xref: /openbmc/linux/drivers/infiniband/hw/hfi1/chip.c (revision 675aaf05)
1 /*
2  * Copyright(c) 2015 - 2018 Intel Corporation.
3  *
4  * This file is provided under a dual BSD/GPLv2 license.  When using or
5  * redistributing this file, you may do so under either license.
6  *
7  * GPL LICENSE SUMMARY
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of version 2 of the GNU General Public License as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * General Public License for more details.
17  *
18  * BSD LICENSE
19  *
20  * Redistribution and use in source and binary forms, with or without
21  * modification, are permitted provided that the following conditions
22  * are met:
23  *
24  *  - Redistributions of source code must retain the above copyright
25  *    notice, this list of conditions and the following disclaimer.
26  *  - Redistributions in binary form must reproduce the above copyright
27  *    notice, this list of conditions and the following disclaimer in
28  *    the documentation and/or other materials provided with the
29  *    distribution.
30  *  - Neither the name of Intel Corporation nor the names of its
31  *    contributors may be used to endorse or promote products derived
32  *    from this software without specific prior written permission.
33  *
34  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45  *
46  */
47 
48 /*
49  * This file contains all of the code that is specific to the HFI chip
50  */
51 
52 #include <linux/pci.h>
53 #include <linux/delay.h>
54 #include <linux/interrupt.h>
55 #include <linux/module.h>
56 
57 #include "hfi.h"
58 #include "trace.h"
59 #include "mad.h"
60 #include "pio.h"
61 #include "sdma.h"
62 #include "eprom.h"
63 #include "efivar.h"
64 #include "platform.h"
65 #include "aspm.h"
66 #include "affinity.h"
67 #include "debugfs.h"
68 #include "fault.h"
69 
70 uint kdeth_qp;
71 module_param_named(kdeth_qp, kdeth_qp, uint, S_IRUGO);
72 MODULE_PARM_DESC(kdeth_qp, "Set the KDETH queue pair prefix");
73 
74 uint num_vls = HFI1_MAX_VLS_SUPPORTED;
75 module_param(num_vls, uint, S_IRUGO);
76 MODULE_PARM_DESC(num_vls, "Set number of Virtual Lanes to use (1-8)");
77 
78 /*
79  * Default time to aggregate two 10K packets from the idle state
80  * (timer not running). The timer starts at the end of the first packet,
81  * so only the time for one 10K packet and header plus a bit extra is needed.
82  * 10 * 1024 + 64 header byte = 10304 byte
83  * 10304 byte / 12.5 GB/s = 824.32ns
84  */
85 uint rcv_intr_timeout = (824 + 16); /* 16 is for coalescing interrupt */
86 module_param(rcv_intr_timeout, uint, S_IRUGO);
87 MODULE_PARM_DESC(rcv_intr_timeout, "Receive interrupt mitigation timeout in ns");
88 
89 uint rcv_intr_count = 16; /* same as qib */
90 module_param(rcv_intr_count, uint, S_IRUGO);
91 MODULE_PARM_DESC(rcv_intr_count, "Receive interrupt mitigation count");
92 
93 ushort link_crc_mask = SUPPORTED_CRCS;
94 module_param(link_crc_mask, ushort, S_IRUGO);
95 MODULE_PARM_DESC(link_crc_mask, "CRCs to use on the link");
96 
97 uint loopback;
98 module_param_named(loopback, loopback, uint, S_IRUGO);
99 MODULE_PARM_DESC(loopback, "Put into loopback mode (1 = serdes, 3 = external cable");
100 
101 /* Other driver tunables */
102 uint rcv_intr_dynamic = 1; /* enable dynamic mode for rcv int mitigation*/
103 static ushort crc_14b_sideband = 1;
104 static uint use_flr = 1;
105 uint quick_linkup; /* skip LNI */
106 
107 struct flag_table {
108 	u64 flag;	/* the flag */
109 	char *str;	/* description string */
110 	u16 extra;	/* extra information */
111 	u16 unused0;
112 	u32 unused1;
113 };
114 
115 /* str must be a string constant */
116 #define FLAG_ENTRY(str, extra, flag) {flag, str, extra}
117 #define FLAG_ENTRY0(str, flag) {flag, str, 0}
118 
119 /* Send Error Consequences */
120 #define SEC_WRITE_DROPPED	0x1
121 #define SEC_PACKET_DROPPED	0x2
122 #define SEC_SC_HALTED		0x4	/* per-context only */
123 #define SEC_SPC_FREEZE		0x8	/* per-HFI only */
124 
125 #define DEFAULT_KRCVQS		  2
126 #define MIN_KERNEL_KCTXTS         2
127 #define FIRST_KERNEL_KCTXT        1
128 
129 /*
130  * RSM instance allocation
131  *   0 - Verbs
132  *   1 - User Fecn Handling
133  *   2 - Vnic
134  */
135 #define RSM_INS_VERBS             0
136 #define RSM_INS_FECN              1
137 #define RSM_INS_VNIC              2
138 
139 /* Bit offset into the GUID which carries HFI id information */
140 #define GUID_HFI_INDEX_SHIFT     39
141 
142 /* extract the emulation revision */
143 #define emulator_rev(dd) ((dd)->irev >> 8)
144 /* parallel and serial emulation versions are 3 and 4 respectively */
145 #define is_emulator_p(dd) ((((dd)->irev) & 0xf) == 3)
146 #define is_emulator_s(dd) ((((dd)->irev) & 0xf) == 4)
147 
148 /* RSM fields for Verbs */
149 /* packet type */
150 #define IB_PACKET_TYPE         2ull
151 #define QW_SHIFT               6ull
152 /* QPN[7..1] */
153 #define QPN_WIDTH              7ull
154 
155 /* LRH.BTH: QW 0, OFFSET 48 - for match */
156 #define LRH_BTH_QW             0ull
157 #define LRH_BTH_BIT_OFFSET     48ull
158 #define LRH_BTH_OFFSET(off)    ((LRH_BTH_QW << QW_SHIFT) | (off))
159 #define LRH_BTH_MATCH_OFFSET   LRH_BTH_OFFSET(LRH_BTH_BIT_OFFSET)
160 #define LRH_BTH_SELECT
161 #define LRH_BTH_MASK           3ull
162 #define LRH_BTH_VALUE          2ull
163 
164 /* LRH.SC[3..0] QW 0, OFFSET 56 - for match */
165 #define LRH_SC_QW              0ull
166 #define LRH_SC_BIT_OFFSET      56ull
167 #define LRH_SC_OFFSET(off)     ((LRH_SC_QW << QW_SHIFT) | (off))
168 #define LRH_SC_MATCH_OFFSET    LRH_SC_OFFSET(LRH_SC_BIT_OFFSET)
169 #define LRH_SC_MASK            128ull
170 #define LRH_SC_VALUE           0ull
171 
172 /* SC[n..0] QW 0, OFFSET 60 - for select */
173 #define LRH_SC_SELECT_OFFSET  ((LRH_SC_QW << QW_SHIFT) | (60ull))
174 
175 /* QPN[m+n:1] QW 1, OFFSET 1 */
176 #define QPN_SELECT_OFFSET      ((1ull << QW_SHIFT) | (1ull))
177 
178 /* RSM fields for Vnic */
179 /* L2_TYPE: QW 0, OFFSET 61 - for match */
180 #define L2_TYPE_QW             0ull
181 #define L2_TYPE_BIT_OFFSET     61ull
182 #define L2_TYPE_OFFSET(off)    ((L2_TYPE_QW << QW_SHIFT) | (off))
183 #define L2_TYPE_MATCH_OFFSET   L2_TYPE_OFFSET(L2_TYPE_BIT_OFFSET)
184 #define L2_TYPE_MASK           3ull
185 #define L2_16B_VALUE           2ull
186 
187 /* L4_TYPE QW 1, OFFSET 0 - for match */
188 #define L4_TYPE_QW              1ull
189 #define L4_TYPE_BIT_OFFSET      0ull
190 #define L4_TYPE_OFFSET(off)     ((L4_TYPE_QW << QW_SHIFT) | (off))
191 #define L4_TYPE_MATCH_OFFSET    L4_TYPE_OFFSET(L4_TYPE_BIT_OFFSET)
192 #define L4_16B_TYPE_MASK        0xFFull
193 #define L4_16B_ETH_VALUE        0x78ull
194 
195 /* 16B VESWID - for select */
196 #define L4_16B_HDR_VESWID_OFFSET  ((2 << QW_SHIFT) | (16ull))
197 /* 16B ENTROPY - for select */
198 #define L2_16B_ENTROPY_OFFSET     ((1 << QW_SHIFT) | (32ull))
199 
200 /* defines to build power on SC2VL table */
201 #define SC2VL_VAL( \
202 	num, \
203 	sc0, sc0val, \
204 	sc1, sc1val, \
205 	sc2, sc2val, \
206 	sc3, sc3val, \
207 	sc4, sc4val, \
208 	sc5, sc5val, \
209 	sc6, sc6val, \
210 	sc7, sc7val) \
211 ( \
212 	((u64)(sc0val) << SEND_SC2VLT##num##_SC##sc0##_SHIFT) | \
213 	((u64)(sc1val) << SEND_SC2VLT##num##_SC##sc1##_SHIFT) | \
214 	((u64)(sc2val) << SEND_SC2VLT##num##_SC##sc2##_SHIFT) | \
215 	((u64)(sc3val) << SEND_SC2VLT##num##_SC##sc3##_SHIFT) | \
216 	((u64)(sc4val) << SEND_SC2VLT##num##_SC##sc4##_SHIFT) | \
217 	((u64)(sc5val) << SEND_SC2VLT##num##_SC##sc5##_SHIFT) | \
218 	((u64)(sc6val) << SEND_SC2VLT##num##_SC##sc6##_SHIFT) | \
219 	((u64)(sc7val) << SEND_SC2VLT##num##_SC##sc7##_SHIFT)   \
220 )
221 
222 #define DC_SC_VL_VAL( \
223 	range, \
224 	e0, e0val, \
225 	e1, e1val, \
226 	e2, e2val, \
227 	e3, e3val, \
228 	e4, e4val, \
229 	e5, e5val, \
230 	e6, e6val, \
231 	e7, e7val, \
232 	e8, e8val, \
233 	e9, e9val, \
234 	e10, e10val, \
235 	e11, e11val, \
236 	e12, e12val, \
237 	e13, e13val, \
238 	e14, e14val, \
239 	e15, e15val) \
240 ( \
241 	((u64)(e0val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e0##_SHIFT) | \
242 	((u64)(e1val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e1##_SHIFT) | \
243 	((u64)(e2val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e2##_SHIFT) | \
244 	((u64)(e3val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e3##_SHIFT) | \
245 	((u64)(e4val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e4##_SHIFT) | \
246 	((u64)(e5val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e5##_SHIFT) | \
247 	((u64)(e6val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e6##_SHIFT) | \
248 	((u64)(e7val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e7##_SHIFT) | \
249 	((u64)(e8val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e8##_SHIFT) | \
250 	((u64)(e9val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e9##_SHIFT) | \
251 	((u64)(e10val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e10##_SHIFT) | \
252 	((u64)(e11val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e11##_SHIFT) | \
253 	((u64)(e12val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e12##_SHIFT) | \
254 	((u64)(e13val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e13##_SHIFT) | \
255 	((u64)(e14val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e14##_SHIFT) | \
256 	((u64)(e15val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e15##_SHIFT) \
257 )
258 
259 /* all CceStatus sub-block freeze bits */
260 #define ALL_FROZE (CCE_STATUS_SDMA_FROZE_SMASK \
261 			| CCE_STATUS_RXE_FROZE_SMASK \
262 			| CCE_STATUS_TXE_FROZE_SMASK \
263 			| CCE_STATUS_TXE_PIO_FROZE_SMASK)
264 /* all CceStatus sub-block TXE pause bits */
265 #define ALL_TXE_PAUSE (CCE_STATUS_TXE_PIO_PAUSED_SMASK \
266 			| CCE_STATUS_TXE_PAUSED_SMASK \
267 			| CCE_STATUS_SDMA_PAUSED_SMASK)
268 /* all CceStatus sub-block RXE pause bits */
269 #define ALL_RXE_PAUSE CCE_STATUS_RXE_PAUSED_SMASK
270 
271 #define CNTR_MAX 0xFFFFFFFFFFFFFFFFULL
272 #define CNTR_32BIT_MAX 0x00000000FFFFFFFF
273 
274 /*
275  * CCE Error flags.
276  */
277 static struct flag_table cce_err_status_flags[] = {
278 /* 0*/	FLAG_ENTRY0("CceCsrParityErr",
279 		CCE_ERR_STATUS_CCE_CSR_PARITY_ERR_SMASK),
280 /* 1*/	FLAG_ENTRY0("CceCsrReadBadAddrErr",
281 		CCE_ERR_STATUS_CCE_CSR_READ_BAD_ADDR_ERR_SMASK),
282 /* 2*/	FLAG_ENTRY0("CceCsrWriteBadAddrErr",
283 		CCE_ERR_STATUS_CCE_CSR_WRITE_BAD_ADDR_ERR_SMASK),
284 /* 3*/	FLAG_ENTRY0("CceTrgtAsyncFifoParityErr",
285 		CCE_ERR_STATUS_CCE_TRGT_ASYNC_FIFO_PARITY_ERR_SMASK),
286 /* 4*/	FLAG_ENTRY0("CceTrgtAccessErr",
287 		CCE_ERR_STATUS_CCE_TRGT_ACCESS_ERR_SMASK),
288 /* 5*/	FLAG_ENTRY0("CceRspdDataParityErr",
289 		CCE_ERR_STATUS_CCE_RSPD_DATA_PARITY_ERR_SMASK),
290 /* 6*/	FLAG_ENTRY0("CceCli0AsyncFifoParityErr",
291 		CCE_ERR_STATUS_CCE_CLI0_ASYNC_FIFO_PARITY_ERR_SMASK),
292 /* 7*/	FLAG_ENTRY0("CceCsrCfgBusParityErr",
293 		CCE_ERR_STATUS_CCE_CSR_CFG_BUS_PARITY_ERR_SMASK),
294 /* 8*/	FLAG_ENTRY0("CceCli2AsyncFifoParityErr",
295 		CCE_ERR_STATUS_CCE_CLI2_ASYNC_FIFO_PARITY_ERR_SMASK),
296 /* 9*/	FLAG_ENTRY0("CceCli1AsyncFifoPioCrdtParityErr",
297 	    CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_PIO_CRDT_PARITY_ERR_SMASK),
298 /*10*/	FLAG_ENTRY0("CceCli1AsyncFifoPioCrdtParityErr",
299 	    CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_SDMA_HD_PARITY_ERR_SMASK),
300 /*11*/	FLAG_ENTRY0("CceCli1AsyncFifoRxdmaParityError",
301 	    CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_RXDMA_PARITY_ERROR_SMASK),
302 /*12*/	FLAG_ENTRY0("CceCli1AsyncFifoDbgParityError",
303 		CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_DBG_PARITY_ERROR_SMASK),
304 /*13*/	FLAG_ENTRY0("PcicRetryMemCorErr",
305 		CCE_ERR_STATUS_PCIC_RETRY_MEM_COR_ERR_SMASK),
306 /*14*/	FLAG_ENTRY0("PcicRetryMemCorErr",
307 		CCE_ERR_STATUS_PCIC_RETRY_SOT_MEM_COR_ERR_SMASK),
308 /*15*/	FLAG_ENTRY0("PcicPostHdQCorErr",
309 		CCE_ERR_STATUS_PCIC_POST_HD_QCOR_ERR_SMASK),
310 /*16*/	FLAG_ENTRY0("PcicPostHdQCorErr",
311 		CCE_ERR_STATUS_PCIC_POST_DAT_QCOR_ERR_SMASK),
312 /*17*/	FLAG_ENTRY0("PcicPostHdQCorErr",
313 		CCE_ERR_STATUS_PCIC_CPL_HD_QCOR_ERR_SMASK),
314 /*18*/	FLAG_ENTRY0("PcicCplDatQCorErr",
315 		CCE_ERR_STATUS_PCIC_CPL_DAT_QCOR_ERR_SMASK),
316 /*19*/	FLAG_ENTRY0("PcicNPostHQParityErr",
317 		CCE_ERR_STATUS_PCIC_NPOST_HQ_PARITY_ERR_SMASK),
318 /*20*/	FLAG_ENTRY0("PcicNPostDatQParityErr",
319 		CCE_ERR_STATUS_PCIC_NPOST_DAT_QPARITY_ERR_SMASK),
320 /*21*/	FLAG_ENTRY0("PcicRetryMemUncErr",
321 		CCE_ERR_STATUS_PCIC_RETRY_MEM_UNC_ERR_SMASK),
322 /*22*/	FLAG_ENTRY0("PcicRetrySotMemUncErr",
323 		CCE_ERR_STATUS_PCIC_RETRY_SOT_MEM_UNC_ERR_SMASK),
324 /*23*/	FLAG_ENTRY0("PcicPostHdQUncErr",
325 		CCE_ERR_STATUS_PCIC_POST_HD_QUNC_ERR_SMASK),
326 /*24*/	FLAG_ENTRY0("PcicPostDatQUncErr",
327 		CCE_ERR_STATUS_PCIC_POST_DAT_QUNC_ERR_SMASK),
328 /*25*/	FLAG_ENTRY0("PcicCplHdQUncErr",
329 		CCE_ERR_STATUS_PCIC_CPL_HD_QUNC_ERR_SMASK),
330 /*26*/	FLAG_ENTRY0("PcicCplDatQUncErr",
331 		CCE_ERR_STATUS_PCIC_CPL_DAT_QUNC_ERR_SMASK),
332 /*27*/	FLAG_ENTRY0("PcicTransmitFrontParityErr",
333 		CCE_ERR_STATUS_PCIC_TRANSMIT_FRONT_PARITY_ERR_SMASK),
334 /*28*/	FLAG_ENTRY0("PcicTransmitBackParityErr",
335 		CCE_ERR_STATUS_PCIC_TRANSMIT_BACK_PARITY_ERR_SMASK),
336 /*29*/	FLAG_ENTRY0("PcicReceiveParityErr",
337 		CCE_ERR_STATUS_PCIC_RECEIVE_PARITY_ERR_SMASK),
338 /*30*/	FLAG_ENTRY0("CceTrgtCplTimeoutErr",
339 		CCE_ERR_STATUS_CCE_TRGT_CPL_TIMEOUT_ERR_SMASK),
340 /*31*/	FLAG_ENTRY0("LATriggered",
341 		CCE_ERR_STATUS_LA_TRIGGERED_SMASK),
342 /*32*/	FLAG_ENTRY0("CceSegReadBadAddrErr",
343 		CCE_ERR_STATUS_CCE_SEG_READ_BAD_ADDR_ERR_SMASK),
344 /*33*/	FLAG_ENTRY0("CceSegWriteBadAddrErr",
345 		CCE_ERR_STATUS_CCE_SEG_WRITE_BAD_ADDR_ERR_SMASK),
346 /*34*/	FLAG_ENTRY0("CceRcplAsyncFifoParityErr",
347 		CCE_ERR_STATUS_CCE_RCPL_ASYNC_FIFO_PARITY_ERR_SMASK),
348 /*35*/	FLAG_ENTRY0("CceRxdmaConvFifoParityErr",
349 		CCE_ERR_STATUS_CCE_RXDMA_CONV_FIFO_PARITY_ERR_SMASK),
350 /*36*/	FLAG_ENTRY0("CceMsixTableCorErr",
351 		CCE_ERR_STATUS_CCE_MSIX_TABLE_COR_ERR_SMASK),
352 /*37*/	FLAG_ENTRY0("CceMsixTableUncErr",
353 		CCE_ERR_STATUS_CCE_MSIX_TABLE_UNC_ERR_SMASK),
354 /*38*/	FLAG_ENTRY0("CceIntMapCorErr",
355 		CCE_ERR_STATUS_CCE_INT_MAP_COR_ERR_SMASK),
356 /*39*/	FLAG_ENTRY0("CceIntMapUncErr",
357 		CCE_ERR_STATUS_CCE_INT_MAP_UNC_ERR_SMASK),
358 /*40*/	FLAG_ENTRY0("CceMsixCsrParityErr",
359 		CCE_ERR_STATUS_CCE_MSIX_CSR_PARITY_ERR_SMASK),
360 /*41-63 reserved*/
361 };
362 
363 /*
364  * Misc Error flags
365  */
366 #define MES(text) MISC_ERR_STATUS_MISC_##text##_ERR_SMASK
367 static struct flag_table misc_err_status_flags[] = {
368 /* 0*/	FLAG_ENTRY0("CSR_PARITY", MES(CSR_PARITY)),
369 /* 1*/	FLAG_ENTRY0("CSR_READ_BAD_ADDR", MES(CSR_READ_BAD_ADDR)),
370 /* 2*/	FLAG_ENTRY0("CSR_WRITE_BAD_ADDR", MES(CSR_WRITE_BAD_ADDR)),
371 /* 3*/	FLAG_ENTRY0("SBUS_WRITE_FAILED", MES(SBUS_WRITE_FAILED)),
372 /* 4*/	FLAG_ENTRY0("KEY_MISMATCH", MES(KEY_MISMATCH)),
373 /* 5*/	FLAG_ENTRY0("FW_AUTH_FAILED", MES(FW_AUTH_FAILED)),
374 /* 6*/	FLAG_ENTRY0("EFUSE_CSR_PARITY", MES(EFUSE_CSR_PARITY)),
375 /* 7*/	FLAG_ENTRY0("EFUSE_READ_BAD_ADDR", MES(EFUSE_READ_BAD_ADDR)),
376 /* 8*/	FLAG_ENTRY0("EFUSE_WRITE", MES(EFUSE_WRITE)),
377 /* 9*/	FLAG_ENTRY0("EFUSE_DONE_PARITY", MES(EFUSE_DONE_PARITY)),
378 /*10*/	FLAG_ENTRY0("INVALID_EEP_CMD", MES(INVALID_EEP_CMD)),
379 /*11*/	FLAG_ENTRY0("MBIST_FAIL", MES(MBIST_FAIL)),
380 /*12*/	FLAG_ENTRY0("PLL_LOCK_FAIL", MES(PLL_LOCK_FAIL))
381 };
382 
383 /*
384  * TXE PIO Error flags and consequences
385  */
386 static struct flag_table pio_err_status_flags[] = {
387 /* 0*/	FLAG_ENTRY("PioWriteBadCtxt",
388 	SEC_WRITE_DROPPED,
389 	SEND_PIO_ERR_STATUS_PIO_WRITE_BAD_CTXT_ERR_SMASK),
390 /* 1*/	FLAG_ENTRY("PioWriteAddrParity",
391 	SEC_SPC_FREEZE,
392 	SEND_PIO_ERR_STATUS_PIO_WRITE_ADDR_PARITY_ERR_SMASK),
393 /* 2*/	FLAG_ENTRY("PioCsrParity",
394 	SEC_SPC_FREEZE,
395 	SEND_PIO_ERR_STATUS_PIO_CSR_PARITY_ERR_SMASK),
396 /* 3*/	FLAG_ENTRY("PioSbMemFifo0",
397 	SEC_SPC_FREEZE,
398 	SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO0_ERR_SMASK),
399 /* 4*/	FLAG_ENTRY("PioSbMemFifo1",
400 	SEC_SPC_FREEZE,
401 	SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO1_ERR_SMASK),
402 /* 5*/	FLAG_ENTRY("PioPccFifoParity",
403 	SEC_SPC_FREEZE,
404 	SEND_PIO_ERR_STATUS_PIO_PCC_FIFO_PARITY_ERR_SMASK),
405 /* 6*/	FLAG_ENTRY("PioPecFifoParity",
406 	SEC_SPC_FREEZE,
407 	SEND_PIO_ERR_STATUS_PIO_PEC_FIFO_PARITY_ERR_SMASK),
408 /* 7*/	FLAG_ENTRY("PioSbrdctlCrrelParity",
409 	SEC_SPC_FREEZE,
410 	SEND_PIO_ERR_STATUS_PIO_SBRDCTL_CRREL_PARITY_ERR_SMASK),
411 /* 8*/	FLAG_ENTRY("PioSbrdctrlCrrelFifoParity",
412 	SEC_SPC_FREEZE,
413 	SEND_PIO_ERR_STATUS_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR_SMASK),
414 /* 9*/	FLAG_ENTRY("PioPktEvictFifoParityErr",
415 	SEC_SPC_FREEZE,
416 	SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_FIFO_PARITY_ERR_SMASK),
417 /*10*/	FLAG_ENTRY("PioSmPktResetParity",
418 	SEC_SPC_FREEZE,
419 	SEND_PIO_ERR_STATUS_PIO_SM_PKT_RESET_PARITY_ERR_SMASK),
420 /*11*/	FLAG_ENTRY("PioVlLenMemBank0Unc",
421 	SEC_SPC_FREEZE,
422 	SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_UNC_ERR_SMASK),
423 /*12*/	FLAG_ENTRY("PioVlLenMemBank1Unc",
424 	SEC_SPC_FREEZE,
425 	SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_UNC_ERR_SMASK),
426 /*13*/	FLAG_ENTRY("PioVlLenMemBank0Cor",
427 	0,
428 	SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_COR_ERR_SMASK),
429 /*14*/	FLAG_ENTRY("PioVlLenMemBank1Cor",
430 	0,
431 	SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_COR_ERR_SMASK),
432 /*15*/	FLAG_ENTRY("PioCreditRetFifoParity",
433 	SEC_SPC_FREEZE,
434 	SEND_PIO_ERR_STATUS_PIO_CREDIT_RET_FIFO_PARITY_ERR_SMASK),
435 /*16*/	FLAG_ENTRY("PioPpmcPblFifo",
436 	SEC_SPC_FREEZE,
437 	SEND_PIO_ERR_STATUS_PIO_PPMC_PBL_FIFO_ERR_SMASK),
438 /*17*/	FLAG_ENTRY("PioInitSmIn",
439 	0,
440 	SEND_PIO_ERR_STATUS_PIO_INIT_SM_IN_ERR_SMASK),
441 /*18*/	FLAG_ENTRY("PioPktEvictSmOrArbSm",
442 	SEC_SPC_FREEZE,
443 	SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_SM_OR_ARB_SM_ERR_SMASK),
444 /*19*/	FLAG_ENTRY("PioHostAddrMemUnc",
445 	SEC_SPC_FREEZE,
446 	SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_UNC_ERR_SMASK),
447 /*20*/	FLAG_ENTRY("PioHostAddrMemCor",
448 	0,
449 	SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_COR_ERR_SMASK),
450 /*21*/	FLAG_ENTRY("PioWriteDataParity",
451 	SEC_SPC_FREEZE,
452 	SEND_PIO_ERR_STATUS_PIO_WRITE_DATA_PARITY_ERR_SMASK),
453 /*22*/	FLAG_ENTRY("PioStateMachine",
