1 /* 2 * Copyright(c) 2015, 2016 Intel Corporation. 3 * 4 * This file is provided under a dual BSD/GPLv2 license. When using or 5 * redistributing this file, you may do so under either license. 6 * 7 * GPL LICENSE SUMMARY 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of version 2 of the GNU General Public License as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, but 14 * WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 16 * General Public License for more details. 17 * 18 * BSD LICENSE 19 * 20 * Redistribution and use in source and binary forms, with or without 21 * modification, are permitted provided that the following conditions 22 * are met: 23 * 24 * - Redistributions of source code must retain the above copyright 25 * notice, this list of conditions and the following disclaimer. 26 * - Redistributions in binary form must reproduce the above copyright 27 * notice, this list of conditions and the following disclaimer in 28 * the documentation and/or other materials provided with the 29 * distribution. 30 * - Neither the name of Intel Corporation nor the names of its 31 * contributors may be used to endorse or promote products derived 32 * from this software without specific prior written permission. 33 * 34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 35 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 36 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 37 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 38 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 39 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 40 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 41 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 42 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 44 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 45 * 46 */ 47 48 /* 49 * This file contains all of the code that is specific to the HFI chip 50 */ 51 52 #include <linux/pci.h> 53 #include <linux/delay.h> 54 #include <linux/interrupt.h> 55 #include <linux/module.h> 56 57 #include "hfi.h" 58 #include "trace.h" 59 #include "mad.h" 60 #include "pio.h" 61 #include "sdma.h" 62 #include "eprom.h" 63 #include "efivar.h" 64 #include "platform.h" 65 #include "aspm.h" 66 #include "affinity.h" 67 68 #define NUM_IB_PORTS 1 69 70 uint kdeth_qp; 71 module_param_named(kdeth_qp, kdeth_qp, uint, S_IRUGO); 72 MODULE_PARM_DESC(kdeth_qp, "Set the KDETH queue pair prefix"); 73 74 uint num_vls = HFI1_MAX_VLS_SUPPORTED; 75 module_param(num_vls, uint, S_IRUGO); 76 MODULE_PARM_DESC(num_vls, "Set number of Virtual Lanes to use (1-8)"); 77 78 /* 79 * Default time to aggregate two 10K packets from the idle state 80 * (timer not running). The timer starts at the end of the first packet, 81 * so only the time for one 10K packet and header plus a bit extra is needed. 82 * 10 * 1024 + 64 header byte = 10304 byte 83 * 10304 byte / 12.5 GB/s = 824.32ns 84 */ 85 uint rcv_intr_timeout = (824 + 16); /* 16 is for coalescing interrupt */ 86 module_param(rcv_intr_timeout, uint, S_IRUGO); 87 MODULE_PARM_DESC(rcv_intr_timeout, "Receive interrupt mitigation timeout in ns"); 88 89 uint rcv_intr_count = 16; /* same as qib */ 90 module_param(rcv_intr_count, uint, S_IRUGO); 91 MODULE_PARM_DESC(rcv_intr_count, "Receive interrupt mitigation count"); 92 93 ushort link_crc_mask = SUPPORTED_CRCS; 94 module_param(link_crc_mask, ushort, S_IRUGO); 95 MODULE_PARM_DESC(link_crc_mask, "CRCs to use on the link"); 96 97 uint loopback; 98 module_param_named(loopback, loopback, uint, S_IRUGO); 99 MODULE_PARM_DESC(loopback, "Put into loopback mode (1 = serdes, 3 = external cable"); 100 101 /* Other driver tunables */ 102 uint rcv_intr_dynamic = 1; /* enable dynamic mode for rcv int mitigation*/ 103 static ushort crc_14b_sideband = 1; 104 static uint use_flr = 1; 105 uint quick_linkup; /* skip LNI */ 106 107 struct flag_table { 108 u64 flag; /* the flag */ 109 char *str; /* description string */ 110 u16 extra; /* extra information */ 111 u16 unused0; 112 u32 unused1; 113 }; 114 115 /* str must be a string constant */ 116 #define FLAG_ENTRY(str, extra, flag) {flag, str, extra} 117 #define FLAG_ENTRY0(str, flag) {flag, str, 0} 118 119 /* Send Error Consequences */ 120 #define SEC_WRITE_DROPPED 0x1 121 #define SEC_PACKET_DROPPED 0x2 122 #define SEC_SC_HALTED 0x4 /* per-context only */ 123 #define SEC_SPC_FREEZE 0x8 /* per-HFI only */ 124 125 #define DEFAULT_KRCVQS 2 126 #define MIN_KERNEL_KCTXTS 2 127 #define FIRST_KERNEL_KCTXT 1 128 /* sizes for both the QP and RSM map tables */ 129 #define NUM_MAP_ENTRIES 256 130 #define NUM_MAP_REGS 32 131 132 /* Bit offset into the GUID which carries HFI id information */ 133 #define GUID_HFI_INDEX_SHIFT 39 134 135 /* extract the emulation revision */ 136 #define emulator_rev(dd) ((dd)->irev >> 8) 137 /* parallel and serial emulation versions are 3 and 4 respectively */ 138 #define is_emulator_p(dd) ((((dd)->irev) & 0xf) == 3) 139 #define is_emulator_s(dd) ((((dd)->irev) & 0xf) == 4) 140 141 /* RSM fields */ 142 143 /* packet type */ 144 #define IB_PACKET_TYPE 2ull 145 #define QW_SHIFT 6ull 146 /* QPN[7..1] */ 147 #define QPN_WIDTH 7ull 148 149 /* LRH.BTH: QW 0, OFFSET 48 - for match */ 150 #define LRH_BTH_QW 0ull 151 #define LRH_BTH_BIT_OFFSET 48ull 152 #define LRH_BTH_OFFSET(off) ((LRH_BTH_QW << QW_SHIFT) | (off)) 153 #define LRH_BTH_MATCH_OFFSET LRH_BTH_OFFSET(LRH_BTH_BIT_OFFSET) 154 #define LRH_BTH_SELECT 155 #define LRH_BTH_MASK 3ull 156 #define LRH_BTH_VALUE 2ull 157 158 /* LRH.SC[3..0] QW 0, OFFSET 56 - for match */ 159 #define LRH_SC_QW 0ull 160 #define LRH_SC_BIT_OFFSET 56ull 161 #define LRH_SC_OFFSET(off) ((LRH_SC_QW << QW_SHIFT) | (off)) 162 #define LRH_SC_MATCH_OFFSET LRH_SC_OFFSET(LRH_SC_BIT_OFFSET) 163 #define LRH_SC_MASK 128ull 164 #define LRH_SC_VALUE 0ull 165 166 /* SC[n..0] QW 0, OFFSET 60 - for select */ 167 #define LRH_SC_SELECT_OFFSET ((LRH_SC_QW << QW_SHIFT) | (60ull)) 168 169 /* QPN[m+n:1] QW 1, OFFSET 1 */ 170 #define QPN_SELECT_OFFSET ((1ull << QW_SHIFT) | (1ull)) 171 172 /* defines to build power on SC2VL table */ 173 #define SC2VL_VAL( \ 174 num, \ 175 sc0, sc0val, \ 176 sc1, sc1val, \ 177 sc2, sc2val, \ 178 sc3, sc3val, \ 179 sc4, sc4val, \ 180 sc5, sc5val, \ 181 sc6, sc6val, \ 182 sc7, sc7val) \ 183 ( \ 184 ((u64)(sc0val) << SEND_SC2VLT##num##_SC##sc0##_SHIFT) | \ 185 ((u64)(sc1val) << SEND_SC2VLT##num##_SC##sc1##_SHIFT) | \ 186 ((u64)(sc2val) << SEND_SC2VLT##num##_SC##sc2##_SHIFT) | \ 187 ((u64)(sc3val) << SEND_SC2VLT##num##_SC##sc3##_SHIFT) | \ 188 ((u64)(sc4val) << SEND_SC2VLT##num##_SC##sc4##_SHIFT) | \ 189 ((u64)(sc5val) << SEND_SC2VLT##num##_SC##sc5##_SHIFT) | \ 190 ((u64)(sc6val) << SEND_SC2VLT##num##_SC##sc6##_SHIFT) | \ 191 ((u64)(sc7val) << SEND_SC2VLT##num##_SC##sc7##_SHIFT) \ 192 ) 193 194 #define DC_SC_VL_VAL( \ 195 range, \ 196 e0, e0val, \ 197 e1, e1val, \ 198 e2, e2val, \ 199 e3, e3val, \ 200 e4, e4val, \ 201 e5, e5val, \ 202 e6, e6val, \ 203 e7, e7val, \ 204 e8, e8val, \ 205 e9, e9val, \ 206 e10, e10val, \ 207 e11, e11val, \ 208 e12, e12val, \ 209 e13, e13val, \ 210 e14, e14val, \ 211 e15, e15val) \ 212 ( \ 213 ((u64)(e0val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e0##_SHIFT) | \ 214 ((u64)(e1val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e1##_SHIFT) | \ 215 ((u64)(e2val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e2##_SHIFT) | \ 216 ((u64)(e3val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e3##_SHIFT) | \ 217 ((u64)(e4val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e4##_SHIFT) | \ 218 ((u64)(e5val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e5##_SHIFT) | \ 219 ((u64)(e6val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e6##_SHIFT) | \ 220 ((u64)(e7val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e7##_SHIFT) | \ 221 ((u64)(e8val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e8##_SHIFT) | \ 222 ((u64)(e9val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e9##_SHIFT) | \ 223 ((u64)(e10val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e10##_SHIFT) | \ 224 ((u64)(e11val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e11##_SHIFT) | \ 225 ((u64)(e12val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e12##_SHIFT) | \ 226 ((u64)(e13val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e13##_SHIFT) | \ 227 ((u64)(e14val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e14##_SHIFT) | \ 228 ((u64)(e15val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e15##_SHIFT) \ 229 ) 230 231 /* all CceStatus sub-block freeze bits */ 232 #define ALL_FROZE (CCE_STATUS_SDMA_FROZE_SMASK \ 233 | CCE_STATUS_RXE_FROZE_SMASK \ 234 | CCE_STATUS_TXE_FROZE_SMASK \ 235 | CCE_STATUS_TXE_PIO_FROZE_SMASK) 236 /* all CceStatus sub-block TXE pause bits */ 237 #define ALL_TXE_PAUSE (CCE_STATUS_TXE_PIO_PAUSED_SMASK \ 238 | CCE_STATUS_TXE_PAUSED_SMASK \ 239 | CCE_STATUS_SDMA_PAUSED_SMASK) 240 /* all CceStatus sub-block RXE pause bits */ 241 #define ALL_RXE_PAUSE CCE_STATUS_RXE_PAUSED_SMASK 242 243 #define CNTR_MAX 0xFFFFFFFFFFFFFFFFULL 244 #define CNTR_32BIT_MAX 0x00000000FFFFFFFF 245 246 /* 247 * CCE Error flags. 248 */ 249 static struct flag_table cce_err_status_flags[] = { 250 /* 0*/ FLAG_ENTRY0("CceCsrParityErr", 251 CCE_ERR_STATUS_CCE_CSR_PARITY_ERR_SMASK), 252 /* 1*/ FLAG_ENTRY0("CceCsrReadBadAddrErr", 253 CCE_ERR_STATUS_CCE_CSR_READ_BAD_ADDR_ERR_SMASK), 254 /* 2*/ FLAG_ENTRY0("CceCsrWriteBadAddrErr", 255 CCE_ERR_STATUS_CCE_CSR_WRITE_BAD_ADDR_ERR_SMASK), 256 /* 3*/ FLAG_ENTRY0("CceTrgtAsyncFifoParityErr", 257 CCE_ERR_STATUS_CCE_TRGT_ASYNC_FIFO_PARITY_ERR_SMASK), 258 /* 4*/ FLAG_ENTRY0("CceTrgtAccessErr", 259 CCE_ERR_STATUS_CCE_TRGT_ACCESS_ERR_SMASK), 260 /* 5*/ FLAG_ENTRY0("CceRspdDataParityErr", 261 CCE_ERR_STATUS_CCE_RSPD_DATA_PARITY_ERR_SMASK), 262 /* 6*/ FLAG_ENTRY0("CceCli0AsyncFifoParityErr", 263 CCE_ERR_STATUS_CCE_CLI0_ASYNC_FIFO_PARITY_ERR_SMASK), 264 /* 7*/ FLAG_ENTRY0("CceCsrCfgBusParityErr", 265 CCE_ERR_STATUS_CCE_CSR_CFG_BUS_PARITY_ERR_SMASK), 266 /* 8*/ FLAG_ENTRY0("CceCli2AsyncFifoParityErr", 267 CCE_ERR_STATUS_CCE_CLI2_ASYNC_FIFO_PARITY_ERR_SMASK), 268 /* 9*/ FLAG_ENTRY0("CceCli1AsyncFifoPioCrdtParityErr", 269 CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_PIO_CRDT_PARITY_ERR_SMASK), 270 /*10*/ FLAG_ENTRY0("CceCli1AsyncFifoPioCrdtParityErr", 271 CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_SDMA_HD_PARITY_ERR_SMASK), 272 /*11*/ FLAG_ENTRY0("CceCli1AsyncFifoRxdmaParityError", 273 CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_RXDMA_PARITY_ERROR_SMASK), 274 /*12*/ FLAG_ENTRY0("CceCli1AsyncFifoDbgParityError", 275 CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_DBG_PARITY_ERROR_SMASK), 276 /*13*/ FLAG_ENTRY0("PcicRetryMemCorErr", 277 CCE_ERR_STATUS_PCIC_RETRY_MEM_COR_ERR_SMASK), 278 /*14*/ FLAG_ENTRY0("PcicRetryMemCorErr", 279 CCE_ERR_STATUS_PCIC_RETRY_SOT_MEM_COR_ERR_SMASK), 280 /*15*/ FLAG_ENTRY0("PcicPostHdQCorErr", 281 CCE_ERR_STATUS_PCIC_POST_HD_QCOR_ERR_SMASK), 282 /*16*/ FLAG_ENTRY0("PcicPostHdQCorErr", 283 CCE_ERR_STATUS_PCIC_POST_DAT_QCOR_ERR_SMASK), 284 /*17*/ FLAG_ENTRY0("PcicPostHdQCorErr", 285 CCE_ERR_STATUS_PCIC_CPL_HD_QCOR_ERR_SMASK), 286 /*18*/ FLAG_ENTRY0("PcicCplDatQCorErr", 287 CCE_ERR_STATUS_PCIC_CPL_DAT_QCOR_ERR_SMASK), 288 /*19*/ FLAG_ENTRY0("PcicNPostHQParityErr", 289 CCE_ERR_STATUS_PCIC_NPOST_HQ_PARITY_ERR_SMASK), 290 /*20*/ FLAG_ENTRY0("PcicNPostDatQParityErr", 291 CCE_ERR_STATUS_PCIC_NPOST_DAT_QPARITY_ERR_SMASK), 292 /*21*/ FLAG_ENTRY0("PcicRetryMemUncErr", 293 CCE_ERR_STATUS_PCIC_RETRY_MEM_UNC_ERR_SMASK), 294 /*22*/ FLAG_ENTRY0("PcicRetrySotMemUncErr", 295 CCE_ERR_STATUS_PCIC_RETRY_SOT_MEM_UNC_ERR_SMASK), 296 /*23*/ FLAG_ENTRY0("PcicPostHdQUncErr", 297 CCE_ERR_STATUS_PCIC_POST_HD_QUNC_ERR_SMASK), 298 /*24*/ FLAG_ENTRY0("PcicPostDatQUncErr", 299 CCE_ERR_STATUS_PCIC_POST_DAT_QUNC_ERR_SMASK), 300 /*25*/ FLAG_ENTRY0("PcicCplHdQUncErr", 301 CCE_ERR_STATUS_PCIC_CPL_HD_QUNC_ERR_SMASK), 302 /*26*/ FLAG_ENTRY0("PcicCplDatQUncErr", 303 CCE_ERR_STATUS_PCIC_CPL_DAT_QUNC_ERR_SMASK), 304 /*27*/ FLAG_ENTRY0("PcicTransmitFrontParityErr", 305 CCE_ERR_STATUS_PCIC_TRANSMIT_FRONT_PARITY_ERR_SMASK), 306 /*28*/ FLAG_ENTRY0("PcicTransmitBackParityErr", 307 CCE_ERR_STATUS_PCIC_TRANSMIT_BACK_PARITY_ERR_SMASK), 308 /*29*/ FLAG_ENTRY0("PcicReceiveParityErr", 309 CCE_ERR_STATUS_PCIC_RECEIVE_PARITY_ERR_SMASK), 310 /*30*/ FLAG_ENTRY0("CceTrgtCplTimeoutErr", 311 CCE_ERR_STATUS_CCE_TRGT_CPL_TIMEOUT_ERR_SMASK), 312 /*31*/ FLAG_ENTRY0("LATriggered", 313 CCE_ERR_STATUS_LA_TRIGGERED_SMASK), 314 /*32*/ FLAG_ENTRY0("CceSegReadBadAddrErr", 315 CCE_ERR_STATUS_CCE_SEG_READ_BAD_ADDR_ERR_SMASK), 316 /*33*/ FLAG_ENTRY0("CceSegWriteBadAddrErr", 317 CCE_ERR_STATUS_CCE_SEG_WRITE_BAD_ADDR_ERR_SMASK), 318 /*34*/ FLAG_ENTRY0("CceRcplAsyncFifoParityErr", 319 CCE_ERR_STATUS_CCE_RCPL_ASYNC_FIFO_PARITY_ERR_SMASK), 320 /*35*/ FLAG_ENTRY0("CceRxdmaConvFifoParityErr", 321 CCE_ERR_STATUS_CCE_RXDMA_CONV_FIFO_PARITY_ERR_SMASK), 322 /*36*/ FLAG_ENTRY0("CceMsixTableCorErr", 323 CCE_ERR_STATUS_CCE_MSIX_TABLE_COR_ERR_SMASK), 324 /*37*/ FLAG_ENTRY0("CceMsixTableUncErr", 325 CCE_ERR_STATUS_CCE_MSIX_TABLE_UNC_ERR_SMASK), 326 /*38*/ FLAG_ENTRY0("CceIntMapCorErr", 327 CCE_ERR_STATUS_CCE_INT_MAP_COR_ERR_SMASK), 328 /*39*/ FLAG_ENTRY0("CceIntMapUncErr", 329 CCE_ERR_STATUS_CCE_INT_MAP_UNC_ERR_SMASK), 330 /*40*/ FLAG_ENTRY0("CceMsixCsrParityErr", 331 CCE_ERR_STATUS_CCE_MSIX_CSR_PARITY_ERR_SMASK), 332 /*41-63 reserved*/ 333 }; 334 335 /* 336 * Misc Error flags 337 */ 338 #define MES(text) MISC_ERR_STATUS_MISC_##text##_ERR_SMASK 339 static struct flag_table misc_err_status_flags[] = { 340 /* 0*/ FLAG_ENTRY0("CSR_PARITY", MES(CSR_PARITY)), 341 /* 1*/ FLAG_ENTRY0("CSR_READ_BAD_ADDR", MES(CSR_READ_BAD_ADDR)), 342 /* 2*/ FLAG_ENTRY0("CSR_WRITE_BAD_ADDR", MES(CSR_WRITE_BAD_ADDR)), 343 /* 3*/ FLAG_ENTRY0("SBUS_WRITE_FAILED", MES(SBUS_WRITE_FAILED)), 344 /* 4*/ FLAG_ENTRY0("KEY_MISMATCH", MES(KEY_MISMATCH)), 345 /* 5*/ FLAG_ENTRY0("FW_AUTH_FAILED", MES(FW_AUTH_FAILED)), 346 /* 6*/ FLAG_ENTRY0("EFUSE_CSR_PARITY", MES(EFUSE_CSR_PARITY)), 347 /* 7*/ FLAG_ENTRY0("EFUSE_READ_BAD_ADDR", MES(EFUSE_READ_BAD_ADDR)), 348 /* 8*/ FLAG_ENTRY0("EFUSE_WRITE", MES(EFUSE_WRITE)), 349 /* 9*/ FLAG_ENTRY0("EFUSE_DONE_PARITY", MES(EFUSE_DONE_PARITY)), 350 /*10*/ FLAG_ENTRY0("INVALID_EEP_CMD", MES(INVALID_EEP_CMD)), 351 /*11*/ FLAG_ENTRY0("MBIST_FAIL", MES(MBIST_FAIL)), 352 /*12*/ FLAG_ENTRY0("PLL_LOCK_FAIL", MES(PLL_LOCK_FAIL)) 353 }; 354 355 /* 356 * TXE PIO Error flags and consequences 357 */ 358 static struct flag_table pio_err_status_flags[] = { 359 /* 0*/ FLAG_ENTRY("PioWriteBadCtxt", 360 SEC_WRITE_DROPPED, 361 SEND_PIO_ERR_STATUS_PIO_WRITE_BAD_CTXT_ERR_SMASK), 362 /* 1*/ FLAG_ENTRY("PioWriteAddrParity", 363 SEC_SPC_FREEZE, 364 SEND_PIO_ERR_STATUS_PIO_WRITE_ADDR_PARITY_ERR_SMASK), 365 /* 2*/ FLAG_ENTRY("PioCsrParity", 366 SEC_SPC_FREEZE, 367 SEND_PIO_ERR_STATUS_PIO_CSR_PARITY_ERR_SMASK), 368 /* 3*/ FLAG_ENTRY("PioSbMemFifo0", 369 SEC_SPC_FREEZE, 370 SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO0_ERR_SMASK), 371 /* 4*/ FLAG_ENTRY("PioSbMemFifo1", 372 SEC_SPC_FREEZE, 373 SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO1_ERR_SMASK), 374 /* 5*/ FLAG_ENTRY("PioPccFifoParity", 375 SEC_SPC_FREEZE, 376 SEND_PIO_ERR_STATUS_PIO_PCC_FIFO_PARITY_ERR_SMASK), 377 /* 6*/ FLAG_ENTRY("PioPecFifoParity", 378 SEC_SPC_FREEZE, 379 SEND_PIO_ERR_STATUS_PIO_PEC_FIFO_PARITY_ERR_SMASK), 380 /* 7*/ FLAG_ENTRY("PioSbrdctlCrrelParity", 381 SEC_SPC_FREEZE, 382 SEND_PIO_ERR_STATUS_PIO_SBRDCTL_CRREL_PARITY_ERR_SMASK), 383 /* 8*/ FLAG_ENTRY("PioSbrdctrlCrrelFifoParity", 384 SEC_SPC_FREEZE, 385 SEND_PIO_ERR_STATUS_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR_SMASK), 386 /* 9*/ FLAG_ENTRY("PioPktEvictFifoParityErr", 387 SEC_SPC_FREEZE, 388 SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_FIFO_PARITY_ERR_SMASK), 389 /*10*/ FLAG_ENTRY("PioSmPktResetParity", 390 SEC_SPC_FREEZE, 391 SEND_PIO_ERR_STATUS_PIO_SM_PKT_RESET_PARITY_ERR_SMASK), 392 /*11*/ FLAG_ENTRY("PioVlLenMemBank0Unc", 393 SEC_SPC_FREEZE, 394 SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_UNC_ERR_SMASK), 395 /*12*/ FLAG_ENTRY("PioVlLenMemBank1Unc", 396 SEC_SPC_FREEZE, 397 SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_UNC_ERR_SMASK), 398 /*13*/ FLAG_ENTRY("PioVlLenMemBank0Cor", 399 0, 400 SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_COR_ERR_SMASK), 401 /*14*/ FLAG_ENTRY("PioVlLenMemBank1Cor", 402 0, 403 SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_COR_ERR_SMASK), 404 /*15*/ FLAG_ENTRY("PioCreditRetFifoParity", 405 SEC_SPC_FREEZE, 406 SEND_PIO_ERR_STATUS_PIO_CREDIT_RET_FIFO_PARITY_ERR_SMASK), 407 /*16*/ FLAG_ENTRY("PioPpmcPblFifo", 408 SEC_SPC_FREEZE, 409 SEND_PIO_ERR_STATUS_PIO_PPMC_PBL_FIFO_ERR_SMASK), 410 /*17*/ FLAG_ENTRY("PioInitSmIn", 411 0, 412 SEND_PIO_ERR_STATUS_PIO_INIT_SM_IN_ERR_SMASK), 413 /*18*/ FLAG_ENTRY("PioPktEvictSmOrArbSm", 414 SEC_SPC_FREEZE, 415 SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_SM_OR_ARB_SM_ERR_SMASK), 416 /*19*/ FLAG_ENTRY("PioHostAddrMemUnc", 417 SEC_SPC_FREEZE, 418 SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_UNC_ERR_SMASK), 419 /*20*/ FLAG_ENTRY("PioHostAddrMemCor", 420 0, 421 SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_COR_ERR_SMASK), 422 /*21*/ FLAG_ENTRY("PioWriteDataParity", 423 SEC_SPC_FREEZE, 424 SEND_PIO_ERR_STATUS_PIO_WRITE_DATA_PARITY_ERR_SMASK), 425 /*22*/ FLAG_ENTRY("PioStateMachine", 426 SEC_SPC_FREEZE, 427 SEND_PIO_ERR_STATUS_PIO_STATE_MACHINE_ERR_SMASK), 428 /*23*/ FLAG_ENTRY("PioWriteQwValidParity", 429 SEC_WRITE_DROPPED | SEC_SPC_FREEZE, 430 SEND_PIO_ERR_STATUS_PIO_WRITE_QW_VALID_PARITY_ERR_SMASK), 431 /*24*/ FLAG_ENTRY("PioBlockQwCountParity", 432 SEC_WRITE_DROPPED | SEC_SPC_FREEZE, 433 SEND_PIO_ERR_STATUS_PIO_BLOCK_QW_COUNT_PARITY_ERR_SMASK), 434 /*25*/ FLAG_ENTRY("PioVlfVlLenParity", 435 SEC_SPC_FREEZE, 436 SEND_PIO_ERR_STATUS_PIO_VLF_VL_LEN_PARITY_ERR_SMASK), 437 /*26*/ FLAG_ENTRY("PioVlfSopParity", 438 SEC_SPC_FREEZE, 439 SEND_PIO_ERR_STATUS_PIO_VLF_SOP_PARITY_ERR_SMASK), 440 /*27*/ FLAG_ENTRY("PioVlFifoParity", 441 SEC_SPC_FREEZE, 442 SEND_PIO_ERR_STATUS_PIO_VL_FIFO_PARITY_ERR_SMASK), 443 /*28*/ FLAG_ENTRY("PioPpmcBqcMemParity", 444 SEC_SPC_FREEZE, 445 SEND_PIO_ERR_STATUS_PIO_PPMC_BQC_MEM_PARITY_ERR_SMASK), 446 /*29*/ FLAG_ENTRY("PioPpmcSopLen", 447 SEC_SPC_FREEZE, 448 SEND_PIO_ERR_STATUS_PIO_PPMC_SOP_LEN_ERR_SMASK), 449 /*30-31 reserved*/ 450 /*32*/ FLAG_ENTRY("PioCurrentFreeCntParity", 451 SEC_SPC_FREEZE, 452 SEND_PIO_ERR_STATUS_PIO_CURRENT_FREE_CNT_PARITY_ERR_SMASK), 453 /*33*/ FLAG_ENTRY("PioLastReturnedCntParity", 454 SEC_SPC_FREEZE, 455 SEND_PIO_ERR_STATUS_PIO_LAST_RETURNED_CNT_PARITY_ERR_SMASK), 456 /*34*/ FLAG_ENTRY("PioPccSopHeadParity", 457 SEC_SPC_FREEZE, 458 SEND_PIO_ERR_STATUS_PIO_PCC_SOP_HEAD_PARITY_ERR_SMASK), 459 /*35*/ FLAG_ENTRY("PioPecSopHeadParityErr", 460 SEC_SPC_FREEZE, 461 SEND_PIO_ERR_STATUS_PIO_PEC_SOP_HEAD_PARITY_ERR_SMASK), 462 /*36-63 reserved*/ 463 }; 464 465 /* TXE PIO errors that cause an SPC freeze */ 466 #define ALL_PIO_FREEZE_ERR \ 467 (SEND_PIO_ERR_STATUS_PIO_WRITE_ADDR_PARITY_ERR_SMASK \ 468 | SEND_PIO_ERR_STATUS_PIO_CSR_PARITY_ERR_SMASK \ 469 | SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO0_ERR_SMASK \ 470 | SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO1_ERR_SMASK \ 471 | SEND_PIO_ERR_STATUS_PIO_PCC_FIFO_PARITY_ERR_SMASK \ 472 | SEND_PIO_ERR_STATUS_PIO_PEC_FIFO_PARITY_ERR_SMASK \ 473 | SEND_PIO_ERR_STATUS_PIO_SBRDCTL_CRREL_PARITY_ERR_SMASK \ 474 | SEND_PIO_ERR_STATUS_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR_SMASK \ 475 | SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_FIFO_PARITY_ERR_SMASK \ 476 | SEND_PIO_ERR_STATUS_PIO_SM_PKT_RESET_PARITY_ERR_SMASK \ 477 | SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_UNC_ERR_SMASK \ 478 | SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_UNC_ERR_SMASK \ 479 | SEND_PIO_ERR_STATUS_PIO_CREDIT_RET_FIFO_PARITY_ERR_SMASK \ 480 | SEND_PIO_ERR_STATUS_PIO_PPMC_PBL_FIFO_ERR_SMASK \ 481 | SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_SM_OR_ARB_SM_ERR_SMASK \ 482 | SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_UNC_ERR_SMASK \ 483 | SEND_PIO_ERR_STATUS_PIO_WRITE_DATA_PARITY_ERR_SMASK \ 484 | SEND_PIO_ERR_STATUS_PIO_STATE_MACHINE_ERR_SMASK \ 485 | SEND_PIO_ERR_STATUS_PIO_WRITE_QW_VALID_PARITY_ERR_SMASK \ 486 | SEND_PIO_ERR_STATUS_PIO_BLOCK_QW_COUNT_PARITY_ERR_SMASK \ 487 | SEND_PIO_ERR_STATUS_PIO_VLF_VL_LEN_PARITY_ERR_SMASK \ 488 | SEND_PIO_ERR_STATUS_PIO_VLF_SOP_PARITY_ERR_SMASK \ 489 | SEND_PIO_ERR_STATUS_PIO_VL_FIFO_PARITY_ERR_SMASK \ 490 | SEND_PIO_ERR_STATUS_PIO_PPMC_BQC_MEM_PARITY_ERR_SMASK \ 491 | SEND_PIO_ERR_STATUS_PIO_PPMC_SOP_LEN_ERR_SMASK \ 492 | SEND_PIO_ERR_STATUS_PIO_CURRENT_FREE_CNT_PARITY_ERR_SMASK \ 493 | SEND_PIO_ERR_STATUS_PIO_LAST_RETURNED_CNT_PARITY_ERR_SMASK \ 494 | SEND_PIO_ERR_STATUS_PIO_PCC_SOP_HEAD_PARITY_ERR_SMASK \ 495 | SEND_PIO_ERR_STATUS_PIO_PEC_SOP_HEAD_PARITY_ERR_SMASK) 496 497 /* 498 * TXE SDMA Error flags 499 */ 500 static struct flag_table sdma_err_status_flags[] = { 501 /* 0*/ FLAG_ENTRY0("SDmaRpyTagErr", 502 SEND_DMA_ERR_STATUS_SDMA_RPY_TAG_ERR_SMASK), 503 /* 1*/ FLAG_ENTRY0("SDmaCsrParityErr", 504 SEND_DMA_ERR_STATUS_SDMA_CSR_PARITY_ERR_SMASK), 505 /* 2*/ FLAG_ENTRY0("SDmaPcieReqTrackingUncErr", 506 SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_UNC_ERR_SMASK), 507 /* 3*/ FLAG_ENTRY0("SDmaPcieReqTrackingCorErr", 508 SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_COR_ERR_SMASK), 509 /*04-63 reserved*/ 510 }; 511 512 /* TXE SDMA errors that cause an SPC freeze */ 513 #define ALL_SDMA_FREEZE_ERR \ 514 (SEND_DMA_ERR_STATUS_SDMA_RPY_TAG_ERR_SMASK \ 515 | SEND_DMA_ERR_STATUS_SDMA_CSR_PARITY_ERR_SMASK \ 516 | SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_UNC_ERR_SMASK) 517 518 /* SendEgressErrInfo bits that correspond to a PortXmitDiscard counter */ 519 #define PORT_DISCARD_EGRESS_ERRS \ 520 (SEND_EGRESS_ERR_INFO_TOO_LONG_IB_PACKET_ERR_SMASK \ 521 | SEND_EGRESS_ERR_INFO_VL_MAPPING_ERR_SMASK \ 522 | SEND_EGRESS_ERR_INFO_VL_ERR_SMASK) 523 524 /* 525 * TXE Egress Error flags 526 */ 527 #define SEES(text) SEND_EGRESS_ERR_STATUS_##text##_ERR_SMASK 528 static struct flag_table egress_err_status_flags[] = { 529 /* 0*/ FLAG_ENTRY0("TxPktIntegrityMemCorErr", SEES(TX_PKT_INTEGRITY_MEM_COR)), 530 /* 1*/ FLAG_ENTRY0("TxPktIntegrityMemUncErr", SEES(TX_PKT_INTEGRITY_MEM_UNC)), 531 /* 2 reserved */ 532 /* 3*/ FLAG_ENTRY0("TxEgressFifoUnderrunOrParityErr", 533 SEES(TX_EGRESS_FIFO_UNDERRUN_OR_PARITY)), 534 /* 4*/ FLAG_ENTRY0("TxLinkdownErr", SEES(TX_LINKDOWN)), 535 /* 5*/ FLAG_ENTRY0("TxIncorrectLinkStateErr", SEES(TX_INCORRECT_LINK_STATE)), 536 /* 6 reserved */ 537 /* 7*/ FLAG_ENTRY0("TxPioLaunchIntfParityErr", 538 SEES(TX_PIO_LAUNCH_INTF_PARITY)), 539 /* 8*/ FLAG_ENTRY0("TxSdmaLaunchIntfParityErr", 540 SEES(TX_SDMA_LAUNCH_INTF_PARITY)), 541 /* 9-10 reserved */ 542 /*11*/ FLAG_ENTRY0("TxSbrdCtlStateMachineParityErr", 543 SEES(TX_SBRD_CTL_STATE_MACHINE_PARITY)), 544 /*12*/ FLAG_ENTRY0("TxIllegalVLErr", SEES(TX_ILLEGAL_VL)), 545 /*13*/ FLAG_ENTRY0("TxLaunchCsrParityErr", SEES(TX_LAUNCH_CSR_PARITY)), 546 /*14*/ FLAG_ENTRY0("TxSbrdCtlCsrParityErr", SEES(TX_SBRD_CTL_CSR_PARITY)), 547 /*15*/ FLAG_ENTRY0("TxConfigParityErr", SEES(TX_CONFIG_PARITY)), 548 /*16*/ FLAG_ENTRY0("TxSdma0DisallowedPacketErr", 549 SEES(TX_SDMA0_DISALLOWED_PACKET)), 550 /*17*/ FLAG_ENTRY0("TxSdma1DisallowedPacketErr", 551 SEES(TX_SDMA1_DISALLOWED_PACKET)), 552 /*18*/ FLAG_ENTRY0("TxSdma2DisallowedPacketErr", 553 SEES(TX_SDMA2_DISALLOWED_PACKET)), 554 /*19*/ FLAG_ENTRY0("TxSdma3DisallowedPacketErr", 555 SEES(TX_SDMA3_DISALLOWED_PACKET)), 556 /*20*/ FLAG_ENTRY0("TxSdma4DisallowedPacketErr", 557 SEES(TX_SDMA4_DISALLOWED_PACKET)), 558 /*21*/ FLAG_ENTRY0("TxSdma5DisallowedPacketErr", 559 SEES(TX_SDMA5_DISALLOWED_PACKET)), 560 /*22*/ FLAG_ENTRY0("TxSdma6DisallowedPacketErr", 561 SEES(TX_SDMA6_DISALLOWED_PACKET)), 562 /*23*/ FLAG_ENTRY0("TxSdma7DisallowedPacketErr", 563 SEES(TX_SDMA7_DISALLOWED_PACKET)), 564 /*24*/ FLAG_ENTRY0("TxSdma8DisallowedPacketErr", 565 SEES(TX_SDMA8_DISALLOWED_PACKET)), 566 /*25*/ FLAG_ENTRY0("TxSdma9DisallowedPacketErr", 567 SEES(TX_SDMA9_DISALLOWED_PACKET)), 568 /*26*/ FLAG_ENTRY0("TxSdma10DisallowedPacketErr", 569 SEES(TX_SDMA10_DISALLOWED_PACKET)), 570 /*27*/ FLAG_ENTRY0("TxSdma11DisallowedPacketErr", 571 SEES(TX_SDMA11_DISALLOWED_PACKET)), 572 /*28*/ FLAG_ENTRY0("TxSdma12DisallowedPacketErr", 573 SEES(TX_SDMA12_DISALLOWED_PACKET)), 574 /*29*/ FLAG_ENTRY0("TxSdma13DisallowedPacketErr", 575 SEES(TX_SDMA13_DISALLOWED_PACKET)), 576 /*30*/ FLAG_ENTRY0("TxSdma14DisallowedPacketErr", 577 SEES(TX_SDMA14_DISALLOWED_PACKET)), 578 /*31*/ FLAG_ENTRY0("TxSdma15DisallowedPacketErr", 579 SEES(TX_SDMA15_DISALLOWED_PACKET)), 580 /*32*/ FLAG_ENTRY0("TxLaunchFifo0UncOrParityErr", 581 SEES(TX_LAUNCH_FIFO0_UNC_OR_PARITY)), 582 /*33*/ FLAG_ENTRY0("TxLaunchFifo1UncOrParityErr", 583 SEES(TX_LAUNCH_FIFO1_UNC_OR_PARITY)), 584 /*34*/ FLAG_ENTRY0("TxLaunchFifo2UncOrParityErr", 585 SEES(TX_LAUNCH_FIFO2_UNC_OR_PARITY)), 586 /*35*/ FLAG_ENTRY0("TxLaunchFifo3UncOrParityErr", 587 SEES(TX_LAUNCH_FIFO3_UNC_OR_PARITY)), 588 /*36*/ FLAG_ENTRY0("TxLaunchFifo4UncOrParityErr", 589 SEES(TX_LAUNCH_FIFO4_UNC_OR_PARITY)), 590 /*37*/ FLAG_ENTRY0("TxLaunchFifo5UncOrParityErr", 591 SEES(TX_LAUNCH_FIFO5_UNC_OR_PARITY)), 592 /*38*/ FLAG_ENTRY0("TxLaunchFifo6UncOrParityErr", 593 SEES(TX_LAUNCH_FIFO6_UNC_OR_PARITY)), 594 /*39*/ FLAG_ENTRY0("TxLaunchFifo7UncOrParityErr", 595 SEES(TX_LAUNCH_FIFO7_UNC_OR_PARITY)), 596 /*40*/ FLAG_ENTRY0("TxLaunchFifo8UncOrParityErr", 597 SEES(TX_LAUNCH_FIFO8_UNC_OR_PARITY)), 598 /*41*/ FLAG_ENTRY0("TxCreditReturnParityErr", SEES(TX_CREDIT_RETURN_PARITY)), 599 /*42*/ FLAG_ENTRY0("TxSbHdrUncErr", SEES(TX_SB_HDR_UNC)), 600 /*43*/ FLAG_ENTRY0("TxReadSdmaMemoryUncErr", SEES(TX_READ_SDMA_MEMORY_UNC)), 601 /*44*/ FLAG_ENTRY0("TxReadPioMemoryUncErr", SEES(TX_READ_PIO_MEMORY_UNC)), 602 /*45*/ FLAG_ENTRY0("TxEgressFifoUncErr", SEES(TX_EGRESS_FIFO_UNC)), 603 /*46*/ FLAG_ENTRY0("TxHcrcInsertionErr", SEES(TX_HCRC_INSERTION)), 604 /*47*/ FLAG_ENTRY0("TxCreditReturnVLErr", SEES(TX_CREDIT_RETURN_VL)), 605 /*48*/ FLAG_ENTRY0("TxLaunchFifo0CorErr", SEES(TX_LAUNCH_FIFO0_COR)), 606 /*49*/ FLAG_ENTRY0("TxLaunchFifo1CorErr", SEES(TX_LAUNCH_FIFO1_COR)), 607 /*50*/ FLAG_ENTRY0("TxLaunchFifo2CorErr", SEES(TX_LAUNCH_FIFO2_COR)), 608 /*51*/ FLAG_ENTRY0("TxLaunchFifo3CorErr", SEES(TX_LAUNCH_FIFO3_COR)), 609 /*52*/ FLAG_ENTRY0("TxLaunchFifo4CorErr", SEES(TX_LAUNCH_FIFO4_COR)), 610 /*53*/ FLAG_ENTRY0("TxLaunchFifo5CorErr", SEES(TX_LAUNCH_FIFO5_COR)), 611 /*54*/ FLAG_ENTRY0("TxLaunchFifo6CorErr", SEES(TX_LAUNCH_FIFO6_COR)), 612 /*55*/ FLAG_ENTRY0("TxLaunchFifo7CorErr", SEES(TX_LAUNCH_FIFO7_COR)), 613 /*56*/ FLAG_ENTRY0("TxLaunchFifo8CorErr", SEES(TX_LAUNCH_FIFO8_COR)), 614 /*57*/ FLAG_ENTRY0("TxCreditOverrunErr", SEES(TX_CREDIT_OVERRUN)), 615 /*58*/ FLAG_ENTRY0("TxSbHdrCorErr", SEES(TX_SB_HDR_COR)), 616 /*59*/ FLAG_ENTRY0("TxReadSdmaMemoryCorErr", SEES(TX_READ_SDMA_MEMORY_COR)), 617 /*60*/ FLAG_ENTRY0("TxReadPioMemoryCorErr", SEES(TX_READ_PIO_MEMORY_COR)), 618 /*61*/ FLAG_ENTRY0("TxEgressFifoCorErr", SEES(TX_EGRESS_FIFO_COR)), 619 /*62*/ FLAG_ENTRY0("TxReadSdmaMemoryCsrUncErr", 620 SEES(TX_READ_SDMA_MEMORY_CSR_UNC)), 621 /*63*/ FLAG_ENTRY0("TxReadPioMemoryCsrUncErr", 622 SEES(TX_READ_PIO_MEMORY_CSR_UNC)), 623 }; 624 625 /* 626 * TXE Egress Error Info flags 627 */ 628 #define SEEI(text) SEND_EGRESS_ERR_INFO_##text##_ERR_SMASK 629 static struct flag_table egress_err_info_flags[] = { 630 /* 0*/ FLAG_ENTRY0("Reserved", 0ull), 631 /* 1*/ FLAG_ENTRY0("VLErr", SEEI(VL)), 632 /* 2*/ FLAG_ENTRY0("JobKeyErr", SEEI(JOB_KEY)), 633 /* 3*/ FLAG_ENTRY0("JobKeyErr", SEEI(JOB_KEY)), 634 /* 4*/ FLAG_ENTRY0("PartitionKeyErr", SEEI(PARTITION_KEY)), 635 /* 5*/ FLAG_ENTRY0("SLIDErr", SEEI(SLID)), 636 /* 6*/ FLAG_ENTRY0("OpcodeErr", SEEI(OPCODE)), 637 /* 7*/ FLAG_ENTRY0("VLMappingErr", SEEI(VL_MAPPING)), 638 /* 8*/ FLAG_ENTRY0("RawErr", SEEI(RAW)), 639 /* 9*/ FLAG_ENTRY0("RawIPv6Err", SEEI(RAW_IPV6)), 640 /*10*/ FLAG_ENTRY0("GRHErr", SEEI(GRH)), 641 /*11*/ FLAG_ENTRY0("BypassErr", SEEI(BYPASS)), 642 /*12*/ FLAG_ENTRY0("KDETHPacketsErr", SEEI(KDETH_PACKETS)), 643 /*13*/ FLAG_ENTRY0("NonKDETHPacketsErr", SEEI(NON_KDETH_PACKETS)), 644 /*14*/ FLAG_ENTRY0("TooSmallIBPacketsErr", SEEI(TOO_SMALL_IB_PACKETS)), 645 /*15*/ FLAG_ENTRY0("TooSmallBypassPacketsErr", SEEI(TOO_SMALL_BYPASS_PACKETS)), 646 /*16*/ FLAG_ENTRY0("PbcTestErr", SEEI(PBC_TEST)), 647 /*17*/ FLAG_ENTRY0("BadPktLenErr", SEEI(BAD_PKT_LEN)), 648 /*18*/ FLAG_ENTRY0("TooLongIBPacketErr", SEEI(TOO_LONG_IB_PACKET)), 649 /*19*/ FLAG_ENTRY0("TooLongBypassPacketsErr", SEEI(TOO_LONG_BYPASS_PACKETS)), 650 /*20*/ FLAG_ENTRY0("PbcStaticRateControlErr", SEEI(PBC_STATIC_RATE_CONTROL)), 651 /*21*/ FLAG_ENTRY0("BypassBadPktLenErr", SEEI(BAD_PKT_LEN)), 652 }; 653 654 /* TXE Egress errors that cause an SPC freeze */ 655 #define ALL_TXE_EGRESS_FREEZE_ERR \ 656 (SEES(TX_EGRESS_FIFO_UNDERRUN_OR_PARITY) \ 657 | SEES(TX_PIO_LAUNCH_INTF_PARITY) \ 658 | SEES(TX_SDMA_LAUNCH_INTF_PARITY) \ 659 | SEES(TX_SBRD_CTL_STATE_MACHINE_PARITY) \ 660 | SEES(TX_LAUNCH_CSR_PARITY) \ 661 | SEES(TX_SBRD_CTL_CSR_PARITY) \ 662 | SEES(TX_CONFIG_PARITY) \ 663 | SEES(TX_LAUNCH_FIFO0_UNC_OR_PARITY) \ 664 | SEES(TX_LAUNCH_FIFO1_UNC_OR_PARITY) \ 665 | SEES(TX_LAUNCH_FIFO2_UNC_OR_PARITY) \ 666 | SEES(TX_LAUNCH_FIFO3_UNC_OR_PARITY) \ 667 | SEES(TX_LAUNCH_FIFO4_UNC_OR_PARITY) \ 668 | SEES(TX_LAUNCH_FIFO5_UNC_OR_PARITY) \ 669 | SEES(TX_LAUNCH_FIFO6_UNC_OR_PARITY) \ 670 | SEES(TX_LAUNCH_FIFO7_UNC_OR_PARITY) \ 671 | SEES(TX_LAUNCH_FIFO8_UNC_OR_PARITY) \ 672 | SEES(TX_CREDIT_RETURN_PARITY)) 673 674 /* 675 * TXE Send error flags 676 */ 677 #define SES(name) SEND_ERR_STATUS_SEND_##name##_ERR_SMASK 678 static struct flag_table send_err_status_flags[] = { 679 /* 0*/ FLAG_ENTRY0("SendCsrParityErr", SES(CSR_PARITY)), 680 /* 1*/ FLAG_ENTRY0("SendCsrReadBadAddrErr", SES(CSR_READ_BAD_ADDR)), 681 /* 2*/ FLAG_ENTRY0("SendCsrWriteBadAddrErr", SES(CSR_WRITE_BAD_ADDR)) 682 }; 683 684 /* 685 * TXE Send Context Error flags and consequences 686 */ 687 static struct flag_table sc_err_status_flags[] = { 688 /* 0*/ FLAG_ENTRY("InconsistentSop", 689 SEC_PACKET_DROPPED | SEC_SC_HALTED, 690 SEND_CTXT_ERR_STATUS_PIO_INCONSISTENT_SOP_ERR_SMASK), 691 /* 1*/ FLAG_ENTRY("DisallowedPacket", 692 SEC_PACKET_DROPPED | SEC_SC_HALTED, 693 SEND_CTXT_ERR_STATUS_PIO_DISALLOWED_PACKET_ERR_SMASK), 694 /* 2*/ FLAG_ENTRY("WriteCrossesBoundary", 695 SEC_WRITE_DROPPED | SEC_SC_HALTED, 696 SEND_CTXT_ERR_STATUS_PIO_WRITE_CROSSES_BOUNDARY_ERR_SMASK), 697 /* 3*/ FLAG_ENTRY("WriteOverflow", 698 SEC_WRITE_DROPPED | SEC_SC_HALTED, 699 SEND_CTXT_ERR_STATUS_PIO_WRITE_OVERFLOW_ERR_SMASK), 700 /* 4*/ FLAG_ENTRY("WriteOutOfBounds", 701 SEC_WRITE_DROPPED | SEC_SC_HALTED, 702 SEND_CTXT_ERR_STATUS_PIO_WRITE_OUT_OF_BOUNDS_ERR_SMASK), 703 /* 5-63 reserved*/ 704 }; 705 706 /* 707 * RXE Receive Error flags 708 */ 709 #define RXES(name) RCV_ERR_STATUS_RX_##name##_ERR_SMASK 710 static struct flag_table rxe_err_status_flags[] = { 711 /* 0*/ FLAG_ENTRY0("RxDmaCsrCorErr", RXES(DMA_CSR_COR)), 712 /* 1*/ FLAG_ENTRY0("RxDcIntfParityErr", RXES(DC_INTF_PARITY)), 713 /* 2*/ FLAG_ENTRY0("RxRcvHdrUncErr", RXES(RCV_HDR_UNC)), 714 /* 3*/ FLAG_ENTRY0("RxRcvHdrCorErr", RXES(RCV_HDR_COR)), 715 /* 4*/ FLAG_ENTRY0("RxRcvDataUncErr", RXES(RCV_DATA_UNC)), 716 /* 5*/ FLAG_ENTRY0("RxRcvDataCorErr", RXES(RCV_DATA_COR)), 717 /* 6*/ FLAG_ENTRY0("RxRcvQpMapTableUncErr", RXES(RCV_QP_MAP_TABLE_UNC)), 718 /* 7*/ FLAG_ENTRY0("RxRcvQpMapTableCorErr", RXES(RCV_QP_MAP_TABLE_COR)), 719 /* 8*/ FLAG_ENTRY0("RxRcvCsrParityErr", RXES(RCV_CSR_PARITY)), 720 /* 9*/ FLAG_ENTRY0("RxDcSopEopParityErr", RXES(DC_SOP_EOP_PARITY)), 721 /*10*/ FLAG_ENTRY0("RxDmaFlagUncErr", RXES(DMA_FLAG_UNC)), 722 /*11*/ FLAG_ENTRY0("RxDmaFlagCorErr", RXES(DMA_FLAG_COR)), 723 /*12*/ FLAG_ENTRY0("RxRcvFsmEncodingErr", RXES(RCV_FSM_ENCODING)), 724 /*13*/ FLAG_ENTRY0("RxRbufFreeListUncErr", RXES(RBUF_FREE_LIST_UNC)), 725 /*14*/ FLAG_ENTRY0("RxRbufFreeListCorErr", RXES(RBUF_FREE_LIST_COR)), 726 /*15*/ FLAG_ENTRY0("RxRbufLookupDesRegUncErr", RXES(RBUF_LOOKUP_DES_REG_UNC)), 727 /*16*/ FLAG_ENTRY0("RxRbufLookupDesRegUncCorErr", 728 RXES(RBUF_LOOKUP_DES_REG_UNC_COR)), 729 /*17*/ FLAG_ENTRY0("RxRbufLookupDesUncErr", RXES(RBUF_LOOKUP_DES_UNC)), 730 /*18*/ FLAG_ENTRY0("RxRbufLookupDesCorErr", RXES(RBUF_LOOKUP_DES_COR)), 731 /*19*/ FLAG_ENTRY0("RxRbufBlockListReadUncErr", 732 RXES(RBUF_BLOCK_LIST_READ_UNC)), 733 /*20*/ FLAG_ENTRY0("RxRbufBlockListReadCorErr", 734 RXES(RBUF_BLOCK_LIST_READ_COR)), 735 /*21*/ FLAG_ENTRY0("RxRbufCsrQHeadBufNumParityErr", 736 RXES(RBUF_CSR_QHEAD_BUF_NUM_PARITY)), 737 /*22*/ FLAG_ENTRY0("RxRbufCsrQEntCntParityErr", 738 RXES(RBUF_CSR_QENT_CNT_PARITY)), 739 /*23*/ FLAG_ENTRY0("RxRbufCsrQNextBufParityErr", 740 RXES(RBUF_CSR_QNEXT_BUF_PARITY)), 741 /*24*/ FLAG_ENTRY0("RxRbufCsrQVldBitParityErr", 742 RXES(RBUF_CSR_QVLD_BIT_PARITY)), 743 /*25*/ FLAG_ENTRY0("RxRbufCsrQHdPtrParityErr", RXES(RBUF_CSR_QHD_PTR_PARITY)), 744 /*26*/ FLAG_ENTRY0("RxRbufCsrQTlPtrParityErr", RXES(RBUF_CSR_QTL_PTR_PARITY)), 745 /*27*/ FLAG_ENTRY0("RxRbufCsrQNumOfPktParityErr", 746 RXES(RBUF_CSR_QNUM_OF_PKT_PARITY)), 747 /*28*/ FLAG_ENTRY0("RxRbufCsrQEOPDWParityErr", RXES(RBUF_CSR_QEOPDW_PARITY)), 748 /*29*/ FLAG_ENTRY0("RxRbufCtxIdParityErr", RXES(RBUF_CTX_ID_PARITY)), 749 /*30*/ FLAG_ENTRY0("RxRBufBadLookupErr", RXES(RBUF_BAD_LOOKUP)), 750 /*31*/ FLAG_ENTRY0("RxRbufFullErr", RXES(RBUF_FULL)), 751 /*32*/ FLAG_ENTRY0("RxRbufEmptyErr", RXES(RBUF_EMPTY)), 752 /*33*/ FLAG_ENTRY0("RxRbufFlRdAddrParityErr", RXES(RBUF_FL_RD_ADDR_PARITY)), 753 /*34*/ FLAG_ENTRY0("RxRbufFlWrAddrParityErr", RXES(RBUF_FL_WR_ADDR_PARITY)), 754 /*35*/ FLAG_ENTRY0("RxRbufFlInitdoneParityErr", 755 RXES(RBUF_FL_INITDONE_PARITY)), 756 /*36*/ FLAG_ENTRY0("RxRbufFlInitWrAddrParityErr", 757 RXES(RBUF_FL_INIT_WR_ADDR_PARITY)), 758 /*37*/ FLAG_ENTRY0("RxRbufNextFreeBufUncErr", RXES(RBUF_NEXT_FREE_BUF_UNC)), 759 /*38*/ FLAG_ENTRY0("RxRbufNextFreeBufCorErr", RXES(RBUF_NEXT_FREE_BUF_COR)), 760 /*39*/ FLAG_ENTRY0("RxLookupDesPart1UncErr", RXES(LOOKUP_DES_PART1_UNC)), 761 /*40*/ FLAG_ENTRY0("RxLookupDesPart1UncCorErr", 762 RXES(LOOKUP_DES_PART1_UNC_COR)), 763 /*41*/ FLAG_ENTRY0("RxLookupDesPart2ParityErr", 764 RXES(LOOKUP_DES_PART2_PARITY)), 765 /*42*/ FLAG_ENTRY0("RxLookupRcvArrayUncErr", RXES(LOOKUP_RCV_ARRAY_UNC)), 766 /*43*/ FLAG_ENTRY0("RxLookupRcvArrayCorErr", RXES(LOOKUP_RCV_ARRAY_COR)), 767 /*44*/ FLAG_ENTRY0("RxLookupCsrParityErr", RXES(LOOKUP_CSR_PARITY)), 768 /*45*/ FLAG_ENTRY0("RxHqIntrCsrParityErr", RXES(HQ_INTR_CSR_PARITY)), 769 /*46*/ FLAG_ENTRY0("RxHqIntrFsmErr", RXES(HQ_INTR_FSM)), 770 /*47*/ FLAG_ENTRY0("RxRbufDescPart1UncErr", RXES(RBUF_DESC_PART1_UNC)), 771 /*48*/ FLAG_ENTRY0("RxRbufDescPart1CorErr", RXES(RBUF_DESC_PART1_COR)), 772 /*49*/ FLAG_ENTRY0("RxRbufDescPart2UncErr", RXES(RBUF_DESC_PART2_UNC)), 773 /*50*/ FLAG_ENTRY0("RxRbufDescPart2CorErr", RXES(RBUF_DESC_PART2_COR)), 774 /*51*/ FLAG_ENTRY0("RxDmaHdrFifoRdUncErr", RXES(DMA_HDR_FIFO_RD_UNC)), 775 /*52*/ FLAG_ENTRY0("RxDmaHdrFifoRdCorErr", RXES(DMA_HDR_FIFO_RD_COR)), 776 /*53*/ FLAG_ENTRY0("RxDmaDataFifoRdUncErr", RXES(DMA_DATA_FIFO_RD_UNC)), 777 /*54*/ FLAG_ENTRY0("RxDmaDataFifoRdCorErr", RXES(DMA_DATA_FIFO_RD_COR)), 778 /*55*/ FLAG_ENTRY0("RxRbufDataUncErr", RXES(RBUF_DATA_UNC)), 779 /*56*/ FLAG_ENTRY0("RxRbufDataCorErr", RXES(RBUF_DATA_COR)), 780 /*57*/ FLAG_ENTRY0("RxDmaCsrParityErr", RXES(DMA_CSR_PARITY)), 781 /*58*/ FLAG_ENTRY0("RxDmaEqFsmEncodingErr", RXES(DMA_EQ_FSM_ENCODING)), 782 /*59*/ FLAG_ENTRY0("RxDmaDqFsmEncodingErr", RXES(DMA_DQ_FSM_ENCODING)), 783 /*60*/ FLAG_ENTRY0("RxDmaCsrUncErr", RXES(DMA_CSR_UNC)), 784 /*61*/ FLAG_ENTRY0("RxCsrReadBadAddrErr", RXES(CSR_READ_BAD_ADDR)), 785 /*62*/ FLAG_ENTRY0("RxCsrWriteBadAddrErr", RXES(CSR_WRITE_BAD_ADDR)), 786 /*63*/ FLAG_ENTRY0("RxCsrParityErr", RXES(CSR_PARITY)) 787 }; 788 789 /* RXE errors that will trigger an SPC freeze */ 790 #define ALL_RXE_FREEZE_ERR \ 791 (RCV_ERR_STATUS_RX_RCV_QP_MAP_TABLE_UNC_ERR_SMASK \ 792 | RCV_ERR_STATUS_RX_RCV_CSR_PARITY_ERR_SMASK \ 793 | RCV_ERR_STATUS_RX_DMA_FLAG_UNC_ERR_SMASK \ 794 | RCV_ERR_STATUS_RX_RCV_FSM_ENCODING_ERR_SMASK \ 795 | RCV_ERR_STATUS_RX_RBUF_FREE_LIST_UNC_ERR_SMASK \ 796 | RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_REG_UNC_ERR_SMASK \ 797 | RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_REG_UNC_COR_ERR_SMASK \ 798 | RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_UNC_ERR_SMASK \ 799 | RCV_ERR_STATUS_RX_RBUF_BLOCK_LIST_READ_UNC_ERR_SMASK \ 800 | RCV_ERR_STATUS_RX_RBUF_CSR_QHEAD_BUF_NUM_PARITY_ERR_SMASK \ 801 | RCV_ERR_STATUS_RX_RBUF_CSR_QENT_CNT_PARITY_ERR_SMASK \ 802 | RCV_ERR_STATUS_RX_RBUF_CSR_QNEXT_BUF_PARITY_ERR_SMASK \ 803 | RCV_ERR_STATUS_RX_RBUF_CSR_QVLD_BIT_PARITY_ERR_SMASK \ 804 | RCV_ERR_STATUS_RX_RBUF_CSR_QHD_PTR_PARITY_ERR_SMASK \ 805 | RCV_ERR_STATUS_RX_RBUF_CSR_QTL_PTR_PARITY_ERR_SMASK \ 806 | RCV_ERR_STATUS_RX_RBUF_CSR_QNUM_OF_PKT_PARITY_ERR_SMASK \ 807 | RCV_ERR_STATUS_RX_RBUF_CSR_QEOPDW_PARITY_ERR_SMASK \ 808 | RCV_ERR_STATUS_RX_RBUF_CTX_ID_PARITY_ERR_SMASK \ 809 | RCV_ERR_STATUS_RX_RBUF_BAD_LOOKUP_ERR_SMASK \ 810 | RCV_ERR_STATUS_RX_RBUF_FULL_ERR_SMASK \ 811 | RCV_ERR_STATUS_RX_RBUF_EMPTY_ERR_SMASK \ 812 | RCV_ERR_STATUS_RX_RBUF_FL_RD_ADDR_PARITY_ERR_SMASK \ 813 | RCV_ERR_STATUS_RX_RBUF_FL_WR_ADDR_PARITY_ERR_SMASK \ 814 | RCV_ERR_STATUS_RX_RBUF_FL_INITDONE_PARITY_ERR_SMASK \ 815 | RCV_ERR_STATUS_RX_RBUF_FL_INIT_WR_ADDR_PARITY_ERR_SMASK \ 816 | RCV_ERR_STATUS_RX_RBUF_NEXT_FREE_BUF_UNC_ERR_SMASK \ 817 | RCV_ERR_STATUS_RX_LOOKUP_DES_PART1_UNC_ERR_SMASK \ 818 | RCV_ERR_STATUS_RX_LOOKUP_DES_PART1_UNC_COR_ERR_SMASK \ 819 | RCV_ERR_STATUS_RX_LOOKUP_DES_PART2_PARITY_ERR_SMASK \ 820 | RCV_ERR_STATUS_RX_LOOKUP_RCV_ARRAY_UNC_ERR_SMASK \ 821 | RCV_ERR_STATUS_RX_LOOKUP_CSR_PARITY_ERR_SMASK \ 822 | RCV_ERR_STATUS_RX_HQ_INTR_CSR_PARITY_ERR_SMASK \ 823 | RCV_ERR_STATUS_RX_HQ_INTR_FSM_ERR_SMASK \ 824 | RCV_ERR_STATUS_RX_RBUF_DESC_PART1_UNC_ERR_SMASK \ 825 | RCV_ERR_STATUS_RX_RBUF_DESC_PART1_COR_ERR_SMASK \ 826 | RCV_ERR_STATUS_RX_RBUF_DESC_PART2_UNC_ERR_SMASK \ 827 | RCV_ERR_STATUS_RX_DMA_HDR_FIFO_RD_UNC_ERR_SMASK \ 828 | RCV_ERR_STATUS_RX_DMA_DATA_FIFO_RD_UNC_ERR_SMASK \ 829 | RCV_ERR_STATUS_RX_RBUF_DATA_UNC_ERR_SMASK \ 830 | RCV_ERR_STATUS_RX_DMA_CSR_PARITY_ERR_SMASK \ 831 | RCV_ERR_STATUS_RX_DMA_EQ_FSM_ENCODING_ERR_SMASK \ 832 | RCV_ERR_STATUS_RX_DMA_DQ_FSM_ENCODING_ERR_SMASK \ 833 | RCV_ERR_STATUS_RX_DMA_CSR_UNC_ERR_SMASK \ 834 | RCV_ERR_STATUS_RX_CSR_PARITY_ERR_SMASK) 835 836 #define RXE_FREEZE_ABORT_MASK \ 837 (RCV_ERR_STATUS_RX_DMA_CSR_UNC_ERR_SMASK | \ 838 RCV_ERR_STATUS_RX_DMA_HDR_FIFO_RD_UNC_ERR_SMASK | \ 839 RCV_ERR_STATUS_RX_DMA_DATA_FIFO_RD_UNC_ERR_SMASK) 840 841 /* 842 * DCC Error Flags 843 */ 844 #define DCCE(name) DCC_ERR_FLG_##name##_SMASK 845 static struct flag_table dcc_err_flags[] = { 846 FLAG_ENTRY0("bad_l2_err", DCCE(BAD_L2_ERR)), 847 FLAG_ENTRY0("bad_sc_err", DCCE(BAD_SC_ERR)), 848 FLAG_ENTRY0("bad_mid_tail_err", DCCE(BAD_MID_TAIL_ERR)), 849 FLAG_ENTRY0("bad_preemption_err", DCCE(BAD_PREEMPTION_ERR)), 850 FLAG_ENTRY0("preemption_err", DCCE(PREEMPTION_ERR)), 851 FLAG_ENTRY0("preemptionvl15_err", DCCE(PREEMPTIONVL15_ERR)), 852 FLAG_ENTRY0("bad_vl_marker_err", DCCE(BAD_VL_MARKER_ERR)), 853 FLAG_ENTRY0("bad_dlid_target_err", DCCE(BAD_DLID_TARGET_ERR)), 854 FLAG_ENTRY0("bad_lver_err", DCCE(BAD_LVER_ERR)), 855 FLAG_ENTRY0("uncorrectable_err", DCCE(UNCORRECTABLE_ERR)), 856 FLAG_ENTRY0("bad_crdt_ack_err", DCCE(BAD_CRDT_ACK_ERR)), 857 FLAG_ENTRY0("unsup_pkt_type", DCCE(UNSUP_PKT_TYPE)), 858 FLAG_ENTRY0("bad_ctrl_flit_err", DCCE(BAD_CTRL_FLIT_ERR)), 859 FLAG_ENTRY0("event_cntr_parity_err", DCCE(EVENT_CNTR_PARITY_ERR)), 860 FLAG_ENTRY0("event_cntr_rollover_err", DCCE(EVENT_CNTR_ROLLOVER_ERR)), 861 FLAG_ENTRY0("link_err", DCCE(LINK_ERR)), 862 FLAG_ENTRY0("misc_cntr_rollover_err", DCCE(MISC_CNTR_ROLLOVER_ERR)), 863 FLAG_ENTRY0("bad_ctrl_dist_err", DCCE(BAD_CTRL_DIST_ERR)), 864 FLAG_ENTRY0("bad_tail_dist_err", DCCE(BAD_TAIL_DIST_ERR)), 865 FLAG_ENTRY0("bad_head_dist_err", DCCE(BAD_HEAD_DIST_ERR)), 866 FLAG_ENTRY0("nonvl15_state_err", DCCE(NONVL15_STATE_ERR)), 867 FLAG_ENTRY0("vl15_multi_err", DCCE(VL15_MULTI_ERR)), 868 FLAG_ENTRY0("bad_pkt_length_err", DCCE(BAD_PKT_LENGTH_ERR)), 869 FLAG_ENTRY0("unsup_vl_err", DCCE(UNSUP_VL_ERR)), 870 FLAG_ENTRY0("perm_nvl15_err", DCCE(PERM_NVL15_ERR)), 871 FLAG_ENTRY0("slid_zero_err", DCCE(SLID_ZERO_ERR)), 872 FLAG_ENTRY0("dlid_zero_err", DCCE(DLID_ZERO_ERR)), 873 FLAG_ENTRY0("length_mtu_err", DCCE(LENGTH_MTU_ERR)), 874 FLAG_ENTRY0("rx_early_drop_err", DCCE(RX_EARLY_DROP_ERR)), 875 FLAG_ENTRY0("late_short_err", DCCE(LATE_SHORT_ERR)), 876 FLAG_ENTRY0("late_long_err", DCCE(LATE_LONG_ERR)), 877 FLAG_ENTRY0("late_ebp_err", DCCE(LATE_EBP_ERR)), 878 FLAG_ENTRY0("fpe_tx_fifo_ovflw_err", DCCE(FPE_TX_FIFO_OVFLW_ERR)), 879 FLAG_ENTRY0("fpe_tx_fifo_unflw_err", DCCE(FPE_TX_FIFO_UNFLW_ERR)), 880 FLAG_ENTRY0("csr_access_blocked_host", DCCE(CSR_ACCESS_BLOCKED_HOST)), 881 FLAG_ENTRY0("csr_access_blocked_uc", DCCE(CSR_ACCESS_BLOCKED_UC)), 882 FLAG_ENTRY0("tx_ctrl_parity_err", DCCE(TX_CTRL_PARITY_ERR)), 883 FLAG_ENTRY0("tx_ctrl_parity_mbe_err", DCCE(TX_CTRL_PARITY_MBE_ERR)), 884 FLAG_ENTRY0("tx_sc_parity_err", DCCE(TX_SC_PARITY_ERR)), 885 FLAG_ENTRY0("rx_ctrl_parity_mbe_err", DCCE(RX_CTRL_PARITY_MBE_ERR)), 886 FLAG_ENTRY0("csr_parity_err", DCCE(CSR_PARITY_ERR)), 887 FLAG_ENTRY0("csr_inval_addr", DCCE(CSR_INVAL_ADDR)), 888 FLAG_ENTRY0("tx_byte_shft_parity_err", DCCE(TX_BYTE_SHFT_PARITY_ERR)), 889 FLAG_ENTRY0("rx_byte_shft_parity_err", DCCE(RX_BYTE_SHFT_PARITY_ERR)), 890 FLAG_ENTRY0("fmconfig_err", DCCE(FMCONFIG_ERR)), 891 FLAG_ENTRY0("rcvport_err", DCCE(RCVPORT_ERR)), 892 }; 893 894 /* 895 * LCB error flags 896 */ 897 #define LCBE(name) DC_LCB_ERR_FLG_##name##_SMASK 898 static struct flag_table lcb_err_flags[] = { 899 /* 0*/ FLAG_ENTRY0("CSR_PARITY_ERR", LCBE(CSR_PARITY_ERR)), 900 /* 1*/ FLAG_ENTRY0("INVALID_CSR_ADDR", LCBE(INVALID_CSR_ADDR)), 901 /* 2*/ FLAG_ENTRY0("RST_FOR_FAILED_DESKEW", LCBE(RST_FOR_FAILED_DESKEW)), 902 /* 3*/ FLAG_ENTRY0("ALL_LNS_FAILED_REINIT_TEST", 903 LCBE(ALL_LNS_FAILED_REINIT_TEST)), 904 /* 4*/ FLAG_ENTRY0("LOST_REINIT_STALL_OR_TOS", LCBE(LOST_REINIT_STALL_OR_TOS)), 905 /* 5*/ FLAG_ENTRY0("TX_LESS_THAN_FOUR_LNS", LCBE(TX_LESS_THAN_FOUR_LNS)), 906 /* 6*/ FLAG_ENTRY0("RX_LESS_THAN_FOUR_LNS", LCBE(RX_LESS_THAN_FOUR_LNS)), 907 /* 7*/ FLAG_ENTRY0("SEQ_CRC_ERR", LCBE(SEQ_CRC_ERR)), 908 /* 8*/ FLAG_ENTRY0("REINIT_FROM_PEER", LCBE(REINIT_FROM_PEER)), 909 /* 9*/ FLAG_ENTRY0("REINIT_FOR_LN_DEGRADE", LCBE(REINIT_FOR_LN_DEGRADE)), 910 /*10*/ FLAG_ENTRY0("CRC_ERR_CNT_HIT_LIMIT", LCBE(CRC_ERR_CNT_HIT_LIMIT)), 911 /*11*/ FLAG_ENTRY0("RCLK_STOPPED", LCBE(RCLK_STOPPED)), 912 /*12*/ FLAG_ENTRY0("UNEXPECTED_REPLAY_MARKER", LCBE(UNEXPECTED_REPLAY_MARKER)), 913 /*13*/ FLAG_ENTRY0("UNEXPECTED_ROUND_TRIP_MARKER", 914 LCBE(UNEXPECTED_ROUND_TRIP_MARKER)), 915 /*14*/ FLAG_ENTRY0("ILLEGAL_NULL_LTP", LCBE(ILLEGAL_NULL_LTP)), 916 /*15*/ FLAG_ENTRY0("ILLEGAL_FLIT_ENCODING", LCBE(ILLEGAL_FLIT_ENCODING)), 917 /*16*/ FLAG_ENTRY0("FLIT_INPUT_BUF_OFLW", LCBE(FLIT_INPUT_BUF_OFLW)), 918 /*17*/ FLAG_ENTRY0("VL_ACK_INPUT_BUF_OFLW", LCBE(VL_ACK_INPUT_BUF_OFLW)), 919 /*18*/ FLAG_ENTRY0("VL_ACK_INPUT_PARITY_ERR", LCBE(VL_ACK_INPUT_PARITY_ERR)), 920 /*19*/ FLAG_ENTRY0("VL_ACK_INPUT_WRONG_CRC_MODE", 921 LCBE(VL_ACK_INPUT_WRONG_CRC_MODE)), 922 /*20*/ FLAG_ENTRY0("FLIT_INPUT_BUF_MBE", LCBE(FLIT_INPUT_BUF_MBE)), 923 /*21*/ FLAG_ENTRY0("FLIT_INPUT_BUF_SBE", LCBE(FLIT_INPUT_BUF_SBE)), 924 /*22*/ FLAG_ENTRY0("REPLAY_BUF_MBE", LCBE(REPLAY_BUF_MBE)), 925 /*23*/ FLAG_ENTRY0("REPLAY_BUF_SBE", LCBE(REPLAY_BUF_SBE)), 926 /*24*/ FLAG_ENTRY0("CREDIT_RETURN_FLIT_MBE", LCBE(CREDIT_RETURN_FLIT_MBE)), 927 /*25*/ FLAG_ENTRY0("RST_FOR_LINK_TIMEOUT", LCBE(RST_FOR_LINK_TIMEOUT)), 928 /*26*/ FLAG_ENTRY0("RST_FOR_INCOMPLT_RND_TRIP", 929 LCBE(RST_FOR_INCOMPLT_RND_TRIP)), 930 /*27*/ FLAG_ENTRY0("HOLD_REINIT", LCBE(HOLD_REINIT)), 931 /*28*/ FLAG_ENTRY0("NEG_EDGE_LINK_TRANSFER_ACTIVE", 932 LCBE(NEG_EDGE_LINK_TRANSFER_ACTIVE)), 933 /*29*/ FLAG_ENTRY0("REDUNDANT_FLIT_PARITY_ERR", 934 LCBE(REDUNDANT_FLIT_PARITY_ERR)) 935 }; 936 937 /* 938 * DC8051 Error Flags 939 */ 940 #define D8E(name) DC_DC8051_ERR_FLG_##name##_SMASK 941 static struct flag_table dc8051_err_flags[] = { 942 FLAG_ENTRY0("SET_BY_8051", D8E(SET_BY_8051)), 943 FLAG_ENTRY0("LOST_8051_HEART_BEAT", D8E(LOST_8051_HEART_BEAT)), 944 FLAG_ENTRY0("CRAM_MBE", D8E(CRAM_MBE)), 945 FLAG_ENTRY0("CRAM_SBE", D8E(CRAM_SBE)), 946 FLAG_ENTRY0("DRAM_MBE", D8E(DRAM_MBE)), 947 FLAG_ENTRY0("DRAM_SBE", D8E(DRAM_SBE)), 948 FLAG_ENTRY0("IRAM_MBE", D8E(IRAM_MBE)), 949 FLAG_ENTRY0("IRAM_SBE", D8E(IRAM_SBE)), 950 FLAG_ENTRY0("UNMATCHED_SECURE_MSG_ACROSS_BCC_LANES", 951 D8E(UNMATCHED_SECURE_MSG_ACROSS_BCC_LANES)), 952 FLAG_ENTRY0("INVALID_CSR_ADDR", D8E(INVALID_CSR_ADDR)), 953 }; 954 955 /* 956 * DC8051 Information Error flags 957 * 958 * Flags in DC8051_DBG_ERR_INFO_SET_BY_8051.ERROR field. 959 */ 960 static struct flag_table dc8051_info_err_flags[] = { 961 FLAG_ENTRY0("Spico ROM check failed", SPICO_ROM_FAILED), 962 FLAG_ENTRY0("Unknown frame received", UNKNOWN_FRAME), 963 FLAG_ENTRY0("Target BER not met", TARGET_BER_NOT_MET), 964 FLAG_ENTRY0("Serdes internal loopback failure", 965 FAILED_SERDES_INTERNAL_LOOPBACK), 966 FLAG_ENTRY0("Failed SerDes init", FAILED_SERDES_INIT), 967 FLAG_ENTRY0("Failed LNI(Polling)", FAILED_LNI_POLLING), 968 FLAG_ENTRY0("Failed LNI(Debounce)", FAILED_LNI_DEBOUNCE), 969 FLAG_ENTRY0("Failed LNI(EstbComm)", FAILED_LNI_ESTBCOMM), 970 FLAG_ENTRY0("Failed LNI(OptEq)", FAILED_LNI_OPTEQ), 971 FLAG_ENTRY0("Failed LNI(VerifyCap_1)", FAILED_LNI_VERIFY_CAP1), 972 FLAG_ENTRY0("Failed LNI(VerifyCap_2)", FAILED_LNI_VERIFY_CAP2), 973 FLAG_ENTRY0("Failed LNI(ConfigLT)", FAILED_LNI_CONFIGLT), 974 FLAG_ENTRY0("Host Handshake Timeout", HOST_HANDSHAKE_TIMEOUT), 975 FLAG_ENTRY0("External Device Request Timeout", 976 EXTERNAL_DEVICE_REQ_TIMEOUT), 977 }; 978 979 /* 980 * DC8051 Information Host Information flags 981 * 982 * Flags in DC8051_DBG_ERR_INFO_SET_BY_8051.HOST_MSG field. 983 */ 984 static struct flag_table dc8051_info_host_msg_flags[] = { 985 FLAG_ENTRY0("Host request done", 0x0001), 986 FLAG_ENTRY0("BC SMA message", 0x0002), 987 FLAG_ENTRY0("BC PWR_MGM message", 0x0004), 988 FLAG_ENTRY0("BC Unknown message (BCC)", 0x0008), 989 FLAG_ENTRY0("BC Unknown message (LCB)", 0x0010), 990 FLAG_ENTRY0("External device config request", 0x0020), 991 FLAG_ENTRY0("VerifyCap all frames received", 0x0040), 992 FLAG_ENTRY0("LinkUp achieved", 0x0080), 993 FLAG_ENTRY0("Link going down", 0x0100), 994 }; 995 996 static u32 encoded_size(u32 size); 997 static u32 chip_to_opa_lstate(struct hfi1_devdata *dd, u32 chip_lstate); 998 static int set_physical_link_state(struct hfi1_devdata *dd, u64 state); 999 static void read_vc_remote_phy(struct hfi1_devdata *dd, u8 *power_management, 1000 u8 *continuous); 1001 static void read_vc_remote_fabric(struct hfi1_devdata *dd, u8 *vau, u8 *z, 1002 u8 *vcu, u16 *vl15buf, u8 *crc_sizes); 1003 static void read_vc_remote_link_width(struct hfi1_devdata *dd, 1004 u8 *remote_tx_rate, u16 *link_widths); 1005 static void read_vc_local_link_width(struct hfi1_devdata *dd, u8 *misc_bits, 1006 u8 *flag_bits, u16 *link_widths); 1007 static void read_remote_device_id(struct hfi1_devdata *dd, u16 *device_id, 1008 u8 *device_rev); 1009 static void read_mgmt_allowed(struct hfi1_devdata *dd, u8 *mgmt_allowed); 1010 static void read_local_lni(struct hfi1_devdata *dd, u8 *enable_lane_rx); 1011 static int read_tx_settings(struct hfi1_devdata *dd, u8 *enable_lane_tx, 1012 u8 *tx_polarity_inversion, 1013 u8 *rx_polarity_inversion, u8 *max_rate); 1014 static void handle_sdma_eng_err(struct hfi1_devdata *dd, 1015 unsigned int context, u64 err_status); 1016 static void handle_qsfp_int(struct hfi1_devdata *dd, u32 source, u64 reg); 1017 static void handle_dcc_err(struct hfi1_devdata *dd, 1018 unsigned int context, u64 err_status); 1019 static void handle_lcb_err(struct hfi1_devdata *dd, 1020 unsigned int context, u64 err_status); 1021 static void handle_8051_interrupt(struct hfi1_devdata *dd, u32 unused, u64 reg); 1022 static void handle_cce_err(struct hfi1_devdata *dd, u32 unused, u64 reg); 1023 static void handle_rxe_err(struct hfi1_devdata *dd, u32 unused, u64 reg); 1024 static void handle_misc_err(struct hfi1_devdata *dd, u32 unused, u64 reg); 1025 static void handle_pio_err(struct hfi1_devdata *dd, u32 unused, u64 reg); 1026 static void handle_sdma_err(struct hfi1_devdata *dd, u32 unused, u64 reg); 1027 static void handle_egress_err(struct hfi1_devdata *dd, u32 unused, u64 reg); 1028 static void handle_txe_err(struct hfi1_devdata *dd, u32 unused, u64 reg); 1029 static void set_partition_keys(struct hfi1_pportdata *); 1030 static const char *link_state_name(u32 state); 1031 static const char *link_state_reason_name(struct hfi1_pportdata *ppd, 1032 u32 state); 1033 static int do_8051_command(struct hfi1_devdata *dd, u32 type, u64 in_data, 1034 u64 *out_data); 1035 static int read_idle_sma(struct hfi1_devdata *dd, u64 *data); 1036 static int thermal_init(struct hfi1_devdata *dd); 1037 1038 static int wait_logical_linkstate(struct hfi1_pportdata *ppd, u32 state, 1039 int msecs); 1040 static void read_planned_down_reason_code(struct hfi1_devdata *dd, u8 *pdrrc); 1041 static void read_link_down_reason(struct hfi1_devdata *dd, u8 *ldr); 1042 static void handle_temp_err(struct hfi1_devdata *); 1043 static void dc_shutdown(struct hfi1_devdata *); 1044 static void dc_start(struct hfi1_devdata *); 1045 static int qos_rmt_entries(struct hfi1_devdata *dd, unsigned int *mp, 1046 unsigned int *np); 1047 static void clear_full_mgmt_pkey(struct hfi1_pportdata *ppd); 1048 1049 /* 1050 * Error interrupt table entry. This is used as input to the interrupt 1051 * "clear down" routine used for all second tier error interrupt register. 1052 * Second tier interrupt registers have a single bit representing them 1053 * in the top-level CceIntStatus. 1054 */ 1055 struct err_reg_info { 1056 u32 status; /* status CSR offset */ 1057 u32 clear; /* clear CSR offset */ 1058 u32 mask; /* mask CSR offset */ 1059 void (*handler)(struct hfi1_devdata *dd, u32 source, u64 reg); 1060 const char *desc; 1061 }; 1062 1063 #define NUM_MISC_ERRS (IS_GENERAL_ERR_END - IS_GENERAL_ERR_START) 1064 #define NUM_DC_ERRS (IS_DC_END - IS_DC_START) 1065 #define NUM_VARIOUS (IS_VARIOUS_END - IS_VARIOUS_START) 1066 1067 /* 1068 * Helpers for building HFI and DC error interrupt table entries. Different 1069 * helpers are needed because of inconsistent register names. 1070 */ 1071 #define EE(reg, handler, desc) \ 1072 { reg##_STATUS, reg##_CLEAR, reg##_MASK, \ 1073 handler, desc } 1074 #define DC_EE1(reg, handler, desc) \ 1075 { reg##_FLG, reg##_FLG_CLR, reg##_FLG_EN, handler, desc } 1076 #define DC_EE2(reg, handler, desc) \ 1077 { reg##_FLG, reg##_CLR, reg##_EN, handler, desc } 1078 1079 /* 1080 * Table of the "misc" grouping of error interrupts. Each entry refers to 1081 * another register containing more information. 1082 */ 1083 static const struct err_reg_info misc_errs[NUM_MISC_ERRS] = { 1084 /* 0*/ EE(CCE_ERR, handle_cce_err, "CceErr"), 1085 /* 1*/ EE(RCV_ERR, handle_rxe_err, "RxeErr"), 1086 /* 2*/ EE(MISC_ERR, handle_misc_err, "MiscErr"), 1087 /* 3*/ { 0, 0, 0, NULL }, /* reserved */ 1088 /* 4*/ EE(SEND_PIO_ERR, handle_pio_err, "PioErr"), 1089 /* 5*/ EE(SEND_DMA_ERR, handle_sdma_err, "SDmaErr"), 1090 /* 6*/ EE(SEND_EGRESS_ERR, handle_egress_err, "EgressErr"), 1091 /* 7*/ EE(SEND_ERR, handle_txe_err, "TxeErr") 1092 /* the rest are reserved */ 1093 }; 1094 1095 /* 1096 * Index into the Various section of the interrupt sources 1097 * corresponding to the Critical Temperature interrupt. 1098 */ 1099 #define TCRIT_INT_SOURCE 4 1100 1101 /* 1102 * SDMA error interrupt entry - refers to another register containing more 1103 * information. 1104 */ 1105 static const struct err_reg_info sdma_eng_err = 1106 EE(SEND_DMA_ENG_ERR, handle_sdma_eng_err, "SDmaEngErr"); 1107 1108 static const struct err_reg_info various_err[NUM_VARIOUS] = { 1109 /* 0*/ { 0, 0, 0, NULL }, /* PbcInt */ 1110 /* 1*/ { 0, 0, 0, NULL }, /* GpioAssertInt */ 1111 /* 2*/ EE(ASIC_QSFP1, handle_qsfp_int, "QSFP1"), 1112 /* 3*/ EE(ASIC_QSFP2, handle_qsfp_int, "QSFP2"), 1113 /* 4*/ { 0, 0, 0, NULL }, /* TCritInt */ 1114 /* rest are reserved */ 1115 }; 1116 1117 /* 1118 * The DC encoding of mtu_cap for 10K MTU in the DCC_CFG_PORT_CONFIG 1119 * register can not be derived from the MTU value because 10K is not 1120 * a power of 2. Therefore, we need a constant. Everything else can 1121 * be calculated. 1122 */ 1123 #define DCC_CFG_PORT_MTU_CAP_10240 7 1124 1125 /* 1126 * Table of the DC grouping of error interrupts. Each entry refers to 1127 * another register containing more information. 1128 */ 1129 static const struct err_reg_info dc_errs[NUM_DC_ERRS] = { 1130 /* 0*/ DC_EE1(DCC_ERR, handle_dcc_err, "DCC Err"), 1131 /* 1*/ DC_EE2(DC_LCB_ERR, handle_lcb_err, "LCB Err"), 1132 /* 2*/ DC_EE2(DC_DC8051_ERR, handle_8051_interrupt, "DC8051 Interrupt"), 1133 /* 3*/ /* dc_lbm_int - special, see is_dc_int() */ 1134 /* the rest are reserved */ 1135 }; 1136 1137 struct cntr_entry { 1138 /* 1139 * counter name 1140 */ 1141 char *name; 1142 1143 /* 1144 * csr to read for name (if applicable) 1145 */ 1146 u64 csr; 1147 1148 /* 1149 * offset into dd or ppd to store the counter's value 1150 */ 1151 int offset; 1152 1153 /* 1154 * flags 1155 */ 1156 u8 flags; 1157 1158 /* 1159 * accessor for stat element, context either dd or ppd 1160 */ 1161 u64 (*rw_cntr)(const struct cntr_entry *, void *context, int vl, 1162 int mode, u64 data); 1163 }; 1164 1165 #define C_RCV_HDR_OVF_FIRST C_RCV_HDR_OVF_0 1166 #define C_RCV_HDR_OVF_LAST C_RCV_HDR_OVF_159 1167 1168 #define CNTR_ELEM(name, csr, offset, flags, accessor) \ 1169 { \ 1170 name, \ 1171 csr, \ 1172 offset, \ 1173 flags, \ 1174 accessor \ 1175 } 1176 1177 /* 32bit RXE */ 1178 #define RXE32_PORT_CNTR_ELEM(name, counter, flags) \ 1179 CNTR_ELEM(#name, \ 1180 (counter * 8 + RCV_COUNTER_ARRAY32), \ 1181 0, flags | CNTR_32BIT, \ 1182 port_access_u32_csr) 1183 1184 #define RXE32_DEV_CNTR_ELEM(name, counter, flags) \ 1185 CNTR_ELEM(#name, \ 1186 (counter * 8 + RCV_COUNTER_ARRAY32), \ 1187 0, flags | CNTR_32BIT, \ 1188 dev_access_u32_csr) 1189 1190 /* 64bit RXE */ 1191 #define RXE64_PORT_CNTR_ELEM(name, counter, flags) \ 1192 CNTR_ELEM(#name, \ 1193 (counter * 8 + RCV_COUNTER_ARRAY64), \ 1194 0, flags, \ 1195 port_access_u64_csr) 1196 1197 #define RXE64_DEV_CNTR_ELEM(name, counter, flags) \ 1198 CNTR_ELEM(#name, \ 1199 (counter * 8 + RCV_COUNTER_ARRAY64), \ 1200 0, flags, \ 1201 dev_access_u64_csr) 1202 1203 #define OVR_LBL(ctx) C_RCV_HDR_OVF_ ## ctx 1204 #define OVR_ELM(ctx) \ 1205 CNTR_ELEM("RcvHdrOvr" #ctx, \ 1206 (RCV_HDR_OVFL_CNT + ctx * 0x100), \ 1207 0, CNTR_NORMAL, port_access_u64_csr) 1208 1209 /* 32bit TXE */ 1210 #define TXE32_PORT_CNTR_ELEM(name, counter, flags) \ 1211 CNTR_ELEM(#name, \ 1212 (counter * 8 + SEND_COUNTER_ARRAY32), \ 1213 0, flags | CNTR_32BIT, \ 1214 port_access_u32_csr) 1215 1216 /* 64bit TXE */ 1217 #define TXE64_PORT_CNTR_ELEM(name, counter, flags) \ 1218 CNTR_ELEM(#name, \ 1219 (counter * 8 + SEND_COUNTER_ARRAY64), \ 1220 0, flags, \ 1221 port_access_u64_csr) 1222 1223 # define TX64_DEV_CNTR_ELEM(name, counter, flags) \ 1224 CNTR_ELEM(#name,\ 1225 counter * 8 + SEND_COUNTER_ARRAY64, \ 1226 0, \ 1227 flags, \ 1228 dev_access_u64_csr) 1229 1230 /* CCE */ 1231 #define CCE_PERF_DEV_CNTR_ELEM(name, counter, flags) \ 1232 CNTR_ELEM(#name, \ 1233 (counter * 8 + CCE_COUNTER_ARRAY32), \ 1234 0, flags | CNTR_32BIT, \ 1235 dev_access_u32_csr) 1236 1237 #define CCE_INT_DEV_CNTR_ELEM(name, counter, flags) \ 1238 CNTR_ELEM(#name, \ 1239 (counter * 8 + CCE_INT_COUNTER_ARRAY32), \ 1240 0, flags | CNTR_32BIT, \ 1241 dev_access_u32_csr) 1242 1243 /* DC */ 1244 #define DC_PERF_CNTR(name, counter, flags) \ 1245 CNTR_ELEM(#name, \ 1246 counter, \ 1247 0, \ 1248 flags, \ 1249 dev_access_u64_csr) 1250 1251 #define DC_PERF_CNTR_LCB(name, counter, flags) \ 1252 CNTR_ELEM(#name, \ 1253 counter, \ 1254 0, \ 1255 flags, \ 1256 dc_access_lcb_cntr) 1257 1258 /* ibp counters */ 1259 #define SW_IBP_CNTR(name, cntr) \ 1260 CNTR_ELEM(#name, \ 1261 0, \ 1262 0, \ 1263 CNTR_SYNTH, \ 1264 access_ibp_##cntr) 1265 1266 u64 read_csr(const struct hfi1_devdata *dd, u32 offset) 1267 { 1268 if (dd->flags & HFI1_PRESENT) { 1269 return readq((void __iomem *)dd->kregbase + offset); 1270 } 1271 return -1; 1272 } 1273 1274 void write_csr(const struct hfi1_devdata *dd, u32 offset, u64 value) 1275 { 1276 if (dd->flags & HFI1_PRESENT) 1277 writeq(value, (void __iomem *)dd->kregbase + offset); 1278 } 1279 1280 void __iomem *get_csr_addr( 1281 struct hfi1_devdata *dd, 1282 u32 offset) 1283 { 1284 return (void __iomem *)dd->kregbase + offset; 1285 } 1286 1287 static inline u64 read_write_csr(const struct hfi1_devdata *dd, u32 csr, 1288 int mode, u64 value) 1289 { 1290 u64 ret; 1291 1292 if (mode == CNTR_MODE_R) { 1293 ret = read_csr(dd, csr); 1294 } else if (mode == CNTR_MODE_W) { 1295 write_csr(dd, csr, value); 1296 ret = value; 1297 } else { 1298 dd_dev_err(dd, "Invalid cntr register access mode"); 1299 return 0; 1300 } 1301 1302 hfi1_cdbg(CNTR, "csr 0x%x val 0x%llx mode %d", csr, ret, mode); 1303 return ret; 1304 } 1305 1306 /* Dev Access */ 1307 static u64 dev_access_u32_csr(const struct cntr_entry *entry, 1308 void *context, int vl, int mode, u64 data) 1309 { 1310 struct hfi1_devdata *dd = context; 1311 u64 csr = entry->csr; 1312 1313 if (entry->flags & CNTR_SDMA) { 1314 if (vl == CNTR_INVALID_VL) 1315 return 0; 1316 csr += 0x100 * vl; 1317 } else { 1318 if (vl != CNTR_INVALID_VL) 1319 return 0; 1320 } 1321 return read_write_csr(dd, csr, mode, data); 1322 } 1323 1324 static u64 access_sde_err_cnt(const struct cntr_entry *entry, 1325 void *context, int idx, int mode, u64 data) 1326 { 1327 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1328 1329 if (dd->per_sdma && idx < dd->num_sdma) 1330 return dd->per_sdma[idx].err_cnt; 1331 return 0; 1332 } 1333 1334 static u64 access_sde_int_cnt(const struct cntr_entry *entry, 1335 void *context, int idx, int mode, u64 data) 1336 { 1337 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1338 1339 if (dd->per_sdma && idx < dd->num_sdma) 1340 return dd->per_sdma[idx].sdma_int_cnt; 1341 return 0; 1342 } 1343 1344 static u64 access_sde_idle_int_cnt(const struct cntr_entry *entry, 1345 void *context, int idx, int mode, u64 data) 1346 { 1347 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1348 1349 if (dd->per_sdma && idx < dd->num_sdma) 1350 return dd->per_sdma[idx].idle_int_cnt; 1351 return 0; 1352 } 1353 1354 static u64 access_sde_progress_int_cnt(const struct cntr_entry *entry, 1355 void *context, int idx, int mode, 1356 u64 data) 1357 { 1358 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1359 1360 if (dd->per_sdma && idx < dd->num_sdma) 1361 return dd->per_sdma[idx].progress_int_cnt; 1362 return 0; 1363 } 1364 1365 static u64 dev_access_u64_csr(const struct cntr_entry *entry, void *context, 1366 int vl, int mode, u64 data) 1367 { 1368 struct hfi1_devdata *dd = context; 1369 1370 u64 val = 0; 1371 u64 csr = entry->csr; 1372 1373 if (entry->flags & CNTR_VL) { 1374 if (vl == CNTR_INVALID_VL) 1375 return 0; 1376 csr += 8 * vl; 1377 } else { 1378 if (vl != CNTR_INVALID_VL) 1379 return 0; 1380 } 1381 1382 val = read_write_csr(dd, csr, mode, data); 1383 return val; 1384 } 1385 1386 static u64 dc_access_lcb_cntr(const struct cntr_entry *entry, void *context, 1387 int vl, int mode, u64 data) 1388 { 1389 struct hfi1_devdata *dd = context; 1390 u32 csr = entry->csr; 1391 int ret = 0; 1392 1393 if (vl != CNTR_INVALID_VL) 1394 return 0; 1395 if (mode == CNTR_MODE_R) 1396 ret = read_lcb_csr(dd, csr, &data); 1397 else if (mode == CNTR_MODE_W) 1398 ret = write_lcb_csr(dd, csr, data); 1399 1400 if (ret) { 1401 dd_dev_err(dd, "Could not acquire LCB for counter 0x%x", csr); 1402 return 0; 1403 } 1404 1405 hfi1_cdbg(CNTR, "csr 0x%x val 0x%llx mode %d", csr, data, mode); 1406 return data; 1407 } 1408 1409 /* Port Access */ 1410 static u64 port_access_u32_csr(const struct cntr_entry *entry, void *context, 1411 int vl, int mode, u64 data) 1412 { 1413 struct hfi1_pportdata *ppd = context; 1414 1415 if (vl != CNTR_INVALID_VL) 1416 return 0; 1417 return read_write_csr(ppd->dd, entry->csr, mode, data); 1418 } 1419 1420 static u64 port_access_u64_csr(const struct cntr_entry *entry, 1421 void *context, int vl, int mode, u64 data) 1422 { 1423 struct hfi1_pportdata *ppd = context; 1424 u64 val; 1425 u64 csr = entry->csr; 1426 1427 if (entry->flags & CNTR_VL) { 1428 if (vl == CNTR_INVALID_VL) 1429 return 0; 1430 csr += 8 * vl; 1431 } else { 1432 if (vl != CNTR_INVALID_VL) 1433 return 0; 1434 } 1435 val = read_write_csr(ppd->dd, csr, mode, data); 1436 return val; 1437 } 1438 1439 /* Software defined */ 1440 static inline u64 read_write_sw(struct hfi1_devdata *dd, u64 *cntr, int mode, 1441 u64 data) 1442 { 1443 u64 ret; 1444 1445 if (mode == CNTR_MODE_R) { 1446 ret = *cntr; 1447 } else if (mode == CNTR_MODE_W) { 1448 *cntr = data; 1449 ret = data; 1450 } else { 1451 dd_dev_err(dd, "Invalid cntr sw access mode"); 1452 return 0; 1453 } 1454 1455 hfi1_cdbg(CNTR, "val 0x%llx mode %d", ret, mode); 1456 1457 return ret; 1458 } 1459 1460 static u64 access_sw_link_dn_cnt(const struct cntr_entry *entry, void *context, 1461 int vl, int mode, u64 data) 1462 { 1463 struct hfi1_pportdata *ppd = context; 1464 1465 if (vl != CNTR_INVALID_VL) 1466 return 0; 1467 return read_write_sw(ppd->dd, &ppd->link_downed, mode, data); 1468 } 1469 1470 static u64 access_sw_link_up_cnt(const struct cntr_entry *entry, void *context, 1471 int vl, int mode, u64 data) 1472 { 1473 struct hfi1_pportdata *ppd = context; 1474 1475 if (vl != CNTR_INVALID_VL) 1476 return 0; 1477 return read_write_sw(ppd->dd, &ppd->link_up, mode, data); 1478 } 1479 1480 static u64 access_sw_unknown_frame_cnt(const struct cntr_entry *entry, 1481 void *context, int vl, int mode, 1482 u64 data) 1483 { 1484 struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context; 1485 1486 if (vl != CNTR_INVALID_VL) 1487 return 0; 1488 return read_write_sw(ppd->dd, &ppd->unknown_frame_count, mode, data); 1489 } 1490 1491 static u64 access_sw_xmit_discards(const struct cntr_entry *entry, 1492 void *context, int vl, int mode, u64 data) 1493 { 1494 struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context; 