xref: /openbmc/linux/drivers/infiniband/hw/hfi1/chip.c (revision 77ab8d5d)
1 /*
2  * Copyright(c) 2015 - 2017 Intel Corporation.
3  *
4  * This file is provided under a dual BSD/GPLv2 license.  When using or
5  * redistributing this file, you may do so under either license.
6  *
7  * GPL LICENSE SUMMARY
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of version 2 of the GNU General Public License as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * General Public License for more details.
17  *
18  * BSD LICENSE
19  *
20  * Redistribution and use in source and binary forms, with or without
21  * modification, are permitted provided that the following conditions
22  * are met:
23  *
24  *  - Redistributions of source code must retain the above copyright
25  *    notice, this list of conditions and the following disclaimer.
26  *  - Redistributions in binary form must reproduce the above copyright
27  *    notice, this list of conditions and the following disclaimer in
28  *    the documentation and/or other materials provided with the
29  *    distribution.
30  *  - Neither the name of Intel Corporation nor the names of its
31  *    contributors may be used to endorse or promote products derived
32  *    from this software without specific prior written permission.
33  *
34  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45  *
46  */
47 
48 /*
49  * This file contains all of the code that is specific to the HFI chip
50  */
51 
52 #include <linux/pci.h>
53 #include <linux/delay.h>
54 #include <linux/interrupt.h>
55 #include <linux/module.h>
56 
57 #include "hfi.h"
58 #include "trace.h"
59 #include "mad.h"
60 #include "pio.h"
61 #include "sdma.h"
62 #include "eprom.h"
63 #include "efivar.h"
64 #include "platform.h"
65 #include "aspm.h"
66 #include "affinity.h"
67 #include "debugfs.h"
68 
69 #define NUM_IB_PORTS 1
70 
71 uint kdeth_qp;
72 module_param_named(kdeth_qp, kdeth_qp, uint, S_IRUGO);
73 MODULE_PARM_DESC(kdeth_qp, "Set the KDETH queue pair prefix");
74 
75 uint num_vls = HFI1_MAX_VLS_SUPPORTED;
76 module_param(num_vls, uint, S_IRUGO);
77 MODULE_PARM_DESC(num_vls, "Set number of Virtual Lanes to use (1-8)");
78 
79 /*
80  * Default time to aggregate two 10K packets from the idle state
81  * (timer not running). The timer starts at the end of the first packet,
82  * so only the time for one 10K packet and header plus a bit extra is needed.
83  * 10 * 1024 + 64 header byte = 10304 byte
84  * 10304 byte / 12.5 GB/s = 824.32ns
85  */
86 uint rcv_intr_timeout = (824 + 16); /* 16 is for coalescing interrupt */
87 module_param(rcv_intr_timeout, uint, S_IRUGO);
88 MODULE_PARM_DESC(rcv_intr_timeout, "Receive interrupt mitigation timeout in ns");
89 
90 uint rcv_intr_count = 16; /* same as qib */
91 module_param(rcv_intr_count, uint, S_IRUGO);
92 MODULE_PARM_DESC(rcv_intr_count, "Receive interrupt mitigation count");
93 
94 ushort link_crc_mask = SUPPORTED_CRCS;
95 module_param(link_crc_mask, ushort, S_IRUGO);
96 MODULE_PARM_DESC(link_crc_mask, "CRCs to use on the link");
97 
98 uint loopback;
99 module_param_named(loopback, loopback, uint, S_IRUGO);
100 MODULE_PARM_DESC(loopback, "Put into loopback mode (1 = serdes, 3 = external cable");
101 
102 /* Other driver tunables */
103 uint rcv_intr_dynamic = 1; /* enable dynamic mode for rcv int mitigation*/
104 static ushort crc_14b_sideband = 1;
105 static uint use_flr = 1;
106 uint quick_linkup; /* skip LNI */
107 
108 struct flag_table {
109 	u64 flag;	/* the flag */
110 	char *str;	/* description string */
111 	u16 extra;	/* extra information */
112 	u16 unused0;
113 	u32 unused1;
114 };
115 
116 /* str must be a string constant */
117 #define FLAG_ENTRY(str, extra, flag) {flag, str, extra}
118 #define FLAG_ENTRY0(str, flag) {flag, str, 0}
119 
120 /* Send Error Consequences */
121 #define SEC_WRITE_DROPPED	0x1
122 #define SEC_PACKET_DROPPED	0x2
123 #define SEC_SC_HALTED		0x4	/* per-context only */
124 #define SEC_SPC_FREEZE		0x8	/* per-HFI only */
125 
126 #define DEFAULT_KRCVQS		  2
127 #define MIN_KERNEL_KCTXTS         2
128 #define FIRST_KERNEL_KCTXT        1
129 
130 /*
131  * RSM instance allocation
132  *   0 - Verbs
133  *   1 - User Fecn Handling
134  *   2 - Vnic
135  */
136 #define RSM_INS_VERBS             0
137 #define RSM_INS_FECN              1
138 #define RSM_INS_VNIC              2
139 
140 /* Bit offset into the GUID which carries HFI id information */
141 #define GUID_HFI_INDEX_SHIFT     39
142 
143 /* extract the emulation revision */
144 #define emulator_rev(dd) ((dd)->irev >> 8)
145 /* parallel and serial emulation versions are 3 and 4 respectively */
146 #define is_emulator_p(dd) ((((dd)->irev) & 0xf) == 3)
147 #define is_emulator_s(dd) ((((dd)->irev) & 0xf) == 4)
148 
149 /* RSM fields for Verbs */
150 /* packet type */
151 #define IB_PACKET_TYPE         2ull
152 #define QW_SHIFT               6ull
153 /* QPN[7..1] */
154 #define QPN_WIDTH              7ull
155 
156 /* LRH.BTH: QW 0, OFFSET 48 - for match */
157 #define LRH_BTH_QW             0ull
158 #define LRH_BTH_BIT_OFFSET     48ull
159 #define LRH_BTH_OFFSET(off)    ((LRH_BTH_QW << QW_SHIFT) | (off))
160 #define LRH_BTH_MATCH_OFFSET   LRH_BTH_OFFSET(LRH_BTH_BIT_OFFSET)
161 #define LRH_BTH_SELECT
162 #define LRH_BTH_MASK           3ull
163 #define LRH_BTH_VALUE          2ull
164 
165 /* LRH.SC[3..0] QW 0, OFFSET 56 - for match */
166 #define LRH_SC_QW              0ull
167 #define LRH_SC_BIT_OFFSET      56ull
168 #define LRH_SC_OFFSET(off)     ((LRH_SC_QW << QW_SHIFT) | (off))
169 #define LRH_SC_MATCH_OFFSET    LRH_SC_OFFSET(LRH_SC_BIT_OFFSET)
170 #define LRH_SC_MASK            128ull
171 #define LRH_SC_VALUE           0ull
172 
173 /* SC[n..0] QW 0, OFFSET 60 - for select */
174 #define LRH_SC_SELECT_OFFSET  ((LRH_SC_QW << QW_SHIFT) | (60ull))
175 
176 /* QPN[m+n:1] QW 1, OFFSET 1 */
177 #define QPN_SELECT_OFFSET      ((1ull << QW_SHIFT) | (1ull))
178 
179 /* RSM fields for Vnic */
180 /* L2_TYPE: QW 0, OFFSET 61 - for match */
181 #define L2_TYPE_QW             0ull
182 #define L2_TYPE_BIT_OFFSET     61ull
183 #define L2_TYPE_OFFSET(off)    ((L2_TYPE_QW << QW_SHIFT) | (off))
184 #define L2_TYPE_MATCH_OFFSET   L2_TYPE_OFFSET(L2_TYPE_BIT_OFFSET)
185 #define L2_TYPE_MASK           3ull
186 #define L2_16B_VALUE           2ull
187 
188 /* L4_TYPE QW 1, OFFSET 0 - for match */
189 #define L4_TYPE_QW              1ull
190 #define L4_TYPE_BIT_OFFSET      0ull
191 #define L4_TYPE_OFFSET(off)     ((L4_TYPE_QW << QW_SHIFT) | (off))
192 #define L4_TYPE_MATCH_OFFSET    L4_TYPE_OFFSET(L4_TYPE_BIT_OFFSET)
193 #define L4_16B_TYPE_MASK        0xFFull
194 #define L4_16B_ETH_VALUE        0x78ull
195 
196 /* 16B VESWID - for select */
197 #define L4_16B_HDR_VESWID_OFFSET  ((2 << QW_SHIFT) | (16ull))
198 /* 16B ENTROPY - for select */
199 #define L2_16B_ENTROPY_OFFSET     ((1 << QW_SHIFT) | (32ull))
200 
201 /* defines to build power on SC2VL table */
202 #define SC2VL_VAL( \
203 	num, \
204 	sc0, sc0val, \
205 	sc1, sc1val, \
206 	sc2, sc2val, \
207 	sc3, sc3val, \
208 	sc4, sc4val, \
209 	sc5, sc5val, \
210 	sc6, sc6val, \
211 	sc7, sc7val) \
212 ( \
213 	((u64)(sc0val) << SEND_SC2VLT##num##_SC##sc0##_SHIFT) | \
214 	((u64)(sc1val) << SEND_SC2VLT##num##_SC##sc1##_SHIFT) | \
215 	((u64)(sc2val) << SEND_SC2VLT##num##_SC##sc2##_SHIFT) | \
216 	((u64)(sc3val) << SEND_SC2VLT##num##_SC##sc3##_SHIFT) | \
217 	((u64)(sc4val) << SEND_SC2VLT##num##_SC##sc4##_SHIFT) | \
218 	((u64)(sc5val) << SEND_SC2VLT##num##_SC##sc5##_SHIFT) | \
219 	((u64)(sc6val) << SEND_SC2VLT##num##_SC##sc6##_SHIFT) | \
220 	((u64)(sc7val) << SEND_SC2VLT##num##_SC##sc7##_SHIFT)   \
221 )
222 
223 #define DC_SC_VL_VAL( \
224 	range, \
225 	e0, e0val, \
226 	e1, e1val, \
227 	e2, e2val, \
228 	e3, e3val, \
229 	e4, e4val, \
230 	e5, e5val, \
231 	e6, e6val, \
232 	e7, e7val, \
233 	e8, e8val, \
234 	e9, e9val, \
235 	e10, e10val, \
236 	e11, e11val, \
237 	e12, e12val, \
238 	e13, e13val, \
239 	e14, e14val, \
240 	e15, e15val) \
241 ( \
242 	((u64)(e0val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e0##_SHIFT) | \
243 	((u64)(e1val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e1##_SHIFT) | \
244 	((u64)(e2val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e2##_SHIFT) | \
245 	((u64)(e3val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e3##_SHIFT) | \
246 	((u64)(e4val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e4##_SHIFT) | \
247 	((u64)(e5val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e5##_SHIFT) | \
248 	((u64)(e6val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e6##_SHIFT) | \
249 	((u64)(e7val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e7##_SHIFT) | \
250 	((u64)(e8val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e8##_SHIFT) | \
251 	((u64)(e9val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e9##_SHIFT) | \
252 	((u64)(e10val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e10##_SHIFT) | \
253 	((u64)(e11val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e11##_SHIFT) | \
254 	((u64)(e12val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e12##_SHIFT) | \
255 	((u64)(e13val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e13##_SHIFT) | \
256 	((u64)(e14val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e14##_SHIFT) | \
257 	((u64)(e15val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e15##_SHIFT) \
258 )
259 
260 /* all CceStatus sub-block freeze bits */
261 #define ALL_FROZE (CCE_STATUS_SDMA_FROZE_SMASK \
262 			| CCE_STATUS_RXE_FROZE_SMASK \
263 			| CCE_STATUS_TXE_FROZE_SMASK \
264 			| CCE_STATUS_TXE_PIO_FROZE_SMASK)
265 /* all CceStatus sub-block TXE pause bits */
266 #define ALL_TXE_PAUSE (CCE_STATUS_TXE_PIO_PAUSED_SMASK \
267 			| CCE_STATUS_TXE_PAUSED_SMASK \
268 			| CCE_STATUS_SDMA_PAUSED_SMASK)
269 /* all CceStatus sub-block RXE pause bits */
270 #define ALL_RXE_PAUSE CCE_STATUS_RXE_PAUSED_SMASK
271 
272 #define CNTR_MAX 0xFFFFFFFFFFFFFFFFULL
273 #define CNTR_32BIT_MAX 0x00000000FFFFFFFF
274 
275 /*
276  * CCE Error flags.
277  */
278 static struct flag_table cce_err_status_flags[] = {
279 /* 0*/	FLAG_ENTRY0("CceCsrParityErr",
280 		CCE_ERR_STATUS_CCE_CSR_PARITY_ERR_SMASK),
281 /* 1*/	FLAG_ENTRY0("CceCsrReadBadAddrErr",
282 		CCE_ERR_STATUS_CCE_CSR_READ_BAD_ADDR_ERR_SMASK),
283 /* 2*/	FLAG_ENTRY0("CceCsrWriteBadAddrErr",
284 		CCE_ERR_STATUS_CCE_CSR_WRITE_BAD_ADDR_ERR_SMASK),
285 /* 3*/	FLAG_ENTRY0("CceTrgtAsyncFifoParityErr",
286 		CCE_ERR_STATUS_CCE_TRGT_ASYNC_FIFO_PARITY_ERR_SMASK),
287 /* 4*/	FLAG_ENTRY0("CceTrgtAccessErr",
288 		CCE_ERR_STATUS_CCE_TRGT_ACCESS_ERR_SMASK),
289 /* 5*/	FLAG_ENTRY0("CceRspdDataParityErr",
290 		CCE_ERR_STATUS_CCE_RSPD_DATA_PARITY_ERR_SMASK),
291 /* 6*/	FLAG_ENTRY0("CceCli0AsyncFifoParityErr",
292 		CCE_ERR_STATUS_CCE_CLI0_ASYNC_FIFO_PARITY_ERR_SMASK),
293 /* 7*/	FLAG_ENTRY0("CceCsrCfgBusParityErr",
294 		CCE_ERR_STATUS_CCE_CSR_CFG_BUS_PARITY_ERR_SMASK),
295 /* 8*/	FLAG_ENTRY0("CceCli2AsyncFifoParityErr",
296 		CCE_ERR_STATUS_CCE_CLI2_ASYNC_FIFO_PARITY_ERR_SMASK),
297 /* 9*/	FLAG_ENTRY0("CceCli1AsyncFifoPioCrdtParityErr",
298 	    CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_PIO_CRDT_PARITY_ERR_SMASK),
299 /*10*/	FLAG_ENTRY0("CceCli1AsyncFifoPioCrdtParityErr",
300 	    CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_SDMA_HD_PARITY_ERR_SMASK),
301 /*11*/	FLAG_ENTRY0("CceCli1AsyncFifoRxdmaParityError",
302 	    CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_RXDMA_PARITY_ERROR_SMASK),
303 /*12*/	FLAG_ENTRY0("CceCli1AsyncFifoDbgParityError",
304 		CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_DBG_PARITY_ERROR_SMASK),
305 /*13*/	FLAG_ENTRY0("PcicRetryMemCorErr",
306 		CCE_ERR_STATUS_PCIC_RETRY_MEM_COR_ERR_SMASK),
307 /*14*/	FLAG_ENTRY0("PcicRetryMemCorErr",
308 		CCE_ERR_STATUS_PCIC_RETRY_SOT_MEM_COR_ERR_SMASK),
309 /*15*/	FLAG_ENTRY0("PcicPostHdQCorErr",
310 		CCE_ERR_STATUS_PCIC_POST_HD_QCOR_ERR_SMASK),
311 /*16*/	FLAG_ENTRY0("PcicPostHdQCorErr",
312 		CCE_ERR_STATUS_PCIC_POST_DAT_QCOR_ERR_SMASK),
313 /*17*/	FLAG_ENTRY0("PcicPostHdQCorErr",
314 		CCE_ERR_STATUS_PCIC_CPL_HD_QCOR_ERR_SMASK),
315 /*18*/	FLAG_ENTRY0("PcicCplDatQCorErr",
316 		CCE_ERR_STATUS_PCIC_CPL_DAT_QCOR_ERR_SMASK),
317 /*19*/	FLAG_ENTRY0("PcicNPostHQParityErr",
318 		CCE_ERR_STATUS_PCIC_NPOST_HQ_PARITY_ERR_SMASK),
319 /*20*/	FLAG_ENTRY0("PcicNPostDatQParityErr",
320 		CCE_ERR_STATUS_PCIC_NPOST_DAT_QPARITY_ERR_SMASK),
321 /*21*/	FLAG_ENTRY0("PcicRetryMemUncErr",
322 		CCE_ERR_STATUS_PCIC_RETRY_MEM_UNC_ERR_SMASK),
323 /*22*/	FLAG_ENTRY0("PcicRetrySotMemUncErr",
324 		CCE_ERR_STATUS_PCIC_RETRY_SOT_MEM_UNC_ERR_SMASK),
325 /*23*/	FLAG_ENTRY0("PcicPostHdQUncErr",
326 		CCE_ERR_STATUS_PCIC_POST_HD_QUNC_ERR_SMASK),
327 /*24*/	FLAG_ENTRY0("PcicPostDatQUncErr",
328 		CCE_ERR_STATUS_PCIC_POST_DAT_QUNC_ERR_SMASK),
329 /*25*/	FLAG_ENTRY0("PcicCplHdQUncErr",
330 		CCE_ERR_STATUS_PCIC_CPL_HD_QUNC_ERR_SMASK),
331 /*26*/	FLAG_ENTRY0("PcicCplDatQUncErr",
332 		CCE_ERR_STATUS_PCIC_CPL_DAT_QUNC_ERR_SMASK),
333 /*27*/	FLAG_ENTRY0("PcicTransmitFrontParityErr",
334 		CCE_ERR_STATUS_PCIC_TRANSMIT_FRONT_PARITY_ERR_SMASK),
335 /*28*/	FLAG_ENTRY0("PcicTransmitBackParityErr",
336 		CCE_ERR_STATUS_PCIC_TRANSMIT_BACK_PARITY_ERR_SMASK),
337 /*29*/	FLAG_ENTRY0("PcicReceiveParityErr",
338 		CCE_ERR_STATUS_PCIC_RECEIVE_PARITY_ERR_SMASK),
339 /*30*/	FLAG_ENTRY0("CceTrgtCplTimeoutErr",
340 		CCE_ERR_STATUS_CCE_TRGT_CPL_TIMEOUT_ERR_SMASK),
341 /*31*/	FLAG_ENTRY0("LATriggered",
342 		CCE_ERR_STATUS_LA_TRIGGERED_SMASK),
343 /*32*/	FLAG_ENTRY0("CceSegReadBadAddrErr",
344 		CCE_ERR_STATUS_CCE_SEG_READ_BAD_ADDR_ERR_SMASK),
345 /*33*/	FLAG_ENTRY0("CceSegWriteBadAddrErr",
346 		CCE_ERR_STATUS_CCE_SEG_WRITE_BAD_ADDR_ERR_SMASK),
347 /*34*/	FLAG_ENTRY0("CceRcplAsyncFifoParityErr",
348 		CCE_ERR_STATUS_CCE_RCPL_ASYNC_FIFO_PARITY_ERR_SMASK),
349 /*35*/	FLAG_ENTRY0("CceRxdmaConvFifoParityErr",
350 		CCE_ERR_STATUS_CCE_RXDMA_CONV_FIFO_PARITY_ERR_SMASK),
351 /*36*/	FLAG_ENTRY0("CceMsixTableCorErr",
352 		CCE_ERR_STATUS_CCE_MSIX_TABLE_COR_ERR_SMASK),
353 /*37*/	FLAG_ENTRY0("CceMsixTableUncErr",
354 		CCE_ERR_STATUS_CCE_MSIX_TABLE_UNC_ERR_SMASK),
355 /*38*/	FLAG_ENTRY0("CceIntMapCorErr",
356 		CCE_ERR_STATUS_CCE_INT_MAP_COR_ERR_SMASK),
357 /*39*/	FLAG_ENTRY0("CceIntMapUncErr",
358 		CCE_ERR_STATUS_CCE_INT_MAP_UNC_ERR_SMASK),
359 /*40*/	FLAG_ENTRY0("CceMsixCsrParityErr",
360 		CCE_ERR_STATUS_CCE_MSIX_CSR_PARITY_ERR_SMASK),
361 /*41-63 reserved*/
362 };
363 
364 /*
365  * Misc Error flags
366  */
367 #define MES(text) MISC_ERR_STATUS_MISC_##text##_ERR_SMASK
368 static struct flag_table misc_err_status_flags[] = {
369 /* 0*/	FLAG_ENTRY0("CSR_PARITY", MES(CSR_PARITY)),
370 /* 1*/	FLAG_ENTRY0("CSR_READ_BAD_ADDR", MES(CSR_READ_BAD_ADDR)),
371 /* 2*/	FLAG_ENTRY0("CSR_WRITE_BAD_ADDR", MES(CSR_WRITE_BAD_ADDR)),
372 /* 3*/	FLAG_ENTRY0("SBUS_WRITE_FAILED", MES(SBUS_WRITE_FAILED)),
373 /* 4*/	FLAG_ENTRY0("KEY_MISMATCH", MES(KEY_MISMATCH)),
374 /* 5*/	FLAG_ENTRY0("FW_AUTH_FAILED", MES(FW_AUTH_FAILED)),
375 /* 6*/	FLAG_ENTRY0("EFUSE_CSR_PARITY", MES(EFUSE_CSR_PARITY)),
376 /* 7*/	FLAG_ENTRY0("EFUSE_READ_BAD_ADDR", MES(EFUSE_READ_BAD_ADDR)),
377 /* 8*/	FLAG_ENTRY0("EFUSE_WRITE", MES(EFUSE_WRITE)),
378 /* 9*/	FLAG_ENTRY0("EFUSE_DONE_PARITY", MES(EFUSE_DONE_PARITY)),
379 /*10*/	FLAG_ENTRY0("INVALID_EEP_CMD", MES(INVALID_EEP_CMD)),
380 /*11*/	FLAG_ENTRY0("MBIST_FAIL", MES(MBIST_FAIL)),
381 /*12*/	FLAG_ENTRY0("PLL_LOCK_FAIL", MES(PLL_LOCK_FAIL))
382 };
383 
384 /*
385  * TXE PIO Error flags and consequences
386  */
387 static struct flag_table pio_err_status_flags[] = {
388 /* 0*/	FLAG_ENTRY("PioWriteBadCtxt",
389 	SEC_WRITE_DROPPED,
390 	SEND_PIO_ERR_STATUS_PIO_WRITE_BAD_CTXT_ERR_SMASK),
391 /* 1*/	FLAG_ENTRY("PioWriteAddrParity",
392 	SEC_SPC_FREEZE,
393 	SEND_PIO_ERR_STATUS_PIO_WRITE_ADDR_PARITY_ERR_SMASK),
394 /* 2*/	FLAG_ENTRY("PioCsrParity",
395 	SEC_SPC_FREEZE,
396 	SEND_PIO_ERR_STATUS_PIO_CSR_PARITY_ERR_SMASK),
397 /* 3*/	FLAG_ENTRY("PioSbMemFifo0",
398 	SEC_SPC_FREEZE,
399 	SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO0_ERR_SMASK),
400 /* 4*/	FLAG_ENTRY("PioSbMemFifo1",
401 	SEC_SPC_FREEZE,
402 	SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO1_ERR_SMASK),
403 /* 5*/	FLAG_ENTRY("PioPccFifoParity",
404 	SEC_SPC_FREEZE,
405 	SEND_PIO_ERR_STATUS_PIO_PCC_FIFO_PARITY_ERR_SMASK),
406 /* 6*/	FLAG_ENTRY("PioPecFifoParity",
407 	SEC_SPC_FREEZE,
408 	SEND_PIO_ERR_STATUS_PIO_PEC_FIFO_PARITY_ERR_SMASK),
409 /* 7*/	FLAG_ENTRY("PioSbrdctlCrrelParity",
410 	SEC_SPC_FREEZE,
411 	SEND_PIO_ERR_STATUS_PIO_SBRDCTL_CRREL_PARITY_ERR_SMASK),
412 /* 8*/	FLAG_ENTRY("PioSbrdctrlCrrelFifoParity",
413 	SEC_SPC_FREEZE,
414 	SEND_PIO_ERR_STATUS_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR_SMASK),
415 /* 9*/	FLAG_ENTRY("PioPktEvictFifoParityErr",
416 	SEC_SPC_FREEZE,
417 	SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_FIFO_PARITY_ERR_SMASK),
418 /*10*/	FLAG_ENTRY("PioSmPktResetParity",
419 	SEC_SPC_FREEZE,
420 	SEND_PIO_ERR_STATUS_PIO_SM_PKT_RESET_PARITY_ERR_SMASK),
421 /*11*/	FLAG_ENTRY("PioVlLenMemBank0Unc",
422 	SEC_SPC_FREEZE,
423 	SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_UNC_ERR_SMASK),
424 /*12*/	FLAG_ENTRY("PioVlLenMemBank1Unc",
425 	SEC_SPC_FREEZE,
426 	SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_UNC_ERR_SMASK),
427 /*13*/	FLAG_ENTRY("PioVlLenMemBank0Cor",
428 	0,
429 	SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_COR_ERR_SMASK),
430 /*14*/	FLAG_ENTRY("PioVlLenMemBank1Cor",
431 	0,
432 	SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_COR_ERR_SMASK),
433 /*15*/	FLAG_ENTRY("PioCreditRetFifoParity",
434 	SEC_SPC_FREEZE,
435 	SEND_PIO_ERR_STATUS_PIO_CREDIT_RET_FIFO_PARITY_ERR_SMASK),
436 /*16*/	FLAG_ENTRY("PioPpmcPblFifo",
437 	SEC_SPC_FREEZE,
438 	SEND_PIO_ERR_STATUS_PIO_PPMC_PBL_FIFO_ERR_SMASK),
439 /*17*/	FLAG_ENTRY("PioInitSmIn",
440 	0,
441 	SEND_PIO_ERR_STATUS_PIO_INIT_SM_IN_ERR_SMASK),
442 /*18*/	FLAG_ENTRY("PioPktEvictSmOrArbSm",
443 	SEC_SPC_FREEZE,
444 	SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_SM_OR_ARB_SM_ERR_SMASK),
445 /*19*/	FLAG_ENTRY("PioHostAddrMemUnc",
446 	SEC_SPC_FREEZE,
447 	SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_UNC_ERR_SMASK),
448 /*20*/	FLAG_ENTRY("PioHostAddrMemCor",
449 	0,
450 	SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_COR_ERR_SMASK),
451 /*21*/	FLAG_ENTRY("PioWriteDataParity",
452 	SEC_SPC_FREEZE,
453 	SEND_PIO_ERR_STATUS_PIO_WRITE_DATA_PARITY_ERR_SMASK),
454 /*22*/	FLAG_ENTRY("PioStateMachine",
455 	SEC_SPC_FREEZE,
456 	SEND_PIO_ERR_STATUS_PIO_STATE_MACHINE_ERR_SMASK),
457 /*23*/	FLAG_ENTRY("PioWriteQwValidParity",
458 	SEC_WRITE_DROPPED | SEC_SPC_FREEZE,
459 	SEND_PIO_ERR_STATUS_PIO_WRITE_QW_VALID_PARITY_ERR_SMASK),
460 /*24*/	FLAG_ENTRY("PioBlockQwCountParity",
461 	SEC_WRITE_DROPPED | SEC_SPC_FREEZE,
462 	SEND_PIO_ERR_STATUS_PIO_BLOCK_QW_COUNT_PARITY_ERR_SMASK),
463 /*25*/	FLAG_ENTRY("PioVlfVlLenParity",
464 	SEC_SPC_FREEZE,
465 	SEND_PIO_ERR_STATUS_PIO_VLF_VL_LEN_PARITY_ERR_SMASK),
466 /*26*/	FLAG_ENTRY("PioVlfSopParity",
467 	SEC_SPC_FREEZE,
468 	SEND_PIO_ERR_STATUS_PIO_VLF_SOP_PARITY_ERR_SMASK),
469 /*27*/	FLAG_ENTRY("PioVlFifoParity",
470 	SEC_SPC_FREEZE,
471 	SEND_PIO_ERR_STATUS_PIO_VL_FIFO_PARITY_ERR_SMASK),
472 /*28*/	FLAG_ENTRY("PioPpmcBqcMemParity",
473 	SEC_SPC_FREEZE,
474 	SEND_PIO_ERR_STATUS_PIO_PPMC_BQC_MEM_PARITY_ERR_SMASK),
475 /*29*/	FLAG_ENTRY("PioPpmcSopLen",
476 	SEC_SPC_FREEZE,
477 	SEND_PIO_ERR_STATUS_PIO_PPMC_SOP_LEN_ERR_SMASK),
478 /*30-31 reserved*/
479 /*32*/	FLAG_ENTRY("PioCurrentFreeCntParity",
480 	SEC_SPC_FREEZE,
481 	SEND_PIO_ERR_STATUS_PIO_CURRENT_FREE_CNT_PARITY_ERR_SMASK),
482 /*33*/	FLAG_ENTRY("PioLastReturnedCntParity",
483 	SEC_SPC_FREEZE,
484 	SEND_PIO_ERR_STATUS_PIO_LAST_RETURNED_CNT_PARITY_ERR_SMASK),
485 /*34*/	FLAG_ENTRY("PioPccSopHeadParity",
486 	SEC_SPC_FREEZE,
487 	SEND_PIO_ERR_STATUS_PIO_PCC_SOP_HEAD_PARITY_ERR_SMASK),
488 /*35*/	FLAG_ENTRY("PioPecSopHeadParityErr",
489 	SEC_SPC_FREEZE,
490 	SEND_PIO_ERR_STATUS_PIO_PEC_SOP_HEAD_PARITY_ERR_SMASK),
491 /*36-63 reserved*/
492 };
493 
494 /* TXE PIO errors that cause an SPC freeze */
495 #define ALL_PIO_FREEZE_ERR \
496 	(SEND_PIO_ERR_STATUS_PIO_WRITE_ADDR_PARITY_ERR_SMASK \
497 	| SEND_PIO_ERR_STATUS_PIO_CSR_PARITY_ERR_SMASK \
498 	| SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO0_ERR_SMASK \
499 	| SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO1_ERR_SMASK \
500 	| SEND_PIO_ERR_STATUS_PIO_PCC_FIFO_PARITY_ERR_SMASK \
501 	| SEND_PIO_ERR_STATUS_PIO_PEC_FIFO_PARITY_ERR_SMASK \
502 	| SEND_PIO_ERR_STATUS_PIO_SBRDCTL_CRREL_PARITY_ERR_SMASK \
503 	| SEND_PIO_ERR_STATUS_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR_SMASK \
504 	| SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_FIFO_PARITY_ERR_SMASK \
505 	| SEND_PIO_ERR_STATUS_PIO_SM_PKT_RESET_PARITY_ERR_SMASK \
506 	| SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_UNC_ERR_SMASK \
507 	| SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_UNC_ERR_SMASK \
508 	| SEND_PIO_ERR_STATUS_PIO_CREDIT_RET_FIFO_PARITY_ERR_SMASK \
509 	| SEND_PIO_ERR_STATUS_PIO_PPMC_PBL_FIFO_ERR_SMASK \
510 	| SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_SM_OR_ARB_SM_ERR_SMASK \
511 	| SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_UNC_ERR_SMASK \
512 	| SEND_PIO_ERR_STATUS_PIO_WRITE_DATA_PARITY_ERR_SMASK \
513 	| SEND_PIO_ERR_STATUS_PIO_STATE_MACHINE_ERR_SMASK \
514 	| SEND_PIO_ERR_STATUS_PIO_WRITE_QW_VALID_PARITY_ERR_SMASK \
515 	| SEND_PIO_ERR_STATUS_PIO_BLOCK_QW_COUNT_PARITY_ERR_SMASK \
516 	| SEND_PIO_ERR_STATUS_PIO_VLF_VL_LEN_PARITY_ERR_SMASK \
517 	| SEND_PIO_ERR_STATUS_PIO_VLF_SOP_PARITY_ERR_SMASK \
518 	| SEND_PIO_ERR_STATUS_PIO_VL_FIFO_PARITY_ERR_SMASK \
519 	| SEND_PIO_ERR_STATUS_PIO_PPMC_BQC_MEM_PARITY_ERR_SMASK \
520 	| SEND_PIO_ERR_STATUS_PIO_PPMC_SOP_LEN_ERR_SMASK \
521 	| SEND_PIO_ERR_STATUS_PIO_CURRENT_FREE_CNT_PARITY_ERR_SMASK \
522 	| SEND_PIO_ERR_STATUS_PIO_LAST_RETURNED_CNT_PARITY_ERR_SMASK \
523 	| SEND_PIO_ERR_STATUS_PIO_PCC_SOP_HEAD_PARITY_ERR_SMASK \
524 	| SEND_PIO_ERR_STATUS_PIO_PEC_SOP_HEAD_PARITY_ERR_SMASK)
525 
526 /*
527  * TXE SDMA Error flags
528  */
529 static struct flag_table sdma_err_status_flags[] = {
530 /* 0*/	FLAG_ENTRY0("SDmaRpyTagErr",
531 		SEND_DMA_ERR_STATUS_SDMA_RPY_TAG_ERR_SMASK),
532 /* 1*/	FLAG_ENTRY0("SDmaCsrParityErr",
533 		SEND_DMA_ERR_STATUS_SDMA_CSR_PARITY_ERR_SMASK),
534 /* 2*/	FLAG_ENTRY0("SDmaPcieReqTrackingUncErr",
535 		SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_UNC_ERR_SMASK),
536 /* 3*/	FLAG_ENTRY0("SDmaPcieReqTrackingCorErr",
537 		SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_COR_ERR_SMASK),
538 /*04-63 reserved*/
539 };
540 
541 /* TXE SDMA errors that cause an SPC freeze */
542 #define ALL_SDMA_FREEZE_ERR  \
543 		(SEND_DMA_ERR_STATUS_SDMA_RPY_TAG_ERR_SMASK \
544 		| SEND_DMA_ERR_STATUS_SDMA_CSR_PARITY_ERR_SMASK \
545 		| SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_UNC_ERR_SMASK)
546 
547 /* SendEgressErrInfo bits that correspond to a PortXmitDiscard counter */
548 #define PORT_DISCARD_EGRESS_ERRS \
549 	(SEND_EGRESS_ERR_INFO_TOO_LONG_IB_PACKET_ERR_SMASK \
550 	| SEND_EGRESS_ERR_INFO_VL_MAPPING_ERR_SMASK \
551 	| SEND_EGRESS_ERR_INFO_VL_ERR_SMASK)
552 
553 /*
554  * TXE Egress Error flags
555  */
556 #define SEES(text) SEND_EGRESS_ERR_STATUS_##text##_ERR_SMASK
557 static struct flag_table egress_err_status_flags[] = {
558 /* 0*/	FLAG_ENTRY0("TxPktIntegrityMemCorErr", SEES(TX_PKT_INTEGRITY_MEM_COR)),
559 /* 1*/	FLAG_ENTRY0("TxPktIntegrityMemUncErr", SEES(TX_PKT_INTEGRITY_MEM_UNC)),
560 /* 2 reserved */
561 /* 3*/	FLAG_ENTRY0("TxEgressFifoUnderrunOrParityErr",
562 		SEES(TX_EGRESS_FIFO_UNDERRUN_OR_PARITY)),
563 /* 4*/	FLAG_ENTRY0("TxLinkdownErr", SEES(TX_LINKDOWN)),
564 /* 5*/	FLAG_ENTRY0("TxIncorrectLinkStateErr", SEES(TX_INCORRECT_LINK_STATE)),
565 /* 6 reserved */
566 /* 7*/	FLAG_ENTRY0("TxPioLaunchIntfParityErr",
567 		SEES(TX_PIO_LAUNCH_INTF_PARITY)),
568 /* 8*/	FLAG_ENTRY0("TxSdmaLaunchIntfParityErr",
569 		SEES(TX_SDMA_LAUNCH_INTF_PARITY)),
570 /* 9-10 reserved */
571 /*11*/	FLAG_ENTRY0("TxSbrdCtlStateMachineParityErr",
572 		SEES(TX_SBRD_CTL_STATE_MACHINE_PARITY)),
573 /*12*/	FLAG_ENTRY0("TxIllegalVLErr", SEES(TX_ILLEGAL_VL)),
574 /*13*/	FLAG_ENTRY0("TxLaunchCsrParityErr", SEES(TX_LAUNCH_CSR_PARITY)),
575 /*14*/	FLAG_ENTRY0("TxSbrdCtlCsrParityErr", SEES(TX_SBRD_CTL_CSR_PARITY)),
576 /*15*/	FLAG_ENTRY0("TxConfigParityErr", SEES(TX_CONFIG_PARITY)),
577 /*16*/	FLAG_ENTRY0("TxSdma0DisallowedPacketErr",
578 		SEES(TX_SDMA0_DISALLOWED_PACKET)),
579 /*17*/	FLAG_ENTRY0("TxSdma1DisallowedPacketErr",
580 		SEES(TX_SDMA1_DISALLOWED_PACKET)),
581 /*18*/	FLAG_ENTRY0("TxSdma2DisallowedPacketErr",
582 		SEES(TX_SDMA2_DISALLOWED_PACKET)),
583 /*19*/	FLAG_ENTRY0("TxSdma3DisallowedPacketErr",
584 		SEES(TX_SDMA3_DISALLOWED_PACKET)),
585 /*20*/	FLAG_ENTRY0("TxSdma4DisallowedPacketErr",
586 		SEES(TX_SDMA4_DISALLOWED_PACKET)),
587 /*21*/	FLAG_ENTRY0("TxSdma5DisallowedPacketErr",
588 		SEES(TX_SDMA5_DISALLOWED_PACKET)),
589 /*22*/	FLAG_ENTRY0("TxSdma6DisallowedPacketErr",
590 		SEES(TX_SDMA6_DISALLOWED_PACKET)),
591 /*23*/	FLAG_ENTRY0("TxSdma7DisallowedPacketErr",
592 		SEES(TX_SDMA7_DISALLOWED_PACKET)),
593 /*24*/	FLAG_ENTRY0("TxSdma8DisallowedPacketErr",
594 		SEES(TX_SDMA8_DISALLOWED_PACKET)),
595 /*25*/	FLAG_ENTRY0("TxSdma9DisallowedPacketErr",
596 		SEES(TX_SDMA9_DISALLOWED_PACKET)),
597 /*26*/	FLAG_ENTRY0("TxSdma10DisallowedPacketErr",
598 		SEES(TX_SDMA10_DISALLOWED_PACKET)),
599 /*27*/	FLAG_ENTRY0("TxSdma11DisallowedPacketErr",
600 		SEES(TX_SDMA11_DISALLOWED_PACKET)),
601 /*28*/	FLAG_ENTRY0("TxSdma12DisallowedPacketErr",
602 		SEES(TX_SDMA12_DISALLOWED_PACKET)),
603 /*29*/	FLAG_ENTRY0("TxSdma13DisallowedPacketErr",
604 		SEES(TX_SDMA13_DISALLOWED_PACKET)),
605 /*30*/	FLAG_ENTRY0("TxSdma14DisallowedPacketErr",
606 		SEES(TX_SDMA14_DISALLOWED_PACKET)),
607 /*31*/	FLAG_ENTRY0("TxSdma15DisallowedPacketErr",
608 		SEES(TX_SDMA15_DISALLOWED_PACKET)),
609 /*32*/	FLAG_ENTRY0("TxLaunchFifo0UncOrParityErr",
610 		SEES(TX_LAUNCH_FIFO0_UNC_OR_PARITY)),
611 /*33*/	FLAG_ENTRY0("TxLaunchFifo1UncOrParityErr",
612 		SEES(TX_LAUNCH_FIFO1_UNC_OR_PARITY)),
613 /*34*/	FLAG_ENTRY0("TxLaunchFifo2UncOrParityErr",
614 		SEES(TX_LAUNCH_FIFO2_UNC_OR_PARITY)),
615 /*35*/	FLAG_ENTRY0("TxLaunchFifo3UncOrParityErr",
616 		SEES(TX_LAUNCH_FIFO3_UNC_OR_PARITY)),
617 /*36*/	FLAG_ENTRY0("TxLaunchFifo4UncOrParityErr",
618 		SEES(TX_LAUNCH_FIFO4_UNC_OR_PARITY)),
619 /*37*/	FLAG_ENTRY0("TxLaunchFifo5UncOrParityErr",
620 		SEES(TX_LAUNCH_FIFO5_UNC_OR_PARITY)),
621 /*38*/	FLAG_ENTRY0("TxLaunchFifo6UncOrParityErr",
622 		SEES(TX_LAUNCH_FIFO6_UNC_OR_PARITY)),
623 /*39*/	FLAG_ENTRY0("TxLaunchFifo7UncOrParityErr",
624 		SEES(TX_LAUNCH_FIFO7_UNC_OR_PARITY)),
625 /*40*/	FLAG_ENTRY0("TxLaunchFifo8UncOrParityErr",
626 		SEES(TX_LAUNCH_FIFO8_UNC_OR_PARITY)),
627 /*41*/	FLAG_ENTRY0("TxCreditReturnParityErr", SEES(TX_CREDIT_RETURN_PARITY)),
628 /*42*/	FLAG_ENTRY0("TxSbHdrUncErr", SEES(TX_SB_HDR_UNC)),
629 /*43*/	FLAG_ENTRY0("TxReadSdmaMemoryUncErr", SEES(TX_READ_SDMA_MEMORY_UNC)),
630 /*44*/	FLAG_ENTRY0("TxReadPioMemoryUncErr", SEES(TX_READ_PIO_MEMORY_UNC)),
631 /*45*/	FLAG_ENTRY0("TxEgressFifoUncErr", SEES(TX_EGRESS_FIFO_UNC)),
632 /*46*/	FLAG_ENTRY0("TxHcrcInsertionErr", SEES(TX_HCRC_INSERTION)),
633 /*47*/	FLAG_ENTRY0("TxCreditReturnVLErr", SEES(TX_CREDIT_RETURN_VL)),
634 /*48*/	FLAG_ENTRY0("TxLaunchFifo0CorErr", SEES(TX_LAUNCH_FIFO0_COR)),
635 /*49*/	FLAG_ENTRY0("TxLaunchFifo1CorErr", SEES(TX_LAUNCH_FIFO1_COR)),
636 /*50*/	FLAG_ENTRY0("TxLaunchFifo2CorErr", SEES(TX_LAUNCH_FIFO2_COR)),
637 /*51*/	FLAG_ENTRY0("TxLaunchFifo3CorErr", SEES(TX_LAUNCH_FIFO3_COR)),
638 /*52*/	FLAG_ENTRY0("TxLaunchFifo4CorErr", SEES(TX_LAUNCH_FIFO4_COR)),
639 /*53*/	FLAG_ENTRY0("TxLaunchFifo5CorErr", SEES(TX_LAUNCH_FIFO5_COR)),
640 /*54*/	FLAG_ENTRY0("TxLaunchFifo6CorErr", SEES(TX_LAUNCH_FIFO6_COR)),
641 /*55*/	FLAG_ENTRY0("TxLaunchFifo7CorErr", SEES(TX_LAUNCH_FIFO7_COR)),
642 /*56*/	FLAG_ENTRY0("TxLaunchFifo8CorErr", SEES(TX_LAUNCH_FIFO8_COR)),
643 /*57*/	FLAG_ENTRY0("TxCreditOverrunErr", SEES(TX_CREDIT_OVERRUN)),
644 /*58*/	FLAG_ENTRY0("TxSbHdrCorErr", SEES(TX_SB_HDR_COR)),
645 /*59*/	FLAG_ENTRY0("TxReadSdmaMemoryCorErr", SEES(TX_READ_SDMA_MEMORY_COR)),
646 /*60*/	FLAG_ENTRY0("TxReadPioMemoryCorErr", SEES(TX_READ_PIO_MEMORY_COR)),
647 /*61*/	FLAG_ENTRY0("TxEgressFifoCorErr", SEES(TX_EGRESS_FIFO_COR)),
648 /*62*/	FLAG_ENTRY0("TxReadSdmaMemoryCsrUncErr",
649 		SEES(TX_READ_SDMA_MEMORY_CSR_UNC)),
650 /*63*/	FLAG_ENTRY0("TxReadPioMemoryCsrUncErr",
651 		SEES(TX_READ_PIO_MEMORY_CSR_UNC)),
652 };
653 
654 /*
655  * TXE Egress Error Info flags
656  */
657 #define SEEI(text) SEND_EGRESS_ERR_INFO_##text##_ERR_SMASK
658 static struct flag_table egress_err_info_flags[] = {
659 /* 0*/	FLAG_ENTRY0("Reserved", 0ull),
660 /* 1*/	FLAG_ENTRY0("VLErr", SEEI(VL)),
661 /* 2*/	FLAG_ENTRY0("JobKeyErr", SEEI(JOB_KEY)),
662 /* 3*/	FLAG_ENTRY0("JobKeyErr", SEEI(JOB_KEY)),
663 /* 4*/	FLAG_ENTRY0("PartitionKeyErr", SEEI(PARTITION_KEY)),
664 /* 5*/	FLAG_ENTRY0("SLIDErr", SEEI(SLID)),
665 /* 6*/	FLAG_ENTRY0("OpcodeErr", SEEI(OPCODE)),
666 /* 7*/	FLAG_ENTRY0("VLMappingErr", SEEI(VL_MAPPING)),
667 /* 8*/	FLAG_ENTRY0("RawErr", SEEI(RAW)),
668 /* 9*/	FLAG_ENTRY0("RawIPv6Err", SEEI(RAW_IPV6)),
669 /*10*/	FLAG_ENTRY0("GRHErr", SEEI(GRH)),
670 /*11*/	FLAG_ENTRY0("BypassErr", SEEI(BYPASS)),
671 /*12*/	FLAG_ENTRY0("KDETHPacketsErr", SEEI(KDETH_PACKETS)),
672 /*13*/	FLAG_ENTRY0("NonKDETHPacketsErr", SEEI(NON_KDETH_PACKETS)),
673 /*14*/	FLAG_ENTRY0("TooSmallIBPacketsErr", SEEI(TOO_SMALL_IB_PACKETS)),
674 /*15*/	FLAG_ENTRY0("TooSmallBypassPacketsErr", SEEI(TOO_SMALL_BYPASS_PACKETS)),
675 /*16*/	FLAG_ENTRY0("PbcTestErr", SEEI(PBC_TEST)),
676 /*17*/	FLAG_ENTRY0("BadPktLenErr", SEEI(BAD_PKT_LEN)),
677 /*18*/	FLAG_ENTRY0("TooLongIBPacketErr", SEEI(TOO_LONG_IB_PACKET)),
678 /*19*/	FLAG_ENTRY0("TooLongBypassPacketsErr", SEEI(TOO_LONG_BYPASS_PACKETS)),
679 /*20*/	FLAG_ENTRY0("PbcStaticRateControlErr", SEEI(PBC_STATIC_RATE_CONTROL)),
680 /*21*/	FLAG_ENTRY0("BypassBadPktLenErr", SEEI(BAD_PKT_LEN)),
681 };
682 
683 /* TXE Egress errors that cause an SPC freeze */
684 #define ALL_TXE_EGRESS_FREEZE_ERR \
685 	(SEES(TX_EGRESS_FIFO_UNDERRUN_OR_PARITY) \
686 	| SEES(TX_PIO_LAUNCH_INTF_PARITY) \
687 	| SEES(TX_SDMA_LAUNCH_INTF_PARITY) \
688 	| SEES(TX_SBRD_CTL_STATE_MACHINE_PARITY) \
689 	| SEES(TX_LAUNCH_CSR_PARITY) \
690 	| SEES(TX_SBRD_CTL_CSR_PARITY) \
691 	| SEES(TX_CONFIG_PARITY) \
692 	| SEES(TX_LAUNCH_FIFO0_UNC_OR_PARITY) \
693 	| SEES(TX_LAUNCH_FIFO1_UNC_OR_PARITY) \
694 	| SEES(TX_LAUNCH_FIFO2_UNC_OR_PARITY) \
695 	| SEES(TX_LAUNCH_FIFO3_UNC_OR_PARITY) \
696 	| SEES(TX_LAUNCH_FIFO4_UNC_OR_PARITY) \
697 	| SEES(TX_LAUNCH_FIFO5_UNC_OR_PARITY) \
698 	| SEES(TX_LAUNCH_FIFO6_UNC_OR_PARITY) \
699 	| SEES(TX_LAUNCH_FIFO7_UNC_OR_PARITY) \
700 	| SEES(TX_LAUNCH_FIFO8_UNC_OR_PARITY) \
701 	| SEES(TX_CREDIT_RETURN_PARITY))
702 
703 /*
704  * TXE Send error flags
705  */
706 #define SES(name) SEND_ERR_STATUS_SEND_##name##_ERR_SMASK
707 static struct flag_table send_err_status_flags[] = {
708 /* 0*/	FLAG_ENTRY0("SendCsrParityErr", SES(CSR_PARITY)),
709 /* 1*/	FLAG_ENTRY0("SendCsrReadBadAddrErr", SES(CSR_READ_BAD_ADDR)),
710 /* 2*/	FLAG_ENTRY0("SendCsrWriteBadAddrErr", SES(CSR_WRITE_BAD_ADDR))
711 };
712 
713 /*
714  * TXE Send Context Error flags and consequences
715  */
716 static struct flag_table sc_err_status_flags[] = {
717 /* 0*/	FLAG_ENTRY("InconsistentSop",
718 		SEC_PACKET_DROPPED | SEC_SC_HALTED,
719 		SEND_CTXT_ERR_STATUS_PIO_INCONSISTENT_SOP_ERR_SMASK),
720 /* 1*/	FLAG_ENTRY("DisallowedPacket",
721 		SEC_PACKET_DROPPED | SEC_SC_HALTED,
722 		SEND_CTXT_ERR_STATUS_PIO_DISALLOWED_PACKET_ERR_SMASK),
723 /* 2*/	FLAG_ENTRY("WriteCrossesBoundary",
724 		SEC_WRITE_DROPPED | SEC_SC_HALTED,
725 		SEND_CTXT_ERR_STATUS_PIO_WRITE_CROSSES_BOUNDARY_ERR_SMASK),
726 /* 3*/	FLAG_ENTRY("WriteOverflow",
727 		SEC_WRITE_DROPPED | SEC_SC_HALTED,
728 		SEND_CTXT_ERR_STATUS_PIO_WRITE_OVERFLOW_ERR_SMASK),
729 /* 4*/	FLAG_ENTRY("WriteOutOfBounds",
730 		SEC_WRITE_DROPPED | SEC_SC_HALTED,
731 		SEND_CTXT_ERR_STATUS_PIO_WRITE_OUT_OF_BOUNDS_ERR_SMASK),
732 /* 5-63 reserved*/
733 };
734 
735 /*
736  * RXE Receive Error flags
737  */
738 #define RXES(name) RCV_ERR_STATUS_RX_##name##_ERR_SMASK
739 static struct flag_table rxe_err_status_flags[] = {
740 /* 0*/	FLAG_ENTRY0("RxDmaCsrCorErr", RXES(DMA_CSR_COR)),
741 /* 1*/	FLAG_ENTRY0("RxDcIntfParityErr", RXES(DC_INTF_PARITY)),
742 /* 2*/	FLAG_ENTRY0("RxRcvHdrUncErr", RXES(RCV_HDR_UNC)),
743 /* 3*/	FLAG_ENTRY0("RxRcvHdrCorErr", RXES(RCV_HDR_COR)),
744 /* 4*/	FLAG_ENTRY0("RxRcvDataUncErr", RXES(RCV_DATA_UNC)),
745 /* 5*/	FLAG_ENTRY0("RxRcvDataCorErr", RXES(RCV_DATA_COR)),
746 /* 6*/	FLAG_ENTRY0("RxRcvQpMapTableUncErr", RXES(RCV_QP_MAP_TABLE_UNC)),
747 /* 7*/	FLAG_ENTRY0("RxRcvQpMapTableCorErr", RXES(RCV_QP_MAP_TABLE_COR)),
748 /* 8*/	FLAG_ENTRY0("RxRcvCsrParityErr", RXES(RCV_CSR_PARITY)),
749 /* 9*/	FLAG_ENTRY0("RxDcSopEopParityErr", RXES(DC_SOP_EOP_PARITY)),
750 /*10*/	FLAG_ENTRY0("RxDmaFlagUncErr", RXES(DMA_FLAG_UNC)),
751 /*11*/	FLAG_ENTRY0("RxDmaFlagCorErr", RXES(DMA_FLAG_COR)),
752 /*12*/	FLAG_ENTRY0("RxRcvFsmEncodingErr", RXES(RCV_FSM_ENCODING)),
753 /*13*/	FLAG_ENTRY0("RxRbufFreeListUncErr", RXES(RBUF_FREE_LIST_UNC)),
754 /*14*/	FLAG_ENTRY0("RxRbufFreeListCorErr", RXES(RBUF_FREE_LIST_COR)),
755 /*15*/	FLAG_ENTRY0("RxRbufLookupDesRegUncErr", RXES(RBUF_LOOKUP_DES_REG_UNC)),
756 /*16*/	FLAG_ENTRY0("RxRbufLookupDesRegUncCorErr",
757 		RXES(RBUF_LOOKUP_DES_REG_UNC_COR)),
758 /*17*/	FLAG_ENTRY0("RxRbufLookupDesUncErr", RXES(RBUF_LOOKUP_DES_UNC)),
759 /*18*/	FLAG_ENTRY0("RxRbufLookupDesCorErr", RXES(RBUF_LOOKUP_DES_COR)),
760 /*19*/	FLAG_ENTRY0("RxRbufBlockListReadUncErr",
761 		RXES(RBUF_BLOCK_LIST_READ_UNC)),
762 /*20*/	FLAG_ENTRY0("RxRbufBlockListReadCorErr",
763 		RXES(RBUF_BLOCK_LIST_READ_COR)),
764 /*21*/	FLAG_ENTRY0("RxRbufCsrQHeadBufNumParityErr",
765 		RXES(RBUF_CSR_QHEAD_BUF_NUM_PARITY)),
766 /*22*/	FLAG_ENTRY0("RxRbufCsrQEntCntParityErr",
767 		RXES(RBUF_CSR_QENT_CNT_PARITY)),
768 /*23*/	FLAG_ENTRY0("RxRbufCsrQNextBufParityErr",
769 		RXES(RBUF_CSR_QNEXT_BUF_PARITY)),
770 /*24*/	FLAG_ENTRY0("RxRbufCsrQVldBitParityErr",
771 		RXES(RBUF_CSR_QVLD_BIT_PARITY)),
772 /*25*/	FLAG_ENTRY0("RxRbufCsrQHdPtrParityErr", RXES(RBUF_CSR_QHD_PTR_PARITY)),
773 /*26*/	FLAG_ENTRY0("RxRbufCsrQTlPtrParityErr", RXES(RBUF_CSR_QTL_PTR_PARITY)),
774 /*27*/	FLAG_ENTRY0("RxRbufCsrQNumOfPktParityErr",
775 		RXES(RBUF_CSR_QNUM_OF_PKT_PARITY)),
776 /*28*/	FLAG_ENTRY0("RxRbufCsrQEOPDWParityErr", RXES(RBUF_CSR_QEOPDW_PARITY)),
777 /*29*/	FLAG_ENTRY0("RxRbufCtxIdParityErr", RXES(RBUF_CTX_ID_PARITY)),
778 /*30*/	FLAG_ENTRY0("RxRBufBadLookupErr", RXES(RBUF_BAD_LOOKUP)),
779 /*31*/	FLAG_ENTRY0("RxRbufFullErr", RXES(RBUF_FULL)),
780 /*32*/	FLAG_ENTRY0("RxRbufEmptyErr", RXES(RBUF_EMPTY)),
781 /*33*/	FLAG_ENTRY0("RxRbufFlRdAddrParityErr", RXES(RBUF_FL_RD_ADDR_PARITY)),
782 /*34*/	FLAG_ENTRY0("RxRbufFlWrAddrParityErr", RXES(RBUF_FL_WR_ADDR_PARITY)),
783 /*35*/	FLAG_ENTRY0("RxRbufFlInitdoneParityErr",
784 		RXES(RBUF_FL_INITDONE_PARITY)),
785 /*36*/	FLAG_ENTRY0("RxRbufFlInitWrAddrParityErr",
786 		RXES(RBUF_FL_INIT_WR_ADDR_PARITY)),
787 /*37*/	FLAG_ENTRY0("RxRbufNextFreeBufUncErr", RXES(RBUF_NEXT_FREE_BUF_UNC)),
788 /*38*/	FLAG_ENTRY0("RxRbufNextFreeBufCorErr", RXES(RBUF_NEXT_FREE_BUF_COR)),
789 /*39*/	FLAG_ENTRY0("RxLookupDesPart1UncErr", RXES(LOOKUP_DES_PART1_UNC)),
790 /*40*/	FLAG_ENTRY0("RxLookupDesPart1UncCorErr",
791 		RXES(LOOKUP_DES_PART1_UNC_COR)),
792 /*41*/	FLAG_ENTRY0("RxLookupDesPart2ParityErr",
793 		RXES(LOOKUP_DES_PART2_PARITY)),
794 /*42*/	FLAG_ENTRY0("RxLookupRcvArrayUncErr", RXES(LOOKUP_RCV_ARRAY_UNC)),
795 /*43*/	FLAG_ENTRY0("RxLookupRcvArrayCorErr", RXES(LOOKUP_RCV_ARRAY_COR)),
796 /*44*/	FLAG_ENTRY0("RxLookupCsrParityErr", RXES(LOOKUP_CSR_PARITY)),
797 /*45*/	FLAG_ENTRY0("RxHqIntrCsrParityErr", RXES(HQ_INTR_CSR_PARITY)),
798 /*46*/	FLAG_ENTRY0("RxHqIntrFsmErr", RXES(HQ_INTR_FSM)),
799 /*47*/	FLAG_ENTRY0("RxRbufDescPart1UncErr", RXES(RBUF_DESC_PART1_UNC)),
800 /*48*/	FLAG_ENTRY0("RxRbufDescPart1CorErr", RXES(RBUF_DESC_PART1_COR)),
801 /*49*/	FLAG_ENTRY0("RxRbufDescPart2UncErr", RXES(RBUF_DESC_PART2_UNC)),
802 /*50*/	FLAG_ENTRY0("RxRbufDescPart2CorErr", RXES(RBUF_DESC_PART2_COR)),
803 /*51*/	FLAG_ENTRY0("RxDmaHdrFifoRdUncErr", RXES(DMA_HDR_FIFO_RD_UNC)),
804 /*52*/	FLAG_ENTRY0("RxDmaHdrFifoRdCorErr", RXES(DMA_HDR_FIFO_RD_COR)),
805 /*53*/	FLAG_ENTRY0("RxDmaDataFifoRdUncErr", RXES(DMA_DATA_FIFO_RD_UNC)),
806 /*54*/	FLAG_ENTRY0("RxDmaDataFifoRdCorErr", RXES(DMA_DATA_FIFO_RD_COR)),
807 /*55*/	FLAG_ENTRY0("RxRbufDataUncErr", RXES(RBUF_DATA_UNC)),
808 /*56*/	FLAG_ENTRY0("RxRbufDataCorErr", RXES(RBUF_DATA_COR)),
809 /*57*/	FLAG_ENTRY0("RxDmaCsrParityErr", RXES(DMA_CSR_PARITY)),
810 /*58*/	FLAG_ENTRY0("RxDmaEqFsmEncodingErr", RXES(DMA_EQ_FSM_ENCODING)),
811 /*59*/	FLAG_ENTRY0("RxDmaDqFsmEncodingErr", RXES(DMA_DQ_FSM_ENCODING)),
812 /*60*/	FLAG_ENTRY0("RxDmaCsrUncErr", RXES(DMA_CSR_UNC)),
813 /*61*/	FLAG_ENTRY0("RxCsrReadBadAddrErr", RXES(CSR_READ_BAD_ADDR)),
814 /*62*/	FLAG_ENTRY0("RxCsrWriteBadAddrErr", RXES(CSR_WRITE_BAD_ADDR)),
815 /*63*/	FLAG_ENTRY0("RxCsrParityErr", RXES(CSR_PARITY))
816 };
817 
818 /* RXE errors that will trigger an SPC freeze */
819 #define ALL_RXE_FREEZE_ERR  \
820 	(RCV_ERR_STATUS_RX_RCV_QP_MAP_TABLE_UNC_ERR_SMASK \
821 	| RCV_ERR_STATUS_RX_RCV_CSR_PARITY_ERR_SMASK \
822 	| RCV_ERR_STATUS_RX_DMA_FLAG_UNC_ERR_SMASK \
823 	| RCV_ERR_STATUS_RX_RCV_FSM_ENCODING_ERR_SMASK \
824 	| RCV_ERR_STATUS_RX_RBUF_FREE_LIST_UNC_ERR_SMASK \
825 	| RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_REG_UNC_ERR_SMASK \
826 	| RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_REG_UNC_COR_ERR_SMASK \
827 	| RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_UNC_ERR_SMASK \
828 	| RCV_ERR_STATUS_RX_RBUF_BLOCK_LIST_READ_UNC_ERR_SMASK \
829 	| RCV_ERR_STATUS_RX_RBUF_CSR_QHEAD_BUF_NUM_PARITY_ERR_SMASK \
830 	| RCV_ERR_STATUS_RX_RBUF_CSR_QENT_CNT_PARITY_ERR_SMASK \
831 	| RCV_ERR_STATUS_RX_RBUF_CSR_QNEXT_BUF_PARITY_ERR_SMASK \
832 	| RCV_ERR_STATUS_RX_RBUF_CSR_QVLD_BIT_PARITY_ERR_SMASK \
833 	| RCV_ERR_STATUS_RX_RBUF_CSR_QHD_PTR_PARITY_ERR_SMASK \
834 	| RCV_ERR_STATUS_RX_RBUF_CSR_QTL_PTR_PARITY_ERR_SMASK \
835 	| RCV_ERR_STATUS_RX_RBUF_CSR_QNUM_OF_PKT_PARITY_ERR_SMASK \
836 	| RCV_ERR_STATUS_RX_RBUF_CSR_QEOPDW_PARITY_ERR_SMASK \
837 	| RCV_ERR_STATUS_RX_RBUF_CTX_ID_PARITY_ERR_SMASK \
838 	| RCV_ERR_STATUS_RX_RBUF_BAD_LOOKUP_ERR_SMASK \
839 	| RCV_ERR_STATUS_RX_RBUF_FULL_ERR_SMASK \
840 	| RCV_ERR_STATUS_RX_RBUF_EMPTY_ERR_SMASK \
841 	| RCV_ERR_STATUS_RX_RBUF_FL_RD_ADDR_PARITY_ERR_SMASK \
842 	| RCV_ERR_STATUS_RX_RBUF_FL_WR_ADDR_PARITY_ERR_SMASK \
843 	| RCV_ERR_STATUS_RX_RBUF_FL_INITDONE_PARITY_ERR_SMASK \
844 	| RCV_ERR_STATUS_RX_RBUF_FL_INIT_WR_ADDR_PARITY_ERR_SMASK \
845 	| RCV_ERR_STATUS_RX_RBUF_NEXT_FREE_BUF_UNC_ERR_SMASK \
846 	| RCV_ERR_STATUS_RX_LOOKUP_DES_PART1_UNC_ERR_SMASK \
847 	| RCV_ERR_STATUS_RX_LOOKUP_DES_PART1_UNC_COR_ERR_SMASK \
848 	| RCV_ERR_STATUS_RX_LOOKUP_DES_PART2_PARITY_ERR_SMASK \
849 	| RCV_ERR_STATUS_RX_LOOKUP_RCV_ARRAY_UNC_ERR_SMASK \
850 	| RCV_ERR_STATUS_RX_LOOKUP_CSR_PARITY_ERR_SMASK \
851 	| RCV_ERR_STATUS_RX_HQ_INTR_CSR_PARITY_ERR_SMASK \
852 	| RCV_ERR_STATUS_RX_HQ_INTR_FSM_ERR_SMASK \
853 	| RCV_ERR_STATUS_RX_RBUF_DESC_PART1_UNC_ERR_SMASK \
854 	| RCV_ERR_STATUS_RX_RBUF_DESC_PART1_COR_ERR_SMASK \
855 	| RCV_ERR_STATUS_RX_RBUF_DESC_PART2_UNC_ERR_SMASK \
856 	| RCV_ERR_STATUS_RX_DMA_HDR_FIFO_RD_UNC_ERR_SMASK \
857 	| RCV_ERR_STATUS_RX_DMA_DATA_FIFO_RD_UNC_ERR_SMASK \
858 	| RCV_ERR_STATUS_RX_RBUF_DATA_UNC_ERR_SMASK \
859 	| RCV_ERR_STATUS_RX_DMA_CSR_PARITY_ERR_SMASK \
860 	| RCV_ERR_STATUS_RX_DMA_EQ_FSM_ENCODING_ERR_SMASK \
861 	| RCV_ERR_STATUS_RX_DMA_DQ_FSM_ENCODING_ERR_SMASK \
862 	| RCV_ERR_STATUS_RX_DMA_CSR_UNC_ERR_SMASK \
863 	| RCV_ERR_STATUS_RX_CSR_PARITY_ERR_SMASK)
864 
865 #define RXE_FREEZE_ABORT_MASK \
866 	(RCV_ERR_STATUS_RX_DMA_CSR_UNC_ERR_SMASK | \
867 	RCV_ERR_STATUS_RX_DMA_HDR_FIFO_RD_UNC_ERR_SMASK | \
868 	RCV_ERR_STATUS_RX_DMA_DATA_FIFO_RD_UNC_ERR_SMASK)
869 
870 /*
871  * DCC Error Flags
872  */
873 #define DCCE(name) DCC_ERR_FLG_##name##_SMASK
874 static struct flag_table dcc_err_flags[] = {
875 	FLAG_ENTRY0("bad_l2_err", DCCE(BAD_L2_ERR)),
876 	FLAG_ENTRY0("bad_sc_err", DCCE(BAD_SC_ERR)),
877 	FLAG_ENTRY0("bad_mid_tail_err", DCCE(BAD_MID_TAIL_ERR)),
878 	FLAG_ENTRY0("bad_preemption_err", DCCE(BAD_PREEMPTION_ERR)),
879 	FLAG_ENTRY0("preemption_err", DCCE(PREEMPTION_ERR)),
880 	FLAG_ENTRY0("preemptionvl15_err", DCCE(PREEMPTIONVL15_ERR)),
881 	FLAG_ENTRY0("bad_vl_marker_err", DCCE(BAD_VL_MARKER_ERR)),
882 	FLAG_ENTRY0("bad_dlid_target_err", DCCE(BAD_DLID_TARGET_ERR)),
883 	FLAG_ENTRY0("bad_lver_err", DCCE(BAD_LVER_ERR)),
884 	FLAG_ENTRY0("uncorrectable_err", DCCE(UNCORRECTABLE_ERR)),
885 	FLAG_ENTRY0("bad_crdt_ack_err", DCCE(BAD_CRDT_ACK_ERR)),
886 	FLAG_ENTRY0("unsup_pkt_type", DCCE(UNSUP_PKT_TYPE)),
887 	FLAG_ENTRY0("bad_ctrl_flit_err", DCCE(BAD_CTRL_FLIT_ERR)),
888 	FLAG_ENTRY0("event_cntr_parity_err", DCCE(EVENT_CNTR_PARITY_ERR)),
889 	FLAG_ENTRY0("event_cntr_rollover_err", DCCE(EVENT_CNTR_ROLLOVER_ERR)),
890 	FLAG_ENTRY0("link_err", DCCE(LINK_ERR)),
891 	FLAG_ENTRY0("misc_cntr_rollover_err", DCCE(MISC_CNTR_ROLLOVER_ERR)),
892 	FLAG_ENTRY0("bad_ctrl_dist_err", DCCE(BAD_CTRL_DIST_ERR)),
893 	FLAG_ENTRY0("bad_tail_dist_err", DCCE(BAD_TAIL_DIST_ERR)),
894 	FLAG_ENTRY0("bad_head_dist_err", DCCE(BAD_HEAD_DIST_ERR)),
895 	FLAG_ENTRY0("nonvl15_state_err", DCCE(NONVL15_STATE_ERR)),
896 	FLAG_ENTRY0("vl15_multi_err", DCCE(VL15_MULTI_ERR)),
897 	FLAG_ENTRY0("bad_pkt_length_err", DCCE(BAD_PKT_LENGTH_ERR)),
898 	FLAG_ENTRY0("unsup_vl_err", DCCE(UNSUP_VL_ERR)),
899 	FLAG_ENTRY0("perm_nvl15_err", DCCE(PERM_NVL15_ERR)),
900 	FLAG_ENTRY0("slid_zero_err", DCCE(SLID_ZERO_ERR)),
901 	FLAG_ENTRY0("dlid_zero_err", DCCE(DLID_ZERO_ERR)),
902 	FLAG_ENTRY0("length_mtu_err", DCCE(LENGTH_MTU_ERR)),
903 	FLAG_ENTRY0("rx_early_drop_err", DCCE(RX_EARLY_DROP_ERR)),
904 	FLAG_ENTRY0("late_short_err", DCCE(LATE_SHORT_ERR)),
905 	FLAG_ENTRY0("late_long_err", DCCE(LATE_LONG_ERR)),
906 	FLAG_ENTRY0("late_ebp_err", DCCE(LATE_EBP_ERR)),
907 	FLAG_ENTRY0("fpe_tx_fifo_ovflw_err", DCCE(FPE_TX_FIFO_OVFLW_ERR)),
908 	FLAG_ENTRY0("fpe_tx_fifo_unflw_err", DCCE(FPE_TX_FIFO_UNFLW_ERR)),
909 	FLAG_ENTRY0("csr_access_blocked_host", DCCE(CSR_ACCESS_BLOCKED_HOST)),
910 	FLAG_ENTRY0("csr_access_blocked_uc", DCCE(CSR_ACCESS_BLOCKED_UC)),
911 	FLAG_ENTRY0("tx_ctrl_parity_err", DCCE(TX_CTRL_PARITY_ERR)),
912 	FLAG_ENTRY0("tx_ctrl_parity_mbe_err", DCCE(TX_CTRL_PARITY_MBE_ERR)),
913 	FLAG_ENTRY0("tx_sc_parity_err", DCCE(TX_SC_PARITY_ERR)),
914 	FLAG_ENTRY0("rx_ctrl_parity_mbe_err", DCCE(RX_CTRL_PARITY_MBE_ERR)),
915 	FLAG_ENTRY0("csr_parity_err", DCCE(CSR_PARITY_ERR)),
916 	FLAG_ENTRY0("csr_inval_addr", DCCE(CSR_INVAL_ADDR)),
917 	FLAG_ENTRY0("tx_byte_shft_parity_err", DCCE(TX_BYTE_SHFT_PARITY_ERR)),
918 	FLAG_ENTRY0("rx_byte_shft_parity_err", DCCE(RX_BYTE_SHFT_PARITY_ERR)),
919 	FLAG_ENTRY0("fmconfig_err", DCCE(FMCONFIG_ERR)),
920 	FLAG_ENTRY0("rcvport_err", DCCE(RCVPORT_ERR)),
921 };
922 
923 /*
924  * LCB error flags
925  */
926 #define LCBE(name) DC_LCB_ERR_FLG_##name##_SMASK
927 static struct flag_table lcb_err_flags[] = {
928 /* 0*/	FLAG_ENTRY0("CSR_PARITY_ERR", LCBE(CSR_PARITY_ERR)),
929 /* 1*/	FLAG_ENTRY0("INVALID_CSR_ADDR", LCBE(INVALID_CSR_ADDR)),
930 /* 2*/	FLAG_ENTRY0("RST_FOR_FAILED_DESKEW", LCBE(RST_FOR_FAILED_DESKEW)),
931 /* 3*/	FLAG_ENTRY0("ALL_LNS_FAILED_REINIT_TEST",
932 		LCBE(ALL_LNS_FAILED_REINIT_TEST)),
933 /* 4*/	FLAG_ENTRY0("LOST_REINIT_STALL_OR_TOS", LCBE(LOST_REINIT_STALL_OR_TOS)),
934 /* 5*/	FLAG_ENTRY0("TX_LESS_THAN_FOUR_LNS", LCBE(TX_LESS_THAN_FOUR_LNS)),
935 /* 6*/	FLAG_ENTRY0("RX_LESS_THAN_FOUR_LNS", LCBE(RX_LESS_THAN_FOUR_LNS)),
936 /* 7*/	FLAG_ENTRY0("SEQ_CRC_ERR", LCBE(SEQ_CRC_ERR)),
937 /* 8*/	FLAG_ENTRY0("REINIT_FROM_PEER", LCBE(REINIT_FROM_PEER)),
938 /* 9*/	FLAG_ENTRY0("REINIT_FOR_LN_DEGRADE", LCBE(REINIT_FOR_LN_DEGRADE)),
939 /*10*/	FLAG_ENTRY0("CRC_ERR_CNT_HIT_LIMIT", LCBE(CRC_ERR_CNT_HIT_LIMIT)),
940 /*11*/	FLAG_ENTRY0("RCLK_STOPPED", LCBE(RCLK_STOPPED)),
941 /*12*/	FLAG_ENTRY0("UNEXPECTED_REPLAY_MARKER", LCBE(UNEXPECTED_REPLAY_MARKER)),
942 /*13*/	FLAG_ENTRY0("UNEXPECTED_ROUND_TRIP_MARKER",
943 		LCBE(UNEXPECTED_ROUND_TRIP_MARKER)),
944 /*14*/	FLAG_ENTRY0("ILLEGAL_NULL_LTP", LCBE(ILLEGAL_NULL_LTP)),
945 /*15*/	FLAG_ENTRY0("ILLEGAL_FLIT_ENCODING", LCBE(ILLEGAL_FLIT_ENCODING)),
946 /*16*/	FLAG_ENTRY0("FLIT_INPUT_BUF_OFLW", LCBE(FLIT_INPUT_BUF_OFLW)),
947 /*17*/	FLAG_ENTRY0("VL_ACK_INPUT_BUF_OFLW", LCBE(VL_ACK_INPUT_BUF_OFLW)),
948 /*18*/	FLAG_ENTRY0("VL_ACK_INPUT_PARITY_ERR", LCBE(VL_ACK_INPUT_PARITY_ERR)),
949 /*19*/	FLAG_ENTRY0("VL_ACK_INPUT_WRONG_CRC_MODE",
950 		LCBE(VL_ACK_INPUT_WRONG_CRC_MODE)),
951 /*20*/	FLAG_ENTRY0("FLIT_INPUT_BUF_MBE", LCBE(FLIT_INPUT_BUF_MBE)),
952 /*21*/	FLAG_ENTRY0("FLIT_INPUT_BUF_SBE", LCBE(FLIT_INPUT_BUF_SBE)),
953 /*22*/	FLAG_ENTRY0("REPLAY_BUF_MBE", LCBE(REPLAY_BUF_MBE)),
954 /*23*/	FLAG_ENTRY0("REPLAY_BUF_SBE", LCBE(REPLAY_BUF_SBE)),
955 /*24*/	FLAG_ENTRY0("CREDIT_RETURN_FLIT_MBE", LCBE(CREDIT_RETURN_FLIT_MBE)),
956 /*25*/	FLAG_ENTRY0("RST_FOR_LINK_TIMEOUT", LCBE(RST_FOR_LINK_TIMEOUT)),
957 /*26*/	FLAG_ENTRY0("RST_FOR_INCOMPLT_RND_TRIP",
958 		LCBE(RST_FOR_INCOMPLT_RND_TRIP)),
959 /*27*/	FLAG_ENTRY0("HOLD_REINIT", LCBE(HOLD_REINIT)),
960 /*28*/	FLAG_ENTRY0("NEG_EDGE_LINK_TRANSFER_ACTIVE",
961 		LCBE(NEG_EDGE_LINK_TRANSFER_ACTIVE)),
962 /*29*/	FLAG_ENTRY0("REDUNDANT_FLIT_PARITY_ERR",
963 		LCBE(REDUNDANT_FLIT_PARITY_ERR))
964 };
965 
966 /*
967  * DC8051 Error Flags
968  */
969 #define D8E(name) DC_DC8051_ERR_FLG_##name##_SMASK
970 static struct flag_table dc8051_err_flags[] = {
971 	FLAG_ENTRY0("SET_BY_8051", D8E(SET_BY_8051)),
972 	FLAG_ENTRY0("LOST_8051_HEART_BEAT", D8E(LOST_8051_HEART_BEAT)),
973 	FLAG_ENTRY0("CRAM_MBE", D8E(CRAM_MBE)),
974 	FLAG_ENTRY0("CRAM_SBE", D8E(CRAM_SBE)),
975 	FLAG_ENTRY0("DRAM_MBE", D8E(DRAM_MBE)),
976 	FLAG_ENTRY0("DRAM_SBE", D8E(DRAM_SBE)),
977 	FLAG_ENTRY0("IRAM_MBE", D8E(IRAM_MBE)),
978 	FLAG_ENTRY0("IRAM_SBE", D8E(IRAM_SBE)),
979 	FLAG_ENTRY0("UNMATCHED_SECURE_MSG_ACROSS_BCC_LANES",
980 		    D8E(UNMATCHED_SECURE_MSG_ACROSS_BCC_LANES)),
981 	FLAG_ENTRY0("INVALID_CSR_ADDR", D8E(INVALID_CSR_ADDR)),
982 };
983 
984 /*
985  * DC8051 Information Error flags
986  *
987  * Flags in DC8051_DBG_ERR_INFO_SET_BY_8051.ERROR field.
988  */
989 static struct flag_table dc8051_info_err_flags[] = {
990 	FLAG_ENTRY0("Spico ROM check failed",  SPICO_ROM_FAILED),
991 	FLAG_ENTRY0("Unknown frame received",  UNKNOWN_FRAME),
992 	FLAG_ENTRY0("Target BER not met",      TARGET_BER_NOT_MET),
993 	FLAG_ENTRY0("Serdes internal loopback failure",
994 		    FAILED_SERDES_INTERNAL_LOOPBACK),
995 	FLAG_ENTRY0("Failed SerDes init",      FAILED_SERDES_INIT),
996 	FLAG_ENTRY0("Failed LNI(Polling)",     FAILED_LNI_POLLING),
997 	FLAG_ENTRY0("Failed LNI(Debounce)",    FAILED_LNI_DEBOUNCE),
998 	FLAG_ENTRY0("Failed LNI(EstbComm)",    FAILED_LNI_ESTBCOMM),
999 	FLAG_ENTRY0("Failed LNI(OptEq)",       FAILED_LNI_OPTEQ),
1000 	FLAG_ENTRY0("Failed LNI(VerifyCap_1)", FAILED_LNI_VERIFY_CAP1),
1001 	FLAG_ENTRY0("Failed LNI(VerifyCap_2)", FAILED_LNI_VERIFY_CAP2),
1002 	FLAG_ENTRY0("Failed LNI(ConfigLT)",    FAILED_LNI_CONFIGLT),
1003 	FLAG_ENTRY0("Host Handshake Timeout",  HOST_HANDSHAKE_TIMEOUT),
1004 	FLAG_ENTRY0("External Device Request Timeout",
1005 		    EXTERNAL_DEVICE_REQ_TIMEOUT),
1006 };
1007 
1008 /*
1009  * DC8051 Information Host Information flags
1010  *
1011  * Flags in DC8051_DBG_ERR_INFO_SET_BY_8051.HOST_MSG field.
1012  */
1013 static struct flag_table dc8051_info_host_msg_flags[] = {
1014 	FLAG_ENTRY0("Host request done", 0x0001),
1015 	FLAG_ENTRY0("BC PWR_MGM message", 0x0002),
1016 	FLAG_ENTRY0("BC SMA message", 0x0004),
1017 	FLAG_ENTRY0("BC Unknown message (BCC)", 0x0008),
1018 	FLAG_ENTRY0("BC Unknown message (LCB)", 0x0010),
1019 	FLAG_ENTRY0("External device config request", 0x0020),
1020 	FLAG_ENTRY0("VerifyCap all frames received", 0x0040),
1021 	FLAG_ENTRY0("LinkUp achieved", 0x0080),
1022 	FLAG_ENTRY0("Link going down", 0x0100),
1023 	FLAG_ENTRY0("Link width downgraded", 0x0200),
1024 };
1025 
1026 static u32 encoded_size(u32 size);
1027 static u32 chip_to_opa_lstate(struct hfi1_devdata *dd, u32 chip_lstate);
1028 static int set_physical_link_state(struct hfi1_devdata *dd, u64 state);
1029 static void read_vc_remote_phy(struct hfi1_devdata *dd, u8 *power_management,
1030 			       u8 *continuous);
1031 static void read_vc_remote_fabric(struct hfi1_devdata *dd, u8 *vau, u8 *z,
1032 				  u8 *vcu, u16 *vl15buf, u8 *crc_sizes);
1033 static void read_vc_remote_link_width(struct hfi1_devdata *dd,
1034 				      u8 *remote_tx_rate, u16 *link_widths);
1035 static void read_vc_local_link_width(struct hfi1_devdata *dd, u8 *misc_bits,
1036 				     u8 *flag_bits, u16 *link_widths);
1037 static void read_remote_device_id(struct hfi1_devdata *dd, u16 *device_id,
1038 				  u8 *device_rev);
1039 static void read_local_lni(struct hfi1_devdata *dd, u8 *enable_lane_rx);
1040 static int read_tx_settings(struct hfi1_devdata *dd, u8 *enable_lane_tx,
1041 			    u8 *tx_polarity_inversion,
1042 			    u8 *rx_polarity_inversion, u8 *max_rate);
1043 static void handle_sdma_eng_err(struct hfi1_devdata *dd,
1044 				unsigned int context, u64 err_status);
1045 static void handle_qsfp_int(struct hfi1_devdata *dd, u32 source, u64 reg);
1046 static void handle_dcc_err(struct hfi1_devdata *dd,
1047 			   unsigned int context, u64 err_status);
1048 static void handle_lcb_err(struct hfi1_devdata *dd,
1049 			   unsigned int context, u64 err_status);
1050 static void handle_8051_interrupt(struct hfi1_devdata *dd, u32 unused, u64 reg);
1051 static void handle_cce_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1052 static void handle_rxe_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1053 static void handle_misc_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1054 static void handle_pio_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1055 static void handle_sdma_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1056 static void handle_egress_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1057 static void handle_txe_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1058 static void set_partition_keys(struct hfi1_pportdata *ppd);
1059 static const char *link_state_name(u32 state);
1060 static const char *link_state_reason_name(struct hfi1_pportdata *ppd,
1061 					  u32 state);
1062 static int do_8051_command(struct hfi1_devdata *dd, u32 type, u64 in_data,
1063 			   u64 *out_data);
1064 static int read_idle_sma(struct hfi1_devdata *dd, u64 *data);
1065 static int thermal_init(struct hfi1_devdata *dd);
1066 
1067 static void update_statusp(struct hfi1_pportdata *ppd, u32 state);
1068 static int wait_phys_link_offline_substates(struct hfi1_pportdata *ppd,
1069 					    int msecs);
1070 static int wait_logical_linkstate(struct hfi1_pportdata *ppd, u32 state,
1071 				  int msecs);
1072 static void log_state_transition(struct hfi1_pportdata *ppd, u32 state);
1073 static void log_physical_state(struct hfi1_pportdata *ppd, u32 state);
1074 static int wait_physical_linkstate(struct hfi1_pportdata *ppd, u32 state,
1075 				   int msecs);
1076 static void read_planned_down_reason_code(struct hfi1_devdata *dd, u8 *pdrrc);
1077 static void read_link_down_reason(struct hfi1_devdata *dd, u8 *ldr);
1078 static void handle_temp_err(struct hfi1_devdata *dd);
1079 static void dc_shutdown(struct hfi1_devdata *dd);
1080 static void dc_start(struct hfi1_devdata *dd);
1081 static int qos_rmt_entries(struct hfi1_devdata *dd, unsigned int *mp,
1082 			   unsigned int *np);
1083 static void clear_full_mgmt_pkey(struct hfi1_pportdata *ppd);
1084 static int wait_link_transfer_active(struct hfi1_devdata *dd, int wait_ms);
1085 static void clear_rsm_rule(struct hfi1_devdata *dd, u8 rule_index);
1086 static void update_xmit_counters(struct hfi1_pportdata *ppd, u16 link_width);
1087 
1088 /*
1089  * Error interrupt table entry.  This is used as input to the interrupt
1090  * "clear down" routine used for all second tier error interrupt register.
1091  * Second tier interrupt registers have a single bit representing them
1092  * in the top-level CceIntStatus.
1093  */
1094 struct err_reg_info {
1095 	u32 status;		/* status CSR offset */
1096 	u32 clear;		/* clear CSR offset */
1097 	u32 mask;		/* mask CSR offset */
1098 	void (*handler)(struct hfi1_devdata *dd, u32 source, u64 reg);
1099 	const char *desc;
1100 };
1101 
1102 #define NUM_MISC_ERRS (IS_GENERAL_ERR_END - IS_GENERAL_ERR_START)
1103 #define NUM_DC_ERRS (IS_DC_END - IS_DC_START)
1104 #define NUM_VARIOUS (IS_VARIOUS_END - IS_VARIOUS_START)
1105 
1106 /*
1107  * Helpers for building HFI and DC error interrupt table entries.  Different
1108  * helpers are needed because of inconsistent register names.
1109  */
1110 #define EE(reg, handler, desc) \
1111 	{ reg##_STATUS, reg##_CLEAR, reg##_MASK, \
1112 		handler, desc }
1113 #define DC_EE1(reg, handler, desc) \
1114 	{ reg##_FLG, reg##_FLG_CLR, reg##_FLG_EN, handler, desc }
1115 #define DC_EE2(reg, handler, desc) \
1116 	{ reg##_FLG, reg##_CLR, reg##_EN, handler, desc }
1117 
1118 /*
1119  * Table of the "misc" grouping of error interrupts.  Each entry refers to
1120  * another register containing more information.
1121  */
1122 static const struct err_reg_info misc_errs[NUM_MISC_ERRS] = {
1123 /* 0*/	EE(CCE_ERR,		handle_cce_err,    "CceErr"),
1124 /* 1*/	EE(RCV_ERR,		handle_rxe_err,    "RxeErr"),
1125 /* 2*/	EE(MISC_ERR,	handle_misc_err,   "MiscErr"),
1126 /* 3*/	{ 0, 0, 0, NULL }, /* reserved */
1127 /* 4*/	EE(SEND_PIO_ERR,    handle_pio_err,    "PioErr"),
1128 /* 5*/	EE(SEND_DMA_ERR,    handle_sdma_err,   "SDmaErr"),
1129 /* 6*/	EE(SEND_EGRESS_ERR, handle_egress_err, "EgressErr"),
1130 /* 7*/	EE(SEND_ERR,	handle_txe_err,    "TxeErr")
1131 	/* the rest are reserved */
1132 };
1133 
1134 /*
1135  * Index into the Various section of the interrupt sources
1136  * corresponding to the Critical Temperature interrupt.
1137  */
1138 #define TCRIT_INT_SOURCE 4
1139 
1140 /*
1141  * SDMA error interrupt entry - refers to another register containing more
1142  * information.
1143  */
1144 static const struct err_reg_info sdma_eng_err =
1145 	EE(SEND_DMA_ENG_ERR, handle_sdma_eng_err, "SDmaEngErr");
1146 
1147 static const struct err_reg_info various_err[NUM_VARIOUS] = {
1148 /* 0*/	{ 0, 0, 0, NULL }, /* PbcInt */
1149 /* 1*/	{ 0, 0, 0, NULL }, /* GpioAssertInt */
1150 /* 2*/	EE(ASIC_QSFP1,	handle_qsfp_int,	"QSFP1"),
1151 /* 3*/	EE(ASIC_QSFP2,	handle_qsfp_int,	"QSFP2"),
1152 /* 4*/	{ 0, 0, 0, NULL }, /* TCritInt */
1153 	/* rest are reserved */
1154 };
1155 
1156 /*
1157  * The DC encoding of mtu_cap for 10K MTU in the DCC_CFG_PORT_CONFIG
1158  * register can not be derived from the MTU value because 10K is not
1159  * a power of 2. Therefore, we need a constant. Everything else can
1160  * be calculated.
1161  */
1162 #define DCC_CFG_PORT_MTU_CAP_10240 7
1163 
1164 /*
1165  * Table of the DC grouping of error interrupts.  Each entry refers to
1166  * another register containing more information.