454 	SEC_SPC_FREEZE,
455 	SEND_PIO_ERR_STATUS_PIO_STATE_MACHINE_ERR_SMASK),
456 /*23*/	FLAG_ENTRY("PioWriteQwValidParity",
457 	SEC_WRITE_DROPPED | SEC_SPC_FREEZE,
458 	SEND_PIO_ERR_STATUS_PIO_WRITE_QW_VALID_PARITY_ERR_SMASK),
459 /*24*/	FLAG_ENTRY("PioBlockQwCountParity",
460 	SEC_WRITE_DROPPED | SEC_SPC_FREEZE,
461 	SEND_PIO_ERR_STATUS_PIO_BLOCK_QW_COUNT_PARITY_ERR_SMASK),
462 /*25*/	FLAG_ENTRY("PioVlfVlLenParity",
463 	SEC_SPC_FREEZE,
464 	SEND_PIO_ERR_STATUS_PIO_VLF_VL_LEN_PARITY_ERR_SMASK),
465 /*26*/	FLAG_ENTRY("PioVlfSopParity",
466 	SEC_SPC_FREEZE,
467 	SEND_PIO_ERR_STATUS_PIO_VLF_SOP_PARITY_ERR_SMASK),
468 /*27*/	FLAG_ENTRY("PioVlFifoParity",
469 	SEC_SPC_FREEZE,
470 	SEND_PIO_ERR_STATUS_PIO_VL_FIFO_PARITY_ERR_SMASK),
471 /*28*/	FLAG_ENTRY("PioPpmcBqcMemParity",
472 	SEC_SPC_FREEZE,
473 	SEND_PIO_ERR_STATUS_PIO_PPMC_BQC_MEM_PARITY_ERR_SMASK),
474 /*29*/	FLAG_ENTRY("PioPpmcSopLen",
475 	SEC_SPC_FREEZE,
476 	SEND_PIO_ERR_STATUS_PIO_PPMC_SOP_LEN_ERR_SMASK),
477 /*30-31 reserved*/
478 /*32*/	FLAG_ENTRY("PioCurrentFreeCntParity",
479 	SEC_SPC_FREEZE,
480 	SEND_PIO_ERR_STATUS_PIO_CURRENT_FREE_CNT_PARITY_ERR_SMASK),
481 /*33*/	FLAG_ENTRY("PioLastReturnedCntParity",
482 	SEC_SPC_FREEZE,
483 	SEND_PIO_ERR_STATUS_PIO_LAST_RETURNED_CNT_PARITY_ERR_SMASK),
484 /*34*/	FLAG_ENTRY("PioPccSopHeadParity",
485 	SEC_SPC_FREEZE,
486 	SEND_PIO_ERR_STATUS_PIO_PCC_SOP_HEAD_PARITY_ERR_SMASK),
487 /*35*/	FLAG_ENTRY("PioPecSopHeadParityErr",
488 	SEC_SPC_FREEZE,
489 	SEND_PIO_ERR_STATUS_PIO_PEC_SOP_HEAD_PARITY_ERR_SMASK),
490 /*36-63 reserved*/
491 };
492 
493 /* TXE PIO errors that cause an SPC freeze */
494 #define ALL_PIO_FREEZE_ERR \
495 	(SEND_PIO_ERR_STATUS_PIO_WRITE_ADDR_PARITY_ERR_SMASK \
496 	| SEND_PIO_ERR_STATUS_PIO_CSR_PARITY_ERR_SMASK \
497 	| SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO0_ERR_SMASK \
498 	| SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO1_ERR_SMASK \
499 	| SEND_PIO_ERR_STATUS_PIO_PCC_FIFO_PARITY_ERR_SMASK \
500 	| SEND_PIO_ERR_STATUS_PIO_PEC_FIFO_PARITY_ERR_SMASK \
501 	| SEND_PIO_ERR_STATUS_PIO_SBRDCTL_CRREL_PARITY_ERR_SMASK \
502 	| SEND_PIO_ERR_STATUS_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR_SMASK \
503 	| SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_FIFO_PARITY_ERR_SMASK \
504 	| SEND_PIO_ERR_STATUS_PIO_SM_PKT_RESET_PARITY_ERR_SMASK \
505 	| SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_UNC_ERR_SMASK \
506 	| SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_UNC_ERR_SMASK \
507 	| SEND_PIO_ERR_STATUS_PIO_CREDIT_RET_FIFO_PARITY_ERR_SMASK \
508 	| SEND_PIO_ERR_STATUS_PIO_PPMC_PBL_FIFO_ERR_SMASK \
509 	| SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_SM_OR_ARB_SM_ERR_SMASK \
510 	| SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_UNC_ERR_SMASK \
511 	| SEND_PIO_ERR_STATUS_PIO_WRITE_DATA_PARITY_ERR_SMASK \
512 	| SEND_PIO_ERR_STATUS_PIO_STATE_MACHINE_ERR_SMASK \
513 	| SEND_PIO_ERR_STATUS_PIO_WRITE_QW_VALID_PARITY_ERR_SMASK \
514 	| SEND_PIO_ERR_STATUS_PIO_BLOCK_QW_COUNT_PARITY_ERR_SMASK \
515 	| SEND_PIO_ERR_STATUS_PIO_VLF_VL_LEN_PARITY_ERR_SMASK \
516 	| SEND_PIO_ERR_STATUS_PIO_VLF_SOP_PARITY_ERR_SMASK \
517 	| SEND_PIO_ERR_STATUS_PIO_VL_FIFO_PARITY_ERR_SMASK \
518 	| SEND_PIO_ERR_STATUS_PIO_PPMC_BQC_MEM_PARITY_ERR_SMASK \
519 	| SEND_PIO_ERR_STATUS_PIO_PPMC_SOP_LEN_ERR_SMASK \
520 	| SEND_PIO_ERR_STATUS_PIO_CURRENT_FREE_CNT_PARITY_ERR_SMASK \
521 	| SEND_PIO_ERR_STATUS_PIO_LAST_RETURNED_CNT_PARITY_ERR_SMASK \
522 	| SEND_PIO_ERR_STATUS_PIO_PCC_SOP_HEAD_PARITY_ERR_SMASK \
523 	| SEND_PIO_ERR_STATUS_PIO_PEC_SOP_HEAD_PARITY_ERR_SMASK)
524 
525 /*
526  * TXE SDMA Error flags
527  */
528 static struct flag_table sdma_err_status_flags[] = {
529 /* 0*/	FLAG_ENTRY0("SDmaRpyTagErr",
530 		SEND_DMA_ERR_STATUS_SDMA_RPY_TAG_ERR_SMASK),
531 /* 1*/	FLAG_ENTRY0("SDmaCsrParityErr",
532 		SEND_DMA_ERR_STATUS_SDMA_CSR_PARITY_ERR_SMASK),
533 /* 2*/	FLAG_ENTRY0("SDmaPcieReqTrackingUncErr",
534 		SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_UNC_ERR_SMASK),
535 /* 3*/	FLAG_ENTRY0("SDmaPcieReqTrackingCorErr",
536 		SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_COR_ERR_SMASK),
537 /*04-63 reserved*/
538 };
539 
540 /* TXE SDMA errors that cause an SPC freeze */
541 #define ALL_SDMA_FREEZE_ERR  \
542 		(SEND_DMA_ERR_STATUS_SDMA_RPY_TAG_ERR_SMASK \
543 		| SEND_DMA_ERR_STATUS_SDMA_CSR_PARITY_ERR_SMASK \
544 		| SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_UNC_ERR_SMASK)
545 
546 /* SendEgressErrInfo bits that correspond to a PortXmitDiscard counter */
547 #define PORT_DISCARD_EGRESS_ERRS \
548 	(SEND_EGRESS_ERR_INFO_TOO_LONG_IB_PACKET_ERR_SMASK \
549 	| SEND_EGRESS_ERR_INFO_VL_MAPPING_ERR_SMASK \
550 	| SEND_EGRESS_ERR_INFO_VL_ERR_SMASK)
551 
552 /*
553  * TXE Egress Error flags
554  */
555 #define SEES(text) SEND_EGRESS_ERR_STATUS_##text##_ERR_SMASK
556 static struct flag_table egress_err_status_flags[] = {
557 /* 0*/	FLAG_ENTRY0("TxPktIntegrityMemCorErr", SEES(TX_PKT_INTEGRITY_MEM_COR)),
558 /* 1*/	FLAG_ENTRY0("TxPktIntegrityMemUncErr", SEES(TX_PKT_INTEGRITY_MEM_UNC)),
559 /* 2 reserved */
560 /* 3*/	FLAG_ENTRY0("TxEgressFifoUnderrunOrParityErr",
561 		SEES(TX_EGRESS_FIFO_UNDERRUN_OR_PARITY)),
562 /* 4*/	FLAG_ENTRY0("TxLinkdownErr", SEES(TX_LINKDOWN)),
563 /* 5*/	FLAG_ENTRY0("TxIncorrectLinkStateErr", SEES(TX_INCORRECT_LINK_STATE)),
564 /* 6 reserved */
565 /* 7*/	FLAG_ENTRY0("TxPioLaunchIntfParityErr",
566 		SEES(TX_PIO_LAUNCH_INTF_PARITY)),
567 /* 8*/	FLAG_ENTRY0("TxSdmaLaunchIntfParityErr",
568 		SEES(TX_SDMA_LAUNCH_INTF_PARITY)),
569 /* 9-10 reserved */
570 /*11*/	FLAG_ENTRY0("TxSbrdCtlStateMachineParityErr",
571 		SEES(TX_SBRD_CTL_STATE_MACHINE_PARITY)),
572 /*12*/	FLAG_ENTRY0("TxIllegalVLErr", SEES(TX_ILLEGAL_VL)),
573 /*13*/	FLAG_ENTRY0("TxLaunchCsrParityErr", SEES(TX_LAUNCH_CSR_PARITY)),
574 /*14*/	FLAG_ENTRY0("TxSbrdCtlCsrParityErr", SEES(TX_SBRD_CTL_CSR_PARITY)),
575 /*15*/	FLAG_ENTRY0("TxConfigParityErr", SEES(TX_CONFIG_PARITY)),
576 /*16*/	FLAG_ENTRY0("TxSdma0DisallowedPacketErr",
577 		SEES(TX_SDMA0_DISALLOWED_PACKET)),
578 /*17*/	FLAG_ENTRY0("TxSdma1DisallowedPacketErr",
579 		SEES(TX_SDMA1_DISALLOWED_PACKET)),
580 /*18*/	FLAG_ENTRY0("TxSdma2DisallowedPacketErr",
581 		SEES(TX_SDMA2_DISALLOWED_PACKET)),
582 /*19*/	FLAG_ENTRY0("TxSdma3DisallowedPacketErr",
583 		SEES(TX_SDMA3_DISALLOWED_PACKET)),
584 /*20*/	FLAG_ENTRY0("TxSdma4DisallowedPacketErr",
585 		SEES(TX_SDMA4_DISALLOWED_PACKET)),
586 /*21*/	FLAG_ENTRY0("TxSdma5DisallowedPacketErr",
587 		SEES(TX_SDMA5_DISALLOWED_PACKET)),
588 /*22*/	FLAG_ENTRY0("TxSdma6DisallowedPacketErr",
589 		SEES(TX_SDMA6_DISALLOWED_PACKET)),
590 /*23*/	FLAG_ENTRY0("TxSdma7DisallowedPacketErr",
591 		SEES(TX_SDMA7_DISALLOWED_PACKET)),
592 /*24*/	FLAG_ENTRY0("TxSdma8DisallowedPacketErr",
593 		SEES(TX_SDMA8_DISALLOWED_PACKET)),
594 /*25*/	FLAG_ENTRY0("TxSdma9DisallowedPacketErr",
595 		SEES(TX_SDMA9_DISALLOWED_PACKET)),
596 /*26*/	FLAG_ENTRY0("TxSdma10DisallowedPacketErr",
597 		SEES(TX_SDMA10_DISALLOWED_PACKET)),
598 /*27*/	FLAG_ENTRY0("TxSdma11DisallowedPacketErr",
599 		SEES(TX_SDMA11_DISALLOWED_PACKET)),
600 /*28*/	FLAG_ENTRY0("TxSdma12DisallowedPacketErr",
601 		SEES(TX_SDMA12_DISALLOWED_PACKET)),
602 /*29*/	FLAG_ENTRY0("TxSdma13DisallowedPacketErr",
603 		SEES(TX_SDMA13_DISALLOWED_PACKET)),
604 /*30*/	FLAG_ENTRY0("TxSdma14DisallowedPacketErr",
605 		SEES(TX_SDMA14_DISALLOWED_PACKET)),
606 /*31*/	FLAG_ENTRY0("TxSdma15DisallowedPacketErr",
607 		SEES(TX_SDMA15_DISALLOWED_PACKET)),
608 /*32*/	FLAG_ENTRY0("TxLaunchFifo0UncOrParityErr",
609 		SEES(TX_LAUNCH_FIFO0_UNC_OR_PARITY)),
610 /*33*/	FLAG_ENTRY0("TxLaunchFifo1UncOrParityErr",
611 		SEES(TX_LAUNCH_FIFO1_UNC_OR_PARITY)),
612 /*34*/	FLAG_ENTRY0("TxLaunchFifo2UncOrParityErr",
613 		SEES(TX_LAUNCH_FIFO2_UNC_OR_PARITY)),
614 /*35*/	FLAG_ENTRY0("TxLaunchFifo3UncOrParityErr",
615 		SEES(TX_LAUNCH_FIFO3_UNC_OR_PARITY)),
616 /*36*/	FLAG_ENTRY0("TxLaunchFifo4UncOrParityErr",
617 		SEES(TX_LAUNCH_FIFO4_UNC_OR_PARITY)),
618 /*37*/	FLAG_ENTRY0("TxLaunchFifo5UncOrParityErr",
619 		SEES(TX_LAUNCH_FIFO5_UNC_OR_PARITY)),
620 /*38*/	FLAG_ENTRY0("TxLaunchFifo6UncOrParityErr",
621 		SEES(TX_LAUNCH_FIFO6_UNC_OR_PARITY)),
622 /*39*/	FLAG_ENTRY0("TxLaunchFifo7UncOrParityErr",
623 		SEES(TX_LAUNCH_FIFO7_UNC_OR_PARITY)),
624 /*40*/	FLAG_ENTRY0("TxLaunchFifo8UncOrParityErr",
625 		SEES(TX_LAUNCH_FIFO8_UNC_OR_PARITY)),
626 /*41*/	FLAG_ENTRY0("TxCreditReturnParityErr", SEES(TX_CREDIT_RETURN_PARITY)),
627 /*42*/	FLAG_ENTRY0("TxSbHdrUncErr", SEES(TX_SB_HDR_UNC)),
628 /*43*/	FLAG_ENTRY0("TxReadSdmaMemoryUncErr", SEES(TX_READ_SDMA_MEMORY_UNC)),
629 /*44*/	FLAG_ENTRY0("TxReadPioMemoryUncErr", SEES(TX_READ_PIO_MEMORY_UNC)),
630 /*45*/	FLAG_ENTRY0("TxEgressFifoUncErr", SEES(TX_EGRESS_FIFO_UNC)),
631 /*46*/	FLAG_ENTRY0("TxHcrcInsertionErr", SEES(TX_HCRC_INSERTION)),
632 /*47*/	FLAG_ENTRY0("TxCreditReturnVLErr", SEES(TX_CREDIT_RETURN_VL)),
633 /*48*/	FLAG_ENTRY0("TxLaunchFifo0CorErr", SEES(TX_LAUNCH_FIFO0_COR)),
634 /*49*/	FLAG_ENTRY0("TxLaunchFifo1CorErr", SEES(TX_LAUNCH_FIFO1_COR)),
635 /*50*/	FLAG_ENTRY0("TxLaunchFifo2CorErr", SEES(TX_LAUNCH_FIFO2_COR)),
636 /*51*/	FLAG_ENTRY0("TxLaunchFifo3CorErr", SEES(TX_LAUNCH_FIFO3_COR)),
637 /*52*/	FLAG_ENTRY0("TxLaunchFifo4CorErr", SEES(TX_LAUNCH_FIFO4_COR)),
638 /*53*/	FLAG_ENTRY0("TxLaunchFifo5CorErr", SEES(TX_LAUNCH_FIFO5_COR)),
639 /*54*/	FLAG_ENTRY0("TxLaunchFifo6CorErr", SEES(TX_LAUNCH_FIFO6_COR)),
640 /*55*/	FLAG_ENTRY0("TxLaunchFifo7CorErr", SEES(TX_LAUNCH_FIFO7_COR)),
641 /*56*/	FLAG_ENTRY0("TxLaunchFifo8CorErr", SEES(TX_LAUNCH_FIFO8_COR)),
642 /*57*/	FLAG_ENTRY0("TxCreditOverrunErr", SEES(TX_CREDIT_OVERRUN)),
643 /*58*/	FLAG_ENTRY0("TxSbHdrCorErr", SEES(TX_SB_HDR_COR)),
644 /*59*/	FLAG_ENTRY0("TxReadSdmaMemoryCorErr", SEES(TX_READ_SDMA_MEMORY_COR)),
645 /*60*/	FLAG_ENTRY0("TxReadPioMemoryCorErr", SEES(TX_READ_PIO_MEMORY_COR)),
646 /*61*/	FLAG_ENTRY0("TxEgressFifoCorErr", SEES(TX_EGRESS_FIFO_COR)),
647 /*62*/	FLAG_ENTRY0("TxReadSdmaMemoryCsrUncErr",
648 		SEES(TX_READ_SDMA_MEMORY_CSR_UNC)),
649 /*63*/	FLAG_ENTRY0("TxReadPioMemoryCsrUncErr",
650 		SEES(TX_READ_PIO_MEMORY_CSR_UNC)),
651 };
652 
653 /*
654  * TXE Egress Error Info flags
655  */
656 #define SEEI(text) SEND_EGRESS_ERR_INFO_##text##_ERR_SMASK
657 static struct flag_table egress_err_info_flags[] = {
658 /* 0*/	FLAG_ENTRY0("Reserved", 0ull),
659 /* 1*/	FLAG_ENTRY0("VLErr", SEEI(VL)),
660 /* 2*/	FLAG_ENTRY0("JobKeyErr", SEEI(JOB_KEY)),
661 /* 3*/	FLAG_ENTRY0("JobKeyErr", SEEI(JOB_KEY)),
662 /* 4*/	FLAG_ENTRY0("PartitionKeyErr", SEEI(PARTITION_KEY)),
663 /* 5*/	FLAG_ENTRY0("SLIDErr", SEEI(SLID)),
664 /* 6*/	FLAG_ENTRY0("OpcodeErr", SEEI(OPCODE)),
665 /* 7*/	FLAG_ENTRY0("VLMappingErr", SEEI(VL_MAPPING)),
666 /* 8*/	FLAG_ENTRY0("RawErr", SEEI(RAW)),
667 /* 9*/	FLAG_ENTRY0("RawIPv6Err", SEEI(RAW_IPV6)),
668 /*10*/	FLAG_ENTRY0("GRHErr", SEEI(GRH)),
669 /*11*/	FLAG_ENTRY0("BypassErr", SEEI(BYPASS)),
670 /*12*/	FLAG_ENTRY0("KDETHPacketsErr", SEEI(KDETH_PACKETS)),
671 /*13*/	FLAG_ENTRY0("NonKDETHPacketsErr", SEEI(NON_KDETH_PACKETS)),
672 /*14*/	FLAG_ENTRY0("TooSmallIBPacketsErr", SEEI(TOO_SMALL_IB_PACKETS)),
673 /*15*/	FLAG_ENTRY0("TooSmallBypassPacketsErr", SEEI(TOO_SMALL_BYPASS_PACKETS)),
674 /*16*/	FLAG_ENTRY0("PbcTestErr", SEEI(PBC_TEST)),
675 /*17*/	FLAG_ENTRY0("BadPktLenErr", SEEI(BAD_PKT_LEN)),
676 /*18*/	FLAG_ENTRY0("TooLongIBPacketErr", SEEI(TOO_LONG_IB_PACKET)),
677 /*19*/	FLAG_ENTRY0("TooLongBypassPacketsErr", SEEI(TOO_LONG_BYPASS_PACKETS)),
678 /*20*/	FLAG_ENTRY0("PbcStaticRateControlErr", SEEI(PBC_STATIC_RATE_CONTROL)),
679 /*21*/	FLAG_ENTRY0("BypassBadPktLenErr", SEEI(BAD_PKT_LEN)),
680 };
681 
682 /* TXE Egress errors that cause an SPC freeze */
683 #define ALL_TXE_EGRESS_FREEZE_ERR \
684 	(SEES(TX_EGRESS_FIFO_UNDERRUN_OR_PARITY) \
685 	| SEES(TX_PIO_LAUNCH_INTF_PARITY) \
686 	| SEES(TX_SDMA_LAUNCH_INTF_PARITY) \
687 	| SEES(TX_SBRD_CTL_STATE_MACHINE_PARITY) \
688 	| SEES(TX_LAUNCH_CSR_PARITY) \
689 	| SEES(TX_SBRD_CTL_CSR_PARITY) \
690 	| SEES(TX_CONFIG_PARITY) \
691 	| SEES(TX_LAUNCH_FIFO0_UNC_OR_PARITY) \
692 	| SEES(TX_LAUNCH_FIFO1_UNC_OR_PARITY) \
693 	| SEES(TX_LAUNCH_FIFO2_UNC_OR_PARITY) \
694 	| SEES(TX_LAUNCH_FIFO3_UNC_OR_PARITY) \
695 	| SEES(TX_LAUNCH_FIFO4_UNC_OR_PARITY) \
696 	| SEES(TX_LAUNCH_FIFO5_UNC_OR_PARITY) \
697 	| SEES(TX_LAUNCH_FIFO6_UNC_OR_PARITY) \
698 	| SEES(TX_LAUNCH_FIFO7_UNC_OR_PARITY) \
699 	| SEES(TX_LAUNCH_FIFO8_UNC_OR_PARITY) \
700 	| SEES(TX_CREDIT_RETURN_PARITY))
701 
702 /*
703  * TXE Send error flags
704  */
705 #define SES(name) SEND_ERR_STATUS_SEND_##name##_ERR_SMASK
706 static struct flag_table send_err_status_flags[] = {
707 /* 0*/	FLAG_ENTRY0("SendCsrParityErr", SES(CSR_PARITY)),
708 /* 1*/	FLAG_ENTRY0("SendCsrReadBadAddrErr", SES(CSR_READ_BAD_ADDR)),
709 /* 2*/	FLAG_ENTRY0("SendCsrWriteBadAddrErr", SES(CSR_WRITE_BAD_ADDR))
710 };
711 
712 /*
713  * TXE Send Context Error flags and consequences
714  */
715 static struct flag_table sc_err_status_flags[] = {
716 /* 0*/	FLAG_ENTRY("InconsistentSop",
717 		SEC_PACKET_DROPPED | SEC_SC_HALTED,
718 		SEND_CTXT_ERR_STATUS_PIO_INCONSISTENT_SOP_ERR_SMASK),
719 /* 1*/	FLAG_ENTRY("DisallowedPacket",
720 		SEC_PACKET_DROPPED | SEC_SC_HALTED,
721 		SEND_CTXT_ERR_STATUS_PIO_DISALLOWED_PACKET_ERR_SMASK),
722 /* 2*/	FLAG_ENTRY("WriteCrossesBoundary",
723 		SEC_WRITE_DROPPED | SEC_SC_HALTED,
724 		SEND_CTXT_ERR_STATUS_PIO_WRITE_CROSSES_BOUNDARY_ERR_SMASK),
725 /* 3*/	FLAG_ENTRY("WriteOverflow",
726 		SEC_WRITE_DROPPED | SEC_SC_HALTED,
727 		SEND_CTXT_ERR_STATUS_PIO_WRITE_OVERFLOW_ERR_SMASK),
728 /* 4*/	FLAG_ENTRY("WriteOutOfBounds",
729 		SEC_WRITE_DROPPED | SEC_SC_HALTED,
730 		SEND_CTXT_ERR_STATUS_PIO_WRITE_OUT_OF_BOUNDS_ERR_SMASK),
731 /* 5-63 reserved*/
732 };
733 
734 /*
735  * RXE Receive Error flags
736  */
737 #define RXES(name) RCV_ERR_STATUS_RX_##name##_ERR_SMASK
738 static struct flag_table rxe_err_status_flags[] = {
739 /* 0*/	FLAG_ENTRY0("RxDmaCsrCorErr", RXES(DMA_CSR_COR)),
740 /* 1*/	FLAG_ENTRY0("RxDcIntfParityErr", RXES(DC_INTF_PARITY)),
741 /* 2*/	FLAG_ENTRY0("RxRcvHdrUncErr", RXES(RCV_HDR_UNC)),
742 /* 3*/	FLAG_ENTRY0("RxRcvHdrCorErr", RXES(RCV_HDR_COR)),
743 /* 4*/	FLAG_ENTRY0("RxRcvDataUncErr", RXES(RCV_DATA_UNC)),
744 /* 5*/	FLAG_ENTRY0("RxRcvDataCorErr", RXES(RCV_DATA_COR)),
745 /* 6*/	FLAG_ENTRY0("RxRcvQpMapTableUncErr", RXES(RCV_QP_MAP_TABLE_UNC)),
746 /* 7*/	FLAG_ENTRY0("RxRcvQpMapTableCorErr", RXES(RCV_QP_MAP_TABLE_COR)),
747 /* 8*/	FLAG_ENTRY0("RxRcvCsrParityErr", RXES(RCV_CSR_PARITY)),
748 /* 9*/	FLAG_ENTRY0("RxDcSopEopParityErr", RXES(DC_SOP_EOP_PARITY)),
749 /*10*/	FLAG_ENTRY0("RxDmaFlagUncErr", RXES(DMA_FLAG_UNC)),
750 /*11*/	FLAG_ENTRY0("RxDmaFlagCorErr", RXES(DMA_FLAG_COR)),
751 /*12*/	FLAG_ENTRY0("RxRcvFsmEncodingErr", RXES(RCV_FSM_ENCODING)),
752 /*13*/	FLAG_ENTRY0("RxRbufFreeListUncErr", RXES(RBUF_FREE_LIST_UNC)),
753 /*14*/	FLAG_ENTRY0("RxRbufFreeListCorErr", RXES(RBUF_FREE_LIST_COR)),
754 /*15*/	FLAG_ENTRY0("RxRbufLookupDesRegUncErr", RXES(RBUF_LOOKUP_DES_REG_UNC)),
755 /*16*/	FLAG_ENTRY0("RxRbufLookupDesRegUncCorErr",
756 		RXES(RBUF_LOOKUP_DES_REG_UNC_COR)),
757 /*17*/	FLAG_ENTRY0("RxRbufLookupDesUncErr", RXES(RBUF_LOOKUP_DES_UNC)),
758 /*18*/	FLAG_ENTRY0("RxRbufLookupDesCorErr", RXES(RBUF_LOOKUP_DES_COR)),
759 /*19*/	FLAG_ENTRY0("RxRbufBlockListReadUncErr",
760 		RXES(RBUF_BLOCK_LIST_READ_UNC)),
761 /*20*/	FLAG_ENTRY0("RxRbufBlockListReadCorErr",
762 		RXES(RBUF_BLOCK_LIST_READ_COR)),
763 /*21*/	FLAG_ENTRY0("RxRbufCsrQHeadBufNumParityErr",
764 		RXES(RBUF_CSR_QHEAD_BUF_NUM_PARITY)),
765 /*22*/	FLAG_ENTRY0("RxRbufCsrQEntCntParityErr",
766 		RXES(RBUF_CSR_QENT_CNT_PARITY)),
767 /*23*/	FLAG_ENTRY0("RxRbufCsrQNextBufParityErr",
768 		RXES(RBUF_CSR_QNEXT_BUF_PARITY)),
769 /*24*/	FLAG_ENTRY0("RxRbufCsrQVldBitParityErr",
770 		RXES(RBUF_CSR_QVLD_BIT_PARITY)),
771 /*25*/	FLAG_ENTRY0("RxRbufCsrQHdPtrParityErr", RXES(RBUF_CSR_QHD_PTR_PARITY)),
772 /*26*/	FLAG_ENTRY0("RxRbufCsrQTlPtrParityErr", RXES(RBUF_CSR_QTL_PTR_PARITY)),
773 /*27*/	FLAG_ENTRY0("RxRbufCsrQNumOfPktParityErr",
774 		RXES(RBUF_CSR_QNUM_OF_PKT_PARITY)),
775 /*28*/	FLAG_ENTRY0("RxRbufCsrQEOPDWParityErr", RXES(RBUF_CSR_QEOPDW_PARITY)),
776 /*29*/	FLAG_ENTRY0("RxRbufCtxIdParityErr", RXES(RBUF_CTX_ID_PARITY)),
777 /*30*/	FLAG_ENTRY0("RxRBufBadLookupErr", RXES(RBUF_BAD_LOOKUP)),
778 /*31*/	FLAG_ENTRY0("RxRbufFullErr", RXES(RBUF_FULL)),
779 /*32*/	FLAG_ENTRY0("RxRbufEmptyErr", RXES(RBUF_EMPTY)),
780 /*33*/	FLAG_ENTRY0("RxRbufFlRdAddrParityErr", RXES(RBUF_FL_RD_ADDR_PARITY)),
781 /*34*/	FLAG_ENTRY0("RxRbufFlWrAddrParityErr", RXES(RBUF_FL_WR_ADDR_PARITY)),
782 /*35*/	FLAG_ENTRY0("RxRbufFlInitdoneParityErr",
783 		RXES(RBUF_FL_INITDONE_PARITY)),
784 /*36*/	FLAG_ENTRY0("RxRbufFlInitWrAddrParityErr",
785 		RXES(RBUF_FL_INIT_WR_ADDR_PARITY)),
786 /*37*/	FLAG_ENTRY0("RxRbufNextFreeBufUncErr", RXES(RBUF_NEXT_FREE_BUF_UNC)),
787 /*38*/	FLAG_ENTRY0("RxRbufNextFreeBufCorErr", RXES(RBUF_NEXT_FREE_BUF_COR)),
788 /*39*/	FLAG_ENTRY0("RxLookupDesPart1UncErr", RXES(LOOKUP_DES_PART1_UNC)),
789 /*40*/	FLAG_ENTRY0("RxLookupDesPart1UncCorErr",
790 		RXES(LOOKUP_DES_PART1_UNC_COR)),
791 /*41*/	FLAG_ENTRY0("RxLookupDesPart2ParityErr",
792 		RXES(LOOKUP_DES_PART2_PARITY)),
793 /*42*/	FLAG_ENTRY0("RxLookupRcvArrayUncErr", RXES(LOOKUP_RCV_ARRAY_UNC)),
794 /*43*/	FLAG_ENTRY0("RxLookupRcvArrayCorErr", RXES(LOOKUP_RCV_ARRAY_COR)),
795 /*44*/	FLAG_ENTRY0("RxLookupCsrParityErr", RXES(LOOKUP_CSR_PARITY)),
796 /*45*/	FLAG_ENTRY0("RxHqIntrCsrParityErr", RXES(HQ_INTR_CSR_PARITY)),
797 /*46*/	FLAG_ENTRY0("RxHqIntrFsmErr", RXES(HQ_INTR_FSM)),
798 /*47*/	FLAG_ENTRY0("RxRbufDescPart1UncErr", RXES(RBUF_DESC_PART1_UNC)),
799 /*48*/	FLAG_ENTRY0("RxRbufDescPart1CorErr", RXES(RBUF_DESC_PART1_COR)),
800 /*49*/	FLAG_ENTRY0("RxRbufDescPart2UncErr", RXES(RBUF_DESC_PART2_UNC)),
801 /*50*/	FLAG_ENTRY0("RxRbufDescPart2CorErr", RXES(RBUF_DESC_PART2_COR)),
802 /*51*/	FLAG_ENTRY0("RxDmaHdrFifoRdUncErr", RXES(DMA_HDR_FIFO_RD_UNC)),
803 /*52*/	FLAG_ENTRY0("RxDmaHdrFifoRdCorErr", RXES(DMA_HDR_FIFO_RD_COR)),
804 /*53*/	FLAG_ENTRY0("RxDmaDataFifoRdUncErr", RXES(DMA_DATA_FIFO_RD_UNC)),
805 /*54*/	FLAG_ENTRY0("RxDmaDataFifoRdCorErr", RXES(DMA_DATA_FIFO_RD_COR)),
806 /*55*/	FLAG_ENTRY0("RxRbufDataUncErr", RXES(RBUF_DATA_UNC)),
807 /*56*/	FLAG_ENTRY0("RxRbufDataCorErr", RXES(RBUF_DATA_COR)),
808 /*57*/	FLAG_ENTRY0("RxDmaCsrParityErr", RXES(DMA_CSR_PARITY)),
809 /*58*/	FLAG_ENTRY0("RxDmaEqFsmEncodingErr", RXES(DMA_EQ_FSM_ENCODING)),
810 /*59*/	FLAG_ENTRY0("RxDmaDqFsmEncodingErr", RXES(DMA_DQ_FSM_ENCODING)),
