xref: /openbmc/linux/drivers/infiniband/hw/hfi1/chip.c (revision 680ef72a)
1 /*
2  * Copyright(c) 2015 - 2017 Intel Corporation.
3  *
4  * This file is provided under a dual BSD/GPLv2 license.  When using or
5  * redistributing this file, you may do so under either license.
6  *
7  * GPL LICENSE SUMMARY
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of version 2 of the GNU General Public License as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * General Public License for more details.
17  *
18  * BSD LICENSE
19  *
20  * Redistribution and use in source and binary forms, with or without
21  * modification, are permitted provided that the following conditions
22  * are met:
23  *
24  *  - Redistributions of source code must retain the above copyright
25  *    notice, this list of conditions and the following disclaimer.
26  *  - Redistributions in binary form must reproduce the above copyright
27  *    notice, this list of conditions and the following disclaimer in
28  *    the documentation and/or other materials provided with the
29  *    distribution.
30  *  - Neither the name of Intel Corporation nor the names of its
31  *    contributors may be used to endorse or promote products derived
32  *    from this software without specific prior written permission.
33  *
34  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45  *
46  */
47 
48 /*
49  * This file contains all of the code that is specific to the HFI chip
50  */
51 
52 #include <linux/pci.h>
53 #include <linux/delay.h>
54 #include <linux/interrupt.h>
55 #include <linux/module.h>
56 
57 #include "hfi.h"
58 #include "trace.h"
59 #include "mad.h"
60 #include "pio.h"
61 #include "sdma.h"
62 #include "eprom.h"
63 #include "efivar.h"
64 #include "platform.h"
65 #include "aspm.h"
66 #include "affinity.h"
67 #include "debugfs.h"
68 
69 #define NUM_IB_PORTS 1
70 
71 uint kdeth_qp;
72 module_param_named(kdeth_qp, kdeth_qp, uint, S_IRUGO);
73 MODULE_PARM_DESC(kdeth_qp, "Set the KDETH queue pair prefix");
74 
75 uint num_vls = HFI1_MAX_VLS_SUPPORTED;
76 module_param(num_vls, uint, S_IRUGO);
77 MODULE_PARM_DESC(num_vls, "Set number of Virtual Lanes to use (1-8)");
78 
79 /*
80  * Default time to aggregate two 10K packets from the idle state
81  * (timer not running). The timer starts at the end of the first packet,
82  * so only the time for one 10K packet and header plus a bit extra is needed.
83  * 10 * 1024 + 64 header byte = 10304 byte
84  * 10304 byte / 12.5 GB/s = 824.32ns
85  */
86 uint rcv_intr_timeout = (824 + 16); /* 16 is for coalescing interrupt */
87 module_param(rcv_intr_timeout, uint, S_IRUGO);
88 MODULE_PARM_DESC(rcv_intr_timeout, "Receive interrupt mitigation timeout in ns");
89 
90 uint rcv_intr_count = 16; /* same as qib */
91 module_param(rcv_intr_count, uint, S_IRUGO);
92 MODULE_PARM_DESC(rcv_intr_count, "Receive interrupt mitigation count");
93 
94 ushort link_crc_mask = SUPPORTED_CRCS;
95 module_param(link_crc_mask, ushort, S_IRUGO);
96 MODULE_PARM_DESC(link_crc_mask, "CRCs to use on the link");
97 
98 uint loopback;
99 module_param_named(loopback, loopback, uint, S_IRUGO);
100 MODULE_PARM_DESC(loopback, "Put into loopback mode (1 = serdes, 3 = external cable");
101 
102 /* Other driver tunables */
103 uint rcv_intr_dynamic = 1; /* enable dynamic mode for rcv int mitigation*/
104 static ushort crc_14b_sideband = 1;
105 static uint use_flr = 1;
106 uint quick_linkup; /* skip LNI */
107 
108 struct flag_table {
109 	u64 flag;	/* the flag */
110 	char *str;	/* description string */
111 	u16 extra;	/* extra information */
112 	u16 unused0;
113 	u32 unused1;
114 };
115 
116 /* str must be a string constant */
117 #define FLAG_ENTRY(str, extra, flag) {flag, str, extra}
118 #define FLAG_ENTRY0(str, flag) {flag, str, 0}
119 
120 /* Send Error Consequences */
121 #define SEC_WRITE_DROPPED	0x1
122 #define SEC_PACKET_DROPPED	0x2
123 #define SEC_SC_HALTED		0x4	/* per-context only */
124 #define SEC_SPC_FREEZE		0x8	/* per-HFI only */
125 
126 #define DEFAULT_KRCVQS		  2
127 #define MIN_KERNEL_KCTXTS         2
128 #define FIRST_KERNEL_KCTXT        1
129 
130 /*
131  * RSM instance allocation
132  *   0 - Verbs
133  *   1 - User Fecn Handling
134  *   2 - Vnic
135  */
136 #define RSM_INS_VERBS             0
137 #define RSM_INS_FECN              1
138 #define RSM_INS_VNIC              2
139 
140 /* Bit offset into the GUID which carries HFI id information */
141 #define GUID_HFI_INDEX_SHIFT     39
142 
143 /* extract the emulation revision */
144 #define emulator_rev(dd) ((dd)->irev >> 8)
145 /* parallel and serial emulation versions are 3 and 4 respectively */
146 #define is_emulator_p(dd) ((((dd)->irev) & 0xf) == 3)
147 #define is_emulator_s(dd) ((((dd)->irev) & 0xf) == 4)
148 
149 /* RSM fields for Verbs */
150 /* packet type */
151 #define IB_PACKET_TYPE         2ull
152 #define QW_SHIFT               6ull
153 /* QPN[7..1] */
154 #define QPN_WIDTH              7ull
155 
156 /* LRH.BTH: QW 0, OFFSET 48 - for match */
157 #define LRH_BTH_QW             0ull
158 #define LRH_BTH_BIT_OFFSET     48ull
159 #define LRH_BTH_OFFSET(off)    ((LRH_BTH_QW << QW_SHIFT) | (off))
160 #define LRH_BTH_MATCH_OFFSET   LRH_BTH_OFFSET(LRH_BTH_BIT_OFFSET)
161 #define LRH_BTH_SELECT
162 #define LRH_BTH_MASK           3ull
163 #define LRH_BTH_VALUE          2ull
164 
165 /* LRH.SC[3..0] QW 0, OFFSET 56 - for match */
166 #define LRH_SC_QW              0ull
167 #define LRH_SC_BIT_OFFSET      56ull
168 #define LRH_SC_OFFSET(off)     ((LRH_SC_QW << QW_SHIFT) | (off))
169 #define LRH_SC_MATCH_OFFSET    LRH_SC_OFFSET(LRH_SC_BIT_OFFSET)
170 #define LRH_SC_MASK            128ull
171 #define LRH_SC_VALUE           0ull
172 
173 /* SC[n..0] QW 0, OFFSET 60 - for select */
174 #define LRH_SC_SELECT_OFFSET  ((LRH_SC_QW << QW_SHIFT) | (60ull))
175 
176 /* QPN[m+n:1] QW 1, OFFSET 1 */
177 #define QPN_SELECT_OFFSET      ((1ull << QW_SHIFT) | (1ull))
178 
179 /* RSM fields for Vnic */
180 /* L2_TYPE: QW 0, OFFSET 61 - for match */
181 #define L2_TYPE_QW             0ull
182 #define L2_TYPE_BIT_OFFSET     61ull
183 #define L2_TYPE_OFFSET(off)    ((L2_TYPE_QW << QW_SHIFT) | (off))
184 #define L2_TYPE_MATCH_OFFSET   L2_TYPE_OFFSET(L2_TYPE_BIT_OFFSET)
185 #define L2_TYPE_MASK           3ull
186 #define L2_16B_VALUE           2ull
187 
188 /* L4_TYPE QW 1, OFFSET 0 - for match */
189 #define L4_TYPE_QW              1ull
190 #define L4_TYPE_BIT_OFFSET      0ull
191 #define L4_TYPE_OFFSET(off)     ((L4_TYPE_QW << QW_SHIFT) | (off))
192 #define L4_TYPE_MATCH_OFFSET    L4_TYPE_OFFSET(L4_TYPE_BIT_OFFSET)
193 #define L4_16B_TYPE_MASK        0xFFull
194 #define L4_16B_ETH_VALUE        0x78ull
195 
196 /* 16B VESWID - for select */
197 #define L4_16B_HDR_VESWID_OFFSET  ((2 << QW_SHIFT) | (16ull))
198 /* 16B ENTROPY - for select */
199 #define L2_16B_ENTROPY_OFFSET     ((1 << QW_SHIFT) | (32ull))
200 
201 /* defines to build power on SC2VL table */
202 #define SC2VL_VAL( \
203 	num, \
204 	sc0, sc0val, \
205 	sc1, sc1val, \
206 	sc2, sc2val, \
207 	sc3, sc3val, \
208 	sc4, sc4val, \
209 	sc5, sc5val, \
210 	sc6, sc6val, \
211 	sc7, sc7val) \
212 ( \
213 	((u64)(sc0val) << SEND_SC2VLT##num##_SC##sc0##_SHIFT) | \
214 	((u64)(sc1val) << SEND_SC2VLT##num##_SC##sc1##_SHIFT) | \
215 	((u64)(sc2val) << SEND_SC2VLT##num##_SC##sc2##_SHIFT) | \
216 	((u64)(sc3val) << SEND_SC2VLT##num##_SC##sc3##_SHIFT) | \
217 	((u64)(sc4val) << SEND_SC2VLT##num##_SC##sc4##_SHIFT) | \
218 	((u64)(sc5val) << SEND_SC2VLT##num##_SC##sc5##_SHIFT) | \
219 	((u64)(sc6val) << SEND_SC2VLT##num##_SC##sc6##_SHIFT) | \
220 	((u64)(sc7val) << SEND_SC2VLT##num##_SC##sc7##_SHIFT)   \
221 )
222 
223 #define DC_SC_VL_VAL( \
224 	range, \
225 	e0, e0val, \
226 	e1, e1val, \
227 	e2, e2val, \
228 	e3, e3val, \
229 	e4, e4val, \
230 	e5, e5val, \
231 	e6, e6val, \
232 	e7, e7val, \
233 	e8, e8val, \
234 	e9, e9val, \
235 	e10, e10val, \
236 	e11, e11val, \
237 	e12, e12val, \
238 	e13, e13val, \
239 	e14, e14val, \
240 	e15, e15val) \
241 ( \
242 	((u64)(e0val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e0##_SHIFT) | \
243 	((u64)(e1val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e1##_SHIFT) | \
244 	((u64)(e2val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e2##_SHIFT) | \
245 	((u64)(e3val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e3##_SHIFT) | \
246 	((u64)(e4val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e4##_SHIFT) | \
247 	((u64)(e5val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e5##_SHIFT) | \
248 	((u64)(e6val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e6##_SHIFT) | \
249 	((u64)(e7val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e7##_SHIFT) | \
250 	((u64)(e8val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e8##_SHIFT) | \
251 	((u64)(e9val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e9##_SHIFT) | \
252 	((u64)(e10val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e10##_SHIFT) | \
253 	((u64)(e11val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e11##_SHIFT) | \
254 	((u64)(e12val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e12##_SHIFT) | \
255 	((u64)(e13val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e13##_SHIFT) | \
256 	((u64)(e14val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e14##_SHIFT) | \
257 	((u64)(e15val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e15##_SHIFT) \
258 )
259 
260 /* all CceStatus sub-block freeze bits */
261 #define ALL_FROZE (CCE_STATUS_SDMA_FROZE_SMASK \
262 			| CCE_STATUS_RXE_FROZE_SMASK \
263 			| CCE_STATUS_TXE_FROZE_SMASK \
264 			| CCE_STATUS_TXE_PIO_FROZE_SMASK)
265 /* all CceStatus sub-block TXE pause bits */
266 #define ALL_TXE_PAUSE (CCE_STATUS_TXE_PIO_PAUSED_SMASK \
267 			| CCE_STATUS_TXE_PAUSED_SMASK \
268 			| CCE_STATUS_SDMA_PAUSED_SMASK)
269 /* all CceStatus sub-block RXE pause bits */
270 #define ALL_RXE_PAUSE CCE_STATUS_RXE_PAUSED_SMASK
271 
272 #define CNTR_MAX 0xFFFFFFFFFFFFFFFFULL
273 #define CNTR_32BIT_MAX 0x00000000FFFFFFFF
274 
275 /*
276  * CCE Error flags.
277  */
278 static struct flag_table cce_err_status_flags[] = {
279 /* 0*/	FLAG_ENTRY0("CceCsrParityErr",
280 		CCE_ERR_STATUS_CCE_CSR_PARITY_ERR_SMASK),
281 /* 1*/	FLAG_ENTRY0("CceCsrReadBadAddrErr",
282 		CCE_ERR_STATUS_CCE_CSR_READ_BAD_ADDR_ERR_SMASK),
283 /* 2*/	FLAG_ENTRY0("CceCsrWriteBadAddrErr",
284 		CCE_ERR_STATUS_CCE_CSR_WRITE_BAD_ADDR_ERR_SMASK),
285 /* 3*/	FLAG_ENTRY0("CceTrgtAsyncFifoParityErr",
286 		CCE_ERR_STATUS_CCE_TRGT_ASYNC_FIFO_PARITY_ERR_SMASK),
287 /* 4*/	FLAG_ENTRY0("CceTrgtAccessErr",
288 		CCE_ERR_STATUS_CCE_TRGT_ACCESS_ERR_SMASK),
289 /* 5*/	FLAG_ENTRY0("CceRspdDataParityErr",
290 		CCE_ERR_STATUS_CCE_RSPD_DATA_PARITY_ERR_SMASK),
291 /* 6*/	FLAG_ENTRY0("CceCli0AsyncFifoParityErr",
292 		CCE_ERR_STATUS_CCE_CLI0_ASYNC_FIFO_PARITY_ERR_SMASK),
293 /* 7*/	FLAG_ENTRY0("CceCsrCfgBusParityErr",
294 		CCE_ERR_STATUS_CCE_CSR_CFG_BUS_PARITY_ERR_SMASK),
295 /* 8*/	FLAG_ENTRY0("CceCli2AsyncFifoParityErr",
296 		CCE_ERR_STATUS_CCE_CLI2_ASYNC_FIFO_PARITY_ERR_SMASK),
297 /* 9*/	FLAG_ENTRY0("CceCli1AsyncFifoPioCrdtParityErr",
298 	    CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_PIO_CRDT_PARITY_ERR_SMASK),
299 /*10*/	FLAG_ENTRY0("CceCli1AsyncFifoPioCrdtParityErr",
300 	    CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_SDMA_HD_PARITY_ERR_SMASK),
301 /*11*/	FLAG_ENTRY0("CceCli1AsyncFifoRxdmaParityError",
302 	    CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_RXDMA_PARITY_ERROR_SMASK),
303 /*12*/	FLAG_ENTRY0("CceCli1AsyncFifoDbgParityError",
304 		CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_DBG_PARITY_ERROR_SMASK),
305 /*13*/	FLAG_ENTRY0("PcicRetryMemCorErr",
306 		CCE_ERR_STATUS_PCIC_RETRY_MEM_COR_ERR_SMASK),
307 /*14*/	FLAG_ENTRY0("PcicRetryMemCorErr",
308 		CCE_ERR_STATUS_PCIC_RETRY_SOT_MEM_COR_ERR_SMASK),
309 /*15*/	FLAG_ENTRY0("PcicPostHdQCorErr",
310 		CCE_ERR_STATUS_PCIC_POST_HD_QCOR_ERR_SMASK),
311 /*16*/	FLAG_ENTRY0("PcicPostHdQCorErr",
312 		CCE_ERR_STATUS_PCIC_POST_DAT_QCOR_ERR_SMASK),
313 /*17*/	FLAG_ENTRY0("PcicPostHdQCorErr",
314 		CCE_ERR_STATUS_PCIC_CPL_HD_QCOR_ERR_SMASK),
315 /*18*/	FLAG_ENTRY0("PcicCplDatQCorErr",
316 		CCE_ERR_STATUS_PCIC_CPL_DAT_QCOR_ERR_SMASK),
317 /*19*/	FLAG_ENTRY0("PcicNPostHQParityErr",
318 		CCE_ERR_STATUS_PCIC_NPOST_HQ_PARITY_ERR_SMASK),
319 /*20*/	FLAG_ENTRY0("PcicNPostDatQParityErr",
320 		CCE_ERR_STATUS_PCIC_NPOST_DAT_QPARITY_ERR_SMASK),
321 /*21*/	FLAG_ENTRY0("PcicRetryMemUncErr",
322 		CCE_ERR_STATUS_PCIC_RETRY_MEM_UNC_ERR_SMASK),
323 /*22*/	FLAG_ENTRY0("PcicRetrySotMemUncErr",
324 		CCE_ERR_STATUS_PCIC_RETRY_SOT_MEM_UNC_ERR_SMASK),
325 /*23*/	FLAG_ENTRY0("PcicPostHdQUncErr",
326 		CCE_ERR_STATUS_PCIC_POST_HD_QUNC_ERR_SMASK),
327 /*24*/	FLAG_ENTRY0("PcicPostDatQUncErr",
328 		CCE_ERR_STATUS_PCIC_POST_DAT_QUNC_ERR_SMASK),
329 /*25*/	FLAG_ENTRY0("PcicCplHdQUncErr",
330 		CCE_ERR_STATUS_PCIC_CPL_HD_QUNC_ERR_SMASK),
331 /*26*/	FLAG_ENTRY0("PcicCplDatQUncErr",
332 		CCE_ERR_STATUS_PCIC_CPL_DAT_QUNC_ERR_SMASK),
333 /*27*/	FLAG_ENTRY0("PcicTransmitFrontParityErr",
334 		CCE_ERR_STATUS_PCIC_TRANSMIT_FRONT_PARITY_ERR_SMASK),
335 /*28*/	FLAG_ENTRY0("PcicTransmitBackParityErr",
336 		CCE_ERR_STATUS_PCIC_TRANSMIT_BACK_PARITY_ERR_SMASK),
337 /*29*/	FLAG_ENTRY0("PcicReceiveParityErr",
338 		CCE_ERR_STATUS_PCIC_RECEIVE_PARITY_ERR_SMASK),
339 /*30*/	FLAG_ENTRY0("CceTrgtCplTimeoutErr",
340 		CCE_ERR_STATUS_CCE_TRGT_CPL_TIMEOUT_ERR_SMASK),
341 /*31*/	FLAG_ENTRY0("LATriggered",
342 		CCE_ERR_STATUS_LA_TRIGGERED_SMASK),
343 /*32*/	FLAG_ENTRY0("CceSegReadBadAddrErr",
344 		CCE_ERR_STATUS_CCE_SEG_READ_BAD_ADDR_ERR_SMASK),
345 /*33*/	FLAG_ENTRY0("CceSegWriteBadAddrErr",
346 		CCE_ERR_STATUS_CCE_SEG_WRITE_BAD_ADDR_ERR_SMASK),
347 /*34*/	FLAG_ENTRY0("CceRcplAsyncFifoParityErr",
348 		CCE_ERR_STATUS_CCE_RCPL_ASYNC_FIFO_PARITY_ERR_SMASK),
349 /*35*/	FLAG_ENTRY0("CceRxdmaConvFifoParityErr",
350 		CCE_ERR_STATUS_CCE_RXDMA_CONV_FIFO_PARITY_ERR_SMASK),
351 /*36*/	FLAG_ENTRY0("CceMsixTableCorErr",
352 		CCE_ERR_STATUS_CCE_MSIX_TABLE_COR_ERR_SMASK),
353 /*37*/	FLAG_ENTRY0("CceMsixTableUncErr",
354 		CCE_ERR_STATUS_CCE_MSIX_TABLE_UNC_ERR_SMASK),
355 /*38*/	FLAG_ENTRY0("CceIntMapCorErr",
356 		CCE_ERR_STATUS_CCE_INT_MAP_COR_ERR_SMASK),
357 /*39*/	FLAG_ENTRY0("CceIntMapUncErr",
358 		CCE_ERR_STATUS_CCE_INT_MAP_UNC_ERR_SMASK),
359 /*40*/	FLAG_ENTRY0("CceMsixCsrParityErr",
360 		CCE_ERR_STATUS_CCE_MSIX_CSR_PARITY_ERR_SMASK),
361 /*41-63 reserved*/
362 };
363 
364 /*
365  * Misc Error flags
366  */
367 #define MES(text) MISC_ERR_STATUS_MISC_##text##_ERR_SMASK
368 static struct flag_table misc_err_status_flags[] = {
369 /* 0*/	FLAG_ENTRY0("CSR_PARITY", MES(CSR_PARITY)),
370 /* 1*/	FLAG_ENTRY0("CSR_READ_BAD_ADDR", MES(CSR_READ_BAD_ADDR)),
371 /* 2*/	FLAG_ENTRY0("CSR_WRITE_BAD_ADDR", MES(CSR_WRITE_BAD_ADDR)),
372 /* 3*/	FLAG_ENTRY0("SBUS_WRITE_FAILED", MES(SBUS_WRITE_FAILED)),
373 /* 4*/	FLAG_ENTRY0("KEY_MISMATCH", MES(KEY_MISMATCH)),
374 /* 5*/	FLAG_ENTRY0("FW_AUTH_FAILED", MES(FW_AUTH_FAILED)),
375 /* 6*/	FLAG_ENTRY0("EFUSE_CSR_PARITY", MES(EFUSE_CSR_PARITY)),
376 /* 7*/	FLAG_ENTRY0("EFUSE_READ_BAD_ADDR", MES(EFUSE_READ_BAD_ADDR)),
377 /* 8*/	FLAG_ENTRY0("EFUSE_WRITE", MES(EFUSE_WRITE)),
378 /* 9*/	FLAG_ENTRY0("EFUSE_DONE_PARITY", MES(EFUSE_DONE_PARITY)),
379 /*10*/	FLAG_ENTRY0("INVALID_EEP_CMD", MES(INVALID_EEP_CMD)),
380 /*11*/	FLAG_ENTRY0("MBIST_FAIL", MES(MBIST_FAIL)),
381 /*12*/	FLAG_ENTRY0("PLL_LOCK_FAIL", MES(PLL_LOCK_FAIL))
382 };
383 
384 /*
385  * TXE PIO Error flags and consequences
386  */
387 static struct flag_table pio_err_status_flags[] = {
388 /* 0*/	FLAG_ENTRY("PioWriteBadCtxt",
389 	SEC_WRITE_DROPPED,
390 	SEND_PIO_ERR_STATUS_PIO_WRITE_BAD_CTXT_ERR_SMASK),
391 /* 1*/	FLAG_ENTRY("PioWriteAddrParity",
392 	SEC_SPC_FREEZE,
393 	SEND_PIO_ERR_STATUS_PIO_WRITE_ADDR_PARITY_ERR_SMASK),
394 /* 2*/	FLAG_ENTRY("PioCsrParity",
395 	SEC_SPC_FREEZE,
396 	SEND_PIO_ERR_STATUS_PIO_CSR_PARITY_ERR_SMASK),
397 /* 3*/	FLAG_ENTRY("PioSbMemFifo0",
398 	SEC_SPC_FREEZE,
399 	SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO0_ERR_SMASK),
400 /* 4*/	FLAG_ENTRY("PioSbMemFifo1",
401 	SEC_SPC_FREEZE,
402 	SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO1_ERR_SMASK),
403 /* 5*/	FLAG_ENTRY("PioPccFifoParity",
404 	SEC_SPC_FREEZE,
405 	SEND_PIO_ERR_STATUS_PIO_PCC_FIFO_PARITY_ERR_SMASK),
406 /* 6*/	FLAG_ENTRY("PioPecFifoParity",
407 	SEC_SPC_FREEZE,
408 	SEND_PIO_ERR_STATUS_PIO_PEC_FIFO_PARITY_ERR_SMASK),
409 /* 7*/	FLAG_ENTRY("PioSbrdctlCrrelParity",
410 	SEC_SPC_FREEZE,
411 	SEND_PIO_ERR_STATUS_PIO_SBRDCTL_CRREL_PARITY_ERR_SMASK),
412 /* 8*/	FLAG_ENTRY("PioSbrdctrlCrrelFifoParity",
413 	SEC_SPC_FREEZE,
414 	SEND_PIO_ERR_STATUS_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR_SMASK),
415 /* 9*/	FLAG_ENTRY("PioPktEvictFifoParityErr",
416 	SEC_SPC_FREEZE,
417 	SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_FIFO_PARITY_ERR_SMASK),
418 /*10*/	FLAG_ENTRY("PioSmPktResetParity",
419 	SEC_SPC_FREEZE,
420 	SEND_PIO_ERR_STATUS_PIO_SM_PKT_RESET_PARITY_ERR_SMASK),
421 /*11*/	FLAG_ENTRY("PioVlLenMemBank0Unc",
422 	SEC_SPC_FREEZE,
423 	SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_UNC_ERR_SMASK),
424 /*12*/	FLAG_ENTRY("PioVlLenMemBank1Unc",
425 	SEC_SPC_FREEZE,
426 	SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_UNC_ERR_SMASK),
427 /*13*/	FLAG_ENTRY("PioVlLenMemBank0Cor",
428 	0,
429 	SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_COR_ERR_SMASK),
430 /*14*/	FLAG_ENTRY("PioVlLenMemBank1Cor",
431 	0,
432 	SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_COR_ERR_SMASK),
433 /*15*/	FLAG_ENTRY("PioCreditRetFifoParity",
434 	SEC_SPC_FREEZE,
435 	SEND_PIO_ERR_STATUS_PIO_CREDIT_RET_FIFO_PARITY_ERR_SMASK),
436 /*16*/	FLAG_ENTRY("PioPpmcPblFifo",
437 	SEC_SPC_FREEZE,
438 	SEND_PIO_ERR_STATUS_PIO_PPMC_PBL_FIFO_ERR_SMASK),
439 /*17*/	FLAG_ENTRY("PioInitSmIn",
440 	0,
441 	SEND_PIO_ERR_STATUS_PIO_INIT_SM_IN_ERR_SMASK),
442 /*18*/	FLAG_ENTRY("PioPktEvictSmOrArbSm",
443 	SEC_SPC_FREEZE,
444 	SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_SM_OR_ARB_SM_ERR_SMASK),
445 /*19*/	FLAG_ENTRY("PioHostAddrMemUnc",
446 	SEC_SPC_FREEZE,
447 	SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_UNC_ERR_SMASK),
448 /*20*/	FLAG_ENTRY("PioHostAddrMemCor",
449 	0,
450 	SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_COR_ERR_SMASK),
451 /*21*/	FLAG_ENTRY("PioWriteDataParity",
452 	SEC_SPC_FREEZE,
453 	SEND_PIO_ERR_STATUS_PIO_WRITE_DATA_PARITY_ERR_SMASK),
454 /*22*/	FLAG_ENTRY("PioStateMachine",
455 	SEC_SPC_FREEZE,
456 	SEND_PIO_ERR_STATUS_PIO_STATE_MACHINE_ERR_SMASK),
457 /*23*/	FLAG_ENTRY("PioWriteQwValidParity",
458 	SEC_WRITE_DROPPED | SEC_SPC_FREEZE,
459 	SEND_PIO_ERR_STATUS_PIO_WRITE_QW_VALID_PARITY_ERR_SMASK),
460 /*24*/	FLAG_ENTRY("PioBlockQwCountParity",
461 	SEC_WRITE_DROPPED | SEC_SPC_FREEZE,
462 	SEND_PIO_ERR_STATUS_PIO_BLOCK_QW_COUNT_PARITY_ERR_SMASK),
463 /*25*/	FLAG_ENTRY("PioVlfVlLenParity",
464 	SEC_SPC_FREEZE,
465 	SEND_PIO_ERR_STATUS_PIO_VLF_VL_LEN_PARITY_ERR_SMASK),
466 /*26*/	FLAG_ENTRY("PioVlfSopParity",
467 	SEC_SPC_FREEZE,
468 	SEND_PIO_ERR_STATUS_PIO_VLF_SOP_PARITY_ERR_SMASK),
469 /*27*/	FLAG_ENTRY("PioVlFifoParity",
470 	SEC_SPC_FREEZE,
471 	SEND_PIO_ERR_STATUS_PIO_VL_FIFO_PARITY_ERR_SMASK),
472 /*28*/	FLAG_ENTRY("PioPpmcBqcMemParity",
473 	SEC_SPC_FREEZE,
474 	SEND_PIO_ERR_STATUS_PIO_PPMC_BQC_MEM_PARITY_ERR_SMASK),
475 /*29*/	FLAG_ENTRY("PioPpmcSopLen",
476 	SEC_SPC_FREEZE,
477 	SEND_PIO_ERR_STATUS_PIO_PPMC_SOP_LEN_ERR_SMASK),
478 /*30-31 reserved*/
479 /*32*/	FLAG_ENTRY("PioCurrentFreeCntParity",
480 	SEC_SPC_FREEZE,
481 	SEND_PIO_ERR_STATUS_PIO_CURRENT_FREE_CNT_PARITY_ERR_SMASK),
482 /*33*/	FLAG_ENTRY("PioLastReturnedCntParity",
483 	SEC_SPC_FREEZE,
484 	SEND_PIO_ERR_STATUS_PIO_LAST_RETURNED_CNT_PARITY_ERR_SMASK),
485 /*34*/	FLAG_ENTRY("PioPccSopHeadParity",
486 	SEC_SPC_FREEZE,
487 	SEND_PIO_ERR_STATUS_PIO_PCC_SOP_HEAD_PARITY_ERR_SMASK),
488 /*35*/	FLAG_ENTRY("PioPecSopHeadParityErr",
489 	SEC_SPC_FREEZE,
490 	SEND_PIO_ERR_STATUS_PIO_PEC_SOP_HEAD_PARITY_ERR_SMASK),
491 /*36-63 reserved*/
492 };
493 
494 /* TXE PIO errors that cause an SPC freeze */
495 #define ALL_PIO_FREEZE_ERR \
496 	(SEND_PIO_ERR_STATUS_PIO_WRITE_ADDR_PARITY_ERR_SMASK \
497 	| SEND_PIO_ERR_STATUS_PIO_CSR_PARITY_ERR_SMASK \
498 	| SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO0_ERR_SMASK \
499 	| SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO1_ERR_SMASK \
500 	| SEND_PIO_ERR_STATUS_PIO_PCC_FIFO_PARITY_ERR_SMASK \
501 	| SEND_PIO_ERR_STATUS_PIO_PEC_FIFO_PARITY_ERR_SMASK \
502 	| SEND_PIO_ERR_STATUS_PIO_SBRDCTL_CRREL_PARITY_ERR_SMASK \
503 	| SEND_PIO_ERR_STATUS_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR_SMASK \
504 	| SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_FIFO_PARITY_ERR_SMASK \
505 	| SEND_PIO_ERR_STATUS_PIO_SM_PKT_RESET_PARITY_ERR_SMASK \
506 	| SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_UNC_ERR_SMASK \
507 	| SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_UNC_ERR_SMASK \
508 	| SEND_PIO_ERR_STATUS_PIO_CREDIT_RET_FIFO_PARITY_ERR_SMASK \
509 	| SEND_PIO_ERR_STATUS_PIO_PPMC_PBL_FIFO_ERR_SMASK \
510 	| SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_SM_OR_ARB_SM_ERR_SMASK \
511 	| SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_UNC_ERR_SMASK \
512 	| SEND_PIO_ERR_STATUS_PIO_WRITE_DATA_PARITY_ERR_SMASK \
513 	| SEND_PIO_ERR_STATUS_PIO_STATE_MACHINE_ERR_SMASK \
514 	| SEND_PIO_ERR_STATUS_PIO_WRITE_QW_VALID_PARITY_ERR_SMASK \
515 	| SEND_PIO_ERR_STATUS_PIO_BLOCK_QW_COUNT_PARITY_ERR_SMASK \
516 	| SEND_PIO_ERR_STATUS_PIO_VLF_VL_LEN_PARITY_ERR_SMASK \
517 	| SEND_PIO_ERR_STATUS_PIO_VLF_SOP_PARITY_ERR_SMASK \
518 	| SEND_PIO_ERR_STATUS_PIO_VL_FIFO_PARITY_ERR_SMASK \
519 	| SEND_PIO_ERR_STATUS_PIO_PPMC_BQC_MEM_PARITY_ERR_SMASK \
520 	| SEND_PIO_ERR_STATUS_PIO_PPMC_SOP_LEN_ERR_SMASK \
521 	| SEND_PIO_ERR_STATUS_PIO_CURRENT_FREE_CNT_PARITY_ERR_SMASK \
522 	| SEND_PIO_ERR_STATUS_PIO_LAST_RETURNED_CNT_PARITY_ERR_SMASK \
523 	| SEND_PIO_ERR_STATUS_PIO_PCC_SOP_HEAD_PARITY_ERR_SMASK \
524 	| SEND_PIO_ERR_STATUS_PIO_PEC_SOP_HEAD_PARITY_ERR_SMASK)
525 
526 /*
527  * TXE SDMA Error flags
528  */
529 static struct flag_table sdma_err_status_flags[] = {
530 /* 0*/	FLAG_ENTRY0("SDmaRpyTagErr",
531 		SEND_DMA_ERR_STATUS_SDMA_RPY_TAG_ERR_SMASK),
532 /* 1*/	FLAG_ENTRY0("SDmaCsrParityErr",
533 		SEND_DMA_ERR_STATUS_SDMA_CSR_PARITY_ERR_SMASK),
534 /* 2*/	FLAG_ENTRY0("SDmaPcieReqTrackingUncErr",
535 		SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_UNC_ERR_SMASK),
536 /* 3*/	FLAG_ENTRY0("SDmaPcieReqTrackingCorErr",
537 		SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_COR_ERR_SMASK),
538 /*04-63 reserved*/
539 };
540 
541 /* TXE SDMA errors that cause an SPC freeze */
542 #define ALL_SDMA_FREEZE_ERR  \
543 		(SEND_DMA_ERR_STATUS_SDMA_RPY_TAG_ERR_SMASK \
544 		| SEND_DMA_ERR_STATUS_SDMA_CSR_PARITY_ERR_SMASK \
545 		| SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_UNC_ERR_SMASK)
546 
547 /* SendEgressErrInfo bits that correspond to a PortXmitDiscard counter */
548 #define PORT_DISCARD_EGRESS_ERRS \
549 	(SEND_EGRESS_ERR_INFO_TOO_LONG_IB_PACKET_ERR_SMASK \
550 	| SEND_EGRESS_ERR_INFO_VL_MAPPING_ERR_SMASK \
551 	| SEND_EGRESS_ERR_INFO_VL_ERR_SMASK)
552 
553 /*
554  * TXE Egress Error flags
555  */
556 #define SEES(text) SEND_EGRESS_ERR_STATUS_##text##_ERR_SMASK
557 static struct flag_table egress_err_status_flags[] = {
558 /* 0*/	FLAG_ENTRY0("TxPktIntegrityMemCorErr", SEES(TX_PKT_INTEGRITY_MEM_COR)),
559 /* 1*/	FLAG_ENTRY0("TxPktIntegrityMemUncErr", SEES(TX_PKT_INTEGRITY_MEM_UNC)),
560 /* 2 reserved */
561 /* 3*/	FLAG_ENTRY0("TxEgressFifoUnderrunOrParityErr",
562 		SEES(TX_EGRESS_FIFO_UNDERRUN_OR_PARITY)),
563 /* 4*/	FLAG_ENTRY0("TxLinkdownErr", SEES(TX_LINKDOWN)),
564 /* 5*/	FLAG_ENTRY0("TxIncorrectLinkStateErr", SEES(TX_INCORRECT_LINK_STATE)),
565 /* 6 reserved */
566 /* 7*/	FLAG_ENTRY0("TxPioLaunchIntfParityErr",
567 		SEES(TX_PIO_LAUNCH_INTF_PARITY)),
568 /* 8*/	FLAG_ENTRY0("TxSdmaLaunchIntfParityErr",
569 		SEES(TX_SDMA_LAUNCH_INTF_PARITY)),
570 /* 9-10 reserved */
571 /*11*/	FLAG_ENTRY0("TxSbrdCtlStateMachineParityErr",
572 		SEES(TX_SBRD_CTL_STATE_MACHINE_PARITY)),
573 /*12*/	FLAG_ENTRY0("TxIllegalVLErr", SEES(TX_ILLEGAL_VL)),
574 /*13*/	FLAG_ENTRY0("TxLaunchCsrParityErr", SEES(TX_LAUNCH_CSR_PARITY)),
575 /*14*/	FLAG_ENTRY0("TxSbrdCtlCsrParityErr", SEES(TX_SBRD_CTL_CSR_PARITY)),
576 /*15*/	FLAG_ENTRY0("TxConfigParityErr", SEES(TX_CONFIG_PARITY)),
577 /*16*/	FLAG_ENTRY0("TxSdma0DisallowedPacketErr",
578 		SEES(TX_SDMA0_DISALLOWED_PACKET)),
579 /*17*/	FLAG_ENTRY0("TxSdma1DisallowedPacketErr",
580 		SEES(TX_SDMA1_DISALLOWED_PACKET)),
581 /*18*/	FLAG_ENTRY0("TxSdma2DisallowedPacketErr",
582 		SEES(TX_SDMA2_DISALLOWED_PACKET)),
583 /*19*/	FLAG_ENTRY0("TxSdma3DisallowedPacketErr",
584 		SEES(TX_SDMA3_DISALLOWED_PACKET)),
585 /*20*/	FLAG_ENTRY0("TxSdma4DisallowedPacketErr",
586 		SEES(TX_SDMA4_DISALLOWED_PACKET)),
587 /*21*/	FLAG_ENTRY0("TxSdma5DisallowedPacketErr",
588 		SEES(TX_SDMA5_DISALLOWED_PACKET)),
589 /*22*/	FLAG_ENTRY0("TxSdma6DisallowedPacketErr",
590 		SEES(TX_SDMA6_DISALLOWED_PACKET)),
591 /*23*/	FLAG_ENTRY0("TxSdma7DisallowedPacketErr",
592 		SEES(TX_SDMA7_DISALLOWED_PACKET)),
593 /*24*/	FLAG_ENTRY0("TxSdma8DisallowedPacketErr",
594 		SEES(TX_SDMA8_DISALLOWED_PACKET)),
595 /*25*/	FLAG_ENTRY0("TxSdma9DisallowedPacketErr",
596 		SEES(TX_SDMA9_DISALLOWED_PACKET)),
597 /*26*/	FLAG_ENTRY0("TxSdma10DisallowedPacketErr",
598 		SEES(TX_SDMA10_DISALLOWED_PACKET)),
599 /*27*/	FLAG_ENTRY0("TxSdma11DisallowedPacketErr",
600 		SEES(TX_SDMA11_DISALLOWED_PACKET)),
601 /*28*/	FLAG_ENTRY0("TxSdma12DisallowedPacketErr",
602 		SEES(TX_SDMA12_DISALLOWED_PACKET)),
603 /*29*/	FLAG_ENTRY0("TxSdma13DisallowedPacketErr",
604 		SEES(TX_SDMA13_DISALLOWED_PACKET)),
605 /*30*/	FLAG_ENTRY0("TxSdma14DisallowedPacketErr",
606 		SEES(TX_SDMA14_DISALLOWED_PACKET)),
607 /*31*/	FLAG_ENTRY0("TxSdma15DisallowedPacketErr",
608 		SEES(TX_SDMA15_DISALLOWED_PACKET)),
609 /*32*/	FLAG_ENTRY0("TxLaunchFifo0UncOrParityErr",
610 		SEES(TX_LAUNCH_FIFO0_UNC_OR_PARITY)),
611 /*33*/	FLAG_ENTRY0("TxLaunchFifo1UncOrParityErr",
612 		SEES(TX_LAUNCH_FIFO1_UNC_OR_PARITY)),
613 /*34*/	FLAG_ENTRY0("TxLaunchFifo2UncOrParityErr",
614 		SEES(TX_LAUNCH_FIFO2_UNC_OR_PARITY)),
615 /*35*/	FLAG_ENTRY0("TxLaunchFifo3UncOrParityErr",
616 		SEES(TX_LAUNCH_FIFO3_UNC_OR_PARITY)),
617 /*36*/	FLAG_ENTRY0("TxLaunchFifo4UncOrParityErr",
618 		SEES(TX_LAUNCH_FIFO4_UNC_OR_PARITY)),
619 /*37*/	FLAG_ENTRY0("TxLaunchFifo5UncOrParityErr",
620 		SEES(TX_LAUNCH_FIFO5_UNC_OR_PARITY)),
621 /*38*/	FLAG_ENTRY0("TxLaunchFifo6UncOrParityErr",
622 		SEES(TX_LAUNCH_FIFO6_UNC_OR_PARITY)),
623 /*39*/	FLAG_ENTRY0("TxLaunchFifo7UncOrParityErr",
624 		SEES(TX_LAUNCH_FIFO7_UNC_OR_PARITY)),
625 /*40*/	FLAG_ENTRY0("TxLaunchFifo8UncOrParityErr",
626 		SEES(TX_LAUNCH_FIFO8_UNC_OR_PARITY)),
627 /*41*/	FLAG_ENTRY0("TxCreditReturnParityErr", SEES(TX_CREDIT_RETURN_PARITY)),
628 /*42*/	FLAG_ENTRY0("TxSbHdrUncErr", SEES(TX_SB_HDR_UNC)),
629 /*43*/	FLAG_ENTRY0("TxReadSdmaMemoryUncErr", SEES(TX_READ_SDMA_MEMORY_UNC)),
630 /*44*/	FLAG_ENTRY0("TxReadPioMemoryUncErr", SEES(TX_READ_PIO_MEMORY_UNC)),
631 /*45*/	FLAG_ENTRY0("TxEgressFifoUncErr", SEES(TX_EGRESS_FIFO_UNC)),
632 /*46*/	FLAG_ENTRY0("TxHcrcInsertionErr", SEES(TX_HCRC_INSERTION)),
633 /*47*/	FLAG_ENTRY0("TxCreditReturnVLErr", SEES(TX_CREDIT_RETURN_VL)),
634 /*48*/	FLAG_ENTRY0("TxLaunchFifo0CorErr", SEES(TX_LAUNCH_FIFO0_COR)),
635 /*49*/	FLAG_ENTRY0("TxLaunchFifo1CorErr", SEES(TX_LAUNCH_FIFO1_COR)),
636 /*50*/	FLAG_ENTRY0("TxLaunchFifo2CorErr", SEES(TX_LAUNCH_FIFO2_COR)),
637 /*51*/	FLAG_ENTRY0("TxLaunchFifo3CorErr", SEES(TX_LAUNCH_FIFO3_COR)),
638 /*52*/	FLAG_ENTRY0("TxLaunchFifo4CorErr", SEES(TX_LAUNCH_FIFO4_COR)),
639 /*53*/	FLAG_ENTRY0("TxLaunchFifo5CorErr", SEES(TX_LAUNCH_FIFO5_COR)),
640 /*54*/	FLAG_ENTRY0("TxLaunchFifo6CorErr", SEES(TX_LAUNCH_FIFO6_COR)),
641 /*55*/	FLAG_ENTRY0("TxLaunchFifo7CorErr", SEES(TX_LAUNCH_FIFO7_COR)),
642 /*56*/	FLAG_ENTRY0("TxLaunchFifo8CorErr", SEES(TX_LAUNCH_FIFO8_COR)),
643 /*57*/	FLAG_ENTRY0("TxCreditOverrunErr", SEES(TX_CREDIT_OVERRUN)),
644 /*58*/	FLAG_ENTRY0("TxSbHdrCorErr", SEES(TX_SB_HDR_COR)),
645 /*59*/	FLAG_ENTRY0("TxReadSdmaMemoryCorErr", SEES(TX_READ_SDMA_MEMORY_COR)),
646 /*60*/	FLAG_ENTRY0("TxReadPioMemoryCorErr", SEES(TX_READ_PIO_MEMORY_COR)),
647 /*61*/	FLAG_ENTRY0("TxEgressFifoCorErr", SEES(TX_EGRESS_FIFO_COR)),
648 /*62*/	FLAG_ENTRY0("TxReadSdmaMemoryCsrUncErr",
649 		SEES(TX_READ_SDMA_MEMORY_CSR_UNC)),
650 /*63*/	FLAG_ENTRY0("TxReadPioMemoryCsrUncErr",
651 		SEES(TX_READ_PIO_MEMORY_CSR_UNC)),
652 };
653 
654 /*
655  * TXE Egress Error Info flags
656  */
657 #define SEEI(text) SEND_EGRESS_ERR_INFO_##text##_ERR_SMASK
658 static struct flag_table egress_err_info_flags[] = {
659 /* 0*/	FLAG_ENTRY0("Reserved", 0ull),
660 /* 1*/	FLAG_ENTRY0("VLErr", SEEI(VL)),
661 /* 2*/	FLAG_ENTRY0("JobKeyErr", SEEI(JOB_KEY)),
662 /* 3*/	FLAG_ENTRY0("JobKeyErr", SEEI(JOB_KEY)),
663 /* 4*/	FLAG_ENTRY0("PartitionKeyErr", SEEI(PARTITION_KEY)),
664 /* 5*/	FLAG_ENTRY0("SLIDErr", SEEI(SLID)),
665 /* 6*/	FLAG_ENTRY0("OpcodeErr", SEEI(OPCODE)),
666 /* 7*/	FLAG_ENTRY0("VLMappingErr", SEEI(VL_MAPPING)),
667 /* 8*/	FLAG_ENTRY0("RawErr", SEEI(RAW)),
668 /* 9*/	FLAG_ENTRY0("RawIPv6Err", SEEI(RAW_IPV6)),
669 /*10*/	FLAG_ENTRY0("GRHErr", SEEI(GRH)),
670 /*11*/	FLAG_ENTRY0("BypassErr", SEEI(BYPASS)),
671 /*12*/	FLAG_ENTRY0("KDETHPacketsErr", SEEI(KDETH_PACKETS)),
672 /*13*/	FLAG_ENTRY0("NonKDETHPacketsErr", SEEI(NON_KDETH_PACKETS)),
673 /*14*/	FLAG_ENTRY0("TooSmallIBPacketsErr", SEEI(TOO_SMALL_IB_PACKETS)),
674 /*15*/	FLAG_ENTRY0("TooSmallBypassPacketsErr", SEEI(TOO_SMALL_BYPASS_PACKETS)),
675 /*16*/	FLAG_ENTRY0("PbcTestErr", SEEI(PBC_TEST)),
676 /*17*/	FLAG_ENTRY0("BadPktLenErr", SEEI(BAD_PKT_LEN)),
677 /*18*/	FLAG_ENTRY0("TooLongIBPacketErr", SEEI(TOO_LONG_IB_PACKET)),
678 /*19*/	FLAG_ENTRY0("TooLongBypassPacketsErr", SEEI(TOO_LONG_BYPASS_PACKETS)),
679 /*20*/	FLAG_ENTRY0("PbcStaticRateControlErr", SEEI(PBC_STATIC_RATE_CONTROL)),
680 /*21*/	FLAG_ENTRY0("BypassBadPktLenErr", SEEI(BAD_PKT_LEN)),
681 };
682 
683 /* TXE Egress errors that cause an SPC freeze */
684 #define ALL_TXE_EGRESS_FREEZE_ERR \
685 	(SEES(TX_EGRESS_FIFO_UNDERRUN_OR_PARITY) \
686 	| SEES(TX_PIO_LAUNCH_INTF_PARITY) \
687 	| SEES(TX_SDMA_LAUNCH_INTF_PARITY) \
688 	| SEES(TX_SBRD_CTL_STATE_MACHINE_PARITY) \
689 	| SEES(TX_LAUNCH_CSR_PARITY) \
690 	| SEES(TX_SBRD_CTL_CSR_PARITY) \
691 	| SEES(TX_CONFIG_PARITY) \
692 	| SEES(TX_LAUNCH_FIFO0_UNC_OR_PARITY) \
693 	| SEES(TX_LAUNCH_FIFO1_UNC_OR_PARITY) \
694 	| SEES(TX_LAUNCH_FIFO2_UNC_OR_PARITY) \
695 	| SEES(TX_LAUNCH_FIFO3_UNC_OR_PARITY) \
696 	| SEES(TX_LAUNCH_FIFO4_UNC_OR_PARITY) \
697 	| SEES(TX_LAUNCH_FIFO5_UNC_OR_PARITY) \
698 	| SEES(TX_LAUNCH_FIFO6_UNC_OR_PARITY) \
699 	| SEES(TX_LAUNCH_FIFO7_UNC_OR_PARITY) \
700 	| SEES(TX_LAUNCH_FIFO8_UNC_OR_PARITY) \
701 	| SEES(TX_CREDIT_RETURN_PARITY))
702 
703 /*
704  * TXE Send error flags
705  */
706 #define SES(name) SEND_ERR_STATUS_SEND_##name##_ERR_SMASK
707 static struct flag_table send_err_status_flags[] = {
708 /* 0*/	FLAG_ENTRY0("SendCsrParityErr", SES(CSR_PARITY)),
709 /* 1*/	FLAG_ENTRY0("SendCsrReadBadAddrErr", SES(CSR_READ_BAD_ADDR)),
710 /* 2*/	FLAG_ENTRY0("SendCsrWriteBadAddrErr", SES(CSR_WRITE_BAD_ADDR))
711 };
712 
713 /*
714  * TXE Send Context Error flags and consequences
715  */
716 static struct flag_table sc_err_status_flags[] = {
717 /* 0*/	FLAG_ENTRY("InconsistentSop",
718 		SEC_PACKET_DROPPED | SEC_SC_HALTED,
719 		SEND_CTXT_ERR_STATUS_PIO_INCONSISTENT_SOP_ERR_SMASK),
720 /* 1*/	FLAG_ENTRY("DisallowedPacket",
721 		SEC_PACKET_DROPPED | SEC_SC_HALTED,
722 		SEND_CTXT_ERR_STATUS_PIO_DISALLOWED_PACKET_ERR_SMASK),
723 /* 2*/	FLAG_ENTRY("WriteCrossesBoundary",
724 		SEC_WRITE_DROPPED | SEC_SC_HALTED,
725 		SEND_CTXT_ERR_STATUS_PIO_WRITE_CROSSES_BOUNDARY_ERR_SMASK),
726 /* 3*/	FLAG_ENTRY("WriteOverflow",
727 		SEC_WRITE_DROPPED | SEC_SC_HALTED,
728 		SEND_CTXT_ERR_STATUS_PIO_WRITE_OVERFLOW_ERR_SMASK),
729 /* 4*/	FLAG_ENTRY("WriteOutOfBounds",
730 		SEC_WRITE_DROPPED | SEC_SC_HALTED,
731 		SEND_CTXT_ERR_STATUS_PIO_WRITE_OUT_OF_BOUNDS_ERR_SMASK),
732 /* 5-63 reserved*/
733 };
734 
735 /*
736  * RXE Receive Error flags
737  */
738 #define RXES(name) RCV_ERR_STATUS_RX_##name##_ERR_SMASK
739 static struct flag_table rxe_err_status_flags[] = {
740 /* 0*/	FLAG_ENTRY0("RxDmaCsrCorErr", RXES(DMA_CSR_COR)),
741 /* 1*/	FLAG_ENTRY0("RxDcIntfParityErr", RXES(DC_INTF_PARITY)),
742 /* 2*/	FLAG_ENTRY0("RxRcvHdrUncErr", RXES(RCV_HDR_UNC)),
743 /* 3*/	FLAG_ENTRY0("RxRcvHdrCorErr", RXES(RCV_HDR_COR)),
744 /* 4*/	FLAG_ENTRY0("RxRcvDataUncErr", RXES(RCV_DATA_UNC)),
745 /* 5*/	FLAG_ENTRY0("RxRcvDataCorErr", RXES(RCV_DATA_COR)),
746 /* 6*/	FLAG_ENTRY0("RxRcvQpMapTableUncErr", RXES(RCV_QP_MAP_TABLE_UNC)),
747 /* 7*/	FLAG_ENTRY0("RxRcvQpMapTableCorErr", RXES(RCV_QP_MAP_TABLE_COR)),
748 /* 8*/	FLAG_ENTRY0("RxRcvCsrParityErr", RXES(RCV_CSR_PARITY)),
749 /* 9*/	FLAG_ENTRY0("RxDcSopEopParityErr", RXES(DC_SOP_EOP_PARITY)),
750 /*10*/	FLAG_ENTRY0("RxDmaFlagUncErr", RXES(DMA_FLAG_UNC)),
751 /*11*/	FLAG_ENTRY0("RxDmaFlagCorErr", RXES(DMA_FLAG_COR)),
752 /*12*/	FLAG_ENTRY0("RxRcvFsmEncodingErr", RXES(RCV_FSM_ENCODING)),
753 /*13*/	FLAG_ENTRY0("RxRbufFreeListUncErr", RXES(RBUF_FREE_LIST_UNC)),
754 /*14*/	FLAG_ENTRY0("RxRbufFreeListCorErr", RXES(RBUF_FREE_LIST_COR)),
755 /*15*/	FLAG_ENTRY0("RxRbufLookupDesRegUncErr", RXES(RBUF_LOOKUP_DES_REG_UNC)),
756 /*16*/	FLAG_ENTRY0("RxRbufLookupDesRegUncCorErr",
757 		RXES(RBUF_LOOKUP_DES_REG_UNC_COR)),
758 /*17*/	FLAG_ENTRY0("RxRbufLookupDesUncErr", RXES(RBUF_LOOKUP_DES_UNC)),
759 /*18*/	FLAG_ENTRY0("RxRbufLookupDesCorErr", RXES(RBUF_LOOKUP_DES_COR)),
760 /*19*/	FLAG_ENTRY0("RxRbufBlockListReadUncErr",
761 		RXES(RBUF_BLOCK_LIST_READ_UNC)),
762 /*20*/	FLAG_ENTRY0("RxRbufBlockListReadCorErr",
763 		RXES(RBUF_BLOCK_LIST_READ_COR)),
764 /*21*/	FLAG_ENTRY0("RxRbufCsrQHeadBufNumParityErr",
765 		RXES(RBUF_CSR_QHEAD_BUF_NUM_PARITY)),
766 /*22*/	FLAG_ENTRY0("RxRbufCsrQEntCntParityErr",
767 		RXES(RBUF_CSR_QENT_CNT_PARITY)),
768 /*23*/	FLAG_ENTRY0("RxRbufCsrQNextBufParityErr",
769 		RXES(RBUF_CSR_QNEXT_BUF_PARITY)),
770 /*24*/	FLAG_ENTRY0("RxRbufCsrQVldBitParityErr",
771 		RXES(RBUF_CSR_QVLD_BIT_PARITY)),
772 /*25*/	FLAG_ENTRY0("RxRbufCsrQHdPtrParityErr", RXES(RBUF_CSR_QHD_PTR_PARITY)),
773 /*26*/	FLAG_ENTRY0("RxRbufCsrQTlPtrParityErr", RXES(RBUF_CSR_QTL_PTR_PARITY)),
774 /*27*/	FLAG_ENTRY0("RxRbufCsrQNumOfPktParityErr",
775 		RXES(RBUF_CSR_QNUM_OF_PKT_PARITY)),
776 /*28*/	FLAG_ENTRY0("RxRbufCsrQEOPDWParityErr", RXES(RBUF_CSR_QEOPDW_PARITY)),
777 /*29*/	FLAG_ENTRY0("RxRbufCtxIdParityErr", RXES(RBUF_CTX_ID_PARITY)),
778 /*30*/	FLAG_ENTRY0("RxRBufBadLookupErr", RXES(RBUF_BAD_LOOKUP)),
779 /*31*/	FLAG_ENTRY0("RxRbufFullErr", RXES(RBUF_FULL)),
780 /*32*/	FLAG_ENTRY0("RxRbufEmptyErr", RXES(RBUF_EMPTY)),
781 /*33*/	FLAG_ENTRY0("RxRbufFlRdAddrParityErr", RXES(RBUF_FL_RD_ADDR_PARITY)),
782 /*34*/	FLAG_ENTRY0("RxRbufFlWrAddrParityErr", RXES(RBUF_FL_WR_ADDR_PARITY)),
783 /*35*/	FLAG_ENTRY0("RxRbufFlInitdoneParityErr",
784 		RXES(RBUF_FL_INITDONE_PARITY)),
785 /*36*/	FLAG_ENTRY0("RxRbufFlInitWrAddrParityErr",
786 		RXES(RBUF_FL_INIT_WR_ADDR_PARITY)),
787 /*37*/	FLAG_ENTRY0("RxRbufNextFreeBufUncErr", RXES(RBUF_NEXT_FREE_BUF_UNC)),
788 /*38*/	FLAG_ENTRY0("RxRbufNextFreeBufCorErr", RXES(RBUF_NEXT_FREE_BUF_COR)),
789 /*39*/	FLAG_ENTRY0("RxLookupDesPart1UncErr", RXES(LOOKUP_DES_PART1_UNC)),
790 /*40*/	FLAG_ENTRY0("RxLookupDesPart1UncCorErr",
791 		RXES(LOOKUP_DES_PART1_UNC_COR)),
792 /*41*/	FLAG_ENTRY0("RxLookupDesPart2ParityErr",
793 		RXES(LOOKUP_DES_PART2_PARITY)),
794 /*42*/	FLAG_ENTRY0("RxLookupRcvArrayUncErr", RXES(LOOKUP_RCV_ARRAY_UNC)),
795 /*43*/	FLAG_ENTRY0("RxLookupRcvArrayCorErr", RXES(LOOKUP_RCV_ARRAY_COR)),
796 /*44*/	FLAG_ENTRY0("RxLookupCsrParityErr", RXES(LOOKUP_CSR_PARITY)),
797 /*45*/	FLAG_ENTRY0("RxHqIntrCsrParityErr", RXES(HQ_INTR_CSR_PARITY)),
798 /*46*/	FLAG_ENTRY0("RxHqIntrFsmErr", RXES(HQ_INTR_FSM)),
799 /*47*/	FLAG_ENTRY0("RxRbufDescPart1UncErr", RXES(RBUF_DESC_PART1_UNC)),
800 /*48*/	FLAG_ENTRY0("RxRbufDescPart1CorErr", RXES(RBUF_DESC_PART1_COR)),
801 /*49*/	FLAG_ENTRY0("RxRbufDescPart2UncErr", RXES(RBUF_DESC_PART2_UNC)),
802 /*50*/	FLAG_ENTRY0("RxRbufDescPart2CorErr", RXES(RBUF_DESC_PART2_COR)),
803 /*51*/	FLAG_ENTRY0("RxDmaHdrFifoRdUncErr", RXES(DMA_HDR_FIFO_RD_UNC)),
804 /*52*/	FLAG_ENTRY0("RxDmaHdrFifoRdCorErr", RXES(DMA_HDR_FIFO_RD_COR)),
805 /*53*/	FLAG_ENTRY0("RxDmaDataFifoRdUncErr", RXES(DMA_DATA_FIFO_RD_UNC)),
806 /*54*/	FLAG_ENTRY0("RxDmaDataFifoRdCorErr", RXES(DMA_DATA_FIFO_RD_COR)),
807 /*55*/	FLAG_ENTRY0("RxRbufDataUncErr", RXES(RBUF_DATA_UNC)),
808 /*56*/	FLAG_ENTRY0("RxRbufDataCorErr", RXES(RBUF_DATA_COR)),
809 /*57*/	FLAG_ENTRY0("RxDmaCsrParityErr", RXES(DMA_CSR_PARITY)),
810 /*58*/	FLAG_ENTRY0("RxDmaEqFsmEncodingErr", RXES(DMA_EQ_FSM_ENCODING)),
811 /*59*/	FLAG_ENTRY0("RxDmaDqFsmEncodingErr", RXES(DMA_DQ_FSM_ENCODING)),
812 /*60*/	FLAG_ENTRY0("RxDmaCsrUncErr", RXES(DMA_CSR_UNC)),
813 /*61*/	FLAG_ENTRY0("RxCsrReadBadAddrErr", RXES(CSR_READ_BAD_ADDR)),
814 /*62*/	FLAG_ENTRY0("RxCsrWriteBadAddrErr", RXES(CSR_WRITE_BAD_ADDR)),
815 /*63*/	FLAG_ENTRY0("RxCsrParityErr", RXES(CSR_PARITY))
816 };
817 
818 /* RXE errors that will trigger an SPC freeze */
819 #define ALL_RXE_FREEZE_ERR  \
820 	(RCV_ERR_STATUS_RX_RCV_QP_MAP_TABLE_UNC_ERR_SMASK \
821 	| RCV_ERR_STATUS_RX_RCV_CSR_PARITY_ERR_SMASK \
822 	| RCV_ERR_STATUS_RX_DMA_FLAG_UNC_ERR_SMASK \
823 	| RCV_ERR_STATUS_RX_RCV_FSM_ENCODING_ERR_SMASK \
824 	| RCV_ERR_STATUS_RX_RBUF_FREE_LIST_UNC_ERR_SMASK \
825 	| RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_REG_UNC_ERR_SMASK \
826 	| RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_REG_UNC_COR_ERR_SMASK \
827 	| RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_UNC_ERR_SMASK \
828 	| RCV_ERR_STATUS_RX_RBUF_BLOCK_LIST_READ_UNC_ERR_SMASK \
829 	| RCV_ERR_STATUS_RX_RBUF_CSR_QHEAD_BUF_NUM_PARITY_ERR_SMASK \
830 	| RCV_ERR_STATUS_RX_RBUF_CSR_QENT_CNT_PARITY_ERR_SMASK \
831 	| RCV_ERR_STATUS_RX_RBUF_CSR_QNEXT_BUF_PARITY_ERR_SMASK \
832 	| RCV_ERR_STATUS_RX_RBUF_CSR_QVLD_BIT_PARITY_ERR_SMASK \
833 	| RCV_ERR_STATUS_RX_RBUF_CSR_QHD_PTR_PARITY_ERR_SMASK \
834 	| RCV_ERR_STATUS_RX_RBUF_CSR_QTL_PTR_PARITY_ERR_SMASK \
835 	| RCV_ERR_STATUS_RX_RBUF_CSR_QNUM_OF_PKT_PARITY_ERR_SMASK \
836 	| RCV_ERR_STATUS_RX_RBUF_CSR_QEOPDW_PARITY_ERR_SMASK \
837 	| RCV_ERR_STATUS_RX_RBUF_CTX_ID_PARITY_ERR_SMASK \
838 	| RCV_ERR_STATUS_RX_RBUF_BAD_LOOKUP_ERR_SMASK \
839 	| RCV_ERR_STATUS_RX_RBUF_FULL_ERR_SMASK \
840 	| RCV_ERR_STATUS_RX_RBUF_EMPTY_ERR_SMASK \
841 	| RCV_ERR_STATUS_RX_RBUF_FL_RD_ADDR_PARITY_ERR_SMASK \
842 	| RCV_ERR_STATUS_RX_RBUF_FL_WR_ADDR_PARITY_ERR_SMASK \
843 	| RCV_ERR_STATUS_RX_RBUF_FL_INITDONE_PARITY_ERR_SMASK \
844 	| RCV_ERR_STATUS_RX_RBUF_FL_INIT_WR_ADDR_PARITY_ERR_SMASK \
845 	| RCV_ERR_STATUS_RX_RBUF_NEXT_FREE_BUF_UNC_ERR_SMASK \
846 	| RCV_ERR_STATUS_RX_LOOKUP_DES_PART1_UNC_ERR_SMASK \
847 	| RCV_ERR_STATUS_RX_LOOKUP_DES_PART1_UNC_COR_ERR_SMASK \
848 	| RCV_ERR_STATUS_RX_LOOKUP_DES_PART2_PARITY_ERR_SMASK \
849 	| RCV_ERR_STATUS_RX_LOOKUP_RCV_ARRAY_UNC_ERR_SMASK \
850 	| RCV_ERR_STATUS_RX_LOOKUP_CSR_PARITY_ERR_SMASK \
851 	| RCV_ERR_STATUS_RX_HQ_INTR_CSR_PARITY_ERR_SMASK \
852 	| RCV_ERR_STATUS_RX_HQ_INTR_FSM_ERR_SMASK \
853 	| RCV_ERR_STATUS_RX_RBUF_DESC_PART1_UNC_ERR_SMASK \
854 	| RCV_ERR_STATUS_RX_RBUF_DESC_PART1_COR_ERR_SMASK \
855 	| RCV_ERR_STATUS_RX_RBUF_DESC_PART2_UNC_ERR_SMASK \
856 	| RCV_ERR_STATUS_RX_DMA_HDR_FIFO_RD_UNC_ERR_SMASK \
857 	| RCV_ERR_STATUS_RX_DMA_DATA_FIFO_RD_UNC_ERR_SMASK \
858 	| RCV_ERR_STATUS_RX_RBUF_DATA_UNC_ERR_SMASK \
859 	| RCV_ERR_STATUS_RX_DMA_CSR_PARITY_ERR_SMASK \
860 	| RCV_ERR_STATUS_RX_DMA_EQ_FSM_ENCODING_ERR_SMASK \
861 	| RCV_ERR_STATUS_RX_DMA_DQ_FSM_ENCODING_ERR_SMASK \
862 	| RCV_ERR_STATUS_RX_DMA_CSR_UNC_ERR_SMASK \
863 	| RCV_ERR_STATUS_RX_CSR_PARITY_ERR_SMASK)
864 
865 #define RXE_FREEZE_ABORT_MASK \
866 	(RCV_ERR_STATUS_RX_DMA_CSR_UNC_ERR_SMASK | \
867 	RCV_ERR_STATUS_RX_DMA_HDR_FIFO_RD_UNC_ERR_SMASK | \
868 	RCV_ERR_STATUS_RX_DMA_DATA_FIFO_RD_UNC_ERR_SMASK)
869 
870 /*
871  * DCC Error Flags
872  */
873 #define DCCE(name) DCC_ERR_FLG_##name##_SMASK
874 static struct flag_table dcc_err_flags[] = {
875 	FLAG_ENTRY0("bad_l2_err", DCCE(BAD_L2_ERR)),
876 	FLAG_ENTRY0("bad_sc_err", DCCE(BAD_SC_ERR)),
877 	FLAG_ENTRY0("bad_mid_tail_err", DCCE(BAD_MID_TAIL_ERR)),
878 	FLAG_ENTRY0("bad_preemption_err", DCCE(BAD_PREEMPTION_ERR)),
879 	FLAG_ENTRY0("preemption_err", DCCE(PREEMPTION_ERR)),
880 	FLAG_ENTRY0("preemptionvl15_err", DCCE(PREEMPTIONVL15_ERR)),
881 	FLAG_ENTRY0("bad_vl_marker_err", DCCE(BAD_VL_MARKER_ERR)),
882 	FLAG_ENTRY0("bad_dlid_target_err", DCCE(BAD_DLID_TARGET_ERR)),
883 	FLAG_ENTRY0("bad_lver_err", DCCE(BAD_LVER_ERR)),
884 	FLAG_ENTRY0("uncorrectable_err", DCCE(UNCORRECTABLE_ERR)),
885 	FLAG_ENTRY0("bad_crdt_ack_err", DCCE(BAD_CRDT_ACK_ERR)),
886 	FLAG_ENTRY0("unsup_pkt_type", DCCE(UNSUP_PKT_TYPE)),
887 	FLAG_ENTRY0("bad_ctrl_flit_err", DCCE(BAD_CTRL_FLIT_ERR)),
888 	FLAG_ENTRY0("event_cntr_parity_err", DCCE(EVENT_CNTR_PARITY_ERR)),
889 	FLAG_ENTRY0("event_cntr_rollover_err", DCCE(EVENT_CNTR_ROLLOVER_ERR)),
890 	FLAG_ENTRY0("link_err", DCCE(LINK_ERR)),
891 	FLAG_ENTRY0("misc_cntr_rollover_err", DCCE(MISC_CNTR_ROLLOVER_ERR)),
892 	FLAG_ENTRY0("bad_ctrl_dist_err", DCCE(BAD_CTRL_DIST_ERR)),
893 	FLAG_ENTRY0("bad_tail_dist_err", DCCE(BAD_TAIL_DIST_ERR)),
894 	FLAG_ENTRY0("bad_head_dist_err", DCCE(BAD_HEAD_DIST_ERR)),
895 	FLAG_ENTRY0("nonvl15_state_err", DCCE(NONVL15_STATE_ERR)),
896 	FLAG_ENTRY0("vl15_multi_err", DCCE(VL15_MULTI_ERR)),
897 	FLAG_ENTRY0("bad_pkt_length_err", DCCE(BAD_PKT_LENGTH_ERR)),
898 	FLAG_ENTRY0("unsup_vl_err", DCCE(UNSUP_VL_ERR)),
899 	FLAG_ENTRY0("perm_nvl15_err", DCCE(PERM_NVL15_ERR)),
900 	FLAG_ENTRY0("slid_zero_err", DCCE(SLID_ZERO_ERR)),
901 	FLAG_ENTRY0("dlid_zero_err", DCCE(DLID_ZERO_ERR)),
902 	FLAG_ENTRY0("length_mtu_err", DCCE(LENGTH_MTU_ERR)),
903 	FLAG_ENTRY0("rx_early_drop_err", DCCE(RX_EARLY_DROP_ERR)),
904 	FLAG_ENTRY0("late_short_err", DCCE(LATE_SHORT_ERR)),
905 	FLAG_ENTRY0("late_long_err", DCCE(LATE_LONG_ERR)),
906 	FLAG_ENTRY0("late_ebp_err", DCCE(LATE_EBP_ERR)),
907 	FLAG_ENTRY0("fpe_tx_fifo_ovflw_err", DCCE(FPE_TX_FIFO_OVFLW_ERR)),
908 	FLAG_ENTRY0("fpe_tx_fifo_unflw_err", DCCE(FPE_TX_FIFO_UNFLW_ERR)),
909 	FLAG_ENTRY0("csr_access_blocked_host", DCCE(CSR_ACCESS_BLOCKED_HOST)),
910 	FLAG_ENTRY0("csr_access_blocked_uc", DCCE(CSR_ACCESS_BLOCKED_UC)),
911 	FLAG_ENTRY0("tx_ctrl_parity_err", DCCE(TX_CTRL_PARITY_ERR)),
912 	FLAG_ENTRY0("tx_ctrl_parity_mbe_err", DCCE(TX_CTRL_PARITY_MBE_ERR)),
913 	FLAG_ENTRY0("tx_sc_parity_err", DCCE(TX_SC_PARITY_ERR)),
914 	FLAG_ENTRY0("rx_ctrl_parity_mbe_err", DCCE(RX_CTRL_PARITY_MBE_ERR)),
915 	FLAG_ENTRY0("csr_parity_err", DCCE(CSR_PARITY_ERR)),
916 	FLAG_ENTRY0("csr_inval_addr", DCCE(CSR_INVAL_ADDR)),
917 	FLAG_ENTRY0("tx_byte_shft_parity_err", DCCE(TX_BYTE_SHFT_PARITY_ERR)),
918 	FLAG_ENTRY0("rx_byte_shft_parity_err", DCCE(RX_BYTE_SHFT_PARITY_ERR)),
919 	FLAG_ENTRY0("fmconfig_err", DCCE(FMCONFIG_ERR)),
920 	FLAG_ENTRY0("rcvport_err", DCCE(RCVPORT_ERR)),
921 };
922 
923 /*
924  * LCB error flags
925  */
926 #define LCBE(name) DC_LCB_ERR_FLG_##name##_SMASK
927 static struct flag_table lcb_err_flags[] = {
928 /* 0*/	FLAG_ENTRY0("CSR_PARITY_ERR", LCBE(CSR_PARITY_ERR)),
929 /* 1*/	FLAG_ENTRY0("INVALID_CSR_ADDR", LCBE(INVALID_CSR_ADDR)),
930 /* 2*/	FLAG_ENTRY0("RST_FOR_FAILED_DESKEW", LCBE(RST_FOR_FAILED_DESKEW)),
931 /* 3*/	FLAG_ENTRY0("ALL_LNS_FAILED_REINIT_TEST",
932 		LCBE(ALL_LNS_FAILED_REINIT_TEST)),
933 /* 4*/	FLAG_ENTRY0("LOST_REINIT_STALL_OR_TOS", LCBE(LOST_REINIT_STALL_OR_TOS)),
934 /* 5*/	FLAG_ENTRY0("TX_LESS_THAN_FOUR_LNS", LCBE(TX_LESS_THAN_FOUR_LNS)),
935 /* 6*/	FLAG_ENTRY0("RX_LESS_THAN_FOUR_LNS", LCBE(RX_LESS_THAN_FOUR_LNS)),
936 /* 7*/	FLAG_ENTRY0("SEQ_CRC_ERR", LCBE(SEQ_CRC_ERR)),
937 /* 8*/	FLAG_ENTRY0("REINIT_FROM_PEER", LCBE(REINIT_FROM_PEER)),
938 /* 9*/	FLAG_ENTRY0("REINIT_FOR_LN_DEGRADE", LCBE(REINIT_FOR_LN_DEGRADE)),
939 /*10*/	FLAG_ENTRY0("CRC_ERR_CNT_HIT_LIMIT", LCBE(CRC_ERR_CNT_HIT_LIMIT)),
940 /*11*/	FLAG_ENTRY0("RCLK_STOPPED", LCBE(RCLK_STOPPED)),
941 /*12*/	FLAG_ENTRY0("UNEXPECTED_REPLAY_MARKER", LCBE(UNEXPECTED_REPLAY_MARKER)),
942 /*13*/	FLAG_ENTRY0("UNEXPECTED_ROUND_TRIP_MARKER",
943 		LCBE(UNEXPECTED_ROUND_TRIP_MARKER)),
944 /*14*/	FLAG_ENTRY0("ILLEGAL_NULL_LTP", LCBE(ILLEGAL_NULL_LTP)),
945 /*15*/	FLAG_ENTRY0("ILLEGAL_FLIT_ENCODING", LCBE(ILLEGAL_FLIT_ENCODING)),
946 /*16*/	FLAG_ENTRY0("FLIT_INPUT_BUF_OFLW", LCBE(FLIT_INPUT_BUF_OFLW)),
947 /*17*/	FLAG_ENTRY0("VL_ACK_INPUT_BUF_OFLW", LCBE(VL_ACK_INPUT_BUF_OFLW)),
948 /*18*/	FLAG_ENTRY0("VL_ACK_INPUT_PARITY_ERR", LCBE(VL_ACK_INPUT_PARITY_ERR)),
949 /*19*/	FLAG_ENTRY0("VL_ACK_INPUT_WRONG_CRC_MODE",
950 		LCBE(VL_ACK_INPUT_WRONG_CRC_MODE)),
951 /*20*/	FLAG_ENTRY0("FLIT_INPUT_BUF_MBE", LCBE(FLIT_INPUT_BUF_MBE)),
952 /*21*/	FLAG_ENTRY0("FLIT_INPUT_BUF_SBE", LCBE(FLIT_INPUT_BUF_SBE)),
953 /*22*/	FLAG_ENTRY0("REPLAY_BUF_MBE", LCBE(REPLAY_BUF_MBE)),
954 /*23*/	FLAG_ENTRY0("REPLAY_BUF_SBE", LCBE(REPLAY_BUF_SBE)),
955 /*24*/	FLAG_ENTRY0("CREDIT_RETURN_FLIT_MBE", LCBE(CREDIT_RETURN_FLIT_MBE)),
956 /*25*/	FLAG_ENTRY0("RST_FOR_LINK_TIMEOUT", LCBE(RST_FOR_LINK_TIMEOUT)),
957 /*26*/	FLAG_ENTRY0("RST_FOR_INCOMPLT_RND_TRIP",
958 		LCBE(RST_FOR_INCOMPLT_RND_TRIP)),
959 /*27*/	FLAG_ENTRY0("HOLD_REINIT", LCBE(HOLD_REINIT)),
960 /*28*/	FLAG_ENTRY0("NEG_EDGE_LINK_TRANSFER_ACTIVE",
961 		LCBE(NEG_EDGE_LINK_TRANSFER_ACTIVE)),
962 /*29*/	FLAG_ENTRY0("REDUNDANT_FLIT_PARITY_ERR",
963 		LCBE(REDUNDANT_FLIT_PARITY_ERR))
964 };
965 
966 /*
967  * DC8051 Error Flags
968  */
969 #define D8E(name) DC_DC8051_ERR_FLG_##name##_SMASK
970 static struct flag_table dc8051_err_flags[] = {
971 	FLAG_ENTRY0("SET_BY_8051", D8E(SET_BY_8051)),
972 	FLAG_ENTRY0("LOST_8051_HEART_BEAT", D8E(LOST_8051_HEART_BEAT)),
973 	FLAG_ENTRY0("CRAM_MBE", D8E(CRAM_MBE)),
974 	FLAG_ENTRY0("CRAM_SBE", D8E(CRAM_SBE)),
975 	FLAG_ENTRY0("DRAM_MBE", D8E(DRAM_MBE)),
976 	FLAG_ENTRY0("DRAM_SBE", D8E(DRAM_SBE)),
977 	FLAG_ENTRY0("IRAM_MBE", D8E(IRAM_MBE)),
978 	FLAG_ENTRY0("IRAM_SBE", D8E(IRAM_SBE)),
979 	FLAG_ENTRY0("UNMATCHED_SECURE_MSG_ACROSS_BCC_LANES",
980 		    D8E(UNMATCHED_SECURE_MSG_ACROSS_BCC_LANES)),
981 	FLAG_ENTRY0("INVALID_CSR_ADDR", D8E(INVALID_CSR_ADDR)),
982 };
983 
984 /*
985  * DC8051 Information Error flags
986  *
987  * Flags in DC8051_DBG_ERR_INFO_SET_BY_8051.ERROR field.
988  */
989 static struct flag_table dc8051_info_err_flags[] = {
990 	FLAG_ENTRY0("Spico ROM check failed",  SPICO_ROM_FAILED),
991 	FLAG_ENTRY0("Unknown frame received",  UNKNOWN_FRAME),
992 	FLAG_ENTRY0("Target BER not met",      TARGET_BER_NOT_MET),
993 	FLAG_ENTRY0("Serdes internal loopback failure",
994 		    FAILED_SERDES_INTERNAL_LOOPBACK),
995 	FLAG_ENTRY0("Failed SerDes init",      FAILED_SERDES_INIT),
996 	FLAG_ENTRY0("Failed LNI(Polling)",     FAILED_LNI_POLLING),
997 	FLAG_ENTRY0("Failed LNI(Debounce)",    FAILED_LNI_DEBOUNCE),
998 	FLAG_ENTRY0("Failed LNI(EstbComm)",    FAILED_LNI_ESTBCOMM),
999 	FLAG_ENTRY0("Failed LNI(OptEq)",       FAILED_LNI_OPTEQ),
1000 	FLAG_ENTRY0("Failed LNI(VerifyCap_1)", FAILED_LNI_VERIFY_CAP1),
1001 	FLAG_ENTRY0("Failed LNI(VerifyCap_2)", FAILED_LNI_VERIFY_CAP2),
1002 	FLAG_ENTRY0("Failed LNI(ConfigLT)",    FAILED_LNI_CONFIGLT),
1003 	FLAG_ENTRY0("Host Handshake Timeout",  HOST_HANDSHAKE_TIMEOUT),
1004 	FLAG_ENTRY0("External Device Request Timeout",
1005 		    EXTERNAL_DEVICE_REQ_TIMEOUT),
1006 };
1007 
1008 /*
1009  * DC8051 Information Host Information flags
1010  *
1011  * Flags in DC8051_DBG_ERR_INFO_SET_BY_8051.HOST_MSG field.
1012  */
1013 static struct flag_table dc8051_info_host_msg_flags[] = {
1014 	FLAG_ENTRY0("Host request done", 0x0001),
1015 	FLAG_ENTRY0("BC PWR_MGM message", 0x0002),
1016 	FLAG_ENTRY0("BC SMA message", 0x0004),
1017 	FLAG_ENTRY0("BC Unknown message (BCC)", 0x0008),
1018 	FLAG_ENTRY0("BC Unknown message (LCB)", 0x0010),
1019 	FLAG_ENTRY0("External device config request", 0x0020),
1020 	FLAG_ENTRY0("VerifyCap all frames received", 0x0040),
1021 	FLAG_ENTRY0("LinkUp achieved", 0x0080),
1022 	FLAG_ENTRY0("Link going down", 0x0100),
1023 	FLAG_ENTRY0("Link width downgraded", 0x0200),
1024 };
1025 
1026 static u32 encoded_size(u32 size);
1027 static u32 chip_to_opa_lstate(struct hfi1_devdata *dd, u32 chip_lstate);
1028 static int set_physical_link_state(struct hfi1_devdata *dd, u64 state);
1029 static void read_vc_remote_phy(struct hfi1_devdata *dd, u8 *power_management,
1030 			       u8 *continuous);
1031 static void read_vc_remote_fabric(struct hfi1_devdata *dd, u8 *vau, u8 *z,
1032 				  u8 *vcu, u16 *vl15buf, u8 *crc_sizes);
1033 static void read_vc_remote_link_width(struct hfi1_devdata *dd,
1034 				      u8 *remote_tx_rate, u16 *link_widths);
1035 static void read_vc_local_link_width(struct hfi1_devdata *dd, u8 *misc_bits,
1036 				     u8 *flag_bits, u16 *link_widths);
1037 static void read_remote_device_id(struct hfi1_devdata *dd, u16 *device_id,
1038 				  u8 *device_rev);
1039 static void read_local_lni(struct hfi1_devdata *dd, u8 *enable_lane_rx);
1040 static int read_tx_settings(struct hfi1_devdata *dd, u8 *enable_lane_tx,
1041 			    u8 *tx_polarity_inversion,
1042 			    u8 *rx_polarity_inversion, u8 *max_rate);
1043 static void handle_sdma_eng_err(struct hfi1_devdata *dd,
1044 				unsigned int context, u64 err_status);
1045 static void handle_qsfp_int(struct hfi1_devdata *dd, u32 source, u64 reg);
1046 static void handle_dcc_err(struct hfi1_devdata *dd,
1047 			   unsigned int context, u64 err_status);
1048 static void handle_lcb_err(struct hfi1_devdata *dd,
1049 			   unsigned int context, u64 err_status);
1050 static void handle_8051_interrupt(struct hfi1_devdata *dd, u32 unused, u64 reg);
1051 static void handle_cce_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1052 static void handle_rxe_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1053 static void handle_misc_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1054 static void handle_pio_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1055 static void handle_sdma_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1056 static void handle_egress_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1057 static void handle_txe_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1058 static void set_partition_keys(struct hfi1_pportdata *ppd);
1059 static const char *link_state_name(u32 state);
1060 static const char *link_state_reason_name(struct hfi1_pportdata *ppd,
1061 					  u32 state);
1062 static int do_8051_command(struct hfi1_devdata *dd, u32 type, u64 in_data,
1063 			   u64 *out_data);
1064 static int read_idle_sma(struct hfi1_devdata *dd, u64 *data);
1065 static int thermal_init(struct hfi1_devdata *dd);
1066 
1067 static void update_statusp(struct hfi1_pportdata *ppd, u32 state);
1068 static int wait_phys_link_offline_substates(struct hfi1_pportdata *ppd,
1069 					    int msecs);
1070 static int wait_logical_linkstate(struct hfi1_pportdata *ppd, u32 state,
1071 				  int msecs);
1072 static void log_state_transition(struct hfi1_pportdata *ppd, u32 state);
1073 static void log_physical_state(struct hfi1_pportdata *ppd, u32 state);
1074 static int wait_physical_linkstate(struct hfi1_pportdata *ppd, u32 state,
1075 				   int msecs);
1076 static void read_planned_down_reason_code(struct hfi1_devdata *dd, u8 *pdrrc);
1077 static void read_link_down_reason(struct hfi1_devdata *dd, u8 *ldr);
1078 static void handle_temp_err(struct hfi1_devdata *dd);
1079 static void dc_shutdown(struct hfi1_devdata *dd);
1080 static void dc_start(struct hfi1_devdata *dd);
1081 static int qos_rmt_entries(struct hfi1_devdata *dd, unsigned int *mp,
1082 			   unsigned int *np);
1083 static void clear_full_mgmt_pkey(struct hfi1_pportdata *ppd);
1084 static int wait_link_transfer_active(struct hfi1_devdata *dd, int wait_ms);
1085 static void clear_rsm_rule(struct hfi1_devdata *dd, u8 rule_index);
1086 
1087 /*
1088  * Error interrupt table entry.  This is used as input to the interrupt
1089  * "clear down" routine used for all second tier error interrupt register.
1090  * Second tier interrupt registers have a single bit representing them
1091  * in the top-level CceIntStatus.
1092  */
1093 struct err_reg_info {
1094 	u32 status;		/* status CSR offset */
1095 	u32 clear;		/* clear CSR offset */
1096 	u32 mask;		/* mask CSR offset */
1097 	void (*handler)(struct hfi1_devdata *dd, u32 source, u64 reg);
1098 	const char *desc;
1099 };
1100 
1101 #define NUM_MISC_ERRS (IS_GENERAL_ERR_END - IS_GENERAL_ERR_START)
1102 #define NUM_DC_ERRS (IS_DC_END - IS_DC_START)
1103 #define NUM_VARIOUS (IS_VARIOUS_END - IS_VARIOUS_START)
1104 
1105 /*
1106  * Helpers for building HFI and DC error interrupt table entries.  Different
1107  * helpers are needed because of inconsistent register names.
1108  */
1109 #define EE(reg, handler, desc) \
1110 	{ reg##_STATUS, reg##_CLEAR, reg##_MASK, \
1111 		handler, desc }
1112 #define DC_EE1(reg, handler, desc) \
1113 	{ reg##_FLG, reg##_FLG_CLR, reg##_FLG_EN, handler, desc }
1114 #define DC_EE2(reg, handler, desc) \
1115 	{ reg##_FLG, reg##_CLR, reg##_EN, handler, desc }
1116 
1117 /*
1118  * Table of the "misc" grouping of error interrupts.  Each entry refers to
1119  * another register containing more information.
1120  */
1121 static const struct err_reg_info misc_errs[NUM_MISC_ERRS] = {
1122 /* 0*/	EE(CCE_ERR,		handle_cce_err,    "CceErr"),
1123 /* 1*/	EE(RCV_ERR,		handle_rxe_err,    "RxeErr"),
1124 /* 2*/	EE(MISC_ERR,	handle_misc_err,   "MiscErr"),
1125 /* 3*/	{ 0, 0, 0, NULL }, /* reserved */
1126 /* 4*/	EE(SEND_PIO_ERR,    handle_pio_err,    "PioErr"),
1127 /* 5*/	EE(SEND_DMA_ERR,    handle_sdma_err,   "SDmaErr"),
1128 /* 6*/	EE(SEND_EGRESS_ERR, handle_egress_err, "EgressErr"),
1129 /* 7*/	EE(SEND_ERR,	handle_txe_err,    "TxeErr")
1130 	/* the rest are reserved */
1131 };
1132 
1133 /*
1134  * Index into the Various section of the interrupt sources
1135  * corresponding to the Critical Temperature interrupt.
1136  */
1137 #define TCRIT_INT_SOURCE 4
1138 
1139 /*
1140  * SDMA error interrupt entry - refers to another register containing more
1141  * information.
1142  */
1143 static const struct err_reg_info sdma_eng_err =
1144 	EE(SEND_DMA_ENG_ERR, handle_sdma_eng_err, "SDmaEngErr");
1145 
1146 static const struct err_reg_info various_err[NUM_VARIOUS] = {
1147 /* 0*/	{ 0, 0, 0, NULL }, /* PbcInt */
1148 /* 1*/	{ 0, 0, 0, NULL }, /* GpioAssertInt */
1149 /* 2*/	EE(ASIC_QSFP1,	handle_qsfp_int,	"QSFP1"),
1150 /* 3*/	EE(ASIC_QSFP2,	handle_qsfp_int,	"QSFP2"),
1151 /* 4*/	{ 0, 0, 0, NULL }, /* TCritInt */
1152 	/* rest are reserved */
1153 };
1154 
1155 /*
1156  * The DC encoding of mtu_cap for 10K MTU in the DCC_CFG_PORT_CONFIG
1157  * register can not be derived from the MTU value because 10K is not
1158  * a power of 2. Therefore, we need a constant. Everything else can
1159  * be calculated.
1160  */
1161 #define DCC_CFG_PORT_MTU_CAP_10240 7
1162 
1163 /*
1164  * Table of the DC grouping of error interrupts.  Each entry refers to
1165  * another register containing more information.
