR] = CNTR_ELEM("PioPccFifoParityErr", 0, 0,
4652 			CNTR_NORMAL,
4653 			access_pio_pcc_fifo_parity_err_cnt),
4654 [C_PIO_SB_MEM_FIFO1_ERR] = CNTR_ELEM("PioSbMemFifo1Err", 0, 0,
4655 			CNTR_NORMAL,
4656 			access_pio_sb_mem_fifo1_err_cnt),
4657 [C_PIO_SB_MEM_FIFO0_ERR] = CNTR_ELEM("PioSbMemFifo0Err", 0, 0,
4658 			CNTR_NORMAL,
4659 			access_pio_sb_mem_fifo0_err_cnt),
4660 [C_PIO_CSR_PARITY_ERR] = CNTR_ELEM("PioCsrParityErr", 0, 0,
4661 			CNTR_NORMAL,
4662 			access_pio_csr_parity_err_cnt),
4663 [C_PIO_WRITE_ADDR_PARITY_ERR] = CNTR_ELEM("PioWriteAddrParityErr", 0, 0,
4664 			CNTR_NORMAL,
4665 			access_pio_write_addr_parity_err_cnt),
4666 [C_PIO_WRITE_BAD_CTXT_ERR] = CNTR_ELEM("PioWriteBadCtxtErr", 0, 0,
4667 			CNTR_NORMAL,
4668 			access_pio_write_bad_ctxt_err_cnt),
4669 /* SendDmaErrStatus */
4670 [C_SDMA_PCIE_REQ_TRACKING_COR_ERR] = CNTR_ELEM("SDmaPcieReqTrackingCorErr", 0,
4671 			0, CNTR_NORMAL,
4672 			access_sdma_pcie_req_tracking_cor_err_cnt),
4673 [C_SDMA_PCIE_REQ_TRACKING_UNC_ERR] = CNTR_ELEM("SDmaPcieReqTrackingUncErr", 0,
4674 			0, CNTR_NORMAL,
4675 			access_sdma_pcie_req_tracking_unc_err_cnt),
4676 [C_SDMA_CSR_PARITY_ERR] = CNTR_ELEM("SDmaCsrParityErr", 0, 0,
4677 			CNTR_NORMAL,
4678 			access_sdma_csr_parity_err_cnt),
4679 [C_SDMA_RPY_TAG_ERR] = CNTR_ELEM("SDmaRpyTagErr", 0, 0,
4680 			CNTR_NORMAL,
4681 			access_sdma_rpy_tag_err_cnt),
4682 /* SendEgressErrStatus */
4683 [C_TX_READ_PIO_MEMORY_CSR_UNC_ERR] = CNTR_ELEM("TxReadPioMemoryCsrUncErr", 0, 0,
4684 			CNTR_NORMAL,
4685 			access_tx_read_pio_memory_csr_unc_err_cnt),
4686 [C_TX_READ_SDMA_MEMORY_CSR_UNC_ERR] = CNTR_ELEM("TxReadSdmaMemoryCsrUncErr", 0,
4687 			0, CNTR_NORMAL,
4688 			access_tx_read_sdma_memory_csr_err_cnt),
4689 [C_TX_EGRESS_FIFO_COR_ERR] = CNTR_ELEM("TxEgressFifoCorErr", 0, 0,
4690 			CNTR_NORMAL,
4691 			access_tx_egress_fifo_cor_err_cnt),
4692 [C_TX_READ_PIO_MEMORY_COR_ERR] = CNTR_ELEM("TxReadPioMemoryCorErr", 0, 0,
4693 			CNTR_NORMAL,
4694 			access_tx_read_pio_memory_cor_err_cnt),
4695 [C_TX_READ_SDMA_MEMORY_COR_ERR] = CNTR_ELEM("TxReadSdmaMemoryCorErr", 0, 0,
4696 			CNTR_NORMAL,
4697 			access_tx_read_sdma_memory_cor_err_cnt),
4698 [C_TX_SB_HDR_COR_ERR] = CNTR_ELEM("TxSbHdrCorErr", 0, 0,
4699 			CNTR_NORMAL,
4700 			access_tx_sb_hdr_cor_err_cnt),
4701 [C_TX_CREDIT_OVERRUN_ERR] = CNTR_ELEM("TxCreditOverrunErr", 0, 0,
4702 			CNTR_NORMAL,
4703 			access_tx_credit_overrun_err_cnt),
4704 [C_TX_LAUNCH_FIFO8_COR_ERR] = CNTR_ELEM("TxLaunchFifo8CorErr", 0, 0,
4705 			CNTR_NORMAL,
4706 			access_tx_launch_fifo8_cor_err_cnt),
4707 [C_TX_LAUNCH_FIFO7_COR_ERR] = CNTR_ELEM("TxLaunchFifo7CorErr", 0, 0,
4708 			CNTR_NORMAL,
4709 			access_tx_launch_fifo7_cor_err_cnt),
4710 [C_TX_LAUNCH_FIFO6_COR_ERR] = CNTR_ELEM("TxLaunchFifo6CorErr", 0, 0,
4711 			CNTR_NORMAL,
4712 			access_tx_launch_fifo6_cor_err_cnt),
4713 [C_TX_LAUNCH_FIFO5_COR_ERR] = CNTR_ELEM("TxLaunchFifo5CorErr", 0, 0,
4714 			CNTR_NORMAL,
4715 			access_tx_launch_fifo5_cor_err_cnt),
4716 [C_TX_LAUNCH_FIFO4_COR_ERR] = CNTR_ELEM("TxLaunchFifo4CorErr", 0, 0,
4717 			CNTR_NORMAL,
4718 			access_tx_launch_fifo4_cor_err_cnt),
4719 [C_TX_LAUNCH_FIFO3_COR_ERR] = CNTR_ELEM("TxLaunchFifo3CorErr", 0, 0,
4720 			CNTR_NORMAL,
4721 			access_tx_launch_fifo3_cor_err_cnt),
4722 [C_TX_LAUNCH_FIFO2_COR_ERR] = CNTR_ELEM("TxLaunchFifo2CorErr", 0, 0,
4723 			CNTR_NORMAL,
4724 			access_tx_launch_fifo2_cor_err_cnt),
4725 [C_TX_LAUNCH_FIFO1_COR_ERR] = CNTR_ELEM("TxLaunchFifo1CorErr", 0, 0,
4726 			CNTR_NORMAL,
4727 			access_tx_launch_fifo1_cor_err_cnt),
4728 [C_TX_LAUNCH_FIFO0_COR_ERR] = CNTR_ELEM("TxLaunchFifo0CorErr", 0, 0,
4729 			CNTR_NORMAL,
4730 			access_tx_launch_fifo0_cor_err_cnt),
4731 [C_TX_CREDIT_RETURN_VL_ERR] = CNTR_ELEM("TxCreditReturnVLErr", 0, 0,
4732 			CNTR_NORMAL,
4733 			access_tx_credit_return_vl_err_cnt),
4734 [C_TX_HCRC_INSERTION_ERR] = CNTR_ELEM("TxHcrcInsertionErr", 0, 0,
4735 			CNTR_NORMAL,
4736 			access_tx_hcrc_insertion_err_cnt),
4737 [C_TX_EGRESS_FIFI_UNC_ERR] = CNTR_ELEM("TxEgressFifoUncErr", 0, 0,
4738 			CNTR_NORMAL,
4739 			access_tx_egress_fifo_unc_err_cnt),
4740 [C_TX_READ_PIO_MEMORY_UNC_ERR] = CNTR_ELEM("TxReadPioMemoryUncErr", 0, 0,
4741 			CNTR_NORMAL,
4742 			access_tx_read_pio_memory_unc_err_cnt),
4743 [C_TX_READ_SDMA_MEMORY_UNC_ERR] = CNTR_ELEM("TxReadSdmaMemoryUncErr", 0, 0,
4744 			CNTR_NORMAL,
4745 			access_tx_read_sdma_memory_unc_err_cnt),
4746 [C_TX_SB_HDR_UNC_ERR] = CNTR_ELEM("TxSbHdrUncErr", 0, 0,
4747 			CNTR_NORMAL,
4748 			access_tx_sb_hdr_unc_err_cnt),
4749 [C_TX_CREDIT_RETURN_PARITY_ERR] = CNTR_ELEM("TxCreditReturnParityErr", 0, 0,
4750 			CNTR_NORMAL,
4751 			access_tx_credit_return_partiy_err_cnt),
4752 [C_TX_LAUNCH_FIFO8_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo8UncOrParityErr",
4753 			0, 0, CNTR_NORMAL,
4754 			access_tx_launch_fifo8_unc_or_parity_err_cnt),
4755 [C_TX_LAUNCH_FIFO7_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo7UncOrParityErr",
4756 			0, 0, CNTR_NORMAL,
4757 			access_tx_launch_fifo7_unc_or_parity_err_cnt),
4758 [C_TX_LAUNCH_FIFO6_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo6UncOrParityErr",
4759 			0, 0, CNTR_NORMAL,
4760 			access_tx_launch_fifo6_unc_or_parity_err_cnt),
4761 [C_TX_LAUNCH_FIFO5_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo5UncOrParityErr",
4762 			0, 0, CNTR_NORMAL,
4763 			access_tx_launch_fifo5_unc_or_parity_err_cnt),
4764 [C_TX_LAUNCH_FIFO4_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo4UncOrParityErr",
4765 			0, 0, CNTR_NORMAL,
4766 			access_tx_launch_fifo4_unc_or_parity_err_cnt),
4767 [C_TX_LAUNCH_FIFO3_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo3UncOrParityErr",
4768 			0, 0, CNTR_NORMAL,
4769 			access_tx_launch_fifo3_unc_or_parity_err_cnt),
4770 [C_TX_LAUNCH_FIFO2_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo2UncOrParityErr",
4771 			0, 0, CNTR_NORMAL,
4772 			access_tx_launch_fifo2_unc_or_parity_err_cnt),
4773 [C_TX_LAUNCH_FIFO1_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo1UncOrParityErr",
4774 			0, 0, CNTR_NORMAL,
4775 			access_tx_launch_fifo1_unc_or_parity_err_cnt),
4776 [C_TX_LAUNCH_FIFO0_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo0UncOrParityErr",
4777 			0, 0, CNTR_NORMAL,
4778 			access_tx_launch_fifo0_unc_or_parity_err_cnt),
4779 [C_TX_SDMA15_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma15DisallowedPacketErr",
4780 			0, 0, CNTR_NORMAL,
4781 			access_tx_sdma15_disallowed_packet_err_cnt),
4782 [C_TX_SDMA14_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma14DisallowedPacketErr",
4783 			0, 0, CNTR_NORMAL,
4784 			access_tx_sdma14_disallowed_packet_err_cnt),
4785 [C_TX_SDMA13_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma13DisallowedPacketErr",
4786 			0, 0, CNTR_NORMAL,
4787 			access_tx_sdma13_disallowed_packet_err_cnt),
4788 [C_TX_SDMA12_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma12DisallowedPacketErr",
4789 			0, 0, CNTR_NORMAL,
4790 			access_tx_sdma12_disallowed_packet_err_cnt),
4791 [C_TX_SDMA11_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma11DisallowedPacketErr",
4792 			0, 0, CNTR_NORMAL,
4793 			access_tx_sdma11_disallowed_packet_err_cnt),
4794 [C_TX_SDMA10_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma10DisallowedPacketErr",
4795 			0, 0, CNTR_NORMAL,
4796 			access_tx_sdma10_disallowed_packet_err_cnt),
4797 [C_TX_SDMA9_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma9DisallowedPacketErr",
4798 			0, 0, CNTR_NORMAL,
4799 			access_tx_sdma9_disallowed_packet_err_cnt),
4800 [C_TX_SDMA8_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma8DisallowedPacketErr",
4801 			0, 0, CNTR_NORMAL,
4802 			access_tx_sdma8_disallowed_packet_err_cnt),
4803 [C_TX_SDMA7_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma7DisallowedPacketErr",
4804 			0, 0, CNTR_NORMAL,
4805 			access_tx_sdma7_disallowed_packet_err_cnt),
4806 [C_TX_SDMA6_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma6DisallowedPacketErr",
4807 			0, 0, CNTR_NORMAL,
4808 			access_tx_sdma6_disallowed_packet_err_cnt),
4809 [C_TX_SDMA5_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma5DisallowedPacketErr",
4810 			0, 0, CNTR_NORMAL,
4811 			access_tx_sdma5_disallowed_packet_err_cnt),
4812 [C_TX_SDMA4_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma4DisallowedPacketErr",
4813 			0, 0, CNTR_NORMAL,
4814 			access_tx_sdma4_disallowed_packet_err_cnt),
4815 [C_TX_SDMA3_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma3DisallowedPacketErr",
4816 			0, 0, CNTR_NORMAL,
4817 			access_tx_sdma3_disallowed_packet_err_cnt),
4818 [C_TX_SDMA2_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma2DisallowedPacketErr",
4819 			0, 0, CNTR_NORMAL,
4820 			access_tx_sdma2_disallowed_packet_err_cnt),
4821 [C_TX_SDMA1_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma1DisallowedPacketErr",
4822 			0, 0, CNTR_NORMAL,
4823 			access_tx_sdma1_disallowed_packet_err_cnt),
4824 [C_TX_SDMA0_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma0DisallowedPacketErr",
4825 			0, 0, CNTR_NORMAL,
4826 			access_tx_sdma0_disallowed_packet_err_cnt),
4827 [C_TX_CONFIG_PARITY_ERR] = CNTR_ELEM("TxConfigParityErr", 0, 0,
4828 			CNTR_NORMAL,
4829 			access_tx_config_parity_err_cnt),
4830 [C_TX_SBRD_CTL_CSR_PARITY_ERR] = CNTR_ELEM("TxSbrdCtlCsrParityErr", 0, 0,
4831 			CNTR_NORMAL,
4832 			access_tx_sbrd_ctl_csr_parity_err_cnt),
4833 [C_TX_LAUNCH_CSR_PARITY_ERR] = CNTR_ELEM("TxLaunchCsrParityErr", 0, 0,
4834 			CNTR_NORMAL,
4835 			access_tx_launch_csr_parity_err_cnt),
4836 [C_TX_ILLEGAL_CL_ERR] = CNTR_ELEM("TxIllegalVLErr", 0, 0,
4837 			CNTR_NORMAL,
4838 			access_tx_illegal_vl_err_cnt),
4839 [C_TX_SBRD_CTL_STATE_MACHINE_PARITY_ERR] = CNTR_ELEM(
4840 			"TxSbrdCtlStateMachineParityErr", 0, 0,
4841 			CNTR_NORMAL,
4842 			access_tx_sbrd_ctl_state_machine_parity_err_cnt),
4843 [C_TX_RESERVED_10] = CNTR_ELEM("Tx Egress Reserved 10", 0, 0,
4844 			CNTR_NORMAL,
4845 			access_egress_reserved_10_err_cnt),
4846 [C_TX_RESERVED_9] = CNTR_ELEM("Tx Egress Reserved 9", 0, 0,
4847 			CNTR_NORMAL,
4848 			access_egress_reserved_9_err_cnt),
4849 [C_TX_SDMA_LAUNCH_INTF_PARITY_ERR] = CNTR_ELEM("TxSdmaLaunchIntfParityErr",
4850 			0, 0, CNTR_NORMAL,
4851 			access_tx_sdma_launch_intf_parity_err_cnt),
4852 [C_TX_PIO_LAUNCH_INTF_PARITY_ERR] = CNTR_ELEM("TxPioLaunchIntfParityErr", 0, 0,
4853 			CNTR_NORMAL,
4854 			access_tx_pio_launch_intf_parity_err_cnt),
4855 [C_TX_RESERVED_6] = CNTR_ELEM("Tx Egress Reserved 6", 0, 0,
4856 			CNTR_NORMAL,
4857 			access_egress_reserved_6_err_cnt),
4858 [C_TX_INCORRECT_LINK_STATE_ERR] = CNTR_ELEM("TxIncorrectLinkStateErr", 0, 0,
4859 			CNTR_NORMAL,
4860 			access_tx_incorrect_link_state_err_cnt),
4861 [C_TX_LINK_DOWN_ERR] = CNTR_ELEM("TxLinkdownErr", 0, 0,
4862 			CNTR_NORMAL,
4863 			access_tx_linkdown_err_cnt),
4864 [C_TX_EGRESS_FIFO_UNDERRUN_OR_PARITY_ERR] = CNTR_ELEM(
4865 			"EgressFifoUnderrunOrParityErr", 0, 0,
4866 			CNTR_NORMAL,
4867 			access_tx_egress_fifi_underrun_or_parity_err_cnt),
4868 [C_TX_RESERVED_2] = CNTR_ELEM("Tx Egress Reserved 2", 0, 0,
4869 			CNTR_NORMAL,
4870 			access_egress_reserved_2_err_cnt),
4871 [C_TX_PKT_INTEGRITY_MEM_UNC_ERR] = CNTR_ELEM("TxPktIntegrityMemUncErr", 0, 0,
4872 			CNTR_NORMAL,
4873 			access_tx_pkt_integrity_mem_unc_err_cnt),
4874 [C_TX_PKT_INTEGRITY_MEM_COR_ERR] = CNTR_ELEM("TxPktIntegrityMemCorErr", 0, 0,
4875 			CNTR_NORMAL,
4876 			access_tx_pkt_integrity_mem_cor_err_cnt),
4877 /* SendErrStatus */
4878 [C_SEND_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("SendCsrWriteBadAddrErr", 0, 0,
4879 			CNTR_NORMAL,
4880 			access_send_csr_write_bad_addr_err_cnt),
4881 [C_SEND_CSR_READ_BAD_ADD_ERR] = CNTR_ELEM("SendCsrReadBadAddrErr", 0, 0,
4882 			CNTR_NORMAL,
4883 			access_send_csr_read_bad_addr_err_cnt),
4884 [C_SEND_CSR_PARITY_ERR] = CNTR_ELEM("SendCsrParityErr", 0, 0,
4885 			CNTR_NORMAL,
4886 			access_send_csr_parity_cnt),
4887 /* SendCtxtErrStatus */
4888 [C_PIO_WRITE_OUT_OF_BOUNDS_ERR] = CNTR_ELEM("PioWriteOutOfBoundsErr", 0, 0,
4889 			CNTR_NORMAL,
4890 			access_pio_write_out_of_bounds_err_cnt),
4891 [C_PIO_WRITE_OVERFLOW_ERR] = CNTR_ELEM("PioWriteOverflowErr", 0, 0,
4892 			CNTR_NORMAL,
4893 			access_pio_write_overflow_err_cnt),
4894 [C_PIO_WRITE_CROSSES_BOUNDARY_ERR] = CNTR_ELEM("PioWriteCrossesBoundaryErr",
4895 			0, 0, CNTR_NORMAL,
4896 			access_pio_write_crosses_boundary_err_cnt),
4897 [C_PIO_DISALLOWED_PACKET_ERR] = CNTR_ELEM("PioDisallowedPacketErr", 0, 0,
4898 			CNTR_NORMAL,
4899 			access_pio_disallowed_packet_err_cnt),
4900 [C_PIO_INCONSISTENT_SOP_ERR] = CNTR_ELEM("PioInconsistentSopErr", 0, 0,
4901 			CNTR_NORMAL,
4902 			access_pio_inconsistent_sop_err_cnt),
4903 /* SendDmaEngErrStatus */
4904 [C_SDMA_HEADER_REQUEST_FIFO_COR_ERR] = CNTR_ELEM("SDmaHeaderRequestFifoCorErr",
4905 			0, 0, CNTR_NORMAL,
4906 			access_sdma_header_request_fifo_cor_err_cnt),
4907 [C_SDMA_HEADER_STORAGE_COR_ERR] = CNTR_ELEM("SDmaHeaderStorageCorErr", 0, 0,
4908 			CNTR_NORMAL,
4909 			access_sdma_header_storage_cor_err_cnt),
4910 [C_SDMA_PACKET_TRACKING_COR_ERR] = CNTR_ELEM("SDmaPacketTrackingCorErr", 0, 0,
4911 			CNTR_NORMAL,
4912 			access_sdma_packet_tracking_cor_err_cnt),
4913 [C_SDMA_ASSEMBLY_COR_ERR] = CNTR_ELEM("SDmaAssemblyCorErr", 0, 0,
4914 			CNTR_NORMAL,
4915 			access_sdma_assembly_cor_err_cnt),
4916 [C_SDMA_DESC_TABLE_COR_ERR] = CNTR_ELEM("SDmaDescTableCorErr", 0, 0,
4917 			CNTR_NORMAL,
4918 			access_sdma_desc_table_cor_err_cnt),
4919 [C_SDMA_HEADER_REQUEST_FIFO_UNC_ERR] = CNTR_ELEM("SDmaHeaderRequestFifoUncErr",
4920 			0, 0, CNTR_NORMAL,
4921 			access_sdma_header_request_fifo_unc_err_cnt),
4922 [C_SDMA_HEADER_STORAGE_UNC_ERR] = CNTR_ELEM("SDmaHeaderStorageUncErr", 0, 0,
4923 			CNTR_NORMAL,
4924 			access_sdma_header_storage_unc_err_cnt),
4925 [C_SDMA_PACKET_TRACKING_UNC_ERR] = CNTR_ELEM("SDmaPacketTrackingUncErr", 0, 0,
4926 			CNTR_NORMAL,
4927 			access_sdma_packet_tracking_unc_err_cnt),
4928 [C_SDMA_ASSEMBLY_UNC_ERR] = CNTR_ELEM("SDmaAssemblyUncErr", 0, 0,
4929 			CNTR_NORMAL,
4930 			access_sdma_assembly_unc_err_cnt),
4931 [C_SDMA_DESC_TABLE_UNC_ERR] = CNTR_ELEM("SDmaDescTableUncErr", 0, 0,
4932 			CNTR_NORMAL,
4933 			access_sdma_desc_table_unc_err_cnt),
4934 [C_SDMA_TIMEOUT_ERR] = CNTR_ELEM("SDmaTimeoutErr", 0, 0,
4935 			CNTR_NORMAL,
4936 			access_sdma_timeout_err_cnt),
4937 [C_SDMA_HEADER_LENGTH_ERR] = CNTR_ELEM("SDmaHeaderLengthErr", 0, 0,
4938 			CNTR_NORMAL,
4939 			access_sdma_header_length_err_cnt),
4940 [C_SDMA_HEADER_ADDRESS_ERR] = CNTR_ELEM("SDmaHeaderAddressErr", 0, 0,
4941 			CNTR_NORMAL,
4942 			access_sdma_header_address_err_cnt),
4943 [C_SDMA_HEADER_SELECT_ERR] = CNTR_ELEM("SDmaHeaderSelectErr", 0, 0,
4944 			CNTR_NORMAL,
4945 			access_sdma_header_select_err_cnt),
4946 [C_SMDA_RESERVED_9] = CNTR_ELEM("SDma Reserved 9", 0, 0,
4947 			CNTR_NORMAL,
4948 			access_sdma_reserved_9_err_cnt),
4949 [C_SDMA_PACKET_DESC_OVERFLOW_ERR] = CNTR_ELEM("SDmaPacketDescOverflowErr", 0, 0,
4950 			CNTR_NORMAL,
4951 			access_sdma_packet_desc_overflow_err_cnt),
4952 [C_SDMA_LENGTH_MISMATCH_ERR] = CNTR_ELEM("SDmaLengthMismatchErr", 0, 0,
4953 			CNTR_NORMAL,
4954 			access_sdma_length_mismatch_err_cnt),
4955 [C_SDMA_HALT_ERR] = CNTR_ELEM("SDmaHaltErr", 0, 0,
4956 			CNTR_NORMAL,
4957 			access_sdma_halt_err_cnt),
4958 [C_SDMA_MEM_READ_ERR] = CNTR_ELEM("SDmaMemReadErr", 0, 0,
4959 			CNTR_NORMAL,
4960 			access_sdma_mem_read_err_cnt),
4961 [C_SDMA_FIRST_DESC_ERR] = CNTR_ELEM("SDmaFirstDescErr", 0, 0,
4962 			CNTR_NORMAL,
4963 			access_sdma_first_desc_err_cnt),
4964 [C_SDMA_TAIL_OUT_OF_BOUNDS_ERR] = CNTR_ELEM("SDmaTailOutOfBoundsErr", 0, 0,
4965 			CNTR_NORMAL,
4966 			access_sdma_tail_out_of_bounds_err_cnt),
4967 [C_SDMA_TOO_LONG_ERR] = CNTR_ELEM("SDmaTooLongErr", 0, 0,
4968 			CNTR_NORMAL,
4969 			access_sdma_too_long_err_cnt),
4970 [C_SDMA_GEN_MISMATCH_ERR] = CNTR_ELEM("SDmaGenMismatchErr", 0, 0,
4971 			CNTR_NORMAL,
4972 			access_sdma_gen_mismatch_err_cnt),
4973 [C_SDMA_WRONG_DW_ERR] = CNTR_ELEM("SDmaWrongDwErr", 0, 0,
4974 			CNTR_NORMAL,
4975 			access_sdma_wrong_dw_err_cnt),
4976 };
4977 
4978 static struct cntr_entry port_cntrs[PORT_CNTR_LAST] = {
4979 [C_TX_UNSUP_VL] = TXE32_PORT_CNTR_ELEM(TxUnVLErr, SEND_UNSUP_VL_ERR_CNT,
4980 			CNTR_NORMAL),
4981 [C_TX_INVAL_LEN] = TXE32_PORT_CNTR_ELEM(TxInvalLen, SEND_LEN_ERR_CNT,
4982 			CNTR_NORMAL),
4983 [C_TX_MM_LEN_ERR] = TXE32_PORT_CNTR_ELEM(TxMMLenErr, SEND_MAX_MIN_LEN_ERR_CNT,
4984 			CNTR_NORMAL),
4985 [C_TX_UNDERRUN] = TXE32_PORT_CNTR_ELEM(TxUnderrun, SEND_UNDERRUN_CNT,
4986 			CNTR_NORMAL),
4987 [C_TX_FLOW_STALL] = TXE32_PORT_CNTR_ELEM(TxFlowStall, SEND_FLOW_STALL_CNT,
4988 			CNTR_NORMAL),
4989 [C_TX_DROPPED] = TXE32_PORT_CNTR_ELEM(TxDropped, SEND_DROPPED_PKT_CNT,
4990 			CNTR_NORMAL),
4991 [C_TX_HDR_ERR] = TXE32_PORT_CNTR_ELEM(TxHdrErr, SEND_HEADERS_ERR_CNT,
4992 			CNTR_NORMAL),
4993 [C_TX_PKT] = TXE64_PORT_CNTR_ELEM(TxPkt, SEND_DATA_PKT_CNT, CNTR_NORMAL),
4994 [C_TX_WORDS] = TXE64_PORT_CNTR_ELEM(TxWords, SEND_DWORD_CNT, CNTR_NORMAL),
4995 [C_TX_WAIT] = TXE64_PORT_CNTR_ELEM(TxWait, SEND_WAIT_CNT, CNTR_SYNTH),
4996 [C_TX_FLIT_VL] = TXE64_PORT_CNTR_ELEM(TxFlitVL, SEND_DATA_VL0_CNT,
4997 				      CNTR_SYNTH | CNTR_VL),
4998 [C_TX_PKT_VL] = TXE64_PORT_CNTR_ELEM(TxPktVL, SEND_DATA_PKT_VL0_CNT,
4999 				     CNTR_SYNTH | CNTR_VL),
5000 [C_TX_WAIT_VL] = TXE64_PORT_CNTR_ELEM(TxWaitVL, SEND_WAIT_VL0_CNT,
5001 				      CNTR_SYNTH | CNTR_VL),
5002 [C_RX_PKT] = RXE64_PORT_CNTR_ELEM(RxPkt, RCV_DATA_PKT_CNT, CNTR_NORMAL),
5003 [C_RX_WORDS] = RXE64_PORT_CNTR_ELEM(RxWords, RCV_DWORD_CNT, CNTR_NORMAL),
5004 [C_SW_LINK_DOWN] = CNTR_ELEM("SwLinkDown", 0, 0, CNTR_SYNTH | CNTR_32BIT,
5005 			     access_sw_link_dn_cnt),
5006 [C_SW_LINK_UP] = CNTR_ELEM("SwLinkUp", 0, 0, CNTR_SYNTH | CNTR_32BIT,
5007 			   access_sw_link_up_cnt),
5008 [C_SW_UNKNOWN_FRAME] = CNTR_ELEM("UnknownFrame", 0, 0, CNTR_NORMAL,
5009 				 access_sw_unknown_frame_cnt),
5010 [C_SW_XMIT_DSCD] = CNTR_ELEM("XmitDscd", 0, 0, CNTR_SYNTH | CNTR_32BIT,
5011 			     access_sw_xmit_discards),
5012 [C_SW_XMIT_DSCD_VL] = CNTR_ELEM("XmitDscdVl", 0, 0,
5013 				CNTR_SYNTH | CNTR_32BIT | CNTR_VL,
5014 				access_sw_xmit_discards),
5015 [C_SW_XMIT_CSTR_ERR] = CNTR_ELEM("XmitCstrErr", 0, 0, CNTR_SYNTH,
5016 				 access_xmit_constraint_errs),
5017 [C_SW_RCV_CSTR_ERR] = CNTR_ELEM("RcvCstrErr", 0, 0, CNTR_SYNTH,
5018 				access_rcv_constraint_errs),
5019 [C_SW_IBP_LOOP_PKTS] = SW_IBP_CNTR(LoopPkts, loop_pkts),
5020 [C_SW_IBP_RC_RESENDS] = SW_IBP_CNTR(RcResend, rc_resends),
5021 [C_SW_IBP_RNR_NAKS] = SW_IBP_CNTR(RnrNak, rnr_naks),
5022 [C_SW_IBP_OTHER_NAKS] = SW_IBP_CNTR(OtherNak, other_naks),
5023 [C_SW_IBP_RC_TIMEOUTS] = SW_IBP_CNTR(RcTimeOut, rc_timeouts),
5024 [C_SW_IBP_PKT_DROPS] = SW_IBP_CNTR(PktDrop, pkt_drops),
5025 [C_SW_IBP_DMA_WAIT] = SW_IBP_CNTR(DmaWait, dmawait),
5026 [C_SW_IBP_RC_SEQNAK] = SW_IBP_CNTR(RcSeqNak, rc_seqnak),
5027 [C_SW_IBP_RC_DUPREQ] = SW_IBP_CNTR(RcDupRew, rc_dupreq),
5028 [C_SW_IBP_RDMA_SEQ] = SW_IBP_CNTR(RdmaSeq, rdma_seq),
5029 [C_SW_IBP_UNALIGNED] = SW_IBP_CNTR(Unaligned, unaligned),
5030 [C_SW_IBP_SEQ_NAK] = SW_IBP_CNTR(SeqNak, seq_naks),
5031 [C_SW_CPU_RC_ACKS] = CNTR_ELEM("RcAcks", 0, 0, CNTR_NORMAL,
5032 			       access_sw_cpu_rc_acks),
5033 [C_SW_CPU_RC_QACKS] = CNTR_ELEM("RcQacks", 0, 0, CNTR_NORMAL,
5034 				access_sw_cpu_rc_qacks),
5035 [C_SW_CPU_RC_DELAYED_COMP] = CNTR_ELEM("RcDelayComp", 0, 0, CNTR_NORMAL,
5036 				       access_sw_cpu_rc_delayed_comp),
5037 [OVR_LBL(0)] = OVR_ELM(0), [OVR_LBL(1)] = OVR_ELM(1),
5038 [OVR_LBL(2)] = OVR_ELM(2), [OVR_LBL(3)] = OVR_ELM(3),
5039 [OVR_LBL(4)] = OVR_ELM(4), [OVR_LBL(5)] = OVR_ELM(5),
5040 [OVR_LBL(6)] = OVR_ELM(6), [OVR_LBL(7)] = OVR_ELM(7),
5041 [OVR_LBL(8)] = OVR_ELM(8), [OVR_LBL(9)] = OVR_ELM(9),
5042 [OVR_LBL(10)] = OVR_ELM(10), [OVR_LBL(11)] = OVR_ELM(11),
5043 [OVR_LBL(12)] = OVR_ELM(12), [OVR_LBL(13)] = OVR_ELM(13),
5044 [OVR_LBL(14)] = OVR_ELM(14), [OVR_LBL(15)] = OVR_ELM(15),
5045 [OVR_LBL(16)] = OVR_ELM(16), [OVR_LBL(17)] = OVR_ELM(17),
5046 [OVR_LBL(18)] = OVR_ELM(18), [OVR_LBL(19)] = OVR_ELM(19),
5047 [OVR_LBL(20)] = OVR_ELM(20), [OVR_LBL(21)] = OVR_ELM(21),
5048 [OVR_LBL(22)] = OVR_ELM(22), [OVR_LBL(23)] = OVR_ELM(23),
5049 [OVR_LBL(24)] = OVR_ELM(24), [OVR_LBL(25)] = OVR_ELM(25),
5050 [OVR_LBL(26)] = OVR_ELM(26), [OVR_LBL(27)] = OVR_ELM(27),
5051 [OVR_LBL(28)] = OVR_ELM(28), [OVR_LBL(29)] = OVR_ELM(29),
5052 [OVR_LBL(30)] = OVR_ELM(30), [OVR_LBL(31)] = OVR_ELM(31),
5053 [OVR_LBL(32)] = OVR_ELM(32), [OVR_LBL(33)] = OVR_ELM(33),
5054 [OVR_LBL(34)] = OVR_ELM(34), [OVR_LBL(35)] = OVR_ELM(35),
5055 [OVR_LBL(36)] = OVR_ELM(36), [OVR_LBL(37)] = OVR_ELM(37),
5056 [OVR_LBL(38)] = OVR_ELM(38), [OVR_LBL(39)] = OVR_ELM(39),
5057 [OVR_LBL(40)] = OVR_ELM(40), [OVR_LBL(41)] = OVR_ELM(41),
5058 [OVR_LBL(42)] = OVR_ELM(42), [OVR_LBL(43)] = OVR_ELM(43),
5059 [OVR_LBL(44)] = OVR_ELM(44), [OVR_LBL(45)] = OVR_ELM(45),
5060 [OVR_LBL(46)] = OVR_ELM(46), [OVR_LBL(47)] = OVR_ELM(47),
5061 [OVR_LBL(48)] = OVR_ELM(48), [OVR_LBL(49)] = OVR_ELM(49),
5062 [OVR_LBL(50)] = OVR_ELM(50), [OVR_LBL(51)] = OVR_ELM(51),
5063 [OVR_LBL(52)] = OVR_ELM(52), [OVR_LBL(53)] = OVR_ELM(53),
5064 [OVR_LBL(54)] = OVR_ELM(54), [OVR_LBL(55)] = OVR_ELM(55),
5065 [OVR_LBL(56)] = OVR_ELM(56), [OVR_LBL(57)] = OVR_ELM(57),
5066 [OVR_LBL(58)] = OVR_ELM(58), [OVR_LBL(59)] = OVR_ELM(59),
5067 [OVR_LBL(60)] = OVR_ELM(60), [OVR_LBL(61)] = OVR_ELM(61),
5068 [OVR_LBL(62)] = OVR_ELM(62), [OVR_LBL(63)] = OVR_ELM(63),
5069 [OVR_LBL(64)] = OVR_ELM(64), [OVR_LBL(65)] = OVR_ELM(65),
5070 [OVR_LBL(66)] = OVR_ELM(66), [OVR_LBL(67)] = OVR_ELM(67),
5071 [OVR_LBL(68)] = OVR_ELM(68), [OVR_LBL(69)] = OVR_ELM(69),
5072 [OVR_LBL(70)] = OVR_ELM(70), [OVR_LBL(71)] = OVR_ELM(71),
5073 [OVR_LBL(72)] = OVR_ELM(72), [OVR_LBL(73)] = OVR_ELM(73),
5074 [OVR_LBL(74)] = OVR_ELM(74), [OVR_LBL(75)] = OVR_ELM(75),
5075 [OVR_LBL(76)] = OVR_ELM(76), [OVR_LBL(77)] = OVR_ELM(77),
5076 [OVR_LBL(78)] = OVR_ELM(78), [OVR_LBL(79)] = OVR_ELM(79),
5077 [OVR_LBL(80)] = OVR_ELM(80), [OVR_LBL(81)] = OVR_ELM(81),
5078 [OVR_LBL(82)] = OVR_ELM(82), [OVR_LBL(83)] = OVR_ELM(83),
5079 [OVR_LBL(84)] = OVR_ELM(84), [OVR_LBL(85)] = OVR_ELM(85),
5080 [OVR_LBL(86)] = OVR_ELM(86), [OVR_LBL(87)] = OVR_ELM(87),
5081 [OVR_LBL(88)] = OVR_ELM(88), [OVR_LBL(89)] = OVR_ELM(89),
5082 [OVR_LBL(90)] = OVR_ELM(90), [OVR_LBL(91)] = OVR_ELM(91),
5083 [OVR_LBL(92)] = OVR_ELM(92), [OVR_LBL(93)] = OVR_ELM(93),
5084 [OVR_LBL(94)] = OVR_ELM(94), [OVR_LBL(95)] = OVR_ELM(95),
5085 [OVR_LBL(96)] = OVR_ELM(96), [OVR_LBL(97)] = OVR_ELM(97),
5086 [OVR_LBL(98)] = OVR_ELM(98), [OVR_LBL(99)] = OVR_ELM(99),
5087 [OVR_LBL(100)] = OVR_ELM(100), [OVR_LBL(101)] = OVR_ELM(101),
5088 [OVR_LBL(102)] = OVR_ELM(102), [OVR_LBL(103)] = OVR_ELM(103),
5089 [OVR_LBL(104)] = OVR_ELM(104), [OVR_LBL(105)] = OVR_ELM(105),
5090 [OVR_LBL(106)] = OVR_ELM(106), [OVR_LBL(107)] = OVR_ELM(107),
5091 [OVR_LBL(108)] = OVR_ELM(108), [OVR_LBL(109)] = OVR_ELM(109),
5092 [OVR_LBL(110)] = OVR_ELM(110), [OVR_LBL(111)] = OVR_ELM(111),
5093 [OVR_LBL(112)] = OVR_ELM(112), [OVR_LBL(113)] = OVR_ELM(113),
5094 [OVR_LBL(114)] = OVR_ELM(114), [OVR_LBL(115)] = OVR_ELM(115),
5095 [OVR_LBL(116)] = OVR_ELM(116), [OVR_LBL(117)] = OVR_ELM(117),
5096 [OVR_LBL(118)] = OVR_ELM(118), [OVR_LBL(119)] = OVR_ELM(119),
5097 [OVR_LBL(120)] = OVR_ELM(120), [OVR_LBL(121)] = OVR_ELM(121),
5098 [OVR_LBL(122)] = OVR_ELM(122), [OVR_LBL(123)] = OVR_ELM(123),
5099 [OVR_LBL(124)] = OVR_ELM(124), [OVR_LBL(125)] = OVR_ELM(125),
5100 [OVR_LBL(126)] = OVR_ELM(126), [OVR_LBL(127)] = OVR_ELM(127),
5101 [OVR_LBL(128)] = OVR_ELM(128), [OVR_LBL(129)] = OVR_ELM(129),
5102 [OVR_LBL(130)] = OVR_ELM(130), [OVR_LBL(131)] = OVR_ELM(131),
5103 [OVR_LBL(132)] = OVR_ELM(132), [OVR_LBL(133)] = OVR_ELM(133),
5104 [OVR_LBL(134)] = OVR_ELM(134), [OVR_LBL(135)] = OVR_ELM(135),
5105 [OVR_LBL(136)] = OVR_ELM(136), [OVR_LBL(137)] = OVR_ELM(137),
5106 [OVR_LBL(138)] = OVR_ELM(138), [OVR_LBL(139)] = OVR_ELM(139),
5107 [OVR_LBL(140)] = OVR_ELM(140), [OVR_LBL(141)] = OVR_ELM(141),
5108 [OVR_LBL(142)] = OVR_ELM(142), [OVR_LBL(143)] = OVR_ELM(143),
5109 [OVR_LBL(144)] = OVR_ELM(144), [OVR_LBL(145)] = OVR_ELM(145),
5110 [OVR_LBL(146)] = OVR_ELM(146), [OVR_LBL(147)] = OVR_ELM(147),
5111 [OVR_LBL(148)] = OVR_ELM(148), [OVR_LBL(149)] = OVR_ELM(149),
5112 [OVR_LBL(150)] = OVR_ELM(150), [OVR_LBL(151)] = OVR_ELM(151),
5113 [OVR_LBL(152)] = OVR_ELM(152), [OVR_LBL(153)] = OVR_ELM(153),
5114 [OVR_LBL(154)] = OVR_ELM(154), [OVR_LBL(155)] = OVR_ELM(155),
5115 [OVR_LBL(156)] = OVR_ELM(156), [OVR_LBL(157)] = OVR_ELM(157),
5116 [OVR_LBL(158)] = OVR_ELM(158), [OVR_LBL(159)] = OVR_ELM(159),
5117 };
5118 
5119 /* ======================================================================== */
5120 
5121 /* return true if this is chip revision revision a */
5122 int is_ax(struct hfi1_devdata *dd)
5123 {
5124 	u8 chip_rev_minor =
5125 		dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT
5126 			& CCE_REVISION_CHIP_REV_MINOR_MASK;
5127 	return (chip_rev_minor & 0xf0) == 0;
5128 }
5129 
5130 /* return true if this is chip revision revision b */
5131 int is_bx(struct hfi1_devdata *dd)
5132 {
5133 	u8 chip_rev_minor =
5134 		dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT
5135 			& CCE_REVISION_CHIP_REV_MINOR_MASK;
5136 	return (chip_rev_minor & 0xF0) == 0x10;
5137 }
5138 
5139 /*
5140  * Append string s to buffer buf.  Arguments curp and len are the current
5141  * position and remaining length, respectively.
5142  *
5143  * return 0 on success, 1 on out of room
5144  */
5145 static int append_str(char *buf, char **curp, int *lenp, const char *s)
5146 {
5147 	char *p = *curp;
5148 	int len = *lenp;
5149 	int result = 0; /* success */
5150 	char c;
5151 
5152 	/* add a comma, if first in the buffer */
5153 	if (p != buf) {
5154 		if (len == 0) {
5155 			result = 1; /* out of room */
5156 			goto done;
5157 		}
5158 		*p++ = ',';
5159 		len--;
5160 	}
5161 
5162 	/* copy the string */
5163 	while ((c = *s++) != 0) {
5164 		if (len == 0) {
5165 			result = 1; /* out of room */
5166 			goto done;
5167 		}
5168 		*p++ = c;
5169 		len--;
5170 	}
5171 
5172 done:
5173 	/* write return values */
5174 	*curp = p;
5175 	*lenp = len;
5176 
5177 	return result;
5178 }
5179 
5180 /*
5181  * Using the given flag table, print a comma separated string into
5182  * the buffer.  End in '*' if the buffer is too short.
5183  */
5184 static char *flag_string(char *buf, int buf_len, u64 flags,
5185 			 struct flag_table *table, int table_size)
5186 {
5187 	char extra[32];
5188 	char *p = buf;
5189 	int len = buf_len;
5190 	int no_room = 0;
5191 	int i;
5192 
5193 	/* make sure there is at least 2 so we can form "*" */
5194 	if (len < 2)
5195 		return "";
5196 
5197 	len--;	/* leave room for a nul */
5198 	for (i = 0; i < table_size; i++) {
5199 		if (flags & table[i].flag) {
5200 			no_room = append_str(buf, &p, &len, table[i].str);
5201 			if (no_room)
5202 				break;
5203 			flags &= ~table[i].flag;
5204 		}
5205 	}
5206 
5207 	/* any undocumented bits left? */
5208 	if (!no_room && flags) {
5209 		snprintf(extra, sizeof(extra), "bits 0x%llx", flags);
5210 		no_room = append_str(buf, &p, &len, extra);
5211 	}
5212 
5213 	/* add * if ran out of room */
5214 	if (no_room) {
5215 		/* may need to back up to add space for a '*' */
5216 		if (len == 0)
5217 			--p;
5218 		*p++ = '*';
5219 	}
5220 
5221 	/* add final nul - space already allocated above */
5222 	*p = 0;
5223 	return buf;
5224 }
5225 
5226 /* first 8 CCE error interrupt source names */
5227 static const char * const cce_misc_names[] = {
5228 	"CceErrInt",		/* 0 */
5229 	"RxeErrInt",		/* 1 */
5230 	"MiscErrInt",		/* 2 */
5231 	"Reserved3",		/* 3 */
5232 	"PioErrInt",		/* 4 */
5233 	"SDmaErrInt",		/* 5 */
5234 	"EgressErrInt",		/* 6 */
5235 	"TxeErrInt"		/* 7 */
5236 };
5237 
5238 /*
5239  * Return the miscellaneous error interrupt name.
5240  */
5241 static char *is_misc_err_name(char *buf, size_t bsize, unsigned int source)
5242 {
5243 	if (source < ARRAY_SIZE(cce_misc_names))
5244 		strncpy(buf, cce_misc_names[source], bsize);
5245 	else
5246 		snprintf(buf, bsize, "Reserved%u",
5247 			 source + IS_GENERAL_ERR_START);
5248 
5249 	return buf;
5250 }
5251 
5252 /*
5253  * Return the SDMA engine error interrupt name.
5254  */
5255 static char *is_sdma_eng_err_name(char *buf, size_t bsize, unsigned int source)
5256 {
5257 	snprintf(buf, bsize, "SDmaEngErrInt%u", source);
5258 	return buf;
5259 }
5260 
5261 /*
5262  * Return the send context error interrupt name.
5263  */
5264 static char *is_sendctxt_err_name(char *buf, size_t bsize, unsigned int source)
5265 {
5266 	snprintf(buf, bsize, "SendCtxtErrInt%u", source);
5267 	return buf;
5268 }
5269 
5270 static const char * const various_names[] = {
5271 	"PbcInt",
5272 	"GpioAssertInt",
5273 	"Qsfp1Int",
5274 	"Qsfp2Int",
5275 	"TCritInt"
5276 };
5277 
5278 /*
5279  * Return the various interrupt name.
5280  */
5281 static char *is_various_name(char *buf, size_t bsize, unsigned int source)
5282 {
5283 	if (source < ARRAY_SIZE(various_names))
5284 		strncpy(buf, various_names[source], bsize);
5285 	else
5286 		snprintf(buf, bsize, "Reserved%u", source + IS_VARIOUS_START);
5287 	return buf;
5288 }
5289 
5290 /*
5291  * Return the DC interrupt name.
5292  */
5293 static char *is_dc_name(char *buf, size_t bsize, unsigned int source)
5294 {
5295 	static const char * const dc_int_names[] = {
5296 		"common",
5297 		"lcb",
5298 		"8051",
5299 		"lbm"	/* local block merge */
5300 	};
5301 
5302 	if (source < ARRAY_SIZE(dc_int_names))
5303 		snprintf(buf, bsize, "dc_%s_int", dc_int_names[source]);
5304 	else
5305 		snprintf(buf, bsize, "DCInt%u", source);
5306 	return buf;
5307 }
5308 
5309 static const char * const sdma_int_names[] = {
5310 	"SDmaInt",
5311 	"SdmaIdleInt",
5312 	"SdmaProgressInt",
5313 };
5314 
5315 /*
5316  * Return the SDMA engine interrupt name.
5317  */
5318 static char *is_sdma_eng_name(char *buf, size_t bsize, unsigned int source)
5319 {
5320 	/* what interrupt */
5321 	unsigned int what  = source / TXE_NUM_SDMA_ENGINES;
5322 	/* which engine */
5323 	unsigned int which = source % TXE_NUM_SDMA_ENGINES;
5324 
5325 	if (likely(what < 3))
5326 		snprintf(buf, bsize, "%s%u", sdma_int_names[what], which);
5327 	else
5328 		snprintf(buf, bsize, "Invalid SDMA interrupt %u", source);
5329 	return buf;
5330 }
5331 
5332 /*
5333  * Return the receive available interrupt name.
5334  */
5335 static char *is_rcv_avail_name(char *buf, size_t bsize, unsigned int source)
5336 {
5337 	snprintf(buf, bsize, "RcvAvailInt%u", source);
5338 	return buf;
5339 }
5340 
5341 /*
5342  * Return the receive urgent interrupt name.
5343  */
5344 static char *is_rcv_urgent_name(char *buf, size_t bsize, unsigned int source)
5345 {
5346 	snprintf(buf, bsize, "RcvUrgentInt%u", source);
5347 	return buf;
5348 }
5349 
5350 /*
5351  * Return the send credit interrupt name.
5352  */
5353 static char *is_send_credit_name(char *buf, size_t bsize, unsigned int source)
5354 {
5355 	snprintf(buf, bsize, "SendCreditInt%u", source);
5356 	return buf;
5357 }
5358 
5359 /*
5360  * Return the reserved interrupt name.
5361  */
5362 static char *is_reserved_name(char *buf, size_t bsize, unsigned int source)
5363 {
5364 	snprintf(buf, bsize, "Reserved%u", source + IS_RESERVED_START);
5365 	return buf;
5366 }
5367 
5368 static char *cce_err_status_string(char *buf, int buf_len, u64 flags)
5369 {
5370 	return flag_string(buf, buf_len, flags,
5371 			   cce_err_status_flags,
5372 			   ARRAY_SIZE(cce_err_status_flags));
5373 }
5374 
5375 static char *rxe_err_status_string(char *buf, int buf_len, u64 flags)
5376 {
5377 	return flag_string(buf, buf_len, flags,
5378 			   rxe_err_status_flags,
5379 			   ARRAY_SIZE(rxe_err_status_flags));
5380 }
5381 
5382 static char *misc_err_status_string(char *buf, int buf_len, u64 flags)
5383 {
5384 	return flag_string(buf, buf_len, flags, misc_err_status_flags,
5385 			   ARRAY_SIZE(misc_err_status_flags));
5386 }
5387 
5388 static char *pio_err_status_string(char *buf, int buf_len, u64 flags)
5389 {
5390 	return flag_string(buf, buf_len, flags,
5391 			   pio_err_status_flags,
5392 			   ARRAY_SIZE(pio_err_status_flags));
5393 }
5394 
5395 static char *sdma_err_status_string(char *buf, int buf_len, u64 flags)
5396 {
5397 	return flag_string(buf, buf_len, flags,
5398 			   sdma_err_status_flags,
5399 			   ARRAY_SIZE(sdma_err_status_flags));
5400 }
5401 
5402 static char *egress_err_status_string(char *buf, int buf_len, u64 flags)
5403 {
5404 	return flag_string(buf, buf_len, flags,
5405 			   egress_err_status_flags,
5406 			   ARRAY_SIZE(egress_err_status_flags));
5407 }
5408 
5409 static char *egress_err_info_string(char *buf, int buf_len, u64 flags)
5410 {
5411 	return flag_string(buf, buf_len, flags,
5412 			   egress_err_info_flags,
5413 			   ARRAY_SIZE(egress_err_info_flags));
5414 }
5415 
5416 static char *send_err_status_string(char *buf, int buf_len, u64 flags)
5417 {
5418 	return flag_string(buf, buf_len, flags,
5419 			   send_err_status_flags,
5420 			   ARRAY_SIZE(send_err_status_flags));
5421 }
5422 
5423 static void handle_cce_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5424 {
5425 	char buf[96];
5426 	int i = 0;
5427 
5428 	/*
5429 	 * For most these errors, there is nothing that can be done except
5430 	 * report or record it.
5431 	 */
5432 	dd_dev_info(dd, "CCE Error: %s\n",
5433 		    cce_err_status_string(buf, sizeof(buf), reg));
5434 
5435 	if ((reg & CCE_ERR_STATUS_CCE_CLI2_ASYNC_FIFO_PARITY_ERR_SMASK) &&
5436 	    is_ax(dd) && (dd->icode != ICODE_FUNCTIONAL_SIMULATOR)) {
5437 		/* this error requires a manual drop into SPC freeze mode */
5438 		/* then a fix up */
5439 		start_freeze_handling(dd->pport, FREEZE_SELF);
5440 	}
5441 
5442 	for (i = 0; i < NUM_CCE_ERR_STATUS_COUNTERS; i++) {
5443 		if (reg & (1ull << i)) {
5444 			incr_cntr64(&dd->cce_err_status_cnt[i]);
5445 			/* maintain a counter over all cce_err_status errors */
5446 			incr_cntr64(&dd->sw_cce_err_status_aggregate);
5447 		}
5448 	}
5449 }
5450 
5451 /*
5452  * Check counters for receive errors that do not have an interrupt
5453  * associated with them.
5454  */
5455 #define RCVERR_CHECK_TIME 10
5456 static void update_rcverr_timer(unsigned long opaque)
5457 {
5458 	struct hfi1_devdata *dd = (struct hfi1_devdata *)opaque;
5459 	struct hfi1_pportdata *ppd = dd->pport;
5460 	u32 cur_ovfl_cnt = read_dev_cntr(dd, C_RCV_OVF, CNTR_INVALID_VL);
5461 
5462 	if (dd->rcv_ovfl_cnt < cur_ovfl_cnt &&
5463 	    ppd->port_error_action & OPA_PI_MASK_EX_BUFFER_OVERRUN) {
5464 		dd_dev_info(dd, "%s: PortErrorAction bounce\n", __func__);
5465 		set_link_down_reason(
5466 		ppd, OPA_LINKDOWN_REASON_EXCESSIVE_BUFFER_OVERRUN, 0,
5467 		OPA_LINKDOWN_REASON_EXCESSIVE_BUFFER_OVERRUN);
5468 		queue_work(ppd->hfi1_wq, &ppd->link_bounce_work);
5469 	}
5470 	dd->rcv_ovfl_cnt = (u32)cur_ovfl_cnt;
5471 
5472 	mod_timer(&dd->rcverr_timer, jiffies + HZ * RCVERR_CHECK_TIME);
5473 }
5474 
5475 static int init_rcverr(struct hfi1_devdata *dd)
5476 {
5477 	setup_timer(&dd->rcverr_timer, update_rcverr_timer, (unsigned long)dd);
5478 	/* Assume the hardware counter has been reset */
5479 	dd->rcv_ovfl_cnt = 0;
5480 	return mod_timer(&dd->rcverr_timer, jiffies + HZ * RCVERR_CHECK_TIME);
5481 }
5482 
5483 static void free_rcverr(struct hfi1_devdata *dd)
5484 {
5485 	if (dd->rcverr_timer.data)
5486 		del_timer_sync(&dd->rcverr_timer);
5487 	dd->rcverr_timer.data = 0;
5488 }
5489 
5490 static void handle_rxe_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5491 {
5492 	char buf[96];
5493 	int i = 0;
5494 
5495 	dd_dev_info(dd, "Receive Error: %s\n",
5496 		    rxe_err_status_string(buf, sizeof(buf), reg));
5497 
5498 	if (reg & ALL_RXE_FREEZE_ERR) {
5499 		int flags = 0;
5500 
5501 		/*
5502 		 * Freeze mode recovery is disabled for the errors
5503 		 * in RXE_FREEZE_ABORT_MASK
5504 		 */
5505 		if (is_ax(dd) && (reg & RXE_FREEZE_ABORT_MASK))
5506 			flags = FREEZE_ABORT;
5507 
5508 		start_freeze_handling(dd->pport, flags);
5509 	}
5510 
5511 	for (i = 0; i < NUM_RCV_ERR_STATUS_COUNTERS; i++) {
5512 		if (reg & (1ull << i))
5513 			incr_cntr64(&dd->rcv_err_status_cnt[i]);
5514 	}
5515 }
5516 
5517 static void handle_misc_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5518 {
5519 	char buf[96];
5520 	int i = 0;
5521 
5522 	dd_dev_info(dd, "Misc Error: %s",
5523 		    misc_err_status_string(buf, sizeof(buf), reg));
5524 	for (i = 0; i < NUM_MISC_ERR_STATUS_COUNTERS; i++) {
5525 		if (reg & (1ull << i))
5526 			incr_cntr64(&dd->misc_err_status_cnt[i]);
5527 	}
5528 }
5529 
5530 static void handle_pio_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5531 {
5532 	char buf[96];
5533 	int i = 0;
5534 
5535 	dd_dev_info(dd, "PIO Error: %s\n",
5536 		    pio_err_status_string(buf, sizeof(buf), reg));
5537 
5538 	if (reg & ALL_PIO_FREEZE_ERR)
5539 		start_freeze_handling(dd->pport, 0);
5540 
5541 	for (i = 0; i < NUM_SEND_PIO_ERR_STATUS_COUNTERS; i++) {
5542 		if (reg & (1ull << i))
5543 			incr_cntr64(&dd->send_pio_err_status_cnt[i]);
5544 	}
5545 }
5546 
5547 static void handle_sdma_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5548 {
5549 	char buf[96];
5550 	int i = 0;
5551 
5552 	dd_dev_info(dd, "SDMA Error: %s\n",
5553 		    sdma_err_status_string(buf, sizeof(buf), reg));
5554 
5555 	if (reg & ALL_SDMA_FREEZE_ERR)
5556 		start_freeze_handling(dd->pport, 0);
5557 
5558 	for (i = 0; i < NUM_SEND_DMA_ERR_STATUS_COUNTERS; i++) {
5559 		if (reg & (1ull << i))
5560 			incr_cntr64(&dd->send_dma_err_status_cnt[i]);
5561 	}
5562 }
5563 
5564 static inline void __count_port_discards(struct hfi1_pportdata *ppd)
5565 {
5566 	incr_cntr64(&ppd->port_xmit_discards);
5567 }
5568 
5569 static void count_port_inactive(struct hfi1_devdata *dd)
5570 {
5571 	__count_port_discards(dd->pport);
5572 }
5573 
5574 /*
5575  * We have had a "disallowed packet" error during egress. Determine the
5576  * integrity check which failed, and update relevant error counter, etc.
5577  *
5578  * Note that the SEND_EGRESS_ERR_INFO register has only a single
5579  * bit of state per integrity check, and so we can miss the reason for an
5580  * egress error if more than one packet fails the same integrity check
5581  * since we cleared the corresponding bit in SEND_EGRESS_ERR_INFO.