811 /*60*/	FLAG_ENTRY0("RxDmaCsrUncErr", RXES(DMA_CSR_UNC)),
812 /*61*/	FLAG_ENTRY0("RxCsrReadBadAddrErr", RXES(CSR_READ_BAD_ADDR)),
813 /*62*/	FLAG_ENTRY0("RxCsrWriteBadAddrErr", RXES(CSR_WRITE_BAD_ADDR)),
814 /*63*/	FLAG_ENTRY0("RxCsrParityErr", RXES(CSR_PARITY))
815 };
816 
817 /* RXE errors that will trigger an SPC freeze */
818 #define ALL_RXE_FREEZE_ERR  \
819 	(RCV_ERR_STATUS_RX_RCV_QP_MAP_TABLE_UNC_ERR_SMASK \
820 	| RCV_ERR_STATUS_RX_RCV_CSR_PARITY_ERR_SMASK \
821 	| RCV_ERR_STATUS_RX_DMA_FLAG_UNC_ERR_SMASK \
822 	| RCV_ERR_STATUS_RX_RCV_FSM_ENCODING_ERR_SMASK \
823 	| RCV_ERR_STATUS_RX_RBUF_FREE_LIST_UNC_ERR_SMASK \
824 	| RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_REG_UNC_ERR_SMASK \
825 	| RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_REG_UNC_COR_ERR_SMASK \
826 	| RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_UNC_ERR_SMASK \
827 	| RCV_ERR_STATUS_RX_RBUF_BLOCK_LIST_READ_UNC_ERR_SMASK \
828 	| RCV_ERR_STATUS_RX_RBUF_CSR_QHEAD_BUF_NUM_PARITY_ERR_SMASK \
829 	| RCV_ERR_STATUS_RX_RBUF_CSR_QENT_CNT_PARITY_ERR_SMASK \
830 	| RCV_ERR_STATUS_RX_RBUF_CSR_QNEXT_BUF_PARITY_ERR_SMASK \
831 	| RCV_ERR_STATUS_RX_RBUF_CSR_QVLD_BIT_PARITY_ERR_SMASK \
832 	| RCV_ERR_STATUS_RX_RBUF_CSR_QHD_PTR_PARITY_ERR_SMASK \
833 	| RCV_ERR_STATUS_RX_RBUF_CSR_QTL_PTR_PARITY_ERR_SMASK \
834 	| RCV_ERR_STATUS_RX_RBUF_CSR_QNUM_OF_PKT_PARITY_ERR_SMASK \
835 	| RCV_ERR_STATUS_RX_RBUF_CSR_QEOPDW_PARITY_ERR_SMASK \
836 	| RCV_ERR_STATUS_RX_RBUF_CTX_ID_PARITY_ERR_SMASK \
837 	| RCV_ERR_STATUS_RX_RBUF_BAD_LOOKUP_ERR_SMASK \
838 	| RCV_ERR_STATUS_RX_RBUF_FULL_ERR_SMASK \
839 	| RCV_ERR_STATUS_RX_RBUF_EMPTY_ERR_SMASK \
840 	| RCV_ERR_STATUS_RX_RBUF_FL_RD_ADDR_PARITY_ERR_SMASK \
841 	| RCV_ERR_STATUS_RX_RBUF_FL_WR_ADDR_PARITY_ERR_SMASK \
842 	| RCV_ERR_STATUS_RX_RBUF_FL_INITDONE_PARITY_ERR_SMASK \
843 	| RCV_ERR_STATUS_RX_RBUF_FL_INIT_WR_ADDR_PARITY_ERR_SMASK \
844 	| RCV_ERR_STATUS_RX_RBUF_NEXT_FREE_BUF_UNC_ERR_SMASK \
845 	| RCV_ERR_STATUS_RX_LOOKUP_DES_PART1_UNC_ERR_SMASK \
846 	| RCV_ERR_STATUS_RX_LOOKUP_DES_PART1_UNC_COR_ERR_SMASK \
847 	| RCV_ERR_STATUS_RX_LOOKUP_DES_PART2_PARITY_ERR_SMASK \
848 	| RCV_ERR_STATUS_RX_LOOKUP_RCV_ARRAY_UNC_ERR_SMASK \
849 	| RCV_ERR_STATUS_RX_LOOKUP_CSR_PARITY_ERR_SMASK \
850 	| RCV_ERR_STATUS_RX_HQ_INTR_CSR_PARITY_ERR_SMASK \
851 	| RCV_ERR_STATUS_RX_HQ_INTR_FSM_ERR_SMASK \
852 	| RCV_ERR_STATUS_RX_RBUF_DESC_PART1_UNC_ERR_SMASK \
853 	| RCV_ERR_STATUS_RX_RBUF_DESC_PART1_COR_ERR_SMASK \
854 	| RCV_ERR_STATUS_RX_RBUF_DESC_PART2_UNC_ERR_SMASK \
855 	| RCV_ERR_STATUS_RX_DMA_HDR_FIFO_RD_UNC_ERR_SMASK \
856 	| RCV_ERR_STATUS_RX_DMA_DATA_FIFO_RD_UNC_ERR_SMASK \
857 	| RCV_ERR_STATUS_RX_RBUF_DATA_UNC_ERR_SMASK \
858 	| RCV_ERR_STATUS_RX_DMA_CSR_PARITY_ERR_SMASK \
859 	| RCV_ERR_STATUS_RX_DMA_EQ_FSM_ENCODING_ERR_SMASK \
860 	| RCV_ERR_STATUS_RX_DMA_DQ_FSM_ENCODING_ERR_SMASK \
861 	| RCV_ERR_STATUS_RX_DMA_CSR_UNC_ERR_SMASK \
862 	| RCV_ERR_STATUS_RX_CSR_PARITY_ERR_SMASK)
863 
864 #define RXE_FREEZE_ABORT_MASK \
865 	(RCV_ERR_STATUS_RX_DMA_CSR_UNC_ERR_SMASK | \
866 	RCV_ERR_STATUS_RX_DMA_HDR_FIFO_RD_UNC_ERR_SMASK | \
867 	RCV_ERR_STATUS_RX_DMA_DATA_FIFO_RD_UNC_ERR_SMASK)
868 
869 /*
870  * DCC Error Flags
871  */
872 #define DCCE(name) DCC_ERR_FLG_##name##_SMASK
873 static struct flag_table dcc_err_flags[] = {
874 	FLAG_ENTRY0("bad_l2_err", DCCE(BAD_L2_ERR)),
875 	FLAG_ENTRY0("bad_sc_err", DCCE(BAD_SC_ERR)),
876 	FLAG_ENTRY0("bad_mid_tail_err", DCCE(BAD_MID_TAIL_ERR)),
877 	FLAG_ENTRY0("bad_preemption_err", DCCE(BAD_PREEMPTION_ERR)),
878 	FLAG_ENTRY0("preemption_err", DCCE(PREEMPTION_ERR)),
879 	FLAG_ENTRY0("preemptionvl15_err", DCCE(PREEMPTIONVL15_ERR)),
880 	FLAG_ENTRY0("bad_vl_marker_err", DCCE(BAD_VL_MARKER_ERR)),
881 	FLAG_ENTRY0("bad_dlid_target_err", DCCE(BAD_DLID_TARGET_ERR)),
882 	FLAG_ENTRY0("bad_lver_err", DCCE(BAD_LVER_ERR)),
883 	FLAG_ENTRY0("uncorrectable_err", DCCE(UNCORRECTABLE_ERR)),
884 	FLAG_ENTRY0("bad_crdt_ack_err", DCCE(BAD_CRDT_ACK_ERR)),
885 	FLAG_ENTRY0("unsup_pkt_type", DCCE(UNSUP_PKT_TYPE)),
886 	FLAG_ENTRY0("bad_ctrl_flit_err", DCCE(BAD_CTRL_FLIT_ERR)),
887 	FLAG_ENTRY0("event_cntr_parity_err", DCCE(EVENT_CNTR_PARITY_ERR)),
888 	FLAG_ENTRY0("event_cntr_rollover_err", DCCE(EVENT_CNTR_ROLLOVER_ERR)),
889 	FLAG_ENTRY0("link_err", DCCE(LINK_ERR)),
890 	FLAG_ENTRY0("misc_cntr_rollover_err", DCCE(MISC_CNTR_ROLLOVER_ERR)),
891 	FLAG_ENTRY0("bad_ctrl_dist_err", DCCE(BAD_CTRL_DIST_ERR)),
892 	FLAG_ENTRY0("bad_tail_dist_err", DCCE(BAD_TAIL_DIST_ERR)),
893 	FLAG_ENTRY0("bad_head_dist_err", DCCE(BAD_HEAD_DIST_ERR)),
894 	FLAG_ENTRY0("nonvl15_state_err", DCCE(NONVL15_STATE_ERR)),
895 	FLAG_ENTRY0("vl15_multi_err", DCCE(VL15_MULTI_ERR)),
896 	FLAG_ENTRY0("bad_pkt_length_err", DCCE(BAD_PKT_LENGTH_ERR)),
897 	FLAG_ENTRY0("unsup_vl_err", DCCE(UNSUP_VL_ERR)),
898 	FLAG_ENTRY0("perm_nvl15_err", DCCE(PERM_NVL15_ERR)),
899 	FLAG_ENTRY0("slid_zero_err", DCCE(SLID_ZERO_ERR)),
900 	FLAG_ENTRY0("dlid_zero_err", DCCE(DLID_ZERO_ERR)),
901 	FLAG_ENTRY0("length_mtu_err", DCCE(LENGTH_MTU_ERR)),
902 	FLAG_ENTRY0("rx_early_drop_err", DCCE(RX_EARLY_DROP_ERR)),
903 	FLAG_ENTRY0("late_short_err", DCCE(LATE_SHORT_ERR)),
904 	FLAG_ENTRY0("late_long_err", DCCE(LATE_LONG_ERR)),
905 	FLAG_ENTRY0("late_ebp_err", DCCE(LATE_EBP_ERR)),
906 	FLAG_ENTRY0("fpe_tx_fifo_ovflw_err", DCCE(FPE_TX_FIFO_OVFLW_ERR)),
907 	FLAG_ENTRY0("fpe_tx_fifo_unflw_err", DCCE(FPE_TX_FIFO_UNFLW_ERR)),
908 	FLAG_ENTRY0("csr_access_blocked_host", DCCE(CSR_ACCESS_BLOCKED_HOST)),
909 	FLAG_ENTRY0("csr_access_blocked_uc", DCCE(CSR_ACCESS_BLOCKED_UC)),
910 	FLAG_ENTRY0("tx_ctrl_parity_err", DCCE(TX_CTRL_PARITY_ERR)),
911 	FLAG_ENTRY0("tx_ctrl_parity_mbe_err", DCCE(TX_CTRL_PARITY_MBE_ERR)),
912 	FLAG_ENTRY0("tx_sc_parity_err", DCCE(TX_SC_PARITY_ERR)),
913 	FLAG_ENTRY0("rx_ctrl_parity_mbe_err", DCCE(RX_CTRL_PARITY_MBE_ERR)),
914 	FLAG_ENTRY0("csr_parity_err", DCCE(CSR_PARITY_ERR)),
915 	FLAG_ENTRY0("csr_inval_addr", DCCE(CSR_INVAL_ADDR)),
916 	FLAG_ENTRY0("tx_byte_shft_parity_err", DCCE(TX_BYTE_SHFT_PARITY_ERR)),
917 	FLAG_ENTRY0("rx_byte_shft_parity_err", DCCE(RX_BYTE_SHFT_PARITY_ERR)),
918 	FLAG_ENTRY0("fmconfig_err", DCCE(FMCONFIG_ERR)),
919 	FLAG_ENTRY0("rcvport_err", DCCE(RCVPORT_ERR)),
920 };
921 
922 /*
923  * LCB error flags
924  */
925 #define LCBE(name) DC_LCB_ERR_FLG_##name##_SMASK
926 static struct flag_table lcb_err_flags[] = {
927 /* 0*/	FLAG_ENTRY0("CSR_PARITY_ERR", LCBE(CSR_PARITY_ERR)),
928 /* 1*/	FLAG_ENTRY0("INVALID_CSR_ADDR", LCBE(INVALID_CSR_ADDR)),
929 /* 2*/	FLAG_ENTRY0("RST_FOR_FAILED_DESKEW", LCBE(RST_FOR_FAILED_DESKEW)),
930 /* 3*/	FLAG_ENTRY0("ALL_LNS_FAILED_REINIT_TEST",
931 		LCBE(ALL_LNS_FAILED_REINIT_TEST)),
932 /* 4*/	FLAG_ENTRY0("LOST_REINIT_STALL_OR_TOS", LCBE(LOST_REINIT_STALL_OR_TOS)),
933 /* 5*/	FLAG_ENTRY0("TX_LESS_THAN_FOUR_LNS", LCBE(TX_LESS_THAN_FOUR_LNS)),
934 /* 6*/	FLAG_ENTRY0("RX_LESS_THAN_FOUR_LNS", LCBE(RX_LESS_THAN_FOUR_LNS)),
935 /* 7*/	FLAG_ENTRY0("SEQ_CRC_ERR", LCBE(SEQ_CRC_ERR)),
936 /* 8*/	FLAG_ENTRY0("REINIT_FROM_PEER", LCBE(REINIT_FROM_PEER)),
937 /* 9*/	FLAG_ENTRY0("REINIT_FOR_LN_DEGRADE", LCBE(REINIT_FOR_LN_DEGRADE)),
938 /*10*/	FLAG_ENTRY0("CRC_ERR_CNT_HIT_LIMIT", LCBE(CRC_ERR_CNT_HIT_LIMIT)),
939 /*11*/	FLAG_ENTRY0("RCLK_STOPPED", LCBE(RCLK_STOPPED)),
940 /*12*/	FLAG_ENTRY0("UNEXPECTED_REPLAY_MARKER", LCBE(UNEXPECTED_REPLAY_MARKER)),
941 /*13*/	FLAG_ENTRY0("UNEXPECTED_ROUND_TRIP_MARKER",
942 		LCBE(UNEXPECTED_ROUND_TRIP_MARKER)),
943 /*14*/	FLAG_ENTRY0("ILLEGAL_NULL_LTP", LCBE(ILLEGAL_NULL_LTP)),
944 /*15*/	FLAG_ENTRY0("ILLEGAL_FLIT_ENCODING", LCBE(ILLEGAL_FLIT_ENCODING)),
945 /*16*/	FLAG_ENTRY0("FLIT_INPUT_BUF_OFLW", LCBE(FLIT_INPUT_BUF_OFLW)),
946 /*17*/	FLAG_ENTRY0("VL_ACK_INPUT_BUF_OFLW", LCBE(VL_ACK_INPUT_BUF_OFLW)),
947 /*18*/	FLAG_ENTRY0("VL_ACK_INPUT_PARITY_ERR", LCBE(VL_ACK_INPUT_PARITY_ERR)),
948 /*19*/	FLAG_ENTRY0("VL_ACK_INPUT_WRONG_CRC_MODE",
949 		LCBE(VL_ACK_INPUT_WRONG_CRC_MODE)),
950 /*20*/	FLAG_ENTRY0("FLIT_INPUT_BUF_MBE", LCBE(FLIT_INPUT_BUF_MBE)),
951 /*21*/	FLAG_ENTRY0("FLIT_INPUT_BUF_SBE", LCBE(FLIT_INPUT_BUF_SBE)),
952 /*22*/	FLAG_ENTRY0("REPLAY_BUF_MBE", LCBE(REPLAY_BUF_MBE)),
953 /*23*/	FLAG_ENTRY0("REPLAY_BUF_SBE", LCBE(REPLAY_BUF_SBE)),
954 /*24*/	FLAG_ENTRY0("CREDIT_RETURN_FLIT_MBE", LCBE(CREDIT_RETURN_FLIT_MBE)),
955 /*25*/	FLAG_ENTRY0("RST_FOR_LINK_TIMEOUT", LCBE(RST_FOR_LINK_TIMEOUT)),
956 /*26*/	FLAG_ENTRY0("RST_FOR_INCOMPLT_RND_TRIP",
957 		LCBE(RST_FOR_INCOMPLT_RND_TRIP)),
958 /*27*/	FLAG_ENTRY0("HOLD_REINIT", LCBE(HOLD_REINIT)),
959 /*28*/	FLAG_ENTRY0("NEG_EDGE_LINK_TRANSFER_ACTIVE",
960 		LCBE(NEG_EDGE_LINK_TRANSFER_ACTIVE)),
961 /*29*/	FLAG_ENTRY0("REDUNDANT_FLIT_PARITY_ERR",
962 		LCBE(REDUNDANT_FLIT_PARITY_ERR))
963 };
964 
965 /*
966  * DC8051 Error Flags
967  */
968 #define D8E(name) DC_DC8051_ERR_FLG_##name##_SMASK
969 static struct flag_table dc8051_err_flags[] = {
970 	FLAG_ENTRY0("SET_BY_8051", D8E(SET_BY_8051)),
971 	FLAG_ENTRY0("LOST_8051_HEART_BEAT", D8E(LOST_8051_HEART_BEAT)),
972 	FLAG_ENTRY0("CRAM_MBE", D8E(CRAM_MBE)),
973 	FLAG_ENTRY0("CRAM_SBE", D8E(CRAM_SBE)),
974 	FLAG_ENTRY0("DRAM_MBE", D8E(DRAM_MBE)),
975 	FLAG_ENTRY0("DRAM_SBE", D8E(DRAM_SBE)),
976 	FLAG_ENTRY0("IRAM_MBE", D8E(IRAM_MBE)),
977 	FLAG_ENTRY0("IRAM_SBE", D8E(IRAM_SBE)),
978 	FLAG_ENTRY0("UNMATCHED_SECURE_MSG_ACROSS_BCC_LANES",
979 		    D8E(UNMATCHED_SECURE_MSG_ACROSS_BCC_LANES)),
980 	FLAG_ENTRY0("INVALID_CSR_ADDR", D8E(INVALID_CSR_ADDR)),
981 };
982 
983 /*
984  * DC8051 Information Error flags
985  *
986  * Flags in DC8051_DBG_ERR_INFO_SET_BY_8051.ERROR field.
987  */
988 static struct flag_table dc8051_info_err_flags[] = {
989 	FLAG_ENTRY0("Spico ROM check failed",  SPICO_ROM_FAILED),
990 	FLAG_ENTRY0("Unknown frame received",  UNKNOWN_FRAME),
991 	FLAG_ENTRY0("Target BER not met",      TARGET_BER_NOT_MET),
992 	FLAG_ENTRY0("Serdes internal loopback failure",
993 		    FAILED_SERDES_INTERNAL_LOOPBACK),
994 	FLAG_ENTRY0("Failed SerDes init",      FAILED_SERDES_INIT),
995 	FLAG_ENTRY0("Failed LNI(Polling)",     FAILED_LNI_POLLING),
996 	FLAG_ENTRY0("Failed LNI(Debounce)",    FAILED_LNI_DEBOUNCE),
997 	FLAG_ENTRY0("Failed LNI(EstbComm)",    FAILED_LNI_ESTBCOMM),
998 	FLAG_ENTRY0("Failed LNI(OptEq)",       FAILED_LNI_OPTEQ),
999 	FLAG_ENTRY0("Failed LNI(VerifyCap_1)", FAILED_LNI_VERIFY_CAP1),
1000 	FLAG_ENTRY0("Failed LNI(VerifyCap_2)", FAILED_LNI_VERIFY_CAP2),
1001 	FLAG_ENTRY0("Failed LNI(ConfigLT)",    FAILED_LNI_CONFIGLT),
1002 	FLAG_ENTRY0("Host Handshake Timeout",  HOST_HANDSHAKE_TIMEOUT),
1003 	FLAG_ENTRY0("External Device Request Timeout",
1004 		    EXTERNAL_DEVICE_REQ_TIMEOUT),
1005 };
1006 
1007 /*
1008  * DC8051 Information Host Information flags
1009  *
1010  * Flags in DC8051_DBG_ERR_INFO_SET_BY_8051.HOST_MSG field.
1011  */
1012 static struct flag_table dc8051_info_host_msg_flags[] = {
1013 	FLAG_ENTRY0("Host request done", 0x0001),
1014 	FLAG_ENTRY0("BC PWR_MGM message", 0x0002),
1015 	FLAG_ENTRY0("BC SMA message", 0x0004),
1016 	FLAG_ENTRY0("BC Unknown message (BCC)", 0x0008),
1017 	FLAG_ENTRY0("BC Unknown message (LCB)", 0x0010),
1018 	FLAG_ENTRY0("External device config request", 0x0020),
1019 	FLAG_ENTRY0("VerifyCap all frames received", 0x0040),
1020 	FLAG_ENTRY0("LinkUp achieved", 0x0080),
1021 	FLAG_ENTRY0("Link going down", 0x0100),
1022 	FLAG_ENTRY0("Link width downgraded", 0x0200),
1023 };
1024 
1025 static u32 encoded_size(u32 size);
1026 static u32 chip_to_opa_lstate(struct hfi1_devdata *dd, u32 chip_lstate);
1027 static int set_physical_link_state(struct hfi1_devdata *dd, u64 state);
1028 static void read_vc_remote_phy(struct hfi1_devdata *dd, u8 *power_management,
1029 			       u8 *continuous);
1030 static void read_vc_remote_fabric(struct hfi1_devdata *dd, u8 *vau, u8 *z,
1031 				  u8 *vcu, u16 *vl15buf, u8 *crc_sizes);
1032 static void read_vc_remote_link_width(struct hfi1_devdata *dd,
1033 				      u8 *remote_tx_rate, u16 *link_widths);
1034 static void read_vc_local_link_mode(struct hfi1_devdata *dd, u8 *misc_bits,
1035 				    u8 *flag_bits, u16 *link_widths);
1036 static void read_remote_device_id(struct hfi1_devdata *dd, u16 *device_id,
1037 				  u8 *device_rev);
1038 static void read_local_lni(struct hfi1_devdata *dd, u8 *enable_lane_rx);
1039 static int read_tx_settings(struct hfi1_devdata *dd, u8 *enable_lane_tx,
1040 			    u8 *tx_polarity_inversion,
1041 			    u8 *rx_polarity_inversion, u8 *max_rate);
1042 static void handle_sdma_eng_err(struct hfi1_devdata *dd,
1043 				unsigned int context, u64 err_status);
1044 static void handle_qsfp_int(struct hfi1_devdata *dd, u32 source, u64 reg);
1045 static void handle_dcc_err(struct hfi1_devdata *dd,
1046 			   unsigned int context, u64 err_status);
1047 static void handle_lcb_err(struct hfi1_devdata *dd,
1048 			   unsigned int context, u64 err_status);
1049 static void handle_8051_interrupt(struct hfi1_devdata *dd, u32 unused, u64 reg);
1050 static void handle_cce_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1051 static void handle_rxe_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1052 static void handle_misc_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1053 static void handle_pio_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1054 static void handle_sdma_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1055 static void handle_egress_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1056 static void handle_txe_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1057 static void set_partition_keys(struct hfi1_pportdata *ppd);
1058 static const char *link_state_name(u32 state);
1059 static const char *link_state_reason_name(struct hfi1_pportdata *ppd,
1060 					  u32 state);
1061 static int do_8051_command(struct hfi1_devdata *dd, u32 type, u64 in_data,
1062 			   u64 *out_data);
1063 static int read_idle_sma(struct hfi1_devdata *dd, u64 *data);
1064 static int thermal_init(struct hfi1_devdata *dd);
1065 
1066 static void update_statusp(struct hfi1_pportdata *ppd, u32 state);
1067 static int wait_phys_link_offline_substates(struct hfi1_pportdata *ppd,
1068 					    int msecs);
1069 static int wait_logical_linkstate(struct hfi1_pportdata *ppd, u32 state,
1070 				  int msecs);
1071 static void log_state_transition(struct hfi1_pportdata *ppd, u32 state);
1072 static void log_physical_state(struct hfi1_pportdata *ppd, u32 state);
1073 static int wait_physical_linkstate(struct hfi1_pportdata *ppd, u32 state,
1074 				   int msecs);
1075 static int wait_phys_link_out_of_offline(struct hfi1_pportdata *ppd,
1076 					 int msecs);
1077 static void read_planned_down_reason_code(struct hfi1_devdata *dd, u8 *pdrrc);
1078 static void read_link_down_reason(struct hfi1_devdata *dd, u8 *ldr);
1079 static void handle_temp_err(struct hfi1_devdata *dd);
1080 static void dc_shutdown(struct hfi1_devdata *dd);
1081 static void dc_start(struct hfi1_devdata *dd);
1082 static int qos_rmt_entries(struct hfi1_devdata *dd, unsigned int *mp,
1083 			   unsigned int *np);
1084 static void clear_full_mgmt_pkey(struct hfi1_pportdata *ppd);
1085 static int wait_link_transfer_active(struct hfi1_devdata *dd, int wait_ms);
1086 static void clear_rsm_rule(struct hfi1_devdata *dd, u8 rule_index);
1087 static void update_xmit_counters(struct hfi1_pportdata *ppd, u16 link_width);
1088 
1089 /*
1090  * Error interrupt table entry.  This is used as input to the interrupt
1091  * "clear down" routine used for all second tier error interrupt register.
1092  * Second tier interrupt registers have a single bit representing them
1093  * in the top-level CceIntStatus.
1094  */
1095 struct err_reg_info {
1096 	u32 status;		/* status CSR offset */
1097 	u32 clear;		/* clear CSR offset */
1098 	u32 mask;		/* mask CSR offset */
1099 	void (*handler)(struct hfi1_devdata *dd, u32 source, u64 reg);
1100 	const char *desc;
1101 };
1102 
1103 #define NUM_MISC_ERRS (IS_GENERAL_ERR_END + 1 - IS_GENERAL_ERR_START)
1104 #define NUM_DC_ERRS (IS_DC_END + 1 - IS_DC_START)
1105 #define NUM_VARIOUS (IS_VARIOUS_END + 1 - IS_VARIOUS_START)
1106 
1107 /*
1108  * Helpers for building HFI and DC error interrupt table entries.  Different
1109  * helpers are needed because of inconsistent register names.
1110  */
1111 #define EE(reg, handler, desc) \
1112 	{ reg##_STATUS, reg##_CLEAR, reg##_MASK, \
1113 		handler, desc }
1114 #define DC_EE1(reg, handler, desc) \
1115 	{ reg##_FLG, reg##_FLG_CLR, reg##_FLG_EN, handler, desc }
1116 #define DC_EE2(reg, handler, desc) \
1117 	{ reg##_FLG, reg##_CLR, reg##_EN, handler, desc }
1118 
1119 /*
1120  * Table of the "misc" grouping of error interrupts.  Each entry refers to
1121  * another register containing more information.
1122  */
1123 static const struct err_reg_info misc_errs[NUM_MISC_ERRS] = {
1124 /* 0*/	EE(CCE_ERR,		handle_cce_err,    "CceErr"),
1125 /* 1*/	EE(RCV_ERR,		handle_rxe_err,    "RxeErr"),
1126 /* 2*/	EE(MISC_ERR,	handle_misc_err,   "MiscErr"),
1127 /* 3*/	{ 0, 0, 0, NULL }, /* reserved */
1128 /* 4*/	EE(SEND_PIO_ERR,    handle_pio_err,    "PioErr"),
1129 /* 5*/	EE(SEND_DMA_ERR,    handle_sdma_err,   "SDmaErr"),
1130 /* 6*/	EE(SEND_EGRESS_ERR, handle_egress_err, "EgressErr"),
1131 /* 7*/	EE(SEND_ERR,	handle_txe_err,    "TxeErr")
1132 	/* the rest are reserved */
1133 };
1134 
1135 /*
1136  * Index into the Various section of the interrupt sources
1137  * corresponding to the Critical Temperature interrupt.
1138  */
1139 #define TCRIT_INT_SOURCE 4
1140 
1141 /*
1142  * SDMA error interrupt entry - refers to another register containing more
1143  * information.
1144  */
1145 static const struct err_reg_info sdma_eng_err =
1146 	EE(SEND_DMA_ENG_ERR, handle_sdma_eng_err, "SDmaEngErr");
1147 
1148 static const struct err_reg_info various_err[NUM_VARIOUS] = {
1149 /* 0*/	{ 0, 0, 0, NULL }, /* PbcInt */
1150 /* 1*/	{ 0, 0, 0, NULL }, /* GpioAssertInt */
1151 /* 2*/	EE(ASIC_QSFP1,	handle_qsfp_int,	"QSFP1"),
1152 /* 3*/	EE(ASIC_QSFP2,	handle_qsfp_int,	"QSFP2"),
1153 /* 4*/	{ 0, 0, 0, NULL }, /* TCritInt */
1154 	/* rest are reserved */
1155 };
1156 
1157 /*
1158  * The DC encoding of mtu_cap for 10K MTU in the DCC_CFG_PORT_CONFIG
1159  * register can not be derived from the MTU value because 10K is not
1160  * a power of 2. Therefore, we need a constant. Everything else can
1161  * be calculated.
1162  */
1163 #define DCC_CFG_PORT_MTU_CAP_10240 7
1164 
1165 /*
1166  * Table of the DC grouping of error interrupts.  Each entry refers to
1167  * another register containing more information.