1167  */
1168 static const struct err_reg_info dc_errs[NUM_DC_ERRS] = {
1169 /* 0*/	DC_EE1(DCC_ERR,		handle_dcc_err,	       "DCC Err"),
1170 /* 1*/	DC_EE2(DC_LCB_ERR,	handle_lcb_err,	       "LCB Err"),
1171 /* 2*/	DC_EE2(DC_DC8051_ERR,	handle_8051_interrupt, "DC8051 Interrupt"),
1172 /* 3*/	/* dc_lbm_int - special, see is_dc_int() */
1173 	/* the rest are reserved */
1174 };
1175 
1176 struct cntr_entry {
1177 	/*
1178 	 * counter name
1179 	 */
1180 	char *name;
1181 
1182 	/*
1183 	 * csr to read for name (if applicable)
1184 	 */
1185 	u64 csr;
1186 
1187 	/*
1188 	 * offset into dd or ppd to store the counter's value
1189 	 */
1190 	int offset;
1191 
1192 	/*
1193 	 * flags
1194 	 */
1195 	u8 flags;
1196 
1197 	/*
1198 	 * accessor for stat element, context either dd or ppd
1199 	 */
1200 	u64 (*rw_cntr)(const struct cntr_entry *, void *context, int vl,
1201 		       int mode, u64 data);
1202 };
1203 
1204 #define C_RCV_HDR_OVF_FIRST C_RCV_HDR_OVF_0
1205 #define C_RCV_HDR_OVF_LAST C_RCV_HDR_OVF_159
1206 
1207 #define CNTR_ELEM(name, csr, offset, flags, accessor) \
1208 { \
1209 	name, \
1210 	csr, \
1211 	offset, \
1212 	flags, \
1213 	accessor \
1214 }
1215 
1216 /* 32bit RXE */
1217 #define RXE32_PORT_CNTR_ELEM(name, counter, flags) \
1218 CNTR_ELEM(#name, \
1219 	  (counter * 8 + RCV_COUNTER_ARRAY32), \
1220 	  0, flags | CNTR_32BIT, \
1221 	  port_access_u32_csr)
1222 
1223 #define RXE32_DEV_CNTR_ELEM(name, counter, flags) \
1224 CNTR_ELEM(#name, \
1225 	  (counter * 8 + RCV_COUNTER_ARRAY32), \
1226 	  0, flags | CNTR_32BIT, \
1227 	  dev_access_u32_csr)
1228 
1229 /* 64bit RXE */
1230 #define RXE64_PORT_CNTR_ELEM(name, counter, flags) \
1231 CNTR_ELEM(#name, \
1232 	  (counter * 8 + RCV_COUNTER_ARRAY64), \
1233 	  0, flags, \
1234 	  port_access_u64_csr)
1235 
1236 #define RXE64_DEV_CNTR_ELEM(name, counter, flags) \
1237 CNTR_ELEM(#name, \
1238 	  (counter * 8 + RCV_COUNTER_ARRAY64), \
1239 	  0, flags, \
1240 	  dev_access_u64_csr)
1241 
1242 #define OVR_LBL(ctx) C_RCV_HDR_OVF_ ## ctx
1243 #define OVR_ELM(ctx) \
1244 CNTR_ELEM("RcvHdrOvr" #ctx, \
1245 	  (RCV_HDR_OVFL_CNT + ctx * 0x100), \
1246 	  0, CNTR_NORMAL, port_access_u64_csr)
1247 
1248 /* 32bit TXE */
1249 #define TXE32_PORT_CNTR_ELEM(name, counter, flags) \
1250 CNTR_ELEM(#name, \
1251 	  (counter * 8 + SEND_COUNTER_ARRAY32), \
1252 	  0, flags | CNTR_32BIT, \
1253 	  port_access_u32_csr)
1254 
1255 /* 64bit TXE */
1256 #define TXE64_PORT_CNTR_ELEM(name, counter, flags) \
1257 CNTR_ELEM(#name, \
1258 	  (counter * 8 + SEND_COUNTER_ARRAY64), \
1259 	  0, flags, \
1260 	  port_access_u64_csr)
1261 
1262 # define TX64_DEV_CNTR_ELEM(name, counter, flags) \
1263 CNTR_ELEM(#name,\
1264 	  counter * 8 + SEND_COUNTER_ARRAY64, \
1265 	  0, \
1266 	  flags, \
1267 	  dev_access_u64_csr)
1268 
1269 /* CCE */
1270 #define CCE_PERF_DEV_CNTR_ELEM(name, counter, flags) \
1271 CNTR_ELEM(#name, \
1272 	  (counter * 8 + CCE_COUNTER_ARRAY32), \
1273 	  0, flags | CNTR_32BIT, \
1274 	  dev_access_u32_csr)
1275 
1276 #define CCE_INT_DEV_CNTR_ELEM(name, counter, flags) \
1277 CNTR_ELEM(#name, \
1278 	  (counter * 8 + CCE_INT_COUNTER_ARRAY32), \
1279 	  0, flags | CNTR_32BIT, \
1280 	  dev_access_u32_csr)
1281 
1282 /* DC */
1283 #define DC_PERF_CNTR(name, counter, flags) \
1284 CNTR_ELEM(#name, \
1285 	  counter, \
1286 	  0, \
1287 	  flags, \
1288 	  dev_access_u64_csr)
1289 
1290 #define DC_PERF_CNTR_LCB(name, counter, flags) \
1291 CNTR_ELEM(#name, \
1292 	  counter, \
1293 	  0, \
1294 	  flags, \
1295 	  dc_access_lcb_cntr)
1296 
1297 /* ibp counters */
1298 #define SW_IBP_CNTR(name, cntr) \
1299 CNTR_ELEM(#name, \
1300 	  0, \
1301 	  0, \
1302 	  CNTR_SYNTH, \
1303 	  access_ibp_##cntr)
1304 
1305 /**
1306  * hfi_addr_from_offset - return addr for readq/writeq
1307  * @dd - the dd device
1308  * @offset - the offset of the CSR within bar0
1309  *
1310  * This routine selects the appropriate base address
1311  * based on the indicated offset.
1312  */
1313 static inline void __iomem *hfi1_addr_from_offset(
1314 	const struct hfi1_devdata *dd,
1315 	u32 offset)
1316 {
1317 	if (offset >= dd->base2_start)
1318 		return dd->kregbase2 + (offset - dd->base2_start);
1319 	return dd->kregbase1 + offset;
1320 }
1321 
1322 /**
1323  * read_csr - read CSR at the indicated offset
1324  * @dd - the dd device
1325  * @offset - the offset of the CSR within bar0
1326  *
1327  * Return: the value read or all FF's if there
1328  * is no mapping
1329  */
1330 u64 read_csr(const struct hfi1_devdata *dd, u32 offset)
1331 {
1332 	if (dd->flags & HFI1_PRESENT)
1333 		return readq(hfi1_addr_from_offset(dd, offset));
1334 	return -1;
1335 }
1336 
1337 /**
1338  * write_csr - write CSR at the indicated offset
1339  * @dd - the dd device
1340  * @offset - the offset of the CSR within bar0
1341  * @value - value to write
1342  */
1343 void write_csr(const struct hfi1_devdata *dd, u32 offset, u64 value)
1344 {
1345 	if (dd->flags & HFI1_PRESENT) {
1346 		void __iomem *base = hfi1_addr_from_offset(dd, offset);
1347 
1348 		/* avoid write to RcvArray */
1349 		if (WARN_ON(offset >= RCV_ARRAY && offset < dd->base2_start))
1350 			return;
1351 		writeq(value, base);
1352 	}
1353 }
1354 
1355 /**
1356  * get_csr_addr - return te iomem address for offset
1357  * @dd - the dd device
1358  * @offset - the offset of the CSR within bar0
1359  *
1360  * Return: The iomem address to use in subsequent
1361  * writeq/readq operations.
1362  */
1363 void __iomem *get_csr_addr(
1364 	const struct hfi1_devdata *dd,
1365 	u32 offset)
1366 {
1367 	if (dd->flags & HFI1_PRESENT)
1368 		return hfi1_addr_from_offset(dd, offset);
1369 	return NULL;
1370 }
1371 
1372 static inline u64 read_write_csr(const struct hfi1_devdata *dd, u32 csr,
1373 				 int mode, u64 value)
1374 {
1375 	u64 ret;
1376 
1377 	if (mode == CNTR_MODE_R) {
1378 		ret = read_csr(dd, csr);
1379 	} else if (mode == CNTR_MODE_W) {
1380 		write_csr(dd, csr, value);
1381 		ret = value;
1382 	} else {
1383 		dd_dev_err(dd, "Invalid cntr register access mode");
1384 		return 0;
1385 	}
1386 
1387 	hfi1_cdbg(CNTR, "csr 0x%x val 0x%llx mode %d", csr, ret, mode);
1388 	return ret;
1389 }
1390 
1391 /* Dev Access */
1392 static u64 dev_access_u32_csr(const struct cntr_entry *entry,
1393 			      void *context, int vl, int mode, u64 data)
1394 {
1395 	struct hfi1_devdata *dd = context;
1396 	u64 csr = entry->csr;
1397 
1398 	if (entry->flags & CNTR_SDMA) {
1399 		if (vl == CNTR_INVALID_VL)
1400 			return 0;
1401 		csr += 0x100 * vl;
1402 	} else {
1403 		if (vl != CNTR_INVALID_VL)
1404 			return 0;
1405 	}
1406 	return read_write_csr(dd, csr, mode, data);
1407 }
1408 
1409 static u64 access_sde_err_cnt(const struct cntr_entry *entry,
1410 			      void *context, int idx, int mode, u64 data)
1411 {
1412 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1413 
1414 	if (dd->per_sdma && idx < dd->num_sdma)
1415 		return dd->per_sdma[idx].err_cnt;
1416 	return 0;
1417 }
1418 
1419 static u64 access_sde_int_cnt(const struct cntr_entry *entry,
1420 			      void *context, int idx, int mode, u64 data)
1421 {
1422 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1423 
1424 	if (dd->per_sdma && idx < dd->num_sdma)
1425 		return dd->per_sdma[idx].sdma_int_cnt;
1426 	return 0;
1427 }
1428 
1429 static u64 access_sde_idle_int_cnt(const struct cntr_entry *entry,
1430 				   void *context, int idx, int mode, u64 data)
1431 {
1432 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1433 
1434 	if (dd->per_sdma && idx < dd->num_sdma)
1435 		return dd->per_sdma[idx].idle_int_cnt;
1436 	return 0;
1437 }
1438 
1439 static u64 access_sde_progress_int_cnt(const struct cntr_entry *entry,
1440 				       void *context, int idx, int mode,
1441 				       u64 data)
1442 {
1443 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1444 
1445 	if (dd->per_sdma && idx < dd->num_sdma)
1446 		return dd->per_sdma[idx].progress_int_cnt;
1447 	return 0;
1448 }
1449 
1450 static u64 dev_access_u64_csr(const struct cntr_entry *entry, void *context,
1451 			      int vl, int mode, u64 data)
1452 {
1453 	struct hfi1_devdata *dd = context;
1454 
1455 	u64 val = 0;
1456 	u64 csr = entry->csr;
1457 
1458 	if (entry->flags & CNTR_VL) {
1459 		if (vl == CNTR_INVALID_VL)
1460 			return 0;
1461 		csr += 8 * vl;
1462 	} else {
1463 		if (vl != CNTR_INVALID_VL)
1464 			return 0;
1465 	}
1466 
1467 	val = read_write_csr(dd, csr, mode, data);
1468 	return val;
1469 }
1470 
1471 static u64 dc_access_lcb_cntr(const struct cntr_entry *entry, void *context,
1472 			      int vl, int mode, u64 data)
1473 {
1474 	struct hfi1_devdata *dd = context;
1475 	u32 csr = entry->csr;
1476 	int ret = 0;
1477 
1478 	if (vl != CNTR_INVALID_VL)
1479 		return 0;
1480 	if (mode == CNTR_MODE_R)
1481 		ret = read_lcb_csr(dd, csr, &data);
1482 	else if (mode == CNTR_MODE_W)
1483 		ret = write_lcb_csr(dd, csr, data);
1484 
1485 	if (ret) {
1486 		dd_dev_err(dd, "Could not acquire LCB for counter 0x%x", csr);
1487 		return 0;
1488 	}
1489 
1490 	hfi1_cdbg(CNTR, "csr 0x%x val 0x%llx mode %d", csr, data, mode);
1491 	return data;
1492 }
1493 
1494 /* Port Access */
1495 static u64 port_access_u32_csr(const struct cntr_entry *entry, void *context,
1496 			       int vl, int mode, u64 data)
1497 {
1498 	struct hfi1_pportdata *ppd = context;
1499 
1500 	if (vl != CNTR_INVALID_VL)
1501 		return 0;
1502 	return read_write_csr(ppd->dd, entry->csr, mode, data);
1503 }
1504 
1505 static u64 port_access_u64_csr(const struct cntr_entry *entry,
1506 			       void *context, int vl, int mode, u64 data)
1507 {
1508 	struct hfi1_pportdata *ppd = context;
1509 	u64 val;
1510 	u64 csr = entry->csr;
1511 
1512 	if (entry->flags & CNTR_VL) {
1513 		if (vl == CNTR_INVALID_VL)
1514 			return 0;
1515 		csr += 8 * vl;
1516 	} else {
1517 		if (vl != CNTR_INVALID_VL)
1518 			return 0;
1519 	}
1520 	val = read_write_csr(ppd->dd, csr, mode, data);
1521 	return val;
1522 }
1523 
1524 /* Software defined */
1525 static inline u64 read_write_sw(struct hfi1_devdata *dd, u64 *cntr, int mode,
1526 				u64 data)
1527 {
1528 	u64 ret;
1529 
1530 	if (mode == CNTR_MODE_R) {
1531 		ret = *cntr;
1532 	} else if (mode == CNTR_MODE_W) {
1533 		*cntr = data;
1534 		ret = data;
1535 	} else {
1536 		dd_dev_err(dd, "Invalid cntr sw access mode");
1537 		return 0;
1538 	}
1539 
1540 	hfi1_cdbg(CNTR, "val 0x%llx mode %d", ret, mode);
1541 
1542 	return ret;
1543 }
1544 
1545 static u64 access_sw_link_dn_cnt(const struct cntr_entry *entry, void *context,
1546 				 int vl, int mode, u64 data)
1547 {
1548 	struct hfi1_pportdata *ppd = context;
1549 
1550 	if (vl != CNTR_INVALID_VL)
1551 		return 0;
1552 	return read_write_sw(ppd->dd, &ppd->link_downed, mode, data);
1553 }
1554 
1555 static u64 access_sw_link_up_cnt(const struct cntr_entry *entry, void *context,
1556 				 int vl, int mode, u64 data)
1557 {
1558 	struct hfi1_pportdata *ppd = context;
1559 
1560 	if (vl != CNTR_INVALID_VL)
1561 		return 0;
1562 	return read_write_sw(ppd->dd, &ppd->link_up, mode, data);
1563 }
1564 
1565 static u64 access_sw_unknown_frame_cnt(const struct cntr_entry *entry,
1566 				       void *context, int vl, int mode,
1567 				       u64 data)
1568 {
1569 	struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context;
1570 
1571 	if (vl != CNTR_INVALID_VL)
1572 		return 0;
1573 	return read_write_sw(ppd->dd, &ppd->unknown_frame_count, mode, data);
1574 }
1575 
1576 static u64 access_sw_xmit_discards(const struct cntr_entry *entry,
1577 				   void *context, int vl, int mode, u64 data)
1578 {
1579 	struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context;
1580 	u64 zero = 0;
1581 	u64 *counter;
1582 
1583 	if (vl == CNTR_INVALID_VL)
1584 		counter = &ppd->port_xmit_discards;
1585 	else if (vl >= 0 && vl < C_VL_COUNT)
1586 		counter = &ppd->port_xmit_discards_vl[vl];
1587 	else
1588 		counter = &zero;
1589 
1590 	return read_write_sw(ppd->dd, counter, mode, data);
1591 }
1592 
1593 static u64 access_xmit_constraint_errs(const struct cntr_entry *entry,
1594 				       void *context, int vl, int mode,
1595 				       u64 data)
1596 {
1597 	struct hfi1_pportdata *ppd = context;
1598 
1599 	if (vl != CNTR_INVALID_VL)
1600 		return 0;
1601 
1602 	return read_write_sw(ppd->dd, &ppd->port_xmit_constraint_errors,
1603 			     mode, data);
1604 }
1605 
1606 static u64 access_rcv_constraint_errs(const struct cntr_entry *entry,
1607 				      void *context, int vl, int mode, u64 data)
1608 {
1609 	struct hfi1_pportdata *ppd = context;
1610 
1611 	if (vl != CNTR_INVALID_VL)
1612 		return 0;
1613 
1614 	return read_write_sw(ppd->dd, &ppd->port_rcv_constraint_errors,
1615 			     mode, data);
1616 }
1617 
1618 u64 get_all_cpu_total(u64 __percpu *cntr)
1619 {
1620 	int cpu;
1621 	u64 counter = 0;
1622 
1623 	for_each_possible_cpu(cpu)
1624 		counter += *per_cpu_ptr(cntr, cpu);
1625 	return counter;
1626 }
1627 
1628 static u64 read_write_cpu(struct hfi1_devdata *dd, u64 *z_val,
1629 			  u64 __percpu *cntr,
1630 			  int vl, int mode, u64 data)
1631 {
1632 	u64 ret = 0;
1633 
1634 	if (vl != CNTR_INVALID_VL)
1635 		return 0;
1636 
1637 	if (mode == CNTR_MODE_R) {
1638 		ret = get_all_cpu_total(cntr) - *z_val;
1639 	} else if (mode == CNTR_MODE_W) {
1640 		/* A write can only zero the counter */
1641 		if (data == 0)
1642 			*z_val = get_all_cpu_total(cntr);
1643 		else
1644 			dd_dev_err(dd, "Per CPU cntrs can only be zeroed");
1645 	} else {
1646 		dd_dev_err(dd, "Invalid cntr sw cpu access mode");
1647 		return 0;
1648 	}
1649 
1650 	return ret;
1651 }
1652 
1653 static u64 access_sw_cpu_intr(const struct cntr_entry *entry,
1654 			      void *context, int vl, int mode, u64 data)
1655 {
1656 	struct hfi1_devdata *dd = context;
1657 
1658 	return read_write_cpu(dd, &dd->z_int_counter, dd->int_counter, vl,
1659 			      mode, data);
1660 }
1661 
1662 static u64 access_sw_cpu_rcv_limit(const struct cntr_entry *entry,
1663 				   void *context, int vl, int mode, u64 data)
1664 {
1665 	struct hfi1_devdata *dd = context;
1666 
1667 	return read_write_cpu(dd, &dd->z_rcv_limit, dd->rcv_limit, vl,
1668 			      mode, data);
1669 }
1670 
1671 static u64 access_sw_pio_wait(const struct cntr_entry *entry,
1672 			      void *context, int vl, int mode, u64 data)
1673 {
1674 	struct hfi1_devdata *dd = context;
1675 
1676 	return dd->verbs_dev.n_piowait;
1677 }
1678 
1679 static u64 access_sw_pio_drain(const struct cntr_entry *entry,
1680 			       void *context, int vl, int mode, u64 data)
1681 {
1682 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1683 
1684 	return dd->verbs_dev.n_piodrain;
1685 }
1686 
1687 static u64 access_sw_vtx_wait(const struct cntr_entry *entry,
1688 			      void *context, int vl, int mode, u64 data)
1689 {
1690 	struct hfi1_devdata *dd = context;
1691 
1692 	return dd->verbs_dev.n_txwait;
1693 }
1694 
1695 static u64 access_sw_kmem_wait(const struct cntr_entry *entry,
1696 			       void *context, int vl, int mode, u64 data)
1697 {
1698 	struct hfi1_devdata *dd = context;
1699 
1700 	return dd->verbs_dev.n_kmem_wait;
1701 }
1702 
1703 static u64 access_sw_send_schedule(const struct cntr_entry *entry,
1704 				   void *context, int vl, int mode, u64 data)
1705 {
1706 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1707 
1708 	return read_write_cpu(dd, &dd->z_send_schedule, dd->send_schedule, vl,
1709 			      mode, data);
1710 }
1711 
1712 /* Software counters for the error status bits within MISC_ERR_STATUS */
1713 static u64 access_misc_pll_lock_fail_err_cnt(const struct cntr_entry *entry,
1714 					     void *context, int vl, int mode,
1715 					     u64 data)
1716 {
1717 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1718 
1719 	return dd->misc_err_status_cnt[12];
1720 }
1721 
1722 static u64 access_misc_mbist_fail_err_cnt(const struct cntr_entry *entry,
1723 					  void *context, int vl, int mode,
1724 					  u64 data)
1725 {
1726 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1727 
1728 	return dd->misc_err_status_cnt[11];
1729 }
1730 
1731 static u64 access_misc_invalid_eep_cmd_err_cnt(const struct cntr_entry *entry,
1732 					       void *context, int vl, int mode,
1733 					       u64 data)
1734 {
1735 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1736 
1737 	return dd->misc_err_status_cnt[10];
1738 }
1739 
1740 static u64 access_misc_efuse_done_parity_err_cnt(const struct cntr_entry *entry,
1741 						 void *context, int vl,
1742 						 int mode, u64 data)
1743 {
1744 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1745 
1746 	return dd->misc_err_status_cnt[9];
1747 }
1748 
1749 static u64 access_misc_efuse_write_err_cnt(const struct cntr_entry *entry,
1750 					   void *context, int vl, int mode,
1751 					   u64 data)
1752 {
1753 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1754 
1755 	return dd->misc_err_status_cnt[8];
1756 }
1757 
1758 static u64 access_misc_efuse_read_bad_addr_err_cnt(
1759 				const struct cntr_entry *entry,
1760 				void *context, int vl, int mode, u64 data)
1761 {
1762 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1763 
1764 	return dd->misc_err_status_cnt[7];
1765 }
1766 
1767 static u64 access_misc_efuse_csr_parity_err_cnt(const struct cntr_entry *entry,
1768 						void *context, int vl,
1769 						int mode, u64 data)
1770 {
1771 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1772 
1773 	return dd->misc_err_status_cnt[6];
1774 }
1775 
1776 static u64 access_misc_fw_auth_failed_err_cnt(const struct cntr_entry *entry,
1777 					      void *context, int vl, int mode,
1778 					      u64 data)
1779 {
1780 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1781 
1782 	return dd->misc_err_status_cnt[5];
1783 }
1784 
1785 static u64 access_misc_key_mismatch_err_cnt(const struct cntr_entry *entry,
1786 					    void *context, int vl, int mode,
1787 					    u64 data)
1788 {
1789 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1790 
1791 	return dd->misc_err_status_cnt[4];
1792 }
1793 
1794 static u64 access_misc_sbus_write_failed_err_cnt(const struct cntr_entry *entry,
1795 						 void *context, int vl,
1796 						 int mode, u64 data)
1797 {
1798 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1799 
1800 	return dd->misc_err_status_cnt[3];
1801 }
1802 
1803 static u64 access_misc_csr_write_bad_addr_err_cnt(
1804 				const struct cntr_entry *entry,
1805 				void *context, int vl, int mode, u64 data)
1806 {
1807 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1808 
1809 	return dd->misc_err_status_cnt[2];
1810 }
1811 
1812 static u64 access_misc_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
1813 						 void *context, int vl,
1814 						 int mode, u64 data)
1815 {
1816 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1817 
1818 	return dd->misc_err_status_cnt[1];
1819 }
1820 
1821 static u64 access_misc_csr_parity_err_cnt(const struct cntr_entry *entry,
1822 					  void *context, int vl, int mode,
1823 					  u64 data)
1824 {
1825 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1826 
1827 	return dd->misc_err_status_cnt[0];
1828 }
1829 
1830 /*
1831  * Software counter for the aggregate of
1832  * individual CceErrStatus counters
1833  */
1834 static u64 access_sw_cce_err_status_aggregated_cnt(
1835 				const struct cntr_entry *entry,
1836 				void *context, int vl, int mode, u64 data)
1837 {
1838 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1839 
1840 	return dd->sw_cce_err_status_aggregate;
1841 }
1842 
1843 /*
1844  * Software counters corresponding to each of the
1845  * error status bits within CceErrStatus
1846  */
1847 static u64 access_cce_msix_csr_parity_err_cnt(const struct cntr_entry *entry,
1848 					      void *context, int vl, int mode,
1849 					      u64 data)
1850 {
1851 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1852 
1853 	return dd->cce_err_status_cnt[40];
1854 }
1855 
1856 static u64 access_cce_int_map_unc_err_cnt(const struct cntr_entry *entry,
1857 					  void *context, int vl, int mode,
1858 					  u64 data)
1859 {
1860 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1861 
1862 	return dd->cce_err_status_cnt[39];
1863 }
1864 
1865 static u64 access_cce_int_map_cor_err_cnt(const struct cntr_entry *entry,
1866 					  void *context, int vl, int mode,
1867 					  u64 data)
1868 {
1869 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1870 
1871 	return dd->cce_err_status_cnt[38];
1872 }
1873 
1874 static u64 access_cce_msix_table_unc_err_cnt(const struct cntr_entry *entry,
1875 					     void *context, int vl, int mode,
1876 					     u64 data)
1877 {
1878 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1879 
1880 	return dd->cce_err_status_cnt[37];
1881 }
1882 
1883 static u64 access_cce_msix_table_cor_err_cnt(const struct cntr_entry *entry,
1884 					     void *context, int vl, int mode,
1885 					     u64 data)
1886 {
1887 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1888 
1889 	return dd->cce_err_status_cnt[36];
1890 }
1891 
1892 static u64 access_cce_rxdma_conv_fifo_parity_err_cnt(
1893 				const struct cntr_entry *entry,
1894 				void *context, int vl, int mode, u64 data)
1895 {
1896 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1897 
1898 	return dd->cce_err_status_cnt[35];
1899 }
1900 
1901 static u64 access_cce_rcpl_async_fifo_parity_err_cnt(
1902 				const struct cntr_entry *entry,
1903 				void *context, int vl, int mode, u64 data)
1904 {
1905 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1906 
1907 	return dd->cce_err_status_cnt[34];
1908 }
1909 
1910 static u64 access_cce_seg_write_bad_addr_err_cnt(const struct cntr_entry *entry,
1911 						 void *context, int vl,
1912 						 int mode, u64 data)
1913 {
1914 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1915 
1916 	return dd->cce_err_status_cnt[33];
1917 }
1918 
1919 static u64 access_cce_seg_read_bad_addr_err_cnt(const struct cntr_entry *entry,
1920 						void *context, int vl, int mode,
1921 						u64 data)
1922 {
1923 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1924 
1925 	return dd->cce_err_status_cnt[32];
1926 }
1927 
1928 static u64 access_la_triggered_cnt(const struct cntr_entry *entry,
1929 				   void *context, int vl, int mode, u64 data)
1930 {
1931 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1932 
1933 	return dd->cce_err_status_cnt[31];
1934 }
1935 
1936 static u64 access_cce_trgt_cpl_timeout_err_cnt(const struct cntr_entry *entry,
1937 					       void *context, int vl, int mode,
1938 					       u64 data)
1939 {
1940 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1941 
1942 	return dd->cce_err_status_cnt[30];
1943 }
1944 
1945 static u64 access_pcic_receive_parity_err_cnt(const struct cntr_entry *entry,
1946 					      void *context, int vl, int mode,
1947 					      u64 data)
1948 {
1949 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1950 
1951 	return dd->cce_err_status_cnt[29];
1952 }
1953 
1954 static u64 access_pcic_transmit_back_parity_err_cnt(
1955 				const struct cntr_entry *entry,
1956 				void *context, int vl, int mode, u64 data)
1957 {
1958 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1959 
1960 	return dd->cce_err_status_cnt[28];
1961 }
1962 
1963 static u64 access_pcic_transmit_front_parity_err_cnt(
1964 				const struct cntr_entry *entry,
1965 				void *context, int vl, int mode, u64 data)
1966 {
1967 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1968 
1969 	return dd->cce_err_status_cnt[27];
1970 }
1971 
1972 static u64 access_pcic_cpl_dat_q_unc_err_cnt(const struct cntr_entry *entry,
1973 					     void *context, int vl, int mode,
1974 					     u64 data)
1975 {
1976 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1977 
1978 	return dd->cce_err_status_cnt[26];
1979 }
1980 
1981 static u64 access_pcic_cpl_hd_q_unc_err_cnt(const struct cntr_entry *entry,
1982 					    void *context, int vl, int mode,
1983 					    u64 data)
1984 {
1985 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1986 
1987 	return dd->cce_err_status_cnt[25];
1988 }
1989 
1990 static u64 access_pcic_post_dat_q_unc_err_cnt(const struct cntr_entry *entry,
1991 					      void *context, int vl, int mode,
1992 					      u64 data)
1993 {
1994 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1995 
1996 	return dd->cce_err_status_cnt[24];
1997 }
1998 
1999 static u64 access_pcic_post_hd_q_unc_err_cnt(const struct cntr_entry *entry,
2000 					     void *context, int vl, int mode,
2001 					     u64 data)
2002 {
2003 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2004 
2005 	return dd->cce_err_status_cnt[23];
2006 }
2007 
2008 static u64 access_pcic_retry_sot_mem_unc_err_cnt(const struct cntr_entry *entry,
2009 						 void *context, int vl,
2010 						 int mode, u64 data)
2011 {
2012 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2013 
2014 	return dd->cce_err_status_cnt[22];
2015 }
2016 
2017 static u64 access_pcic_retry_mem_unc_err(const struct cntr_entry *entry,
2018 					 void *context, int vl, int mode,
2019 					 u64 data)
2020 {
2021 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2022 
2023 	return dd->cce_err_status_cnt[21];
2024 }
2025 
2026 static u64 access_pcic_n_post_dat_q_parity_err_cnt(
2027 				const struct cntr_entry *entry,
2028 				void *context, int vl, int mode, u64 data)
2029 {
2030 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2031 
2032 	return dd->cce_err_status_cnt[20];
2033 }
2034 
2035 static u64 access_pcic_n_post_h_q_parity_err_cnt(const struct cntr_entry *entry,
2036 						 void *context, int vl,
2037 						 int mode, u64 data)
2038 {
2039 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2040 
2041 	return dd->cce_err_status_cnt[19];
2042 }
2043 
2044 static u64 access_pcic_cpl_dat_q_cor_err_cnt(const struct cntr_entry *entry,
2045 					     void *context, int vl, int mode,
2046 					     u64 data)
2047 {
2048 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2049 
2050 	return dd->cce_err_status_cnt[18];
2051 }
2052 
2053 static u64 access_pcic_cpl_hd_q_cor_err_cnt(const struct cntr_entry *entry,
2054 					    void *context, int vl, int mode,
2055 					    u64 data)
2056 {
2057 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2058 
2059 	return dd->cce_err_status_cnt[17];
2060 }
2061 
2062 static u64 access_pcic_post_dat_q_cor_err_cnt(const struct cntr_entry *entry,
2063 					      void *context, int vl, int mode,
2064 					      u64 data)
2065 {
2066 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2067 
2068 	return dd->cce_err_status_cnt[16];
2069 }
2070 
2071 static u64 access_pcic_post_hd_q_cor_err_cnt(const struct cntr_entry *entry,
2072 					     void *context, int vl, int mode,
2073 					     u64 data)
2074 {
2075 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2076 
2077 	return dd->cce_err_status_cnt[15];
2078 }
2079 
2080 static u64 access_pcic_retry_sot_mem_cor_err_cnt(const struct cntr_entry *entry,
2081 						 void *context, int vl,
2082 						 int mode, u64 data)
2083 {
2084 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2085 
2086 	return dd->cce_err_status_cnt[14];
2087 }
2088 
2089 static u64 access_pcic_retry_mem_cor_err_cnt(const struct cntr_entry *entry,
2090 					     void *context, int vl, int mode,
2091 					     u64 data)
2092 {
2093 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2094 
2095 	return dd->cce_err_status_cnt[13];
2096 }
2097 
2098 static u64 access_cce_cli1_async_fifo_dbg_parity_err_cnt(
2099 				const struct cntr_entry *entry,
2100 				void *context, int vl, int mode, u64 data)
2101 {
2102 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2103 
2104 	return dd->cce_err_status_cnt[12];
2105 }
2106 
2107 static u64 access_cce_cli1_async_fifo_rxdma_parity_err_cnt(
2108 				const struct cntr_entry *entry,
2109 				void *context, int vl, int mode, u64 data)
2110 {
2111 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2112 
2113 	return dd->cce_err_status_cnt[11];
2114 }
2115 
2116 static u64 access_cce_cli1_async_fifo_sdma_hd_parity_err_cnt(
2117 				const struct cntr_entry *entry,
2118 				void *context, int vl, int mode, u64 data)
2119 {
2120 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2121 
2122 	return dd->cce_err_status_cnt[10];
2123 }
2124 
2125 static u64 access_cce_cl1_async_fifo_pio_crdt_parity_err_cnt(
2126 				const struct cntr_entry *entry,
2127 				void *context, int vl, int mode, u64 data)
2128 {
2129 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2130 
2131 	return dd->cce_err_status_cnt[9];
2132 }
2133 
2134 static u64 access_cce_cli2_async_fifo_parity_err_cnt(
2135 				const struct cntr_entry *entry,
2136 				void *context, int vl, int mode, u64 data)
2137 {
2138 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2139 
2140 	return dd->cce_err_status_cnt[8];
2141 }
2142 
2143 static u64 access_cce_csr_cfg_bus_parity_err_cnt(const struct cntr_entry *entry,
2144 						 void *context, int vl,
2145 						 int mode, u64 data)
2146 {
2147 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2148 
2149 	return dd->cce_err_status_cnt[7];
2150 }
2151 
2152 static u64 access_cce_cli0_async_fifo_parity_err_cnt(
2153 				const struct cntr_entry *entry,
2154 				void *context, int vl, int mode, u64 data)
2155 {
2156 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2157 
2158 	return dd->cce_err_status_cnt[6];
2159 }
2160 
2161 static u64 access_cce_rspd_data_parity_err_cnt(const struct cntr_entry *entry,
2162 					       void *context, int vl, int mode,
2163 					       u64 data)
2164 {
2165 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2166 
2167 	return dd->cce_err_status_cnt[5];
2168 }
2169 
2170 static u64 access_cce_trgt_access_err_cnt(const struct cntr_entry *entry,
2171 					  void *context, int vl, int mode,
2172 					  u64 data)
2173 {
2174 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2175 
2176 	return dd->cce_err_status_cnt[4];
2177 }
2178 
2179 static u64 access_cce_trgt_async_fifo_parity_err_cnt(
2180 				const struct cntr_entry *entry,
2181 				void *context, int vl, int mode, u64 data)
2182 {
2183 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2184 
2185 	return dd->cce_err_status_cnt[3];
2186 }
2187 
2188 static u64 access_cce_csr_write_bad_addr_err_cnt(const struct cntr_entry *entry,
2189 						 void *context, int vl,
2190 						 int mode, u64 data)
2191 {
2192 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2193 
2194 	return dd->cce_err_status_cnt[2];
2195 }
2196 
2197 static u64 access_cce_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
2198 						void *context, int vl,
2199 						int mode, u64 data)
2200 {
2201 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2202 
2203 	return dd->cce_err_status_cnt[1];
2204 }
2205 
2206 static u64 access_ccs_csr_parity_err_cnt(const struct cntr_entry *entry,
2207 					 void *context, int vl, int mode,
2208 					 u64 data)
2209 {
2210 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2211 
2212 	return dd->cce_err_status_cnt[0];
2213 }
2214 
2215 /*
2216  * Software counters corresponding to each of the
2217  * error status bits within RcvErrStatus
2218  */
2219 static u64 access_rx_csr_parity_err_cnt(const struct cntr_entry *entry,
2220 					void *context, int vl, int mode,
2221 					u64 data)
2222 {
2223 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2224 
2225 	return dd->rcv_err_status_cnt[63];
2226 }
2227 
2228 static u64 access_rx_csr_write_bad_addr_err_cnt(const struct cntr_entry *entry,
2229 						void *context, int vl,
2230 						int mode, u64 data)
2231 {
2232 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2233 
2234 	return dd->rcv_err_status_cnt[62];
2235 }
2236 
2237 static u64 access_rx_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
2238 					       void *context, int vl, int mode,
2239 					       u64 data)
2240 {
2241 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2242 
2243 	return dd->rcv_err_status_cnt[61];
2244 }
2245 
2246 static u64 access_rx_dma_csr_unc_err_cnt(const struct cntr_entry *entry,
2247 					 void *context, int vl, int mode,
2248 					 u64 data)
2249 {
2250 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2251 
2252 	return dd->rcv_err_status_cnt[60];
2253 }
2254 
2255 static u64 access_rx_dma_dq_fsm_encoding_err_cnt(const struct cntr_entry *entry,
2256 						 void *context, int vl,
2257 						 int mode, u64 data)
2258 {
2259 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2260 
2261 	return dd->rcv_err_status_cnt[59];
2262 }
2263 
2264 static u64 access_rx_dma_eq_fsm_encoding_err_cnt(const struct cntr_entry *entry,
2265 						 void *context, int vl,
2266 						 int mode, u64 data)
2267 {
2268 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2269 
2270 	return dd->rcv_err_status_cnt[58];
2271 }
2272 
2273 static u64 access_rx_dma_csr_parity_err_cnt(const struct cntr_entry *entry,
2274 					    void *context, int vl, int mode,
2275 					    u64 data)
2276 {
2277 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2278 
2279 	return dd->rcv_err_status_cnt[57];
2280 }
2281 
2282 static u64 access_rx_rbuf_data_cor_err_cnt(const struct cntr_entry *entry,
2283 					   void *context, int vl, int mode,
2284 					   u64 data)
2285 {
2286 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2287 
2288 	return dd->rcv_err_status_cnt[56];
2289 }
2290 
2291 static u64 access_rx_rbuf_data_unc_err_cnt(const struct cntr_entry *entry,
2292 					   void *context, int vl, int mode,
2293 					   u64 data)
2294 {
2295 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2296 
2297 	return dd->rcv_err_status_cnt[55];
2298 }
2299 
2300 static u64 access_rx_dma_data_fifo_rd_cor_err_cnt(
2301 				const struct cntr_entry *entry,
2302 				void *context, int vl, int mode, u64 data)
2303 {
2304 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2305 
2306 	return dd->rcv_err_status_cnt[54];
2307 }
2308 
2309 static u64 access_rx_dma_data_fifo_rd_unc_err_cnt(
2310 				const struct cntr_entry *entry,
2311 				void *context, int vl, int mode, u64 data)
2312 {
2313 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2314 
2315 	return dd->rcv_err_status_cnt[53];
2316 }
2317 
2318 static u64 access_rx_dma_hdr_fifo_rd_cor_err_cnt(const struct cntr_entry *entry,
2319 						 void *context, int vl,
2320 						 int mode, u64 data)
2321 {
2322 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2323 
2324 	return dd->rcv_err_status_cnt[52];
2325 }
2326 
2327 static u64 access_rx_dma_hdr_fifo_rd_unc_err_cnt(const struct cntr_entry *entry,
2328 						 void *context, int vl,
2329 						 int mode, u64 data)
2330 {
2331 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2332 
2333 	return dd->rcv_err_status_cnt[51];
2334 }
2335 
2336 static u64 access_rx_rbuf_desc_part2_cor_err_cnt(const struct cntr_entry *entry,
2337 						 void *context, int vl,
2338 						 int mode, u64 data)
2339 {
2340 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2341 
2342 	return dd->rcv_err_status_cnt[50];
2343 }
2344 
2345 static u64 access_rx_rbuf_desc_part2_unc_err_cnt(const struct cntr_entry *entry,
2346 						 void *context, int vl,
2347 						 int mode, u64 data)
2348 {
2349 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2350 
2351 	return dd->rcv_err_status_cnt[49];
2352 }
2353 
2354 static u64 access_rx_rbuf_desc_part1_cor_err_cnt(const struct cntr_entry *entry,
2355 						 void *context, int vl,
2356 						 int mode, u64 data)
2357 {
2358 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2359 
2360 	return dd->rcv_err_status_cnt[48];
2361 }
2362 
2363 static u64 access_rx_rbuf_desc_part1_unc_err_cnt(const struct cntr_entry *entry,
2364 						 void *context, int vl,
2365 						 int mode, u64 data)
2366 {
2367 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2368 
2369 	return dd->rcv_err_status_cnt[47];
2370 }
2371 
2372 static u64 access_rx_hq_intr_fsm_err_cnt(const struct cntr_entry *entry,
2373 					 void *context, int vl, int mode,
2374 					 u64 data)
2375 {
2376 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2377 
2378 	return dd->rcv_err_status_cnt[46];
2379 }
2380 
2381 static u64 access_rx_hq_intr_csr_parity_err_cnt(
2382 				const struct cntr_entry *entry,
2383 				void *context, int vl, int mode, u64 data)
2384 {
2385 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2386 
2387 	return dd->rcv_err_status_cnt[45];
2388 }
2389 
2390 static u64 access_rx_lookup_csr_parity_err_cnt(
2391 				const struct cntr_entry *entry,
2392 				void *context, int vl, int mode, u64 data)
2393 {
2394 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2395 
2396 	return dd->rcv_err_status_cnt[44];
2397 }
2398 
2399 static u64 access_rx_lookup_rcv_array_cor_err_cnt(
2400 				const struct cntr_entry *entry,
2401 				void *context, int vl, int mode, u64 data)
2402 {
2403 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2404 
2405 	return dd->rcv_err_status_cnt[43];
2406 }
2407 
2408 static u64 access_rx_lookup_rcv_array_unc_err_cnt(
2409 				const struct cntr_entry *entry,
2410 				void *context, int vl, int mode, u64 data)
2411 {
2412 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2413 
2414 	return dd->rcv_err_status_cnt[42];
2415 }
2416 
2417 static u64 access_rx_lookup_des_part2_parity_err_cnt(
2418 				const struct cntr_entry *entry,
2419 				void *context, int vl, int mode, u64 data)
2420 {
2421 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2422 
2423 	return dd->rcv_err_status_cnt[41];
2424 }
2425 
2426 static u64 access_rx_lookup_des_part1_unc_cor_err_cnt(
2427 				const struct cntr_entry *entry,
2428 				void *context, int vl, int mode, u64 data)
2429 {
2430 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2431 
2432 	return dd->rcv_err_status_cnt[40];
2433 }
2434 
2435 static u64 access_rx_lookup_des_part1_unc_err_cnt(
2436 				const struct cntr_entry *entry,
2437 				void *context, int vl, int mode, u64 data)
2438 {
2439 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2440 
2441 	return dd->rcv_err_status_cnt[39];
2442 }
2443 
2444 static u64 access_rx_rbuf_next_free_buf_cor_err_cnt(
2445 				const struct cntr_entry *entry,
2446 				void *context, int vl, int mode, u64 data)
2447 {
2448 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2449 
2450 	return dd->rcv_err_status_cnt[38];
2451 }
2452 
2453 static u64 access_rx_rbuf_next_free_buf_unc_err_cnt(
2454 				const struct cntr_entry *entry,
2455 				void *context, int vl, int mode, u64 data)
2456 {
2457 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2458 
2459 	return dd->rcv_err_status_cnt[37];
2460 }
2461 
2462 static u64 access_rbuf_fl_init_wr_addr_parity_err_cnt(
2463 				const struct cntr_entry *entry,
2464 				void *context, int vl, int mode, u64 data)
2465 {
2466 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2467 
2468 	return dd->rcv_err_status_cnt[36];
2469 }
2470 
2471 static u64 access_rx_rbuf_fl_initdone_parity_err_cnt(
2472 				const struct cntr_entry *entry,
2473 				void *context, int vl, int mode, u64 data)
2474 {
2475 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2476 
2477 	return dd->rcv_err_status_cnt[35];
2478 }
2479 
2480 static u64 access_rx_rbuf_fl_write_addr_parity_err_cnt(
2481 				const struct cntr_entry *entry,
2482 				void *context, int vl, int mode, u64 data)
2483 {
2484 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2485 
2486 	return dd->rcv_err_status_cnt[34];
2487 }
2488 
2489 static u64 access_rx_rbuf_fl_rd_addr_parity_err_cnt(
2490 				const struct cntr_entry *entry,
2491 				void *context, int vl, int mode, u64 data)
2492 {
2493 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2494 
2495 	return dd->rcv_err_status_cnt[33];
2496 }
2497 
2498 static u64 access_rx_rbuf_empty_err_cnt(const struct cntr_entry *entry,
2499 					void *context, int vl, int mode,
2500 					u64 data)
2501 {
2502 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2503 
2504 	return dd->rcv_err_status_cnt[32];
2505 }
2506 
2507 static u64 access_rx_rbuf_full_err_cnt(const struct cntr_entry *entry,
2508 				       void *context, int vl, int mode,
2509 				       u64 data)
2510 {
2511 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2512 
2513 	return dd->rcv_err_status_cnt[31];
2514 }
2515 
2516 static u64 access_rbuf_bad_lookup_err_cnt(const struct cntr_entry *entry,
2517 					  void *context, int vl, int mode,
2518 					  u64 data)
2519 {
2520 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2521 
2522 	return dd->rcv_err_status_cnt[30];
2523 }
2524 
2525 static u64 access_rbuf_ctx_id_parity_err_cnt(const struct cntr_entry *entry,
2526 					     void *context, int vl, int mode,
2527 					     u64 data)
2528 {
2529 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2530 
2531 	return dd->rcv_err_status_cnt[29];
2532 }
2533 
2534 static u64 access_rbuf_csr_qeopdw_parity_err_cnt(const struct cntr_entry *entry,
2535 						 void *context, int vl,
2536 						 int mode, u64 data)
2537 {
2538 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2539 
2540 	return dd->rcv_err_status_cnt[28];
2541 }
2542 
2543 static u64 access_rx_rbuf_csr_q_num_of_pkt_parity_err_cnt(
2544 				const struct cntr_entry *entry,
2545 				void *context, int vl, int mode, u64 data)
2546 {
2547 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2548 
2549 	return dd->rcv_err_status_cnt[27];
2550 }
2551 
2552 static u64 access_rx_rbuf_csr_q_t1_ptr_parity_err_cnt(
2553 				const struct cntr_entry *entry,
2554 				void *context, int vl, int mode, u64 data)
2555 {
2556 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2557 
2558 	return dd->rcv_err_status_cnt[26];
2559 }
2560 
2561 static u64 access_rx_rbuf_csr_q_hd_ptr_parity_err_cnt(
2562 				const struct cntr_entry *entry,
2563 				void *context, int vl, int mode, u64 data)
2564 {
2565 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2566 
2567 	return dd->rcv_err_status_cnt[25];
2568 }
2569 
2570 static u64 access_rx_rbuf_csr_q_vld_bit_parity_err_cnt(
2571 				const struct cntr_entry *entry,
2572 				void *context, int vl, int mode, u64 data)
2573 {
2574 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2575 
2576 	return dd->rcv_err_status_cnt[24];
2577 }
2578 
2579 static u64 access_rx_rbuf_csr_q_next_buf_parity_err_cnt(
2580 				const struct cntr_entry *entry,
2581 				void *context, int vl, int mode, u64 data)
2582 {
2583 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2584 
2585 	return dd->rcv_err_status_cnt[23];
2586 }
2587 
2588 static u64 access_rx_rbuf_csr_q_ent_cnt_parity_err_cnt(
2589 				const struct cntr_entry *entry,
2590 				void *context, int vl, int mode, u64 data)
2591 {
2592 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2593 
2594 	return dd->rcv_err_status_cnt[22];
2595 }
2596 
2597 static u64 access_rx_rbuf_csr_q_head_buf_num_parity_err_cnt(
2598 				const struct cntr_entry *entry,
2599 				void *context, int vl, int mode, u64 data)
2600 {
2601 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2602 
2603 	return dd->rcv_err_status_cnt[21];
2604 }
2605 
2606 static u64 access_rx_rbuf_block_list_read_cor_err_cnt(
2607 				const struct cntr_entry *entry,
2608 				void *context, int vl, int mode, u64 data)
2609 {
2610 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2611 
2612 	return dd->rcv_err_status_cnt[20];
2613 }
2614 
2615 static u64 access_rx_rbuf_block_list_read_unc_err_cnt(
2616 				const struct cntr_entry *entry,
2617 				void *context, int vl, int mode, u64 data)
2618 {
2619 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2620 
2621 	return dd->rcv_err_status_cnt[19];
2622 }
2623 
2624 static u64 access_rx_rbuf_lookup_des_cor_err_cnt(const struct cntr_entry *entry,
2625 						 void *context, int vl,
2626 						 int mode, u64 data)
2627 {
2628 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2629 
2630 	return dd->rcv_err_status_cnt[18];
2631 }
2632 
2633 static u64 access_rx_rbuf_lookup_des_unc_err_cnt(const struct cntr_entry *entry,
2634 						 void *context, int vl,
2635 						 int mode, u64 data)
2636 {
2637 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2638 
2639 	return dd->rcv_err_status_cnt[17];
2640 }
2641 
2642 static u64 access_rx_rbuf_lookup_des_reg_unc_cor_err_cnt(
2643 				const struct cntr_entry *entry,
2644 				void *context, int vl, int mode, u64 data)
2645 {
2646 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2647 
2648 	return dd->rcv_err_status_cnt[16];
2649 }
2650 
2651 static u64 access_rx_rbuf_lookup_des_reg_unc_err_cnt(
2652 				const struct cntr_entry *entry,
2653 				void *context, int vl, int mode, u64 data)
2654 {
2655 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2656 
2657 	return dd->rcv_err_status_cnt[15];
2658 }
2659 
2660 static u64 access_rx_rbuf_free_list_cor_err_cnt(const struct cntr_entry *entry,
2661 						void *context, int vl,
2662 						int mode, u64 data)
2663 {
2664 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2665 
2666 	return dd->rcv_err_status_cnt[14];
2667 }
2668 
2669 static u64 access_rx_rbuf_free_list_unc_err_cnt(const struct cntr_entry *entry,
2670 						void *context, int vl,
2671 						int mode, u64 data)
2672 {
2673 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2674 
2675 	return dd->rcv_err_status_cnt[13];
2676 }
2677 
2678 static u64 access_rx_rcv_fsm_encoding_err_cnt(const struct cntr_entry *entry,
2679 					      void *context, int vl, int mode,
2680 					      u64 data)
2681 {
2682 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2683 
2684 	return dd->rcv_err_status_cnt[12];
2685 }
2686 
2687 static u64 access_rx_dma_flag_cor_err_cnt(const struct cntr_entry *entry,
2688 					  void *context, int vl, int mode,
2689 					  u64 data)
2690 {
2691 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2692 
2693 	return dd->rcv_err_status_cnt[11];
2694 }
2695 
2696 static u64 access_rx_dma_flag_unc_err_cnt(const struct cntr_entry *entry,
2697 					  void *context, int vl, int mode,
2698 					  u64 data)
2699 {
2700 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2701 
2702 	return dd->rcv_err_status_cnt[10];
2703 }
2704 
2705 static u64 access_rx_dc_sop_eop_parity_err_cnt(const struct cntr_entry *entry,
2706 					       void *context, int vl, int mode,
2707 					       u64 data)
2708 {
2709 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2710 
2711 	return dd->rcv_err_status_cnt[9];
2712 }
2713 
2714 static u64 access_rx_rcv_csr_parity_err_cnt(const struct cntr_entry *entry,
2715 					    void *context, int vl, int mode,
2716 					    u64 data)
2717 {
2718 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2719 
2720 	return dd->rcv_err_status_cnt[8];
2721 }
2722 
2723 static u64 access_rx_rcv_qp_map_table_cor_err_cnt(
2724 				const struct cntr_entry *entry,
2725 				void *context, int vl, int mode, u64 data)
2726 {
2727 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2728 
2729 	return dd->rcv_err_status_cnt[7];
2730 }
2731 
2732 static u64 access_rx_rcv_qp_map_table_unc_err_cnt(
2733 				const struct cntr_entry *entry,
2734 				void *context, int vl, int mode, u64 data)
2735 {
2736 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2737 
2738 	return dd->rcv_err_status_cnt[6];
2739 }
2740 
2741 static u64 access_rx_rcv_data_cor_err_cnt(const struct cntr_entry *entry,
2742 					  void *context, int vl, int mode,
2743 					  u64 data)
2744 {
2745 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2746 
2747 	return dd->rcv_err_status_cnt[5];
2748 }
2749 
2750 static u64 access_rx_rcv_data_unc_err_cnt(const struct cntr_entry *entry,
2751 					  void *context, int vl, int mode,
2752 					  u64 data)
2753 {
2754 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2755 
2756 	return dd->rcv_err_status_cnt[4];
2757 }
2758 
2759 static u64 access_rx_rcv_hdr_cor_err_cnt(const struct cntr_entry *entry,
2760 					 void *context, int vl, int mode,
2761 					 u64 data)
2762 {
2763 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2764 
2765 	return dd->rcv_err_status_cnt[3];
2766 }
2767 
2768 static u64 access_rx_rcv_hdr_unc_err_cnt(const struct cntr_entry *entry,
2769 					 void *context, int vl, int mode,
2770 					 u64 data)
2771 {
2772 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2773 
2774 	return dd->rcv_err_status_cnt[2];
2775 }
2776 
2777 static u64 access_rx_dc_intf_parity_err_cnt(const struct cntr_entry *entry,
2778 					    void *context, int vl, int mode,
2779 					    u64 data)
2780 {
2781 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2782 
2783 	return dd->rcv_err_status_cnt[1];
2784 }
2785 
2786 static u64 access_rx_dma_csr_cor_err_cnt(const struct cntr_entry *entry,
2787 					 void *context, int vl, int mode,
2788 					 u64 data)
2789 {
2790 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2791 
2792 	return dd->rcv_err_status_cnt[0];
2793 }
2794 
2795 /*
2796  * Software counters corresponding to each of the
2797  * error status bits within SendPioErrStatus
2798  */
2799 static u64 access_pio_pec_sop_head_parity_err_cnt(
2800 				const struct cntr_entry *entry,
2801 				void *context, int vl, int mode, u64 data)
2802 {
2803 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2804 
2805 	return dd->send_pio_err_status_cnt[35];
2806 }
2807 
2808 static u64 access_pio_pcc_sop_head_parity_err_cnt(
2809 				const struct cntr_entry *entry,
2810 				void *context, int vl, int mode, u64 data)
2811 {
2812 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2813 
2814 	return dd->send_pio_err_status_cnt[34];
2815 }
2816 
2817 static u64 access_pio_last_returned_cnt_parity_err_cnt(
2818 				const struct cntr_entry *entry,
2819 				void *context, int vl, int mode, u64 data)
2820 {
2821 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2822 
2823 	return dd->send_pio_err_status_cnt[33];
2824 }
2825 
2826 static u64 access_pio_current_free_cnt_parity_err_cnt(
2827 				const struct cntr_entry *entry,
2828 				void *context, int vl, int mode, u64 data)
2829 {
2830 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2831 
2832 	return dd->send_pio_err_status_cnt[32];
2833 }
2834 
2835 static u64 access_pio_reserved_31_err_cnt(const struct cntr_entry *entry,
2836 					  void *context, int vl, int mode,
2837 					  u64 data)
2838 {
2839 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2840 
2841 	return dd->send_pio_err_status_cnt[31];
2842 }
2843 
2844 static u64 access_pio_reserved_30_err_cnt(const struct cntr_entry *entry,
2845 					  void *context, int vl, int mode,
2846 					  u64 data)
2847 {
2848 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2849 
2850 	return dd->send_pio_err_status_cnt[30];
2851 }
2852 
2853 static u64 access_pio_ppmc_sop_len_err_cnt(const struct cntr_entry *entry,
2854 					   void *context, int vl, int mode,
2855 					   u64 data)
2856 {
2857 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2858 
2859 	return dd->send_pio_err_status_cnt[29];
2860 }
2861 
2862 static u64 access_pio_ppmc_bqc_mem_parity_err_cnt(
2863 				const struct cntr_entry *entry,
2864 				void *context, int vl, int mode, u64 data)
2865 {
2866 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2867 
2868 	return dd->send_pio_err_status_cnt[28];
2869 }
2870 
2871 static u64 access_pio_vl_fifo_parity_err_cnt(const struct cntr_entry *entry,
2872 					     void *context, int vl, int mode,
2873 					     u64 data)
2874 {
2875 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2876 
2877 	return dd->send_pio_err_status_cnt[27];
2878 }
2879 
2880 static u64 access_pio_vlf_sop_parity_err_cnt(const struct cntr_entry *entry,
2881 					     void *context, int vl, int mode,
2882 					     u64 data)
2883 {
2884 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2885 
2886 	return dd->send_pio_err_status_cnt[26];
2887 }
2888 
2889 static u64 access_pio_vlf_v1_len_parity_err_cnt(const struct cntr_entry *entry,
2890 						void *context, int vl,
2891 						int mode, u64 data)
2892 {
2893 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2894 
2895 	return dd->send_pio_err_status_cnt[25];
2896 }
2897 
2898 static u64 access_pio_block_qw_count_parity_err_cnt(
2899 				const struct cntr_entry *entry,
2900 				void *context, int vl, int mode, u64 data)
2901 {
2902 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2903 
2904 	return dd->send_pio_err_status_cnt[24];
2905 }
2906 
2907 static u64 access_pio_write_qw_valid_parity_err_cnt(
2908 				const struct cntr_entry *entry,
2909 				void *context, int vl, int mode, u64 data)
2910 {
2911 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2912 
2913 	return dd->send_pio_err_status_cnt[23];
2914 }
2915 
2916 static u64 access_pio_state_machine_err_cnt(const struct cntr_entry *entry,
2917 					    void *context, int vl, int mode,
2918 					    u64 data)
2919 {
2920 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2921 
2922 	return dd->send_pio_err_status_cnt[22];
2923 }
2924 
2925 static u64 access_pio_write_data_parity_err_cnt(const struct cntr_entry *entry,
2926 						void *context, int vl,
2927 						int mode, u64 data)
2928 {
2929 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2930 
2931 	return dd->send_pio_err_status_cnt[21];
2932 }
2933 
2934 static u64 access_pio_host_addr_mem_cor_err_cnt(const struct cntr_entry *entry,
2935 						void *context, int vl,
2936 						int mode, u64 data)
2937 {
2938 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2939 
2940 	return dd->send_pio_err_status_cnt[20];
2941 }
2942 
2943 static u64 access_pio_host_addr_mem_unc_err_cnt(const struct cntr_entry *entry,
2944 						void *context, int vl,
2945 						int mode, u64 data)
2946 {
2947 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2948 
2949 	return dd->send_pio_err_status_cnt[19];
2950 }
2951 
2952 static u64 access_pio_pkt_evict_sm_or_arb_sm_err_cnt(
2953 				const struct cntr_entry *entry,
2954 				void *context, int vl, int mode, u64 data)
2955 {
2956 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2957 
2958 	return dd->send_pio_err_status_cnt[18];
2959 }
2960 
2961 static u64 access_pio_init_sm_in_err_cnt(const struct cntr_entry *entry,
2962 					 void *context, int vl, int mode,
2963 					 u64 data)
2964 {
2965 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2966 
2967 	return dd->send_pio_err_status_cnt[17];
2968 }
2969 
2970 static u64 access_pio_ppmc_pbl_fifo_err_cnt(const struct cntr_entry *entry,
2971 					    void *context, int vl, int mode,
2972 					    u64 data)
2973 {
2974 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2975 
2976 	return dd->send_pio_err_status_cnt[16];
2977 }
2978 
2979 static u64 access_pio_credit_ret_fifo_parity_err_cnt(
2980 				const struct cntr_entry *entry,
2981 				void *context, int vl, int mode, u64 data)
2982 {
2983 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2984 
2985 	return dd->send_pio_err_status_cnt[15];
2986 }
2987 
2988 static u64 access_pio_v1_len_mem_bank1_cor_err_cnt(
2989 				const struct cntr_entry *entry,
2990 				void *context, int vl, int mode, u64 data)
2991 {
2992 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2993 
2994 	return dd->send_pio_err_status_cnt[14];
2995 }
2996 
2997 static u64 access_pio_v1_len_mem_bank0_cor_err_cnt(
2998 				const struct cntr_entry *entry,
2999 				void *context, int vl, int mode, u64 data)
3000 {
3001 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3002 
3003 	return dd->send_pio_err_status_cnt[13];
3004 }
3005 
3006 static u64 access_pio_v1_len_mem_bank1_unc_err_cnt(
3007 				const struct cntr_entry *entry,
3008 				void *context, int vl, int mode, u64 data)
3009 {
3010 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3011 
3012 	return dd->send_pio_err_status_cnt[12];
3013 }
3014 
3015 static u64 access_pio_v1_len_mem_bank0_unc_err_cnt(
3016 				const struct cntr_entry *entry,
3017 				void *context, int vl, int mode, u64 data)
3018 {
3019 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3020 
3021 	return dd->send_pio_err_status_cnt[11];
3022 }
3023 
3024 static u64 access_pio_sm_pkt_reset_parity_err_cnt(
3025 				const struct cntr_entry *entry,
3026 				void *context, int vl, int mode, u64 data)
3027 {
3028 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3029 
3030 	return dd->send_pio_err_status_cnt[10];
3031 }
3032 
3033 static u64 access_pio_pkt_evict_fifo_parity_err_cnt(
3034 				const struct cntr_entry *entry,
3035 				void *context, int vl, int mode, u64 data)
3036 {
3037 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3038 
3039 	return dd->send_pio_err_status_cnt[9];
3040 }
3041 
3042 static u64 access_pio_sbrdctrl_crrel_fifo_parity_err_cnt(
3043 				const struct cntr_entry *entry,
3044 				void *context, int vl, int mode, u64 data)
3045 {
3046 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3047 
3048 	return dd->send_pio_err_status_cnt[8];
3049 }
3050 
3051 static u64 access_pio_sbrdctl_crrel_parity_err_cnt(
3052 				const struct cntr_entry *entry,
3053 				void *context, int vl, int mode, u64 data)
3054 {
3055 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3056 
3057 	return dd->send_pio_err_status_cnt[7];
3058 }
3059 
3060 static u64 access_pio_pec_fifo_parity_err_cnt(const struct cntr_entry *entry,
3061 					      void *context, int vl, int mode,
3062 					      u64 data)
3063 {
3064 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3065 
3066 	return dd->send_pio_err_status_cnt[6];
3067 }
3068 
3069 static u64 access_pio_pcc_fifo_parity_err_cnt(const struct cntr_entry *entry,
3070 					      void *context, int vl, int mode,
3071 					      u64 data)
3072 {
3073 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3074 
3075 	return dd->send_pio_err_status_cnt[5];
3076 }
3077 
3078 static u64 access_pio_sb_mem_fifo1_err_cnt(const struct cntr_entry *entry,
3079 					   void *context, int vl, int mode,
3080 					   u64 data)
3081 {
3082 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3083 
3084 	return dd->send_pio_err_status_cnt[4];
3085 }
3086 
3087 static u64 access_pio_sb_mem_fifo0_err_cnt(const struct cntr_entry *entry,
3088 					   void *context, int vl, int mode,
3089 					   u64 data)
3090 {
3091 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3092 
3093 	return dd->send_pio_err_status_cnt[3];
3094 }
3095 
3096 static u64 access_pio_csr_parity_err_cnt(const struct cntr_entry *entry,
3097 					 void *context, int vl, int mode,
3098 					 u64 data)
3099 {
3100 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3101 
3102 	return dd->send_pio_err_status_cnt[2];
3103 }
3104 
3105 static u64 access_pio_write_addr_parity_err_cnt(const struct cntr_entry *entry,
3106 						void *context, int vl,
3107 						int mode, u64 data)
3108 {
3109 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3110 
3111 	return dd->send_pio_err_status_cnt[1];
3112 }
3113 
3114 static u64 access_pio_write_bad_ctxt_err_cnt(const struct cntr_entry *entry,
3115 					     void *context, int vl, int mode,
3116 					     u64 data)
3117 {
3118 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3119 
3120 	return dd->send_pio_err_status_cnt[0];
3121 }
3122 
3123 /*
3124  * Software counters corresponding to each of the
3125  * error status bits within SendDmaErrStatus
3126  */
3127 static u64 access_sdma_pcie_req_tracking_cor_err_cnt(
3128 				const struct cntr_entry *entry,
3129 				void *context, int vl, int mode, u64 data)
3130 {
3131 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3132 
3133 	return dd->send_dma_err_status_cnt[3];
3134 }
3135 
3136 static u64 access_sdma_pcie_req_tracking_unc_err_cnt(
3137 				const struct cntr_entry *entry,
3138 				void *context, int vl, int mode, u64 data)
3139 {
3140 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3141 
3142 	return dd->send_dma_err_status_cnt[2];
3143 }
3144 
3145 static u64 access_sdma_csr_parity_err_cnt(const struct cntr_entry *entry,
3146 					  void *context, int vl, int mode,
3147 					  u64 data)
3148 {
3149 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3150 
3151 	return dd->send_dma_err_status_cnt[1];
3152 }
3153 
3154 static u64 access_sdma_rpy_tag_err_cnt(const struct cntr_entry *entry,
3155 				       void *context, int vl, int mode,
3156 				       u64 data)
3157 {
3158 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3159 
3160 	return dd->send_dma_err_status_cnt[0];
3161 }
3162 
3163 /*
3164  * Software counters corresponding to each of the
3165  * error status bits within SendEgressErrStatus
3166  */
3167 static u64 access_tx_read_pio_memory_csr_unc_err_cnt(
3168 				const struct cntr_entry *entry,
3169 				void *context, int vl, int mode, u64 data)
3170 {
3171 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3172 
3173 	return dd->send_egress_err_status_cnt[63];
3174 }
3175 
3176 static u64 access_tx_read_sdma_memory_csr_err_cnt(
3177 				const struct cntr_entry *entry,
3178 				void *context, int vl, int mode, u64 data)
3179 {
3180 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3181 
3182 	return dd->send_egress_err_status_cnt[62];
3183 }
3184 
3185 static u64 access_tx_egress_fifo_cor_err_cnt(const struct cntr_entry *entry,
3186 					     void *context, int vl, int mode,
3187 					     u64 data)
3188 {
3189 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3190 
3191 	return dd->send_egress_err_status_cnt[61];
3192 }
3193 
3194 static u64 access_tx_read_pio_memory_cor_err_cnt(const struct cntr_entry *entry,
3195 						 void *context, int vl,
3196 						 int mode, u64 data)
3197 {
3198 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3199 
3200 	return dd->send_egress_err_status_cnt[60];
3201 }
3202 
3203 static u64 access_tx_read_sdma_memory_cor_err_cnt(
3204 				const struct cntr_entry *entry,
3205 				void *context, int vl, int mode, u64 data)
3206 {
3207 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3208 
3209 	return dd->send_egress_err_status_cnt[59];
3210 }
3211 
3212 static u64 access_tx_sb_hdr_cor_err_cnt(const struct cntr_entry *entry,
3213 					void *context, int vl, int mode,
3214 					u64 data)
3215 {
3216 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3217 
3218 	return dd->send_egress_err_status_cnt[58];
3219 }
3220 
3221 static u64 access_tx_credit_overrun_err_cnt(const struct cntr_entry *entry,
3222 					    void *context, int vl, int mode,
3223 					    u64 data)
3224 {
3225 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3226 
3227 	return dd->send_egress_err_status_cnt[57];
3228 }
3229 
3230 static u64 access_tx_launch_fifo8_cor_err_cnt(const struct cntr_entry *entry,
3231 					      void *context, int vl, int mode,
3232 					      u64 data)
3233 {
3234 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3235 
3236 	return dd->send_egress_err_status_cnt[56];
3237 }
3238 
3239 static u64 access_tx_launch_fifo7_cor_err_cnt(const struct cntr_entry *entry,
3240 					      void *context, int vl, int mode,
3241 					      u64 data)
3242 {
3243 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3244 
3245 	return dd->send_egress_err_status_cnt[55];
3246 }
3247 
3248 static u64 access_tx_launch_fifo6_cor_err_cnt(const struct cntr_entry *entry,
3249 					      void *context, int vl, int mode,
3250 					      u64 data)
3251 {
3252 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3253 
3254 	return dd->send_egress_err_status_cnt[54];
3255 }
3256 
3257 static u64 access_tx_launch_fifo5_cor_err_cnt(const struct cntr_entry *entry,
3258 					      void *context, int vl, int mode,
3259 					      u64 data)
3260 {
3261 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3262 
3263 	return dd->send_egress_err_status_cnt[53];
3264 }
3265 
3266 static u64 access_tx_launch_fifo4_cor_err_cnt(const struct cntr_entry *entry,
3267 					      void *context, int vl, int mode,
3268 					      u64 data)
3269 {
3270 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3271 
3272 	return dd->send_egress_err_status_cnt[52];
3273 }
3274 
3275 static u64 access_tx_launch_fifo3_cor_err_cnt(const struct cntr_entry *entry,
3276 					      void *context, int vl, int mode,
3277 					      u64 data)
3278 {
3279 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3280 
3281 	return dd->send_egress_err_status_cnt[51];
3282 }
3283 
3284 static u64 access_tx_launch_fifo2_cor_err_cnt(const struct cntr_entry *entry,
3285 					      void *context, int vl, int mode,
3286 					      u64 data)
3287 {
3288 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3289 
3290 	return dd->send_egress_err_status_cnt[50];
3291 }
3292 
3293 static u64 access_tx_launch_fifo1_cor_err_cnt(const struct cntr_entry *entry,
3294 					      void *context, int vl, int mode,
3295 					      u64 data)
3296 {
3297 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3298 
3299 	return dd->send_egress_err_status_cnt[49];
3300 }
3301 
3302 static u64 access_tx_launch_fifo0_cor_err_cnt(const struct cntr_entry *entry,
3303 					      void *context, int vl, int mode,
3304 					      u64 data)
3305 {
3306 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3307 
3308 	return dd->send_egress_err_status_cnt[48];
3309 }
3310 
3311 static u64 access_tx_credit_return_vl_err_cnt(const struct cntr_entry *entry,
3312 					      void *context, int vl, int mode,
3313 					      u64 data)
3314 {
3315 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3316 
3317 	return dd->send_egress_err_status_cnt[47];
3318 }
3319 
3320 static u64 access_tx_hcrc_insertion_err_cnt(const struct cntr_entry *entry,
3321 					    void *context, int vl, int mode,
3322 					    u64 data)
3323 {
3324 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3325 
3326 	return dd->send_egress_err_status_cnt[46];
3327 }
3328 
3329 static u64 access_tx_egress_fifo_unc_err_cnt(const struct cntr_entry *entry,
3330 					     void *context, int vl, int mode,
3331 					     u64 data)
3332 {
3333 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3334 
3335 	return dd->send_egress_err_status_cnt[45];
3336 }
3337 
3338 static u64 access_tx_read_pio_memory_unc_err_cnt(const struct cntr_entry *entry,
3339 						 void *context, int vl,
3340 						 int mode, u64 data)
3341 {
3342 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3343 
3344 	return dd->send_egress_err_status_cnt[44];
3345 }
3346 
3347 static u64 access_tx_read_sdma_memory_unc_err_cnt(
3348 				const struct cntr_entry *entry,
3349 				void *context, int vl, int mode, u64 data)
3350 {
3351 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3352 
3353 	return dd->send_egress_err_status_cnt[43];
3354 }
3355 
3356 static u64 access_tx_sb_hdr_unc_err_cnt(const struct cntr_entry *entry,
3357 					void *context, int vl, int mode,
3358 					u64 data)
3359 {
3360 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3361 
3362 	return dd->send_egress_err_status_cnt[42];
3363 }
3364 
3365 static u64 access_tx_credit_return_partiy_err_cnt(
3366 				const struct cntr_entry *entry,
3367 				void *context, int vl, int mode, u64 data)
3368 {
3369 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3370 
3371 	return dd->send_egress_err_status_cnt[41];
3372 }
3373 
3374 static u64 access_tx_launch_fifo8_unc_or_parity_err_cnt(
3375 				const struct cntr_entry *entry,
3376 				void *context, int vl, int mode, u64 data)
3377 {
3378 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3379 
3380 	return dd->send_egress_err_status_cnt[40];
3381 }
3382 
3383 static u64 access_tx_launch_fifo7_unc_or_parity_err_cnt(
3384 				const struct cntr_entry *entry,
3385 				void *context, int vl, int mode, u64 data)
3386 {
3387 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3388 
3389 	return dd->send_egress_err_status_cnt[39];
3390 }
3391 
3392 static u64 access_tx_launch_fifo6_unc_or_parity_err_cnt(
3393 				const struct cntr_entry *entry,
3394 				void *context, int vl, int mode, u64 data)
3395 {
3396 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3397 
3398 	return dd->send_egress_err_status_cnt[38];
3399 }
3400 
3401 static u64 access_tx_launch_fifo5_unc_or_parity_err_cnt(
3402 				const struct cntr_entry *entry,
3403 				void *context, int vl, int mode, u64 data)
3404 {
3405 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3406 
3407 	return dd->send_egress_err_status_cnt[37];
3408 }
3409 
3410 static u64 access_tx_launch_fifo4_unc_or_parity_err_cnt(
3411 				const struct cntr_entry *entry,
3412 				void *context, int vl, int mode, u64 data)
3413 {
3414 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3415 
3416 	return dd->send_egress_err_status_cnt[36];
3417 }
3418 
3419 static u64 access_tx_launch_fifo3_unc_or_parity_err_cnt(
3420 				const struct cntr_entry *entry,
3421 				void *context, int vl, int mode, u64 data)
3422 {
3423 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3424 
3425 	return dd->send_egress_err_status_cnt[35];
3426 }
3427 
3428 static u64 access_tx_launch_fifo2_unc_or_parity_err_cnt(
3429 				const struct cntr_entry *entry,
3430 				void *context, int vl, int mode, u64 data)
3431 {
3432 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3433 
3434 	return dd->send_egress_err_status_cnt[34];
3435 }
3436 
3437 static u64 access_tx_launch_fifo1_unc_or_parity_err_cnt(
3438 				const struct cntr_entry *entry,
3439 				void *context, int vl, int mode, u64 data)
3440 {
3441 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3442 
3443 	return dd->send_egress_err_status_cnt[33];
3444 }
3445 
3446 static u64 access_tx_launch_fifo0_unc_or_parity_err_cnt(
3447 				const struct cntr_entry *entry,
3448 				void *context, int vl, int mode, u64 data)
3449 {
3450 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3451 
3452 	return dd->send_egress_err_status_cnt[32];
3453 }
3454 
3455 static u64 access_tx_sdma15_disallowed_packet_err_cnt(
3456 				const struct cntr_entry *entry,
3457 				void *context, int vl, int mode, u64 data)
3458 {
3459 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3460 
3461 	return dd->send_egress_err_status_cnt[31];
3462 }
3463 
3464 static u64 access_tx_sdma14_disallowed_packet_err_cnt(
3465 				const struct cntr_entry *entry,
3466 				void *context, int vl, int mode, u64 data)
3467 {
3468 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3469 
3470 	return dd->send_egress_err_status_cnt[30];
3471 }
3472 
3473 static u64 access_tx_sdma13_disallowed_packet_err_cnt(
3474 				const struct cntr_entry *entry,
3475 				void *context, int vl, int mode, u64 data)
3476 {
3477 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3478 
3479 	return dd->send_egress_err_status_cnt[29];
3480 }
3481 
3482 static u64 access_tx_sdma12_disallowed_packet_err_cnt(
3483 				const struct cntr_entry *entry,
3484 				void *context, int vl, int mode, u64 data)
3485 {
3486 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3487 
3488 	return dd->send_egress_err_status_cnt[28];
3489 }
3490 
3491 static u64 access_tx_sdma11_disallowed_packet_err_cnt(
3492 				const struct cntr_entry *entry,
3493 				void *context, int vl, int mode, u64 data)
3494 {
3495 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3496 
3497 	return dd->send_egress_err_status_cnt[27];
3498 }
3499 
3500 static u64 access_tx_sdma10_disallowed_packet_err_cnt(
3501 				const struct cntr_entry *entry,
3502 				void *context, int vl, int mode, u64 data)
3503 {
3504 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3505 
3506 	return dd->send_egress_err_status_cnt[26];
3507 }
3508 
3509 static u64 access_tx_sdma9_disallowed_packet_err_cnt(
3510 				const struct cntr_entry *entry,
3511 				void *context, int vl, int mode, u64 data)
3512 {
3513 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3514 
3515 	return dd->send_egress_err_status_cnt[25];
3516 }
3517 
3518 static u64 access_tx_sdma8_disallowed_packet_err_cnt(
3519 				const struct cntr_entry *entry,
3520 				void *context, int vl, int mode, u64 data)
3521 {
3522 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3523 
3524 	return dd->send_egress_err_status_cnt[24];
3525 }
3526 
3527 static u64 access_tx_sdma7_disallowed_packet_err_cnt(
3528 				const struct cntr_entry *entry,
3529 				void *context, int vl, int mode, u64 data)
3530 {
3531 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3532 
3533 	return dd->send_egress_err_status_cnt[23];
3534 }
3535 
3536 static u64 access_tx_sdma6_disallowed_packet_err_cnt(
3537 				const struct cntr_entry *entry,
3538 				void *context, int vl, int mode, u64 data)
3539 {
3540 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3541 
3542 	return dd->send_egress_err_status_cnt[22];
3543 }
3544 
3545 static u64 access_tx_sdma5_disallowed_packet_err_cnt(
3546 				const struct cntr_entry *entry,
3547 				void *context, int vl, int mode, u64 data)
3548 {
3549 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3550 
3551 	return dd->send_egress_err_status_cnt[21];
3552 }
3553 
3554 static u64 access_tx_sdma4_disallowed_packet_err_cnt(
3555 				const struct cntr_entry *entry,
3556 				void *context, int vl, int mode, u64 data)
3557 {
3558 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3559 
3560 	return dd->send_egress_err_status_cnt[20];
3561 }
3562 
3563 static u64 access_tx_sdma3_disallowed_packet_err_cnt(
3564 				const struct cntr_entry *entry,
3565 				void *context, int vl, int mode, u64 data)
3566 {
3567 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3568 
3569 	return dd->send_egress_err_status_cnt[19];
3570 }
3571 
3572 static u64 access_tx_sdma2_disallowed_packet_err_cnt(
3573 				const struct cntr_entry *entry,
3574 				void *context, int vl, int mode, u64 data)
3575 {
3576 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3577 
3578 	return dd->send_egress_err_status_cnt[18];
3579 }
3580 
3581 static u64 access_tx_sdma1_disallowed_packet_err_cnt(
3582 				const struct cntr_entry *entry,
3583 				void *context, int vl, int mode, u64 data)
3584 {
3585 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3586 
3587 	return dd->send_egress_err_status_cnt[17];
3588 }
3589 
3590 static u64 access_tx_sdma0_disallowed_packet_err_cnt(
3591 				const struct cntr_entry *entry,
3592 				void *context, int vl, int mode, u64 data)
3593 {
3594 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3595 
3596 	return dd->send_egress_err_status_cnt[16];
3597 }
3598 
3599 static u64 access_tx_config_parity_err_cnt(const struct cntr_entry *entry,
3600 					   void *context, int vl, int mode,
3601 					   u64 data)
3602 {
3603 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3604 
3605 	return dd->send_egress_err_status_cnt[15];
3606 }
3607 
3608 static u64 access_tx_sbrd_ctl_csr_parity_err_cnt(const struct cntr_entry *entry,
3609 						 void *context, int vl,
3610 						 int mode, u64 data)
3611 {
3612 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3613 
3614 	return dd->send_egress_err_status_cnt[14];
3615 }
3616 
3617 static u64 access_tx_launch_csr_parity_err_cnt(const struct cntr_entry *entry,
3618 					       void *context, int vl, int mode,
3619 					       u64 data)
3620 {
3621 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3622 
3623 	return dd->send_egress_err_status_cnt[13];
3624 }
3625 
3626 static u64 access_tx_illegal_vl_err_cnt(const struct cntr_entry *entry,
3627 					void *context, int vl, int mode,
3628 					u64 data)
3629 {
3630 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3631 
3632 	return dd->send_egress_err_status_cnt[12];
3633 }
3634 
3635 static u64 access_tx_sbrd_ctl_state_machine_parity_err_cnt(
3636 				const struct cntr_entry *entry,
3637 				void *context, int vl, int mode, u64 data)
3638 {
3639 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3640 
3641 	return dd->send_egress_err_status_cnt[11];
3642 }
3643 
3644 static u64 access_egress_reserved_10_err_cnt(const struct cntr_entry *entry,
3645 					     void *context, int vl, int mode,
3646 					     u64 data)
3647 {
3648 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3649 
3650 	return dd->send_egress_err_status_cnt[10];
3651 }
3652 
3653 static u64 access_egress_reserved_9_err_cnt(const struct cntr_entry *entry,
3654 					    void *context, int vl, int mode,
3655 					    u64 data)
3656 {
3657 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3658 
3659 	return dd->send_egress_err_status_cnt[9];
3660 }
3661 
3662 static u64 access_tx_sdma_launch_intf_parity_err_cnt(
3663 				const struct cntr_entry *entry,
3664 				void *context, int vl, int mode, u64 data)
3665 {
3666 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3667 
3668 	return dd->send_egress_err_status_cnt[8];
3669 }
3670 
3671 static u64 access_tx_pio_launch_intf_parity_err_cnt(
3672 				const struct cntr_entry *entry,
3673 				void *context, int vl, int mode, u64 data)
3674 {
3675 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3676 
3677 	return dd->send_egress_err_status_cnt[7];
3678 }
3679 
3680 static u64 access_egress_reserved_6_err_cnt(const struct cntr_entry *entry,
3681 					    void *context, int vl, int mode,
3682 					    u64 data)
3683 {
3684 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3685 
3686 	return dd->send_egress_err_status_cnt[6];
3687 }
3688 
3689 static u64 access_tx_incorrect_link_state_err_cnt(
3690 				const struct cntr_entry *entry,
3691 				void *context, int vl, int mode, u64 data)
3692 {
3693 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3694 
3695 	return dd->send_egress_err_status_cnt[5];
3696 }
3697 
3698 static u64 access_tx_linkdown_err_cnt(const struct cntr_entry *entry,
3699 				      void *context, int vl, int mode,
3700 				      u64 data)
3701 {
3702 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3703 
3704 	return dd->send_egress_err_status_cnt[4];
3705 }
3706 
3707 static u64 access_tx_egress_fifi_underrun_or_parity_err_cnt(
3708 				const struct cntr_entry *entry,
3709 				void *context, int vl, int mode, u64 data)
3710 {
3711 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3712 
3713 	return dd->send_egress_err_status_cnt[3];
3714 }
3715 
3716 static u64 access_egress_reserved_2_err_cnt(const struct cntr_entry *entry,
3717 					    void *context, int vl, int mode,
3718 					    u64 data)
3719 {
3720 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3721 
3722 	return dd->send_egress_err_status_cnt[2];
3723 }
3724 
3725 static u64 access_tx_pkt_integrity_mem_unc_err_cnt(
3726 				const struct cntr_entry *entry,
3727 				void *context, int vl, int mode, u64 data)
3728 {
3729 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3730 
3731 	return dd->send_egress_err_status_cnt[1];
3732 }
3733 
3734 static u64 access_tx_pkt_integrity_mem_cor_err_cnt(
3735 				const struct cntr_entry *entry,
3736 				void *context, int vl, int mode, u64 data)
3737 {
3738 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3739 
3740 	return dd->send_egress_err_status_cnt[0];
3741 }
3742 
3743 /*
3744  * Software counters corresponding to each of the
3745  * error status bits within SendErrStatus
3746  */
3747 static u64 access_send_csr_write_bad_addr_err_cnt(
3748 				const struct cntr_entry *entry,
3749 				void *context, int vl, int mode, u64 data)
3750 {
3751 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3752 
3753 	return dd->send_err_status_cnt[2];
3754 }
3755 
3756 static u64 access_send_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
3757 						 void *context, int vl,
3758 						 int mode, u64 data)
3759 {
3760 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3761 
3762 	return dd->send_err_status_cnt[1];
3763 }
3764 
3765 static u64 access_send_csr_parity_cnt(const struct cntr_entry *entry,
3766 				      void *context, int vl, int mode,
3767 				      u64 data)
3768 {
3769 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3770 
3771 	return dd->send_err_status_cnt[0];
3772 }
3773 
3774 /*
3775  * Software counters corresponding to each of the
3776  * error status bits within SendCtxtErrStatus
3777  */
3778 static u64 access_pio_write_out_of_bounds_err_cnt(
3779 				const struct cntr_entry *entry,
3780 				void *context, int vl, int mode, u64 data)
3781 {
3782 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3783 
3784 	return dd->sw_ctxt_err_status_cnt[4];
3785 }
3786 
3787 static u64 access_pio_write_overflow_err_cnt(const struct cntr_entry *entry,
3788 					     void *context, int vl, int mode,
3789 					     u64 data)
3790 {
3791 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3792 
3793 	return dd->sw_ctxt_err_status_cnt[3];
3794 }
3795 
3796 static u64 access_pio_write_crosses_boundary_err_cnt(
3797 				const struct cntr_entry *entry,
3798 				void *context, int vl, int mode, u64 data)
3799 {
3800 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3801 
3802 	return dd->sw_ctxt_err_status_cnt[2];
3803 }
3804 
3805 static u64 access_pio_disallowed_packet_err_cnt(const struct cntr_entry *entry,
3806 						void *context, int vl,
3807 						int mode, u64 data)
3808 {
3809 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3810 
3811 	return dd->sw_ctxt_err_status_cnt[1];
3812 }
3813 
3814 static u64 access_pio_inconsistent_sop_err_cnt(const struct cntr_entry *entry,
3815 					       void *context, int vl, int mode,
3816 					       u64 data)
3817 {
3818 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3819 
3820 	return dd->sw_ctxt_err_status_cnt[0];
3821 }
3822 
3823 /*
3824  * Software counters corresponding to each of the
3825  * error status bits within SendDmaEngErrStatus
3826  */
3827 static u64 access_sdma_header_request_fifo_cor_err_cnt(
3828 				const struct cntr_entry *entry,
3829 				void *context, int vl, int mode, u64 data)
3830 {
3831 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3832 
3833 	return dd->sw_send_dma_eng_err_status_cnt[23];
3834 }
3835 
3836 static u64 access_sdma_header_storage_cor_err_cnt(
3837 				const struct cntr_entry *entry,
3838 				void *context, int vl, int mode, u64 data)
3839 {
3840 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3841 
3842 	return dd->sw_send_dma_eng_err_status_cnt[22];
3843 }
3844 
3845 static u64 access_sdma_packet_tracking_cor_err_cnt(
3846 				const struct cntr_entry *entry,
3847 				void *context, int vl, int mode, u64 data)
3848 {
3849 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3850 
3851 	return dd->sw_send_dma_eng_err_status_cnt[21];
3852 }
3853 
3854 static u64 access_sdma_assembly_cor_err_cnt(const struct cntr_entry *entry,
3855 					    void *context, int vl, int mode,
3856 					    u64 data)
3857 {
3858 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3859 
3860 	return dd->sw_send_dma_eng_err_status_cnt[20];
3861 }
3862 
3863 static u64 access_sdma_desc_table_cor_err_cnt(const struct cntr_entry *entry,
3864 					      void *context, int vl, int mode,
3865 					      u64 data)
3866 {
3867 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3868 
3869 	return dd->sw_send_dma_eng_err_status_cnt[19];
3870 }
3871 
3872 static u64 access_sdma_header_request_fifo_unc_err_cnt(
3873 				const struct cntr_entry *entry,
3874 				void *context, int vl, int mode, u64 data)
3875 {
3876 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3877 
3878 	return dd->sw_send_dma_eng_err_status_cnt[18];
3879 }
3880 
3881 static u64 access_sdma_header_storage_unc_err_cnt(
3882 				const struct cntr_entry *entry,
3883 				void *context, int vl, int mode, u64 data)
3884 {
3885 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3886 
3887 	return dd->sw_send_dma_eng_err_status_cnt[17];
3888 }
3889 
3890 static u64 access_sdma_packet_tracking_unc_err_cnt(
3891 				const struct cntr_entry *entry,
3892 				void *context, int vl, int mode, u64 data)
3893 {
3894 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3895 
3896 	return dd->sw_send_dma_eng_err_status_cnt[16];
3897 }
3898 
3899 static u64 access_sdma_assembly_unc_err_cnt(const struct cntr_entry *entry,
3900 					    void *context, int vl, int mode,
3901 					    u64 data)
3902 {
3903 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3904 
3905 	return dd->sw_send_dma_eng_err_status_cnt[15];
3906 }
3907 
3908 static u64 access_sdma_desc_table_unc_err_cnt(const struct cntr_entry *entry,
3909 					      void *context, int vl, int mode,
3910 					      u64 data)
3911 {
3912 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3913 
3914 	return dd->sw_send_dma_eng_err_status_cnt[14];
3915 }
3916 
3917 static u64 access_sdma_timeout_err_cnt(const struct cntr_entry *entry,
3918 				       void *context, int vl, int mode,
3919 				       u64 data)
3920 {
3921 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3922 
3923 	return dd->sw_send_dma_eng_err_status_cnt[13];
3924 }
3925 
3926 static u64 access_sdma_header_length_err_cnt(const struct cntr_entry *entry,
3927 					     void *context, int vl, int mode,
3928 					     u64 data)
3929 {
3930 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3931 
3932 	return dd->sw_send_dma_eng_err_status_cnt[12];
3933 }
3934 
3935 static u64 access_sdma_header_address_err_cnt(const struct cntr_entry *entry,
3936 					      void *context, int vl, int mode,
3937 					      u64 data)
3938 {
3939 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3940 
3941 	return dd->sw_send_dma_eng_err_status_cnt[11];
3942 }
3943 
3944 static u64 access_sdma_header_select_err_cnt(const struct cntr_entry *entry,
3945 					     void *context, int vl, int mode,
3946 					     u64 data)
3947 {
3948 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3949 
3950 	return dd->sw_send_dma_eng_err_status_cnt[10];
3951 }
3952 
3953 static u64 access_sdma_reserved_9_err_cnt(const struct cntr_entry *entry,
3954 					  void *context, int vl, int mode,
3955 					  u64 data)
3956 {
3957 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3958 
3959 	return dd->sw_send_dma_eng_err_status_cnt[9];
3960 }
3961 
3962 static u64 access_sdma_packet_desc_overflow_err_cnt(
3963 				const struct cntr_entry *entry,
3964 				void *context, int vl, int mode, u64 data)
3965 {
3966 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3967 
3968 	return dd->sw_send_dma_eng_err_status_cnt[8];
3969 }
3970 
3971 static u64 access_sdma_length_mismatch_err_cnt(const struct cntr_entry *entry,
3972 					       void *context, int vl,
3973 					       int mode, u64 data)
3974 {
3975 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3976 
3977 	return dd->sw_send_dma_eng_err_status_cnt[7];
3978 }
3979 
3980 static u64 access_sdma_halt_err_cnt(const struct cntr_entry *entry,
3981 				    void *context, int vl, int mode, u64 data)
3982 {
3983 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3984 
3985 	return dd->sw_send_dma_eng_err_status_cnt[6];
3986 }
3987 
3988 static u64 access_sdma_mem_read_err_cnt(const struct cntr_entry *entry,
3989 					void *context, int vl, int mode,
3990 					u64 data)
3991 {
3992 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3993 
3994 	return dd->sw_send_dma_eng_err_status_cnt[5];
3995 }
3996 
3997 static u64 access_sdma_first_desc_err_cnt(const struct cntr_entry *entry,
3998 					  void *context, int vl, int mode,
3999 					  u64 data)
4000 {
4001 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4002 
4003 	return dd->sw_send_dma_eng_err_status_cnt[4];
4004 }
4005 
4006 static u64 access_sdma_tail_out_of_bounds_err_cnt(
4007 				const struct cntr_entry *entry,
4008 				void *context, int vl, int mode, u64 data)
4009 {
4010 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4011 
4012 	return dd->sw_send_dma_eng_err_status_cnt[3];
4013 }
4014 
4015 static u64 access_sdma_too_long_err_cnt(const struct cntr_entry *entry,
4016 					void *context, int vl, int mode,
4017 					u64 data)
4018 {
4019 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4020 
4021 	return dd->sw_send_dma_eng_err_status_cnt[2];
4022 }
4023 
4024 static u64 access_sdma_gen_mismatch_err_cnt(const struct cntr_entry *entry,
4025 					    void *context, int vl, int mode,
4026 					    u64 data)
4027 {
4028 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4029 
4030 	return dd->sw_send_dma_eng_err_status_cnt[1];
4031 }
4032 
4033 static u64 access_sdma_wrong_dw_err_cnt(const struct cntr_entry *entry,
4034 					void *context, int vl, int mode,
4035 					u64 data)
4036 {
4037 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4038 
4039 	return dd->sw_send_dma_eng_err_status_cnt[0];
4040 }
4041 
4042 static u64 access_dc_rcv_err_cnt(const struct cntr_entry *entry,
4043 				 void *context, int vl, int mode,
4044 				 u64 data)
4045 {
4046 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4047 
4048 	u64 val = 0;
4049 	u64 csr = entry->csr;
4050 
4051 	val = read_write_csr(dd, csr, mode, data);
4052 	if (mode == CNTR_MODE_R) {
4053 		val = val > CNTR_MAX - dd->sw_rcv_bypass_packet_errors ?