1495 u64 zero = 0; 1496 u64 *counter; 1497 1498 if (vl == CNTR_INVALID_VL) 1499 counter = &ppd->port_xmit_discards; 1500 else if (vl >= 0 && vl < C_VL_COUNT) 1501 counter = &ppd->port_xmit_discards_vl[vl]; 1502 else 1503 counter = &zero; 1504 1505 return read_write_sw(ppd->dd, counter, mode, data); 1506 } 1507 1508 static u64 access_xmit_constraint_errs(const struct cntr_entry *entry, 1509 void *context, int vl, int mode, 1510 u64 data) 1511 { 1512 struct hfi1_pportdata *ppd = context; 1513 1514 if (vl != CNTR_INVALID_VL) 1515 return 0; 1516 1517 return read_write_sw(ppd->dd, &ppd->port_xmit_constraint_errors, 1518 mode, data); 1519 } 1520 1521 static u64 access_rcv_constraint_errs(const struct cntr_entry *entry, 1522 void *context, int vl, int mode, u64 data) 1523 { 1524 struct hfi1_pportdata *ppd = context; 1525 1526 if (vl != CNTR_INVALID_VL) 1527 return 0; 1528 1529 return read_write_sw(ppd->dd, &ppd->port_rcv_constraint_errors, 1530 mode, data); 1531 } 1532 1533 u64 get_all_cpu_total(u64 __percpu *cntr) 1534 { 1535 int cpu; 1536 u64 counter = 0; 1537 1538 for_each_possible_cpu(cpu) 1539 counter += *per_cpu_ptr(cntr, cpu); 1540 return counter; 1541 } 1542 1543 static u64 read_write_cpu(struct hfi1_devdata *dd, u64 *z_val, 1544 u64 __percpu *cntr, 1545 int vl, int mode, u64 data) 1546 { 1547 u64 ret = 0; 1548 1549 if (vl != CNTR_INVALID_VL) 1550 return 0; 1551 1552 if (mode == CNTR_MODE_R) { 1553 ret = get_all_cpu_total(cntr) - *z_val; 1554 } else if (mode == CNTR_MODE_W) { 1555 /* A write can only zero the counter */ 1556 if (data == 0) 1557 *z_val = get_all_cpu_total(cntr); 1558 else 1559 dd_dev_err(dd, "Per CPU cntrs can only be zeroed"); 1560 } else { 1561 dd_dev_err(dd, "Invalid cntr sw cpu access mode"); 1562 return 0; 1563 } 1564 1565 return ret; 1566 } 1567 1568 static u64 access_sw_cpu_intr(const struct cntr_entry *entry, 1569 void *context, int vl, int mode, u64 data) 1570 { 1571 struct hfi1_devdata *dd = context; 1572 1573 return read_write_cpu(dd, &dd->z_int_counter, dd->int_counter, vl, 1574 mode, data); 1575 } 1576 1577 static u64 access_sw_cpu_rcv_limit(const struct cntr_entry *entry, 1578 void *context, int vl, int mode, u64 data) 1579 { 1580 struct hfi1_devdata *dd = context; 1581 1582 return read_write_cpu(dd, &dd->z_rcv_limit, dd->rcv_limit, vl, 1583 mode, data); 1584 } 1585 1586 static u64 access_sw_pio_wait(const struct cntr_entry *entry, 1587 void *context, int vl, int mode, u64 data) 1588 { 1589 struct hfi1_devdata *dd = context; 1590 1591 return dd->verbs_dev.n_piowait; 1592 } 1593 1594 static u64 access_sw_pio_drain(const struct cntr_entry *entry, 1595 void *context, int vl, int mode, u64 data) 1596 { 1597 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1598 1599 return dd->verbs_dev.n_piodrain; 1600 } 1601 1602 static u64 access_sw_vtx_wait(const struct cntr_entry *entry, 1603 void *context, int vl, int mode, u64 data) 1604 { 1605 struct hfi1_devdata *dd = context; 1606 1607 return dd->verbs_dev.n_txwait; 1608 } 1609 1610 static u64 access_sw_kmem_wait(const struct cntr_entry *entry, 1611 void *context, int vl, int mode, u64 data) 1612 { 1613 struct hfi1_devdata *dd = context; 1614 1615 return dd->verbs_dev.n_kmem_wait; 1616 } 1617 1618 static u64 access_sw_send_schedule(const struct cntr_entry *entry, 1619 void *context, int vl, int mode, u64 data) 1620 { 1621 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1622 1623 return read_write_cpu(dd, &dd->z_send_schedule, dd->send_schedule, vl, 1624 mode, data); 1625 } 1626 1627 /* Software counters for the error status bits within MISC_ERR_STATUS */ 1628 static u64 access_misc_pll_lock_fail_err_cnt(const struct cntr_entry *entry, 1629 void *context, int vl, int mode, 1630 u64 data) 1631 { 1632 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1633 1634 return dd->misc_err_status_cnt[12]; 1635 } 1636 1637 static u64 access_misc_mbist_fail_err_cnt(const struct cntr_entry *entry, 1638 void *context, int vl, int mode, 1639 u64 data) 1640 { 1641 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1642 1643 return dd->misc_err_status_cnt[11]; 1644 } 1645 1646 static u64 access_misc_invalid_eep_cmd_err_cnt(const struct cntr_entry *entry, 1647 void *context, int vl, int mode, 1648 u64 data) 1649 { 1650 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1651 1652 return dd->misc_err_status_cnt[10]; 1653 } 1654 1655 static u64 access_misc_efuse_done_parity_err_cnt(const struct cntr_entry *entry, 1656 void *context, int vl, 1657 int mode, u64 data) 1658 { 1659 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1660 1661 return dd->misc_err_status_cnt[9]; 1662 } 1663 1664 static u64 access_misc_efuse_write_err_cnt(const struct cntr_entry *entry, 1665 void *context, int vl, int mode, 1666 u64 data) 1667 { 1668 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1669 1670 return dd->misc_err_status_cnt[8]; 1671 } 1672 1673 static u64 access_misc_efuse_read_bad_addr_err_cnt( 1674 const struct cntr_entry *entry, 1675 void *context, int vl, int mode, u64 data) 1676 { 1677 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1678 1679 return dd->misc_err_status_cnt[7]; 1680 } 1681 1682 static u64 access_misc_efuse_csr_parity_err_cnt(const struct cntr_entry *entry, 1683 void *context, int vl, 1684 int mode, u64 data) 1685 { 1686 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1687 1688 return dd->misc_err_status_cnt[6]; 1689 } 1690 1691 static u64 access_misc_fw_auth_failed_err_cnt(const struct cntr_entry *entry, 1692 void *context, int vl, int mode, 1693 u64 data) 1694 { 1695 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1696 1697 return dd->misc_err_status_cnt[5]; 1698 } 1699 1700 static u64 access_misc_key_mismatch_err_cnt(const struct cntr_entry *entry, 1701 void *context, int vl, int mode, 1702 u64 data) 1703 { 1704 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1705 1706 return dd->misc_err_status_cnt[4]; 1707 } 1708 1709 static u64 access_misc_sbus_write_failed_err_cnt(const struct cntr_entry *entry, 1710 void *context, int vl, 1711 int mode, u64 data) 1712 { 1713 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1714 1715 return dd->misc_err_status_cnt[3]; 1716 } 1717 1718 static u64 access_misc_csr_write_bad_addr_err_cnt( 1719 const struct cntr_entry *entry, 1720 void *context, int vl, int mode, u64 data) 1721 { 1722 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1723 1724 return dd->misc_err_status_cnt[2]; 1725 } 1726 1727 static u64 access_misc_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry, 1728 void *context, int vl, 1729 int mode, u64 data) 1730 { 1731 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1732 1733 return dd->misc_err_status_cnt[1]; 1734 } 1735 1736 static u64 access_misc_csr_parity_err_cnt(const struct cntr_entry *entry, 1737 void *context, int vl, int mode, 1738 u64 data) 1739 { 1740 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1741 1742 return dd->misc_err_status_cnt[0]; 1743 } 1744 1745 /* 1746 * Software counter for the aggregate of 1747 * individual CceErrStatus counters 1748 */ 1749 static u64 access_sw_cce_err_status_aggregated_cnt( 1750 const struct cntr_entry *entry, 1751 void *context, int vl, int mode, u64 data) 1752 { 1753 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1754 1755 return dd->sw_cce_err_status_aggregate; 1756 } 1757 1758 /* 1759 * Software counters corresponding to each of the 1760 * error status bits within CceErrStatus 1761 */ 1762 static u64 access_cce_msix_csr_parity_err_cnt(const struct cntr_entry *entry, 1763 void *context, int vl, int mode, 1764 u64 data) 1765 { 1766 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1767 1768 return dd->cce_err_status_cnt[40]; 1769 } 1770 1771 static u64 access_cce_int_map_unc_err_cnt(const struct cntr_entry *entry, 1772 void *context, int vl, int mode, 1773 u64 data) 1774 { 1775 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1776 1777 return dd->cce_err_status_cnt[39]; 1778 } 1779 1780 static u64 access_cce_int_map_cor_err_cnt(const struct cntr_entry *entry, 1781 void *context, int vl, int mode, 1782 u64 data) 1783 { 1784 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1785 1786 return dd->cce_err_status_cnt[38]; 1787 } 1788 1789 static u64 access_cce_msix_table_unc_err_cnt(const struct cntr_entry *entry, 1790 void *context, int vl, int mode, 1791 u64 data) 1792 { 1793 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1794 1795 return dd->cce_err_status_cnt[37]; 1796 } 1797 1798 static u64 access_cce_msix_table_cor_err_cnt(const struct cntr_entry *entry, 1799 void *context, int vl, int mode, 1800 u64 data) 1801 { 1802 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1803 1804 return dd->cce_err_status_cnt[36]; 1805 } 1806 1807 static u64 access_cce_rxdma_conv_fifo_parity_err_cnt( 1808 const struct cntr_entry *entry, 1809 void *context, int vl, int mode, u64 data) 1810 { 1811 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1812 1813 return dd->cce_err_status_cnt[35]; 1814 } 1815 1816 static u64 access_cce_rcpl_async_fifo_parity_err_cnt( 1817 const struct cntr_entry *entry, 1818 void *context, int vl, int mode, u64 data) 1819 { 1820 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1821 1822 return dd->cce_err_status_cnt[34]; 1823 } 1824 1825 static u64 access_cce_seg_write_bad_addr_err_cnt(const struct cntr_entry *entry, 1826 void *context, int vl, 1827 int mode, u64 data) 1828 { 1829 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1830 1831 return dd->cce_err_status_cnt[33]; 1832 } 1833 1834 static u64 access_cce_seg_read_bad_addr_err_cnt(const struct cntr_entry *entry, 1835 void *context, int vl, int mode, 1836 u64 data) 1837 { 1838 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1839 1840 return dd->cce_err_status_cnt[32]; 1841 } 1842 1843 static u64 access_la_triggered_cnt(const struct cntr_entry *entry, 1844 void *context, int vl, int mode, u64 data) 1845 { 1846 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1847 1848 return dd->cce_err_status_cnt[31]; 1849 } 1850 1851 static u64 access_cce_trgt_cpl_timeout_err_cnt(const struct cntr_entry *entry, 1852 void *context, int vl, int mode, 1853 u64 data) 1854 { 1855 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1856 1857 return dd->cce_err_status_cnt[30]; 1858 } 1859 1860 static u64 access_pcic_receive_parity_err_cnt(const struct cntr_entry *entry, 1861 void *context, int vl, int mode, 1862 u64 data) 1863 { 1864 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1865 1866 return dd->cce_err_status_cnt[29]; 1867 } 1868 1869 static u64 access_pcic_transmit_back_parity_err_cnt( 1870 const struct cntr_entry *entry, 1871 void *context, int vl, int mode, u64 data) 1872 { 1873 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1874 1875 return dd->cce_err_status_cnt[28]; 1876 } 1877 1878 static u64 access_pcic_transmit_front_parity_err_cnt( 1879 const struct cntr_entry *entry, 1880 void *context, int vl, int mode, u64 data) 1881 { 1882 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1883 1884 return dd->cce_err_status_cnt[27]; 1885 } 1886 1887 static u64 access_pcic_cpl_dat_q_unc_err_cnt(const struct cntr_entry *entry, 1888 void *context, int vl, int mode, 1889 u64 data) 1890 { 1891 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1892 1893 return dd->cce_err_status_cnt[26]; 1894 } 1895 1896 static u64 access_pcic_cpl_hd_q_unc_err_cnt(const struct cntr_entry *entry, 1897 void *context, int vl, int mode, 1898 u64 data) 1899 { 1900 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1901 1902 return dd->cce_err_status_cnt[25]; 1903 } 1904 1905 static u64 access_pcic_post_dat_q_unc_err_cnt(const struct cntr_entry *entry, 1906 void *context, int vl, int mode, 1907 u64 data) 1908 { 1909 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1910 1911 return dd->cce_err_status_cnt[24]; 1912 } 1913 1914 static u64 access_pcic_post_hd_q_unc_err_cnt(const struct cntr_entry *entry, 1915 void *context, int vl, int mode, 1916 u64 data) 1917 { 1918 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1919 1920 return dd->cce_err_status_cnt[23]; 1921 } 1922 1923 static u64 access_pcic_retry_sot_mem_unc_err_cnt(const struct cntr_entry *entry, 1924 void *context, int vl, 1925 int mode, u64 data) 1926 { 1927 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1928 1929 return dd->cce_err_status_cnt[22]; 1930 } 1931 1932 static u64 access_pcic_retry_mem_unc_err(const struct cntr_entry *entry, 1933 void *context, int vl, int mode, 1934 u64 data) 1935 { 1936 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1937 1938 return dd->cce_err_status_cnt[21]; 1939 } 1940 1941 static u64 access_pcic_n_post_dat_q_parity_err_cnt( 1942 const struct cntr_entry *entry, 1943 void *context, int vl, int mode, u64 data) 1944 { 1945 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1946 1947 return dd->cce_err_status_cnt[20]; 1948 } 1949 1950 static u64 access_pcic_n_post_h_q_parity_err_cnt(const struct cntr_entry *entry, 1951 void *context, int vl, 1952 int mode, u64 data) 1953 { 1954 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1955 1956 return dd->cce_err_status_cnt[19]; 1957 } 1958 1959 static u64 access_pcic_cpl_dat_q_cor_err_cnt(const struct cntr_entry *entry, 1960 void *context, int vl, int mode, 1961 u64 data) 1962 { 1963 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1964 1965 return dd->cce_err_status_cnt[18]; 1966 } 1967 1968 static u64 access_pcic_cpl_hd_q_cor_err_cnt(const struct cntr_entry *entry, 1969 void *context, int vl, int mode, 1970 u64 data) 1971 { 1972 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1973 1974 return dd->cce_err_status_cnt[17]; 1975 } 1976 1977 static u64 access_pcic_post_dat_q_cor_err_cnt(const struct cntr_entry *entry, 1978 void *context, int vl, int mode, 1979 u64 data) 1980 { 1981 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1982 1983 return dd->cce_err_status_cnt[16]; 1984 } 1985 1986 static u64 access_pcic_post_hd_q_cor_err_cnt(const struct cntr_entry *entry, 1987 void *context, int vl, int mode, 1988 u64 data) 1989 { 1990 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1991 1992 return dd->cce_err_status_cnt[15]; 1993 } 1994 1995 static u64 access_pcic_retry_sot_mem_cor_err_cnt(const struct cntr_entry *entry, 1996 void *context, int vl, 1997 int mode, u64 data) 1998 { 1999 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2000 2001 return dd->cce_err_status_cnt[14]; 2002 } 2003 2004 static u64 access_pcic_retry_mem_cor_err_cnt(const struct cntr_entry *entry, 2005 void *context, int vl, int mode, 2006 u64 data) 2007 { 2008 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2009 2010 return dd->cce_err_status_cnt[13]; 2011 } 2012 2013 static u64 access_cce_cli1_async_fifo_dbg_parity_err_cnt( 2014 const struct cntr_entry *entry, 2015 void *context, int vl, int mode, u64 data) 2016 { 2017 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2018 2019 return dd->cce_err_status_cnt[12]; 2020 } 2021 2022 static u64 access_cce_cli1_async_fifo_rxdma_parity_err_cnt( 2023 const struct cntr_entry *entry, 2024 void *context, int vl, int mode, u64 data) 2025 { 2026 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2027 2028 return dd->cce_err_status_cnt[11]; 2029 } 2030 2031 static u64 access_cce_cli1_async_fifo_sdma_hd_parity_err_cnt( 2032 const struct cntr_entry *entry, 2033 void *context, int vl, int mode, u64 data) 2034 { 2035 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2036 2037 return dd->cce_err_status_cnt[10]; 2038 } 2039 2040 static u64 access_cce_cl1_async_fifo_pio_crdt_parity_err_cnt( 2041 const struct cntr_entry *entry, 2042 void *context, int vl, int mode, u64 data) 2043 { 2044 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2045 2046 return dd->cce_err_status_cnt[9]; 2047 } 2048 2049 static u64 access_cce_cli2_async_fifo_parity_err_cnt( 2050 const struct cntr_entry *entry, 2051 void *context, int vl, int mode, u64 data) 2052 { 2053 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2054 2055 return dd->cce_err_status_cnt[8]; 2056 } 2057 2058 static u64 access_cce_csr_cfg_bus_parity_err_cnt(const struct cntr_entry *entry, 2059 void *context, int vl, 2060 int mode, u64 data) 2061 { 2062 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2063 2064 return dd->cce_err_status_cnt[7]; 2065 } 2066 2067 static u64 access_cce_cli0_async_fifo_parity_err_cnt( 2068 const struct cntr_entry *entry, 2069 void *context, int vl, int mode, u64 data) 2070 { 2071 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2072 2073 return dd->cce_err_status_cnt[6]; 2074 } 2075 2076 static u64 access_cce_rspd_data_parity_err_cnt(const struct cntr_entry *entry, 2077 void *context, int vl, int mode, 2078 u64 data) 2079 { 2080 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2081 2082 return dd->cce_err_status_cnt[5]; 2083 } 2084 2085 static u64 access_cce_trgt_access_err_cnt(const struct cntr_entry *entry, 2086 void *context, int vl, int mode, 2087 u64 data) 2088 { 2089 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2090 2091 return dd->cce_err_status_cnt[4]; 2092 } 2093 2094 static u64 access_cce_trgt_async_fifo_parity_err_cnt( 2095 const struct cntr_entry *entry, 2096 void *context, int vl, int mode, u64 data) 2097 { 2098 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2099 2100 return dd->cce_err_status_cnt[3]; 2101 } 2102 2103 static u64 access_cce_csr_write_bad_addr_err_cnt(const struct cntr_entry *entry, 2104 void *context, int vl, 2105 int mode, u64 data) 2106 { 2107 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2108 2109 return dd->cce_err_status_cnt[2]; 2110 } 2111 2112 static u64 access_cce_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry, 2113 void *context, int vl, 2114 int mode, u64 data) 2115 { 2116 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2117 2118 return dd->cce_err_status_cnt[1]; 2119 } 2120 2121 static u64 access_ccs_csr_parity_err_cnt(const struct cntr_entry *entry, 2122 void *context, int vl, int mode, 2123 u64 data) 2124 { 2125 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2126 2127 return dd->cce_err_status_cnt[0]; 2128 } 2129 2130 /* 2131 * Software counters corresponding to each of the 2132 * error status bits within RcvErrStatus 2133 */ 2134 static u64 access_rx_csr_parity_err_cnt(const struct cntr_entry *entry, 2135 void *context, int vl, int mode, 2136 u64 data) 2137 { 2138 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2139 2140 return dd->rcv_err_status_cnt[63]; 2141 } 2142 2143 static u64 access_rx_csr_write_bad_addr_err_cnt(const struct cntr_entry *entry, 2144 void *context, int vl, 2145 int mode, u64 data) 2146 { 2147 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2148 2149 return dd->rcv_err_status_cnt[62]; 2150 } 2151 2152 static u64 access_rx_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry, 2153 void *context, int vl, int mode, 2154 u64 data) 2155 { 2156 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2157 2158 return dd->rcv_err_status_cnt[61]; 2159 } 2160 2161 static u64 access_rx_dma_csr_unc_err_cnt(const struct cntr_entry *entry, 2162 void *context, int vl, int mode, 2163 u64 data) 2164 { 2165 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2166 2167 return dd->rcv_err_status_cnt[60]; 2168 } 2169 2170 static u64 access_rx_dma_dq_fsm_encoding_err_cnt(const struct cntr_entry *entry, 2171 void *context, int vl, 2172 int mode, u64 data) 2173 { 2174 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2175 2176 return dd->rcv_err_status_cnt[59]; 2177 } 2178 2179 static u64 access_rx_dma_eq_fsm_encoding_err_cnt(const struct cntr_entry *entry, 2180 void *context, int vl, 2181 int mode, u64 data) 2182 { 2183 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2184 2185 return dd->rcv_err_status_cnt[58]; 2186 } 2187 2188 static u64 access_rx_dma_csr_parity_err_cnt(const struct cntr_entry *entry, 2189 void *context, int vl, int mode, 2190 u64 data) 2191 { 2192 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2193 2194 return dd->rcv_err_status_cnt[57]; 2195 } 2196 2197 static u64 access_rx_rbuf_data_cor_err_cnt(const struct cntr_entry *entry, 2198 void *context, int vl, int mode, 2199 u64 data) 2200 { 2201 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2202 2203 return dd->rcv_err_status_cnt[56]; 2204 } 2205 2206 static u64 access_rx_rbuf_data_unc_err_cnt(const struct cntr_entry *entry, 2207 void *context, int vl, int mode, 2208 u64 data) 2209 { 2210 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2211 2212 return dd->rcv_err_status_cnt[55]; 2213 } 2214 2215 static u64 access_rx_dma_data_fifo_rd_cor_err_cnt( 2216 const struct cntr_entry *entry, 2217 void *context, int vl, int mode, u64 data) 2218 { 2219 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2220 2221 return dd->rcv_err_status_cnt[54]; 2222 } 2223 2224 static u64 access_rx_dma_data_fifo_rd_unc_err_cnt( 2225 const struct cntr_entry *entry, 2226 void *context, int vl, int mode, u64 data) 2227 { 2228 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2229 2230 return dd->rcv_err_status_cnt[53]; 2231 } 2232 2233 static u64 access_rx_dma_hdr_fifo_rd_cor_err_cnt(const struct cntr_entry *entry, 2234 void *context, int vl, 2235 int mode, u64 data) 2236 { 2237 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2238 2239 return dd->rcv_err_status_cnt[52]; 2240 } 2241 2242 static u64 access_rx_dma_hdr_fifo_rd_unc_err_cnt(const struct cntr_entry *entry, 2243 void *context, int vl, 2244 int mode, u64 data) 2245 { 2246 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2247 2248 return dd->rcv_err_status_cnt[51]; 2249 } 2250 2251 static u64 access_rx_rbuf_desc_part2_cor_err_cnt(const struct cntr_entry *entry, 2252 void *context, int vl, 2253 int mode, u64 data) 2254 { 2255 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2256 2257 return dd->rcv_err_status_cnt[50]; 2258 } 2259 2260 static u64 access_rx_rbuf_desc_part2_unc_err_cnt(const struct cntr_entry *entry, 2261 void *context, int vl, 2262 int mode, u64 data) 2263 { 2264 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2265 2266 return dd->rcv_err_status_cnt[49]; 2267 } 2268 2269 static u64 access_rx_rbuf_desc_part1_cor_err_cnt(const struct cntr_entry *entry, 2270 void *context, int vl, 2271 int mode, u64 data) 2272 { 2273 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2274 2275 return dd->rcv_err_status_cnt[48]; 2276 } 2277 2278 static u64 access_rx_rbuf_desc_part1_unc_err_cnt(const struct cntr_entry *entry, 2279 void *context, int vl, 2280 int mode, u64 data) 2281 { 2282 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2283 2284 return dd->rcv_err_status_cnt[47]; 2285 } 2286 2287 static u64 access_rx_hq_intr_fsm_err_cnt(const struct cntr_entry *entry, 2288 void *context, int vl, int mode, 2289 u64 data) 2290 { 2291 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2292 2293 return dd->rcv_err_status_cnt[46]; 2294 } 2295 2296 static u64 access_rx_hq_intr_csr_parity_err_cnt( 2297 const struct cntr_entry *entry, 2298 void *context, int vl, int mode, u64 data) 2299 { 2300 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2301 2302 return dd->rcv_err_status_cnt[45]; 2303 } 2304 2305 static u64 access_rx_lookup_csr_parity_err_cnt( 2306 const struct cntr_entry *entry, 2307 void *context, int vl, int mode, u64 data) 2308 { 2309 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2310 2311 return dd->rcv_err_status_cnt[44]; 2312 } 2313 2314 static u64 access_rx_lookup_rcv_array_cor_err_cnt( 2315 const struct cntr_entry *entry, 2316 void *context, int vl, int mode, u64 data) 2317 { 2318 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2319 2320 return dd->rcv_err_status_cnt[43]; 2321 } 2322 2323 static u64 access_rx_lookup_rcv_array_unc_err_cnt( 2324 const struct cntr_entry *entry, 2325 void *context, int vl, int mode, u64 data) 2326 { 2327 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2328 2329 return dd->rcv_err_status_cnt[42]; 2330 } 2331 2332 static u64 access_rx_lookup_des_part2_parity_err_cnt( 2333 const struct cntr_entry *entry, 2334 void *context, int vl, int mode, u64 data) 2335 { 2336 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2337 2338 return dd->rcv_err_status_cnt[41]; 2339 } 2340 2341 static u64 access_rx_lookup_des_part1_unc_cor_err_cnt( 2342 const struct cntr_entry *entry, 2343 void *context, int vl, int mode, u64 data) 2344 { 2345 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2346 2347 return dd->rcv_err_status_cnt[40]; 2348 } 2349 2350 static u64 access_rx_lookup_des_part1_unc_err_cnt( 2351 const struct cntr_entry *entry, 2352 void *context, int vl, int mode, u64 data) 2353 { 2354 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2355 2356 return dd->rcv_err_status_cnt[39]; 2357 } 2358 2359 static u64 access_rx_rbuf_next_free_buf_cor_err_cnt( 2360 const struct cntr_entry *entry, 2361 void *context, int vl, int mode, u64 data) 2362 { 2363 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2364 2365 return dd->rcv_err_status_cnt[38]; 2366 } 2367 2368 static u64 access_rx_rbuf_next_free_buf_unc_err_cnt( 2369 const struct cntr_entry *entry, 2370 void *context, int vl, int mode, u64 data) 2371 { 2372 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2373 2374 return dd->rcv_err_status_cnt[37]; 2375 } 2376 2377 static u64 access_rbuf_fl_init_wr_addr_parity_err_cnt( 2378 const struct cntr_entry *entry, 2379 void *context, int vl, int mode, u64 data) 2380 { 2381 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2382 2383 return dd->rcv_err_status_cnt[36]; 2384 } 2385 2386 static u64 access_rx_rbuf_fl_initdone_parity_err_cnt( 2387 const struct cntr_entry *entry, 2388 void *context, int vl, int mode, u64 data) 2389 { 2390 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2391 2392 return dd->rcv_err_status_cnt[35]; 2393 } 2394 2395 static u64 access_rx_rbuf_fl_write_addr_parity_err_cnt( 2396 const struct cntr_entry *entry, 2397 void *context, int vl, int mode, u64 data) 2398 { 2399 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2400 2401 return dd->rcv_err_status_cnt[34]; 2402 } 2403 2404 static u64 access_rx_rbuf_fl_rd_addr_parity_err_cnt( 2405 const struct cntr_entry *entry, 2406 void *context, int vl, int mode, u64 data) 2407 { 2408 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2409 2410 return dd->rcv_err_status_cnt[33]; 2411 } 2412 2413 static u64 access_rx_rbuf_empty_err_cnt(const struct cntr_entry *entry, 2414 void *context, int vl, int mode, 2415 u64 data) 2416 { 2417 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2418 2419 return dd->rcv_err_status_cnt[32]; 2420 } 2421 2422 static u64 access_rx_rbuf_full_err_cnt(const struct cntr_entry *entry, 2423 void *context, int vl, int mode, 2424 u64 data) 2425 { 2426 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2427 2428 return dd->rcv_err_status_cnt[31]; 2429 } 2430 2431 static u64 access_rbuf_bad_lookup_err_cnt(const struct cntr_entry *entry, 2432 void *context, int vl, int mode, 2433 u64 data) 2434 { 2435 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2436 2437 return dd->rcv_err_status_cnt[30]; 2438 } 2439 2440 static u64 access_rbuf_ctx_id_parity_err_cnt(const struct cntr_entry *entry, 2441 void *context, int vl, int mode, 2442 u64 data) 2443 { 2444 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2445 2446 return dd->rcv_err_status_cnt[29]; 2447 } 2448 2449 static u64 access_rbuf_csr_qeopdw_parity_err_cnt(const struct cntr_entry *entry, 2450 void *context, int vl, 2451 int mode, u64 data) 2452 { 2453 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2454 2455 return dd->rcv_err_status_cnt[28]; 2456 } 2457 2458 static u64 access_rx_rbuf_csr_q_num_of_pkt_parity_err_cnt( 2459 const struct cntr_entry *entry, 2460 void *context, int vl, int mode, u64 data) 2461 { 2462 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2463 2464 return dd->rcv_err_status_cnt[27]; 2465 } 2466 2467 static u64 access_rx_rbuf_csr_q_t1_ptr_parity_err_cnt( 2468 const struct cntr_entry *entry, 2469 void *context, int vl, int mode, u64 data) 2470 { 2471 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2472 2473 return dd->rcv_err_status_cnt[26]; 2474 } 2475 2476 static u64 access_rx_rbuf_csr_q_hd_ptr_parity_err_cnt( 2477 const struct cntr_entry *entry, 2478 void *context, int vl, int mode, u64 data) 2479 { 2480 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2481 2482 return dd->rcv_err_status_cnt[25]; 2483 } 2484 2485 static u64 access_rx_rbuf_csr_q_vld_bit_parity_err_cnt( 2486 const struct cntr_entry *entry, 2487 void *context, int vl, int mode, u64 data) 2488 { 2489 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2490 2491 return dd->rcv_err_status_cnt[24]; 2492 } 2493 2494 static u64 access_rx_rbuf_csr_q_next_buf_parity_err_cnt( 2495 const struct cntr_entry *entry, 2496 void *context, int vl, int mode, u64 data) 2497 { 2498 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2499 2500 return dd->rcv_err_status_cnt[23]; 2501 } 2502 2503 static u64 access_rx_rbuf_csr_q_ent_cnt_parity_err_cnt( 2504 const struct cntr_entry *entry, 2505 void *context, int vl, int mode, u64 data) 2506 { 2507 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2508 2509 return dd->rcv_err_status_cnt[22]; 2510 } 2511 2512 static u64 access_rx_rbuf_csr_q_head_buf_num_parity_err_cnt( 2513 const struct cntr_entry *entry, 2514 void *context, int vl, int mode, u64 data) 2515 { 2516 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2517 2518 return dd->rcv_err_status_cnt[21]; 2519 } 2520 2521 static u64 access_rx_rbuf_block_list_read_cor_err_cnt( 2522 const struct cntr_entry *entry, 2523 void *context, int vl, int mode, u64 data) 2524 { 2525 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2526 2527 return dd->rcv_err_status_cnt[20]; 2528 } 2529 2530 static u64 access_rx_rbuf_block_list_read_unc_err_cnt( 2531 const struct cntr_entry *entry, 2532 void *context, int vl, int mode, u64 data) 2533 { 2534 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2535 2536 return dd->rcv_err_status_cnt[19]; 2537 } 2538 2539 static u64 access_rx_rbuf_lookup_des_cor_err_cnt(const struct cntr_entry *entry, 2540 void *context, int vl, 2541 int mode, u64 data) 2542 { 2543 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2544 2545 return dd->rcv_err_status_cnt[18]; 2546 } 2547 2548 static u64 access_rx_rbuf_lookup_des_unc_err_cnt(const struct cntr_entry *entry, 2549 void *context, int vl, 2550 int mode, u64 data) 2551 { 2552 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2553 2554 return dd->rcv_err_status_cnt[17]; 2555 } 2556 2557 static u64 access_rx_rbuf_lookup_des_reg_unc_cor_err_cnt( 2558 const struct cntr_entry *entry, 2559 void *context, int vl, int mode, u64 data) 2560 { 2561 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2562 2563 return dd->rcv_err_status_cnt[16]; 2564 } 2565 2566 static u64 access_rx_rbuf_lookup_des_reg_unc_err_cnt( 2567 const struct cntr_entry *entry, 2568 void *context, int vl, int mode, u64 data) 2569 { 2570 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2571 2572 return dd->rcv_err_status_cnt[15]; 2573 } 2574 2575 static u64 access_rx_rbuf_free_list_cor_err_cnt(const struct cntr_entry *entry, 2576 void *context, int vl, 2577 int mode, u64 data) 2578 { 2579 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2580 2581 return dd->rcv_err_status_cnt[14]; 2582 } 2583 2584 static u64 access_rx_rbuf_free_list_unc_err_cnt(const struct cntr_entry *entry, 2585 void *context, int vl, 2586 int mode, u64 data) 2587 { 2588 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2589 2590 return dd->rcv_err_status_cnt[13]; 2591 } 2592 2593 static u64 access_rx_rcv_fsm_encoding_err_cnt(const struct cntr_entry *entry, 2594 void *context, int vl, int mode, 2595 u64 data) 2596 { 2597 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2598 2599 return dd->rcv_err_status_cnt[12]; 2600 } 2601 2602 static u64 access_rx_dma_flag_cor_err_cnt(const struct cntr_entry *entry, 2603 void *context, int vl, int mode, 2604 u64 data) 2605 { 2606 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2607 2608 return dd->rcv_err_status_cnt[11]; 2609 } 2610 2611 static u64 access_rx_dma_flag_unc_err_cnt(const struct cntr_entry *entry, 2612 void *context, int vl, int mode, 2613 u64 data) 2614 { 2615 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2616 2617 return dd->rcv_err_status_cnt[10]; 2618 } 2619 2620 static u64 access_rx_dc_sop_eop_parity_err_cnt(const struct cntr_entry *entry, 2621 void *context, int vl, int mode, 2622 u64 data) 2623 { 2624 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2625 2626 return dd->rcv_err_status_cnt[9]; 2627 } 2628 2629 static u64 access_rx_rcv_csr_parity_err_cnt(const struct cntr_entry *entry, 2630 void *context, int vl, int mode, 2631 u64 data) 2632 { 2633 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2634 2635 return dd->rcv_err_status_cnt[8]; 2636 } 2637 2638 static u64 access_rx_rcv_qp_map_table_cor_err_cnt( 2639 const struct cntr_entry *entry, 2640 void *context, int vl, int mode, u64 data) 2641 { 2642 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2643 2644 return dd->rcv_err_status_cnt[7]; 2645 } 2646 2647 static u64 access_rx_rcv_qp_map_table_unc_err_cnt( 2648 const struct cntr_entry *entry, 2649 void *context, int vl, int mode, u64 data) 2650 { 2651 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2652 2653 return dd->rcv_err_status_cnt[6]; 2654 } 2655 2656 static u64 access_rx_rcv_data_cor_err_cnt(const struct cntr_entry *entry, 2657 void *context, int vl, int mode, 2658 u64 data) 2659 { 2660 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2661 2662 return dd->rcv_err_status_cnt[5]; 2663 } 2664 2665 static u64 access_rx_rcv_data_unc_err_cnt(const struct cntr_entry *entry, 2666 void *context, int vl, int mode, 2667 u64 data) 2668 { 2669 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2670 2671 return dd->rcv_err_status_cnt[4]; 2672 } 2673 2674 static u64 access_rx_rcv_hdr_cor_err_cnt(const struct cntr_entry *entry, 2675 void *context, int vl, int mode, 2676 u64 data) 2677 { 2678 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2679 2680 return dd->rcv_err_status_cnt[3]; 2681 } 2682 2683 static u64 access_rx_rcv_hdr_unc_err_cnt(const struct cntr_entry *entry, 2684 void *context, int vl, int mode, 2685 u64 data) 2686 { 2687 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2688 2689 return dd->rcv_err_status_cnt[2]; 2690 } 2691 2692 static u64 access_rx_dc_intf_parity_err_cnt(const struct cntr_entry *entry, 2693 void *context, int vl, int mode, 2694 u64 data) 2695 { 2696 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2697 2698 return dd->rcv_err_status_cnt[1]; 2699 } 2700 2701 static u64 access_rx_dma_csr_cor_err_cnt(const struct cntr_entry *entry, 2702 void *context, int vl, int mode, 2703 u64 data) 2704 { 2705 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2706 2707 return dd->rcv_err_status_cnt[0]; 2708 } 2709 2710 /* 2711 * Software counters corresponding to each of the 2712 * error status bits within SendPioErrStatus 2713 */ 2714 static u64 access_pio_pec_sop_head_parity_err_cnt( 2715 const struct cntr_entry *entry, 2716 void *context, int vl, int mode, u64 data) 2717 { 2718 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2719 2720 return dd->send_pio_err_status_cnt[35]; 2721 } 2722 2723 static u64 access_pio_pcc_sop_head_parity_err_cnt( 2724 const struct cntr_entry *entry, 2725 void *context, int vl, int mode, u64 data) 2726 { 2727 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2728 2729 return dd->send_pio_err_status_cnt[34]; 2730 } 2731 2732 static u64 access_pio_last_returned_cnt_parity_err_cnt( 2733 const struct cntr_entry *entry, 2734 void *context, int vl, int mode, u64 data) 2735 { 2736 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2737 2738 return dd->send_pio_err_status_cnt[33]; 2739 } 2740 2741 static u64 access_pio_current_free_cnt_parity_err_cnt( 2742 const struct cntr_entry *entry, 2743 void *context, int vl, int mode, u64 data) 2744 { 2745 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2746 2747 return dd->send_pio_err_status_cnt[32]; 2748 } 2749 2750 static u64 access_pio_reserved_31_err_cnt(const struct cntr_entry *entry, 2751 void *context, int vl, int mode, 2752 u64 data) 2753 { 2754 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2755 2756 return dd->send_pio_err_status_cnt[31]; 2757 } 2758 2759 static u64 access_pio_reserved_30_err_cnt(const struct cntr_entry *entry, 2760 void *context, int vl, int mode, 2761 u64 data) 2762 { 2763 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2764 2765 return dd->send_pio_err_status_cnt[30]; 2766 } 2767 2768 static u64 access_pio_ppmc_sop_len_err_cnt(const struct cntr_entry *entry, 2769 void *context, int vl, int mode, 2770 u64 data) 2771 { 2772 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2773 2774 return dd->send_pio_err_status_cnt[29]; 2775 } 2776 2777 static u64 access_pio_ppmc_bqc_mem_parity_err_cnt( 2778 const struct cntr_entry *entry, 2779 void *context, int vl, int mode, u64 data) 2780 { 2781 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2782 2783 return dd->send_pio_err_status_cnt[28]; 2784 } 2785 2786 static u64 access_pio_vl_fifo_parity_err_cnt(const struct cntr_entry *entry, 2787 void *context, int vl, int mode, 2788 u64 data) 2789 { 2790 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2791 2792 return dd->send_pio_err_status_cnt[27]; 2793 } 2794 2795 static u64 access_pio_vlf_sop_parity_err_cnt(const struct cntr_entry *entry, 2796 void *context, int vl, int mode, 2797 u64 data) 2798 { 2799 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2800 2801 return dd->send_pio_err_status_cnt[26]; 2802 } 2803 2804 static u64 access_pio_vlf_v1_len_parity_err_cnt(const struct cntr_entry *entry, 2805 void *context, int vl, 2806 int mode, u64 data) 2807 { 2808 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2809 2810 return dd->send_pio_err_status_cnt[25]; 2811 } 2812 2813 static u64 access_pio_block_qw_count_parity_err_cnt( 2814 const struct cntr_entry *entry, 2815 void *context, int vl, int mode, u64 data) 2816 { 2817 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2818 2819 return dd->send_pio_err_status_cnt[24]; 2820 } 2821 2822 static u64 access_pio_write_qw_valid_parity_err_cnt( 2823 const struct cntr_entry *entry, 2824 void *context, int vl, int mode, u64 data) 2825 { 2826 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2827 2828 return dd->send_pio_err_status_cnt[23]; 2829 } 2830 2831 static u64 access_pio_state_machine_err_cnt(const struct cntr_entry *entry, 2832 void *context, int vl, int mode, 2833 u64 data) 2834 { 2835 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2836 2837 return dd->send_pio_err_status_cnt[22]; 2838 } 2839 2840 static u64 access_pio_write_data_parity_err_cnt(const struct cntr_entry *entry, 2841 void *context, int vl, 2842 int mode, u64 data) 2843 { 2844 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2845 2846 return dd->send_pio_err_status_cnt[21]; 2847 } 2848 2849 static u64 access_pio_host_addr_mem_cor_err_cnt(const struct cntr_entry *entry, 2850 void *context, int vl, 2851 int mode, u64 data) 2852 { 2853 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2854 2855 return dd->send_pio_err_status_cnt[20]; 2856 } 2857 2858 static u64 access_pio_host_addr_mem_unc_err_cnt(const struct cntr_entry *entry, 2859 void *context, int vl, 2860 int mode, u64 data) 2861 { 2862 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2863 2864 return dd->send_pio_err_status_cnt[19]; 2865 } 2866 2867 static u64 access_pio_pkt_evict_sm_or_arb_sm_err_cnt( 2868 const struct cntr_entry *entry, 2869 void *context, int vl, int mode, u64 data) 2870 { 2871 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2872 2873 return dd->send_pio_err_status_cnt[18]; 2874 } 2875 2876 static u64 access_pio_init_sm_in_err_cnt(const struct cntr_entry *entry, 2877 void *context, int vl, int mode, 2878 u64 data) 2879 { 2880 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2881 2882 return dd->send_pio_err_status_cnt[17]; 2883 } 2884 2885 static u64 access_pio_ppmc_pbl_fifo_err_cnt(const struct cntr_entry *entry, 2886 void *context, int vl, int mode, 2887 u64 data) 2888 { 2889 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2890 2891 return dd->send_pio_err_status_cnt[16]; 2892 } 2893 2894 static u64 access_pio_credit_ret_fifo_parity_err_cnt( 2895 const struct cntr_entry *entry, 2896 void *context, int vl, int mode, u64 data) 2897 { 2898 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2899 2900 return dd->send_pio_err_status_cnt[15]; 2901 } 2902 2903 static u64 access_pio_v1_len_mem_bank1_cor_err_cnt( 2904 const struct cntr_entry *entry, 2905 void *context, int vl, int mode, u64 data) 2906 { 2907 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2908 2909 return dd->send_pio_err_status_cnt[14]; 2910 } 2911 2912 static u64 access_pio_v1_len_mem_bank0_cor_err_cnt( 2913 const struct cntr_entry *entry, 2914 void *context, int vl, int mode, u64 data) 2915 { 2916 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2917 2918 return dd->send_pio_err_status_cnt[13]; 2919 } 2920 2921 static u64 access_pio_v1_len_mem_bank1_unc_err_cnt( 2922 const struct cntr_entry *entry, 2923 void *context, int vl, int mode, u64 data) 2924 { 2925 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2926 2927 return dd->send_pio_err_status_cnt[12]; 2928 } 2929 2930 static u64 access_pio_v1_len_mem_bank0_unc_err_cnt( 2931 const struct cntr_entry *entry, 2932 void *context, int vl, int mode, u64 data) 2933 { 2934 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2935 2936 return dd->send_pio_err_status_cnt[11]; 2937 } 2938 2939 static u64 access_pio_sm_pkt_reset_parity_err_cnt( 2940 const struct cntr_entry *entry, 2941 void *context, int vl, int mode, u64 data) 2942 { 2943 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2944 2945 return dd->send_pio_err_status_cnt[10]; 2946 } 2947 2948 static u64 access_pio_pkt_evict_fifo_parity_err_cnt( 2949 const struct cntr_entry *entry, 2950 void *context, int vl, int mode, u64 data) 2951 { 2952 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2953 2954 return dd->send_pio_err_status_cnt[9]; 2955 } 2956 2957 static u64 access_pio_sbrdctrl_crrel_fifo_parity_err_cnt( 2958 const struct cntr_entry *entry, 2959 void *context, int vl, int mode, u64 data) 2960 { 2961 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2962 2963 return dd->send_pio_err_status_cnt[8]; 2964 } 2965 2966 static u64 access_pio_sbrdctl_crrel_parity_err_cnt( 2967 const struct cntr_entry *entry, 2968 void *context, int vl, int mode, u64 data) 2969 { 2970 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2971 2972 return dd->send_pio_err_status_cnt[7]; 2973 } 2974 2975 static u64 access_pio_pec_fifo_parity_err_cnt(const struct cntr_entry *entry, 2976 void *context, int vl, int mode, 2977 u64 data) 2978 { 2979 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2980 2981 return dd->send_pio_err_status_cnt[6]; 2982 } 2983 2984 static u64 access_pio_pcc_fifo_parity_err_cnt(const struct cntr_entry *entry, 2985 void *context, int vl, int mode, 2986 u64 data) 2987 { 2988 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2989 2990 return dd->send_pio_err_status_cnt[5]; 2991 } 2992 2993 static u64 access_pio_sb_mem_fifo1_err_cnt(const struct cntr_entry *entry, 2994 void *context, int vl, int mode, 2995 u64 data) 2996 { 2997 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2998 2999 return dd->send_pio_err_status_cnt[4]; 3000 } 3001 3002 static u64 access_pio_sb_mem_fifo0_err_cnt(const struct cntr_entry *entry, 3003 void *context, int vl, int mode, 3004 u64 data) 3005 { 3006 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3007 3008 return dd->send_pio_err_status_cnt[3]; 3009 } 3010 3011 static u64 access_pio_csr_parity_err_cnt(const struct cntr_entry *entry, 3012 void *context, int vl, int mode, 3013 u64 data) 3014 { 3015 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3016 3017 return dd->send_pio_err_status_cnt[2]; 3018 } 3019 3020 static u64 access_pio_write_addr_parity_err_cnt(const struct cntr_entry *entry, 3021 void *context, int vl, 3022 int mode, u64 data) 3023 { 3024 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3025 3026 return dd->send_pio_err_status_cnt[1]; 3027 } 3028 3029 static u64 access_pio_write_bad_ctxt_err_cnt(const struct cntr_entry *entry, 3030 void *context, int vl, int mode, 3031 u64 data) 3032 { 3033 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3034 3035 return dd->send_pio_err_status_cnt[0]; 3036 } 3037 3038 /* 3039 * Software counters corresponding to each of the 3040 * error status bits within SendDmaErrStatus 3041 */ 3042 static u64 access_sdma_pcie_req_tracking_cor_err_cnt( 3043 const struct cntr_entry *entry, 3044 void *context, int vl, int mode, u64 data) 3045 { 3046 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3047 3048 return dd->send_dma_err_status_cnt[3]; 3049 } 3050 3051 static u64 access_sdma_pcie_req_tracking_unc_err_cnt( 3052 const struct cntr_entry *entry, 3053 void *context, int vl, int mode, u64 data) 3054 { 3055 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3056 3057 return dd->send_dma_err_status_cnt[2]; 3058 } 3059 3060 static u64 access_sdma_csr_parity_err_cnt(const struct cntr_entry *entry, 3061 void *context, int vl, int mode, 3062 u64 data) 3063 { 3064 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3065 3066 return dd->send_dma_err_status_cnt[1]; 3067 } 3068 3069 static u64 access_sdma_rpy_tag_err_cnt(const struct cntr_entry *entry, 3070 void *context, int vl, int mode, 3071 u64 data) 3072 { 3073 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3074 3075 return dd->send_dma_err_status_cnt[0]; 3076 } 3077 3078 /* 3079 * Software counters corresponding to each of the 3080 * error status bits within SendEgressErrStatus 3081 */ 3082 static u64 access_tx_read_pio_memory_csr_unc_err_cnt( 3083 const struct cntr_entry *entry, 3084 void *context, int vl, int mode, u64 data) 3085 { 3086 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3087 3088 return dd->send_egress_err_status_cnt[63]; 3089 } 3090 3091 static u64 access_tx_read_sdma_memory_csr_err_cnt( 3092 const struct cntr_entry *entry, 3093 void *context, int vl, int mode, u64 data) 3094 { 3095 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3096 3097 return dd->send_egress_err_status_cnt[62]; 3098 } 3099 3100 static u64 access_tx_egress_fifo_cor_err_cnt(const struct cntr_entry *entry, 3101 void *context, int vl, int mode, 3102 u64 data) 3103 { 3104 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3105 3106 return dd->send_egress_err_status_cnt[61]; 3107 } 3108 3109 static u64 access_tx_read_pio_memory_cor_err_cnt(const struct cntr_entry *entry, 3110 void *context, int vl, 3111 int mode, u64 data) 3112 { 3113 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3114 3115 return dd->send_egress_err_status_cnt[60]; 3116 } 3117 3118 static u64 access_tx_read_sdma_memory_cor_err_cnt( 3119 const struct cntr_entry *entry, 3120 void *context, int vl, int mode, u64 data) 3121 { 3122 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3123 3124 return dd->send_egress_err_status_cnt[59]; 3125 } 3126 3127 static u64 access_tx_sb_hdr_cor_err_cnt(const struct cntr_entry *entry, 3128 void *context, int vl, int mode, 3129 u64 data) 3130 { 3131 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3132 3133 return dd->send_egress_err_status_cnt[58]; 3134 } 3135 3136 static u64 access_tx_credit_overrun_err_cnt(const struct cntr_entry *entry, 3137 void *context, int vl, int mode, 3138 u64 data) 3139 { 3140 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3141 3142 return dd->send_egress_err_status_cnt[57]; 3143 } 3144 3145 static u64 access_tx_launch_fifo8_cor_err_cnt(const struct cntr_entry *entry, 3146 void *context, int vl, int mode, 3147 u64 data) 3148 { 3149 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3150 3151 return dd->send_egress_err_status_cnt[56]; 3152 } 3153 3154 static u64 access_tx_launch_fifo7_cor_err_cnt(const struct cntr_entry *entry, 3155 void *context, int vl, int mode, 3156 u64 data) 3157 { 3158 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3159 3160 return dd->send_egress_err_status_cnt[55]; 3161 } 3162 3163 static u64 access_tx_launch_fifo6_cor_err_cnt(const struct cntr_entry *entry, 3164 void *context, int vl, int mode, 3165 u64 data) 3166 { 3167 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3168 3169 return dd->send_egress_err_status_cnt[54]; 3170 } 3171 3172 static u64 access_tx_launch_fifo5_cor_err_cnt(const struct cntr_entry *entry, 3173 void *context, int vl, int mode, 3174 u64 data) 3175 { 3176 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3177 3178 return dd->send_egress_err_status_cnt[53]; 3179 } 3180 3181 static u64 access_tx_launch_fifo4_cor_err_cnt(const struct cntr_entry *entry, 3182 void *context, int vl, int mode, 3183 u64 data) 3184 { 3185 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3186 3187 return dd->send_egress_err_status_cnt[52]; 3188 } 3189 3190 static u64 access_tx_launch_fifo3_cor_err_cnt(const struct cntr_entry *entry, 3191 void *context, int vl, int mode, 3192 u64 data) 3193 { 3194 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3195 3196 return dd->send_egress_err_status_cnt[51]; 3197 } 3198 3199 static u64 access_tx_launch_fifo2_cor_err_cnt(const struct cntr_entry *entry, 3200 void *context, int vl, int mode, 3201 u64 data) 3202 { 3203 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3204 3205 return dd->send_egress_err_status_cnt[50]; 3206 } 3207 3208 static u64 access_tx_launch_fifo1_cor_err_cnt(const struct cntr_entry *entry, 3209 void *context, int vl, int mode, 3210 u64 data) 3211 { 3212 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3213 3214 return dd->send_egress_err_status_cnt[49]; 3215 } 3216 3217 static u64 access_tx_launch_fifo0_cor_err_cnt(const struct cntr_entry *entry, 3218 void *context, int vl, int mode, 3219 u64 data) 3220 { 3221 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3222 3223 return dd->send_egress_err_status_cnt[48]; 3224 } 3225 3226 static u64 access_tx_credit_return_vl_err_cnt(const struct cntr_entry *entry, 3227 void *context, int vl, int mode, 3228 u64 data) 3229 { 3230 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3231 3232 return dd->send_egress_err_status_cnt[47]; 3233 } 3234 3235 static u64 access_tx_hcrc_insertion_err_cnt(const struct cntr_entry *entry, 3236 void *context, int vl, int mode, 3237 u64 data) 3238 { 3239 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3240 3241 return dd->send_egress_err_status_cnt[46]; 3242 } 3243 3244 static u64 access_tx_egress_fifo_unc_err_cnt(const struct cntr_entry *entry, 3245 void *context, int vl, int mode, 3246 u64 data) 3247 { 3248 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3249 3250 return dd->send_egress_err_status_cnt[45]; 3251 } 3252 3253 static u64 access_tx_read_pio_memory_unc_err_cnt(const struct cntr_entry *entry, 3254 void *context, int vl, 3255 int mode, u64 data) 3256 { 3257 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3258 3259 return dd->send_egress_err_status_cnt[44]; 3260 } 3261 3262 static u64 access_tx_read_sdma_memory_unc_err_cnt( 3263 const struct cntr_entry *entry, 3264 void *context, int vl, int mode, u64 data) 3265 { 3266 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3267 3268 return dd->send_egress_err_status_cnt[43]; 3269 } 3270 3271 static u64 access_tx_sb_hdr_unc_err_cnt(const struct cntr_entry *entry, 3272 void *context, int vl, int mode, 3273 u64 data) 3274 { 3275 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3276 3277 return dd->send_egress_err_status_cnt[42]; 3278 } 3279 3280 static u64 access_tx_credit_return_partiy_err_cnt( 3281 const struct cntr_entry *entry, 3282 void *context, int vl, int mode, u64 data) 3283 { 3284 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3285 3286 return dd->send_egress_err_status_cnt[41]; 3287 } 3288 3289 static u64 access_tx_launch_fifo8_unc_or_parity_err_cnt( 3290 const struct cntr_entry *entry, 3291 void *context, int vl, int mode, u64 data) 3292 { 3293 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3294 3295 return dd->send_egress_err_status_cnt[40]; 3296 } 3297 3298 static u64 access_tx_launch_fifo7_unc_or_parity_err_cnt( 3299 const struct cntr_entry *entry, 3300 void *context, int vl, int mode, u64 data) 3301 { 3302 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3303 3304 return dd->send_egress_err_status_cnt[39]; 3305 } 3306 3307 static u64 access_tx_launch_fifo6_unc_or_parity_err_cnt( 3308 const struct cntr_entry *entry, 3309 void *context, int vl, int mode, u64 data) 3310 { 3311 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3312 3313 return dd->send_egress_err_status_cnt[38]; 3314 } 3315 3316 static u64 access_tx_launch_fifo5_unc_or_parity_err_cnt( 3317 const struct cntr_entry *entry, 3318 void *context, int vl, int mode, u64 data) 3319 { 3320 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3321 3322 return dd->send_egress_err_status_cnt[37]; 3323 } 3324 3325 static u64 access_tx_launch_fifo4_unc_or_parity_err_cnt( 3326 const struct cntr_entry *entry, 3327 void *context, int vl, int mode, u64 data) 3328 { 3329 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3330 3331 return dd->send_egress_err_status_cnt[36]; 3332 } 3333 3334 static u64 access_tx_launch_fifo3_unc_or_parity_err_cnt( 3335 const struct cntr_entry *entry, 3336 void *context, int vl, int mode, u64 data) 3337 { 3338 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3339 3340 return dd->send_egress_err_status_cnt[35]; 3341 } 3342 3343 static u64 access_tx_launch_fifo2_unc_or_parity_err_cnt( 3344 const struct cntr_entry *entry, 3345 void *context, int vl, int mode, u64 data) 3346 { 3347 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3348 3349 return dd->send_egress_err_status_cnt[34]; 3350 } 3351 3352 static u64 access_tx_launch_fifo1_unc_or_parity_err_cnt( 3353 const struct cntr_entry *entry, 3354 void *context, int vl, int mode, u64 data) 3355 { 3356 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3357 3358 return dd->send_egress_err_status_cnt[33]; 3359 } 3360 3361 static u64 access_tx_launch_fifo0_unc_or_parity_err_cnt( 3362 const struct cntr_entry *entry, 3363 void *context, int vl, int mode, u64 data) 3364 { 3365 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3366 3367 return dd->send_egress_err_status_cnt[32]; 3368 } 3369 3370 static u64 access_tx_sdma15_disallowed_packet_err_cnt( 3371 const struct cntr_entry *entry, 3372 void *context, int vl, int mode, u64 data) 3373 { 3374 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3375 3376 return dd->send_egress_err_status_cnt[31]; 3377 } 3378 3379 static u64 access_tx_sdma14_disallowed_packet_err_cnt( 3380 const struct cntr_entry *entry, 3381 void *context, int vl, int mode, u64 data) 3382 { 3383 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3384 3385 return dd->send_egress_err_status_cnt[30]; 3386 } 3387 3388 static u64 access_tx_sdma13_disallowed_packet_err_cnt( 3389 const struct cntr_entry *entry, 3390 void *context, int vl, int mode, u64 data) 3391 { 3392 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3393 3394 return dd->send_egress_err_status_cnt[29]; 3395 } 3396 3397 static u64 access_tx_sdma12_disallowed_packet_err_cnt( 3398 const struct cntr_entry *entry, 3399 void *context, int vl, int mode, u64 data) 3400 { 3401 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3402 3403 return dd->send_egress_err_status_cnt[28]; 3404 } 3405 3406 static u64 access_tx_sdma11_disallowed_packet_err_cnt( 3407 const struct cntr_entry *entry, 3408 void *context, int vl, int mode, u64 data) 3409 { 3410 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3411 3412 return dd->send_egress_err_status_cnt[27]; 3413 } 3414 3415 static u64 access_tx_sdma10_disallowed_packet_err_cnt( 3416 const struct cntr_entry *entry, 3417 void *context, int vl, int mode, u64 data) 3418 { 3419 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3420 3421 return dd->send_egress_err_status_cnt[26]; 3422 } 3423 3424 static u64 access_tx_sdma9_disallowed_packet_err_cnt( 3425 const struct cntr_entry *entry, 3426 void *context, int vl, int mode, u64 data) 3427 { 3428 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3429 3430 return dd->send_egress_err_status_cnt[25]; 3431 } 3432 3433 static u64 access_tx_sdma8_disallowed_packet_err_cnt( 3434 const struct cntr_entry *entry, 3435 void *context, int vl, int mode, u64 data) 3436 { 3437 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3438 3439 return dd->send_egress_err_status_cnt[24]; 3440 } 3441 3442 static u64 access_tx_sdma7_disallowed_packet_err_cnt( 3443 const struct cntr_entry *entry, 3444 void *context, int vl, int mode, u64 data) 3445 { 3446 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3447 3448 return dd->send_egress_err_status_cnt[23]; 3449 } 3450 3451 static u64 access_tx_sdma6_disallowed_packet_err_cnt( 3452 const struct cntr_entry *entry, 3453 void *context, int vl, int mode, u64 data) 3454 { 3455 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3456 3457 return dd->send_egress_err_status_cnt[22]; 3458 } 3459 3460 static u64 access_tx_sdma5_disallowed_packet_err_cnt( 3461 const struct cntr_entry *entry, 3462 void *context, int vl, int mode, u64 data) 3463 { 3464 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3465 3466 return dd->send_egress_err_status_cnt[21]; 3467 } 3468 3469 static u64 access_tx_sdma4_disallowed_packet_err_cnt( 3470 const struct cntr_entry *entry, 3471 void *context, int vl, int mode, u64 data) 3472 { 3473 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3474 3475 return dd->send_egress_err_status_cnt[20]; 3476 } 3477 3478 static u64 access_tx_sdma3_disallowed_packet_err_cnt( 3479 const struct cntr_entry *entry, 3480 void *context, int vl, int mode, u64 data) 3481 { 3482 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3483 3484 return dd->send_egress_err_status_cnt[19]; 3485 } 3486 3487 static u64 access_tx_sdma2_disallowed_packet_err_cnt( 3488 const struct cntr_entry *entry, 3489 void *context, int vl, int mode, u64 data) 3490 { 3491 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3492 3493 return dd->send_egress_err_status_cnt[18]; 3494 } 3495 3496 static u64 access_tx_sdma1_disallowed_packet_err_cnt( 3497 const struct cntr_entry *entry, 3498 void *context, int vl, int mode, u64 data) 3499 { 3500 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3501 3502 return dd->send_egress_err_status_cnt[17]; 3503 } 3504 3505 static u64 access_tx_sdma0_disallowed_packet_err_cnt( 3506 const struct cntr_entry *entry, 3507 void *context, int vl, int mode, u64 data) 3508 { 3509 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3510 3511 return dd->send_egress_err_status_cnt[16]; 3512 } 3513 3514 static u64 access_tx_config_parity_err_cnt(const struct cntr_entry *entry, 3515 void *context, int vl, int mode, 3516 u64 data) 3517 { 3518 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3519 3520 return dd->send_egress_err_status_cnt[15]; 3521 } 3522 3523 static u64 access_tx_sbrd_ctl_csr_parity_err_cnt(const struct cntr_entry *entry, 3524 void *context, int vl, 3525 int mode, u64 data) 3526 { 3527 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3528 3529 return dd->send_egress_err_status_cnt[14]; 3530 } 3531 3532 static u64 access_tx_launch_csr_parity_err_cnt(const struct cntr_entry *entry, 3533 void *context, int vl, int mode, 3534 u64 data) 3535 { 3536 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3537 3538 return dd->send_egress_err_status_cnt[13]; 3539 } 3540 3541 static u64 access_tx_illegal_vl_err_cnt(const struct cntr_entry *entry, 3542 void *context, int vl, int mode, 3543 u64 data) 3544 { 3545 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3546 3547 return dd->send_egress_err_status_cnt[12]; 3548 } 3549 3550 static u64 access_tx_sbrd_ctl_state_machine_parity_err_cnt( 3551 const struct cntr_entry *entry, 3552 void *context, int vl, int mode, u64 data) 3553 { 3554 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3555 3556 return dd->send_egress_err_status_cnt[11]; 3557 } 3558 3559 static u64 access_egress_reserved_10_err_cnt(const struct cntr_entry *entry, 3560 void *context, int vl, int mode, 3561 u64 data) 3562 { 3563 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3564 3565 return dd->send_egress_err_status_cnt[10]; 3566 } 3567 3568 static u64 access_egress_reserved_9_err_cnt(const struct cntr_entry *entry, 3569 void *context, int vl, int mode, 3570 u64 data) 3571 { 3572 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3573 3574 return dd->send_egress_err_status_cnt[9]; 3575 } 3576 3577 static u64 access_tx_sdma_launch_intf_parity_err_cnt( 3578 const struct cntr_entry *entry, 3579 void *context, int vl, int mode, u64 data) 3580 { 3581 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3582 3583 return dd->send_egress_err_status_cnt[8]; 3584 } 3585 3586 static u64 access_tx_pio_launch_intf_parity_err_cnt( 3587 const struct cntr_entry *entry, 3588 void *context, int vl, int mode, u64 data) 3589 { 3590 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3591 3592 return dd->send_egress_err_status_cnt[7]; 3593 } 3594 3595 static u64 access_egress_reserved_6_err_cnt(const struct cntr_entry *entry, 3596 void *context, int vl, int mode, 3597 u64 data) 3598 { 3599 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3600 3601 return dd->send_egress_err_status_cnt[6]; 3602 } 3603 3604 static u64 access_tx_incorrect_link_state_err_cnt( 3605 const struct cntr_entry *entry, 3606 void *context, int vl, int mode, u64 data) 3607 { 3608 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3609 3610 return dd->send_egress_err_status_cnt[5]; 3611 } 3612 3613 static u64 access_tx_linkdown_err_cnt(const struct cntr_entry *entry, 3614 void *context, int vl, int mode, 3615 u64 data) 3616 { 3617 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3618 3619 return dd->send_egress_err_status_cnt[4]; 3620 } 3621 3622 static u64 access_tx_egress_fifi_underrun_or_parity_err_cnt( 3623 const struct cntr_entry *entry, 3624 void *context, int vl, int mode, u64 data) 3625 { 3626 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3627 3628 return dd->send_egress_err_status_cnt[3]; 3629 } 3630 3631 static u64 access_egress_reserved_2_err_cnt(const struct cntr_entry *entry, 3632 void *context, int