1166  */
1167 static const struct err_reg_info dc_errs[NUM_DC_ERRS] = {
1168 /* 0*/	DC_EE1(DCC_ERR,		handle_dcc_err,	       "DCC Err"),
1169 /* 1*/	DC_EE2(DC_LCB_ERR,	handle_lcb_err,	       "LCB Err"),
1170 /* 2*/	DC_EE2(DC_DC8051_ERR,	handle_8051_interrupt, "DC8051 Interrupt"),
1171 /* 3*/	/* dc_lbm_int - special, see is_dc_int() */
1172 	/* the rest are reserved */
1173 };
1174 
1175 struct cntr_entry {
1176 	/*
1177 	 * counter name
1178 	 */
1179 	char *name;
1180 
1181 	/*
1182 	 * csr to read for name (if applicable)
1183 	 */
1184 	u64 csr;
1185 
1186 	/*
1187 	 * offset into dd or ppd to store the counter's value
1188 	 */
1189 	int offset;
1190 
1191 	/*
1192 	 * flags
1193 	 */
1194 	u8 flags;
1195 
1196 	/*
1197 	 * accessor for stat element, context either dd or ppd
1198 	 */
1199 	u64 (*rw_cntr)(const struct cntr_entry *, void *context, int vl,
1200 		       int mode, u64 data);
1201 };
1202 
1203 #define C_RCV_HDR_OVF_FIRST C_RCV_HDR_OVF_0
1204 #define C_RCV_HDR_OVF_LAST C_RCV_HDR_OVF_159
1205 
1206 #define CNTR_ELEM(name, csr, offset, flags, accessor) \
1207 { \
1208 	name, \
1209 	csr, \
1210 	offset, \
1211 	flags, \
1212 	accessor \
1213 }
1214 
1215 /* 32bit RXE */
1216 #define RXE32_PORT_CNTR_ELEM(name, counter, flags) \
1217 CNTR_ELEM(#name, \
1218 	  (counter * 8 + RCV_COUNTER_ARRAY32), \
1219 	  0, flags | CNTR_32BIT, \
1220 	  port_access_u32_csr)
1221 
1222 #define RXE32_DEV_CNTR_ELEM(name, counter, flags) \
1223 CNTR_ELEM(#name, \
1224 	  (counter * 8 + RCV_COUNTER_ARRAY32), \
1225 	  0, flags | CNTR_32BIT, \
1226 	  dev_access_u32_csr)
1227 
1228 /* 64bit RXE */
1229 #define RXE64_PORT_CNTR_ELEM(name, counter, flags) \
1230 CNTR_ELEM(#name, \
1231 	  (counter * 8 + RCV_COUNTER_ARRAY64), \
1232 	  0, flags, \
1233 	  port_access_u64_csr)
1234 
1235 #define RXE64_DEV_CNTR_ELEM(name, counter, flags) \
1236 CNTR_ELEM(#name, \
1237 	  (counter * 8 + RCV_COUNTER_ARRAY64), \
1238 	  0, flags, \
1239 	  dev_access_u64_csr)
1240 
1241 #define OVR_LBL(ctx) C_RCV_HDR_OVF_ ## ctx
1242 #define OVR_ELM(ctx) \
1243 CNTR_ELEM("RcvHdrOvr" #ctx, \
1244 	  (RCV_HDR_OVFL_CNT + ctx * 0x100), \
1245 	  0, CNTR_NORMAL, port_access_u64_csr)
1246 
1247 /* 32bit TXE */
1248 #define TXE32_PORT_CNTR_ELEM(name, counter, flags) \
1249 CNTR_ELEM(#name, \
1250 	  (counter * 8 + SEND_COUNTER_ARRAY32), \
1251 	  0, flags | CNTR_32BIT, \
1252 	  port_access_u32_csr)
1253 
1254 /* 64bit TXE */
1255 #define TXE64_PORT_CNTR_ELEM(name, counter, flags) \
1256 CNTR_ELEM(#name, \
1257 	  (counter * 8 + SEND_COUNTER_ARRAY64), \
1258 	  0, flags, \
1259 	  port_access_u64_csr)
1260 
1261 # define TX64_DEV_CNTR_ELEM(name, counter, flags) \
1262 CNTR_ELEM(#name,\
1263 	  counter * 8 + SEND_COUNTER_ARRAY64, \
1264 	  0, \
1265 	  flags, \
1266 	  dev_access_u64_csr)
1267 
1268 /* CCE */
1269 #define CCE_PERF_DEV_CNTR_ELEM(name, counter, flags) \
1270 CNTR_ELEM(#name, \
1271 	  (counter * 8 + CCE_COUNTER_ARRAY32), \
1272 	  0, flags | CNTR_32BIT, \
1273 	  dev_access_u32_csr)
1274 
1275 #define CCE_INT_DEV_CNTR_ELEM(name, counter, flags) \
1276 CNTR_ELEM(#name, \
1277 	  (counter * 8 + CCE_INT_COUNTER_ARRAY32), \
1278 	  0, flags | CNTR_32BIT, \
1279 	  dev_access_u32_csr)
1280 
1281 /* DC */
1282 #define DC_PERF_CNTR(name, counter, flags) \
1283 CNTR_ELEM(#name, \
1284 	  counter, \
1285 	  0, \
1286 	  flags, \
1287 	  dev_access_u64_csr)
1288 
1289 #define DC_PERF_CNTR_LCB(name, counter, flags) \
1290 CNTR_ELEM(#name, \
1291 	  counter, \
1292 	  0, \
1293 	  flags, \
1294 	  dc_access_lcb_cntr)
1295 
1296 /* ibp counters */
1297 #define SW_IBP_CNTR(name, cntr) \
1298 CNTR_ELEM(#name, \
1299 	  0, \
1300 	  0, \
1301 	  CNTR_SYNTH, \
1302 	  access_ibp_##cntr)
1303 
1304 /**
1305  * hfi_addr_from_offset - return addr for readq/writeq
1306  * @dd - the dd device
1307  * @offset - the offset of the CSR within bar0
1308  *
1309  * This routine selects the appropriate base address
1310  * based on the indicated offset.
1311  */
1312 static inline void __iomem *hfi1_addr_from_offset(
1313 	const struct hfi1_devdata *dd,
1314 	u32 offset)
1315 {
1316 	if (offset >= dd->base2_start)
1317 		return dd->kregbase2 + (offset - dd->base2_start);
1318 	return dd->kregbase1 + offset;
1319 }
1320 
1321 /**
1322  * read_csr - read CSR at the indicated offset
1323  * @dd - the dd device
1324  * @offset - the offset of the CSR within bar0
1325  *
1326  * Return: the value read or all FF's if there
1327  * is no mapping
1328  */
1329 u64 read_csr(const struct hfi1_devdata *dd, u32 offset)
1330 {
1331 	if (dd->flags & HFI1_PRESENT)
1332 		return readq(hfi1_addr_from_offset(dd, offset));
1333 	return -1;
1334 }
1335 
1336 /**
1337  * write_csr - write CSR at the indicated offset
1338  * @dd - the dd device
1339  * @offset - the offset of the CSR within bar0
1340  * @value - value to write
1341  */
1342 void write_csr(const struct hfi1_devdata *dd, u32 offset, u64 value)
1343 {
1344 	if (dd->flags & HFI1_PRESENT) {
1345 		void __iomem *base = hfi1_addr_from_offset(dd, offset);
1346 
1347 		/* avoid write to RcvArray */
1348 		if (WARN_ON(offset >= RCV_ARRAY && offset < dd->base2_start))
1349 			return;
1350 		writeq(value, base);
1351 	}
1352 }
1353 
1354 /**
1355  * get_csr_addr - return te iomem address for offset
1356  * @dd - the dd device
1357  * @offset - the offset of the CSR within bar0
1358  *
1359  * Return: The iomem address to use in subsequent
1360  * writeq/readq operations.
1361  */
1362 void __iomem *get_csr_addr(
1363 	const struct hfi1_devdata *dd,
1364 	u32 offset)
1365 {
1366 	if (dd->flags & HFI1_PRESENT)
1367 		return hfi1_addr_from_offset(dd, offset);
1368 	return NULL;
1369 }
1370 
1371 static inline u64 read_write_csr(const struct hfi1_devdata *dd, u32 csr,
1372 				 int mode, u64 value)
1373 {
1374 	u64 ret;
1375 
1376 	if (mode == CNTR_MODE_R) {
1377 		ret = read_csr(dd, csr);
1378 	} else if (mode == CNTR_MODE_W) {
1379 		write_csr(dd, csr, value);
1380 		ret = value;
1381 	} else {
1382 		dd_dev_err(dd, "Invalid cntr register access mode");
1383 		return 0;
1384 	}
1385 
1386 	hfi1_cdbg(CNTR, "csr 0x%x val 0x%llx mode %d", csr, ret, mode);
1387 	return ret;
1388 }
1389 
1390 /* Dev Access */
1391 static u64 dev_access_u32_csr(const struct cntr_entry *entry,
1392 			      void *context, int vl, int mode, u64 data)
1393 {
1394 	struct hfi1_devdata *dd = context;
1395 	u64 csr = entry->csr;
1396 
1397 	if (entry->flags & CNTR_SDMA) {
1398 		if (vl == CNTR_INVALID_VL)
1399 			return 0;
1400 		csr += 0x100 * vl;
1401 	} else {
1402 		if (vl != CNTR_INVALID_VL)
1403 			return 0;
1404 	}
1405 	return read_write_csr(dd, csr, mode, data);
1406 }
1407 
1408 static u64 access_sde_err_cnt(const struct cntr_entry *entry,
1409 			      void *context, int idx, int mode, u64 data)
1410 {
1411 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1412 
1413 	if (dd->per_sdma && idx < dd->num_sdma)
1414 		return dd->per_sdma[idx].err_cnt;
1415 	return 0;
1416 }
1417 
1418 static u64 access_sde_int_cnt(const struct cntr_entry *entry,
1419 			      void *context, int idx, int mode, u64 data)
1420 {
1421 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1422 
1423 	if (dd->per_sdma && idx < dd->num_sdma)
1424 		return dd->per_sdma[idx].sdma_int_cnt;
1425 	return 0;
1426 }
1427 
1428 static u64 access_sde_idle_int_cnt(const struct cntr_entry *entry,
1429 				   void *context, int idx, int mode, u64 data)
1430 {
1431 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1432 
1433 	if (dd->per_sdma && idx < dd->num_sdma)
1434 		return dd->per_sdma[idx].idle_int_cnt;
1435 	return 0;
1436 }
1437 
1438 static u64 access_sde_progress_int_cnt(const struct cntr_entry *entry,
1439 				       void *context, int idx, int mode,
1440 				       u64 data)
1441 {
1442 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1443 
1444 	if (dd->per_sdma && idx < dd->num_sdma)
1445 		return dd->per_sdma[idx].progress_int_cnt;
1446 	return 0;
1447 }
1448 
1449 static u64 dev_access_u64_csr(const struct cntr_entry *entry, void *context,
1450 			      int vl, int mode, u64 data)
1451 {
1452 	struct hfi1_devdata *dd = context;
1453 
1454 	u64 val = 0;
1455 	u64 csr = entry->csr;
1456 
1457 	if (entry->flags & CNTR_VL) {
1458 		if (vl == CNTR_INVALID_VL)
1459 			return 0;
1460 		csr += 8 * vl;
1461 	} else {
1462 		if (vl != CNTR_INVALID_VL)
1463 			return 0;
1464 	}
1465 
1466 	val = read_write_csr(dd, csr, mode, data);
1467 	return val;
1468 }
1469 
1470 static u64 dc_access_lcb_cntr(const struct cntr_entry *entry, void *context,
1471 			      int vl, int mode, u64 data)
1472 {
1473 	struct hfi1_devdata *dd = context;
1474 	u32 csr = entry->csr;
1475 	int ret = 0;
1476 
1477 	if (vl != CNTR_INVALID_VL)
1478 		return 0;
1479 	if (mode == CNTR_MODE_R)
1480 		ret = read_lcb_csr(dd, csr, &data);
1481 	else if (mode == CNTR_MODE_W)
1482 		ret = write_lcb_csr(dd, csr, data);
1483 
1484 	if (ret) {
1485 		dd_dev_err(dd, "Could not acquire LCB for counter 0x%x", csr);
1486 		return 0;
1487 	}
1488 
1489 	hfi1_cdbg(CNTR, "csr 0x%x val 0x%llx mode %d", csr, data, mode);
1490 	return data;
1491 }
1492 
1493 /* Port Access */
1494 static u64 port_access_u32_csr(const struct cntr_entry *entry, void *context,
1495 			       int vl, int mode, u64 data)
1496 {
1497 	struct hfi1_pportdata *ppd = context;
1498 
1499 	if (vl != CNTR_INVALID_VL)
1500 		return 0;
1501 	return read_write_csr(ppd->dd, entry->csr, mode, data);
1502 }
1503 
1504 static u64 port_access_u64_csr(const struct cntr_entry *entry,
1505 			       void *context, int vl, int mode, u64 data)
1506 {
1507 	struct hfi1_pportdata *ppd = context;
1508 	u64 val;
1509 	u64 csr = entry->csr;
1510 
1511 	if (entry->flags & CNTR_VL) {
1512 		if (vl == CNTR_INVALID_VL)
1513 			return 0;
1514 		csr += 8 * vl;
1515 	} else {
1516 		if (vl != CNTR_INVALID_VL)
1517 			return 0;
1518 	}
1519 	val = read_write_csr(ppd->dd, csr, mode, data);
1520 	return val;
1521 }
1522 
1523 /* Software defined */
1524 static inline u64 read_write_sw(struct hfi1_devdata *dd, u64 *cntr, int mode,
1525 				u64 data)
1526 {
1527 	u64 ret;
1528 
1529 	if (mode == CNTR_MODE_R) {
1530 		ret = *cntr;
1531 	} else if (mode == CNTR_MODE_W) {
1532 		*cntr = data;
1533 		ret = data;
1534 	} else {
1535 		dd_dev_err(dd, "Invalid cntr sw access mode");
1536 		return 0;
1537 	}
1538 
1539 	hfi1_cdbg(CNTR, "val 0x%llx mode %d", ret, mode);
1540 
1541 	return ret;
1542 }
1543 
1544 static u64 access_sw_link_dn_cnt(const struct cntr_entry *entry, void *context,
1545 				 int vl, int mode, u64 data)
1546 {
1547 	struct hfi1_pportdata *ppd = context;
1548 
1549 	if (vl != CNTR_INVALID_VL)
1550 		return 0;
1551 	return read_write_sw(ppd->dd, &ppd->link_downed, mode, data);
1552 }
1553 
1554 static u64 access_sw_link_up_cnt(const struct cntr_entry *entry, void *context,
1555 				 int vl, int mode, u64 data)
1556 {
1557 	struct hfi1_pportdata *ppd = context;
1558 
1559 	if (vl != CNTR_INVALID_VL)
1560 		return 0;
1561 	return read_write_sw(ppd->dd, &ppd->link_up, mode, data);
1562 }
1563 
1564 static u64 access_sw_unknown_frame_cnt(const struct cntr_entry *entry,
1565 				       void *context, int vl, int mode,
1566 				       u64 data)
1567 {
1568 	struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context;
1569 
1570 	if (vl != CNTR_INVALID_VL)
1571 		return 0;
1572 	return read_write_sw(ppd->dd, &ppd->unknown_frame_count, mode, data);
1573 }
1574 
1575 static u64 access_sw_xmit_discards(const struct cntr_entry *entry,
1576 				   void *context, int vl, int mode, u64 data)
1577 {
1578 	struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context;
1579 	u64 zero = 0;
1580 	u64 *counter;
1581 
1582 	if (vl == CNTR_INVALID_VL)
1583 		counter = &ppd->port_xmit_discards;
1584 	else if (vl >= 0 && vl < C_VL_COUNT)
1585 		counter = &ppd->port_xmit_discards_vl[vl];
1586 	else
1587 		counter = &zero;
1588 
1589 	return read_write_sw(ppd->dd, counter, mode, data);
1590 }
1591 
1592 static u64 access_xmit_constraint_errs(const struct cntr_entry *entry,
1593 				       void *context, int vl, int mode,
1594 				       u64 data)
1595 {
1596 	struct hfi1_pportdata *ppd = context;
1597 
1598 	if (vl != CNTR_INVALID_VL)
1599 		return 0;
1600 
1601 	return read_write_sw(ppd->dd, &ppd->port_xmit_constraint_errors,
1602 			     mode, data);
1603 }
1604 
1605 static u64 access_rcv_constraint_errs(const struct cntr_entry *entry,
1606 				      void *context, int vl, int mode, u64 data)
1607 {
1608 	struct hfi1_pportdata *ppd = context;
1609 
1610 	if (vl != CNTR_INVALID_VL)
1611 		return 0;
1612 
1613 	return read_write_sw(ppd->dd, &ppd->port_rcv_constraint_errors,
1614 			     mode, data);
1615 }
1616 
1617 u64 get_all_cpu_total(u64 __percpu *cntr)
1618 {
1619 	int cpu;
1620 	u64 counter = 0;
1621 
1622 	for_each_possible_cpu(cpu)
1623 		counter += *per_cpu_ptr(cntr, cpu);
1624 	return counter;
1625 }
1626 
1627 static u64 read_write_cpu(struct hfi1_devdata *dd, u64 *z_val,
1628 			  u64 __percpu *cntr,
1629 			  int vl, int mode, u64 data)
1630 {
1631 	u64 ret = 0;
1632 
1633 	if (vl != CNTR_INVALID_VL)
1634 		return 0;
1635 
1636 	if (mode == CNTR_MODE_R) {
1637 		ret = get_all_cpu_total(cntr) - *z_val;
1638 	} else if (mode == CNTR_MODE_W) {
1639 		/* A write can only zero the counter */
1640 		if (data == 0)
1641 			*z_val = get_all_cpu_total(cntr);
1642 		else
1643 			dd_dev_err(dd, "Per CPU cntrs can only be zeroed");
1644 	} else {
1645 		dd_dev_err(dd, "Invalid cntr sw cpu access mode");
1646 		return 0;
1647 	}
1648 
1649 	return ret;
1650 }
1651 
1652 static u64 access_sw_cpu_intr(const struct cntr_entry *entry,
1653 			      void *context, int vl, int mode, u64 data)
1654 {
1655 	struct hfi1_devdata *dd = context;
1656 
1657 	return read_write_cpu(dd, &dd->z_int_counter, dd->int_counter, vl,
1658 			      mode, data);
1659 }
1660 
1661 static u64 access_sw_cpu_rcv_limit(const struct cntr_entry *entry,
1662 				   void *context, int vl, int mode, u64 data)
1663 {
1664 	struct hfi1_devdata *dd = context;
1665 
1666 	return read_write_cpu(dd, &dd->z_rcv_limit, dd->rcv_limit, vl,
1667 			      mode, data);
1668 }
1669 
1670 static u64 access_sw_pio_wait(const struct cntr_entry *entry,
1671 			      void *context, int vl, int mode, u64 data)
1672 {
1673 	struct hfi1_devdata *dd = context;
1674 
1675 	return dd->verbs_dev.n_piowait;
1676 }
1677 
1678 static u64 access_sw_pio_drain(const struct cntr_entry *entry,
1679 			       void *context, int vl, int mode, u64 data)
1680 {
1681 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1682 
1683 	return dd->verbs_dev.n_piodrain;
1684 }
1685 
1686 static u64 access_sw_vtx_wait(const struct cntr_entry *entry,
1687 			      void *context, int vl, int mode, u64 data)
1688 {
1689 	struct hfi1_devdata *dd = context;
1690 
1691 	return dd->verbs_dev.n_txwait;
1692 }
1693 
1694 static u64 access_sw_kmem_wait(const struct cntr_entry *entry,
1695 			       void *context, int vl, int mode, u64 data)
1696 {
1697 	struct hfi1_devdata *dd = context;
1698 
1699 	return dd->verbs_dev.n_kmem_wait;
1700 }
1701 
1702 static u64 access_sw_send_schedule(const struct cntr_entry *entry,
1703 				   void *context, int vl, int mode, u64 data)
1704 {
1705 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1706 
1707 	return read_write_cpu(dd, &dd->z_send_schedule, dd->send_schedule, vl,
1708 			      mode, data);
1709 }
1710 
1711 /* Software counters for the error status bits within MISC_ERR_STATUS */
1712 static u64 access_misc_pll_lock_fail_err_cnt(const struct cntr_entry *entry,
1713 					     void *context, int vl, int mode,
1714 					     u64 data)
1715 {
1716 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1717 
1718 	return dd->misc_err_status_cnt[12];
1719 }
1720 
1721 static u64 access_misc_mbist_fail_err_cnt(const struct cntr_entry *entry,
1722 					  void *context, int vl, int mode,
1723 					  u64 data)
1724 {
1725 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1726 
1727 	return dd->misc_err_status_cnt[11];
1728 }
1729 
1730 static u64 access_misc_invalid_eep_cmd_err_cnt(const struct cntr_entry *entry,
1731 					       void *context, int vl, int mode,
1732 					       u64 data)
1733 {
1734 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1735 
1736 	return dd->misc_err_status_cnt[10];
1737 }
1738 
1739 static u64 access_misc_efuse_done_parity_err_cnt(const struct cntr_entry *entry,
1740 						 void *context, int vl,
1741 						 int mode, u64 data)
1742 {
1743 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1744 
1745 	return dd->misc_err_status_cnt[9];
1746 }
1747 
1748 static u64 access_misc_efuse_write_err_cnt(const struct cntr_entry *entry,
1749 					   void *context, int vl, int mode,
1750 					   u64 data)
1751 {
1752 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1753 
1754 	return dd->misc_err_status_cnt[8];
1755 }
1756 
1757 static u64 access_misc_efuse_read_bad_addr_err_cnt(
1758 				const struct cntr_entry *entry,
1759 				void *context, int vl, int mode, u64 data)
1760 {
1761 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1762 
1763 	return dd->misc_err_status_cnt[7];
1764 }
1765 
1766 static u64 access_misc_efuse_csr_parity_err_cnt(const struct cntr_entry *entry,
1767 						void *context, int vl,
1768 						int mode, u64 data)
1769 {
1770 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1771 
1772 	return dd->misc_err_status_cnt[6];
1773 }
1774 
1775 static u64 access_misc_fw_auth_failed_err_cnt(const struct cntr_entry *entry,
1776 					      void *context, int vl, int mode,
1777 					      u64 data)
1778 {
1779 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1780 
1781 	return dd->misc_err_status_cnt[5];
1782 }
1783 
1784 static u64 access_misc_key_mismatch_err_cnt(const struct cntr_entry *entry,
1785 					    void *context, int vl, int mode,
1786 					    u64 data)
1787 {
1788 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1789 
1790 	return dd->misc_err_status_cnt[4];
1791 }
1792 
1793 static u64 access_misc_sbus_write_failed_err_cnt(const struct cntr_entry *entry,
1794 						 void *context, int vl,
1795 						 int mode, u64 data)
1796 {
1797 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1798 
1799 	return dd->misc_err_status_cnt[3];
1800 }
1801 
1802 static u64 access_misc_csr_write_bad_addr_err_cnt(
1803 				const struct cntr_entry *entry,
1804 				void *context, int vl, int mode, u64 data)
1805 {
1806 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1807 
1808 	return dd->misc_err_status_cnt[2];
1809 }
1810 
1811 static u64 access_misc_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
1812 						 void *context, int vl,
1813 						 int mode, u64 data)
1814 {
1815 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1816 
1817 	return dd->misc_err_status_cnt[1];
1818 }
1819 
1820 static u64 access_misc_csr_parity_err_cnt(const struct cntr_entry *entry,
1821 					  void *context, int vl, int mode,
1822 					  u64 data)
1823 {
1824 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1825 
1826 	return dd->misc_err_status_cnt[0];
1827 }
1828 
1829 /*
1830  * Software counter for the aggregate of
1831  * individual CceErrStatus counters
1832  */
1833 static u64 access_sw_cce_err_status_aggregated_cnt(
1834 				const struct cntr_entry *entry,
1835 				void *context, int vl, int mode, u64 data)
1836 {
1837 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1838 
1839 	return dd->sw_cce_err_status_aggregate;
1840 }
1841 
1842 /*
1843  * Software counters corresponding to each of the
1844  * error status bits within CceErrStatus
1845  */
1846 static u64 access_cce_msix_csr_parity_err_cnt(const struct cntr_entry *entry,
1847 					      void *context, int vl, int mode,
1848 					      u64 data)
1849 {
1850 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1851 
1852 	return dd->cce_err_status_cnt[40];
1853 }
1854 
1855 static u64 access_cce_int_map_unc_err_cnt(const struct cntr_entry *entry,
1856 					  void *context, int vl, int mode,
1857 					  u64 data)
1858 {
1859 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1860 
1861 	return dd->cce_err_status_cnt[39];
1862 }
1863 
1864 static u64 access_cce_int_map_cor_err_cnt(const struct cntr_entry *entry,
1865 					  void *context, int vl, int mode,
1866 					  u64 data)
1867 {
1868 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1869 
1870 	return dd->cce_err_status_cnt[38];
1871 }
1872 
1873 static u64 access_cce_msix_table_unc_err_cnt(const struct cntr_entry *entry,
1874 					     void *context, int vl, int mode,
1875 					     u64 data)
1876 {
1877 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1878 
1879 	return dd->cce_err_status_cnt[37];
1880 }
1881 
1882 static u64 access_cce_msix_table_cor_err_cnt(const struct cntr_entry *entry,
1883 					     void *context, int vl, int mode,
1884 					     u64 data)
1885 {
1886 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1887 
1888 	return dd->cce_err_status_cnt[36];
1889 }
1890 
1891 static u64 access_cce_rxdma_conv_fifo_parity_err_cnt(
1892 				const struct cntr_entry *entry,
1893 				void *context, int vl, int mode, u64 data)
1894 {
1895 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1896 
1897 	return dd->cce_err_status_cnt[35];
1898 }
1899 
1900 static u64 access_cce_rcpl_async_fifo_parity_err_cnt(
1901 				const struct cntr_entry *entry,
1902 				void *context, int vl, int mode, u64 data)
1903 {
1904 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1905 
1906 	return dd->cce_err_status_cnt[34];
1907 }
1908 
1909 static u64 access_cce_seg_write_bad_addr_err_cnt(const struct cntr_entry *entry,
1910 						 void *context, int vl,
1911 						 int mode, u64 data)
1912 {
1913 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1914 
1915 	return dd->cce_err_status_cnt[33];
1916 }
1917 
1918 static u64 access_cce_seg_read_bad_addr_err_cnt(const struct cntr_entry *entry,
1919 						void *context, int vl, int mode,
1920 						u64 data)
1921 {
1922 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1923 
1924 	return dd->cce_err_status_cnt[32];
1925 }
1926 
1927 static u64 access_la_triggered_cnt(const struct cntr_entry *entry,
1928 				   void *context, int vl, int mode, u64 data)
1929 {
1930 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1931 
1932 	return dd->cce_err_status_cnt[31];
1933 }
1934 
1935 static u64 access_cce_trgt_cpl_timeout_err_cnt(const struct cntr_entry *entry,
1936 					       void *context, int vl, int mode,
1937 					       u64 data)
1938 {
1939 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1940 
1941 	return dd->cce_err_status_cnt[30];
1942 }
1943 
1944 static u64 access_pcic_receive_parity_err_cnt(const struct cntr_entry *entry,
1945 					      void *context, int vl, int mode,
1946 					      u64 data)
1947 {
1948 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1949 
1950 	return dd->cce_err_status_cnt[29];
1951 }
1952 
1953 static u64 access_pcic_transmit_back_parity_err_cnt(
1954 				const struct cntr_entry *entry,
1955 				void *context, int vl, int mode, u64 data)
1956 {
1957 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1958 
1959 	return dd->cce_err_status_cnt[28];
1960 }
1961 
1962 static u64 access_pcic_transmit_front_parity_err_cnt(
1963 				const struct cntr_entry *entry,
1964 				void *context, int vl, int mode, u64 data)
1965 {
1966 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1967 
1968 	return dd->cce_err_status_cnt[27];
1969 }
1970 
1971 static u64 access_pcic_cpl_dat_q_unc_err_cnt(const struct cntr_entry *entry,
1972 					     void *context, int vl, int mode,
1973 					     u64 data)
1974 {
1975 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1976 
1977 	return dd->cce_err_status_cnt[26];
1978 }
1979 
1980 static u64 access_pcic_cpl_hd_q_unc_err_cnt(const struct cntr_entry *entry,
1981 					    void *context, int vl, int mode,
1982 					    u64 data)
1983 {
1984 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1985 
1986 	return dd->cce_err_status_cnt[25];
1987 }
1988 
1989 static u64 access_pcic_post_dat_q_unc_err_cnt(const struct cntr_entry *entry,
1990 					      void *context, int vl, int mode,
1991 					      u64 data)
1992 {
1993 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1994 
1995 	return dd->cce_err_status_cnt[24];
1996 }
1997 
1998 static u64 access_pcic_post_hd_q_unc_err_cnt(const struct cntr_entry *entry,
1999 					     void *context, int vl, int mode,
2000 					     u64 data)
2001 {
2002 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2003 
2004 	return dd->cce_err_status_cnt[23];
2005 }
2006 
2007 static u64 access_pcic_retry_sot_mem_unc_err_cnt(const struct cntr_entry *entry,
2008 						 void *context, int vl,
2009 						 int mode, u64 data)
2010 {
2011 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2012 
2013 	return dd->cce_err_status_cnt[22];
2014 }
2015 
2016 static u64 access_pcic_retry_mem_unc_err(const struct cntr_entry *entry,
2017 					 void *context, int vl, int mode,
2018 					 u64 data)
2019 {
2020 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2021 
2022 	return dd->cce_err_status_cnt[21];
2023 }
2024 
2025 static u64 access_pcic_n_post_dat_q_parity_err_cnt(
2026 				const struct cntr_entry *entry,
2027 				void *context, int vl, int mode, u64 data)
2028 {
2029 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2030 
2031 	return dd->cce_err_status_cnt[20];
2032 }
2033 
2034 static u64 access_pcic_n_post_h_q_parity_err_cnt(const struct cntr_entry *entry,
2035 						 void *context, int vl,
2036 						 int mode, u64 data)
2037 {
2038 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2039 
2040 	return dd->cce_err_status_cnt[19];
2041 }
2042 
2043 static u64 access_pcic_cpl_dat_q_cor_err_cnt(const struct cntr_entry *entry,
2044 					     void *context, int vl, int mode,
2045 					     u64 data)
2046 {
2047 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2048 
2049 	return dd->cce_err_status_cnt[18];
2050 }
2051 
2052 static u64 access_pcic_cpl_hd_q_cor_err_cnt(const struct cntr_entry *entry,
2053 					    void *context, int vl, int mode,
2054 					    u64 data)
2055 {
2056 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2057 
2058 	return dd->cce_err_status_cnt[17];
2059 }
2060 
2061 static u64 access_pcic_post_dat_q_cor_err_cnt(const struct cntr_entry *entry,
2062 					      void *context, int vl, int mode,
2063 					      u64 data)
2064 {
2065 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2066 
2067 	return dd->cce_err_status_cnt[16];
2068 }
2069 
2070 static u64 access_pcic_post_hd_q_cor_err_cnt(const struct cntr_entry *entry,
2071 					     void *context, int vl, int mode,
2072 					     u64 data)
2073 {
2074 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2075 
2076 	return dd->cce_err_status_cnt[15];
2077 }
2078 
2079 static u64 access_pcic_retry_sot_mem_cor_err_cnt(const struct cntr_entry *entry,
2080 						 void *context, int vl,
2081 						 int mode, u64 data)
2082 {
2083 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2084 
2085 	return dd->cce_err_status_cnt[14];
2086 }
2087 
2088 static u64 access_pcic_retry_mem_cor_err_cnt(const struct cntr_entry *entry,
2089 					     void *context, int vl, int mode,
2090 					     u64 data)
2091 {
2092 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2093 
2094 	return dd->cce_err_status_cnt[13];
2095 }
2096 
2097 static u64 access_cce_cli1_async_fifo_dbg_parity_err_cnt(
2098 				const struct cntr_entry *entry,
2099 				void *context, int vl, int mode, u64 data)
2100 {
2101 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2102 
2103 	return dd->cce_err_status_cnt[12];
2104 }
2105 
2106 static u64 access_cce_cli1_async_fifo_rxdma_parity_err_cnt(
2107 				const struct cntr_entry *entry,
2108 				void *context, int vl, int mode, u64 data)
2109 {
2110 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2111 
2112 	return dd->cce_err_status_cnt[11];
2113 }
2114 
2115 static u64 access_cce_cli1_async_fifo_sdma_hd_parity_err_cnt(
2116 				const struct cntr_entry *entry,
2117 				void *context, int vl, int mode, u64 data)
2118 {
2119 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2120 
2121 	return dd->cce_err_status_cnt[10];
2122 }
2123 
2124 static u64 access_cce_cl1_async_fifo_pio_crdt_parity_err_cnt(
2125 				const struct cntr_entry *entry,
2126 				void *context, int vl, int mode, u64 data)
2127 {
2128 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2129 
2130 	return dd->cce_err_status_cnt[9];
2131 }
2132 
2133 static u64 access_cce_cli2_async_fifo_parity_err_cnt(
2134 				const struct cntr_entry *entry,
2135 				void *context, int vl, int mode, u64 data)
2136 {
2137 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2138 
2139 	return dd->cce_err_status_cnt[8];
2140 }
2141 
2142 static u64 access_cce_csr_cfg_bus_parity_err_cnt(const struct cntr_entry *entry,
2143 						 void *context, int vl,
2144 						 int mode, u64 data)
2145 {
2146 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2147 
2148 	return dd->cce_err_status_cnt[7];
2149 }
2150 
2151 static u64 access_cce_cli0_async_fifo_parity_err_cnt(
2152 				const struct cntr_entry *entry,
2153 				void *context, int vl, int mode, u64 data)
2154 {
2155 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2156 
2157 	return dd->cce_err_status_cnt[6];
2158 }
2159 
2160 static u64 access_cce_rspd_data_parity_err_cnt(const struct cntr_entry *entry,
2161 					       void *context, int vl, int mode,
2162 					       u64 data)
2163 {
2164 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2165 
2166 	return dd->cce_err_status_cnt[5];
2167 }
2168 
2169 static u64 access_cce_trgt_access_err_cnt(const struct cntr_entry *entry,
2170 					  void *context, int vl, int mode,
2171 					  u64 data)
2172 {
2173 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2174 
2175 	return dd->cce_err_status_cnt[4];
2176 }
2177 
2178 static u64 access_cce_trgt_async_fifo_parity_err_cnt(
2179 				const struct cntr_entry *entry,
2180 				void *context, int vl, int mode, u64 data)
2181 {
2182 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2183 
2184 	return dd->cce_err_status_cnt[3];
2185 }
2186 
2187 static u64 access_cce_csr_write_bad_addr_err_cnt(const struct cntr_entry *entry,
2188 						 void *context, int vl,
2189 						 int mode, u64 data)
2190 {
2191 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2192 
2193 	return dd->cce_err_status_cnt[2];
2194 }
2195 
2196 static u64 access_cce_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
2197 						void *context, int vl,
2198 						int mode, u64 data)
2199 {
2200 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2201 
2202 	return dd->cce_err_status_cnt[1];
2203 }
2204 
2205 static u64 access_ccs_csr_parity_err_cnt(const struct cntr_entry *entry,
2206 					 void *context, int vl, int mode,
2207 					 u64 data)
2208 {
2209 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2210 
2211 	return dd->cce_err_status_cnt[0];
2212 }
2213 
2214 /*
2215  * Software counters corresponding to each of the
2216  * error status bits within RcvErrStatus
2217  */
2218 static u64 access_rx_csr_parity_err_cnt(const struct cntr_entry *entry,
2219 					void *context, int vl, int mode,
2220 					u64 data)
2221 {
2222 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2223 
2224 	return dd->rcv_err_status_cnt[63];
2225 }
2226 
2227 static u64 access_rx_csr_write_bad_addr_err_cnt(const struct cntr_entry *entry,
2228 						void *context, int vl,
2229 						int mode, u64 data)
2230 {
2231 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2232 
2233 	return dd->rcv_err_status_cnt[62];
2234 }
2235 
2236 static u64 access_rx_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
2237 					       void *context, int vl, int mode,
2238 					       u64 data)
2239 {
2240 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2241 
2242 	return dd->rcv_err_status_cnt[61];
2243 }
2244 
2245 static u64 access_rx_dma_csr_unc_err_cnt(const struct cntr_entry *entry,
2246 					 void *context, int vl, int mode,
2247 					 u64 data)
2248 {
2249 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2250 
2251 	return dd->rcv_err_status_cnt[60];
2252 }
2253 
2254 static u64 access_rx_dma_dq_fsm_encoding_err_cnt(const struct cntr_entry *entry,
2255 						 void *context, int vl,
2256 						 int mode, u64 data)
2257 {
2258 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2259 
2260 	return dd->rcv_err_status_cnt[59];
2261 }
2262 
2263 static u64 access_rx_dma_eq_fsm_encoding_err_cnt(const struct cntr_entry *entry,
2264 						 void *context, int vl,
2265 						 int mode, u64 data)
2266 {
2267 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2268 
2269 	return dd->rcv_err_status_cnt[58];
2270 }
2271 
2272 static u64 access_rx_dma_csr_parity_err_cnt(const struct cntr_entry *entry,
2273 					    void *context, int vl, int mode,
2274 					    u64 data)
2275 {
2276 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2277 
2278 	return dd->rcv_err_status_cnt[57];
2279 }
2280 
2281 static u64 access_rx_rbuf_data_cor_err_cnt(const struct cntr_entry *entry,
2282 					   void *context, int vl, int mode,
2283 					   u64 data)
2284 {
2285 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2286 
2287 	return dd->rcv_err_status_cnt[56];
2288 }
2289 
2290 static u64 access_rx_rbuf_data_unc_err_cnt(const struct cntr_entry *entry,
2291 					   void *context, int vl, int mode,
2292 					   u64 data)
2293 {
2294 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2295 
2296 	return dd->rcv_err_status_cnt[55];
2297 }
2298 
2299 static u64 access_rx_dma_data_fifo_rd_cor_err_cnt(
2300 				const struct cntr_entry *entry,
2301 				void *context, int vl, int mode, u64 data)
2302 {
2303 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2304 
2305 	return dd->rcv_err_status_cnt[54];
2306 }
2307 
2308 static u64 access_rx_dma_data_fifo_rd_unc_err_cnt(
2309 				const struct cntr_entry *entry,
2310 				void *context, int vl, int mode, u64 data)
2311 {
2312 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2313 
2314 	return dd->rcv_err_status_cnt[53];
2315 }
2316 
2317 static u64 access_rx_dma_hdr_fifo_rd_cor_err_cnt(const struct cntr_entry *entry,
2318 						 void *context, int vl,
2319 						 int mode, u64 data)
2320 {
2321 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2322 
2323 	return dd->rcv_err_status_cnt[52];
2324 }
2325 
2326 static u64 access_rx_dma_hdr_fifo_rd_unc_err_cnt(const struct cntr_entry *entry,
2327 						 void *context, int vl,
2328 						 int mode, u64 data)
2329 {
2330 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2331 
2332 	return dd->rcv_err_status_cnt[51];
2333 }
2334 
2335 static u64 access_rx_rbuf_desc_part2_cor_err_cnt(const struct cntr_entry *entry,
2336 						 void *context, int vl,
2337 						 int mode, u64 data)
2338 {
2339 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2340 
2341 	return dd->rcv_err_status_cnt[50];
2342 }
2343 
2344 static u64 access_rx_rbuf_desc_part2_unc_err_cnt(const struct cntr_entry *entry,
2345 						 void *context, int vl,
2346 						 int mode, u64 data)
2347 {
2348 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2349 
2350 	return dd->rcv_err_status_cnt[49];
2351 }
2352 
2353 static u64 access_rx_rbuf_desc_part1_cor_err_cnt(const struct cntr_entry *entry,
2354 						 void *context, int vl,
2355 						 int mode, u64 data)
2356 {
2357 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2358 
2359 	return dd->rcv_err_status_cnt[48];
2360 }
2361 
2362 static u64 access_rx_rbuf_desc_part1_unc_err_cnt(const struct cntr_entry *entry,
2363 						 void *context, int vl,
2364 						 int mode, u64 data)
2365 {
2366 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2367 
2368 	return dd->rcv_err_status_cnt[47];
2369 }
2370 
2371 static u64 access_rx_hq_intr_fsm_err_cnt(const struct cntr_entry *entry,
2372 					 void *context, int vl, int mode,
2373 					 u64 data)
2374 {
2375 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2376 
2377 	return dd->rcv_err_status_cnt[46];
2378 }
2379 
2380 static u64 access_rx_hq_intr_csr_parity_err_cnt(
2381 				const struct cntr_entry *entry,
2382 				void *context, int vl, int mode, u64 data)
2383 {
2384 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2385 
2386 	return dd->rcv_err_status_cnt[45];
2387 }
2388 
2389 static u64 access_rx_lookup_csr_parity_err_cnt(
2390 				const struct cntr_entry *entry,
2391 				void *context, int vl, int mode, u64 data)
2392 {
2393 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2394 
2395 	return dd->rcv_err_status_cnt[44];
2396 }
2397 
2398 static u64 access_rx_lookup_rcv_array_cor_err_cnt(
2399 				const struct cntr_entry *entry,
2400 				void *context, int vl, int mode, u64 data)
2401 {
2402 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2403 
2404 	return dd->rcv_err_status_cnt[43];
2405 }
2406 
2407 static u64 access_rx_lookup_rcv_array_unc_err_cnt(
2408 				const struct cntr_entry *entry,
2409 				void *context, int vl, int mode, u64 data)
2410 {
2411 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2412 
2413 	return dd->rcv_err_status_cnt[42];
2414 }
2415 
2416 static u64 access_rx_lookup_des_part2_parity_err_cnt(
2417 				const struct cntr_entry *entry,
2418 				void *context, int vl, int mode, u64 data)
2419 {
2420 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2421 
2422 	return dd->rcv_err_status_cnt[41];
2423 }
2424 
2425 static u64 access_rx_lookup_des_part1_unc_cor_err_cnt(
2426 				const struct cntr_entry *entry,
2427 				void *context, int vl, int mode, u64 data)
2428 {
2429 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2430 
2431 	return dd->rcv_err_status_cnt[40];
2432 }
2433 
2434 static u64 access_rx_lookup_des_part1_unc_err_cnt(
2435 				const struct cntr_entry *entry,
2436 				void *context, int vl, int mode, u64 data)
2437 {
2438 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2439 
2440 	return dd->rcv_err_status_cnt[39];
2441 }
2442 
2443 static u64 access_rx_rbuf_next_free_buf_cor_err_cnt(
2444 				const struct cntr_entry *entry,
2445 				void *context, int vl, int mode, u64 data)
2446 {
2447 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2448 
2449 	return dd->rcv_err_status_cnt[38];
2450 }
2451 
2452 static u64 access_rx_rbuf_next_free_buf_unc_err_cnt(
2453 				const struct cntr_entry *entry,
2454 				void *context, int vl, int mode, u64 data)
2455 {
2456 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2457 
2458 	return dd->rcv_err_status_cnt[37];
2459 }
2460 
2461 static u64 access_rbuf_fl_init_wr_addr_parity_err_cnt(
2462 				const struct cntr_entry *entry,
2463 				void *context, int vl, int mode, u64 data)
2464 {
2465 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2466 
2467 	return dd->rcv_err_status_cnt[36];
2468 }
2469 
2470 static u64 access_rx_rbuf_fl_initdone_parity_err_cnt(
2471 				const struct cntr_entry *entry,
2472 				void *context, int vl, int mode, u64 data)
2473 {
2474 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2475 
2476 	return dd->rcv_err_status_cnt[35];
2477 }
2478 
2479 static u64 access_rx_rbuf_fl_write_addr_parity_err_cnt(
2480 				const struct cntr_entry *entry,
2481 				void *context, int vl, int mode, u64 data)
2482 {
2483 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2484 
2485 	return dd->rcv_err_status_cnt[34];
2486 }
2487 
2488 static u64 access_rx_rbuf_fl_rd_addr_parity_err_cnt(
2489 				const struct cntr_entry *entry,
2490 				void *context, int vl, int mode, u64 data)
2491 {
2492 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2493 
2494 	return dd->rcv_err_status_cnt[33];
2495 }
2496 
2497 static u64 access_rx_rbuf_empty_err_cnt(const struct cntr_entry *entry,
2498 					void *context, int vl, int mode,
2499 					u64 data)
2500 {
2501 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2502 
2503 	return dd->rcv_err_status_cnt[32];
2504 }
2505 
2506 static u64 access_rx_rbuf_full_err_cnt(const struct cntr_entry *entry,
2507 				       void *context, int vl, int mode,
2508 				       u64 data)
2509 {
2510 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2511 
2512 	return dd->rcv_err_status_cnt[31];
2513 }
2514 
2515 static u64 access_rbuf_bad_lookup_err_cnt(const struct cntr_entry *entry,
2516 					  void *context, int vl, int mode,
2517 					  u64 data)
2518 {
2519 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2520 
2521 	return dd->rcv_err_status_cnt[30];
2522 }
2523 
2524 static u64 access_rbuf_ctx_id_parity_err_cnt(const struct cntr_entry *entry,
2525 					     void *context, int vl, int mode,
2526 					     u64 data)
2527 {
2528 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2529 
2530 	return dd->rcv_err_status_cnt[29];
2531 }
2532 
2533 static u64 access_rbuf_csr_qeopdw_parity_err_cnt(const struct cntr_entry *entry,
2534 						 void *context, int vl,
2535 						 int mode, u64 data)
2536 {
2537 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2538 
2539 	return dd->rcv_err_status_cnt[28];
2540 }
2541 
2542 static u64 access_rx_rbuf_csr_q_num_of_pkt_parity_err_cnt(
2543 				const struct cntr_entry *entry,
2544 				void *context, int vl, int mode, u64 data)
2545 {
2546 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2547 
2548 	return dd->rcv_err_status_cnt[27];
2549 }
2550 
2551 static u64 access_rx_rbuf_csr_q_t1_ptr_parity_err_cnt(
2552 				const struct cntr_entry *entry,
2553 				void *context, int vl, int mode, u64 data)
2554 {
2555 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2556 
2557 	return dd->rcv_err_status_cnt[26];
2558 }
2559 
2560 static u64 access_rx_rbuf_csr_q_hd_ptr_parity_err_cnt(
2561 				const struct cntr_entry *entry,
2562 				void *context, int vl, int mode, u64 data)
2563 {
2564 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2565 
2566 	return dd->rcv_err_status_cnt[25];
2567 }
2568 
2569 static u64 access_rx_rbuf_csr_q_vld_bit_parity_err_cnt(
2570 				const struct cntr_entry *entry,
2571 				void *context, int vl, int mode, u64 data)
2572 {
2573 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2574 
2575 	return dd->rcv_err_status_cnt[24];
2576 }
2577 
2578 static u64 access_rx_rbuf_csr_q_next_buf_parity_err_cnt(
2579 				const struct cntr_entry *entry,
2580 				void *context, int vl, int mode, u64 data)
2581 {
2582 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2583 
2584 	return dd->rcv_err_status_cnt[23];
2585 }
2586 
2587 static u64 access_rx_rbuf_csr_q_ent_cnt_parity_err_cnt(
2588 				const struct cntr_entry *entry,
2589 				void *context, int vl, int mode, u64 data)
2590 {
2591 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2592 
2593 	return dd->rcv_err_status_cnt[22];
2594 }
2595 
2596 static u64 access_rx_rbuf_csr_q_head_buf_num_parity_err_cnt(
2597 				const struct cntr_entry *entry,
2598 				void *context, int vl, int mode, u64 data)
2599 {
2600 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2601 
2602 	return dd->rcv_err_status_cnt[21];
2603 }
2604 
2605 static u64 access_rx_rbuf_block_list_read_cor_err_cnt(
2606 				const struct cntr_entry *entry,
2607 				void *context, int vl, int mode, u64 data)
2608 {
2609 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2610 
2611 	return dd->rcv_err_status_cnt[20];
2612 }
2613 
2614 static u64 access_rx_rbuf_block_list_read_unc_err_cnt(
2615 				const struct cntr_entry *entry,
2616 				void *context, int vl, int mode, u64 data)
2617 {
2618 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2619 
2620 	return dd->rcv_err_status_cnt[19];
2621 }
2622 
2623 static u64 access_rx_rbuf_lookup_des_cor_err_cnt(const struct cntr_entry *entry,
2624 						 void *context, int vl,
2625 						 int mode, u64 data)
2626 {
2627 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2628 
2629 	return dd->rcv_err_status_cnt[18];
2630 }
2631 
2632 static u64 access_rx_rbuf_lookup_des_unc_err_cnt(const struct cntr_entry *entry,
2633 						 void *context, int vl,
2634 						 int mode, u64 data)
2635 {
2636 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2637 
2638 	return dd->rcv_err_status_cnt[17];
2639 }
2640 
2641 static u64 access_rx_rbuf_lookup_des_reg_unc_cor_err_cnt(
2642 				const struct cntr_entry *entry,
2643 				void *context, int vl, int mode, u64 data)
2644 {
2645 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2646 
2647 	return dd->rcv_err_status_cnt[16];
2648 }
2649 
2650 static u64 access_rx_rbuf_lookup_des_reg_unc_err_cnt(
2651 				const struct cntr_entry *entry,
2652 				void *context, int vl, int mode, u64 data)
2653 {
2654 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2655 
2656 	return dd->rcv_err_status_cnt[15];
2657 }
2658 
2659 static u64 access_rx_rbuf_free_list_cor_err_cnt(const struct cntr_entry *entry,
2660 						void *context, int vl,
2661 						int mode, u64 data)
2662 {
2663 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2664 
2665 	return dd->rcv_err_status_cnt[14];
2666 }
2667 
2668 static u64 access_rx_rbuf_free_list_unc_err_cnt(const struct cntr_entry *entry,
2669 						void *context, int vl,
2670 						int mode, u64 data)
2671 {
2672 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2673 
2674 	return dd->rcv_err_status_cnt[13];
2675 }
2676 
2677 static u64 access_rx_rcv_fsm_encoding_err_cnt(const struct cntr_entry *entry,
2678 					      void *context, int vl, int mode,
2679 					      u64 data)
2680 {
2681 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2682 
2683 	return dd->rcv_err_status_cnt[12];
2684 }
2685 
2686 static u64 access_rx_dma_flag_cor_err_cnt(const struct cntr_entry *entry,
2687 					  void *context, int vl, int mode,
2688 					  u64 data)
2689 {
2690 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2691 
2692 	return dd->rcv_err_status_cnt[11];
2693 }
2694 
2695 static u64 access_rx_dma_flag_unc_err_cnt(const struct cntr_entry *entry,
2696 					  void *context, int vl, int mode,
2697 					  u64 data)
2698 {
2699 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2700 
2701 	return dd->rcv_err_status_cnt[10];
2702 }
2703 
2704 static u64 access_rx_dc_sop_eop_parity_err_cnt(const struct cntr_entry *entry,
2705 					       void *context, int vl, int mode,
2706 					       u64 data)
2707 {
2708 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2709 
2710 	return dd->rcv_err_status_cnt[9];
2711 }
2712 
2713 static u64 access_rx_rcv_csr_parity_err_cnt(const struct cntr_entry *entry,
2714 					    void *context, int vl, int mode,
2715 					    u64 data)
2716 {
2717 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2718 
2719 	return dd->rcv_err_status_cnt[8];
2720 }
2721 
2722 static u64 access_rx_rcv_qp_map_table_cor_err_cnt(
2723 				const struct cntr_entry *entry,
2724 				void *context, int vl, int mode, u64 data)
2725 {
2726 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2727 
2728 	return dd->rcv_err_status_cnt[7];
2729 }
2730 
2731 static u64 access_rx_rcv_qp_map_table_unc_err_cnt(
2732 				const struct cntr_entry *entry,
2733 				void *context, int vl, int mode, u64 data)
2734 {
2735 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2736 
2737 	return dd->rcv_err_status_cnt[6];
2738 }
2739 
2740 static u64 access_rx_rcv_data_cor_err_cnt(const struct cntr_entry *entry,
2741 					  void *context, int vl, int mode,
2742 					  u64 data)
2743 {
2744 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2745 
2746 	return dd->rcv_err_status_cnt[5];
2747 }
2748 
2749 static u64 access_rx_rcv_data_unc_err_cnt(const struct cntr_entry *entry,
2750 					  void *context, int vl, int mode,
2751 					  u64 data)
2752 {
2753 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2754 
2755 	return dd->rcv_err_status_cnt[4];
2756 }
2757 
2758 static u64 access_rx_rcv_hdr_cor_err_cnt(const struct cntr_entry *entry,
2759 					 void *context, int vl, int mode,
2760 					 u64 data)
2761 {
2762 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2763 
2764 	return dd->rcv_err_status_cnt[3];
2765 }
2766 
2767 static u64 access_rx_rcv_hdr_unc_err_cnt(const struct cntr_entry *entry,
2768 					 void *context, int vl, int mode,
2769 					 u64 data)
2770 {
2771 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2772 
2773 	return dd->rcv_err_status_cnt[2];
2774 }
2775 
2776 static u64 access_rx_dc_intf_parity_err_cnt(const struct cntr_entry *entry,
2777 					    void *context, int vl, int mode,
2778 					    u64 data)
2779 {
2780 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2781 
2782 	return dd->rcv_err_status_cnt[1];
2783 }
2784 
2785 static u64 access_rx_dma_csr_cor_err_cnt(const struct cntr_entry *entry,
2786 					 void *context, int vl, int mode,
2787 					 u64 data)
2788 {
2789 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2790 
2791 	return dd->rcv_err_status_cnt[0];
2792 }
2793 
2794 /*
2795  * Software counters corresponding to each of the
2796  * error status bits within SendPioErrStatus
2797  */
2798 static u64 access_pio_pec_sop_head_parity_err_cnt(
2799 				const struct cntr_entry *entry,
2800 				void *context, int vl, int mode, u64 data)
2801 {
2802 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2803 
2804 	return dd->send_pio_err_status_cnt[35];
2805 }
2806 
2807 static u64 access_pio_pcc_sop_head_parity_err_cnt(
2808 				const struct cntr_entry *entry,
2809 				void *context, int vl, int mode, u64 data)
2810 {
2811 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2812 
2813 	return dd->send_pio_err_status_cnt[34];
2814 }
2815 
2816 static u64 access_pio_last_returned_cnt_parity_err_cnt(
2817 				const struct cntr_entry *entry,
2818 				void *context, int vl, int mode, u64 data)
2819 {
2820 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2821 
2822 	return dd->send_pio_err_status_cnt[33];
2823 }
2824 
2825 static u64 access_pio_current_free_cnt_parity_err_cnt(
2826 				const struct cntr_entry *entry,
2827 				void *context, int vl, int mode, u64 data)
2828 {
2829 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2830 
2831 	return dd->send_pio_err_status_cnt[32];
2832 }
2833 
2834 static u64 access_pio_reserved_31_err_cnt(const struct cntr_entry *entry,
2835 					  void *context, int vl, int mode,
2836 					  u64 data)
2837 {
2838 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2839 
2840 	return dd->send_pio_err_status_cnt[31];
2841 }
2842 
2843 static u64 access_pio_reserved_30_err_cnt(const struct cntr_entry *entry,
2844 					  void *context, int vl, int mode,
2845 					  u64 data)
2846 {
2847 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2848 
2849 	return dd->send_pio_err_status_cnt[30];
2850 }
2851 
2852 static u64 access_pio_ppmc_sop_len_err_cnt(const struct cntr_entry *entry,
2853 					   void *context, int vl, int mode,
2854 					   u64 data)
2855 {
2856 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2857 
2858 	return dd->send_pio_err_status_cnt[29];
2859 }
2860 
2861 static u64 access_pio_ppmc_bqc_mem_parity_err_cnt(
2862 				const struct cntr_entry *entry,
2863 				void *context, int vl, int mode, u64 data)
2864 {
2865 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2866 
2867 	return dd->send_pio_err_status_cnt[28];
2868 }
2869 
2870 static u64 access_pio_vl_fifo_parity_err_cnt(const struct cntr_entry *entry,
2871 					     void *context, int vl, int mode,
2872 					     u64 data)
2873 {
2874 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2875 
2876 	return dd->send_pio_err_status_cnt[27];
2877 }
2878 
2879 static u64 access_pio_vlf_sop_parity_err_cnt(const struct cntr_entry *entry,
2880 					     void *context, int vl, int mode,
2881 					     u64 data)
2882 {
2883 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2884 
2885 	return dd->send_pio_err_status_cnt[26];
2886 }
2887 
2888 static u64 access_pio_vlf_v1_len_parity_err_cnt(const struct cntr_entry *entry,
2889 						void *context, int vl,
2890 						int mode, u64 data)
2891 {
2892 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2893 
2894 	return dd->send_pio_err_status_cnt[25];
2895 }
2896 
2897 static u64 access_pio_block_qw_count_parity_err_cnt(
2898 				const struct cntr_entry *entry,
2899 				void *context, int vl, int mode, u64 data)
2900 {
2901 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2902 
2903 	return dd->send_pio_err_status_cnt[24];
2904 }
2905 
2906 static u64 access_pio_write_qw_valid_parity_err_cnt(
2907 				const struct cntr_entry *entry,
2908 				void *context, int vl, int mode, u64 data)
2909 {
2910 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2911 
2912 	return dd->send_pio_err_status_cnt[23];
2913 }
2914 
2915 static u64 access_pio_state_machine_err_cnt(const struct cntr_entry *entry,
2916 					    void *context, int vl, int mode,
2917 					    u64 data)
2918 {
2919 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2920 
2921 	return dd->send_pio_err_status_cnt[22];
2922 }
2923 
2924 static u64 access_pio_write_data_parity_err_cnt(const struct cntr_entry *entry,
2925 						void *context, int vl,
2926 						int mode, u64 data)
2927 {
2928 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2929 
2930 	return dd->send_pio_err_status_cnt[21];
2931 }
2932 
2933 static u64 access_pio_host_addr_mem_cor_err_cnt(const struct cntr_entry *entry,
2934 						void *context, int vl,
2935 						int mode, u64 data)
2936 {
2937 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2938 
2939 	return dd->send_pio_err_status_cnt[20];
2940 }
2941 
2942 static u64 access_pio_host_addr_mem_unc_err_cnt(const struct cntr_entry *entry,
2943 						void *context, int vl,
2944 						int mode, u64 data)
2945 {
2946 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2947 
2948 	return dd->send_pio_err_status_cnt[19];
2949 }
2950 
2951 static u64 access_pio_pkt_evict_sm_or_arb_sm_err_cnt(
2952 				const struct cntr_entry *entry,
2953 				void *context, int vl, int mode, u64 data)
2954 {
2955 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2956 
2957 	return dd->send_pio_err_status_cnt[18];
2958 }
2959 
2960 static u64 access_pio_init_sm_in_err_cnt(const struct cntr_entry *entry,
2961 					 void *context, int vl, int mode,
2962 					 u64 data)
2963 {
2964 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2965 
2966 	return dd->send_pio_err_status_cnt[17];
2967 }
2968 
2969 static u64 access_pio_ppmc_pbl_fifo_err_cnt(const struct cntr_entry *entry,
2970 					    void *context, int vl, int mode,
2971 					    u64 data)
2972 {
2973 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2974 
2975 	return dd->send_pio_err_status_cnt[16];
2976 }
2977 
2978 static u64 access_pio_credit_ret_fifo_parity_err_cnt(
2979 				const struct cntr_entry *entry,
2980 				void *context, int vl, int mode, u64 data)
2981 {
2982 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2983 
2984 	return dd->send_pio_err_status_cnt[15];
2985 }
2986 
2987 static u64 access_pio_v1_len_mem_bank1_cor_err_cnt(
2988 				const struct cntr_entry *entry,
2989 				void *context, int vl, int mode, u64 data)
2990 {
2991 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2992 
2993 	return dd->send_pio_err_status_cnt[14];
2994 }
2995 
2996 static u64 access_pio_v1_len_mem_bank0_cor_err_cnt(
2997 				const struct cntr_entry *entry,
2998 				void *context, int vl, int mode, u64 data)
2999 {
3000 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3001 
3002 	return dd->send_pio_err_status_cnt[13];
3003 }
3004 
3005 static u64 access_pio_v1_len_mem_bank1_unc_err_cnt(
3006 				const struct cntr_entry *entry,
3007 				void *context, int vl, int mode, u64 data)
3008 {
3009 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3010 
3011 	return dd->send_pio_err_status_cnt[12];
3012 }
3013 
3014 static u64 access_pio_v1_len_mem_bank0_unc_err_cnt(
3015 				const struct cntr_entry *entry,
3016 				void *context, int vl, int mode, u64 data)
3017 {
3018 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3019 
3020 	return dd->send_pio_err_status_cnt[11];
3021 }
3022 
3023 static u64 access_pio_sm_pkt_reset_parity_err_cnt(
3024 				const struct cntr_entry *entry,
3025 				void *context, int vl, int mode, u64 data)
3026 {
3027 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3028 
3029 	return dd->send_pio_err_status_cnt[10];
3030 }
3031 
3032 static u64 access_pio_pkt_evict_fifo_parity_err_cnt(
3033 				const struct cntr_entry *entry,
3034 				void *context, int vl, int mode, u64 data)
3035 {
3036 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3037 
3038 	return dd->send_pio_err_status_cnt[9];
3039 }
3040 
3041 static u64 access_pio_sbrdctrl_crrel_fifo_parity_err_cnt(
3042 				const struct cntr_entry *entry,
3043 				void *context, int vl, int mode, u64 data)
3044 {
3045 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3046 
3047 	return dd->send_pio_err_status_cnt[8];
3048 }
3049 
3050 static u64 access_pio_sbrdctl_crrel_parity_err_cnt(
3051 				const struct cntr_entry *entry,
3052 				void *context, int vl, int mode, u64 data)
3053 {
3054 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3055 
3056 	return dd->send_pio_err_status_cnt[7];
3057 }
3058 
3059 static u64 access_pio_pec_fifo_parity_err_cnt(const struct cntr_entry *entry,
3060 					      void *context, int vl, int mode,
3061 					      u64 data)
3062 {
3063 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3064 
3065 	return dd->send_pio_err_status_cnt[6];
3066 }
3067 
3068 static u64 access_pio_pcc_fifo_parity_err_cnt(const struct cntr_entry *entry,
3069 					      void *context, int vl, int mode,
3070 					      u64 data)
3071 {
3072 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3073 
3074 	return dd->send_pio_err_status_cnt[5];
3075 }
3076 
3077 static u64 access_pio_sb_mem_fifo1_err_cnt(const struct cntr_entry *entry,
3078 					   void *context, int vl, int mode,
3079 					   u64 data)
3080 {
3081 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3082 
3083 	return dd->send_pio_err_status_cnt[4];
3084 }
3085 
3086 static u64 access_pio_sb_mem_fifo0_err_cnt(const struct cntr_entry *entry,
3087 					   void *context, int vl, int mode,
3088 					   u64 data)
3089 {
3090 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3091 
3092 	return dd->send_pio_err_status_cnt[3];
3093 }
3094 
3095 static u64 access_pio_csr_parity_err_cnt(const struct cntr_entry *entry,
3096 					 void *context, int vl, int mode,
3097 					 u64 data)
3098 {
3099 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3100 
3101 	return dd->send_pio_err_status_cnt[2];
3102 }
3103 
3104 static u64 access_pio_write_addr_parity_err_cnt(const struct cntr_entry *entry,
3105 						void *context, int vl,
3106 						int mode, u64 data)
3107 {
3108 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3109 
3110 	return dd->send_pio_err_status_cnt[1];
3111 }
3112 
3113 static u64 access_pio_write_bad_ctxt_err_cnt(const struct cntr_entry *entry,
3114 					     void *context, int vl, int mode,
3115 					     u64 data)
3116 {
3117 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3118 
3119 	return dd->send_pio_err_status_cnt[0];
3120 }
3121 
3122 /*
3123  * Software counters corresponding to each of the
3124  * error status bits within SendDmaErrStatus
3125  */
3126 static u64 access_sdma_pcie_req_tracking_cor_err_cnt(
3127 				const struct cntr_entry *entry,
3128 				void *context, int vl, int mode, u64 data)
3129 {
3130 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3131 
3132 	return dd->send_dma_err_status_cnt[3];
3133 }
3134 
3135 static u64 access_sdma_pcie_req_tracking_unc_err_cnt(
3136 				const struct cntr_entry *entry,
3137 				void *context, int vl, int mode, u64 data)
3138 {
3139 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3140 
3141 	return dd->send_dma_err_status_cnt[2];
3142 }
3143 
3144 static u64 access_sdma_csr_parity_err_cnt(const struct cntr_entry *entry,
3145 					  void *context, int vl, int mode,
3146 					  u64 data)
3147 {
3148 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3149 
3150 	return dd->send_dma_err_status_cnt[1];
3151 }
3152 
3153 static u64 access_sdma_rpy_tag_err_cnt(const struct cntr_entry *entry,
3154 				       void *context, int vl, int mode,
3155 				       u64 data)
3156 {
3157 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3158 
3159 	return dd->send_dma_err_status_cnt[0];
3160 }
3161 
3162 /*
3163  * Software counters corresponding to each of the
3164  * error status bits within SendEgressErrStatus
3165  */
3166 static u64 access_tx_read_pio_memory_csr_unc_err_cnt(
3167 				const struct cntr_entry *entry,
3168 				void *context, int vl, int mode, u64 data)
3169 {
3170 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3171 
3172 	return dd->send_egress_err_status_cnt[63];
3173 }
3174 
3175 static u64 access_tx_read_sdma_memory_csr_err_cnt(
3176 				const struct cntr_entry *entry,
3177 				void *context, int vl, int mode, u64 data)
3178 {
3179 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3180 
3181 	return dd->send_egress_err_status_cnt[62];
3182 }
3183 
3184 static u64 access_tx_egress_fifo_cor_err_cnt(const struct cntr_entry *entry,
3185 					     void *context, int vl, int mode,
3186 					     u64 data)
3187 {
3188 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3189 
3190 	return dd->send_egress_err_status_cnt[61];
3191 }
3192 
3193 static u64 access_tx_read_pio_memory_cor_err_cnt(const struct cntr_entry *entry,
3194 						 void *context, int vl,
3195 						 int mode, u64 data)
3196 {
3197 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3198 
3199 	return dd->send_egress_err_status_cnt[60];
3200 }
3201 
3202 static u64 access_tx_read_sdma_memory_cor_err_cnt(
3203 				const struct cntr_entry *entry,
3204 				void *context, int vl, int mode, u64 data)
3205 {
3206 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3207 
3208 	return dd->send_egress_err_status_cnt[59];
3209 }
3210 
3211 static u64 access_tx_sb_hdr_cor_err_cnt(const struct cntr_entry *entry,
3212 					void *context, int vl, int mode,
3213 					u64 data)
3214 {
3215 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3216 
3217 	return dd->send_egress_err_status_cnt[58];
3218 }
3219 
3220 static u64 access_tx_credit_overrun_err_cnt(const struct cntr_entry *entry,
3221 					    void *context, int vl, int mode,
3222 					    u64 data)
3223 {
3224 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3225 
3226 	return dd->send_egress_err_status_cnt[57];
3227 }
3228 
3229 static u64 access_tx_launch_fifo8_cor_err_cnt(const struct cntr_entry *entry,
3230 					      void *context, int vl, int mode,
3231 					      u64 data)
3232 {
3233 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3234 
3235 	return dd->send_egress_err_status_cnt[56];
3236 }
3237 
3238 static u64 access_tx_launch_fifo7_cor_err_cnt(const struct cntr_entry *entry,
3239 					      void *context, int vl, int mode,
3240 					      u64 data)
3241 {
3242 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3243 
3244 	return dd->send_egress_err_status_cnt[55];
3245 }
3246 
3247 static u64 access_tx_launch_fifo6_cor_err_cnt(const struct cntr_entry *entry,
3248 					      void *context, int vl, int mode,
3249 					      u64 data)
3250 {
3251 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3252 
3253 	return dd->send_egress_err_status_cnt[54];
3254 }
3255 
3256 static u64 access_tx_launch_fifo5_cor_err_cnt(const struct cntr_entry *entry,
3257 					      void *context, int vl, int mode,
3258 					      u64 data)
3259 {
3260 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3261 
3262 	return dd->send_egress_err_status_cnt[53];
3263 }
3264 
3265 static u64 access_tx_launch_fifo4_cor_err_cnt(const struct cntr_entry *entry,
3266 					      void *context, int vl, int mode,
3267 					      u64 data)
3268 {
3269 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3270 
3271 	return dd->send_egress_err_status_cnt[52];
3272 }
3273 
3274 static u64 access_tx_launch_fifo3_cor_err_cnt(const struct cntr_entry *entry,
3275 					      void *context, int vl, int mode,
3276 					      u64 data)
3277 {
3278 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3279 
3280 	return dd->send_egress_err_status_cnt[51];
3281 }
3282 
3283 static u64 access_tx_launch_fifo2_cor_err_cnt(const struct cntr_entry *entry,
3284 					      void *context, int vl, int mode,
3285 					      u64 data)
3286 {
3287 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3288 
3289 	return dd->send_egress_err_status_cnt[50];
3290 }
3291 
3292 static u64 access_tx_launch_fifo1_cor_err_cnt(const struct cntr_entry *entry,
3293 					      void *context, int vl, int mode,
3294 					      u64 data)
3295 {
3296 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3297 
3298 	return dd->send_egress_err_status_cnt[49];
3299 }
3300 
3301 static u64 access_tx_launch_fifo0_cor_err_cnt(const struct cntr_entry *entry,
3302 					      void *context, int vl, int mode,
3303 					      u64 data)
3304 {
3305 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3306 
3307 	return dd->send_egress_err_status_cnt[48];
3308 }
3309 
3310 static u64 access_tx_credit_return_vl_err_cnt(const struct cntr_entry *entry,
3311 					      void *context, int vl, int mode,
3312 					      u64 data)
3313 {
3314 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3315 
3316 	return dd->send_egress_err_status_cnt[47];
3317 }
3318 
3319 static u64 access_tx_hcrc_insertion_err_cnt(const struct cntr_entry *entry,
3320 					    void *context, int vl, int mode,
3321 					    u64 data)
3322 {
3323 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3324 
3325 	return dd->send_egress_err_status_cnt[46];
3326 }
3327 
3328 static u64 access_tx_egress_fifo_unc_err_cnt(const struct cntr_entry *entry,
3329 					     void *context, int vl, int mode,
3330 					     u64 data)
3331 {
3332 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3333 
3334 	return dd->send_egress_err_status_cnt[45];
3335 }
3336 
3337 static u64 access_tx_read_pio_memory_unc_err_cnt(const struct cntr_entry *entry,
3338 						 void *context, int vl,
3339 						 int mode, u64 data)
3340 {
3341 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3342 
3343 	return dd->send_egress_err_status_cnt[44];
3344 }
3345 
3346 static u64 access_tx_read_sdma_memory_unc_err_cnt(
3347 				const struct cntr_entry *entry,
3348 				void *context, int vl, int mode, u64 data)
3349 {
3350 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3351 
3352 	return dd->send_egress_err_status_cnt[43];
3353 }
3354 
3355 static u64 access_tx_sb_hdr_unc_err_cnt(const struct cntr_entry *entry,
3356 					void *context, int vl, int mode,
3357 					u64 data)
3358 {
3359 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3360 
3361 	return dd->send_egress_err_status_cnt[42];
3362 }
3363 
3364 static u64 access_tx_credit_return_partiy_err_cnt(
3365 				const struct cntr_entry *entry,
3366 				void *context, int vl, int mode, u64 data)
3367 {
3368 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3369 
3370 	return dd->send_egress_err_status_cnt[41];
3371 }
3372 
3373 static u64 access_tx_launch_fifo8_unc_or_parity_err_cnt(
3374 				const struct cntr_entry *entry,
3375 				void *context, int vl, int mode, u64 data)
3376 {
3377 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3378 
3379 	return dd->send_egress_err_status_cnt[40];
3380 }
3381 
3382 static u64 access_tx_launch_fifo7_unc_or_parity_err_cnt(
3383 				const struct cntr_entry *entry,
3384 				void *context, int vl, int mode, u64 data)
3385 {
3386 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3387 
3388 	return dd->send_egress_err_status_cnt[39];
3389 }
3390 
3391 static u64 access_tx_launch_fifo6_unc_or_parity_err_cnt(
3392 				const struct cntr_entry *entry,
3393 				void *context, int vl, int mode, u64 data)
3394 {
3395 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3396 
3397 	return dd->send_egress_err_status_cnt[38];
3398 }
3399 
3400 static u64 access_tx_launch_fifo5_unc_or_parity_err_cnt(
3401 				const struct cntr_entry *entry,
3402 				void *context, int vl, int mode, u64 data)
3403 {
3404 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3405 
3406 	return dd->send_egress_err_status_cnt[37];
3407 }
3408 
3409 static u64 access_tx_launch_fifo4_unc_or_parity_err_cnt(
3410 				const struct cntr_entry *entry,
3411 				void *context, int vl, int mode, u64 data)
3412 {
3413 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3414 
3415 	return dd->send_egress_err_status_cnt[36];
3416 }
3417 
3418 static u64 access_tx_launch_fifo3_unc_or_parity_err_cnt(
3419 				const struct cntr_entry *entry,
3420 				void *context, int vl, int mode, u64 data)
3421 {
3422 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3423 
3424 	return dd->send_egress_err_status_cnt[35];
3425 }
3426 
3427 static u64 access_tx_launch_fifo2_unc_or_parity_err_cnt(
3428 				const struct cntr_entry *entry,
3429 				void *context, int vl, int mode, u64 data)
3430 {
3431 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3432 
3433 	return dd->send_egress_err_status_cnt[34];
3434 }
3435 
3436 static u64 access_tx_launch_fifo1_unc_or_parity_err_cnt(
3437 				const struct cntr_entry *entry,
3438 				void *context, int vl, int mode, u64 data)
3439 {
3440 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3441 
3442 	return dd->send_egress_err_status_cnt[33];
3443 }
3444 
3445 static u64 access_tx_launch_fifo0_unc_or_parity_err_cnt(
3446 				const struct cntr_entry *entry,
3447 				void *context, int vl, int mode, u64 data)
3448 {
3449 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3450 
3451 	return dd->send_egress_err_status_cnt[32];
3452 }
3453 
3454 static u64 access_tx_sdma15_disallowed_packet_err_cnt(
3455 				const struct cntr_entry *entry,
3456 				void *context, int vl, int mode, u64 data)
3457 {
3458 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3459 
3460 	return dd->send_egress_err_status_cnt[31];
3461 }
3462 
3463 static u64 access_tx_sdma14_disallowed_packet_err_cnt(
3464 				const struct cntr_entry *entry,
3465 				void *context, int vl, int mode, u64 data)
3466 {
3467 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3468 
3469 	return dd->send_egress_err_status_cnt[30];
3470 }
3471 
3472 static u64 access_tx_sdma13_disallowed_packet_err_cnt(
3473 				const struct cntr_entry *entry,
3474 				void *context, int vl, int mode, u64 data)
3475 {
3476 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3477 
3478 	return dd->send_egress_err_status_cnt[29];
3479 }
3480 
3481 static u64 access_tx_sdma12_disallowed_packet_err_cnt(
3482 				const struct cntr_entry *entry,
3483 				void *context, int vl, int mode, u64 data)
3484 {
3485 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3486 
3487 	return dd->send_egress_err_status_cnt[28];
3488 }
3489 
3490 static u64 access_tx_sdma11_disallowed_packet_err_cnt(
3491 				const struct cntr_entry *entry,
3492 				void *context, int vl, int mode, u64 data)
3493 {
3494 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3495 
3496 	return dd->send_egress_err_status_cnt[27];
3497 }
3498 
3499 static u64 access_tx_sdma10_disallowed_packet_err_cnt(
3500 				const struct cntr_entry *entry,
3501 				void *context, int vl, int mode, u64 data)
3502 {
3503 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3504 
3505 	return dd->send_egress_err_status_cnt[26];
3506 }
3507 
3508 static u64 access_tx_sdma9_disallowed_packet_err_cnt(
3509 				const struct cntr_entry *entry,
3510 				void *context, int vl, int mode, u64 data)
3511 {
3512 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3513 
3514 	return dd->send_egress_err_status_cnt[25];
3515 }
3516 
3517 static u64 access_tx_sdma8_disallowed_packet_err_cnt(
3518 				const struct cntr_entry *entry,
3519 				void *context, int vl, int mode, u64 data)
3520 {
3521 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3522 
3523 	return dd->send_egress_err_status_cnt[24];
3524 }
3525 
3526 static u64 access_tx_sdma7_disallowed_packet_err_cnt(
3527 				const struct cntr_entry *entry,
3528 				void *context, int vl, int mode, u64 data)
3529 {
3530 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3531 
3532 	return dd->send_egress_err_status_cnt[23];
3533 }
3534 
3535 static u64 access_tx_sdma6_disallowed_packet_err_cnt(
3536 				const struct cntr_entry *entry,
3537 				void *context, int vl, int mode, u64 data)
3538 {
3539 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3540 
3541 	return dd->send_egress_err_status_cnt[22];
3542 }
3543 
3544 static u64 access_tx_sdma5_disallowed_packet_err_cnt(
3545 				const struct cntr_entry *entry,
3546 				void *context, int vl, int mode, u64 data)
3547 {
3548 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3549 
3550 	return dd->send_egress_err_status_cnt[21];
3551 }
3552 
3553 static u64 access_tx_sdma4_disallowed_packet_err_cnt(
3554 				const struct cntr_entry *entry,
3555 				void *context, int vl, int mode, u64 data)
3556 {
3557 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3558 
3559 	return dd->send_egress_err_status_cnt[20];
3560 }
3561 
3562 static u64 access_tx_sdma3_disallowed_packet_err_cnt(
3563 				const struct cntr_entry *entry,
3564 				void *context, int vl, int mode, u64 data)
3565 {
3566 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3567 
3568 	return dd->send_egress_err_status_cnt[19];
3569 }
3570 
3571 static u64 access_tx_sdma2_disallowed_packet_err_cnt(
3572 				const struct cntr_entry *entry,
3573 				void *context, int vl, int mode, u64 data)
3574 {
3575 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3576 
3577 	return dd->send_egress_err_status_cnt[18];
3578 }
3579 
3580 static u64 access_tx_sdma1_disallowed_packet_err_cnt(
3581 				const struct cntr_entry *entry,
3582 				void *context, int vl, int mode, u64 data)
3583 {
3584 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3585 
3586 	return dd->send_egress_err_status_cnt[17];
3587 }
3588 
3589 static u64 access_tx_sdma0_disallowed_packet_err_cnt(
3590 				const struct cntr_entry *entry,
3591 				void *context, int vl, int mode, u64 data)
3592 {
3593 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3594 
3595 	return dd->send_egress_err_status_cnt[16];
3596 }
3597 
3598 static u64 access_tx_config_parity_err_cnt(const struct cntr_entry *entry,
3599 					   void *context, int vl, int mode,
3600 					   u64 data)
3601 {
3602 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3603 
3604 	return dd->send_egress_err_status_cnt[15];
3605 }
3606 
3607 static u64 access_tx_sbrd_ctl_csr_parity_err_cnt(const struct cntr_entry *entry,
3608 						 void *context, int vl,
3609 						 int mode, u64 data)
3610 {
3611 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3612 
3613 	return dd->send_egress_err_status_cnt[14];
3614 }
3615 
3616 static u64 access_tx_launch_csr_parity_err_cnt(const struct cntr_entry *entry,
3617 					       void *context, int vl, int mode,
3618 					       u64 data)
3619 {
3620 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3621 
3622 	return dd->send_egress_err_status_cnt[13];
3623 }
3624 
3625 static u64 access_tx_illegal_vl_err_cnt(const struct cntr_entry *entry,
3626 					void *context, int vl, int mode,
3627 					u64 data)
3628 {
3629 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3630 
3631 	return dd->send_egress_err_status_cnt[12];
3632 }
3633 
3634 static u64 access_tx_sbrd_ctl_state_machine_parity_err_cnt(
3635 				const struct cntr_entry *entry,
3636 				void *context, int vl, int mode, u64 data)
3637 {
3638 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3639 
3640 	return dd->send_egress_err_status_cnt[11];
3641 }
3642 
3643 static u64 access_egress_reserved_10_err_cnt(const struct cntr_entry *entry,
3644 					     void *context, int vl, int mode,
3645 					     u64 data)
3646 {
3647 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3648 
3649 	return dd->send_egress_err_status_cnt[10];
3650 }
3651 
3652 static u64 access_egress_reserved_9_err_cnt(const struct cntr_entry *entry,
3653 					    void *context, int vl, int mode,
3654 					    u64 data)
3655 {
3656 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3657 
3658 	return dd->send_egress_err_status_cnt[9];
3659 }
3660 
3661 static u64 access_tx_sdma_launch_intf_parity_err_cnt(
3662 				const struct cntr_entry *entry,
3663 				void *context, int vl, int mode, u64 data)
3664 {
3665 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3666 
3667 	return dd->send_egress_err_status_cnt[8];
3668 }
3669 
3670 static u64 access_tx_pio_launch_intf_parity_err_cnt(
3671 				const struct cntr_entry *entry,
3672 				void *context, int vl, int mode, u64 data)
3673 {
3674 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3675 
3676 	return dd->send_egress_err_status_cnt[7];
3677 }
3678 
3679 static u64 access_egress_reserved_6_err_cnt(const struct cntr_entry *entry,
3680 					    void *context, int vl, int mode,
3681 					    u64 data)
3682 {
3683 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3684 
3685 	return dd->send_egress_err_status_cnt[6];
3686 }
3687 
3688 static u64 access_tx_incorrect_link_state_err_cnt(
3689 				const struct cntr_entry *entry,
3690 				void *context, int vl, int mode, u64 data)
3691 {
3692 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3693 
3694 	return dd->send_egress_err_status_cnt[5];
3695 }
3696 
3697 static u64 access_tx_linkdown_err_cnt(const struct cntr_entry *entry,
3698 				      void *context, int vl, int mode,
3699 				      u64 data)
3700 {
3701 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3702 
3703 	return dd->send_egress_err_status_cnt[4];
3704 }
3705 
3706 static u64 access_tx_egress_fifi_underrun_or_parity_err_cnt(
3707 				const struct cntr_entry *entry,
3708 				void *context, int vl, int mode, u64 data)
3709 {
3710 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3711 
3712 	return dd->send_egress_err_status_cnt[3];
3713 }
3714 
3715 static u64 access_egress_reserved_2_err_cnt(const struct cntr_entry *entry,
3716 					    void *context, int vl, int mode,
3717 					    u64 data)
3718 {
3719 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3720 
3721 	return dd->send_egress_err_status_cnt[2];
3722 }
3723 
3724 static u64 access_tx_pkt_integrity_mem_unc_err_cnt(
3725 				const struct cntr_entry *entry,
3726 				void *context, int vl, int mode, u64 data)
3727 {
3728 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3729 
3730 	return dd->send_egress_err_status_cnt[1];
3731 }
3732 
3733 static u64 access_tx_pkt_integrity_mem_cor_err_cnt(
3734 				const struct cntr_entry *entry,
3735 				void *context, int vl, int mode, u64 data)
3736 {
3737 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3738 
3739 	return dd->send_egress_err_status_cnt[0];
3740 }
3741 
3742 /*
3743  * Software counters corresponding to each of the
3744  * error status bits within SendErrStatus
3745  */
3746 static u64 access_send_csr_write_bad_addr_err_cnt(
3747 				const struct cntr_entry *entry,
3748 				void *context, int vl, int mode, u64 data)
3749 {
3750 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3751 
3752 	return dd->send_err_status_cnt[2];
3753 }
3754 
3755 static u64 access_send_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
3756 						 void *context, int vl,
3757 						 int mode, u64 data)
3758 {
3759 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3760 
3761 	return dd->send_err_status_cnt[1];
3762 }
3763 
3764 static u64 access_send_csr_parity_cnt(const struct cntr_entry *entry,
3765 				      void *context, int vl, int mode,
3766 				      u64 data)
3767 {
3768 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3769 
3770 	return dd->send_err_status_cnt[0];
3771 }
3772 
3773 /*
3774  * Software counters corresponding to each of the
3775  * error status bits within SendCtxtErrStatus
3776  */
3777 static u64 access_pio_write_out_of_bounds_err_cnt(
3778 				const struct cntr_entry *entry,
3779 				void *context, int vl, int mode, u64 data)
3780 {
3781 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3782 
3783 	return dd->sw_ctxt_err_status_cnt[4];
3784 }
3785 
3786 static u64 access_pio_write_overflow_err_cnt(const struct cntr_entry *entry,
3787 					     void *context, int vl, int mode,
3788 					     u64 data)
3789 {
3790 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3791 
3792 	return dd->sw_ctxt_err_status_cnt[3];
3793 }
3794 
3795 static u64 access_pio_write_crosses_boundary_err_cnt(
3796 				const struct cntr_entry *entry,
3797 				void *context, int vl, int mode, u64 data)
3798 {
3799 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3800 
3801 	return dd->sw_ctxt_err_status_cnt[2];
3802 }
3803 
3804 static u64 access_pio_disallowed_packet_err_cnt(const struct cntr_entry *entry,
3805 						void *context, int vl,
3806 						int mode, u64 data)
3807 {
3808 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3809 
3810 	return dd->sw_ctxt_err_status_cnt[1];
3811 }
3812 
3813 static u64 access_pio_inconsistent_sop_err_cnt(const struct cntr_entry *entry,
3814 					       void *context, int vl, int mode,
3815 					       u64 data)
3816 {
3817 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3818 
3819 	return dd->sw_ctxt_err_status_cnt[0];
3820 }
3821 
3822 /*
3823  * Software counters corresponding to each of the
3824  * error status bits within SendDmaEngErrStatus
3825  */
3826 static u64 access_sdma_header_request_fifo_cor_err_cnt(
3827 				const struct cntr_entry *entry,
3828 				void *context, int vl, int mode, u64 data)
3829 {
3830 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3831 
3832 	return dd->sw_send_dma_eng_err_status_cnt[23];
3833 }
3834 
3835 static u64 access_sdma_header_storage_cor_err_cnt(
3836 				const struct cntr_entry *entry,
3837 				void *context, int vl, int mode, u64 data)
3838 {
3839 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3840 
3841 	return dd->sw_send_dma_eng_err_status_cnt[22];
3842 }
3843 
3844 static u64 access_sdma_packet_tracking_cor_err_cnt(
3845 				const struct cntr_entry *entry,
3846 				void *context, int vl, int mode, u64 data)
3847 {
3848 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3849 
3850 	return dd->sw_send_dma_eng_err_status_cnt[21];
3851 }
3852 
3853 static u64 access_sdma_assembly_cor_err_cnt(const struct cntr_entry *entry,
3854 					    void *context, int vl, int mode,
3855 					    u64 data)
3856 {
3857 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3858 
3859 	return dd->sw_send_dma_eng_err_status_cnt[20];
3860 }
3861 
3862 static u64 access_sdma_desc_table_cor_err_cnt(const struct cntr_entry *entry,
3863 					      void *context, int vl, int mode,
3864 					      u64 data)
3865 {
3866 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3867 
3868 	return dd->sw_send_dma_eng_err_status_cnt[19];
3869 }
3870 
3871 static u64 access_sdma_header_request_fifo_unc_err_cnt(
3872 				const struct cntr_entry *entry,
3873 				void *context, int vl, int mode, u64 data)
3874 {
3875 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3876 
3877 	return dd->sw_send_dma_eng_err_status_cnt[18];
3878 }
3879 
3880 static u64 access_sdma_header_storage_unc_err_cnt(
3881 				const struct cntr_entry *entry,
3882 				void *context, int vl, int mode, u64 data)
3883 {
3884 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3885 
3886 	return dd->sw_send_dma_eng_err_status_cnt[17];
3887 }
3888 
3889 static u64 access_sdma_packet_tracking_unc_err_cnt(
3890 				const struct cntr_entry *entry,
3891 				void *context, int vl, int mode, u64 data)
3892 {
3893 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3894 
3895 	return dd->sw_send_dma_eng_err_status_cnt[16];
3896 }
3897 
3898 static u64 access_sdma_assembly_unc_err_cnt(const struct cntr_entry *entry,
3899 					    void *context, int vl, int mode,
3900 					    u64 data)
3901 {
3902 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3903 
3904 	return dd->sw_send_dma_eng_err_status_cnt[15];
3905 }
3906 
3907 static u64 access_sdma_desc_table_unc_err_cnt(const struct cntr_entry *entry,
3908 					      void *context, int vl, int mode,
3909 					      u64 data)
3910 {
3911 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3912 
3913 	return dd->sw_send_dma_eng_err_status_cnt[14];
3914 }
3915 
3916 static u64 access_sdma_timeout_err_cnt(const struct cntr_entry *entry,
3917 				       void *context, int vl, int mode,
3918 				       u64 data)
3919 {
3920 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3921 
3922 	return dd->sw_send_dma_eng_err_status_cnt[13];
3923 }
3924 
3925 static u64 access_sdma_header_length_err_cnt(const struct cntr_entry *entry,
3926 					     void *context, int vl, int mode,
3927 					     u64 data)
3928 {
3929 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3930 
3931 	return dd->sw_send_dma_eng_err_status_cnt[12];
3932 }
3933 
3934 static u64 access_sdma_header_address_err_cnt(const struct cntr_entry *entry,
3935 					      void *context, int vl, int mode,
3936 					      u64 data)
3937 {
3938 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3939 
3940 	return dd->sw_send_dma_eng_err_status_cnt[11];
3941 }
3942 
3943 static u64 access_sdma_header_select_err_cnt(const struct cntr_entry *entry,
3944 					     void *context, int vl, int mode,
3945 					     u64 data)
3946 {
3947 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3948 
3949 	return dd->sw_send_dma_eng_err_status_cnt[10];
3950 }
3951 
3952 static u64 access_sdma_reserved_9_err_cnt(const struct cntr_entry *entry,
3953 					  void *context, int vl, int mode,
3954 					  u64 data)
3955 {
3956 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3957 
3958 	return dd->sw_send_dma_eng_err_status_cnt[9];
3959 }
3960 
3961 static u64 access_sdma_packet_desc_overflow_err_cnt(
3962 				const struct cntr_entry *entry,
3963 				void *context, int vl, int mode, u64 data)
3964 {
3965 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3966 
3967 	return dd->sw_send_dma_eng_err_status_cnt[8];
3968 }
3969 
3970 static u64 access_sdma_length_mismatch_err_cnt(const struct cntr_entry *entry,
3971 					       void *context, int vl,
3972 					       int mode, u64 data)
3973 {
3974 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3975 
3976 	return dd->sw_send_dma_eng_err_status_cnt[7];
3977 }
3978 
3979 static u64 access_sdma_halt_err_cnt(const struct cntr_entry *entry,
3980 				    void *context, int vl, int mode, u64 data)
3981 {
3982 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3983 
3984 	return dd->sw_send_dma_eng_err_status_cnt[6];
3985 }
3986 
3987 static u64 access_sdma_mem_read_err_cnt(const struct cntr_entry *entry,
3988 					void *context, int vl, int mode,
3989 					u64 data)
3990 {
3991 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3992 
3993 	return dd->sw_send_dma_eng_err_status_cnt[5];
3994 }
3995 
3996 static u64 access_sdma_first_desc_err_cnt(const struct cntr_entry *entry,
3997 					  void *context, int vl, int mode,
3998 					  u64 data)
3999 {
4000 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4001 
4002 	return dd->sw_send_dma_eng_err_status_cnt[4];
4003 }
4004 
4005 static u64 access_sdma_tail_out_of_bounds_err_cnt(
4006 				const struct cntr_entry *entry,
4007 				void *context, int vl, int mode, u64 data)
4008 {
4009 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4010 
4011 	return dd->sw_send_dma_eng_err_status_cnt[3];
4012 }
4013 
4014 static u64 access_sdma_too_long_err_cnt(const struct cntr_entry *entry,
4015 					void *context, int vl, int mode,
4016 					u64 data)
4017 {
4018 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4019 
4020 	return dd->sw_send_dma_eng_err_status_cnt[2];
4021 }
4022 
4023 static u64 access_sdma_gen_mismatch_err_cnt(const struct cntr_entry *entry,
4024 					    void *context, int vl, int mode,
4025 					    u64 data)
4026 {
4027 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4028 
4029 	return dd->sw_send_dma_eng_err_status_cnt[1];
4030 }
4031 
4032 static u64 access_sdma_wrong_dw_err_cnt(const struct cntr_entry *entry,
4033 					void *context, int vl, int mode,
4034 					u64 data)
4035 {
4036 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4037 
4038 	return dd->sw_send_dma_eng_err_status_cnt[0];
4039 }
4040 
4041 static u64 access_dc_rcv_err_cnt(const struct cntr_entry *entry,
4042 				 void *context, int vl, int mode,
4043 				 u64 data)
4044 {
4045 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4046 
4047 	u64 val = 0;
4048 	u64 csr = entry->csr;
4049 
4050 	val = read_write_csr(dd, csr, mode, data);
4051 	if (mode == CNTR_MODE_R) {
4052 		val = val > CNTR_MAX - dd->sw_rcv_bypass_packet_errors ?