4054 			CNTR_MAX : val + dd->sw_rcv_bypass_packet_errors;
4055 	} else if (mode == CNTR_MODE_W) {
4056 		dd->sw_rcv_bypass_packet_errors = 0;
4057 	} else {
4058 		dd_dev_err(dd, "Invalid cntr register access mode");
4059 		return 0;
4060 	}
4061 	return val;
4062 }
4063 
4064 #define def_access_sw_cpu(cntr) \
4065 static u64 access_sw_cpu_##cntr(const struct cntr_entry *entry,		      \
4066 			      void *context, int vl, int mode, u64 data)      \
4067 {									      \
4068 	struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context;	      \
4069 	return read_write_cpu(ppd->dd, &ppd->ibport_data.rvp.z_ ##cntr,	      \
4070 			      ppd->ibport_data.rvp.cntr, vl,		      \
4071 			      mode, data);				      \
4072 }
4073 
4074 def_access_sw_cpu(rc_acks);
4075 def_access_sw_cpu(rc_qacks);
4076 def_access_sw_cpu(rc_delayed_comp);
4077 
4078 #define def_access_ibp_counter(cntr) \
4079 static u64 access_ibp_##cntr(const struct cntr_entry *entry,		      \
4080 				void *context, int vl, int mode, u64 data)    \
4081 {									      \
4082 	struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context;	      \
4083 									      \
4084 	if (vl != CNTR_INVALID_VL)					      \
4085 		return 0;						      \
4086 									      \
4087 	return read_write_sw(ppd->dd, &ppd->ibport_data.rvp.n_ ##cntr,	      \
4088 			     mode, data);				      \
4089 }
4090 
4091 def_access_ibp_counter(loop_pkts);
4092 def_access_ibp_counter(rc_resends);
4093 def_access_ibp_counter(rnr_naks);
4094 def_access_ibp_counter(other_naks);
4095 def_access_ibp_counter(rc_timeouts);
4096 def_access_ibp_counter(pkt_drops);
4097 def_access_ibp_counter(dmawait);
4098 def_access_ibp_counter(rc_seqnak);
4099 def_access_ibp_counter(rc_dupreq);
4100 def_access_ibp_counter(rdma_seq);
4101 def_access_ibp_counter(unaligned);
4102 def_access_ibp_counter(seq_naks);
4103 
4104 static struct cntr_entry dev_cntrs[DEV_CNTR_LAST] = {
4105 [C_RCV_OVF] = RXE32_DEV_CNTR_ELEM(RcvOverflow, RCV_BUF_OVFL_CNT, CNTR_SYNTH),
4106 [C_RX_TID_FULL] = RXE32_DEV_CNTR_ELEM(RxTIDFullEr, RCV_TID_FULL_ERR_CNT,
4107 			CNTR_NORMAL),
4108 [C_RX_TID_INVALID] = RXE32_DEV_CNTR_ELEM(RxTIDInvalid, RCV_TID_VALID_ERR_CNT,
4109 			CNTR_NORMAL),
4110 [C_RX_TID_FLGMS] = RXE32_DEV_CNTR_ELEM(RxTidFLGMs,
4111 			RCV_TID_FLOW_GEN_MISMATCH_CNT,
4112 			CNTR_NORMAL),
4113 [C_RX_CTX_EGRS] = RXE32_DEV_CNTR_ELEM(RxCtxEgrS, RCV_CONTEXT_EGR_STALL,
4114 			CNTR_NORMAL),
4115 [C_RCV_TID_FLSMS] = RXE32_DEV_CNTR_ELEM(RxTidFLSMs,
4116 			RCV_TID_FLOW_SEQ_MISMATCH_CNT, CNTR_NORMAL),
4117 [C_CCE_PCI_CR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePciCrSt,
4118 			CCE_PCIE_POSTED_CRDT_STALL_CNT, CNTR_NORMAL),
4119 [C_CCE_PCI_TR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePciTrSt, CCE_PCIE_TRGT_STALL_CNT,
4120 			CNTR_NORMAL),
4121 [C_CCE_PIO_WR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePioWrSt, CCE_PIO_WR_STALL_CNT,
4122 			CNTR_NORMAL),
4123 [C_CCE_ERR_INT] = CCE_INT_DEV_CNTR_ELEM(CceErrInt, CCE_ERR_INT_CNT,
4124 			CNTR_NORMAL),
4125 [C_CCE_SDMA_INT] = CCE_INT_DEV_CNTR_ELEM(CceSdmaInt, CCE_SDMA_INT_CNT,
4126 			CNTR_NORMAL),
4127 [C_CCE_MISC_INT] = CCE_INT_DEV_CNTR_ELEM(CceMiscInt, CCE_MISC_INT_CNT,
4128 			CNTR_NORMAL),
4129 [C_CCE_RCV_AV_INT] = CCE_INT_DEV_CNTR_ELEM(CceRcvAvInt, CCE_RCV_AVAIL_INT_CNT,
4130 			CNTR_NORMAL),
4131 [C_CCE_RCV_URG_INT] = CCE_INT_DEV_CNTR_ELEM(CceRcvUrgInt,
4132 			CCE_RCV_URGENT_INT_CNT,	CNTR_NORMAL),
4133 [C_CCE_SEND_CR_INT] = CCE_INT_DEV_CNTR_ELEM(CceSndCrInt,
4134 			CCE_SEND_CREDIT_INT_CNT, CNTR_NORMAL),
4135 [C_DC_UNC_ERR] = DC_PERF_CNTR(DcUnctblErr, DCC_ERR_UNCORRECTABLE_CNT,
4136 			      CNTR_SYNTH),
4137 [C_DC_RCV_ERR] = CNTR_ELEM("DcRecvErr", DCC_ERR_PORTRCV_ERR_CNT, 0, CNTR_SYNTH,
4138 			    access_dc_rcv_err_cnt),
4139 [C_DC_FM_CFG_ERR] = DC_PERF_CNTR(DcFmCfgErr, DCC_ERR_FMCONFIG_ERR_CNT,
4140 				 CNTR_SYNTH),
4141 [C_DC_RMT_PHY_ERR] = DC_PERF_CNTR(DcRmtPhyErr, DCC_ERR_RCVREMOTE_PHY_ERR_CNT,
4142 				  CNTR_SYNTH),
4143 [C_DC_DROPPED_PKT] = DC_PERF_CNTR(DcDroppedPkt, DCC_ERR_DROPPED_PKT_CNT,
4144 				  CNTR_SYNTH),
4145 [C_DC_MC_XMIT_PKTS] = DC_PERF_CNTR(DcMcXmitPkts,
4146 				   DCC_PRF_PORT_XMIT_MULTICAST_CNT, CNTR_SYNTH),
4147 [C_DC_MC_RCV_PKTS] = DC_PERF_CNTR(DcMcRcvPkts,
4148 				  DCC_PRF_PORT_RCV_MULTICAST_PKT_CNT,
4149 				  CNTR_SYNTH),
4150 [C_DC_XMIT_CERR] = DC_PERF_CNTR(DcXmitCorr,
4151 				DCC_PRF_PORT_XMIT_CORRECTABLE_CNT, CNTR_SYNTH),
4152 [C_DC_RCV_CERR] = DC_PERF_CNTR(DcRcvCorrCnt, DCC_PRF_PORT_RCV_CORRECTABLE_CNT,
4153 			       CNTR_SYNTH),
4154 [C_DC_RCV_FCC] = DC_PERF_CNTR(DcRxFCntl, DCC_PRF_RX_FLOW_CRTL_CNT,
4155 			      CNTR_SYNTH),
4156 [C_DC_XMIT_FCC] = DC_PERF_CNTR(DcXmitFCntl, DCC_PRF_TX_FLOW_CRTL_CNT,
4157 			       CNTR_SYNTH),
4158 [C_DC_XMIT_FLITS] = DC_PERF_CNTR(DcXmitFlits, DCC_PRF_PORT_XMIT_DATA_CNT,
4159 				 CNTR_SYNTH),
4160 [C_DC_RCV_FLITS] = DC_PERF_CNTR(DcRcvFlits, DCC_PRF_PORT_RCV_DATA_CNT,
4161 				CNTR_SYNTH),
4162 [C_DC_XMIT_PKTS] = DC_PERF_CNTR(DcXmitPkts, DCC_PRF_PORT_XMIT_PKTS_CNT,
4163 				CNTR_SYNTH),
4164 [C_DC_RCV_PKTS] = DC_PERF_CNTR(DcRcvPkts, DCC_PRF_PORT_RCV_PKTS_CNT,
4165 			       CNTR_SYNTH),
4166 [C_DC_RX_FLIT_VL] = DC_PERF_CNTR(DcRxFlitVl, DCC_PRF_PORT_VL_RCV_DATA_CNT,
4167 				 CNTR_SYNTH | CNTR_VL),
4168 [C_DC_RX_PKT_VL] = DC_PERF_CNTR(DcRxPktVl, DCC_PRF_PORT_VL_RCV_PKTS_CNT,
4169 				CNTR_SYNTH | CNTR_VL),
4170 [C_DC_RCV_FCN] = DC_PERF_CNTR(DcRcvFcn, DCC_PRF_PORT_RCV_FECN_CNT, CNTR_SYNTH),
4171 [C_DC_RCV_FCN_VL] = DC_PERF_CNTR(DcRcvFcnVl, DCC_PRF_PORT_VL_RCV_FECN_CNT,
4172 				 CNTR_SYNTH | CNTR_VL),
4173 [C_DC_RCV_BCN] = DC_PERF_CNTR(DcRcvBcn, DCC_PRF_PORT_RCV_BECN_CNT, CNTR_SYNTH),
4174 [C_DC_RCV_BCN_VL] = DC_PERF_CNTR(DcRcvBcnVl, DCC_PRF_PORT_VL_RCV_BECN_CNT,
4175 				 CNTR_SYNTH | CNTR_VL),
4176 [C_DC_RCV_BBL] = DC_PERF_CNTR(DcRcvBbl, DCC_PRF_PORT_RCV_BUBBLE_CNT,
4177 			      CNTR_SYNTH),
4178 [C_DC_RCV_BBL_VL] = DC_PERF_CNTR(DcRcvBblVl, DCC_PRF_PORT_VL_RCV_BUBBLE_CNT,
4179 				 CNTR_SYNTH | CNTR_VL),
4180 [C_DC_MARK_FECN] = DC_PERF_CNTR(DcMarkFcn, DCC_PRF_PORT_MARK_FECN_CNT,
4181 				CNTR_SYNTH),
4182 [C_DC_MARK_FECN_VL] = DC_PERF_CNTR(DcMarkFcnVl, DCC_PRF_PORT_VL_MARK_FECN_CNT,
4183 				   CNTR_SYNTH | CNTR_VL),
4184 [C_DC_TOTAL_CRC] =
4185 	DC_PERF_CNTR_LCB(DcTotCrc, DC_LCB_ERR_INFO_TOTAL_CRC_ERR,
4186 			 CNTR_SYNTH),
4187 [C_DC_CRC_LN0] = DC_PERF_CNTR_LCB(DcCrcLn0, DC_LCB_ERR_INFO_CRC_ERR_LN0,
4188 				  CNTR_SYNTH),
4189 [C_DC_CRC_LN1] = DC_PERF_CNTR_LCB(DcCrcLn1, DC_LCB_ERR_INFO_CRC_ERR_LN1,
4190 				  CNTR_SYNTH),
4191 [C_DC_CRC_LN2] = DC_PERF_CNTR_LCB(DcCrcLn2, DC_LCB_ERR_INFO_CRC_ERR_LN2,
4192 				  CNTR_SYNTH),
4193 [C_DC_CRC_LN3] = DC_PERF_CNTR_LCB(DcCrcLn3, DC_LCB_ERR_INFO_CRC_ERR_LN3,
4194 				  CNTR_SYNTH),
4195 [C_DC_CRC_MULT_LN] =
4196 	DC_PERF_CNTR_LCB(DcMultLn, DC_LCB_ERR_INFO_CRC_ERR_MULTI_LN,
4197 			 CNTR_SYNTH),
4198 [C_DC_TX_REPLAY] = DC_PERF_CNTR_LCB(DcTxReplay, DC_LCB_ERR_INFO_TX_REPLAY_CNT,
4199 				    CNTR_SYNTH),
4200 [C_DC_RX_REPLAY] = DC_PERF_CNTR_LCB(DcRxReplay, DC_LCB_ERR_INFO_RX_REPLAY_CNT,
4201 				    CNTR_SYNTH),
4202 [C_DC_SEQ_CRC_CNT] =
4203 	DC_PERF_CNTR_LCB(DcLinkSeqCrc, DC_LCB_ERR_INFO_SEQ_CRC_CNT,
4204 			 CNTR_SYNTH),
4205 [C_DC_ESC0_ONLY_CNT] =
4206 	DC_PERF_CNTR_LCB(DcEsc0, DC_LCB_ERR_INFO_ESCAPE_0_ONLY_CNT,
4207 			 CNTR_SYNTH),
4208 [C_DC_ESC0_PLUS1_CNT] =
4209 	DC_PERF_CNTR_LCB(DcEsc1, DC_LCB_ERR_INFO_ESCAPE_0_PLUS1_CNT,
4210 			 CNTR_SYNTH),
4211 [C_DC_ESC0_PLUS2_CNT] =
4212 	DC_PERF_CNTR_LCB(DcEsc0Plus2, DC_LCB_ERR_INFO_ESCAPE_0_PLUS2_CNT,
4213 			 CNTR_SYNTH),
4214 [C_DC_REINIT_FROM_PEER_CNT] =
4215 	DC_PERF_CNTR_LCB(DcReinitPeer, DC_LCB_ERR_INFO_REINIT_FROM_PEER_CNT,
4216 			 CNTR_SYNTH),
4217 [C_DC_SBE_CNT] = DC_PERF_CNTR_LCB(DcSbe, DC_LCB_ERR_INFO_SBE_CNT,
4218 				  CNTR_SYNTH),
4219 [C_DC_MISC_FLG_CNT] =
4220 	DC_PERF_CNTR_LCB(DcMiscFlg, DC_LCB_ERR_INFO_MISC_FLG_CNT,
4221 			 CNTR_SYNTH),
4222 [C_DC_PRF_GOOD_LTP_CNT] =
4223 	DC_PERF_CNTR_LCB(DcGoodLTP, DC_LCB_PRF_GOOD_LTP_CNT, CNTR_SYNTH),
4224 [C_DC_PRF_ACCEPTED_LTP_CNT] =
4225 	DC_PERF_CNTR_LCB(DcAccLTP, DC_LCB_PRF_ACCEPTED_LTP_CNT,
4226 			 CNTR_SYNTH),
4227 [C_DC_PRF_RX_FLIT_CNT] =
4228 	DC_PERF_CNTR_LCB(DcPrfRxFlit, DC_LCB_PRF_RX_FLIT_CNT, CNTR_SYNTH),
4229 [C_DC_PRF_TX_FLIT_CNT] =
4230 	DC_PERF_CNTR_LCB(DcPrfTxFlit, DC_LCB_PRF_TX_FLIT_CNT, CNTR_SYNTH),
4231 [C_DC_PRF_CLK_CNTR] =
4232 	DC_PERF_CNTR_LCB(DcPrfClk, DC_LCB_PRF_CLK_CNTR, CNTR_SYNTH),
4233 [C_DC_PG_DBG_FLIT_CRDTS_CNT] =
4234 	DC_PERF_CNTR_LCB(DcFltCrdts, DC_LCB_PG_DBG_FLIT_CRDTS_CNT, CNTR_SYNTH),
4235 [C_DC_PG_STS_PAUSE_COMPLETE_CNT] =
4236 	DC_PERF_CNTR_LCB(DcPauseComp, DC_LCB_PG_STS_PAUSE_COMPLETE_CNT,
4237 			 CNTR_SYNTH),
4238 [C_DC_PG_STS_TX_SBE_CNT] =
4239 	DC_PERF_CNTR_LCB(DcStsTxSbe, DC_LCB_PG_STS_TX_SBE_CNT, CNTR_SYNTH),
4240 [C_DC_PG_STS_TX_MBE_CNT] =
4241 	DC_PERF_CNTR_LCB(DcStsTxMbe, DC_LCB_PG_STS_TX_MBE_CNT,
4242 			 CNTR_SYNTH),
4243 [C_SW_CPU_INTR] = CNTR_ELEM("Intr", 0, 0, CNTR_NORMAL,
4244 			    access_sw_cpu_intr),
4245 [C_SW_CPU_RCV_LIM] = CNTR_ELEM("RcvLimit", 0, 0, CNTR_NORMAL,
4246 			    access_sw_cpu_rcv_limit),
4247 [C_SW_VTX_WAIT] = CNTR_ELEM("vTxWait", 0, 0, CNTR_NORMAL,
4248 			    access_sw_vtx_wait),
4249 [C_SW_PIO_WAIT] = CNTR_ELEM("PioWait", 0, 0, CNTR_NORMAL,
4250 			    access_sw_pio_wait),
4251 [C_SW_PIO_DRAIN] = CNTR_ELEM("PioDrain", 0, 0, CNTR_NORMAL,
4252 			    access_sw_pio_drain),
4253 [C_SW_KMEM_WAIT] = CNTR_ELEM("KmemWait", 0, 0, CNTR_NORMAL,
4254 			    access_sw_kmem_wait),
4255 [C_SW_SEND_SCHED] = CNTR_ELEM("SendSched", 0, 0, CNTR_NORMAL,
4256 			    access_sw_send_schedule),
4257 [C_SDMA_DESC_FETCHED_CNT] = CNTR_ELEM("SDEDscFdCn",
4258 				      SEND_DMA_DESC_FETCHED_CNT, 0,
4259 				      CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4260 				      dev_access_u32_csr),
4261 [C_SDMA_INT_CNT] = CNTR_ELEM("SDMAInt", 0, 0,
4262 			     CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4263 			     access_sde_int_cnt),
4264 [C_SDMA_ERR_CNT] = CNTR_ELEM("SDMAErrCt", 0, 0,
4265 			     CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4266 			     access_sde_err_cnt),
4267 [C_SDMA_IDLE_INT_CNT] = CNTR_ELEM("SDMAIdInt", 0, 0,
4268 				  CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4269 				  access_sde_idle_int_cnt),
4270 [C_SDMA_PROGRESS_INT_CNT] = CNTR_ELEM("SDMAPrIntCn", 0, 0,
4271 				      CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4272 				      access_sde_progress_int_cnt),
4273 /* MISC_ERR_STATUS */
4274 [C_MISC_PLL_LOCK_FAIL_ERR] = CNTR_ELEM("MISC_PLL_LOCK_FAIL_ERR", 0, 0,
4275 				CNTR_NORMAL,
4276 				access_misc_pll_lock_fail_err_cnt),
4277 [C_MISC_MBIST_FAIL_ERR] = CNTR_ELEM("MISC_MBIST_FAIL_ERR", 0, 0,
4278 				CNTR_NORMAL,
4279 				access_misc_mbist_fail_err_cnt),
4280 [C_MISC_INVALID_EEP_CMD_ERR] = CNTR_ELEM("MISC_INVALID_EEP_CMD_ERR", 0, 0,
4281 				CNTR_NORMAL,
4282 				access_misc_invalid_eep_cmd_err_cnt),
4283 [C_MISC_EFUSE_DONE_PARITY_ERR] = CNTR_ELEM("MISC_EFUSE_DONE_PARITY_ERR", 0, 0,
4284 				CNTR_NORMAL,
4285 				access_misc_efuse_done_parity_err_cnt),
4286 [C_MISC_EFUSE_WRITE_ERR] = CNTR_ELEM("MISC_EFUSE_WRITE_ERR", 0, 0,
4287 				CNTR_NORMAL,
4288 				access_misc_efuse_write_err_cnt),
4289 [C_MISC_EFUSE_READ_BAD_ADDR_ERR] = CNTR_ELEM("MISC_EFUSE_READ_BAD_ADDR_ERR", 0,
4290 				0, CNTR_NORMAL,
4291 				access_misc_efuse_read_bad_addr_err_cnt),
4292 [C_MISC_EFUSE_CSR_PARITY_ERR] = CNTR_ELEM("MISC_EFUSE_CSR_PARITY_ERR", 0, 0,
4293 				CNTR_NORMAL,
4294 				access_misc_efuse_csr_parity_err_cnt),
4295 [C_MISC_FW_AUTH_FAILED_ERR] = CNTR_ELEM("MISC_FW_AUTH_FAILED_ERR", 0, 0,
4296 				CNTR_NORMAL,
4297 				access_misc_fw_auth_failed_err_cnt),
4298 [C_MISC_KEY_MISMATCH_ERR] = CNTR_ELEM("MISC_KEY_MISMATCH_ERR", 0, 0,
4299 				CNTR_NORMAL,
4300 				access_misc_key_mismatch_err_cnt),
4301 [C_MISC_SBUS_WRITE_FAILED_ERR] = CNTR_ELEM("MISC_SBUS_WRITE_FAILED_ERR", 0, 0,
4302 				CNTR_NORMAL,
4303 				access_misc_sbus_write_failed_err_cnt),
4304 [C_MISC_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("MISC_CSR_WRITE_BAD_ADDR_ERR", 0, 0,
4305 				CNTR_NORMAL,
4306 				access_misc_csr_write_bad_addr_err_cnt),
4307 [C_MISC_CSR_READ_BAD_ADDR_ERR] = CNTR_ELEM("MISC_CSR_READ_BAD_ADDR_ERR", 0, 0,
4308 				CNTR_NORMAL,
4309 				access_misc_csr_read_bad_addr_err_cnt),
4310 [C_MISC_CSR_PARITY_ERR] = CNTR_ELEM("MISC_CSR_PARITY_ERR", 0, 0,
4311 				CNTR_NORMAL,
4312 				access_misc_csr_parity_err_cnt),
4313 /* CceErrStatus */
4314 [C_CCE_ERR_STATUS_AGGREGATED_CNT] = CNTR_ELEM("CceErrStatusAggregatedCnt", 0, 0,
4315 				CNTR_NORMAL,
4316 				access_sw_cce_err_status_aggregated_cnt),
4317 [C_CCE_MSIX_CSR_PARITY_ERR] = CNTR_ELEM("CceMsixCsrParityErr", 0, 0,
4318 				CNTR_NORMAL,
4319 				access_cce_msix_csr_parity_err_cnt),
4320 [C_CCE_INT_MAP_UNC_ERR] = CNTR_ELEM("CceIntMapUncErr", 0, 0,
4321 				CNTR_NORMAL,
4322 				access_cce_int_map_unc_err_cnt),
4323 [C_CCE_INT_MAP_COR_ERR] = CNTR_ELEM("CceIntMapCorErr", 0, 0,
4324 				CNTR_NORMAL,
4325 				access_cce_int_map_cor_err_cnt),
4326 [C_CCE_MSIX_TABLE_UNC_ERR] = CNTR_ELEM("CceMsixTableUncErr", 0, 0,
4327 				CNTR_NORMAL,
4328 				access_cce_msix_table_unc_err_cnt),
4329 [C_CCE_MSIX_TABLE_COR_ERR] = CNTR_ELEM("CceMsixTableCorErr", 0, 0,
4330 				CNTR_NORMAL,
4331 				access_cce_msix_table_cor_err_cnt),
4332 [C_CCE_RXDMA_CONV_FIFO_PARITY_ERR] = CNTR_ELEM("CceRxdmaConvFifoParityErr", 0,
4333 				0, CNTR_NORMAL,
4334 				access_cce_rxdma_conv_fifo_parity_err_cnt),
4335 [C_CCE_RCPL_ASYNC_FIFO_PARITY_ERR] = CNTR_ELEM("CceRcplAsyncFifoParityErr", 0,
4336 				0, CNTR_NORMAL,
4337 				access_cce_rcpl_async_fifo_parity_err_cnt),
4338 [C_CCE_SEG_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("CceSegWriteBadAddrErr", 0, 0,
4339 				CNTR_NORMAL,
4340 				access_cce_seg_write_bad_addr_err_cnt),
4341 [C_CCE_SEG_READ_BAD_ADDR_ERR] = CNTR_ELEM("CceSegReadBadAddrErr", 0, 0,
4342 				CNTR_NORMAL,
4343 				access_cce_seg_read_bad_addr_err_cnt),
4344 [C_LA_TRIGGERED] = CNTR_ELEM("Cce LATriggered", 0, 0,
4345 				CNTR_NORMAL,
4346 				access_la_triggered_cnt),
4347 [C_CCE_TRGT_CPL_TIMEOUT_ERR] = CNTR_ELEM("CceTrgtCplTimeoutErr", 0, 0,
4348 				CNTR_NORMAL,
4349 				access_cce_trgt_cpl_timeout_err_cnt),
4350 [C_PCIC_RECEIVE_PARITY_ERR] = CNTR_ELEM("PcicReceiveParityErr", 0, 0,
4351 				CNTR_NORMAL,
4352 				access_pcic_receive_parity_err_cnt),
4353 [C_PCIC_TRANSMIT_BACK_PARITY_ERR] = CNTR_ELEM("PcicTransmitBackParityErr", 0, 0,
4354 				CNTR_NORMAL,
4355 				access_pcic_transmit_back_parity_err_cnt),
4356 [C_PCIC_TRANSMIT_FRONT_PARITY_ERR] = CNTR_ELEM("PcicTransmitFrontParityErr", 0,
4357 				0, CNTR_NORMAL,
4358 				access_pcic_transmit_front_parity_err_cnt),
4359 [C_PCIC_CPL_DAT_Q_UNC_ERR] = CNTR_ELEM("PcicCplDatQUncErr", 0, 0,
4360 				CNTR_NORMAL,
4361 				access_pcic_cpl_dat_q_unc_err_cnt),
4362 [C_PCIC_CPL_HD_Q_UNC_ERR] = CNTR_ELEM("PcicCplHdQUncErr", 0, 0,
4363 				CNTR_NORMAL,
4364 				access_pcic_cpl_hd_q_unc_err_cnt),
4365 [C_PCIC_POST_DAT_Q_UNC_ERR] = CNTR_ELEM("PcicPostDatQUncErr", 0, 0,
4366 				CNTR_NORMAL,
4367 				access_pcic_post_dat_q_unc_err_cnt),
4368 [C_PCIC_POST_HD_Q_UNC_ERR] = CNTR_ELEM("PcicPostHdQUncErr", 0, 0,
4369 				CNTR_NORMAL,
4370 				access_pcic_post_hd_q_unc_err_cnt),
4371 [C_PCIC_RETRY_SOT_MEM_UNC_ERR] = CNTR_ELEM("PcicRetrySotMemUncErr", 0, 0,
4372 				CNTR_NORMAL,
4373 				access_pcic_retry_sot_mem_unc_err_cnt),
4374 [C_PCIC_RETRY_MEM_UNC_ERR] = CNTR_ELEM("PcicRetryMemUncErr", 0, 0,
4375 				CNTR_NORMAL,
4376 				access_pcic_retry_mem_unc_err),
4377 [C_PCIC_N_POST_DAT_Q_PARITY_ERR] = CNTR_ELEM("PcicNPostDatQParityErr", 0, 0,
4378 				CNTR_NORMAL,
4379 				access_pcic_n_post_dat_q_parity_err_cnt),
4380 [C_PCIC_N_POST_H_Q_PARITY_ERR] = CNTR_ELEM("PcicNPostHQParityErr", 0, 0,
4381 				CNTR_NORMAL,
4382 				access_pcic_n_post_h_q_parity_err_cnt),
4383 [C_PCIC_CPL_DAT_Q_COR_ERR] = CNTR_ELEM("PcicCplDatQCorErr", 0, 0,
4384 				CNTR_NORMAL,
4385 				access_pcic_cpl_dat_q_cor_err_cnt),
4386 [C_PCIC_CPL_HD_Q_COR_ERR] = CNTR_ELEM("PcicCplHdQCorErr", 0, 0,
4387 				CNTR_NORMAL,
4388 				access_pcic_cpl_hd_q_cor_err_cnt),
4389 [C_PCIC_POST_DAT_Q_COR_ERR] = CNTR_ELEM("PcicPostDatQCorErr", 0, 0,
4390 				CNTR_NORMAL,
4391 				access_pcic_post_dat_q_cor_err_cnt),
4392 [C_PCIC_POST_HD_Q_COR_ERR] = CNTR_ELEM("PcicPostHdQCorErr", 0, 0,
4393 				CNTR_NORMAL,
4394 				access_pcic_post_hd_q_cor_err_cnt),
4395 [C_PCIC_RETRY_SOT_MEM_COR_ERR] = CNTR_ELEM("PcicRetrySotMemCorErr", 0, 0,
4396 				CNTR_NORMAL,
4397 				access_pcic_retry_sot_mem_cor_err_cnt),
4398 [C_PCIC_RETRY_MEM_COR_ERR] = CNTR_ELEM("PcicRetryMemCorErr", 0, 0,
4399 				CNTR_NORMAL,
4400 				access_pcic_retry_mem_cor_err_cnt),
4401 [C_CCE_CLI1_ASYNC_FIFO_DBG_PARITY_ERR] = CNTR_ELEM(
4402 				"CceCli1AsyncFifoDbgParityError", 0, 0,
4403 				CNTR_NORMAL,
4404 				access_cce_cli1_async_fifo_dbg_parity_err_cnt),
4405 [C_CCE_CLI1_ASYNC_FIFO_RXDMA_PARITY_ERR] = CNTR_ELEM(
4406 				"CceCli1AsyncFifoRxdmaParityError", 0, 0,
4407 				CNTR_NORMAL,
4408 				access_cce_cli1_async_fifo_rxdma_parity_err_cnt
4409 				),
4410 [C_CCE_CLI1_ASYNC_FIFO_SDMA_HD_PARITY_ERR] = CNTR_ELEM(
4411 			"CceCli1AsyncFifoSdmaHdParityErr", 0, 0,
4412 			CNTR_NORMAL,
4413 			access_cce_cli1_async_fifo_sdma_hd_parity_err_cnt),
4414 [C_CCE_CLI1_ASYNC_FIFO_PIO_CRDT_PARITY_ERR] = CNTR_ELEM(
4415 			"CceCli1AsyncFifoPioCrdtParityErr", 0, 0,
4416 			CNTR_NORMAL,
4417 			access_cce_cl1_async_fifo_pio_crdt_parity_err_cnt),
4418 [C_CCE_CLI2_ASYNC_FIFO_PARITY_ERR] = CNTR_ELEM("CceCli2AsyncFifoParityErr", 0,
4419 			0, CNTR_NORMAL,
4420 			access_cce_cli2_async_fifo_parity_err_cnt),
4421 [C_CCE_CSR_CFG_BUS_PARITY_ERR] = CNTR_ELEM("CceCsrCfgBusParityErr", 0, 0,
4422 			CNTR_NORMAL,
4423 			access_cce_csr_cfg_bus_parity_err_cnt),
4424 [C_CCE_CLI0_ASYNC_FIFO_PARTIY_ERR] = CNTR_ELEM("CceCli0AsyncFifoParityErr", 0,
4425 			0, CNTR_NORMAL,
4426 			access_cce_cli0_async_fifo_parity_err_cnt),
4427 [C_CCE_RSPD_DATA_PARITY_ERR] = CNTR_ELEM("CceRspdDataParityErr", 0, 0,
4428 			CNTR_NORMAL,
4429 			access_cce_rspd_data_parity_err_cnt),
4430 [C_CCE_TRGT_ACCESS_ERR] = CNTR_ELEM("CceTrgtAccessErr", 0, 0,
4431 			CNTR_NORMAL,
4432 			access_cce_trgt_access_err_cnt),
4433 [C_CCE_TRGT_ASYNC_FIFO_PARITY_ERR] = CNTR_ELEM("CceTrgtAsyncFifoParityErr", 0,
4434 			0, CNTR_NORMAL,
4435 			access_cce_trgt_async_fifo_parity_err_cnt),
4436 [C_CCE_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("CceCsrWriteBadAddrErr", 0, 0,
4437 			CNTR_NORMAL,
4438 			access_cce_csr_write_bad_addr_err_cnt),
4439 [C_CCE_CSR_READ_BAD_ADDR_ERR] = CNTR_ELEM("CceCsrReadBadAddrErr", 0, 0,
4440 			CNTR_NORMAL,
4441 			access_cce_csr_read_bad_addr_err_cnt),
4442 [C_CCE_CSR_PARITY_ERR] = CNTR_ELEM("CceCsrParityErr", 0, 0,
4443 			CNTR_NORMAL,
4444 			access_ccs_csr_parity_err_cnt),
4445 
4446 /* RcvErrStatus */
4447 [C_RX_CSR_PARITY_ERR] = CNTR_ELEM("RxCsrParityErr", 0, 0,
4448 			CNTR_NORMAL,
4449 			access_rx_csr_parity_err_cnt),
4450 [C_RX_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("RxCsrWriteBadAddrErr", 0, 0,
4451 			CNTR_NORMAL,
4452 			access_rx_csr_write_bad_addr_err_cnt),
4453 [C_RX_CSR_READ_BAD_ADDR_ERR] = CNTR_ELEM("RxCsrReadBadAddrErr", 0, 0,
4454 			CNTR_NORMAL,
4455 			access_rx_csr_read_bad_addr_err_cnt),
4456 [C_RX_DMA_CSR_UNC_ERR] = CNTR_ELEM("RxDmaCsrUncErr", 0, 0,
4457 			CNTR_NORMAL,
4458 			access_rx_dma_csr_unc_err_cnt),
4459 [C_RX_DMA_DQ_FSM_ENCODING_ERR] = CNTR_ELEM("RxDmaDqFsmEncodingErr", 0, 0,
4460 			CNTR_NORMAL,
4461 			access_rx_dma_dq_fsm_encoding_err_cnt),
4462 [C_RX_DMA_EQ_FSM_ENCODING_ERR] = CNTR_ELEM("RxDmaEqFsmEncodingErr", 0, 0,
4463 			CNTR_NORMAL,
4464 			access_rx_dma_eq_fsm_encoding_err_cnt),
4465 [C_RX_DMA_CSR_PARITY_ERR] = CNTR_ELEM("RxDmaCsrParityErr", 0, 0,
4466 			CNTR_NORMAL,
4467 			access_rx_dma_csr_parity_err_cnt),
4468 [C_RX_RBUF_DATA_COR_ERR] = CNTR_ELEM("RxRbufDataCorErr", 0, 0,
4469 			CNTR_NORMAL,
4470 			access_rx_rbuf_data_cor_err_cnt),
4471 [C_RX_RBUF_DATA_UNC_ERR] = CNTR_ELEM("RxRbufDataUncErr", 0, 0,
4472 			CNTR_NORMAL,
4473 			access_rx_rbuf_data_unc_err_cnt),
4474 [C_RX_DMA_DATA_FIFO_RD_COR_ERR] = CNTR_ELEM("RxDmaDataFifoRdCorErr", 0, 0,
4475 			CNTR_NORMAL,
4476 			access_rx_dma_data_fifo_rd_cor_err_cnt),
4477 [C_RX_DMA_DATA_FIFO_RD_UNC_ERR] = CNTR_ELEM("RxDmaDataFifoRdUncErr", 0, 0,
4478 			CNTR_NORMAL,
4479 			access_rx_dma_data_fifo_rd_unc_err_cnt),
4480 [C_RX_DMA_HDR_FIFO_RD_COR_ERR] = CNTR_ELEM("RxDmaHdrFifoRdCorErr", 0, 0,
4481 			CNTR_NORMAL,
4482 			access_rx_dma_hdr_fifo_rd_cor_err_cnt),
4483 [C_RX_DMA_HDR_FIFO_RD_UNC_ERR] = CNTR_ELEM("RxDmaHdrFifoRdUncErr", 0, 0,
4484 			CNTR_NORMAL,
4485 			access_rx_dma_hdr_fifo_rd_unc_err_cnt),
4486 [C_RX_RBUF_DESC_PART2_COR_ERR] = CNTR_ELEM("RxRbufDescPart2CorErr", 0, 0,
4487 			CNTR_NORMAL,
4488 			access_rx_rbuf_desc_part2_cor_err_cnt),
4489 [C_RX_RBUF_DESC_PART2_UNC_ERR] = CNTR_ELEM("RxRbufDescPart2UncErr", 0, 0,
4490 			CNTR_NORMAL,
4491 			access_rx_rbuf_desc_part2_unc_err_cnt),
4492 [C_RX_RBUF_DESC_PART1_COR_ERR] = CNTR_ELEM("RxRbufDescPart1CorErr", 0, 0,
4493 			CNTR_NORMAL,
4494 			access_rx_rbuf_desc_part1_cor_err_cnt),
4495 [C_RX_RBUF_DESC_PART1_UNC_ERR] = CNTR_ELEM("RxRbufDescPart1UncErr", 0, 0,
4496 			CNTR_NORMAL,
4497 			access_rx_rbuf_desc_part1_unc_err_cnt),
4498 [C_RX_HQ_INTR_FSM_ERR] = CNTR_ELEM("RxHqIntrFsmErr", 0, 0,
4499 			CNTR_NORMAL,
4500 			access_rx_hq_intr_fsm_err_cnt),
4501 [C_RX_HQ_INTR_CSR_PARITY_ERR] = CNTR_ELEM("RxHqIntrCsrParityErr", 0, 0,
4502 			CNTR_NORMAL,
4503 			access_rx_hq_intr_csr_parity_err_cnt),
4504 [C_RX_LOOKUP_CSR_PARITY_ERR] = CNTR_ELEM("RxLookupCsrParityErr", 0, 0,
4505 			CNTR_NORMAL,
4506 			access_rx_lookup_csr_parity_err_cnt),
4507 [C_RX_LOOKUP_RCV_ARRAY_COR_ERR] = CNTR_ELEM("RxLookupRcvArrayCorErr", 0, 0,
4508 			CNTR_NORMAL,
4509 			access_rx_lookup_rcv_array_cor_err_cnt),
4510 [C_RX_LOOKUP_RCV_ARRAY_UNC_ERR] = CNTR_ELEM("RxLookupRcvArrayUncErr", 0, 0,
4511 			CNTR_NORMAL,
4512 			access_rx_lookup_rcv_array_unc_err_cnt),
4513 [C_RX_LOOKUP_DES_PART2_PARITY_ERR] = CNTR_ELEM("RxLookupDesPart2ParityErr", 0,
4514 			0, CNTR_NORMAL,
4515 			access_rx_lookup_des_part2_parity_err_cnt),
4516 [C_RX_LOOKUP_DES_PART1_UNC_COR_ERR] = CNTR_ELEM("RxLookupDesPart1UncCorErr", 0,
4517 			0, CNTR_NORMAL,
4518 			access_rx_lookup_des_part1_unc_cor_err_cnt),
4519 [C_RX_LOOKUP_DES_PART1_UNC_ERR] = CNTR_ELEM("RxLookupDesPart1UncErr", 0, 0,
4520 			CNTR_NORMAL,
4521 			access_rx_lookup_des_part1_unc_err_cnt),
4522 [C_RX_RBUF_NEXT_FREE_BUF_COR_ERR] = CNTR_ELEM("RxRbufNextFreeBufCorErr", 0, 0,
4523 			CNTR_NORMAL,
4524 			access_rx_rbuf_next_free_buf_cor_err_cnt),
4525 [C_RX_RBUF_NEXT_FREE_BUF_UNC_ERR] = CNTR_ELEM("RxRbufNextFreeBufUncErr", 0, 0,
4526 			CNTR_NORMAL,
4527 			access_rx_rbuf_next_free_buf_unc_err_cnt),
4528 [C_RX_RBUF_FL_INIT_WR_ADDR_PARITY_ERR] = CNTR_ELEM(
4529 			"RxRbufFlInitWrAddrParityErr", 0, 0,
4530 			CNTR_NORMAL,
4531 			access_rbuf_fl_init_wr_addr_parity_err_cnt),
4532 [C_RX_RBUF_FL_INITDONE_PARITY_ERR] = CNTR_ELEM("RxRbufFlInitdoneParityErr", 0,
4533 			0, CNTR_NORMAL,
4534 			access_rx_rbuf_fl_initdone_parity_err_cnt),
4535 [C_RX_RBUF_FL_WRITE_ADDR_PARITY_ERR] = CNTR_ELEM("RxRbufFlWrAddrParityErr", 0,
4536 			0, CNTR_NORMAL,
4537 			access_rx_rbuf_fl_write_addr_parity_err_cnt),
4538 [C_RX_RBUF_FL_RD_ADDR_PARITY_ERR] = CNTR_ELEM("RxRbufFlRdAddrParityErr", 0, 0,
4539 			CNTR_NORMAL,
4540 			access_rx_rbuf_fl_rd_addr_parity_err_cnt),
4541 [C_RX_RBUF_EMPTY_ERR] = CNTR_ELEM("RxRbufEmptyErr", 0, 0,
4542 			CNTR_NORMAL,
4543 			access_rx_rbuf_empty_err_cnt),
4544 [C_RX_RBUF_FULL_ERR] = CNTR_ELEM("RxRbufFullErr", 0, 0,
4545 			CNTR_NORMAL,
4546 			access_rx_rbuf_full_err_cnt),
4547 [C_RX_RBUF_BAD_LOOKUP_ERR] = CNTR_ELEM("RxRBufBadLookupErr", 0, 0,
4548 			CNTR_NORMAL,
4549 			access_rbuf_bad_lookup_err_cnt),
4550 [C_RX_RBUF_CTX_ID_PARITY_ERR] = CNTR_ELEM("RxRbufCtxIdParityErr", 0, 0,
4551 			CNTR_NORMAL,
4552 			access_rbuf_ctx_id_parity_err_cnt),
4553 [C_RX_RBUF_CSR_QEOPDW_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQEOPDWParityErr", 0, 0,
4554 			CNTR_NORMAL,
4555 			access_rbuf_csr_qeopdw_parity_err_cnt),
4556 [C_RX_RBUF_CSR_Q_NUM_OF_PKT_PARITY_ERR] = CNTR_ELEM(
4557 			"RxRbufCsrQNumOfPktParityErr", 0, 0,
4558 			CNTR_NORMAL,
4559 			access_rx_rbuf_csr_q_num_of_pkt_parity_err_cnt),
4560 [C_RX_RBUF_CSR_Q_T1_PTR_PARITY_ERR] = CNTR_ELEM(
4561 			"RxRbufCsrQTlPtrParityErr", 0, 0,
4562 			CNTR_NORMAL,
4563 			access_rx_rbuf_csr_q_t1_ptr_parity_err_cnt),
4564 [C_RX_RBUF_CSR_Q_HD_PTR_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQHdPtrParityErr", 0,
4565 			0, CNTR_NORMAL,
4566 			access_rx_rbuf_csr_q_hd_ptr_parity_err_cnt),
4567 [C_RX_RBUF_CSR_Q_VLD_BIT_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQVldBitParityErr", 0,
4568 			0, CNTR_NORMAL,
4569 			access_rx_rbuf_csr_q_vld_bit_parity_err_cnt),
4570 [C_RX_RBUF_CSR_Q_NEXT_BUF_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQNextBufParityErr",
4571 			0, 0, CNTR_NORMAL,
4572 			access_rx_rbuf_csr_q_next_buf_parity_err_cnt),
4573 [C_RX_RBUF_CSR_Q_ENT_CNT_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQEntCntParityErr", 0,
4574 			0, CNTR_NORMAL,
4575 			access_rx_rbuf_csr_q_ent_cnt_parity_err_cnt),
4576 [C_RX_RBUF_CSR_Q_HEAD_BUF_NUM_PARITY_ERR] = CNTR_ELEM(
4577 			"RxRbufCsrQHeadBufNumParityErr", 0, 0,
4578 			CNTR_NORMAL,
4579 			access_rx_rbuf_csr_q_head_buf_num_parity_err_cnt),
4580 [C_RX_RBUF_BLOCK_LIST_READ_COR_ERR] = CNTR_ELEM("RxRbufBlockListReadCorErr", 0,
4581 			0, CNTR_NORMAL,
4582 			access_rx_rbuf_block_list_read_cor_err_cnt),
4583 [C_RX_RBUF_BLOCK_LIST_READ_UNC_ERR] = CNTR_ELEM("RxRbufBlockListReadUncErr", 0,
4584 			0, CNTR_NORMAL,
4585 			access_rx_rbuf_block_list_read_unc_err_cnt),
4586 [C_RX_RBUF_LOOKUP_DES_COR_ERR] = CNTR_ELEM("RxRbufLookupDesCorErr", 0, 0,
4587 			CNTR_NORMAL,
4588 			access_rx_rbuf_lookup_des_cor_err_cnt),
4589 [C_RX_RBUF_LOOKUP_DES_UNC_ERR] = CNTR_ELEM("RxRbufLookupDesUncErr", 0, 0,
4590 			CNTR_NORMAL,
4591 			access_rx_rbuf_lookup_des_unc_err_cnt),
4592 [C_RX_RBUF_LOOKUP_DES_REG_UNC_COR_ERR] = CNTR_ELEM(
4593 			"RxRbufLookupDesRegUncCorErr", 0, 0,
4594 			CNTR_NORMAL,
4595 			access_rx_rbuf_lookup_des_reg_unc_cor_err_cnt),
4596 [C_RX_RBUF_LOOKUP_DES_REG_UNC_ERR] = CNTR_ELEM("RxRbufLookupDesRegUncErr", 0, 0,
4597 			CNTR_NORMAL,
4598 			access_rx_rbuf_lookup_des_reg_unc_err_cnt),
4599 [C_RX_RBUF_FREE_LIST_COR_ERR] = CNTR_ELEM("RxRbufFreeListCorErr", 0, 0,
4600 			CNTR_NORMAL,
4601 			access_rx_rbuf_free_list_cor_err_cnt),
4602 [C_RX_RBUF_FREE_LIST_UNC_ERR] = CNTR_ELEM("RxRbufFreeListUncErr", 0, 0,
4603 			CNTR_NORMAL,
4604 			access_rx_rbuf_free_list_unc_err_cnt),
4605 [C_RX_RCV_FSM_ENCODING_ERR] = CNTR_ELEM("RxRcvFsmEncodingErr", 0, 0,
4606 			CNTR_NORMAL,
4607 			access_rx_rcv_fsm_encoding_err_cnt),
4608 [C_RX_DMA_FLAG_COR_ERR] = CNTR_ELEM("RxDmaFlagCorErr", 0, 0,
4609 			CNTR_NORMAL,
4610 			access_rx_dma_flag_cor_err_cnt),
4611 [C_RX_DMA_FLAG_UNC_ERR] = CNTR_ELEM("RxDmaFlagUncErr", 0, 0,
4612 			CNTR_NORMAL,
4613 			access_rx_dma_flag_unc_err_cnt),
4614 [C_RX_DC_SOP_EOP_PARITY_ERR] = CNTR_ELEM("RxDcSopEopParityErr", 0, 0,
4615 			CNTR_NORMAL,
4616 			access_rx_dc_sop_eop_parity_err_cnt),
4617 [C_RX_RCV_CSR_PARITY_ERR] = CNTR_ELEM("RxRcvCsrParityErr", 0, 0,
4618 			CNTR_NORMAL,
4619 			access_rx_rcv_csr_parity_err_cnt),
4620 [C_RX_RCV_QP_MAP_TABLE_COR_ERR] = CNTR_ELEM("RxRcvQpMapTableCorErr", 0, 0,
4621 			CNTR_NORMAL,
4622 			access_rx_rcv_qp_map_table_cor_err_cnt),
4623 [C_RX_RCV_QP_MAP_TABLE_UNC_ERR] = CNTR_ELEM("RxRcvQpMapTableUncErr", 0, 0,
4624 			CNTR_NORMAL,
4625 			access_rx_rcv_qp_map_table_unc_err_cnt),
4626 [C_RX_RCV_DATA_COR_ERR] = CNTR_ELEM("RxRcvDataCorErr", 0, 0,
4627 			CNTR_NORMAL,
4628 			access_rx_rcv_data_cor_err_cnt),
4629 [C_RX_RCV_DATA_UNC_ERR] = CNTR_ELEM("RxRcvDataUncErr", 0, 0,
4630 			CNTR_NORMAL,
4631 			access_rx_rcv_data_unc_err_cnt),
4632 [C_RX_RCV_HDR_COR_ERR] = CNTR_ELEM("RxRcvHdrCorErr", 0, 0,
4633 			CNTR_NORMAL,
4634 			access_rx_rcv_hdr_cor_err_cnt),
4635 [C_RX_RCV_HDR_UNC_ERR] = CNTR_ELEM("RxRcvHdrUncErr", 0, 0,
4636 			CNTR_NORMAL,
4637 			access_rx_rcv_hdr_unc_err_cnt),
4638 [C_RX_DC_INTF_PARITY_ERR] = CNTR_ELEM("RxDcIntfParityErr", 0, 0,
4639 			CNTR_NORMAL,
4640 			access_rx_dc_intf_parity_err_cnt),
4641 [C_RX_DMA_CSR_COR_ERR] = CNTR_ELEM("RxDmaCsrCorErr", 0, 0,
4642 			CNTR_NORMAL,
4643 			access_rx_dma_csr_cor_err_cnt),
4644 /* SendPioErrStatus */
4645 [C_PIO_PEC_SOP_HEAD_PARITY_ERR] = CNTR_ELEM("PioPecSopHeadParityErr", 0, 0,
4646 			CNTR_NORMAL,
4647 			access_pio_pec_sop_head_parity_err_cnt),
4648 [C_PIO_PCC_SOP_HEAD_PARITY_ERR] = CNTR_ELEM("PioPccSopHeadParityErr", 0, 0,
4649 			CNTR_NORMAL,
4650 			access_pio_pcc_sop_head_parity_err_cnt),
4651 [C_PIO_LAST_RETURNED_CNT_PARITY_ERR] = CNTR_ELEM("PioLastReturnedCntParityErr",
4652 			0, 0, CNTR_NORMAL,
4653 			access_pio_last_returned_cnt_parity_err_cnt),
4654 [C_PIO_CURRENT_FREE_CNT_PARITY_ERR] = CNTR_ELEM("PioCurrentFreeCntParityErr", 0,
4655 			0, CNTR_NORMAL,
4656 			access_pio_current_free_cnt_parity_err_cnt),
4657 [C_PIO_RSVD_31_ERR] = CNTR_ELEM("Pio Reserved 31", 0, 0,
4658 			CNTR_NORMAL,
4659 			access_pio_reserved_31_err_cnt),
4660 [C_PIO_RSVD_30_ERR] = CNTR_ELEM("Pio Reserved 30", 0, 0,
4661 			CNTR_NORMAL,
4662 			access_pio_reserved_30_err_cnt),
4663 [C_PIO_PPMC_SOP_LEN_ERR] = CNTR_ELEM("PioPpmcSopLenErr", 0, 0,
4664 			CNTR_NORMAL,
4665 			access_pio_ppmc_sop_len_err_cnt),
4666 [C_PIO_PPMC_BQC_MEM_PARITY_ERR] = CNTR_ELEM("PioPpmcBqcMemParityErr", 0, 0,
4667 			CNTR_NORMAL,
4668 			access_pio_ppmc_bqc_mem_parity_err_cnt),
4669 [C_PIO_VL_FIFO_PARITY_ERR] = CNTR_ELEM("PioVlFifoParityErr", 0, 0,
4670 			CNTR_NORMAL,
4671 			access_pio_vl_fifo_parity_err_cnt),
4672 [C_PIO_VLF_SOP_PARITY_ERR] = CNTR_ELEM("PioVlfSopParityErr", 0, 0,
4673 			CNTR_NORMAL,
4674 			access_pio_vlf_sop_parity_err_cnt),
4675 [C_PIO_VLF_V1_LEN_PARITY_ERR] = CNTR_ELEM("PioVlfVlLenParityErr", 0, 0,
4676 			CNTR_NORMAL,
4677 			access_pio_vlf_v1_len_parity_err_cnt),
4678 [C_PIO_BLOCK_QW_COUNT_PARITY_ERR] = CNTR_ELEM("PioBlockQwCountParityErr", 0, 0,
4679 			CNTR_NORMAL,
4680 			access_pio_block_qw_count_parity_err_cnt),
4681 [C_PIO_WRITE_QW_VALID_PARITY_ERR] = CNTR_ELEM("PioWriteQwValidParityErr", 0, 0,
4682 			CNTR_NORMAL,
4683 			access_pio_write_qw_valid_parity_err_cnt),
4684 [C_PIO_STATE_MACHINE_ERR] = CNTR_ELEM("PioStateMachineErr", 0, 0,
4685 			CNTR_NORMAL,
4686 			access_pio_state_machine_err_cnt),
4687 [C_PIO_WRITE_DATA_PARITY_ERR] = CNTR_ELEM("PioWriteDataParityErr", 0, 0,
4688 			CNTR_NORMAL,
4689 			access_pio_write_data_parity_err_cnt),
4690 [C_PIO_HOST_ADDR_MEM_COR_ERR] = CNTR_ELEM("PioHostAddrMemCorErr", 0, 0,
4691 			CNTR_NORMAL,
4692 			access_pio_host_addr_mem_cor_err_cnt),
4693 [C_PIO_HOST_ADDR_MEM_UNC_ERR] = CNTR_ELEM("PioHostAddrMemUncErr", 0, 0,
4694 			CNTR_NORMAL,
4695 			access_pio_host_addr_mem_unc_err_cnt),
4696 [C_PIO_PKT_EVICT_SM_OR_ARM_SM_ERR] = CNTR_ELEM("PioPktEvictSmOrArbSmErr", 0, 0,
4697 			CNTR_NORMAL,
4698 			access_pio_pkt_evict_sm_or_arb_sm_err_cnt),
4699 [C_PIO_INIT_SM_IN_ERR] = CNTR_ELEM("PioInitSmInErr", 0, 0,
4700 			CNTR_NORMAL,
4701 			access_pio_init_sm_in_err_cnt),
4702 [C_PIO_PPMC_PBL_FIFO_ERR] = CNTR_ELEM("PioPpmcPblFifoErr", 0, 0,
4703 			CNTR_NORMAL,
4704 			access_pio_ppmc_pbl_fifo_err_cnt),
4705 [C_PIO_CREDIT_RET_FIFO_PARITY_ERR] = CNTR_ELEM("PioCreditRetFifoParityErr", 0,
4706 			0, CNTR_NORMAL,
4707 			access_pio_credit_ret_fifo_parity_err_cnt),
4708 [C_PIO_V1_LEN_MEM_BANK1_COR_ERR] = CNTR_ELEM("PioVlLenMemBank1CorErr", 0, 0,
4709 			CNTR_NORMAL,
4710 			access_pio_v1_len_mem_bank1_cor_err_cnt),
4711 [C_PIO_V1_LEN_MEM_BANK0_COR_ERR] = CNTR_ELEM("PioVlLenMemBank0CorErr", 0, 0,
4712 			CNTR_NORMAL,
4713 			access_pio_v1_len_mem_bank0_cor_err_cnt),
4714 [C_PIO_V1_LEN_MEM_BANK1_UNC_ERR] = CNTR_ELEM("PioVlLenMemBank1UncErr", 0, 0,
4715 			CNTR_NORMAL,
4716 			access_pio_v1_len_mem_bank1_unc_err_cnt),
4717 [C_PIO_V1_LEN_MEM_BANK0_UNC_ERR] = CNTR_ELEM("PioVlLenMemBank0UncErr", 0, 0,
4718 			CNTR_NORMAL,
4719 			access_pio_v1_len_mem_bank0_unc_err_cnt),
4720 [C_PIO_SM_PKT_RESET_PARITY_ERR] = CNTR_ELEM("PioSmPktResetParityErr", 0, 0,
4721 			CNTR_NORMAL,
4722 			access_pio_sm_pkt_reset_parity_err_cnt),
4723 [C_PIO_PKT_EVICT_FIFO_PARITY_ERR] = CNTR_ELEM("PioPktEvictFifoParityErr", 0, 0,
4724 			CNTR_NORMAL,
4725 			access_pio_pkt_evict_fifo_parity_err_cnt),
4726 [C_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR] = CNTR_ELEM(
4727 			"PioSbrdctrlCrrelFifoParityErr", 0, 0,
4728 			CNTR_NORMAL,
4729 			access_pio_sbrdctrl_crrel_fifo_parity_err_cnt),
4730 [C_PIO_SBRDCTL_CRREL_PARITY_ERR] = CNTR_ELEM("PioSbrdctlCrrelParityErr", 0, 0,
4731 			CNTR_NORMAL,
4732 			access_pio_sbrdctl_crrel_parity_err_cnt),
4733 [C_PIO_PEC_FIFO_PARITY_ERR] = CNTR_ELEM("PioPecFifoParityErr", 0, 0,
4734 			CNTR_NORMAL,
4735 			access_pio_pec_fifo_parity_err_cnt),
4736 [C_PIO_PCC_FIFO_PARITY_ERR] = CNTR_ELEM("PioPccFifoParityErr", 0, 0,
4737 			CNTR_NORMAL,
4738 			access_pio_pcc_fifo_parity_err_cnt),
4739 [C_PIO_SB_MEM_FIFO1_ERR] = CNTR_ELEM("PioSbMemFifo1Err", 0, 0,
4740 			CNTR_NORMAL,
4741 			access_pio_sb_mem_fifo1_err_cnt),
4742 [C_PIO_SB_MEM_FIFO0_ERR] = CNTR_ELEM("PioSbMemFifo0Err", 0, 0,
4743 			CNTR_NORMAL,
4744 			access_pio_sb_mem_fifo0_err_cnt),
4745 [C_PIO_CSR_PARITY_ERR] = CNTR_ELEM("PioCsrParityErr", 0, 0,
4746 			CNTR_NORMAL,
4747 			access_pio_csr_parity_err_cnt),
4748 [C_PIO_WRITE_ADDR_PARITY_ERR] = CNTR_ELEM("PioWriteAddrParityErr", 0, 0,
4749 			CNTR_NORMAL,
4750 			access_pio_write_addr_parity_err_cnt),
4751 [C_PIO_WRITE_BAD_CTXT_ERR] = CNTR_ELEM("PioWriteBadCtxtErr", 0, 0,
4752 			CNTR_NORMAL,
4753 			access_pio_write_bad_ctxt_err_cnt),
4754 /* SendDmaErrStatus */
4755 [C_SDMA_PCIE_REQ_TRACKING_COR_ERR] = CNTR_ELEM("SDmaPcieReqTrackingCorErr", 0,
4756 			0, CNTR_NORMAL,
4757 			access_sdma_pcie_req_tracking_cor_err_cnt),
4758 [C_SDMA_PCIE_REQ_TRACKING_UNC_ERR] = CNTR_ELEM("SDmaPcieReqTrackingUncErr", 0,
4759 			0, CNTR_NORMAL,
4760 			access_sdma_pcie_req_tracking_unc_err_cnt),
4761 [C_SDMA_CSR_PARITY_ERR] = CNTR_ELEM("SDmaCsrParityErr", 0, 0,
4762 			CNTR_NORMAL,
4763 			access_sdma_csr_parity_err_cnt),
4764 [C_SDMA_RPY_TAG_ERR] = CNTR_ELEM("SDmaRpyTagErr", 0, 0,
4765 			CNTR_NORMAL,
4766 			access_sdma_rpy_tag_err_cnt),
4767 /* SendEgressErrStatus */
4768 [C_TX_READ_PIO_MEMORY_CSR_UNC_ERR] = CNTR_ELEM("TxReadPioMemoryCsrUncErr", 0, 0,
4769 			CNTR_NORMAL,
4770 			access_tx_read_pio_memory_csr_unc_err_cnt),
4771 [C_TX_READ_SDMA_MEMORY_CSR_UNC_ERR] = CNTR_ELEM("TxReadSdmaMemoryCsrUncErr", 0,
4772 			0, CNTR_NORMAL,
4773 			access_tx_read_sdma_memory_csr_err_cnt),
4774 [C_TX_EGRESS_FIFO_COR_ERR] = CNTR_ELEM("TxEgressFifoCorErr", 0, 0,
4775 			CNTR_NORMAL,
4776 			access_tx_egress_fifo_cor_err_cnt),
4777 [C_TX_READ_PIO_MEMORY_COR_ERR] = CNTR_ELEM("TxReadPioMemoryCorErr", 0, 0,
4778 			CNTR_NORMAL,
4779 			access_tx_read_pio_memory_cor_err_cnt),
4780 [C_TX_READ_SDMA_MEMORY_COR_ERR] = CNTR_ELEM("TxReadSdmaMemoryCorErr", 0, 0,
4781 			CNTR_NORMAL,
4782 			access_tx_read_sdma_memory_cor_err_cnt),
4783 [C_TX_SB_HDR_COR_ERR] = CNTR_ELEM("TxSbHdrCorErr", 0, 0,
4784 			CNTR_NORMAL,
4785 			access_tx_sb_hdr_cor_err_cnt),
4786 [C_TX_CREDIT_OVERRUN_ERR] = CNTR_ELEM("TxCreditOverrunErr", 0, 0,
4787 			CNTR_NORMAL,
4788 			access_tx_credit_overrun_err_cnt),
4789 [C_TX_LAUNCH_FIFO8_COR_ERR] = CNTR_ELEM("TxLaunchFifo8CorErr", 0, 0,
4790 			CNTR_NORMAL,
4791 			access_tx_launch_fifo8_cor_err_cnt),
4792 [C_TX_LAUNCH_FIFO7_COR_ERR] = CNTR_ELEM("TxLaunchFifo7CorErr", 0, 0,
4793 			CNTR_NORMAL,
4794 			access_tx_launch_fifo7_cor_err_cnt),
4795 [C_TX_LAUNCH_FIFO6_COR_ERR] = CNTR_ELEM("TxLaunchFifo6CorErr", 0, 0,
4796 			CNTR_NORMAL,
4797 			access_tx_launch_fifo6_cor_err_cnt),
4798 [C_TX_LAUNCH_FIFO5_COR_ERR] = CNTR_ELEM("TxLaunchFifo5CorErr", 0, 0,
4799 			CNTR_NORMAL,
4800 			access_tx_launch_fifo5_cor_err_cnt),
4801 [C_TX_LAUNCH_FIFO4_COR_ERR] = CNTR_ELEM("TxLaunchFifo4CorErr", 0, 0,
4802 			CNTR_NORMAL,
4803 			access_tx_launch_fifo4_cor_err_cnt),
4804 [C_TX_LAUNCH_FIFO3_COR_ERR] = CNTR_ELEM("TxLaunchFifo3CorErr", 0, 0,
4805 			CNTR_NORMAL,
4806 			access_tx_launch_fifo3_cor_err_cnt),
4807 [C_TX_LAUNCH_FIFO2_COR_ERR] = CNTR_ELEM("TxLaunchFifo2CorErr", 0, 0,
4808 			CNTR_NORMAL,
4809 			access_tx_launch_fifo2_cor_err_cnt),
4810 [C_TX_LAUNCH_FIFO1_COR_ERR] = CNTR_ELEM("TxLaunchFifo1CorErr", 0, 0,
4811 			CNTR_NORMAL,
4812 			access_tx_launch_fifo1_cor_err_cnt),
4813 [C_TX_LAUNCH_FIFO0_COR_ERR] = CNTR_ELEM("TxLaunchFifo0CorErr", 0, 0,
4814 			CNTR_NORMAL,
4815 			access_tx_launch_fifo0_cor_err_cnt),
4816 [C_TX_CREDIT_RETURN_VL_ERR] = CNTR_ELEM("TxCreditReturnVLErr", 0, 0,
4817 			CNTR_NORMAL,
4818 			access_tx_credit_return_vl_err_cnt),
4819 [C_TX_HCRC_INSERTION_ERR] = CNTR_ELEM("TxHcrcInsertionErr", 0, 0,
4820 			CNTR_NORMAL,
4821 			access_tx_hcrc_insertion_err_cnt),
4822 [C_TX_EGRESS_FIFI_UNC_ERR] = CNTR_ELEM("TxEgressFifoUncErr", 0, 0,
4823 			CNTR_NORMAL,
4824 			access_tx_egress_fifo_unc_err_cnt),
4825 [C_TX_READ_PIO_MEMORY_UNC_ERR] = CNTR_ELEM("TxReadPioMemoryUncErr", 0, 0,
4826 			CNTR_NORMAL,
4827 			access_tx_read_pio_memory_unc_err_cnt),
4828 [C_TX_READ_SDMA_MEMORY_UNC_ERR] = CNTR_ELEM("TxReadSdmaMemoryUncErr", 0, 0,
4829 			CNTR_NORMAL,
4830 			access_tx_read_sdma_memory_unc_err_cnt),
4831 [C_TX_SB_HDR_UNC_ERR] = CNTR_ELEM("TxSbHdrUncErr", 0, 0,
4832 			CNTR_NORMAL,
4833 			access_tx_sb_hdr_unc_err_cnt),
4834 [C_TX_CREDIT_RETURN_PARITY_ERR] = CNTR_ELEM("TxCreditReturnParityErr", 0, 0,
4835 			CNTR_NORMAL,
4836 			access_tx_credit_return_partiy_err_cnt),
4837 [C_TX_LAUNCH_FIFO8_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo8UncOrParityErr",
4838 			0, 0, CNTR_NORMAL,
4839 			access_tx_launch_fifo8_unc_or_parity_err_cnt),
4840 [C_TX_LAUNCH_FIFO7_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo7UncOrParityErr",
4841 			0, 0, CNTR_NORMAL,
4842 			access_tx_launch_fifo7_unc_or_parity_err_cnt),
4843 [C_TX_LAUNCH_FIFO6_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo6UncOrParityErr",
4844 			0, 0, CNTR_NORMAL,
4845 			access_tx_launch_fifo6_unc_or_parity_err_cnt),
4846 [C_TX_LAUNCH_FIFO5_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo5UncOrParityErr",
4847 			0, 0, CNTR_NORMAL,
4848 			access_tx_launch_fifo5_unc_or_parity_err_cnt),
4849 [C_TX_LAUNCH_FIFO4_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo4UncOrParityErr",
4850 			0, 0, CNTR_NORMAL,
4851 			access_tx_launch_fifo4_unc_or_parity_err_cnt),
4852 [C_TX_LAUNCH_FIFO3_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo3UncOrParityErr",
4853 			0, 0, CNTR_NORMAL,
4854 			access_tx_launch_fifo3_unc_or_parity_err_cnt),
4855 [C_TX_LAUNCH_FIFO2_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo2UncOrParityErr",
4856 			0, 0, CNTR_NORMAL,
4857 			access_tx_launch_fifo2_unc_or_parity_err_cnt),
4858 [C_TX_LAUNCH_FIFO1_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo1UncOrParityErr",
4859 			0, 0, CNTR_NORMAL,
4860 			access_tx_launch_fifo1_unc_or_parity_err_cnt),
4861 [C_TX_LAUNCH_FIFO0_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo0UncOrParityErr",
4862 			0, 0, CNTR_NORMAL,
4863 			access_tx_launch_fifo0_unc_or_parity_err_cnt),
4864 [C_TX_SDMA15_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma15DisallowedPacketErr",
4865 			0, 0, CNTR_NORMAL,
4866 			access_tx_sdma15_disallowed_packet_err_cnt),
4867 [C_TX_SDMA14_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma14DisallowedPacketErr",
4868 			0, 0, CNTR_NORMAL,
4869 			access_tx_sdma14_disallowed_packet_err_cnt),
4870 [C_TX_SDMA13_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma13DisallowedPacketErr",
4871 			0, 0, CNTR_NORMAL,
4872 			access_tx_sdma13_disallowed_packet_err_cnt),
4873 [C_TX_SDMA12_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma12DisallowedPacketErr",
4874 			0, 0, CNTR_NORMAL,
4875 			access_tx_sdma12_disallowed_packet_err_cnt),
4876 [C_TX_SDMA11_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma11DisallowedPacketErr",
4877 			0, 0, CNTR_NORMAL,
4878 			access_tx_sdma11_disallowed_packet_err_cnt),
4879 [C_TX_SDMA10_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma10DisallowedPacketErr",
4880 			0, 0, CNTR_NORMAL,
4881 			access_tx_sdma10_disallowed_packet_err_cnt),
4882 [C_TX_SDMA9_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma9DisallowedPacketErr",
4883 			0, 0, CNTR_NORMAL,
4884 			access_tx_sdma9_disallowed_packet_err_cnt),
4885 [C_TX_SDMA8_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma8DisallowedPacketErr",
4886 			0, 0, CNTR_NORMAL,
4887 			access_tx_sdma8_disallowed_packet_err_cnt),
4888 [C_TX_SDMA7_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma7DisallowedPacketErr",
4889 			0, 0, CNTR_NORMAL,
4890 			access_tx_sdma7_disallowed_packet_err_cnt),
4891 [C_TX_SDMA6_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma6DisallowedPacketErr",
4892 			0, 0, CNTR_NORMAL,
4893 			access_tx_sdma6_disallowed_packet_err_cnt),
4894 [C_TX_SDMA5_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma5DisallowedPacketErr",
4895 			0, 0, CNTR_NORMAL,
4896 			access_tx_sdma5_disallowed_packet_err_cnt),
4897 [C_TX_SDMA4_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma4DisallowedPacketErr",
4898 			0, 0, CNTR_NORMAL,
4899 			access_tx_sdma4_disallowed_packet_err_cnt),
4900 [C_TX_SDMA3_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma3DisallowedPacketErr",
4901 			0, 0, CNTR_NORMAL,
4902 			access_tx_sdma3_disallowed_packet_err_cnt),
4903 [C_TX_SDMA2_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma2DisallowedPacketErr",
4904 			0, 0, CNTR_NORMAL,
4905 			access_tx_sdma2_disallowed_packet_err_cnt),
4906 [C_TX_SDMA1_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma1DisallowedPacketErr",
4907 			0, 0, CNTR_NORMAL,
4908 			access_tx_sdma1_disallowed_packet_err_cnt),
4909 [C_TX_SDMA0_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma0DisallowedPacketErr",
4910 			0, 0, CNTR_NORMAL,
4911 			access_tx_sdma0_disallowed_packet_err_cnt),
4912 [C_TX_CONFIG_PARITY_ERR] = CNTR_ELEM("TxConfigParityErr", 0, 0,
4913 			CNTR_NORMAL,
4914 			access_tx_config_parity_err_cnt),
4915 [C_TX_SBRD_CTL_CSR_PARITY_ERR] = CNTR_ELEM("TxSbrdCtlCsrParityErr", 0, 0,
4916 			CNTR_NORMAL,
4917 			access_tx_sbrd_ctl_csr_parity_err_cnt),
4918 [C_TX_LAUNCH_CSR_PARITY_ERR] = CNTR_ELEM("TxLaunchCsrParityErr", 0, 0,
4919 			CNTR_NORMAL,
4920 			access_tx_launch_csr_parity_err_cnt),
4921 [C_TX_ILLEGAL_CL_ERR] = CNTR_ELEM("TxIllegalVLErr", 0, 0,
4922 			CNTR_NORMAL,
4923 			access_tx_illegal_vl_err_cnt),
4924 [C_TX_SBRD_CTL_STATE_MACHINE_PARITY_ERR] = CNTR_ELEM(
4925 			"TxSbrdCtlStateMachineParityErr", 0, 0,
4926 			CNTR_NORMAL,
4927 			access_tx_sbrd_ctl_state_machine_parity_err_cnt),
4928 [C_TX_RESERVED_10] = CNTR_ELEM("Tx Egress Reserved 10", 0, 0,
4929 			CNTR_NORMAL,
4930 			access_egress_reserved_10_err_cnt),
4931 [C_TX_RESERVED_9] = CNTR_ELEM("Tx Egress Reserved 9", 0, 0,
4932 			CNTR_NORMAL,
4933 			access_egress_reserved_9_err_cnt),
4934 [C_TX_SDMA_LAUNCH_INTF_PARITY_ERR] = CNTR_ELEM("TxSdmaLaunchIntfParityErr",
4935 			0, 0, CNTR_NORMAL,
4936 			access_tx_sdma_launch_intf_parity_err_cnt),
4937 [C_TX_PIO_LAUNCH_INTF_PARITY_ERR] = CNTR_ELEM("TxPioLaunchIntfParityErr", 0, 0,
4938 			CNTR_NORMAL,
4939 			access_tx_pio_launch_intf_parity_err_cnt),
4940 [C_TX_RESERVED_6] = CNTR_ELEM("Tx Egress Reserved 6", 0, 0,
4941 			CNTR_NORMAL,
4942 			access_egress_reserved_6_err_cnt),
4943 [C_TX_INCORRECT_LINK_STATE_ERR] = CNTR_ELEM("TxIncorrectLinkStateErr", 0, 0,
4944 			CNTR_NORMAL,
4945 			access_tx_incorrect_link_state_err_cnt),
4946 [C_TX_LINK_DOWN_ERR] = CNTR_ELEM("TxLinkdownErr", 0, 0,
4947 			CNTR_NORMAL,
4948 			access_tx_linkdown_err_cnt),
4949 [C_TX_EGRESS_FIFO_UNDERRUN_OR_PARITY_ERR] = CNTR_ELEM(
4950 			"EgressFifoUnderrunOrParityErr", 0, 0,
4951 			CNTR_NORMAL,
4952 			access_tx_egress_fifi_underrun_or_parity_err_cnt),
4953 [C_TX_RESERVED_2] = CNTR_ELEM("Tx Egress Reserved 2", 0, 0,
4954 			CNTR_NORMAL,
4955 			access_egress_reserved_2_err_cnt),
4956 [C_TX_PKT_INTEGRITY_MEM_UNC_ERR] = CNTR_ELEM("TxPktIntegrityMemUncErr", 0, 0,
4957 			CNTR_NORMAL,
4958 			access_tx_pkt_integrity_mem_unc_err_cnt),
4959 [C_TX_PKT_INTEGRITY_MEM_COR_ERR] = CNTR_ELEM("TxPktIntegrityMemCorErr", 0, 0,
4960 			CNTR_NORMAL,
4961 			access_tx_pkt_integrity_mem_cor_err_cnt),
4962 /* SendErrStatus */
4963 [C_SEND_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("SendCsrWriteBadAddrErr", 0, 0,
4964 			CNTR_NORMAL,
4965 			access_send_csr_write_bad_addr_err_cnt),
4966 [C_SEND_CSR_READ_BAD_ADD_ERR] = CNTR_ELEM("SendCsrReadBadAddrErr", 0, 0,
4967 			CNTR_NORMAL,
4968 			access_send_csr_read_bad_addr_err_cnt),
4969 [C_SEND_CSR_PARITY_ERR] = CNTR_ELEM("SendCsrParityErr", 0, 0,
4970 			CNTR_NORMAL,
4971 			access_send_csr_parity_cnt),
4972 /* SendCtxtErrStatus */
4973 [C_PIO_WRITE_OUT_OF_BOUNDS_ERR] = CNTR_ELEM("PioWriteOutOfBoundsErr", 0, 0,
4974 			CNTR_NORMAL,
4975 			access_pio_write_out_of_bounds_err_cnt),
4976 [C_PIO_WRITE_OVERFLOW_ERR] = CNTR_ELEM("PioWriteOverflowErr", 0, 0,
4977 			CNTR_NORMAL,
4978 			access_pio_write_overflow_err_cnt),
4979 [C_PIO_WRITE_CROSSES_BOUNDARY_ERR] = CNTR_ELEM("PioWriteCrossesBoundaryErr",
4980 			0, 0, CNTR_NORMAL,
4981 			access_pio_write_crosses_boundary_err_cnt),
4982 [C_PIO_DISALLOWED_PACKET_ERR] = CNTR_ELEM("PioDisallowedPacketErr", 0, 0,
4983 			CNTR_NORMAL,
4984 			access_pio_disallowed_packet_err_cnt),
4985 [C_PIO_INCONSISTENT_SOP_ERR] = CNTR_ELEM("PioInconsistentSopErr", 0, 0,
4986 			CNTR_NORMAL,
4987 			access_pio_inconsistent_sop_err_cnt),
4988 /* SendDmaEngErrStatus */
4989 [C_SDMA_HEADER_REQUEST_FIFO_COR_ERR] = CNTR_ELEM("SDmaHeaderRequestFifoCorErr",
4990 			0, 0, CNTR_NORMAL,
4991 			access_sdma_header_request_fifo_cor_err_cnt),
4992 [C_SDMA_HEADER_STORAGE_COR_ERR] = CNTR_ELEM("SDmaHeaderStorageCorErr", 0, 0,
4993 			CNTR_NORMAL,
4994 			access_sdma_header_storage_cor_err_cnt),
4995 [C_SDMA_PACKET_TRACKING_COR_ERR] = CNTR_ELEM("SDmaPacketTrackingCorErr", 0, 0,
4996 			CNTR_NORMAL,
4997 			access_sdma_packet_tracking_cor_err_cnt),
4998 [C_SDMA_ASSEMBLY_COR_ERR] = CNTR_ELEM("SDmaAssemblyCorErr", 0, 0,
4999 			CNTR_NORMAL,
5000 			access_sdma_assembly_cor_err_cnt),
5001 [C_SDMA_DESC_TABLE_COR_ERR] = CNTR_ELEM("SDmaDescTableCorErr", 0, 0,
5002 			CNTR_NORMAL,
5003 			access_sdma_desc_table_cor_err_cnt),
5004 [C_SDMA_HEADER_REQUEST_FIFO_UNC_ERR] = CNTR_ELEM("SDmaHeaderRequestFifoUncErr",
5005 			0, 0, CNTR_NORMAL,
5006 			access_sdma_header_request_fifo_unc_err_cnt),
5007 [C_SDMA_HEADER_STORAGE_UNC_ERR] = CNTR_ELEM("SDmaHeaderStorageUncErr", 0, 0,
5008 			CNTR_NORMAL,
5009 			access_sdma_header_storage_unc_err_cnt),
5010 [C_SDMA_PACKET_TRACKING_UNC_ERR] = CNTR_ELEM("SDmaPacketTrackingUncErr", 0, 0,
5011 			CNTR_NORMAL,
5012 			access_sdma_packet_tracking_unc_err_cnt),
5013 [C_SDMA_ASSEMBLY_UNC_ERR] = CNTR_ELEM("SDmaAssemblyUncErr", 0, 0,
5014 			CNTR_NORMAL,
5015 			access_sdma_assembly_unc_err_cnt),
5016 [C_SDMA_DESC_TABLE_UNC_ERR] = CNTR_ELEM("SDmaDescTableUncErr", 0, 0,
5017 			CNTR_NORMAL,
5018 			access_sdma_desc_table_unc_err_cnt),
5019 [C_SDMA_TIMEOUT_ERR] = CNTR_ELEM("SDmaTimeoutErr", 0, 0,
5020 			CNTR_NORMAL,
5021 			access_sdma_timeout_err_cnt),
5022 [C_SDMA_HEADER_LENGTH_ERR] = CNTR_ELEM("SDmaHeaderLengthErr", 0, 0,
5023 			CNTR_NORMAL,
5024 			access_sdma_header_length_err_cnt),
5025 [C_SDMA_HEADER_ADDRESS_ERR] = CNTR_ELEM("SDmaHeaderAddressErr", 0, 0,
5026 			CNTR_NORMAL,
5027 			access_sdma_header_address_err_cnt),
5028 [C_SDMA_HEADER_SELECT_ERR] = CNTR_ELEM("SDmaHeaderSelectErr", 0, 0,
5029 			CNTR_NORMAL,
5030 			access_sdma_header_select_err_cnt),
5031 [C_SMDA_RESERVED_9] = CNTR_ELEM("SDma Reserved 9", 0, 0,
5032 			CNTR_NORMAL,
5033 			access_sdma_reserved_9_err_cnt),
5034 [C_SDMA_PACKET_DESC_OVERFLOW_ERR] = CNTR_ELEM("SDmaPacketDescOverflowErr", 0, 0,
5035 			CNTR_NORMAL,
5036 			access_sdma_packet_desc_overflow_err_cnt),
5037 [C_SDMA_LENGTH_MISMATCH_ERR] = CNTR_ELEM("SDmaLengthMismatchErr", 0, 0,
5038 			CNTR_NORMAL,
5039 			access_sdma_length_mismatch_err_cnt),
5040 [C_SDMA_HALT_ERR] = CNTR_ELEM("SDmaHaltErr", 0, 0,
5041 			CNTR_NORMAL,
5042 			access_sdma_halt_err_cnt),
5043 [C_SDMA_MEM_READ_ERR] = CNTR_ELEM("SDmaMemReadErr", 0, 0,
5044 			CNTR_NORMAL,
5045 			access_sdma_mem_read_err_cnt),
5046 [C_SDMA_FIRST_DESC_ERR] = CNTR_ELEM("SDmaFirstDescErr", 0, 0,
5047 			CNTR_NORMAL,
5048 			access_sdma_first_desc_err_cnt),
5049 [C_SDMA_TAIL_OUT_OF_BOUNDS_ERR] = CNTR_ELEM("SDmaTailOutOfBoundsErr", 0, 0,
5050 			CNTR_NORMAL,
5051 			access_sdma_tail_out_of_bounds_err_cnt),
5052 [C_SDMA_TOO_LONG_ERR] = CNTR_ELEM("SDmaTooLongErr", 0, 0,
5053 			CNTR_NORMAL,
5054 			access_sdma_too_long_err_cnt),
5055 [C_SDMA_GEN_MISMATCH_ERR] = CNTR_ELEM("SDmaGenMismatchErr", 0, 0,
5056 			CNTR_NORMAL,
5057 			access_sdma_gen_mismatch_err_cnt),
5058 [C_SDMA_WRONG_DW_ERR] = CNTR_ELEM("SDmaWrongDwErr", 0, 0,
5059 			CNTR_NORMAL,
5060 			access_sdma_wrong_dw_err_cnt),
5061 };
5062 
5063 static struct cntr_entry port_cntrs[PORT_CNTR_LAST] = {
5064 [C_TX_UNSUP_VL] = TXE32_PORT_CNTR_ELEM(TxUnVLErr, SEND_UNSUP_VL_ERR_CNT,
5065 			CNTR_NORMAL),
5066 [C_TX_INVAL_LEN] = TXE32_PORT_CNTR_ELEM(TxInvalLen, SEND_LEN_ERR_CNT,
5067 			CNTR_NORMAL),
5068 [C_TX_MM_LEN_ERR] = TXE32_PORT_CNTR_ELEM(TxMMLenErr, SEND_MAX_MIN_LEN_ERR_CNT,
5069 			CNTR_NORMAL),
5070 [C_TX_UNDERRUN] = TXE32_PORT_CNTR_ELEM(TxUnderrun, SEND_UNDERRUN_CNT,
5071 			CNTR_NORMAL),
5072 [C_TX_FLOW_STALL] = TXE32_PORT_CNTR_ELEM(TxFlowStall, SEND_FLOW_STALL_CNT,
5073 			CNTR_NORMAL),
5074 [C_TX_DROPPED] = TXE32_PORT_CNTR_ELEM(TxDropped, SEND_DROPPED_PKT_CNT,
5075 			CNTR_NORMAL),
5076 [C_TX_HDR_ERR] = TXE32_PORT_CNTR_ELEM(TxHdrErr, SEND_HEADERS_ERR_CNT,
5077 			CNTR_NORMAL),
5078 [C_TX_PKT] = TXE64_PORT_CNTR_ELEM(TxPkt, SEND_DATA_PKT_CNT, CNTR_NORMAL),
5079 [C_TX_WORDS] = TXE64_PORT_CNTR_ELEM(TxWords, SEND_DWORD_CNT, CNTR_NORMAL),
5080 [C_TX_WAIT] = TXE64_PORT_CNTR_ELEM(TxWait, SEND_WAIT_CNT, CNTR_SYNTH),
5081 [C_TX_FLIT_VL] = TXE64_PORT_CNTR_ELEM(TxFlitVL, SEND_DATA_VL0_CNT,
5082 				      CNTR_SYNTH | CNTR_VL),
5083 [C_TX_PKT_VL] = TXE64_PORT_CNTR_ELEM(TxPktVL, SEND_DATA_PKT_VL0_CNT,
5084 				     CNTR_SYNTH | CNTR_VL),
5085 [C_TX_WAIT_VL] = TXE64_PORT_CNTR_ELEM(TxWaitVL, SEND_WAIT_VL0_CNT,
5086 				      CNTR_SYNTH | CNTR_VL),
5087 [C_RX_PKT] = RXE64_PORT_CNTR_ELEM(RxPkt, RCV_DATA_PKT_CNT, CNTR_NORMAL),
5088 [C_RX_WORDS] = RXE64_PORT_CNTR_ELEM(RxWords, RCV_DWORD_CNT, CNTR_NORMAL),
5089 [C_SW_LINK_DOWN] = CNTR_ELEM("SwLinkDown", 0, 0, CNTR_SYNTH | CNTR_32BIT,
5090 			     access_sw_link_dn_cnt),
5091 [C_SW_LINK_UP] = CNTR_ELEM("SwLinkUp", 0, 0, CNTR_SYNTH | CNTR_32BIT,
5092 			   access_sw_link_up_cnt),
5093 [C_SW_UNKNOWN_FRAME] = CNTR_ELEM("UnknownFrame", 0, 0, CNTR_NORMAL,
5094 				 access_sw_unknown_frame_cnt),
5095 [C_SW_XMIT_DSCD] = CNTR_ELEM("XmitDscd", 0, 0, CNTR_SYNTH | CNTR_32BIT,
5096 			     access_sw_xmit_discards),
5097 [C_SW_XMIT_DSCD_VL] = CNTR_ELEM("XmitDscdVl", 0, 0,
5098 				CNTR_SYNTH | CNTR_32BIT | CNTR_VL,
5099 				access_sw_xmit_discards),
5100 [C_SW_XMIT_CSTR_ERR] = CNTR_ELEM("XmitCstrErr", 0, 0, CNTR_SYNTH,
5101 				 access_xmit_constraint_errs),
5102 [C_SW_RCV_CSTR_ERR] = CNTR_ELEM("RcvCstrErr", 0, 0, CNTR_SYNTH,
5103 				access_rcv_constraint_errs),
5104 [C_SW_IBP_LOOP_PKTS] = SW_IBP_CNTR(LoopPkts, loop_pkts),
5105 [C_SW_IBP_RC_RESENDS] = SW_IBP_CNTR(RcResend, rc_resends),
5106 [C_SW_IBP_RNR_NAKS] = SW_IBP_CNTR(RnrNak, rnr_naks),
5107 [C_SW_IBP_OTHER_NAKS] = SW_IBP_CNTR(OtherNak, other_naks),
5108 [C_SW_IBP_RC_TIMEOUTS] = SW_IBP_CNTR(RcTimeOut, rc_timeouts),
5109 [C_SW_IBP_PKT_DROPS] = SW_IBP_CNTR(PktDrop, pkt_drops),
5110 [C_SW_IBP_DMA_WAIT] = SW_IBP_CNTR(DmaWait, dmawait),
5111 [C_SW_IBP_RC_SEQNAK] = SW_IBP_CNTR(RcSeqNak, rc_seqnak),
5112 [C_SW_IBP_RC_DUPREQ] = SW_IBP_CNTR(RcDupRew, rc_dupreq),
5113 [C_SW_IBP_RDMA_SEQ] = SW_IBP_CNTR(RdmaSeq, rdma_seq),
5114 [C_SW_IBP_UNALIGNED] = SW_IBP_CNTR(Unaligned, unaligned),
5115 [C_SW_IBP_SEQ_NAK] = SW_IBP_CNTR(SeqNak, seq_naks),
5116 [C_SW_CPU_RC_ACKS] = CNTR_ELEM("RcAcks", 0, 0, CNTR_NORMAL,
5117 			       access_sw_cpu_rc_acks),
5118 [C_SW_CPU_RC_QACKS] = CNTR_ELEM("RcQacks", 0, 0, CNTR_NORMAL,
5119 				access_sw_cpu_rc_qacks),
5120 [C_SW_CPU_RC_DELAYED_COMP] = CNTR_ELEM("RcDelayComp", 0, 0, CNTR_NORMAL,
5121 				       access_sw_cpu_rc_delayed_comp),
5122 [OVR_LBL(0)] = OVR_ELM(0), [OVR_LBL(1)] = OVR_ELM(1),
5123 [OVR_LBL(2)] = OVR_ELM(2), [OVR_LBL(3)] = OVR_ELM(3),
5124 [OVR_LBL(4)] = OVR_ELM(4), [OVR_LBL(5)] = OVR_ELM(5),
5125 [OVR_LBL(6)] = OVR_ELM(6), [OVR_LBL(7)] = OVR_ELM(7),
5126 [OVR_LBL(8)] = OVR_ELM(8), [OVR_LBL(9)] = OVR_ELM(9),
5127 [OVR_LBL(10)] = OVR_ELM(10), [OVR_LBL(11)] = OVR_ELM(11),
5128 [OVR_LBL(12)] = OVR_ELM(12), [OVR_LBL(13)] = OVR_ELM(13),
5129 [OVR_LBL(14)] = OVR_ELM(14), [OVR_LBL(15)] = OVR_ELM(15),
5130 [OVR_LBL(16)] = OVR_ELM(16), [OVR_LBL(17)] = OVR_ELM(17),
5131 [OVR_LBL(18)] = OVR_ELM(18), [OVR_LBL(19)] = OVR_ELM(19),
5132 [OVR_LBL(20)] = OVR_ELM(20), [OVR_LBL(21)] = OVR_ELM(21),
5133 [OVR_LBL(22)] = OVR_ELM(22), [OVR_LBL(23)] = OVR_ELM(23),
5134 [OVR_LBL(24)] = OVR_ELM(24), [OVR_LBL(25)] = OVR_ELM(25),
5135 [OVR_LBL(26)] = OVR_ELM(26), [OVR_LBL(27)] = OVR_ELM(27),
5136 [OVR_LBL(28)] = OVR_ELM(28), [OVR_LBL(29)] = OVR_ELM(29),
5137 [OVR_LBL(30)] = OVR_ELM(30), [OVR_LBL(31)] = OVR_ELM(31),
5138 [OVR_LBL(32)] = OVR_ELM(32), [OVR_LBL(33)] = OVR_ELM(33),
5139 [OVR_LBL(34)] = OVR_ELM(34), [OVR_LBL(35)] = OVR_ELM(35),
5140 [OVR_LBL(36)] = OVR_ELM(36), [OVR_LBL(37)] = OVR_ELM(37),
5141 [OVR_LBL(38)] = OVR_ELM(38), [OVR_LBL(39)] = OVR_ELM(39),
5142 [OVR_LBL(40)] = OVR_ELM(40), [OVR_LBL(41)] = OVR_ELM(41),
5143 [OVR_LBL(42)] = OVR_ELM(42), [OVR_LBL(43)] = OVR_ELM(43),
5144 [OVR_LBL(44)] = OVR_ELM(44), [OVR_LBL(45)] = OVR_ELM(45),
5145 [OVR_LBL(46)] = OVR_ELM(46), [OVR_LBL(47)] = OVR_ELM(47),
5146 [OVR_LBL(48)] = OVR_ELM(48), [OVR_LBL(49)] = OVR_ELM(49),
5147 [OVR_LBL(50)] = OVR_ELM(50), [OVR_LBL(51)] = OVR_ELM(51),
5148 [OVR_LBL(52)] = OVR_ELM(52), [OVR_LBL(53)] = OVR_ELM(53),
5149 [OVR_LBL(54)] = OVR_ELM(54), [OVR_LBL(55)] = OVR_ELM(55),
5150 [OVR_LBL(56)] = OVR_ELM(56), [OVR_LBL(57)] = OVR_ELM(57),
5151 [OVR_LBL(58)] = OVR_ELM(58), [OVR_LBL(59)] = OVR_ELM(59),
5152 [OVR_LBL(60)] = OVR_ELM(60), [OVR_LBL(61)] = OVR_ELM(61),
5153 [OVR_LBL(62)] = OVR_ELM(62), [OVR_LBL(63)] = OVR_ELM(63),
5154 [OVR_LBL(64)] = OVR_ELM(64), [OVR_LBL(65)] = OVR_ELM(65),
5155 [OVR_LBL(66)] = OVR_ELM(66), [OVR_LBL(67)] = OVR_ELM(67),
5156 [OVR_LBL(68)] = OVR_ELM(68), [OVR_LBL(69)] = OVR_ELM(69),
5157 [OVR_LBL(70)] = OVR_ELM(70), [OVR_LBL(71)] = OVR_ELM(71),
5158 [OVR_LBL(72)] = OVR_ELM(72), [OVR_LBL(73)] = OVR_ELM(73),
5159 [OVR_LBL(74)] = OVR_ELM(74), [OVR_LBL(75)] = OVR_ELM(75),
5160 [OVR_LBL(76)] = OVR_ELM(76), [OVR_LBL(77)] = OVR_ELM(77),
5161 [OVR_LBL(78)] = OVR_ELM(78), [OVR_LBL(79)] = OVR_ELM(79),
5162 [OVR_LBL(80)] = OVR_ELM(80), [OVR_LBL(81)] = OVR_ELM(81),
5163 [OVR_LBL(82)] = OVR_ELM(82), [OVR_LBL(83)] = OVR_ELM(83),
5164 [OVR_LBL(84)] = OVR_ELM(84), [OVR_LBL(85)] = OVR_ELM(85),
5165 [OVR_LBL(86)] = OVR_ELM(86), [OVR_LBL(87)] = OVR_ELM(87),
5166 [OVR_LBL(88)] = OVR_ELM(88), [OVR_LBL(89)] = OVR_ELM(89),
5167 [OVR_LBL(90)] = OVR_ELM(90), [OVR_LBL(91)] = OVR_ELM(91),
5168 [OVR_LBL(92)] = OVR_ELM(92), [OVR_LBL(93)] = OVR_ELM(93),
5169 [OVR_LBL(94)] = OVR_ELM(94), [OVR_LBL(95)] = OVR_ELM(95),
5170 [OVR_LBL(96)] = OVR_ELM(96), [OVR_LBL(97)] = OVR_ELM(97),
5171 [OVR_LBL(98)] = OVR_ELM(98), [OVR_LBL(99)] = OVR_ELM(99),
5172 [OVR_LBL(100)] = OVR_ELM(100), [OVR_LBL(101)] = OVR_ELM(101),
5173 [OVR_LBL(102)] = OVR_ELM(102), [OVR_LBL(103)] = OVR_ELM(103),
5174 [OVR_LBL(104)] = OVR_ELM(104), [OVR_LBL(105)] = OVR_ELM(105),
5175 [OVR_LBL(106)] = OVR_ELM(106), [OVR_LBL(107)] = OVR_ELM(107),
5176 [OVR_LBL(108)] = OVR_ELM(108), [OVR_LBL(109)] = OVR_ELM(109),
5177 [OVR_LBL(110)] = OVR_ELM(110), [OVR_LBL(111)] = OVR_ELM(111),
5178 [OVR_LBL(112)] = OVR_ELM(112), [OVR_LBL(113)] = OVR_ELM(113),
5179 [OVR_LBL(114)] = OVR_ELM(114), [OVR_LBL(115)] = OVR_ELM(115),
5180 [OVR_LBL(116)] = OVR_ELM(116), [OVR_LBL(117)] = OVR_ELM(117),
5181 [OVR_LBL(118)] = OVR_ELM(118), [OVR_LBL(119)] = OVR_ELM(119),
5182 [OVR_LBL(120)] = OVR_ELM(120), [OVR_LBL(121)] = OVR_ELM(121),
5183 [OVR_LBL(122)] = OVR_ELM(122), [OVR_LBL(123)] = OVR_ELM(123),
5184 [OVR_LBL(124)] = OVR_ELM(124), [OVR_LBL(125)] = OVR_ELM(125),
5185 [OVR_LBL(126)] = OVR_ELM(126), [OVR_LBL(127)] = OVR_ELM(127),
5186 [OVR_LBL(128)] = OVR_ELM(128), [OVR_LBL(129)] = OVR_ELM(129),
5187 [OVR_LBL(130)] = OVR_ELM(130), [OVR_LBL(131)] = OVR_ELM(131),
5188 [OVR_LBL(132)] = OVR_ELM(132), [OVR_LBL(133)] = OVR_ELM(133),
5189 [OVR_LBL(134)] = OVR_ELM(134), [OVR_LBL(135)] = OVR_ELM(135),
5190 [OVR_LBL(136)] = OVR_ELM(136), [OVR_LBL(137)] = OVR_ELM(137),
5191 [OVR_LBL(138)] = OVR_ELM(138), [OVR_LBL(139)] = OVR_ELM(139),
5192 [OVR_LBL(140)] = OVR_ELM(140), [OVR_LBL(141)] = OVR_ELM(141),
5193 [OVR_LBL(142)] = OVR_ELM(142), [OVR_LBL(143)] = OVR_ELM(143),
5194 [OVR_LBL(144)] = OVR_ELM(144), [OVR_LBL(145)] = OVR_ELM(145),
5195 [OVR_LBL(146)] = OVR_ELM(146), [OVR_LBL(147)] = OVR_ELM(147),
5196 [OVR_LBL(148)] = OVR_ELM(148), [OVR_LBL(149)] = OVR_ELM(149),
5197 [OVR_LBL(150)] = OVR_ELM(150), [OVR_LBL(151)] = OVR_ELM(151),
5198 [OVR_LBL(152)] = OVR_ELM(152), [OVR_LBL(153)] = OVR_ELM(153),
5199 [OVR_LBL(154)] = OVR_ELM(154), [OVR_LBL(155)] = OVR_ELM(155),
5200 [OVR_LBL(156)] = OVR_ELM(156), [OVR_LBL(157)] = OVR_ELM(157),
5201 [OVR_LBL(158)] = OVR_ELM(158), [OVR_LBL(159)] = OVR_ELM(159),
5202 };
5203 
5204 /* ======================================================================== */
5205 
5206 /* return true if this is chip revision revision a */
5207 int is_ax(struct hfi1_devdata *dd)
5208 {
5209 	u8 chip_rev_minor =
5210 		dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT
5211 			& CCE_REVISION_CHIP_REV_MINOR_MASK;
5212 	return (chip_rev_minor & 0xf0) == 0;
5213 }
5214 
5215 /* return true if this is chip revision revision b */
5216 int is_bx(struct hfi1_devdata *dd)
5217 {
5218 	u8 chip_rev_minor =
5219 		dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT
5220 			& CCE_REVISION_CHIP_REV_MINOR_MASK;
5221 	return (chip_rev_minor & 0xF0) == 0x10;
5222 }
5223 
5224 /*
5225  * Append string s to buffer buf.  Arguments curp and len are the current
5226  * position and remaining length, respectively.