5582  */
5583 static void handle_send_egress_err_info(struct hfi1_devdata *dd,
5584 					int vl)
5585 {
5586 	struct hfi1_pportdata *ppd = dd->pport;
5587 	u64 src = read_csr(dd, SEND_EGRESS_ERR_SOURCE); /* read first */
5588 	u64 info = read_csr(dd, SEND_EGRESS_ERR_INFO);
5589 	char buf[96];
5590 
5591 	/* clear down all observed info as quickly as possible after read */
5592 	write_csr(dd, SEND_EGRESS_ERR_INFO, info);
5593 
5594 	dd_dev_info(dd,
5595 		    "Egress Error Info: 0x%llx, %s Egress Error Src 0x%llx\n",
5596 		    info, egress_err_info_string(buf, sizeof(buf), info), src);
5597 
5598 	/* Eventually add other counters for each bit */
5599 	if (info & PORT_DISCARD_EGRESS_ERRS) {
5600 		int weight, i;
5601 
5602 		/*
5603 		 * Count all applicable bits as individual errors and
5604 		 * attribute them to the packet that triggered this handler.
5605 		 * This may not be completely accurate due to limitations
5606 		 * on the available hardware error information.  There is
5607 		 * a single information register and any number of error
5608 		 * packets may have occurred and contributed to it before
5609 		 * this routine is called.  This means that:
5610 		 * a) If multiple packets with the same error occur before
5611 		 *    this routine is called, earlier packets are missed.
5612 		 *    There is only a single bit for each error type.
5613 		 * b) Errors may not be attributed to the correct VL.
5614 		 *    The driver is attributing all bits in the info register
5615 		 *    to the packet that triggered this call, but bits
5616 		 *    could be an accumulation of different packets with
5617 		 *    different VLs.
5618 		 * c) A single error packet may have multiple counts attached
5619 		 *    to it.  There is no way for the driver to know if
5620 		 *    multiple bits set in the info register are due to a
5621 		 *    single packet or multiple packets.  The driver assumes
5622 		 *    multiple packets.
5623 		 */
5624 		weight = hweight64(info & PORT_DISCARD_EGRESS_ERRS);
5625 		for (i = 0; i < weight; i++) {
5626 			__count_port_discards(ppd);
5627 			if (vl >= 0 && vl < TXE_NUM_DATA_VL)
5628 				incr_cntr64(&ppd->port_xmit_discards_vl[vl]);
5629 			else if (vl == 15)
5630 				incr_cntr64(&ppd->port_xmit_discards_vl
5631 					    [C_VL_15]);
5632 		}
5633 	}
5634 }
5635 
5636 /*
5637  * Input value is a bit position within the SEND_EGRESS_ERR_STATUS
5638  * register. Does it represent a 'port inactive' error?
5639  */
5640 static inline int port_inactive_err(u64 posn)
5641 {
5642 	return (posn >= SEES(TX_LINKDOWN) &&
5643 		posn <= SEES(TX_INCORRECT_LINK_STATE));
5644 }
5645 
5646 /*
5647  * Input value is a bit position within the SEND_EGRESS_ERR_STATUS
5648  * register. Does it represent a 'disallowed packet' error?
5649  */
5650 static inline int disallowed_pkt_err(int posn)
5651 {
5652 	return (posn >= SEES(TX_SDMA0_DISALLOWED_PACKET) &&
5653 		posn <= SEES(TX_SDMA15_DISALLOWED_PACKET));
5654 }
5655 
5656 /*
5657  * Input value is a bit position of one of the SDMA engine disallowed
5658  * packet errors.  Return which engine.  Use of this must be guarded by
5659  * disallowed_pkt_err().
5660  */
5661 static inline int disallowed_pkt_engine(int posn)
5662 {
5663 	return posn - SEES(TX_SDMA0_DISALLOWED_PACKET);
5664 }
5665 
5666 /*
5667  * Translate an SDMA engine to a VL.  Return -1 if the tranlation cannot
5668  * be done.
5669  */
5670 static int engine_to_vl(struct hfi1_devdata *dd, int engine)
5671 {
5672 	struct sdma_vl_map *m;
5673 	int vl;
5674 
5675 	/* range check */
5676 	if (engine < 0 || engine >= TXE_NUM_SDMA_ENGINES)
5677 		return -1;
5678 
5679 	rcu_read_lock();
5680 	m = rcu_dereference(dd->sdma_map);
5681 	vl = m->engine_to_vl[engine];
5682 	rcu_read_unlock();
5683 
5684 	return vl;
5685 }
5686 
5687 /*
5688  * Translate the send context (sofware index) into a VL.  Return -1 if the
5689  * translation cannot be done.
5690  */
5691 static int sc_to_vl(struct hfi1_devdata *dd, int sw_index)
5692 {
5693 	struct send_context_info *sci;
5694 	struct send_context *sc;
5695 	int i;
5696 
5697 	sci = &dd->send_contexts[sw_index];
5698 
5699 	/* there is no information for user (PSM) and ack contexts */
5700 	if ((sci->type != SC_KERNEL) && (sci->type != SC_VL15))
5701 		return -1;
5702 
5703 	sc = sci->sc;
5704 	if (!sc)
5705 		return -1;
5706 	if (dd->vld[15].sc == sc)
5707 		return 15;
5708 	for (i = 0; i < num_vls; i++)
5709 		if (dd->vld[i].sc == sc)
5710 			return i;
5711 
5712 	return -1;
5713 }
5714 
5715 static void handle_egress_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5716 {
5717 	u64 reg_copy = reg, handled = 0;
5718 	char buf[96];
5719 	int i = 0;
5720 
5721 	if (reg & ALL_TXE_EGRESS_FREEZE_ERR)
5722 		start_freeze_handling(dd->pport, 0);
5723 	else if (is_ax(dd) &&
5724 		 (reg & SEND_EGRESS_ERR_STATUS_TX_CREDIT_RETURN_VL_ERR_SMASK) &&
5725 		 (dd->icode != ICODE_FUNCTIONAL_SIMULATOR))
5726 		start_freeze_handling(dd->pport, 0);
5727 
5728 	while (reg_copy) {
5729 		int posn = fls64(reg_copy);
5730 		/* fls64() returns a 1-based offset, we want it zero based */
5731 		int shift = posn - 1;
5732 		u64 mask = 1ULL << shift;
5733 
5734 		if (port_inactive_err(shift)) {
5735 			count_port_inactive(dd);
5736 			handled |= mask;
5737 		} else if (disallowed_pkt_err(shift)) {
5738 			int vl = engine_to_vl(dd, disallowed_pkt_engine(shift));
5739 
5740 			handle_send_egress_err_info(dd, vl);
5741 			handled |= mask;
5742 		}
5743 		reg_copy &= ~mask;
5744 	}
5745 
5746 	reg &= ~handled;
5747 
5748 	if (reg)
5749 		dd_dev_info(dd, "Egress Error: %s\n",
5750 			    egress_err_status_string(buf, sizeof(buf), reg));
5751 
5752 	for (i = 0; i < NUM_SEND_EGRESS_ERR_STATUS_COUNTERS; i++) {
5753 		if (reg & (1ull << i))
5754 			incr_cntr64(&dd->send_egress_err_status_cnt[i]);
5755 	}
5756 }
5757 
5758 static void handle_txe_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5759 {
5760 	char buf[96];
5761 	int i = 0;
5762 
5763 	dd_dev_info(dd, "Send Error: %s\n",
5764 		    send_err_status_string(buf, sizeof(buf), reg));
5765 
5766 	for (i = 0; i < NUM_SEND_ERR_STATUS_COUNTERS; i++) {
5767 		if (reg & (1ull << i))
5768 			incr_cntr64(&dd->send_err_status_cnt[i]);
5769 	}
5770 }
5771 
5772 /*
5773  * The maximum number of times the error clear down will loop before
5774  * blocking a repeating error.  This value is arbitrary.
5775  */
5776 #define MAX_CLEAR_COUNT 20
5777 
5778 /*
5779  * Clear and handle an error register.  All error interrupts are funneled
5780  * through here to have a central location to correctly handle single-
5781  * or multi-shot errors.
5782  *
5783  * For non per-context registers, call this routine with a context value
5784  * of 0 so the per-context offset is zero.
5785  *
5786  * If the handler loops too many times, assume that something is wrong
5787  * and can't be fixed, so mask the error bits.
5788  */
5789 static void interrupt_clear_down(struct hfi1_devdata *dd,
5790 				 u32 context,
5791 				 const struct err_reg_info *eri)
5792 {
5793 	u64 reg;
5794 	u32 count;
5795 
5796 	/* read in a loop until no more errors are seen */
5797 	count = 0;
5798 	while (1) {
5799 		reg = read_kctxt_csr(dd, context, eri->status);
5800 		if (reg == 0)
5801 			break;
5802 		write_kctxt_csr(dd, context, eri->clear, reg);
5803 		if (likely(eri->handler))
5804 			eri->handler(dd, context, reg);
5805 		count++;
5806 		if (count > MAX_CLEAR_COUNT) {
5807 			u64 mask;
5808 
5809 			dd_dev_err(dd, "Repeating %s bits 0x%llx - masking\n",
5810 				   eri->desc, reg);
5811 			/*
5812 			 * Read-modify-write so any other masked bits
5813 			 * remain masked.
5814 			 */
5815 			mask = read_kctxt_csr(dd, context, eri->mask);
5816 			mask &= ~reg;
5817 			write_kctxt_csr(dd, context, eri->mask, mask);
5818 			break;
5819 		}
5820 	}
5821 }
5822 
5823 /*
5824  * CCE block "misc" interrupt.  Source is < 16.
5825  */
5826 static void is_misc_err_int(struct hfi1_devdata *dd, unsigned int source)
5827 {
5828 	const struct err_reg_info *eri = &misc_errs[source];
5829 
5830 	if (eri->handler) {
5831 		interrupt_clear_down(dd, 0, eri);
5832 	} else {
5833 		dd_dev_err(dd, "Unexpected misc interrupt (%u) - reserved\n",
5834 			   source);
5835 	}
5836 }
5837 
5838 static char *send_context_err_status_string(char *buf, int buf_len, u64 flags)
5839 {
5840 	return flag_string(buf, buf_len, flags,
5841 			   sc_err_status_flags,
5842 			   ARRAY_SIZE(sc_err_status_flags));
5843 }
5844 
5845 /*
5846  * Send context error interrupt.  Source (hw_context) is < 160.
5847  *
5848  * All send context errors cause the send context to halt.  The normal
5849  * clear-down mechanism cannot be used because we cannot clear the
5850  * error bits until several other long-running items are done first.
5851  * This is OK because with the context halted, nothing else is going
5852  * to happen on it anyway.
5853  */
5854 static void is_sendctxt_err_int(struct hfi1_devdata *dd,
5855 				unsigned int hw_context)
5856 {
5857 	struct send_context_info *sci;
5858 	struct send_context *sc;
5859 	char flags[96];
5860 	u64 status;
5861 	u32 sw_index;
5862 	int i = 0;
5863 
5864 	sw_index = dd->hw_to_sw[hw_context];
5865 	if (sw_index >= dd->num_send_contexts) {
5866 		dd_dev_err(dd,
5867 			   "out of range sw index %u for send context %u\n",
5868 			   sw_index, hw_context);
5869 		return;
5870 	}
5871 	sci = &dd->send_contexts[sw_index];
5872 	sc = sci->sc;
5873 	if (!sc) {
5874 		dd_dev_err(dd, "%s: context %u(%u): no sc?\n", __func__,
5875 			   sw_index, hw_context);
5876 		return;
5877 	}
5878 
5879 	/* tell the software that a halt has begun */
5880 	sc_stop(sc, SCF_HALTED);
5881 
5882 	status = read_kctxt_csr(dd, hw_context, SEND_CTXT_ERR_STATUS);
5883 
5884 	dd_dev_info(dd, "Send Context %u(%u) Error: %s\n", sw_index, hw_context,
5885 		    send_context_err_status_string(flags, sizeof(flags),
5886 						   status));
5887 
5888 	if (status & SEND_CTXT_ERR_STATUS_PIO_DISALLOWED_PACKET_ERR_SMASK)
5889 		handle_send_egress_err_info(dd, sc_to_vl(dd, sw_index));
5890 
5891 	/*
5892 	 * Automatically restart halted kernel contexts out of interrupt
5893 	 * context.  User contexts must ask the driver to restart the context.
5894 	 */
5895 	if (sc->type != SC_USER)
5896 		queue_work(dd->pport->hfi1_wq, &sc->halt_work);
5897 
5898 	/*
5899 	 * Update the counters for the corresponding status bits.
5900 	 * Note that these particular counters are aggregated over all
5901 	 * 160 contexts.
5902 	 */
5903 	for (i = 0; i < NUM_SEND_CTXT_ERR_STATUS_COUNTERS; i++) {
5904 		if (status & (1ull << i))
5905 			incr_cntr64(&dd->sw_ctxt_err_status_cnt[i]);
5906 	}
5907 }
5908 
5909 static void handle_sdma_eng_err(struct hfi1_devdata *dd,
5910 				unsigned int source, u64 status)
5911 {
5912 	struct sdma_engine *sde;
5913 	int i = 0;
5914 
5915 	sde = &dd->per_sdma[source];
5916 #ifdef CONFIG_SDMA_VERBOSITY
5917 	dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
5918 		   slashstrip(__FILE__), __LINE__, __func__);
5919 	dd_dev_err(sde->dd, "CONFIG SDMA(%u) source: %u status 0x%llx\n",
5920 		   sde->this_idx, source, (unsigned long long)status);
5921 #endif
5922 	sde->err_cnt++;
5923 	sdma_engine_error(sde, status);
5924 
5925 	/*
5926 	* Update the counters for the corresponding status bits.
5927 	* Note that these particular counters are aggregated over
5928 	* all 16 DMA engines.
5929 	*/
5930 	for (i = 0; i < NUM_SEND_DMA_ENG_ERR_STATUS_COUNTERS; i++) {
5931 		if (status & (1ull << i))
5932 			incr_cntr64(&dd->sw_send_dma_eng_err_status_cnt[i]);
5933 	}
5934 }
5935 
5936 /*
5937  * CCE block SDMA error interrupt.  Source is < 16.
5938  */
5939 static void is_sdma_eng_err_int(struct hfi1_devdata *dd, unsigned int source)
5940 {
5941 #ifdef CONFIG_SDMA_VERBOSITY
5942 	struct sdma_engine *sde = &dd->per_sdma[source];
5943 
5944 	dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
5945 		   slashstrip(__FILE__), __LINE__, __func__);
5946 	dd_dev_err(dd, "CONFIG SDMA(%u) source: %u\n", sde->this_idx,
5947 		   source);
5948 	sdma_dumpstate(sde);
5949 #endif
5950 	interrupt_clear_down(dd, source, &sdma_eng_err);
5951 }
5952 
5953 /*
5954  * CCE block "various" interrupt.  Source is < 8.
5955  */
5956 static void is_various_int(struct hfi1_devdata *dd, unsigned int source)
5957 {
5958 	const struct err_reg_info *eri = &various_err[source];
5959 
5960 	/*
5961 	 * TCritInt cannot go through interrupt_clear_down()
5962 	 * because it is not a second tier interrupt. The handler
5963 	 * should be called directly.
5964 	 */
5965 	if (source == TCRIT_INT_SOURCE)
5966 		handle_temp_err(dd);
5967 	else if (eri->handler)
5968 		interrupt_clear_down(dd, 0, eri);
5969 	else
5970 		dd_dev_info(dd,
5971 			    "%s: Unimplemented/reserved interrupt %d\n",
5972 			    __func__, source);
5973 }
5974 
5975 static void handle_qsfp_int(struct hfi1_devdata *dd, u32 src_ctx, u64 reg)
5976 {
5977 	/* src_ctx is always zero */
5978 	struct hfi1_pportdata *ppd = dd->pport;
5979 	unsigned long flags;
5980 	u64 qsfp_int_mgmt = (u64)(QSFP_HFI0_INT_N | QSFP_HFI0_MODPRST_N);
5981 
5982 	if (reg & QSFP_HFI0_MODPRST_N) {
5983 		if (!qsfp_mod_present(ppd)) {
5984 			dd_dev_info(dd, "%s: QSFP module removed\n",
5985 				    __func__);
5986 
5987 			ppd->driver_link_ready = 0;
5988 			/*
5989 			 * Cable removed, reset all our information about the
5990 			 * cache and cable capabilities
5991 			 */
5992 
5993 			spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
5994 			/*
5995 			 * We don't set cache_refresh_required here as we expect
5996 			 * an interrupt when a cable is inserted
5997 			 */
5998 			ppd->qsfp_info.cache_valid = 0;
5999 			ppd->qsfp_info.reset_needed = 0;
6000 			ppd->qsfp_info.limiting_active = 0;
6001 			spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock,
6002 					       flags);
6003 			/* Invert the ModPresent pin now to detect plug-in */
6004 			write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_INVERT :
6005 				  ASIC_QSFP1_INVERT, qsfp_int_mgmt);
6006 
6007 			if ((ppd->offline_disabled_reason >
6008 			  HFI1_ODR_MASK(
6009 			  OPA_LINKDOWN_REASON_LOCAL_MEDIA_NOT_INSTALLED)) ||
6010 			  (ppd->offline_disabled_reason ==
6011 			  HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE)))
6012 				ppd->offline_disabled_reason =
6013 				HFI1_ODR_MASK(
6014 				OPA_LINKDOWN_REASON_LOCAL_MEDIA_NOT_INSTALLED);
6015 
6016 			if (ppd->host_link_state == HLS_DN_POLL) {
6017 				/*
6018 				 * The link is still in POLL. This means
6019 				 * that the normal link down processing
6020 				 * will not happen. We have to do it here
6021 				 * before turning the DC off.
6022 				 */
6023 				queue_work(ppd->hfi1_wq, &ppd->link_down_work);
6024 			}
6025 		} else {
6026 			dd_dev_info(dd, "%s: QSFP module inserted\n",
6027 				    __func__);
6028 
6029 			spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
6030 			ppd->qsfp_info.cache_valid = 0;
6031 			ppd->qsfp_info.cache_refresh_required = 1;
6032 			spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock,
6033 					       flags);
6034 
6035 			/*
6036 			 * Stop inversion of ModPresent pin to detect
6037 			 * removal of the cable
6038 			 */
6039 			qsfp_int_mgmt &= ~(u64)QSFP_HFI0_MODPRST_N;
6040 			write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_INVERT :
6041 				  ASIC_QSFP1_INVERT, qsfp_int_mgmt);
6042 
6043 			ppd->offline_disabled_reason =
6044 				HFI1_ODR_MASK(OPA_LINKDOWN_REASON_TRANSIENT);
6045 		}
6046 	}
6047 
6048 	if (reg & QSFP_HFI0_INT_N) {
6049 		dd_dev_info(dd, "%s: Interrupt received from QSFP module\n",
6050 			    __func__);
6051 		spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
6052 		ppd->qsfp_info.check_interrupt_flags = 1;
6053 		spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock, flags);
6054 	}
6055 
6056 	/* Schedule the QSFP work only if there is a cable attached. */
6057 	if (qsfp_mod_present(ppd))
6058 		queue_work(ppd->hfi1_wq, &ppd->qsfp_info.qsfp_work);
6059 }
6060 
6061 static int request_host_lcb_access(struct hfi1_devdata *dd)
6062 {
6063 	int ret;
6064 
6065 	ret = do_8051_command(dd, HCMD_MISC,
6066 			      (u64)HCMD_MISC_REQUEST_LCB_ACCESS <<
6067 			      LOAD_DATA_FIELD_ID_SHIFT, NULL);
6068 	if (ret != HCMD_SUCCESS) {
6069 		dd_dev_err(dd, "%s: command failed with error %d\n",
6070 			   __func__, ret);
6071 	}
6072 	return ret == HCMD_SUCCESS ? 0 : -EBUSY;
6073 }
6074 
6075 static int request_8051_lcb_access(struct hfi1_devdata *dd)
6076 {
6077 	int ret;
6078 
6079 	ret = do_8051_command(dd, HCMD_MISC,
6080 			      (u64)HCMD_MISC_GRANT_LCB_ACCESS <<
6081 			      LOAD_DATA_FIELD_ID_SHIFT, NULL);
6082 	if (ret != HCMD_SUCCESS) {
6083 		dd_dev_err(dd, "%s: command failed with error %d\n",
6084 			   __func__, ret);
6085 	}
6086 	return ret == HCMD_SUCCESS ? 0 : -EBUSY;
6087 }
6088 
6089 /*
6090  * Set the LCB selector - allow host access.  The DCC selector always
6091  * points to the host.
6092  */
6093 static inline void set_host_lcb_access(struct hfi1_devdata *dd)
6094 {
6095 	write_csr(dd, DC_DC8051_CFG_CSR_ACCESS_SEL,
6096 		  DC_DC8051_CFG_CSR_ACCESS_SEL_DCC_SMASK |
6097 		  DC_DC8051_CFG_CSR_ACCESS_SEL_LCB_SMASK);
6098 }
6099 
6100 /*
6101  * Clear the LCB selector - allow 8051 access.  The DCC selector always
6102  * points to the host.
6103  */
6104 static inline void set_8051_lcb_access(struct hfi1_devdata *dd)
6105 {
6106 	write_csr(dd, DC_DC8051_CFG_CSR_ACCESS_SEL,
6107 		  DC_DC8051_CFG_CSR_ACCESS_SEL_DCC_SMASK);
6108 }
6109 
6110 /*
6111  * Acquire LCB access from the 8051.  If the host already has access,
6112  * just increment a counter.  Otherwise, inform the 8051 that the
6113  * host is taking access.
6114  *
6115  * Returns:
6116  *	0 on success
6117  *	-EBUSY if the 8051 has control and cannot be disturbed
6118  *	-errno if unable to acquire access from the 8051
6119  */
6120 int acquire_lcb_access(struct hfi1_devdata *dd, int sleep_ok)
6121 {
6122 	struct hfi1_pportdata *ppd = dd->pport;
6123 	int ret = 0;
6124 
6125 	/*
6126 	 * Use the host link state lock so the operation of this routine
6127 	 * { link state check, selector change, count increment } can occur
6128 	 * as a unit against a link state change.  Otherwise there is a
6129 	 * race between the state change and the count increment.
6130 	 */
6131 	if (sleep_ok) {
6132 		mutex_lock(&ppd->hls_lock);
6133 	} else {
6134 		while (!mutex_trylock(&ppd->hls_lock))
6135 			udelay(1);
6136 	}
6137 
6138 	/* this access is valid only when the link is up */
6139 	if (ppd->host_link_state & HLS_DOWN) {
6140 		dd_dev_info(dd, "%s: link state %s not up\n",
6141 			    __func__, link_state_name(ppd->host_link_state));
6142 		ret = -EBUSY;
6143 		goto done;
6144 	}
6145 
6146 	if (dd->lcb_access_count == 0) {
6147 		ret = request_host_lcb_access(dd);
6148 		if (ret) {
6149 			dd_dev_err(dd,
6150 				   "%s: unable to acquire LCB access, err %d\n",
6151 				   __func__, ret);
6152 			goto done;
6153 		}
6154 		set_host_lcb_access(dd);
6155 	}
6156 	dd->lcb_access_count++;
6157 done:
6158 	mutex_unlock(&ppd->hls_lock);
6159 	return ret;
6160 }
6161 
6162 /*
6163  * Release LCB access by decrementing the use count.  If the count is moving
6164  * from 1 to 0, inform 8051 that it has control back.
6165  *
6166  * Returns:
6167  *	0 on success
6168  *	-errno if unable to release access to the 8051
6169  */
6170 int release_lcb_access(struct hfi1_devdata *dd, int sleep_ok)
6171 {
6172 	int ret = 0;
6173 
6174 	/*
6175 	 * Use the host link state lock because the acquire needed it.
6176 	 * Here, we only need to keep { selector change, count decrement }
6177 	 * as a unit.
6178 	 */
6179 	if (sleep_ok) {
6180 		mutex_lock(&dd->pport->hls_lock);
6181 	} else {
6182 		while (!mutex_trylock(&dd->pport->hls_lock))
6183 			udelay(1);
6184 	}
6185 
6186 	if (dd->lcb_access_count == 0) {
6187 		dd_dev_err(dd, "%s: LCB access count is zero.  Skipping.\n",
6188 			   __func__);
6189 		goto done;
6190 	}
6191 
6192 	if (dd->lcb_access_count == 1) {
6193 		set_8051_lcb_access(dd);
6194 		ret = request_8051_lcb_access(dd);
6195 		if (ret) {
6196 			dd_dev_err(dd,
6197 				   "%s: unable to release LCB access, err %d\n",
6198 				   __func__, ret);
6199 			/* restore host access if the grant didn't work */
6200 			set_host_lcb_access(dd);
6201 			goto done;
6202 		}
6203 	}
6204 	dd->lcb_access_count--;
6205 done:
6206 	mutex_unlock(&dd->pport->hls_lock);
6207 	return ret;
6208 }
6209 
6210 /*
6211  * Initialize LCB access variables and state.  Called during driver load,
6212  * after most of the initialization is finished.
6213  *
6214  * The DC default is LCB access on for the host.  The driver defaults to
6215  * leaving access to the 8051.  Assign access now - this constrains the call
6216  * to this routine to be after all LCB set-up is done.  In particular, after
6217  * hf1_init_dd() -> set_up_interrupts() -> clear_all_interrupts()
6218  */
6219 static void init_lcb_access(struct hfi1_devdata *dd)
6220 {
6221 	dd->lcb_access_count = 0;
6222 }
6223 
6224 /*
6225  * Write a response back to a 8051 request.
6226  */
6227 static void hreq_response(struct hfi1_devdata *dd, u8 return_code, u16 rsp_data)
6228 {
6229 	write_csr(dd, DC_DC8051_CFG_EXT_DEV_0,
6230 		  DC_DC8051_CFG_EXT_DEV_0_COMPLETED_SMASK |
6231 		  (u64)return_code <<
6232 		  DC_DC8051_CFG_EXT_DEV_0_RETURN_CODE_SHIFT |
6233 		  (u64)rsp_data << DC_DC8051_CFG_EXT_DEV_0_RSP_DATA_SHIFT);
6234 }
6235 
6236 /*
6237  * Handle host requests from the 8051.
6238  */
6239 static void handle_8051_request(struct hfi1_pportdata *ppd)
6240 {
6241 	struct hfi1_devdata *dd = ppd->dd;
6242 	u64 reg;
6243 	u16 data = 0;
6244 	u8 type;
6245 
6246 	reg = read_csr(dd, DC_DC8051_CFG_EXT_DEV_1);
6247 	if ((reg & DC_DC8051_CFG_EXT_DEV_1_REQ_NEW_SMASK) == 0)
6248 		return;	/* no request */
6249 
6250 	/* zero out COMPLETED so the response is seen */
6251 	write_csr(dd, DC_DC8051_CFG_EXT_DEV_0, 0);
6252 
6253 	/* extract request details */
6254 	type = (reg >> DC_DC8051_CFG_EXT_DEV_1_REQ_TYPE_SHIFT)
6255 			& DC_DC8051_CFG_EXT_DEV_1_REQ_TYPE_MASK;
6256 	data = (reg >> DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SHIFT)
6257 			& DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_MASK;
6258 
6259 	switch (type) {
6260 	case HREQ_LOAD_CONFIG:
6261 	case HREQ_SAVE_CONFIG:
6262 	case HREQ_READ_CONFIG:
6263 	case HREQ_SET_TX_EQ_ABS:
6264 	case HREQ_SET_TX_EQ_REL:
6265 	case HREQ_ENABLE:
6266 		dd_dev_info(dd, "8051 request: request 0x%x not supported\n",
6267 			    type);
6268 		hreq_response(dd, HREQ_NOT_SUPPORTED, 0);
6269 		break;
6270 	case HREQ_CONFIG_DONE:
6271 		hreq_response(dd, HREQ_SUCCESS, 0);
6272 		break;
6273 
6274 	case HREQ_INTERFACE_TEST:
6275 		hreq_response(dd, HREQ_SUCCESS, data);
6276 		break;
6277 	default:
6278 		dd_dev_err(dd, "8051 request: unknown request 0x%x\n", type);
6279 		hreq_response(dd, HREQ_NOT_SUPPORTED, 0);
6280 		break;
6281 	}
6282 }
6283 
6284 static void write_global_credit(struct hfi1_devdata *dd,
6285 				u8 vau, u16 total, u16 shared)
6286 {
6287 	write_csr(dd, SEND_CM_GLOBAL_CREDIT,
6288 		  ((u64)total <<
6289 		   SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT) |
6290 		  ((u64)shared <<
6291 		   SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SHIFT) |
6292 		  ((u64)vau << SEND_CM_GLOBAL_CREDIT_AU_SHIFT));
6293 }
6294 
6295 /*
6296  * Set up initial VL15 credits of the remote.  Assumes the rest of
6297  * the CM credit registers are zero from a previous global or credit reset .
6298  */
6299 void set_up_vl15(struct hfi1_devdata *dd, u8 vau, u16 vl15buf)
6300 {
6301 	/* leave shared count at zero for both global and VL15 */
6302 	write_global_credit(dd, vau, vl15buf, 0);
6303 
6304 	write_csr(dd, SEND_CM_CREDIT_VL15, (u64)vl15buf
6305 		  << SEND_CM_CREDIT_VL15_DEDICATED_LIMIT_VL_SHIFT);
6306 }
6307 
6308 /*
6309  * Zero all credit details from the previous connection and
6310  * reset the CM manager's internal counters.
6311  */
6312 void reset_link_credits(struct hfi1_devdata *dd)
6313 {
6314 	int i;
6315 
6316 	/* remove all previous VL credit limits */
6317 	for (i = 0; i < TXE_NUM_DATA_VL; i++)
6318 		write_csr(dd, SEND_CM_CREDIT_VL + (8 * i), 0);
6319 	write_csr(dd, SEND_CM_CREDIT_VL15, 0);
6320 	write_global_credit(dd, 0, 0, 0);
6321 	/* reset the CM block */
6322 	pio_send_control(dd, PSC_CM_RESET);
6323 }
6324 
6325 /* convert a vCU to a CU */
6326 static u32 vcu_to_cu(u8 vcu)
6327 {
6328 	return 1 << vcu;
6329 }
6330 
6331 /* convert a CU to a vCU */
6332 static u8 cu_to_vcu(u32 cu)
6333 {
6334 	return ilog2(cu);
6335 }
6336 
6337 /* convert a vAU to an AU */
6338 static u32 vau_to_au(u8 vau)
6339 {
6340 	return 8 * (1 << vau);
6341 }
6342 
6343 static void set_linkup_defaults(struct hfi1_pportdata *ppd)
6344 {
6345 	ppd->sm_trap_qp = 0x0;
6346 	ppd->sa_qp = 0x1;
6347 }
6348 
6349 /*
6350  * Graceful LCB shutdown.  This leaves the LCB FIFOs in reset.
6351  */
6352 static void lcb_shutdown(struct hfi1_devdata *dd, int abort)
6353 {
6354 	u64 reg;
6355 
6356 	/* clear lcb run: LCB_CFG_RUN.EN = 0 */
6357 	write_csr(dd, DC_LCB_CFG_RUN, 0);
6358 	/* set tx fifo reset: LCB_CFG_TX_FIFOS_RESET.VAL = 1 */
6359 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET,
6360 		  1ull << DC_LCB_CFG_TX_FIFOS_RESET_VAL_SHIFT);
6361 	/* set dcc reset csr: DCC_CFG_RESET.{reset_lcb,reset_rx_fpe} = 1 */
6362 	dd->lcb_err_en = read_csr(dd, DC_LCB_ERR_EN);
6363 	reg = read_csr(dd, DCC_CFG_RESET);
6364 	write_csr(dd, DCC_CFG_RESET, reg |
6365 		  (1ull << DCC_CFG_RESET_RESET_LCB_SHIFT) |
6366 		  (1ull << DCC_CFG_RESET_RESET_RX_FPE_SHIFT));
6367 	(void)read_csr(dd, DCC_CFG_RESET); /* make sure the write completed */
6368 	if (!abort) {
6369 		udelay(1);    /* must hold for the longer of 16cclks or 20ns */
6370 		write_csr(dd, DCC_CFG_RESET, reg);
6371 		write_csr(dd, DC_LCB_ERR_EN, dd->lcb_err_en);
6372 	}
6373 }
6374 
6375 /*
6376  * This routine should be called after the link has been transitioned to
6377  * OFFLINE (OFFLINE state has the side effect of putting the SerDes into
6378  * reset).
6379  *
6380  * The expectation is that the caller of this routine would have taken
6381  * care of properly transitioning the link into the correct state.
6382  */
6383 static void dc_shutdown(struct hfi1_devdata *dd)
6384 {
6385 	unsigned long flags;
6386 
6387 	spin_lock_irqsave(&dd->dc8051_lock, flags);
6388 	if (dd->dc_shutdown) {
6389 		spin_unlock_irqrestore(&dd->dc8051_lock, flags);
6390 		return;
6391 	}
6392 	dd->dc_shutdown = 1;
6393 	spin_unlock_irqrestore(&dd->dc8051_lock, flags);
6394 	/* Shutdown the LCB */
6395 	lcb_shutdown(dd, 1);
6396 	/*
6397 	 * Going to OFFLINE would have causes the 8051 to put the
6398 	 * SerDes into reset already. Just need to shut down the 8051,
6399 	 * itself.
6400 	 */
6401 	write_csr(dd, DC_DC8051_CFG_RST, 0x1);
6402 }
6403 
6404 /*
6405  * Calling this after the DC has been brought out of reset should not
6406  * do any damage.
6407  */
6408 static void dc_start(struct hfi1_devdata *dd)
6409 {
6410 	unsigned long flags;
6411 	int ret;
6412 
6413 	spin_lock_irqsave(&dd->dc8051_lock, flags);
6414 	if (!dd->dc_shutdown)
6415 		goto done;
6416 	spin_unlock_irqrestore(&dd->dc8051_lock, flags);
6417 	/* Take the 8051 out of reset */
6418 	write_csr(dd, DC_DC8051_CFG_RST, 0ull);
6419 	/* Wait until 8051 is ready */
6420 	ret = wait_fm_ready(dd, TIMEOUT_8051_START);
6421 	if (ret) {
6422 		dd_dev_err(dd, "%s: timeout starting 8051 firmware\n",
6423 			   __func__);
6424 	}
6425 	/* Take away reset for LCB and RX FPE (set in lcb_shutdown). */
6426 	write_csr(dd, DCC_CFG_RESET, 0x10);
6427 	/* lcb_shutdown() with abort=1 does not restore these */
6428 	write_csr(dd, DC_LCB_ERR_EN, dd->lcb_err_en);
6429 	spin_lock_irqsave(&dd->dc8051_lock, flags);
6430 	dd->dc_shutdown = 0;
6431 done:
6432 	spin_unlock_irqrestore(&dd->dc8051_lock, flags);
6433 }
6434 
6435 /*
6436  * These LCB adjustments are for the Aurora SerDes core in the FPGA.
6437  */
6438 static void adjust_lcb_for_fpga_serdes(struct hfi1_devdata *dd)
6439 {
6440 	u64 rx_radr, tx_radr;
6441 	u32 version;
6442 
6443 	if (dd->icode != ICODE_FPGA_EMULATION)
6444 		return;
6445 
6446 	/*
6447 	 * These LCB defaults on emulator _s are good, nothing to do here:
6448 	 *	LCB_CFG_TX_FIFOS_RADR
6449 	 *	LCB_CFG_RX_FIFOS_RADR
6450 	 *	LCB_CFG_LN_DCLK
6451 	 *	LCB_CFG_IGNORE_LOST_RCLK
6452 	 */
6453 	if (is_emulator_s(dd))
6454 		return;
6455 	/* else this is _p */
6456 
6457 	version = emulator_rev(dd);
6458 	if (!is_ax(dd))
6459 		version = 0x2d;	/* all B0 use 0x2d or higher settings */
6460 
6461 	if (version <= 0x12) {
6462 		/* release 0x12 and below */
6463 
6464 		/*
6465 		 * LCB_CFG_RX_FIFOS_RADR.RST_VAL = 0x9
6466 		 * LCB_CFG_RX_FIFOS_RADR.OK_TO_JUMP_VAL = 0x9
6467 		 * LCB_CFG_RX_FIFOS_RADR.DO_NOT_JUMP_VAL = 0xa
6468 		 */
6469 		rx_radr =
6470 		      0xaull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6471 		    | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6472 		    | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6473 		/*
6474 		 * LCB_CFG_TX_FIFOS_RADR.ON_REINIT = 0 (default)
6475 		 * LCB_CFG_TX_FIFOS_RADR.RST_VAL = 6
6476 		 */
6477 		tx_radr = 6ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6478 	} else if (version <= 0x18) {
6479 		/* release 0x13 up to 0x18 */
6480 		/* LCB_CFG_RX_FIFOS_RADR = 0x988 */
6481 		rx_radr =
6482 		      0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6483 		    | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6484 		    | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6485 		tx_radr = 7ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6486 	} else if (version == 0x19) {
6487 		/* release 0x19 */
6488 		/* LCB_CFG_RX_FIFOS_RADR = 0xa99 */
6489 		rx_radr =
6490 		      0xAull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6491 		    | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6492 		    | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6493 		tx_radr = 3ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6494 	} else if (version == 0x1a) {
6495 		/* release 0x1a */
6496 		/* LCB_CFG_RX_FIFOS_RADR = 0x988 */
6497 		rx_radr =
6498 		      0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6499 		    | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6500 		    | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6501 		tx_radr = 7ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6502 		write_csr(dd, DC_LCB_CFG_LN_DCLK, 1ull);
6503 	} else {
6504 		/* release 0x1b and higher */
6505 		/* LCB_CFG_RX_FIFOS_RADR = 0x877 */
6506 		rx_radr =
6507 		      0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6508 		    | 0x7ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6509 		    | 0x7ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6510 		tx_radr = 3ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6511 	}
6512 
6513 	write_csr(dd, DC_LCB_CFG_RX_FIFOS_RADR, rx_radr);
6514 	/* LCB_CFG_IGNORE_LOST_RCLK.EN = 1 */
6515 	write_csr(dd, DC_LCB_CFG_IGNORE_LOST_RCLK,
6516 		  DC_LCB_CFG_IGNORE_LOST_RCLK_EN_SMASK);
6517 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RADR, tx_radr);
6518 }
6519 
6520 /*
6521  * Handle a SMA idle message
6522  *
6523  * This is a work-queue function outside of the interrupt.
6524  */
6525 void handle_sma_message(struct work_struct *work)
6526 {
6527 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
6528 							sma_message_work);
6529 	struct hfi1_devdata *dd = ppd->dd;
6530 	u64 msg;
6531 	int ret;
6532 
6533 	/*
6534 	 * msg is bytes 1-4 of the 40-bit idle message - the command code
6535 	 * is stripped off
6536 	 */
6537 	ret = read_idle_sma(dd, &msg);
6538 	if (ret)
6539 		return;
6540 	dd_dev_info(dd, "%s: SMA message 0x%llx\n", __func__, msg);
6541 	/*
6542 	 * React to the SMA message.  Byte[1] (0 for us) is the command.
6543 	 */
6544 	switch (msg & 0xff) {
6545 	case SMA_IDLE_ARM:
6546 		/*
6547 		 * See OPAv1 table 9-14 - HFI and External Switch Ports Key
6548 		 * State Transitions
6549 		 *
6550 		 * Only expected in INIT or ARMED, discard otherwise.
6551 		 */
6552 		if (ppd->host_link_state & (HLS_UP_INIT | HLS_UP_ARMED))
6553 			ppd->neighbor_normal = 1;
6554 		break;
6555 	case SMA_IDLE_ACTIVE:
6556 		/*
6557 		 * See OPAv1 table 9-14 - HFI and External Switch Ports Key
6558 		 * State Transitions
6559 		 *
6560 		 * Can activate the node.  Discard otherwise.
6561 		 */
6562 		if (ppd->host_link_state == HLS_UP_ARMED &&
6563 		    ppd->is_active_optimize_enabled) {
6564 			ppd->neighbor_normal = 1;
6565 			ret = set_link_state(ppd, HLS_UP_ACTIVE);
6566 			if (ret)
6567 				dd_dev_err(
6568 					dd,
6569 					"%s: received Active SMA idle message, couldn't set link to Active\n",
6570 					__func__);
6571 		}
6572 		break;
6573 	default:
6574 		dd_dev_err(dd,
6575 			   "%s: received unexpected SMA idle message 0x%llx\n",
6576 			   __func__, msg);
6577 		break;
6578 	}
6579 }
6580 
6581 static void adjust_rcvctrl(struct hfi1_devdata *dd, u64 add, u64 clear)
6582 {
6583 	u64 rcvctrl;
6584 	unsigned long flags;
6585 
6586 	spin_lock_irqsave(&dd->rcvctrl_lock, flags);
6587 	rcvctrl = read_csr(dd, RCV_CTRL);
6588 	rcvctrl |= add;
6589 	rcvctrl &= ~clear;
6590 	write_csr(dd, RCV_CTRL, rcvctrl);
6591 	spin_unlock_irqrestore(&dd->rcvctrl_lock, flags);
6592 }
6593 
6594 static inline void add_rcvctrl(struct hfi1_devdata *dd, u64 add)
6595 {
6596 	adjust_rcvctrl(dd, add, 0);
6597 }
6598 
6599 static inline void clear_rcvctrl(struct hfi1_devdata *dd, u64 clear)
6600 {
6601 	adjust_rcvctrl(dd, 0, clear);
6602 }
6603 
6604 /*
6605  * Called from all interrupt handlers to start handling an SPC freeze.
6606  */
6607 void start_freeze_handling(struct hfi1_pportdata *ppd, int flags)
6608 {
6609 	struct hfi1_devdata *dd = ppd->dd;
6610 	struct send_context *sc;
6611 	int i;
6612 
6613 	if (flags & FREEZE_SELF)
6614 		write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_FREEZE_SMASK);
6615 
6616 	/* enter frozen mode */
6617 	dd->flags |= HFI1_FROZEN;
6618 
6619 	/* notify all SDMA engines that they are going into a freeze */
6620 	sdma_freeze_notify(dd, !!(flags & FREEZE_LINK_DOWN));
6621 
6622 	/* do halt pre-handling on all enabled send contexts */
6623 	for (i = 0; i < dd->num_send_contexts; i++) {
6624 		sc = dd->send_contexts[i].sc;
6625 		if (sc && (sc->flags & SCF_ENABLED))
6626 			sc_stop(sc, SCF_FROZEN | SCF_HALTED);
6627 	}
6628 
6629 	/* Send context are frozen. Notify user space */
6630 	hfi1_set_uevent_bits(ppd, _HFI1_EVENT_FROZEN_BIT);
6631 
6632 	if (flags & FREEZE_ABORT) {
6633 		dd_dev_err(dd,
6634 			   "Aborted freeze recovery. Please REBOOT system\n");
6635 		return;
6636 	}
6637 	/* queue non-interrupt handler */
6638 	queue_work(ppd->hfi1_wq, &ppd->freeze_work);
6639 }
6640 
6641 /*
6642  * Wait until all 4 sub-blocks indicate that they have frozen or unfrozen,
6643  * depending on the "freeze" parameter.
6644  *
6645  * No need to return an error if it times out, our only option
6646  * is to proceed anyway.
6647  */
6648 static void wait_for_freeze_status(struct hfi1_devdata *dd, int freeze)
6649 {
6650 	unsigned long timeout;
6651 	u64 reg;
6652 
6653 	timeout = jiffies + msecs_to_jiffies(FREEZE_STATUS_TIMEOUT);
6654 	while (1) {
6655 		reg = read_csr(dd, CCE_STATUS);
6656 		if (freeze) {
6657 			/* waiting until all indicators are set */
6658 			if ((reg & ALL_FROZE) == ALL_FROZE)
6659 				return;	/* all done */
6660 		} else {
6661 			/* waiting until all indicators are clear */
6662 			if ((reg & ALL_FROZE) == 0)
6663 				return; /* all done */
6664 		}
6665 
6666 		if (time_after(jiffies, timeout)) {
6667 			dd_dev_err(dd,
6668 				   "Time out waiting for SPC %sfreeze, bits 0x%llx, expecting 0x%llx, continuing",
6669 				   freeze ? "" : "un", reg & ALL_FROZE,
6670 				   freeze ? ALL_FROZE : 0ull);
6671 			return;
6672 		}
6673 		usleep_range(80, 120);
6674 	}
6675 }
6676 
6677 /*
6678  * Do all freeze handling for the RXE block.
6679  */
6680 static void rxe_freeze(struct hfi1_devdata *dd)
6681 {
6682 	int i;
6683 
6684 	/* disable port */
6685 	clear_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
6686 
6687 	/* disable all receive contexts */
6688 	for (i = 0; i < dd->num_rcv_contexts; i++)
6689 		hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_DIS, i);
6690 }
6691 
6692 /*
6693  * Unfreeze handling for the RXE block - kernel contexts only.
6694  * This will also enable the port.  User contexts will do unfreeze
6695  * handling on a per-context basis as they call into the driver.
6696  *
6697  */
6698 static void rxe_kernel_unfreeze(struct hfi1_devdata *dd)
6699 {
6700 	u32 rcvmask;
6701 	int i;
6702 
6703 	/* enable all kernel contexts */
6704 	for (i = 0; i < dd->n_krcv_queues; i++) {
6705 		rcvmask = HFI1_RCVCTRL_CTXT_ENB;
6706 		/* HFI1_RCVCTRL_TAILUPD_[ENB|DIS] needs to be set explicitly */
6707 		rcvmask |= HFI1_CAP_KGET_MASK(dd->rcd[i]->flags, DMA_RTAIL) ?
6708 			HFI1_RCVCTRL_TAILUPD_ENB : HFI1_RCVCTRL_TAILUPD_DIS;
6709 		hfi1_rcvctrl(dd, rcvmask, i);
6710 	}
6711 
6712 	/* enable port */
6713 	add_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
6714 }
6715 
6716 /*
6717  * Non-interrupt SPC freeze handling.
6718  *
6719  * This is a work-queue function outside of the triggering interrupt.
6720  */
6721 void handle_freeze(struct work_struct *work)
6722 {
6723 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
6724 								freeze_work);
6725 	struct hfi1_devdata *dd = ppd->dd;
6726 
6727 	/* wait for freeze indicators on all affected blocks */
6728 	wait_for_freeze_status(dd, 1);
6729 
6730 	/* SPC is now frozen */
6731 
6732 	/* do send PIO freeze steps */
6733 	pio_freeze(dd);
6734 
6735 	/* do send DMA freeze steps */
6736 	sdma_freeze(dd);
6737 
6738 	/* do send egress freeze steps - nothing to do */
6739 
6740 	/* do receive freeze steps */
6741 	rxe_freeze(dd);
6742 
6743 	/*
6744 	 * Unfreeze the hardware - clear the freeze, wait for each
6745 	 * block's frozen bit to clear, then clear the frozen flag.
6746 	 */
6747 	write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_UNFREEZE_SMASK);
6748 	wait_for_freeze_status(dd, 0);
6749 
6750 	if (is_ax(dd)) {
6751 		write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_FREEZE_SMASK);
6752 		wait_for_freeze_status(dd, 1);
6753 		write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_UNFREEZE_SMASK);
6754 		wait_for_freeze_status(dd, 0);
6755 	}
6756 
6757 	/* do send PIO unfreeze steps for kernel contexts */
6758 	pio_kernel_unfreeze(dd);
6759 
6760 	/* do send DMA unfreeze steps */
6761 	sdma_unfreeze(dd);
6762 
6763 	/* do send egress unfreeze steps - nothing to do */
6764 
6765 	/* do receive unfreeze steps for kernel contexts */
6766 	rxe_kernel_unfreeze(dd);
6767 
6768 	/*
6769 	 * The unfreeze procedure touches global device registers when
6770 	 * it disables and re-enables RXE. Mark the device unfrozen
6771 	 * after all that is done so other parts of the driver waiting
6772 	 * for the device to unfreeze don't do things out of order.
6773 	 *
6774 	 * The above implies that the meaning of HFI1_FROZEN flag is
6775 	 * "Device has gone into freeze mode and freeze mode handling
6776 	 * is still in progress."
6777 	 *
6778 	 * The flag will be removed when freeze mode processing has
6779 	 * completed.
6780 	 */
6781 	dd->flags &= ~HFI1_FROZEN;
6782 	wake_up(&dd->event_queue);
6783 
6784 	/* no longer frozen */
6785 }
6786 
6787 /*
6788  * Handle a link up interrupt from the 8051.
6789  *
6790  * This is a work-queue function outside of the interrupt.
6791  */
6792 void handle_link_up(struct work_struct *work)
6793 {
6794 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
6795 						  link_up_work);
6796 	set_link_state(ppd, HLS_UP_INIT);
6797 
6798 	/* cache the read of DC_LCB_STS_ROUND_TRIP_LTP_CNT */
6799 	read_ltp_rtt(ppd->dd);
6800 	/*
6801 	 * OPA specifies that certain counters are cleared on a transition
6802 	 * to link up, so do that.
6803 	 */
6804 	clear_linkup_counters(ppd->dd);
6805 	/*
6806 	 * And (re)set link up default values.
6807 	 */
6808 	set_linkup_defaults(ppd);
6809 
6810 	/* enforce link speed enabled */
6811 	if ((ppd->link_speed_active & ppd->link_speed_enabled) == 0) {
6812 		/* oops - current speed is not enabled, bounce */
6813 		dd_dev_err(ppd->dd,
6814 			   "Link speed active 0x%x is outside enabled 0x%x, downing link\n",
6815 			   ppd->link_speed_active, ppd->link_speed_enabled);
6816 		set_link_down_reason(ppd, OPA_LINKDOWN_REASON_SPEED_POLICY, 0,
6817 				     OPA_LINKDOWN_REASON_SPEED_POLICY);
6818 		set_link_state(ppd, HLS_DN_OFFLINE);
6819 		start_link(ppd);
6820 	}
6821 }
6822 
6823 /*
6824  * Several pieces of LNI information were cached for SMA in ppd.
6825  * Reset these on link down
6826  */
6827 static void reset_neighbor_info(struct hfi1_pportdata *ppd)
6828 {
6829 	ppd->neighbor_guid = 0;
6830 	ppd->neighbor_port_number = 0;
6831 	ppd->neighbor_type = 0;
6832 	ppd->neighbor_fm_security = 0;
6833 }
6834 
6835 static const char * const link_down_reason_strs[] = {
6836 	[OPA_LINKDOWN_REASON_NONE] = "None",
6837 	[OPA_LINKDOWN_REASON_RCV_ERROR_0] = "Recive error 0",
6838 	[OPA_LINKDOWN_REASON_BAD_PKT_LEN] = "Bad packet length",
6839 	[OPA_LINKDOWN_REASON_PKT_TOO_LONG] = "Packet too long",
6840 	[OPA_LINKDOWN_REASON_PKT_TOO_SHORT] = "Packet too short",
6841 	[OPA_LINKDOWN_REASON_BAD_SLID] = "Bad SLID",
6842 	[OPA_LINKDOWN_REASON_BAD_DLID] = "Bad DLID",
6843 	[OPA_LINKDOWN_REASON_BAD_L2] = "Bad L2",
6844 	[OPA_LINKDOWN_REASON_BAD_SC] = "Bad SC",
6845 	[OPA_LINKDOWN_REASON_RCV_ERROR_8] = "Receive error 8",
6846 	[OPA_LINKDOWN_REASON_BAD_MID_TAIL] = "Bad mid tail",
6847 	[OPA_LINKDOWN_REASON_RCV_ERROR_10] = "Receive error 10",
6848 	[OPA_LINKDOWN_REASON_PREEMPT_ERROR] = "Preempt error",
6849 	[OPA_LINKDOWN_REASON_PREEMPT_VL15] = "Preempt vl15",
6850 	[OPA_LINKDOWN_REASON_BAD_VL_MARKER] = "Bad VL marker",
6851 	[OPA_LINKDOWN_REASON_RCV_ERROR_14] = "Receive error 14",
6852 	[OPA_LINKDOWN_REASON_RCV_ERROR_15] = "Receive error 15",
6853 	[OPA_LINKDOWN_REASON_BAD_HEAD_DIST] = "Bad head distance",
6854 	[OPA_LINKDOWN_REASON_BAD_TAIL_DIST] = "Bad tail distance",
6855 	[OPA_LINKDOWN_REASON_BAD_CTRL_DIST] = "Bad control distance",
6856 	[OPA_LINKDOWN_REASON_BAD_CREDIT_ACK] = "Bad credit ack",
6857 	[OPA_LINKDOWN_REASON_UNSUPPORTED_VL_MARKER] = "Unsupported VL marker",
6858 	[OPA_LINKDOWN_REASON_BAD_PREEMPT] = "Bad preempt",
6859 	[OPA_LINKDOWN_REASON_BAD_CONTROL_FLIT] = "Bad control flit",
6860 	[OPA_LINKDOWN_REASON_EXCEED_MULTICAST_LIMIT] = "Exceed multicast limit",
6861 	[OPA_LINKDOWN_REASON_RCV_ERROR_24] = "Receive error 24",
6862 	[OPA_LINKDOWN_REASON_RCV_ERROR_25] = "Receive error 25",
6863 	[OPA_LINKDOWN_REASON_RCV_ERROR_26] = "Receive error 26",
6864 	[OPA_LINKDOWN_REASON_RCV_ERROR_27] = "Receive error 27",
6865 	[OPA_LINKDOWN_REASON_RCV_ERROR_28] = "Receive error 28",
6866 	[OPA_LINKDOWN_REASON_RCV_ERROR_29] = "Receive error 29",
6867 	[OPA_LINKDOWN_REASON_RCV_ERROR_30] = "Receive error 30",
6868 	[OPA_LINKDOWN_REASON_EXCESSIVE_BUFFER_OVERRUN] =
6869 					"Excessive buffer overrun",
6870 	[OPA_LINKDOWN_REASON_UNKNOWN] = "Unknown",
6871 	[OPA_LINKDOWN_REASON_REBOOT] = "Reboot",
6872 	[OPA_LINKDOWN_REASON_NEIGHBOR_UNKNOWN] = "Neighbor unknown",
6873 	[OPA_LINKDOWN_REASON_FM_BOUNCE] = "FM bounce",
6874 	[OPA_LINKDOWN_REASON_SPEED_POLICY] = "Speed policy",
6875 	[OPA_LINKDOWN_REASON_WIDTH_POLICY] = "Width policy",
6876 	[OPA_LINKDOWN_REASON_DISCONNECTED] = "Disconnected",
6877 	[OPA_LINKDOWN_REASON_LOCAL_MEDIA_NOT_INSTALLED] =
6878 					"Local media not installed",
6879 	[OPA_LINKDOWN_REASON_NOT_INSTALLED] = "Not installed",
6880 	[OPA_LINKDOWN_REASON_CHASSIS_CONFIG] = "Chassis config",
6881 	[OPA_LINKDOWN_REASON_END_TO_END_NOT_INSTALLED] =
6882 					"End to end not installed",
6883 	[OPA_LINKDOWN_REASON_POWER_POLICY] = "Power policy",
6884 	[OPA_LINKDOWN_REASON_LINKSPEED_POLICY] = "Link speed policy",
6885 	[OPA_LINKDOWN_REASON_LINKWIDTH_POLICY] = "Link width policy",
6886 	[OPA_LINKDOWN_REASON_SWITCH_MGMT] = "Switch management",
6887 	[OPA_LINKDOWN_REASON_SMA_DISABLED] = "SMA disabled",
6888 	[OPA_LINKDOWN_REASON_TRANSIENT] = "Transient"
6889 };
6890 
6891 /* return the neighbor link down reason string */
6892 static const char *link_down_reason_str(u8 reason)
6893 {
6894 	const char *str = NULL;
6895 
6896 	if (reason < ARRAY_SIZE(link_down_reason_strs))
6897 		str = link_down_reason_strs[reason];
6898 	if (!str)
6899 		str = "(invalid)";
6900 
6901 	return str;
6902 }
6903 
6904 /*
6905  * Handle a link down interrupt from the 8051.
6906  *
6907  * This is a work-queue function outside of the interrupt.
6908  */
6909 void handle_link_down(struct work_struct *work)
6910 {
6911 	u8 lcl_reason, neigh_reason = 0;
6912 	u8 link_down_reason;
6913 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
6914 						  link_down_work);
6915 	int was_up;
6916 	static const char ldr_str[] = "Link down reason: ";
6917 
6918 	if ((ppd->host_link_state &
6919 	     (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) &&
6920 	     ppd->port_type == PORT_TYPE_FIXED)
6921 		ppd->offline_disabled_reason =
6922 			HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NOT_INSTALLED);
6923 
6924 	/* Go offline first, then deal with reading/writing through 8051 */
6925 	was_up = !!(ppd->host_link_state & HLS_UP);
6926 	set_link_state(ppd, HLS_DN_OFFLINE);
6927 
6928 	if (was_up) {
6929 		lcl_reason = 0;
6930 		/* link down reason is only valid if the link was up */
6931 		read_link_down_reason(ppd->dd, &link_down_reason);
6932 		switch (link_down_reason) {
6933 		case LDR_LINK_TRANSFER_ACTIVE_LOW:
6934 			/* the link went down, no idle message reason */
6935 			dd_dev_info(ppd->dd, "%sUnexpected link down\n",
6936 				    ldr_str);
6937 			break;
6938 		case LDR_RECEIVED_LINKDOWN_IDLE_MSG:
6939 			/*
6940 			 * The neighbor reason is only valid if an idle message
6941 			 * was received for it.
6942 			 */
6943 			read_planned_down_reason_code(ppd->dd, &neigh_reason);
6944 			dd_dev_info(ppd->dd,
6945 				    "%sNeighbor link down message %d, %s\n",
6946 				    ldr_str, neigh_reason,
6947 				    link_down_reason_str(neigh_reason));
6948 			break;
6949 		case LDR_RECEIVED_HOST_OFFLINE_REQ:
6950 			dd_dev_info(ppd->dd,
6951 				    "%sHost requested link to go offline\n",
6952 				    ldr_str);
6953 			break;
6954 		default:
6955 			dd_dev_info(ppd->dd, "%sUnknown reason 0x%x\n",
6956 				    ldr_str, link_down_reason);
6957 			break;
6958 		}
6959 
6960 		/*
6961 		 * If no reason, assume peer-initiated but missed
6962 		 * LinkGoingDown idle flits.