vl, int mode, 3633 u64 data) 3634 { 3635 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3636 3637 return dd->send_egress_err_status_cnt[2]; 3638 } 3639 3640 static u64 access_tx_pkt_integrity_mem_unc_err_cnt( 3641 const struct cntr_entry *entry, 3642 void *context, int vl, int mode, u64 data) 3643 { 3644 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3645 3646 return dd->send_egress_err_status_cnt[1]; 3647 } 3648 3649 static u64 access_tx_pkt_integrity_mem_cor_err_cnt( 3650 const struct cntr_entry *entry, 3651 void *context, int vl, int mode, u64 data) 3652 { 3653 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3654 3655 return dd->send_egress_err_status_cnt[0]; 3656 } 3657 3658 /* 3659 * Software counters corresponding to each of the 3660 * error status bits within SendErrStatus 3661 */ 3662 static u64 access_send_csr_write_bad_addr_err_cnt( 3663 const struct cntr_entry *entry, 3664 void *context, int vl, int mode, u64 data) 3665 { 3666 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3667 3668 return dd->send_err_status_cnt[2]; 3669 } 3670 3671 static u64 access_send_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry, 3672 void *context, int vl, 3673 int mode, u64 data) 3674 { 3675 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3676 3677 return dd->send_err_status_cnt[1]; 3678 } 3679 3680 static u64 access_send_csr_parity_cnt(const struct cntr_entry *entry, 3681 void *context, int vl, int mode, 3682 u64 data) 3683 { 3684 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3685 3686 return dd->send_err_status_cnt[0]; 3687 } 3688 3689 /* 3690 * Software counters corresponding to each of the 3691 * error status bits within SendCtxtErrStatus 3692 */ 3693 static u64 access_pio_write_out_of_bounds_err_cnt( 3694 const struct cntr_entry *entry, 3695 void *context, int vl, int mode, u64 data) 3696 { 3697 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3698 3699 return dd->sw_ctxt_err_status_cnt[4]; 3700 } 3701 3702 static u64 access_pio_write_overflow_err_cnt(const struct cntr_entry *entry, 3703 void *context, int vl, int mode, 3704 u64 data) 3705 { 3706 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3707 3708 return dd->sw_ctxt_err_status_cnt[3]; 3709 } 3710 3711 static u64 access_pio_write_crosses_boundary_err_cnt( 3712 const struct cntr_entry *entry, 3713 void *context, int vl, int mode, u64 data) 3714 { 3715 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3716 3717 return dd->sw_ctxt_err_status_cnt[2]; 3718 } 3719 3720 static u64 access_pio_disallowed_packet_err_cnt(const struct cntr_entry *entry, 3721 void *context, int vl, 3722 int mode, u64 data) 3723 { 3724 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3725 3726 return dd->sw_ctxt_err_status_cnt[1]; 3727 } 3728 3729 static u64 access_pio_inconsistent_sop_err_cnt(const struct cntr_entry *entry, 3730 void *context, int vl, int mode, 3731 u64 data) 3732 { 3733 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3734 3735 return dd->sw_ctxt_err_status_cnt[0]; 3736 } 3737 3738 /* 3739 * Software counters corresponding to each of the 3740 * error status bits within SendDmaEngErrStatus 3741 */ 3742 static u64 access_sdma_header_request_fifo_cor_err_cnt( 3743 const struct cntr_entry *entry, 3744 void *context, int vl, int mode, u64 data) 3745 { 3746 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3747 3748 return dd->sw_send_dma_eng_err_status_cnt[23]; 3749 } 3750 3751 static u64 access_sdma_header_storage_cor_err_cnt( 3752 const struct cntr_entry *entry, 3753 void *context, int vl, int mode, u64 data) 3754 { 3755 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3756 3757 return dd->sw_send_dma_eng_err_status_cnt[22]; 3758 } 3759 3760 static u64 access_sdma_packet_tracking_cor_err_cnt( 3761 const struct cntr_entry *entry, 3762 void *context, int vl, int mode, u64 data) 3763 { 3764 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3765 3766 return dd->sw_send_dma_eng_err_status_cnt[21]; 3767 } 3768 3769 static u64 access_sdma_assembly_cor_err_cnt(const struct cntr_entry *entry, 3770 void *context, int vl, int mode, 3771 u64 data) 3772 { 3773 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3774 3775 return dd->sw_send_dma_eng_err_status_cnt[20]; 3776 } 3777 3778 static u64 access_sdma_desc_table_cor_err_cnt(const struct cntr_entry *entry, 3779 void *context, int vl, int mode, 3780 u64 data) 3781 { 3782 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3783 3784 return dd->sw_send_dma_eng_err_status_cnt[19]; 3785 } 3786 3787 static u64 access_sdma_header_request_fifo_unc_err_cnt( 3788 const struct cntr_entry *entry, 3789 void *context, int vl, int mode, u64 data) 3790 { 3791 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3792 3793 return dd->sw_send_dma_eng_err_status_cnt[18]; 3794 } 3795 3796 static u64 access_sdma_header_storage_unc_err_cnt( 3797 const struct cntr_entry *entry, 3798 void *context, int vl, int mode, u64 data) 3799 { 3800 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3801 3802 return dd->sw_send_dma_eng_err_status_cnt[17]; 3803 } 3804 3805 static u64 access_sdma_packet_tracking_unc_err_cnt( 3806 const struct cntr_entry *entry, 3807 void *context, int vl, int mode, u64 data) 3808 { 3809 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3810 3811 return dd->sw_send_dma_eng_err_status_cnt[16]; 3812 } 3813 3814 static u64 access_sdma_assembly_unc_err_cnt(const struct cntr_entry *entry, 3815 void *context, int vl, int mode, 3816 u64 data) 3817 { 3818 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3819 3820 return dd->sw_send_dma_eng_err_status_cnt[15]; 3821 } 3822 3823 static u64 access_sdma_desc_table_unc_err_cnt(const struct cntr_entry *entry, 3824 void *context, int vl, int mode, 3825 u64 data) 3826 { 3827 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3828 3829 return dd->sw_send_dma_eng_err_status_cnt[14]; 3830 } 3831 3832 static u64 access_sdma_timeout_err_cnt(const struct cntr_entry *entry, 3833 void *context, int vl, int mode, 3834 u64 data) 3835 { 3836 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3837 3838 return dd->sw_send_dma_eng_err_status_cnt[13]; 3839 } 3840 3841 static u64 access_sdma_header_length_err_cnt(const struct cntr_entry *entry, 3842 void *context, int vl, int mode, 3843 u64 data) 3844 { 3845 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3846 3847 return dd->sw_send_dma_eng_err_status_cnt[12]; 3848 } 3849 3850 static u64 access_sdma_header_address_err_cnt(const struct cntr_entry *entry, 3851 void *context, int vl, int mode, 3852 u64 data) 3853 { 3854 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3855 3856 return dd->sw_send_dma_eng_err_status_cnt[11]; 3857 } 3858 3859 static u64 access_sdma_header_select_err_cnt(const struct cntr_entry *entry, 3860 void *context, int vl, int mode, 3861 u64 data) 3862 { 3863 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3864 3865 return dd->sw_send_dma_eng_err_status_cnt[10]; 3866 } 3867 3868 static u64 access_sdma_reserved_9_err_cnt(const struct cntr_entry *entry, 3869 void *context, int vl, int mode, 3870 u64 data) 3871 { 3872 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3873 3874 return dd->sw_send_dma_eng_err_status_cnt[9]; 3875 } 3876 3877 static u64 access_sdma_packet_desc_overflow_err_cnt( 3878 const struct cntr_entry *entry, 3879 void *context, int vl, int mode, u64 data) 3880 { 3881 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3882 3883 return dd->sw_send_dma_eng_err_status_cnt[8]; 3884 } 3885 3886 static u64 access_sdma_length_mismatch_err_cnt(const struct cntr_entry *entry, 3887 void *context, int vl, 3888 int mode, u64 data) 3889 { 3890 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3891 3892 return dd->sw_send_dma_eng_err_status_cnt[7]; 3893 } 3894 3895 static u64 access_sdma_halt_err_cnt(const struct cntr_entry *entry, 3896 void *context, int vl, int mode, u64 data) 3897 { 3898 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3899 3900 return dd->sw_send_dma_eng_err_status_cnt[6]; 3901 } 3902 3903 static u64 access_sdma_mem_read_err_cnt(const struct cntr_entry *entry, 3904 void *context, int vl, int mode, 3905 u64 data) 3906 { 3907 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3908 3909 return dd->sw_send_dma_eng_err_status_cnt[5]; 3910 } 3911 3912 static u64 access_sdma_first_desc_err_cnt(const struct cntr_entry *entry, 3913 void *context, int vl, int mode, 3914 u64 data) 3915 { 3916 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3917 3918 return dd->sw_send_dma_eng_err_status_cnt[4]; 3919 } 3920 3921 static u64 access_sdma_tail_out_of_bounds_err_cnt( 3922 const struct cntr_entry *entry, 3923 void *context, int vl, int mode, u64 data) 3924 { 3925 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3926 3927 return dd->sw_send_dma_eng_err_status_cnt[3]; 3928 } 3929 3930 static u64 access_sdma_too_long_err_cnt(const struct cntr_entry *entry, 3931 void *context, int vl, int mode, 3932 u64 data) 3933 { 3934 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3935 3936 return dd->sw_send_dma_eng_err_status_cnt[2]; 3937 } 3938 3939 static u64 access_sdma_gen_mismatch_err_cnt(const struct cntr_entry *entry, 3940 void *context, int vl, int mode, 3941 u64 data) 3942 { 3943 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3944 3945 return dd->sw_send_dma_eng_err_status_cnt[1]; 3946 } 3947 3948 static u64 access_sdma_wrong_dw_err_cnt(const struct cntr_entry *entry, 3949 void *context, int vl, int mode, 3950 u64 data) 3951 { 3952 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3953 3954 return dd->sw_send_dma_eng_err_status_cnt[0]; 3955 } 3956 3957 static u64 access_dc_rcv_err_cnt(const struct cntr_entry *entry, 3958 void *context, int vl, int mode, 3959 u64 data) 3960 { 3961 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3962 3963 u64 val = 0; 3964 u64 csr = entry->csr; 3965 3966 val = read_write_csr(dd, csr, mode, data); 3967 if (mode == CNTR_MODE_R) { 3968 val = val > CNTR_MAX - dd->sw_rcv_bypass_packet_errors ? 3969 CNTR_MAX : val + dd->sw_rcv_bypass_packet_errors; 3970 } else if (mode == CNTR_MODE_W) { 3971 dd->sw_rcv_bypass_packet_errors = 0; 3972 } else { 3973 dd_dev_err(dd, "Invalid cntr register access mode"); 3974 return 0; 3975 } 3976 return val; 3977 } 3978 3979 #define def_access_sw_cpu(cntr) \ 3980 static u64 access_sw_cpu_##cntr(const struct cntr_entry *entry, \ 3981 void *context, int vl, int mode, u64 data) \ 3982 { \ 3983 struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context; \ 3984 return read_write_cpu(ppd->dd, &ppd->ibport_data.rvp.z_ ##cntr, \ 3985 ppd->ibport_data.rvp.cntr, vl, \ 3986 mode, data); \ 3987 } 3988 3989 def_access_sw_cpu(rc_acks); 3990 def_access_sw_cpu(rc_qacks); 3991 def_access_sw_cpu(rc_delayed_comp); 3992 3993 #define def_access_ibp_counter(cntr) \ 3994 static u64 access_ibp_##cntr(const struct cntr_entry *entry, \ 3995 void *context, int vl, int mode, u64 data) \ 3996 { \ 3997 struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context; \ 3998 \ 3999 if (vl != CNTR_INVALID_VL) \ 4000 return 0; \ 4001 \ 4002 return read_write_sw(ppd->dd, &ppd->ibport_data.rvp.n_ ##cntr, \ 4003 mode, data); \ 4004 } 4005 4006 def_access_ibp_counter(loop_pkts); 4007 def_access_ibp_counter(rc_resends); 4008 def_access_ibp_counter(rnr_naks); 4009 def_access_ibp_counter(other_naks); 4010 def_access_ibp_counter(rc_timeouts); 4011 def_access_ibp_counter(pkt_drops); 4012 def_access_ibp_counter(dmawait); 4013 def_access_ibp_counter(rc_seqnak); 4014 def_access_ibp_counter(rc_dupreq); 4015 def_access_ibp_counter(rdma_seq); 4016 def_access_ibp_counter(unaligned); 4017 def_access_ibp_counter(seq_naks); 4018 4019 static struct cntr_entry dev_cntrs[DEV_CNTR_LAST] = { 4020 [C_RCV_OVF] = RXE32_DEV_CNTR_ELEM(RcvOverflow, RCV_BUF_OVFL_CNT, CNTR_SYNTH), 4021 [C_RX_TID_FULL] = RXE32_DEV_CNTR_ELEM(RxTIDFullEr, RCV_TID_FULL_ERR_CNT, 4022 CNTR_NORMAL), 4023 [C_RX_TID_INVALID] = RXE32_DEV_CNTR_ELEM(RxTIDInvalid, RCV_TID_VALID_ERR_CNT, 4024 CNTR_NORMAL), 4025 [C_RX_TID_FLGMS] = RXE32_DEV_CNTR_ELEM(RxTidFLGMs, 4026 RCV_TID_FLOW_GEN_MISMATCH_CNT, 4027 CNTR_NORMAL), 4028 [C_RX_CTX_EGRS] = RXE32_DEV_CNTR_ELEM(RxCtxEgrS, RCV_CONTEXT_EGR_STALL, 4029 CNTR_NORMAL), 4030 [C_RCV_TID_FLSMS] = RXE32_DEV_CNTR_ELEM(RxTidFLSMs, 4031 RCV_TID_FLOW_SEQ_MISMATCH_CNT, CNTR_NORMAL), 4032 [C_CCE_PCI_CR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePciCrSt, 4033 CCE_PCIE_POSTED_CRDT_STALL_CNT, CNTR_NORMAL), 4034 [C_CCE_PCI_TR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePciTrSt, CCE_PCIE_TRGT_STALL_CNT, 4035 CNTR_NORMAL), 4036 [C_CCE_PIO_WR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePioWrSt, CCE_PIO_WR_STALL_CNT, 4037 CNTR_NORMAL), 4038 [C_CCE_ERR_INT] = CCE_INT_DEV_CNTR_ELEM(CceErrInt, CCE_ERR_INT_CNT, 4039 CNTR_NORMAL), 4040 [C_CCE_SDMA_INT] = CCE_INT_DEV_CNTR_ELEM(CceSdmaInt, CCE_SDMA_INT_CNT, 4041 CNTR_NORMAL), 4042 [C_CCE_MISC_INT] = CCE_INT_DEV_CNTR_ELEM(CceMiscInt, CCE_MISC_INT_CNT, 4043 CNTR_NORMAL), 4044 [C_CCE_RCV_AV_INT] = CCE_INT_DEV_CNTR_ELEM(CceRcvAvInt, CCE_RCV_AVAIL_INT_CNT, 4045 CNTR_NORMAL), 4046 [C_CCE_RCV_URG_INT] = CCE_INT_DEV_CNTR_ELEM(CceRcvUrgInt, 4047 CCE_RCV_URGENT_INT_CNT, CNTR_NORMAL), 4048 [C_CCE_SEND_CR_INT] = CCE_INT_DEV_CNTR_ELEM(CceSndCrInt, 4049 CCE_SEND_CREDIT_INT_CNT, CNTR_NORMAL), 4050 [C_DC_UNC_ERR] = DC_PERF_CNTR(DcUnctblErr, DCC_ERR_UNCORRECTABLE_CNT, 4051 CNTR_SYNTH), 4052 [C_DC_RCV_ERR] = CNTR_ELEM("DcRecvErr", DCC_ERR_PORTRCV_ERR_CNT, 0, CNTR_SYNTH, 4053 access_dc_rcv_err_cnt), 4054 [C_DC_FM_CFG_ERR] = DC_PERF_CNTR(DcFmCfgErr, DCC_ERR_FMCONFIG_ERR_CNT, 4055 CNTR_SYNTH), 4056 [C_DC_RMT_PHY_ERR] = DC_PERF_CNTR(DcRmtPhyErr, DCC_ERR_RCVREMOTE_PHY_ERR_CNT, 4057 CNTR_SYNTH), 4058 [C_DC_DROPPED_PKT] = DC_PERF_CNTR(DcDroppedPkt, DCC_ERR_DROPPED_PKT_CNT, 4059 CNTR_SYNTH), 4060 [C_DC_MC_XMIT_PKTS] = DC_PERF_CNTR(DcMcXmitPkts, 4061 DCC_PRF_PORT_XMIT_MULTICAST_CNT, CNTR_SYNTH), 4062 [C_DC_MC_RCV_PKTS] = DC_PERF_CNTR(DcMcRcvPkts, 4063 DCC_PRF_PORT_RCV_MULTICAST_PKT_CNT, 4064 CNTR_SYNTH), 4065 [C_DC_XMIT_CERR] = DC_PERF_CNTR(DcXmitCorr, 4066 DCC_PRF_PORT_XMIT_CORRECTABLE_CNT, CNTR_SYNTH), 4067 [C_DC_RCV_CERR] = DC_PERF_CNTR(DcRcvCorrCnt, DCC_PRF_PORT_RCV_CORRECTABLE_CNT, 4068 CNTR_SYNTH), 4069 [C_DC_RCV_FCC] = DC_PERF_CNTR(DcRxFCntl, DCC_PRF_RX_FLOW_CRTL_CNT, 4070 CNTR_SYNTH), 4071 [C_DC_XMIT_FCC] = DC_PERF_CNTR(DcXmitFCntl, DCC_PRF_TX_FLOW_CRTL_CNT, 4072 CNTR_SYNTH), 4073 [C_DC_XMIT_FLITS] = DC_PERF_CNTR(DcXmitFlits, DCC_PRF_PORT_XMIT_DATA_CNT, 4074 CNTR_SYNTH), 4075 [C_DC_RCV_FLITS] = DC_PERF_CNTR(DcRcvFlits, DCC_PRF_PORT_RCV_DATA_CNT, 4076 CNTR_SYNTH), 4077 [C_DC_XMIT_PKTS] = DC_PERF_CNTR(DcXmitPkts, DCC_PRF_PORT_XMIT_PKTS_CNT, 4078 CNTR_SYNTH), 4079 [C_DC_RCV_PKTS] = DC_PERF_CNTR(DcRcvPkts, DCC_PRF_PORT_RCV_PKTS_CNT, 4080 CNTR_SYNTH), 4081 [C_DC_RX_FLIT_VL] = DC_PERF_CNTR(DcRxFlitVl, DCC_PRF_PORT_VL_RCV_DATA_CNT, 4082 CNTR_SYNTH | CNTR_VL), 4083 [C_DC_RX_PKT_VL] = DC_PERF_CNTR(DcRxPktVl, DCC_PRF_PORT_VL_RCV_PKTS_CNT, 4084 CNTR_SYNTH | CNTR_VL), 4085 [C_DC_RCV_FCN] = DC_PERF_CNTR(DcRcvFcn, DCC_PRF_PORT_RCV_FECN_CNT, CNTR_SYNTH), 4086 [C_DC_RCV_FCN_VL] = DC_PERF_CNTR(DcRcvFcnVl, DCC_PRF_PORT_VL_RCV_FECN_CNT, 4087 CNTR_SYNTH | CNTR_VL), 4088 [C_DC_RCV_BCN] = DC_PERF_CNTR(DcRcvBcn, DCC_PRF_PORT_RCV_BECN_CNT, CNTR_SYNTH), 4089 [C_DC_RCV_BCN_VL] = DC_PERF_CNTR(DcRcvBcnVl, DCC_PRF_PORT_VL_RCV_BECN_CNT, 4090 CNTR_SYNTH | CNTR_VL), 4091 [C_DC_RCV_BBL] = DC_PERF_CNTR(DcRcvBbl, DCC_PRF_PORT_RCV_BUBBLE_CNT, 4092 CNTR_SYNTH), 4093 [C_DC_RCV_BBL_VL] = DC_PERF_CNTR(DcRcvBblVl, DCC_PRF_PORT_VL_RCV_BUBBLE_CNT, 4094 CNTR_SYNTH | CNTR_VL), 4095 [C_DC_MARK_FECN] = DC_PERF_CNTR(DcMarkFcn, DCC_PRF_PORT_MARK_FECN_CNT, 4096 CNTR_SYNTH), 4097 [C_DC_MARK_FECN_VL] = DC_PERF_CNTR(DcMarkFcnVl, DCC_PRF_PORT_VL_MARK_FECN_CNT, 4098 CNTR_SYNTH | CNTR_VL), 4099 [C_DC_TOTAL_CRC] = 4100 DC_PERF_CNTR_LCB(DcTotCrc, DC_LCB_ERR_INFO_TOTAL_CRC_ERR, 4101 CNTR_SYNTH), 4102 [C_DC_CRC_LN0] = DC_PERF_CNTR_LCB(DcCrcLn0, DC_LCB_ERR_INFO_CRC_ERR_LN0, 4103 CNTR_SYNTH), 4104 [C_DC_CRC_LN1] = DC_PERF_CNTR_LCB(DcCrcLn1, DC_LCB_ERR_INFO_CRC_ERR_LN1, 4105 CNTR_SYNTH), 4106 [C_DC_CRC_LN2] = DC_PERF_CNTR_LCB(DcCrcLn2, DC_LCB_ERR_INFO_CRC_ERR_LN2, 4107 CNTR_SYNTH), 4108 [C_DC_CRC_LN3] = DC_PERF_CNTR_LCB(DcCrcLn3, DC_LCB_ERR_INFO_CRC_ERR_LN3, 4109 CNTR_SYNTH), 4110 [C_DC_CRC_MULT_LN] = 4111 DC_PERF_CNTR_LCB(DcMultLn, DC_LCB_ERR_INFO_CRC_ERR_MULTI_LN, 4112 CNTR_SYNTH), 4113 [C_DC_TX_REPLAY] = DC_PERF_CNTR_LCB(DcTxReplay, DC_LCB_ERR_INFO_TX_REPLAY_CNT, 4114 CNTR_SYNTH), 4115 [C_DC_RX_REPLAY] = DC_PERF_CNTR_LCB(DcRxReplay, DC_LCB_ERR_INFO_RX_REPLAY_CNT, 4116 CNTR_SYNTH), 4117 [C_DC_SEQ_CRC_CNT] = 4118 DC_PERF_CNTR_LCB(DcLinkSeqCrc, DC_LCB_ERR_INFO_SEQ_CRC_CNT, 4119 CNTR_SYNTH), 4120 [C_DC_ESC0_ONLY_CNT] = 4121 DC_PERF_CNTR_LCB(DcEsc0, DC_LCB_ERR_INFO_ESCAPE_0_ONLY_CNT, 4122 CNTR_SYNTH), 4123 [C_DC_ESC0_PLUS1_CNT] = 4124 DC_PERF_CNTR_LCB(DcEsc1, DC_LCB_ERR_INFO_ESCAPE_0_PLUS1_CNT, 4125 CNTR_SYNTH), 4126 [C_DC_ESC0_PLUS2_CNT] = 4127 DC_PERF_CNTR_LCB(DcEsc0Plus2, DC_LCB_ERR_INFO_ESCAPE_0_PLUS2_CNT, 4128 CNTR_SYNTH), 4129 [C_DC_REINIT_FROM_PEER_CNT] = 4130 DC_PERF_CNTR_LCB(DcReinitPeer, DC_LCB_ERR_INFO_REINIT_FROM_PEER_CNT, 4131 CNTR_SYNTH), 4132 [C_DC_SBE_CNT] = DC_PERF_CNTR_LCB(DcSbe, DC_LCB_ERR_INFO_SBE_CNT, 4133 CNTR_SYNTH), 4134 [C_DC_MISC_FLG_CNT] = 4135 DC_PERF_CNTR_LCB(DcMiscFlg, DC_LCB_ERR_INFO_MISC_FLG_CNT, 4136 CNTR_SYNTH), 4137 [C_DC_PRF_GOOD_LTP_CNT] = 4138 DC_PERF_CNTR_LCB(DcGoodLTP, DC_LCB_PRF_GOOD_LTP_CNT, CNTR_SYNTH), 4139 [C_DC_PRF_ACCEPTED_LTP_CNT] = 4140 DC_PERF_CNTR_LCB(DcAccLTP, DC_LCB_PRF_ACCEPTED_LTP_CNT, 4141 CNTR_SYNTH), 4142 [C_DC_PRF_RX_FLIT_CNT] = 4143 DC_PERF_CNTR_LCB(DcPrfRxFlit, DC_LCB_PRF_RX_FLIT_CNT, CNTR_SYNTH), 4144 [C_DC_PRF_TX_FLIT_CNT] = 4145 DC_PERF_CNTR_LCB(DcPrfTxFlit, DC_LCB_PRF_TX_FLIT_CNT, CNTR_SYNTH), 4146 [C_DC_PRF_CLK_CNTR] = 4147 DC_PERF_CNTR_LCB(DcPrfClk, DC_LCB_PRF_CLK_CNTR, CNTR_SYNTH), 4148 [C_DC_PG_DBG_FLIT_CRDTS_CNT] = 4149 DC_PERF_CNTR_LCB(DcFltCrdts, DC_LCB_PG_DBG_FLIT_CRDTS_CNT, CNTR_SYNTH), 4150 [C_DC_PG_STS_PAUSE_COMPLETE_CNT] = 4151 DC_PERF_CNTR_LCB(DcPauseComp, DC_LCB_PG_STS_PAUSE_COMPLETE_CNT, 4152 CNTR_SYNTH), 4153 [C_DC_PG_STS_TX_SBE_CNT] = 4154 DC_PERF_CNTR_LCB(DcStsTxSbe, DC_LCB_PG_STS_TX_SBE_CNT, CNTR_SYNTH), 4155 [C_DC_PG_STS_TX_MBE_CNT] = 4156 DC_PERF_CNTR_LCB(DcStsTxMbe, DC_LCB_PG_STS_TX_MBE_CNT, 4157 CNTR_SYNTH), 4158 [C_SW_CPU_INTR] = CNTR_ELEM("Intr", 0, 0, CNTR_NORMAL, 4159 access_sw_cpu_intr), 4160 [C_SW_CPU_RCV_LIM] = CNTR_ELEM("RcvLimit", 0, 0, CNTR_NORMAL, 4161 access_sw_cpu_rcv_limit), 4162 [C_SW_VTX_WAIT] = CNTR_ELEM("vTxWait", 0, 0, CNTR_NORMAL, 4163 access_sw_vtx_wait), 4164 [C_SW_PIO_WAIT] = CNTR_ELEM("PioWait", 0, 0, CNTR_NORMAL, 4165 access_sw_pio_wait), 4166 [C_SW_PIO_DRAIN] = CNTR_ELEM("PioDrain", 0, 0, CNTR_NORMAL, 4167 access_sw_pio_drain), 4168 [C_SW_KMEM_WAIT] = CNTR_ELEM("KmemWait", 0, 0, CNTR_NORMAL, 4169 access_sw_kmem_wait), 4170 [C_SW_SEND_SCHED] = CNTR_ELEM("SendSched", 0, 0, CNTR_NORMAL, 4171 access_sw_send_schedule), 4172 [C_SDMA_DESC_FETCHED_CNT] = CNTR_ELEM("SDEDscFdCn", 4173 SEND_DMA_DESC_FETCHED_CNT, 0, 4174 CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA, 4175 dev_access_u32_csr), 4176 [C_SDMA_INT_CNT] = CNTR_ELEM("SDMAInt", 0, 0, 4177 CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA, 4178 access_sde_int_cnt), 4179 [C_SDMA_ERR_CNT] = CNTR_ELEM("SDMAErrCt", 0, 0, 4180 CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA, 4181 access_sde_err_cnt), 4182 [C_SDMA_IDLE_INT_CNT] = CNTR_ELEM("SDMAIdInt", 0, 0, 4183 CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA, 4184 access_sde_idle_int_cnt), 4185 [C_SDMA_PROGRESS_INT_CNT] = CNTR_ELEM("SDMAPrIntCn", 0, 0, 4186 CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA, 4187 access_sde_progress_int_cnt), 4188 /* MISC_ERR_STATUS */ 4189 [C_MISC_PLL_LOCK_FAIL_ERR] = CNTR_ELEM("MISC_PLL_LOCK_FAIL_ERR", 0, 0, 4190 CNTR_NORMAL, 4191 access_misc_pll_lock_fail_err_cnt), 4192 [C_MISC_MBIST_FAIL_ERR] = CNTR_ELEM("MISC_MBIST_FAIL_ERR", 0, 0, 4193 CNTR_NORMAL, 4194 access_misc_mbist_fail_err_cnt), 4195 [C_MISC_INVALID_EEP_CMD_ERR] = CNTR_ELEM("MISC_INVALID_EEP_CMD_ERR", 0, 0, 4196 CNTR_NORMAL, 4197 access_misc_invalid_eep_cmd_err_cnt), 4198 [C_MISC_EFUSE_DONE_PARITY_ERR] = CNTR_ELEM("MISC_EFUSE_DONE_PARITY_ERR", 0, 0, 4199 CNTR_NORMAL, 4200 access_misc_efuse_done_parity_err_cnt), 4201 [C_MISC_EFUSE_WRITE_ERR] = CNTR_ELEM("MISC_EFUSE_WRITE_ERR", 0, 0, 4202 CNTR_NORMAL, 4203 access_misc_efuse_write_err_cnt), 4204 [C_MISC_EFUSE_READ_BAD_ADDR_ERR] = CNTR_ELEM("MISC_EFUSE_READ_BAD_ADDR_ERR", 0, 4205 0, CNTR_NORMAL, 4206 access_misc_efuse_read_bad_addr_err_cnt), 4207 [C_MISC_EFUSE_CSR_PARITY_ERR] = CNTR_ELEM("MISC_EFUSE_CSR_PARITY_ERR", 0, 0, 4208 CNTR_NORMAL, 4209 access_misc_efuse_csr_parity_err_cnt), 4210 [C_MISC_FW_AUTH_FAILED_ERR] = CNTR_ELEM("MISC_FW_AUTH_FAILED_ERR", 0, 0, 4211 CNTR_NORMAL, 4212 access_misc_fw_auth_failed_err_cnt), 4213 [C_MISC_KEY_MISMATCH_ERR] = CNTR_ELEM("MISC_KEY_MISMATCH_ERR", 0, 0, 4214 CNTR_NORMAL, 4215 access_misc_key_mismatch_err_cnt), 4216 [C_MISC_SBUS_WRITE_FAILED_ERR] = CNTR_ELEM("MISC_SBUS_WRITE_FAILED_ERR", 0, 0, 4217 CNTR_NORMAL, 4218 access_misc_sbus_write_failed_err_cnt), 4219 [C_MISC_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("MISC_CSR_WRITE_BAD_ADDR_ERR", 0, 0, 4220 CNTR_NORMAL, 4221 access_misc_csr_write_bad_addr_err_cnt), 4222 [C_MISC_CSR_READ_BAD_ADDR_ERR] = CNTR_ELEM("MISC_CSR_READ_BAD_ADDR_ERR", 0, 0, 4223 CNTR_NORMAL, 4224 access_misc_csr_read_bad_addr_err_cnt), 4225 [C_MISC_CSR_PARITY_ERR] = CNTR_ELEM("MISC_CSR_PARITY_ERR", 0, 0, 4226 CNTR_NORMAL, 4227 access_misc_csr_parity_err_cnt), 4228 /* CceErrStatus */ 4229 [C_CCE_ERR_STATUS_AGGREGATED_CNT] = CNTR_ELEM("CceErrStatusAggregatedCnt", 0, 0, 4230 CNTR_NORMAL, 4231 access_sw_cce_err_status_aggregated_cnt), 4232 [C_CCE_MSIX_CSR_PARITY_ERR] = CNTR_ELEM("CceMsixCsrParityErr", 0, 0, 4233 CNTR_NORMAL, 4234 access_cce_msix_csr_parity_err_cnt), 4235 [C_CCE_INT_MAP_UNC_ERR] = CNTR_ELEM("CceIntMapUncErr", 0, 0, 4236 CNTR_NORMAL, 4237 access_cce_int_map_unc_err_cnt), 4238 [C_CCE_INT_MAP_COR_ERR] = CNTR_ELEM("CceIntMapCorErr", 0, 0, 4239 CNTR_NORMAL, 4240 access_cce_int_map_cor_err_cnt), 4241 [C_CCE_MSIX_TABLE_UNC_ERR] = CNTR_ELEM("CceMsixTableUncErr", 0, 0, 4242 CNTR_NORMAL, 4243 access_cce_msix_table_unc_err_cnt), 4244 [C_CCE_MSIX_TABLE_COR_ERR] = CNTR_ELEM("CceMsixTableCorErr", 0, 0, 4245 CNTR_NORMAL, 4246 access_cce_msix_table_cor_err_cnt), 4247 [C_CCE_RXDMA_CONV_FIFO_PARITY_ERR] = CNTR_ELEM("CceRxdmaConvFifoParityErr", 0, 4248 0, CNTR_NORMAL, 4249 access_cce_rxdma_conv_fifo_parity_err_cnt), 4250 [C_CCE_RCPL_ASYNC_FIFO_PARITY_ERR] = CNTR_ELEM("CceRcplAsyncFifoParityErr", 0, 4251 0, CNTR_NORMAL, 4252 access_cce_rcpl_async_fifo_parity_err_cnt), 4253 [C_CCE_SEG_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("CceSegWriteBadAddrErr", 0, 0, 4254 CNTR_NORMAL, 4255 access_cce_seg_write_bad_addr_err_cnt), 4256 [C_CCE_SEG_READ_BAD_ADDR_ERR] = CNTR_ELEM("CceSegReadBadAddrErr", 0, 0, 4257 CNTR_NORMAL, 4258 access_cce_seg_read_bad_addr_err_cnt), 4259 [C_LA_TRIGGERED] = CNTR_ELEM("Cce LATriggered", 0, 0, 4260 CNTR_NORMAL, 4261 access_la_triggered_cnt), 4262 [C_CCE_TRGT_CPL_TIMEOUT_ERR] = CNTR_ELEM("CceTrgtCplTimeoutErr", 0, 0, 4263 CNTR_NORMAL, 4264 access_cce_trgt_cpl_timeout_err_cnt), 4265 [C_PCIC_RECEIVE_PARITY_ERR] = CNTR_ELEM("PcicReceiveParityErr", 0, 0, 4266 CNTR_NORMAL, 4267 access_pcic_receive_parity_err_cnt), 4268 [C_PCIC_TRANSMIT_BACK_PARITY_ERR] = CNTR_ELEM("PcicTransmitBackParityErr", 0, 0, 4269 CNTR_NORMAL, 4270 access_pcic_transmit_back_parity_err_cnt), 4271 [C_PCIC_TRANSMIT_FRONT_PARITY_ERR] = CNTR_ELEM("PcicTransmitFrontParityErr", 0, 4272 0, CNTR_NORMAL, 4273 access_pcic_transmit_front_parity_err_cnt), 4274 [C_PCIC_CPL_DAT_Q_UNC_ERR] = CNTR_ELEM("PcicCplDatQUncErr", 0, 0, 4275 CNTR_NORMAL, 4276 access_pcic_cpl_dat_q_unc_err_cnt), 4277 [C_PCIC_CPL_HD_Q_UNC_ERR] = CNTR_ELEM("PcicCplHdQUncErr", 0, 0, 4278 CNTR_NORMAL, 4279 access_pcic_cpl_hd_q_unc_err_cnt), 4280 [C_PCIC_POST_DAT_Q_UNC_ERR] = CNTR_ELEM("PcicPostDatQUncErr", 0, 0, 4281 CNTR_NORMAL, 4282 access_pcic_post_dat_q_unc_err_cnt), 4283 [C_PCIC_POST_HD_Q_UNC_ERR] = CNTR_ELEM("PcicPostHdQUncErr", 0, 0, 4284 CNTR_NORMAL, 4285 access_pcic_post_hd_q_unc_err_cnt), 4286 [C_PCIC_RETRY_SOT_MEM_UNC_ERR] = CNTR_ELEM("PcicRetrySotMemUncErr", 0, 0, 4287 CNTR_NORMAL, 4288 access_pcic_retry_sot_mem_unc_err_cnt), 4289 [C_PCIC_RETRY_MEM_UNC_ERR] = CNTR_ELEM("PcicRetryMemUncErr", 0, 0, 4290 CNTR_NORMAL, 4291 access_pcic_retry_mem_unc_err), 4292 [C_PCIC_N_POST_DAT_Q_PARITY_ERR] = CNTR_ELEM("PcicNPostDatQParityErr", 0, 0, 4293 CNTR_NORMAL, 4294 access_pcic_n_post_dat_q_parity_err_cnt), 4295 [C_PCIC_N_POST_H_Q_PARITY_ERR] = CNTR_ELEM("PcicNPostHQParityErr", 0, 0, 4296 CNTR_NORMAL, 4297 access_pcic_n_post_h_q_parity_err_cnt), 4298 [C_PCIC_CPL_DAT_Q_COR_ERR] = CNTR_ELEM("PcicCplDatQCorErr", 0, 0, 4299 CNTR_NORMAL, 4300 access_pcic_cpl_dat_q_cor_err_cnt), 4301 [C_PCIC_CPL_HD_Q_COR_ERR] = CNTR_ELEM("PcicCplHdQCorErr", 0, 0, 4302 CNTR_NORMAL, 4303 access_pcic_cpl_hd_q_cor_err_cnt), 4304 [C_PCIC_POST_DAT_Q_COR_ERR] = CNTR_ELEM("PcicPostDatQCorErr", 0, 0, 4305 CNTR_NORMAL, 4306 access_pcic_post_dat_q_cor_err_cnt), 4307 [C_PCIC_POST_HD_Q_COR_ERR] = CNTR_ELEM("PcicPostHdQCorErr", 0, 0, 4308 CNTR_NORMAL, 4309 access_pcic_post_hd_q_cor_err_cnt), 4310 [C_PCIC_RETRY_SOT_MEM_COR_ERR] = CNTR_ELEM("PcicRetrySotMemCorErr", 0, 0, 4311 CNTR_NORMAL, 4312 access_pcic_retry_sot_mem_cor_err_cnt), 4313 [C_PCIC_RETRY_MEM_COR_ERR] = CNTR_ELEM("PcicRetryMemCorErr", 0, 0, 4314 CNTR_NORMAL, 4315 access_pcic_retry_mem_cor_err_cnt), 4316 [C_CCE_CLI1_ASYNC_FIFO_DBG_PARITY_ERR] = CNTR_ELEM( 4317 "CceCli1AsyncFifoDbgParityError", 0, 0, 4318 CNTR_NORMAL, 4319 access_cce_cli1_async_fifo_dbg_parity_err_cnt), 4320 [C_CCE_CLI1_ASYNC_FIFO_RXDMA_PARITY_ERR] = CNTR_ELEM( 4321 "CceCli1AsyncFifoRxdmaParityError", 0, 0, 4322 CNTR_NORMAL, 4323 access_cce_cli1_async_fifo_rxdma_parity_err_cnt 4324 ), 4325 [C_CCE_CLI1_ASYNC_FIFO_SDMA_HD_PARITY_ERR] = CNTR_ELEM( 4326 "CceCli1AsyncFifoSdmaHdParityErr", 0, 0, 4327 CNTR_NORMAL, 4328 access_cce_cli1_async_fifo_sdma_hd_parity_err_cnt), 4329 [C_CCE_CLI1_ASYNC_FIFO_PIO_CRDT_PARITY_ERR] = CNTR_ELEM( 4330 "CceCli1AsyncFifoPioCrdtParityErr", 0, 0, 4331 CNTR_NORMAL, 4332 access_cce_cl1_async_fifo_pio_crdt_parity_err_cnt), 4333 [C_CCE_CLI2_ASYNC_FIFO_PARITY_ERR] = CNTR_ELEM("CceCli2AsyncFifoParityErr", 0, 4334 0, CNTR_NORMAL, 4335 access_cce_cli2_async_fifo_parity_err_cnt), 4336 [C_CCE_CSR_CFG_BUS_PARITY_ERR] = CNTR_ELEM("CceCsrCfgBusParityErr", 0, 0, 4337 CNTR_NORMAL, 4338 access_cce_csr_cfg_bus_parity_err_cnt), 4339 [C_CCE_CLI0_ASYNC_FIFO_PARTIY_ERR] = CNTR_ELEM("CceCli0AsyncFifoParityErr", 0, 4340 0, CNTR_NORMAL, 4341 access_cce_cli0_async_fifo_parity_err_cnt), 4342 [C_CCE_RSPD_DATA_PARITY_ERR] = CNTR_ELEM("CceRspdDataParityErr", 0, 0, 4343 CNTR_NORMAL, 4344 access_cce_rspd_data_parity_err_cnt), 4345 [C_CCE_TRGT_ACCESS_ERR] = CNTR_ELEM("CceTrgtAccessErr", 0, 0, 4346 CNTR_NORMAL, 4347 access_cce_trgt_access_err_cnt), 4348 [C_CCE_TRGT_ASYNC_FIFO_PARITY_ERR] = CNTR_ELEM("CceTrgtAsyncFifoParityErr", 0, 4349 0, CNTR_NORMAL, 4350 access_cce_trgt_async_fifo_parity_err_cnt), 4351 [C_CCE_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("CceCsrWriteBadAddrErr", 0, 0, 4352 CNTR_NORMAL, 4353 access_cce_csr_write_bad_addr_err_cnt), 4354 [C_CCE_CSR_READ_BAD_ADDR_ERR] = CNTR_ELEM("CceCsrReadBadAddrErr", 0, 0, 4355 CNTR_NORMAL, 4356 access_cce_csr_read_bad_addr_err_cnt), 4357 [C_CCE_CSR_PARITY_ERR] = CNTR_ELEM("CceCsrParityErr", 0, 0, 4358 CNTR_NORMAL, 4359 access_ccs_csr_parity_err_cnt), 4360 4361 /* RcvErrStatus */ 4362 [C_RX_CSR_PARITY_ERR] = CNTR_ELEM("RxCsrParityErr", 0, 0, 4363 CNTR_NORMAL, 4364 access_rx_csr_parity_err_cnt), 4365 [C_RX_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("RxCsrWriteBadAddrErr", 0, 0, 4366 CNTR_NORMAL, 4367 access_rx_csr_write_bad_addr_err_cnt), 4368 [C_RX_CSR_READ_BAD_ADDR_ERR] = CNTR_ELEM("RxCsrReadBadAddrErr", 0, 0, 4369 CNTR_NORMAL, 4370 access_rx_csr_read_bad_addr_err_cnt), 4371 [C_RX_DMA_CSR_UNC_ERR] = CNTR_ELEM("RxDmaCsrUncErr", 0, 0, 4372 CNTR_NORMAL, 4373 access_rx_dma_csr_unc_err_cnt), 4374 [C_RX_DMA_DQ_FSM_ENCODING_ERR] = CNTR_ELEM("RxDmaDqFsmEncodingErr", 0, 0, 4375 CNTR_NORMAL, 4376 access_rx_dma_dq_fsm_encoding_err_cnt), 4377 [C_RX_DMA_EQ_FSM_ENCODING_ERR] = CNTR_ELEM("RxDmaEqFsmEncodingErr", 0, 0, 4378 CNTR_NORMAL, 4379 access_rx_dma_eq_fsm_encoding_err_cnt), 4380 [C_RX_DMA_CSR_PARITY_ERR] = CNTR_ELEM("RxDmaCsrParityErr", 0, 0, 4381 CNTR_NORMAL, 4382 access_rx_dma_csr_parity_err_cnt), 4383 [C_RX_RBUF_DATA_COR_ERR] = CNTR_ELEM("RxRbufDataCorErr", 0, 0, 4384 CNTR_NORMAL, 4385 access_rx_rbuf_data_cor_err_cnt), 4386 [C_RX_RBUF_DATA_UNC_ERR] = CNTR_ELEM("RxRbufDataUncErr", 0, 0, 4387 CNTR_NORMAL, 4388 access_rx_rbuf_data_unc_err_cnt), 4389 [C_RX_DMA_DATA_FIFO_RD_COR_ERR] = CNTR_ELEM("RxDmaDataFifoRdCorErr", 0, 0, 4390 CNTR_NORMAL, 4391 access_rx_dma_data_fifo_rd_cor_err_cnt), 4392 [C_RX_DMA_DATA_FIFO_RD_UNC_ERR] = CNTR_ELEM("RxDmaDataFifoRdUncErr", 0, 0, 4393 CNTR_NORMAL, 4394 access_rx_dma_data_fifo_rd_unc_err_cnt), 4395 [C_RX_DMA_HDR_FIFO_RD_COR_ERR] = CNTR_ELEM("RxDmaHdrFifoRdCorErr", 0, 0, 4396 CNTR_NORMAL, 4397 access_rx_dma_hdr_fifo_rd_cor_err_cnt), 4398 [C_RX_DMA_HDR_FIFO_RD_UNC_ERR] = CNTR_ELEM("RxDmaHdrFifoRdUncErr", 0, 0, 4399 CNTR_NORMAL, 4400 access_rx_dma_hdr_fifo_rd_unc_err_cnt), 4401 [C_RX_RBUF_DESC_PART2_COR_ERR] = CNTR_ELEM("RxRbufDescPart2CorErr", 0, 0, 4402 CNTR_NORMAL, 4403 access_rx_rbuf_desc_part2_cor_err_cnt), 4404 [C_RX_RBUF_DESC_PART2_UNC_ERR] = CNTR_ELEM("RxRbufDescPart2UncErr", 0, 0, 4405 CNTR_NORMAL, 4406 access_rx_rbuf_desc_part2_unc_err_cnt), 4407 [C_RX_RBUF_DESC_PART1_COR_ERR] = CNTR_ELEM("RxRbufDescPart1CorErr", 0, 0, 4408 CNTR_NORMAL, 4409 access_rx_rbuf_desc_part1_cor_err_cnt), 4410 [C_RX_RBUF_DESC_PART1_UNC_ERR] = CNTR_ELEM("RxRbufDescPart1UncErr", 0, 0, 4411 CNTR_NORMAL, 4412 access_rx_rbuf_desc_part1_unc_err_cnt), 4413 [C_RX_HQ_INTR_FSM_ERR] = CNTR_ELEM("RxHqIntrFsmErr", 0, 0, 4414 CNTR_NORMAL, 4415 access_rx_hq_intr_fsm_err_cnt), 4416 [C_RX_HQ_INTR_CSR_PARITY_ERR] = CNTR_ELEM("RxHqIntrCsrParityErr", 0, 0, 4417 CNTR_NORMAL, 4418 access_rx_hq_intr_csr_parity_err_cnt), 4419 [C_RX_LOOKUP_CSR_PARITY_ERR] = CNTR_ELEM("RxLookupCsrParityErr", 0, 0, 4420 CNTR_NORMAL, 4421 access_rx_lookup_csr_parity_err_cnt), 4422 [C_RX_LOOKUP_RCV_ARRAY_COR_ERR] = CNTR_ELEM("RxLookupRcvArrayCorErr", 0, 0, 4423 CNTR_NORMAL, 4424 access_rx_lookup_rcv_array_cor_err_cnt), 4425 [C_RX_LOOKUP_RCV_ARRAY_UNC_ERR] = CNTR_ELEM("RxLookupRcvArrayUncErr", 0, 0, 4426 CNTR_NORMAL, 4427 access_rx_lookup_rcv_array_unc_err_cnt), 4428 [C_RX_LOOKUP_DES_PART2_PARITY_ERR] = CNTR_ELEM("RxLookupDesPart2ParityErr", 0, 4429 0, CNTR_NORMAL, 4430 access_rx_lookup_des_part2_parity_err_cnt), 4431 [C_RX_LOOKUP_DES_PART1_UNC_COR_ERR] = CNTR_ELEM("RxLookupDesPart1UncCorErr", 0, 4432 0, CNTR_NORMAL, 4433 access_rx_lookup_des_part1_unc_cor_err_cnt), 4434 [C_RX_LOOKUP_DES_PART1_UNC_ERR] = CNTR_ELEM("RxLookupDesPart1UncErr", 0, 0, 4435 CNTR_NORMAL, 4436 access_rx_lookup_des_part1_unc_err_cnt), 4437 [C_RX_RBUF_NEXT_FREE_BUF_COR_ERR] = CNTR_ELEM("RxRbufNextFreeBufCorErr", 0, 0, 4438 CNTR_NORMAL, 4439 access_rx_rbuf_next_free_buf_cor_err_cnt), 4440 [C_RX_RBUF_NEXT_FREE_BUF_UNC_ERR] = CNTR_ELEM("RxRbufNextFreeBufUncErr", 0, 0, 4441 CNTR_NORMAL, 4442 access_rx_rbuf_next_free_buf_unc_err_cnt), 4443 [C_RX_RBUF_FL_INIT_WR_ADDR_PARITY_ERR] = CNTR_ELEM( 4444 "RxRbufFlInitWrAddrParityErr", 0, 0, 4445 CNTR_NORMAL, 4446 access_rbuf_fl_init_wr_addr_parity_err_cnt), 4447 [C_RX_RBUF_FL_INITDONE_PARITY_ERR] = CNTR_ELEM("RxRbufFlInitdoneParityErr", 0, 4448 0, CNTR_NORMAL, 4449 access_rx_rbuf_fl_initdone_parity_err_cnt), 4450 [C_RX_RBUF_FL_WRITE_ADDR_PARITY_ERR] = CNTR_ELEM("RxRbufFlWrAddrParityErr", 0, 4451 0, CNTR_NORMAL, 4452 access_rx_rbuf_fl_write_addr_parity_err_cnt), 4453 [C_RX_RBUF_FL_RD_ADDR_PARITY_ERR] = CNTR_ELEM("RxRbufFlRdAddrParityErr", 0, 0, 4454 CNTR_NORMAL, 4455 access_rx_rbuf_fl_rd_addr_parity_err_cnt), 4456 [C_RX_RBUF_EMPTY_ERR] = CNTR_ELEM("RxRbufEmptyErr", 0, 0, 4457 CNTR_NORMAL, 4458 access_rx_rbuf_empty_err_cnt), 4459 [C_RX_RBUF_FULL_ERR] = CNTR_ELEM("RxRbufFullErr", 0, 0, 4460 CNTR_NORMAL, 4461 access_rx_rbuf_full_err_cnt), 4462 [C_RX_RBUF_BAD_LOOKUP_ERR] = CNTR_ELEM("RxRBufBadLookupErr", 0, 0, 4463 CNTR_NORMAL, 4464 access_rbuf_bad_lookup_err_cnt), 4465 [C_RX_RBUF_CTX_ID_PARITY_ERR] = CNTR_ELEM("RxRbufCtxIdParityErr", 0, 0, 4466 CNTR_NORMAL, 4467 access_rbuf_ctx_id_parity_err_cnt), 4468 [C_RX_RBUF_CSR_QEOPDW_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQEOPDWParityErr", 0, 0, 4469 CNTR_NORMAL, 4470 access_rbuf_csr_qeopdw_parity_err_cnt), 4471 [C_RX_RBUF_CSR_Q_NUM_OF_PKT_PARITY_ERR] = CNTR_ELEM( 4472 "RxRbufCsrQNumOfPktParityErr", 0, 0, 4473 CNTR_NORMAL, 4474 access_rx_rbuf_csr_q_num_of_pkt_parity_err_cnt), 4475 [C_RX_RBUF_CSR_Q_T1_PTR_PARITY_ERR] = CNTR_ELEM( 4476 "RxRbufCsrQTlPtrParityErr", 0, 0, 4477 CNTR_NORMAL, 4478 access_rx_rbuf_csr_q_t1_ptr_parity_err_cnt), 4479 [C_RX_RBUF_CSR_Q_HD_PTR_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQHdPtrParityErr", 0, 4480 0, CNTR_NORMAL, 4481 access_rx_rbuf_csr_q_hd_ptr_parity_err_cnt), 4482 [C_RX_RBUF_CSR_Q_VLD_BIT_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQVldBitParityErr", 0, 4483 0, CNTR_NORMAL, 4484 access_rx_rbuf_csr_q_vld_bit_parity_err_cnt), 4485 [C_RX_RBUF_CSR_Q_NEXT_BUF_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQNextBufParityErr", 4486 0, 0, CNTR_NORMAL, 4487 access_rx_rbuf_csr_q_next_buf_parity_err_cnt), 4488 [C_RX_RBUF_CSR_Q_ENT_CNT_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQEntCntParityErr", 0, 4489 0, CNTR_NORMAL, 4490 access_rx_rbuf_csr_q_ent_cnt_parity_err_cnt), 4491 [C_RX_RBUF_CSR_Q_HEAD_BUF_NUM_PARITY_ERR] = CNTR_ELEM( 4492 "RxRbufCsrQHeadBufNumParityErr", 0, 0, 4493 CNTR_NORMAL, 4494 access_rx_rbuf_csr_q_head_buf_num_parity_err_cnt), 4495 [C_RX_RBUF_BLOCK_LIST_READ_COR_ERR] = CNTR_ELEM("RxRbufBlockListReadCorErr", 0, 4496 0, CNTR_NORMAL, 4497 access_rx_rbuf_block_list_read_cor_err_cnt), 4498 [C_RX_RBUF_BLOCK_LIST_READ_UNC_ERR] = CNTR_ELEM("RxRbufBlockListReadUncErr", 0, 4499 0, CNTR_NORMAL, 4500 access_rx_rbuf_block_list_read_unc_err_cnt), 4501 [C_RX_RBUF_LOOKUP_DES_COR_ERR] = CNTR_ELEM("RxRbufLookupDesCorErr", 0, 0, 4502 CNTR_NORMAL, 4503 access_rx_rbuf_lookup_des_cor_err_cnt), 4504 [C_RX_RBUF_LOOKUP_DES_UNC_ERR] = CNTR_ELEM("RxRbufLookupDesUncErr", 0, 0, 4505 CNTR_NORMAL, 4506 access_rx_rbuf_lookup_des_unc_err_cnt), 4507 [C_RX_RBUF_LOOKUP_DES_REG_UNC_COR_ERR] = CNTR_ELEM( 4508 "RxRbufLookupDesRegUncCorErr", 0, 0, 4509 CNTR_NORMAL, 4510 access_rx_rbuf_lookup_des_reg_unc_cor_err_cnt), 4511 [C_RX_RBUF_LOOKUP_DES_REG_UNC_ERR] = CNTR_ELEM("RxRbufLookupDesRegUncErr", 0, 0, 4512 CNTR_NORMAL, 4513 access_rx_rbuf_lookup_des_reg_unc_err_cnt), 4514 [C_RX_RBUF_FREE_LIST_COR_ERR] = CNTR_ELEM("RxRbufFreeListCorErr", 0, 0, 4515 CNTR_NORMAL, 4516 access_rx_rbuf_free_list_cor_err_cnt), 4517 [C_RX_RBUF_FREE_LIST_UNC_ERR] = CNTR_ELEM("RxRbufFreeListUncErr", 0, 0, 4518 CNTR_NORMAL, 4519 access_rx_rbuf_free_list_unc_err_cnt), 4520 [C_RX_RCV_FSM_ENCODING_ERR] = CNTR_ELEM("RxRcvFsmEncodingErr", 0, 0, 4521 CNTR_NORMAL, 4522 access_rx_rcv_fsm_encoding_err_cnt), 4523 [C_RX_DMA_FLAG_COR_ERR] = CNTR_ELEM("RxDmaFlagCorErr", 0, 0, 4524 CNTR_NORMAL, 4525 access_rx_dma_flag_cor_err_cnt), 4526 [C_RX_DMA_FLAG_UNC_ERR] = CNTR_ELEM("RxDmaFlagUncErr", 0, 0, 4527 CNTR_NORMAL, 4528 access_rx_dma_flag_unc_err_cnt), 4529 [C_RX_DC_SOP_EOP_PARITY_ERR] = CNTR_ELEM("RxDcSopEopParityErr", 0, 0, 4530 CNTR_NORMAL, 4531 access_rx_dc_sop_eop_parity_err_cnt), 4532 [C_RX_RCV_CSR_PARITY_ERR] = CNTR_ELEM("RxRcvCsrParityErr", 0, 0, 4533 CNTR_NORMAL, 4534 access_rx_rcv_csr_parity_err_cnt), 4535 [C_RX_RCV_QP_MAP_TABLE_COR_ERR] = CNTR_ELEM("RxRcvQpMapTableCorErr", 0, 0, 4536 CNTR_NORMAL, 4537 access_rx_rcv_qp_map_table_cor_err_cnt), 4538 [C_RX_RCV_QP_MAP_TABLE_UNC_ERR] = CNTR_ELEM("RxRcvQpMapTableUncErr", 0, 0, 4539 CNTR_NORMAL, 4540 access_rx_rcv_qp_map_table_unc_err_cnt), 4541 [C_RX_RCV_DATA_COR_ERR] = CNTR_ELEM("RxRcvDataCorErr", 0, 0, 4542 CNTR_NORMAL, 4543 access_rx_rcv_data_cor_err_cnt), 4544 [C_RX_RCV_DATA_UNC_ERR] = CNTR_ELEM("RxRcvDataUncErr", 0, 0, 4545 CNTR_NORMAL, 4546 access_rx_rcv_data_unc_err_cnt), 4547 [C_RX_RCV_HDR_COR_ERR] = CNTR_ELEM("RxRcvHdrCorErr", 0, 0, 4548 CNTR_NORMAL, 4549 access_rx_rcv_hdr_cor_err_cnt), 4550 [C_RX_RCV_HDR_UNC_ERR] = CNTR_ELEM("RxRcvHdrUncErr", 0, 0, 4551 CNTR_NORMAL, 4552 access_rx_rcv_hdr_unc_err_cnt), 4553 [C_RX_DC_INTF_PARITY_ERR] = CNTR_ELEM("RxDcIntfParityErr", 0, 0, 4554 CNTR_NORMAL, 4555 access_rx_dc_intf_parity_err_cnt), 4556 [C_RX_DMA_CSR_COR_ERR] = CNTR_ELEM("RxDmaCsrCorErr", 0, 0, 4557 CNTR_NORMAL, 4558 access_rx_dma_csr_cor_err_cnt), 4559 /* SendPioErrStatus */ 4560 [C_PIO_PEC_SOP_HEAD_PARITY_ERR] = CNTR_ELEM("PioPecSopHeadParityErr", 0, 0, 4561 CNTR_NORMAL, 4562 access_pio_pec_sop_head_parity_err_cnt), 4563 [C_PIO_PCC_SOP_HEAD_PARITY_ERR] = CNTR_ELEM("PioPccSopHeadParityErr", 0, 0, 4564 CNTR_NORMAL, 4565 access_pio_pcc_sop_head_parity_err_cnt), 4566 [C_PIO_LAST_RETURNED_CNT_PARITY_ERR] = CNTR_ELEM("PioLastReturnedCntParityErr", 4567 0, 0, CNTR_NORMAL, 4568 access_pio_last_returned_cnt_parity_err_cnt), 4569 [C_PIO_CURRENT_FREE_CNT_PARITY_ERR] = CNTR_ELEM("PioCurrentFreeCntParityErr", 0, 4570 0, CNTR_NORMAL, 4571 access_pio_current_free_cnt_parity_err_cnt), 4572 [C_PIO_RSVD_31_ERR] = CNTR_ELEM("Pio Reserved 31", 0, 0, 4573 CNTR_NORMAL, 4574 access_pio_reserved_31_err_cnt), 4575 [C_PIO_RSVD_30_ERR] = CNTR_ELEM("Pio Reserved 30", 0, 0, 4576 CNTR_NORMAL, 4577 access_pio_reserved_30_err_cnt), 4578 [C_PIO_PPMC_SOP_LEN_ERR] = CNTR_ELEM("PioPpmcSopLenErr", 0, 0, 4579 CNTR_NORMAL, 4580 access_pio_ppmc_sop_len_err_cnt), 4581 [C_PIO_PPMC_BQC_MEM_PARITY_ERR] = CNTR_ELEM("PioPpmcBqcMemParityErr", 0, 0, 4582 CNTR_NORMAL, 4583 access_pio_ppmc_bqc_mem_parity_err_cnt), 4584 [C_PIO_VL_FIFO_PARITY_ERR] = CNTR_ELEM("PioVlFifoParityErr", 0, 0, 4585 CNTR_NORMAL, 4586 access_pio_vl_fifo_parity_err_cnt), 4587 [C_PIO_VLF_SOP_PARITY_ERR] = CNTR_ELEM("PioVlfSopParityErr", 0, 0, 4588 CNTR_NORMAL, 4589 access_pio_vlf_sop_parity_err_cnt), 4590 [C_PIO_VLF_V1_LEN_PARITY_ERR] = CNTR_ELEM("PioVlfVlLenParityErr", 0, 0, 4591 CNTR_NORMAL, 4592 access_pio_vlf_v1_len_parity_err_cnt), 4593 [C_PIO_BLOCK_QW_COUNT_PARITY_ERR] = CNTR_ELEM("PioBlockQwCountParityErr", 0, 0, 4594 CNTR_NORMAL, 4595 access_pio_block_qw_count_parity_err_cnt), 4596 [C_PIO_WRITE_QW_VALID_PARITY_ERR] = CNTR_ELEM("PioWriteQwValidParityErr", 0, 0, 4597 CNTR_NORMAL, 4598 access_pio_write_qw_valid_parity_err_cnt), 4599 [C_PIO_STATE_MACHINE_ERR] = CNTR_ELEM("PioStateMachineErr", 0, 0, 4600 CNTR_NORMAL, 4601 access_pio_state_machine_err_cnt), 4602 [C_PIO_WRITE_DATA_PARITY_ERR] = CNTR_ELEM("PioWriteDataParityErr", 0, 0, 4603 CNTR_NORMAL, 4604 access_pio_write_data_parity_err_cnt), 4605 [C_PIO_HOST_ADDR_MEM_COR_ERR] = CNTR_ELEM("PioHostAddrMemCorErr", 0, 0, 4606 CNTR_NORMAL, 4607 access_pio_host_addr_mem_cor_err_cnt), 4608 [C_PIO_HOST_ADDR_MEM_UNC_ERR] = CNTR_ELEM("PioHostAddrMemUncErr", 0, 0, 4609 CNTR_NORMAL, 4610 access_pio_host_addr_mem_unc_err_cnt), 4611 [C_PIO_PKT_EVICT_SM_OR_ARM_SM_ERR] = CNTR_ELEM("PioPktEvictSmOrArbSmErr", 0, 0, 4612 CNTR_NORMAL, 4613 access_pio_pkt_evict_sm_or_arb_sm_err_cnt), 4614 [C_PIO_INIT_SM_IN_ERR] = CNTR_ELEM("PioInitSmInErr", 0, 0, 4615 CNTR_NORMAL, 4616 access_pio_init_sm_in_err_cnt), 4617 [C_PIO_PPMC_PBL_FIFO_ERR] = CNTR_ELEM("PioPpmcPblFifoErr", 0, 0, 4618 CNTR_NORMAL, 4619 access_pio_ppmc_pbl_fifo_err_cnt), 4620 [C_PIO_CREDIT_RET_FIFO_PARITY_ERR] = CNTR_ELEM("PioCreditRetFifoParityErr", 0, 4621 0, CNTR_NORMAL, 4622 access_pio_credit_ret_fifo_parity_err_cnt), 4623 [C_PIO_V1_LEN_MEM_BANK1_COR_ERR] = CNTR_ELEM("PioVlLenMemBank1CorErr", 0, 0, 4624 CNTR_NORMAL, 4625 access_pio_v1_len_mem_bank1_cor_err_cnt), 4626 [C_PIO_V1_LEN_MEM_BANK0_COR_ERR] = CNTR_ELEM("PioVlLenMemBank0CorErr", 0, 0, 4627 CNTR_NORMAL, 4628 access_pio_v1_len_mem_bank0_cor_err_cnt), 4629 [C_PIO_V1_LEN_MEM_BANK1_UNC_ERR] = CNTR_ELEM("PioVlLenMemBank1UncErr", 0, 0, 4630 CNTR_NORMAL, 4631 access_pio_v1_len_mem_bank1_unc_err_cnt), 4632 [C_PIO_V1_LEN_MEM_BANK0_UNC_ERR] = CNTR_ELEM("PioVlLenMemBank0UncErr", 0, 0, 4633 CNTR_NORMAL, 4634 access_pio_v1_len_mem_bank0_unc_err_cnt), 4635 [C_PIO_SM_PKT_RESET_PARITY_ERR] = CNTR_ELEM("PioSmPktResetParityErr", 0, 0, 4636 CNTR_NORMAL, 4637 access_pio_sm_pkt_reset_parity_err_cnt), 4638 [C_PIO_PKT_EVICT_FIFO_PARITY_ERR] = CNTR_ELEM("PioPktEvictFifoParityErr", 0, 0, 4639 CNTR_NORMAL, 4640 access_pio_pkt_evict_fifo_parity_err_cnt), 4641 [C_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR] = CNTR_ELEM( 4642 "PioSbrdctrlCrrelFifoParityErr", 0, 0, 4643 CNTR_NORMAL, 4644 access_pio_sbrdctrl_crrel_fifo_parity_err_cnt), 4645 [C_PIO_SBRDCTL_CRREL_PARITY_ERR] = CNTR_ELEM("PioSbrdctlCrrelParityErr", 0, 0, 4646 CNTR_NORMAL, 4647 access_pio_sbrdctl_crrel_parity_err_cnt), 4648 [C_PIO_PEC_FIFO_PARITY_ERR] = CNTR_ELEM("PioPecFifoParityErr", 0, 0, 4649 CNTR_NORMAL, 4650 access_pio_pec_fifo_parity_err_cnt), 4651 [C_PIO_PCC_FIFO_PARITY_ERR] = CNTR_ELEM("PioPccFifoParityErr", 0, 0, 4652 CNTR_NORMAL, 4653 access_pio_pcc_fifo_parity_err_cnt), 4654 [C_PIO_SB_MEM_FIFO1_ERR] = CNTR_ELEM("PioSbMemFifo1Err", 0, 0, 4655 CNTR_NORMAL, 4656 access_pio_sb_mem_fifo1_err_cnt), 4657 [C_PIO_SB_MEM_FIFO0_ERR] = CNTR_ELEM("PioSbMemFifo0Err", 0, 0, 4658 CNTR_NORMAL, 4659 access_pio_sb_mem_fifo0_err_cnt), 4660 [C_PIO_CSR_PARITY_ERR] = CNTR_ELEM("PioCsrParityErr", 0, 0, 4661 CNTR_NORMAL, 4662 access_pio_csr_parity_err_cnt), 4663 [C_PIO_WRITE_ADDR_PARITY_ERR] = CNTR_ELEM("PioWriteAddrParityErr", 0, 0, 4664 CNTR_NORMAL, 4665 access_pio_write_addr_parity_err_cnt), 4666 [C_PIO_WRITE_BAD_CTXT_ERR] = CNTR_ELEM("PioWriteBadCtxtErr", 0, 0, 4667 CNTR_NORMAL, 4668 access_pio_write_bad_ctxt_err_cnt), 4669 /* SendDmaErrStatus */ 4670 [C_SDMA_PCIE_REQ_TRACKING_COR_ERR] = CNTR_ELEM("SDmaPcieReqTrackingCorErr", 0, 4671 0, CNTR_NORMAL, 4672 access_sdma_pcie_req_tracking_cor_err_cnt), 4673 [C_SDMA_PCIE_REQ_TRACKING_UNC_ERR] = CNTR_ELEM("SDmaPcieReqTrackingUncErr", 0, 4674 0, CNTR_NORMAL, 4675 access_sdma_pcie_req_tracking_unc_err_cnt), 4676 [C_SDMA_CSR_PARITY_ERR] = CNTR_ELEM("SDmaCsrParityErr", 0, 0, 4677 CNTR_NORMAL, 4678 access_sdma_csr_parity_err_cnt), 4679 [C_SDMA_RPY_TAG_ERR] = CNTR_ELEM("SDmaRpyTagErr", 0, 0, 4680 CNTR_NORMAL, 4681 access_sdma_rpy_tag_err_cnt), 4682 /* SendEgressErrStatus */ 4683 [C_TX_READ_PIO_MEMORY_CSR_UNC_ERR] = CNTR_ELEM("TxReadPioMemoryCsrUncErr", 0, 0, 4684 CNTR_NORMAL, 4685 access_tx_read_pio_memory_csr_unc_err_cnt), 4686 [C_TX_READ_SDMA_MEMORY_CSR_UNC_ERR] = CNTR_ELEM("TxReadSdmaMemoryCsrUncErr", 0, 4687 0, CNTR_NORMAL, 4688 access_tx_read_sdma_memory_csr_err_cnt), 4689 [C_TX_EGRESS_FIFO_COR_ERR] = CNTR_ELEM("TxEgressFifoCorErr", 0, 0, 4690 CNTR_NORMAL, 4691 access_tx_egress_fifo_cor_err_cnt), 4692 [C_TX_READ_PIO_MEMORY_COR_ERR] = CNTR_ELEM("TxReadPioMemoryCorErr", 0, 0, 4693 CNTR_NORMAL, 4694 access_tx_read_pio_memory_cor_err_cnt), 4695 [C_TX_READ_SDMA_MEMORY_COR_ERR] = CNTR_ELEM("TxReadSdmaMemoryCorErr", 0, 0, 4696 CNTR_NORMAL, 4697 access_tx_read_sdma_memory_cor_err_cnt), 4698 [C_TX_SB_HDR_COR_ERR] = CNTR_ELEM("TxSbHdrCorErr", 0, 0, 4699 CNTR_NORMAL, 4700 access_tx_sb_hdr_cor_err_cnt), 4701 [C_TX_CREDIT_OVERRUN_ERR] = CNTR_ELEM("TxCreditOverrunErr", 0, 0, 4702 CNTR_NORMAL, 4703 access_tx_credit_overrun_err_cnt), 4704 [C_TX_LAUNCH_FIFO8_COR_ERR] = CNTR_ELEM("TxLaunchFifo8CorErr", 0, 0, 4705 CNTR_NORMAL, 4706 access_tx_launch_fifo8_cor_err_cnt), 4707 [C_TX_LAUNCH_FIFO7_COR_ERR] = CNTR_ELEM("TxLaunchFifo7CorErr", 0, 0, 4708 CNTR_NORMAL, 4709 access_tx_launch_fifo7_cor_err_cnt), 4710 [C_TX_LAUNCH_FIFO6_COR_ERR] = CNTR_ELEM("TxLaunchFifo6CorErr", 0, 0, 4711 CNTR_NORMAL, 4712 access_tx_launch_fifo6_cor_err_cnt), 4713 [C_TX_LAUNCH_FIFO5_COR_ERR] = CNTR_ELEM("TxLaunchFifo5CorErr", 0, 0, 4714 CNTR_NORMAL, 4715 access_tx_launch_fifo5_cor_err_cnt), 4716 [C_TX_LAUNCH_FIFO4_COR_ERR] = CNTR_ELEM("TxLaunchFifo4CorErr", 0, 0, 4717 CNTR_NORMAL, 4718 access_tx_launch_fifo4_cor_err_cnt), 4719 [C_TX_LAUNCH_FIFO3_COR_ERR] = CNTR_ELEM("TxLaunchFifo3CorErr", 0, 0, 4720 CNTR_NORMAL, 4721 access_tx_launch_fifo3_cor_err_cnt), 4722 [C_TX_LAUNCH_FIFO2_COR_ERR] = CNTR_ELEM("TxLaunchFifo2CorErr", 0, 0, 4723 CNTR_NORMAL, 4724 access_tx_launch_fifo2_cor_err_cnt), 4725 [C_TX_LAUNCH_FIFO1_COR_ERR] = CNTR_ELEM("TxLaunchFifo1CorErr", 0, 0, 4726 CNTR_NORMAL, 4727 access_tx_launch_fifo1_cor_err_cnt), 4728 [C_TX_LAUNCH_FIFO0_COR_ERR] = CNTR_ELEM("TxLaunchFifo0CorErr", 0, 0, 4729 CNTR_NORMAL, 4730 access_tx_launch_fifo0_cor_err_cnt), 4731 [C_TX_CREDIT_RETURN_VL_ERR] = CNTR_ELEM("TxCreditReturnVLErr", 0, 0, 4732 CNTR_NORMAL, 4733 access_tx_credit_return_vl_err_cnt), 4734 [C_TX_HCRC_INSERTION_ERR] = CNTR_ELEM("TxHcrcInsertionErr", 0, 0, 4735 CNTR_NORMAL, 4736 access_tx_hcrc_insertion_err_cnt), 4737 [C_TX_EGRESS_FIFI_UNC_ERR] = CNTR_ELEM("TxEgressFifoUncErr", 0, 0, 4738 CNTR_NORMAL, 4739 access_tx_egress_fifo_unc_err_cnt), 4740 [C_TX_READ_PIO_MEMORY_UNC_ERR] = CNTR_ELEM("TxReadPioMemoryUncErr", 0, 0, 4741 CNTR_NORMAL, 4742 access_tx_read_pio_memory_unc_err_cnt), 4743 [C_TX_READ_SDMA_MEMORY_UNC_ERR] = CNTR_ELEM("TxReadSdmaMemoryUncErr", 0, 0, 4744 CNTR_NORMAL, 4745 access_tx_read_sdma_memory_unc_err_cnt), 4746 [C_TX_SB_HDR_UNC_ERR] = CNTR_ELEM("TxSbHdrUncErr", 0, 0, 4747 CNTR_NORMAL, 4748 access_tx_sb_hdr_unc_err_cnt), 4749 [C_TX_CREDIT_RETURN_PARITY_ERR] = CNTR_ELEM("TxCreditReturnParityErr", 0, 0, 4750 CNTR_NORMAL, 4751 access_tx_credit_return_partiy_err_cnt), 4752 [C_TX_LAUNCH_FIFO8_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo8UncOrParityErr", 4753 0, 0, CNTR_NORMAL, 4754 access_tx_launch_fifo8_unc_or_parity_err_cnt), 4755 [C_TX_LAUNCH_FIFO7_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo7UncOrParityErr", 4756 0, 0, CNTR_NORMAL, 4757 access_tx_launch_fifo7_unc_or_parity_err_cnt), 4758 [C_TX_LAUNCH_FIFO6_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo6UncOrParityErr", 4759 0, 0, CNTR_NORMAL, 4760 access_tx_launch_fifo6_unc_or_parity_err_cnt), 4761 [C_TX_LAUNCH_FIFO5_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo5UncOrParityErr", 4762 0, 0, CNTR_NORMAL, 4763 access_tx_launch_fifo5_unc_or_parity_err_cnt), 4764 [C_TX_LAUNCH_FIFO4_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo4UncOrParityErr", 4765 0, 0, CNTR_NORMAL, 4766 access_tx_launch_fifo4_unc_or_parity_err_cnt), 4767 [C_TX_LAUNCH_FIFO3_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo3UncOrParityErr", 4768 0, 0, CNTR_NORMAL, 4769 access_tx_launch_fifo3_unc_or_parity_err_cnt), 4770 [C_TX_LAUNCH_FIFO2_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo2UncOrParityErr", 4771 0, 0, CNTR_NORMAL, 4772 access_tx_launch_fifo2_unc_or_parity_err_cnt), 4773 [C_TX_LAUNCH_FIFO1_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo1UncOrParityErr", 4774 0, 0, CNTR_NORMAL, 4775 access_tx_launch_fifo1_unc_or_parity_err_cnt), 4776 [C_TX_LAUNCH_FIFO0_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo0UncOrParityErr", 4777 0, 0, CNTR_NORMAL, 4778 access_tx_launch_fifo0_unc_or_parity_err_cnt), 4779 [C_TX_SDMA15_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma15DisallowedPacketErr", 4780 0, 0, CNTR_NORMAL, 4781 access_tx_sdma15_disallowed_packet_err_cnt), 4782 [C_TX_SDMA14_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma14DisallowedPacketErr", 4783 0, 0, CNTR_NORMAL, 4784 access_tx_sdma14_disallowed_packet_err_cnt), 4785 [C_TX_SDMA13_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma13DisallowedPacketErr", 4786 0, 0, CNTR_NORMAL, 4787 access_tx_sdma13_disallowed_packet_err_cnt), 4788 [C_TX_SDMA12_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma12DisallowedPacketErr", 4789 0, 0, CNTR_NORMAL, 4790 access_tx_sdma12_disallowed_packet_err_cnt), 4791 [C_TX_SDMA11_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma11DisallowedPacketErr", 4792 0, 0, CNTR_NORMAL, 4793 access_tx_sdma11_disallowed_packet_err_cnt), 4794 [C_TX_SDMA10_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma10DisallowedPacketErr", 4795 0, 0, CNTR_NORMAL, 4796 access_tx_sdma10_disallowed_packet_err_cnt), 4797 [C_TX_SDMA9_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma9DisallowedPacketErr", 4798 0, 0, CNTR_NORMAL, 4799 access_tx_sdma9_disallowed_packet_err_cnt), 4800 [C_TX_SDMA8_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma8DisallowedPacketErr", 4801 0, 0, CNTR_NORMAL, 4802 access_tx_sdma8_disallowed_packet_err_cnt), 4803 [C_TX_SDMA7_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma7DisallowedPacketErr", 4804 0, 0, CNTR_NORMAL, 4805 access_tx_sdma7_disallowed_packet_err_cnt), 4806 [C_TX_SDMA6_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma6DisallowedPacketErr", 4807 0, 0, CNTR_NORMAL, 4808 access_tx_sdma6_disallowed_packet_err_cnt), 4809 [C_TX_SDMA5_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma5DisallowedPacketErr", 4810 0, 0, CNTR_NORMAL, 4811 access_tx_sdma5_disallowed_packet_err_cnt), 4812 [C_TX_SDMA4_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma4DisallowedPacketErr", 4813 0, 0, CNTR_NORMAL, 4814 access_tx_sdma4_disallowed_packet_err_cnt), 4815 [C_TX_SDMA3_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma3DisallowedPacketErr", 4816 0, 0, CNTR_NORMAL, 4817 access_tx_sdma3_disallowed_packet_err_cnt), 4818 [C_TX_SDMA2_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma2DisallowedPacketErr", 4819 0, 0, CNTR_NORMAL, 4820 access_tx_sdma2_disallowed_packet_err_cnt), 4821 [C_TX_SDMA1_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma1DisallowedPacketErr", 4822 0, 0, CNTR_NORMAL, 4823 access_tx_sdma1_disallowed_packet_err_cnt), 4824 [C_TX_SDMA0_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma0DisallowedPacketErr", 4825 0, 0, CNTR_NORMAL, 4826 access_tx_sdma0_disallowed_packet_err_cnt), 4827 [C_TX_CONFIG_PARITY_ERR] = CNTR_ELEM("TxConfigParityErr", 0, 0, 4828 CNTR_NORMAL, 4829 access_tx_config_parity_err_cnt), 4830 [C_TX_SBRD_CTL_CSR_PARITY_ERR] = CNTR_ELEM("TxSbrdCtlCsrParityErr", 0, 0, 4831 CNTR_NORMAL, 4832 access_tx_sbrd_ctl_csr_parity_err_cnt), 4833 [C_TX_LAUNCH_CSR_PARITY_ERR] = CNTR_ELEM("TxLaunchCsrParityErr", 0, 0, 4834 CNTR_NORMAL, 4835 access_tx_launch_csr_parity_err_cnt), 4836 [C_TX_ILLEGAL_CL_ERR] = CNTR_ELEM("TxIllegalVLErr", 0, 0, 4837 CNTR_NORMAL, 4838 access_tx_illegal_vl_err_cnt), 4839 [C_TX_SBRD_CTL_STATE_MACHINE_PARITY_ERR] = CNTR_ELEM( 4840 "TxSbrdCtlStateMachineParityErr", 0, 0, 4841 CNTR_NORMAL, 4842 access_tx_sbrd_ctl_state_machine_parity_err_cnt), 4843 [C_TX_RESERVED_10] = CNTR_ELEM("Tx Egress Reserved 10", 0, 0, 4844 CNTR_NORMAL, 4845 access_egress_reserved_10_err_cnt), 4846 [C_TX_RESERVED_9] = CNTR_ELEM("Tx Egress Reserved 9", 0, 0, 4847 CNTR_NORMAL, 4848 access_egress_reserved_9_err_cnt), 4849 [C_TX_SDMA_LAUNCH_INTF_PARITY_ERR] = CNTR_ELEM("TxSdmaLaunchIntfParityErr", 4850 0, 0, CNTR_NORMAL, 4851 access_tx_sdma_launch_intf_parity_err_cnt), 4852 [C_TX_PIO_LAUNCH_INTF_PARITY_ERR] = CNTR_ELEM("TxPioLaunchIntfParityErr", 0, 0, 4853 CNTR_NORMAL, 4854 access_tx_pio_launch_intf_parity_err_cnt), 4855 [C_TX_RESERVED_6] = CNTR_ELEM("Tx Egress Reserved 6", 0, 0, 4856 CNTR_NORMAL, 4857 access_egress_reserved_6_err_cnt), 4858 [C_TX_INCORRECT_LINK_STATE_ERR] = CNTR_ELEM("TxIncorrectLinkStateErr", 0, 0, 4859 CNTR_NORMAL, 4860 access_tx_incorrect_link_state_err_cnt), 4861 [C_TX_LINK_DOWN_ERR] = CNTR_ELEM("TxLinkdownErr", 0, 0, 4862 CNTR_NORMAL, 4863 access_tx_linkdown_err_cnt), 4864 [C_TX_EGRESS_FIFO_UNDERRUN_OR_PARITY_ERR] = CNTR_ELEM( 4865 "EgressFifoUnderrunOrParityErr", 0, 0, 4866 CNTR_NORMAL, 4867 access_tx_egress_fifi_underrun_or_parity_err_cnt), 4868 [C_TX_RESERVED_2] = CNTR_ELEM("Tx Egress Reserved 2", 0, 0, 4869 CNTR_NORMAL, 4870 access_egress_reserved_2_err_cnt), 4871 [C_TX_PKT_INTEGRITY_MEM_UNC_ERR] = CNTR_ELEM("TxPktIntegrityMemUncErr", 0, 0, 4872 CNTR_NORMAL, 4873 access_tx_pkt_integrity_mem_unc_err_cnt), 4874 [C_TX_PKT_INTEGRITY_MEM_COR_ERR] = CNTR_ELEM("TxPktIntegrityMemCorErr", 0, 0, 4875 CNTR_NORMAL, 4876 access_tx_pkt_integrity_mem_cor_err_cnt), 4877 /* SendErrStatus */ 4878 [C_SEND_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("SendCsrWriteBadAddrErr", 0, 0, 4879 CNTR_NORMAL, 4880 access_send_csr_write_bad_addr_err_cnt), 4881 [C_SEND_CSR_READ_BAD_ADD_ERR] = CNTR_ELEM("SendCsrReadBadAddrErr", 0, 0, 4882 CNTR_NORMAL, 4883 access_send_csr_read_bad_addr_err_cnt), 4884 [C_SEND_CSR_PARITY_ERR] = CNTR_ELEM("SendCsrParityErr", 0, 0, 4885 CNTR_NORMAL, 4886 access_send_csr_parity_cnt), 4887 /* SendCtxtErrStatus */ 4888 [C_PIO_WRITE_OUT_OF_BOUNDS_ERR] = CNTR_ELEM("PioWriteOutOfBoundsErr", 0, 0, 4889 CNTR_NORMAL, 4890 access_pio_write_out_of_bounds_err_cnt), 4891 [C_PIO_WRITE_OVERFLOW_ERR] = CNTR_ELEM("PioWriteOverflowErr", 0, 0, 4892 CNTR_NORMAL, 4893 access_pio_write_overflow_err_cnt), 4894 [C_PIO_WRITE_CROSSES_BOUNDARY_ERR] = CNTR_ELEM("PioWriteCrossesBoundaryErr", 4895 0, 0, CNTR_NORMAL, 4896 access_pio_write_crosses_boundary_err_cnt), 4897 [C_PIO_DISALLOWED_PACKET_ERR] = CNTR_ELEM("PioDisallowedPacketErr", 0, 0, 4898 CNTR_NORMAL, 4899 access_pio_disallowed_packet_err_cnt), 4900 [C_PIO_INCONSISTENT_SOP_ERR] = CNTR_ELEM("PioInconsistentSopErr", 0, 0, 4901 CNTR_NORMAL, 4902 access_pio_inconsistent_sop_err_cnt), 4903 /* SendDmaEngErrStatus */ 4904 [C_SDMA_HEADER_REQUEST_FIFO_COR_ERR] = CNTR_ELEM("SDmaHeaderRequestFifoCorErr", 4905 0, 0, CNTR_NORMAL, 4906 access_sdma_header_request_fifo_cor_err_cnt), 4907 [C_SDMA_HEADER_STORAGE_COR_ERR] = CNTR_ELEM("SDmaHeaderStorageCorErr", 0, 0, 4908 CNTR_NORMAL, 4909 access_sdma_header_storage_cor_err_cnt), 4910 [C_SDMA_PACKET_TRACKING_COR_ERR] = CNTR_ELEM("SDmaPacketTrackingCorErr", 0, 0, 4911 CNTR_NORMAL, 4912 access_sdma_packet_tracking_cor_err_cnt), 4913 [C_SDMA_ASSEMBLY_COR_ERR] = CNTR_ELEM("SDmaAssemblyCorErr", 0, 0, 4914 CNTR_NORMAL, 4915 access_sdma_assembly_cor_err_cnt), 4916 [C_SDMA_DESC_TABLE_COR_ERR] = CNTR_ELEM("SDmaDescTableCorErr", 0, 0, 4917 CNTR_NORMAL, 4918 access_sdma_desc_table_cor_err_cnt), 4919 [C_SDMA_HEADER_REQUEST_FIFO_UNC_ERR] = CNTR_ELEM("SDmaHeaderRequestFifoUncErr", 4920 0, 0, CNTR_NORMAL, 4921 access_sdma_header_request_fifo_unc_err_cnt), 4922 [C_SDMA_HEADER_STORAGE_UNC_ERR] = CNTR_ELEM("SDmaHeaderStorageUncErr", 0, 0, 4923 CNTR_NORMAL, 4924 access_sdma_header_storage_unc_err_cnt), 4925 [C_SDMA_PACKET_TRACKING_UNC_ERR] = CNTR_ELEM("SDmaPacketTrackingUncErr", 0, 0, 4926 CNTR_NORMAL, 4927 access_sdma_packet_tracking_unc_err_cnt), 4928 [C_SDMA_ASSEMBLY_UNC_ERR] = CNTR_ELEM("SDmaAssemblyUncErr", 0, 0, 4929 CNTR_NORMAL, 4930 access_sdma_assembly_unc_err_cnt), 4931 [C_SDMA_DESC_TABLE_UNC_ERR] = CNTR_ELEM("SDmaDescTableUncErr", 0, 0, 4932 CNTR_NORMAL, 4933 access_sdma_desc_table_unc_err_cnt), 4934 [C_SDMA_TIMEOUT_ERR] = CNTR_ELEM("SDmaTimeoutErr", 0, 0, 4935 CNTR_NORMAL, 4936 access_sdma_timeout_err_cnt), 4937 [C_SDMA_HEADER_LENGTH_ERR] = CNTR_ELEM("SDmaHeaderLengthErr", 0, 0, 4938 CNTR_NORMAL, 4939 access_sdma_header_length_err_cnt), 4940 [C_SDMA_HEADER_ADDRESS_ERR] = CNTR_ELEM("SDmaHeaderAddressErr", 0, 0, 4941 CNTR_NORMAL, 4942 access_sdma_header_address_err_cnt), 4943 [C_SDMA_HEADER_SELECT_ERR] = CNTR_ELEM("SDmaHeaderSelectErr", 0, 0, 4944 CNTR_NORMAL, 4945 access_sdma_header_select_err_cnt), 4946 [C_SMDA_RESERVED_9] = CNTR_ELEM("SDma Reserved 9", 0, 0, 4947 CNTR_NORMAL, 4948 access_sdma_reserved_9_err_cnt), 4949 [C_SDMA_PACKET_DESC_OVERFLOW_ERR] = CNTR_ELEM("SDmaPacketDescOverflowErr", 0, 0, 4950 CNTR_NORMAL, 4951 access_sdma_packet_desc_overflow_err_cnt), 4952 [C_SDMA_LENGTH_MISMATCH_ERR] = CNTR_ELEM("SDmaLengthMismatchErr", 0, 0, 4953 CNTR_NORMAL, 4954 access_sdma_length_mismatch_err_cnt), 4955 [C_SDMA_HALT_ERR] = CNTR_ELEM("SDmaHaltErr", 0, 0, 4956 CNTR_NORMAL, 4957 access_sdma_halt_err_cnt), 4958 [C_SDMA_MEM_READ_ERR] = CNTR_ELEM("SDmaMemReadErr", 0, 0, 4959 CNTR_NORMAL, 4960 access_sdma_mem_read_err_cnt), 4961 [C_SDMA_FIRST_DESC_ERR] = CNTR_ELEM("SDmaFirstDescErr", 0, 0, 4962 CNTR_NORMAL, 4963 access_sdma_first_desc_err_cnt), 4964 [C_SDMA_TAIL_OUT_OF_BOUNDS_ERR] = CNTR_ELEM("SDmaTailOutOfBoundsErr", 0, 0, 4965 CNTR_NORMAL, 4966 access_sdma_tail_out_of_bounds_err_cnt), 4967 [C_SDMA_TOO_LONG_ERR] = CNTR_ELEM("SDmaTooLongErr", 0, 0, 4968 CNTR_NORMAL, 4969 access_sdma_too_long_err_cnt), 4970 [C_SDMA_GEN_MISMATCH_ERR] = CNTR_ELEM("SDmaGenMismatchErr", 0, 0, 4971 CNTR_NORMAL, 4972 access_sdma_gen_mismatch_err_cnt), 4973 [C_SDMA_WRONG_DW_ERR] = CNTR_ELEM("SDmaWrongDwErr", 0, 0, 4974 CNTR_NORMAL, 4975 access_sdma_wrong_dw_err_cnt), 4976 }; 4977 4978 static struct cntr_entry port_cntrs[PORT_CNTR_LAST] = { 4979 [C_TX_UNSUP_VL] = TXE32_PORT_CNTR_ELEM(TxUnVLErr, SEND_UNSUP_VL_ERR_CNT, 4980 CNTR_NORMAL), 4981 [C_TX_INVAL_LEN] = TXE32_PORT_CNTR_ELEM(TxInvalLen, SEND_LEN_ERR_CNT, 4982 CNTR_NORMAL), 4983 [C_TX_MM_LEN_ERR] = TXE32_PORT_CNTR_ELEM(TxMMLenErr, SEND_MAX_MIN_LEN_ERR_CNT, 4984 CNTR_NORMAL), 4985 [C_TX_UNDERRUN] = TXE32_PORT_CNTR_ELEM(TxUnderrun, SEND_UNDERRUN_CNT, 4986 CNTR_NORMAL), 4987 [C_TX_FLOW_STALL] = TXE32_PORT_CNTR_ELEM(TxFlowStall, SEND_FLOW_STALL_CNT, 4988 CNTR_NORMAL), 4989 [C_TX_DROPPED] = TXE32_PORT_CNTR_ELEM(TxDropped, SEND_DROPPED_PKT_CNT, 4990 CNTR_NORMAL), 4991 [C_TX_HDR_ERR] = TXE32_PORT_CNTR_ELEM(TxHdrErr, SEND_HEADERS_ERR_CNT, 4992 CNTR_NORMAL), 4993 [C_TX_PKT] = TXE64_PORT_CNTR_ELEM(TxPkt, SEND_DATA_PKT_CNT, CNTR_NORMAL), 4994 [C_TX_WORDS] = TXE64_PORT_CNTR_ELEM(TxWords, SEND_DWORD_CNT, CNTR_NORMAL), 4995 [C_TX_WAIT] = TXE64_PORT_CNTR_ELEM(TxWait, SEND_WAIT_CNT, CNTR_SYNTH), 4996 [C_TX_FLIT_VL] = TXE64_PORT_CNTR_ELEM(TxFlitVL, SEND_DATA_VL0_CNT, 4997 CNTR_SYNTH | CNTR_VL), 4998 [C_TX_PKT_VL] = TXE64_PORT_CNTR_ELEM(TxPktVL, SEND_DATA_PKT_VL0_CNT, 4999 CNTR_SYNTH | CNTR_VL), 5000 [C_TX_WAIT_VL] = TXE64_PORT_CNTR_ELEM(TxWaitVL, SEND_WAIT_VL0_CNT, 5001 CNTR_SYNTH | CNTR_VL), 5002 [C_RX_PKT] = RXE64_PORT_CNTR_ELEM(RxPkt, RCV_DATA_PKT_CNT, CNTR_NORMAL), 5003 [C_RX_WORDS] = RXE64_PORT_CNTR_ELEM(RxWords, RCV_DWORD_CNT, CNTR_NORMAL), 5004 [C_SW_LINK_DOWN] = CNTR_ELEM("SwLinkDown", 0, 0, CNTR_SYNTH | CNTR_32BIT, 5005 access_sw_link_dn_cnt), 5006 [C_SW_LINK_UP] = CNTR_ELEM("SwLinkUp", 0, 0, CNTR_SYNTH | CNTR_32BIT, 5007 access_sw_link_up_cnt), 5008 [C_SW_UNKNOWN_FRAME] = CNTR_ELEM("UnknownFrame", 0, 0, CNTR_NORMAL, 5009 access_sw_unknown_frame_cnt), 5010 [C_SW_XMIT_DSCD] = CNTR_ELEM("XmitDscd", 0, 0, CNTR_SYNTH | CNTR_32BIT, 5011 access_sw_xmit_discards), 5012 [C_SW_XMIT_DSCD_VL] = CNTR_ELEM("XmitDscdVl", 0, 0, 5013 CNTR_SYNTH | CNTR_32BIT | CNTR_VL, 5014 access_sw_xmit_discards), 5015 [C_SW_XMIT_CSTR_ERR] = CNTR_ELEM("XmitCstrErr", 0, 0, CNTR_SYNTH, 5016 access_xmit_constraint_errs), 5017 [C_SW_RCV_CSTR_ERR] = CNTR_ELEM("RcvCstrErr", 0, 0, CNTR_SYNTH, 5018 access_rcv_constraint_errs), 5019 [C_SW_IBP_LOOP_PKTS] = SW_IBP_CNTR(LoopPkts, loop_pkts), 5020 [C_SW_IBP_RC_RESENDS] = SW_IBP_CNTR(RcResend, rc_resends), 5021 [C_SW_IBP_RNR_NAKS] = SW_IBP_CNTR(RnrNak, rnr_naks), 5022 [C_SW_IBP_OTHER_NAKS] = SW_IBP_CNTR(OtherNak, other_naks), 5023 [C_SW_IBP_RC_TIMEOUTS] = SW_IBP_CNTR(RcTimeOut, rc_timeouts), 5024 [C_SW_IBP_PKT_DROPS] = SW_IBP_CNTR(PktDrop, pkt_drops), 5025 [C_SW_IBP_DMA_WAIT] = SW_IBP_CNTR(DmaWait, dmawait), 5026 [C_SW_IBP_RC_SEQNAK] = SW_IBP_CNTR(RcSeqNak, rc_seqnak), 5027 [C_SW_IBP_RC_DUPREQ] = SW_IBP_CNTR(RcDupRew, rc_dupreq), 5028 [C_SW_IBP_RDMA_SEQ] = SW_IBP_CNTR(RdmaSeq, rdma_seq), 5029 [C_SW_IBP_UNALIGNED] = SW_IBP_CNTR(Unaligned, unaligned), 5030 [C_SW_IBP_SEQ_NAK] = SW_IBP_CNTR(SeqNak, seq_naks), 5031 [C_SW_CPU_RC_ACKS] = CNTR_ELEM("RcAcks", 0, 0, CNTR_NORMAL, 5032 access_sw_cpu_rc_acks), 5033 [C_SW_CPU_RC_QACKS] = CNTR_ELEM("RcQacks", 0, 0, CNTR_NORMAL, 5034 access_sw_cpu_rc_qacks), 5035 [C_SW_CPU_RC_DELAYED_COMP] = CNTR_ELEM("RcDelayComp", 0, 0, CNTR_NORMAL, 5036 access_sw_cpu_rc_delayed_comp), 5037 [OVR_LBL(0)] = OVR_ELM(0), [OVR_LBL(1)] = OVR_ELM(1), 5038 [OVR_LBL(2)] = OVR_ELM(2), [OVR_LBL(3)] = OVR_ELM(3), 5039 [OVR_LBL(4)] = OVR_ELM(4), [OVR_LBL(5)] = OVR_ELM(5), 5040 [OVR_LBL(6)] = OVR_ELM(6), [OVR_LBL(7)] = OVR_ELM(7), 5041 [OVR_LBL(8)] = OVR_ELM(8), [OVR_LBL(9)] = OVR_ELM(9), 5042 [OVR_LBL(10)] = OVR_ELM(10), [OVR_LBL(11)] = OVR_ELM(11), 5043 [OVR_LBL(12)] = OVR_ELM(12), [OVR_LBL(13)] = OVR_ELM(13), 5044 [OVR_LBL(14)] = OVR_ELM(14), [OVR_LBL(15)] = OVR_ELM(15), 5045 [OVR_LBL(16)] = OVR_ELM(16), [OVR_LBL(17)] = OVR_ELM(17), 5046 [OVR_LBL(18)] = OVR_ELM(18), [OVR_LBL(19)] = OVR_ELM(19), 5047 [OVR_LBL(20)] = OVR_ELM(20), [OVR_LBL(21)] = OVR_ELM(21), 5048 [OVR_LBL(22)] = OVR_ELM(22), [OVR_LBL(23)] = OVR_ELM(23), 5049 [OVR_LBL(24)] = OVR_ELM(24), [OVR_LBL(25)] = OVR_ELM(25), 5050 [OVR_LBL(26)] = OVR_ELM(26), [OVR_LBL(27)] = OVR_ELM(27), 5051 [OVR_LBL(28)] = OVR_ELM(28), [OVR_LBL(29)] = OVR_ELM(29), 5052 [OVR_LBL(30)] = OVR_ELM(30), [OVR_LBL(31)] = OVR_ELM(31), 5053 [OVR_LBL(32)] = OVR_ELM(32), [OVR_LBL(33)] = OVR_ELM(33), 5054 [OVR_LBL(34)] = OVR_ELM(34), [OVR_LBL(35)] = OVR_ELM(35), 5055 [OVR_LBL(36)] = OVR_ELM(36), [OVR_LBL(37)] = OVR_ELM(37), 5056 [OVR_LBL(38)] = OVR_ELM(38), [OVR_LBL(39)] = OVR_ELM(39), 5057 [OVR_LBL(40)] = OVR_ELM(40), [OVR_LBL(41)] = OVR_ELM(41), 5058 [OVR_LBL(42)] = OVR_ELM(42), [OVR_LBL(43)] = OVR_ELM(43), 5059 [OVR_LBL(44)] = OVR_ELM(44), [OVR_LBL(45)] = OVR_ELM(45), 5060 [OVR_LBL(46)] = OVR_ELM(46), [OVR_LBL(47)] = OVR_ELM(47), 5061 [OVR_LBL(48)] = OVR_ELM(48), [OVR_LBL(49)] = OVR_ELM(49), 5062 [OVR_LBL(50)] = OVR_ELM(50), [OVR_LBL(51)] = OVR_ELM(51), 5063 [OVR_LBL(52)] = OVR_ELM(52), [OVR_LBL(53)] = OVR_ELM(53), 5064 [OVR_LBL(54)] = OVR_ELM(54), [OVR_LBL(55)] = OVR_ELM(55), 5065 [OVR_LBL(56)] = OVR_ELM(56), [OVR_LBL(57)] = OVR_ELM(57), 5066 [OVR_LBL(58)] = OVR_ELM(58), [OVR_LBL(59)] = OVR_ELM(59), 5067 [OVR_LBL(60)] = OVR_ELM(60), [OVR_LBL(61)] = OVR_ELM(61), 5068 [OVR_LBL(62)] = OVR_ELM(62), [OVR_LBL(63)] = OVR_ELM(63), 5069 [OVR_LBL(64)] = OVR_ELM(64), [OVR_LBL(65)] = OVR_ELM(65), 5070 [OVR_LBL(66)] = OVR_ELM(66), [OVR_LBL(67)] = OVR_ELM(67), 5071 [OVR_LBL(68)] = OVR_ELM(68), [OVR_LBL(69)] = OVR_ELM(69), 5072 [OVR_LBL(70)] = OVR_ELM(70), [OVR_LBL(71)] = OVR_ELM(71), 5073 [OVR_LBL(72)] = OVR_ELM(72), [OVR_LBL(73)] = OVR_ELM(73), 5074 [OVR_LBL(74)] = OVR_ELM(74), [OVR_LBL(75)] = OVR_ELM(75), 5075 [OVR_LBL(76)] = OVR_ELM(76), [OVR_LBL(77)] = OVR_ELM(77), 5076 [OVR_LBL(78)] = OVR_ELM(78), [OVR_LBL(79)] = OVR_ELM(79), 5077 [OVR_LBL(80)] = OVR_ELM(80), [OVR_LBL(81)] = OVR_ELM(81), 5078 [OVR_LBL(82)] = OVR_ELM(82), [OVR_LBL(83)] = OVR_ELM(83), 5079 [OVR_LBL(84)] = OVR_ELM(84), [OVR_LBL(85)] = OVR_ELM(85), 5080 [OVR_LBL(86)] = OVR_ELM(86), [OVR_LBL(87)] = OVR_ELM(87), 5081 [OVR_LBL(88)] = OVR_ELM(88), [OVR_LBL(89)] = OVR_ELM(89), 5082 [OVR_LBL(90)] = OVR_ELM(90), [OVR_LBL(91)] = OVR_ELM(91), 5083 [OVR_LBL(92)] = OVR_ELM(92), [OVR_LBL(93)] = OVR_ELM(93), 5084 [OVR_LBL(94)] = OVR_ELM(94), [OVR_LBL(95)] = OVR_ELM(95), 5085 [OVR_LBL(96)] = OVR_ELM(96), [OVR_LBL(97)] = OVR_ELM(97), 5086 [OVR_LBL(98)] = OVR_ELM(98), [OVR_LBL(99)] = OVR_ELM(99), 5087 [OVR_LBL(100)] = OVR_ELM(100), [OVR_LBL(101)] = OVR_ELM(101), 5088 [OVR_LBL(102)] = OVR_ELM(102), [OVR_LBL(103)] = OVR_ELM(103), 5089 [OVR_LBL(104)] = OVR_ELM(104), [OVR_LBL(105)] = OVR_ELM(105), 5090 [OVR_LBL(106)] = OVR_ELM(106), [OVR_LBL(107)] = OVR_ELM(107), 5091 [OVR_LBL(108)] = OVR_ELM(108), [OVR_LBL(109)] = OVR_ELM(109), 5092 [OVR_LBL(110)] = OVR_ELM(110), [OVR_LBL(111)] = OVR_ELM(111), 5093 [OVR_LBL(112)] = OVR_ELM(112), [OVR_LBL(113)] = OVR_ELM(113), 5094 [OVR_LBL(114)] = OVR_ELM(114), [OVR_LBL(115)] = OVR_ELM(115), 5095 [OVR_LBL(116)] = OVR_ELM(116), [OVR_LBL(117)] = OVR_ELM(117), 5096 [OVR_LBL(118)] = OVR_ELM(118), [OVR_LBL(119)] = OVR_ELM(119), 5097 [OVR_LBL(120)] = OVR_ELM(120), [OVR_LBL(121)] = OVR_ELM(121), 5098 [OVR_LBL(122)] = OVR_ELM(122), [OVR_LBL(123)] = OVR_ELM(123), 5099 [OVR_LBL(124)] = OVR_ELM(124), [OVR_LBL(125)] = OVR_ELM(125), 5100 [OVR_LBL(126)] = OVR_ELM(126), [OVR_LBL(127)] = OVR_ELM(127), 5101 [OVR_LBL(128)] = OVR_ELM(128), [OVR_LBL(129)] = OVR_ELM(129), 5102 [OVR_LBL(130)] = OVR_ELM(130), [OVR_LBL(131)] = OVR_ELM(131), 5103 [OVR_LBL(132)] = OVR_ELM(132), [OVR_LBL(133)] = OVR_ELM(133), 5104 [OVR_LBL(134)] = OVR_ELM(134), [OVR_LBL(135)] = OVR_ELM(135), 5105 [OVR_LBL(136)] = OVR_ELM(136), [OVR_LBL(137)] = OVR_ELM(137), 5106 [OVR_LBL(138)] = OVR_ELM(138), [OVR_LBL(139)] = OVR_ELM(139), 5107 [OVR_LBL(140)] = OVR_ELM(140), [OVR_LBL(141)] = OVR_ELM(141), 5108 [OVR_LBL(142)] = OVR_ELM(142), [OVR_LBL(143)] = OVR_ELM(143), 5109 [OVR_LBL(144)] = OVR_ELM(144), [OVR_LBL(145)] = OVR_ELM(145), 5110 [OVR_LBL(146)] = OVR_ELM(146), [OVR_LBL(147)] = OVR_ELM(147), 5111 [OVR_LBL(148)] = OVR_ELM(148), [OVR_LBL(149)] = OVR_ELM(149), 5112 [OVR_LBL(150)] = OVR_ELM(150), [OVR_LBL(151)] = OVR_ELM(151), 5113 [OVR_LBL(152)] = OVR_ELM(152), [OVR_LBL(153)] = OVR_ELM(153), 5114 [OVR_LBL(154)] = OVR_ELM(154), [OVR_LBL(155)] = OVR_ELM(155), 5115 [OVR_LBL(156)] = OVR_ELM(156), [OVR_LBL(157)] = OVR_ELM(157), 5116 [OVR_LBL(158)] = OVR_ELM(158), [OVR_LBL(159)] = OVR_ELM(159), 5117 }; 5118 5119 /* ======================================================================== */ 5120 5121 /* return true if this is chip revision revision a */ 5122 int is_ax(struct hfi1_devdata *dd) 5123 { 5124 u8 chip_rev_minor = 5125 dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT 5126 & CCE_REVISION_CHIP_REV_MINOR_MASK; 5127 return (chip_rev_minor & 0xf0) == 0; 5128 } 5129 5130 /* return true if this is chip revision revision b */ 5131 int is_bx(struct hfi1_devdata *dd) 5132 { 5133 u8 chip_rev_minor = 5134 dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT 5135 & CCE_REVISION_CHIP_REV_MINOR_MASK; 5136 return (chip_rev_minor & 0xF0) == 0x10; 5137 } 5138 5139 /* 5140 * Append string s to buffer buf. Arguments curp and len are the current 5141 * position and remaining length, respectively. 