5227  *
5228  * return 0 on success, 1 on out of room
5229  */
5230 static int append_str(char *buf, char **curp, int *lenp, const char *s)
5231 {
5232 	char *p = *curp;
5233 	int len = *lenp;
5234 	int result = 0; /* success */
5235 	char c;
5236 
5237 	/* add a comma, if first in the buffer */
5238 	if (p != buf) {
5239 		if (len == 0) {
5240 			result = 1; /* out of room */
5241 			goto done;
5242 		}
5243 		*p++ = ',';
5244 		len--;
5245 	}
5246 
5247 	/* copy the string */
5248 	while ((c = *s++) != 0) {
5249 		if (len == 0) {
5250 			result = 1; /* out of room */
5251 			goto done;
5252 		}
5253 		*p++ = c;
5254 		len--;
5255 	}
5256 
5257 done:
5258 	/* write return values */
5259 	*curp = p;
5260 	*lenp = len;
5261 
5262 	return result;
5263 }
5264 
5265 /*
5266  * Using the given flag table, print a comma separated string into
5267  * the buffer.  End in '*' if the buffer is too short.
5268  */
5269 static char *flag_string(char *buf, int buf_len, u64 flags,
5270 			 struct flag_table *table, int table_size)
5271 {
5272 	char extra[32];
5273 	char *p = buf;
5274 	int len = buf_len;
5275 	int no_room = 0;
5276 	int i;
5277 
5278 	/* make sure there is at least 2 so we can form "*" */
5279 	if (len < 2)
5280 		return "";
5281 
5282 	len--;	/* leave room for a nul */
5283 	for (i = 0; i < table_size; i++) {
5284 		if (flags & table[i].flag) {
5285 			no_room = append_str(buf, &p, &len, table[i].str);
5286 			if (no_room)
5287 				break;
5288 			flags &= ~table[i].flag;
5289 		}
5290 	}
5291 
5292 	/* any undocumented bits left? */
5293 	if (!no_room && flags) {
5294 		snprintf(extra, sizeof(extra), "bits 0x%llx", flags);
5295 		no_room = append_str(buf, &p, &len, extra);
5296 	}
5297 
5298 	/* add * if ran out of room */
5299 	if (no_room) {
5300 		/* may need to back up to add space for a '*' */
5301 		if (len == 0)
5302 			--p;
5303 		*p++ = '*';
5304 	}
5305 
5306 	/* add final nul - space already allocated above */
5307 	*p = 0;
5308 	return buf;
5309 }
5310 
5311 /* first 8 CCE error interrupt source names */
5312 static const char * const cce_misc_names[] = {
5313 	"CceErrInt",		/* 0 */
5314 	"RxeErrInt",		/* 1 */
5315 	"MiscErrInt",		/* 2 */
5316 	"Reserved3",		/* 3 */
5317 	"PioErrInt",		/* 4 */
5318 	"SDmaErrInt",		/* 5 */
5319 	"EgressErrInt",		/* 6 */
5320 	"TxeErrInt"		/* 7 */
5321 };
5322 
5323 /*
5324  * Return the miscellaneous error interrupt name.
5325  */
5326 static char *is_misc_err_name(char *buf, size_t bsize, unsigned int source)
5327 {
5328 	if (source < ARRAY_SIZE(cce_misc_names))
5329 		strncpy(buf, cce_misc_names[source], bsize);
5330 	else
5331 		snprintf(buf, bsize, "Reserved%u",
5332 			 source + IS_GENERAL_ERR_START);
5333 
5334 	return buf;
5335 }
5336 
5337 /*
5338  * Return the SDMA engine error interrupt name.
5339  */
5340 static char *is_sdma_eng_err_name(char *buf, size_t bsize, unsigned int source)
5341 {
5342 	snprintf(buf, bsize, "SDmaEngErrInt%u", source);
5343 	return buf;
5344 }
5345 
5346 /*
5347  * Return the send context error interrupt name.
5348  */
5349 static char *is_sendctxt_err_name(char *buf, size_t bsize, unsigned int source)
5350 {
5351 	snprintf(buf, bsize, "SendCtxtErrInt%u", source);
5352 	return buf;
5353 }
5354 
5355 static const char * const various_names[] = {
5356 	"PbcInt",
5357 	"GpioAssertInt",
5358 	"Qsfp1Int",
5359 	"Qsfp2Int",
5360 	"TCritInt"
5361 };
5362 
5363 /*
5364  * Return the various interrupt name.
5365  */
5366 static char *is_various_name(char *buf, size_t bsize, unsigned int source)
5367 {
5368 	if (source < ARRAY_SIZE(various_names))
5369 		strncpy(buf, various_names[source], bsize);
5370 	else
5371 		snprintf(buf, bsize, "Reserved%u", source + IS_VARIOUS_START);
5372 	return buf;
5373 }
5374 
5375 /*
5376  * Return the DC interrupt name.
5377  */
5378 static char *is_dc_name(char *buf, size_t bsize, unsigned int source)
5379 {
5380 	static const char * const dc_int_names[] = {
5381 		"common",
5382 		"lcb",
5383 		"8051",
5384 		"lbm"	/* local block merge */
5385 	};
5386 
5387 	if (source < ARRAY_SIZE(dc_int_names))
5388 		snprintf(buf, bsize, "dc_%s_int", dc_int_names[source]);
5389 	else
5390 		snprintf(buf, bsize, "DCInt%u", source);
5391 	return buf;
5392 }
5393 
5394 static const char * const sdma_int_names[] = {
5395 	"SDmaInt",
5396 	"SdmaIdleInt",
5397 	"SdmaProgressInt",
5398 };
5399 
5400 /*
5401  * Return the SDMA engine interrupt name.
5402  */
5403 static char *is_sdma_eng_name(char *buf, size_t bsize, unsigned int source)
5404 {
5405 	/* what interrupt */
5406 	unsigned int what  = source / TXE_NUM_SDMA_ENGINES;
5407 	/* which engine */
5408 	unsigned int which = source % TXE_NUM_SDMA_ENGINES;
5409 
5410 	if (likely(what < 3))
5411 		snprintf(buf, bsize, "%s%u", sdma_int_names[what], which);
5412 	else
5413 		snprintf(buf, bsize, "Invalid SDMA interrupt %u", source);
5414 	return buf;
5415 }
5416 
5417 /*
5418  * Return the receive available interrupt name.
5419  */
5420 static char *is_rcv_avail_name(char *buf, size_t bsize, unsigned int source)
5421 {
5422 	snprintf(buf, bsize, "RcvAvailInt%u", source);
5423 	return buf;
5424 }
5425 
5426 /*
5427  * Return the receive urgent interrupt name.
5428  */
5429 static char *is_rcv_urgent_name(char *buf, size_t bsize, unsigned int source)
5430 {
5431 	snprintf(buf, bsize, "RcvUrgentInt%u", source);
5432 	return buf;
5433 }
5434 
5435 /*
5436  * Return the send credit interrupt name.
5437  */
5438 static char *is_send_credit_name(char *buf, size_t bsize, unsigned int source)
5439 {
5440 	snprintf(buf, bsize, "SendCreditInt%u", source);
5441 	return buf;
5442 }
5443 
5444 /*
5445  * Return the reserved interrupt name.
5446  */
5447 static char *is_reserved_name(char *buf, size_t bsize, unsigned int source)
5448 {
5449 	snprintf(buf, bsize, "Reserved%u", source + IS_RESERVED_START);
5450 	return buf;
5451 }
5452 
5453 static char *cce_err_status_string(char *buf, int buf_len, u64 flags)
5454 {
5455 	return flag_string(buf, buf_len, flags,
5456 			   cce_err_status_flags,
5457 			   ARRAY_SIZE(cce_err_status_flags));
5458 }
5459 
5460 static char *rxe_err_status_string(char *buf, int buf_len, u64 flags)
5461 {
5462 	return flag_string(buf, buf_len, flags,
5463 			   rxe_err_status_flags,
5464 			   ARRAY_SIZE(rxe_err_status_flags));
5465 }
5466 
5467 static char *misc_err_status_string(char *buf, int buf_len, u64 flags)
5468 {
5469 	return flag_string(buf, buf_len, flags, misc_err_status_flags,
5470 			   ARRAY_SIZE(misc_err_status_flags));
5471 }
5472 
5473 static char *pio_err_status_string(char *buf, int buf_len, u64 flags)
5474 {
5475 	return flag_string(buf, buf_len, flags,
5476 			   pio_err_status_flags,
5477 			   ARRAY_SIZE(pio_err_status_flags));
5478 }
5479 
5480 static char *sdma_err_status_string(char *buf, int buf_len, u64 flags)
5481 {
5482 	return flag_string(buf, buf_len, flags,
5483 			   sdma_err_status_flags,
5484 			   ARRAY_SIZE(sdma_err_status_flags));
5485 }
5486 
5487 static char *egress_err_status_string(char *buf, int buf_len, u64 flags)
5488 {
5489 	return flag_string(buf, buf_len, flags,
5490 			   egress_err_status_flags,
5491 			   ARRAY_SIZE(egress_err_status_flags));
5492 }
5493 
5494 static char *egress_err_info_string(char *buf, int buf_len, u64 flags)
5495 {
5496 	return flag_string(buf, buf_len, flags,
5497 			   egress_err_info_flags,
5498 			   ARRAY_SIZE(egress_err_info_flags));
5499 }
5500 
5501 static char *send_err_status_string(char *buf, int buf_len, u64 flags)
5502 {
5503 	return flag_string(buf, buf_len, flags,
5504 			   send_err_status_flags,
5505 			   ARRAY_SIZE(send_err_status_flags));
5506 }
5507 
5508 static void handle_cce_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5509 {
5510 	char buf[96];
5511 	int i = 0;
5512 
5513 	/*
5514 	 * For most these errors, there is nothing that can be done except
5515 	 * report or record it.
5516 	 */
5517 	dd_dev_info(dd, "CCE Error: %s\n",
5518 		    cce_err_status_string(buf, sizeof(buf), reg));
5519 
5520 	if ((reg & CCE_ERR_STATUS_CCE_CLI2_ASYNC_FIFO_PARITY_ERR_SMASK) &&
5521 	    is_ax(dd) && (dd->icode != ICODE_FUNCTIONAL_SIMULATOR)) {
5522 		/* this error requires a manual drop into SPC freeze mode */
5523 		/* then a fix up */
5524 		start_freeze_handling(dd->pport, FREEZE_SELF);
5525 	}
5526 
5527 	for (i = 0; i < NUM_CCE_ERR_STATUS_COUNTERS; i++) {
5528 		if (reg & (1ull << i)) {
5529 			incr_cntr64(&dd->cce_err_status_cnt[i]);
5530 			/* maintain a counter over all cce_err_status errors */
5531 			incr_cntr64(&dd->sw_cce_err_status_aggregate);
5532 		}
5533 	}
5534 }
5535 
5536 /*
5537  * Check counters for receive errors that do not have an interrupt
5538  * associated with them.
5539  */
5540 #define RCVERR_CHECK_TIME 10
5541 static void update_rcverr_timer(struct timer_list *t)
5542 {
5543 	struct hfi1_devdata *dd = from_timer(dd, t, rcverr_timer);
5544 	struct hfi1_pportdata *ppd = dd->pport;
5545 	u32 cur_ovfl_cnt = read_dev_cntr(dd, C_RCV_OVF, CNTR_INVALID_VL);
5546 
5547 	if (dd->rcv_ovfl_cnt < cur_ovfl_cnt &&
5548 	    ppd->port_error_action & OPA_PI_MASK_EX_BUFFER_OVERRUN) {
5549 		dd_dev_info(dd, "%s: PortErrorAction bounce\n", __func__);
5550 		set_link_down_reason(
5551 		ppd, OPA_LINKDOWN_REASON_EXCESSIVE_BUFFER_OVERRUN, 0,
5552 		OPA_LINKDOWN_REASON_EXCESSIVE_BUFFER_OVERRUN);
5553 		queue_work(ppd->link_wq, &ppd->link_bounce_work);
5554 	}
5555 	dd->rcv_ovfl_cnt = (u32)cur_ovfl_cnt;
5556 
5557 	mod_timer(&dd->rcverr_timer, jiffies + HZ * RCVERR_CHECK_TIME);
5558 }
5559 
5560 static int init_rcverr(struct hfi1_devdata *dd)
5561 {
5562 	timer_setup(&dd->rcverr_timer, update_rcverr_timer, 0);
5563 	/* Assume the hardware counter has been reset */
5564 	dd->rcv_ovfl_cnt = 0;
5565 	return mod_timer(&dd->rcverr_timer, jiffies + HZ * RCVERR_CHECK_TIME);
5566 }
5567 
5568 static void free_rcverr(struct hfi1_devdata *dd)
5569 {
5570 	if (dd->rcverr_timer.function)
5571 		del_timer_sync(&dd->rcverr_timer);
5572 }
5573 
5574 static void handle_rxe_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5575 {
5576 	char buf[96];
5577 	int i = 0;
5578 
5579 	dd_dev_info(dd, "Receive Error: %s\n",
5580 		    rxe_err_status_string(buf, sizeof(buf), reg));
5581 
5582 	if (reg & ALL_RXE_FREEZE_ERR) {
5583 		int flags = 0;
5584 
5585 		/*
5586 		 * Freeze mode recovery is disabled for the errors
5587 		 * in RXE_FREEZE_ABORT_MASK
5588 		 */
5589 		if (is_ax(dd) && (reg & RXE_FREEZE_ABORT_MASK))
5590 			flags = FREEZE_ABORT;
5591 
5592 		start_freeze_handling(dd->pport, flags);
5593 	}
5594 
5595 	for (i = 0; i < NUM_RCV_ERR_STATUS_COUNTERS; i++) {
5596 		if (reg & (1ull << i))
5597 			incr_cntr64(&dd->rcv_err_status_cnt[i]);
5598 	}
5599 }
5600 
5601 static void handle_misc_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5602 {
5603 	char buf[96];
5604 	int i = 0;
5605 
5606 	dd_dev_info(dd, "Misc Error: %s",
5607 		    misc_err_status_string(buf, sizeof(buf), reg));
5608 	for (i = 0; i < NUM_MISC_ERR_STATUS_COUNTERS; i++) {
5609 		if (reg & (1ull << i))
5610 			incr_cntr64(&dd->misc_err_status_cnt[i]);
5611 	}
5612 }
5613 
5614 static void handle_pio_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5615 {
5616 	char buf[96];
5617 	int i = 0;
5618 
5619 	dd_dev_info(dd, "PIO Error: %s\n",
5620 		    pio_err_status_string(buf, sizeof(buf), reg));
5621 
5622 	if (reg & ALL_PIO_FREEZE_ERR)
5623 		start_freeze_handling(dd->pport, 0);
5624 
5625 	for (i = 0; i < NUM_SEND_PIO_ERR_STATUS_COUNTERS; i++) {
5626 		if (reg & (1ull << i))
5627 			incr_cntr64(&dd->send_pio_err_status_cnt[i]);
5628 	}
5629 }
5630 
5631 static void handle_sdma_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5632 {
5633 	char buf[96];
5634 	int i = 0;
5635 
5636 	dd_dev_info(dd, "SDMA Error: %s\n",
5637 		    sdma_err_status_string(buf, sizeof(buf), reg));
5638 
5639 	if (reg & ALL_SDMA_FREEZE_ERR)
5640 		start_freeze_handling(dd->pport, 0);
5641 
5642 	for (i = 0; i < NUM_SEND_DMA_ERR_STATUS_COUNTERS; i++) {
5643 		if (reg & (1ull << i))
5644 			incr_cntr64(&dd->send_dma_err_status_cnt[i]);
5645 	}
5646 }
5647 
5648 static inline void __count_port_discards(struct hfi1_pportdata *ppd)
5649 {
5650 	incr_cntr64(&ppd->port_xmit_discards);
5651 }
5652 
5653 static void count_port_inactive(struct hfi1_devdata *dd)
5654 {
5655 	__count_port_discards(dd->pport);
5656 }
5657 
5658 /*
5659  * We have had a "disallowed packet" error during egress. Determine the
5660  * integrity check which failed, and update relevant error counter, etc.
5661  *
5662  * Note that the SEND_EGRESS_ERR_INFO register has only a single
5663  * bit of state per integrity check, and so we can miss the reason for an
5664  * egress error if more than one packet fails the same integrity check
5665  * since we cleared the corresponding bit in SEND_EGRESS_ERR_INFO.
5666  */
5667 static void handle_send_egress_err_info(struct hfi1_devdata *dd,
5668 					int vl)
5669 {
5670 	struct hfi1_pportdata *ppd = dd->pport;
5671 	u64 src = read_csr(dd, SEND_EGRESS_ERR_SOURCE); /* read first */
5672 	u64 info = read_csr(dd, SEND_EGRESS_ERR_INFO);
5673 	char buf[96];
5674 
5675 	/* clear down all observed info as quickly as possible after read */
5676 	write_csr(dd, SEND_EGRESS_ERR_INFO, info);
5677 
5678 	dd_dev_info(dd,
5679 		    "Egress Error Info: 0x%llx, %s Egress Error Src 0x%llx\n",
5680 		    info, egress_err_info_string(buf, sizeof(buf), info), src);
5681 
5682 	/* Eventually add other counters for each bit */
5683 	if (info & PORT_DISCARD_EGRESS_ERRS) {
5684 		int weight, i;
5685 
5686 		/*
5687 		 * Count all applicable bits as individual errors and
5688 		 * attribute them to the packet that triggered this handler.
5689 		 * This may not be completely accurate due to limitations
5690 		 * on the available hardware error information.  There is
5691 		 * a single information register and any number of error
5692 		 * packets may have occurred and contributed to it before
5693 		 * this routine is called.  This means that:
5694 		 * a) If multiple packets with the same error occur before
5695 		 *    this routine is called, earlier packets are missed.
5696 		 *    There is only a single bit for each error type.
5697 		 * b) Errors may not be attributed to the correct VL.
5698 		 *    The driver is attributing all bits in the info register
5699 		 *    to the packet that triggered this call, but bits
5700 		 *    could be an accumulation of different packets with
5701 		 *    different VLs.
5702 		 * c) A single error packet may have multiple counts attached
5703 		 *    to it.  There is no way for the driver to know if
5704 		 *    multiple bits set in the info register are due to a
5705 		 *    single packet or multiple packets.  The driver assumes
5706 		 *    multiple packets.
5707 		 */
5708 		weight = hweight64(info & PORT_DISCARD_EGRESS_ERRS);
5709 		for (i = 0; i < weight; i++) {
5710 			__count_port_discards(ppd);
5711 			if (vl >= 0 && vl < TXE_NUM_DATA_VL)
5712 				incr_cntr64(&ppd->port_xmit_discards_vl[vl]);
5713 			else if (vl == 15)
5714 				incr_cntr64(&ppd->port_xmit_discards_vl
5715 					    [C_VL_15]);
5716 		}
5717 	}
5718 }
5719 
5720 /*
5721  * Input value is a bit position within the SEND_EGRESS_ERR_STATUS
5722  * register. Does it represent a 'port inactive' error?
5723  */
5724 static inline int port_inactive_err(u64 posn)
5725 {
5726 	return (posn >= SEES(TX_LINKDOWN) &&
5727 		posn <= SEES(TX_INCORRECT_LINK_STATE));
5728 }
5729 
5730 /*
5731  * Input value is a bit position within the SEND_EGRESS_ERR_STATUS
5732  * register. Does it represent a 'disallowed packet' error?
5733  */
5734 static inline int disallowed_pkt_err(int posn)
5735 {
5736 	return (posn >= SEES(TX_SDMA0_DISALLOWED_PACKET) &&
5737 		posn <= SEES(TX_SDMA15_DISALLOWED_PACKET));
5738 }
5739 
5740 /*
5741  * Input value is a bit position of one of the SDMA engine disallowed
5742  * packet errors.  Return which engine.  Use of this must be guarded by
5743  * disallowed_pkt_err().
5744  */
5745 static inline int disallowed_pkt_engine(int posn)
5746 {
5747 	return posn - SEES(TX_SDMA0_DISALLOWED_PACKET);
5748 }
5749 
5750 /*
5751  * Translate an SDMA engine to a VL.  Return -1 if the tranlation cannot
5752  * be done.
5753  */
5754 static int engine_to_vl(struct hfi1_devdata *dd, int engine)
5755 {
5756 	struct sdma_vl_map *m;
5757 	int vl;
5758 
5759 	/* range check */
5760 	if (engine < 0 || engine >= TXE_NUM_SDMA_ENGINES)
5761 		return -1;
5762 
5763 	rcu_read_lock();
5764 	m = rcu_dereference(dd->sdma_map);
5765 	vl = m->engine_to_vl[engine];
5766 	rcu_read_unlock();
5767 
5768 	return vl;
5769 }
5770 
5771 /*
5772  * Translate the send context (sofware index) into a VL.  Return -1 if the
5773  * translation cannot be done.
5774  */
5775 static int sc_to_vl(struct hfi1_devdata *dd, int sw_index)
5776 {
5777 	struct send_context_info *sci;
5778 	struct send_context *sc;
5779 	int i;
5780 
5781 	sci = &dd->send_contexts[sw_index];
5782 
5783 	/* there is no information for user (PSM) and ack contexts */
5784 	if ((sci->type != SC_KERNEL) && (sci->type != SC_VL15))
5785 		return -1;
5786 
5787 	sc = sci->sc;
5788 	if (!sc)
5789 		return -1;
5790 	if (dd->vld[15].sc == sc)
5791 		return 15;
5792 	for (i = 0; i < num_vls; i++)
5793 		if (dd->vld[i].sc == sc)
5794 			return i;
5795 
5796 	return -1;
5797 }
5798 
5799 static void handle_egress_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5800 {
5801 	u64 reg_copy = reg, handled = 0;
5802 	char buf[96];
5803 	int i = 0;
5804 
5805 	if (reg & ALL_TXE_EGRESS_FREEZE_ERR)
5806 		start_freeze_handling(dd->pport, 0);
5807 	else if (is_ax(dd) &&
5808 		 (reg & SEND_EGRESS_ERR_STATUS_TX_CREDIT_RETURN_VL_ERR_SMASK) &&
5809 		 (dd->icode != ICODE_FUNCTIONAL_SIMULATOR))
5810 		start_freeze_handling(dd->pport, 0);
5811 
5812 	while (reg_copy) {
5813 		int posn = fls64(reg_copy);
5814 		/* fls64() returns a 1-based offset, we want it zero based */
5815 		int shift = posn - 1;
5816 		u64 mask = 1ULL << shift;
5817 
5818 		if (port_inactive_err(shift)) {
5819 			count_port_inactive(dd);
5820 			handled |= mask;
5821 		} else if (disallowed_pkt_err(shift)) {
5822 			int vl = engine_to_vl(dd, disallowed_pkt_engine(shift));
5823 
5824 			handle_send_egress_err_info(dd, vl);
5825 			handled |= mask;
5826 		}
5827 		reg_copy &= ~mask;
5828 	}
5829 
5830 	reg &= ~handled;
5831 
5832 	if (reg)
5833 		dd_dev_info(dd, "Egress Error: %s\n",
5834 			    egress_err_status_string(buf, sizeof(buf), reg));
5835 
5836 	for (i = 0; i < NUM_SEND_EGRESS_ERR_STATUS_COUNTERS; i++) {
5837 		if (reg & (1ull << i))
5838 			incr_cntr64(&dd->send_egress_err_status_cnt[i]);
5839 	}
5840 }
5841 
5842 static void handle_txe_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5843 {
5844 	char buf[96];
5845 	int i = 0;
5846 
5847 	dd_dev_info(dd, "Send Error: %s\n",
5848 		    send_err_status_string(buf, sizeof(buf), reg));
5849 
5850 	for (i = 0; i < NUM_SEND_ERR_STATUS_COUNTERS; i++) {
5851 		if (reg & (1ull << i))
5852 			incr_cntr64(&dd->send_err_status_cnt[i]);
5853 	}
5854 }
5855 
5856 /*
5857  * The maximum number of times the error clear down will loop before
5858  * blocking a repeating error.  This value is arbitrary.
5859  */
5860 #define MAX_CLEAR_COUNT 20
5861 
5862 /*
5863  * Clear and handle an error register.  All error interrupts are funneled
5864  * through here to have a central location to correctly handle single-
5865  * or multi-shot errors.
5866  *
5867  * For non per-context registers, call this routine with a context value
5868  * of 0 so the per-context offset is zero.
5869  *
5870  * If the handler loops too many times, assume that something is wrong
5871  * and can't be fixed, so mask the error bits.
5872  */
5873 static void interrupt_clear_down(struct hfi1_devdata *dd,
5874 				 u32 context,
5875 				 const struct err_reg_info *eri)
5876 {
5877 	u64 reg;
5878 	u32 count;
5879 
5880 	/* read in a loop until no more errors are seen */
5881 	count = 0;
5882 	while (1) {
5883 		reg = read_kctxt_csr(dd, context, eri->status);
5884 		if (reg == 0)
5885 			break;
5886 		write_kctxt_csr(dd, context, eri->clear, reg);
5887 		if (likely(eri->handler))
5888 			eri->handler(dd, context, reg);
5889 		count++;
5890 		if (count > MAX_CLEAR_COUNT) {
5891 			u64 mask;
5892 
5893 			dd_dev_err(dd, "Repeating %s bits 0x%llx - masking\n",
5894 				   eri->desc, reg);
5895 			/*
5896 			 * Read-modify-write so any other masked bits
5897 			 * remain masked.
5898 			 */
5899 			mask = read_kctxt_csr(dd, context, eri->mask);
5900 			mask &= ~reg;
5901 			write_kctxt_csr(dd, context, eri->mask, mask);
5902 			break;
5903 		}
5904 	}
5905 }
5906 
5907 /*
5908  * CCE block "misc" interrupt.  Source is < 16.
5909  */
5910 static void is_misc_err_int(struct hfi1_devdata *dd, unsigned int source)
5911 {
5912 	const struct err_reg_info *eri = &misc_errs[source];
5913 
5914 	if (eri->handler) {
5915 		interrupt_clear_down(dd, 0, eri);
5916 	} else {
5917 		dd_dev_err(dd, "Unexpected misc interrupt (%u) - reserved\n",
5918 			   source);
5919 	}
5920 }
5921 
5922 static char *send_context_err_status_string(char *buf, int buf_len, u64 flags)
5923 {
5924 	return flag_string(buf, buf_len, flags,
5925 			   sc_err_status_flags,
5926 			   ARRAY_SIZE(sc_err_status_flags));
5927 }
5928 
5929 /*
5930  * Send context error interrupt.  Source (hw_context) is < 160.
5931  *
5932  * All send context errors cause the send context to halt.  The normal
5933  * clear-down mechanism cannot be used because we cannot clear the
5934  * error bits until several other long-running items are done first.
5935  * This is OK because with the context halted, nothing else is going
5936  * to happen on it anyway.
5937  */
5938 static void is_sendctxt_err_int(struct hfi1_devdata *dd,
5939 				unsigned int hw_context)
5940 {
5941 	struct send_context_info *sci;
5942 	struct send_context *sc;
5943 	char flags[96];
5944 	u64 status;
5945 	u32 sw_index;
5946 	int i = 0;
5947 	unsigned long irq_flags;
5948 
5949 	sw_index = dd->hw_to_sw[hw_context];
5950 	if (sw_index >= dd->num_send_contexts) {
5951 		dd_dev_err(dd,
5952 			   "out of range sw index %u for send context %u\n",
5953 			   sw_index, hw_context);
5954 		return;
5955 	}
5956 	sci = &dd->send_contexts[sw_index];
5957 	spin_lock_irqsave(&dd->sc_lock, irq_flags);
5958 	sc = sci->sc;
5959 	if (!sc) {
5960 		dd_dev_err(dd, "%s: context %u(%u): no sc?\n", __func__,
5961 			   sw_index, hw_context);
5962 		spin_unlock_irqrestore(&dd->sc_lock, irq_flags);
5963 		return;
5964 	}
5965 
5966 	/* tell the software that a halt has begun */
5967 	sc_stop(sc, SCF_HALTED);
5968 
5969 	status = read_kctxt_csr(dd, hw_context, SEND_CTXT_ERR_STATUS);
5970 
5971 	dd_dev_info(dd, "Send Context %u(%u) Error: %s\n", sw_index, hw_context,
5972 		    send_context_err_status_string(flags, sizeof(flags),
5973 						   status));
5974 
5975 	if (status & SEND_CTXT_ERR_STATUS_PIO_DISALLOWED_PACKET_ERR_SMASK)
5976 		handle_send_egress_err_info(dd, sc_to_vl(dd, sw_index));
5977 
5978 	/*
5979 	 * Automatically restart halted kernel contexts out of interrupt
5980 	 * context.  User contexts must ask the driver to restart the context.
5981 	 */
5982 	if (sc->type != SC_USER)
5983 		queue_work(dd->pport->hfi1_wq, &sc->halt_work);
5984 	spin_unlock_irqrestore(&dd->sc_lock, irq_flags);
5985 
5986 	/*
5987 	 * Update the counters for the corresponding status bits.
5988 	 * Note that these particular counters are aggregated over all
5989 	 * 160 contexts.
5990 	 */
5991 	for (i = 0; i < NUM_SEND_CTXT_ERR_STATUS_COUNTERS; i++) {
5992 		if (status & (1ull << i))
5993 			incr_cntr64(&dd->sw_ctxt_err_status_cnt[i]);
5994 	}
5995 }
5996 
5997 static void handle_sdma_eng_err(struct hfi1_devdata *dd,
5998 				unsigned int source, u64 status)
5999 {
6000 	struct sdma_engine *sde;
6001 	int i = 0;
6002 
6003 	sde = &dd->per_sdma[source];
6004 #ifdef CONFIG_SDMA_VERBOSITY
6005 	dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
6006 		   slashstrip(__FILE__), __LINE__, __func__);
6007 	dd_dev_err(sde->dd, "CONFIG SDMA(%u) source: %u status 0x%llx\n",
6008 		   sde->this_idx, source, (unsigned long long)status);
6009 #endif
6010 	sde->err_cnt++;
6011 	sdma_engine_error(sde, status);
6012 
6013 	/*
6014 	* Update the counters for the corresponding status bits.
6015 	* Note that these particular counters are aggregated over
6016 	* all 16 DMA engines.
6017 	*/
6018 	for (i = 0; i < NUM_SEND_DMA_ENG_ERR_STATUS_COUNTERS; i++) {
6019 		if (status & (1ull << i))
6020 			incr_cntr64(&dd->sw_send_dma_eng_err_status_cnt[i]);
6021 	}
6022 }
6023 
6024 /*
6025  * CCE block SDMA error interrupt.  Source is < 16.
6026  */
6027 static void is_sdma_eng_err_int(struct hfi1_devdata *dd, unsigned int source)
6028 {
6029 #ifdef CONFIG_SDMA_VERBOSITY
6030 	struct sdma_engine *sde = &dd->per_sdma[source];
6031 
6032 	dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
6033 		   slashstrip(__FILE__), __LINE__, __func__);
6034 	dd_dev_err(dd, "CONFIG SDMA(%u) source: %u\n", sde->this_idx,
6035 		   source);
6036 	sdma_dumpstate(sde);
6037 #endif
6038 	interrupt_clear_down(dd, source, &sdma_eng_err);
6039 }
6040 
6041 /*
6042  * CCE block "various" interrupt.  Source is < 8.
6043  */
6044 static void is_various_int(struct hfi1_devdata *dd, unsigned int source)
6045 {
6046 	const struct err_reg_info *eri = &various_err[source];
6047 
6048 	/*
6049 	 * TCritInt cannot go through interrupt_clear_down()
6050 	 * because it is not a second tier interrupt. The handler
6051 	 * should be called directly.
6052 	 */
6053 	if (source == TCRIT_INT_SOURCE)
6054 		handle_temp_err(dd);
6055 	else if (eri->handler)
6056 		interrupt_clear_down(dd, 0, eri);
6057 	else
6058 		dd_dev_info(dd,
6059 			    "%s: Unimplemented/reserved interrupt %d\n",
6060 			    __func__, source);
6061 }
6062 
6063 static void handle_qsfp_int(struct hfi1_devdata *dd, u32 src_ctx, u64 reg)
6064 {
6065 	/* src_ctx is always zero */
6066 	struct hfi1_pportdata *ppd = dd->pport;
6067 	unsigned long flags;
6068 	u64 qsfp_int_mgmt = (u64)(QSFP_HFI0_INT_N | QSFP_HFI0_MODPRST_N);
6069 
6070 	if (reg & QSFP_HFI0_MODPRST_N) {
6071 		if (!qsfp_mod_present(ppd)) {
6072 			dd_dev_info(dd, "%s: QSFP module removed\n",
6073 				    __func__);
6074 
6075 			ppd->driver_link_ready = 0;
6076 			/*
6077 			 * Cable removed, reset all our information about the
6078 			 * cache and cable capabilities
6079 			 */
6080 
6081 			spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
6082 			/*
6083 			 * We don't set cache_refresh_required here as we expect
6084 			 * an interrupt when a cable is inserted
6085 			 */
6086 			ppd->qsfp_info.cache_valid = 0;
6087 			ppd->qsfp_info.reset_needed = 0;
6088 			ppd->qsfp_info.limiting_active = 0;
6089 			spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock,
6090 					       flags);
6091 			/* Invert the ModPresent pin now to detect plug-in */
6092 			write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_INVERT :
6093 				  ASIC_QSFP1_INVERT, qsfp_int_mgmt);
6094 
6095 			if ((ppd->offline_disabled_reason >
6096 			  HFI1_ODR_MASK(
6097 			  OPA_LINKDOWN_REASON_LOCAL_MEDIA_NOT_INSTALLED)) ||
6098 			  (ppd->offline_disabled_reason ==
6099 			  HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE)))
6100 				ppd->offline_disabled_reason =
6101 				HFI1_ODR_MASK(
6102 				OPA_LINKDOWN_REASON_LOCAL_MEDIA_NOT_INSTALLED);
6103 
6104 			if (ppd->host_link_state == HLS_DN_POLL) {
6105 				/*
6106 				 * The link is still in POLL. This means
6107 				 * that the normal link down processing
6108 				 * will not happen. We have to do it here
6109 				 * before turning the DC off.
6110 				 */
6111 				queue_work(ppd->link_wq, &ppd->link_down_work);
6112 			}
6113 		} else {
6114 			dd_dev_info(dd, "%s: QSFP module inserted\n",
6115 				    __func__);
6116 
6117 			spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
6118 			ppd->qsfp_info.cache_valid = 0;
6119 			ppd->qsfp_info.cache_refresh_required = 1;
6120 			spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock,
6121 					       flags);
6122 
6123 			/*
6124 			 * Stop inversion of ModPresent pin to detect
6125 			 * removal of the cable
6126 			 */
6127 			qsfp_int_mgmt &= ~(u64)QSFP_HFI0_MODPRST_N;
6128 			write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_INVERT :
6129 				  ASIC_QSFP1_INVERT, qsfp_int_mgmt);
6130 
6131 			ppd->offline_disabled_reason =
6132 				HFI1_ODR_MASK(OPA_LINKDOWN_REASON_TRANSIENT);
6133 		}
6134 	}
6135 
6136 	if (reg & QSFP_HFI0_INT_N) {
6137 		dd_dev_info(dd, "%s: Interrupt received from QSFP module\n",
6138 			    __func__);
6139 		spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
6140 		ppd->qsfp_info.check_interrupt_flags = 1;
6141 		spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock, flags);
6142 	}
6143 
6144 	/* Schedule the QSFP work only if there is a cable attached. */
6145 	if (qsfp_mod_present(ppd))
6146 		queue_work(ppd->link_wq, &ppd->qsfp_info.qsfp_work);
6147 }
6148 
6149 static int request_host_lcb_access(struct hfi1_devdata *dd)
6150 {
6151 	int ret;
6152 
6153 	ret = do_8051_command(dd, HCMD_MISC,
6154 			      (u64)HCMD_MISC_REQUEST_LCB_ACCESS <<
6155 			      LOAD_DATA_FIELD_ID_SHIFT, NULL);
6156 	if (ret != HCMD_SUCCESS) {
6157 		dd_dev_err(dd, "%s: command failed with error %d\n",
6158 			   __func__, ret);
6159 	}
6160 	return ret == HCMD_SUCCESS ? 0 : -EBUSY;
6161 }
6162 
6163 static int request_8051_lcb_access(struct hfi1_devdata *dd)
6164 {
6165 	int ret;
6166 
6167 	ret = do_8051_command(dd, HCMD_MISC,
6168 			      (u64)HCMD_MISC_GRANT_LCB_ACCESS <<
6169 			      LOAD_DATA_FIELD_ID_SHIFT, NULL);
6170 	if (ret != HCMD_SUCCESS) {
6171 		dd_dev_err(dd, "%s: command failed with error %d\n",
6172 			   __func__, ret);
6173 	}
6174 	return ret == HCMD_SUCCESS ? 0 : -EBUSY;
6175 }
6176 
6177 /*
6178  * Set the LCB selector - allow host access.  The DCC selector always
6179  * points to the host.
6180  */
6181 static inline void set_host_lcb_access(struct hfi1_devdata *dd)
6182 {
6183 	write_csr(dd, DC_DC8051_CFG_CSR_ACCESS_SEL,
6184 		  DC_DC8051_CFG_CSR_ACCESS_SEL_DCC_SMASK |
6185 		  DC_DC8051_CFG_CSR_ACCESS_SEL_LCB_SMASK);
6186 }
6187 
6188 /*
6189  * Clear the LCB selector - allow 8051 access.  The DCC selector always
6190  * points to the host.
6191  */
6192 static inline void set_8051_lcb_access(struct hfi1_devdata *dd)
6193 {
6194 	write_csr(dd, DC_DC8051_CFG_CSR_ACCESS_SEL,
6195 		  DC_DC8051_CFG_CSR_ACCESS_SEL_DCC_SMASK);
6196 }
6197 
6198 /*
6199  * Acquire LCB access from the 8051.  If the host already has access,
6200  * just increment a counter.  Otherwise, inform the 8051 that the
6201  * host is taking access.
6202  *
6203  * Returns:
6204  *	0 on success
6205  *	-EBUSY if the 8051 has control and cannot be disturbed
6206  *	-errno if unable to acquire access from the 8051
6207  */
6208 int acquire_lcb_access(struct hfi1_devdata *dd, int sleep_ok)
6209 {
6210 	struct hfi1_pportdata *ppd = dd->pport;
6211 	int ret = 0;
6212 
6213 	/*
6214 	 * Use the host link state lock so the operation of this routine
6215 	 * { link state check, selector change, count increment } can occur
6216 	 * as a unit against a link state change.  Otherwise there is a
6217 	 * race between the state change and the count increment.
6218 	 */
6219 	if (sleep_ok) {
6220 		mutex_lock(&ppd->hls_lock);
6221 	} else {
6222 		while (!mutex_trylock(&ppd->hls_lock))
6223 			udelay(1);
6224 	}
6225 
6226 	/* this access is valid only when the link is up */
6227 	if (ppd->host_link_state & HLS_DOWN) {
6228 		dd_dev_info(dd, "%s: link state %s not up\n",
6229 			    __func__, link_state_name(ppd->host_link_state));
6230 		ret = -EBUSY;
6231 		goto done;
6232 	}
6233 
6234 	if (dd->lcb_access_count == 0) {
6235 		ret = request_host_lcb_access(dd);
6236 		if (ret) {
6237 			dd_dev_err(dd,
6238 				   "%s: unable to acquire LCB access, err %d\n",
6239 				   __func__, ret);
6240 			goto done;
6241 		}
6242 		set_host_lcb_access(dd);
6243 	}
6244 	dd->lcb_access_count++;
6245 done:
6246 	mutex_unlock(&ppd->hls_lock);
6247 	return ret;
6248 }
6249 
6250 /*
6251  * Release LCB access by decrementing the use count.  If the count is moving
6252  * from 1 to 0, inform 8051 that it has control back.
6253  *
6254  * Returns:
6255  *	0 on success
6256  *	-errno if unable to release access to the 8051
6257  */
6258 int release_lcb_access(struct hfi1_devdata *dd, int sleep_ok)
6259 {
6260 	int ret = 0;
6261 
6262 	/*
6263 	 * Use the host link state lock because the acquire needed it.
6264 	 * Here, we only need to keep { selector change, count decrement }
6265 	 * as a unit.
6266 	 */
6267 	if (sleep_ok) {
6268 		mutex_lock(&dd->pport->hls_lock);
6269 	} else {
6270 		while (!mutex_trylock(&dd->pport->hls_lock))
6271 			udelay(1);
6272 	}
6273 
6274 	if (dd->lcb_access_count == 0) {
6275 		dd_dev_err(dd, "%s: LCB access count is zero.  Skipping.\n",
6276 			   __func__);
6277 		goto done;
6278 	}
6279 
6280 	if (dd->lcb_access_count == 1) {
6281 		set_8051_lcb_access(dd);
6282 		ret = request_8051_lcb_access(dd);
6283 		if (ret) {
6284 			dd_dev_err(dd,
6285 				   "%s: unable to release LCB access, err %d\n",
6286 				   __func__, ret);
6287 			/* restore host access if the grant didn't work */
6288 			set_host_lcb_access(dd);
6289 			goto done;
6290 		}
6291 	}
6292 	dd->lcb_access_count--;
6293 done:
6294 	mutex_unlock(&dd->pport->hls_lock);
6295 	return ret;
6296 }
6297 
6298 /*
6299  * Initialize LCB access variables and state.  Called during driver load,
6300  * after most of the initialization is finished.
6301  *
6302  * The DC default is LCB access on for the host.  The driver defaults to
6303  * leaving access to the 8051.  Assign access now - this constrains the call
6304  * to this routine to be after all LCB set-up is done.  In particular, after
6305  * hf1_init_dd() -> set_up_interrupts() -> clear_all_interrupts()
6306  */
6307 static void init_lcb_access(struct hfi1_devdata *dd)
6308 {
6309 	dd->lcb_access_count = 0;
6310 }
6311 
6312 /*
6313  * Write a response back to a 8051 request.
6314  */
6315 static void hreq_response(struct hfi1_devdata *dd, u8 return_code, u16 rsp_data)
6316 {
6317 	write_csr(dd, DC_DC8051_CFG_EXT_DEV_0,
6318 		  DC_DC8051_CFG_EXT_DEV_0_COMPLETED_SMASK |
6319 		  (u64)return_code <<
6320 		  DC_DC8051_CFG_EXT_DEV_0_RETURN_CODE_SHIFT |
6321 		  (u64)rsp_data << DC_DC8051_CFG_EXT_DEV_0_RSP_DATA_SHIFT);
6322 }
6323 
6324 /*
6325  * Handle host requests from the 8051.
6326  */
6327 static void handle_8051_request(struct hfi1_pportdata *ppd)
6328 {
6329 	struct hfi1_devdata *dd = ppd->dd;
6330 	u64 reg;
6331 	u16 data = 0;
6332 	u8 type;
6333 
6334 	reg = read_csr(dd, DC_DC8051_CFG_EXT_DEV_1);
6335 	if ((reg & DC_DC8051_CFG_EXT_DEV_1_REQ_NEW_SMASK) == 0)
6336 		return;	/* no request */
6337 
6338 	/* zero out COMPLETED so the response is seen */
6339 	write_csr(dd, DC_DC8051_CFG_EXT_DEV_0, 0);
6340 
6341 	/* extract request details */
6342 	type = (reg >> DC_DC8051_CFG_EXT_DEV_1_REQ_TYPE_SHIFT)
6343 			& DC_DC8051_CFG_EXT_DEV_1_REQ_TYPE_MASK;
6344 	data = (reg >> DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SHIFT)
6345 			& DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_MASK;
6346 
6347 	switch (type) {
6348 	case HREQ_LOAD_CONFIG:
6349 	case HREQ_SAVE_CONFIG:
6350 	case HREQ_READ_CONFIG:
6351 	case HREQ_SET_TX_EQ_ABS:
6352 	case HREQ_SET_TX_EQ_REL:
6353 	case HREQ_ENABLE:
6354 		dd_dev_info(dd, "8051 request: request 0x%x not supported\n",
6355 			    type);
6356 		hreq_response(dd, HREQ_NOT_SUPPORTED, 0);
6357 		break;
6358 	case HREQ_CONFIG_DONE:
6359 		hreq_response(dd, HREQ_SUCCESS, 0);
6360 		break;
6361 
6362 	case HREQ_INTERFACE_TEST:
6363 		hreq_response(dd, HREQ_SUCCESS, data);
6364 		break;
6365 	default:
6366 		dd_dev_err(dd, "8051 request: unknown request 0x%x\n", type);
6367 		hreq_response(dd, HREQ_NOT_SUPPORTED, 0);
6368 		break;
6369 	}
6370 }
6371 
6372 /*
6373  * Set up allocation unit vaulue.
6374  */
6375 void set_up_vau(struct hfi1_devdata *dd, u8 vau)
6376 {
6377 	u64 reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
6378 
6379 	/* do not modify other values in the register */
6380 	reg &= ~SEND_CM_GLOBAL_CREDIT_AU_SMASK;
6381 	reg |= (u64)vau << SEND_CM_GLOBAL_CREDIT_AU_SHIFT;
6382 	write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg);
6383 }
6384 
6385 /*
6386  * Set up initial VL15 credits of the remote.  Assumes the rest of
6387  * the CM credit registers are zero from a previous global or credit reset.
6388  * Shared limit for VL15 will always be 0.
6389  */
6390 void set_up_vl15(struct hfi1_devdata *dd, u16 vl15buf)
6391 {
6392 	u64 reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
6393 
6394 	/* set initial values for total and shared credit limit */
6395 	reg &= ~(SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SMASK |
6396 		 SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SMASK);
6397 
6398 	/*
6399 	 * Set total limit to be equal to VL15 credits.
6400 	 * Leave shared limit at 0.
6401 	 */
6402 	reg |= (u64)vl15buf << SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT;
6403 	write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg);
6404 
6405 	write_csr(dd, SEND_CM_CREDIT_VL15, (u64)vl15buf
6406 		  << SEND_CM_CREDIT_VL15_DEDICATED_LIMIT_VL_SHIFT);
6407 }
6408 
6409 /*
6410  * Zero all credit details from the previous connection and
6411  * reset the CM manager's internal counters.
6412  */
6413 void reset_link_credits(struct hfi1_devdata *dd)
6414 {
6415 	int i;
6416 
6417 	/* remove all previous VL credit limits */
6418 	for (i = 0; i < TXE_NUM_DATA_VL; i++)
6419 		write_csr(dd, SEND_CM_CREDIT_VL + (8 * i), 0);
6420 	write_csr(dd, SEND_CM_CREDIT_VL15, 0);
6421 	write_csr(dd, SEND_CM_GLOBAL_CREDIT, 0);
6422 	/* reset the CM block */
6423 	pio_send_control(dd, PSC_CM_RESET);
6424 	/* reset cached value */
6425 	dd->vl15buf_cached = 0;
6426 }
6427 
6428 /* convert a vCU to a CU */
6429 static u32 vcu_to_cu(u8 vcu)
6430 {
6431 	return 1 << vcu;
6432 }
6433 
6434 /* convert a CU to a vCU */
6435 static u8 cu_to_vcu(u32 cu)
6436 {
6437 	return ilog2(cu);
6438 }
6439 
6440 /* convert a vAU to an AU */
6441 static u32 vau_to_au(u8 vau)
6442 {
6443 	return 8 * (1 << vau);
6444 }
6445 
6446 static void set_linkup_defaults(struct hfi1_pportdata *ppd)
6447 {
6448 	ppd->sm_trap_qp = 0x0;
6449 	ppd->sa_qp = 0x1;
6450 }
6451 
6452 /*
6453  * Graceful LCB shutdown.  This leaves the LCB FIFOs in reset.
6454  */
6455 static void lcb_shutdown(struct hfi1_devdata *dd, int abort)
6456 {
6457 	u64 reg;
6458 
6459 	/* clear lcb run: LCB_CFG_RUN.EN = 0 */
6460 	write_csr(dd, DC_LCB_CFG_RUN, 0);
6461 	/* set tx fifo reset: LCB_CFG_TX_FIFOS_RESET.VAL = 1 */
6462 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET,
6463 		  1ull << DC_LCB_CFG_TX_FIFOS_RESET_VAL_SHIFT);
6464 	/* set dcc reset csr: DCC_CFG_RESET.{reset_lcb,reset_rx_fpe} = 1 */
6465 	dd->lcb_err_en = read_csr(dd, DC_LCB_ERR_EN);
6466 	reg = read_csr(dd, DCC_CFG_RESET);
6467 	write_csr(dd, DCC_CFG_RESET, reg |
6468 		  (1ull << DCC_CFG_RESET_RESET_LCB_SHIFT) |
6469 		  (1ull << DCC_CFG_RESET_RESET_RX_FPE_SHIFT));
6470 	(void)read_csr(dd, DCC_CFG_RESET); /* make sure the write completed */
6471 	if (!abort) {
6472 		udelay(1);    /* must hold for the longer of 16cclks or 20ns */
6473 		write_csr(dd, DCC_CFG_RESET, reg);
6474 		write_csr(dd, DC_LCB_ERR_EN, dd->lcb_err_en);
6475 	}
6476 }
6477 
6478 /*
6479  * This routine should be called after the link has been transitioned to
6480  * OFFLINE (OFFLINE state has the side effect of putting the SerDes into
6481  * reset).
6482  *
6483  * The expectation is that the caller of this routine would have taken
6484  * care of properly transitioning the link into the correct state.
6485  * NOTE: the caller needs to acquire the dd->dc8051_lock lock
6486  *       before calling this function.
6487  */
6488 static void _dc_shutdown(struct hfi1_devdata *dd)
6489 {
6490 	lockdep_assert_held(&dd->dc8051_lock);
6491 
6492 	if (dd->dc_shutdown)
6493 		return;
6494 
6495 	dd->dc_shutdown = 1;
6496 	/* Shutdown the LCB */
6497 	lcb_shutdown(dd, 1);
6498 	/*
6499 	 * Going to OFFLINE would have causes the 8051 to put the
6500 	 * SerDes into reset already. Just need to shut down the 8051,
6501 	 * itself.
6502 	 */
6503 	write_csr(dd, DC_DC8051_CFG_RST, 0x1);
6504 }
6505 
6506 static void dc_shutdown(struct hfi1_devdata *dd)
6507 {
6508 	mutex_lock(&dd->dc8051_lock);
6509 	_dc_shutdown(dd);
6510 	mutex_unlock(&dd->dc8051_lock);
6511 }
6512 
6513 /*
6514  * Calling this after the DC has been brought out of reset should not
6515  * do any damage.
6516  * NOTE: the caller needs to acquire the dd->dc8051_lock lock
6517  *       before calling this function.
6518  */
6519 static void _dc_start(struct hfi1_devdata *dd)
6520 {
6521 	lockdep_assert_held(&dd->dc8051_lock);
6522 
6523 	if (!dd->dc_shutdown)
6524 		return;
6525 
6526 	/* Take the 8051 out of reset */
6527 	write_csr(dd, DC_DC8051_CFG_RST, 0ull);
6528 	/* Wait until 8051 is ready */
6529 	if (wait_fm_ready(dd, TIMEOUT_8051_START))
6530 		dd_dev_err(dd, "%s: timeout starting 8051 firmware\n",
6531 			   __func__);
6532 
6533 	/* Take away reset for LCB and RX FPE (set in lcb_shutdown). */
6534 	write_csr(dd, DCC_CFG_RESET, 0x10);
6535 	/* lcb_shutdown() with abort=1 does not restore these */
6536 	write_csr(dd, DC_LCB_ERR_EN, dd->lcb_err_en);
6537 	dd->dc_shutdown = 0;
6538 }
6539 
6540 static void dc_start(struct hfi1_devdata *dd)
6541 {
6542 	mutex_lock(&dd->dc8051_lock);
6543 	_dc_start(dd);
6544 	mutex_unlock(&dd->dc8051_lock);
6545 }
6546 
6547 /*
6548  * These LCB adjustments are for the Aurora SerDes core in the FPGA.
6549  */
6550 static void adjust_lcb_for_fpga_serdes(struct hfi1_devdata *dd)
6551 {
6552 	u64 rx_radr, tx_radr;
6553 	u32 version;
6554 
6555 	if (dd->icode != ICODE_FPGA_EMULATION)
6556 		return;
6557 
6558 	/*
6559 	 * These LCB defaults on emulator _s are good, nothing to do here:
6560 	 *	LCB_CFG_TX_FIFOS_RADR
6561 	 *	LCB_CFG_RX_FIFOS_RADR
6562 	 *	LCB_CFG_LN_DCLK
6563 	 *	LCB_CFG_IGNORE_LOST_RCLK
6564 	 */
6565 	if (is_emulator_s(dd))
6566 		return;
6567 	/* else this is _p */
6568 
6569 	version = emulator_rev(dd);
6570 	if (!is_ax(dd))
6571 		version = 0x2d;	/* all B0 use 0x2d or higher settings */
6572 
6573 	if (version <= 0x12) {
6574 		/* release 0x12 and below */
6575 
6576 		/*
6577 		 * LCB_CFG_RX_FIFOS_RADR.RST_VAL = 0x9
6578 		 * LCB_CFG_RX_FIFOS_RADR.OK_TO_JUMP_VAL = 0x9
6579 		 * LCB_CFG_RX_FIFOS_RADR.DO_NOT_JUMP_VAL = 0xa
6580 		 */
6581 		rx_radr =
6582 		      0xaull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6583 		    | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6584 		    | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6585 		/*
6586 		 * LCB_CFG_TX_FIFOS_RADR.ON_REINIT = 0 (default)
6587 		 * LCB_CFG_TX_FIFOS_RADR.RST_VAL = 6
6588 		 */
6589 		tx_radr = 6ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6590 	} else if (version <= 0x18) {
6591 		/* release 0x13 up to 0x18 */
6592 		/* LCB_CFG_RX_FIFOS_RADR = 0x988 */
6593 		rx_radr =
6594 		      0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6595 		    | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6596 		    | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6597 		tx_radr = 7ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6598 	} else if (version == 0x19) {
6599 		/* release 0x19 */
6600 		/* LCB_CFG_RX_FIFOS_RADR = 0xa99 */
6601 		rx_radr =
6602 		      0xAull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6603 		    | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6604 		    | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6605 		tx_radr = 3ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6606 	} else if (version == 0x1a) {
6607 		/* release 0x1a */
6608 		/* LCB_CFG_RX_FIFOS_RADR = 0x988 */
6609 		rx_radr =
6610 		      0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6611 		    | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6612 		    | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6613 		tx_radr = 7ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6614 		write_csr(dd, DC_LCB_CFG_LN_DCLK, 1ull);
6615 	} else {
6616 		/* release 0x1b and higher */
6617 		/* LCB_CFG_RX_FIFOS_RADR = 0x877 */
6618 		rx_radr =
6619 		      0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6620 		    | 0x7ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6621 		    | 0x7ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6622 		tx_radr = 3ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6623 	}
6624 
6625 	write_csr(dd, DC_LCB_CFG_RX_FIFOS_RADR, rx_radr);
6626 	/* LCB_CFG_IGNORE_LOST_RCLK.EN = 1 */
6627 	write_csr(dd, DC_LCB_CFG_IGNORE_LOST_RCLK,
6628 		  DC_LCB_CFG_IGNORE_LOST_RCLK_EN_SMASK);
6629 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RADR, tx_radr);
6630 }
6631 
6632 /*
6633  * Handle a SMA idle message
6634  *
6635  * This is a work-queue function outside of the interrupt.
6636  */
6637 void handle_sma_message(struct work_struct *work)
6638 {
6639 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
6640 							sma_message_work);
6641 	struct hfi1_devdata *dd = ppd->dd;
6642 	u64 msg;
6643 	int ret;
6644 
6645 	/*
6646 	 * msg is bytes 1-4 of the 40-bit idle message - the command code
6647 	 * is stripped off
6648 	 */
6649 	ret = read_idle_sma(dd, &msg);
6650 	if (ret)
6651 		return;
6652 	dd_dev_info(dd, "%s: SMA message 0x%llx\n", __func__, msg);
6653 	/*
6654 	 * React to the SMA message.  Byte[1] (0 for us) is the command.
6655 	 */
6656 	switch (msg & 0xff) {
6657 	case SMA_IDLE_ARM:
6658 		/*
6659 		 * See OPAv1 table 9-14 - HFI and External Switch Ports Key
6660 		 * State Transitions
6661 		 *
6662 		 * Only expected in INIT or ARMED, discard otherwise.
6663 		 */
6664 		if (ppd->host_link_state & (HLS_UP_INIT | HLS_UP_ARMED))
6665 			ppd->neighbor_normal = 1;
6666 		break;
6667 	case SMA_IDLE_ACTIVE:
6668 		/*
6669 		 * See OPAv1 table 9-14 - HFI and External Switch Ports Key
6670 		 * State Transitions
6671 		 *
6672 		 * Can activate the node.  Discard otherwise.
6673 		 */
6674 		if (ppd->host_link_state == HLS_UP_ARMED &&
6675 		    ppd->is_active_optimize_enabled) {
6676 			ppd->neighbor_normal = 1;
6677 			ret = set_link_state(ppd, HLS_UP_ACTIVE);
6678 			if (ret)
6679 				dd_dev_err(
6680 					dd,
6681 					"%s: received Active SMA idle message, couldn't set link to Active\n",
6682 					__func__);
6683 		}
6684 		break;
6685 	default:
6686 		dd_dev_err(dd,
6687 			   "%s: received unexpected SMA idle message 0x%llx\n",
6688 			   __func__, msg);
6689 		break;
6690 	}
6691 }
6692 
6693 static void adjust_rcvctrl(struct hfi1_devdata *dd, u64 add, u64 clear)
6694 {
6695 	u64 rcvctrl;
6696 	unsigned long flags;
6697 
6698 	spin_lock_irqsave(&dd->rcvctrl_lock, flags);
6699 	rcvctrl = read_csr(dd, RCV_CTRL);
6700 	rcvctrl |= add;
6701 	rcvctrl &= ~clear;
6702 	write_csr(dd, RCV_CTRL, rcvctrl);
6703 	spin_unlock_irqrestore(&dd->rcvctrl_lock, flags);
6704 }
6705 
6706 static inline void add_rcvctrl(struct hfi1_devdata *dd, u64 add)
6707 {
6708 	adjust_rcvctrl(dd, add, 0);
6709 }
6710 
6711 static inline void clear_rcvctrl(struct hfi1_devdata *dd, u64 clear)
6712 {
6713 	adjust_rcvctrl(dd, 0, clear);
6714 }
6715 
6716 /*
6717  * Called from all interrupt handlers to start handling an SPC freeze.
6718  */
6719 void start_freeze_handling(struct hfi1_pportdata *ppd, int flags)
6720 {
6721 	struct hfi1_devdata *dd = ppd->dd;
6722 	struct send_context *sc;
6723 	int i;
6724 
6725 	if (flags & FREEZE_SELF)
6726 		write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_FREEZE_SMASK);
6727 
6728 	/* enter frozen mode */
6729 	dd->flags |= HFI1_FROZEN;
6730 
6731 	/* notify all SDMA engines that they are going into a freeze */
6732 	sdma_freeze_notify(dd, !!(flags & FREEZE_LINK_DOWN));
6733 
6734 	/* do halt pre-handling on all enabled send contexts */
6735 	for (i = 0; i < dd->num_send_contexts; i++) {
6736 		sc = dd->send_contexts[i].sc;
6737 		if (sc && (sc->flags & SCF_ENABLED))
6738 			sc_stop(sc, SCF_FROZEN | SCF_HALTED);
6739 	}
6740 
6741 	/* Send context are frozen. Notify user space */
6742 	hfi1_set_uevent_bits(ppd, _HFI1_EVENT_FROZEN_BIT);
6743 
6744 	if (flags & FREEZE_ABORT) {
6745 		dd_dev_err(dd,
6746 			   "Aborted freeze recovery. Please REBOOT system\n");
6747 		return;
6748 	}
6749 	/* queue non-interrupt handler */
6750 	queue_work(ppd->hfi1_wq, &ppd->freeze_work);
6751 }
6752 
6753 /*
6754  * Wait until all 4 sub-blocks indicate that they have frozen or unfrozen,
6755  * depending on the "freeze" parameter.
6756  *
6757  * No need to return an error if it times out, our only option
6758  * is to proceed anyway.
6759  */
6760 static void wait_for_freeze_status(struct hfi1_devdata *dd, int freeze)
6761 {
6762 	unsigned long timeout;
6763 	u64 reg;
6764 
6765 	timeout = jiffies + msecs_to_jiffies(FREEZE_STATUS_TIMEOUT);
6766 	while (1) {
6767 		reg = read_csr(dd, CCE_STATUS);
6768 		if (freeze) {
6769 			/* waiting until all indicators are set */
6770 			if ((reg & ALL_FROZE) == ALL_FROZE)
6771 				return;	/* all done */
6772 		} else {
6773 			/* waiting until all indicators are clear */
6774 			if ((reg & ALL_FROZE) == 0)
6775 				return; /* all done */
6776 		}
6777 
6778 		if (time_after(jiffies, timeout)) {
6779 			dd_dev_err(dd,
6780 				   "Time out waiting for SPC %sfreeze, bits 0x%llx, expecting 0x%llx, continuing",
6781 				   freeze ? "" : "un", reg & ALL_FROZE,
6782 				   freeze ? ALL_FROZE : 0ull);
6783 			return;
6784 		}
6785 		usleep_range(80, 120);
6786 	}
6787 }
6788 
6789 /*
6790  * Do all freeze handling for the RXE block.
6791  */
6792 static void rxe_freeze(struct hfi1_devdata *dd)
6793 {
6794 	int i;
6795 	struct hfi1_ctxtdata *rcd;
6796 
6797 	/* disable port */
6798 	clear_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
6799 
6800 	/* disable all receive contexts */
6801 	for (i = 0; i < dd->num_rcv_contexts; i++) {
6802 		rcd = hfi1_rcd_get_by_index(dd, i);
6803 		hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_DIS, rcd);
6804 		hfi1_rcd_put(rcd);
6805 	}
6806 }
6807 
6808 /*
6809  * Unfreeze handling for the RXE block - kernel contexts only.
6810  * This will also enable the port.  User contexts will do unfreeze
6811  * handling on a per-context basis as they call into the driver.
6812  *
6813  */
6814 static void rxe_kernel_unfreeze(struct hfi1_devdata *dd)
6815 {
6816 	u32 rcvmask;
6817 	u16 i;
6818 	struct hfi1_ctxtdata *rcd;
6819 
6820 	/* enable all kernel contexts */
6821 	for (i = 0; i < dd->num_rcv_contexts; i++) {
6822 		rcd = hfi1_rcd_get_by_index(dd, i);
6823 
6824 		/* Ensure all non-user contexts(including vnic) are enabled */
6825 		if (!rcd ||
6826 		    (i >= dd->first_dyn_alloc_ctxt && !rcd->is_vnic)) {
6827 			hfi1_rcd_put(rcd);
6828 			continue;
6829 		}
6830 		rcvmask = HFI1_RCVCTRL_CTXT_ENB;
6831 		/* HFI1_RCVCTRL_TAILUPD_[ENB|DIS] needs to be set explicitly */
6832 		rcvmask |= HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL) ?
6833 			HFI1_RCVCTRL_TAILUPD_ENB : HFI1_RCVCTRL_TAILUPD_DIS;
6834 		hfi1_rcvctrl(dd, rcvmask, rcd);
6835 		hfi1_rcd_put(rcd);
6836 	}
6837 
6838 	/* enable port */
6839 	add_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
6840 }
6841 
6842 /*
6843  * Non-interrupt SPC freeze handling.
6844  *
6845  * This is a work-queue function outside of the triggering interrupt.
6846  */
6847 void handle_freeze(struct work_struct *work)
6848 {
6849 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
6850 								freeze_work);
6851 	struct hfi1_devdata *dd = ppd->dd;
6852 
6853 	/* wait for freeze indicators on all affected blocks */
6854 	wait_for_freeze_status(dd, 1);
6855 
6856 	/* SPC is now frozen */
6857 
6858 	/* do send PIO freeze steps */
6859 	pio_freeze(dd);
6860 
6861 	/* do send DMA freeze steps */
6862 	sdma_freeze(dd);
6863 
6864 	/* do send egress freeze steps - nothing to do */
6865 
6866 	/* do receive freeze steps */
6867 	rxe_freeze(dd);
6868 
6869 	/*
6870 	 * Unfreeze the hardware - clear the freeze, wait for each
6871 	 * block's frozen bit to clear, then clear the frozen flag.
6872 	 */
6873 	write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_UNFREEZE_SMASK);
6874 	wait_for_freeze_status(dd, 0);
6875 
6876 	if (is_ax(dd)) {
6877 		write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_FREEZE_SMASK);
6878 		wait_for_freeze_status(dd, 1);
6879 		write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_UNFREEZE_SMASK);
6880 		wait_for_freeze_status(dd, 0);
6881 	}
6882 
6883 	/* do send PIO unfreeze steps for kernel contexts */
6884 	pio_kernel_unfreeze(dd);
6885 
6886 	/* do send DMA unfreeze steps */
6887 	sdma_unfreeze(dd);
6888 
6889 	/* do send egress unfreeze steps - nothing to do */
6890 
6891 	/* do receive unfreeze steps for kernel contexts */
6892 	rxe_kernel_unfreeze(dd);
6893 
6894 	/*
6895 	 * The unfreeze procedure touches global device registers when
6896 	 * it disables and re-enables RXE. Mark the device unfrozen
6897 	 * after all that is done so other parts of the driver waiting
6898 	 * for the device to unfreeze don't do things out of order.
6899 	 *
6900 	 * The above implies that the meaning of HFI1_FROZEN flag is
6901 	 * "Device has gone into freeze mode and freeze mode handling
6902 	 * is still in progress."
6903 	 *
6904 	 * The flag will be removed when freeze mode processing has
6905 	 * completed.
6906 	 */
6907 	dd->flags &= ~HFI1_FROZEN;
6908 	wake_up(&dd->event_queue);
6909 
6910 	/* no longer frozen */
6911 }
6912 
6913 /**
6914  * update_xmit_counters - update PortXmitWait/PortVlXmitWait
6915  * counters.
6916  * @ppd: info of physical Hfi port
6917  * @link_width: new link width after link up or downgrade
6918  *
6919  * Update the PortXmitWait and PortVlXmitWait counters after
6920  * a link up or downgrade event to reflect a link width change.
6921  */
6922 static void update_xmit_counters(struct hfi1_pportdata *ppd, u16 link_width)
6923 {
6924 	int i;
6925 	u16 tx_width;
6926 	u16 link_speed;
6927 
6928 	tx_width = tx_link_width(link_width);
6929 	link_speed = get_link_speed(ppd->link_speed_active);
6930 
6931 	/*
6932 	 * There are C_VL_COUNT number of PortVLXmitWait counters.
6933 	 * Adding 1 to C_VL_COUNT to include the PortXmitWait counter.
6934 	 */
6935 	for (i = 0; i < C_VL_COUNT + 1; i++)
6936 		get_xmit_wait_counters(ppd, tx_width, link_speed, i);
6937 }
6938 
6939 /*
6940  * Handle a link up interrupt from the 8051.
6941  *
6942  * This is a work-queue function outside of the interrupt.
6943  */
6944 void handle_link_up(struct work_struct *work)
6945 {
6946 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
6947 						  link_up_work);
6948 	struct hfi1_devdata *dd = ppd->dd;
6949 
6950 	set_link_state(ppd, HLS_UP_INIT);
6951 
6952 	/* cache the read of DC_LCB_STS_ROUND_TRIP_LTP_CNT */
6953 	read_ltp_rtt(dd);
6954 	/*
6955 	 * OPA specifies that certain counters are cleared on a transition
6956 	 * to link up, so do that.
6957 	 */
6958 	clear_linkup_counters(dd);
6959 	/*
6960 	 * And (re)set link up default values.
6961 	 */
6962 	set_linkup_defaults(ppd);
6963 
6964 	/*
6965 	 * Set VL15 credits. Use cached value from verify cap interrupt.
6966 	 * In case of quick linkup or simulator, vl15 value will be set by
6967 	 * handle_linkup_change. VerifyCap interrupt handler will not be
6968 	 * called in those scenarios.
6969 	 */
6970 	if (!(quick_linkup || dd->icode == ICODE_FUNCTIONAL_SIMULATOR))
6971 		set_up_vl15(dd, dd->vl15buf_cached);
6972 
6973 	/* enforce link speed enabled */
6974 	if ((ppd->link_speed_active & ppd->link_speed_enabled) == 0) {
6975 		/* oops - current speed is not enabled, bounce */
6976 		dd_dev_err(dd,
6977 			   "Link speed active 0x%x is outside enabled 0x%x, downing link\n",
6978 			   ppd->link_speed_active, ppd->link_speed_enabled);
6979 		set_link_down_reason(ppd, OPA_LINKDOWN_REASON_SPEED_POLICY, 0,
6980 				     OPA_LINKDOWN_REASON_SPEED_POLICY);
6981 		set_link_state(ppd, HLS_DN_OFFLINE);
6982 		start_link(ppd);
6983 	}
6984 }
6985 
6986 /*
6987  * Several pieces of LNI information were cached for SMA in ppd.
6988  * Reset these on link down
6989  */
6990 static void reset_neighbor_info(struct hfi1_pportdata *ppd)
6991 {
6992 	ppd->neighbor_guid = 0;
6993 	ppd->neighbor_port_number = 0;
6994 	ppd->neighbor_type = 0;
6995 	ppd->neighbor_fm_security = 0;
6996 }
6997 
6998 static const char * const link_down_reason_strs[] = {
6999 	[OPA_LINKDOWN_REASON_NONE] = "None",
7000 	[OPA_LINKDOWN_REASON_RCV_ERROR_0] = "Receive error 0",
7001 	[OPA_LINKDOWN_REASON_BAD_PKT_LEN] = "Bad packet length",
7002 	[OPA_LINKDOWN_REASON_PKT_TOO_LONG] = "Packet too long",
7003 	[OPA_LINKDOWN_REASON_PKT_TOO_SHORT] = "Packet too short",
7004 	[OPA_LINKDOWN_REASON_BAD_SLID] = "Bad SLID",
7005 	[OPA_LINKDOWN_REASON_BAD_DLID] = "Bad DLID",
7006 	[OPA_LINKDOWN_REASON_BAD_L2] = "Bad L2",
7007 	[OPA_LINKDOWN_REASON_BAD_SC] = "Bad SC",
7008 	[OPA_LINKDOWN_REASON_RCV_ERROR_8] = "Receive error 8",
7009 	[OPA_LINKDOWN_REASON_BAD_MID_TAIL] = "Bad mid tail",
7010 	[OPA_LINKDOWN_REASON_RCV_ERROR_10] = "Receive error 10",
7011 	[OPA_LINKDOWN_REASON_PREEMPT_ERROR] = "Preempt error",
7012 	[OPA_LINKDOWN_REASON_PREEMPT_VL15] = "Preempt vl15",
7013 	[OPA_LINKDOWN_REASON_BAD_VL_MARKER] = "Bad VL marker",
7014 	[OPA_LINKDOWN_REASON_RCV_ERROR_14] = "Receive error 14",
7015 	[OPA_LINKDOWN_REASON_RCV_ERROR_15] = "Receive error 15",
7016 	[OPA_LINKDOWN_REASON_BAD_HEAD_DIST] = "Bad head distance",
7017 	[OPA_LINKDOWN_REASON_BAD_TAIL_DIST] = "Bad tail distance",
7018 	[OPA_LINKDOWN_REASON_BAD_CTRL_DIST] = "Bad control distance",
7019 	[OPA_LINKDOWN_REASON_BAD_CREDIT_ACK] = "Bad credit ack",
7020 	[OPA_LINKDOWN_REASON_UNSUPPORTED_VL_MARKER] = "Unsupported VL marker",
7021 	[OPA_LINKDOWN_REASON_BAD_PREEMPT] = "Bad preempt",
7022 	[OPA_LINKDOWN_REASON_BAD_CONTROL_FLIT] = "Bad control flit",
7023 	[OPA_LINKDOWN_REASON_EXCEED_MULTICAST_LIMIT] = "Exceed multicast limit",
7024 	[OPA_LINKDOWN_REASON_RCV_ERROR_24] = "Receive error 24",
7025 	[OPA_LINKDOWN_REASON_RCV_ERROR_25] = "Receive error 25",
7026 	[OPA_LINKDOWN_REASON_RCV_ERROR_26] = "Receive error 26",
7027 	[OPA_LINKDOWN_REASON_RCV_ERROR_27] = "Receive error 27",
7028 	[OPA_LINKDOWN_REASON_RCV_ERROR_28] = "Receive error 28",
7029 	[OPA_LINKDOWN_REASON_RCV_ERROR_29] = "Receive error 29",
7030 	[OPA_LINKDOWN_REASON_RCV_ERROR_30] = "Receive error 30",
7031 	[OPA_LINKDOWN_REASON_EXCESSIVE_BUFFER_OVERRUN] =
7032 					"Excessive buffer overrun",
7033 	[OPA_LINKDOWN_REASON_UNKNOWN] = "Unknown",
7034 	[OPA_LINKDOWN_REASON_REBOOT] = "Reboot",
7035 	[OPA_LINKDOWN_REASON_NEIGHBOR_UNKNOWN] = "Neighbor unknown",
7036 	[OPA_LINKDOWN_REASON_FM_BOUNCE] = "FM bounce",
7037 	[OPA_LINKDOWN_REASON_SPEED_POLICY] = "Speed policy",
7038 	[OPA_LINKDOWN_REASON_WIDTH_POLICY] = "Width policy",
7039 	[OPA_LINKDOWN_REASON_DISCONNECTED] = "Disconnected",
7040 	[OPA_LINKDOWN_REASON_LOCAL_MEDIA_NOT_INSTALLED] =
7041 					"Local media not installed",
7042 	[OPA_LINKDOWN_REASON_NOT_INSTALLED] = "Not installed",
7043 	[OPA_LINKDOWN_REASON_CHASSIS_CONFIG] = "Chassis config",
7044 	[OPA_LINKDOWN_REASON_END_TO_END_NOT_INSTALLED] =
7045 					"End to end not installed",
7046 	[OPA_LINKDOWN_REASON_POWER_POLICY] = "Power policy",
7047 	[OPA_LINKDOWN_REASON_LINKSPEED_POLICY] = "Link speed policy",
7048 	[OPA_LINKDOWN_REASON_LINKWIDTH_POLICY] = "Link width policy",
7049 	[OPA_LINKDOWN_REASON_SWITCH_MGMT] = "Switch management",
7050 	[OPA_LINKDOWN_REASON_SMA_DISABLED] = "SMA disabled",
7051 	[OPA_LINKDOWN_REASON_TRANSIENT] = "Transient"
7052 };
7053 
7054 /* return the neighbor link down reason string */
7055 static const char *link_down_reason_str(u8 reason)
7056 {
7057 	const char *str = NULL;
7058 
7059 	if (reason < ARRAY_SIZE(link_down_reason_strs))
7060 		str = link_down_reason_strs[reason];
7061 	if (!str)
7062 		str = "(invalid)";
7063 
7064 	return str;
7065 }
7066 
7067 /*
7068  * Handle a link down interrupt from the 8051.
7069  *
7070  * This is a work-queue function outside of the interrupt.
7071  */
7072 void handle_link_down(struct work_struct *work)
7073 {
7074 	u8 lcl_reason, neigh_reason = 0;
7075 	u8 link_down_reason;
7076 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
7077 						  link_down_work);
7078 	int was_up;
7079 	static const char ldr_str[] = "Link down reason: ";
7080 
7081 	if ((ppd->host_link_state &
7082 	     (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) &&
7083 	     ppd->port_type == PORT_TYPE_FIXED)
7084 		ppd->offline_disabled_reason =
7085 			HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NOT_INSTALLED);
7086 
7087 	/* Go offline first, then deal with reading/writing through 8051 */
7088 	was_up = !!(ppd->host_link_state & HLS_UP);
7089 	set_link_state(ppd, HLS_DN_OFFLINE);
7090 	xchg(&ppd->is_link_down_queued, 0);
7091 
7092 	if (was_up) {
7093 		lcl_reason = 0;
7094 		/* link down reason is only valid if the link was up */
7095 		read_link_down_reason(ppd->dd, &link_down_reason);
7096 		switch (link_down_reason) {
7097 		case LDR_LINK_TRANSFER_ACTIVE_LOW:
7098 			/* the link went down, no idle message reason */
7099 			dd_dev_info(ppd->dd, "%sUnexpected link down\n",
7100 				    ldr_str);
7101 			break;
7102 		case LDR_RECEIVED_LINKDOWN_IDLE_MSG:
7103 			/*
7104 			 * The neighbor reason is only valid if an idle message
7105 			 * was received for it.
7106 			 */
7107 			read_planned_down_reason_code(ppd->dd, &neigh_reason);
7108 			dd_dev_info(ppd->dd,
7109 				    "%sNeighbor link down message %d, %s\n",
7110 				    ldr_str, neigh_reason,
7111 				    link_down_reason_str(neigh_reason));
7112 			break;
7113 		case LDR_RECEIVED_HOST_OFFLINE_REQ:
7114 			dd_dev_info(ppd->dd,
7115 				    "%sHost requested link to go offline\n",
7116 				    ldr_str);
7117 			break;
7118 		default:
7119 			dd_dev_info(ppd->dd, "%sUnknown reason 0x%x\n",
7120 				    ldr_str, link_down_reason);
7121 			break;
7122 		}
7123 
7124 		/*
7125 		 * If no reason, assume peer-initiated but missed
7126 		 * LinkGoingDown idle flits.
7127 		 */
7128 		if (neigh_reason == 0)
7129 			lcl_reason = OPA_LINKDOWN_REASON_NEIGHBOR_UNKNOWN;
7130 	} else {
7131 		/* went down while polling or going up */
7132 		lcl_reason = OPA_LINKDOWN_REASON_TRANSIENT;
7133 	}
7134 
7135 	set_link_down_reason(ppd, lcl_reason, neigh_reason, 0);
7136 
7137 	/* inform the SMA when the link transitions from up to down */
7138 	if (was_up && ppd->local_link_down_reason.sma == 0 &&
7139 	    ppd->neigh_link_down_reason.sma == 0) {
7140 		ppd->local_link_down_reason.sma =
7141 					ppd->local_link_down_reason.latest;
7142 		ppd->neigh_link_down_reason.sma =
7143 					ppd->neigh_link_down_reason.latest;
7144 	}
7145 
7146 	reset_neighbor_info(ppd);
7147 
7148 	/* disable the port */
7149 	clear_rcvctrl(ppd->dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
7150 
7151 	/*
7152 	 * If there is no cable attached, turn the DC off. Otherwise,
7153 	 * start the link bring up.
7154 	 */
7155 	if (ppd->port_type == PORT_TYPE_QSFP && !qsfp_mod_present(ppd))
7156 		dc_shutdown(ppd->dd);
7157 	else
7158 		start_link(ppd);
7159 }
7160 
7161 void handle_link_bounce(struct work_struct *work)
7162 {
7163 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
7164 							link_bounce_work);
7165 
7166 	/*
7167 	 * Only do something if the link is currently up.
7168 	 */
7169 	if (ppd->host_link_state & HLS_UP) {
7170 		set_link_state(ppd, HLS_DN_OFFLINE);
7171 		start_link(ppd);
7172 	} else {
7173 		dd_dev_info(ppd->dd, "%s: link not up (%s), nothing to do\n",
7174 			    __func__, link_state_name(ppd->host_link_state));
7175 	}
7176 }
7177 
7178 /*
7179  * Mask conversion: Capability exchange to Port LTP.  The capability
7180  * exchange has an implicit 16b CRC that is mandatory.
7181  */
7182 static int cap_to_port_ltp(int cap)
7183 {
7184 	int port_ltp = PORT_LTP_CRC_MODE_16; /* this mode is mandatory */
7185 
7186 	if (cap & CAP_CRC_14B)
7187 		port_ltp |= PORT_LTP_CRC_MODE_14;
7188 	if (cap & CAP_CRC_48B)
7189 		port_ltp |= PORT_LTP_CRC_MODE_48;
7190 	if (cap & CAP_CRC_12B_16B_PER_LANE)
7191 		port_ltp |= PORT_LTP_CRC_MODE_PER_LANE;
7192 
7193 	return port_ltp;
7194 }
7195 
7196 /*
7197  * Convert an OPA Port LTP mask to capability mask
7198  */
7199 int port_ltp_to_cap(int port_ltp)
7200 {
7201 	int cap_mask = 0;
7202 
7203 	if (port_ltp & PORT_LTP_CRC_MODE_14)
7204 		cap_mask |= CAP_CRC_14B;
7205 	if (port_ltp & PORT_LTP_CRC_MODE_48)
7206 		cap_mask |= CAP_CRC_48B;
7207 	if (port_ltp & PORT_LTP_CRC_MODE_PER_LANE)
7208 		cap_mask |= CAP_CRC_12B_16B_PER_LANE;
7209 
7210 	return cap_mask;
7211 }
7212 
7213 /*
7214  * Convert a single DC LCB CRC mode to an OPA Port LTP mask.
7215  */
7216 static int lcb_to_port_ltp(int lcb_crc)
7217 {
7218 	int port_ltp = 0;
7219 
7220 	if (lcb_crc == LCB_CRC_12B_16B_PER_LANE)
7221 		port_ltp = PORT_LTP_CRC_MODE_PER_LANE;
7222 	else if (lcb_crc == LCB_CRC_48B)
7223 		port_ltp = PORT_LTP_CRC_MODE_48;
7224 	else if (lcb_crc == LCB_CRC_14B)
7225 		port_ltp = PORT_LTP_CRC_MODE_14;
7226 	else
7227 		port_ltp = PORT_LTP_CRC_MODE_16;
7228 
7229 	return port_ltp;
7230 }
7231 
7232 static void clear_full_mgmt_pkey(struct hfi1_pportdata *ppd)
7233 {
7234 	if (ppd->pkeys[2] != 0) {
7235 		ppd->pkeys[2] = 0;
7236 		(void)hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_PKEYS, 0);
7237 		hfi1_event_pkey_change(ppd->dd, ppd->port);
7238 	}
7239 }
7240 
7241 /*
7242  * Convert the given link width to the OPA link width bitmask.
7243  */
7244 static u16 link_width_to_bits(struct hfi1_devdata *dd, u16 width)
7245 {
7246 	switch (width) {
7247 	case 0:
7248 		/*
7249 		 * Simulator and quick linkup do not set the width.