6963 		 */
6964 		if (neigh_reason == 0)
6965 			lcl_reason = OPA_LINKDOWN_REASON_NEIGHBOR_UNKNOWN;
6966 	} else {
6967 		/* went down while polling or going up */
6968 		lcl_reason = OPA_LINKDOWN_REASON_TRANSIENT;
6969 	}
6970 
6971 	set_link_down_reason(ppd, lcl_reason, neigh_reason, 0);
6972 
6973 	/* inform the SMA when the link transitions from up to down */
6974 	if (was_up && ppd->local_link_down_reason.sma == 0 &&
6975 	    ppd->neigh_link_down_reason.sma == 0) {
6976 		ppd->local_link_down_reason.sma =
6977 					ppd->local_link_down_reason.latest;
6978 		ppd->neigh_link_down_reason.sma =
6979 					ppd->neigh_link_down_reason.latest;
6980 	}
6981 
6982 	reset_neighbor_info(ppd);
6983 
6984 	/* disable the port */
6985 	clear_rcvctrl(ppd->dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
6986 
6987 	/*
6988 	 * If there is no cable attached, turn the DC off. Otherwise,
6989 	 * start the link bring up.
6990 	 */
6991 	if (ppd->port_type == PORT_TYPE_QSFP && !qsfp_mod_present(ppd))
6992 		dc_shutdown(ppd->dd);
6993 	else
6994 		start_link(ppd);
6995 }
6996 
6997 void handle_link_bounce(struct work_struct *work)
6998 {
6999 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
7000 							link_bounce_work);
7001 
7002 	/*
7003 	 * Only do something if the link is currently up.
7004 	 */
7005 	if (ppd->host_link_state & HLS_UP) {
7006 		set_link_state(ppd, HLS_DN_OFFLINE);
7007 		start_link(ppd);
7008 	} else {
7009 		dd_dev_info(ppd->dd, "%s: link not up (%s), nothing to do\n",
7010 			    __func__, link_state_name(ppd->host_link_state));
7011 	}
7012 }
7013 
7014 /*
7015  * Mask conversion: Capability exchange to Port LTP.  The capability
7016  * exchange has an implicit 16b CRC that is mandatory.
7017  */
7018 static int cap_to_port_ltp(int cap)
7019 {
7020 	int port_ltp = PORT_LTP_CRC_MODE_16; /* this mode is mandatory */
7021 
7022 	if (cap & CAP_CRC_14B)
7023 		port_ltp |= PORT_LTP_CRC_MODE_14;
7024 	if (cap & CAP_CRC_48B)
7025 		port_ltp |= PORT_LTP_CRC_MODE_48;
7026 	if (cap & CAP_CRC_12B_16B_PER_LANE)
7027 		port_ltp |= PORT_LTP_CRC_MODE_PER_LANE;
7028 
7029 	return port_ltp;
7030 }
7031 
7032 /*
7033  * Convert an OPA Port LTP mask to capability mask
7034  */
7035 int port_ltp_to_cap(int port_ltp)
7036 {
7037 	int cap_mask = 0;
7038 
7039 	if (port_ltp & PORT_LTP_CRC_MODE_14)
7040 		cap_mask |= CAP_CRC_14B;
7041 	if (port_ltp & PORT_LTP_CRC_MODE_48)
7042 		cap_mask |= CAP_CRC_48B;
7043 	if (port_ltp & PORT_LTP_CRC_MODE_PER_LANE)
7044 		cap_mask |= CAP_CRC_12B_16B_PER_LANE;
7045 
7046 	return cap_mask;
7047 }
7048 
7049 /*
7050  * Convert a single DC LCB CRC mode to an OPA Port LTP mask.
7051  */
7052 static int lcb_to_port_ltp(int lcb_crc)
7053 {
7054 	int port_ltp = 0;
7055 
7056 	if (lcb_crc == LCB_CRC_12B_16B_PER_LANE)
7057 		port_ltp = PORT_LTP_CRC_MODE_PER_LANE;
7058 	else if (lcb_crc == LCB_CRC_48B)
7059 		port_ltp = PORT_LTP_CRC_MODE_48;
7060 	else if (lcb_crc == LCB_CRC_14B)
7061 		port_ltp = PORT_LTP_CRC_MODE_14;
7062 	else
7063 		port_ltp = PORT_LTP_CRC_MODE_16;
7064 
7065 	return port_ltp;
7066 }
7067 
7068 /*
7069  * Our neighbor has indicated that we are allowed to act as a fabric
7070  * manager, so place the full management partition key in the second
7071  * (0-based) pkey array position (see OPAv1, section 20.2.2.6.8). Note
7072  * that we should already have the limited management partition key in
7073  * array element 1, and also that the port is not yet up when
7074  * add_full_mgmt_pkey() is invoked.
7075  */
7076 static void add_full_mgmt_pkey(struct hfi1_pportdata *ppd)
7077 {
7078 	struct hfi1_devdata *dd = ppd->dd;
7079 
7080 	/* Sanity check - ppd->pkeys[2] should be 0, or already initalized */
7081 	if (!((ppd->pkeys[2] == 0) || (ppd->pkeys[2] == FULL_MGMT_P_KEY)))
7082 		dd_dev_warn(dd, "%s pkey[2] already set to 0x%x, resetting it to 0x%x\n",
7083 			    __func__, ppd->pkeys[2], FULL_MGMT_P_KEY);
7084 	ppd->pkeys[2] = FULL_MGMT_P_KEY;
7085 	(void)hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_PKEYS, 0);
7086 	hfi1_event_pkey_change(ppd->dd, ppd->port);
7087 }
7088 
7089 static void clear_full_mgmt_pkey(struct hfi1_pportdata *ppd)
7090 {
7091 	if (ppd->pkeys[2] != 0) {
7092 		ppd->pkeys[2] = 0;
7093 		(void)hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_PKEYS, 0);
7094 		hfi1_event_pkey_change(ppd->dd, ppd->port);
7095 	}
7096 }
7097 
7098 /*
7099  * Convert the given link width to the OPA link width bitmask.
7100  */
7101 static u16 link_width_to_bits(struct hfi1_devdata *dd, u16 width)
7102 {
7103 	switch (width) {
7104 	case 0:
7105 		/*
7106 		 * Simulator and quick linkup do not set the width.
7107 		 * Just set it to 4x without complaint.
7108 		 */
7109 		if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR || quick_linkup)
7110 			return OPA_LINK_WIDTH_4X;
7111 		return 0; /* no lanes up */
7112 	case 1: return OPA_LINK_WIDTH_1X;
7113 	case 2: return OPA_LINK_WIDTH_2X;
7114 	case 3: return OPA_LINK_WIDTH_3X;
7115 	default:
7116 		dd_dev_info(dd, "%s: invalid width %d, using 4\n",
7117 			    __func__, width);
7118 		/* fall through */
7119 	case 4: return OPA_LINK_WIDTH_4X;
7120 	}
7121 }
7122 
7123 /*
7124  * Do a population count on the bottom nibble.
7125  */
7126 static const u8 bit_counts[16] = {
7127 	0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4
7128 };
7129 
7130 static inline u8 nibble_to_count(u8 nibble)
7131 {
7132 	return bit_counts[nibble & 0xf];
7133 }
7134 
7135 /*
7136  * Read the active lane information from the 8051 registers and return
7137  * their widths.
7138  *
7139  * Active lane information is found in these 8051 registers:
7140  *	enable_lane_tx
7141  *	enable_lane_rx
7142  */
7143 static void get_link_widths(struct hfi1_devdata *dd, u16 *tx_width,
7144 			    u16 *rx_width)
7145 {
7146 	u16 tx, rx;
7147 	u8 enable_lane_rx;
7148 	u8 enable_lane_tx;
7149 	u8 tx_polarity_inversion;
7150 	u8 rx_polarity_inversion;
7151 	u8 max_rate;
7152 
7153 	/* read the active lanes */
7154 	read_tx_settings(dd, &enable_lane_tx, &tx_polarity_inversion,
7155 			 &rx_polarity_inversion, &max_rate);
7156 	read_local_lni(dd, &enable_lane_rx);
7157 
7158 	/* convert to counts */
7159 	tx = nibble_to_count(enable_lane_tx);
7160 	rx = nibble_to_count(enable_lane_rx);
7161 
7162 	/*
7163 	 * Set link_speed_active here, overriding what was set in
7164 	 * handle_verify_cap().  The ASIC 8051 firmware does not correctly
7165 	 * set the max_rate field in handle_verify_cap until v0.19.
7166 	 */
7167 	if ((dd->icode == ICODE_RTL_SILICON) &&
7168 	    (dd->dc8051_ver < dc8051_ver(0, 19))) {
7169 		/* max_rate: 0 = 12.5G, 1 = 25G */
7170 		switch (max_rate) {
7171 		case 0:
7172 			dd->pport[0].link_speed_active = OPA_LINK_SPEED_12_5G;
7173 			break;
7174 		default:
7175 			dd_dev_err(dd,
7176 				   "%s: unexpected max rate %d, using 25Gb\n",
7177 				   __func__, (int)max_rate);
7178 			/* fall through */
7179 		case 1:
7180 			dd->pport[0].link_speed_active = OPA_LINK_SPEED_25G;
7181 			break;
7182 		}
7183 	}
7184 
7185 	dd_dev_info(dd,
7186 		    "Fabric active lanes (width): tx 0x%x (%d), rx 0x%x (%d)\n",
7187 		    enable_lane_tx, tx, enable_lane_rx, rx);
7188 	*tx_width = link_width_to_bits(dd, tx);
7189 	*rx_width = link_width_to_bits(dd, rx);
7190 }
7191 
7192 /*
7193  * Read verify_cap_local_fm_link_width[1] to obtain the link widths.
7194  * Valid after the end of VerifyCap and during LinkUp.  Does not change
7195  * after link up.  I.e. look elsewhere for downgrade information.
7196  *
7197  * Bits are:
7198  *	+ bits [7:4] contain the number of active transmitters
7199  *	+ bits [3:0] contain the number of active receivers
7200  * These are numbers 1 through 4 and can be different values if the
7201  * link is asymmetric.
7202  *
7203  * verify_cap_local_fm_link_width[0] retains its original value.
7204  */
7205 static void get_linkup_widths(struct hfi1_devdata *dd, u16 *tx_width,
7206 			      u16 *rx_width)
7207 {
7208 	u16 widths, tx, rx;
7209 	u8 misc_bits, local_flags;
7210 	u16 active_tx, active_rx;
7211 
7212 	read_vc_local_link_width(dd, &misc_bits, &local_flags, &widths);
7213 	tx = widths >> 12;
7214 	rx = (widths >> 8) & 0xf;
7215 
7216 	*tx_width = link_width_to_bits(dd, tx);
7217 	*rx_width = link_width_to_bits(dd, rx);
7218 
7219 	/* print the active widths */
7220 	get_link_widths(dd, &active_tx, &active_rx);
7221 }
7222 
7223 /*
7224  * Set ppd->link_width_active and ppd->link_width_downgrade_active using
7225  * hardware information when the link first comes up.
7226  *
7227  * The link width is not available until after VerifyCap.AllFramesReceived
7228  * (the trigger for handle_verify_cap), so this is outside that routine
7229  * and should be called when the 8051 signals linkup.
7230  */
7231 void get_linkup_link_widths(struct hfi1_pportdata *ppd)
7232 {
7233 	u16 tx_width, rx_width;
7234 
7235 	/* get end-of-LNI link widths */
7236 	get_linkup_widths(ppd->dd, &tx_width, &rx_width);
7237 
7238 	/* use tx_width as the link is supposed to be symmetric on link up */
7239 	ppd->link_width_active = tx_width;
7240 	/* link width downgrade active (LWD.A) starts out matching LW.A */
7241 	ppd->link_width_downgrade_tx_active = ppd->link_width_active;
7242 	ppd->link_width_downgrade_rx_active = ppd->link_width_active;
7243 	/* per OPA spec, on link up LWD.E resets to LWD.S */
7244 	ppd->link_width_downgrade_enabled = ppd->link_width_downgrade_supported;
7245 	/* cache the active egress rate (units {10^6 bits/sec]) */
7246 	ppd->current_egress_rate = active_egress_rate(ppd);
7247 }
7248 
7249 /*
7250  * Handle a verify capabilities interrupt from the 8051.
7251  *
7252  * This is a work-queue function outside of the interrupt.
7253  */
7254 void handle_verify_cap(struct work_struct *work)
7255 {
7256 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
7257 								link_vc_work);
7258 	struct hfi1_devdata *dd = ppd->dd;
7259 	u64 reg;
7260 	u8 power_management;
7261 	u8 continious;
7262 	u8 vcu;
7263 	u8 vau;
7264 	u8 z;
7265 	u16 vl15buf;
7266 	u16 link_widths;
7267 	u16 crc_mask;
7268 	u16 crc_val;
7269 	u16 device_id;
7270 	u16 active_tx, active_rx;
7271 	u8 partner_supported_crc;
7272 	u8 remote_tx_rate;
7273 	u8 device_rev;
7274 
7275 	set_link_state(ppd, HLS_VERIFY_CAP);
7276 
7277 	lcb_shutdown(dd, 0);
7278 	adjust_lcb_for_fpga_serdes(dd);
7279 
7280 	/*
7281 	 * These are now valid:
7282 	 *	remote VerifyCap fields in the general LNI config
7283 	 *	CSR DC8051_STS_REMOTE_GUID
7284 	 *	CSR DC8051_STS_REMOTE_NODE_TYPE
7285 	 *	CSR DC8051_STS_REMOTE_FM_SECURITY
7286 	 *	CSR DC8051_STS_REMOTE_PORT_NO
7287 	 */
7288 
7289 	read_vc_remote_phy(dd, &power_management, &continious);
7290 	read_vc_remote_fabric(dd, &vau, &z, &vcu, &vl15buf,
7291 			      &partner_supported_crc);
7292 	read_vc_remote_link_width(dd, &remote_tx_rate, &link_widths);
7293 	read_remote_device_id(dd, &device_id, &device_rev);
7294 	/*
7295 	 * And the 'MgmtAllowed' information, which is exchanged during
7296 	 * LNI, is also be available at this point.
7297 	 */
7298 	read_mgmt_allowed(dd, &ppd->mgmt_allowed);
7299 	/* print the active widths */
7300 	get_link_widths(dd, &active_tx, &active_rx);
7301 	dd_dev_info(dd,
7302 		    "Peer PHY: power management 0x%x, continuous updates 0x%x\n",
7303 		    (int)power_management, (int)continious);
7304 	dd_dev_info(dd,
7305 		    "Peer Fabric: vAU %d, Z %d, vCU %d, vl15 credits 0x%x, CRC sizes 0x%x\n",
7306 		    (int)vau, (int)z, (int)vcu, (int)vl15buf,
7307 		    (int)partner_supported_crc);
7308 	dd_dev_info(dd, "Peer Link Width: tx rate 0x%x, widths 0x%x\n",
7309 		    (u32)remote_tx_rate, (u32)link_widths);
7310 	dd_dev_info(dd, "Peer Device ID: 0x%04x, Revision 0x%02x\n",
7311 		    (u32)device_id, (u32)device_rev);
7312 	/*
7313 	 * The peer vAU value just read is the peer receiver value.  HFI does
7314 	 * not support a transmit vAU of 0 (AU == 8).  We advertised that
7315 	 * with Z=1 in the fabric capabilities sent to the peer.  The peer
7316 	 * will see our Z=1, and, if it advertised a vAU of 0, will move its
7317 	 * receive to vAU of 1 (AU == 16).  Do the same here.  We do not care
7318 	 * about the peer Z value - our sent vAU is 3 (hardwired) and is not
7319 	 * subject to the Z value exception.
7320 	 */
7321 	if (vau == 0)
7322 		vau = 1;
7323 	set_up_vl15(dd, vau, vl15buf);
7324 
7325 	/* set up the LCB CRC mode */
7326 	crc_mask = ppd->port_crc_mode_enabled & partner_supported_crc;
7327 
7328 	/* order is important: use the lowest bit in common */
7329 	if (crc_mask & CAP_CRC_14B)
7330 		crc_val = LCB_CRC_14B;
7331 	else if (crc_mask & CAP_CRC_48B)
7332 		crc_val = LCB_CRC_48B;
7333 	else if (crc_mask & CAP_CRC_12B_16B_PER_LANE)
7334 		crc_val = LCB_CRC_12B_16B_PER_LANE;
7335 	else
7336 		crc_val = LCB_CRC_16B;
7337 
7338 	dd_dev_info(dd, "Final LCB CRC mode: %d\n", (int)crc_val);
7339 	write_csr(dd, DC_LCB_CFG_CRC_MODE,
7340 		  (u64)crc_val << DC_LCB_CFG_CRC_MODE_TX_VAL_SHIFT);
7341 
7342 	/* set (14b only) or clear sideband credit */
7343 	reg = read_csr(dd, SEND_CM_CTRL);
7344 	if (crc_val == LCB_CRC_14B && crc_14b_sideband) {
7345 		write_csr(dd, SEND_CM_CTRL,
7346 			  reg | SEND_CM_CTRL_FORCE_CREDIT_MODE_SMASK);
7347 	} else {
7348 		write_csr(dd, SEND_CM_CTRL,
7349 			  reg & ~SEND_CM_CTRL_FORCE_CREDIT_MODE_SMASK);
7350 	}
7351 
7352 	ppd->link_speed_active = 0;	/* invalid value */
7353 	if (dd->dc8051_ver < dc8051_ver(0, 20)) {
7354 		/* remote_tx_rate: 0 = 12.5G, 1 = 25G */
7355 		switch (remote_tx_rate) {
7356 		case 0:
7357 			ppd->link_speed_active = OPA_LINK_SPEED_12_5G;
7358 			break;
7359 		case 1:
7360 			ppd->link_speed_active = OPA_LINK_SPEED_25G;
7361 			break;
7362 		}
7363 	} else {
7364 		/* actual rate is highest bit of the ANDed rates */
7365 		u8 rate = remote_tx_rate & ppd->local_tx_rate;
7366 
7367 		if (rate & 2)
7368 			ppd->link_speed_active = OPA_LINK_SPEED_25G;
7369 		else if (rate & 1)
7370 			ppd->link_speed_active = OPA_LINK_SPEED_12_5G;
7371 	}
7372 	if (ppd->link_speed_active == 0) {
7373 		dd_dev_err(dd, "%s: unexpected remote tx rate %d, using 25Gb\n",
7374 			   __func__, (int)remote_tx_rate);
7375 		ppd->link_speed_active = OPA_LINK_SPEED_25G;
7376 	}
7377 
7378 	/*
7379 	 * Cache the values of the supported, enabled, and active
7380 	 * LTP CRC modes to return in 'portinfo' queries. But the bit
7381 	 * flags that are returned in the portinfo query differ from
7382 	 * what's in the link_crc_mask, crc_sizes, and crc_val
7383 	 * variables. Convert these here.
7384 	 */
7385 	ppd->port_ltp_crc_mode = cap_to_port_ltp(link_crc_mask) << 8;
7386 		/* supported crc modes */
7387 	ppd->port_ltp_crc_mode |=
7388 		cap_to_port_ltp(ppd->port_crc_mode_enabled) << 4;
7389 		/* enabled crc modes */
7390 	ppd->port_ltp_crc_mode |= lcb_to_port_ltp(crc_val);
7391 		/* active crc mode */
7392 
7393 	/* set up the remote credit return table */
7394 	assign_remote_cm_au_table(dd, vcu);
7395 
7396 	/*
7397 	 * The LCB is reset on entry to handle_verify_cap(), so this must
7398 	 * be applied on every link up.
7399 	 *
7400 	 * Adjust LCB error kill enable to kill the link if
7401 	 * these RBUF errors are seen:
7402 	 *	REPLAY_BUF_MBE_SMASK
7403 	 *	FLIT_INPUT_BUF_MBE_SMASK
7404 	 */
7405 	if (is_ax(dd)) {			/* fixed in B0 */
7406 		reg = read_csr(dd, DC_LCB_CFG_LINK_KILL_EN);
7407 		reg |= DC_LCB_CFG_LINK_KILL_EN_REPLAY_BUF_MBE_SMASK
7408 			| DC_LCB_CFG_LINK_KILL_EN_FLIT_INPUT_BUF_MBE_SMASK;
7409 		write_csr(dd, DC_LCB_CFG_LINK_KILL_EN, reg);
7410 	}
7411 
7412 	/* pull LCB fifos out of reset - all fifo clocks must be stable */
7413 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0);
7414 
7415 	/* give 8051 access to the LCB CSRs */
7416 	write_csr(dd, DC_LCB_ERR_EN, 0); /* mask LCB errors */
7417 	set_8051_lcb_access(dd);
7418 
7419 	ppd->neighbor_guid =
7420 		read_csr(dd, DC_DC8051_STS_REMOTE_GUID);
7421 	ppd->neighbor_port_number = read_csr(dd, DC_DC8051_STS_REMOTE_PORT_NO) &
7422 					DC_DC8051_STS_REMOTE_PORT_NO_VAL_SMASK;
7423 	ppd->neighbor_type =
7424 		read_csr(dd, DC_DC8051_STS_REMOTE_NODE_TYPE) &
7425 		DC_DC8051_STS_REMOTE_NODE_TYPE_VAL_MASK;
7426 	ppd->neighbor_fm_security =
7427 		read_csr(dd, DC_DC8051_STS_REMOTE_FM_SECURITY) &
7428 		DC_DC8051_STS_LOCAL_FM_SECURITY_DISABLED_MASK;
7429 	dd_dev_info(dd,
7430 		    "Neighbor Guid: %llx Neighbor type %d MgmtAllowed %d FM security bypass %d\n",
7431 		    ppd->neighbor_guid, ppd->neighbor_type,
7432 		    ppd->mgmt_allowed, ppd->neighbor_fm_security);
7433 	if (ppd->mgmt_allowed)
7434 		add_full_mgmt_pkey(ppd);
7435 
7436 	/* tell the 8051 to go to LinkUp */
7437 	set_link_state(ppd, HLS_GOING_UP);
7438 }
7439 
7440 /*
7441  * Apply the link width downgrade enabled policy against the current active
7442  * link widths.
7443  *
7444  * Called when the enabled policy changes or the active link widths change.
7445  */
7446 void apply_link_downgrade_policy(struct hfi1_pportdata *ppd, int refresh_widths)
7447 {
7448 	int do_bounce = 0;
7449 	int tries;
7450 	u16 lwde;
7451 	u16 tx, rx;
7452 
7453 	/* use the hls lock to avoid a race with actual link up */
7454 	tries = 0;
7455 retry:
7456 	mutex_lock(&ppd->hls_lock);
7457 	/* only apply if the link is up */
7458 	if (ppd->host_link_state & HLS_DOWN) {
7459 		/* still going up..wait and retry */
7460 		if (ppd->host_link_state & HLS_GOING_UP) {
7461 			if (++tries < 1000) {
7462 				mutex_unlock(&ppd->hls_lock);
7463 				usleep_range(100, 120); /* arbitrary */
7464 				goto retry;
7465 			}
7466 			dd_dev_err(ppd->dd,
7467 				   "%s: giving up waiting for link state change\n",
7468 				   __func__);
7469 		}
7470 		goto done;
7471 	}
7472 
7473 	lwde = ppd->link_width_downgrade_enabled;
7474 
7475 	if (refresh_widths) {
7476 		get_link_widths(ppd->dd, &tx, &rx);
7477 		ppd->link_width_downgrade_tx_active = tx;
7478 		ppd->link_width_downgrade_rx_active = rx;
7479 	}
7480 
7481 	if (ppd->link_width_downgrade_tx_active == 0 ||
7482 	    ppd->link_width_downgrade_rx_active == 0) {
7483 		/* the 8051 reported a dead link as a downgrade */
7484 		dd_dev_err(ppd->dd, "Link downgrade is really a link down, ignoring\n");
7485 	} else if (lwde == 0) {
7486 		/* downgrade is disabled */
7487 
7488 		/* bounce if not at starting active width */
7489 		if ((ppd->link_width_active !=
7490 		     ppd->link_width_downgrade_tx_active) ||
7491 		    (ppd->link_width_active !=
7492 		     ppd->link_width_downgrade_rx_active)) {
7493 			dd_dev_err(ppd->dd,
7494 				   "Link downgrade is disabled and link has downgraded, downing link\n");
7495 			dd_dev_err(ppd->dd,
7496 				   "  original 0x%x, tx active 0x%x, rx active 0x%x\n",
7497 				   ppd->link_width_active,
7498 				   ppd->link_width_downgrade_tx_active,
7499 				   ppd->link_width_downgrade_rx_active);
7500 			do_bounce = 1;
7501 		}
7502 	} else if ((lwde & ppd->link_width_downgrade_tx_active) == 0 ||
7503 		   (lwde & ppd->link_width_downgrade_rx_active) == 0) {
7504 		/* Tx or Rx is outside the enabled policy */
7505 		dd_dev_err(ppd->dd,
7506 			   "Link is outside of downgrade allowed, downing link\n");
7507 		dd_dev_err(ppd->dd,
7508 			   "  enabled 0x%x, tx active 0x%x, rx active 0x%x\n",
7509 			   lwde, ppd->link_width_downgrade_tx_active,
7510 			   ppd->link_width_downgrade_rx_active);
7511 		do_bounce = 1;
7512 	}
7513 
7514 done:
7515 	mutex_unlock(&ppd->hls_lock);
7516 
7517 	if (do_bounce) {
7518 		set_link_down_reason(ppd, OPA_LINKDOWN_REASON_WIDTH_POLICY, 0,
7519 				     OPA_LINKDOWN_REASON_WIDTH_POLICY);
7520 		set_link_state(ppd, HLS_DN_OFFLINE);
7521 		start_link(ppd);
7522 	}
7523 }
7524 
7525 /*
7526  * Handle a link downgrade interrupt from the 8051.
7527  *
7528  * This is a work-queue function outside of the interrupt.
7529  */
7530 void handle_link_downgrade(struct work_struct *work)
7531 {
7532 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
7533 							link_downgrade_work);
7534 
7535 	dd_dev_info(ppd->dd, "8051: Link width downgrade\n");
7536 	apply_link_downgrade_policy(ppd, 1);
7537 }
7538 
7539 static char *dcc_err_string(char *buf, int buf_len, u64 flags)
7540 {
7541 	return flag_string(buf, buf_len, flags, dcc_err_flags,
7542 		ARRAY_SIZE(dcc_err_flags));
7543 }
7544 
7545 static char *lcb_err_string(char *buf, int buf_len, u64 flags)
7546 {
7547 	return flag_string(buf, buf_len, flags, lcb_err_flags,
7548 		ARRAY_SIZE(lcb_err_flags));
7549 }
7550 
7551 static char *dc8051_err_string(char *buf, int buf_len, u64 flags)
7552 {
7553 	return flag_string(buf, buf_len, flags, dc8051_err_flags,
7554 		ARRAY_SIZE(dc8051_err_flags));
7555 }
7556 
7557 static char *dc8051_info_err_string(char *buf, int buf_len, u64 flags)
7558 {
7559 	return flag_string(buf, buf_len, flags, dc8051_info_err_flags,
7560 		ARRAY_SIZE(dc8051_info_err_flags));
7561 }
7562 
7563 static char *dc8051_info_host_msg_string(char *buf, int buf_len, u64 flags)
7564 {
7565 	return flag_string(buf, buf_len, flags, dc8051_info_host_msg_flags,
7566 		ARRAY_SIZE(dc8051_info_host_msg_flags));
7567 }
7568 
7569 static void handle_8051_interrupt(struct hfi1_devdata *dd, u32 unused, u64 reg)
7570 {
7571 	struct hfi1_pportdata *ppd = dd->pport;
7572 	u64 info, err, host_msg;
7573 	int queue_link_down = 0;
7574 	char buf[96];
7575 
7576 	/* look at the flags */
7577 	if (reg & DC_DC8051_ERR_FLG_SET_BY_8051_SMASK) {
7578 		/* 8051 information set by firmware */
7579 		/* read DC8051_DBG_ERR_INFO_SET_BY_8051 for details */
7580 		info = read_csr(dd, DC_DC8051_DBG_ERR_INFO_SET_BY_8051);
7581 		err = (info >> DC_DC8051_DBG_ERR_INFO_SET_BY_8051_ERROR_SHIFT)
7582 			& DC_DC8051_DBG_ERR_INFO_SET_BY_8051_ERROR_MASK;
7583 		host_msg = (info >>
7584 			DC_DC8051_DBG_ERR_INFO_SET_BY_8051_HOST_MSG_SHIFT)
7585 			& DC_DC8051_DBG_ERR_INFO_SET_BY_8051_HOST_MSG_MASK;
7586 
7587 		/*
7588 		 * Handle error flags.
7589 		 */
7590 		if (err & FAILED_LNI) {
7591 			/*
7592 			 * LNI error indications are cleared by the 8051
7593 			 * only when starting polling.  Only pay attention
7594 			 * to them when in the states that occur during
7595 			 * LNI.
7596 			 */
7597 			if (ppd->host_link_state
7598 			    & (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) {
7599 				queue_link_down = 1;
7600 				dd_dev_info(dd, "Link error: %s\n",
7601 					    dc8051_info_err_string(buf,
7602 								   sizeof(buf),
7603 								   err &
7604 								   FAILED_LNI));
7605 			}
7606 			err &= ~(u64)FAILED_LNI;
7607 		}
7608 		/* unknown frames can happen durning LNI, just count */
7609 		if (err & UNKNOWN_FRAME) {
7610 			ppd->unknown_frame_count++;
7611 			err &= ~(u64)UNKNOWN_FRAME;
7612 		}
7613 		if (err) {
7614 			/* report remaining errors, but do not do anything */
7615 			dd_dev_err(dd, "8051 info error: %s\n",
7616 				   dc8051_info_err_string(buf, sizeof(buf),
7617 							  err));
7618 		}
7619 
7620 		/*
7621 		 * Handle host message flags.
7622 		 */
7623 		if (host_msg & HOST_REQ_DONE) {
7624 			/*
7625 			 * Presently, the driver does a busy wait for
7626 			 * host requests to complete.  This is only an
7627 			 * informational message.
7628 			 * NOTE: The 8051 clears the host message
7629 			 * information *on the next 8051 command*.
7630 			 * Therefore, when linkup is achieved,
7631 			 * this flag will still be set.
7632 			 */
7633 			host_msg &= ~(u64)HOST_REQ_DONE;
7634 		}
7635 		if (host_msg & BC_SMA_MSG) {
7636 			queue_work(ppd->hfi1_wq, &ppd->sma_message_work);
7637 			host_msg &= ~(u64)BC_SMA_MSG;
7638 		}
7639 		if (host_msg & LINKUP_ACHIEVED) {
7640 			dd_dev_info(dd, "8051: Link up\n");
7641 			queue_work(ppd->hfi1_wq, &ppd->link_up_work);
7642 			host_msg &= ~(u64)LINKUP_ACHIEVED;
7643 		}
7644 		if (host_msg & EXT_DEVICE_CFG_REQ) {
7645 			handle_8051_request(ppd);
7646 			host_msg &= ~(u64)EXT_DEVICE_CFG_REQ;
7647 		}
7648 		if (host_msg & VERIFY_CAP_FRAME) {
7649 			queue_work(ppd->hfi1_wq, &ppd->link_vc_work);
7650 			host_msg &= ~(u64)VERIFY_CAP_FRAME;
7651 		}
7652 		if (host_msg & LINK_GOING_DOWN) {
7653 			const char *extra = "";
7654 			/* no downgrade action needed if going down */
7655 			if (host_msg & LINK_WIDTH_DOWNGRADED) {
7656 				host_msg &= ~(u64)LINK_WIDTH_DOWNGRADED;
7657 				extra = " (ignoring downgrade)";
7658 			}
7659 			dd_dev_info(dd, "8051: Link down%s\n", extra);
7660 			queue_link_down = 1;
7661 			host_msg &= ~(u64)LINK_GOING_DOWN;
7662 		}
7663 		if (host_msg & LINK_WIDTH_DOWNGRADED) {
7664 			queue_work(ppd->hfi1_wq, &ppd->link_downgrade_work);
7665 			host_msg &= ~(u64)LINK_WIDTH_DOWNGRADED;
7666 		}
7667 		if (host_msg) {
7668 			/* report remaining messages, but do not do anything */
7669 			dd_dev_info(dd, "8051 info host message: %s\n",
7670 				    dc8051_info_host_msg_string(buf,
7671 								sizeof(buf),
7672 								host_msg));
7673 		}
7674 
7675 		reg &= ~DC_DC8051_ERR_FLG_SET_BY_8051_SMASK;
7676 	}
7677 	if (reg & DC_DC8051_ERR_FLG_LOST_8051_HEART_BEAT_SMASK) {
7678 		/*
7679 		 * Lost the 8051 heartbeat.  If this happens, we
7680 		 * receive constant interrupts about it.  Disable
7681 		 * the interrupt after the first.
7682 		 */
7683 		dd_dev_err(dd, "Lost 8051 heartbeat\n");
7684 		write_csr(dd, DC_DC8051_ERR_EN,
7685 			  read_csr(dd, DC_DC8051_ERR_EN) &
7686 			  ~DC_DC8051_ERR_EN_LOST_8051_HEART_BEAT_SMASK);
7687 
7688 		reg &= ~DC_DC8051_ERR_FLG_LOST_8051_HEART_BEAT_SMASK;
7689 	}
7690 	if (reg) {
7691 		/* report the error, but do not do anything */
7692 		dd_dev_err(dd, "8051 error: %s\n",
7693 			   dc8051_err_string(buf, sizeof(buf), reg));
7694 	}
7695 
7696 	if (queue_link_down) {
7697 		/*
7698 		 * if the link is already going down or disabled, do not
7699 		 * queue another
7700 		 */
7701 		if ((ppd->host_link_state &
7702 		    (HLS_GOING_OFFLINE | HLS_LINK_COOLDOWN)) ||
7703 		    ppd->link_enabled == 0) {
7704 			dd_dev_info(dd, "%s: not queuing link down\n",
7705 				    __func__);
7706 		} else {
7707 			queue_work(ppd->hfi1_wq, &ppd->link_down_work);
7708 		}
7709 	}
7710 }
7711 
7712 static const char * const fm_config_txt[] = {
7713 [0] =
7714 	"BadHeadDist: Distance violation between two head flits",
7715 [1] =
7716 	"BadTailDist: Distance violation between two tail flits",
7717 [2] =
7718 	"BadCtrlDist: Distance violation between two credit control flits",
7719 [3] =
7720 	"BadCrdAck: Credits return for unsupported VL",
7721 [4] =
7722 	"UnsupportedVLMarker: Received VL Marker",
7723 [5] =
7724 	"BadPreempt: Exceeded the preemption nesting level",
7725 [6] =
7726 	"BadControlFlit: Received unsupported control flit",
7727 /* no 7 */
7728 [8] =
7729 	"UnsupportedVLMarker: Received VL Marker for unconfigured or disabled VL",
7730 };
7731 
7732 static const char * const port_rcv_txt[] = {
7733 [1] =
7734 	"BadPktLen: Illegal PktLen",
7735 [2] =
7736 	"PktLenTooLong: Packet longer than PktLen",
7737 [3] =
7738 	"PktLenTooShort: Packet shorter than PktLen",
7739 [4] =
7740 	"BadSLID: Illegal SLID (0, using multicast as SLID, does not include security validation of SLID)",
7741 [5] =
7742 	"BadDLID: Illegal DLID (0, doesn't match HFI)",
7743 [6] =
7744 	"BadL2: Illegal L2 opcode",
7745 [7] =
7746 	"BadSC: Unsupported SC",
7747 [9] =
7748 	"BadRC: Illegal RC",
7749 [11] =
7750 	"PreemptError: Preempting with same VL",
7751 [12] =
7752 	"PreemptVL15: Preempting a VL15 packet",
7753 };
7754 
7755 #define OPA_LDR_FMCONFIG_OFFSET 16
7756 #define OPA_LDR_PORTRCV_OFFSET 0
7757 static void handle_dcc_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
7758 {
7759 	u64 info, hdr0, hdr1;
7760 	const char *extra;
7761 	char buf[96];
7762 	struct hfi1_pportdata *ppd = dd->pport;
7763 	u8 lcl_reason = 0;
7764 	int do_bounce = 0;
7765 
7766 	if (reg & DCC_ERR_FLG_UNCORRECTABLE_ERR_SMASK) {
7767 		if (!(dd->err_info_uncorrectable & OPA_EI_STATUS_SMASK)) {
7768 			info = read_csr(dd, DCC_ERR_INFO_UNCORRECTABLE);
7769 			dd->err_info_uncorrectable = info & OPA_EI_CODE_SMASK;
7770 			/* set status bit */
7771 			dd->err_info_uncorrectable |= OPA_EI_STATUS_SMASK;
7772 		}
7773 		reg &= ~DCC_ERR_FLG_UNCORRECTABLE_ERR_SMASK;
7774 	}
7775 
7776 	if (reg & DCC_ERR_FLG_LINK_ERR_SMASK) {
7777 		struct hfi1_pportdata *ppd = dd->pport;
7778 		/* this counter saturates at (2^32) - 1 */
7779 		if (ppd->link_downed < (u32)UINT_MAX)
7780 			ppd->link_downed++;
7781 		reg &= ~DCC_ERR_FLG_LINK_ERR_SMASK;
7782 	}
7783 
7784 	if (reg & DCC_ERR_FLG_FMCONFIG_ERR_SMASK) {
7785 		u8 reason_valid = 1;
7786 
7787 		info = read_csr(dd, DCC_ERR_INFO_FMCONFIG);
7788 		if (!(dd->err_info_fmconfig & OPA_EI_STATUS_SMASK)) {
7789 			dd->err_info_fmconfig = info & OPA_EI_CODE_SMASK;
7790 			/* set status bit */
7791 			dd->err_info_fmconfig |= OPA_EI_STATUS_SMASK;
7792 		}
7793 		switch (info) {
7794 		case 0:
7795 		case 1:
7796 		case 2:
7797 		case 3:
7798 		case 4:
7799 		case 5:
7800 		case 6:
7801 			extra = fm_config_txt[info];
7802 			break;
7803 		case 8:
7804 			extra = fm_config_txt[info];
7805 			if (ppd->port_error_action &
7806 			    OPA_PI_MASK_FM_CFG_UNSUPPORTED_VL_MARKER) {
7807 				do_bounce = 1;
7808 				/*
7809 				 * lcl_reason cannot be derived from info
7810 				 * for this error
7811 				 */
7812 				lcl_reason =
7813 				  OPA_LINKDOWN_REASON_UNSUPPORTED_VL_MARKER;
7814 			}
7815 			break;
7816 		default:
7817 			reason_valid = 0;
7818 			snprintf(buf, sizeof(buf), "reserved%lld", info);
7819 			extra = buf;
7820 			break;
7821 		}
7822 
7823 		if (reason_valid && !do_bounce) {
7824 			do_bounce = ppd->port_error_action &
7825 					(1 << (OPA_LDR_FMCONFIG_OFFSET + info));
7826 			lcl_reason = info + OPA_LINKDOWN_REASON_BAD_HEAD_DIST;
7827 		}
7828 
7829 		/* just report this */
7830 		dd_dev_info_ratelimited(dd, "DCC Error: fmconfig error: %s\n",
7831 					extra);
7832 		reg &= ~DCC_ERR_FLG_FMCONFIG_ERR_SMASK;
7833 	}
7834 
7835 	if (reg & DCC_ERR_FLG_RCVPORT_ERR_SMASK) {
7836 		u8 reason_valid = 1;
7837 
7838 		info = read_csr(dd, DCC_ERR_INFO_PORTRCV);
7839 		hdr0 = read_csr(dd, DCC_ERR_INFO_PORTRCV_HDR0);
7840 		hdr1 = read_csr(dd, DCC_ERR_INFO_PORTRCV_HDR1);
7841 		if (!(dd->err_info_rcvport.status_and_code &
7842 		      OPA_EI_STATUS_SMASK)) {
7843 			dd->err_info_rcvport.status_and_code =
7844 				info & OPA_EI_CODE_SMASK;
7845 			/* set status bit */
7846 			dd->err_info_rcvport.status_and_code |=
7847 				OPA_EI_STATUS_SMASK;
7848 			/*
7849 			 * save first 2 flits in the packet that caused
7850 			 * the error
7851 			 */
7852 			dd->err_info_rcvport.packet_flit1 = hdr0;
7853 			dd->err_info_rcvport.packet_flit2 = hdr1;
7854 		}
7855 		switch (info) {
7856 		case 1:
7857 		case 2:
7858 		case 3:
7859 		case 4:
7860 		case 5:
7861 		case 6:
7862 		case 7:
7863 		case 9:
7864 		case 11:
7865 		case 12:
7866 			extra = port_rcv_txt[info];
7867 			break;
7868 		default:
7869 			reason_valid = 0;
7870 			snprintf(buf, sizeof(buf), "reserved%lld", info);
7871 			extra = buf;
7872 			break;
7873 		}
7874 
7875 		if (reason_valid && !do_bounce) {
7876 			do_bounce = ppd->port_error_action &
7877 					(1 << (OPA_LDR_PORTRCV_OFFSET + info));
7878 			lcl_reason = info + OPA_LINKDOWN_REASON_RCV_ERROR_0;
7879 		}
7880 
7881 		/* just report this */
7882 		dd_dev_info_ratelimited(dd, "DCC Error: PortRcv error: %s\n"
7883 					"               hdr0 0x%llx, hdr1 0x%llx\n",
7884 					extra, hdr0, hdr1);
7885 
7886 		reg &= ~DCC_ERR_FLG_RCVPORT_ERR_SMASK;
7887 	}
7888 
7889 	if (reg & DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_UC_SMASK) {
7890 		/* informative only */
7891 		dd_dev_info_ratelimited(dd, "8051 access to LCB blocked\n");
7892 		reg &= ~DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_UC_SMASK;
7893 	}
7894 	if (reg & DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_HOST_SMASK) {
7895 		/* informative only */
7896 		dd_dev_info_ratelimited(dd, "host access to LCB blocked\n");
7897 		reg &= ~DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_HOST_SMASK;
7898 	}
7899 
7900 	/* report any remaining errors */
7901 	if (reg)
7902 		dd_dev_info_ratelimited(dd, "DCC Error: %s\n",
7903 					dcc_err_string(buf, sizeof(buf), reg));
7904 
7905 	if (lcl_reason == 0)
7906 		lcl_reason = OPA_LINKDOWN_REASON_UNKNOWN;
7907 
7908 	if (do_bounce) {
7909 		dd_dev_info_ratelimited(dd, "%s: PortErrorAction bounce\n",
7910 					__func__);
7911 		set_link_down_reason(ppd, lcl_reason, 0, lcl_reason);
7912 		queue_work(ppd->hfi1_wq, &ppd->link_bounce_work);
7913 	}
7914 }
7915 
7916 static void handle_lcb_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
7917 {
7918 	char buf[96];
7919 
7920 	dd_dev_info(dd, "LCB Error: %s\n",
7921 		    lcb_err_string(buf, sizeof(buf), reg));
7922 }
7923 
7924 /*
7925  * CCE block DC interrupt.  Source is < 8.
7926  */
7927 static void is_dc_int(struct hfi1_devdata *dd, unsigned int source)
7928 {
7929 	const struct err_reg_info *eri = &dc_errs[source];
7930 
7931 	if (eri->handler) {
7932 		interrupt_clear_down(dd, 0, eri);
7933 	} else if (source == 3 /* dc_lbm_int */) {
7934 		/*
7935 		 * This indicates that a parity error has occurred on the
7936 		 * address/control lines presented to the LBM.  The error
7937 		 * is a single pulse, there is no associated error flag,
7938 		 * and it is non-maskable.  This is because if a parity
7939 		 * error occurs on the request the request is dropped.
7940 		 * This should never occur, but it is nice to know if it
7941 		 * ever does.
7942 		 */
7943 		dd_dev_err(dd, "Parity error in DC LBM block\n");
7944 	} else {
7945 		dd_dev_err(dd, "Invalid DC interrupt %u\n", source);
7946 	}
7947 }
7948 
7949 /*
7950  * TX block send credit interrupt.  Source is < 160.
7951  */
7952 static void is_send_credit_int(struct hfi1_devdata *dd, unsigned int source)
7953 {
7954 	sc_group_release_update(dd, source);
7955 }
7956 
7957 /*
7958  * TX block SDMA interrupt.  Source is < 48.
7959  *
7960  * SDMA interrupts are grouped by type:
7961  *
7962  *	 0 -  N-1 = SDma
7963  *	 N - 2N-1 = SDmaProgress
7964  *	2N - 3N-1 = SDmaIdle
7965  */
7966 static void is_sdma_eng_int(struct hfi1_devdata *dd, unsigned int source)
7967 {
7968 	/* what interrupt */
7969 	unsigned int what  = source / TXE_NUM_SDMA_ENGINES;
7970 	/* which engine */
7971 	unsigned int which = source % TXE_NUM_SDMA_ENGINES;
7972 
7973 #ifdef CONFIG_SDMA_VERBOSITY
7974 	dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", which,
7975 		   slashstrip(__FILE__), __LINE__, __func__);
7976 	sdma_dumpstate(&dd->per_sdma[which]);
7977 #endif
7978 
7979 	if (likely(what < 3 && which < dd->num_sdma)) {
7980 		sdma_engine_interrupt(&dd->per_sdma[which], 1ull << source);
7981 	} else {
7982 		/* should not happen */
7983 		dd_dev_err(dd, "Invalid SDMA interrupt 0x%x\n", source);
7984 	}
7985 }
7986 
7987 /*
7988  * RX block receive available interrupt.  Source is < 160.
7989  */
7990 static void is_rcv_avail_int(struct hfi1_devdata *dd, unsigned int source)
7991 {
7992 	struct hfi1_ctxtdata *rcd;
7993 	char *err_detail;
7994 
7995 	if (likely(source < dd->num_rcv_contexts)) {
7996 		rcd = dd->rcd[source];
7997 		if (rcd) {
7998 			if (source < dd->first_user_ctxt)
7999 				rcd->do_interrupt(rcd, 0);
8000 			else
8001 				handle_user_interrupt(rcd);
8002 			return;	/* OK */
8003 		}
8004 		/* received an interrupt, but no rcd */
8005 		err_detail = "dataless";
8006 	} else {
8007 		/* received an interrupt, but are not using that context */
8008 		err_detail = "out of range";
8009 	}
8010 	dd_dev_err(dd, "unexpected %s receive available context interrupt %u\n",
8011 		   err_detail, source);
8012 }
8013 
8014 /*
8015  * RX block receive urgent interrupt.  Source is < 160.
8016  */
8017 static void is_rcv_urgent_int(struct hfi1_devdata *dd, unsigned int source)
8018 {
8019 	struct hfi1_ctxtdata *rcd;
8020 	char *err_detail;
8021 
8022 	if (likely(source < dd->num_rcv_contexts)) {
8023 		rcd = dd->rcd[source];
8024 		if (rcd) {
8025 			/* only pay attention to user urgent interrupts */
8026 			if (source >= dd->first_user_ctxt)
8027 				handle_user_interrupt(rcd);
8028 			return;	/* OK */
8029 		}
8030 		/* received an interrupt, but no rcd */
8031 		err_detail = "dataless";
8032 	} else {
8033 		/* received an interrupt, but are not using that context */
8034 		err_detail = "out of range";
8035 	}
8036 	dd_dev_err(dd, "unexpected %s receive urgent context interrupt %u\n",
8037 		   err_detail, source);
8038 }
8039 
8040 /*
8041  * Reserved range interrupt.  Should not be called in normal operation.
8042  */
8043 static void is_reserved_int(struct hfi1_devdata *dd, unsigned int source)
8044 {
8045 	char name[64];
8046 
8047 	dd_dev_err(dd, "unexpected %s interrupt\n",
8048 		   is_reserved_name(name, sizeof(name), source));
8049 }
8050 
8051 static const struct is_table is_table[] = {
8052 /*
8053  * start		 end
8054  *				name func		interrupt func
8055  */
8056 { IS_GENERAL_ERR_START,  IS_GENERAL_ERR_END,
8057 				is_misc_err_name,	is_misc_err_int },
8058 { IS_SDMAENG_ERR_START,  IS_SDMAENG_ERR_END,
8059 				is_sdma_eng_err_name,	is_sdma_eng_err_int },
8060 { IS_SENDCTXT_ERR_START, IS_SENDCTXT_ERR_END,
8061 				is_sendctxt_err_name,	is_sendctxt_err_int },
8062 { IS_SDMA_START,	     IS_SDMA_END,
8063 				is_sdma_eng_name,	is_sdma_eng_int },
8064 { IS_VARIOUS_START,	     IS_VARIOUS_END,
8065 				is_various_name,	is_various_int },
8066 { IS_DC_START,	     IS_DC_END,
8067 				is_dc_name,		is_dc_int },
8068 { IS_RCVAVAIL_START,     IS_RCVAVAIL_END,
8069 				is_rcv_avail_name,	is_rcv_avail_int },
8070 { IS_RCVURGENT_START,    IS_RCVURGENT_END,
8071 				is_rcv_urgent_name,	is_rcv_urgent_int },
8072 { IS_SENDCREDIT_START,   IS_SENDCREDIT_END,
8073 				is_send_credit_name,	is_send_credit_int},
8074 { IS_RESERVED_START,     IS_RESERVED_END,
8075 				is_reserved_name,	is_reserved_int},
8076 };
8077 
8078 /*
8079  * Interrupt source interrupt - called when the given source has an interrupt.
8080  * Source is a bit index into an array of 64-bit integers.
8081  */
8082 static void is_interrupt(struct hfi1_devdata *dd, unsigned int source)
8083 {
8084 	const struct is_table *entry;
8085 
8086 	/* avoids a double compare by walking the table in-order */
8087 	for (entry = &is_table[0]; entry->is_name; entry++) {
8088 		if (source < entry->end) {
8089 			trace_hfi1_interrupt(dd, entry, source);
8090 			entry->is_int(dd, source - entry->start);
8091 			return;
8092 		}
8093 	}
8094 	/* fell off the end */
8095 	dd_dev_err(dd, "invalid interrupt source %u\n", source);
8096 }
8097 
8098 /*
8099  * General interrupt handler.  This is able to correctly handle
8100  * all interrupts in case INTx is used.
8101  */
8102 static irqreturn_t general_interrupt(int irq, void *data)
8103 {
8104 	struct hfi1_devdata *dd = data;
8105 	u64 regs[CCE_NUM_INT_CSRS];
8106 	u32 bit;
8107 	int i;
8108 
8109 	this_cpu_inc(*dd->int_counter);
8110 
8111 	/* phase 1: scan and clear all handled interrupts */
8112 	for (i = 0; i < CCE_NUM_INT_CSRS; i++) {
8113 		if (dd->gi_mask[i] == 0) {
8114 			regs[i] = 0;	/* used later */
8115 			continue;
8116 		}
8117 		regs[i] = read_csr(dd, CCE_INT_STATUS + (8 * i)) &
8118 				dd->gi_mask[i];
8119 		/* only clear if anything is set */
8120 		if (regs[i])
8121 			write_csr(dd, CCE_INT_CLEAR + (8 * i), regs[i]);
8122 	}
8123 
8124 	/* phase 2: call the appropriate handler */
8125 	for_each_set_bit(bit, (unsigned long *)&regs[0],
8126 			 CCE_NUM_INT_CSRS * 64) {
8127 		is_interrupt(dd, bit);
8128 	}
8129 
8130 	return IRQ_HANDLED;
8131 }
8132 
8133 static irqreturn_t sdma_interrupt(int irq, void *data)
8134 {
8135 	struct sdma_engine *sde = data;
8136 	struct hfi1_devdata *dd = sde->dd;
8137 	u64 status;
8138 
8139 #ifdef CONFIG_SDMA_VERBOSITY
8140 	dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
8141 		   slashstrip(__FILE__), __LINE__, __func__);
8142 	sdma_dumpstate(sde);
8143 #endif
8144 
8145 	this_cpu_inc(*dd->int_counter);
8146 
8147 	/* This read_csr is really bad in the hot path */
8148 	status = read_csr(dd,
8149 			  CCE_INT_STATUS + (8 * (IS_SDMA_START / 64)))
8150 			  & sde->imask;
8151 	if (likely(status)) {
8152 		/* clear the interrupt(s) */
8153 		write_csr(dd,
8154 			  CCE_INT_CLEAR + (8 * (IS_SDMA_START / 64)),
8155 			  status);
8156 
8157 		/* handle the interrupt(s) */
8158 		sdma_engine_interrupt(sde, status);
8159 	} else
8160 		dd_dev_err(dd, "SDMA engine %u interrupt, but no status bits set\n",
8161 			   sde->this_idx);
8162 
8163 	return IRQ_HANDLED;
8164 }
8165 
8166 /*
8167  * Clear the receive interrupt.  Use a read of the interrupt clear CSR
8168  * to insure that the write completed.  This does NOT guarantee that
8169  * queued DMA writes to memory from the chip are pushed.
8170  */
8171 static inline void clear_recv_intr(struct hfi1_ctxtdata *rcd)
8172 {
8173 	struct hfi1_devdata *dd = rcd->dd;
8174 	u32 addr = CCE_INT_CLEAR + (8 * rcd->ireg);
8175 
8176 	mmiowb();	/* make sure everything before is written */
8177 	write_csr(dd, addr, rcd->imask);
8178 	/* force the above write on the chip and get a value back */
8179 	(void)read_csr(dd, addr);
8180 }
8181 
8182 /* force the receive interrupt */
8183 void force_recv_intr(struct hfi1_ctxtdata *rcd)
8184 {
8185 	write_csr(rcd->dd, CCE_INT_FORCE + (8 * rcd->ireg), rcd->imask);
8186 }
8187 
8188 /*
8189  * Return non-zero if a packet is present.
8190  *
8191  * This routine is called when rechecking for packets after the RcvAvail
8192  * interrupt has been cleared down.  First, do a quick check of memory for
8193  * a packet present.  If not found, use an expensive CSR read of the context
8194  * tail to determine the actual tail.  The CSR read is necessary because there
8195  * is no method to push pending DMAs to memory other than an interrupt and we
8196  * are trying to determine if we need to force an interrupt.
8197  */
8198 static inline int check_packet_present(struct hfi1_ctxtdata *rcd)
8199 {
8200 	u32 tail;
8201 	int present;
8202 
8203 	if (!HFI1_CAP_IS_KSET(DMA_RTAIL))
8204 		present = (rcd->seq_cnt ==
8205 				rhf_rcv_seq(rhf_to_cpu(get_rhf_addr(rcd))));
8206 	else /* is RDMA rtail */
8207 		present = (rcd->head != get_rcvhdrtail(rcd));
8208 
8209 	if (present)
8210 		return 1;
8211 
8212 	/* fall back to a CSR read, correct indpendent of DMA_RTAIL */
8213 	tail = (u32)read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_TAIL);
8214 	return rcd->head != tail;
8215 }
8216 
8217 /*
8218  * Receive packet IRQ handler.  This routine expects to be on its own IRQ.
8219  * This routine will try to handle packets immediately (latency), but if
8220  * it finds too many, it will invoke the thread handler (bandwitdh).  The
8221  * chip receive interrupt is *not* cleared down until this or the thread (if
8222  * invoked) is finished.  The intent is to avoid extra interrupts while we
8223  * are processing packets anyway.
8224  */
8225 static irqreturn_t receive_context_interrupt(int irq, void *data)
8226 {
8227 	struct hfi1_ctxtdata *rcd = data;
8228 	struct hfi1_devdata *dd = rcd->dd;
8229 	int disposition;
8230 	int present;
8231 
8232 	trace_hfi1_receive_interrupt(dd, rcd->ctxt);
8233 	this_cpu_inc(*dd->int_counter);
8234 	aspm_ctx_disable(rcd);
8235 
8236 	/* receive interrupt remains blocked while processing packets */
8237 	disposition = rcd->do_interrupt(rcd, 0);
8238 
8239 	/*
8240 	 * Too many packets were seen while processing packets in this
8241 	 * IRQ handler.  Invoke the handler thread.  The receive interrupt
8242 	 * remains blocked.
8243 	 */
8244 	if (disposition == RCV_PKT_LIMIT)
8245 		return IRQ_WAKE_THREAD;
8246 
8247 	/*
8248 	 * The packet processor detected no more packets.  Clear the receive
8249 	 * interrupt and recheck for a packet packet that may have arrived
8250 	 * after the previous check and interrupt clear.  If a packet arrived,
8251 	 * force another interrupt.
8252 	 */
8253 	clear_recv_intr(rcd);
8254 	present = check_packet_present(rcd);
8255 	if (present)
8256 		force_recv_intr(rcd);
8257 
8258 	return IRQ_HANDLED;
8259 }
8260 
8261 /*
8262  * Receive packet thread handler.  This expects to be invoked with the
8263  * receive interrupt still blocked.
8264  */
8265 static irqreturn_t receive_context_thread(int irq, void *data)
8266 {
8267 	struct hfi1_ctxtdata *rcd = data;
8268 	int present;
8269 
8270 	/* receive interrupt is still blocked from the IRQ handler */
8271 	(void)rcd->do_interrupt(rcd, 1);
8272 
8273 	/*
8274 	 * The packet processor will only return if it detected no more
8275 	 * packets.  Hold IRQs here so we can safely clear the interrupt and
8276 	 * recheck for a packet that may have arrived after the previous
8277 	 * check and the interrupt clear.  If a packet arrived, force another
8278 	 * interrupt.
8279 	 */
8280 	local_irq_disable();
8281 	clear_recv_intr(rcd);
8282 	present = check_packet_present(rcd);
8283 	if (present)
8284 		force_recv_intr(rcd);
8285 	local_irq_enable();
8286 
8287 	return IRQ_HANDLED;
8288 }
8289 
8290 /* ========================================================================= */
8291 
8292 u32 read_physical_state(struct hfi1_devdata *dd)
8293 {
8294 	u64 reg;
8295 
8296 	reg = read_csr(dd, DC_DC8051_STS_CUR_STATE);
8297 	return (reg >> DC_DC8051_STS_CUR_STATE_PORT_SHIFT)
8298 				& DC_DC8051_STS_CUR_STATE_PORT_MASK;
8299 }
8300 
8301 u32 read_logical_state(struct hfi1_devdata *dd)
8302 {
8303 	u64 reg;
8304 
8305 	reg = read_csr(dd, DCC_CFG_PORT_CONFIG);
8306 	return (reg >> DCC_CFG_PORT_CONFIG_LINK_STATE_SHIFT)
8307 				& DCC_CFG_PORT_CONFIG_LINK_STATE_MASK;
8308 }
8309 
8310 static void set_logical_state(struct hfi1_devdata *dd, u32 chip_lstate)
8311 {
8312 	u64 reg;
8313 
8314 	reg = read_csr(dd, DCC_CFG_PORT_CONFIG);
8315 	/* clear current state, set new state */
8316 	reg &= ~DCC_CFG_PORT_CONFIG_LINK_STATE_SMASK;
8317 	reg |= (u64)chip_lstate << DCC_CFG_PORT_CONFIG_LINK_STATE_SHIFT;
8318 	write_csr(dd, DCC_CFG_PORT_CONFIG, reg);
8319 }
8320 
8321 /*
8322  * Use the 8051 to read a LCB CSR.