4053 			CNTR_MAX : val + dd->sw_rcv_bypass_packet_errors;
4054 	} else if (mode == CNTR_MODE_W) {
4055 		dd->sw_rcv_bypass_packet_errors = 0;
4056 	} else {
4057 		dd_dev_err(dd, "Invalid cntr register access mode");
4058 		return 0;
4059 	}
4060 	return val;
4061 }
4062 
4063 #define def_access_sw_cpu(cntr) \
4064 static u64 access_sw_cpu_##cntr(const struct cntr_entry *entry,		      \
4065 			      void *context, int vl, int mode, u64 data)      \
4066 {									      \
4067 	struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context;	      \
4068 	return read_write_cpu(ppd->dd, &ppd->ibport_data.rvp.z_ ##cntr,	      \
4069 			      ppd->ibport_data.rvp.cntr, vl,		      \
4070 			      mode, data);				      \
4071 }
4072 
4073 def_access_sw_cpu(rc_acks);
4074 def_access_sw_cpu(rc_qacks);
4075 def_access_sw_cpu(rc_delayed_comp);
4076 
4077 #define def_access_ibp_counter(cntr) \
4078 static u64 access_ibp_##cntr(const struct cntr_entry *entry,		      \
4079 				void *context, int vl, int mode, u64 data)    \
4080 {									      \
4081 	struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context;	      \
4082 									      \
4083 	if (vl != CNTR_INVALID_VL)					      \
4084 		return 0;						      \
4085 									      \
4086 	return read_write_sw(ppd->dd, &ppd->ibport_data.rvp.n_ ##cntr,	      \
4087 			     mode, data);				      \
4088 }
4089 
4090 def_access_ibp_counter(loop_pkts);
4091 def_access_ibp_counter(rc_resends);
4092 def_access_ibp_counter(rnr_naks);
4093 def_access_ibp_counter(other_naks);
4094 def_access_ibp_counter(rc_timeouts);
4095 def_access_ibp_counter(pkt_drops);
4096 def_access_ibp_counter(dmawait);
4097 def_access_ibp_counter(rc_seqnak);
4098 def_access_ibp_counter(rc_dupreq);
4099 def_access_ibp_counter(rdma_seq);
4100 def_access_ibp_counter(unaligned);
4101 def_access_ibp_counter(seq_naks);
4102 
4103 static struct cntr_entry dev_cntrs[DEV_CNTR_LAST] = {
4104 [C_RCV_OVF] = RXE32_DEV_CNTR_ELEM(RcvOverflow, RCV_BUF_OVFL_CNT, CNTR_SYNTH),
4105 [C_RX_TID_FULL] = RXE32_DEV_CNTR_ELEM(RxTIDFullEr, RCV_TID_FULL_ERR_CNT,
4106 			CNTR_NORMAL),
4107 [C_RX_TID_INVALID] = RXE32_DEV_CNTR_ELEM(RxTIDInvalid, RCV_TID_VALID_ERR_CNT,
4108 			CNTR_NORMAL),
4109 [C_RX_TID_FLGMS] = RXE32_DEV_CNTR_ELEM(RxTidFLGMs,
4110 			RCV_TID_FLOW_GEN_MISMATCH_CNT,
4111 			CNTR_NORMAL),
4112 [C_RX_CTX_EGRS] = RXE32_DEV_CNTR_ELEM(RxCtxEgrS, RCV_CONTEXT_EGR_STALL,
4113 			CNTR_NORMAL),
4114 [C_RCV_TID_FLSMS] = RXE32_DEV_CNTR_ELEM(RxTidFLSMs,
4115 			RCV_TID_FLOW_SEQ_MISMATCH_CNT, CNTR_NORMAL),
4116 [C_CCE_PCI_CR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePciCrSt,
4117 			CCE_PCIE_POSTED_CRDT_STALL_CNT, CNTR_NORMAL),
4118 [C_CCE_PCI_TR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePciTrSt, CCE_PCIE_TRGT_STALL_CNT,
4119 			CNTR_NORMAL),
4120 [C_CCE_PIO_WR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePioWrSt, CCE_PIO_WR_STALL_CNT,
4121 			CNTR_NORMAL),
4122 [C_CCE_ERR_INT] = CCE_INT_DEV_CNTR_ELEM(CceErrInt, CCE_ERR_INT_CNT,
4123 			CNTR_NORMAL),
4124 [C_CCE_SDMA_INT] = CCE_INT_DEV_CNTR_ELEM(CceSdmaInt, CCE_SDMA_INT_CNT,
4125 			CNTR_NORMAL),
4126 [C_CCE_MISC_INT] = CCE_INT_DEV_CNTR_ELEM(CceMiscInt, CCE_MISC_INT_CNT,
4127 			CNTR_NORMAL),
4128 [C_CCE_RCV_AV_INT] = CCE_INT_DEV_CNTR_ELEM(CceRcvAvInt, CCE_RCV_AVAIL_INT_CNT,
4129 			CNTR_NORMAL),
4130 [C_CCE_RCV_URG_INT] = CCE_INT_DEV_CNTR_ELEM(CceRcvUrgInt,
4131 			CCE_RCV_URGENT_INT_CNT,	CNTR_NORMAL),
4132 [C_CCE_SEND_CR_INT] = CCE_INT_DEV_CNTR_ELEM(CceSndCrInt,
4133 			CCE_SEND_CREDIT_INT_CNT, CNTR_NORMAL),
4134 [C_DC_UNC_ERR] = DC_PERF_CNTR(DcUnctblErr, DCC_ERR_UNCORRECTABLE_CNT,
4135 			      CNTR_SYNTH),
4136 [C_DC_RCV_ERR] = CNTR_ELEM("DcRecvErr", DCC_ERR_PORTRCV_ERR_CNT, 0, CNTR_SYNTH,
4137 			    access_dc_rcv_err_cnt),
4138 [C_DC_FM_CFG_ERR] = DC_PERF_CNTR(DcFmCfgErr, DCC_ERR_FMCONFIG_ERR_CNT,
4139 				 CNTR_SYNTH),
4140 [C_DC_RMT_PHY_ERR] = DC_PERF_CNTR(DcRmtPhyErr, DCC_ERR_RCVREMOTE_PHY_ERR_CNT,
4141 				  CNTR_SYNTH),
4142 [C_DC_DROPPED_PKT] = DC_PERF_CNTR(DcDroppedPkt, DCC_ERR_DROPPED_PKT_CNT,
4143 				  CNTR_SYNTH),
4144 [C_DC_MC_XMIT_PKTS] = DC_PERF_CNTR(DcMcXmitPkts,
4145 				   DCC_PRF_PORT_XMIT_MULTICAST_CNT, CNTR_SYNTH),
4146 [C_DC_MC_RCV_PKTS] = DC_PERF_CNTR(DcMcRcvPkts,
4147 				  DCC_PRF_PORT_RCV_MULTICAST_PKT_CNT,
4148 				  CNTR_SYNTH),
4149 [C_DC_XMIT_CERR] = DC_PERF_CNTR(DcXmitCorr,
4150 				DCC_PRF_PORT_XMIT_CORRECTABLE_CNT, CNTR_SYNTH),
4151 [C_DC_RCV_CERR] = DC_PERF_CNTR(DcRcvCorrCnt, DCC_PRF_PORT_RCV_CORRECTABLE_CNT,
4152 			       CNTR_SYNTH),
4153 [C_DC_RCV_FCC] = DC_PERF_CNTR(DcRxFCntl, DCC_PRF_RX_FLOW_CRTL_CNT,
4154 			      CNTR_SYNTH),
4155 [C_DC_XMIT_FCC] = DC_PERF_CNTR(DcXmitFCntl, DCC_PRF_TX_FLOW_CRTL_CNT,
4156 			       CNTR_SYNTH),
4157 [C_DC_XMIT_FLITS] = DC_PERF_CNTR(DcXmitFlits, DCC_PRF_PORT_XMIT_DATA_CNT,
4158 				 CNTR_SYNTH),
4159 [C_DC_RCV_FLITS] = DC_PERF_CNTR(DcRcvFlits, DCC_PRF_PORT_RCV_DATA_CNT,
4160 				CNTR_SYNTH),
4161 [C_DC_XMIT_PKTS] = DC_PERF_CNTR(DcXmitPkts, DCC_PRF_PORT_XMIT_PKTS_CNT,
4162 				CNTR_SYNTH),
4163 [C_DC_RCV_PKTS] = DC_PERF_CNTR(DcRcvPkts, DCC_PRF_PORT_RCV_PKTS_CNT,
4164 			       CNTR_SYNTH),
4165 [C_DC_RX_FLIT_VL] = DC_PERF_CNTR(DcRxFlitVl, DCC_PRF_PORT_VL_RCV_DATA_CNT,
4166 				 CNTR_SYNTH | CNTR_VL),
4167 [C_DC_RX_PKT_VL] = DC_PERF_CNTR(DcRxPktVl, DCC_PRF_PORT_VL_RCV_PKTS_CNT,
4168 				CNTR_SYNTH | CNTR_VL),
4169 [C_DC_RCV_FCN] = DC_PERF_CNTR(DcRcvFcn, DCC_PRF_PORT_RCV_FECN_CNT, CNTR_SYNTH),
4170 [C_DC_RCV_FCN_VL] = DC_PERF_CNTR(DcRcvFcnVl, DCC_PRF_PORT_VL_RCV_FECN_CNT,
4171 				 CNTR_SYNTH | CNTR_VL),
4172 [C_DC_RCV_BCN] = DC_PERF_CNTR(DcRcvBcn, DCC_PRF_PORT_RCV_BECN_CNT, CNTR_SYNTH),
4173 [C_DC_RCV_BCN_VL] = DC_PERF_CNTR(DcRcvBcnVl, DCC_PRF_PORT_VL_RCV_BECN_CNT,
4174 				 CNTR_SYNTH | CNTR_VL),
4175 [C_DC_RCV_BBL] = DC_PERF_CNTR(DcRcvBbl, DCC_PRF_PORT_RCV_BUBBLE_CNT,
4176 			      CNTR_SYNTH),
4177 [C_DC_RCV_BBL_VL] = DC_PERF_CNTR(DcRcvBblVl, DCC_PRF_PORT_VL_RCV_BUBBLE_CNT,
4178 				 CNTR_SYNTH | CNTR_VL),
4179 [C_DC_MARK_FECN] = DC_PERF_CNTR(DcMarkFcn, DCC_PRF_PORT_MARK_FECN_CNT,
4180 				CNTR_SYNTH),
4181 [C_DC_MARK_FECN_VL] = DC_PERF_CNTR(DcMarkFcnVl, DCC_PRF_PORT_VL_MARK_FECN_CNT,
4182 				   CNTR_SYNTH | CNTR_VL),
4183 [C_DC_TOTAL_CRC] =
4184 	DC_PERF_CNTR_LCB(DcTotCrc, DC_LCB_ERR_INFO_TOTAL_CRC_ERR,
4185 			 CNTR_SYNTH),
4186 [C_DC_CRC_LN0] = DC_PERF_CNTR_LCB(DcCrcLn0, DC_LCB_ERR_INFO_CRC_ERR_LN0,
4187 				  CNTR_SYNTH),
4188 [C_DC_CRC_LN1] = DC_PERF_CNTR_LCB(DcCrcLn1, DC_LCB_ERR_INFO_CRC_ERR_LN1,
4189 				  CNTR_SYNTH),
4190 [C_DC_CRC_LN2] = DC_PERF_CNTR_LCB(DcCrcLn2, DC_LCB_ERR_INFO_CRC_ERR_LN2,
4191 				  CNTR_SYNTH),
4192 [C_DC_CRC_LN3] = DC_PERF_CNTR_LCB(DcCrcLn3, DC_LCB_ERR_INFO_CRC_ERR_LN3,
4193 				  CNTR_SYNTH),
4194 [C_DC_CRC_MULT_LN] =
4195 	DC_PERF_CNTR_LCB(DcMultLn, DC_LCB_ERR_INFO_CRC_ERR_MULTI_LN,
4196 			 CNTR_SYNTH),
4197 [C_DC_TX_REPLAY] = DC_PERF_CNTR_LCB(DcTxReplay, DC_LCB_ERR_INFO_TX_REPLAY_CNT,
4198 				    CNTR_SYNTH),
4199 [C_DC_RX_REPLAY] = DC_PERF_CNTR_LCB(DcRxReplay, DC_LCB_ERR_INFO_RX_REPLAY_CNT,
4200 				    CNTR_SYNTH),
4201 [C_DC_SEQ_CRC_CNT] =
4202 	DC_PERF_CNTR_LCB(DcLinkSeqCrc, DC_LCB_ERR_INFO_SEQ_CRC_CNT,
4203 			 CNTR_SYNTH),
4204 [C_DC_ESC0_ONLY_CNT] =
4205 	DC_PERF_CNTR_LCB(DcEsc0, DC_LCB_ERR_INFO_ESCAPE_0_ONLY_CNT,
4206 			 CNTR_SYNTH),
4207 [C_DC_ESC0_PLUS1_CNT] =
4208 	DC_PERF_CNTR_LCB(DcEsc1, DC_LCB_ERR_INFO_ESCAPE_0_PLUS1_CNT,
4209 			 CNTR_SYNTH),
4210 [C_DC_ESC0_PLUS2_CNT] =
4211 	DC_PERF_CNTR_LCB(DcEsc0Plus2, DC_LCB_ERR_INFO_ESCAPE_0_PLUS2_CNT,
4212 			 CNTR_SYNTH),
4213 [C_DC_REINIT_FROM_PEER_CNT] =
4214 	DC_PERF_CNTR_LCB(DcReinitPeer, DC_LCB_ERR_INFO_REINIT_FROM_PEER_CNT,
4215 			 CNTR_SYNTH),
4216 [C_DC_SBE_CNT] = DC_PERF_CNTR_LCB(DcSbe, DC_LCB_ERR_INFO_SBE_CNT,
4217 				  CNTR_SYNTH),
4218 [C_DC_MISC_FLG_CNT] =
4219 	DC_PERF_CNTR_LCB(DcMiscFlg, DC_LCB_ERR_INFO_MISC_FLG_CNT,
4220 			 CNTR_SYNTH),
4221 [C_DC_PRF_GOOD_LTP_CNT] =
4222 	DC_PERF_CNTR_LCB(DcGoodLTP, DC_LCB_PRF_GOOD_LTP_CNT, CNTR_SYNTH),
4223 [C_DC_PRF_ACCEPTED_LTP_CNT] =
4224 	DC_PERF_CNTR_LCB(DcAccLTP, DC_LCB_PRF_ACCEPTED_LTP_CNT,
4225 			 CNTR_SYNTH),
4226 [C_DC_PRF_RX_FLIT_CNT] =
4227 	DC_PERF_CNTR_LCB(DcPrfRxFlit, DC_LCB_PRF_RX_FLIT_CNT, CNTR_SYNTH),
4228 [C_DC_PRF_TX_FLIT_CNT] =
4229 	DC_PERF_CNTR_LCB(DcPrfTxFlit, DC_LCB_PRF_TX_FLIT_CNT, CNTR_SYNTH),
4230 [C_DC_PRF_CLK_CNTR] =
4231 	DC_PERF_CNTR_LCB(DcPrfClk, DC_LCB_PRF_CLK_CNTR, CNTR_SYNTH),
4232 [C_DC_PG_DBG_FLIT_CRDTS_CNT] =
4233 	DC_PERF_CNTR_LCB(DcFltCrdts, DC_LCB_PG_DBG_FLIT_CRDTS_CNT, CNTR_SYNTH),
4234 [C_DC_PG_STS_PAUSE_COMPLETE_CNT] =
4235 	DC_PERF_CNTR_LCB(DcPauseComp, DC_LCB_PG_STS_PAUSE_COMPLETE_CNT,
4236 			 CNTR_SYNTH),
4237 [C_DC_PG_STS_TX_SBE_CNT] =
4238 	DC_PERF_CNTR_LCB(DcStsTxSbe, DC_LCB_PG_STS_TX_SBE_CNT, CNTR_SYNTH),
4239 [C_DC_PG_STS_TX_MBE_CNT] =
4240 	DC_PERF_CNTR_LCB(DcStsTxMbe, DC_LCB_PG_STS_TX_MBE_CNT,
4241 			 CNTR_SYNTH),
4242 [C_SW_CPU_INTR] = CNTR_ELEM("Intr", 0, 0, CNTR_NORMAL,
4243 			    access_sw_cpu_intr),
4244 [C_SW_CPU_RCV_LIM] = CNTR_ELEM("RcvLimit", 0, 0, CNTR_NORMAL,
4245 			    access_sw_cpu_rcv_limit),
4246 [C_SW_VTX_WAIT] = CNTR_ELEM("vTxWait", 0, 0, CNTR_NORMAL,
4247 			    access_sw_vtx_wait),
4248 [C_SW_PIO_WAIT] = CNTR_ELEM("PioWait", 0, 0, CNTR_NORMAL,
4249 			    access_sw_pio_wait),
4250 [C_SW_PIO_DRAIN] = CNTR_ELEM("PioDrain", 0, 0, CNTR_NORMAL,
4251 			    access_sw_pio_drain),
4252 [C_SW_KMEM_WAIT] = CNTR_ELEM("KmemWait", 0, 0, CNTR_NORMAL,
4253 			    access_sw_kmem_wait),
4254 [C_SW_SEND_SCHED] = CNTR_ELEM("SendSched", 0, 0, CNTR_NORMAL,
4255 			    access_sw_send_schedule),
4256 [C_SDMA_DESC_FETCHED_CNT] = CNTR_ELEM("SDEDscFdCn",
4257 				      SEND_DMA_DESC_FETCHED_CNT, 0,
4258 				      CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4259 				      dev_access_u32_csr),
4260 [C_SDMA_INT_CNT] = CNTR_ELEM("SDMAInt", 0, 0,
4261 			     CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4262 			     access_sde_int_cnt),
4263 [C_SDMA_ERR_CNT] = CNTR_ELEM("SDMAErrCt", 0, 0,
4264 			     CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4265 			     access_sde_err_cnt),
4266 [C_SDMA_IDLE_INT_CNT] = CNTR_ELEM("SDMAIdInt", 0, 0,
4267 				  CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4268 				  access_sde_idle_int_cnt),
4269 [C_SDMA_PROGRESS_INT_CNT] = CNTR_ELEM("SDMAPrIntCn", 0, 0,
4270 				      CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4271 				      access_sde_progress_int_cnt),
4272 /* MISC_ERR_STATUS */
4273 [C_MISC_PLL_LOCK_FAIL_ERR] = CNTR_ELEM("MISC_PLL_LOCK_FAIL_ERR", 0, 0,
4274 				CNTR_NORMAL,
4275 				access_misc_pll_lock_fail_err_cnt),
4276 [C_MISC_MBIST_FAIL_ERR] = CNTR_ELEM("MISC_MBIST_FAIL_ERR", 0, 0,
4277 				CNTR_NORMAL,
4278 				access_misc_mbist_fail_err_cnt),
4279 [C_MISC_INVALID_EEP_CMD_ERR] = CNTR_ELEM("MISC_INVALID_EEP_CMD_ERR", 0, 0,
4280 				CNTR_NORMAL,
4281 				access_misc_invalid_eep_cmd_err_cnt),
4282 [C_MISC_EFUSE_DONE_PARITY_ERR] = CNTR_ELEM("MISC_EFUSE_DONE_PARITY_ERR", 0, 0,
4283 				CNTR_NORMAL,
4284 				access_misc_efuse_done_parity_err_cnt),
4285 [C_MISC_EFUSE_WRITE_ERR] = CNTR_ELEM("MISC_EFUSE_WRITE_ERR", 0, 0,
4286 				CNTR_NORMAL,
4287 				access_misc_efuse_write_err_cnt),
4288 [C_MISC_EFUSE_READ_BAD_ADDR_ERR] = CNTR_ELEM("MISC_EFUSE_READ_BAD_ADDR_ERR", 0,
4289 				0, CNTR_NORMAL,
4290 				access_misc_efuse_read_bad_addr_err_cnt),
4291 [C_MISC_EFUSE_CSR_PARITY_ERR] = CNTR_ELEM("MISC_EFUSE_CSR_PARITY_ERR", 0, 0,
4292 				CNTR_NORMAL,
4293 				access_misc_efuse_csr_parity_err_cnt),
4294 [C_MISC_FW_AUTH_FAILED_ERR] = CNTR_ELEM("MISC_FW_AUTH_FAILED_ERR", 0, 0,
4295 				CNTR_NORMAL,
4296 				access_misc_fw_auth_failed_err_cnt),
4297 [C_MISC_KEY_MISMATCH_ERR] = CNTR_ELEM("MISC_KEY_MISMATCH_ERR", 0, 0,
4298 				CNTR_NORMAL,
4299 				access_misc_key_mismatch_err_cnt),
4300 [C_MISC_SBUS_WRITE_FAILED_ERR] = CNTR_ELEM("MISC_SBUS_WRITE_FAILED_ERR", 0, 0,
4301 				CNTR_NORMAL,
4302 				access_misc_sbus_write_failed_err_cnt),
4303 [C_MISC_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("MISC_CSR_WRITE_BAD_ADDR_ERR", 0, 0,
4304 				CNTR_NORMAL,
4305 				access_misc_csr_write_bad_addr_err_cnt),
4306 [C_MISC_CSR_READ_BAD_ADDR_ERR] = CNTR_ELEM("MISC_CSR_READ_BAD_ADDR_ERR", 0, 0,
4307 				CNTR_NORMAL,
4308 				access_misc_csr_read_bad_addr_err_cnt),
4309 [C_MISC_CSR_PARITY_ERR] = CNTR_ELEM("MISC_CSR_PARITY_ERR", 0, 0,
4310 				CNTR_NORMAL,
4311 				access_misc_csr_parity_err_cnt),
4312 /* CceErrStatus */
4313 [C_CCE_ERR_STATUS_AGGREGATED_CNT] = CNTR_ELEM("CceErrStatusAggregatedCnt", 0, 0,
4314 				CNTR_NORMAL,
4315 				access_sw_cce_err_status_aggregated_cnt),
4316 [C_CCE_MSIX_CSR_PARITY_ERR] = CNTR_ELEM("CceMsixCsrParityErr", 0, 0,
4317 				CNTR_NORMAL,
4318 				access_cce_msix_csr_parity_err_cnt),
4319 [C_CCE_INT_MAP_UNC_ERR] = CNTR_ELEM("CceIntMapUncErr", 0, 0,
4320 				CNTR_NORMAL,
4321 				access_cce_int_map_unc_err_cnt),
4322 [C_CCE_INT_MAP_COR_ERR] = CNTR_ELEM("CceIntMapCorErr", 0, 0,
4323 				CNTR_NORMAL,
4324 				access_cce_int_map_cor_err_cnt),
4325 [C_CCE_MSIX_TABLE_UNC_ERR] = CNTR_ELEM("CceMsixTableUncErr", 0, 0,
4326 				CNTR_NORMAL,
4327 				access_cce_msix_table_unc_err_cnt),
4328 [C_CCE_MSIX_TABLE_COR_ERR] = CNTR_ELEM("CceMsixTableCorErr", 0, 0,
4329 				CNTR_NORMAL,
4330 				access_cce_msix_table_cor_err_cnt),
4331 [C_CCE_RXDMA_CONV_FIFO_PARITY_ERR] = CNTR_ELEM("CceRxdmaConvFifoParityErr", 0,
4332 				0, CNTR_NORMAL,
4333 				access_cce_rxdma_conv_fifo_parity_err_cnt),
4334 [C_CCE_RCPL_ASYNC_FIFO_PARITY_ERR] = CNTR_ELEM("CceRcplAsyncFifoParityErr", 0,
4335 				0, CNTR_NORMAL,
4336 				access_cce_rcpl_async_fifo_parity_err_cnt),
4337 [C_CCE_SEG_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("CceSegWriteBadAddrErr", 0, 0,
4338 				CNTR_NORMAL,
4339 				access_cce_seg_write_bad_addr_err_cnt),
4340 [C_CCE_SEG_READ_BAD_ADDR_ERR] = CNTR_ELEM("CceSegReadBadAddrErr", 0, 0,
4341 				CNTR_NORMAL,
4342 				access_cce_seg_read_bad_addr_err_cnt),
4343 [C_LA_TRIGGERED] = CNTR_ELEM("Cce LATriggered", 0, 0,
4344 				CNTR_NORMAL,
4345 				access_la_triggered_cnt),
4346 [C_CCE_TRGT_CPL_TIMEOUT_ERR] = CNTR_ELEM("CceTrgtCplTimeoutErr", 0, 0,
4347 				CNTR_NORMAL,
4348 				access_cce_trgt_cpl_timeout_err_cnt),
4349 [C_PCIC_RECEIVE_PARITY_ERR] = CNTR_ELEM("PcicReceiveParityErr", 0, 0,
4350 				CNTR_NORMAL,
4351 				access_pcic_receive_parity_err_cnt),
4352 [C_PCIC_TRANSMIT_BACK_PARITY_ERR] = CNTR_ELEM("PcicTransmitBackParityErr", 0, 0,
4353 				CNTR_NORMAL,
4354 				access_pcic_transmit_back_parity_err_cnt),
4355 [C_PCIC_TRANSMIT_FRONT_PARITY_ERR] = CNTR_ELEM("PcicTransmitFrontParityErr", 0,
4356 				0, CNTR_NORMAL,
4357 				access_pcic_transmit_front_parity_err_cnt),
4358 [C_PCIC_CPL_DAT_Q_UNC_ERR] = CNTR_ELEM("PcicCplDatQUncErr", 0, 0,
4359 				CNTR_NORMAL,
4360 				access_pcic_cpl_dat_q_unc_err_cnt),
4361 [C_PCIC_CPL_HD_Q_UNC_ERR] = CNTR_ELEM("PcicCplHdQUncErr", 0, 0,
4362 				CNTR_NORMAL,
4363 				access_pcic_cpl_hd_q_unc_err_cnt),
4364 [C_PCIC_POST_DAT_Q_UNC_ERR] = CNTR_ELEM("PcicPostDatQUncErr", 0, 0,
4365 				CNTR_NORMAL,
4366 				access_pcic_post_dat_q_unc_err_cnt),
4367 [C_PCIC_POST_HD_Q_UNC_ERR] = CNTR_ELEM("PcicPostHdQUncErr", 0, 0,
4368 				CNTR_NORMAL,
4369 				access_pcic_post_hd_q_unc_err_cnt),
4370 [C_PCIC_RETRY_SOT_MEM_UNC_ERR] = CNTR_ELEM("PcicRetrySotMemUncErr", 0, 0,
4371 				CNTR_NORMAL,
4372 				access_pcic_retry_sot_mem_unc_err_cnt),
4373 [C_PCIC_RETRY_MEM_UNC_ERR] = CNTR_ELEM("PcicRetryMemUncErr", 0, 0,
4374 				CNTR_NORMAL,
4375 				access_pcic_retry_mem_unc_err),
4376 [C_PCIC_N_POST_DAT_Q_PARITY_ERR] = CNTR_ELEM("PcicNPostDatQParityErr", 0, 0,
4377 				CNTR_NORMAL,
4378 				access_pcic_n_post_dat_q_parity_err_cnt),
4379 [C_PCIC_N_POST_H_Q_PARITY_ERR] = CNTR_ELEM("PcicNPostHQParityErr", 0, 0,
4380 				CNTR_NORMAL,
4381 				access_pcic_n_post_h_q_parity_err_cnt),
4382 [C_PCIC_CPL_DAT_Q_COR_ERR] = CNTR_ELEM("PcicCplDatQCorErr", 0, 0,
4383 				CNTR_NORMAL,
4384 				access_pcic_cpl_dat_q_cor_err_cnt),
4385 [C_PCIC_CPL_HD_Q_COR_ERR] = CNTR_ELEM("PcicCplHdQCorErr", 0, 0,
4386 				CNTR_NORMAL,
4387 				access_pcic_cpl_hd_q_cor_err_cnt),
4388 [C_PCIC_POST_DAT_Q_COR_ERR] = CNTR_ELEM("PcicPostDatQCorErr", 0, 0,
4389 				CNTR_NORMAL,
4390 				access_pcic_post_dat_q_cor_err_cnt),
4391 [C_PCIC_POST_HD_Q_COR_ERR] = CNTR_ELEM("PcicPostHdQCorErr", 0, 0,
4392 				CNTR_NORMAL,
4393 				access_pcic_post_hd_q_cor_err_cnt),
4394 [C_PCIC_RETRY_SOT_MEM_COR_ERR] = CNTR_ELEM("PcicRetrySotMemCorErr", 0, 0,
4395 				CNTR_NORMAL,
4396 				access_pcic_retry_sot_mem_cor_err_cnt),
4397 [C_PCIC_RETRY_MEM_COR_ERR] = CNTR_ELEM("PcicRetryMemCorErr", 0, 0,
4398 				CNTR_NORMAL,
4399 				access_pcic_retry_mem_cor_err_cnt),
4400 [C_CCE_CLI1_ASYNC_FIFO_DBG_PARITY_ERR] = CNTR_ELEM(
4401 				"CceCli1AsyncFifoDbgParityError", 0, 0,
4402 				CNTR_NORMAL,
4403 				access_cce_cli1_async_fifo_dbg_parity_err_cnt),
4404 [C_CCE_CLI1_ASYNC_FIFO_RXDMA_PARITY_ERR] = CNTR_ELEM(
4405 				"CceCli1AsyncFifoRxdmaParityError", 0, 0,
4406 				CNTR_NORMAL,
4407 				access_cce_cli1_async_fifo_rxdma_parity_err_cnt
4408 				),
4409 [C_CCE_CLI1_ASYNC_FIFO_SDMA_HD_PARITY_ERR] = CNTR_ELEM(
4410 			"CceCli1AsyncFifoSdmaHdParityErr", 0, 0,
4411 			CNTR_NORMAL,
4412 			access_cce_cli1_async_fifo_sdma_hd_parity_err_cnt),
4413 [C_CCE_CLI1_ASYNC_FIFO_PIO_CRDT_PARITY_ERR] = CNTR_ELEM(
4414 			"CceCli1AsyncFifoPioCrdtParityErr", 0, 0,
4415 			CNTR_NORMAL,
4416 			access_cce_cl1_async_fifo_pio_crdt_parity_err_cnt),
4417 [C_CCE_CLI2_ASYNC_FIFO_PARITY_ERR] = CNTR_ELEM("CceCli2AsyncFifoParityErr", 0,
4418 			0, CNTR_NORMAL,
4419 			access_cce_cli2_async_fifo_parity_err_cnt),
4420 [C_CCE_CSR_CFG_BUS_PARITY_ERR] = CNTR_ELEM("CceCsrCfgBusParityErr", 0, 0,
4421 			CNTR_NORMAL,
4422 			access_cce_csr_cfg_bus_parity_err_cnt),
4423 [C_CCE_CLI0_ASYNC_FIFO_PARTIY_ERR] = CNTR_ELEM("CceCli0AsyncFifoParityErr", 0,
4424 			0, CNTR_NORMAL,
4425 			access_cce_cli0_async_fifo_parity_err_cnt),
4426 [C_CCE_RSPD_DATA_PARITY_ERR] = CNTR_ELEM("CceRspdDataParityErr", 0, 0,
4427 			CNTR_NORMAL,
4428 			access_cce_rspd_data_parity_err_cnt),
4429 [C_CCE_TRGT_ACCESS_ERR] = CNTR_ELEM("CceTrgtAccessErr", 0, 0,
4430 			CNTR_NORMAL,
4431 			access_cce_trgt_access_err_cnt),
4432 [C_CCE_TRGT_ASYNC_FIFO_PARITY_ERR] = CNTR_ELEM("CceTrgtAsyncFifoParityErr", 0,
4433 			0, CNTR_NORMAL,
4434 			access_cce_trgt_async_fifo_parity_err_cnt),
4435 [C_CCE_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("CceCsrWriteBadAddrErr", 0, 0,
4436 			CNTR_NORMAL,
4437 			access_cce_csr_write_bad_addr_err_cnt),
4438 [C_CCE_CSR_READ_BAD_ADDR_ERR] = CNTR_ELEM("CceCsrReadBadAddrErr", 0, 0,
4439 			CNTR_NORMAL,
4440 			access_cce_csr_read_bad_addr_err_cnt),
4441 [C_CCE_CSR_PARITY_ERR] = CNTR_ELEM("CceCsrParityErr", 0, 0,
4442 			CNTR_NORMAL,
4443 			access_ccs_csr_parity_err_cnt),
4444 
4445 /* RcvErrStatus */
4446 [C_RX_CSR_PARITY_ERR] = CNTR_ELEM("RxCsrParityErr", 0, 0,
4447 			CNTR_NORMAL,
4448 			access_rx_csr_parity_err_cnt),
4449 [C_RX_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("RxCsrWriteBadAddrErr", 0, 0,
4450 			CNTR_NORMAL,
4451 			access_rx_csr_write_bad_addr_err_cnt),
4452 [C_RX_CSR_READ_BAD_ADDR_ERR] = CNTR_ELEM("RxCsrReadBadAddrErr", 0, 0,
4453 			CNTR_NORMAL,
4454 			access_rx_csr_read_bad_addr_err_cnt),
4455 [C_RX_DMA_CSR_UNC_ERR] = CNTR_ELEM("RxDmaCsrUncErr", 0, 0,
4456 			CNTR_NORMAL,
4457 			access_rx_dma_csr_unc_err_cnt),
4458 [C_RX_DMA_DQ_FSM_ENCODING_ERR] = CNTR_ELEM("RxDmaDqFsmEncodingErr", 0, 0,
4459 			CNTR_NORMAL,
4460 			access_rx_dma_dq_fsm_encoding_err_cnt),
4461 [C_RX_DMA_EQ_FSM_ENCODING_ERR] = CNTR_ELEM("RxDmaEqFsmEncodingErr", 0, 0,
4462 			CNTR_NORMAL,
4463 			access_rx_dma_eq_fsm_encoding_err_cnt),
4464 [C_RX_DMA_CSR_PARITY_ERR] = CNTR_ELEM("RxDmaCsrParityErr", 0, 0,
4465 			CNTR_NORMAL,
4466 			access_rx_dma_csr_parity_err_cnt),
4467 [C_RX_RBUF_DATA_COR_ERR] = CNTR_ELEM("RxRbufDataCorErr", 0, 0,
4468 			CNTR_NORMAL,
4469 			access_rx_rbuf_data_cor_err_cnt),
4470 [C_RX_RBUF_DATA_UNC_ERR] = CNTR_ELEM("RxRbufDataUncErr", 0, 0,
4471 			CNTR_NORMAL,
4472 			access_rx_rbuf_data_unc_err_cnt),
4473 [C_RX_DMA_DATA_FIFO_RD_COR_ERR] = CNTR_ELEM("RxDmaDataFifoRdCorErr", 0, 0,
4474 			CNTR_NORMAL,
4475 			access_rx_dma_data_fifo_rd_cor_err_cnt),
4476 [C_RX_DMA_DATA_FIFO_RD_UNC_ERR] = CNTR_ELEM("RxDmaDataFifoRdUncErr", 0, 0,
4477 			CNTR_NORMAL,
4478 			access_rx_dma_data_fifo_rd_unc_err_cnt),
4479 [C_RX_DMA_HDR_FIFO_RD_COR_ERR] = CNTR_ELEM("RxDmaHdrFifoRdCorErr", 0, 0,
4480 			CNTR_NORMAL,
4481 			access_rx_dma_hdr_fifo_rd_cor_err_cnt),
4482 [C_RX_DMA_HDR_FIFO_RD_UNC_ERR] = CNTR_ELEM("RxDmaHdrFifoRdUncErr", 0, 0,
4483 			CNTR_NORMAL,
4484 			access_rx_dma_hdr_fifo_rd_unc_err_cnt),
4485 [C_RX_RBUF_DESC_PART2_COR_ERR] = CNTR_ELEM("RxRbufDescPart2CorErr", 0, 0,
4486 			CNTR_NORMAL,
4487 			access_rx_rbuf_desc_part2_cor_err_cnt),
4488 [C_RX_RBUF_DESC_PART2_UNC_ERR] = CNTR_ELEM("RxRbufDescPart2UncErr", 0, 0,
4489 			CNTR_NORMAL,
4490 			access_rx_rbuf_desc_part2_unc_err_cnt),
4491 [C_RX_RBUF_DESC_PART1_COR_ERR] = CNTR_ELEM("RxRbufDescPart1CorErr", 0, 0,
4492 			CNTR_NORMAL,
4493 			access_rx_rbuf_desc_part1_cor_err_cnt),
4494 [C_RX_RBUF_DESC_PART1_UNC_ERR] = CNTR_ELEM("RxRbufDescPart1UncErr", 0, 0,
4495 			CNTR_NORMAL,
4496 			access_rx_rbuf_desc_part1_unc_err_cnt),
4497 [C_RX_HQ_INTR_FSM_ERR] = CNTR_ELEM("RxHqIntrFsmErr", 0, 0,
4498 			CNTR_NORMAL,
4499 			access_rx_hq_intr_fsm_err_cnt),
4500 [C_RX_HQ_INTR_CSR_PARITY_ERR] = CNTR_ELEM("RxHqIntrCsrParityErr", 0, 0,
4501 			CNTR_NORMAL,
4502 			access_rx_hq_intr_csr_parity_err_cnt),
4503 [C_RX_LOOKUP_CSR_PARITY_ERR] = CNTR_ELEM("RxLookupCsrParityErr", 0, 0,
4504 			CNTR_NORMAL,
4505 			access_rx_lookup_csr_parity_err_cnt),
4506 [C_RX_LOOKUP_RCV_ARRAY_COR_ERR] = CNTR_ELEM("RxLookupRcvArrayCorErr", 0, 0,
4507 			CNTR_NORMAL,
4508 			access_rx_lookup_rcv_array_cor_err_cnt),
4509 [C_RX_LOOKUP_RCV_ARRAY_UNC_ERR] = CNTR_ELEM("RxLookupRcvArrayUncErr", 0, 0,
4510 			CNTR_NORMAL,
4511 			access_rx_lookup_rcv_array_unc_err_cnt),
4512 [C_RX_LOOKUP_DES_PART2_PARITY_ERR] = CNTR_ELEM("RxLookupDesPart2ParityErr", 0,
4513 			0, CNTR_NORMAL,
4514 			access_rx_lookup_des_part2_parity_err_cnt),
4515 [C_RX_LOOKUP_DES_PART1_UNC_COR_ERR] = CNTR_ELEM("RxLookupDesPart1UncCorErr", 0,
4516 			0, CNTR_NORMAL,
4517 			access_rx_lookup_des_part1_unc_cor_err_cnt),
4518 [C_RX_LOOKUP_DES_PART1_UNC_ERR] = CNTR_ELEM("RxLookupDesPart1UncErr", 0, 0,
4519 			CNTR_NORMAL,
4520 			access_rx_lookup_des_part1_unc_err_cnt),
4521 [C_RX_RBUF_NEXT_FREE_BUF_COR_ERR] = CNTR_ELEM("RxRbufNextFreeBufCorErr", 0, 0,
4522 			CNTR_NORMAL,
4523 			access_rx_rbuf_next_free_buf_cor_err_cnt),
4524 [C_RX_RBUF_NEXT_FREE_BUF_UNC_ERR] = CNTR_ELEM("RxRbufNextFreeBufUncErr", 0, 0,
4525 			CNTR_NORMAL,
4526 			access_rx_rbuf_next_free_buf_unc_err_cnt),
4527 [C_RX_RBUF_FL_INIT_WR_ADDR_PARITY_ERR] = CNTR_ELEM(
4528 			"RxRbufFlInitWrAddrParityErr", 0, 0,
4529 			CNTR_NORMAL,
4530 			access_rbuf_fl_init_wr_addr_parity_err_cnt),
4531 [C_RX_RBUF_FL_INITDONE_PARITY_ERR] = CNTR_ELEM("RxRbufFlInitdoneParityErr", 0,
4532 			0, CNTR_NORMAL,
4533 			access_rx_rbuf_fl_initdone_parity_err_cnt),
4534 [C_RX_RBUF_FL_WRITE_ADDR_PARITY_ERR] = CNTR_ELEM("RxRbufFlWrAddrParityErr", 0,
4535 			0, CNTR_NORMAL,
4536 			access_rx_rbuf_fl_write_addr_parity_err_cnt),
4537 [C_RX_RBUF_FL_RD_ADDR_PARITY_ERR] = CNTR_ELEM("RxRbufFlRdAddrParityErr", 0, 0,
4538 			CNTR_NORMAL,
4539 			access_rx_rbuf_fl_rd_addr_parity_err_cnt),
4540 [C_RX_RBUF_EMPTY_ERR] = CNTR_ELEM("RxRbufEmptyErr", 0, 0,
4541 			CNTR_NORMAL,
4542 			access_rx_rbuf_empty_err_cnt),
4543 [C_RX_RBUF_FULL_ERR] = CNTR_ELEM("RxRbufFullErr", 0, 0,
4544 			CNTR_NORMAL,
4545 			access_rx_rbuf_full_err_cnt),
4546 [C_RX_RBUF_BAD_LOOKUP_ERR] = CNTR_ELEM("RxRBufBadLookupErr", 0, 0,
4547 			CNTR_NORMAL,
4548 			access_rbuf_bad_lookup_err_cnt),
4549 [C_RX_RBUF_CTX_ID_PARITY_ERR] = CNTR_ELEM("RxRbufCtxIdParityErr", 0, 0,
4550 			CNTR_NORMAL,
4551 			access_rbuf_ctx_id_parity_err_cnt),
4552 [C_RX_RBUF_CSR_QEOPDW_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQEOPDWParityErr", 0, 0,
4553 			CNTR_NORMAL,
4554 			access_rbuf_csr_qeopdw_parity_err_cnt),
4555 [C_RX_RBUF_CSR_Q_NUM_OF_PKT_PARITY_ERR] = CNTR_ELEM(
4556 			"RxRbufCsrQNumOfPktParityErr", 0, 0,
4557 			CNTR_NORMAL,
4558 			access_rx_rbuf_csr_q_num_of_pkt_parity_err_cnt),
4559 [C_RX_RBUF_CSR_Q_T1_PTR_PARITY_ERR] = CNTR_ELEM(
4560 			"RxRbufCsrQTlPtrParityErr", 0, 0,
4561 			CNTR_NORMAL,
4562 			access_rx_rbuf_csr_q_t1_ptr_parity_err_cnt),
4563 [C_RX_RBUF_CSR_Q_HD_PTR_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQHdPtrParityErr", 0,
4564 			0, CNTR_NORMAL,
4565 			access_rx_rbuf_csr_q_hd_ptr_parity_err_cnt),
4566 [C_RX_RBUF_CSR_Q_VLD_BIT_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQVldBitParityErr", 0,
4567 			0, CNTR_NORMAL,
4568 			access_rx_rbuf_csr_q_vld_bit_parity_err_cnt),
4569 [C_RX_RBUF_CSR_Q_NEXT_BUF_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQNextBufParityErr",
4570 			0, 0, CNTR_NORMAL,
4571 			access_rx_rbuf_csr_q_next_buf_parity_err_cnt),
4572 [C_RX_RBUF_CSR_Q_ENT_CNT_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQEntCntParityErr", 0,
4573 			0, CNTR_NORMAL,
4574 			access_rx_rbuf_csr_q_ent_cnt_parity_err_cnt),
4575 [C_RX_RBUF_CSR_Q_HEAD_BUF_NUM_PARITY_ERR] = CNTR_ELEM(
4576 			"RxRbufCsrQHeadBufNumParityErr", 0, 0,
4577 			CNTR_NORMAL,
4578 			access_rx_rbuf_csr_q_head_buf_num_parity_err_cnt),
4579 [C_RX_RBUF_BLOCK_LIST_READ_COR_ERR] = CNTR_ELEM("RxRbufBlockListReadCorErr", 0,
4580 			0, CNTR_NORMAL,
4581 			access_rx_rbuf_block_list_read_cor_err_cnt),
4582 [C_RX_RBUF_BLOCK_LIST_READ_UNC_ERR] = CNTR_ELEM("RxRbufBlockListReadUncErr", 0,
4583 			0, CNTR_NORMAL,
4584 			access_rx_rbuf_block_list_read_unc_err_cnt),
4585 [C_RX_RBUF_LOOKUP_DES_COR_ERR] = CNTR_ELEM("RxRbufLookupDesCorErr", 0, 0,
4586 			CNTR_NORMAL,
4587 			access_rx_rbuf_lookup_des_cor_err_cnt),
4588 [C_RX_RBUF_LOOKUP_DES_UNC_ERR] = CNTR_ELEM("RxRbufLookupDesUncErr", 0, 0,
4589 			CNTR_NORMAL,
4590 			access_rx_rbuf_lookup_des_unc_err_cnt),
4591 [C_RX_RBUF_LOOKUP_DES_REG_UNC_COR_ERR] = CNTR_ELEM(
4592 			"RxRbufLookupDesRegUncCorErr", 0, 0,
4593 			CNTR_NORMAL,
4594 			access_rx_rbuf_lookup_des_reg_unc_cor_err_cnt),
4595 [C_RX_RBUF_LOOKUP_DES_REG_UNC_ERR] = CNTR_ELEM("RxRbufLookupDesRegUncErr", 0, 0,
4596 			CNTR_NORMAL,
4597 			access_rx_rbuf_lookup_des_reg_unc_err_cnt),
4598 [C_RX_RBUF_FREE_LIST_COR_ERR] = CNTR_ELEM("RxRbufFreeListCorErr", 0, 0,
4599 			CNTR_NORMAL,
4600 			access_rx_rbuf_free_list_cor_err_cnt),
4601 [C_RX_RBUF_FREE_LIST_UNC_ERR] = CNTR_ELEM("RxRbufFreeListUncErr", 0, 0,
4602 			CNTR_NORMAL,
4603 			access_rx_rbuf_free_list_unc_err_cnt),
4604 [C_RX_RCV_FSM_ENCODING_ERR] = CNTR_ELEM("RxRcvFsmEncodingErr", 0, 0,
4605 			CNTR_NORMAL,
4606 			access_rx_rcv_fsm_encoding_err_cnt),
4607 [C_RX_DMA_FLAG_COR_ERR] = CNTR_ELEM("RxDmaFlagCorErr", 0, 0,
4608 			CNTR_NORMAL,
4609 			access_rx_dma_flag_cor_err_cnt),
4610 [C_RX_DMA_FLAG_UNC_ERR] = CNTR_ELEM("RxDmaFlagUncErr", 0, 0,
4611 			CNTR_NORMAL,
4612 			access_rx_dma_flag_unc_err_cnt),
4613 [C_RX_DC_SOP_EOP_PARITY_ERR] = CNTR_ELEM("RxDcSopEopParityErr", 0, 0,
4614 			CNTR_NORMAL,
4615 			access_rx_dc_sop_eop_parity_err_cnt),
4616 [C_RX_RCV_CSR_PARITY_ERR] = CNTR_ELEM("RxRcvCsrParityErr", 0, 0,
4617 			CNTR_NORMAL,
4618 			access_rx_rcv_csr_parity_err_cnt),
4619 [C_RX_RCV_QP_MAP_TABLE_COR_ERR] = CNTR_ELEM("RxRcvQpMapTableCorErr", 0, 0,
4620 			CNTR_NORMAL,
4621 			access_rx_rcv_qp_map_table_cor_err_cnt),
4622 [C_RX_RCV_QP_MAP_TABLE_UNC_ERR] = CNTR_ELEM("RxRcvQpMapTableUncErr", 0, 0,
4623 			CNTR_NORMAL,
4624 			access_rx_rcv_qp_map_table_unc_err_cnt),
4625 [C_RX_RCV_DATA_COR_ERR] = CNTR_ELEM("RxRcvDataCorErr", 0, 0,
4626 			CNTR_NORMAL,
4627 			access_rx_rcv_data_cor_err_cnt),
4628 [C_RX_RCV_DATA_UNC_ERR] = CNTR_ELEM("RxRcvDataUncErr", 0, 0,
4629 			CNTR_NORMAL,
4630 			access_rx_rcv_data_unc_err_cnt),
4631 [C_RX_RCV_HDR_COR_ERR] = CNTR_ELEM("RxRcvHdrCorErr", 0, 0,
4632 			CNTR_NORMAL,
4633 			access_rx_rcv_hdr_cor_err_cnt),
4634 [C_RX_RCV_HDR_UNC_ERR] = CNTR_ELEM("RxRcvHdrUncErr", 0, 0,
4635 			CNTR_NORMAL,
4636 			access_rx_rcv_hdr_unc_err_cnt),
4637 [C_RX_DC_INTF_PARITY_ERR] = CNTR_ELEM("RxDcIntfParityErr", 0, 0,
4638 			CNTR_NORMAL,
4639 			access_rx_dc_intf_parity_err_cnt),
4640 [C_RX_DMA_CSR_COR_ERR] = CNTR_ELEM("RxDmaCsrCorErr", 0, 0,
4641 			CNTR_NORMAL,
4642 			access_rx_dma_csr_cor_err_cnt),
4643 /* SendPioErrStatus */
4644 [C_PIO_PEC_SOP_HEAD_PARITY_ERR] = CNTR_ELEM("PioPecSopHeadParityErr", 0, 0,
4645 			CNTR_NORMAL,
4646 			access_pio_pec_sop_head_parity_err_cnt),
4647 [C_PIO_PCC_SOP_HEAD_PARITY_ERR] = CNTR_ELEM("PioPccSopHeadParityErr", 0, 0,
4648 			CNTR_NORMAL,
4649 			access_pio_pcc_sop_head_parity_err_cnt),
4650 [C_PIO_LAST_RETURNED_CNT_PARITY_ERR] = CNTR_ELEM("PioLastReturnedCntParityErr",
4651 			0, 0, CNTR_NORMAL,
4652 			access_pio_last_returned_cnt_parity_err_cnt),
4653 [C_PIO_CURRENT_FREE_CNT_PARITY_ERR] = CNTR_ELEM("PioCurrentFreeCntParityErr", 0,
4654 			0, CNTR_NORMAL,
4655 			access_pio_current_free_cnt_parity_err_cnt),
4656 [C_PIO_RSVD_31_ERR] = CNTR_ELEM("Pio Reserved 31", 0, 0,
4657 			CNTR_NORMAL,
4658 			access_pio_reserved_31_err_cnt),
4659 [C_PIO_RSVD_30_ERR] = CNTR_ELEM("Pio Reserved 30", 0, 0,
4660 			CNTR_NORMAL,
4661 			access_pio_reserved_30_err_cnt),
4662 [C_PIO_PPMC_SOP_LEN_ERR] = CNTR_ELEM("PioPpmcSopLenErr", 0, 0,
4663 			CNTR_NORMAL,
4664 			access_pio_ppmc_sop_len_err_cnt),
4665 [C_PIO_PPMC_BQC_MEM_PARITY_ERR] = CNTR_ELEM("PioPpmcBqcMemParityErr", 0, 0,
4666 			CNTR_NORMAL,
4667 			access_pio_ppmc_bqc_mem_parity_err_cnt),
4668 [C_PIO_VL_FIFO_PARITY_ERR] = CNTR_ELEM("PioVlFifoParityErr", 0, 0,
4669 			CNTR_NORMAL,
4670 			access_pio_vl_fifo_parity_err_cnt),
4671 [C_PIO_VLF_SOP_PARITY_ERR] = CNTR_ELEM("PioVlfSopParityErr", 0, 0,
4672 			CNTR_NORMAL,
4673 			access_pio_vlf_sop_parity_err_cnt),
4674 [C_PIO_VLF_V1_LEN_PARITY_ERR] = CNTR_ELEM("PioVlfVlLenParityErr", 0, 0,
4675 			CNTR_NORMAL,
4676 			access_pio_vlf_v1_len_parity_err_cnt),
4677 [C_PIO_BLOCK_QW_COUNT_PARITY_ERR] = CNTR_ELEM("PioBlockQwCountParityErr", 0, 0,
4678 			CNTR_NORMAL,
4679 			access_pio_block_qw_count_parity_err_cnt),
4680 [C_PIO_WRITE_QW_VALID_PARITY_ERR] = CNTR_ELEM("PioWriteQwValidParityErr", 0, 0,
4681 			CNTR_NORMAL,
4682 			access_pio_write_qw_valid_parity_err_cnt),
4683 [C_PIO_STATE_MACHINE_ERR] = CNTR_ELEM("PioStateMachineErr", 0, 0,
4684 			CNTR_NORMAL,
4685 			access_pio_state_machine_err_cnt),
4686 [C_PIO_WRITE_DATA_PARITY_ERR] = CNTR_ELEM("PioWriteDataParityErr", 0, 0,
4687 			CNTR_NORMAL,
4688 			access_pio_write_data_parity_err_cnt),
4689 [C_PIO_HOST_ADDR_MEM_COR_ERR] = CNTR_ELEM("PioHostAddrMemCorErr", 0, 0,
4690 			CNTR_NORMAL,
4691 			access_pio_host_addr_mem_cor_err_cnt),
4692 [C_PIO_HOST_ADDR_MEM_UNC_ERR] = CNTR_ELEM("PioHostAddrMemUncErr", 0, 0,
4693 			CNTR_NORMAL,
4694 			access_pio_host_addr_mem_unc_err_cnt),
4695 [C_PIO_PKT_EVICT_SM_OR_ARM_SM_ERR] = CNTR_ELEM("PioPktEvictSmOrArbSmErr", 0, 0,
4696 			CNTR_NORMAL,
4697 			access_pio_pkt_evict_sm_or_arb_sm_err_cnt),
4698 [C_PIO_INIT_SM_IN_ERR] = CNTR_ELEM("PioInitSmInErr", 0, 0,
4699 			CNTR_NORMAL,
4700 			access_pio_init_sm_in_err_cnt),
4701 [C_PIO_PPMC_PBL_FIFO_ERR] = CNTR_ELEM("PioPpmcPblFifoErr", 0, 0,
4702 			CNTR_NORMAL,
4703 			access_pio_ppmc_pbl_fifo_err_cnt),
4704 [C_PIO_CREDIT_RET_FIFO_PARITY_ERR] = CNTR_ELEM("PioCreditRetFifoParityErr", 0,
4705 			0, CNTR_NORMAL,
4706 			access_pio_credit_ret_fifo_parity_err_cnt),
4707 [C_PIO_V1_LEN_MEM_BANK1_COR_ERR] = CNTR_ELEM("PioVlLenMemBank1CorErr", 0, 0,
4708 			CNTR_NORMAL,
4709 			access_pio_v1_len_mem_bank1_cor_err_cnt),
4710 [C_PIO_V1_LEN_MEM_BANK0_COR_ERR] = CNTR_ELEM("PioVlLenMemBank0CorErr", 0, 0,
4711 			CNTR_NORMAL,
4712 			access_pio_v1_len_mem_bank0_cor_err_cnt),
4713 [C_PIO_V1_LEN_MEM_BANK1_UNC_ERR] = CNTR_ELEM("PioVlLenMemBank1UncErr", 0, 0,
4714 			CNTR_NORMAL,
4715 			access_pio_v1_len_mem_bank1_unc_err_cnt),
4716 [C_PIO_V1_LEN_MEM_BANK0_UNC_ERR] = CNTR_ELEM("PioVlLenMemBank0UncErr", 0, 0,
4717 			CNTR_NORMAL,
4718 			access_pio_v1_len_mem_bank0_unc_err_cnt),
4719 [C_PIO_SM_PKT_RESET_PARITY_ERR] = CNTR_ELEM("PioSmPktResetParityErr", 0, 0,
4720 			CNTR_NORMAL,
4721 			access_pio_sm_pkt_reset_parity_err_cnt),
4722 [C_PIO_PKT_EVICT_FIFO_PARITY_ERR] = CNTR_ELEM("PioPktEvictFifoParityErr", 0, 0,
4723 			CNTR_NORMAL,
4724 			access_pio_pkt_evict_fifo_parity_err_cnt),
4725 [C_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR] = CNTR_ELEM(
4726 			"PioSbrdctrlCrrelFifoParityErr", 0, 0,
4727 			CNTR_NORMAL,
4728 			access_pio_sbrdctrl_crrel_fifo_parity_err_cnt),
4729 [C_PIO_SBRDCTL_CRREL_PARITY_ERR] = CNTR_ELEM("PioSbrdctlCrrelParityErr", 0, 0,
4730 			CNTR_NORMAL,
4731 			access_pio_sbrdctl_crrel_parity_err_cnt),
4732 [C_PIO_PEC_FIFO_PARITY_ERR] = CNTR_ELEM("PioPecFifoParityErr", 0, 0,
4733 			CNTR_NORMAL,
4734 			access_pio_pec_fifo_parity_err_cnt),
4735 [C_PIO_PCC_FIFO_PARITY_ERR] = CNTR_ELEM("PioPccFifoParityErr", 0, 0,
4736 			CNTR_NORMAL,
4737 			access_pio_pcc_fifo_parity_err_cnt),
4738 [C_PIO_SB_MEM_FIFO1_ERR] = CNTR_ELEM("PioSbMemFifo1Err", 0, 0,
4739 			CNTR_NORMAL,
4740 			access_pio_sb_mem_fifo1_err_cnt),
4741 [C_PIO_SB_MEM_FIFO0_ERR] = CNTR_ELEM("PioSbMemFifo0Err", 0, 0,
4742 			CNTR_NORMAL,
4743 			access_pio_sb_mem_fifo0_err_cnt),
4744 [C_PIO_CSR_PARITY_ERR] = CNTR_ELEM("PioCsrParityErr", 0, 0,
4745 			CNTR_NORMAL,
4746 			access_pio_csr_parity_err_cnt),
4747 [C_PIO_WRITE_ADDR_PARITY_ERR] = CNTR_ELEM("PioWriteAddrParityErr", 0, 0,
4748 			CNTR_NORMAL,
4749 			access_pio_write_addr_parity_err_cnt),
4750 [C_PIO_WRITE_BAD_CTXT_ERR] = CNTR_ELEM("PioWriteBadCtxtErr", 0, 0,
4751 			CNTR_NORMAL,
4752 			access_pio_write_bad_ctxt_err_cnt),
4753 /* SendDmaErrStatus */
4754 [C_SDMA_PCIE_REQ_TRACKING_COR_ERR] = CNTR_ELEM("SDmaPcieReqTrackingCorErr", 0,
4755 			0, CNTR_NORMAL,
4756 			access_sdma_pcie_req_tracking_cor_err_cnt),
4757 [C_SDMA_PCIE_REQ_TRACKING_UNC_ERR] = CNTR_ELEM("SDmaPcieReqTrackingUncErr", 0,
4758 			0, CNTR_NORMAL,
4759 			access_sdma_pcie_req_tracking_unc_err_cnt),
4760 [C_SDMA_CSR_PARITY_ERR] = CNTR_ELEM("SDmaCsrParityErr", 0, 0,
4761 			CNTR_NORMAL,
4762 			access_sdma_csr_parity_err_cnt),
4763 [C_SDMA_RPY_TAG_ERR] = CNTR_ELEM("SDmaRpyTagErr", 0, 0,
4764 			CNTR_NORMAL,
4765 			access_sdma_rpy_tag_err_cnt),
4766 /* SendEgressErrStatus */
4767 [C_TX_READ_PIO_MEMORY_CSR_UNC_ERR] = CNTR_ELEM("TxReadPioMemoryCsrUncErr", 0, 0,
4768 			CNTR_NORMAL,
4769 			access_tx_read_pio_memory_csr_unc_err_cnt),
4770 [C_TX_READ_SDMA_MEMORY_CSR_UNC_ERR] = CNTR_ELEM("TxReadSdmaMemoryCsrUncErr", 0,
4771 			0, CNTR_NORMAL,
4772 			access_tx_read_sdma_memory_csr_err_cnt),
4773 [C_TX_EGRESS_FIFO_COR_ERR] = CNTR_ELEM("TxEgressFifoCorErr", 0, 0,
4774 			CNTR_NORMAL,
4775 			access_tx_egress_fifo_cor_err_cnt),
4776 [C_TX_READ_PIO_MEMORY_COR_ERR] = CNTR_ELEM("TxReadPioMemoryCorErr", 0, 0,
4777 			CNTR_NORMAL,
4778 			access_tx_read_pio_memory_cor_err_cnt),
4779 [C_TX_READ_SDMA_MEMORY_COR_ERR] = CNTR_ELEM("TxReadSdmaMemoryCorErr", 0, 0,
4780 			CNTR_NORMAL,
4781 			access_tx_read_sdma_memory_cor_err_cnt),
4782 [C_TX_SB_HDR_COR_ERR] = CNTR_ELEM("TxSbHdrCorErr", 0, 0,
4783 			CNTR_NORMAL,
4784 			access_tx_sb_hdr_cor_err_cnt),
4785 [C_TX_CREDIT_OVERRUN_ERR] = CNTR_ELEM("TxCreditOverrunErr", 0, 0,
4786 			CNTR_NORMAL,
4787 			access_tx_credit_overrun_err_cnt),
4788 [C_TX_LAUNCH_FIFO8_COR_ERR] = CNTR_ELEM("TxLaunchFifo8CorErr", 0, 0,
4789 			CNTR_NORMAL,
4790 			access_tx_launch_fifo8_cor_err_cnt),
4791 [C_TX_LAUNCH_FIFO7_COR_ERR] = CNTR_ELEM("TxLaunchFifo7CorErr", 0, 0,
4792 			CNTR_NORMAL,
4793 			access_tx_launch_fifo7_cor_err_cnt),
4794 [C_TX_LAUNCH_FIFO6_COR_ERR] = CNTR_ELEM("TxLaunchFifo6CorErr", 0, 0,
4795 			CNTR_NORMAL,
4796 			access_tx_launch_fifo6_cor_err_cnt),
4797 [C_TX_LAUNCH_FIFO5_COR_ERR] = CNTR_ELEM("TxLaunchFifo5CorErr", 0, 0,
4798 			CNTR_NORMAL,
4799 			access_tx_launch_fifo5_cor_err_cnt),
4800 [C_TX_LAUNCH_FIFO4_COR_ERR] = CNTR_ELEM("TxLaunchFifo4CorErr", 0, 0,
4801 			CNTR_NORMAL,
4802 			access_tx_launch_fifo4_cor_err_cnt),
4803 [C_TX_LAUNCH_FIFO3_COR_ERR] = CNTR_ELEM("TxLaunchFifo3CorErr", 0, 0,
4804 			CNTR_NORMAL,
4805 			access_tx_launch_fifo3_cor_err_cnt),
4806 [C_TX_LAUNCH_FIFO2_COR_ERR] = CNTR_ELEM("TxLaunchFifo2CorErr", 0, 0,
4807 			CNTR_NORMAL,
4808 			access_tx_launch_fifo2_cor_err_cnt),
4809 [C_TX_LAUNCH_FIFO1_COR_ERR] = CNTR_ELEM("TxLaunchFifo1CorErr", 0, 0,
4810 			CNTR_NORMAL,
4811 			access_tx_launch_fifo1_cor_err_cnt),
4812 [C_TX_LAUNCH_FIFO0_COR_ERR] = CNTR_ELEM("TxLaunchFifo0CorErr", 0, 0,
4813 			CNTR_NORMAL,
4814 			access_tx_launch_fifo0_cor_err_cnt),
4815 [C_TX_CREDIT_RETURN_VL_ERR] = CNTR_ELEM("TxCreditReturnVLErr", 0, 0,
4816 			CNTR_NORMAL,
4817 			access_tx_credit_return_vl_err_cnt),
4818 [C_TX_HCRC_INSERTION_ERR] = CNTR_ELEM("TxHcrcInsertionErr", 0, 0,
4819 			CNTR_NORMAL,
4820 			access_tx_hcrc_insertion_err_cnt),
4821 [C_TX_EGRESS_FIFI_UNC_ERR] = CNTR_ELEM("TxEgressFifoUncErr", 0, 0,
4822 			CNTR_NORMAL,
4823 			access_tx_egress_fifo_unc_err_cnt),
4824 [C_TX_READ_PIO_MEMORY_UNC_ERR] = CNTR_ELEM("TxReadPioMemoryUncErr", 0, 0,
4825 			CNTR_NORMAL,
4826 			access_tx_read_pio_memory_unc_err_cnt),
4827 [C_TX_READ_SDMA_MEMORY_UNC_ERR] = CNTR_ELEM("TxReadSdmaMemoryUncErr", 0, 0,
4828 			CNTR_NORMAL,
4829 			access_tx_read_sdma_memory_unc_err_cnt),
4830 [C_TX_SB_HDR_UNC_ERR] = CNTR_ELEM("TxSbHdrUncErr", 0, 0,
4831 			CNTR_NORMAL,
4832 			access_tx_sb_hdr_unc_err_cnt),
4833 [C_TX_CREDIT_RETURN_PARITY_ERR] = CNTR_ELEM("TxCreditReturnParityErr", 0, 0,
4834 			CNTR_NORMAL,
4835 			access_tx_credit_return_partiy_err_cnt),
4836 [C_TX_LAUNCH_FIFO8_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo8UncOrParityErr",
4837 			0, 0, CNTR_NORMAL,
4838 			access_tx_launch_fifo8_unc_or_parity_err_cnt),
4839 [C_TX_LAUNCH_FIFO7_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo7UncOrParityErr",
4840 			0, 0, CNTR_NORMAL,
4841 			access_tx_launch_fifo7_unc_or_parity_err_cnt),
4842 [C_TX_LAUNCH_FIFO6_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo6UncOrParityErr",
4843 			0, 0, CNTR_NORMAL,
4844 			access_tx_launch_fifo6_unc_or_parity_err_cnt),
4845 [C_TX_LAUNCH_FIFO5_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo5UncOrParityErr",
4846 			0, 0, CNTR_NORMAL,
4847 			access_tx_launch_fifo5_unc_or_parity_err_cnt),
4848 [C_TX_LAUNCH_FIFO4_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo4UncOrParityErr",
4849 			0, 0, CNTR_NORMAL,
4850 			access_tx_launch_fifo4_unc_or_parity_err_cnt),
4851 [C_TX_LAUNCH_FIFO3_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo3UncOrParityErr",
4852 			0, 0, CNTR_NORMAL,
4853 			access_tx_launch_fifo3_unc_or_parity_err_cnt),
4854 [C_TX_LAUNCH_FIFO2_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo2UncOrParityErr",
4855 			0, 0, CNTR_NORMAL,
4856 			access_tx_launch_fifo2_unc_or_parity_err_cnt),
4857 [C_TX_LAUNCH_FIFO1_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo1UncOrParityErr",
4858 			0, 0, CNTR_NORMAL,
4859 			access_tx_launch_fifo1_unc_or_parity_err_cnt),
4860 [C_TX_LAUNCH_FIFO0_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo0UncOrParityErr",
4861 			0, 0, CNTR_NORMAL,
4862 			access_tx_launch_fifo0_unc_or_parity_err_cnt),
4863 [C_TX_SDMA15_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma15DisallowedPacketErr",
4864 			0, 0, CNTR_NORMAL,
4865 			access_tx_sdma15_disallowed_packet_err_cnt),
4866 [C_TX_SDMA14_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma14DisallowedPacketErr",
4867 			0, 0, CNTR_NORMAL,
4868 			access_tx_sdma14_disallowed_packet_err_cnt),
4869 [C_TX_SDMA13_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma13DisallowedPacketErr",
4870 			0, 0, CNTR_NORMAL,
4871 			access_tx_sdma13_disallowed_packet_err_cnt),
4872 [C_TX_SDMA12_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma12DisallowedPacketErr",
4873 			0, 0, CNTR_NORMAL,
4874 			access_tx_sdma12_disallowed_packet_err_cnt),
4875 [C_TX_SDMA11_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma11DisallowedPacketErr",
4876 			0, 0, CNTR_NORMAL,
4877 			access_tx_sdma11_disallowed_packet_err_cnt),
4878 [C_TX_SDMA10_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma10DisallowedPacketErr",
4879 			0, 0, CNTR_NORMAL,
4880 			access_tx_sdma10_disallowed_packet_err_cnt),
4881 [C_TX_SDMA9_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma9DisallowedPacketErr",
4882 			0, 0, CNTR_NORMAL,
4883 			access_tx_sdma9_disallowed_packet_err_cnt),
4884 [C_TX_SDMA8_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma8DisallowedPacketErr",
4885 			0, 0, CNTR_NORMAL,
4886 			access_tx_sdma8_disallowed_packet_err_cnt),
4887 [C_TX_SDMA7_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma7DisallowedPacketErr",
4888 			0, 0, CNTR_NORMAL,
4889 			access_tx_sdma7_disallowed_packet_err_cnt),
4890 [C_TX_SDMA6_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma6DisallowedPacketErr",
4891 			0, 0, CNTR_NORMAL,
4892 			access_tx_sdma6_disallowed_packet_err_cnt),
4893 [C_TX_SDMA5_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma5DisallowedPacketErr",
4894 			0, 0, CNTR_NORMAL,
4895 			access_tx_sdma5_disallowed_packet_err_cnt),
4896 [C_TX_SDMA4_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma4DisallowedPacketErr",
4897 			0, 0, CNTR_NORMAL,
4898 			access_tx_sdma4_disallowed_packet_err_cnt),
4899 [C_TX_SDMA3_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma3DisallowedPacketErr",
4900 			0, 0, CNTR_NORMAL,
4901 			access_tx_sdma3_disallowed_packet_err_cnt),
4902 [C_TX_SDMA2_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma2DisallowedPacketErr",
4903 			0, 0, CNTR_NORMAL,
4904 			access_tx_sdma2_disallowed_packet_err_cnt),
4905 [C_TX_SDMA1_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma1DisallowedPacketErr",
4906 			0, 0, CNTR_NORMAL,
4907 			access_tx_sdma1_disallowed_packet_err_cnt),
4908 [C_TX_SDMA0_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma0DisallowedPacketErr",
4909 			0, 0, CNTR_NORMAL,
4910 			access_tx_sdma0_disallowed_packet_err_cnt),
4911 [C_TX_CONFIG_PARITY_ERR] = CNTR_ELEM("TxConfigParityErr", 0, 0,
4912 			CNTR_NORMAL,
4913 			access_tx_config_parity_err_cnt),
4914 [C_TX_SBRD_CTL_CSR_PARITY_ERR] = CNTR_ELEM("TxSbrdCtlCsrParityErr", 0, 0,
4915 			CNTR_NORMAL,
4916 			access_tx_sbrd_ctl_csr_parity_err_cnt),
4917 [C_TX_LAUNCH_CSR_PARITY_ERR] = CNTR_ELEM("TxLaunchCsrParityErr", 0, 0,
4918 			CNTR_NORMAL,
4919 			access_tx_launch_csr_parity_err_cnt),
4920 [C_TX_ILLEGAL_CL_ERR] = CNTR_ELEM("TxIllegalVLErr", 0, 0,
4921 			CNTR_NORMAL,
4922 			access_tx_illegal_vl_err_cnt),
4923 [C_TX_SBRD_CTL_STATE_MACHINE_PARITY_ERR] = CNTR_ELEM(
4924 			"TxSbrdCtlStateMachineParityErr", 0, 0,
4925 			CNTR_NORMAL,
4926 			access_tx_sbrd_ctl_state_machine_parity_err_cnt),
4927 [C_TX_RESERVED_10] = CNTR_ELEM("Tx Egress Reserved 10", 0, 0,
4928 			CNTR_NORMAL,
4929 			access_egress_reserved_10_err_cnt),
4930 [C_TX_RESERVED_9] = CNTR_ELEM("Tx Egress Reserved 9", 0, 0,
4931 			CNTR_NORMAL,
4932 			access_egress_reserved_9_err_cnt),
4933 [C_TX_SDMA_LAUNCH_INTF_PARITY_ERR] = CNTR_ELEM("TxSdmaLaunchIntfParityErr",
4934 			0, 0, CNTR_NORMAL,
4935 			access_tx_sdma_launch_intf_parity_err_cnt),
4936 [C_TX_PIO_LAUNCH_INTF_PARITY_ERR] = CNTR_ELEM("TxPioLaunchIntfParityErr", 0, 0,
4937 			CNTR_NORMAL,
4938 			access_tx_pio_launch_intf_parity_err_cnt),
4939 [C_TX_RESERVED_6] = CNTR_ELEM("Tx Egress Reserved 6", 0, 0,
4940 			CNTR_NORMAL,
4941 			access_egress_reserved_6_err_cnt),
4942 [C_TX_INCORRECT_LINK_STATE_ERR] = CNTR_ELEM("TxIncorrectLinkStateErr", 0, 0,
4943 			CNTR_NORMAL,
4944 			access_tx_incorrect_link_state_err_cnt),
4945 [C_TX_LINK_DOWN_ERR] = CNTR_ELEM("TxLinkdownErr", 0, 0,
4946 			CNTR_NORMAL,
4947 			access_tx_linkdown_err_cnt),
4948 [C_TX_EGRESS_FIFO_UNDERRUN_OR_PARITY_ERR] = CNTR_ELEM(
4949 			"EgressFifoUnderrunOrParityErr", 0, 0,
4950 			CNTR_NORMAL,
4951 			access_tx_egress_fifi_underrun_or_parity_err_cnt),
4952 [C_TX_RESERVED_2] = CNTR_ELEM("Tx Egress Reserved 2", 0, 0,
4953 			CNTR_NORMAL,
4954 			access_egress_reserved_2_err_cnt),
4955 [C_TX_PKT_INTEGRITY_MEM_UNC_ERR] = CNTR_ELEM("TxPktIntegrityMemUncErr", 0, 0,
4956 			CNTR_NORMAL,
4957 			access_tx_pkt_integrity_mem_unc_err_cnt),
4958 [C_TX_PKT_INTEGRITY_MEM_COR_ERR] = CNTR_ELEM("TxPktIntegrityMemCorErr", 0, 0,
4959 			CNTR_NORMAL,
4960 			access_tx_pkt_integrity_mem_cor_err_cnt),
4961 /* SendErrStatus */
4962 [C_SEND_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("SendCsrWriteBadAddrErr", 0, 0,
4963 			CNTR_NORMAL,
4964 			access_send_csr_write_bad_addr_err_cnt),
4965 [C_SEND_CSR_READ_BAD_ADD_ERR] = CNTR_ELEM("SendCsrReadBadAddrErr", 0, 0,
4966 			CNTR_NORMAL,
4967 			access_send_csr_read_bad_addr_err_cnt),
4968 [C_SEND_CSR_PARITY_ERR] = CNTR_ELEM("SendCsrParityErr", 0, 0,
4969 			CNTR_NORMAL,
4970 			access_send_csr_parity_cnt),
4971 /* SendCtxtErrStatus */
4972 [C_PIO_WRITE_OUT_OF_BOUNDS_ERR] = CNTR_ELEM("PioWriteOutOfBoundsErr", 0, 0,
4973 			CNTR_NORMAL,
4974 			access_pio_write_out_of_bounds_err_cnt),
4975 [C_PIO_WRITE_OVERFLOW_ERR] = CNTR_ELEM("PioWriteOverflowErr", 0, 0,
4976 			CNTR_NORMAL,
4977 			access_pio_write_overflow_err_cnt),
4978 [C_PIO_WRITE_CROSSES_BOUNDARY_ERR] = CNTR_ELEM("PioWriteCrossesBoundaryErr",
4979 			0, 0, CNTR_NORMAL,
4980 			access_pio_write_crosses_boundary_err_cnt),
4981 [C_PIO_DISALLOWED_PACKET_ERR] = CNTR_ELEM("PioDisallowedPacketErr", 0, 0,
4982 			CNTR_NORMAL,
4983 			access_pio_disallowed_packet_err_cnt),
4984 [C_PIO_INCONSISTENT_SOP_ERR] = CNTR_ELEM("PioInconsistentSopErr", 0, 0,
4985 			CNTR_NORMAL,
4986 			access_pio_inconsistent_sop_err_cnt),
4987 /* SendDmaEngErrStatus */
4988 [C_SDMA_HEADER_REQUEST_FIFO_COR_ERR] = CNTR_ELEM("SDmaHeaderRequestFifoCorErr",
4989 			0, 0, CNTR_NORMAL,
4990 			access_sdma_header_request_fifo_cor_err_cnt),
4991 [C_SDMA_HEADER_STORAGE_COR_ERR] = CNTR_ELEM("SDmaHeaderStorageCorErr", 0, 0,
4992 			CNTR_NORMAL,
4993 			access_sdma_header_storage_cor_err_cnt),
4994 [C_SDMA_PACKET_TRACKING_COR_ERR] = CNTR_ELEM("SDmaPacketTrackingCorErr", 0, 0,
4995 			CNTR_NORMAL,
4996 			access_sdma_packet_tracking_cor_err_cnt),
4997 [C_SDMA_ASSEMBLY_COR_ERR] = CNTR_ELEM("SDmaAssemblyCorErr", 0, 0,
4998 			CNTR_NORMAL,
4999 			access_sdma_assembly_cor_err_cnt),
5000 [C_SDMA_DESC_TABLE_COR_ERR] = CNTR_ELEM("SDmaDescTableCorErr", 0, 0,
5001 			CNTR_NORMAL,
5002 			access_sdma_desc_table_cor_err_cnt),
5003 [C_SDMA_HEADER_REQUEST_FIFO_UNC_ERR] = CNTR_ELEM("SDmaHeaderRequestFifoUncErr",
5004 			0, 0, CNTR_NORMAL,
5005 			access_sdma_header_request_fifo_unc_err_cnt),
5006 [C_SDMA_HEADER_STORAGE_UNC_ERR] = CNTR_ELEM("SDmaHeaderStorageUncErr", 0, 0,
5007 			CNTR_NORMAL,
5008 			access_sdma_header_storage_unc_err_cnt),
5009 [C_SDMA_PACKET_TRACKING_UNC_ERR] = CNTR_ELEM("SDmaPacketTrackingUncErr", 0, 0,
5010 			CNTR_NORMAL,
5011 			access_sdma_packet_tracking_unc_err_cnt),
5012 [C_SDMA_ASSEMBLY_UNC_ERR] = CNTR_ELEM("SDmaAssemblyUncErr", 0, 0,
5013 			CNTR_NORMAL,
5014 			access_sdma_assembly_unc_err_cnt),
5015 [C_SDMA_DESC_TABLE_UNC_ERR] = CNTR_ELEM("SDmaDescTableUncErr", 0, 0,
5016 			CNTR_NORMAL,
5017 			access_sdma_desc_table_unc_err_cnt),
5018 [C_SDMA_TIMEOUT_ERR] = CNTR_ELEM("SDmaTimeoutErr", 0, 0,
5019 			CNTR_NORMAL,
5020 			access_sdma_timeout_err_cnt),
5021 [C_SDMA_HEADER_LENGTH_ERR] = CNTR_ELEM("SDmaHeaderLengthErr", 0, 0,
5022 			CNTR_NORMAL,
5023 			access_sdma_header_length_err_cnt),
5024 [C_SDMA_HEADER_ADDRESS_ERR] = CNTR_ELEM("SDmaHeaderAddressErr", 0, 0,
5025 			CNTR_NORMAL,
5026 			access_sdma_header_address_err_cnt),
5027 [C_SDMA_HEADER_SELECT_ERR] = CNTR_ELEM("SDmaHeaderSelectErr", 0, 0,
5028 			CNTR_NORMAL,
5029 			access_sdma_header_select_err_cnt),
5030 [C_SMDA_RESERVED_9] = CNTR_ELEM("SDma Reserved 9", 0, 0,
5031 			CNTR_NORMAL,
5032 			access_sdma_reserved_9_err_cnt),
5033 [C_SDMA_PACKET_DESC_OVERFLOW_ERR] = CNTR_ELEM("SDmaPacketDescOverflowErr", 0, 0,
5034 			CNTR_NORMAL,
5035 			access_sdma_packet_desc_overflow_err_cnt),
5036 [C_SDMA_LENGTH_MISMATCH_ERR] = CNTR_ELEM("SDmaLengthMismatchErr", 0, 0,
5037 			CNTR_NORMAL,
5038 			access_sdma_length_mismatch_err_cnt),
5039 [C_SDMA_HALT_ERR] = CNTR_ELEM("SDmaHaltErr", 0, 0,
5040 			CNTR_NORMAL,
5041 			access_sdma_halt_err_cnt),
5042 [C_SDMA_MEM_READ_ERR] = CNTR_ELEM("SDmaMemReadErr", 0, 0,
5043 			CNTR_NORMAL,
5044 			access_sdma_mem_read_err_cnt),
5045 [C_SDMA_FIRST_DESC_ERR] = CNTR_ELEM("SDmaFirstDescErr", 0, 0,
5046 			CNTR_NORMAL,
5047 			access_sdma_first_desc_err_cnt),
5048 [C_SDMA_TAIL_OUT_OF_BOUNDS_ERR] = CNTR_ELEM("SDmaTailOutOfBoundsErr", 0, 0,
5049 			CNTR_NORMAL,
5050 			access_sdma_tail_out_of_bounds_err_cnt),
5051 [C_SDMA_TOO_LONG_ERR] = CNTR_ELEM("SDmaTooLongErr", 0, 0,
5052 			CNTR_NORMAL,
5053 			access_sdma_too_long_err_cnt),
5054 [C_SDMA_GEN_MISMATCH_ERR] = CNTR_ELEM("SDmaGenMismatchErr", 0, 0,
5055 			CNTR_NORMAL,
5056 			access_sdma_gen_mismatch_err_cnt),
5057 [C_SDMA_WRONG_DW_ERR] = CNTR_ELEM("SDmaWrongDwErr", 0, 0,
5058 			CNTR_NORMAL,
5059 			access_sdma_wrong_dw_err_cnt),
5060 };
5061 
5062 static struct cntr_entry port_cntrs[PORT_CNTR_LAST] = {
5063 [C_TX_UNSUP_VL] = TXE32_PORT_CNTR_ELEM(TxUnVLErr, SEND_UNSUP_VL_ERR_CNT,
5064 			CNTR_NORMAL),
5065 [C_TX_INVAL_LEN] = TXE32_PORT_CNTR_ELEM(TxInvalLen, SEND_LEN_ERR_CNT,
5066 			CNTR_NORMAL),
5067 [C_TX_MM_LEN_ERR] = TXE32_PORT_CNTR_ELEM(TxMMLenErr, SEND_MAX_MIN_LEN_ERR_CNT,
5068 			CNTR_NORMAL),
5069 [C_TX_UNDERRUN] = TXE32_PORT_CNTR_ELEM(TxUnderrun, SEND_UNDERRUN_CNT,
5070 			CNTR_NORMAL),
5071 [C_TX_FLOW_STALL] = TXE32_PORT_CNTR_ELEM(TxFlowStall, SEND_FLOW_STALL_CNT,
5072 			CNTR_NORMAL),
5073 [C_TX_DROPPED] = TXE32_PORT_CNTR_ELEM(TxDropped, SEND_DROPPED_PKT_CNT,
5074 			CNTR_NORMAL),
5075 [C_TX_HDR_ERR] = TXE32_PORT_CNTR_ELEM(TxHdrErr, SEND_HEADERS_ERR_CNT,
5076 			CNTR_NORMAL),
5077 [C_TX_PKT] = TXE64_PORT_CNTR_ELEM(TxPkt, SEND_DATA_PKT_CNT, CNTR_NORMAL),
5078 [C_TX_WORDS] = TXE64_PORT_CNTR_ELEM(TxWords, SEND_DWORD_CNT, CNTR_NORMAL),
5079 [C_TX_WAIT] = TXE64_PORT_CNTR_ELEM(TxWait, SEND_WAIT_CNT, CNTR_SYNTH),
5080 [C_TX_FLIT_VL] = TXE64_PORT_CNTR_ELEM(TxFlitVL, SEND_DATA_VL0_CNT,
5081 				      CNTR_SYNTH | CNTR_VL),
5082 [C_TX_PKT_VL] = TXE64_PORT_CNTR_ELEM(TxPktVL, SEND_DATA_PKT_VL0_CNT,
5083 				     CNTR_SYNTH | CNTR_VL),
5084 [C_TX_WAIT_VL] = TXE64_PORT_CNTR_ELEM(TxWaitVL, SEND_WAIT_VL0_CNT,
5085 				      CNTR_SYNTH | CNTR_VL),
5086 [C_RX_PKT] = RXE64_PORT_CNTR_ELEM(RxPkt, RCV_DATA_PKT_CNT, CNTR_NORMAL),
5087 [C_RX_WORDS] = RXE64_PORT_CNTR_ELEM(RxWords, RCV_DWORD_CNT, CNTR_NORMAL),
5088 [C_SW_LINK_DOWN] = CNTR_ELEM("SwLinkDown", 0, 0, CNTR_SYNTH | CNTR_32BIT,
5089 			     access_sw_link_dn_cnt),
5090 [C_SW_LINK_UP] = CNTR_ELEM("SwLinkUp", 0, 0, CNTR_SYNTH | CNTR_32BIT,
5091 			   access_sw_link_up_cnt),
5092 [C_SW_UNKNOWN_FRAME] = CNTR_ELEM("UnknownFrame", 0, 0, CNTR_NORMAL,
5093 				 access_sw_unknown_frame_cnt),
5094 [C_SW_XMIT_DSCD] = CNTR_ELEM("XmitDscd", 0, 0, CNTR_SYNTH | CNTR_32BIT,
5095 			     access_sw_xmit_discards),
5096 [C_SW_XMIT_DSCD_VL] = CNTR_ELEM("XmitDscdVl", 0, 0,
5097 				CNTR_SYNTH | CNTR_32BIT | CNTR_VL,
5098 				access_sw_xmit_discards),
5099 [C_SW_XMIT_CSTR_ERR] = CNTR_ELEM("XmitCstrErr", 0, 0, CNTR_SYNTH,
5100 				 access_xmit_constraint_errs),
5101 [C_SW_RCV_CSTR_ERR] = CNTR_ELEM("RcvCstrErr", 0, 0, CNTR_SYNTH,
5102 				access_rcv_constraint_errs),
5103 [C_SW_IBP_LOOP_PKTS] = SW_IBP_CNTR(LoopPkts, loop_pkts),
5104 [C_SW_IBP_RC_RESENDS] = SW_IBP_CNTR(RcResend, rc_resends),
5105 [C_SW_IBP_RNR_NAKS] = SW_IBP_CNTR(RnrNak, rnr_naks),
5106 [C_SW_IBP_OTHER_NAKS] = SW_IBP_CNTR(OtherNak, other_naks),
5107 [C_SW_IBP_RC_TIMEOUTS] = SW_IBP_CNTR(RcTimeOut, rc_timeouts),
5108 [C_SW_IBP_PKT_DROPS] = SW_IBP_CNTR(PktDrop, pkt_drops),
5109 [C_SW_IBP_DMA_WAIT] = SW_IBP_CNTR(DmaWait, dmawait),
5110 [C_SW_IBP_RC_SEQNAK] = SW_IBP_CNTR(RcSeqNak, rc_seqnak),
5111 [C_SW_IBP_RC_DUPREQ] = SW_IBP_CNTR(RcDupRew, rc_dupreq),
5112 [C_SW_IBP_RDMA_SEQ] = SW_IBP_CNTR(RdmaSeq, rdma_seq),
5113 [C_SW_IBP_UNALIGNED] = SW_IBP_CNTR(Unaligned, unaligned),
5114 [C_SW_IBP_SEQ_NAK] = SW_IBP_CNTR(SeqNak, seq_naks),
5115 [C_SW_CPU_RC_ACKS] = CNTR_ELEM("RcAcks", 0, 0, CNTR_NORMAL,
5116 			       access_sw_cpu_rc_acks),
5117 [C_SW_CPU_RC_QACKS] = CNTR_ELEM("RcQacks", 0, 0, CNTR_NORMAL,
5118 				access_sw_cpu_rc_qacks),
5119 [C_SW_CPU_RC_DELAYED_COMP] = CNTR_ELEM("RcDelayComp", 0, 0, CNTR_NORMAL,
5120 				       access_sw_cpu_rc_delayed_comp),
5121 [OVR_LBL(0)] = OVR_ELM(0), [OVR_LBL(1)] = OVR_ELM(1),
5122 [OVR_LBL(2)] = OVR_ELM(2), [OVR_LBL(3)] = OVR_ELM(3),
5123 [OVR_LBL(4)] = OVR_ELM(4), [OVR_LBL(5)] = OVR_ELM(5),
5124 [OVR_LBL(6)] = OVR_ELM(6), [OVR_LBL(7)] = OVR_ELM(7),
5125 [OVR_LBL(8)] = OVR_ELM(8), [OVR_LBL(9)] = OVR_ELM(9),
5126 [OVR_LBL(10)] = OVR_ELM(10), [OVR_LBL(11)] = OVR_ELM(11),
5127 [OVR_LBL(12)] = OVR_ELM(12), [OVR_LBL(13)] = OVR_ELM(13),
5128 [OVR_LBL(14)] = OVR_ELM(14), [OVR_LBL(15)] = OVR_ELM(15),
5129 [OVR_LBL(16)] = OVR_ELM(16), [OVR_LBL(17)] = OVR_ELM(17),
5130 [OVR_LBL(18)] = OVR_ELM(18), [OVR_LBL(19)] = OVR_ELM(19),
5131 [OVR_LBL(20)] = OVR_ELM(20), [OVR_LBL(21)] = OVR_ELM(21),
5132 [OVR_LBL(22)] = OVR_ELM(22), [OVR_LBL(23)] = OVR_ELM(23),
5133 [OVR_LBL(24)] = OVR_ELM(24), [OVR_LBL(25)] = OVR_ELM(25),
5134 [OVR_LBL(26)] = OVR_ELM(26), [OVR_LBL(27)] = OVR_ELM(27),
5135 [OVR_LBL(28)] = OVR_ELM(28), [OVR_LBL(29)] = OVR_ELM(29),
5136 [OVR_LBL(30)] = OVR_ELM(30), [OVR_LBL(31)] = OVR_ELM(31),
5137 [OVR_LBL(32)] = OVR_ELM(32), [OVR_LBL(33)] = OVR_ELM(33),
5138 [OVR_LBL(34)] = OVR_ELM(34), [OVR_LBL(35)] = OVR_ELM(35),
5139 [OVR_LBL(36)] = OVR_ELM(36), [OVR_LBL(37)] = OVR_ELM(37),
5140 [OVR_LBL(38)] = OVR_ELM(38), [OVR_LBL(39)] = OVR_ELM(39),
5141 [OVR_LBL(40)] = OVR_ELM(40), [OVR_LBL(41)] = OVR_ELM(41),
5142 [OVR_LBL(42)] = OVR_ELM(42), [OVR_LBL(43)] = OVR_ELM(43),
5143 [OVR_LBL(44)] = OVR_ELM(44), [OVR_LBL(45)] = OVR_ELM(45),
5144 [OVR_LBL(46)] = OVR_ELM(46), [OVR_LBL(47)] = OVR_ELM(47),
5145 [OVR_LBL(48)] = OVR_ELM(48), [OVR_LBL(49)] = OVR_ELM(49),
5146 [OVR_LBL(50)] = OVR_ELM(50), [OVR_LBL(51)] = OVR_ELM(51),
5147 [OVR_LBL(52)] = OVR_ELM(52), [OVR_LBL(53)] = OVR_ELM(53),
5148 [OVR_LBL(54)] = OVR_ELM(54), [OVR_LBL(55)] = OVR_ELM(55),
5149 [OVR_LBL(56)] = OVR_ELM(56), [OVR_LBL(57)] = OVR_ELM(57),
5150 [OVR_LBL(58)] = OVR_ELM(58), [OVR_LBL(59)] = OVR_ELM(59),
5151 [OVR_LBL(60)] = OVR_ELM(60), [OVR_LBL(61)] = OVR_ELM(61),
5152 [OVR_LBL(62)] = OVR_ELM(62), [OVR_LBL(63)] = OVR_ELM(63),
5153 [OVR_LBL(64)] = OVR_ELM(64), [OVR_LBL(65)] = OVR_ELM(65),
5154 [OVR_LBL(66)] = OVR_ELM(66), [OVR_LBL(67)] = OVR_ELM(67),
5155 [OVR_LBL(68)] = OVR_ELM(68), [OVR_LBL(69)] = OVR_ELM(69),
5156 [OVR_LBL(70)] = OVR_ELM(70), [OVR_LBL(71)] = OVR_ELM(71),
5157 [OVR_LBL(72)] = OVR_ELM(72), [OVR_LBL(73)] = OVR_ELM(73),
5158 [OVR_LBL(74)] = OVR_ELM(74), [OVR_LBL(75)] = OVR_ELM(75),
5159 [OVR_LBL(76)] = OVR_ELM(76), [OVR_LBL(77)] = OVR_ELM(77),
5160 [OVR_LBL(78)] = OVR_ELM(78), [OVR_LBL(79)] = OVR_ELM(79),
5161 [OVR_LBL(80)] = OVR_ELM(80), [OVR_LBL(81)] = OVR_ELM(81),
5162 [OVR_LBL(82)] = OVR_ELM(82), [OVR_LBL(83)] = OVR_ELM(83),
5163 [OVR_LBL(84)] = OVR_ELM(84), [OVR_LBL(85)] = OVR_ELM(85),
5164 [OVR_LBL(86)] = OVR_ELM(86), [OVR_LBL(87)] = OVR_ELM(87),
5165 [OVR_LBL(88)] = OVR_ELM(88), [OVR_LBL(89)] = OVR_ELM(89),
5166 [OVR_LBL(90)] = OVR_ELM(90), [OVR_LBL(91)] = OVR_ELM(91),
5167 [OVR_LBL(92)] = OVR_ELM(92), [OVR_LBL(93)] = OVR_ELM(93),
5168 [OVR_LBL(94)] = OVR_ELM(94), [OVR_LBL(95)] = OVR_ELM(95),
5169 [OVR_LBL(96)] = OVR_ELM(96), [OVR_LBL(97)] = OVR_ELM(97),
5170 [OVR_LBL(98)] = OVR_ELM(98), [OVR_LBL(99)] = OVR_ELM(99),
5171 [OVR_LBL(100)] = OVR_ELM(100), [OVR_LBL(101)] = OVR_ELM(101),
5172 [OVR_LBL(102)] = OVR_ELM(102), [OVR_LBL(103)] = OVR_ELM(103),
5173 [OVR_LBL(104)] = OVR_ELM(104), [OVR_LBL(105)] = OVR_ELM(105),
5174 [OVR_LBL(106)] = OVR_ELM(106), [OVR_LBL(107)] = OVR_ELM(107),
5175 [OVR_LBL(108)] = OVR_ELM(108), [OVR_LBL(109)] = OVR_ELM(109),
5176 [OVR_LBL(110)] = OVR_ELM(110), [OVR_LBL(111)] = OVR_ELM(111),
5177 [OVR_LBL(112)] = OVR_ELM(112), [OVR_LBL(113)] = OVR_ELM(113),
5178 [OVR_LBL(114)] = OVR_ELM(114), [OVR_LBL(115)] = OVR_ELM(115),
5179 [OVR_LBL(116)] = OVR_ELM(116), [OVR_LBL(117)] = OVR_ELM(117),
5180 [OVR_LBL(118)] = OVR_ELM(118), [OVR_LBL(119)] = OVR_ELM(119),
5181 [OVR_LBL(120)] = OVR_ELM(120), [OVR_LBL(121)] = OVR_ELM(121),
5182 [OVR_LBL(122)] = OVR_ELM(122), [OVR_LBL(123)] = OVR_ELM(123),
5183 [OVR_LBL(124)] = OVR_ELM(124), [OVR_LBL(125)] = OVR_ELM(125),
5184 [OVR_LBL(126)] = OVR_ELM(126), [OVR_LBL(127)] = OVR_ELM(127),
5185 [OVR_LBL(128)] = OVR_ELM(128), [OVR_LBL(129)] = OVR_ELM(129),
5186 [OVR_LBL(130)] = OVR_ELM(130), [OVR_LBL(131)] = OVR_ELM(131),
5187 [OVR_LBL(132)] = OVR_ELM(132), [OVR_LBL(133)] = OVR_ELM(133),
5188 [OVR_LBL(134)] = OVR_ELM(134), [OVR_LBL(135)] = OVR_ELM(135),
5189 [OVR_LBL(136)] = OVR_ELM(136), [OVR_LBL(137)] = OVR_ELM(137),
5190 [OVR_LBL(138)] = OVR_ELM(138), [OVR_LBL(139)] = OVR_ELM(139),
5191 [OVR_LBL(140)] = OVR_ELM(140), [OVR_LBL(141)] = OVR_ELM(141),
5192 [OVR_LBL(142)] = OVR_ELM(142), [OVR_LBL(143)] = OVR_ELM(143),
5193 [OVR_LBL(144)] = OVR_ELM(144), [OVR_LBL(145)] = OVR_ELM(145),
5194 [OVR_LBL(146)] = OVR_ELM(146), [OVR_LBL(147)] = OVR_ELM(147),
5195 [OVR_LBL(148)] = OVR_ELM(148), [OVR_LBL(149)] = OVR_ELM(149),
5196 [OVR_LBL(150)] = OVR_ELM(150), [OVR_LBL(151)] = OVR_ELM(151),
5197 [OVR_LBL(152)] = OVR_ELM(152), [OVR_LBL(153)] = OVR_ELM(153),
5198 [OVR_LBL(154)] = OVR_ELM(154), [OVR_LBL(155)] = OVR_ELM(155),
5199 [OVR_LBL(156)] = OVR_ELM(156), [OVR_LBL(157)] = OVR_ELM(157),
5200 [OVR_LBL(158)] = OVR_ELM(158), [OVR_LBL(159)] = OVR_ELM(159),
5201 };
5202 
5203 /* ======================================================================== */
5204 
5205 /* return true if this is chip revision revision a */
5206 int is_ax(struct hfi1_devdata *dd)
5207 {
5208 	u8 chip_rev_minor =
5209 		dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT
5210 			& CCE_REVISION_CHIP_REV_MINOR_MASK;
5211 	return (chip_rev_minor & 0xf0) == 0;
5212 }
5213 
5214 /* return true if this is chip revision revision b */
5215 int is_bx(struct hfi1_devdata *dd)
5216 {
5217 	u8 chip_rev_minor =
5218 		dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT
5219 			& CCE_REVISION_CHIP_REV_MINOR_MASK;
5220 	return (chip_rev_minor & 0xF0) == 0x10;
5221 }
5222 
5223 /*
5224  * Append string s to buffer buf.  Arguments curp and len are the current
5225  * position and remaining length, respectively.