7250 		 * Just set it to 4x without complaint.
7251 		 */
7252 		if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR || quick_linkup)
7253 			return OPA_LINK_WIDTH_4X;
7254 		return 0; /* no lanes up */
7255 	case 1: return OPA_LINK_WIDTH_1X;
7256 	case 2: return OPA_LINK_WIDTH_2X;
7257 	case 3: return OPA_LINK_WIDTH_3X;
7258 	default:
7259 		dd_dev_info(dd, "%s: invalid width %d, using 4\n",
7260 			    __func__, width);
7261 		/* fall through */
7262 	case 4: return OPA_LINK_WIDTH_4X;
7263 	}
7264 }
7265 
7266 /*
7267  * Do a population count on the bottom nibble.
7268  */
7269 static const u8 bit_counts[16] = {
7270 	0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4
7271 };
7272 
7273 static inline u8 nibble_to_count(u8 nibble)
7274 {
7275 	return bit_counts[nibble & 0xf];
7276 }
7277 
7278 /*
7279  * Read the active lane information from the 8051 registers and return
7280  * their widths.
7281  *
7282  * Active lane information is found in these 8051 registers:
7283  *	enable_lane_tx
7284  *	enable_lane_rx
7285  */
7286 static void get_link_widths(struct hfi1_devdata *dd, u16 *tx_width,
7287 			    u16 *rx_width)
7288 {
7289 	u16 tx, rx;
7290 	u8 enable_lane_rx;
7291 	u8 enable_lane_tx;
7292 	u8 tx_polarity_inversion;
7293 	u8 rx_polarity_inversion;
7294 	u8 max_rate;
7295 
7296 	/* read the active lanes */
7297 	read_tx_settings(dd, &enable_lane_tx, &tx_polarity_inversion,
7298 			 &rx_polarity_inversion, &max_rate);
7299 	read_local_lni(dd, &enable_lane_rx);
7300 
7301 	/* convert to counts */
7302 	tx = nibble_to_count(enable_lane_tx);
7303 	rx = nibble_to_count(enable_lane_rx);
7304 
7305 	/*
7306 	 * Set link_speed_active here, overriding what was set in
7307 	 * handle_verify_cap().  The ASIC 8051 firmware does not correctly
7308 	 * set the max_rate field in handle_verify_cap until v0.19.
7309 	 */
7310 	if ((dd->icode == ICODE_RTL_SILICON) &&
7311 	    (dd->dc8051_ver < dc8051_ver(0, 19, 0))) {
7312 		/* max_rate: 0 = 12.5G, 1 = 25G */
7313 		switch (max_rate) {
7314 		case 0:
7315 			dd->pport[0].link_speed_active = OPA_LINK_SPEED_12_5G;
7316 			break;
7317 		default:
7318 			dd_dev_err(dd,
7319 				   "%s: unexpected max rate %d, using 25Gb\n",
7320 				   __func__, (int)max_rate);
7321 			/* fall through */
7322 		case 1:
7323 			dd->pport[0].link_speed_active = OPA_LINK_SPEED_25G;
7324 			break;
7325 		}
7326 	}
7327 
7328 	dd_dev_info(dd,
7329 		    "Fabric active lanes (width): tx 0x%x (%d), rx 0x%x (%d)\n",
7330 		    enable_lane_tx, tx, enable_lane_rx, rx);
7331 	*tx_width = link_width_to_bits(dd, tx);
7332 	*rx_width = link_width_to_bits(dd, rx);
7333 }
7334 
7335 /*
7336  * Read verify_cap_local_fm_link_width[1] to obtain the link widths.
7337  * Valid after the end of VerifyCap and during LinkUp.  Does not change
7338  * after link up.  I.e. look elsewhere for downgrade information.
7339  *
7340  * Bits are:
7341  *	+ bits [7:4] contain the number of active transmitters
7342  *	+ bits [3:0] contain the number of active receivers
7343  * These are numbers 1 through 4 and can be different values if the
7344  * link is asymmetric.
7345  *
7346  * verify_cap_local_fm_link_width[0] retains its original value.
7347  */
7348 static void get_linkup_widths(struct hfi1_devdata *dd, u16 *tx_width,
7349 			      u16 *rx_width)
7350 {
7351 	u16 widths, tx, rx;
7352 	u8 misc_bits, local_flags;
7353 	u16 active_tx, active_rx;
7354 
7355 	read_vc_local_link_width(dd, &misc_bits, &local_flags, &widths);
7356 	tx = widths >> 12;
7357 	rx = (widths >> 8) & 0xf;
7358 
7359 	*tx_width = link_width_to_bits(dd, tx);
7360 	*rx_width = link_width_to_bits(dd, rx);
7361 
7362 	/* print the active widths */
7363 	get_link_widths(dd, &active_tx, &active_rx);
7364 }
7365 
7366 /*
7367  * Set ppd->link_width_active and ppd->link_width_downgrade_active using
7368  * hardware information when the link first comes up.
7369  *
7370  * The link width is not available until after VerifyCap.AllFramesReceived
7371  * (the trigger for handle_verify_cap), so this is outside that routine
7372  * and should be called when the 8051 signals linkup.
7373  */
7374 void get_linkup_link_widths(struct hfi1_pportdata *ppd)
7375 {
7376 	u16 tx_width, rx_width;
7377 
7378 	/* get end-of-LNI link widths */
7379 	get_linkup_widths(ppd->dd, &tx_width, &rx_width);
7380 
7381 	/* use tx_width as the link is supposed to be symmetric on link up */
7382 	ppd->link_width_active = tx_width;
7383 	/* link width downgrade active (LWD.A) starts out matching LW.A */
7384 	ppd->link_width_downgrade_tx_active = ppd->link_width_active;
7385 	ppd->link_width_downgrade_rx_active = ppd->link_width_active;
7386 	/* per OPA spec, on link up LWD.E resets to LWD.S */
7387 	ppd->link_width_downgrade_enabled = ppd->link_width_downgrade_supported;
7388 	/* cache the active egress rate (units {10^6 bits/sec]) */
7389 	ppd->current_egress_rate = active_egress_rate(ppd);
7390 }
7391 
7392 /*
7393  * Handle a verify capabilities interrupt from the 8051.
7394  *
7395  * This is a work-queue function outside of the interrupt.
7396  */
7397 void handle_verify_cap(struct work_struct *work)
7398 {
7399 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
7400 								link_vc_work);
7401 	struct hfi1_devdata *dd = ppd->dd;
7402 	u64 reg;
7403 	u8 power_management;
7404 	u8 continuous;
7405 	u8 vcu;
7406 	u8 vau;
7407 	u8 z;
7408 	u16 vl15buf;
7409 	u16 link_widths;
7410 	u16 crc_mask;
7411 	u16 crc_val;
7412 	u16 device_id;
7413 	u16 active_tx, active_rx;
7414 	u8 partner_supported_crc;
7415 	u8 remote_tx_rate;
7416 	u8 device_rev;
7417 
7418 	set_link_state(ppd, HLS_VERIFY_CAP);
7419 
7420 	lcb_shutdown(dd, 0);
7421 	adjust_lcb_for_fpga_serdes(dd);
7422 
7423 	read_vc_remote_phy(dd, &power_management, &continuous);
7424 	read_vc_remote_fabric(dd, &vau, &z, &vcu, &vl15buf,
7425 			      &partner_supported_crc);
7426 	read_vc_remote_link_width(dd, &remote_tx_rate, &link_widths);
7427 	read_remote_device_id(dd, &device_id, &device_rev);
7428 
7429 	/* print the active widths */
7430 	get_link_widths(dd, &active_tx, &active_rx);
7431 	dd_dev_info(dd,
7432 		    "Peer PHY: power management 0x%x, continuous updates 0x%x\n",
7433 		    (int)power_management, (int)continuous);
7434 	dd_dev_info(dd,
7435 		    "Peer Fabric: vAU %d, Z %d, vCU %d, vl15 credits 0x%x, CRC sizes 0x%x\n",
7436 		    (int)vau, (int)z, (int)vcu, (int)vl15buf,
7437 		    (int)partner_supported_crc);
7438 	dd_dev_info(dd, "Peer Link Width: tx rate 0x%x, widths 0x%x\n",
7439 		    (u32)remote_tx_rate, (u32)link_widths);
7440 	dd_dev_info(dd, "Peer Device ID: 0x%04x, Revision 0x%02x\n",
7441 		    (u32)device_id, (u32)device_rev);
7442 	/*
7443 	 * The peer vAU value just read is the peer receiver value.  HFI does
7444 	 * not support a transmit vAU of 0 (AU == 8).  We advertised that
7445 	 * with Z=1 in the fabric capabilities sent to the peer.  The peer
7446 	 * will see our Z=1, and, if it advertised a vAU of 0, will move its
7447 	 * receive to vAU of 1 (AU == 16).  Do the same here.  We do not care
7448 	 * about the peer Z value - our sent vAU is 3 (hardwired) and is not
7449 	 * subject to the Z value exception.
7450 	 */
7451 	if (vau == 0)
7452 		vau = 1;
7453 	set_up_vau(dd, vau);
7454 
7455 	/*
7456 	 * Set VL15 credits to 0 in global credit register. Cache remote VL15
7457 	 * credits value and wait for link-up interrupt ot set it.
7458 	 */
7459 	set_up_vl15(dd, 0);
7460 	dd->vl15buf_cached = vl15buf;
7461 
7462 	/* set up the LCB CRC mode */
7463 	crc_mask = ppd->port_crc_mode_enabled & partner_supported_crc;
7464 
7465 	/* order is important: use the lowest bit in common */
7466 	if (crc_mask & CAP_CRC_14B)
7467 		crc_val = LCB_CRC_14B;
7468 	else if (crc_mask & CAP_CRC_48B)
7469 		crc_val = LCB_CRC_48B;
7470 	else if (crc_mask & CAP_CRC_12B_16B_PER_LANE)
7471 		crc_val = LCB_CRC_12B_16B_PER_LANE;
7472 	else
7473 		crc_val = LCB_CRC_16B;
7474 
7475 	dd_dev_info(dd, "Final LCB CRC mode: %d\n", (int)crc_val);
7476 	write_csr(dd, DC_LCB_CFG_CRC_MODE,
7477 		  (u64)crc_val << DC_LCB_CFG_CRC_MODE_TX_VAL_SHIFT);
7478 
7479 	/* set (14b only) or clear sideband credit */
7480 	reg = read_csr(dd, SEND_CM_CTRL);
7481 	if (crc_val == LCB_CRC_14B && crc_14b_sideband) {
7482 		write_csr(dd, SEND_CM_CTRL,
7483 			  reg | SEND_CM_CTRL_FORCE_CREDIT_MODE_SMASK);
7484 	} else {
7485 		write_csr(dd, SEND_CM_CTRL,
7486 			  reg & ~SEND_CM_CTRL_FORCE_CREDIT_MODE_SMASK);
7487 	}
7488 
7489 	ppd->link_speed_active = 0;	/* invalid value */
7490 	if (dd->dc8051_ver < dc8051_ver(0, 20, 0)) {
7491 		/* remote_tx_rate: 0 = 12.5G, 1 = 25G */
7492 		switch (remote_tx_rate) {
7493 		case 0:
7494 			ppd->link_speed_active = OPA_LINK_SPEED_12_5G;
7495 			break;
7496 		case 1:
7497 			ppd->link_speed_active = OPA_LINK_SPEED_25G;
7498 			break;
7499 		}
7500 	} else {
7501 		/* actual rate is highest bit of the ANDed rates */
7502 		u8 rate = remote_tx_rate & ppd->local_tx_rate;
7503 
7504 		if (rate & 2)
7505 			ppd->link_speed_active = OPA_LINK_SPEED_25G;
7506 		else if (rate & 1)
7507 			ppd->link_speed_active = OPA_LINK_SPEED_12_5G;
7508 	}
7509 	if (ppd->link_speed_active == 0) {
7510 		dd_dev_err(dd, "%s: unexpected remote tx rate %d, using 25Gb\n",
7511 			   __func__, (int)remote_tx_rate);
7512 		ppd->link_speed_active = OPA_LINK_SPEED_25G;
7513 	}
7514 
7515 	/*
7516 	 * Cache the values of the supported, enabled, and active
7517 	 * LTP CRC modes to return in 'portinfo' queries. But the bit
7518 	 * flags that are returned in the portinfo query differ from
7519 	 * what's in the link_crc_mask, crc_sizes, and crc_val
7520 	 * variables. Convert these here.
7521 	 */
7522 	ppd->port_ltp_crc_mode = cap_to_port_ltp(link_crc_mask) << 8;
7523 		/* supported crc modes */
7524 	ppd->port_ltp_crc_mode |=
7525 		cap_to_port_ltp(ppd->port_crc_mode_enabled) << 4;
7526 		/* enabled crc modes */
7527 	ppd->port_ltp_crc_mode |= lcb_to_port_ltp(crc_val);
7528 		/* active crc mode */
7529 
7530 	/* set up the remote credit return table */
7531 	assign_remote_cm_au_table(dd, vcu);
7532 
7533 	/*
7534 	 * The LCB is reset on entry to handle_verify_cap(), so this must
7535 	 * be applied on every link up.
7536 	 *
7537 	 * Adjust LCB error kill enable to kill the link if
7538 	 * these RBUF errors are seen:
7539 	 *	REPLAY_BUF_MBE_SMASK
7540 	 *	FLIT_INPUT_BUF_MBE_SMASK
7541 	 */
7542 	if (is_ax(dd)) {			/* fixed in B0 */
7543 		reg = read_csr(dd, DC_LCB_CFG_LINK_KILL_EN);
7544 		reg |= DC_LCB_CFG_LINK_KILL_EN_REPLAY_BUF_MBE_SMASK
7545 			| DC_LCB_CFG_LINK_KILL_EN_FLIT_INPUT_BUF_MBE_SMASK;
7546 		write_csr(dd, DC_LCB_CFG_LINK_KILL_EN, reg);
7547 	}
7548 
7549 	/* pull LCB fifos out of reset - all fifo clocks must be stable */
7550 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0);
7551 
7552 	/* give 8051 access to the LCB CSRs */
7553 	write_csr(dd, DC_LCB_ERR_EN, 0); /* mask LCB errors */
7554 	set_8051_lcb_access(dd);
7555 
7556 	/* tell the 8051 to go to LinkUp */
7557 	set_link_state(ppd, HLS_GOING_UP);
7558 }
7559 
7560 /**
7561  * apply_link_downgrade_policy - Apply the link width downgrade enabled
7562  * policy against the current active link widths.
7563  * @ppd: info of physical Hfi port
7564  * @refresh_widths: True indicates link downgrade event
7565  * @return: True indicates a successful link downgrade. False indicates
7566  *	    link downgrade event failed and the link will bounce back to
7567  *	    default link width.
7568  *
7569  * Called when the enabled policy changes or the active link widths
7570  * change.
7571  * Refresh_widths indicates that a link downgrade occurred. The
7572  * link_downgraded variable is set by refresh_widths and
7573  * determines the success/failure of the policy application.
7574  */
7575 bool apply_link_downgrade_policy(struct hfi1_pportdata *ppd,
7576 				 bool refresh_widths)
7577 {
7578 	int do_bounce = 0;
7579 	int tries;
7580 	u16 lwde;
7581 	u16 tx, rx;
7582 	bool link_downgraded = refresh_widths;
7583 
7584 	/* use the hls lock to avoid a race with actual link up */
7585 	tries = 0;
7586 retry:
7587 	mutex_lock(&ppd->hls_lock);
7588 	/* only apply if the link is up */
7589 	if (ppd->host_link_state & HLS_DOWN) {
7590 		/* still going up..wait and retry */
7591 		if (ppd->host_link_state & HLS_GOING_UP) {
7592 			if (++tries < 1000) {
7593 				mutex_unlock(&ppd->hls_lock);
7594 				usleep_range(100, 120); /* arbitrary */
7595 				goto retry;
7596 			}
7597 			dd_dev_err(ppd->dd,
7598 				   "%s: giving up waiting for link state change\n",
7599 				   __func__);
7600 		}
7601 		goto done;
7602 	}
7603 
7604 	lwde = ppd->link_width_downgrade_enabled;
7605 
7606 	if (refresh_widths) {
7607 		get_link_widths(ppd->dd, &tx, &rx);
7608 		ppd->link_width_downgrade_tx_active = tx;
7609 		ppd->link_width_downgrade_rx_active = rx;
7610 	}
7611 
7612 	if (ppd->link_width_downgrade_tx_active == 0 ||
7613 	    ppd->link_width_downgrade_rx_active == 0) {
7614 		/* the 8051 reported a dead link as a downgrade */
7615 		dd_dev_err(ppd->dd, "Link downgrade is really a link down, ignoring\n");
7616 		link_downgraded = false;
7617 	} else if (lwde == 0) {
7618 		/* downgrade is disabled */
7619 
7620 		/* bounce if not at starting active width */
7621 		if ((ppd->link_width_active !=
7622 		     ppd->link_width_downgrade_tx_active) ||
7623 		    (ppd->link_width_active !=
7624 		     ppd->link_width_downgrade_rx_active)) {
7625 			dd_dev_err(ppd->dd,
7626 				   "Link downgrade is disabled and link has downgraded, downing link\n");
7627 			dd_dev_err(ppd->dd,
7628 				   "  original 0x%x, tx active 0x%x, rx active 0x%x\n",
7629 				   ppd->link_width_active,
7630 				   ppd->link_width_downgrade_tx_active,
7631 				   ppd->link_width_downgrade_rx_active);
7632 			do_bounce = 1;
7633 			link_downgraded = false;
7634 		}
7635 	} else if ((lwde & ppd->link_width_downgrade_tx_active) == 0 ||
7636 		   (lwde & ppd->link_width_downgrade_rx_active) == 0) {
7637 		/* Tx or Rx is outside the enabled policy */
7638 		dd_dev_err(ppd->dd,
7639 			   "Link is outside of downgrade allowed, downing link\n");
7640 		dd_dev_err(ppd->dd,
7641 			   "  enabled 0x%x, tx active 0x%x, rx active 0x%x\n",
7642 			   lwde, ppd->link_width_downgrade_tx_active,
7643 			   ppd->link_width_downgrade_rx_active);
7644 		do_bounce = 1;
7645 		link_downgraded = false;
7646 	}
7647 
7648 done:
7649 	mutex_unlock(&ppd->hls_lock);
7650 
7651 	if (do_bounce) {
7652 		set_link_down_reason(ppd, OPA_LINKDOWN_REASON_WIDTH_POLICY, 0,
7653 				     OPA_LINKDOWN_REASON_WIDTH_POLICY);
7654 		set_link_state(ppd, HLS_DN_OFFLINE);
7655 		start_link(ppd);
7656 	}
7657 
7658 	return link_downgraded;
7659 }
7660 
7661 /*
7662  * Handle a link downgrade interrupt from the 8051.
7663  *
7664  * This is a work-queue function outside of the interrupt.
7665  */
7666 void handle_link_downgrade(struct work_struct *work)
7667 {
7668 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
7669 							link_downgrade_work);
7670 
7671 	dd_dev_info(ppd->dd, "8051: Link width downgrade\n");
7672 	if (apply_link_downgrade_policy(ppd, true))
7673 		update_xmit_counters(ppd, ppd->link_width_downgrade_tx_active);
7674 }
7675 
7676 static char *dcc_err_string(char *buf, int buf_len, u64 flags)
7677 {
7678 	return flag_string(buf, buf_len, flags, dcc_err_flags,
7679 		ARRAY_SIZE(dcc_err_flags));
7680 }
7681 
7682 static char *lcb_err_string(char *buf, int buf_len, u64 flags)
7683 {
7684 	return flag_string(buf, buf_len, flags, lcb_err_flags,
7685 		ARRAY_SIZE(lcb_err_flags));
7686 }
7687 
7688 static char *dc8051_err_string(char *buf, int buf_len, u64 flags)
7689 {
7690 	return flag_string(buf, buf_len, flags, dc8051_err_flags,
7691 		ARRAY_SIZE(dc8051_err_flags));
7692 }
7693 
7694 static char *dc8051_info_err_string(char *buf, int buf_len, u64 flags)
7695 {
7696 	return flag_string(buf, buf_len, flags, dc8051_info_err_flags,
7697 		ARRAY_SIZE(dc8051_info_err_flags));
7698 }
7699 
7700 static char *dc8051_info_host_msg_string(char *buf, int buf_len, u64 flags)
7701 {
7702 	return flag_string(buf, buf_len, flags, dc8051_info_host_msg_flags,
7703 		ARRAY_SIZE(dc8051_info_host_msg_flags));
7704 }
7705 
7706 static void handle_8051_interrupt(struct hfi1_devdata *dd, u32 unused, u64 reg)
7707 {
7708 	struct hfi1_pportdata *ppd = dd->pport;
7709 	u64 info, err, host_msg;
7710 	int queue_link_down = 0;
7711 	char buf[96];
7712 
7713 	/* look at the flags */
7714 	if (reg & DC_DC8051_ERR_FLG_SET_BY_8051_SMASK) {
7715 		/* 8051 information set by firmware */
7716 		/* read DC8051_DBG_ERR_INFO_SET_BY_8051 for details */
7717 		info = read_csr(dd, DC_DC8051_DBG_ERR_INFO_SET_BY_8051);
7718 		err = (info >> DC_DC8051_DBG_ERR_INFO_SET_BY_8051_ERROR_SHIFT)
7719 			& DC_DC8051_DBG_ERR_INFO_SET_BY_8051_ERROR_MASK;
7720 		host_msg = (info >>
7721 			DC_DC8051_DBG_ERR_INFO_SET_BY_8051_HOST_MSG_SHIFT)
7722 			& DC_DC8051_DBG_ERR_INFO_SET_BY_8051_HOST_MSG_MASK;
7723 
7724 		/*
7725 		 * Handle error flags.
7726 		 */
7727 		if (err & FAILED_LNI) {
7728 			/*
7729 			 * LNI error indications are cleared by the 8051
7730 			 * only when starting polling.  Only pay attention
7731 			 * to them when in the states that occur during
7732 			 * LNI.
7733 			 */
7734 			if (ppd->host_link_state
7735 			    & (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) {
7736 				queue_link_down = 1;
7737 				dd_dev_info(dd, "Link error: %s\n",
7738 					    dc8051_info_err_string(buf,
7739 								   sizeof(buf),
7740 								   err &
7741 								   FAILED_LNI));
7742 			}
7743 			err &= ~(u64)FAILED_LNI;
7744 		}
7745 		/* unknown frames can happen durning LNI, just count */
7746 		if (err & UNKNOWN_FRAME) {
7747 			ppd->unknown_frame_count++;
7748 			err &= ~(u64)UNKNOWN_FRAME;
7749 		}
7750 		if (err) {
7751 			/* report remaining errors, but do not do anything */
7752 			dd_dev_err(dd, "8051 info error: %s\n",
7753 				   dc8051_info_err_string(buf, sizeof(buf),
7754 							  err));
7755 		}
7756 
7757 		/*
7758 		 * Handle host message flags.
7759 		 */
7760 		if (host_msg & HOST_REQ_DONE) {
7761 			/*
7762 			 * Presently, the driver does a busy wait for
7763 			 * host requests to complete.  This is only an
7764 			 * informational message.
7765 			 * NOTE: The 8051 clears the host message
7766 			 * information *on the next 8051 command*.
7767 			 * Therefore, when linkup is achieved,
7768 			 * this flag will still be set.
7769 			 */
7770 			host_msg &= ~(u64)HOST_REQ_DONE;
7771 		}
7772 		if (host_msg & BC_SMA_MSG) {
7773 			queue_work(ppd->link_wq, &ppd->sma_message_work);
7774 			host_msg &= ~(u64)BC_SMA_MSG;
7775 		}
7776 		if (host_msg & LINKUP_ACHIEVED) {
7777 			dd_dev_info(dd, "8051: Link up\n");
7778 			queue_work(ppd->link_wq, &ppd->link_up_work);
7779 			host_msg &= ~(u64)LINKUP_ACHIEVED;
7780 		}
7781 		if (host_msg & EXT_DEVICE_CFG_REQ) {
7782 			handle_8051_request(ppd);
7783 			host_msg &= ~(u64)EXT_DEVICE_CFG_REQ;
7784 		}
7785 		if (host_msg & VERIFY_CAP_FRAME) {
7786 			queue_work(ppd->link_wq, &ppd->link_vc_work);
7787 			host_msg &= ~(u64)VERIFY_CAP_FRAME;
7788 		}
7789 		if (host_msg & LINK_GOING_DOWN) {
7790 			const char *extra = "";
7791 			/* no downgrade action needed if going down */
7792 			if (host_msg & LINK_WIDTH_DOWNGRADED) {
7793 				host_msg &= ~(u64)LINK_WIDTH_DOWNGRADED;
7794 				extra = " (ignoring downgrade)";
7795 			}
7796 			dd_dev_info(dd, "8051: Link down%s\n", extra);
7797 			queue_link_down = 1;
7798 			host_msg &= ~(u64)LINK_GOING_DOWN;
7799 		}
7800 		if (host_msg & LINK_WIDTH_DOWNGRADED) {
7801 			queue_work(ppd->link_wq, &ppd->link_downgrade_work);
7802 			host_msg &= ~(u64)LINK_WIDTH_DOWNGRADED;
7803 		}
7804 		if (host_msg) {
7805 			/* report remaining messages, but do not do anything */
7806 			dd_dev_info(dd, "8051 info host message: %s\n",
7807 				    dc8051_info_host_msg_string(buf,
7808 								sizeof(buf),
7809 								host_msg));
7810 		}
7811 
7812 		reg &= ~DC_DC8051_ERR_FLG_SET_BY_8051_SMASK;
7813 	}
7814 	if (reg & DC_DC8051_ERR_FLG_LOST_8051_HEART_BEAT_SMASK) {
7815 		/*
7816 		 * Lost the 8051 heartbeat.  If this happens, we
7817 		 * receive constant interrupts about it.  Disable
7818 		 * the interrupt after the first.
7819 		 */
7820 		dd_dev_err(dd, "Lost 8051 heartbeat\n");
7821 		write_csr(dd, DC_DC8051_ERR_EN,
7822 			  read_csr(dd, DC_DC8051_ERR_EN) &
7823 			  ~DC_DC8051_ERR_EN_LOST_8051_HEART_BEAT_SMASK);
7824 
7825 		reg &= ~DC_DC8051_ERR_FLG_LOST_8051_HEART_BEAT_SMASK;
7826 	}
7827 	if (reg) {
7828 		/* report the error, but do not do anything */
7829 		dd_dev_err(dd, "8051 error: %s\n",
7830 			   dc8051_err_string(buf, sizeof(buf), reg));
7831 	}
7832 
7833 	if (queue_link_down) {
7834 		/*
7835 		 * if the link is already going down or disabled, do not
7836 		 * queue another. If there's a link down entry already
7837 		 * queued, don't queue another one.
7838 		 */
7839 		if ((ppd->host_link_state &
7840 		    (HLS_GOING_OFFLINE | HLS_LINK_COOLDOWN)) ||
7841 		    ppd->link_enabled == 0) {
7842 			dd_dev_info(dd, "%s: not queuing link down. host_link_state %x, link_enabled %x\n",
7843 				    __func__, ppd->host_link_state,
7844 				    ppd->link_enabled);
7845 		} else {
7846 			if (xchg(&ppd->is_link_down_queued, 1) == 1)
7847 				dd_dev_info(dd,
7848 					    "%s: link down request already queued\n",
7849 					    __func__);
7850 			else
7851 				queue_work(ppd->link_wq, &ppd->link_down_work);
7852 		}
7853 	}
7854 }
7855 
7856 static const char * const fm_config_txt[] = {
7857 [0] =
7858 	"BadHeadDist: Distance violation between two head flits",
7859 [1] =
7860 	"BadTailDist: Distance violation between two tail flits",
7861 [2] =
7862 	"BadCtrlDist: Distance violation between two credit control flits",
7863 [3] =
7864 	"BadCrdAck: Credits return for unsupported VL",
7865 [4] =
7866 	"UnsupportedVLMarker: Received VL Marker",
7867 [5] =
7868 	"BadPreempt: Exceeded the preemption nesting level",
7869 [6] =
7870 	"BadControlFlit: Received unsupported control flit",
7871 /* no 7 */
7872 [8] =
7873 	"UnsupportedVLMarker: Received VL Marker for unconfigured or disabled VL",
7874 };
7875 
7876 static const char * const port_rcv_txt[] = {
7877 [1] =
7878 	"BadPktLen: Illegal PktLen",
7879 [2] =
7880 	"PktLenTooLong: Packet longer than PktLen",
7881 [3] =
7882 	"PktLenTooShort: Packet shorter than PktLen",
7883 [4] =
7884 	"BadSLID: Illegal SLID (0, using multicast as SLID, does not include security validation of SLID)",
7885 [5] =
7886 	"BadDLID: Illegal DLID (0, doesn't match HFI)",
7887 [6] =
7888 	"BadL2: Illegal L2 opcode",
7889 [7] =
7890 	"BadSC: Unsupported SC",
7891 [9] =
7892 	"BadRC: Illegal RC",
7893 [11] =
7894 	"PreemptError: Preempting with same VL",
7895 [12] =
7896 	"PreemptVL15: Preempting a VL15 packet",
7897 };
7898 
7899 #define OPA_LDR_FMCONFIG_OFFSET 16
7900 #define OPA_LDR_PORTRCV_OFFSET 0
7901 static void handle_dcc_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
7902 {
7903 	u64 info, hdr0, hdr1;
7904 	const char *extra;
7905 	char buf[96];
7906 	struct hfi1_pportdata *ppd = dd->pport;
7907 	u8 lcl_reason = 0;
7908 	int do_bounce = 0;
7909 
7910 	if (reg & DCC_ERR_FLG_UNCORRECTABLE_ERR_SMASK) {
7911 		if (!(dd->err_info_uncorrectable & OPA_EI_STATUS_SMASK)) {
7912 			info = read_csr(dd, DCC_ERR_INFO_UNCORRECTABLE);
7913 			dd->err_info_uncorrectable = info & OPA_EI_CODE_SMASK;
7914 			/* set status bit */
7915 			dd->err_info_uncorrectable |= OPA_EI_STATUS_SMASK;
7916 		}
7917 		reg &= ~DCC_ERR_FLG_UNCORRECTABLE_ERR_SMASK;
7918 	}
7919 
7920 	if (reg & DCC_ERR_FLG_LINK_ERR_SMASK) {
7921 		struct hfi1_pportdata *ppd = dd->pport;
7922 		/* this counter saturates at (2^32) - 1 */
7923 		if (ppd->link_downed < (u32)UINT_MAX)
7924 			ppd->link_downed++;
7925 		reg &= ~DCC_ERR_FLG_LINK_ERR_SMASK;
7926 	}
7927 
7928 	if (reg & DCC_ERR_FLG_FMCONFIG_ERR_SMASK) {
7929 		u8 reason_valid = 1;
7930 
7931 		info = read_csr(dd, DCC_ERR_INFO_FMCONFIG);
7932 		if (!(dd->err_info_fmconfig & OPA_EI_STATUS_SMASK)) {
7933 			dd->err_info_fmconfig = info & OPA_EI_CODE_SMASK;
7934 			/* set status bit */
7935 			dd->err_info_fmconfig |= OPA_EI_STATUS_SMASK;
7936 		}
7937 		switch (info) {
7938 		case 0:
7939 		case 1:
7940 		case 2:
7941 		case 3:
7942 		case 4:
7943 		case 5:
7944 		case 6:
7945 			extra = fm_config_txt[info];
7946 			break;
7947 		case 8:
7948 			extra = fm_config_txt[info];
7949 			if (ppd->port_error_action &
7950 			    OPA_PI_MASK_FM_CFG_UNSUPPORTED_VL_MARKER) {
7951 				do_bounce = 1;
7952 				/*
7953 				 * lcl_reason cannot be derived from info
7954 				 * for this error
7955 				 */
7956 				lcl_reason =
7957 				  OPA_LINKDOWN_REASON_UNSUPPORTED_VL_MARKER;
7958 			}
7959 			break;
7960 		default:
7961 			reason_valid = 0;
7962 			snprintf(buf, sizeof(buf), "reserved%lld", info);
7963 			extra = buf;
7964 			break;
7965 		}
7966 
7967 		if (reason_valid && !do_bounce) {
7968 			do_bounce = ppd->port_error_action &
7969 					(1 << (OPA_LDR_FMCONFIG_OFFSET + info));
7970 			lcl_reason = info + OPA_LINKDOWN_REASON_BAD_HEAD_DIST;
7971 		}
7972 
7973 		/* just report this */
7974 		dd_dev_info_ratelimited(dd, "DCC Error: fmconfig error: %s\n",
7975 					extra);
7976 		reg &= ~DCC_ERR_FLG_FMCONFIG_ERR_SMASK;
7977 	}
7978 
7979 	if (reg & DCC_ERR_FLG_RCVPORT_ERR_SMASK) {
7980 		u8 reason_valid = 1;
7981 
7982 		info = read_csr(dd, DCC_ERR_INFO_PORTRCV);
7983 		hdr0 = read_csr(dd, DCC_ERR_INFO_PORTRCV_HDR0);
7984 		hdr1 = read_csr(dd, DCC_ERR_INFO_PORTRCV_HDR1);
7985 		if (!(dd->err_info_rcvport.status_and_code &
7986 		      OPA_EI_STATUS_SMASK)) {
7987 			dd->err_info_rcvport.status_and_code =
7988 				info & OPA_EI_CODE_SMASK;
7989 			/* set status bit */
7990 			dd->err_info_rcvport.status_and_code |=
7991 				OPA_EI_STATUS_SMASK;
7992 			/*
7993 			 * save first 2 flits in the packet that caused
7994 			 * the error
7995 			 */
7996 			dd->err_info_rcvport.packet_flit1 = hdr0;
7997 			dd->err_info_rcvport.packet_flit2 = hdr1;
7998 		}
7999 		switch (info) {
8000 		case 1:
8001 		case 2:
8002 		case 3:
8003 		case 4:
8004 		case 5:
8005 		case 6:
8006 		case 7:
8007 		case 9:
8008 		case 11:
8009 		case 12:
8010 			extra = port_rcv_txt[info];
8011 			break;
8012 		default:
8013 			reason_valid = 0;
8014 			snprintf(buf, sizeof(buf), "reserved%lld", info);
8015 			extra = buf;
8016 			break;
8017 		}
8018 
8019 		if (reason_valid && !do_bounce) {
8020 			do_bounce = ppd->port_error_action &
8021 					(1 << (OPA_LDR_PORTRCV_OFFSET + info));
8022 			lcl_reason = info + OPA_LINKDOWN_REASON_RCV_ERROR_0;
8023 		}
8024 
8025 		/* just report this */
8026 		dd_dev_info_ratelimited(dd, "DCC Error: PortRcv error: %s\n"
8027 					"               hdr0 0x%llx, hdr1 0x%llx\n",
8028 					extra, hdr0, hdr1);
8029 
8030 		reg &= ~DCC_ERR_FLG_RCVPORT_ERR_SMASK;
8031 	}
8032 
8033 	if (reg & DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_UC_SMASK) {
8034 		/* informative only */
8035 		dd_dev_info_ratelimited(dd, "8051 access to LCB blocked\n");
8036 		reg &= ~DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_UC_SMASK;
8037 	}
8038 	if (reg & DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_HOST_SMASK) {
8039 		/* informative only */
8040 		dd_dev_info_ratelimited(dd, "host access to LCB blocked\n");
8041 		reg &= ~DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_HOST_SMASK;
8042 	}
8043 
8044 	if (unlikely(hfi1_dbg_fault_suppress_err(&dd->verbs_dev)))
8045 		reg &= ~DCC_ERR_FLG_LATE_EBP_ERR_SMASK;
8046 
8047 	/* report any remaining errors */
8048 	if (reg)
8049 		dd_dev_info_ratelimited(dd, "DCC Error: %s\n",
8050 					dcc_err_string(buf, sizeof(buf), reg));
8051 
8052 	if (lcl_reason == 0)
8053 		lcl_reason = OPA_LINKDOWN_REASON_UNKNOWN;
8054 
8055 	if (do_bounce) {
8056 		dd_dev_info_ratelimited(dd, "%s: PortErrorAction bounce\n",
8057 					__func__);
8058 		set_link_down_reason(ppd, lcl_reason, 0, lcl_reason);
8059 		queue_work(ppd->link_wq, &ppd->link_bounce_work);
8060 	}
8061 }
8062 
8063 static void handle_lcb_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
8064 {
8065 	char buf[96];
8066 
8067 	dd_dev_info(dd, "LCB Error: %s\n",
8068 		    lcb_err_string(buf, sizeof(buf), reg));
8069 }
8070 
8071 /*
8072  * CCE block DC interrupt.  Source is < 8.
8073  */
8074 static void is_dc_int(struct hfi1_devdata *dd, unsigned int source)
8075 {
8076 	const struct err_reg_info *eri = &dc_errs[source];
8077 
8078 	if (eri->handler) {
8079 		interrupt_clear_down(dd, 0, eri);
8080 	} else if (source == 3 /* dc_lbm_int */) {
8081 		/*
8082 		 * This indicates that a parity error has occurred on the
8083 		 * address/control lines presented to the LBM.  The error
8084 		 * is a single pulse, there is no associated error flag,
8085 		 * and it is non-maskable.  This is because if a parity
8086 		 * error occurs on the request the request is dropped.
8087 		 * This should never occur, but it is nice to know if it
8088 		 * ever does.
8089 		 */
8090 		dd_dev_err(dd, "Parity error in DC LBM block\n");
8091 	} else {
8092 		dd_dev_err(dd, "Invalid DC interrupt %u\n", source);
8093 	}
8094 }
8095 
8096 /*
8097  * TX block send credit interrupt.  Source is < 160.
8098  */
8099 static void is_send_credit_int(struct hfi1_devdata *dd, unsigned int source)
8100 {
8101 	sc_group_release_update(dd, source);
8102 }
8103 
8104 /*
8105  * TX block SDMA interrupt.  Source is < 48.
8106  *
8107  * SDMA interrupts are grouped by type:
8108  *
8109  *	 0 -  N-1 = SDma
8110  *	 N - 2N-1 = SDmaProgress
8111  *	2N - 3N-1 = SDmaIdle
8112  */
8113 static void is_sdma_eng_int(struct hfi1_devdata *dd, unsigned int source)
8114 {
8115 	/* what interrupt */
8116 	unsigned int what  = source / TXE_NUM_SDMA_ENGINES;
8117 	/* which engine */
8118 	unsigned int which = source % TXE_NUM_SDMA_ENGINES;
8119 
8120 #ifdef CONFIG_SDMA_VERBOSITY
8121 	dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", which,
8122 		   slashstrip(__FILE__), __LINE__, __func__);
8123 	sdma_dumpstate(&dd->per_sdma[which]);
8124 #endif
8125 
8126 	if (likely(what < 3 && which < dd->num_sdma)) {
8127 		sdma_engine_interrupt(&dd->per_sdma[which], 1ull << source);
8128 	} else {
8129 		/* should not happen */
8130 		dd_dev_err(dd, "Invalid SDMA interrupt 0x%x\n", source);
8131 	}
8132 }
8133 
8134 /*
8135  * RX block receive available interrupt.  Source is < 160.
8136  */
8137 static void is_rcv_avail_int(struct hfi1_devdata *dd, unsigned int source)
8138 {
8139 	struct hfi1_ctxtdata *rcd;
8140 	char *err_detail;
8141 
8142 	if (likely(source < dd->num_rcv_contexts)) {
8143 		rcd = hfi1_rcd_get_by_index(dd, source);
8144 		if (rcd) {
8145 			/* Check for non-user contexts, including vnic */
8146 			if (source < dd->first_dyn_alloc_ctxt || rcd->is_vnic)
8147 				rcd->do_interrupt(rcd, 0);
8148 			else
8149 				handle_user_interrupt(rcd);
8150 
8151 			hfi1_rcd_put(rcd);
8152 			return;	/* OK */
8153 		}
8154 		/* received an interrupt, but no rcd */
8155 		err_detail = "dataless";
8156 	} else {
8157 		/* received an interrupt, but are not using that context */
8158 		err_detail = "out of range";
8159 	}
8160 	dd_dev_err(dd, "unexpected %s receive available context interrupt %u\n",
8161 		   err_detail, source);
8162 }
8163 
8164 /*
8165  * RX block receive urgent interrupt.  Source is < 160.
8166  */
8167 static void is_rcv_urgent_int(struct hfi1_devdata *dd, unsigned int source)
8168 {
8169 	struct hfi1_ctxtdata *rcd;
8170 	char *err_detail;
8171 
8172 	if (likely(source < dd->num_rcv_contexts)) {
8173 		rcd = hfi1_rcd_get_by_index(dd, source);
8174 		if (rcd) {
8175 			/* only pay attention to user urgent interrupts */
8176 			if (source >= dd->first_dyn_alloc_ctxt &&
8177 			    !rcd->is_vnic)
8178 				handle_user_interrupt(rcd);
8179 
8180 			hfi1_rcd_put(rcd);
8181 			return;	/* OK */
8182 		}
8183 		/* received an interrupt, but no rcd */
8184 		err_detail = "dataless";
8185 	} else {
8186 		/* received an interrupt, but are not using that context */
8187 		err_detail = "out of range";
8188 	}
8189 	dd_dev_err(dd, "unexpected %s receive urgent context interrupt %u\n",
8190 		   err_detail, source);
8191 }
8192 
8193 /*
8194  * Reserved range interrupt.  Should not be called in normal operation.
8195  */
8196 static void is_reserved_int(struct hfi1_devdata *dd, unsigned int source)
8197 {
8198 	char name[64];
8199 
8200 	dd_dev_err(dd, "unexpected %s interrupt\n",
8201 		   is_reserved_name(name, sizeof(name), source));
8202 }
8203 
8204 static const struct is_table is_table[] = {
8205 /*
8206  * start		 end
8207  *				name func		interrupt func
8208  */
8209 { IS_GENERAL_ERR_START,  IS_GENERAL_ERR_END,
8210 				is_misc_err_name,	is_misc_err_int },
8211 { IS_SDMAENG_ERR_START,  IS_SDMAENG_ERR_END,
8212 				is_sdma_eng_err_name,	is_sdma_eng_err_int },
8213 { IS_SENDCTXT_ERR_START, IS_SENDCTXT_ERR_END,
8214 				is_sendctxt_err_name,	is_sendctxt_err_int },
8215 { IS_SDMA_START,	     IS_SDMA_END,
8216 				is_sdma_eng_name,	is_sdma_eng_int },
8217 { IS_VARIOUS_START,	     IS_VARIOUS_END,
8218 				is_various_name,	is_various_int },
8219 { IS_DC_START,	     IS_DC_END,
8220 				is_dc_name,		is_dc_int },
8221 { IS_RCVAVAIL_START,     IS_RCVAVAIL_END,
8222 				is_rcv_avail_name,	is_rcv_avail_int },
8223 { IS_RCVURGENT_START,    IS_RCVURGENT_END,
8224 				is_rcv_urgent_name,	is_rcv_urgent_int },
8225 { IS_SENDCREDIT_START,   IS_SENDCREDIT_END,
8226 				is_send_credit_name,	is_send_credit_int},
8227 { IS_RESERVED_START,     IS_RESERVED_END,
8228 				is_reserved_name,	is_reserved_int},
8229 };
8230 
8231 /*
8232  * Interrupt source interrupt - called when the given source has an interrupt.
8233  * Source is a bit index into an array of 64-bit integers.
8234  */
8235 static void is_interrupt(struct hfi1_devdata *dd, unsigned int source)
8236 {
8237 	const struct is_table *entry;
8238 
8239 	/* avoids a double compare by walking the table in-order */
8240 	for (entry = &is_table[0]; entry->is_name; entry++) {
8241 		if (source < entry->end) {
8242 			trace_hfi1_interrupt(dd, entry, source);
8243 			entry->is_int(dd, source - entry->start);
8244 			return;
8245 		}
8246 	}
8247 	/* fell off the end */
8248 	dd_dev_err(dd, "invalid interrupt source %u\n", source);
8249 }
8250 
8251 /*
8252  * General interrupt handler.  This is able to correctly handle
8253  * all interrupts in case INTx is used.
8254  */
8255 static irqreturn_t general_interrupt(int irq, void *data)
8256 {
8257 	struct hfi1_devdata *dd = data;
8258 	u64 regs[CCE_NUM_INT_CSRS];
8259 	u32 bit;
8260 	int i;
8261 	irqreturn_t handled = IRQ_NONE;
8262 
8263 	this_cpu_inc(*dd->int_counter);
8264 
8265 	/* phase 1: scan and clear all handled interrupts */
8266 	for (i = 0; i < CCE_NUM_INT_CSRS; i++) {
8267 		if (dd->gi_mask[i] == 0) {
8268 			regs[i] = 0;	/* used later */
8269 			continue;
8270 		}
8271 		regs[i] = read_csr(dd, CCE_INT_STATUS + (8 * i)) &
8272 				dd->gi_mask[i];
8273 		/* only clear if anything is set */
8274 		if (regs[i])
8275 			write_csr(dd, CCE_INT_CLEAR + (8 * i), regs[i]);
8276 	}
8277 
8278 	/* phase 2: call the appropriate handler */
8279 	for_each_set_bit(bit, (unsigned long *)&regs[0],
8280 			 CCE_NUM_INT_CSRS * 64) {
8281 		is_interrupt(dd, bit);
8282 		handled = IRQ_HANDLED;
8283 	}
8284 
8285 	return handled;
8286 }
8287 
8288 static irqreturn_t sdma_interrupt(int irq, void *data)
8289 {
8290 	struct sdma_engine *sde = data;
8291 	struct hfi1_devdata *dd = sde->dd;
8292 	u64 status;
8293 
8294 #ifdef CONFIG_SDMA_VERBOSITY
8295 	dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
8296 		   slashstrip(__FILE__), __LINE__, __func__);
8297 	sdma_dumpstate(sde);
8298 #endif
8299 
8300 	this_cpu_inc(*dd->int_counter);
8301 
8302 	/* This read_csr is really bad in the hot path */
8303 	status = read_csr(dd,
8304 			  CCE_INT_STATUS + (8 * (IS_SDMA_START / 64)))
8305 			  & sde->imask;
8306 	if (likely(status)) {
8307 		/* clear the interrupt(s) */
8308 		write_csr(dd,
8309 			  CCE_INT_CLEAR + (8 * (IS_SDMA_START / 64)),
8310 			  status);
8311 
8312 		/* handle the interrupt(s) */
8313 		sdma_engine_interrupt(sde, status);
8314 	} else {
8315 		dd_dev_info_ratelimited(dd, "SDMA engine %u interrupt, but no status bits set\n",
8316 					sde->this_idx);
8317 	}
8318 	return IRQ_HANDLED;
8319 }
8320 
8321 /*
8322  * Clear the receive interrupt.  Use a read of the interrupt clear CSR
8323  * to insure that the write completed.  This does NOT guarantee that
8324  * queued DMA writes to memory from the chip are pushed.
8325  */
8326 static inline void clear_recv_intr(struct hfi1_ctxtdata *rcd)
8327 {
8328 	struct hfi1_devdata *dd = rcd->dd;
8329 	u32 addr = CCE_INT_CLEAR + (8 * rcd->ireg);
8330 
8331 	mmiowb();	/* make sure everything before is written */
8332 	write_csr(dd, addr, rcd->imask);
8333 	/* force the above write on the chip and get a value back */
8334 	(void)read_csr(dd, addr);
8335 }
8336 
8337 /* force the receive interrupt */
8338 void force_recv_intr(struct hfi1_ctxtdata *rcd)
8339 {
8340 	write_csr(rcd->dd, CCE_INT_FORCE + (8 * rcd->ireg), rcd->imask);
8341 }
8342 
8343 /*
8344  * Return non-zero if a packet is present.
8345  *
8346  * This routine is called when rechecking for packets after the RcvAvail
8347  * interrupt has been cleared down.  First, do a quick check of memory for
8348  * a packet present.  If not found, use an expensive CSR read of the context
8349  * tail to determine the actual tail.  The CSR read is necessary because there
8350  * is no method to push pending DMAs to memory other than an interrupt and we
8351  * are trying to determine if we need to force an interrupt.
8352  */
8353 static inline int check_packet_present(struct hfi1_ctxtdata *rcd)
8354 {
8355 	u32 tail;
8356 	int present;
8357 
8358 	if (!HFI1_CAP_IS_KSET(DMA_RTAIL))
8359 		present = (rcd->seq_cnt ==
8360 				rhf_rcv_seq(rhf_to_cpu(get_rhf_addr(rcd))));
8361 	else /* is RDMA rtail */
8362 		present = (rcd->head != get_rcvhdrtail(rcd));
8363 
8364 	if (present)
8365 		return 1;
8366 
8367 	/* fall back to a CSR read, correct indpendent of DMA_RTAIL */
8368 	tail = (u32)read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_TAIL);
8369 	return rcd->head != tail;
8370 }
8371 
8372 /*
8373  * Receive packet IRQ handler.  This routine expects to be on its own IRQ.
8374  * This routine will try to handle packets immediately (latency), but if
8375  * it finds too many, it will invoke the thread handler (bandwitdh).  The
8376  * chip receive interrupt is *not* cleared down until this or the thread (if
8377  * invoked) is finished.  The intent is to avoid extra interrupts while we
8378  * are processing packets anyway.
8379  */
8380 static irqreturn_t receive_context_interrupt(int irq, void *data)
8381 {
8382 	struct hfi1_ctxtdata *rcd = data;
8383 	struct hfi1_devdata *dd = rcd->dd;
8384 	int disposition;
8385 	int present;
8386 
8387 	trace_hfi1_receive_interrupt(dd, rcd);
8388 	this_cpu_inc(*dd->int_counter);
8389 	aspm_ctx_disable(rcd);
8390 
8391 	/* receive interrupt remains blocked while processing packets */
8392 	disposition = rcd->do_interrupt(rcd, 0);
8393 
8394 	/*
8395 	 * Too many packets were seen while processing packets in this
8396 	 * IRQ handler.  Invoke the handler thread.  The receive interrupt
8397 	 * remains blocked.
8398 	 */
8399 	if (disposition == RCV_PKT_LIMIT)
8400 		return IRQ_WAKE_THREAD;
8401 
8402 	/*
8403 	 * The packet processor detected no more packets.  Clear the receive
8404 	 * interrupt and recheck for a packet packet that may have arrived
8405 	 * after the previous check and interrupt clear.  If a packet arrived,
8406 	 * force another interrupt.
8407 	 */
8408 	clear_recv_intr(rcd);
8409 	present = check_packet_present(rcd);
8410 	if (present)
8411 		force_recv_intr(rcd);
8412 
8413 	return IRQ_HANDLED;
8414 }
8415 
8416 /*
8417  * Receive packet thread handler.  This expects to be invoked with the
8418  * receive interrupt still blocked.
8419  */
8420 static irqreturn_t receive_context_thread(int irq, void *data)
8421 {
8422 	struct hfi1_ctxtdata *rcd = data;
8423 	int present;
8424 
8425 	/* receive interrupt is still blocked from the IRQ handler */
8426 	(void)rcd->do_interrupt(rcd, 1);
8427 
8428 	/*
8429 	 * The packet processor will only return if it detected no more
8430 	 * packets.  Hold IRQs here so we can safely clear the interrupt and
8431 	 * recheck for a packet that may have arrived after the previous
8432 	 * check and the interrupt clear.  If a packet arrived, force another
8433 	 * interrupt.
8434 	 */
8435 	local_irq_disable();
8436 	clear_recv_intr(rcd);
8437 	present = check_packet_present(rcd);
8438 	if (present)
8439 		force_recv_intr(rcd);
8440 	local_irq_enable();
8441 
8442 	return IRQ_HANDLED;
8443 }
8444 
8445 /* ========================================================================= */
8446 
8447 u32 read_physical_state(struct hfi1_devdata *dd)
8448 {
8449 	u64 reg;
8450 
8451 	reg = read_csr(dd, DC_DC8051_STS_CUR_STATE);
8452 	return (reg >> DC_DC8051_STS_CUR_STATE_PORT_SHIFT)
8453 				& DC_DC8051_STS_CUR_STATE_PORT_MASK;
8454 }
8455 
8456 u32 read_logical_state(struct hfi1_devdata *dd)
8457 {
8458 	u64 reg;
8459 
8460 	reg = read_csr(dd, DCC_CFG_PORT_CONFIG);
8461 	return (reg >> DCC_CFG_PORT_CONFIG_LINK_STATE_SHIFT)
8462 				& DCC_CFG_PORT_CONFIG_LINK_STATE_MASK;
8463 }
8464 
8465 static void set_logical_state(struct hfi1_devdata *dd, u32 chip_lstate)
8466 {
8467 	u64 reg;
8468 
8469 	reg = read_csr(dd, DCC_CFG_PORT_CONFIG);
8470 	/* clear current state, set new state */
8471 	reg &= ~DCC_CFG_PORT_CONFIG_LINK_STATE_SMASK;
8472 	reg |= (u64)chip_lstate << DCC_CFG_PORT_CONFIG_LINK_STATE_SHIFT;
8473 	write_csr(dd, DCC_CFG_PORT_CONFIG, reg);
8474 }
8475 
8476 /*
8477  * Use the 8051 to read a LCB CSR.
8478  */
8479 static int read_lcb_via_8051(struct hfi1_devdata *dd, u32 addr, u64 *data)
8480 {
8481 	u32 regno;
8482 	int ret;
8483 
8484 	if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR) {
8485 		if (acquire_lcb_access(dd, 0) == 0) {
8486 			*data = read_csr(dd, addr);
8487 			release_lcb_access(dd, 0);
8488 			return 0;
8489 		}
8490 		return -EBUSY;
8491 	}
8492 
8493 	/* register is an index of LCB registers: (offset - base) / 8 */
8494 	regno = (addr - DC_LCB_CFG_RUN) >> 3;
8495 	ret = do_8051_command(dd, HCMD_READ_LCB_CSR, regno, data);
8496 	if (ret != HCMD_SUCCESS)
8497 		return -EBUSY;
8498 	return 0;
8499 }
8500 
8501 /*
8502  * Provide a cache for some of the LCB registers in case the LCB is
8503  * unavailable.
8504  * (The LCB is unavailable in certain link states, for example.)
8505  */
8506 struct lcb_datum {
8507 	u32 off;
8508 	u64 val;
8509 };
8510 
8511 static struct lcb_datum lcb_cache[] = {
8512 	{ DC_LCB_ERR_INFO_RX_REPLAY_CNT, 0},
8513 	{ DC_LCB_ERR_INFO_SEQ_CRC_CNT, 0 },
8514 	{ DC_LCB_ERR_INFO_REINIT_FROM_PEER_CNT, 0 },
8515 };
8516 
8517 static void update_lcb_cache(struct hfi1_devdata *dd)
8518 {
8519 	int i;
8520 	int ret;
8521 	u64 val;
8522 
8523 	for (i = 0; i < ARRAY_SIZE(lcb_cache); i++) {
8524 		ret = read_lcb_csr(dd, lcb_cache[i].off, &val);
8525 
8526 		/* Update if we get good data */
8527 		if (likely(ret != -EBUSY))
8528 			lcb_cache[i].val = val;
8529 	}
8530 }
8531 
8532 static int read_lcb_cache(u32 off, u64 *val)
8533 {
8534 	int i;
8535 
8536 	for (i = 0; i < ARRAY_SIZE(lcb_cache); i++) {
8537 		if (lcb_cache[i].off == off) {
8538 			*val = lcb_cache[i].val;
8539 			return 0;
8540 		}
8541 	}
8542 
8543 	pr_warn("%s bad offset 0x%x\n", __func__, off);
8544 	return -1;
8545 }
8546 
8547 /*
8548  * Read an LCB CSR.  Access may not be in host control, so check.
8549  * Return 0 on success, -EBUSY on failure.
8550  */
8551 int read_lcb_csr(struct hfi1_devdata *dd, u32 addr, u64 *data)
8552 {
8553 	struct hfi1_pportdata *ppd = dd->pport;
8554 
8555 	/* if up, go through the 8051 for the value */
8556 	if (ppd->host_link_state & HLS_UP)
8557 		return read_lcb_via_8051(dd, addr, data);
8558 	/* if going up or down, check the cache, otherwise, no access */
8559 	if (ppd->host_link_state & (HLS_GOING_UP | HLS_GOING_OFFLINE)) {
8560 		if (read_lcb_cache(addr, data))
8561 			return -EBUSY;
8562 		return 0;
8563 	}
8564 
8565 	/* otherwise, host has access */
8566 	*data = read_csr(dd, addr);
8567 	return 0;
8568 }
8569 
8570 /*
8571  * Use the 8051 to write a LCB CSR.
8572  */
8573 static int write_lcb_via_8051(struct hfi1_devdata *dd, u32 addr, u64 data)
8574 {
8575 	u32 regno;
8576 	int ret;
8577 
8578 	if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR ||
8579 	    (dd->dc8051_ver < dc8051_ver(0, 20, 0))) {
8580 		if (acquire_lcb_access(dd, 0) == 0) {
8581 			write_csr(dd, addr, data);
8582 			release_lcb_access(dd, 0);
8583 			return 0;
8584 		}
8585 		return -EBUSY;
8586 	}
8587 
8588 	/* register is an index of LCB registers: (offset - base) / 8 */
8589 	regno = (addr - DC_LCB_CFG_RUN) >> 3;
8590 	ret = do_8051_command(dd, HCMD_WRITE_LCB_CSR, regno, &data);
8591 	if (ret != HCMD_SUCCESS)
8592 		return -EBUSY;
8593 	return 0;
8594 }
8595 
8596 /*
8597  * Write an LCB CSR.  Access may not be in host control, so check.
8598  * Return 0 on success, -EBUSY on failure.
8599  */
8600 int write_lcb_csr(struct hfi1_devdata *dd, u32 addr, u64 data)
8601 {
8602 	struct hfi1_pportdata *ppd = dd->pport;
8603 
8604 	/* if up, go through the 8051 for the value */
8605 	if (ppd->host_link_state & HLS_UP)
8606 		return write_lcb_via_8051(dd, addr, data);
8607 	/* if going up or down, no access */
8608 	if (ppd->host_link_state & (HLS_GOING_UP | HLS_GOING_OFFLINE))
8609 		return -EBUSY;
8610 	/* otherwise, host has access */
8611 	write_csr(dd, addr, data);
8612 	return 0;
8613 }
8614 
8615 /*
8616  * Returns:
8617  *	< 0 = Linux error, not able to get access
8618  *	> 0 = 8051 command RETURN_CODE
8619  */
8620 static int do_8051_command(struct hfi1_devdata *dd, u32 type, u64 in_data,
8621 			   u64 *out_data)
8622 {
8623 	u64 reg, completed;
8624 	int return_code;
8625 	unsigned long timeout;
8626 
8627 	hfi1_cdbg(DC8051, "type %d, data 0x%012llx", type, in_data);
8628 
8629 	mutex_lock(&dd->dc8051_lock);
8630 
8631 	/* We can't send any commands to the 8051 if it's in reset */
8632 	if (dd->dc_shutdown) {
8633 		return_code = -ENODEV;
8634 		goto fail;
8635 	}
8636 
8637 	/*
8638 	 * If an 8051 host command timed out previously, then the 8051 is
8639 	 * stuck.
8640 	 *
8641 	 * On first timeout, attempt to reset and restart the entire DC
8642 	 * block (including 8051). (Is this too big of a hammer?)
8643 	 *
8644 	 * If the 8051 times out a second time, the reset did not bring it
8645 	 * back to healthy life. In that case, fail any subsequent commands.
8646 	 */
8647 	if (dd->dc8051_timed_out) {
8648 		if (dd->dc8051_timed_out > 1) {
8649 			dd_dev_err(dd,
8650 				   "Previous 8051 host command timed out, skipping command %u\n",
8651 				   type);
8652 			return_code = -ENXIO;
8653 			goto fail;
8654 		}
8655 		_dc_shutdown(dd);
8656 		_dc_start(dd);
8657 	}
8658 
8659 	/*
8660 	 * If there is no timeout, then the 8051 command interface is
8661 	 * waiting for a command.
8662 	 */
8663 
8664 	/*
8665 	 * When writing a LCB CSR, out_data contains the full value to
8666 	 * to be written, while in_data contains the relative LCB
8667 	 * address in 7:0.  Do the work here, rather than the caller,
8668 	 * of distrubting the write data to where it needs to go:
8669 	 *
8670 	 * Write data
8671 	 *   39:00 -> in_data[47:8]
8672 	 *   47:40 -> DC8051_CFG_EXT_DEV_0.RETURN_CODE
8673 	 *   63:48 -> DC8051_CFG_EXT_DEV_0.RSP_DATA
8674 	 */
8675 	if (type == HCMD_WRITE_LCB_CSR) {
8676 		in_data |= ((*out_data) & 0xffffffffffull) << 8;
8677 		/* must preserve COMPLETED - it is tied to hardware */
8678 		reg = read_csr(dd, DC_DC8051_CFG_EXT_DEV_0);
8679 		reg &= DC_DC8051_CFG_EXT_DEV_0_COMPLETED_SMASK;
8680 		reg |= ((((*out_data) >> 40) & 0xff) <<
8681 				DC_DC8051_CFG_EXT_DEV_0_RETURN_CODE_SHIFT)
8682 		      | ((((*out_data) >> 48) & 0xffff) <<
8683 				DC_DC8051_CFG_EXT_DEV_0_RSP_DATA_SHIFT);
8684 		write_csr(dd, DC_DC8051_CFG_EXT_DEV_0, reg);
8685 	}
8686 
8687 	/*
8688 	 * Do two writes: the first to stabilize the type and req_data, the
8689 	 * second to activate.
8690 	 */
8691 	reg = ((u64)type & DC_DC8051_CFG_HOST_CMD_0_REQ_TYPE_MASK)
8692 			<< DC_DC8051_CFG_HOST_CMD_0_REQ_TYPE_SHIFT
8693 		| (in_data & DC_DC8051_CFG_HOST_CMD_0_REQ_DATA_MASK)
8694 			<< DC_DC8051_CFG_HOST_CMD_0_REQ_DATA_SHIFT;
8695 	write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, reg);
8696 	reg |= DC_DC8051_CFG_HOST_CMD_0_REQ_NEW_SMASK;
8697 	write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, reg);
8698 
8699 	/* wait for completion, alternate: interrupt */
8700 	timeout = jiffies + msecs_to_jiffies(DC8051_COMMAND_TIMEOUT);
8701 	while (1) {
8702 		reg = read_csr(dd, DC_DC8051_CFG_HOST_CMD_1);
8703 		completed = reg & DC_DC8051_CFG_HOST_CMD_1_COMPLETED_SMASK;
8704 		if (completed)
8705 			break;
8706 		if (time_after(jiffies, timeout)) {
8707 			dd->dc8051_timed_out++;
8708 			dd_dev_err(dd, "8051 host command %u timeout\n", type);
8709 			if (out_data)
8710 				*out_data = 0;
8711 			return_code = -ETIMEDOUT;
8712 			goto fail;
8713 		}
8714 		udelay(2);
8715 	}
8716 
8717 	if (out_data) {
8718 		*out_data = (reg >> DC_DC8051_CFG_HOST_CMD_1_RSP_DATA_SHIFT)
8719 				& DC_DC8051_CFG_HOST_CMD_1_RSP_DATA_MASK;
8720 		if (type == HCMD_READ_LCB_CSR) {
8721 			/* top 16 bits are in a different register */
8722 			*out_data |= (read_csr(dd, DC_DC8051_CFG_EXT_DEV_1)
8723 				& DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SMASK)
8724 				<< (48
8725 				    - DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SHIFT);
8726 		}
8727 	}
8728 	return_code = (reg >> DC_DC8051_CFG_HOST_CMD_1_RETURN_CODE_SHIFT)
8729 				& DC_DC8051_CFG_HOST_CMD_1_RETURN_CODE_MASK;
8730 	dd->dc8051_timed_out = 0;
8731 	/*
8732 	 * Clear command for next user.
8733 	 */
8734 	write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, 0);
8735 
8736 fail:
8737 	mutex_unlock(&dd->dc8051_lock);
8738 	return return_code;
8739 }
8740 
8741 static int set_physical_link_state(struct hfi1_devdata *dd, u64 state)
8742 {
8743 	return do_8051_command(dd, HCMD_CHANGE_PHY_STATE, state, NULL);
8744 }
8745 
8746 int load_8051_config(struct hfi1_devdata *dd, u8 field_id,
8747 		     u8 lane_id, u32 config_data)
8748 {
8749 	u64 data;
8750 	int ret;
8751 
8752 	data = (u64)field_id << LOAD_DATA_FIELD_ID_SHIFT
8753 		| (u64)lane_id << LOAD_DATA_LANE_ID_SHIFT
8754 		| (u64)config_data << LOAD_DATA_DATA_SHIFT;
8755 	ret = do_8051_command(dd, HCMD_LOAD_CONFIG_DATA, data, NULL);
8756 	if (ret != HCMD_SUCCESS) {
8757 		dd_dev_err(dd,
8758 			   "load 8051 config: field id %d, lane %d, err %d\n",
8759 			   (int)field_id, (int)lane_id, ret);
8760 	}
8761 	return ret;
8762 }
8763 
8764 /*
8765  * Read the 8051 firmware "registers".  Use the RAM directly.  Always
8766  * set the result, even on error.
8767  * Return 0 on success, -errno on failure
8768  */
8769 int read_8051_config(struct hfi1_devdata *dd, u8 field_id, u8 lane_id,
8770 		     u32 *result)
8771 {
8772 	u64 big_data;
8773 	u32 addr;
8774 	int ret;
8775 
8776 	/* address start depends on the lane_id */
8777 	if (lane_id < 4)
8778 		addr = (4 * NUM_GENERAL_FIELDS)
8779 			+ (lane_id * 4 * NUM_LANE_FIELDS);
8780 	else
8781 		addr = 0;
8782 	addr += field_id * 4;
8783 
8784 	/* read is in 8-byte chunks, hardware will truncate the address down */
8785 	ret = read_8051_data(dd, addr, 8, &big_data);
8786 
8787 	if (ret == 0) {
8788 		/* extract the 4 bytes we want */
8789 		if (addr & 0x4)
8790 			*result = (u32)(big_data >> 32);
8791 		else
8792 			*result = (u32)big_data;
8793 	} else {
8794 		*result = 0;
8795 		dd_dev_err(dd, "%s: direct read failed, lane %d, field %d!\n",
8796 			   __func__, lane_id, field_id);
8797 	}
8798 
8799 	return ret;
8800 }
8801 
8802 static int write_vc_local_phy(struct hfi1_devdata *dd, u8 power_management,
8803 			      u8 continuous)
8804 {
8805 	u32 frame;
8806 
8807 	frame = continuous << CONTINIOUS_REMOTE_UPDATE_SUPPORT_SHIFT
8808 		| power_management << POWER_MANAGEMENT_SHIFT;
8809 	return load_8051_config(dd, VERIFY_CAP_LOCAL_PHY,
8810 				GENERAL_CONFIG, frame);
8811 }
8812 
8813 static int write_vc_local_fabric(struct hfi1_devdata *dd, u8 vau, u8 z, u8 vcu,
8814 				 u16 vl15buf, u8 crc_sizes)
8815 {
8816 	u32 frame;
8817 
8818 	frame = (u32)vau << VAU_SHIFT
8819 		| (u32)z << Z_SHIFT
8820 		| (u32)vcu << VCU_SHIFT
8821 		| (u32)vl15buf << VL15BUF_SHIFT
8822 		| (u32)crc_sizes << CRC_SIZES_SHIFT;
8823 	return load_8051_config(dd, VERIFY_CAP_LOCAL_FABRIC,
8824 				GENERAL_CONFIG, frame);
8825 }
8826 
8827 static void read_vc_local_link_width(struct hfi1_devdata *dd, u8 *misc_bits,
8828 				     u8 *flag_bits, u16 *link_widths)
8829 {
8830 	u32 frame;
8831 
8832 	read_8051_config(dd, VERIFY_CAP_LOCAL_LINK_WIDTH, GENERAL_CONFIG,
8833 			 &frame);
8834 	*misc_bits = (frame >> MISC_CONFIG_BITS_SHIFT) & MISC_CONFIG_BITS_MASK;
8835 	*flag_bits = (frame >> LOCAL_FLAG_BITS_SHIFT) & LOCAL_FLAG_BITS_MASK;
8836 	*link_widths = (frame >> LINK_WIDTH_SHIFT) & LINK_WIDTH_MASK;
8837 }
8838 
8839 static int write_vc_local_link_width(struct hfi1_devdata *dd,
8840 				     u8 misc_bits,
8841 				     u8 flag_bits,
8842 				     u16 link_widths)
8843 {
8844 	u32 frame;
8845 
8846 	frame = (u32)misc_bits << MISC_CONFIG_BITS_SHIFT
8847 		| (u32)flag_bits << LOCAL_FLAG_BITS_SHIFT
8848 		| (u32)link_widths << LINK_WIDTH_SHIFT;
8849 	return load_8051_config(dd, VERIFY_CAP_LOCAL_LINK_WIDTH, GENERAL_CONFIG,
8850 		     frame);
8851 }
8852 
8853 static int write_local_device_id(struct hfi1_devdata *dd, u16 device_id,
8854 				 u8 device_rev)
8855 {
8856 	u32 frame;
8857 
8858 	frame = ((u32)device_id << LOCAL_DEVICE_ID_SHIFT)
8859 		| ((u32)device_rev << LOCAL_DEVICE_REV_SHIFT);
8860 	return load_8051_config(dd, LOCAL_DEVICE_ID, GENERAL_CONFIG, frame);
8861 }
8862 
8863 static void read_remote_device_id(struct hfi1_devdata *dd, u16 *device_id,
8864 				  u8 *device_rev)
8865 {
8866 	u32 frame;
8867 
8868 	read_8051_config(dd, REMOTE_DEVICE_ID, GENERAL_CONFIG, &frame);
8869 	*device_id = (frame >> REMOTE_DEVICE_ID_SHIFT) & REMOTE_DEVICE_ID_MASK;
8870 	*device_rev = (frame >> REMOTE_DEVICE_REV_SHIFT)
8871 			& REMOTE_DEVICE_REV_MASK;
8872 }
8873 
8874 int write_host_interface_version(struct hfi1_devdata *dd, u8 version)
8875 {
8876 	u32 frame;
8877 	u32 mask;
8878 
8879 	mask = (HOST_INTERFACE_VERSION_MASK << HOST_INTERFACE_VERSION_SHIFT);
8880 	read_8051_config(dd, RESERVED_REGISTERS, GENERAL_CONFIG, &frame);
8881 	/* Clear, then set field */
8882 	frame &= ~mask;
8883 	frame |= ((u32)version << HOST_INTERFACE_VERSION_SHIFT);
8884 	return load_8051_config(dd, RESERVED_REGISTERS, GENERAL_CONFIG,
8885 				frame);
8886 }
8887 
8888 void read_misc_status(struct hfi1_devdata *dd, u8 *ver_major, u8 *ver_minor,
8889 		      u8 *ver_patch)
8890 {
8891 	u32 frame;
8892 
8893 	read_8051_config(dd, MISC_STATUS, GENERAL_CONFIG, &frame);
8894 	*ver_major = (frame >> STS_FM_VERSION_MAJOR_SHIFT) &
8895 		STS_FM_VERSION_MAJOR_MASK;
8896 	*ver_minor = (frame >> STS_FM_VERSION_MINOR_SHIFT) &
8897 		STS_FM_VERSION_MINOR_MASK;
8898 
8899 	read_8051_config(dd, VERSION_PATCH, GENERAL_CONFIG, &frame);
8900 	*ver_patch = (frame >> STS_FM_VERSION_PATCH_SHIFT) &
8901 		STS_FM_VERSION_PATCH_MASK;
8902 }
8903 
8904 static void read_vc_remote_phy(struct hfi1_devdata *dd, u8 *power_management,
8905 			       u8 *continuous)
8906 {
8907 	u32 frame;
8908 
8909 	read_8051_config(dd, VERIFY_CAP_REMOTE_PHY, GENERAL_CONFIG, &frame);
8910 	*power_management = (frame >> POWER_MANAGEMENT_SHIFT)
8911 					& POWER_MANAGEMENT_MASK;
8912 	*continuous = (frame >> CONTINIOUS_REMOTE_UPDATE_SUPPORT_SHIFT)
8913 					& CONTINIOUS_REMOTE_UPDATE_SUPPORT_MASK;
8914 }
8915 
8916 static void read_vc_remote_fabric(struct hfi1_devdata *dd, u8 *vau, u8 *z,
8917 				  u8 *vcu, u16 *vl15buf, u8 *crc_sizes)
8918 {
8919 	u32 frame;
8920 
8921 	read_8051_config(dd, VERIFY_CAP_REMOTE_FABRIC, GENERAL_CONFIG, &frame);
8922 	*vau = (frame >> VAU_SHIFT) & VAU_MASK;
8923 	*z = (frame >> Z_SHIFT) & Z_MASK;
8924 	*vcu = (frame >> VCU_SHIFT) & VCU_MASK;
8925 	*vl15buf = (frame >> VL15BUF_SHIFT) & VL15BUF_MASK;
8926 	*crc_sizes = (frame >> CRC_SIZES_SHIFT) & CRC_SIZES_MASK;
8927 }
8928 
8929 static void read_vc_remote_link_width(struct hfi1_devdata *dd,
8930 				      u8 *remote_tx_rate,
8931 				      u16 *link_widths)
8932 {
8933 	u32 frame;
8934 
8935 	read_8051_config(dd, VERIFY_CAP_REMOTE_LINK_WIDTH, GENERAL_CONFIG,
8936 			 &frame);
8937 	*remote_tx_rate = (frame >> REMOTE_TX_RATE_SHIFT)
8938 				& REMOTE_TX_RATE_MASK;
8939 	*link_widths = (frame >> LINK_WIDTH_SHIFT) & LINK_WIDTH_MASK;
8940 }
8941 
8942 static void read_local_lni(struct hfi1_devdata *dd, u8 *enable_lane_rx)
8943 {
8944 	u32 frame;
8945 
8946 	read_8051_config(dd, LOCAL_LNI_INFO, GENERAL_CONFIG, &frame);
8947 	*enable_lane_rx = (frame >> ENABLE_LANE_RX_SHIFT) & ENABLE_LANE_RX_MASK;
8948 }
8949 
8950 static void read_last_local_state(struct hfi1_devdata *dd, u32 *lls)
8951 {
8952 	read_8051_config(dd, LAST_LOCAL_STATE_COMPLETE, GENERAL_CONFIG, lls);
8953 }
8954 
8955 static void read_last_remote_state(struct hfi1_devdata *dd, u32 *lrs)
8956 {
8957 	read_8051_config(dd, LAST_REMOTE_STATE_COMPLETE, GENERAL_CONFIG, lrs);
8958 }
8959 
8960 void hfi1_read_link_quality(struct hfi1_devdata *dd, u8 *link_quality)
8961 {
8962 	u32 frame;
8963 	int ret;
8964 
8965 	*link_quality = 0;
8966 	if (dd->pport->host_link_state & HLS_UP) {
8967 		ret = read_8051_config(dd, LINK_QUALITY_INFO, GENERAL_CONFIG,
8968 				       &frame);
8969 		if (ret == 0)
8970 			*link_quality = (frame >> LINK_QUALITY_SHIFT)
8971 						& LINK_QUALITY_MASK;
8972 	}
8973 }
8974 
8975 static void read_planned_down_reason_code(struct hfi1_devdata *dd, u8 *pdrrc)
8976 {
8977 	u32 frame;
8978 
8979 	read_8051_config(dd, LINK_QUALITY_INFO, GENERAL_CONFIG, &frame);
8980 	*pdrrc = (frame >> DOWN_REMOTE_REASON_SHIFT) & DOWN_REMOTE_REASON_MASK;
8981 }
8982 
8983 static void read_link_down_reason(struct hfi1_devdata *dd, u8 *ldr)
8984 {
8985 	u32 frame;
8986 
8987 	read_8051_config(dd, LINK_DOWN_REASON, GENERAL_CONFIG, &frame);
8988 	*ldr = (frame & 0xff);
8989 }
8990 
8991 static int read_tx_settings(struct hfi1_devdata *dd,
8992 			    u8 *enable_lane_tx,
8993 			    u8 *tx_polarity_inversion,
8994 			    u8 *rx_polarity_inversion,
8995 			    u8 *max_rate)
8996 {
8997 	u32 frame;
8998 	int ret;
8999 
9000 	ret = read_8051_config(dd, TX_SETTINGS, GENERAL_CONFIG, &frame);
9001 	*enable_lane_tx = (frame >> ENABLE_LANE_TX_SHIFT)
9002 				& ENABLE_LANE_TX_MASK;
9003 	*tx_polarity_inversion = (frame >> TX_POLARITY_INVERSION_SHIFT)
9004 				& TX_POLARITY_INVERSION_MASK;
9005 	*rx_polarity_inversion = (frame >> RX_POLARITY_INVERSION_SHIFT)
9006 				& RX_POLARITY_INVERSION_MASK;
9007 	*max_rate = (frame >> MAX_RATE_SHIFT) & MAX_RATE_MASK;
9008 	return ret;
9009 }
9010 
9011 static int write_tx_settings(struct hfi1_devdata *dd,
9012 			     u8 enable_lane_tx,
9013 			     u8 tx_polarity_inversion,
9014 			     u8 rx_polarity_inversion,
9015 			     u8 max_rate)
9016 {
9017 	u32 frame;
9018 
9019 	/* no need to mask, all variable sizes match field widths */
9020 	frame = enable_lane_tx << ENABLE_LANE_TX_SHIFT
9021 		| tx_polarity_inversion << TX_POLARITY_INVERSION_SHIFT
9022 		| rx_polarity_inversion << RX_POLARITY_INVERSION_SHIFT
9023 		| max_rate << MAX_RATE_SHIFT;
9024 	return load_8051_config(dd, TX_SETTINGS, GENERAL_CONFIG, frame);
9025 }
9026 
9027 /*
9028  * Read an idle LCB message.
9029  *
9030  * Returns 0 on success, -EINVAL on error
9031  */
9032 static int read_idle_message(struct hfi1_devdata *dd, u64 type, u64 *data_out)
9033 {
9034 	int ret;
9035 
9036 	ret = do_8051_command(dd, HCMD_READ_LCB_IDLE_MSG, type, data_out);
9037 	if (ret != HCMD_SUCCESS) {
9038 		dd_dev_err(dd, "read idle message: type %d, err %d\n",
9039 			   (u32)type, ret);
9040 		return -EINVAL;
9041 	}
9042 	dd_dev_info(dd, "%s: read idle message 0x%llx\n", __func__, *data_out);
9043 	/* return only the payload as we already know the type */
9044 	*data_out >>= IDLE_PAYLOAD_SHIFT;
9045 	return 0;
9046 }
9047 
9048 /*
9049  * Read an idle SMA message.  To be done in response to a notification from
9050  * the 8051.
9051  *
9052  * Returns 0 on success, -EINVAL on error
9053  */
9054 static int read_idle_sma(struct hfi1_devdata *dd, u64 *data)
9055 {
9056 	return read_idle_message(dd, (u64)IDLE_SMA << IDLE_MSG_TYPE_SHIFT,
9057 				 data);
9058 }
9059 
9060 /*
9061  * Send an idle LCB message.
9062  *
9063  * Returns 0 on success, -EINVAL on error
9064  */
9065 static int send_idle_message(struct hfi1_devdata *dd, u64 data)
9066 {
9067 	int ret;
9068 
9069 	dd_dev_info(dd, "%s: sending idle message 0x%llx\n", __func__, data);
9070 	ret = do_8051_command(dd, HCMD_SEND_LCB_IDLE_MSG, data, NULL);
9071 	if (ret != HCMD_SUCCESS) {
9072 		dd_dev_err(dd, "send idle message: data 0x%llx, err %d\n",
9073 			   data, ret);
9074 		return -EINVAL;
9075 	}
9076 	return 0;
9077 }
9078 
9079 /*
9080  * Send an idle SMA message.
9081  *
9082  * Returns 0 on success, -EINVAL on error
9083  */
9084 int send_idle_sma(struct hfi1_devdata *dd, u64 message)
9085 {
9086 	u64 data;
9087 
9088 	data = ((message & IDLE_PAYLOAD_MASK) << IDLE_PAYLOAD_SHIFT) |
9089 		((u64)IDLE_SMA << IDLE_MSG_TYPE_SHIFT);
9090 	return send_idle_message(dd, data);
9091 }
9092 
9093 /*
9094  * Initialize the LCB then do a quick link up.  This may or may not be
9095  * in loopback.
9096  *
9097  * return 0 on success, -errno on error
9098  */
9099 static int do_quick_linkup(struct hfi1_devdata *dd)
9100 {
9101 	int ret;
9102 
9103 	lcb_shutdown(dd, 0);
9104 
9105 	if (loopback) {
9106 		/* LCB_CFG_LOOPBACK.VAL = 2 */
9107 		/* LCB_CFG_LANE_WIDTH.VAL = 0 */
9108 		write_csr(dd, DC_LCB_CFG_LOOPBACK,
9109 			  IB_PACKET_TYPE << DC_LCB_CFG_LOOPBACK_VAL_SHIFT);
9110 		write_csr(dd, DC_LCB_CFG_LANE_WIDTH, 0);
9111 	}
9112 
9113 	/* start the LCBs */
9114 	/* LCB_CFG_TX_FIFOS_RESET.VAL = 0 */
9115 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0);
9116 
9117 	/* simulator only loopback steps */
9118 	if (loopback && dd->icode == ICODE_FUNCTIONAL_SIMULATOR) {
9119 		/* LCB_CFG_RUN.EN = 1 */
9120 		write_csr(dd, DC_LCB_CFG_RUN,
9121 			  1ull << DC_LCB_CFG_RUN_EN_SHIFT);
9122 
9123 		ret = wait_link_transfer_active(dd, 10);
9124 		if (ret)
9125 			return ret;
9126 
9127 		write_csr(dd, DC_LCB_CFG_ALLOW_LINK_UP,
9128 			  1ull << DC_LCB_CFG_ALLOW_LINK_UP_VAL_SHIFT);
9129 	}
9130 
9131 	if (!loopback) {
9132 		/*
9133 		 * When doing quick linkup and not in loopback, both
9134 		 * sides must be done with LCB set-up before either
9135 		 * starts the quick linkup.  Put a delay here so that
9136 		 * both sides can be started and have a chance to be
9137 		 * done with LCB set up before resuming.
9138 		 */
9139 		dd_dev_err(dd,
9140 			   "Pausing for peer to be finished with LCB set up\n");
9141 		msleep(5000);
9142 		dd_dev_err(dd, "Continuing with quick linkup\n");
9143 	}
9144 
9145 	write_csr(dd, DC_LCB_ERR_EN, 0); /* mask LCB errors */
9146 	set_8051_lcb_access(dd);
9147 
9148 	/*
9149 	 * State "quick" LinkUp request sets the physical link state to
9150 	 * LinkUp without a verify capability sequence.
9151 	 * This state is in simulator v37 and later.
9152 	 */
9153 	ret = set_physical_link_state(dd, PLS_QUICK_LINKUP);
9154 	if (ret != HCMD_SUCCESS) {
9155 		dd_dev_err(dd,
9156 			   "%s: set physical link state to quick LinkUp failed with return %d\n",
9157 			   __func__, ret);
9158 
9159 		set_host_lcb_access(dd);
9160 		write_csr(dd, DC_LCB_ERR_EN, ~0ull); /* watch LCB errors */
9161 
9162 		if (ret >= 0)
9163 			ret = -EINVAL;
9164 		return ret;
9165 	}
9166 
9167 	return 0; /* success */
9168 }
9169 
9170 /*
9171  * Do all special steps to set up loopback.
9172  */
9173 static int init_loopback(struct hfi1_devdata *dd)
9174 {
9175 	dd_dev_info(dd, "Entering loopback mode\n");
9176 
9177 	/* all loopbacks should disable self GUID check */
9178 	write_csr(dd, DC_DC8051_CFG_MODE,
9179 		  (read_csr(dd, DC_DC8051_CFG_MODE) | DISABLE_SELF_GUID_CHECK));
9180 
9181 	/*
9182 	 * The simulator has only one loopback option - LCB.  Switch
9183 	 * to that option, which includes quick link up.
9184 	 *
9185 	 * Accept all valid loopback values.
9186 	 */
9187 	if ((dd->icode == ICODE_FUNCTIONAL_SIMULATOR) &&
9188 	    (loopback == LOOPBACK_SERDES || loopback == LOOPBACK_LCB ||
9189 	     loopback == LOOPBACK_CABLE)) {
9190 		loopback = LOOPBACK_LCB;
9191 		quick_linkup = 1;
9192 		return 0;
9193 	}
9194 
9195 	/*
9196 	 * SerDes loopback init sequence is handled in set_local_link_attributes
9197 	 */
9198 	if (loopback == LOOPBACK_SERDES)
9199 		return 0;
9200 
9201 	/* LCB loopback - handled at poll time */
9202 	if (loopback == LOOPBACK_LCB) {
9203 		quick_linkup = 1; /* LCB is always quick linkup */
9204 
9205 		/* not supported in emulation due to emulation RTL changes */
9206 		if (dd->icode == ICODE_FPGA_EMULATION) {
9207 			dd_dev_err(dd,
9208 				   "LCB loopback not supported in emulation\n");
9209 			return -EINVAL;
9210 		}
9211 		return 0;
9212 	}
9213 
9214 	/* external cable loopback requires no extra steps */
9215 	if (loopback == LOOPBACK_CABLE)
9216 		return 0;
9217 
9218 	dd_dev_err(dd, "Invalid loopback mode %d\n", loopback);
9219 	return -EINVAL;
9220 }
9221 
9222 /*
9223  * Translate from the OPA_LINK_WIDTH handed to us by the FM to bits
9224  * used in the Verify Capability link width attribute.
9225  */
9226 static u16 opa_to_vc_link_widths(u16 opa_widths)
9227 {
9228 	int i;
9229 	u16 result = 0;
9230 
9231 	static const struct link_bits {
9232 		u16 from;
9233 		u16 to;
9234 	} opa_link_xlate[] = {
9235 		{ OPA_LINK_WIDTH_1X, 1 << (1 - 1)  },
9236 		{ OPA_LINK_WIDTH_2X, 1 << (2 - 1)  },
9237 		{ OPA_LINK_WIDTH_3X, 1 << (3 - 1)  },
9238 		{ OPA_LINK_WIDTH_4X, 1 << (4 - 1)  },
9239 	};
9240 
9241 	for (i = 0; i < ARRAY_SIZE(opa_link_xlate); i++) {
9242 		if (opa_widths & opa_link_xlate[i].from)
9243 			result |= opa_link_xlate[i].to;
9244 	}
9245 	return result;
9246 }
9247 
9248 /*
9249  * Set link attributes before moving to polling.
9250  */
9251 static int set_local_link_attributes(struct hfi1_pportdata *ppd)
9252 {
9253 	struct hfi1_devdata *dd = ppd->dd;
9254 	u8 enable_lane_tx;
9255 	u8 tx_polarity_inversion;
9256 	u8 rx_polarity_inversion;
9257 	int ret;
9258 	u32 misc_bits = 0;
9259 	/* reset our fabric serdes to clear any lingering problems */
9260 	fabric_serdes_reset(dd);
9261 
9262 	/* set the local tx rate - need to read-modify-write */
9263 	ret = read_tx_settings(dd, &enable_lane_tx, &tx_polarity_inversion,
9264 			       &rx_polarity_inversion, &ppd->local_tx_rate);
9265 	if (ret)
9266 		goto set_local_link_attributes_fail;
9267 
9268 	if (dd->dc8051_ver < dc8051_ver(0, 20, 0)) {
9269 		/* set the tx rate to the fastest enabled */
9270 		if (ppd->link_speed_enabled & OPA_LINK_SPEED_25G)
9271 			ppd->local_tx_rate = 1;
9272 		else
9273 			ppd->local_tx_rate = 0;
9274 	} else {
9275 		/* set the tx rate to all enabled */
9276 		ppd->local_tx_rate = 0;
9277 		if (ppd->link_speed_enabled & OPA_LINK_SPEED_25G)
9278 			ppd->local_tx_rate |= 2;
9279 		if (ppd->link_speed_enabled & OPA_LINK_SPEED_12_5G)
9280 			ppd->local_tx_rate |= 1;
9281 	}
9282 
9283 	enable_lane_tx = 0xF; /* enable all four lanes */
9284 	ret = write_tx_settings(dd, enable_lane_tx, tx_polarity_inversion,
9285 				rx_polarity_inversion, ppd->local_tx_rate);
9286 	if (ret != HCMD_SUCCESS)
9287 		goto set_local_link_attributes_fail;
9288 
9289 	ret = write_host_interface_version(dd, HOST_INTERFACE_VERSION);
9290 	if (ret != HCMD_SUCCESS) {
9291 		dd_dev_err(dd,
9292 			   "Failed to set host interface version, return 0x%x\n",
9293 			   ret);
9294 		goto set_local_link_attributes_fail;
9295 	}
9296 
9297 	/*
9298 	 * DC supports continuous updates.
9299 	 */
9300 	ret = write_vc_local_phy(dd,
9301 				 0 /* no power management */,
9302 				 1 /* continuous updates */);
9303 	if (ret != HCMD_SUCCESS)
9304 		goto set_local_link_attributes_fail;
9305 
9306 	/* z=1 in the next call: AU of 0 is not supported by the hardware */
9307 	ret = write_vc_local_fabric(dd, dd->vau, 1, dd->vcu, dd->vl15_init,
9308 				    ppd->port_crc_mode_enabled);
9309 	if (ret != HCMD_SUCCESS)
9310 		goto set_local_link_attributes_fail;
9311 
9312 	/*
9313 	 * SerDes loopback init sequence requires
9314 	 * setting bit 0 of MISC_CONFIG_BITS
9315 	 */
9316 	if (loopback == LOOPBACK_SERDES)
9317 		misc_bits |= 1 << LOOPBACK_SERDES_CONFIG_BIT_MASK_SHIFT;
9318 
9319 	ret = write_vc_local_link_width(dd, misc_bits, 0,
9320 					opa_to_vc_link_widths(
9321 						ppd->link_width_enabled));
9322 	if (ret != HCMD_SUCCESS)
9323 		goto set_local_link_attributes_fail;
9324 
9325 	/* let peer know who we are */
9326 	ret = write_local_device_id(dd, dd->pcidev->device, dd->minrev);
9327 	if (ret == HCMD_SUCCESS)
9328 		return 0;
9329 
9330 set_local_link_attributes_fail:
9331 	dd_dev_err(dd,
9332 		   "Failed to set local link attributes, return 0x%x\n",
9333 		   ret);
9334 	return ret;
9335 }
9336 
9337 /*
9338  * Call this to start the link.