8323  */
8324 static int read_lcb_via_8051(struct hfi1_devdata *dd, u32 addr, u64 *data)
8325 {
8326 	u32 regno;
8327 	int ret;
8328 
8329 	if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR) {
8330 		if (acquire_lcb_access(dd, 0) == 0) {
8331 			*data = read_csr(dd, addr);
8332 			release_lcb_access(dd, 0);
8333 			return 0;
8334 		}
8335 		return -EBUSY;
8336 	}
8337 
8338 	/* register is an index of LCB registers: (offset - base) / 8 */
8339 	regno = (addr - DC_LCB_CFG_RUN) >> 3;
8340 	ret = do_8051_command(dd, HCMD_READ_LCB_CSR, regno, data);
8341 	if (ret != HCMD_SUCCESS)
8342 		return -EBUSY;
8343 	return 0;
8344 }
8345 
8346 /*
8347  * Read an LCB CSR.  Access may not be in host control, so check.
8348  * Return 0 on success, -EBUSY on failure.
8349  */
8350 int read_lcb_csr(struct hfi1_devdata *dd, u32 addr, u64 *data)
8351 {
8352 	struct hfi1_pportdata *ppd = dd->pport;
8353 
8354 	/* if up, go through the 8051 for the value */
8355 	if (ppd->host_link_state & HLS_UP)
8356 		return read_lcb_via_8051(dd, addr, data);
8357 	/* if going up or down, no access */
8358 	if (ppd->host_link_state & (HLS_GOING_UP | HLS_GOING_OFFLINE))
8359 		return -EBUSY;
8360 	/* otherwise, host has access */
8361 	*data = read_csr(dd, addr);
8362 	return 0;
8363 }
8364 
8365 /*
8366  * Use the 8051 to write a LCB CSR.
8367  */
8368 static int write_lcb_via_8051(struct hfi1_devdata *dd, u32 addr, u64 data)
8369 {
8370 	u32 regno;
8371 	int ret;
8372 
8373 	if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR ||
8374 	    (dd->dc8051_ver < dc8051_ver(0, 20))) {
8375 		if (acquire_lcb_access(dd, 0) == 0) {
8376 			write_csr(dd, addr, data);
8377 			release_lcb_access(dd, 0);
8378 			return 0;
8379 		}
8380 		return -EBUSY;
8381 	}
8382 
8383 	/* register is an index of LCB registers: (offset - base) / 8 */
8384 	regno = (addr - DC_LCB_CFG_RUN) >> 3;
8385 	ret = do_8051_command(dd, HCMD_WRITE_LCB_CSR, regno, &data);
8386 	if (ret != HCMD_SUCCESS)
8387 		return -EBUSY;
8388 	return 0;
8389 }
8390 
8391 /*
8392  * Write an LCB CSR.  Access may not be in host control, so check.
8393  * Return 0 on success, -EBUSY on failure.
8394  */
8395 int write_lcb_csr(struct hfi1_devdata *dd, u32 addr, u64 data)
8396 {
8397 	struct hfi1_pportdata *ppd = dd->pport;
8398 
8399 	/* if up, go through the 8051 for the value */
8400 	if (ppd->host_link_state & HLS_UP)
8401 		return write_lcb_via_8051(dd, addr, data);
8402 	/* if going up or down, no access */
8403 	if (ppd->host_link_state & (HLS_GOING_UP | HLS_GOING_OFFLINE))
8404 		return -EBUSY;
8405 	/* otherwise, host has access */
8406 	write_csr(dd, addr, data);
8407 	return 0;
8408 }
8409 
8410 /*
8411  * Returns:
8412  *	< 0 = Linux error, not able to get access
8413  *	> 0 = 8051 command RETURN_CODE
8414  */
8415 static int do_8051_command(
8416 	struct hfi1_devdata *dd,
8417 	u32 type,
8418 	u64 in_data,
8419 	u64 *out_data)
8420 {
8421 	u64 reg, completed;
8422 	int return_code;
8423 	unsigned long flags;
8424 	unsigned long timeout;
8425 
8426 	hfi1_cdbg(DC8051, "type %d, data 0x%012llx", type, in_data);
8427 
8428 	/*
8429 	 * Alternative to holding the lock for a long time:
8430 	 * - keep busy wait - have other users bounce off
8431 	 */
8432 	spin_lock_irqsave(&dd->dc8051_lock, flags);
8433 
8434 	/* We can't send any commands to the 8051 if it's in reset */
8435 	if (dd->dc_shutdown) {
8436 		return_code = -ENODEV;
8437 		goto fail;
8438 	}
8439 
8440 	/*
8441 	 * If an 8051 host command timed out previously, then the 8051 is
8442 	 * stuck.
8443 	 *
8444 	 * On first timeout, attempt to reset and restart the entire DC
8445 	 * block (including 8051). (Is this too big of a hammer?)
8446 	 *
8447 	 * If the 8051 times out a second time, the reset did not bring it
8448 	 * back to healthy life. In that case, fail any subsequent commands.
8449 	 */
8450 	if (dd->dc8051_timed_out) {
8451 		if (dd->dc8051_timed_out > 1) {
8452 			dd_dev_err(dd,
8453 				   "Previous 8051 host command timed out, skipping command %u\n",
8454 				   type);
8455 			return_code = -ENXIO;
8456 			goto fail;
8457 		}
8458 		spin_unlock_irqrestore(&dd->dc8051_lock, flags);
8459 		dc_shutdown(dd);
8460 		dc_start(dd);
8461 		spin_lock_irqsave(&dd->dc8051_lock, flags);
8462 	}
8463 
8464 	/*
8465 	 * If there is no timeout, then the 8051 command interface is
8466 	 * waiting for a command.
8467 	 */
8468 
8469 	/*
8470 	 * When writing a LCB CSR, out_data contains the full value to
8471 	 * to be written, while in_data contains the relative LCB
8472 	 * address in 7:0.  Do the work here, rather than the caller,
8473 	 * of distrubting the write data to where it needs to go:
8474 	 *
8475 	 * Write data
8476 	 *   39:00 -> in_data[47:8]
8477 	 *   47:40 -> DC8051_CFG_EXT_DEV_0.RETURN_CODE
8478 	 *   63:48 -> DC8051_CFG_EXT_DEV_0.RSP_DATA
8479 	 */
8480 	if (type == HCMD_WRITE_LCB_CSR) {
8481 		in_data |= ((*out_data) & 0xffffffffffull) << 8;
8482 		/* must preserve COMPLETED - it is tied to hardware */
8483 		reg = read_csr(dd, DC_DC8051_CFG_EXT_DEV_0);
8484 		reg &= DC_DC8051_CFG_EXT_DEV_0_COMPLETED_SMASK;
8485 		reg |= ((((*out_data) >> 40) & 0xff) <<
8486 				DC_DC8051_CFG_EXT_DEV_0_RETURN_CODE_SHIFT)
8487 		      | ((((*out_data) >> 48) & 0xffff) <<
8488 				DC_DC8051_CFG_EXT_DEV_0_RSP_DATA_SHIFT);
8489 		write_csr(dd, DC_DC8051_CFG_EXT_DEV_0, reg);
8490 	}
8491 
8492 	/*
8493 	 * Do two writes: the first to stabilize the type and req_data, the
8494 	 * second to activate.
8495 	 */
8496 	reg = ((u64)type & DC_DC8051_CFG_HOST_CMD_0_REQ_TYPE_MASK)
8497 			<< DC_DC8051_CFG_HOST_CMD_0_REQ_TYPE_SHIFT
8498 		| (in_data & DC_DC8051_CFG_HOST_CMD_0_REQ_DATA_MASK)
8499 			<< DC_DC8051_CFG_HOST_CMD_0_REQ_DATA_SHIFT;
8500 	write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, reg);
8501 	reg |= DC_DC8051_CFG_HOST_CMD_0_REQ_NEW_SMASK;
8502 	write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, reg);
8503 
8504 	/* wait for completion, alternate: interrupt */
8505 	timeout = jiffies + msecs_to_jiffies(DC8051_COMMAND_TIMEOUT);
8506 	while (1) {
8507 		reg = read_csr(dd, DC_DC8051_CFG_HOST_CMD_1);
8508 		completed = reg & DC_DC8051_CFG_HOST_CMD_1_COMPLETED_SMASK;
8509 		if (completed)
8510 			break;
8511 		if (time_after(jiffies, timeout)) {
8512 			dd->dc8051_timed_out++;
8513 			dd_dev_err(dd, "8051 host command %u timeout\n", type);
8514 			if (out_data)
8515 				*out_data = 0;
8516 			return_code = -ETIMEDOUT;
8517 			goto fail;
8518 		}
8519 		udelay(2);
8520 	}
8521 
8522 	if (out_data) {
8523 		*out_data = (reg >> DC_DC8051_CFG_HOST_CMD_1_RSP_DATA_SHIFT)
8524 				& DC_DC8051_CFG_HOST_CMD_1_RSP_DATA_MASK;
8525 		if (type == HCMD_READ_LCB_CSR) {
8526 			/* top 16 bits are in a different register */
8527 			*out_data |= (read_csr(dd, DC_DC8051_CFG_EXT_DEV_1)
8528 				& DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SMASK)
8529 				<< (48
8530 				    - DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SHIFT);
8531 		}
8532 	}
8533 	return_code = (reg >> DC_DC8051_CFG_HOST_CMD_1_RETURN_CODE_SHIFT)
8534 				& DC_DC8051_CFG_HOST_CMD_1_RETURN_CODE_MASK;
8535 	dd->dc8051_timed_out = 0;
8536 	/*
8537 	 * Clear command for next user.
8538 	 */
8539 	write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, 0);
8540 
8541 fail:
8542 	spin_unlock_irqrestore(&dd->dc8051_lock, flags);
8543 
8544 	return return_code;
8545 }
8546 
8547 static int set_physical_link_state(struct hfi1_devdata *dd, u64 state)
8548 {
8549 	return do_8051_command(dd, HCMD_CHANGE_PHY_STATE, state, NULL);
8550 }
8551 
8552 int load_8051_config(struct hfi1_devdata *dd, u8 field_id,
8553 		     u8 lane_id, u32 config_data)
8554 {
8555 	u64 data;
8556 	int ret;
8557 
8558 	data = (u64)field_id << LOAD_DATA_FIELD_ID_SHIFT
8559 		| (u64)lane_id << LOAD_DATA_LANE_ID_SHIFT
8560 		| (u64)config_data << LOAD_DATA_DATA_SHIFT;
8561 	ret = do_8051_command(dd, HCMD_LOAD_CONFIG_DATA, data, NULL);
8562 	if (ret != HCMD_SUCCESS) {
8563 		dd_dev_err(dd,
8564 			   "load 8051 config: field id %d, lane %d, err %d\n",
8565 			   (int)field_id, (int)lane_id, ret);
8566 	}
8567 	return ret;
8568 }
8569 
8570 /*
8571  * Read the 8051 firmware "registers".  Use the RAM directly.  Always
8572  * set the result, even on error.
8573  * Return 0 on success, -errno on failure
8574  */
8575 int read_8051_config(struct hfi1_devdata *dd, u8 field_id, u8 lane_id,
8576 		     u32 *result)
8577 {
8578 	u64 big_data;
8579 	u32 addr;
8580 	int ret;
8581 
8582 	/* address start depends on the lane_id */
8583 	if (lane_id < 4)
8584 		addr = (4 * NUM_GENERAL_FIELDS)
8585 			+ (lane_id * 4 * NUM_LANE_FIELDS);
8586 	else
8587 		addr = 0;
8588 	addr += field_id * 4;
8589 
8590 	/* read is in 8-byte chunks, hardware will truncate the address down */
8591 	ret = read_8051_data(dd, addr, 8, &big_data);
8592 
8593 	if (ret == 0) {
8594 		/* extract the 4 bytes we want */
8595 		if (addr & 0x4)
8596 			*result = (u32)(big_data >> 32);
8597 		else
8598 			*result = (u32)big_data;
8599 	} else {
8600 		*result = 0;
8601 		dd_dev_err(dd, "%s: direct read failed, lane %d, field %d!\n",
8602 			   __func__, lane_id, field_id);
8603 	}
8604 
8605 	return ret;
8606 }
8607 
8608 static int write_vc_local_phy(struct hfi1_devdata *dd, u8 power_management,
8609 			      u8 continuous)
8610 {
8611 	u32 frame;
8612 
8613 	frame = continuous << CONTINIOUS_REMOTE_UPDATE_SUPPORT_SHIFT
8614 		| power_management << POWER_MANAGEMENT_SHIFT;
8615 	return load_8051_config(dd, VERIFY_CAP_LOCAL_PHY,
8616 				GENERAL_CONFIG, frame);
8617 }
8618 
8619 static int write_vc_local_fabric(struct hfi1_devdata *dd, u8 vau, u8 z, u8 vcu,
8620 				 u16 vl15buf, u8 crc_sizes)
8621 {
8622 	u32 frame;
8623 
8624 	frame = (u32)vau << VAU_SHIFT
8625 		| (u32)z << Z_SHIFT
8626 		| (u32)vcu << VCU_SHIFT
8627 		| (u32)vl15buf << VL15BUF_SHIFT
8628 		| (u32)crc_sizes << CRC_SIZES_SHIFT;
8629 	return load_8051_config(dd, VERIFY_CAP_LOCAL_FABRIC,
8630 				GENERAL_CONFIG, frame);
8631 }
8632 
8633 static void read_vc_local_link_width(struct hfi1_devdata *dd, u8 *misc_bits,
8634 				     u8 *flag_bits, u16 *link_widths)
8635 {
8636 	u32 frame;
8637 
8638 	read_8051_config(dd, VERIFY_CAP_LOCAL_LINK_WIDTH, GENERAL_CONFIG,
8639 			 &frame);
8640 	*misc_bits = (frame >> MISC_CONFIG_BITS_SHIFT) & MISC_CONFIG_BITS_MASK;
8641 	*flag_bits = (frame >> LOCAL_FLAG_BITS_SHIFT) & LOCAL_FLAG_BITS_MASK;
8642 	*link_widths = (frame >> LINK_WIDTH_SHIFT) & LINK_WIDTH_MASK;
8643 }
8644 
8645 static int write_vc_local_link_width(struct hfi1_devdata *dd,
8646 				     u8 misc_bits,
8647 				     u8 flag_bits,
8648 				     u16 link_widths)
8649 {
8650 	u32 frame;
8651 
8652 	frame = (u32)misc_bits << MISC_CONFIG_BITS_SHIFT
8653 		| (u32)flag_bits << LOCAL_FLAG_BITS_SHIFT
8654 		| (u32)link_widths << LINK_WIDTH_SHIFT;
8655 	return load_8051_config(dd, VERIFY_CAP_LOCAL_LINK_WIDTH, GENERAL_CONFIG,
8656 		     frame);
8657 }
8658 
8659 static int write_local_device_id(struct hfi1_devdata *dd, u16 device_id,
8660 				 u8 device_rev)
8661 {
8662 	u32 frame;
8663 
8664 	frame = ((u32)device_id << LOCAL_DEVICE_ID_SHIFT)
8665 		| ((u32)device_rev << LOCAL_DEVICE_REV_SHIFT);
8666 	return load_8051_config(dd, LOCAL_DEVICE_ID, GENERAL_CONFIG, frame);
8667 }
8668 
8669 static void read_remote_device_id(struct hfi1_devdata *dd, u16 *device_id,
8670 				  u8 *device_rev)
8671 {
8672 	u32 frame;
8673 
8674 	read_8051_config(dd, REMOTE_DEVICE_ID, GENERAL_CONFIG, &frame);
8675 	*device_id = (frame >> REMOTE_DEVICE_ID_SHIFT) & REMOTE_DEVICE_ID_MASK;
8676 	*device_rev = (frame >> REMOTE_DEVICE_REV_SHIFT)
8677 			& REMOTE_DEVICE_REV_MASK;
8678 }
8679 
8680 void read_misc_status(struct hfi1_devdata *dd, u8 *ver_a, u8 *ver_b)
8681 {
8682 	u32 frame;
8683 
8684 	read_8051_config(dd, MISC_STATUS, GENERAL_CONFIG, &frame);
8685 	*ver_a = (frame >> STS_FM_VERSION_A_SHIFT) & STS_FM_VERSION_A_MASK;
8686 	*ver_b = (frame >> STS_FM_VERSION_B_SHIFT) & STS_FM_VERSION_B_MASK;
8687 }
8688 
8689 static void read_vc_remote_phy(struct hfi1_devdata *dd, u8 *power_management,
8690 			       u8 *continuous)
8691 {
8692 	u32 frame;
8693 
8694 	read_8051_config(dd, VERIFY_CAP_REMOTE_PHY, GENERAL_CONFIG, &frame);
8695 	*power_management = (frame >> POWER_MANAGEMENT_SHIFT)
8696 					& POWER_MANAGEMENT_MASK;
8697 	*continuous = (frame >> CONTINIOUS_REMOTE_UPDATE_SUPPORT_SHIFT)
8698 					& CONTINIOUS_REMOTE_UPDATE_SUPPORT_MASK;
8699 }
8700 
8701 static void read_vc_remote_fabric(struct hfi1_devdata *dd, u8 *vau, u8 *z,
8702 				  u8 *vcu, u16 *vl15buf, u8 *crc_sizes)
8703 {
8704 	u32 frame;
8705 
8706 	read_8051_config(dd, VERIFY_CAP_REMOTE_FABRIC, GENERAL_CONFIG, &frame);
8707 	*vau = (frame >> VAU_SHIFT) & VAU_MASK;
8708 	*z = (frame >> Z_SHIFT) & Z_MASK;
8709 	*vcu = (frame >> VCU_SHIFT) & VCU_MASK;
8710 	*vl15buf = (frame >> VL15BUF_SHIFT) & VL15BUF_MASK;
8711 	*crc_sizes = (frame >> CRC_SIZES_SHIFT) & CRC_SIZES_MASK;
8712 }
8713 
8714 static void read_vc_remote_link_width(struct hfi1_devdata *dd,
8715 				      u8 *remote_tx_rate,
8716 				      u16 *link_widths)
8717 {
8718 	u32 frame;
8719 
8720 	read_8051_config(dd, VERIFY_CAP_REMOTE_LINK_WIDTH, GENERAL_CONFIG,
8721 			 &frame);
8722 	*remote_tx_rate = (frame >> REMOTE_TX_RATE_SHIFT)
8723 				& REMOTE_TX_RATE_MASK;
8724 	*link_widths = (frame >> LINK_WIDTH_SHIFT) & LINK_WIDTH_MASK;
8725 }
8726 
8727 static void read_local_lni(struct hfi1_devdata *dd, u8 *enable_lane_rx)
8728 {
8729 	u32 frame;
8730 
8731 	read_8051_config(dd, LOCAL_LNI_INFO, GENERAL_CONFIG, &frame);
8732 	*enable_lane_rx = (frame >> ENABLE_LANE_RX_SHIFT) & ENABLE_LANE_RX_MASK;
8733 }
8734 
8735 static void read_mgmt_allowed(struct hfi1_devdata *dd, u8 *mgmt_allowed)
8736 {
8737 	u32 frame;
8738 
8739 	read_8051_config(dd, REMOTE_LNI_INFO, GENERAL_CONFIG, &frame);
8740 	*mgmt_allowed = (frame >> MGMT_ALLOWED_SHIFT) & MGMT_ALLOWED_MASK;
8741 }
8742 
8743 static void read_last_local_state(struct hfi1_devdata *dd, u32 *lls)
8744 {
8745 	read_8051_config(dd, LAST_LOCAL_STATE_COMPLETE, GENERAL_CONFIG, lls);
8746 }
8747 
8748 static void read_last_remote_state(struct hfi1_devdata *dd, u32 *lrs)
8749 {
8750 	read_8051_config(dd, LAST_REMOTE_STATE_COMPLETE, GENERAL_CONFIG, lrs);
8751 }
8752 
8753 void hfi1_read_link_quality(struct hfi1_devdata *dd, u8 *link_quality)
8754 {
8755 	u32 frame;
8756 	int ret;
8757 
8758 	*link_quality = 0;
8759 	if (dd->pport->host_link_state & HLS_UP) {
8760 		ret = read_8051_config(dd, LINK_QUALITY_INFO, GENERAL_CONFIG,
8761 				       &frame);
8762 		if (ret == 0)
8763 			*link_quality = (frame >> LINK_QUALITY_SHIFT)
8764 						& LINK_QUALITY_MASK;
8765 	}
8766 }
8767 
8768 static void read_planned_down_reason_code(struct hfi1_devdata *dd, u8 *pdrrc)
8769 {
8770 	u32 frame;
8771 
8772 	read_8051_config(dd, LINK_QUALITY_INFO, GENERAL_CONFIG, &frame);
8773 	*pdrrc = (frame >> DOWN_REMOTE_REASON_SHIFT) & DOWN_REMOTE_REASON_MASK;
8774 }
8775 
8776 static void read_link_down_reason(struct hfi1_devdata *dd, u8 *ldr)
8777 {
8778 	u32 frame;
8779 
8780 	read_8051_config(dd, LINK_DOWN_REASON, GENERAL_CONFIG, &frame);
8781 	*ldr = (frame & 0xff);
8782 }
8783 
8784 static int read_tx_settings(struct hfi1_devdata *dd,
8785 			    u8 *enable_lane_tx,
8786 			    u8 *tx_polarity_inversion,
8787 			    u8 *rx_polarity_inversion,
8788 			    u8 *max_rate)
8789 {
8790 	u32 frame;
8791 	int ret;
8792 
8793 	ret = read_8051_config(dd, TX_SETTINGS, GENERAL_CONFIG, &frame);
8794 	*enable_lane_tx = (frame >> ENABLE_LANE_TX_SHIFT)
8795 				& ENABLE_LANE_TX_MASK;
8796 	*tx_polarity_inversion = (frame >> TX_POLARITY_INVERSION_SHIFT)
8797 				& TX_POLARITY_INVERSION_MASK;
8798 	*rx_polarity_inversion = (frame >> RX_POLARITY_INVERSION_SHIFT)
8799 				& RX_POLARITY_INVERSION_MASK;
8800 	*max_rate = (frame >> MAX_RATE_SHIFT) & MAX_RATE_MASK;
8801 	return ret;
8802 }
8803 
8804 static int write_tx_settings(struct hfi1_devdata *dd,
8805 			     u8 enable_lane_tx,
8806 			     u8 tx_polarity_inversion,
8807 			     u8 rx_polarity_inversion,
8808 			     u8 max_rate)
8809 {
8810 	u32 frame;
8811 
8812 	/* no need to mask, all variable sizes match field widths */
8813 	frame = enable_lane_tx << ENABLE_LANE_TX_SHIFT
8814 		| tx_polarity_inversion << TX_POLARITY_INVERSION_SHIFT
8815 		| rx_polarity_inversion << RX_POLARITY_INVERSION_SHIFT
8816 		| max_rate << MAX_RATE_SHIFT;
8817 	return load_8051_config(dd, TX_SETTINGS, GENERAL_CONFIG, frame);
8818 }
8819 
8820 /*
8821  * Read an idle LCB message.
8822  *
8823  * Returns 0 on success, -EINVAL on error
8824  */
8825 static int read_idle_message(struct hfi1_devdata *dd, u64 type, u64 *data_out)
8826 {
8827 	int ret;
8828 
8829 	ret = do_8051_command(dd, HCMD_READ_LCB_IDLE_MSG, type, data_out);
8830 	if (ret != HCMD_SUCCESS) {
8831 		dd_dev_err(dd, "read idle message: type %d, err %d\n",
8832 			   (u32)type, ret);
8833 		return -EINVAL;
8834 	}
8835 	dd_dev_info(dd, "%s: read idle message 0x%llx\n", __func__, *data_out);
8836 	/* return only the payload as we already know the type */
8837 	*data_out >>= IDLE_PAYLOAD_SHIFT;
8838 	return 0;
8839 }
8840 
8841 /*
8842  * Read an idle SMA message.  To be done in response to a notification from
8843  * the 8051.
8844  *
8845  * Returns 0 on success, -EINVAL on error
8846  */
8847 static int read_idle_sma(struct hfi1_devdata *dd, u64 *data)
8848 {
8849 	return read_idle_message(dd, (u64)IDLE_SMA << IDLE_MSG_TYPE_SHIFT,
8850 				 data);
8851 }
8852 
8853 /*
8854  * Send an idle LCB message.
8855  *
8856  * Returns 0 on success, -EINVAL on error
8857  */
8858 static int send_idle_message(struct hfi1_devdata *dd, u64 data)
8859 {
8860 	int ret;
8861 
8862 	dd_dev_info(dd, "%s: sending idle message 0x%llx\n", __func__, data);
8863 	ret = do_8051_command(dd, HCMD_SEND_LCB_IDLE_MSG, data, NULL);
8864 	if (ret != HCMD_SUCCESS) {
8865 		dd_dev_err(dd, "send idle message: data 0x%llx, err %d\n",
8866 			   data, ret);
8867 		return -EINVAL;
8868 	}
8869 	return 0;
8870 }
8871 
8872 /*
8873  * Send an idle SMA message.
8874  *
8875  * Returns 0 on success, -EINVAL on error
8876  */
8877 int send_idle_sma(struct hfi1_devdata *dd, u64 message)
8878 {
8879 	u64 data;
8880 
8881 	data = ((message & IDLE_PAYLOAD_MASK) << IDLE_PAYLOAD_SHIFT) |
8882 		((u64)IDLE_SMA << IDLE_MSG_TYPE_SHIFT);
8883 	return send_idle_message(dd, data);
8884 }
8885 
8886 /*
8887  * Initialize the LCB then do a quick link up.  This may or may not be
8888  * in loopback.
8889  *
8890  * return 0 on success, -errno on error
8891  */
8892 static int do_quick_linkup(struct hfi1_devdata *dd)
8893 {
8894 	u64 reg;
8895 	unsigned long timeout;
8896 	int ret;
8897 
8898 	lcb_shutdown(dd, 0);
8899 
8900 	if (loopback) {
8901 		/* LCB_CFG_LOOPBACK.VAL = 2 */
8902 		/* LCB_CFG_LANE_WIDTH.VAL = 0 */
8903 		write_csr(dd, DC_LCB_CFG_LOOPBACK,
8904 			  IB_PACKET_TYPE << DC_LCB_CFG_LOOPBACK_VAL_SHIFT);
8905 		write_csr(dd, DC_LCB_CFG_LANE_WIDTH, 0);
8906 	}
8907 
8908 	/* start the LCBs */
8909 	/* LCB_CFG_TX_FIFOS_RESET.VAL = 0 */
8910 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0);
8911 
8912 	/* simulator only loopback steps */
8913 	if (loopback && dd->icode == ICODE_FUNCTIONAL_SIMULATOR) {
8914 		/* LCB_CFG_RUN.EN = 1 */
8915 		write_csr(dd, DC_LCB_CFG_RUN,
8916 			  1ull << DC_LCB_CFG_RUN_EN_SHIFT);
8917 
8918 		/* watch LCB_STS_LINK_TRANSFER_ACTIVE */
8919 		timeout = jiffies + msecs_to_jiffies(10);
8920 		while (1) {
8921 			reg = read_csr(dd, DC_LCB_STS_LINK_TRANSFER_ACTIVE);
8922 			if (reg)
8923 				break;
8924 			if (time_after(jiffies, timeout)) {
8925 				dd_dev_err(dd,
8926 					   "timeout waiting for LINK_TRANSFER_ACTIVE\n");
8927 				return -ETIMEDOUT;
8928 			}
8929 			udelay(2);
8930 		}
8931 
8932 		write_csr(dd, DC_LCB_CFG_ALLOW_LINK_UP,
8933 			  1ull << DC_LCB_CFG_ALLOW_LINK_UP_VAL_SHIFT);
8934 	}
8935 
8936 	if (!loopback) {
8937 		/*
8938 		 * When doing quick linkup and not in loopback, both
8939 		 * sides must be done with LCB set-up before either
8940 		 * starts the quick linkup.  Put a delay here so that
8941 		 * both sides can be started and have a chance to be
8942 		 * done with LCB set up before resuming.
8943 		 */
8944 		dd_dev_err(dd,
8945 			   "Pausing for peer to be finished with LCB set up\n");
8946 		msleep(5000);
8947 		dd_dev_err(dd, "Continuing with quick linkup\n");
8948 	}
8949 
8950 	write_csr(dd, DC_LCB_ERR_EN, 0); /* mask LCB errors */
8951 	set_8051_lcb_access(dd);
8952 
8953 	/*
8954 	 * State "quick" LinkUp request sets the physical link state to
8955 	 * LinkUp without a verify capability sequence.
8956 	 * This state is in simulator v37 and later.
8957 	 */
8958 	ret = set_physical_link_state(dd, PLS_QUICK_LINKUP);
8959 	if (ret != HCMD_SUCCESS) {
8960 		dd_dev_err(dd,
8961 			   "%s: set physical link state to quick LinkUp failed with return %d\n",
8962 			   __func__, ret);
8963 
8964 		set_host_lcb_access(dd);
8965 		write_csr(dd, DC_LCB_ERR_EN, ~0ull); /* watch LCB errors */
8966 
8967 		if (ret >= 0)
8968 			ret = -EINVAL;
8969 		return ret;
8970 	}
8971 
8972 	return 0; /* success */
8973 }
8974 
8975 /*
8976  * Set the SerDes to internal loopback mode.
8977  * Returns 0 on success, -errno on error.
8978  */
8979 static int set_serdes_loopback_mode(struct hfi1_devdata *dd)
8980 {
8981 	int ret;
8982 
8983 	ret = set_physical_link_state(dd, PLS_INTERNAL_SERDES_LOOPBACK);
8984 	if (ret == HCMD_SUCCESS)
8985 		return 0;
8986 	dd_dev_err(dd,
8987 		   "Set physical link state to SerDes Loopback failed with return %d\n",
8988 		   ret);
8989 	if (ret >= 0)
8990 		ret = -EINVAL;
8991 	return ret;
8992 }
8993 
8994 /*
8995  * Do all special steps to set up loopback.
8996  */
8997 static int init_loopback(struct hfi1_devdata *dd)
8998 {
8999 	dd_dev_info(dd, "Entering loopback mode\n");
9000 
9001 	/* all loopbacks should disable self GUID check */
9002 	write_csr(dd, DC_DC8051_CFG_MODE,
9003 		  (read_csr(dd, DC_DC8051_CFG_MODE) | DISABLE_SELF_GUID_CHECK));
9004 
9005 	/*
9006 	 * The simulator has only one loopback option - LCB.  Switch
9007 	 * to that option, which includes quick link up.
9008 	 *
9009 	 * Accept all valid loopback values.
9010 	 */
9011 	if ((dd->icode == ICODE_FUNCTIONAL_SIMULATOR) &&
9012 	    (loopback == LOOPBACK_SERDES || loopback == LOOPBACK_LCB ||
9013 	     loopback == LOOPBACK_CABLE)) {
9014 		loopback = LOOPBACK_LCB;
9015 		quick_linkup = 1;
9016 		return 0;
9017 	}
9018 
9019 	/* handle serdes loopback */
9020 	if (loopback == LOOPBACK_SERDES) {
9021 		/* internal serdes loopack needs quick linkup on RTL */
9022 		if (dd->icode == ICODE_RTL_SILICON)
9023 			quick_linkup = 1;
9024 		return set_serdes_loopback_mode(dd);
9025 	}
9026 
9027 	/* LCB loopback - handled at poll time */
9028 	if (loopback == LOOPBACK_LCB) {
9029 		quick_linkup = 1; /* LCB is always quick linkup */
9030 
9031 		/* not supported in emulation due to emulation RTL changes */
9032 		if (dd->icode == ICODE_FPGA_EMULATION) {
9033 			dd_dev_err(dd,
9034 				   "LCB loopback not supported in emulation\n");
9035 			return -EINVAL;
9036 		}
9037 		return 0;
9038 	}
9039 
9040 	/* external cable loopback requires no extra steps */
9041 	if (loopback == LOOPBACK_CABLE)
9042 		return 0;
9043 
9044 	dd_dev_err(dd, "Invalid loopback mode %d\n", loopback);
9045 	return -EINVAL;
9046 }
9047 
9048 /*
9049  * Translate from the OPA_LINK_WIDTH handed to us by the FM to bits
9050  * used in the Verify Capability link width attribute.
9051  */
9052 static u16 opa_to_vc_link_widths(u16 opa_widths)
9053 {
9054 	int i;
9055 	u16 result = 0;
9056 
9057 	static const struct link_bits {
9058 		u16 from;
9059 		u16 to;
9060 	} opa_link_xlate[] = {
9061 		{ OPA_LINK_WIDTH_1X, 1 << (1 - 1)  },
9062 		{ OPA_LINK_WIDTH_2X, 1 << (2 - 1)  },
9063 		{ OPA_LINK_WIDTH_3X, 1 << (3 - 1)  },
9064 		{ OPA_LINK_WIDTH_4X, 1 << (4 - 1)  },
9065 	};
9066 
9067 	for (i = 0; i < ARRAY_SIZE(opa_link_xlate); i++) {
9068 		if (opa_widths & opa_link_xlate[i].from)
9069 			result |= opa_link_xlate[i].to;
9070 	}
9071 	return result;
9072 }
9073 
9074 /*
9075  * Set link attributes before moving to polling.
9076  */
9077 static int set_local_link_attributes(struct hfi1_pportdata *ppd)
9078 {
9079 	struct hfi1_devdata *dd = ppd->dd;
9080 	u8 enable_lane_tx;
9081 	u8 tx_polarity_inversion;
9082 	u8 rx_polarity_inversion;
9083 	int ret;
9084 
9085 	/* reset our fabric serdes to clear any lingering problems */
9086 	fabric_serdes_reset(dd);
9087 
9088 	/* set the local tx rate - need to read-modify-write */
9089 	ret = read_tx_settings(dd, &enable_lane_tx, &tx_polarity_inversion,
9090 			       &rx_polarity_inversion, &ppd->local_tx_rate);
9091 	if (ret)
9092 		goto set_local_link_attributes_fail;
9093 
9094 	if (dd->dc8051_ver < dc8051_ver(0, 20)) {
9095 		/* set the tx rate to the fastest enabled */
9096 		if (ppd->link_speed_enabled & OPA_LINK_SPEED_25G)
9097 			ppd->local_tx_rate = 1;
9098 		else
9099 			ppd->local_tx_rate = 0;
9100 	} else {
9101 		/* set the tx rate to all enabled */
9102 		ppd->local_tx_rate = 0;
9103 		if (ppd->link_speed_enabled & OPA_LINK_SPEED_25G)
9104 			ppd->local_tx_rate |= 2;
9105 		if (ppd->link_speed_enabled & OPA_LINK_SPEED_12_5G)
9106 			ppd->local_tx_rate |= 1;
9107 	}
9108 
9109 	enable_lane_tx = 0xF; /* enable all four lanes */
9110 	ret = write_tx_settings(dd, enable_lane_tx, tx_polarity_inversion,
9111 				rx_polarity_inversion, ppd->local_tx_rate);
9112 	if (ret != HCMD_SUCCESS)
9113 		goto set_local_link_attributes_fail;
9114 
9115 	/*
9116 	 * DC supports continuous updates.
9117 	 */
9118 	ret = write_vc_local_phy(dd,
9119 				 0 /* no power management */,
9120 				 1 /* continuous updates */);
9121 	if (ret != HCMD_SUCCESS)
9122 		goto set_local_link_attributes_fail;
9123 
9124 	/* z=1 in the next call: AU of 0 is not supported by the hardware */
9125 	ret = write_vc_local_fabric(dd, dd->vau, 1, dd->vcu, dd->vl15_init,
9126 				    ppd->port_crc_mode_enabled);
9127 	if (ret != HCMD_SUCCESS)
9128 		goto set_local_link_attributes_fail;
9129 
9130 	ret = write_vc_local_link_width(dd, 0, 0,
9131 					opa_to_vc_link_widths(
9132 						ppd->link_width_enabled));
9133 	if (ret != HCMD_SUCCESS)
9134 		goto set_local_link_attributes_fail;
9135 
9136 	/* let peer know who we are */
9137 	ret = write_local_device_id(dd, dd->pcidev->device, dd->minrev);
9138 	if (ret == HCMD_SUCCESS)
9139 		return 0;
9140 
9141 set_local_link_attributes_fail:
9142 	dd_dev_err(dd,
9143 		   "Failed to set local link attributes, return 0x%x\n",
9144 		   ret);
9145 	return ret;
9146 }
9147 
9148 /*
9149  * Call this to start the link.
9150  * Do not do anything if the link is disabled.
9151  * Returns 0 if link is disabled, moved to polling, or the driver is not ready.
9152  */
9153 int start_link(struct hfi1_pportdata *ppd)
9154 {
9155 	/*
9156 	 * Tune the SerDes to a ballpark setting for optimal signal and bit
9157 	 * error rate.  Needs to be done before starting the link.
9158 	 */
9159 	tune_serdes(ppd);
9160 
9161 	if (!ppd->link_enabled) {
9162 		dd_dev_info(ppd->dd,
9163 			    "%s: stopping link start because link is disabled\n",
9164 			    __func__);
9165 		return 0;
9166 	}
9167 	if (!ppd->driver_link_ready) {
9168 		dd_dev_info(ppd->dd,
9169 			    "%s: stopping link start because driver is not ready\n",
9170 			    __func__);
9171 		return 0;
9172 	}
9173 
9174 	/*
9175 	 * FULL_MGMT_P_KEY is cleared from the pkey table, so that the
9176 	 * pkey table can be configured properly if the HFI unit is connected
9177 	 * to switch port with MgmtAllowed=NO
9178 	 */
9179 	clear_full_mgmt_pkey(ppd);
9180 
9181 	return set_link_state(ppd, HLS_DN_POLL);
9182 }
9183 
9184 static void wait_for_qsfp_init(struct hfi1_pportdata *ppd)
9185 {
9186 	struct hfi1_devdata *dd = ppd->dd;
9187 	u64 mask;
9188 	unsigned long timeout;
9189 
9190 	/*
9191 	 * Some QSFP cables have a quirk that asserts the IntN line as a side
9192 	 * effect of power up on plug-in. We ignore this false positive
9193 	 * interrupt until the module has finished powering up by waiting for
9194 	 * a minimum timeout of the module inrush initialization time of
9195 	 * 500 ms (SFF 8679 Table 5-6) to ensure the voltage rails in the
9196 	 * module have stabilized.
9197 	 */
9198 	msleep(500);
9199 
9200 	/*
9201 	 * Check for QSFP interrupt for t_init (SFF 8679 Table 8-1)
9202 	 */
9203 	timeout = jiffies + msecs_to_jiffies(2000);
9204 	while (1) {
9205 		mask = read_csr(dd, dd->hfi1_id ?
9206 				ASIC_QSFP2_IN : ASIC_QSFP1_IN);
9207 		if (!(mask & QSFP_HFI0_INT_N))
9208 			break;
9209 		if (time_after(jiffies, timeout)) {
9210 			dd_dev_info(dd, "%s: No IntN detected, reset complete\n",
9211 				    __func__);
9212 			break;
9213 		}
9214 		udelay(2);
9215 	}
9216 }
9217 
9218 static void set_qsfp_int_n(struct hfi1_pportdata *ppd, u8 enable)
9219 {
9220 	struct hfi1_devdata *dd = ppd->dd;
9221 	u64 mask;
9222 
9223 	mask = read_csr(dd, dd->hfi1_id ? ASIC_QSFP2_MASK : ASIC_QSFP1_MASK);
9224 	if (enable) {
9225 		/*
9226 		 * Clear the status register to avoid an immediate interrupt
9227 		 * when we re-enable the IntN pin
9228 		 */
9229 		write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_CLEAR : ASIC_QSFP1_CLEAR,
9230 			  QSFP_HFI0_INT_N);
9231 		mask |= (u64)QSFP_HFI0_INT_N;
9232 	} else {
9233 		mask &= ~(u64)QSFP_HFI0_INT_N;
9234 	}
9235 	write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_MASK : ASIC_QSFP1_MASK, mask);
9236 }
9237 
9238 void reset_qsfp(struct hfi1_pportdata *ppd)
9239 {
9240 	struct hfi1_devdata *dd = ppd->dd;
9241 	u64 mask, qsfp_mask;
9242 
9243 	/* Disable INT_N from triggering QSFP interrupts */
9244 	set_qsfp_int_n(ppd, 0);
9245 
9246 	/* Reset the QSFP */
9247 	mask = (u64)QSFP_HFI0_RESET_N;
9248 
9249 	qsfp_mask = read_csr(dd,
9250 			     dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT);
9251 	qsfp_mask &= ~mask;
9252 	write_csr(dd,
9253 		  dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT, qsfp_mask);
9254 
9255 	udelay(10);
9256 
9257 	qsfp_mask |= mask;
9258 	write_csr(dd,
9259 		  dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT, qsfp_mask);
9260 
9261 	wait_for_qsfp_init(ppd);
9262 
9263 	/*
9264 	 * Allow INT_N to trigger the QSFP interrupt to watch
9265 	 * for alarms and warnings
9266 	 */
9267 	set_qsfp_int_n(ppd, 1);
9268 }
9269 
9270 static int handle_qsfp_error_conditions(struct hfi1_pportdata *ppd,
9271 					u8 *qsfp_interrupt_status)
9272 {
9273 	struct hfi1_devdata *dd = ppd->dd;
9274 
9275 	if ((qsfp_interrupt_status[0] & QSFP_HIGH_TEMP_ALARM) ||
9276 	    (qsfp_interrupt_status[0] & QSFP_HIGH_TEMP_WARNING))
9277 		dd_dev_info(dd, "%s: QSFP cable on fire\n",
9278 			    __func__);
9279 
9280 	if ((qsfp_interrupt_status[0] & QSFP_LOW_TEMP_ALARM) ||
9281 	    (qsfp_interrupt_status[0] & QSFP_LOW_TEMP_WARNING))
9282 		dd_dev_info(dd, "%s: QSFP cable temperature too low\n",
9283 			    __func__);
9284 
9285 	/*
9286 	 * The remaining alarms/warnings don't matter if the link is down.
9287 	 */
9288 	if (ppd->host_link_state & HLS_DOWN)
9289 		return 0;
9290 
9291 	if ((qsfp_interrupt_status[1] & QSFP_HIGH_VCC_ALARM) ||
9292 	    (qsfp_interrupt_status[1] & QSFP_HIGH_VCC_WARNING))
9293 		dd_dev_info(dd, "%s: QSFP supply voltage too high\n",
9294 			    __func__);
9295 
9296 	if ((qsfp_interrupt_status[1] & QSFP_LOW_VCC_ALARM) ||
9297 	    (qsfp_interrupt_status[1] & QSFP_LOW_VCC_WARNING))
9298 		dd_dev_info(dd, "%s: QSFP supply voltage too low\n",
9299 			    __func__);
9300 
9301 	/* Byte 2 is vendor specific */
9302 
9303 	if ((qsfp_interrupt_status[3] & QSFP_HIGH_POWER_ALARM) ||
9304 	    (qsfp_interrupt_status[3] & QSFP_HIGH_POWER_WARNING))
9305 		dd_dev_info(dd, "%s: Cable RX channel 1/2 power too high\n",
9306 			    __func__);
9307 
9308 	if ((qsfp_interrupt_status[3] & QSFP_LOW_POWER_ALARM) ||
9309 	    (qsfp_interrupt_status[3] & QSFP_LOW_POWER_WARNING))
9310 		dd_dev_info(dd, "%s: Cable RX channel 1/2 power too low\n",
9311 			    __func__);
9312 
9313 	if ((qsfp_interrupt_status[4] & QSFP_HIGH_POWER_ALARM) ||
9314 	    (qsfp_interrupt_status[4] & QSFP_HIGH_POWER_WARNING))
9315 		dd_dev_info(dd, "%s: Cable RX channel 3/4 power too high\n",
9316 			    __func__);
9317 
9318 	if ((qsfp_interrupt_status[4] & QSFP_LOW_POWER_ALARM) ||
9319 	    (qsfp_interrupt_status[4] & QSFP_LOW_POWER_WARNING))
9320 		dd_dev_info(dd, "%s: Cable RX channel 3/4 power too low\n",
9321 			    __func__);
9322 
9323 	if ((qsfp_interrupt_status[5] & QSFP_HIGH_BIAS_ALARM) ||
9324 	    (qsfp_interrupt_status[5] & QSFP_HIGH_BIAS_WARNING))
9325 		dd_dev_info(dd, "%s: Cable TX channel 1/2 bias too high\n",
9326 			    __func__);
9327 
9328 	if ((qsfp_interrupt_status[5] & QSFP_LOW_BIAS_ALARM) ||
9329 	    (qsfp_interrupt_status[5] & QSFP_LOW_BIAS_WARNING))
9330 		dd_dev_info(dd, "%s: Cable TX channel 1/2 bias too low\n",
9331 			    __func__);
9332 
9333 	if ((qsfp_interrupt_status[6] & QSFP_HIGH_BIAS_ALARM) ||
9334 	    (qsfp_interrupt_status[6] & QSFP_HIGH_BIAS_WARNING))
9335 		dd_dev_info(dd, "%s: Cable TX channel 3/4 bias too high\n",
9336 			    __func__);
9337 
9338 	if ((qsfp_interrupt_status[6] & QSFP_LOW_BIAS_ALARM) ||
9339 	    (qsfp_interrupt_status[6] & QSFP_LOW_BIAS_WARNING))
9340 		dd_dev_info(dd, "%s: Cable TX channel 3/4 bias too low\n",
9341 			    __func__);
9342 
9343 	if ((qsfp_interrupt_status[7] & QSFP_HIGH_POWER_ALARM) ||
9344 	    (qsfp_interrupt_status[7] & QSFP_HIGH_POWER_WARNING))
9345 		dd_dev_info(dd, "%s: Cable TX channel 1/2 power too high\n",
9346 			    __func__);
9347 
9348 	if ((qsfp_interrupt_status[7] & QSFP_LOW_POWER_ALARM) ||
9349 	    (qsfp_interrupt_status[7] & QSFP_LOW_POWER_WARNING))
9350 		dd_dev_info(dd, "%s: Cable TX channel 1/2 power too low\n",
9351 			    __func__);
9352 
9353 	if ((qsfp_interrupt_status[8] & QSFP_HIGH_POWER_ALARM) ||
9354 	    (qsfp_interrupt_status[8] & QSFP_HIGH_POWER_WARNING))
9355 		dd_dev_info(dd, "%s: Cable TX channel 3/4 power too high\n",
9356 			    __func__);
9357 
9358 	if ((qsfp_interrupt_status[8] & QSFP_LOW_POWER_ALARM) ||
9359 	    (qsfp_interrupt_status[8] & QSFP_LOW_POWER_WARNING))
9360 		dd_dev_info(dd, "%s: Cable TX channel 3/4 power too low\n",
9361 			    __func__);
9362 
9363 	/* Bytes 9-10 and 11-12 are reserved */
9364 	/* Bytes 13-15 are vendor specific */
9365 
9366 	return 0;
9367 }
9368 
9369 /* This routine will only be scheduled if the QSFP module present is asserted */
9370 void qsfp_event(struct work_struct *work)
9371 {
9372 	struct qsfp_data *qd;
9373 	struct hfi1_pportdata *ppd;
9374 	struct hfi1_devdata *dd;
9375 
9376 	qd = container_of(work, struct qsfp_data, qsfp_work);
9377 	ppd = qd->ppd;
9378 	dd = ppd->dd;
9379 
9380 	/* Sanity check */
9381 	if (!qsfp_mod_present(ppd))
9382 		return;
9383 
9384 	/*
9385 	 * Turn DC back on after cable has been re-inserted. Up until
9386 	 * now, the DC has been in reset to save power.
9387 	 */
9388 	dc_start(dd);
9389 
9390 	if (qd->cache_refresh_required) {
9391 		set_qsfp_int_n(ppd, 0);
9392 
9393 		wait_for_qsfp_init(ppd);
9394 
9395 		/*
9396 		 * Allow INT_N to trigger the QSFP interrupt to watch
9397 		 * for alarms and warnings
9398 		 */
9399 		set_qsfp_int_n(ppd, 1);
9400 
9401 		start_link(ppd);
9402 	}
9403 
9404 	if (qd->check_interrupt_flags) {
9405 		u8 qsfp_interrupt_status[16] = {0,};
9406 
9407 		if (one_qsfp_read(ppd, dd->hfi1_id, 6,
9408 				  &qsfp_interrupt_status[0], 16) != 16) {
9409 			dd_dev_info(dd,
9410 				    "%s: Failed to read status of QSFP module\n",
9411 				    __func__);
9412 		} else {
9413 			unsigned long flags;
9414 
9415 			handle_qsfp_error_conditions(
9416 					ppd, qsfp_interrupt_status);
9417 			spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
9418 			ppd->qsfp_info.check_interrupt_flags = 0;
9419 			spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock,
9420 					       flags);
9421 		}
9422 	}
9423 }
9424 
9425 static void init_qsfp_int(struct hfi1_devdata *dd)
9426 {
9427 	struct hfi1_pportdata *ppd = dd->pport;
9428 	u64 qsfp_mask, cce_int_mask;
9429 	const int qsfp1_int_smask = QSFP1_INT % 64;
9430 	const int qsfp2_int_smask = QSFP2_INT % 64;
9431 
9432 	/*
9433 	 * disable QSFP1 interrupts for HFI1, QSFP2 interrupts for HFI0
9434 	 * Qsfp1Int and Qsfp2Int are adjacent bits in the same CSR,
9435 	 * therefore just one of QSFP1_INT/QSFP2_INT can be used to find
9436 	 * the index of the appropriate CSR in the CCEIntMask CSR array
9437 	 */
9438 	cce_int_mask = read_csr(dd, CCE_INT_MASK +
9439 				(8 * (QSFP1_INT / 64)));
9440 	if (dd->hfi1_id) {
9441 		cce_int_mask &= ~((u64)1 << qsfp1_int_smask);
9442 		write_csr(dd, CCE_INT_MASK + (8 * (QSFP1_INT / 64)),
9443 			  cce_int_mask);
9444 	} else {
9445 		cce_int_mask &= ~((u64)1 << qsfp2_int_smask);
9446 		write_csr(dd, CCE_INT_MASK + (8 * (QSFP2_INT / 64)),
9447 			  cce_int_mask);
9448 	}
9449 
9450 	qsfp_mask = (u64)(QSFP_HFI0_INT_N | QSFP_HFI0_MODPRST_N);
9451 	/* Clear current status to avoid spurious interrupts */
9452 	write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_CLEAR : ASIC_QSFP1_CLEAR,
9453 		  qsfp_mask);
9454 	write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_MASK : ASIC_QSFP1_MASK,
9455 		  qsfp_mask);
9456 
9457 	set_qsfp_int_n(ppd, 0);
9458 
9459 	/* Handle active low nature of INT_N and MODPRST_N pins */
9460 	if (qsfp_mod_present(ppd))
9461 		qsfp_mask &= ~(u64)QSFP_HFI0_MODPRST_N;
9462 	write_csr(dd,
9463 		  dd->hfi1_id ? ASIC_QSFP2_INVERT : ASIC_QSFP1_INVERT,
9464 		  qsfp_mask);
9465 }
9466 
9467 /*
9468  * Do a one-time initialize of the LCB block.
9469  */
9470 static void init_lcb(struct hfi1_devdata *dd)
9471 {
9472 	/* simulator does not correctly handle LCB cclk loopback, skip */
9473 	if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR)
9474 		return;
9475 
9476 	/* the DC has been reset earlier in the driver load */
9477 
9478 	/* set LCB for cclk loopback on the port */
9479 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0x01);
9480 	write_csr(dd, DC_LCB_CFG_LANE_WIDTH, 0x00);
9481 	write_csr(dd, DC_LCB_CFG_REINIT_AS_SLAVE, 0x00);
9482 	write_csr(dd, DC_LCB_CFG_CNT_FOR_SKIP_STALL, 0x110);
9483 	write_csr(dd, DC_LCB_CFG_CLK_CNTR, 0x08);
9484 	write_csr(dd, DC_LCB_CFG_LOOPBACK, 0x02);
9485 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0x00);
9486 }
9487 
9488 /*
9489  * Perform a test read on the QSFP.  Return 0 on success, -ERRNO
9490  * on error.
9491  */
9492 static int test_qsfp_read(struct hfi1_pportdata *ppd)
9493 {
9494 	int ret;
9495 	u8 status;
9496 
9497 	/* report success if not a QSFP */
9498 	if (ppd->port_type != PORT_TYPE_QSFP)
9499 		return 0;
9500 
9501 	/* read byte 2, the status byte */
9502 	ret = one_qsfp_read(ppd, ppd->dd->hfi1_id, 2, &status, 1);
9503 	if (ret < 0)
9504 		return ret;
9505 	if (ret != 1)
9506 		return -EIO;
9507 
9508 	return 0; /* success */
9509 }
9510 
9511 /*
9512  * Values for QSFP retry.
9513  *
9514  * Give up after 10s (20 x 500ms).  The overall timeout was empirically
9515  * arrived at from experience on a large cluster.
9516  */
9517 #define MAX_QSFP_RETRIES 20
9518 #define QSFP_RETRY_WAIT 500 /* msec */
9519 
9520 /*
9521  * Try a QSFP read.  If it fails, schedule a retry for later.
9522  * Called on first link activation after driver load.
9523  */
9524 static void try_start_link(struct hfi1_pportdata *ppd)
9525 {
9526 	if (test_qsfp_read(ppd)) {
9527 		/* read failed */
9528 		if (ppd->qsfp_retry_count >= MAX_QSFP_RETRIES) {
9529 			dd_dev_err(ppd->dd, "QSFP not responding, giving up\n");
9530 			return;
9531 		}
9532 		dd_dev_info(ppd->dd,
9533 			    "QSFP not responding, waiting and retrying %d\n",
9534 			    (int)ppd->qsfp_retry_count);
9535 		ppd->qsfp_retry_count++;
9536 		queue_delayed_work(ppd->hfi1_wq, &ppd->start_link_work,
9537 				   msecs_to_jiffies(QSFP_RETRY_WAIT));
9538 		return;
9539 	}
9540 	ppd->qsfp_retry_count = 0;
9541 
9542 	start_link(ppd);
9543 }
9544 
9545 /*
9546  * Workqueue function to start the link after a delay.
9547  */
9548 void handle_start_link(struct work_struct *work)
9549 {
9550 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
9551 						  start_link_work.work);
9552 	try_start_link(ppd);
9553 }
9554 
9555 int bringup_serdes(struct hfi1_pportdata *ppd)
9556 {
9557 	struct hfi1_devdata *dd = ppd->dd;
9558 	u64 guid;
9559 	int ret;
9560 
9561 	if (HFI1_CAP_IS_KSET(EXTENDED_PSN))
9562 		add_rcvctrl(dd, RCV_CTRL_RCV_EXTENDED_PSN_ENABLE_SMASK);
9563 
9564 	guid = ppd->guids[HFI1_PORT_GUID_INDEX];
9565 	if (!guid) {
9566 		if (dd->base_guid)
9567 			guid = dd->base_guid + ppd->port - 1;
9568 		ppd->guids[HFI1_PORT_GUID_INDEX] = guid;
9569 	}
9570 
9571 	/* Set linkinit_reason on power up per OPA spec */
9572 	ppd->linkinit_reason = OPA_LINKINIT_REASON_LINKUP;
9573 
9574 	/* one-time init of the LCB */
9575 	init_lcb(dd);
9576 
9577 	if (loopback) {
9578 		ret = init_loopback(dd);
9579 		if (ret < 0)
9580 			return ret;
9581 	}
9582 
9583 	get_port_type(ppd);
9584 	if (ppd->port_type == PORT_TYPE_QSFP) {
9585 		set_qsfp_int_n(ppd, 0);
9586 		wait_for_qsfp_init(ppd);
9587 		set_qsfp_int_n(ppd, 1);
9588 	}
9589 
9590 	try_start_link(ppd);
9591 	return 0;
9592 }
9593 
9594 void hfi1_quiet_serdes(struct hfi1_pportdata *ppd)
9595 {
9596 	struct hfi1_devdata *dd = ppd->dd;
9597 
9598 	/*
9599 	 * Shut down the link and keep it down.   First turn off that the
9600 	 * driver wants to allow the link to be up (driver_link_ready).
9601 	 * Then make sure the link is not automatically restarted
9602 	 * (link_enabled).  Cancel any pending restart.  And finally
9603 	 * go offline.