5226  *
5227  * return 0 on success, 1 on out of room
5228  */
5229 static int append_str(char *buf, char **curp, int *lenp, const char *s)
5230 {
5231 	char *p = *curp;
5232 	int len = *lenp;
5233 	int result = 0; /* success */
5234 	char c;
5235 
5236 	/* add a comma, if first in the buffer */
5237 	if (p != buf) {
5238 		if (len == 0) {
5239 			result = 1; /* out of room */
5240 			goto done;
5241 		}
5242 		*p++ = ',';
5243 		len--;
5244 	}
5245 
5246 	/* copy the string */
5247 	while ((c = *s++) != 0) {
5248 		if (len == 0) {
5249 			result = 1; /* out of room */
5250 			goto done;
5251 		}
5252 		*p++ = c;
5253 		len--;
5254 	}
5255 
5256 done:
5257 	/* write return values */
5258 	*curp = p;
5259 	*lenp = len;
5260 
5261 	return result;
5262 }
5263 
5264 /*
5265  * Using the given flag table, print a comma separated string into
5266  * the buffer.  End in '*' if the buffer is too short.
5267  */
5268 static char *flag_string(char *buf, int buf_len, u64 flags,
5269 			 struct flag_table *table, int table_size)
5270 {
5271 	char extra[32];
5272 	char *p = buf;
5273 	int len = buf_len;
5274 	int no_room = 0;
5275 	int i;
5276 
5277 	/* make sure there is at least 2 so we can form "*" */
5278 	if (len < 2)
5279 		return "";
5280 
5281 	len--;	/* leave room for a nul */
5282 	for (i = 0; i < table_size; i++) {
5283 		if (flags & table[i].flag) {
5284 			no_room = append_str(buf, &p, &len, table[i].str);
5285 			if (no_room)
5286 				break;
5287 			flags &= ~table[i].flag;
5288 		}
5289 	}
5290 
5291 	/* any undocumented bits left? */
5292 	if (!no_room && flags) {
5293 		snprintf(extra, sizeof(extra), "bits 0x%llx", flags);
5294 		no_room = append_str(buf, &p, &len, extra);
5295 	}
5296 
5297 	/* add * if ran out of room */
5298 	if (no_room) {
5299 		/* may need to back up to add space for a '*' */
5300 		if (len == 0)
5301 			--p;
5302 		*p++ = '*';
5303 	}
5304 
5305 	/* add final nul - space already allocated above */
5306 	*p = 0;
5307 	return buf;
5308 }
5309 
5310 /* first 8 CCE error interrupt source names */
5311 static const char * const cce_misc_names[] = {
5312 	"CceErrInt",		/* 0 */
5313 	"RxeErrInt",		/* 1 */
5314 	"MiscErrInt",		/* 2 */
5315 	"Reserved3",		/* 3 */
5316 	"PioErrInt",		/* 4 */
5317 	"SDmaErrInt",		/* 5 */
5318 	"EgressErrInt",		/* 6 */
5319 	"TxeErrInt"		/* 7 */
5320 };
5321 
5322 /*
5323  * Return the miscellaneous error interrupt name.
5324  */
5325 static char *is_misc_err_name(char *buf, size_t bsize, unsigned int source)
5326 {
5327 	if (source < ARRAY_SIZE(cce_misc_names))
5328 		strncpy(buf, cce_misc_names[source], bsize);
5329 	else
5330 		snprintf(buf, bsize, "Reserved%u",
5331 			 source + IS_GENERAL_ERR_START);
5332 
5333 	return buf;
5334 }
5335 
5336 /*
5337  * Return the SDMA engine error interrupt name.
5338  */
5339 static char *is_sdma_eng_err_name(char *buf, size_t bsize, unsigned int source)
5340 {
5341 	snprintf(buf, bsize, "SDmaEngErrInt%u", source);
5342 	return buf;
5343 }
5344 
5345 /*
5346  * Return the send context error interrupt name.
5347  */
5348 static char *is_sendctxt_err_name(char *buf, size_t bsize, unsigned int source)
5349 {
5350 	snprintf(buf, bsize, "SendCtxtErrInt%u", source);
5351 	return buf;
5352 }
5353 
5354 static const char * const various_names[] = {
5355 	"PbcInt",
5356 	"GpioAssertInt",
5357 	"Qsfp1Int",
5358 	"Qsfp2Int",
5359 	"TCritInt"
5360 };
5361 
5362 /*
5363  * Return the various interrupt name.
5364  */
5365 static char *is_various_name(char *buf, size_t bsize, unsigned int source)
5366 {
5367 	if (source < ARRAY_SIZE(various_names))
5368 		strncpy(buf, various_names[source], bsize);
5369 	else
5370 		snprintf(buf, bsize, "Reserved%u", source + IS_VARIOUS_START);
5371 	return buf;
5372 }
5373 
5374 /*
5375  * Return the DC interrupt name.
5376  */
5377 static char *is_dc_name(char *buf, size_t bsize, unsigned int source)
5378 {
5379 	static const char * const dc_int_names[] = {
5380 		"common",
5381 		"lcb",
5382 		"8051",
5383 		"lbm"	/* local block merge */
5384 	};
5385 
5386 	if (source < ARRAY_SIZE(dc_int_names))
5387 		snprintf(buf, bsize, "dc_%s_int", dc_int_names[source]);
5388 	else
5389 		snprintf(buf, bsize, "DCInt%u", source);
5390 	return buf;
5391 }
5392 
5393 static const char * const sdma_int_names[] = {
5394 	"SDmaInt",
5395 	"SdmaIdleInt",
5396 	"SdmaProgressInt",
5397 };
5398 
5399 /*
5400  * Return the SDMA engine interrupt name.
5401  */
5402 static char *is_sdma_eng_name(char *buf, size_t bsize, unsigned int source)
5403 {
5404 	/* what interrupt */
5405 	unsigned int what  = source / TXE_NUM_SDMA_ENGINES;
5406 	/* which engine */
5407 	unsigned int which = source % TXE_NUM_SDMA_ENGINES;
5408 
5409 	if (likely(what < 3))
5410 		snprintf(buf, bsize, "%s%u", sdma_int_names[what], which);
5411 	else
5412 		snprintf(buf, bsize, "Invalid SDMA interrupt %u", source);
5413 	return buf;
5414 }
5415 
5416 /*
5417  * Return the receive available interrupt name.
5418  */
5419 static char *is_rcv_avail_name(char *buf, size_t bsize, unsigned int source)
5420 {
5421 	snprintf(buf, bsize, "RcvAvailInt%u", source);
5422 	return buf;
5423 }
5424 
5425 /*
5426  * Return the receive urgent interrupt name.
5427  */
5428 static char *is_rcv_urgent_name(char *buf, size_t bsize, unsigned int source)
5429 {
5430 	snprintf(buf, bsize, "RcvUrgentInt%u", source);
5431 	return buf;
5432 }
5433 
5434 /*
5435  * Return the send credit interrupt name.
5436  */
5437 static char *is_send_credit_name(char *buf, size_t bsize, unsigned int source)
5438 {
5439 	snprintf(buf, bsize, "SendCreditInt%u", source);
5440 	return buf;
5441 }
5442 
5443 /*
5444  * Return the reserved interrupt name.
5445  */
5446 static char *is_reserved_name(char *buf, size_t bsize, unsigned int source)
5447 {
5448 	snprintf(buf, bsize, "Reserved%u", source + IS_RESERVED_START);
5449 	return buf;
5450 }
5451 
5452 static char *cce_err_status_string(char *buf, int buf_len, u64 flags)
5453 {
5454 	return flag_string(buf, buf_len, flags,
5455 			   cce_err_status_flags,
5456 			   ARRAY_SIZE(cce_err_status_flags));
5457 }
5458 
5459 static char *rxe_err_status_string(char *buf, int buf_len, u64 flags)
5460 {
5461 	return flag_string(buf, buf_len, flags,
5462 			   rxe_err_status_flags,
5463 			   ARRAY_SIZE(rxe_err_status_flags));
5464 }
5465 
5466 static char *misc_err_status_string(char *buf, int buf_len, u64 flags)
5467 {
5468 	return flag_string(buf, buf_len, flags, misc_err_status_flags,
5469 			   ARRAY_SIZE(misc_err_status_flags));
5470 }
5471 
5472 static char *pio_err_status_string(char *buf, int buf_len, u64 flags)
5473 {
5474 	return flag_string(buf, buf_len, flags,
5475 			   pio_err_status_flags,
5476 			   ARRAY_SIZE(pio_err_status_flags));
5477 }
5478 
5479 static char *sdma_err_status_string(char *buf, int buf_len, u64 flags)
5480 {
5481 	return flag_string(buf, buf_len, flags,
5482 			   sdma_err_status_flags,
5483 			   ARRAY_SIZE(sdma_err_status_flags));
5484 }
5485 
5486 static char *egress_err_status_string(char *buf, int buf_len, u64 flags)
5487 {
5488 	return flag_string(buf, buf_len, flags,
5489 			   egress_err_status_flags,
5490 			   ARRAY_SIZE(egress_err_status_flags));
5491 }
5492 
5493 static char *egress_err_info_string(char *buf, int buf_len, u64 flags)
5494 {
5495 	return flag_string(buf, buf_len, flags,
5496 			   egress_err_info_flags,
5497 			   ARRAY_SIZE(egress_err_info_flags));
5498 }
5499 
5500 static char *send_err_status_string(char *buf, int buf_len, u64 flags)
5501 {
5502 	return flag_string(buf, buf_len, flags,
5503 			   send_err_status_flags,
5504 			   ARRAY_SIZE(send_err_status_flags));
5505 }
5506 
5507 static void handle_cce_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5508 {
5509 	char buf[96];
5510 	int i = 0;
5511 
5512 	/*
5513 	 * For most these errors, there is nothing that can be done except
5514 	 * report or record it.
5515 	 */
5516 	dd_dev_info(dd, "CCE Error: %s\n",
5517 		    cce_err_status_string(buf, sizeof(buf), reg));
5518 
5519 	if ((reg & CCE_ERR_STATUS_CCE_CLI2_ASYNC_FIFO_PARITY_ERR_SMASK) &&
5520 	    is_ax(dd) && (dd->icode != ICODE_FUNCTIONAL_SIMULATOR)) {
5521 		/* this error requires a manual drop into SPC freeze mode */
5522 		/* then a fix up */
5523 		start_freeze_handling(dd->pport, FREEZE_SELF);
5524 	}
5525 
5526 	for (i = 0; i < NUM_CCE_ERR_STATUS_COUNTERS; i++) {
5527 		if (reg & (1ull << i)) {
5528 			incr_cntr64(&dd->cce_err_status_cnt[i]);
5529 			/* maintain a counter over all cce_err_status errors */
5530 			incr_cntr64(&dd->sw_cce_err_status_aggregate);
5531 		}
5532 	}
5533 }
5534 
5535 /*
5536  * Check counters for receive errors that do not have an interrupt
5537  * associated with them.
5538  */
5539 #define RCVERR_CHECK_TIME 10
5540 static void update_rcverr_timer(struct timer_list *t)
5541 {
5542 	struct hfi1_devdata *dd = from_timer(dd, t, rcverr_timer);
5543 	struct hfi1_pportdata *ppd = dd->pport;
5544 	u32 cur_ovfl_cnt = read_dev_cntr(dd, C_RCV_OVF, CNTR_INVALID_VL);
5545 
5546 	if (dd->rcv_ovfl_cnt < cur_ovfl_cnt &&
5547 	    ppd->port_error_action & OPA_PI_MASK_EX_BUFFER_OVERRUN) {
5548 		dd_dev_info(dd, "%s: PortErrorAction bounce\n", __func__);
5549 		set_link_down_reason(
5550 		ppd, OPA_LINKDOWN_REASON_EXCESSIVE_BUFFER_OVERRUN, 0,
5551 		OPA_LINKDOWN_REASON_EXCESSIVE_BUFFER_OVERRUN);
5552 		queue_work(ppd->link_wq, &ppd->link_bounce_work);
5553 	}
5554 	dd->rcv_ovfl_cnt = (u32)cur_ovfl_cnt;
5555 
5556 	mod_timer(&dd->rcverr_timer, jiffies + HZ * RCVERR_CHECK_TIME);
5557 }
5558 
5559 static int init_rcverr(struct hfi1_devdata *dd)
5560 {
5561 	timer_setup(&dd->rcverr_timer, update_rcverr_timer, 0);
5562 	/* Assume the hardware counter has been reset */
5563 	dd->rcv_ovfl_cnt = 0;
5564 	return mod_timer(&dd->rcverr_timer, jiffies + HZ * RCVERR_CHECK_TIME);
5565 }
5566 
5567 static void free_rcverr(struct hfi1_devdata *dd)
5568 {
5569 	if (dd->rcverr_timer.function)
5570 		del_timer_sync(&dd->rcverr_timer);
5571 }
5572 
5573 static void handle_rxe_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5574 {
5575 	char buf[96];
5576 	int i = 0;
5577 
5578 	dd_dev_info(dd, "Receive Error: %s\n",
5579 		    rxe_err_status_string(buf, sizeof(buf), reg));
5580 
5581 	if (reg & ALL_RXE_FREEZE_ERR) {
5582 		int flags = 0;
5583 
5584 		/*
5585 		 * Freeze mode recovery is disabled for the errors
5586 		 * in RXE_FREEZE_ABORT_MASK
5587 		 */
5588 		if (is_ax(dd) && (reg & RXE_FREEZE_ABORT_MASK))
5589 			flags = FREEZE_ABORT;
5590 
5591 		start_freeze_handling(dd->pport, flags);
5592 	}
5593 
5594 	for (i = 0; i < NUM_RCV_ERR_STATUS_COUNTERS; i++) {
5595 		if (reg & (1ull << i))
5596 			incr_cntr64(&dd->rcv_err_status_cnt[i]);
5597 	}
5598 }
5599 
5600 static void handle_misc_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5601 {
5602 	char buf[96];
5603 	int i = 0;
5604 
5605 	dd_dev_info(dd, "Misc Error: %s",
5606 		    misc_err_status_string(buf, sizeof(buf), reg));
5607 	for (i = 0; i < NUM_MISC_ERR_STATUS_COUNTERS; i++) {
5608 		if (reg & (1ull << i))
5609 			incr_cntr64(&dd->misc_err_status_cnt[i]);
5610 	}
5611 }
5612 
5613 static void handle_pio_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5614 {
5615 	char buf[96];
5616 	int i = 0;
5617 
5618 	dd_dev_info(dd, "PIO Error: %s\n",
5619 		    pio_err_status_string(buf, sizeof(buf), reg));
5620 
5621 	if (reg & ALL_PIO_FREEZE_ERR)
5622 		start_freeze_handling(dd->pport, 0);
5623 
5624 	for (i = 0; i < NUM_SEND_PIO_ERR_STATUS_COUNTERS; i++) {
5625 		if (reg & (1ull << i))
5626 			incr_cntr64(&dd->send_pio_err_status_cnt[i]);
5627 	}
5628 }
5629 
5630 static void handle_sdma_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5631 {
5632 	char buf[96];
5633 	int i = 0;
5634 
5635 	dd_dev_info(dd, "SDMA Error: %s\n",
5636 		    sdma_err_status_string(buf, sizeof(buf), reg));
5637 
5638 	if (reg & ALL_SDMA_FREEZE_ERR)
5639 		start_freeze_handling(dd->pport, 0);
5640 
5641 	for (i = 0; i < NUM_SEND_DMA_ERR_STATUS_COUNTERS; i++) {
5642 		if (reg & (1ull << i))
5643 			incr_cntr64(&dd->send_dma_err_status_cnt[i]);
5644 	}
5645 }
5646 
5647 static inline void __count_port_discards(struct hfi1_pportdata *ppd)
5648 {
5649 	incr_cntr64(&ppd->port_xmit_discards);
5650 }
5651 
5652 static void count_port_inactive(struct hfi1_devdata *dd)
5653 {
5654 	__count_port_discards(dd->pport);
5655 }
5656 
5657 /*
5658  * We have had a "disallowed packet" error during egress. Determine the
5659  * integrity check which failed, and update relevant error counter, etc.
5660  *
5661  * Note that the SEND_EGRESS_ERR_INFO register has only a single
5662  * bit of state per integrity check, and so we can miss the reason for an
5663  * egress error if more than one packet fails the same integrity check
5664  * since we cleared the corresponding bit in SEND_EGRESS_ERR_INFO.
5665  */
5666 static void handle_send_egress_err_info(struct hfi1_devdata *dd,
5667 					int vl)
5668 {
5669 	struct hfi1_pportdata *ppd = dd->pport;
5670 	u64 src = read_csr(dd, SEND_EGRESS_ERR_SOURCE); /* read first */
5671 	u64 info = read_csr(dd, SEND_EGRESS_ERR_INFO);
5672 	char buf[96];
5673 
5674 	/* clear down all observed info as quickly as possible after read */
5675 	write_csr(dd, SEND_EGRESS_ERR_INFO, info);
5676 
5677 	dd_dev_info(dd,
5678 		    "Egress Error Info: 0x%llx, %s Egress Error Src 0x%llx\n",
5679 		    info, egress_err_info_string(buf, sizeof(buf), info), src);
5680 
5681 	/* Eventually add other counters for each bit */
5682 	if (info & PORT_DISCARD_EGRESS_ERRS) {
5683 		int weight, i;
5684 
5685 		/*
5686 		 * Count all applicable bits as individual errors and
5687 		 * attribute them to the packet that triggered this handler.
5688 		 * This may not be completely accurate due to limitations
5689 		 * on the available hardware error information.  There is
5690 		 * a single information register and any number of error
5691 		 * packets may have occurred and contributed to it before
5692 		 * this routine is called.  This means that:
5693 		 * a) If multiple packets with the same error occur before
5694 		 *    this routine is called, earlier packets are missed.
5695 		 *    There is only a single bit for each error type.
5696 		 * b) Errors may not be attributed to the correct VL.
5697 		 *    The driver is attributing all bits in the info register
5698 		 *    to the packet that triggered this call, but bits
5699 		 *    could be an accumulation of different packets with
5700 		 *    different VLs.
5701 		 * c) A single error packet may have multiple counts attached
5702 		 *    to it.  There is no way for the driver to know if
5703 		 *    multiple bits set in the info register are due to a
5704 		 *    single packet or multiple packets.  The driver assumes
5705 		 *    multiple packets.
5706 		 */
5707 		weight = hweight64(info & PORT_DISCARD_EGRESS_ERRS);
5708 		for (i = 0; i < weight; i++) {
5709 			__count_port_discards(ppd);
5710 			if (vl >= 0 && vl < TXE_NUM_DATA_VL)
5711 				incr_cntr64(&ppd->port_xmit_discards_vl[vl]);
5712 			else if (vl == 15)
5713 				incr_cntr64(&ppd->port_xmit_discards_vl
5714 					    [C_VL_15]);
5715 		}
5716 	}
5717 }
5718 
5719 /*
5720  * Input value is a bit position within the SEND_EGRESS_ERR_STATUS
5721  * register. Does it represent a 'port inactive' error?
5722  */
5723 static inline int port_inactive_err(u64 posn)
5724 {
5725 	return (posn >= SEES(TX_LINKDOWN) &&
5726 		posn <= SEES(TX_INCORRECT_LINK_STATE));
5727 }
5728 
5729 /*
5730  * Input value is a bit position within the SEND_EGRESS_ERR_STATUS
5731  * register. Does it represent a 'disallowed packet' error?
5732  */
5733 static inline int disallowed_pkt_err(int posn)
5734 {
5735 	return (posn >= SEES(TX_SDMA0_DISALLOWED_PACKET) &&
5736 		posn <= SEES(TX_SDMA15_DISALLOWED_PACKET));
5737 }
5738 
5739 /*
5740  * Input value is a bit position of one of the SDMA engine disallowed
5741  * packet errors.  Return which engine.  Use of this must be guarded by
5742  * disallowed_pkt_err().
5743  */
5744 static inline int disallowed_pkt_engine(int posn)
5745 {
5746 	return posn - SEES(TX_SDMA0_DISALLOWED_PACKET);
5747 }
5748 
5749 /*
5750  * Translate an SDMA engine to a VL.  Return -1 if the tranlation cannot
5751  * be done.
5752  */
5753 static int engine_to_vl(struct hfi1_devdata *dd, int engine)
5754 {
5755 	struct sdma_vl_map *m;
5756 	int vl;
5757 
5758 	/* range check */
5759 	if (engine < 0 || engine >= TXE_NUM_SDMA_ENGINES)
5760 		return -1;
5761 
5762 	rcu_read_lock();
5763 	m = rcu_dereference(dd->sdma_map);
5764 	vl = m->engine_to_vl[engine];
5765 	rcu_read_unlock();
5766 
5767 	return vl;
5768 }
5769 
5770 /*
5771  * Translate the send context (sofware index) into a VL.  Return -1 if the
5772  * translation cannot be done.
5773  */
5774 static int sc_to_vl(struct hfi1_devdata *dd, int sw_index)
5775 {
5776 	struct send_context_info *sci;
5777 	struct send_context *sc;
5778 	int i;
5779 
5780 	sci = &dd->send_contexts[sw_index];
5781 
5782 	/* there is no information for user (PSM) and ack contexts */
5783 	if ((sci->type != SC_KERNEL) && (sci->type != SC_VL15))
5784 		return -1;
5785 
5786 	sc = sci->sc;
5787 	if (!sc)
5788 		return -1;
5789 	if (dd->vld[15].sc == sc)
5790 		return 15;
5791 	for (i = 0; i < num_vls; i++)
5792 		if (dd->vld[i].sc == sc)
5793 			return i;
5794 
5795 	return -1;
5796 }
5797 
5798 static void handle_egress_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5799 {
5800 	u64 reg_copy = reg, handled = 0;
5801 	char buf[96];
5802 	int i = 0;
5803 
5804 	if (reg & ALL_TXE_EGRESS_FREEZE_ERR)
5805 		start_freeze_handling(dd->pport, 0);
5806 	else if (is_ax(dd) &&
5807 		 (reg & SEND_EGRESS_ERR_STATUS_TX_CREDIT_RETURN_VL_ERR_SMASK) &&
5808 		 (dd->icode != ICODE_FUNCTIONAL_SIMULATOR))
5809 		start_freeze_handling(dd->pport, 0);
5810 
5811 	while (reg_copy) {
5812 		int posn = fls64(reg_copy);
5813 		/* fls64() returns a 1-based offset, we want it zero based */
5814 		int shift = posn - 1;
5815 		u64 mask = 1ULL << shift;
5816 
5817 		if (port_inactive_err(shift)) {
5818 			count_port_inactive(dd);
5819 			handled |= mask;
5820 		} else if (disallowed_pkt_err(shift)) {
5821 			int vl = engine_to_vl(dd, disallowed_pkt_engine(shift));
5822 
5823 			handle_send_egress_err_info(dd, vl);
5824 			handled |= mask;
5825 		}
5826 		reg_copy &= ~mask;
5827 	}
5828 
5829 	reg &= ~handled;
5830 
5831 	if (reg)
5832 		dd_dev_info(dd, "Egress Error: %s\n",
5833 			    egress_err_status_string(buf, sizeof(buf), reg));
5834 
5835 	for (i = 0; i < NUM_SEND_EGRESS_ERR_STATUS_COUNTERS; i++) {
5836 		if (reg & (1ull << i))
5837 			incr_cntr64(&dd->send_egress_err_status_cnt[i]);
5838 	}
5839 }
5840 
5841 static void handle_txe_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5842 {
5843 	char buf[96];
5844 	int i = 0;
5845 
5846 	dd_dev_info(dd, "Send Error: %s\n",
5847 		    send_err_status_string(buf, sizeof(buf), reg));
5848 
5849 	for (i = 0; i < NUM_SEND_ERR_STATUS_COUNTERS; i++) {
5850 		if (reg & (1ull << i))
5851 			incr_cntr64(&dd->send_err_status_cnt[i]);
5852 	}
5853 }
5854 
5855 /*
5856  * The maximum number of times the error clear down will loop before
5857  * blocking a repeating error.  This value is arbitrary.
5858  */
5859 #define MAX_CLEAR_COUNT 20
5860 
5861 /*
5862  * Clear and handle an error register.  All error interrupts are funneled
5863  * through here to have a central location to correctly handle single-
5864  * or multi-shot errors.
5865  *
5866  * For non per-context registers, call this routine with a context value
5867  * of 0 so the per-context offset is zero.
5868  *
5869  * If the handler loops too many times, assume that something is wrong
5870  * and can't be fixed, so mask the error bits.
5871  */
5872 static void interrupt_clear_down(struct hfi1_devdata *dd,
5873 				 u32 context,
5874 				 const struct err_reg_info *eri)
5875 {
5876 	u64 reg;
5877 	u32 count;
5878 
5879 	/* read in a loop until no more errors are seen */
5880 	count = 0;
5881 	while (1) {
5882 		reg = read_kctxt_csr(dd, context, eri->status);
5883 		if (reg == 0)
5884 			break;
5885 		write_kctxt_csr(dd, context, eri->clear, reg);
5886 		if (likely(eri->handler))
5887 			eri->handler(dd, context, reg);
5888 		count++;
5889 		if (count > MAX_CLEAR_COUNT) {
5890 			u64 mask;
5891 
5892 			dd_dev_err(dd, "Repeating %s bits 0x%llx - masking\n",
5893 				   eri->desc, reg);
5894 			/*
5895 			 * Read-modify-write so any other masked bits
5896 			 * remain masked.
5897 			 */
5898 			mask = read_kctxt_csr(dd, context, eri->mask);
5899 			mask &= ~reg;
5900 			write_kctxt_csr(dd, context, eri->mask, mask);
5901 			break;
5902 		}
5903 	}
5904 }
5905 
5906 /*
5907  * CCE block "misc" interrupt.  Source is < 16.
5908  */
5909 static void is_misc_err_int(struct hfi1_devdata *dd, unsigned int source)
5910 {
5911 	const struct err_reg_info *eri = &misc_errs[source];
5912 
5913 	if (eri->handler) {
5914 		interrupt_clear_down(dd, 0, eri);
5915 	} else {
5916 		dd_dev_err(dd, "Unexpected misc interrupt (%u) - reserved\n",
5917 			   source);
5918 	}
5919 }
5920 
5921 static char *send_context_err_status_string(char *buf, int buf_len, u64 flags)
5922 {
5923 	return flag_string(buf, buf_len, flags,
5924 			   sc_err_status_flags,
5925 			   ARRAY_SIZE(sc_err_status_flags));
5926 }
5927 
5928 /*
5929  * Send context error interrupt.  Source (hw_context) is < 160.
5930  *
5931  * All send context errors cause the send context to halt.  The normal
5932  * clear-down mechanism cannot be used because we cannot clear the
5933  * error bits until several other long-running items are done first.
5934  * This is OK because with the context halted, nothing else is going
5935  * to happen on it anyway.
5936  */
5937 static void is_sendctxt_err_int(struct hfi1_devdata *dd,
5938 				unsigned int hw_context)
5939 {
5940 	struct send_context_info *sci;
5941 	struct send_context *sc;
5942 	char flags[96];
5943 	u64 status;
5944 	u32 sw_index;
5945 	int i = 0;
5946 
5947 	sw_index = dd->hw_to_sw[hw_context];
5948 	if (sw_index >= dd->num_send_contexts) {
5949 		dd_dev_err(dd,
5950 			   "out of range sw index %u for send context %u\n",
5951 			   sw_index, hw_context);
5952 		return;
5953 	}
5954 	sci = &dd->send_contexts[sw_index];
5955 	sc = sci->sc;
5956 	if (!sc) {
5957 		dd_dev_err(dd, "%s: context %u(%u): no sc?\n", __func__,
5958 			   sw_index, hw_context);
5959 		return;
5960 	}
5961 
5962 	/* tell the software that a halt has begun */
5963 	sc_stop(sc, SCF_HALTED);
5964 
5965 	status = read_kctxt_csr(dd, hw_context, SEND_CTXT_ERR_STATUS);
5966 
5967 	dd_dev_info(dd, "Send Context %u(%u) Error: %s\n", sw_index, hw_context,
5968 		    send_context_err_status_string(flags, sizeof(flags),
5969 						   status));
5970 
5971 	if (status & SEND_CTXT_ERR_STATUS_PIO_DISALLOWED_PACKET_ERR_SMASK)
5972 		handle_send_egress_err_info(dd, sc_to_vl(dd, sw_index));
5973 
5974 	/*
5975 	 * Automatically restart halted kernel contexts out of interrupt
5976 	 * context.  User contexts must ask the driver to restart the context.
5977 	 */
5978 	if (sc->type != SC_USER)
5979 		queue_work(dd->pport->hfi1_wq, &sc->halt_work);
5980 
5981 	/*
5982 	 * Update the counters for the corresponding status bits.
5983 	 * Note that these particular counters are aggregated over all
5984 	 * 160 contexts.
5985 	 */
5986 	for (i = 0; i < NUM_SEND_CTXT_ERR_STATUS_COUNTERS; i++) {
5987 		if (status & (1ull << i))
5988 			incr_cntr64(&dd->sw_ctxt_err_status_cnt[i]);
5989 	}
5990 }
5991 
5992 static void handle_sdma_eng_err(struct hfi1_devdata *dd,
5993 				unsigned int source, u64 status)
5994 {
5995 	struct sdma_engine *sde;
5996 	int i = 0;
5997 
5998 	sde = &dd->per_sdma[source];
5999 #ifdef CONFIG_SDMA_VERBOSITY
6000 	dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
6001 		   slashstrip(__FILE__), __LINE__, __func__);
6002 	dd_dev_err(sde->dd, "CONFIG SDMA(%u) source: %u status 0x%llx\n",
6003 		   sde->this_idx, source, (unsigned long long)status);
6004 #endif
6005 	sde->err_cnt++;
6006 	sdma_engine_error(sde, status);
6007 
6008 	/*
6009 	* Update the counters for the corresponding status bits.
6010 	* Note that these particular counters are aggregated over
6011 	* all 16 DMA engines.
6012 	*/
6013 	for (i = 0; i < NUM_SEND_DMA_ENG_ERR_STATUS_COUNTERS; i++) {
6014 		if (status & (1ull << i))
6015 			incr_cntr64(&dd->sw_send_dma_eng_err_status_cnt[i]);
6016 	}
6017 }
6018 
6019 /*
6020  * CCE block SDMA error interrupt.  Source is < 16.
6021  */
6022 static void is_sdma_eng_err_int(struct hfi1_devdata *dd, unsigned int source)
6023 {
6024 #ifdef CONFIG_SDMA_VERBOSITY
6025 	struct sdma_engine *sde = &dd->per_sdma[source];
6026 
6027 	dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
6028 		   slashstrip(__FILE__), __LINE__, __func__);
6029 	dd_dev_err(dd, "CONFIG SDMA(%u) source: %u\n", sde->this_idx,
6030 		   source);
6031 	sdma_dumpstate(sde);
6032 #endif
6033 	interrupt_clear_down(dd, source, &sdma_eng_err);
6034 }
6035 
6036 /*
6037  * CCE block "various" interrupt.  Source is < 8.
6038  */
6039 static void is_various_int(struct hfi1_devdata *dd, unsigned int source)
6040 {
6041 	const struct err_reg_info *eri = &various_err[source];
6042 
6043 	/*
6044 	 * TCritInt cannot go through interrupt_clear_down()
6045 	 * because it is not a second tier interrupt. The handler
6046 	 * should be called directly.
6047 	 */
6048 	if (source == TCRIT_INT_SOURCE)
6049 		handle_temp_err(dd);
6050 	else if (eri->handler)
6051 		interrupt_clear_down(dd, 0, eri);
6052 	else
6053 		dd_dev_info(dd,
6054 			    "%s: Unimplemented/reserved interrupt %d\n",
6055 			    __func__, source);
6056 }
6057 
6058 static void handle_qsfp_int(struct hfi1_devdata *dd, u32 src_ctx, u64 reg)
6059 {
6060 	/* src_ctx is always zero */
6061 	struct hfi1_pportdata *ppd = dd->pport;
6062 	unsigned long flags;
6063 	u64 qsfp_int_mgmt = (u64)(QSFP_HFI0_INT_N | QSFP_HFI0_MODPRST_N);
6064 
6065 	if (reg & QSFP_HFI0_MODPRST_N) {
6066 		if (!qsfp_mod_present(ppd)) {
6067 			dd_dev_info(dd, "%s: QSFP module removed\n",
6068 				    __func__);
6069 
6070 			ppd->driver_link_ready = 0;
6071 			/*
6072 			 * Cable removed, reset all our information about the
6073 			 * cache and cable capabilities
6074 			 */
6075 
6076 			spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
6077 			/*
6078 			 * We don't set cache_refresh_required here as we expect
6079 			 * an interrupt when a cable is inserted
6080 			 */
6081 			ppd->qsfp_info.cache_valid = 0;
6082 			ppd->qsfp_info.reset_needed = 0;
6083 			ppd->qsfp_info.limiting_active = 0;
6084 			spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock,
6085 					       flags);
6086 			/* Invert the ModPresent pin now to detect plug-in */
6087 			write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_INVERT :
6088 				  ASIC_QSFP1_INVERT, qsfp_int_mgmt);
6089 
6090 			if ((ppd->offline_disabled_reason >
6091 			  HFI1_ODR_MASK(
6092 			  OPA_LINKDOWN_REASON_LOCAL_MEDIA_NOT_INSTALLED)) ||
6093 			  (ppd->offline_disabled_reason ==
6094 			  HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE)))
6095 				ppd->offline_disabled_reason =
6096 				HFI1_ODR_MASK(
6097 				OPA_LINKDOWN_REASON_LOCAL_MEDIA_NOT_INSTALLED);
6098 
6099 			if (ppd->host_link_state == HLS_DN_POLL) {
6100 				/*
6101 				 * The link is still in POLL. This means
6102 				 * that the normal link down processing
6103 				 * will not happen. We have to do it here
6104 				 * before turning the DC off.
6105 				 */
6106 				queue_work(ppd->link_wq, &ppd->link_down_work);
6107 			}
6108 		} else {
6109 			dd_dev_info(dd, "%s: QSFP module inserted\n",
6110 				    __func__);
6111 
6112 			spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
6113 			ppd->qsfp_info.cache_valid = 0;
6114 			ppd->qsfp_info.cache_refresh_required = 1;
6115 			spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock,
6116 					       flags);
6117 
6118 			/*
6119 			 * Stop inversion of ModPresent pin to detect
6120 			 * removal of the cable
6121 			 */
6122 			qsfp_int_mgmt &= ~(u64)QSFP_HFI0_MODPRST_N;
6123 			write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_INVERT :
6124 				  ASIC_QSFP1_INVERT, qsfp_int_mgmt);
6125 
6126 			ppd->offline_disabled_reason =
6127 				HFI1_ODR_MASK(OPA_LINKDOWN_REASON_TRANSIENT);
6128 		}
6129 	}
6130 
6131 	if (reg & QSFP_HFI0_INT_N) {
6132 		dd_dev_info(dd, "%s: Interrupt received from QSFP module\n",
6133 			    __func__);
6134 		spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
6135 		ppd->qsfp_info.check_interrupt_flags = 1;
6136 		spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock, flags);
6137 	}
6138 
6139 	/* Schedule the QSFP work only if there is a cable attached. */
6140 	if (qsfp_mod_present(ppd))
6141 		queue_work(ppd->link_wq, &ppd->qsfp_info.qsfp_work);
6142 }
6143 
6144 static int request_host_lcb_access(struct hfi1_devdata *dd)
6145 {
6146 	int ret;
6147 
6148 	ret = do_8051_command(dd, HCMD_MISC,
6149 			      (u64)HCMD_MISC_REQUEST_LCB_ACCESS <<
6150 			      LOAD_DATA_FIELD_ID_SHIFT, NULL);
6151 	if (ret != HCMD_SUCCESS) {
6152 		dd_dev_err(dd, "%s: command failed with error %d\n",
6153 			   __func__, ret);
6154 	}
6155 	return ret == HCMD_SUCCESS ? 0 : -EBUSY;
6156 }
6157 
6158 static int request_8051_lcb_access(struct hfi1_devdata *dd)
6159 {
6160 	int ret;
6161 
6162 	ret = do_8051_command(dd, HCMD_MISC,
6163 			      (u64)HCMD_MISC_GRANT_LCB_ACCESS <<
6164 			      LOAD_DATA_FIELD_ID_SHIFT, NULL);
6165 	if (ret != HCMD_SUCCESS) {
6166 		dd_dev_err(dd, "%s: command failed with error %d\n",
6167 			   __func__, ret);
6168 	}
6169 	return ret == HCMD_SUCCESS ? 0 : -EBUSY;
6170 }
6171 
6172 /*
6173  * Set the LCB selector - allow host access.  The DCC selector always
6174  * points to the host.
6175  */
6176 static inline void set_host_lcb_access(struct hfi1_devdata *dd)
6177 {
6178 	write_csr(dd, DC_DC8051_CFG_CSR_ACCESS_SEL,
6179 		  DC_DC8051_CFG_CSR_ACCESS_SEL_DCC_SMASK |
6180 		  DC_DC8051_CFG_CSR_ACCESS_SEL_LCB_SMASK);
6181 }
6182 
6183 /*
6184  * Clear the LCB selector - allow 8051 access.  The DCC selector always
6185  * points to the host.
6186  */
6187 static inline void set_8051_lcb_access(struct hfi1_devdata *dd)
6188 {
6189 	write_csr(dd, DC_DC8051_CFG_CSR_ACCESS_SEL,
6190 		  DC_DC8051_CFG_CSR_ACCESS_SEL_DCC_SMASK);
6191 }
6192 
6193 /*
6194  * Acquire LCB access from the 8051.  If the host already has access,
6195  * just increment a counter.  Otherwise, inform the 8051 that the
6196  * host is taking access.
6197  *
6198  * Returns:
6199  *	0 on success
6200  *	-EBUSY if the 8051 has control and cannot be disturbed
6201  *	-errno if unable to acquire access from the 8051
6202  */
6203 int acquire_lcb_access(struct hfi1_devdata *dd, int sleep_ok)
6204 {
6205 	struct hfi1_pportdata *ppd = dd->pport;
6206 	int ret = 0;
6207 
6208 	/*
6209 	 * Use the host link state lock so the operation of this routine
6210 	 * { link state check, selector change, count increment } can occur
6211 	 * as a unit against a link state change.  Otherwise there is a
6212 	 * race between the state change and the count increment.
6213 	 */
6214 	if (sleep_ok) {
6215 		mutex_lock(&ppd->hls_lock);
6216 	} else {
6217 		while (!mutex_trylock(&ppd->hls_lock))
6218 			udelay(1);
6219 	}
6220 
6221 	/* this access is valid only when the link is up */
6222 	if (ppd->host_link_state & HLS_DOWN) {
6223 		dd_dev_info(dd, "%s: link state %s not up\n",
6224 			    __func__, link_state_name(ppd->host_link_state));
6225 		ret = -EBUSY;
6226 		goto done;
6227 	}
6228 
6229 	if (dd->lcb_access_count == 0) {
6230 		ret = request_host_lcb_access(dd);
6231 		if (ret) {
6232 			dd_dev_err(dd,
6233 				   "%s: unable to acquire LCB access, err %d\n",
6234 				   __func__, ret);
6235 			goto done;
6236 		}
6237 		set_host_lcb_access(dd);
6238 	}
6239 	dd->lcb_access_count++;
6240 done:
6241 	mutex_unlock(&ppd->hls_lock);
6242 	return ret;
6243 }
6244 
6245 /*
6246  * Release LCB access by decrementing the use count.  If the count is moving
6247  * from 1 to 0, inform 8051 that it has control back.
6248  *
6249  * Returns:
6250  *	0 on success
6251  *	-errno if unable to release access to the 8051
6252  */
6253 int release_lcb_access(struct hfi1_devdata *dd, int sleep_ok)
6254 {
6255 	int ret = 0;
6256 
6257 	/*
6258 	 * Use the host link state lock because the acquire needed it.
6259 	 * Here, we only need to keep { selector change, count decrement }
6260 	 * as a unit.
6261 	 */
6262 	if (sleep_ok) {
6263 		mutex_lock(&dd->pport->hls_lock);
6264 	} else {
6265 		while (!mutex_trylock(&dd->pport->hls_lock))
6266 			udelay(1);
6267 	}
6268 
6269 	if (dd->lcb_access_count == 0) {
6270 		dd_dev_err(dd, "%s: LCB access count is zero.  Skipping.\n",
6271 			   __func__);
6272 		goto done;
6273 	}
6274 
6275 	if (dd->lcb_access_count == 1) {
6276 		set_8051_lcb_access(dd);
6277 		ret = request_8051_lcb_access(dd);
6278 		if (ret) {
6279 			dd_dev_err(dd,
6280 				   "%s: unable to release LCB access, err %d\n",
6281 				   __func__, ret);
6282 			/* restore host access if the grant didn't work */
6283 			set_host_lcb_access(dd);
6284 			goto done;
6285 		}
6286 	}
6287 	dd->lcb_access_count--;
6288 done:
6289 	mutex_unlock(&dd->pport->hls_lock);
6290 	return ret;
6291 }
6292 
6293 /*
6294  * Initialize LCB access variables and state.  Called during driver load,
6295  * after most of the initialization is finished.
6296  *
6297  * The DC default is LCB access on for the host.  The driver defaults to
6298  * leaving access to the 8051.  Assign access now - this constrains the call
6299  * to this routine to be after all LCB set-up is done.  In particular, after
6300  * hf1_init_dd() -> set_up_interrupts() -> clear_all_interrupts()
6301  */
6302 static void init_lcb_access(struct hfi1_devdata *dd)
6303 {
6304 	dd->lcb_access_count = 0;
6305 }
6306 
6307 /*
6308  * Write a response back to a 8051 request.
6309  */
6310 static void hreq_response(struct hfi1_devdata *dd, u8 return_code, u16 rsp_data)
6311 {
6312 	write_csr(dd, DC_DC8051_CFG_EXT_DEV_0,
6313 		  DC_DC8051_CFG_EXT_DEV_0_COMPLETED_SMASK |
6314 		  (u64)return_code <<
6315 		  DC_DC8051_CFG_EXT_DEV_0_RETURN_CODE_SHIFT |
6316 		  (u64)rsp_data << DC_DC8051_CFG_EXT_DEV_0_RSP_DATA_SHIFT);
6317 }
6318 
6319 /*
6320  * Handle host requests from the 8051.
6321  */
6322 static void handle_8051_request(struct hfi1_pportdata *ppd)
6323 {
6324 	struct hfi1_devdata *dd = ppd->dd;
6325 	u64 reg;
6326 	u16 data = 0;
6327 	u8 type;
6328 
6329 	reg = read_csr(dd, DC_DC8051_CFG_EXT_DEV_1);
6330 	if ((reg & DC_DC8051_CFG_EXT_DEV_1_REQ_NEW_SMASK) == 0)
6331 		return;	/* no request */
6332 
6333 	/* zero out COMPLETED so the response is seen */
6334 	write_csr(dd, DC_DC8051_CFG_EXT_DEV_0, 0);
6335 
6336 	/* extract request details */
6337 	type = (reg >> DC_DC8051_CFG_EXT_DEV_1_REQ_TYPE_SHIFT)
6338 			& DC_DC8051_CFG_EXT_DEV_1_REQ_TYPE_MASK;
6339 	data = (reg >> DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SHIFT)
6340 			& DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_MASK;
6341 
6342 	switch (type) {
6343 	case HREQ_LOAD_CONFIG:
6344 	case HREQ_SAVE_CONFIG:
6345 	case HREQ_READ_CONFIG:
6346 	case HREQ_SET_TX_EQ_ABS:
6347 	case HREQ_SET_TX_EQ_REL:
6348 	case HREQ_ENABLE:
6349 		dd_dev_info(dd, "8051 request: request 0x%x not supported\n",
6350 			    type);
6351 		hreq_response(dd, HREQ_NOT_SUPPORTED, 0);
6352 		break;
6353 	case HREQ_CONFIG_DONE:
6354 		hreq_response(dd, HREQ_SUCCESS, 0);
6355 		break;
6356 
6357 	case HREQ_INTERFACE_TEST:
6358 		hreq_response(dd, HREQ_SUCCESS, data);
6359 		break;
6360 	default:
6361 		dd_dev_err(dd, "8051 request: unknown request 0x%x\n", type);
6362 		hreq_response(dd, HREQ_NOT_SUPPORTED, 0);
6363 		break;
6364 	}
6365 }
6366 
6367 /*
6368  * Set up allocation unit vaulue.
6369  */
6370 void set_up_vau(struct hfi1_devdata *dd, u8 vau)
6371 {
6372 	u64 reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
6373 
6374 	/* do not modify other values in the register */
6375 	reg &= ~SEND_CM_GLOBAL_CREDIT_AU_SMASK;
6376 	reg |= (u64)vau << SEND_CM_GLOBAL_CREDIT_AU_SHIFT;
6377 	write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg);
6378 }
6379 
6380 /*
6381  * Set up initial VL15 credits of the remote.  Assumes the rest of
6382  * the CM credit registers are zero from a previous global or credit reset.
6383  * Shared limit for VL15 will always be 0.
6384  */
6385 void set_up_vl15(struct hfi1_devdata *dd, u16 vl15buf)
6386 {
6387 	u64 reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
6388 
6389 	/* set initial values for total and shared credit limit */
6390 	reg &= ~(SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SMASK |
6391 		 SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SMASK);
6392 
6393 	/*
6394 	 * Set total limit to be equal to VL15 credits.
6395 	 * Leave shared limit at 0.
6396 	 */
6397 	reg |= (u64)vl15buf << SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT;
6398 	write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg);
6399 
6400 	write_csr(dd, SEND_CM_CREDIT_VL15, (u64)vl15buf
6401 		  << SEND_CM_CREDIT_VL15_DEDICATED_LIMIT_VL_SHIFT);
6402 }
6403 
6404 /*
6405  * Zero all credit details from the previous connection and
6406  * reset the CM manager's internal counters.
6407  */
6408 void reset_link_credits(struct hfi1_devdata *dd)
6409 {
6410 	int i;
6411 
6412 	/* remove all previous VL credit limits */
6413 	for (i = 0; i < TXE_NUM_DATA_VL; i++)
6414 		write_csr(dd, SEND_CM_CREDIT_VL + (8 * i), 0);
6415 	write_csr(dd, SEND_CM_CREDIT_VL15, 0);
6416 	write_csr(dd, SEND_CM_GLOBAL_CREDIT, 0);
6417 	/* reset the CM block */
6418 	pio_send_control(dd, PSC_CM_RESET);
6419 	/* reset cached value */
6420 	dd->vl15buf_cached = 0;
6421 }
6422 
6423 /* convert a vCU to a CU */
6424 static u32 vcu_to_cu(u8 vcu)
6425 {
6426 	return 1 << vcu;
6427 }
6428 
6429 /* convert a CU to a vCU */
6430 static u8 cu_to_vcu(u32 cu)
6431 {
6432 	return ilog2(cu);
6433 }
6434 
6435 /* convert a vAU to an AU */
6436 static u32 vau_to_au(u8 vau)
6437 {
6438 	return 8 * (1 << vau);
6439 }
6440 
6441 static void set_linkup_defaults(struct hfi1_pportdata *ppd)
6442 {
6443 	ppd->sm_trap_qp = 0x0;
6444 	ppd->sa_qp = 0x1;
6445 }
6446 
6447 /*
6448  * Graceful LCB shutdown.  This leaves the LCB FIFOs in reset.
6449  */
6450 static void lcb_shutdown(struct hfi1_devdata *dd, int abort)
6451 {
6452 	u64 reg;
6453 
6454 	/* clear lcb run: LCB_CFG_RUN.EN = 0 */
6455 	write_csr(dd, DC_LCB_CFG_RUN, 0);
6456 	/* set tx fifo reset: LCB_CFG_TX_FIFOS_RESET.VAL = 1 */
6457 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET,
6458 		  1ull << DC_LCB_CFG_TX_FIFOS_RESET_VAL_SHIFT);
6459 	/* set dcc reset csr: DCC_CFG_RESET.{reset_lcb,reset_rx_fpe} = 1 */
6460 	dd->lcb_err_en = read_csr(dd, DC_LCB_ERR_EN);
6461 	reg = read_csr(dd, DCC_CFG_RESET);
6462 	write_csr(dd, DCC_CFG_RESET, reg |
6463 		  (1ull << DCC_CFG_RESET_RESET_LCB_SHIFT) |
6464 		  (1ull << DCC_CFG_RESET_RESET_RX_FPE_SHIFT));
6465 	(void)read_csr(dd, DCC_CFG_RESET); /* make sure the write completed */
6466 	if (!abort) {
6467 		udelay(1);    /* must hold for the longer of 16cclks or 20ns */
6468 		write_csr(dd, DCC_CFG_RESET, reg);
6469 		write_csr(dd, DC_LCB_ERR_EN, dd->lcb_err_en);
6470 	}
6471 }
6472 
6473 /*
6474  * This routine should be called after the link has been transitioned to
6475  * OFFLINE (OFFLINE state has the side effect of putting the SerDes into
6476  * reset).
6477  *
6478  * The expectation is that the caller of this routine would have taken
6479  * care of properly transitioning the link into the correct state.
6480  * NOTE: the caller needs to acquire the dd->dc8051_lock lock
6481  *       before calling this function.
6482  */
6483 static void _dc_shutdown(struct hfi1_devdata *dd)
6484 {
6485 	lockdep_assert_held(&dd->dc8051_lock);
6486 
6487 	if (dd->dc_shutdown)
6488 		return;
6489 
6490 	dd->dc_shutdown = 1;
6491 	/* Shutdown the LCB */
6492 	lcb_shutdown(dd, 1);
6493 	/*
6494 	 * Going to OFFLINE would have causes the 8051 to put the
6495 	 * SerDes into reset already. Just need to shut down the 8051,
6496 	 * itself.
6497 	 */
6498 	write_csr(dd, DC_DC8051_CFG_RST, 0x1);
6499 }
6500 
6501 static void dc_shutdown(struct hfi1_devdata *dd)
6502 {
6503 	mutex_lock(&dd->dc8051_lock);
6504 	_dc_shutdown(dd);
6505 	mutex_unlock(&dd->dc8051_lock);
6506 }
6507 
6508 /*
6509  * Calling this after the DC has been brought out of reset should not
6510  * do any damage.
6511  * NOTE: the caller needs to acquire the dd->dc8051_lock lock
6512  *       before calling this function.
6513  */
6514 static void _dc_start(struct hfi1_devdata *dd)
6515 {
6516 	lockdep_assert_held(&dd->dc8051_lock);
6517 
6518 	if (!dd->dc_shutdown)
6519 		return;
6520 
6521 	/*
6522 	 * Take the 8051 out of reset, wait until 8051 is ready, and set host
6523 	 * version bit.
6524 	 */
6525 	release_and_wait_ready_8051_firmware(dd);
6526 
6527 	/* Take away reset for LCB and RX FPE (set in lcb_shutdown). */
6528 	write_csr(dd, DCC_CFG_RESET, 0x10);
6529 	/* lcb_shutdown() with abort=1 does not restore these */
6530 	write_csr(dd, DC_LCB_ERR_EN, dd->lcb_err_en);
6531 	dd->dc_shutdown = 0;
6532 }
6533 
6534 static void dc_start(struct hfi1_devdata *dd)
6535 {
6536 	mutex_lock(&dd->dc8051_lock);
6537 	_dc_start(dd);
6538 	mutex_unlock(&dd->dc8051_lock);
6539 }
6540 
6541 /*
6542  * These LCB adjustments are for the Aurora SerDes core in the FPGA.
6543  */
6544 static void adjust_lcb_for_fpga_serdes(struct hfi1_devdata *dd)
6545 {
6546 	u64 rx_radr, tx_radr;
6547 	u32 version;
6548 
6549 	if (dd->icode != ICODE_FPGA_EMULATION)
6550 		return;
6551 
6552 	/*
6553 	 * These LCB defaults on emulator _s are good, nothing to do here:
6554 	 *	LCB_CFG_TX_FIFOS_RADR
6555 	 *	LCB_CFG_RX_FIFOS_RADR
6556 	 *	LCB_CFG_LN_DCLK
6557 	 *	LCB_CFG_IGNORE_LOST_RCLK
6558 	 */
6559 	if (is_emulator_s(dd))
6560 		return;
6561 	/* else this is _p */
6562 
6563 	version = emulator_rev(dd);
6564 	if (!is_ax(dd))
6565 		version = 0x2d;	/* all B0 use 0x2d or higher settings */
6566 
6567 	if (version <= 0x12) {
6568 		/* release 0x12 and below */
6569 
6570 		/*
6571 		 * LCB_CFG_RX_FIFOS_RADR.RST_VAL = 0x9
6572 		 * LCB_CFG_RX_FIFOS_RADR.OK_TO_JUMP_VAL = 0x9
6573 		 * LCB_CFG_RX_FIFOS_RADR.DO_NOT_JUMP_VAL = 0xa
6574 		 */
6575 		rx_radr =
6576 		      0xaull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6577 		    | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6578 		    | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6579 		/*
6580 		 * LCB_CFG_TX_FIFOS_RADR.ON_REINIT = 0 (default)
6581 		 * LCB_CFG_TX_FIFOS_RADR.RST_VAL = 6
6582 		 */
6583 		tx_radr = 6ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6584 	} else if (version <= 0x18) {
6585 		/* release 0x13 up to 0x18 */
6586 		/* LCB_CFG_RX_FIFOS_RADR = 0x988 */
6587 		rx_radr =
6588 		      0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6589 		    | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6590 		    | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6591 		tx_radr = 7ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6592 	} else if (version == 0x19) {
6593 		/* release 0x19 */
6594 		/* LCB_CFG_RX_FIFOS_RADR = 0xa99 */
6595 		rx_radr =
6596 		      0xAull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6597 		    | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6598 		    | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6599 		tx_radr = 3ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6600 	} else if (version == 0x1a) {
6601 		/* release 0x1a */
6602 		/* LCB_CFG_RX_FIFOS_RADR = 0x988 */
6603 		rx_radr =
6604 		      0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6605 		    | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6606 		    | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6607 		tx_radr = 7ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6608 		write_csr(dd, DC_LCB_CFG_LN_DCLK, 1ull);
6609 	} else {
6610 		/* release 0x1b and higher */
6611 		/* LCB_CFG_RX_FIFOS_RADR = 0x877 */
6612 		rx_radr =
6613 		      0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6614 		    | 0x7ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6615 		    | 0x7ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6616 		tx_radr = 3ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6617 	}
6618 
6619 	write_csr(dd, DC_LCB_CFG_RX_FIFOS_RADR, rx_radr);
6620 	/* LCB_CFG_IGNORE_LOST_RCLK.EN = 1 */
6621 	write_csr(dd, DC_LCB_CFG_IGNORE_LOST_RCLK,
6622 		  DC_LCB_CFG_IGNORE_LOST_RCLK_EN_SMASK);
6623 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RADR, tx_radr);
6624 }
6625 
6626 /*
6627  * Handle a SMA idle message
6628  *
6629  * This is a work-queue function outside of the interrupt.
6630  */
6631 void handle_sma_message(struct work_struct *work)
6632 {
6633 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
6634 							sma_message_work);
6635 	struct hfi1_devdata *dd = ppd->dd;
6636 	u64 msg;
6637 	int ret;
6638 
6639 	/*
6640 	 * msg is bytes 1-4 of the 40-bit idle message - the command code
6641 	 * is stripped off
6642 	 */
6643 	ret = read_idle_sma(dd, &msg);
6644 	if (ret)
6645 		return;
6646 	dd_dev_info(dd, "%s: SMA message 0x%llx\n", __func__, msg);
6647 	/*
6648 	 * React to the SMA message.  Byte[1] (0 for us) is the command.
6649 	 */
6650 	switch (msg & 0xff) {
6651 	case SMA_IDLE_ARM:
6652 		/*
6653 		 * See OPAv1 table 9-14 - HFI and External Switch Ports Key
6654 		 * State Transitions
6655 		 *
6656 		 * Only expected in INIT or ARMED, discard otherwise.
6657 		 */
6658 		if (ppd->host_link_state & (HLS_UP_INIT | HLS_UP_ARMED))
6659 			ppd->neighbor_normal = 1;
6660 		break;
6661 	case SMA_IDLE_ACTIVE:
6662 		/*
6663 		 * See OPAv1 table 9-14 - HFI and External Switch Ports Key
6664 		 * State Transitions
6665 		 *
6666 		 * Can activate the node.  Discard otherwise.
6667 		 */
6668 		if (ppd->host_link_state == HLS_UP_ARMED &&
6669 		    ppd->is_active_optimize_enabled) {
6670 			ppd->neighbor_normal = 1;
6671 			ret = set_link_state(ppd, HLS_UP_ACTIVE);
6672 			if (ret)
6673 				dd_dev_err(
6674 					dd,
6675 					"%s: received Active SMA idle message, couldn't set link to Active\n",
6676 					__func__);
6677 		}
6678 		break;
6679 	default:
6680 		dd_dev_err(dd,
6681 			   "%s: received unexpected SMA idle message 0x%llx\n",
6682 			   __func__, msg);
6683 		break;
6684 	}
6685 }
6686 
6687 static void adjust_rcvctrl(struct hfi1_devdata *dd, u64 add, u64 clear)
6688 {
6689 	u64 rcvctrl;
6690 	unsigned long flags;
6691 
6692 	spin_lock_irqsave(&dd->rcvctrl_lock, flags);
6693 	rcvctrl = read_csr(dd, RCV_CTRL);
6694 	rcvctrl |= add;
6695 	rcvctrl &= ~clear;
6696 	write_csr(dd, RCV_CTRL, rcvctrl);
6697 	spin_unlock_irqrestore(&dd->rcvctrl_lock, flags);
6698 }
6699 
6700 static inline void add_rcvctrl(struct hfi1_devdata *dd, u64 add)
6701 {
6702 	adjust_rcvctrl(dd, add, 0);
6703 }
6704 
6705 static inline void clear_rcvctrl(struct hfi1_devdata *dd, u64 clear)
6706 {
6707 	adjust_rcvctrl(dd, 0, clear);
6708 }
6709 
6710 /*
6711  * Called from all interrupt handlers to start handling an SPC freeze.
6712  */
6713 void start_freeze_handling(struct hfi1_pportdata *ppd, int flags)
6714 {
6715 	struct hfi1_devdata *dd = ppd->dd;
6716 	struct send_context *sc;
6717 	int i;
6718 
6719 	if (flags & FREEZE_SELF)
6720 		write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_FREEZE_SMASK);
6721 
6722 	/* enter frozen mode */
6723 	dd->flags |= HFI1_FROZEN;
6724 
6725 	/* notify all SDMA engines that they are going into a freeze */
6726 	sdma_freeze_notify(dd, !!(flags & FREEZE_LINK_DOWN));
6727 
6728 	/* do halt pre-handling on all enabled send contexts */
6729 	for (i = 0; i < dd->num_send_contexts; i++) {
6730 		sc = dd->send_contexts[i].sc;
6731 		if (sc && (sc->flags & SCF_ENABLED))
6732 			sc_stop(sc, SCF_FROZEN | SCF_HALTED);
6733 	}
6734 
6735 	/* Send context are frozen. Notify user space */
6736 	hfi1_set_uevent_bits(ppd, _HFI1_EVENT_FROZEN_BIT);
6737 
6738 	if (flags & FREEZE_ABORT) {
6739 		dd_dev_err(dd,
6740 			   "Aborted freeze recovery. Please REBOOT system\n");
6741 		return;
6742 	}
6743 	/* queue non-interrupt handler */
6744 	queue_work(ppd->hfi1_wq, &ppd->freeze_work);
6745 }
6746 
6747 /*
6748  * Wait until all 4 sub-blocks indicate that they have frozen or unfrozen,
6749  * depending on the "freeze" parameter.
6750  *
6751  * No need to return an error if it times out, our only option
6752  * is to proceed anyway.
6753  */
6754 static void wait_for_freeze_status(struct hfi1_devdata *dd, int freeze)
6755 {
6756 	unsigned long timeout;
6757 	u64 reg;
6758 
6759 	timeout = jiffies + msecs_to_jiffies(FREEZE_STATUS_TIMEOUT);
6760 	while (1) {
6761 		reg = read_csr(dd, CCE_STATUS);
6762 		if (freeze) {
6763 			/* waiting until all indicators are set */
6764 			if ((reg & ALL_FROZE) == ALL_FROZE)
6765 				return;	/* all done */
6766 		} else {
6767 			/* waiting until all indicators are clear */
6768 			if ((reg & ALL_FROZE) == 0)
6769 				return; /* all done */
6770 		}
6771 
6772 		if (time_after(jiffies, timeout)) {
6773 			dd_dev_err(dd,
6774 				   "Time out waiting for SPC %sfreeze, bits 0x%llx, expecting 0x%llx, continuing",
6775 				   freeze ? "" : "un", reg & ALL_FROZE,
6776 				   freeze ? ALL_FROZE : 0ull);
6777 			return;
6778 		}
6779 		usleep_range(80, 120);
6780 	}
6781 }
6782 
6783 /*
6784  * Do all freeze handling for the RXE block.
6785  */
6786 static void rxe_freeze(struct hfi1_devdata *dd)
6787 {
6788 	int i;
6789 	struct hfi1_ctxtdata *rcd;
6790 
6791 	/* disable port */
6792 	clear_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
6793 
6794 	/* disable all receive contexts */
6795 	for (i = 0; i < dd->num_rcv_contexts; i++) {
6796 		rcd = hfi1_rcd_get_by_index(dd, i);
6797 		hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_DIS, rcd);
6798 		hfi1_rcd_put(rcd);
6799 	}
6800 }
6801 
6802 /*
6803  * Unfreeze handling for the RXE block - kernel contexts only.
6804  * This will also enable the port.  User contexts will do unfreeze
6805  * handling on a per-context basis as they call into the driver.
6806  *
6807  */
6808 static void rxe_kernel_unfreeze(struct hfi1_devdata *dd)
6809 {
6810 	u32 rcvmask;
6811 	u16 i;
6812 	struct hfi1_ctxtdata *rcd;
6813 
6814 	/* enable all kernel contexts */
6815 	for (i = 0; i < dd->num_rcv_contexts; i++) {
6816 		rcd = hfi1_rcd_get_by_index(dd, i);
6817 
6818 		/* Ensure all non-user contexts(including vnic) are enabled */
6819 		if (!rcd ||
6820 		    (i >= dd->first_dyn_alloc_ctxt && !rcd->is_vnic)) {
6821 			hfi1_rcd_put(rcd);
6822 			continue;
6823 		}
6824 		rcvmask = HFI1_RCVCTRL_CTXT_ENB;
6825 		/* HFI1_RCVCTRL_TAILUPD_[ENB|DIS] needs to be set explicitly */
6826 		rcvmask |= HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL) ?
6827 			HFI1_RCVCTRL_TAILUPD_ENB : HFI1_RCVCTRL_TAILUPD_DIS;
6828 		hfi1_rcvctrl(dd, rcvmask, rcd);
6829 		hfi1_rcd_put(rcd);
6830 	}
6831 
6832 	/* enable port */
6833 	add_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
6834 }
6835 
6836 /*
6837  * Non-interrupt SPC freeze handling.
6838  *
6839  * This is a work-queue function outside of the triggering interrupt.
6840  */
6841 void handle_freeze(struct work_struct *work)
6842 {
6843 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
6844 								freeze_work);
6845 	struct hfi1_devdata *dd = ppd->dd;
6846 
6847 	/* wait for freeze indicators on all affected blocks */
6848 	wait_for_freeze_status(dd, 1);
6849 
6850 	/* SPC is now frozen */
6851 
6852 	/* do send PIO freeze steps */
6853 	pio_freeze(dd);
6854 
6855 	/* do send DMA freeze steps */
6856 	sdma_freeze(dd);
6857 
6858 	/* do send egress freeze steps - nothing to do */
6859 
6860 	/* do receive freeze steps */
6861 	rxe_freeze(dd);
6862 
6863 	/*
6864 	 * Unfreeze the hardware - clear the freeze, wait for each
6865 	 * block's frozen bit to clear, then clear the frozen flag.
6866 	 */
6867 	write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_UNFREEZE_SMASK);
6868 	wait_for_freeze_status(dd, 0);
6869 
6870 	if (is_ax(dd)) {
6871 		write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_FREEZE_SMASK);
6872 		wait_for_freeze_status(dd, 1);
6873 		write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_UNFREEZE_SMASK);
6874 		wait_for_freeze_status(dd, 0);
6875 	}
6876 
6877 	/* do send PIO unfreeze steps for kernel contexts */
6878 	pio_kernel_unfreeze(dd);
6879 
6880 	/* do send DMA unfreeze steps */
6881 	sdma_unfreeze(dd);
6882 
6883 	/* do send egress unfreeze steps - nothing to do */
6884 
6885 	/* do receive unfreeze steps for kernel contexts */
6886 	rxe_kernel_unfreeze(dd);
6887 
6888 	/*
6889 	 * The unfreeze procedure touches global device registers when
6890 	 * it disables and re-enables RXE. Mark the device unfrozen
6891 	 * after all that is done so other parts of the driver waiting
6892 	 * for the device to unfreeze don't do things out of order.
6893 	 *
6894 	 * The above implies that the meaning of HFI1_FROZEN flag is
6895 	 * "Device has gone into freeze mode and freeze mode handling
6896 	 * is still in progress."
6897 	 *
6898 	 * The flag will be removed when freeze mode processing has
6899 	 * completed.
6900 	 */
6901 	dd->flags &= ~HFI1_FROZEN;
6902 	wake_up(&dd->event_queue);
6903 
6904 	/* no longer frozen */
6905 }
6906 
6907 /*
6908  * Handle a link up interrupt from the 8051.
6909  *
6910  * This is a work-queue function outside of the interrupt.
6911  */
6912 void handle_link_up(struct work_struct *work)
6913 {
6914 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
6915 						  link_up_work);
6916 	struct hfi1_devdata *dd = ppd->dd;
6917 
6918 	set_link_state(ppd, HLS_UP_INIT);
6919 
6920 	/* cache the read of DC_LCB_STS_ROUND_TRIP_LTP_CNT */
6921 	read_ltp_rtt(dd);
6922 	/*
6923 	 * OPA specifies that certain counters are cleared on a transition
6924 	 * to link up, so do that.
6925 	 */
6926 	clear_linkup_counters(dd);
6927 	/*
6928 	 * And (re)set link up default values.
6929 	 */
6930 	set_linkup_defaults(ppd);
6931 
6932 	/*
6933 	 * Set VL15 credits. Use cached value from verify cap interrupt.
6934 	 * In case of quick linkup or simulator, vl15 value will be set by
6935 	 * handle_linkup_change. VerifyCap interrupt handler will not be
6936 	 * called in those scenarios.
6937 	 */
6938 	if (!(quick_linkup || dd->icode == ICODE_FUNCTIONAL_SIMULATOR))
6939 		set_up_vl15(dd, dd->vl15buf_cached);
6940 
6941 	/* enforce link speed enabled */
6942 	if ((ppd->link_speed_active & ppd->link_speed_enabled) == 0) {
6943 		/* oops - current speed is not enabled, bounce */
6944 		dd_dev_err(dd,
6945 			   "Link speed active 0x%x is outside enabled 0x%x, downing link\n",
6946 			   ppd->link_speed_active, ppd->link_speed_enabled);
6947 		set_link_down_reason(ppd, OPA_LINKDOWN_REASON_SPEED_POLICY, 0,
6948 				     OPA_LINKDOWN_REASON_SPEED_POLICY);
6949 		set_link_state(ppd, HLS_DN_OFFLINE);
6950 		start_link(ppd);
6951 	}
6952 }
6953 
6954 /*
6955  * Several pieces of LNI information were cached for SMA in ppd.
6956  * Reset these on link down
6957  */
6958 static void reset_neighbor_info(struct hfi1_pportdata *ppd)
6959 {
6960 	ppd->neighbor_guid = 0;
6961 	ppd->neighbor_port_number = 0;
6962 	ppd->neighbor_type = 0;
6963 	ppd->neighbor_fm_security = 0;
6964 }
6965 
6966 static const char * const link_down_reason_strs[] = {
6967 	[OPA_LINKDOWN_REASON_NONE] = "None",
6968 	[OPA_LINKDOWN_REASON_RCV_ERROR_0] = "Receive error 0",
6969 	[OPA_LINKDOWN_REASON_BAD_PKT_LEN] = "Bad packet length",
6970 	[OPA_LINKDOWN_REASON_PKT_TOO_LONG] = "Packet too long",
6971 	[OPA_LINKDOWN_REASON_PKT_TOO_SHORT] = "Packet too short",
6972 	[OPA_LINKDOWN_REASON_BAD_SLID] = "Bad SLID",
6973 	[OPA_LINKDOWN_REASON_BAD_DLID] = "Bad DLID",
6974 	[OPA_LINKDOWN_REASON_BAD_L2] = "Bad L2",
6975 	[OPA_LINKDOWN_REASON_BAD_SC] = "Bad SC",
6976 	[OPA_LINKDOWN_REASON_RCV_ERROR_8] = "Receive error 8",
6977 	[OPA_LINKDOWN_REASON_BAD_MID_TAIL] = "Bad mid tail",
6978 	[OPA_LINKDOWN_REASON_RCV_ERROR_10] = "Receive error 10",
6979 	[OPA_LINKDOWN_REASON_PREEMPT_ERROR] = "Preempt error",
6980 	[OPA_LINKDOWN_REASON_PREEMPT_VL15] = "Preempt vl15",
6981 	[OPA_LINKDOWN_REASON_BAD_VL_MARKER] = "Bad VL marker",
6982 	[OPA_LINKDOWN_REASON_RCV_ERROR_14] = "Receive error 14",
6983 	[OPA_LINKDOWN_REASON_RCV_ERROR_15] = "Receive error 15",
6984 	[OPA_LINKDOWN_REASON_BAD_HEAD_DIST] = "Bad head distance",
6985 	[OPA_LINKDOWN_REASON_BAD_TAIL_DIST] = "Bad tail distance",
6986 	[OPA_LINKDOWN_REASON_BAD_CTRL_DIST] = "Bad control distance",
6987 	[OPA_LINKDOWN_REASON_BAD_CREDIT_ACK] = "Bad credit ack",
6988 	[OPA_LINKDOWN_REASON_UNSUPPORTED_VL_MARKER] = "Unsupported VL marker",
6989 	[OPA_LINKDOWN_REASON_BAD_PREEMPT] = "Bad preempt",
6990 	[OPA_LINKDOWN_REASON_BAD_CONTROL_FLIT] = "Bad control flit",
6991 	[OPA_LINKDOWN_REASON_EXCEED_MULTICAST_LIMIT] = "Exceed multicast limit",
6992 	[OPA_LINKDOWN_REASON_RCV_ERROR_24] = "Receive error 24",
6993 	[OPA_LINKDOWN_REASON_RCV_ERROR_25] = "Receive error 25",
6994 	[OPA_LINKDOWN_REASON_RCV_ERROR_26] = "Receive error 26",
6995 	[OPA_LINKDOWN_REASON_RCV_ERROR_27] = "Receive error 27",
6996 	[OPA_LINKDOWN_REASON_RCV_ERROR_28] = "Receive error 28",
6997 	[OPA_LINKDOWN_REASON_RCV_ERROR_29] = "Receive error 29",
6998 	[OPA_LINKDOWN_REASON_RCV_ERROR_30] = "Receive error 30",
6999 	[OPA_LINKDOWN_REASON_EXCESSIVE_BUFFER_OVERRUN] =
7000 					"Excessive buffer overrun",
7001 	[OPA_LINKDOWN_REASON_UNKNOWN] = "Unknown",
7002 	[OPA_LINKDOWN_REASON_REBOOT] = "Reboot",
7003 	[OPA_LINKDOWN_REASON_NEIGHBOR_UNKNOWN] = "Neighbor unknown",
7004 	[OPA_LINKDOWN_REASON_FM_BOUNCE] = "FM bounce",
7005 	[OPA_LINKDOWN_REASON_SPEED_POLICY] = "Speed policy",
7006 	[OPA_LINKDOWN_REASON_WIDTH_POLICY] = "Width policy",
7007 	[OPA_LINKDOWN_REASON_DISCONNECTED] = "Disconnected",
7008 	[OPA_LINKDOWN_REASON_LOCAL_MEDIA_NOT_INSTALLED] =
7009 					"Local media not installed",
7010 	[OPA_LINKDOWN_REASON_NOT_INSTALLED] = "Not installed",
7011 	[OPA_LINKDOWN_REASON_CHASSIS_CONFIG] = "Chassis config",
7012 	[OPA_LINKDOWN_REASON_END_TO_END_NOT_INSTALLED] =
7013 					"End to end not installed",
7014 	[OPA_LINKDOWN_REASON_POWER_POLICY] = "Power policy",
7015 	[OPA_LINKDOWN_REASON_LINKSPEED_POLICY] = "Link speed policy",
7016 	[OPA_LINKDOWN_REASON_LINKWIDTH_POLICY] = "Link width policy",
7017 	[OPA_LINKDOWN_REASON_SWITCH_MGMT] = "Switch management",
7018 	[OPA_LINKDOWN_REASON_SMA_DISABLED] = "SMA disabled",
7019 	[OPA_LINKDOWN_REASON_TRANSIENT] = "Transient"
7020 };
7021 
7022 /* return the neighbor link down reason string */
7023 static const char *link_down_reason_str(u8 reason)
7024 {
7025 	const char *str = NULL;
7026 
7027 	if (reason < ARRAY_SIZE(link_down_reason_strs))
7028 		str = link_down_reason_strs[reason];
7029 	if (!str)
7030 		str = "(invalid)";
7031 
7032 	return str;
7033 }
7034 
7035 /*
7036  * Handle a link down interrupt from the 8051.
7037  *
7038  * This is a work-queue function outside of the interrupt.
7039  */
7040 void handle_link_down(struct work_struct *work)
7041 {
7042 	u8 lcl_reason, neigh_reason = 0;
7043 	u8 link_down_reason;
7044 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
7045 						  link_down_work);
7046 	int was_up;
7047 	static const char ldr_str[] = "Link down reason: ";
7048 
7049 	if ((ppd->host_link_state &
7050 	     (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) &&
7051 	     ppd->port_type == PORT_TYPE_FIXED)
7052 		ppd->offline_disabled_reason =
7053 			HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NOT_INSTALLED);
7054 
7055 	/* Go offline first, then deal with reading/writing through 8051 */
7056 	was_up = !!(ppd->host_link_state & HLS_UP);
7057 	set_link_state(ppd, HLS_DN_OFFLINE);
7058 	xchg(&ppd->is_link_down_queued, 0);
7059 
7060 	if (was_up) {
7061 		lcl_reason = 0;
7062 		/* link down reason is only valid if the link was up */
7063 		read_link_down_reason(ppd->dd, &link_down_reason);
7064 		switch (link_down_reason) {
7065 		case LDR_LINK_TRANSFER_ACTIVE_LOW:
7066 			/* the link went down, no idle message reason */
7067 			dd_dev_info(ppd->dd, "%sUnexpected link down\n",
7068 				    ldr_str);
7069 			break;
7070 		case LDR_RECEIVED_LINKDOWN_IDLE_MSG:
7071 			/*
7072 			 * The neighbor reason is only valid if an idle message
7073 			 * was received for it.
7074 			 */
7075 			read_planned_down_reason_code(ppd->dd, &neigh_reason);
7076 			dd_dev_info(ppd->dd,
7077 				    "%sNeighbor link down message %d, %s\n",
7078 				    ldr_str, neigh_reason,
7079 				    link_down_reason_str(neigh_reason));
7080 			break;
7081 		case LDR_RECEIVED_HOST_OFFLINE_REQ:
7082 			dd_dev_info(ppd->dd,
7083 				    "%sHost requested link to go offline\n",
7084 				    ldr_str);
7085 			break;
7086 		default:
7087 			dd_dev_info(ppd->dd, "%sUnknown reason 0x%x\n",
7088 				    ldr_str, link_down_reason);
7089 			break;
7090 		}
7091 
7092 		/*
7093 		 * If no reason, assume peer-initiated but missed
7094 		 * LinkGoingDown idle flits.
7095 		 */
7096 		if (neigh_reason == 0)
7097 			lcl_reason = OPA_LINKDOWN_REASON_NEIGHBOR_UNKNOWN;
7098 	} else {
7099 		/* went down while polling or going up */
7100 		lcl_reason = OPA_LINKDOWN_REASON_TRANSIENT;
7101 	}
7102 
7103 	set_link_down_reason(ppd, lcl_reason, neigh_reason, 0);
7104 
7105 	/* inform the SMA when the link transitions from up to down */
7106 	if (was_up && ppd->local_link_down_reason.sma == 0 &&
7107 	    ppd->neigh_link_down_reason.sma == 0) {
7108 		ppd->local_link_down_reason.sma =
7109 					ppd->local_link_down_reason.latest;
7110 		ppd->neigh_link_down_reason.sma =
7111 					ppd->neigh_link_down_reason.latest;
7112 	}
7113 
7114 	reset_neighbor_info(ppd);
7115 
7116 	/* disable the port */
7117 	clear_rcvctrl(ppd->dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
7118 
7119 	/*
7120 	 * If there is no cable attached, turn the DC off. Otherwise,
7121 	 * start the link bring up.
7122 	 */
7123 	if (ppd->port_type == PORT_TYPE_QSFP && !qsfp_mod_present(ppd))
7124 		dc_shutdown(ppd->dd);
7125 	else
7126 		start_link(ppd);
7127 }
7128 
7129 void handle_link_bounce(struct work_struct *work)
7130 {
7131 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
7132 							link_bounce_work);
7133 
7134 	/*
7135 	 * Only do something if the link is currently up.
7136 	 */
7137 	if (ppd->host_link_state & HLS_UP) {
7138 		set_link_state(ppd, HLS_DN_OFFLINE);
7139 		start_link(ppd);
7140 	} else {
7141 		dd_dev_info(ppd->dd, "%s: link not up (%s), nothing to do\n",
7142 			    __func__, link_state_name(ppd->host_link_state));
7143 	}
7144 }
7145 
7146 /*
7147  * Mask conversion: Capability exchange to Port LTP.  The capability
7148  * exchange has an implicit 16b CRC that is mandatory.
7149  */
7150 static int cap_to_port_ltp(int cap)
7151 {
7152 	int port_ltp = PORT_LTP_CRC_MODE_16; /* this mode is mandatory */
7153 
7154 	if (cap & CAP_CRC_14B)
7155 		port_ltp |= PORT_LTP_CRC_MODE_14;
7156 	if (cap & CAP_CRC_48B)
7157 		port_ltp |= PORT_LTP_CRC_MODE_48;
7158 	if (cap & CAP_CRC_12B_16B_PER_LANE)
7159 		port_ltp |= PORT_LTP_CRC_MODE_PER_LANE;
7160 
7161 	return port_ltp;
7162 }
7163 
7164 /*
7165  * Convert an OPA Port LTP mask to capability mask
7166  */
7167 int port_ltp_to_cap(int port_ltp)
7168 {
7169 	int cap_mask = 0;
7170 
7171 	if (port_ltp & PORT_LTP_CRC_MODE_14)
7172 		cap_mask |= CAP_CRC_14B;
7173 	if (port_ltp & PORT_LTP_CRC_MODE_48)
7174 		cap_mask |= CAP_CRC_48B;
7175 	if (port_ltp & PORT_LTP_CRC_MODE_PER_LANE)
7176 		cap_mask |= CAP_CRC_12B_16B_PER_LANE;
7177 
7178 	return cap_mask;
7179 }
7180 
7181 /*
7182  * Convert a single DC LCB CRC mode to an OPA Port LTP mask.
7183  */
7184 static int lcb_to_port_ltp(int lcb_crc)
7185 {
7186 	int port_ltp = 0;
7187 
7188 	if (lcb_crc == LCB_CRC_12B_16B_PER_LANE)
7189 		port_ltp = PORT_LTP_CRC_MODE_PER_LANE;
7190 	else if (lcb_crc == LCB_CRC_48B)
7191 		port_ltp = PORT_LTP_CRC_MODE_48;
7192 	else if (lcb_crc == LCB_CRC_14B)
7193 		port_ltp = PORT_LTP_CRC_MODE_14;
7194 	else
7195 		port_ltp = PORT_LTP_CRC_MODE_16;
7196 
7197 	return port_ltp;
7198 }
7199 
7200 static void clear_full_mgmt_pkey(struct hfi1_pportdata *ppd)
7201 {
7202 	if (ppd->pkeys[2] != 0) {
7203 		ppd->pkeys[2] = 0;
7204 		(void)hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_PKEYS, 0);
7205 		hfi1_event_pkey_change(ppd->dd, ppd->port);
7206 	}
7207 }
7208 
7209 /*
7210  * Convert the given link width to the OPA link width bitmask.
7211  */
7212 static u16 link_width_to_bits(struct hfi1_devdata *dd, u16 width)
7213 {
7214 	switch (width) {
7215 	case 0:
7216 		/*
7217 		 * Simulator and quick linkup do not set the width.
7218 		 * Just set it to 4x without complaint.
7219 		 */
7220 		if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR || quick_linkup)
7221 			return OPA_LINK_WIDTH_4X;
7222 		return 0; /* no lanes up */
7223 	case 1: return OPA_LINK_WIDTH_1X;
7224 	case 2: return OPA_LINK_WIDTH_2X;
7225 	case 3: return OPA_LINK_WIDTH_3X;
7226 	default:
7227 		dd_dev_info(dd, "%s: invalid width %d, using 4\n",
7228 			    __func__, width);
7229 		/* fall through */
7230 	case 4: return OPA_LINK_WIDTH_4X;
7231 	}
7232 }
7233 
7234 /*
7235  * Do a population count on the bottom nibble.