9339  * Do not do anything if the link is disabled.
9340  * Returns 0 if link is disabled, moved to polling, or the driver is not ready.
9341  */
9342 int start_link(struct hfi1_pportdata *ppd)
9343 {
9344 	/*
9345 	 * Tune the SerDes to a ballpark setting for optimal signal and bit
9346 	 * error rate.  Needs to be done before starting the link.
9347 	 */
9348 	tune_serdes(ppd);
9349 
9350 	if (!ppd->driver_link_ready) {
9351 		dd_dev_info(ppd->dd,
9352 			    "%s: stopping link start because driver is not ready\n",
9353 			    __func__);
9354 		return 0;
9355 	}
9356 
9357 	/*
9358 	 * FULL_MGMT_P_KEY is cleared from the pkey table, so that the
9359 	 * pkey table can be configured properly if the HFI unit is connected
9360 	 * to switch port with MgmtAllowed=NO
9361 	 */
9362 	clear_full_mgmt_pkey(ppd);
9363 
9364 	return set_link_state(ppd, HLS_DN_POLL);
9365 }
9366 
9367 static void wait_for_qsfp_init(struct hfi1_pportdata *ppd)
9368 {
9369 	struct hfi1_devdata *dd = ppd->dd;
9370 	u64 mask;
9371 	unsigned long timeout;
9372 
9373 	/*
9374 	 * Some QSFP cables have a quirk that asserts the IntN line as a side
9375 	 * effect of power up on plug-in. We ignore this false positive
9376 	 * interrupt until the module has finished powering up by waiting for
9377 	 * a minimum timeout of the module inrush initialization time of
9378 	 * 500 ms (SFF 8679 Table 5-6) to ensure the voltage rails in the
9379 	 * module have stabilized.
9380 	 */
9381 	msleep(500);
9382 
9383 	/*
9384 	 * Check for QSFP interrupt for t_init (SFF 8679 Table 8-1)
9385 	 */
9386 	timeout = jiffies + msecs_to_jiffies(2000);
9387 	while (1) {
9388 		mask = read_csr(dd, dd->hfi1_id ?
9389 				ASIC_QSFP2_IN : ASIC_QSFP1_IN);
9390 		if (!(mask & QSFP_HFI0_INT_N))
9391 			break;
9392 		if (time_after(jiffies, timeout)) {
9393 			dd_dev_info(dd, "%s: No IntN detected, reset complete\n",
9394 				    __func__);
9395 			break;
9396 		}
9397 		udelay(2);
9398 	}
9399 }
9400 
9401 static void set_qsfp_int_n(struct hfi1_pportdata *ppd, u8 enable)
9402 {
9403 	struct hfi1_devdata *dd = ppd->dd;
9404 	u64 mask;
9405 
9406 	mask = read_csr(dd, dd->hfi1_id ? ASIC_QSFP2_MASK : ASIC_QSFP1_MASK);
9407 	if (enable) {
9408 		/*
9409 		 * Clear the status register to avoid an immediate interrupt
9410 		 * when we re-enable the IntN pin
9411 		 */
9412 		write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_CLEAR : ASIC_QSFP1_CLEAR,
9413 			  QSFP_HFI0_INT_N);
9414 		mask |= (u64)QSFP_HFI0_INT_N;
9415 	} else {
9416 		mask &= ~(u64)QSFP_HFI0_INT_N;
9417 	}
9418 	write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_MASK : ASIC_QSFP1_MASK, mask);
9419 }
9420 
9421 int reset_qsfp(struct hfi1_pportdata *ppd)
9422 {
9423 	struct hfi1_devdata *dd = ppd->dd;
9424 	u64 mask, qsfp_mask;
9425 
9426 	/* Disable INT_N from triggering QSFP interrupts */
9427 	set_qsfp_int_n(ppd, 0);
9428 
9429 	/* Reset the QSFP */
9430 	mask = (u64)QSFP_HFI0_RESET_N;
9431 
9432 	qsfp_mask = read_csr(dd,
9433 			     dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT);
9434 	qsfp_mask &= ~mask;
9435 	write_csr(dd,
9436 		  dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT, qsfp_mask);
9437 
9438 	udelay(10);
9439 
9440 	qsfp_mask |= mask;
9441 	write_csr(dd,
9442 		  dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT, qsfp_mask);
9443 
9444 	wait_for_qsfp_init(ppd);
9445 
9446 	/*
9447 	 * Allow INT_N to trigger the QSFP interrupt to watch
9448 	 * for alarms and warnings
9449 	 */
9450 	set_qsfp_int_n(ppd, 1);
9451 
9452 	/*
9453 	 * After the reset, AOC transmitters are enabled by default. They need
9454 	 * to be turned off to complete the QSFP setup before they can be
9455 	 * enabled again.
9456 	 */
9457 	return set_qsfp_tx(ppd, 0);
9458 }
9459 
9460 static int handle_qsfp_error_conditions(struct hfi1_pportdata *ppd,
9461 					u8 *qsfp_interrupt_status)
9462 {
9463 	struct hfi1_devdata *dd = ppd->dd;
9464 
9465 	if ((qsfp_interrupt_status[0] & QSFP_HIGH_TEMP_ALARM) ||
9466 	    (qsfp_interrupt_status[0] & QSFP_HIGH_TEMP_WARNING))
9467 		dd_dev_err(dd, "%s: QSFP cable temperature too high\n",
9468 			   __func__);
9469 
9470 	if ((qsfp_interrupt_status[0] & QSFP_LOW_TEMP_ALARM) ||
9471 	    (qsfp_interrupt_status[0] & QSFP_LOW_TEMP_WARNING))
9472 		dd_dev_err(dd, "%s: QSFP cable temperature too low\n",
9473 			   __func__);
9474 
9475 	/*
9476 	 * The remaining alarms/warnings don't matter if the link is down.
9477 	 */
9478 	if (ppd->host_link_state & HLS_DOWN)
9479 		return 0;
9480 
9481 	if ((qsfp_interrupt_status[1] & QSFP_HIGH_VCC_ALARM) ||
9482 	    (qsfp_interrupt_status[1] & QSFP_HIGH_VCC_WARNING))
9483 		dd_dev_err(dd, "%s: QSFP supply voltage too high\n",
9484 			   __func__);
9485 
9486 	if ((qsfp_interrupt_status[1] & QSFP_LOW_VCC_ALARM) ||
9487 	    (qsfp_interrupt_status[1] & QSFP_LOW_VCC_WARNING))
9488 		dd_dev_err(dd, "%s: QSFP supply voltage too low\n",
9489 			   __func__);
9490 
9491 	/* Byte 2 is vendor specific */
9492 
9493 	if ((qsfp_interrupt_status[3] & QSFP_HIGH_POWER_ALARM) ||
9494 	    (qsfp_interrupt_status[3] & QSFP_HIGH_POWER_WARNING))
9495 		dd_dev_err(dd, "%s: Cable RX channel 1/2 power too high\n",
9496 			   __func__);
9497 
9498 	if ((qsfp_interrupt_status[3] & QSFP_LOW_POWER_ALARM) ||
9499 	    (qsfp_interrupt_status[3] & QSFP_LOW_POWER_WARNING))
9500 		dd_dev_err(dd, "%s: Cable RX channel 1/2 power too low\n",
9501 			   __func__);
9502 
9503 	if ((qsfp_interrupt_status[4] & QSFP_HIGH_POWER_ALARM) ||
9504 	    (qsfp_interrupt_status[4] & QSFP_HIGH_POWER_WARNING))
9505 		dd_dev_err(dd, "%s: Cable RX channel 3/4 power too high\n",
9506 			   __func__);
9507 
9508 	if ((qsfp_interrupt_status[4] & QSFP_LOW_POWER_ALARM) ||
9509 	    (qsfp_interrupt_status[4] & QSFP_LOW_POWER_WARNING))
9510 		dd_dev_err(dd, "%s: Cable RX channel 3/4 power too low\n",
9511 			   __func__);
9512 
9513 	if ((qsfp_interrupt_status[5] & QSFP_HIGH_BIAS_ALARM) ||
9514 	    (qsfp_interrupt_status[5] & QSFP_HIGH_BIAS_WARNING))
9515 		dd_dev_err(dd, "%s: Cable TX channel 1/2 bias too high\n",
9516 			   __func__);
9517 
9518 	if ((qsfp_interrupt_status[5] & QSFP_LOW_BIAS_ALARM) ||
9519 	    (qsfp_interrupt_status[5] & QSFP_LOW_BIAS_WARNING))
9520 		dd_dev_err(dd, "%s: Cable TX channel 1/2 bias too low\n",
9521 			   __func__);
9522 
9523 	if ((qsfp_interrupt_status[6] & QSFP_HIGH_BIAS_ALARM) ||
9524 	    (qsfp_interrupt_status[6] & QSFP_HIGH_BIAS_WARNING))
9525 		dd_dev_err(dd, "%s: Cable TX channel 3/4 bias too high\n",
9526 			   __func__);
9527 
9528 	if ((qsfp_interrupt_status[6] & QSFP_LOW_BIAS_ALARM) ||
9529 	    (qsfp_interrupt_status[6] & QSFP_LOW_BIAS_WARNING))
9530 		dd_dev_err(dd, "%s: Cable TX channel 3/4 bias too low\n",
9531 			   __func__);
9532 
9533 	if ((qsfp_interrupt_status[7] & QSFP_HIGH_POWER_ALARM) ||
9534 	    (qsfp_interrupt_status[7] & QSFP_HIGH_POWER_WARNING))
9535 		dd_dev_err(dd, "%s: Cable TX channel 1/2 power too high\n",
9536 			   __func__);
9537 
9538 	if ((qsfp_interrupt_status[7] & QSFP_LOW_POWER_ALARM) ||
9539 	    (qsfp_interrupt_status[7] & QSFP_LOW_POWER_WARNING))
9540 		dd_dev_err(dd, "%s: Cable TX channel 1/2 power too low\n",
9541 			   __func__);
9542 
9543 	if ((qsfp_interrupt_status[8] & QSFP_HIGH_POWER_ALARM) ||
9544 	    (qsfp_interrupt_status[8] & QSFP_HIGH_POWER_WARNING))
9545 		dd_dev_err(dd, "%s: Cable TX channel 3/4 power too high\n",
9546 			   __func__);
9547 
9548 	if ((qsfp_interrupt_status[8] & QSFP_LOW_POWER_ALARM) ||
9549 	    (qsfp_interrupt_status[8] & QSFP_LOW_POWER_WARNING))
9550 		dd_dev_err(dd, "%s: Cable TX channel 3/4 power too low\n",
9551 			   __func__);
9552 
9553 	/* Bytes 9-10 and 11-12 are reserved */
9554 	/* Bytes 13-15 are vendor specific */
9555 
9556 	return 0;
9557 }
9558 
9559 /* This routine will only be scheduled if the QSFP module present is asserted */
9560 void qsfp_event(struct work_struct *work)
9561 {
9562 	struct qsfp_data *qd;
9563 	struct hfi1_pportdata *ppd;
9564 	struct hfi1_devdata *dd;
9565 
9566 	qd = container_of(work, struct qsfp_data, qsfp_work);
9567 	ppd = qd->ppd;
9568 	dd = ppd->dd;
9569 
9570 	/* Sanity check */
9571 	if (!qsfp_mod_present(ppd))
9572 		return;
9573 
9574 	if (ppd->host_link_state == HLS_DN_DISABLE) {
9575 		dd_dev_info(ppd->dd,
9576 			    "%s: stopping link start because link is disabled\n",
9577 			    __func__);
9578 		return;
9579 	}
9580 
9581 	/*
9582 	 * Turn DC back on after cable has been re-inserted. Up until
9583 	 * now, the DC has been in reset to save power.
9584 	 */
9585 	dc_start(dd);
9586 
9587 	if (qd->cache_refresh_required) {
9588 		set_qsfp_int_n(ppd, 0);
9589 
9590 		wait_for_qsfp_init(ppd);
9591 
9592 		/*
9593 		 * Allow INT_N to trigger the QSFP interrupt to watch
9594 		 * for alarms and warnings
9595 		 */
9596 		set_qsfp_int_n(ppd, 1);
9597 
9598 		start_link(ppd);
9599 	}
9600 
9601 	if (qd->check_interrupt_flags) {
9602 		u8 qsfp_interrupt_status[16] = {0,};
9603 
9604 		if (one_qsfp_read(ppd, dd->hfi1_id, 6,
9605 				  &qsfp_interrupt_status[0], 16) != 16) {
9606 			dd_dev_info(dd,
9607 				    "%s: Failed to read status of QSFP module\n",
9608 				    __func__);
9609 		} else {
9610 			unsigned long flags;
9611 
9612 			handle_qsfp_error_conditions(
9613 					ppd, qsfp_interrupt_status);
9614 			spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
9615 			ppd->qsfp_info.check_interrupt_flags = 0;
9616 			spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock,
9617 					       flags);
9618 		}
9619 	}
9620 }
9621 
9622 static void init_qsfp_int(struct hfi1_devdata *dd)
9623 {
9624 	struct hfi1_pportdata *ppd = dd->pport;
9625 	u64 qsfp_mask, cce_int_mask;
9626 	const int qsfp1_int_smask = QSFP1_INT % 64;
9627 	const int qsfp2_int_smask = QSFP2_INT % 64;
9628 
9629 	/*
9630 	 * disable QSFP1 interrupts for HFI1, QSFP2 interrupts for HFI0
9631 	 * Qsfp1Int and Qsfp2Int are adjacent bits in the same CSR,
9632 	 * therefore just one of QSFP1_INT/QSFP2_INT can be used to find
9633 	 * the index of the appropriate CSR in the CCEIntMask CSR array
9634 	 */
9635 	cce_int_mask = read_csr(dd, CCE_INT_MASK +
9636 				(8 * (QSFP1_INT / 64)));
9637 	if (dd->hfi1_id) {
9638 		cce_int_mask &= ~((u64)1 << qsfp1_int_smask);
9639 		write_csr(dd, CCE_INT_MASK + (8 * (QSFP1_INT / 64)),
9640 			  cce_int_mask);
9641 	} else {
9642 		cce_int_mask &= ~((u64)1 << qsfp2_int_smask);
9643 		write_csr(dd, CCE_INT_MASK + (8 * (QSFP2_INT / 64)),
9644 			  cce_int_mask);
9645 	}
9646 
9647 	qsfp_mask = (u64)(QSFP_HFI0_INT_N | QSFP_HFI0_MODPRST_N);
9648 	/* Clear current status to avoid spurious interrupts */
9649 	write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_CLEAR : ASIC_QSFP1_CLEAR,
9650 		  qsfp_mask);
9651 	write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_MASK : ASIC_QSFP1_MASK,
9652 		  qsfp_mask);
9653 
9654 	set_qsfp_int_n(ppd, 0);
9655 
9656 	/* Handle active low nature of INT_N and MODPRST_N pins */
9657 	if (qsfp_mod_present(ppd))
9658 		qsfp_mask &= ~(u64)QSFP_HFI0_MODPRST_N;
9659 	write_csr(dd,
9660 		  dd->hfi1_id ? ASIC_QSFP2_INVERT : ASIC_QSFP1_INVERT,
9661 		  qsfp_mask);
9662 }
9663 
9664 /*
9665  * Do a one-time initialize of the LCB block.
9666  */
9667 static void init_lcb(struct hfi1_devdata *dd)
9668 {
9669 	/* simulator does not correctly handle LCB cclk loopback, skip */
9670 	if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR)
9671 		return;
9672 
9673 	/* the DC has been reset earlier in the driver load */
9674 
9675 	/* set LCB for cclk loopback on the port */
9676 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0x01);
9677 	write_csr(dd, DC_LCB_CFG_LANE_WIDTH, 0x00);
9678 	write_csr(dd, DC_LCB_CFG_REINIT_AS_SLAVE, 0x00);
9679 	write_csr(dd, DC_LCB_CFG_CNT_FOR_SKIP_STALL, 0x110);
9680 	write_csr(dd, DC_LCB_CFG_CLK_CNTR, 0x08);
9681 	write_csr(dd, DC_LCB_CFG_LOOPBACK, 0x02);
9682 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0x00);
9683 }
9684 
9685 /*
9686  * Perform a test read on the QSFP.  Return 0 on success, -ERRNO
9687  * on error.
9688  */
9689 static int test_qsfp_read(struct hfi1_pportdata *ppd)
9690 {
9691 	int ret;
9692 	u8 status;
9693 
9694 	/*
9695 	 * Report success if not a QSFP or, if it is a QSFP, but the cable is
9696 	 * not present
9697 	 */
9698 	if (ppd->port_type != PORT_TYPE_QSFP || !qsfp_mod_present(ppd))
9699 		return 0;
9700 
9701 	/* read byte 2, the status byte */
9702 	ret = one_qsfp_read(ppd, ppd->dd->hfi1_id, 2, &status, 1);
9703 	if (ret < 0)
9704 		return ret;
9705 	if (ret != 1)
9706 		return -EIO;
9707 
9708 	return 0; /* success */
9709 }
9710 
9711 /*
9712  * Values for QSFP retry.
9713  *
9714  * Give up after 10s (20 x 500ms).  The overall timeout was empirically
9715  * arrived at from experience on a large cluster.
9716  */
9717 #define MAX_QSFP_RETRIES 20
9718 #define QSFP_RETRY_WAIT 500 /* msec */
9719 
9720 /*
9721  * Try a QSFP read.  If it fails, schedule a retry for later.
9722  * Called on first link activation after driver load.
9723  */
9724 static void try_start_link(struct hfi1_pportdata *ppd)
9725 {
9726 	if (test_qsfp_read(ppd)) {
9727 		/* read failed */
9728 		if (ppd->qsfp_retry_count >= MAX_QSFP_RETRIES) {
9729 			dd_dev_err(ppd->dd, "QSFP not responding, giving up\n");
9730 			return;
9731 		}
9732 		dd_dev_info(ppd->dd,
9733 			    "QSFP not responding, waiting and retrying %d\n",
9734 			    (int)ppd->qsfp_retry_count);
9735 		ppd->qsfp_retry_count++;
9736 		queue_delayed_work(ppd->link_wq, &ppd->start_link_work,
9737 				   msecs_to_jiffies(QSFP_RETRY_WAIT));
9738 		return;
9739 	}
9740 	ppd->qsfp_retry_count = 0;
9741 
9742 	start_link(ppd);
9743 }
9744 
9745 /*
9746  * Workqueue function to start the link after a delay.
9747  */
9748 void handle_start_link(struct work_struct *work)
9749 {
9750 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
9751 						  start_link_work.work);
9752 	try_start_link(ppd);
9753 }
9754 
9755 int bringup_serdes(struct hfi1_pportdata *ppd)
9756 {
9757 	struct hfi1_devdata *dd = ppd->dd;
9758 	u64 guid;
9759 	int ret;
9760 
9761 	if (HFI1_CAP_IS_KSET(EXTENDED_PSN))
9762 		add_rcvctrl(dd, RCV_CTRL_RCV_EXTENDED_PSN_ENABLE_SMASK);
9763 
9764 	guid = ppd->guids[HFI1_PORT_GUID_INDEX];
9765 	if (!guid) {
9766 		if (dd->base_guid)
9767 			guid = dd->base_guid + ppd->port - 1;
9768 		ppd->guids[HFI1_PORT_GUID_INDEX] = guid;
9769 	}
9770 
9771 	/* Set linkinit_reason on power up per OPA spec */
9772 	ppd->linkinit_reason = OPA_LINKINIT_REASON_LINKUP;
9773 
9774 	/* one-time init of the LCB */
9775 	init_lcb(dd);
9776 
9777 	if (loopback) {
9778 		ret = init_loopback(dd);
9779 		if (ret < 0)
9780 			return ret;
9781 	}
9782 
9783 	get_port_type(ppd);
9784 	if (ppd->port_type == PORT_TYPE_QSFP) {
9785 		set_qsfp_int_n(ppd, 0);
9786 		wait_for_qsfp_init(ppd);
9787 		set_qsfp_int_n(ppd, 1);
9788 	}
9789 
9790 	try_start_link(ppd);
9791 	return 0;
9792 }
9793 
9794 void hfi1_quiet_serdes(struct hfi1_pportdata *ppd)
9795 {
9796 	struct hfi1_devdata *dd = ppd->dd;
9797 
9798 	/*
9799 	 * Shut down the link and keep it down.   First turn off that the
9800 	 * driver wants to allow the link to be up (driver_link_ready).
9801 	 * Then make sure the link is not automatically restarted
9802 	 * (link_enabled).  Cancel any pending restart.  And finally
9803 	 * go offline.
9804 	 */
9805 	ppd->driver_link_ready = 0;
9806 	ppd->link_enabled = 0;
9807 
9808 	ppd->qsfp_retry_count = MAX_QSFP_RETRIES; /* prevent more retries */
9809 	flush_delayed_work(&ppd->start_link_work);
9810 	cancel_delayed_work_sync(&ppd->start_link_work);
9811 
9812 	ppd->offline_disabled_reason =
9813 			HFI1_ODR_MASK(OPA_LINKDOWN_REASON_REBOOT);
9814 	set_link_down_reason(ppd, OPA_LINKDOWN_REASON_REBOOT, 0,
9815 			     OPA_LINKDOWN_REASON_REBOOT);
9816 	set_link_state(ppd, HLS_DN_OFFLINE);
9817 
9818 	/* disable the port */
9819 	clear_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
9820 }
9821 
9822 static inline int init_cpu_counters(struct hfi1_devdata *dd)
9823 {
9824 	struct hfi1_pportdata *ppd;
9825 	int i;
9826 
9827 	ppd = (struct hfi1_pportdata *)(dd + 1);
9828 	for (i = 0; i < dd->num_pports; i++, ppd++) {
9829 		ppd->ibport_data.rvp.rc_acks = NULL;
9830 		ppd->ibport_data.rvp.rc_qacks = NULL;
9831 		ppd->ibport_data.rvp.rc_acks = alloc_percpu(u64);
9832 		ppd->ibport_data.rvp.rc_qacks = alloc_percpu(u64);
9833 		ppd->ibport_data.rvp.rc_delayed_comp = alloc_percpu(u64);
9834 		if (!ppd->ibport_data.rvp.rc_acks ||
9835 		    !ppd->ibport_data.rvp.rc_delayed_comp ||
9836 		    !ppd->ibport_data.rvp.rc_qacks)
9837 			return -ENOMEM;
9838 	}
9839 
9840 	return 0;
9841 }
9842 
9843 /*
9844  * index is the index into the receive array
9845  */
9846 void hfi1_put_tid(struct hfi1_devdata *dd, u32 index,
9847 		  u32 type, unsigned long pa, u16 order)
9848 {
9849 	u64 reg;
9850 
9851 	if (!(dd->flags & HFI1_PRESENT))
9852 		goto done;
9853 
9854 	if (type == PT_INVALID || type == PT_INVALID_FLUSH) {
9855 		pa = 0;
9856 		order = 0;
9857 	} else if (type > PT_INVALID) {
9858 		dd_dev_err(dd,
9859 			   "unexpected receive array type %u for index %u, not handled\n",
9860 			   type, index);
9861 		goto done;
9862 	}
9863 	trace_hfi1_put_tid(dd, index, type, pa, order);
9864 
9865 #define RT_ADDR_SHIFT 12	/* 4KB kernel address boundary */
9866 	reg = RCV_ARRAY_RT_WRITE_ENABLE_SMASK
9867 		| (u64)order << RCV_ARRAY_RT_BUF_SIZE_SHIFT
9868 		| ((pa >> RT_ADDR_SHIFT) & RCV_ARRAY_RT_ADDR_MASK)
9869 					<< RCV_ARRAY_RT_ADDR_SHIFT;
9870 	trace_hfi1_write_rcvarray(dd->rcvarray_wc + (index * 8), reg);
9871 	writeq(reg, dd->rcvarray_wc + (index * 8));
9872 
9873 	if (type == PT_EAGER || type == PT_INVALID_FLUSH || (index & 3) == 3)
9874 		/*
9875 		 * Eager entries are written and flushed
9876 		 *
9877 		 * Expected entries are flushed every 4 writes
9878 		 */
9879 		flush_wc();
9880 done:
9881 	return;
9882 }
9883 
9884 void hfi1_clear_tids(struct hfi1_ctxtdata *rcd)
9885 {
9886 	struct hfi1_devdata *dd = rcd->dd;
9887 	u32 i;
9888 
9889 	/* this could be optimized */
9890 	for (i = rcd->eager_base; i < rcd->eager_base +
9891 		     rcd->egrbufs.alloced; i++)
9892 		hfi1_put_tid(dd, i, PT_INVALID, 0, 0);
9893 
9894 	for (i = rcd->expected_base;
9895 			i < rcd->expected_base + rcd->expected_count; i++)
9896 		hfi1_put_tid(dd, i, PT_INVALID, 0, 0);
9897 }
9898 
9899 static const char * const ib_cfg_name_strings[] = {
9900 	"HFI1_IB_CFG_LIDLMC",
9901 	"HFI1_IB_CFG_LWID_DG_ENB",
9902 	"HFI1_IB_CFG_LWID_ENB",
9903 	"HFI1_IB_CFG_LWID",
9904 	"HFI1_IB_CFG_SPD_ENB",
9905 	"HFI1_IB_CFG_SPD",
9906 	"HFI1_IB_CFG_RXPOL_ENB",
9907 	"HFI1_IB_CFG_LREV_ENB",
9908 	"HFI1_IB_CFG_LINKLATENCY",
9909 	"HFI1_IB_CFG_HRTBT",
9910 	"HFI1_IB_CFG_OP_VLS",
9911 	"HFI1_IB_CFG_VL_HIGH_CAP",
9912 	"HFI1_IB_CFG_VL_LOW_CAP",
9913 	"HFI1_IB_CFG_OVERRUN_THRESH",
9914 	"HFI1_IB_CFG_PHYERR_THRESH",
9915 	"HFI1_IB_CFG_LINKDEFAULT",
9916 	"HFI1_IB_CFG_PKEYS",
9917 	"HFI1_IB_CFG_MTU",
9918 	"HFI1_IB_CFG_LSTATE",
9919 	"HFI1_IB_CFG_VL_HIGH_LIMIT",
9920 	"HFI1_IB_CFG_PMA_TICKS",
9921 	"HFI1_IB_CFG_PORT"
9922 };
9923 
9924 static const char *ib_cfg_name(int which)
9925 {
9926 	if (which < 0 || which >= ARRAY_SIZE(ib_cfg_name_strings))
9927 		return "invalid";
9928 	return ib_cfg_name_strings[which];
9929 }
9930 
9931 int hfi1_get_ib_cfg(struct hfi1_pportdata *ppd, int which)
9932 {
9933 	struct hfi1_devdata *dd = ppd->dd;
9934 	int val = 0;
9935 
9936 	switch (which) {
9937 	case HFI1_IB_CFG_LWID_ENB: /* allowed Link-width */
9938 		val = ppd->link_width_enabled;
9939 		break;
9940 	case HFI1_IB_CFG_LWID: /* currently active Link-width */
9941 		val = ppd->link_width_active;
9942 		break;
9943 	case HFI1_IB_CFG_SPD_ENB: /* allowed Link speeds */
9944 		val = ppd->link_speed_enabled;
9945 		break;
9946 	case HFI1_IB_CFG_SPD: /* current Link speed */
9947 		val = ppd->link_speed_active;
9948 		break;
9949 
9950 	case HFI1_IB_CFG_RXPOL_ENB: /* Auto-RX-polarity enable */
9951 	case HFI1_IB_CFG_LREV_ENB: /* Auto-Lane-reversal enable */
9952 	case HFI1_IB_CFG_LINKLATENCY:
9953 		goto unimplemented;
9954 
9955 	case HFI1_IB_CFG_OP_VLS:
9956 		val = ppd->actual_vls_operational;
9957 		break;
9958 	case HFI1_IB_CFG_VL_HIGH_CAP: /* VL arb high priority table size */
9959 		val = VL_ARB_HIGH_PRIO_TABLE_SIZE;
9960 		break;
9961 	case HFI1_IB_CFG_VL_LOW_CAP: /* VL arb low priority table size */
9962 		val = VL_ARB_LOW_PRIO_TABLE_SIZE;
9963 		break;
9964 	case HFI1_IB_CFG_OVERRUN_THRESH: /* IB overrun threshold */
9965 		val = ppd->overrun_threshold;
9966 		break;
9967 	case HFI1_IB_CFG_PHYERR_THRESH: /* IB PHY error threshold */
9968 		val = ppd->phy_error_threshold;
9969 		break;
9970 	case HFI1_IB_CFG_LINKDEFAULT: /* IB link default (sleep/poll) */
9971 		val = HLS_DEFAULT;
9972 		break;
9973 
9974 	case HFI1_IB_CFG_HRTBT: /* Heartbeat off/enable/auto */
9975 	case HFI1_IB_CFG_PMA_TICKS:
9976 	default:
9977 unimplemented:
9978 		if (HFI1_CAP_IS_KSET(PRINT_UNIMPL))
9979 			dd_dev_info(
9980 				dd,
9981 				"%s: which %s: not implemented\n",
9982 				__func__,
9983 				ib_cfg_name(which));
9984 		break;
9985 	}
9986 
9987 	return val;
9988 }
9989 
9990 /*
9991  * The largest MAD packet size.
9992  */
9993 #define MAX_MAD_PACKET 2048
9994 
9995 /*
9996  * Return the maximum header bytes that can go on the _wire_
9997  * for this device. This count includes the ICRC which is
9998  * not part of the packet held in memory but it is appended
9999  * by the HW.
10000  * This is dependent on the device's receive header entry size.
10001  * HFI allows this to be set per-receive context, but the
10002  * driver presently enforces a global value.
10003  */
10004 u32 lrh_max_header_bytes(struct hfi1_devdata *dd)
10005 {
10006 	/*
10007 	 * The maximum non-payload (MTU) bytes in LRH.PktLen are
10008 	 * the Receive Header Entry Size minus the PBC (or RHF) size
10009 	 * plus one DW for the ICRC appended by HW.
10010 	 *
10011 	 * dd->rcd[0].rcvhdrqentsize is in DW.
10012 	 * We use rcd[0] as all context will have the same value. Also,
10013 	 * the first kernel context would have been allocated by now so
10014 	 * we are guaranteed a valid value.
10015 	 */
10016 	return (dd->rcd[0]->rcvhdrqentsize - 2/*PBC/RHF*/ + 1/*ICRC*/) << 2;
10017 }
10018 
10019 /*
10020  * Set Send Length
10021  * @ppd - per port data
10022  *
10023  * Set the MTU by limiting how many DWs may be sent.  The SendLenCheck*
10024  * registers compare against LRH.PktLen, so use the max bytes included
10025  * in the LRH.
10026  *
10027  * This routine changes all VL values except VL15, which it maintains at
10028  * the same value.
10029  */
10030 static void set_send_length(struct hfi1_pportdata *ppd)
10031 {
10032 	struct hfi1_devdata *dd = ppd->dd;
10033 	u32 max_hb = lrh_max_header_bytes(dd), dcmtu;
10034 	u32 maxvlmtu = dd->vld[15].mtu;
10035 	u64 len1 = 0, len2 = (((dd->vld[15].mtu + max_hb) >> 2)
10036 			      & SEND_LEN_CHECK1_LEN_VL15_MASK) <<
10037 		SEND_LEN_CHECK1_LEN_VL15_SHIFT;
10038 	int i, j;
10039 	u32 thres;
10040 
10041 	for (i = 0; i < ppd->vls_supported; i++) {
10042 		if (dd->vld[i].mtu > maxvlmtu)
10043 			maxvlmtu = dd->vld[i].mtu;
10044 		if (i <= 3)
10045 			len1 |= (((dd->vld[i].mtu + max_hb) >> 2)
10046 				 & SEND_LEN_CHECK0_LEN_VL0_MASK) <<
10047 				((i % 4) * SEND_LEN_CHECK0_LEN_VL1_SHIFT);
10048 		else
10049 			len2 |= (((dd->vld[i].mtu + max_hb) >> 2)
10050 				 & SEND_LEN_CHECK1_LEN_VL4_MASK) <<
10051 				((i % 4) * SEND_LEN_CHECK1_LEN_VL5_SHIFT);
10052 	}
10053 	write_csr(dd, SEND_LEN_CHECK0, len1);
10054 	write_csr(dd, SEND_LEN_CHECK1, len2);
10055 	/* adjust kernel credit return thresholds based on new MTUs */
10056 	/* all kernel receive contexts have the same hdrqentsize */
10057 	for (i = 0; i < ppd->vls_supported; i++) {
10058 		thres = min(sc_percent_to_threshold(dd->vld[i].sc, 50),
10059 			    sc_mtu_to_threshold(dd->vld[i].sc,
10060 						dd->vld[i].mtu,
10061 						dd->rcd[0]->rcvhdrqentsize));
10062 		for (j = 0; j < INIT_SC_PER_VL; j++)
10063 			sc_set_cr_threshold(
10064 					pio_select_send_context_vl(dd, j, i),
10065 					    thres);
10066 	}
10067 	thres = min(sc_percent_to_threshold(dd->vld[15].sc, 50),
10068 		    sc_mtu_to_threshold(dd->vld[15].sc,
10069 					dd->vld[15].mtu,
10070 					dd->rcd[0]->rcvhdrqentsize));
10071 	sc_set_cr_threshold(dd->vld[15].sc, thres);
10072 
10073 	/* Adjust maximum MTU for the port in DC */
10074 	dcmtu = maxvlmtu == 10240 ? DCC_CFG_PORT_MTU_CAP_10240 :
10075 		(ilog2(maxvlmtu >> 8) + 1);
10076 	len1 = read_csr(ppd->dd, DCC_CFG_PORT_CONFIG);
10077 	len1 &= ~DCC_CFG_PORT_CONFIG_MTU_CAP_SMASK;
10078 	len1 |= ((u64)dcmtu & DCC_CFG_PORT_CONFIG_MTU_CAP_MASK) <<
10079 		DCC_CFG_PORT_CONFIG_MTU_CAP_SHIFT;
10080 	write_csr(ppd->dd, DCC_CFG_PORT_CONFIG, len1);
10081 }
10082 
10083 static void set_lidlmc(struct hfi1_pportdata *ppd)
10084 {
10085 	int i;
10086 	u64 sreg = 0;
10087 	struct hfi1_devdata *dd = ppd->dd;
10088 	u32 mask = ~((1U << ppd->lmc) - 1);
10089 	u64 c1 = read_csr(ppd->dd, DCC_CFG_PORT_CONFIG1);
10090 	u32 lid;
10091 
10092 	/*
10093 	 * Program 0 in CSR if port lid is extended. This prevents
10094 	 * 9B packets being sent out for large lids.
10095 	 */
10096 	lid = (ppd->lid >= be16_to_cpu(IB_MULTICAST_LID_BASE)) ? 0 : ppd->lid;
10097 	c1 &= ~(DCC_CFG_PORT_CONFIG1_TARGET_DLID_SMASK
10098 		| DCC_CFG_PORT_CONFIG1_DLID_MASK_SMASK);
10099 	c1 |= ((lid & DCC_CFG_PORT_CONFIG1_TARGET_DLID_MASK)
10100 			<< DCC_CFG_PORT_CONFIG1_TARGET_DLID_SHIFT) |
10101 	      ((mask & DCC_CFG_PORT_CONFIG1_DLID_MASK_MASK)
10102 			<< DCC_CFG_PORT_CONFIG1_DLID_MASK_SHIFT);
10103 	write_csr(ppd->dd, DCC_CFG_PORT_CONFIG1, c1);
10104 
10105 	/*
10106 	 * Iterate over all the send contexts and set their SLID check
10107 	 */
10108 	sreg = ((mask & SEND_CTXT_CHECK_SLID_MASK_MASK) <<
10109 			SEND_CTXT_CHECK_SLID_MASK_SHIFT) |
10110 	       (((lid & mask) & SEND_CTXT_CHECK_SLID_VALUE_MASK) <<
10111 			SEND_CTXT_CHECK_SLID_VALUE_SHIFT);
10112 
10113 	for (i = 0; i < dd->chip_send_contexts; i++) {
10114 		hfi1_cdbg(LINKVERB, "SendContext[%d].SLID_CHECK = 0x%x",
10115 			  i, (u32)sreg);
10116 		write_kctxt_csr(dd, i, SEND_CTXT_CHECK_SLID, sreg);
10117 	}
10118 
10119 	/* Now we have to do the same thing for the sdma engines */
10120 	sdma_update_lmc(dd, mask, lid);
10121 }
10122 
10123 static const char *state_completed_string(u32 completed)
10124 {
10125 	static const char * const state_completed[] = {
10126 		"EstablishComm",
10127 		"OptimizeEQ",
10128 		"VerifyCap"
10129 	};
10130 
10131 	if (completed < ARRAY_SIZE(state_completed))
10132 		return state_completed[completed];
10133 
10134 	return "unknown";
10135 }
10136 
10137 static const char all_lanes_dead_timeout_expired[] =
10138 	"All lanes were inactive – was the interconnect media removed?";
10139 static const char tx_out_of_policy[] =
10140 	"Passing lanes on local port do not meet the local link width policy";
10141 static const char no_state_complete[] =
10142 	"State timeout occurred before link partner completed the state";
10143 static const char * const state_complete_reasons[] = {
10144 	[0x00] = "Reason unknown",
10145 	[0x01] = "Link was halted by driver, refer to LinkDownReason",
10146 	[0x02] = "Link partner reported failure",
10147 	[0x10] = "Unable to achieve frame sync on any lane",
10148 	[0x11] =
10149 	  "Unable to find a common bit rate with the link partner",
10150 	[0x12] =
10151 	  "Unable to achieve frame sync on sufficient lanes to meet the local link width policy",
10152 	[0x13] =
10153 	  "Unable to identify preset equalization on sufficient lanes to meet the local link width policy",
10154 	[0x14] = no_state_complete,
10155 	[0x15] =
10156 	  "State timeout occurred before link partner identified equalization presets",
10157 	[0x16] =
10158 	  "Link partner completed the EstablishComm state, but the passing lanes do not meet the local link width policy",
10159 	[0x17] = tx_out_of_policy,
10160 	[0x20] = all_lanes_dead_timeout_expired,
10161 	[0x21] =
10162 	  "Unable to achieve acceptable BER on sufficient lanes to meet the local link width policy",
10163 	[0x22] = no_state_complete,
10164 	[0x23] =
10165 	  "Link partner completed the OptimizeEq state, but the passing lanes do not meet the local link width policy",
10166 	[0x24] = tx_out_of_policy,
10167 	[0x30] = all_lanes_dead_timeout_expired,
10168 	[0x31] =
10169 	  "State timeout occurred waiting for host to process received frames",
10170 	[0x32] = no_state_complete,
10171 	[0x33] =
10172 	  "Link partner completed the VerifyCap state, but the passing lanes do not meet the local link width policy",
10173 	[0x34] = tx_out_of_policy,
10174 	[0x35] = "Negotiated link width is mutually exclusive",
10175 	[0x36] =
10176 	  "Timed out before receiving verifycap frames in VerifyCap.Exchange",
10177 	[0x37] = "Unable to resolve secure data exchange",
10178 };
10179 
10180 static const char *state_complete_reason_code_string(struct hfi1_pportdata *ppd,
10181 						     u32 code)
10182 {
10183 	const char *str = NULL;
10184 
10185 	if (code < ARRAY_SIZE(state_complete_reasons))
10186 		str = state_complete_reasons[code];
10187 
10188 	if (str)
10189 		return str;
10190 	return "Reserved";
10191 }
10192 
10193 /* describe the given last state complete frame */
10194 static void decode_state_complete(struct hfi1_pportdata *ppd, u32 frame,
10195 				  const char *prefix)
10196 {
10197 	struct hfi1_devdata *dd = ppd->dd;
10198 	u32 success;
10199 	u32 state;
10200 	u32 reason;
10201 	u32 lanes;
10202 
10203 	/*
10204 	 * Decode frame:
10205 	 *  [ 0: 0] - success
10206 	 *  [ 3: 1] - state
10207 	 *  [ 7: 4] - next state timeout
10208 	 *  [15: 8] - reason code
10209 	 *  [31:16] - lanes
10210 	 */
10211 	success = frame & 0x1;
10212 	state = (frame >> 1) & 0x7;
10213 	reason = (frame >> 8) & 0xff;
10214 	lanes = (frame >> 16) & 0xffff;
10215 
10216 	dd_dev_err(dd, "Last %s LNI state complete frame 0x%08x:\n",
10217 		   prefix, frame);
10218 	dd_dev_err(dd, "    last reported state state: %s (0x%x)\n",
10219 		   state_completed_string(state), state);
10220 	dd_dev_err(dd, "    state successfully completed: %s\n",
10221 		   success ? "yes" : "no");
10222 	dd_dev_err(dd, "    fail reason 0x%x: %s\n",
10223 		   reason, state_complete_reason_code_string(ppd, reason));
10224 	dd_dev_err(dd, "    passing lane mask: 0x%x", lanes);
10225 }
10226 
10227 /*
10228  * Read the last state complete frames and explain them.  This routine
10229  * expects to be called if the link went down during link negotiation
10230  * and initialization (LNI).  That is, anywhere between polling and link up.
10231  */
10232 static void check_lni_states(struct hfi1_pportdata *ppd)
10233 {
10234 	u32 last_local_state;
10235 	u32 last_remote_state;
10236 
10237 	read_last_local_state(ppd->dd, &last_local_state);
10238 	read_last_remote_state(ppd->dd, &last_remote_state);
10239 
10240 	/*
10241 	 * Don't report anything if there is nothing to report.  A value of
10242 	 * 0 means the link was taken down while polling and there was no
10243 	 * training in-process.
10244 	 */
10245 	if (last_local_state == 0 && last_remote_state == 0)
10246 		return;
10247 
10248 	decode_state_complete(ppd, last_local_state, "transmitted");
10249 	decode_state_complete(ppd, last_remote_state, "received");
10250 }
10251 
10252 /* wait for wait_ms for LINK_TRANSFER_ACTIVE to go to 1 */
10253 static int wait_link_transfer_active(struct hfi1_devdata *dd, int wait_ms)
10254 {
10255 	u64 reg;
10256 	unsigned long timeout;
10257 
10258 	/* watch LCB_STS_LINK_TRANSFER_ACTIVE */
10259 	timeout = jiffies + msecs_to_jiffies(wait_ms);
10260 	while (1) {
10261 		reg = read_csr(dd, DC_LCB_STS_LINK_TRANSFER_ACTIVE);
10262 		if (reg)
10263 			break;
10264 		if (time_after(jiffies, timeout)) {
10265 			dd_dev_err(dd,
10266 				   "timeout waiting for LINK_TRANSFER_ACTIVE\n");
10267 			return -ETIMEDOUT;
10268 		}
10269 		udelay(2);
10270 	}
10271 	return 0;
10272 }
10273 
10274 /* called when the logical link state is not down as it should be */
10275 static void force_logical_link_state_down(struct hfi1_pportdata *ppd)
10276 {
10277 	struct hfi1_devdata *dd = ppd->dd;
10278 
10279 	/*
10280 	 * Bring link up in LCB loopback
10281 	 */
10282 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 1);
10283 	write_csr(dd, DC_LCB_CFG_IGNORE_LOST_RCLK,
10284 		  DC_LCB_CFG_IGNORE_LOST_RCLK_EN_SMASK);
10285 
10286 	write_csr(dd, DC_LCB_CFG_LANE_WIDTH, 0);
10287 	write_csr(dd, DC_LCB_CFG_REINIT_AS_SLAVE, 0);
10288 	write_csr(dd, DC_LCB_CFG_CNT_FOR_SKIP_STALL, 0x110);
10289 	write_csr(dd, DC_LCB_CFG_LOOPBACK, 0x2);
10290 
10291 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0);
10292 	(void)read_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET);
10293 	udelay(3);
10294 	write_csr(dd, DC_LCB_CFG_ALLOW_LINK_UP, 1);
10295 	write_csr(dd, DC_LCB_CFG_RUN, 1ull << DC_LCB_CFG_RUN_EN_SHIFT);
10296 
10297 	wait_link_transfer_active(dd, 100);
10298 
10299 	/*
10300 	 * Bring the link down again.
10301 	 */
10302 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 1);
10303 	write_csr(dd, DC_LCB_CFG_ALLOW_LINK_UP, 0);
10304 	write_csr(dd, DC_LCB_CFG_IGNORE_LOST_RCLK, 0);
10305 
10306 	dd_dev_info(ppd->dd, "logical state forced to LINK_DOWN\n");
10307 }
10308 
10309 /*
10310  * Helper for set_link_state().  Do not call except from that routine.
10311  * Expects ppd->hls_mutex to be held.
10312  *
10313  * @rem_reason value to be sent to the neighbor
10314  *
10315  * LinkDownReasons only set if transition succeeds.
10316  */
10317 static int goto_offline(struct hfi1_pportdata *ppd, u8 rem_reason)
10318 {
10319 	struct hfi1_devdata *dd = ppd->dd;
10320 	u32 previous_state;
10321 	int offline_state_ret;
10322 	int ret;
10323 
10324 	update_lcb_cache(dd);
10325 
10326 	previous_state = ppd->host_link_state;
10327 	ppd->host_link_state = HLS_GOING_OFFLINE;
10328 
10329 	/* start offline transition */
10330 	ret = set_physical_link_state(dd, (rem_reason << 8) | PLS_OFFLINE);
10331 
10332 	if (ret != HCMD_SUCCESS) {
10333 		dd_dev_err(dd,
10334 			   "Failed to transition to Offline link state, return %d\n",
10335 			   ret);
10336 		return -EINVAL;
10337 	}
10338 	if (ppd->offline_disabled_reason ==
10339 			HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE))
10340 		ppd->offline_disabled_reason =
10341 		HFI1_ODR_MASK(OPA_LINKDOWN_REASON_TRANSIENT);
10342 
10343 	offline_state_ret = wait_phys_link_offline_substates(ppd, 10000);
10344 	if (offline_state_ret < 0)
10345 		return offline_state_ret;
10346 
10347 	/* Disabling AOC transmitters */
10348 	if (ppd->port_type == PORT_TYPE_QSFP &&
10349 	    ppd->qsfp_info.limiting_active &&
10350 	    qsfp_mod_present(ppd)) {
10351 		int ret;
10352 
10353 		ret = acquire_chip_resource(dd, qsfp_resource(dd), QSFP_WAIT);
10354 		if (ret == 0) {
10355 			set_qsfp_tx(ppd, 0);
10356 			release_chip_resource(dd, qsfp_resource(dd));
10357 		} else {
10358 			/* not fatal, but should warn */
10359 			dd_dev_err(dd,
10360 				   "Unable to acquire lock to turn off QSFP TX\n");
10361 		}
10362 	}
10363 
10364 	/*
10365 	 * Wait for the offline.Quiet transition if it hasn't happened yet. It
10366 	 * can take a while for the link to go down.
10367 	 */
10368 	if (offline_state_ret != PLS_OFFLINE_QUIET) {
10369 		ret = wait_physical_linkstate(ppd, PLS_OFFLINE, 30000);
10370 		if (ret < 0)
10371 			return ret;
10372 	}
10373 
10374 	/*
10375 	 * Now in charge of LCB - must be after the physical state is
10376 	 * offline.quiet and before host_link_state is changed.
10377 	 */
10378 	set_host_lcb_access(dd);
10379 	write_csr(dd, DC_LCB_ERR_EN, ~0ull); /* watch LCB errors */
10380 
10381 	/* make sure the logical state is also down */
10382 	ret = wait_logical_linkstate(ppd, IB_PORT_DOWN, 1000);
10383 	if (ret)
10384 		force_logical_link_state_down(ppd);
10385 
10386 	ppd->host_link_state = HLS_LINK_COOLDOWN; /* LCB access allowed */
10387 	update_statusp(ppd, IB_PORT_DOWN);
10388 
10389 	/*
10390 	 * The LNI has a mandatory wait time after the physical state
10391 	 * moves to Offline.Quiet.  The wait time may be different
10392 	 * depending on how the link went down.  The 8051 firmware
10393 	 * will observe the needed wait time and only move to ready
10394 	 * when that is completed.  The largest of the quiet timeouts
10395 	 * is 6s, so wait that long and then at least 0.5s more for
10396 	 * other transitions, and another 0.5s for a buffer.
10397 	 */
10398 	ret = wait_fm_ready(dd, 7000);
10399 	if (ret) {
10400 		dd_dev_err(dd,
10401 			   "After going offline, timed out waiting for the 8051 to become ready to accept host requests\n");
10402 		/* state is really offline, so make it so */
10403 		ppd->host_link_state = HLS_DN_OFFLINE;
10404 		return ret;
10405 	}
10406 
10407 	/*
10408 	 * The state is now offline and the 8051 is ready to accept host
10409 	 * requests.
10410 	 *	- change our state
10411 	 *	- notify others if we were previously in a linkup state
10412 	 */
10413 	ppd->host_link_state = HLS_DN_OFFLINE;
10414 	if (previous_state & HLS_UP) {
10415 		/* went down while link was up */
10416 		handle_linkup_change(dd, 0);
10417 	} else if (previous_state
10418 			& (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) {
10419 		/* went down while attempting link up */
10420 		check_lni_states(ppd);
10421 
10422 		/* The QSFP doesn't need to be reset on LNI failure */
10423 		ppd->qsfp_info.reset_needed = 0;
10424 	}
10425 
10426 	/* the active link width (downgrade) is 0 on link down */
10427 	ppd->link_width_active = 0;
10428 	ppd->link_width_downgrade_tx_active = 0;
10429 	ppd->link_width_downgrade_rx_active = 0;
10430 	ppd->current_egress_rate = 0;
10431 	return 0;
10432 }
10433 
10434 /* return the link state name */
10435 static const char *link_state_name(u32 state)
10436 {
10437 	const char *name;
10438 	int n = ilog2(state);
10439 	static const char * const names[] = {
10440 		[__HLS_UP_INIT_BP]	 = "INIT",
10441 		[__HLS_UP_ARMED_BP]	 = "ARMED",
10442 		[__HLS_UP_ACTIVE_BP]	 = "ACTIVE",
10443 		[__HLS_DN_DOWNDEF_BP]	 = "DOWNDEF",
10444 		[__HLS_DN_POLL_BP]	 = "POLL",
10445 		[__HLS_DN_DISABLE_BP]	 = "DISABLE",
10446 		[__HLS_DN_OFFLINE_BP]	 = "OFFLINE",
10447 		[__HLS_VERIFY_CAP_BP]	 = "VERIFY_CAP",
10448 		[__HLS_GOING_UP_BP]	 = "GOING_UP",
10449 		[__HLS_GOING_OFFLINE_BP] = "GOING_OFFLINE",
10450 		[__HLS_LINK_COOLDOWN_BP] = "LINK_COOLDOWN"
10451 	};
10452 
10453 	name = n < ARRAY_SIZE(names) ? names[n] : NULL;
10454 	return name ? name : "unknown";
10455 }
10456 
10457 /* return the link state reason name */
10458 static const char *link_state_reason_name(struct hfi1_pportdata *ppd, u32 state)
10459 {
10460 	if (state == HLS_UP_INIT) {
10461 		switch (ppd->linkinit_reason) {
10462 		case OPA_LINKINIT_REASON_LINKUP:
10463 			return "(LINKUP)";
10464 		case OPA_LINKINIT_REASON_FLAPPING:
10465 			return "(FLAPPING)";
10466 		case OPA_LINKINIT_OUTSIDE_POLICY:
10467 			return "(OUTSIDE_POLICY)";
10468 		case OPA_LINKINIT_QUARANTINED:
10469 			return "(QUARANTINED)";
10470 		case OPA_LINKINIT_INSUFIC_CAPABILITY:
10471 			return "(INSUFIC_CAPABILITY)";
10472 		default:
10473 			break;
10474 		}
10475 	}
10476 	return "";
10477 }
10478 
10479 /*
10480  * driver_pstate - convert the driver's notion of a port's
10481  * state (an HLS_*) into a physical state (a {IB,OPA}_PORTPHYSSTATE_*).
10482  * Return -1 (converted to a u32) to indicate error.
10483  */
10484 u32 driver_pstate(struct hfi1_pportdata *ppd)
10485 {
10486 	switch (ppd->host_link_state) {
10487 	case HLS_UP_INIT:
10488 	case HLS_UP_ARMED:
10489 	case HLS_UP_ACTIVE:
10490 		return IB_PORTPHYSSTATE_LINKUP;
10491 	case HLS_DN_POLL:
10492 		return IB_PORTPHYSSTATE_POLLING;
10493 	case HLS_DN_DISABLE:
10494 		return IB_PORTPHYSSTATE_DISABLED;
10495 	case HLS_DN_OFFLINE:
10496 		return OPA_PORTPHYSSTATE_OFFLINE;
10497 	case HLS_VERIFY_CAP:
10498 		return IB_PORTPHYSSTATE_POLLING;
10499 	case HLS_GOING_UP:
10500 		return IB_PORTPHYSSTATE_POLLING;
10501 	case HLS_GOING_OFFLINE:
10502 		return OPA_PORTPHYSSTATE_OFFLINE;
10503 	case HLS_LINK_COOLDOWN:
10504 		return OPA_PORTPHYSSTATE_OFFLINE;
10505 	case HLS_DN_DOWNDEF:
10506 	default:
10507 		dd_dev_err(ppd->dd, "invalid host_link_state 0x%x\n",
10508 			   ppd->host_link_state);
10509 		return  -1;
10510 	}
10511 }
10512 
10513 /*
10514  * driver_lstate - convert the driver's notion of a port's
10515  * state (an HLS_*) into a logical state (a IB_PORT_*). Return -1
10516  * (converted to a u32) to indicate error.
10517  */
10518 u32 driver_lstate(struct hfi1_pportdata *ppd)
10519 {
10520 	if (ppd->host_link_state && (ppd->host_link_state & HLS_DOWN))
10521 		return IB_PORT_DOWN;
10522 
10523 	switch (ppd->host_link_state & HLS_UP) {
10524 	case HLS_UP_INIT:
10525 		return IB_PORT_INIT;
10526 	case HLS_UP_ARMED:
10527 		return IB_PORT_ARMED;
10528 	case HLS_UP_ACTIVE:
10529 		return IB_PORT_ACTIVE;
10530 	default:
10531 		dd_dev_err(ppd->dd, "invalid host_link_state 0x%x\n",
10532 			   ppd->host_link_state);
10533 	return -1;
10534 	}
10535 }
10536 
10537 void set_link_down_reason(struct hfi1_pportdata *ppd, u8 lcl_reason,
10538 			  u8 neigh_reason, u8 rem_reason)
10539 {
10540 	if (ppd->local_link_down_reason.latest == 0 &&
10541 	    ppd->neigh_link_down_reason.latest == 0) {
10542 		ppd->local_link_down_reason.latest = lcl_reason;
10543 		ppd->neigh_link_down_reason.latest = neigh_reason;
10544 		ppd->remote_link_down_reason = rem_reason;
10545 	}
10546 }
10547 
10548 /*
10549  * Verify if BCT for data VLs is non-zero.
10550  */
10551 static inline bool data_vls_operational(struct hfi1_pportdata *ppd)
10552 {
10553 	return !!ppd->actual_vls_operational;
10554 }
10555 
10556 /*
10557  * Change the physical and/or logical link state.
10558  *
10559  * Do not call this routine while inside an interrupt.  It contains
10560  * calls to routines that can take multiple seconds to finish.
10561  *
10562  * Returns 0 on success, -errno on failure.
10563  */
10564 int set_link_state(struct hfi1_pportdata *ppd, u32 state)
10565 {
10566 	struct hfi1_devdata *dd = ppd->dd;
10567 	struct ib_event event = {.device = NULL};
10568 	int ret1, ret = 0;
10569 	int orig_new_state, poll_bounce;
10570 
10571 	mutex_lock(&ppd->hls_lock);
10572 
10573 	orig_new_state = state;
10574 	if (state == HLS_DN_DOWNDEF)
10575 		state = HLS_DEFAULT;
10576 
10577 	/* interpret poll -> poll as a link bounce */
10578 	poll_bounce = ppd->host_link_state == HLS_DN_POLL &&
10579 		      state == HLS_DN_POLL;
10580 
10581 	dd_dev_info(dd, "%s: current %s, new %s %s%s\n", __func__,
10582 		    link_state_name(ppd->host_link_state),
10583 		    link_state_name(orig_new_state),
10584 		    poll_bounce ? "(bounce) " : "",
10585 		    link_state_reason_name(ppd, state));
10586 
10587 	/*
10588 	 * If we're going to a (HLS_*) link state that implies the logical
10589 	 * link state is neither of (IB_PORT_ARMED, IB_PORT_ACTIVE), then
10590 	 * reset is_sm_config_started to 0.
10591 	 */
10592 	if (!(state & (HLS_UP_ARMED | HLS_UP_ACTIVE)))
10593 		ppd->is_sm_config_started = 0;
10594 
10595 	/*
10596 	 * Do nothing if the states match.  Let a poll to poll link bounce
10597 	 * go through.
10598 	 */
10599 	if (ppd->host_link_state == state && !poll_bounce)
10600 		goto done;
10601 
10602 	switch (state) {
10603 	case HLS_UP_INIT:
10604 		if (ppd->host_link_state == HLS_DN_POLL &&
10605 		    (quick_linkup || dd->icode == ICODE_FUNCTIONAL_SIMULATOR)) {
10606 			/*
10607 			 * Quick link up jumps from polling to here.
10608 			 *
10609 			 * Whether in normal or loopback mode, the
10610 			 * simulator jumps from polling to link up.
10611 			 * Accept that here.
10612 			 */
10613 			/* OK */
10614 		} else if (ppd->host_link_state != HLS_GOING_UP) {
10615 			goto unexpected;
10616 		}
10617 
10618 		/*
10619 		 * Wait for Link_Up physical state.
10620 		 * Physical and Logical states should already be
10621 		 * be transitioned to LinkUp and LinkInit respectively.
10622 		 */
10623 		ret = wait_physical_linkstate(ppd, PLS_LINKUP, 1000);
10624 		if (ret) {
10625 			dd_dev_err(dd,
10626 				   "%s: physical state did not change to LINK-UP\n",
10627 				   __func__);
10628 			break;
10629 		}
10630 
10631 		ret = wait_logical_linkstate(ppd, IB_PORT_INIT, 1000);
10632 		if (ret) {
10633 			dd_dev_err(dd,
10634 				   "%s: logical state did not change to INIT\n",
10635 				   __func__);
10636 			break;
10637 		}
10638 
10639 		/* clear old transient LINKINIT_REASON code */
10640 		if (ppd->linkinit_reason >= OPA_LINKINIT_REASON_CLEAR)
10641 			ppd->linkinit_reason =
10642 				OPA_LINKINIT_REASON_LINKUP;
10643 
10644 		/* enable the port */
10645 		add_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
10646 
10647 		handle_linkup_change(dd, 1);
10648 
10649 		/*
10650 		 * After link up, a new link width will have been set.
10651 		 * Update the xmit counters with regards to the new
10652 		 * link width.
10653 		 */
10654 		update_xmit_counters(ppd, ppd->link_width_active);
10655 
10656 		ppd->host_link_state = HLS_UP_INIT;
10657 		update_statusp(ppd, IB_PORT_INIT);
10658 		break;
10659 	case HLS_UP_ARMED:
10660 		if (ppd->host_link_state != HLS_UP_INIT)
10661 			goto unexpected;
10662 
10663 		if (!data_vls_operational(ppd)) {
10664 			dd_dev_err(dd,
10665 				   "%s: data VLs not operational\n", __func__);
10666 			ret = -EINVAL;
10667 			break;
10668 		}
10669 
10670 		set_logical_state(dd, LSTATE_ARMED);
10671 		ret = wait_logical_linkstate(ppd, IB_PORT_ARMED, 1000);
10672 		if (ret) {
10673 			dd_dev_err(dd,
10674 				   "%s: logical state did not change to ARMED\n",
10675 				   __func__);
10676 			break;
10677 		}
10678 		ppd->host_link_state = HLS_UP_ARMED;
10679 		update_statusp(ppd, IB_PORT_ARMED);
10680 		/*
10681 		 * The simulator does not currently implement SMA messages,
10682 		 * so neighbor_normal is not set.  Set it here when we first
10683 		 * move to Armed.
10684 		 */
10685 		if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR)
10686 			ppd->neighbor_normal = 1;
10687 		break;
10688 	case HLS_UP_ACTIVE:
10689 		if (ppd->host_link_state != HLS_UP_ARMED)
10690 			goto unexpected;
10691 
10692 		set_logical_state(dd, LSTATE_ACTIVE);
10693 		ret = wait_logical_linkstate(ppd, IB_PORT_ACTIVE, 1000);
10694 		if (ret) {
10695 			dd_dev_err(dd,
10696 				   "%s: logical state did not change to ACTIVE\n",
10697 				   __func__);
10698 		} else {
10699 			/* tell all engines to go running */
10700 			sdma_all_running(dd);
10701 			ppd->host_link_state = HLS_UP_ACTIVE;
10702 			update_statusp(ppd, IB_PORT_ACTIVE);
10703 
10704 			/* Signal the IB layer that the port has went active */
10705 			event.device = &dd->verbs_dev.rdi.ibdev;
10706 			event.element.port_num = ppd->port;
10707 			event.event = IB_EVENT_PORT_ACTIVE;
10708 		}
10709 		break;
10710 	case HLS_DN_POLL:
10711 		if ((ppd->host_link_state == HLS_DN_DISABLE ||
10712 		     ppd->host_link_state == HLS_DN_OFFLINE) &&
10713 		    dd->dc_shutdown)
10714 			dc_start(dd);
10715 		/* Hand LED control to the DC */
10716 		write_csr(dd, DCC_CFG_LED_CNTRL, 0);
10717 
10718 		if (ppd->host_link_state != HLS_DN_OFFLINE) {
10719 			u8 tmp = ppd->link_enabled;
10720 
10721 			ret = goto_offline(ppd, ppd->remote_link_down_reason);
10722 			if (ret) {
10723 				ppd->link_enabled = tmp;
10724 				break;
10725 			}
10726 			ppd->remote_link_down_reason = 0;
10727 
10728 			if (ppd->driver_link_ready)
10729 				ppd->link_enabled = 1;
10730 		}
10731 
10732 		set_all_slowpath(ppd->dd);
10733 		ret = set_local_link_attributes(ppd);
10734 		if (ret)
10735 			break;
10736 
10737 		ppd->port_error_action = 0;
10738 		ppd->host_link_state = HLS_DN_POLL;
10739 
10740 		if (quick_linkup) {
10741 			/* quick linkup does not go into polling */
10742 			ret = do_quick_linkup(dd);
10743 		} else {
10744 			ret1 = set_physical_link_state(dd, PLS_POLLING);
10745 			if (ret1 != HCMD_SUCCESS) {
10746 				dd_dev_err(dd,
10747 					   "Failed to transition to Polling link state, return 0x%x\n",
10748 					   ret1);
10749 				ret = -EINVAL;
10750 			}
10751 		}
10752 		ppd->offline_disabled_reason =
10753 			HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE);
10754 		/*
10755 		 * If an error occurred above, go back to offline.  The
10756 		 * caller may reschedule another attempt.
10757 		 */
10758 		if (ret)
10759 			goto_offline(ppd, 0);
10760 		else
10761 			log_physical_state(ppd, PLS_POLLING);
10762 		break;
10763 	case HLS_DN_DISABLE:
10764 		/* link is disabled */
10765 		ppd->link_enabled = 0;
10766 
10767 		/* allow any state to transition to disabled */
10768 
10769 		/* must transition to offline first */
10770 		if (ppd->host_link_state != HLS_DN_OFFLINE) {
10771 			ret = goto_offline(ppd, ppd->remote_link_down_reason);
10772 			if (ret)
10773 				break;
10774 			ppd->remote_link_down_reason = 0;
10775 		}
10776 
10777 		if (!dd->dc_shutdown) {
10778 			ret1 = set_physical_link_state(dd, PLS_DISABLED);
10779 			if (ret1 != HCMD_SUCCESS) {
10780 				dd_dev_err(dd,
10781 					   "Failed to transition to Disabled link state, return 0x%x\n",
10782 					   ret1);
10783 				ret = -EINVAL;
10784 				break;
10785 			}
10786 			ret = wait_physical_linkstate(ppd, PLS_DISABLED, 10000);
10787 			if (ret) {
10788 				dd_dev_err(dd,
10789 					   "%s: physical state did not change to DISABLED\n",
10790 					   __func__);
10791 				break;
10792 			}
10793 			dc_shutdown(dd);
10794 		}
10795 		ppd->host_link_state = HLS_DN_DISABLE;
10796 		break;
10797 	case HLS_DN_OFFLINE:
10798 		if (ppd->host_link_state == HLS_DN_DISABLE)
10799 			dc_start(dd);
10800 
10801 		/* allow any state to transition to offline */
10802 		ret = goto_offline(ppd, ppd->remote_link_down_reason);
10803 		if (!ret)
10804 			ppd->remote_link_down_reason = 0;
10805 		break;
10806 	case HLS_VERIFY_CAP:
10807 		if (ppd->host_link_state != HLS_DN_POLL)
10808 			goto unexpected;
10809 		ppd->host_link_state = HLS_VERIFY_CAP;
10810 		log_physical_state(ppd, PLS_CONFIGPHY_VERIFYCAP);
10811 		break;
10812 	case HLS_GOING_UP:
10813 		if (ppd->host_link_state != HLS_VERIFY_CAP)
10814 			goto unexpected;
10815 
10816 		ret1 = set_physical_link_state(dd, PLS_LINKUP);
10817 		if (ret1 != HCMD_SUCCESS) {
10818 			dd_dev_err(dd,
10819 				   "Failed to transition to link up state, return 0x%x\n",
10820 				   ret1);
10821 			ret = -EINVAL;
10822 			break;
10823 		}
10824 		ppd->host_link_state = HLS_GOING_UP;
10825 		break;
10826 
10827 	case HLS_GOING_OFFLINE:		/* transient within goto_offline() */
10828 	case HLS_LINK_COOLDOWN:		/* transient within goto_offline() */
10829 	default:
10830 		dd_dev_info(dd, "%s: state 0x%x: not supported\n",
10831 			    __func__, state);
10832 		ret = -EINVAL;
10833 		break;
10834 	}
10835 
10836 	goto done;
10837 
10838 unexpected:
10839 	dd_dev_err(dd, "%s: unexpected state transition from %s to %s\n",
10840 		   __func__, link_state_name(ppd->host_link_state),
10841 		   link_state_name(state));
10842 	ret = -EINVAL;
10843 
10844 done:
10845 	mutex_unlock(&ppd->hls_lock);
10846 
10847 	if (event.device)
10848 		ib_dispatch_event(&event);
10849 
10850 	return ret;
10851 }
10852 
10853 int hfi1_set_ib_cfg(struct hfi1_pportdata *ppd, int which, u32 val)
10854 {
10855 	u64 reg;
10856 	int ret = 0;
10857 
10858 	switch (which) {
10859 	case HFI1_IB_CFG_LIDLMC:
10860 		set_lidlmc(ppd);
10861 		break;
10862 	case HFI1_IB_CFG_VL_HIGH_LIMIT:
10863 		/*
10864 		 * The VL Arbitrator high limit is sent in units of 4k
10865 		 * bytes, while HFI stores it in units of 64 bytes.
10866 		 */
10867 		val *= 4096 / 64;
10868 		reg = ((u64)val & SEND_HIGH_PRIORITY_LIMIT_LIMIT_MASK)
10869 			<< SEND_HIGH_PRIORITY_LIMIT_LIMIT_SHIFT;
10870 		write_csr(ppd->dd, SEND_HIGH_PRIORITY_LIMIT, reg);
10871 		break;
10872 	case HFI1_IB_CFG_LINKDEFAULT: /* IB link default (sleep/poll) */
10873 		/* HFI only supports POLL as the default link down state */
10874 		if (val != HLS_DN_POLL)
10875 			ret = -EINVAL;
10876 		break;
10877 	case HFI1_IB_CFG_OP_VLS:
10878 		if (ppd->vls_operational != val) {
10879 			ppd->vls_operational = val;
10880 			if (!ppd->port)
10881 				ret = -EINVAL;
10882 		}
10883 		break;
10884 	/*
10885 	 * For link width, link width downgrade, and speed enable, always AND
10886 	 * the setting with what is actually supported.  This has two benefits.
10887 	 * First, enabled can't have unsupported values, no matter what the
10888 	 * SM or FM might want.  Second, the ALL_SUPPORTED wildcards that mean
10889 	 * "fill in with your supported value" have all the bits in the
10890 	 * field set, so simply ANDing with supported has the desired result.
10891 	 */
10892 	case HFI1_IB_CFG_LWID_ENB: /* set allowed Link-width */
10893 		ppd->link_width_enabled = val & ppd->link_width_supported;
10894 		break;
10895 	case HFI1_IB_CFG_LWID_DG_ENB: /* set allowed link width downgrade */
10896 		ppd->link_width_downgrade_enabled =
10897 				val & ppd->link_width_downgrade_supported;
10898 		break;
10899 	case HFI1_IB_CFG_SPD_ENB: /* allowed Link speeds */
10900 		ppd->link_speed_enabled = val & ppd->link_speed_supported;
10901 		break;
10902 	case HFI1_IB_CFG_OVERRUN_THRESH: /* IB overrun threshold */
10903 		/*
10904 		 * HFI does not follow IB specs, save this value
10905 		 * so we can report it, if asked.
10906 		 */
10907 		ppd->overrun_threshold = val;
10908 		break;
10909 	case HFI1_IB_CFG_PHYERR_THRESH: /* IB PHY error threshold */
10910 		/*
10911 		 * HFI does not follow IB specs, save this value
10912 		 * so we can report it, if asked.
10913 		 */
10914 		ppd->phy_error_threshold = val;
10915 		break;
10916 
10917 	case HFI1_IB_CFG_MTU:
10918 		set_send_length(ppd);
10919 		break;
10920 
10921 	case HFI1_IB_CFG_PKEYS:
10922 		if (HFI1_CAP_IS_KSET(PKEY_CHECK))
10923 			set_partition_keys(ppd);
10924 		break;
10925 
10926 	default:
10927 		if (HFI1_CAP_IS_KSET(PRINT_UNIMPL))
10928 			dd_dev_info(ppd->dd,
10929 				    "%s: which %s, val 0x%x: not implemented\n",
10930 				    __func__, ib_cfg_name(which), val);
10931 		break;
10932 	}
10933 	return ret;
10934 }
10935 
10936 /* begin functions related to vl arbitration table caching */
10937 static void init_vl_arb_caches(struct hfi1_pportdata *ppd)
10938 {
10939 	int i;
10940 
10941 	BUILD_BUG_ON(VL_ARB_TABLE_SIZE !=
10942 			VL_ARB_LOW_PRIO_TABLE_SIZE);
10943 	BUILD_BUG_ON(VL_ARB_TABLE_SIZE !=
10944 			VL_ARB_HIGH_PRIO_TABLE_SIZE);
10945 
10946 	/*
10947 	 * Note that we always return values directly from the
10948 	 * 'vl_arb_cache' (and do no CSR reads) in response to a
10949 	 * 'Get(VLArbTable)'. This is obviously correct after a
10950 	 * 'Set(VLArbTable)', since the cache will then be up to
10951 	 * date. But it's also correct prior to any 'Set(VLArbTable)'
10952 	 * since then both the cache, and the relevant h/w registers
10953 	 * will be zeroed.
10954 	 */
10955 
10956 	for (i = 0; i < MAX_PRIO_TABLE; i++)
10957 		spin_lock_init(&ppd->vl_arb_cache[i].lock);
10958 }
10959 
10960 /*
10961  * vl_arb_lock_cache
10962  *
10963  * All other vl_arb_* functions should be called only after locking
10964  * the cache.
10965  */
10966 static inline struct vl_arb_cache *
10967 vl_arb_lock_cache(struct hfi1_pportdata *ppd, int idx)
10968 {
10969 	if (idx != LO_PRIO_TABLE && idx != HI_PRIO_TABLE)
10970 		return NULL;
10971 	spin_lock(&ppd->vl_arb_cache[idx].lock);
10972 	return &ppd->vl_arb_cache[idx];
10973 }
10974 
10975 static inline void vl_arb_unlock_cache(struct hfi1_pportdata *ppd, int idx)
10976 {
10977 	spin_unlock(&ppd->vl_arb_cache[idx].lock);
10978 }
10979 
10980 static void vl_arb_get_cache(struct vl_arb_cache *cache,
10981 			     struct ib_vl_weight_elem *vl)
10982 {
10983 	memcpy(vl, cache->table, VL_ARB_TABLE_SIZE * sizeof(*vl));
10984 }
10985 
10986 static void vl_arb_set_cache(struct vl_arb_cache *cache,
10987 			     struct ib_vl_weight_elem *vl)
10988 {
10989 	memcpy(cache->table, vl, VL_ARB_TABLE_SIZE * sizeof(*vl));
10990 }
10991 
10992 static int vl_arb_match_cache(struct vl_arb_cache *cache,
10993 			      struct ib_vl_weight_elem *vl)
10994 {
10995 	return !memcmp(cache->table, vl, VL_ARB_TABLE_SIZE * sizeof(*vl));
10996 }
10997 
10998 /* end functions related to vl arbitration table caching */
10999 
11000 static int set_vl_weights(struct hfi1_pportdata *ppd, u32 target,
11001 			  u32 size, struct ib_vl_weight_elem *vl)
11002 {
11003 	struct hfi1_devdata *dd = ppd->dd;
11004 	u64 reg;
11005 	unsigned int i, is_up = 0;
11006 	int drain, ret = 0;
11007 
11008 	mutex_lock(&ppd->hls_lock);
11009 
11010 	if (ppd->host_link_state & HLS_UP)
11011 		is_up = 1;
11012 
11013 	drain = !is_ax(dd) && is_up;
11014 
11015 	if (drain)
11016 		/*
11017 		 * Before adjusting VL arbitration weights, empty per-VL
11018 		 * FIFOs, otherwise a packet whose VL weight is being
11019 		 * set to 0 could get stuck in a FIFO with no chance to
11020 		 * egress.
11021 		 */
11022 		ret = stop_drain_data_vls(dd);
11023 
11024 	if (ret) {
11025 		dd_dev_err(
11026 			dd,
11027 			"%s: cannot stop/drain VLs - refusing to change VL arbitration weights\n",
11028 			__func__);
11029 		goto err;
11030 	}
11031 
11032 	for (i = 0; i < size; i++, vl++) {
11033 		/*
11034 		 * NOTE: The low priority shift and mask are used here, but
11035 		 * they are the same for both the low and high registers.
11036 		 */
11037 		reg = (((u64)vl->vl & SEND_LOW_PRIORITY_LIST_VL_MASK)
11038 				<< SEND_LOW_PRIORITY_LIST_VL_SHIFT)
11039 		      | (((u64)vl->weight
11040 				& SEND_LOW_PRIORITY_LIST_WEIGHT_MASK)
11041 				<< SEND_LOW_PRIORITY_LIST_WEIGHT_SHIFT);
11042 		write_csr(dd, target + (i * 8), reg);
11043 	}
11044 	pio_send_control(dd, PSC_GLOBAL_VLARB_ENABLE);
11045 
11046 	if (drain)
11047 		open_fill_data_vls(dd); /* reopen all VLs */
11048 
11049 err:
11050 	mutex_unlock(&ppd->hls_lock);
11051 
11052 	return ret;
11053 }
11054 
11055 /*
11056  * Read one credit merge VL register.
11057  */
11058 static void read_one_cm_vl(struct hfi1_devdata *dd, u32 csr,
11059 			   struct vl_limit *vll)
11060 {
11061 	u64 reg = read_csr(dd, csr);
11062 
11063 	vll->dedicated = cpu_to_be16(
11064 		(reg >> SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SHIFT)
11065 		& SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_MASK);
11066 	vll->shared = cpu_to_be16(
11067 		(reg >> SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SHIFT)
11068 		& SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_MASK);
11069 }
11070 
11071 /*
11072  * Read the current credit merge limits.
11073  */
11074 static int get_buffer_control(struct hfi1_devdata *dd,
11075 			      struct buffer_control *bc, u16 *overall_limit)
11076 {
11077 	u64 reg;
11078 	int i;
11079 
11080 	/* not all entries are filled in */
11081 	memset(bc, 0, sizeof(*bc));
11082 
11083 	/* OPA and HFI have a 1-1 mapping */
11084 	for (i = 0; i < TXE_NUM_DATA_VL; i++)
11085 		read_one_cm_vl(dd, SEND_CM_CREDIT_VL + (8 * i), &bc->vl[i]);
11086 
11087 	/* NOTE: assumes that VL* and VL15 CSRs are bit-wise identical */
11088 	read_one_cm_vl(dd, SEND_CM_CREDIT_VL15, &bc->vl[15]);
11089 
11090 	reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
11091 	bc->overall_shared_limit = cpu_to_be16(
11092 		(reg >> SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SHIFT)
11093 		& SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_MASK);
11094 	if (overall_limit)
11095 		*overall_limit = (reg
11096 			>> SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT)
11097 			& SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_MASK;
11098 	return sizeof(struct buffer_control);
11099 }
11100 
11101 static int get_sc2vlnt(struct hfi1_devdata *dd, struct sc2vlnt *dp)
11102 {
11103 	u64 reg;
11104 	int i;
11105 
11106 	/* each register contains 16 SC->VLnt mappings, 4 bits each */
11107 	reg = read_csr(dd, DCC_CFG_SC_VL_TABLE_15_0);
11108 	for (i = 0; i < sizeof(u64); i++) {
11109 		u8 byte = *(((u8 *)&reg) + i);
11110 
11111 		dp->vlnt[2 * i] = byte & 0xf;
11112 		dp->vlnt[(2 * i) + 1] = (byte & 0xf0) >> 4;
11113 	}
11114 
11115 	reg = read_csr(dd, DCC_CFG_SC_VL_TABLE_31_16);
11116 	for (i = 0; i < sizeof(u64); i++) {
11117 		u8 byte = *(((u8 *)&reg) + i);
11118 
11119 		dp->vlnt[16 + (2 * i)] = byte & 0xf;
11120 		dp->vlnt[16 + (2 * i) + 1] = (byte & 0xf0) >> 4;
11121 	}
11122 	return sizeof(struct sc2vlnt);
11123 }
11124 
11125 static void get_vlarb_preempt(struct hfi1_devdata *dd, u32 nelems,
11126 			      struct ib_vl_weight_elem *vl)
11127 {
11128 	unsigned int i;
11129 
11130 	for (i = 0; i < nelems; i++, vl++) {
11131 		vl->vl = 0xf;
11132 		vl->weight = 0;
11133 	}
11134 }
11135 
11136 static void set_sc2vlnt(struct hfi1_devdata *dd, struct sc2vlnt *dp)
11137 {
11138 	write_csr(dd, DCC_CFG_SC_VL_TABLE_15_0,
11139 		  DC_SC_VL_VAL(15_0,
11140 			       0, dp->vlnt[0] & 0xf,
11141 			       1, dp->vlnt[1] & 0xf,
11142 			       2, dp->vlnt[2] & 0xf,
11143 			       3, dp->vlnt[3] & 0xf,
11144 			       4, dp->vlnt[4] & 0xf,
11145 			       5, dp->vlnt[5] & 0xf,
11146 			       6, dp->vlnt[6] & 0xf,
11147 			       7, dp->vlnt[7] & 0xf,
11148 			       8, dp->vlnt[8] & 0xf,
11149 			       9, dp->vlnt[9] & 0xf,
11150 			       10, dp->vlnt[10] & 0xf,
11151 			       11, dp->vlnt[11] & 0xf,
11152 			       12, dp->vlnt[12] & 0xf,
11153 			       13, dp->vlnt[13] & 0xf,
11154 			       14, dp->vlnt[14] & 0xf,
11155 			       15, dp->vlnt[15] & 0xf));
11156 	write_csr(dd, DCC_CFG_SC_VL_TABLE_31_16,
11157 		  DC_SC_VL_VAL(31_16,
11158 			       16, dp->vlnt[16] & 0xf,
11159 			       17, dp->vlnt[17] & 0xf,
11160 			       18, dp->vlnt[18] & 0xf,
11161 			       19, dp->vlnt[19] & 0xf,
11162 			       20, dp->vlnt[20] & 0xf,
11163 			       21, dp->vlnt[21] & 0xf,
11164 			       22, dp->vlnt[22] & 0xf,
11165 			       23, dp->vlnt[23] & 0xf,
11166 			       24, dp->vlnt[24] & 0xf,
11167 			       25, dp->vlnt[25] & 0xf,
11168 			       26, dp->vlnt[26] & 0xf,
11169 			       27, dp->vlnt[27] & 0xf,
11170 			       28, dp->vlnt[28] & 0xf,
11171 			       29, dp->vlnt[29] & 0xf,
11172 			       30, dp->vlnt[30] & 0xf,
11173 			       31, dp->vlnt[31] & 0xf));
11174 }
11175 
11176 static void nonzero_msg(struct hfi1_devdata *dd, int idx, const char *what,
11177 			u16 limit)
11178 {
11179 	if (limit != 0)
11180 		dd_dev_info(dd, "Invalid %s limit %d on VL %d, ignoring\n",
11181 			    what, (int)limit, idx);
11182 }
11183 
11184 /* change only the shared limit portion of SendCmGLobalCredit */
11185 static void set_global_shared(struct hfi1_devdata *dd, u16 limit)
11186 {
11187 	u64 reg;
11188 
11189 	reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
11190 	reg &= ~SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SMASK;
11191 	reg |= (u64)limit << SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SHIFT;
11192 	write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg);
11193 }
11194 
11195 /* change only the total credit limit portion of SendCmGLobalCredit */
11196 static void set_global_limit(struct hfi1_devdata *dd, u16 limit)
11197 {
11198 	u64 reg;
11199 
11200 	reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
11201 	reg &= ~SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SMASK;
11202 	reg |= (u64)limit << SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT;
11203 	write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg);
11204 }
11205 
11206 /* set the given per-VL shared limit */
11207 static void set_vl_shared(struct hfi1_devdata *dd, int vl, u16 limit)
11208 {
11209 	u64 reg;
11210 	u32 addr;
11211 
11212 	if (vl < TXE_NUM_DATA_VL)
11213 		addr = SEND_CM_CREDIT_VL + (8 * vl);
11214 	else
11215 		addr = SEND_CM_CREDIT_VL15;
11216 
11217 	reg = read_csr(dd, addr);
11218 	reg &= ~SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SMASK;
11219 	reg |= (u64)limit << SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SHIFT;
11220 	write_csr(dd, addr, reg);
11221 }
11222 
11223 /* set the given per-VL dedicated limit */
11224 static void set_vl_dedicated(struct hfi1_devdata *dd, int vl, u16 limit)
11225 {
11226 	u64 reg;
11227 	u32 addr;
11228 
11229 	if (vl < TXE_NUM_DATA_VL)
11230 		addr = SEND_CM_CREDIT_VL + (8 * vl);
11231 	else
11232 		addr = SEND_CM_CREDIT_VL15;
11233 
11234 	reg = read_csr(dd, addr);
11235 	reg &= ~SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SMASK;
11236 	reg |= (u64)limit << SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SHIFT;
11237 	write_csr(dd, addr, reg);
11238 }
11239 
11240 /* spin until the given per-VL status mask bits clear */
11241 static void wait_for_vl_status_clear(struct hfi1_devdata *dd, u64 mask,
11242 				     const char *which)
11243 {
11244 	unsigned long timeout;
11245 	u64 reg;
11246 
11247 	timeout = jiffies + msecs_to_jiffies(VL_STATUS_CLEAR_TIMEOUT);
11248 	while (1) {
11249 		reg = read_csr(dd, SEND_CM_CREDIT_USED_STATUS) & mask;
11250 
11251 		if (reg == 0)
11252 			return;	/* success */
11253 		if (time_after(jiffies, timeout))
11254 			break;		/* timed out */
11255 		udelay(1);
11256 	}
11257 
11258 	dd_dev_err(dd,
11259 		   "%s credit change status not clearing after %dms, mask 0x%llx, not clear 0x%llx\n",
11260 		   which, VL_STATUS_CLEAR_TIMEOUT, mask, reg);
11261 	/*
11262 	 * If this occurs, it is likely there was a credit loss on the link.
11263 	 * The only recovery from that is a link bounce.
11264 	 */
11265 	dd_dev_err(dd,
11266 		   "Continuing anyway.  A credit loss may occur.  Suggest a link bounce\n");
11267 }
11268 
11269 /*
11270  * The number of credits on the VLs may be changed while everything
11271  * is "live", but the following algorithm must be followed due to
11272  * how the hardware is actually implemented.  In particular,
11273  * Return_Credit_Status[] is the only correct status check.
11274  *
11275  * if (reducing Global_Shared_Credit_Limit or any shared limit changing)
11276  *     set Global_Shared_Credit_Limit = 0
11277  *     use_all_vl = 1
11278  * mask0 = all VLs that are changing either dedicated or shared limits
11279  * set Shared_Limit[mask0] = 0
11280  * spin until Return_Credit_Status[use_all_vl ? all VL : mask0] == 0
11281  * if (changing any dedicated limit)
11282  *     mask1 = all VLs that are lowering dedicated limits
11283  *     lower Dedicated_Limit[mask1]
11284  *     spin until Return_Credit_Status[mask1] == 0
11285  *     raise Dedicated_Limits
11286  * raise Shared_Limits
11287  * raise Global_Shared_Credit_Limit
11288  *
11289  * lower = if the new limit is lower, set the limit to the new value
11290  * raise = if the new limit is higher than the current value (may be changed
11291  *	earlier in the algorithm), set the new limit to the new value
11292  */
11293 int set_buffer_control(struct hfi1_pportdata *ppd,
11294 		       struct buffer_control *new_bc)
11295 {
11296 	struct hfi1_devdata *dd = ppd->dd;
11297 	u64 changing_mask, ld_mask, stat_mask;
11298 	int change_count;
11299 	int i, use_all_mask;
11300 	int this_shared_changing;
11301 	int vl_count = 0, ret;
11302 	/*
11303 	 * A0: add the variable any_shared_limit_changing below and in the
11304 	 * algorithm above.  If removing A0 support, it can be removed.
11305 	 */
11306 	int any_shared_limit_changing;
11307 	struct buffer_control cur_bc;
11308 	u8 changing[OPA_MAX_VLS];
11309 	u8 lowering_dedicated[OPA_MAX_VLS];
11310 	u16 cur_total;
11311 	u32 new_total = 0;
11312 	const u64 all_mask =
11313 	SEND_CM_CREDIT_USED_STATUS_VL0_RETURN_CREDIT_STATUS_SMASK
11314 	 | SEND_CM_CREDIT_USED_STATUS_VL1_RETURN_CREDIT_STATUS_SMASK
11315 	 | SEND_CM_CREDIT_USED_STATUS_VL2_RETURN_CREDIT_STATUS_SMASK
11316 	 | SEND_CM_CREDIT_USED_STATUS_VL3_RETURN_CREDIT_STATUS_SMASK
11317 	 | SEND_CM_CREDIT_USED_STATUS_VL4_RETURN_CREDIT_STATUS_SMASK
11318 	 | SEND_CM_CREDIT_USED_STATUS_VL5_RETURN_CREDIT_STATUS_SMASK
11319 	 | SEND_CM_CREDIT_USED_STATUS_VL6_RETURN_CREDIT_STATUS_SMASK
11320 	 | SEND_CM_CREDIT_USED_STATUS_VL7_RETURN_CREDIT_STATUS_SMASK
11321 	 | SEND_CM_CREDIT_USED_STATUS_VL15_RETURN_CREDIT_STATUS_SMASK;
11322 
11323 #define valid_vl(idx) ((idx) < TXE_NUM_DATA_VL || (idx) == 15)
11324 #define NUM_USABLE_VLS 16	/* look at VL15 and less */
11325 
11326 	/* find the new total credits, do sanity check on unused VLs */
11327 	for (i = 0; i < OPA_MAX_VLS; i++) {
11328 		if (valid_vl(i)) {
11329 			new_total += be16_to_cpu(new_bc->vl[i].dedicated);
11330 			continue;
11331 		}
11332 		nonzero_msg(dd, i, "dedicated",
11333 			    be16_to_cpu(new_bc->vl[i].dedicated));
11334 		nonzero_msg(dd, i, "shared",
11335 			    be16_to_cpu(new_bc->vl[i].shared));
11336 		new_bc->vl[i].dedicated = 0;
11337 		new_bc->vl[i].shared = 0;
11338 	}
11339 	new_total += be16_to_cpu(new_bc->overall_shared_limit);
11340 
11341 	/* fetch the current values */
11342 	get_buffer_control(dd, &cur_bc, &cur_total);
11343 
11344 	/*
11345 	 * Create the masks we will use.
11346 	 */
11347 	memset(changing, 0, sizeof(changing));
11348 	memset(lowering_dedicated, 0, sizeof(lowering_dedicated));
11349 	/*
11350 	 * NOTE: Assumes that the individual VL bits are adjacent and in
11351 	 * increasing order
11352 	 */
11353 	stat_mask =
11354 		SEND_CM_CREDIT_USED_STATUS_VL0_RETURN_CREDIT_STATUS_SMASK;
11355 	changing_mask = 0;
11356 	ld_mask = 0;
11357 	change_count = 0;
11358 	any_shared_limit_changing = 0;
11359 	for (i = 0; i < NUM_USABLE_VLS; i++, stat_mask <<= 1) {
11360 		if (!valid_vl(i))
11361 			continue;
11362 		this_shared_changing = new_bc->vl[i].shared
11363 						!= cur_bc.vl[i].shared;
11364 		if (this_shared_changing)
11365 			any_shared_limit_changing = 1;
11366 		if (new_bc->vl[i].dedicated != cur_bc.vl[i].dedicated ||
11367 		    this_shared_changing) {
11368 			changing[i] = 1;
11369 			changing_mask |= stat_mask;
11370 			change_count++;
11371 		}
11372 		if (be16_to_cpu(new_bc->vl[i].dedicated) <
11373 					be16_to_cpu(cur_bc.vl[i].dedicated)) {
11374 			lowering_dedicated[i] = 1;
11375 			ld_mask |= stat_mask;
11376 		}
11377 	}
11378 
11379 	/* bracket the credit change with a total adjustment */
11380 	if (new_total > cur_total)
11381 		set_global_limit(dd, new_total);
11382 
11383 	/*
11384 	 * Start the credit change algorithm.