9604 	 */
9605 	ppd->driver_link_ready = 0;
9606 	ppd->link_enabled = 0;
9607 
9608 	ppd->qsfp_retry_count = MAX_QSFP_RETRIES; /* prevent more retries */
9609 	flush_delayed_work(&ppd->start_link_work);
9610 	cancel_delayed_work_sync(&ppd->start_link_work);
9611 
9612 	ppd->offline_disabled_reason =
9613 			HFI1_ODR_MASK(OPA_LINKDOWN_REASON_SMA_DISABLED);
9614 	set_link_down_reason(ppd, OPA_LINKDOWN_REASON_SMA_DISABLED, 0,
9615 			     OPA_LINKDOWN_REASON_SMA_DISABLED);
9616 	set_link_state(ppd, HLS_DN_OFFLINE);
9617 
9618 	/* disable the port */
9619 	clear_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
9620 }
9621 
9622 static inline int init_cpu_counters(struct hfi1_devdata *dd)
9623 {
9624 	struct hfi1_pportdata *ppd;
9625 	int i;
9626 
9627 	ppd = (struct hfi1_pportdata *)(dd + 1);
9628 	for (i = 0; i < dd->num_pports; i++, ppd++) {
9629 		ppd->ibport_data.rvp.rc_acks = NULL;
9630 		ppd->ibport_data.rvp.rc_qacks = NULL;
9631 		ppd->ibport_data.rvp.rc_acks = alloc_percpu(u64);
9632 		ppd->ibport_data.rvp.rc_qacks = alloc_percpu(u64);
9633 		ppd->ibport_data.rvp.rc_delayed_comp = alloc_percpu(u64);
9634 		if (!ppd->ibport_data.rvp.rc_acks ||
9635 		    !ppd->ibport_data.rvp.rc_delayed_comp ||
9636 		    !ppd->ibport_data.rvp.rc_qacks)
9637 			return -ENOMEM;
9638 	}
9639 
9640 	return 0;
9641 }
9642 
9643 static const char * const pt_names[] = {
9644 	"expected",
9645 	"eager",
9646 	"invalid"
9647 };
9648 
9649 static const char *pt_name(u32 type)
9650 {
9651 	return type >= ARRAY_SIZE(pt_names) ? "unknown" : pt_names[type];
9652 }
9653 
9654 /*
9655  * index is the index into the receive array
9656  */
9657 void hfi1_put_tid(struct hfi1_devdata *dd, u32 index,
9658 		  u32 type, unsigned long pa, u16 order)
9659 {
9660 	u64 reg;
9661 	void __iomem *base = (dd->rcvarray_wc ? dd->rcvarray_wc :
9662 			      (dd->kregbase + RCV_ARRAY));
9663 
9664 	if (!(dd->flags & HFI1_PRESENT))
9665 		goto done;
9666 
9667 	if (type == PT_INVALID) {
9668 		pa = 0;
9669 	} else if (type > PT_INVALID) {
9670 		dd_dev_err(dd,
9671 			   "unexpected receive array type %u for index %u, not handled\n",
9672 			   type, index);
9673 		goto done;
9674 	}
9675 
9676 	hfi1_cdbg(TID, "type %s, index 0x%x, pa 0x%lx, bsize 0x%lx",
9677 		  pt_name(type), index, pa, (unsigned long)order);
9678 
9679 #define RT_ADDR_SHIFT 12	/* 4KB kernel address boundary */
9680 	reg = RCV_ARRAY_RT_WRITE_ENABLE_SMASK
9681 		| (u64)order << RCV_ARRAY_RT_BUF_SIZE_SHIFT
9682 		| ((pa >> RT_ADDR_SHIFT) & RCV_ARRAY_RT_ADDR_MASK)
9683 					<< RCV_ARRAY_RT_ADDR_SHIFT;
9684 	writeq(reg, base + (index * 8));
9685 
9686 	if (type == PT_EAGER)
9687 		/*
9688 		 * Eager entries are written one-by-one so we have to push them
9689 		 * after we write the entry.
9690 		 */
9691 		flush_wc();
9692 done:
9693 	return;
9694 }
9695 
9696 void hfi1_clear_tids(struct hfi1_ctxtdata *rcd)
9697 {
9698 	struct hfi1_devdata *dd = rcd->dd;
9699 	u32 i;
9700 
9701 	/* this could be optimized */
9702 	for (i = rcd->eager_base; i < rcd->eager_base +
9703 		     rcd->egrbufs.alloced; i++)
9704 		hfi1_put_tid(dd, i, PT_INVALID, 0, 0);
9705 
9706 	for (i = rcd->expected_base;
9707 			i < rcd->expected_base + rcd->expected_count; i++)
9708 		hfi1_put_tid(dd, i, PT_INVALID, 0, 0);
9709 }
9710 
9711 struct ib_header *hfi1_get_msgheader(
9712 	struct hfi1_devdata *dd, __le32 *rhf_addr)
9713 {
9714 	u32 offset = rhf_hdrq_offset(rhf_to_cpu(rhf_addr));
9715 
9716 	return (struct ib_header *)
9717 		(rhf_addr - dd->rhf_offset + offset);
9718 }
9719 
9720 static const char * const ib_cfg_name_strings[] = {
9721 	"HFI1_IB_CFG_LIDLMC",
9722 	"HFI1_IB_CFG_LWID_DG_ENB",
9723 	"HFI1_IB_CFG_LWID_ENB",
9724 	"HFI1_IB_CFG_LWID",
9725 	"HFI1_IB_CFG_SPD_ENB",
9726 	"HFI1_IB_CFG_SPD",
9727 	"HFI1_IB_CFG_RXPOL_ENB",
9728 	"HFI1_IB_CFG_LREV_ENB",
9729 	"HFI1_IB_CFG_LINKLATENCY",
9730 	"HFI1_IB_CFG_HRTBT",
9731 	"HFI1_IB_CFG_OP_VLS",
9732 	"HFI1_IB_CFG_VL_HIGH_CAP",
9733 	"HFI1_IB_CFG_VL_LOW_CAP",
9734 	"HFI1_IB_CFG_OVERRUN_THRESH",
9735 	"HFI1_IB_CFG_PHYERR_THRESH",
9736 	"HFI1_IB_CFG_LINKDEFAULT",
9737 	"HFI1_IB_CFG_PKEYS",
9738 	"HFI1_IB_CFG_MTU",
9739 	"HFI1_IB_CFG_LSTATE",
9740 	"HFI1_IB_CFG_VL_HIGH_LIMIT",
9741 	"HFI1_IB_CFG_PMA_TICKS",
9742 	"HFI1_IB_CFG_PORT"
9743 };
9744 
9745 static const char *ib_cfg_name(int which)
9746 {
9747 	if (which < 0 || which >= ARRAY_SIZE(ib_cfg_name_strings))
9748 		return "invalid";
9749 	return ib_cfg_name_strings[which];
9750 }
9751 
9752 int hfi1_get_ib_cfg(struct hfi1_pportdata *ppd, int which)
9753 {
9754 	struct hfi1_devdata *dd = ppd->dd;
9755 	int val = 0;
9756 
9757 	switch (which) {
9758 	case HFI1_IB_CFG_LWID_ENB: /* allowed Link-width */
9759 		val = ppd->link_width_enabled;
9760 		break;
9761 	case HFI1_IB_CFG_LWID: /* currently active Link-width */
9762 		val = ppd->link_width_active;
9763 		break;
9764 	case HFI1_IB_CFG_SPD_ENB: /* allowed Link speeds */
9765 		val = ppd->link_speed_enabled;
9766 		break;
9767 	case HFI1_IB_CFG_SPD: /* current Link speed */
9768 		val = ppd->link_speed_active;
9769 		break;
9770 
9771 	case HFI1_IB_CFG_RXPOL_ENB: /* Auto-RX-polarity enable */
9772 	case HFI1_IB_CFG_LREV_ENB: /* Auto-Lane-reversal enable */
9773 	case HFI1_IB_CFG_LINKLATENCY:
9774 		goto unimplemented;
9775 
9776 	case HFI1_IB_CFG_OP_VLS:
9777 		val = ppd->vls_operational;
9778 		break;
9779 	case HFI1_IB_CFG_VL_HIGH_CAP: /* VL arb high priority table size */
9780 		val = VL_ARB_HIGH_PRIO_TABLE_SIZE;
9781 		break;
9782 	case HFI1_IB_CFG_VL_LOW_CAP: /* VL arb low priority table size */
9783 		val = VL_ARB_LOW_PRIO_TABLE_SIZE;
9784 		break;
9785 	case HFI1_IB_CFG_OVERRUN_THRESH: /* IB overrun threshold */
9786 		val = ppd->overrun_threshold;
9787 		break;
9788 	case HFI1_IB_CFG_PHYERR_THRESH: /* IB PHY error threshold */
9789 		val = ppd->phy_error_threshold;
9790 		break;
9791 	case HFI1_IB_CFG_LINKDEFAULT: /* IB link default (sleep/poll) */
9792 		val = dd->link_default;
9793 		break;
9794 
9795 	case HFI1_IB_CFG_HRTBT: /* Heartbeat off/enable/auto */
9796 	case HFI1_IB_CFG_PMA_TICKS:
9797 	default:
9798 unimplemented:
9799 		if (HFI1_CAP_IS_KSET(PRINT_UNIMPL))
9800 			dd_dev_info(
9801 				dd,
9802 				"%s: which %s: not implemented\n",
9803 				__func__,
9804 				ib_cfg_name(which));
9805 		break;
9806 	}
9807 
9808 	return val;
9809 }
9810 
9811 /*
9812  * The largest MAD packet size.
9813  */
9814 #define MAX_MAD_PACKET 2048
9815 
9816 /*
9817  * Return the maximum header bytes that can go on the _wire_
9818  * for this device. This count includes the ICRC which is
9819  * not part of the packet held in memory but it is appended
9820  * by the HW.
9821  * This is dependent on the device's receive header entry size.
9822  * HFI allows this to be set per-receive context, but the
9823  * driver presently enforces a global value.
9824  */
9825 u32 lrh_max_header_bytes(struct hfi1_devdata *dd)
9826 {
9827 	/*
9828 	 * The maximum non-payload (MTU) bytes in LRH.PktLen are
9829 	 * the Receive Header Entry Size minus the PBC (or RHF) size
9830 	 * plus one DW for the ICRC appended by HW.
9831 	 *
9832 	 * dd->rcd[0].rcvhdrqentsize is in DW.
9833 	 * We use rcd[0] as all context will have the same value. Also,
9834 	 * the first kernel context would have been allocated by now so
9835 	 * we are guaranteed a valid value.
9836 	 */
9837 	return (dd->rcd[0]->rcvhdrqentsize - 2/*PBC/RHF*/ + 1/*ICRC*/) << 2;
9838 }
9839 
9840 /*
9841  * Set Send Length
9842  * @ppd - per port data
9843  *
9844  * Set the MTU by limiting how many DWs may be sent.  The SendLenCheck*
9845  * registers compare against LRH.PktLen, so use the max bytes included
9846  * in the LRH.
9847  *
9848  * This routine changes all VL values except VL15, which it maintains at
9849  * the same value.
9850  */
9851 static void set_send_length(struct hfi1_pportdata *ppd)
9852 {
9853 	struct hfi1_devdata *dd = ppd->dd;
9854 	u32 max_hb = lrh_max_header_bytes(dd), dcmtu;
9855 	u32 maxvlmtu = dd->vld[15].mtu;
9856 	u64 len1 = 0, len2 = (((dd->vld[15].mtu + max_hb) >> 2)
9857 			      & SEND_LEN_CHECK1_LEN_VL15_MASK) <<
9858 		SEND_LEN_CHECK1_LEN_VL15_SHIFT;
9859 	int i, j;
9860 	u32 thres;
9861 
9862 	for (i = 0; i < ppd->vls_supported; i++) {
9863 		if (dd->vld[i].mtu > maxvlmtu)
9864 			maxvlmtu = dd->vld[i].mtu;
9865 		if (i <= 3)
9866 			len1 |= (((dd->vld[i].mtu + max_hb) >> 2)
9867 				 & SEND_LEN_CHECK0_LEN_VL0_MASK) <<
9868 				((i % 4) * SEND_LEN_CHECK0_LEN_VL1_SHIFT);
9869 		else
9870 			len2 |= (((dd->vld[i].mtu + max_hb) >> 2)
9871 				 & SEND_LEN_CHECK1_LEN_VL4_MASK) <<
9872 				((i % 4) * SEND_LEN_CHECK1_LEN_VL5_SHIFT);
9873 	}
9874 	write_csr(dd, SEND_LEN_CHECK0, len1);
9875 	write_csr(dd, SEND_LEN_CHECK1, len2);
9876 	/* adjust kernel credit return thresholds based on new MTUs */
9877 	/* all kernel receive contexts have the same hdrqentsize */
9878 	for (i = 0; i < ppd->vls_supported; i++) {
9879 		thres = min(sc_percent_to_threshold(dd->vld[i].sc, 50),
9880 			    sc_mtu_to_threshold(dd->vld[i].sc,
9881 						dd->vld[i].mtu,
9882 						dd->rcd[0]->rcvhdrqentsize));
9883 		for (j = 0; j < INIT_SC_PER_VL; j++)
9884 			sc_set_cr_threshold(
9885 					pio_select_send_context_vl(dd, j, i),
9886 					    thres);
9887 	}
9888 	thres = min(sc_percent_to_threshold(dd->vld[15].sc, 50),
9889 		    sc_mtu_to_threshold(dd->vld[15].sc,
9890 					dd->vld[15].mtu,
9891 					dd->rcd[0]->rcvhdrqentsize));
9892 	sc_set_cr_threshold(dd->vld[15].sc, thres);
9893 
9894 	/* Adjust maximum MTU for the port in DC */
9895 	dcmtu = maxvlmtu == 10240 ? DCC_CFG_PORT_MTU_CAP_10240 :
9896 		(ilog2(maxvlmtu >> 8) + 1);
9897 	len1 = read_csr(ppd->dd, DCC_CFG_PORT_CONFIG);
9898 	len1 &= ~DCC_CFG_PORT_CONFIG_MTU_CAP_SMASK;
9899 	len1 |= ((u64)dcmtu & DCC_CFG_PORT_CONFIG_MTU_CAP_MASK) <<
9900 		DCC_CFG_PORT_CONFIG_MTU_CAP_SHIFT;
9901 	write_csr(ppd->dd, DCC_CFG_PORT_CONFIG, len1);
9902 }
9903 
9904 static void set_lidlmc(struct hfi1_pportdata *ppd)
9905 {
9906 	int i;
9907 	u64 sreg = 0;
9908 	struct hfi1_devdata *dd = ppd->dd;
9909 	u32 mask = ~((1U << ppd->lmc) - 1);
9910 	u64 c1 = read_csr(ppd->dd, DCC_CFG_PORT_CONFIG1);
9911 
9912 	c1 &= ~(DCC_CFG_PORT_CONFIG1_TARGET_DLID_SMASK
9913 		| DCC_CFG_PORT_CONFIG1_DLID_MASK_SMASK);
9914 	c1 |= ((ppd->lid & DCC_CFG_PORT_CONFIG1_TARGET_DLID_MASK)
9915 			<< DCC_CFG_PORT_CONFIG1_TARGET_DLID_SHIFT) |
9916 	      ((mask & DCC_CFG_PORT_CONFIG1_DLID_MASK_MASK)
9917 			<< DCC_CFG_PORT_CONFIG1_DLID_MASK_SHIFT);
9918 	write_csr(ppd->dd, DCC_CFG_PORT_CONFIG1, c1);
9919 
9920 	/*
9921 	 * Iterate over all the send contexts and set their SLID check
9922 	 */
9923 	sreg = ((mask & SEND_CTXT_CHECK_SLID_MASK_MASK) <<
9924 			SEND_CTXT_CHECK_SLID_MASK_SHIFT) |
9925 	       (((ppd->lid & mask) & SEND_CTXT_CHECK_SLID_VALUE_MASK) <<
9926 			SEND_CTXT_CHECK_SLID_VALUE_SHIFT);
9927 
9928 	for (i = 0; i < dd->chip_send_contexts; i++) {
9929 		hfi1_cdbg(LINKVERB, "SendContext[%d].SLID_CHECK = 0x%x",
9930 			  i, (u32)sreg);
9931 		write_kctxt_csr(dd, i, SEND_CTXT_CHECK_SLID, sreg);
9932 	}
9933 
9934 	/* Now we have to do the same thing for the sdma engines */
9935 	sdma_update_lmc(dd, mask, ppd->lid);
9936 }
9937 
9938 static int wait_phy_linkstate(struct hfi1_devdata *dd, u32 state, u32 msecs)
9939 {
9940 	unsigned long timeout;
9941 	u32 curr_state;
9942 
9943 	timeout = jiffies + msecs_to_jiffies(msecs);
9944 	while (1) {
9945 		curr_state = read_physical_state(dd);
9946 		if (curr_state == state)
9947 			break;
9948 		if (time_after(jiffies, timeout)) {
9949 			dd_dev_err(dd,
9950 				   "timeout waiting for phy link state 0x%x, current state is 0x%x\n",
9951 				   state, curr_state);
9952 			return -ETIMEDOUT;
9953 		}
9954 		usleep_range(1950, 2050); /* sleep 2ms-ish */
9955 	}
9956 
9957 	return 0;
9958 }
9959 
9960 static const char *state_completed_string(u32 completed)
9961 {
9962 	static const char * const state_completed[] = {
9963 		"EstablishComm",
9964 		"OptimizeEQ",
9965 		"VerifyCap"
9966 	};
9967 
9968 	if (completed < ARRAY_SIZE(state_completed))
9969 		return state_completed[completed];
9970 
9971 	return "unknown";
9972 }
9973 
9974 static const char all_lanes_dead_timeout_expired[] =
9975 	"All lanes were inactive – was the interconnect media removed?";
9976 static const char tx_out_of_policy[] =
9977 	"Passing lanes on local port do not meet the local link width policy";
9978 static const char no_state_complete[] =
9979 	"State timeout occurred before link partner completed the state";
9980 static const char * const state_complete_reasons[] = {
9981 	[0x00] = "Reason unknown",
9982 	[0x01] = "Link was halted by driver, refer to LinkDownReason",
9983 	[0x02] = "Link partner reported failure",
9984 	[0x10] = "Unable to achieve frame sync on any lane",
9985 	[0x11] =
9986 	  "Unable to find a common bit rate with the link partner",
9987 	[0x12] =
9988 	  "Unable to achieve frame sync on sufficient lanes to meet the local link width policy",
9989 	[0x13] =
9990 	  "Unable to identify preset equalization on sufficient lanes to meet the local link width policy",
9991 	[0x14] = no_state_complete,
9992 	[0x15] =
9993 	  "State timeout occurred before link partner identified equalization presets",
9994 	[0x16] =
9995 	  "Link partner completed the EstablishComm state, but the passing lanes do not meet the local link width policy",
9996 	[0x17] = tx_out_of_policy,
9997 	[0x20] = all_lanes_dead_timeout_expired,
9998 	[0x21] =
9999 	  "Unable to achieve acceptable BER on sufficient lanes to meet the local link width policy",
10000 	[0x22] = no_state_complete,
10001 	[0x23] =
10002 	  "Link partner completed the OptimizeEq state, but the passing lanes do not meet the local link width policy",
10003 	[0x24] = tx_out_of_policy,
10004 	[0x30] = all_lanes_dead_timeout_expired,
10005 	[0x31] =
10006 	  "State timeout occurred waiting for host to process received frames",
10007 	[0x32] = no_state_complete,
10008 	[0x33] =
10009 	  "Link partner completed the VerifyCap state, but the passing lanes do not meet the local link width policy",
10010 	[0x34] = tx_out_of_policy,
10011 };
10012 
10013 static const char *state_complete_reason_code_string(struct hfi1_pportdata *ppd,
10014 						     u32 code)
10015 {
10016 	const char *str = NULL;
10017 
10018 	if (code < ARRAY_SIZE(state_complete_reasons))
10019 		str = state_complete_reasons[code];
10020 
10021 	if (str)
10022 		return str;
10023 	return "Reserved";
10024 }
10025 
10026 /* describe the given last state complete frame */
10027 static void decode_state_complete(struct hfi1_pportdata *ppd, u32 frame,
10028 				  const char *prefix)
10029 {
10030 	struct hfi1_devdata *dd = ppd->dd;
10031 	u32 success;
10032 	u32 state;
10033 	u32 reason;
10034 	u32 lanes;
10035 
10036 	/*
10037 	 * Decode frame:
10038 	 *  [ 0: 0] - success
10039 	 *  [ 3: 1] - state
10040 	 *  [ 7: 4] - next state timeout
10041 	 *  [15: 8] - reason code
10042 	 *  [31:16] - lanes
10043 	 */
10044 	success = frame & 0x1;
10045 	state = (frame >> 1) & 0x7;
10046 	reason = (frame >> 8) & 0xff;
10047 	lanes = (frame >> 16) & 0xffff;
10048 
10049 	dd_dev_err(dd, "Last %s LNI state complete frame 0x%08x:\n",
10050 		   prefix, frame);
10051 	dd_dev_err(dd, "    last reported state state: %s (0x%x)\n",
10052 		   state_completed_string(state), state);
10053 	dd_dev_err(dd, "    state successfully completed: %s\n",
10054 		   success ? "yes" : "no");
10055 	dd_dev_err(dd, "    fail reason 0x%x: %s\n",
10056 		   reason, state_complete_reason_code_string(ppd, reason));
10057 	dd_dev_err(dd, "    passing lane mask: 0x%x", lanes);
10058 }
10059 
10060 /*
10061  * Read the last state complete frames and explain them.  This routine
10062  * expects to be called if the link went down during link negotiation
10063  * and initialization (LNI).  That is, anywhere between polling and link up.
10064  */
10065 static void check_lni_states(struct hfi1_pportdata *ppd)
10066 {
10067 	u32 last_local_state;
10068 	u32 last_remote_state;
10069 
10070 	read_last_local_state(ppd->dd, &last_local_state);
10071 	read_last_remote_state(ppd->dd, &last_remote_state);
10072 
10073 	/*
10074 	 * Don't report anything if there is nothing to report.  A value of
10075 	 * 0 means the link was taken down while polling and there was no
10076 	 * training in-process.
10077 	 */
10078 	if (last_local_state == 0 && last_remote_state == 0)
10079 		return;
10080 
10081 	decode_state_complete(ppd, last_local_state, "transmitted");
10082 	decode_state_complete(ppd, last_remote_state, "received");
10083 }
10084 
10085 /*
10086  * Helper for set_link_state().  Do not call except from that routine.
10087  * Expects ppd->hls_mutex to be held.
10088  *
10089  * @rem_reason value to be sent to the neighbor
10090  *
10091  * LinkDownReasons only set if transition succeeds.
10092  */
10093 static int goto_offline(struct hfi1_pportdata *ppd, u8 rem_reason)
10094 {
10095 	struct hfi1_devdata *dd = ppd->dd;
10096 	u32 pstate, previous_state;
10097 	int ret;
10098 	int do_transition;
10099 	int do_wait;
10100 
10101 	previous_state = ppd->host_link_state;
10102 	ppd->host_link_state = HLS_GOING_OFFLINE;
10103 	pstate = read_physical_state(dd);
10104 	if (pstate == PLS_OFFLINE) {
10105 		do_transition = 0;	/* in right state */
10106 		do_wait = 0;		/* ...no need to wait */
10107 	} else if ((pstate & 0xff) == PLS_OFFLINE) {
10108 		do_transition = 0;	/* in an offline transient state */
10109 		do_wait = 1;		/* ...wait for it to settle */
10110 	} else {
10111 		do_transition = 1;	/* need to move to offline */
10112 		do_wait = 1;		/* ...will need to wait */
10113 	}
10114 
10115 	if (do_transition) {
10116 		ret = set_physical_link_state(dd,
10117 					      (rem_reason << 8) | PLS_OFFLINE);
10118 
10119 		if (ret != HCMD_SUCCESS) {
10120 			dd_dev_err(dd,
10121 				   "Failed to transition to Offline link state, return %d\n",
10122 				   ret);
10123 			return -EINVAL;
10124 		}
10125 		if (ppd->offline_disabled_reason ==
10126 				HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE))
10127 			ppd->offline_disabled_reason =
10128 			HFI1_ODR_MASK(OPA_LINKDOWN_REASON_TRANSIENT);
10129 	}
10130 
10131 	if (do_wait) {
10132 		/* it can take a while for the link to go down */
10133 		ret = wait_phy_linkstate(dd, PLS_OFFLINE, 10000);
10134 		if (ret < 0)
10135 			return ret;
10136 	}
10137 
10138 	/* make sure the logical state is also down */
10139 	wait_logical_linkstate(ppd, IB_PORT_DOWN, 1000);
10140 
10141 	/*
10142 	 * Now in charge of LCB - must be after the physical state is
10143 	 * offline.quiet and before host_link_state is changed.
10144 	 */
10145 	set_host_lcb_access(dd);
10146 	write_csr(dd, DC_LCB_ERR_EN, ~0ull); /* watch LCB errors */
10147 	ppd->host_link_state = HLS_LINK_COOLDOWN; /* LCB access allowed */
10148 
10149 	if (ppd->port_type == PORT_TYPE_QSFP &&
10150 	    ppd->qsfp_info.limiting_active &&
10151 	    qsfp_mod_present(ppd)) {
10152 		int ret;
10153 
10154 		ret = acquire_chip_resource(dd, qsfp_resource(dd), QSFP_WAIT);
10155 		if (ret == 0) {
10156 			set_qsfp_tx(ppd, 0);
10157 			release_chip_resource(dd, qsfp_resource(dd));
10158 		} else {
10159 			/* not fatal, but should warn */
10160 			dd_dev_err(dd,
10161 				   "Unable to acquire lock to turn off QSFP TX\n");
10162 		}
10163 	}
10164 
10165 	/*
10166 	 * The LNI has a mandatory wait time after the physical state
10167 	 * moves to Offline.Quiet.  The wait time may be different
10168 	 * depending on how the link went down.  The 8051 firmware
10169 	 * will observe the needed wait time and only move to ready
10170 	 * when that is completed.  The largest of the quiet timeouts
10171 	 * is 6s, so wait that long and then at least 0.5s more for
10172 	 * other transitions, and another 0.5s for a buffer.
10173 	 */
10174 	ret = wait_fm_ready(dd, 7000);
10175 	if (ret) {
10176 		dd_dev_err(dd,
10177 			   "After going offline, timed out waiting for the 8051 to become ready to accept host requests\n");
10178 		/* state is really offline, so make it so */
10179 		ppd->host_link_state = HLS_DN_OFFLINE;
10180 		return ret;
10181 	}
10182 
10183 	/*
10184 	 * The state is now offline and the 8051 is ready to accept host
10185 	 * requests.
10186 	 *	- change our state
10187 	 *	- notify others if we were previously in a linkup state
10188 	 */
10189 	ppd->host_link_state = HLS_DN_OFFLINE;
10190 	if (previous_state & HLS_UP) {
10191 		/* went down while link was up */
10192 		handle_linkup_change(dd, 0);
10193 	} else if (previous_state
10194 			& (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) {
10195 		/* went down while attempting link up */
10196 		check_lni_states(ppd);
10197 	}
10198 
10199 	/* the active link width (downgrade) is 0 on link down */
10200 	ppd->link_width_active = 0;
10201 	ppd->link_width_downgrade_tx_active = 0;
10202 	ppd->link_width_downgrade_rx_active = 0;
10203 	ppd->current_egress_rate = 0;
10204 	return 0;
10205 }
10206 
10207 /* return the link state name */
10208 static const char *link_state_name(u32 state)
10209 {
10210 	const char *name;
10211 	int n = ilog2(state);
10212 	static const char * const names[] = {
10213 		[__HLS_UP_INIT_BP]	 = "INIT",
10214 		[__HLS_UP_ARMED_BP]	 = "ARMED",
10215 		[__HLS_UP_ACTIVE_BP]	 = "ACTIVE",
10216 		[__HLS_DN_DOWNDEF_BP]	 = "DOWNDEF",
10217 		[__HLS_DN_POLL_BP]	 = "POLL",
10218 		[__HLS_DN_DISABLE_BP]	 = "DISABLE",
10219 		[__HLS_DN_OFFLINE_BP]	 = "OFFLINE",
10220 		[__HLS_VERIFY_CAP_BP]	 = "VERIFY_CAP",
10221 		[__HLS_GOING_UP_BP]	 = "GOING_UP",
10222 		[__HLS_GOING_OFFLINE_BP] = "GOING_OFFLINE",
10223 		[__HLS_LINK_COOLDOWN_BP] = "LINK_COOLDOWN"
10224 	};
10225 
10226 	name = n < ARRAY_SIZE(names) ? names[n] : NULL;
10227 	return name ? name : "unknown";
10228 }
10229 
10230 /* return the link state reason name */
10231 static const char *link_state_reason_name(struct hfi1_pportdata *ppd, u32 state)
10232 {
10233 	if (state == HLS_UP_INIT) {
10234 		switch (ppd->linkinit_reason) {
10235 		case OPA_LINKINIT_REASON_LINKUP:
10236 			return "(LINKUP)";
10237 		case OPA_LINKINIT_REASON_FLAPPING:
10238 			return "(FLAPPING)";
10239 		case OPA_LINKINIT_OUTSIDE_POLICY:
10240 			return "(OUTSIDE_POLICY)";
10241 		case OPA_LINKINIT_QUARANTINED:
10242 			return "(QUARANTINED)";
10243 		case OPA_LINKINIT_INSUFIC_CAPABILITY:
10244 			return "(INSUFIC_CAPABILITY)";
10245 		default:
10246 			break;
10247 		}
10248 	}
10249 	return "";
10250 }
10251 
10252 /*
10253  * driver_physical_state - convert the driver's notion of a port's
10254  * state (an HLS_*) into a physical state (a {IB,OPA}_PORTPHYSSTATE_*).
10255  * Return -1 (converted to a u32) to indicate error.
10256  */
10257 u32 driver_physical_state(struct hfi1_pportdata *ppd)
10258 {
10259 	switch (ppd->host_link_state) {
10260 	case HLS_UP_INIT:
10261 	case HLS_UP_ARMED:
10262 	case HLS_UP_ACTIVE:
10263 		return IB_PORTPHYSSTATE_LINKUP;
10264 	case HLS_DN_POLL:
10265 		return IB_PORTPHYSSTATE_POLLING;
10266 	case HLS_DN_DISABLE:
10267 		return IB_PORTPHYSSTATE_DISABLED;
10268 	case HLS_DN_OFFLINE:
10269 		return OPA_PORTPHYSSTATE_OFFLINE;
10270 	case HLS_VERIFY_CAP:
10271 		return IB_PORTPHYSSTATE_POLLING;
10272 	case HLS_GOING_UP:
10273 		return IB_PORTPHYSSTATE_POLLING;
10274 	case HLS_GOING_OFFLINE:
10275 		return OPA_PORTPHYSSTATE_OFFLINE;
10276 	case HLS_LINK_COOLDOWN:
10277 		return OPA_PORTPHYSSTATE_OFFLINE;
10278 	case HLS_DN_DOWNDEF:
10279 	default:
10280 		dd_dev_err(ppd->dd, "invalid host_link_state 0x%x\n",
10281 			   ppd->host_link_state);
10282 		return  -1;
10283 	}
10284 }
10285 
10286 /*
10287  * driver_logical_state - convert the driver's notion of a port's
10288  * state (an HLS_*) into a logical state (a IB_PORT_*). Return -1
10289  * (converted to a u32) to indicate error.
10290  */
10291 u32 driver_logical_state(struct hfi1_pportdata *ppd)
10292 {
10293 	if (ppd->host_link_state && (ppd->host_link_state & HLS_DOWN))
10294 		return IB_PORT_DOWN;
10295 
10296 	switch (ppd->host_link_state & HLS_UP) {
10297 	case HLS_UP_INIT:
10298 		return IB_PORT_INIT;
10299 	case HLS_UP_ARMED:
10300 		return IB_PORT_ARMED;
10301 	case HLS_UP_ACTIVE:
10302 		return IB_PORT_ACTIVE;
10303 	default:
10304 		dd_dev_err(ppd->dd, "invalid host_link_state 0x%x\n",
10305 			   ppd->host_link_state);
10306 	return -1;
10307 	}
10308 }
10309 
10310 void set_link_down_reason(struct hfi1_pportdata *ppd, u8 lcl_reason,
10311 			  u8 neigh_reason, u8 rem_reason)
10312 {
10313 	if (ppd->local_link_down_reason.latest == 0 &&
10314 	    ppd->neigh_link_down_reason.latest == 0) {
10315 		ppd->local_link_down_reason.latest = lcl_reason;
10316 		ppd->neigh_link_down_reason.latest = neigh_reason;
10317 		ppd->remote_link_down_reason = rem_reason;
10318 	}
10319 }
10320 
10321 /*
10322  * Change the physical and/or logical link state.
10323  *
10324  * Do not call this routine while inside an interrupt.  It contains
10325  * calls to routines that can take multiple seconds to finish.
10326  *
10327  * Returns 0 on success, -errno on failure.
10328  */
10329 int set_link_state(struct hfi1_pportdata *ppd, u32 state)
10330 {
10331 	struct hfi1_devdata *dd = ppd->dd;
10332 	struct ib_event event = {.device = NULL};
10333 	int ret1, ret = 0;
10334 	int orig_new_state, poll_bounce;
10335 
10336 	mutex_lock(&ppd->hls_lock);
10337 
10338 	orig_new_state = state;
10339 	if (state == HLS_DN_DOWNDEF)
10340 		state = dd->link_default;
10341 
10342 	/* interpret poll -> poll as a link bounce */
10343 	poll_bounce = ppd->host_link_state == HLS_DN_POLL &&
10344 		      state == HLS_DN_POLL;
10345 
10346 	dd_dev_info(dd, "%s: current %s, new %s %s%s\n", __func__,
10347 		    link_state_name(ppd->host_link_state),
10348 		    link_state_name(orig_new_state),
10349 		    poll_bounce ? "(bounce) " : "",
10350 		    link_state_reason_name(ppd, state));
10351 
10352 	/*
10353 	 * If we're going to a (HLS_*) link state that implies the logical
10354 	 * link state is neither of (IB_PORT_ARMED, IB_PORT_ACTIVE), then
10355 	 * reset is_sm_config_started to 0.
10356 	 */
10357 	if (!(state & (HLS_UP_ARMED | HLS_UP_ACTIVE)))
10358 		ppd->is_sm_config_started = 0;
10359 
10360 	/*
10361 	 * Do nothing if the states match.  Let a poll to poll link bounce
10362 	 * go through.
10363 	 */
10364 	if (ppd->host_link_state == state && !poll_bounce)
10365 		goto done;
10366 
10367 	switch (state) {
10368 	case HLS_UP_INIT:
10369 		if (ppd->host_link_state == HLS_DN_POLL &&
10370 		    (quick_linkup || dd->icode == ICODE_FUNCTIONAL_SIMULATOR)) {
10371 			/*
10372 			 * Quick link up jumps from polling to here.
10373 			 *
10374 			 * Whether in normal or loopback mode, the
10375 			 * simulator jumps from polling to link up.
10376 			 * Accept that here.
10377 			 */
10378 			/* OK */
10379 		} else if (ppd->host_link_state != HLS_GOING_UP) {
10380 			goto unexpected;
10381 		}
10382 
10383 		ppd->host_link_state = HLS_UP_INIT;
10384 		ret = wait_logical_linkstate(ppd, IB_PORT_INIT, 1000);
10385 		if (ret) {
10386 			/* logical state didn't change, stay at going_up */
10387 			ppd->host_link_state = HLS_GOING_UP;
10388 			dd_dev_err(dd,
10389 				   "%s: logical state did not change to INIT\n",
10390 				   __func__);
10391 		} else {
10392 			/* clear old transient LINKINIT_REASON code */
10393 			if (ppd->linkinit_reason >= OPA_LINKINIT_REASON_CLEAR)
10394 				ppd->linkinit_reason =
10395 					OPA_LINKINIT_REASON_LINKUP;
10396 
10397 			/* enable the port */
10398 			add_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
10399 
10400 			handle_linkup_change(dd, 1);
10401 		}
10402 		break;
10403 	case HLS_UP_ARMED:
10404 		if (ppd->host_link_state != HLS_UP_INIT)
10405 			goto unexpected;
10406 
10407 		ppd->host_link_state = HLS_UP_ARMED;
10408 		set_logical_state(dd, LSTATE_ARMED);
10409 		ret = wait_logical_linkstate(ppd, IB_PORT_ARMED, 1000);
10410 		if (ret) {
10411 			/* logical state didn't change, stay at init */
10412 			ppd->host_link_state = HLS_UP_INIT;
10413 			dd_dev_err(dd,
10414 				   "%s: logical state did not change to ARMED\n",
10415 				   __func__);
10416 		}
10417 		/*
10418 		 * The simulator does not currently implement SMA messages,
10419 		 * so neighbor_normal is not set.  Set it here when we first
10420 		 * move to Armed.
10421 		 */
10422 		if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR)
10423 			ppd->neighbor_normal = 1;
10424 		break;
10425 	case HLS_UP_ACTIVE:
10426 		if (ppd->host_link_state != HLS_UP_ARMED)
10427 			goto unexpected;
10428 
10429 		ppd->host_link_state = HLS_UP_ACTIVE;
10430 		set_logical_state(dd, LSTATE_ACTIVE);
10431 		ret = wait_logical_linkstate(ppd, IB_PORT_ACTIVE, 1000);
10432 		if (ret) {
10433 			/* logical state didn't change, stay at armed */
10434 			ppd->host_link_state = HLS_UP_ARMED;
10435 			dd_dev_err(dd,
10436 				   "%s: logical state did not change to ACTIVE\n",
10437 				   __func__);
10438 		} else {
10439 			/* tell all engines to go running */
10440 			sdma_all_running(dd);
10441 
10442 			/* Signal the IB layer that the port has went active */
10443 			event.device = &dd->verbs_dev.rdi.ibdev;
10444 			event.element.port_num = ppd->port;
10445 			event.event = IB_EVENT_PORT_ACTIVE;
10446 		}
10447 		break;
10448 	case HLS_DN_POLL:
10449 		if ((ppd->host_link_state == HLS_DN_DISABLE ||
10450 		     ppd->host_link_state == HLS_DN_OFFLINE) &&
10451 		    dd->dc_shutdown)
10452 			dc_start(dd);
10453 		/* Hand LED control to the DC */
10454 		write_csr(dd, DCC_CFG_LED_CNTRL, 0);
10455 
10456 		if (ppd->host_link_state != HLS_DN_OFFLINE) {
10457 			u8 tmp = ppd->link_enabled;
10458 
10459 			ret = goto_offline(ppd, ppd->remote_link_down_reason);
10460 			if (ret) {
10461 				ppd->link_enabled = tmp;
10462 				break;
10463 			}
10464 			ppd->remote_link_down_reason = 0;
10465 
10466 			if (ppd->driver_link_ready)
10467 				ppd->link_enabled = 1;
10468 		}
10469 
10470 		set_all_slowpath(ppd->dd);
10471 		ret = set_local_link_attributes(ppd);
10472 		if (ret)
10473 			break;
10474 
10475 		ppd->port_error_action = 0;
10476 		ppd->host_link_state = HLS_DN_POLL;
10477 
10478 		if (quick_linkup) {
10479 			/* quick linkup does not go into polling */
10480 			ret = do_quick_linkup(dd);
10481 		} else {
10482 			ret1 = set_physical_link_state(dd, PLS_POLLING);
10483 			if (ret1 != HCMD_SUCCESS) {
10484 				dd_dev_err(dd,
10485 					   "Failed to transition to Polling link state, return 0x%x\n",
10486 					   ret1);
10487 				ret = -EINVAL;
10488 			}
10489 		}
10490 		ppd->offline_disabled_reason =
10491 			HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE);
10492 		/*
10493 		 * If an error occurred above, go back to offline.  The
10494 		 * caller may reschedule another attempt.
10495 		 */
10496 		if (ret)
10497 			goto_offline(ppd, 0);
10498 		break;
10499 	case HLS_DN_DISABLE:
10500 		/* link is disabled */
10501 		ppd->link_enabled = 0;
10502 
10503 		/* allow any state to transition to disabled */
10504 
10505 		/* must transition to offline first */
10506 		if (ppd->host_link_state != HLS_DN_OFFLINE) {
10507 			ret = goto_offline(ppd, ppd->remote_link_down_reason);
10508 			if (ret)
10509 				break;
10510 			ppd->remote_link_down_reason = 0;
10511 		}
10512 
10513 		if (!dd->dc_shutdown) {
10514 			ret1 = set_physical_link_state(dd, PLS_DISABLED);
10515 			if (ret1 != HCMD_SUCCESS) {
10516 				dd_dev_err(dd,
10517 					   "Failed to transition to Disabled link state, return 0x%x\n",
10518 					   ret1);
10519 				ret = -EINVAL;
10520 				break;
10521 			}
10522 			dc_shutdown(dd);
10523 		}
10524 		ppd->host_link_state = HLS_DN_DISABLE;
10525 		break;
10526 	case HLS_DN_OFFLINE:
10527 		if (ppd->host_link_state == HLS_DN_DISABLE)
10528 			dc_start(dd);
10529 
10530 		/* allow any state to transition to offline */
10531 		ret = goto_offline(ppd, ppd->remote_link_down_reason);
10532 		if (!ret)
10533 			ppd->remote_link_down_reason = 0;
10534 		break;
10535 	case HLS_VERIFY_CAP:
10536 		if (ppd->host_link_state != HLS_DN_POLL)
10537 			goto unexpected;
10538 		ppd->host_link_state = HLS_VERIFY_CAP;
10539 		break;
10540 	case HLS_GOING_UP:
10541 		if (ppd->host_link_state != HLS_VERIFY_CAP)
10542 			goto unexpected;
10543 
10544 		ret1 = set_physical_link_state(dd, PLS_LINKUP);
10545 		if (ret1 != HCMD_SUCCESS) {
10546 			dd_dev_err(dd,
10547 				   "Failed to transition to link up state, return 0x%x\n",
10548 				   ret1);
10549 			ret = -EINVAL;
10550 			break;
10551 		}
10552 		ppd->host_link_state = HLS_GOING_UP;
10553 		break;
10554 
10555 	case HLS_GOING_OFFLINE:		/* transient within goto_offline() */
10556 	case HLS_LINK_COOLDOWN:		/* transient within goto_offline() */
10557 	default:
10558 		dd_dev_info(dd, "%s: state 0x%x: not supported\n",
10559 			    __func__, state);
10560 		ret = -EINVAL;
10561 		break;
10562 	}
10563 
10564 	goto done;
10565 
10566 unexpected:
10567 	dd_dev_err(dd, "%s: unexpected state transition from %s to %s\n",
10568 		   __func__, link_state_name(ppd->host_link_state),
10569 		   link_state_name(state));
10570 	ret = -EINVAL;
10571 
10572 done:
10573 	mutex_unlock(&ppd->hls_lock);
10574 
10575 	if (event.device)
10576 		ib_dispatch_event(&event);
10577 
10578 	return ret;
10579 }
10580 
10581 int hfi1_set_ib_cfg(struct hfi1_pportdata *ppd, int which, u32 val)
10582 {
10583 	u64 reg;
10584 	int ret = 0;
10585 
10586 	switch (which) {
10587 	case HFI1_IB_CFG_LIDLMC:
10588 		set_lidlmc(ppd);
10589 		break;
10590 	case HFI1_IB_CFG_VL_HIGH_LIMIT:
10591 		/*
10592 		 * The VL Arbitrator high limit is sent in units of 4k
10593 		 * bytes, while HFI stores it in units of 64 bytes.
10594 		 */
10595 		val *= 4096 / 64;
10596 		reg = ((u64)val & SEND_HIGH_PRIORITY_LIMIT_LIMIT_MASK)
10597 			<< SEND_HIGH_PRIORITY_LIMIT_LIMIT_SHIFT;
10598 		write_csr(ppd->dd, SEND_HIGH_PRIORITY_LIMIT, reg);
10599 		break;
10600 	case HFI1_IB_CFG_LINKDEFAULT: /* IB link default (sleep/poll) */
10601 		/* HFI only supports POLL as the default link down state */
10602 		if (val != HLS_DN_POLL)
10603 			ret = -EINVAL;
10604 		break;
10605 	case HFI1_IB_CFG_OP_VLS:
10606 		if (ppd->vls_operational != val) {
10607 			ppd->vls_operational = val;
10608 			if (!ppd->port)
10609 				ret = -EINVAL;
10610 		}
10611 		break;
10612 	/*
10613 	 * For link width, link width downgrade, and speed enable, always AND
10614 	 * the setting with what is actually supported.  This has two benefits.
10615 	 * First, enabled can't have unsupported values, no matter what the
10616 	 * SM or FM might want.  Second, the ALL_SUPPORTED wildcards that mean
10617 	 * "fill in with your supported value" have all the bits in the
10618 	 * field set, so simply ANDing with supported has the desired result.
10619 	 */
10620 	case HFI1_IB_CFG_LWID_ENB: /* set allowed Link-width */
10621 		ppd->link_width_enabled = val & ppd->link_width_supported;
10622 		break;
10623 	case HFI1_IB_CFG_LWID_DG_ENB: /* set allowed link width downgrade */
10624 		ppd->link_width_downgrade_enabled =
10625 				val & ppd->link_width_downgrade_supported;
10626 		break;
10627 	case HFI1_IB_CFG_SPD_ENB: /* allowed Link speeds */
10628 		ppd->link_speed_enabled = val & ppd->link_speed_supported;
10629 		break;
10630 	case HFI1_IB_CFG_OVERRUN_THRESH: /* IB overrun threshold */
10631 		/*
10632 		 * HFI does not follow IB specs, save this value
10633 		 * so we can report it, if asked.
10634 		 */
10635 		ppd->overrun_threshold = val;
10636 		break;
10637 	case HFI1_IB_CFG_PHYERR_THRESH: /* IB PHY error threshold */
10638 		/*
10639 		 * HFI does not follow IB specs, save this value
10640 		 * so we can report it, if asked.
10641 		 */
10642 		ppd->phy_error_threshold = val;
10643 		break;
10644 
10645 	case HFI1_IB_CFG_MTU:
10646 		set_send_length(ppd);
10647 		break;
10648 
10649 	case HFI1_IB_CFG_PKEYS:
10650 		if (HFI1_CAP_IS_KSET(PKEY_CHECK))
10651 			set_partition_keys(ppd);
10652 		break;
10653 
10654 	default:
10655 		if (HFI1_CAP_IS_KSET(PRINT_UNIMPL))
10656 			dd_dev_info(ppd->dd,
10657 				    "%s: which %s, val 0x%x: not implemented\n",
10658 				    __func__, ib_cfg_name(which), val);
10659 		break;
10660 	}
10661 	return ret;
10662 }
10663 
10664 /* begin functions related to vl arbitration table caching */
10665 static void init_vl_arb_caches(struct hfi1_pportdata *ppd)
10666 {
10667 	int i;
10668 
10669 	BUILD_BUG_ON(VL_ARB_TABLE_SIZE !=
10670 			VL_ARB_LOW_PRIO_TABLE_SIZE);
10671 	BUILD_BUG_ON(VL_ARB_TABLE_SIZE !=
10672 			VL_ARB_HIGH_PRIO_TABLE_SIZE);
10673 
10674 	/*
10675 	 * Note that we always return values directly from the
10676 	 * 'vl_arb_cache' (and do no CSR reads) in response to a
10677 	 * 'Get(VLArbTable)'. This is obviously correct after a
10678 	 * 'Set(VLArbTable)', since the cache will then be up to
10679 	 * date. But it's also correct prior to any 'Set(VLArbTable)'
10680 	 * since then both the cache, and the relevant h/w registers
10681 	 * will be zeroed.
10682 	 */
10683 
10684 	for (i = 0; i < MAX_PRIO_TABLE; i++)
10685 		spin_lock_init(&ppd->vl_arb_cache[i].lock);
10686 }
10687 
10688 /*
10689  * vl_arb_lock_cache
10690  *
10691  * All other vl_arb_* functions should be called only after locking
10692  * the cache.
10693  */
10694 static inline struct vl_arb_cache *
10695 vl_arb_lock_cache(struct hfi1_pportdata *ppd, int idx)
10696 {
10697 	if (idx != LO_PRIO_TABLE && idx != HI_PRIO_TABLE)
10698 		return NULL;
10699 	spin_lock(&ppd->vl_arb_cache[idx].lock);
10700 	return &ppd->vl_arb_cache[idx];
10701 }
10702 
10703 static inline void vl_arb_unlock_cache(struct hfi1_pportdata *ppd, int idx)
10704 {
10705 	spin_unlock(&ppd->vl_arb_cache[idx].lock);
10706 }
10707 
10708 static void vl_arb_get_cache(struct vl_arb_cache *cache,
10709 			     struct ib_vl_weight_elem *vl)
10710 {
10711 	memcpy(vl, cache->table, VL_ARB_TABLE_SIZE * sizeof(*vl));
10712 }
10713 
10714 static void vl_arb_set_cache(struct vl_arb_cache *cache,
10715 			     struct ib_vl_weight_elem *vl)
10716 {
10717 	memcpy(cache->table, vl, VL_ARB_TABLE_SIZE * sizeof(*vl));
10718 }
10719 
10720 static int vl_arb_match_cache(struct vl_arb_cache *cache,
10721 			      struct ib_vl_weight_elem *vl)
10722 {
10723 	return !memcmp(cache->table, vl, VL_ARB_TABLE_SIZE * sizeof(*vl));
10724 }
10725 
10726 /* end functions related to vl arbitration table caching */
10727 
10728 static int set_vl_weights(struct hfi1_pportdata *ppd, u32 target,
10729 			  u32 size, struct ib_vl_weight_elem *vl)
10730 {
10731 	struct hfi1_devdata *dd = ppd->dd;
10732 	u64 reg;
10733 	unsigned int i, is_up = 0;
10734 	int drain, ret = 0;
10735 
10736 	mutex_lock(&ppd->hls_lock);
10737 
10738 	if (ppd->host_link_state & HLS_UP)
10739 		is_up = 1;
10740 
10741 	drain = !is_ax(dd) && is_up;
10742 
10743 	if (drain)
10744 		/*
10745 		 * Before adjusting VL arbitration weights, empty per-VL
10746 		 * FIFOs, otherwise a packet whose VL weight is being
10747 		 * set to 0 could get stuck in a FIFO with no chance to
10748 		 * egress.
10749 		 */
10750 		ret = stop_drain_data_vls(dd);
10751 
10752 	if (ret) {
10753 		dd_dev_err(
10754 			dd,
10755 			"%s: cannot stop/drain VLs - refusing to change VL arbitration weights\n",
10756 			__func__);
10757 		goto err;
10758 	}
10759 
10760 	for (i = 0; i < size; i++, vl++) {
10761 		/*
10762 		 * NOTE: The low priority shift and mask are used here, but
10763 		 * they are the same for both the low and high registers.
10764 		 */
10765 		reg = (((u64)vl->vl & SEND_LOW_PRIORITY_LIST_VL_MASK)
10766 				<< SEND_LOW_PRIORITY_LIST_VL_SHIFT)
10767 		      | (((u64)vl->weight
10768 				& SEND_LOW_PRIORITY_LIST_WEIGHT_MASK)
10769 				<< SEND_LOW_PRIORITY_LIST_WEIGHT_SHIFT);
10770 		write_csr(dd, target + (i * 8), reg);
10771 	}
10772 	pio_send_control(dd, PSC_GLOBAL_VLARB_ENABLE);
10773 
10774 	if (drain)
10775 		open_fill_data_vls(dd); /* reopen all VLs */
10776 
10777 err:
10778 	mutex_unlock(&ppd->hls_lock);
10779 
10780 	return ret;
10781 }
10782 
10783 /*
10784  * Read one credit merge VL register.
10785  */
10786 static void read_one_cm_vl(struct hfi1_devdata *dd, u32 csr,
10787 			   struct vl_limit *vll)
10788 {
10789 	u64 reg = read_csr(dd, csr);
10790 
10791 	vll->dedicated = cpu_to_be16(
10792 		(reg >> SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SHIFT)
10793 		& SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_MASK);
10794 	vll->shared = cpu_to_be16(
10795 		(reg >> SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SHIFT)
10796 		& SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_MASK);
10797 }
10798 
10799 /*
10800  * Read the current credit merge limits.
10801  */
10802 static int get_buffer_control(struct hfi1_devdata *dd,
10803 			      struct buffer_control *bc, u16 *overall_limit)
10804 {
10805 	u64 reg;
10806 	int i;
10807 
10808 	/* not all entries are filled in */
10809 	memset(bc, 0, sizeof(*bc));
10810 
10811 	/* OPA and HFI have a 1-1 mapping */
10812 	for (i = 0; i < TXE_NUM_DATA_VL; i++)
10813 		read_one_cm_vl(dd, SEND_CM_CREDIT_VL + (8 * i), &bc->vl[i]);
10814 
10815 	/* NOTE: assumes that VL* and VL15 CSRs are bit-wise identical */
10816 	read_one_cm_vl(dd, SEND_CM_CREDIT_VL15, &bc->vl[15]);
10817 
10818 	reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
10819 	bc->overall_shared_limit = cpu_to_be16(
10820 		(reg >> SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SHIFT)
10821 		& SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_MASK);
10822 	if (overall_limit)
10823 		*overall_limit = (reg
10824 			>> SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT)
10825 			& SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_MASK;
10826 	return sizeof(struct buffer_control);
10827 }
10828 
10829 static int get_sc2vlnt(struct hfi1_devdata *dd, struct sc2vlnt *dp)
10830 {
10831 	u64 reg;
10832 	int i;
10833 
10834 	/* each register contains 16 SC->VLnt mappings, 4 bits each */
10835 	reg = read_csr(dd, DCC_CFG_SC_VL_TABLE_15_0);
10836 	for (i = 0; i < sizeof(u64); i++) {
10837 		u8 byte = *(((u8 *)&reg) + i);
10838 
10839 		dp->vlnt[2 * i] = byte & 0xf;
10840 		dp->vlnt[(2 * i) + 1] = (byte & 0xf0) >> 4;
10841 	}
10842 
10843 	reg = read_csr(dd, DCC_CFG_SC_VL_TABLE_31_16);
10844 	for (i = 0; i < sizeof(u64); i++) {
10845 		u8 byte = *(((u8 *)&reg) + i);
10846 
10847 		dp->vlnt[16 + (2 * i)] = byte & 0xf;
10848 		dp->vlnt[16 + (2 * i) + 1] = (byte & 0xf0) >> 4;
10849 	}
10850 	return sizeof(struct sc2vlnt);
10851 }
10852 
10853 static void get_vlarb_preempt(struct hfi1_devdata *dd, u32 nelems,
10854 			      struct ib_vl_weight_elem *vl)
10855 {
10856 	unsigned int i;
10857 
10858 	for (i = 0; i < nelems; i++, vl++) {
10859 		vl->vl = 0xf;
10860 		vl->weight = 0;
10861 	}
10862 }
10863 
10864 static void set_sc2vlnt(struct hfi1_devdata *dd, struct sc2vlnt *dp)
10865 {
10866 	write_csr(dd, DCC_CFG_SC_VL_TABLE_15_0,
10867 		  DC_SC_VL_VAL(15_0,
10868 			       0, dp->vlnt[0] & 0xf,
10869 			       1, dp->vlnt[1] & 0xf,
10870 			       2, dp->vlnt[2] & 0xf,
10871 			       3, dp->vlnt[3] & 0xf,
10872 			       4, dp->vlnt[4] & 0xf,
10873 			       5, dp->vlnt[5] & 0xf,
10874 			       6, dp->vlnt[6] & 0xf,
10875 			       7, dp->vlnt[7] & 0xf,
10876 			       8, dp->vlnt[8] & 0xf,
10877 			       9, dp->vlnt[9] & 0xf,
10878 			       10, dp->vlnt[10] & 0xf,
10879 			       11, dp->vlnt[11] & 0xf,
10880 			       12, dp->vlnt[12] & 0xf,
10881 			       13, dp->vlnt[13] & 0xf,
10882 			       14, dp->vlnt[14] & 0xf,
10883 			       15, dp->vlnt[15] & 0xf));
10884 	write_csr(dd, DCC_CFG_SC_VL_TABLE_31_16,
10885 		  DC_SC_VL_VAL(31_16,
10886 			       16, dp->vlnt[16] & 0xf,
10887 			       17, dp->vlnt[17] & 0xf,
10888 			       18, dp->vlnt[18] & 0xf,
10889 			       19, dp->vlnt[19] & 0xf,
10890 			       20, dp->vlnt[20] & 0xf,
10891 			       21, dp->vlnt[21] & 0xf,
10892 			       22, dp->vlnt[22] & 0xf,
10893 			       23, dp->vlnt[23] & 0xf,
10894 			       24, dp->vlnt[24] & 0xf,
10895 			       25, dp->vlnt[25] & 0xf,
10896 			       26, dp->vlnt[26] & 0xf,
10897 			       27, dp->vlnt[27] & 0xf,
10898 			       28, dp->vlnt[28] & 0xf,
10899 			       29, dp->vlnt[29] & 0xf,
10900 			       30, dp->vlnt[30] & 0xf,
10901 			       31, dp->vlnt[31] & 0xf));
10902 }
10903 
10904 static void nonzero_msg(struct hfi1_devdata *dd, int idx, const char *what,
10905 			u16 limit)
10906 {
10907 	if (limit != 0)
10908 		dd_dev_info(dd, "Invalid %s limit %d on VL %d, ignoring\n",
10909 			    what, (int)limit, idx);
10910 }
10911 
10912 /* change only the shared limit portion of SendCmGLobalCredit */
10913 static void set_global_shared(struct hfi1_devdata *dd, u16 limit)
10914 {
10915 	u64 reg;
10916 
10917 	reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
10918 	reg &= ~SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SMASK;
10919 	reg |= (u64)limit << SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SHIFT;
10920 	write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg);
10921 }
10922 
10923 /* change only the total credit limit portion of SendCmGLobalCredit */
10924 static void set_global_limit(struct hfi1_devdata *dd, u16 limit)
10925 {
10926 	u64 reg;
10927 
10928 	reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
10929 	reg &= ~SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SMASK;
10930 	reg |= (u64)limit << SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT;
10931 	write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg);
10932 }
10933 
10934 /* set the given per-VL shared limit */
10935 static void set_vl_shared(struct hfi1_devdata *dd, int vl, u16 limit)
10936 {
10937 	u64 reg;
10938 	u32 addr;
10939 
10940 	if (vl < TXE_NUM_DATA_VL)
10941 		addr = SEND_CM_CREDIT_VL + (8 * vl);
10942 	else
10943 		addr = SEND_CM_CREDIT_VL15;
10944 
10945 	reg = read_csr(dd, addr);
10946 	reg &= ~SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SMASK;
10947 	reg |= (u64)limit << SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SHIFT;
10948 	write_csr(dd, addr, reg);
10949 }
10950 
10951 /* set the given per-VL dedicated limit */
10952 static void set_vl_dedicated(struct hfi1_devdata *dd, int vl, u16 limit)
10953 {
10954 	u64 reg;
10955 	u32 addr;
10956 
10957 	if (vl < TXE_NUM_DATA_VL)
10958 		addr = SEND_CM_CREDIT_VL + (8 * vl);
10959 	else
10960 		addr = SEND_CM_CREDIT_VL15;
10961 
10962 	reg = read_csr(dd, addr);
10963 	reg &= ~SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SMASK;
10964 	reg |= (u64)limit << SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SHIFT;
10965 	write_csr(dd, addr, reg);
10966 }
10967 
10968 /* spin until the given per-VL status mask bits clear */
10969 static void wait_for_vl_status_clear(struct hfi1_devdata *dd, u64 mask,
10970 				     const char *which)
10971 {
10972 	unsigned long timeout;
10973 	u64 reg;
10974 
10975 	timeout = jiffies + msecs_to_jiffies(VL_STATUS_CLEAR_TIMEOUT);
10976 	while (1) {
10977 		reg = read_csr(dd, SEND_CM_CREDIT_USED_STATUS) & mask;
10978 
10979 		if (reg == 0)
10980 			return;	/* success */
10981 		if (time_after(jiffies, timeout))
10982 			break;		/* timed out */
10983 		udelay(1);
10984 	}
10985 
10986 	dd_dev_err(dd,
10987 		   "%s credit change status not clearing after %dms, mask 0x%llx, not clear 0x%llx\n",
10988 		   which, VL_STATUS_CLEAR_TIMEOUT, mask, reg);
10989 	/*
10990 	 * If this occurs, it is likely there was a credit loss on the link.