7236  */
7237 static const u8 bit_counts[16] = {
7238 	0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4
7239 };
7240 
7241 static inline u8 nibble_to_count(u8 nibble)
7242 {
7243 	return bit_counts[nibble & 0xf];
7244 }
7245 
7246 /*
7247  * Read the active lane information from the 8051 registers and return
7248  * their widths.
7249  *
7250  * Active lane information is found in these 8051 registers:
7251  *	enable_lane_tx
7252  *	enable_lane_rx
7253  */
7254 static void get_link_widths(struct hfi1_devdata *dd, u16 *tx_width,
7255 			    u16 *rx_width)
7256 {
7257 	u16 tx, rx;
7258 	u8 enable_lane_rx;
7259 	u8 enable_lane_tx;
7260 	u8 tx_polarity_inversion;
7261 	u8 rx_polarity_inversion;
7262 	u8 max_rate;
7263 
7264 	/* read the active lanes */
7265 	read_tx_settings(dd, &enable_lane_tx, &tx_polarity_inversion,
7266 			 &rx_polarity_inversion, &max_rate);
7267 	read_local_lni(dd, &enable_lane_rx);
7268 
7269 	/* convert to counts */
7270 	tx = nibble_to_count(enable_lane_tx);
7271 	rx = nibble_to_count(enable_lane_rx);
7272 
7273 	/*
7274 	 * Set link_speed_active here, overriding what was set in
7275 	 * handle_verify_cap().  The ASIC 8051 firmware does not correctly
7276 	 * set the max_rate field in handle_verify_cap until v0.19.
7277 	 */
7278 	if ((dd->icode == ICODE_RTL_SILICON) &&
7279 	    (dd->dc8051_ver < dc8051_ver(0, 19, 0))) {
7280 		/* max_rate: 0 = 12.5G, 1 = 25G */
7281 		switch (max_rate) {
7282 		case 0:
7283 			dd->pport[0].link_speed_active = OPA_LINK_SPEED_12_5G;
7284 			break;
7285 		default:
7286 			dd_dev_err(dd,
7287 				   "%s: unexpected max rate %d, using 25Gb\n",
7288 				   __func__, (int)max_rate);
7289 			/* fall through */
7290 		case 1:
7291 			dd->pport[0].link_speed_active = OPA_LINK_SPEED_25G;
7292 			break;
7293 		}
7294 	}
7295 
7296 	dd_dev_info(dd,
7297 		    "Fabric active lanes (width): tx 0x%x (%d), rx 0x%x (%d)\n",
7298 		    enable_lane_tx, tx, enable_lane_rx, rx);
7299 	*tx_width = link_width_to_bits(dd, tx);
7300 	*rx_width = link_width_to_bits(dd, rx);
7301 }
7302 
7303 /*
7304  * Read verify_cap_local_fm_link_width[1] to obtain the link widths.
7305  * Valid after the end of VerifyCap and during LinkUp.  Does not change
7306  * after link up.  I.e. look elsewhere for downgrade information.
7307  *
7308  * Bits are:
7309  *	+ bits [7:4] contain the number of active transmitters
7310  *	+ bits [3:0] contain the number of active receivers
7311  * These are numbers 1 through 4 and can be different values if the
7312  * link is asymmetric.
7313  *
7314  * verify_cap_local_fm_link_width[0] retains its original value.
7315  */
7316 static void get_linkup_widths(struct hfi1_devdata *dd, u16 *tx_width,
7317 			      u16 *rx_width)
7318 {
7319 	u16 widths, tx, rx;
7320 	u8 misc_bits, local_flags;
7321 	u16 active_tx, active_rx;
7322 
7323 	read_vc_local_link_width(dd, &misc_bits, &local_flags, &widths);
7324 	tx = widths >> 12;
7325 	rx = (widths >> 8) & 0xf;
7326 
7327 	*tx_width = link_width_to_bits(dd, tx);
7328 	*rx_width = link_width_to_bits(dd, rx);
7329 
7330 	/* print the active widths */
7331 	get_link_widths(dd, &active_tx, &active_rx);
7332 }
7333 
7334 /*
7335  * Set ppd->link_width_active and ppd->link_width_downgrade_active using
7336  * hardware information when the link first comes up.
7337  *
7338  * The link width is not available until after VerifyCap.AllFramesReceived
7339  * (the trigger for handle_verify_cap), so this is outside that routine
7340  * and should be called when the 8051 signals linkup.
7341  */
7342 void get_linkup_link_widths(struct hfi1_pportdata *ppd)
7343 {
7344 	u16 tx_width, rx_width;
7345 
7346 	/* get end-of-LNI link widths */
7347 	get_linkup_widths(ppd->dd, &tx_width, &rx_width);
7348 
7349 	/* use tx_width as the link is supposed to be symmetric on link up */
7350 	ppd->link_width_active = tx_width;
7351 	/* link width downgrade active (LWD.A) starts out matching LW.A */
7352 	ppd->link_width_downgrade_tx_active = ppd->link_width_active;
7353 	ppd->link_width_downgrade_rx_active = ppd->link_width_active;
7354 	/* per OPA spec, on link up LWD.E resets to LWD.S */
7355 	ppd->link_width_downgrade_enabled = ppd->link_width_downgrade_supported;
7356 	/* cache the active egress rate (units {10^6 bits/sec]) */
7357 	ppd->current_egress_rate = active_egress_rate(ppd);
7358 }
7359 
7360 /*
7361  * Handle a verify capabilities interrupt from the 8051.
7362  *
7363  * This is a work-queue function outside of the interrupt.
7364  */
7365 void handle_verify_cap(struct work_struct *work)
7366 {
7367 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
7368 								link_vc_work);
7369 	struct hfi1_devdata *dd = ppd->dd;
7370 	u64 reg;
7371 	u8 power_management;
7372 	u8 continuous;
7373 	u8 vcu;
7374 	u8 vau;
7375 	u8 z;
7376 	u16 vl15buf;
7377 	u16 link_widths;
7378 	u16 crc_mask;
7379 	u16 crc_val;
7380 	u16 device_id;
7381 	u16 active_tx, active_rx;
7382 	u8 partner_supported_crc;
7383 	u8 remote_tx_rate;
7384 	u8 device_rev;
7385 
7386 	set_link_state(ppd, HLS_VERIFY_CAP);
7387 
7388 	lcb_shutdown(dd, 0);
7389 	adjust_lcb_for_fpga_serdes(dd);
7390 
7391 	read_vc_remote_phy(dd, &power_management, &continuous);
7392 	read_vc_remote_fabric(dd, &vau, &z, &vcu, &vl15buf,
7393 			      &partner_supported_crc);
7394 	read_vc_remote_link_width(dd, &remote_tx_rate, &link_widths);
7395 	read_remote_device_id(dd, &device_id, &device_rev);
7396 
7397 	/* print the active widths */
7398 	get_link_widths(dd, &active_tx, &active_rx);
7399 	dd_dev_info(dd,
7400 		    "Peer PHY: power management 0x%x, continuous updates 0x%x\n",
7401 		    (int)power_management, (int)continuous);
7402 	dd_dev_info(dd,
7403 		    "Peer Fabric: vAU %d, Z %d, vCU %d, vl15 credits 0x%x, CRC sizes 0x%x\n",
7404 		    (int)vau, (int)z, (int)vcu, (int)vl15buf,
7405 		    (int)partner_supported_crc);
7406 	dd_dev_info(dd, "Peer Link Width: tx rate 0x%x, widths 0x%x\n",
7407 		    (u32)remote_tx_rate, (u32)link_widths);
7408 	dd_dev_info(dd, "Peer Device ID: 0x%04x, Revision 0x%02x\n",
7409 		    (u32)device_id, (u32)device_rev);
7410 	/*
7411 	 * The peer vAU value just read is the peer receiver value.  HFI does
7412 	 * not support a transmit vAU of 0 (AU == 8).  We advertised that
7413 	 * with Z=1 in the fabric capabilities sent to the peer.  The peer
7414 	 * will see our Z=1, and, if it advertised a vAU of 0, will move its
7415 	 * receive to vAU of 1 (AU == 16).  Do the same here.  We do not care
7416 	 * about the peer Z value - our sent vAU is 3 (hardwired) and is not
7417 	 * subject to the Z value exception.
7418 	 */
7419 	if (vau == 0)
7420 		vau = 1;
7421 	set_up_vau(dd, vau);
7422 
7423 	/*
7424 	 * Set VL15 credits to 0 in global credit register. Cache remote VL15
7425 	 * credits value and wait for link-up interrupt ot set it.
7426 	 */
7427 	set_up_vl15(dd, 0);
7428 	dd->vl15buf_cached = vl15buf;
7429 
7430 	/* set up the LCB CRC mode */
7431 	crc_mask = ppd->port_crc_mode_enabled & partner_supported_crc;
7432 
7433 	/* order is important: use the lowest bit in common */
7434 	if (crc_mask & CAP_CRC_14B)
7435 		crc_val = LCB_CRC_14B;
7436 	else if (crc_mask & CAP_CRC_48B)
7437 		crc_val = LCB_CRC_48B;
7438 	else if (crc_mask & CAP_CRC_12B_16B_PER_LANE)
7439 		crc_val = LCB_CRC_12B_16B_PER_LANE;
7440 	else
7441 		crc_val = LCB_CRC_16B;
7442 
7443 	dd_dev_info(dd, "Final LCB CRC mode: %d\n", (int)crc_val);
7444 	write_csr(dd, DC_LCB_CFG_CRC_MODE,
7445 		  (u64)crc_val << DC_LCB_CFG_CRC_MODE_TX_VAL_SHIFT);
7446 
7447 	/* set (14b only) or clear sideband credit */
7448 	reg = read_csr(dd, SEND_CM_CTRL);
7449 	if (crc_val == LCB_CRC_14B && crc_14b_sideband) {
7450 		write_csr(dd, SEND_CM_CTRL,
7451 			  reg | SEND_CM_CTRL_FORCE_CREDIT_MODE_SMASK);
7452 	} else {
7453 		write_csr(dd, SEND_CM_CTRL,
7454 			  reg & ~SEND_CM_CTRL_FORCE_CREDIT_MODE_SMASK);
7455 	}
7456 
7457 	ppd->link_speed_active = 0;	/* invalid value */
7458 	if (dd->dc8051_ver < dc8051_ver(0, 20, 0)) {
7459 		/* remote_tx_rate: 0 = 12.5G, 1 = 25G */
7460 		switch (remote_tx_rate) {
7461 		case 0:
7462 			ppd->link_speed_active = OPA_LINK_SPEED_12_5G;
7463 			break;
7464 		case 1:
7465 			ppd->link_speed_active = OPA_LINK_SPEED_25G;
7466 			break;
7467 		}
7468 	} else {
7469 		/* actual rate is highest bit of the ANDed rates */
7470 		u8 rate = remote_tx_rate & ppd->local_tx_rate;
7471 
7472 		if (rate & 2)
7473 			ppd->link_speed_active = OPA_LINK_SPEED_25G;
7474 		else if (rate & 1)
7475 			ppd->link_speed_active = OPA_LINK_SPEED_12_5G;
7476 	}
7477 	if (ppd->link_speed_active == 0) {
7478 		dd_dev_err(dd, "%s: unexpected remote tx rate %d, using 25Gb\n",
7479 			   __func__, (int)remote_tx_rate);
7480 		ppd->link_speed_active = OPA_LINK_SPEED_25G;
7481 	}
7482 
7483 	/*
7484 	 * Cache the values of the supported, enabled, and active
7485 	 * LTP CRC modes to return in 'portinfo' queries. But the bit
7486 	 * flags that are returned in the portinfo query differ from
7487 	 * what's in the link_crc_mask, crc_sizes, and crc_val
7488 	 * variables. Convert these here.
7489 	 */
7490 	ppd->port_ltp_crc_mode = cap_to_port_ltp(link_crc_mask) << 8;
7491 		/* supported crc modes */
7492 	ppd->port_ltp_crc_mode |=
7493 		cap_to_port_ltp(ppd->port_crc_mode_enabled) << 4;
7494 		/* enabled crc modes */
7495 	ppd->port_ltp_crc_mode |= lcb_to_port_ltp(crc_val);
7496 		/* active crc mode */
7497 
7498 	/* set up the remote credit return table */
7499 	assign_remote_cm_au_table(dd, vcu);
7500 
7501 	/*
7502 	 * The LCB is reset on entry to handle_verify_cap(), so this must
7503 	 * be applied on every link up.
7504 	 *
7505 	 * Adjust LCB error kill enable to kill the link if
7506 	 * these RBUF errors are seen:
7507 	 *	REPLAY_BUF_MBE_SMASK
7508 	 *	FLIT_INPUT_BUF_MBE_SMASK
7509 	 */
7510 	if (is_ax(dd)) {			/* fixed in B0 */
7511 		reg = read_csr(dd, DC_LCB_CFG_LINK_KILL_EN);
7512 		reg |= DC_LCB_CFG_LINK_KILL_EN_REPLAY_BUF_MBE_SMASK
7513 			| DC_LCB_CFG_LINK_KILL_EN_FLIT_INPUT_BUF_MBE_SMASK;
7514 		write_csr(dd, DC_LCB_CFG_LINK_KILL_EN, reg);
7515 	}
7516 
7517 	/* pull LCB fifos out of reset - all fifo clocks must be stable */
7518 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0);
7519 
7520 	/* give 8051 access to the LCB CSRs */
7521 	write_csr(dd, DC_LCB_ERR_EN, 0); /* mask LCB errors */
7522 	set_8051_lcb_access(dd);
7523 
7524 	/* tell the 8051 to go to LinkUp */
7525 	set_link_state(ppd, HLS_GOING_UP);
7526 }
7527 
7528 /*
7529  * Apply the link width downgrade enabled policy against the current active
7530  * link widths.
7531  *
7532  * Called when the enabled policy changes or the active link widths change.
7533  */
7534 void apply_link_downgrade_policy(struct hfi1_pportdata *ppd, int refresh_widths)
7535 {
7536 	int do_bounce = 0;
7537 	int tries;
7538 	u16 lwde;
7539 	u16 tx, rx;
7540 
7541 	/* use the hls lock to avoid a race with actual link up */
7542 	tries = 0;
7543 retry:
7544 	mutex_lock(&ppd->hls_lock);
7545 	/* only apply if the link is up */
7546 	if (ppd->host_link_state & HLS_DOWN) {
7547 		/* still going up..wait and retry */
7548 		if (ppd->host_link_state & HLS_GOING_UP) {
7549 			if (++tries < 1000) {
7550 				mutex_unlock(&ppd->hls_lock);
7551 				usleep_range(100, 120); /* arbitrary */
7552 				goto retry;
7553 			}
7554 			dd_dev_err(ppd->dd,
7555 				   "%s: giving up waiting for link state change\n",
7556 				   __func__);
7557 		}
7558 		goto done;
7559 	}
7560 
7561 	lwde = ppd->link_width_downgrade_enabled;
7562 
7563 	if (refresh_widths) {
7564 		get_link_widths(ppd->dd, &tx, &rx);
7565 		ppd->link_width_downgrade_tx_active = tx;
7566 		ppd->link_width_downgrade_rx_active = rx;
7567 	}
7568 
7569 	if (ppd->link_width_downgrade_tx_active == 0 ||
7570 	    ppd->link_width_downgrade_rx_active == 0) {
7571 		/* the 8051 reported a dead link as a downgrade */
7572 		dd_dev_err(ppd->dd, "Link downgrade is really a link down, ignoring\n");
7573 	} else if (lwde == 0) {
7574 		/* downgrade is disabled */
7575 
7576 		/* bounce if not at starting active width */
7577 		if ((ppd->link_width_active !=
7578 		     ppd->link_width_downgrade_tx_active) ||
7579 		    (ppd->link_width_active !=
7580 		     ppd->link_width_downgrade_rx_active)) {
7581 			dd_dev_err(ppd->dd,
7582 				   "Link downgrade is disabled and link has downgraded, downing link\n");
7583 			dd_dev_err(ppd->dd,
7584 				   "  original 0x%x, tx active 0x%x, rx active 0x%x\n",
7585 				   ppd->link_width_active,
7586 				   ppd->link_width_downgrade_tx_active,
7587 				   ppd->link_width_downgrade_rx_active);
7588 			do_bounce = 1;
7589 		}
7590 	} else if ((lwde & ppd->link_width_downgrade_tx_active) == 0 ||
7591 		   (lwde & ppd->link_width_downgrade_rx_active) == 0) {
7592 		/* Tx or Rx is outside the enabled policy */
7593 		dd_dev_err(ppd->dd,
7594 			   "Link is outside of downgrade allowed, downing link\n");
7595 		dd_dev_err(ppd->dd,
7596 			   "  enabled 0x%x, tx active 0x%x, rx active 0x%x\n",
7597 			   lwde, ppd->link_width_downgrade_tx_active,
7598 			   ppd->link_width_downgrade_rx_active);
7599 		do_bounce = 1;
7600 	}
7601 
7602 done:
7603 	mutex_unlock(&ppd->hls_lock);
7604 
7605 	if (do_bounce) {
7606 		set_link_down_reason(ppd, OPA_LINKDOWN_REASON_WIDTH_POLICY, 0,
7607 				     OPA_LINKDOWN_REASON_WIDTH_POLICY);
7608 		set_link_state(ppd, HLS_DN_OFFLINE);
7609 		start_link(ppd);
7610 	}
7611 }
7612 
7613 /*
7614  * Handle a link downgrade interrupt from the 8051.
7615  *
7616  * This is a work-queue function outside of the interrupt.
7617  */
7618 void handle_link_downgrade(struct work_struct *work)
7619 {
7620 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
7621 							link_downgrade_work);
7622 
7623 	dd_dev_info(ppd->dd, "8051: Link width downgrade\n");
7624 	apply_link_downgrade_policy(ppd, 1);
7625 }
7626 
7627 static char *dcc_err_string(char *buf, int buf_len, u64 flags)
7628 {
7629 	return flag_string(buf, buf_len, flags, dcc_err_flags,
7630 		ARRAY_SIZE(dcc_err_flags));
7631 }
7632 
7633 static char *lcb_err_string(char *buf, int buf_len, u64 flags)
7634 {
7635 	return flag_string(buf, buf_len, flags, lcb_err_flags,
7636 		ARRAY_SIZE(lcb_err_flags));
7637 }
7638 
7639 static char *dc8051_err_string(char *buf, int buf_len, u64 flags)
7640 {
7641 	return flag_string(buf, buf_len, flags, dc8051_err_flags,
7642 		ARRAY_SIZE(dc8051_err_flags));
7643 }
7644 
7645 static char *dc8051_info_err_string(char *buf, int buf_len, u64 flags)
7646 {
7647 	return flag_string(buf, buf_len, flags, dc8051_info_err_flags,
7648 		ARRAY_SIZE(dc8051_info_err_flags));
7649 }
7650 
7651 static char *dc8051_info_host_msg_string(char *buf, int buf_len, u64 flags)
7652 {
7653 	return flag_string(buf, buf_len, flags, dc8051_info_host_msg_flags,
7654 		ARRAY_SIZE(dc8051_info_host_msg_flags));
7655 }
7656 
7657 static void handle_8051_interrupt(struct hfi1_devdata *dd, u32 unused, u64 reg)
7658 {
7659 	struct hfi1_pportdata *ppd = dd->pport;
7660 	u64 info, err, host_msg;
7661 	int queue_link_down = 0;
7662 	char buf[96];
7663 
7664 	/* look at the flags */
7665 	if (reg & DC_DC8051_ERR_FLG_SET_BY_8051_SMASK) {
7666 		/* 8051 information set by firmware */
7667 		/* read DC8051_DBG_ERR_INFO_SET_BY_8051 for details */
7668 		info = read_csr(dd, DC_DC8051_DBG_ERR_INFO_SET_BY_8051);
7669 		err = (info >> DC_DC8051_DBG_ERR_INFO_SET_BY_8051_ERROR_SHIFT)
7670 			& DC_DC8051_DBG_ERR_INFO_SET_BY_8051_ERROR_MASK;
7671 		host_msg = (info >>
7672 			DC_DC8051_DBG_ERR_INFO_SET_BY_8051_HOST_MSG_SHIFT)
7673 			& DC_DC8051_DBG_ERR_INFO_SET_BY_8051_HOST_MSG_MASK;
7674 
7675 		/*
7676 		 * Handle error flags.
7677 		 */
7678 		if (err & FAILED_LNI) {
7679 			/*
7680 			 * LNI error indications are cleared by the 8051
7681 			 * only when starting polling.  Only pay attention
7682 			 * to them when in the states that occur during
7683 			 * LNI.
7684 			 */
7685 			if (ppd->host_link_state
7686 			    & (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) {
7687 				queue_link_down = 1;
7688 				dd_dev_info(dd, "Link error: %s\n",
7689 					    dc8051_info_err_string(buf,
7690 								   sizeof(buf),
7691 								   err &
7692 								   FAILED_LNI));
7693 			}
7694 			err &= ~(u64)FAILED_LNI;
7695 		}
7696 		/* unknown frames can happen durning LNI, just count */
7697 		if (err & UNKNOWN_FRAME) {
7698 			ppd->unknown_frame_count++;
7699 			err &= ~(u64)UNKNOWN_FRAME;
7700 		}
7701 		if (err) {
7702 			/* report remaining errors, but do not do anything */
7703 			dd_dev_err(dd, "8051 info error: %s\n",
7704 				   dc8051_info_err_string(buf, sizeof(buf),
7705 							  err));
7706 		}
7707 
7708 		/*
7709 		 * Handle host message flags.
7710 		 */
7711 		if (host_msg & HOST_REQ_DONE) {
7712 			/*
7713 			 * Presently, the driver does a busy wait for
7714 			 * host requests to complete.  This is only an
7715 			 * informational message.
7716 			 * NOTE: The 8051 clears the host message
7717 			 * information *on the next 8051 command*.
7718 			 * Therefore, when linkup is achieved,
7719 			 * this flag will still be set.
7720 			 */
7721 			host_msg &= ~(u64)HOST_REQ_DONE;
7722 		}
7723 		if (host_msg & BC_SMA_MSG) {
7724 			queue_work(ppd->link_wq, &ppd->sma_message_work);
7725 			host_msg &= ~(u64)BC_SMA_MSG;
7726 		}
7727 		if (host_msg & LINKUP_ACHIEVED) {
7728 			dd_dev_info(dd, "8051: Link up\n");
7729 			queue_work(ppd->link_wq, &ppd->link_up_work);
7730 			host_msg &= ~(u64)LINKUP_ACHIEVED;
7731 		}
7732 		if (host_msg & EXT_DEVICE_CFG_REQ) {
7733 			handle_8051_request(ppd);
7734 			host_msg &= ~(u64)EXT_DEVICE_CFG_REQ;
7735 		}
7736 		if (host_msg & VERIFY_CAP_FRAME) {
7737 			queue_work(ppd->link_wq, &ppd->link_vc_work);
7738 			host_msg &= ~(u64)VERIFY_CAP_FRAME;
7739 		}
7740 		if (host_msg & LINK_GOING_DOWN) {
7741 			const char *extra = "";
7742 			/* no downgrade action needed if going down */
7743 			if (host_msg & LINK_WIDTH_DOWNGRADED) {
7744 				host_msg &= ~(u64)LINK_WIDTH_DOWNGRADED;
7745 				extra = " (ignoring downgrade)";
7746 			}
7747 			dd_dev_info(dd, "8051: Link down%s\n", extra);
7748 			queue_link_down = 1;
7749 			host_msg &= ~(u64)LINK_GOING_DOWN;
7750 		}
7751 		if (host_msg & LINK_WIDTH_DOWNGRADED) {
7752 			queue_work(ppd->link_wq, &ppd->link_downgrade_work);
7753 			host_msg &= ~(u64)LINK_WIDTH_DOWNGRADED;
7754 		}
7755 		if (host_msg) {
7756 			/* report remaining messages, but do not do anything */
7757 			dd_dev_info(dd, "8051 info host message: %s\n",
7758 				    dc8051_info_host_msg_string(buf,
7759 								sizeof(buf),
7760 								host_msg));
7761 		}
7762 
7763 		reg &= ~DC_DC8051_ERR_FLG_SET_BY_8051_SMASK;
7764 	}
7765 	if (reg & DC_DC8051_ERR_FLG_LOST_8051_HEART_BEAT_SMASK) {
7766 		/*
7767 		 * Lost the 8051 heartbeat.  If this happens, we
7768 		 * receive constant interrupts about it.  Disable
7769 		 * the interrupt after the first.
7770 		 */
7771 		dd_dev_err(dd, "Lost 8051 heartbeat\n");
7772 		write_csr(dd, DC_DC8051_ERR_EN,
7773 			  read_csr(dd, DC_DC8051_ERR_EN) &
7774 			  ~DC_DC8051_ERR_EN_LOST_8051_HEART_BEAT_SMASK);
7775 
7776 		reg &= ~DC_DC8051_ERR_FLG_LOST_8051_HEART_BEAT_SMASK;
7777 	}
7778 	if (reg) {
7779 		/* report the error, but do not do anything */
7780 		dd_dev_err(dd, "8051 error: %s\n",
7781 			   dc8051_err_string(buf, sizeof(buf), reg));
7782 	}
7783 
7784 	if (queue_link_down) {
7785 		/*
7786 		 * if the link is already going down or disabled, do not
7787 		 * queue another. If there's a link down entry already
7788 		 * queued, don't queue another one.
7789 		 */
7790 		if ((ppd->host_link_state &
7791 		    (HLS_GOING_OFFLINE | HLS_LINK_COOLDOWN)) ||
7792 		    ppd->link_enabled == 0) {
7793 			dd_dev_info(dd, "%s: not queuing link down. host_link_state %x, link_enabled %x\n",
7794 				    __func__, ppd->host_link_state,
7795 				    ppd->link_enabled);
7796 		} else {
7797 			if (xchg(&ppd->is_link_down_queued, 1) == 1)
7798 				dd_dev_info(dd,
7799 					    "%s: link down request already queued\n",
7800 					    __func__);
7801 			else
7802 				queue_work(ppd->link_wq, &ppd->link_down_work);
7803 		}
7804 	}
7805 }
7806 
7807 static const char * const fm_config_txt[] = {
7808 [0] =
7809 	"BadHeadDist: Distance violation between two head flits",
7810 [1] =
7811 	"BadTailDist: Distance violation between two tail flits",
7812 [2] =
7813 	"BadCtrlDist: Distance violation between two credit control flits",
7814 [3] =
7815 	"BadCrdAck: Credits return for unsupported VL",
7816 [4] =
7817 	"UnsupportedVLMarker: Received VL Marker",
7818 [5] =
7819 	"BadPreempt: Exceeded the preemption nesting level",
7820 [6] =
7821 	"BadControlFlit: Received unsupported control flit",
7822 /* no 7 */
7823 [8] =
7824 	"UnsupportedVLMarker: Received VL Marker for unconfigured or disabled VL",
7825 };
7826 
7827 static const char * const port_rcv_txt[] = {
7828 [1] =
7829 	"BadPktLen: Illegal PktLen",
7830 [2] =
7831 	"PktLenTooLong: Packet longer than PktLen",
7832 [3] =
7833 	"PktLenTooShort: Packet shorter than PktLen",
7834 [4] =
7835 	"BadSLID: Illegal SLID (0, using multicast as SLID, does not include security validation of SLID)",
7836 [5] =
7837 	"BadDLID: Illegal DLID (0, doesn't match HFI)",
7838 [6] =
7839 	"BadL2: Illegal L2 opcode",
7840 [7] =
7841 	"BadSC: Unsupported SC",
7842 [9] =
7843 	"BadRC: Illegal RC",
7844 [11] =
7845 	"PreemptError: Preempting with same VL",
7846 [12] =
7847 	"PreemptVL15: Preempting a VL15 packet",
7848 };
7849 
7850 #define OPA_LDR_FMCONFIG_OFFSET 16
7851 #define OPA_LDR_PORTRCV_OFFSET 0
7852 static void handle_dcc_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
7853 {
7854 	u64 info, hdr0, hdr1;
7855 	const char *extra;
7856 	char buf[96];
7857 	struct hfi1_pportdata *ppd = dd->pport;
7858 	u8 lcl_reason = 0;
7859 	int do_bounce = 0;
7860 
7861 	if (reg & DCC_ERR_FLG_UNCORRECTABLE_ERR_SMASK) {
7862 		if (!(dd->err_info_uncorrectable & OPA_EI_STATUS_SMASK)) {
7863 			info = read_csr(dd, DCC_ERR_INFO_UNCORRECTABLE);
7864 			dd->err_info_uncorrectable = info & OPA_EI_CODE_SMASK;
7865 			/* set status bit */
7866 			dd->err_info_uncorrectable |= OPA_EI_STATUS_SMASK;
7867 		}
7868 		reg &= ~DCC_ERR_FLG_UNCORRECTABLE_ERR_SMASK;
7869 	}
7870 
7871 	if (reg & DCC_ERR_FLG_LINK_ERR_SMASK) {
7872 		struct hfi1_pportdata *ppd = dd->pport;
7873 		/* this counter saturates at (2^32) - 1 */
7874 		if (ppd->link_downed < (u32)UINT_MAX)
7875 			ppd->link_downed++;
7876 		reg &= ~DCC_ERR_FLG_LINK_ERR_SMASK;
7877 	}
7878 
7879 	if (reg & DCC_ERR_FLG_FMCONFIG_ERR_SMASK) {
7880 		u8 reason_valid = 1;
7881 
7882 		info = read_csr(dd, DCC_ERR_INFO_FMCONFIG);
7883 		if (!(dd->err_info_fmconfig & OPA_EI_STATUS_SMASK)) {
7884 			dd->err_info_fmconfig = info & OPA_EI_CODE_SMASK;
7885 			/* set status bit */
7886 			dd->err_info_fmconfig |= OPA_EI_STATUS_SMASK;
7887 		}
7888 		switch (info) {
7889 		case 0:
7890 		case 1:
7891 		case 2:
7892 		case 3:
7893 		case 4:
7894 		case 5:
7895 		case 6:
7896 			extra = fm_config_txt[info];
7897 			break;
7898 		case 8:
7899 			extra = fm_config_txt[info];
7900 			if (ppd->port_error_action &
7901 			    OPA_PI_MASK_FM_CFG_UNSUPPORTED_VL_MARKER) {
7902 				do_bounce = 1;
7903 				/*
7904 				 * lcl_reason cannot be derived from info
7905 				 * for this error
7906 				 */
7907 				lcl_reason =
7908 				  OPA_LINKDOWN_REASON_UNSUPPORTED_VL_MARKER;
7909 			}
7910 			break;
7911 		default:
7912 			reason_valid = 0;
7913 			snprintf(buf, sizeof(buf), "reserved%lld", info);
7914 			extra = buf;
7915 			break;
7916 		}
7917 
7918 		if (reason_valid && !do_bounce) {
7919 			do_bounce = ppd->port_error_action &
7920 					(1 << (OPA_LDR_FMCONFIG_OFFSET + info));
7921 			lcl_reason = info + OPA_LINKDOWN_REASON_BAD_HEAD_DIST;
7922 		}
7923 
7924 		/* just report this */
7925 		dd_dev_info_ratelimited(dd, "DCC Error: fmconfig error: %s\n",
7926 					extra);
7927 		reg &= ~DCC_ERR_FLG_FMCONFIG_ERR_SMASK;
7928 	}
7929 
7930 	if (reg & DCC_ERR_FLG_RCVPORT_ERR_SMASK) {
7931 		u8 reason_valid = 1;
7932 
7933 		info = read_csr(dd, DCC_ERR_INFO_PORTRCV);
7934 		hdr0 = read_csr(dd, DCC_ERR_INFO_PORTRCV_HDR0);
7935 		hdr1 = read_csr(dd, DCC_ERR_INFO_PORTRCV_HDR1);
7936 		if (!(dd->err_info_rcvport.status_and_code &
7937 		      OPA_EI_STATUS_SMASK)) {
7938 			dd->err_info_rcvport.status_and_code =
7939 				info & OPA_EI_CODE_SMASK;
7940 			/* set status bit */
7941 			dd->err_info_rcvport.status_and_code |=
7942 				OPA_EI_STATUS_SMASK;
7943 			/*
7944 			 * save first 2 flits in the packet that caused
7945 			 * the error
7946 			 */
7947 			dd->err_info_rcvport.packet_flit1 = hdr0;
7948 			dd->err_info_rcvport.packet_flit2 = hdr1;
7949 		}
7950 		switch (info) {
7951 		case 1:
7952 		case 2:
7953 		case 3:
7954 		case 4:
7955 		case 5:
7956 		case 6:
7957 		case 7:
7958 		case 9:
7959 		case 11:
7960 		case 12:
7961 			extra = port_rcv_txt[info];
7962 			break;
7963 		default:
7964 			reason_valid = 0;
7965 			snprintf(buf, sizeof(buf), "reserved%lld", info);
7966 			extra = buf;
7967 			break;
7968 		}
7969 
7970 		if (reason_valid && !do_bounce) {
7971 			do_bounce = ppd->port_error_action &
7972 					(1 << (OPA_LDR_PORTRCV_OFFSET + info));
7973 			lcl_reason = info + OPA_LINKDOWN_REASON_RCV_ERROR_0;
7974 		}
7975 
7976 		/* just report this */
7977 		dd_dev_info_ratelimited(dd, "DCC Error: PortRcv error: %s\n"
7978 					"               hdr0 0x%llx, hdr1 0x%llx\n",
7979 					extra, hdr0, hdr1);
7980 
7981 		reg &= ~DCC_ERR_FLG_RCVPORT_ERR_SMASK;
7982 	}
7983 
7984 	if (reg & DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_UC_SMASK) {
7985 		/* informative only */
7986 		dd_dev_info_ratelimited(dd, "8051 access to LCB blocked\n");
7987 		reg &= ~DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_UC_SMASK;
7988 	}
7989 	if (reg & DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_HOST_SMASK) {
7990 		/* informative only */
7991 		dd_dev_info_ratelimited(dd, "host access to LCB blocked\n");
7992 		reg &= ~DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_HOST_SMASK;
7993 	}
7994 
7995 	if (unlikely(hfi1_dbg_fault_suppress_err(&dd->verbs_dev)))
7996 		reg &= ~DCC_ERR_FLG_LATE_EBP_ERR_SMASK;
7997 
7998 	/* report any remaining errors */
7999 	if (reg)
8000 		dd_dev_info_ratelimited(dd, "DCC Error: %s\n",
8001 					dcc_err_string(buf, sizeof(buf), reg));
8002 
8003 	if (lcl_reason == 0)
8004 		lcl_reason = OPA_LINKDOWN_REASON_UNKNOWN;
8005 
8006 	if (do_bounce) {
8007 		dd_dev_info_ratelimited(dd, "%s: PortErrorAction bounce\n",
8008 					__func__);
8009 		set_link_down_reason(ppd, lcl_reason, 0, lcl_reason);
8010 		queue_work(ppd->link_wq, &ppd->link_bounce_work);
8011 	}
8012 }
8013 
8014 static void handle_lcb_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
8015 {
8016 	char buf[96];
8017 
8018 	dd_dev_info(dd, "LCB Error: %s\n",
8019 		    lcb_err_string(buf, sizeof(buf), reg));
8020 }
8021 
8022 /*
8023  * CCE block DC interrupt.  Source is < 8.
8024  */
8025 static void is_dc_int(struct hfi1_devdata *dd, unsigned int source)
8026 {
8027 	const struct err_reg_info *eri = &dc_errs[source];
8028 
8029 	if (eri->handler) {
8030 		interrupt_clear_down(dd, 0, eri);
8031 	} else if (source == 3 /* dc_lbm_int */) {
8032 		/*
8033 		 * This indicates that a parity error has occurred on the
8034 		 * address/control lines presented to the LBM.  The error
8035 		 * is a single pulse, there is no associated error flag,
8036 		 * and it is non-maskable.  This is because if a parity
8037 		 * error occurs on the request the request is dropped.
8038 		 * This should never occur, but it is nice to know if it
8039 		 * ever does.
8040 		 */
8041 		dd_dev_err(dd, "Parity error in DC LBM block\n");
8042 	} else {
8043 		dd_dev_err(dd, "Invalid DC interrupt %u\n", source);
8044 	}
8045 }
8046 
8047 /*
8048  * TX block send credit interrupt.  Source is < 160.
8049  */
8050 static void is_send_credit_int(struct hfi1_devdata *dd, unsigned int source)
8051 {
8052 	sc_group_release_update(dd, source);
8053 }
8054 
8055 /*
8056  * TX block SDMA interrupt.  Source is < 48.
8057  *
8058  * SDMA interrupts are grouped by type:
8059  *
8060  *	 0 -  N-1 = SDma
8061  *	 N - 2N-1 = SDmaProgress
8062  *	2N - 3N-1 = SDmaIdle
8063  */
8064 static void is_sdma_eng_int(struct hfi1_devdata *dd, unsigned int source)
8065 {
8066 	/* what interrupt */
8067 	unsigned int what  = source / TXE_NUM_SDMA_ENGINES;
8068 	/* which engine */
8069 	unsigned int which = source % TXE_NUM_SDMA_ENGINES;
8070 
8071 #ifdef CONFIG_SDMA_VERBOSITY
8072 	dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", which,
8073 		   slashstrip(__FILE__), __LINE__, __func__);
8074 	sdma_dumpstate(&dd->per_sdma[which]);
8075 #endif
8076 
8077 	if (likely(what < 3 && which < dd->num_sdma)) {
8078 		sdma_engine_interrupt(&dd->per_sdma[which], 1ull << source);
8079 	} else {
8080 		/* should not happen */
8081 		dd_dev_err(dd, "Invalid SDMA interrupt 0x%x\n", source);
8082 	}
8083 }
8084 
8085 /*
8086  * RX block receive available interrupt.  Source is < 160.
8087  */
8088 static void is_rcv_avail_int(struct hfi1_devdata *dd, unsigned int source)
8089 {
8090 	struct hfi1_ctxtdata *rcd;
8091 	char *err_detail;
8092 
8093 	if (likely(source < dd->num_rcv_contexts)) {
8094 		rcd = hfi1_rcd_get_by_index(dd, source);
8095 		if (rcd) {
8096 			/* Check for non-user contexts, including vnic */
8097 			if (source < dd->first_dyn_alloc_ctxt || rcd->is_vnic)
8098 				rcd->do_interrupt(rcd, 0);
8099 			else
8100 				handle_user_interrupt(rcd);
8101 
8102 			hfi1_rcd_put(rcd);
8103 			return;	/* OK */
8104 		}
8105 		/* received an interrupt, but no rcd */
8106 		err_detail = "dataless";
8107 	} else {
8108 		/* received an interrupt, but are not using that context */
8109 		err_detail = "out of range";
8110 	}
8111 	dd_dev_err(dd, "unexpected %s receive available context interrupt %u\n",
8112 		   err_detail, source);
8113 }
8114 
8115 /*
8116  * RX block receive urgent interrupt.  Source is < 160.
8117  */
8118 static void is_rcv_urgent_int(struct hfi1_devdata *dd, unsigned int source)
8119 {
8120 	struct hfi1_ctxtdata *rcd;
8121 	char *err_detail;
8122 
8123 	if (likely(source < dd->num_rcv_contexts)) {
8124 		rcd = hfi1_rcd_get_by_index(dd, source);
8125 		if (rcd) {
8126 			/* only pay attention to user urgent interrupts */
8127 			if (source >= dd->first_dyn_alloc_ctxt &&
8128 			    !rcd->is_vnic)
8129 				handle_user_interrupt(rcd);
8130 
8131 			hfi1_rcd_put(rcd);
8132 			return;	/* OK */
8133 		}
8134 		/* received an interrupt, but no rcd */
8135 		err_detail = "dataless";
8136 	} else {
8137 		/* received an interrupt, but are not using that context */
8138 		err_detail = "out of range";
8139 	}
8140 	dd_dev_err(dd, "unexpected %s receive urgent context interrupt %u\n",
8141 		   err_detail, source);
8142 }
8143 
8144 /*
8145  * Reserved range interrupt.  Should not be called in normal operation.
8146  */
8147 static void is_reserved_int(struct hfi1_devdata *dd, unsigned int source)
8148 {
8149 	char name[64];
8150 
8151 	dd_dev_err(dd, "unexpected %s interrupt\n",
8152 		   is_reserved_name(name, sizeof(name), source));
8153 }
8154 
8155 static const struct is_table is_table[] = {
8156 /*
8157  * start		 end
8158  *				name func		interrupt func
8159  */
8160 { IS_GENERAL_ERR_START,  IS_GENERAL_ERR_END,
8161 				is_misc_err_name,	is_misc_err_int },
8162 { IS_SDMAENG_ERR_START,  IS_SDMAENG_ERR_END,
8163 				is_sdma_eng_err_name,	is_sdma_eng_err_int },
8164 { IS_SENDCTXT_ERR_START, IS_SENDCTXT_ERR_END,
8165 				is_sendctxt_err_name,	is_sendctxt_err_int },
8166 { IS_SDMA_START,	     IS_SDMA_END,
8167 				is_sdma_eng_name,	is_sdma_eng_int },
8168 { IS_VARIOUS_START,	     IS_VARIOUS_END,
8169 				is_various_name,	is_various_int },
8170 { IS_DC_START,	     IS_DC_END,
8171 				is_dc_name,		is_dc_int },
8172 { IS_RCVAVAIL_START,     IS_RCVAVAIL_END,
8173 				is_rcv_avail_name,	is_rcv_avail_int },
8174 { IS_RCVURGENT_START,    IS_RCVURGENT_END,
8175 				is_rcv_urgent_name,	is_rcv_urgent_int },
8176 { IS_SENDCREDIT_START,   IS_SENDCREDIT_END,
8177 				is_send_credit_name,	is_send_credit_int},
8178 { IS_RESERVED_START,     IS_RESERVED_END,
8179 				is_reserved_name,	is_reserved_int},
8180 };
8181 
8182 /*
8183  * Interrupt source interrupt - called when the given source has an interrupt.
8184  * Source is a bit index into an array of 64-bit integers.
8185  */
8186 static void is_interrupt(struct hfi1_devdata *dd, unsigned int source)
8187 {
8188 	const struct is_table *entry;
8189 
8190 	/* avoids a double compare by walking the table in-order */
8191 	for (entry = &is_table[0]; entry->is_name; entry++) {
8192 		if (source < entry->end) {
8193 			trace_hfi1_interrupt(dd, entry, source);
8194 			entry->is_int(dd, source - entry->start);
8195 			return;
8196 		}
8197 	}
8198 	/* fell off the end */
8199 	dd_dev_err(dd, "invalid interrupt source %u\n", source);
8200 }
8201 
8202 /*
8203  * General interrupt handler.  This is able to correctly handle
8204  * all interrupts in case INTx is used.
8205  */
8206 static irqreturn_t general_interrupt(int irq, void *data)
8207 {
8208 	struct hfi1_devdata *dd = data;
8209 	u64 regs[CCE_NUM_INT_CSRS];
8210 	u32 bit;
8211 	int i;
8212 	irqreturn_t handled = IRQ_NONE;
8213 
8214 	this_cpu_inc(*dd->int_counter);
8215 
8216 	/* phase 1: scan and clear all handled interrupts */
8217 	for (i = 0; i < CCE_NUM_INT_CSRS; i++) {
8218 		if (dd->gi_mask[i] == 0) {
8219 			regs[i] = 0;	/* used later */
8220 			continue;
8221 		}
8222 		regs[i] = read_csr(dd, CCE_INT_STATUS + (8 * i)) &
8223 				dd->gi_mask[i];
8224 		/* only clear if anything is set */
8225 		if (regs[i])
8226 			write_csr(dd, CCE_INT_CLEAR + (8 * i), regs[i]);
8227 	}
8228 
8229 	/* phase 2: call the appropriate handler */
8230 	for_each_set_bit(bit, (unsigned long *)&regs[0],
8231 			 CCE_NUM_INT_CSRS * 64) {
8232 		is_interrupt(dd, bit);
8233 		handled = IRQ_HANDLED;
8234 	}
8235 
8236 	return handled;
8237 }
8238 
8239 static irqreturn_t sdma_interrupt(int irq, void *data)
8240 {
8241 	struct sdma_engine *sde = data;
8242 	struct hfi1_devdata *dd = sde->dd;
8243 	u64 status;
8244 
8245 #ifdef CONFIG_SDMA_VERBOSITY
8246 	dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
8247 		   slashstrip(__FILE__), __LINE__, __func__);
8248 	sdma_dumpstate(sde);
8249 #endif
8250 
8251 	this_cpu_inc(*dd->int_counter);
8252 
8253 	/* This read_csr is really bad in the hot path */
8254 	status = read_csr(dd,
8255 			  CCE_INT_STATUS + (8 * (IS_SDMA_START / 64)))
8256 			  & sde->imask;
8257 	if (likely(status)) {
8258 		/* clear the interrupt(s) */
8259 		write_csr(dd,
8260 			  CCE_INT_CLEAR + (8 * (IS_SDMA_START / 64)),
8261 			  status);
8262 
8263 		/* handle the interrupt(s) */
8264 		sdma_engine_interrupt(sde, status);
8265 	} else {
8266 		dd_dev_err_ratelimited(dd, "SDMA engine %u interrupt, but no status bits set\n",
8267 				       sde->this_idx);
8268 	}
8269 	return IRQ_HANDLED;
8270 }
8271 
8272 /*
8273  * Clear the receive interrupt.  Use a read of the interrupt clear CSR
8274  * to insure that the write completed.  This does NOT guarantee that
8275  * queued DMA writes to memory from the chip are pushed.
8276  */
8277 static inline void clear_recv_intr(struct hfi1_ctxtdata *rcd)
8278 {
8279 	struct hfi1_devdata *dd = rcd->dd;
8280 	u32 addr = CCE_INT_CLEAR + (8 * rcd->ireg);
8281 
8282 	mmiowb();	/* make sure everything before is written */
8283 	write_csr(dd, addr, rcd->imask);
8284 	/* force the above write on the chip and get a value back */
8285 	(void)read_csr(dd, addr);
8286 }
8287 
8288 /* force the receive interrupt */
8289 void force_recv_intr(struct hfi1_ctxtdata *rcd)
8290 {
8291 	write_csr(rcd->dd, CCE_INT_FORCE + (8 * rcd->ireg), rcd->imask);
8292 }
8293 
8294 /*
8295  * Return non-zero if a packet is present.
8296  *
8297  * This routine is called when rechecking for packets after the RcvAvail
8298  * interrupt has been cleared down.  First, do a quick check of memory for
8299  * a packet present.  If not found, use an expensive CSR read of the context
8300  * tail to determine the actual tail.  The CSR read is necessary because there
8301  * is no method to push pending DMAs to memory other than an interrupt and we
8302  * are trying to determine if we need to force an interrupt.
8303  */
8304 static inline int check_packet_present(struct hfi1_ctxtdata *rcd)
8305 {
8306 	u32 tail;
8307 	int present;
8308 
8309 	if (!HFI1_CAP_IS_KSET(DMA_RTAIL))
8310 		present = (rcd->seq_cnt ==
8311 				rhf_rcv_seq(rhf_to_cpu(get_rhf_addr(rcd))));
8312 	else /* is RDMA rtail */
8313 		present = (rcd->head != get_rcvhdrtail(rcd));
8314 
8315 	if (present)
8316 		return 1;
8317 
8318 	/* fall back to a CSR read, correct indpendent of DMA_RTAIL */
8319 	tail = (u32)read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_TAIL);
8320 	return rcd->head != tail;
8321 }
8322 
8323 /*
8324  * Receive packet IRQ handler.  This routine expects to be on its own IRQ.
8325  * This routine will try to handle packets immediately (latency), but if
8326  * it finds too many, it will invoke the thread handler (bandwitdh).  The
8327  * chip receive interrupt is *not* cleared down until this or the thread (if
8328  * invoked) is finished.  The intent is to avoid extra interrupts while we
8329  * are processing packets anyway.
8330  */
8331 static irqreturn_t receive_context_interrupt(int irq, void *data)
8332 {
8333 	struct hfi1_ctxtdata *rcd = data;
8334 	struct hfi1_devdata *dd = rcd->dd;
8335 	int disposition;
8336 	int present;
8337 
8338 	trace_hfi1_receive_interrupt(dd, rcd);
8339 	this_cpu_inc(*dd->int_counter);
8340 	aspm_ctx_disable(rcd);
8341 
8342 	/* receive interrupt remains blocked while processing packets */
8343 	disposition = rcd->do_interrupt(rcd, 0);
8344 
8345 	/*
8346 	 * Too many packets were seen while processing packets in this
8347 	 * IRQ handler.  Invoke the handler thread.  The receive interrupt
8348 	 * remains blocked.
8349 	 */
8350 	if (disposition == RCV_PKT_LIMIT)
8351 		return IRQ_WAKE_THREAD;
8352 
8353 	/*
8354 	 * The packet processor detected no more packets.  Clear the receive
8355 	 * interrupt and recheck for a packet packet that may have arrived
8356 	 * after the previous check and interrupt clear.  If a packet arrived,
8357 	 * force another interrupt.
8358 	 */
8359 	clear_recv_intr(rcd);
8360 	present = check_packet_present(rcd);
8361 	if (present)
8362 		force_recv_intr(rcd);
8363 
8364 	return IRQ_HANDLED;
8365 }
8366 
8367 /*
8368  * Receive packet thread handler.  This expects to be invoked with the
8369  * receive interrupt still blocked.
8370  */
8371 static irqreturn_t receive_context_thread(int irq, void *data)
8372 {
8373 	struct hfi1_ctxtdata *rcd = data;
8374 	int present;
8375 
8376 	/* receive interrupt is still blocked from the IRQ handler */
8377 	(void)rcd->do_interrupt(rcd, 1);
8378 
8379 	/*
8380 	 * The packet processor will only return if it detected no more
8381 	 * packets.  Hold IRQs here so we can safely clear the interrupt and
8382 	 * recheck for a packet that may have arrived after the previous
8383 	 * check and the interrupt clear.  If a packet arrived, force another
8384 	 * interrupt.
8385 	 */
8386 	local_irq_disable();
8387 	clear_recv_intr(rcd);
8388 	present = check_packet_present(rcd);
8389 	if (present)
8390 		force_recv_intr(rcd);
8391 	local_irq_enable();
8392 
8393 	return IRQ_HANDLED;
8394 }
8395 
8396 /* ========================================================================= */
8397 
8398 u32 read_physical_state(struct hfi1_devdata *dd)
8399 {
8400 	u64 reg;
8401 
8402 	reg = read_csr(dd, DC_DC8051_STS_CUR_STATE);
8403 	return (reg >> DC_DC8051_STS_CUR_STATE_PORT_SHIFT)
8404 				& DC_DC8051_STS_CUR_STATE_PORT_MASK;
8405 }
8406 
8407 u32 read_logical_state(struct hfi1_devdata *dd)
8408 {
8409 	u64 reg;
8410 
8411 	reg = read_csr(dd, DCC_CFG_PORT_CONFIG);
8412 	return (reg >> DCC_CFG_PORT_CONFIG_LINK_STATE_SHIFT)
8413 				& DCC_CFG_PORT_CONFIG_LINK_STATE_MASK;
8414 }
8415 
8416 static void set_logical_state(struct hfi1_devdata *dd, u32 chip_lstate)
8417 {
8418 	u64 reg;
8419 
8420 	reg = read_csr(dd, DCC_CFG_PORT_CONFIG);
8421 	/* clear current state, set new state */
8422 	reg &= ~DCC_CFG_PORT_CONFIG_LINK_STATE_SMASK;
8423 	reg |= (u64)chip_lstate << DCC_CFG_PORT_CONFIG_LINK_STATE_SHIFT;
8424 	write_csr(dd, DCC_CFG_PORT_CONFIG, reg);
8425 }
8426 
8427 /*
8428  * Use the 8051 to read a LCB CSR.
8429  */
8430 static int read_lcb_via_8051(struct hfi1_devdata *dd, u32 addr, u64 *data)
8431 {
8432 	u32 regno;
8433 	int ret;
8434 
8435 	if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR) {
8436 		if (acquire_lcb_access(dd, 0) == 0) {
8437 			*data = read_csr(dd, addr);
8438 			release_lcb_access(dd, 0);
8439 			return 0;
8440 		}
8441 		return -EBUSY;
8442 	}
8443 
8444 	/* register is an index of LCB registers: (offset - base) / 8 */
8445 	regno = (addr - DC_LCB_CFG_RUN) >> 3;
8446 	ret = do_8051_command(dd, HCMD_READ_LCB_CSR, regno, data);
8447 	if (ret != HCMD_SUCCESS)
8448 		return -EBUSY;
8449 	return 0;
8450 }
8451 
8452 /*
8453  * Provide a cache for some of the LCB registers in case the LCB is
8454  * unavailable.
8455  * (The LCB is unavailable in certain link states, for example.)
8456  */
8457 struct lcb_datum {
8458 	u32 off;
8459 	u64 val;
8460 };
8461 
8462 static struct lcb_datum lcb_cache[] = {
8463 	{ DC_LCB_ERR_INFO_RX_REPLAY_CNT, 0},
8464 	{ DC_LCB_ERR_INFO_SEQ_CRC_CNT, 0 },
8465 	{ DC_LCB_ERR_INFO_REINIT_FROM_PEER_CNT, 0 },
8466 };
8467 
8468 static void update_lcb_cache(struct hfi1_devdata *dd)
8469 {
8470 	int i;
8471 	int ret;
8472 	u64 val;
8473 
8474 	for (i = 0; i < ARRAY_SIZE(lcb_cache); i++) {
8475 		ret = read_lcb_csr(dd, lcb_cache[i].off, &val);
8476 
8477 		/* Update if we get good data */
8478 		if (likely(ret != -EBUSY))
8479 			lcb_cache[i].val = val;
8480 	}
8481 }
8482 
8483 static int read_lcb_cache(u32 off, u64 *val)
8484 {
8485 	int i;
8486 
8487 	for (i = 0; i < ARRAY_SIZE(lcb_cache); i++) {
8488 		if (lcb_cache[i].off == off) {
8489 			*val = lcb_cache[i].val;
8490 			return 0;
8491 		}
8492 	}
8493 
8494 	pr_warn("%s bad offset 0x%x\n", __func__, off);
8495 	return -1;
8496 }
8497 
8498 /*
8499  * Read an LCB CSR.  Access may not be in host control, so check.
8500  * Return 0 on success, -EBUSY on failure.
8501  */
8502 int read_lcb_csr(struct hfi1_devdata *dd, u32 addr, u64 *data)
8503 {
8504 	struct hfi1_pportdata *ppd = dd->pport;
8505 
8506 	/* if up, go through the 8051 for the value */
8507 	if (ppd->host_link_state & HLS_UP)
8508 		return read_lcb_via_8051(dd, addr, data);
8509 	/* if going up or down, check the cache, otherwise, no access */
8510 	if (ppd->host_link_state & (HLS_GOING_UP | HLS_GOING_OFFLINE)) {
8511 		if (read_lcb_cache(addr, data))
8512 			return -EBUSY;
8513 		return 0;
8514 	}
8515 
8516 	/* otherwise, host has access */
8517 	*data = read_csr(dd, addr);
8518 	return 0;
8519 }
8520 
8521 /*
8522  * Use the 8051 to write a LCB CSR.
8523  */
8524 static int write_lcb_via_8051(struct hfi1_devdata *dd, u32 addr, u64 data)
8525 {
8526 	u32 regno;
8527 	int ret;
8528 
8529 	if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR ||
8530 	    (dd->dc8051_ver < dc8051_ver(0, 20, 0))) {
8531 		if (acquire_lcb_access(dd, 0) == 0) {
8532 			write_csr(dd, addr, data);
8533 			release_lcb_access(dd, 0);
8534 			return 0;
8535 		}
8536 		return -EBUSY;
8537 	}
8538 
8539 	/* register is an index of LCB registers: (offset - base) / 8 */
8540 	regno = (addr - DC_LCB_CFG_RUN) >> 3;
8541 	ret = do_8051_command(dd, HCMD_WRITE_LCB_CSR, regno, &data);
8542 	if (ret != HCMD_SUCCESS)
8543 		return -EBUSY;
8544 	return 0;
8545 }
8546 
8547 /*
8548  * Write an LCB CSR.  Access may not be in host control, so check.
8549  * Return 0 on success, -EBUSY on failure.
8550  */
8551 int write_lcb_csr(struct hfi1_devdata *dd, u32 addr, u64 data)
8552 {
8553 	struct hfi1_pportdata *ppd = dd->pport;
8554 
8555 	/* if up, go through the 8051 for the value */
8556 	if (ppd->host_link_state & HLS_UP)
8557 		return write_lcb_via_8051(dd, addr, data);
8558 	/* if going up or down, no access */
8559 	if (ppd->host_link_state & (HLS_GOING_UP | HLS_GOING_OFFLINE))
8560 		return -EBUSY;
8561 	/* otherwise, host has access */
8562 	write_csr(dd, addr, data);
8563 	return 0;
8564 }
8565 
8566 /*
8567  * If the 8051 is in reset mode (dd->dc_shutdown == 1), this function
8568  * will still continue executing.
8569  *
8570  * Returns:
8571  *	< 0 = Linux error, not able to get access
8572  *	> 0 = 8051 command RETURN_CODE
8573  */
8574 static int _do_8051_command(struct hfi1_devdata *dd, u32 type, u64 in_data,
8575 			    u64 *out_data)
8576 {
8577 	u64 reg, completed;
8578 	int return_code;
8579 	unsigned long timeout;
8580 
8581 	lockdep_assert_held(&dd->dc8051_lock);
8582 	hfi1_cdbg(DC8051, "type %d, data 0x%012llx", type, in_data);
8583 
8584 	/*
8585 	 * If an 8051 host command timed out previously, then the 8051 is
8586 	 * stuck.
8587 	 *
8588 	 * On first timeout, attempt to reset and restart the entire DC
8589 	 * block (including 8051). (Is this too big of a hammer?)
8590 	 *
8591 	 * If the 8051 times out a second time, the reset did not bring it
8592 	 * back to healthy life. In that case, fail any subsequent commands.
8593 	 */
8594 	if (dd->dc8051_timed_out) {
8595 		if (dd->dc8051_timed_out > 1) {
8596 			dd_dev_err(dd,
8597 				   "Previous 8051 host command timed out, skipping command %u\n",
8598 				   type);
8599 			return_code = -ENXIO;
8600 			goto fail;
8601 		}
8602 		_dc_shutdown(dd);
8603 		_dc_start(dd);
8604 	}
8605 
8606 	/*
8607 	 * If there is no timeout, then the 8051 command interface is
8608 	 * waiting for a command.
8609 	 */
8610 
8611 	/*
8612 	 * When writing a LCB CSR, out_data contains the full value to
8613 	 * to be written, while in_data contains the relative LCB
8614 	 * address in 7:0.  Do the work here, rather than the caller,
8615 	 * of distrubting the write data to where it needs to go:
8616 	 *
8617 	 * Write data
8618 	 *   39:00 -> in_data[47:8]
8619 	 *   47:40 -> DC8051_CFG_EXT_DEV_0.RETURN_CODE
8620 	 *   63:48 -> DC8051_CFG_EXT_DEV_0.RSP_DATA
8621 	 */
8622 	if (type == HCMD_WRITE_LCB_CSR) {
8623 		in_data |= ((*out_data) & 0xffffffffffull) << 8;
8624 		/* must preserve COMPLETED - it is tied to hardware */
8625 		reg = read_csr(dd, DC_DC8051_CFG_EXT_DEV_0);
8626 		reg &= DC_DC8051_CFG_EXT_DEV_0_COMPLETED_SMASK;
8627 		reg |= ((((*out_data) >> 40) & 0xff) <<
8628 				DC_DC8051_CFG_EXT_DEV_0_RETURN_CODE_SHIFT)
8629 		      | ((((*out_data) >> 48) & 0xffff) <<
8630 				DC_DC8051_CFG_EXT_DEV_0_RSP_DATA_SHIFT);
8631 		write_csr(dd, DC_DC8051_CFG_EXT_DEV_0, reg);
8632 	}
8633 
8634 	/*
8635 	 * Do two writes: the first to stabilize the type and req_data, the
8636 	 * second to activate.
8637 	 */
8638 	reg = ((u64)type & DC_DC8051_CFG_HOST_CMD_0_REQ_TYPE_MASK)
8639 			<< DC_DC8051_CFG_HOST_CMD_0_REQ_TYPE_SHIFT
8640 		| (in_data & DC_DC8051_CFG_HOST_CMD_0_REQ_DATA_MASK)
8641 			<< DC_DC8051_CFG_HOST_CMD_0_REQ_DATA_SHIFT;
8642 	write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, reg);
8643 	reg |= DC_DC8051_CFG_HOST_CMD_0_REQ_NEW_SMASK;
8644 	write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, reg);
8645 
8646 	/* wait for completion, alternate: interrupt */
8647 	timeout = jiffies + msecs_to_jiffies(DC8051_COMMAND_TIMEOUT);
8648 	while (1) {
8649 		reg = read_csr(dd, DC_DC8051_CFG_HOST_CMD_1);
8650 		completed = reg & DC_DC8051_CFG_HOST_CMD_1_COMPLETED_SMASK;
8651 		if (completed)
8652 			break;
8653 		if (time_after(jiffies, timeout)) {
8654 			dd->dc8051_timed_out++;
8655 			dd_dev_err(dd, "8051 host command %u timeout\n", type);
8656 			if (out_data)
8657 				*out_data = 0;
8658 			return_code = -ETIMEDOUT;
8659 			goto fail;
8660 		}
8661 		udelay(2);
8662 	}
8663 
8664 	if (out_data) {
8665 		*out_data = (reg >> DC_DC8051_CFG_HOST_CMD_1_RSP_DATA_SHIFT)
8666 				& DC_DC8051_CFG_HOST_CMD_1_RSP_DATA_MASK;
8667 		if (type == HCMD_READ_LCB_CSR) {
8668 			/* top 16 bits are in a different register */
8669 			*out_data |= (read_csr(dd, DC_DC8051_CFG_EXT_DEV_1)
8670 				& DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SMASK)
8671 				<< (48
8672 				    - DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SHIFT);
8673 		}
8674 	}
8675 	return_code = (reg >> DC_DC8051_CFG_HOST_CMD_1_RETURN_CODE_SHIFT)
8676 				& DC_DC8051_CFG_HOST_CMD_1_RETURN_CODE_MASK;
8677 	dd->dc8051_timed_out = 0;
8678 	/*
8679 	 * Clear command for next user.
8680 	 */
8681 	write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, 0);
8682 
8683 fail:
8684 	return return_code;
8685 }
8686 
8687 /*
8688  * Returns:
8689  *	< 0 = Linux error, not able to get access
8690  *	> 0 = 8051 command RETURN_CODE
8691  */
8692 static int do_8051_command(struct hfi1_devdata *dd, u32 type, u64 in_data,
8693 			   u64 *out_data)
8694 {
8695 	int return_code;
8696 
8697 	mutex_lock(&dd->dc8051_lock);
8698 	/* We can't send any commands to the 8051 if it's in reset */
8699 	if (dd->dc_shutdown) {
8700 		return_code = -ENODEV;
8701 		goto fail;
8702 	}
8703 
8704 	return_code = _do_8051_command(dd, type, in_data, out_data);
8705 
8706 fail:
8707 	mutex_unlock(&dd->dc8051_lock);
8708 	return return_code;
8709 }
8710 
8711 static int set_physical_link_state(struct hfi1_devdata *dd, u64 state)
8712 {
8713 	return do_8051_command(dd, HCMD_CHANGE_PHY_STATE, state, NULL);
8714 }
8715 
8716 static int _load_8051_config(struct hfi1_devdata *dd, u8 field_id,
8717 			     u8 lane_id, u32 config_data)
8718 {
8719 	u64 data;
8720 	int ret;
8721 
8722 	lockdep_assert_held(&dd->dc8051_lock);
8723 	data = (u64)field_id << LOAD_DATA_FIELD_ID_SHIFT
8724 		| (u64)lane_id << LOAD_DATA_LANE_ID_SHIFT
8725 		| (u64)config_data << LOAD_DATA_DATA_SHIFT;
8726 	ret = _do_8051_command(dd, HCMD_LOAD_CONFIG_DATA, data, NULL);
8727 	if (ret != HCMD_SUCCESS) {
8728 		dd_dev_err(dd,
8729 			   "load 8051 config: field id %d, lane %d, err %d\n",
8730 			   (int)field_id, (int)lane_id, ret);
8731 	}
8732 	return ret;
8733 }
8734 
8735 int load_8051_config(struct hfi1_devdata *dd, u8 field_id,
8736 		     u8 lane_id, u32 config_data)
8737 {
8738 	int return_code;
8739 
8740 	mutex_lock(&dd->dc8051_lock);
8741 	return_code = _load_8051_config(dd, field_id, lane_id, config_data);
8742 	mutex_unlock(&dd->dc8051_lock);
8743 
8744 	return return_code;
8745 }
8746 
8747 /*
8748  * Read the 8051 firmware "registers".  Use the RAM directly.  Always
8749  * set the result, even on error.
8750  * Return 0 on success, -errno on failure
8751  */
8752 int read_8051_config(struct hfi1_devdata *dd, u8 field_id, u8 lane_id,
8753 		     u32 *result)
8754 {
8755 	u64 big_data;
8756 	u32 addr;
8757 	int ret;
8758 
8759 	/* address start depends on the lane_id */
8760 	if (lane_id < 4)
8761 		addr = (4 * NUM_GENERAL_FIELDS)
8762 			+ (lane_id * 4 * NUM_LANE_FIELDS);
8763 	else
8764 		addr = 0;
8765 	addr += field_id * 4;
8766 
8767 	/* read is in 8-byte chunks, hardware will truncate the address down */
8768 	ret = read_8051_data(dd, addr, 8, &big_data);
8769 
8770 	if (ret == 0) {
8771 		/* extract the 4 bytes we want */
8772 		if (addr & 0x4)
8773 			*result = (u32)(big_data >> 32);
8774 		else
8775 			*result = (u32)big_data;
8776 	} else {
8777 		*result = 0;
8778 		dd_dev_err(dd, "%s: direct read failed, lane %d, field %d!\n",
8779 			   __func__, lane_id, field_id);
8780 	}
8781 
8782 	return ret;
8783 }
8784 
8785 static int write_vc_local_phy(struct hfi1_devdata *dd, u8 power_management,
8786 			      u8 continuous)
8787 {
8788 	u32 frame;
8789 
8790 	frame = continuous << CONTINIOUS_REMOTE_UPDATE_SUPPORT_SHIFT
8791 		| power_management << POWER_MANAGEMENT_SHIFT;
8792 	return load_8051_config(dd, VERIFY_CAP_LOCAL_PHY,
8793 				GENERAL_CONFIG, frame);
8794 }
8795 
8796 static int write_vc_local_fabric(struct hfi1_devdata *dd, u8 vau, u8 z, u8 vcu,
8797 				 u16 vl15buf, u8 crc_sizes)
8798 {
8799 	u32 frame;
8800 
8801 	frame = (u32)vau << VAU_SHIFT
8802 		| (u32)z << Z_SHIFT
8803 		| (u32)vcu << VCU_SHIFT
8804 		| (u32)vl15buf << VL15BUF_SHIFT
8805 		| (u32)crc_sizes << CRC_SIZES_SHIFT;
8806 	return load_8051_config(dd, VERIFY_CAP_LOCAL_FABRIC,
8807 				GENERAL_CONFIG, frame);
8808 }
8809 
8810 static void read_vc_local_link_width(struct hfi1_devdata *dd, u8 *misc_bits,
8811 				     u8 *flag_bits, u16 *link_widths)
8812 {
8813 	u32 frame;
8814 
8815 	read_8051_config(dd, VERIFY_CAP_LOCAL_LINK_WIDTH, GENERAL_CONFIG,
8816 			 &frame);
8817 	*misc_bits = (frame >> MISC_CONFIG_BITS_SHIFT) & MISC_CONFIG_BITS_MASK;
8818 	*flag_bits = (frame >> LOCAL_FLAG_BITS_SHIFT) & LOCAL_FLAG_BITS_MASK;
8819 	*link_widths = (frame >> LINK_WIDTH_SHIFT) & LINK_WIDTH_MASK;
8820 }
8821 
8822 static int write_vc_local_link_width(struct hfi1_devdata *dd,
8823 				     u8 misc_bits,
8824 				     u8 flag_bits,
8825 				     u16 link_widths)
8826 {
8827 	u32 frame;
8828 
8829 	frame = (u32)misc_bits << MISC_CONFIG_BITS_SHIFT
8830 		| (u32)flag_bits << LOCAL_FLAG_BITS_SHIFT
8831 		| (u32)link_widths << LINK_WIDTH_SHIFT;
8832 	return load_8051_config(dd, VERIFY_CAP_LOCAL_LINK_WIDTH, GENERAL_CONFIG,
8833 		     frame);
8834 }
8835 
8836 static int write_local_device_id(struct hfi1_devdata *dd, u16 device_id,
8837 				 u8 device_rev)
8838 {
8839 	u32 frame;
8840 
8841 	frame = ((u32)device_id << LOCAL_DEVICE_ID_SHIFT)
8842 		| ((u32)device_rev << LOCAL_DEVICE_REV_SHIFT);
8843 	return load_8051_config(dd, LOCAL_DEVICE_ID, GENERAL_CONFIG, frame);
8844 }
8845 
8846 static void read_remote_device_id(struct hfi1_devdata *dd, u16 *device_id,
8847 				  u8 *device_rev)
8848 {
8849 	u32 frame;
8850 
8851 	read_8051_config(dd, REMOTE_DEVICE_ID, GENERAL_CONFIG, &frame);
8852 	*device_id = (frame >> REMOTE_DEVICE_ID_SHIFT) & REMOTE_DEVICE_ID_MASK;
8853 	*device_rev = (frame >> REMOTE_DEVICE_REV_SHIFT)
8854 			& REMOTE_DEVICE_REV_MASK;
8855 }
8856 
8857 int write_host_interface_version(struct hfi1_devdata *dd, u8 version)
8858 {
8859 	u32 frame;
8860 	u32 mask;
8861 
8862 	lockdep_assert_held(&dd->dc8051_lock);
8863 	mask = (HOST_INTERFACE_VERSION_MASK << HOST_INTERFACE_VERSION_SHIFT);
8864 	read_8051_config(dd, RESERVED_REGISTERS, GENERAL_CONFIG, &frame);
8865 	/* Clear, then set field */
8866 	frame &= ~mask;
8867 	frame |= ((u32)version << HOST_INTERFACE_VERSION_SHIFT);
8868 	return _load_8051_config(dd, RESERVED_REGISTERS, GENERAL_CONFIG,
8869 				 frame);
8870 }
8871 
8872 void read_misc_status(struct hfi1_devdata *dd, u8 *ver_major, u8 *ver_minor,
8873 		      u8 *ver_patch)
8874 {
8875 	u32 frame;
8876 
8877 	read_8051_config(dd, MISC_STATUS, GENERAL_CONFIG, &frame);
8878 	*ver_major = (frame >> STS_FM_VERSION_MAJOR_SHIFT) &
8879 		STS_FM_VERSION_MAJOR_MASK;
8880 	*ver_minor = (frame >> STS_FM_VERSION_MINOR_SHIFT) &
8881 		STS_FM_VERSION_MINOR_MASK;
8882 
8883 	read_8051_config(dd, VERSION_PATCH, GENERAL_CONFIG, &frame);
8884 	*ver_patch = (frame >> STS_FM_VERSION_PATCH_SHIFT) &
8885 		STS_FM_VERSION_PATCH_MASK;
8886 }
8887 
8888 static void read_vc_remote_phy(struct hfi1_devdata *dd, u8 *power_management,
8889 			       u8 *continuous)
8890 {
8891 	u32 frame;
8892 
8893 	read_8051_config(dd, VERIFY_CAP_REMOTE_PHY, GENERAL_CONFIG, &frame);
8894 	*power_management = (frame >> POWER_MANAGEMENT_SHIFT)
8895 					& POWER_MANAGEMENT_MASK;
8896 	*continuous = (frame >> CONTINIOUS_REMOTE_UPDATE_SUPPORT_SHIFT)
8897 					& CONTINIOUS_REMOTE_UPDATE_SUPPORT_MASK;
8898 }
8899 
8900 static void read_vc_remote_fabric(struct hfi1_devdata *dd, u8 *vau, u8 *z,
8901 				  u8 *vcu, u16 *vl15buf, u8 *crc_sizes)
8902 {
8903 	u32 frame;
8904 
8905 	read_8051_config(dd, VERIFY_CAP_REMOTE_FABRIC, GENERAL_CONFIG, &frame);
8906 	*vau = (frame >> VAU_SHIFT) & VAU_MASK;
8907 	*z = (frame >> Z_SHIFT) & Z_MASK;
8908 	*vcu = (frame >> VCU_SHIFT) & VCU_MASK;
8909 	*vl15buf = (frame >> VL15BUF_SHIFT) & VL15BUF_MASK;
8910 	*crc_sizes = (frame >> CRC_SIZES_SHIFT) & CRC_SIZES_MASK;
8911 }
8912 
8913 static void read_vc_remote_link_width(struct hfi1_devdata *dd,
8914 				      u8 *remote_tx_rate,
8915 				      u16 *link_widths)
8916 {
8917 	u32 frame;
8918 
8919 	read_8051_config(dd, VERIFY_CAP_REMOTE_LINK_WIDTH, GENERAL_CONFIG,
8920 			 &frame);
8921 	*remote_tx_rate = (frame >> REMOTE_TX_RATE_SHIFT)
8922 				& REMOTE_TX_RATE_MASK;
8923 	*link_widths = (frame >> LINK_WIDTH_SHIFT) & LINK_WIDTH_MASK;
8924 }
8925 
8926 static void read_local_lni(struct hfi1_devdata *dd, u8 *enable_lane_rx)
8927 {
8928 	u32 frame;
8929 
8930 	read_8051_config(dd, LOCAL_LNI_INFO, GENERAL_CONFIG, &frame);
8931 	*enable_lane_rx = (frame >> ENABLE_LANE_RX_SHIFT) & ENABLE_LANE_RX_MASK;
8932 }
8933 
8934 static void read_last_local_state(struct hfi1_devdata *dd, u32 *lls)
8935 {
8936 	read_8051_config(dd, LAST_LOCAL_STATE_COMPLETE, GENERAL_CONFIG, lls);
8937 }
8938 
8939 static void read_last_remote_state(struct hfi1_devdata *dd, u32 *lrs)
8940 {
8941 	read_8051_config(dd, LAST_REMOTE_STATE_COMPLETE, GENERAL_CONFIG, lrs);
8942 }
8943 
8944 void hfi1_read_link_quality(struct hfi1_devdata *dd, u8 *link_quality)
8945 {
8946 	u32 frame;
8947 	int ret;
8948 
8949 	*link_quality = 0;
8950 	if (dd->pport->host_link_state & HLS_UP) {
8951 		ret = read_8051_config(dd, LINK_QUALITY_INFO, GENERAL_CONFIG,
8952 				       &frame);
8953 		if (ret == 0)
8954 			*link_quality = (frame >> LINK_QUALITY_SHIFT)
8955 						& LINK_QUALITY_MASK;
8956 	}
8957 }
8958 
8959 static void read_planned_down_reason_code(struct hfi1_devdata *dd, u8 *pdrrc)
8960 {
8961 	u32 frame;
8962 
8963 	read_8051_config(dd, LINK_QUALITY_INFO, GENERAL_CONFIG, &frame);
8964 	*pdrrc = (frame >> DOWN_REMOTE_REASON_SHIFT) & DOWN_REMOTE_REASON_MASK;
8965 }
8966 
8967 static void read_link_down_reason(struct hfi1_devdata *dd, u8 *ldr)
8968 {
8969 	u32 frame;
8970 
8971 	read_8051_config(dd, LINK_DOWN_REASON, GENERAL_CONFIG, &frame);
8972 	*ldr = (frame & 0xff);
8973 }
8974 
8975 static int read_tx_settings(struct hfi1_devdata *dd,
8976 			    u8 *enable_lane_tx,
8977 			    u8 *tx_polarity_inversion,
8978 			    u8 *rx_polarity_inversion,
8979 			    u8 *max_rate)
8980 {
8981 	u32 frame;
8982 	int ret;
8983 
8984 	ret = read_8051_config(dd, TX_SETTINGS, GENERAL_CONFIG, &frame);
8985 	*enable_lane_tx = (frame >> ENABLE_LANE_TX_SHIFT)
8986 				& ENABLE_LANE_TX_MASK;
8987 	*tx_polarity_inversion = (frame >> TX_POLARITY_INVERSION_SHIFT)
8988 				& TX_POLARITY_INVERSION_MASK;
8989 	*rx_polarity_inversion = (frame >> RX_POLARITY_INVERSION_SHIFT)
8990 				& RX_POLARITY_INVERSION_MASK;
8991 	*max_rate = (frame >> MAX_RATE_SHIFT) & MAX_RATE_MASK;
8992 	return ret;
8993 }
8994 
8995 static int write_tx_settings(struct hfi1_devdata *dd,
8996 			     u8 enable_lane_tx,
8997 			     u8 tx_polarity_inversion,
8998 			     u8 rx_polarity_inversion,
8999 			     u8 max_rate)
9000 {
9001 	u32 frame;
9002 
9003 	/* no need to mask, all variable sizes match field widths */
9004 	frame = enable_lane_tx << ENABLE_LANE_TX_SHIFT
9005 		| tx_polarity_inversion << TX_POLARITY_INVERSION_SHIFT
9006 		| rx_polarity_inversion << RX_POLARITY_INVERSION_SHIFT
9007 		| max_rate << MAX_RATE_SHIFT;
9008 	return load_8051_config(dd, TX_SETTINGS, GENERAL_CONFIG, frame);
9009 }
9010 
9011 /*
9012  * Read an idle LCB message.
9013  *
9014  * Returns 0 on success, -EINVAL on error
9015  */
9016 static int read_idle_message(struct hfi1_devdata *dd, u64 type, u64 *data_out)
9017 {
9018 	int ret;
9019 
9020 	ret = do_8051_command(dd, HCMD_READ_LCB_IDLE_MSG, type, data_out);
9021 	if (ret != HCMD_SUCCESS) {
9022 		dd_dev_err(dd, "read idle message: type %d, err %d\n",
9023 			   (u32)type, ret);
9024 		return -EINVAL;
9025 	}
9026 	dd_dev_info(dd, "%s: read idle message 0x%llx\n", __func__, *data_out);
9027 	/* return only the payload as we already know the type */
9028 	*data_out >>= IDLE_PAYLOAD_SHIFT;
9029 	return 0;
9030 }
9031 
9032 /*
9033  * Read an idle SMA message.  To be done in response to a notification from
9034  * the 8051.
9035  *
9036  * Returns 0 on success, -EINVAL on error
9037  */
9038 static int read_idle_sma(struct hfi1_devdata *dd, u64 *data)
9039 {
9040 	return read_idle_message(dd, (u64)IDLE_SMA << IDLE_MSG_TYPE_SHIFT,
9041 				 data);
9042 }
9043 
9044 /*
9045  * Send an idle LCB message.
9046  *
9047  * Returns 0 on success, -EINVAL on error
9048  */
9049 static int send_idle_message(struct hfi1_devdata *dd, u64 data)
9050 {
9051 	int ret;
9052 
9053 	dd_dev_info(dd, "%s: sending idle message 0x%llx\n", __func__, data);
9054 	ret = do_8051_command(dd, HCMD_SEND_LCB_IDLE_MSG, data, NULL);
9055 	if (ret != HCMD_SUCCESS) {
9056 		dd_dev_err(dd, "send idle message: data 0x%llx, err %d\n",
9057 			   data, ret);
9058 		return -EINVAL;
9059 	}
9060 	return 0;
9061 }
9062 
9063 /*
9064  * Send an idle SMA message.
9065  *
9066  * Returns 0 on success, -EINVAL on error
9067  */
9068 int send_idle_sma(struct hfi1_devdata *dd, u64 message)
9069 {
9070 	u64 data;
9071 
9072 	data = ((message & IDLE_PAYLOAD_MASK) << IDLE_PAYLOAD_SHIFT) |
9073 		((u64)IDLE_SMA << IDLE_MSG_TYPE_SHIFT);
9074 	return send_idle_message(dd, data);
9075 }
9076 
9077 /*
9078  * Initialize the LCB then do a quick link up.  This may or may not be
9079  * in loopback.
9080  *
9081  * return 0 on success, -errno on error
9082  */
9083 static int do_quick_linkup(struct hfi1_devdata *dd)
9084 {
9085 	int ret;
9086 
9087 	lcb_shutdown(dd, 0);
9088 
9089 	if (loopback) {
9090 		/* LCB_CFG_LOOPBACK.VAL = 2 */
9091 		/* LCB_CFG_LANE_WIDTH.VAL = 0 */
9092 		write_csr(dd, DC_LCB_CFG_LOOPBACK,
9093 			  IB_PACKET_TYPE << DC_LCB_CFG_LOOPBACK_VAL_SHIFT);
9094 		write_csr(dd, DC_LCB_CFG_LANE_WIDTH, 0);
9095 	}
9096 
9097 	/* start the LCBs */
9098 	/* LCB_CFG_TX_FIFOS_RESET.VAL = 0 */
9099 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0);
9100 
9101 	/* simulator only loopback steps */
9102 	if (loopback && dd->icode == ICODE_FUNCTIONAL_SIMULATOR) {
9103 		/* LCB_CFG_RUN.EN = 1 */
9104 		write_csr(dd, DC_LCB_CFG_RUN,
9105 			  1ull << DC_LCB_CFG_RUN_EN_SHIFT);
9106 
9107 		ret = wait_link_transfer_active(dd, 10);
9108 		if (ret)
9109 			return ret;
9110 
9111 		write_csr(dd, DC_LCB_CFG_ALLOW_LINK_UP,
9112 			  1ull << DC_LCB_CFG_ALLOW_LINK_UP_VAL_SHIFT);
9113 	}
9114 
9115 	if (!loopback) {
9116 		/*
9117 		 * When doing quick linkup and not in loopback, both
9118 		 * sides must be done with LCB set-up before either
9119 		 * starts the quick linkup.  Put a delay here so that
9120 		 * both sides can be started and have a chance to be
9121 		 * done with LCB set up before resuming.
9122 		 */
9123 		dd_dev_err(dd,
9124 			   "Pausing for peer to be finished with LCB set up\n");
9125 		msleep(5000);
9126 		dd_dev_err(dd, "Continuing with quick linkup\n");
9127 	}
9128 
9129 	write_csr(dd, DC_LCB_ERR_EN, 0); /* mask LCB errors */
9130 	set_8051_lcb_access(dd);
9131 
9132 	/*
9133 	 * State "quick" LinkUp request sets the physical link state to
9134 	 * LinkUp without a verify capability sequence.
9135 	 * This state is in simulator v37 and later.
9136 	 */
9137 	ret = set_physical_link_state(dd, PLS_QUICK_LINKUP);
9138 	if (ret != HCMD_SUCCESS) {
9139 		dd_dev_err(dd,
9140 			   "%s: set physical link state to quick LinkUp failed with return %d\n",
9141 			   __func__, ret);
9142 
9143 		set_host_lcb_access(dd);
9144 		write_csr(dd, DC_LCB_ERR_EN, ~0ull); /* watch LCB errors */
9145 
9146 		if (ret >= 0)
9147 			ret = -EINVAL;
9148 		return ret;
9149 	}
9150 
9151 	return 0; /* success */
9152 }
9153 
9154 /*
9155  * Do all special steps to set up loopback.
9156  */
9157 static int init_loopback(struct hfi1_devdata *dd)
9158 {
9159 	dd_dev_info(dd, "Entering loopback mode\n");
9160 
9161 	/* all loopbacks should disable self GUID check */
9162 	write_csr(dd, DC_DC8051_CFG_MODE,
9163 		  (read_csr(dd, DC_DC8051_CFG_MODE) | DISABLE_SELF_GUID_CHECK));
9164 
9165 	/*
9166 	 * The simulator has only one loopback option - LCB.  Switch
9167 	 * to that option, which includes quick link up.
9168 	 *
9169 	 * Accept all valid loopback values.
9170 	 */
9171 	if ((dd->icode == ICODE_FUNCTIONAL_SIMULATOR) &&
9172 	    (loopback == LOOPBACK_SERDES || loopback == LOOPBACK_LCB ||
9173 	     loopback == LOOPBACK_CABLE)) {
9174 		loopback = LOOPBACK_LCB;
9175 		quick_linkup = 1;
9176 		return 0;
9177 	}
9178 
9179 	/*
9180 	 * SerDes loopback init sequence is handled in set_local_link_attributes
9181 	 */
9182 	if (loopback == LOOPBACK_SERDES)
9183 		return 0;
9184 
9185 	/* LCB loopback - handled at poll time */
9186 	if (loopback == LOOPBACK_LCB) {
9187 		quick_linkup = 1; /* LCB is always quick linkup */
9188 
9189 		/* not supported in emulation due to emulation RTL changes */
9190 		if (dd->icode == ICODE_FPGA_EMULATION) {
9191 			dd_dev_err(dd,
9192 				   "LCB loopback not supported in emulation\n");
9193 			return -EINVAL;
9194 		}
9195 		return 0;
9196 	}
9197 
9198 	/* external cable loopback requires no extra steps */
9199 	if (loopback == LOOPBACK_CABLE)
9200 		return 0;
9201 
9202 	dd_dev_err(dd, "Invalid loopback mode %d\n", loopback);
9203 	return -EINVAL;
9204 }
9205 
9206 /*
9207  * Translate from the OPA_LINK_WIDTH handed to us by the FM to bits
9208  * used in the Verify Capability link width attribute.
9209  */
9210 static u16 opa_to_vc_link_widths(u16 opa_widths)
9211 {
9212 	int i;
9213 	u16 result = 0;
9214 
9215 	static const struct link_bits {
9216 		u16 from;
9217 		u16 to;
9218 	} opa_link_xlate[] = {
9219 		{ OPA_LINK_WIDTH_1X, 1 << (1 - 1)  },
9220 		{ OPA_LINK_WIDTH_2X, 1 << (2 - 1)  },
9221 		{ OPA_LINK_WIDTH_3X, 1 << (3 - 1)  },
9222 		{ OPA_LINK_WIDTH_4X, 1 << (4 - 1)  },
9223 	};
9224 
9225 	for (i = 0; i < ARRAY_SIZE(opa_link_xlate); i++) {
9226 		if (opa_widths & opa_link_xlate[i].from)
9227 			result |= opa_link_xlate[i].to;
9228 	}
9229 	return result;
9230 }
9231 
9232 /*
9233  * Set link attributes before moving to polling.
9234  */
9235 static int set_local_link_attributes(struct hfi1_pportdata *ppd)
9236 {
9237 	struct hfi1_devdata *dd = ppd->dd;
9238 	u8 enable_lane_tx;
9239 	u8 tx_polarity_inversion;
9240 	u8 rx_polarity_inversion;
9241 	int ret;
9242 	u32 misc_bits = 0;
9243 	/* reset our fabric serdes to clear any lingering problems */
9244 	fabric_serdes_reset(dd);
9245 
9246 	/* set the local tx rate - need to read-modify-write */
9247 	ret = read_tx_settings(dd, &enable_lane_tx, &tx_polarity_inversion,
9248 			       &rx_polarity_inversion, &ppd->local_tx_rate);
9249 	if (ret)
9250 		goto set_local_link_attributes_fail;
9251 
9252 	if (dd->dc8051_ver < dc8051_ver(0, 20, 0)) {
9253 		/* set the tx rate to the fastest enabled */
9254 		if (ppd->link_speed_enabled & OPA_LINK_SPEED_25G)
9255 			ppd->local_tx_rate = 1;
9256 		else
9257 			ppd->local_tx_rate = 0;
9258 	} else {
9259 		/* set the tx rate to all enabled */
9260 		ppd->local_tx_rate = 0;
9261 		if (ppd->link_speed_enabled & OPA_LINK_SPEED_25G)
9262 			ppd->local_tx_rate |= 2;
9263 		if (ppd->link_speed_enabled & OPA_LINK_SPEED_12_5G)
9264 			ppd->local_tx_rate |= 1;
9265 	}
9266 
9267 	enable_lane_tx = 0xF; /* enable all four lanes */
9268 	ret = write_tx_settings(dd, enable_lane_tx, tx_polarity_inversion,
9269 				rx_polarity_inversion, ppd->local_tx_rate);
9270 	if (ret != HCMD_SUCCESS)
9271 		goto set_local_link_attributes_fail;
9272 
9273 	/*
9274 	 * DC supports continuous updates.
9275 	 */
9276 	ret = write_vc_local_phy(dd,
9277 				 0 /* no power management */,
9278 				 1 /* continuous updates */);
9279 	if (ret != HCMD_SUCCESS)
9280 		goto set_local_link_attributes_fail;
9281 
9282 	/* z=1 in the next call: AU of 0 is not supported by the hardware */
9283 	ret = write_vc_local_fabric(dd, dd->vau, 1, dd->vcu, dd->vl15_init,
9284 				    ppd->port_crc_mode_enabled);
9285 	if (ret != HCMD_SUCCESS)
9286 		goto set_local_link_attributes_fail;
9287 
9288 	/*
9289 	 * SerDes loopback init sequence requires
9290 	 * setting bit 0 of MISC_CONFIG_BITS
9291 	 */
9292 	if (loopback == LOOPBACK_SERDES)
9293 		misc_bits |= 1 << LOOPBACK_SERDES_CONFIG_BIT_MASK_SHIFT;
9294 
9295 	ret = write_vc_local_link_width(dd, misc_bits, 0,
9296 					opa_to_vc_link_widths(
9297 						ppd->link_width_enabled));
9298 	if (ret != HCMD_SUCCESS)
9299 		goto set_local_link_attributes_fail;
9300 
9301 	/* let peer know who we are */
9302 	ret = write_local_device_id(dd, dd->pcidev->device, dd->minrev);
9303 	if (ret == HCMD_SUCCESS)
9304 		return 0;
9305 
9306 set_local_link_attributes_fail:
9307 	dd_dev_err(dd,
9308 		   "Failed to set local link attributes, return 0x%x\n",
9309 		   ret);
9310 	return ret;
9311 }
9312 
9313 /*
9314  * Call this to start the link.
9315  * Do not do anything if the link is disabled.