5142 * 5143 * return 0 on success, 1 on out of room 5144 */ 5145 static int append_str(char *buf, char **curp, int *lenp, const char *s) 5146 { 5147 char *p = *curp; 5148 int len = *lenp; 5149 int result = 0; /* success */ 5150 char c; 5151 5152 /* add a comma, if first in the buffer */ 5153 if (p != buf) { 5154 if (len == 0) { 5155 result = 1; /* out of room */ 5156 goto done; 5157 } 5158 *p++ = ','; 5159 len--; 5160 } 5161 5162 /* copy the string */ 5163 while ((c = *s++) != 0) { 5164 if (len == 0) { 5165 result = 1; /* out of room */ 5166 goto done; 5167 } 5168 *p++ = c; 5169 len--; 5170 } 5171 5172 done: 5173 /* write return values */ 5174 *curp = p; 5175 *lenp = len; 5176 5177 return result; 5178 } 5179 5180 /* 5181 * Using the given flag table, print a comma separated string into 5182 * the buffer. End in '*' if the buffer is too short. 5183 */ 5184 static char *flag_string(char *buf, int buf_len, u64 flags, 5185 struct flag_table *table, int table_size) 5186 { 5187 char extra[32]; 5188 char *p = buf; 5189 int len = buf_len; 5190 int no_room = 0; 5191 int i; 5192 5193 /* make sure there is at least 2 so we can form "*" */ 5194 if (len < 2) 5195 return ""; 5196 5197 len--; /* leave room for a nul */ 5198 for (i = 0; i < table_size; i++) { 5199 if (flags & table[i].flag) { 5200 no_room = append_str(buf, &p, &len, table[i].str); 5201 if (no_room) 5202 break; 5203 flags &= ~table[i].flag; 5204 } 5205 } 5206 5207 /* any undocumented bits left? */ 5208 if (!no_room && flags) { 5209 snprintf(extra, sizeof(extra), "bits 0x%llx", flags); 5210 no_room = append_str(buf, &p, &len, extra); 5211 } 5212 5213 /* add * if ran out of room */ 5214 if (no_room) { 5215 /* may need to back up to add space for a '*' */ 5216 if (len == 0) 5217 --p; 5218 *p++ = '*'; 5219 } 5220 5221 /* add final nul - space already allocated above */ 5222 *p = 0; 5223 return buf; 5224 } 5225 5226 /* first 8 CCE error interrupt source names */ 5227 static const char * const cce_misc_names[] = { 5228 "CceErrInt", /* 0 */ 5229 "RxeErrInt", /* 1 */ 5230 "MiscErrInt", /* 2 */ 5231 "Reserved3", /* 3 */ 5232 "PioErrInt", /* 4 */ 5233 "SDmaErrInt", /* 5 */ 5234 "EgressErrInt", /* 6 */ 5235 "TxeErrInt" /* 7 */ 5236 }; 5237 5238 /* 5239 * Return the miscellaneous error interrupt name. 5240 */ 5241 static char *is_misc_err_name(char *buf, size_t bsize, unsigned int source) 5242 { 5243 if (source < ARRAY_SIZE(cce_misc_names)) 5244 strncpy(buf, cce_misc_names[source], bsize); 5245 else 5246 snprintf(buf, bsize, "Reserved%u", 5247 source + IS_GENERAL_ERR_START); 5248 5249 return buf; 5250 } 5251 5252 /* 5253 * Return the SDMA engine error interrupt name. 5254 */ 5255 static char *is_sdma_eng_err_name(char *buf, size_t bsize, unsigned int source) 5256 { 5257 snprintf(buf, bsize, "SDmaEngErrInt%u", source); 5258 return buf; 5259 } 5260 5261 /* 5262 * Return the send context error interrupt name. 5263 */ 5264 static char *is_sendctxt_err_name(char *buf, size_t bsize, unsigned int source) 5265 { 5266 snprintf(buf, bsize, "SendCtxtErrInt%u", source); 5267 return buf; 5268 } 5269 5270 static const char * const various_names[] = { 5271 "PbcInt", 5272 "GpioAssertInt", 5273 "Qsfp1Int", 5274 "Qsfp2Int", 5275 "TCritInt" 5276 }; 5277 5278 /* 5279 * Return the various interrupt name. 5280 */ 5281 static char *is_various_name(char *buf, size_t bsize, unsigned int source) 5282 { 5283 if (source < ARRAY_SIZE(various_names)) 5284 strncpy(buf, various_names[source], bsize); 5285 else 5286 snprintf(buf, bsize, "Reserved%u", source + IS_VARIOUS_START); 5287 return buf; 5288 } 5289 5290 /* 5291 * Return the DC interrupt name. 5292 */ 5293 static char *is_dc_name(char *buf, size_t bsize, unsigned int source) 5294 { 5295 static const char * const dc_int_names[] = { 5296 "common", 5297 "lcb", 5298 "8051", 5299 "lbm" /* local block merge */ 5300 }; 5301 5302 if (source < ARRAY_SIZE(dc_int_names)) 5303 snprintf(buf, bsize, "dc_%s_int", dc_int_names[source]); 5304 else 5305 snprintf(buf, bsize, "DCInt%u", source); 5306 return buf; 5307 } 5308 5309 static const char * const sdma_int_names[] = { 5310 "SDmaInt", 5311 "SdmaIdleInt", 5312 "SdmaProgressInt", 5313 }; 5314 5315 /* 5316 * Return the SDMA engine interrupt name. 5317 */ 5318 static char *is_sdma_eng_name(char *buf, size_t bsize, unsigned int source) 5319 { 5320 /* what interrupt */ 5321 unsigned int what = source / TXE_NUM_SDMA_ENGINES; 5322 /* which engine */ 5323 unsigned int which = source % TXE_NUM_SDMA_ENGINES; 5324 5325 if (likely(what < 3)) 5326 snprintf(buf, bsize, "%s%u", sdma_int_names[what], which); 5327 else 5328 snprintf(buf, bsize, "Invalid SDMA interrupt %u", source); 5329 return buf; 5330 } 5331 5332 /* 5333 * Return the receive available interrupt name. 5334 */ 5335 static char *is_rcv_avail_name(char *buf, size_t bsize, unsigned int source) 5336 { 5337 snprintf(buf, bsize, "RcvAvailInt%u", source); 5338 return buf; 5339 } 5340 5341 /* 5342 * Return the receive urgent interrupt name. 5343 */ 5344 static char *is_rcv_urgent_name(char *buf, size_t bsize, unsigned int source) 5345 { 5346 snprintf(buf, bsize, "RcvUrgentInt%u", source); 5347 return buf; 5348 } 5349 5350 /* 5351 * Return the send credit interrupt name. 5352 */ 5353 static char *is_send_credit_name(char *buf, size_t bsize, unsigned int source) 5354 { 5355 snprintf(buf, bsize, "SendCreditInt%u", source); 5356 return buf; 5357 } 5358 5359 /* 5360 * Return the reserved interrupt name. 5361 */ 5362 static char *is_reserved_name(char *buf, size_t bsize, unsigned int source) 5363 { 5364 snprintf(buf, bsize, "Reserved%u", source + IS_RESERVED_START); 5365 return buf; 5366 } 5367 5368 static char *cce_err_status_string(char *buf, int buf_len, u64 flags) 5369 { 5370 return flag_string(buf, buf_len, flags, 5371 cce_err_status_flags, 5372 ARRAY_SIZE(cce_err_status_flags)); 5373 } 5374 5375 static char *rxe_err_status_string(char *buf, int buf_len, u64 flags) 5376 { 5377 return flag_string(buf, buf_len, flags, 5378 rxe_err_status_flags, 5379 ARRAY_SIZE(rxe_err_status_flags)); 5380 } 5381 5382 static char *misc_err_status_string(char *buf, int buf_len, u64 flags) 5383 { 5384 return flag_string(buf, buf_len, flags, misc_err_status_flags, 5385 ARRAY_SIZE(misc_err_status_flags)); 5386 } 5387 5388 static char *pio_err_status_string(char *buf, int buf_len, u64 flags) 5389 { 5390 return flag_string(buf, buf_len, flags, 5391 pio_err_status_flags, 5392 ARRAY_SIZE(pio_err_status_flags)); 5393 } 5394 5395 static char *sdma_err_status_string(char *buf, int buf_len, u64 flags) 5396 { 5397 return flag_string(buf, buf_len, flags, 5398 sdma_err_status_flags, 5399 ARRAY_SIZE(sdma_err_status_flags)); 5400 } 5401 5402 static char *egress_err_status_string(char *buf, int buf_len, u64 flags) 5403 { 5404 return flag_string(buf, buf_len, flags, 5405 egress_err_status_flags, 5406 ARRAY_SIZE(egress_err_status_flags)); 5407 } 5408 5409 static char *egress_err_info_string(char *buf, int buf_len, u64 flags) 5410 { 5411 return flag_string(buf, buf_len, flags, 5412 egress_err_info_flags, 5413 ARRAY_SIZE(egress_err_info_flags)); 5414 } 5415 5416 static char *send_err_status_string(char *buf, int buf_len, u64 flags) 5417 { 5418 return flag_string(buf, buf_len, flags, 5419 send_err_status_flags, 5420 ARRAY_SIZE(send_err_status_flags)); 5421 } 5422 5423 static void handle_cce_err(struct hfi1_devdata *dd, u32 unused, u64 reg) 5424 { 5425 char buf[96]; 5426 int i = 0; 5427 5428 /* 5429 * For most these errors, there is nothing that can be done except 5430 * report or record it. 5431 */ 5432 dd_dev_info(dd, "CCE Error: %s\n", 5433 cce_err_status_string(buf, sizeof(buf), reg)); 5434 5435 if ((reg & CCE_ERR_STATUS_CCE_CLI2_ASYNC_FIFO_PARITY_ERR_SMASK) && 5436 is_ax(dd) && (dd->icode != ICODE_FUNCTIONAL_SIMULATOR)) { 5437 /* this error requires a manual drop into SPC freeze mode */ 5438 /* then a fix up */ 5439 start_freeze_handling(dd->pport, FREEZE_SELF); 5440 } 5441 5442 for (i = 0; i < NUM_CCE_ERR_STATUS_COUNTERS; i++) { 5443 if (reg & (1ull << i)) { 5444 incr_cntr64(&dd->cce_err_status_cnt[i]); 5445 /* maintain a counter over all cce_err_status errors */ 5446 incr_cntr64(&dd->sw_cce_err_status_aggregate); 5447 } 5448 } 5449 } 5450 5451 /* 5452 * Check counters for receive errors that do not have an interrupt 5453 * associated with them. 5454 */ 5455 #define RCVERR_CHECK_TIME 10 5456 static void update_rcverr_timer(unsigned long opaque) 5457 { 5458 struct hfi1_devdata *dd = (struct hfi1_devdata *)opaque; 5459 struct hfi1_pportdata *ppd = dd->pport; 5460 u32 cur_ovfl_cnt = read_dev_cntr(dd, C_RCV_OVF, CNTR_INVALID_VL); 5461 5462 if (dd->rcv_ovfl_cnt < cur_ovfl_cnt && 5463 ppd->port_error_action & OPA_PI_MASK_EX_BUFFER_OVERRUN) { 5464 dd_dev_info(dd, "%s: PortErrorAction bounce\n", __func__); 5465 set_link_down_reason( 5466 ppd, OPA_LINKDOWN_REASON_EXCESSIVE_BUFFER_OVERRUN, 0, 5467 OPA_LINKDOWN_REASON_EXCESSIVE_BUFFER_OVERRUN); 5468 queue_work(ppd->hfi1_wq, &ppd->link_bounce_work); 5469 } 5470 dd->rcv_ovfl_cnt = (u32)cur_ovfl_cnt; 5471 5472 mod_timer(&dd->rcverr_timer, jiffies + HZ * RCVERR_CHECK_TIME); 5473 } 5474 5475 static int init_rcverr(struct hfi1_devdata *dd) 5476 { 5477 setup_timer(&dd->rcverr_timer, update_rcverr_timer, (unsigned long)dd); 5478 /* Assume the hardware counter has been reset */ 5479 dd->rcv_ovfl_cnt = 0; 5480 return mod_timer(&dd->rcverr_timer, jiffies + HZ * RCVERR_CHECK_TIME); 5481 } 5482 5483 static void free_rcverr(struct hfi1_devdata *dd) 5484 { 5485 if (dd->rcverr_timer.data) 5486 del_timer_sync(&dd->rcverr_timer); 5487 dd->rcverr_timer.data = 0; 5488 } 5489 5490 static void handle_rxe_err(struct hfi1_devdata *dd, u32 unused, u64 reg) 5491 { 5492 char buf[96]; 5493 int i = 0; 5494 5495 dd_dev_info(dd, "Receive Error: %s\n", 5496 rxe_err_status_string(buf, sizeof(buf), reg)); 5497 5498 if (reg & ALL_RXE_FREEZE_ERR) { 5499 int flags = 0; 5500 5501 /* 5502 * Freeze mode recovery is disabled for the errors 5503 * in RXE_FREEZE_ABORT_MASK 5504 */ 5505 if (is_ax(dd) && (reg & RXE_FREEZE_ABORT_MASK)) 5506 flags = FREEZE_ABORT; 5507 5508 start_freeze_handling(dd->pport, flags); 5509 } 5510 5511 for (i = 0; i < NUM_RCV_ERR_STATUS_COUNTERS; i++) { 5512 if (reg & (1ull << i)) 5513 incr_cntr64(&dd->rcv_err_status_cnt[i]); 5514 } 5515 } 5516 5517 static void handle_misc_err(struct hfi1_devdata *dd, u32 unused, u64 reg) 5518 { 5519 char buf[96]; 5520 int i = 0; 5521 5522 dd_dev_info(dd, "Misc Error: %s", 5523 misc_err_status_string(buf, sizeof(buf), reg)); 5524 for (i = 0; i < NUM_MISC_ERR_STATUS_COUNTERS; i++) { 5525 if (reg & (1ull << i)) 5526 incr_cntr64(&dd->misc_err_status_cnt[i]); 5527 } 5528 } 5529 5530 static void handle_pio_err(struct hfi1_devdata *dd, u32 unused, u64 reg) 5531 { 5532 char buf[96]; 5533 int i = 0; 5534 5535 dd_dev_info(dd, "PIO Error: %s\n", 5536 pio_err_status_string(buf, sizeof(buf), reg)); 5537 5538 if (reg & ALL_PIO_FREEZE_ERR) 5539 start_freeze_handling(dd->pport, 0); 5540 5541 for (i = 0; i < NUM_SEND_PIO_ERR_STATUS_COUNTERS; i++) { 5542 if (reg & (1ull << i)) 5543 incr_cntr64(&dd->send_pio_err_status_cnt[i]); 5544 } 5545 } 5546 5547 static void handle_sdma_err(struct hfi1_devdata *dd, u32 unused, u64 reg) 5548 { 5549 char buf[96]; 5550 int i = 0; 5551 5552 dd_dev_info(dd, "SDMA Error: %s\n", 5553 sdma_err_status_string(buf, sizeof(buf), reg)); 5554 5555 if (reg & ALL_SDMA_FREEZE_ERR) 5556 start_freeze_handling(dd->pport, 0); 5557 5558 for (i = 0; i < NUM_SEND_DMA_ERR_STATUS_COUNTERS; i++) { 5559 if (reg & (1ull << i)) 5560 incr_cntr64(&dd->send_dma_err_status_cnt[i]); 5561 } 5562 } 5563 5564 static inline void __count_port_discards(struct hfi1_pportdata *ppd) 5565 { 5566 incr_cntr64(&ppd->port_xmit_discards); 5567 } 5568 5569 static void count_port_inactive(struct hfi1_devdata *dd) 5570 { 5571 __count_port_discards(dd->pport); 5572 } 5573 5574 /* 5575 * We have had a "disallowed packet" error during egress. Determine the 5576 * integrity check which failed, and update relevant error counter, etc. 5577 * 5578 * Note that the SEND_EGRESS_ERR_INFO register has only a single 5579 * bit of state per integrity check, and so we can miss the reason for an 5580 * egress error if more than one packet fails the same integrity check 5581 * since we cleared the corresponding bit in SEND_EGRESS_ERR_INFO. 5582 */ 5583 static void handle_send_egress_err_info(struct hfi1_devdata *dd, 5584 int vl) 5585 { 5586 struct hfi1_pportdata *ppd = dd->pport; 5587 u64 src = read_csr(dd, SEND_EGRESS_ERR_SOURCE); /* read first */ 5588 u64 info = read_csr(dd, SEND_EGRESS_ERR_INFO); 5589 char buf[96]; 5590 5591 /* clear down all observed info as quickly as possible after read */ 5592 write_csr(dd, SEND_EGRESS_ERR_INFO, info); 5593 5594 dd_dev_info(dd, 5595 "Egress Error Info: 0x%llx, %s Egress Error Src 0x%llx\n", 5596 info, egress_err_info_string(buf, sizeof(buf), info), src); 5597 5598 /* Eventually add other counters for each bit */ 5599 if (info & PORT_DISCARD_EGRESS_ERRS) { 5600 int weight, i; 5601 5602 /* 5603 * Count all applicable bits as individual errors and 5604 * attribute them to the packet that triggered this handler. 5605 * This may not be completely accurate due to limitations 5606 * on the available hardware error information. There is 5607 * a single information register and any number of error 5608 * packets may have occurred and contributed to it before 5609 * this routine is called. This means that: 5610 * a) If multiple packets with the same error occur before 5611 * this routine is called, earlier packets are missed. 5612 * There is only a single bit for each error type. 5613 * b) Errors may not be attributed to the correct VL. 5614 * The driver is attributing all bits in the info register 5615 * to the packet that triggered this call, but bits 5616 * could be an accumulation of different packets with 5617 * different VLs. 5618 * c) A single error packet may have multiple counts attached 5619 * to it. There is no way for the driver to know if 5620 * multiple bits set in the info register are due to a 5621 * single packet or multiple packets. The driver assumes 5622 * multiple packets. 5623 */ 5624 weight = hweight64(info & PORT_DISCARD_EGRESS_ERRS); 5625 for (i = 0; i < weight; i++) { 5626 __count_port_discards(ppd); 5627 if (vl >= 0 && vl < TXE_NUM_DATA_VL) 5628 incr_cntr64(&ppd->port_xmit_discards_vl[vl]); 5629 else if (vl == 15) 5630 incr_cntr64(&ppd->port_xmit_discards_vl 5631 [C_VL_15]); 5632 } 5633 } 5634 } 5635 5636 /* 5637 * Input value is a bit position within the SEND_EGRESS_ERR_STATUS 5638 * register. Does it represent a 'port inactive' error? 5639 */ 5640 static inline int port_inactive_err(u64 posn) 5641 { 5642 return (posn >= SEES(TX_LINKDOWN) && 5643 posn <= SEES(TX_INCORRECT_LINK_STATE)); 5644 } 5645 5646 /* 5647 * Input value is a bit position within the SEND_EGRESS_ERR_STATUS 5648 * register. Does it represent a 'disallowed packet' error? 5649 */ 5650 static inline int disallowed_pkt_err(int posn) 5651 { 5652 return (posn >= SEES(TX_SDMA0_DISALLOWED_PACKET) && 5653 posn <= SEES(TX_SDMA15_DISALLOWED_PACKET)); 5654 } 5655 5656 /* 5657 * Input value is a bit position of one of the SDMA engine disallowed 5658 * packet errors. Return which engine. Use of this must be guarded by 5659 * disallowed_pkt_err(). 5660 */ 5661 static inline int disallowed_pkt_engine(int posn) 5662 { 5663 return posn - SEES(TX_SDMA0_DISALLOWED_PACKET); 5664 } 5665 5666 /* 5667 * Translate an SDMA engine to a VL. Return -1 if the tranlation cannot 5668 * be done. 5669 */ 5670 static int engine_to_vl(struct hfi1_devdata *dd, int engine) 5671 { 5672 struct sdma_vl_map *m; 5673 int vl; 5674 5675 /* range check */ 5676 if (engine < 0 || engine >= TXE_NUM_SDMA_ENGINES) 5677 return -1; 5678 5679 rcu_read_lock(); 5680 m = rcu_dereference(dd->sdma_map); 5681 vl = m->engine_to_vl[engine]; 5682 rcu_read_unlock(); 5683 5684 return vl; 5685 } 5686 5687 /* 5688 * Translate the send context (sofware index) into a VL. Return -1 if the 5689 * translation cannot be done. 5690 */ 5691 static int sc_to_vl(struct hfi1_devdata *dd, int sw_index) 5692 { 5693 struct send_context_info *sci; 5694 struct send_context *sc; 5695 int i; 5696 5697 sci = &dd->send_contexts[sw_index]; 5698 5699 /* there is no information for user (PSM) and ack contexts */ 5700 if ((sci->type != SC_KERNEL) && (sci->type != SC_VL15)) 5701 return -1; 5702 5703 sc = sci->sc; 5704 if (!sc) 5705 return -1; 5706 if (dd->vld[15].sc == sc) 5707 return 15; 5708 for (i = 0; i < num_vls; i++) 5709 if (dd->vld[i].sc == sc) 5710 return i; 5711 5712 return -1; 5713 } 5714 5715 static void handle_egress_err(struct hfi1_devdata *dd, u32 unused, u64 reg) 5716 { 5717 u64 reg_copy = reg, handled = 0; 5718 char buf[96]; 5719 int i = 0; 5720 5721 if (reg & ALL_TXE_EGRESS_FREEZE_ERR) 5722 start_freeze_handling(dd->pport, 0); 5723 else if (is_ax(dd) && 5724 (reg & SEND_EGRESS_ERR_STATUS_TX_CREDIT_RETURN_VL_ERR_SMASK) && 5725 (dd->icode != ICODE_FUNCTIONAL_SIMULATOR)) 5726 start_freeze_handling(dd->pport, 0); 5727 5728 while (reg_copy) { 5729 int posn = fls64(reg_copy); 5730 /* fls64() returns a 1-based offset, we want it zero based */ 5731 int shift = posn - 1; 5732 u64 mask = 1ULL << shift; 5733 5734 if (port_inactive_err(shift)) { 5735 count_port_inactive(dd); 5736 handled |= mask; 5737 } else if (disallowed_pkt_err(shift)) { 5738 int vl = engine_to_vl(dd, disallowed_pkt_engine(shift)); 5739 5740 handle_send_egress_err_info(dd, vl); 5741 handled |= mask; 5742 } 5743 reg_copy &= ~mask; 5744 } 5745 5746 reg &= ~handled; 5747 5748 if (reg) 5749 dd_dev_info(dd, "Egress Error: %s\n", 5750 egress_err_status_string(buf, sizeof(buf), reg)); 5751 5752 for (i = 0; i < NUM_SEND_EGRESS_ERR_STATUS_COUNTERS; i++) { 5753 if (reg & (1ull << i)) 5754 incr_cntr64(&dd->send_egress_err_status_cnt[i]); 5755 } 5756 } 5757 5758 static void handle_txe_err(struct hfi1_devdata *dd, u32 unused, u64 reg) 5759 { 5760 char buf[96]; 5761 int i = 0; 5762 5763 dd_dev_info(dd, "Send Error: %s\n", 5764 send_err_status_string(buf, sizeof(buf), reg)); 5765 5766 for (i = 0; i < NUM_SEND_ERR_STATUS_COUNTERS; i++) { 5767 if (reg & (1ull << i)) 5768 incr_cntr64(&dd->send_err_status_cnt[i]); 5769 } 5770 } 5771 5772 /* 5773 * The maximum number of times the error clear down will loop before 5774 * blocking a repeating error. This value is arbitrary. 5775 */ 5776 #define MAX_CLEAR_COUNT 20 5777 5778 /* 5779 * Clear and handle an error register. All error interrupts are funneled 5780 * through here to have a central location to correctly handle single- 5781 * or multi-shot errors. 5782 * 5783 * For non per-context registers, call this routine with a context value 5784 * of 0 so the per-context offset is zero. 5785 * 5786 * If the handler loops too many times, assume that something is wrong 5787 * and can't be fixed, so mask the error bits. 5788 */ 5789 static void interrupt_clear_down(struct hfi1_devdata *dd, 5790 u32 context, 5791 const struct err_reg_info *eri) 5792 { 5793 u64 reg; 5794 u32 count; 5795 5796 /* read in a loop until no more errors are seen */ 5797 count = 0; 5798 while (1) { 5799 reg = read_kctxt_csr(dd, context, eri->status); 5800 if (reg == 0) 5801 break; 5802 write_kctxt_csr(dd, context, eri->clear, reg); 5803 if (likely(eri->handler)) 5804 eri->handler(dd, context, reg); 5805 count++; 5806 if (count > MAX_CLEAR_COUNT) { 5807 u64 mask; 5808 5809 dd_dev_err(dd, "Repeating %s bits 0x%llx - masking\n", 5810 eri->desc, reg); 5811 /* 5812 * Read-modify-write so any other masked bits 5813 * remain masked. 5814 */ 5815 mask = read_kctxt_csr(dd, context, eri->mask); 5816 mask &= ~reg; 5817 write_kctxt_csr(dd, context, eri->mask, mask); 5818 break; 5819 } 5820 } 5821 } 5822 5823 /* 5824 * CCE block "misc" interrupt. Source is < 16. 5825 */ 5826 static void is_misc_err_int(struct hfi1_devdata *dd, unsigned int source) 5827 { 5828 const struct err_reg_info *eri = &misc_errs[source]; 5829 5830 if (eri->handler) { 5831 interrupt_clear_down(dd, 0, eri); 5832 } else { 5833 dd_dev_err(dd, "Unexpected misc interrupt (%u) - reserved\n", 5834 source); 5835 } 5836 } 5837 5838 static char *send_context_err_status_string(char *buf, int buf_len, u64 flags) 5839 { 5840 return flag_string(buf, buf_len, flags, 5841 sc_err_status_flags, 5842 ARRAY_SIZE(sc_err_status_flags)); 5843 } 5844 5845 /* 5846 * Send context error interrupt. Source (hw_context) is < 160. 5847 * 5848 * All send context errors cause the send context to halt. The normal 5849 * clear-down mechanism cannot be used because we cannot clear the 5850 * error bits until several other long-running items are done first. 5851 * This is OK because with the context halted, nothing else is going 5852 * to happen on it anyway. 5853 */ 5854 static void is_sendctxt_err_int(struct hfi1_devdata *dd, 5855 unsigned int hw_context) 5856 { 5857 struct send_context_info *sci; 5858 struct send_context *sc; 5859 char flags[96]; 5860 u64 status; 5861 u32 sw_index; 5862 int i = 0; 5863 5864 sw_index = dd->hw_to_sw[hw_context]; 5865 if (sw_index >= dd->num_send_contexts) { 5866 dd_dev_err(dd, 5867 "out of range sw index %u for send context %u\n", 5868 sw_index, hw_context); 5869 return; 5870 } 5871 sci = &dd->send_contexts[sw_index]; 5872 sc = sci->sc; 5873 if (!sc) { 5874 dd_dev_err(dd, "%s: context %u(%u): no sc?\n", __func__, 5875 sw_index, hw_context); 5876 return; 5877 } 5878 5879 /* tell the software that a halt has begun */ 5880 sc_stop(sc, SCF_HALTED); 5881 5882 status = read_kctxt_csr(dd, hw_context, SEND_CTXT_ERR_STATUS); 5883 5884 dd_dev_info(dd, "Send Context %u(%u) Error: %s\n", sw_index, hw_context, 5885 send_context_err_status_string(flags, sizeof(flags), 5886 status)); 5887 5888 if (status & SEND_CTXT_ERR_STATUS_PIO_DISALLOWED_PACKET_ERR_SMASK) 5889 handle_send_egress_err_info(dd, sc_to_vl(dd, sw_index)); 5890 5891 /* 5892 * Automatically restart halted kernel contexts out of interrupt 5893 * context. User contexts must ask the driver to restart the context. 5894 */ 5895 if (sc->type != SC_USER) 5896 queue_work(dd->pport->hfi1_wq, &sc->halt_work); 5897 5898 /* 5899 * Update the counters for the corresponding status bits. 5900 * Note that these particular counters are aggregated over all 5901 * 160 contexts. 5902 */ 5903 for (i = 0; i < NUM_SEND_CTXT_ERR_STATUS_COUNTERS; i++) { 5904 if (status & (1ull << i)) 5905 incr_cntr64(&dd->sw_ctxt_err_status_cnt[i]); 5906 } 5907 } 5908 5909 static void handle_sdma_eng_err(struct hfi1_devdata *dd, 5910 unsigned int source, u64 status) 5911 { 5912 struct sdma_engine *sde; 5913 int i = 0; 5914 5915 sde = &dd->per_sdma[source]; 5916 #ifdef CONFIG_SDMA_VERBOSITY 5917 dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx, 5918 slashstrip(__FILE__), __LINE__, __func__); 5919 dd_dev_err(sde->dd, "CONFIG SDMA(%u) source: %u status 0x%llx\n", 5920 sde->this_idx, source, (unsigned long long)status); 5921 #endif 5922 sde->err_cnt++; 5923 sdma_engine_error(sde, status); 5924 5925 /* 5926 * Update the counters for the corresponding status bits. 5927 * Note that these particular counters are aggregated over 5928 * all 16 DMA engines. 5929 */ 5930 for (i = 0; i < NUM_SEND_DMA_ENG_ERR_STATUS_COUNTERS; i++) { 5931 if (status & (1ull << i)) 5932 incr_cntr64(&dd->sw_send_dma_eng_err_status_cnt[i]); 5933 } 5934 } 5935 5936 /* 5937 * CCE block SDMA error interrupt. Source is < 16. 5938 */ 5939 static void is_sdma_eng_err_int(struct hfi1_devdata *dd, unsigned int source) 5940 { 5941 #ifdef CONFIG_SDMA_VERBOSITY 5942 struct sdma_engine *sde = &dd->per_sdma[source]; 5943 5944 dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx, 5945 slashstrip(__FILE__), __LINE__, __func__); 5946 dd_dev_err(dd, "CONFIG SDMA(%u) source: %u\n", sde->this_idx, 5947 source); 5948 sdma_dumpstate(sde); 5949 #endif 5950 interrupt_clear_down(dd, source, &sdma_eng_err); 5951 } 5952 5953 /* 5954 * CCE block "various" interrupt. Source is < 8. 5955 */ 5956 static void is_various_int(struct hfi1_devdata *dd, unsigned int source) 5957 { 5958 const struct err_reg_info *eri = &various_err[source]; 5959 5960 /* 5961 * TCritInt cannot go through interrupt_clear_down() 5962 * because it is not a second tier interrupt. The handler 5963 * should be called directly. 5964 */ 5965 if (source == TCRIT_INT_SOURCE) 5966 handle_temp_err(dd); 5967 else if (eri->handler) 5968 interrupt_clear_down(dd, 0, eri); 5969 else 5970 dd_dev_info(dd, 5971 "%s: Unimplemented/reserved interrupt %d\n", 5972 __func__, source); 5973 } 5974 5975 static void handle_qsfp_int(struct hfi1_devdata *dd, u32 src_ctx, u64 reg) 5976 { 5977 /* src_ctx is always zero */ 5978 struct hfi1_pportdata *ppd = dd->pport; 5979 unsigned long flags; 5980 u64 qsfp_int_mgmt = (u64)(QSFP_HFI0_INT_N | QSFP_HFI0_MODPRST_N); 5981 5982 if (reg & QSFP_HFI0_MODPRST_N) { 5983 if (!qsfp_mod_present(ppd)) { 5984 dd_dev_info(dd, "%s: QSFP module removed\n", 5985 __func__); 5986 5987 ppd->driver_link_ready = 0; 5988 /* 5989 * Cable removed, reset all our information about the 5990 * cache and cable capabilities 5991 */ 5992 5993 spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags); 5994 /* 5995 * We don't set cache_refresh_required here as we expect 5996 * an interrupt when a cable is inserted 5997 */ 5998 ppd->qsfp_info.cache_valid = 0; 5999 ppd->qsfp_info.reset_needed = 0; 6000 ppd->qsfp_info.limiting_active = 0; 6001 spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock, 6002 flags); 6003 /* Invert the ModPresent pin now to detect plug-in */ 6004 write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_INVERT : 6005 ASIC_QSFP1_INVERT, qsfp_int_mgmt); 6006 6007 if ((ppd->offline_disabled_reason > 6008 HFI1_ODR_MASK( 6009 OPA_LINKDOWN_REASON_LOCAL_MEDIA_NOT_INSTALLED)) || 6010 (ppd->offline_disabled_reason == 6011 HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE))) 6012 ppd->offline_disabled_reason = 6013 HFI1_ODR_MASK( 6014 OPA_LINKDOWN_REASON_LOCAL_MEDIA_NOT_INSTALLED); 6015 6016 if (ppd->host_link_state == HLS_DN_POLL) { 6017 /* 6018 * The link is still in POLL. This means 6019 * that the normal link down processing 6020 * will not happen. We have to do it here 6021 * before turning the DC off. 6022 */ 6023 queue_work(ppd->hfi1_wq, &ppd->link_down_work); 6024 } 6025 } else { 6026 dd_dev_info(dd, "%s: QSFP module inserted\n", 6027 __func__); 6028 6029 spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags); 6030 ppd->qsfp_info.cache_valid = 0; 6031 ppd->qsfp_info.cache_refresh_required = 1; 6032 spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock, 6033 flags); 6034 6035 /* 6036 * Stop inversion of ModPresent pin to detect 6037 * removal of the cable 6038 */ 6039 qsfp_int_mgmt &= ~(u64)QSFP_HFI0_MODPRST_N; 6040 write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_INVERT : 6041 ASIC_QSFP1_INVERT, qsfp_int_mgmt); 6042 6043 ppd->offline_disabled_reason = 6044 HFI1_ODR_MASK(OPA_LINKDOWN_REASON_TRANSIENT); 6045 } 6046 } 6047 6048 if (reg & QSFP_HFI0_INT_N) { 6049 dd_dev_info(dd, "%s: Interrupt received from QSFP module\n", 6050 __func__); 6051 spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags); 6052 ppd->qsfp_info.check_interrupt_flags = 1; 6053 spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock, flags); 6054 } 6055 6056 /* Schedule the QSFP work only if there is a cable attached. */ 6057 if (qsfp_mod_present(ppd)) 6058 queue_work(ppd->hfi1_wq, &ppd->qsfp_info.qsfp_work); 6059 } 6060 6061 static int request_host_lcb_access(struct hfi1_devdata *dd) 6062 { 6063 int ret; 6064 6065 ret = do_8051_command(dd, HCMD_MISC, 6066 (u64)HCMD_MISC_REQUEST_LCB_ACCESS << 6067 LOAD_DATA_FIELD_ID_SHIFT, NULL); 6068 if (ret != HCMD_SUCCESS) { 6069 dd_dev_err(dd, "%s: command failed with error %d\n", 6070 __func__, ret); 6071 } 6072 return ret == HCMD_SUCCESS ? 0 : -EBUSY; 6073 } 6074 6075 static int request_8051_lcb_access(struct hfi1_devdata *dd) 6076 { 6077 int ret; 6078 6079 ret = do_8051_command(dd, HCMD_MISC, 6080 (u64)HCMD_MISC_GRANT_LCB_ACCESS << 6081 LOAD_DATA_FIELD_ID_SHIFT, NULL); 6082 if (ret != HCMD_SUCCESS) { 6083 dd_dev_err(dd, "%s: command failed with error %d\n", 6084 __func__, ret); 6085 } 6086 return ret == HCMD_SUCCESS ? 0 : -EBUSY; 6087 } 6088 6089 /* 6090 * Set the LCB selector - allow host access. The DCC selector always 6091 * points to the host. 6092 */ 6093 static inline void set_host_lcb_access(struct hfi1_devdata *dd) 6094 { 6095 write_csr(dd, DC_DC8051_CFG_CSR_ACCESS_SEL, 6096 DC_DC8051_CFG_CSR_ACCESS_SEL_DCC_SMASK | 6097 DC_DC8051_CFG_CSR_ACCESS_SEL_LCB_SMASK); 6098 } 6099 6100 /* 6101 * Clear the LCB selector - allow 8051 access. The DCC selector always 6102 * points to the host. 6103 */ 6104 static inline void set_8051_lcb_access(struct hfi1_devdata *dd) 6105 { 6106 write_csr(dd, DC_DC8051_CFG_CSR_ACCESS_SEL, 6107 DC_DC8051_CFG_CSR_ACCESS_SEL_DCC_SMASK); 6108 } 6109 6110 /* 6111 * Acquire LCB access from the 8051. If the host already has access, 6112 * just increment a counter. Otherwise, inform the 8051 that the 6113 * host is taking access. 6114 * 6115 * Returns: 6116 * 0 on success 6117 * -EBUSY if the 8051 has control and cannot be disturbed 6118 * -errno if unable to acquire access from the 8051 6119 */ 6120 int acquire_lcb_access(struct hfi1_devdata *dd, int sleep_ok) 6121 { 6122 struct hfi1_pportdata *ppd = dd->pport; 6123 int ret = 0; 6124 6125 /* 6126 * Use the host link state lock so the operation of this routine 6127 * { link state check, selector change, count increment } can occur 6128 * as a unit against a link state change. Otherwise there is a 6129 * race between the state change and the count increment. 6130 */ 6131 if (sleep_ok) { 6132 mutex_lock(&ppd->hls_lock); 6133 } else { 6134 while (!mutex_trylock(&ppd->hls_lock)) 6135 udelay(1); 6136 } 6137 6138 /* this access is valid only when the link is up */ 6139 if (ppd->host_link_state & HLS_DOWN) { 6140 dd_dev_info(dd, "%s: link state %s not up\n", 6141 __func__, link_state_name(ppd->host_link_state)); 6142 ret = -EBUSY; 6143 goto done; 6144 } 6145 6146 if (dd->lcb_access_count == 0) { 6147 ret = request_host_lcb_access(dd); 6148 if (ret) { 6149 dd_dev_err(dd, 6150 "%s: unable to acquire LCB access, err %d\n", 6151 __func__, ret); 6152 goto done; 6153 } 6154 set_host_lcb_access(dd); 6155 } 6156 dd->lcb_access_count++; 6157 done: 6158 mutex_unlock(&ppd->hls_lock); 6159 return ret; 6160 } 6161 6162 /* 6163 * Release LCB access by decrementing the use count. If the count is moving 6164 * from 1 to 0, inform 8051 that it has control back. 6165 * 6166 * Returns: 6167 * 0 on success 6168 * -errno if unable to release access to the 8051 6169 */ 6170 int release_lcb_access(struct hfi1_devdata *dd, int sleep_ok) 6171 { 6172 int ret = 0; 6173 6174 /* 6175 * Use the host link state lock because the acquire needed it. 6176 * Here, we only need to keep { selector change, count decrement } 6177 * as a unit. 6178 */ 6179 if (sleep_ok) { 6180 mutex_lock(&dd->pport->hls_lock); 6181 } else { 6182 while (!mutex_trylock(&dd->pport->hls_lock)) 6183 udelay(1); 6184 } 6185 6186 if (dd->lcb_access_count == 0) { 6187 dd_dev_err(dd, "%s: LCB access count is zero. Skipping.\n", 6188 __func__); 6189 goto done; 6190 } 6191 6192 if (dd->lcb_access_count == 1) { 6193 set_8051_lcb_access(dd); 6194 ret = request_8051_lcb_access(dd); 6195 if (ret) { 6196 dd_dev_err(dd, 6197 "%s: unable to release LCB access, err %d\n", 6198 __func__, ret); 6199 /* restore host access if the grant didn't work */ 6200 set_host_lcb_access(dd); 6201 goto done; 6202 } 6203 } 6204 dd->lcb_access_count--; 6205 done: 6206 mutex_unlock(&dd->pport->hls_lock); 6207 return ret; 6208 } 6209 6210 /* 6211 * Initialize LCB access variables and state. Called during driver load, 6212 * after most of the initialization is finished. 6213 * 6214 * The DC default is LCB access on for the host. The driver defaults to 6215 * leaving access to the 8051. Assign access now - this constrains the call 6216 * to this routine to be after all LCB set-up is done. In particular, after 6217 * hf1_init_dd() -> set_up_interrupts() -> clear_all_interrupts() 6218 */ 6219 static void init_lcb_access(struct hfi1_devdata *dd) 6220 { 6221 dd->lcb_access_count = 0; 6222 } 6223 6224 /* 6225 * Write a response back to a 8051 request. 6226 */ 6227 static void hreq_response(struct hfi1_devdata *dd, u8 return_code, u16 rsp_data) 6228 { 6229 write_csr(dd, DC_DC8051_CFG_EXT_DEV_0, 6230 DC_DC8051_CFG_EXT_DEV_0_COMPLETED_SMASK | 6231 (u64)return_code << 6232 DC_DC8051_CFG_EXT_DEV_0_RETURN_CODE_SHIFT | 6233 (u64)rsp_data << DC_DC8051_CFG_EXT_DEV_0_RSP_DATA_SHIFT); 6234 } 6235 6236 /* 6237 * Handle host requests from the 8051. 6238 */ 6239 static void handle_8051_request(struct hfi1_pportdata *ppd) 6240 { 6241 struct hfi1_devdata *dd = ppd->dd; 6242 u64 reg; 6243 u16 data = 0; 6244 u8 type; 6245 6246 reg = read_csr(dd, DC_DC8051_CFG_EXT_DEV_1); 6247 if ((reg & DC_DC8051_CFG_EXT_DEV_1_REQ_NEW_SMASK) == 0) 6248 return; /* no request */ 6249 6250 /* zero out COMPLETED so the response is seen */ 6251 write_csr(dd, DC_DC8051_CFG_EXT_DEV_0, 0); 6252 6253 /* extract request details */ 6254 type = (reg >> DC_DC8051_CFG_EXT_DEV_1_REQ_TYPE_SHIFT) 6255 & DC_DC8051_CFG_EXT_DEV_1_REQ_TYPE_MASK; 6256 data = (reg >> DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SHIFT) 6257 & DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_MASK; 6258 6259 switch (type) { 6260 case HREQ_LOAD_CONFIG: 6261 case HREQ_SAVE_CONFIG: 6262 case HREQ_READ_CONFIG: 6263 case HREQ_SET_TX_EQ_ABS: 6264 case HREQ_SET_TX_EQ_REL: 6265 case HREQ_ENABLE: 6266 dd_dev_info(dd, "8051 request: request 0x%x not supported\n", 6267 type); 6268 hreq_response(dd, HREQ_NOT_SUPPORTED, 0); 6269 break; 6270 case HREQ_CONFIG_DONE: 6271 hreq_response(dd, HREQ_SUCCESS, 0); 6272 break; 6273 6274 case HREQ_INTERFACE_TEST: 6275 hreq_response(dd, HREQ_SUCCESS, data); 6276 break; 6277 default: 6278 dd_dev_err(dd, "8051 request: unknown request 0x%x\n", type); 6279 hreq_response(dd, HREQ_NOT_SUPPORTED, 0); 6280 break; 6281 } 6282 } 6283 6284 static void write_global_credit(struct hfi1_devdata *dd, 6285 u8 vau, u16 total, u16 shared) 6286 { 6287 write_csr(dd, SEND_CM_GLOBAL_CREDIT, 6288 ((u64)total << 6289 SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT) | 6290 ((u64)shared << 6291 SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SHIFT) | 6292 ((u64)vau << SEND_CM_GLOBAL_CREDIT_AU_SHIFT)); 6293 } 6294 6295 /* 6296 * Set up initial VL15 credits of the remote. Assumes the rest of 6297 * the CM credit registers are zero from a previous global or credit reset . 6298 */ 6299 void set_up_vl15(struct hfi1_devdata *dd, u8 vau, u16 vl15buf) 6300 { 6301 /* leave shared count at zero for both global and VL15 */ 6302 write_global_credit(dd, vau, vl15buf, 0); 6303 6304 /* We may need some credits for another VL when sending packets 6305 * with the snoop interface. Dividing it down the middle for VL15 6306 * and VL0 should suffice. 6307 */ 6308 if (unlikely(dd->hfi1_snoop.mode_flag == HFI1_PORT_SNOOP_MODE)) { 6309 write_csr(dd, SEND_CM_CREDIT_VL15, (u64)(vl15buf >> 1) 6310 << SEND_CM_CREDIT_VL15_DEDICATED_LIMIT_VL_SHIFT); 6311 write_csr(dd, SEND_CM_CREDIT_VL, (u64)(vl15buf >> 1) 6312 << SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SHIFT); 6313 } else { 6314 write_csr(dd, SEND_CM_CREDIT_VL15, (u64)vl15buf 6315 << SEND_CM_CREDIT_VL15_DEDICATED_LIMIT_VL_SHIFT); 6316 } 6317 } 6318 6319 /* 6320 * Zero all credit details from the previous connection and 6321 * reset the CM manager's internal counters. 6322 */ 6323 void reset_link_credits(struct hfi1_devdata *dd) 6324 { 6325 int i; 6326 6327 /* remove all previous VL credit limits */ 6328 for (i = 0; i < TXE_NUM_DATA_VL; i++) 6329 write_csr(dd, SEND_CM_CREDIT_VL + (8 * i), 0); 6330 write_csr(dd, SEND_CM_CREDIT_VL15, 0); 6331 write_global_credit(dd, 0, 0, 0); 6332 /* reset the CM block */ 6333 pio_send_control(dd, PSC_CM_RESET); 6334 } 6335 6336 /* convert a vCU to a CU */ 6337 static u32 vcu_to_cu(u8 vcu) 6338 { 6339 return 1 << vcu; 6340 } 6341 6342 /* convert a CU to a vCU */ 6343 static u8 cu_to_vcu(u32 cu) 6344 { 6345 return ilog2(cu); 6346 } 6347 6348 /* convert a vAU to an AU */ 6349 static u32 vau_to_au(u8 vau) 6350 { 6351 return 8 * (1 << vau); 6352 } 6353 6354 static void set_linkup_defaults(struct hfi1_pportdata *ppd) 6355 { 6356 ppd->sm_trap_qp = 0x0; 6357 ppd->sa_qp = 0x1; 6358 } 6359 6360 /* 6361 * Graceful LCB shutdown. This leaves the LCB FIFOs in reset. 6362 */ 6363 static void lcb_shutdown(struct hfi1_devdata *dd, int abort) 6364 { 6365 u64 reg; 6366 6367 /* clear lcb run: LCB_CFG_RUN.EN = 0 */ 6368 write_csr(dd, DC_LCB_CFG_RUN, 0); 6369 /* set tx fifo reset: LCB_CFG_TX_FIFOS_RESET.VAL = 1 */ 6370 write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 6371 1ull << DC_LCB_CFG_TX_FIFOS_RESET_VAL_SHIFT); 6372 /* set dcc reset csr: DCC_CFG_RESET.{reset_lcb,reset_rx_fpe} = 1 */ 6373 dd->lcb_err_en = read_csr(dd, DC_LCB_ERR_EN); 6374 reg = read_csr(dd, DCC_CFG_RESET); 6375 write_csr(dd, DCC_CFG_RESET, reg | 6376 (1ull << DCC_CFG_RESET_RESET_LCB_SHIFT) | 6377 (1ull << DCC_CFG_RESET_RESET_RX_FPE_SHIFT)); 6378 (void)read_csr(dd, DCC_CFG_RESET); /* make sure the write completed */ 6379 if (!abort) { 6380 udelay(1); /* must hold for the longer of 16cclks or 20ns */ 6381 write_csr(dd, DCC_CFG_RESET, reg); 6382 write_csr(dd, DC_LCB_ERR_EN, dd->lcb_err_en); 6383 } 6384 } 6385 6386 /* 6387 * This routine should be called after the link has been transitioned to 6388 * OFFLINE (OFFLINE state has the side effect of putting the SerDes into 6389 * reset). 6390 * 6391 * The expectation is that the caller of this routine would have taken 6392 * care of properly transitioning the link into the correct state. 6393 */ 6394 static void dc_shutdown(struct hfi1_devdata *dd) 6395 { 6396 unsigned long flags; 6397 6398 spin_lock_irqsave(&dd->dc8051_lock, flags); 6399 if (dd->dc_shutdown) { 6400 spin_unlock_irqrestore(&dd->dc8051_lock, flags); 6401 return; 6402 } 6403 dd->dc_shutdown = 1; 6404 spin_unlock_irqrestore(&dd->dc8051_lock, flags); 6405 /* Shutdown the LCB */ 6406 lcb_shutdown(dd, 1); 6407 /* 6408 * Going to OFFLINE would have causes the 8051 to put the 6409 * SerDes into reset already. Just need to shut down the 8051, 6410 * itself. 6411 */ 6412 write_csr(dd, DC_DC8051_CFG_RST, 0x1); 6413 } 6414 6415 /* 6416 * Calling this after the DC has been brought out of reset should not 6417 * do any damage. 6418 */ 6419 static void dc_start(struct hfi1_devdata *dd) 6420 { 6421 unsigned long flags; 6422 int ret; 6423 6424 spin_lock_irqsave(&dd->dc8051_lock, flags); 6425 if (!dd->dc_shutdown) 6426 goto done; 6427 spin_unlock_irqrestore(&dd->dc8051_lock, flags); 6428 /* Take the 8051 out of reset */ 6429 write_csr(dd, DC_DC8051_CFG_RST, 0ull); 6430 /* Wait until 8051 is ready */ 6431 ret = wait_fm_ready(dd, TIMEOUT_8051_START); 6432 if (ret) { 6433 dd_dev_err(dd, "%s: timeout starting 8051 firmware\n", 6434 __func__); 6435 } 6436 /* Take away reset for LCB and RX FPE (set in lcb_shutdown). */ 6437 write_csr(dd, DCC_CFG_RESET, 0x10); 6438 /* lcb_shutdown() with abort=1 does not restore these */ 6439 write_csr(dd, DC_LCB_ERR_EN, dd->lcb_err_en); 6440 spin_lock_irqsave(&dd->dc8051_lock, flags); 6441 dd->dc_shutdown = 0; 6442 done: 6443 spin_unlock_irqrestore(&dd->dc8051_lock, flags); 6444 } 6445 6446 /* 6447 * These LCB adjustments are for the Aurora SerDes core in the FPGA. 6448 */ 6449 static void adjust_lcb_for_fpga_serdes(struct hfi1_devdata *dd) 6450 { 6451 u64 rx_radr, tx_radr; 6452 u32 version; 6453 6454 if (dd->icode != ICODE_FPGA_EMULATION) 6455 return; 6456 6457 /* 6458 * These LCB defaults on emulator _s are good, nothing to do here: 6459 * LCB_CFG_TX_FIFOS_RADR 6460 * LCB_CFG_RX_FIFOS_RADR 6461 * LCB_CFG_LN_DCLK 6462 * LCB_CFG_IGNORE_LOST_RCLK 6463 */ 6464 if (is_emulator_s(dd)) 6465 return; 6466 /* else this is _p */ 6467 6468 version = emulator_rev(dd); 6469 if (!is_ax(dd)) 6470 version = 0x2d; /* all B0 use 0x2d or higher settings */ 6471 6472 if (version <= 0x12) { 6473 /* release 0x12 and below */ 6474 6475 /* 6476 * LCB_CFG_RX_FIFOS_RADR.RST_VAL = 0x9 6477 * LCB_CFG_RX_FIFOS_RADR.OK_TO_JUMP_VAL = 0x9 6478 * LCB_CFG_RX_FIFOS_RADR.DO_NOT_JUMP_VAL = 0xa 6479 */ 6480 rx_radr = 6481 0xaull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT 6482 | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT 6483 | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT; 6484 /* 6485 * LCB_CFG_TX_FIFOS_RADR.ON_REINIT = 0 (default) 6486 * LCB_CFG_TX_FIFOS_RADR.RST_VAL = 6 6487 */ 6488 tx_radr = 6ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT; 6489 } else if (version <= 0x18) { 6490 /* release 0x13 up to 0x18 */ 6491 /* LCB_CFG_RX_FIFOS_RADR = 0x988 */ 6492 rx_radr = 6493 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT 6494 | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT 6495 | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT; 6496 tx_radr = 7ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT; 6497 } else if (version == 0x19) { 6498 /* release 0x19 */ 6499 /* LCB_CFG_RX_FIFOS_RADR = 0xa99 */ 6500 rx_radr = 6501 0xAull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT 6502 | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT 6503 | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT; 6504 tx_radr = 3ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT; 6505 } else if (version == 0x1a) { 6506 /* release 0x1a */ 6507 /* LCB_CFG_RX_FIFOS_RADR = 0x988 */ 6508 rx_radr = 6509 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT 6510 | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT 6511 | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT; 6512 tx_radr = 7ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT; 6513 write_csr(dd, DC_LCB_CFG_LN_DCLK, 1ull); 6514 } else { 6515 /* release 0x1b and higher */ 6516 /* LCB_CFG_RX_FIFOS_RADR = 0x877 */ 6517 rx_radr = 6518 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT 6519 | 0x7ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT 6520 | 0x7ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT; 6521 tx_radr = 3ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT; 6522 } 6523 6524 write_csr(dd, DC_LCB_CFG_RX_FIFOS_RADR, rx_radr); 6525 /* LCB_CFG_IGNORE_LOST_RCLK.EN = 1 */ 6526 write_csr(dd, DC_LCB_CFG_IGNORE_LOST_RCLK, 6527 DC_LCB_CFG_IGNORE_LOST_RCLK_EN_SMASK); 6528 write_csr(dd, DC_LCB_CFG_TX_FIFOS_RADR, tx_radr); 6529 } 6530 6531 /* 6532 * Handle a SMA idle message 6533 * 6534 * This is a work-queue function outside of the interrupt. 6535 */ 6536 void handle_sma_message(struct work_struct *work) 6537 { 6538 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata, 6539 sma_message_work); 6540 struct hfi1_devdata *dd = ppd->dd; 6541 u64 msg; 6542 int ret; 6543 6544 /* 6545 * msg is bytes 1-4 of the 40-bit idle message - the command code 6546 * is stripped off 6547 */ 6548 ret = read_idle_sma(dd, &msg); 6549 if (ret) 6550 return; 6551 dd_dev_info(dd, "%s: SMA message 0x%llx\n", __func__, msg); 6552 /* 6553 * React to the SMA message. Byte[1] (0 for us) is the command. 6554 */ 6555 switch (msg & 0xff) { 6556 case SMA_IDLE_ARM: 6557 /* 6558 * See OPAv1 table 9-14 - HFI and External Switch Ports Key 6559 * State Transitions 6560 * 6561 * Only expected in INIT or ARMED, discard otherwise. 6562 */ 6563 if (ppd->host_link_state & (HLS_UP_INIT | HLS_UP_ARMED)) 6564 ppd->neighbor_normal = 1; 6565 break; 6566 case SMA_IDLE_ACTIVE: 6567 /* 6568 * See OPAv1 table 9-14 - HFI and External Switch Ports Key 6569 * State Transitions 6570 * 6571 * Can activate the node. Discard otherwise. 6572 */ 6573 if (ppd->host_link_state == HLS_UP_ARMED && 6574 ppd->is_active_optimize_enabled) { 6575 ppd->neighbor_normal = 1; 6576 ret = set_link_state(ppd, HLS_UP_ACTIVE); 6577 if (ret) 6578 dd_dev_err( 6579 dd, 6580 "%s: received Active SMA idle message, couldn't set link to Active\n", 6581 __func__); 6582 } 6583 break; 6584 default: 6585 dd_dev_err(dd, 6586 "%s: received unexpected SMA idle message 0x%llx\n", 6587 __func__, msg); 6588 break; 6589 } 6590 } 6591 6592 static void adjust_rcvctrl(struct hfi1_devdata *dd, u64 add, u64 clear) 6593 { 6594 u64 rcvctrl; 6595 unsigned long flags; 6596 6597 spin_lock_irqsave(&dd->rcvctrl_lock, flags); 6598 rcvctrl = read_csr(dd, RCV_CTRL); 6599 rcvctrl |= add; 6600 rcvctrl &= ~clear; 6601 write_csr(dd, RCV_CTRL, rcvctrl); 6602 spin_unlock_irqrestore(&dd->rcvctrl_lock, flags); 6603 } 6604 6605 static inline void add_rcvctrl(struct hfi1_devdata *dd, u64 add) 6606 { 6607 adjust_rcvctrl(dd, add, 0); 6608 } 6609 6610 static inline void clear_rcvctrl(struct hfi1_devdata *dd, u64 clear) 6611 { 6612 adjust_rcvctrl(dd, 0, clear); 6613 } 6614 6615 /* 6616 * Called from all interrupt handlers to start handling an SPC freeze. 6617 */ 6618 void start_freeze_handling(struct hfi1_pportdata *ppd, int flags) 6619 { 6620 struct hfi1_devdata *dd = ppd->dd; 6621 struct send_context *sc; 6622 int i; 6623 6624 if (flags & FREEZE_SELF) 6625 write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_FREEZE_SMASK); 6626 6627 /* enter frozen mode */ 6628 dd->flags |= HFI1_FROZEN; 6629 6630 /* notify all SDMA engines that they are going into a freeze */ 6631 sdma_freeze_notify(dd, !!(flags & FREEZE_LINK_DOWN)); 6632 6633 /* do halt pre-handling on all enabled send contexts */ 6634 for (i = 0; i < dd->num_send_contexts; i++) { 6635 sc = dd->send_contexts[i].sc; 6636 if (sc && (sc->flags & SCF_ENABLED)) 6637 sc_stop(sc, SCF_FROZEN | SCF_HALTED); 6638 } 6639 6640 /* Send context are frozen. Notify user space */ 6641 hfi1_set_uevent_bits(ppd, _HFI1_EVENT_FROZEN_BIT); 6642 6643 if (flags & FREEZE_ABORT) { 6644 dd_dev_err(dd, 6645 "Aborted freeze recovery. Please REBOOT system\n"); 6646 return; 6647 } 6648 /* queue non-interrupt handler */ 6649 queue_work(ppd->hfi1_wq, &ppd->freeze_work); 6650 } 6651 6652 /* 6653 * Wait until all 4 sub-blocks indicate that they have frozen or unfrozen, 6654 * depending on the "freeze" parameter. 6655 * 6656 * No need to return an error if it times out, our only option 6657 * is to proceed anyway. 6658 */ 6659 static void wait_for_freeze_status(struct hfi1_devdata *dd, int freeze) 6660 { 6661 unsigned long timeout; 6662 u64 reg; 6663 6664 timeout = jiffies + msecs_to_jiffies(FREEZE_STATUS_TIMEOUT); 6665 while (1) { 6666 reg = read_csr(dd, CCE_STATUS); 6667 if (freeze) { 6668 /* waiting until all indicators are set */ 6669 if ((reg & ALL_FROZE) == ALL_FROZE) 6670 return; /* all done */ 6671 } else { 6672 /* waiting until all indicators are clear */ 6673 if ((reg & ALL_FROZE) == 0) 6674 return; /* all done */ 6675 } 6676 6677 if (time_after(jiffies, timeout)) { 6678 dd_dev_err(dd, 6679 "Time out waiting for SPC %sfreeze, bits 0x%llx, expecting 0x%llx, continuing", 6680 freeze ? "" : "un", reg & ALL_FROZE, 6681 freeze ? ALL_FROZE : 0ull); 6682 return; 6683 } 6684 usleep_range(80, 120); 6685 } 6686 } 6687 6688 /* 6689 * Do all freeze handling for the RXE block. 6690 */ 6691 static void rxe_freeze(struct hfi1_devdata *dd) 6692 { 6693 int i; 6694 6695 /* disable port */ 6696 clear_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK); 6697 6698 /* disable all receive contexts */ 6699 for (i = 0; i < dd->num_rcv_contexts; i++) 6700 hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_DIS, i); 6701 } 6702 6703 /* 6704 * Unfreeze handling for the RXE block - kernel contexts only. 6705 * This will also enable the port. User contexts will do unfreeze 6706 * handling on a per-context basis as they call into the driver. 6707 * 6708 */ 6709 static void rxe_kernel_unfreeze(struct hfi1_devdata *dd) 6710 { 6711 u32 rcvmask; 6712 int i; 6713 6714 /* enable all kernel contexts */ 6715 for (i = 0; i < dd->n_krcv_queues; i++) { 6716 rcvmask = HFI1_RCVCTRL_CTXT_ENB; 6717 /* HFI1_RCVCTRL_TAILUPD_[ENB|DIS] needs to be set explicitly */ 6718 rcvmask |= HFI1_CAP_KGET_MASK(dd->rcd[i]->flags, DMA_RTAIL) ? 6719 HFI1_RCVCTRL_TAILUPD_ENB : HFI1_RCVCTRL_TAILUPD_DIS; 6720 hfi1_rcvctrl(dd, rcvmask, i); 6721 } 6722 6723 /* enable port */ 6724 add_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK); 6725 } 6726 6727 /* 6728 * Non-interrupt SPC freeze handling. 6729 * 6730 * This is a work-queue function outside of the triggering interrupt. 6731 */ 6732 void handle_freeze(struct work_struct *work) 6733 { 6734 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata, 6735 freeze_work); 6736 struct hfi1_devdata *dd = ppd->dd; 6737 6738 /* wait for freeze indicators on all affected blocks */ 6739 wait_for_freeze_status(dd, 1); 6740 6741 /* SPC is now frozen */ 6742 6743 /* do send PIO freeze steps */ 6744 pio_freeze(dd); 6745 6746 /* do send DMA freeze steps */ 6747 sdma_freeze(dd); 6748 6749 /* do send egress freeze steps - nothing to do */ 6750 6751 /* do receive freeze steps */ 6752 rxe_freeze(dd); 6753 6754 /* 6755 * Unfreeze the hardware - clear the freeze, wait for each 6756 * block's frozen bit to clear, then clear the frozen flag. 6757 */ 6758 write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_UNFREEZE_SMASK); 6759 wait_for_freeze_status(dd, 0); 6760 6761 if (is_ax(dd)) { 6762 write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_FREEZE_SMASK); 6763 wait_for_freeze_status(dd, 1); 6764 write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_UNFREEZE_SMASK); 6765 wait_for_freeze_status(dd, 0); 6766 } 6767 6768 /* do send PIO unfreeze steps for kernel contexts */ 6769 pio_kernel_unfreeze(dd); 6770 6771 /* do send DMA unfreeze steps */ 6772 sdma_unfreeze(dd); 6773 6774 /* do send egress unfreeze steps - nothing to do */ 6775 6776 /* do receive unfreeze steps for kernel contexts */ 6777 rxe_kernel_unfreeze(dd); 6778 6779 /* 6780 * The unfreeze procedure touches global device registers when 6781 * it disables and re-enables RXE. Mark the device unfrozen 6782 * after all that is done so other parts of the driver waiting 6783 * for the device to unfreeze don't do things out of order. 6784 * 6785 * The above implies that the meaning of HFI1_FROZEN flag is 6786 * "Device has gone into freeze mode and freeze mode handling 6787 * is still in progress." 6788 * 6789 * The flag will be removed when freeze mode processing has 6790 * completed. 6791 */ 6792 dd->flags &= ~HFI1_FROZEN; 6793 wake_up(&dd->event_queue); 6794 6795 /* no longer frozen */ 6796 } 6797 6798 /* 6799 * Handle a link up interrupt from the 8051. 6800 * 6801 * This is a work-queue function outside of the interrupt. 6802 */ 6803 void handle_link_up(struct work_struct *work) 6804 { 6805 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata, 6806 link_up_work); 6807 set_link_state(ppd, HLS_UP_INIT); 6808 6809 /* cache the read of DC_LCB_STS_ROUND_TRIP_LTP_CNT */ 6810 read_ltp_rtt(ppd->dd); 6811 /* 6812 * OPA specifies that certain counters are cleared on a transition 6813 * to link up, so do that. 6814 */ 6815 clear_linkup_counters(ppd->dd); 6816 /* 6817 * And (re)set link up default values. 6818 */ 6819 set_linkup_defaults(ppd); 6820 6821 /* enforce link speed enabled */ 6822 if ((ppd->link_speed_active & ppd->link_speed_enabled) == 0) { 6823 /* oops - current speed is not enabled, bounce */ 6824 dd_dev_err(ppd->dd, 6825 "Link speed active 0x%x is outside enabled 0x%x, downing link\n", 6826 ppd->link_speed_active, ppd->link_speed_enabled); 6827 set_link_down_reason(ppd, OPA_LINKDOWN_REASON_SPEED_POLICY, 0, 6828 OPA_LINKDOWN_REASON_SPEED_POLICY); 6829 set_link_state(ppd, HLS_DN_OFFLINE); 6830 start_link(ppd); 6831 } 6832 } 6833 6834 /* 6835 * Several pieces of LNI information were cached for SMA in ppd. 6836 * Reset these on link down 6837 */ 6838 static void reset_neighbor_info(struct hfi1_pportdata *ppd) 6839 { 6840 ppd->neighbor_guid = 0; 6841 ppd->neighbor_port_number = 0; 6842 ppd->neighbor_type = 0; 6843 ppd->neighbor_fm_security = 0; 6844 } 6845 6846 static const char * const link_down_reason_strs[] = { 6847 [OPA_LINKDOWN_REASON_NONE] = "None", 6848 [OPA_LINKDOWN_REASON_RCV_ERROR_0] = "Recive error 0", 6849 [OPA_LINKDOWN_REASON_BAD_PKT_LEN] = "Bad packet length", 6850 [OPA_LINKDOWN_REASON_PKT_TOO_LONG] = "Packet too long", 6851 [OPA_LINKDOWN_REASON_PKT_TOO_SHORT] = "Packet too short", 6852 [OPA_LINKDOWN_REASON_BAD_SLID] = "Bad SLID", 6853 [OPA_LINKDOWN_REASON_BAD_DLID] = "Bad DLID", 6854 [OPA_LINKDOWN_REASON_BAD_L2] = "Bad L2", 6855 [OPA_LINKDOWN_REASON_BAD_SC] = "Bad SC", 6856 [OPA_LINKDOWN_REASON_RCV_ERROR_8] = "Receive error 8", 6857 [OPA_LINKDOWN_REASON_BAD_MID_TAIL] = "Bad mid tail", 6858 [OPA_LINKDOWN_REASON_RCV_ERROR_10] = "Receive error 10", 6859 [OPA_LINKDOWN_REASON_PREEMPT_ERROR] = "Preempt error", 6860 [OPA_LINKDOWN_REASON_PREEMPT_VL15] = "Preempt vl15", 6861 [OPA_LINKDOWN_REASON_BAD_VL_MARKER] = "Bad VL marker", 6862 [OPA_LINKDOWN_REASON_RCV_ERROR_14] = "Receive error 14", 6863 [OPA_LINKDOWN_REASON_RCV_ERROR_15] = "Receive error 15", 6864 [OPA_LINKDOWN_REASON_BAD_HEAD_DIST] = "Bad head distance", 6865 [OPA_LINKDOWN_REASON_BAD_TAIL_DIST] = "Bad tail distance", 6866 [OPA_LINKDOWN_REASON_BAD_CTRL_DIST] = "Bad control distance", 6867 [OPA_LINKDOWN_REASON_BAD_CREDIT_ACK] = "Bad credit ack", 6868 [OPA_LINKDOWN_REASON_UNSUPPORTED_VL_MARKER] = "Unsupported VL marker", 6869 [OPA_LINKDOWN_REASON_BAD_PREEMPT] = "Bad preempt", 6870 [OPA_LINKDOWN_REASON_BAD_CONTROL_FLIT] = "Bad control flit", 6871 [OPA_LINKDOWN_REASON_EXCEED_MULTICAST_LIMIT] = "Exceed multicast limit", 6872 [OPA_LINKDOWN_REASON_RCV_ERROR_24] = "Receive error 24", 6873 [OPA_LINKDOWN_REASON_RCV_ERROR_25] = "Receive error 25", 6874 [OPA_LINKDOWN_REASON_RCV_ERROR_26] = "Receive error 26", 6875 [OPA_LINKDOWN_REASON_RCV_ERROR_27] = "Receive error 27", 6876 [OPA_LINKDOWN_REASON_RCV_ERROR_28] = "Receive error 28", 6877 [OPA_LINKDOWN_REASON_RCV_ERROR_29] = "Receive error 29", 6878 [OPA_LINKDOWN_REASON_RCV_ERROR_30] = "Receive error 30", 6879 [OPA_LINKDOWN_REASON_EXCESSIVE_BUFFER_OVERRUN] = 6880 "Excessive buffer overrun", 6881 [OPA_LINKDOWN_REASON_UNKNOWN] = "Unknown", 6882 [OPA_LINKDOWN_REASON_REBOOT] = "Reboot", 6883 [OPA_LINKDOWN_REASON_NEIGHBOR_UNKNOWN] = "Neighbor unknown", 6884 [OPA_LINKDOWN_REASON_FM_BOUNCE] = "FM bounce", 6885 [OPA_LINKDOWN_REASON_SPEED_POLICY] = "Speed policy", 6886 [OPA_LINKDOWN_REASON_WIDTH_POLICY] = "Width policy", 6887 [OPA_LINKDOWN_REASON_DISCONNECTED] = "Disconnected", 6888 [OPA_LINKDOWN_REASON_LOCAL_MEDIA_NOT_INSTALLED] = 6889 "Local media not installed", 6890 [OPA_LINKDOWN_REASON_NOT_INSTALLED] = "Not installed", 6891 [OPA_LINKDOWN_REASON_CHASSIS_CONFIG] = "Chassis config", 6892 [OPA_LINKDOWN_REASON_END_TO_END_NOT_INSTALLED] = 6893 "End to end not installed", 6894 [OPA_LINKDOWN_REASON_POWER_POLICY] = "Power policy", 6895 [OPA_LINKDOWN_REASON_LINKSPEED_POLICY] = "Link speed policy", 6896 [OPA_LINKDOWN_REASON_LINKWIDTH_POLICY] = "Link width policy", 6897 [OPA_LINKDOWN_REASON_SWITCH_MGMT] = "Switch management", 6898 [OPA_LINKDOWN_REASON_SMA_DISABLED] = "SMA disabled", 6899 [OPA_LINKDOWN_REASON_TRANSIENT] = "Transient" 6900 }; 6901 6902 /* return the neighbor link down reason string */ 6903 static const char *link_down_reason_str(u8 reason) 6904 { 6905 const char *str = NULL; 6906 6907 if (reason < ARRAY_SIZE(link_down_reason_strs)) 6908 str = link_down_reason_strs[reason]; 6909 if (!str) 6910 str = "(invalid)"; 6911 6912 return str; 6913 } 6914 6915 /* 6916 * Handle a link down interrupt from the 8051. 6917 * 6918 * This is a work-queue function outside of the interrupt. 6919 */ 6920 void handle_link_down(struct work_struct *work) 6921 { 6922 u8 lcl_reason, neigh_reason = 0; 6923 u8 link_down_reason; 6924 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata, 6925 link_down_work); 6926 int was_up; 6927 static const char ldr_str[] = "Link down reason: "; 6928 6929 if ((ppd->host_link_state & 6930 (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) && 6931 ppd->port_type == PORT_TYPE_FIXED) 6932 ppd->offline_disabled_reason = 6933 HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NOT_INSTALLED); 6934 6935 /* Go offline first, then deal with reading/writing through 8051 */ 6936 was_up = !!(ppd->host_link_state & HLS_UP); 6937 set_link_state(ppd, HLS_DN_OFFLINE); 6938 6939 if (was_up) { 6940 lcl_reason = 0; 6941 /* link down reason is only valid if the link was up */ 6942 read_link_down_reason(ppd->dd, &link_down_reason); 6943 switch (link_down_reason) { 6944 case LDR_LINK_TRANSFER_ACTIVE_LOW: 6945 /* the link went down, no idle message reason */ 6946 dd_dev_info(ppd->dd, "%sUnexpected link down\n", 6947 ldr_str); 6948 break; 6949 case LDR_RECEIVED_LINKDOWN_IDLE_MSG: 6950 /* 6951 * The neighbor reason is only valid if an idle message 6952 * was received for it. 6953 */ 6954 read_planned_down_reason_code(ppd->dd, &neigh_reason); 6955 dd_dev_info(ppd->dd, 6956 "%sNeighbor link down message %d, %s\n", 6957 ldr_str, neigh_reason, 6958 link_down_reason_str(neigh_reason)); 6959 break; 6960 case LDR_RECEIVED_HOST_OFFLINE_REQ: 6961 dd_dev_info(ppd->dd, 6962 "%sHost requested link to go offline\n", 6963 ldr_str); 6964 break; 6965 default: 6966 dd_dev_info(ppd->dd, "%sUnknown reason 0x%x\n", 6967 ldr_str, link_down_reason); 6968 break; 6969 } 6970 6971 /* 6972 * If no reason, assume peer-initiated but missed 6973 * LinkGoingDown idle flits. 6974 */ 6975 if (neigh_reason == 0) 6976 lcl_reason = OPA_LINKDOWN_REASON_NEIGHBOR_UNKNOWN; 6977 } else { 6978 /* went down while polling or going up */ 6979 lcl_reason = OPA_LINKDOWN_REASON_TRANSIENT; 6980 } 6981 6982 set_link_down_reason(ppd, lcl_reason, neigh_reason, 0); 6983 6984 /* inform the SMA when the link transitions from up to down */ 6985 if (was_up && ppd->local_link_down_reason.sma == 0 && 6986 ppd->neigh_link_down_reason.sma == 0) { 6987 ppd->local_link_down_reason.sma = 6988 ppd->local_link_down_reason.latest; 6989 ppd->neigh_link_down_reason.sma = 6990 ppd->neigh_link_down_reason.latest; 6991 } 6992 6993 reset_neighbor_info(ppd); 6994 6995 /* disable the port */ 6996 clear_rcvctrl(ppd->dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK); 6997 6998 /* 6999 * If there is no cable attached, turn the DC off. Otherwise, 7000 * start the link bring up. 7001 */ 7002 if (ppd->port_type == PORT_TYPE_QSFP && !qsfp_mod_present(ppd)) 7003 dc_shutdown(ppd->dd); 7004 else 7005 start_link(ppd); 7006 } 7007 7008 void handle_link_bounce(struct work_struct *work) 7009 { 7010 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata, 7011 link_bounce_work); 7012 7013 /* 7014 * Only do something if the link is currently up. 7015 */ 7016 if (ppd->host_link_state & HLS_UP) { 7017 set_link_state(ppd, HLS_DN_OFFLINE); 7018 start_link(ppd); 7019 } else { 7020 dd_dev_info(ppd->dd, "%s: link not up (%s), nothing to do\n", 7021 __func__, link_state_name(ppd->host_link_state)); 7022 } 7023 } 7024 7025 /* 7026 * Mask conversion: Capability exchange to Port LTP. The capability 7027 * exchange has an implicit 16b CRC that is mandatory. 