10991 	 * The only recovery from that is a link bounce.
10992 	 */
10993 	dd_dev_err(dd,
10994 		   "Continuing anyway.  A credit loss may occur.  Suggest a link bounce\n");
10995 }
10996 
10997 /*
10998  * The number of credits on the VLs may be changed while everything
10999  * is "live", but the following algorithm must be followed due to
11000  * how the hardware is actually implemented.  In particular,
11001  * Return_Credit_Status[] is the only correct status check.
11002  *
11003  * if (reducing Global_Shared_Credit_Limit or any shared limit changing)
11004  *     set Global_Shared_Credit_Limit = 0
11005  *     use_all_vl = 1
11006  * mask0 = all VLs that are changing either dedicated or shared limits
11007  * set Shared_Limit[mask0] = 0
11008  * spin until Return_Credit_Status[use_all_vl ? all VL : mask0] == 0
11009  * if (changing any dedicated limit)
11010  *     mask1 = all VLs that are lowering dedicated limits
11011  *     lower Dedicated_Limit[mask1]
11012  *     spin until Return_Credit_Status[mask1] == 0
11013  *     raise Dedicated_Limits
11014  * raise Shared_Limits
11015  * raise Global_Shared_Credit_Limit
11016  *
11017  * lower = if the new limit is lower, set the limit to the new value
11018  * raise = if the new limit is higher than the current value (may be changed
11019  *	earlier in the algorithm), set the new limit to the new value
11020  */
11021 int set_buffer_control(struct hfi1_pportdata *ppd,
11022 		       struct buffer_control *new_bc)
11023 {
11024 	struct hfi1_devdata *dd = ppd->dd;
11025 	u64 changing_mask, ld_mask, stat_mask;
11026 	int change_count;
11027 	int i, use_all_mask;
11028 	int this_shared_changing;
11029 	int vl_count = 0, ret;
11030 	/*
11031 	 * A0: add the variable any_shared_limit_changing below and in the
11032 	 * algorithm above.  If removing A0 support, it can be removed.
11033 	 */
11034 	int any_shared_limit_changing;
11035 	struct buffer_control cur_bc;
11036 	u8 changing[OPA_MAX_VLS];
11037 	u8 lowering_dedicated[OPA_MAX_VLS];
11038 	u16 cur_total;
11039 	u32 new_total = 0;
11040 	const u64 all_mask =
11041 	SEND_CM_CREDIT_USED_STATUS_VL0_RETURN_CREDIT_STATUS_SMASK
11042 	 | SEND_CM_CREDIT_USED_STATUS_VL1_RETURN_CREDIT_STATUS_SMASK
11043 	 | SEND_CM_CREDIT_USED_STATUS_VL2_RETURN_CREDIT_STATUS_SMASK
11044 	 | SEND_CM_CREDIT_USED_STATUS_VL3_RETURN_CREDIT_STATUS_SMASK
11045 	 | SEND_CM_CREDIT_USED_STATUS_VL4_RETURN_CREDIT_STATUS_SMASK
11046 	 | SEND_CM_CREDIT_USED_STATUS_VL5_RETURN_CREDIT_STATUS_SMASK
11047 	 | SEND_CM_CREDIT_USED_STATUS_VL6_RETURN_CREDIT_STATUS_SMASK
11048 	 | SEND_CM_CREDIT_USED_STATUS_VL7_RETURN_CREDIT_STATUS_SMASK
11049 	 | SEND_CM_CREDIT_USED_STATUS_VL15_RETURN_CREDIT_STATUS_SMASK;
11050 
11051 #define valid_vl(idx) ((idx) < TXE_NUM_DATA_VL || (idx) == 15)
11052 #define NUM_USABLE_VLS 16	/* look at VL15 and less */
11053 
11054 	/* find the new total credits, do sanity check on unused VLs */
11055 	for (i = 0; i < OPA_MAX_VLS; i++) {
11056 		if (valid_vl(i)) {
11057 			new_total += be16_to_cpu(new_bc->vl[i].dedicated);
11058 			continue;
11059 		}
11060 		nonzero_msg(dd, i, "dedicated",
11061 			    be16_to_cpu(new_bc->vl[i].dedicated));
11062 		nonzero_msg(dd, i, "shared",
11063 			    be16_to_cpu(new_bc->vl[i].shared));
11064 		new_bc->vl[i].dedicated = 0;
11065 		new_bc->vl[i].shared = 0;
11066 	}
11067 	new_total += be16_to_cpu(new_bc->overall_shared_limit);
11068 
11069 	/* fetch the current values */
11070 	get_buffer_control(dd, &cur_bc, &cur_total);
11071 
11072 	/*
11073 	 * Create the masks we will use.
11074 	 */
11075 	memset(changing, 0, sizeof(changing));
11076 	memset(lowering_dedicated, 0, sizeof(lowering_dedicated));
11077 	/*
11078 	 * NOTE: Assumes that the individual VL bits are adjacent and in
11079 	 * increasing order
11080 	 */
11081 	stat_mask =
11082 		SEND_CM_CREDIT_USED_STATUS_VL0_RETURN_CREDIT_STATUS_SMASK;
11083 	changing_mask = 0;
11084 	ld_mask = 0;
11085 	change_count = 0;
11086 	any_shared_limit_changing = 0;
11087 	for (i = 0; i < NUM_USABLE_VLS; i++, stat_mask <<= 1) {
11088 		if (!valid_vl(i))
11089 			continue;
11090 		this_shared_changing = new_bc->vl[i].shared
11091 						!= cur_bc.vl[i].shared;
11092 		if (this_shared_changing)
11093 			any_shared_limit_changing = 1;
11094 		if (new_bc->vl[i].dedicated != cur_bc.vl[i].dedicated ||
11095 		    this_shared_changing) {
11096 			changing[i] = 1;
11097 			changing_mask |= stat_mask;
11098 			change_count++;
11099 		}
11100 		if (be16_to_cpu(new_bc->vl[i].dedicated) <
11101 					be16_to_cpu(cur_bc.vl[i].dedicated)) {
11102 			lowering_dedicated[i] = 1;
11103 			ld_mask |= stat_mask;
11104 		}
11105 	}
11106 
11107 	/* bracket the credit change with a total adjustment */
11108 	if (new_total > cur_total)
11109 		set_global_limit(dd, new_total);
11110 
11111 	/*
11112 	 * Start the credit change algorithm.
11113 	 */
11114 	use_all_mask = 0;
11115 	if ((be16_to_cpu(new_bc->overall_shared_limit) <
11116 	     be16_to_cpu(cur_bc.overall_shared_limit)) ||
11117 	    (is_ax(dd) && any_shared_limit_changing)) {
11118 		set_global_shared(dd, 0);
11119 		cur_bc.overall_shared_limit = 0;
11120 		use_all_mask = 1;
11121 	}
11122 
11123 	for (i = 0; i < NUM_USABLE_VLS; i++) {
11124 		if (!valid_vl(i))
11125 			continue;
11126 
11127 		if (changing[i]) {
11128 			set_vl_shared(dd, i, 0);
11129 			cur_bc.vl[i].shared = 0;
11130 		}
11131 	}
11132 
11133 	wait_for_vl_status_clear(dd, use_all_mask ? all_mask : changing_mask,
11134 				 "shared");
11135 
11136 	if (change_count > 0) {
11137 		for (i = 0; i < NUM_USABLE_VLS; i++) {
11138 			if (!valid_vl(i))
11139 				continue;
11140 
11141 			if (lowering_dedicated[i]) {
11142 				set_vl_dedicated(dd, i,
11143 						 be16_to_cpu(new_bc->
11144 							     vl[i].dedicated));
11145 				cur_bc.vl[i].dedicated =
11146 						new_bc->vl[i].dedicated;
11147 			}
11148 		}
11149 
11150 		wait_for_vl_status_clear(dd, ld_mask, "dedicated");
11151 
11152 		/* now raise all dedicated that are going up */
11153 		for (i = 0; i < NUM_USABLE_VLS; i++) {
11154 			if (!valid_vl(i))
11155 				continue;
11156 
11157 			if (be16_to_cpu(new_bc->vl[i].dedicated) >
11158 					be16_to_cpu(cur_bc.vl[i].dedicated))
11159 				set_vl_dedicated(dd, i,
11160 						 be16_to_cpu(new_bc->
11161 							     vl[i].dedicated));
11162 		}
11163 	}
11164 
11165 	/* next raise all shared that are going up */
11166 	for (i = 0; i < NUM_USABLE_VLS; i++) {
11167 		if (!valid_vl(i))
11168 			continue;
11169 
11170 		if (be16_to_cpu(new_bc->vl[i].shared) >
11171 				be16_to_cpu(cur_bc.vl[i].shared))
11172 			set_vl_shared(dd, i, be16_to_cpu(new_bc->vl[i].shared));
11173 	}
11174 
11175 	/* finally raise the global shared */
11176 	if (be16_to_cpu(new_bc->overall_shared_limit) >
11177 	    be16_to_cpu(cur_bc.overall_shared_limit))
11178 		set_global_shared(dd,
11179 				  be16_to_cpu(new_bc->overall_shared_limit));
11180 
11181 	/* bracket the credit change with a total adjustment */
11182 	if (new_total < cur_total)
11183 		set_global_limit(dd, new_total);
11184 
11185 	/*
11186 	 * Determine the actual number of operational VLS using the number of
11187 	 * dedicated and shared credits for each VL.
11188 	 */
11189 	if (change_count > 0) {
11190 		for (i = 0; i < TXE_NUM_DATA_VL; i++)
11191 			if (be16_to_cpu(new_bc->vl[i].dedicated) > 0 ||
11192 			    be16_to_cpu(new_bc->vl[i].shared) > 0)
11193 				vl_count++;
11194 		ppd->actual_vls_operational = vl_count;
11195 		ret = sdma_map_init(dd, ppd->port - 1, vl_count ?
11196 				    ppd->actual_vls_operational :
11197 				    ppd->vls_operational,
11198 				    NULL);
11199 		if (ret == 0)
11200 			ret = pio_map_init(dd, ppd->port - 1, vl_count ?
11201 					   ppd->actual_vls_operational :
11202 					   ppd->vls_operational, NULL);
11203 		if (ret)
11204 			return ret;
11205 	}
11206 	return 0;
11207 }
11208 
11209 /*
11210  * Read the given fabric manager table. Return the size of the
11211  * table (in bytes) on success, and a negative error code on
11212  * failure.
11213  */
11214 int fm_get_table(struct hfi1_pportdata *ppd, int which, void *t)
11215 
11216 {
11217 	int size;
11218 	struct vl_arb_cache *vlc;
11219 
11220 	switch (which) {
11221 	case FM_TBL_VL_HIGH_ARB:
11222 		size = 256;
11223 		/*
11224 		 * OPA specifies 128 elements (of 2 bytes each), though
11225 		 * HFI supports only 16 elements in h/w.
11226 		 */
11227 		vlc = vl_arb_lock_cache(ppd, HI_PRIO_TABLE);
11228 		vl_arb_get_cache(vlc, t);
11229 		vl_arb_unlock_cache(ppd, HI_PRIO_TABLE);
11230 		break;
11231 	case FM_TBL_VL_LOW_ARB:
11232 		size = 256;
11233 		/*
11234 		 * OPA specifies 128 elements (of 2 bytes each), though
11235 		 * HFI supports only 16 elements in h/w.
11236 		 */
11237 		vlc = vl_arb_lock_cache(ppd, LO_PRIO_TABLE);
11238 		vl_arb_get_cache(vlc, t);
11239 		vl_arb_unlock_cache(ppd, LO_PRIO_TABLE);
11240 		break;
11241 	case FM_TBL_BUFFER_CONTROL:
11242 		size = get_buffer_control(ppd->dd, t, NULL);
11243 		break;
11244 	case FM_TBL_SC2VLNT:
11245 		size = get_sc2vlnt(ppd->dd, t);
11246 		break;
11247 	case FM_TBL_VL_PREEMPT_ELEMS:
11248 		size = 256;
11249 		/* OPA specifies 128 elements, of 2 bytes each */
11250 		get_vlarb_preempt(ppd->dd, OPA_MAX_VLS, t);
11251 		break;
11252 	case FM_TBL_VL_PREEMPT_MATRIX:
11253 		size = 256;
11254 		/*
11255 		 * OPA specifies that this is the same size as the VL
11256 		 * arbitration tables (i.e., 256 bytes).
11257 		 */
11258 		break;
11259 	default:
11260 		return -EINVAL;
11261 	}
11262 	return size;
11263 }
11264 
11265 /*
11266  * Write the given fabric manager table.
11267  */
11268 int fm_set_table(struct hfi1_pportdata *ppd, int which, void *t)
11269 {
11270 	int ret = 0;
11271 	struct vl_arb_cache *vlc;
11272 
11273 	switch (which) {
11274 	case FM_TBL_VL_HIGH_ARB:
11275 		vlc = vl_arb_lock_cache(ppd, HI_PRIO_TABLE);
11276 		if (vl_arb_match_cache(vlc, t)) {
11277 			vl_arb_unlock_cache(ppd, HI_PRIO_TABLE);
11278 			break;
11279 		}
11280 		vl_arb_set_cache(vlc, t);
11281 		vl_arb_unlock_cache(ppd, HI_PRIO_TABLE);
11282 		ret = set_vl_weights(ppd, SEND_HIGH_PRIORITY_LIST,
11283 				     VL_ARB_HIGH_PRIO_TABLE_SIZE, t);
11284 		break;
11285 	case FM_TBL_VL_LOW_ARB:
11286 		vlc = vl_arb_lock_cache(ppd, LO_PRIO_TABLE);
11287 		if (vl_arb_match_cache(vlc, t)) {
11288 			vl_arb_unlock_cache(ppd, LO_PRIO_TABLE);
11289 			break;
11290 		}
11291 		vl_arb_set_cache(vlc, t);
11292 		vl_arb_unlock_cache(ppd, LO_PRIO_TABLE);
11293 		ret = set_vl_weights(ppd, SEND_LOW_PRIORITY_LIST,
11294 				     VL_ARB_LOW_PRIO_TABLE_SIZE, t);
11295 		break;
11296 	case FM_TBL_BUFFER_CONTROL:
11297 		ret = set_buffer_control(ppd, t);
11298 		break;
11299 	case FM_TBL_SC2VLNT:
11300 		set_sc2vlnt(ppd->dd, t);
11301 		break;
11302 	default:
11303 		ret = -EINVAL;
11304 	}
11305 	return ret;
11306 }
11307 
11308 /*
11309  * Disable all data VLs.
11310  *
11311  * Return 0 if disabled, non-zero if the VLs cannot be disabled.
11312  */
11313 static int disable_data_vls(struct hfi1_devdata *dd)
11314 {
11315 	if (is_ax(dd))
11316 		return 1;
11317 
11318 	pio_send_control(dd, PSC_DATA_VL_DISABLE);
11319 
11320 	return 0;
11321 }
11322 
11323 /*
11324  * open_fill_data_vls() - the counterpart to stop_drain_data_vls().
11325  * Just re-enables all data VLs (the "fill" part happens
11326  * automatically - the name was chosen for symmetry with
11327  * stop_drain_data_vls()).
11328  *
11329  * Return 0 if successful, non-zero if the VLs cannot be enabled.
11330  */
11331 int open_fill_data_vls(struct hfi1_devdata *dd)
11332 {
11333 	if (is_ax(dd))
11334 		return 1;
11335 
11336 	pio_send_control(dd, PSC_DATA_VL_ENABLE);
11337 
11338 	return 0;
11339 }
11340 
11341 /*
11342  * drain_data_vls() - assumes that disable_data_vls() has been called,
11343  * wait for occupancy (of per-VL FIFOs) for all contexts, and SDMA
11344  * engines to drop to 0.
11345  */
11346 static void drain_data_vls(struct hfi1_devdata *dd)
11347 {
11348 	sc_wait(dd);
11349 	sdma_wait(dd);
11350 	pause_for_credit_return(dd);
11351 }
11352 
11353 /*
11354  * stop_drain_data_vls() - disable, then drain all per-VL fifos.
11355  *
11356  * Use open_fill_data_vls() to resume using data VLs.  This pair is
11357  * meant to be used like this:
11358  *
11359  * stop_drain_data_vls(dd);
11360  * // do things with per-VL resources
11361  * open_fill_data_vls(dd);
11362  */
11363 int stop_drain_data_vls(struct hfi1_devdata *dd)
11364 {
11365 	int ret;
11366 
11367 	ret = disable_data_vls(dd);
11368 	if (ret == 0)
11369 		drain_data_vls(dd);
11370 
11371 	return ret;
11372 }
11373 
11374 /*
11375  * Convert a nanosecond time to a cclock count.  No matter how slow
11376  * the cclock, a non-zero ns will always have a non-zero result.
11377  */
11378 u32 ns_to_cclock(struct hfi1_devdata *dd, u32 ns)
11379 {
11380 	u32 cclocks;
11381 
11382 	if (dd->icode == ICODE_FPGA_EMULATION)
11383 		cclocks = (ns * 1000) / FPGA_CCLOCK_PS;
11384 	else  /* simulation pretends to be ASIC */
11385 		cclocks = (ns * 1000) / ASIC_CCLOCK_PS;
11386 	if (ns && !cclocks)	/* if ns nonzero, must be at least 1 */
11387 		cclocks = 1;
11388 	return cclocks;
11389 }
11390 
11391 /*
11392  * Convert a cclock count to nanoseconds. Not matter how slow
11393  * the cclock, a non-zero cclocks will always have a non-zero result.
11394  */
11395 u32 cclock_to_ns(struct hfi1_devdata *dd, u32 cclocks)
11396 {
11397 	u32 ns;
11398 
11399 	if (dd->icode == ICODE_FPGA_EMULATION)
11400 		ns = (cclocks * FPGA_CCLOCK_PS) / 1000;
11401 	else  /* simulation pretends to be ASIC */
11402 		ns = (cclocks * ASIC_CCLOCK_PS) / 1000;
11403 	if (cclocks && !ns)
11404 		ns = 1;
11405 	return ns;
11406 }
11407 
11408 /*
11409  * Dynamically adjust the receive interrupt timeout for a context based on
11410  * incoming packet rate.
11411  *
11412  * NOTE: Dynamic adjustment does not allow rcv_intr_count to be zero.
11413  */
11414 static void adjust_rcv_timeout(struct hfi1_ctxtdata *rcd, u32 npkts)
11415 {
11416 	struct hfi1_devdata *dd = rcd->dd;
11417 	u32 timeout = rcd->rcvavail_timeout;
11418 
11419 	/*
11420 	 * This algorithm doubles or halves the timeout depending on whether
11421 	 * the number of packets received in this interrupt were less than or
11422 	 * greater equal the interrupt count.
11423 	 *
11424 	 * The calculations below do not allow a steady state to be achieved.
11425 	 * Only at the endpoints it is possible to have an unchanging
11426 	 * timeout.
11427 	 */
11428 	if (npkts < rcv_intr_count) {
11429 		/*
11430 		 * Not enough packets arrived before the timeout, adjust
11431 		 * timeout downward.
11432 		 */
11433 		if (timeout < 2) /* already at minimum? */
11434 			return;
11435 		timeout >>= 1;
11436 	} else {
11437 		/*
11438 		 * More than enough packets arrived before the timeout, adjust
11439 		 * timeout upward.
11440 		 */
11441 		if (timeout >= dd->rcv_intr_timeout_csr) /* already at max? */
11442 			return;
11443 		timeout = min(timeout << 1, dd->rcv_intr_timeout_csr);
11444 	}
11445 
11446 	rcd->rcvavail_timeout = timeout;
11447 	/*
11448 	 * timeout cannot be larger than rcv_intr_timeout_csr which has already
11449 	 * been verified to be in range
11450 	 */
11451 	write_kctxt_csr(dd, rcd->ctxt, RCV_AVAIL_TIME_OUT,
11452 			(u64)timeout <<
11453 			RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_SHIFT);
11454 }
11455 
11456 void update_usrhead(struct hfi1_ctxtdata *rcd, u32 hd, u32 updegr, u32 egrhd,
11457 		    u32 intr_adjust, u32 npkts)
11458 {
11459 	struct hfi1_devdata *dd = rcd->dd;
11460 	u64 reg;
11461 	u32 ctxt = rcd->ctxt;
11462 
11463 	/*
11464 	 * Need to write timeout register before updating RcvHdrHead to ensure
11465 	 * that a new value is used when the HW decides to restart counting.
11466 	 */
11467 	if (intr_adjust)
11468 		adjust_rcv_timeout(rcd, npkts);
11469 	if (updegr) {
11470 		reg = (egrhd & RCV_EGR_INDEX_HEAD_HEAD_MASK)
11471 			<< RCV_EGR_INDEX_HEAD_HEAD_SHIFT;
11472 		write_uctxt_csr(dd, ctxt, RCV_EGR_INDEX_HEAD, reg);
11473 	}
11474 	mmiowb();
11475 	reg = ((u64)rcv_intr_count << RCV_HDR_HEAD_COUNTER_SHIFT) |
11476 		(((u64)hd & RCV_HDR_HEAD_HEAD_MASK)
11477 			<< RCV_HDR_HEAD_HEAD_SHIFT);
11478 	write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, reg);
11479 	mmiowb();
11480 }
11481 
11482 u32 hdrqempty(struct hfi1_ctxtdata *rcd)
11483 {
11484 	u32 head, tail;
11485 
11486 	head = (read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_HEAD)
11487 		& RCV_HDR_HEAD_HEAD_SMASK) >> RCV_HDR_HEAD_HEAD_SHIFT;
11488 
11489 	if (rcd->rcvhdrtail_kvaddr)
11490 		tail = get_rcvhdrtail(rcd);
11491 	else
11492 		tail = read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_TAIL);
11493 
11494 	return head == tail;
11495 }
11496 
11497 /*
11498  * Context Control and Receive Array encoding for buffer size:
11499  *	0x0 invalid
11500  *	0x1   4 KB
11501  *	0x2   8 KB
11502  *	0x3  16 KB
11503  *	0x4  32 KB
11504  *	0x5  64 KB
11505  *	0x6 128 KB
11506  *	0x7 256 KB
11507  *	0x8 512 KB (Receive Array only)
11508  *	0x9   1 MB (Receive Array only)
11509  *	0xa   2 MB (Receive Array only)
11510  *
11511  *	0xB-0xF - reserved (Receive Array only)
11512  *
11513  *
11514  * This routine assumes that the value has already been sanity checked.
11515  */
11516 static u32 encoded_size(u32 size)
11517 {
11518 	switch (size) {
11519 	case   4 * 1024: return 0x1;
11520 	case   8 * 1024: return 0x2;
11521 	case  16 * 1024: return 0x3;
11522 	case  32 * 1024: return 0x4;
11523 	case  64 * 1024: return 0x5;
11524 	case 128 * 1024: return 0x6;
11525 	case 256 * 1024: return 0x7;
11526 	case 512 * 1024: return 0x8;
11527 	case   1 * 1024 * 1024: return 0x9;
11528 	case   2 * 1024 * 1024: return 0xa;
11529 	}
11530 	return 0x1;	/* if invalid, go with the minimum size */
11531 }
11532 
11533 void hfi1_rcvctrl(struct hfi1_devdata *dd, unsigned int op, int ctxt)
11534 {
11535 	struct hfi1_ctxtdata *rcd;
11536 	u64 rcvctrl, reg;
11537 	int did_enable = 0;
11538 
11539 	rcd = dd->rcd[ctxt];
11540 	if (!rcd)
11541 		return;
11542 
11543 	hfi1_cdbg(RCVCTRL, "ctxt %d op 0x%x", ctxt, op);
11544 
11545 	rcvctrl = read_kctxt_csr(dd, ctxt, RCV_CTXT_CTRL);
11546 	/* if the context already enabled, don't do the extra steps */
11547 	if ((op & HFI1_RCVCTRL_CTXT_ENB) &&
11548 	    !(rcvctrl & RCV_CTXT_CTRL_ENABLE_SMASK)) {
11549 		/* reset the tail and hdr addresses, and sequence count */
11550 		write_kctxt_csr(dd, ctxt, RCV_HDR_ADDR,
11551 				rcd->rcvhdrq_dma);
11552 		if (HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL))
11553 			write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR,
11554 					rcd->rcvhdrqtailaddr_dma);
11555 		rcd->seq_cnt = 1;
11556 
11557 		/* reset the cached receive header queue head value */
11558 		rcd->head = 0;
11559 
11560 		/*
11561 		 * Zero the receive header queue so we don't get false
11562 		 * positives when checking the sequence number.  The
11563 		 * sequence numbers could land exactly on the same spot.
11564 		 * E.g. a rcd restart before the receive header wrapped.
11565 		 */
11566 		memset(rcd->rcvhdrq, 0, rcd->rcvhdrq_size);
11567 
11568 		/* starting timeout */
11569 		rcd->rcvavail_timeout = dd->rcv_intr_timeout_csr;
11570 
11571 		/* enable the context */
11572 		rcvctrl |= RCV_CTXT_CTRL_ENABLE_SMASK;
11573 
11574 		/* clean the egr buffer size first */
11575 		rcvctrl &= ~RCV_CTXT_CTRL_EGR_BUF_SIZE_SMASK;
11576 		rcvctrl |= ((u64)encoded_size(rcd->egrbufs.rcvtid_size)
11577 				& RCV_CTXT_CTRL_EGR_BUF_SIZE_MASK)
11578 					<< RCV_CTXT_CTRL_EGR_BUF_SIZE_SHIFT;
11579 
11580 		/* zero RcvHdrHead - set RcvHdrHead.Counter after enable */
11581 		write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0);
11582 		did_enable = 1;
11583 
11584 		/* zero RcvEgrIndexHead */
11585 		write_uctxt_csr(dd, ctxt, RCV_EGR_INDEX_HEAD, 0);
11586 
11587 		/* set eager count and base index */
11588 		reg = (((u64)(rcd->egrbufs.alloced >> RCV_SHIFT)
11589 			& RCV_EGR_CTRL_EGR_CNT_MASK)
11590 		       << RCV_EGR_CTRL_EGR_CNT_SHIFT) |
11591 			(((rcd->eager_base >> RCV_SHIFT)
11592 			  & RCV_EGR_CTRL_EGR_BASE_INDEX_MASK)
11593 			 << RCV_EGR_CTRL_EGR_BASE_INDEX_SHIFT);
11594 		write_kctxt_csr(dd, ctxt, RCV_EGR_CTRL, reg);
11595 
11596 		/*
11597 		 * Set TID (expected) count and base index.
11598 		 * rcd->expected_count is set to individual RcvArray entries,
11599 		 * not pairs, and the CSR takes a pair-count in groups of
11600 		 * four, so divide by 8.
11601 		 */
11602 		reg = (((rcd->expected_count >> RCV_SHIFT)
11603 					& RCV_TID_CTRL_TID_PAIR_CNT_MASK)
11604 				<< RCV_TID_CTRL_TID_PAIR_CNT_SHIFT) |
11605 		      (((rcd->expected_base >> RCV_SHIFT)
11606 					& RCV_TID_CTRL_TID_BASE_INDEX_MASK)
11607 				<< RCV_TID_CTRL_TID_BASE_INDEX_SHIFT);
11608 		write_kctxt_csr(dd, ctxt, RCV_TID_CTRL, reg);
11609 		if (ctxt == HFI1_CTRL_CTXT)
11610 			write_csr(dd, RCV_VL15, HFI1_CTRL_CTXT);
11611 	}
11612 	if (op & HFI1_RCVCTRL_CTXT_DIS) {
11613 		write_csr(dd, RCV_VL15, 0);
11614 		/*
11615 		 * When receive context is being disabled turn on tail
11616 		 * update with a dummy tail address and then disable
11617 		 * receive context.
11618 		 */
11619 		if (dd->rcvhdrtail_dummy_dma) {
11620 			write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR,
11621 					dd->rcvhdrtail_dummy_dma);
11622 			/* Enabling RcvCtxtCtrl.TailUpd is intentional. */
11623 			rcvctrl |= RCV_CTXT_CTRL_TAIL_UPD_SMASK;
11624 		}
11625 
11626 		rcvctrl &= ~RCV_CTXT_CTRL_ENABLE_SMASK;
11627 	}
11628 	if (op & HFI1_RCVCTRL_INTRAVAIL_ENB)
11629 		rcvctrl |= RCV_CTXT_CTRL_INTR_AVAIL_SMASK;
11630 	if (op & HFI1_RCVCTRL_INTRAVAIL_DIS)
11631 		rcvctrl &= ~RCV_CTXT_CTRL_INTR_AVAIL_SMASK;
11632 	if (op & HFI1_RCVCTRL_TAILUPD_ENB && rcd->rcvhdrqtailaddr_dma)
11633 		rcvctrl |= RCV_CTXT_CTRL_TAIL_UPD_SMASK;
11634 	if (op & HFI1_RCVCTRL_TAILUPD_DIS) {
11635 		/* See comment on RcvCtxtCtrl.TailUpd above */
11636 		if (!(op & HFI1_RCVCTRL_CTXT_DIS))
11637 			rcvctrl &= ~RCV_CTXT_CTRL_TAIL_UPD_SMASK;
11638 	}
11639 	if (op & HFI1_RCVCTRL_TIDFLOW_ENB)
11640 		rcvctrl |= RCV_CTXT_CTRL_TID_FLOW_ENABLE_SMASK;
11641 	if (op & HFI1_RCVCTRL_TIDFLOW_DIS)
11642 		rcvctrl &= ~RCV_CTXT_CTRL_TID_FLOW_ENABLE_SMASK;
11643 	if (op & HFI1_RCVCTRL_ONE_PKT_EGR_ENB) {
11644 		/*
11645 		 * In one-packet-per-eager mode, the size comes from
11646 		 * the RcvArray entry.
11647 		 */
11648 		rcvctrl &= ~RCV_CTXT_CTRL_EGR_BUF_SIZE_SMASK;
11649 		rcvctrl |= RCV_CTXT_CTRL_ONE_PACKET_PER_EGR_BUFFER_SMASK;
11650 	}
11651 	if (op & HFI1_RCVCTRL_ONE_PKT_EGR_DIS)
11652 		rcvctrl &= ~RCV_CTXT_CTRL_ONE_PACKET_PER_EGR_BUFFER_SMASK;
11653 	if (op & HFI1_RCVCTRL_NO_RHQ_DROP_ENB)
11654 		rcvctrl |= RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK;
11655 	if (op & HFI1_RCVCTRL_NO_RHQ_DROP_DIS)
11656 		rcvctrl &= ~RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK;
11657 	if (op & HFI1_RCVCTRL_NO_EGR_DROP_ENB)
11658 		rcvctrl |= RCV_CTXT_CTRL_DONT_DROP_EGR_FULL_SMASK;
11659 	if (op & HFI1_RCVCTRL_NO_EGR_DROP_DIS)
11660 		rcvctrl &= ~RCV_CTXT_CTRL_DONT_DROP_EGR_FULL_SMASK;
11661 	rcd->rcvctrl = rcvctrl;
11662 	hfi1_cdbg(RCVCTRL, "ctxt %d rcvctrl 0x%llx\n", ctxt, rcvctrl);
11663 	write_kctxt_csr(dd, ctxt, RCV_CTXT_CTRL, rcd->rcvctrl);
11664 
11665 	/* work around sticky RcvCtxtStatus.BlockedRHQFull */
11666 	if (did_enable &&
11667 	    (rcvctrl & RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK)) {
11668 		reg = read_kctxt_csr(dd, ctxt, RCV_CTXT_STATUS);
11669 		if (reg != 0) {
11670 			dd_dev_info(dd, "ctxt %d status %lld (blocked)\n",
11671 				    ctxt, reg);
11672 			read_uctxt_csr(dd, ctxt, RCV_HDR_HEAD);
11673 			write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0x10);
11674 			write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0x00);
11675 			read_uctxt_csr(dd, ctxt, RCV_HDR_HEAD);
11676 			reg = read_kctxt_csr(dd, ctxt, RCV_CTXT_STATUS);
11677 			dd_dev_info(dd, "ctxt %d status %lld (%s blocked)\n",
11678 				    ctxt, reg, reg == 0 ? "not" : "still");
11679 		}
11680 	}
11681 
11682 	if (did_enable) {
11683 		/*
11684 		 * The interrupt timeout and count must be set after
11685 		 * the context is enabled to take effect.
11686 		 */
11687 		/* set interrupt timeout */
11688 		write_kctxt_csr(dd, ctxt, RCV_AVAIL_TIME_OUT,
11689 				(u64)rcd->rcvavail_timeout <<
11690 				RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_SHIFT);
11691 
11692 		/* set RcvHdrHead.Counter, zero RcvHdrHead.Head (again) */
11693 		reg = (u64)rcv_intr_count << RCV_HDR_HEAD_COUNTER_SHIFT;
11694 		write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, reg);
11695 	}
11696 
11697 	if (op & (HFI1_RCVCTRL_TAILUPD_DIS | HFI1_RCVCTRL_CTXT_DIS))
11698 		/*
11699 		 * If the context has been disabled and the Tail Update has
11700 		 * been cleared, set the RCV_HDR_TAIL_ADDR CSR to dummy address
11701 		 * so it doesn't contain an address that is invalid.
11702 		 */
11703 		write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR,
11704 				dd->rcvhdrtail_dummy_dma);
11705 }
11706 
11707 u32 hfi1_read_cntrs(struct hfi1_devdata *dd, char **namep, u64 **cntrp)
11708 {
11709 	int ret;
11710 	u64 val = 0;
11711 
11712 	if (namep) {
11713 		ret = dd->cntrnameslen;
11714 		*namep = dd->cntrnames;
11715 	} else {
11716 		const struct cntr_entry *entry;
11717 		int i, j;
11718 
11719 		ret = (dd->ndevcntrs) * sizeof(u64);
11720 
11721 		/* Get the start of the block of counters */
11722 		*cntrp = dd->cntrs;
11723 
11724 		/*
11725 		 * Now go and fill in each counter in the block.
11726 		 */
11727 		for (i = 0; i < DEV_CNTR_LAST; i++) {
11728 			entry = &dev_cntrs[i];
11729 			hfi1_cdbg(CNTR, "reading %s", entry->name);
11730 			if (entry->flags & CNTR_DISABLED) {
11731 				/* Nothing */
11732 				hfi1_cdbg(CNTR, "\tDisabled\n");
11733 			} else {
11734 				if (entry->flags & CNTR_VL) {
11735 					hfi1_cdbg(CNTR, "\tPer VL\n");
11736 					for (j = 0; j < C_VL_COUNT; j++) {
11737 						val = entry->rw_cntr(entry,
11738 								  dd, j,
11739 								  CNTR_MODE_R,
11740 								  0);
11741 						hfi1_cdbg(
11742 						   CNTR,
11743 						   "\t\tRead 0x%llx for %d\n",
11744 						   val, j);
11745 						dd->cntrs[entry->offset + j] =
11746 									    val;
11747 					}
11748 				} else if (entry->flags & CNTR_SDMA) {
11749 					hfi1_cdbg(CNTR,
11750 						  "\t Per SDMA Engine\n");
11751 					for (j = 0; j < dd->chip_sdma_engines;
11752 					     j++) {
11753 						val =
11754 						entry->rw_cntr(entry, dd, j,
11755 							       CNTR_MODE_R, 0);
11756 						hfi1_cdbg(CNTR,
11757 							  "\t\tRead 0x%llx for %d\n",
11758 							  val, j);
11759 						dd->cntrs[entry->offset + j] =
11760 									val;
11761 					}
11762 				} else {
11763 					val = entry->rw_cntr(entry, dd,
11764 							CNTR_INVALID_VL,
11765 							CNTR_MODE_R, 0);
11766 					dd->cntrs[entry->offset] = val;
11767 					hfi1_cdbg(CNTR, "\tRead 0x%llx", val);
11768 				}
11769 			}
11770 		}
11771 	}
11772 	return ret;
11773 }
11774 
11775 /*
11776  * Used by sysfs to create files for hfi stats to read
11777  */
11778 u32 hfi1_read_portcntrs(struct hfi1_pportdata *ppd, char **namep, u64 **cntrp)
11779 {
11780 	int ret;
11781 	u64 val = 0;
11782 
11783 	if (namep) {
11784 		ret = ppd->dd->portcntrnameslen;
11785 		*namep = ppd->dd->portcntrnames;
11786 	} else {
11787 		const struct cntr_entry *entry;
11788 		int i, j;
11789 
11790 		ret = ppd->dd->nportcntrs * sizeof(u64);
11791 		*cntrp = ppd->cntrs;
11792 
11793 		for (i = 0; i < PORT_CNTR_LAST; i++) {
11794 			entry = &port_cntrs[i];
11795 			hfi1_cdbg(CNTR, "reading %s", entry->name);
11796 			if (entry->flags & CNTR_DISABLED) {
11797 				/* Nothing */
11798 				hfi1_cdbg(CNTR, "\tDisabled\n");
11799 				continue;
11800 			}
11801 
11802 			if (entry->flags & CNTR_VL) {
11803 				hfi1_cdbg(CNTR, "\tPer VL");
11804 				for (j = 0; j < C_VL_COUNT; j++) {
11805 					val = entry->rw_cntr(entry, ppd, j,
11806 							       CNTR_MODE_R,
11807 							       0);
11808 					hfi1_cdbg(
11809 					   CNTR,
11810 					   "\t\tRead 0x%llx for %d",
11811 					   val, j);
11812 					ppd->cntrs[entry->offset + j] = val;
11813 				}
11814 			} else {
11815 				val = entry->rw_cntr(entry, ppd,
11816 						       CNTR_INVALID_VL,
11817 						       CNTR_MODE_R,
11818 						       0);
11819 				ppd->cntrs[entry->offset] = val;
11820 				hfi1_cdbg(CNTR, "\tRead 0x%llx", val);
11821 			}
11822 		}
11823 	}
11824 	return ret;
11825 }
11826 
11827 static void free_cntrs(struct hfi1_devdata *dd)
11828 {
11829 	struct hfi1_pportdata *ppd;
11830 	int i;
11831 
11832 	if (dd->synth_stats_timer.data)
11833 		del_timer_sync(&dd->synth_stats_timer);
11834 	dd->synth_stats_timer.data = 0;
11835 	ppd = (struct hfi1_pportdata *)(dd + 1);
11836 	for (i = 0; i < dd->num_pports; i++, ppd++) {
11837 		kfree(ppd->cntrs);
11838 		kfree(ppd->scntrs);
11839 		free_percpu(ppd->ibport_data.rvp.rc_acks);
11840 		free_percpu(ppd->ibport_data.rvp.rc_qacks);
11841 		free_percpu(ppd->ibport_data.rvp.rc_delayed_comp);
11842 		ppd->cntrs = NULL;
11843 		ppd->scntrs = NULL;
11844 		ppd->ibport_data.rvp.rc_acks = NULL;
11845 		ppd->ibport_data.rvp.rc_qacks = NULL;
11846 		ppd->ibport_data.rvp.rc_delayed_comp = NULL;
11847 	}
11848 	kfree(dd->portcntrnames);
11849 	dd->portcntrnames = NULL;
11850 	kfree(dd->cntrs);
11851 	dd->cntrs = NULL;
11852 	kfree(dd->scntrs);
11853 	dd->scntrs = NULL;
11854 	kfree(dd->cntrnames);
11855 	dd->cntrnames = NULL;
11856 }
11857 
11858 static u64 read_dev_port_cntr(struct hfi1_devdata *dd, struct cntr_entry *entry,
11859 			      u64 *psval, void *context, int vl)
11860 {
11861 	u64 val;
11862 	u64 sval = *psval;
11863 
11864 	if (entry->flags & CNTR_DISABLED) {
11865 		dd_dev_err(dd, "Counter %s not enabled", entry->name);
11866 		return 0;
11867 	}
11868 
11869 	hfi1_cdbg(CNTR, "cntr: %s vl %d psval 0x%llx", entry->name, vl, *psval);
11870 
11871 	val = entry->rw_cntr(entry, context, vl, CNTR_MODE_R, 0);
11872 
11873 	/* If its a synthetic counter there is more work we need to do */
11874 	if (entry->flags & CNTR_SYNTH) {
11875 		if (sval == CNTR_MAX) {
11876 			/* No need to read already saturated */
11877 			return CNTR_MAX;
11878 		}
11879 
11880 		if (entry->flags & CNTR_32BIT) {
11881 			/* 32bit counters can wrap multiple times */
11882 			u64 upper = sval >> 32;
11883 			u64 lower = (sval << 32) >> 32;
11884 
11885 			if (lower > val) { /* hw wrapped */
11886 				if (upper == CNTR_32BIT_MAX)
11887 					val = CNTR_MAX;
11888 				else
11889 					upper++;
11890 			}
11891 
11892 			if (val != CNTR_MAX)
11893 				val = (upper << 32) | val;
11894 
11895 		} else {
11896 			/* If we rolled we are saturated */
11897 			if ((val < sval) || (val > CNTR_MAX))
11898 				val = CNTR_MAX;
11899 		}
11900 	}
11901 
11902 	*psval = val;
11903 
11904 	hfi1_cdbg(CNTR, "\tNew val=0x%llx", val);
11905 
11906 	return val;
11907 }
11908 
11909 static u64 write_dev_port_cntr(struct hfi1_devdata *dd,
11910 			       struct cntr_entry *entry,
11911 			       u64 *psval, void *context, int vl, u64 data)
11912 {
11913 	u64 val;
11914 
11915 	if (entry->flags & CNTR_DISABLED) {
11916 		dd_dev_err(dd, "Counter %s not enabled", entry->name);
11917 		return 0;
11918 	}
11919 
11920 	hfi1_cdbg(CNTR, "cntr: %s vl %d psval 0x%llx", entry->name, vl, *psval);
11921 
11922 	if (entry->flags & CNTR_SYNTH) {
11923 		*psval = data;
11924 		if (entry->flags & CNTR_32BIT) {
11925 			val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W,
11926 					     (data << 32) >> 32);
11927 			val = data; /* return the full 64bit value */
11928 		} else {
11929 			val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W,
11930 					     data);
11931 		}
11932 	} else {
11933 		val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W, data);
11934 	}
11935 
11936 	*psval = val;
11937 
11938 	hfi1_cdbg(CNTR, "\tNew val=0x%llx", val);
11939 
11940 	return val;
11941 }
11942 
11943 u64 read_dev_cntr(struct hfi1_devdata *dd, int index, int vl)
11944 {
11945 	struct cntr_entry *entry;
11946 	u64 *sval;
11947 
11948 	entry = &dev_cntrs[index];
11949 	sval = dd->scntrs + entry->offset;
11950 
11951 	if (vl != CNTR_INVALID_VL)
11952 		sval += vl;
11953 
11954 	return read_dev_port_cntr(dd, entry, sval, dd, vl);
11955 }
11956 
11957 u64 write_dev_cntr(struct hfi1_devdata *dd, int index, int vl, u64 data)
11958 {
11959 	struct cntr_entry *entry;
11960 	u64 *sval;
11961 
11962 	entry = &dev_cntrs[index];
11963 	sval = dd->scntrs + entry->offset;
11964 
11965 	if (vl != CNTR_INVALID_VL)
11966 		sval += vl;
11967 
11968 	return write_dev_port_cntr(dd, entry, sval, dd, vl, data);
11969 }
11970 
11971 u64 read_port_cntr(struct hfi1_pportdata *ppd, int index, int vl)
11972 {
11973 	struct cntr_entry *entry;
11974 	u64 *sval;
11975 
11976 	entry = &port_cntrs[index];
11977 	sval = ppd->scntrs + entry->offset;
11978 
11979 	if (vl != CNTR_INVALID_VL)
11980 		sval += vl;
11981 
11982 	if ((index >= C_RCV_HDR_OVF_FIRST + ppd->dd->num_rcv_contexts) &&
11983 	    (index <= C_RCV_HDR_OVF_LAST)) {
11984 		/* We do not want to bother for disabled contexts */
11985 		return 0;
11986 	}
11987 
11988 	return read_dev_port_cntr(ppd->dd, entry, sval, ppd, vl);
11989 }
11990 
11991 u64 write_port_cntr(struct hfi1_pportdata *ppd, int index, int vl, u64 data)
11992 {
11993 	struct cntr_entry *entry;
11994 	u64 *sval;
11995 
11996 	entry = &port_cntrs[index];
11997 	sval = ppd->scntrs + entry->offset;
11998 
11999 	if (vl != CNTR_INVALID_VL)
12000 		sval += vl;
12001 
12002 	if ((index >= C_RCV_HDR_OVF_FIRST + ppd->dd->num_rcv_contexts) &&
12003 	    (index <= C_RCV_HDR_OVF_LAST)) {
12004 		/* We do not want to bother for disabled contexts */
12005 		return 0;
12006 	}
12007 
12008 	return write_dev_port_cntr(ppd->dd, entry, sval, ppd, vl, data);
12009 }
12010 
12011 static void update_synth_timer(unsigned long opaque)
12012 {
12013 	u64 cur_tx;
12014 	u64 cur_rx;
12015 	u64 total_flits;
12016 	u8 update = 0;
12017 	int i, j, vl;
12018 	struct hfi1_pportdata *ppd;
12019 	struct cntr_entry *entry;
12020 
12021 	struct hfi1_devdata *dd = (struct hfi1_devdata *)opaque;
12022 
12023 	/*
12024 	 * Rather than keep beating on the CSRs pick a minimal set that we can
12025 	 * check to watch for potential roll over. We can do this by looking at
12026 	 * the number of flits sent/recv. If the total flits exceeds 32bits then
12027 	 * we have to iterate all the counters and update.
12028 	 */
12029 	entry = &dev_cntrs[C_DC_RCV_FLITS];
12030 	cur_rx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL, CNTR_MODE_R, 0);
12031 
12032 	entry = &dev_cntrs[C_DC_XMIT_FLITS];
12033 	cur_tx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL, CNTR_MODE_R, 0);
12034 
12035 	hfi1_cdbg(
12036 	    CNTR,
12037 	    "[%d] curr tx=0x%llx rx=0x%llx :: last tx=0x%llx rx=0x%llx\n",
12038 	    dd->unit, cur_tx, cur_rx, dd->last_tx, dd->last_rx);
12039 
12040 	if ((cur_tx < dd->last_tx) || (cur_rx < dd->last_rx)) {
12041 		/*
12042 		 * May not be strictly necessary to update but it won't hurt and
12043 		 * simplifies the logic here.
12044 		 */
12045 		update = 1;
12046 		hfi1_cdbg(CNTR, "[%d] Tripwire counter rolled, updating",
12047 			  dd->unit);
12048 	} else {
12049 		total_flits = (cur_tx - dd->last_tx) + (cur_rx - dd->last_rx);
12050 		hfi1_cdbg(CNTR,
12051 			  "[%d] total flits 0x%llx limit 0x%llx\n", dd->unit,
12052 			  total_flits, (u64)CNTR_32BIT_MAX);
12053 		if (total_flits >= CNTR_32BIT_MAX) {
12054 			hfi1_cdbg(CNTR, "[%d] 32bit limit hit, updating",
12055 				  dd->unit);
12056 			update = 1;
12057 		}
12058 	}
12059 
12060 	if (update) {
12061 		hfi1_cdbg(CNTR, "[%d] Updating dd and ppd counters", dd->unit);
12062 		for (i = 0; i < DEV_CNTR_LAST; i++) {
12063 			entry = &dev_cntrs[i];
12064 			if (entry->flags & CNTR_VL) {
12065 				for (vl = 0; vl < C_VL_COUNT; vl++)
12066 					read_dev_cntr(dd, i, vl);
12067 			} else {
12068 				read_dev_cntr(dd, i, CNTR_INVALID_VL);
12069 			}
12070 		}
12071 		ppd = (struct hfi1_pportdata *)(dd + 1);
12072 		for (i = 0; i < dd->num_pports; i++, ppd++) {
12073 			for (j = 0; j < PORT_CNTR_LAST; j++) {
12074 				entry = &port_cntrs[j];
12075 				if (entry->flags & CNTR_VL) {
12076 					for (vl = 0; vl < C_VL_COUNT; vl++)
12077 						read_port_cntr(ppd, j, vl);
12078 				} else {
12079 					read_port_cntr(ppd, j, CNTR_INVALID_VL);
12080 				}
12081 			}
12082 		}
12083 
12084 		/*
12085 		 * We want the value in the register. The goal is to keep track
12086 		 * of the number of "ticks" not the counter value. In other
12087 		 * words if the register rolls we want to notice it and go ahead
12088 		 * and force an update.
12089 		 */
12090 		entry = &dev_cntrs[C_DC_XMIT_FLITS];
12091 		dd->last_tx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL,
12092 						CNTR_MODE_R, 0);
12093 
12094 		entry = &dev_cntrs[C_DC_RCV_FLITS];
12095 		dd->last_rx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL,
12096 						CNTR_MODE_R, 0);
12097 
12098 		hfi1_cdbg(CNTR, "[%d] setting last tx/rx to 0x%llx 0x%llx",
12099 			  dd->unit, dd->last_tx, dd->last_rx);
12100 
12101 	} else {
12102 		hfi1_cdbg(CNTR, "[%d] No update necessary", dd->unit);
12103 	}
12104 
12105 	mod_timer(&dd->synth_stats_timer, jiffies + HZ * SYNTH_CNT_TIME);
12106 }
12107 
12108 #define C_MAX_NAME 16 /* 15 chars + one for /0 */
12109 static int init_cntrs(struct hfi1_devdata *dd)
12110 {
12111 	int i, rcv_ctxts, j;
12112 	size_t sz;
12113 	char *p;
12114 	char name[C_MAX_NAME];
12115 	struct hfi1_pportdata *ppd;
12116 	const char *bit_type_32 = ",32";
12117 	const int bit_type_32_sz = strlen(bit_type_32);
12118 
12119 	/* set up the stats timer; the add_timer is done at the end */
12120 	setup_timer(&dd->synth_stats_timer, update_synth_timer,
12121 		    (unsigned long)dd);
12122 
12123 	/***********************/
12124 	/* per device counters */
12125 	/***********************/
12126 
12127 	/* size names and determine how many we have*/
12128 	dd->ndevcntrs = 0;
12129 	sz = 0;
12130 
12131 	for (i = 0; i < DEV_CNTR_LAST; i++) {
12132 		if (dev_cntrs[i].flags & CNTR_DISABLED) {
12133 			hfi1_dbg_early("\tSkipping %s\n", dev_cntrs[i].name);
12134 			continue;
12135 		}
12136 
12137 		if (dev_cntrs[i].flags & CNTR_VL) {
12138 			dev_cntrs[i].offset = dd->ndevcntrs;
12139 			for (j = 0; j < C_VL_COUNT; j++) {
12140 				snprintf(name, C_MAX_NAME, "%s%d",
12141 					 dev_cntrs[i].name, vl_from_idx(j));
12142 				sz += strlen(name);
12143 				/* Add ",32" for 32-bit counters */
12144 				if (dev_cntrs[i].flags & CNTR_32BIT)
12145 					sz += bit_type_32_sz;
12146 				sz++;
12147 				dd->ndevcntrs++;
12148 			}
12149 		} else if (dev_cntrs[i].flags & CNTR_SDMA) {
12150 			dev_cntrs[i].offset = dd->ndevcntrs;
12151 			for (j = 0; j < dd->chip_sdma_engines; j++) {
12152 				snprintf(name, C_MAX_NAME, "%s%d",
12153 					 dev_cntrs[i].name, j);
12154 				sz += strlen(name);
12155 				/* Add ",32" for 32-bit counters */
12156 				if (dev_cntrs[i].flags & CNTR_32BIT)
12157 					sz += bit_type_32_sz;
12158 				sz++;
12159 				dd->ndevcntrs++;
12160 			}
12161 		} else {
12162 			/* +1 for newline. */
12163 			sz += strlen(dev_cntrs[i].name) + 1;
12164 			/* Add ",32" for 32-bit counters */
12165 			if (dev_cntrs[i].flags & CNTR_32BIT)
12166 				sz += bit_type_32_sz;
12167 			dev_cntrs[i].offset = dd->ndevcntrs;
12168 			dd->ndevcntrs++;
12169 		}
12170 	}
12171 
12172 	/* allocate space for the counter values */
12173 	dd->cntrs = kcalloc(dd->ndevcntrs, sizeof(u64), GFP_KERNEL);
12174 	if (!dd->cntrs)
12175 		goto bail;
12176 
12177 	dd->scntrs = kcalloc(dd->ndevcntrs, sizeof(u64), GFP_KERNEL);
12178 	if (!dd->scntrs)
12179 		goto bail;
12180 
12181 	/* allocate space for the counter names */
12182 	dd->cntrnameslen = sz;
12183 	dd->cntrnames = kmalloc(sz, GFP_KERNEL);
12184 	if (!dd->cntrnames)
12185 		goto bail;
12186 
12187 	/* fill in the names */
12188 	for (p = dd->cntrnames, i = 0; i < DEV_CNTR_LAST; i++) {
12189 		if (dev_cntrs[i].flags & CNTR_DISABLED) {
12190 			/* Nothing */
12191 		} else if (dev_cntrs[i].flags & CNTR_VL) {
12192 			for (j = 0; j < C_VL_COUNT; j++) {
12193 				snprintf(name, C_MAX_NAME, "%s%d",
12194 					 dev_cntrs[i].name,
12195 					 vl_from_idx(j));
12196 				memcpy(p, name, strlen(name));
12197 				p += strlen(name);
12198 
12199 				/* Counter is 32 bits */
12200 				if (dev_cntrs[i].flags & CNTR_32BIT) {
12201 					memcpy(p, bit_type_32, bit_type_32_sz);
12202 					p += bit_type_32_sz;
12203 				}
12204 
12205 				*p++ = '\n';
12206 			}
12207 		} else if (dev_cntrs[i].flags & CNTR_SDMA) {
12208 			for (j = 0; j < dd->chip_sdma_engines; j++) {
12209 				snprintf(name, C_MAX_NAME, "%s%d",
12210 					 dev_cntrs[i].name, j);
12211 				memcpy(p, name, strlen(name));
12212 				p += strlen(name);
12213 
12214 				/* Counter is 32 bits */
12215 				if (dev_cntrs[i].flags & CNTR_32BIT) {
12216 					memcpy(p, bit_type_32, bit_type_32_sz);
12217 					p += bit_type_32_sz;
12218 				}
12219 
12220 				*p++ = '\n';
12221 			}
12222 		} else {
12223 			memcpy(p, dev_cntrs[i].name, strlen(dev_cntrs[i].name));
12224 			p += strlen(dev_cntrs[i].name);
12225 
12226 			/* Counter is 32 bits */
12227 			if (dev_cntrs[i].flags & CNTR_32BIT) {
12228 				memcpy(p, bit_type_32, bit_type_32_sz);
12229 				p += bit_type_32_sz;
12230 			}
12231 
12232 			*p++ = '\n';
12233 		}
12234 	}
12235 
12236 	/*********************/
12237 	/* per port counters */
12238 	/*********************/
12239 
12240 	/*
12241 	 * Go through the counters for the overflows and disable the ones we
12242 	 * don't need. This varies based on platform so we need to do it
12243 	 * dynamically here.