9316  * Returns 0 if link is disabled, moved to polling, or the driver is not ready.
9317  */
9318 int start_link(struct hfi1_pportdata *ppd)
9319 {
9320 	/*
9321 	 * Tune the SerDes to a ballpark setting for optimal signal and bit
9322 	 * error rate.  Needs to be done before starting the link.
9323 	 */
9324 	tune_serdes(ppd);
9325 
9326 	if (!ppd->driver_link_ready) {
9327 		dd_dev_info(ppd->dd,
9328 			    "%s: stopping link start because driver is not ready\n",
9329 			    __func__);
9330 		return 0;
9331 	}
9332 
9333 	/*
9334 	 * FULL_MGMT_P_KEY is cleared from the pkey table, so that the
9335 	 * pkey table can be configured properly if the HFI unit is connected
9336 	 * to switch port with MgmtAllowed=NO
9337 	 */
9338 	clear_full_mgmt_pkey(ppd);
9339 
9340 	return set_link_state(ppd, HLS_DN_POLL);
9341 }
9342 
9343 static void wait_for_qsfp_init(struct hfi1_pportdata *ppd)
9344 {
9345 	struct hfi1_devdata *dd = ppd->dd;
9346 	u64 mask;
9347 	unsigned long timeout;
9348 
9349 	/*
9350 	 * Some QSFP cables have a quirk that asserts the IntN line as a side
9351 	 * effect of power up on plug-in. We ignore this false positive
9352 	 * interrupt until the module has finished powering up by waiting for
9353 	 * a minimum timeout of the module inrush initialization time of
9354 	 * 500 ms (SFF 8679 Table 5-6) to ensure the voltage rails in the
9355 	 * module have stabilized.
9356 	 */
9357 	msleep(500);
9358 
9359 	/*
9360 	 * Check for QSFP interrupt for t_init (SFF 8679 Table 8-1)
9361 	 */
9362 	timeout = jiffies + msecs_to_jiffies(2000);
9363 	while (1) {
9364 		mask = read_csr(dd, dd->hfi1_id ?
9365 				ASIC_QSFP2_IN : ASIC_QSFP1_IN);
9366 		if (!(mask & QSFP_HFI0_INT_N))
9367 			break;
9368 		if (time_after(jiffies, timeout)) {
9369 			dd_dev_info(dd, "%s: No IntN detected, reset complete\n",
9370 				    __func__);
9371 			break;
9372 		}
9373 		udelay(2);
9374 	}
9375 }
9376 
9377 static void set_qsfp_int_n(struct hfi1_pportdata *ppd, u8 enable)
9378 {
9379 	struct hfi1_devdata *dd = ppd->dd;
9380 	u64 mask;
9381 
9382 	mask = read_csr(dd, dd->hfi1_id ? ASIC_QSFP2_MASK : ASIC_QSFP1_MASK);
9383 	if (enable) {
9384 		/*
9385 		 * Clear the status register to avoid an immediate interrupt
9386 		 * when we re-enable the IntN pin
9387 		 */
9388 		write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_CLEAR : ASIC_QSFP1_CLEAR,
9389 			  QSFP_HFI0_INT_N);
9390 		mask |= (u64)QSFP_HFI0_INT_N;
9391 	} else {
9392 		mask &= ~(u64)QSFP_HFI0_INT_N;
9393 	}
9394 	write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_MASK : ASIC_QSFP1_MASK, mask);
9395 }
9396 
9397 int reset_qsfp(struct hfi1_pportdata *ppd)
9398 {
9399 	struct hfi1_devdata *dd = ppd->dd;
9400 	u64 mask, qsfp_mask;
9401 
9402 	/* Disable INT_N from triggering QSFP interrupts */
9403 	set_qsfp_int_n(ppd, 0);
9404 
9405 	/* Reset the QSFP */
9406 	mask = (u64)QSFP_HFI0_RESET_N;
9407 
9408 	qsfp_mask = read_csr(dd,
9409 			     dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT);
9410 	qsfp_mask &= ~mask;
9411 	write_csr(dd,
9412 		  dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT, qsfp_mask);
9413 
9414 	udelay(10);
9415 
9416 	qsfp_mask |= mask;
9417 	write_csr(dd,
9418 		  dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT, qsfp_mask);
9419 
9420 	wait_for_qsfp_init(ppd);
9421 
9422 	/*
9423 	 * Allow INT_N to trigger the QSFP interrupt to watch
9424 	 * for alarms and warnings
9425 	 */
9426 	set_qsfp_int_n(ppd, 1);
9427 
9428 	/*
9429 	 * After the reset, AOC transmitters are enabled by default. They need
9430 	 * to be turned off to complete the QSFP setup before they can be
9431 	 * enabled again.
9432 	 */
9433 	return set_qsfp_tx(ppd, 0);
9434 }
9435 
9436 static int handle_qsfp_error_conditions(struct hfi1_pportdata *ppd,
9437 					u8 *qsfp_interrupt_status)
9438 {
9439 	struct hfi1_devdata *dd = ppd->dd;
9440 
9441 	if ((qsfp_interrupt_status[0] & QSFP_HIGH_TEMP_ALARM) ||
9442 	    (qsfp_interrupt_status[0] & QSFP_HIGH_TEMP_WARNING))
9443 		dd_dev_err(dd, "%s: QSFP cable temperature too high\n",
9444 			   __func__);
9445 
9446 	if ((qsfp_interrupt_status[0] & QSFP_LOW_TEMP_ALARM) ||
9447 	    (qsfp_interrupt_status[0] & QSFP_LOW_TEMP_WARNING))
9448 		dd_dev_err(dd, "%s: QSFP cable temperature too low\n",
9449 			   __func__);
9450 
9451 	/*
9452 	 * The remaining alarms/warnings don't matter if the link is down.
9453 	 */
9454 	if (ppd->host_link_state & HLS_DOWN)
9455 		return 0;
9456 
9457 	if ((qsfp_interrupt_status[1] & QSFP_HIGH_VCC_ALARM) ||
9458 	    (qsfp_interrupt_status[1] & QSFP_HIGH_VCC_WARNING))
9459 		dd_dev_err(dd, "%s: QSFP supply voltage too high\n",
9460 			   __func__);
9461 
9462 	if ((qsfp_interrupt_status[1] & QSFP_LOW_VCC_ALARM) ||
9463 	    (qsfp_interrupt_status[1] & QSFP_LOW_VCC_WARNING))
9464 		dd_dev_err(dd, "%s: QSFP supply voltage too low\n",
9465 			   __func__);
9466 
9467 	/* Byte 2 is vendor specific */
9468 
9469 	if ((qsfp_interrupt_status[3] & QSFP_HIGH_POWER_ALARM) ||
9470 	    (qsfp_interrupt_status[3] & QSFP_HIGH_POWER_WARNING))
9471 		dd_dev_err(dd, "%s: Cable RX channel 1/2 power too high\n",
9472 			   __func__);
9473 
9474 	if ((qsfp_interrupt_status[3] & QSFP_LOW_POWER_ALARM) ||
9475 	    (qsfp_interrupt_status[3] & QSFP_LOW_POWER_WARNING))
9476 		dd_dev_err(dd, "%s: Cable RX channel 1/2 power too low\n",
9477 			   __func__);
9478 
9479 	if ((qsfp_interrupt_status[4] & QSFP_HIGH_POWER_ALARM) ||
9480 	    (qsfp_interrupt_status[4] & QSFP_HIGH_POWER_WARNING))
9481 		dd_dev_err(dd, "%s: Cable RX channel 3/4 power too high\n",
9482 			   __func__);
9483 
9484 	if ((qsfp_interrupt_status[4] & QSFP_LOW_POWER_ALARM) ||
9485 	    (qsfp_interrupt_status[4] & QSFP_LOW_POWER_WARNING))
9486 		dd_dev_err(dd, "%s: Cable RX channel 3/4 power too low\n",
9487 			   __func__);
9488 
9489 	if ((qsfp_interrupt_status[5] & QSFP_HIGH_BIAS_ALARM) ||
9490 	    (qsfp_interrupt_status[5] & QSFP_HIGH_BIAS_WARNING))
9491 		dd_dev_err(dd, "%s: Cable TX channel 1/2 bias too high\n",
9492 			   __func__);
9493 
9494 	if ((qsfp_interrupt_status[5] & QSFP_LOW_BIAS_ALARM) ||
9495 	    (qsfp_interrupt_status[5] & QSFP_LOW_BIAS_WARNING))
9496 		dd_dev_err(dd, "%s: Cable TX channel 1/2 bias too low\n",
9497 			   __func__);
9498 
9499 	if ((qsfp_interrupt_status[6] & QSFP_HIGH_BIAS_ALARM) ||
9500 	    (qsfp_interrupt_status[6] & QSFP_HIGH_BIAS_WARNING))
9501 		dd_dev_err(dd, "%s: Cable TX channel 3/4 bias too high\n",
9502 			   __func__);
9503 
9504 	if ((qsfp_interrupt_status[6] & QSFP_LOW_BIAS_ALARM) ||
9505 	    (qsfp_interrupt_status[6] & QSFP_LOW_BIAS_WARNING))
9506 		dd_dev_err(dd, "%s: Cable TX channel 3/4 bias too low\n",
9507 			   __func__);
9508 
9509 	if ((qsfp_interrupt_status[7] & QSFP_HIGH_POWER_ALARM) ||
9510 	    (qsfp_interrupt_status[7] & QSFP_HIGH_POWER_WARNING))
9511 		dd_dev_err(dd, "%s: Cable TX channel 1/2 power too high\n",
9512 			   __func__);
9513 
9514 	if ((qsfp_interrupt_status[7] & QSFP_LOW_POWER_ALARM) ||
9515 	    (qsfp_interrupt_status[7] & QSFP_LOW_POWER_WARNING))
9516 		dd_dev_err(dd, "%s: Cable TX channel 1/2 power too low\n",
9517 			   __func__);
9518 
9519 	if ((qsfp_interrupt_status[8] & QSFP_HIGH_POWER_ALARM) ||
9520 	    (qsfp_interrupt_status[8] & QSFP_HIGH_POWER_WARNING))
9521 		dd_dev_err(dd, "%s: Cable TX channel 3/4 power too high\n",
9522 			   __func__);
9523 
9524 	if ((qsfp_interrupt_status[8] & QSFP_LOW_POWER_ALARM) ||
9525 	    (qsfp_interrupt_status[8] & QSFP_LOW_POWER_WARNING))
9526 		dd_dev_err(dd, "%s: Cable TX channel 3/4 power too low\n",
9527 			   __func__);
9528 
9529 	/* Bytes 9-10 and 11-12 are reserved */
9530 	/* Bytes 13-15 are vendor specific */
9531 
9532 	return 0;
9533 }
9534 
9535 /* This routine will only be scheduled if the QSFP module present is asserted */
9536 void qsfp_event(struct work_struct *work)
9537 {
9538 	struct qsfp_data *qd;
9539 	struct hfi1_pportdata *ppd;
9540 	struct hfi1_devdata *dd;
9541 
9542 	qd = container_of(work, struct qsfp_data, qsfp_work);
9543 	ppd = qd->ppd;
9544 	dd = ppd->dd;
9545 
9546 	/* Sanity check */
9547 	if (!qsfp_mod_present(ppd))
9548 		return;
9549 
9550 	if (ppd->host_link_state == HLS_DN_DISABLE) {
9551 		dd_dev_info(ppd->dd,
9552 			    "%s: stopping link start because link is disabled\n",
9553 			    __func__);
9554 		return;
9555 	}
9556 
9557 	/*
9558 	 * Turn DC back on after cable has been re-inserted. Up until
9559 	 * now, the DC has been in reset to save power.
9560 	 */
9561 	dc_start(dd);
9562 
9563 	if (qd->cache_refresh_required) {
9564 		set_qsfp_int_n(ppd, 0);
9565 
9566 		wait_for_qsfp_init(ppd);
9567 
9568 		/*
9569 		 * Allow INT_N to trigger the QSFP interrupt to watch
9570 		 * for alarms and warnings
9571 		 */
9572 		set_qsfp_int_n(ppd, 1);
9573 
9574 		start_link(ppd);
9575 	}
9576 
9577 	if (qd->check_interrupt_flags) {
9578 		u8 qsfp_interrupt_status[16] = {0,};
9579 
9580 		if (one_qsfp_read(ppd, dd->hfi1_id, 6,
9581 				  &qsfp_interrupt_status[0], 16) != 16) {
9582 			dd_dev_info(dd,
9583 				    "%s: Failed to read status of QSFP module\n",
9584 				    __func__);
9585 		} else {
9586 			unsigned long flags;
9587 
9588 			handle_qsfp_error_conditions(
9589 					ppd, qsfp_interrupt_status);
9590 			spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
9591 			ppd->qsfp_info.check_interrupt_flags = 0;
9592 			spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock,
9593 					       flags);
9594 		}
9595 	}
9596 }
9597 
9598 static void init_qsfp_int(struct hfi1_devdata *dd)
9599 {
9600 	struct hfi1_pportdata *ppd = dd->pport;
9601 	u64 qsfp_mask, cce_int_mask;
9602 	const int qsfp1_int_smask = QSFP1_INT % 64;
9603 	const int qsfp2_int_smask = QSFP2_INT % 64;
9604 
9605 	/*
9606 	 * disable QSFP1 interrupts for HFI1, QSFP2 interrupts for HFI0
9607 	 * Qsfp1Int and Qsfp2Int are adjacent bits in the same CSR,
9608 	 * therefore just one of QSFP1_INT/QSFP2_INT can be used to find
9609 	 * the index of the appropriate CSR in the CCEIntMask CSR array
9610 	 */
9611 	cce_int_mask = read_csr(dd, CCE_INT_MASK +
9612 				(8 * (QSFP1_INT / 64)));
9613 	if (dd->hfi1_id) {
9614 		cce_int_mask &= ~((u64)1 << qsfp1_int_smask);
9615 		write_csr(dd, CCE_INT_MASK + (8 * (QSFP1_INT / 64)),
9616 			  cce_int_mask);
9617 	} else {
9618 		cce_int_mask &= ~((u64)1 << qsfp2_int_smask);
9619 		write_csr(dd, CCE_INT_MASK + (8 * (QSFP2_INT / 64)),
9620 			  cce_int_mask);
9621 	}
9622 
9623 	qsfp_mask = (u64)(QSFP_HFI0_INT_N | QSFP_HFI0_MODPRST_N);
9624 	/* Clear current status to avoid spurious interrupts */
9625 	write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_CLEAR : ASIC_QSFP1_CLEAR,
9626 		  qsfp_mask);
9627 	write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_MASK : ASIC_QSFP1_MASK,
9628 		  qsfp_mask);
9629 
9630 	set_qsfp_int_n(ppd, 0);
9631 
9632 	/* Handle active low nature of INT_N and MODPRST_N pins */
9633 	if (qsfp_mod_present(ppd))
9634 		qsfp_mask &= ~(u64)QSFP_HFI0_MODPRST_N;
9635 	write_csr(dd,
9636 		  dd->hfi1_id ? ASIC_QSFP2_INVERT : ASIC_QSFP1_INVERT,
9637 		  qsfp_mask);
9638 }
9639 
9640 /*
9641  * Do a one-time initialize of the LCB block.
9642  */
9643 static void init_lcb(struct hfi1_devdata *dd)
9644 {
9645 	/* simulator does not correctly handle LCB cclk loopback, skip */
9646 	if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR)
9647 		return;
9648 
9649 	/* the DC has been reset earlier in the driver load */
9650 
9651 	/* set LCB for cclk loopback on the port */
9652 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0x01);
9653 	write_csr(dd, DC_LCB_CFG_LANE_WIDTH, 0x00);
9654 	write_csr(dd, DC_LCB_CFG_REINIT_AS_SLAVE, 0x00);
9655 	write_csr(dd, DC_LCB_CFG_CNT_FOR_SKIP_STALL, 0x110);
9656 	write_csr(dd, DC_LCB_CFG_CLK_CNTR, 0x08);
9657 	write_csr(dd, DC_LCB_CFG_LOOPBACK, 0x02);
9658 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0x00);
9659 }
9660 
9661 /*
9662  * Perform a test read on the QSFP.  Return 0 on success, -ERRNO
9663  * on error.
9664  */
9665 static int test_qsfp_read(struct hfi1_pportdata *ppd)
9666 {
9667 	int ret;
9668 	u8 status;
9669 
9670 	/*
9671 	 * Report success if not a QSFP or, if it is a QSFP, but the cable is
9672 	 * not present
9673 	 */
9674 	if (ppd->port_type != PORT_TYPE_QSFP || !qsfp_mod_present(ppd))
9675 		return 0;
9676 
9677 	/* read byte 2, the status byte */
9678 	ret = one_qsfp_read(ppd, ppd->dd->hfi1_id, 2, &status, 1);
9679 	if (ret < 0)
9680 		return ret;
9681 	if (ret != 1)
9682 		return -EIO;
9683 
9684 	return 0; /* success */
9685 }
9686 
9687 /*
9688  * Values for QSFP retry.
9689  *
9690  * Give up after 10s (20 x 500ms).  The overall timeout was empirically
9691  * arrived at from experience on a large cluster.
9692  */
9693 #define MAX_QSFP_RETRIES 20
9694 #define QSFP_RETRY_WAIT 500 /* msec */
9695 
9696 /*
9697  * Try a QSFP read.  If it fails, schedule a retry for later.
9698  * Called on first link activation after driver load.
9699  */
9700 static void try_start_link(struct hfi1_pportdata *ppd)
9701 {
9702 	if (test_qsfp_read(ppd)) {
9703 		/* read failed */
9704 		if (ppd->qsfp_retry_count >= MAX_QSFP_RETRIES) {
9705 			dd_dev_err(ppd->dd, "QSFP not responding, giving up\n");
9706 			return;
9707 		}
9708 		dd_dev_info(ppd->dd,
9709 			    "QSFP not responding, waiting and retrying %d\n",
9710 			    (int)ppd->qsfp_retry_count);
9711 		ppd->qsfp_retry_count++;
9712 		queue_delayed_work(ppd->link_wq, &ppd->start_link_work,
9713 				   msecs_to_jiffies(QSFP_RETRY_WAIT));
9714 		return;
9715 	}
9716 	ppd->qsfp_retry_count = 0;
9717 
9718 	start_link(ppd);
9719 }
9720 
9721 /*
9722  * Workqueue function to start the link after a delay.
9723  */
9724 void handle_start_link(struct work_struct *work)
9725 {
9726 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
9727 						  start_link_work.work);
9728 	try_start_link(ppd);
9729 }
9730 
9731 int bringup_serdes(struct hfi1_pportdata *ppd)
9732 {
9733 	struct hfi1_devdata *dd = ppd->dd;
9734 	u64 guid;
9735 	int ret;
9736 
9737 	if (HFI1_CAP_IS_KSET(EXTENDED_PSN))
9738 		add_rcvctrl(dd, RCV_CTRL_RCV_EXTENDED_PSN_ENABLE_SMASK);
9739 
9740 	guid = ppd->guids[HFI1_PORT_GUID_INDEX];
9741 	if (!guid) {
9742 		if (dd->base_guid)
9743 			guid = dd->base_guid + ppd->port - 1;
9744 		ppd->guids[HFI1_PORT_GUID_INDEX] = guid;
9745 	}
9746 
9747 	/* Set linkinit_reason on power up per OPA spec */
9748 	ppd->linkinit_reason = OPA_LINKINIT_REASON_LINKUP;
9749 
9750 	/* one-time init of the LCB */
9751 	init_lcb(dd);
9752 
9753 	if (loopback) {
9754 		ret = init_loopback(dd);
9755 		if (ret < 0)
9756 			return ret;
9757 	}
9758 
9759 	get_port_type(ppd);
9760 	if (ppd->port_type == PORT_TYPE_QSFP) {
9761 		set_qsfp_int_n(ppd, 0);
9762 		wait_for_qsfp_init(ppd);
9763 		set_qsfp_int_n(ppd, 1);
9764 	}
9765 
9766 	try_start_link(ppd);
9767 	return 0;
9768 }
9769 
9770 void hfi1_quiet_serdes(struct hfi1_pportdata *ppd)
9771 {
9772 	struct hfi1_devdata *dd = ppd->dd;
9773 
9774 	/*
9775 	 * Shut down the link and keep it down.   First turn off that the
9776 	 * driver wants to allow the link to be up (driver_link_ready).
9777 	 * Then make sure the link is not automatically restarted
9778 	 * (link_enabled).  Cancel any pending restart.  And finally
9779 	 * go offline.
9780 	 */
9781 	ppd->driver_link_ready = 0;
9782 	ppd->link_enabled = 0;
9783 
9784 	ppd->qsfp_retry_count = MAX_QSFP_RETRIES; /* prevent more retries */
9785 	flush_delayed_work(&ppd->start_link_work);
9786 	cancel_delayed_work_sync(&ppd->start_link_work);
9787 
9788 	ppd->offline_disabled_reason =
9789 			HFI1_ODR_MASK(OPA_LINKDOWN_REASON_REBOOT);
9790 	set_link_down_reason(ppd, OPA_LINKDOWN_REASON_REBOOT, 0,
9791 			     OPA_LINKDOWN_REASON_REBOOT);
9792 	set_link_state(ppd, HLS_DN_OFFLINE);
9793 
9794 	/* disable the port */
9795 	clear_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
9796 }
9797 
9798 static inline int init_cpu_counters(struct hfi1_devdata *dd)
9799 {
9800 	struct hfi1_pportdata *ppd;
9801 	int i;
9802 
9803 	ppd = (struct hfi1_pportdata *)(dd + 1);
9804 	for (i = 0; i < dd->num_pports; i++, ppd++) {
9805 		ppd->ibport_data.rvp.rc_acks = NULL;
9806 		ppd->ibport_data.rvp.rc_qacks = NULL;
9807 		ppd->ibport_data.rvp.rc_acks = alloc_percpu(u64);
9808 		ppd->ibport_data.rvp.rc_qacks = alloc_percpu(u64);
9809 		ppd->ibport_data.rvp.rc_delayed_comp = alloc_percpu(u64);
9810 		if (!ppd->ibport_data.rvp.rc_acks ||
9811 		    !ppd->ibport_data.rvp.rc_delayed_comp ||
9812 		    !ppd->ibport_data.rvp.rc_qacks)
9813 			return -ENOMEM;
9814 	}
9815 
9816 	return 0;
9817 }
9818 
9819 /*
9820  * index is the index into the receive array
9821  */
9822 void hfi1_put_tid(struct hfi1_devdata *dd, u32 index,
9823 		  u32 type, unsigned long pa, u16 order)
9824 {
9825 	u64 reg;
9826 
9827 	if (!(dd->flags & HFI1_PRESENT))
9828 		goto done;
9829 
9830 	if (type == PT_INVALID || type == PT_INVALID_FLUSH) {
9831 		pa = 0;
9832 		order = 0;
9833 	} else if (type > PT_INVALID) {
9834 		dd_dev_err(dd,
9835 			   "unexpected receive array type %u for index %u, not handled\n",
9836 			   type, index);
9837 		goto done;
9838 	}
9839 	trace_hfi1_put_tid(dd, index, type, pa, order);
9840 
9841 #define RT_ADDR_SHIFT 12	/* 4KB kernel address boundary */
9842 	reg = RCV_ARRAY_RT_WRITE_ENABLE_SMASK
9843 		| (u64)order << RCV_ARRAY_RT_BUF_SIZE_SHIFT
9844 		| ((pa >> RT_ADDR_SHIFT) & RCV_ARRAY_RT_ADDR_MASK)
9845 					<< RCV_ARRAY_RT_ADDR_SHIFT;
9846 	trace_hfi1_write_rcvarray(dd->rcvarray_wc + (index * 8), reg);
9847 	writeq(reg, dd->rcvarray_wc + (index * 8));
9848 
9849 	if (type == PT_EAGER || type == PT_INVALID_FLUSH || (index & 3) == 3)
9850 		/*
9851 		 * Eager entries are written and flushed
9852 		 *
9853 		 * Expected entries are flushed every 4 writes
9854 		 */
9855 		flush_wc();
9856 done:
9857 	return;
9858 }
9859 
9860 void hfi1_clear_tids(struct hfi1_ctxtdata *rcd)
9861 {
9862 	struct hfi1_devdata *dd = rcd->dd;
9863 	u32 i;
9864 
9865 	/* this could be optimized */
9866 	for (i = rcd->eager_base; i < rcd->eager_base +
9867 		     rcd->egrbufs.alloced; i++)
9868 		hfi1_put_tid(dd, i, PT_INVALID, 0, 0);
9869 
9870 	for (i = rcd->expected_base;
9871 			i < rcd->expected_base + rcd->expected_count; i++)
9872 		hfi1_put_tid(dd, i, PT_INVALID, 0, 0);
9873 }
9874 
9875 static const char * const ib_cfg_name_strings[] = {
9876 	"HFI1_IB_CFG_LIDLMC",
9877 	"HFI1_IB_CFG_LWID_DG_ENB",
9878 	"HFI1_IB_CFG_LWID_ENB",
9879 	"HFI1_IB_CFG_LWID",
9880 	"HFI1_IB_CFG_SPD_ENB",
9881 	"HFI1_IB_CFG_SPD",
9882 	"HFI1_IB_CFG_RXPOL_ENB",
9883 	"HFI1_IB_CFG_LREV_ENB",
9884 	"HFI1_IB_CFG_LINKLATENCY",
9885 	"HFI1_IB_CFG_HRTBT",
9886 	"HFI1_IB_CFG_OP_VLS",
9887 	"HFI1_IB_CFG_VL_HIGH_CAP",
9888 	"HFI1_IB_CFG_VL_LOW_CAP",
9889 	"HFI1_IB_CFG_OVERRUN_THRESH",
9890 	"HFI1_IB_CFG_PHYERR_THRESH",
9891 	"HFI1_IB_CFG_LINKDEFAULT",
9892 	"HFI1_IB_CFG_PKEYS",
9893 	"HFI1_IB_CFG_MTU",
9894 	"HFI1_IB_CFG_LSTATE",
9895 	"HFI1_IB_CFG_VL_HIGH_LIMIT",
9896 	"HFI1_IB_CFG_PMA_TICKS",
9897 	"HFI1_IB_CFG_PORT"
9898 };
9899 
9900 static const char *ib_cfg_name(int which)
9901 {
9902 	if (which < 0 || which >= ARRAY_SIZE(ib_cfg_name_strings))
9903 		return "invalid";
9904 	return ib_cfg_name_strings[which];
9905 }
9906 
9907 int hfi1_get_ib_cfg(struct hfi1_pportdata *ppd, int which)
9908 {
9909 	struct hfi1_devdata *dd = ppd->dd;
9910 	int val = 0;
9911 
9912 	switch (which) {
9913 	case HFI1_IB_CFG_LWID_ENB: /* allowed Link-width */
9914 		val = ppd->link_width_enabled;
9915 		break;
9916 	case HFI1_IB_CFG_LWID: /* currently active Link-width */
9917 		val = ppd->link_width_active;
9918 		break;
9919 	case HFI1_IB_CFG_SPD_ENB: /* allowed Link speeds */
9920 		val = ppd->link_speed_enabled;
9921 		break;
9922 	case HFI1_IB_CFG_SPD: /* current Link speed */
9923 		val = ppd->link_speed_active;
9924 		break;
9925 
9926 	case HFI1_IB_CFG_RXPOL_ENB: /* Auto-RX-polarity enable */
9927 	case HFI1_IB_CFG_LREV_ENB: /* Auto-Lane-reversal enable */
9928 	case HFI1_IB_CFG_LINKLATENCY:
9929 		goto unimplemented;
9930 
9931 	case HFI1_IB_CFG_OP_VLS:
9932 		val = ppd->actual_vls_operational;
9933 		break;
9934 	case HFI1_IB_CFG_VL_HIGH_CAP: /* VL arb high priority table size */
9935 		val = VL_ARB_HIGH_PRIO_TABLE_SIZE;
9936 		break;
9937 	case HFI1_IB_CFG_VL_LOW_CAP: /* VL arb low priority table size */
9938 		val = VL_ARB_LOW_PRIO_TABLE_SIZE;
9939 		break;
9940 	case HFI1_IB_CFG_OVERRUN_THRESH: /* IB overrun threshold */
9941 		val = ppd->overrun_threshold;
9942 		break;
9943 	case HFI1_IB_CFG_PHYERR_THRESH: /* IB PHY error threshold */
9944 		val = ppd->phy_error_threshold;
9945 		break;
9946 	case HFI1_IB_CFG_LINKDEFAULT: /* IB link default (sleep/poll) */
9947 		val = HLS_DEFAULT;
9948 		break;
9949 
9950 	case HFI1_IB_CFG_HRTBT: /* Heartbeat off/enable/auto */
9951 	case HFI1_IB_CFG_PMA_TICKS:
9952 	default:
9953 unimplemented:
9954 		if (HFI1_CAP_IS_KSET(PRINT_UNIMPL))
9955 			dd_dev_info(
9956 				dd,
9957 				"%s: which %s: not implemented\n",
9958 				__func__,
9959 				ib_cfg_name(which));
9960 		break;
9961 	}
9962 
9963 	return val;
9964 }
9965 
9966 /*
9967  * The largest MAD packet size.
9968  */
9969 #define MAX_MAD_PACKET 2048
9970 
9971 /*
9972  * Return the maximum header bytes that can go on the _wire_
9973  * for this device. This count includes the ICRC which is
9974  * not part of the packet held in memory but it is appended
9975  * by the HW.
9976  * This is dependent on the device's receive header entry size.
9977  * HFI allows this to be set per-receive context, but the
9978  * driver presently enforces a global value.
9979  */
9980 u32 lrh_max_header_bytes(struct hfi1_devdata *dd)
9981 {
9982 	/*
9983 	 * The maximum non-payload (MTU) bytes in LRH.PktLen are
9984 	 * the Receive Header Entry Size minus the PBC (or RHF) size
9985 	 * plus one DW for the ICRC appended by HW.
9986 	 *
9987 	 * dd->rcd[0].rcvhdrqentsize is in DW.
9988 	 * We use rcd[0] as all context will have the same value. Also,
9989 	 * the first kernel context would have been allocated by now so
9990 	 * we are guaranteed a valid value.
9991 	 */
9992 	return (dd->rcd[0]->rcvhdrqentsize - 2/*PBC/RHF*/ + 1/*ICRC*/) << 2;
9993 }
9994 
9995 /*
9996  * Set Send Length
9997  * @ppd - per port data
9998  *
9999  * Set the MTU by limiting how many DWs may be sent.  The SendLenCheck*
10000  * registers compare against LRH.PktLen, so use the max bytes included
10001  * in the LRH.
10002  *
10003  * This routine changes all VL values except VL15, which it maintains at
10004  * the same value.
10005  */
10006 static void set_send_length(struct hfi1_pportdata *ppd)
10007 {
10008 	struct hfi1_devdata *dd = ppd->dd;
10009 	u32 max_hb = lrh_max_header_bytes(dd), dcmtu;
10010 	u32 maxvlmtu = dd->vld[15].mtu;
10011 	u64 len1 = 0, len2 = (((dd->vld[15].mtu + max_hb) >> 2)
10012 			      & SEND_LEN_CHECK1_LEN_VL15_MASK) <<
10013 		SEND_LEN_CHECK1_LEN_VL15_SHIFT;
10014 	int i, j;
10015 	u32 thres;
10016 
10017 	for (i = 0; i < ppd->vls_supported; i++) {
10018 		if (dd->vld[i].mtu > maxvlmtu)
10019 			maxvlmtu = dd->vld[i].mtu;
10020 		if (i <= 3)
10021 			len1 |= (((dd->vld[i].mtu + max_hb) >> 2)
10022 				 & SEND_LEN_CHECK0_LEN_VL0_MASK) <<
10023 				((i % 4) * SEND_LEN_CHECK0_LEN_VL1_SHIFT);
10024 		else
10025 			len2 |= (((dd->vld[i].mtu + max_hb) >> 2)
10026 				 & SEND_LEN_CHECK1_LEN_VL4_MASK) <<
10027 				((i % 4) * SEND_LEN_CHECK1_LEN_VL5_SHIFT);
10028 	}
10029 	write_csr(dd, SEND_LEN_CHECK0, len1);
10030 	write_csr(dd, SEND_LEN_CHECK1, len2);
10031 	/* adjust kernel credit return thresholds based on new MTUs */
10032 	/* all kernel receive contexts have the same hdrqentsize */
10033 	for (i = 0; i < ppd->vls_supported; i++) {
10034 		thres = min(sc_percent_to_threshold(dd->vld[i].sc, 50),
10035 			    sc_mtu_to_threshold(dd->vld[i].sc,
10036 						dd->vld[i].mtu,
10037 						dd->rcd[0]->rcvhdrqentsize));
10038 		for (j = 0; j < INIT_SC_PER_VL; j++)
10039 			sc_set_cr_threshold(
10040 					pio_select_send_context_vl(dd, j, i),
10041 					    thres);
10042 	}
10043 	thres = min(sc_percent_to_threshold(dd->vld[15].sc, 50),
10044 		    sc_mtu_to_threshold(dd->vld[15].sc,
10045 					dd->vld[15].mtu,
10046 					dd->rcd[0]->rcvhdrqentsize));
10047 	sc_set_cr_threshold(dd->vld[15].sc, thres);
10048 
10049 	/* Adjust maximum MTU for the port in DC */
10050 	dcmtu = maxvlmtu == 10240 ? DCC_CFG_PORT_MTU_CAP_10240 :
10051 		(ilog2(maxvlmtu >> 8) + 1);
10052 	len1 = read_csr(ppd->dd, DCC_CFG_PORT_CONFIG);
10053 	len1 &= ~DCC_CFG_PORT_CONFIG_MTU_CAP_SMASK;
10054 	len1 |= ((u64)dcmtu & DCC_CFG_PORT_CONFIG_MTU_CAP_MASK) <<
10055 		DCC_CFG_PORT_CONFIG_MTU_CAP_SHIFT;
10056 	write_csr(ppd->dd, DCC_CFG_PORT_CONFIG, len1);
10057 }
10058 
10059 static void set_lidlmc(struct hfi1_pportdata *ppd)
10060 {
10061 	int i;
10062 	u64 sreg = 0;
10063 	struct hfi1_devdata *dd = ppd->dd;
10064 	u32 mask = ~((1U << ppd->lmc) - 1);
10065 	u64 c1 = read_csr(ppd->dd, DCC_CFG_PORT_CONFIG1);
10066 	u32 lid;
10067 
10068 	/*
10069 	 * Program 0 in CSR if port lid is extended. This prevents
10070 	 * 9B packets being sent out for large lids.
10071 	 */
10072 	lid = (ppd->lid >= be16_to_cpu(IB_MULTICAST_LID_BASE)) ? 0 : ppd->lid;
10073 	c1 &= ~(DCC_CFG_PORT_CONFIG1_TARGET_DLID_SMASK
10074 		| DCC_CFG_PORT_CONFIG1_DLID_MASK_SMASK);
10075 	c1 |= ((lid & DCC_CFG_PORT_CONFIG1_TARGET_DLID_MASK)
10076 			<< DCC_CFG_PORT_CONFIG1_TARGET_DLID_SHIFT) |
10077 	      ((mask & DCC_CFG_PORT_CONFIG1_DLID_MASK_MASK)
10078 			<< DCC_CFG_PORT_CONFIG1_DLID_MASK_SHIFT);
10079 	write_csr(ppd->dd, DCC_CFG_PORT_CONFIG1, c1);
10080 
10081 	/*
10082 	 * Iterate over all the send contexts and set their SLID check
10083 	 */
10084 	sreg = ((mask & SEND_CTXT_CHECK_SLID_MASK_MASK) <<
10085 			SEND_CTXT_CHECK_SLID_MASK_SHIFT) |
10086 	       (((lid & mask) & SEND_CTXT_CHECK_SLID_VALUE_MASK) <<
10087 			SEND_CTXT_CHECK_SLID_VALUE_SHIFT);
10088 
10089 	for (i = 0; i < dd->chip_send_contexts; i++) {
10090 		hfi1_cdbg(LINKVERB, "SendContext[%d].SLID_CHECK = 0x%x",
10091 			  i, (u32)sreg);
10092 		write_kctxt_csr(dd, i, SEND_CTXT_CHECK_SLID, sreg);
10093 	}
10094 
10095 	/* Now we have to do the same thing for the sdma engines */
10096 	sdma_update_lmc(dd, mask, lid);
10097 }
10098 
10099 static const char *state_completed_string(u32 completed)
10100 {
10101 	static const char * const state_completed[] = {
10102 		"EstablishComm",
10103 		"OptimizeEQ",
10104 		"VerifyCap"
10105 	};
10106 
10107 	if (completed < ARRAY_SIZE(state_completed))
10108 		return state_completed[completed];
10109 
10110 	return "unknown";
10111 }
10112 
10113 static const char all_lanes_dead_timeout_expired[] =
10114 	"All lanes were inactive – was the interconnect media removed?";
10115 static const char tx_out_of_policy[] =
10116 	"Passing lanes on local port do not meet the local link width policy";
10117 static const char no_state_complete[] =
10118 	"State timeout occurred before link partner completed the state";
10119 static const char * const state_complete_reasons[] = {
10120 	[0x00] = "Reason unknown",
10121 	[0x01] = "Link was halted by driver, refer to LinkDownReason",
10122 	[0x02] = "Link partner reported failure",
10123 	[0x10] = "Unable to achieve frame sync on any lane",
10124 	[0x11] =
10125 	  "Unable to find a common bit rate with the link partner",
10126 	[0x12] =
10127 	  "Unable to achieve frame sync on sufficient lanes to meet the local link width policy",
10128 	[0x13] =
10129 	  "Unable to identify preset equalization on sufficient lanes to meet the local link width policy",
10130 	[0x14] = no_state_complete,
10131 	[0x15] =
10132 	  "State timeout occurred before link partner identified equalization presets",
10133 	[0x16] =
10134 	  "Link partner completed the EstablishComm state, but the passing lanes do not meet the local link width policy",
10135 	[0x17] = tx_out_of_policy,
10136 	[0x20] = all_lanes_dead_timeout_expired,
10137 	[0x21] =
10138 	  "Unable to achieve acceptable BER on sufficient lanes to meet the local link width policy",
10139 	[0x22] = no_state_complete,
10140 	[0x23] =
10141 	  "Link partner completed the OptimizeEq state, but the passing lanes do not meet the local link width policy",
10142 	[0x24] = tx_out_of_policy,
10143 	[0x30] = all_lanes_dead_timeout_expired,
10144 	[0x31] =
10145 	  "State timeout occurred waiting for host to process received frames",
10146 	[0x32] = no_state_complete,
10147 	[0x33] =
10148 	  "Link partner completed the VerifyCap state, but the passing lanes do not meet the local link width policy",
10149 	[0x34] = tx_out_of_policy,
10150 	[0x35] = "Negotiated link width is mutually exclusive",
10151 	[0x36] =
10152 	  "Timed out before receiving verifycap frames in VerifyCap.Exchange",
10153 	[0x37] = "Unable to resolve secure data exchange",
10154 };
10155 
10156 static const char *state_complete_reason_code_string(struct hfi1_pportdata *ppd,
10157 						     u32 code)
10158 {
10159 	const char *str = NULL;
10160 
10161 	if (code < ARRAY_SIZE(state_complete_reasons))
10162 		str = state_complete_reasons[code];
10163 
10164 	if (str)
10165 		return str;
10166 	return "Reserved";
10167 }
10168 
10169 /* describe the given last state complete frame */
10170 static void decode_state_complete(struct hfi1_pportdata *ppd, u32 frame,
10171 				  const char *prefix)
10172 {
10173 	struct hfi1_devdata *dd = ppd->dd;
10174 	u32 success;
10175 	u32 state;
10176 	u32 reason;
10177 	u32 lanes;
10178 
10179 	/*
10180 	 * Decode frame:
10181 	 *  [ 0: 0] - success
10182 	 *  [ 3: 1] - state
10183 	 *  [ 7: 4] - next state timeout
10184 	 *  [15: 8] - reason code
10185 	 *  [31:16] - lanes
10186 	 */
10187 	success = frame & 0x1;
10188 	state = (frame >> 1) & 0x7;
10189 	reason = (frame >> 8) & 0xff;
10190 	lanes = (frame >> 16) & 0xffff;
10191 
10192 	dd_dev_err(dd, "Last %s LNI state complete frame 0x%08x:\n",
10193 		   prefix, frame);
10194 	dd_dev_err(dd, "    last reported state state: %s (0x%x)\n",
10195 		   state_completed_string(state), state);
10196 	dd_dev_err(dd, "    state successfully completed: %s\n",
10197 		   success ? "yes" : "no");
10198 	dd_dev_err(dd, "    fail reason 0x%x: %s\n",
10199 		   reason, state_complete_reason_code_string(ppd, reason));
10200 	dd_dev_err(dd, "    passing lane mask: 0x%x", lanes);
10201 }
10202 
10203 /*
10204  * Read the last state complete frames and explain them.  This routine
10205  * expects to be called if the link went down during link negotiation
10206  * and initialization (LNI).  That is, anywhere between polling and link up.
10207  */
10208 static void check_lni_states(struct hfi1_pportdata *ppd)
10209 {
10210 	u32 last_local_state;
10211 	u32 last_remote_state;
10212 
10213 	read_last_local_state(ppd->dd, &last_local_state);
10214 	read_last_remote_state(ppd->dd, &last_remote_state);
10215 
10216 	/*
10217 	 * Don't report anything if there is nothing to report.  A value of
10218 	 * 0 means the link was taken down while polling and there was no
10219 	 * training in-process.
10220 	 */
10221 	if (last_local_state == 0 && last_remote_state == 0)
10222 		return;
10223 
10224 	decode_state_complete(ppd, last_local_state, "transmitted");
10225 	decode_state_complete(ppd, last_remote_state, "received");
10226 }
10227 
10228 /* wait for wait_ms for LINK_TRANSFER_ACTIVE to go to 1 */
10229 static int wait_link_transfer_active(struct hfi1_devdata *dd, int wait_ms)
10230 {
10231 	u64 reg;
10232 	unsigned long timeout;
10233 
10234 	/* watch LCB_STS_LINK_TRANSFER_ACTIVE */
10235 	timeout = jiffies + msecs_to_jiffies(wait_ms);
10236 	while (1) {
10237 		reg = read_csr(dd, DC_LCB_STS_LINK_TRANSFER_ACTIVE);
10238 		if (reg)
10239 			break;
10240 		if (time_after(jiffies, timeout)) {
10241 			dd_dev_err(dd,
10242 				   "timeout waiting for LINK_TRANSFER_ACTIVE\n");
10243 			return -ETIMEDOUT;
10244 		}
10245 		udelay(2);
10246 	}
10247 	return 0;
10248 }
10249 
10250 /* called when the logical link state is not down as it should be */
10251 static void force_logical_link_state_down(struct hfi1_pportdata *ppd)
10252 {
10253 	struct hfi1_devdata *dd = ppd->dd;
10254 
10255 	/*
10256 	 * Bring link up in LCB loopback
10257 	 */
10258 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 1);
10259 	write_csr(dd, DC_LCB_CFG_IGNORE_LOST_RCLK,
10260 		  DC_LCB_CFG_IGNORE_LOST_RCLK_EN_SMASK);
10261 
10262 	write_csr(dd, DC_LCB_CFG_LANE_WIDTH, 0);
10263 	write_csr(dd, DC_LCB_CFG_REINIT_AS_SLAVE, 0);
10264 	write_csr(dd, DC_LCB_CFG_CNT_FOR_SKIP_STALL, 0x110);
10265 	write_csr(dd, DC_LCB_CFG_LOOPBACK, 0x2);
10266 
10267 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0);
10268 	(void)read_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET);
10269 	udelay(3);
10270 	write_csr(dd, DC_LCB_CFG_ALLOW_LINK_UP, 1);
10271 	write_csr(dd, DC_LCB_CFG_RUN, 1ull << DC_LCB_CFG_RUN_EN_SHIFT);
10272 
10273 	wait_link_transfer_active(dd, 100);
10274 
10275 	/*
10276 	 * Bring the link down again.
10277 	 */
10278 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 1);
10279 	write_csr(dd, DC_LCB_CFG_ALLOW_LINK_UP, 0);
10280 	write_csr(dd, DC_LCB_CFG_IGNORE_LOST_RCLK, 0);
10281 
10282 	dd_dev_info(ppd->dd, "logical state forced to LINK_DOWN\n");
10283 }
10284 
10285 /*
10286  * Helper for set_link_state().  Do not call except from that routine.
10287  * Expects ppd->hls_mutex to be held.
10288  *
10289  * @rem_reason value to be sent to the neighbor
10290  *
10291  * LinkDownReasons only set if transition succeeds.
10292  */
10293 static int goto_offline(struct hfi1_pportdata *ppd, u8 rem_reason)
10294 {
10295 	struct hfi1_devdata *dd = ppd->dd;
10296 	u32 previous_state;
10297 	int offline_state_ret;
10298 	int ret;
10299 
10300 	update_lcb_cache(dd);
10301 
10302 	previous_state = ppd->host_link_state;
10303 	ppd->host_link_state = HLS_GOING_OFFLINE;
10304 
10305 	/* start offline transition */
10306 	ret = set_physical_link_state(dd, (rem_reason << 8) | PLS_OFFLINE);
10307 
10308 	if (ret != HCMD_SUCCESS) {
10309 		dd_dev_err(dd,
10310 			   "Failed to transition to Offline link state, return %d\n",
10311 			   ret);
10312 		return -EINVAL;
10313 	}
10314 	if (ppd->offline_disabled_reason ==
10315 			HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE))
10316 		ppd->offline_disabled_reason =
10317 		HFI1_ODR_MASK(OPA_LINKDOWN_REASON_TRANSIENT);
10318 
10319 	offline_state_ret = wait_phys_link_offline_substates(ppd, 10000);
10320 	if (offline_state_ret < 0)
10321 		return offline_state_ret;
10322 
10323 	/* Disabling AOC transmitters */
10324 	if (ppd->port_type == PORT_TYPE_QSFP &&
10325 	    ppd->qsfp_info.limiting_active &&
10326 	    qsfp_mod_present(ppd)) {
10327 		int ret;
10328 
10329 		ret = acquire_chip_resource(dd, qsfp_resource(dd), QSFP_WAIT);
10330 		if (ret == 0) {
10331 			set_qsfp_tx(ppd, 0);
10332 			release_chip_resource(dd, qsfp_resource(dd));
10333 		} else {
10334 			/* not fatal, but should warn */
10335 			dd_dev_err(dd,
10336 				   "Unable to acquire lock to turn off QSFP TX\n");
10337 		}
10338 	}
10339 
10340 	/*
10341 	 * Wait for the offline.Quiet transition if it hasn't happened yet. It
10342 	 * can take a while for the link to go down.
10343 	 */
10344 	if (offline_state_ret != PLS_OFFLINE_QUIET) {
10345 		ret = wait_physical_linkstate(ppd, PLS_OFFLINE, 30000);
10346 		if (ret < 0)
10347 			return ret;
10348 	}
10349 
10350 	/*
10351 	 * Now in charge of LCB - must be after the physical state is
10352 	 * offline.quiet and before host_link_state is changed.
10353 	 */
10354 	set_host_lcb_access(dd);
10355 	write_csr(dd, DC_LCB_ERR_EN, ~0ull); /* watch LCB errors */
10356 
10357 	/* make sure the logical state is also down */
10358 	ret = wait_logical_linkstate(ppd, IB_PORT_DOWN, 1000);
10359 	if (ret)
10360 		force_logical_link_state_down(ppd);
10361 
10362 	ppd->host_link_state = HLS_LINK_COOLDOWN; /* LCB access allowed */
10363 	update_statusp(ppd, IB_PORT_DOWN);
10364 
10365 	/*
10366 	 * The LNI has a mandatory wait time after the physical state
10367 	 * moves to Offline.Quiet.  The wait time may be different
10368 	 * depending on how the link went down.  The 8051 firmware
10369 	 * will observe the needed wait time and only move to ready
10370 	 * when that is completed.  The largest of the quiet timeouts
10371 	 * is 6s, so wait that long and then at least 0.5s more for
10372 	 * other transitions, and another 0.5s for a buffer.
10373 	 */
10374 	ret = wait_fm_ready(dd, 7000);
10375 	if (ret) {
10376 		dd_dev_err(dd,
10377 			   "After going offline, timed out waiting for the 8051 to become ready to accept host requests\n");
10378 		/* state is really offline, so make it so */
10379 		ppd->host_link_state = HLS_DN_OFFLINE;
10380 		return ret;
10381 	}
10382 
10383 	/*
10384 	 * The state is now offline and the 8051 is ready to accept host
10385 	 * requests.
10386 	 *	- change our state
10387 	 *	- notify others if we were previously in a linkup state
10388 	 */
10389 	ppd->host_link_state = HLS_DN_OFFLINE;
10390 	if (previous_state & HLS_UP) {
10391 		/* went down while link was up */
10392 		handle_linkup_change(dd, 0);
10393 	} else if (previous_state
10394 			& (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) {
10395 		/* went down while attempting link up */
10396 		check_lni_states(ppd);
10397 
10398 		/* The QSFP doesn't need to be reset on LNI failure */
10399 		ppd->qsfp_info.reset_needed = 0;
10400 	}
10401 
10402 	/* the active link width (downgrade) is 0 on link down */
10403 	ppd->link_width_active = 0;
10404 	ppd->link_width_downgrade_tx_active = 0;
10405 	ppd->link_width_downgrade_rx_active = 0;
10406 	ppd->current_egress_rate = 0;
10407 	return 0;
10408 }
10409 
10410 /* return the link state name */
10411 static const char *link_state_name(u32 state)
10412 {
10413 	const char *name;
10414 	int n = ilog2(state);
10415 	static const char * const names[] = {
10416 		[__HLS_UP_INIT_BP]	 = "INIT",
10417 		[__HLS_UP_ARMED_BP]	 = "ARMED",
10418 		[__HLS_UP_ACTIVE_BP]	 = "ACTIVE",
10419 		[__HLS_DN_DOWNDEF_BP]	 = "DOWNDEF",
10420 		[__HLS_DN_POLL_BP]	 = "POLL",
10421 		[__HLS_DN_DISABLE_BP]	 = "DISABLE",
10422 		[__HLS_DN_OFFLINE_BP]	 = "OFFLINE",
10423 		[__HLS_VERIFY_CAP_BP]	 = "VERIFY_CAP",
10424 		[__HLS_GOING_UP_BP]	 = "GOING_UP",
10425 		[__HLS_GOING_OFFLINE_BP] = "GOING_OFFLINE",
10426 		[__HLS_LINK_COOLDOWN_BP] = "LINK_COOLDOWN"
10427 	};
10428 
10429 	name = n < ARRAY_SIZE(names) ? names[n] : NULL;
10430 	return name ? name : "unknown";
10431 }
10432 
10433 /* return the link state reason name */
10434 static const char *link_state_reason_name(struct hfi1_pportdata *ppd, u32 state)
10435 {
10436 	if (state == HLS_UP_INIT) {
10437 		switch (ppd->linkinit_reason) {
10438 		case OPA_LINKINIT_REASON_LINKUP:
10439 			return "(LINKUP)";
10440 		case OPA_LINKINIT_REASON_FLAPPING:
10441 			return "(FLAPPING)";
10442 		case OPA_LINKINIT_OUTSIDE_POLICY:
10443 			return "(OUTSIDE_POLICY)";
10444 		case OPA_LINKINIT_QUARANTINED:
10445 			return "(QUARANTINED)";
10446 		case OPA_LINKINIT_INSUFIC_CAPABILITY:
10447 			return "(INSUFIC_CAPABILITY)";
10448 		default:
10449 			break;
10450 		}
10451 	}
10452 	return "";
10453 }
10454 
10455 /*
10456  * driver_pstate - convert the driver's notion of a port's
10457  * state (an HLS_*) into a physical state (a {IB,OPA}_PORTPHYSSTATE_*).
10458  * Return -1 (converted to a u32) to indicate error.
10459  */
10460 u32 driver_pstate(struct hfi1_pportdata *ppd)
10461 {
10462 	switch (ppd->host_link_state) {
10463 	case HLS_UP_INIT:
10464 	case HLS_UP_ARMED:
10465 	case HLS_UP_ACTIVE:
10466 		return IB_PORTPHYSSTATE_LINKUP;
10467 	case HLS_DN_POLL:
10468 		return IB_PORTPHYSSTATE_POLLING;
10469 	case HLS_DN_DISABLE:
10470 		return IB_PORTPHYSSTATE_DISABLED;
10471 	case HLS_DN_OFFLINE:
10472 		return OPA_PORTPHYSSTATE_OFFLINE;
10473 	case HLS_VERIFY_CAP:
10474 		return IB_PORTPHYSSTATE_POLLING;
10475 	case HLS_GOING_UP:
10476 		return IB_PORTPHYSSTATE_POLLING;
10477 	case HLS_GOING_OFFLINE:
10478 		return OPA_PORTPHYSSTATE_OFFLINE;
10479 	case HLS_LINK_COOLDOWN:
10480 		return OPA_PORTPHYSSTATE_OFFLINE;
10481 	case HLS_DN_DOWNDEF:
10482 	default:
10483 		dd_dev_err(ppd->dd, "invalid host_link_state 0x%x\n",
10484 			   ppd->host_link_state);
10485 		return  -1;
10486 	}
10487 }
10488 
10489 /*
10490  * driver_lstate - convert the driver's notion of a port's
10491  * state (an HLS_*) into a logical state (a IB_PORT_*). Return -1
10492  * (converted to a u32) to indicate error.
10493  */
10494 u32 driver_lstate(struct hfi1_pportdata *ppd)
10495 {
10496 	if (ppd->host_link_state && (ppd->host_link_state & HLS_DOWN))
10497 		return IB_PORT_DOWN;
10498 
10499 	switch (ppd->host_link_state & HLS_UP) {
10500 	case HLS_UP_INIT:
10501 		return IB_PORT_INIT;
10502 	case HLS_UP_ARMED:
10503 		return IB_PORT_ARMED;
10504 	case HLS_UP_ACTIVE:
10505 		return IB_PORT_ACTIVE;
10506 	default:
10507 		dd_dev_err(ppd->dd, "invalid host_link_state 0x%x\n",
10508 			   ppd->host_link_state);
10509 	return -1;
10510 	}
10511 }
10512 
10513 void set_link_down_reason(struct hfi1_pportdata *ppd, u8 lcl_reason,
10514 			  u8 neigh_reason, u8 rem_reason)
10515 {
10516 	if (ppd->local_link_down_reason.latest == 0 &&
10517 	    ppd->neigh_link_down_reason.latest == 0) {
10518 		ppd->local_link_down_reason.latest = lcl_reason;
10519 		ppd->neigh_link_down_reason.latest = neigh_reason;
10520 		ppd->remote_link_down_reason = rem_reason;
10521 	}
10522 }
10523 
10524 /*
10525  * Verify if BCT for data VLs is non-zero.
10526  */
10527 static inline bool data_vls_operational(struct hfi1_pportdata *ppd)
10528 {
10529 	return !!ppd->actual_vls_operational;
10530 }
10531 
10532 /*
10533  * Change the physical and/or logical link state.
10534  *
10535  * Do not call this routine while inside an interrupt.  It contains
10536  * calls to routines that can take multiple seconds to finish.
10537  *
10538  * Returns 0 on success, -errno on failure.
10539  */
10540 int set_link_state(struct hfi1_pportdata *ppd, u32 state)
10541 {
10542 	struct hfi1_devdata *dd = ppd->dd;
10543 	struct ib_event event = {.device = NULL};
10544 	int ret1, ret = 0;
10545 	int orig_new_state, poll_bounce;
10546 
10547 	mutex_lock(&ppd->hls_lock);
10548 
10549 	orig_new_state = state;
10550 	if (state == HLS_DN_DOWNDEF)
10551 		state = HLS_DEFAULT;
10552 
10553 	/* interpret poll -> poll as a link bounce */
10554 	poll_bounce = ppd->host_link_state == HLS_DN_POLL &&
10555 		      state == HLS_DN_POLL;
10556 
10557 	dd_dev_info(dd, "%s: current %s, new %s %s%s\n", __func__,
10558 		    link_state_name(ppd->host_link_state),
10559 		    link_state_name(orig_new_state),
10560 		    poll_bounce ? "(bounce) " : "",
10561 		    link_state_reason_name(ppd, state));
10562 
10563 	/*
10564 	 * If we're going to a (HLS_*) link state that implies the logical
10565 	 * link state is neither of (IB_PORT_ARMED, IB_PORT_ACTIVE), then
10566 	 * reset is_sm_config_started to 0.
10567 	 */
10568 	if (!(state & (HLS_UP_ARMED | HLS_UP_ACTIVE)))
10569 		ppd->is_sm_config_started = 0;
10570 
10571 	/*
10572 	 * Do nothing if the states match.  Let a poll to poll link bounce
10573 	 * go through.
10574 	 */
10575 	if (ppd->host_link_state == state && !poll_bounce)
10576 		goto done;
10577 
10578 	switch (state) {
10579 	case HLS_UP_INIT:
10580 		if (ppd->host_link_state == HLS_DN_POLL &&
10581 		    (quick_linkup || dd->icode == ICODE_FUNCTIONAL_SIMULATOR)) {
10582 			/*
10583 			 * Quick link up jumps from polling to here.
10584 			 *
10585 			 * Whether in normal or loopback mode, the
10586 			 * simulator jumps from polling to link up.
10587 			 * Accept that here.
10588 			 */
10589 			/* OK */
10590 		} else if (ppd->host_link_state != HLS_GOING_UP) {
10591 			goto unexpected;
10592 		}
10593 
10594 		/*
10595 		 * Wait for Link_Up physical state.
10596 		 * Physical and Logical states should already be
10597 		 * be transitioned to LinkUp and LinkInit respectively.
10598 		 */
10599 		ret = wait_physical_linkstate(ppd, PLS_LINKUP, 1000);
10600 		if (ret) {
10601 			dd_dev_err(dd,
10602 				   "%s: physical state did not change to LINK-UP\n",
10603 				   __func__);
10604 			break;
10605 		}
10606 
10607 		ret = wait_logical_linkstate(ppd, IB_PORT_INIT, 1000);
10608 		if (ret) {
10609 			dd_dev_err(dd,
10610 				   "%s: logical state did not change to INIT\n",
10611 				   __func__);
10612 			break;
10613 		}
10614 
10615 		/* clear old transient LINKINIT_REASON code */
10616 		if (ppd->linkinit_reason >= OPA_LINKINIT_REASON_CLEAR)
10617 			ppd->linkinit_reason =
10618 				OPA_LINKINIT_REASON_LINKUP;
10619 
10620 		/* enable the port */
10621 		add_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
10622 
10623 		handle_linkup_change(dd, 1);
10624 		ppd->host_link_state = HLS_UP_INIT;
10625 		update_statusp(ppd, IB_PORT_INIT);
10626 		break;
10627 	case HLS_UP_ARMED:
10628 		if (ppd->host_link_state != HLS_UP_INIT)
10629 			goto unexpected;
10630 
10631 		if (!data_vls_operational(ppd)) {
10632 			dd_dev_err(dd,
10633 				   "%s: data VLs not operational\n", __func__);
10634 			ret = -EINVAL;
10635 			break;
10636 		}
10637 
10638 		set_logical_state(dd, LSTATE_ARMED);
10639 		ret = wait_logical_linkstate(ppd, IB_PORT_ARMED, 1000);
10640 		if (ret) {
10641 			dd_dev_err(dd,
10642 				   "%s: logical state did not change to ARMED\n",
10643 				   __func__);
10644 			break;
10645 		}
10646 		ppd->host_link_state = HLS_UP_ARMED;
10647 		update_statusp(ppd, IB_PORT_ARMED);
10648 		/*
10649 		 * The simulator does not currently implement SMA messages,
10650 		 * so neighbor_normal is not set.  Set it here when we first
10651 		 * move to Armed.
10652 		 */
10653 		if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR)
10654 			ppd->neighbor_normal = 1;
10655 		break;
10656 	case HLS_UP_ACTIVE:
10657 		if (ppd->host_link_state != HLS_UP_ARMED)
10658 			goto unexpected;
10659 
10660 		set_logical_state(dd, LSTATE_ACTIVE);
10661 		ret = wait_logical_linkstate(ppd, IB_PORT_ACTIVE, 1000);
10662 		if (ret) {
10663 			dd_dev_err(dd,
10664 				   "%s: logical state did not change to ACTIVE\n",
10665 				   __func__);
10666 		} else {
10667 			/* tell all engines to go running */
10668 			sdma_all_running(dd);
10669 			ppd->host_link_state = HLS_UP_ACTIVE;
10670 			update_statusp(ppd, IB_PORT_ACTIVE);
10671 
10672 			/* Signal the IB layer that the port has went active */
10673 			event.device = &dd->verbs_dev.rdi.ibdev;
10674 			event.element.port_num = ppd->port;
10675 			event.event = IB_EVENT_PORT_ACTIVE;
10676 		}
10677 		break;
10678 	case HLS_DN_POLL:
10679 		if ((ppd->host_link_state == HLS_DN_DISABLE ||
10680 		     ppd->host_link_state == HLS_DN_OFFLINE) &&
10681 		    dd->dc_shutdown)
10682 			dc_start(dd);
10683 		/* Hand LED control to the DC */
10684 		write_csr(dd, DCC_CFG_LED_CNTRL, 0);
10685 
10686 		if (ppd->host_link_state != HLS_DN_OFFLINE) {
10687 			u8 tmp = ppd->link_enabled;
10688 
10689 			ret = goto_offline(ppd, ppd->remote_link_down_reason);
10690 			if (ret) {
10691 				ppd->link_enabled = tmp;
10692 				break;
10693 			}
10694 			ppd->remote_link_down_reason = 0;
10695 
10696 			if (ppd->driver_link_ready)
10697 				ppd->link_enabled = 1;
10698 		}
10699 
10700 		set_all_slowpath(ppd->dd);
10701 		ret = set_local_link_attributes(ppd);
10702 		if (ret)
10703 			break;
10704 
10705 		ppd->port_error_action = 0;
10706 		ppd->host_link_state = HLS_DN_POLL;
10707 
10708 		if (quick_linkup) {
10709 			/* quick linkup does not go into polling */
10710 			ret = do_quick_linkup(dd);
10711 		} else {
10712 			ret1 = set_physical_link_state(dd, PLS_POLLING);
10713 			if (ret1 != HCMD_SUCCESS) {
10714 				dd_dev_err(dd,
10715 					   "Failed to transition to Polling link state, return 0x%x\n",
10716 					   ret1);
10717 				ret = -EINVAL;
10718 			}
10719 		}
10720 		ppd->offline_disabled_reason =
10721 			HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE);
10722 		/*
10723 		 * If an error occurred above, go back to offline.  The
10724 		 * caller may reschedule another attempt.
10725 		 */
10726 		if (ret)
10727 			goto_offline(ppd, 0);
10728 		else
10729 			log_physical_state(ppd, PLS_POLLING);
10730 		break;
10731 	case HLS_DN_DISABLE:
10732 		/* link is disabled */
10733 		ppd->link_enabled = 0;
10734 
10735 		/* allow any state to transition to disabled */
10736 
10737 		/* must transition to offline first */
10738 		if (ppd->host_link_state != HLS_DN_OFFLINE) {
10739 			ret = goto_offline(ppd, ppd->remote_link_down_reason);
10740 			if (ret)
10741 				break;
10742 			ppd->remote_link_down_reason = 0;
10743 		}
10744 
10745 		if (!dd->dc_shutdown) {
10746 			ret1 = set_physical_link_state(dd, PLS_DISABLED);
10747 			if (ret1 != HCMD_SUCCESS) {
10748 				dd_dev_err(dd,
10749 					   "Failed to transition to Disabled link state, return 0x%x\n",
10750 					   ret1);
10751 				ret = -EINVAL;
10752 				break;
10753 			}
10754 			ret = wait_physical_linkstate(ppd, PLS_DISABLED, 10000);
10755 			if (ret) {
10756 				dd_dev_err(dd,
10757 					   "%s: physical state did not change to DISABLED\n",
10758 					   __func__);
10759 				break;
10760 			}
10761 			dc_shutdown(dd);
10762 		}
10763 		ppd->host_link_state = HLS_DN_DISABLE;
10764 		break;
10765 	case HLS_DN_OFFLINE:
10766 		if (ppd->host_link_state == HLS_DN_DISABLE)
10767 			dc_start(dd);
10768 
10769 		/* allow any state to transition to offline */
10770 		ret = goto_offline(ppd, ppd->remote_link_down_reason);
10771 		if (!ret)
10772 			ppd->remote_link_down_reason = 0;
10773 		break;
10774 	case HLS_VERIFY_CAP:
10775 		if (ppd->host_link_state != HLS_DN_POLL)
10776 			goto unexpected;
10777 		ppd->host_link_state = HLS_VERIFY_CAP;
10778 		log_physical_state(ppd, PLS_CONFIGPHY_VERIFYCAP);
10779 		break;
10780 	case HLS_GOING_UP:
10781 		if (ppd->host_link_state != HLS_VERIFY_CAP)
10782 			goto unexpected;
10783 
10784 		ret1 = set_physical_link_state(dd, PLS_LINKUP);
10785 		if (ret1 != HCMD_SUCCESS) {
10786 			dd_dev_err(dd,
10787 				   "Failed to transition to link up state, return 0x%x\n",
10788 				   ret1);
10789 			ret = -EINVAL;
10790 			break;
10791 		}
10792 		ppd->host_link_state = HLS_GOING_UP;
10793 		break;
10794 
10795 	case HLS_GOING_OFFLINE:		/* transient within goto_offline() */
10796 	case HLS_LINK_COOLDOWN:		/* transient within goto_offline() */
10797 	default:
10798 		dd_dev_info(dd, "%s: state 0x%x: not supported\n",
10799 			    __func__, state);
10800 		ret = -EINVAL;
10801 		break;
10802 	}
10803 
10804 	goto done;
10805 
10806 unexpected:
10807 	dd_dev_err(dd, "%s: unexpected state transition from %s to %s\n",
10808 		   __func__, link_state_name(ppd->host_link_state),
10809 		   link_state_name(state));
10810 	ret = -EINVAL;
10811 
10812 done:
10813 	mutex_unlock(&ppd->hls_lock);
10814 
10815 	if (event.device)
10816 		ib_dispatch_event(&event);
10817 
10818 	return ret;
10819 }
10820 
10821 int hfi1_set_ib_cfg(struct hfi1_pportdata *ppd, int which, u32 val)
10822 {
10823 	u64 reg;
10824 	int ret = 0;
10825 
10826 	switch (which) {
10827 	case HFI1_IB_CFG_LIDLMC:
10828 		set_lidlmc(ppd);
10829 		break;
10830 	case HFI1_IB_CFG_VL_HIGH_LIMIT:
10831 		/*
10832 		 * The VL Arbitrator high limit is sent in units of 4k
10833 		 * bytes, while HFI stores it in units of 64 bytes.
10834 		 */
10835 		val *= 4096 / 64;
10836 		reg = ((u64)val & SEND_HIGH_PRIORITY_LIMIT_LIMIT_MASK)
10837 			<< SEND_HIGH_PRIORITY_LIMIT_LIMIT_SHIFT;
10838 		write_csr(ppd->dd, SEND_HIGH_PRIORITY_LIMIT, reg);
10839 		break;
10840 	case HFI1_IB_CFG_LINKDEFAULT: /* IB link default (sleep/poll) */
10841 		/* HFI only supports POLL as the default link down state */
10842 		if (val != HLS_DN_POLL)
10843 			ret = -EINVAL;
10844 		break;
10845 	case HFI1_IB_CFG_OP_VLS:
10846 		if (ppd->vls_operational != val) {
10847 			ppd->vls_operational = val;
10848 			if (!ppd->port)
10849 				ret = -EINVAL;
10850 		}
10851 		break;
10852 	/*
10853 	 * For link width, link width downgrade, and speed enable, always AND
10854 	 * the setting with what is actually supported.  This has two benefits.
10855 	 * First, enabled can't have unsupported values, no matter what the
10856 	 * SM or FM might want.  Second, the ALL_SUPPORTED wildcards that mean
10857 	 * "fill in with your supported value" have all the bits in the
10858 	 * field set, so simply ANDing with supported has the desired result.
10859 	 */
10860 	case HFI1_IB_CFG_LWID_ENB: /* set allowed Link-width */
10861 		ppd->link_width_enabled = val & ppd->link_width_supported;
10862 		break;
10863 	case HFI1_IB_CFG_LWID_DG_ENB: /* set allowed link width downgrade */
10864 		ppd->link_width_downgrade_enabled =
10865 				val & ppd->link_width_downgrade_supported;
10866 		break;
10867 	case HFI1_IB_CFG_SPD_ENB: /* allowed Link speeds */
10868 		ppd->link_speed_enabled = val & ppd->link_speed_supported;
10869 		break;
10870 	case HFI1_IB_CFG_OVERRUN_THRESH: /* IB overrun threshold */
10871 		/*
10872 		 * HFI does not follow IB specs, save this value
10873 		 * so we can report it, if asked.
10874 		 */
10875 		ppd->overrun_threshold = val;
10876 		break;
10877 	case HFI1_IB_CFG_PHYERR_THRESH: /* IB PHY error threshold */
10878 		/*
10879 		 * HFI does not follow IB specs, save this value
10880 		 * so we can report it, if asked.
10881 		 */
10882 		ppd->phy_error_threshold = val;
10883 		break;
10884 
10885 	case HFI1_IB_CFG_MTU:
10886 		set_send_length(ppd);
10887 		break;
10888 
10889 	case HFI1_IB_CFG_PKEYS:
10890 		if (HFI1_CAP_IS_KSET(PKEY_CHECK))
10891 			set_partition_keys(ppd);
10892 		break;
10893 
10894 	default:
10895 		if (HFI1_CAP_IS_KSET(PRINT_UNIMPL))
10896 			dd_dev_info(ppd->dd,
10897 				    "%s: which %s, val 0x%x: not implemented\n",
10898 				    __func__, ib_cfg_name(which), val);
10899 		break;
10900 	}
10901 	return ret;
10902 }
10903 
10904 /* begin functions related to vl arbitration table caching */
10905 static void init_vl_arb_caches(struct hfi1_pportdata *ppd)
10906 {
10907 	int i;
10908 
10909 	BUILD_BUG_ON(VL_ARB_TABLE_SIZE !=
10910 			VL_ARB_LOW_PRIO_TABLE_SIZE);
10911 	BUILD_BUG_ON(VL_ARB_TABLE_SIZE !=
10912 			VL_ARB_HIGH_PRIO_TABLE_SIZE);
10913 
10914 	/*
10915 	 * Note that we always return values directly from the
10916 	 * 'vl_arb_cache' (and do no CSR reads) in response to a
10917 	 * 'Get(VLArbTable)'. This is obviously correct after a
10918 	 * 'Set(VLArbTable)', since the cache will then be up to
10919 	 * date. But it's also correct prior to any 'Set(VLArbTable)'
10920 	 * since then both the cache, and the relevant h/w registers
10921 	 * will be zeroed.
10922 	 */
10923 
10924 	for (i = 0; i < MAX_PRIO_TABLE; i++)
10925 		spin_lock_init(&ppd->vl_arb_cache[i].lock);
10926 }
10927 
10928 /*
10929  * vl_arb_lock_cache
10930  *
10931  * All other vl_arb_* functions should be called only after locking
10932  * the cache.
10933  */
10934 static inline struct vl_arb_cache *
10935 vl_arb_lock_cache(struct hfi1_pportdata *ppd, int idx)
10936 {
10937 	if (idx != LO_PRIO_TABLE && idx != HI_PRIO_TABLE)
10938 		return NULL;
10939 	spin_lock(&ppd->vl_arb_cache[idx].lock);
10940 	return &ppd->vl_arb_cache[idx];
10941 }
10942 
10943 static inline void vl_arb_unlock_cache(struct hfi1_pportdata *ppd, int idx)
10944 {
10945 	spin_unlock(&ppd->vl_arb_cache[idx].lock);
10946 }
10947 
10948 static void vl_arb_get_cache(struct vl_arb_cache *cache,
10949 			     struct ib_vl_weight_elem *vl)
10950 {
10951 	memcpy(vl, cache->table, VL_ARB_TABLE_SIZE * sizeof(*vl));
10952 }
10953 
10954 static void vl_arb_set_cache(struct vl_arb_cache *cache,
10955 			     struct ib_vl_weight_elem *vl)
10956 {
10957 	memcpy(cache->table, vl, VL_ARB_TABLE_SIZE * sizeof(*vl));
10958 }
10959 
10960 static int vl_arb_match_cache(struct vl_arb_cache *cache,
10961 			      struct ib_vl_weight_elem *vl)
10962 {
10963 	return !memcmp(cache->table, vl, VL_ARB_TABLE_SIZE * sizeof(*vl));
10964 }
10965 
10966 /* end functions related to vl arbitration table caching */
10967 
10968 static int set_vl_weights(struct hfi1_pportdata *ppd, u32 target,
10969 			  u32 size, struct ib_vl_weight_elem *vl)
10970 {
10971 	struct hfi1_devdata *dd = ppd->dd;
10972 	u64 reg;
10973 	unsigned int i, is_up = 0;
10974 	int drain, ret = 0;
10975 
10976 	mutex_lock(&ppd->hls_lock);
10977 
10978 	if (ppd->host_link_state & HLS_UP)
10979 		is_up = 1;
10980 
10981 	drain = !is_ax(dd) && is_up;
10982 
10983 	if (drain)
10984 		/*
10985 		 * Before adjusting VL arbitration weights, empty per-VL
10986 		 * FIFOs, otherwise a packet whose VL weight is being
10987 		 * set to 0 could get stuck in a FIFO with no chance to
10988 		 * egress.
10989 		 */
10990 		ret = stop_drain_data_vls(dd);
10991 
10992 	if (ret) {
10993 		dd_dev_err(
10994 			dd,
10995 			"%s: cannot stop/drain VLs - refusing to change VL arbitration weights\n",
10996 			__func__);
10997 		goto err;
10998 	}
10999 
11000 	for (i = 0; i < size; i++, vl++) {
11001 		/*
11002 		 * NOTE: The low priority shift and mask are used here, but
11003 		 * they are the same for both the low and high registers.
11004 		 */
11005 		reg = (((u64)vl->vl & SEND_LOW_PRIORITY_LIST_VL_MASK)
11006 				<< SEND_LOW_PRIORITY_LIST_VL_SHIFT)
11007 		      | (((u64)vl->weight
11008 				& SEND_LOW_PRIORITY_LIST_WEIGHT_MASK)
11009 				<< SEND_LOW_PRIORITY_LIST_WEIGHT_SHIFT);
11010 		write_csr(dd, target + (i * 8), reg);
11011 	}
11012 	pio_send_control(dd, PSC_GLOBAL_VLARB_ENABLE);
11013 
11014 	if (drain)
11015 		open_fill_data_vls(dd); /* reopen all VLs */
11016 
11017 err:
11018 	mutex_unlock(&ppd->hls_lock);
11019 
11020 	return ret;
11021 }
11022 
11023 /*
11024  * Read one credit merge VL register.
11025  */
11026 static void read_one_cm_vl(struct hfi1_devdata *dd, u32 csr,
11027 			   struct vl_limit *vll)
11028 {
11029 	u64 reg = read_csr(dd, csr);
11030 
11031 	vll->dedicated = cpu_to_be16(
11032 		(reg >> SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SHIFT)
11033 		& SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_MASK);
11034 	vll->shared = cpu_to_be16(
11035 		(reg >> SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SHIFT)
11036 		& SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_MASK);
11037 }
11038 
11039 /*
11040  * Read the current credit merge limits.
11041  */
11042 static int get_buffer_control(struct hfi1_devdata *dd,
11043 			      struct buffer_control *bc, u16 *overall_limit)
11044 {
11045 	u64 reg;
11046 	int i;
11047 
11048 	/* not all entries are filled in */
11049 	memset(bc, 0, sizeof(*bc));
11050 
11051 	/* OPA and HFI have a 1-1 mapping */
11052 	for (i = 0; i < TXE_NUM_DATA_VL; i++)
11053 		read_one_cm_vl(dd, SEND_CM_CREDIT_VL + (8 * i), &bc->vl[i]);
11054 
11055 	/* NOTE: assumes that VL* and VL15 CSRs are bit-wise identical */
11056 	read_one_cm_vl(dd, SEND_CM_CREDIT_VL15, &bc->vl[15]);
11057 
11058 	reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
11059 	bc->overall_shared_limit = cpu_to_be16(
11060 		(reg >> SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SHIFT)
11061 		& SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_MASK);
11062 	if (overall_limit)
11063 		*overall_limit = (reg
11064 			>> SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT)
11065 			& SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_MASK;
11066 	return sizeof(struct buffer_control);
11067 }
11068 
11069 static int get_sc2vlnt(struct hfi1_devdata *dd, struct sc2vlnt *dp)
11070 {
11071 	u64 reg;
11072 	int i;
11073 
11074 	/* each register contains 16 SC->VLnt mappings, 4 bits each */
11075 	reg = read_csr(dd, DCC_CFG_SC_VL_TABLE_15_0);
11076 	for (i = 0; i < sizeof(u64); i++) {
11077 		u8 byte = *(((u8 *)&reg) + i);
11078 
11079 		dp->vlnt[2 * i] = byte & 0xf;
11080 		dp->vlnt[(2 * i) + 1] = (byte & 0xf0) >> 4;
11081 	}
11082 
11083 	reg = read_csr(dd, DCC_CFG_SC_VL_TABLE_31_16);
11084 	for (i = 0; i < sizeof(u64); i++) {
11085 		u8 byte = *(((u8 *)&reg) + i);
11086 
11087 		dp->vlnt[16 + (2 * i)] = byte & 0xf;
11088 		dp->vlnt[16 + (2 * i) + 1] = (byte & 0xf0) >> 4;
11089 	}
11090 	return sizeof(struct sc2vlnt);
11091 }
11092 
11093 static void get_vlarb_preempt(struct hfi1_devdata *dd, u32 nelems,
11094 			      struct ib_vl_weight_elem *vl)
11095 {
11096 	unsigned int i;
11097 
11098 	for (i = 0; i < nelems; i++, vl++) {
11099 		vl->vl = 0xf;
11100 		vl->weight = 0;
11101 	}
11102 }
11103 
11104 static void set_sc2vlnt(struct hfi1_devdata *dd, struct sc2vlnt *dp)
11105 {
11106 	write_csr(dd, DCC_CFG_SC_VL_TABLE_15_0,
11107 		  DC_SC_VL_VAL(15_0,
11108 			       0, dp->vlnt[0] & 0xf,
11109 			       1, dp->vlnt[1] & 0xf,
11110 			       2, dp->vlnt[2] & 0xf,
11111 			       3, dp->vlnt[3] & 0xf,
11112 			       4, dp->vlnt[4] & 0xf,
11113 			       5, dp->vlnt[5] & 0xf,
11114 			       6, dp->vlnt[6] & 0xf,
11115 			       7, dp->vlnt[7] & 0xf,
11116 			       8, dp->vlnt[8] & 0xf,
11117 			       9, dp->vlnt[9] & 0xf,
11118 			       10, dp->vlnt[10] & 0xf,
11119 			       11, dp->vlnt[11] & 0xf,
11120 			       12, dp->vlnt[12] & 0xf,
11121 			       13, dp->vlnt[13] & 0xf,
11122 			       14, dp->vlnt[14] & 0xf,
11123 			       15, dp->vlnt[15] & 0xf));
11124 	write_csr(dd, DCC_CFG_SC_VL_TABLE_31_16,
11125 		  DC_SC_VL_VAL(31_16,
11126 			       16, dp->vlnt[16] & 0xf,
11127 			       17, dp->vlnt[17] & 0xf,
11128 			       18, dp->vlnt[18] & 0xf,
11129 			       19, dp->vlnt[19] & 0xf,
11130 			       20, dp->vlnt[20] & 0xf,
11131 			       21, dp->vlnt[21] & 0xf,
11132 			       22, dp->vlnt[22] & 0xf,
11133 			       23, dp->vlnt[23] & 0xf,
11134 			       24, dp->vlnt[24] & 0xf,
11135 			       25, dp->vlnt[25] & 0xf,
11136 			       26, dp->vlnt[26] & 0xf,
11137 			       27, dp->vlnt[27] & 0xf,
11138 			       28, dp->vlnt[28] & 0xf,
11139 			       29, dp->vlnt[29] & 0xf,
11140 			       30, dp->vlnt[30] & 0xf,
11141 			       31, dp->vlnt[31] & 0xf));
11142 }
11143 
11144 static void nonzero_msg(struct hfi1_devdata *dd, int idx, const char *what,
11145 			u16 limit)
11146 {
11147 	if (limit != 0)
11148 		dd_dev_info(dd, "Invalid %s limit %d on VL %d, ignoring\n",
11149 			    what, (int)limit, idx);
11150 }
11151 
11152 /* change only the shared limit portion of SendCmGLobalCredit */
11153 static void set_global_shared(struct hfi1_devdata *dd, u16 limit)
11154 {
11155 	u64 reg;
11156 
11157 	reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
11158 	reg &= ~SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SMASK;
11159 	reg |= (u64)limit << SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SHIFT;
11160 	write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg);
11161 }
11162 
11163 /* change only the total credit limit portion of SendCmGLobalCredit */
11164 static void set_global_limit(struct hfi1_devdata *dd, u16 limit)
11165 {
11166 	u64 reg;
11167 
11168 	reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
11169 	reg &= ~SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SMASK;
11170 	reg |= (u64)limit << SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT;
11171 	write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg);
11172 }
11173 
11174 /* set the given per-VL shared limit */
11175 static void set_vl_shared(struct hfi1_devdata *dd, int vl, u16 limit)
11176 {
11177 	u64 reg;
11178 	u32 addr;
11179 
11180 	if (vl < TXE_NUM_DATA_VL)
11181 		addr = SEND_CM_CREDIT_VL + (8 * vl);
11182 	else
11183 		addr = SEND_CM_CREDIT_VL15;
11184 
11185 	reg = read_csr(dd, addr);
11186 	reg &= ~SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SMASK;
11187 	reg |= (u64)limit << SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SHIFT;
11188 	write_csr(dd, addr, reg);
11189 }
11190 
11191 /* set the given per-VL dedicated limit */
11192 static void set_vl_dedicated(struct hfi1_devdata *dd, int vl, u16 limit)
11193 {
11194 	u64 reg;
11195 	u32 addr;
11196 
11197 	if (vl < TXE_NUM_DATA_VL)
11198 		addr = SEND_CM_CREDIT_VL + (8 * vl);
11199 	else
11200 		addr = SEND_CM_CREDIT_VL15;
11201 
11202 	reg = read_csr(dd, addr);
11203 	reg &= ~SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SMASK;
11204 	reg |= (u64)limit << SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SHIFT;
11205 	write_csr(dd, addr, reg);
11206 }
11207 
11208 /* spin until the given per-VL status mask bits clear */
11209 static void wait_for_vl_status_clear(struct hfi1_devdata *dd, u64 mask,
11210 				     const char *which)
11211 {
11212 	unsigned long timeout;
11213 	u64 reg;
11214 
11215 	timeout = jiffies + msecs_to_jiffies(VL_STATUS_CLEAR_TIMEOUT);
11216 	while (1) {
11217 		reg = read_csr(dd, SEND_CM_CREDIT_USED_STATUS) & mask;
11218 
11219 		if (reg == 0)
11220 			return;	/* success */
11221 		if (time_after(jiffies, timeout))
11222 			break;		/* timed out */
11223 		udelay(1);
11224 	}
11225 
11226 	dd_dev_err(dd,
11227 		   "%s credit change status not clearing after %dms, mask 0x%llx, not clear 0x%llx\n",
11228 		   which, VL_STATUS_CLEAR_TIMEOUT, mask, reg);
11229 	/*
11230 	 * If this occurs, it is likely there was a credit loss on the link.
11231 	 * The only recovery from that is a link bounce.
11232 	 */
11233 	dd_dev_err(dd,
11234 		   "Continuing anyway.  A credit loss may occur.  Suggest a link bounce\n");
11235 }
11236 
11237 /*
11238  * The number of credits on the VLs may be changed while everything
11239  * is "live", but the following algorithm must be followed due to
11240  * how the hardware is actually implemented.  In particular,
11241  * Return_Credit_Status[] is the only correct status check.
11242  *
11243  * if (reducing Global_Shared_Credit_Limit or any shared limit changing)
11244  *     set Global_Shared_Credit_Limit = 0
11245  *     use_all_vl = 1
11246  * mask0 = all VLs that are changing either dedicated or shared limits
11247  * set Shared_Limit[mask0] = 0
11248  * spin until Return_Credit_Status[use_all_vl ? all VL : mask0] == 0
11249  * if (changing any dedicated limit)
11250  *     mask1 = all VLs that are lowering dedicated limits
11251  *     lower Dedicated_Limit[mask1]
11252  *     spin until Return_Credit_Status[mask1] == 0
11253  *     raise Dedicated_Limits
11254  * raise Shared_Limits
11255  * raise Global_Shared_Credit_Limit
11256  *
11257  * lower = if the new limit is lower, set the limit to the new value
11258  * raise = if the new limit is higher than the current value (may be changed
11259  *	earlier in the algorithm), set the new limit to the new value
11260  */
11261 int set_buffer_control(struct hfi1_pportdata *ppd,
11262 		       struct buffer_control *new_bc)
11263 {
11264 	struct hfi1_devdata *dd = ppd->dd;
11265 	u64 changing_mask, ld_mask, stat_mask;
11266 	int change_count;
11267 	int i, use_all_mask;
11268 	int this_shared_changing;
11269 	int vl_count = 0, ret;
11270 	/*
11271 	 * A0: add the variable any_shared_limit_changing below and in the
11272 	 * algorithm above.  If removing A0 support, it can be removed.
11273 	 */
11274 	int any_shared_limit_changing;
11275 	struct buffer_control cur_bc;
11276 	u8 changing[OPA_MAX_VLS];
11277 	u8 lowering_dedicated[OPA_MAX_VLS];
11278 	u16 cur_total;
11279 	u32 new_total = 0;
11280 	const u64 all_mask =
11281 	SEND_CM_CREDIT_USED_STATUS_VL0_RETURN_CREDIT_STATUS_SMASK
11282 	 | SEND_CM_CREDIT_USED_STATUS_VL1_RETURN_CREDIT_STATUS_SMASK
11283 	 | SEND_CM_CREDIT_USED_STATUS_VL2_RETURN_CREDIT_STATUS_SMASK
11284 	 | SEND_CM_CREDIT_USED_STATUS_VL3_RETURN_CREDIT_STATUS_SMASK
11285 	 | SEND_CM_CREDIT_USED_STATUS_VL4_RETURN_CREDIT_STATUS_SMASK
11286 	 | SEND_CM_CREDIT_USED_STATUS_VL5_RETURN_CREDIT_STATUS_SMASK
11287 	 | SEND_CM_CREDIT_USED_STATUS_VL6_RETURN_CREDIT_STATUS_SMASK
11288 	 | SEND_CM_CREDIT_USED_STATUS_VL7_RETURN_CREDIT_STATUS_SMASK
11289 	 | SEND_CM_CREDIT_USED_STATUS_VL15_RETURN_CREDIT_STATUS_SMASK;
11290 
11291 #define valid_vl(idx) ((idx) < TXE_NUM_DATA_VL || (idx) == 15)
11292 #define NUM_USABLE_VLS 16	/* look at VL15 and less */
11293 
11294 	/* find the new total credits, do sanity check on unused VLs */
11295 	for (i = 0; i < OPA_MAX_VLS; i++) {
11296 		if (valid_vl(i)) {
11297 			new_total += be16_to_cpu(new_bc->vl[i].dedicated);
11298 			continue;
11299 		}
11300 		nonzero_msg(dd, i, "dedicated",
11301 			    be16_to_cpu(new_bc->vl[i].dedicated));
11302 		nonzero_msg(dd, i, "shared",
11303 			    be16_to_cpu(new_bc->vl[i].shared));
11304 		new_bc->vl[i].dedicated = 0;
11305 		new_bc->vl[i].shared = 0;
11306 	}
11307 	new_total += be16_to_cpu(new_bc->overall_shared_limit);
11308 
11309 	/* fetch the current values */
11310 	get_buffer_control(dd, &cur_bc, &cur_total);
11311 
11312 	/*
11313 	 * Create the masks we will use.
11314 	 */
11315 	memset(changing, 0, sizeof(changing));
11316 	memset(lowering_dedicated, 0, sizeof(lowering_dedicated));
11317 	/*
11318 	 * NOTE: Assumes that the individual VL bits are adjacent and in
11319 	 * increasing order
11320 	 */
11321 	stat_mask =
11322 		SEND_CM_CREDIT_USED_STATUS_VL0_RETURN_CREDIT_STATUS_SMASK;
11323 	changing_mask = 0;
11324 	ld_mask = 0;
11325 	change_count = 0;
11326 	any_shared_limit_changing = 0;
11327 	for (i = 0; i < NUM_USABLE_VLS; i++, stat_mask <<= 1) {
11328 		if (!valid_vl(i))
11329 			continue;
11330 		this_shared_changing = new_bc->vl[i].shared
11331 						!= cur_bc.vl[i].shared;
11332 		if (this_shared_changing)
11333 			any_shared_limit_changing = 1;
11334 		if (new_bc->vl[i].dedicated != cur_bc.vl[i].dedicated ||
11335 		    this_shared_changing) {
11336 			changing[i] = 1;
11337 			changing_mask |= stat_mask;
11338 			change_count++;
11339 		}
11340 		if (be16_to_cpu(new_bc->vl[i].dedicated) <
11341 					be16_to_cpu(cur_bc.vl[i].dedicated)) {
11342 			lowering_dedicated[i] = 1;
11343 			ld_mask |= stat_mask;
11344 		}
11345 	}
11346 
11347 	/* bracket the credit change with a total adjustment */
11348 	if (new_total > cur_total)
11349 		set_global_limit(dd, new_total);
11350 
11351 	/*
11352 	 * Start the credit change algorithm.