7028 */ 7029 static int cap_to_port_ltp(int cap) 7030 { 7031 int port_ltp = PORT_LTP_CRC_MODE_16; /* this mode is mandatory */ 7032 7033 if (cap & CAP_CRC_14B) 7034 port_ltp |= PORT_LTP_CRC_MODE_14; 7035 if (cap & CAP_CRC_48B) 7036 port_ltp |= PORT_LTP_CRC_MODE_48; 7037 if (cap & CAP_CRC_12B_16B_PER_LANE) 7038 port_ltp |= PORT_LTP_CRC_MODE_PER_LANE; 7039 7040 return port_ltp; 7041 } 7042 7043 /* 7044 * Convert an OPA Port LTP mask to capability mask 7045 */ 7046 int port_ltp_to_cap(int port_ltp) 7047 { 7048 int cap_mask = 0; 7049 7050 if (port_ltp & PORT_LTP_CRC_MODE_14) 7051 cap_mask |= CAP_CRC_14B; 7052 if (port_ltp & PORT_LTP_CRC_MODE_48) 7053 cap_mask |= CAP_CRC_48B; 7054 if (port_ltp & PORT_LTP_CRC_MODE_PER_LANE) 7055 cap_mask |= CAP_CRC_12B_16B_PER_LANE; 7056 7057 return cap_mask; 7058 } 7059 7060 /* 7061 * Convert a single DC LCB CRC mode to an OPA Port LTP mask. 7062 */ 7063 static int lcb_to_port_ltp(int lcb_crc) 7064 { 7065 int port_ltp = 0; 7066 7067 if (lcb_crc == LCB_CRC_12B_16B_PER_LANE) 7068 port_ltp = PORT_LTP_CRC_MODE_PER_LANE; 7069 else if (lcb_crc == LCB_CRC_48B) 7070 port_ltp = PORT_LTP_CRC_MODE_48; 7071 else if (lcb_crc == LCB_CRC_14B) 7072 port_ltp = PORT_LTP_CRC_MODE_14; 7073 else 7074 port_ltp = PORT_LTP_CRC_MODE_16; 7075 7076 return port_ltp; 7077 } 7078 7079 /* 7080 * Our neighbor has indicated that we are allowed to act as a fabric 7081 * manager, so place the full management partition key in the second 7082 * (0-based) pkey array position (see OPAv1, section 20.2.2.6.8). Note 7083 * that we should already have the limited management partition key in 7084 * array element 1, and also that the port is not yet up when 7085 * add_full_mgmt_pkey() is invoked. 7086 */ 7087 static void add_full_mgmt_pkey(struct hfi1_pportdata *ppd) 7088 { 7089 struct hfi1_devdata *dd = ppd->dd; 7090 7091 /* Sanity check - ppd->pkeys[2] should be 0, or already initalized */ 7092 if (!((ppd->pkeys[2] == 0) || (ppd->pkeys[2] == FULL_MGMT_P_KEY))) 7093 dd_dev_warn(dd, "%s pkey[2] already set to 0x%x, resetting it to 0x%x\n", 7094 __func__, ppd->pkeys[2], FULL_MGMT_P_KEY); 7095 ppd->pkeys[2] = FULL_MGMT_P_KEY; 7096 (void)hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_PKEYS, 0); 7097 hfi1_event_pkey_change(ppd->dd, ppd->port); 7098 } 7099 7100 static void clear_full_mgmt_pkey(struct hfi1_pportdata *ppd) 7101 { 7102 if (ppd->pkeys[2] != 0) { 7103 ppd->pkeys[2] = 0; 7104 (void)hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_PKEYS, 0); 7105 hfi1_event_pkey_change(ppd->dd, ppd->port); 7106 } 7107 } 7108 7109 /* 7110 * Convert the given link width to the OPA link width bitmask. 7111 */ 7112 static u16 link_width_to_bits(struct hfi1_devdata *dd, u16 width) 7113 { 7114 switch (width) { 7115 case 0: 7116 /* 7117 * Simulator and quick linkup do not set the width. 7118 * Just set it to 4x without complaint. 7119 */ 7120 if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR || quick_linkup) 7121 return OPA_LINK_WIDTH_4X; 7122 return 0; /* no lanes up */ 7123 case 1: return OPA_LINK_WIDTH_1X; 7124 case 2: return OPA_LINK_WIDTH_2X; 7125 case 3: return OPA_LINK_WIDTH_3X; 7126 default: 7127 dd_dev_info(dd, "%s: invalid width %d, using 4\n", 7128 __func__, width); 7129 /* fall through */ 7130 case 4: return OPA_LINK_WIDTH_4X; 7131 } 7132 } 7133 7134 /* 7135 * Do a population count on the bottom nibble. 7136 */ 7137 static const u8 bit_counts[16] = { 7138 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4 7139 }; 7140 7141 static inline u8 nibble_to_count(u8 nibble) 7142 { 7143 return bit_counts[nibble & 0xf]; 7144 } 7145 7146 /* 7147 * Read the active lane information from the 8051 registers and return 7148 * their widths. 7149 * 7150 * Active lane information is found in these 8051 registers: 7151 * enable_lane_tx 7152 * enable_lane_rx 7153 */ 7154 static void get_link_widths(struct hfi1_devdata *dd, u16 *tx_width, 7155 u16 *rx_width) 7156 { 7157 u16 tx, rx; 7158 u8 enable_lane_rx; 7159 u8 enable_lane_tx; 7160 u8 tx_polarity_inversion; 7161 u8 rx_polarity_inversion; 7162 u8 max_rate; 7163 7164 /* read the active lanes */ 7165 read_tx_settings(dd, &enable_lane_tx, &tx_polarity_inversion, 7166 &rx_polarity_inversion, &max_rate); 7167 read_local_lni(dd, &enable_lane_rx); 7168 7169 /* convert to counts */ 7170 tx = nibble_to_count(enable_lane_tx); 7171 rx = nibble_to_count(enable_lane_rx); 7172 7173 /* 7174 * Set link_speed_active here, overriding what was set in 7175 * handle_verify_cap(). The ASIC 8051 firmware does not correctly 7176 * set the max_rate field in handle_verify_cap until v0.19. 7177 */ 7178 if ((dd->icode == ICODE_RTL_SILICON) && 7179 (dd->dc8051_ver < dc8051_ver(0, 19))) { 7180 /* max_rate: 0 = 12.5G, 1 = 25G */ 7181 switch (max_rate) { 7182 case 0: 7183 dd->pport[0].link_speed_active = OPA_LINK_SPEED_12_5G; 7184 break; 7185 default: 7186 dd_dev_err(dd, 7187 "%s: unexpected max rate %d, using 25Gb\n", 7188 __func__, (int)max_rate); 7189 /* fall through */ 7190 case 1: 7191 dd->pport[0].link_speed_active = OPA_LINK_SPEED_25G; 7192 break; 7193 } 7194 } 7195 7196 dd_dev_info(dd, 7197 "Fabric active lanes (width): tx 0x%x (%d), rx 0x%x (%d)\n", 7198 enable_lane_tx, tx, enable_lane_rx, rx); 7199 *tx_width = link_width_to_bits(dd, tx); 7200 *rx_width = link_width_to_bits(dd, rx); 7201 } 7202 7203 /* 7204 * Read verify_cap_local_fm_link_width[1] to obtain the link widths. 7205 * Valid after the end of VerifyCap and during LinkUp. Does not change 7206 * after link up. I.e. look elsewhere for downgrade information. 7207 * 7208 * Bits are: 7209 * + bits [7:4] contain the number of active transmitters 7210 * + bits [3:0] contain the number of active receivers 7211 * These are numbers 1 through 4 and can be different values if the 7212 * link is asymmetric. 7213 * 7214 * verify_cap_local_fm_link_width[0] retains its original value. 7215 */ 7216 static void get_linkup_widths(struct hfi1_devdata *dd, u16 *tx_width, 7217 u16 *rx_width) 7218 { 7219 u16 widths, tx, rx; 7220 u8 misc_bits, local_flags; 7221 u16 active_tx, active_rx; 7222 7223 read_vc_local_link_width(dd, &misc_bits, &local_flags, &widths); 7224 tx = widths >> 12; 7225 rx = (widths >> 8) & 0xf; 7226 7227 *tx_width = link_width_to_bits(dd, tx); 7228 *rx_width = link_width_to_bits(dd, rx); 7229 7230 /* print the active widths */ 7231 get_link_widths(dd, &active_tx, &active_rx); 7232 } 7233 7234 /* 7235 * Set ppd->link_width_active and ppd->link_width_downgrade_active using 7236 * hardware information when the link first comes up. 7237 * 7238 * The link width is not available until after VerifyCap.AllFramesReceived 7239 * (the trigger for handle_verify_cap), so this is outside that routine 7240 * and should be called when the 8051 signals linkup. 7241 */ 7242 void get_linkup_link_widths(struct hfi1_pportdata *ppd) 7243 { 7244 u16 tx_width, rx_width; 7245 7246 /* get end-of-LNI link widths */ 7247 get_linkup_widths(ppd->dd, &tx_width, &rx_width); 7248 7249 /* use tx_width as the link is supposed to be symmetric on link up */ 7250 ppd->link_width_active = tx_width; 7251 /* link width downgrade active (LWD.A) starts out matching LW.A */ 7252 ppd->link_width_downgrade_tx_active = ppd->link_width_active; 7253 ppd->link_width_downgrade_rx_active = ppd->link_width_active; 7254 /* per OPA spec, on link up LWD.E resets to LWD.S */ 7255 ppd->link_width_downgrade_enabled = ppd->link_width_downgrade_supported; 7256 /* cache the active egress rate (units {10^6 bits/sec]) */ 7257 ppd->current_egress_rate = active_egress_rate(ppd); 7258 } 7259 7260 /* 7261 * Handle a verify capabilities interrupt from the 8051. 7262 * 7263 * This is a work-queue function outside of the interrupt. 7264 */ 7265 void handle_verify_cap(struct work_struct *work) 7266 { 7267 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata, 7268 link_vc_work); 7269 struct hfi1_devdata *dd = ppd->dd; 7270 u64 reg; 7271 u8 power_management; 7272 u8 continious; 7273 u8 vcu; 7274 u8 vau; 7275 u8 z; 7276 u16 vl15buf; 7277 u16 link_widths; 7278 u16 crc_mask; 7279 u16 crc_val; 7280 u16 device_id; 7281 u16 active_tx, active_rx; 7282 u8 partner_supported_crc; 7283 u8 remote_tx_rate; 7284 u8 device_rev; 7285 7286 set_link_state(ppd, HLS_VERIFY_CAP); 7287 7288 lcb_shutdown(dd, 0); 7289 adjust_lcb_for_fpga_serdes(dd); 7290 7291 /* 7292 * These are now valid: 7293 * remote VerifyCap fields in the general LNI config 7294 * CSR DC8051_STS_REMOTE_GUID 7295 * CSR DC8051_STS_REMOTE_NODE_TYPE 7296 * CSR DC8051_STS_REMOTE_FM_SECURITY 7297 * CSR DC8051_STS_REMOTE_PORT_NO 7298 */ 7299 7300 read_vc_remote_phy(dd, &power_management, &continious); 7301 read_vc_remote_fabric(dd, &vau, &z, &vcu, &vl15buf, 7302 &partner_supported_crc); 7303 read_vc_remote_link_width(dd, &remote_tx_rate, &link_widths); 7304 read_remote_device_id(dd, &device_id, &device_rev); 7305 /* 7306 * And the 'MgmtAllowed' information, which is exchanged during 7307 * LNI, is also be available at this point. 7308 */ 7309 read_mgmt_allowed(dd, &ppd->mgmt_allowed); 7310 /* print the active widths */ 7311 get_link_widths(dd, &active_tx, &active_rx); 7312 dd_dev_info(dd, 7313 "Peer PHY: power management 0x%x, continuous updates 0x%x\n", 7314 (int)power_management, (int)continious); 7315 dd_dev_info(dd, 7316 "Peer Fabric: vAU %d, Z %d, vCU %d, vl15 credits 0x%x, CRC sizes 0x%x\n", 7317 (int)vau, (int)z, (int)vcu, (int)vl15buf, 7318 (int)partner_supported_crc); 7319 dd_dev_info(dd, "Peer Link Width: tx rate 0x%x, widths 0x%x\n", 7320 (u32)remote_tx_rate, (u32)link_widths); 7321 dd_dev_info(dd, "Peer Device ID: 0x%04x, Revision 0x%02x\n", 7322 (u32)device_id, (u32)device_rev); 7323 /* 7324 * The peer vAU value just read is the peer receiver value. HFI does 7325 * not support a transmit vAU of 0 (AU == 8). We advertised that 7326 * with Z=1 in the fabric capabilities sent to the peer. The peer 7327 * will see our Z=1, and, if it advertised a vAU of 0, will move its 7328 * receive to vAU of 1 (AU == 16). Do the same here. We do not care 7329 * about the peer Z value - our sent vAU is 3 (hardwired) and is not 7330 * subject to the Z value exception. 7331 */ 7332 if (vau == 0) 7333 vau = 1; 7334 set_up_vl15(dd, vau, vl15buf); 7335 7336 /* set up the LCB CRC mode */ 7337 crc_mask = ppd->port_crc_mode_enabled & partner_supported_crc; 7338 7339 /* order is important: use the lowest bit in common */ 7340 if (crc_mask & CAP_CRC_14B) 7341 crc_val = LCB_CRC_14B; 7342 else if (crc_mask & CAP_CRC_48B) 7343 crc_val = LCB_CRC_48B; 7344 else if (crc_mask & CAP_CRC_12B_16B_PER_LANE) 7345 crc_val = LCB_CRC_12B_16B_PER_LANE; 7346 else 7347 crc_val = LCB_CRC_16B; 7348 7349 dd_dev_info(dd, "Final LCB CRC mode: %d\n", (int)crc_val); 7350 write_csr(dd, DC_LCB_CFG_CRC_MODE, 7351 (u64)crc_val << DC_LCB_CFG_CRC_MODE_TX_VAL_SHIFT); 7352 7353 /* set (14b only) or clear sideband credit */ 7354 reg = read_csr(dd, SEND_CM_CTRL); 7355 if (crc_val == LCB_CRC_14B && crc_14b_sideband) { 7356 write_csr(dd, SEND_CM_CTRL, 7357 reg | SEND_CM_CTRL_FORCE_CREDIT_MODE_SMASK); 7358 } else { 7359 write_csr(dd, SEND_CM_CTRL, 7360 reg & ~SEND_CM_CTRL_FORCE_CREDIT_MODE_SMASK); 7361 } 7362 7363 ppd->link_speed_active = 0; /* invalid value */ 7364 if (dd->dc8051_ver < dc8051_ver(0, 20)) { 7365 /* remote_tx_rate: 0 = 12.5G, 1 = 25G */ 7366 switch (remote_tx_rate) { 7367 case 0: 7368 ppd->link_speed_active = OPA_LINK_SPEED_12_5G; 7369 break; 7370 case 1: 7371 ppd->link_speed_active = OPA_LINK_SPEED_25G; 7372 break; 7373 } 7374 } else { 7375 /* actual rate is highest bit of the ANDed rates */ 7376 u8 rate = remote_tx_rate & ppd->local_tx_rate; 7377 7378 if (rate & 2) 7379 ppd->link_speed_active = OPA_LINK_SPEED_25G; 7380 else if (rate & 1) 7381 ppd->link_speed_active = OPA_LINK_SPEED_12_5G; 7382 } 7383 if (ppd->link_speed_active == 0) { 7384 dd_dev_err(dd, "%s: unexpected remote tx rate %d, using 25Gb\n", 7385 __func__, (int)remote_tx_rate); 7386 ppd->link_speed_active = OPA_LINK_SPEED_25G; 7387 } 7388 7389 /* 7390 * Cache the values of the supported, enabled, and active 7391 * LTP CRC modes to return in 'portinfo' queries. But the bit 7392 * flags that are returned in the portinfo query differ from 7393 * what's in the link_crc_mask, crc_sizes, and crc_val 7394 * variables. Convert these here. 7395 */ 7396 ppd->port_ltp_crc_mode = cap_to_port_ltp(link_crc_mask) << 8; 7397 /* supported crc modes */ 7398 ppd->port_ltp_crc_mode |= 7399 cap_to_port_ltp(ppd->port_crc_mode_enabled) << 4; 7400 /* enabled crc modes */ 7401 ppd->port_ltp_crc_mode |= lcb_to_port_ltp(crc_val); 7402 /* active crc mode */ 7403 7404 /* set up the remote credit return table */ 7405 assign_remote_cm_au_table(dd, vcu); 7406 7407 /* 7408 * The LCB is reset on entry to handle_verify_cap(), so this must 7409 * be applied on every link up. 7410 * 7411 * Adjust LCB error kill enable to kill the link if 7412 * these RBUF errors are seen: 7413 * REPLAY_BUF_MBE_SMASK 7414 * FLIT_INPUT_BUF_MBE_SMASK 7415 */ 7416 if (is_ax(dd)) { /* fixed in B0 */ 7417 reg = read_csr(dd, DC_LCB_CFG_LINK_KILL_EN); 7418 reg |= DC_LCB_CFG_LINK_KILL_EN_REPLAY_BUF_MBE_SMASK 7419 | DC_LCB_CFG_LINK_KILL_EN_FLIT_INPUT_BUF_MBE_SMASK; 7420 write_csr(dd, DC_LCB_CFG_LINK_KILL_EN, reg); 7421 } 7422 7423 /* pull LCB fifos out of reset - all fifo clocks must be stable */ 7424 write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0); 7425 7426 /* give 8051 access to the LCB CSRs */ 7427 write_csr(dd, DC_LCB_ERR_EN, 0); /* mask LCB errors */ 7428 set_8051_lcb_access(dd); 7429 7430 ppd->neighbor_guid = 7431 read_csr(dd, DC_DC8051_STS_REMOTE_GUID); 7432 ppd->neighbor_port_number = read_csr(dd, DC_DC8051_STS_REMOTE_PORT_NO) & 7433 DC_DC8051_STS_REMOTE_PORT_NO_VAL_SMASK; 7434 ppd->neighbor_type = 7435 read_csr(dd, DC_DC8051_STS_REMOTE_NODE_TYPE) & 7436 DC_DC8051_STS_REMOTE_NODE_TYPE_VAL_MASK; 7437 ppd->neighbor_fm_security = 7438 read_csr(dd, DC_DC8051_STS_REMOTE_FM_SECURITY) & 7439 DC_DC8051_STS_LOCAL_FM_SECURITY_DISABLED_MASK; 7440 dd_dev_info(dd, 7441 "Neighbor Guid: %llx Neighbor type %d MgmtAllowed %d FM security bypass %d\n", 7442 ppd->neighbor_guid, ppd->neighbor_type, 7443 ppd->mgmt_allowed, ppd->neighbor_fm_security); 7444 if (ppd->mgmt_allowed) 7445 add_full_mgmt_pkey(ppd); 7446 7447 /* tell the 8051 to go to LinkUp */ 7448 set_link_state(ppd, HLS_GOING_UP); 7449 } 7450 7451 /* 7452 * Apply the link width downgrade enabled policy against the current active 7453 * link widths. 7454 * 7455 * Called when the enabled policy changes or the active link widths change. 7456 */ 7457 void apply_link_downgrade_policy(struct hfi1_pportdata *ppd, int refresh_widths) 7458 { 7459 int do_bounce = 0; 7460 int tries; 7461 u16 lwde; 7462 u16 tx, rx; 7463 7464 /* use the hls lock to avoid a race with actual link up */ 7465 tries = 0; 7466 retry: 7467 mutex_lock(&ppd->hls_lock); 7468 /* only apply if the link is up */ 7469 if (ppd->host_link_state & HLS_DOWN) { 7470 /* still going up..wait and retry */ 7471 if (ppd->host_link_state & HLS_GOING_UP) { 7472 if (++tries < 1000) { 7473 mutex_unlock(&ppd->hls_lock); 7474 usleep_range(100, 120); /* arbitrary */ 7475 goto retry; 7476 } 7477 dd_dev_err(ppd->dd, 7478 "%s: giving up waiting for link state change\n", 7479 __func__); 7480 } 7481 goto done; 7482 } 7483 7484 lwde = ppd->link_width_downgrade_enabled; 7485 7486 if (refresh_widths) { 7487 get_link_widths(ppd->dd, &tx, &rx); 7488 ppd->link_width_downgrade_tx_active = tx; 7489 ppd->link_width_downgrade_rx_active = rx; 7490 } 7491 7492 if (ppd->link_width_downgrade_tx_active == 0 || 7493 ppd->link_width_downgrade_rx_active == 0) { 7494 /* the 8051 reported a dead link as a downgrade */ 7495 dd_dev_err(ppd->dd, "Link downgrade is really a link down, ignoring\n"); 7496 } else if (lwde == 0) { 7497 /* downgrade is disabled */ 7498 7499 /* bounce if not at starting active width */ 7500 if ((ppd->link_width_active != 7501 ppd->link_width_downgrade_tx_active) || 7502 (ppd->link_width_active != 7503 ppd->link_width_downgrade_rx_active)) { 7504 dd_dev_err(ppd->dd, 7505 "Link downgrade is disabled and link has downgraded, downing link\n"); 7506 dd_dev_err(ppd->dd, 7507 " original 0x%x, tx active 0x%x, rx active 0x%x\n", 7508 ppd->link_width_active, 7509 ppd->link_width_downgrade_tx_active, 7510 ppd->link_width_downgrade_rx_active); 7511 do_bounce = 1; 7512 } 7513 } else if ((lwde & ppd->link_width_downgrade_tx_active) == 0 || 7514 (lwde & ppd->link_width_downgrade_rx_active) == 0) { 7515 /* Tx or Rx is outside the enabled policy */ 7516 dd_dev_err(ppd->dd, 7517 "Link is outside of downgrade allowed, downing link\n"); 7518 dd_dev_err(ppd->dd, 7519 " enabled 0x%x, tx active 0x%x, rx active 0x%x\n", 7520 lwde, ppd->link_width_downgrade_tx_active, 7521 ppd->link_width_downgrade_rx_active); 7522 do_bounce = 1; 7523 } 7524 7525 done: 7526 mutex_unlock(&ppd->hls_lock); 7527 7528 if (do_bounce) { 7529 set_link_down_reason(ppd, OPA_LINKDOWN_REASON_WIDTH_POLICY, 0, 7530 OPA_LINKDOWN_REASON_WIDTH_POLICY); 7531 set_link_state(ppd, HLS_DN_OFFLINE); 7532 start_link(ppd); 7533 } 7534 } 7535 7536 /* 7537 * Handle a link downgrade interrupt from the 8051. 7538 * 7539 * This is a work-queue function outside of the interrupt. 7540 */ 7541 void handle_link_downgrade(struct work_struct *work) 7542 { 7543 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata, 7544 link_downgrade_work); 7545 7546 dd_dev_info(ppd->dd, "8051: Link width downgrade\n"); 7547 apply_link_downgrade_policy(ppd, 1); 7548 } 7549 7550 static char *dcc_err_string(char *buf, int buf_len, u64 flags) 7551 { 7552 return flag_string(buf, buf_len, flags, dcc_err_flags, 7553 ARRAY_SIZE(dcc_err_flags)); 7554 } 7555 7556 static char *lcb_err_string(char *buf, int buf_len, u64 flags) 7557 { 7558 return flag_string(buf, buf_len, flags, lcb_err_flags, 7559 ARRAY_SIZE(lcb_err_flags)); 7560 } 7561 7562 static char *dc8051_err_string(char *buf, int buf_len, u64 flags) 7563 { 7564 return flag_string(buf, buf_len, flags, dc8051_err_flags, 7565 ARRAY_SIZE(dc8051_err_flags)); 7566 } 7567 7568 static char *dc8051_info_err_string(char *buf, int buf_len, u64 flags) 7569 { 7570 return flag_string(buf, buf_len, flags, dc8051_info_err_flags, 7571 ARRAY_SIZE(dc8051_info_err_flags)); 7572 } 7573 7574 static char *dc8051_info_host_msg_string(char *buf, int buf_len, u64 flags) 7575 { 7576 return flag_string(buf, buf_len, flags, dc8051_info_host_msg_flags, 7577 ARRAY_SIZE(dc8051_info_host_msg_flags)); 7578 } 7579 7580 static void handle_8051_interrupt(struct hfi1_devdata *dd, u32 unused, u64 reg) 7581 { 7582 struct hfi1_pportdata *ppd = dd->pport; 7583 u64 info, err, host_msg; 7584 int queue_link_down = 0; 7585 char buf[96]; 7586 7587 /* look at the flags */ 7588 if (reg & DC_DC8051_ERR_FLG_SET_BY_8051_SMASK) { 7589 /* 8051 information set by firmware */ 7590 /* read DC8051_DBG_ERR_INFO_SET_BY_8051 for details */ 7591 info = read_csr(dd, DC_DC8051_DBG_ERR_INFO_SET_BY_8051); 7592 err = (info >> DC_DC8051_DBG_ERR_INFO_SET_BY_8051_ERROR_SHIFT) 7593 & DC_DC8051_DBG_ERR_INFO_SET_BY_8051_ERROR_MASK; 7594 host_msg = (info >> 7595 DC_DC8051_DBG_ERR_INFO_SET_BY_8051_HOST_MSG_SHIFT) 7596 & DC_DC8051_DBG_ERR_INFO_SET_BY_8051_HOST_MSG_MASK; 7597 7598 /* 7599 * Handle error flags. 7600 */ 7601 if (err & FAILED_LNI) { 7602 /* 7603 * LNI error indications are cleared by the 8051 7604 * only when starting polling. Only pay attention 7605 * to them when in the states that occur during 7606 * LNI. 7607 */ 7608 if (ppd->host_link_state 7609 & (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) { 7610 queue_link_down = 1; 7611 dd_dev_info(dd, "Link error: %s\n", 7612 dc8051_info_err_string(buf, 7613 sizeof(buf), 7614 err & 7615 FAILED_LNI)); 7616 } 7617 err &= ~(u64)FAILED_LNI; 7618 } 7619 /* unknown frames can happen durning LNI, just count */ 7620 if (err & UNKNOWN_FRAME) { 7621 ppd->unknown_frame_count++; 7622 err &= ~(u64)UNKNOWN_FRAME; 7623 } 7624 if (err) { 7625 /* report remaining errors, but do not do anything */ 7626 dd_dev_err(dd, "8051 info error: %s\n", 7627 dc8051_info_err_string(buf, sizeof(buf), 7628 err)); 7629 } 7630 7631 /* 7632 * Handle host message flags. 7633 */ 7634 if (host_msg & HOST_REQ_DONE) { 7635 /* 7636 * Presently, the driver does a busy wait for 7637 * host requests to complete. This is only an 7638 * informational message. 7639 * NOTE: The 8051 clears the host message 7640 * information *on the next 8051 command*. 7641 * Therefore, when linkup is achieved, 7642 * this flag will still be set. 7643 */ 7644 host_msg &= ~(u64)HOST_REQ_DONE; 7645 } 7646 if (host_msg & BC_SMA_MSG) { 7647 queue_work(ppd->hfi1_wq, &ppd->sma_message_work); 7648 host_msg &= ~(u64)BC_SMA_MSG; 7649 } 7650 if (host_msg & LINKUP_ACHIEVED) { 7651 dd_dev_info(dd, "8051: Link up\n"); 7652 queue_work(ppd->hfi1_wq, &ppd->link_up_work); 7653 host_msg &= ~(u64)LINKUP_ACHIEVED; 7654 } 7655 if (host_msg & EXT_DEVICE_CFG_REQ) { 7656 handle_8051_request(ppd); 7657 host_msg &= ~(u64)EXT_DEVICE_CFG_REQ; 7658 } 7659 if (host_msg & VERIFY_CAP_FRAME) { 7660 queue_work(ppd->hfi1_wq, &ppd->link_vc_work); 7661 host_msg &= ~(u64)VERIFY_CAP_FRAME; 7662 } 7663 if (host_msg & LINK_GOING_DOWN) { 7664 const char *extra = ""; 7665 /* no downgrade action needed if going down */ 7666 if (host_msg & LINK_WIDTH_DOWNGRADED) { 7667 host_msg &= ~(u64)LINK_WIDTH_DOWNGRADED; 7668 extra = " (ignoring downgrade)"; 7669 } 7670 dd_dev_info(dd, "8051: Link down%s\n", extra); 7671 queue_link_down = 1; 7672 host_msg &= ~(u64)LINK_GOING_DOWN; 7673 } 7674 if (host_msg & LINK_WIDTH_DOWNGRADED) { 7675 queue_work(ppd->hfi1_wq, &ppd->link_downgrade_work); 7676 host_msg &= ~(u64)LINK_WIDTH_DOWNGRADED; 7677 } 7678 if (host_msg) { 7679 /* report remaining messages, but do not do anything */ 7680 dd_dev_info(dd, "8051 info host message: %s\n", 7681 dc8051_info_host_msg_string(buf, 7682 sizeof(buf), 7683 host_msg)); 7684 } 7685 7686 reg &= ~DC_DC8051_ERR_FLG_SET_BY_8051_SMASK; 7687 } 7688 if (reg & DC_DC8051_ERR_FLG_LOST_8051_HEART_BEAT_SMASK) { 7689 /* 7690 * Lost the 8051 heartbeat. If this happens, we 7691 * receive constant interrupts about it. Disable 7692 * the interrupt after the first. 7693 */ 7694 dd_dev_err(dd, "Lost 8051 heartbeat\n"); 7695 write_csr(dd, DC_DC8051_ERR_EN, 7696 read_csr(dd, DC_DC8051_ERR_EN) & 7697 ~DC_DC8051_ERR_EN_LOST_8051_HEART_BEAT_SMASK); 7698 7699 reg &= ~DC_DC8051_ERR_FLG_LOST_8051_HEART_BEAT_SMASK; 7700 } 7701 if (reg) { 7702 /* report the error, but do not do anything */ 7703 dd_dev_err(dd, "8051 error: %s\n", 7704 dc8051_err_string(buf, sizeof(buf), reg)); 7705 } 7706 7707 if (queue_link_down) { 7708 /* 7709 * if the link is already going down or disabled, do not 7710 * queue another 7711 */ 7712 if ((ppd->host_link_state & 7713 (HLS_GOING_OFFLINE | HLS_LINK_COOLDOWN)) || 7714 ppd->link_enabled == 0) { 7715 dd_dev_info(dd, "%s: not queuing link down\n", 7716 __func__); 7717 } else { 7718 queue_work(ppd->hfi1_wq, &ppd->link_down_work); 7719 } 7720 } 7721 } 7722 7723 static const char * const fm_config_txt[] = { 7724 [0] = 7725 "BadHeadDist: Distance violation between two head flits", 7726 [1] = 7727 "BadTailDist: Distance violation between two tail flits", 7728 [2] = 7729 "BadCtrlDist: Distance violation between two credit control flits", 7730 [3] = 7731 "BadCrdAck: Credits return for unsupported VL", 7732 [4] = 7733 "UnsupportedVLMarker: Received VL Marker", 7734 [5] = 7735 "BadPreempt: Exceeded the preemption nesting level", 7736 [6] = 7737 "BadControlFlit: Received unsupported control flit", 7738 /* no 7 */ 7739 [8] = 7740 "UnsupportedVLMarker: Received VL Marker for unconfigured or disabled VL", 7741 }; 7742 7743 static const char * const port_rcv_txt[] = { 7744 [1] = 7745 "BadPktLen: Illegal PktLen", 7746 [2] = 7747 "PktLenTooLong: Packet longer than PktLen", 7748 [3] = 7749 "PktLenTooShort: Packet shorter than PktLen", 7750 [4] = 7751 "BadSLID: Illegal SLID (0, using multicast as SLID, does not include security validation of SLID)", 7752 [5] = 7753 "BadDLID: Illegal DLID (0, doesn't match HFI)", 7754 [6] = 7755 "BadL2: Illegal L2 opcode", 7756 [7] = 7757 "BadSC: Unsupported SC", 7758 [9] = 7759 "BadRC: Illegal RC", 7760 [11] = 7761 "PreemptError: Preempting with same VL", 7762 [12] = 7763 "PreemptVL15: Preempting a VL15 packet", 7764 }; 7765 7766 #define OPA_LDR_FMCONFIG_OFFSET 16 7767 #define OPA_LDR_PORTRCV_OFFSET 0 7768 static void handle_dcc_err(struct hfi1_devdata *dd, u32 unused, u64 reg) 7769 { 7770 u64 info, hdr0, hdr1; 7771 const char *extra; 7772 char buf[96]; 7773 struct hfi1_pportdata *ppd = dd->pport; 7774 u8 lcl_reason = 0; 7775 int do_bounce = 0; 7776 7777 if (reg & DCC_ERR_FLG_UNCORRECTABLE_ERR_SMASK) { 7778 if (!(dd->err_info_uncorrectable & OPA_EI_STATUS_SMASK)) { 7779 info = read_csr(dd, DCC_ERR_INFO_UNCORRECTABLE); 7780 dd->err_info_uncorrectable = info & OPA_EI_CODE_SMASK; 7781 /* set status bit */ 7782 dd->err_info_uncorrectable |= OPA_EI_STATUS_SMASK; 7783 } 7784 reg &= ~DCC_ERR_FLG_UNCORRECTABLE_ERR_SMASK; 7785 } 7786 7787 if (reg & DCC_ERR_FLG_LINK_ERR_SMASK) { 7788 struct hfi1_pportdata *ppd = dd->pport; 7789 /* this counter saturates at (2^32) - 1 */ 7790 if (ppd->link_downed < (u32)UINT_MAX) 7791 ppd->link_downed++; 7792 reg &= ~DCC_ERR_FLG_LINK_ERR_SMASK; 7793 } 7794 7795 if (reg & DCC_ERR_FLG_FMCONFIG_ERR_SMASK) { 7796 u8 reason_valid = 1; 7797 7798 info = read_csr(dd, DCC_ERR_INFO_FMCONFIG); 7799 if (!(dd->err_info_fmconfig & OPA_EI_STATUS_SMASK)) { 7800 dd->err_info_fmconfig = info & OPA_EI_CODE_SMASK; 7801 /* set status bit */ 7802 dd->err_info_fmconfig |= OPA_EI_STATUS_SMASK; 7803 } 7804 switch (info) { 7805 case 0: 7806 case 1: 7807 case 2: 7808 case 3: 7809 case 4: 7810 case 5: 7811 case 6: 7812 extra = fm_config_txt[info]; 7813 break; 7814 case 8: 7815 extra = fm_config_txt[info]; 7816 if (ppd->port_error_action & 7817 OPA_PI_MASK_FM_CFG_UNSUPPORTED_VL_MARKER) { 7818 do_bounce = 1; 7819 /* 7820 * lcl_reason cannot be derived from info 7821 * for this error 7822 */ 7823 lcl_reason = 7824 OPA_LINKDOWN_REASON_UNSUPPORTED_VL_MARKER; 7825 } 7826 break; 7827 default: 7828 reason_valid = 0; 7829 snprintf(buf, sizeof(buf), "reserved%lld", info); 7830 extra = buf; 7831 break; 7832 } 7833 7834 if (reason_valid && !do_bounce) { 7835 do_bounce = ppd->port_error_action & 7836 (1 << (OPA_LDR_FMCONFIG_OFFSET + info)); 7837 lcl_reason = info + OPA_LINKDOWN_REASON_BAD_HEAD_DIST; 7838 } 7839 7840 /* just report this */ 7841 dd_dev_info(dd, "DCC Error: fmconfig error: %s\n", extra); 7842 reg &= ~DCC_ERR_FLG_FMCONFIG_ERR_SMASK; 7843 } 7844 7845 if (reg & DCC_ERR_FLG_RCVPORT_ERR_SMASK) { 7846 u8 reason_valid = 1; 7847 7848 info = read_csr(dd, DCC_ERR_INFO_PORTRCV); 7849 hdr0 = read_csr(dd, DCC_ERR_INFO_PORTRCV_HDR0); 7850 hdr1 = read_csr(dd, DCC_ERR_INFO_PORTRCV_HDR1); 7851 if (!(dd->err_info_rcvport.status_and_code & 7852 OPA_EI_STATUS_SMASK)) { 7853 dd->err_info_rcvport.status_and_code = 7854 info & OPA_EI_CODE_SMASK; 7855 /* set status bit */ 7856 dd->err_info_rcvport.status_and_code |= 7857 OPA_EI_STATUS_SMASK; 7858 /* 7859 * save first 2 flits in the packet that caused 7860 * the error 7861 */ 7862 dd->err_info_rcvport.packet_flit1 = hdr0; 7863 dd->err_info_rcvport.packet_flit2 = hdr1; 7864 } 7865 switch (info) { 7866 case 1: 7867 case 2: 7868 case 3: 7869 case 4: 7870 case 5: 7871 case 6: 7872 case 7: 7873 case 9: 7874 case 11: 7875 case 12: 7876 extra = port_rcv_txt[info]; 7877 break; 7878 default: 7879 reason_valid = 0; 7880 snprintf(buf, sizeof(buf), "reserved%lld", info); 7881 extra = buf; 7882 break; 7883 } 7884 7885 if (reason_valid && !do_bounce) { 7886 do_bounce = ppd->port_error_action & 7887 (1 << (OPA_LDR_PORTRCV_OFFSET + info)); 7888 lcl_reason = info + OPA_LINKDOWN_REASON_RCV_ERROR_0; 7889 } 7890 7891 /* just report this */ 7892 dd_dev_info(dd, "DCC Error: PortRcv error: %s\n", extra); 7893 dd_dev_info(dd, " hdr0 0x%llx, hdr1 0x%llx\n", 7894 hdr0, hdr1); 7895 7896 reg &= ~DCC_ERR_FLG_RCVPORT_ERR_SMASK; 7897 } 7898 7899 if (reg & DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_UC_SMASK) { 7900 /* informative only */ 7901 dd_dev_info(dd, "8051 access to LCB blocked\n"); 7902 reg &= ~DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_UC_SMASK; 7903 } 7904 if (reg & DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_HOST_SMASK) { 7905 /* informative only */ 7906 dd_dev_info(dd, "host access to LCB blocked\n"); 7907 reg &= ~DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_HOST_SMASK; 7908 } 7909 7910 /* report any remaining errors */ 7911 if (reg) 7912 dd_dev_info(dd, "DCC Error: %s\n", 7913 dcc_err_string(buf, sizeof(buf), reg)); 7914 7915 if (lcl_reason == 0) 7916 lcl_reason = OPA_LINKDOWN_REASON_UNKNOWN; 7917 7918 if (do_bounce) { 7919 dd_dev_info(dd, "%s: PortErrorAction bounce\n", __func__); 7920 set_link_down_reason(ppd, lcl_reason, 0, lcl_reason); 7921 queue_work(ppd->hfi1_wq, &ppd->link_bounce_work); 7922 } 7923 } 7924 7925 static void handle_lcb_err(struct hfi1_devdata *dd, u32 unused, u64 reg) 7926 { 7927 char buf[96]; 7928 7929 dd_dev_info(dd, "LCB Error: %s\n", 7930 lcb_err_string(buf, sizeof(buf), reg)); 7931 } 7932 7933 /* 7934 * CCE block DC interrupt. Source is < 8. 7935 */ 7936 static void is_dc_int(struct hfi1_devdata *dd, unsigned int source) 7937 { 7938 const struct err_reg_info *eri = &dc_errs[source]; 7939 7940 if (eri->handler) { 7941 interrupt_clear_down(dd, 0, eri); 7942 } else if (source == 3 /* dc_lbm_int */) { 7943 /* 7944 * This indicates that a parity error has occurred on the 7945 * address/control lines presented to the LBM. The error 7946 * is a single pulse, there is no associated error flag, 7947 * and it is non-maskable. This is because if a parity 7948 * error occurs on the request the request is dropped. 7949 * This should never occur, but it is nice to know if it 7950 * ever does. 7951 */ 7952 dd_dev_err(dd, "Parity error in DC LBM block\n"); 7953 } else { 7954 dd_dev_err(dd, "Invalid DC interrupt %u\n", source); 7955 } 7956 } 7957 7958 /* 7959 * TX block send credit interrupt. Source is < 160. 7960 */ 7961 static void is_send_credit_int(struct hfi1_devdata *dd, unsigned int source) 7962 { 7963 sc_group_release_update(dd, source); 7964 } 7965 7966 /* 7967 * TX block SDMA interrupt. Source is < 48. 7968 * 7969 * SDMA interrupts are grouped by type: 7970 * 7971 * 0 - N-1 = SDma 7972 * N - 2N-1 = SDmaProgress 7973 * 2N - 3N-1 = SDmaIdle 7974 */ 7975 static void is_sdma_eng_int(struct hfi1_devdata *dd, unsigned int source) 7976 { 7977 /* what interrupt */ 7978 unsigned int what = source / TXE_NUM_SDMA_ENGINES; 7979 /* which engine */ 7980 unsigned int which = source % TXE_NUM_SDMA_ENGINES; 7981 7982 #ifdef CONFIG_SDMA_VERBOSITY 7983 dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", which, 7984 slashstrip(__FILE__), __LINE__, __func__); 7985 sdma_dumpstate(&dd->per_sdma[which]); 7986 #endif 7987 7988 if (likely(what < 3 && which < dd->num_sdma)) { 7989 sdma_engine_interrupt(&dd->per_sdma[which], 1ull << source); 7990 } else { 7991 /* should not happen */ 7992 dd_dev_err(dd, "Invalid SDMA interrupt 0x%x\n", source); 7993 } 7994 } 7995 7996 /* 7997 * RX block receive available interrupt. Source is < 160. 7998 */ 7999 static void is_rcv_avail_int(struct hfi1_devdata *dd, unsigned int source) 8000 { 8001 struct hfi1_ctxtdata *rcd; 8002 char *err_detail; 8003 8004 if (likely(source < dd->num_rcv_contexts)) { 8005 rcd = dd->rcd[source]; 8006 if (rcd) { 8007 if (source < dd->first_user_ctxt) 8008 rcd->do_interrupt(rcd, 0); 8009 else 8010 handle_user_interrupt(rcd); 8011 return; /* OK */ 8012 } 8013 /* received an interrupt, but no rcd */ 8014 err_detail = "dataless"; 8015 } else { 8016 /* received an interrupt, but are not using that context */ 8017 err_detail = "out of range"; 8018 } 8019 dd_dev_err(dd, "unexpected %s receive available context interrupt %u\n", 8020 err_detail, source); 8021 } 8022 8023 /* 8024 * RX block receive urgent interrupt. Source is < 160. 8025 */ 8026 static void is_rcv_urgent_int(struct hfi1_devdata *dd, unsigned int source) 8027 { 8028 struct hfi1_ctxtdata *rcd; 8029 char *err_detail; 8030 8031 if (likely(source < dd->num_rcv_contexts)) { 8032 rcd = dd->rcd[source]; 8033 if (rcd) { 8034 /* only pay attention to user urgent interrupts */ 8035 if (source >= dd->first_user_ctxt) 8036 handle_user_interrupt(rcd); 8037 return; /* OK */ 8038 } 8039 /* received an interrupt, but no rcd */ 8040 err_detail = "dataless"; 8041 } else { 8042 /* received an interrupt, but are not using that context */ 8043 err_detail = "out of range"; 8044 } 8045 dd_dev_err(dd, "unexpected %s receive urgent context interrupt %u\n", 8046 err_detail, source); 8047 } 8048 8049 /* 8050 * Reserved range interrupt. Should not be called in normal operation. 8051 */ 8052 static void is_reserved_int(struct hfi1_devdata *dd, unsigned int source) 8053 { 8054 char name[64]; 8055 8056 dd_dev_err(dd, "unexpected %s interrupt\n", 8057 is_reserved_name(name, sizeof(name), source)); 8058 } 8059 8060 static const struct is_table is_table[] = { 8061 /* 8062 * start end 8063 * name func interrupt func 8064 */ 8065 { IS_GENERAL_ERR_START, IS_GENERAL_ERR_END, 8066 is_misc_err_name, is_misc_err_int }, 8067 { IS_SDMAENG_ERR_START, IS_SDMAENG_ERR_END, 8068 is_sdma_eng_err_name, is_sdma_eng_err_int }, 8069 { IS_SENDCTXT_ERR_START, IS_SENDCTXT_ERR_END, 8070 is_sendctxt_err_name, is_sendctxt_err_int }, 8071 { IS_SDMA_START, IS_SDMA_END, 8072 is_sdma_eng_name, is_sdma_eng_int }, 8073 { IS_VARIOUS_START, IS_VARIOUS_END, 8074 is_various_name, is_various_int }, 8075 { IS_DC_START, IS_DC_END, 8076 is_dc_name, is_dc_int }, 8077 { IS_RCVAVAIL_START, IS_RCVAVAIL_END, 8078 is_rcv_avail_name, is_rcv_avail_int }, 8079 { IS_RCVURGENT_START, IS_RCVURGENT_END, 8080 is_rcv_urgent_name, is_rcv_urgent_int }, 8081 { IS_SENDCREDIT_START, IS_SENDCREDIT_END, 8082 is_send_credit_name, is_send_credit_int}, 8083 { IS_RESERVED_START, IS_RESERVED_END, 8084 is_reserved_name, is_reserved_int}, 8085 }; 8086 8087 /* 8088 * Interrupt source interrupt - called when the given source has an interrupt. 8089 * Source is a bit index into an array of 64-bit integers. 8090 */ 8091 static void is_interrupt(struct hfi1_devdata *dd, unsigned int source) 8092 { 8093 const struct is_table *entry; 8094 8095 /* avoids a double compare by walking the table in-order */ 8096 for (entry = &is_table[0]; entry->is_name; entry++) { 8097 if (source < entry->end) { 8098 trace_hfi1_interrupt(dd, entry, source); 8099 entry->is_int(dd, source - entry->start); 8100 return; 8101 } 8102 } 8103 /* fell off the end */ 8104 dd_dev_err(dd, "invalid interrupt source %u\n", source); 8105 } 8106 8107 /* 8108 * General interrupt handler. This is able to correctly handle 8109 * all interrupts in case INTx is used. 8110 */ 8111 static irqreturn_t general_interrupt(int irq, void *data) 8112 { 8113 struct hfi1_devdata *dd = data; 8114 u64 regs[CCE_NUM_INT_CSRS]; 8115 u32 bit; 8116 int i; 8117 8118 this_cpu_inc(*dd->int_counter); 8119 8120 /* phase 1: scan and clear all handled interrupts */ 8121 for (i = 0; i < CCE_NUM_INT_CSRS; i++) { 8122 if (dd->gi_mask[i] == 0) { 8123 regs[i] = 0; /* used later */ 8124 continue; 8125 } 8126 regs[i] = read_csr(dd, CCE_INT_STATUS + (8 * i)) & 8127 dd->gi_mask[i]; 8128 /* only clear if anything is set */ 8129 if (regs[i]) 8130 write_csr(dd, CCE_INT_CLEAR + (8 * i), regs[i]); 8131 } 8132 8133 /* phase 2: call the appropriate handler */ 8134 for_each_set_bit(bit, (unsigned long *)®s[0], 8135 CCE_NUM_INT_CSRS * 64) { 8136 is_interrupt(dd, bit); 8137 } 8138 8139 return IRQ_HANDLED; 8140 } 8141 8142 static irqreturn_t sdma_interrupt(int irq, void *data) 8143 { 8144 struct sdma_engine *sde = data; 8145 struct hfi1_devdata *dd = sde->dd; 8146 u64 status; 8147 8148 #ifdef CONFIG_SDMA_VERBOSITY 8149 dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx, 8150 slashstrip(__FILE__), __LINE__, __func__); 8151 sdma_dumpstate(sde); 8152 #endif 8153 8154 this_cpu_inc(*dd->int_counter); 8155 8156 /* This read_csr is really bad in the hot path */ 8157 status = read_csr(dd, 8158 CCE_INT_STATUS + (8 * (IS_SDMA_START / 64))) 8159 & sde->imask; 8160 if (likely(status)) { 8161 /* clear the interrupt(s) */ 8162 write_csr(dd, 8163 CCE_INT_CLEAR + (8 * (IS_SDMA_START / 64)), 8164 status); 8165 8166 /* handle the interrupt(s) */ 8167 sdma_engine_interrupt(sde, status); 8168 } else 8169 dd_dev_err(dd, "SDMA engine %u interrupt, but no status bits set\n", 8170 sde->this_idx); 8171 8172 return IRQ_HANDLED; 8173 } 8174 8175 /* 8176 * Clear the receive interrupt. Use a read of the interrupt clear CSR 8177 * to insure that the write completed. This does NOT guarantee that 8178 * queued DMA writes to memory from the chip are pushed. 8179 */ 8180 static inline void clear_recv_intr(struct hfi1_ctxtdata *rcd) 8181 { 8182 struct hfi1_devdata *dd = rcd->dd; 8183 u32 addr = CCE_INT_CLEAR + (8 * rcd->ireg); 8184 8185 mmiowb(); /* make sure everything before is written */ 8186 write_csr(dd, addr, rcd->imask); 8187 /* force the above write on the chip and get a value back */ 8188 (void)read_csr(dd, addr); 8189 } 8190 8191 /* force the receive interrupt */ 8192 void force_recv_intr(struct hfi1_ctxtdata *rcd) 8193 { 8194 write_csr(rcd->dd, CCE_INT_FORCE + (8 * rcd->ireg), rcd->imask); 8195 } 8196 8197 /* 8198 * Return non-zero if a packet is present. 8199 * 8200 * This routine is called when rechecking for packets after the RcvAvail 8201 * interrupt has been cleared down. First, do a quick check of memory for 8202 * a packet present. If not found, use an expensive CSR read of the context 8203 * tail to determine the actual tail. The CSR read is necessary because there 8204 * is no method to push pending DMAs to memory other than an interrupt and we 8205 * are trying to determine if we need to force an interrupt. 8206 */ 8207 static inline int check_packet_present(struct hfi1_ctxtdata *rcd) 8208 { 8209 u32 tail; 8210 int present; 8211 8212 if (!HFI1_CAP_IS_KSET(DMA_RTAIL)) 8213 present = (rcd->seq_cnt == 8214 rhf_rcv_seq(rhf_to_cpu(get_rhf_addr(rcd)))); 8215 else /* is RDMA rtail */ 8216 present = (rcd->head != get_rcvhdrtail(rcd)); 8217 8218 if (present) 8219 return 1; 8220 8221 /* fall back to a CSR read, correct indpendent of DMA_RTAIL */ 8222 tail = (u32)read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_TAIL); 8223 return rcd->head != tail; 8224 } 8225 8226 /* 8227 * Receive packet IRQ handler. This routine expects to be on its own IRQ. 8228 * This routine will try to handle packets immediately (latency), but if 8229 * it finds too many, it will invoke the thread handler (bandwitdh). The 8230 * chip receive interrupt is *not* cleared down until this or the thread (if 8231 * invoked) is finished. The intent is to avoid extra interrupts while we 8232 * are processing packets anyway. 8233 */ 8234 static irqreturn_t receive_context_interrupt(int irq, void *data) 8235 { 8236 struct hfi1_ctxtdata *rcd = data; 8237 struct hfi1_devdata *dd = rcd->dd; 8238 int disposition; 8239 int present; 8240 8241 trace_hfi1_receive_interrupt(dd, rcd->ctxt); 8242 this_cpu_inc(*dd->int_counter); 8243 aspm_ctx_disable(rcd); 8244 8245 /* receive interrupt remains blocked while processing packets */ 8246 disposition = rcd->do_interrupt(rcd, 0); 8247 8248 /* 8249 * Too many packets were seen while processing packets in this 8250 * IRQ handler. Invoke the handler thread. The receive interrupt 8251 * remains blocked. 8252 */ 8253 if (disposition == RCV_PKT_LIMIT) 8254 return IRQ_WAKE_THREAD; 8255 8256 /* 8257 * The packet processor detected no more packets. Clear the receive 8258 * interrupt and recheck for a packet packet that may have arrived 8259 * after the previous check and interrupt clear. If a packet arrived, 8260 * force another interrupt. 8261 */ 8262 clear_recv_intr(rcd); 8263 present = check_packet_present(rcd); 8264 if (present) 8265 force_recv_intr(rcd); 8266 8267 return IRQ_HANDLED; 8268 } 8269 8270 /* 8271 * Receive packet thread handler. This expects to be invoked with the 8272 * receive interrupt still blocked. 8273 */ 8274 static irqreturn_t receive_context_thread(int irq, void *data) 8275 { 8276 struct hfi1_ctxtdata *rcd = data; 8277 int present; 8278 8279 /* receive interrupt is still blocked from the IRQ handler */ 8280 (void)rcd->do_interrupt(rcd, 1); 8281 8282 /* 8283 * The packet processor will only return if it detected no more 8284 * packets. Hold IRQs here so we can safely clear the interrupt and 8285 * recheck for a packet that may have arrived after the previous 8286 * check and the interrupt clear. If a packet arrived, force another 8287 * interrupt. 8288 */ 8289 local_irq_disable(); 8290 clear_recv_intr(rcd); 8291 present = check_packet_present(rcd); 8292 if (present) 8293 force_recv_intr(rcd); 8294 local_irq_enable(); 8295 8296 return IRQ_HANDLED; 8297 } 8298 8299 /* ========================================================================= */ 8300 8301 u32 read_physical_state(struct hfi1_devdata *dd) 8302 { 8303 u64 reg; 8304 8305 reg = read_csr(dd, DC_DC8051_STS_CUR_STATE); 8306 return (reg >> DC_DC8051_STS_CUR_STATE_PORT_SHIFT) 8307 & DC_DC8051_STS_CUR_STATE_PORT_MASK; 8308 } 8309 8310 u32 read_logical_state(struct hfi1_devdata *dd) 8311 { 8312 u64 reg; 8313 8314 reg = read_csr(dd, DCC_CFG_PORT_CONFIG); 8315 return (reg >> DCC_CFG_PORT_CONFIG_LINK_STATE_SHIFT) 8316 & DCC_CFG_PORT_CONFIG_LINK_STATE_MASK; 8317 } 8318 8319 static void set_logical_state(struct hfi1_devdata *dd, u32 chip_lstate) 8320 { 8321 u64 reg; 8322 8323 reg = read_csr(dd, DCC_CFG_PORT_CONFIG); 8324 /* clear current state, set new state */ 8325 reg &= ~DCC_CFG_PORT_CONFIG_LINK_STATE_SMASK; 8326 reg |= (u64)chip_lstate << DCC_CFG_PORT_CONFIG_LINK_STATE_SHIFT; 8327 write_csr(dd, DCC_CFG_PORT_CONFIG, reg); 8328 } 8329 8330 /* 8331 * Use the 8051 to read a LCB CSR. 8332 */ 8333 static int read_lcb_via_8051(struct hfi1_devdata *dd, u32 addr, u64 *data) 8334 { 8335 u32 regno; 8336 int ret; 8337 8338 if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR) { 8339 if (acquire_lcb_access(dd, 0) == 0) { 8340 *data = read_csr(dd, addr); 8341 release_lcb_access(dd, 0); 8342 return 0; 8343 } 8344 return -EBUSY; 8345 } 8346 8347 /* register is an index of LCB registers: (offset - base) / 8 */ 8348 regno = (addr - DC_LCB_CFG_RUN) >> 3; 8349 ret = do_8051_command(dd, HCMD_READ_LCB_CSR, regno, data); 8350 if (ret != HCMD_SUCCESS) 8351 return -EBUSY; 8352 return 0; 8353 } 8354 8355 /* 8356 * Read an LCB CSR. Access may not be in host control, so check. 8357 * Return 0 on success, -EBUSY on failure. 8358 */ 8359 int read_lcb_csr(struct hfi1_devdata *dd, u32 addr, u64 *data) 8360 { 8361 struct hfi1_pportdata *ppd = dd->pport; 8362 8363 /* if up, go through the 8051 for the value */ 8364 if (ppd->host_link_state & HLS_UP) 8365 return read_lcb_via_8051(dd, addr, data); 8366 /* if going up or down, no access */ 8367 if (ppd->host_link_state & (HLS_GOING_UP | HLS_GOING_OFFLINE)) 8368 return -EBUSY; 8369 /* otherwise, host has access */ 8370 *data = read_csr(dd, addr); 8371 return 0; 8372 } 8373 8374 /* 8375 * Use the 8051 to write a LCB CSR. 8376 */ 8377 static int write_lcb_via_8051(struct hfi1_devdata *dd, u32 addr, u64 data) 8378 { 8379 u32 regno; 8380 int ret; 8381 8382 if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR || 8383 (dd->dc8051_ver < dc8051_ver(0, 20))) { 8384 if (acquire_lcb_access(dd, 0) == 0) { 8385 write_csr(dd, addr, data); 8386 release_lcb_access(dd, 0); 8387 return 0; 8388 } 8389 return -EBUSY; 8390 } 8391 8392 /* register is an index of LCB registers: (offset - base) / 8 */ 8393 regno = (addr - DC_LCB_CFG_RUN) >> 3; 8394 ret = do_8051_command(dd, HCMD_WRITE_LCB_CSR, regno, &data); 8395 if (ret != HCMD_SUCCESS) 8396 return -EBUSY; 8397 return 0; 8398 } 8399 8400 /* 8401 * Write an LCB CSR. Access may not be in host control, so check. 8402 * Return 0 on success, -EBUSY on failure. 8403 */ 8404 int write_lcb_csr(struct hfi1_devdata *dd, u32 addr, u64 data) 8405 { 8406 struct hfi1_pportdata *ppd = dd->pport; 8407 8408 /* if up, go through the 8051 for the value */ 8409 if (ppd->host_link_state & HLS_UP) 8410 return write_lcb_via_8051(dd, addr, data); 8411 /* if going up or down, no access */ 8412 if (ppd->host_link_state & (HLS_GOING_UP | HLS_GOING_OFFLINE)) 8413 return -EBUSY; 8414 /* otherwise, host has access */ 8415 write_csr(dd, addr, data); 8416 return 0; 8417 } 8418 8419 /* 8420 * Returns: 8421 * < 0 = Linux error, not able to get access 8422 * > 0 = 8051 command RETURN_CODE 8423 */ 8424 static int do_8051_command( 8425 struct hfi1_devdata *dd, 8426 u32 type, 8427 u64 in_data, 8428 u64 *out_data) 8429 { 8430 u64 reg, completed; 8431 int return_code; 8432 unsigned long flags; 8433 unsigned long timeout; 8434 8435 hfi1_cdbg(DC8051, "type %d, data 0x%012llx", type, in_data); 8436 8437 /* 8438 * Alternative to holding the lock for a long time: 8439 * - keep busy wait - have other users bounce off 8440 */ 8441 spin_lock_irqsave(&dd->dc8051_lock, flags); 8442 8443 /* We can't send any commands to the 8051 if it's in reset */ 8444 if (dd->dc_shutdown) { 8445 return_code = -ENODEV; 8446 goto fail; 8447 } 8448 8449 /* 8450 * If an 8051 host command timed out previously, then the 8051 is 8451 * stuck. 8452 * 8453 * On first timeout, attempt to reset and restart the entire DC 8454 * block (including 8051). (Is this too big of a hammer?) 8455 * 8456 * If the 8051 times out a second time, the reset did not bring it 8457 * back to healthy life. In that case, fail any subsequent commands. 8458 */ 8459 if (dd->dc8051_timed_out) { 8460 if (dd->dc8051_timed_out > 1) { 8461 dd_dev_err(dd, 8462 "Previous 8051 host command timed out, skipping command %u\n", 8463 type); 8464 return_code = -ENXIO; 8465 goto fail; 8466 } 8467 spin_unlock_irqrestore(&dd->dc8051_lock, flags); 8468 dc_shutdown(dd); 8469 dc_start(dd); 8470 spin_lock_irqsave(&dd->dc8051_lock, flags); 8471 } 8472 8473 /* 8474 * If there is no timeout, then the 8051 command interface is 8475 * waiting for a command. 8476 */ 8477 8478 /* 8479 * When writing a LCB CSR, out_data contains the full value to 8480 * to be written, while in_data contains the relative LCB 8481 * address in 7:0. Do the work here, rather than the caller, 8482 * of distrubting the write data to where it needs to go: 8483 * 8484 * Write data 8485 * 39:00 -> in_data[47:8] 8486 * 47:40 -> DC8051_CFG_EXT_DEV_0.RETURN_CODE 8487 * 63:48 -> DC8051_CFG_EXT_DEV_0.RSP_DATA 8488 */ 8489 if (type == HCMD_WRITE_LCB_CSR) { 8490 in_data |= ((*out_data) & 0xffffffffffull) << 8; 8491 reg = ((((*out_data) >> 40) & 0xff) << 8492 DC_DC8051_CFG_EXT_DEV_0_RETURN_CODE_SHIFT) 8493 | ((((*out_data) >> 48) & 0xffff) << 8494 DC_DC8051_CFG_EXT_DEV_0_RSP_DATA_SHIFT); 8495 write_csr(dd, DC_DC8051_CFG_EXT_DEV_0, reg); 8496 } 8497 8498 /* 8499 * Do two writes: the first to stabilize the type and req_data, the 8500 * second to activate. 8501 */ 8502 reg = ((u64)type & DC_DC8051_CFG_HOST_CMD_0_REQ_TYPE_MASK) 8503 << DC_DC8051_CFG_HOST_CMD_0_REQ_TYPE_SHIFT 8504 | (in_data & DC_DC8051_CFG_HOST_CMD_0_REQ_DATA_MASK) 8505 << DC_DC8051_CFG_HOST_CMD_0_REQ_DATA_SHIFT; 8506 write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, reg); 8507 reg |= DC_DC8051_CFG_HOST_CMD_0_REQ_NEW_SMASK; 8508 write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, reg); 8509 8510 /* wait for completion, alternate: interrupt */ 8511 timeout = jiffies + msecs_to_jiffies(DC8051_COMMAND_TIMEOUT); 8512 while (1) { 8513 reg = read_csr(dd, DC_DC8051_CFG_HOST_CMD_1); 8514 completed = reg & DC_DC8051_CFG_HOST_CMD_1_COMPLETED_SMASK; 8515 if (completed) 8516 break; 8517 if (time_after(jiffies, timeout)) { 8518 dd->dc8051_timed_out++; 8519 dd_dev_err(dd, "8051 host command %u timeout\n", type); 8520 if (out_data) 8521 *out_data = 0; 8522 return_code = -ETIMEDOUT; 8523 goto fail; 8524 } 8525 udelay(2); 8526 } 8527 8528 if (out_data) { 8529 *out_data = (reg >> DC_DC8051_CFG_HOST_CMD_1_RSP_DATA_SHIFT) 8530 & DC_DC8051_CFG_HOST_CMD_1_RSP_DATA_MASK; 8531 if (type == HCMD_READ_LCB_CSR) { 8532 /* top 16 bits are in a different register */ 8533 *out_data |= (read_csr(dd, DC_DC8051_CFG_EXT_DEV_1) 8534 & DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SMASK) 8535 << (48 8536 - DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SHIFT); 8537 } 8538 } 8539 return_code = (reg >> DC_DC8051_CFG_HOST_CMD_1_RETURN_CODE_SHIFT) 8540 & DC_DC8051_CFG_HOST_CMD_1_RETURN_CODE_MASK; 8541 dd->dc8051_timed_out = 0; 8542 /* 8543 * Clear command for next user. 8544 */ 8545 write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, 0); 8546 8547 fail: 8548 spin_unlock_irqrestore(&dd->dc8051_lock, flags); 8549 8550 return return_code; 8551 } 8552 8553 static int set_physical_link_state(struct hfi1_devdata *dd, u64 state) 8554 { 8555 return do_8051_command(dd, HCMD_CHANGE_PHY_STATE, state, NULL); 8556 } 8557 8558 int load_8051_config(struct hfi1_devdata *dd, u8 field_id, 8559 u8 lane_id, u32 config_data) 8560 { 8561 u64 data; 8562 int ret; 8563 8564 data = (u64)field_id << LOAD_DATA_FIELD_ID_SHIFT 8565 | (u64)lane_id << LOAD_DATA_LANE_ID_SHIFT 8566 | (u64)config_data << LOAD_DATA_DATA_SHIFT; 8567 ret = do_8051_command(dd, HCMD_LOAD_CONFIG_DATA, data, NULL); 8568 if (ret != HCMD_SUCCESS) { 8569 dd_dev_err(dd, 8570 "load 8051 config: field id %d, lane %d, err %d\n", 8571 (int)field_id, (int)lane_id, ret); 8572 } 8573 return ret; 8574 } 8575 8576 /* 8577 * Read the 8051 firmware "registers". Use the RAM directly. Always 8578 * set the result, even on error. 8579 * Return 0 on success, -errno on failure 8580 */ 8581 int read_8051_config(struct hfi1_devdata *dd, u8 field_id, u8 lane_id, 8582 u32 *result) 8583 { 8584 u64 big_data; 8585 u32 addr; 8586 int ret; 8587 8588 /* address start depends on the lane_id */ 8589 if (lane_id < 4) 8590 addr = (4 * NUM_GENERAL_FIELDS) 8591 + (lane_id * 4 * NUM_LANE_FIELDS); 8592 else 8593 addr = 0; 8594 addr += field_id * 4; 8595 8596 /* read is in 8-byte chunks, hardware will truncate the address down */ 8597 ret = read_8051_data(dd, addr, 8, &big_data); 8598 8599 if (ret == 0) { 8600 /* extract the 4 bytes we want */ 8601 if (addr & 0x4) 8602 *result = (u32)(big_data >> 32); 8603 else 8604 *result = (u32)big_data; 8605 } else { 8606 *result = 0; 8607 dd_dev_err(dd, "%s: direct read failed, lane %d, field %d!\n", 8608 __func__, lane_id, field_id); 8609 } 8610 8611 return ret; 8612 } 8613 8614 static int write_vc_local_phy(struct hfi1_devdata *dd, u8 power_management, 8615 u8 continuous) 8616 { 8617 u32 frame; 8618 8619 frame = continuous << CONTINIOUS_REMOTE_UPDATE_SUPPORT_SHIFT 8620 | power_management << POWER_MANAGEMENT_SHIFT; 8621 return load_8051_config(dd, VERIFY_CAP_LOCAL_PHY, 8622 GENERAL_CONFIG, frame); 8623 } 8624 8625 static int write_vc_local_fabric(struct hfi1_devdata *dd, u8 vau, u8 z, u8 vcu, 8626 u16 vl15buf, u8 crc_sizes) 8627 { 8628 u32 frame; 8629 8630 frame = (u32)vau << VAU_SHIFT 8631 | (u32)z << Z_SHIFT 8632 | (u32)vcu << VCU_SHIFT 8633 | (u32)vl15buf << VL15BUF_SHIFT 8634 | (u32)crc_sizes << CRC_SIZES_SHIFT; 8635 return load_8051_config(dd, VERIFY_CAP_LOCAL_FABRIC, 8636 GENERAL_CONFIG, frame); 8637 } 8638 8639 static void read_vc_local_link_width(struct hfi1_devdata *dd, u8 *misc_bits, 8640 u8 *flag_bits, u16 *link_widths) 8641 { 8642 u32 frame; 8643 8644 read_8051_config(dd, VERIFY_CAP_LOCAL_LINK_WIDTH, GENERAL_CONFIG, 8645 &frame); 8646 *misc_bits = (frame >> MISC_CONFIG_BITS_SHIFT) & MISC_CONFIG_BITS_MASK; 8647 *flag_bits = (frame >> LOCAL_FLAG_BITS_SHIFT) & LOCAL_FLAG_BITS_MASK; 8648 *link_widths = (frame >> LINK_WIDTH_SHIFT) & LINK_WIDTH_MASK; 8649 } 8650 8651 static int write_vc_local_link_width(struct hfi1_devdata *dd, 8652 u8 misc_bits, 8653 u8 flag_bits, 8654 u16 link_widths) 8655 { 8656 u32 frame; 8657 8658 frame = (u32)misc_bits << MISC_CONFIG_BITS_SHIFT 8659 | (u32)flag_bits << LOCAL_FLAG_BITS_SHIFT 8660 | (u32)link_widths << LINK_WIDTH_SHIFT; 8661 return load_8051_config(dd, VERIFY_CAP_LOCAL_LINK_WIDTH, GENERAL_CONFIG, 8662 frame); 8663 } 8664 8665 static int write_local_device_id(struct hfi1_devdata *dd, u16 device_id, 8666 u8 device_rev) 8667 { 8668 u32 frame; 8669 8670 frame = ((u32)device_id << LOCAL_DEVICE_ID_SHIFT) 8671 | ((u32)device_rev << LOCAL_DEVICE_REV_SHIFT); 8672 return load_8051_config(dd, LOCAL_DEVICE_ID, GENERAL_CONFIG, frame); 8673 } 8674 8675 static void read_remote_device_id(struct hfi1_devdata *dd, u16 *device_id, 8676 u8 *device_rev) 8677 { 8678 u32 frame; 8679 8680 read_8051_config(dd, REMOTE_DEVICE_ID, GENERAL_CONFIG, &frame); 8681 *device_id = (frame >> REMOTE_DEVICE_ID_SHIFT) & REMOTE_DEVICE_ID_MASK; 8682 *device_rev = (frame >> REMOTE_DEVICE_REV_SHIFT) 8683 & REMOTE_DEVICE_REV_MASK; 8684 } 8685 8686 void read_misc_status(struct hfi1_devdata *dd, u8 *ver_a, u8 *ver_b) 8687 { 8688 u32 frame; 8689 8690 read_8051_config(dd, MISC_STATUS, GENERAL_CONFIG, &frame); 8691 *ver_a = (frame >> STS_FM_VERSION_A_SHIFT) & STS_FM_VERSION_A_MASK; 8692 *ver_b = (frame >> STS_FM_VERSION_B_SHIFT) & STS_FM_VERSION_B_MASK; 8693 } 8694 8695 static void read_vc_remote_phy(struct hfi1_devdata *dd, u8 *power_management, 8696 u8 *continuous) 8697 { 8698 u32 frame; 8699 8700 read_8051_config(dd, VERIFY_CAP_REMOTE_PHY, GENERAL_CONFIG, &frame); 8701 *power_management = (frame >> POWER_MANAGEMENT_SHIFT) 8702 & POWER_MANAGEMENT_MASK; 8703 *continuous = (frame >> CONTINIOUS_REMOTE_UPDATE_SUPPORT_SHIFT) 8704 & CONTINIOUS_REMOTE_UPDATE_SUPPORT_MASK; 8705 } 8706 8707 static void read_vc_remote_fabric(struct hfi1_devdata *dd, u8 *vau, u8 *z, 8708 u8 *vcu, u16 *vl15buf, u8 *crc_sizes) 8709 { 8710 u32 frame; 8711 8712 read_8051_config(dd, VERIFY_CAP_REMOTE_FABRIC, GENERAL_CONFIG, &frame); 8713 *vau = (frame >> VAU_SHIFT) & VAU_MASK; 8714 *z = (frame >> Z_SHIFT) & Z_MASK; 8715 *vcu = (frame >> VCU_SHIFT) & VCU_MASK; 8716 *vl15buf = (frame >> VL15BUF_SHIFT) & VL15BUF_MASK; 8717 *crc_sizes = (frame >> CRC_SIZES_SHIFT) & CRC_SIZES_MASK; 8718 } 8719 8720 static void read_vc_remote_link_width(struct hfi1_devdata *dd, 8721 u8 *remote_tx_rate, 8722 u16 *link_widths) 8723 { 8724 u32 frame; 8725 8726 read_8051_config(dd, VERIFY_CAP_REMOTE_LINK_WIDTH, GENERAL_CONFIG, 8727 &frame); 8728 *remote_tx_rate = (frame >> REMOTE_TX_RATE_SHIFT) 8729 & REMOTE_TX_RATE_MASK; 8730 *link_widths = (frame >> LINK_WIDTH_SHIFT) & LINK_WIDTH_MASK; 8731 } 8732 8733 static void read_local_lni(struct hfi1_devdata *dd, u8 *enable_lane_rx) 8734 { 8735 u32 frame; 8736 8737 read_8051_config(dd, LOCAL_LNI_INFO, GENERAL_CONFIG, &frame); 8738 *enable_lane_rx = (frame >> ENABLE_LANE_RX_SHIFT) & ENABLE_LANE_RX_MASK; 8739 } 8740 8741 static void read_mgmt_allowed(struct hfi1_devdata *dd, u8 *mgmt_allowed) 8742 { 8743 u32 frame; 8744 8745 read_8051_config(dd, REMOTE_LNI_INFO, GENERAL_CONFIG, &frame); 8746 *mgmt_allowed = (frame >> MGMT_ALLOWED_SHIFT) & MGMT_ALLOWED_MASK; 8747 } 8748 8749 static void read_last_local_state(struct hfi1_devdata *dd, u32 *lls) 8750 { 8751 read_8051_config(dd, LAST_LOCAL_STATE_COMPLETE, GENERAL_CONFIG, lls); 8752 } 8753 8754 static void read_last_remote_state(struct hfi1_devdata *dd, u32 *lrs) 8755 { 8756 read_8051_config(dd, LAST_REMOTE_STATE_COMPLETE, GENERAL_CONFIG, lrs); 8757 } 8758 8759 void hfi1_read_link_quality(struct hfi1_devdata *dd, u8 *link_quality) 8760 { 8761 u32 frame; 8762 int ret; 8763 8764 *link_quality = 0; 8765 if (dd->pport->host_link_state & HLS_UP) { 8766 ret = read_8051_config(dd, LINK_QUALITY_INFO, GENERAL_CONFIG, 8767 &frame); 8768 if (ret == 0) 8769 *link_quality = (frame >> LINK_QUALITY_SHIFT) 8770 & LINK_QUALITY_MASK; 8771 } 8772 } 8773 8774 static void read_planned_down_reason_code(struct hfi1_devdata *dd, u8 *pdrrc) 8775 { 8776 u32 frame; 8777 8778 read_8051_config(dd, LINK_QUALITY_INFO, GENERAL_CONFIG, &frame); 8779 *pdrrc = (frame >> DOWN_REMOTE_REASON_SHIFT) & DOWN_REMOTE_REASON_MASK; 8780 } 8781 8782 static void read_link_down_reason(struct hfi1_devdata *dd, u8 *ldr) 8783 { 8784 u32 frame; 8785 8786 read_8051_config(dd, LINK_DOWN_REASON, GENERAL_CONFIG, &frame); 8787 *ldr = (frame & 0xff); 8788 } 8789 8790 static int read_tx_settings(struct hfi1_devdata *dd, 8791 u8 *enable_lane_tx, 8792 u8 *tx_polarity_inversion, 8793 u8 *rx_polarity_inversion, 8794 u8 *max_rate) 8795 { 8796 u32 frame; 8797 int ret; 8798 8799 ret = read_8051_config(dd, TX_SETTINGS, GENERAL_CONFIG, &frame); 8800 *enable_lane_tx = (frame >> ENABLE_LANE_TX_SHIFT) 8801 & ENABLE_LANE_TX_MASK; 8802 *tx_polarity_inversion = (frame >> TX_POLARITY_INVERSION_SHIFT) 8803 & TX_POLARITY_INVERSION_MASK; 8804 *rx_polarity_inversion = (frame >> RX_POLARITY_INVERSION_SHIFT) 8805 & RX_POLARITY_INVERSION_MASK; 8806 *max_rate = (frame >> MAX_RATE_SHIFT) & MAX_RATE_MASK; 8807 return ret; 8808 } 8809 8810 static int write_tx_settings(struct hfi1_devdata *dd, 8811 u8 enable_lane_tx, 8812 u8 tx_polarity_inversion, 8813 u8 rx_polarity_inversion, 8814 u8 max_rate) 8815 { 8816 u32 frame; 8817 8818 /* no need to mask, all variable sizes match field widths */ 8819 frame = enable_lane_tx << ENABLE_LANE_TX_SHIFT 8820 | tx_polarity_inversion << TX_POLARITY_INVERSION_SHIFT 8821 | rx_polarity_inversion << RX_POLARITY_INVERSION_SHIFT 8822 | max_rate << MAX_RATE_SHIFT; 8823 return load_8051_config(dd, TX_SETTINGS, GENERAL_CONFIG, frame); 8824 } 8825 8826 /* 8827 * Read an idle LCB message. 8828 * 8829 * Returns 0 on success, -EINVAL on error 8830 */ 8831 static int read_idle_message(struct hfi1_devdata *dd, u64 type, u64 *data_out) 8832 { 8833 int ret; 8834 8835 ret = do_8051_command(dd, HCMD_READ_LCB_IDLE_MSG, type, data_out); 8836 if (ret != HCMD_SUCCESS) { 8837 dd_dev_err(dd, "read idle message: type %d, err %d\n", 8838 (u32)type, ret); 8839 return -EINVAL; 8840 } 8841 dd_dev_info(dd, "%s: read idle message 0x%llx\n", __func__, *data_out); 8842 /* return only the payload as we already know the type */ 8843 *data_out >>= IDLE_PAYLOAD_SHIFT; 8844 return 0; 8845 } 8846 8847 /* 8848 * Read an idle SMA message. To be done in response to a notification from 8849 * the 8051. 8850 * 8851 * Returns 0 on success, -EINVAL on error 8852 */ 8853 static int read_idle_sma(struct hfi1_devdata *dd, u64 *data) 8854 { 8855 return read_idle_message(dd, (u64)IDLE_SMA << IDLE_MSG_TYPE_SHIFT, 8856 data); 8857 } 8858 8859 /* 8860 * Send an idle LCB message. 8861 * 8862 * Returns 0 on success, -EINVAL on error 8863 */ 8864 static int send_idle_message(struct hfi1_devdata *dd, u64 data) 8865 { 8866 int ret; 8867 8868 dd_dev_info(dd, "%s: sending idle message 0x%llx\n", __func__, data); 8869 ret = do_8051_command(dd, HCMD_SEND_LCB_IDLE_MSG, data, NULL); 8870 if (ret != HCMD_SUCCESS) { 8871 dd_dev_err(dd, "send idle message: data 0x%llx, err %d\n", 8872 data, ret); 8873 return -EINVAL; 8874 } 8875 return 0; 8876 } 8877 8878 /* 8879 * Send an idle SMA message. 8880 * 8881 * Returns 0 on success, -EINVAL on error 8882 */ 8883 int send_idle_sma(struct hfi1_devdata *dd, u64 message) 8884 { 8885 u64 data; 8886 8887 data = ((message & IDLE_PAYLOAD_MASK) << IDLE_PAYLOAD_SHIFT) | 8888 ((u64)IDLE_SMA << IDLE_MSG_TYPE_SHIFT); 8889 return send_idle_message(dd, data); 8890 } 8891 8892 /* 8893 * Initialize the LCB then do a quick link up. This may or may not be 8894 * in loopback. 8895 * 8896 * return 0 on success, -errno on error 8897 */ 8898 static int do_quick_linkup(struct hfi1_devdata *dd) 8899 { 8900 u64 reg; 8901 unsigned long timeout; 8902 int ret; 8903 8904 lcb_shutdown(dd, 0); 8905 8906 if (loopback) { 8907 /* LCB_CFG_LOOPBACK.VAL = 2 */ 8908 /* LCB_CFG_LANE_WIDTH.VAL = 0 */ 8909 write_csr(dd, DC_LCB_CFG_LOOPBACK, 8910 IB_PACKET_TYPE << DC_LCB_CFG_LOOPBACK_VAL_SHIFT); 8911 write_csr(dd, DC_LCB_CFG_LANE_WIDTH, 0); 8912 } 8913 8914 /* start the LCBs */ 8915 /* LCB_CFG_TX_FIFOS_RESET.VAL = 0 */ 8916 write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0); 8917 8918 /* simulator only loopback steps */ 8919 if (loopback && dd->icode == ICODE_FUNCTIONAL_SIMULATOR) { 8920 /* LCB_CFG_RUN.EN = 1 */ 8921 write_csr(dd, DC_LCB_CFG_RUN, 8922 1ull << DC_LCB_CFG_RUN_EN_SHIFT); 8923 8924 /* watch LCB_STS_LINK_TRANSFER_ACTIVE */ 8925 timeout = jiffies + msecs_to_jiffies(10); 8926 while (1) { 8927 reg = read_csr(dd, DC_LCB_STS_LINK_TRANSFER_ACTIVE); 8928 if (reg) 8929 break; 8930 if (time_after(jiffies, timeout)) { 8931 dd_dev_err(dd, 8932 "timeout waiting for LINK_TRANSFER_ACTIVE\n"); 8933 return -ETIMEDOUT; 8934 } 8935 udelay(2); 8936 } 8937 8938 write_csr(dd, DC_LCB_CFG_ALLOW_LINK_UP, 8939 1ull << DC_LCB_CFG_ALLOW_LINK_UP_VAL_SHIFT); 8940 } 8941 8942 if (!loopback) { 8943 /* 8944 * When doing quick linkup and not in loopback, both 8945 * sides must be done with LCB set-up before either 8946 * starts the quick linkup. Put a delay here so that 8947 * both sides can be started and have a chance to be 8948 * done with LCB set up before resuming. 8949 */ 8950 dd_dev_err(dd, 8951 "Pausing for peer to be finished with LCB set up\n"); 8952 msleep(5000); 8953 dd_dev_err(dd, "Continuing with quick linkup\n"); 8954 } 8955 8956 write_csr(dd, DC_LCB_ERR_EN, 0); /* mask LCB errors */ 8957 set_8051_lcb_access(dd); 8958 8959 /* 8960 * State "quick" LinkUp request sets the physical link state to 8961 * LinkUp without a verify capability sequence. 8962 * This state is in simulator v37 and later. 8963 */ 8964 ret = set_physical_link_state(dd, PLS_QUICK_LINKUP); 8965 if (ret != HCMD_SUCCESS) { 8966 dd_dev_err(dd, 8967 "%s: set physical link state to quick LinkUp failed with return %d\n", 8968 __func__, ret); 8969 8970 set_host_lcb_access(dd); 8971 write_csr(dd, DC_LCB_ERR_EN, ~0ull); /* watch LCB errors */ 8972 8973 if (ret >= 0) 8974 ret = -EINVAL; 8975 return ret; 8976 } 8977 8978 return 0; /* success */ 8979 } 8980 8981 /* 8982 * Set the SerDes to internal loopback mode. 8983 * Returns 0 on success, -errno on error. 8984 */ 8985 static int set_serdes_loopback_mode(struct hfi1_devdata *dd) 8986 { 8987 int ret; 8988 8989 ret = set_physical_link_state(dd, PLS_INTERNAL_SERDES_LOOPBACK); 8990 if (ret == HCMD_SUCCESS) 8991 return 0; 8992 dd_dev_err(dd, 8993 "Set physical link state to SerDes Loopback failed with return %d\n", 8994 ret); 8995 if (ret >= 0) 8996 ret = -EINVAL; 8997 return ret; 8998 } 8999 9000 /* 9001 * Do all special steps to set up loopback. 9002 */ 9003 static int init_loopback(struct hfi1_devdata *dd) 9004 { 9005 dd_dev_info(dd, "Entering loopback mode\n"); 9006 9007 /* all loopbacks should disable self GUID check */ 9008 write_csr(dd, DC_DC8051_CFG_MODE, 9009 (read_csr(dd, DC_DC8051_CFG_MODE) | DISABLE_SELF_GUID_CHECK)); 9010 9011 /* 9012 * The simulator has only one loopback option - LCB. Switch 9013 * to that option, which includes quick link up. 9014 * 9015 * Accept all valid loopback values. 