1168  */
1169 static const struct err_reg_info dc_errs[NUM_DC_ERRS] = {
1170 /* 0*/	DC_EE1(DCC_ERR,		handle_dcc_err,	       "DCC Err"),
1171 /* 1*/	DC_EE2(DC_LCB_ERR,	handle_lcb_err,	       "LCB Err"),
1172 /* 2*/	DC_EE2(DC_DC8051_ERR,	handle_8051_interrupt, "DC8051 Interrupt"),
1173 /* 3*/	/* dc_lbm_int - special, see is_dc_int() */
1174 	/* the rest are reserved */
1175 };
1176 
1177 struct cntr_entry {
1178 	/*
1179 	 * counter name
1180 	 */
1181 	char *name;
1182 
1183 	/*
1184 	 * csr to read for name (if applicable)
1185 	 */
1186 	u64 csr;
1187 
1188 	/*
1189 	 * offset into dd or ppd to store the counter's value
1190 	 */
1191 	int offset;
1192 
1193 	/*
1194 	 * flags
1195 	 */
1196 	u8 flags;
1197 
1198 	/*
1199 	 * accessor for stat element, context either dd or ppd
1200 	 */
1201 	u64 (*rw_cntr)(const struct cntr_entry *, void *context, int vl,
1202 		       int mode, u64 data);
1203 };
1204 
1205 #define C_RCV_HDR_OVF_FIRST C_RCV_HDR_OVF_0
1206 #define C_RCV_HDR_OVF_LAST C_RCV_HDR_OVF_159
1207 
1208 #define CNTR_ELEM(name, csr, offset, flags, accessor) \
1209 { \
1210 	name, \
1211 	csr, \
1212 	offset, \
1213 	flags, \
1214 	accessor \
1215 }
1216 
1217 /* 32bit RXE */
1218 #define RXE32_PORT_CNTR_ELEM(name, counter, flags) \
1219 CNTR_ELEM(#name, \
1220 	  (counter * 8 + RCV_COUNTER_ARRAY32), \
1221 	  0, flags | CNTR_32BIT, \
1222 	  port_access_u32_csr)
1223 
1224 #define RXE32_DEV_CNTR_ELEM(name, counter, flags) \
1225 CNTR_ELEM(#name, \
1226 	  (counter * 8 + RCV_COUNTER_ARRAY32), \
1227 	  0, flags | CNTR_32BIT, \
1228 	  dev_access_u32_csr)
1229 
1230 /* 64bit RXE */
1231 #define RXE64_PORT_CNTR_ELEM(name, counter, flags) \
1232 CNTR_ELEM(#name, \
1233 	  (counter * 8 + RCV_COUNTER_ARRAY64), \
1234 	  0, flags, \
1235 	  port_access_u64_csr)
1236 
1237 #define RXE64_DEV_CNTR_ELEM(name, counter, flags) \
1238 CNTR_ELEM(#name, \
1239 	  (counter * 8 + RCV_COUNTER_ARRAY64), \
1240 	  0, flags, \
1241 	  dev_access_u64_csr)
1242 
1243 #define OVR_LBL(ctx) C_RCV_HDR_OVF_ ## ctx
1244 #define OVR_ELM(ctx) \
1245 CNTR_ELEM("RcvHdrOvr" #ctx, \
1246 	  (RCV_HDR_OVFL_CNT + ctx * 0x100), \
1247 	  0, CNTR_NORMAL, port_access_u64_csr)
1248 
1249 /* 32bit TXE */
1250 #define TXE32_PORT_CNTR_ELEM(name, counter, flags) \
1251 CNTR_ELEM(#name, \
1252 	  (counter * 8 + SEND_COUNTER_ARRAY32), \
1253 	  0, flags | CNTR_32BIT, \
1254 	  port_access_u32_csr)
1255 
1256 /* 64bit TXE */
1257 #define TXE64_PORT_CNTR_ELEM(name, counter, flags) \
1258 CNTR_ELEM(#name, \
1259 	  (counter * 8 + SEND_COUNTER_ARRAY64), \
1260 	  0, flags, \
1261 	  port_access_u64_csr)
1262 
1263 # define TX64_DEV_CNTR_ELEM(name, counter, flags) \
1264 CNTR_ELEM(#name,\
1265 	  counter * 8 + SEND_COUNTER_ARRAY64, \
1266 	  0, \
1267 	  flags, \
1268 	  dev_access_u64_csr)
1269 
1270 /* CCE */
1271 #define CCE_PERF_DEV_CNTR_ELEM(name, counter, flags) \
1272 CNTR_ELEM(#name, \
1273 	  (counter * 8 + CCE_COUNTER_ARRAY32), \
1274 	  0, flags | CNTR_32BIT, \
1275 	  dev_access_u32_csr)
1276 
1277 #define CCE_INT_DEV_CNTR_ELEM(name, counter, flags) \
1278 CNTR_ELEM(#name, \
1279 	  (counter * 8 + CCE_INT_COUNTER_ARRAY32), \
1280 	  0, flags | CNTR_32BIT, \
1281 	  dev_access_u32_csr)
1282 
1283 /* DC */
1284 #define DC_PERF_CNTR(name, counter, flags) \
1285 CNTR_ELEM(#name, \
1286 	  counter, \
1287 	  0, \
1288 	  flags, \
1289 	  dev_access_u64_csr)
1290 
1291 #define DC_PERF_CNTR_LCB(name, counter, flags) \
1292 CNTR_ELEM(#name, \
1293 	  counter, \
1294 	  0, \
1295 	  flags, \
1296 	  dc_access_lcb_cntr)
1297 
1298 /* ibp counters */
1299 #define SW_IBP_CNTR(name, cntr) \
1300 CNTR_ELEM(#name, \
1301 	  0, \
1302 	  0, \
1303 	  CNTR_SYNTH, \
1304 	  access_ibp_##cntr)
1305 
1306 /**
1307  * hfi_addr_from_offset - return addr for readq/writeq
1308  * @dd - the dd device
1309  * @offset - the offset of the CSR within bar0
1310  *
1311  * This routine selects the appropriate base address
1312  * based on the indicated offset.
1313  */
1314 static inline void __iomem *hfi1_addr_from_offset(
1315 	const struct hfi1_devdata *dd,
1316 	u32 offset)
1317 {
1318 	if (offset >= dd->base2_start)
1319 		return dd->kregbase2 + (offset - dd->base2_start);
1320 	return dd->kregbase1 + offset;
1321 }
1322 
1323 /**
1324  * read_csr - read CSR at the indicated offset
1325  * @dd - the dd device
1326  * @offset - the offset of the CSR within bar0
1327  *
1328  * Return: the value read or all FF's if there
1329  * is no mapping
1330  */
1331 u64 read_csr(const struct hfi1_devdata *dd, u32 offset)
1332 {
1333 	if (dd->flags & HFI1_PRESENT)
1334 		return readq(hfi1_addr_from_offset(dd, offset));
1335 	return -1;
1336 }
1337 
1338 /**
1339  * write_csr - write CSR at the indicated offset
1340  * @dd - the dd device
1341  * @offset - the offset of the CSR within bar0
1342  * @value - value to write
1343  */
1344 void write_csr(const struct hfi1_devdata *dd, u32 offset, u64 value)
1345 {
1346 	if (dd->flags & HFI1_PRESENT) {
1347 		void __iomem *base = hfi1_addr_from_offset(dd, offset);
1348 
1349 		/* avoid write to RcvArray */
1350 		if (WARN_ON(offset >= RCV_ARRAY && offset < dd->base2_start))
1351 			return;
1352 		writeq(value, base);
1353 	}
1354 }
1355 
1356 /**
1357  * get_csr_addr - return te iomem address for offset
1358  * @dd - the dd device
1359  * @offset - the offset of the CSR within bar0
1360  *
1361  * Return: The iomem address to use in subsequent
1362  * writeq/readq operations.
1363  */
1364 void __iomem *get_csr_addr(
1365 	const struct hfi1_devdata *dd,
1366 	u32 offset)
1367 {
1368 	if (dd->flags & HFI1_PRESENT)
1369 		return hfi1_addr_from_offset(dd, offset);
1370 	return NULL;
1371 }
1372 
1373 static inline u64 read_write_csr(const struct hfi1_devdata *dd, u32 csr,
1374 				 int mode, u64 value)
1375 {
1376 	u64 ret;
1377 
1378 	if (mode == CNTR_MODE_R) {
1379 		ret = read_csr(dd, csr);
1380 	} else if (mode == CNTR_MODE_W) {
1381 		write_csr(dd, csr, value);
1382 		ret = value;
1383 	} else {
1384 		dd_dev_err(dd, "Invalid cntr register access mode");
1385 		return 0;
1386 	}
1387 
1388 	hfi1_cdbg(CNTR, "csr 0x%x val 0x%llx mode %d", csr, ret, mode);
1389 	return ret;
1390 }
1391 
1392 /* Dev Access */
1393 static u64 dev_access_u32_csr(const struct cntr_entry *entry,
1394 			      void *context, int vl, int mode, u64 data)
1395 {
1396 	struct hfi1_devdata *dd = context;
1397 	u64 csr = entry->csr;
1398 
1399 	if (entry->flags & CNTR_SDMA) {
1400 		if (vl == CNTR_INVALID_VL)
1401 			return 0;
1402 		csr += 0x100 * vl;
1403 	} else {
1404 		if (vl != CNTR_INVALID_VL)
1405 			return 0;
1406 	}
1407 	return read_write_csr(dd, csr, mode, data);
1408 }
1409 
1410 static u64 access_sde_err_cnt(const struct cntr_entry *entry,
1411 			      void *context, int idx, int mode, u64 data)
1412 {
1413 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1414 
1415 	if (dd->per_sdma && idx < dd->num_sdma)
1416 		return dd->per_sdma[idx].err_cnt;
1417 	return 0;
1418 }
1419 
1420 static u64 access_sde_int_cnt(const struct cntr_entry *entry,
1421 			      void *context, int idx, int mode, u64 data)
1422 {
1423 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1424 
1425 	if (dd->per_sdma && idx < dd->num_sdma)
1426 		return dd->per_sdma[idx].sdma_int_cnt;
1427 	return 0;
1428 }
1429 
1430 static u64 access_sde_idle_int_cnt(const struct cntr_entry *entry,
1431 				   void *context, int idx, int mode, u64 data)
1432 {
1433 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1434 
1435 	if (dd->per_sdma && idx < dd->num_sdma)
1436 		return dd->per_sdma[idx].idle_int_cnt;
1437 	return 0;
1438 }
1439 
1440 static u64 access_sde_progress_int_cnt(const struct cntr_entry *entry,
1441 				       void *context, int idx, int mode,
1442 				       u64 data)
1443 {
1444 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1445 
1446 	if (dd->per_sdma && idx < dd->num_sdma)
1447 		return dd->per_sdma[idx].progress_int_cnt;
1448 	return 0;
1449 }
1450 
1451 static u64 dev_access_u64_csr(const struct cntr_entry *entry, void *context,
1452 			      int vl, int mode, u64 data)
1453 {
1454 	struct hfi1_devdata *dd = context;
1455 
1456 	u64 val = 0;
1457 	u64 csr = entry->csr;
1458 
1459 	if (entry->flags & CNTR_VL) {
1460 		if (vl == CNTR_INVALID_VL)
1461 			return 0;
1462 		csr += 8 * vl;
1463 	} else {
1464 		if (vl != CNTR_INVALID_VL)
1465 			return 0;
1466 	}
1467 
1468 	val = read_write_csr(dd, csr, mode, data);
1469 	return val;
1470 }
1471 
1472 static u64 dc_access_lcb_cntr(const struct cntr_entry *entry, void *context,
1473 			      int vl, int mode, u64 data)
1474 {
1475 	struct hfi1_devdata *dd = context;
1476 	u32 csr = entry->csr;
1477 	int ret = 0;
1478 
1479 	if (vl != CNTR_INVALID_VL)
1480 		return 0;
1481 	if (mode == CNTR_MODE_R)
1482 		ret = read_lcb_csr(dd, csr, &data);
1483 	else if (mode == CNTR_MODE_W)
1484 		ret = write_lcb_csr(dd, csr, data);
1485 
1486 	if (ret) {
1487 		dd_dev_err(dd, "Could not acquire LCB for counter 0x%x", csr);
1488 		return 0;
1489 	}
1490 
1491 	hfi1_cdbg(CNTR, "csr 0x%x val 0x%llx mode %d", csr, data, mode);
1492 	return data;
1493 }
1494 
1495 /* Port Access */
1496 static u64 port_access_u32_csr(const struct cntr_entry *entry, void *context,
1497 			       int vl, int mode, u64 data)
1498 {
1499 	struct hfi1_pportdata *ppd = context;
1500 
1501 	if (vl != CNTR_INVALID_VL)
1502 		return 0;
1503 	return read_write_csr(ppd->dd, entry->csr, mode, data);
1504 }
1505 
1506 static u64 port_access_u64_csr(const struct cntr_entry *entry,
1507 			       void *context, int vl, int mode, u64 data)
1508 {
1509 	struct hfi1_pportdata *ppd = context;
1510 	u64 val;
1511 	u64 csr = entry->csr;
1512 
1513 	if (entry->flags & CNTR_VL) {
1514 		if (vl == CNTR_INVALID_VL)
1515 			return 0;
1516 		csr += 8 * vl;
1517 	} else {
1518 		if (vl != CNTR_INVALID_VL)
1519 			return 0;
1520 	}
1521 	val = read_write_csr(ppd->dd, csr, mode, data);
1522 	return val;
1523 }
1524 
1525 /* Software defined */
1526 static inline u64 read_write_sw(struct hfi1_devdata *dd, u64 *cntr, int mode,
1527 				u64 data)
1528 {
1529 	u64 ret;
1530 
1531 	if (mode == CNTR_MODE_R) {
1532 		ret = *cntr;
1533 	} else if (mode == CNTR_MODE_W) {
1534 		*cntr = data;
1535 		ret = data;
1536 	} else {
1537 		dd_dev_err(dd, "Invalid cntr sw access mode");
1538 		return 0;
1539 	}
1540 
1541 	hfi1_cdbg(CNTR, "val 0x%llx mode %d", ret, mode);
1542 
1543 	return ret;
1544 }
1545 
1546 static u64 access_sw_link_dn_cnt(const struct cntr_entry *entry, void *context,
1547 				 int vl, int mode, u64 data)
1548 {
1549 	struct hfi1_pportdata *ppd = context;
1550 
1551 	if (vl != CNTR_INVALID_VL)
1552 		return 0;
1553 	return read_write_sw(ppd->dd, &ppd->link_downed, mode, data);
1554 }
1555 
1556 static u64 access_sw_link_up_cnt(const struct cntr_entry *entry, void *context,
1557 				 int vl, int mode, u64 data)
1558 {
1559 	struct hfi1_pportdata *ppd = context;
1560 
1561 	if (vl != CNTR_INVALID_VL)
1562 		return 0;
1563 	return read_write_sw(ppd->dd, &ppd->link_up, mode, data);
1564 }
1565 
1566 static u64 access_sw_unknown_frame_cnt(const struct cntr_entry *entry,
1567 				       void *context, int vl, int mode,
1568 				       u64 data)
1569 {
1570 	struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context;
1571 
1572 	if (vl != CNTR_INVALID_VL)
1573 		return 0;
1574 	return read_write_sw(ppd->dd, &ppd->unknown_frame_count, mode, data);
1575 }
1576 
1577 static u64 access_sw_xmit_discards(const struct cntr_entry *entry,
1578 				   void *context, int vl, int mode, u64 data)
1579 {
1580 	struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context;
1581 	u64 zero = 0;
1582 	u64 *counter;
1583 
1584 	if (vl == CNTR_INVALID_VL)
1585 		counter = &ppd->port_xmit_discards;
1586 	else if (vl >= 0 && vl < C_VL_COUNT)
1587 		counter = &ppd->port_xmit_discards_vl[vl];
1588 	else
1589 		counter = &zero;
1590 
1591 	return read_write_sw(ppd->dd, counter, mode, data);
1592 }
1593 
1594 static u64 access_xmit_constraint_errs(const struct cntr_entry *entry,
1595 				       void *context, int vl, int mode,
1596 				       u64 data)
1597 {
1598 	struct hfi1_pportdata *ppd = context;
1599 
1600 	if (vl != CNTR_INVALID_VL)
1601 		return 0;
1602 
1603 	return read_write_sw(ppd->dd, &ppd->port_xmit_constraint_errors,
1604 			     mode, data);
1605 }
1606 
1607 static u64 access_rcv_constraint_errs(const struct cntr_entry *entry,
1608 				      void *context, int vl, int mode, u64 data)
1609 {
1610 	struct hfi1_pportdata *ppd = context;
1611 
1612 	if (vl != CNTR_INVALID_VL)
1613 		return 0;
1614 
1615 	return read_write_sw(ppd->dd, &ppd->port_rcv_constraint_errors,
1616 			     mode, data);
1617 }
1618 
1619 u64 get_all_cpu_total(u64 __percpu *cntr)
1620 {
1621 	int cpu;
1622 	u64 counter = 0;
1623 
1624 	for_each_possible_cpu(cpu)
1625 		counter += *per_cpu_ptr(cntr, cpu);
1626 	return counter;
1627 }
1628 
1629 static u64 read_write_cpu(struct hfi1_devdata *dd, u64 *z_val,
1630 			  u64 __percpu *cntr,
1631 			  int vl, int mode, u64 data)
1632 {
1633 	u64 ret = 0;
1634 
1635 	if (vl != CNTR_INVALID_VL)
1636 		return 0;
1637 
1638 	if (mode == CNTR_MODE_R) {
1639 		ret = get_all_cpu_total(cntr) - *z_val;
1640 	} else if (mode == CNTR_MODE_W) {
1641 		/* A write can only zero the counter */
1642 		if (data == 0)
1643 			*z_val = get_all_cpu_total(cntr);
1644 		else
1645 			dd_dev_err(dd, "Per CPU cntrs can only be zeroed");
1646 	} else {
1647 		dd_dev_err(dd, "Invalid cntr sw cpu access mode");
1648 		return 0;
1649 	}
1650 
1651 	return ret;
1652 }
1653 
1654 static u64 access_sw_cpu_intr(const struct cntr_entry *entry,
1655 			      void *context, int vl, int mode, u64 data)
1656 {
1657 	struct hfi1_devdata *dd = context;
1658 
1659 	return read_write_cpu(dd, &dd->z_int_counter, dd->int_counter, vl,
1660 			      mode, data);
1661 }
1662 
1663 static u64 access_sw_cpu_rcv_limit(const struct cntr_entry *entry,
1664 				   void *context, int vl, int mode, u64 data)
1665 {
1666 	struct hfi1_devdata *dd = context;
1667 
1668 	return read_write_cpu(dd, &dd->z_rcv_limit, dd->rcv_limit, vl,
1669 			      mode, data);
1670 }
1671 
1672 static u64 access_sw_pio_wait(const struct cntr_entry *entry,
1673 			      void *context, int vl, int mode, u64 data)
1674 {
1675 	struct hfi1_devdata *dd = context;
1676 
1677 	return dd->verbs_dev.n_piowait;
1678 }
1679 
1680 static u64 access_sw_pio_drain(const struct cntr_entry *entry,
1681 			       void *context, int vl, int mode, u64 data)
1682 {
1683 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1684 
1685 	return dd->verbs_dev.n_piodrain;
1686 }
1687 
1688 static u64 access_sw_vtx_wait(const struct cntr_entry *entry,
1689 			      void *context, int vl, int mode, u64 data)
1690 {
1691 	struct hfi1_devdata *dd = context;
1692 
1693 	return dd->verbs_dev.n_txwait;
1694 }
1695 
1696 static u64 access_sw_kmem_wait(const struct cntr_entry *entry,
1697 			       void *context, int vl, int mode, u64 data)
1698 {
1699 	struct hfi1_devdata *dd = context;
1700 
1701 	return dd->verbs_dev.n_kmem_wait;
1702 }
1703 
1704 static u64 access_sw_send_schedule(const struct cntr_entry *entry,
1705 				   void *context, int vl, int mode, u64 data)
1706 {
1707 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1708 
1709 	return read_write_cpu(dd, &dd->z_send_schedule, dd->send_schedule, vl,
1710 			      mode, data);
1711 }
1712 
1713 /* Software counters for the error status bits within MISC_ERR_STATUS */
1714 static u64 access_misc_pll_lock_fail_err_cnt(const struct cntr_entry *entry,
1715 					     void *context, int vl, int mode,
1716 					     u64 data)
1717 {
1718 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1719 
1720 	return dd->misc_err_status_cnt[12];
1721 }
1722 
1723 static u64 access_misc_mbist_fail_err_cnt(const struct cntr_entry *entry,
1724 					  void *context, int vl, int mode,
1725 					  u64 data)
1726 {
1727 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1728 
1729 	return dd->misc_err_status_cnt[11];
1730 }
1731 
1732 static u64 access_misc_invalid_eep_cmd_err_cnt(const struct cntr_entry *entry,
1733 					       void *context, int vl, int mode,
1734 					       u64 data)
1735 {
1736 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1737 
1738 	return dd->misc_err_status_cnt[10];
1739 }
1740 
1741 static u64 access_misc_efuse_done_parity_err_cnt(const struct cntr_entry *entry,
1742 						 void *context, int vl,
1743 						 int mode, u64 data)
1744 {
1745 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1746 
1747 	return dd->misc_err_status_cnt[9];
1748 }
1749 
1750 static u64 access_misc_efuse_write_err_cnt(const struct cntr_entry *entry,
1751 					   void *context, int vl, int mode,
1752 					   u64 data)
1753 {
1754 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1755 
1756 	return dd->misc_err_status_cnt[8];
1757 }
1758 
1759 static u64 access_misc_efuse_read_bad_addr_err_cnt(
1760 				const struct cntr_entry *entry,
1761 				void *context, int vl, int mode, u64 data)
1762 {
1763 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1764 
1765 	return dd->misc_err_status_cnt[7];
1766 }
1767 
1768 static u64 access_misc_efuse_csr_parity_err_cnt(const struct cntr_entry *entry,
1769 						void *context, int vl,
1770 						int mode, u64 data)
1771 {
1772 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1773 
1774 	return dd->misc_err_status_cnt[6];
1775 }
1776 
1777 static u64 access_misc_fw_auth_failed_err_cnt(const struct cntr_entry *entry,
1778 					      void *context, int vl, int mode,
1779 					      u64 data)
1780 {
1781 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1782 
1783 	return dd->misc_err_status_cnt[5];
1784 }
1785 
1786 static u64 access_misc_key_mismatch_err_cnt(const struct cntr_entry *entry,
1787 					    void *context, int vl, int mode,
1788 					    u64 data)
1789 {
1790 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1791 
1792 	return dd->misc_err_status_cnt[4];
1793 }
1794 
1795 static u64 access_misc_sbus_write_failed_err_cnt(const struct cntr_entry *entry,
1796 						 void *context, int vl,
1797 						 int mode, u64 data)
1798 {
1799 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1800 
1801 	return dd->misc_err_status_cnt[3];
1802 }
1803 
1804 static u64 access_misc_csr_write_bad_addr_err_cnt(
1805 				const struct cntr_entry *entry,
1806 				void *context, int vl, int mode, u64 data)
1807 {
1808 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1809 
1810 	return dd->misc_err_status_cnt[2];
1811 }
1812 
1813 static u64 access_misc_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
1814 						 void *context, int vl,
1815 						 int mode, u64 data)
1816 {
1817 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1818 
1819 	return dd->misc_err_status_cnt[1];
1820 }
1821 
1822 static u64 access_misc_csr_parity_err_cnt(const struct cntr_entry *entry,
1823 					  void *context, int vl, int mode,
1824 					  u64 data)
1825 {
1826 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1827 
1828 	return dd->misc_err_status_cnt[0];
1829 }
1830 
1831 /*
1832  * Software counter for the aggregate of
1833  * individual CceErrStatus counters
1834  */
1835 static u64 access_sw_cce_err_status_aggregated_cnt(
1836 				const struct cntr_entry *entry,
1837 				void *context, int vl, int mode, u64 data)
1838 {
1839 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1840 
1841 	return dd->sw_cce_err_status_aggregate;
1842 }
1843 
1844 /*
1845  * Software counters corresponding to each of the
1846  * error status bits within CceErrStatus
1847  */
1848 static u64 access_cce_msix_csr_parity_err_cnt(const struct cntr_entry *entry,
1849 					      void *context, int vl, int mode,
1850 					      u64 data)
1851 {
1852 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1853 
1854 	return dd->cce_err_status_cnt[40];
1855 }
1856 
1857 static u64 access_cce_int_map_unc_err_cnt(const struct cntr_entry *entry,
1858 					  void *context, int vl, int mode,
1859 					  u64 data)
1860 {
1861 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1862 
1863 	return dd->cce_err_status_cnt[39];
1864 }
1865 
1866 static u64 access_cce_int_map_cor_err_cnt(const struct cntr_entry *entry,
1867 					  void *context, int vl, int mode,
1868 					  u64 data)
1869 {
1870 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1871 
1872 	return dd->cce_err_status_cnt[38];
1873 }
1874 
1875 static u64 access_cce_msix_table_unc_err_cnt(const struct cntr_entry *entry,
1876 					     void *context, int vl, int mode,
1877 					     u64 data)
1878 {
1879 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1880 
1881 	return dd->cce_err_status_cnt[37];
1882 }
1883 
1884 static u64 access_cce_msix_table_cor_err_cnt(const struct cntr_entry *entry,
1885 					     void *context, int vl, int mode,
1886 					     u64 data)
1887 {
1888 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1889 
1890 	return dd->cce_err_status_cnt[36];
1891 }
1892 
1893 static u64 access_cce_rxdma_conv_fifo_parity_err_cnt(
1894 				const struct cntr_entry *entry,
1895 				void *context, int vl, int mode, u64 data)
1896 {
1897 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1898 
1899 	return dd->cce_err_status_cnt[35];
1900 }
1901 
1902 static u64 access_cce_rcpl_async_fifo_parity_err_cnt(
1903 				const struct cntr_entry *entry,
1904 				void *context, int vl, int mode, u64 data)
1905 {
1906 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1907 
1908 	return dd->cce_err_status_cnt[34];
1909 }
1910 
1911 static u64 access_cce_seg_write_bad_addr_err_cnt(const struct cntr_entry *entry,
1912 						 void *context, int vl,
1913 						 int mode, u64 data)
1914 {
1915 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1916 
1917 	return dd->cce_err_status_cnt[33];
1918 }
1919 
1920 static u64 access_cce_seg_read_bad_addr_err_cnt(const struct cntr_entry *entry,
1921 						void *context, int vl, int mode,
1922 						u64 data)
1923 {
1924 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1925 
1926 	return dd->cce_err_status_cnt[32];
1927 }
1928 
1929 static u64 access_la_triggered_cnt(const struct cntr_entry *entry,
1930 				   void *context, int vl, int mode, u64 data)
1931 {
1932 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1933 
1934 	return dd->cce_err_status_cnt[31];
1935 }
1936 
1937 static u64 access_cce_trgt_cpl_timeout_err_cnt(const struct cntr_entry *entry,
1938 					       void *context, int vl, int mode,
1939 					       u64 data)
1940 {
1941 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1942 
1943 	return dd->cce_err_status_cnt[30];
1944 }
1945 
1946 static u64 access_pcic_receive_parity_err_cnt(const struct cntr_entry *entry,
1947 					      void *context, int vl, int mode,
1948 					      u64 data)
1949 {
1950 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1951 
1952 	return dd->cce_err_status_cnt[29];
1953 }
1954 
1955 static u64 access_pcic_transmit_back_parity_err_cnt(
1956 				const struct cntr_entry *entry,
1957 				void *context, int vl, int mode, u64 data)
1958 {
1959 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1960 
1961 	return dd->cce_err_status_cnt[28];
1962 }
1963 
1964 static u64 access_pcic_transmit_front_parity_err_cnt(
1965 				const struct cntr_entry *entry,
1966 				void *context, int vl, int mode, u64 data)
1967 {
1968 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1969 
1970 	return dd->cce_err_status_cnt[27];
1971 }
1972 
1973 static u64 access_pcic_cpl_dat_q_unc_err_cnt(const struct cntr_entry *entry,
1974 					     void *context, int vl, int mode,
1975 					     u64 data)
1976 {
1977 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1978 
1979 	return dd->cce_err_status_cnt[26];
1980 }
1981 
1982 static u64 access_pcic_cpl_hd_q_unc_err_cnt(const struct cntr_entry *entry,
1983 					    void *context, int vl, int mode,
1984 					    u64 data)
1985 {
1986 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1987 
1988 	return dd->cce_err_status_cnt[25];
1989 }
1990 
1991 static u64 access_pcic_post_dat_q_unc_err_cnt(const struct cntr_entry *entry,
1992 					      void *context, int vl, int mode,
1993 					      u64 data)
1994 {
1995 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1996 
1997 	return dd->cce_err_status_cnt[24];
1998 }
1999 
2000 static u64 access_pcic_post_hd_q_unc_err_cnt(const struct cntr_entry *entry,
2001 					     void *context, int vl, int mode,
2002 					     u64 data)
2003 {
2004 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2005 
2006 	return dd->cce_err_status_cnt[23];
2007 }
2008 
2009 static u64 access_pcic_retry_sot_mem_unc_err_cnt(const struct cntr_entry *entry,
2010 						 void *context, int vl,
2011 						 int mode, u64 data)
2012 {
2013 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2014 
2015 	return dd->cce_err_status_cnt[22];
2016 }
2017 
2018 static u64 access_pcic_retry_mem_unc_err(const struct cntr_entry *entry,
2019 					 void *context, int vl, int mode,
2020 					 u64 data)
2021 {
2022 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2023 
2024 	return dd->cce_err_status_cnt[21];
2025 }
2026 
2027 static u64 access_pcic_n_post_dat_q_parity_err_cnt(
2028 				const struct cntr_entry *entry,
2029 				void *context, int vl, int mode, u64 data)
2030 {
2031 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2032 
2033 	return dd->cce_err_status_cnt[20];
2034 }
2035 
2036 static u64 access_pcic_n_post_h_q_parity_err_cnt(const struct cntr_entry *entry,
2037 						 void *context, int vl,
2038 						 int mode, u64 data)
2039 {
2040 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2041 
2042 	return dd->cce_err_status_cnt[19];
2043 }
2044 
2045 static u64 access_pcic_cpl_dat_q_cor_err_cnt(const struct cntr_entry *entry,
2046 					     void *context, int vl, int mode,
2047 					     u64 data)
2048 {
2049 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2050 
2051 	return dd->cce_err_status_cnt[18];
2052 }
2053 
2054 static u64 access_pcic_cpl_hd_q_cor_err_cnt(const struct cntr_entry *entry,
2055 					    void *context, int vl, int mode,
2056 					    u64 data)
2057 {
2058 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2059 
2060 	return dd->cce_err_status_cnt[17];
2061 }
2062 
2063 static u64 access_pcic_post_dat_q_cor_err_cnt(const struct cntr_entry *entry,
2064 					      void *context, int vl, int mode,
2065 					      u64 data)
2066 {
2067 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2068 
2069 	return dd->cce_err_status_cnt[16];
2070 }
2071 
2072 static u64 access_pcic_post_hd_q_cor_err_cnt(const struct cntr_entry *entry,
2073 					     void *context, int vl, int mode,
2074 					     u64 data)
2075 {
2076 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2077 
2078 	return dd->cce_err_status_cnt[15];
2079 }
2080 
2081 static u64 access_pcic_retry_sot_mem_cor_err_cnt(const struct cntr_entry *entry,
2082 						 void *context, int vl,
2083 						 int mode, u64 data)
2084 {
2085 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2086 
2087 	return dd->cce_err_status_cnt[14];
2088 }
2089 
2090 static u64 access_pcic_retry_mem_cor_err_cnt(const struct cntr_entry *entry,
2091 					     void *context, int vl, int mode,
2092 					     u64 data)
2093 {
2094 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2095 
2096 	return dd->cce_err_status_cnt[13];
2097 }
2098 
2099 static u64 access_cce_cli1_async_fifo_dbg_parity_err_cnt(
2100 				const struct cntr_entry *entry,
2101 				void *context, int vl, int mode, u64 data)
2102 {
2103 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2104 
2105 	return dd->cce_err_status_cnt[12];
2106 }
2107 
2108 static u64 access_cce_cli1_async_fifo_rxdma_parity_err_cnt(
2109 				const struct cntr_entry *entry,
2110 				void *context, int vl, int mode, u64 data)
2111 {
2112 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2113 
2114 	return dd->cce_err_status_cnt[11];
2115 }
2116 
2117 static u64 access_cce_cli1_async_fifo_sdma_hd_parity_err_cnt(
2118 				const struct cntr_entry *entry,
2119 				void *context, int vl, int mode, u64 data)
2120 {
2121 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2122 
2123 	return dd->cce_err_status_cnt[10];
2124 }
2125 
2126 static u64 access_cce_cl1_async_fifo_pio_crdt_parity_err_cnt(
2127 				const struct cntr_entry *entry,
2128 				void *context, int vl, int mode, u64 data)
2129 {
2130 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2131 
2132 	return dd->cce_err_status_cnt[9];
2133 }
2134 
2135 static u64 access_cce_cli2_async_fifo_parity_err_cnt(
2136 				const struct cntr_entry *entry,
2137 				void *context, int vl, int mode, u64 data)
2138 {
2139 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2140 
2141 	return dd->cce_err_status_cnt[8];
2142 }
2143 
2144 static u64 access_cce_csr_cfg_bus_parity_err_cnt(const struct cntr_entry *entry,
2145 						 void *context, int vl,
2146 						 int mode, u64 data)
2147 {
2148 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2149 
2150 	return dd->cce_err_status_cnt[7];
2151 }
2152 
2153 static u64 access_cce_cli0_async_fifo_parity_err_cnt(
2154 				const struct cntr_entry *entry,
2155 				void *context, int vl, int mode, u64 data)
2156 {
2157 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2158 
2159 	return dd->cce_err_status_cnt[6];
2160 }
2161 
2162 static u64 access_cce_rspd_data_parity_err_cnt(const struct cntr_entry *entry,
2163 					       void *context, int vl, int mode,
2164 					       u64 data)
2165 {