12244 	 */
12245 	rcv_ctxts = dd->num_rcv_contexts;
12246 	for (i = C_RCV_HDR_OVF_FIRST + rcv_ctxts;
12247 	     i <= C_RCV_HDR_OVF_LAST; i++) {
12248 		port_cntrs[i].flags |= CNTR_DISABLED;
12249 	}
12250 
12251 	/* size port counter names and determine how many we have*/
12252 	sz = 0;
12253 	dd->nportcntrs = 0;
12254 	for (i = 0; i < PORT_CNTR_LAST; i++) {
12255 		if (port_cntrs[i].flags & CNTR_DISABLED) {
12256 			hfi1_dbg_early("\tSkipping %s\n", port_cntrs[i].name);
12257 			continue;
12258 		}
12259 
12260 		if (port_cntrs[i].flags & CNTR_VL) {
12261 			port_cntrs[i].offset = dd->nportcntrs;
12262 			for (j = 0; j < C_VL_COUNT; j++) {
12263 				snprintf(name, C_MAX_NAME, "%s%d",
12264 					 port_cntrs[i].name, vl_from_idx(j));
12265 				sz += strlen(name);
12266 				/* Add ",32" for 32-bit counters */
12267 				if (port_cntrs[i].flags & CNTR_32BIT)
12268 					sz += bit_type_32_sz;
12269 				sz++;
12270 				dd->nportcntrs++;
12271 			}
12272 		} else {
12273 			/* +1 for newline */
12274 			sz += strlen(port_cntrs[i].name) + 1;
12275 			/* Add ",32" for 32-bit counters */
12276 			if (port_cntrs[i].flags & CNTR_32BIT)
12277 				sz += bit_type_32_sz;
12278 			port_cntrs[i].offset = dd->nportcntrs;
12279 			dd->nportcntrs++;
12280 		}
12281 	}
12282 
12283 	/* allocate space for the counter names */
12284 	dd->portcntrnameslen = sz;
12285 	dd->portcntrnames = kmalloc(sz, GFP_KERNEL);
12286 	if (!dd->portcntrnames)
12287 		goto bail;
12288 
12289 	/* fill in port cntr names */
12290 	for (p = dd->portcntrnames, i = 0; i < PORT_CNTR_LAST; i++) {
12291 		if (port_cntrs[i].flags & CNTR_DISABLED)
12292 			continue;
12293 
12294 		if (port_cntrs[i].flags & CNTR_VL) {
12295 			for (j = 0; j < C_VL_COUNT; j++) {
12296 				snprintf(name, C_MAX_NAME, "%s%d",
12297 					 port_cntrs[i].name, vl_from_idx(j));
12298 				memcpy(p, name, strlen(name));
12299 				p += strlen(name);
12300 
12301 				/* Counter is 32 bits */
12302 				if (port_cntrs[i].flags & CNTR_32BIT) {
12303 					memcpy(p, bit_type_32, bit_type_32_sz);
12304 					p += bit_type_32_sz;
12305 				}
12306 
12307 				*p++ = '\n';
12308 			}
12309 		} else {
12310 			memcpy(p, port_cntrs[i].name,
12311 			       strlen(port_cntrs[i].name));
12312 			p += strlen(port_cntrs[i].name);
12313 
12314 			/* Counter is 32 bits */
12315 			if (port_cntrs[i].flags & CNTR_32BIT) {
12316 				memcpy(p, bit_type_32, bit_type_32_sz);
12317 				p += bit_type_32_sz;
12318 			}
12319 
12320 			*p++ = '\n';
12321 		}
12322 	}
12323 
12324 	/* allocate per port storage for counter values */
12325 	ppd = (struct hfi1_pportdata *)(dd + 1);
12326 	for (i = 0; i < dd->num_pports; i++, ppd++) {
12327 		ppd->cntrs = kcalloc(dd->nportcntrs, sizeof(u64), GFP_KERNEL);
12328 		if (!ppd->cntrs)
12329 			goto bail;
12330 
12331 		ppd->scntrs = kcalloc(dd->nportcntrs, sizeof(u64), GFP_KERNEL);
12332 		if (!ppd->scntrs)
12333 			goto bail;
12334 	}
12335 
12336 	/* CPU counters need to be allocated and zeroed */
12337 	if (init_cpu_counters(dd))
12338 		goto bail;
12339 
12340 	mod_timer(&dd->synth_stats_timer, jiffies + HZ * SYNTH_CNT_TIME);
12341 	return 0;
12342 bail:
12343 	free_cntrs(dd);
12344 	return -ENOMEM;
12345 }
12346 
12347 static u32 chip_to_opa_lstate(struct hfi1_devdata *dd, u32 chip_lstate)
12348 {
12349 	switch (chip_lstate) {
12350 	default:
12351 		dd_dev_err(dd,
12352 			   "Unknown logical state 0x%x, reporting IB_PORT_DOWN\n",
12353 			   chip_lstate);
12354 		/* fall through */
12355 	case LSTATE_DOWN:
12356 		return IB_PORT_DOWN;
12357 	case LSTATE_INIT:
12358 		return IB_PORT_INIT;
12359 	case LSTATE_ARMED:
12360 		return IB_PORT_ARMED;
12361 	case LSTATE_ACTIVE:
12362 		return IB_PORT_ACTIVE;
12363 	}
12364 }
12365 
12366 u32 chip_to_opa_pstate(struct hfi1_devdata *dd, u32 chip_pstate)
12367 {
12368 	/* look at the HFI meta-states only */
12369 	switch (chip_pstate & 0xf0) {
12370 	default:
12371 		dd_dev_err(dd, "Unexpected chip physical state of 0x%x\n",
12372 			   chip_pstate);
12373 		/* fall through */
12374 	case PLS_DISABLED:
12375 		return IB_PORTPHYSSTATE_DISABLED;
12376 	case PLS_OFFLINE:
12377 		return OPA_PORTPHYSSTATE_OFFLINE;
12378 	case PLS_POLLING:
12379 		return IB_PORTPHYSSTATE_POLLING;
12380 	case PLS_CONFIGPHY:
12381 		return IB_PORTPHYSSTATE_TRAINING;
12382 	case PLS_LINKUP:
12383 		return IB_PORTPHYSSTATE_LINKUP;
12384 	case PLS_PHYTEST:
12385 		return IB_PORTPHYSSTATE_PHY_TEST;
12386 	}
12387 }
12388 
12389 /* return the OPA port logical state name */
12390 const char *opa_lstate_name(u32 lstate)
12391 {
12392 	static const char * const port_logical_names[] = {
12393 		"PORT_NOP",
12394 		"PORT_DOWN",
12395 		"PORT_INIT",
12396 		"PORT_ARMED",
12397 		"PORT_ACTIVE",
12398 		"PORT_ACTIVE_DEFER",
12399 	};
12400 	if (lstate < ARRAY_SIZE(port_logical_names))
12401 		return port_logical_names[lstate];
12402 	return "unknown";
12403 }
12404 
12405 /* return the OPA port physical state name */
12406 const char *opa_pstate_name(u32 pstate)
12407 {
12408 	static const char * const port_physical_names[] = {
12409 		"PHYS_NOP",
12410 		"reserved1",
12411 		"PHYS_POLL",
12412 		"PHYS_DISABLED",
12413 		"PHYS_TRAINING",
12414 		"PHYS_LINKUP",
12415 		"PHYS_LINK_ERR_RECOVER",
12416 		"PHYS_PHY_TEST",
12417 		"reserved8",
12418 		"PHYS_OFFLINE",
12419 		"PHYS_GANGED",
12420 		"PHYS_TEST",
12421 	};
12422 	if (pstate < ARRAY_SIZE(port_physical_names))
12423 		return port_physical_names[pstate];
12424 	return "unknown";
12425 }
12426 
12427 /*
12428  * Read the hardware link state and set the driver's cached value of it.
12429  * Return the (new) current value.
12430  */
12431 u32 get_logical_state(struct hfi1_pportdata *ppd)
12432 {
12433 	u32 new_state;
12434 
12435 	new_state = chip_to_opa_lstate(ppd->dd, read_logical_state(ppd->dd));
12436 	if (new_state != ppd->lstate) {
12437 		dd_dev_info(ppd->dd, "logical state changed to %s (0x%x)\n",
12438 			    opa_lstate_name(new_state), new_state);
12439 		ppd->lstate = new_state;
12440 	}
12441 	/*
12442 	 * Set port status flags in the page mapped into userspace
12443 	 * memory. Do it here to ensure a reliable state - this is
12444 	 * the only function called by all state handling code.
12445 	 * Always set the flags due to the fact that the cache value
12446 	 * might have been changed explicitly outside of this
12447 	 * function.
12448 	 */
12449 	if (ppd->statusp) {
12450 		switch (ppd->lstate) {
12451 		case IB_PORT_DOWN:
12452 		case IB_PORT_INIT:
12453 			*ppd->statusp &= ~(HFI1_STATUS_IB_CONF |
12454 					   HFI1_STATUS_IB_READY);
12455 			break;
12456 		case IB_PORT_ARMED:
12457 			*ppd->statusp |= HFI1_STATUS_IB_CONF;
12458 			break;
12459 		case IB_PORT_ACTIVE:
12460 			*ppd->statusp |= HFI1_STATUS_IB_READY;
12461 			break;
12462 		}
12463 	}
12464 	return ppd->lstate;
12465 }
12466 
12467 /**
12468  * wait_logical_linkstate - wait for an IB link state change to occur
12469  * @ppd: port device
12470  * @state: the state to wait for
12471  * @msecs: the number of milliseconds to wait
12472  *
12473  * Wait up to msecs milliseconds for IB link state change to occur.
12474  * For now, take the easy polling route.
12475  * Returns 0 if state reached, otherwise -ETIMEDOUT.
12476  */
12477 static int wait_logical_linkstate(struct hfi1_pportdata *ppd, u32 state,
12478 				  int msecs)
12479 {
12480 	unsigned long timeout;
12481 
12482 	timeout = jiffies + msecs_to_jiffies(msecs);
12483 	while (1) {
12484 		if (get_logical_state(ppd) == state)
12485 			return 0;
12486 		if (time_after(jiffies, timeout))
12487 			break;
12488 		msleep(20);
12489 	}
12490 	dd_dev_err(ppd->dd, "timeout waiting for link state 0x%x\n", state);
12491 
12492 	return -ETIMEDOUT;
12493 }
12494 
12495 u8 hfi1_ibphys_portstate(struct hfi1_pportdata *ppd)
12496 {
12497 	u32 pstate;
12498 	u32 ib_pstate;
12499 
12500 	pstate = read_physical_state(ppd->dd);
12501 	ib_pstate = chip_to_opa_pstate(ppd->dd, pstate);
12502 	if (ppd->last_pstate != ib_pstate) {
12503 		dd_dev_info(ppd->dd,
12504 			    "%s: physical state changed to %s (0x%x), phy 0x%x\n",
12505 			    __func__, opa_pstate_name(ib_pstate), ib_pstate,
12506 			    pstate);
12507 		ppd->last_pstate = ib_pstate;
12508 	}
12509 	return ib_pstate;
12510 }
12511 
12512 #define CLEAR_STATIC_RATE_CONTROL_SMASK(r) \
12513 (r &= ~SEND_CTXT_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK)
12514 
12515 #define SET_STATIC_RATE_CONTROL_SMASK(r) \
12516 (r |= SEND_CTXT_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK)
12517 
12518 int hfi1_init_ctxt(struct send_context *sc)
12519 {
12520 	if (sc) {
12521 		struct hfi1_devdata *dd = sc->dd;
12522 		u64 reg;
12523 		u8 set = (sc->type == SC_USER ?
12524 			  HFI1_CAP_IS_USET(STATIC_RATE_CTRL) :
12525 			  HFI1_CAP_IS_KSET(STATIC_RATE_CTRL));
12526 		reg = read_kctxt_csr(dd, sc->hw_context,
12527 				     SEND_CTXT_CHECK_ENABLE);
12528 		if (set)
12529 			CLEAR_STATIC_RATE_CONTROL_SMASK(reg);
12530 		else
12531 			SET_STATIC_RATE_CONTROL_SMASK(reg);
12532 		write_kctxt_csr(dd, sc->hw_context,
12533 				SEND_CTXT_CHECK_ENABLE, reg);
12534 	}
12535 	return 0;
12536 }
12537 
12538 int hfi1_tempsense_rd(struct hfi1_devdata *dd, struct hfi1_temp *temp)
12539 {
12540 	int ret = 0;
12541 	u64 reg;
12542 
12543 	if (dd->icode != ICODE_RTL_SILICON) {
12544 		if (HFI1_CAP_IS_KSET(PRINT_UNIMPL))
12545 			dd_dev_info(dd, "%s: tempsense not supported by HW\n",
12546 				    __func__);
12547 		return -EINVAL;
12548 	}
12549 	reg = read_csr(dd, ASIC_STS_THERM);
12550 	temp->curr = ((reg >> ASIC_STS_THERM_CURR_TEMP_SHIFT) &
12551 		      ASIC_STS_THERM_CURR_TEMP_MASK);
12552 	temp->lo_lim = ((reg >> ASIC_STS_THERM_LO_TEMP_SHIFT) &
12553 			ASIC_STS_THERM_LO_TEMP_MASK);
12554 	temp->hi_lim = ((reg >> ASIC_STS_THERM_HI_TEMP_SHIFT) &
12555 			ASIC_STS_THERM_HI_TEMP_MASK);
12556 	temp->crit_lim = ((reg >> ASIC_STS_THERM_CRIT_TEMP_SHIFT) &
12557 			  ASIC_STS_THERM_CRIT_TEMP_MASK);
12558 	/* triggers is a 3-bit value - 1 bit per trigger. */
12559 	temp->triggers = (u8)((reg >> ASIC_STS_THERM_LOW_SHIFT) & 0x7);
12560 
12561 	return ret;
12562 }
12563 
12564 /* ========================================================================= */
12565 
12566 /*
12567  * Enable/disable chip from delivering interrupts.
12568  */
12569 void set_intr_state(struct hfi1_devdata *dd, u32 enable)
12570 {
12571 	int i;
12572 
12573 	/*
12574 	 * In HFI, the mask needs to be 1 to allow interrupts.
12575 	 */
12576 	if (enable) {
12577 		/* enable all interrupts */
12578 		for (i = 0; i < CCE_NUM_INT_CSRS; i++)
12579 			write_csr(dd, CCE_INT_MASK + (8 * i), ~(u64)0);
12580 
12581 		init_qsfp_int(dd);
12582 	} else {
12583 		for (i = 0; i < CCE_NUM_INT_CSRS; i++)
12584 			write_csr(dd, CCE_INT_MASK + (8 * i), 0ull);
12585 	}
12586 }
12587 
12588 /*
12589  * Clear all interrupt sources on the chip.
12590  */
12591 static void clear_all_interrupts(struct hfi1_devdata *dd)
12592 {
12593 	int i;
12594 
12595 	for (i = 0; i < CCE_NUM_INT_CSRS; i++)
12596 		write_csr(dd, CCE_INT_CLEAR + (8 * i), ~(u64)0);
12597 
12598 	write_csr(dd, CCE_ERR_CLEAR, ~(u64)0);
12599 	write_csr(dd, MISC_ERR_CLEAR, ~(u64)0);
12600 	write_csr(dd, RCV_ERR_CLEAR, ~(u64)0);
12601 	write_csr(dd, SEND_ERR_CLEAR, ~(u64)0);
12602 	write_csr(dd, SEND_PIO_ERR_CLEAR, ~(u64)0);
12603 	write_csr(dd, SEND_DMA_ERR_CLEAR, ~(u64)0);
12604 	write_csr(dd, SEND_EGRESS_ERR_CLEAR, ~(u64)0);
12605 	for (i = 0; i < dd->chip_send_contexts; i++)
12606 		write_kctxt_csr(dd, i, SEND_CTXT_ERR_CLEAR, ~(u64)0);
12607 	for (i = 0; i < dd->chip_sdma_engines; i++)
12608 		write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_CLEAR, ~(u64)0);
12609 
12610 	write_csr(dd, DCC_ERR_FLG_CLR, ~(u64)0);
12611 	write_csr(dd, DC_LCB_ERR_CLR, ~(u64)0);
12612 	write_csr(dd, DC_DC8051_ERR_CLR, ~(u64)0);
12613 }
12614 
12615 /* Move to pcie.c? */
12616 static void disable_intx(struct pci_dev *pdev)
12617 {
12618 	pci_intx(pdev, 0);
12619 }
12620 
12621 static void clean_up_interrupts(struct hfi1_devdata *dd)
12622 {
12623 	int i;
12624 
12625 	/* remove irqs - must happen before disabling/turning off */
12626 	if (dd->num_msix_entries) {
12627 		/* MSI-X */
12628 		struct hfi1_msix_entry *me = dd->msix_entries;
12629 
12630 		for (i = 0; i < dd->num_msix_entries; i++, me++) {
12631 			if (!me->arg) /* => no irq, no affinity */
12632 				continue;
12633 			hfi1_put_irq_affinity(dd, &dd->msix_entries[i]);
12634 			free_irq(me->msix.vector, me->arg);
12635 		}
12636 	} else {
12637 		/* INTx */
12638 		if (dd->requested_intx_irq) {
12639 			free_irq(dd->pcidev->irq, dd);
12640 			dd->requested_intx_irq = 0;
12641 		}
12642 	}
12643 
12644 	/* turn off interrupts */
12645 	if (dd->num_msix_entries) {
12646 		/* MSI-X */
12647 		pci_disable_msix(dd->pcidev);
12648 	} else {
12649 		/* INTx */
12650 		disable_intx(dd->pcidev);
12651 	}
12652 
12653 	/* clean structures */
12654 	kfree(dd->msix_entries);
12655 	dd->msix_entries = NULL;
12656 	dd->num_msix_entries = 0;
12657 }
12658 
12659 /*
12660  * Remap the interrupt source from the general handler to the given MSI-X
12661  * interrupt.
12662  */
12663 static void remap_intr(struct hfi1_devdata *dd, int isrc, int msix_intr)
12664 {
12665 	u64 reg;
12666 	int m, n;
12667 
12668 	/* clear from the handled mask of the general interrupt */
12669 	m = isrc / 64;
12670 	n = isrc % 64;
12671 	dd->gi_mask[m] &= ~((u64)1 << n);
12672 
12673 	/* direct the chip source to the given MSI-X interrupt */
12674 	m = isrc / 8;
12675 	n = isrc % 8;
12676 	reg = read_csr(dd, CCE_INT_MAP + (8 * m));
12677 	reg &= ~((u64)0xff << (8 * n));
12678 	reg |= ((u64)msix_intr & 0xff) << (8 * n);
12679 	write_csr(dd, CCE_INT_MAP + (8 * m), reg);
12680 }
12681 
12682 static void remap_sdma_interrupts(struct hfi1_devdata *dd,
12683 				  int engine, int msix_intr)
12684 {
12685 	/*
12686 	 * SDMA engine interrupt sources grouped by type, rather than
12687 	 * engine.  Per-engine interrupts are as follows:
12688 	 *	SDMA
12689 	 *	SDMAProgress
12690 	 *	SDMAIdle
12691 	 */
12692 	remap_intr(dd, IS_SDMA_START + 0 * TXE_NUM_SDMA_ENGINES + engine,
12693 		   msix_intr);
12694 	remap_intr(dd, IS_SDMA_START + 1 * TXE_NUM_SDMA_ENGINES + engine,
12695 		   msix_intr);
12696 	remap_intr(dd, IS_SDMA_START + 2 * TXE_NUM_SDMA_ENGINES + engine,
12697 		   msix_intr);
12698 }
12699 
12700 static int request_intx_irq(struct hfi1_devdata *dd)
12701 {
12702 	int ret;
12703 
12704 	snprintf(dd->intx_name, sizeof(dd->intx_name), DRIVER_NAME "_%d",
12705 		 dd->unit);
12706 	ret = request_irq(dd->pcidev->irq, general_interrupt,
12707 			  IRQF_SHARED, dd->intx_name, dd);
12708 	if (ret)
12709 		dd_dev_err(dd, "unable to request INTx interrupt, err %d\n",
12710 			   ret);
12711 	else
12712 		dd->requested_intx_irq = 1;
12713 	return ret;
12714 }
12715 
12716 static int request_msix_irqs(struct hfi1_devdata *dd)
12717 {
12718 	int first_general, last_general;
12719 	int first_sdma, last_sdma;
12720 	int first_rx, last_rx;
12721 	int i, ret = 0;
12722 
12723 	/* calculate the ranges we are going to use */
12724 	first_general = 0;
12725 	last_general = first_general + 1;
12726 	first_sdma = last_general;
12727 	last_sdma = first_sdma + dd->num_sdma;
12728 	first_rx = last_sdma;
12729 	last_rx = first_rx + dd->n_krcv_queues;
12730 
12731 	/*
12732 	 * Sanity check - the code expects all SDMA chip source
12733 	 * interrupts to be in the same CSR, starting at bit 0.  Verify
12734 	 * that this is true by checking the bit location of the start.
12735 	 */
12736 	BUILD_BUG_ON(IS_SDMA_START % 64);
12737 
12738 	for (i = 0; i < dd->num_msix_entries; i++) {
12739 		struct hfi1_msix_entry *me = &dd->msix_entries[i];
12740 		const char *err_info;
12741 		irq_handler_t handler;
12742 		irq_handler_t thread = NULL;
12743 		void *arg;
12744 		int idx;
12745 		struct hfi1_ctxtdata *rcd = NULL;
12746 		struct sdma_engine *sde = NULL;
12747 
12748 		/* obtain the arguments to request_irq */
12749 		if (first_general <= i && i < last_general) {
12750 			idx = i - first_general;
12751 			handler = general_interrupt;
12752 			arg = dd;
12753 			snprintf(me->name, sizeof(me->name),
12754 				 DRIVER_NAME "_%d", dd->unit);
12755 			err_info = "general";
12756 			me->type = IRQ_GENERAL;
12757 		} else if (first_sdma <= i && i < last_sdma) {
12758 			idx = i - first_sdma;
12759 			sde = &dd->per_sdma[idx];
12760 			handler = sdma_interrupt;
12761 			arg = sde;
12762 			snprintf(me->name, sizeof(me->name),
12763 				 DRIVER_NAME "_%d sdma%d", dd->unit, idx);
12764 			err_info = "sdma";
12765 			remap_sdma_interrupts(dd, idx, i);
12766 			me->type = IRQ_SDMA;
12767 		} else if (first_rx <= i && i < last_rx) {
12768 			idx = i - first_rx;
12769 			rcd = dd->rcd[idx];
12770 			/* no interrupt if no rcd */
12771 			if (!rcd)
12772 				continue;
12773 			/*
12774 			 * Set the interrupt register and mask for this
12775 			 * context's interrupt.
12776 			 */
12777 			rcd->ireg = (IS_RCVAVAIL_START + idx) / 64;
12778 			rcd->imask = ((u64)1) <<
12779 					((IS_RCVAVAIL_START + idx) % 64);
12780 			handler = receive_context_interrupt;
12781 			thread = receive_context_thread;
12782 			arg = rcd;
12783 			snprintf(me->name, sizeof(me->name),
12784 				 DRIVER_NAME "_%d kctxt%d", dd->unit, idx);
12785 			err_info = "receive context";
12786 			remap_intr(dd, IS_RCVAVAIL_START + idx, i);
12787 			me->type = IRQ_RCVCTXT;
12788 		} else {
12789 			/* not in our expected range - complain, then
12790 			 * ignore it
12791 			 */
12792 			dd_dev_err(dd,
12793 				   "Unexpected extra MSI-X interrupt %d\n", i);
12794 			continue;
12795 		}
12796 		/* no argument, no interrupt */
12797 		if (!arg)
12798 			continue;
12799 		/* make sure the name is terminated */
12800 		me->name[sizeof(me->name) - 1] = 0;
12801 
12802 		ret = request_threaded_irq(me->msix.vector, handler, thread, 0,
12803 					   me->name, arg);
12804 		if (ret) {
12805 			dd_dev_err(dd,
12806 				   "unable to allocate %s interrupt, vector %d, index %d, err %d\n",
12807 				   err_info, me->msix.vector, idx, ret);
12808 			return ret;
12809 		}
12810 		/*
12811 		 * assign arg after request_irq call, so it will be
12812 		 * cleaned up
12813 		 */
12814 		me->arg = arg;
12815 
12816 		ret = hfi1_get_irq_affinity(dd, me);
12817 		if (ret)
12818 			dd_dev_err(dd,
12819 				   "unable to pin IRQ %d\n", ret);
12820 	}
12821 
12822 	return ret;
12823 }
12824 
12825 /*
12826  * Set the general handler to accept all interrupts, remap all
12827  * chip interrupts back to MSI-X 0.
12828  */
12829 static void reset_interrupts(struct hfi1_devdata *dd)
12830 {
12831 	int i;
12832 
12833 	/* all interrupts handled by the general handler */
12834 	for (i = 0; i < CCE_NUM_INT_CSRS; i++)
12835 		dd->gi_mask[i] = ~(u64)0;
12836 
12837 	/* all chip interrupts map to MSI-X 0 */
12838 	for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++)
12839 		write_csr(dd, CCE_INT_MAP + (8 * i), 0);
12840 }
12841 
12842 static int set_up_interrupts(struct hfi1_devdata *dd)
12843 {
12844 	struct hfi1_msix_entry *entries;
12845 	u32 total, request;
12846 	int i, ret;
12847 	int single_interrupt = 0; /* we expect to have all the interrupts */
12848 
12849 	/*
12850 	 * Interrupt count:
12851 	 *	1 general, "slow path" interrupt (includes the SDMA engines
12852 	 *		slow source, SDMACleanupDone)
12853 	 *	N interrupts - one per used SDMA engine
12854 	 *	M interrupt - one per kernel receive context
12855 	 */
12856 	total = 1 + dd->num_sdma + dd->n_krcv_queues;
12857 
12858 	entries = kcalloc(total, sizeof(*entries), GFP_KERNEL);
12859 	if (!entries) {
12860 		ret = -ENOMEM;
12861 		goto fail;
12862 	}
12863 	/* 1-1 MSI-X entry assignment */
12864 	for (i = 0; i < total; i++)
12865 		entries[i].msix.entry = i;
12866 
12867 	/* ask for MSI-X interrupts */
12868 	request = total;
12869 	request_msix(dd, &request, entries);
12870 
12871 	if (request == 0) {
12872 		/* using INTx */
12873 		/* dd->num_msix_entries already zero */
12874 		kfree(entries);
12875 		single_interrupt = 1;
12876 		dd_dev_err(dd, "MSI-X failed, using INTx interrupts\n");
12877 	} else {
12878 		/* using MSI-X */
12879 		dd->num_msix_entries = request;
12880 		dd->msix_entries = entries;
12881 
12882 		if (request != total) {
12883 			/* using MSI-X, with reduced interrupts */
12884 			dd_dev_err(
12885 				dd,
12886 				"cannot handle reduced interrupt case, want %u, got %u\n",
12887 				total, request);
12888 			ret = -EINVAL;
12889 			goto fail;
12890 		}
12891 		dd_dev_info(dd, "%u MSI-X interrupts allocated\n", total);
12892 	}
12893 
12894 	/* mask all interrupts */
12895 	set_intr_state(dd, 0);
12896 	/* clear all pending interrupts */
12897 	clear_all_interrupts(dd);
12898 
12899 	/* reset general handler mask, chip MSI-X mappings */
12900 	reset_interrupts(dd);
12901 
12902 	if (single_interrupt)
12903 		ret = request_intx_irq(dd);
12904 	else
12905 		ret = request_msix_irqs(dd);
12906 	if (ret)
12907 		goto fail;
12908 
12909 	return 0;
12910 
12911 fail:
12912 	clean_up_interrupts(dd);
12913 	return ret;
12914 }
12915 
12916 /*
12917  * Set up context values in dd.  Sets:
12918  *
12919  *	num_rcv_contexts - number of contexts being used
12920  *	n_krcv_queues - number of kernel contexts
12921  *	first_user_ctxt - first non-kernel context in array of contexts
12922  *	freectxts  - number of free user contexts
12923  *	num_send_contexts - number of PIO send contexts being used
12924  */
12925 static int set_up_context_variables(struct hfi1_devdata *dd)
12926 {
12927 	unsigned long num_kernel_contexts;
12928 	int total_contexts;
12929 	int ret;
12930 	unsigned ngroups;
12931 	int qos_rmt_count;
12932 	int user_rmt_reduced;
12933 
12934 	/*
12935 	 * Kernel receive contexts:
12936 	 * - Context 0 - control context (VL15/multicast/error)
12937 	 * - Context 1 - first kernel context
12938 	 * - Context 2 - second kernel context
12939 	 * ...
12940 	 */
12941 	if (n_krcvqs)
12942 		/*
12943 		 * n_krcvqs is the sum of module parameter kernel receive
12944 		 * contexts, krcvqs[].  It does not include the control
12945 		 * context, so add that.
12946 		 */
12947 		num_kernel_contexts = n_krcvqs + 1;
12948 	else
12949 		num_kernel_contexts = DEFAULT_KRCVQS + 1;
12950 	/*
12951 	 * Every kernel receive context needs an ACK send context.
12952 	 * one send context is allocated for each VL{0-7} and VL15
12953 	 */
12954 	if (num_kernel_contexts > (dd->chip_send_contexts - num_vls - 1)) {
12955 		dd_dev_err(dd,
12956 			   "Reducing # kernel rcv contexts to: %d, from %lu\n",
12957 			   (int)(dd->chip_send_contexts - num_vls - 1),
12958 			   num_kernel_contexts);
12959 		num_kernel_contexts = dd->chip_send_contexts - num_vls - 1;
12960 	}
12961 	/*
12962 	 * User contexts:
12963 	 *	- default to 1 user context per real (non-HT) CPU core if
12964 	 *	  num_user_contexts is negative
12965 	 */
12966 	if (num_user_contexts < 0)
12967 		num_user_contexts =
12968 			cpumask_weight(&node_affinity.real_cpu_mask);
12969 
12970 	total_contexts = num_kernel_contexts + num_user_contexts;
12971 
12972 	/*
12973 	 * Adjust the counts given a global max.
12974 	 */
12975 	if (total_contexts > dd->chip_rcv_contexts) {
12976 		dd_dev_err(dd,
12977 			   "Reducing # user receive contexts to: %d, from %d\n",
12978 			   (int)(dd->chip_rcv_contexts - num_kernel_contexts),
12979 			   (int)num_user_contexts);
12980 		num_user_contexts = dd->chip_rcv_contexts - num_kernel_contexts;
12981 		/* recalculate */
12982 		total_contexts = num_kernel_contexts + num_user_contexts;
12983 	}
12984 
12985 	/* each user context requires an entry in the RMT */
12986 	qos_rmt_count = qos_rmt_entries(dd, NULL, NULL);
12987 	if (qos_rmt_count + num_user_contexts > NUM_MAP_ENTRIES) {
12988 		user_rmt_reduced = NUM_MAP_ENTRIES - qos_rmt_count;
12989 		dd_dev_err(dd,
12990 			   "RMT size is reducing the number of user receive contexts from %d to %d\n",
12991 			   (int)num_user_contexts,
12992 			   user_rmt_reduced);
12993 		/* recalculate */
12994 		num_user_contexts = user_rmt_reduced;
12995 		total_contexts = num_kernel_contexts + num_user_contexts;
12996 	}
12997 
12998 	/* the first N are kernel contexts, the rest are user contexts */
12999 	dd->num_rcv_contexts = total_contexts;
13000 	dd->n_krcv_queues = num_kernel_contexts;
13001 	dd->first_user_ctxt = num_kernel_contexts;
13002 	dd->num_user_contexts = num_user_contexts;
13003 	dd->freectxts = num_user_contexts;
13004 	dd_dev_info(dd,
13005 		    "rcv contexts: chip %d, used %d (kernel %d, user %d)\n",
13006 		    (int)dd->chip_rcv_contexts,
13007 		    (int)dd->num_rcv_contexts,
13008 		    (int)dd->n_krcv_queues,
13009 		    (int)dd->num_rcv_contexts - dd->n_krcv_queues);
13010 
13011 	/*
13012 	 * Receive array allocation:
13013 	 *   All RcvArray entries are divided into groups of 8. This
13014 	 *   is required by the hardware and will speed up writes to
13015 	 *   consecutive entries by using write-combining of the entire
13016 	 *   cacheline.
13017 	 *
13018 	 *   The number of groups are evenly divided among all contexts.
13019 	 *   any left over groups will be given to the first N user
13020 	 *   contexts.
13021 	 */
13022 	dd->rcv_entries.group_size = RCV_INCREMENT;
13023 	ngroups = dd->chip_rcv_array_count / dd->rcv_entries.group_size;
13024 	dd->rcv_entries.ngroups = ngroups / dd->num_rcv_contexts;
13025 	dd->rcv_entries.nctxt_extra = ngroups -
13026 		(dd->num_rcv_contexts * dd->rcv_entries.ngroups);
13027 	dd_dev_info(dd, "RcvArray groups %u, ctxts extra %u\n",
13028 		    dd->rcv_entries.ngroups,
13029 		    dd->rcv_entries.nctxt_extra);
13030 	if (dd->rcv_entries.ngroups * dd->rcv_entries.group_size >
13031 	    MAX_EAGER_ENTRIES * 2) {
13032 		dd->rcv_entries.ngroups = (MAX_EAGER_ENTRIES * 2) /
13033 			dd->rcv_entries.group_size;
13034 		dd_dev_info(dd,
13035 			    "RcvArray group count too high, change to %u\n",
13036 			    dd->rcv_entries.ngroups);
13037 		dd->rcv_entries.nctxt_extra = 0;
13038 	}
13039 	/*
13040 	 * PIO send contexts
13041 	 */
13042 	ret = init_sc_pools_and_sizes(dd);
13043 	if (ret >= 0) {	/* success */
13044 		dd->num_send_contexts = ret;
13045 		dd_dev_info(
13046 			dd,
13047 			"send contexts: chip %d, used %d (kernel %d, ack %d, user %d, vl15 %d)\n",
13048 			dd->chip_send_contexts,
13049 			dd->num_send_contexts,
13050 			dd->sc_sizes[SC_KERNEL].count,
13051 			dd->sc_sizes[SC_ACK].count,
13052 			dd->sc_sizes[SC_USER].count,
13053 			dd->sc_sizes[SC_VL15].count);
13054 		ret = 0;	/* success */
13055 	}
13056 
13057 	return ret;
13058 }
13059 
13060 /*
13061  * Set the device/port partition key table. The MAD code
13062  * will ensure that, at least, the partial management
13063  * partition key is present in the table.
13064  */
13065 static void set_partition_keys(struct hfi1_pportdata *ppd)
13066 {
13067 	struct hfi1_devdata *dd = ppd->dd;
13068 	u64 reg = 0;
13069 	int i;
13070 
13071 	dd_dev_info(dd, "Setting partition keys\n");
13072 	for (i = 0; i < hfi1_get_npkeys(dd); i++) {
13073 		reg |= (ppd->pkeys[i] &
13074 			RCV_PARTITION_KEY_PARTITION_KEY_A_MASK) <<
13075 			((i % 4) *
13076 			 RCV_PARTITION_KEY_PARTITION_KEY_B_SHIFT);
13077 		/* Each register holds 4 PKey values. */
13078 		if ((i % 4) == 3) {
13079 			write_csr(dd, RCV_PARTITION_KEY +
13080 				  ((i - 3) * 2), reg);
13081 			reg = 0;
13082 		}
13083 	}
13084 
13085 	/* Always enable HW pkeys check when pkeys table is set */
13086 	add_rcvctrl(dd, RCV_CTRL_RCV_PARTITION_KEY_ENABLE_SMASK);
13087 }
13088 
13089 /*
13090  * These CSRs and memories are uninitialized on reset and must be
13091  * written before reading to set the ECC/parity bits.
13092  *
13093  * NOTE: All user context CSRs that are not mmaped write-only
13094  * (e.g. the TID flows) must be initialized even if the driver never
13095  * reads them.
13096  */
13097 static void write_uninitialized_csrs_and_memories(struct hfi1_devdata *dd)
13098 {
13099 	int i, j;
13100 
13101 	/* CceIntMap */
13102 	for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++)
13103 		write_csr(dd, CCE_INT_MAP + (8 * i), 0);
13104 
13105 	/* SendCtxtCreditReturnAddr */
13106 	for (i = 0; i < dd->chip_send_contexts; i++)
13107 		write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_RETURN_ADDR, 0);
13108 
13109 	/* PIO Send buffers */
13110 	/* SDMA Send buffers */
13111 	/*
13112 	 * These are not normally read, and (presently) have no method
13113 	 * to be read, so are not pre-initialized
13114 	 */
13115 
13116 	/* RcvHdrAddr */
13117 	/* RcvHdrTailAddr */
13118 	/* RcvTidFlowTable */
13119 	for (i = 0; i < dd->chip_rcv_contexts; i++) {
13120 		write_kctxt_csr(dd, i, RCV_HDR_ADDR, 0);
13121 		write_kctxt_csr(dd, i, RCV_HDR_TAIL_ADDR, 0);
13122 		for (j = 0; j < RXE_NUM_TID_FLOWS; j++)
13123 			write_uctxt_csr(dd, i, RCV_TID_FLOW_TABLE + (8 * j), 0);
13124 	}
13125 
13126 	/* RcvArray */
13127 	for (i = 0; i < dd->chip_rcv_array_count; i++)
13128 		write_csr(dd, RCV_ARRAY + (8 * i),
13129 			  RCV_ARRAY_RT_WRITE_ENABLE_SMASK);
13130 
13131 	/* RcvQPMapTable */
13132 	for (i = 0; i < 32; i++)
13133 		write_csr(dd, RCV_QP_MAP_TABLE + (8 * i), 0);
13134 }
13135 
13136 /*
13137  * Use the ctrl_bits in CceCtrl to clear the status_bits in CceStatus.
13138  */
13139 static void clear_cce_status(struct hfi1_devdata *dd, u64 status_bits,
13140 			     u64 ctrl_bits)
13141 {
13142 	unsigned long timeout;
13143 	u64 reg;
13144 
13145 	/* is the condition present? */
13146 	reg = read_csr(dd, CCE_STATUS);
13147 	if ((reg & status_bits) == 0)
13148 		return;
13149 
13150 	/* clear the condition */
13151 	write_csr(dd, CCE_CTRL, ctrl_bits);
13152 
13153 	/* wait for the condition to clear */
13154 	timeout = jiffies + msecs_to_jiffies(CCE_STATUS_TIMEOUT);
13155 	while (1) {
13156 		reg = read_csr(dd, CCE_STATUS);
13157 		if ((reg & status_bits) == 0)
13158 			return;
13159 		if (time_after(jiffies, timeout)) {
13160 			dd_dev_err(dd,
13161 				   "Timeout waiting for CceStatus to clear bits 0x%llx, remaining 0x%llx\n",
13162 				   status_bits, reg & status_bits);
13163 			return;
13164 		}
13165 		udelay(1);
13166 	}
13167 }
13168 
13169 /* set CCE CSRs to chip reset defaults */
13170 static void reset_cce_csrs(struct hfi1_devdata *dd)
13171 {
13172 	int i;
13173 
13174 	/* CCE_REVISION read-only */
13175 	/* CCE_REVISION2 read-only */
13176 	/* CCE_CTRL - bits clear automatically */
13177 	/* CCE_STATUS read-only, use CceCtrl to clear */
13178 	clear_cce_status(dd, ALL_FROZE, CCE_CTRL_SPC_UNFREEZE_SMASK);
13179 	clear_cce_status(dd, ALL_TXE_PAUSE, CCE_CTRL_TXE_RESUME_SMASK);
13180 	clear_cce_status(dd, ALL_RXE_PAUSE, CCE_CTRL_RXE_RESUME_SMASK);
13181 	for (i = 0; i < CCE_NUM_SCRATCH; i++)
13182 		write_csr(dd, CCE_SCRATCH + (8 * i), 0);
13183 	/* CCE_ERR_STATUS read-only */
13184 	write_csr(dd, CCE_ERR_MASK, 0);
13185 	write_csr(dd, CCE_ERR_CLEAR, ~0ull);
13186 	/* CCE_ERR_FORCE leave alone */
13187 	for (i = 0; i < CCE_NUM_32_BIT_COUNTERS; i++)
13188 		write_csr(dd, CCE_COUNTER_ARRAY32 + (8 * i), 0);
13189 	write_csr(dd, CCE_DC_CTRL, CCE_DC_CTRL_RESETCSR);
13190 	/* CCE_PCIE_CTRL leave alone */
13191 	for (i = 0; i < CCE_NUM_MSIX_VECTORS; i++) {
13192 		write_csr(dd, CCE_MSIX_TABLE_LOWER + (8 * i), 0);
13193 		write_csr(dd, CCE_MSIX_TABLE_UPPER + (8 * i),
13194 			  CCE_MSIX_TABLE_UPPER_RESETCSR);
13195 	}
13196 	for (i = 0; i < CCE_NUM_MSIX_PBAS; i++) {
13197 		/* CCE_MSIX_PBA read-only */
13198 		write_csr(dd, CCE_MSIX_INT_GRANTED, ~0ull);
13199 		write_csr(dd, CCE_MSIX_VEC_CLR_WITHOUT_INT, ~0ull);
13200 	}
13201 	for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++)
13202 		write_csr(dd, CCE_INT_MAP, 0);
13203 	for (i = 0; i < CCE_NUM_INT_CSRS; i++) {
13204 		/* CCE_INT_STATUS read-only */
13205 		write_csr(dd, CCE_INT_MASK + (8 * i), 0);
13206 		write_csr(dd, CCE_INT_CLEAR + (8 * i), ~0ull);
13207 		/* CCE_INT_FORCE leave alone */
13208 		/* CCE_INT_BLOCKED read-only */
13209 	}
13210 	for (i = 0; i < CCE_NUM_32_BIT_INT_COUNTERS; i++)
13211 		write_csr(dd, CCE_INT_COUNTER_ARRAY32 + (8 * i), 0);
13212 }
13213 
13214 /* set MISC CSRs to chip reset defaults */
13215 static void reset_misc_csrs(struct hfi1_devdata *dd)
13216 {
13217 	int i;
13218 
13219 	for (i = 0; i < 32; i++) {
13220 		write_csr(dd, MISC_CFG_RSA_R2 + (8 * i), 0);
13221 		write_csr(dd, MISC_CFG_RSA_SIGNATURE + (8 * i), 0);
13222 		write_csr(dd, MISC_CFG_RSA_MODULUS + (8 * i), 0);
13223 	}
13224 	/*
13225 	 * MISC_CFG_SHA_PRELOAD leave alone - always reads 0 and can
13226 	 * only be written 128-byte chunks
13227 	 */
13228 	/* init RSA engine to clear lingering errors */
13229 	write_csr(dd, MISC_CFG_RSA_CMD, 1);
13230 	write_csr(dd, MISC_CFG_RSA_MU, 0);
13231 	write_csr(dd, MISC_CFG_FW_CTRL, 0);
13232 	/* MISC_STS_8051_DIGEST read-only */
13233 	/* MISC_STS_SBM_DIGEST read-only */
13234 	/* MISC_STS_PCIE_DIGEST read-only */
13235 	/* MISC_STS_FAB_DIGEST read-only */
13236 	/* MISC_ERR_STATUS read-only */
13237 	write_csr(dd, MISC_ERR_MASK, 0);
13238 	write_csr(dd, MISC_ERR_CLEAR, ~0ull);
13239 	/* MISC_ERR_FORCE leave alone */
13240 }
13241 
13242 /* set TXE CSRs to chip reset defaults */
13243 static void reset_txe_csrs(struct hfi1_devdata *dd)
13244 {
13245 	int i;
13246 
13247 	/*
13248 	 * TXE Kernel CSRs
13249 	 */
13250 	write_csr(dd, SEND_CTRL, 0);
13251 	__cm_reset(dd, 0);	/* reset CM internal state */
13252 	/* SEND_CONTEXTS read-only */
13253 	/* SEND_DMA_ENGINES read-only */
13254 	/* SEND_PIO_MEM_SIZE read-only */
13255 	/* SEND_DMA_MEM_SIZE read-only */
13256 	write_csr(dd, SEND_HIGH_PRIORITY_LIMIT, 0);
13257 	pio_reset_all(dd);	/* SEND_PIO_INIT_CTXT */
13258 	/* SEND_PIO_ERR_STATUS read-only */
13259 	write_csr(dd, SEND_PIO_ERR_MASK, 0);
13260 	write_csr(dd, SEND_PIO_ERR_CLEAR, ~0ull);
13261 	/* SEND_PIO_ERR_FORCE leave alone */
13262 	/* SEND_DMA_ERR_STATUS read-only */
13263 	write_csr(dd, SEND_DMA_ERR_MASK, 0);
13264 	write_csr(dd, SEND_DMA_ERR_CLEAR, ~0ull);
13265 	/* SEND_DMA_ERR_FORCE leave alone */
13266 	/* SEND_EGRESS_ERR_STATUS read-only */
13267 	write_csr(dd, SEND_EGRESS_ERR_MASK, 0);
13268 	write_csr(dd, SEND_EGRESS_ERR_CLEAR, ~0ull);
13269 	/* SEND_EGRESS_ERR_FORCE leave alone */
13270 	write_csr(dd, SEND_BTH_QP, 0);
13271 	write_csr(dd, SEND_STATIC_RATE_CONTROL, 0);
13272 	write_csr(dd, SEND_SC2VLT0, 0);
13273 	write_csr(dd, SEND_SC2VLT1, 0);
13274 	write_csr(dd, SEND_SC2VLT2, 0);
13275 	write_csr(dd, SEND_SC2VLT3, 0);
13276 	write_csr(dd, SEND_LEN_CHECK0, 0);
13277 	write_csr(dd, SEND_LEN_CHECK1, 0);
13278 	/* SEND_ERR_STATUS read-only */
13279 	write_csr(dd, SEND_ERR_MASK, 0);
13280 	write_csr(dd, SEND_ERR_CLEAR, ~0ull);
13281 	/* SEND_ERR_FORCE read-only */
13282 	for (i = 0; i < VL_ARB_LOW_PRIO_TABLE_SIZE; i++)
13283 		write_csr(dd, SEND_LOW_PRIORITY_LIST + (8 * i), 0);
13284 	for (i = 0; i < VL_ARB_HIGH_PRIO_TABLE_SIZE; i++)
13285 		write_csr(dd, SEND_HIGH_PRIORITY_LIST + (8 * i), 0);
13286 	for (i = 0; i < dd->chip_send_contexts / NUM_CONTEXTS_PER_SET; i++)
13287 		write_csr(dd, SEND_CONTEXT_SET_CTRL + (8 * i), 0);
13288 	for (i = 0; i < TXE_NUM_32_BIT_COUNTER; i++)
13289 		write_csr(dd, SEND_COUNTER_ARRAY32 + (8 * i), 0);
13290 	for (i = 0; i < TXE_NUM_64_BIT_COUNTER; i++)
13291 		write_csr(dd, SEND_COUNTER_ARRAY64 + (8 * i), 0);
13292 	write_csr(dd, SEND_CM_CTRL, SEND_CM_CTRL_RESETCSR);
13293 	write_csr(dd, SEND_CM_GLOBAL_CREDIT, SEND_CM_GLOBAL_CREDIT_RESETCSR);
13294 	/* SEND_CM_CREDIT_USED_STATUS read-only */
13295 	write_csr(dd, SEND_CM_TIMER_CTRL, 0);
13296 	write_csr(dd, SEND_CM_LOCAL_AU_TABLE0_TO3, 0);
13297 	write_csr(dd, SEND_CM_LOCAL_AU_TABLE4_TO7, 0);
13298 	write_csr(dd, SEND_CM_REMOTE_AU_TABLE0_TO3, 0);
13299 	write_csr(dd, SEND_CM_REMOTE_AU_TABLE4_TO7, 0);
13300 	for (i = 0; i < TXE_NUM_DATA_VL; i++)
13301 		write_csr(dd, SEND_CM_CREDIT_VL + (8 * i), 0);
13302 	write_csr(dd, SEND_CM_CREDIT_VL15, 0);
13303 	/* SEND_CM_CREDIT_USED_VL read-only */
13304 	/* SEND_CM_CREDIT_USED_VL15 read-only */
13305 	/* SEND_EGRESS_CTXT_STATUS read-only */
13306 	/* SEND_EGRESS_SEND_DMA_STATUS read-only */
13307 	write_csr(dd, SEND_EGRESS_ERR_INFO, ~0ull);
13308 	/* SEND_EGRESS_ERR_INFO read-only */
13309 	/* SEND_EGRESS_ERR_SOURCE read-only */
13310 
13311 	/*
13312 	 * TXE Per-Context CSRs
13313 	 */
13314 	for (i = 0; i < dd->chip_send_contexts; i++) {
13315 		write_kctxt_csr(dd, i, SEND_CTXT_CTRL, 0);
13316 		write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_CTRL, 0);
13317 		write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_RETURN_ADDR, 0);
13318 		write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_FORCE, 0);
13319 		write_kctxt_csr(dd, i, SEND_CTXT_ERR_MASK, 0);
13320 		write_kctxt_csr(dd, i, SEND_CTXT_ERR_CLEAR, ~0ull);
13321 		write_kctxt_csr(dd, i, SEND_CTXT_CHECK_ENABLE, 0);
13322 		write_kctxt_csr(dd, i, SEND_CTXT_CHECK_VL, 0);
13323 		write_kctxt_csr(dd, i, SEND_CTXT_CHECK_JOB_KEY, 0);
13324 		write_kctxt_csr(dd, i, SEND_CTXT_CHECK_PARTITION_KEY, 0);
13325 		write_kctxt_csr(dd, i, SEND_CTXT_CHECK_SLID, 0);
13326 		write_kctxt_csr(dd, i, SEND_CTXT_CHECK_OPCODE, 0);
13327 	}
13328 
13329 	/*
13330 	 * TXE Per-SDMA CSRs
13331 	 */
13332 	for (i = 0; i < dd->chip_sdma_engines; i++) {
13333 		write_kctxt_csr(dd, i, SEND_DMA_CTRL, 0);
13334 		/* SEND_DMA_STATUS read-only */
13335 		write_kctxt_csr(dd, i, SEND_DMA_BASE_ADDR, 0);
13336 		write_kctxt_csr(dd, i, SEND_DMA_LEN_GEN, 0);
13337 		write_kctxt_csr(dd, i, SEND_DMA_TAIL, 0);
13338 		/* SEND_DMA_HEAD read-only */
13339 		write_kctxt_csr(dd, i, SEND_DMA_HEAD_ADDR, 0);
13340 		write_kctxt_csr(dd, i, SEND_DMA_PRIORITY_THLD, 0);
13341 		/* SEND_DMA_IDLE_CNT read-only */
13342 		write_kctxt_csr(dd, i, SEND_DMA_RELOAD_CNT, 0);
13343 		write_kctxt_csr(dd, i, SEND_DMA_DESC_CNT, 0);
13344 		/* SEND_DMA_DESC_FETCHED_CNT read-only */
13345 		/* SEND_DMA_ENG_ERR_STATUS read-only */
13346 		write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_MASK, 0);
13347 		write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_CLEAR, ~0ull);
13348 		/* SEND_DMA_ENG_ERR_FORCE leave alone */
13349 		write_kctxt_csr(dd, i, SEND_DMA_CHECK_ENABLE, 0);
13350 		write_kctxt_csr(dd, i, SEND_DMA_CHECK_VL, 0);
13351 		write_kctxt_csr(dd, i, SEND_DMA_CHECK_JOB_KEY, 0);
13352 		write_kctxt_csr(dd, i, SEND_DMA_CHECK_PARTITION_KEY, 0);
13353 		write_kctxt_csr(dd, i, SEND_DMA_CHECK_SLID, 0);
13354 		write_kctxt_csr(dd, i, SEND_DMA_CHECK_OPCODE, 0);
13355 		write_kctxt_csr(dd, i, SEND_DMA_MEMORY, 0);
13356 	}
13357 }
13358 
13359 /*
13360  * Expect on entry:
13361  * o Packet ingress is disabled, i.e. RcvCtrl.RcvPortEnable == 0
13362  */
13363 static void init_rbufs(struct hfi1_devdata *dd)
13364 {
13365 	u64 reg;
13366 	int count;
13367 
13368 	/*
13369 	 * Wait for DMA to stop: RxRbufPktPending and RxPktInProgress are
13370 	 * clear.
13371 	 */
13372 	count = 0;
13373 	while (1) {
13374 		reg = read_csr(dd, RCV_STATUS);
13375 		if ((reg & (RCV_STATUS_RX_RBUF_PKT_PENDING_SMASK
13376 			    | RCV_STATUS_RX_PKT_IN_PROGRESS_SMASK)) == 0)
13377 			break;
13378 		/*
13379 		 * Give up after 1ms - maximum wait time.
13380 		 *
13381 		 * RBuf size is 136KiB.  Slowest possible is PCIe Gen1 x1 at
13382 		 * 250MB/s bandwidth.  Lower rate to 66% for overhead to get:
13383 		 *	136 KB / (66% * 250MB/s) = 844us
13384 		 */
13385 		if (count++ > 500) {
13386 			dd_dev_err(dd,
13387 				   "%s: in-progress DMA not clearing: RcvStatus 0x%llx, continuing\n",
13388 				   __func__, reg);
13389 			break;
13390 		}
13391 		udelay(2); /* do not busy-wait the CSR */
13392 	}
13393 
13394 	/* start the init - expect RcvCtrl to be 0 */
13395 	write_csr(dd, RCV_CTRL, RCV_CTRL_RX_RBUF_INIT_SMASK);
13396 
13397 	/*
13398 	 * Read to force the write of Rcvtrl.RxRbufInit.  There is a brief
13399 	 * period after the write before RcvStatus.RxRbufInitDone is valid.
13400 	 * The delay in the first run through the loop below is sufficient and
13401 	 * required before the first read of RcvStatus.RxRbufInintDone.
13402 	 */
13403 	read_csr(dd, RCV_CTRL);
13404 
13405 	/* wait for the init to finish */
13406 	count = 0;
13407 	while (1) {
13408 		/* delay is required first time through - see above */
13409 		udelay(2); /* do not busy-wait the CSR */
13410 		reg = read_csr(dd, RCV_STATUS);
13411 		if (reg & (RCV_STATUS_RX_RBUF_INIT_DONE_SMASK))
13412 			break;
13413 
13414 		/* give up after 100us - slowest possible at 33MHz is 73us */
13415 		if (count++ > 50) {
13416 			dd_dev_err(dd,
13417 				   "%s: RcvStatus.RxRbufInit not set, continuing\n",
13418 				   __func__);
13419 			break;
13420 		}
13421 	}
13422 }
13423 
13424 /* set RXE CSRs to chip reset defaults */
13425 static void reset_rxe_csrs(struct hfi1_devdata *dd)
13426 {
13427 	int i, j;
13428 
13429 	/*
13430 	 * RXE Kernel CSRs
13431 	 */
13432 	write_csr(dd, RCV_CTRL, 0);
13433 	init_rbufs(dd);
13434 	/* RCV_STATUS read-only */
13435 	/* RCV_CONTEXTS read-only */
13436 	/* RCV_ARRAY_CNT read-only */
13437 	/* RCV_BUF_SIZE read-only */
13438 	write_csr(dd, RCV_BTH_QP, 0);
13439 	write_csr(dd, RCV_MULTICAST, 0);
13440 	write_csr(dd, RCV_BYPASS, 0);
13441 	write_csr(dd, RCV_VL15, 0);
13442 	/* this is a clear-down */
13443 	write_csr(dd, RCV_ERR_INFO,
13444 		  RCV_ERR_INFO_RCV_EXCESS_BUFFER_OVERRUN_SMASK);
13445 	/* RCV_ERR_STATUS read-only */
13446 	write_csr(dd, RCV_ERR_MASK, 0);
13447 	write_csr(dd, RCV_ERR_CLEAR, ~0ull);
13448 	/* RCV_ERR_FORCE leave alone */
13449 	for (i = 0; i < 32; i++)
13450 		write_csr(dd, RCV_QP_MAP_TABLE + (8 * i), 0);
13451 	for (i = 0; i < 4; i++)
13452 		write_csr(dd, RCV_PARTITION_KEY + (8 * i), 0);
13453 	for (i = 0; i < RXE_NUM_32_BIT_COUNTERS; i++)
13454 		write_csr(dd, RCV_COUNTER_ARRAY32 + (8 * i), 0);
13455 	for (i = 0; i < RXE_NUM_64_BIT_COUNTERS; i++)
13456 		write_csr(dd, RCV_COUNTER_ARRAY64 + (8 * i), 0);
13457 	for (i = 0; i < RXE_NUM_RSM_INSTANCES; i++) {
13458 		write_csr(dd, RCV_RSM_CFG + (8 * i), 0);
13459 		write_csr(dd, RCV_RSM_SELECT + (8 * i), 0);
13460 		write_csr(dd, RCV_RSM_MATCH + (8 * i), 0);
13461 	}
13462 	for (i = 0; i < 32; i++)
13463 		write_csr(dd, RCV_RSM_MAP_TABLE + (8 * i), 0);
13464 
13465 	/*
13466 	 * RXE Kernel and User Per-Context CSRs
13467 	 */
13468 	for (i = 0; i < dd->chip_rcv_contexts; i++) {
13469 		/* kernel */
13470 		write_kctxt_csr(dd, i, RCV_CTXT_CTRL, 0);
13471 		/* RCV_CTXT_STATUS read-only */
13472 		write_kctxt_csr(dd, i, RCV_EGR_CTRL, 0);
13473 		write_kctxt_csr(dd, i, RCV_TID_CTRL, 0);
13474 		write_kctxt_csr(dd, i, RCV_KEY_CTRL, 0);
13475 		write_kctxt_csr(dd, i, RCV_HDR_ADDR, 0);
13476 		write_kctxt_csr(dd, i, RCV_HDR_CNT, 0);
13477 		write_kctxt_csr(dd, i, RCV_HDR_ENT_SIZE, 0);
13478 		write_kctxt_csr(dd, i, RCV_HDR_SIZE, 0);
13479 		write_kctxt_csr(dd, i, RCV_HDR_TAIL_ADDR, 0);
13480 		write_kctxt_csr(dd, i, RCV_AVAIL_TIME_OUT, 0);
13481 		write_kctxt_csr(dd, i, RCV_HDR_OVFL_CNT, 0);
13482 
13483 		/* user */
13484 		/* RCV_HDR_TAIL read-only */
13485 		write_uctxt_csr(dd, i, RCV_HDR_HEAD, 0);
13486 		/* RCV_EGR_INDEX_TAIL read-only */
13487 		write_uctxt_csr(dd, i, RCV_EGR_INDEX_HEAD, 0);
13488 		/* RCV_EGR_OFFSET_TAIL read-only */
13489 		for (j = 0; j < RXE_NUM_TID_FLOWS; j++) {
13490 			write_uctxt_csr(dd, i,
13491 					RCV_TID_FLOW_TABLE + (8 * j), 0);
13492 		}
13493 	}
13494 }
13495 
13496 /*
13497  * Set sc2vl tables.
13498  *
13499  * They power on to zeros, so to avoid send context errors
13500  * they need to be set:
13501  *
13502  * SC 0-7 -> VL 0-7 (respectively)
13503  * SC 15  -> VL 15
13504  * otherwise
13505  *        -> VL 0
13506  */
13507 static void init_sc2vl_tables(struct hfi1_devdata *dd)
13508 {
13509 	int i;
13510 	/* init per architecture spec, constrained by hardware capability */
13511 
13512 	/* HFI maps sent packets */
13513 	write_csr(dd, SEND_SC2VLT0, SC2VL_VAL(
13514 		0,
13515 		0, 0, 1, 1,
13516 		2, 2, 3, 3,
13517 		4, 4, 5, 5,
13518 		6, 6, 7, 7));
13519 	write_csr(dd, SEND_SC2VLT1, SC2VL_VAL(
13520 		1,
13521 		8, 0, 9, 0,
13522 		10, 0, 11, 0,
13523 		12, 0, 13, 0,
13524 		14, 0, 15, 15));
13525 	write_csr(dd, SEND_SC2VLT2, SC2VL_VAL(
13526 		2,
13527 		16, 0, 17, 0,
13528 		18, 0, 19, 0,
13529 		20, 0, 21, 0,
13530 		22, 0, 23, 0));
13531 	write_csr(dd, SEND_SC2VLT3, SC2VL_VAL(
13532 		3,
13533 		24, 0, 25, 0,
13534 		26, 0, 27, 0,
13535 		28, 0, 29, 0,
13536 		30, 0, 31, 0));
13537 
13538 	/* DC maps received packets */
13539 	write_csr(dd, DCC_CFG_SC_VL_TABLE_15_0, DC_SC_VL_VAL(
13540 		15_0,
13541 		0, 0, 1, 1,  2, 2,  3, 3,  4, 4,  5, 5,  6, 6,  7,  7,
13542 		8, 0, 9, 0, 10, 0, 11, 0, 12, 0, 13, 0, 14, 0, 15, 15));
13543 	write_csr(dd, DCC_CFG_SC_VL_TABLE_31_16, DC_SC_VL_VAL(
13544 		31_16,
13545 		16, 0, 17, 0, 18, 0, 19, 0, 20, 0, 21, 0, 22, 0, 23, 0,
13546 		24, 0, 25, 0, 26, 0, 27, 0, 28, 0, 29, 0, 30, 0, 31, 0));
13547 
13548 	/* initialize the cached sc2vl values consistently with h/w */
13549 	for (i = 0; i < 32; i++) {
13550 		if (i < 8 || i == 15)
13551 			*((u8 *)(dd->sc2vl) + i) = (u8)i;
13552 		else
13553 			*((u8 *)(dd->sc2vl) + i) = 0;
13554 	}
13555 }
13556 
13557 /*
13558  * Read chip sizes and then reset parts to sane, disabled, values.  We cannot
13559  * depend on the chip going through a power-on reset - a driver may be loaded
13560  * and unloaded many times.