11353 	 */
11354 	use_all_mask = 0;
11355 	if ((be16_to_cpu(new_bc->overall_shared_limit) <
11356 	     be16_to_cpu(cur_bc.overall_shared_limit)) ||
11357 	    (is_ax(dd) && any_shared_limit_changing)) {
11358 		set_global_shared(dd, 0);
11359 		cur_bc.overall_shared_limit = 0;
11360 		use_all_mask = 1;
11361 	}
11362 
11363 	for (i = 0; i < NUM_USABLE_VLS; i++) {
11364 		if (!valid_vl(i))
11365 			continue;
11366 
11367 		if (changing[i]) {
11368 			set_vl_shared(dd, i, 0);
11369 			cur_bc.vl[i].shared = 0;
11370 		}
11371 	}
11372 
11373 	wait_for_vl_status_clear(dd, use_all_mask ? all_mask : changing_mask,
11374 				 "shared");
11375 
11376 	if (change_count > 0) {
11377 		for (i = 0; i < NUM_USABLE_VLS; i++) {
11378 			if (!valid_vl(i))
11379 				continue;
11380 
11381 			if (lowering_dedicated[i]) {
11382 				set_vl_dedicated(dd, i,
11383 						 be16_to_cpu(new_bc->
11384 							     vl[i].dedicated));
11385 				cur_bc.vl[i].dedicated =
11386 						new_bc->vl[i].dedicated;
11387 			}
11388 		}
11389 
11390 		wait_for_vl_status_clear(dd, ld_mask, "dedicated");
11391 
11392 		/* now raise all dedicated that are going up */
11393 		for (i = 0; i < NUM_USABLE_VLS; i++) {
11394 			if (!valid_vl(i))
11395 				continue;
11396 
11397 			if (be16_to_cpu(new_bc->vl[i].dedicated) >
11398 					be16_to_cpu(cur_bc.vl[i].dedicated))
11399 				set_vl_dedicated(dd, i,
11400 						 be16_to_cpu(new_bc->
11401 							     vl[i].dedicated));
11402 		}
11403 	}
11404 
11405 	/* next raise all shared that are going up */
11406 	for (i = 0; i < NUM_USABLE_VLS; i++) {
11407 		if (!valid_vl(i))
11408 			continue;
11409 
11410 		if (be16_to_cpu(new_bc->vl[i].shared) >
11411 				be16_to_cpu(cur_bc.vl[i].shared))
11412 			set_vl_shared(dd, i, be16_to_cpu(new_bc->vl[i].shared));
11413 	}
11414 
11415 	/* finally raise the global shared */
11416 	if (be16_to_cpu(new_bc->overall_shared_limit) >
11417 	    be16_to_cpu(cur_bc.overall_shared_limit))
11418 		set_global_shared(dd,
11419 				  be16_to_cpu(new_bc->overall_shared_limit));
11420 
11421 	/* bracket the credit change with a total adjustment */
11422 	if (new_total < cur_total)
11423 		set_global_limit(dd, new_total);
11424 
11425 	/*
11426 	 * Determine the actual number of operational VLS using the number of
11427 	 * dedicated and shared credits for each VL.
11428 	 */
11429 	if (change_count > 0) {
11430 		for (i = 0; i < TXE_NUM_DATA_VL; i++)
11431 			if (be16_to_cpu(new_bc->vl[i].dedicated) > 0 ||
11432 			    be16_to_cpu(new_bc->vl[i].shared) > 0)
11433 				vl_count++;
11434 		ppd->actual_vls_operational = vl_count;
11435 		ret = sdma_map_init(dd, ppd->port - 1, vl_count ?
11436 				    ppd->actual_vls_operational :
11437 				    ppd->vls_operational,
11438 				    NULL);
11439 		if (ret == 0)
11440 			ret = pio_map_init(dd, ppd->port - 1, vl_count ?
11441 					   ppd->actual_vls_operational :
11442 					   ppd->vls_operational, NULL);
11443 		if (ret)
11444 			return ret;
11445 	}
11446 	return 0;
11447 }
11448 
11449 /*
11450  * Read the given fabric manager table. Return the size of the
11451  * table (in bytes) on success, and a negative error code on
11452  * failure.
11453  */
11454 int fm_get_table(struct hfi1_pportdata *ppd, int which, void *t)
11455 
11456 {
11457 	int size;
11458 	struct vl_arb_cache *vlc;
11459 
11460 	switch (which) {
11461 	case FM_TBL_VL_HIGH_ARB:
11462 		size = 256;
11463 		/*
11464 		 * OPA specifies 128 elements (of 2 bytes each), though
11465 		 * HFI supports only 16 elements in h/w.
11466 		 */
11467 		vlc = vl_arb_lock_cache(ppd, HI_PRIO_TABLE);
11468 		vl_arb_get_cache(vlc, t);
11469 		vl_arb_unlock_cache(ppd, HI_PRIO_TABLE);
11470 		break;
11471 	case FM_TBL_VL_LOW_ARB:
11472 		size = 256;
11473 		/*
11474 		 * OPA specifies 128 elements (of 2 bytes each), though
11475 		 * HFI supports only 16 elements in h/w.
11476 		 */
11477 		vlc = vl_arb_lock_cache(ppd, LO_PRIO_TABLE);
11478 		vl_arb_get_cache(vlc, t);
11479 		vl_arb_unlock_cache(ppd, LO_PRIO_TABLE);
11480 		break;
11481 	case FM_TBL_BUFFER_CONTROL:
11482 		size = get_buffer_control(ppd->dd, t, NULL);
11483 		break;
11484 	case FM_TBL_SC2VLNT:
11485 		size = get_sc2vlnt(ppd->dd, t);
11486 		break;
11487 	case FM_TBL_VL_PREEMPT_ELEMS:
11488 		size = 256;
11489 		/* OPA specifies 128 elements, of 2 bytes each */
11490 		get_vlarb_preempt(ppd->dd, OPA_MAX_VLS, t);
11491 		break;
11492 	case FM_TBL_VL_PREEMPT_MATRIX:
11493 		size = 256;
11494 		/*
11495 		 * OPA specifies that this is the same size as the VL
11496 		 * arbitration tables (i.e., 256 bytes).
11497 		 */
11498 		break;
11499 	default:
11500 		return -EINVAL;
11501 	}
11502 	return size;
11503 }
11504 
11505 /*
11506  * Write the given fabric manager table.
11507  */
11508 int fm_set_table(struct hfi1_pportdata *ppd, int which, void *t)
11509 {
11510 	int ret = 0;
11511 	struct vl_arb_cache *vlc;
11512 
11513 	switch (which) {
11514 	case FM_TBL_VL_HIGH_ARB:
11515 		vlc = vl_arb_lock_cache(ppd, HI_PRIO_TABLE);
11516 		if (vl_arb_match_cache(vlc, t)) {
11517 			vl_arb_unlock_cache(ppd, HI_PRIO_TABLE);
11518 			break;
11519 		}
11520 		vl_arb_set_cache(vlc, t);
11521 		vl_arb_unlock_cache(ppd, HI_PRIO_TABLE);
11522 		ret = set_vl_weights(ppd, SEND_HIGH_PRIORITY_LIST,
11523 				     VL_ARB_HIGH_PRIO_TABLE_SIZE, t);
11524 		break;
11525 	case FM_TBL_VL_LOW_ARB:
11526 		vlc = vl_arb_lock_cache(ppd, LO_PRIO_TABLE);
11527 		if (vl_arb_match_cache(vlc, t)) {
11528 			vl_arb_unlock_cache(ppd, LO_PRIO_TABLE);
11529 			break;
11530 		}
11531 		vl_arb_set_cache(vlc, t);
11532 		vl_arb_unlock_cache(ppd, LO_PRIO_TABLE);
11533 		ret = set_vl_weights(ppd, SEND_LOW_PRIORITY_LIST,
11534 				     VL_ARB_LOW_PRIO_TABLE_SIZE, t);
11535 		break;
11536 	case FM_TBL_BUFFER_CONTROL:
11537 		ret = set_buffer_control(ppd, t);
11538 		break;
11539 	case FM_TBL_SC2VLNT:
11540 		set_sc2vlnt(ppd->dd, t);
11541 		break;
11542 	default:
11543 		ret = -EINVAL;
11544 	}
11545 	return ret;
11546 }
11547 
11548 /*
11549  * Disable all data VLs.
11550  *
11551  * Return 0 if disabled, non-zero if the VLs cannot be disabled.
11552  */
11553 static int disable_data_vls(struct hfi1_devdata *dd)
11554 {
11555 	if (is_ax(dd))
11556 		return 1;
11557 
11558 	pio_send_control(dd, PSC_DATA_VL_DISABLE);
11559 
11560 	return 0;
11561 }
11562 
11563 /*
11564  * open_fill_data_vls() - the counterpart to stop_drain_data_vls().
11565  * Just re-enables all data VLs (the "fill" part happens
11566  * automatically - the name was chosen for symmetry with
11567  * stop_drain_data_vls()).
11568  *
11569  * Return 0 if successful, non-zero if the VLs cannot be enabled.
11570  */
11571 int open_fill_data_vls(struct hfi1_devdata *dd)
11572 {
11573 	if (is_ax(dd))
11574 		return 1;
11575 
11576 	pio_send_control(dd, PSC_DATA_VL_ENABLE);
11577 
11578 	return 0;
11579 }
11580 
11581 /*
11582  * drain_data_vls() - assumes that disable_data_vls() has been called,
11583  * wait for occupancy (of per-VL FIFOs) for all contexts, and SDMA
11584  * engines to drop to 0.
11585  */
11586 static void drain_data_vls(struct hfi1_devdata *dd)
11587 {
11588 	sc_wait(dd);
11589 	sdma_wait(dd);
11590 	pause_for_credit_return(dd);
11591 }
11592 
11593 /*
11594  * stop_drain_data_vls() - disable, then drain all per-VL fifos.
11595  *
11596  * Use open_fill_data_vls() to resume using data VLs.  This pair is
11597  * meant to be used like this:
11598  *
11599  * stop_drain_data_vls(dd);
11600  * // do things with per-VL resources
11601  * open_fill_data_vls(dd);
11602  */
11603 int stop_drain_data_vls(struct hfi1_devdata *dd)
11604 {
11605 	int ret;
11606 
11607 	ret = disable_data_vls(dd);
11608 	if (ret == 0)
11609 		drain_data_vls(dd);
11610 
11611 	return ret;
11612 }
11613 
11614 /*
11615  * Convert a nanosecond time to a cclock count.  No matter how slow
11616  * the cclock, a non-zero ns will always have a non-zero result.
11617  */
11618 u32 ns_to_cclock(struct hfi1_devdata *dd, u32 ns)
11619 {
11620 	u32 cclocks;
11621 
11622 	if (dd->icode == ICODE_FPGA_EMULATION)
11623 		cclocks = (ns * 1000) / FPGA_CCLOCK_PS;
11624 	else  /* simulation pretends to be ASIC */
11625 		cclocks = (ns * 1000) / ASIC_CCLOCK_PS;
11626 	if (ns && !cclocks)	/* if ns nonzero, must be at least 1 */
11627 		cclocks = 1;
11628 	return cclocks;
11629 }
11630 
11631 /*
11632  * Convert a cclock count to nanoseconds. Not matter how slow
11633  * the cclock, a non-zero cclocks will always have a non-zero result.
11634  */
11635 u32 cclock_to_ns(struct hfi1_devdata *dd, u32 cclocks)
11636 {
11637 	u32 ns;
11638 
11639 	if (dd->icode == ICODE_FPGA_EMULATION)
11640 		ns = (cclocks * FPGA_CCLOCK_PS) / 1000;
11641 	else  /* simulation pretends to be ASIC */
11642 		ns = (cclocks * ASIC_CCLOCK_PS) / 1000;
11643 	if (cclocks && !ns)
11644 		ns = 1;
11645 	return ns;
11646 }
11647 
11648 /*
11649  * Dynamically adjust the receive interrupt timeout for a context based on
11650  * incoming packet rate.
11651  *
11652  * NOTE: Dynamic adjustment does not allow rcv_intr_count to be zero.
11653  */
11654 static void adjust_rcv_timeout(struct hfi1_ctxtdata *rcd, u32 npkts)
11655 {
11656 	struct hfi1_devdata *dd = rcd->dd;
11657 	u32 timeout = rcd->rcvavail_timeout;
11658 
11659 	/*
11660 	 * This algorithm doubles or halves the timeout depending on whether
11661 	 * the number of packets received in this interrupt were less than or
11662 	 * greater equal the interrupt count.
11663 	 *
11664 	 * The calculations below do not allow a steady state to be achieved.
11665 	 * Only at the endpoints it is possible to have an unchanging
11666 	 * timeout.
11667 	 */
11668 	if (npkts < rcv_intr_count) {
11669 		/*
11670 		 * Not enough packets arrived before the timeout, adjust
11671 		 * timeout downward.
11672 		 */
11673 		if (timeout < 2) /* already at minimum? */
11674 			return;
11675 		timeout >>= 1;
11676 	} else {
11677 		/*
11678 		 * More than enough packets arrived before the timeout, adjust
11679 		 * timeout upward.
11680 		 */
11681 		if (timeout >= dd->rcv_intr_timeout_csr) /* already at max? */
11682 			return;
11683 		timeout = min(timeout << 1, dd->rcv_intr_timeout_csr);
11684 	}
11685 
11686 	rcd->rcvavail_timeout = timeout;
11687 	/*
11688 	 * timeout cannot be larger than rcv_intr_timeout_csr which has already
11689 	 * been verified to be in range
11690 	 */
11691 	write_kctxt_csr(dd, rcd->ctxt, RCV_AVAIL_TIME_OUT,
11692 			(u64)timeout <<
11693 			RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_SHIFT);
11694 }
11695 
11696 void update_usrhead(struct hfi1_ctxtdata *rcd, u32 hd, u32 updegr, u32 egrhd,
11697 		    u32 intr_adjust, u32 npkts)
11698 {
11699 	struct hfi1_devdata *dd = rcd->dd;
11700 	u64 reg;
11701 	u32 ctxt = rcd->ctxt;
11702 
11703 	/*
11704 	 * Need to write timeout register before updating RcvHdrHead to ensure
11705 	 * that a new value is used when the HW decides to restart counting.
11706 	 */
11707 	if (intr_adjust)
11708 		adjust_rcv_timeout(rcd, npkts);
11709 	if (updegr) {
11710 		reg = (egrhd & RCV_EGR_INDEX_HEAD_HEAD_MASK)
11711 			<< RCV_EGR_INDEX_HEAD_HEAD_SHIFT;
11712 		write_uctxt_csr(dd, ctxt, RCV_EGR_INDEX_HEAD, reg);
11713 	}
11714 	mmiowb();
11715 	reg = ((u64)rcv_intr_count << RCV_HDR_HEAD_COUNTER_SHIFT) |
11716 		(((u64)hd & RCV_HDR_HEAD_HEAD_MASK)
11717 			<< RCV_HDR_HEAD_HEAD_SHIFT);
11718 	write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, reg);
11719 	mmiowb();
11720 }
11721 
11722 u32 hdrqempty(struct hfi1_ctxtdata *rcd)
11723 {
11724 	u32 head, tail;
11725 
11726 	head = (read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_HEAD)
11727 		& RCV_HDR_HEAD_HEAD_SMASK) >> RCV_HDR_HEAD_HEAD_SHIFT;
11728 
11729 	if (rcd->rcvhdrtail_kvaddr)
11730 		tail = get_rcvhdrtail(rcd);
11731 	else
11732 		tail = read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_TAIL);
11733 
11734 	return head == tail;
11735 }
11736 
11737 /*
11738  * Context Control and Receive Array encoding for buffer size:
11739  *	0x0 invalid
11740  *	0x1   4 KB
11741  *	0x2   8 KB
11742  *	0x3  16 KB
11743  *	0x4  32 KB
11744  *	0x5  64 KB
11745  *	0x6 128 KB
11746  *	0x7 256 KB
11747  *	0x8 512 KB (Receive Array only)
11748  *	0x9   1 MB (Receive Array only)
11749  *	0xa   2 MB (Receive Array only)
11750  *
11751  *	0xB-0xF - reserved (Receive Array only)
11752  *
11753  *
11754  * This routine assumes that the value has already been sanity checked.
11755  */
11756 static u32 encoded_size(u32 size)
11757 {
11758 	switch (size) {
11759 	case   4 * 1024: return 0x1;
11760 	case   8 * 1024: return 0x2;
11761 	case  16 * 1024: return 0x3;
11762 	case  32 * 1024: return 0x4;
11763 	case  64 * 1024: return 0x5;
11764 	case 128 * 1024: return 0x6;
11765 	case 256 * 1024: return 0x7;
11766 	case 512 * 1024: return 0x8;
11767 	case   1 * 1024 * 1024: return 0x9;
11768 	case   2 * 1024 * 1024: return 0xa;
11769 	}
11770 	return 0x1;	/* if invalid, go with the minimum size */
11771 }
11772 
11773 void hfi1_rcvctrl(struct hfi1_devdata *dd, unsigned int op,
11774 		  struct hfi1_ctxtdata *rcd)
11775 {
11776 	u64 rcvctrl, reg;
11777 	int did_enable = 0;
11778 	u16 ctxt;
11779 
11780 	if (!rcd)
11781 		return;
11782 
11783 	ctxt = rcd->ctxt;
11784 
11785 	hfi1_cdbg(RCVCTRL, "ctxt %d op 0x%x", ctxt, op);
11786 
11787 	rcvctrl = read_kctxt_csr(dd, ctxt, RCV_CTXT_CTRL);
11788 	/* if the context already enabled, don't do the extra steps */
11789 	if ((op & HFI1_RCVCTRL_CTXT_ENB) &&
11790 	    !(rcvctrl & RCV_CTXT_CTRL_ENABLE_SMASK)) {
11791 		/* reset the tail and hdr addresses, and sequence count */
11792 		write_kctxt_csr(dd, ctxt, RCV_HDR_ADDR,
11793 				rcd->rcvhdrq_dma);
11794 		if (HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL))
11795 			write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR,
11796 					rcd->rcvhdrqtailaddr_dma);
11797 		rcd->seq_cnt = 1;
11798 
11799 		/* reset the cached receive header queue head value */
11800 		rcd->head = 0;
11801 
11802 		/*
11803 		 * Zero the receive header queue so we don't get false
11804 		 * positives when checking the sequence number.  The
11805 		 * sequence numbers could land exactly on the same spot.
11806 		 * E.g. a rcd restart before the receive header wrapped.
11807 		 */
11808 		memset(rcd->rcvhdrq, 0, rcd->rcvhdrq_size);
11809 
11810 		/* starting timeout */
11811 		rcd->rcvavail_timeout = dd->rcv_intr_timeout_csr;
11812 
11813 		/* enable the context */
11814 		rcvctrl |= RCV_CTXT_CTRL_ENABLE_SMASK;
11815 
11816 		/* clean the egr buffer size first */
11817 		rcvctrl &= ~RCV_CTXT_CTRL_EGR_BUF_SIZE_SMASK;
11818 		rcvctrl |= ((u64)encoded_size(rcd->egrbufs.rcvtid_size)
11819 				& RCV_CTXT_CTRL_EGR_BUF_SIZE_MASK)
11820 					<< RCV_CTXT_CTRL_EGR_BUF_SIZE_SHIFT;
11821 
11822 		/* zero RcvHdrHead - set RcvHdrHead.Counter after enable */
11823 		write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0);
11824 		did_enable = 1;
11825 
11826 		/* zero RcvEgrIndexHead */
11827 		write_uctxt_csr(dd, ctxt, RCV_EGR_INDEX_HEAD, 0);
11828 
11829 		/* set eager count and base index */
11830 		reg = (((u64)(rcd->egrbufs.alloced >> RCV_SHIFT)
11831 			& RCV_EGR_CTRL_EGR_CNT_MASK)
11832 		       << RCV_EGR_CTRL_EGR_CNT_SHIFT) |
11833 			(((rcd->eager_base >> RCV_SHIFT)
11834 			  & RCV_EGR_CTRL_EGR_BASE_INDEX_MASK)
11835 			 << RCV_EGR_CTRL_EGR_BASE_INDEX_SHIFT);
11836 		write_kctxt_csr(dd, ctxt, RCV_EGR_CTRL, reg);
11837 
11838 		/*
11839 		 * Set TID (expected) count and base index.
11840 		 * rcd->expected_count is set to individual RcvArray entries,
11841 		 * not pairs, and the CSR takes a pair-count in groups of
11842 		 * four, so divide by 8.
11843 		 */
11844 		reg = (((rcd->expected_count >> RCV_SHIFT)
11845 					& RCV_TID_CTRL_TID_PAIR_CNT_MASK)
11846 				<< RCV_TID_CTRL_TID_PAIR_CNT_SHIFT) |
11847 		      (((rcd->expected_base >> RCV_SHIFT)
11848 					& RCV_TID_CTRL_TID_BASE_INDEX_MASK)
11849 				<< RCV_TID_CTRL_TID_BASE_INDEX_SHIFT);
11850 		write_kctxt_csr(dd, ctxt, RCV_TID_CTRL, reg);
11851 		if (ctxt == HFI1_CTRL_CTXT)
11852 			write_csr(dd, RCV_VL15, HFI1_CTRL_CTXT);
11853 	}
11854 	if (op & HFI1_RCVCTRL_CTXT_DIS) {
11855 		write_csr(dd, RCV_VL15, 0);
11856 		/*
11857 		 * When receive context is being disabled turn on tail
11858 		 * update with a dummy tail address and then disable
11859 		 * receive context.
11860 		 */
11861 		if (dd->rcvhdrtail_dummy_dma) {
11862 			write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR,
11863 					dd->rcvhdrtail_dummy_dma);
11864 			/* Enabling RcvCtxtCtrl.TailUpd is intentional. */
11865 			rcvctrl |= RCV_CTXT_CTRL_TAIL_UPD_SMASK;
11866 		}
11867 
11868 		rcvctrl &= ~RCV_CTXT_CTRL_ENABLE_SMASK;
11869 	}
11870 	if (op & HFI1_RCVCTRL_INTRAVAIL_ENB)
11871 		rcvctrl |= RCV_CTXT_CTRL_INTR_AVAIL_SMASK;
11872 	if (op & HFI1_RCVCTRL_INTRAVAIL_DIS)
11873 		rcvctrl &= ~RCV_CTXT_CTRL_INTR_AVAIL_SMASK;
11874 	if (op & HFI1_RCVCTRL_TAILUPD_ENB && rcd->rcvhdrqtailaddr_dma)
11875 		rcvctrl |= RCV_CTXT_CTRL_TAIL_UPD_SMASK;
11876 	if (op & HFI1_RCVCTRL_TAILUPD_DIS) {
11877 		/* See comment on RcvCtxtCtrl.TailUpd above */
11878 		if (!(op & HFI1_RCVCTRL_CTXT_DIS))
11879 			rcvctrl &= ~RCV_CTXT_CTRL_TAIL_UPD_SMASK;
11880 	}
11881 	if (op & HFI1_RCVCTRL_TIDFLOW_ENB)
11882 		rcvctrl |= RCV_CTXT_CTRL_TID_FLOW_ENABLE_SMASK;
11883 	if (op & HFI1_RCVCTRL_TIDFLOW_DIS)
11884 		rcvctrl &= ~RCV_CTXT_CTRL_TID_FLOW_ENABLE_SMASK;
11885 	if (op & HFI1_RCVCTRL_ONE_PKT_EGR_ENB) {
11886 		/*
11887 		 * In one-packet-per-eager mode, the size comes from
11888 		 * the RcvArray entry.
11889 		 */
11890 		rcvctrl &= ~RCV_CTXT_CTRL_EGR_BUF_SIZE_SMASK;
11891 		rcvctrl |= RCV_CTXT_CTRL_ONE_PACKET_PER_EGR_BUFFER_SMASK;
11892 	}
11893 	if (op & HFI1_RCVCTRL_ONE_PKT_EGR_DIS)
11894 		rcvctrl &= ~RCV_CTXT_CTRL_ONE_PACKET_PER_EGR_BUFFER_SMASK;
11895 	if (op & HFI1_RCVCTRL_NO_RHQ_DROP_ENB)
11896 		rcvctrl |= RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK;
11897 	if (op & HFI1_RCVCTRL_NO_RHQ_DROP_DIS)
11898 		rcvctrl &= ~RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK;
11899 	if (op & HFI1_RCVCTRL_NO_EGR_DROP_ENB)
11900 		rcvctrl |= RCV_CTXT_CTRL_DONT_DROP_EGR_FULL_SMASK;
11901 	if (op & HFI1_RCVCTRL_NO_EGR_DROP_DIS)
11902 		rcvctrl &= ~RCV_CTXT_CTRL_DONT_DROP_EGR_FULL_SMASK;
11903 	rcd->rcvctrl = rcvctrl;
11904 	hfi1_cdbg(RCVCTRL, "ctxt %d rcvctrl 0x%llx\n", ctxt, rcvctrl);
11905 	write_kctxt_csr(dd, ctxt, RCV_CTXT_CTRL, rcd->rcvctrl);
11906 
11907 	/* work around sticky RcvCtxtStatus.BlockedRHQFull */
11908 	if (did_enable &&
11909 	    (rcvctrl & RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK)) {
11910 		reg = read_kctxt_csr(dd, ctxt, RCV_CTXT_STATUS);
11911 		if (reg != 0) {
11912 			dd_dev_info(dd, "ctxt %d status %lld (blocked)\n",
11913 				    ctxt, reg);
11914 			read_uctxt_csr(dd, ctxt, RCV_HDR_HEAD);
11915 			write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0x10);
11916 			write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0x00);
11917 			read_uctxt_csr(dd, ctxt, RCV_HDR_HEAD);
11918 			reg = read_kctxt_csr(dd, ctxt, RCV_CTXT_STATUS);
11919 			dd_dev_info(dd, "ctxt %d status %lld (%s blocked)\n",
11920 				    ctxt, reg, reg == 0 ? "not" : "still");
11921 		}
11922 	}
11923 
11924 	if (did_enable) {
11925 		/*
11926 		 * The interrupt timeout and count must be set after
11927 		 * the context is enabled to take effect.
11928 		 */
11929 		/* set interrupt timeout */
11930 		write_kctxt_csr(dd, ctxt, RCV_AVAIL_TIME_OUT,
11931 				(u64)rcd->rcvavail_timeout <<
11932 				RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_SHIFT);
11933 
11934 		/* set RcvHdrHead.Counter, zero RcvHdrHead.Head (again) */
11935 		reg = (u64)rcv_intr_count << RCV_HDR_HEAD_COUNTER_SHIFT;
11936 		write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, reg);
11937 	}
11938 
11939 	if (op & (HFI1_RCVCTRL_TAILUPD_DIS | HFI1_RCVCTRL_CTXT_DIS))
11940 		/*
11941 		 * If the context has been disabled and the Tail Update has
11942 		 * been cleared, set the RCV_HDR_TAIL_ADDR CSR to dummy address
11943 		 * so it doesn't contain an address that is invalid.
11944 		 */
11945 		write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR,
11946 				dd->rcvhdrtail_dummy_dma);
11947 }
11948 
11949 u32 hfi1_read_cntrs(struct hfi1_devdata *dd, char **namep, u64 **cntrp)
11950 {
11951 	int ret;
11952 	u64 val = 0;
11953 
11954 	if (namep) {
11955 		ret = dd->cntrnameslen;
11956 		*namep = dd->cntrnames;
11957 	} else {
11958 		const struct cntr_entry *entry;
11959 		int i, j;
11960 
11961 		ret = (dd->ndevcntrs) * sizeof(u64);
11962 
11963 		/* Get the start of the block of counters */
11964 		*cntrp = dd->cntrs;
11965 
11966 		/*
11967 		 * Now go and fill in each counter in the block.
11968 		 */
11969 		for (i = 0; i < DEV_CNTR_LAST; i++) {
11970 			entry = &dev_cntrs[i];
11971 			hfi1_cdbg(CNTR, "reading %s", entry->name);
11972 			if (entry->flags & CNTR_DISABLED) {
11973 				/* Nothing */
11974 				hfi1_cdbg(CNTR, "\tDisabled\n");
11975 			} else {
11976 				if (entry->flags & CNTR_VL) {
11977 					hfi1_cdbg(CNTR, "\tPer VL\n");
11978 					for (j = 0; j < C_VL_COUNT; j++) {
11979 						val = entry->rw_cntr(entry,
11980 								  dd, j,
11981 								  CNTR_MODE_R,
11982 								  0);
11983 						hfi1_cdbg(
11984 						   CNTR,
11985 						   "\t\tRead 0x%llx for %d\n",
11986 						   val, j);
11987 						dd->cntrs[entry->offset + j] =
11988 									    val;
11989 					}
11990 				} else if (entry->flags & CNTR_SDMA) {
11991 					hfi1_cdbg(CNTR,
11992 						  "\t Per SDMA Engine\n");
11993 					for (j = 0; j < dd->chip_sdma_engines;
11994 					     j++) {
11995 						val =
11996 						entry->rw_cntr(entry, dd, j,
11997 							       CNTR_MODE_R, 0);
11998 						hfi1_cdbg(CNTR,
11999 							  "\t\tRead 0x%llx for %d\n",
12000 							  val, j);
12001 						dd->cntrs[entry->offset + j] =
12002 									val;
12003 					}
12004 				} else {
12005 					val = entry->rw_cntr(entry, dd,
12006 							CNTR_INVALID_VL,
12007 							CNTR_MODE_R, 0);
12008 					dd->cntrs[entry->offset] = val;
12009 					hfi1_cdbg(CNTR, "\tRead 0x%llx", val);
12010 				}
12011 			}
12012 		}
12013 	}
12014 	return ret;
12015 }
12016 
12017 /*
12018  * Used by sysfs to create files for hfi stats to read
12019  */
12020 u32 hfi1_read_portcntrs(struct hfi1_pportdata *ppd, char **namep, u64 **cntrp)
12021 {
12022 	int ret;
12023 	u64 val = 0;
12024 
12025 	if (namep) {
12026 		ret = ppd->dd->portcntrnameslen;
12027 		*namep = ppd->dd->portcntrnames;
12028 	} else {
12029 		const struct cntr_entry *entry;
12030 		int i, j;
12031 
12032 		ret = ppd->dd->nportcntrs * sizeof(u64);
12033 		*cntrp = ppd->cntrs;
12034 
12035 		for (i = 0; i < PORT_CNTR_LAST; i++) {
12036 			entry = &port_cntrs[i];
12037 			hfi1_cdbg(CNTR, "reading %s", entry->name);
12038 			if (entry->flags & CNTR_DISABLED) {
12039 				/* Nothing */
12040 				hfi1_cdbg(CNTR, "\tDisabled\n");
12041 				continue;
12042 			}
12043 
12044 			if (entry->flags & CNTR_VL) {
12045 				hfi1_cdbg(CNTR, "\tPer VL");
12046 				for (j = 0; j < C_VL_COUNT; j++) {
12047 					val = entry->rw_cntr(entry, ppd, j,
12048 							       CNTR_MODE_R,
12049 							       0);
12050 					hfi1_cdbg(
12051 					   CNTR,
12052 					   "\t\tRead 0x%llx for %d",
12053 					   val, j);
12054 					ppd->cntrs[entry->offset + j] = val;
12055 				}
12056 			} else {
12057 				val = entry->rw_cntr(entry, ppd,
12058 						       CNTR_INVALID_VL,
12059 						       CNTR_MODE_R,
12060 						       0);
12061 				ppd->cntrs[entry->offset] = val;
12062 				hfi1_cdbg(CNTR, "\tRead 0x%llx", val);
12063 			}
12064 		}
12065 	}
12066 	return ret;
12067 }
12068 
12069 static void free_cntrs(struct hfi1_devdata *dd)
12070 {
12071 	struct hfi1_pportdata *ppd;
12072 	int i;
12073 
12074 	if (dd->synth_stats_timer.function)
12075 		del_timer_sync(&dd->synth_stats_timer);
12076 	ppd = (struct hfi1_pportdata *)(dd + 1);
12077 	for (i = 0; i < dd->num_pports; i++, ppd++) {
12078 		kfree(ppd->cntrs);
12079 		kfree(ppd->scntrs);
12080 		free_percpu(ppd->ibport_data.rvp.rc_acks);
12081 		free_percpu(ppd->ibport_data.rvp.rc_qacks);
12082 		free_percpu(ppd->ibport_data.rvp.rc_delayed_comp);
12083 		ppd->cntrs = NULL;
12084 		ppd->scntrs = NULL;
12085 		ppd->ibport_data.rvp.rc_acks = NULL;
12086 		ppd->ibport_data.rvp.rc_qacks = NULL;
12087 		ppd->ibport_data.rvp.rc_delayed_comp = NULL;
12088 	}
12089 	kfree(dd->portcntrnames);
12090 	dd->portcntrnames = NULL;
12091 	kfree(dd->cntrs);
12092 	dd->cntrs = NULL;
12093 	kfree(dd->scntrs);
12094 	dd->scntrs = NULL;
12095 	kfree(dd->cntrnames);
12096 	dd->cntrnames = NULL;
12097 	if (dd->update_cntr_wq) {
12098 		destroy_workqueue(dd->update_cntr_wq);
12099 		dd->update_cntr_wq = NULL;
12100 	}
12101 }
12102 
12103 static u64 read_dev_port_cntr(struct hfi1_devdata *dd, struct cntr_entry *entry,
12104 			      u64 *psval, void *context, int vl)
12105 {
12106 	u64 val;
12107 	u64 sval = *psval;
12108 
12109 	if (entry->flags & CNTR_DISABLED) {
12110 		dd_dev_err(dd, "Counter %s not enabled", entry->name);
12111 		return 0;
12112 	}
12113 
12114 	hfi1_cdbg(CNTR, "cntr: %s vl %d psval 0x%llx", entry->name, vl, *psval);
12115 
12116 	val = entry->rw_cntr(entry, context, vl, CNTR_MODE_R, 0);
12117 
12118 	/* If its a synthetic counter there is more work we need to do */
12119 	if (entry->flags & CNTR_SYNTH) {
12120 		if (sval == CNTR_MAX) {
12121 			/* No need to read already saturated */
12122 			return CNTR_MAX;
12123 		}
12124 
12125 		if (entry->flags & CNTR_32BIT) {
12126 			/* 32bit counters can wrap multiple times */
12127 			u64 upper = sval >> 32;
12128 			u64 lower = (sval << 32) >> 32;
12129 
12130 			if (lower > val) { /* hw wrapped */
12131 				if (upper == CNTR_32BIT_MAX)
12132 					val = CNTR_MAX;
12133 				else
12134 					upper++;
12135 			}
12136 
12137 			if (val != CNTR_MAX)
12138 				val = (upper << 32) | val;
12139 
12140 		} else {
12141 			/* If we rolled we are saturated */
12142 			if ((val < sval) || (val > CNTR_MAX))
12143 				val = CNTR_MAX;
12144 		}
12145 	}
12146 
12147 	*psval = val;
12148 
12149 	hfi1_cdbg(CNTR, "\tNew val=0x%llx", val);
12150 
12151 	return val;
12152 }
12153 
12154 static u64 write_dev_port_cntr(struct hfi1_devdata *dd,
12155 			       struct cntr_entry *entry,
12156 			       u64 *psval, void *context, int vl, u64 data)
12157 {
12158 	u64 val;
12159 
12160 	if (entry->flags & CNTR_DISABLED) {
12161 		dd_dev_err(dd, "Counter %s not enabled", entry->name);
12162 		return 0;
12163 	}
12164 
12165 	hfi1_cdbg(CNTR, "cntr: %s vl %d psval 0x%llx", entry->name, vl, *psval);
12166 
12167 	if (entry->flags & CNTR_SYNTH) {
12168 		*psval = data;
12169 		if (entry->flags & CNTR_32BIT) {
12170 			val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W,
12171 					     (data << 32) >> 32);
12172 			val = data; /* return the full 64bit value */
12173 		} else {
12174 			val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W,
12175 					     data);
12176 		}
12177 	} else {
12178 		val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W, data);
12179 	}
12180 
12181 	*psval = val;
12182 
12183 	hfi1_cdbg(CNTR, "\tNew val=0x%llx", val);
12184 
12185 	return val;
12186 }
12187 
12188 u64 read_dev_cntr(struct hfi1_devdata *dd, int index, int vl)
12189 {
12190 	struct cntr_entry *entry;
12191 	u64 *sval;
12192 
12193 	entry = &dev_cntrs[index];
12194 	sval = dd->scntrs + entry->offset;
12195 
12196 	if (vl != CNTR_INVALID_VL)
12197 		sval += vl;
12198 
12199 	return read_dev_port_cntr(dd, entry, sval, dd, vl);
12200 }
12201 
12202 u64 write_dev_cntr(struct hfi1_devdata *dd, int index, int vl, u64 data)
12203 {
12204 	struct cntr_entry *entry;
12205 	u64 *sval;
12206 
12207 	entry = &dev_cntrs[index];
12208 	sval = dd->scntrs + entry->offset;
12209 
12210 	if (vl != CNTR_INVALID_VL)
12211 		sval += vl;
12212 
12213 	return write_dev_port_cntr(dd, entry, sval, dd, vl, data);
12214 }
12215 
12216 u64 read_port_cntr(struct hfi1_pportdata *ppd, int index, int vl)
12217 {
12218 	struct cntr_entry *entry;
12219 	u64 *sval;
12220 
12221 	entry = &port_cntrs[index];
12222 	sval = ppd->scntrs + entry->offset;
12223 
12224 	if (vl != CNTR_INVALID_VL)
12225 		sval += vl;
12226 
12227 	if ((index >= C_RCV_HDR_OVF_FIRST + ppd->dd->num_rcv_contexts) &&
12228 	    (index <= C_RCV_HDR_OVF_LAST)) {
12229 		/* We do not want to bother for disabled contexts */
12230 		return 0;
12231 	}
12232 
12233 	return read_dev_port_cntr(ppd->dd, entry, sval, ppd, vl);
12234 }
12235 
12236 u64 write_port_cntr(struct hfi1_pportdata *ppd, int index, int vl, u64 data)
12237 {
12238 	struct cntr_entry *entry;
12239 	u64 *sval;
12240 
12241 	entry = &port_cntrs[index];
12242 	sval = ppd->scntrs + entry->offset;
12243 
12244 	if (vl != CNTR_INVALID_VL)
12245 		sval += vl;
12246 
12247 	if ((index >= C_RCV_HDR_OVF_FIRST + ppd->dd->num_rcv_contexts) &&
12248 	    (index <= C_RCV_HDR_OVF_LAST)) {
12249 		/* We do not want to bother for disabled contexts */
12250 		return 0;
12251 	}
12252 
12253 	return write_dev_port_cntr(ppd->dd, entry, sval, ppd, vl, data);
12254 }
12255 
12256 static void do_update_synth_timer(struct work_struct *work)
12257 {
12258 	u64 cur_tx;
12259 	u64 cur_rx;
12260 	u64 total_flits;
12261 	u8 update = 0;
12262 	int i, j, vl;
12263 	struct hfi1_pportdata *ppd;
12264 	struct cntr_entry *entry;
12265 	struct hfi1_devdata *dd = container_of(work, struct hfi1_devdata,
12266 					       update_cntr_work);
12267 
12268 	/*
12269 	 * Rather than keep beating on the CSRs pick a minimal set that we can
12270 	 * check to watch for potential roll over. We can do this by looking at
12271 	 * the number of flits sent/recv. If the total flits exceeds 32bits then
12272 	 * we have to iterate all the counters and update.
12273 	 */
12274 	entry = &dev_cntrs[C_DC_RCV_FLITS];
12275 	cur_rx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL, CNTR_MODE_R, 0);
12276 
12277 	entry = &dev_cntrs[C_DC_XMIT_FLITS];
12278 	cur_tx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL, CNTR_MODE_R, 0);
12279 
12280 	hfi1_cdbg(
12281 	    CNTR,
12282 	    "[%d] curr tx=0x%llx rx=0x%llx :: last tx=0x%llx rx=0x%llx\n",
12283 	    dd->unit, cur_tx, cur_rx, dd->last_tx, dd->last_rx);
12284 
12285 	if ((cur_tx < dd->last_tx) || (cur_rx < dd->last_rx)) {
12286 		/*
12287 		 * May not be strictly necessary to update but it won't hurt and
12288 		 * simplifies the logic here.
12289 		 */
12290 		update = 1;
12291 		hfi1_cdbg(CNTR, "[%d] Tripwire counter rolled, updating",
12292 			  dd->unit);
12293 	} else {
12294 		total_flits = (cur_tx - dd->last_tx) + (cur_rx - dd->last_rx);
12295 		hfi1_cdbg(CNTR,
12296 			  "[%d] total flits 0x%llx limit 0x%llx\n", dd->unit,
12297 			  total_flits, (u64)CNTR_32BIT_MAX);
12298 		if (total_flits >= CNTR_32BIT_MAX) {
12299 			hfi1_cdbg(CNTR, "[%d] 32bit limit hit, updating",
12300 				  dd->unit);
12301 			update = 1;
12302 		}
12303 	}
12304 
12305 	if (update) {
12306 		hfi1_cdbg(CNTR, "[%d] Updating dd and ppd counters", dd->unit);
12307 		for (i = 0; i < DEV_CNTR_LAST; i++) {
12308 			entry = &dev_cntrs[i];
12309 			if (entry->flags & CNTR_VL) {
12310 				for (vl = 0; vl < C_VL_COUNT; vl++)
12311 					read_dev_cntr(dd, i, vl);
12312 			} else {
12313 				read_dev_cntr(dd, i, CNTR_INVALID_VL);
12314 			}
12315 		}
12316 		ppd = (struct hfi1_pportdata *)(dd + 1);
12317 		for (i = 0; i < dd->num_pports; i++, ppd++) {
12318 			for (j = 0; j < PORT_CNTR_LAST; j++) {
12319 				entry = &port_cntrs[j];
12320 				if (entry->flags & CNTR_VL) {
12321 					for (vl = 0; vl < C_VL_COUNT; vl++)
12322 						read_port_cntr(ppd, j, vl);
12323 				} else {
12324 					read_port_cntr(ppd, j, CNTR_INVALID_VL);
12325 				}
12326 			}
12327 		}
12328 
12329 		/*
12330 		 * We want the value in the register. The goal is to keep track
12331 		 * of the number of "ticks" not the counter value. In other
12332 		 * words if the register rolls we want to notice it and go ahead
12333 		 * and force an update.
12334 		 */
12335 		entry = &dev_cntrs[C_DC_XMIT_FLITS];
12336 		dd->last_tx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL,
12337 						CNTR_MODE_R, 0);
12338 
12339 		entry = &dev_cntrs[C_DC_RCV_FLITS];
12340 		dd->last_rx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL,
12341 						CNTR_MODE_R, 0);
12342 
12343 		hfi1_cdbg(CNTR, "[%d] setting last tx/rx to 0x%llx 0x%llx",
12344 			  dd->unit, dd->last_tx, dd->last_rx);
12345 
12346 	} else {
12347 		hfi1_cdbg(CNTR, "[%d] No update necessary", dd->unit);
12348 	}
12349 }
12350 
12351 static void update_synth_timer(struct timer_list *t)
12352 {
12353 	struct hfi1_devdata *dd = from_timer(dd, t, synth_stats_timer);
12354 
12355 	queue_work(dd->update_cntr_wq, &dd->update_cntr_work);
12356 	mod_timer(&dd->synth_stats_timer, jiffies + HZ * SYNTH_CNT_TIME);
12357 }
12358 
12359 #define C_MAX_NAME 16 /* 15 chars + one for /0 */
12360 static int init_cntrs(struct hfi1_devdata *dd)
12361 {
12362 	int i, rcv_ctxts, j;
12363 	size_t sz;
12364 	char *p;
12365 	char name[C_MAX_NAME];
12366 	struct hfi1_pportdata *ppd;
12367 	const char *bit_type_32 = ",32";
12368 	const int bit_type_32_sz = strlen(bit_type_32);
12369 
12370 	/* set up the stats timer; the add_timer is done at the end */
12371 	timer_setup(&dd->synth_stats_timer, update_synth_timer, 0);
12372 
12373 	/***********************/
12374 	/* per device counters */
12375 	/***********************/
12376 
12377 	/* size names and determine how many we have*/
12378 	dd->ndevcntrs = 0;
12379 	sz = 0;
12380 
12381 	for (i = 0; i < DEV_CNTR_LAST; i++) {
12382 		if (dev_cntrs[i].flags & CNTR_DISABLED) {
12383 			hfi1_dbg_early("\tSkipping %s\n", dev_cntrs[i].name);
12384 			continue;
12385 		}
12386 
12387 		if (dev_cntrs[i].flags & CNTR_VL) {
12388 			dev_cntrs[i].offset = dd->ndevcntrs;
12389 			for (j = 0; j < C_VL_COUNT; j++) {
12390 				snprintf(name, C_MAX_NAME, "%s%d",
12391 					 dev_cntrs[i].name, vl_from_idx(j));
12392 				sz += strlen(name);
12393 				/* Add ",32" for 32-bit counters */
12394 				if (dev_cntrs[i].flags & CNTR_32BIT)
12395 					sz += bit_type_32_sz;
12396 				sz++;
12397 				dd->ndevcntrs++;
12398 			}
12399 		} else if (dev_cntrs[i].flags & CNTR_SDMA) {
12400 			dev_cntrs[i].offset = dd->ndevcntrs;
12401 			for (j = 0; j < dd->chip_sdma_engines; j++) {
12402 				snprintf(name, C_MAX_NAME, "%s%d",
12403 					 dev_cntrs[i].name, j);
12404 				sz += strlen(name);
12405 				/* Add ",32" for 32-bit counters */
12406 				if (dev_cntrs[i].flags & CNTR_32BIT)
12407 					sz += bit_type_32_sz;
12408 				sz++;
12409 				dd->ndevcntrs++;
12410 			}
12411 		} else {
12412 			/* +1 for newline. */
12413 			sz += strlen(dev_cntrs[i].name) + 1;
12414 			/* Add ",32" for 32-bit counters */
12415 			if (dev_cntrs[i].flags & CNTR_32BIT)
12416 				sz += bit_type_32_sz;
12417 			dev_cntrs[i].offset = dd->ndevcntrs;
12418 			dd->ndevcntrs++;
12419 		}
12420 	}
12421 
12422 	/* allocate space for the counter values */
12423 	dd->cntrs = kcalloc(dd->ndevcntrs, sizeof(u64), GFP_KERNEL);
12424 	if (!dd->cntrs)
12425 		goto bail;
12426 
12427 	dd->scntrs = kcalloc(dd->ndevcntrs, sizeof(u64), GFP_KERNEL);
12428 	if (!dd->scntrs)
12429 		goto bail;
12430 
12431 	/* allocate space for the counter names */
12432 	dd->cntrnameslen = sz;
12433 	dd->cntrnames = kmalloc(sz, GFP_KERNEL);
12434 	if (!dd->cntrnames)
12435 		goto bail;
12436 
12437 	/* fill in the names */
12438 	for (p = dd->cntrnames, i = 0; i < DEV_CNTR_LAST; i++) {
12439 		if (dev_cntrs[i].flags & CNTR_DISABLED) {
12440 			/* Nothing */
12441 		} else if (dev_cntrs[i].flags & CNTR_VL) {
12442 			for (j = 0; j < C_VL_COUNT; j++) {
12443 				snprintf(name, C_MAX_NAME, "%s%d",
12444 					 dev_cntrs[i].name,
12445 					 vl_from_idx(j));
12446 				memcpy(p, name, strlen(name));
12447 				p += strlen(name);
12448 
12449 				/* Counter is 32 bits */
12450 				if (dev_cntrs[i].flags & CNTR_32BIT) {
12451 					memcpy(p, bit_type_32, bit_type_32_sz);
12452 					p += bit_type_32_sz;
12453 				}
12454 
12455 				*p++ = '\n';
12456 			}
12457 		} else if (dev_cntrs[i].flags & CNTR_SDMA) {
12458 			for (j = 0; j < dd->chip_sdma_engines; j++) {
12459 				snprintf(name, C_MAX_NAME, "%s%d",
12460 					 dev_cntrs[i].name, j);
12461 				memcpy(p, name, strlen(name));
12462 				p += strlen(name);
12463 
12464 				/* Counter is 32 bits */
12465 				if (dev_cntrs[i].flags & CNTR_32BIT) {
12466 					memcpy(p, bit_type_32, bit_type_32_sz);
12467 					p += bit_type_32_sz;
12468 				}
12469 
12470 				*p++ = '\n';
12471 			}
12472 		} else {
12473 			memcpy(p, dev_cntrs[i].name, strlen(dev_cntrs[i].name));
12474 			p += strlen(dev_cntrs[i].name);
12475 
12476 			/* Counter is 32 bits */
12477 			if (dev_cntrs[i].flags & CNTR_32BIT) {
12478 				memcpy(p, bit_type_32, bit_type_32_sz);
12479 				p += bit_type_32_sz;
12480 			}
12481 
12482 			*p++ = '\n';
12483 		}
12484 	}
12485 
12486 	/*********************/
12487 	/* per port counters */
12488 	/*********************/
12489 
12490 	/*
12491 	 * Go through the counters for the overflows and disable the ones we
12492 	 * don't need. This varies based on platform so we need to do it
12493 	 * dynamically here.
12494 	 */
12495 	rcv_ctxts = dd->num_rcv_contexts;
12496 	for (i = C_RCV_HDR_OVF_FIRST + rcv_ctxts;
12497 	     i <= C_RCV_HDR_OVF_LAST; i++) {
12498 		port_cntrs[i].flags |= CNTR_DISABLED;
12499 	}
12500 
12501 	/* size port counter names and determine how many we have*/
12502 	sz = 0;
12503 	dd->nportcntrs = 0;
12504 	for (i = 0; i < PORT_CNTR_LAST; i++) {
12505 		if (port_cntrs[i].flags & CNTR_DISABLED) {
12506 			hfi1_dbg_early("\tSkipping %s\n", port_cntrs[i].name);
12507 			continue;
12508 		}
12509 
12510 		if (port_cntrs[i].flags & CNTR_VL) {
12511 			port_cntrs[i].offset = dd->nportcntrs;
12512 			for (j = 0; j < C_VL_COUNT; j++) {
12513 				snprintf(name, C_MAX_NAME, "%s%d",
12514 					 port_cntrs[i].name, vl_from_idx(j));
12515 				sz += strlen(name);
12516 				/* Add ",32" for 32-bit counters */
12517 				if (port_cntrs[i].flags & CNTR_32BIT)
12518 					sz += bit_type_32_sz;
12519 				sz++;
12520 				dd->nportcntrs++;
12521 			}
12522 		} else {
12523 			/* +1 for newline */
12524 			sz += strlen(port_cntrs[i].name) + 1;
12525 			/* Add ",32" for 32-bit counters */
12526 			if (port_cntrs[i].flags & CNTR_32BIT)
12527 				sz += bit_type_32_sz;
12528 			port_cntrs[i].offset = dd->nportcntrs;
12529 			dd->nportcntrs++;
12530 		}
12531 	}
12532 
12533 	/* allocate space for the counter names */
12534 	dd->portcntrnameslen = sz;
12535 	dd->portcntrnames = kmalloc(sz, GFP_KERNEL);
12536 	if (!dd->portcntrnames)
12537 		goto bail;
12538 
12539 	/* fill in port cntr names */
12540 	for (p = dd->portcntrnames, i = 0; i < PORT_CNTR_LAST; i++) {
12541 		if (port_cntrs[i].flags & CNTR_DISABLED)
12542 			continue;
12543 
12544 		if (port_cntrs[i].flags & CNTR_VL) {
12545 			for (j = 0; j < C_VL_COUNT; j++) {
12546 				snprintf(name, C_MAX_NAME, "%s%d",
12547 					 port_cntrs[i].name, vl_from_idx(j));
12548 				memcpy(p, name, strlen(name));
12549 				p += strlen(name);
12550 
12551 				/* Counter is 32 bits */
12552 				if (port_cntrs[i].flags & CNTR_32BIT) {
12553 					memcpy(p, bit_type_32, bit_type_32_sz);
12554 					p += bit_type_32_sz;
12555 				}
12556 
12557 				*p++ = '\n';
12558 			}
12559 		} else {
12560 			memcpy(p, port_cntrs[i].name,
12561 			       strlen(port_cntrs[i].name));
12562 			p += strlen(port_cntrs[i].name);
12563 
12564 			/* Counter is 32 bits */
12565 			if (port_cntrs[i].flags & CNTR_32BIT) {
12566 				memcpy(p, bit_type_32, bit_type_32_sz);
12567 				p += bit_type_32_sz;
12568 			}
12569 
12570 			*p++ = '\n';
12571 		}
12572 	}
12573 
12574 	/* allocate per port storage for counter values */
12575 	ppd = (struct hfi1_pportdata *)(dd + 1);
12576 	for (i = 0; i < dd->num_pports; i++, ppd++) {
12577 		ppd->cntrs = kcalloc(dd->nportcntrs, sizeof(u64), GFP_KERNEL);
12578 		if (!ppd->cntrs)
12579 			goto bail;
12580 
12581 		ppd->scntrs = kcalloc(dd->nportcntrs, sizeof(u64), GFP_KERNEL);
12582 		if (!ppd->scntrs)
12583 			goto bail;
12584 	}
12585 
12586 	/* CPU counters need to be allocated and zeroed */
12587 	if (init_cpu_counters(dd))
12588 		goto bail;
12589 
12590 	dd->update_cntr_wq = alloc_ordered_workqueue("hfi1_update_cntr_%d",
12591 						     WQ_MEM_RECLAIM, dd->unit);
12592 	if (!dd->update_cntr_wq)
12593 		goto bail;
12594 
12595 	INIT_WORK(&dd->update_cntr_work, do_update_synth_timer);
12596 
12597 	mod_timer(&dd->synth_stats_timer, jiffies + HZ * SYNTH_CNT_TIME);
12598 	return 0;
12599 bail:
12600 	free_cntrs(dd);
12601 	return -ENOMEM;
12602 }
12603 
12604 static u32 chip_to_opa_lstate(struct hfi1_devdata *dd, u32 chip_lstate)
12605 {
12606 	switch (chip_lstate) {
12607 	default:
12608 		dd_dev_err(dd,
12609 			   "Unknown logical state 0x%x, reporting IB_PORT_DOWN\n",
12610 			   chip_lstate);
12611 		/* fall through */
12612 	case LSTATE_DOWN:
12613 		return IB_PORT_DOWN;
12614 	case LSTATE_INIT:
12615 		return IB_PORT_INIT;
12616 	case LSTATE_ARMED:
12617 		return IB_PORT_ARMED;
12618 	case LSTATE_ACTIVE:
12619 		return IB_PORT_ACTIVE;
12620 	}
12621 }
12622 
12623 u32 chip_to_opa_pstate(struct hfi1_devdata *dd, u32 chip_pstate)
12624 {
12625 	/* look at the HFI meta-states only */
12626 	switch (chip_pstate & 0xf0) {
12627 	default:
12628 		dd_dev_err(dd, "Unexpected chip physical state of 0x%x\n",
12629 			   chip_pstate);
12630 		/* fall through */
12631 	case PLS_DISABLED:
12632 		return IB_PORTPHYSSTATE_DISABLED;
12633 	case PLS_OFFLINE:
12634 		return OPA_PORTPHYSSTATE_OFFLINE;
12635 	case PLS_POLLING:
12636 		return IB_PORTPHYSSTATE_POLLING;
12637 	case PLS_CONFIGPHY:
12638 		return IB_PORTPHYSSTATE_TRAINING;
12639 	case PLS_LINKUP:
12640 		return IB_PORTPHYSSTATE_LINKUP;
12641 	case PLS_PHYTEST:
12642 		return IB_PORTPHYSSTATE_PHY_TEST;
12643 	}
12644 }
12645 
12646 /* return the OPA port logical state name */
12647 const char *opa_lstate_name(u32 lstate)
12648 {
12649 	static const char * const port_logical_names[] = {
12650 		"PORT_NOP",
12651 		"PORT_DOWN",
12652 		"PORT_INIT",
12653 		"PORT_ARMED",
12654 		"PORT_ACTIVE",
12655 		"PORT_ACTIVE_DEFER",
12656 	};
12657 	if (lstate < ARRAY_SIZE(port_logical_names))
12658 		return port_logical_names[lstate];
12659 	return "unknown";
12660 }
12661 
12662 /* return the OPA port physical state name */
12663 const char *opa_pstate_name(u32 pstate)
12664 {
12665 	static const char * const port_physical_names[] = {
12666 		"PHYS_NOP",
12667 		"reserved1",
12668 		"PHYS_POLL",
12669 		"PHYS_DISABLED",
12670 		"PHYS_TRAINING",
12671 		"PHYS_LINKUP",
12672 		"PHYS_LINK_ERR_RECOVER",
12673 		"PHYS_PHY_TEST",
12674 		"reserved8",
12675 		"PHYS_OFFLINE",
12676 		"PHYS_GANGED",
12677 		"PHYS_TEST",
12678 	};
12679 	if (pstate < ARRAY_SIZE(port_physical_names))
12680 		return port_physical_names[pstate];
12681 	return "unknown";
12682 }
12683 
12684 /**
12685  * update_statusp - Update userspace status flag
12686  * @ppd: Port data structure
12687  * @state: port state information
12688  *
12689  * Actual port status is determined by the host_link_state value
12690  * in the ppd.
12691  *
12692  * host_link_state MUST be updated before updating the user space
12693  * statusp.
12694  */
12695 static void update_statusp(struct hfi1_pportdata *ppd, u32 state)
12696 {
12697 	/*
12698 	 * Set port status flags in the page mapped into userspace
12699 	 * memory. Do it here to ensure a reliable state - this is
12700 	 * the only function called by all state handling code.
12701 	 * Always set the flags due to the fact that the cache value
12702 	 * might have been changed explicitly outside of this
12703 	 * function.
12704 	 */
12705 	if (ppd->statusp) {
12706 		switch (state) {
12707 		case IB_PORT_DOWN:
12708 		case IB_PORT_INIT:
12709 			*ppd->statusp &= ~(HFI1_STATUS_IB_CONF |
12710 					   HFI1_STATUS_IB_READY);
12711 			break;
12712 		case IB_PORT_ARMED:
12713 			*ppd->statusp |= HFI1_STATUS_IB_CONF;
12714 			break;
12715 		case IB_PORT_ACTIVE:
12716 			*ppd->statusp |= HFI1_STATUS_IB_READY;
12717 			break;
12718 		}
12719 	}
12720 	dd_dev_info(ppd->dd, "logical state changed to %s (0x%x)\n",
12721 		    opa_lstate_name(state), state);
12722 }
12723 
12724 /**
12725  * wait_logical_linkstate - wait for an IB link state change to occur
12726  * @ppd: port device
12727  * @state: the state to wait for
12728  * @msecs: the number of milliseconds to wait
12729  *
12730  * Wait up to msecs milliseconds for IB link state change to occur.
12731  * For now, take the easy polling route.
12732  * Returns 0 if state reached, otherwise -ETIMEDOUT.
12733  */
12734 static int wait_logical_linkstate(struct hfi1_pportdata *ppd, u32 state,
12735 				  int msecs)
12736 {
12737 	unsigned long timeout;
12738 	u32 new_state;
12739 
12740 	timeout = jiffies + msecs_to_jiffies(msecs);
12741 	while (1) {
12742 		new_state = chip_to_opa_lstate(ppd->dd,
12743 					       read_logical_state(ppd->dd));
12744 		if (new_state == state)
12745 			break;
12746 		if (time_after(jiffies, timeout)) {
12747 			dd_dev_err(ppd->dd,
12748 				   "timeout waiting for link state 0x%x\n",
12749 				   state);
12750 			return -ETIMEDOUT;
12751 		}
12752 		msleep(20);
12753 	}
12754 
12755 	return 0;
12756 }
12757 
12758 static void log_state_transition(struct hfi1_pportdata *ppd, u32 state)
12759 {
12760 	u32 ib_pstate = chip_to_opa_pstate(ppd->dd, state);
12761 
12762 	dd_dev_info(ppd->dd,
12763 		    "physical state changed to %s (0x%x), phy 0x%x\n",
12764 		    opa_pstate_name(ib_pstate), ib_pstate, state);
12765 }
12766 
12767 /*
12768  * Read the physical hardware link state and check if it matches host
12769  * drivers anticipated state.
12770  */
12771 static void log_physical_state(struct hfi1_pportdata *ppd, u32 state)
12772 {
12773 	u32 read_state = read_physical_state(ppd->dd);
12774 
12775 	if (read_state == state) {
12776 		log_state_transition(ppd, state);
12777 	} else {
12778 		dd_dev_err(ppd->dd,
12779 			   "anticipated phy link state 0x%x, read 0x%x\n",
12780 			   state, read_state);
12781 	}
12782 }
12783 
12784 /*
12785  * wait_physical_linkstate - wait for an physical link state change to occur
12786  * @ppd: port device
12787  * @state: the state to wait for
12788  * @msecs: the number of milliseconds to wait
12789  *
12790  * Wait up to msecs milliseconds for physical link state change to occur.
12791  * Returns 0 if state reached, otherwise -ETIMEDOUT.
12792  */
12793 static int wait_physical_linkstate(struct hfi1_pportdata *ppd, u32 state,
12794 				   int msecs)
12795 {
12796 	u32 read_state;
12797 	unsigned long timeout;
12798 
12799 	timeout = jiffies + msecs_to_jiffies(msecs);
12800 	while (1) {
12801 		read_state = read_physical_state(ppd->dd);
12802 		if (read_state == state)
12803 			break;
12804 		if (time_after(jiffies, timeout)) {
12805 			dd_dev_err(ppd->dd,
12806 				   "timeout waiting for phy link state 0x%x\n",
12807 				   state);
12808 			return -ETIMEDOUT;
12809 		}
12810 		usleep_range(1950, 2050); /* sleep 2ms-ish */
12811 	}
12812 
12813 	log_state_transition(ppd, state);
12814 	return 0;
12815 }
12816 
12817 /*
12818  * wait_phys_link_offline_quiet_substates - wait for any offline substate
12819  * @ppd: port device
12820  * @msecs: the number of milliseconds to wait
12821  *
12822  * Wait up to msecs milliseconds for any offline physical link
12823  * state change to occur.
12824  * Returns 0 if at least one state is reached, otherwise -ETIMEDOUT.
12825  */
12826 static int wait_phys_link_offline_substates(struct hfi1_pportdata *ppd,
12827 					    int msecs)
12828 {
12829 	u32 read_state;
12830 	unsigned long timeout;
12831 
12832 	timeout = jiffies + msecs_to_jiffies(msecs);
12833 	while (1) {
12834 		read_state = read_physical_state(ppd->dd);
12835 		if ((read_state & 0xF0) == PLS_OFFLINE)
12836 			break;
12837 		if (time_after(jiffies, timeout)) {
12838 			dd_dev_err(ppd->dd,
12839 				   "timeout waiting for phy link offline.quiet substates. Read state 0x%x, %dms\n",
12840 				   read_state, msecs);
12841 			return -ETIMEDOUT;
12842 		}
12843 		usleep_range(1950, 2050); /* sleep 2ms-ish */
12844 	}
12845 
12846 	log_state_transition(ppd, read_state);
12847 	return read_state;
12848 }
12849 
12850 #define CLEAR_STATIC_RATE_CONTROL_SMASK(r) \
12851 (r &= ~SEND_CTXT_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK)
12852 
12853 #define SET_STATIC_RATE_CONTROL_SMASK(r) \
12854 (r |= SEND_CTXT_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK)
12855 
12856 void hfi1_init_ctxt(struct send_context *sc)
12857 {
12858 	if (sc) {
12859 		struct hfi1_devdata *dd = sc->dd;
12860 		u64 reg;
12861 		u8 set = (sc->type == SC_USER ?
12862 			  HFI1_CAP_IS_USET(STATIC_RATE_CTRL) :
12863 			  HFI1_CAP_IS_KSET(STATIC_RATE_CTRL));
12864 		reg = read_kctxt_csr(dd, sc->hw_context,
12865 				     SEND_CTXT_CHECK_ENABLE);
12866 		if (set)
12867 			CLEAR_STATIC_RATE_CONTROL_SMASK(reg);
12868 		else
12869 			SET_STATIC_RATE_CONTROL_SMASK(reg);
12870 		write_kctxt_csr(dd, sc->hw_context,
12871 				SEND_CTXT_CHECK_ENABLE, reg);
12872 	}
12873 }
12874 
12875 int hfi1_tempsense_rd(struct hfi1_devdata *dd, struct hfi1_temp *temp)
12876 {
12877 	int ret = 0;
12878 	u64 reg;
12879 
12880 	if (dd->icode != ICODE_RTL_SILICON) {
12881 		if (HFI1_CAP_IS_KSET(PRINT_UNIMPL))
12882 			dd_dev_info(dd, "%s: tempsense not supported by HW\n",
12883 				    __func__);
12884 		return -EINVAL;
12885 	}
12886 	reg = read_csr(dd, ASIC_STS_THERM);
12887 	temp->curr = ((reg >> ASIC_STS_THERM_CURR_TEMP_SHIFT) &
12888 		      ASIC_STS_THERM_CURR_TEMP_MASK);
12889 	temp->lo_lim = ((reg >> ASIC_STS_THERM_LO_TEMP_SHIFT) &
12890 			ASIC_STS_THERM_LO_TEMP_MASK);
12891 	temp->hi_lim = ((reg >> ASIC_STS_THERM_HI_TEMP_SHIFT) &
12892 			ASIC_STS_THERM_HI_TEMP_MASK);
12893 	temp->crit_lim = ((reg >> ASIC_STS_THERM_CRIT_TEMP_SHIFT) &
12894 			  ASIC_STS_THERM_CRIT_TEMP_MASK);
12895 	/* triggers is a 3-bit value - 1 bit per trigger. */
12896 	temp->triggers = (u8)((reg >> ASIC_STS_THERM_LOW_SHIFT) & 0x7);
12897 
12898 	return ret;
12899 }
12900 
12901 /**
12902  * get_int_mask - get 64 bit int mask
12903  * @dd - the devdata
12904  * @i - the csr (relative to CCE_INT_MASK)
12905  *
12906  * Returns the mask with the urgent interrupt mask
12907  * bit clear for kernel receive contexts.
12908  */
12909 static u64 get_int_mask(struct hfi1_devdata *dd, u32 i)
12910 {
12911 	u64 mask = U64_MAX; /* default to no change */
12912 
12913 	if (i >= (IS_RCVURGENT_START / 64) && i < (IS_RCVURGENT_END / 64)) {
12914 		int j = (i - (IS_RCVURGENT_START / 64)) * 64;
12915 		int k = !j ? IS_RCVURGENT_START % 64 : 0;
12916 
12917 		if (j)
12918 			j -= IS_RCVURGENT_START % 64;
12919 		/* j = 0..dd->first_dyn_alloc_ctxt - 1,k = 0..63 */
12920 		for (; j < dd->first_dyn_alloc_ctxt && k < 64; j++, k++)
12921 			/* convert to bit in mask and clear */
12922 			mask &= ~BIT_ULL(k);
12923 	}
12924 	return mask;
12925 }
12926 
12927 /* ========================================================================= */
12928 
12929 /*
12930  * Enable/disable chip from delivering interrupts.
12931  */
12932 void set_intr_state(struct hfi1_devdata *dd, u32 enable)
12933 {
12934 	int i;
12935 
12936 	/*
12937 	 * In HFI, the mask needs to be 1 to allow interrupts.
12938 	 */
12939 	if (enable) {
12940 		/* enable all interrupts but urgent on kernel contexts */
12941 		for (i = 0; i < CCE_NUM_INT_CSRS; i++) {
12942 			u64 mask = get_int_mask(dd, i);
12943 
12944 			write_csr(dd, CCE_INT_MASK + (8 * i), mask);
12945 		}
12946 
12947 		init_qsfp_int(dd);
12948 	} else {
12949 		for (i = 0; i < CCE_NUM_INT_CSRS; i++)
12950 			write_csr(dd, CCE_INT_MASK + (8 * i), 0ull);
12951 	}
12952 }
12953 
12954 /*
12955  * Clear all interrupt sources on the chip.
12956  */
12957 static void clear_all_interrupts(struct hfi1_devdata *dd)
12958 {
12959 	int i;
12960 
12961 	for (i = 0; i < CCE_NUM_INT_CSRS; i++)
12962 		write_csr(dd, CCE_INT_CLEAR + (8 * i), ~(u64)0);
12963 
12964 	write_csr(dd, CCE_ERR_CLEAR, ~(u64)0);
12965 	write_csr(dd, MISC_ERR_CLEAR, ~(u64)0);
12966 	write_csr(dd, RCV_ERR_CLEAR, ~(u64)0);
12967 	write_csr(dd, SEND_ERR_CLEAR, ~(u64)0);
12968 	write_csr(dd, SEND_PIO_ERR_CLEAR, ~(u64)0);
12969 	write_csr(dd, SEND_DMA_ERR_CLEAR, ~(u64)0);
12970 	write_csr(dd, SEND_EGRESS_ERR_CLEAR, ~(u64)0);
12971 	for (i = 0; i < dd->chip_send_contexts; i++)
12972 		write_kctxt_csr(dd, i, SEND_CTXT_ERR_CLEAR, ~(u64)0);
12973 	for (i = 0; i < dd->chip_sdma_engines; i++)
12974 		write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_CLEAR, ~(u64)0);
12975 
12976 	write_csr(dd, DCC_ERR_FLG_CLR, ~(u64)0);
12977 	write_csr(dd, DC_LCB_ERR_CLR, ~(u64)0);
12978 	write_csr(dd, DC_DC8051_ERR_CLR, ~(u64)0);
12979 }
12980 
12981 /* Move to pcie.c? */
12982 static void disable_intx(struct pci_dev *pdev)
12983 {
12984 	pci_intx(pdev, 0);
12985 }
12986 
12987 static void clean_up_interrupts(struct hfi1_devdata *dd)
12988 {
12989 	int i;
12990 
12991 	/* remove irqs - must happen before disabling/turning off */
12992 	if (dd->num_msix_entries) {
12993 		/* MSI-X */
12994 		struct hfi1_msix_entry *me = dd->msix_entries;
12995 
12996 		for (i = 0; i < dd->num_msix_entries; i++, me++) {
12997 			if (!me->arg) /* => no irq, no affinity */
12998 				continue;
12999 			hfi1_put_irq_affinity(dd, me);
13000 			pci_free_irq(dd->pcidev, i, me->arg);
13001 		}
13002 
13003 		/* clean structures */
13004 		kfree(dd->msix_entries);
13005 		dd->msix_entries = NULL;
13006 		dd->num_msix_entries = 0;
13007 	} else {
13008 		/* INTx */
13009 		if (dd->requested_intx_irq) {
13010 			pci_free_irq(dd->pcidev, 0, dd);
13011 			dd->requested_intx_irq = 0;
13012 		}
13013 		disable_intx(dd->pcidev);
13014 	}
13015 
13016 	pci_free_irq_vectors(dd->pcidev);
13017 }
13018 
13019 /*
13020  * Remap the interrupt source from the general handler to the given MSI-X
13021  * interrupt.
13022  */
13023 static void remap_intr(struct hfi1_devdata *dd, int isrc, int msix_intr)
13024 {
13025 	u64 reg;
13026 	int m, n;
13027 
13028 	/* clear from the handled mask of the general interrupt */
13029 	m = isrc / 64;
13030 	n = isrc % 64;
13031 	if (likely(m < CCE_NUM_INT_CSRS)) {
13032 		dd->gi_mask[m] &= ~((u64)1 << n);
13033 	} else {
13034 		dd_dev_err(dd, "remap interrupt err\n");
13035 		return;
13036 	}
13037 
13038 	/* direct the chip source to the given MSI-X interrupt */
13039 	m = isrc / 8;
13040 	n = isrc % 8;
13041 	reg = read_csr(dd, CCE_INT_MAP + (8 * m));
13042 	reg &= ~((u64)0xff << (8 * n));
13043 	reg |= ((u64)msix_intr & 0xff) << (8 * n);
13044 	write_csr(dd, CCE_INT_MAP + (8 * m), reg);
13045 }
13046 
13047 static void remap_sdma_interrupts(struct hfi1_devdata *dd,
13048 				  int engine, int msix_intr)
13049 {
13050 	/*
13051 	 * SDMA engine interrupt sources grouped by type, rather than
13052 	 * engine.  Per-engine interrupts are as follows:
13053 	 *	SDMA
13054 	 *	SDMAProgress
13055 	 *	SDMAIdle
13056 	 */
13057 	remap_intr(dd, IS_SDMA_START + 0 * TXE_NUM_SDMA_ENGINES + engine,
13058 		   msix_intr);
13059 	remap_intr(dd, IS_SDMA_START + 1 * TXE_NUM_SDMA_ENGINES + engine,
13060 		   msix_intr);
13061 	remap_intr(dd, IS_SDMA_START + 2 * TXE_NUM_SDMA_ENGINES + engine,
13062 		   msix_intr);
13063 }
13064 
13065 static int request_intx_irq(struct hfi1_devdata *dd)
13066 {
13067 	int ret;
13068 
13069 	ret = pci_request_irq(dd->pcidev, 0, general_interrupt, NULL, dd,
13070 			      DRIVER_NAME "_%d", dd->unit);
13071 	if (ret)
13072 		dd_dev_err(dd, "unable to request INTx interrupt, err %d\n",
13073 			   ret);
13074 	else
13075 		dd->requested_intx_irq = 1;
13076 	return ret;
13077 }
13078 
13079 static int request_msix_irqs(struct hfi1_devdata *dd)
13080 {
13081 	int first_general, last_general;
13082 	int first_sdma, last_sdma;
13083 	int first_rx, last_rx;
13084 	int i, ret = 0;
13085 
13086 	/* calculate the ranges we are going to use */
13087 	first_general = 0;
13088 	last_general = first_general + 1;
13089 	first_sdma = last_general;
13090 	last_sdma = first_sdma + dd->num_sdma;
13091 	first_rx = last_sdma;
13092 	last_rx = first_rx + dd->n_krcv_queues + dd->num_vnic_contexts;
13093 
13094 	/* VNIC MSIx interrupts get mapped when VNIC contexts are created */
13095 	dd->first_dyn_msix_idx = first_rx + dd->n_krcv_queues;
13096 
13097 	/*
13098 	 * Sanity check - the code expects all SDMA chip source
13099 	 * interrupts to be in the same CSR, starting at bit 0.  Verify
13100 	 * that this is true by checking the bit location of the start.
13101 	 */
13102 	BUILD_BUG_ON(IS_SDMA_START % 64);
13103 
13104 	for (i = 0; i < dd->num_msix_entries; i++) {
13105 		struct hfi1_msix_entry *me = &dd->msix_entries[i];
13106 		const char *err_info;
13107 		irq_handler_t handler;
13108 		irq_handler_t thread = NULL;
13109 		void *arg = NULL;
13110 		int idx;
13111 		struct hfi1_ctxtdata *rcd = NULL;
13112 		struct sdma_engine *sde = NULL;
13113 		char name[MAX_NAME_SIZE];
13114 
13115 		/* obtain the arguments to pci_request_irq */
13116 		if (first_general <= i && i < last_general) {
13117 			idx = i - first_general;
13118 			handler = general_interrupt;
13119 			arg = dd;
13120 			snprintf(name, sizeof(name),
13121 				 DRIVER_NAME "_%d", dd->unit);
13122 			err_info = "general";
13123 			me->type = IRQ_GENERAL;
13124 		} else if (first_sdma <= i && i < last_sdma) {
13125 			idx = i - first_sdma;
13126 			sde = &dd->per_sdma[idx];
13127 			handler = sdma_interrupt;
13128 			arg = sde;
13129 			snprintf(name, sizeof(name),
13130 				 DRIVER_NAME "_%d sdma%d", dd->unit, idx);
13131 			err_info = "sdma";
13132 			remap_sdma_interrupts(dd, idx, i);
13133 			me->type = IRQ_SDMA;
13134 		} else if (first_rx <= i && i < last_rx) {
13135 			idx = i - first_rx;
13136 			rcd = hfi1_rcd_get_by_index_safe(dd, idx);
13137 			if (rcd) {
13138 				/*
13139 				 * Set the interrupt register and mask for this
13140 				 * context's interrupt.
13141 				 */
13142 				rcd->ireg = (IS_RCVAVAIL_START + idx) / 64;
13143 				rcd->imask = ((u64)1) <<
13144 					  ((IS_RCVAVAIL_START + idx) % 64);
13145 				handler = receive_context_interrupt;
13146 				thread = receive_context_thread;
13147 				arg = rcd;
13148 				snprintf(name, sizeof(name),
13149 					 DRIVER_NAME "_%d kctxt%d",
13150 					 dd->unit, idx);
13151 				err_info = "receive context";
13152 				remap_intr(dd, IS_RCVAVAIL_START + idx, i);
13153 				me->type = IRQ_RCVCTXT;
13154 				rcd->msix_intr = i;
13155 				hfi1_rcd_put(rcd);
13156 			}
13157 		} else {
13158 			/* not in our expected range - complain, then
13159 			 * ignore it
13160 			 */
13161 			dd_dev_err(dd,
13162 				   "Unexpected extra MSI-X interrupt %d\n", i);
13163 			continue;
13164 		}
13165 		/* no argument, no interrupt */
13166 		if (!arg)
13167 			continue;
13168 		/* make sure the name is terminated */
13169 		name[sizeof(name) - 1] = 0;
13170 		me->irq = pci_irq_vector(dd->pcidev, i);
13171 		ret = pci_request_irq(dd->pcidev, i, handler, thread, arg,
13172 				      name);
13173 		if (ret) {
13174 			dd_dev_err(dd,
13175 				   "unable to allocate %s interrupt, irq %d, index %d, err %d\n",
13176 				   err_info, me->irq, idx, ret);
13177 			return ret;
13178 		}
13179 		/*
13180 		 * assign arg after pci_request_irq call, so it will be
13181 		 * cleaned up
13182 		 */
13183 		me->arg = arg;
13184 
13185 		ret = hfi1_get_irq_affinity(dd, me);
13186 		if (ret)
13187 			dd_dev_err(dd, "unable to pin IRQ %d\n", ret);
13188 	}
13189 
13190 	return ret;
13191 }
13192 
13193 void hfi1_vnic_synchronize_irq(struct hfi1_devdata *dd)
13194 {
13195 	int i;
13196 
13197 	if (!dd->num_msix_entries) {
13198 		synchronize_irq(pci_irq_vector(dd->pcidev, 0));
13199 		return;
13200 	}
13201 
13202 	for (i = 0; i < dd->vnic.num_ctxt; i++) {
13203 		struct hfi1_ctxtdata *rcd = dd->vnic.ctxt[i];
13204 		struct hfi1_msix_entry *me = &dd->msix_entries[rcd->msix_intr];
13205 
13206 		synchronize_irq(me->irq);
13207 	}
13208 }
13209 
13210 void hfi1_reset_vnic_msix_info(struct hfi1_ctxtdata *rcd)
13211 {
13212 	struct hfi1_devdata *dd = rcd->dd;
13213 	struct hfi1_msix_entry *me = &dd->msix_entries[rcd->msix_intr];
13214 
13215 	if (!me->arg) /* => no irq, no affinity */
13216 		return;
13217 
13218 	hfi1_put_irq_affinity(dd, me);
13219 	pci_free_irq(dd->pcidev, rcd->msix_intr, me->arg);
13220 
13221 	me->arg = NULL;
13222 }
13223 
13224 void hfi1_set_vnic_msix_info(struct hfi1_ctxtdata *rcd)
13225 {
13226 	struct hfi1_devdata *dd = rcd->dd;
13227 	struct hfi1_msix_entry *me;
13228 	int idx = rcd->ctxt;
13229 	void *arg = rcd;
13230 	int ret;
13231 
13232 	rcd->msix_intr = dd->vnic.msix_idx++;
13233 	me = &dd->msix_entries[rcd->msix_intr];
13234 
13235 	/*
13236 	 * Set the interrupt register and mask for this
13237 	 * context's interrupt.
13238 	 */
13239 	rcd->ireg = (IS_RCVAVAIL_START + idx) / 64;
13240 	rcd->imask = ((u64)1) <<
13241 		  ((IS_RCVAVAIL_START + idx) % 64);
13242 	me->type = IRQ_RCVCTXT;
13243 	me->irq = pci_irq_vector(dd->pcidev, rcd->msix_intr);
13244 	remap_intr(dd, IS_RCVAVAIL_START + idx, rcd->msix_intr);
13245 
13246 	ret = pci_request_irq(dd->pcidev, rcd->msix_intr,
13247 			      receive_context_interrupt,
13248 			      receive_context_thread, arg,
13249 			      DRIVER_NAME "_%d kctxt%d", dd->unit, idx);
13250 	if (ret) {
13251 		dd_dev_err(dd, "vnic irq request (irq %d, idx %d) fail %d\n",
13252 			   me->irq, idx, ret);
13253 		return;
13254 	}
13255 	/*
13256 	 * assign arg after pci_request_irq call, so it will be
13257 	 * cleaned up
13258 	 */
13259 	me->arg = arg;
13260 
13261 	ret = hfi1_get_irq_affinity(dd, me);
13262 	if (ret) {
13263 		dd_dev_err(dd,
13264 			   "unable to pin IRQ %d\n", ret);
13265 		pci_free_irq(dd->pcidev, rcd->msix_intr, me->arg);
13266 	}
13267 }
13268 
13269 /*
13270  * Set the general handler to accept all interrupts, remap all
13271  * chip interrupts back to MSI-X 0.
13272  */
13273 static void reset_interrupts(struct hfi1_devdata *dd)
13274 {
13275 	int i;
13276 
13277 	/* all interrupts handled by the general handler */
13278 	for (i = 0; i < CCE_NUM_INT_CSRS; i++)
13279 		dd->gi_mask[i] = ~(u64)0;
13280 
13281 	/* all chip interrupts map to MSI-X 0 */
13282 	for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++)
13283 		write_csr(dd, CCE_INT_MAP + (8 * i), 0);
13284 }
13285 
13286 static int set_up_interrupts(struct hfi1_devdata *dd)
13287 {
13288 	u32 total;
13289 	int ret, request;
13290 	int single_interrupt = 0; /* we expect to have all the interrupts */
13291 
13292 	/*
13293 	 * Interrupt count:
13294 	 *	1 general, "slow path" interrupt (includes the SDMA engines
13295 	 *		slow source, SDMACleanupDone)
13296 	 *	N interrupts - one per used SDMA engine
13297 	 *	M interrupt - one per kernel receive context
13298 	 *	V interrupt - one for each VNIC context
13299 	 */
13300 	total = 1 + dd->num_sdma + dd->n_krcv_queues + dd->num_vnic_contexts;
13301 
13302 	/* ask for MSI-X interrupts */
13303 	request = request_msix(dd, total);
13304 	if (request < 0) {
13305 		ret = request;
13306 		goto fail;
13307 	} else if (request == 0) {
13308 		/* using INTx */
13309 		/* dd->num_msix_entries already zero */
13310 		single_interrupt = 1;
13311 		dd_dev_err(dd, "MSI-X failed, using INTx interrupts\n");
13312 	} else if (request < total) {
13313 		/* using MSI-X, with reduced interrupts */
13314 		dd_dev_err(dd, "reduced interrupt found, wanted %u, got %u\n",
13315 			   total, request);
13316 		ret = -EINVAL;
13317 		goto fail;
13318 	} else {
13319 		dd->msix_entries = kcalloc(total, sizeof(*dd->msix_entries),
13320 					   GFP_KERNEL);
13321 		if (!dd->msix_entries) {
13322 			ret = -ENOMEM;
13323 			goto fail;
13324 		}
13325 		/* using MSI-X */
13326 		dd->num_msix_entries = total;
13327 		dd_dev_info(dd, "%u MSI-X interrupts allocated\n", total);
13328 	}
13329 
13330 	/* mask all interrupts */
13331 	set_intr_state(dd, 0);
13332 	/* clear all pending interrupts */
13333 	clear_all_interrupts(dd);
13334 
13335 	/* reset general handler mask, chip MSI-X mappings */
13336 	reset_interrupts(dd);
13337 
13338 	if (single_interrupt)
13339 		ret = request_intx_irq(dd);
13340 	else
13341 		ret = request_msix_irqs(dd);
13342 	if (ret)
13343 		goto fail;
13344 
13345 	return 0;
13346 
13347 fail:
13348 	clean_up_interrupts(dd);
13349 	return ret;
13350 }
13351 
13352 /*
13353  * Set up context values in dd.  Sets:
13354  *
13355  *	num_rcv_contexts - number of contexts being used
13356  *	n_krcv_queues - number of kernel contexts
13357  *	first_dyn_alloc_ctxt - first dynamically allocated context
13358  *                             in array of contexts
13359  *	freectxts  - number of free user contexts
13360  *	num_send_contexts - number of PIO send contexts being used
13361  *	num_vnic_contexts - number of contexts reserved for VNIC
13362  */
13363 static int set_up_context_variables(struct hfi1_devdata *dd)
13364 {
13365 	unsigned long num_kernel_contexts;
13366 	u16 num_vnic_contexts = HFI1_NUM_VNIC_CTXT;
13367 	int total_contexts;
13368 	int ret;
13369 	unsigned ngroups;
13370 	int qos_rmt_count;
13371 	int user_rmt_reduced;
13372 	u32 n_usr_ctxts;
13373 
13374 	/*
13375 	 * Kernel receive contexts:
13376 	 * - Context 0 - control context (VL15/multicast/error)
13377 	 * - Context 1 - first kernel context
13378 	 * - Context 2 - second kernel context
13379 	 * ...
13380 	 */
13381 	if (n_krcvqs)
13382 		/*
13383 		 * n_krcvqs is the sum of module parameter kernel receive
13384 		 * contexts, krcvqs[].  It does not include the control
13385 		 * context, so add that.
13386 		 */
13387 		num_kernel_contexts = n_krcvqs + 1;
13388 	else
13389 		num_kernel_contexts = DEFAULT_KRCVQS + 1;
13390 	/*
13391 	 * Every kernel receive context needs an ACK send context.
13392 	 * one send context is allocated for each VL{0-7} and VL15
13393 	 */
13394 	if (num_kernel_contexts > (dd->chip_send_contexts - num_vls - 1)) {
13395 		dd_dev_err(dd,
13396 			   "Reducing # kernel rcv contexts to: %d, from %lu\n",
13397 			   (int)(dd->chip_send_contexts - num_vls - 1),
13398 			   num_kernel_contexts);
13399 		num_kernel_contexts = dd->chip_send_contexts - num_vls - 1;
13400 	}
13401 
13402 	/* Accommodate VNIC contexts if possible */
13403 	if ((num_kernel_contexts + num_vnic_contexts) > dd->chip_rcv_contexts) {
13404 		dd_dev_err(dd, "No receive contexts available for VNIC\n");
13405 		num_vnic_contexts = 0;
13406 	}
13407 	total_contexts = num_kernel_contexts + num_vnic_contexts;
13408 
13409 	/*
13410 	 * User contexts:
13411 	 *	- default to 1 user context per real (non-HT) CPU core if
13412 	 *	  num_user_contexts is negative
13413 	 */
13414 	if (num_user_contexts < 0)
13415 		n_usr_ctxts = cpumask_weight(&node_affinity.real_cpu_mask);
13416 	else
13417 		n_usr_ctxts = num_user_contexts;
13418 	/*
13419 	 * Adjust the counts given a global max.
13420 	 */
13421 	if (total_contexts + n_usr_ctxts > dd->chip_rcv_contexts) {
13422 		dd_dev_err(dd,
13423 			   "Reducing # user receive contexts to: %d, from %u\n",
13424 			   (int)(dd->chip_rcv_contexts - total_contexts),
13425 			   n_usr_ctxts);
13426 		/* recalculate */
13427 		n_usr_ctxts = dd->chip_rcv_contexts - total_contexts;
13428 	}
13429 
13430 	/* each user context requires an entry in the RMT */
13431 	qos_rmt_count = qos_rmt_entries(dd, NULL, NULL);
13432 	if (qos_rmt_count + n_usr_ctxts > NUM_MAP_ENTRIES) {
13433 		user_rmt_reduced = NUM_MAP_ENTRIES - qos_rmt_count;
13434 		dd_dev_err(dd,
13435 			   "RMT size is reducing the number of user receive contexts from %u to %d\n",
13436 			   n_usr_ctxts,
13437 			   user_rmt_reduced);
13438 		/* recalculate */
13439 		n_usr_ctxts = user_rmt_reduced;
13440 	}
13441 
13442 	total_contexts += n_usr_ctxts;
13443 
13444 	/* the first N are kernel contexts, the rest are user/vnic contexts */
13445 	dd->num_rcv_contexts = total_contexts;
13446 	dd->n_krcv_queues = num_kernel_contexts;
13447 	dd->first_dyn_alloc_ctxt = num_kernel_contexts;
13448 	dd->num_vnic_contexts = num_vnic_contexts;
13449 	dd->num_user_contexts = n_usr_ctxts;
13450 	dd->freectxts = n_usr_ctxts;
13451 	dd_dev_info(dd,
13452 		    "rcv contexts: chip %d, used %d (kernel %d, vnic %u, user %u)\n",
13453 		    (int)dd->chip_rcv_contexts,
13454 		    (int)dd->num_rcv_contexts,
13455 		    (int)dd->n_krcv_queues,
13456 		    dd->num_vnic_contexts,
13457 		    dd->num_user_contexts);
13458 
13459 	/*
13460 	 * Receive array allocation:
13461 	 *   All RcvArray entries are divided into groups of 8. This
13462 	 *   is required by the hardware and will speed up writes to
13463 	 *   consecutive entries by using write-combining of the entire
13464 	 *   cacheline.
13465 	 *
13466 	 *   The number of groups are evenly divided among all contexts.
13467 	 *   any left over groups will be given to the first N user
13468 	 *   contexts.