9016 */ 9017 if ((dd->icode == ICODE_FUNCTIONAL_SIMULATOR) && 9018 (loopback == LOOPBACK_SERDES || loopback == LOOPBACK_LCB || 9019 loopback == LOOPBACK_CABLE)) { 9020 loopback = LOOPBACK_LCB; 9021 quick_linkup = 1; 9022 return 0; 9023 } 9024 9025 /* handle serdes loopback */ 9026 if (loopback == LOOPBACK_SERDES) { 9027 /* internal serdes loopack needs quick linkup on RTL */ 9028 if (dd->icode == ICODE_RTL_SILICON) 9029 quick_linkup = 1; 9030 return set_serdes_loopback_mode(dd); 9031 } 9032 9033 /* LCB loopback - handled at poll time */ 9034 if (loopback == LOOPBACK_LCB) { 9035 quick_linkup = 1; /* LCB is always quick linkup */ 9036 9037 /* not supported in emulation due to emulation RTL changes */ 9038 if (dd->icode == ICODE_FPGA_EMULATION) { 9039 dd_dev_err(dd, 9040 "LCB loopback not supported in emulation\n"); 9041 return -EINVAL; 9042 } 9043 return 0; 9044 } 9045 9046 /* external cable loopback requires no extra steps */ 9047 if (loopback == LOOPBACK_CABLE) 9048 return 0; 9049 9050 dd_dev_err(dd, "Invalid loopback mode %d\n", loopback); 9051 return -EINVAL; 9052 } 9053 9054 /* 9055 * Translate from the OPA_LINK_WIDTH handed to us by the FM to bits 9056 * used in the Verify Capability link width attribute. 9057 */ 9058 static u16 opa_to_vc_link_widths(u16 opa_widths) 9059 { 9060 int i; 9061 u16 result = 0; 9062 9063 static const struct link_bits { 9064 u16 from; 9065 u16 to; 9066 } opa_link_xlate[] = { 9067 { OPA_LINK_WIDTH_1X, 1 << (1 - 1) }, 9068 { OPA_LINK_WIDTH_2X, 1 << (2 - 1) }, 9069 { OPA_LINK_WIDTH_3X, 1 << (3 - 1) }, 9070 { OPA_LINK_WIDTH_4X, 1 << (4 - 1) }, 9071 }; 9072 9073 for (i = 0; i < ARRAY_SIZE(opa_link_xlate); i++) { 9074 if (opa_widths & opa_link_xlate[i].from) 9075 result |= opa_link_xlate[i].to; 9076 } 9077 return result; 9078 } 9079 9080 /* 9081 * Set link attributes before moving to polling. 9082 */ 9083 static int set_local_link_attributes(struct hfi1_pportdata *ppd) 9084 { 9085 struct hfi1_devdata *dd = ppd->dd; 9086 u8 enable_lane_tx; 9087 u8 tx_polarity_inversion; 9088 u8 rx_polarity_inversion; 9089 int ret; 9090 9091 /* reset our fabric serdes to clear any lingering problems */ 9092 fabric_serdes_reset(dd); 9093 9094 /* set the local tx rate - need to read-modify-write */ 9095 ret = read_tx_settings(dd, &enable_lane_tx, &tx_polarity_inversion, 9096 &rx_polarity_inversion, &ppd->local_tx_rate); 9097 if (ret) 9098 goto set_local_link_attributes_fail; 9099 9100 if (dd->dc8051_ver < dc8051_ver(0, 20)) { 9101 /* set the tx rate to the fastest enabled */ 9102 if (ppd->link_speed_enabled & OPA_LINK_SPEED_25G) 9103 ppd->local_tx_rate = 1; 9104 else 9105 ppd->local_tx_rate = 0; 9106 } else { 9107 /* set the tx rate to all enabled */ 9108 ppd->local_tx_rate = 0; 9109 if (ppd->link_speed_enabled & OPA_LINK_SPEED_25G) 9110 ppd->local_tx_rate |= 2; 9111 if (ppd->link_speed_enabled & OPA_LINK_SPEED_12_5G) 9112 ppd->local_tx_rate |= 1; 9113 } 9114 9115 enable_lane_tx = 0xF; /* enable all four lanes */ 9116 ret = write_tx_settings(dd, enable_lane_tx, tx_polarity_inversion, 9117 rx_polarity_inversion, ppd->local_tx_rate); 9118 if (ret != HCMD_SUCCESS) 9119 goto set_local_link_attributes_fail; 9120 9121 /* 9122 * DC supports continuous updates. 9123 */ 9124 ret = write_vc_local_phy(dd, 9125 0 /* no power management */, 9126 1 /* continuous updates */); 9127 if (ret != HCMD_SUCCESS) 9128 goto set_local_link_attributes_fail; 9129 9130 /* z=1 in the next call: AU of 0 is not supported by the hardware */ 9131 ret = write_vc_local_fabric(dd, dd->vau, 1, dd->vcu, dd->vl15_init, 9132 ppd->port_crc_mode_enabled); 9133 if (ret != HCMD_SUCCESS) 9134 goto set_local_link_attributes_fail; 9135 9136 ret = write_vc_local_link_width(dd, 0, 0, 9137 opa_to_vc_link_widths( 9138 ppd->link_width_enabled)); 9139 if (ret != HCMD_SUCCESS) 9140 goto set_local_link_attributes_fail; 9141 9142 /* let peer know who we are */ 9143 ret = write_local_device_id(dd, dd->pcidev->device, dd->minrev); 9144 if (ret == HCMD_SUCCESS) 9145 return 0; 9146 9147 set_local_link_attributes_fail: 9148 dd_dev_err(dd, 9149 "Failed to set local link attributes, return 0x%x\n", 9150 ret); 9151 return ret; 9152 } 9153 9154 /* 9155 * Call this to start the link. 9156 * Do not do anything if the link is disabled. 9157 * Returns 0 if link is disabled, moved to polling, or the driver is not ready. 9158 */ 9159 int start_link(struct hfi1_pportdata *ppd) 9160 { 9161 /* 9162 * Tune the SerDes to a ballpark setting for optimal signal and bit 9163 * error rate. Needs to be done before starting the link. 9164 */ 9165 tune_serdes(ppd); 9166 9167 if (!ppd->link_enabled) { 9168 dd_dev_info(ppd->dd, 9169 "%s: stopping link start because link is disabled\n", 9170 __func__); 9171 return 0; 9172 } 9173 if (!ppd->driver_link_ready) { 9174 dd_dev_info(ppd->dd, 9175 "%s: stopping link start because driver is not ready\n", 9176 __func__); 9177 return 0; 9178 } 9179 9180 /* 9181 * FULL_MGMT_P_KEY is cleared from the pkey table, so that the 9182 * pkey table can be configured properly if the HFI unit is connected 9183 * to switch port with MgmtAllowed=NO 9184 */ 9185 clear_full_mgmt_pkey(ppd); 9186 9187 return set_link_state(ppd, HLS_DN_POLL); 9188 } 9189 9190 static void wait_for_qsfp_init(struct hfi1_pportdata *ppd) 9191 { 9192 struct hfi1_devdata *dd = ppd->dd; 9193 u64 mask; 9194 unsigned long timeout; 9195 9196 /* 9197 * Some QSFP cables have a quirk that asserts the IntN line as a side 9198 * effect of power up on plug-in. We ignore this false positive 9199 * interrupt until the module has finished powering up by waiting for 9200 * a minimum timeout of the module inrush initialization time of 9201 * 500 ms (SFF 8679 Table 5-6) to ensure the voltage rails in the 9202 * module have stabilized. 9203 */ 9204 msleep(500); 9205 9206 /* 9207 * Check for QSFP interrupt for t_init (SFF 8679 Table 8-1) 9208 */ 9209 timeout = jiffies + msecs_to_jiffies(2000); 9210 while (1) { 9211 mask = read_csr(dd, dd->hfi1_id ? 9212 ASIC_QSFP2_IN : ASIC_QSFP1_IN); 9213 if (!(mask & QSFP_HFI0_INT_N)) 9214 break; 9215 if (time_after(jiffies, timeout)) { 9216 dd_dev_info(dd, "%s: No IntN detected, reset complete\n", 9217 __func__); 9218 break; 9219 } 9220 udelay(2); 9221 } 9222 } 9223 9224 static void set_qsfp_int_n(struct hfi1_pportdata *ppd, u8 enable) 9225 { 9226 struct hfi1_devdata *dd = ppd->dd; 9227 u64 mask; 9228 9229 mask = read_csr(dd, dd->hfi1_id ? ASIC_QSFP2_MASK : ASIC_QSFP1_MASK); 9230 if (enable) { 9231 /* 9232 * Clear the status register to avoid an immediate interrupt 9233 * when we re-enable the IntN pin 9234 */ 9235 write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_CLEAR : ASIC_QSFP1_CLEAR, 9236 QSFP_HFI0_INT_N); 9237 mask |= (u64)QSFP_HFI0_INT_N; 9238 } else { 9239 mask &= ~(u64)QSFP_HFI0_INT_N; 9240 } 9241 write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_MASK : ASIC_QSFP1_MASK, mask); 9242 } 9243 9244 void reset_qsfp(struct hfi1_pportdata *ppd) 9245 { 9246 struct hfi1_devdata *dd = ppd->dd; 9247 u64 mask, qsfp_mask; 9248 9249 /* Disable INT_N from triggering QSFP interrupts */ 9250 set_qsfp_int_n(ppd, 0); 9251 9252 /* Reset the QSFP */ 9253 mask = (u64)QSFP_HFI0_RESET_N; 9254 9255 qsfp_mask = read_csr(dd, 9256 dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT); 9257 qsfp_mask &= ~mask; 9258 write_csr(dd, 9259 dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT, qsfp_mask); 9260 9261 udelay(10); 9262 9263 qsfp_mask |= mask; 9264 write_csr(dd, 9265 dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT, qsfp_mask); 9266 9267 wait_for_qsfp_init(ppd); 9268 9269 /* 9270 * Allow INT_N to trigger the QSFP interrupt to watch 9271 * for alarms and warnings 9272 */ 9273 set_qsfp_int_n(ppd, 1); 9274 } 9275 9276 static int handle_qsfp_error_conditions(struct hfi1_pportdata *ppd, 9277 u8 *qsfp_interrupt_status) 9278 { 9279 struct hfi1_devdata *dd = ppd->dd; 9280 9281 if ((qsfp_interrupt_status[0] & QSFP_HIGH_TEMP_ALARM) || 9282 (qsfp_interrupt_status[0] & QSFP_HIGH_TEMP_WARNING)) 9283 dd_dev_info(dd, "%s: QSFP cable on fire\n", 9284 __func__); 9285 9286 if ((qsfp_interrupt_status[0] & QSFP_LOW_TEMP_ALARM) || 9287 (qsfp_interrupt_status[0] & QSFP_LOW_TEMP_WARNING)) 9288 dd_dev_info(dd, "%s: QSFP cable temperature too low\n", 9289 __func__); 9290 9291 /* 9292 * The remaining alarms/warnings don't matter if the link is down. 9293 */ 9294 if (ppd->host_link_state & HLS_DOWN) 9295 return 0; 9296 9297 if ((qsfp_interrupt_status[1] & QSFP_HIGH_VCC_ALARM) || 9298 (qsfp_interrupt_status[1] & QSFP_HIGH_VCC_WARNING)) 9299 dd_dev_info(dd, "%s: QSFP supply voltage too high\n", 9300 __func__); 9301 9302 if ((qsfp_interrupt_status[1] & QSFP_LOW_VCC_ALARM) || 9303 (qsfp_interrupt_status[1] & QSFP_LOW_VCC_WARNING)) 9304 dd_dev_info(dd, "%s: QSFP supply voltage too low\n", 9305 __func__); 9306 9307 /* Byte 2 is vendor specific */ 9308 9309 if ((qsfp_interrupt_status[3] & QSFP_HIGH_POWER_ALARM) || 9310 (qsfp_interrupt_status[3] & QSFP_HIGH_POWER_WARNING)) 9311 dd_dev_info(dd, "%s: Cable RX channel 1/2 power too high\n", 9312 __func__); 9313 9314 if ((qsfp_interrupt_status[3] & QSFP_LOW_POWER_ALARM) || 9315 (qsfp_interrupt_status[3] & QSFP_LOW_POWER_WARNING)) 9316 dd_dev_info(dd, "%s: Cable RX channel 1/2 power too low\n", 9317 __func__); 9318 9319 if ((qsfp_interrupt_status[4] & QSFP_HIGH_POWER_ALARM) || 9320 (qsfp_interrupt_status[4] & QSFP_HIGH_POWER_WARNING)) 9321 dd_dev_info(dd, "%s: Cable RX channel 3/4 power too high\n", 9322 __func__); 9323 9324 if ((qsfp_interrupt_status[4] & QSFP_LOW_POWER_ALARM) || 9325 (qsfp_interrupt_status[4] & QSFP_LOW_POWER_WARNING)) 9326 dd_dev_info(dd, "%s: Cable RX channel 3/4 power too low\n", 9327 __func__); 9328 9329 if ((qsfp_interrupt_status[5] & QSFP_HIGH_BIAS_ALARM) || 9330 (qsfp_interrupt_status[5] & QSFP_HIGH_BIAS_WARNING)) 9331 dd_dev_info(dd, "%s: Cable TX channel 1/2 bias too high\n", 9332 __func__); 9333 9334 if ((qsfp_interrupt_status[5] & QSFP_LOW_BIAS_ALARM) || 9335 (qsfp_interrupt_status[5] & QSFP_LOW_BIAS_WARNING)) 9336 dd_dev_info(dd, "%s: Cable TX channel 1/2 bias too low\n", 9337 __func__); 9338 9339 if ((qsfp_interrupt_status[6] & QSFP_HIGH_BIAS_ALARM) || 9340 (qsfp_interrupt_status[6] & QSFP_HIGH_BIAS_WARNING)) 9341 dd_dev_info(dd, "%s: Cable TX channel 3/4 bias too high\n", 9342 __func__); 9343 9344 if ((qsfp_interrupt_status[6] & QSFP_LOW_BIAS_ALARM) || 9345 (qsfp_interrupt_status[6] & QSFP_LOW_BIAS_WARNING)) 9346 dd_dev_info(dd, "%s: Cable TX channel 3/4 bias too low\n", 9347 __func__); 9348 9349 if ((qsfp_interrupt_status[7] & QSFP_HIGH_POWER_ALARM) || 9350 (qsfp_interrupt_status[7] & QSFP_HIGH_POWER_WARNING)) 9351 dd_dev_info(dd, "%s: Cable TX channel 1/2 power too high\n", 9352 __func__); 9353 9354 if ((qsfp_interrupt_status[7] & QSFP_LOW_POWER_ALARM) || 9355 (qsfp_interrupt_status[7] & QSFP_LOW_POWER_WARNING)) 9356 dd_dev_info(dd, "%s: Cable TX channel 1/2 power too low\n", 9357 __func__); 9358 9359 if ((qsfp_interrupt_status[8] & QSFP_HIGH_POWER_ALARM) || 9360 (qsfp_interrupt_status[8] & QSFP_HIGH_POWER_WARNING)) 9361 dd_dev_info(dd, "%s: Cable TX channel 3/4 power too high\n", 9362 __func__); 9363 9364 if ((qsfp_interrupt_status[8] & QSFP_LOW_POWER_ALARM) || 9365 (qsfp_interrupt_status[8] & QSFP_LOW_POWER_WARNING)) 9366 dd_dev_info(dd, "%s: Cable TX channel 3/4 power too low\n", 9367 __func__); 9368 9369 /* Bytes 9-10 and 11-12 are reserved */ 9370 /* Bytes 13-15 are vendor specific */ 9371 9372 return 0; 9373 } 9374 9375 /* This routine will only be scheduled if the QSFP module present is asserted */ 9376 void qsfp_event(struct work_struct *work) 9377 { 9378 struct qsfp_data *qd; 9379 struct hfi1_pportdata *ppd; 9380 struct hfi1_devdata *dd; 9381 9382 qd = container_of(work, struct qsfp_data, qsfp_work); 9383 ppd = qd->ppd; 9384 dd = ppd->dd; 9385 9386 /* Sanity check */ 9387 if (!qsfp_mod_present(ppd)) 9388 return; 9389 9390 /* 9391 * Turn DC back on after cable has been re-inserted. Up until 9392 * now, the DC has been in reset to save power. 9393 */ 9394 dc_start(dd); 9395 9396 if (qd->cache_refresh_required) { 9397 set_qsfp_int_n(ppd, 0); 9398 9399 wait_for_qsfp_init(ppd); 9400 9401 /* 9402 * Allow INT_N to trigger the QSFP interrupt to watch 9403 * for alarms and warnings 9404 */ 9405 set_qsfp_int_n(ppd, 1); 9406 9407 start_link(ppd); 9408 } 9409 9410 if (qd->check_interrupt_flags) { 9411 u8 qsfp_interrupt_status[16] = {0,}; 9412 9413 if (one_qsfp_read(ppd, dd->hfi1_id, 6, 9414 &qsfp_interrupt_status[0], 16) != 16) { 9415 dd_dev_info(dd, 9416 "%s: Failed to read status of QSFP module\n", 9417 __func__); 9418 } else { 9419 unsigned long flags; 9420 9421 handle_qsfp_error_conditions( 9422 ppd, qsfp_interrupt_status); 9423 spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags); 9424 ppd->qsfp_info.check_interrupt_flags = 0; 9425 spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock, 9426 flags); 9427 } 9428 } 9429 } 9430 9431 static void init_qsfp_int(struct hfi1_devdata *dd) 9432 { 9433 struct hfi1_pportdata *ppd = dd->pport; 9434 u64 qsfp_mask, cce_int_mask; 9435 const int qsfp1_int_smask = QSFP1_INT % 64; 9436 const int qsfp2_int_smask = QSFP2_INT % 64; 9437 9438 /* 9439 * disable QSFP1 interrupts for HFI1, QSFP2 interrupts for HFI0 9440 * Qsfp1Int and Qsfp2Int are adjacent bits in the same CSR, 9441 * therefore just one of QSFP1_INT/QSFP2_INT can be used to find 9442 * the index of the appropriate CSR in the CCEIntMask CSR array 9443 */ 9444 cce_int_mask = read_csr(dd, CCE_INT_MASK + 9445 (8 * (QSFP1_INT / 64))); 9446 if (dd->hfi1_id) { 9447 cce_int_mask &= ~((u64)1 << qsfp1_int_smask); 9448 write_csr(dd, CCE_INT_MASK + (8 * (QSFP1_INT / 64)), 9449 cce_int_mask); 9450 } else { 9451 cce_int_mask &= ~((u64)1 << qsfp2_int_smask); 9452 write_csr(dd, CCE_INT_MASK + (8 * (QSFP2_INT / 64)), 9453 cce_int_mask); 9454 } 9455 9456 qsfp_mask = (u64)(QSFP_HFI0_INT_N | QSFP_HFI0_MODPRST_N); 9457 /* Clear current status to avoid spurious interrupts */ 9458 write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_CLEAR : ASIC_QSFP1_CLEAR, 9459 qsfp_mask); 9460 write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_MASK : ASIC_QSFP1_MASK, 9461 qsfp_mask); 9462 9463 set_qsfp_int_n(ppd, 0); 9464 9465 /* Handle active low nature of INT_N and MODPRST_N pins */ 9466 if (qsfp_mod_present(ppd)) 9467 qsfp_mask &= ~(u64)QSFP_HFI0_MODPRST_N; 9468 write_csr(dd, 9469 dd->hfi1_id ? ASIC_QSFP2_INVERT : ASIC_QSFP1_INVERT, 9470 qsfp_mask); 9471 } 9472 9473 /* 9474 * Do a one-time initialize of the LCB block. 9475 */ 9476 static void init_lcb(struct hfi1_devdata *dd) 9477 { 9478 /* simulator does not correctly handle LCB cclk loopback, skip */ 9479 if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR) 9480 return; 9481 9482 /* the DC has been reset earlier in the driver load */ 9483 9484 /* set LCB for cclk loopback on the port */ 9485 write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0x01); 9486 write_csr(dd, DC_LCB_CFG_LANE_WIDTH, 0x00); 9487 write_csr(dd, DC_LCB_CFG_REINIT_AS_SLAVE, 0x00); 9488 write_csr(dd, DC_LCB_CFG_CNT_FOR_SKIP_STALL, 0x110); 9489 write_csr(dd, DC_LCB_CFG_CLK_CNTR, 0x08); 9490 write_csr(dd, DC_LCB_CFG_LOOPBACK, 0x02); 9491 write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0x00); 9492 } 9493 9494 /* 9495 * Perform a test read on the QSFP. Return 0 on success, -ERRNO 9496 * on error. 9497 */ 9498 static int test_qsfp_read(struct hfi1_pportdata *ppd) 9499 { 9500 int ret; 9501 u8 status; 9502 9503 /* report success if not a QSFP */ 9504 if (ppd->port_type != PORT_TYPE_QSFP) 9505 return 0; 9506 9507 /* read byte 2, the status byte */ 9508 ret = one_qsfp_read(ppd, ppd->dd->hfi1_id, 2, &status, 1); 9509 if (ret < 0) 9510 return ret; 9511 if (ret != 1) 9512 return -EIO; 9513 9514 return 0; /* success */ 9515 } 9516 9517 /* 9518 * Values for QSFP retry. 9519 * 9520 * Give up after 10s (20 x 500ms). The overall timeout was empirically 9521 * arrived at from experience on a large cluster. 9522 */ 9523 #define MAX_QSFP_RETRIES 20 9524 #define QSFP_RETRY_WAIT 500 /* msec */ 9525 9526 /* 9527 * Try a QSFP read. If it fails, schedule a retry for later. 9528 * Called on first link activation after driver load. 9529 */ 9530 static void try_start_link(struct hfi1_pportdata *ppd) 9531 { 9532 if (test_qsfp_read(ppd)) { 9533 /* read failed */ 9534 if (ppd->qsfp_retry_count >= MAX_QSFP_RETRIES) { 9535 dd_dev_err(ppd->dd, "QSFP not responding, giving up\n"); 9536 return; 9537 } 9538 dd_dev_info(ppd->dd, 9539 "QSFP not responding, waiting and retrying %d\n", 9540 (int)ppd->qsfp_retry_count); 9541 ppd->qsfp_retry_count++; 9542 queue_delayed_work(ppd->hfi1_wq, &ppd->start_link_work, 9543 msecs_to_jiffies(QSFP_RETRY_WAIT)); 9544 return; 9545 } 9546 ppd->qsfp_retry_count = 0; 9547 9548 start_link(ppd); 9549 } 9550 9551 /* 9552 * Workqueue function to start the link after a delay. 9553 */ 9554 void handle_start_link(struct work_struct *work) 9555 { 9556 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata, 9557 start_link_work.work); 9558 try_start_link(ppd); 9559 } 9560 9561 int bringup_serdes(struct hfi1_pportdata *ppd) 9562 { 9563 struct hfi1_devdata *dd = ppd->dd; 9564 u64 guid; 9565 int ret; 9566 9567 if (HFI1_CAP_IS_KSET(EXTENDED_PSN)) 9568 add_rcvctrl(dd, RCV_CTRL_RCV_EXTENDED_PSN_ENABLE_SMASK); 9569 9570 guid = ppd->guid; 9571 if (!guid) { 9572 if (dd->base_guid) 9573 guid = dd->base_guid + ppd->port - 1; 9574 ppd->guid = guid; 9575 } 9576 9577 /* Set linkinit_reason on power up per OPA spec */ 9578 ppd->linkinit_reason = OPA_LINKINIT_REASON_LINKUP; 9579 9580 /* one-time init of the LCB */ 9581 init_lcb(dd); 9582 9583 if (loopback) { 9584 ret = init_loopback(dd); 9585 if (ret < 0) 9586 return ret; 9587 } 9588 9589 get_port_type(ppd); 9590 if (ppd->port_type == PORT_TYPE_QSFP) { 9591 set_qsfp_int_n(ppd, 0); 9592 wait_for_qsfp_init(ppd); 9593 set_qsfp_int_n(ppd, 1); 9594 } 9595 9596 try_start_link(ppd); 9597 return 0; 9598 } 9599 9600 void hfi1_quiet_serdes(struct hfi1_pportdata *ppd) 9601 { 9602 struct hfi1_devdata *dd = ppd->dd; 9603 9604 /* 9605 * Shut down the link and keep it down. First turn off that the 9606 * driver wants to allow the link to be up (driver_link_ready). 9607 * Then make sure the link is not automatically restarted 9608 * (link_enabled). Cancel any pending restart. And finally 9609 * go offline. 9610 */ 9611 ppd->driver_link_ready = 0; 9612 ppd->link_enabled = 0; 9613 9614 ppd->qsfp_retry_count = MAX_QSFP_RETRIES; /* prevent more retries */ 9615 flush_delayed_work(&ppd->start_link_work); 9616 cancel_delayed_work_sync(&ppd->start_link_work); 9617 9618 ppd->offline_disabled_reason = 9619 HFI1_ODR_MASK(OPA_LINKDOWN_REASON_SMA_DISABLED); 9620 set_link_down_reason(ppd, OPA_LINKDOWN_REASON_SMA_DISABLED, 0, 9621 OPA_LINKDOWN_REASON_SMA_DISABLED); 9622 set_link_state(ppd, HLS_DN_OFFLINE); 9623 9624 /* disable the port */ 9625 clear_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK); 9626 } 9627 9628 static inline int init_cpu_counters(struct hfi1_devdata *dd) 9629 { 9630 struct hfi1_pportdata *ppd; 9631 int i; 9632 9633 ppd = (struct hfi1_pportdata *)(dd + 1); 9634 for (i = 0; i < dd->num_pports; i++, ppd++) { 9635 ppd->ibport_data.rvp.rc_acks = NULL; 9636 ppd->ibport_data.rvp.rc_qacks = NULL; 9637 ppd->ibport_data.rvp.rc_acks = alloc_percpu(u64); 9638 ppd->ibport_data.rvp.rc_qacks = alloc_percpu(u64); 9639 ppd->ibport_data.rvp.rc_delayed_comp = alloc_percpu(u64); 9640 if (!ppd->ibport_data.rvp.rc_acks || 9641 !ppd->ibport_data.rvp.rc_delayed_comp || 9642 !ppd->ibport_data.rvp.rc_qacks) 9643 return -ENOMEM; 9644 } 9645 9646 return 0; 9647 } 9648 9649 static const char * const pt_names[] = { 9650 "expected", 9651 "eager", 9652 "invalid" 9653 }; 9654 9655 static const char *pt_name(u32 type) 9656 { 9657 return type >= ARRAY_SIZE(pt_names) ? "unknown" : pt_names[type]; 9658 } 9659 9660 /* 9661 * index is the index into the receive array 9662 */ 9663 void hfi1_put_tid(struct hfi1_devdata *dd, u32 index, 9664 u32 type, unsigned long pa, u16 order) 9665 { 9666 u64 reg; 9667 void __iomem *base = (dd->rcvarray_wc ? dd->rcvarray_wc : 9668 (dd->kregbase + RCV_ARRAY)); 9669 9670 if (!(dd->flags & HFI1_PRESENT)) 9671 goto done; 9672 9673 if (type == PT_INVALID) { 9674 pa = 0; 9675 } else if (type > PT_INVALID) { 9676 dd_dev_err(dd, 9677 "unexpected receive array type %u for index %u, not handled\n", 9678 type, index); 9679 goto done; 9680 } 9681 9682 hfi1_cdbg(TID, "type %s, index 0x%x, pa 0x%lx, bsize 0x%lx", 9683 pt_name(type), index, pa, (unsigned long)order); 9684 9685 #define RT_ADDR_SHIFT 12 /* 4KB kernel address boundary */ 9686 reg = RCV_ARRAY_RT_WRITE_ENABLE_SMASK 9687 | (u64)order << RCV_ARRAY_RT_BUF_SIZE_SHIFT 9688 | ((pa >> RT_ADDR_SHIFT) & RCV_ARRAY_RT_ADDR_MASK) 9689 << RCV_ARRAY_RT_ADDR_SHIFT; 9690 writeq(reg, base + (index * 8)); 9691 9692 if (type == PT_EAGER) 9693 /* 9694 * Eager entries are written one-by-one so we have to push them 9695 * after we write the entry. 9696 */ 9697 flush_wc(); 9698 done: 9699 return; 9700 } 9701 9702 void hfi1_clear_tids(struct hfi1_ctxtdata *rcd) 9703 { 9704 struct hfi1_devdata *dd = rcd->dd; 9705 u32 i; 9706 9707 /* this could be optimized */ 9708 for (i = rcd->eager_base; i < rcd->eager_base + 9709 rcd->egrbufs.alloced; i++) 9710 hfi1_put_tid(dd, i, PT_INVALID, 0, 0); 9711 9712 for (i = rcd->expected_base; 9713 i < rcd->expected_base + rcd->expected_count; i++) 9714 hfi1_put_tid(dd, i, PT_INVALID, 0, 0); 9715 } 9716 9717 struct ib_header *hfi1_get_msgheader( 9718 struct hfi1_devdata *dd, __le32 *rhf_addr) 9719 { 9720 u32 offset = rhf_hdrq_offset(rhf_to_cpu(rhf_addr)); 9721 9722 return (struct ib_header *) 9723 (rhf_addr - dd->rhf_offset + offset); 9724 } 9725 9726 static const char * const ib_cfg_name_strings[] = { 9727 "HFI1_IB_CFG_LIDLMC", 9728 "HFI1_IB_CFG_LWID_DG_ENB", 9729 "HFI1_IB_CFG_LWID_ENB", 9730 "HFI1_IB_CFG_LWID", 9731 "HFI1_IB_CFG_SPD_ENB", 9732 "HFI1_IB_CFG_SPD", 9733 "HFI1_IB_CFG_RXPOL_ENB", 9734 "HFI1_IB_CFG_LREV_ENB", 9735 "HFI1_IB_CFG_LINKLATENCY", 9736 "HFI1_IB_CFG_HRTBT", 9737 "HFI1_IB_CFG_OP_VLS", 9738 "HFI1_IB_CFG_VL_HIGH_CAP", 9739 "HFI1_IB_CFG_VL_LOW_CAP", 9740 "HFI1_IB_CFG_OVERRUN_THRESH", 9741 "HFI1_IB_CFG_PHYERR_THRESH", 9742 "HFI1_IB_CFG_LINKDEFAULT", 9743 "HFI1_IB_CFG_PKEYS", 9744 "HFI1_IB_CFG_MTU", 9745 "HFI1_IB_CFG_LSTATE", 9746 "HFI1_IB_CFG_VL_HIGH_LIMIT", 9747 "HFI1_IB_CFG_PMA_TICKS", 9748 "HFI1_IB_CFG_PORT" 9749 }; 9750 9751 static const char *ib_cfg_name(int which) 9752 { 9753 if (which < 0 || which >= ARRAY_SIZE(ib_cfg_name_strings)) 9754 return "invalid"; 9755 return ib_cfg_name_strings[which]; 9756 } 9757 9758 int hfi1_get_ib_cfg(struct hfi1_pportdata *ppd, int which) 9759 { 9760 struct hfi1_devdata *dd = ppd->dd; 9761 int val = 0; 9762 9763 switch (which) { 9764 case HFI1_IB_CFG_LWID_ENB: /* allowed Link-width */ 9765 val = ppd->link_width_enabled; 9766 break; 9767 case HFI1_IB_CFG_LWID: /* currently active Link-width */ 9768 val = ppd->link_width_active; 9769 break; 9770 case HFI1_IB_CFG_SPD_ENB: /* allowed Link speeds */ 9771 val = ppd->link_speed_enabled; 9772 break; 9773 case HFI1_IB_CFG_SPD: /* current Link speed */ 9774 val = ppd->link_speed_active; 9775 break; 9776 9777 case HFI1_IB_CFG_RXPOL_ENB: /* Auto-RX-polarity enable */ 9778 case HFI1_IB_CFG_LREV_ENB: /* Auto-Lane-reversal enable */ 9779 case HFI1_IB_CFG_LINKLATENCY: 9780 goto unimplemented; 9781 9782 case HFI1_IB_CFG_OP_VLS: 9783 val = ppd->vls_operational; 9784 break; 9785 case HFI1_IB_CFG_VL_HIGH_CAP: /* VL arb high priority table size */ 9786 val = VL_ARB_HIGH_PRIO_TABLE_SIZE; 9787 break; 9788 case HFI1_IB_CFG_VL_LOW_CAP: /* VL arb low priority table size */ 9789 val = VL_ARB_LOW_PRIO_TABLE_SIZE; 9790 break; 9791 case HFI1_IB_CFG_OVERRUN_THRESH: /* IB overrun threshold */ 9792 val = ppd->overrun_threshold; 9793 break; 9794 case HFI1_IB_CFG_PHYERR_THRESH: /* IB PHY error threshold */ 9795 val = ppd->phy_error_threshold; 9796 break; 9797 case HFI1_IB_CFG_LINKDEFAULT: /* IB link default (sleep/poll) */ 9798 val = dd->link_default; 9799 break; 9800 9801 case HFI1_IB_CFG_HRTBT: /* Heartbeat off/enable/auto */ 9802 case HFI1_IB_CFG_PMA_TICKS: 9803 default: 9804 unimplemented: 9805 if (HFI1_CAP_IS_KSET(PRINT_UNIMPL)) 9806 dd_dev_info( 9807 dd, 9808 "%s: which %s: not implemented\n", 9809 __func__, 9810 ib_cfg_name(which)); 9811 break; 9812 } 9813 9814 return val; 9815 } 9816 9817 /* 9818 * The largest MAD packet size. 9819 */ 9820 #define MAX_MAD_PACKET 2048 9821 9822 /* 9823 * Return the maximum header bytes that can go on the _wire_ 9824 * for this device. This count includes the ICRC which is 9825 * not part of the packet held in memory but it is appended 9826 * by the HW. 9827 * This is dependent on the device's receive header entry size. 9828 * HFI allows this to be set per-receive context, but the 9829 * driver presently enforces a global value. 9830 */ 9831 u32 lrh_max_header_bytes(struct hfi1_devdata *dd) 9832 { 9833 /* 9834 * The maximum non-payload (MTU) bytes in LRH.PktLen are 9835 * the Receive Header Entry Size minus the PBC (or RHF) size 9836 * plus one DW for the ICRC appended by HW. 9837 * 9838 * dd->rcd[0].rcvhdrqentsize is in DW. 9839 * We use rcd[0] as all context will have the same value. Also, 9840 * the first kernel context would have been allocated by now so 9841 * we are guaranteed a valid value. 9842 */ 9843 return (dd->rcd[0]->rcvhdrqentsize - 2/*PBC/RHF*/ + 1/*ICRC*/) << 2; 9844 } 9845 9846 /* 9847 * Set Send Length 9848 * @ppd - per port data 9849 * 9850 * Set the MTU by limiting how many DWs may be sent. The SendLenCheck* 9851 * registers compare against LRH.PktLen, so use the max bytes included 9852 * in the LRH. 9853 * 9854 * This routine changes all VL values except VL15, which it maintains at 9855 * the same value. 9856 */ 9857 static void set_send_length(struct hfi1_pportdata *ppd) 9858 { 9859 struct hfi1_devdata *dd = ppd->dd; 9860 u32 max_hb = lrh_max_header_bytes(dd), dcmtu; 9861 u32 maxvlmtu = dd->vld[15].mtu; 9862 u64 len1 = 0, len2 = (((dd->vld[15].mtu + max_hb) >> 2) 9863 & SEND_LEN_CHECK1_LEN_VL15_MASK) << 9864 SEND_LEN_CHECK1_LEN_VL15_SHIFT; 9865 int i, j; 9866 u32 thres; 9867 9868 for (i = 0; i < ppd->vls_supported; i++) { 9869 if (dd->vld[i].mtu > maxvlmtu) 9870 maxvlmtu = dd->vld[i].mtu; 9871 if (i <= 3) 9872 len1 |= (((dd->vld[i].mtu + max_hb) >> 2) 9873 & SEND_LEN_CHECK0_LEN_VL0_MASK) << 9874 ((i % 4) * SEND_LEN_CHECK0_LEN_VL1_SHIFT); 9875 else 9876 len2 |= (((dd->vld[i].mtu + max_hb) >> 2) 9877 & SEND_LEN_CHECK1_LEN_VL4_MASK) << 9878 ((i % 4) * SEND_LEN_CHECK1_LEN_VL5_SHIFT); 9879 } 9880 write_csr(dd, SEND_LEN_CHECK0, len1); 9881 write_csr(dd, SEND_LEN_CHECK1, len2); 9882 /* adjust kernel credit return thresholds based on new MTUs */ 9883 /* all kernel receive contexts have the same hdrqentsize */ 9884 for (i = 0; i < ppd->vls_supported; i++) { 9885 thres = min(sc_percent_to_threshold(dd->vld[i].sc, 50), 9886 sc_mtu_to_threshold(dd->vld[i].sc, 9887 dd->vld[i].mtu, 9888 dd->rcd[0]->rcvhdrqentsize)); 9889 for (j = 0; j < INIT_SC_PER_VL; j++) 9890 sc_set_cr_threshold( 9891 pio_select_send_context_vl(dd, j, i), 9892 thres); 9893 } 9894 thres = min(sc_percent_to_threshold(dd->vld[15].sc, 50), 9895 sc_mtu_to_threshold(dd->vld[15].sc, 9896 dd->vld[15].mtu, 9897 dd->rcd[0]->rcvhdrqentsize)); 9898 sc_set_cr_threshold(dd->vld[15].sc, thres); 9899 9900 /* Adjust maximum MTU for the port in DC */ 9901 dcmtu = maxvlmtu == 10240 ? DCC_CFG_PORT_MTU_CAP_10240 : 9902 (ilog2(maxvlmtu >> 8) + 1); 9903 len1 = read_csr(ppd->dd, DCC_CFG_PORT_CONFIG); 9904 len1 &= ~DCC_CFG_PORT_CONFIG_MTU_CAP_SMASK; 9905 len1 |= ((u64)dcmtu & DCC_CFG_PORT_CONFIG_MTU_CAP_MASK) << 9906 DCC_CFG_PORT_CONFIG_MTU_CAP_SHIFT; 9907 write_csr(ppd->dd, DCC_CFG_PORT_CONFIG, len1); 9908 } 9909 9910 static void set_lidlmc(struct hfi1_pportdata *ppd) 9911 { 9912 int i; 9913 u64 sreg = 0; 9914 struct hfi1_devdata *dd = ppd->dd; 9915 u32 mask = ~((1U << ppd->lmc) - 1); 9916 u64 c1 = read_csr(ppd->dd, DCC_CFG_PORT_CONFIG1); 9917 9918 if (dd->hfi1_snoop.mode_flag) 9919 dd_dev_info(dd, "Set lid/lmc while snooping"); 9920 9921 c1 &= ~(DCC_CFG_PORT_CONFIG1_TARGET_DLID_SMASK 9922 | DCC_CFG_PORT_CONFIG1_DLID_MASK_SMASK); 9923 c1 |= ((ppd->lid & DCC_CFG_PORT_CONFIG1_TARGET_DLID_MASK) 9924 << DCC_CFG_PORT_CONFIG1_TARGET_DLID_SHIFT) | 9925 ((mask & DCC_CFG_PORT_CONFIG1_DLID_MASK_MASK) 9926 << DCC_CFG_PORT_CONFIG1_DLID_MASK_SHIFT); 9927 write_csr(ppd->dd, DCC_CFG_PORT_CONFIG1, c1); 9928 9929 /* 9930 * Iterate over all the send contexts and set their SLID check 9931 */ 9932 sreg = ((mask & SEND_CTXT_CHECK_SLID_MASK_MASK) << 9933 SEND_CTXT_CHECK_SLID_MASK_SHIFT) | 9934 (((ppd->lid & mask) & SEND_CTXT_CHECK_SLID_VALUE_MASK) << 9935 SEND_CTXT_CHECK_SLID_VALUE_SHIFT); 9936 9937 for (i = 0; i < dd->chip_send_contexts; i++) { 9938 hfi1_cdbg(LINKVERB, "SendContext[%d].SLID_CHECK = 0x%x", 9939 i, (u32)sreg); 9940 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_SLID, sreg); 9941 } 9942 9943 /* Now we have to do the same thing for the sdma engines */ 9944 sdma_update_lmc(dd, mask, ppd->lid); 9945 } 9946 9947 static int wait_phy_linkstate(struct hfi1_devdata *dd, u32 state, u32 msecs) 9948 { 9949 unsigned long timeout; 9950 u32 curr_state; 9951 9952 timeout = jiffies + msecs_to_jiffies(msecs); 9953 while (1) { 9954 curr_state = read_physical_state(dd); 9955 if (curr_state == state) 9956 break; 9957 if (time_after(jiffies, timeout)) { 9958 dd_dev_err(dd, 9959 "timeout waiting for phy link state 0x%x, current state is 0x%x\n", 9960 state, curr_state); 9961 return -ETIMEDOUT; 9962 } 9963 usleep_range(1950, 2050); /* sleep 2ms-ish */ 9964 } 9965 9966 return 0; 9967 } 9968 9969 static const char *state_completed_string(u32 completed) 9970 { 9971 static const char * const state_completed[] = { 9972 "EstablishComm", 9973 "OptimizeEQ", 9974 "VerifyCap" 9975 }; 9976 9977 if (completed < ARRAY_SIZE(state_completed)) 9978 return state_completed[completed]; 9979 9980 return "unknown"; 9981 } 9982 9983 static const char all_lanes_dead_timeout_expired[] = 9984 "All lanes were inactive – was the interconnect media removed?"; 9985 static const char tx_out_of_policy[] = 9986 "Passing lanes on local port do not meet the local link width policy"; 9987 static const char no_state_complete[] = 9988 "State timeout occurred before link partner completed the state"; 9989 static const char * const state_complete_reasons[] = { 9990 [0x00] = "Reason unknown", 9991 [0x01] = "Link was halted by driver, refer to LinkDownReason", 9992 [0x02] = "Link partner reported failure", 9993 [0x10] = "Unable to achieve frame sync on any lane", 9994 [0x11] = 9995 "Unable to find a common bit rate with the link partner", 9996 [0x12] = 9997 "Unable to achieve frame sync on sufficient lanes to meet the local link width policy", 9998 [0x13] = 9999 "Unable to identify preset equalization on sufficient lanes to meet the local link width policy", 10000 [0x14] = no_state_complete, 10001 [0x15] = 10002 "State timeout occurred before link partner identified equalization presets", 10003 [0x16] = 10004 "Link partner completed the EstablishComm state, but the passing lanes do not meet the local link width policy", 10005 [0x17] = tx_out_of_policy, 10006 [0x20] = all_lanes_dead_timeout_expired, 10007 [0x21] = 10008 "Unable to achieve acceptable BER on sufficient lanes to meet the local link width policy", 10009 [0x22] = no_state_complete, 10010 [0x23] = 10011 "Link partner completed the OptimizeEq state, but the passing lanes do not meet the local link width policy", 10012 [0x24] = tx_out_of_policy, 10013 [0x30] = all_lanes_dead_timeout_expired, 10014 [0x31] = 10015 "State timeout occurred waiting for host to process received frames", 10016 [0x32] = no_state_complete, 10017 [0x33] = 10018 "Link partner completed the VerifyCap state, but the passing lanes do not meet the local link width policy", 10019 [0x34] = tx_out_of_policy, 10020 }; 10021 10022 static const char *state_complete_reason_code_string(struct hfi1_pportdata *ppd, 10023 u32 code) 10024 { 10025 const char *str = NULL; 10026 10027 if (code < ARRAY_SIZE(state_complete_reasons)) 10028 str = state_complete_reasons[code]; 10029 10030 if (str) 10031 return str; 10032 return "Reserved"; 10033 } 10034 10035 /* describe the given last state complete frame */ 10036 static void decode_state_complete(struct hfi1_pportdata *ppd, u32 frame, 10037 const char *prefix) 10038 { 10039 struct hfi1_devdata *dd = ppd->dd; 10040 u32 success; 10041 u32 state; 10042 u32 reason; 10043 u32 lanes; 10044 10045 /* 10046 * Decode frame: 10047 * [ 0: 0] - success 10048 * [ 3: 1] - state 10049 * [ 7: 4] - next state timeout 10050 * [15: 8] - reason code 10051 * [31:16] - lanes 10052 */ 10053 success = frame & 0x1; 10054 state = (frame >> 1) & 0x7; 10055 reason = (frame >> 8) & 0xff; 10056 lanes = (frame >> 16) & 0xffff; 10057 10058 dd_dev_err(dd, "Last %s LNI state complete frame 0x%08x:\n", 10059 prefix, frame); 10060 dd_dev_err(dd, " last reported state state: %s (0x%x)\n", 10061 state_completed_string(state), state); 10062 dd_dev_err(dd, " state successfully completed: %s\n", 10063 success ? "yes" : "no"); 10064 dd_dev_err(dd, " fail reason 0x%x: %s\n", 10065 reason, state_complete_reason_code_string(ppd, reason)); 10066 dd_dev_err(dd, " passing lane mask: 0x%x", lanes); 10067 } 10068 10069 /* 10070 * Read the last state complete frames and explain them. This routine 10071 * expects to be called if the link went down during link negotiation 10072 * and initialization (LNI). That is, anywhere between polling and link up. 10073 */ 10074 static void check_lni_states(struct hfi1_pportdata *ppd) 10075 { 10076 u32 last_local_state; 10077 u32 last_remote_state; 10078 10079 read_last_local_state(ppd->dd, &last_local_state); 10080 read_last_remote_state(ppd->dd, &last_remote_state); 10081 10082 /* 10083 * Don't report anything if there is nothing to report. A value of 10084 * 0 means the link was taken down while polling and there was no 10085 * training in-process. 10086 */ 10087 if (last_local_state == 0 && last_remote_state == 0) 10088 return; 10089 10090 decode_state_complete(ppd, last_local_state, "transmitted"); 10091 decode_state_complete(ppd, last_remote_state, "received"); 10092 } 10093 10094 /* 10095 * Helper for set_link_state(). Do not call except from that routine. 10096 * Expects ppd->hls_mutex to be held. 10097 * 10098 * @rem_reason value to be sent to the neighbor 10099 * 10100 * LinkDownReasons only set if transition succeeds. 10101 */ 10102 static int goto_offline(struct hfi1_pportdata *ppd, u8 rem_reason) 10103 { 10104 struct hfi1_devdata *dd = ppd->dd; 10105 u32 pstate, previous_state; 10106 int ret; 10107 int do_transition; 10108 int do_wait; 10109 10110 previous_state = ppd->host_link_state; 10111 ppd->host_link_state = HLS_GOING_OFFLINE; 10112 pstate = read_physical_state(dd); 10113 if (pstate == PLS_OFFLINE) { 10114 do_transition = 0; /* in right state */ 10115 do_wait = 0; /* ...no need to wait */ 10116 } else if ((pstate & 0xff) == PLS_OFFLINE) { 10117 do_transition = 0; /* in an offline transient state */ 10118 do_wait = 1; /* ...wait for it to settle */ 10119 } else { 10120 do_transition = 1; /* need to move to offline */ 10121 do_wait = 1; /* ...will need to wait */ 10122 } 10123 10124 if (do_transition) { 10125 ret = set_physical_link_state(dd, 10126 (rem_reason << 8) | PLS_OFFLINE); 10127 10128 if (ret != HCMD_SUCCESS) { 10129 dd_dev_err(dd, 10130 "Failed to transition to Offline link state, return %d\n", 10131 ret); 10132 return -EINVAL; 10133 } 10134 if (ppd->offline_disabled_reason == 10135 HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE)) 10136 ppd->offline_disabled_reason = 10137 HFI1_ODR_MASK(OPA_LINKDOWN_REASON_TRANSIENT); 10138 } 10139 10140 if (do_wait) { 10141 /* it can take a while for the link to go down */ 10142 ret = wait_phy_linkstate(dd, PLS_OFFLINE, 10000); 10143 if (ret < 0) 10144 return ret; 10145 } 10146 10147 /* make sure the logical state is also down */ 10148 wait_logical_linkstate(ppd, IB_PORT_DOWN, 1000); 10149 10150 /* 10151 * Now in charge of LCB - must be after the physical state is 10152 * offline.quiet and before host_link_state is changed. 10153 */ 10154 set_host_lcb_access(dd); 10155 write_csr(dd, DC_LCB_ERR_EN, ~0ull); /* watch LCB errors */ 10156 ppd->host_link_state = HLS_LINK_COOLDOWN; /* LCB access allowed */ 10157 10158 if (ppd->port_type == PORT_TYPE_QSFP && 10159 ppd->qsfp_info.limiting_active && 10160 qsfp_mod_present(ppd)) { 10161 int ret; 10162 10163 ret = acquire_chip_resource(dd, qsfp_resource(dd), QSFP_WAIT); 10164 if (ret == 0) { 10165 set_qsfp_tx(ppd, 0); 10166 release_chip_resource(dd, qsfp_resource(dd)); 10167 } else { 10168 /* not fatal, but should warn */ 10169 dd_dev_err(dd, 10170 "Unable to acquire lock to turn off QSFP TX\n"); 10171 } 10172 } 10173 10174 /* 10175 * The LNI has a mandatory wait time after the physical state 10176 * moves to Offline.Quiet. The wait time may be different 10177 * depending on how the link went down. The 8051 firmware 10178 * will observe the needed wait time and only move to ready 10179 * when that is completed. The largest of the quiet timeouts 10180 * is 6s, so wait that long and then at least 0.5s more for 10181 * other transitions, and another 0.5s for a buffer. 10182 */ 10183 ret = wait_fm_ready(dd, 7000); 10184 if (ret) { 10185 dd_dev_err(dd, 10186 "After going offline, timed out waiting for the 8051 to become ready to accept host requests\n"); 10187 /* state is really offline, so make it so */ 10188 ppd->host_link_state = HLS_DN_OFFLINE; 10189 return ret; 10190 } 10191 10192 /* 10193 * The state is now offline and the 8051 is ready to accept host 10194 * requests. 10195 * - change our state 10196 * - notify others if we were previously in a linkup state 10197 */ 10198 ppd->host_link_state = HLS_DN_OFFLINE; 10199 if (previous_state & HLS_UP) { 10200 /* went down while link was up */ 10201 handle_linkup_change(dd, 0); 10202 } else if (previous_state 10203 & (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) { 10204 /* went down while attempting link up */ 10205 check_lni_states(ppd); 10206 } 10207 10208 /* the active link width (downgrade) is 0 on link down */ 10209 ppd->link_width_active = 0; 10210 ppd->link_width_downgrade_tx_active = 0; 10211 ppd->link_width_downgrade_rx_active = 0; 10212 ppd->current_egress_rate = 0; 10213 return 0; 10214 } 10215 10216 /* return the link state name */ 10217 static const char *link_state_name(u32 state) 10218 { 10219 const char *name; 10220 int n = ilog2(state); 10221 static const char * const names[] = { 10222 [__HLS_UP_INIT_BP] = "INIT", 10223 [__HLS_UP_ARMED_BP] = "ARMED", 10224 [__HLS_UP_ACTIVE_BP] = "ACTIVE", 10225 [__HLS_DN_DOWNDEF_BP] = "DOWNDEF", 10226 [__HLS_DN_POLL_BP] = "POLL", 10227 [__HLS_DN_DISABLE_BP] = "DISABLE", 10228 [__HLS_DN_OFFLINE_BP] = "OFFLINE", 10229 [__HLS_VERIFY_CAP_BP] = "VERIFY_CAP", 10230 [__HLS_GOING_UP_BP] = "GOING_UP", 10231 [__HLS_GOING_OFFLINE_BP] = "GOING_OFFLINE", 10232 [__HLS_LINK_COOLDOWN_BP] = "LINK_COOLDOWN" 10233 }; 10234 10235 name = n < ARRAY_SIZE(names) ? names[n] : NULL; 10236 return name ? name : "unknown"; 10237 } 10238 10239 /* return the link state reason name */ 10240 static const char *link_state_reason_name(struct hfi1_pportdata *ppd, u32 state) 10241 { 10242 if (state == HLS_UP_INIT) { 10243 switch (ppd->linkinit_reason) { 10244 case OPA_LINKINIT_REASON_LINKUP: 10245 return "(LINKUP)"; 10246 case OPA_LINKINIT_REASON_FLAPPING: 10247 return "(FLAPPING)"; 10248 case OPA_LINKINIT_OUTSIDE_POLICY: 10249 return "(OUTSIDE_POLICY)"; 10250 case OPA_LINKINIT_QUARANTINED: 10251 return "(QUARANTINED)"; 10252 case OPA_LINKINIT_INSUFIC_CAPABILITY: 10253 return "(INSUFIC_CAPABILITY)"; 10254 default: 10255 break; 10256 } 10257 } 10258 return ""; 10259 } 10260 10261 /* 10262 * driver_physical_state - convert the driver's notion of a port's 10263 * state (an HLS_*) into a physical state (a {IB,OPA}_PORTPHYSSTATE_*). 10264 * Return -1 (converted to a u32) to indicate error. 10265 */ 10266 u32 driver_physical_state(struct hfi1_pportdata *ppd) 10267 { 10268 switch (ppd->host_link_state) { 10269 case HLS_UP_INIT: 10270 case HLS_UP_ARMED: 10271 case HLS_UP_ACTIVE: 10272 return IB_PORTPHYSSTATE_LINKUP; 10273 case HLS_DN_POLL: 10274 return IB_PORTPHYSSTATE_POLLING; 10275 case HLS_DN_DISABLE: 10276 return IB_PORTPHYSSTATE_DISABLED; 10277 case HLS_DN_OFFLINE: 10278 return OPA_PORTPHYSSTATE_OFFLINE; 10279 case HLS_VERIFY_CAP: 10280 return IB_PORTPHYSSTATE_POLLING; 10281 case HLS_GOING_UP: 10282 return IB_PORTPHYSSTATE_POLLING; 10283 case HLS_GOING_OFFLINE: 10284 return OPA_PORTPHYSSTATE_OFFLINE; 10285 case HLS_LINK_COOLDOWN: 10286 return OPA_PORTPHYSSTATE_OFFLINE; 10287 case HLS_DN_DOWNDEF: 10288 default: 10289 dd_dev_err(ppd->dd, "invalid host_link_state 0x%x\n", 10290 ppd->host_link_state); 10291 return -1; 10292 } 10293 } 10294 10295 /* 10296 * driver_logical_state - convert the driver's notion of a port's 10297 * state (an HLS_*) into a logical state (a IB_PORT_*). Return -1 10298 * (converted to a u32) to indicate error. 10299 */ 10300 u32 driver_logical_state(struct hfi1_pportdata *ppd) 10301 { 10302 if (ppd->host_link_state && (ppd->host_link_state & HLS_DOWN)) 10303 return IB_PORT_DOWN; 10304 10305 switch (ppd->host_link_state & HLS_UP) { 10306 case HLS_UP_INIT: 10307 return IB_PORT_INIT; 10308 case HLS_UP_ARMED: 10309 return IB_PORT_ARMED; 10310 case HLS_UP_ACTIVE: 10311 return IB_PORT_ACTIVE; 10312 default: 10313 dd_dev_err(ppd->dd, "invalid host_link_state 0x%x\n", 10314 ppd->host_link_state); 10315 return -1; 10316 } 10317 } 10318 10319 void set_link_down_reason(struct hfi1_pportdata *ppd, u8 lcl_reason, 10320 u8 neigh_reason, u8 rem_reason) 10321 { 10322 if (ppd->local_link_down_reason.latest == 0 && 10323 ppd->neigh_link_down_reason.latest == 0) { 10324 ppd->local_link_down_reason.latest = lcl_reason; 10325 ppd->neigh_link_down_reason.latest = neigh_reason; 10326 ppd->remote_link_down_reason = rem_reason; 10327 } 10328 } 10329 10330 /* 10331 * Change the physical and/or logical link state. 10332 * 10333 * Do not call this routine while inside an interrupt. It contains 10334 * calls to routines that can take multiple seconds to finish. 10335 * 10336 * Returns 0 on success, -errno on failure. 10337 */ 10338 int set_link_state(struct hfi1_pportdata *ppd, u32 state) 10339 { 10340 struct hfi1_devdata *dd = ppd->dd; 10341 struct ib_event event = {.device = NULL}; 10342 int ret1, ret = 0; 10343 int orig_new_state, poll_bounce; 10344 10345 mutex_lock(&ppd->hls_lock); 10346 10347 orig_new_state = state; 10348 if (state == HLS_DN_DOWNDEF) 10349 state = dd->link_default; 10350 10351 /* interpret poll -> poll as a link bounce */ 10352 poll_bounce = ppd->host_link_state == HLS_DN_POLL && 10353 state == HLS_DN_POLL; 10354 10355 dd_dev_info(dd, "%s: current %s, new %s %s%s\n", __func__, 10356 link_state_name(ppd->host_link_state), 10357 link_state_name(orig_new_state), 10358 poll_bounce ? "(bounce) " : "", 10359 link_state_reason_name(ppd, state)); 10360 10361 /* 10362 * If we're going to a (HLS_*) link state that implies the logical 10363 * link state is neither of (IB_PORT_ARMED, IB_PORT_ACTIVE), then 10364 * reset is_sm_config_started to 0. 10365 */ 10366 if (!(state & (HLS_UP_ARMED | HLS_UP_ACTIVE))) 10367 ppd->is_sm_config_started = 0; 10368 10369 /* 10370 * Do nothing if the states match. Let a poll to poll link bounce 10371 * go through. 10372 */ 10373 if (ppd->host_link_state == state && !poll_bounce) 10374 goto done; 10375 10376 switch (state) { 10377 case HLS_UP_INIT: 10378 if (ppd->host_link_state == HLS_DN_POLL && 10379 (quick_linkup || dd->icode == ICODE_FUNCTIONAL_SIMULATOR)) { 10380 /* 10381 * Quick link up jumps from polling to here. 10382 * 10383 * Whether in normal or loopback mode, the 10384 * simulator jumps from polling to link up. 10385 * Accept that here. 10386 */ 10387 /* OK */ 10388 } else if (ppd->host_link_state != HLS_GOING_UP) { 10389 goto unexpected; 10390 } 10391 10392 ppd->host_link_state = HLS_UP_INIT; 10393 ret = wait_logical_linkstate(ppd, IB_PORT_INIT, 1000); 10394 if (ret) { 10395 /* logical state didn't change, stay at going_up */ 10396 ppd->host_link_state = HLS_GOING_UP; 10397 dd_dev_err(dd, 10398 "%s: logical state did not change to INIT\n", 10399 __func__); 10400 } else { 10401 /* clear old transient LINKINIT_REASON code */ 10402 if (ppd->linkinit_reason >= OPA_LINKINIT_REASON_CLEAR) 10403 ppd->linkinit_reason = 10404 OPA_LINKINIT_REASON_LINKUP; 10405 10406 /* enable the port */ 10407 add_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK); 10408 10409 handle_linkup_change(dd, 1); 10410 } 10411 break; 10412 case HLS_UP_ARMED: 10413 if (ppd->host_link_state != HLS_UP_INIT) 10414 goto unexpected; 10415 10416 ppd->host_link_state = HLS_UP_ARMED; 10417 set_logical_state(dd, LSTATE_ARMED); 10418 ret = wait_logical_linkstate(ppd, IB_PORT_ARMED, 1000); 10419 if (ret) { 10420 /* logical state didn't change, stay at init */ 10421 ppd->host_link_state = HLS_UP_INIT; 10422 dd_dev_err(dd, 10423 "%s: logical state did not change to ARMED\n", 10424 __func__); 10425 } 10426 /* 10427 * The simulator does not currently implement SMA messages, 10428 * so neighbor_normal is not set. Set it here when we first 10429 * move to Armed. 10430 */ 10431 if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR) 10432 ppd->neighbor_normal = 1; 10433 break; 10434 case HLS_UP_ACTIVE: 10435 if (ppd->host_link_state != HLS_UP_ARMED) 10436 goto unexpected; 10437 10438 ppd->host_link_state = HLS_UP_ACTIVE; 10439 set_logical_state(dd, LSTATE_ACTIVE); 10440 ret = wait_logical_linkstate(ppd, IB_PORT_ACTIVE, 1000); 10441 if (ret) { 10442 /* logical state didn't change, stay at armed */ 10443 ppd->host_link_state = HLS_UP_ARMED; 10444 dd_dev_err(dd, 10445 "%s: logical state did not change to ACTIVE\n", 10446 __func__); 10447 } else { 10448 /* tell all engines to go running */ 10449 sdma_all_running(dd); 10450 10451 /* Signal the IB layer that the port has went active */ 10452 event.device = &dd->verbs_dev.rdi.ibdev; 10453 event.element.port_num = ppd->port; 10454 event.event = IB_EVENT_PORT_ACTIVE; 10455 } 10456 break; 10457 case HLS_DN_POLL: 10458 if ((ppd->host_link_state == HLS_DN_DISABLE || 10459 ppd->host_link_state == HLS_DN_OFFLINE) && 10460 dd->dc_shutdown) 10461 dc_start(dd); 10462 /* Hand LED control to the DC */ 10463 write_csr(dd, DCC_CFG_LED_CNTRL, 0); 10464 10465 if (ppd->host_link_state != HLS_DN_OFFLINE) { 10466 u8 tmp = ppd->link_enabled; 10467 10468 ret = goto_offline(ppd, ppd->remote_link_down_reason); 10469 if (ret) { 10470 ppd->link_enabled = tmp; 10471 break; 10472 } 10473 ppd->remote_link_down_reason = 0; 10474 10475 if (ppd->driver_link_ready) 10476 ppd->link_enabled = 1; 10477 } 10478 10479 set_all_slowpath(ppd->dd); 10480 ret = set_local_link_attributes(ppd); 10481 if (ret) 10482 break; 10483 10484 ppd->port_error_action = 0; 10485 ppd->host_link_state = HLS_DN_POLL; 10486 10487 if (quick_linkup) { 10488 /* quick linkup does not go into polling */ 10489 ret = do_quick_linkup(dd); 10490 } else { 10491 ret1 = set_physical_link_state(dd, PLS_POLLING); 10492 if (ret1 != HCMD_SUCCESS) { 10493 dd_dev_err(dd, 10494 "Failed to transition to Polling link state, return 0x%x\n", 10495 ret1); 10496 ret = -EINVAL; 10497 } 10498 } 10499 ppd->offline_disabled_reason = 10500 HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE); 10501 /* 10502 * If an error occurred above, go back to offline. The 10503 * caller may reschedule another attempt. 10504 */ 10505 if (ret) 10506 goto_offline(ppd, 0); 10507 break; 10508 case HLS_DN_DISABLE: 10509 /* link is disabled */ 10510 ppd->link_enabled = 0; 10511 10512 /* allow any state to transition to disabled */ 10513 10514 /* must transition to offline first */ 10515 if (ppd->host_link_state != HLS_DN_OFFLINE) { 10516 ret = goto_offline(ppd, ppd->remote_link_down_reason); 10517 if (ret) 10518 break; 10519 ppd->remote_link_down_reason = 0; 10520 } 10521 10522 ret1 = set_physical_link_state(dd, PLS_DISABLED); 10523 if (ret1 != HCMD_SUCCESS) { 10524 dd_dev_err(dd, 10525 "Failed to transition to Disabled link state, return 0x%x\n", 10526 ret1); 10527 ret = -EINVAL; 10528 break; 10529 } 10530 ppd->host_link_state = HLS_DN_DISABLE; 10531 dc_shutdown(dd); 10532 break; 10533 case HLS_DN_OFFLINE: 10534 if (ppd->host_link_state == HLS_DN_DISABLE) 10535 dc_start(dd); 10536 10537 /* allow any state to transition to offline */ 10538 ret = goto_offline(ppd, ppd->remote_link_down_reason); 10539 if (!ret) 10540 ppd->remote_link_down_reason = 0; 10541 break; 10542 case HLS_VERIFY_CAP: 10543 if (ppd->host_link_state != HLS_DN_POLL) 10544 goto unexpected; 10545 ppd->host_link_state = HLS_VERIFY_CAP; 10546 break; 10547 case HLS_GOING_UP: 10548 if (ppd->host_link_state != HLS_VERIFY_CAP) 10549 goto unexpected; 10550 10551 ret1 = set_physical_link_state(dd, PLS_LINKUP); 10552 if (ret1 != HCMD_SUCCESS) { 10553 dd_dev_err(dd, 10554 "Failed to transition to link up state, return 0x%x\n", 10555 ret1); 10556 ret = -EINVAL; 10557 break; 10558 } 10559 ppd->host_link_state = HLS_GOING_UP; 10560 break; 10561 10562 case HLS_GOING_OFFLINE: /* transient within goto_offline() */ 10563 case HLS_LINK_COOLDOWN: /* transient within goto_offline() */ 10564 default: 10565 dd_dev_info(dd, "%s: state 0x%x: not supported\n", 10566 __func__, state); 10567 ret = -EINVAL; 10568 break; 10569 } 10570 10571 goto done; 10572 10573 unexpected: 10574 dd_dev_err(dd, "%s: unexpected state transition from %s to %s\n", 10575 __func__, link_state_name(ppd->host_link_state), 10576 link_state_name(state)); 10577 ret = -EINVAL; 10578 10579 done: 10580 mutex_unlock(&ppd->hls_lock); 10581 10582 if (event.device) 10583 ib_dispatch_event(&event); 10584 10585 return ret; 10586 } 10587 10588 int hfi1_set_ib_cfg(struct hfi1_pportdata *ppd, int which, u32 val) 10589 { 10590 u64 reg; 10591 int ret = 0; 10592 10593 switch (which) { 10594 case HFI1_IB_CFG_LIDLMC: 10595 set_lidlmc(ppd); 10596 break; 10597 case HFI1_IB_CFG_VL_HIGH_LIMIT: 10598 /* 10599 * The VL Arbitrator high limit is sent in units of 4k 10600 * bytes, while HFI stores it in units of 64 bytes. 10601 */ 10602 val *= 4096 / 64; 10603 reg = ((u64)val & SEND_HIGH_PRIORITY_LIMIT_LIMIT_MASK) 10604 << SEND_HIGH_PRIORITY_LIMIT_LIMIT_SHIFT; 10605 write_csr(ppd->dd, SEND_HIGH_PRIORITY_LIMIT, reg); 10606 break; 10607 case HFI1_IB_CFG_LINKDEFAULT: /* IB link default (sleep/poll) */ 10608 /* HFI only supports POLL as the default link down state */ 10609 if (val != HLS_DN_POLL) 10610 ret = -EINVAL; 10611 break; 10612 case HFI1_IB_CFG_OP_VLS: 10613 if (ppd->vls_operational != val) { 10614 ppd->vls_operational = val; 10615 if (!ppd->port) 10616 ret = -EINVAL; 10617 } 10618 break; 10619 /* 10620 * For link width, link width downgrade, and speed enable, always AND 10621 * the setting with what is actually supported. This has two benefits. 10622 * First, enabled can't have unsupported values, no matter what the 10623 * SM or FM might want. Second, the ALL_SUPPORTED wildcards that mean 10624 * "fill in with your supported value" have all the bits in the 10625 * field set, so simply ANDing with supported has the desired result. 10626 */ 10627 case HFI1_IB_CFG_LWID_ENB: /* set allowed Link-width */ 10628 ppd->link_width_enabled = val & ppd->link_width_supported; 10629 break; 10630 case HFI1_IB_CFG_LWID_DG_ENB: /* set allowed link width downgrade */ 10631 ppd->link_width_downgrade_enabled = 10632 val & ppd->link_width_downgrade_supported; 10633 break; 10634 case HFI1_IB_CFG_SPD_ENB: /* allowed Link speeds */ 10635 ppd->link_speed_enabled = val & ppd->link_speed_supported; 10636 break; 10637 case HFI1_IB_CFG_OVERRUN_THRESH: /* IB overrun threshold */ 10638 /* 10639 * HFI does not follow IB specs, save this value 10640 * so we can report it, if asked. 10641 */ 10642 ppd->overrun_threshold = val; 10643 break; 10644 case HFI1_IB_CFG_PHYERR_THRESH: /* IB PHY error threshold */ 10645 /* 10646 * HFI does not follow IB specs, save this value 10647 * so we can report it, if asked. 10648 */ 10649 ppd->phy_error_threshold = val; 10650 break; 10651 10652 case HFI1_IB_CFG_MTU: 10653 set_send_length(ppd); 10654 break; 10655 10656 case HFI1_IB_CFG_PKEYS: 10657 if (HFI1_CAP_IS_KSET(PKEY_CHECK)) 10658 set_partition_keys(ppd); 10659 break; 10660 10661 default: 10662 if (HFI1_CAP_IS_KSET(PRINT_UNIMPL)) 10663 dd_dev_info(ppd->dd, 10664 "%s: which %s, val 0x%x: not implemented\n", 10665 __func__, ib_cfg_name(which), val); 10666 break; 10667 } 10668 return ret; 10669 } 10670 10671 /* begin functions related to vl arbitration table caching */ 10672 static void init_vl_arb_caches(struct hfi1_pportdata *ppd) 10673 { 10674 int i; 10675 10676 BUILD_BUG_ON(VL_ARB_TABLE_SIZE != 10677 VL_ARB_LOW_PRIO_TABLE_SIZE); 10678 BUILD_BUG_ON(VL_ARB_TABLE_SIZE != 10679 VL_ARB_HIGH_PRIO_TABLE_SIZE); 10680 10681 /* 10682 * Note that we always return values directly from the 10683 * 'vl_arb_cache' (and do no CSR reads) in response to a 10684 * 'Get(VLArbTable)'. This is obviously correct after a 10685 * 'Set(VLArbTable)', since the cache will then be up to 10686 * date. But it's also correct prior to any 'Set(VLArbTable)' 10687 * since then both the cache, and the relevant h/w registers 10688 * will be zeroed. 10689 */ 10690 10691 for (i = 0; i < MAX_PRIO_TABLE; i++) 10692 spin_lock_init(&ppd->vl_arb_cache[i].lock); 10693 } 10694 10695 /* 10696 * vl_arb_lock_cache 10697 * 10698 * All other vl_arb_* functions should be called only after locking 10699 * the cache. 10700 */ 10701 static inline struct vl_arb_cache * 10702 vl_arb_lock_cache(struct hfi1_pportdata *ppd, int idx) 10703 { 10704 if (idx != LO_PRIO_TABLE && idx != HI_PRIO_TABLE) 10705 return NULL; 10706 spin_lock(&ppd->vl_arb_cache[idx].lock); 10707 return &ppd->vl_arb_cache[idx]; 10708 } 10709 10710 static inline void vl_arb_unlock_cache(struct hfi1_pportdata *ppd, int idx) 10711 { 10712 spin_unlock(&ppd->vl_arb_cache[idx].lock); 10713 } 10714 10715 static void vl_arb_get_cache(struct vl_arb_cache *cache, 10716 struct ib_vl_weight_elem *vl) 10717 { 10718 memcpy(vl, cache->table, VL_ARB_TABLE_SIZE * sizeof(*vl)); 10719 } 10720 10721 static void vl_arb_set_cache(struct vl_arb_cache *cache, 10722 struct ib_vl_weight_elem *vl) 10723 { 10724 memcpy(cache->table, vl, VL_ARB_TABLE_SIZE * sizeof(*vl)); 10725 } 10726 10727 static int vl_arb_match_cache(struct vl_arb_cache *cache, 10728 struct ib_vl_weight_elem *vl) 10729 { 10730 return !memcmp(cache->table, vl, VL_ARB_TABLE_SIZE * sizeof(*vl)); 10731 } 10732 10733 /* end functions related to vl arbitration table caching */ 10734 10735 static int set_vl_weights(struct hfi1_pportdata *ppd, u32 target, 10736 u32 size, struct ib_vl_weight_elem *vl) 10737 { 10738 struct hfi1_devdata *dd = ppd->dd; 10739 u64 reg; 10740 unsigned int i, is_up = 0; 10741 int drain, ret = 0; 10742 10743 mutex_lock(&ppd->hls_lock); 10744 10745 if (ppd->host_link_state & HLS_UP) 10746 is_up = 1; 10747 10748 drain = !is_ax(dd) && is_up; 10749 10750 if (drain) 10751 /* 10752 * Before adjusting VL arbitration weights, empty per-VL 10753 * FIFOs, otherwise a packet whose VL weight is being 10754 * set to 0 could get stuck in a FIFO with no chance to 10755 * egress. 10756 */ 10757 ret = stop_drain_data_vls(dd); 10758 10759 if (ret) { 10760 dd_dev_err( 10761 dd, 10762 "%s: cannot stop/drain VLs - refusing to change VL arbitration weights\n", 10763 __func__); 10764 goto err; 10765 } 10766 10767 for (i = 0; i < size; i++, vl++) { 10768 /* 10769 * NOTE: The low priority shift and mask are used here, but 10770 * they are the same for both the low and high registers. 10771 */ 10772 reg = (((u64)vl->vl & SEND_LOW_PRIORITY_LIST_VL_MASK) 10773 << SEND_LOW_PRIORITY_LIST_VL_SHIFT) 10774 | (((u64)vl->weight 10775 & SEND_LOW_PRIORITY_LIST_WEIGHT_MASK) 10776 << SEND_LOW_PRIORITY_LIST_WEIGHT_SHIFT); 10777 write_csr(dd, target + (i * 8), reg); 10778 } 10779 pio_send_control(dd, PSC_GLOBAL_VLARB_ENABLE); 10780 10781 if (drain) 10782 open_fill_data_vls(dd); /* reopen all VLs */ 10783 10784 err: 10785 mutex_unlock(&ppd->hls_lock); 10786 10787 return ret; 10788 } 10789 10790 /* 10791 * Read one credit merge VL register. 10792 */ 10793 static void read_one_cm_vl(struct hfi1_devdata *dd, u32 csr, 10794 struct vl_limit *vll) 10795 { 10796 u64 reg = read_csr(dd, csr); 10797 10798 vll->dedicated = cpu_to_be16( 10799 (reg >> SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SHIFT) 10800 & SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_MASK); 10801 vll->shared = cpu_to_be16( 10802 (reg >> SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SHIFT) 10803 & SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_MASK); 10804 } 10805 10806 /* 10807 * Read the current credit merge limits. 10808 */ 10809 static int get_buffer_control(struct hfi1_devdata *dd, 10810 struct buffer_control *bc, u16 *overall_limit) 10811 { 10812 u64 reg; 10813 int i; 10814 10815 /* not all entries are filled in */ 10816 memset(bc, 0, sizeof(*bc)); 10817 10818 /* OPA and HFI have a 1-1 mapping */ 10819 for (i = 0; i < TXE_NUM_DATA_VL; i++) 10820 read_one_cm_vl(dd, SEND_CM_CREDIT_VL + (8 * i), &bc->vl[i]); 10821 10822 /* NOTE: assumes that VL* and VL15 CSRs are bit-wise identical */ 10823 read_one_cm_vl(dd, SEND_CM_CREDIT_VL15, &bc->vl[15]); 10824 10825 reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT); 10826 bc->overall_shared_limit = cpu_to_be16( 10827 (reg >> SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SHIFT) 10828 & SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_MASK); 10829 if (overall_limit) 10830 *overall_limit = (reg 10831 >> SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT) 10832 & SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_MASK; 10833 return sizeof(struct buffer_control); 10834 } 10835 10836 static int get_sc2vlnt(struct hfi1_devdata *dd, struct sc2vlnt *dp) 10837 { 10838 u64 reg; 10839 int i; 10840 10841 /* each register contains 16 SC->VLnt mappings, 4 bits each */ 10842 reg = read_csr(dd, DCC_CFG_SC_VL_TABLE_15_0); 10843 for (i = 0; i < sizeof(u64); i++) { 10844 u8 byte = *(((u8 *)®) + i); 10845 10846 dp->vlnt[2 * i] = byte & 0xf; 10847 dp->vlnt[(2 * i) + 1] = (byte & 0xf0) >> 4; 10848 } 10849 10850 reg = read_csr(dd, DCC_CFG_SC_VL_TABLE_31_16); 10851 for (i = 0; i < sizeof(u64); i++) { 10852 u8 byte = *(((u8 *)®) + i); 10853 10854 dp->vlnt[16 + (2 * i)] = byte & 0xf; 10855 dp->vlnt[16 + (2 * i) + 1] = (byte & 0xf0) >> 4; 10856 } 10857 return sizeof(struct sc2vlnt); 10858 } 10859 10860 static void get_vlarb_preempt(struct hfi1_devdata *dd, u32 nelems, 10861 struct ib_vl_weight_elem *vl) 10862 { 10863 unsigned int i; 10864 10865 for (i = 0; i < nelems; i++, vl++) { 10866 vl->vl = 0xf; 10867 vl->weight = 0; 10868 } 10869 } 10870 10871 static void set_sc2vlnt(struct hfi1_devdata *dd, struct sc2vlnt *dp) 10872 { 10873 write_csr(dd, DCC_CFG_SC_VL_TABLE_15_0, 10874 DC_SC_VL_VAL(15_0, 10875 0, dp->vlnt[0] & 0xf, 10876 1, dp->vlnt[1] & 0xf, 10877 2, dp->vlnt[2] & 0xf, 10878 3, dp->vlnt[3] & 0xf, 10879 4, dp->vlnt[4] & 0xf, 10880 5, dp->vlnt[5] & 0xf, 10881 6, dp->vlnt[6] & 0xf, 10882 7, dp->vlnt[7] & 0xf, 10883 8, dp->vlnt[8] & 0xf, 10884 9, dp->vlnt[9] & 0xf, 10885 10, dp->vlnt[10] & 0xf, 10886 11, dp->vlnt[11] & 0xf, 10887 12, dp->vlnt[12] & 0xf, 10888 13, dp->vlnt[13] & 0xf, 10889 14, dp->vlnt[14] & 0xf, 10890 15, dp->vlnt[15] & 0xf)); 10891 write_csr(dd, DCC_CFG_SC_VL_TABLE_31_16, 10892 DC_SC_VL_VAL(31_16, 10893 16, dp->vlnt[16] & 0xf, 10894 17, dp->vlnt[17] & 0xf, 10895 18, dp->vlnt[18] & 0xf, 10896 19, dp->vlnt[19] & 0xf, 10897 20, dp->vlnt[20] & 0xf, 10898 21, dp->vlnt[21] & 0xf, 10899 22, dp->vlnt[22] & 0xf, 10900 23, dp->vlnt[23] & 0xf, 10901 24, dp->vlnt[24] & 0xf, 10902 25, dp->vlnt[25] & 0xf, 10903 26, dp->vlnt[26] & 0xf, 10904 27, dp->vlnt[27] & 0xf, 10905 28, dp->vlnt[28] & 0xf, 10906 29, dp->vlnt[29] & 0xf, 10907 30, dp->vlnt[30] & 0xf, 10908 31, dp->vlnt[31] & 0xf)); 10909 } 10910 10911 static void nonzero_msg(struct hfi1_devdata *dd, int idx, const char *what, 10912 u16 limit) 10913 { 10914 if (limit != 0) 10915 dd_dev_info(dd, "Invalid %s limit %d on VL %d, ignoring\n", 10916 what, (int)limit, idx); 10917 } 10918 10919 /* change only the shared limit portion of SendCmGLobalCredit */ 10920 static void set_global_shared(struct hfi1_devdata *dd, u16 limit) 10921 { 10922 u64 reg; 10923 10924 reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT); 10925 reg &= ~SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SMASK; 10926 reg |= (u64)limit << SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SHIFT; 10927 write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg); 10928 } 10929 10930 /* change only the total credit limit portion of SendCmGLobalCredit */ 10931 static void set_global_limit(struct hfi1_devdata *dd, u16 limit) 10932 { 10933 u64 reg; 10934 10935 reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT); 10936 reg &= ~SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SMASK; 10937 reg |= (u64)limit << SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT; 10938 write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg); 10939 } 10940 10941 /* set the given per-VL shared limit */ 10942 static void set_vl_shared(struct hfi1_devdata *dd, int vl, u16 limit) 10943 { 10944 u64 reg; 10945 u32 addr; 10946 10947 if (vl < TXE_NUM_DATA_VL) 10948 addr = SEND_CM_CREDIT_VL + (8 * vl); 10949 else 10950 addr = SEND_CM_CREDIT_VL15; 10951 10952 reg = read_csr(dd, addr); 10953 reg &= ~SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SMASK; 10954 reg |= (u64)limit << SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SHIFT; 10955 write_csr(dd, addr, reg); 10956 } 10957 10958 /* set the given per-VL dedicated limit */ 10959 static void set_vl_dedicated(struct hfi1_devdata *dd, int vl, u16 limit) 10960 { 10961 u64 reg; 10962 u32 addr; 10963 10964 if (vl < TXE_NUM_DATA_VL) 10965 addr = SEND_CM_CREDIT_VL + (8 * vl); 10966 else 10967 addr = SEND_CM_CREDIT_VL15; 10968 10969 reg = read_csr(dd, addr); 10970 reg &= ~SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SMASK; 10971 reg |= (u64)limit << SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SHIFT; 10972 write_csr(dd, addr, reg); 10973 } 10974 10975 /* spin until the given per-VL status mask bits clear */ 10976 static void wait_for_vl_status_clear(struct hfi1_devdata *dd, u64 mask, 10977 const char *which) 10978 { 10979 unsigned long timeout; 10980 u64 reg; 10981 10982 timeout = jiffies + msecs_to_jiffies(VL_STATUS_CLEAR_TIMEOUT); 10983 while (1) { 10984 reg = read_csr(dd, SEND_CM_CREDIT_USED_STATUS) & mask; 10985 10986 if (reg == 0) 10987 return; /* success */ 10988 if (time_after(jiffies, timeout)) 10989 break; /* timed out */ 10990 udelay(1); 10991 } 10992 10993 dd_dev_err(dd, 10994 "%s credit change status not clearing after %dms, mask 0x%llx, not clear 0x%llx\n", 10995 which, VL_STATUS_CLEAR_TIMEOUT, mask, reg); 10996 /* 10997 * If this occurs, it is likely there was a credit loss on the link. 10998 * The only recovery from that is a link bounce. 