13561  *
13562  * Do not write any CSR values to the chip in this routine - there may be
13563  * a reset following the (possible) FLR in this routine.
13564  *
13565  */
13566 static void init_chip(struct hfi1_devdata *dd)
13567 {
13568 	int i;
13569 
13570 	/*
13571 	 * Put the HFI CSRs in a known state.
13572 	 * Combine this with a DC reset.
13573 	 *
13574 	 * Stop the device from doing anything while we do a
13575 	 * reset.  We know there are no other active users of
13576 	 * the device since we are now in charge.  Turn off
13577 	 * off all outbound and inbound traffic and make sure
13578 	 * the device does not generate any interrupts.
13579 	 */
13580 
13581 	/* disable send contexts and SDMA engines */
13582 	write_csr(dd, SEND_CTRL, 0);
13583 	for (i = 0; i < dd->chip_send_contexts; i++)
13584 		write_kctxt_csr(dd, i, SEND_CTXT_CTRL, 0);
13585 	for (i = 0; i < dd->chip_sdma_engines; i++)
13586 		write_kctxt_csr(dd, i, SEND_DMA_CTRL, 0);
13587 	/* disable port (turn off RXE inbound traffic) and contexts */
13588 	write_csr(dd, RCV_CTRL, 0);
13589 	for (i = 0; i < dd->chip_rcv_contexts; i++)
13590 		write_csr(dd, RCV_CTXT_CTRL, 0);
13591 	/* mask all interrupt sources */
13592 	for (i = 0; i < CCE_NUM_INT_CSRS; i++)
13593 		write_csr(dd, CCE_INT_MASK + (8 * i), 0ull);
13594 
13595 	/*
13596 	 * DC Reset: do a full DC reset before the register clear.
13597 	 * A recommended length of time to hold is one CSR read,
13598 	 * so reread the CceDcCtrl.  Then, hold the DC in reset
13599 	 * across the clear.
13600 	 */
13601 	write_csr(dd, CCE_DC_CTRL, CCE_DC_CTRL_DC_RESET_SMASK);
13602 	(void)read_csr(dd, CCE_DC_CTRL);
13603 
13604 	if (use_flr) {
13605 		/*
13606 		 * A FLR will reset the SPC core and part of the PCIe.
13607 		 * The parts that need to be restored have already been
13608 		 * saved.
13609 		 */
13610 		dd_dev_info(dd, "Resetting CSRs with FLR\n");
13611 
13612 		/* do the FLR, the DC reset will remain */
13613 		hfi1_pcie_flr(dd);
13614 
13615 		/* restore command and BARs */
13616 		restore_pci_variables(dd);
13617 
13618 		if (is_ax(dd)) {
13619 			dd_dev_info(dd, "Resetting CSRs with FLR\n");
13620 			hfi1_pcie_flr(dd);
13621 			restore_pci_variables(dd);
13622 		}
13623 	} else {
13624 		dd_dev_info(dd, "Resetting CSRs with writes\n");
13625 		reset_cce_csrs(dd);
13626 		reset_txe_csrs(dd);
13627 		reset_rxe_csrs(dd);
13628 		reset_misc_csrs(dd);
13629 	}
13630 	/* clear the DC reset */
13631 	write_csr(dd, CCE_DC_CTRL, 0);
13632 
13633 	/* Set the LED off */
13634 	setextled(dd, 0);
13635 
13636 	/*
13637 	 * Clear the QSFP reset.
13638 	 * An FLR enforces a 0 on all out pins. The driver does not touch
13639 	 * ASIC_QSFPn_OUT otherwise.  This leaves RESET_N low and
13640 	 * anything plugged constantly in reset, if it pays attention
13641 	 * to RESET_N.
13642 	 * Prime examples of this are optical cables. Set all pins high.
13643 	 * I2CCLK and I2CDAT will change per direction, and INT_N and
13644 	 * MODPRS_N are input only and their value is ignored.
13645 	 */
13646 	write_csr(dd, ASIC_QSFP1_OUT, 0x1f);
13647 	write_csr(dd, ASIC_QSFP2_OUT, 0x1f);
13648 	init_chip_resources(dd);
13649 }
13650 
13651 static void init_early_variables(struct hfi1_devdata *dd)
13652 {
13653 	int i;
13654 
13655 	/* assign link credit variables */
13656 	dd->vau = CM_VAU;
13657 	dd->link_credits = CM_GLOBAL_CREDITS;
13658 	if (is_ax(dd))
13659 		dd->link_credits--;
13660 	dd->vcu = cu_to_vcu(hfi1_cu);
13661 	/* enough room for 8 MAD packets plus header - 17K */
13662 	dd->vl15_init = (8 * (2048 + 128)) / vau_to_au(dd->vau);
13663 	if (dd->vl15_init > dd->link_credits)
13664 		dd->vl15_init = dd->link_credits;
13665 
13666 	write_uninitialized_csrs_and_memories(dd);
13667 
13668 	if (HFI1_CAP_IS_KSET(PKEY_CHECK))
13669 		for (i = 0; i < dd->num_pports; i++) {
13670 			struct hfi1_pportdata *ppd = &dd->pport[i];
13671 
13672 			set_partition_keys(ppd);
13673 		}
13674 	init_sc2vl_tables(dd);
13675 }
13676 
13677 static void init_kdeth_qp(struct hfi1_devdata *dd)
13678 {
13679 	/* user changed the KDETH_QP */
13680 	if (kdeth_qp != 0 && kdeth_qp >= 0xff) {
13681 		/* out of range or illegal value */
13682 		dd_dev_err(dd, "Invalid KDETH queue pair prefix, ignoring");
13683 		kdeth_qp = 0;
13684 	}
13685 	if (kdeth_qp == 0)	/* not set, or failed range check */
13686 		kdeth_qp = DEFAULT_KDETH_QP;
13687 
13688 	write_csr(dd, SEND_BTH_QP,
13689 		  (kdeth_qp & SEND_BTH_QP_KDETH_QP_MASK) <<
13690 		  SEND_BTH_QP_KDETH_QP_SHIFT);
13691 
13692 	write_csr(dd, RCV_BTH_QP,
13693 		  (kdeth_qp & RCV_BTH_QP_KDETH_QP_MASK) <<
13694 		  RCV_BTH_QP_KDETH_QP_SHIFT);
13695 }
13696 
13697 /**
13698  * init_qpmap_table
13699  * @dd - device data
13700  * @first_ctxt - first context
13701  * @last_ctxt - first context
13702  *
13703  * This return sets the qpn mapping table that
13704  * is indexed by qpn[8:1].
13705  *
13706  * The routine will round robin the 256 settings
13707  * from first_ctxt to last_ctxt.
13708  *
13709  * The first/last looks ahead to having specialized
13710  * receive contexts for mgmt and bypass.  Normal
13711  * verbs traffic will assumed to be on a range
13712  * of receive contexts.
13713  */
13714 static void init_qpmap_table(struct hfi1_devdata *dd,
13715 			     u32 first_ctxt,
13716 			     u32 last_ctxt)
13717 {
13718 	u64 reg = 0;
13719 	u64 regno = RCV_QP_MAP_TABLE;
13720 	int i;
13721 	u64 ctxt = first_ctxt;
13722 
13723 	for (i = 0; i < 256; i++) {
13724 		reg |= ctxt << (8 * (i % 8));
13725 		ctxt++;
13726 		if (ctxt > last_ctxt)
13727 			ctxt = first_ctxt;
13728 		if (i % 8 == 7) {
13729 			write_csr(dd, regno, reg);
13730 			reg = 0;
13731 			regno += 8;
13732 		}
13733 	}
13734 
13735 	add_rcvctrl(dd, RCV_CTRL_RCV_QP_MAP_ENABLE_SMASK
13736 			| RCV_CTRL_RCV_BYPASS_ENABLE_SMASK);
13737 }
13738 
13739 struct rsm_map_table {
13740 	u64 map[NUM_MAP_REGS];
13741 	unsigned int used;
13742 };
13743 
13744 struct rsm_rule_data {
13745 	u8 offset;
13746 	u8 pkt_type;
13747 	u32 field1_off;
13748 	u32 field2_off;
13749 	u32 index1_off;
13750 	u32 index1_width;
13751 	u32 index2_off;
13752 	u32 index2_width;
13753 	u32 mask1;
13754 	u32 value1;
13755 	u32 mask2;
13756 	u32 value2;
13757 };
13758 
13759 /*
13760  * Return an initialized RMT map table for users to fill in.  OK if it
13761  * returns NULL, indicating no table.
13762  */
13763 static struct rsm_map_table *alloc_rsm_map_table(struct hfi1_devdata *dd)
13764 {
13765 	struct rsm_map_table *rmt;
13766 	u8 rxcontext = is_ax(dd) ? 0 : 0xff;  /* 0 is default if a0 ver. */
13767 
13768 	rmt = kmalloc(sizeof(*rmt), GFP_KERNEL);
13769 	if (rmt) {
13770 		memset(rmt->map, rxcontext, sizeof(rmt->map));
13771 		rmt->used = 0;
13772 	}
13773 
13774 	return rmt;
13775 }
13776 
13777 /*
13778  * Write the final RMT map table to the chip and free the table.  OK if
13779  * table is NULL.
13780  */
13781 static void complete_rsm_map_table(struct hfi1_devdata *dd,
13782 				   struct rsm_map_table *rmt)
13783 {
13784 	int i;
13785 
13786 	if (rmt) {
13787 		/* write table to chip */
13788 		for (i = 0; i < NUM_MAP_REGS; i++)
13789 			write_csr(dd, RCV_RSM_MAP_TABLE + (8 * i), rmt->map[i]);
13790 
13791 		/* enable RSM */
13792 		add_rcvctrl(dd, RCV_CTRL_RCV_RSM_ENABLE_SMASK);
13793 	}
13794 }
13795 
13796 /*
13797  * Add a receive side mapping rule.
13798  */
13799 static void add_rsm_rule(struct hfi1_devdata *dd, u8 rule_index,
13800 			 struct rsm_rule_data *rrd)
13801 {
13802 	write_csr(dd, RCV_RSM_CFG + (8 * rule_index),
13803 		  (u64)rrd->offset << RCV_RSM_CFG_OFFSET_SHIFT |
13804 		  1ull << rule_index | /* enable bit */
13805 		  (u64)rrd->pkt_type << RCV_RSM_CFG_PACKET_TYPE_SHIFT);
13806 	write_csr(dd, RCV_RSM_SELECT + (8 * rule_index),
13807 		  (u64)rrd->field1_off << RCV_RSM_SELECT_FIELD1_OFFSET_SHIFT |
13808 		  (u64)rrd->field2_off << RCV_RSM_SELECT_FIELD2_OFFSET_SHIFT |
13809 		  (u64)rrd->index1_off << RCV_RSM_SELECT_INDEX1_OFFSET_SHIFT |
13810 		  (u64)rrd->index1_width << RCV_RSM_SELECT_INDEX1_WIDTH_SHIFT |
13811 		  (u64)rrd->index2_off << RCV_RSM_SELECT_INDEX2_OFFSET_SHIFT |
13812 		  (u64)rrd->index2_width << RCV_RSM_SELECT_INDEX2_WIDTH_SHIFT);
13813 	write_csr(dd, RCV_RSM_MATCH + (8 * rule_index),
13814 		  (u64)rrd->mask1 << RCV_RSM_MATCH_MASK1_SHIFT |
13815 		  (u64)rrd->value1 << RCV_RSM_MATCH_VALUE1_SHIFT |
13816 		  (u64)rrd->mask2 << RCV_RSM_MATCH_MASK2_SHIFT |
13817 		  (u64)rrd->value2 << RCV_RSM_MATCH_VALUE2_SHIFT);
13818 }
13819 
13820 /* return the number of RSM map table entries that will be used for QOS */
13821 static int qos_rmt_entries(struct hfi1_devdata *dd, unsigned int *mp,
13822 			   unsigned int *np)
13823 {
13824 	int i;
13825 	unsigned int m, n;
13826 	u8 max_by_vl = 0;
13827 
13828 	/* is QOS active at all? */
13829 	if (dd->n_krcv_queues <= MIN_KERNEL_KCTXTS ||
13830 	    num_vls == 1 ||
13831 	    krcvqsset <= 1)
13832 		goto no_qos;
13833 
13834 	/* determine bits for qpn */
13835 	for (i = 0; i < min_t(unsigned int, num_vls, krcvqsset); i++)
13836 		if (krcvqs[i] > max_by_vl)
13837 			max_by_vl = krcvqs[i];
13838 	if (max_by_vl > 32)
13839 		goto no_qos;
13840 	m = ilog2(__roundup_pow_of_two(max_by_vl));
13841 
13842 	/* determine bits for vl */
13843 	n = ilog2(__roundup_pow_of_two(num_vls));
13844 
13845 	/* reject if too much is used */
13846 	if ((m + n) > 7)
13847 		goto no_qos;
13848 
13849 	if (mp)
13850 		*mp = m;
13851 	if (np)
13852 		*np = n;
13853 
13854 	return 1 << (m + n);
13855 
13856 no_qos:
13857 	if (mp)
13858 		*mp = 0;
13859 	if (np)
13860 		*np = 0;
13861 	return 0;
13862 }
13863 
13864 /**
13865  * init_qos - init RX qos
13866  * @dd - device data
13867  * @rmt - RSM map table
13868  *
13869  * This routine initializes Rule 0 and the RSM map table to implement
13870  * quality of service (qos).
13871  *
13872  * If all of the limit tests succeed, qos is applied based on the array
13873  * interpretation of krcvqs where entry 0 is VL0.
13874  *
13875  * The number of vl bits (n) and the number of qpn bits (m) are computed to
13876  * feed both the RSM map table and the single rule.
13877  */
13878 static void init_qos(struct hfi1_devdata *dd, struct rsm_map_table *rmt)
13879 {
13880 	struct rsm_rule_data rrd;
13881 	unsigned qpns_per_vl, ctxt, i, qpn, n = 1, m;
13882 	unsigned int rmt_entries;
13883 	u64 reg;
13884 
13885 	if (!rmt)
13886 		goto bail;
13887 	rmt_entries = qos_rmt_entries(dd, &m, &n);
13888 	if (rmt_entries == 0)
13889 		goto bail;
13890 	qpns_per_vl = 1 << m;
13891 
13892 	/* enough room in the map table? */
13893 	rmt_entries = 1 << (m + n);
13894 	if (rmt->used + rmt_entries >= NUM_MAP_ENTRIES)
13895 		goto bail;
13896 
13897 	/* add qos entries to the the RSM map table */
13898 	for (i = 0, ctxt = FIRST_KERNEL_KCTXT; i < num_vls; i++) {
13899 		unsigned tctxt;
13900 
13901 		for (qpn = 0, tctxt = ctxt;
13902 		     krcvqs[i] && qpn < qpns_per_vl; qpn++) {
13903 			unsigned idx, regoff, regidx;
13904 
13905 			/* generate the index the hardware will produce */
13906 			idx = rmt->used + ((qpn << n) ^ i);
13907 			regoff = (idx % 8) * 8;
13908 			regidx = idx / 8;
13909 			/* replace default with context number */
13910 			reg = rmt->map[regidx];
13911 			reg &= ~(RCV_RSM_MAP_TABLE_RCV_CONTEXT_A_MASK
13912 				<< regoff);
13913 			reg |= (u64)(tctxt++) << regoff;
13914 			rmt->map[regidx] = reg;
13915 			if (tctxt == ctxt + krcvqs[i])
13916 				tctxt = ctxt;
13917 		}
13918 		ctxt += krcvqs[i];
13919 	}
13920 
13921 	rrd.offset = rmt->used;
13922 	rrd.pkt_type = 2;
13923 	rrd.field1_off = LRH_BTH_MATCH_OFFSET;
13924 	rrd.field2_off = LRH_SC_MATCH_OFFSET;
13925 	rrd.index1_off = LRH_SC_SELECT_OFFSET;
13926 	rrd.index1_width = n;
13927 	rrd.index2_off = QPN_SELECT_OFFSET;
13928 	rrd.index2_width = m + n;
13929 	rrd.mask1 = LRH_BTH_MASK;
13930 	rrd.value1 = LRH_BTH_VALUE;
13931 	rrd.mask2 = LRH_SC_MASK;
13932 	rrd.value2 = LRH_SC_VALUE;
13933 
13934 	/* add rule 0 */
13935 	add_rsm_rule(dd, 0, &rrd);
13936 
13937 	/* mark RSM map entries as used */
13938 	rmt->used += rmt_entries;
13939 	/* map everything else to the mcast/err/vl15 context */
13940 	init_qpmap_table(dd, HFI1_CTRL_CTXT, HFI1_CTRL_CTXT);
13941 	dd->qos_shift = n + 1;
13942 	return;
13943 bail:
13944 	dd->qos_shift = 1;
13945 	init_qpmap_table(dd, FIRST_KERNEL_KCTXT, dd->n_krcv_queues - 1);
13946 }
13947 
13948 static void init_user_fecn_handling(struct hfi1_devdata *dd,
13949 				    struct rsm_map_table *rmt)
13950 {
13951 	struct rsm_rule_data rrd;
13952 	u64 reg;
13953 	int i, idx, regoff, regidx;
13954 	u8 offset;
13955 
13956 	/* there needs to be enough room in the map table */
13957 	if (rmt->used + dd->num_user_contexts >= NUM_MAP_ENTRIES) {
13958 		dd_dev_err(dd, "User FECN handling disabled - too many user contexts allocated\n");
13959 		return;
13960 	}
13961 
13962 	/*
13963 	 * RSM will extract the destination context as an index into the
13964 	 * map table.  The destination contexts are a sequential block
13965 	 * in the range first_user_ctxt...num_rcv_contexts-1 (inclusive).
13966 	 * Map entries are accessed as offset + extracted value.  Adjust
13967 	 * the added offset so this sequence can be placed anywhere in
13968 	 * the table - as long as the entries themselves do not wrap.
13969 	 * There are only enough bits in offset for the table size, so
13970 	 * start with that to allow for a "negative" offset.
13971 	 */
13972 	offset = (u8)(NUM_MAP_ENTRIES + (int)rmt->used -
13973 						(int)dd->first_user_ctxt);
13974 
13975 	for (i = dd->first_user_ctxt, idx = rmt->used;
13976 				i < dd->num_rcv_contexts; i++, idx++) {
13977 		/* replace with identity mapping */
13978 		regoff = (idx % 8) * 8;
13979 		regidx = idx / 8;
13980 		reg = rmt->map[regidx];
13981 		reg &= ~(RCV_RSM_MAP_TABLE_RCV_CONTEXT_A_MASK << regoff);
13982 		reg |= (u64)i << regoff;
13983 		rmt->map[regidx] = reg;
13984 	}
13985 
13986 	/*
13987 	 * For RSM intercept of Expected FECN packets:
13988 	 * o packet type 0 - expected
13989 	 * o match on F (bit 95), using select/match 1, and
13990 	 * o match on SH (bit 133), using select/match 2.
13991 	 *
13992 	 * Use index 1 to extract the 8-bit receive context from DestQP
13993 	 * (start at bit 64).  Use that as the RSM map table index.
13994 	 */
13995 	rrd.offset = offset;
13996 	rrd.pkt_type = 0;
13997 	rrd.field1_off = 95;
13998 	rrd.field2_off = 133;
13999 	rrd.index1_off = 64;
14000 	rrd.index1_width = 8;
14001 	rrd.index2_off = 0;
14002 	rrd.index2_width = 0;
14003 	rrd.mask1 = 1;
14004 	rrd.value1 = 1;
14005 	rrd.mask2 = 1;
14006 	rrd.value2 = 1;
14007 
14008 	/* add rule 1 */
14009 	add_rsm_rule(dd, 1, &rrd);
14010 
14011 	rmt->used += dd->num_user_contexts;
14012 }
14013 
14014 static void init_rxe(struct hfi1_devdata *dd)
14015 {
14016 	struct rsm_map_table *rmt;
14017 
14018 	/* enable all receive errors */
14019 	write_csr(dd, RCV_ERR_MASK, ~0ull);
14020 
14021 	rmt = alloc_rsm_map_table(dd);
14022 	/* set up QOS, including the QPN map table */
14023 	init_qos(dd, rmt);
14024 	init_user_fecn_handling(dd, rmt);
14025 	complete_rsm_map_table(dd, rmt);
14026 	kfree(rmt);
14027 
14028 	/*
14029 	 * make sure RcvCtrl.RcvWcb <= PCIe Device Control
14030 	 * Register Max_Payload_Size (PCI_EXP_DEVCTL in Linux PCIe config
14031 	 * space, PciCfgCap2.MaxPayloadSize in HFI).  There is only one
14032 	 * invalid configuration: RcvCtrl.RcvWcb set to its max of 256 and
14033 	 * Max_PayLoad_Size set to its minimum of 128.
14034 	 *
14035 	 * Presently, RcvCtrl.RcvWcb is not modified from its default of 0
14036 	 * (64 bytes).  Max_Payload_Size is possibly modified upward in
14037 	 * tune_pcie_caps() which is called after this routine.
14038 	 */
14039 }
14040 
14041 static void init_other(struct hfi1_devdata *dd)
14042 {
14043 	/* enable all CCE errors */
14044 	write_csr(dd, CCE_ERR_MASK, ~0ull);
14045 	/* enable *some* Misc errors */
14046 	write_csr(dd, MISC_ERR_MASK, DRIVER_MISC_MASK);
14047 	/* enable all DC errors, except LCB */
14048 	write_csr(dd, DCC_ERR_FLG_EN, ~0ull);
14049 	write_csr(dd, DC_DC8051_ERR_EN, ~0ull);
14050 }
14051 
14052 /*
14053  * Fill out the given AU table using the given CU.  A CU is defined in terms
14054  * AUs.  The table is a an encoding: given the index, how many AUs does that
14055  * represent?
14056  *
14057  * NOTE: Assumes that the register layout is the same for the
14058  * local and remote tables.
14059  */
14060 static void assign_cm_au_table(struct hfi1_devdata *dd, u32 cu,
14061 			       u32 csr0to3, u32 csr4to7)
14062 {
14063 	write_csr(dd, csr0to3,
14064 		  0ull << SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE0_SHIFT |
14065 		  1ull << SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE1_SHIFT |
14066 		  2ull * cu <<
14067 		  SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE2_SHIFT |
14068 		  4ull * cu <<
14069 		  SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE3_SHIFT);
14070 	write_csr(dd, csr4to7,
14071 		  8ull * cu <<
14072 		  SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE4_SHIFT |
14073 		  16ull * cu <<
14074 		  SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE5_SHIFT |
14075 		  32ull * cu <<
14076 		  SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE6_SHIFT |
14077 		  64ull * cu <<
14078 		  SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE7_SHIFT);
14079 }
14080 
14081 static void assign_local_cm_au_table(struct hfi1_devdata *dd, u8 vcu)
14082 {
14083 	assign_cm_au_table(dd, vcu_to_cu(vcu), SEND_CM_LOCAL_AU_TABLE0_TO3,
14084 			   SEND_CM_LOCAL_AU_TABLE4_TO7);
14085 }
14086 
14087 void assign_remote_cm_au_table(struct hfi1_devdata *dd, u8 vcu)
14088 {
14089 	assign_cm_au_table(dd, vcu_to_cu(vcu), SEND_CM_REMOTE_AU_TABLE0_TO3,
14090 			   SEND_CM_REMOTE_AU_TABLE4_TO7);
14091 }
14092 
14093 static void init_txe(struct hfi1_devdata *dd)
14094 {
14095 	int i;
14096 
14097 	/* enable all PIO, SDMA, general, and Egress errors */
14098 	write_csr(dd, SEND_PIO_ERR_MASK, ~0ull);
14099 	write_csr(dd, SEND_DMA_ERR_MASK, ~0ull);
14100 	write_csr(dd, SEND_ERR_MASK, ~0ull);
14101 	write_csr(dd, SEND_EGRESS_ERR_MASK, ~0ull);
14102 
14103 	/* enable all per-context and per-SDMA engine errors */
14104 	for (i = 0; i < dd->chip_send_contexts; i++)
14105 		write_kctxt_csr(dd, i, SEND_CTXT_ERR_MASK, ~0ull);
14106 	for (i = 0; i < dd->chip_sdma_engines; i++)
14107 		write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_MASK, ~0ull);
14108 
14109 	/* set the local CU to AU mapping */
14110 	assign_local_cm_au_table(dd, dd->vcu);
14111 
14112 	/*
14113 	 * Set reasonable default for Credit Return Timer
14114 	 * Don't set on Simulator - causes it to choke.
14115 	 */
14116 	if (dd->icode != ICODE_FUNCTIONAL_SIMULATOR)
14117 		write_csr(dd, SEND_CM_TIMER_CTRL, HFI1_CREDIT_RETURN_RATE);
14118 }
14119 
14120 int hfi1_set_ctxt_jkey(struct hfi1_devdata *dd, unsigned ctxt, u16 jkey)
14121 {
14122 	struct hfi1_ctxtdata *rcd = dd->rcd[ctxt];
14123 	unsigned sctxt;
14124 	int ret = 0;
14125 	u64 reg;
14126 
14127 	if (!rcd || !rcd->sc) {
14128 		ret = -EINVAL;
14129 		goto done;
14130 	}
14131 	sctxt = rcd->sc->hw_context;
14132 	reg = SEND_CTXT_CHECK_JOB_KEY_MASK_SMASK | /* mask is always 1's */
14133 		((jkey & SEND_CTXT_CHECK_JOB_KEY_VALUE_MASK) <<
14134 		 SEND_CTXT_CHECK_JOB_KEY_VALUE_SHIFT);
14135 	/* JOB_KEY_ALLOW_PERMISSIVE is not allowed by default */
14136 	if (HFI1_CAP_KGET_MASK(rcd->flags, ALLOW_PERM_JKEY))
14137 		reg |= SEND_CTXT_CHECK_JOB_KEY_ALLOW_PERMISSIVE_SMASK;
14138 	write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_JOB_KEY, reg);
14139 	/*
14140 	 * Enable send-side J_KEY integrity check, unless this is A0 h/w
14141 	 */
14142 	if (!is_ax(dd)) {
14143 		reg = read_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE);
14144 		reg |= SEND_CTXT_CHECK_ENABLE_CHECK_JOB_KEY_SMASK;
14145 		write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE, reg);
14146 	}
14147 
14148 	/* Enable J_KEY check on receive context. */
14149 	reg = RCV_KEY_CTRL_JOB_KEY_ENABLE_SMASK |
14150 		((jkey & RCV_KEY_CTRL_JOB_KEY_VALUE_MASK) <<
14151 		 RCV_KEY_CTRL_JOB_KEY_VALUE_SHIFT);
14152 	write_kctxt_csr(dd, ctxt, RCV_KEY_CTRL, reg);
14153 done:
14154 	return ret;
14155 }
14156 
14157 int hfi1_clear_ctxt_jkey(struct hfi1_devdata *dd, unsigned ctxt)
14158 {
14159 	struct hfi1_ctxtdata *rcd = dd->rcd[ctxt];
14160 	unsigned sctxt;
14161 	int ret = 0;
14162 	u64 reg;
14163 
14164 	if (!rcd || !rcd->sc) {
14165 		ret = -EINVAL;
14166 		goto done;
14167 	}
14168 	sctxt = rcd->sc->hw_context;
14169 	write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_JOB_KEY, 0);
14170 	/*
14171 	 * Disable send-side J_KEY integrity check, unless this is A0 h/w.
14172 	 * This check would not have been enabled for A0 h/w, see
14173 	 * set_ctxt_jkey().
14174 	 */
14175 	if (!is_ax(dd)) {
14176 		reg = read_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE);
14177 		reg &= ~SEND_CTXT_CHECK_ENABLE_CHECK_JOB_KEY_SMASK;
14178 		write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE, reg);
14179 	}
14180 	/* Turn off the J_KEY on the receive side */
14181 	write_kctxt_csr(dd, ctxt, RCV_KEY_CTRL, 0);
14182 done:
14183 	return ret;
14184 }
14185 
14186 int hfi1_set_ctxt_pkey(struct hfi1_devdata *dd, unsigned ctxt, u16 pkey)
14187 {
14188 	struct hfi1_ctxtdata *rcd;
14189 	unsigned sctxt;
14190 	int ret = 0;
14191 	u64 reg;
14192 
14193 	if (ctxt < dd->num_rcv_contexts) {
14194 		rcd = dd->rcd[ctxt];
14195 	} else {
14196 		ret = -EINVAL;
14197 		goto done;
14198 	}
14199 	if (!rcd || !rcd->sc) {
14200 		ret = -EINVAL;
14201 		goto done;
14202 	}
14203 	sctxt = rcd->sc->hw_context;
14204 	reg = ((u64)pkey & SEND_CTXT_CHECK_PARTITION_KEY_VALUE_MASK) <<
14205 		SEND_CTXT_CHECK_PARTITION_KEY_VALUE_SHIFT;
14206 	write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_PARTITION_KEY, reg);
14207 	reg = read_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE);
14208 	reg |= SEND_CTXT_CHECK_ENABLE_CHECK_PARTITION_KEY_SMASK;
14209 	reg &= ~SEND_CTXT_CHECK_ENABLE_DISALLOW_KDETH_PACKETS_SMASK;
14210 	write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE, reg);
14211 done:
14212 	return ret;
14213 }
14214 
14215 int hfi1_clear_ctxt_pkey(struct hfi1_devdata *dd, unsigned ctxt)
14216 {
14217 	struct hfi1_ctxtdata *rcd;
14218 	unsigned sctxt;
14219 	int ret = 0;
14220 	u64 reg;
14221 
14222 	if (ctxt < dd->num_rcv_contexts) {
14223 		rcd = dd->rcd[ctxt];
14224 	} else {
14225 		ret = -EINVAL;
14226 		goto done;
14227 	}
14228 	if (!rcd || !rcd->sc) {
14229 		ret = -EINVAL;
14230 		goto done;
14231 	}
14232 	sctxt = rcd->sc->hw_context;
14233 	reg = read_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE);
14234 	reg &= ~SEND_CTXT_CHECK_ENABLE_CHECK_PARTITION_KEY_SMASK;
14235 	write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE, reg);
14236 	write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_PARTITION_KEY, 0);
14237 done:
14238 	return ret;
14239 }
14240 
14241 /*
14242  * Start doing the clean up the the chip. Our clean up happens in multiple
14243  * stages and this is just the first.
14244  */
14245 void hfi1_start_cleanup(struct hfi1_devdata *dd)
14246 {
14247 	aspm_exit(dd);
14248 	free_cntrs(dd);
14249 	free_rcverr(dd);
14250 	clean_up_interrupts(dd);
14251 	finish_chip_resources(dd);
14252 }
14253 
14254 #define HFI_BASE_GUID(dev) \
14255 	((dev)->base_guid & ~(1ULL << GUID_HFI_INDEX_SHIFT))
14256 
14257 /*
14258  * Information can be shared between the two HFIs on the same ASIC
14259  * in the same OS.  This function finds the peer device and sets
14260  * up a shared structure.
14261  */
14262 static int init_asic_data(struct hfi1_devdata *dd)
14263 {
14264 	unsigned long flags;
14265 	struct hfi1_devdata *tmp, *peer = NULL;
14266 	struct hfi1_asic_data *asic_data;
14267 	int ret = 0;
14268 
14269 	/* pre-allocate the asic structure in case we are the first device */
14270 	asic_data = kzalloc(sizeof(*dd->asic_data), GFP_KERNEL);
14271 	if (!asic_data)
14272 		return -ENOMEM;
14273 
14274 	spin_lock_irqsave(&hfi1_devs_lock, flags);
14275 	/* Find our peer device */
14276 	list_for_each_entry(tmp, &hfi1_dev_list, list) {
14277 		if ((HFI_BASE_GUID(dd) == HFI_BASE_GUID(tmp)) &&
14278 		    dd->unit != tmp->unit) {
14279 			peer = tmp;
14280 			break;
14281 		}
14282 	}
14283 
14284 	if (peer) {
14285 		/* use already allocated structure */
14286 		dd->asic_data = peer->asic_data;
14287 		kfree(asic_data);
14288 	} else {
14289 		dd->asic_data = asic_data;
14290 		mutex_init(&dd->asic_data->asic_resource_mutex);
14291 	}
14292 	dd->asic_data->dds[dd->hfi1_id] = dd; /* self back-pointer */
14293 	spin_unlock_irqrestore(&hfi1_devs_lock, flags);
14294 
14295 	/* first one through - set up i2c devices */
14296 	if (!peer)
14297 		ret = set_up_i2c(dd, dd->asic_data);
14298 
14299 	return ret;
14300 }
14301 
14302 /*
14303  * Set dd->boardname.  Use a generic name if a name is not returned from
14304  * EFI variable space.
14305  *
14306  * Return 0 on success, -ENOMEM if space could not be allocated.
14307  */
14308 static int obtain_boardname(struct hfi1_devdata *dd)
14309 {
14310 	/* generic board description */
14311 	const char generic[] =
14312 		"Intel Omni-Path Host Fabric Interface Adapter 100 Series";
14313 	unsigned long size;
14314 	int ret;
14315 
14316 	ret = read_hfi1_efi_var(dd, "description", &size,
14317 				(void **)&dd->boardname);
14318 	if (ret) {
14319 		dd_dev_info(dd, "Board description not found\n");
14320 		/* use generic description */
14321 		dd->boardname = kstrdup(generic, GFP_KERNEL);
14322 		if (!dd->boardname)
14323 			return -ENOMEM;
14324 	}
14325 	return 0;
14326 }
14327 
14328 /*
14329  * Check the interrupt registers to make sure that they are mapped correctly.
14330  * It is intended to help user identify any mismapping by VMM when the driver
14331  * is running in a VM. This function should only be called before interrupt
14332  * is set up properly.
14333  *
14334  * Return 0 on success, -EINVAL on failure.
14335  */
14336 static int check_int_registers(struct hfi1_devdata *dd)
14337 {
14338 	u64 reg;
14339 	u64 all_bits = ~(u64)0;
14340 	u64 mask;
14341 
14342 	/* Clear CceIntMask[0] to avoid raising any interrupts */
14343 	mask = read_csr(dd, CCE_INT_MASK);
14344 	write_csr(dd, CCE_INT_MASK, 0ull);
14345 	reg = read_csr(dd, CCE_INT_MASK);
14346 	if (reg)
14347 		goto err_exit;
14348 
14349 	/* Clear all interrupt status bits */
14350 	write_csr(dd, CCE_INT_CLEAR, all_bits);
14351 	reg = read_csr(dd, CCE_INT_STATUS);
14352 	if (reg)
14353 		goto err_exit;
14354 
14355 	/* Set all interrupt status bits */
14356 	write_csr(dd, CCE_INT_FORCE, all_bits);
14357 	reg = read_csr(dd, CCE_INT_STATUS);
14358 	if (reg != all_bits)
14359 		goto err_exit;
14360 
14361 	/* Restore the interrupt mask */
14362 	write_csr(dd, CCE_INT_CLEAR, all_bits);
14363 	write_csr(dd, CCE_INT_MASK, mask);
14364 
14365 	return 0;
14366 err_exit:
14367 	write_csr(dd, CCE_INT_MASK, mask);
14368 	dd_dev_err(dd, "Interrupt registers not properly mapped by VMM\n");
14369 	return -EINVAL;
14370 }
14371 
14372 /**
14373  * Allocate and initialize the device structure for the hfi.
14374  * @dev: the pci_dev for hfi1_ib device
14375  * @ent: pci_device_id struct for this dev
14376  *
14377  * Also allocates, initializes, and returns the devdata struct for this
14378  * device instance
14379  *
14380  * This is global, and is called directly at init to set up the
14381  * chip-specific function pointers for later use.
14382  */
14383 struct hfi1_devdata *hfi1_init_dd(struct pci_dev *pdev,
14384 				  const struct pci_device_id *ent)
14385 {
14386 	struct hfi1_devdata *dd;
14387 	struct hfi1_pportdata *ppd;
14388 	u64 reg;
14389 	int i, ret;
14390 	static const char * const inames[] = { /* implementation names */
14391 		"RTL silicon",
14392 		"RTL VCS simulation",
14393 		"RTL FPGA emulation",
14394 		"Functional simulator"
14395 	};
14396 	struct pci_dev *parent = pdev->bus->self;
14397 
14398 	dd = hfi1_alloc_devdata(pdev, NUM_IB_PORTS *
14399 				sizeof(struct hfi1_pportdata));
14400 	if (IS_ERR(dd))
14401 		goto bail;
14402 	ppd = dd->pport;
14403 	for (i = 0; i < dd->num_pports; i++, ppd++) {
14404 		int vl;
14405 		/* init common fields */
14406 		hfi1_init_pportdata(pdev, ppd, dd, 0, 1);
14407 		/* DC supports 4 link widths */
14408 		ppd->link_width_supported =
14409 			OPA_LINK_WIDTH_1X | OPA_LINK_WIDTH_2X |
14410 			OPA_LINK_WIDTH_3X | OPA_LINK_WIDTH_4X;
14411 		ppd->link_width_downgrade_supported =
14412 			ppd->link_width_supported;
14413 		/* start out enabling only 4X */
14414 		ppd->link_width_enabled = OPA_LINK_WIDTH_4X;
14415 		ppd->link_width_downgrade_enabled =
14416 					ppd->link_width_downgrade_supported;
14417 		/* link width active is 0 when link is down */
14418 		/* link width downgrade active is 0 when link is down */
14419 
14420 		if (num_vls < HFI1_MIN_VLS_SUPPORTED ||
14421 		    num_vls > HFI1_MAX_VLS_SUPPORTED) {
14422 			hfi1_early_err(&pdev->dev,
14423 				       "Invalid num_vls %u, using %u VLs\n",
14424 				    num_vls, HFI1_MAX_VLS_SUPPORTED);
14425 			num_vls = HFI1_MAX_VLS_SUPPORTED;
14426 		}
14427 		ppd->vls_supported = num_vls;
14428 		ppd->vls_operational = ppd->vls_supported;
14429 		ppd->actual_vls_operational = ppd->vls_supported;
14430 		/* Set the default MTU. */
14431 		for (vl = 0; vl < num_vls; vl++)
14432 			dd->vld[vl].mtu = hfi1_max_mtu;
14433 		dd->vld[15].mtu = MAX_MAD_PACKET;
14434 		/*
14435 		 * Set the initial values to reasonable default, will be set
14436 		 * for real when link is up.
14437 		 */
14438 		ppd->lstate = IB_PORT_DOWN;
14439 		ppd->overrun_threshold = 0x4;
14440 		ppd->phy_error_threshold = 0xf;
14441 		ppd->port_crc_mode_enabled = link_crc_mask;
14442 		/* initialize supported LTP CRC mode */
14443 		ppd->port_ltp_crc_mode = cap_to_port_ltp(link_crc_mask) << 8;
14444 		/* initialize enabled LTP CRC mode */
14445 		ppd->port_ltp_crc_mode |= cap_to_port_ltp(link_crc_mask) << 4;
14446 		/* start in offline */
14447 		ppd->host_link_state = HLS_DN_OFFLINE;
14448 		init_vl_arb_caches(ppd);
14449 		ppd->last_pstate = 0xff; /* invalid value */
14450 	}
14451 
14452 	dd->link_default = HLS_DN_POLL;
14453 
14454 	/*
14455 	 * Do remaining PCIe setup and save PCIe values in dd.
14456 	 * Any error printing is already done by the init code.
14457 	 * On return, we have the chip mapped.
14458 	 */
14459 	ret = hfi1_pcie_ddinit(dd, pdev);
14460 	if (ret < 0)
14461 		goto bail_free;
14462 
14463 	/* verify that reads actually work, save revision for reset check */
14464 	dd->revision = read_csr(dd, CCE_REVISION);
14465 	if (dd->revision == ~(u64)0) {
14466 		dd_dev_err(dd, "cannot read chip CSRs\n");
14467 		ret = -EINVAL;
14468 		goto bail_cleanup;
14469 	}
14470 	dd->majrev = (dd->revision >> CCE_REVISION_CHIP_REV_MAJOR_SHIFT)
14471 			& CCE_REVISION_CHIP_REV_MAJOR_MASK;
14472 	dd->minrev = (dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT)
14473 			& CCE_REVISION_CHIP_REV_MINOR_MASK;
14474 
14475 	/*
14476 	 * Check interrupt registers mapping if the driver has no access to
14477 	 * the upstream component. In this case, it is likely that the driver
14478 	 * is running in a VM.
14479 	 */
14480 	if (!parent) {
14481 		ret = check_int_registers(dd);
14482 		if (ret)
14483 			goto bail_cleanup;
14484 	}
14485 
14486 	/*
14487 	 * obtain the hardware ID - NOT related to unit, which is a
14488 	 * software enumeration
14489 	 */
14490 	reg = read_csr(dd, CCE_REVISION2);
14491 	dd->hfi1_id = (reg >> CCE_REVISION2_HFI_ID_SHIFT)
14492 					& CCE_REVISION2_HFI_ID_MASK;
14493 	/* the variable size will remove unwanted bits */
14494 	dd->icode = reg >> CCE_REVISION2_IMPL_CODE_SHIFT;
14495 	dd->irev = reg >> CCE_REVISION2_IMPL_REVISION_SHIFT;
14496 	dd_dev_info(dd, "Implementation: %s, revision 0x%x\n",
14497 		    dd->icode < ARRAY_SIZE(inames) ?
14498 		    inames[dd->icode] : "unknown", (int)dd->irev);
14499 
14500 	/* speeds the hardware can support */
14501 	dd->pport->link_speed_supported = OPA_LINK_SPEED_25G;
14502 	/* speeds allowed to run at */
14503 	dd->pport->link_speed_enabled = dd->pport->link_speed_supported;
14504 	/* give a reasonable active value, will be set on link up */
14505 	dd->pport->link_speed_active = OPA_LINK_SPEED_25G;
14506 
14507 	dd->chip_rcv_contexts = read_csr(dd, RCV_CONTEXTS);
14508 	dd->chip_send_contexts = read_csr(dd, SEND_CONTEXTS);
14509 	dd->chip_sdma_engines = read_csr(dd, SEND_DMA_ENGINES);
14510 	dd->chip_pio_mem_size = read_csr(dd, SEND_PIO_MEM_SIZE);
14511 	dd->chip_sdma_mem_size = read_csr(dd, SEND_DMA_MEM_SIZE);
14512 	/* fix up link widths for emulation _p */
14513 	ppd = dd->pport;
14514 	if (dd->icode == ICODE_FPGA_EMULATION && is_emulator_p(dd)) {
14515 		ppd->link_width_supported =
14516 			ppd->link_width_enabled =
14517 			ppd->link_width_downgrade_supported =
14518 			ppd->link_width_downgrade_enabled =
14519 				OPA_LINK_WIDTH_1X;
14520 	}
14521 	/* insure num_vls isn't larger than number of sdma engines */
14522 	if (HFI1_CAP_IS_KSET(SDMA) && num_vls > dd->chip_sdma_engines) {
14523 		dd_dev_err(dd, "num_vls %u too large, using %u VLs\n",
14524 			   num_vls, dd->chip_sdma_engines);
14525 		num_vls = dd->chip_sdma_engines;
14526 		ppd->vls_supported = dd->chip_sdma_engines;
14527 		ppd->vls_operational = ppd->vls_supported;
14528 	}
14529 
14530 	/*
14531 	 * Convert the ns parameter to the 64 * cclocks used in the CSR.
14532 	 * Limit the max if larger than the field holds.  If timeout is
14533 	 * non-zero, then the calculated field will be at least 1.
14534 	 *
14535 	 * Must be after icode is set up - the cclock rate depends
14536 	 * on knowing the hardware being used.
14537 	 */
14538 	dd->rcv_intr_timeout_csr = ns_to_cclock(dd, rcv_intr_timeout) / 64;
14539 	if (dd->rcv_intr_timeout_csr >
14540 			RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_MASK)
14541 		dd->rcv_intr_timeout_csr =
14542 			RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_MASK;
14543 	else if (dd->rcv_intr_timeout_csr == 0 && rcv_intr_timeout)
14544 		dd->rcv_intr_timeout_csr = 1;
14545 
14546 	/* needs to be done before we look for the peer device */
14547 	read_guid(dd);
14548 
14549 	/* set up shared ASIC data with peer device */
14550 	ret = init_asic_data(dd);
14551 	if (ret)
14552 		goto bail_cleanup;
14553 
14554 	/* obtain chip sizes, reset chip CSRs */
14555 	init_chip(dd);
14556 
14557 	/* read in the PCIe link speed information */
14558 	ret = pcie_speeds(dd);
14559 	if (ret)
14560 		goto bail_cleanup;
14561 
14562 	/* call before get_platform_config(), after init_chip_resources() */
14563 	ret = eprom_init(dd);
14564 	if (ret)
14565 		goto bail_free_rcverr;
14566 
14567 	/* Needs to be called before hfi1_firmware_init */
14568 	get_platform_config(dd);
14569 
14570 	/* read in firmware */
14571 	ret = hfi1_firmware_init(dd);
14572 	if (ret)
14573 		goto bail_cleanup;
14574 
14575 	/*
14576 	 * In general, the PCIe Gen3 transition must occur after the
14577 	 * chip has been idled (so it won't initiate any PCIe transactions
14578 	 * e.g. an interrupt) and before the driver changes any registers
14579 	 * (the transition will reset the registers).
14580 	 *
14581 	 * In particular, place this call after:
14582 	 * - init_chip()     - the chip will not initiate any PCIe transactions
14583 	 * - pcie_speeds()   - reads the current link speed
14584 	 * - hfi1_firmware_init() - the needed firmware is ready to be
14585 	 *			    downloaded
14586 	 */
14587 	ret = do_pcie_gen3_transition(dd);
14588 	if (ret)
14589 		goto bail_cleanup;
14590 
14591 	/* start setting dd values and adjusting CSRs */
14592 	init_early_variables(dd);
14593 
14594 	parse_platform_config(dd);
14595 
14596 	ret = obtain_boardname(dd);
14597 	if (ret)
14598 		goto bail_cleanup;
14599 
14600 	snprintf(dd->boardversion, BOARD_VERS_MAX,
14601 		 "ChipABI %u.%u, ChipRev %u.%u, SW Compat %llu\n",
14602 		 HFI1_CHIP_VERS_MAJ, HFI1_CHIP_VERS_MIN,
14603 		 (u32)dd->majrev,
14604 		 (u32)dd->minrev,
14605 		 (dd->revision >> CCE_REVISION_SW_SHIFT)
14606 		    & CCE_REVISION_SW_MASK);
14607 
14608 	ret = set_up_context_variables(dd);
14609 	if (ret)
14610 		goto bail_cleanup;
14611 
14612 	/* set initial RXE CSRs */
14613 	init_rxe(dd);
14614 	/* set initial TXE CSRs */
14615 	init_txe(dd);
14616 	/* set initial non-RXE, non-TXE CSRs */
14617 	init_other(dd);
14618 	/* set up KDETH QP prefix in both RX and TX CSRs */
14619 	init_kdeth_qp(dd);
14620 
14621 	ret = hfi1_dev_affinity_init(dd);
14622 	if (ret)
14623 		goto bail_cleanup;
14624 
14625 	/* send contexts must be set up before receive contexts */
14626 	ret = init_send_contexts(dd);
14627 	if (ret)
14628 		goto bail_cleanup;
14629 
14630 	ret = hfi1_create_ctxts(dd);
14631 	if (ret)
14632 		goto bail_cleanup;
14633 
14634 	dd->rcvhdrsize = DEFAULT_RCVHDRSIZE;
14635 	/*
14636 	 * rcd[0] is guaranteed to be valid by this point. Also, all
14637 	 * context are using the same value, as per the module parameter.
14638 	 */
14639 	dd->rhf_offset = dd->rcd[0]->rcvhdrqentsize - sizeof(u64) / sizeof(u32);
14640 
14641 	ret = init_pervl_scs(dd);
14642 	if (ret)
14643 		goto bail_cleanup;
14644 
14645 	/* sdma init */
14646 	for (i = 0; i < dd->num_pports; ++i) {
14647 		ret = sdma_init(dd, i);
14648 		if (ret)
14649 			goto bail_cleanup;
14650 	}
14651 
14652 	/* use contexts created by hfi1_create_ctxts */
14653 	ret = set_up_interrupts(dd);
14654 	if (ret)
14655 		goto bail_cleanup;
14656 
14657 	/* set up LCB access - must be after set_up_interrupts() */
14658 	init_lcb_access(dd);
14659 
14660 	/*
14661 	 * Serial number is created from the base guid:
14662 	 * [27:24] = base guid [38:35]
14663 	 * [23: 0] = base guid [23: 0]
14664 	 */
14665 	snprintf(dd->serial, SERIAL_MAX, "0x%08llx\n",
14666 		 (dd->base_guid & 0xFFFFFF) |
14667 		     ((dd->base_guid >> 11) & 0xF000000));
14668 
14669 	dd->oui1 = dd->base_guid >> 56 & 0xFF;
14670 	dd->oui2 = dd->base_guid >> 48 & 0xFF;
14671 	dd->oui3 = dd->base_guid >> 40 & 0xFF;
14672 
14673 	ret = load_firmware(dd); /* asymmetric with dispose_firmware() */
14674 	if (ret)
14675 		goto bail_clear_intr;
14676 
14677 	thermal_init(dd);
14678 
14679 	ret = init_cntrs(dd);
14680 	if (ret)
14681 		goto bail_clear_intr;
14682 
14683 	ret = init_rcverr(dd);
14684 	if (ret)
14685 		goto bail_free_cntrs;
14686 
14687 	init_completion(&dd->user_comp);
14688 
14689 	/* The user refcount starts with one to inidicate an active device */
14690 	atomic_set(&dd->user_refcount, 1);
14691 
14692 	goto bail;
14693 
14694 bail_free_rcverr:
14695 	free_rcverr(dd);
14696 bail_free_cntrs:
14697 	free_cntrs(dd);
14698 bail_clear_intr:
14699 	clean_up_interrupts(dd);
14700 bail_cleanup:
14701 	hfi1_pcie_ddcleanup(dd);
14702 bail_free:
14703 	hfi1_free_devdata(dd);
14704 	dd = ERR_PTR(ret);
14705 bail:
14706 	return dd;
14707 }
14708 
14709 static u16 delay_cycles(struct hfi1_pportdata *ppd, u32 desired_egress_rate,
14710 			u32 dw_len)
14711 {
14712 	u32 delta_cycles;
14713 	u32 current_egress_rate = ppd->current_egress_rate;
14714 	/* rates here are in units of 10^6 bits/sec */
14715 
14716 	if (desired_egress_rate == -1)
14717 		return 0; /* shouldn't happen */
14718 
14719 	if (desired_egress_rate >= current_egress_rate)
14720 		return 0; /* we can't help go faster, only slower */
14721 
14722 	delta_cycles = egress_cycles(dw_len * 4, desired_egress_rate) -
14723 			egress_cycles(dw_len * 4, current_egress_rate);
14724 
14725 	return (u16)delta_cycles;
14726 }
14727 
14728 /**
14729  * create_pbc - build a pbc for transmission
14730  * @flags: special case flags or-ed in built pbc
14731  * @srate: static rate
14732  * @vl: vl
14733  * @dwlen: dword length (header words + data words + pbc words)
14734  *
14735  * Create a PBC with the given flags, rate, VL, and length.
14736  *
14737  * NOTE: The PBC created will not insert any HCRC - all callers but one are
14738  * for verbs, which does not use this PSM feature.  The lone other caller
14739  * is for the diagnostic interface which calls this if the user does not
14740  * supply their own PBC.
14741  */
14742 u64 create_pbc(struct hfi1_pportdata *ppd, u64 flags, int srate_mbs, u32 vl,
14743 	       u32 dw_len)
14744 {
14745 	u64 pbc, delay = 0;
14746 
14747 	if (unlikely(srate_mbs))
14748 		delay = delay_cycles(ppd, srate_mbs, dw_len);
14749 
14750 	pbc = flags
14751 		| (delay << PBC_STATIC_RATE_CONTROL_COUNT_SHIFT)
14752 		| ((u64)PBC_IHCRC_NONE << PBC_INSERT_HCRC_SHIFT)
14753 		| (vl & PBC_VL_MASK) << PBC_VL_SHIFT
14754 		| (dw_len & PBC_LENGTH_DWS_MASK)
14755 			<< PBC_LENGTH_DWS_SHIFT;
14756 
14757 	return pbc;
14758 }
14759 
14760 #define SBUS_THERMAL    0x4f
14761 #define SBUS_THERM_MONITOR_MODE 0x1
14762 
14763 #define THERM_FAILURE(dev, ret, reason) \
14764 	dd_dev_err((dd),						\
14765 		   "Thermal sensor initialization failed: %s (%d)\n",	\
14766 		   (reason), (ret))
14767 
14768 /*
14769  * Initialize the thermal sensor.
14770  *
14771  * After initialization, enable polling of thermal sensor through
14772  * SBus interface. In order for this to work, the SBus Master
14773  * firmware has to be loaded due to the fact that the HW polling
14774  * logic uses SBus interrupts, which are not supported with
14775  * default firmware. Otherwise, no data will be returned through
14776  * the ASIC_STS_THERM CSR.
14777  */
14778 static int thermal_init(struct hfi1_devdata *dd)
14779 {
14780 	int ret = 0;
14781 
14782 	if (dd->icode != ICODE_RTL_SILICON ||
14783 	    check_chip_resource(dd, CR_THERM_INIT, NULL))
14784 		return ret;
14785 
14786 	ret = acquire_chip_resource(dd, CR_SBUS, SBUS_TIMEOUT);
14787 	if (ret) {
14788 		THERM_FAILURE(dd, ret, "Acquire SBus");
14789 		return ret;
14790 	}
14791 
14792 	dd_dev_info(dd, "Initializing thermal sensor\n");
14793 	/* Disable polling of thermal readings */
14794 	write_csr(dd, ASIC_CFG_THERM_POLL_EN, 0x0);
14795 	msleep(100);
14796 	/* Thermal Sensor Initialization */
14797 	/*    Step 1: Reset the Thermal SBus Receiver */
14798 	ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0,
14799 				RESET_SBUS_RECEIVER, 0);
14800 	if (ret) {
14801 		THERM_FAILURE(dd, ret, "Bus Reset");
14802 		goto done;
14803 	}
14804 	/*    Step 2: Set Reset bit in Thermal block */
14805 	ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0,
14806 				WRITE_SBUS_RECEIVER, 0x1);
14807 	if (ret) {
14808 		THERM_FAILURE(dd, ret, "Therm Block Reset");
14809 		goto done;
14810 	}
14811 	/*    Step 3: Write clock divider value (100MHz -> 2MHz) */
14812 	ret = sbus_request_slow(dd, SBUS_THERMAL, 0x1,
14813 				WRITE_SBUS_RECEIVER, 0x32);
14814 	if (ret) {
14815 		THERM_FAILURE(dd, ret, "Write Clock Div");
14816 		goto done;
14817 	}
14818 	/*    Step 4: Select temperature mode */
14819 	ret = sbus_request_slow(dd, SBUS_THERMAL, 0x3,
14820 				WRITE_SBUS_RECEIVER,
14821 				SBUS_THERM_MONITOR_MODE);
14822 	if (ret) {
14823 		THERM_FAILURE(dd, ret, "Write Mode Sel");
14824 		goto done;
14825 	}
14826 	/*    Step 5: De-assert block reset and start conversion */
14827 	ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0,
14828 				WRITE_SBUS_RECEIVER, 0x2);
14829 	if (ret) {
14830 		THERM_FAILURE(dd, ret, "Write Reset Deassert");
14831 		goto done;
14832 	}
14833 	/*    Step 5.1: Wait for first conversion (21.5ms per spec) */
14834 	msleep(22);
14835 
14836 	/* Enable polling of thermal readings */
14837 	write_csr(dd, ASIC_CFG_THERM_POLL_EN, 0x1);
14838 
14839 	/* Set initialized flag */
14840 	ret = acquire_chip_resource(dd, CR_THERM_INIT, 0);
14841 	if (ret)
14842 		THERM_FAILURE(dd, ret, "Unable to set thermal init flag");
14843 
14844 done:
14845 	release_chip_resource(dd, CR_SBUS);
14846 	return ret;
14847 }
14848 
14849 static void handle_temp_err(struct hfi1_devdata *dd)
14850 {
14851 	struct hfi1_pportdata *ppd = &dd->pport[0];
14852 	/*
14853 	 * Thermal Critical Interrupt
14854 	 * Put the device into forced freeze mode, take link down to
14855 	 * offline, and put DC into reset.
14856 	 */
14857 	dd_dev_emerg(dd,
14858 		     "Critical temperature reached! Forcing device into freeze mode!\n");
14859 	dd->flags |= HFI1_FORCED_FREEZE;
14860 	start_freeze_handling(ppd, FREEZE_SELF | FREEZE_ABORT);
14861 	/*
14862 	 * Shut DC down as much and as quickly as possible.
14863 	 *
14864 	 * Step 1: Take the link down to OFFLINE. This will cause the
14865 	 *         8051 to put the Serdes in reset. However, we don't want to
14866 	 *         go through the entire link state machine since we want to
14867 	 *         shutdown ASAP. Furthermore, this is not a graceful shutdown
14868 	 *         but rather an attempt to save the chip.
14869 	 *         Code below is almost the same as quiet_serdes() but avoids
14870 	 *         all the extra work and the sleeps.
14871 	 */
14872 	ppd->driver_link_ready = 0;
14873 	ppd->link_enabled = 0;
14874 	set_physical_link_state(dd, (OPA_LINKDOWN_REASON_SMA_DISABLED << 8) |
14875 				PLS_OFFLINE);
14876 	/*
14877 	 * Step 2: Shutdown LCB and 8051
14878 	 *         After shutdown, do not restore DC_CFG_RESET value.
14879 	 */
14880 	dc_shutdown(dd);
14881 }
14882