2166 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2167 
2168 	return dd->cce_err_status_cnt[5];
2169 }
2170 
2171 static u64 access_cce_trgt_access_err_cnt(const struct cntr_entry *entry,
2172 					  void *context, int vl, int mode,
2173 					  u64 data)
2174 {
2175 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2176 
2177 	return dd->cce_err_status_cnt[4];
2178 }
2179 
2180 static u64 access_cce_trgt_async_fifo_parity_err_cnt(
2181 				const struct cntr_entry *entry,
2182 				void *context, int vl, int mode, u64 data)
2183 {
2184 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2185 
2186 	return dd->cce_err_status_cnt[3];
2187 }
2188 
2189 static u64 access_cce_csr_write_bad_addr_err_cnt(const struct cntr_entry *entry,
2190 						 void *context, int vl,
2191 						 int mode, u64 data)
2192 {
2193 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2194 
2195 	return dd->cce_err_status_cnt[2];
2196 }
2197 
2198 static u64 access_cce_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
2199 						void *context, int vl,
2200 						int mode, u64 data)
2201 {
2202 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2203 
2204 	return dd->cce_err_status_cnt[1];
2205 }
2206 
2207 static u64 access_ccs_csr_parity_err_cnt(const struct cntr_entry *entry,
2208 					 void *context, int vl, int mode,
2209 					 u64 data)
2210 {
2211 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2212 
2213 	return dd->cce_err_status_cnt[0];
2214 }
2215 
2216 /*
2217  * Software counters corresponding to each of the
2218  * error status bits within RcvErrStatus
2219  */
2220 static u64 access_rx_csr_parity_err_cnt(const struct cntr_entry *entry,
2221 					void *context, int vl, int mode,
2222 					u64 data)
2223 {
2224 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2225 
2226 	return dd->rcv_err_status_cnt[63];
2227 }
2228 
2229 static u64 access_rx_csr_write_bad_addr_err_cnt(const struct cntr_entry *entry,
2230 						void *context, int vl,
2231 						int mode, u64 data)
2232 {
2233 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2234 
2235 	return dd->rcv_err_status_cnt[62];
2236 }
2237 
2238 static u64 access_rx_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
2239 					       void *context, int vl, int mode,
2240 					       u64 data)
2241 {
2242 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2243 
2244 	return dd->rcv_err_status_cnt[61];
2245 }
2246 
2247 static u64 access_rx_dma_csr_unc_err_cnt(const struct cntr_entry *entry,
2248 					 void *context, int vl, int mode,
2249 					 u64 data)
2250 {
2251 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2252 
2253 	return dd->rcv_err_status_cnt[60];
2254 }
2255 
2256 static u64 access_rx_dma_dq_fsm_encoding_err_cnt(const struct cntr_entry *entry,
2257 						 void *context, int vl,
2258 						 int mode, u64 data)
2259 {
2260 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2261 
2262 	return dd->rcv_err_status_cnt[59];
2263 }
2264 
2265 static u64 access_rx_dma_eq_fsm_encoding_err_cnt(const struct cntr_entry *entry,
2266 						 void *context, int vl,
2267 						 int mode, u64 data)
2268 {
2269 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2270 
2271 	return dd->rcv_err_status_cnt[58];
2272 }
2273 
2274 static u64 access_rx_dma_csr_parity_err_cnt(const struct cntr_entry *entry,
2275 					    void *context, int vl, int mode,
2276 					    u64 data)
2277 {
2278 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2279 
2280 	return dd->rcv_err_status_cnt[57];
2281 }
2282 
2283 static u64 access_rx_rbuf_data_cor_err_cnt(const struct cntr_entry *entry,
2284 					   void *context, int vl, int mode,
2285 					   u64 data)
2286 {
2287 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2288 
2289 	return dd->rcv_err_status_cnt[56];
2290 }
2291 
2292 static u64 access_rx_rbuf_data_unc_err_cnt(const struct cntr_entry *entry,
2293 					   void *context, int vl, int mode,
2294 					   u64 data)
2295 {
2296 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2297 
2298 	return dd->rcv_err_status_cnt[55];
2299 }
2300 
2301 static u64 access_rx_dma_data_fifo_rd_cor_err_cnt(
2302 				const struct cntr_entry *entry,
2303 				void *context, int vl, int mode, u64 data)
2304 {
2305 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2306 
2307 	return dd->rcv_err_status_cnt[54];
2308 }
2309 
2310 static u64 access_rx_dma_data_fifo_rd_unc_err_cnt(
2311 				const struct cntr_entry *entry,
2312 				void *context, int vl, int mode, u64 data)
2313 {
2314 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2315 
2316 	return dd->rcv_err_status_cnt[53];
2317 }
2318 
2319 static u64 access_rx_dma_hdr_fifo_rd_cor_err_cnt(const struct cntr_entry *entry,
2320 						 void *context, int vl,
2321 						 int mode, u64 data)
2322 {
2323 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2324 
2325 	return dd->rcv_err_status_cnt[52];
2326 }
2327 
2328 static u64 access_rx_dma_hdr_fifo_rd_unc_err_cnt(const struct cntr_entry *entry,
2329 						 void *context, int vl,
2330 						 int mode, u64 data)
2331 {
2332 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2333 
2334 	return dd->rcv_err_status_cnt[51];
2335 }
2336 
2337 static u64 access_rx_rbuf_desc_part2_cor_err_cnt(const struct cntr_entry *entry,
2338 						 void *context, int vl,
2339 						 int mode, u64 data)
2340 {
2341 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2342 
2343 	return dd->rcv_err_status_cnt[50];
2344 }
2345 
2346 static u64 access_rx_rbuf_desc_part2_unc_err_cnt(const struct cntr_entry *entry,
2347 						 void *context, int vl,
2348 						 int mode, u64 data)
2349 {
2350 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2351 
2352 	return dd->rcv_err_status_cnt[49];
2353 }
2354 
2355 static u64 access_rx_rbuf_desc_part1_cor_err_cnt(const struct cntr_entry *entry,
2356 						 void *context, int vl,
2357 						 int mode, u64 data)
2358 {
2359 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2360 
2361 	return dd->rcv_err_status_cnt[48];
2362 }
2363 
2364 static u64 access_rx_rbuf_desc_part1_unc_err_cnt(const struct cntr_entry *entry,
2365 						 void *context, int vl,
2366 						 int mode, u64 data)
2367 {
2368 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2369 
2370 	return dd->rcv_err_status_cnt[47];
2371 }
2372 
2373 static u64 access_rx_hq_intr_fsm_err_cnt(const struct cntr_entry *entry,
2374 					 void *context, int vl, int mode,
2375 					 u64 data)
2376 {
2377 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2378 
2379 	return dd->rcv_err_status_cnt[46];
2380 }
2381 
2382 static u64 access_rx_hq_intr_csr_parity_err_cnt(
2383 				const struct cntr_entry *entry,
2384 				void *context, int vl, int mode, u64 data)
2385 {
2386 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2387 
2388 	return dd->rcv_err_status_cnt[45];
2389 }
2390 
2391 static u64 access_rx_lookup_csr_parity_err_cnt(
2392 				const struct cntr_entry *entry,
2393 				void *context, int vl, int mode, u64 data)
2394 {
2395 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2396 
2397 	return dd->rcv_err_status_cnt[44];
2398 }
2399 
2400 static u64 access_rx_lookup_rcv_array_cor_err_cnt(
2401 				const struct cntr_entry *entry,
2402 				void *context, int vl, int mode, u64 data)
2403 {
2404 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2405 
2406 	return dd->rcv_err_status_cnt[43];
2407 }
2408 
2409 static u64 access_rx_lookup_rcv_array_unc_err_cnt(
2410 				const struct cntr_entry *entry,
2411 				void *context, int vl, int mode, u64 data)
2412 {
2413 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2414 
2415 	return dd->rcv_err_status_cnt[42];
2416 }
2417 
2418 static u64 access_rx_lookup_des_part2_parity_err_cnt(
2419 				const struct cntr_entry *entry,
2420 				void *context, int vl, int mode, u64 data)
2421 {
2422 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2423 
2424 	return dd->rcv_err_status_cnt[41];
2425 }
2426 
2427 static u64 access_rx_lookup_des_part1_unc_cor_err_cnt(
2428 				const struct cntr_entry *entry,
2429 				void *context, int vl, int mode, u64 data)
2430 {
2431 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2432 
2433 	return dd->rcv_err_status_cnt[40];
2434 }
2435 
2436 static u64 access_rx_lookup_des_part1_unc_err_cnt(
2437 				const struct cntr_entry *entry,
2438 				void *context, int vl, int mode, u64 data)
2439 {
2440 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2441 
2442 	return dd->rcv_err_status_cnt[39];
2443 }
2444 
2445 static u64 access_rx_rbuf_next_free_buf_cor_err_cnt(
2446 				const struct cntr_entry *entry,
2447 				void *context, int vl, int mode, u64 data)
2448 {
2449 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2450 
2451 	return dd->rcv_err_status_cnt[38];
2452 }
2453 
2454 static u64 access_rx_rbuf_next_free_buf_unc_err_cnt(
2455 				const struct cntr_entry *entry,
2456 				void *context, int vl, int mode, u64 data)
2457 {
2458 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2459 
2460 	return dd->rcv_err_status_cnt[37];
2461 }
2462 
2463 static u64 access_rbuf_fl_init_wr_addr_parity_err_cnt(
2464 				const struct cntr_entry *entry,
2465 				void *context, int vl, int mode, u64 data)
2466 {
2467 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2468 
2469 	return dd->rcv_err_status_cnt[36];
2470 }
2471 
2472 static u64 access_rx_rbuf_fl_initdone_parity_err_cnt(
2473 				const struct cntr_entry *entry,
2474 				void *context, int vl, int mode, u64 data)
2475 {
2476 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2477 
2478 	return dd->rcv_err_status_cnt[35];
2479 }
2480 
2481 static u64 access_rx_rbuf_fl_write_addr_parity_err_cnt(
2482 				const struct cntr_entry *entry,
2483 				void *context, int vl, int mode, u64 data)
2484 {
2485 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2486 
2487 	return dd->rcv_err_status_cnt[34];
2488 }
2489 
2490 static u64 access_rx_rbuf_fl_rd_addr_parity_err_cnt(
2491 				const struct cntr_entry *entry,
2492 				void *context, int vl, int mode, u64 data)
2493 {
2494 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2495 
2496 	return dd->rcv_err_status_cnt[33];
2497 }
2498 
2499 static u64 access_rx_rbuf_empty_err_cnt(const struct cntr_entry *entry,
2500 					void *context, int vl, int mode,
2501 					u64 data)
2502 {
2503 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2504 
2505 	return dd->rcv_err_status_cnt[32];
2506 }
2507 
2508 static u64 access_rx_rbuf_full_err_cnt(const struct cntr_entry *entry,
2509 				       void *context, int vl, int mode,
2510 				       u64 data)
2511 {
2512 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2513 
2514 	return dd->rcv_err_status_cnt[31];
2515 }
2516 
2517 static u64 access_rbuf_bad_lookup_err_cnt(const struct cntr_entry *entry,
2518 					  void *context, int vl, int mode,
2519 					  u64 data)
2520 {
2521 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2522 
2523 	return dd->rcv_err_status_cnt[30];
2524 }
2525 
2526 static u64 access_rbuf_ctx_id_parity_err_cnt(const struct cntr_entry *entry,
2527 					     void *context, int vl, int mode,
2528 					     u64 data)
2529 {
2530 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2531 
2532 	return dd->rcv_err_status_cnt[29];
2533 }
2534 
2535 static u64 access_rbuf_csr_qeopdw_parity_err_cnt(const struct cntr_entry *entry,
2536 						 void *context, int vl,
2537 						 int mode, u64 data)
2538 {
2539 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2540 
2541 	return dd->rcv_err_status_cnt[28];
2542 }
2543 
2544 static u64 access_rx_rbuf_csr_q_num_of_pkt_parity_err_cnt(
2545 				const struct cntr_entry *entry,
2546 				void *context, int vl, int mode, u64 data)
2547 {
2548 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2549 
2550 	return dd->rcv_err_status_cnt[27];
2551 }
2552 
2553 static u64 access_rx_rbuf_csr_q_t1_ptr_parity_err_cnt(
2554 				const struct cntr_entry *entry,
2555 				void *context, int vl, int mode, u64 data)
2556 {
2557 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2558 
2559 	return dd->rcv_err_status_cnt[26];
2560 }
2561 
2562 static u64 access_rx_rbuf_csr_q_hd_ptr_parity_err_cnt(
2563 				const struct cntr_entry *entry,
2564 				void *context, int vl, int mode, u64 data)
2565 {
2566 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2567 
2568 	return dd->rcv_err_status_cnt[25];
2569 }
2570 
2571 static u64 access_rx_rbuf_csr_q_vld_bit_parity_err_cnt(
2572 				const struct cntr_entry *entry,
2573 				void *context, int vl, int mode, u64 data)
2574 {
2575 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2576 
2577 	return dd->rcv_err_status_cnt[24];
2578 }
2579 
2580 static u64 access_rx_rbuf_csr_q_next_buf_parity_err_cnt(
2581 				const struct cntr_entry *entry,
2582 				void *context, int vl, int mode, u64 data)
2583 {
2584 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2585 
2586 	return dd->rcv_err_status_cnt[23];
2587 }
2588 
2589 static u64 access_rx_rbuf_csr_q_ent_cnt_parity_err_cnt(
2590 				const struct cntr_entry *entry,
2591 				void *context, int vl, int mode, u64 data)
2592 {
2593 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2594 
2595 	return dd->rcv_err_status_cnt[22];
2596 }
2597 
2598 static u64 access_rx_rbuf_csr_q_head_buf_num_parity_err_cnt(
2599 				const struct cntr_entry *entry,
2600 				void *context, int vl, int mode, u64 data)
2601 {
2602 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2603 
2604 	return dd->rcv_err_status_cnt[21];
2605 }
2606 
2607 static u64 access_rx_rbuf_block_list_read_cor_err_cnt(
2608 				const struct cntr_entry *entry,
2609 				void *context, int vl, int mode, u64 data)
2610 {
2611 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2612 
2613 	return dd->rcv_err_status_cnt[20];
2614 }
2615 
2616 static u64 access_rx_rbuf_block_list_read_unc_err_cnt(
2617 				const struct cntr_entry *entry,
2618 				void *context, int vl, int mode, u64 data)
2619 {
2620 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2621 
2622 	return dd->rcv_err_status_cnt[19];
2623 }
2624 
2625 static u64 access_rx_rbuf_lookup_des_cor_err_cnt(const struct cntr_entry *entry,
2626 						 void *context, int vl,
2627 						 int mode, u64 data)
2628 {
2629 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2630 
2631 	return dd->rcv_err_status_cnt[18];
2632 }
2633 
2634 static u64 access_rx_rbuf_lookup_des_unc_err_cnt(const struct cntr_entry *entry,
2635 						 void *context, int vl,
2636 						 int mode, u64 data)
2637 {
2638 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2639 
2640 	return dd->rcv_err_status_cnt[17];
2641 }
2642 
2643 static u64 access_rx_rbuf_lookup_des_reg_unc_cor_err_cnt(
2644 				const struct cntr_entry *entry,
2645 				void *context, int vl, int mode, u64 data)
2646 {
2647 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2648 
2649 	return dd->rcv_err_status_cnt[16];
2650 }
2651 
2652 static u64 access_rx_rbuf_lookup_des_reg_unc_err_cnt(
2653 				const struct cntr_entry *entry,
2654 				void *context, int vl, int mode, u64 data)
2655 {
2656 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2657 
2658 	return dd->rcv_err_status_cnt[15];
2659 }
2660 
2661 static u64 access_rx_rbuf_free_list_cor_err_cnt(const struct cntr_entry *entry,
2662 						void *context, int vl,
2663 						int mode, u64 data)
2664 {
2665 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2666 
2667 	return dd->rcv_err_status_cnt[14];
2668 }
2669 
2670 static u64 access_rx_rbuf_free_list_unc_err_cnt(const struct cntr_entry *entry,
2671 						void *context, int vl,
2672 						int mode, u64 data)
2673 {
2674 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2675 
2676 	return dd->rcv_err_status_cnt[13];
2677 }
2678 
2679 static u64 access_rx_rcv_fsm_encoding_err_cnt(const struct cntr_entry *entry,
2680 					      void *context, int vl, int mode,
2681 					      u64 data)
2682 {
2683 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2684 
2685 	return dd->rcv_err_status_cnt[12];
2686 }
2687 
2688 static u64 access_rx_dma_flag_cor_err_cnt(const struct cntr_entry *entry,
2689 					  void *context, int vl, int mode,
2690 					  u64 data)
2691 {
2692 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2693 
2694 	return dd->rcv_err_status_cnt[11];
2695 }
2696 
2697 static u64 access_rx_dma_flag_unc_err_cnt(const struct cntr_entry *entry,
2698 					  void *context, int vl, int mode,
2699 					  u64 data)
2700 {
2701 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2702 
2703 	return dd->rcv_err_status_cnt[10];
2704 }
2705 
2706 static u64 access_rx_dc_sop_eop_parity_err_cnt(const struct cntr_entry *entry,
2707 					       void *context, int vl, int mode,
2708 					       u64 data)
2709 {
2710 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2711 
2712 	return dd->rcv_err_status_cnt[9];
2713 }
2714 
2715 static u64 access_rx_rcv_csr_parity_err_cnt(const struct cntr_entry *entry,
2716 					    void *context, int vl, int mode,
2717 					    u64 data)
2718 {
2719 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2720 
2721 	return dd->rcv_err_status_cnt[8];
2722 }
2723 
2724 static u64 access_rx_rcv_qp_map_table_cor_err_cnt(
2725 				const struct cntr_entry *entry,
2726 				void *context, int vl, int mode, u64 data)
2727 {
2728 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2729 
2730 	return dd->rcv_err_status_cnt[7];
2731 }
2732 
2733 static u64 access_rx_rcv_qp_map_table_unc_err_cnt(
2734 				const struct cntr_entry *entry,
2735 				void *context, int vl, int mode, u64 data)
2736 {
2737 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2738 
2739 	return dd->rcv_err_status_cnt[6];
2740 }
2741 
2742 static u64 access_rx_rcv_data_cor_err_cnt(const struct cntr_entry *entry,
2743 					  void *context, int vl, int mode,
2744 					  u64 data)
2745 {
2746 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2747 
2748 	return dd->rcv_err_status_cnt[5];
2749 }
2750 
2751 static u64 access_rx_rcv_data_unc_err_cnt(const struct cntr_entry *entry,
2752 					  void *context, int vl, int mode,
2753 					  u64 data)
2754 {
2755 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2756 
2757 	return dd->rcv_err_status_cnt[4];
2758 }
2759 
2760 static u64 access_rx_rcv_hdr_cor_err_cnt(const struct cntr_entry *entry,
2761 					 void *context, int vl, int mode,
2762 					 u64 data)
2763 {
2764 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2765 
2766 	return dd->rcv_err_status_cnt[3];
2767 }
2768 
2769 static u64 access_rx_rcv_hdr_unc_err_cnt(const struct cntr_entry *entry,
2770 					 void *context, int vl, int mode,
2771 					 u64 data)
2772 {
2773 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2774 
2775 	return dd->rcv_err_status_cnt[2];
2776 }
2777 
2778 static u64 access_rx_dc_intf_parity_err_cnt(const struct cntr_entry *entry,
2779 					    void *context, int vl, int mode,
2780 					    u64 data)
2781 {
2782 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2783 
2784 	return dd->rcv_err_status_cnt[1];
2785 }
2786 
2787 static u64 access_rx_dma_csr_cor_err_cnt(const struct cntr_entry *entry,
2788 					 void *context, int vl, int mode,
2789 					 u64 data)
2790 {
2791 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2792 
2793 	return dd->rcv_err_status_cnt[0];
2794 }
2795 
2796 /*
2797  * Software counters corresponding to each of the
2798  * error status bits within SendPioErrStatus
2799  */
2800 static u64 access_pio_pec_sop_head_parity_err_cnt(
2801 				const struct cntr_entry *entry,
2802 				void *context, int vl, int mode, u64 data)
2803 {
2804 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2805 
2806 	return dd->send_pio_err_status_cnt[35];
2807 }
2808 
2809 static u64 access_pio_pcc_sop_head_parity_err_cnt(
2810 				const struct cntr_entry *entry,
2811 				void *context, int vl, int mode, u64 data)
2812 {
2813 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2814 
2815 	return dd->send_pio_err_status_cnt[34];
2816 }
2817 
2818 static u64 access_pio_last_returned_cnt_parity_err_cnt(
2819 				const struct cntr_entry *entry,
2820 				void *context, int vl, int mode, u64 data)
2821 {
2822 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2823 
2824 	return dd->send_pio_err_status_cnt[33];
2825 }
2826 
2827 static u64 access_pio_current_free_cnt_parity_err_cnt(
2828 				const struct cntr_entry *entry,
2829 				void *context, int vl, int mode, u64 data)
2830 {
2831 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2832 
2833 	return dd->send_pio_err_status_cnt[32];
2834 }
2835 
2836 static u64 access_pio_reserved_31_err_cnt(const struct cntr_entry *entry,
2837 					  void *context, int vl, int mode,
2838 					  u64 data)
2839 {
2840 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2841 
2842 	return dd->send_pio_err_status_cnt[31];
2843 }
2844 
2845 static u64 access_pio_reserved_30_err_cnt(const struct cntr_entry *entry,
2846 					  void *context, int vl, int mode,
2847 					  u64 data)
2848 {
2849 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2850 
2851 	return dd->send_pio_err_status_cnt[30];
2852 }
2853 
2854 static u64 access_pio_ppmc_sop_len_err_cnt(const struct cntr_entry *entry,
2855 					   void *context, int vl, int mode,
2856 					   u64 data)
2857 {
2858 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2859 
2860 	return dd->send_pio_err_status_cnt[29];
2861 }
2862 
2863 static u64 access_pio_ppmc_bqc_mem_parity_err_cnt(
2864 				const struct cntr_entry *entry,
2865 				void *context, int vl, int mode, u64 data)
2866 {
2867 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2868 
2869 	return dd->send_pio_err_status_cnt[28];
2870 }
2871 
2872 static u64 access_pio_vl_fifo_parity_err_cnt(const struct cntr_entry *entry,
2873 					     void *context, int vl, int mode,
2874 					     u64 data)
2875 {
2876 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2877 
2878 	return dd->send_pio_err_status_cnt[27];
2879 }
2880 
2881 static u64 access_pio_vlf_sop_parity_err_cnt(const struct cntr_entry *entry,
2882 					     void *context, int vl, int mode,
2883 					     u64 data)
2884 {
2885 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2886 
2887 	return dd->send_pio_err_status_cnt[26];
2888 }
2889 
2890 static u64 access_pio_vlf_v1_len_parity_err_cnt(const struct cntr_entry *entry,
2891 						void *context, int vl,
2892 						int mode, u64 data)
2893 {
2894 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2895 
2896 	return dd->send_pio_err_status_cnt[25];
2897 }
2898 
2899 static u64 access_pio_block_qw_count_parity_err_cnt(
2900 				const struct cntr_entry *entry,
2901 				void *context, int vl, int mode, u64 data)
2902 {
2903 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2904 
2905 	return dd->send_pio_err_status_cnt[24];
2906 }
2907 
2908 static u64 access_pio_write_qw_valid_parity_err_cnt(
2909 				const struct cntr_entry *entry,
2910 				void *context, int vl, int mode, u64 data)
2911 {
2912 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2913 
2914 	return dd->send_pio_err_status_cnt[23];
2915 }
2916 
2917 static u64 access_pio_state_machine_err_cnt(const struct cntr_entry *entry,
2918 					    void *context, int vl, int mode,
2919 					    u64 data)
2920 {
2921 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2922 
2923 	return dd->send_pio_err_status_cnt[22];
2924 }
2925 
2926 static u64 access_pio_write_data_parity_err_cnt(const struct cntr_entry *entry,
2927 						void *context, int vl,
2928 						int mode, u64 data)
2929 {
2930 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2931 
2932 	return dd->send_pio_err_status_cnt[21];
2933 }
2934 
2935 static u64 access_pio_host_addr_mem_cor_err_cnt(const struct cntr_entry *entry,
2936 						void *context, int vl,
2937 						int mode, u64 data)
2938 {
2939 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2940 
2941 	return dd->send_pio_err_status_cnt[20];
2942 }
2943 
2944 static u64 access_pio_host_addr_mem_unc_err_cnt(const struct cntr_entry *entry,
2945 						void *context, int vl,
2946 						int mode, u64 data)
2947 {
2948 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2949 
2950 	return dd->send_pio_err_status_cnt[19];
2951 }
2952 
2953 static u64 access_pio_pkt_evict_sm_or_arb_sm_err_cnt(
2954 				const struct cntr_entry *entry,
2955 				void *context, int vl, int mode, u64 data)
2956 {
2957 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2958 
2959 	return dd->send_pio_err_status_cnt[18];
2960 }
2961 
2962 static u64 access_pio_init_sm_in_err_cnt(const struct cntr_entry *entry,
2963 					 void *context, int vl, int mode,
2964 					 u64 data)
2965 {
2966 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2967 
2968 	return dd->send_pio_err_status_cnt[17];
2969 }
2970 
2971 static u64 access_pio_ppmc_pbl_fifo_err_cnt(const struct cntr_entry *entry,
2972 					    void *context, int vl, int mode,
2973 					    u64 data)
2974 {
2975 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2976 
2977 	return dd->send_pio_err_status_cnt[16];
2978 }
2979 
2980 static u64 access_pio_credit_ret_fifo_parity_err_cnt(
2981 				const struct cntr_entry *entry,
2982 				void *context, int vl, int mode, u64 data)
2983 {
2984 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2985 
2986 	return dd->send_pio_err_status_cnt[15];
2987 }
2988 
2989 static u64 access_pio_v1_len_mem_bank1_cor_err_cnt(
2990 				const struct cntr_entry *entry,
2991 				void *context, int vl, int mode, u64 data)
2992 {
2993 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2994 
2995 	return dd->send_pio_err_status_cnt[14];
2996 }
2997 
2998 static u64 access_pio_v1_len_mem_bank0_cor_err_cnt(
2999 				const struct cntr_entry *entry,
3000 				void *context, int vl, int mode, u64 data)
3001 {
3002 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3003 
3004 	return dd->send_pio_err_status_cnt[13];
3005 }
3006 
3007 static u64 access_pio_v1_len_mem_bank1_unc_err_cnt(
3008 				const struct cntr_entry *entry,
3009 				void *context, int vl, int mode, u64 data)
3010 {
3011 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3012 
3013 	return dd->send_pio_err_status_cnt[12];
3014 }
3015 
3016 static u64 access_pio_v1_len_mem_bank0_unc_err_cnt(
3017 				const struct cntr_entry *entry,
3018 				void *context, int vl, int mode, u64 data)
3019 {
3020 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3021 
3022 	return dd->send_pio_err_status_cnt[11];
3023 }
3024 
3025 static u64 access_pio_sm_pkt_reset_parity_err_cnt(
3026 				const struct cntr_entry *entry,
3027 				void *context, int vl, int mode, u64 data)
3028 {
3029 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3030 
3031 	return dd->send_pio_err_status_cnt[10];
3032 }
3033 
3034 static u64 access_pio_pkt_evict_fifo_parity_err_cnt(
3035 				const struct cntr_entry *entry,
3036 				void *context, int vl, int mode, u64 data)
3037 {
3038 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3039 
3040 	return dd->send_pio_err_status_cnt[9];
3041 }
3042 
3043 static u64 access_pio_sbrdctrl_crrel_fifo_parity_err_cnt(
3044 				const struct cntr_entry *entry,
3045 				void *context, int vl, int mode, u64 data)
3046 {
3047 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3048 
3049 	return dd->send_pio_err_status_cnt[8];
3050 }
3051 
3052 static u64 access_pio_sbrdctl_crrel_parity_err_cnt(
3053 				const struct cntr_entry *entry,
3054 				void *context, int vl, int mode, u64 data)
3055 {
3056 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3057 
3058 	return dd->send_pio_err_status_cnt[7];
3059 }
3060 
3061 static u64 access_pio_pec_fifo_parity_err_cnt(const struct cntr_entry *entry,
3062 					      void *context, int vl, int mode,
3063 					      u64 data)
3064 {
3065 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3066 
3067 	return dd->send_pio_err_status_cnt[6];
3068 }
3069 
3070 static u64 access_pio_pcc_fifo_parity_err_cnt(const struct cntr_entry *entry,
3071 					      void *context, int vl, int mode,
3072 					      u64 data)
3073 {
3074 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3075 
3076 	return dd->send_pio_err_status_cnt[5];
3077 }
3078 
3079 static u64 access_pio_sb_mem_fifo1_err_cnt(const struct cntr_entry *entry,
3080 					   void *context, int vl, int mode,
3081 					   u64 data)
3082 {
3083 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3084 
3085 	return dd->send_pio_err_status_cnt[4];
3086 }
3087 
3088 static u64 access_pio_sb_mem_fifo0_err_cnt(const struct cntr_entry *entry,
3089 					   void *context, int vl, int mode,
3090 					   u64 data)
3091 {
3092 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3093 
3094 	return dd->send_pio_err_status_cnt[3];
3095 }
3096 
3097 static u64 access_pio_csr_parity_err_cnt(const struct cntr_entry *entry,
3098 					 void *context, int vl, int mode,
3099 					 u64 data)
3100 {
3101 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3102 
3103 	return dd->send_pio_err_status_cnt[2];
3104 }
3105 
3106 static u64 access_pio_write_addr_parity_err_cnt(const struct cntr_entry *entry,
3107 						void *context, int vl,
3108 						int mode, u64 data)
3109 {
3110 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3111 
3112 	return dd->send_pio_err_status_cnt[1];
3113 }
3114 
3115 static u64 access_pio_write_bad_ctxt_err_cnt(const struct cntr_entry *entry,
3116 					     void *context, int vl, int mode,
3117 					     u64 data)
3118 {
3119 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3120 
3121 	return dd->send_pio_err_status_cnt[0];
3122 }
3123 
3124 /*
3125  * Software counters corresponding to each of the