11385 	 */
11386 	use_all_mask = 0;
11387 	if ((be16_to_cpu(new_bc->overall_shared_limit) <
11388 	     be16_to_cpu(cur_bc.overall_shared_limit)) ||
11389 	    (is_ax(dd) && any_shared_limit_changing)) {
11390 		set_global_shared(dd, 0);
11391 		cur_bc.overall_shared_limit = 0;
11392 		use_all_mask = 1;
11393 	}
11394 
11395 	for (i = 0; i < NUM_USABLE_VLS; i++) {
11396 		if (!valid_vl(i))
11397 			continue;
11398 
11399 		if (changing[i]) {
11400 			set_vl_shared(dd, i, 0);
11401 			cur_bc.vl[i].shared = 0;
11402 		}
11403 	}
11404 
11405 	wait_for_vl_status_clear(dd, use_all_mask ? all_mask : changing_mask,
11406 				 "shared");
11407 
11408 	if (change_count > 0) {
11409 		for (i = 0; i < NUM_USABLE_VLS; i++) {
11410 			if (!valid_vl(i))
11411 				continue;
11412 
11413 			if (lowering_dedicated[i]) {
11414 				set_vl_dedicated(dd, i,
11415 						 be16_to_cpu(new_bc->
11416 							     vl[i].dedicated));
11417 				cur_bc.vl[i].dedicated =
11418 						new_bc->vl[i].dedicated;
11419 			}
11420 		}
11421 
11422 		wait_for_vl_status_clear(dd, ld_mask, "dedicated");
11423 
11424 		/* now raise all dedicated that are going up */
11425 		for (i = 0; i < NUM_USABLE_VLS; i++) {
11426 			if (!valid_vl(i))
11427 				continue;
11428 
11429 			if (be16_to_cpu(new_bc->vl[i].dedicated) >
11430 					be16_to_cpu(cur_bc.vl[i].dedicated))
11431 				set_vl_dedicated(dd, i,
11432 						 be16_to_cpu(new_bc->
11433 							     vl[i].dedicated));
11434 		}
11435 	}
11436 
11437 	/* next raise all shared that are going up */
11438 	for (i = 0; i < NUM_USABLE_VLS; i++) {
11439 		if (!valid_vl(i))
11440 			continue;
11441 
11442 		if (be16_to_cpu(new_bc->vl[i].shared) >
11443 				be16_to_cpu(cur_bc.vl[i].shared))
11444 			set_vl_shared(dd, i, be16_to_cpu(new_bc->vl[i].shared));
11445 	}
11446 
11447 	/* finally raise the global shared */
11448 	if (be16_to_cpu(new_bc->overall_shared_limit) >
11449 	    be16_to_cpu(cur_bc.overall_shared_limit))
11450 		set_global_shared(dd,
11451 				  be16_to_cpu(new_bc->overall_shared_limit));
11452 
11453 	/* bracket the credit change with a total adjustment */
11454 	if (new_total < cur_total)
11455 		set_global_limit(dd, new_total);
11456 
11457 	/*
11458 	 * Determine the actual number of operational VLS using the number of
11459 	 * dedicated and shared credits for each VL.
11460 	 */
11461 	if (change_count > 0) {
11462 		for (i = 0; i < TXE_NUM_DATA_VL; i++)
11463 			if (be16_to_cpu(new_bc->vl[i].dedicated) > 0 ||
11464 			    be16_to_cpu(new_bc->vl[i].shared) > 0)
11465 				vl_count++;
11466 		ppd->actual_vls_operational = vl_count;
11467 		ret = sdma_map_init(dd, ppd->port - 1, vl_count ?
11468 				    ppd->actual_vls_operational :
11469 				    ppd->vls_operational,
11470 				    NULL);
11471 		if (ret == 0)
11472 			ret = pio_map_init(dd, ppd->port - 1, vl_count ?
11473 					   ppd->actual_vls_operational :
11474 					   ppd->vls_operational, NULL);
11475 		if (ret)
11476 			return ret;
11477 	}
11478 	return 0;
11479 }
11480 
11481 /*
11482  * Read the given fabric manager table. Return the size of the
11483  * table (in bytes) on success, and a negative error code on
11484  * failure.
11485  */
11486 int fm_get_table(struct hfi1_pportdata *ppd, int which, void *t)
11487 
11488 {
11489 	int size;
11490 	struct vl_arb_cache *vlc;
11491 
11492 	switch (which) {
11493 	case FM_TBL_VL_HIGH_ARB:
11494 		size = 256;
11495 		/*
11496 		 * OPA specifies 128 elements (of 2 bytes each), though
11497 		 * HFI supports only 16 elements in h/w.
11498 		 */
11499 		vlc = vl_arb_lock_cache(ppd, HI_PRIO_TABLE);
11500 		vl_arb_get_cache(vlc, t);
11501 		vl_arb_unlock_cache(ppd, HI_PRIO_TABLE);
11502 		break;
11503 	case FM_TBL_VL_LOW_ARB:
11504 		size = 256;
11505 		/*
11506 		 * OPA specifies 128 elements (of 2 bytes each), though
11507 		 * HFI supports only 16 elements in h/w.
11508 		 */
11509 		vlc = vl_arb_lock_cache(ppd, LO_PRIO_TABLE);
11510 		vl_arb_get_cache(vlc, t);
11511 		vl_arb_unlock_cache(ppd, LO_PRIO_TABLE);
11512 		break;
11513 	case FM_TBL_BUFFER_CONTROL:
11514 		size = get_buffer_control(ppd->dd, t, NULL);
11515 		break;
11516 	case FM_TBL_SC2VLNT:
11517 		size = get_sc2vlnt(ppd->dd, t);
11518 		break;
11519 	case FM_TBL_VL_PREEMPT_ELEMS:
11520 		size = 256;
11521 		/* OPA specifies 128 elements, of 2 bytes each */
11522 		get_vlarb_preempt(ppd->dd, OPA_MAX_VLS, t);
11523 		break;
11524 	case FM_TBL_VL_PREEMPT_MATRIX:
11525 		size = 256;
11526 		/*
11527 		 * OPA specifies that this is the same size as the VL
11528 		 * arbitration tables (i.e., 256 bytes).
11529 		 */
11530 		break;
11531 	default:
11532 		return -EINVAL;
11533 	}
11534 	return size;
11535 }
11536 
11537 /*
11538  * Write the given fabric manager table.
11539  */
11540 int fm_set_table(struct hfi1_pportdata *ppd, int which, void *t)
11541 {
11542 	int ret = 0;
11543 	struct vl_arb_cache *vlc;
11544 
11545 	switch (which) {
11546 	case FM_TBL_VL_HIGH_ARB:
11547 		vlc = vl_arb_lock_cache(ppd, HI_PRIO_TABLE);
11548 		if (vl_arb_match_cache(vlc, t)) {
11549 			vl_arb_unlock_cache(ppd, HI_PRIO_TABLE);
11550 			break;
11551 		}
11552 		vl_arb_set_cache(vlc, t);
11553 		vl_arb_unlock_cache(ppd, HI_PRIO_TABLE);
11554 		ret = set_vl_weights(ppd, SEND_HIGH_PRIORITY_LIST,
11555 				     VL_ARB_HIGH_PRIO_TABLE_SIZE, t);
11556 		break;
11557 	case FM_TBL_VL_LOW_ARB:
11558 		vlc = vl_arb_lock_cache(ppd, LO_PRIO_TABLE);
11559 		if (vl_arb_match_cache(vlc, t)) {
11560 			vl_arb_unlock_cache(ppd, LO_PRIO_TABLE);
11561 			break;
11562 		}
11563 		vl_arb_set_cache(vlc, t);
11564 		vl_arb_unlock_cache(ppd, LO_PRIO_TABLE);
11565 		ret = set_vl_weights(ppd, SEND_LOW_PRIORITY_LIST,
11566 				     VL_ARB_LOW_PRIO_TABLE_SIZE, t);
11567 		break;
11568 	case FM_TBL_BUFFER_CONTROL:
11569 		ret = set_buffer_control(ppd, t);
11570 		break;
11571 	case FM_TBL_SC2VLNT:
11572 		set_sc2vlnt(ppd->dd, t);
11573 		break;
11574 	default:
11575 		ret = -EINVAL;
11576 	}
11577 	return ret;
11578 }
11579 
11580 /*
11581  * Disable all data VLs.
11582  *
11583  * Return 0 if disabled, non-zero if the VLs cannot be disabled.
11584  */
11585 static int disable_data_vls(struct hfi1_devdata *dd)
11586 {
11587 	if (is_ax(dd))
11588 		return 1;
11589 
11590 	pio_send_control(dd, PSC_DATA_VL_DISABLE);
11591 
11592 	return 0;
11593 }
11594 
11595 /*
11596  * open_fill_data_vls() - the counterpart to stop_drain_data_vls().
11597  * Just re-enables all data VLs (the "fill" part happens
11598  * automatically - the name was chosen for symmetry with
11599  * stop_drain_data_vls()).
11600  *
11601  * Return 0 if successful, non-zero if the VLs cannot be enabled.
11602  */
11603 int open_fill_data_vls(struct hfi1_devdata *dd)
11604 {
11605 	if (is_ax(dd))
11606 		return 1;
11607 
11608 	pio_send_control(dd, PSC_DATA_VL_ENABLE);
11609 
11610 	return 0;
11611 }
11612 
11613 /*
11614  * drain_data_vls() - assumes that disable_data_vls() has been called,
11615  * wait for occupancy (of per-VL FIFOs) for all contexts, and SDMA
11616  * engines to drop to 0.
11617  */
11618 static void drain_data_vls(struct hfi1_devdata *dd)
11619 {
11620 	sc_wait(dd);
11621 	sdma_wait(dd);
11622 	pause_for_credit_return(dd);
11623 }
11624 
11625 /*
11626  * stop_drain_data_vls() - disable, then drain all per-VL fifos.
11627  *
11628  * Use open_fill_data_vls() to resume using data VLs.  This pair is
11629  * meant to be used like this:
11630  *
11631  * stop_drain_data_vls(dd);
11632  * // do things with per-VL resources
11633  * open_fill_data_vls(dd);
11634  */
11635 int stop_drain_data_vls(struct hfi1_devdata *dd)
11636 {
11637 	int ret;
11638 
11639 	ret = disable_data_vls(dd);
11640 	if (ret == 0)
11641 		drain_data_vls(dd);
11642 
11643 	return ret;
11644 }
11645 
11646 /*
11647  * Convert a nanosecond time to a cclock count.  No matter how slow
11648  * the cclock, a non-zero ns will always have a non-zero result.
11649  */
11650 u32 ns_to_cclock(struct hfi1_devdata *dd, u32 ns)
11651 {
11652 	u32 cclocks;
11653 
11654 	if (dd->icode == ICODE_FPGA_EMULATION)
11655 		cclocks = (ns * 1000) / FPGA_CCLOCK_PS;
11656 	else  /* simulation pretends to be ASIC */
11657 		cclocks = (ns * 1000) / ASIC_CCLOCK_PS;
11658 	if (ns && !cclocks)	/* if ns nonzero, must be at least 1 */
11659 		cclocks = 1;
11660 	return cclocks;
11661 }
11662 
11663 /*
11664  * Convert a cclock count to nanoseconds. Not matter how slow
11665  * the cclock, a non-zero cclocks will always have a non-zero result.
11666  */
11667 u32 cclock_to_ns(struct hfi1_devdata *dd, u32 cclocks)
11668 {
11669 	u32 ns;
11670 
11671 	if (dd->icode == ICODE_FPGA_EMULATION)
11672 		ns = (cclocks * FPGA_CCLOCK_PS) / 1000;
11673 	else  /* simulation pretends to be ASIC */
11674 		ns = (cclocks * ASIC_CCLOCK_PS) / 1000;
11675 	if (cclocks && !ns)
11676 		ns = 1;
11677 	return ns;
11678 }
11679 
11680 /*
11681  * Dynamically adjust the receive interrupt timeout for a context based on
11682  * incoming packet rate.
11683  *
11684  * NOTE: Dynamic adjustment does not allow rcv_intr_count to be zero.
11685  */
11686 static void adjust_rcv_timeout(struct hfi1_ctxtdata *rcd, u32 npkts)
11687 {
11688 	struct hfi1_devdata *dd = rcd->dd;
11689 	u32 timeout = rcd->rcvavail_timeout;
11690 
11691 	/*
11692 	 * This algorithm doubles or halves the timeout depending on whether
11693 	 * the number of packets received in this interrupt were less than or
11694 	 * greater equal the interrupt count.
11695 	 *
11696 	 * The calculations below do not allow a steady state to be achieved.
11697 	 * Only at the endpoints it is possible to have an unchanging
11698 	 * timeout.
11699 	 */
11700 	if (npkts < rcv_intr_count) {
11701 		/*
11702 		 * Not enough packets arrived before the timeout, adjust
11703 		 * timeout downward.
11704 		 */
11705 		if (timeout < 2) /* already at minimum? */
11706 			return;
11707 		timeout >>= 1;
11708 	} else {
11709 		/*
11710 		 * More than enough packets arrived before the timeout, adjust
11711 		 * timeout upward.
11712 		 */
11713 		if (timeout >= dd->rcv_intr_timeout_csr) /* already at max? */
11714 			return;
11715 		timeout = min(timeout << 1, dd->rcv_intr_timeout_csr);
11716 	}
11717 
11718 	rcd->rcvavail_timeout = timeout;
11719 	/*
11720 	 * timeout cannot be larger than rcv_intr_timeout_csr which has already
11721 	 * been verified to be in range
11722 	 */
11723 	write_kctxt_csr(dd, rcd->ctxt, RCV_AVAIL_TIME_OUT,
11724 			(u64)timeout <<
11725 			RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_SHIFT);
11726 }
11727 
11728 void update_usrhead(struct hfi1_ctxtdata *rcd, u32 hd, u32 updegr, u32 egrhd,
11729 		    u32 intr_adjust, u32 npkts)
11730 {
11731 	struct hfi1_devdata *dd = rcd->dd;
11732 	u64 reg;
11733 	u32 ctxt = rcd->ctxt;
11734 
11735 	/*
11736 	 * Need to write timeout register before updating RcvHdrHead to ensure
11737 	 * that a new value is used when the HW decides to restart counting.
11738 	 */
11739 	if (intr_adjust)
11740 		adjust_rcv_timeout(rcd, npkts);
11741 	if (updegr) {
11742 		reg = (egrhd & RCV_EGR_INDEX_HEAD_HEAD_MASK)
11743 			<< RCV_EGR_INDEX_HEAD_HEAD_SHIFT;
11744 		write_uctxt_csr(dd, ctxt, RCV_EGR_INDEX_HEAD, reg);
11745 	}
11746 	mmiowb();
11747 	reg = ((u64)rcv_intr_count << RCV_HDR_HEAD_COUNTER_SHIFT) |
11748 		(((u64)hd & RCV_HDR_HEAD_HEAD_MASK)
11749 			<< RCV_HDR_HEAD_HEAD_SHIFT);
11750 	write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, reg);
11751 	mmiowb();
11752 }
11753 
11754 u32 hdrqempty(struct hfi1_ctxtdata *rcd)
11755 {
11756 	u32 head, tail;
11757 
11758 	head = (read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_HEAD)
11759 		& RCV_HDR_HEAD_HEAD_SMASK) >> RCV_HDR_HEAD_HEAD_SHIFT;
11760 
11761 	if (rcd->rcvhdrtail_kvaddr)
11762 		tail = get_rcvhdrtail(rcd);
11763 	else
11764 		tail = read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_TAIL);
11765 
11766 	return head == tail;
11767 }
11768 
11769 /*
11770  * Context Control and Receive Array encoding for buffer size:
11771  *	0x0 invalid
11772  *	0x1   4 KB
11773  *	0x2   8 KB
11774  *	0x3  16 KB
11775  *	0x4  32 KB
11776  *	0x5  64 KB
11777  *	0x6 128 KB
11778  *	0x7 256 KB
11779  *	0x8 512 KB (Receive Array only)
11780  *	0x9   1 MB (Receive Array only)
11781  *	0xa   2 MB (Receive Array only)
11782  *
11783  *	0xB-0xF - reserved (Receive Array only)
11784  *
11785  *
11786  * This routine assumes that the value has already been sanity checked.
11787  */
11788 static u32 encoded_size(u32 size)
11789 {
11790 	switch (size) {
11791 	case   4 * 1024: return 0x1;
11792 	case   8 * 1024: return 0x2;
11793 	case  16 * 1024: return 0x3;
11794 	case  32 * 1024: return 0x4;
11795 	case  64 * 1024: return 0x5;
11796 	case 128 * 1024: return 0x6;
11797 	case 256 * 1024: return 0x7;
11798 	case 512 * 1024: return 0x8;
11799 	case   1 * 1024 * 1024: return 0x9;
11800 	case   2 * 1024 * 1024: return 0xa;
11801 	}
11802 	return 0x1;	/* if invalid, go with the minimum size */
11803 }
11804 
11805 void hfi1_rcvctrl(struct hfi1_devdata *dd, unsigned int op,
11806 		  struct hfi1_ctxtdata *rcd)
11807 {
11808 	u64 rcvctrl, reg;
11809 	int did_enable = 0;
11810 	u16 ctxt;
11811 
11812 	if (!rcd)
11813 		return;
11814 
11815 	ctxt = rcd->ctxt;
11816 
11817 	hfi1_cdbg(RCVCTRL, "ctxt %d op 0x%x", ctxt, op);
11818 
11819 	rcvctrl = read_kctxt_csr(dd, ctxt, RCV_CTXT_CTRL);
11820 	/* if the context already enabled, don't do the extra steps */
11821 	if ((op & HFI1_RCVCTRL_CTXT_ENB) &&
11822 	    !(rcvctrl & RCV_CTXT_CTRL_ENABLE_SMASK)) {
11823 		/* reset the tail and hdr addresses, and sequence count */
11824 		write_kctxt_csr(dd, ctxt, RCV_HDR_ADDR,
11825 				rcd->rcvhdrq_dma);
11826 		if (HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL))
11827 			write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR,
11828 					rcd->rcvhdrqtailaddr_dma);
11829 		rcd->seq_cnt = 1;
11830 
11831 		/* reset the cached receive header queue head value */
11832 		rcd->head = 0;
11833 
11834 		/*
11835 		 * Zero the receive header queue so we don't get false
11836 		 * positives when checking the sequence number.  The
11837 		 * sequence numbers could land exactly on the same spot.
11838 		 * E.g. a rcd restart before the receive header wrapped.
11839 		 */
11840 		memset(rcd->rcvhdrq, 0, rcd->rcvhdrq_size);
11841 
11842 		/* starting timeout */
11843 		rcd->rcvavail_timeout = dd->rcv_intr_timeout_csr;
11844 
11845 		/* enable the context */
11846 		rcvctrl |= RCV_CTXT_CTRL_ENABLE_SMASK;
11847 
11848 		/* clean the egr buffer size first */
11849 		rcvctrl &= ~RCV_CTXT_CTRL_EGR_BUF_SIZE_SMASK;
11850 		rcvctrl |= ((u64)encoded_size(rcd->egrbufs.rcvtid_size)
11851 				& RCV_CTXT_CTRL_EGR_BUF_SIZE_MASK)
11852 					<< RCV_CTXT_CTRL_EGR_BUF_SIZE_SHIFT;
11853 
11854 		/* zero RcvHdrHead - set RcvHdrHead.Counter after enable */
11855 		write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0);
11856 		did_enable = 1;
11857 
11858 		/* zero RcvEgrIndexHead */
11859 		write_uctxt_csr(dd, ctxt, RCV_EGR_INDEX_HEAD, 0);
11860 
11861 		/* set eager count and base index */
11862 		reg = (((u64)(rcd->egrbufs.alloced >> RCV_SHIFT)
11863 			& RCV_EGR_CTRL_EGR_CNT_MASK)
11864 		       << RCV_EGR_CTRL_EGR_CNT_SHIFT) |
11865 			(((rcd->eager_base >> RCV_SHIFT)
11866 			  & RCV_EGR_CTRL_EGR_BASE_INDEX_MASK)
11867 			 << RCV_EGR_CTRL_EGR_BASE_INDEX_SHIFT);
11868 		write_kctxt_csr(dd, ctxt, RCV_EGR_CTRL, reg);
11869 
11870 		/*
11871 		 * Set TID (expected) count and base index.
11872 		 * rcd->expected_count is set to individual RcvArray entries,
11873 		 * not pairs, and the CSR takes a pair-count in groups of
11874 		 * four, so divide by 8.
11875 		 */
11876 		reg = (((rcd->expected_count >> RCV_SHIFT)
11877 					& RCV_TID_CTRL_TID_PAIR_CNT_MASK)
11878 				<< RCV_TID_CTRL_TID_PAIR_CNT_SHIFT) |
11879 		      (((rcd->expected_base >> RCV_SHIFT)
11880 					& RCV_TID_CTRL_TID_BASE_INDEX_MASK)
11881 				<< RCV_TID_CTRL_TID_BASE_INDEX_SHIFT);
11882 		write_kctxt_csr(dd, ctxt, RCV_TID_CTRL, reg);
11883 		if (ctxt == HFI1_CTRL_CTXT)
11884 			write_csr(dd, RCV_VL15, HFI1_CTRL_CTXT);
11885 	}
11886 	if (op & HFI1_RCVCTRL_CTXT_DIS) {
11887 		write_csr(dd, RCV_VL15, 0);
11888 		/*
11889 		 * When receive context is being disabled turn on tail
11890 		 * update with a dummy tail address and then disable
11891 		 * receive context.
11892 		 */
11893 		if (dd->rcvhdrtail_dummy_dma) {
11894 			write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR,
11895 					dd->rcvhdrtail_dummy_dma);
11896 			/* Enabling RcvCtxtCtrl.TailUpd is intentional. */
11897 			rcvctrl |= RCV_CTXT_CTRL_TAIL_UPD_SMASK;
11898 		}
11899 
11900 		rcvctrl &= ~RCV_CTXT_CTRL_ENABLE_SMASK;
11901 	}
11902 	if (op & HFI1_RCVCTRL_INTRAVAIL_ENB)
11903 		rcvctrl |= RCV_CTXT_CTRL_INTR_AVAIL_SMASK;
11904 	if (op & HFI1_RCVCTRL_INTRAVAIL_DIS)
11905 		rcvctrl &= ~RCV_CTXT_CTRL_INTR_AVAIL_SMASK;
11906 	if (op & HFI1_RCVCTRL_TAILUPD_ENB && rcd->rcvhdrqtailaddr_dma)
11907 		rcvctrl |= RCV_CTXT_CTRL_TAIL_UPD_SMASK;
11908 	if (op & HFI1_RCVCTRL_TAILUPD_DIS) {
11909 		/* See comment on RcvCtxtCtrl.TailUpd above */
11910 		if (!(op & HFI1_RCVCTRL_CTXT_DIS))
11911 			rcvctrl &= ~RCV_CTXT_CTRL_TAIL_UPD_SMASK;
11912 	}
11913 	if (op & HFI1_RCVCTRL_TIDFLOW_ENB)
11914 		rcvctrl |= RCV_CTXT_CTRL_TID_FLOW_ENABLE_SMASK;
11915 	if (op & HFI1_RCVCTRL_TIDFLOW_DIS)
11916 		rcvctrl &= ~RCV_CTXT_CTRL_TID_FLOW_ENABLE_SMASK;
11917 	if (op & HFI1_RCVCTRL_ONE_PKT_EGR_ENB) {
11918 		/*
11919 		 * In one-packet-per-eager mode, the size comes from
11920 		 * the RcvArray entry.
11921 		 */
11922 		rcvctrl &= ~RCV_CTXT_CTRL_EGR_BUF_SIZE_SMASK;
11923 		rcvctrl |= RCV_CTXT_CTRL_ONE_PACKET_PER_EGR_BUFFER_SMASK;
11924 	}
11925 	if (op & HFI1_RCVCTRL_ONE_PKT_EGR_DIS)
11926 		rcvctrl &= ~RCV_CTXT_CTRL_ONE_PACKET_PER_EGR_BUFFER_SMASK;
11927 	if (op & HFI1_RCVCTRL_NO_RHQ_DROP_ENB)
11928 		rcvctrl |= RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK;
11929 	if (op & HFI1_RCVCTRL_NO_RHQ_DROP_DIS)
11930 		rcvctrl &= ~RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK;
11931 	if (op & HFI1_RCVCTRL_NO_EGR_DROP_ENB)
11932 		rcvctrl |= RCV_CTXT_CTRL_DONT_DROP_EGR_FULL_SMASK;
11933 	if (op & HFI1_RCVCTRL_NO_EGR_DROP_DIS)
11934 		rcvctrl &= ~RCV_CTXT_CTRL_DONT_DROP_EGR_FULL_SMASK;
11935 	rcd->rcvctrl = rcvctrl;
11936 	hfi1_cdbg(RCVCTRL, "ctxt %d rcvctrl 0x%llx\n", ctxt, rcvctrl);
11937 	write_kctxt_csr(dd, ctxt, RCV_CTXT_CTRL, rcd->rcvctrl);
11938 
11939 	/* work around sticky RcvCtxtStatus.BlockedRHQFull */
11940 	if (did_enable &&
11941 	    (rcvctrl & RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK)) {
11942 		reg = read_kctxt_csr(dd, ctxt, RCV_CTXT_STATUS);
11943 		if (reg != 0) {
11944 			dd_dev_info(dd, "ctxt %d status %lld (blocked)\n",
11945 				    ctxt, reg);
11946 			read_uctxt_csr(dd, ctxt, RCV_HDR_HEAD);
11947 			write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0x10);
11948 			write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0x00);
11949 			read_uctxt_csr(dd, ctxt, RCV_HDR_HEAD);
11950 			reg = read_kctxt_csr(dd, ctxt, RCV_CTXT_STATUS);
11951 			dd_dev_info(dd, "ctxt %d status %lld (%s blocked)\n",
11952 				    ctxt, reg, reg == 0 ? "not" : "still");
11953 		}
11954 	}
11955 
11956 	if (did_enable) {
11957 		/*
11958 		 * The interrupt timeout and count must be set after
11959 		 * the context is enabled to take effect.
11960 		 */
11961 		/* set interrupt timeout */
11962 		write_kctxt_csr(dd, ctxt, RCV_AVAIL_TIME_OUT,
11963 				(u64)rcd->rcvavail_timeout <<
11964 				RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_SHIFT);
11965 
11966 		/* set RcvHdrHead.Counter, zero RcvHdrHead.Head (again) */
11967 		reg = (u64)rcv_intr_count << RCV_HDR_HEAD_COUNTER_SHIFT;
11968 		write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, reg);
11969 	}
11970 
11971 	if (op & (HFI1_RCVCTRL_TAILUPD_DIS | HFI1_RCVCTRL_CTXT_DIS))
11972 		/*
11973 		 * If the context has been disabled and the Tail Update has
11974 		 * been cleared, set the RCV_HDR_TAIL_ADDR CSR to dummy address
11975 		 * so it doesn't contain an address that is invalid.
11976 		 */
11977 		write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR,
11978 				dd->rcvhdrtail_dummy_dma);
11979 }
11980 
11981 u32 hfi1_read_cntrs(struct hfi1_devdata *dd, char **namep, u64 **cntrp)
11982 {
11983 	int ret;
11984 	u64 val = 0;
11985 
11986 	if (namep) {
11987 		ret = dd->cntrnameslen;
11988 		*namep = dd->cntrnames;
11989 	} else {
11990 		const struct cntr_entry *entry;
11991 		int i, j;
11992 
11993 		ret = (dd->ndevcntrs) * sizeof(u64);
11994 
11995 		/* Get the start of the block of counters */
11996 		*cntrp = dd->cntrs;
11997 
11998 		/*
11999 		 * Now go and fill in each counter in the block.
12000 		 */
12001 		for (i = 0; i < DEV_CNTR_LAST; i++) {
12002 			entry = &dev_cntrs[i];
12003 			hfi1_cdbg(CNTR, "reading %s", entry->name);
12004 			if (entry->flags & CNTR_DISABLED) {
12005 				/* Nothing */
12006 				hfi1_cdbg(CNTR, "\tDisabled\n");
12007 			} else {
12008 				if (entry->flags & CNTR_VL) {
12009 					hfi1_cdbg(CNTR, "\tPer VL\n");
12010 					for (j = 0; j < C_VL_COUNT; j++) {
12011 						val = entry->rw_cntr(entry,
12012 								  dd, j,
12013 								  CNTR_MODE_R,
12014 								  0);
12015 						hfi1_cdbg(
12016 						   CNTR,
12017 						   "\t\tRead 0x%llx for %d\n",
12018 						   val, j);
12019 						dd->cntrs[entry->offset + j] =
12020 									    val;
12021 					}
12022 				} else if (entry->flags & CNTR_SDMA) {
12023 					hfi1_cdbg(CNTR,
12024 						  "\t Per SDMA Engine\n");
12025 					for (j = 0; j < dd->chip_sdma_engines;
12026 					     j++) {
12027 						val =
12028 						entry->rw_cntr(entry, dd, j,
12029 							       CNTR_MODE_R, 0);
12030 						hfi1_cdbg(CNTR,
12031 							  "\t\tRead 0x%llx for %d\n",
12032 							  val, j);
12033 						dd->cntrs[entry->offset + j] =
12034 									val;
12035 					}
12036 				} else {
12037 					val = entry->rw_cntr(entry, dd,
12038 							CNTR_INVALID_VL,
12039 							CNTR_MODE_R, 0);
12040 					dd->cntrs[entry->offset] = val;
12041 					hfi1_cdbg(CNTR, "\tRead 0x%llx", val);
12042 				}
12043 			}
12044 		}
12045 	}
12046 	return ret;
12047 }
12048 
12049 /*
12050  * Used by sysfs to create files for hfi stats to read
12051  */
12052 u32 hfi1_read_portcntrs(struct hfi1_pportdata *ppd, char **namep, u64 **cntrp)
12053 {
12054 	int ret;
12055 	u64 val = 0;
12056 
12057 	if (namep) {
12058 		ret = ppd->dd->portcntrnameslen;
12059 		*namep = ppd->dd->portcntrnames;
12060 	} else {
12061 		const struct cntr_entry *entry;
12062 		int i, j;
12063 
12064 		ret = ppd->dd->nportcntrs * sizeof(u64);
12065 		*cntrp = ppd->cntrs;
12066 
12067 		for (i = 0; i < PORT_CNTR_LAST; i++) {
12068 			entry = &port_cntrs[i];
12069 			hfi1_cdbg(CNTR, "reading %s", entry->name);
12070 			if (entry->flags & CNTR_DISABLED) {
12071 				/* Nothing */
12072 				hfi1_cdbg(CNTR, "\tDisabled\n");
12073 				continue;
12074 			}
12075 
12076 			if (entry->flags & CNTR_VL) {
12077 				hfi1_cdbg(CNTR, "\tPer VL");
12078 				for (j = 0; j < C_VL_COUNT; j++) {
12079 					val = entry->rw_cntr(entry, ppd, j,
12080 							       CNTR_MODE_R,
12081 							       0);
12082 					hfi1_cdbg(
12083 					   CNTR,
12084 					   "\t\tRead 0x%llx for %d",
12085 					   val, j);
12086 					ppd->cntrs[entry->offset + j] = val;
12087 				}
12088 			} else {
12089 				val = entry->rw_cntr(entry, ppd,
12090 						       CNTR_INVALID_VL,
12091 						       CNTR_MODE_R,
12092 						       0);
12093 				ppd->cntrs[entry->offset] = val;
12094 				hfi1_cdbg(CNTR, "\tRead 0x%llx", val);
12095 			}
12096 		}
12097 	}
12098 	return ret;
12099 }
12100 
12101 static void free_cntrs(struct hfi1_devdata *dd)
12102 {
12103 	struct hfi1_pportdata *ppd;
12104 	int i;
12105 
12106 	if (dd->synth_stats_timer.function)
12107 		del_timer_sync(&dd->synth_stats_timer);
12108 	ppd = (struct hfi1_pportdata *)(dd + 1);
12109 	for (i = 0; i < dd->num_pports; i++, ppd++) {
12110 		kfree(ppd->cntrs);
12111 		kfree(ppd->scntrs);
12112 		free_percpu(ppd->ibport_data.rvp.rc_acks);
12113 		free_percpu(ppd->ibport_data.rvp.rc_qacks);
12114 		free_percpu(ppd->ibport_data.rvp.rc_delayed_comp);
12115 		ppd->cntrs = NULL;
12116 		ppd->scntrs = NULL;
12117 		ppd->ibport_data.rvp.rc_acks = NULL;
12118 		ppd->ibport_data.rvp.rc_qacks = NULL;
12119 		ppd->ibport_data.rvp.rc_delayed_comp = NULL;
12120 	}
12121 	kfree(dd->portcntrnames);
12122 	dd->portcntrnames = NULL;
12123 	kfree(dd->cntrs);
12124 	dd->cntrs = NULL;
12125 	kfree(dd->scntrs);
12126 	dd->scntrs = NULL;
12127 	kfree(dd->cntrnames);
12128 	dd->cntrnames = NULL;
12129 	if (dd->update_cntr_wq) {
12130 		destroy_workqueue(dd->update_cntr_wq);
12131 		dd->update_cntr_wq = NULL;
12132 	}
12133 }
12134 
12135 static u64 read_dev_port_cntr(struct hfi1_devdata *dd, struct cntr_entry *entry,
12136 			      u64 *psval, void *context, int vl)
12137 {
12138 	u64 val;
12139 	u64 sval = *psval;
12140 
12141 	if (entry->flags & CNTR_DISABLED) {
12142 		dd_dev_err(dd, "Counter %s not enabled", entry->name);
12143 		return 0;
12144 	}
12145 
12146 	hfi1_cdbg(CNTR, "cntr: %s vl %d psval 0x%llx", entry->name, vl, *psval);
12147 
12148 	val = entry->rw_cntr(entry, context, vl, CNTR_MODE_R, 0);
12149 
12150 	/* If its a synthetic counter there is more work we need to do */
12151 	if (entry->flags & CNTR_SYNTH) {
12152 		if (sval == CNTR_MAX) {
12153 			/* No need to read already saturated */
12154 			return CNTR_MAX;
12155 		}
12156 
12157 		if (entry->flags & CNTR_32BIT) {
12158 			/* 32bit counters can wrap multiple times */
12159 			u64 upper = sval >> 32;
12160 			u64 lower = (sval << 32) >> 32;
12161 
12162 			if (lower > val) { /* hw wrapped */
12163 				if (upper == CNTR_32BIT_MAX)
12164 					val = CNTR_MAX;
12165 				else
12166 					upper++;
12167 			}
12168 
12169 			if (val != CNTR_MAX)
12170 				val = (upper << 32) | val;
12171 
12172 		} else {
12173 			/* If we rolled we are saturated */
12174 			if ((val < sval) || (val > CNTR_MAX))
12175 				val = CNTR_MAX;
12176 		}
12177 	}
12178 
12179 	*psval = val;
12180 
12181 	hfi1_cdbg(CNTR, "\tNew val=0x%llx", val);
12182 
12183 	return val;
12184 }
12185 
12186 static u64 write_dev_port_cntr(struct hfi1_devdata *dd,
12187 			       struct cntr_entry *entry,
12188 			       u64 *psval, void *context, int vl, u64 data)
12189 {
12190 	u64 val;
12191 
12192 	if (entry->flags & CNTR_DISABLED) {
12193 		dd_dev_err(dd, "Counter %s not enabled", entry->name);
12194 		return 0;
12195 	}
12196 
12197 	hfi1_cdbg(CNTR, "cntr: %s vl %d psval 0x%llx", entry->name, vl, *psval);
12198 
12199 	if (entry->flags & CNTR_SYNTH) {
12200 		*psval = data;
12201 		if (entry->flags & CNTR_32BIT) {
12202 			val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W,
12203 					     (data << 32) >> 32);
12204 			val = data; /* return the full 64bit value */
12205 		} else {
12206 			val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W,
12207 					     data);
12208 		}
12209 	} else {
12210 		val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W, data);
12211 	}
12212 
12213 	*psval = val;
12214 
12215 	hfi1_cdbg(CNTR, "\tNew val=0x%llx", val);
12216 
12217 	return val;
12218 }
12219 
12220 u64 read_dev_cntr(struct hfi1_devdata *dd, int index, int vl)
12221 {
12222 	struct cntr_entry *entry;
12223 	u64 *sval;
12224 
12225 	entry = &dev_cntrs[index];
12226 	sval = dd->scntrs + entry->offset;
12227 
12228 	if (vl != CNTR_INVALID_VL)
12229 		sval += vl;
12230 
12231 	return read_dev_port_cntr(dd, entry, sval, dd, vl);
12232 }
12233 
12234 u64 write_dev_cntr(struct hfi1_devdata *dd, int index, int vl, u64 data)
12235 {
12236 	struct cntr_entry *entry;
12237 	u64 *sval;
12238 
12239 	entry = &dev_cntrs[index];
12240 	sval = dd->scntrs + entry->offset;
12241 
12242 	if (vl != CNTR_INVALID_VL)
12243 		sval += vl;
12244 
12245 	return write_dev_port_cntr(dd, entry, sval, dd, vl, data);
12246 }
12247 
12248 u64 read_port_cntr(struct hfi1_pportdata *ppd, int index, int vl)
12249 {
12250 	struct cntr_entry *entry;
12251 	u64 *sval;
12252 
12253 	entry = &port_cntrs[index];
12254 	sval = ppd->scntrs + entry->offset;
12255 
12256 	if (vl != CNTR_INVALID_VL)
12257 		sval += vl;
12258 
12259 	if ((index >= C_RCV_HDR_OVF_FIRST + ppd->dd->num_rcv_contexts) &&
12260 	    (index <= C_RCV_HDR_OVF_LAST)) {
12261 		/* We do not want to bother for disabled contexts */
12262 		return 0;
12263 	}
12264 
12265 	return read_dev_port_cntr(ppd->dd, entry, sval, ppd, vl);
12266 }
12267 
12268 u64 write_port_cntr(struct hfi1_pportdata *ppd, int index, int vl, u64 data)
12269 {
12270 	struct cntr_entry *entry;
12271 	u64 *sval;
12272 
12273 	entry = &port_cntrs[index];
12274 	sval = ppd->scntrs + entry->offset;
12275 
12276 	if (vl != CNTR_INVALID_VL)
12277 		sval += vl;
12278 
12279 	if ((index >= C_RCV_HDR_OVF_FIRST + ppd->dd->num_rcv_contexts) &&
12280 	    (index <= C_RCV_HDR_OVF_LAST)) {
12281 		/* We do not want to bother for disabled contexts */
12282 		return 0;
12283 	}
12284 
12285 	return write_dev_port_cntr(ppd->dd, entry, sval, ppd, vl, data);
12286 }
12287 
12288 static void do_update_synth_timer(struct work_struct *work)
12289 {
12290 	u64 cur_tx;
12291 	u64 cur_rx;
12292 	u64 total_flits;
12293 	u8 update = 0;
12294 	int i, j, vl;
12295 	struct hfi1_pportdata *ppd;
12296 	struct cntr_entry *entry;
12297 	struct hfi1_devdata *dd = container_of(work, struct hfi1_devdata,
12298 					       update_cntr_work);
12299 
12300 	/*
12301 	 * Rather than keep beating on the CSRs pick a minimal set that we can
12302 	 * check to watch for potential roll over. We can do this by looking at
12303 	 * the number of flits sent/recv. If the total flits exceeds 32bits then
12304 	 * we have to iterate all the counters and update.
12305 	 */
12306 	entry = &dev_cntrs[C_DC_RCV_FLITS];
12307 	cur_rx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL, CNTR_MODE_R, 0);
12308 
12309 	entry = &dev_cntrs[C_DC_XMIT_FLITS];
12310 	cur_tx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL, CNTR_MODE_R, 0);
12311 
12312 	hfi1_cdbg(
12313 	    CNTR,
12314 	    "[%d] curr tx=0x%llx rx=0x%llx :: last tx=0x%llx rx=0x%llx\n",
12315 	    dd->unit, cur_tx, cur_rx, dd->last_tx, dd->last_rx);
12316 
12317 	if ((cur_tx < dd->last_tx) || (cur_rx < dd->last_rx)) {
12318 		/*
12319 		 * May not be strictly necessary to update but it won't hurt and
12320 		 * simplifies the logic here.
12321 		 */
12322 		update = 1;
12323 		hfi1_cdbg(CNTR, "[%d] Tripwire counter rolled, updating",
12324 			  dd->unit);
12325 	} else {
12326 		total_flits = (cur_tx - dd->last_tx) + (cur_rx - dd->last_rx);
12327 		hfi1_cdbg(CNTR,
12328 			  "[%d] total flits 0x%llx limit 0x%llx\n", dd->unit,
12329 			  total_flits, (u64)CNTR_32BIT_MAX);
12330 		if (total_flits >= CNTR_32BIT_MAX) {
12331 			hfi1_cdbg(CNTR, "[%d] 32bit limit hit, updating",
12332 				  dd->unit);
12333 			update = 1;
12334 		}
12335 	}
12336 
12337 	if (update) {
12338 		hfi1_cdbg(CNTR, "[%d] Updating dd and ppd counters", dd->unit);
12339 		for (i = 0; i < DEV_CNTR_LAST; i++) {
12340 			entry = &dev_cntrs[i];
12341 			if (entry->flags & CNTR_VL) {
12342 				for (vl = 0; vl < C_VL_COUNT; vl++)
12343 					read_dev_cntr(dd, i, vl);
12344 			} else {
12345 				read_dev_cntr(dd, i, CNTR_INVALID_VL);
12346 			}
12347 		}
12348 		ppd = (struct hfi1_pportdata *)(dd + 1);
12349 		for (i = 0; i < dd->num_pports; i++, ppd++) {
12350 			for (j = 0; j < PORT_CNTR_LAST; j++) {
12351 				entry = &port_cntrs[j];
12352 				if (entry->flags & CNTR_VL) {
12353 					for (vl = 0; vl < C_VL_COUNT; vl++)
12354 						read_port_cntr(ppd, j, vl);
12355 				} else {
12356 					read_port_cntr(ppd, j, CNTR_INVALID_VL);
12357 				}
12358 			}
12359 		}
12360 
12361 		/*
12362 		 * We want the value in the register. The goal is to keep track
12363 		 * of the number of "ticks" not the counter value. In other
12364 		 * words if the register rolls we want to notice it and go ahead
12365 		 * and force an update.
12366 		 */
12367 		entry = &dev_cntrs[C_DC_XMIT_FLITS];
12368 		dd->last_tx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL,
12369 						CNTR_MODE_R, 0);
12370 
12371 		entry = &dev_cntrs[C_DC_RCV_FLITS];
12372 		dd->last_rx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL,
12373 						CNTR_MODE_R, 0);
12374 
12375 		hfi1_cdbg(CNTR, "[%d] setting last tx/rx to 0x%llx 0x%llx",
12376 			  dd->unit, dd->last_tx, dd->last_rx);
12377 
12378 	} else {
12379 		hfi1_cdbg(CNTR, "[%d] No update necessary", dd->unit);
12380 	}
12381 }
12382 
12383 static void update_synth_timer(struct timer_list *t)
12384 {
12385 	struct hfi1_devdata *dd = from_timer(dd, t, synth_stats_timer);
12386 
12387 	queue_work(dd->update_cntr_wq, &dd->update_cntr_work);
12388 	mod_timer(&dd->synth_stats_timer, jiffies + HZ * SYNTH_CNT_TIME);
12389 }
12390 
12391 #define C_MAX_NAME 16 /* 15 chars + one for /0 */
12392 static int init_cntrs(struct hfi1_devdata *dd)
12393 {
12394 	int i, rcv_ctxts, j;
12395 	size_t sz;
12396 	char *p;
12397 	char name[C_MAX_NAME];
12398 	struct hfi1_pportdata *ppd;
12399 	const char *bit_type_32 = ",32";
12400 	const int bit_type_32_sz = strlen(bit_type_32);
12401 
12402 	/* set up the stats timer; the add_timer is done at the end */
12403 	timer_setup(&dd->synth_stats_timer, update_synth_timer, 0);
12404 
12405 	/***********************/
12406 	/* per device counters */
12407 	/***********************/
12408 
12409 	/* size names and determine how many we have*/
12410 	dd->ndevcntrs = 0;
12411 	sz = 0;
12412 
12413 	for (i = 0; i < DEV_CNTR_LAST; i++) {
12414 		if (dev_cntrs[i].flags & CNTR_DISABLED) {
12415 			hfi1_dbg_early("\tSkipping %s\n", dev_cntrs[i].name);
12416 			continue;
12417 		}
12418 
12419 		if (dev_cntrs[i].flags & CNTR_VL) {
12420 			dev_cntrs[i].offset = dd->ndevcntrs;
12421 			for (j = 0; j < C_VL_COUNT; j++) {
12422 				snprintf(name, C_MAX_NAME, "%s%d",
12423 					 dev_cntrs[i].name, vl_from_idx(j));
12424 				sz += strlen(name);
12425 				/* Add ",32" for 32-bit counters */
12426 				if (dev_cntrs[i].flags & CNTR_32BIT)
12427 					sz += bit_type_32_sz;
12428 				sz++;
12429 				dd->ndevcntrs++;
12430 			}
12431 		} else if (dev_cntrs[i].flags & CNTR_SDMA) {
12432 			dev_cntrs[i].offset = dd->ndevcntrs;
12433 			for (j = 0; j < dd->chip_sdma_engines; j++) {
12434 				snprintf(name, C_MAX_NAME, "%s%d",
12435 					 dev_cntrs[i].name, j);
12436 				sz += strlen(name);
12437 				/* Add ",32" for 32-bit counters */
12438 				if (dev_cntrs[i].flags & CNTR_32BIT)
12439 					sz += bit_type_32_sz;
12440 				sz++;
12441 				dd->ndevcntrs++;
12442 			}
12443 		} else {
12444 			/* +1 for newline. */
12445 			sz += strlen(dev_cntrs[i].name) + 1;
12446 			/* Add ",32" for 32-bit counters */
12447 			if (dev_cntrs[i].flags & CNTR_32BIT)
12448 				sz += bit_type_32_sz;
12449 			dev_cntrs[i].offset = dd->ndevcntrs;
12450 			dd->ndevcntrs++;
12451 		}
12452 	}
12453 
12454 	/* allocate space for the counter values */
12455 	dd->cntrs = kcalloc(dd->ndevcntrs, sizeof(u64), GFP_KERNEL);
12456 	if (!dd->cntrs)
12457 		goto bail;
12458 
12459 	dd->scntrs = kcalloc(dd->ndevcntrs, sizeof(u64), GFP_KERNEL);
12460 	if (!dd->scntrs)
12461 		goto bail;
12462 
12463 	/* allocate space for the counter names */
12464 	dd->cntrnameslen = sz;
12465 	dd->cntrnames = kmalloc(sz, GFP_KERNEL);
12466 	if (!dd->cntrnames)
12467 		goto bail;
12468 
12469 	/* fill in the names */
12470 	for (p = dd->cntrnames, i = 0; i < DEV_CNTR_LAST; i++) {
12471 		if (dev_cntrs[i].flags & CNTR_DISABLED) {
12472 			/* Nothing */
12473 		} else if (dev_cntrs[i].flags & CNTR_VL) {
12474 			for (j = 0; j < C_VL_COUNT; j++) {
12475 				snprintf(name, C_MAX_NAME, "%s%d",
12476 					 dev_cntrs[i].name,
12477 					 vl_from_idx(j));
12478 				memcpy(p, name, strlen(name));
12479 				p += strlen(name);
12480 
12481 				/* Counter is 32 bits */
12482 				if (dev_cntrs[i].flags & CNTR_32BIT) {
12483 					memcpy(p, bit_type_32, bit_type_32_sz);
12484 					p += bit_type_32_sz;
12485 				}
12486 
12487 				*p++ = '\n';
12488 			}
12489 		} else if (dev_cntrs[i].flags & CNTR_SDMA) {
12490 			for (j = 0; j < dd->chip_sdma_engines; j++) {
12491 				snprintf(name, C_MAX_NAME, "%s%d",
12492 					 dev_cntrs[i].name, j);
12493 				memcpy(p, name, strlen(name));
12494 				p += strlen(name);
12495 
12496 				/* Counter is 32 bits */
12497 				if (dev_cntrs[i].flags & CNTR_32BIT) {
12498 					memcpy(p, bit_type_32, bit_type_32_sz);
12499 					p += bit_type_32_sz;
12500 				}
12501 
12502 				*p++ = '\n';
12503 			}
12504 		} else {
12505 			memcpy(p, dev_cntrs[i].name, strlen(dev_cntrs[i].name));
12506 			p += strlen(dev_cntrs[i].name);
12507 
12508 			/* Counter is 32 bits */
12509 			if (dev_cntrs[i].flags & CNTR_32BIT) {
12510 				memcpy(p, bit_type_32, bit_type_32_sz);
12511 				p += bit_type_32_sz;
12512 			}
12513 
12514 			*p++ = '\n';
12515 		}
12516 	}
12517 
12518 	/*********************/
12519 	/* per port counters */
12520 	/*********************/
12521 
12522 	/*
12523 	 * Go through the counters for the overflows and disable the ones we
12524 	 * don't need. This varies based on platform so we need to do it
12525 	 * dynamically here.
12526 	 */
12527 	rcv_ctxts = dd->num_rcv_contexts;
12528 	for (i = C_RCV_HDR_OVF_FIRST + rcv_ctxts;
12529 	     i <= C_RCV_HDR_OVF_LAST; i++) {
12530 		port_cntrs[i].flags |= CNTR_DISABLED;
12531 	}
12532 
12533 	/* size port counter names and determine how many we have*/
12534 	sz = 0;
12535 	dd->nportcntrs = 0;
12536 	for (i = 0; i < PORT_CNTR_LAST; i++) {
12537 		if (port_cntrs[i].flags & CNTR_DISABLED) {
12538 			hfi1_dbg_early("\tSkipping %s\n", port_cntrs[i].name);
12539 			continue;
12540 		}
12541 
12542 		if (port_cntrs[i].flags & CNTR_VL) {
12543 			port_cntrs[i].offset = dd->nportcntrs;
12544 			for (j = 0; j < C_VL_COUNT; j++) {
12545 				snprintf(name, C_MAX_NAME, "%s%d",
12546 					 port_cntrs[i].name, vl_from_idx(j));
12547 				sz += strlen(name);
12548 				/* Add ",32" for 32-bit counters */
12549 				if (port_cntrs[i].flags & CNTR_32BIT)
12550 					sz += bit_type_32_sz;
12551 				sz++;
12552 				dd->nportcntrs++;
12553 			}
12554 		} else {
12555 			/* +1 for newline */
12556 			sz += strlen(port_cntrs[i].name) + 1;
12557 			/* Add ",32" for 32-bit counters */
12558 			if (port_cntrs[i].flags & CNTR_32BIT)
12559 				sz += bit_type_32_sz;
12560 			port_cntrs[i].offset = dd->nportcntrs;
12561 			dd->nportcntrs++;
12562 		}
12563 	}
12564 
12565 	/* allocate space for the counter names */
12566 	dd->portcntrnameslen = sz;
12567 	dd->portcntrnames = kmalloc(sz, GFP_KERNEL);
12568 	if (!dd->portcntrnames)
12569 		goto bail;
12570 
12571 	/* fill in port cntr names */
12572 	for (p = dd->portcntrnames, i = 0; i < PORT_CNTR_LAST; i++) {
12573 		if (port_cntrs[i].flags & CNTR_DISABLED)
12574 			continue;
12575 
12576 		if (port_cntrs[i].flags & CNTR_VL) {
12577 			for (j = 0; j < C_VL_COUNT; j++) {
12578 				snprintf(name, C_MAX_NAME, "%s%d",
12579 					 port_cntrs[i].name, vl_from_idx(j));
12580 				memcpy(p, name, strlen(name));
12581 				p += strlen(name);
12582 
12583 				/* Counter is 32 bits */
12584 				if (port_cntrs[i].flags & CNTR_32BIT) {
12585 					memcpy(p, bit_type_32, bit_type_32_sz);
12586 					p += bit_type_32_sz;
12587 				}
12588 
12589 				*p++ = '\n';
12590 			}
12591 		} else {
12592 			memcpy(p, port_cntrs[i].name,
12593 			       strlen(port_cntrs[i].name));
12594 			p += strlen(port_cntrs[i].name);
12595 
12596 			/* Counter is 32 bits */
12597 			if (port_cntrs[i].flags & CNTR_32BIT) {
12598 				memcpy(p, bit_type_32, bit_type_32_sz);
12599 				p += bit_type_32_sz;
12600 			}
12601 
12602 			*p++ = '\n';
12603 		}
12604 	}
12605 
12606 	/* allocate per port storage for counter values */
12607 	ppd = (struct hfi1_pportdata *)(dd + 1);
12608 	for (i = 0; i < dd->num_pports; i++, ppd++) {
12609 		ppd->cntrs = kcalloc(dd->nportcntrs, sizeof(u64), GFP_KERNEL);
12610 		if (!ppd->cntrs)
12611 			goto bail;
12612 
12613 		ppd->scntrs = kcalloc(dd->nportcntrs, sizeof(u64), GFP_KERNEL);
12614 		if (!ppd->scntrs)
12615 			goto bail;
12616 	}
12617 
12618 	/* CPU counters need to be allocated and zeroed */
12619 	if (init_cpu_counters(dd))
12620 		goto bail;
12621 
12622 	dd->update_cntr_wq = alloc_ordered_workqueue("hfi1_update_cntr_%d",
12623 						     WQ_MEM_RECLAIM, dd->unit);
12624 	if (!dd->update_cntr_wq)
12625 		goto bail;
12626 
12627 	INIT_WORK(&dd->update_cntr_work, do_update_synth_timer);
12628 
12629 	mod_timer(&dd->synth_stats_timer, jiffies + HZ * SYNTH_CNT_TIME);
12630 	return 0;
12631 bail:
12632 	free_cntrs(dd);
12633 	return -ENOMEM;
12634 }
12635 
12636 static u32 chip_to_opa_lstate(struct hfi1_devdata *dd, u32 chip_lstate)
12637 {
12638 	switch (chip_lstate) {
12639 	default:
12640 		dd_dev_err(dd,
12641 			   "Unknown logical state 0x%x, reporting IB_PORT_DOWN\n",
12642 			   chip_lstate);
12643 		/* fall through */
12644 	case LSTATE_DOWN:
12645 		return IB_PORT_DOWN;
12646 	case LSTATE_INIT:
12647 		return IB_PORT_INIT;
12648 	case LSTATE_ARMED:
12649 		return IB_PORT_ARMED;
12650 	case LSTATE_ACTIVE:
12651 		return IB_PORT_ACTIVE;
12652 	}
12653 }
12654 
12655 u32 chip_to_opa_pstate(struct hfi1_devdata *dd, u32 chip_pstate)
12656 {
12657 	/* look at the HFI meta-states only */
12658 	switch (chip_pstate & 0xf0) {
12659 	default:
12660 		dd_dev_err(dd, "Unexpected chip physical state of 0x%x\n",
12661 			   chip_pstate);
12662 		/* fall through */
12663 	case PLS_DISABLED:
12664 		return IB_PORTPHYSSTATE_DISABLED;
12665 	case PLS_OFFLINE:
12666 		return OPA_PORTPHYSSTATE_OFFLINE;
12667 	case PLS_POLLING:
12668 		return IB_PORTPHYSSTATE_POLLING;
12669 	case PLS_CONFIGPHY:
12670 		return IB_PORTPHYSSTATE_TRAINING;
12671 	case PLS_LINKUP:
12672 		return IB_PORTPHYSSTATE_LINKUP;
12673 	case PLS_PHYTEST:
12674 		return IB_PORTPHYSSTATE_PHY_TEST;
12675 	}
12676 }
12677 
12678 /* return the OPA port logical state name */
12679 const char *opa_lstate_name(u32 lstate)
12680 {
12681 	static const char * const port_logical_names[] = {
12682 		"PORT_NOP",
12683 		"PORT_DOWN",
12684 		"PORT_INIT",
12685 		"PORT_ARMED",
12686 		"PORT_ACTIVE",
12687 		"PORT_ACTIVE_DEFER",
12688 	};
12689 	if (lstate < ARRAY_SIZE(port_logical_names))
12690 		return port_logical_names[lstate];
12691 	return "unknown";
12692 }
12693 
12694 /* return the OPA port physical state name */
12695 const char *opa_pstate_name(u32 pstate)
12696 {
12697 	static const char * const port_physical_names[] = {
12698 		"PHYS_NOP",
12699 		"reserved1",
12700 		"PHYS_POLL",
12701 		"PHYS_DISABLED",
12702 		"PHYS_TRAINING",
12703 		"PHYS_LINKUP",
12704 		"PHYS_LINK_ERR_RECOVER",
12705 		"PHYS_PHY_TEST",
12706 		"reserved8",
12707 		"PHYS_OFFLINE",
12708 		"PHYS_GANGED",
12709 		"PHYS_TEST",
12710 	};
12711 	if (pstate < ARRAY_SIZE(port_physical_names))
12712 		return port_physical_names[pstate];
12713 	return "unknown";
12714 }
12715 
12716 /**
12717  * update_statusp - Update userspace status flag
12718  * @ppd: Port data structure
12719  * @state: port state information
12720  *
12721  * Actual port status is determined by the host_link_state value
12722  * in the ppd.
12723  *
12724  * host_link_state MUST be updated before updating the user space
12725  * statusp.
12726  */
12727 static void update_statusp(struct hfi1_pportdata *ppd, u32 state)
12728 {
12729 	/*
12730 	 * Set port status flags in the page mapped into userspace
12731 	 * memory. Do it here to ensure a reliable state - this is
12732 	 * the only function called by all state handling code.
12733 	 * Always set the flags due to the fact that the cache value
12734 	 * might have been changed explicitly outside of this
12735 	 * function.
12736 	 */
12737 	if (ppd->statusp) {
12738 		switch (state) {
12739 		case IB_PORT_DOWN:
12740 		case IB_PORT_INIT:
12741 			*ppd->statusp &= ~(HFI1_STATUS_IB_CONF |
12742 					   HFI1_STATUS_IB_READY);
12743 			break;
12744 		case IB_PORT_ARMED:
12745 			*ppd->statusp |= HFI1_STATUS_IB_CONF;
12746 			break;
12747 		case IB_PORT_ACTIVE:
12748 			*ppd->statusp |= HFI1_STATUS_IB_READY;
12749 			break;
12750 		}
12751 	}
12752 	dd_dev_info(ppd->dd, "logical state changed to %s (0x%x)\n",
12753 		    opa_lstate_name(state), state);
12754 }
12755 
12756 /**
12757  * wait_logical_linkstate - wait for an IB link state change to occur
12758  * @ppd: port device
12759  * @state: the state to wait for
12760  * @msecs: the number of milliseconds to wait
12761  *
12762  * Wait up to msecs milliseconds for IB link state change to occur.
12763  * For now, take the easy polling route.
12764  * Returns 0 if state reached, otherwise -ETIMEDOUT.
12765  */
12766 static int wait_logical_linkstate(struct hfi1_pportdata *ppd, u32 state,
12767 				  int msecs)
12768 {
12769 	unsigned long timeout;
12770 	u32 new_state;
12771 
12772 	timeout = jiffies + msecs_to_jiffies(msecs);
12773 	while (1) {
12774 		new_state = chip_to_opa_lstate(ppd->dd,
12775 					       read_logical_state(ppd->dd));
12776 		if (new_state == state)
12777 			break;
12778 		if (time_after(jiffies, timeout)) {
12779 			dd_dev_err(ppd->dd,
12780 				   "timeout waiting for link state 0x%x\n",
12781 				   state);
12782 			return -ETIMEDOUT;
12783 		}
12784 		msleep(20);
12785 	}
12786 
12787 	return 0;
12788 }
12789 
12790 static void log_state_transition(struct hfi1_pportdata *ppd, u32 state)
12791 {
12792 	u32 ib_pstate = chip_to_opa_pstate(ppd->dd, state);
12793 
12794 	dd_dev_info(ppd->dd,
12795 		    "physical state changed to %s (0x%x), phy 0x%x\n",
12796 		    opa_pstate_name(ib_pstate), ib_pstate, state);
12797 }
12798 
12799 /*
12800  * Read the physical hardware link state and check if it matches host
12801  * drivers anticipated state.
12802  */
12803 static void log_physical_state(struct hfi1_pportdata *ppd, u32 state)
12804 {
12805 	u32 read_state = read_physical_state(ppd->dd);
12806 
12807 	if (read_state == state) {
12808 		log_state_transition(ppd, state);
12809 	} else {
12810 		dd_dev_err(ppd->dd,
12811 			   "anticipated phy link state 0x%x, read 0x%x\n",
12812 			   state, read_state);
12813 	}
12814 }
12815 
12816 /*
12817  * wait_physical_linkstate - wait for an physical link state change to occur
12818  * @ppd: port device
12819  * @state: the state to wait for
12820  * @msecs: the number of milliseconds to wait
12821  *
12822  * Wait up to msecs milliseconds for physical link state change to occur.
12823  * Returns 0 if state reached, otherwise -ETIMEDOUT.
12824  */
12825 static int wait_physical_linkstate(struct hfi1_pportdata *ppd, u32 state,
12826 				   int msecs)
12827 {
12828 	u32 read_state;
12829 	unsigned long timeout;
12830 
12831 	timeout = jiffies + msecs_to_jiffies(msecs);
12832 	while (1) {
12833 		read_state = read_physical_state(ppd->dd);
12834 		if (read_state == state)
12835 			break;
12836 		if (time_after(jiffies, timeout)) {
12837 			dd_dev_err(ppd->dd,
12838 				   "timeout waiting for phy link state 0x%x\n",
12839 				   state);
12840 			return -ETIMEDOUT;
12841 		}
12842 		usleep_range(1950, 2050); /* sleep 2ms-ish */
12843 	}
12844 
12845 	log_state_transition(ppd, state);
12846 	return 0;
12847 }
12848 
12849 /*
12850  * wait_phys_link_offline_quiet_substates - wait for any offline substate
12851  * @ppd: port device
12852  * @msecs: the number of milliseconds to wait
12853  *
12854  * Wait up to msecs milliseconds for any offline physical link
12855  * state change to occur.
12856  * Returns 0 if at least one state is reached, otherwise -ETIMEDOUT.
12857  */
12858 static int wait_phys_link_offline_substates(struct hfi1_pportdata *ppd,
12859 					    int msecs)
12860 {
12861 	u32 read_state;
12862 	unsigned long timeout;
12863 
12864 	timeout = jiffies + msecs_to_jiffies(msecs);
12865 	while (1) {
12866 		read_state = read_physical_state(ppd->dd);
12867 		if ((read_state & 0xF0) == PLS_OFFLINE)
12868 			break;
12869 		if (time_after(jiffies, timeout)) {
12870 			dd_dev_err(ppd->dd,
12871 				   "timeout waiting for phy link offline.quiet substates. Read state 0x%x, %dms\n",
12872 				   read_state, msecs);
12873 			return -ETIMEDOUT;
12874 		}
12875 		usleep_range(1950, 2050); /* sleep 2ms-ish */
12876 	}
12877 
12878 	log_state_transition(ppd, read_state);
12879 	return read_state;
12880 }
12881 
12882 #define CLEAR_STATIC_RATE_CONTROL_SMASK(r) \
12883 (r &= ~SEND_CTXT_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK)
12884 
12885 #define SET_STATIC_RATE_CONTROL_SMASK(r) \
12886 (r |= SEND_CTXT_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK)
12887 
12888 void hfi1_init_ctxt(struct send_context *sc)
12889 {
12890 	if (sc) {
12891 		struct hfi1_devdata *dd = sc->dd;
12892 		u64 reg;
12893 		u8 set = (sc->type == SC_USER ?
12894 			  HFI1_CAP_IS_USET(STATIC_RATE_CTRL) :
12895 			  HFI1_CAP_IS_KSET(STATIC_RATE_CTRL));
12896 		reg = read_kctxt_csr(dd, sc->hw_context,
12897 				     SEND_CTXT_CHECK_ENABLE);
12898 		if (set)
12899 			CLEAR_STATIC_RATE_CONTROL_SMASK(reg);
12900 		else
12901 			SET_STATIC_RATE_CONTROL_SMASK(reg);
12902 		write_kctxt_csr(dd, sc->hw_context,
12903 				SEND_CTXT_CHECK_ENABLE, reg);
12904 	}
12905 }
12906 
12907 int hfi1_tempsense_rd(struct hfi1_devdata *dd, struct hfi1_temp *temp)
12908 {
12909 	int ret = 0;
12910 	u64 reg;
12911 
12912 	if (dd->icode != ICODE_RTL_SILICON) {
12913 		if (HFI1_CAP_IS_KSET(PRINT_UNIMPL))
12914 			dd_dev_info(dd, "%s: tempsense not supported by HW\n",
12915 				    __func__);
12916 		return -EINVAL;
12917 	}
12918 	reg = read_csr(dd, ASIC_STS_THERM);
12919 	temp->curr = ((reg >> ASIC_STS_THERM_CURR_TEMP_SHIFT) &
12920 		      ASIC_STS_THERM_CURR_TEMP_MASK);
12921 	temp->lo_lim = ((reg >> ASIC_STS_THERM_LO_TEMP_SHIFT) &
12922 			ASIC_STS_THERM_LO_TEMP_MASK);
12923 	temp->hi_lim = ((reg >> ASIC_STS_THERM_HI_TEMP_SHIFT) &
12924 			ASIC_STS_THERM_HI_TEMP_MASK);
12925 	temp->crit_lim = ((reg >> ASIC_STS_THERM_CRIT_TEMP_SHIFT) &
12926 			  ASIC_STS_THERM_CRIT_TEMP_MASK);
12927 	/* triggers is a 3-bit value - 1 bit per trigger. */
12928 	temp->triggers = (u8)((reg >> ASIC_STS_THERM_LOW_SHIFT) & 0x7);
12929 
12930 	return ret;
12931 }
12932 
12933 /**
12934  * get_int_mask - get 64 bit int mask
12935  * @dd - the devdata
12936  * @i - the csr (relative to CCE_INT_MASK)
12937  *
12938  * Returns the mask with the urgent interrupt mask
12939  * bit clear for kernel receive contexts.
12940  */
12941 static u64 get_int_mask(struct hfi1_devdata *dd, u32 i)
12942 {
12943 	u64 mask = U64_MAX; /* default to no change */
12944 
12945 	if (i >= (IS_RCVURGENT_START / 64) && i < (IS_RCVURGENT_END / 64)) {
12946 		int j = (i - (IS_RCVURGENT_START / 64)) * 64;
12947 		int k = !j ? IS_RCVURGENT_START % 64 : 0;
12948 
12949 		if (j)
12950 			j -= IS_RCVURGENT_START % 64;
12951 		/* j = 0..dd->first_dyn_alloc_ctxt - 1,k = 0..63 */
12952 		for (; j < dd->first_dyn_alloc_ctxt && k < 64; j++, k++)
12953 			/* convert to bit in mask and clear */
12954 			mask &= ~BIT_ULL(k);
12955 	}
12956 	return mask;
12957 }
12958 
12959 /* ========================================================================= */
12960 
12961 /*
12962  * Enable/disable chip from delivering interrupts.
12963  */
12964 void set_intr_state(struct hfi1_devdata *dd, u32 enable)
12965 {
12966 	int i;
12967 
12968 	/*
12969 	 * In HFI, the mask needs to be 1 to allow interrupts.
12970 	 */
12971 	if (enable) {
12972 		/* enable all interrupts but urgent on kernel contexts */
12973 		for (i = 0; i < CCE_NUM_INT_CSRS; i++) {
12974 			u64 mask = get_int_mask(dd, i);
12975 
12976 			write_csr(dd, CCE_INT_MASK + (8 * i), mask);
12977 		}
12978 
12979 		init_qsfp_int(dd);
12980 	} else {
12981 		for (i = 0; i < CCE_NUM_INT_CSRS; i++)
12982 			write_csr(dd, CCE_INT_MASK + (8 * i), 0ull);
12983 	}
12984 }
12985 
12986 /*
12987  * Clear all interrupt sources on the chip.
12988  */
12989 static void clear_all_interrupts(struct hfi1_devdata *dd)
12990 {
12991 	int i;
12992 
12993 	for (i = 0; i < CCE_NUM_INT_CSRS; i++)
12994 		write_csr(dd, CCE_INT_CLEAR + (8 * i), ~(u64)0);
12995 
12996 	write_csr(dd, CCE_ERR_CLEAR, ~(u64)0);
12997 	write_csr(dd, MISC_ERR_CLEAR, ~(u64)0);
12998 	write_csr(dd, RCV_ERR_CLEAR, ~(u64)0);
12999 	write_csr(dd, SEND_ERR_CLEAR, ~(u64)0);
13000 	write_csr(dd, SEND_PIO_ERR_CLEAR, ~(u64)0);
13001 	write_csr(dd, SEND_DMA_ERR_CLEAR, ~(u64)0);
13002 	write_csr(dd, SEND_EGRESS_ERR_CLEAR, ~(u64)0);
13003 	for (i = 0; i < dd->chip_send_contexts; i++)
13004 		write_kctxt_csr(dd, i, SEND_CTXT_ERR_CLEAR, ~(u64)0);
13005 	for (i = 0; i < dd->chip_sdma_engines; i++)
13006 		write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_CLEAR, ~(u64)0);
13007 
13008 	write_csr(dd, DCC_ERR_FLG_CLR, ~(u64)0);
13009 	write_csr(dd, DC_LCB_ERR_CLR, ~(u64)0);
13010 	write_csr(dd, DC_DC8051_ERR_CLR, ~(u64)0);
13011 }
13012 
13013 /* Move to pcie.c? */
13014 static void disable_intx(struct pci_dev *pdev)
13015 {
13016 	pci_intx(pdev, 0);
13017 }
13018 
13019 /**
13020  * hfi1_clean_up_interrupts() - Free all IRQ resources
13021  * @dd: valid device data data structure
13022  *
13023  * Free the MSI or INTx IRQs and assoicated PCI resources,
13024  * if they have been allocated.
13025  */
13026 void hfi1_clean_up_interrupts(struct hfi1_devdata *dd)
13027 {
13028 	int i;
13029 
13030 	/* remove irqs - must happen before disabling/turning off */
13031 	if (dd->num_msix_entries) {
13032 		/* MSI-X */
13033 		struct hfi1_msix_entry *me = dd->msix_entries;
13034 
13035 		for (i = 0; i < dd->num_msix_entries; i++, me++) {
13036 			if (!me->arg) /* => no irq, no affinity */
13037 				continue;
13038 			hfi1_put_irq_affinity(dd, me);
13039 			pci_free_irq(dd->pcidev, i, me->arg);
13040 		}
13041 
13042 		/* clean structures */
13043 		kfree(dd->msix_entries);
13044 		dd->msix_entries = NULL;
13045 		dd->num_msix_entries = 0;
13046 	} else {
13047 		/* INTx */
13048 		if (dd->requested_intx_irq) {
13049 			pci_free_irq(dd->pcidev, 0, dd);
13050 			dd->requested_intx_irq = 0;
13051 		}
13052 		disable_intx(dd->pcidev);
13053 	}
13054 
13055 	pci_free_irq_vectors(dd->pcidev);
13056 }
13057 
13058 /*
13059  * Remap the interrupt source from the general handler to the given MSI-X
13060  * interrupt.
13061  */
13062 static void remap_intr(struct hfi1_devdata *dd, int isrc, int msix_intr)
13063 {
13064 	u64 reg;
13065 	int m, n;
13066 
13067 	/* clear from the handled mask of the general interrupt */
13068 	m = isrc / 64;
13069 	n = isrc % 64;
13070 	if (likely(m < CCE_NUM_INT_CSRS)) {
13071 		dd->gi_mask[m] &= ~((u64)1 << n);
13072 	} else {
13073 		dd_dev_err(dd, "remap interrupt err\n");
13074 		return;
13075 	}
13076 
13077 	/* direct the chip source to the given MSI-X interrupt */
13078 	m = isrc / 8;
13079 	n = isrc % 8;
13080 	reg = read_csr(dd, CCE_INT_MAP + (8 * m));
13081 	reg &= ~((u64)0xff << (8 * n));
13082 	reg |= ((u64)msix_intr & 0xff) << (8 * n);
13083 	write_csr(dd, CCE_INT_MAP + (8 * m), reg);
13084 }
13085 
13086 static void remap_sdma_interrupts(struct hfi1_devdata *dd,
13087 				  int engine, int msix_intr)
13088 {
13089 	/*
13090 	 * SDMA engine interrupt sources grouped by type, rather than
13091 	 * engine.  Per-engine interrupts are as follows:
13092 	 *	SDMA
13093 	 *	SDMAProgress
13094 	 *	SDMAIdle
13095 	 */
13096 	remap_intr(dd, IS_SDMA_START + 0 * TXE_NUM_SDMA_ENGINES + engine,
13097 		   msix_intr);
13098 	remap_intr(dd, IS_SDMA_START + 1 * TXE_NUM_SDMA_ENGINES + engine,
13099 		   msix_intr);
13100 	remap_intr(dd, IS_SDMA_START + 2 * TXE_NUM_SDMA_ENGINES + engine,
13101 		   msix_intr);
13102 }
13103 
13104 static int request_intx_irq(struct hfi1_devdata *dd)
13105 {
13106 	int ret;
13107 
13108 	ret = pci_request_irq(dd->pcidev, 0, general_interrupt, NULL, dd,
13109 			      DRIVER_NAME "_%d", dd->unit);
13110 	if (ret)
13111 		dd_dev_err(dd, "unable to request INTx interrupt, err %d\n",
13112 			   ret);
13113 	else
13114 		dd->requested_intx_irq = 1;
13115 	return ret;
13116 }
13117 
13118 static int request_msix_irqs(struct hfi1_devdata *dd)
13119 {
13120 	int first_general, last_general;
13121 	int first_sdma, last_sdma;
13122 	int first_rx, last_rx;
13123 	int i, ret = 0;
13124 
13125 	/* calculate the ranges we are going to use */
13126 	first_general = 0;
13127 	last_general = first_general + 1;
13128 	first_sdma = last_general;
13129 	last_sdma = first_sdma + dd->num_sdma;
13130 	first_rx = last_sdma;
13131 	last_rx = first_rx + dd->n_krcv_queues + dd->num_vnic_contexts;
13132 
13133 	/* VNIC MSIx interrupts get mapped when VNIC contexts are created */
13134 	dd->first_dyn_msix_idx = first_rx + dd->n_krcv_queues;
13135 
13136 	/*
13137 	 * Sanity check - the code expects all SDMA chip source
13138 	 * interrupts to be in the same CSR, starting at bit 0.  Verify
13139 	 * that this is true by checking the bit location of the start.
13140 	 */
13141 	BUILD_BUG_ON(IS_SDMA_START % 64);
13142 
13143 	for (i = 0; i < dd->num_msix_entries; i++) {
13144 		struct hfi1_msix_entry *me = &dd->msix_entries[i];
13145 		const char *err_info;
13146 		irq_handler_t handler;
13147 		irq_handler_t thread = NULL;
13148 		void *arg = NULL;
13149 		int idx;
13150 		struct hfi1_ctxtdata *rcd = NULL;
13151 		struct sdma_engine *sde = NULL;
13152 		char name[MAX_NAME_SIZE];
13153 
13154 		/* obtain the arguments to pci_request_irq */
13155 		if (first_general <= i && i < last_general) {
13156 			idx = i - first_general;
13157 			handler = general_interrupt;
13158 			arg = dd;
13159 			snprintf(name, sizeof(name),
13160 				 DRIVER_NAME "_%d", dd->unit);
13161 			err_info = "general";
13162 			me->type = IRQ_GENERAL;
13163 		} else if (first_sdma <= i && i < last_sdma) {
13164 			idx = i - first_sdma;
13165 			sde = &dd->per_sdma[idx];
13166 			handler = sdma_interrupt;
13167 			arg = sde;
13168 			snprintf(name, sizeof(name),
13169 				 DRIVER_NAME "_%d sdma%d", dd->unit, idx);
13170 			err_info = "sdma";
13171 			remap_sdma_interrupts(dd, idx, i);
13172 			me->type = IRQ_SDMA;
13173 		} else if (first_rx <= i && i < last_rx) {
13174 			idx = i - first_rx;
13175 			rcd = hfi1_rcd_get_by_index_safe(dd, idx);
13176 			if (rcd) {
13177 				/*
13178 				 * Set the interrupt register and mask for this
13179 				 * context's interrupt.
13180 				 */
13181 				rcd->ireg = (IS_RCVAVAIL_START + idx) / 64;
13182 				rcd->imask = ((u64)1) <<
13183 					  ((IS_RCVAVAIL_START + idx) % 64);
13184 				handler = receive_context_interrupt;
13185 				thread = receive_context_thread;
13186 				arg = rcd;
13187 				snprintf(name, sizeof(name),
13188 					 DRIVER_NAME "_%d kctxt%d",
13189 					 dd->unit, idx);
13190 				err_info = "receive context";
13191 				remap_intr(dd, IS_RCVAVAIL_START + idx, i);
13192 				me->type = IRQ_RCVCTXT;
13193 				rcd->msix_intr = i;
13194 				hfi1_rcd_put(rcd);
13195 			}
13196 		} else {
13197 			/* not in our expected range - complain, then
13198 			 * ignore it
13199 			 */
13200 			dd_dev_err(dd,
13201 				   "Unexpected extra MSI-X interrupt %d\n", i);
13202 			continue;
13203 		}
13204 		/* no argument, no interrupt */
13205 		if (!arg)
13206 			continue;
13207 		/* make sure the name is terminated */
13208 		name[sizeof(name) - 1] = 0;
13209 		me->irq = pci_irq_vector(dd->pcidev, i);
13210 		ret = pci_request_irq(dd->pcidev, i, handler, thread, arg,
13211 				      name);
13212 		if (ret) {
13213 			dd_dev_err(dd,
13214 				   "unable to allocate %s interrupt, irq %d, index %d, err %d\n",
13215 				   err_info, me->irq, idx, ret);
13216 			return ret;
13217 		}
13218 		/*
13219 		 * assign arg after pci_request_irq call, so it will be
13220 		 * cleaned up
13221 		 */
13222 		me->arg = arg;
13223 
13224 		ret = hfi1_get_irq_affinity(dd, me);
13225 		if (ret)
13226 			dd_dev_err(dd, "unable to pin IRQ %d\n", ret);
13227 	}
13228 
13229 	return ret;
13230 }
13231 
13232 void hfi1_vnic_synchronize_irq(struct hfi1_devdata *dd)
13233 {
13234 	int i;
13235 
13236 	if (!dd->num_msix_entries) {
13237 		synchronize_irq(pci_irq_vector(dd->pcidev, 0));
13238 		return;
13239 	}
13240 
13241 	for (i = 0; i < dd->vnic.num_ctxt; i++) {
13242 		struct hfi1_ctxtdata *rcd = dd->vnic.ctxt[i];
13243 		struct hfi1_msix_entry *me = &dd->msix_entries[rcd->msix_intr];
13244 
13245 		synchronize_irq(me->irq);
13246 	}
13247 }
13248 
13249 void hfi1_reset_vnic_msix_info(struct hfi1_ctxtdata *rcd)
13250 {
13251 	struct hfi1_devdata *dd = rcd->dd;
13252 	struct hfi1_msix_entry *me = &dd->msix_entries[rcd->msix_intr];
13253 
13254 	if (!me->arg) /* => no irq, no affinity */
13255 		return;
13256 
13257 	hfi1_put_irq_affinity(dd, me);
13258 	pci_free_irq(dd->pcidev, rcd->msix_intr, me->arg);
13259 
13260 	me->arg = NULL;
13261 }
13262 
13263 void hfi1_set_vnic_msix_info(struct hfi1_ctxtdata *rcd)
13264 {
13265 	struct hfi1_devdata *dd = rcd->dd;
13266 	struct hfi1_msix_entry *me;
13267 	int idx = rcd->ctxt;
13268 	void *arg = rcd;
13269 	int ret;
13270 
13271 	rcd->msix_intr = dd->vnic.msix_idx++;
13272 	me = &dd->msix_entries[rcd->msix_intr];
13273 
13274 	/*
13275 	 * Set the interrupt register and mask for this
13276 	 * context's interrupt.
13277 	 */
13278 	rcd->ireg = (IS_RCVAVAIL_START + idx) / 64;
13279 	rcd->imask = ((u64)1) <<
13280 		  ((IS_RCVAVAIL_START + idx) % 64);
13281 	me->type = IRQ_RCVCTXT;
13282 	me->irq = pci_irq_vector(dd->pcidev, rcd->msix_intr);
13283 	remap_intr(dd, IS_RCVAVAIL_START + idx, rcd->msix_intr);
13284 
13285 	ret = pci_request_irq(dd->pcidev, rcd->msix_intr,
13286 			      receive_context_interrupt,
13287 			      receive_context_thread, arg,
13288 			      DRIVER_NAME "_%d kctxt%d", dd->unit, idx);
13289 	if (ret) {
13290 		dd_dev_err(dd, "vnic irq request (irq %d, idx %d) fail %d\n",
13291 			   me->irq, idx, ret);
13292 		return;
13293 	}
13294 	/*
13295 	 * assign arg after pci_request_irq call, so it will be
13296 	 * cleaned up
13297 	 */
13298 	me->arg = arg;
13299 
13300 	ret = hfi1_get_irq_affinity(dd, me);
13301 	if (ret) {
13302 		dd_dev_err(dd,
13303 			   "unable to pin IRQ %d\n", ret);
13304 		pci_free_irq(dd->pcidev, rcd->msix_intr, me->arg);
13305 	}
13306 }
13307 
13308 /*
13309  * Set the general handler to accept all interrupts, remap all
13310  * chip interrupts back to MSI-X 0.
13311  */
13312 static void reset_interrupts(struct hfi1_devdata *dd)
13313 {
13314 	int i;
13315 
13316 	/* all interrupts handled by the general handler */
13317 	for (i = 0; i < CCE_NUM_INT_CSRS; i++)
13318 		dd->gi_mask[i] = ~(u64)0;
13319 
13320 	/* all chip interrupts map to MSI-X 0 */
13321 	for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++)
13322 		write_csr(dd, CCE_INT_MAP + (8 * i), 0);
13323 }
13324 
13325 static int set_up_interrupts(struct hfi1_devdata *dd)
13326 {
13327 	u32 total;
13328 	int ret, request;
13329 	int single_interrupt = 0; /* we expect to have all the interrupts */
13330 
13331 	/*
13332 	 * Interrupt count:
13333 	 *	1 general, "slow path" interrupt (includes the SDMA engines
13334 	 *		slow source, SDMACleanupDone)
13335 	 *	N interrupts - one per used SDMA engine
13336 	 *	M interrupt - one per kernel receive context
13337 	 *	V interrupt - one for each VNIC context
13338 	 */
13339 	total = 1 + dd->num_sdma + dd->n_krcv_queues + dd->num_vnic_contexts;
13340 
13341 	/* ask for MSI-X interrupts */
13342 	request = request_msix(dd, total);
13343 	if (request < 0) {
13344 		ret = request;
13345 		goto fail;
13346 	} else if (request == 0) {
13347 		/* using INTx */
13348 		/* dd->num_msix_entries already zero */
13349 		single_interrupt = 1;
13350 		dd_dev_err(dd, "MSI-X failed, using INTx interrupts\n");
13351 	} else if (request < total) {
13352 		/* using MSI-X, with reduced interrupts */
13353 		dd_dev_err(dd, "reduced interrupt found, wanted %u, got %u\n",
13354 			   total, request);
13355 		ret = -EINVAL;
13356 		goto fail;
13357 	} else {
13358 		dd->msix_entries = kcalloc(total, sizeof(*dd->msix_entries),
13359 					   GFP_KERNEL);
13360 		if (!dd->msix_entries) {
13361 			ret = -ENOMEM;
13362 			goto fail;
13363 		}
13364 		/* using MSI-X */
13365 		dd->num_msix_entries = total;
13366 		dd_dev_info(dd, "%u MSI-X interrupts allocated\n", total);
13367 	}
13368 
13369 	/* mask all interrupts */
13370 	set_intr_state(dd, 0);
13371 	/* clear all pending interrupts */
13372 	clear_all_interrupts(dd);
13373 
13374 	/* reset general handler mask, chip MSI-X mappings */
13375 	reset_interrupts(dd);
13376 
13377 	if (single_interrupt)
13378 		ret = request_intx_irq(dd);
13379 	else
13380 		ret = request_msix_irqs(dd);
13381 	if (ret)
13382 		goto fail;
13383 
13384 	return 0;
13385 
13386 fail:
13387 	hfi1_clean_up_interrupts(dd);
13388 	return ret;
13389 }
13390 
13391 /*
13392  * Set up context values in dd.  Sets:
13393  *
13394  *	num_rcv_contexts - number of contexts being used
13395  *	n_krcv_queues - number of kernel contexts
13396  *	first_dyn_alloc_ctxt - first dynamically allocated context
13397  *                             in array of contexts
13398  *	freectxts  - number of free user contexts
13399  *	num_send_contexts - number of PIO send contexts being used
13400  *	num_vnic_contexts - number of contexts reserved for VNIC
13401  */
13402 static int set_up_context_variables(struct hfi1_devdata *dd)
13403 {
13404 	unsigned long num_kernel_contexts;
13405 	u16 num_vnic_contexts = HFI1_NUM_VNIC_CTXT;
13406 	int total_contexts;
13407 	int ret;
13408 	unsigned ngroups;
13409 	int qos_rmt_count;
13410 	int user_rmt_reduced;
13411 	u32 n_usr_ctxts;
13412 
13413 	/*
13414 	 * Kernel receive contexts:
13415 	 * - Context 0 - control context (VL15/multicast/error)
13416 	 * - Context 1 - first kernel context
13417 	 * - Context 2 - second kernel context
13418 	 * ...
13419 	 */
13420 	if (n_krcvqs)
13421 		/*
13422 		 * n_krcvqs is the sum of module parameter kernel receive
13423 		 * contexts, krcvqs[].  It does not include the control
13424 		 * context, so add that.
13425 		 */
13426 		num_kernel_contexts = n_krcvqs + 1;
13427 	else
13428 		num_kernel_contexts = DEFAULT_KRCVQS + 1;
13429 	/*
13430 	 * Every kernel receive context needs an ACK send context.
13431 	 * one send context is allocated for each VL{0-7} and VL15
13432 	 */
13433 	if (num_kernel_contexts > (dd->chip_send_contexts - num_vls - 1)) {
13434 		dd_dev_err(dd,
13435 			   "Reducing # kernel rcv contexts to: %d, from %lu\n",
13436 			   (int)(dd->chip_send_contexts - num_vls - 1),
13437 			   num_kernel_contexts);
13438 		num_kernel_contexts = dd->chip_send_contexts - num_vls - 1;
13439 	}
13440 
13441 	/* Accommodate VNIC contexts if possible */
13442 	if ((num_kernel_contexts + num_vnic_contexts) > dd->chip_rcv_contexts) {
13443 		dd_dev_err(dd, "No receive contexts available for VNIC\n");
13444 		num_vnic_contexts = 0;
13445 	}
13446 	total_contexts = num_kernel_contexts + num_vnic_contexts;
13447 
13448 	/*
13449 	 * User contexts:
13450 	 *	- default to 1 user context per real (non-HT) CPU core if
13451 	 *	  num_user_contexts is negative
13452 	 */
13453 	if (num_user_contexts < 0)
13454 		n_usr_ctxts = cpumask_weight(&node_affinity.real_cpu_mask);
13455 	else
13456 		n_usr_ctxts = num_user_contexts;
13457 	/*
13458 	 * Adjust the counts given a global max.
13459 	 */
13460 	if (total_contexts + n_usr_ctxts > dd->chip_rcv_contexts) {
13461 		dd_dev_err(dd,
13462 			   "Reducing # user receive contexts to: %d, from %u\n",
13463 			   (int)(dd->chip_rcv_contexts - total_contexts),
13464 			   n_usr_ctxts);
13465 		/* recalculate */
13466 		n_usr_ctxts = dd->chip_rcv_contexts - total_contexts;
13467 	}
13468 
13469 	/* each user context requires an entry in the RMT */
13470 	qos_rmt_count = qos_rmt_entries(dd, NULL, NULL);
13471 	if (qos_rmt_count + n_usr_ctxts > NUM_MAP_ENTRIES) {
13472 		user_rmt_reduced = NUM_MAP_ENTRIES - qos_rmt_count;
13473 		dd_dev_err(dd,
13474 			   "RMT size is reducing the number of user receive contexts from %u to %d\n",
13475 			   n_usr_ctxts,
13476 			   user_rmt_reduced);
13477 		/* recalculate */
13478 		n_usr_ctxts = user_rmt_reduced;
13479 	}
13480 
13481 	total_contexts += n_usr_ctxts;
13482 
13483 	/* the first N are kernel contexts, the rest are user/vnic contexts */
13484 	dd->num_rcv_contexts = total_contexts;
13485 	dd->n_krcv_queues = num_kernel_contexts;
13486 	dd->first_dyn_alloc_ctxt = num_kernel_contexts;
13487 	dd->num_vnic_contexts = num_vnic_contexts;
13488 	dd->num_user_contexts = n_usr_ctxts;
13489 	dd->freectxts = n_usr_ctxts;
13490 	dd_dev_info(dd,
13491 		    "rcv contexts: chip %d, used %d (kernel %d, vnic %u, user %u)\n",
13492 		    (int)dd->chip_rcv_contexts,
13493 		    (int)dd->num_rcv_contexts,
13494 		    (int)dd->n_krcv_queues,
13495 		    dd->num_vnic_contexts,
13496 		    dd->num_user_contexts);
13497 
13498 	/*
13499 	 * Receive array allocation:
13500 	 *   All RcvArray entries are divided into groups of 8. This
13501 	 *   is required by the hardware and will speed up writes to
13502 	 *   consecutive entries by using write-combining of the entire
13503 	 *   cacheline.
13504 	 *
13505 	 *   The number of groups are evenly divided among all contexts.
13506 	 *   any left over groups will be given to the first N user
13507 	 *   contexts.