13469 	 */
13470 	dd->rcv_entries.group_size = RCV_INCREMENT;
13471 	ngroups = dd->chip_rcv_array_count / dd->rcv_entries.group_size;
13472 	dd->rcv_entries.ngroups = ngroups / dd->num_rcv_contexts;
13473 	dd->rcv_entries.nctxt_extra = ngroups -
13474 		(dd->num_rcv_contexts * dd->rcv_entries.ngroups);
13475 	dd_dev_info(dd, "RcvArray groups %u, ctxts extra %u\n",
13476 		    dd->rcv_entries.ngroups,
13477 		    dd->rcv_entries.nctxt_extra);
13478 	if (dd->rcv_entries.ngroups * dd->rcv_entries.group_size >
13479 	    MAX_EAGER_ENTRIES * 2) {
13480 		dd->rcv_entries.ngroups = (MAX_EAGER_ENTRIES * 2) /
13481 			dd->rcv_entries.group_size;
13482 		dd_dev_info(dd,
13483 			    "RcvArray group count too high, change to %u\n",
13484 			    dd->rcv_entries.ngroups);
13485 		dd->rcv_entries.nctxt_extra = 0;
13486 	}
13487 	/*
13488 	 * PIO send contexts
13489 	 */
13490 	ret = init_sc_pools_and_sizes(dd);
13491 	if (ret >= 0) {	/* success */
13492 		dd->num_send_contexts = ret;
13493 		dd_dev_info(
13494 			dd,
13495 			"send contexts: chip %d, used %d (kernel %d, ack %d, user %d, vl15 %d)\n",
13496 			dd->chip_send_contexts,
13497 			dd->num_send_contexts,
13498 			dd->sc_sizes[SC_KERNEL].count,
13499 			dd->sc_sizes[SC_ACK].count,
13500 			dd->sc_sizes[SC_USER].count,
13501 			dd->sc_sizes[SC_VL15].count);
13502 		ret = 0;	/* success */
13503 	}
13504 
13505 	return ret;
13506 }
13507 
13508 /*
13509  * Set the device/port partition key table. The MAD code
13510  * will ensure that, at least, the partial management
13511  * partition key is present in the table.
13512  */
13513 static void set_partition_keys(struct hfi1_pportdata *ppd)
13514 {
13515 	struct hfi1_devdata *dd = ppd->dd;
13516 	u64 reg = 0;
13517 	int i;
13518 
13519 	dd_dev_info(dd, "Setting partition keys\n");
13520 	for (i = 0; i < hfi1_get_npkeys(dd); i++) {
13521 		reg |= (ppd->pkeys[i] &
13522 			RCV_PARTITION_KEY_PARTITION_KEY_A_MASK) <<
13523 			((i % 4) *
13524 			 RCV_PARTITION_KEY_PARTITION_KEY_B_SHIFT);
13525 		/* Each register holds 4 PKey values. */
13526 		if ((i % 4) == 3) {
13527 			write_csr(dd, RCV_PARTITION_KEY +
13528 				  ((i - 3) * 2), reg);
13529 			reg = 0;
13530 		}
13531 	}
13532 
13533 	/* Always enable HW pkeys check when pkeys table is set */
13534 	add_rcvctrl(dd, RCV_CTRL_RCV_PARTITION_KEY_ENABLE_SMASK);
13535 }
13536 
13537 /*
13538  * These CSRs and memories are uninitialized on reset and must be
13539  * written before reading to set the ECC/parity bits.
13540  *
13541  * NOTE: All user context CSRs that are not mmaped write-only
13542  * (e.g. the TID flows) must be initialized even if the driver never
13543  * reads them.
13544  */
13545 static void write_uninitialized_csrs_and_memories(struct hfi1_devdata *dd)
13546 {
13547 	int i, j;
13548 
13549 	/* CceIntMap */
13550 	for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++)
13551 		write_csr(dd, CCE_INT_MAP + (8 * i), 0);
13552 
13553 	/* SendCtxtCreditReturnAddr */
13554 	for (i = 0; i < dd->chip_send_contexts; i++)
13555 		write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_RETURN_ADDR, 0);
13556 
13557 	/* PIO Send buffers */
13558 	/* SDMA Send buffers */
13559 	/*
13560 	 * These are not normally read, and (presently) have no method
13561 	 * to be read, so are not pre-initialized
13562 	 */
13563 
13564 	/* RcvHdrAddr */
13565 	/* RcvHdrTailAddr */
13566 	/* RcvTidFlowTable */
13567 	for (i = 0; i < dd->chip_rcv_contexts; i++) {
13568 		write_kctxt_csr(dd, i, RCV_HDR_ADDR, 0);
13569 		write_kctxt_csr(dd, i, RCV_HDR_TAIL_ADDR, 0);
13570 		for (j = 0; j < RXE_NUM_TID_FLOWS; j++)
13571 			write_uctxt_csr(dd, i, RCV_TID_FLOW_TABLE + (8 * j), 0);
13572 	}
13573 
13574 	/* RcvArray */
13575 	for (i = 0; i < dd->chip_rcv_array_count; i++)
13576 		hfi1_put_tid(dd, i, PT_INVALID_FLUSH, 0, 0);
13577 
13578 	/* RcvQPMapTable */
13579 	for (i = 0; i < 32; i++)
13580 		write_csr(dd, RCV_QP_MAP_TABLE + (8 * i), 0);
13581 }
13582 
13583 /*
13584  * Use the ctrl_bits in CceCtrl to clear the status_bits in CceStatus.
13585  */
13586 static void clear_cce_status(struct hfi1_devdata *dd, u64 status_bits,
13587 			     u64 ctrl_bits)
13588 {
13589 	unsigned long timeout;
13590 	u64 reg;
13591 
13592 	/* is the condition present? */
13593 	reg = read_csr(dd, CCE_STATUS);
13594 	if ((reg & status_bits) == 0)
13595 		return;
13596 
13597 	/* clear the condition */
13598 	write_csr(dd, CCE_CTRL, ctrl_bits);
13599 
13600 	/* wait for the condition to clear */
13601 	timeout = jiffies + msecs_to_jiffies(CCE_STATUS_TIMEOUT);
13602 	while (1) {
13603 		reg = read_csr(dd, CCE_STATUS);
13604 		if ((reg & status_bits) == 0)
13605 			return;
13606 		if (time_after(jiffies, timeout)) {
13607 			dd_dev_err(dd,
13608 				   "Timeout waiting for CceStatus to clear bits 0x%llx, remaining 0x%llx\n",
13609 				   status_bits, reg & status_bits);
13610 			return;
13611 		}
13612 		udelay(1);
13613 	}
13614 }
13615 
13616 /* set CCE CSRs to chip reset defaults */
13617 static void reset_cce_csrs(struct hfi1_devdata *dd)
13618 {
13619 	int i;
13620 
13621 	/* CCE_REVISION read-only */
13622 	/* CCE_REVISION2 read-only */
13623 	/* CCE_CTRL - bits clear automatically */
13624 	/* CCE_STATUS read-only, use CceCtrl to clear */
13625 	clear_cce_status(dd, ALL_FROZE, CCE_CTRL_SPC_UNFREEZE_SMASK);
13626 	clear_cce_status(dd, ALL_TXE_PAUSE, CCE_CTRL_TXE_RESUME_SMASK);
13627 	clear_cce_status(dd, ALL_RXE_PAUSE, CCE_CTRL_RXE_RESUME_SMASK);
13628 	for (i = 0; i < CCE_NUM_SCRATCH; i++)
13629 		write_csr(dd, CCE_SCRATCH + (8 * i), 0);
13630 	/* CCE_ERR_STATUS read-only */
13631 	write_csr(dd, CCE_ERR_MASK, 0);
13632 	write_csr(dd, CCE_ERR_CLEAR, ~0ull);
13633 	/* CCE_ERR_FORCE leave alone */
13634 	for (i = 0; i < CCE_NUM_32_BIT_COUNTERS; i++)
13635 		write_csr(dd, CCE_COUNTER_ARRAY32 + (8 * i), 0);
13636 	write_csr(dd, CCE_DC_CTRL, CCE_DC_CTRL_RESETCSR);
13637 	/* CCE_PCIE_CTRL leave alone */
13638 	for (i = 0; i < CCE_NUM_MSIX_VECTORS; i++) {
13639 		write_csr(dd, CCE_MSIX_TABLE_LOWER + (8 * i), 0);
13640 		write_csr(dd, CCE_MSIX_TABLE_UPPER + (8 * i),
13641 			  CCE_MSIX_TABLE_UPPER_RESETCSR);
13642 	}
13643 	for (i = 0; i < CCE_NUM_MSIX_PBAS; i++) {
13644 		/* CCE_MSIX_PBA read-only */
13645 		write_csr(dd, CCE_MSIX_INT_GRANTED, ~0ull);
13646 		write_csr(dd, CCE_MSIX_VEC_CLR_WITHOUT_INT, ~0ull);
13647 	}
13648 	for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++)
13649 		write_csr(dd, CCE_INT_MAP, 0);
13650 	for (i = 0; i < CCE_NUM_INT_CSRS; i++) {
13651 		/* CCE_INT_STATUS read-only */
13652 		write_csr(dd, CCE_INT_MASK + (8 * i), 0);
13653 		write_csr(dd, CCE_INT_CLEAR + (8 * i), ~0ull);
13654 		/* CCE_INT_FORCE leave alone */
13655 		/* CCE_INT_BLOCKED read-only */
13656 	}
13657 	for (i = 0; i < CCE_NUM_32_BIT_INT_COUNTERS; i++)
13658 		write_csr(dd, CCE_INT_COUNTER_ARRAY32 + (8 * i), 0);
13659 }
13660 
13661 /* set MISC CSRs to chip reset defaults */
13662 static void reset_misc_csrs(struct hfi1_devdata *dd)
13663 {
13664 	int i;
13665 
13666 	for (i = 0; i < 32; i++) {
13667 		write_csr(dd, MISC_CFG_RSA_R2 + (8 * i), 0);
13668 		write_csr(dd, MISC_CFG_RSA_SIGNATURE + (8 * i), 0);
13669 		write_csr(dd, MISC_CFG_RSA_MODULUS + (8 * i), 0);
13670 	}
13671 	/*
13672 	 * MISC_CFG_SHA_PRELOAD leave alone - always reads 0 and can
13673 	 * only be written 128-byte chunks
13674 	 */
13675 	/* init RSA engine to clear lingering errors */
13676 	write_csr(dd, MISC_CFG_RSA_CMD, 1);
13677 	write_csr(dd, MISC_CFG_RSA_MU, 0);
13678 	write_csr(dd, MISC_CFG_FW_CTRL, 0);
13679 	/* MISC_STS_8051_DIGEST read-only */
13680 	/* MISC_STS_SBM_DIGEST read-only */
13681 	/* MISC_STS_PCIE_DIGEST read-only */
13682 	/* MISC_STS_FAB_DIGEST read-only */
13683 	/* MISC_ERR_STATUS read-only */
13684 	write_csr(dd, MISC_ERR_MASK, 0);
13685 	write_csr(dd, MISC_ERR_CLEAR, ~0ull);
13686 	/* MISC_ERR_FORCE leave alone */
13687 }
13688 
13689 /* set TXE CSRs to chip reset defaults */
13690 static void reset_txe_csrs(struct hfi1_devdata *dd)
13691 {
13692 	int i;
13693 
13694 	/*
13695 	 * TXE Kernel CSRs
13696 	 */
13697 	write_csr(dd, SEND_CTRL, 0);
13698 	__cm_reset(dd, 0);	/* reset CM internal state */
13699 	/* SEND_CONTEXTS read-only */
13700 	/* SEND_DMA_ENGINES read-only */
13701 	/* SEND_PIO_MEM_SIZE read-only */
13702 	/* SEND_DMA_MEM_SIZE read-only */
13703 	write_csr(dd, SEND_HIGH_PRIORITY_LIMIT, 0);
13704 	pio_reset_all(dd);	/* SEND_PIO_INIT_CTXT */
13705 	/* SEND_PIO_ERR_STATUS read-only */
13706 	write_csr(dd, SEND_PIO_ERR_MASK, 0);
13707 	write_csr(dd, SEND_PIO_ERR_CLEAR, ~0ull);
13708 	/* SEND_PIO_ERR_FORCE leave alone */
13709 	/* SEND_DMA_ERR_STATUS read-only */
13710 	write_csr(dd, SEND_DMA_ERR_MASK, 0);
13711 	write_csr(dd, SEND_DMA_ERR_CLEAR, ~0ull);
13712 	/* SEND_DMA_ERR_FORCE leave alone */
13713 	/* SEND_EGRESS_ERR_STATUS read-only */
13714 	write_csr(dd, SEND_EGRESS_ERR_MASK, 0);
13715 	write_csr(dd, SEND_EGRESS_ERR_CLEAR, ~0ull);
13716 	/* SEND_EGRESS_ERR_FORCE leave alone */
13717 	write_csr(dd, SEND_BTH_QP, 0);
13718 	write_csr(dd, SEND_STATIC_RATE_CONTROL, 0);
13719 	write_csr(dd, SEND_SC2VLT0, 0);
13720 	write_csr(dd, SEND_SC2VLT1, 0);
13721 	write_csr(dd, SEND_SC2VLT2, 0);
13722 	write_csr(dd, SEND_SC2VLT3, 0);
13723 	write_csr(dd, SEND_LEN_CHECK0, 0);
13724 	write_csr(dd, SEND_LEN_CHECK1, 0);
13725 	/* SEND_ERR_STATUS read-only */
13726 	write_csr(dd, SEND_ERR_MASK, 0);
13727 	write_csr(dd, SEND_ERR_CLEAR, ~0ull);
13728 	/* SEND_ERR_FORCE read-only */
13729 	for (i = 0; i < VL_ARB_LOW_PRIO_TABLE_SIZE; i++)
13730 		write_csr(dd, SEND_LOW_PRIORITY_LIST + (8 * i), 0);
13731 	for (i = 0; i < VL_ARB_HIGH_PRIO_TABLE_SIZE; i++)
13732 		write_csr(dd, SEND_HIGH_PRIORITY_LIST + (8 * i), 0);
13733 	for (i = 0; i < dd->chip_send_contexts / NUM_CONTEXTS_PER_SET; i++)
13734 		write_csr(dd, SEND_CONTEXT_SET_CTRL + (8 * i), 0);
13735 	for (i = 0; i < TXE_NUM_32_BIT_COUNTER; i++)
13736 		write_csr(dd, SEND_COUNTER_ARRAY32 + (8 * i), 0);
13737 	for (i = 0; i < TXE_NUM_64_BIT_COUNTER; i++)
13738 		write_csr(dd, SEND_COUNTER_ARRAY64 + (8 * i), 0);
13739 	write_csr(dd, SEND_CM_CTRL, SEND_CM_CTRL_RESETCSR);
13740 	write_csr(dd, SEND_CM_GLOBAL_CREDIT, SEND_CM_GLOBAL_CREDIT_RESETCSR);
13741 	/* SEND_CM_CREDIT_USED_STATUS read-only */
13742 	write_csr(dd, SEND_CM_TIMER_CTRL, 0);
13743 	write_csr(dd, SEND_CM_LOCAL_AU_TABLE0_TO3, 0);
13744 	write_csr(dd, SEND_CM_LOCAL_AU_TABLE4_TO7, 0);
13745 	write_csr(dd, SEND_CM_REMOTE_AU_TABLE0_TO3, 0);
13746 	write_csr(dd, SEND_CM_REMOTE_AU_TABLE4_TO7, 0);
13747 	for (i = 0; i < TXE_NUM_DATA_VL; i++)
13748 		write_csr(dd, SEND_CM_CREDIT_VL + (8 * i), 0);
13749 	write_csr(dd, SEND_CM_CREDIT_VL15, 0);
13750 	/* SEND_CM_CREDIT_USED_VL read-only */
13751 	/* SEND_CM_CREDIT_USED_VL15 read-only */
13752 	/* SEND_EGRESS_CTXT_STATUS read-only */
13753 	/* SEND_EGRESS_SEND_DMA_STATUS read-only */
13754 	write_csr(dd, SEND_EGRESS_ERR_INFO, ~0ull);
13755 	/* SEND_EGRESS_ERR_INFO read-only */
13756 	/* SEND_EGRESS_ERR_SOURCE read-only */
13757 
13758 	/*
13759 	 * TXE Per-Context CSRs
13760 	 */
13761 	for (i = 0; i < dd->chip_send_contexts; i++) {
13762 		write_kctxt_csr(dd, i, SEND_CTXT_CTRL, 0);
13763 		write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_CTRL, 0);
13764 		write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_RETURN_ADDR, 0);
13765 		write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_FORCE, 0);
13766 		write_kctxt_csr(dd, i, SEND_CTXT_ERR_MASK, 0);
13767 		write_kctxt_csr(dd, i, SEND_CTXT_ERR_CLEAR, ~0ull);
13768 		write_kctxt_csr(dd, i, SEND_CTXT_CHECK_ENABLE, 0);
13769 		write_kctxt_csr(dd, i, SEND_CTXT_CHECK_VL, 0);
13770 		write_kctxt_csr(dd, i, SEND_CTXT_CHECK_JOB_KEY, 0);
13771 		write_kctxt_csr(dd, i, SEND_CTXT_CHECK_PARTITION_KEY, 0);
13772 		write_kctxt_csr(dd, i, SEND_CTXT_CHECK_SLID, 0);
13773 		write_kctxt_csr(dd, i, SEND_CTXT_CHECK_OPCODE, 0);
13774 	}
13775 
13776 	/*
13777 	 * TXE Per-SDMA CSRs
13778 	 */
13779 	for (i = 0; i < dd->chip_sdma_engines; i++) {
13780 		write_kctxt_csr(dd, i, SEND_DMA_CTRL, 0);
13781 		/* SEND_DMA_STATUS read-only */
13782 		write_kctxt_csr(dd, i, SEND_DMA_BASE_ADDR, 0);
13783 		write_kctxt_csr(dd, i, SEND_DMA_LEN_GEN, 0);
13784 		write_kctxt_csr(dd, i, SEND_DMA_TAIL, 0);
13785 		/* SEND_DMA_HEAD read-only */
13786 		write_kctxt_csr(dd, i, SEND_DMA_HEAD_ADDR, 0);
13787 		write_kctxt_csr(dd, i, SEND_DMA_PRIORITY_THLD, 0);
13788 		/* SEND_DMA_IDLE_CNT read-only */
13789 		write_kctxt_csr(dd, i, SEND_DMA_RELOAD_CNT, 0);
13790 		write_kctxt_csr(dd, i, SEND_DMA_DESC_CNT, 0);
13791 		/* SEND_DMA_DESC_FETCHED_CNT read-only */
13792 		/* SEND_DMA_ENG_ERR_STATUS read-only */
13793 		write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_MASK, 0);
13794 		write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_CLEAR, ~0ull);
13795 		/* SEND_DMA_ENG_ERR_FORCE leave alone */
13796 		write_kctxt_csr(dd, i, SEND_DMA_CHECK_ENABLE, 0);
13797 		write_kctxt_csr(dd, i, SEND_DMA_CHECK_VL, 0);
13798 		write_kctxt_csr(dd, i, SEND_DMA_CHECK_JOB_KEY, 0);
13799 		write_kctxt_csr(dd, i, SEND_DMA_CHECK_PARTITION_KEY, 0);
13800 		write_kctxt_csr(dd, i, SEND_DMA_CHECK_SLID, 0);
13801 		write_kctxt_csr(dd, i, SEND_DMA_CHECK_OPCODE, 0);
13802 		write_kctxt_csr(dd, i, SEND_DMA_MEMORY, 0);
13803 	}
13804 }
13805 
13806 /*
13807  * Expect on entry:
13808  * o Packet ingress is disabled, i.e. RcvCtrl.RcvPortEnable == 0
13809  */
13810 static void init_rbufs(struct hfi1_devdata *dd)
13811 {
13812 	u64 reg;
13813 	int count;
13814 
13815 	/*
13816 	 * Wait for DMA to stop: RxRbufPktPending and RxPktInProgress are
13817 	 * clear.
13818 	 */
13819 	count = 0;
13820 	while (1) {
13821 		reg = read_csr(dd, RCV_STATUS);
13822 		if ((reg & (RCV_STATUS_RX_RBUF_PKT_PENDING_SMASK
13823 			    | RCV_STATUS_RX_PKT_IN_PROGRESS_SMASK)) == 0)
13824 			break;
13825 		/*
13826 		 * Give up after 1ms - maximum wait time.
13827 		 *
13828 		 * RBuf size is 136KiB.  Slowest possible is PCIe Gen1 x1 at
13829 		 * 250MB/s bandwidth.  Lower rate to 66% for overhead to get:
13830 		 *	136 KB / (66% * 250MB/s) = 844us
13831 		 */
13832 		if (count++ > 500) {
13833 			dd_dev_err(dd,
13834 				   "%s: in-progress DMA not clearing: RcvStatus 0x%llx, continuing\n",
13835 				   __func__, reg);
13836 			break;
13837 		}
13838 		udelay(2); /* do not busy-wait the CSR */
13839 	}
13840 
13841 	/* start the init - expect RcvCtrl to be 0 */
13842 	write_csr(dd, RCV_CTRL, RCV_CTRL_RX_RBUF_INIT_SMASK);
13843 
13844 	/*
13845 	 * Read to force the write of Rcvtrl.RxRbufInit.  There is a brief
13846 	 * period after the write before RcvStatus.RxRbufInitDone is valid.
13847 	 * The delay in the first run through the loop below is sufficient and
13848 	 * required before the first read of RcvStatus.RxRbufInintDone.
13849 	 */
13850 	read_csr(dd, RCV_CTRL);
13851 
13852 	/* wait for the init to finish */
13853 	count = 0;
13854 	while (1) {
13855 		/* delay is required first time through - see above */
13856 		udelay(2); /* do not busy-wait the CSR */
13857 		reg = read_csr(dd, RCV_STATUS);
13858 		if (reg & (RCV_STATUS_RX_RBUF_INIT_DONE_SMASK))
13859 			break;
13860 
13861 		/* give up after 100us - slowest possible at 33MHz is 73us */
13862 		if (count++ > 50) {
13863 			dd_dev_err(dd,
13864 				   "%s: RcvStatus.RxRbufInit not set, continuing\n",
13865 				   __func__);
13866 			break;
13867 		}
13868 	}
13869 }
13870 
13871 /* set RXE CSRs to chip reset defaults */
13872 static void reset_rxe_csrs(struct hfi1_devdata *dd)
13873 {
13874 	int i, j;
13875 
13876 	/*
13877 	 * RXE Kernel CSRs
13878 	 */
13879 	write_csr(dd, RCV_CTRL, 0);
13880 	init_rbufs(dd);
13881 	/* RCV_STATUS read-only */
13882 	/* RCV_CONTEXTS read-only */
13883 	/* RCV_ARRAY_CNT read-only */
13884 	/* RCV_BUF_SIZE read-only */
13885 	write_csr(dd, RCV_BTH_QP, 0);
13886 	write_csr(dd, RCV_MULTICAST, 0);
13887 	write_csr(dd, RCV_BYPASS, 0);
13888 	write_csr(dd, RCV_VL15, 0);
13889 	/* this is a clear-down */
13890 	write_csr(dd, RCV_ERR_INFO,
13891 		  RCV_ERR_INFO_RCV_EXCESS_BUFFER_OVERRUN_SMASK);
13892 	/* RCV_ERR_STATUS read-only */
13893 	write_csr(dd, RCV_ERR_MASK, 0);
13894 	write_csr(dd, RCV_ERR_CLEAR, ~0ull);
13895 	/* RCV_ERR_FORCE leave alone */
13896 	for (i = 0; i < 32; i++)
13897 		write_csr(dd, RCV_QP_MAP_TABLE + (8 * i), 0);
13898 	for (i = 0; i < 4; i++)
13899 		write_csr(dd, RCV_PARTITION_KEY + (8 * i), 0);
13900 	for (i = 0; i < RXE_NUM_32_BIT_COUNTERS; i++)
13901 		write_csr(dd, RCV_COUNTER_ARRAY32 + (8 * i), 0);
13902 	for (i = 0; i < RXE_NUM_64_BIT_COUNTERS; i++)
13903 		write_csr(dd, RCV_COUNTER_ARRAY64 + (8 * i), 0);
13904 	for (i = 0; i < RXE_NUM_RSM_INSTANCES; i++)
13905 		clear_rsm_rule(dd, i);
13906 	for (i = 0; i < 32; i++)
13907 		write_csr(dd, RCV_RSM_MAP_TABLE + (8 * i), 0);
13908 
13909 	/*
13910 	 * RXE Kernel and User Per-Context CSRs
13911 	 */
13912 	for (i = 0; i < dd->chip_rcv_contexts; i++) {
13913 		/* kernel */
13914 		write_kctxt_csr(dd, i, RCV_CTXT_CTRL, 0);
13915 		/* RCV_CTXT_STATUS read-only */
13916 		write_kctxt_csr(dd, i, RCV_EGR_CTRL, 0);
13917 		write_kctxt_csr(dd, i, RCV_TID_CTRL, 0);
13918 		write_kctxt_csr(dd, i, RCV_KEY_CTRL, 0);
13919 		write_kctxt_csr(dd, i, RCV_HDR_ADDR, 0);
13920 		write_kctxt_csr(dd, i, RCV_HDR_CNT, 0);
13921 		write_kctxt_csr(dd, i, RCV_HDR_ENT_SIZE, 0);
13922 		write_kctxt_csr(dd, i, RCV_HDR_SIZE, 0);
13923 		write_kctxt_csr(dd, i, RCV_HDR_TAIL_ADDR, 0);
13924 		write_kctxt_csr(dd, i, RCV_AVAIL_TIME_OUT, 0);
13925 		write_kctxt_csr(dd, i, RCV_HDR_OVFL_CNT, 0);
13926 
13927 		/* user */
13928 		/* RCV_HDR_TAIL read-only */
13929 		write_uctxt_csr(dd, i, RCV_HDR_HEAD, 0);
13930 		/* RCV_EGR_INDEX_TAIL read-only */
13931 		write_uctxt_csr(dd, i, RCV_EGR_INDEX_HEAD, 0);
13932 		/* RCV_EGR_OFFSET_TAIL read-only */
13933 		for (j = 0; j < RXE_NUM_TID_FLOWS; j++) {
13934 			write_uctxt_csr(dd, i,
13935 					RCV_TID_FLOW_TABLE + (8 * j), 0);
13936 		}
13937 	}
13938 }
13939 
13940 /*
13941  * Set sc2vl tables.
13942  *
13943  * They power on to zeros, so to avoid send context errors
13944  * they need to be set:
13945  *
13946  * SC 0-7 -> VL 0-7 (respectively)
13947  * SC 15  -> VL 15
13948  * otherwise
13949  *        -> VL 0
13950  */
13951 static void init_sc2vl_tables(struct hfi1_devdata *dd)
13952 {
13953 	int i;
13954 	/* init per architecture spec, constrained by hardware capability */
13955 
13956 	/* HFI maps sent packets */
13957 	write_csr(dd, SEND_SC2VLT0, SC2VL_VAL(
13958 		0,
13959 		0, 0, 1, 1,
13960 		2, 2, 3, 3,
13961 		4, 4, 5, 5,
13962 		6, 6, 7, 7));
13963 	write_csr(dd, SEND_SC2VLT1, SC2VL_VAL(
13964 		1,
13965 		8, 0, 9, 0,
13966 		10, 0, 11, 0,
13967 		12, 0, 13, 0,
13968 		14, 0, 15, 15));
13969 	write_csr(dd, SEND_SC2VLT2, SC2VL_VAL(
13970 		2,
13971 		16, 0, 17, 0,
13972 		18, 0, 19, 0,
13973 		20, 0, 21, 0,
13974 		22, 0, 23, 0));
13975 	write_csr(dd, SEND_SC2VLT3, SC2VL_VAL(
13976 		3,
13977 		24, 0, 25, 0,
13978 		26, 0, 27, 0,
13979 		28, 0, 29, 0,
13980 		30, 0, 31, 0));
13981 
13982 	/* DC maps received packets */
13983 	write_csr(dd, DCC_CFG_SC_VL_TABLE_15_0, DC_SC_VL_VAL(
13984 		15_0,
13985 		0, 0, 1, 1,  2, 2,  3, 3,  4, 4,  5, 5,  6, 6,  7,  7,
13986 		8, 0, 9, 0, 10, 0, 11, 0, 12, 0, 13, 0, 14, 0, 15, 15));
13987 	write_csr(dd, DCC_CFG_SC_VL_TABLE_31_16, DC_SC_VL_VAL(
13988 		31_16,
13989 		16, 0, 17, 0, 18, 0, 19, 0, 20, 0, 21, 0, 22, 0, 23, 0,
13990 		24, 0, 25, 0, 26, 0, 27, 0, 28, 0, 29, 0, 30, 0, 31, 0));
13991 
13992 	/* initialize the cached sc2vl values consistently with h/w */
13993 	for (i = 0; i < 32; i++) {
13994 		if (i < 8 || i == 15)
13995 			*((u8 *)(dd->sc2vl) + i) = (u8)i;
13996 		else
13997 			*((u8 *)(dd->sc2vl) + i) = 0;
13998 	}
13999 }
14000 
14001 /*
14002  * Read chip sizes and then reset parts to sane, disabled, values.  We cannot
14003  * depend on the chip going through a power-on reset - a driver may be loaded
14004  * and unloaded many times.
14005  *
14006  * Do not write any CSR values to the chip in this routine - there may be
14007  * a reset following the (possible) FLR in this routine.
14008  *
14009  */
14010 static int init_chip(struct hfi1_devdata *dd)
14011 {
14012 	int i;
14013 	int ret = 0;
14014 
14015 	/*
14016 	 * Put the HFI CSRs in a known state.
14017 	 * Combine this with a DC reset.
14018 	 *
14019 	 * Stop the device from doing anything while we do a
14020 	 * reset.  We know there are no other active users of
14021 	 * the device since we are now in charge.  Turn off
14022 	 * off all outbound and inbound traffic and make sure
14023 	 * the device does not generate any interrupts.
14024 	 */
14025 
14026 	/* disable send contexts and SDMA engines */
14027 	write_csr(dd, SEND_CTRL, 0);
14028 	for (i = 0; i < dd->chip_send_contexts; i++)
14029 		write_kctxt_csr(dd, i, SEND_CTXT_CTRL, 0);
14030 	for (i = 0; i < dd->chip_sdma_engines; i++)
14031 		write_kctxt_csr(dd, i, SEND_DMA_CTRL, 0);
14032 	/* disable port (turn off RXE inbound traffic) and contexts */
14033 	write_csr(dd, RCV_CTRL, 0);
14034 	for (i = 0; i < dd->chip_rcv_contexts; i++)
14035 		write_csr(dd, RCV_CTXT_CTRL, 0);
14036 	/* mask all interrupt sources */
14037 	for (i = 0; i < CCE_NUM_INT_CSRS; i++)
14038 		write_csr(dd, CCE_INT_MASK + (8 * i), 0ull);
14039 
14040 	/*
14041 	 * DC Reset: do a full DC reset before the register clear.
14042 	 * A recommended length of time to hold is one CSR read,
14043 	 * so reread the CceDcCtrl.  Then, hold the DC in reset
14044 	 * across the clear.
14045 	 */
14046 	write_csr(dd, CCE_DC_CTRL, CCE_DC_CTRL_DC_RESET_SMASK);
14047 	(void)read_csr(dd, CCE_DC_CTRL);
14048 
14049 	if (use_flr) {
14050 		/*
14051 		 * A FLR will reset the SPC core and part of the PCIe.
14052 		 * The parts that need to be restored have already been
14053 		 * saved.
14054 		 */
14055 		dd_dev_info(dd, "Resetting CSRs with FLR\n");
14056 
14057 		/* do the FLR, the DC reset will remain */
14058 		pcie_flr(dd->pcidev);
14059 
14060 		/* restore command and BARs */
14061 		ret = restore_pci_variables(dd);
14062 		if (ret) {
14063 			dd_dev_err(dd, "%s: Could not restore PCI variables\n",
14064 				   __func__);
14065 			return ret;
14066 		}
14067 
14068 		if (is_ax(dd)) {
14069 			dd_dev_info(dd, "Resetting CSRs with FLR\n");
14070 			pcie_flr(dd->pcidev);
14071 			ret = restore_pci_variables(dd);
14072 			if (ret) {
14073 				dd_dev_err(dd, "%s: Could not restore PCI variables\n",
14074 					   __func__);
14075 				return ret;
14076 			}
14077 		}
14078 	} else {
14079 		dd_dev_info(dd, "Resetting CSRs with writes\n");
14080 		reset_cce_csrs(dd);
14081 		reset_txe_csrs(dd);
14082 		reset_rxe_csrs(dd);
14083 		reset_misc_csrs(dd);
14084 	}
14085 	/* clear the DC reset */
14086 	write_csr(dd, CCE_DC_CTRL, 0);
14087 
14088 	/* Set the LED off */
14089 	setextled(dd, 0);
14090 
14091 	/*
14092 	 * Clear the QSFP reset.
14093 	 * An FLR enforces a 0 on all out pins. The driver does not touch
14094 	 * ASIC_QSFPn_OUT otherwise.  This leaves RESET_N low and
14095 	 * anything plugged constantly in reset, if it pays attention
14096 	 * to RESET_N.
14097 	 * Prime examples of this are optical cables. Set all pins high.
14098 	 * I2CCLK and I2CDAT will change per direction, and INT_N and
14099 	 * MODPRS_N are input only and their value is ignored.
14100 	 */
14101 	write_csr(dd, ASIC_QSFP1_OUT, 0x1f);
14102 	write_csr(dd, ASIC_QSFP2_OUT, 0x1f);
14103 	init_chip_resources(dd);
14104 	return ret;
14105 }
14106 
14107 static void init_early_variables(struct hfi1_devdata *dd)
14108 {
14109 	int i;
14110 
14111 	/* assign link credit variables */
14112 	dd->vau = CM_VAU;
14113 	dd->link_credits = CM_GLOBAL_CREDITS;
14114 	if (is_ax(dd))
14115 		dd->link_credits--;
14116 	dd->vcu = cu_to_vcu(hfi1_cu);
14117 	/* enough room for 8 MAD packets plus header - 17K */
14118 	dd->vl15_init = (8 * (2048 + 128)) / vau_to_au(dd->vau);
14119 	if (dd->vl15_init > dd->link_credits)
14120 		dd->vl15_init = dd->link_credits;
14121 
14122 	write_uninitialized_csrs_and_memories(dd);
14123 
14124 	if (HFI1_CAP_IS_KSET(PKEY_CHECK))
14125 		for (i = 0; i < dd->num_pports; i++) {
14126 			struct hfi1_pportdata *ppd = &dd->pport[i];
14127 
14128 			set_partition_keys(ppd);
14129 		}
14130 	init_sc2vl_tables(dd);
14131 }
14132 
14133 static void init_kdeth_qp(struct hfi1_devdata *dd)
14134 {
14135 	/* user changed the KDETH_QP */
14136 	if (kdeth_qp != 0 && kdeth_qp >= 0xff) {
14137 		/* out of range or illegal value */
14138 		dd_dev_err(dd, "Invalid KDETH queue pair prefix, ignoring");
14139 		kdeth_qp = 0;
14140 	}
14141 	if (kdeth_qp == 0)	/* not set, or failed range check */
14142 		kdeth_qp = DEFAULT_KDETH_QP;
14143 
14144 	write_csr(dd, SEND_BTH_QP,
14145 		  (kdeth_qp & SEND_BTH_QP_KDETH_QP_MASK) <<
14146 		  SEND_BTH_QP_KDETH_QP_SHIFT);
14147 
14148 	write_csr(dd, RCV_BTH_QP,
14149 		  (kdeth_qp & RCV_BTH_QP_KDETH_QP_MASK) <<
14150 		  RCV_BTH_QP_KDETH_QP_SHIFT);
14151 }
14152 
14153 /**
14154  * init_qpmap_table
14155  * @dd - device data
14156  * @first_ctxt - first context
14157  * @last_ctxt - first context
14158  *
14159  * This return sets the qpn mapping table that
14160  * is indexed by qpn[8:1].
14161  *
14162  * The routine will round robin the 256 settings
14163  * from first_ctxt to last_ctxt.
14164  *
14165  * The first/last looks ahead to having specialized
14166  * receive contexts for mgmt and bypass.  Normal
14167  * verbs traffic will assumed to be on a range
14168  * of receive contexts.
14169  */
14170 static void init_qpmap_table(struct hfi1_devdata *dd,
14171 			     u32 first_ctxt,
14172 			     u32 last_ctxt)
14173 {
14174 	u64 reg = 0;
14175 	u64 regno = RCV_QP_MAP_TABLE;
14176 	int i;
14177 	u64 ctxt = first_ctxt;
14178 
14179 	for (i = 0; i < 256; i++) {
14180 		reg |= ctxt << (8 * (i % 8));
14181 		ctxt++;
14182 		if (ctxt > last_ctxt)
14183 			ctxt = first_ctxt;
14184 		if (i % 8 == 7) {
14185 			write_csr(dd, regno, reg);
14186 			reg = 0;
14187 			regno += 8;
14188 		}
14189 	}
14190 
14191 	add_rcvctrl(dd, RCV_CTRL_RCV_QP_MAP_ENABLE_SMASK
14192 			| RCV_CTRL_RCV_BYPASS_ENABLE_SMASK);
14193 }
14194 
14195 struct rsm_map_table {
14196 	u64 map[NUM_MAP_REGS];
14197 	unsigned int used;
14198 };
14199 
14200 struct rsm_rule_data {
14201 	u8 offset;
14202 	u8 pkt_type;
14203 	u32 field1_off;
14204 	u32 field2_off;
14205 	u32 index1_off;
14206 	u32 index1_width;
14207 	u32 index2_off;
14208 	u32 index2_width;
14209 	u32 mask1;
14210 	u32 value1;
14211 	u32 mask2;
14212 	u32 value2;
14213 };
14214 
14215 /*
14216  * Return an initialized RMT map table for users to fill in.  OK if it
14217  * returns NULL, indicating no table.
14218  */
14219 static struct rsm_map_table *alloc_rsm_map_table(struct hfi1_devdata *dd)
14220 {
14221 	struct rsm_map_table *rmt;
14222 	u8 rxcontext = is_ax(dd) ? 0 : 0xff;  /* 0 is default if a0 ver. */
14223 
14224 	rmt = kmalloc(sizeof(*rmt), GFP_KERNEL);
14225 	if (rmt) {
14226 		memset(rmt->map, rxcontext, sizeof(rmt->map));
14227 		rmt->used = 0;
14228 	}
14229 
14230 	return rmt;
14231 }
14232 
14233 /*
14234  * Write the final RMT map table to the chip and free the table.  OK if
14235  * table is NULL.
14236  */
14237 static void complete_rsm_map_table(struct hfi1_devdata *dd,
14238 				   struct rsm_map_table *rmt)
14239 {
14240 	int i;
14241 
14242 	if (rmt) {
14243 		/* write table to chip */
14244 		for (i = 0; i < NUM_MAP_REGS; i++)
14245 			write_csr(dd, RCV_RSM_MAP_TABLE + (8 * i), rmt->map[i]);
14246 
14247 		/* enable RSM */
14248 		add_rcvctrl(dd, RCV_CTRL_RCV_RSM_ENABLE_SMASK);
14249 	}
14250 }
14251 
14252 /*
14253  * Add a receive side mapping rule.
14254  */
14255 static void add_rsm_rule(struct hfi1_devdata *dd, u8 rule_index,
14256 			 struct rsm_rule_data *rrd)
14257 {
14258 	write_csr(dd, RCV_RSM_CFG + (8 * rule_index),
14259 		  (u64)rrd->offset << RCV_RSM_CFG_OFFSET_SHIFT |
14260 		  1ull << rule_index | /* enable bit */
14261 		  (u64)rrd->pkt_type << RCV_RSM_CFG_PACKET_TYPE_SHIFT);
14262 	write_csr(dd, RCV_RSM_SELECT + (8 * rule_index),
14263 		  (u64)rrd->field1_off << RCV_RSM_SELECT_FIELD1_OFFSET_SHIFT |
14264 		  (u64)rrd->field2_off << RCV_RSM_SELECT_FIELD2_OFFSET_SHIFT |
14265 		  (u64)rrd->index1_off << RCV_RSM_SELECT_INDEX1_OFFSET_SHIFT |
14266 		  (u64)rrd->index1_width << RCV_RSM_SELECT_INDEX1_WIDTH_SHIFT |
14267 		  (u64)rrd->index2_off << RCV_RSM_SELECT_INDEX2_OFFSET_SHIFT |
14268 		  (u64)rrd->index2_width << RCV_RSM_SELECT_INDEX2_WIDTH_SHIFT);
14269 	write_csr(dd, RCV_RSM_MATCH + (8 * rule_index),
14270 		  (u64)rrd->mask1 << RCV_RSM_MATCH_MASK1_SHIFT |
14271 		  (u64)rrd->value1 << RCV_RSM_MATCH_VALUE1_SHIFT |
14272 		  (u64)rrd->mask2 << RCV_RSM_MATCH_MASK2_SHIFT |
14273 		  (u64)rrd->value2 << RCV_RSM_MATCH_VALUE2_SHIFT);
14274 }
14275 
14276 /*
14277  * Clear a receive side mapping rule.
14278  */
14279 static void clear_rsm_rule(struct hfi1_devdata *dd, u8 rule_index)
14280 {
14281 	write_csr(dd, RCV_RSM_CFG + (8 * rule_index), 0);
14282 	write_csr(dd, RCV_RSM_SELECT + (8 * rule_index), 0);
14283 	write_csr(dd, RCV_RSM_MATCH + (8 * rule_index), 0);
14284 }
14285 
14286 /* return the number of RSM map table entries that will be used for QOS */
14287 static int qos_rmt_entries(struct hfi1_devdata *dd, unsigned int *mp,
14288 			   unsigned int *np)
14289 {
14290 	int i;
14291 	unsigned int m, n;
14292 	u8 max_by_vl = 0;
14293 
14294 	/* is QOS active at all? */
14295 	if (dd->n_krcv_queues <= MIN_KERNEL_KCTXTS ||
14296 	    num_vls == 1 ||
14297 	    krcvqsset <= 1)
14298 		goto no_qos;
14299 
14300 	/* determine bits for qpn */
14301 	for (i = 0; i < min_t(unsigned int, num_vls, krcvqsset); i++)
14302 		if (krcvqs[i] > max_by_vl)
14303 			max_by_vl = krcvqs[i];
14304 	if (max_by_vl > 32)
14305 		goto no_qos;
14306 	m = ilog2(__roundup_pow_of_two(max_by_vl));
14307 
14308 	/* determine bits for vl */
14309 	n = ilog2(__roundup_pow_of_two(num_vls));
14310 
14311 	/* reject if too much is used */
14312 	if ((m + n) > 7)
14313 		goto no_qos;
14314 
14315 	if (mp)
14316 		*mp = m;
14317 	if (np)
14318 		*np = n;
14319 
14320 	return 1 << (m + n);
14321 
14322 no_qos:
14323 	if (mp)
14324 		*mp = 0;
14325 	if (np)
14326 		*np = 0;
14327 	return 0;
14328 }
14329 
14330 /**
14331  * init_qos - init RX qos
14332  * @dd - device data
14333  * @rmt - RSM map table
14334  *
14335  * This routine initializes Rule 0 and the RSM map table to implement
14336  * quality of service (qos).
14337  *
14338  * If all of the limit tests succeed, qos is applied based on the array
14339  * interpretation of krcvqs where entry 0 is VL0.
14340  *
14341  * The number of vl bits (n) and the number of qpn bits (m) are computed to
14342  * feed both the RSM map table and the single rule.
14343  */
14344 static void init_qos(struct hfi1_devdata *dd, struct rsm_map_table *rmt)
14345 {
14346 	struct rsm_rule_data rrd;
14347 	unsigned qpns_per_vl, ctxt, i, qpn, n = 1, m;
14348 	unsigned int rmt_entries;
14349 	u64 reg;
14350 
14351 	if (!rmt)
14352 		goto bail;
14353 	rmt_entries = qos_rmt_entries(dd, &m, &n);
14354 	if (rmt_entries == 0)
14355 		goto bail;
14356 	qpns_per_vl = 1 << m;
14357 
14358 	/* enough room in the map table? */
14359 	rmt_entries = 1 << (m + n);
14360 	if (rmt->used + rmt_entries >= NUM_MAP_ENTRIES)
14361 		goto bail;
14362 
14363 	/* add qos entries to the the RSM map table */
14364 	for (i = 0, ctxt = FIRST_KERNEL_KCTXT; i < num_vls; i++) {
14365 		unsigned tctxt;
14366 
14367 		for (qpn = 0, tctxt = ctxt;
14368 		     krcvqs[i] && qpn < qpns_per_vl; qpn++) {
14369 			unsigned idx, regoff, regidx;
14370 
14371 			/* generate the index the hardware will produce */
14372 			idx = rmt->used + ((qpn << n) ^ i);
14373 			regoff = (idx % 8) * 8;
14374 			regidx = idx / 8;
14375 			/* replace default with context number */
14376 			reg = rmt->map[regidx];
14377 			reg &= ~(RCV_RSM_MAP_TABLE_RCV_CONTEXT_A_MASK
14378 				<< regoff);
14379 			reg |= (u64)(tctxt++) << regoff;
14380 			rmt->map[regidx] = reg;
14381 			if (tctxt == ctxt + krcvqs[i])
14382 				tctxt = ctxt;
14383 		}
14384 		ctxt += krcvqs[i];
14385 	}
14386 
14387 	rrd.offset = rmt->used;
14388 	rrd.pkt_type = 2;
14389 	rrd.field1_off = LRH_BTH_MATCH_OFFSET;
14390 	rrd.field2_off = LRH_SC_MATCH_OFFSET;
14391 	rrd.index1_off = LRH_SC_SELECT_OFFSET;
14392 	rrd.index1_width = n;
14393 	rrd.index2_off = QPN_SELECT_OFFSET;
14394 	rrd.index2_width = m + n;
14395 	rrd.mask1 = LRH_BTH_MASK;
14396 	rrd.value1 = LRH_BTH_VALUE;
14397 	rrd.mask2 = LRH_SC_MASK;
14398 	rrd.value2 = LRH_SC_VALUE;
14399 
14400 	/* add rule 0 */
14401 	add_rsm_rule(dd, RSM_INS_VERBS, &rrd);
14402 
14403 	/* mark RSM map entries as used */
14404 	rmt->used += rmt_entries;
14405 	/* map everything else to the mcast/err/vl15 context */
14406 	init_qpmap_table(dd, HFI1_CTRL_CTXT, HFI1_CTRL_CTXT);
14407 	dd->qos_shift = n + 1;
14408 	return;
14409 bail:
14410 	dd->qos_shift = 1;
14411 	init_qpmap_table(dd, FIRST_KERNEL_KCTXT, dd->n_krcv_queues - 1);
14412 }
14413 
14414 static void init_user_fecn_handling(struct hfi1_devdata *dd,
14415 				    struct rsm_map_table *rmt)
14416 {
14417 	struct rsm_rule_data rrd;
14418 	u64 reg;
14419 	int i, idx, regoff, regidx;
14420 	u8 offset;
14421 
14422 	/* there needs to be enough room in the map table */
14423 	if (rmt->used + dd->num_user_contexts >= NUM_MAP_ENTRIES) {
14424 		dd_dev_err(dd, "User FECN handling disabled - too many user contexts allocated\n");
14425 		return;
14426 	}
14427 
14428 	/*
14429 	 * RSM will extract the destination context as an index into the
14430 	 * map table.  The destination contexts are a sequential block
14431 	 * in the range first_dyn_alloc_ctxt...num_rcv_contexts-1 (inclusive).
14432 	 * Map entries are accessed as offset + extracted value.  Adjust
14433 	 * the added offset so this sequence can be placed anywhere in
14434 	 * the table - as long as the entries themselves do not wrap.
14435 	 * There are only enough bits in offset for the table size, so
14436 	 * start with that to allow for a "negative" offset.
14437 	 */
14438 	offset = (u8)(NUM_MAP_ENTRIES + (int)rmt->used -
14439 						(int)dd->first_dyn_alloc_ctxt);
14440 
14441 	for (i = dd->first_dyn_alloc_ctxt, idx = rmt->used;
14442 				i < dd->num_rcv_contexts; i++, idx++) {
14443 		/* replace with identity mapping */
14444 		regoff = (idx % 8) * 8;
14445 		regidx = idx / 8;
14446 		reg = rmt->map[regidx];
14447 		reg &= ~(RCV_RSM_MAP_TABLE_RCV_CONTEXT_A_MASK << regoff);
14448 		reg |= (u64)i << regoff;
14449 		rmt->map[regidx] = reg;
14450 	}
14451 
14452 	/*
14453 	 * For RSM intercept of Expected FECN packets:
14454 	 * o packet type 0 - expected
14455 	 * o match on F (bit 95), using select/match 1, and
14456 	 * o match on SH (bit 133), using select/match 2.
14457 	 *
14458 	 * Use index 1 to extract the 8-bit receive context from DestQP
14459 	 * (start at bit 64).  Use that as the RSM map table index.
14460 	 */
14461 	rrd.offset = offset;
14462 	rrd.pkt_type = 0;
14463 	rrd.field1_off = 95;
14464 	rrd.field2_off = 133;
14465 	rrd.index1_off = 64;
14466 	rrd.index1_width = 8;
14467 	rrd.index2_off = 0;
14468 	rrd.index2_width = 0;
14469 	rrd.mask1 = 1;
14470 	rrd.value1 = 1;
14471 	rrd.mask2 = 1;
14472 	rrd.value2 = 1;
14473 
14474 	/* add rule 1 */
14475 	add_rsm_rule(dd, RSM_INS_FECN, &rrd);
14476 
14477 	rmt->used += dd->num_user_contexts;
14478 }
14479 
14480 /* Initialize RSM for VNIC */
14481 void hfi1_init_vnic_rsm(struct hfi1_devdata *dd)
14482 {
14483 	u8 i, j;
14484 	u8 ctx_id = 0;
14485 	u64 reg;
14486 	u32 regoff;
14487 	struct rsm_rule_data rrd;
14488 
14489 	if (hfi1_vnic_is_rsm_full(dd, NUM_VNIC_MAP_ENTRIES)) {
14490 		dd_dev_err(dd, "Vnic RSM disabled, rmt entries used = %d\n",
14491 			   dd->vnic.rmt_start);
14492 		return;
14493 	}
14494 
14495 	dev_dbg(&(dd)->pcidev->dev, "Vnic rsm start = %d, end %d\n",
14496 		dd->vnic.rmt_start,
14497 		dd->vnic.rmt_start + NUM_VNIC_MAP_ENTRIES);
14498 
14499 	/* Update RSM mapping table, 32 regs, 256 entries - 1 ctx per byte */
14500 	regoff = RCV_RSM_MAP_TABLE + (dd->vnic.rmt_start / 8) * 8;
14501 	reg = read_csr(dd, regoff);
14502 	for (i = 0; i < NUM_VNIC_MAP_ENTRIES; i++) {
14503 		/* Update map register with vnic context */
14504 		j = (dd->vnic.rmt_start + i) % 8;
14505 		reg &= ~(0xffllu << (j * 8));
14506 		reg |= (u64)dd->vnic.ctxt[ctx_id++]->ctxt << (j * 8);
14507 		/* Wrap up vnic ctx index */
14508 		ctx_id %= dd->vnic.num_ctxt;
14509 		/* Write back map register */
14510 		if (j == 7 || ((i + 1) == NUM_VNIC_MAP_ENTRIES)) {
14511 			dev_dbg(&(dd)->pcidev->dev,
14512 				"Vnic rsm map reg[%d] =0x%llx\n",
14513 				regoff - RCV_RSM_MAP_TABLE, reg);
14514 
14515 			write_csr(dd, regoff, reg);
14516 			regoff += 8;
14517 			if (i < (NUM_VNIC_MAP_ENTRIES - 1))
14518 				reg = read_csr(dd, regoff);
14519 		}
14520 	}
14521 
14522 	/* Add rule for vnic */
14523 	rrd.offset = dd->vnic.rmt_start;
14524 	rrd.pkt_type = 4;
14525 	/* Match 16B packets */
14526 	rrd.field1_off = L2_TYPE_MATCH_OFFSET;
14527 	rrd.mask1 = L2_TYPE_MASK;
14528 	rrd.value1 = L2_16B_VALUE;
14529 	/* Match ETH L4 packets */
14530 	rrd.field2_off = L4_TYPE_MATCH_OFFSET;
14531 	rrd.mask2 = L4_16B_TYPE_MASK;
14532 	rrd.value2 = L4_16B_ETH_VALUE;
14533 	/* Calc context from veswid and entropy */
14534 	rrd.index1_off = L4_16B_HDR_VESWID_OFFSET;
14535 	rrd.index1_width = ilog2(NUM_VNIC_MAP_ENTRIES);
14536 	rrd.index2_off = L2_16B_ENTROPY_OFFSET;
14537 	rrd.index2_width = ilog2(NUM_VNIC_MAP_ENTRIES);
14538 	add_rsm_rule(dd, RSM_INS_VNIC, &rrd);
14539 
14540 	/* Enable RSM if not already enabled */
14541 	add_rcvctrl(dd, RCV_CTRL_RCV_RSM_ENABLE_SMASK);
14542 }
14543 
14544 void hfi1_deinit_vnic_rsm(struct hfi1_devdata *dd)
14545 {
14546 	clear_rsm_rule(dd, RSM_INS_VNIC);
14547 
14548 	/* Disable RSM if used only by vnic */
14549 	if (dd->vnic.rmt_start == 0)
14550 		clear_rcvctrl(dd, RCV_CTRL_RCV_RSM_ENABLE_SMASK);
14551 }
14552 
14553 static void init_rxe(struct hfi1_devdata *dd)
14554 {
14555 	struct rsm_map_table *rmt;
14556 	u64 val;
14557 
14558 	/* enable all receive errors */
14559 	write_csr(dd, RCV_ERR_MASK, ~0ull);
14560 
14561 	rmt = alloc_rsm_map_table(dd);
14562 	/* set up QOS, including the QPN map table */
14563 	init_qos(dd, rmt);
14564 	init_user_fecn_handling(dd, rmt);
14565 	complete_rsm_map_table(dd, rmt);
14566 	/* record number of used rsm map entries for vnic */
14567 	dd->vnic.rmt_start = rmt->used;
14568 	kfree(rmt);
14569 
14570 	/*
14571 	 * make sure RcvCtrl.RcvWcb <= PCIe Device Control
14572 	 * Register Max_Payload_Size (PCI_EXP_DEVCTL in Linux PCIe config
14573 	 * space, PciCfgCap2.MaxPayloadSize in HFI).  There is only one
14574 	 * invalid configuration: RcvCtrl.RcvWcb set to its max of 256 and
14575 	 * Max_PayLoad_Size set to its minimum of 128.
14576 	 *
14577 	 * Presently, RcvCtrl.RcvWcb is not modified from its default of 0
14578 	 * (64 bytes).  Max_Payload_Size is possibly modified upward in
14579 	 * tune_pcie_caps() which is called after this routine.
14580 	 */
14581 
14582 	/* Have 16 bytes (4DW) of bypass header available in header queue */
14583 	val = read_csr(dd, RCV_BYPASS);
14584 	val |= (4ull << 16);
14585 	write_csr(dd, RCV_BYPASS, val);
14586 }
14587 
14588 static void init_other(struct hfi1_devdata *dd)
14589 {
14590 	/* enable all CCE errors */
14591 	write_csr(dd, CCE_ERR_MASK, ~0ull);
14592 	/* enable *some* Misc errors */
14593 	write_csr(dd, MISC_ERR_MASK, DRIVER_MISC_MASK);
14594 	/* enable all DC errors, except LCB */
14595 	write_csr(dd, DCC_ERR_FLG_EN, ~0ull);
14596 	write_csr(dd, DC_DC8051_ERR_EN, ~0ull);
14597 }
14598 
14599 /*
14600  * Fill out the given AU table using the given CU.  A CU is defined in terms
14601  * AUs.  The table is a an encoding: given the index, how many AUs does that
14602  * represent?
14603  *
14604  * NOTE: Assumes that the register layout is the same for the
14605  * local and remote tables.
14606  */
14607 static void assign_cm_au_table(struct hfi1_devdata *dd, u32 cu,
14608 			       u32 csr0to3, u32 csr4to7)
14609 {
14610 	write_csr(dd, csr0to3,
14611 		  0ull << SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE0_SHIFT |
14612 		  1ull << SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE1_SHIFT |
14613 		  2ull * cu <<
14614 		  SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE2_SHIFT |
14615 		  4ull * cu <<
14616 		  SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE3_SHIFT);
14617 	write_csr(dd, csr4to7,
14618 		  8ull * cu <<
14619 		  SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE4_SHIFT |
14620 		  16ull * cu <<
14621 		  SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE5_SHIFT |
14622 		  32ull * cu <<
14623 		  SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE6_SHIFT |
14624 		  64ull * cu <<
14625 		  SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE7_SHIFT);
14626 }
14627 
14628 static void assign_local_cm_au_table(struct hfi1_devdata *dd, u8 vcu)
14629 {
14630 	assign_cm_au_table(dd, vcu_to_cu(vcu), SEND_CM_LOCAL_AU_TABLE0_TO3,
14631 			   SEND_CM_LOCAL_AU_TABLE4_TO7);
14632 }
14633 
14634 void assign_remote_cm_au_table(struct hfi1_devdata *dd, u8 vcu)
14635 {
14636 	assign_cm_au_table(dd, vcu_to_cu(vcu), SEND_CM_REMOTE_AU_TABLE0_TO3,
14637 			   SEND_CM_REMOTE_AU_TABLE4_TO7);
14638 }
14639 
14640 static void init_txe(struct hfi1_devdata *dd)
14641 {
14642 	int i;
14643 
14644 	/* enable all PIO, SDMA, general, and Egress errors */
14645 	write_csr(dd, SEND_PIO_ERR_MASK, ~0ull);
14646 	write_csr(dd, SEND_DMA_ERR_MASK, ~0ull);
14647 	write_csr(dd, SEND_ERR_MASK, ~0ull);
14648 	write_csr(dd, SEND_EGRESS_ERR_MASK, ~0ull);
14649 
14650 	/* enable all per-context and per-SDMA engine errors */
14651 	for (i = 0; i < dd->chip_send_contexts; i++)
14652 		write_kctxt_csr(dd, i, SEND_CTXT_ERR_MASK, ~0ull);
14653 	for (i = 0; i < dd->chip_sdma_engines; i++)
14654 		write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_MASK, ~0ull);
14655 
14656 	/* set the local CU to AU mapping */
14657 	assign_local_cm_au_table(dd, dd->vcu);
14658 
14659 	/*
14660 	 * Set reasonable default for Credit Return Timer
14661 	 * Don't set on Simulator - causes it to choke.
14662 	 */
14663 	if (dd->icode != ICODE_FUNCTIONAL_SIMULATOR)
14664 		write_csr(dd, SEND_CM_TIMER_CTRL, HFI1_CREDIT_RETURN_RATE);
14665 }
14666 
14667 int hfi1_set_ctxt_jkey(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd,
14668 		       u16 jkey)
14669 {
14670 	u8 hw_ctxt;
14671 	u64 reg;
14672 
14673 	if (!rcd || !rcd->sc)
14674 		return -EINVAL;
14675 
14676 	hw_ctxt = rcd->sc->hw_context;
14677 	reg = SEND_CTXT_CHECK_JOB_KEY_MASK_SMASK | /* mask is always 1's */
14678 		((jkey & SEND_CTXT_CHECK_JOB_KEY_VALUE_MASK) <<
14679 		 SEND_CTXT_CHECK_JOB_KEY_VALUE_SHIFT);
14680 	/* JOB_KEY_ALLOW_PERMISSIVE is not allowed by default */
14681 	if (HFI1_CAP_KGET_MASK(rcd->flags, ALLOW_PERM_JKEY))
14682 		reg |= SEND_CTXT_CHECK_JOB_KEY_ALLOW_PERMISSIVE_SMASK;
14683 	write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_JOB_KEY, reg);
14684 	/*
14685 	 * Enable send-side J_KEY integrity check, unless this is A0 h/w
14686 	 */
14687 	if (!is_ax(dd)) {
14688 		reg = read_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE);
14689 		reg |= SEND_CTXT_CHECK_ENABLE_CHECK_JOB_KEY_SMASK;
14690 		write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE, reg);
14691 	}
14692 
14693 	/* Enable J_KEY check on receive context. */
14694 	reg = RCV_KEY_CTRL_JOB_KEY_ENABLE_SMASK |
14695 		((jkey & RCV_KEY_CTRL_JOB_KEY_VALUE_MASK) <<
14696 		 RCV_KEY_CTRL_JOB_KEY_VALUE_SHIFT);
14697 	write_kctxt_csr(dd, rcd->ctxt, RCV_KEY_CTRL, reg);
14698 
14699 	return 0;
14700 }
14701 
14702 int hfi1_clear_ctxt_jkey(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd)
14703 {
14704 	u8 hw_ctxt;
14705 	u64 reg;
14706 
14707 	if (!rcd || !rcd->sc)
14708 		return -EINVAL;
14709 
14710 	hw_ctxt = rcd->sc->hw_context;
14711 	write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_JOB_KEY, 0);
14712 	/*
14713 	 * Disable send-side J_KEY integrity check, unless this is A0 h/w.
14714 	 * This check would not have been enabled for A0 h/w, see
14715 	 * set_ctxt_jkey().
14716 	 */
14717 	if (!is_ax(dd)) {
14718 		reg = read_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE);
14719 		reg &= ~SEND_CTXT_CHECK_ENABLE_CHECK_JOB_KEY_SMASK;
14720 		write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE, reg);
14721 	}
14722 	/* Turn off the J_KEY on the receive side */
14723 	write_kctxt_csr(dd, rcd->ctxt, RCV_KEY_CTRL, 0);
14724 
14725 	return 0;
14726 }
14727 
14728 int hfi1_set_ctxt_pkey(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd,
14729 		       u16 pkey)
14730 {
14731 	u8 hw_ctxt;
14732 	u64 reg;
14733 
14734 	if (!rcd || !rcd->sc)
14735 		return -EINVAL;
14736 
14737 	hw_ctxt = rcd->sc->hw_context;
14738 	reg = ((u64)pkey & SEND_CTXT_CHECK_PARTITION_KEY_VALUE_MASK) <<
14739 		SEND_CTXT_CHECK_PARTITION_KEY_VALUE_SHIFT;
14740 	write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_PARTITION_KEY, reg);
14741 	reg = read_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE);
14742 	reg |= SEND_CTXT_CHECK_ENABLE_CHECK_PARTITION_KEY_SMASK;
14743 	reg &= ~SEND_CTXT_CHECK_ENABLE_DISALLOW_KDETH_PACKETS_SMASK;
14744 	write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE, reg);
14745 
14746 	return 0;
14747 }
14748 
14749 int hfi1_clear_ctxt_pkey(struct hfi1_devdata *dd, struct hfi1_ctxtdata *ctxt)
14750 {
14751 	u8 hw_ctxt;
14752 	u64 reg;
14753 
14754 	if (!ctxt || !ctxt->sc)
14755 		return -EINVAL;
14756 
14757 	hw_ctxt = ctxt->sc->hw_context;
14758 	reg = read_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE);
14759 	reg &= ~SEND_CTXT_CHECK_ENABLE_CHECK_PARTITION_KEY_SMASK;
14760 	write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE, reg);
14761 	write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_PARTITION_KEY, 0);
14762 
14763 	return 0;
14764 }
14765 
14766 /*
14767  * Start doing the clean up the the chip. Our clean up happens in multiple
14768  * stages and this is just the first.
14769  */
14770 void hfi1_start_cleanup(struct hfi1_devdata *dd)
14771 {
14772 	aspm_exit(dd);
14773 	free_cntrs(dd);
14774 	free_rcverr(dd);
14775 	clean_up_interrupts(dd);
14776 	finish_chip_resources(dd);
14777 }
14778 
14779 #define HFI_BASE_GUID(dev) \
14780 	((dev)->base_guid & ~(1ULL << GUID_HFI_INDEX_SHIFT))
14781 
14782 /*
14783  * Information can be shared between the two HFIs on the same ASIC
14784  * in the same OS.  This function finds the peer device and sets
14785  * up a shared structure.
14786  */
14787 static int init_asic_data(struct hfi1_devdata *dd)
14788 {
14789 	unsigned long flags;
14790 	struct hfi1_devdata *tmp, *peer = NULL;
14791 	struct hfi1_asic_data *asic_data;
14792 	int ret = 0;
14793 
14794 	/* pre-allocate the asic structure in case we are the first device */
14795 	asic_data = kzalloc(sizeof(*dd->asic_data), GFP_KERNEL);
14796 	if (!asic_data)
14797 		return -ENOMEM;
14798 
14799 	spin_lock_irqsave(&hfi1_devs_lock, flags);
14800 	/* Find our peer device */
14801 	list_for_each_entry(tmp, &hfi1_dev_list, list) {
14802 		if ((HFI_BASE_GUID(dd) == HFI_BASE_GUID(tmp)) &&
14803 		    dd->unit != tmp->unit) {
14804 			peer = tmp;
14805 			break;
14806 		}
14807 	}
14808 
14809 	if (peer) {
14810 		/* use already allocated structure */
14811 		dd->asic_data = peer->asic_data;
14812 		kfree(asic_data);
14813 	} else {
14814 		dd->asic_data = asic_data;
14815 		mutex_init(&dd->asic_data->asic_resource_mutex);
14816 	}
14817 	dd->asic_data->dds[dd->hfi1_id] = dd; /* self back-pointer */
14818 	spin_unlock_irqrestore(&hfi1_devs_lock, flags);
14819 
14820 	/* first one through - set up i2c devices */
14821 	if (!peer)
14822 		ret = set_up_i2c(dd, dd->asic_data);
14823 
14824 	return ret;
14825 }
14826 
14827 /*
14828  * Set dd->boardname.  Use a generic name if a name is not returned from
14829  * EFI variable space.
14830  *
14831  * Return 0 on success, -ENOMEM if space could not be allocated.
14832  */
14833 static int obtain_boardname(struct hfi1_devdata *dd)
14834 {
14835 	/* generic board description */
14836 	const char generic[] =
14837 		"Intel Omni-Path Host Fabric Interface Adapter 100 Series";
14838 	unsigned long size;
14839 	int ret;
14840 
14841 	ret = read_hfi1_efi_var(dd, "description", &size,
14842 				(void **)&dd->boardname);
14843 	if (ret) {
14844 		dd_dev_info(dd, "Board description not found\n");
14845 		/* use generic description */
14846 		dd->boardname = kstrdup(generic, GFP_KERNEL);
14847 		if (!dd->boardname)
14848 			return -ENOMEM;
14849 	}
14850 	return 0;
14851 }
14852 
14853 /*
14854  * Check the interrupt registers to make sure that they are mapped correctly.
14855  * It is intended to help user identify any mismapping by VMM when the driver
14856  * is running in a VM. This function should only be called before interrupt
14857  * is set up properly.
14858  *
14859  * Return 0 on success, -EINVAL on failure.
14860  */
14861 static int check_int_registers(struct hfi1_devdata *dd)
14862 {
14863 	u64 reg;
14864 	u64 all_bits = ~(u64)0;
14865 	u64 mask;
14866 
14867 	/* Clear CceIntMask[0] to avoid raising any interrupts */
14868 	mask = read_csr(dd, CCE_INT_MASK);
14869 	write_csr(dd, CCE_INT_MASK, 0ull);
14870 	reg = read_csr(dd, CCE_INT_MASK);
14871 	if (reg)
14872 		goto err_exit;
14873 
14874 	/* Clear all interrupt status bits */
14875 	write_csr(dd, CCE_INT_CLEAR, all_bits);
14876 	reg = read_csr(dd, CCE_INT_STATUS);
14877 	if (reg)
14878 		goto err_exit;
14879 
14880 	/* Set all interrupt status bits */
14881 	write_csr(dd, CCE_INT_FORCE, all_bits);
14882 	reg = read_csr(dd, CCE_INT_STATUS);
14883 	if (reg != all_bits)
14884 		goto err_exit;
14885 
14886 	/* Restore the interrupt mask */
14887 	write_csr(dd, CCE_INT_CLEAR, all_bits);
14888 	write_csr(dd, CCE_INT_MASK, mask);
14889 
14890 	return 0;
14891 err_exit:
14892 	write_csr(dd, CCE_INT_MASK, mask);
14893 	dd_dev_err(dd, "Interrupt registers not properly mapped by VMM\n");
14894 	return -EINVAL;
14895 }
14896 
14897 /**
14898  * Allocate and initialize the device structure for the hfi.
14899  * @dev: the pci_dev for hfi1_ib device
14900  * @ent: pci_device_id struct for this dev
14901  *
14902  * Also allocates, initializes, and returns the devdata struct for this
14903  * device instance
14904  *
14905  * This is global, and is called directly at init to set up the
14906  * chip-specific function pointers for later use.
14907  */
14908 struct hfi1_devdata *hfi1_init_dd(struct pci_dev *pdev,
14909 				  const struct pci_device_id *ent)
14910 {
14911 	struct hfi1_devdata *dd;
14912 	struct hfi1_pportdata *ppd;
14913 	u64 reg;
14914 	int i, ret;
14915 	static const char * const inames[] = { /* implementation names */
14916 		"RTL silicon",
14917 		"RTL VCS simulation",
14918 		"RTL FPGA emulation",
14919 		"Functional simulator"
14920 	};
14921 	struct pci_dev *parent = pdev->bus->self;
14922 
14923 	dd = hfi1_alloc_devdata(pdev, NUM_IB_PORTS *
14924 				sizeof(struct hfi1_pportdata));
14925 	if (IS_ERR(dd))
14926 		goto bail;
14927 	ppd = dd->pport;
14928 	for (i = 0; i < dd->num_pports; i++, ppd++) {
14929 		int vl;
14930 		/* init common fields */
14931 		hfi1_init_pportdata(pdev, ppd, dd, 0, 1);
14932 		/* DC supports 4 link widths */
14933 		ppd->link_width_supported =
14934 			OPA_LINK_WIDTH_1X | OPA_LINK_WIDTH_2X |
14935 			OPA_LINK_WIDTH_3X | OPA_LINK_WIDTH_4X;
14936 		ppd->link_width_downgrade_supported =
14937 			ppd->link_width_supported;
14938 		/* start out enabling only 4X */
14939 		ppd->link_width_enabled = OPA_LINK_WIDTH_4X;
14940 		ppd->link_width_downgrade_enabled =
14941 					ppd->link_width_downgrade_supported;
14942 		/* link width active is 0 when link is down */
14943 		/* link width downgrade active is 0 when link is down */
14944 
14945 		if (num_vls < HFI1_MIN_VLS_SUPPORTED ||
14946 		    num_vls > HFI1_MAX_VLS_SUPPORTED) {
14947 			hfi1_early_err(&pdev->dev,
14948 				       "Invalid num_vls %u, using %u VLs\n",
14949 				    num_vls, HFI1_MAX_VLS_SUPPORTED);
14950 			num_vls = HFI1_MAX_VLS_SUPPORTED;
14951 		}
14952 		ppd->vls_supported = num_vls;
14953 		ppd->vls_operational = ppd->vls_supported;
14954 		/* Set the default MTU. */
14955 		for (vl = 0; vl < num_vls; vl++)
14956 			dd->vld[vl].mtu = hfi1_max_mtu;
14957 		dd->vld[15].mtu = MAX_MAD_PACKET;
14958 		/*
14959 		 * Set the initial values to reasonable default, will be set
14960 		 * for real when link is up.
14961 		 */
14962 		ppd->overrun_threshold = 0x4;
14963 		ppd->phy_error_threshold = 0xf;
14964 		ppd->port_crc_mode_enabled = link_crc_mask;
14965 		/* initialize supported LTP CRC mode */
14966 		ppd->port_ltp_crc_mode = cap_to_port_ltp(link_crc_mask) << 8;
14967 		/* initialize enabled LTP CRC mode */
14968 		ppd->port_ltp_crc_mode |= cap_to_port_ltp(link_crc_mask) << 4;
14969 		/* start in offline */
14970 		ppd->host_link_state = HLS_DN_OFFLINE;
14971 		init_vl_arb_caches(ppd);
14972 	}
14973 
14974 	/*
14975 	 * Do remaining PCIe setup and save PCIe values in dd.
14976 	 * Any error printing is already done by the init code.
14977 	 * On return, we have the chip mapped.
14978 	 */
14979 	ret = hfi1_pcie_ddinit(dd, pdev);
14980 	if (ret < 0)
14981 		goto bail_free;
14982 
14983 	/* Save PCI space registers to rewrite after device reset */
14984 	ret = save_pci_variables(dd);
14985 	if (ret < 0)
14986 		goto bail_cleanup;
14987 
14988 	/* verify that reads actually work, save revision for reset check */
14989 	dd->revision = read_csr(dd, CCE_REVISION);
14990 	if (dd->revision == ~(u64)0) {
14991 		dd_dev_err(dd, "cannot read chip CSRs\n");
14992 		ret = -EINVAL;
14993 		goto bail_cleanup;
14994 	}
14995 	dd->majrev = (dd->revision >> CCE_REVISION_CHIP_REV_MAJOR_SHIFT)
14996 			& CCE_REVISION_CHIP_REV_MAJOR_MASK;
14997 	dd->minrev = (dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT)
14998 			& CCE_REVISION_CHIP_REV_MINOR_MASK;
14999 
15000 	/*
15001 	 * Check interrupt registers mapping if the driver has no access to
15002 	 * the upstream component. In this case, it is likely that the driver
15003 	 * is running in a VM.
15004 	 */
15005 	if (!parent) {
15006 		ret = check_int_registers(dd);
15007 		if (ret)
15008 			goto bail_cleanup;
15009 	}
15010 
15011 	/*
15012 	 * obtain the hardware ID - NOT related to unit, which is a
15013 	 * software enumeration
15014 	 */
15015 	reg = read_csr(dd, CCE_REVISION2);
15016 	dd->hfi1_id = (reg >> CCE_REVISION2_HFI_ID_SHIFT)
15017 					& CCE_REVISION2_HFI_ID_MASK;
15018 	/* the variable size will remove unwanted bits */
15019 	dd->icode = reg >> CCE_REVISION2_IMPL_CODE_SHIFT;
15020 	dd->irev = reg >> CCE_REVISION2_IMPL_REVISION_SHIFT;
15021 	dd_dev_info(dd, "Implementation: %s, revision 0x%x\n",
15022 		    dd->icode < ARRAY_SIZE(inames) ?
15023 		    inames[dd->icode] : "unknown", (int)dd->irev);
15024 
15025 	/* speeds the hardware can support */
15026 	dd->pport->link_speed_supported = OPA_LINK_SPEED_25G;
15027 	/* speeds allowed to run at */
15028 	dd->pport->link_speed_enabled = dd->pport->link_speed_supported;
15029 	/* give a reasonable active value, will be set on link up */
15030 	dd->pport->link_speed_active = OPA_LINK_SPEED_25G;
15031 
15032 	dd->chip_rcv_contexts = read_csr(dd, RCV_CONTEXTS);
15033 	dd->chip_send_contexts = read_csr(dd, SEND_CONTEXTS);
15034 	dd->chip_sdma_engines = read_csr(dd, SEND_DMA_ENGINES);
15035 	dd->chip_pio_mem_size = read_csr(dd, SEND_PIO_MEM_SIZE);
15036 	dd->chip_sdma_mem_size = read_csr(dd, SEND_DMA_MEM_SIZE);
15037 	/* fix up link widths for emulation _p */
15038 	ppd = dd->pport;
15039 	if (dd->icode == ICODE_FPGA_EMULATION && is_emulator_p(dd)) {
15040 		ppd->link_width_supported =
15041 			ppd->link_width_enabled =
15042 			ppd->link_width_downgrade_supported =
15043 			ppd->link_width_downgrade_enabled =
15044 				OPA_LINK_WIDTH_1X;
15045 	}
15046 	/* insure num_vls isn't larger than number of sdma engines */
15047 	if (HFI1_CAP_IS_KSET(SDMA) && num_vls > dd->chip_sdma_engines) {
15048 		dd_dev_err(dd, "num_vls %u too large, using %u VLs\n",
15049 			   num_vls, dd->chip_sdma_engines);
15050 		num_vls = dd->chip_sdma_engines;
15051 		ppd->vls_supported = dd->chip_sdma_engines;
15052 		ppd->vls_operational = ppd->vls_supported;
15053 	}
15054 
15055 	/*
15056 	 * Convert the ns parameter to the 64 * cclocks used in the CSR.
15057 	 * Limit the max if larger than the field holds.  If timeout is
15058 	 * non-zero, then the calculated field will be at least 1.
15059 	 *
15060 	 * Must be after icode is set up - the cclock rate depends
15061 	 * on knowing the hardware being used.
15062 	 */
15063 	dd->rcv_intr_timeout_csr = ns_to_cclock(dd, rcv_intr_timeout) / 64;
15064 	if (dd->rcv_intr_timeout_csr >
15065 			RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_MASK)
15066 		dd->rcv_intr_timeout_csr =
15067 			RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_MASK;
15068 	else if (dd->rcv_intr_timeout_csr == 0 && rcv_intr_timeout)
15069 		dd->rcv_intr_timeout_csr = 1;
15070 
15071 	/* needs to be done before we look for the peer device */
15072 	read_guid(dd);
15073 
15074 	/* set up shared ASIC data with peer device */
15075 	ret = init_asic_data(dd);
15076 	if (ret)
15077 		goto bail_cleanup;
15078 
15079 	/* obtain chip sizes, reset chip CSRs */
15080 	ret = init_chip(dd);
15081 	if (ret)
15082 		goto bail_cleanup;
15083 
15084 	/* read in the PCIe link speed information */
15085 	ret = pcie_speeds(dd);
15086 	if (ret)
15087 		goto bail_cleanup;
15088 
15089 	/* call before get_platform_config(), after init_chip_resources() */
15090 	ret = eprom_init(dd);
15091 	if (ret)
15092 		goto bail_free_rcverr;
15093 
15094 	/* Needs to be called before hfi1_firmware_init */
15095 	get_platform_config(dd);
15096 
15097 	/* read in firmware */
15098 	ret = hfi1_firmware_init(dd);
15099 	if (ret)
15100 		goto bail_cleanup;
15101 
15102 	/*
15103 	 * In general, the PCIe Gen3 transition must occur after the
15104 	 * chip has been idled (so it won't initiate any PCIe transactions
15105 	 * e.g. an interrupt) and before the driver changes any registers
15106 	 * (the transition will reset the registers).
15107 	 *
15108 	 * In particular, place this call after:
15109 	 * - init_chip()     - the chip will not initiate any PCIe transactions
15110 	 * - pcie_speeds()   - reads the current link speed
15111 	 * - hfi1_firmware_init() - the needed firmware is ready to be
15112 	 *			    downloaded
15113 	 */
15114 	ret = do_pcie_gen3_transition(dd);
15115 	if (ret)
15116 		goto bail_cleanup;
15117 
15118 	/* start setting dd values and adjusting CSRs */
15119 	init_early_variables(dd);
15120 
15121 	parse_platform_config(dd);
15122 
15123 	ret = obtain_boardname(dd);
15124 	if (ret)
15125 		goto bail_cleanup;
15126 
15127 	snprintf(dd->boardversion, BOARD_VERS_MAX,
15128 		 "ChipABI %u.%u, ChipRev %u.%u, SW Compat %llu\n",
15129 		 HFI1_CHIP_VERS_MAJ, HFI1_CHIP_VERS_MIN,
15130 		 (u32)dd->majrev,
15131 		 (u32)dd->minrev,
15132 		 (dd->revision >> CCE_REVISION_SW_SHIFT)
15133 		    & CCE_REVISION_SW_MASK);
15134 
15135 	ret = set_up_context_variables(dd);
15136 	if (ret)
15137 		goto bail_cleanup;
15138 
15139 	/* set initial RXE CSRs */
15140 	init_rxe(dd);
15141 	/* set initial TXE CSRs */
15142 	init_txe(dd);
15143 	/* set initial non-RXE, non-TXE CSRs */
15144 	init_other(dd);
15145 	/* set up KDETH QP prefix in both RX and TX CSRs */
15146 	init_kdeth_qp(dd);
15147 
15148 	ret = hfi1_dev_affinity_init(dd);
15149 	if (ret)
15150 		goto bail_cleanup;
15151 
15152 	/* send contexts must be set up before receive contexts */
15153 	ret = init_send_contexts(dd);
15154 	if (ret)
15155 		goto bail_cleanup;
15156 
15157 	ret = hfi1_create_kctxts(dd);
15158 	if (ret)
15159 		goto bail_cleanup;
15160 
15161 	/*
15162 	 * Initialize aspm, to be done after gen3 transition and setting up
15163 	 * contexts and before enabling interrupts
15164 	 */
15165 	aspm_init(dd);
15166 
15167 	dd->rcvhdrsize = DEFAULT_RCVHDRSIZE;
15168 	/*
15169 	 * rcd[0] is guaranteed to be valid by this point. Also, all
15170 	 * context are using the same value, as per the module parameter.
15171 	 */
15172 	dd->rhf_offset = dd->rcd[0]->rcvhdrqentsize - sizeof(u64) / sizeof(u32);
15173 
15174 	ret = init_pervl_scs(dd);
15175 	if (ret)
15176 		goto bail_cleanup;
15177 
15178 	/* sdma init */
15179 	for (i = 0; i < dd->num_pports; ++i) {
15180 		ret = sdma_init(dd, i);
15181 		if (ret)
15182 			goto bail_cleanup;
15183 	}
15184 
15185 	/* use contexts created by hfi1_create_kctxts */
15186 	ret = set_up_interrupts(dd);
15187 	if (ret)
15188 		goto bail_cleanup;
15189 
15190 	/* set up LCB access - must be after set_up_interrupts() */
15191 	init_lcb_access(dd);
15192 
15193 	/*
15194 	 * Serial number is created from the base guid:
15195 	 * [27:24] = base guid [38:35]
15196 	 * [23: 0] = base guid [23: 0]
15197 	 */
15198 	snprintf(dd->serial, SERIAL_MAX, "0x%08llx\n",
15199 		 (dd->base_guid & 0xFFFFFF) |
15200 		     ((dd->base_guid >> 11) & 0xF000000));
15201 
15202 	dd->oui1 = dd->base_guid >> 56 & 0xFF;
15203 	dd->oui2 = dd->base_guid >> 48 & 0xFF;
15204 	dd->oui3 = dd->base_guid >> 40 & 0xFF;
15205 
15206 	ret = load_firmware(dd); /* asymmetric with dispose_firmware() */
15207 	if (ret)
15208 		goto bail_clear_intr;
15209 
15210 	thermal_init(dd);
15211 
15212 	ret = init_cntrs(dd);
15213 	if (ret)
15214 		goto bail_clear_intr;
15215 
15216 	ret = init_rcverr(dd);
15217 	if (ret)
15218 		goto bail_free_cntrs;
15219 
15220 	init_completion(&dd->user_comp);
15221 
15222 	/* The user refcount starts with one to inidicate an active device */
15223 	atomic_set(&dd->user_refcount, 1);
15224 
15225 	goto bail;
15226 
15227 bail_free_rcverr:
15228 	free_rcverr(dd);
15229 bail_free_cntrs:
15230 	free_cntrs(dd);
15231 bail_clear_intr:
15232 	clean_up_interrupts(dd);
15233 bail_cleanup:
15234 	hfi1_pcie_ddcleanup(dd);
15235 bail_free:
15236 	hfi1_free_devdata(dd);
15237 	dd = ERR_PTR(ret);
15238 bail:
15239 	return dd;
15240 }
15241 
15242 static u16 delay_cycles(struct hfi1_pportdata *ppd, u32 desired_egress_rate,
15243 			u32 dw_len)
15244 {
15245 	u32 delta_cycles;
15246 	u32 current_egress_rate = ppd->current_egress_rate;
15247 	/* rates here are in units of 10^6 bits/sec */
15248 
15249 	if (desired_egress_rate == -1)
15250 		return 0; /* shouldn't happen */
15251 
15252 	if (desired_egress_rate >= current_egress_rate)
15253 		return 0; /* we can't help go faster, only slower */
15254 
15255 	delta_cycles = egress_cycles(dw_len * 4, desired_egress_rate) -
15256 			egress_cycles(dw_len * 4, current_egress_rate);
15257 
15258 	return (u16)delta_cycles;
15259 }
15260 
15261 /**
15262  * create_pbc - build a pbc for transmission
15263  * @flags: special case flags or-ed in built pbc
15264  * @srate: static rate
15265  * @vl: vl
15266  * @dwlen: dword length (header words + data words + pbc words)
15267  *
15268  * Create a PBC with the given flags, rate, VL, and length.
15269  *
15270  * NOTE: The PBC created will not insert any HCRC - all callers but one are
15271  * for verbs, which does not use this PSM feature.  The lone other caller
15272  * is for the diagnostic interface which calls this if the user does not
15273  * supply their own PBC.
15274  */
15275 u64 create_pbc(struct hfi1_pportdata *ppd, u64 flags, int srate_mbs, u32 vl,
15276 	       u32 dw_len)
15277 {
15278 	u64 pbc, delay = 0;
15279 
15280 	if (unlikely(srate_mbs))
15281 		delay = delay_cycles(ppd, srate_mbs, dw_len);
15282 
15283 	pbc = flags
15284 		| (delay << PBC_STATIC_RATE_CONTROL_COUNT_SHIFT)
15285 		| ((u64)PBC_IHCRC_NONE << PBC_INSERT_HCRC_SHIFT)
15286 		| (vl & PBC_VL_MASK) << PBC_VL_SHIFT
15287 		| (dw_len & PBC_LENGTH_DWS_MASK)
15288 			<< PBC_LENGTH_DWS_SHIFT;
15289 
15290 	return pbc;
15291 }
15292 
15293 #define SBUS_THERMAL    0x4f
15294 #define SBUS_THERM_MONITOR_MODE 0x1
15295 
15296 #define THERM_FAILURE(dev, ret, reason) \
15297 	dd_dev_err((dd),						\
15298 		   "Thermal sensor initialization failed: %s (%d)\n",	\
15299 		   (reason), (ret))
15300 
15301 /*
15302  * Initialize the thermal sensor.
15303  *
15304  * After initialization, enable polling of thermal sensor through
15305  * SBus interface. In order for this to work, the SBus Master
15306  * firmware has to be loaded due to the fact that the HW polling
15307  * logic uses SBus interrupts, which are not supported with
15308  * default firmware. Otherwise, no data will be returned through
15309  * the ASIC_STS_THERM CSR.
15310  */
15311 static int thermal_init(struct hfi1_devdata *dd)
15312 {
15313 	int ret = 0;
15314 
15315 	if (dd->icode != ICODE_RTL_SILICON ||
15316 	    check_chip_resource(dd, CR_THERM_INIT, NULL))
15317 		return ret;
15318 
15319 	ret = acquire_chip_resource(dd, CR_SBUS, SBUS_TIMEOUT);
15320 	if (ret) {
15321 		THERM_FAILURE(dd, ret, "Acquire SBus");
15322 		return ret;
15323 	}
15324 
15325 	dd_dev_info(dd, "Initializing thermal sensor\n");
15326 	/* Disable polling of thermal readings */
15327 	write_csr(dd, ASIC_CFG_THERM_POLL_EN, 0x0);
15328 	msleep(100);
15329 	/* Thermal Sensor Initialization */
15330 	/*    Step 1: Reset the Thermal SBus Receiver */
15331 	ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0,
15332 				RESET_SBUS_RECEIVER, 0);
15333 	if (ret) {
15334 		THERM_FAILURE(dd, ret, "Bus Reset");
15335 		goto done;
15336 	}
15337 	/*    Step 2: Set Reset bit in Thermal block */
15338 	ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0,
15339 				WRITE_SBUS_RECEIVER, 0x1);
15340 	if (ret) {
15341 		THERM_FAILURE(dd, ret, "Therm Block Reset");
15342 		goto done;
15343 	}
15344 	/*    Step 3: Write clock divider value (100MHz -> 2MHz) */
15345 	ret = sbus_request_slow(dd, SBUS_THERMAL, 0x1,
15346 				WRITE_SBUS_RECEIVER, 0x32);
15347 	if (ret) {
15348 		THERM_FAILURE(dd, ret, "Write Clock Div");
15349 		goto done;
15350 	}
15351 	/*    Step 4: Select temperature mode */
15352 	ret = sbus_request_slow(dd, SBUS_THERMAL, 0x3,
15353 				WRITE_SBUS_RECEIVER,
15354 				SBUS_THERM_MONITOR_MODE);
15355 	if (ret) {
15356 		THERM_FAILURE(dd, ret, "Write Mode Sel");
15357 		goto done;
15358 	}
15359 	/*    Step 5: De-assert block reset and start conversion */
15360 	ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0,
15361 				WRITE_SBUS_RECEIVER, 0x2);
15362 	if (ret) {
15363 		THERM_FAILURE(dd, ret, "Write Reset Deassert");
15364 		goto done;
15365 	}
15366 	/*    Step 5.1: Wait for first conversion (21.5ms per spec) */
15367 	msleep(22);
15368 
15369 	/* Enable polling of thermal readings */
15370 	write_csr(dd, ASIC_CFG_THERM_POLL_EN, 0x1);
15371 
15372 	/* Set initialized flag */
15373 	ret = acquire_chip_resource(dd, CR_THERM_INIT, 0);
15374 	if (ret)
15375 		THERM_FAILURE(dd, ret, "Unable to set thermal init flag");
15376 
15377 done:
15378 	release_chip_resource(dd, CR_SBUS);
15379 	return ret;
15380 }
15381 
15382 static void handle_temp_err(struct hfi1_devdata *dd)
15383 {
15384 	struct hfi1_pportdata *ppd = &dd->pport[0];
15385 	/*
15386 	 * Thermal Critical Interrupt
15387 	 * Put the device into forced freeze mode, take link down to
15388 	 * offline, and put DC into reset.
15389 	 */
15390 	dd_dev_emerg(dd,
15391 		     "Critical temperature reached! Forcing device into freeze mode!\n");
15392 	dd->flags |= HFI1_FORCED_FREEZE;
15393 	start_freeze_handling(ppd, FREEZE_SELF | FREEZE_ABORT);
15394 	/*
15395 	 * Shut DC down as much and as quickly as possible.
15396 	 *
15397 	 * Step 1: Take the link down to OFFLINE. This will cause the
15398 	 *         8051 to put the Serdes in reset. However, we don't want to
15399 	 *         go through the entire link state machine since we want to
15400 	 *         shutdown ASAP. Furthermore, this is not a graceful shutdown
15401 	 *         but rather an attempt to save the chip.
15402 	 *         Code below is almost the same as quiet_serdes() but avoids
15403 	 *         all the extra work and the sleeps.
15404 	 */
15405 	ppd->driver_link_ready = 0;
15406 	ppd->link_enabled = 0;
15407 	set_physical_link_state(dd, (OPA_LINKDOWN_REASON_SMA_DISABLED << 8) |
15408 				PLS_OFFLINE);
15409 	/*
15410 	 * Step 2: Shutdown LCB and 8051
15411 	 *         After shutdown, do not restore DC_CFG_RESET value.
15412 	 */
15413 	dc_shutdown(dd);
15414 }
15415