3126  * error status bits within SendDmaErrStatus
3127  */
3128 static u64 access_sdma_pcie_req_tracking_cor_err_cnt(
3129 				const struct cntr_entry *entry,
3130 				void *context, int vl, int mode, u64 data)
3131 {
3132 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3133 
3134 	return dd->send_dma_err_status_cnt[3];
3135 }
3136 
3137 static u64 access_sdma_pcie_req_tracking_unc_err_cnt(
3138 				const struct cntr_entry *entry,
3139 				void *context, int vl, int mode, u64 data)
3140 {
3141 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3142 
3143 	return dd->send_dma_err_status_cnt[2];
3144 }
3145 
3146 static u64 access_sdma_csr_parity_err_cnt(const struct cntr_entry *entry,
3147 					  void *context, int vl, int mode,
3148 					  u64 data)
3149 {
3150 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3151 
3152 	return dd->send_dma_err_status_cnt[1];
3153 }
3154 
3155 static u64 access_sdma_rpy_tag_err_cnt(const struct cntr_entry *entry,
3156 				       void *context, int vl, int mode,
3157 				       u64 data)
3158 {
3159 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3160 
3161 	return dd->send_dma_err_status_cnt[0];
3162 }
3163 
3164 /*
3165  * Software counters corresponding to each of the
3166  * error status bits within SendEgressErrStatus
3167  */
3168 static u64 access_tx_read_pio_memory_csr_unc_err_cnt(
3169 				const struct cntr_entry *entry,
3170 				void *context, int vl, int mode, u64 data)
3171 {
3172 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3173 
3174 	return dd->send_egress_err_status_cnt[63];
3175 }
3176 
3177 static u64 access_tx_read_sdma_memory_csr_err_cnt(
3178 				const struct cntr_entry *entry,
3179 				void *context, int vl, int mode, u64 data)
3180 {
3181 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3182 
3183 	return dd->send_egress_err_status_cnt[62];
3184 }
3185 
3186 static u64 access_tx_egress_fifo_cor_err_cnt(const struct cntr_entry *entry,
3187 					     void *context, int vl, int mode,
3188 					     u64 data)
3189 {
3190 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3191 
3192 	return dd->send_egress_err_status_cnt[61];
3193 }
3194 
3195 static u64 access_tx_read_pio_memory_cor_err_cnt(const struct cntr_entry *entry,
3196 						 void *context, int vl,
3197 						 int mode, u64 data)
3198 {
3199 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3200 
3201 	return dd->send_egress_err_status_cnt[60];
3202 }
3203 
3204 static u64 access_tx_read_sdma_memory_cor_err_cnt(
3205 				const struct cntr_entry *entry,
3206 				void *context, int vl, int mode, u64 data)
3207 {
3208 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3209 
3210 	return dd->send_egress_err_status_cnt[59];
3211 }
3212 
3213 static u64 access_tx_sb_hdr_cor_err_cnt(const struct cntr_entry *entry,
3214 					void *context, int vl, int mode,
3215 					u64 data)
3216 {
3217 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3218 
3219 	return dd->send_egress_err_status_cnt[58];
3220 }
3221 
3222 static u64 access_tx_credit_overrun_err_cnt(const struct cntr_entry *entry,
3223 					    void *context, int vl, int mode,
3224 					    u64 data)
3225 {
3226 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3227 
3228 	return dd->send_egress_err_status_cnt[57];
3229 }
3230 
3231 static u64 access_tx_launch_fifo8_cor_err_cnt(const struct cntr_entry *entry,
3232 					      void *context, int vl, int mode,
3233 					      u64 data)
3234 {
3235 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3236 
3237 	return dd->send_egress_err_status_cnt[56];
3238 }
3239 
3240 static u64 access_tx_launch_fifo7_cor_err_cnt(const struct cntr_entry *entry,
3241 					      void *context, int vl, int mode,
3242 					      u64 data)
3243 {
3244 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3245 
3246 	return dd->send_egress_err_status_cnt[55];
3247 }
3248 
3249 static u64 access_tx_launch_fifo6_cor_err_cnt(const struct cntr_entry *entry,
3250 					      void *context, int vl, int mode,
3251 					      u64 data)
3252 {
3253 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3254 
3255 	return dd->send_egress_err_status_cnt[54];
3256 }
3257 
3258 static u64 access_tx_launch_fifo5_cor_err_cnt(const struct cntr_entry *entry,
3259 					      void *context, int vl, int mode,
3260 					      u64 data)
3261 {
3262 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3263 
3264 	return dd->send_egress_err_status_cnt[53];
3265 }
3266 
3267 static u64 access_tx_launch_fifo4_cor_err_cnt(const struct cntr_entry *entry,
3268 					      void *context, int vl, int mode,
3269 					      u64 data)
3270 {
3271 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3272 
3273 	return dd->send_egress_err_status_cnt[52];
3274 }
3275 
3276 static u64 access_tx_launch_fifo3_cor_err_cnt(const struct cntr_entry *entry,
3277 					      void *context, int vl, int mode,
3278 					      u64 data)
3279 {
3280 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3281 
3282 	return dd->send_egress_err_status_cnt[51];
3283 }
3284 
3285 static u64 access_tx_launch_fifo2_cor_err_cnt(const struct cntr_entry *entry,
3286 					      void *context, int vl, int mode,
3287 					      u64 data)
3288 {
3289 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3290 
3291 	return dd->send_egress_err_status_cnt[50];
3292 }
3293 
3294 static u64 access_tx_launch_fifo1_cor_err_cnt(const struct cntr_entry *entry,
3295 					      void *context, int vl, int mode,
3296 					      u64 data)
3297 {
3298 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3299 
3300 	return dd->send_egress_err_status_cnt[49];
3301 }
3302 
3303 static u64 access_tx_launch_fifo0_cor_err_cnt(const struct cntr_entry *entry,
3304 					      void *context, int vl, int mode,
3305 					      u64 data)
3306 {
3307 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3308 
3309 	return dd->send_egress_err_status_cnt[48];
3310 }
3311 
3312 static u64 access_tx_credit_return_vl_err_cnt(const struct cntr_entry *entry,
3313 					      void *context, int vl, int mode,
3314 					      u64 data)
3315 {
3316 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3317 
3318 	return dd->send_egress_err_status_cnt[47];
3319 }
3320 
3321 static u64 access_tx_hcrc_insertion_err_cnt(const struct cntr_entry *entry,
3322 					    void *context, int vl, int mode,
3323 					    u64 data)
3324 {
3325 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3326 
3327 	return dd->send_egress_err_status_cnt[46];
3328 }
3329 
3330 static u64 access_tx_egress_fifo_unc_err_cnt(const struct cntr_entry *entry,
3331 					     void *context, int vl, int mode,
3332 					     u64 data)
3333 {
3334 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3335 
3336 	return dd->send_egress_err_status_cnt[45];
3337 }
3338 
3339 static u64 access_tx_read_pio_memory_unc_err_cnt(const struct cntr_entry *entry,
3340 						 void *context, int vl,
3341 						 int mode, u64 data)
3342 {
3343 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3344 
3345 	return dd->send_egress_err_status_cnt[44];
3346 }
3347 
3348 static u64 access_tx_read_sdma_memory_unc_err_cnt(
3349 				const struct cntr_entry *entry,
3350 				void *context, int vl, int mode, u64 data)
3351 {
3352 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3353 
3354 	return dd->send_egress_err_status_cnt[43];
3355 }
3356 
3357 static u64 access_tx_sb_hdr_unc_err_cnt(const struct cntr_entry *entry,
3358 					void *context, int vl, int mode,
3359 					u64 data)
3360 {
3361 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3362 
3363 	return dd->send_egress_err_status_cnt[42];
3364 }
3365 
3366 static u64 access_tx_credit_return_partiy_err_cnt(
3367 				const struct cntr_entry *entry,
3368 				void *context, int vl, int mode, u64 data)
3369 {
3370 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3371 
3372 	return dd->send_egress_err_status_cnt[41];
3373 }
3374 
3375 static u64 access_tx_launch_fifo8_unc_or_parity_err_cnt(
3376 				const struct cntr_entry *entry,
3377 				void *context, int vl, int mode, u64 data)
3378 {
3379 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3380 
3381 	return dd->send_egress_err_status_cnt[40];
3382 }
3383 
3384 static u64 access_tx_launch_fifo7_unc_or_parity_err_cnt(
3385 				const struct cntr_entry *entry,
3386 				void *context, int vl, int mode, u64 data)
3387 {
3388 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3389 
3390 	return dd->send_egress_err_status_cnt[39];
3391 }
3392 
3393 static u64 access_tx_launch_fifo6_unc_or_parity_err_cnt(
3394 				const struct cntr_entry *entry,
3395 				void *context, int vl, int mode, u64 data)
3396 {
3397 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3398 
3399 	return dd->send_egress_err_status_cnt[38];
3400 }
3401 
3402 static u64 access_tx_launch_fifo5_unc_or_parity_err_cnt(
3403 				const struct cntr_entry *entry,
3404 				void *context, int vl, int mode, u64 data)
3405 {
3406 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3407 
3408 	return dd->send_egress_err_status_cnt[37];
3409 }
3410 
3411 static u64 access_tx_launch_fifo4_unc_or_parity_err_cnt(
3412 				const struct cntr_entry *entry,
3413 				void *context, int vl, int mode, u64 data)
3414 {
3415 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3416 
3417 	return dd->send_egress_err_status_cnt[36];
3418 }
3419 
3420 static u64 access_tx_launch_fifo3_unc_or_parity_err_cnt(
3421 				const struct cntr_entry *entry,
3422 				void *context, int vl, int mode, u64 data)
3423 {
3424 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3425 
3426 	return dd->send_egress_err_status_cnt[35];
3427 }
3428 
3429 static u64 access_tx_launch_fifo2_unc_or_parity_err_cnt(
3430 				const struct cntr_entry *entry,
3431 				void *context, int vl, int mode, u64 data)
3432 {
3433 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3434 
3435 	return dd->send_egress_err_status_cnt[34];
3436 }
3437 
3438 static u64 access_tx_launch_fifo1_unc_or_parity_err_cnt(
3439 				const struct cntr_entry *entry,
3440 				void *context, int vl, int mode, u64 data)
3441 {
3442 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3443 
3444 	return dd->send_egress_err_status_cnt[33];
3445 }
3446 
3447 static u64 access_tx_launch_fifo0_unc_or_parity_err_cnt(
3448 				const struct cntr_entry *entry,
3449 				void *context, int vl, int mode, u64 data)
3450 {
3451 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3452 
3453 	return dd->send_egress_err_status_cnt[32];
3454 }
3455 
3456 static u64 access_tx_sdma15_disallowed_packet_err_cnt(
3457 				const struct cntr_entry *entry,
3458 				void *context, int vl, int mode, u64 data)
3459 {
3460 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3461 
3462 	return dd->send_egress_err_status_cnt[31];
3463 }
3464 
3465 static u64 access_tx_sdma14_disallowed_packet_err_cnt(
3466 				const struct cntr_entry *entry,
3467 				void *context, int vl, int mode, u64 data)
3468 {
3469 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3470 
3471 	return dd->send_egress_err_status_cnt[30];
3472 }
3473 
3474 static u64 access_tx_sdma13_disallowed_packet_err_cnt(
3475 				const struct cntr_entry *entry,
3476 				void *context, int vl, int mode, u64 data)
3477 {
3478 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3479 
3480 	return dd->send_egress_err_status_cnt[29];
3481 }
3482 
3483 static u64 access_tx_sdma12_disallowed_packet_err_cnt(
3484 				const struct cntr_entry *entry,
3485 				void *context, int vl, int mode, u64 data)
3486 {
3487 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3488 
3489 	return dd->send_egress_err_status_cnt[28];
3490 }
3491 
3492 static u64 access_tx_sdma11_disallowed_packet_err_cnt(
3493 				const struct cntr_entry *entry,
3494 				void *context, int vl, int mode, u64 data)
3495 {
3496 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3497 
3498 	return dd->send_egress_err_status_cnt[27];
3499 }
3500 
3501 static u64 access_tx_sdma10_disallowed_packet_err_cnt(
3502 				const struct cntr_entry *entry,
3503 				void *context, int vl, int mode, u64 data)
3504 {
3505 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3506 
3507 	return dd->send_egress_err_status_cnt[26];
3508 }
3509 
3510 static u64 access_tx_sdma9_disallowed_packet_err_cnt(
3511 				const struct cntr_entry *entry,
3512 				void *context, int vl, int mode, u64 data)
3513 {
3514 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3515 
3516 	return dd->send_egress_err_status_cnt[25];
3517 }
3518 
3519 static u64 access_tx_sdma8_disallowed_packet_err_cnt(
3520 				const struct cntr_entry *entry,
3521 				void *context, int vl, int mode, u64 data)
3522 {
3523 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3524 
3525 	return dd->send_egress_err_status_cnt[24];
3526 }
3527 
3528 static u64 access_tx_sdma7_disallowed_packet_err_cnt(
3529 				const struct cntr_entry *entry,
3530 				void *context, int vl, int mode, u64 data)
3531 {
3532 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3533 
3534 	return dd->send_egress_err_status_cnt[23];
3535 }
3536 
3537 static u64 access_tx_sdma6_disallowed_packet_err_cnt(
3538 				const struct cntr_entry *entry,
3539 				void *context, int vl, int mode, u64 data)
3540 {
3541 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3542 
3543 	return dd->send_egress_err_status_cnt[22];
3544 }
3545 
3546 static u64 access_tx_sdma5_disallowed_packet_err_cnt(
3547 				const struct cntr_entry *entry,
3548 				void *context, int vl, int mode, u64 data)
3549 {
3550 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3551 
3552 	return dd->send_egress_err_status_cnt[21];
3553 }
3554 
3555 static u64 access_tx_sdma4_disallowed_packet_err_cnt(
3556 				const struct cntr_entry *entry,
3557 				void *context, int vl, int mode, u64 data)
3558 {
3559 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3560 
3561 	return dd->send_egress_err_status_cnt[20];
3562 }
3563 
3564 static u64 access_tx_sdma3_disallowed_packet_err_cnt(
3565 				const struct cntr_entry *entry,
3566 				void *context, int vl, int mode, u64 data)
3567 {
3568 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3569 
3570 	return dd->send_egress_err_status_cnt[19];
3571 }
3572 
3573 static u64 access_tx_sdma2_disallowed_packet_err_cnt(
3574 				const struct cntr_entry *entry,
3575 				void *context, int vl, int mode, u64 data)
3576 {
3577 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3578 
3579 	return dd->send_egress_err_status_cnt[18];
3580 }
3581 
3582 static u64 access_tx_sdma1_disallowed_packet_err_cnt(
3583 				const struct cntr_entry *entry,
3584 				void *context, int vl, int mode, u64 data)
3585 {
3586 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3587 
3588 	return dd->send_egress_err_status_cnt[17];
3589 }
3590 
3591 static u64 access_tx_sdma0_disallowed_packet_err_cnt(
3592 				const struct cntr_entry *entry,
3593 				void *context, int vl, int mode, u64 data)
3594 {
3595 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3596 
3597 	return dd->send_egress_err_status_cnt[16];
3598 }
3599 
3600 static u64 access_tx_config_parity_err_cnt(const struct cntr_entry *entry,
3601 					   void *context, int vl, int mode,
3602 					   u64 data)
3603 {
3604 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3605 
3606 	return dd->send_egress_err_status_cnt[15];
3607 }
3608 
3609 static u64 access_tx_sbrd_ctl_csr_parity_err_cnt(const struct cntr_entry *entry,
3610 						 void *context, int vl,
3611 						 int mode, u64 data)
3612 {
3613 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3614 
3615 	return dd->send_egress_err_status_cnt[14];
3616 }
3617 
3618 static u64 access_tx_launch_csr_parity_err_cnt(const struct cntr_entry *entry,
3619 					       void *context, int vl, int mode,
3620 					       u64 data)
3621 {
3622 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3623 
3624 	return dd->send_egress_err_status_cnt[13];
3625 }
3626 
3627 static u64 access_tx_illegal_vl_err_cnt(const struct cntr_entry *entry,
3628 					void *context, int vl, int mode,
3629 					u64 data)
3630 {
3631 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3632 
3633 	return dd->send_egress_err_status_cnt[12];
3634 }
3635 
3636 static u64 access_tx_sbrd_ctl_state_machine_parity_err_cnt(
3637 				const struct cntr_entry *entry,
3638 				void *context, int vl, int mode, u64 data)
3639 {
3640 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3641 
3642 	return dd->send_egress_err_status_cnt[11];
3643 }
3644 
3645 static u64 access_egress_reserved_10_err_cnt(const struct cntr_entry *entry,
3646 					     void *context, int vl, int mode,
3647 					     u64 data)
3648 {
3649 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3650 
3651 	return dd->send_egress_err_status_cnt[10];
3652 }
3653 
3654 static u64 access_egress_reserved_9_err_cnt(const struct cntr_entry *entry,
3655 					    void *context, int vl, int mode,
3656 					    u64 data)
3657 {
3658 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3659 
3660 	return dd->send_egress_err_status_cnt[9];
3661 }
3662 
3663 static u64 access_tx_sdma_launch_intf_parity_err_cnt(
3664 				const struct cntr_entry *entry,
3665 				void *context, int vl, int mode, u64 data)
3666 {
3667 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3668 
3669 	return dd->send_egress_err_status_cnt[8];
3670 }
3671 
3672 static u64 access_tx_pio_launch_intf_parity_err_cnt(
3673 				const struct cntr_entry *entry,
3674 				void *context, int vl, int mode, u64 data)
3675 {
3676 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3677 
3678 	return dd->send_egress_err_status_cnt[7];
3679 }
3680 
3681 static u64 access_egress_reserved_6_err_cnt(const struct cntr_entry *entry,
3682 					    void *context, int vl, int mode,
3683 					    u64 data)
3684 {
3685 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3686 
3687 	return dd->send_egress_err_status_cnt[6];
3688 }
3689 
3690 static u64 access_tx_incorrect_link_state_err_cnt(
3691 				const struct cntr_entry *entry,
3692 				void *context, int vl, int mode, u64 data)
3693 {
3694 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3695 
3696 	return dd->send_egress_err_status_cnt[5];
3697 }
3698 
3699 static u64 access_tx_linkdown_err_cnt(const struct cntr_entry *entry,
3700 				      void *context, int vl, int mode,
3701 				      u64 data)
3702 {
3703 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3704 
3705 	return dd->send_egress_err_status_cnt[4];
3706 }
3707 
3708 static u64 access_tx_egress_fifi_underrun_or_parity_err_cnt(
3709 				const struct cntr_entry *entry,
3710 				void *context, int vl, int mode, u64 data)
3711 {
3712 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3713 
3714 	return dd->send_egress_err_status_cnt[3];
3715 }
3716 
3717 static u64 access_egress_reserved_2_err_cnt(const struct cntr_entry *entry,
3718 					    void *context, int vl, int mode,
3719 					    u64 data)
3720 {
3721 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3722 
3723 	return dd->send_egress_err_status_cnt[2];
3724 }
3725 
3726 static u64 access_tx_pkt_integrity_mem_unc_err_cnt(
3727 				const struct cntr_entry *entry,
3728 				void *context, int vl, int mode, u64 data)
3729 {
3730 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3731 
3732 	return dd->send_egress_err_status_cnt[1];
3733 }
3734 
3735 static u64 access_tx_pkt_integrity_mem_cor_err_cnt(
3736 				const struct cntr_entry *entry,
3737 				void *context, int vl, int mode, u64 data)
3738 {
3739 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3740 
3741 	return dd->send_egress_err_status_cnt[0];
3742 }
3743 
3744 /*
3745  * Software counters corresponding to each of the
3746  * error status bits within SendErrStatus
3747  */
3748 static u64 access_send_csr_write_bad_addr_err_cnt(
3749 				const struct cntr_entry *entry,
3750 				void *context, int vl, int mode, u64 data)
3751 {
3752 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3753 
3754 	return dd->send_err_status_cnt[2];
3755 }
3756 
3757 static u64 access_send_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
3758 						 void *context, int vl,
3759 						 int mode, u64 data)
3760 {
3761 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3762 
3763 	return dd->send_err_status_cnt[1];
3764 }
3765 
3766 static u64 access_send_csr_parity_cnt(const struct cntr_entry *entry,
3767 				      void *context, int vl, int mode,
3768 				      u64 data)
3769 {
3770 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3771 
3772 	return dd->send_err_status_cnt[0];
3773 }
3774 
3775 /*
3776  * Software counters corresponding to each of the
3777  * error status bits within SendCtxtErrStatus
3778  */
3779 static u64 access_pio_write_out_of_bounds_err_cnt(
3780 				const struct cntr_entry *entry,
3781 				void *context, int vl, int mode, u64 data)
3782 {
3783 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3784 
3785 	return dd->sw_ctxt_err_status_cnt[4];
3786 }
3787 
3788 static u64 access_pio_write_overflow_err_cnt(const struct cntr_entry *entry,
3789 					     void *context, int vl, int mode,
3790 					     u64 data)
3791 {
3792 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3793 
3794 	return dd->sw_ctxt_err_status_cnt[3];
3795 }
3796 
3797 static u64 access_pio_write_crosses_boundary_err_cnt(
3798 				const struct cntr_entry *entry,
3799 				void *context, int vl, int mode, u64 data)
3800 {
3801 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3802 
3803 	return dd->sw_ctxt_err_status_cnt[2];
3804 }
3805 
3806 static u64 access_pio_disallowed_packet_err_cnt(const struct cntr_entry *entry,
3807 						void *context, int vl,
3808 						int mode, u64 data)
3809 {
3810 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3811 
3812 	return dd->sw_ctxt_err_status_cnt[1];
3813 }
3814 
3815 static u64 access_pio_inconsistent_sop_err_cnt(const struct cntr_entry *entry,
3816 					       void *context, int vl, int mode,
3817 					       u64 data)
3818 {
3819 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3820 
3821 	return dd->sw_ctxt_err_status_cnt[0];
3822 }
3823 
3824 /*
3825  * Software counters corresponding to each of the
3826  * error status bits within SendDmaEngErrStatus
3827  */
3828 static u64 access_sdma_header_request_fifo_cor_err_cnt(
3829 				const struct cntr_entry *entry,
3830 				void *context, int vl, int mode, u64 data)
3831 {
3832 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3833 
3834 	return dd->sw_send_dma_eng_err_status_cnt[23];
3835 }
3836 
3837 static u64 access_sdma_header_storage_cor_err_cnt(
3838 				const struct cntr_entry *entry,
3839 				void *context, int vl, int mode, u64 data)
3840 {
3841 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3842 
3843 	return dd->sw_send_dma_eng_err_status_cnt[22];
3844 }
3845 
3846 static u64 access_sdma_packet_tracking_cor_err_cnt(
3847 				const struct cntr_entry *entry,
3848 				void *context, int vl, int mode, u64 data)
3849 {
3850 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3851 
3852 	return dd->sw_send_dma_eng_err_status_cnt[21];
3853 }
3854 
3855 static u64 access_sdma_assembly_cor_err_cnt(const struct cntr_entry *entry,
3856 					    void *context, int vl, int mode,
3857 					    u64 data)
3858 {
3859 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3860 
3861 	return dd->sw_send_dma_eng_err_status_cnt[20];
3862 }
3863 
3864 static u64 access_sdma_desc_table_cor_err_cnt(const struct cntr_entry *entry,
3865 					      void *context, int vl, int mode,
3866 					      u64 data)
3867 {
3868 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3869 
3870 	return dd->sw_send_dma_eng_err_status_cnt[19];
3871 }
3872 
3873 static u64 access_sdma_header_request_fifo_unc_err_cnt(
3874 				const struct cntr_entry *entry,
3875 				void *context, int vl, int mode, u64 data)
3876 {
3877 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3878 
3879 	return dd->sw_send_dma_eng_err_status_cnt[18];
3880 }
3881 
3882 static u64 access_sdma_header_storage_unc_err_cnt(
3883 				const struct cntr_entry *entry,
3884 				void *context, int vl, int mode, u64 data)
3885 {
3886 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3887 
3888 	return dd->sw_send_dma_eng_err_status_cnt[17];
3889 }
3890 
3891 static u64 access_sdma_packet_tracking_unc_err_cnt(
3892 				const struct cntr_entry *entry,
3893 				void *context, int vl, int mode, u64 data)
3894 {
3895 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3896 
3897 	return dd->sw_send_dma_eng_err_status_cnt[16];
3898 }
3899 
3900 static u64 access_sdma_assembly_unc_err_cnt(const struct cntr_entry *entry,
3901 					    void *context, int vl, int mode,
3902 					    u64 data)
3903 {
3904 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3905 
3906 	return dd->sw_send_dma_eng_err_status_cnt[15];
3907 }
3908 
3909 static u64 access_sdma_desc_table_unc_err_cnt(const struct cntr_entry *entry,
3910 					      void *context, int vl, int mode,
3911 					      u64 data)
3912 {
3913 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3914 
3915 	return dd->sw_send_dma_eng_err_status_cnt[14];
3916 }
3917 
3918 static u64 access_sdma_timeout_err_cnt(const struct cntr_entry *entry,
3919 				       void *context, int vl, int mode,
3920 				       u64 data)
3921 {
3922 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3923 
3924 	return dd->sw_send_dma_eng_err_status_cnt[13];
3925 }
3926 
3927 static u64 access_sdma_header_length_err_cnt(const struct cntr_entry *entry,
3928 					     void *context, int vl, int mode,
3929 					     u64 data)
3930 {
3931 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3932 
3933 	return dd->sw_send_dma_eng_err_status_cnt[12];
3934 }
3935 
3936 static u64 access_sdma_header_address_err_cnt(const struct cntr_entry *entry,
3937 					      void *context, int vl, int mode,
3938 					      u64 data)
3939 {
3940 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3941 
3942 	return dd->sw_send_dma_eng_err_status_cnt[11];
3943 }
3944 
3945 static u64 access_sdma_header_select_err_cnt(const struct cntr_entry *entry,
3946 					     void *context, int vl, int mode,
3947 					     u64 data)
3948 {
3949 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3950 
3951 	return dd->sw_send_dma_eng_err_status_cnt[10];
3952 }
3953 
3954 static u64 access_sdma_reserved_9_err_cnt(const struct cntr_entry *entry,
3955 					  void *context, int vl, int mode,
3956 					  u64 data)
3957 {
3958 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3959 
3960 	return dd->sw_send_dma_eng_err_status_cnt[9];
3961 }
3962 
3963 static u64 access_sdma_packet_desc_overflow_err_cnt(
3964 				const struct cntr_entry *entry,
3965 				void *context, int vl, int mode, u64 data)
3966 {
3967 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3968 
3969 	return dd->sw_send_dma_eng_err_status_cnt[8];
3970 }
3971 
3972 static u64 access_sdma_length_mismatch_err_cnt(const struct cntr_entry *entry,
3973 					       void *context, int vl,
3974 					       int mode, u64 data)
3975 {
3976 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3977 
3978 	return dd->sw_send_dma_eng_err_status_cnt[7];
3979 }
3980 
3981 static u64 access_sdma_halt_err_cnt(const struct cntr_entry *entry,
3982 				    void *context, int vl, int mode, u64 data)
3983 {
3984 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3985 
3986 	return dd->sw_send_dma_eng_err_status_cnt[6];
3987 }
3988 
3989 static u64 access_sdma_mem_read_err_cnt(const struct cntr_entry *entry,
3990 					void *context, int vl, int mode,
3991 					u64 data)
3992 {
3993 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3994 
3995 	return dd->sw_send_dma_eng_err_status_cnt[5];
3996 }
3997 
3998 static u64 access_sdma_first_desc_err_cnt(const struct cntr_entry *entry,
3999 					  void *context, int vl, int mode,
4000 					  u64 data)
4001 {
4002 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4003 
4004 	return dd->sw_send_dma_eng_err_status_cnt[4];
4005 }
4006 
4007 static u64 access_sdma_tail_out_of_bounds_err_cnt(
4008 				const struct cntr_entry *entry,
4009 				void *context, int vl, int mode, u64 data)
4010 {
4011 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4012 
4013 	return dd->sw_send_dma_eng_err_status_cnt[3];
4014 }
4015 
4016 static u64 access_sdma_too_long_err_cnt(const struct cntr_entry *entry,
4017 					void *context, int vl, int mode,
4018 					u64 data)
4019 {
4020 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4021 
4022 	return dd->sw_send_dma_eng_err_status_cnt[2];
4023 }
4024 
4025 static u64 access_sdma_gen_mismatch_err_cnt(const struct cntr_entry *entry,
4026 					    void *context, int vl, int mode,
4027 					    u64 data)
4028 {
4029 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4030 
4031 	return dd->sw_send_dma_eng_err_status_cnt[1];
4032 }
4033 
4034 static u64 access_sdma_wrong_dw_err_cnt(const struct cntr_entry *entry,
4035 					void *context, int vl, int mode,
4036 					u64 data)
4037 {
4038 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4039 
4040 	return dd->sw_send_dma_eng_err_status_cnt[0];
4041 }
4042 
4043 static u64 access_dc_rcv_err_cnt(const struct cntr_entry *entry,
4044 				 void *context, int vl, int mode,
4045 				 u64 data)
4046 {
4047 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4048 
4049 	u64 val = 0;
4050 	u64 csr = entry->csr;
4051 
4052 	val = read_write_csr(dd, csr, mode, data);
4053 	if (mode == CNTR_MODE_R) {
4054 		val = val > CNTR_MAX - dd->sw_rcv_bypass_packet_errors ?