10999 */ 11000 dd_dev_err(dd, 11001 "Continuing anyway. A credit loss may occur. Suggest a link bounce\n"); 11002 } 11003 11004 /* 11005 * The number of credits on the VLs may be changed while everything 11006 * is "live", but the following algorithm must be followed due to 11007 * how the hardware is actually implemented. In particular, 11008 * Return_Credit_Status[] is the only correct status check. 11009 * 11010 * if (reducing Global_Shared_Credit_Limit or any shared limit changing) 11011 * set Global_Shared_Credit_Limit = 0 11012 * use_all_vl = 1 11013 * mask0 = all VLs that are changing either dedicated or shared limits 11014 * set Shared_Limit[mask0] = 0 11015 * spin until Return_Credit_Status[use_all_vl ? all VL : mask0] == 0 11016 * if (changing any dedicated limit) 11017 * mask1 = all VLs that are lowering dedicated limits 11018 * lower Dedicated_Limit[mask1] 11019 * spin until Return_Credit_Status[mask1] == 0 11020 * raise Dedicated_Limits 11021 * raise Shared_Limits 11022 * raise Global_Shared_Credit_Limit 11023 * 11024 * lower = if the new limit is lower, set the limit to the new value 11025 * raise = if the new limit is higher than the current value (may be changed 11026 * earlier in the algorithm), set the new limit to the new value 11027 */ 11028 int set_buffer_control(struct hfi1_pportdata *ppd, 11029 struct buffer_control *new_bc) 11030 { 11031 struct hfi1_devdata *dd = ppd->dd; 11032 u64 changing_mask, ld_mask, stat_mask; 11033 int change_count; 11034 int i, use_all_mask; 11035 int this_shared_changing; 11036 int vl_count = 0, ret; 11037 /* 11038 * A0: add the variable any_shared_limit_changing below and in the 11039 * algorithm above. If removing A0 support, it can be removed. 11040 */ 11041 int any_shared_limit_changing; 11042 struct buffer_control cur_bc; 11043 u8 changing[OPA_MAX_VLS]; 11044 u8 lowering_dedicated[OPA_MAX_VLS]; 11045 u16 cur_total; 11046 u32 new_total = 0; 11047 const u64 all_mask = 11048 SEND_CM_CREDIT_USED_STATUS_VL0_RETURN_CREDIT_STATUS_SMASK 11049 | SEND_CM_CREDIT_USED_STATUS_VL1_RETURN_CREDIT_STATUS_SMASK 11050 | SEND_CM_CREDIT_USED_STATUS_VL2_RETURN_CREDIT_STATUS_SMASK 11051 | SEND_CM_CREDIT_USED_STATUS_VL3_RETURN_CREDIT_STATUS_SMASK 11052 | SEND_CM_CREDIT_USED_STATUS_VL4_RETURN_CREDIT_STATUS_SMASK 11053 | SEND_CM_CREDIT_USED_STATUS_VL5_RETURN_CREDIT_STATUS_SMASK 11054 | SEND_CM_CREDIT_USED_STATUS_VL6_RETURN_CREDIT_STATUS_SMASK 11055 | SEND_CM_CREDIT_USED_STATUS_VL7_RETURN_CREDIT_STATUS_SMASK 11056 | SEND_CM_CREDIT_USED_STATUS_VL15_RETURN_CREDIT_STATUS_SMASK; 11057 11058 #define valid_vl(idx) ((idx) < TXE_NUM_DATA_VL || (idx) == 15) 11059 #define NUM_USABLE_VLS 16 /* look at VL15 and less */ 11060 11061 /* find the new total credits, do sanity check on unused VLs */ 11062 for (i = 0; i < OPA_MAX_VLS; i++) { 11063 if (valid_vl(i)) { 11064 new_total += be16_to_cpu(new_bc->vl[i].dedicated); 11065 continue; 11066 } 11067 nonzero_msg(dd, i, "dedicated", 11068 be16_to_cpu(new_bc->vl[i].dedicated)); 11069 nonzero_msg(dd, i, "shared", 11070 be16_to_cpu(new_bc->vl[i].shared)); 11071 new_bc->vl[i].dedicated = 0; 11072 new_bc->vl[i].shared = 0; 11073 } 11074 new_total += be16_to_cpu(new_bc->overall_shared_limit); 11075 11076 /* fetch the current values */ 11077 get_buffer_control(dd, &cur_bc, &cur_total); 11078 11079 /* 11080 * Create the masks we will use. 11081 */ 11082 memset(changing, 0, sizeof(changing)); 11083 memset(lowering_dedicated, 0, sizeof(lowering_dedicated)); 11084 /* 11085 * NOTE: Assumes that the individual VL bits are adjacent and in 11086 * increasing order 11087 */ 11088 stat_mask = 11089 SEND_CM_CREDIT_USED_STATUS_VL0_RETURN_CREDIT_STATUS_SMASK; 11090 changing_mask = 0; 11091 ld_mask = 0; 11092 change_count = 0; 11093 any_shared_limit_changing = 0; 11094 for (i = 0; i < NUM_USABLE_VLS; i++, stat_mask <<= 1) { 11095 if (!valid_vl(i)) 11096 continue; 11097 this_shared_changing = new_bc->vl[i].shared 11098 != cur_bc.vl[i].shared; 11099 if (this_shared_changing) 11100 any_shared_limit_changing = 1; 11101 if (new_bc->vl[i].dedicated != cur_bc.vl[i].dedicated || 11102 this_shared_changing) { 11103 changing[i] = 1; 11104 changing_mask |= stat_mask; 11105 change_count++; 11106 } 11107 if (be16_to_cpu(new_bc->vl[i].dedicated) < 11108 be16_to_cpu(cur_bc.vl[i].dedicated)) { 11109 lowering_dedicated[i] = 1; 11110 ld_mask |= stat_mask; 11111 } 11112 } 11113 11114 /* bracket the credit change with a total adjustment */ 11115 if (new_total > cur_total) 11116 set_global_limit(dd, new_total); 11117 11118 /* 11119 * Start the credit change algorithm. 11120 */ 11121 use_all_mask = 0; 11122 if ((be16_to_cpu(new_bc->overall_shared_limit) < 11123 be16_to_cpu(cur_bc.overall_shared_limit)) || 11124 (is_ax(dd) && any_shared_limit_changing)) { 11125 set_global_shared(dd, 0); 11126 cur_bc.overall_shared_limit = 0; 11127 use_all_mask = 1; 11128 } 11129 11130 for (i = 0; i < NUM_USABLE_VLS; i++) { 11131 if (!valid_vl(i)) 11132 continue; 11133 11134 if (changing[i]) { 11135 set_vl_shared(dd, i, 0); 11136 cur_bc.vl[i].shared = 0; 11137 } 11138 } 11139 11140 wait_for_vl_status_clear(dd, use_all_mask ? all_mask : changing_mask, 11141 "shared"); 11142 11143 if (change_count > 0) { 11144 for (i = 0; i < NUM_USABLE_VLS; i++) { 11145 if (!valid_vl(i)) 11146 continue; 11147 11148 if (lowering_dedicated[i]) { 11149 set_vl_dedicated(dd, i, 11150 be16_to_cpu(new_bc-> 11151 vl[i].dedicated)); 11152 cur_bc.vl[i].dedicated = 11153 new_bc->vl[i].dedicated; 11154 } 11155 } 11156 11157 wait_for_vl_status_clear(dd, ld_mask, "dedicated"); 11158 11159 /* now raise all dedicated that are going up */ 11160 for (i = 0; i < NUM_USABLE_VLS; i++) { 11161 if (!valid_vl(i)) 11162 continue; 11163 11164 if (be16_to_cpu(new_bc->vl[i].dedicated) > 11165 be16_to_cpu(cur_bc.vl[i].dedicated)) 11166 set_vl_dedicated(dd, i, 11167 be16_to_cpu(new_bc-> 11168 vl[i].dedicated)); 11169 } 11170 } 11171 11172 /* next raise all shared that are going up */ 11173 for (i = 0; i < NUM_USABLE_VLS; i++) { 11174 if (!valid_vl(i)) 11175 continue; 11176 11177 if (be16_to_cpu(new_bc->vl[i].shared) > 11178 be16_to_cpu(cur_bc.vl[i].shared)) 11179 set_vl_shared(dd, i, be16_to_cpu(new_bc->vl[i].shared)); 11180 } 11181 11182 /* finally raise the global shared */ 11183 if (be16_to_cpu(new_bc->overall_shared_limit) > 11184 be16_to_cpu(cur_bc.overall_shared_limit)) 11185 set_global_shared(dd, 11186 be16_to_cpu(new_bc->overall_shared_limit)); 11187 11188 /* bracket the credit change with a total adjustment */ 11189 if (new_total < cur_total) 11190 set_global_limit(dd, new_total); 11191 11192 /* 11193 * Determine the actual number of operational VLS using the number of 11194 * dedicated and shared credits for each VL. 11195 */ 11196 if (change_count > 0) { 11197 for (i = 0; i < TXE_NUM_DATA_VL; i++) 11198 if (be16_to_cpu(new_bc->vl[i].dedicated) > 0 || 11199 be16_to_cpu(new_bc->vl[i].shared) > 0) 11200 vl_count++; 11201 ppd->actual_vls_operational = vl_count; 11202 ret = sdma_map_init(dd, ppd->port - 1, vl_count ? 11203 ppd->actual_vls_operational : 11204 ppd->vls_operational, 11205 NULL); 11206 if (ret == 0) 11207 ret = pio_map_init(dd, ppd->port - 1, vl_count ? 11208 ppd->actual_vls_operational : 11209 ppd->vls_operational, NULL); 11210 if (ret) 11211 return ret; 11212 } 11213 return 0; 11214 } 11215 11216 /* 11217 * Read the given fabric manager table. Return the size of the 11218 * table (in bytes) on success, and a negative error code on 11219 * failure. 11220 */ 11221 int fm_get_table(struct hfi1_pportdata *ppd, int which, void *t) 11222 11223 { 11224 int size; 11225 struct vl_arb_cache *vlc; 11226 11227 switch (which) { 11228 case FM_TBL_VL_HIGH_ARB: 11229 size = 256; 11230 /* 11231 * OPA specifies 128 elements (of 2 bytes each), though 11232 * HFI supports only 16 elements in h/w. 11233 */ 11234 vlc = vl_arb_lock_cache(ppd, HI_PRIO_TABLE); 11235 vl_arb_get_cache(vlc, t); 11236 vl_arb_unlock_cache(ppd, HI_PRIO_TABLE); 11237 break; 11238 case FM_TBL_VL_LOW_ARB: 11239 size = 256; 11240 /* 11241 * OPA specifies 128 elements (of 2 bytes each), though 11242 * HFI supports only 16 elements in h/w. 11243 */ 11244 vlc = vl_arb_lock_cache(ppd, LO_PRIO_TABLE); 11245 vl_arb_get_cache(vlc, t); 11246 vl_arb_unlock_cache(ppd, LO_PRIO_TABLE); 11247 break; 11248 case FM_TBL_BUFFER_CONTROL: 11249 size = get_buffer_control(ppd->dd, t, NULL); 11250 break; 11251 case FM_TBL_SC2VLNT: 11252 size = get_sc2vlnt(ppd->dd, t); 11253 break; 11254 case FM_TBL_VL_PREEMPT_ELEMS: 11255 size = 256; 11256 /* OPA specifies 128 elements, of 2 bytes each */ 11257 get_vlarb_preempt(ppd->dd, OPA_MAX_VLS, t); 11258 break; 11259 case FM_TBL_VL_PREEMPT_MATRIX: 11260 size = 256; 11261 /* 11262 * OPA specifies that this is the same size as the VL 11263 * arbitration tables (i.e., 256 bytes). 11264 */ 11265 break; 11266 default: 11267 return -EINVAL; 11268 } 11269 return size; 11270 } 11271 11272 /* 11273 * Write the given fabric manager table. 11274 */ 11275 int fm_set_table(struct hfi1_pportdata *ppd, int which, void *t) 11276 { 11277 int ret = 0; 11278 struct vl_arb_cache *vlc; 11279 11280 switch (which) { 11281 case FM_TBL_VL_HIGH_ARB: 11282 vlc = vl_arb_lock_cache(ppd, HI_PRIO_TABLE); 11283 if (vl_arb_match_cache(vlc, t)) { 11284 vl_arb_unlock_cache(ppd, HI_PRIO_TABLE); 11285 break; 11286 } 11287 vl_arb_set_cache(vlc, t); 11288 vl_arb_unlock_cache(ppd, HI_PRIO_TABLE); 11289 ret = set_vl_weights(ppd, SEND_HIGH_PRIORITY_LIST, 11290 VL_ARB_HIGH_PRIO_TABLE_SIZE, t); 11291 break; 11292 case FM_TBL_VL_LOW_ARB: 11293 vlc = vl_arb_lock_cache(ppd, LO_PRIO_TABLE); 11294 if (vl_arb_match_cache(vlc, t)) { 11295 vl_arb_unlock_cache(ppd, LO_PRIO_TABLE); 11296 break; 11297 } 11298 vl_arb_set_cache(vlc, t); 11299 vl_arb_unlock_cache(ppd, LO_PRIO_TABLE); 11300 ret = set_vl_weights(ppd, SEND_LOW_PRIORITY_LIST, 11301 VL_ARB_LOW_PRIO_TABLE_SIZE, t); 11302 break; 11303 case FM_TBL_BUFFER_CONTROL: 11304 ret = set_buffer_control(ppd, t); 11305 break; 11306 case FM_TBL_SC2VLNT: 11307 set_sc2vlnt(ppd->dd, t); 11308 break; 11309 default: 11310 ret = -EINVAL; 11311 } 11312 return ret; 11313 } 11314 11315 /* 11316 * Disable all data VLs. 11317 * 11318 * Return 0 if disabled, non-zero if the VLs cannot be disabled. 11319 */ 11320 static int disable_data_vls(struct hfi1_devdata *dd) 11321 { 11322 if (is_ax(dd)) 11323 return 1; 11324 11325 pio_send_control(dd, PSC_DATA_VL_DISABLE); 11326 11327 return 0; 11328 } 11329 11330 /* 11331 * open_fill_data_vls() - the counterpart to stop_drain_data_vls(). 11332 * Just re-enables all data VLs (the "fill" part happens 11333 * automatically - the name was chosen for symmetry with 11334 * stop_drain_data_vls()). 11335 * 11336 * Return 0 if successful, non-zero if the VLs cannot be enabled. 11337 */ 11338 int open_fill_data_vls(struct hfi1_devdata *dd) 11339 { 11340 if (is_ax(dd)) 11341 return 1; 11342 11343 pio_send_control(dd, PSC_DATA_VL_ENABLE); 11344 11345 return 0; 11346 } 11347 11348 /* 11349 * drain_data_vls() - assumes that disable_data_vls() has been called, 11350 * wait for occupancy (of per-VL FIFOs) for all contexts, and SDMA 11351 * engines to drop to 0. 11352 */ 11353 static void drain_data_vls(struct hfi1_devdata *dd) 11354 { 11355 sc_wait(dd); 11356 sdma_wait(dd); 11357 pause_for_credit_return(dd); 11358 } 11359 11360 /* 11361 * stop_drain_data_vls() - disable, then drain all per-VL fifos. 11362 * 11363 * Use open_fill_data_vls() to resume using data VLs. This pair is 11364 * meant to be used like this: 11365 * 11366 * stop_drain_data_vls(dd); 11367 * // do things with per-VL resources 11368 * open_fill_data_vls(dd); 11369 */ 11370 int stop_drain_data_vls(struct hfi1_devdata *dd) 11371 { 11372 int ret; 11373 11374 ret = disable_data_vls(dd); 11375 if (ret == 0) 11376 drain_data_vls(dd); 11377 11378 return ret; 11379 } 11380 11381 /* 11382 * Convert a nanosecond time to a cclock count. No matter how slow 11383 * the cclock, a non-zero ns will always have a non-zero result. 11384 */ 11385 u32 ns_to_cclock(struct hfi1_devdata *dd, u32 ns) 11386 { 11387 u32 cclocks; 11388 11389 if (dd->icode == ICODE_FPGA_EMULATION) 11390 cclocks = (ns * 1000) / FPGA_CCLOCK_PS; 11391 else /* simulation pretends to be ASIC */ 11392 cclocks = (ns * 1000) / ASIC_CCLOCK_PS; 11393 if (ns && !cclocks) /* if ns nonzero, must be at least 1 */ 11394 cclocks = 1; 11395 return cclocks; 11396 } 11397 11398 /* 11399 * Convert a cclock count to nanoseconds. Not matter how slow 11400 * the cclock, a non-zero cclocks will always have a non-zero result. 11401 */ 11402 u32 cclock_to_ns(struct hfi1_devdata *dd, u32 cclocks) 11403 { 11404 u32 ns; 11405 11406 if (dd->icode == ICODE_FPGA_EMULATION) 11407 ns = (cclocks * FPGA_CCLOCK_PS) / 1000; 11408 else /* simulation pretends to be ASIC */ 11409 ns = (cclocks * ASIC_CCLOCK_PS) / 1000; 11410 if (cclocks && !ns) 11411 ns = 1; 11412 return ns; 11413 } 11414 11415 /* 11416 * Dynamically adjust the receive interrupt timeout for a context based on 11417 * incoming packet rate. 11418 * 11419 * NOTE: Dynamic adjustment does not allow rcv_intr_count to be zero. 11420 */ 11421 static void adjust_rcv_timeout(struct hfi1_ctxtdata *rcd, u32 npkts) 11422 { 11423 struct hfi1_devdata *dd = rcd->dd; 11424 u32 timeout = rcd->rcvavail_timeout; 11425 11426 /* 11427 * This algorithm doubles or halves the timeout depending on whether 11428 * the number of packets received in this interrupt were less than or 11429 * greater equal the interrupt count. 11430 * 11431 * The calculations below do not allow a steady state to be achieved. 11432 * Only at the endpoints it is possible to have an unchanging 11433 * timeout. 11434 */ 11435 if (npkts < rcv_intr_count) { 11436 /* 11437 * Not enough packets arrived before the timeout, adjust 11438 * timeout downward. 11439 */ 11440 if (timeout < 2) /* already at minimum? */ 11441 return; 11442 timeout >>= 1; 11443 } else { 11444 /* 11445 * More than enough packets arrived before the timeout, adjust 11446 * timeout upward. 11447 */ 11448 if (timeout >= dd->rcv_intr_timeout_csr) /* already at max? */ 11449 return; 11450 timeout = min(timeout << 1, dd->rcv_intr_timeout_csr); 11451 } 11452 11453 rcd->rcvavail_timeout = timeout; 11454 /* 11455 * timeout cannot be larger than rcv_intr_timeout_csr which has already 11456 * been verified to be in range 11457 */ 11458 write_kctxt_csr(dd, rcd->ctxt, RCV_AVAIL_TIME_OUT, 11459 (u64)timeout << 11460 RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_SHIFT); 11461 } 11462 11463 void update_usrhead(struct hfi1_ctxtdata *rcd, u32 hd, u32 updegr, u32 egrhd, 11464 u32 intr_adjust, u32 npkts) 11465 { 11466 struct hfi1_devdata *dd = rcd->dd; 11467 u64 reg; 11468 u32 ctxt = rcd->ctxt; 11469 11470 /* 11471 * Need to write timeout register before updating RcvHdrHead to ensure 11472 * that a new value is used when the HW decides to restart counting. 11473 */ 11474 if (intr_adjust) 11475 adjust_rcv_timeout(rcd, npkts); 11476 if (updegr) { 11477 reg = (egrhd & RCV_EGR_INDEX_HEAD_HEAD_MASK) 11478 << RCV_EGR_INDEX_HEAD_HEAD_SHIFT; 11479 write_uctxt_csr(dd, ctxt, RCV_EGR_INDEX_HEAD, reg); 11480 } 11481 mmiowb(); 11482 reg = ((u64)rcv_intr_count << RCV_HDR_HEAD_COUNTER_SHIFT) | 11483 (((u64)hd & RCV_HDR_HEAD_HEAD_MASK) 11484 << RCV_HDR_HEAD_HEAD_SHIFT); 11485 write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, reg); 11486 mmiowb(); 11487 } 11488 11489 u32 hdrqempty(struct hfi1_ctxtdata *rcd) 11490 { 11491 u32 head, tail; 11492 11493 head = (read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_HEAD) 11494 & RCV_HDR_HEAD_HEAD_SMASK) >> RCV_HDR_HEAD_HEAD_SHIFT; 11495 11496 if (rcd->rcvhdrtail_kvaddr) 11497 tail = get_rcvhdrtail(rcd); 11498 else 11499 tail = read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_TAIL); 11500 11501 return head == tail; 11502 } 11503 11504 /* 11505 * Context Control and Receive Array encoding for buffer size: 11506 * 0x0 invalid 11507 * 0x1 4 KB 11508 * 0x2 8 KB 11509 * 0x3 16 KB 11510 * 0x4 32 KB 11511 * 0x5 64 KB 11512 * 0x6 128 KB 11513 * 0x7 256 KB 11514 * 0x8 512 KB (Receive Array only) 11515 * 0x9 1 MB (Receive Array only) 11516 * 0xa 2 MB (Receive Array only) 11517 * 11518 * 0xB-0xF - reserved (Receive Array only) 11519 * 11520 * 11521 * This routine assumes that the value has already been sanity checked. 11522 */ 11523 static u32 encoded_size(u32 size) 11524 { 11525 switch (size) { 11526 case 4 * 1024: return 0x1; 11527 case 8 * 1024: return 0x2; 11528 case 16 * 1024: return 0x3; 11529 case 32 * 1024: return 0x4; 11530 case 64 * 1024: return 0x5; 11531 case 128 * 1024: return 0x6; 11532 case 256 * 1024: return 0x7; 11533 case 512 * 1024: return 0x8; 11534 case 1 * 1024 * 1024: return 0x9; 11535 case 2 * 1024 * 1024: return 0xa; 11536 } 11537 return 0x1; /* if invalid, go with the minimum size */ 11538 } 11539 11540 void hfi1_rcvctrl(struct hfi1_devdata *dd, unsigned int op, int ctxt) 11541 { 11542 struct hfi1_ctxtdata *rcd; 11543 u64 rcvctrl, reg; 11544 int did_enable = 0; 11545 11546 rcd = dd->rcd[ctxt]; 11547 if (!rcd) 11548 return; 11549 11550 hfi1_cdbg(RCVCTRL, "ctxt %d op 0x%x", ctxt, op); 11551 11552 rcvctrl = read_kctxt_csr(dd, ctxt, RCV_CTXT_CTRL); 11553 /* if the context already enabled, don't do the extra steps */ 11554 if ((op & HFI1_RCVCTRL_CTXT_ENB) && 11555 !(rcvctrl & RCV_CTXT_CTRL_ENABLE_SMASK)) { 11556 /* reset the tail and hdr addresses, and sequence count */ 11557 write_kctxt_csr(dd, ctxt, RCV_HDR_ADDR, 11558 rcd->rcvhdrq_dma); 11559 if (HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL)) 11560 write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR, 11561 rcd->rcvhdrqtailaddr_dma); 11562 rcd->seq_cnt = 1; 11563 11564 /* reset the cached receive header queue head value */ 11565 rcd->head = 0; 11566 11567 /* 11568 * Zero the receive header queue so we don't get false 11569 * positives when checking the sequence number. The 11570 * sequence numbers could land exactly on the same spot. 11571 * E.g. a rcd restart before the receive header wrapped. 11572 */ 11573 memset(rcd->rcvhdrq, 0, rcd->rcvhdrq_size); 11574 11575 /* starting timeout */ 11576 rcd->rcvavail_timeout = dd->rcv_intr_timeout_csr; 11577 11578 /* enable the context */ 11579 rcvctrl |= RCV_CTXT_CTRL_ENABLE_SMASK; 11580 11581 /* clean the egr buffer size first */ 11582 rcvctrl &= ~RCV_CTXT_CTRL_EGR_BUF_SIZE_SMASK; 11583 rcvctrl |= ((u64)encoded_size(rcd->egrbufs.rcvtid_size) 11584 & RCV_CTXT_CTRL_EGR_BUF_SIZE_MASK) 11585 << RCV_CTXT_CTRL_EGR_BUF_SIZE_SHIFT; 11586 11587 /* zero RcvHdrHead - set RcvHdrHead.Counter after enable */ 11588 write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0); 11589 did_enable = 1; 11590 11591 /* zero RcvEgrIndexHead */ 11592 write_uctxt_csr(dd, ctxt, RCV_EGR_INDEX_HEAD, 0); 11593 11594 /* set eager count and base index */ 11595 reg = (((u64)(rcd->egrbufs.alloced >> RCV_SHIFT) 11596 & RCV_EGR_CTRL_EGR_CNT_MASK) 11597 << RCV_EGR_CTRL_EGR_CNT_SHIFT) | 11598 (((rcd->eager_base >> RCV_SHIFT) 11599 & RCV_EGR_CTRL_EGR_BASE_INDEX_MASK) 11600 << RCV_EGR_CTRL_EGR_BASE_INDEX_SHIFT); 11601 write_kctxt_csr(dd, ctxt, RCV_EGR_CTRL, reg); 11602 11603 /* 11604 * Set TID (expected) count and base index. 11605 * rcd->expected_count is set to individual RcvArray entries, 11606 * not pairs, and the CSR takes a pair-count in groups of 11607 * four, so divide by 8. 11608 */ 11609 reg = (((rcd->expected_count >> RCV_SHIFT) 11610 & RCV_TID_CTRL_TID_PAIR_CNT_MASK) 11611 << RCV_TID_CTRL_TID_PAIR_CNT_SHIFT) | 11612 (((rcd->expected_base >> RCV_SHIFT) 11613 & RCV_TID_CTRL_TID_BASE_INDEX_MASK) 11614 << RCV_TID_CTRL_TID_BASE_INDEX_SHIFT); 11615 write_kctxt_csr(dd, ctxt, RCV_TID_CTRL, reg); 11616 if (ctxt == HFI1_CTRL_CTXT) 11617 write_csr(dd, RCV_VL15, HFI1_CTRL_CTXT); 11618 } 11619 if (op & HFI1_RCVCTRL_CTXT_DIS) { 11620 write_csr(dd, RCV_VL15, 0); 11621 /* 11622 * When receive context is being disabled turn on tail 11623 * update with a dummy tail address and then disable 11624 * receive context. 11625 */ 11626 if (dd->rcvhdrtail_dummy_dma) { 11627 write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR, 11628 dd->rcvhdrtail_dummy_dma); 11629 /* Enabling RcvCtxtCtrl.TailUpd is intentional. */ 11630 rcvctrl |= RCV_CTXT_CTRL_TAIL_UPD_SMASK; 11631 } 11632 11633 rcvctrl &= ~RCV_CTXT_CTRL_ENABLE_SMASK; 11634 } 11635 if (op & HFI1_RCVCTRL_INTRAVAIL_ENB) 11636 rcvctrl |= RCV_CTXT_CTRL_INTR_AVAIL_SMASK; 11637 if (op & HFI1_RCVCTRL_INTRAVAIL_DIS) 11638 rcvctrl &= ~RCV_CTXT_CTRL_INTR_AVAIL_SMASK; 11639 if (op & HFI1_RCVCTRL_TAILUPD_ENB && rcd->rcvhdrqtailaddr_dma) 11640 rcvctrl |= RCV_CTXT_CTRL_TAIL_UPD_SMASK; 11641 if (op & HFI1_RCVCTRL_TAILUPD_DIS) { 11642 /* See comment on RcvCtxtCtrl.TailUpd above */ 11643 if (!(op & HFI1_RCVCTRL_CTXT_DIS)) 11644 rcvctrl &= ~RCV_CTXT_CTRL_TAIL_UPD_SMASK; 11645 } 11646 if (op & HFI1_RCVCTRL_TIDFLOW_ENB) 11647 rcvctrl |= RCV_CTXT_CTRL_TID_FLOW_ENABLE_SMASK; 11648 if (op & HFI1_RCVCTRL_TIDFLOW_DIS) 11649 rcvctrl &= ~RCV_CTXT_CTRL_TID_FLOW_ENABLE_SMASK; 11650 if (op & HFI1_RCVCTRL_ONE_PKT_EGR_ENB) { 11651 /* 11652 * In one-packet-per-eager mode, the size comes from 11653 * the RcvArray entry. 11654 */ 11655 rcvctrl &= ~RCV_CTXT_CTRL_EGR_BUF_SIZE_SMASK; 11656 rcvctrl |= RCV_CTXT_CTRL_ONE_PACKET_PER_EGR_BUFFER_SMASK; 11657 } 11658 if (op & HFI1_RCVCTRL_ONE_PKT_EGR_DIS) 11659 rcvctrl &= ~RCV_CTXT_CTRL_ONE_PACKET_PER_EGR_BUFFER_SMASK; 11660 if (op & HFI1_RCVCTRL_NO_RHQ_DROP_ENB) 11661 rcvctrl |= RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK; 11662 if (op & HFI1_RCVCTRL_NO_RHQ_DROP_DIS) 11663 rcvctrl &= ~RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK; 11664 if (op & HFI1_RCVCTRL_NO_EGR_DROP_ENB) 11665 rcvctrl |= RCV_CTXT_CTRL_DONT_DROP_EGR_FULL_SMASK; 11666 if (op & HFI1_RCVCTRL_NO_EGR_DROP_DIS) 11667 rcvctrl &= ~RCV_CTXT_CTRL_DONT_DROP_EGR_FULL_SMASK; 11668 rcd->rcvctrl = rcvctrl; 11669 hfi1_cdbg(RCVCTRL, "ctxt %d rcvctrl 0x%llx\n", ctxt, rcvctrl); 11670 write_kctxt_csr(dd, ctxt, RCV_CTXT_CTRL, rcd->rcvctrl); 11671 11672 /* work around sticky RcvCtxtStatus.BlockedRHQFull */ 11673 if (did_enable && 11674 (rcvctrl & RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK)) { 11675 reg = read_kctxt_csr(dd, ctxt, RCV_CTXT_STATUS); 11676 if (reg != 0) { 11677 dd_dev_info(dd, "ctxt %d status %lld (blocked)\n", 11678 ctxt, reg); 11679 read_uctxt_csr(dd, ctxt, RCV_HDR_HEAD); 11680 write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0x10); 11681 write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0x00); 11682 read_uctxt_csr(dd, ctxt, RCV_HDR_HEAD); 11683 reg = read_kctxt_csr(dd, ctxt, RCV_CTXT_STATUS); 11684 dd_dev_info(dd, "ctxt %d status %lld (%s blocked)\n", 11685 ctxt, reg, reg == 0 ? "not" : "still"); 11686 } 11687 } 11688 11689 if (did_enable) { 11690 /* 11691 * The interrupt timeout and count must be set after 11692 * the context is enabled to take effect. 11693 */ 11694 /* set interrupt timeout */ 11695 write_kctxt_csr(dd, ctxt, RCV_AVAIL_TIME_OUT, 11696 (u64)rcd->rcvavail_timeout << 11697 RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_SHIFT); 11698 11699 /* set RcvHdrHead.Counter, zero RcvHdrHead.Head (again) */ 11700 reg = (u64)rcv_intr_count << RCV_HDR_HEAD_COUNTER_SHIFT; 11701 write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, reg); 11702 } 11703 11704 if (op & (HFI1_RCVCTRL_TAILUPD_DIS | HFI1_RCVCTRL_CTXT_DIS)) 11705 /* 11706 * If the context has been disabled and the Tail Update has 11707 * been cleared, set the RCV_HDR_TAIL_ADDR CSR to dummy address 11708 * so it doesn't contain an address that is invalid. 11709 */ 11710 write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR, 11711 dd->rcvhdrtail_dummy_dma); 11712 } 11713 11714 u32 hfi1_read_cntrs(struct hfi1_devdata *dd, char **namep, u64 **cntrp) 11715 { 11716 int ret; 11717 u64 val = 0; 11718 11719 if (namep) { 11720 ret = dd->cntrnameslen; 11721 *namep = dd->cntrnames; 11722 } else { 11723 const struct cntr_entry *entry; 11724 int i, j; 11725 11726 ret = (dd->ndevcntrs) * sizeof(u64); 11727 11728 /* Get the start of the block of counters */ 11729 *cntrp = dd->cntrs; 11730 11731 /* 11732 * Now go and fill in each counter in the block. 11733 */ 11734 for (i = 0; i < DEV_CNTR_LAST; i++) { 11735 entry = &dev_cntrs[i]; 11736 hfi1_cdbg(CNTR, "reading %s", entry->name); 11737 if (entry->flags & CNTR_DISABLED) { 11738 /* Nothing */ 11739 hfi1_cdbg(CNTR, "\tDisabled\n"); 11740 } else { 11741 if (entry->flags & CNTR_VL) { 11742 hfi1_cdbg(CNTR, "\tPer VL\n"); 11743 for (j = 0; j < C_VL_COUNT; j++) { 11744 val = entry->rw_cntr(entry, 11745 dd, j, 11746 CNTR_MODE_R, 11747 0); 11748 hfi1_cdbg( 11749 CNTR, 11750 "\t\tRead 0x%llx for %d\n", 11751 val, j); 11752 dd->cntrs[entry->offset + j] = 11753 val; 11754 } 11755 } else if (entry->flags & CNTR_SDMA) { 11756 hfi1_cdbg(CNTR, 11757 "\t Per SDMA Engine\n"); 11758 for (j = 0; j < dd->chip_sdma_engines; 11759 j++) { 11760 val = 11761 entry->rw_cntr(entry, dd, j, 11762 CNTR_MODE_R, 0); 11763 hfi1_cdbg(CNTR, 11764 "\t\tRead 0x%llx for %d\n", 11765 val, j); 11766 dd->cntrs[entry->offset + j] = 11767 val; 11768 } 11769 } else { 11770 val = entry->rw_cntr(entry, dd, 11771 CNTR_INVALID_VL, 11772 CNTR_MODE_R, 0); 11773 dd->cntrs[entry->offset] = val; 11774 hfi1_cdbg(CNTR, "\tRead 0x%llx", val); 11775 } 11776 } 11777 } 11778 } 11779 return ret; 11780 } 11781 11782 /* 11783 * Used by sysfs to create files for hfi stats to read 11784 */ 11785 u32 hfi1_read_portcntrs(struct hfi1_pportdata *ppd, char **namep, u64 **cntrp) 11786 { 11787 int ret; 11788 u64 val = 0; 11789 11790 if (namep) { 11791 ret = ppd->dd->portcntrnameslen; 11792 *namep = ppd->dd->portcntrnames; 11793 } else { 11794 const struct cntr_entry *entry; 11795 int i, j; 11796 11797 ret = ppd->dd->nportcntrs * sizeof(u64); 11798 *cntrp = ppd->cntrs; 11799 11800 for (i = 0; i < PORT_CNTR_LAST; i++) { 11801 entry = &port_cntrs[i]; 11802 hfi1_cdbg(CNTR, "reading %s", entry->name); 11803 if (entry->flags & CNTR_DISABLED) { 11804 /* Nothing */ 11805 hfi1_cdbg(CNTR, "\tDisabled\n"); 11806 continue; 11807 } 11808 11809 if (entry->flags & CNTR_VL) { 11810 hfi1_cdbg(CNTR, "\tPer VL"); 11811 for (j = 0; j < C_VL_COUNT; j++) { 11812 val = entry->rw_cntr(entry, ppd, j, 11813 CNTR_MODE_R, 11814 0); 11815 hfi1_cdbg( 11816 CNTR, 11817 "\t\tRead 0x%llx for %d", 11818 val, j); 11819 ppd->cntrs[entry->offset + j] = val; 11820 } 11821 } else { 11822 val = entry->rw_cntr(entry, ppd, 11823 CNTR_INVALID_VL, 11824 CNTR_MODE_R, 11825 0); 11826 ppd->cntrs[entry->offset] = val; 11827 hfi1_cdbg(CNTR, "\tRead 0x%llx", val); 11828 } 11829 } 11830 } 11831 return ret; 11832 } 11833 11834 static void free_cntrs(struct hfi1_devdata *dd) 11835 { 11836 struct hfi1_pportdata *ppd; 11837 int i; 11838 11839 if (dd->synth_stats_timer.data) 11840 del_timer_sync(&dd->synth_stats_timer); 11841 dd->synth_stats_timer.data = 0; 11842 ppd = (struct hfi1_pportdata *)(dd + 1); 11843 for (i = 0; i < dd->num_pports; i++, ppd++) { 11844 kfree(ppd->cntrs); 11845 kfree(ppd->scntrs); 11846 free_percpu(ppd->ibport_data.rvp.rc_acks); 11847 free_percpu(ppd->ibport_data.rvp.rc_qacks); 11848 free_percpu(ppd->ibport_data.rvp.rc_delayed_comp); 11849 ppd->cntrs = NULL; 11850 ppd->scntrs = NULL; 11851 ppd->ibport_data.rvp.rc_acks = NULL; 11852 ppd->ibport_data.rvp.rc_qacks = NULL; 11853 ppd->ibport_data.rvp.rc_delayed_comp = NULL; 11854 } 11855 kfree(dd->portcntrnames); 11856 dd->portcntrnames = NULL; 11857 kfree(dd->cntrs); 11858 dd->cntrs = NULL; 11859 kfree(dd->scntrs); 11860 dd->scntrs = NULL; 11861 kfree(dd->cntrnames); 11862 dd->cntrnames = NULL; 11863 } 11864 11865 static u64 read_dev_port_cntr(struct hfi1_devdata *dd, struct cntr_entry *entry, 11866 u64 *psval, void *context, int vl) 11867 { 11868 u64 val; 11869 u64 sval = *psval; 11870 11871 if (entry->flags & CNTR_DISABLED) { 11872 dd_dev_err(dd, "Counter %s not enabled", entry->name); 11873 return 0; 11874 } 11875 11876 hfi1_cdbg(CNTR, "cntr: %s vl %d psval 0x%llx", entry->name, vl, *psval); 11877 11878 val = entry->rw_cntr(entry, context, vl, CNTR_MODE_R, 0); 11879 11880 /* If its a synthetic counter there is more work we need to do */ 11881 if (entry->flags & CNTR_SYNTH) { 11882 if (sval == CNTR_MAX) { 11883 /* No need to read already saturated */ 11884 return CNTR_MAX; 11885 } 11886 11887 if (entry->flags & CNTR_32BIT) { 11888 /* 32bit counters can wrap multiple times */ 11889 u64 upper = sval >> 32; 11890 u64 lower = (sval << 32) >> 32; 11891 11892 if (lower > val) { /* hw wrapped */ 11893 if (upper == CNTR_32BIT_MAX) 11894 val = CNTR_MAX; 11895 else 11896 upper++; 11897 } 11898 11899 if (val != CNTR_MAX) 11900 val = (upper << 32) | val; 11901 11902 } else { 11903 /* If we rolled we are saturated */ 11904 if ((val < sval) || (val > CNTR_MAX)) 11905 val = CNTR_MAX; 11906 } 11907 } 11908 11909 *psval = val; 11910 11911 hfi1_cdbg(CNTR, "\tNew val=0x%llx", val); 11912 11913 return val; 11914 } 11915 11916 static u64 write_dev_port_cntr(struct hfi1_devdata *dd, 11917 struct cntr_entry *entry, 11918 u64 *psval, void *context, int vl, u64 data) 11919 { 11920 u64 val; 11921 11922 if (entry->flags & CNTR_DISABLED) { 11923 dd_dev_err(dd, "Counter %s not enabled", entry->name); 11924 return 0; 11925 } 11926 11927 hfi1_cdbg(CNTR, "cntr: %s vl %d psval 0x%llx", entry->name, vl, *psval); 11928 11929 if (entry->flags & CNTR_SYNTH) { 11930 *psval = data; 11931 if (entry->flags & CNTR_32BIT) { 11932 val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W, 11933 (data << 32) >> 32); 11934 val = data; /* return the full 64bit value */ 11935 } else { 11936 val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W, 11937 data); 11938 } 11939 } else { 11940 val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W, data); 11941 } 11942 11943 *psval = val; 11944 11945 hfi1_cdbg(CNTR, "\tNew val=0x%llx", val); 11946 11947 return val; 11948 } 11949 11950 u64 read_dev_cntr(struct hfi1_devdata *dd, int index, int vl) 11951 { 11952 struct cntr_entry *entry; 11953 u64 *sval; 11954 11955 entry = &dev_cntrs[index]; 11956 sval = dd->scntrs + entry->offset; 11957 11958 if (vl != CNTR_INVALID_VL) 11959 sval += vl; 11960 11961 return read_dev_port_cntr(dd, entry, sval, dd, vl); 11962 } 11963 11964 u64 write_dev_cntr(struct hfi1_devdata *dd, int index, int vl, u64 data) 11965 { 11966 struct cntr_entry *entry; 11967 u64 *sval; 11968 11969 entry = &dev_cntrs[index]; 11970 sval = dd->scntrs + entry->offset; 11971 11972 if (vl != CNTR_INVALID_VL) 11973 sval += vl; 11974 11975 return write_dev_port_cntr(dd, entry, sval, dd, vl, data); 11976 } 11977 11978 u64 read_port_cntr(struct hfi1_pportdata *ppd, int index, int vl) 11979 { 11980 struct cntr_entry *entry; 11981 u64 *sval; 11982 11983 entry = &port_cntrs[index]; 11984 sval = ppd->scntrs + entry->offset; 11985 11986 if (vl != CNTR_INVALID_VL) 11987 sval += vl; 11988 11989 if ((index >= C_RCV_HDR_OVF_FIRST + ppd->dd->num_rcv_contexts) && 11990 (index <= C_RCV_HDR_OVF_LAST)) { 11991 /* We do not want to bother for disabled contexts */ 11992 return 0; 11993 } 11994 11995 return read_dev_port_cntr(ppd->dd, entry, sval, ppd, vl); 11996 } 11997 11998 u64 write_port_cntr(struct hfi1_pportdata *ppd, int index, int vl, u64 data) 11999 { 12000 struct cntr_entry *entry; 12001 u64 *sval; 12002 12003 entry = &port_cntrs[index]; 12004 sval = ppd->scntrs + entry->offset; 12005 12006 if (vl != CNTR_INVALID_VL) 12007 sval += vl; 12008 12009 if ((index >= C_RCV_HDR_OVF_FIRST + ppd->dd->num_rcv_contexts) && 12010 (index <= C_RCV_HDR_OVF_LAST)) { 12011 /* We do not want to bother for disabled contexts */ 12012 return 0; 12013 } 12014 12015 return write_dev_port_cntr(ppd->dd, entry, sval, ppd, vl, data); 12016 } 12017 12018 static void update_synth_timer(unsigned long opaque) 12019 { 12020 u64 cur_tx; 12021 u64 cur_rx; 12022 u64 total_flits; 12023 u8 update = 0; 12024 int i, j, vl; 12025 struct hfi1_pportdata *ppd; 12026 struct cntr_entry *entry; 12027 12028 struct hfi1_devdata *dd = (struct hfi1_devdata *)opaque; 12029 12030 /* 12031 * Rather than keep beating on the CSRs pick a minimal set that we can 12032 * check to watch for potential roll over. We can do this by looking at 12033 * the number of flits sent/recv. If the total flits exceeds 32bits then 12034 * we have to iterate all the counters and update. 12035 */ 12036 entry = &dev_cntrs[C_DC_RCV_FLITS]; 12037 cur_rx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL, CNTR_MODE_R, 0); 12038 12039 entry = &dev_cntrs[C_DC_XMIT_FLITS]; 12040 cur_tx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL, CNTR_MODE_R, 0); 12041 12042 hfi1_cdbg( 12043 CNTR, 12044 "[%d] curr tx=0x%llx rx=0x%llx :: last tx=0x%llx rx=0x%llx\n", 12045 dd->unit, cur_tx, cur_rx, dd->last_tx, dd->last_rx); 12046 12047 if ((cur_tx < dd->last_tx) || (cur_rx < dd->last_rx)) { 12048 /* 12049 * May not be strictly necessary to update but it won't hurt and 12050 * simplifies the logic here. 12051 */ 12052 update = 1; 12053 hfi1_cdbg(CNTR, "[%d] Tripwire counter rolled, updating", 12054 dd->unit); 12055 } else { 12056 total_flits = (cur_tx - dd->last_tx) + (cur_rx - dd->last_rx); 12057 hfi1_cdbg(CNTR, 12058 "[%d] total flits 0x%llx limit 0x%llx\n", dd->unit, 12059 total_flits, (u64)CNTR_32BIT_MAX); 12060 if (total_flits >= CNTR_32BIT_MAX) { 12061 hfi1_cdbg(CNTR, "[%d] 32bit limit hit, updating", 12062 dd->unit); 12063 update = 1; 12064 } 12065 } 12066 12067 if (update) { 12068 hfi1_cdbg(CNTR, "[%d] Updating dd and ppd counters", dd->unit); 12069 for (i = 0; i < DEV_CNTR_LAST; i++) { 12070 entry = &dev_cntrs[i]; 12071 if (entry->flags & CNTR_VL) { 12072 for (vl = 0; vl < C_VL_COUNT; vl++) 12073 read_dev_cntr(dd, i, vl); 12074 } else { 12075 read_dev_cntr(dd, i, CNTR_INVALID_VL); 12076 } 12077 } 12078 ppd = (struct hfi1_pportdata *)(dd + 1); 12079 for (i = 0; i < dd->num_pports; i++, ppd++) { 12080 for (j = 0; j < PORT_CNTR_LAST; j++) { 12081 entry = &port_cntrs[j]; 12082 if (entry->flags & CNTR_VL) { 12083 for (vl = 0; vl < C_VL_COUNT; vl++) 12084 read_port_cntr(ppd, j, vl); 12085 } else { 12086 read_port_cntr(ppd, j, CNTR_INVALID_VL); 12087 } 12088 } 12089 } 12090 12091 /* 12092 * We want the value in the register. The goal is to keep track 12093 * of the number of "ticks" not the counter value. In other 12094 * words if the register rolls we want to notice it and go ahead 12095 * and force an update. 12096 */ 12097 entry = &dev_cntrs[C_DC_XMIT_FLITS]; 12098 dd->last_tx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL, 12099 CNTR_MODE_R, 0); 12100 12101 entry = &dev_cntrs[C_DC_RCV_FLITS]; 12102 dd->last_rx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL, 12103 CNTR_MODE_R, 0); 12104 12105 hfi1_cdbg(CNTR, "[%d] setting last tx/rx to 0x%llx 0x%llx", 12106 dd->unit, dd->last_tx, dd->last_rx); 12107 12108 } else { 12109 hfi1_cdbg(CNTR, "[%d] No update necessary", dd->unit); 12110 } 12111 12112 mod_timer(&dd->synth_stats_timer, jiffies + HZ * SYNTH_CNT_TIME); 12113 } 12114 12115 #define C_MAX_NAME 13 /* 12 chars + one for /0 */ 12116 static int init_cntrs(struct hfi1_devdata *dd) 12117 { 12118 int i, rcv_ctxts, j; 12119 size_t sz; 12120 char *p; 12121 char name[C_MAX_NAME]; 12122 struct hfi1_pportdata *ppd; 12123 const char *bit_type_32 = ",32"; 12124 const int bit_type_32_sz = strlen(bit_type_32); 12125 12126 /* set up the stats timer; the add_timer is done at the end */ 12127 setup_timer(&dd->synth_stats_timer, update_synth_timer, 12128 (unsigned long)dd); 12129 12130 /***********************/ 12131 /* per device counters */ 12132 /***********************/ 12133 12134 /* size names and determine how many we have*/ 12135 dd->ndevcntrs = 0; 12136 sz = 0; 12137 12138 for (i = 0; i < DEV_CNTR_LAST; i++) { 12139 if (dev_cntrs[i].flags & CNTR_DISABLED) { 12140 hfi1_dbg_early("\tSkipping %s\n", dev_cntrs[i].name); 12141 continue; 12142 } 12143 12144 if (dev_cntrs[i].flags & CNTR_VL) { 12145 dev_cntrs[i].offset = dd->ndevcntrs; 12146 for (j = 0; j < C_VL_COUNT; j++) { 12147 snprintf(name, C_MAX_NAME, "%s%d", 12148 dev_cntrs[i].name, vl_from_idx(j)); 12149 sz += strlen(name); 12150 /* Add ",32" for 32-bit counters */ 12151 if (dev_cntrs[i].flags & CNTR_32BIT) 12152 sz += bit_type_32_sz; 12153 sz++; 12154 dd->ndevcntrs++; 12155 } 12156 } else if (dev_cntrs[i].flags & CNTR_SDMA) { 12157 dev_cntrs[i].offset = dd->ndevcntrs; 12158 for (j = 0; j < dd->chip_sdma_engines; j++) { 12159 snprintf(name, C_MAX_NAME, "%s%d", 12160 dev_cntrs[i].name, j); 12161 sz += strlen(name); 12162 /* Add ",32" for 32-bit counters */ 12163 if (dev_cntrs[i].flags & CNTR_32BIT) 12164 sz += bit_type_32_sz; 12165 sz++; 12166 dd->ndevcntrs++; 12167 } 12168 } else { 12169 /* +1 for newline. */ 12170 sz += strlen(dev_cntrs[i].name) + 1; 12171 /* Add ",32" for 32-bit counters */ 12172 if (dev_cntrs[i].flags & CNTR_32BIT) 12173 sz += bit_type_32_sz; 12174 dev_cntrs[i].offset = dd->ndevcntrs; 12175 dd->ndevcntrs++; 12176 } 12177 } 12178 12179 /* allocate space for the counter values */ 12180 dd->cntrs = kcalloc(dd->ndevcntrs, sizeof(u64), GFP_KERNEL); 12181 if (!dd->cntrs) 12182 goto bail; 12183 12184 dd->scntrs = kcalloc(dd->ndevcntrs, sizeof(u64), GFP_KERNEL); 12185 if (!dd->scntrs) 12186 goto bail; 12187 12188 /* allocate space for the counter names */ 12189 dd->cntrnameslen = sz; 12190 dd->cntrnames = kmalloc(sz, GFP_KERNEL); 12191 if (!dd->cntrnames) 12192 goto bail; 12193 12194 /* fill in the names */ 12195 for (p = dd->cntrnames, i = 0; i < DEV_CNTR_LAST; i++) { 12196 if (dev_cntrs[i].flags & CNTR_DISABLED) { 12197 /* Nothing */ 12198 } else if (dev_cntrs[i].flags & CNTR_VL) { 12199 for (j = 0; j < C_VL_COUNT; j++) { 12200 snprintf(name, C_MAX_NAME, "%s%d", 12201 dev_cntrs[i].name, 12202 vl_from_idx(j)); 12203 memcpy(p, name, strlen(name)); 12204 p += strlen(name); 12205 12206 /* Counter is 32 bits */ 12207 if (dev_cntrs[i].flags & CNTR_32BIT) { 12208 memcpy(p, bit_type_32, bit_type_32_sz); 12209 p += bit_type_32_sz; 12210 } 12211 12212 *p++ = '\n'; 12213 } 12214 } else if (dev_cntrs[i].flags & CNTR_SDMA) { 12215 for (j = 0; j < dd->chip_sdma_engines; j++) { 12216 snprintf(name, C_MAX_NAME, "%s%d", 12217 dev_cntrs[i].name, j); 12218 memcpy(p, name, strlen(name)); 12219 p += strlen(name); 12220 12221 /* Counter is 32 bits */ 12222 if (dev_cntrs[i].flags & CNTR_32BIT) { 12223 memcpy(p, bit_type_32, bit_type_32_sz); 12224 p += bit_type_32_sz; 12225 } 12226 12227 *p++ = '\n'; 12228 } 12229 } else { 12230 memcpy(p, dev_cntrs[i].name, strlen(dev_cntrs[i].name)); 12231 p += strlen(dev_cntrs[i].name); 12232 12233 /* Counter is 32 bits */ 12234 if (dev_cntrs[i].flags & CNTR_32BIT) { 12235 memcpy(p, bit_type_32, bit_type_32_sz); 12236 p += bit_type_32_sz; 12237 } 12238 12239 *p++ = '\n'; 12240 } 12241 } 12242 12243 /*********************/ 12244 /* per port counters */ 12245 /*********************/ 12246 12247 /* 12248 * Go through the counters for the overflows and disable the ones we 12249 * don't need. This varies based on platform so we need to do it 12250 * dynamically here. 12251 */ 12252 rcv_ctxts = dd->num_rcv_contexts; 12253 for (i = C_RCV_HDR_OVF_FIRST + rcv_ctxts; 12254 i <= C_RCV_HDR_OVF_LAST; i++) { 12255 port_cntrs[i].flags |= CNTR_DISABLED; 12256 } 12257 12258 /* size port counter names and determine how many we have*/ 12259 sz = 0; 12260 dd->nportcntrs = 0; 12261 for (i = 0; i < PORT_CNTR_LAST; i++) { 12262 if (port_cntrs[i].flags & CNTR_DISABLED) { 12263 hfi1_dbg_early("\tSkipping %s\n", port_cntrs[i].name); 12264 continue; 12265 } 12266 12267 if (port_cntrs[i].flags & CNTR_VL) { 12268 port_cntrs[i].offset = dd->nportcntrs; 12269 for (j = 0; j < C_VL_COUNT; j++) { 12270 snprintf(name, C_MAX_NAME, "%s%d", 12271 port_cntrs[i].name, vl_from_idx(j)); 12272 sz += strlen(name); 12273 /* Add ",32" for 32-bit counters */ 12274 if (port_cntrs[i].flags & CNTR_32BIT) 12275 sz += bit_type_32_sz; 12276 sz++; 12277 dd->nportcntrs++; 12278 } 12279 } else { 12280 /* +1 for newline */ 12281 sz += strlen(port_cntrs[i].name) + 1; 12282 /* Add ",32" for 32-bit counters */ 12283 if (port_cntrs[i].flags & CNTR_32BIT) 12284 sz += bit_type_32_sz; 12285 port_cntrs[i].offset = dd->nportcntrs; 12286 dd->nportcntrs++; 12287 } 12288 } 12289 12290 /* allocate space for the counter names */ 12291 dd->portcntrnameslen = sz; 12292 dd->portcntrnames = kmalloc(sz, GFP_KERNEL); 12293 if (!dd->portcntrnames) 12294 goto bail; 12295 12296 /* fill in port cntr names */ 12297 for (p = dd->portcntrnames, i = 0; i < PORT_CNTR_LAST; i++) { 12298 if (port_cntrs[i].flags & CNTR_DISABLED) 12299 continue; 12300 12301 if (port_cntrs[i].flags & CNTR_VL) { 12302 for (j = 0; j < C_VL_COUNT; j++) { 12303 snprintf(name, C_MAX_NAME, "%s%d", 12304 port_cntrs[i].name, vl_from_idx(j)); 12305 memcpy(p, name, strlen(name)); 12306 p += strlen(name); 12307 12308 /* Counter is 32 bits */ 12309 if (port_cntrs[i].flags & CNTR_32BIT) { 12310 memcpy(p, bit_type_32, bit_type_32_sz); 12311 p += bit_type_32_sz; 12312 } 12313 12314 *p++ = '\n'; 12315 } 12316 } else { 12317 memcpy(p, port_cntrs[i].name, 12318 strlen(port_cntrs[i].name)); 12319 p += strlen(port_cntrs[i].name); 12320 12321 /* Counter is 32 bits */ 12322 if (port_cntrs[i].flags & CNTR_32BIT) { 12323 memcpy(p, bit_type_32, bit_type_32_sz); 12324 p += bit_type_32_sz; 12325 } 12326 12327 *p++ = '\n'; 12328 } 12329 } 12330 12331 /* allocate per port storage for counter values */ 12332 ppd = (struct hfi1_pportdata *)(dd + 1); 12333 for (i = 0; i < dd->num_pports; i++, ppd++) { 12334 ppd->cntrs = kcalloc(dd->nportcntrs, sizeof(u64), GFP_KERNEL); 12335 if (!ppd->cntrs) 12336 goto bail; 12337 12338 ppd->scntrs = kcalloc(dd->nportcntrs, sizeof(u64), GFP_KERNEL); 12339 if (!ppd->scntrs) 12340 goto bail; 12341 } 12342 12343 /* CPU counters need to be allocated and zeroed */ 12344 if (init_cpu_counters(dd)) 12345 goto bail; 12346 12347 mod_timer(&dd->synth_stats_timer, jiffies + HZ * SYNTH_CNT_TIME); 12348 return 0; 12349 bail: 12350 free_cntrs(dd); 12351 return -ENOMEM; 12352 } 12353 12354 static u32 chip_to_opa_lstate(struct hfi1_devdata *dd, u32 chip_lstate) 12355 { 12356 switch (chip_lstate) { 12357 default: 12358 dd_dev_err(dd, 12359 "Unknown logical state 0x%x, reporting IB_PORT_DOWN\n", 12360 chip_lstate); 12361 /* fall through */ 12362 case LSTATE_DOWN: 12363 return IB_PORT_DOWN; 12364 case LSTATE_INIT: 12365 return IB_PORT_INIT; 12366 case LSTATE_ARMED: 12367 return IB_PORT_ARMED; 12368 case LSTATE_ACTIVE: 12369 return IB_PORT_ACTIVE; 12370 } 12371 } 12372 12373 u32 chip_to_opa_pstate(struct hfi1_devdata *dd, u32 chip_pstate) 12374 { 12375 /* look at the HFI meta-states only */ 12376 switch (chip_pstate & 0xf0) { 12377 default: 12378 dd_dev_err(dd, "Unexpected chip physical state of 0x%x\n", 12379 chip_pstate); 12380 /* fall through */ 12381 case PLS_DISABLED: 12382 return IB_PORTPHYSSTATE_DISABLED; 12383 case PLS_OFFLINE: 12384 return OPA_PORTPHYSSTATE_OFFLINE; 12385 case PLS_POLLING: 12386 return IB_PORTPHYSSTATE_POLLING; 12387 case PLS_CONFIGPHY: 12388 return IB_PORTPHYSSTATE_TRAINING; 12389 case PLS_LINKUP: 12390 return IB_PORTPHYSSTATE_LINKUP; 12391 case PLS_PHYTEST: 12392 return IB_PORTPHYSSTATE_PHY_TEST; 12393 } 12394 } 12395 12396 /* return the OPA port logical state name */ 12397 const char *opa_lstate_name(u32 lstate) 12398 { 12399 static const char * const port_logical_names[] = { 12400 "PORT_NOP", 12401 "PORT_DOWN", 12402 "PORT_INIT", 12403 "PORT_ARMED", 12404 "PORT_ACTIVE", 12405 "PORT_ACTIVE_DEFER", 12406 }; 12407 if (lstate < ARRAY_SIZE(port_logical_names)) 12408 return port_logical_names[lstate]; 12409 return "unknown"; 12410 } 12411 12412 /* return the OPA port physical state name */ 12413 const char *opa_pstate_name(u32 pstate) 12414 { 12415 static const char * const port_physical_names[] = { 12416 "PHYS_NOP", 12417 "reserved1", 12418 "PHYS_POLL", 12419 "PHYS_DISABLED", 12420 "PHYS_TRAINING", 12421 "PHYS_LINKUP", 12422 "PHYS_LINK_ERR_RECOVER", 12423 "PHYS_PHY_TEST", 12424 "reserved8", 12425 "PHYS_OFFLINE", 12426 "PHYS_GANGED", 12427 "PHYS_TEST", 12428 }; 12429 if (pstate < ARRAY_SIZE(port_physical_names)) 12430 return port_physical_names[pstate]; 12431 return "unknown"; 12432 } 12433 12434 /* 12435 * Read the hardware link state and set the driver's cached value of it. 12436 * Return the (new) current value. 12437 */ 12438 u32 get_logical_state(struct hfi1_pportdata *ppd) 12439 { 12440 u32 new_state; 12441 12442 new_state = chip_to_opa_lstate(ppd->dd, read_logical_state(ppd->dd)); 12443 if (new_state != ppd->lstate) { 12444 dd_dev_info(ppd->dd, "logical state changed to %s (0x%x)\n", 12445 opa_lstate_name(new_state), new_state); 12446 ppd->lstate = new_state; 12447 } 12448 /* 12449 * Set port status flags in the page mapped into userspace 12450 * memory. Do it here to ensure a reliable state - this is 12451 * the only function called by all state handling code. 12452 * Always set the flags due to the fact that the cache value 12453 * might have been changed explicitly outside of this 12454 * function. 12455 */ 12456 if (ppd->statusp) { 12457 switch (ppd->lstate) { 12458 case IB_PORT_DOWN: 12459 case IB_PORT_INIT: 12460 *ppd->statusp &= ~(HFI1_STATUS_IB_CONF | 12461 HFI1_STATUS_IB_READY); 12462 break; 12463 case IB_PORT_ARMED: 12464 *ppd->statusp |= HFI1_STATUS_IB_CONF; 12465 break; 12466 case IB_PORT_ACTIVE: 12467 *ppd->statusp |= HFI1_STATUS_IB_READY; 12468 break; 12469 } 12470 } 12471 return ppd->lstate; 12472 } 12473 12474 /** 12475 * wait_logical_linkstate - wait for an IB link state change to occur 12476 * @ppd: port device 12477 * @state: the state to wait for 12478 * @msecs: the number of milliseconds to wait 12479 * 12480 * Wait up to msecs milliseconds for IB link state change to occur. 12481 * For now, take the easy polling route. 12482 * Returns 0 if state reached, otherwise -ETIMEDOUT. 12483 */ 12484 static int wait_logical_linkstate(struct hfi1_pportdata *ppd, u32 state, 12485 int msecs) 12486 { 12487 unsigned long timeout; 12488 12489 timeout = jiffies + msecs_to_jiffies(msecs); 12490 while (1) { 12491 if (get_logical_state(ppd) == state) 12492 return 0; 12493 if (time_after(jiffies, timeout)) 12494 break; 12495 msleep(20); 12496 } 12497 dd_dev_err(ppd->dd, "timeout waiting for link state 0x%x\n", state); 12498 12499 return -ETIMEDOUT; 12500 } 12501 12502 u8 hfi1_ibphys_portstate(struct hfi1_pportdata *ppd) 12503 { 12504 u32 pstate; 12505 u32 ib_pstate; 12506 12507 pstate = read_physical_state(ppd->dd); 12508 ib_pstate = chip_to_opa_pstate(ppd->dd, pstate); 12509 if (ppd->last_pstate != ib_pstate) { 12510 dd_dev_info(ppd->dd, 12511 "%s: physical state changed to %s (0x%x), phy 0x%x\n", 12512 __func__, opa_pstate_name(ib_pstate), ib_pstate, 12513 pstate); 12514 ppd->last_pstate = ib_pstate; 12515 } 12516 return ib_pstate; 12517 } 12518 12519 #define CLEAR_STATIC_RATE_CONTROL_SMASK(r) \ 12520 (r &= ~SEND_CTXT_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK) 12521 12522 #define SET_STATIC_RATE_CONTROL_SMASK(r) \ 12523 (r |= SEND_CTXT_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK) 12524 12525 int hfi1_init_ctxt(struct send_context *sc) 12526 { 12527 if (sc) { 12528 struct hfi1_devdata *dd = sc->dd; 12529 u64 reg; 12530 u8 set = (sc->type == SC_USER ? 12531 HFI1_CAP_IS_USET(STATIC_RATE_CTRL) : 12532 HFI1_CAP_IS_KSET(STATIC_RATE_CTRL)); 12533 reg = read_kctxt_csr(dd, sc->hw_context, 12534 SEND_CTXT_CHECK_ENABLE); 12535 if (set) 12536 CLEAR_STATIC_RATE_CONTROL_SMASK(reg); 12537 else 12538 SET_STATIC_RATE_CONTROL_SMASK(reg); 12539 write_kctxt_csr(dd, sc->hw_context, 12540 SEND_CTXT_CHECK_ENABLE, reg); 12541 } 12542 return 0; 12543 } 12544 12545 int hfi1_tempsense_rd(struct hfi1_devdata *dd, struct hfi1_temp *temp) 12546 { 12547 int ret = 0; 12548 u64 reg; 12549 12550 if (dd->icode != ICODE_RTL_SILICON) { 12551 if (HFI1_CAP_IS_KSET(PRINT_UNIMPL)) 12552 dd_dev_info(dd, "%s: tempsense not supported by HW\n", 12553 __func__); 12554 return -EINVAL; 12555 } 12556 reg = read_csr(dd, ASIC_STS_THERM); 12557 temp->curr = ((reg >> ASIC_STS_THERM_CURR_TEMP_SHIFT) & 12558 ASIC_STS_THERM_CURR_TEMP_MASK); 12559 temp->lo_lim = ((reg >> ASIC_STS_THERM_LO_TEMP_SHIFT) & 12560 ASIC_STS_THERM_LO_TEMP_MASK); 12561 temp->hi_lim = ((reg >> ASIC_STS_THERM_HI_TEMP_SHIFT) & 12562 ASIC_STS_THERM_HI_TEMP_MASK); 12563 temp->crit_lim = ((reg >> ASIC_STS_THERM_CRIT_TEMP_SHIFT) & 12564 ASIC_STS_THERM_CRIT_TEMP_MASK); 12565 /* triggers is a 3-bit value - 1 bit per trigger. */ 12566 temp->triggers = (u8)((reg >> ASIC_STS_THERM_LOW_SHIFT) & 0x7); 12567 12568 return ret; 12569 } 12570 12571 /* ========================================================================= */ 12572 12573 /* 12574 * Enable/disable chip from delivering interrupts. 12575 */ 12576 void set_intr_state(struct hfi1_devdata *dd, u32 enable) 12577 { 12578 int i; 12579 12580 /* 12581 * In HFI, the mask needs to be 1 to allow interrupts. 12582 */ 12583 if (enable) { 12584 /* enable all interrupts */ 12585 for (i = 0; i < CCE_NUM_INT_CSRS; i++) 12586 write_csr(dd, CCE_INT_MASK + (8 * i), ~(u64)0); 12587 12588 init_qsfp_int(dd); 12589 } else { 12590 for (i = 0; i < CCE_NUM_INT_CSRS; i++) 12591 write_csr(dd, CCE_INT_MASK + (8 * i), 0ull); 12592 } 12593 } 12594 12595 /* 12596 * Clear all interrupt sources on the chip. 12597 */ 12598 static void clear_all_interrupts(struct hfi1_devdata *dd) 12599 { 12600 int i; 12601 12602 for (i = 0; i < CCE_NUM_INT_CSRS; i++) 12603 write_csr(dd, CCE_INT_CLEAR + (8 * i), ~(u64)0); 12604 12605 write_csr(dd, CCE_ERR_CLEAR, ~(u64)0); 12606 write_csr(dd, MISC_ERR_CLEAR, ~(u64)0); 12607 write_csr(dd, RCV_ERR_CLEAR, ~(u64)0); 12608 write_csr(dd, SEND_ERR_CLEAR, ~(u64)0); 12609 write_csr(dd, SEND_PIO_ERR_CLEAR, ~(u64)0); 12610 write_csr(dd, SEND_DMA_ERR_CLEAR, ~(u64)0); 12611 write_csr(dd, SEND_EGRESS_ERR_CLEAR, ~(u64)0); 12612 for (i = 0; i < dd->chip_send_contexts; i++) 12613 write_kctxt_csr(dd, i, SEND_CTXT_ERR_CLEAR, ~(u64)0); 12614 for (i = 0; i < dd->chip_sdma_engines; i++) 12615 write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_CLEAR, ~(u64)0); 12616 12617 write_csr(dd, DCC_ERR_FLG_CLR, ~(u64)0); 12618 write_csr(dd, DC_LCB_ERR_CLR, ~(u64)0); 12619 write_csr(dd, DC_DC8051_ERR_CLR, ~(u64)0); 12620 } 12621 12622 /* Move to pcie.c? */ 12623 static void disable_intx(struct pci_dev *pdev) 12624 { 12625 pci_intx(pdev, 0); 12626 } 12627 12628 static void clean_up_interrupts(struct hfi1_devdata *dd) 12629 { 12630 int i; 12631 12632 /* remove irqs - must happen before disabling/turning off */ 12633 if (dd->num_msix_entries) { 12634 /* MSI-X */ 12635 struct hfi1_msix_entry *me = dd->msix_entries; 12636 12637 for (i = 0; i < dd->num_msix_entries; i++, me++) { 12638 if (!me->arg) /* => no irq, no affinity */ 12639 continue; 12640 hfi1_put_irq_affinity(dd, &dd->msix_entries[i]); 12641 free_irq(me->msix.vector, me->arg); 12642 } 12643 } else { 12644 /* INTx */ 12645 if (dd->requested_intx_irq) { 12646 free_irq(dd->pcidev->irq, dd); 12647 dd->requested_intx_irq = 0; 12648 } 12649 } 12650 12651 /* turn off interrupts */ 12652 if (dd->num_msix_entries) { 12653 /* MSI-X */ 12654 pci_disable_msix(dd->pcidev); 12655 } else { 12656 /* INTx */ 12657 disable_intx(dd->pcidev); 12658 } 12659 12660 /* clean structures */ 12661 kfree(dd->msix_entries); 12662 dd->msix_entries = NULL; 12663 dd->num_msix_entries = 0; 12664 } 12665 12666 /* 12667 * Remap the interrupt source from the general handler to the given MSI-X 12668 * interrupt. 12669 */ 12670 static void remap_intr(struct hfi1_devdata *dd, int isrc, int msix_intr) 12671 { 12672 u64 reg; 12673 int m, n; 12674 12675 /* clear from the handled mask of the general interrupt */ 12676 m = isrc / 64; 12677 n = isrc % 64; 12678 dd->gi_mask[m] &= ~((u64)1 << n); 12679 12680 /* direct the chip source to the given MSI-X interrupt */ 12681 m = isrc / 8; 12682 n = isrc % 8; 12683 reg = read_csr(dd, CCE_INT_MAP + (8 * m)); 12684 reg &= ~((u64)0xff << (8 * n)); 12685 reg |= ((u64)msix_intr & 0xff) << (8 * n); 12686 write_csr(dd, CCE_INT_MAP + (8 * m), reg); 12687 } 12688 12689 static void remap_sdma_interrupts(struct hfi1_devdata *dd, 12690 int engine, int msix_intr) 12691 { 12692 /* 12693 * SDMA engine interrupt sources grouped by type, rather than 12694 * engine. Per-engine interrupts are as follows: 12695 * SDMA 12696 * SDMAProgress 12697 * SDMAIdle 12698 */ 12699 remap_intr(dd, IS_SDMA_START + 0 * TXE_NUM_SDMA_ENGINES + engine, 12700 msix_intr); 12701 remap_intr(dd, IS_SDMA_START + 1 * TXE_NUM_SDMA_ENGINES + engine, 12702 msix_intr); 12703 remap_intr(dd, IS_SDMA_START + 2 * TXE_NUM_SDMA_ENGINES + engine, 12704 msix_intr); 12705 } 12706 12707 static int request_intx_irq(struct hfi1_devdata *dd) 12708 { 12709 int ret; 12710 12711 snprintf(dd->intx_name, sizeof(dd->intx_name), DRIVER_NAME "_%d", 12712 dd->unit); 12713 ret = request_irq(dd->pcidev->irq, general_interrupt, 12714 IRQF_SHARED, dd->intx_name, dd); 12715 if (ret) 12716 dd_dev_err(dd, "unable to request INTx interrupt, err %d\n", 12717 ret); 12718 else 12719 dd->requested_intx_irq = 1; 12720 return ret; 12721 } 12722 12723 static int request_msix_irqs(struct hfi1_devdata *dd) 12724 { 12725 int first_general, last_general; 12726 int first_sdma, last_sdma; 12727 int first_rx, last_rx; 12728 int i, ret = 0; 12729 12730 /* calculate the ranges we are going to use */ 12731 first_general = 0; 12732 last_general = first_general + 1; 12733 first_sdma = last_general; 12734 last_sdma = first_sdma + dd->num_sdma; 12735 first_rx = last_sdma; 12736 last_rx = first_rx + dd->n_krcv_queues; 12737 12738 /* 12739 * Sanity check - the code expects all SDMA chip source 12740 * interrupts to be in the same CSR, starting at bit 0. Verify 12741 * that this is true by checking the bit location of the start. 12742 */ 12743 BUILD_BUG_ON(IS_SDMA_START % 64); 12744 12745 for (i = 0; i < dd->num_msix_entries; i++) { 12746 struct hfi1_msix_entry *me = &dd->msix_entries[i]; 12747 const char *err_info; 12748 irq_handler_t handler; 12749 irq_handler_t thread = NULL; 12750 void *arg; 12751 int idx; 12752 struct hfi1_ctxtdata *rcd = NULL; 12753 struct sdma_engine *sde = NULL; 12754 12755 /* obtain the arguments to request_irq */ 12756 if (first_general <= i && i < last_general) { 12757 idx = i - first_general; 12758 handler = general_interrupt; 12759 arg = dd; 12760 snprintf(me->name, sizeof(me->name), 12761 DRIVER_NAME "_%d", dd->unit); 12762 err_info = "general"; 12763 me->type = IRQ_GENERAL; 12764 } else if (first_sdma <= i && i < last_sdma) { 12765 idx = i - first_sdma; 12766 sde = &dd->per_sdma[idx]; 12767 handler = sdma_interrupt; 12768 arg = sde; 12769 snprintf(me->name, sizeof(me->name), 12770 DRIVER_NAME "_%d sdma%d", dd->unit, idx); 12771 err_info = "sdma"; 12772 remap_sdma_interrupts(dd, idx, i); 12773 me->type = IRQ_SDMA; 12774 } else if (first_rx <= i && i < last_rx) { 12775 idx = i - first_rx; 12776 rcd = dd->rcd[idx]; 12777 /* no interrupt if no rcd */ 12778 if (!rcd) 12779 continue; 12780 /* 12781 * Set the interrupt register and mask for this 12782 * context's interrupt. 12783 */ 12784 rcd->ireg = (IS_RCVAVAIL_START + idx) / 64; 12785 rcd->imask = ((u64)1) << 12786 ((IS_RCVAVAIL_START + idx) % 64); 12787 handler = receive_context_interrupt; 12788 thread = receive_context_thread; 12789 arg = rcd; 12790 snprintf(me->name, sizeof(me->name), 12791 DRIVER_NAME "_%d kctxt%d", dd->unit, idx); 12792 err_info = "receive context"; 12793 remap_intr(dd, IS_RCVAVAIL_START + idx, i); 12794 me->type = IRQ_RCVCTXT; 12795 } else { 12796 /* not in our expected range - complain, then 12797 * ignore it 12798 */ 12799 dd_dev_err(dd, 12800 "Unexpected extra MSI-X interrupt %d\n", i); 12801 continue; 12802 } 12803 /* no argument, no interrupt */ 12804 if (!arg) 12805 continue; 12806 /* make sure the name is terminated */ 12807 me->name[sizeof(me->name) - 1] = 0; 12808 12809 ret = request_threaded_irq(me->msix.vector, handler, thread, 0, 12810 me->name, arg); 12811 if (ret) { 12812 dd_dev_err(dd, 12813 "unable to allocate %s interrupt, vector %d, index %d, err %d\n", 12814 err_info, me->msix.vector, idx, ret); 12815 return ret; 12816 } 12817 /* 12818 * assign arg after request_irq call, so it will be 12819 * cleaned up 12820 */ 12821 me->arg = arg; 12822 12823 ret = hfi1_get_irq_affinity(dd, me); 12824 if (ret) 12825 dd_dev_err(dd, 12826 "unable to pin IRQ %d\n", ret); 12827 } 12828 12829 return ret; 12830 } 12831 12832 /* 12833 * Set the general handler to accept all interrupts, remap all 12834 * chip interrupts back to MSI-X 0. 12835 */ 12836 static void reset_interrupts(struct hfi1_devdata *dd) 12837 { 12838 int i; 12839 12840 /* all interrupts handled by the general handler */ 12841 for (i = 0; i < CCE_NUM_INT_CSRS; i++) 12842 dd->gi_mask[i] = ~(u64)0; 12843 12844 /* all chip interrupts map to MSI-X 0 */ 12845 for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++) 12846 write_csr(dd, CCE_INT_MAP + (8 * i), 0); 12847 } 12848 12849 static int set_up_interrupts(struct hfi1_devdata *dd) 12850 { 12851 struct hfi1_msix_entry *entries; 12852 u32 total, request; 12853 int i, ret; 12854 int single_interrupt = 0; /* we expect to have all the interrupts */ 12855 12856 /* 12857 * Interrupt count: 12858 * 1 general, "slow path" interrupt (includes the SDMA engines 12859 * slow source, SDMACleanupDone) 12860 * N interrupts - one per used SDMA engine 12861 * M interrupt - one per kernel receive context 12862 */ 12863 total = 1 + dd->num_sdma + dd->n_krcv_queues; 12864 12865 entries = kcalloc(total, sizeof(*entries), GFP_KERNEL); 12866 if (!entries) { 12867 ret = -ENOMEM; 12868 goto fail; 12869 } 12870 /* 1-1 MSI-X entry assignment */ 12871 for (i = 0; i < total; i++) 12872 entries[i].msix.entry = i; 12873 12874 /* ask for MSI-X interrupts */ 12875 request = total; 12876 request_msix(dd, &request, entries); 12877 12878 if (request == 0) { 12879 /* using INTx */ 12880 /* dd->num_msix_entries already zero */ 12881 kfree(entries); 12882 single_interrupt = 1; 12883 dd_dev_err(dd, "MSI-X failed, using INTx interrupts\n"); 12884 } else { 12885 /* using MSI-X */ 12886 dd->num_msix_entries = request; 12887 dd->msix_entries = entries; 12888 12889 if (request != total) { 12890 /* using MSI-X, with reduced interrupts */ 12891 dd_dev_err( 12892 dd, 12893 "cannot handle reduced interrupt case, want %u, got %u\n", 12894 total, request); 12895 ret = -EINVAL; 12896 goto fail; 12897 } 12898 dd_dev_info(dd, "%u MSI-X interrupts allocated\n", total); 12899 } 12900 12901 /* mask all interrupts */ 12902 set_intr_state(dd, 0); 12903 /* clear all pending interrupts */ 12904 clear_all_interrupts(dd); 12905 12906 /* reset general handler mask, chip MSI-X mappings */ 12907 reset_interrupts(dd); 12908 12909 if (single_interrupt) 12910 ret = request_intx_irq(dd); 12911 else 12912 ret = request_msix_irqs(dd); 12913 if (ret) 12914 goto fail; 12915 12916 return 0; 12917 12918 fail: 12919 clean_up_interrupts(dd); 12920 return ret; 12921 } 12922 12923 /* 12924 * Set up context values in dd. Sets: 12925 * 12926 * num_rcv_contexts - number of contexts being used 12927 * n_krcv_queues - number of kernel contexts 12928 * first_user_ctxt - first non-kernel context in array of contexts 12929 * freectxts - number of free user contexts 12930 * num_send_contexts - number of PIO send contexts being used 12931 */ 12932 static int set_up_context_variables(struct hfi1_devdata *dd) 12933 { 12934 unsigned long num_kernel_contexts; 12935 int total_contexts; 12936 int ret; 12937 unsigned ngroups; 12938 int qos_rmt_count; 12939 int user_rmt_reduced; 12940 12941 /* 12942 * Kernel receive contexts: 12943 * - Context 0 - control context (VL15/multicast/error) 12944 * - Context 1 - first kernel context 12945 * - Context 2 - second kernel context 12946 * ... 12947 */ 12948 if (n_krcvqs) 12949 /* 12950 * n_krcvqs is the sum of module parameter kernel receive 12951 * contexts, krcvqs[]. It does not include the control 12952 * context, so add that. 12953 */ 12954 num_kernel_contexts = n_krcvqs + 1; 12955 else 12956 num_kernel_contexts = DEFAULT_KRCVQS + 1; 12957 /* 12958 * Every kernel receive context needs an ACK send context. 12959 * one send context is allocated for each VL{0-7} and VL15 12960 */ 12961 if (num_kernel_contexts > (dd->chip_send_contexts - num_vls - 1)) { 12962 dd_dev_err(dd, 12963 "Reducing # kernel rcv contexts to: %d, from %lu\n", 12964 (int)(dd->chip_send_contexts - num_vls - 1), 12965 num_kernel_contexts); 12966 num_kernel_contexts = dd->chip_send_contexts - num_vls - 1; 12967 } 12968 /* 12969 * User contexts: 12970 * - default to 1 user context per real (non-HT) CPU core if 12971 * num_user_contexts is negative 12972 */ 12973 if (num_user_contexts < 0) 12974 num_user_contexts = 12975 cpumask_weight(&node_affinity.real_cpu_mask); 12976 12977 total_contexts = num_kernel_contexts + num_user_contexts; 12978 12979 /* 12980 * Adjust the counts given a global max. 12981 */ 12982 if (total_contexts > dd->chip_rcv_contexts) { 12983 dd_dev_err(dd, 12984 "Reducing # user receive contexts to: %d, from %d\n", 12985 (int)(dd->chip_rcv_contexts - num_kernel_contexts), 12986 (int)num_user_contexts); 12987 num_user_contexts = dd->chip_rcv_contexts - num_kernel_contexts; 12988 /* recalculate */ 12989 total_contexts = num_kernel_contexts + num_user_contexts; 12990 } 12991 12992 /* each user context requires an entry in the RMT */ 12993 qos_rmt_count = qos_rmt_entries(dd, NULL, NULL); 12994 if (qos_rmt_count + num_user_contexts > NUM_MAP_ENTRIES) { 12995 user_rmt_reduced = NUM_MAP_ENTRIES - qos_rmt_count; 12996 dd_dev_err(dd, 12997 "RMT size is reducing the number of user receive contexts from %d to %d\n", 12998 (int)num_user_contexts, 12999 user_rmt_reduced); 13000 /* recalculate */ 13001 num_user_contexts = user_rmt_reduced; 13002 total_contexts = num_kernel_contexts + num_user_contexts; 13003 } 13004 13005 /* the first N are kernel contexts, the rest are user contexts */ 13006 dd->num_rcv_contexts = total_contexts; 13007 dd->n_krcv_queues = num_kernel_contexts; 13008 dd->first_user_ctxt = num_kernel_contexts; 13009 dd->num_user_contexts = num_user_contexts; 13010 dd->freectxts = num_user_contexts; 13011 dd_dev_info(dd, 13012 "rcv contexts: chip %d, used %d (kernel %d, user %d)\n", 13013 (int)dd->chip_rcv_contexts, 13014 (int)dd->num_rcv_contexts, 13015 (int)dd->n_krcv_queues, 13016 (int)dd->num_rcv_contexts - dd->n_krcv_queues); 13017 13018 /* 13019 * Receive array allocation: 13020 * All RcvArray entries are divided into groups of 8. This 13021 * is required by the hardware and will speed up writes to 13022 * consecutive entries by using write-combining of the entire 13023 * cacheline. 