13508 	 */
13509 	dd->rcv_entries.group_size = RCV_INCREMENT;
13510 	ngroups = dd->chip_rcv_array_count / dd->rcv_entries.group_size;
13511 	dd->rcv_entries.ngroups = ngroups / dd->num_rcv_contexts;
13512 	dd->rcv_entries.nctxt_extra = ngroups -
13513 		(dd->num_rcv_contexts * dd->rcv_entries.ngroups);
13514 	dd_dev_info(dd, "RcvArray groups %u, ctxts extra %u\n",
13515 		    dd->rcv_entries.ngroups,
13516 		    dd->rcv_entries.nctxt_extra);
13517 	if (dd->rcv_entries.ngroups * dd->rcv_entries.group_size >
13518 	    MAX_EAGER_ENTRIES * 2) {
13519 		dd->rcv_entries.ngroups = (MAX_EAGER_ENTRIES * 2) /
13520 			dd->rcv_entries.group_size;
13521 		dd_dev_info(dd,
13522 			    "RcvArray group count too high, change to %u\n",
13523 			    dd->rcv_entries.ngroups);
13524 		dd->rcv_entries.nctxt_extra = 0;
13525 	}
13526 	/*
13527 	 * PIO send contexts
13528 	 */
13529 	ret = init_sc_pools_and_sizes(dd);
13530 	if (ret >= 0) {	/* success */
13531 		dd->num_send_contexts = ret;
13532 		dd_dev_info(
13533 			dd,
13534 			"send contexts: chip %d, used %d (kernel %d, ack %d, user %d, vl15 %d)\n",
13535 			dd->chip_send_contexts,
13536 			dd->num_send_contexts,
13537 			dd->sc_sizes[SC_KERNEL].count,
13538 			dd->sc_sizes[SC_ACK].count,
13539 			dd->sc_sizes[SC_USER].count,
13540 			dd->sc_sizes[SC_VL15].count);
13541 		ret = 0;	/* success */
13542 	}
13543 
13544 	return ret;
13545 }
13546 
13547 /*
13548  * Set the device/port partition key table. The MAD code
13549  * will ensure that, at least, the partial management
13550  * partition key is present in the table.
13551  */
13552 static void set_partition_keys(struct hfi1_pportdata *ppd)
13553 {
13554 	struct hfi1_devdata *dd = ppd->dd;
13555 	u64 reg = 0;
13556 	int i;
13557 
13558 	dd_dev_info(dd, "Setting partition keys\n");
13559 	for (i = 0; i < hfi1_get_npkeys(dd); i++) {
13560 		reg |= (ppd->pkeys[i] &
13561 			RCV_PARTITION_KEY_PARTITION_KEY_A_MASK) <<
13562 			((i % 4) *
13563 			 RCV_PARTITION_KEY_PARTITION_KEY_B_SHIFT);
13564 		/* Each register holds 4 PKey values. */
13565 		if ((i % 4) == 3) {
13566 			write_csr(dd, RCV_PARTITION_KEY +
13567 				  ((i - 3) * 2), reg);
13568 			reg = 0;
13569 		}
13570 	}
13571 
13572 	/* Always enable HW pkeys check when pkeys table is set */
13573 	add_rcvctrl(dd, RCV_CTRL_RCV_PARTITION_KEY_ENABLE_SMASK);
13574 }
13575 
13576 /*
13577  * These CSRs and memories are uninitialized on reset and must be
13578  * written before reading to set the ECC/parity bits.
13579  *
13580  * NOTE: All user context CSRs that are not mmaped write-only
13581  * (e.g. the TID flows) must be initialized even if the driver never
13582  * reads them.
13583  */
13584 static void write_uninitialized_csrs_and_memories(struct hfi1_devdata *dd)
13585 {
13586 	int i, j;
13587 
13588 	/* CceIntMap */
13589 	for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++)
13590 		write_csr(dd, CCE_INT_MAP + (8 * i), 0);
13591 
13592 	/* SendCtxtCreditReturnAddr */
13593 	for (i = 0; i < dd->chip_send_contexts; i++)
13594 		write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_RETURN_ADDR, 0);
13595 
13596 	/* PIO Send buffers */
13597 	/* SDMA Send buffers */
13598 	/*
13599 	 * These are not normally read, and (presently) have no method
13600 	 * to be read, so are not pre-initialized
13601 	 */
13602 
13603 	/* RcvHdrAddr */
13604 	/* RcvHdrTailAddr */
13605 	/* RcvTidFlowTable */
13606 	for (i = 0; i < dd->chip_rcv_contexts; i++) {
13607 		write_kctxt_csr(dd, i, RCV_HDR_ADDR, 0);
13608 		write_kctxt_csr(dd, i, RCV_HDR_TAIL_ADDR, 0);
13609 		for (j = 0; j < RXE_NUM_TID_FLOWS; j++)
13610 			write_uctxt_csr(dd, i, RCV_TID_FLOW_TABLE + (8 * j), 0);
13611 	}
13612 
13613 	/* RcvArray */
13614 	for (i = 0; i < dd->chip_rcv_array_count; i++)
13615 		hfi1_put_tid(dd, i, PT_INVALID_FLUSH, 0, 0);
13616 
13617 	/* RcvQPMapTable */
13618 	for (i = 0; i < 32; i++)
13619 		write_csr(dd, RCV_QP_MAP_TABLE + (8 * i), 0);
13620 }
13621 
13622 /*
13623  * Use the ctrl_bits in CceCtrl to clear the status_bits in CceStatus.
13624  */
13625 static void clear_cce_status(struct hfi1_devdata *dd, u64 status_bits,
13626 			     u64 ctrl_bits)
13627 {
13628 	unsigned long timeout;
13629 	u64 reg;
13630 
13631 	/* is the condition present? */
13632 	reg = read_csr(dd, CCE_STATUS);
13633 	if ((reg & status_bits) == 0)
13634 		return;
13635 
13636 	/* clear the condition */
13637 	write_csr(dd, CCE_CTRL, ctrl_bits);
13638 
13639 	/* wait for the condition to clear */
13640 	timeout = jiffies + msecs_to_jiffies(CCE_STATUS_TIMEOUT);
13641 	while (1) {
13642 		reg = read_csr(dd, CCE_STATUS);
13643 		if ((reg & status_bits) == 0)
13644 			return;
13645 		if (time_after(jiffies, timeout)) {
13646 			dd_dev_err(dd,
13647 				   "Timeout waiting for CceStatus to clear bits 0x%llx, remaining 0x%llx\n",
13648 				   status_bits, reg & status_bits);
13649 			return;
13650 		}
13651 		udelay(1);
13652 	}
13653 }
13654 
13655 /* set CCE CSRs to chip reset defaults */
13656 static void reset_cce_csrs(struct hfi1_devdata *dd)
13657 {
13658 	int i;
13659 
13660 	/* CCE_REVISION read-only */
13661 	/* CCE_REVISION2 read-only */
13662 	/* CCE_CTRL - bits clear automatically */
13663 	/* CCE_STATUS read-only, use CceCtrl to clear */
13664 	clear_cce_status(dd, ALL_FROZE, CCE_CTRL_SPC_UNFREEZE_SMASK);
13665 	clear_cce_status(dd, ALL_TXE_PAUSE, CCE_CTRL_TXE_RESUME_SMASK);
13666 	clear_cce_status(dd, ALL_RXE_PAUSE, CCE_CTRL_RXE_RESUME_SMASK);
13667 	for (i = 0; i < CCE_NUM_SCRATCH; i++)
13668 		write_csr(dd, CCE_SCRATCH + (8 * i), 0);
13669 	/* CCE_ERR_STATUS read-only */
13670 	write_csr(dd, CCE_ERR_MASK, 0);
13671 	write_csr(dd, CCE_ERR_CLEAR, ~0ull);
13672 	/* CCE_ERR_FORCE leave alone */
13673 	for (i = 0; i < CCE_NUM_32_BIT_COUNTERS; i++)
13674 		write_csr(dd, CCE_COUNTER_ARRAY32 + (8 * i), 0);
13675 	write_csr(dd, CCE_DC_CTRL, CCE_DC_CTRL_RESETCSR);
13676 	/* CCE_PCIE_CTRL leave alone */
13677 	for (i = 0; i < CCE_NUM_MSIX_VECTORS; i++) {
13678 		write_csr(dd, CCE_MSIX_TABLE_LOWER + (8 * i), 0);
13679 		write_csr(dd, CCE_MSIX_TABLE_UPPER + (8 * i),
13680 			  CCE_MSIX_TABLE_UPPER_RESETCSR);
13681 	}
13682 	for (i = 0; i < CCE_NUM_MSIX_PBAS; i++) {
13683 		/* CCE_MSIX_PBA read-only */
13684 		write_csr(dd, CCE_MSIX_INT_GRANTED, ~0ull);
13685 		write_csr(dd, CCE_MSIX_VEC_CLR_WITHOUT_INT, ~0ull);
13686 	}
13687 	for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++)
13688 		write_csr(dd, CCE_INT_MAP, 0);
13689 	for (i = 0; i < CCE_NUM_INT_CSRS; i++) {
13690 		/* CCE_INT_STATUS read-only */
13691 		write_csr(dd, CCE_INT_MASK + (8 * i), 0);
13692 		write_csr(dd, CCE_INT_CLEAR + (8 * i), ~0ull);
13693 		/* CCE_INT_FORCE leave alone */
13694 		/* CCE_INT_BLOCKED read-only */
13695 	}
13696 	for (i = 0; i < CCE_NUM_32_BIT_INT_COUNTERS; i++)
13697 		write_csr(dd, CCE_INT_COUNTER_ARRAY32 + (8 * i), 0);
13698 }
13699 
13700 /* set MISC CSRs to chip reset defaults */
13701 static void reset_misc_csrs(struct hfi1_devdata *dd)
13702 {
13703 	int i;
13704 
13705 	for (i = 0; i < 32; i++) {
13706 		write_csr(dd, MISC_CFG_RSA_R2 + (8 * i), 0);
13707 		write_csr(dd, MISC_CFG_RSA_SIGNATURE + (8 * i), 0);
13708 		write_csr(dd, MISC_CFG_RSA_MODULUS + (8 * i), 0);
13709 	}
13710 	/*
13711 	 * MISC_CFG_SHA_PRELOAD leave alone - always reads 0 and can
13712 	 * only be written 128-byte chunks
13713 	 */
13714 	/* init RSA engine to clear lingering errors */
13715 	write_csr(dd, MISC_CFG_RSA_CMD, 1);
13716 	write_csr(dd, MISC_CFG_RSA_MU, 0);
13717 	write_csr(dd, MISC_CFG_FW_CTRL, 0);
13718 	/* MISC_STS_8051_DIGEST read-only */
13719 	/* MISC_STS_SBM_DIGEST read-only */
13720 	/* MISC_STS_PCIE_DIGEST read-only */
13721 	/* MISC_STS_FAB_DIGEST read-only */
13722 	/* MISC_ERR_STATUS read-only */
13723 	write_csr(dd, MISC_ERR_MASK, 0);
13724 	write_csr(dd, MISC_ERR_CLEAR, ~0ull);
13725 	/* MISC_ERR_FORCE leave alone */
13726 }
13727 
13728 /* set TXE CSRs to chip reset defaults */
13729 static void reset_txe_csrs(struct hfi1_devdata *dd)
13730 {
13731 	int i;
13732 
13733 	/*
13734 	 * TXE Kernel CSRs
13735 	 */
13736 	write_csr(dd, SEND_CTRL, 0);
13737 	__cm_reset(dd, 0);	/* reset CM internal state */
13738 	/* SEND_CONTEXTS read-only */
13739 	/* SEND_DMA_ENGINES read-only */
13740 	/* SEND_PIO_MEM_SIZE read-only */
13741 	/* SEND_DMA_MEM_SIZE read-only */
13742 	write_csr(dd, SEND_HIGH_PRIORITY_LIMIT, 0);
13743 	pio_reset_all(dd);	/* SEND_PIO_INIT_CTXT */
13744 	/* SEND_PIO_ERR_STATUS read-only */
13745 	write_csr(dd, SEND_PIO_ERR_MASK, 0);
13746 	write_csr(dd, SEND_PIO_ERR_CLEAR, ~0ull);
13747 	/* SEND_PIO_ERR_FORCE leave alone */
13748 	/* SEND_DMA_ERR_STATUS read-only */
13749 	write_csr(dd, SEND_DMA_ERR_MASK, 0);
13750 	write_csr(dd, SEND_DMA_ERR_CLEAR, ~0ull);
13751 	/* SEND_DMA_ERR_FORCE leave alone */
13752 	/* SEND_EGRESS_ERR_STATUS read-only */
13753 	write_csr(dd, SEND_EGRESS_ERR_MASK, 0);
13754 	write_csr(dd, SEND_EGRESS_ERR_CLEAR, ~0ull);
13755 	/* SEND_EGRESS_ERR_FORCE leave alone */
13756 	write_csr(dd, SEND_BTH_QP, 0);
13757 	write_csr(dd, SEND_STATIC_RATE_CONTROL, 0);
13758 	write_csr(dd, SEND_SC2VLT0, 0);
13759 	write_csr(dd, SEND_SC2VLT1, 0);
13760 	write_csr(dd, SEND_SC2VLT2, 0);
13761 	write_csr(dd, SEND_SC2VLT3, 0);
13762 	write_csr(dd, SEND_LEN_CHECK0, 0);
13763 	write_csr(dd, SEND_LEN_CHECK1, 0);
13764 	/* SEND_ERR_STATUS read-only */
13765 	write_csr(dd, SEND_ERR_MASK, 0);
13766 	write_csr(dd, SEND_ERR_CLEAR, ~0ull);
13767 	/* SEND_ERR_FORCE read-only */
13768 	for (i = 0; i < VL_ARB_LOW_PRIO_TABLE_SIZE; i++)
13769 		write_csr(dd, SEND_LOW_PRIORITY_LIST + (8 * i), 0);
13770 	for (i = 0; i < VL_ARB_HIGH_PRIO_TABLE_SIZE; i++)
13771 		write_csr(dd, SEND_HIGH_PRIORITY_LIST + (8 * i), 0);
13772 	for (i = 0; i < dd->chip_send_contexts / NUM_CONTEXTS_PER_SET; i++)
13773 		write_csr(dd, SEND_CONTEXT_SET_CTRL + (8 * i), 0);
13774 	for (i = 0; i < TXE_NUM_32_BIT_COUNTER; i++)
13775 		write_csr(dd, SEND_COUNTER_ARRAY32 + (8 * i), 0);
13776 	for (i = 0; i < TXE_NUM_64_BIT_COUNTER; i++)
13777 		write_csr(dd, SEND_COUNTER_ARRAY64 + (8 * i), 0);
13778 	write_csr(dd, SEND_CM_CTRL, SEND_CM_CTRL_RESETCSR);
13779 	write_csr(dd, SEND_CM_GLOBAL_CREDIT, SEND_CM_GLOBAL_CREDIT_RESETCSR);
13780 	/* SEND_CM_CREDIT_USED_STATUS read-only */
13781 	write_csr(dd, SEND_CM_TIMER_CTRL, 0);
13782 	write_csr(dd, SEND_CM_LOCAL_AU_TABLE0_TO3, 0);
13783 	write_csr(dd, SEND_CM_LOCAL_AU_TABLE4_TO7, 0);
13784 	write_csr(dd, SEND_CM_REMOTE_AU_TABLE0_TO3, 0);
13785 	write_csr(dd, SEND_CM_REMOTE_AU_TABLE4_TO7, 0);
13786 	for (i = 0; i < TXE_NUM_DATA_VL; i++)
13787 		write_csr(dd, SEND_CM_CREDIT_VL + (8 * i), 0);
13788 	write_csr(dd, SEND_CM_CREDIT_VL15, 0);
13789 	/* SEND_CM_CREDIT_USED_VL read-only */
13790 	/* SEND_CM_CREDIT_USED_VL15 read-only */
13791 	/* SEND_EGRESS_CTXT_STATUS read-only */
13792 	/* SEND_EGRESS_SEND_DMA_STATUS read-only */
13793 	write_csr(dd, SEND_EGRESS_ERR_INFO, ~0ull);
13794 	/* SEND_EGRESS_ERR_INFO read-only */
13795 	/* SEND_EGRESS_ERR_SOURCE read-only */
13796 
13797 	/*
13798 	 * TXE Per-Context CSRs
13799 	 */
13800 	for (i = 0; i < dd->chip_send_contexts; i++) {
13801 		write_kctxt_csr(dd, i, SEND_CTXT_CTRL, 0);
13802 		write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_CTRL, 0);
13803 		write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_RETURN_ADDR, 0);
13804 		write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_FORCE, 0);
13805 		write_kctxt_csr(dd, i, SEND_CTXT_ERR_MASK, 0);
13806 		write_kctxt_csr(dd, i, SEND_CTXT_ERR_CLEAR, ~0ull);
13807 		write_kctxt_csr(dd, i, SEND_CTXT_CHECK_ENABLE, 0);
13808 		write_kctxt_csr(dd, i, SEND_CTXT_CHECK_VL, 0);
13809 		write_kctxt_csr(dd, i, SEND_CTXT_CHECK_JOB_KEY, 0);
13810 		write_kctxt_csr(dd, i, SEND_CTXT_CHECK_PARTITION_KEY, 0);
13811 		write_kctxt_csr(dd, i, SEND_CTXT_CHECK_SLID, 0);
13812 		write_kctxt_csr(dd, i, SEND_CTXT_CHECK_OPCODE, 0);
13813 	}
13814 
13815 	/*
13816 	 * TXE Per-SDMA CSRs
13817 	 */
13818 	for (i = 0; i < dd->chip_sdma_engines; i++) {
13819 		write_kctxt_csr(dd, i, SEND_DMA_CTRL, 0);
13820 		/* SEND_DMA_STATUS read-only */
13821 		write_kctxt_csr(dd, i, SEND_DMA_BASE_ADDR, 0);
13822 		write_kctxt_csr(dd, i, SEND_DMA_LEN_GEN, 0);
13823 		write_kctxt_csr(dd, i, SEND_DMA_TAIL, 0);
13824 		/* SEND_DMA_HEAD read-only */
13825 		write_kctxt_csr(dd, i, SEND_DMA_HEAD_ADDR, 0);
13826 		write_kctxt_csr(dd, i, SEND_DMA_PRIORITY_THLD, 0);
13827 		/* SEND_DMA_IDLE_CNT read-only */
13828 		write_kctxt_csr(dd, i, SEND_DMA_RELOAD_CNT, 0);
13829 		write_kctxt_csr(dd, i, SEND_DMA_DESC_CNT, 0);
13830 		/* SEND_DMA_DESC_FETCHED_CNT read-only */
13831 		/* SEND_DMA_ENG_ERR_STATUS read-only */
13832 		write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_MASK, 0);
13833 		write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_CLEAR, ~0ull);
13834 		/* SEND_DMA_ENG_ERR_FORCE leave alone */
13835 		write_kctxt_csr(dd, i, SEND_DMA_CHECK_ENABLE, 0);
13836 		write_kctxt_csr(dd, i, SEND_DMA_CHECK_VL, 0);
13837 		write_kctxt_csr(dd, i, SEND_DMA_CHECK_JOB_KEY, 0);
13838 		write_kctxt_csr(dd, i, SEND_DMA_CHECK_PARTITION_KEY, 0);
13839 		write_kctxt_csr(dd, i, SEND_DMA_CHECK_SLID, 0);
13840 		write_kctxt_csr(dd, i, SEND_DMA_CHECK_OPCODE, 0);
13841 		write_kctxt_csr(dd, i, SEND_DMA_MEMORY, 0);
13842 	}
13843 }
13844 
13845 /*
13846  * Expect on entry:
13847  * o Packet ingress is disabled, i.e. RcvCtrl.RcvPortEnable == 0
13848  */
13849 static void init_rbufs(struct hfi1_devdata *dd)
13850 {
13851 	u64 reg;
13852 	int count;
13853 
13854 	/*
13855 	 * Wait for DMA to stop: RxRbufPktPending and RxPktInProgress are
13856 	 * clear.
13857 	 */
13858 	count = 0;
13859 	while (1) {
13860 		reg = read_csr(dd, RCV_STATUS);
13861 		if ((reg & (RCV_STATUS_RX_RBUF_PKT_PENDING_SMASK
13862 			    | RCV_STATUS_RX_PKT_IN_PROGRESS_SMASK)) == 0)
13863 			break;
13864 		/*
13865 		 * Give up after 1ms - maximum wait time.
13866 		 *
13867 		 * RBuf size is 136KiB.  Slowest possible is PCIe Gen1 x1 at
13868 		 * 250MB/s bandwidth.  Lower rate to 66% for overhead to get:
13869 		 *	136 KB / (66% * 250MB/s) = 844us
13870 		 */
13871 		if (count++ > 500) {
13872 			dd_dev_err(dd,
13873 				   "%s: in-progress DMA not clearing: RcvStatus 0x%llx, continuing\n",
13874 				   __func__, reg);
13875 			break;
13876 		}
13877 		udelay(2); /* do not busy-wait the CSR */
13878 	}
13879 
13880 	/* start the init - expect RcvCtrl to be 0 */
13881 	write_csr(dd, RCV_CTRL, RCV_CTRL_RX_RBUF_INIT_SMASK);
13882 
13883 	/*
13884 	 * Read to force the write of Rcvtrl.RxRbufInit.  There is a brief
13885 	 * period after the write before RcvStatus.RxRbufInitDone is valid.
13886 	 * The delay in the first run through the loop below is sufficient and
13887 	 * required before the first read of RcvStatus.RxRbufInintDone.
13888 	 */
13889 	read_csr(dd, RCV_CTRL);
13890 
13891 	/* wait for the init to finish */
13892 	count = 0;
13893 	while (1) {
13894 		/* delay is required first time through - see above */
13895 		udelay(2); /* do not busy-wait the CSR */
13896 		reg = read_csr(dd, RCV_STATUS);
13897 		if (reg & (RCV_STATUS_RX_RBUF_INIT_DONE_SMASK))
13898 			break;
13899 
13900 		/* give up after 100us - slowest possible at 33MHz is 73us */
13901 		if (count++ > 50) {
13902 			dd_dev_err(dd,
13903 				   "%s: RcvStatus.RxRbufInit not set, continuing\n",
13904 				   __func__);
13905 			break;
13906 		}
13907 	}
13908 }
13909 
13910 /* set RXE CSRs to chip reset defaults */
13911 static void reset_rxe_csrs(struct hfi1_devdata *dd)
13912 {
13913 	int i, j;
13914 
13915 	/*
13916 	 * RXE Kernel CSRs
13917 	 */
13918 	write_csr(dd, RCV_CTRL, 0);
13919 	init_rbufs(dd);
13920 	/* RCV_STATUS read-only */
13921 	/* RCV_CONTEXTS read-only */
13922 	/* RCV_ARRAY_CNT read-only */
13923 	/* RCV_BUF_SIZE read-only */
13924 	write_csr(dd, RCV_BTH_QP, 0);
13925 	write_csr(dd, RCV_MULTICAST, 0);
13926 	write_csr(dd, RCV_BYPASS, 0);
13927 	write_csr(dd, RCV_VL15, 0);
13928 	/* this is a clear-down */
13929 	write_csr(dd, RCV_ERR_INFO,
13930 		  RCV_ERR_INFO_RCV_EXCESS_BUFFER_OVERRUN_SMASK);
13931 	/* RCV_ERR_STATUS read-only */
13932 	write_csr(dd, RCV_ERR_MASK, 0);
13933 	write_csr(dd, RCV_ERR_CLEAR, ~0ull);
13934 	/* RCV_ERR_FORCE leave alone */
13935 	for (i = 0; i < 32; i++)
13936 		write_csr(dd, RCV_QP_MAP_TABLE + (8 * i), 0);
13937 	for (i = 0; i < 4; i++)
13938 		write_csr(dd, RCV_PARTITION_KEY + (8 * i), 0);
13939 	for (i = 0; i < RXE_NUM_32_BIT_COUNTERS; i++)
13940 		write_csr(dd, RCV_COUNTER_ARRAY32 + (8 * i), 0);
13941 	for (i = 0; i < RXE_NUM_64_BIT_COUNTERS; i++)
13942 		write_csr(dd, RCV_COUNTER_ARRAY64 + (8 * i), 0);
13943 	for (i = 0; i < RXE_NUM_RSM_INSTANCES; i++)
13944 		clear_rsm_rule(dd, i);
13945 	for (i = 0; i < 32; i++)
13946 		write_csr(dd, RCV_RSM_MAP_TABLE + (8 * i), 0);
13947 
13948 	/*
13949 	 * RXE Kernel and User Per-Context CSRs
13950 	 */
13951 	for (i = 0; i < dd->chip_rcv_contexts; i++) {
13952 		/* kernel */
13953 		write_kctxt_csr(dd, i, RCV_CTXT_CTRL, 0);
13954 		/* RCV_CTXT_STATUS read-only */
13955 		write_kctxt_csr(dd, i, RCV_EGR_CTRL, 0);
13956 		write_kctxt_csr(dd, i, RCV_TID_CTRL, 0);
13957 		write_kctxt_csr(dd, i, RCV_KEY_CTRL, 0);
13958 		write_kctxt_csr(dd, i, RCV_HDR_ADDR, 0);
13959 		write_kctxt_csr(dd, i, RCV_HDR_CNT, 0);
13960 		write_kctxt_csr(dd, i, RCV_HDR_ENT_SIZE, 0);
13961 		write_kctxt_csr(dd, i, RCV_HDR_SIZE, 0);
13962 		write_kctxt_csr(dd, i, RCV_HDR_TAIL_ADDR, 0);
13963 		write_kctxt_csr(dd, i, RCV_AVAIL_TIME_OUT, 0);
13964 		write_kctxt_csr(dd, i, RCV_HDR_OVFL_CNT, 0);
13965 
13966 		/* user */
13967 		/* RCV_HDR_TAIL read-only */
13968 		write_uctxt_csr(dd, i, RCV_HDR_HEAD, 0);
13969 		/* RCV_EGR_INDEX_TAIL read-only */
13970 		write_uctxt_csr(dd, i, RCV_EGR_INDEX_HEAD, 0);
13971 		/* RCV_EGR_OFFSET_TAIL read-only */
13972 		for (j = 0; j < RXE_NUM_TID_FLOWS; j++) {
13973 			write_uctxt_csr(dd, i,
13974 					RCV_TID_FLOW_TABLE + (8 * j), 0);
13975 		}
13976 	}
13977 }
13978 
13979 /*
13980  * Set sc2vl tables.
13981  *
13982  * They power on to zeros, so to avoid send context errors
13983  * they need to be set:
13984  *
13985  * SC 0-7 -> VL 0-7 (respectively)
13986  * SC 15  -> VL 15
13987  * otherwise
13988  *        -> VL 0
13989  */
13990 static void init_sc2vl_tables(struct hfi1_devdata *dd)
13991 {
13992 	int i;
13993 	/* init per architecture spec, constrained by hardware capability */
13994 
13995 	/* HFI maps sent packets */
13996 	write_csr(dd, SEND_SC2VLT0, SC2VL_VAL(
13997 		0,
13998 		0, 0, 1, 1,
13999 		2, 2, 3, 3,
14000 		4, 4, 5, 5,
14001 		6, 6, 7, 7));
14002 	write_csr(dd, SEND_SC2VLT1, SC2VL_VAL(
14003 		1,
14004 		8, 0, 9, 0,
14005 		10, 0, 11, 0,
14006 		12, 0, 13, 0,
14007 		14, 0, 15, 15));
14008 	write_csr(dd, SEND_SC2VLT2, SC2VL_VAL(
14009 		2,
14010 		16, 0, 17, 0,
14011 		18, 0, 19, 0,
14012 		20, 0, 21, 0,
14013 		22, 0, 23, 0));
14014 	write_csr(dd, SEND_SC2VLT3, SC2VL_VAL(
14015 		3,
14016 		24, 0, 25, 0,
14017 		26, 0, 27, 0,
14018 		28, 0, 29, 0,
14019 		30, 0, 31, 0));
14020 
14021 	/* DC maps received packets */
14022 	write_csr(dd, DCC_CFG_SC_VL_TABLE_15_0, DC_SC_VL_VAL(
14023 		15_0,
14024 		0, 0, 1, 1,  2, 2,  3, 3,  4, 4,  5, 5,  6, 6,  7,  7,
14025 		8, 0, 9, 0, 10, 0, 11, 0, 12, 0, 13, 0, 14, 0, 15, 15));
14026 	write_csr(dd, DCC_CFG_SC_VL_TABLE_31_16, DC_SC_VL_VAL(
14027 		31_16,
14028 		16, 0, 17, 0, 18, 0, 19, 0, 20, 0, 21, 0, 22, 0, 23, 0,
14029 		24, 0, 25, 0, 26, 0, 27, 0, 28, 0, 29, 0, 30, 0, 31, 0));
14030 
14031 	/* initialize the cached sc2vl values consistently with h/w */
14032 	for (i = 0; i < 32; i++) {
14033 		if (i < 8 || i == 15)
14034 			*((u8 *)(dd->sc2vl) + i) = (u8)i;
14035 		else
14036 			*((u8 *)(dd->sc2vl) + i) = 0;
14037 	}
14038 }
14039 
14040 /*
14041  * Read chip sizes and then reset parts to sane, disabled, values.  We cannot
14042  * depend on the chip going through a power-on reset - a driver may be loaded
14043  * and unloaded many times.
14044  *
14045  * Do not write any CSR values to the chip in this routine - there may be
14046  * a reset following the (possible) FLR in this routine.
14047  *
14048  */
14049 static int init_chip(struct hfi1_devdata *dd)
14050 {
14051 	int i;
14052 	int ret = 0;
14053 
14054 	/*
14055 	 * Put the HFI CSRs in a known state.
14056 	 * Combine this with a DC reset.
14057 	 *
14058 	 * Stop the device from doing anything while we do a
14059 	 * reset.  We know there are no other active users of
14060 	 * the device since we are now in charge.  Turn off
14061 	 * off all outbound and inbound traffic and make sure
14062 	 * the device does not generate any interrupts.
14063 	 */
14064 
14065 	/* disable send contexts and SDMA engines */
14066 	write_csr(dd, SEND_CTRL, 0);
14067 	for (i = 0; i < dd->chip_send_contexts; i++)
14068 		write_kctxt_csr(dd, i, SEND_CTXT_CTRL, 0);
14069 	for (i = 0; i < dd->chip_sdma_engines; i++)
14070 		write_kctxt_csr(dd, i, SEND_DMA_CTRL, 0);
14071 	/* disable port (turn off RXE inbound traffic) and contexts */
14072 	write_csr(dd, RCV_CTRL, 0);
14073 	for (i = 0; i < dd->chip_rcv_contexts; i++)
14074 		write_csr(dd, RCV_CTXT_CTRL, 0);
14075 	/* mask all interrupt sources */
14076 	for (i = 0; i < CCE_NUM_INT_CSRS; i++)
14077 		write_csr(dd, CCE_INT_MASK + (8 * i), 0ull);
14078 
14079 	/*
14080 	 * DC Reset: do a full DC reset before the register clear.
14081 	 * A recommended length of time to hold is one CSR read,
14082 	 * so reread the CceDcCtrl.  Then, hold the DC in reset
14083 	 * across the clear.
14084 	 */
14085 	write_csr(dd, CCE_DC_CTRL, CCE_DC_CTRL_DC_RESET_SMASK);
14086 	(void)read_csr(dd, CCE_DC_CTRL);
14087 
14088 	if (use_flr) {
14089 		/*
14090 		 * A FLR will reset the SPC core and part of the PCIe.
14091 		 * The parts that need to be restored have already been
14092 		 * saved.
14093 		 */
14094 		dd_dev_info(dd, "Resetting CSRs with FLR\n");
14095 
14096 		/* do the FLR, the DC reset will remain */
14097 		pcie_flr(dd->pcidev);
14098 
14099 		/* restore command and BARs */
14100 		ret = restore_pci_variables(dd);
14101 		if (ret) {
14102 			dd_dev_err(dd, "%s: Could not restore PCI variables\n",
14103 				   __func__);
14104 			return ret;
14105 		}
14106 
14107 		if (is_ax(dd)) {
14108 			dd_dev_info(dd, "Resetting CSRs with FLR\n");
14109 			pcie_flr(dd->pcidev);
14110 			ret = restore_pci_variables(dd);
14111 			if (ret) {
14112 				dd_dev_err(dd, "%s: Could not restore PCI variables\n",
14113 					   __func__);
14114 				return ret;
14115 			}
14116 		}
14117 	} else {
14118 		dd_dev_info(dd, "Resetting CSRs with writes\n");
14119 		reset_cce_csrs(dd);
14120 		reset_txe_csrs(dd);
14121 		reset_rxe_csrs(dd);
14122 		reset_misc_csrs(dd);
14123 	}
14124 	/* clear the DC reset */
14125 	write_csr(dd, CCE_DC_CTRL, 0);
14126 
14127 	/* Set the LED off */
14128 	setextled(dd, 0);
14129 
14130 	/*
14131 	 * Clear the QSFP reset.
14132 	 * An FLR enforces a 0 on all out pins. The driver does not touch
14133 	 * ASIC_QSFPn_OUT otherwise.  This leaves RESET_N low and
14134 	 * anything plugged constantly in reset, if it pays attention
14135 	 * to RESET_N.
14136 	 * Prime examples of this are optical cables. Set all pins high.
14137 	 * I2CCLK and I2CDAT will change per direction, and INT_N and
14138 	 * MODPRS_N are input only and their value is ignored.
14139 	 */
14140 	write_csr(dd, ASIC_QSFP1_OUT, 0x1f);
14141 	write_csr(dd, ASIC_QSFP2_OUT, 0x1f);
14142 	init_chip_resources(dd);
14143 	return ret;
14144 }
14145 
14146 static void init_early_variables(struct hfi1_devdata *dd)
14147 {
14148 	int i;
14149 
14150 	/* assign link credit variables */
14151 	dd->vau = CM_VAU;
14152 	dd->link_credits = CM_GLOBAL_CREDITS;
14153 	if (is_ax(dd))
14154 		dd->link_credits--;
14155 	dd->vcu = cu_to_vcu(hfi1_cu);
14156 	/* enough room for 8 MAD packets plus header - 17K */
14157 	dd->vl15_init = (8 * (2048 + 128)) / vau_to_au(dd->vau);
14158 	if (dd->vl15_init > dd->link_credits)
14159 		dd->vl15_init = dd->link_credits;
14160 
14161 	write_uninitialized_csrs_and_memories(dd);
14162 
14163 	if (HFI1_CAP_IS_KSET(PKEY_CHECK))
14164 		for (i = 0; i < dd->num_pports; i++) {
14165 			struct hfi1_pportdata *ppd = &dd->pport[i];
14166 
14167 			set_partition_keys(ppd);
14168 		}
14169 	init_sc2vl_tables(dd);
14170 }
14171 
14172 static void init_kdeth_qp(struct hfi1_devdata *dd)
14173 {
14174 	/* user changed the KDETH_QP */
14175 	if (kdeth_qp != 0 && kdeth_qp >= 0xff) {
14176 		/* out of range or illegal value */
14177 		dd_dev_err(dd, "Invalid KDETH queue pair prefix, ignoring");
14178 		kdeth_qp = 0;
14179 	}
14180 	if (kdeth_qp == 0)	/* not set, or failed range check */
14181 		kdeth_qp = DEFAULT_KDETH_QP;
14182 
14183 	write_csr(dd, SEND_BTH_QP,
14184 		  (kdeth_qp & SEND_BTH_QP_KDETH_QP_MASK) <<
14185 		  SEND_BTH_QP_KDETH_QP_SHIFT);
14186 
14187 	write_csr(dd, RCV_BTH_QP,
14188 		  (kdeth_qp & RCV_BTH_QP_KDETH_QP_MASK) <<
14189 		  RCV_BTH_QP_KDETH_QP_SHIFT);
14190 }
14191 
14192 /**
14193  * init_qpmap_table
14194  * @dd - device data
14195  * @first_ctxt - first context
14196  * @last_ctxt - first context
14197  *
14198  * This return sets the qpn mapping table that
14199  * is indexed by qpn[8:1].
14200  *
14201  * The routine will round robin the 256 settings
14202  * from first_ctxt to last_ctxt.
14203  *
14204  * The first/last looks ahead to having specialized
14205  * receive contexts for mgmt and bypass.  Normal
14206  * verbs traffic will assumed to be on a range
14207  * of receive contexts.
14208  */
14209 static void init_qpmap_table(struct hfi1_devdata *dd,
14210 			     u32 first_ctxt,
14211 			     u32 last_ctxt)
14212 {
14213 	u64 reg = 0;
14214 	u64 regno = RCV_QP_MAP_TABLE;
14215 	int i;
14216 	u64 ctxt = first_ctxt;
14217 
14218 	for (i = 0; i < 256; i++) {
14219 		reg |= ctxt << (8 * (i % 8));
14220 		ctxt++;
14221 		if (ctxt > last_ctxt)
14222 			ctxt = first_ctxt;
14223 		if (i % 8 == 7) {
14224 			write_csr(dd, regno, reg);
14225 			reg = 0;
14226 			regno += 8;
14227 		}
14228 	}
14229 
14230 	add_rcvctrl(dd, RCV_CTRL_RCV_QP_MAP_ENABLE_SMASK
14231 			| RCV_CTRL_RCV_BYPASS_ENABLE_SMASK);
14232 }
14233 
14234 struct rsm_map_table {
14235 	u64 map[NUM_MAP_REGS];
14236 	unsigned int used;
14237 };
14238 
14239 struct rsm_rule_data {
14240 	u8 offset;
14241 	u8 pkt_type;
14242 	u32 field1_off;
14243 	u32 field2_off;
14244 	u32 index1_off;
14245 	u32 index1_width;
14246 	u32 index2_off;
14247 	u32 index2_width;
14248 	u32 mask1;
14249 	u32 value1;
14250 	u32 mask2;
14251 	u32 value2;
14252 };
14253 
14254 /*
14255  * Return an initialized RMT map table for users to fill in.  OK if it
14256  * returns NULL, indicating no table.
14257  */
14258 static struct rsm_map_table *alloc_rsm_map_table(struct hfi1_devdata *dd)
14259 {
14260 	struct rsm_map_table *rmt;
14261 	u8 rxcontext = is_ax(dd) ? 0 : 0xff;  /* 0 is default if a0 ver. */
14262 
14263 	rmt = kmalloc(sizeof(*rmt), GFP_KERNEL);
14264 	if (rmt) {
14265 		memset(rmt->map, rxcontext, sizeof(rmt->map));
14266 		rmt->used = 0;
14267 	}
14268 
14269 	return rmt;
14270 }
14271 
14272 /*
14273  * Write the final RMT map table to the chip and free the table.  OK if
14274  * table is NULL.
14275  */
14276 static void complete_rsm_map_table(struct hfi1_devdata *dd,
14277 				   struct rsm_map_table *rmt)
14278 {
14279 	int i;
14280 
14281 	if (rmt) {
14282 		/* write table to chip */
14283 		for (i = 0; i < NUM_MAP_REGS; i++)
14284 			write_csr(dd, RCV_RSM_MAP_TABLE + (8 * i), rmt->map[i]);
14285 
14286 		/* enable RSM */
14287 		add_rcvctrl(dd, RCV_CTRL_RCV_RSM_ENABLE_SMASK);
14288 	}
14289 }
14290 
14291 /*
14292  * Add a receive side mapping rule.
14293  */
14294 static void add_rsm_rule(struct hfi1_devdata *dd, u8 rule_index,
14295 			 struct rsm_rule_data *rrd)
14296 {
14297 	write_csr(dd, RCV_RSM_CFG + (8 * rule_index),
14298 		  (u64)rrd->offset << RCV_RSM_CFG_OFFSET_SHIFT |
14299 		  1ull << rule_index | /* enable bit */
14300 		  (u64)rrd->pkt_type << RCV_RSM_CFG_PACKET_TYPE_SHIFT);
14301 	write_csr(dd, RCV_RSM_SELECT + (8 * rule_index),
14302 		  (u64)rrd->field1_off << RCV_RSM_SELECT_FIELD1_OFFSET_SHIFT |
14303 		  (u64)rrd->field2_off << RCV_RSM_SELECT_FIELD2_OFFSET_SHIFT |
14304 		  (u64)rrd->index1_off << RCV_RSM_SELECT_INDEX1_OFFSET_SHIFT |
14305 		  (u64)rrd->index1_width << RCV_RSM_SELECT_INDEX1_WIDTH_SHIFT |
14306 		  (u64)rrd->index2_off << RCV_RSM_SELECT_INDEX2_OFFSET_SHIFT |
14307 		  (u64)rrd->index2_width << RCV_RSM_SELECT_INDEX2_WIDTH_SHIFT);
14308 	write_csr(dd, RCV_RSM_MATCH + (8 * rule_index),
14309 		  (u64)rrd->mask1 << RCV_RSM_MATCH_MASK1_SHIFT |
14310 		  (u64)rrd->value1 << RCV_RSM_MATCH_VALUE1_SHIFT |
14311 		  (u64)rrd->mask2 << RCV_RSM_MATCH_MASK2_SHIFT |
14312 		  (u64)rrd->value2 << RCV_RSM_MATCH_VALUE2_SHIFT);
14313 }
14314 
14315 /*
14316  * Clear a receive side mapping rule.
14317  */
14318 static void clear_rsm_rule(struct hfi1_devdata *dd, u8 rule_index)
14319 {
14320 	write_csr(dd, RCV_RSM_CFG + (8 * rule_index), 0);
14321 	write_csr(dd, RCV_RSM_SELECT + (8 * rule_index), 0);
14322 	write_csr(dd, RCV_RSM_MATCH + (8 * rule_index), 0);
14323 }
14324 
14325 /* return the number of RSM map table entries that will be used for QOS */
14326 static int qos_rmt_entries(struct hfi1_devdata *dd, unsigned int *mp,
14327 			   unsigned int *np)
14328 {
14329 	int i;
14330 	unsigned int m, n;
14331 	u8 max_by_vl = 0;
14332 
14333 	/* is QOS active at all? */
14334 	if (dd->n_krcv_queues <= MIN_KERNEL_KCTXTS ||
14335 	    num_vls == 1 ||
14336 	    krcvqsset <= 1)
14337 		goto no_qos;
14338 
14339 	/* determine bits for qpn */
14340 	for (i = 0; i < min_t(unsigned int, num_vls, krcvqsset); i++)
14341 		if (krcvqs[i] > max_by_vl)
14342 			max_by_vl = krcvqs[i];
14343 	if (max_by_vl > 32)
14344 		goto no_qos;
14345 	m = ilog2(__roundup_pow_of_two(max_by_vl));
14346 
14347 	/* determine bits for vl */
14348 	n = ilog2(__roundup_pow_of_two(num_vls));
14349 
14350 	/* reject if too much is used */
14351 	if ((m + n) > 7)
14352 		goto no_qos;
14353 
14354 	if (mp)
14355 		*mp = m;
14356 	if (np)
14357 		*np = n;
14358 
14359 	return 1 << (m + n);
14360 
14361 no_qos:
14362 	if (mp)
14363 		*mp = 0;
14364 	if (np)
14365 		*np = 0;
14366 	return 0;
14367 }
14368 
14369 /**
14370  * init_qos - init RX qos
14371  * @dd - device data
14372  * @rmt - RSM map table
14373  *
14374  * This routine initializes Rule 0 and the RSM map table to implement
14375  * quality of service (qos).
14376  *
14377  * If all of the limit tests succeed, qos is applied based on the array
14378  * interpretation of krcvqs where entry 0 is VL0.
14379  *
14380  * The number of vl bits (n) and the number of qpn bits (m) are computed to
14381  * feed both the RSM map table and the single rule.
14382  */
14383 static void init_qos(struct hfi1_devdata *dd, struct rsm_map_table *rmt)
14384 {
14385 	struct rsm_rule_data rrd;
14386 	unsigned qpns_per_vl, ctxt, i, qpn, n = 1, m;
14387 	unsigned int rmt_entries;
14388 	u64 reg;
14389 
14390 	if (!rmt)
14391 		goto bail;
14392 	rmt_entries = qos_rmt_entries(dd, &m, &n);
14393 	if (rmt_entries == 0)
14394 		goto bail;
14395 	qpns_per_vl = 1 << m;
14396 
14397 	/* enough room in the map table? */
14398 	rmt_entries = 1 << (m + n);
14399 	if (rmt->used + rmt_entries >= NUM_MAP_ENTRIES)
14400 		goto bail;
14401 
14402 	/* add qos entries to the the RSM map table */
14403 	for (i = 0, ctxt = FIRST_KERNEL_KCTXT; i < num_vls; i++) {
14404 		unsigned tctxt;
14405 
14406 		for (qpn = 0, tctxt = ctxt;
14407 		     krcvqs[i] && qpn < qpns_per_vl; qpn++) {
14408 			unsigned idx, regoff, regidx;
14409 
14410 			/* generate the index the hardware will produce */
14411 			idx = rmt->used + ((qpn << n) ^ i);
14412 			regoff = (idx % 8) * 8;
14413 			regidx = idx / 8;
14414 			/* replace default with context number */
14415 			reg = rmt->map[regidx];
14416 			reg &= ~(RCV_RSM_MAP_TABLE_RCV_CONTEXT_A_MASK
14417 				<< regoff);
14418 			reg |= (u64)(tctxt++) << regoff;
14419 			rmt->map[regidx] = reg;
14420 			if (tctxt == ctxt + krcvqs[i])
14421 				tctxt = ctxt;
14422 		}
14423 		ctxt += krcvqs[i];
14424 	}
14425 
14426 	rrd.offset = rmt->used;
14427 	rrd.pkt_type = 2;
14428 	rrd.field1_off = LRH_BTH_MATCH_OFFSET;
14429 	rrd.field2_off = LRH_SC_MATCH_OFFSET;
14430 	rrd.index1_off = LRH_SC_SELECT_OFFSET;
14431 	rrd.index1_width = n;
14432 	rrd.index2_off = QPN_SELECT_OFFSET;
14433 	rrd.index2_width = m + n;
14434 	rrd.mask1 = LRH_BTH_MASK;
14435 	rrd.value1 = LRH_BTH_VALUE;
14436 	rrd.mask2 = LRH_SC_MASK;
14437 	rrd.value2 = LRH_SC_VALUE;
14438 
14439 	/* add rule 0 */
14440 	add_rsm_rule(dd, RSM_INS_VERBS, &rrd);
14441 
14442 	/* mark RSM map entries as used */
14443 	rmt->used += rmt_entries;
14444 	/* map everything else to the mcast/err/vl15 context */
14445 	init_qpmap_table(dd, HFI1_CTRL_CTXT, HFI1_CTRL_CTXT);
14446 	dd->qos_shift = n + 1;
14447 	return;
14448 bail:
14449 	dd->qos_shift = 1;
14450 	init_qpmap_table(dd, FIRST_KERNEL_KCTXT, dd->n_krcv_queues - 1);
14451 }
14452 
14453 static void init_user_fecn_handling(struct hfi1_devdata *dd,
14454 				    struct rsm_map_table *rmt)
14455 {
14456 	struct rsm_rule_data rrd;
14457 	u64 reg;
14458 	int i, idx, regoff, regidx;
14459 	u8 offset;
14460 
14461 	/* there needs to be enough room in the map table */
14462 	if (rmt->used + dd->num_user_contexts >= NUM_MAP_ENTRIES) {
14463 		dd_dev_err(dd, "User FECN handling disabled - too many user contexts allocated\n");
14464 		return;
14465 	}
14466 
14467 	/*
14468 	 * RSM will extract the destination context as an index into the
14469 	 * map table.  The destination contexts are a sequential block
14470 	 * in the range first_dyn_alloc_ctxt...num_rcv_contexts-1 (inclusive).
14471 	 * Map entries are accessed as offset + extracted value.  Adjust
14472 	 * the added offset so this sequence can be placed anywhere in
14473 	 * the table - as long as the entries themselves do not wrap.
14474 	 * There are only enough bits in offset for the table size, so
14475 	 * start with that to allow for a "negative" offset.
14476 	 */
14477 	offset = (u8)(NUM_MAP_ENTRIES + (int)rmt->used -
14478 						(int)dd->first_dyn_alloc_ctxt);
14479 
14480 	for (i = dd->first_dyn_alloc_ctxt, idx = rmt->used;
14481 				i < dd->num_rcv_contexts; i++, idx++) {
14482 		/* replace with identity mapping */
14483 		regoff = (idx % 8) * 8;
14484 		regidx = idx / 8;
14485 		reg = rmt->map[regidx];
14486 		reg &= ~(RCV_RSM_MAP_TABLE_RCV_CONTEXT_A_MASK << regoff);
14487 		reg |= (u64)i << regoff;
14488 		rmt->map[regidx] = reg;
14489 	}
14490 
14491 	/*
14492 	 * For RSM intercept of Expected FECN packets:
14493 	 * o packet type 0 - expected
14494 	 * o match on F (bit 95), using select/match 1, and
14495 	 * o match on SH (bit 133), using select/match 2.
14496 	 *
14497 	 * Use index 1 to extract the 8-bit receive context from DestQP
14498 	 * (start at bit 64).  Use that as the RSM map table index.
14499 	 */
14500 	rrd.offset = offset;
14501 	rrd.pkt_type = 0;
14502 	rrd.field1_off = 95;
14503 	rrd.field2_off = 133;
14504 	rrd.index1_off = 64;
14505 	rrd.index1_width = 8;
14506 	rrd.index2_off = 0;
14507 	rrd.index2_width = 0;
14508 	rrd.mask1 = 1;
14509 	rrd.value1 = 1;
14510 	rrd.mask2 = 1;
14511 	rrd.value2 = 1;
14512 
14513 	/* add rule 1 */
14514 	add_rsm_rule(dd, RSM_INS_FECN, &rrd);
14515 
14516 	rmt->used += dd->num_user_contexts;
14517 }
14518 
14519 /* Initialize RSM for VNIC */
14520 void hfi1_init_vnic_rsm(struct hfi1_devdata *dd)
14521 {
14522 	u8 i, j;
14523 	u8 ctx_id = 0;
14524 	u64 reg;
14525 	u32 regoff;
14526 	struct rsm_rule_data rrd;
14527 
14528 	if (hfi1_vnic_is_rsm_full(dd, NUM_VNIC_MAP_ENTRIES)) {
14529 		dd_dev_err(dd, "Vnic RSM disabled, rmt entries used = %d\n",
14530 			   dd->vnic.rmt_start);
14531 		return;
14532 	}
14533 
14534 	dev_dbg(&(dd)->pcidev->dev, "Vnic rsm start = %d, end %d\n",
14535 		dd->vnic.rmt_start,
14536 		dd->vnic.rmt_start + NUM_VNIC_MAP_ENTRIES);
14537 
14538 	/* Update RSM mapping table, 32 regs, 256 entries - 1 ctx per byte */
14539 	regoff = RCV_RSM_MAP_TABLE + (dd->vnic.rmt_start / 8) * 8;
14540 	reg = read_csr(dd, regoff);
14541 	for (i = 0; i < NUM_VNIC_MAP_ENTRIES; i++) {
14542 		/* Update map register with vnic context */
14543 		j = (dd->vnic.rmt_start + i) % 8;
14544 		reg &= ~(0xffllu << (j * 8));
14545 		reg |= (u64)dd->vnic.ctxt[ctx_id++]->ctxt << (j * 8);
14546 		/* Wrap up vnic ctx index */
14547 		ctx_id %= dd->vnic.num_ctxt;
14548 		/* Write back map register */
14549 		if (j == 7 || ((i + 1) == NUM_VNIC_MAP_ENTRIES)) {
14550 			dev_dbg(&(dd)->pcidev->dev,
14551 				"Vnic rsm map reg[%d] =0x%llx\n",
14552 				regoff - RCV_RSM_MAP_TABLE, reg);
14553 
14554 			write_csr(dd, regoff, reg);
14555 			regoff += 8;
14556 			if (i < (NUM_VNIC_MAP_ENTRIES - 1))
14557 				reg = read_csr(dd, regoff);
14558 		}
14559 	}
14560 
14561 	/* Add rule for vnic */
14562 	rrd.offset = dd->vnic.rmt_start;
14563 	rrd.pkt_type = 4;
14564 	/* Match 16B packets */
14565 	rrd.field1_off = L2_TYPE_MATCH_OFFSET;
14566 	rrd.mask1 = L2_TYPE_MASK;
14567 	rrd.value1 = L2_16B_VALUE;
14568 	/* Match ETH L4 packets */
14569 	rrd.field2_off = L4_TYPE_MATCH_OFFSET;
14570 	rrd.mask2 = L4_16B_TYPE_MASK;
14571 	rrd.value2 = L4_16B_ETH_VALUE;
14572 	/* Calc context from veswid and entropy */
14573 	rrd.index1_off = L4_16B_HDR_VESWID_OFFSET;
14574 	rrd.index1_width = ilog2(NUM_VNIC_MAP_ENTRIES);
14575 	rrd.index2_off = L2_16B_ENTROPY_OFFSET;
14576 	rrd.index2_width = ilog2(NUM_VNIC_MAP_ENTRIES);
14577 	add_rsm_rule(dd, RSM_INS_VNIC, &rrd);
14578 
14579 	/* Enable RSM if not already enabled */
14580 	add_rcvctrl(dd, RCV_CTRL_RCV_RSM_ENABLE_SMASK);
14581 }
14582 
14583 void hfi1_deinit_vnic_rsm(struct hfi1_devdata *dd)
14584 {
14585 	clear_rsm_rule(dd, RSM_INS_VNIC);
14586 
14587 	/* Disable RSM if used only by vnic */
14588 	if (dd->vnic.rmt_start == 0)
14589 		clear_rcvctrl(dd, RCV_CTRL_RCV_RSM_ENABLE_SMASK);
14590 }
14591 
14592 static void init_rxe(struct hfi1_devdata *dd)
14593 {
14594 	struct rsm_map_table *rmt;
14595 	u64 val;
14596 
14597 	/* enable all receive errors */
14598 	write_csr(dd, RCV_ERR_MASK, ~0ull);
14599 
14600 	rmt = alloc_rsm_map_table(dd);
14601 	/* set up QOS, including the QPN map table */
14602 	init_qos(dd, rmt);
14603 	init_user_fecn_handling(dd, rmt);
14604 	complete_rsm_map_table(dd, rmt);
14605 	/* record number of used rsm map entries for vnic */
14606 	dd->vnic.rmt_start = rmt->used;
14607 	kfree(rmt);
14608 
14609 	/*
14610 	 * make sure RcvCtrl.RcvWcb <= PCIe Device Control
14611 	 * Register Max_Payload_Size (PCI_EXP_DEVCTL in Linux PCIe config
14612 	 * space, PciCfgCap2.MaxPayloadSize in HFI).  There is only one
14613 	 * invalid configuration: RcvCtrl.RcvWcb set to its max of 256 and
14614 	 * Max_PayLoad_Size set to its minimum of 128.
14615 	 *
14616 	 * Presently, RcvCtrl.RcvWcb is not modified from its default of 0
14617 	 * (64 bytes).  Max_Payload_Size is possibly modified upward in
14618 	 * tune_pcie_caps() which is called after this routine.
14619 	 */
14620 
14621 	/* Have 16 bytes (4DW) of bypass header available in header queue */
14622 	val = read_csr(dd, RCV_BYPASS);
14623 	val |= (4ull << 16);
14624 	write_csr(dd, RCV_BYPASS, val);
14625 }
14626 
14627 static void init_other(struct hfi1_devdata *dd)
14628 {
14629 	/* enable all CCE errors */
14630 	write_csr(dd, CCE_ERR_MASK, ~0ull);
14631 	/* enable *some* Misc errors */
14632 	write_csr(dd, MISC_ERR_MASK, DRIVER_MISC_MASK);
14633 	/* enable all DC errors, except LCB */
14634 	write_csr(dd, DCC_ERR_FLG_EN, ~0ull);
14635 	write_csr(dd, DC_DC8051_ERR_EN, ~0ull);
14636 }
14637 
14638 /*
14639  * Fill out the given AU table using the given CU.  A CU is defined in terms
14640  * AUs.  The table is a an encoding: given the index, how many AUs does that
14641  * represent?
14642  *
14643  * NOTE: Assumes that the register layout is the same for the
14644  * local and remote tables.
14645  */
14646 static void assign_cm_au_table(struct hfi1_devdata *dd, u32 cu,
14647 			       u32 csr0to3, u32 csr4to7)
14648 {
14649 	write_csr(dd, csr0to3,
14650 		  0ull << SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE0_SHIFT |
14651 		  1ull << SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE1_SHIFT |
14652 		  2ull * cu <<
14653 		  SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE2_SHIFT |
14654 		  4ull * cu <<
14655 		  SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE3_SHIFT);
14656 	write_csr(dd, csr4to7,
14657 		  8ull * cu <<
14658 		  SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE4_SHIFT |
14659 		  16ull * cu <<
14660 		  SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE5_SHIFT |
14661 		  32ull * cu <<
14662 		  SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE6_SHIFT |
14663 		  64ull * cu <<
14664 		  SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE7_SHIFT);
14665 }
14666 
14667 static void assign_local_cm_au_table(struct hfi1_devdata *dd, u8 vcu)
14668 {
14669 	assign_cm_au_table(dd, vcu_to_cu(vcu), SEND_CM_LOCAL_AU_TABLE0_TO3,
14670 			   SEND_CM_LOCAL_AU_TABLE4_TO7);
14671 }
14672 
14673 void assign_remote_cm_au_table(struct hfi1_devdata *dd, u8 vcu)
14674 {
14675 	assign_cm_au_table(dd, vcu_to_cu(vcu), SEND_CM_REMOTE_AU_TABLE0_TO3,
14676 			   SEND_CM_REMOTE_AU_TABLE4_TO7);
14677 }
14678 
14679 static void init_txe(struct hfi1_devdata *dd)
14680 {
14681 	int i;
14682 
14683 	/* enable all PIO, SDMA, general, and Egress errors */
14684 	write_csr(dd, SEND_PIO_ERR_MASK, ~0ull);
14685 	write_csr(dd, SEND_DMA_ERR_MASK, ~0ull);
14686 	write_csr(dd, SEND_ERR_MASK, ~0ull);
14687 	write_csr(dd, SEND_EGRESS_ERR_MASK, ~0ull);
14688 
14689 	/* enable all per-context and per-SDMA engine errors */
14690 	for (i = 0; i < dd->chip_send_contexts; i++)
14691 		write_kctxt_csr(dd, i, SEND_CTXT_ERR_MASK, ~0ull);
14692 	for (i = 0; i < dd->chip_sdma_engines; i++)
14693 		write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_MASK, ~0ull);
14694 
14695 	/* set the local CU to AU mapping */
14696 	assign_local_cm_au_table(dd, dd->vcu);
14697 
14698 	/*
14699 	 * Set reasonable default for Credit Return Timer
14700 	 * Don't set on Simulator - causes it to choke.
14701 	 */
14702 	if (dd->icode != ICODE_FUNCTIONAL_SIMULATOR)
14703 		write_csr(dd, SEND_CM_TIMER_CTRL, HFI1_CREDIT_RETURN_RATE);
14704 }
14705 
14706 int hfi1_set_ctxt_jkey(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd,
14707 		       u16 jkey)
14708 {
14709 	u8 hw_ctxt;
14710 	u64 reg;
14711 
14712 	if (!rcd || !rcd->sc)
14713 		return -EINVAL;
14714 
14715 	hw_ctxt = rcd->sc->hw_context;
14716 	reg = SEND_CTXT_CHECK_JOB_KEY_MASK_SMASK | /* mask is always 1's */
14717 		((jkey & SEND_CTXT_CHECK_JOB_KEY_VALUE_MASK) <<
14718 		 SEND_CTXT_CHECK_JOB_KEY_VALUE_SHIFT);
14719 	/* JOB_KEY_ALLOW_PERMISSIVE is not allowed by default */
14720 	if (HFI1_CAP_KGET_MASK(rcd->flags, ALLOW_PERM_JKEY))
14721 		reg |= SEND_CTXT_CHECK_JOB_KEY_ALLOW_PERMISSIVE_SMASK;
14722 	write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_JOB_KEY, reg);
14723 	/*
14724 	 * Enable send-side J_KEY integrity check, unless this is A0 h/w
14725 	 */
14726 	if (!is_ax(dd)) {
14727 		reg = read_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE);
14728 		reg |= SEND_CTXT_CHECK_ENABLE_CHECK_JOB_KEY_SMASK;
14729 		write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE, reg);
14730 	}
14731 
14732 	/* Enable J_KEY check on receive context. */
14733 	reg = RCV_KEY_CTRL_JOB_KEY_ENABLE_SMASK |
14734 		((jkey & RCV_KEY_CTRL_JOB_KEY_VALUE_MASK) <<
14735 		 RCV_KEY_CTRL_JOB_KEY_VALUE_SHIFT);
14736 	write_kctxt_csr(dd, rcd->ctxt, RCV_KEY_CTRL, reg);
14737 
14738 	return 0;
14739 }
14740 
14741 int hfi1_clear_ctxt_jkey(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd)
14742 {
14743 	u8 hw_ctxt;
14744 	u64 reg;
14745 
14746 	if (!rcd || !rcd->sc)
14747 		return -EINVAL;
14748 
14749 	hw_ctxt = rcd->sc->hw_context;
14750 	write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_JOB_KEY, 0);
14751 	/*
14752 	 * Disable send-side J_KEY integrity check, unless this is A0 h/w.
14753 	 * This check would not have been enabled for A0 h/w, see
14754 	 * set_ctxt_jkey().
14755 	 */
14756 	if (!is_ax(dd)) {
14757 		reg = read_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE);
14758 		reg &= ~SEND_CTXT_CHECK_ENABLE_CHECK_JOB_KEY_SMASK;
14759 		write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE, reg);
14760 	}
14761 	/* Turn off the J_KEY on the receive side */
14762 	write_kctxt_csr(dd, rcd->ctxt, RCV_KEY_CTRL, 0);
14763 
14764 	return 0;
14765 }
14766 
14767 int hfi1_set_ctxt_pkey(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd,
14768 		       u16 pkey)
14769 {
14770 	u8 hw_ctxt;
14771 	u64 reg;
14772 
14773 	if (!rcd || !rcd->sc)
14774 		return -EINVAL;
14775 
14776 	hw_ctxt = rcd->sc->hw_context;
14777 	reg = ((u64)pkey & SEND_CTXT_CHECK_PARTITION_KEY_VALUE_MASK) <<
14778 		SEND_CTXT_CHECK_PARTITION_KEY_VALUE_SHIFT;
14779 	write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_PARTITION_KEY, reg);
14780 	reg = read_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE);
14781 	reg |= SEND_CTXT_CHECK_ENABLE_CHECK_PARTITION_KEY_SMASK;
14782 	reg &= ~SEND_CTXT_CHECK_ENABLE_DISALLOW_KDETH_PACKETS_SMASK;
14783 	write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE, reg);
14784 
14785 	return 0;
14786 }
14787 
14788 int hfi1_clear_ctxt_pkey(struct hfi1_devdata *dd, struct hfi1_ctxtdata *ctxt)
14789 {
14790 	u8 hw_ctxt;
14791 	u64 reg;
14792 
14793 	if (!ctxt || !ctxt->sc)
14794 		return -EINVAL;
14795 
14796 	hw_ctxt = ctxt->sc->hw_context;
14797 	reg = read_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE);
14798 	reg &= ~SEND_CTXT_CHECK_ENABLE_CHECK_PARTITION_KEY_SMASK;
14799 	write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE, reg);
14800 	write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_PARTITION_KEY, 0);
14801 
14802 	return 0;
14803 }
14804 
14805 /*
14806  * Start doing the clean up the the chip. Our clean up happens in multiple
14807  * stages and this is just the first.
14808  */
14809 void hfi1_start_cleanup(struct hfi1_devdata *dd)
14810 {
14811 	aspm_exit(dd);
14812 	free_cntrs(dd);
14813 	free_rcverr(dd);
14814 	finish_chip_resources(dd);
14815 }
14816 
14817 #define HFI_BASE_GUID(dev) \
14818 	((dev)->base_guid & ~(1ULL << GUID_HFI_INDEX_SHIFT))
14819 
14820 /*
14821  * Information can be shared between the two HFIs on the same ASIC
14822  * in the same OS.  This function finds the peer device and sets
14823  * up a shared structure.
14824  */
14825 static int init_asic_data(struct hfi1_devdata *dd)
14826 {
14827 	unsigned long flags;
14828 	struct hfi1_devdata *tmp, *peer = NULL;
14829 	struct hfi1_asic_data *asic_data;
14830 	int ret = 0;
14831 
14832 	/* pre-allocate the asic structure in case we are the first device */
14833 	asic_data = kzalloc(sizeof(*dd->asic_data), GFP_KERNEL);
14834 	if (!asic_data)
14835 		return -ENOMEM;
14836 
14837 	spin_lock_irqsave(&hfi1_devs_lock, flags);
14838 	/* Find our peer device */
14839 	list_for_each_entry(tmp, &hfi1_dev_list, list) {
14840 		if ((HFI_BASE_GUID(dd) == HFI_BASE_GUID(tmp)) &&
14841 		    dd->unit != tmp->unit) {
14842 			peer = tmp;
14843 			break;
14844 		}
14845 	}
14846 
14847 	if (peer) {
14848 		/* use already allocated structure */
14849 		dd->asic_data = peer->asic_data;
14850 		kfree(asic_data);
14851 	} else {
14852 		dd->asic_data = asic_data;
14853 		mutex_init(&dd->asic_data->asic_resource_mutex);
14854 	}
14855 	dd->asic_data->dds[dd->hfi1_id] = dd; /* self back-pointer */
14856 	spin_unlock_irqrestore(&hfi1_devs_lock, flags);
14857 
14858 	/* first one through - set up i2c devices */
14859 	if (!peer)
14860 		ret = set_up_i2c(dd, dd->asic_data);
14861 
14862 	return ret;
14863 }
14864 
14865 /*
14866  * Set dd->boardname.  Use a generic name if a name is not returned from
14867  * EFI variable space.
14868  *
14869  * Return 0 on success, -ENOMEM if space could not be allocated.
14870  */
14871 static int obtain_boardname(struct hfi1_devdata *dd)
14872 {
14873 	/* generic board description */
14874 	const char generic[] =
14875 		"Intel Omni-Path Host Fabric Interface Adapter 100 Series";
14876 	unsigned long size;
14877 	int ret;
14878 
14879 	ret = read_hfi1_efi_var(dd, "description", &size,
14880 				(void **)&dd->boardname);
14881 	if (ret) {
14882 		dd_dev_info(dd, "Board description not found\n");
14883 		/* use generic description */
14884 		dd->boardname = kstrdup(generic, GFP_KERNEL);
14885 		if (!dd->boardname)
14886 			return -ENOMEM;
14887 	}
14888 	return 0;
14889 }
14890 
14891 /*
14892  * Check the interrupt registers to make sure that they are mapped correctly.
14893  * It is intended to help user identify any mismapping by VMM when the driver
14894  * is running in a VM. This function should only be called before interrupt
14895  * is set up properly.
14896  *
14897  * Return 0 on success, -EINVAL on failure.
14898  */
14899 static int check_int_registers(struct hfi1_devdata *dd)
14900 {
14901 	u64 reg;
14902 	u64 all_bits = ~(u64)0;
14903 	u64 mask;
14904 
14905 	/* Clear CceIntMask[0] to avoid raising any interrupts */
14906 	mask = read_csr(dd, CCE_INT_MASK);
14907 	write_csr(dd, CCE_INT_MASK, 0ull);
14908 	reg = read_csr(dd, CCE_INT_MASK);
14909 	if (reg)
14910 		goto err_exit;
14911 
14912 	/* Clear all interrupt status bits */
14913 	write_csr(dd, CCE_INT_CLEAR, all_bits);
14914 	reg = read_csr(dd, CCE_INT_STATUS);
14915 	if (reg)
14916 		goto err_exit;
14917 
14918 	/* Set all interrupt status bits */
14919 	write_csr(dd, CCE_INT_FORCE, all_bits);
14920 	reg = read_csr(dd, CCE_INT_STATUS);
14921 	if (reg != all_bits)
14922 		goto err_exit;
14923 
14924 	/* Restore the interrupt mask */
14925 	write_csr(dd, CCE_INT_CLEAR, all_bits);
14926 	write_csr(dd, CCE_INT_MASK, mask);
14927 
14928 	return 0;
14929 err_exit:
14930 	write_csr(dd, CCE_INT_MASK, mask);
14931 	dd_dev_err(dd, "Interrupt registers not properly mapped by VMM\n");
14932 	return -EINVAL;
14933 }
14934 
14935 /**
14936  * Allocate and initialize the device structure for the hfi.
14937  * @dev: the pci_dev for hfi1_ib device
14938  * @ent: pci_device_id struct for this dev
14939  *
14940  * Also allocates, initializes, and returns the devdata struct for this
14941  * device instance
14942  *
14943  * This is global, and is called directly at init to set up the
14944  * chip-specific function pointers for later use.
14945  */
14946 struct hfi1_devdata *hfi1_init_dd(struct pci_dev *pdev,
14947 				  const struct pci_device_id *ent)
14948 {
14949 	struct hfi1_devdata *dd;
14950 	struct hfi1_pportdata *ppd;
14951 	u64 reg;
14952 	int i, ret;
14953 	static const char * const inames[] = { /* implementation names */
14954 		"RTL silicon",
14955 		"RTL VCS simulation",
14956 		"RTL FPGA emulation",
14957 		"Functional simulator"
14958 	};
14959 	struct pci_dev *parent = pdev->bus->self;
14960 
14961 	dd = hfi1_alloc_devdata(pdev, NUM_IB_PORTS *
14962 				sizeof(struct hfi1_pportdata));
14963 	if (IS_ERR(dd))
14964 		goto bail;
14965 	ppd = dd->pport;
14966 	for (i = 0; i < dd->num_pports; i++, ppd++) {
14967 		int vl;
14968 		/* init common fields */
14969 		hfi1_init_pportdata(pdev, ppd, dd, 0, 1);
14970 		/* DC supports 4 link widths */
14971 		ppd->link_width_supported =
14972 			OPA_LINK_WIDTH_1X | OPA_LINK_WIDTH_2X |
14973 			OPA_LINK_WIDTH_3X | OPA_LINK_WIDTH_4X;
14974 		ppd->link_width_downgrade_supported =
14975 			ppd->link_width_supported;
14976 		/* start out enabling only 4X */
14977 		ppd->link_width_enabled = OPA_LINK_WIDTH_4X;
14978 		ppd->link_width_downgrade_enabled =
14979 					ppd->link_width_downgrade_supported;
14980 		/* link width active is 0 when link is down */
14981 		/* link width downgrade active is 0 when link is down */
14982 
14983 		if (num_vls < HFI1_MIN_VLS_SUPPORTED ||
14984 		    num_vls > HFI1_MAX_VLS_SUPPORTED) {
14985 			dd_dev_err(dd, "Invalid num_vls %u, using %u VLs\n",
14986 				   num_vls, HFI1_MAX_VLS_SUPPORTED);
14987 			num_vls = HFI1_MAX_VLS_SUPPORTED;
14988 		}
14989 		ppd->vls_supported = num_vls;
14990 		ppd->vls_operational = ppd->vls_supported;
14991 		/* Set the default MTU. */
14992 		for (vl = 0; vl < num_vls; vl++)
14993 			dd->vld[vl].mtu = hfi1_max_mtu;
14994 		dd->vld[15].mtu = MAX_MAD_PACKET;
14995 		/*
14996 		 * Set the initial values to reasonable default, will be set
14997 		 * for real when link is up.
14998 		 */
14999 		ppd->overrun_threshold = 0x4;
15000 		ppd->phy_error_threshold = 0xf;
15001 		ppd->port_crc_mode_enabled = link_crc_mask;
15002 		/* initialize supported LTP CRC mode */
15003 		ppd->port_ltp_crc_mode = cap_to_port_ltp(link_crc_mask) << 8;
15004 		/* initialize enabled LTP CRC mode */
15005 		ppd->port_ltp_crc_mode |= cap_to_port_ltp(link_crc_mask) << 4;
15006 		/* start in offline */
15007 		ppd->host_link_state = HLS_DN_OFFLINE;
15008 		init_vl_arb_caches(ppd);
15009 	}
15010 
15011 	/*
15012 	 * Do remaining PCIe setup and save PCIe values in dd.
15013 	 * Any error printing is already done by the init code.
15014 	 * On return, we have the chip mapped.
15015 	 */
15016 	ret = hfi1_pcie_ddinit(dd, pdev);
15017 	if (ret < 0)
15018 		goto bail_free;
15019 
15020 	/* Save PCI space registers to rewrite after device reset */
15021 	ret = save_pci_variables(dd);
15022 	if (ret < 0)
15023 		goto bail_cleanup;
15024 
15025 	/* verify that reads actually work, save revision for reset check */
15026 	dd->revision = read_csr(dd, CCE_REVISION);
15027 	if (dd->revision == ~(u64)0) {
15028 		dd_dev_err(dd, "cannot read chip CSRs\n");
15029 		ret = -EINVAL;
15030 		goto bail_cleanup;
15031 	}
15032 	dd->majrev = (dd->revision >> CCE_REVISION_CHIP_REV_MAJOR_SHIFT)
15033 			& CCE_REVISION_CHIP_REV_MAJOR_MASK;
15034 	dd->minrev = (dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT)
15035 			& CCE_REVISION_CHIP_REV_MINOR_MASK;
15036 
15037 	/*
15038 	 * Check interrupt registers mapping if the driver has no access to
15039 	 * the upstream component. In this case, it is likely that the driver
15040 	 * is running in a VM.
15041 	 */
15042 	if (!parent) {
15043 		ret = check_int_registers(dd);
15044 		if (ret)
15045 			goto bail_cleanup;
15046 	}
15047 
15048 	/*
15049 	 * obtain the hardware ID - NOT related to unit, which is a
15050 	 * software enumeration
15051 	 */
15052 	reg = read_csr(dd, CCE_REVISION2);
15053 	dd->hfi1_id = (reg >> CCE_REVISION2_HFI_ID_SHIFT)
15054 					& CCE_REVISION2_HFI_ID_MASK;
15055 	/* the variable size will remove unwanted bits */
15056 	dd->icode = reg >> CCE_REVISION2_IMPL_CODE_SHIFT;
15057 	dd->irev = reg >> CCE_REVISION2_IMPL_REVISION_SHIFT;
15058 	dd_dev_info(dd, "Implementation: %s, revision 0x%x\n",
15059 		    dd->icode < ARRAY_SIZE(inames) ?
15060 		    inames[dd->icode] : "unknown", (int)dd->irev);
15061 
15062 	/* speeds the hardware can support */
15063 	dd->pport->link_speed_supported = OPA_LINK_SPEED_25G;
15064 	/* speeds allowed to run at */
15065 	dd->pport->link_speed_enabled = dd->pport->link_speed_supported;
15066 	/* give a reasonable active value, will be set on link up */
15067 	dd->pport->link_speed_active = OPA_LINK_SPEED_25G;
15068 
15069 	dd->chip_rcv_contexts = read_csr(dd, RCV_CONTEXTS);
15070 	dd->chip_send_contexts = read_csr(dd, SEND_CONTEXTS);
15071 	dd->chip_sdma_engines = read_csr(dd, SEND_DMA_ENGINES);
15072 	dd->chip_pio_mem_size = read_csr(dd, SEND_PIO_MEM_SIZE);
15073 	dd->chip_sdma_mem_size = read_csr(dd, SEND_DMA_MEM_SIZE);
15074 	/* fix up link widths for emulation _p */
15075 	ppd = dd->pport;
15076 	if (dd->icode == ICODE_FPGA_EMULATION && is_emulator_p(dd)) {
15077 		ppd->link_width_supported =
15078 			ppd->link_width_enabled =
15079 			ppd->link_width_downgrade_supported =
15080 			ppd->link_width_downgrade_enabled =
15081 				OPA_LINK_WIDTH_1X;
15082 	}
15083 	/* insure num_vls isn't larger than number of sdma engines */
15084 	if (HFI1_CAP_IS_KSET(SDMA) && num_vls > dd->chip_sdma_engines) {
15085 		dd_dev_err(dd, "num_vls %u too large, using %u VLs\n",
15086 			   num_vls, dd->chip_sdma_engines);
15087 		num_vls = dd->chip_sdma_engines;
15088 		ppd->vls_supported = dd->chip_sdma_engines;
15089 		ppd->vls_operational = ppd->vls_supported;
15090 	}
15091 
15092 	/*
15093 	 * Convert the ns parameter to the 64 * cclocks used in the CSR.
15094 	 * Limit the max if larger than the field holds.  If timeout is
15095 	 * non-zero, then the calculated field will be at least 1.
15096 	 *
15097 	 * Must be after icode is set up - the cclock rate depends
15098 	 * on knowing the hardware being used.
15099 	 */
15100 	dd->rcv_intr_timeout_csr = ns_to_cclock(dd, rcv_intr_timeout) / 64;
15101 	if (dd->rcv_intr_timeout_csr >
15102 			RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_MASK)
15103 		dd->rcv_intr_timeout_csr =
15104 			RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_MASK;
15105 	else if (dd->rcv_intr_timeout_csr == 0 && rcv_intr_timeout)
15106 		dd->rcv_intr_timeout_csr = 1;
15107 
15108 	/* needs to be done before we look for the peer device */
15109 	read_guid(dd);
15110 
15111 	/* set up shared ASIC data with peer device */
15112 	ret = init_asic_data(dd);
15113 	if (ret)
15114 		goto bail_cleanup;
15115 
15116 	/* obtain chip sizes, reset chip CSRs */
15117 	ret = init_chip(dd);
15118 	if (ret)
15119 		goto bail_cleanup;
15120 
15121 	/* read in the PCIe link speed information */
15122 	ret = pcie_speeds(dd);
15123 	if (ret)
15124 		goto bail_cleanup;
15125 
15126 	/* call before get_platform_config(), after init_chip_resources() */
15127 	ret = eprom_init(dd);
15128 	if (ret)
15129 		goto bail_free_rcverr;
15130 
15131 	/* Needs to be called before hfi1_firmware_init */
15132 	get_platform_config(dd);
15133 
15134 	/* read in firmware */
15135 	ret = hfi1_firmware_init(dd);
15136 	if (ret)
15137 		goto bail_cleanup;
15138 
15139 	/*
15140 	 * In general, the PCIe Gen3 transition must occur after the
15141 	 * chip has been idled (so it won't initiate any PCIe transactions
15142 	 * e.g. an interrupt) and before the driver changes any registers
15143 	 * (the transition will reset the registers).
15144 	 *
15145 	 * In particular, place this call after:
15146 	 * - init_chip()     - the chip will not initiate any PCIe transactions
15147 	 * - pcie_speeds()   - reads the current link speed
15148 	 * - hfi1_firmware_init() - the needed firmware is ready to be
15149 	 *			    downloaded
15150 	 */
15151 	ret = do_pcie_gen3_transition(dd);
15152 	if (ret)
15153 		goto bail_cleanup;
15154 
15155 	/* start setting dd values and adjusting CSRs */
15156 	init_early_variables(dd);
15157 
15158 	parse_platform_config(dd);
15159 
15160 	ret = obtain_boardname(dd);
15161 	if (ret)
15162 		goto bail_cleanup;
15163 
15164 	snprintf(dd->boardversion, BOARD_VERS_MAX,
15165 		 "ChipABI %u.%u, ChipRev %u.%u, SW Compat %llu\n",
15166 		 HFI1_CHIP_VERS_MAJ, HFI1_CHIP_VERS_MIN,
15167 		 (u32)dd->majrev,
15168 		 (u32)dd->minrev,
15169 		 (dd->revision >> CCE_REVISION_SW_SHIFT)
15170 		    & CCE_REVISION_SW_MASK);
15171 
15172 	ret = set_up_context_variables(dd);
15173 	if (ret)
15174 		goto bail_cleanup;
15175 
15176 	/* set initial RXE CSRs */
15177 	init_rxe(dd);
15178 	/* set initial TXE CSRs */
15179 	init_txe(dd);
15180 	/* set initial non-RXE, non-TXE CSRs */
15181 	init_other(dd);
15182 	/* set up KDETH QP prefix in both RX and TX CSRs */
15183 	init_kdeth_qp(dd);
15184 
15185 	ret = hfi1_dev_affinity_init(dd);
15186 	if (ret)
15187 		goto bail_cleanup;
15188 
15189 	/* send contexts must be set up before receive contexts */
15190 	ret = init_send_contexts(dd);
15191 	if (ret)
15192 		goto bail_cleanup;
15193 
15194 	ret = hfi1_create_kctxts(dd);
15195 	if (ret)
15196 		goto bail_cleanup;
15197 
15198 	/*
15199 	 * Initialize aspm, to be done after gen3 transition and setting up
15200 	 * contexts and before enabling interrupts
15201 	 */
15202 	aspm_init(dd);
15203 
15204 	dd->rcvhdrsize = DEFAULT_RCVHDRSIZE;
15205 	/*
15206 	 * rcd[0] is guaranteed to be valid by this point. Also, all
15207 	 * context are using the same value, as per the module parameter.
15208 	 */
15209 	dd->rhf_offset = dd->rcd[0]->rcvhdrqentsize - sizeof(u64) / sizeof(u32);
15210 
15211 	ret = init_pervl_scs(dd);
15212 	if (ret)
15213 		goto bail_cleanup;
15214 
15215 	/* sdma init */
15216 	for (i = 0; i < dd->num_pports; ++i) {
15217 		ret = sdma_init(dd, i);
15218 		if (ret)
15219 			goto bail_cleanup;
15220 	}
15221 
15222 	/* use contexts created by hfi1_create_kctxts */
15223 	ret = set_up_interrupts(dd);
15224 	if (ret)
15225 		goto bail_cleanup;
15226 
15227 	/* set up LCB access - must be after set_up_interrupts() */
15228 	init_lcb_access(dd);
15229 
15230 	/*
15231 	 * Serial number is created from the base guid:
15232 	 * [27:24] = base guid [38:35]
15233 	 * [23: 0] = base guid [23: 0]
15234 	 */
15235 	snprintf(dd->serial, SERIAL_MAX, "0x%08llx\n",
15236 		 (dd->base_guid & 0xFFFFFF) |
15237 		     ((dd->base_guid >> 11) & 0xF000000));
15238 
15239 	dd->oui1 = dd->base_guid >> 56 & 0xFF;
15240 	dd->oui2 = dd->base_guid >> 48 & 0xFF;
15241 	dd->oui3 = dd->base_guid >> 40 & 0xFF;
15242 
15243 	ret = load_firmware(dd); /* asymmetric with dispose_firmware() */
15244 	if (ret)
15245 		goto bail_clear_intr;
15246 
15247 	thermal_init(dd);
15248 
15249 	ret = init_cntrs(dd);
15250 	if (ret)
15251 		goto bail_clear_intr;
15252 
15253 	ret = init_rcverr(dd);
15254 	if (ret)
15255 		goto bail_free_cntrs;
15256 
15257 	init_completion(&dd->user_comp);
15258 
15259 	/* The user refcount starts with one to inidicate an active device */
15260 	atomic_set(&dd->user_refcount, 1);
15261 
15262 	goto bail;
15263 
15264 bail_free_rcverr:
15265 	free_rcverr(dd);
15266 bail_free_cntrs:
15267 	free_cntrs(dd);
15268 bail_clear_intr:
15269 	hfi1_clean_up_interrupts(dd);
15270 bail_cleanup:
15271 	hfi1_pcie_ddcleanup(dd);
15272 bail_free:
15273 	hfi1_free_devdata(dd);
15274 	dd = ERR_PTR(ret);
15275 bail:
15276 	return dd;
15277 }
15278 
15279 static u16 delay_cycles(struct hfi1_pportdata *ppd, u32 desired_egress_rate,
15280 			u32 dw_len)
15281 {
15282 	u32 delta_cycles;
15283 	u32 current_egress_rate = ppd->current_egress_rate;
15284 	/* rates here are in units of 10^6 bits/sec */
15285 
15286 	if (desired_egress_rate == -1)
15287 		return 0; /* shouldn't happen */
15288 
15289 	if (desired_egress_rate >= current_egress_rate)
15290 		return 0; /* we can't help go faster, only slower */
15291 
15292 	delta_cycles = egress_cycles(dw_len * 4, desired_egress_rate) -
15293 			egress_cycles(dw_len * 4, current_egress_rate);
15294 
15295 	return (u16)delta_cycles;
15296 }
15297 
15298 /**
15299  * create_pbc - build a pbc for transmission
15300  * @flags: special case flags or-ed in built pbc
15301  * @srate: static rate
15302  * @vl: vl
15303  * @dwlen: dword length (header words + data words + pbc words)
15304  *
15305  * Create a PBC with the given flags, rate, VL, and length.
15306  *
15307  * NOTE: The PBC created will not insert any HCRC - all callers but one are
15308  * for verbs, which does not use this PSM feature.  The lone other caller
15309  * is for the diagnostic interface which calls this if the user does not
15310  * supply their own PBC.
15311  */
15312 u64 create_pbc(struct hfi1_pportdata *ppd, u64 flags, int srate_mbs, u32 vl,
15313 	       u32 dw_len)
15314 {
15315 	u64 pbc, delay = 0;
15316 
15317 	if (unlikely(srate_mbs))
15318 		delay = delay_cycles(ppd, srate_mbs, dw_len);
15319 
15320 	pbc = flags
15321 		| (delay << PBC_STATIC_RATE_CONTROL_COUNT_SHIFT)
15322 		| ((u64)PBC_IHCRC_NONE << PBC_INSERT_HCRC_SHIFT)
15323 		| (vl & PBC_VL_MASK) << PBC_VL_SHIFT
15324 		| (dw_len & PBC_LENGTH_DWS_MASK)
15325 			<< PBC_LENGTH_DWS_SHIFT;
15326 
15327 	return pbc;
15328 }
15329 
15330 #define SBUS_THERMAL    0x4f
15331 #define SBUS_THERM_MONITOR_MODE 0x1
15332 
15333 #define THERM_FAILURE(dev, ret, reason) \
15334 	dd_dev_err((dd),						\
15335 		   "Thermal sensor initialization failed: %s (%d)\n",	\
15336 		   (reason), (ret))
15337 
15338 /*
15339  * Initialize the thermal sensor.
15340  *
15341  * After initialization, enable polling of thermal sensor through
15342  * SBus interface. In order for this to work, the SBus Master
15343  * firmware has to be loaded due to the fact that the HW polling
15344  * logic uses SBus interrupts, which are not supported with
15345  * default firmware. Otherwise, no data will be returned through
15346  * the ASIC_STS_THERM CSR.
15347  */
15348 static int thermal_init(struct hfi1_devdata *dd)
15349 {
15350 	int ret = 0;
15351 
15352 	if (dd->icode != ICODE_RTL_SILICON ||
15353 	    check_chip_resource(dd, CR_THERM_INIT, NULL))
15354 		return ret;
15355 
15356 	ret = acquire_chip_resource(dd, CR_SBUS, SBUS_TIMEOUT);
15357 	if (ret) {
15358 		THERM_FAILURE(dd, ret, "Acquire SBus");
15359 		return ret;
15360 	}
15361 
15362 	dd_dev_info(dd, "Initializing thermal sensor\n");
15363 	/* Disable polling of thermal readings */
15364 	write_csr(dd, ASIC_CFG_THERM_POLL_EN, 0x0);
15365 	msleep(100);
15366 	/* Thermal Sensor Initialization */
15367 	/*    Step 1: Reset the Thermal SBus Receiver */
15368 	ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0,
15369 				RESET_SBUS_RECEIVER, 0);
15370 	if (ret) {
15371 		THERM_FAILURE(dd, ret, "Bus Reset");
15372 		goto done;
15373 	}
15374 	/*    Step 2: Set Reset bit in Thermal block */
15375 	ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0,
15376 				WRITE_SBUS_RECEIVER, 0x1);
15377 	if (ret) {
15378 		THERM_FAILURE(dd, ret, "Therm Block Reset");
15379 		goto done;
15380 	}
15381 	/*    Step 3: Write clock divider value (100MHz -> 2MHz) */
15382 	ret = sbus_request_slow(dd, SBUS_THERMAL, 0x1,
15383 				WRITE_SBUS_RECEIVER, 0x32);
15384 	if (ret) {
15385 		THERM_FAILURE(dd, ret, "Write Clock Div");
15386 		goto done;
15387 	}
15388 	/*    Step 4: Select temperature mode */
15389 	ret = sbus_request_slow(dd, SBUS_THERMAL, 0x3,
15390 				WRITE_SBUS_RECEIVER,
15391 				SBUS_THERM_MONITOR_MODE);
15392 	if (ret) {
15393 		THERM_FAILURE(dd, ret, "Write Mode Sel");
15394 		goto done;
15395 	}
15396 	/*    Step 5: De-assert block reset and start conversion */
15397 	ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0,
15398 				WRITE_SBUS_RECEIVER, 0x2);
15399 	if (ret) {
15400 		THERM_FAILURE(dd, ret, "Write Reset Deassert");
15401 		goto done;
15402 	}
15403 	/*    Step 5.1: Wait for first conversion (21.5ms per spec) */
15404 	msleep(22);
15405 
15406 	/* Enable polling of thermal readings */
15407 	write_csr(dd, ASIC_CFG_THERM_POLL_EN, 0x1);
15408 
15409 	/* Set initialized flag */
15410 	ret = acquire_chip_resource(dd, CR_THERM_INIT, 0);
15411 	if (ret)
15412 		THERM_FAILURE(dd, ret, "Unable to set thermal init flag");
15413 
15414 done:
15415 	release_chip_resource(dd, CR_SBUS);
15416 	return ret;
15417 }
15418 
15419 static void handle_temp_err(struct hfi1_devdata *dd)
15420 {
15421 	struct hfi1_pportdata *ppd = &dd->pport[0];
15422 	/*
15423 	 * Thermal Critical Interrupt
15424 	 * Put the device into forced freeze mode, take link down to
15425 	 * offline, and put DC into reset.
15426 	 */
15427 	dd_dev_emerg(dd,
15428 		     "Critical temperature reached! Forcing device into freeze mode!\n");
15429 	dd->flags |= HFI1_FORCED_FREEZE;
15430 	start_freeze_handling(ppd, FREEZE_SELF | FREEZE_ABORT);
15431 	/*
15432 	 * Shut DC down as much and as quickly as possible.
15433 	 *
15434 	 * Step 1: Take the link down to OFFLINE. This will cause the
15435 	 *         8051 to put the Serdes in reset. However, we don't want to
15436 	 *         go through the entire link state machine since we want to
15437 	 *         shutdown ASAP. Furthermore, this is not a graceful shutdown
15438 	 *         but rather an attempt to save the chip.
15439 	 *         Code below is almost the same as quiet_serdes() but avoids
15440 	 *         all the extra work and the sleeps.
15441 	 */
15442 	ppd->driver_link_ready = 0;
15443 	ppd->link_enabled = 0;
15444 	set_physical_link_state(dd, (OPA_LINKDOWN_REASON_SMA_DISABLED << 8) |
15445 				PLS_OFFLINE);
15446 	/*
15447 	 * Step 2: Shutdown LCB and 8051
15448 	 *         After shutdown, do not restore DC_CFG_RESET value.
15449 	 */
15450 	dc_shutdown(dd);
15451 }
15452