4055 			CNTR_MAX : val + dd->sw_rcv_bypass_packet_errors;
4056 	} else if (mode == CNTR_MODE_W) {
4057 		dd->sw_rcv_bypass_packet_errors = 0;
4058 	} else {
4059 		dd_dev_err(dd, "Invalid cntr register access mode");
4060 		return 0;
4061 	}
4062 	return val;
4063 }
4064 
4065 #define def_access_sw_cpu(cntr) \
4066 static u64 access_sw_cpu_##cntr(const struct cntr_entry *entry,		      \
4067 			      void *context, int vl, int mode, u64 data)      \
4068 {									      \
4069 	struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context;	      \
4070 	return read_write_cpu(ppd->dd, &ppd->ibport_data.rvp.z_ ##cntr,	      \
4071 			      ppd->ibport_data.rvp.cntr, vl,		      \
4072 			      mode, data);				      \
4073 }
4074 
4075 def_access_sw_cpu(rc_acks);
4076 def_access_sw_cpu(rc_qacks);
4077 def_access_sw_cpu(rc_delayed_comp);
4078 
4079 #define def_access_ibp_counter(cntr) \
4080 static u64 access_ibp_##cntr(const struct cntr_entry *entry,		      \
4081 				void *context, int vl, int mode, u64 data)    \
4082 {									      \
4083 	struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context;	      \
4084 									      \
4085 	if (vl != CNTR_INVALID_VL)					      \
4086 		return 0;						      \
4087 									      \
4088 	return read_write_sw(ppd->dd, &ppd->ibport_data.rvp.n_ ##cntr,	      \
4089 			     mode, data);				      \
4090 }
4091 
4092 def_access_ibp_counter(loop_pkts);
4093 def_access_ibp_counter(rc_resends);
4094 def_access_ibp_counter(rnr_naks);
4095 def_access_ibp_counter(other_naks);
4096 def_access_ibp_counter(rc_timeouts);
4097 def_access_ibp_counter(pkt_drops);
4098 def_access_ibp_counter(dmawait);
4099 def_access_ibp_counter(rc_seqnak);
4100 def_access_ibp_counter(rc_dupreq);
4101 def_access_ibp_counter(rdma_seq);
4102 def_access_ibp_counter(unaligned);
4103 def_access_ibp_counter(seq_naks);
4104 
4105 static struct cntr_entry dev_cntrs[DEV_CNTR_LAST] = {
4106 [C_RCV_OVF] = RXE32_DEV_CNTR_ELEM(RcvOverflow, RCV_BUF_OVFL_CNT, CNTR_SYNTH),
4107 [C_RX_LEN_ERR] = RXE32_DEV_CNTR_ELEM(RxLenErr, RCV_LENGTH_ERR_CNT, CNTR_SYNTH),
4108 [C_RX_ICRC_ERR] = RXE32_DEV_CNTR_ELEM(RxICrcErr, RCV_ICRC_ERR_CNT, CNTR_SYNTH),
4109 [C_RX_EBP] = RXE32_DEV_CNTR_ELEM(RxEbpCnt, RCV_EBP_CNT, CNTR_SYNTH),
4110 [C_RX_TID_FULL] = RXE32_DEV_CNTR_ELEM(RxTIDFullEr, RCV_TID_FULL_ERR_CNT,
4111 			CNTR_NORMAL),
4112 [C_RX_TID_INVALID] = RXE32_DEV_CNTR_ELEM(RxTIDInvalid, RCV_TID_VALID_ERR_CNT,
4113 			CNTR_NORMAL),
4114 [C_RX_TID_FLGMS] = RXE32_DEV_CNTR_ELEM(RxTidFLGMs,
4115 			RCV_TID_FLOW_GEN_MISMATCH_CNT,
4116 			CNTR_NORMAL),
4117 [C_RX_CTX_EGRS] = RXE32_DEV_CNTR_ELEM(RxCtxEgrS, RCV_CONTEXT_EGR_STALL,
4118 			CNTR_NORMAL),
4119 [C_RCV_TID_FLSMS] = RXE32_DEV_CNTR_ELEM(RxTidFLSMs,
4120 			RCV_TID_FLOW_SEQ_MISMATCH_CNT, CNTR_NORMAL),
4121 [C_CCE_PCI_CR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePciCrSt,
4122 			CCE_PCIE_POSTED_CRDT_STALL_CNT, CNTR_NORMAL),
4123 [C_CCE_PCI_TR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePciTrSt, CCE_PCIE_TRGT_STALL_CNT,
4124 			CNTR_NORMAL),
4125 [C_CCE_PIO_WR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePioWrSt, CCE_PIO_WR_STALL_CNT,
4126 			CNTR_NORMAL),
4127 [C_CCE_ERR_INT] = CCE_INT_DEV_CNTR_ELEM(CceErrInt, CCE_ERR_INT_CNT,
4128 			CNTR_NORMAL),
4129 [C_CCE_SDMA_INT] = CCE_INT_DEV_CNTR_ELEM(CceSdmaInt, CCE_SDMA_INT_CNT,
4130 			CNTR_NORMAL),
4131 [C_CCE_MISC_INT] = CCE_INT_DEV_CNTR_ELEM(CceMiscInt, CCE_MISC_INT_CNT,
4132 			CNTR_NORMAL),
4133 [C_CCE_RCV_AV_INT] = CCE_INT_DEV_CNTR_ELEM(CceRcvAvInt, CCE_RCV_AVAIL_INT_CNT,
4134 			CNTR_NORMAL),
4135 [C_CCE_RCV_URG_INT] = CCE_INT_DEV_CNTR_ELEM(CceRcvUrgInt,
4136 			CCE_RCV_URGENT_INT_CNT,	CNTR_NORMAL),
4137 [C_CCE_SEND_CR_INT] = CCE_INT_DEV_CNTR_ELEM(CceSndCrInt,
4138 			CCE_SEND_CREDIT_INT_CNT, CNTR_NORMAL),
4139 [C_DC_UNC_ERR] = DC_PERF_CNTR(DcUnctblErr, DCC_ERR_UNCORRECTABLE_CNT,
4140 			      CNTR_SYNTH),
4141 [C_DC_RCV_ERR] = CNTR_ELEM("DcRecvErr", DCC_ERR_PORTRCV_ERR_CNT, 0, CNTR_SYNTH,
4142 			    access_dc_rcv_err_cnt),
4143 [C_DC_FM_CFG_ERR] = DC_PERF_CNTR(DcFmCfgErr, DCC_ERR_FMCONFIG_ERR_CNT,
4144 				 CNTR_SYNTH),
4145 [C_DC_RMT_PHY_ERR] = DC_PERF_CNTR(DcRmtPhyErr, DCC_ERR_RCVREMOTE_PHY_ERR_CNT,
4146 				  CNTR_SYNTH),
4147 [C_DC_DROPPED_PKT] = DC_PERF_CNTR(DcDroppedPkt, DCC_ERR_DROPPED_PKT_CNT,
4148 				  CNTR_SYNTH),
4149 [C_DC_MC_XMIT_PKTS] = DC_PERF_CNTR(DcMcXmitPkts,
4150 				   DCC_PRF_PORT_XMIT_MULTICAST_CNT, CNTR_SYNTH),
4151 [C_DC_MC_RCV_PKTS] = DC_PERF_CNTR(DcMcRcvPkts,
4152 				  DCC_PRF_PORT_RCV_MULTICAST_PKT_CNT,
4153 				  CNTR_SYNTH),
4154 [C_DC_XMIT_CERR] = DC_PERF_CNTR(DcXmitCorr,
4155 				DCC_PRF_PORT_XMIT_CORRECTABLE_CNT, CNTR_SYNTH),
4156 [C_DC_RCV_CERR] = DC_PERF_CNTR(DcRcvCorrCnt, DCC_PRF_PORT_RCV_CORRECTABLE_CNT,
4157 			       CNTR_SYNTH),
4158 [C_DC_RCV_FCC] = DC_PERF_CNTR(DcRxFCntl, DCC_PRF_RX_FLOW_CRTL_CNT,
4159 			      CNTR_SYNTH),
4160 [C_DC_XMIT_FCC] = DC_PERF_CNTR(DcXmitFCntl, DCC_PRF_TX_FLOW_CRTL_CNT,
4161 			       CNTR_SYNTH),
4162 [C_DC_XMIT_FLITS] = DC_PERF_CNTR(DcXmitFlits, DCC_PRF_PORT_XMIT_DATA_CNT,
4163 				 CNTR_SYNTH),
4164 [C_DC_RCV_FLITS] = DC_PERF_CNTR(DcRcvFlits, DCC_PRF_PORT_RCV_DATA_CNT,
4165 				CNTR_SYNTH),
4166 [C_DC_XMIT_PKTS] = DC_PERF_CNTR(DcXmitPkts, DCC_PRF_PORT_XMIT_PKTS_CNT,
4167 				CNTR_SYNTH),
4168 [C_DC_RCV_PKTS] = DC_PERF_CNTR(DcRcvPkts, DCC_PRF_PORT_RCV_PKTS_CNT,
4169 			       CNTR_SYNTH),
4170 [C_DC_RX_FLIT_VL] = DC_PERF_CNTR(DcRxFlitVl, DCC_PRF_PORT_VL_RCV_DATA_CNT,
4171 				 CNTR_SYNTH | CNTR_VL),
4172 [C_DC_RX_PKT_VL] = DC_PERF_CNTR(DcRxPktVl, DCC_PRF_PORT_VL_RCV_PKTS_CNT,
4173 				CNTR_SYNTH | CNTR_VL),
4174 [C_DC_RCV_FCN] = DC_PERF_CNTR(DcRcvFcn, DCC_PRF_PORT_RCV_FECN_CNT, CNTR_SYNTH),
4175 [C_DC_RCV_FCN_VL] = DC_PERF_CNTR(DcRcvFcnVl, DCC_PRF_PORT_VL_RCV_FECN_CNT,
4176 				 CNTR_SYNTH | CNTR_VL),
4177 [C_DC_RCV_BCN] = DC_PERF_CNTR(DcRcvBcn, DCC_PRF_PORT_RCV_BECN_CNT, CNTR_SYNTH),
4178 [C_DC_RCV_BCN_VL] = DC_PERF_CNTR(DcRcvBcnVl, DCC_PRF_PORT_VL_RCV_BECN_CNT,
4179 				 CNTR_SYNTH | CNTR_VL),
4180 [C_DC_RCV_BBL] = DC_PERF_CNTR(DcRcvBbl, DCC_PRF_PORT_RCV_BUBBLE_CNT,
4181 			      CNTR_SYNTH),
4182 [C_DC_RCV_BBL_VL] = DC_PERF_CNTR(DcRcvBblVl, DCC_PRF_PORT_VL_RCV_BUBBLE_CNT,
4183 				 CNTR_SYNTH | CNTR_VL),
4184 [C_DC_MARK_FECN] = DC_PERF_CNTR(DcMarkFcn, DCC_PRF_PORT_MARK_FECN_CNT,
4185 				CNTR_SYNTH),
4186 [C_DC_MARK_FECN_VL] = DC_PERF_CNTR(DcMarkFcnVl, DCC_PRF_PORT_VL_MARK_FECN_CNT,
4187 				   CNTR_SYNTH | CNTR_VL),
4188 [C_DC_TOTAL_CRC] =
4189 	DC_PERF_CNTR_LCB(DcTotCrc, DC_LCB_ERR_INFO_TOTAL_CRC_ERR,
4190 			 CNTR_SYNTH),
4191 [C_DC_CRC_LN0] = DC_PERF_CNTR_LCB(DcCrcLn0, DC_LCB_ERR_INFO_CRC_ERR_LN0,
4192 				  CNTR_SYNTH),
4193 [C_DC_CRC_LN1] = DC_PERF_CNTR_LCB(DcCrcLn1, DC_LCB_ERR_INFO_CRC_ERR_LN1,
4194 				  CNTR_SYNTH),
4195 [C_DC_CRC_LN2] = DC_PERF_CNTR_LCB(DcCrcLn2, DC_LCB_ERR_INFO_CRC_ERR_LN2,
4196 				  CNTR_SYNTH),
4197 [C_DC_CRC_LN3] = DC_PERF_CNTR_LCB(DcCrcLn3, DC_LCB_ERR_INFO_CRC_ERR_LN3,
4198 				  CNTR_SYNTH),
4199 [C_DC_CRC_MULT_LN] =
4200 	DC_PERF_CNTR_LCB(DcMultLn, DC_LCB_ERR_INFO_CRC_ERR_MULTI_LN,
4201 			 CNTR_SYNTH),
4202 [C_DC_TX_REPLAY] = DC_PERF_CNTR_LCB(DcTxReplay, DC_LCB_ERR_INFO_TX_REPLAY_CNT,
4203 				    CNTR_SYNTH),
4204 [C_DC_RX_REPLAY] = DC_PERF_CNTR_LCB(DcRxReplay, DC_LCB_ERR_INFO_RX_REPLAY_CNT,
4205 				    CNTR_SYNTH),
4206 [C_DC_SEQ_CRC_CNT] =
4207 	DC_PERF_CNTR_LCB(DcLinkSeqCrc, DC_LCB_ERR_INFO_SEQ_CRC_CNT,
4208 			 CNTR_SYNTH),
4209 [C_DC_ESC0_ONLY_CNT] =
4210 	DC_PERF_CNTR_LCB(DcEsc0, DC_LCB_ERR_INFO_ESCAPE_0_ONLY_CNT,
4211 			 CNTR_SYNTH),
4212 [C_DC_ESC0_PLUS1_CNT] =
4213 	DC_PERF_CNTR_LCB(DcEsc1, DC_LCB_ERR_INFO_ESCAPE_0_PLUS1_CNT,
4214 			 CNTR_SYNTH),
4215 [C_DC_ESC0_PLUS2_CNT] =
4216 	DC_PERF_CNTR_LCB(DcEsc0Plus2, DC_LCB_ERR_INFO_ESCAPE_0_PLUS2_CNT,
4217 			 CNTR_SYNTH),
4218 [C_DC_REINIT_FROM_PEER_CNT] =
4219 	DC_PERF_CNTR_LCB(DcReinitPeer, DC_LCB_ERR_INFO_REINIT_FROM_PEER_CNT,
4220 			 CNTR_SYNTH),
4221 [C_DC_SBE_CNT] = DC_PERF_CNTR_LCB(DcSbe, DC_LCB_ERR_INFO_SBE_CNT,
4222 				  CNTR_SYNTH),
4223 [C_DC_MISC_FLG_CNT] =
4224 	DC_PERF_CNTR_LCB(DcMiscFlg, DC_LCB_ERR_INFO_MISC_FLG_CNT,
4225 			 CNTR_SYNTH),
4226 [C_DC_PRF_GOOD_LTP_CNT] =
4227 	DC_PERF_CNTR_LCB(DcGoodLTP, DC_LCB_PRF_GOOD_LTP_CNT, CNTR_SYNTH),
4228 [C_DC_PRF_ACCEPTED_LTP_CNT] =
4229 	DC_PERF_CNTR_LCB(DcAccLTP, DC_LCB_PRF_ACCEPTED_LTP_CNT,
4230 			 CNTR_SYNTH),
4231 [C_DC_PRF_RX_FLIT_CNT] =
4232 	DC_PERF_CNTR_LCB(DcPrfRxFlit, DC_LCB_PRF_RX_FLIT_CNT, CNTR_SYNTH),
4233 [C_DC_PRF_TX_FLIT_CNT] =
4234 	DC_PERF_CNTR_LCB(DcPrfTxFlit, DC_LCB_PRF_TX_FLIT_CNT, CNTR_SYNTH),
4235 [C_DC_PRF_CLK_CNTR] =
4236 	DC_PERF_CNTR_LCB(DcPrfClk, DC_LCB_PRF_CLK_CNTR, CNTR_SYNTH),
4237 [C_DC_PG_DBG_FLIT_CRDTS_CNT] =
4238 	DC_PERF_CNTR_LCB(DcFltCrdts, DC_LCB_PG_DBG_FLIT_CRDTS_CNT, CNTR_SYNTH),
4239 [C_DC_PG_STS_PAUSE_COMPLETE_CNT] =
4240 	DC_PERF_CNTR_LCB(DcPauseComp, DC_LCB_PG_STS_PAUSE_COMPLETE_CNT,
4241 			 CNTR_SYNTH),
4242 [C_DC_PG_STS_TX_SBE_CNT] =
4243 	DC_PERF_CNTR_LCB(DcStsTxSbe, DC_LCB_PG_STS_TX_SBE_CNT, CNTR_SYNTH),
4244 [C_DC_PG_STS_TX_MBE_CNT] =
4245 	DC_PERF_CNTR_LCB(DcStsTxMbe, DC_LCB_PG_STS_TX_MBE_CNT,
4246 			 CNTR_SYNTH),
4247 [C_SW_CPU_INTR] = CNTR_ELEM("Intr", 0, 0, CNTR_NORMAL,
4248 			    access_sw_cpu_intr),
4249 [C_SW_CPU_RCV_LIM] = CNTR_ELEM("RcvLimit", 0, 0, CNTR_NORMAL,
4250 			    access_sw_cpu_rcv_limit),
4251 [C_SW_VTX_WAIT] = CNTR_ELEM("vTxWait", 0, 0, CNTR_NORMAL,
4252 			    access_sw_vtx_wait),
4253 [C_SW_PIO_WAIT] = CNTR_ELEM("PioWait", 0, 0, CNTR_NORMAL,
4254 			    access_sw_pio_wait),
4255 [C_SW_PIO_DRAIN] = CNTR_ELEM("PioDrain", 0, 0, CNTR_NORMAL,
4256 			    access_sw_pio_drain),
4257 [C_SW_KMEM_WAIT] = CNTR_ELEM("KmemWait", 0, 0, CNTR_NORMAL,
4258 			    access_sw_kmem_wait),
4259 [C_SW_TID_WAIT] = CNTR_ELEM("TidWait", 0, 0, CNTR_NORMAL,
4260 			    hfi1_access_sw_tid_wait),
4261 [C_SW_SEND_SCHED] = CNTR_ELEM("SendSched", 0, 0, CNTR_NORMAL,
4262 			    access_sw_send_schedule),
4263 [C_SDMA_DESC_FETCHED_CNT] = CNTR_ELEM("SDEDscFdCn",
4264 				      SEND_DMA_DESC_FETCHED_CNT, 0,
4265 				      CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4266 				      dev_access_u32_csr),
4267 [C_SDMA_INT_CNT] = CNTR_ELEM("SDMAInt", 0, 0,
4268 			     CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4269 			     access_sde_int_cnt),
4270 [C_SDMA_ERR_CNT] = CNTR_ELEM("SDMAErrCt", 0, 0,
4271 			     CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4272 			     access_sde_err_cnt),
4273 [C_SDMA_IDLE_INT_CNT] = CNTR_ELEM("SDMAIdInt", 0, 0,
4274 				  CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4275 				  access_sde_idle_int_cnt),
4276 [C_SDMA_PROGRESS_INT_CNT] = CNTR_ELEM("SDMAPrIntCn", 0, 0,
4277 				      CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4278 				      access_sde_progress_int_cnt),
4279 /* MISC_ERR_STATUS */
4280 [C_MISC_PLL_LOCK_FAIL_ERR] = CNTR_ELEM("MISC_PLL_LOCK_FAIL_ERR", 0, 0,
4281 				CNTR_NORMAL,
4282 				access_misc_pll_lock_fail_err_cnt),
4283 [C_MISC_MBIST_FAIL_ERR] = CNTR_ELEM("MISC_MBIST_FAIL_ERR", 0, 0,
4284 				CNTR_NORMAL,
4285 				access_misc_mbist_fail_err_cnt),
4286 [C_MISC_INVALID_EEP_CMD_ERR] = CNTR_ELEM("MISC_INVALID_EEP_CMD_ERR", 0, 0,
4287 				CNTR_NORMAL,
4288 				access_misc_invalid_eep_cmd_err_cnt),
4289 [C_MISC_EFUSE_DONE_PARITY_ERR] = CNTR_ELEM("MISC_EFUSE_DONE_PARITY_ERR", 0, 0,
4290 				CNTR_NORMAL,
4291 				access_misc_efuse_done_parity_err_cnt),
4292 [C_MISC_EFUSE_WRITE_ERR] = CNTR_ELEM("MISC_EFUSE_WRITE_ERR", 0, 0,
4293 				CNTR_NORMAL,
4294 				access_misc_efuse_write_err_cnt),
4295 [C_MISC_EFUSE_READ_BAD_ADDR_ERR] = CNTR_ELEM("MISC_EFUSE_READ_BAD_ADDR_ERR", 0,
4296 				0, CNTR_NORMAL,
4297 				access_misc_efuse_read_bad_addr_err_cnt),
4298 [C_MISC_EFUSE_CSR_PARITY_ERR] = CNTR_ELEM("MISC_EFUSE_CSR_PARITY_ERR", 0, 0,
4299 				CNTR_NORMAL,
4300 				access_misc_efuse_csr_parity_err_cnt),
4301 [C_MISC_FW_AUTH_FAILED_ERR] = CNTR_ELEM("MISC_FW_AUTH_FAILED_ERR", 0, 0,
4302 				CNTR_NORMAL,
4303 				access_misc_fw_auth_failed_err_cnt),
4304 [C_MISC_KEY_MISMATCH_ERR] = CNTR_ELEM("MISC_KEY_MISMATCH_ERR", 0, 0,
4305 				CNTR_NORMAL,
4306 				access_misc_key_mismatch_err_cnt),
4307 [C_MISC_SBUS_WRITE_FAILED_ERR] = CNTR_ELEM("MISC_SBUS_WRITE_FAILED_ERR", 0, 0,
4308 				CNTR_NORMAL,
4309 				access_misc_sbus_write_failed_err_cnt),
4310 [C_MISC_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("MISC_CSR_WRITE_BAD_ADDR_ERR", 0, 0,
4311 				CNTR_NORMAL,
4312 				access_misc_csr_write_bad_addr_err_cnt),
4313 [C_MISC_CSR_READ_BAD_ADDR_ERR] = CNTR_ELEM("MISC_CSR_READ_BAD_ADDR_ERR", 0, 0,
4314 				CNTR_NORMAL,
4315 				access_misc_csr_read_bad_addr_err_cnt),
4316 [C_MISC_CSR_PARITY_ERR] = CNTR_ELEM("MISC_CSR_PARITY_ERR", 0, 0,
4317 				CNTR_NORMAL,
4318 				access_misc_csr_parity_err_cnt),
4319 /* CceErrStatus */
4320 [C_CCE_ERR_STATUS_AGGREGATED_CNT] = CNTR_ELEM("CceErrStatusAggregatedCnt", 0, 0,
4321 				CNTR_NORMAL,
4322 				access_sw_cce_err_status_aggregated_cnt),
4323 [C_CCE_MSIX_CSR_PARITY_ERR] = CNTR_ELEM("CceMsixCsrParityErr", 0, 0,
4324 				CNTR_NORMAL,
4325 				access_cce_msix_csr_parity_err_cnt),
4326 [C_CCE_INT_MAP_UNC_ERR] = CNTR_ELEM("CceIntMapUncErr", 0, 0,
4327 				CNTR_NORMAL,
4328 				access_cce_int_map_unc_err_cnt),
4329 [C_CCE_INT_MAP_COR_ERR] = CNTR_ELEM("CceIntMapCorErr", 0, 0,
4330 				CNTR_NORMAL,
4331 				access_cce_int_map_cor_err_cnt),
4332 [C_CCE_MSIX_TABLE_UNC_ERR] = CNTR_ELEM("CceMsixTableUncErr", 0, 0,
4333 				CNTR_NORMAL,
4334 				access_cce_msix_table_unc_err_cnt),
4335 [C_CCE_MSIX_TABLE_COR_ERR] = CNTR_ELEM("CceMsixTableCorErr", 0, 0,
4336 				CNTR_NORMAL,
4337 				access_cce_msix_table_cor_err_cnt),
4338 [C_CCE_RXDMA_CONV_FIFO_PARITY_ERR] = CNTR_ELEM("CceRxdmaConvFifoParityErr", 0,
4339 				0, CNTR_NORMAL,
4340 				access_cce_rxdma_conv_fifo_parity_err_cnt),
4341 [C_CCE_RCPL_ASYNC_FIFO_PARITY_ERR] = CNTR_ELEM("CceRcplAsyncFifoParityErr", 0,
4342 				0, CNTR_NORMAL,
4343 				access_cce_rcpl_async_fifo_parity_err_cnt),
4344 [C_CCE_SEG_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("CceSegWriteBadAddrErr", 0, 0,
4345 				CNTR_NORMAL,
4346 				access_cce_seg_write_bad_addr_err_cnt),
4347 [C_CCE_SEG_READ_BAD_ADDR_ERR] = CNTR_ELEM("CceSegReadBadAddrErr", 0, 0,
4348 				CNTR_NORMAL,
4349 				access_cce_seg_read_bad_addr_err_cnt),
4350 [C_LA_TRIGGERED] = CNTR_ELEM("Cce LATriggered", 0, 0,
4351 				CNTR_NORMAL,
4352 				access_la_triggered_cnt),
4353 [C_CCE_TRGT_CPL_TIMEOUT_ERR] = CNTR_ELEM("CceTrgtCplTimeoutErr", 0, 0,
4354 				CNTR_NORMAL,
4355 				access_cce_trgt_cpl_timeout_err_cnt),
4356 [C_PCIC_RECEIVE_PARITY_ERR] = CNTR_ELEM("PcicReceiveParityErr", 0, 0,
4357 				CNTR_NORMAL,
4358 				access_pcic_receive_parity_err_cnt),
4359 [C_PCIC_TRANSMIT_BACK_PARITY_ERR] = CNTR_ELEM("PcicTransmitBackParityErr", 0, 0,
4360 				CNTR_NORMAL,
4361 				access_pcic_transmit_back_parity_err_cnt),
4362 [C_PCIC_TRANSMIT_FRONT_PARITY_ERR] = CNTR_ELEM("PcicTransmitFrontParityErr", 0,
4363 				0, CNTR_NORMAL,
4364 				access_pcic_transmit_front_parity_err_cnt),
4365 [C_PCIC_CPL_DAT_Q_UNC_ERR] = CNTR_ELEM("PcicCplDatQUncErr", 0, 0,
4366 				CNTR_NORMAL,
4367 				access_pcic_cpl_dat_q_unc_err_cnt),
4368 [C_PCIC_CPL_HD_Q_UNC_ERR] = CNTR_ELEM("PcicCplHdQUncErr", 0, 0,
4369 				CNTR_NORMAL,
4370 				access_pcic_cpl_hd_q_unc_err_cnt),
4371 [C_PCIC_POST_DAT_Q_UNC_ERR] = CNTR_ELEM("PcicPostDatQUncErr", 0, 0,
4372 				CNTR_NORMAL,
4373 				access_pcic_post_dat_q_unc_err_cnt),
4374 [C_PCIC_POST_HD_Q_UNC_ERR] = CNTR_ELEM("PcicPostHdQUncErr", 0, 0,
4375 				CNTR_NORMAL,
4376 				access_pcic_post_hd_q_unc_err_cnt),
4377 [C_PCIC_RETRY_SOT_MEM_UNC_ERR] = CNTR_ELEM("PcicRetrySotMemUncErr", 0, 0,
4378 				CNTR_NORMAL,
4379 				access_pcic_retry_sot_mem_unc_err_cnt),
4380 [C_PCIC_RETRY_MEM_UNC_ERR] = CNTR_ELEM("PcicRetryMemUncErr", 0, 0,
4381 				CNTR_NORMAL,
4382 				access_pcic_retry_mem_unc_err),
4383 [C_PCIC_N_POST_DAT_Q_PARITY_ERR] = CNTR_ELEM("PcicNPostDatQParityErr", 0, 0,
4384 				CNTR_NORMAL,
4385 				access_pcic_n_post_dat_q_parity_err_cnt),