13024 * 13025 * The number of groups are evenly divided among all contexts. 13026 * any left over groups will be given to the first N user 13027 * contexts. 13028 */ 13029 dd->rcv_entries.group_size = RCV_INCREMENT; 13030 ngroups = dd->chip_rcv_array_count / dd->rcv_entries.group_size; 13031 dd->rcv_entries.ngroups = ngroups / dd->num_rcv_contexts; 13032 dd->rcv_entries.nctxt_extra = ngroups - 13033 (dd->num_rcv_contexts * dd->rcv_entries.ngroups); 13034 dd_dev_info(dd, "RcvArray groups %u, ctxts extra %u\n", 13035 dd->rcv_entries.ngroups, 13036 dd->rcv_entries.nctxt_extra); 13037 if (dd->rcv_entries.ngroups * dd->rcv_entries.group_size > 13038 MAX_EAGER_ENTRIES * 2) { 13039 dd->rcv_entries.ngroups = (MAX_EAGER_ENTRIES * 2) / 13040 dd->rcv_entries.group_size; 13041 dd_dev_info(dd, 13042 "RcvArray group count too high, change to %u\n", 13043 dd->rcv_entries.ngroups); 13044 dd->rcv_entries.nctxt_extra = 0; 13045 } 13046 /* 13047 * PIO send contexts 13048 */ 13049 ret = init_sc_pools_and_sizes(dd); 13050 if (ret >= 0) { /* success */ 13051 dd->num_send_contexts = ret; 13052 dd_dev_info( 13053 dd, 13054 "send contexts: chip %d, used %d (kernel %d, ack %d, user %d, vl15 %d)\n", 13055 dd->chip_send_contexts, 13056 dd->num_send_contexts, 13057 dd->sc_sizes[SC_KERNEL].count, 13058 dd->sc_sizes[SC_ACK].count, 13059 dd->sc_sizes[SC_USER].count, 13060 dd->sc_sizes[SC_VL15].count); 13061 ret = 0; /* success */ 13062 } 13063 13064 return ret; 13065 } 13066 13067 /* 13068 * Set the device/port partition key table. The MAD code 13069 * will ensure that, at least, the partial management 13070 * partition key is present in the table. 13071 */ 13072 static void set_partition_keys(struct hfi1_pportdata *ppd) 13073 { 13074 struct hfi1_devdata *dd = ppd->dd; 13075 u64 reg = 0; 13076 int i; 13077 13078 dd_dev_info(dd, "Setting partition keys\n"); 13079 for (i = 0; i < hfi1_get_npkeys(dd); i++) { 13080 reg |= (ppd->pkeys[i] & 13081 RCV_PARTITION_KEY_PARTITION_KEY_A_MASK) << 13082 ((i % 4) * 13083 RCV_PARTITION_KEY_PARTITION_KEY_B_SHIFT); 13084 /* Each register holds 4 PKey values. */ 13085 if ((i % 4) == 3) { 13086 write_csr(dd, RCV_PARTITION_KEY + 13087 ((i - 3) * 2), reg); 13088 reg = 0; 13089 } 13090 } 13091 13092 /* Always enable HW pkeys check when pkeys table is set */ 13093 add_rcvctrl(dd, RCV_CTRL_RCV_PARTITION_KEY_ENABLE_SMASK); 13094 } 13095 13096 /* 13097 * These CSRs and memories are uninitialized on reset and must be 13098 * written before reading to set the ECC/parity bits. 13099 * 13100 * NOTE: All user context CSRs that are not mmaped write-only 13101 * (e.g. the TID flows) must be initialized even if the driver never 13102 * reads them. 13103 */ 13104 static void write_uninitialized_csrs_and_memories(struct hfi1_devdata *dd) 13105 { 13106 int i, j; 13107 13108 /* CceIntMap */ 13109 for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++) 13110 write_csr(dd, CCE_INT_MAP + (8 * i), 0); 13111 13112 /* SendCtxtCreditReturnAddr */ 13113 for (i = 0; i < dd->chip_send_contexts; i++) 13114 write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_RETURN_ADDR, 0); 13115 13116 /* PIO Send buffers */ 13117 /* SDMA Send buffers */ 13118 /* 13119 * These are not normally read, and (presently) have no method 13120 * to be read, so are not pre-initialized 13121 */ 13122 13123 /* RcvHdrAddr */ 13124 /* RcvHdrTailAddr */ 13125 /* RcvTidFlowTable */ 13126 for (i = 0; i < dd->chip_rcv_contexts; i++) { 13127 write_kctxt_csr(dd, i, RCV_HDR_ADDR, 0); 13128 write_kctxt_csr(dd, i, RCV_HDR_TAIL_ADDR, 0); 13129 for (j = 0; j < RXE_NUM_TID_FLOWS; j++) 13130 write_uctxt_csr(dd, i, RCV_TID_FLOW_TABLE + (8 * j), 0); 13131 } 13132 13133 /* RcvArray */ 13134 for (i = 0; i < dd->chip_rcv_array_count; i++) 13135 write_csr(dd, RCV_ARRAY + (8 * i), 13136 RCV_ARRAY_RT_WRITE_ENABLE_SMASK); 13137 13138 /* RcvQPMapTable */ 13139 for (i = 0; i < 32; i++) 13140 write_csr(dd, RCV_QP_MAP_TABLE + (8 * i), 0); 13141 } 13142 13143 /* 13144 * Use the ctrl_bits in CceCtrl to clear the status_bits in CceStatus. 13145 */ 13146 static void clear_cce_status(struct hfi1_devdata *dd, u64 status_bits, 13147 u64 ctrl_bits) 13148 { 13149 unsigned long timeout; 13150 u64 reg; 13151 13152 /* is the condition present? */ 13153 reg = read_csr(dd, CCE_STATUS); 13154 if ((reg & status_bits) == 0) 13155 return; 13156 13157 /* clear the condition */ 13158 write_csr(dd, CCE_CTRL, ctrl_bits); 13159 13160 /* wait for the condition to clear */ 13161 timeout = jiffies + msecs_to_jiffies(CCE_STATUS_TIMEOUT); 13162 while (1) { 13163 reg = read_csr(dd, CCE_STATUS); 13164 if ((reg & status_bits) == 0) 13165 return; 13166 if (time_after(jiffies, timeout)) { 13167 dd_dev_err(dd, 13168 "Timeout waiting for CceStatus to clear bits 0x%llx, remaining 0x%llx\n", 13169 status_bits, reg & status_bits); 13170 return; 13171 } 13172 udelay(1); 13173 } 13174 } 13175 13176 /* set CCE CSRs to chip reset defaults */ 13177 static void reset_cce_csrs(struct hfi1_devdata *dd) 13178 { 13179 int i; 13180 13181 /* CCE_REVISION read-only */ 13182 /* CCE_REVISION2 read-only */ 13183 /* CCE_CTRL - bits clear automatically */ 13184 /* CCE_STATUS read-only, use CceCtrl to clear */ 13185 clear_cce_status(dd, ALL_FROZE, CCE_CTRL_SPC_UNFREEZE_SMASK); 13186 clear_cce_status(dd, ALL_TXE_PAUSE, CCE_CTRL_TXE_RESUME_SMASK); 13187 clear_cce_status(dd, ALL_RXE_PAUSE, CCE_CTRL_RXE_RESUME_SMASK); 13188 for (i = 0; i < CCE_NUM_SCRATCH; i++) 13189 write_csr(dd, CCE_SCRATCH + (8 * i), 0); 13190 /* CCE_ERR_STATUS read-only */ 13191 write_csr(dd, CCE_ERR_MASK, 0); 13192 write_csr(dd, CCE_ERR_CLEAR, ~0ull); 13193 /* CCE_ERR_FORCE leave alone */ 13194 for (i = 0; i < CCE_NUM_32_BIT_COUNTERS; i++) 13195 write_csr(dd, CCE_COUNTER_ARRAY32 + (8 * i), 0); 13196 write_csr(dd, CCE_DC_CTRL, CCE_DC_CTRL_RESETCSR); 13197 /* CCE_PCIE_CTRL leave alone */ 13198 for (i = 0; i < CCE_NUM_MSIX_VECTORS; i++) { 13199 write_csr(dd, CCE_MSIX_TABLE_LOWER + (8 * i), 0); 13200 write_csr(dd, CCE_MSIX_TABLE_UPPER + (8 * i), 13201 CCE_MSIX_TABLE_UPPER_RESETCSR); 13202 } 13203 for (i = 0; i < CCE_NUM_MSIX_PBAS; i++) { 13204 /* CCE_MSIX_PBA read-only */ 13205 write_csr(dd, CCE_MSIX_INT_GRANTED, ~0ull); 13206 write_csr(dd, CCE_MSIX_VEC_CLR_WITHOUT_INT, ~0ull); 13207 } 13208 for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++) 13209 write_csr(dd, CCE_INT_MAP, 0); 13210 for (i = 0; i < CCE_NUM_INT_CSRS; i++) { 13211 /* CCE_INT_STATUS read-only */ 13212 write_csr(dd, CCE_INT_MASK + (8 * i), 0); 13213 write_csr(dd, CCE_INT_CLEAR + (8 * i), ~0ull); 13214 /* CCE_INT_FORCE leave alone */ 13215 /* CCE_INT_BLOCKED read-only */ 13216 } 13217 for (i = 0; i < CCE_NUM_32_BIT_INT_COUNTERS; i++) 13218 write_csr(dd, CCE_INT_COUNTER_ARRAY32 + (8 * i), 0); 13219 } 13220 13221 /* set MISC CSRs to chip reset defaults */ 13222 static void reset_misc_csrs(struct hfi1_devdata *dd) 13223 { 13224 int i; 13225 13226 for (i = 0; i < 32; i++) { 13227 write_csr(dd, MISC_CFG_RSA_R2 + (8 * i), 0); 13228 write_csr(dd, MISC_CFG_RSA_SIGNATURE + (8 * i), 0); 13229 write_csr(dd, MISC_CFG_RSA_MODULUS + (8 * i), 0); 13230 } 13231 /* 13232 * MISC_CFG_SHA_PRELOAD leave alone - always reads 0 and can 13233 * only be written 128-byte chunks 13234 */ 13235 /* init RSA engine to clear lingering errors */ 13236 write_csr(dd, MISC_CFG_RSA_CMD, 1); 13237 write_csr(dd, MISC_CFG_RSA_MU, 0); 13238 write_csr(dd, MISC_CFG_FW_CTRL, 0); 13239 /* MISC_STS_8051_DIGEST read-only */ 13240 /* MISC_STS_SBM_DIGEST read-only */ 13241 /* MISC_STS_PCIE_DIGEST read-only */ 13242 /* MISC_STS_FAB_DIGEST read-only */ 13243 /* MISC_ERR_STATUS read-only */ 13244 write_csr(dd, MISC_ERR_MASK, 0); 13245 write_csr(dd, MISC_ERR_CLEAR, ~0ull); 13246 /* MISC_ERR_FORCE leave alone */ 13247 } 13248 13249 /* set TXE CSRs to chip reset defaults */ 13250 static void reset_txe_csrs(struct hfi1_devdata *dd) 13251 { 13252 int i; 13253 13254 /* 13255 * TXE Kernel CSRs 13256 */ 13257 write_csr(dd, SEND_CTRL, 0); 13258 __cm_reset(dd, 0); /* reset CM internal state */ 13259 /* SEND_CONTEXTS read-only */ 13260 /* SEND_DMA_ENGINES read-only */ 13261 /* SEND_PIO_MEM_SIZE read-only */ 13262 /* SEND_DMA_MEM_SIZE read-only */ 13263 write_csr(dd, SEND_HIGH_PRIORITY_LIMIT, 0); 13264 pio_reset_all(dd); /* SEND_PIO_INIT_CTXT */ 13265 /* SEND_PIO_ERR_STATUS read-only */ 13266 write_csr(dd, SEND_PIO_ERR_MASK, 0); 13267 write_csr(dd, SEND_PIO_ERR_CLEAR, ~0ull); 13268 /* SEND_PIO_ERR_FORCE leave alone */ 13269 /* SEND_DMA_ERR_STATUS read-only */ 13270 write_csr(dd, SEND_DMA_ERR_MASK, 0); 13271 write_csr(dd, SEND_DMA_ERR_CLEAR, ~0ull); 13272 /* SEND_DMA_ERR_FORCE leave alone */ 13273 /* SEND_EGRESS_ERR_STATUS read-only */ 13274 write_csr(dd, SEND_EGRESS_ERR_MASK, 0); 13275 write_csr(dd, SEND_EGRESS_ERR_CLEAR, ~0ull); 13276 /* SEND_EGRESS_ERR_FORCE leave alone */ 13277 write_csr(dd, SEND_BTH_QP, 0); 13278 write_csr(dd, SEND_STATIC_RATE_CONTROL, 0); 13279 write_csr(dd, SEND_SC2VLT0, 0); 13280 write_csr(dd, SEND_SC2VLT1, 0); 13281 write_csr(dd, SEND_SC2VLT2, 0); 13282 write_csr(dd, SEND_SC2VLT3, 0); 13283 write_csr(dd, SEND_LEN_CHECK0, 0); 13284 write_csr(dd, SEND_LEN_CHECK1, 0); 13285 /* SEND_ERR_STATUS read-only */ 13286 write_csr(dd, SEND_ERR_MASK, 0); 13287 write_csr(dd, SEND_ERR_CLEAR, ~0ull); 13288 /* SEND_ERR_FORCE read-only */ 13289 for (i = 0; i < VL_ARB_LOW_PRIO_TABLE_SIZE; i++) 13290 write_csr(dd, SEND_LOW_PRIORITY_LIST + (8 * i), 0); 13291 for (i = 0; i < VL_ARB_HIGH_PRIO_TABLE_SIZE; i++) 13292 write_csr(dd, SEND_HIGH_PRIORITY_LIST + (8 * i), 0); 13293 for (i = 0; i < dd->chip_send_contexts / NUM_CONTEXTS_PER_SET; i++) 13294 write_csr(dd, SEND_CONTEXT_SET_CTRL + (8 * i), 0); 13295 for (i = 0; i < TXE_NUM_32_BIT_COUNTER; i++) 13296 write_csr(dd, SEND_COUNTER_ARRAY32 + (8 * i), 0); 13297 for (i = 0; i < TXE_NUM_64_BIT_COUNTER; i++) 13298 write_csr(dd, SEND_COUNTER_ARRAY64 + (8 * i), 0); 13299 write_csr(dd, SEND_CM_CTRL, SEND_CM_CTRL_RESETCSR); 13300 write_csr(dd, SEND_CM_GLOBAL_CREDIT, SEND_CM_GLOBAL_CREDIT_RESETCSR); 13301 /* SEND_CM_CREDIT_USED_STATUS read-only */ 13302 write_csr(dd, SEND_CM_TIMER_CTRL, 0); 13303 write_csr(dd, SEND_CM_LOCAL_AU_TABLE0_TO3, 0); 13304 write_csr(dd, SEND_CM_LOCAL_AU_TABLE4_TO7, 0); 13305 write_csr(dd, SEND_CM_REMOTE_AU_TABLE0_TO3, 0); 13306 write_csr(dd, SEND_CM_REMOTE_AU_TABLE4_TO7, 0); 13307 for (i = 0; i < TXE_NUM_DATA_VL; i++) 13308 write_csr(dd, SEND_CM_CREDIT_VL + (8 * i), 0); 13309 write_csr(dd, SEND_CM_CREDIT_VL15, 0); 13310 /* SEND_CM_CREDIT_USED_VL read-only */ 13311 /* SEND_CM_CREDIT_USED_VL15 read-only */ 13312 /* SEND_EGRESS_CTXT_STATUS read-only */ 13313 /* SEND_EGRESS_SEND_DMA_STATUS read-only */ 13314 write_csr(dd, SEND_EGRESS_ERR_INFO, ~0ull); 13315 /* SEND_EGRESS_ERR_INFO read-only */ 13316 /* SEND_EGRESS_ERR_SOURCE read-only */ 13317 13318 /* 13319 * TXE Per-Context CSRs 13320 */ 13321 for (i = 0; i < dd->chip_send_contexts; i++) { 13322 write_kctxt_csr(dd, i, SEND_CTXT_CTRL, 0); 13323 write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_CTRL, 0); 13324 write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_RETURN_ADDR, 0); 13325 write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_FORCE, 0); 13326 write_kctxt_csr(dd, i, SEND_CTXT_ERR_MASK, 0); 13327 write_kctxt_csr(dd, i, SEND_CTXT_ERR_CLEAR, ~0ull); 13328 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_ENABLE, 0); 13329 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_VL, 0); 13330 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_JOB_KEY, 0); 13331 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_PARTITION_KEY, 0); 13332 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_SLID, 0); 13333 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_OPCODE, 0); 13334 } 13335 13336 /* 13337 * TXE Per-SDMA CSRs 13338 */ 13339 for (i = 0; i < dd->chip_sdma_engines; i++) { 13340 write_kctxt_csr(dd, i, SEND_DMA_CTRL, 0); 13341 /* SEND_DMA_STATUS read-only */ 13342 write_kctxt_csr(dd, i, SEND_DMA_BASE_ADDR, 0); 13343 write_kctxt_csr(dd, i, SEND_DMA_LEN_GEN, 0); 13344 write_kctxt_csr(dd, i, SEND_DMA_TAIL, 0); 13345 /* SEND_DMA_HEAD read-only */ 13346 write_kctxt_csr(dd, i, SEND_DMA_HEAD_ADDR, 0); 13347 write_kctxt_csr(dd, i, SEND_DMA_PRIORITY_THLD, 0); 13348 /* SEND_DMA_IDLE_CNT read-only */ 13349 write_kctxt_csr(dd, i, SEND_DMA_RELOAD_CNT, 0); 13350 write_kctxt_csr(dd, i, SEND_DMA_DESC_CNT, 0); 13351 /* SEND_DMA_DESC_FETCHED_CNT read-only */ 13352 /* SEND_DMA_ENG_ERR_STATUS read-only */ 13353 write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_MASK, 0); 13354 write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_CLEAR, ~0ull); 13355 /* SEND_DMA_ENG_ERR_FORCE leave alone */ 13356 write_kctxt_csr(dd, i, SEND_DMA_CHECK_ENABLE, 0); 13357 write_kctxt_csr(dd, i, SEND_DMA_CHECK_VL, 0); 13358 write_kctxt_csr(dd, i, SEND_DMA_CHECK_JOB_KEY, 0); 13359 write_kctxt_csr(dd, i, SEND_DMA_CHECK_PARTITION_KEY, 0); 13360 write_kctxt_csr(dd, i, SEND_DMA_CHECK_SLID, 0); 13361 write_kctxt_csr(dd, i, SEND_DMA_CHECK_OPCODE, 0); 13362 write_kctxt_csr(dd, i, SEND_DMA_MEMORY, 0); 13363 } 13364 } 13365 13366 /* 13367 * Expect on entry: 13368 * o Packet ingress is disabled, i.e. RcvCtrl.RcvPortEnable == 0 13369 */ 13370 static void init_rbufs(struct hfi1_devdata *dd) 13371 { 13372 u64 reg; 13373 int count; 13374 13375 /* 13376 * Wait for DMA to stop: RxRbufPktPending and RxPktInProgress are 13377 * clear. 13378 */ 13379 count = 0; 13380 while (1) { 13381 reg = read_csr(dd, RCV_STATUS); 13382 if ((reg & (RCV_STATUS_RX_RBUF_PKT_PENDING_SMASK 13383 | RCV_STATUS_RX_PKT_IN_PROGRESS_SMASK)) == 0) 13384 break; 13385 /* 13386 * Give up after 1ms - maximum wait time. 13387 * 13388 * RBuf size is 136KiB. Slowest possible is PCIe Gen1 x1 at 13389 * 250MB/s bandwidth. Lower rate to 66% for overhead to get: 13390 * 136 KB / (66% * 250MB/s) = 844us 13391 */ 13392 if (count++ > 500) { 13393 dd_dev_err(dd, 13394 "%s: in-progress DMA not clearing: RcvStatus 0x%llx, continuing\n", 13395 __func__, reg); 13396 break; 13397 } 13398 udelay(2); /* do not busy-wait the CSR */ 13399 } 13400 13401 /* start the init - expect RcvCtrl to be 0 */ 13402 write_csr(dd, RCV_CTRL, RCV_CTRL_RX_RBUF_INIT_SMASK); 13403 13404 /* 13405 * Read to force the write of Rcvtrl.RxRbufInit. There is a brief 13406 * period after the write before RcvStatus.RxRbufInitDone is valid. 13407 * The delay in the first run through the loop below is sufficient and 13408 * required before the first read of RcvStatus.RxRbufInintDone. 13409 */ 13410 read_csr(dd, RCV_CTRL); 13411 13412 /* wait for the init to finish */ 13413 count = 0; 13414 while (1) { 13415 /* delay is required first time through - see above */ 13416 udelay(2); /* do not busy-wait the CSR */ 13417 reg = read_csr(dd, RCV_STATUS); 13418 if (reg & (RCV_STATUS_RX_RBUF_INIT_DONE_SMASK)) 13419 break; 13420 13421 /* give up after 100us - slowest possible at 33MHz is 73us */ 13422 if (count++ > 50) { 13423 dd_dev_err(dd, 13424 "%s: RcvStatus.RxRbufInit not set, continuing\n", 13425 __func__); 13426 break; 13427 } 13428 } 13429 } 13430 13431 /* set RXE CSRs to chip reset defaults */ 13432 static void reset_rxe_csrs(struct hfi1_devdata *dd) 13433 { 13434 int i, j; 13435 13436 /* 13437 * RXE Kernel CSRs 13438 */ 13439 write_csr(dd, RCV_CTRL, 0); 13440 init_rbufs(dd); 13441 /* RCV_STATUS read-only */ 13442 /* RCV_CONTEXTS read-only */ 13443 /* RCV_ARRAY_CNT read-only */ 13444 /* RCV_BUF_SIZE read-only */ 13445 write_csr(dd, RCV_BTH_QP, 0); 13446 write_csr(dd, RCV_MULTICAST, 0); 13447 write_csr(dd, RCV_BYPASS, 0); 13448 write_csr(dd, RCV_VL15, 0); 13449 /* this is a clear-down */ 13450 write_csr(dd, RCV_ERR_INFO, 13451 RCV_ERR_INFO_RCV_EXCESS_BUFFER_OVERRUN_SMASK); 13452 /* RCV_ERR_STATUS read-only */ 13453 write_csr(dd, RCV_ERR_MASK, 0); 13454 write_csr(dd, RCV_ERR_CLEAR, ~0ull); 13455 /* RCV_ERR_FORCE leave alone */ 13456 for (i = 0; i < 32; i++) 13457 write_csr(dd, RCV_QP_MAP_TABLE + (8 * i), 0); 13458 for (i = 0; i < 4; i++) 13459 write_csr(dd, RCV_PARTITION_KEY + (8 * i), 0); 13460 for (i = 0; i < RXE_NUM_32_BIT_COUNTERS; i++) 13461 write_csr(dd, RCV_COUNTER_ARRAY32 + (8 * i), 0); 13462 for (i = 0; i < RXE_NUM_64_BIT_COUNTERS; i++) 13463 write_csr(dd, RCV_COUNTER_ARRAY64 + (8 * i), 0); 13464 for (i = 0; i < RXE_NUM_RSM_INSTANCES; i++) { 13465 write_csr(dd, RCV_RSM_CFG + (8 * i), 0); 13466 write_csr(dd, RCV_RSM_SELECT + (8 * i), 0); 13467 write_csr(dd, RCV_RSM_MATCH + (8 * i), 0); 13468 } 13469 for (i = 0; i < 32; i++) 13470 write_csr(dd, RCV_RSM_MAP_TABLE + (8 * i), 0); 13471 13472 /* 13473 * RXE Kernel and User Per-Context CSRs 13474 */ 13475 for (i = 0; i < dd->chip_rcv_contexts; i++) { 13476 /* kernel */ 13477 write_kctxt_csr(dd, i, RCV_CTXT_CTRL, 0); 13478 /* RCV_CTXT_STATUS read-only */ 13479 write_kctxt_csr(dd, i, RCV_EGR_CTRL, 0); 13480 write_kctxt_csr(dd, i, RCV_TID_CTRL, 0); 13481 write_kctxt_csr(dd, i, RCV_KEY_CTRL, 0); 13482 write_kctxt_csr(dd, i, RCV_HDR_ADDR, 0); 13483 write_kctxt_csr(dd, i, RCV_HDR_CNT, 0); 13484 write_kctxt_csr(dd, i, RCV_HDR_ENT_SIZE, 0); 13485 write_kctxt_csr(dd, i, RCV_HDR_SIZE, 0); 13486 write_kctxt_csr(dd, i, RCV_HDR_TAIL_ADDR, 0); 13487 write_kctxt_csr(dd, i, RCV_AVAIL_TIME_OUT, 0); 13488 write_kctxt_csr(dd, i, RCV_HDR_OVFL_CNT, 0); 13489 13490 /* user */ 13491 /* RCV_HDR_TAIL read-only */ 13492 write_uctxt_csr(dd, i, RCV_HDR_HEAD, 0); 13493 /* RCV_EGR_INDEX_TAIL read-only */ 13494 write_uctxt_csr(dd, i, RCV_EGR_INDEX_HEAD, 0); 13495 /* RCV_EGR_OFFSET_TAIL read-only */ 13496 for (j = 0; j < RXE_NUM_TID_FLOWS; j++) { 13497 write_uctxt_csr(dd, i, 13498 RCV_TID_FLOW_TABLE + (8 * j), 0); 13499 } 13500 } 13501 } 13502 13503 /* 13504 * Set sc2vl tables. 13505 * 13506 * They power on to zeros, so to avoid send context errors 13507 * they need to be set: 13508 * 13509 * SC 0-7 -> VL 0-7 (respectively) 13510 * SC 15 -> VL 15 13511 * otherwise 13512 * -> VL 0 13513 */ 13514 static void init_sc2vl_tables(struct hfi1_devdata *dd) 13515 { 13516 int i; 13517 /* init per architecture spec, constrained by hardware capability */ 13518 13519 /* HFI maps sent packets */ 13520 write_csr(dd, SEND_SC2VLT0, SC2VL_VAL( 13521 0, 13522 0, 0, 1, 1, 13523 2, 2, 3, 3, 13524 4, 4, 5, 5, 13525 6, 6, 7, 7)); 13526 write_csr(dd, SEND_SC2VLT1, SC2VL_VAL( 13527 1, 13528 8, 0, 9, 0, 13529 10, 0, 11, 0, 13530 12, 0, 13, 0, 13531 14, 0, 15, 15)); 13532 write_csr(dd, SEND_SC2VLT2, SC2VL_VAL( 13533 2, 13534 16, 0, 17, 0, 13535 18, 0, 19, 0, 13536 20, 0, 21, 0, 13537 22, 0, 23, 0)); 13538 write_csr(dd, SEND_SC2VLT3, SC2VL_VAL( 13539 3, 13540 24, 0, 25, 0, 13541 26, 0, 27, 0, 13542 28, 0, 29, 0, 13543 30, 0, 31, 0)); 13544 13545 /* DC maps received packets */ 13546 write_csr(dd, DCC_CFG_SC_VL_TABLE_15_0, DC_SC_VL_VAL( 13547 15_0, 13548 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 13549 8, 0, 9, 0, 10, 0, 11, 0, 12, 0, 13, 0, 14, 0, 15, 15)); 13550 write_csr(dd, DCC_CFG_SC_VL_TABLE_31_16, DC_SC_VL_VAL( 13551 31_16, 13552 16, 0, 17, 0, 18, 0, 19, 0, 20, 0, 21, 0, 22, 0, 23, 0, 13553 24, 0, 25, 0, 26, 0, 27, 0, 28, 0, 29, 0, 30, 0, 31, 0)); 13554 13555 /* initialize the cached sc2vl values consistently with h/w */ 13556 for (i = 0; i < 32; i++) { 13557 if (i < 8 || i == 15) 13558 *((u8 *)(dd->sc2vl) + i) = (u8)i; 13559 else 13560 *((u8 *)(dd->sc2vl) + i) = 0; 13561 } 13562 } 13563 13564 /* 13565 * Read chip sizes and then reset parts to sane, disabled, values. We cannot 13566 * depend on the chip going through a power-on reset - a driver may be loaded 13567 * and unloaded many times. 13568 * 13569 * Do not write any CSR values to the chip in this routine - there may be 13570 * a reset following the (possible) FLR in this routine. 13571 * 13572 */ 13573 static void init_chip(struct hfi1_devdata *dd) 13574 { 13575 int i; 13576 13577 /* 13578 * Put the HFI CSRs in a known state. 13579 * Combine this with a DC reset. 13580 * 13581 * Stop the device from doing anything while we do a 13582 * reset. We know there are no other active users of 13583 * the device since we are now in charge. Turn off 13584 * off all outbound and inbound traffic and make sure 13585 * the device does not generate any interrupts. 13586 */ 13587 13588 /* disable send contexts and SDMA engines */ 13589 write_csr(dd, SEND_CTRL, 0); 13590 for (i = 0; i < dd->chip_send_contexts; i++) 13591 write_kctxt_csr(dd, i, SEND_CTXT_CTRL, 0); 13592 for (i = 0; i < dd->chip_sdma_engines; i++) 13593 write_kctxt_csr(dd, i, SEND_DMA_CTRL, 0); 13594 /* disable port (turn off RXE inbound traffic) and contexts */ 13595 write_csr(dd, RCV_CTRL, 0); 13596 for (i = 0; i < dd->chip_rcv_contexts; i++) 13597 write_csr(dd, RCV_CTXT_CTRL, 0); 13598 /* mask all interrupt sources */ 13599 for (i = 0; i < CCE_NUM_INT_CSRS; i++) 13600 write_csr(dd, CCE_INT_MASK + (8 * i), 0ull); 13601 13602 /* 13603 * DC Reset: do a full DC reset before the register clear. 13604 * A recommended length of time to hold is one CSR read, 13605 * so reread the CceDcCtrl. Then, hold the DC in reset 13606 * across the clear. 13607 */ 13608 write_csr(dd, CCE_DC_CTRL, CCE_DC_CTRL_DC_RESET_SMASK); 13609 (void)read_csr(dd, CCE_DC_CTRL); 13610 13611 if (use_flr) { 13612 /* 13613 * A FLR will reset the SPC core and part of the PCIe. 13614 * The parts that need to be restored have already been 13615 * saved. 13616 */ 13617 dd_dev_info(dd, "Resetting CSRs with FLR\n"); 13618 13619 /* do the FLR, the DC reset will remain */ 13620 hfi1_pcie_flr(dd); 13621 13622 /* restore command and BARs */ 13623 restore_pci_variables(dd); 13624 13625 if (is_ax(dd)) { 13626 dd_dev_info(dd, "Resetting CSRs with FLR\n"); 13627 hfi1_pcie_flr(dd); 13628 restore_pci_variables(dd); 13629 } 13630 } else { 13631 dd_dev_info(dd, "Resetting CSRs with writes\n"); 13632 reset_cce_csrs(dd); 13633 reset_txe_csrs(dd); 13634 reset_rxe_csrs(dd); 13635 reset_misc_csrs(dd); 13636 } 13637 /* clear the DC reset */ 13638 write_csr(dd, CCE_DC_CTRL, 0); 13639 13640 /* Set the LED off */ 13641 setextled(dd, 0); 13642 13643 /* 13644 * Clear the QSFP reset. 13645 * An FLR enforces a 0 on all out pins. The driver does not touch 13646 * ASIC_QSFPn_OUT otherwise. This leaves RESET_N low and 13647 * anything plugged constantly in reset, if it pays attention 13648 * to RESET_N. 13649 * Prime examples of this are optical cables. Set all pins high. 13650 * I2CCLK and I2CDAT will change per direction, and INT_N and 13651 * MODPRS_N are input only and their value is ignored. 13652 */ 13653 write_csr(dd, ASIC_QSFP1_OUT, 0x1f); 13654 write_csr(dd, ASIC_QSFP2_OUT, 0x1f); 13655 init_chip_resources(dd); 13656 } 13657 13658 static void init_early_variables(struct hfi1_devdata *dd) 13659 { 13660 int i; 13661 13662 /* assign link credit variables */ 13663 dd->vau = CM_VAU; 13664 dd->link_credits = CM_GLOBAL_CREDITS; 13665 if (is_ax(dd)) 13666 dd->link_credits--; 13667 dd->vcu = cu_to_vcu(hfi1_cu); 13668 /* enough room for 8 MAD packets plus header - 17K */ 13669 dd->vl15_init = (8 * (2048 + 128)) / vau_to_au(dd->vau); 13670 if (dd->vl15_init > dd->link_credits) 13671 dd->vl15_init = dd->link_credits; 13672 13673 write_uninitialized_csrs_and_memories(dd); 13674 13675 if (HFI1_CAP_IS_KSET(PKEY_CHECK)) 13676 for (i = 0; i < dd->num_pports; i++) { 13677 struct hfi1_pportdata *ppd = &dd->pport[i]; 13678 13679 set_partition_keys(ppd); 13680 } 13681 init_sc2vl_tables(dd); 13682 } 13683 13684 static void init_kdeth_qp(struct hfi1_devdata *dd) 13685 { 13686 /* user changed the KDETH_QP */ 13687 if (kdeth_qp != 0 && kdeth_qp >= 0xff) { 13688 /* out of range or illegal value */ 13689 dd_dev_err(dd, "Invalid KDETH queue pair prefix, ignoring"); 13690 kdeth_qp = 0; 13691 } 13692 if (kdeth_qp == 0) /* not set, or failed range check */ 13693 kdeth_qp = DEFAULT_KDETH_QP; 13694 13695 write_csr(dd, SEND_BTH_QP, 13696 (kdeth_qp & SEND_BTH_QP_KDETH_QP_MASK) << 13697 SEND_BTH_QP_KDETH_QP_SHIFT); 13698 13699 write_csr(dd, RCV_BTH_QP, 13700 (kdeth_qp & RCV_BTH_QP_KDETH_QP_MASK) << 13701 RCV_BTH_QP_KDETH_QP_SHIFT); 13702 } 13703 13704 /** 13705 * init_qpmap_table 13706 * @dd - device data 13707 * @first_ctxt - first context 13708 * @last_ctxt - first context 13709 * 13710 * This return sets the qpn mapping table that 13711 * is indexed by qpn[8:1]. 13712 * 13713 * The routine will round robin the 256 settings 13714 * from first_ctxt to last_ctxt. 13715 * 13716 * The first/last looks ahead to having specialized 13717 * receive contexts for mgmt and bypass. Normal 13718 * verbs traffic will assumed to be on a range 13719 * of receive contexts. 13720 */ 13721 static void init_qpmap_table(struct hfi1_devdata *dd, 13722 u32 first_ctxt, 13723 u32 last_ctxt) 13724 { 13725 u64 reg = 0; 13726 u64 regno = RCV_QP_MAP_TABLE; 13727 int i; 13728 u64 ctxt = first_ctxt; 13729 13730 for (i = 0; i < 256; i++) { 13731 reg |= ctxt << (8 * (i % 8)); 13732 ctxt++; 13733 if (ctxt > last_ctxt) 13734 ctxt = first_ctxt; 13735 if (i % 8 == 7) { 13736 write_csr(dd, regno, reg); 13737 reg = 0; 13738 regno += 8; 13739 } 13740 } 13741 13742 add_rcvctrl(dd, RCV_CTRL_RCV_QP_MAP_ENABLE_SMASK 13743 | RCV_CTRL_RCV_BYPASS_ENABLE_SMASK); 13744 } 13745 13746 struct rsm_map_table { 13747 u64 map[NUM_MAP_REGS]; 13748 unsigned int used; 13749 }; 13750 13751 struct rsm_rule_data { 13752 u8 offset; 13753 u8 pkt_type; 13754 u32 field1_off; 13755 u32 field2_off; 13756 u32 index1_off; 13757 u32 index1_width; 13758 u32 index2_off; 13759 u32 index2_width; 13760 u32 mask1; 13761 u32 value1; 13762 u32 mask2; 13763 u32 value2; 13764 }; 13765 13766 /* 13767 * Return an initialized RMT map table for users to fill in. OK if it 13768 * returns NULL, indicating no table. 13769 */ 13770 static struct rsm_map_table *alloc_rsm_map_table(struct hfi1_devdata *dd) 13771 { 13772 struct rsm_map_table *rmt; 13773 u8 rxcontext = is_ax(dd) ? 0 : 0xff; /* 0 is default if a0 ver. */ 13774 13775 rmt = kmalloc(sizeof(*rmt), GFP_KERNEL); 13776 if (rmt) { 13777 memset(rmt->map, rxcontext, sizeof(rmt->map)); 13778 rmt->used = 0; 13779 } 13780 13781 return rmt; 13782 } 13783 13784 /* 13785 * Write the final RMT map table to the chip and free the table. OK if 13786 * table is NULL. 13787 */ 13788 static void complete_rsm_map_table(struct hfi1_devdata *dd, 13789 struct rsm_map_table *rmt) 13790 { 13791 int i; 13792 13793 if (rmt) { 13794 /* write table to chip */ 13795 for (i = 0; i < NUM_MAP_REGS; i++) 13796 write_csr(dd, RCV_RSM_MAP_TABLE + (8 * i), rmt->map[i]); 13797 13798 /* enable RSM */ 13799 add_rcvctrl(dd, RCV_CTRL_RCV_RSM_ENABLE_SMASK); 13800 } 13801 } 13802 13803 /* 13804 * Add a receive side mapping rule. 13805 */ 13806 static void add_rsm_rule(struct hfi1_devdata *dd, u8 rule_index, 13807 struct rsm_rule_data *rrd) 13808 { 13809 write_csr(dd, RCV_RSM_CFG + (8 * rule_index), 13810 (u64)rrd->offset << RCV_RSM_CFG_OFFSET_SHIFT | 13811 1ull << rule_index | /* enable bit */ 13812 (u64)rrd->pkt_type << RCV_RSM_CFG_PACKET_TYPE_SHIFT); 13813 write_csr(dd, RCV_RSM_SELECT + (8 * rule_index), 13814 (u64)rrd->field1_off << RCV_RSM_SELECT_FIELD1_OFFSET_SHIFT | 13815 (u64)rrd->field2_off << RCV_RSM_SELECT_FIELD2_OFFSET_SHIFT | 13816 (u64)rrd->index1_off << RCV_RSM_SELECT_INDEX1_OFFSET_SHIFT | 13817 (u64)rrd->index1_width << RCV_RSM_SELECT_INDEX1_WIDTH_SHIFT | 13818 (u64)rrd->index2_off << RCV_RSM_SELECT_INDEX2_OFFSET_SHIFT | 13819 (u64)rrd->index2_width << RCV_RSM_SELECT_INDEX2_WIDTH_SHIFT); 13820 write_csr(dd, RCV_RSM_MATCH + (8 * rule_index), 13821 (u64)rrd->mask1 << RCV_RSM_MATCH_MASK1_SHIFT | 13822 (u64)rrd->value1 << RCV_RSM_MATCH_VALUE1_SHIFT | 13823 (u64)rrd->mask2 << RCV_RSM_MATCH_MASK2_SHIFT | 13824 (u64)rrd->value2 << RCV_RSM_MATCH_VALUE2_SHIFT); 13825 } 13826 13827 /* return the number of RSM map table entries that will be used for QOS */ 13828 static int qos_rmt_entries(struct hfi1_devdata *dd, unsigned int *mp, 13829 unsigned int *np) 13830 { 13831 int i; 13832 unsigned int m, n; 13833 u8 max_by_vl = 0; 13834 13835 /* is QOS active at all? */ 13836 if (dd->n_krcv_queues <= MIN_KERNEL_KCTXTS || 13837 num_vls == 1 || 13838 krcvqsset <= 1) 13839 goto no_qos; 13840 13841 /* determine bits for qpn */ 13842 for (i = 0; i < min_t(unsigned int, num_vls, krcvqsset); i++) 13843 if (krcvqs[i] > max_by_vl) 13844 max_by_vl = krcvqs[i]; 13845 if (max_by_vl > 32) 13846 goto no_qos; 13847 m = ilog2(__roundup_pow_of_two(max_by_vl)); 13848 13849 /* determine bits for vl */ 13850 n = ilog2(__roundup_pow_of_two(num_vls)); 13851 13852 /* reject if too much is used */ 13853 if ((m + n) > 7) 13854 goto no_qos; 13855 13856 if (mp) 13857 *mp = m; 13858 if (np) 13859 *np = n; 13860 13861 return 1 << (m + n); 13862 13863 no_qos: 13864 if (mp) 13865 *mp = 0; 13866 if (np) 13867 *np = 0; 13868 return 0; 13869 } 13870 13871 /** 13872 * init_qos - init RX qos 13873 * @dd - device data 13874 * @rmt - RSM map table 13875 * 13876 * This routine initializes Rule 0 and the RSM map table to implement 13877 * quality of service (qos). 13878 * 13879 * If all of the limit tests succeed, qos is applied based on the array 13880 * interpretation of krcvqs where entry 0 is VL0. 13881 * 13882 * The number of vl bits (n) and the number of qpn bits (m) are computed to 13883 * feed both the RSM map table and the single rule. 13884 */ 13885 static void init_qos(struct hfi1_devdata *dd, struct rsm_map_table *rmt) 13886 { 13887 struct rsm_rule_data rrd; 13888 unsigned qpns_per_vl, ctxt, i, qpn, n = 1, m; 13889 unsigned int rmt_entries; 13890 u64 reg; 13891 13892 if (!rmt) 13893 goto bail; 13894 rmt_entries = qos_rmt_entries(dd, &m, &n); 13895 if (rmt_entries == 0) 13896 goto bail; 13897 qpns_per_vl = 1 << m; 13898 13899 /* enough room in the map table? */ 13900 rmt_entries = 1 << (m + n); 13901 if (rmt->used + rmt_entries >= NUM_MAP_ENTRIES) 13902 goto bail; 13903 13904 /* add qos entries to the the RSM map table */ 13905 for (i = 0, ctxt = FIRST_KERNEL_KCTXT; i < num_vls; i++) { 13906 unsigned tctxt; 13907 13908 for (qpn = 0, tctxt = ctxt; 13909 krcvqs[i] && qpn < qpns_per_vl; qpn++) { 13910 unsigned idx, regoff, regidx; 13911 13912 /* generate the index the hardware will produce */ 13913 idx = rmt->used + ((qpn << n) ^ i); 13914 regoff = (idx % 8) * 8; 13915 regidx = idx / 8; 13916 /* replace default with context number */ 13917 reg = rmt->map[regidx]; 13918 reg &= ~(RCV_RSM_MAP_TABLE_RCV_CONTEXT_A_MASK 13919 << regoff); 13920 reg |= (u64)(tctxt++) << regoff; 13921 rmt->map[regidx] = reg; 13922 if (tctxt == ctxt + krcvqs[i]) 13923 tctxt = ctxt; 13924 } 13925 ctxt += krcvqs[i]; 13926 } 13927 13928 rrd.offset = rmt->used; 13929 rrd.pkt_type = 2; 13930 rrd.field1_off = LRH_BTH_MATCH_OFFSET; 13931 rrd.field2_off = LRH_SC_MATCH_OFFSET; 13932 rrd.index1_off = LRH_SC_SELECT_OFFSET; 13933 rrd.index1_width = n; 13934 rrd.index2_off = QPN_SELECT_OFFSET; 13935 rrd.index2_width = m + n; 13936 rrd.mask1 = LRH_BTH_MASK; 13937 rrd.value1 = LRH_BTH_VALUE; 13938 rrd.mask2 = LRH_SC_MASK; 13939 rrd.value2 = LRH_SC_VALUE; 13940 13941 /* add rule 0 */ 13942 add_rsm_rule(dd, 0, &rrd); 13943 13944 /* mark RSM map entries as used */ 13945 rmt->used += rmt_entries; 13946 /* map everything else to the mcast/err/vl15 context */ 13947 init_qpmap_table(dd, HFI1_CTRL_CTXT, HFI1_CTRL_CTXT); 13948 dd->qos_shift = n + 1; 13949 return; 13950 bail: 13951 dd->qos_shift = 1; 13952 init_qpmap_table(dd, FIRST_KERNEL_KCTXT, dd->n_krcv_queues - 1); 13953 } 13954 13955 static void init_user_fecn_handling(struct hfi1_devdata *dd, 13956 struct rsm_map_table *rmt) 13957 { 13958 struct rsm_rule_data rrd; 13959 u64 reg; 13960 int i, idx, regoff, regidx; 13961 u8 offset; 13962 13963 /* there needs to be enough room in the map table */ 13964 if (rmt->used + dd->num_user_contexts >= NUM_MAP_ENTRIES) { 13965 dd_dev_err(dd, "User FECN handling disabled - too many user contexts allocated\n"); 13966 return; 13967 } 13968 13969 /* 13970 * RSM will extract the destination context as an index into the 13971 * map table. The destination contexts are a sequential block 13972 * in the range first_user_ctxt...num_rcv_contexts-1 (inclusive). 13973 * Map entries are accessed as offset + extracted value. Adjust 13974 * the added offset so this sequence can be placed anywhere in 13975 * the table - as long as the entries themselves do not wrap. 13976 * There are only enough bits in offset for the table size, so 13977 * start with that to allow for a "negative" offset. 13978 */ 13979 offset = (u8)(NUM_MAP_ENTRIES + (int)rmt->used - 13980 (int)dd->first_user_ctxt); 13981 13982 for (i = dd->first_user_ctxt, idx = rmt->used; 13983 i < dd->num_rcv_contexts; i++, idx++) { 13984 /* replace with identity mapping */ 13985 regoff = (idx % 8) * 8; 13986 regidx = idx / 8; 13987 reg = rmt->map[regidx]; 13988 reg &= ~(RCV_RSM_MAP_TABLE_RCV_CONTEXT_A_MASK << regoff); 13989 reg |= (u64)i << regoff; 13990 rmt->map[regidx] = reg; 13991 } 13992 13993 /* 13994 * For RSM intercept of Expected FECN packets: 13995 * o packet type 0 - expected 13996 * o match on F (bit 95), using select/match 1, and 13997 * o match on SH (bit 133), using select/match 2. 13998 * 13999 * Use index 1 to extract the 8-bit receive context from DestQP 14000 * (start at bit 64). Use that as the RSM map table index. 14001 */ 14002 rrd.offset = offset; 14003 rrd.pkt_type = 0; 14004 rrd.field1_off = 95; 14005 rrd.field2_off = 133; 14006 rrd.index1_off = 64; 14007 rrd.index1_width = 8; 14008 rrd.index2_off = 0; 14009 rrd.index2_width = 0; 14010 rrd.mask1 = 1; 14011 rrd.value1 = 1; 14012 rrd.mask2 = 1; 14013 rrd.value2 = 1; 14014 14015 /* add rule 1 */ 14016 add_rsm_rule(dd, 1, &rrd); 14017 14018 rmt->used += dd->num_user_contexts; 14019 } 14020 14021 static void init_rxe(struct hfi1_devdata *dd) 14022 { 14023 struct rsm_map_table *rmt; 14024 14025 /* enable all receive errors */ 14026 write_csr(dd, RCV_ERR_MASK, ~0ull); 14027 14028 rmt = alloc_rsm_map_table(dd); 14029 /* set up QOS, including the QPN map table */ 14030 init_qos(dd, rmt); 14031 init_user_fecn_handling(dd, rmt); 14032 complete_rsm_map_table(dd, rmt); 14033 kfree(rmt); 14034 14035 /* 14036 * make sure RcvCtrl.RcvWcb <= PCIe Device Control 14037 * Register Max_Payload_Size (PCI_EXP_DEVCTL in Linux PCIe config 14038 * space, PciCfgCap2.MaxPayloadSize in HFI). There is only one 14039 * invalid configuration: RcvCtrl.RcvWcb set to its max of 256 and 14040 * Max_PayLoad_Size set to its minimum of 128. 14041 * 14042 * Presently, RcvCtrl.RcvWcb is not modified from its default of 0 14043 * (64 bytes). Max_Payload_Size is possibly modified upward in 14044 * tune_pcie_caps() which is called after this routine. 14045 */ 14046 } 14047 14048 static void init_other(struct hfi1_devdata *dd) 14049 { 14050 /* enable all CCE errors */ 14051 write_csr(dd, CCE_ERR_MASK, ~0ull); 14052 /* enable *some* Misc errors */ 14053 write_csr(dd, MISC_ERR_MASK, DRIVER_MISC_MASK); 14054 /* enable all DC errors, except LCB */ 14055 write_csr(dd, DCC_ERR_FLG_EN, ~0ull); 14056 write_csr(dd, DC_DC8051_ERR_EN, ~0ull); 14057 } 14058 14059 /* 14060 * Fill out the given AU table using the given CU. A CU is defined in terms 14061 * AUs. The table is a an encoding: given the index, how many AUs does that 14062 * represent? 14063 * 14064 * NOTE: Assumes that the register layout is the same for the 14065 * local and remote tables. 14066 */ 14067 static void assign_cm_au_table(struct hfi1_devdata *dd, u32 cu, 14068 u32 csr0to3, u32 csr4to7) 14069 { 14070 write_csr(dd, csr0to3, 14071 0ull << SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE0_SHIFT | 14072 1ull << SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE1_SHIFT | 14073 2ull * cu << 14074 SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE2_SHIFT | 14075 4ull * cu << 14076 SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE3_SHIFT); 14077 write_csr(dd, csr4to7, 14078 8ull * cu << 14079 SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE4_SHIFT | 14080 16ull * cu << 14081 SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE5_SHIFT | 14082 32ull * cu << 14083 SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE6_SHIFT | 14084 64ull * cu << 14085 SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE7_SHIFT); 14086 } 14087 14088 static void assign_local_cm_au_table(struct hfi1_devdata *dd, u8 vcu) 14089 { 14090 assign_cm_au_table(dd, vcu_to_cu(vcu), SEND_CM_LOCAL_AU_TABLE0_TO3, 14091 SEND_CM_LOCAL_AU_TABLE4_TO7); 14092 } 14093 14094 void assign_remote_cm_au_table(struct hfi1_devdata *dd, u8 vcu) 14095 { 14096 assign_cm_au_table(dd, vcu_to_cu(vcu), SEND_CM_REMOTE_AU_TABLE0_TO3, 14097 SEND_CM_REMOTE_AU_TABLE4_TO7); 14098 } 14099 14100 static void init_txe(struct hfi1_devdata *dd) 14101 { 14102 int i; 14103 14104 /* enable all PIO, SDMA, general, and Egress errors */ 14105 write_csr(dd, SEND_PIO_ERR_MASK, ~0ull); 14106 write_csr(dd, SEND_DMA_ERR_MASK, ~0ull); 14107 write_csr(dd, SEND_ERR_MASK, ~0ull); 14108 write_csr(dd, SEND_EGRESS_ERR_MASK, ~0ull); 14109 14110 /* enable all per-context and per-SDMA engine errors */ 14111 for (i = 0; i < dd->chip_send_contexts; i++) 14112 write_kctxt_csr(dd, i, SEND_CTXT_ERR_MASK, ~0ull); 14113 for (i = 0; i < dd->chip_sdma_engines; i++) 14114 write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_MASK, ~0ull); 14115 14116 /* set the local CU to AU mapping */ 14117 assign_local_cm_au_table(dd, dd->vcu); 14118 14119 /* 14120 * Set reasonable default for Credit Return Timer 14121 * Don't set on Simulator - causes it to choke. 14122 */ 14123 if (dd->icode != ICODE_FUNCTIONAL_SIMULATOR) 14124 write_csr(dd, SEND_CM_TIMER_CTRL, HFI1_CREDIT_RETURN_RATE); 14125 } 14126 14127 int hfi1_set_ctxt_jkey(struct hfi1_devdata *dd, unsigned ctxt, u16 jkey) 14128 { 14129 struct hfi1_ctxtdata *rcd = dd->rcd[ctxt]; 14130 unsigned sctxt; 14131 int ret = 0; 14132 u64 reg; 14133 14134 if (!rcd || !rcd->sc) { 14135 ret = -EINVAL; 14136 goto done; 14137 } 14138 sctxt = rcd->sc->hw_context; 14139 reg = SEND_CTXT_CHECK_JOB_KEY_MASK_SMASK | /* mask is always 1's */ 14140 ((jkey & SEND_CTXT_CHECK_JOB_KEY_VALUE_MASK) << 14141 SEND_CTXT_CHECK_JOB_KEY_VALUE_SHIFT); 14142 /* JOB_KEY_ALLOW_PERMISSIVE is not allowed by default */ 14143 if (HFI1_CAP_KGET_MASK(rcd->flags, ALLOW_PERM_JKEY)) 14144 reg |= SEND_CTXT_CHECK_JOB_KEY_ALLOW_PERMISSIVE_SMASK; 14145 write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_JOB_KEY, reg); 14146 /* 14147 * Enable send-side J_KEY integrity check, unless this is A0 h/w 14148 */ 14149 if (!is_ax(dd)) { 14150 reg = read_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE); 14151 reg |= SEND_CTXT_CHECK_ENABLE_CHECK_JOB_KEY_SMASK; 14152 write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE, reg); 14153 } 14154 14155 /* Enable J_KEY check on receive context. */ 14156 reg = RCV_KEY_CTRL_JOB_KEY_ENABLE_SMASK | 14157 ((jkey & RCV_KEY_CTRL_JOB_KEY_VALUE_MASK) << 14158 RCV_KEY_CTRL_JOB_KEY_VALUE_SHIFT); 14159 write_kctxt_csr(dd, ctxt, RCV_KEY_CTRL, reg); 14160 done: 14161 return ret; 14162 } 14163 14164 int hfi1_clear_ctxt_jkey(struct hfi1_devdata *dd, unsigned ctxt) 14165 { 14166 struct hfi1_ctxtdata *rcd = dd->rcd[ctxt]; 14167 unsigned sctxt; 14168 int ret = 0; 14169 u64 reg; 14170 14171 if (!rcd || !rcd->sc) { 14172 ret = -EINVAL; 14173 goto done; 14174 } 14175 sctxt = rcd->sc->hw_context; 14176 write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_JOB_KEY, 0); 14177 /* 14178 * Disable send-side J_KEY integrity check, unless this is A0 h/w. 14179 * This check would not have been enabled for A0 h/w, see 14180 * set_ctxt_jkey(). 14181 */ 14182 if (!is_ax(dd)) { 14183 reg = read_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE); 14184 reg &= ~SEND_CTXT_CHECK_ENABLE_CHECK_JOB_KEY_SMASK; 14185 write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE, reg); 14186 } 14187 /* Turn off the J_KEY on the receive side */ 14188 write_kctxt_csr(dd, ctxt, RCV_KEY_CTRL, 0); 14189 done: 14190 return ret; 14191 } 14192 14193 int hfi1_set_ctxt_pkey(struct hfi1_devdata *dd, unsigned ctxt, u16 pkey) 14194 { 14195 struct hfi1_ctxtdata *rcd; 14196 unsigned sctxt; 14197 int ret = 0; 14198 u64 reg; 14199 14200 if (ctxt < dd->num_rcv_contexts) { 14201 rcd = dd->rcd[ctxt]; 14202 } else { 14203 ret = -EINVAL; 14204 goto done; 14205 } 14206 if (!rcd || !rcd->sc) { 14207 ret = -EINVAL; 14208 goto done; 14209 } 14210 sctxt = rcd->sc->hw_context; 14211 reg = ((u64)pkey & SEND_CTXT_CHECK_PARTITION_KEY_VALUE_MASK) << 14212 SEND_CTXT_CHECK_PARTITION_KEY_VALUE_SHIFT; 14213 write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_PARTITION_KEY, reg); 14214 reg = read_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE); 14215 reg |= SEND_CTXT_CHECK_ENABLE_CHECK_PARTITION_KEY_SMASK; 14216 reg &= ~SEND_CTXT_CHECK_ENABLE_DISALLOW_KDETH_PACKETS_SMASK; 14217 write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE, reg); 14218 done: 14219 return ret; 14220 } 14221 14222 int hfi1_clear_ctxt_pkey(struct hfi1_devdata *dd, unsigned ctxt) 14223 { 14224 struct hfi1_ctxtdata *rcd; 14225 unsigned sctxt; 14226 int ret = 0; 14227 u64 reg; 14228 14229 if (ctxt < dd->num_rcv_contexts) { 14230 rcd = dd->rcd[ctxt]; 14231 } else { 14232 ret = -EINVAL; 14233 goto done; 14234 } 14235 if (!rcd || !rcd->sc) { 14236 ret = -EINVAL; 14237 goto done; 14238 } 14239 sctxt = rcd->sc->hw_context; 14240 reg = read_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE); 14241 reg &= ~SEND_CTXT_CHECK_ENABLE_CHECK_PARTITION_KEY_SMASK; 14242 write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE, reg); 14243 write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_PARTITION_KEY, 0); 14244 done: 14245 return ret; 14246 } 14247 14248 /* 14249 * Start doing the clean up the the chip. Our clean up happens in multiple 14250 * stages and this is just the first. 14251 */ 14252 void hfi1_start_cleanup(struct hfi1_devdata *dd) 14253 { 14254 aspm_exit(dd); 14255 free_cntrs(dd); 14256 free_rcverr(dd); 14257 clean_up_interrupts(dd); 14258 finish_chip_resources(dd); 14259 } 14260 14261 #define HFI_BASE_GUID(dev) \ 14262 ((dev)->base_guid & ~(1ULL << GUID_HFI_INDEX_SHIFT)) 14263 14264 /* 14265 * Information can be shared between the two HFIs on the same ASIC 14266 * in the same OS. This function finds the peer device and sets 14267 * up a shared structure. 14268 */ 14269 static int init_asic_data(struct hfi1_devdata *dd) 14270 { 14271 unsigned long flags; 14272 struct hfi1_devdata *tmp, *peer = NULL; 14273 struct hfi1_asic_data *asic_data; 14274 int ret = 0; 14275 14276 /* pre-allocate the asic structure in case we are the first device */ 14277 asic_data = kzalloc(sizeof(*dd->asic_data), GFP_KERNEL); 14278 if (!asic_data) 14279 return -ENOMEM; 14280 14281 spin_lock_irqsave(&hfi1_devs_lock, flags); 14282 /* Find our peer device */ 14283 list_for_each_entry(tmp, &hfi1_dev_list, list) { 14284 if ((HFI_BASE_GUID(dd) == HFI_BASE_GUID(tmp)) && 14285 dd->unit != tmp->unit) { 14286 peer = tmp; 14287 break; 14288 } 14289 } 14290 14291 if (peer) { 14292 /* use already allocated structure */ 14293 dd->asic_data = peer->asic_data; 14294 kfree(asic_data); 14295 } else { 14296 dd->asic_data = asic_data; 14297 mutex_init(&dd->asic_data->asic_resource_mutex); 14298 } 14299 dd->asic_data->dds[dd->hfi1_id] = dd; /* self back-pointer */ 14300 spin_unlock_irqrestore(&hfi1_devs_lock, flags); 14301 14302 /* first one through - set up i2c devices */ 14303 if (!peer) 14304 ret = set_up_i2c(dd, dd->asic_data); 14305 14306 return ret; 14307 } 14308 14309 /* 14310 * Set dd->boardname. Use a generic name if a name is not returned from 14311 * EFI variable space. 14312 * 14313 * Return 0 on success, -ENOMEM if space could not be allocated. 14314 */ 14315 static int obtain_boardname(struct hfi1_devdata *dd) 14316 { 14317 /* generic board description */ 14318 const char generic[] = 14319 "Intel Omni-Path Host Fabric Interface Adapter 100 Series"; 14320 unsigned long size; 14321 int ret; 14322 14323 ret = read_hfi1_efi_var(dd, "description", &size, 14324 (void **)&dd->boardname); 14325 if (ret) { 14326 dd_dev_info(dd, "Board description not found\n"); 14327 /* use generic description */ 14328 dd->boardname = kstrdup(generic, GFP_KERNEL); 14329 if (!dd->boardname) 14330 return -ENOMEM; 14331 } 14332 return 0; 14333 } 14334 14335 /* 14336 * Check the interrupt registers to make sure that they are mapped correctly. 14337 * It is intended to help user identify any mismapping by VMM when the driver 14338 * is running in a VM. This function should only be called before interrupt 14339 * is set up properly. 14340 * 14341 * Return 0 on success, -EINVAL on failure. 14342 */ 14343 static int check_int_registers(struct hfi1_devdata *dd) 14344 { 14345 u64 reg; 14346 u64 all_bits = ~(u64)0; 14347 u64 mask; 14348 14349 /* Clear CceIntMask[0] to avoid raising any interrupts */ 14350 mask = read_csr(dd, CCE_INT_MASK); 14351 write_csr(dd, CCE_INT_MASK, 0ull); 14352 reg = read_csr(dd, CCE_INT_MASK); 14353 if (reg) 14354 goto err_exit; 14355 14356 /* Clear all interrupt status bits */ 14357 write_csr(dd, CCE_INT_CLEAR, all_bits); 14358 reg = read_csr(dd, CCE_INT_STATUS); 14359 if (reg) 14360 goto err_exit; 14361 14362 /* Set all interrupt status bits */ 14363 write_csr(dd, CCE_INT_FORCE, all_bits); 14364 reg = read_csr(dd, CCE_INT_STATUS); 14365 if (reg != all_bits) 14366 goto err_exit; 14367 14368 /* Restore the interrupt mask */ 14369 write_csr(dd, CCE_INT_CLEAR, all_bits); 14370 write_csr(dd, CCE_INT_MASK, mask); 14371 14372 return 0; 14373 err_exit: 14374 write_csr(dd, CCE_INT_MASK, mask); 14375 dd_dev_err(dd, "Interrupt registers not properly mapped by VMM\n"); 14376 return -EINVAL; 14377 } 14378 14379 /** 14380 * Allocate and initialize the device structure for the hfi. 14381 * @dev: the pci_dev for hfi1_ib device 14382 * @ent: pci_device_id struct for this dev 14383 * 14384 * Also allocates, initializes, and returns the devdata struct for this 14385 * device instance 14386 * 14387 * This is global, and is called directly at init to set up the 14388 * chip-specific function pointers for later use. 14389 */ 14390 struct hfi1_devdata *hfi1_init_dd(struct pci_dev *pdev, 14391 const struct pci_device_id *ent) 14392 { 14393 struct hfi1_devdata *dd; 14394 struct hfi1_pportdata *ppd; 14395 u64 reg; 14396 int i, ret; 14397 static const char * const inames[] = { /* implementation names */ 14398 "RTL silicon", 14399 "RTL VCS simulation", 14400 "RTL FPGA emulation", 14401 "Functional simulator" 14402 }; 14403 struct pci_dev *parent = pdev->bus->self; 14404 14405 dd = hfi1_alloc_devdata(pdev, NUM_IB_PORTS * 14406 sizeof(struct hfi1_pportdata)); 14407 if (IS_ERR(dd)) 14408 goto bail; 14409 ppd = dd->pport; 14410 for (i = 0; i < dd->num_pports; i++, ppd++) { 14411 int vl; 14412 /* init common fields */ 14413 hfi1_init_pportdata(pdev, ppd, dd, 0, 1); 14414 /* DC supports 4 link widths */ 14415 ppd->link_width_supported = 14416 OPA_LINK_WIDTH_1X | OPA_LINK_WIDTH_2X | 14417 OPA_LINK_WIDTH_3X | OPA_LINK_WIDTH_4X; 14418 ppd->link_width_downgrade_supported = 14419 ppd->link_width_supported; 14420 /* start out enabling only 4X */ 14421 ppd->link_width_enabled = OPA_LINK_WIDTH_4X; 14422 ppd->link_width_downgrade_enabled = 14423 ppd->link_width_downgrade_supported; 14424 /* link width active is 0 when link is down */ 14425 /* link width downgrade active is 0 when link is down */ 14426 14427 if (num_vls < HFI1_MIN_VLS_SUPPORTED || 14428 num_vls > HFI1_MAX_VLS_SUPPORTED) { 14429 hfi1_early_err(&pdev->dev, 14430 "Invalid num_vls %u, using %u VLs\n", 14431 num_vls, HFI1_MAX_VLS_SUPPORTED); 14432 num_vls = HFI1_MAX_VLS_SUPPORTED; 14433 } 14434 ppd->vls_supported = num_vls; 14435 ppd->vls_operational = ppd->vls_supported; 14436 ppd->actual_vls_operational = ppd->vls_supported; 14437 /* Set the default MTU. */ 14438 for (vl = 0; vl < num_vls; vl++) 14439 dd->vld[vl].mtu = hfi1_max_mtu; 14440 dd->vld[15].mtu = MAX_MAD_PACKET; 14441 /* 14442 * Set the initial values to reasonable default, will be set 14443 * for real when link is up. 14444 */ 14445 ppd->lstate = IB_PORT_DOWN; 14446 ppd->overrun_threshold = 0x4; 14447 ppd->phy_error_threshold = 0xf; 14448 ppd->port_crc_mode_enabled = link_crc_mask; 14449 /* initialize supported LTP CRC mode */ 14450 ppd->port_ltp_crc_mode = cap_to_port_ltp(link_crc_mask) << 8; 14451 /* initialize enabled LTP CRC mode */ 14452 ppd->port_ltp_crc_mode |= cap_to_port_ltp(link_crc_mask) << 4; 14453 /* start in offline */ 14454 ppd->host_link_state = HLS_DN_OFFLINE; 14455 init_vl_arb_caches(ppd); 14456 ppd->last_pstate = 0xff; /* invalid value */ 14457 } 14458 14459 dd->link_default = HLS_DN_POLL; 14460 14461 /* 14462 * Do remaining PCIe setup and save PCIe values in dd. 14463 * Any error printing is already done by the init code. 14464 * On return, we have the chip mapped. 14465 */ 14466 ret = hfi1_pcie_ddinit(dd, pdev, ent); 14467 if (ret < 0) 14468 goto bail_free; 14469 14470 /* verify that reads actually work, save revision for reset check */ 14471 dd->revision = read_csr(dd, CCE_REVISION); 14472 if (dd->revision == ~(u64)0) { 14473 dd_dev_err(dd, "cannot read chip CSRs\n"); 14474 ret = -EINVAL; 14475 goto bail_cleanup; 14476 } 14477 dd->majrev = (dd->revision >> CCE_REVISION_CHIP_REV_MAJOR_SHIFT) 14478 & CCE_REVISION_CHIP_REV_MAJOR_MASK; 14479 dd->minrev = (dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT) 14480 & CCE_REVISION_CHIP_REV_MINOR_MASK; 14481 14482 /* 14483 * Check interrupt registers mapping if the driver has no access to 14484 * the upstream component. In this case, it is likely that the driver 14485 * is running in a VM. 14486 */ 14487 if (!parent) { 14488 ret = check_int_registers(dd); 14489 if (ret) 14490 goto bail_cleanup; 14491 } 14492 14493 /* 14494 * obtain the hardware ID - NOT related to unit, which is a 14495 * software enumeration 14496 */ 14497 reg = read_csr(dd, CCE_REVISION2); 14498 dd->hfi1_id = (reg >> CCE_REVISION2_HFI_ID_SHIFT) 14499 & CCE_REVISION2_HFI_ID_MASK; 14500 /* the variable size will remove unwanted bits */ 14501 dd->icode = reg >> CCE_REVISION2_IMPL_CODE_SHIFT; 14502 dd->irev = reg >> CCE_REVISION2_IMPL_REVISION_SHIFT; 14503 dd_dev_info(dd, "Implementation: %s, revision 0x%x\n", 14504 dd->icode < ARRAY_SIZE(inames) ? 14505 inames[dd->icode] : "unknown", (int)dd->irev); 14506 14507 /* speeds the hardware can support */ 14508 dd->pport->link_speed_supported = OPA_LINK_SPEED_25G; 14509 /* speeds allowed to run at */ 14510 dd->pport->link_speed_enabled = dd->pport->link_speed_supported; 14511 /* give a reasonable active value, will be set on link up */ 14512 dd->pport->link_speed_active = OPA_LINK_SPEED_25G; 14513 14514 dd->chip_rcv_contexts = read_csr(dd, RCV_CONTEXTS); 14515 dd->chip_send_contexts = read_csr(dd, SEND_CONTEXTS); 14516 dd->chip_sdma_engines = read_csr(dd, SEND_DMA_ENGINES); 14517 dd->chip_pio_mem_size = read_csr(dd, SEND_PIO_MEM_SIZE); 14518 dd->chip_sdma_mem_size = read_csr(dd, SEND_DMA_MEM_SIZE); 14519 /* fix up link widths for emulation _p */ 14520 ppd = dd->pport; 14521 if (dd->icode == ICODE_FPGA_EMULATION && is_emulator_p(dd)) { 14522 ppd->link_width_supported = 14523 ppd->link_width_enabled = 14524 ppd->link_width_downgrade_supported = 14525 ppd->link_width_downgrade_enabled = 14526 OPA_LINK_WIDTH_1X; 14527 } 14528 /* insure num_vls isn't larger than number of sdma engines */ 14529 if (HFI1_CAP_IS_KSET(SDMA) && num_vls > dd->chip_sdma_engines) { 14530 dd_dev_err(dd, "num_vls %u too large, using %u VLs\n", 14531 num_vls, dd->chip_sdma_engines); 14532 num_vls = dd->chip_sdma_engines; 14533 ppd->vls_supported = dd->chip_sdma_engines; 14534 ppd->vls_operational = ppd->vls_supported; 14535 } 14536 14537 /* 14538 * Convert the ns parameter to the 64 * cclocks used in the CSR. 14539 * Limit the max if larger than the field holds. If timeout is 14540 * non-zero, then the calculated field will be at least 1. 14541 * 14542 * Must be after icode is set up - the cclock rate depends 14543 * on knowing the hardware being used. 14544 */ 14545 dd->rcv_intr_timeout_csr = ns_to_cclock(dd, rcv_intr_timeout) / 64; 14546 if (dd->rcv_intr_timeout_csr > 14547 RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_MASK) 14548 dd->rcv_intr_timeout_csr = 14549 RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_MASK; 14550 else if (dd->rcv_intr_timeout_csr == 0 && rcv_intr_timeout) 14551 dd->rcv_intr_timeout_csr = 1; 14552 14553 /* needs to be done before we look for the peer device */ 14554 read_guid(dd); 14555 14556 /* set up shared ASIC data with peer device */ 14557 ret = init_asic_data(dd); 14558 if (ret) 14559 goto bail_cleanup; 14560 14561 /* obtain chip sizes, reset chip CSRs */ 14562 init_chip(dd); 14563 14564 /* read in the PCIe link speed information */ 14565 ret = pcie_speeds(dd); 14566 if (ret) 14567 goto bail_cleanup; 14568 14569 /* call before get_platform_config(), after init_chip_resources() */ 14570 ret = eprom_init(dd); 14571 if (ret) 14572 goto bail_free_rcverr; 14573 14574 /* Needs to be called before hfi1_firmware_init */ 14575 get_platform_config(dd); 14576 14577 /* read in firmware */ 14578 ret = hfi1_firmware_init(dd); 14579 if (ret) 14580 goto bail_cleanup; 14581 14582 /* 14583 * In general, the PCIe Gen3 transition must occur after the 14584 * chip has been idled (so it won't initiate any PCIe transactions 14585 * e.g. an interrupt) and before the driver changes any registers 14586 * (the transition will reset the registers). 14587 * 14588 * In particular, place this call after: 14589 * - init_chip() - the chip will not initiate any PCIe transactions 14590 * - pcie_speeds() - reads the current link speed 14591 * - hfi1_firmware_init() - the needed firmware is ready to be 14592 * downloaded 14593 */ 14594 ret = do_pcie_gen3_transition(dd); 14595 if (ret) 14596 goto bail_cleanup; 14597 14598 /* start setting dd values and adjusting CSRs */ 14599 init_early_variables(dd); 14600 14601 parse_platform_config(dd); 14602 14603 ret = obtain_boardname(dd); 14604 if (ret) 14605 goto bail_cleanup; 14606 14607 snprintf(dd->boardversion, BOARD_VERS_MAX, 14608 "ChipABI %u.%u, ChipRev %u.%u, SW Compat %llu\n", 14609 HFI1_CHIP_VERS_MAJ, HFI1_CHIP_VERS_MIN, 14610 (u32)dd->majrev, 14611 (u32)dd->minrev, 14612 (dd->revision >> CCE_REVISION_SW_SHIFT) 14613 & CCE_REVISION_SW_MASK); 14614 14615 ret = set_up_context_variables(dd); 14616 if (ret) 14617 goto bail_cleanup; 14618 14619 /* set initial RXE CSRs */ 14620 init_rxe(dd); 14621 /* set initial TXE CSRs */ 14622 init_txe(dd); 14623 /* set initial non-RXE, non-TXE CSRs */ 14624 init_other(dd); 14625 /* set up KDETH QP prefix in both RX and TX CSRs */ 14626 init_kdeth_qp(dd); 14627 14628 ret = hfi1_dev_affinity_init(dd); 14629 if (ret) 14630 goto bail_cleanup; 14631 14632 /* send contexts must be set up before receive contexts */ 14633 ret = init_send_contexts(dd); 14634 if (ret) 14635 goto bail_cleanup; 14636 14637 ret = hfi1_create_ctxts(dd); 14638 if (ret) 14639 goto bail_cleanup; 14640 14641 dd->rcvhdrsize = DEFAULT_RCVHDRSIZE; 14642 /* 14643 * rcd[0] is guaranteed to be valid by this point. Also, all 14644 * context are using the same value, as per the module parameter. 14645 */ 14646 dd->rhf_offset = dd->rcd[0]->rcvhdrqentsize - sizeof(u64) / sizeof(u32); 14647 14648 ret = init_pervl_scs(dd); 14649 if (ret) 14650 goto bail_cleanup; 14651 14652 /* sdma init */ 14653 for (i = 0; i < dd->num_pports; ++i) { 14654 ret = sdma_init(dd, i); 14655 if (ret) 14656 goto bail_cleanup; 14657 } 14658 14659 /* use contexts created by hfi1_create_ctxts */ 14660 ret = set_up_interrupts(dd); 14661 if (ret) 14662 goto bail_cleanup; 14663 14664 /* set up LCB access - must be after set_up_interrupts() */ 14665 init_lcb_access(dd); 14666 14667 /* 14668 * Serial number is created from the base guid: 14669 * [27:24] = base guid [38:35] 14670 * [23: 0] = base guid [23: 0] 14671 */ 14672 snprintf(dd->serial, SERIAL_MAX, "0x%08llx\n", 14673 (dd->base_guid & 0xFFFFFF) | 14674 ((dd->base_guid >> 11) & 0xF000000)); 14675 14676 dd->oui1 = dd->base_guid >> 56 & 0xFF; 14677 dd->oui2 = dd->base_guid >> 48 & 0xFF; 14678 dd->oui3 = dd->base_guid >> 40 & 0xFF; 14679 14680 ret = load_firmware(dd); /* asymmetric with dispose_firmware() */ 14681 if (ret) 14682 goto bail_clear_intr; 14683 14684 thermal_init(dd); 14685 14686 ret = init_cntrs(dd); 14687 if (ret) 14688 goto bail_clear_intr; 14689 14690 ret = init_rcverr(dd); 14691 if (ret) 14692 goto bail_free_cntrs; 14693 14694 goto bail; 14695 14696 bail_free_rcverr: 14697 free_rcverr(dd); 14698 bail_free_cntrs: 14699 free_cntrs(dd); 14700 bail_clear_intr: 14701 clean_up_interrupts(dd); 14702 bail_cleanup: 14703 hfi1_pcie_ddcleanup(dd); 14704 bail_free: 14705 hfi1_free_devdata(dd); 14706 dd = ERR_PTR(ret); 14707 bail: 14708 return dd; 14709 } 14710 14711 static u16 delay_cycles(struct hfi1_pportdata *ppd, u32 desired_egress_rate, 14712 u32 dw_len) 14713 { 14714 u32 delta_cycles; 14715 u32 current_egress_rate = ppd->current_egress_rate; 14716 /* rates here are in units of 10^6 bits/sec */ 14717 14718 if (desired_egress_rate == -1) 14719 return 0; /* shouldn't happen */ 14720 14721 if (desired_egress_rate >= current_egress_rate) 14722 return 0; /* we can't help go faster, only slower */ 14723 14724 delta_cycles = egress_cycles(dw_len * 4, desired_egress_rate) - 14725 egress_cycles(dw_len * 4, current_egress_rate); 14726 14727 return (u16)delta_cycles; 14728 } 14729 14730 /** 14731 * create_pbc - build a pbc for transmission 14732 * @flags: special case flags or-ed in built pbc 14733 * @srate: static rate 14734 * @vl: vl 14735 * @dwlen: dword length (header words + data words + pbc words) 14736 * 14737 * Create a PBC with the given flags, rate, VL, and length. 14738 * 14739 * NOTE: The PBC created will not insert any HCRC - all callers but one are 14740 * for verbs, which does not use this PSM feature. The lone other caller 14741 * is for the diagnostic interface which calls this if the user does not 14742 * supply their own PBC. 14743 */ 14744 u64 create_pbc(struct hfi1_pportdata *ppd, u64 flags, int srate_mbs, u32 vl, 14745 u32 dw_len) 14746 { 14747 u64 pbc, delay = 0; 14748 14749 if (unlikely(srate_mbs)) 14750 delay = delay_cycles(ppd, srate_mbs, dw_len); 14751 14752 pbc = flags 14753 | (delay << PBC_STATIC_RATE_CONTROL_COUNT_SHIFT) 14754 | ((u64)PBC_IHCRC_NONE << PBC_INSERT_HCRC_SHIFT) 14755 | (vl & PBC_VL_MASK) << PBC_VL_SHIFT 14756 | (dw_len & PBC_LENGTH_DWS_MASK) 14757 << PBC_LENGTH_DWS_SHIFT; 14758 14759 return pbc; 14760 } 14761 14762 #define SBUS_THERMAL 0x4f 14763 #define SBUS_THERM_MONITOR_MODE 0x1 14764 14765 #define THERM_FAILURE(dev, ret, reason) \ 14766 dd_dev_err((dd), \ 14767 "Thermal sensor initialization failed: %s (%d)\n", \ 14768 (reason), (ret)) 14769 14770 /* 14771 * Initialize the thermal sensor. 14772 * 14773 * After initialization, enable polling of thermal sensor through 14774 * SBus interface. In order for this to work, the SBus Master 14775 * firmware has to be loaded due to the fact that the HW polling 14776 * logic uses SBus interrupts, which are not supported with 14777 * default firmware. Otherwise, no data will be returned through 14778 * the ASIC_STS_THERM CSR. 14779 */ 14780 static int thermal_init(struct hfi1_devdata *dd) 14781 { 14782 int ret = 0; 14783 14784 if (dd->icode != ICODE_RTL_SILICON || 14785 check_chip_resource(dd, CR_THERM_INIT, NULL)) 14786 return ret; 14787 14788 ret = acquire_chip_resource(dd, CR_SBUS, SBUS_TIMEOUT); 14789 if (ret) { 14790 THERM_FAILURE(dd, ret, "Acquire SBus"); 14791 return ret; 14792 } 14793 14794 dd_dev_info(dd, "Initializing thermal sensor\n"); 14795 /* Disable polling of thermal readings */ 14796 write_csr(dd, ASIC_CFG_THERM_POLL_EN, 0x0); 14797 msleep(100); 14798 /* Thermal Sensor Initialization */ 14799 /* Step 1: Reset the Thermal SBus Receiver */ 14800 ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0, 14801 RESET_SBUS_RECEIVER, 0); 14802 if (ret) { 14803 THERM_FAILURE(dd, ret, "Bus Reset"); 14804 goto done; 14805 } 14806 /* Step 2: Set Reset bit in Thermal block */ 14807 ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0, 14808 WRITE_SBUS_RECEIVER, 0x1); 14809 if (ret) { 14810 THERM_FAILURE(dd, ret, "Therm Block Reset"); 14811 goto done; 14812 } 14813 /* Step 3: Write clock divider value (100MHz -> 2MHz) */ 14814 ret = sbus_request_slow(dd, SBUS_THERMAL, 0x1, 14815 WRITE_SBUS_RECEIVER, 0x32); 14816 if (ret) { 14817 THERM_FAILURE(dd, ret, "Write Clock Div"); 14818 goto done; 14819 } 14820 /* Step 4: Select temperature mode */ 14821 ret = sbus_request_slow(dd, SBUS_THERMAL, 0x3, 14822 WRITE_SBUS_RECEIVER, 14823 SBUS_THERM_MONITOR_MODE); 14824 if (ret) { 14825 THERM_FAILURE(dd, ret, "Write Mode Sel"); 14826 goto done; 14827 } 14828 /* Step 5: De-assert block reset and start conversion */ 14829 ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0, 14830 WRITE_SBUS_RECEIVER, 0x2); 14831 if (ret) { 14832 THERM_FAILURE(dd, ret, "Write Reset Deassert"); 14833 goto done; 14834 } 14835 /* Step 5.1: Wait for first conversion (21.5ms per spec) */ 14836 msleep(22); 14837 14838 /* Enable polling of thermal readings */ 14839 write_csr(dd, ASIC_CFG_THERM_POLL_EN, 0x1); 14840 14841 /* Set initialized flag */ 14842 ret = acquire_chip_resource(dd, CR_THERM_INIT, 0); 14843 if (ret) 14844 THERM_FAILURE(dd, ret, "Unable to set thermal init flag"); 14845 14846 done: 14847 release_chip_resource(dd, CR_SBUS); 14848 return ret; 14849 } 14850 14851 static void handle_temp_err(struct hfi1_devdata *dd) 14852 { 14853 struct hfi1_pportdata *ppd = &dd->pport[0]; 14854 /* 14855 * Thermal Critical Interrupt 14856 * Put the device into forced freeze mode, take link down to 14857 * offline, and put DC into reset. 14858 */ 14859 dd_dev_emerg(dd, 14860 "Critical temperature reached! Forcing device into freeze mode!\n"); 14861 dd->flags |= HFI1_FORCED_FREEZE; 14862 start_freeze_handling(ppd, FREEZE_SELF | FREEZE_ABORT); 14863 /* 14864 * Shut DC down as much and as quickly as possible. 14865 * 14866 * Step 1: Take the link down to OFFLINE. This will cause the 14867 * 8051 to put the Serdes in reset. However, we don't want to 14868 * go through the entire link state machine since we want to 14869 * shutdown ASAP. Furthermore, this is not a graceful shutdown 14870 * but rather an attempt to save the chip. 14871 * Code below is almost the same as quiet_serdes() but avoids 14872 * all the extra work and the sleeps. 14873 */ 14874 ppd->driver_link_ready = 0; 14875 ppd->link_enabled = 0; 14876 set_physical_link_state(dd, (OPA_LINKDOWN_REASON_SMA_DISABLED << 8) | 14877 PLS_OFFLINE); 14878 /* 14879 * Step 2: Shutdown LCB and 8051 14880 * After shutdown, do not restore DC_CFG_RESET value. 14881 */ 14882 dc_shutdown(dd); 14883 } 14884