4386 [C_PCIC_N_POST_H_Q_PARITY_ERR] = CNTR_ELEM("PcicNPostHQParityErr", 0, 0,
4387 				CNTR_NORMAL,
4388 				access_pcic_n_post_h_q_parity_err_cnt),
4389 [C_PCIC_CPL_DAT_Q_COR_ERR] = CNTR_ELEM("PcicCplDatQCorErr", 0, 0,
4390 				CNTR_NORMAL,
4391 				access_pcic_cpl_dat_q_cor_err_cnt),
4392 [C_PCIC_CPL_HD_Q_COR_ERR] = CNTR_ELEM("PcicCplHdQCorErr", 0, 0,
4393 				CNTR_NORMAL,
4394 				access_pcic_cpl_hd_q_cor_err_cnt),
4395 [C_PCIC_POST_DAT_Q_COR_ERR] = CNTR_ELEM("PcicPostDatQCorErr", 0, 0,
4396 				CNTR_NORMAL,
4397 				access_pcic_post_dat_q_cor_err_cnt),
4398 [C_PCIC_POST_HD_Q_COR_ERR] = CNTR_ELEM("PcicPostHdQCorErr", 0, 0,
4399 				CNTR_NORMAL,
4400 				access_pcic_post_hd_q_cor_err_cnt),
4401 [C_PCIC_RETRY_SOT_MEM_COR_ERR] = CNTR_ELEM("PcicRetrySotMemCorErr", 0, 0,
4402 				CNTR_NORMAL,
4403 				access_pcic_retry_sot_mem_cor_err_cnt),
4404 [C_PCIC_RETRY_MEM_COR_ERR] = CNTR_ELEM("PcicRetryMemCorErr", 0, 0,
4405 				CNTR_NORMAL,
4406 				access_pcic_retry_mem_cor_err_cnt),
4407 [C_CCE_CLI1_ASYNC_FIFO_DBG_PARITY_ERR] = CNTR_ELEM(
4408 				"CceCli1AsyncFifoDbgParityError", 0, 0,
4409 				CNTR_NORMAL,
4410 				access_cce_cli1_async_fifo_dbg_parity_err_cnt),
4411 [C_CCE_CLI1_ASYNC_FIFO_RXDMA_PARITY_ERR] = CNTR_ELEM(
4412 				"CceCli1AsyncFifoRxdmaParityError", 0, 0,
4413 				CNTR_NORMAL,
4414 				access_cce_cli1_async_fifo_rxdma_parity_err_cnt
4415 				),
4416 [C_CCE_CLI1_ASYNC_FIFO_SDMA_HD_PARITY_ERR] = CNTR_ELEM(
4417 			"CceCli1AsyncFifoSdmaHdParityErr", 0, 0,
4418 			CNTR_NORMAL,
4419 			access_cce_cli1_async_fifo_sdma_hd_parity_err_cnt),
4420 [C_CCE_CLI1_ASYNC_FIFO_PIO_CRDT_PARITY_ERR] = CNTR_ELEM(
4421 			"CceCli1AsyncFifoPioCrdtParityErr", 0, 0,
4422 			CNTR_NORMAL,
4423 			access_cce_cl1_async_fifo_pio_crdt_parity_err_cnt),
4424 [C_CCE_CLI2_ASYNC_FIFO_PARITY_ERR] = CNTR_ELEM("CceCli2AsyncFifoParityErr", 0,
4425 			0, CNTR_NORMAL,
4426 			access_cce_cli2_async_fifo_parity_err_cnt),
4427 [C_CCE_CSR_CFG_BUS_PARITY_ERR] = CNTR_ELEM("CceCsrCfgBusParityErr", 0, 0,
4428 			CNTR_NORMAL,
4429 			access_cce_csr_cfg_bus_parity_err_cnt),
4430 [C_CCE_CLI0_ASYNC_FIFO_PARTIY_ERR] = CNTR_ELEM("CceCli0AsyncFifoParityErr", 0,
4431 			0, CNTR_NORMAL,
4432 			access_cce_cli0_async_fifo_parity_err_cnt),
4433 [C_CCE_RSPD_DATA_PARITY_ERR] = CNTR_ELEM("CceRspdDataParityErr", 0, 0,
4434 			CNTR_NORMAL,
4435 			access_cce_rspd_data_parity_err_cnt),
4436 [C_CCE_TRGT_ACCESS_ERR] = CNTR_ELEM("CceTrgtAccessErr", 0, 0,
4437 			CNTR_NORMAL,
4438 			access_cce_trgt_access_err_cnt),
4439 [C_CCE_TRGT_ASYNC_FIFO_PARITY_ERR] = CNTR_ELEM("CceTrgtAsyncFifoParityErr", 0,
4440 			0, CNTR_NORMAL,
4441 			access_cce_trgt_async_fifo_parity_err_cnt),
4442 [C_CCE_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("CceCsrWriteBadAddrErr", 0, 0,
4443 			CNTR_NORMAL,
4444 			access_cce_csr_write_bad_addr_err_cnt),
4445 [C_CCE_CSR_READ_BAD_ADDR_ERR] = CNTR_ELEM("CceCsrReadBadAddrErr", 0, 0,
4446 			CNTR_NORMAL,
4447 			access_cce_csr_read_bad_addr_err_cnt),
4448 [C_CCE_CSR_PARITY_ERR] = CNTR_ELEM("CceCsrParityErr", 0, 0,
4449 			CNTR_NORMAL,
4450 			access_ccs_csr_parity_err_cnt),
4451 
4452 /* RcvErrStatus */
4453 [C_RX_CSR_PARITY_ERR] = CNTR_ELEM("RxCsrParityErr", 0, 0,
4454 			CNTR_NORMAL,
4455 			access_rx_csr_parity_err_cnt),
4456 [C_RX_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("RxCsrWriteBadAddrErr", 0, 0,
4457 			CNTR_NORMAL,
4458 			access_rx_csr_write_bad_addr_err_cnt),
4459 [C_RX_CSR_READ_BAD_ADDR_ERR] = CNTR_ELEM("RxCsrReadBadAddrErr", 0, 0,
4460 			CNTR_NORMAL,
4461 			access_rx_csr_read_bad_addr_err_cnt),
4462 [C_RX_DMA_CSR_UNC_ERR] = CNTR_ELEM("RxDmaCsrUncErr", 0, 0,
4463 			CNTR_NORMAL,
4464 			access_rx_dma_csr_unc_err_cnt),
4465 [C_RX_DMA_DQ_FSM_ENCODING_ERR] = CNTR_ELEM("RxDmaDqFsmEncodingErr", 0, 0,
4466 			CNTR_NORMAL,
4467 			access_rx_dma_dq_fsm_encoding_err_cnt),
4468 [C_RX_DMA_EQ_FSM_ENCODING_ERR] = CNTR_ELEM("RxDmaEqFsmEncodingErr", 0, 0,
4469 			CNTR_NORMAL,
4470 			access_rx_dma_eq_fsm_encoding_err_cnt),
4471 [C_RX_DMA_CSR_PARITY_ERR] = CNTR_ELEM("RxDmaCsrParityErr", 0, 0,
4472 			CNTR_NORMAL,
4473 			access_rx_dma_csr_parity_err_cnt),
4474 [C_RX_RBUF_DATA_COR_ERR] = CNTR_ELEM("RxRbufDataCorErr", 0, 0,
4475 			CNTR_NORMAL,
4476 			access_rx_rbuf_data_cor_err_cnt),
4477 [C_RX_RBUF_DATA_UNC_ERR] = CNTR_ELEM("RxRbufDataUncErr", 0, 0,
4478 			CNTR_NORMAL,
4479 			access_rx_rbuf_data_unc_err_cnt),
4480 [C_RX_DMA_DATA_FIFO_RD_COR_ERR] = CNTR_ELEM("RxDmaDataFifoRdCorErr", 0, 0,
4481 			CNTR_NORMAL,
4482 			access_rx_dma_data_fifo_rd_cor_err_cnt),
4483 [C_RX_DMA_DATA_FIFO_RD_UNC_ERR] = CNTR_ELEM("RxDmaDataFifoRdUncErr", 0, 0,
4484 			CNTR_NORMAL,
4485 			access_rx_dma_data_fifo_rd_unc_err_cnt),
4486 [C_RX_DMA_HDR_FIFO_RD_COR_ERR] = CNTR_ELEM("RxDmaHdrFifoRdCorErr", 0, 0,
4487 			CNTR_NORMAL,
4488 			access_rx_dma_hdr_fifo_rd_cor_err_cnt),
4489 [C_RX_DMA_HDR_FIFO_RD_UNC_ERR] = CNTR_ELEM("RxDmaHdrFifoRdUncErr", 0, 0,
4490 			CNTR_NORMAL,
4491 			access_rx_dma_hdr_fifo_rd_unc_err_cnt),
4492 [C_RX_RBUF_DESC_PART2_COR_ERR] = CNTR_ELEM("RxRbufDescPart2CorErr", 0, 0,
4493 			CNTR_NORMAL,
4494 			access_rx_rbuf_desc_part2_cor_err_cnt),
4495 [C_RX_RBUF_DESC_PART2_UNC_ERR] = CNTR_ELEM("RxRbufDescPart2UncErr", 0, 0,
4496 			CNTR_NORMAL,
4497 			access_rx_rbuf_desc_part2_unc_err_cnt),
4498 [C_RX_RBUF_DESC_PART1_COR_ERR] = CNTR_ELEM("RxRbufDescPart1CorErr", 0, 0,
4499 			CNTR_NORMAL,
4500 			access_rx_rbuf_desc_part1_cor_err_cnt),
4501 [C_RX_RBUF_DESC_PART1_UNC_ERR] = CNTR_ELEM("RxRbufDescPart1UncErr", 0, 0,
4502 			CNTR_NORMAL,
4503 			access_rx_rbuf_desc_part1_unc_err_cnt),
4504 [C_RX_HQ_INTR_FSM_ERR] = CNTR_ELEM("RxHqIntrFsmErr", 0, 0,
4505 			CNTR_NORMAL,
4506 			access_rx_hq_intr_fsm_err_cnt),
4507 [C_RX_HQ_INTR_CSR_PARITY_ERR] = CNTR_ELEM("RxHqIntrCsrParityErr", 0, 0,
4508 			CNTR_NORMAL,
4509 			access_rx_hq_intr_csr_parity_err_cnt),
4510 [C_RX_LOOKUP_CSR_PARITY_ERR] = CNTR_ELEM("RxLookupCsrParityErr", 0, 0,
4511 			CNTR_NORMAL,
4512 			access_rx_lookup_csr_parity_err_cnt),
4513 [C_RX_LOOKUP_RCV_ARRAY_COR_ERR] = CNTR_ELEM("RxLookupRcvArrayCorErr", 0, 0,
4514 			CNTR_NORMAL,
4515 			access_rx_lookup_rcv_array_cor_err_cnt),
4516 [C_RX_LOOKUP_RCV_ARRAY_UNC_ERR] = CNTR_ELEM("RxLookupRcvArrayUncErr", 0, 0,
4517 			CNTR_NORMAL,
4518 			access_rx_lookup_rcv_array_unc_err_cnt),
4519 [C_RX_LOOKUP_DES_PART2_PARITY_ERR] = CNTR_ELEM("RxLookupDesPart2ParityErr", 0,
4520 			0, CNTR_NORMAL,
4521 			access_rx_lookup_des_part2_parity_err_cnt),
4522 [C_RX_LOOKUP_DES_PART1_UNC_COR_ERR] = CNTR_ELEM("RxLookupDesPart1UncCorErr", 0,
4523 			0, CNTR_NORMAL,
4524 			access_rx_lookup_des_part1_unc_cor_err_cnt),
4525 [C_RX_LOOKUP_DES_PART1_UNC_ERR] = CNTR_ELEM("RxLookupDesPart1UncErr", 0, 0,
4526 			CNTR_NORMAL,
4527 			access_rx_lookup_des_part1_unc_err_cnt),
4528 [C_RX_RBUF_NEXT_FREE_BUF_COR_ERR] = CNTR_ELEM("RxRbufNextFreeBufCorErr", 0, 0,
4529 			CNTR_NORMAL,
4530 			access_rx_rbuf_next_free_buf_cor_err_cnt),
4531 [C_RX_RBUF_NEXT_FREE_BUF_UNC_ERR] = CNTR_ELEM("RxRbufNextFreeBufUncErr", 0, 0,
4532 			CNTR_NORMAL,
4533 			access_rx_rbuf_next_free_buf_unc_err_cnt),
4534 [C_RX_RBUF_FL_INIT_WR_ADDR_PARITY_ERR] = CNTR_ELEM(
4535 			"RxRbufFlInitWrAddrParityErr", 0, 0,
4536 			CNTR_NORMAL,
4537 			access_rbuf_fl_init_wr_addr_parity_err_cnt),
4538 [C_RX_RBUF_FL_INITDONE_PARITY_ERR] = CNTR_ELEM("RxRbufFlInitdoneParityErr", 0,
4539 			0, CNTR_NORMAL,
4540 			access_rx_rbuf_fl_initdone_parity_err_cnt),
4541 [C_RX_RBUF_FL_WRITE_ADDR_PARITY_ERR] = CNTR_ELEM("RxRbufFlWrAddrParityErr", 0,
4542 			0, CNTR_NORMAL,
4543 			access_rx_rbuf_fl_write_addr_parity_err_cnt),
4544 [C_RX_RBUF_FL_RD_ADDR_PARITY_ERR] = CNTR_ELEM("RxRbufFlRdAddrParityErr", 0, 0,
4545 			CNTR_NORMAL,
4546 			access_rx_rbuf_fl_rd_addr_parity_err_cnt),
4547 [C_RX_RBUF_EMPTY_ERR] = CNTR_ELEM("RxRbufEmptyErr", 0, 0,
4548 			CNTR_NORMAL,
4549 			access_rx_rbuf_empty_err_cnt),
4550 [C_RX_RBUF_FULL_ERR] = CNTR_ELEM("RxRbufFullErr", 0, 0,
4551 			CNTR_NORMAL,
4552 			access_rx_rbuf_full_err_cnt),
4553 [C_RX_RBUF_BAD_LOOKUP_ERR] = CNTR_ELEM("RxRBufBadLookupErr", 0, 0,
4554 			CNTR_NORMAL,
4555 			access_rbuf_bad_lookup_err_cnt),
4556 [C_RX_RBUF_CTX_ID_PARITY_ERR] = CNTR_ELEM("RxRbufCtxIdParityErr", 0, 0,
4557 			CNTR_NORMAL,
4558 			access_rbuf_ctx_id_parity_err_cnt),
4559 [C_RX_RBUF_CSR_QEOPDW_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQEOPDWParityErr", 0, 0,
4560 			CNTR_NORMAL,
4561 			access_rbuf_csr_qeopdw_parity_err_cnt),
4562 [C_RX_RBUF_CSR_Q_NUM_OF_PKT_PARITY_ERR] = CNTR_ELEM(
4563 			"RxRbufCsrQNumOfPktParityErr", 0, 0,
4564 			CNTR_NORMAL,
4565 			access_rx_rbuf_csr_q_num_of_pkt_parity_err_cnt),
4566 [C_RX_RBUF_CSR_Q_T1_PTR_PARITY_ERR] = CNTR_ELEM(
4567 			"RxRbufCsrQTlPtrParityErr", 0, 0,
4568 			CNTR_NORMAL,
4569 			access_rx_rbuf_csr_q_t1_ptr_parity_err_cnt),
4570 [C_RX_RBUF_CSR_Q_HD_PTR_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQHdPtrParityErr", 0,
4571 			0, CNTR_NORMAL,
4572 			access_rx_rbuf_csr_q_hd_ptr_parity_err_cnt),
4573 [C_RX_RBUF_CSR_Q_VLD_BIT_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQVldBitParityErr", 0,
4574 			0, CNTR_NORMAL,
4575 			access_rx_rbuf_csr_q_vld_bit_parity_err_cnt),
4576 [C_RX_RBUF_CSR_Q_NEXT_BUF_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQNextBufParityErr",
4577 			0, 0, CNTR_NORMAL,
4578 			access_rx_rbuf_csr_q_next_buf_parity_err_cnt),
4579 [C_RX_RBUF_CSR_Q_ENT_CNT_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQEntCntParityErr", 0,
4580 			0, CNTR_NORMAL,
4581 			access_rx_rbuf_csr_q_ent_cnt_parity_err_cnt),
4582 [C_RX_RBUF_CSR_Q_HEAD_BUF_NUM_PARITY_ERR] = CNTR_ELEM(
4583 			"RxRbufCsrQHeadBufNumParityErr", 0, 0,
4584 			CNTR_NORMAL,
4585 			access_rx_rbuf_csr_q_head_buf_num_parity_err_cnt),
4586 [C_RX_RBUF_BLOCK_LIST_READ_COR_ERR] = CNTR_ELEM("RxRbufBlockListReadCorErr", 0,
4587 			0, CNTR_NORMAL,
4588 			access_rx_rbuf_block_list_read_cor_err_cnt),
4589 [C_RX_RBUF_BLOCK_LIST_READ_UNC_ERR] = CNTR_ELEM("RxRbufBlockListReadUncErr", 0,
4590 			0, CNTR_NORMAL,
4591 			access_rx_rbuf_block_list_read_unc_err_cnt),
4592 [C_RX_RBUF_LOOKUP_DES_COR_ERR] = CNTR_ELEM("RxRbufLookupDesCorErr", 0, 0,
4593 			CNTR_NORMAL,
4594 			access_rx_rbuf_lookup_des_cor_err_cnt),
4595 [C_RX_RBUF_LOOKUP_DES_UNC_ERR] = CNTR_ELEM("RxRbufLookupDesUncErr", 0, 0,
4596 			CNTR_NORMAL,
4597 			access_rx_rbuf_lookup_des_unc_err_cnt),
4598 [C_RX_RBUF_LOOKUP_DES_REG_UNC_COR_ERR] = CNTR_ELEM(
4599 			"RxRbufLookupDesRegUncCorErr", 0, 0,
4600 			CNTR_NORMAL,
4601 			access_rx_rbuf_lookup_des_reg_unc_cor_err_cnt),
4602 [C_RX_RBUF_LOOKUP_DES_REG_UNC_ERR] = CNTR_ELEM("RxRbufLookupDesRegUncErr", 0, 0,
4603 			CNTR_NORMAL,
4604 			access_rx_rbuf_lookup_des_reg_unc_err_cnt),
4605 [C_RX_RBUF_FREE_LIST_COR_ERR] = CNTR_ELEM("RxRbufFreeListCorErr", 0, 0,
4606 			CNTR_NORMAL,
4607 			access_rx_rbuf_free_list_cor_err_cnt),
4608 [C_RX_RBUF_FREE_LIST_UNC_ERR] = CNTR_ELEM("RxRbufFreeListUncErr", 0, 0,
4609 			CNTR_NORMAL,
4610 			access_rx_rbuf_free_list_unc_err_cnt),
4611 [C_RX_RCV_FSM_ENCODING_ERR] = CNTR_ELEM("RxRcvFsmEncodingErr", 0, 0,
4612 			CNTR_NORMAL,
4613 			access_rx_rcv_fsm_encoding_err_cnt),
4614 [C_RX_DMA_FLAG_COR_ERR] = CNTR_ELEM("RxDmaFlagCorErr", 0, 0,
4615 			CNTR_NORMAL,
4616 			access_rx_dma_flag_cor_err_cnt),
4617 [C_RX_DMA_FLAG_UNC_ERR] = CNTR_ELEM("RxDmaFlagUncErr", 0, 0,
4618 			CNTR_NORMAL,
4619 			access_rx_dma_flag_unc_err_cnt),
4620 [C_RX_DC_SOP_EOP_PARITY_ERR] = CNTR_ELEM("RxDcSopEopParityErr", 0, 0,
4621 			CNTR_NORMAL,
4622 			access_rx_dc_sop_eop_parity_err_cnt),
4623 [C_RX_RCV_CSR_PARITY_ERR] = CNTR_ELEM("RxRcvCsrParityErr", 0, 0,
4624 			CNTR_NORMAL,
4625 			access_rx_rcv_csr_parity_err_cnt),
4626 [C_RX_RCV_QP_MAP_TABLE_COR_ERR] = CNTR_ELEM("RxRcvQpMapTableCorErr", 0, 0,
4627 			CNTR_NORMAL,
4628 			access_rx_rcv_qp_map_table_cor_err_cnt),
4629 [C_RX_RCV_QP_MAP_TABLE_UNC_ERR] = CNTR_ELEM("RxRcvQpMapTableUncErr", 0, 0,
4630 			CNTR_NORMAL,
4631 			access_rx_rcv_qp_map_table_unc_err_cnt),
4632 [C_RX_RCV_DATA_COR_ERR] = CNTR_ELEM("RxRcvDataCorErr", 0, 0,
4633 			CNTR_NORMAL,
4634 			access_rx_rcv_data_cor_err_cnt),
4635 [C_RX_RCV_DATA_UNC_ERR] = CNTR_ELEM("RxRcvDataUncErr", 0, 0,
4636 			CNTR_NORMAL,
4637 			access_rx_rcv_data_unc_err_cnt),
4638 [C_RX_RCV_HDR_COR_ERR] = CNTR_ELEM("RxRcvHdrCorErr", 0, 0,
4639 			CNTR_NORMAL,
4640 			access_rx_rcv_hdr_cor_err_cnt),
4641 [C_RX_RCV_HDR_UNC_ERR] = CNTR_ELEM("RxRcvHdrUncErr", 0, 0,
4642 			CNTR_NORMAL,
4643 			access_rx_rcv_hdr_unc_err_cnt),
4644 [C_RX_DC_INTF_PARITY_ERR] = CNTR_ELEM("RxDcIntfParityErr", 0, 0,
4645 			CNTR_NORMAL,
4646 			access_rx_dc_intf_parity_err_cnt),
4647 [C_RX_DMA_CSR_COR_ERR] = CNTR_ELEM("RxDmaCsrCorErr", 0, 0,
4648 			CNTR_NORMAL,
4649 			access_rx_dma_csr_cor_err_cnt),
4650 /* SendPioErrStatus */
4651 [C_PIO_PEC_SOP_HEAD_PARITY_ERR] = CNTR_ELEM("PioPecSopHeadParityErr", 0, 0,
4652 			CNTR_NORMAL,
4653 			access_pio_pec_sop_head_parity_err_cnt),
4654 [C_PIO_PCC_SOP_HEAD_PARITY_ERR] = CNTR_ELEM("PioPccSopHeadParityErr", 0, 0,
4655 			CNTR_NORMAL,
4656 			access_pio_pcc_sop_head_parity_err_cnt),
4657 [C_PIO_LAST_RETURNED_CNT_PARITY_ERR] = CNTR_ELEM("PioLastReturnedCntParityErr",
4658 			0, 0, CNTR_NORMAL,
4659 			access_pio_last_returned_cnt_parity_err_cnt),
4660 [C_PIO_CURRENT_FREE_CNT_PARITY_ERR] = CNTR_ELEM("PioCurrentFreeCntParityErr", 0,
4661 			0, CNTR_NORMAL,
4662 			access_pio_current_free_cnt_parity_err_cnt),
4663 [C_PIO_RSVD_31_ERR] = CNTR_ELEM("Pio Reserved 31", 0, 0,
4664 			CNTR_NORMAL,
4665 			access_pio_reserved_31_err_cnt),
4666 [C_PIO_RSVD_30_ERR] = CNTR_ELEM("Pio Reserved 30", 0, 0,
4667 			CNTR_NORMAL,
4668 			access_pio_reserved_30_err_cnt),
4669 [C_PIO_PPMC_SOP_LEN_ERR] = CNTR_ELEM("PioPpmcSopLenErr", 0, 0,
4670 			CNTR_NORMAL,
4671 			access_pio_ppmc_sop_len_err_cnt),
4672 [C_PIO_PPMC_BQC_MEM_PARITY_ERR] = CNTR_ELEM("PioPpmcBqcMemParityErr", 0, 0,
4673 			CNTR_NORMAL,
4674 			access_pio_ppmc_bqc_mem_parity_err_cnt),
4675 [C_PIO_VL_FIFO_PARITY_ERR] = CNTR_ELEM("PioVlFifoParityErr", 0, 0,
4676 			CNTR_NORMAL,
4677 			access_pio_vl_fifo_parity_err_cnt),
4678 [C_PIO_VLF_SOP_PARITY_ERR] = CNTR_ELEM("PioVlfSopParityErr", 0, 0,
4679 			CNTR_NORMAL,
4680 			access_pio_vlf_sop_parity_err_cnt),
4681 [C_PIO_VLF_V1_LEN_PARITY_ERR] = CNTR_ELEM("PioVlfVlLenParityErr", 0, 0,
4682 			CNTR_NORMAL,
4683 			access_pio_vlf_v1_len_parity_err_cnt),
4684 [C_PIO_BLOCK_QW_COUNT_PARITY_ERR] = CNTR_ELEM("PioBlockQwCountParityErr", 0, 0,
4685 			CNTR_NORMAL,
4686 			access_pio_block_qw_count_parity_err_cnt),
4687 [C_PIO_WRITE_QW_VALID_PARITY_ERR] = CNTR_ELEM("PioWriteQwValidParityErr", 0, 0,
4688 			CNTR_NORMAL,
4689 			access_pio_write_qw_valid_parity_err_cnt),
4690 [C_PIO_STATE_MACHINE_ERR] = CNTR_ELEM("PioStateMachineErr", 0, 0,
4691 			CNTR_NORMAL,
4692 			access_pio_state_machine_err_cnt),
4693 [C_PIO_WRITE_DATA_PARITY_ERR] = CNTR_ELEM("PioWriteDataParityErr", 0, 0,
4694 			CNTR_NORMAL,
4695 			access_pio_write_data_parity_err_cnt),
4696 [C_PIO_HOST_ADDR_MEM_COR_ERR] = CNTR_ELEM("PioHostAddrMemCorErr", 0, 0,
4697 			CNTR_NORMAL,
4698 			access_pio_host_addr_mem_cor_err_cnt),
4699 [C_PIO_HOST_ADDR_MEM_UNC_ERR] = CNTR_ELEM("PioHostAddrMemUncErr", 0, 0,
4700 			CNTR_NORMAL,
4701 			access_pio_host_addr_mem_unc_err_cnt),
4702 [C_PIO_PKT_EVICT_SM_OR_ARM_SM_ERR] = CNTR_ELEM("PioPktEvictSmOrArbSmErr", 0, 0,
4703 			CNTR_NORMAL,
4704 			access_pio_pkt_evict_sm_or_arb_sm_err_cnt),
4705 [C_PIO_INIT_SM_IN_ERR] = CNTR_ELEM("PioInitSmInErr", 0, 0,
4706 			CNTR_NORMAL,
4707 			access_pio_init_sm_in_err_cnt),
4708 [C_PIO_PPMC_PBL_FIFO_ERR] = CNTR_ELEM("PioPpmcPblFifoErr", 0, 0,
4709 			CNTR_NORMAL,
4710 			access_pio_ppmc_pbl_fifo_err_cnt),
4711 [C_PIO_CREDIT_RET_FIFO_PARITY_ERR] = CNTR_ELEM("PioCreditRetFifoParityErr", 0,
4712 			0, CNTR_NORMAL,
4713 			access_pio_credit_ret_fifo_parity_err_cnt),
4714 [C_PIO_V1_LEN_MEM_BANK1_COR_ERR] = CNTR_ELEM("PioVlLenMemBank1CorErr", 0, 0,
4715 			CNTR_NORMAL,
4716 			access_pio_v1_len_mem_bank1_cor_err_cnt),
4717 [C_PIO_V1_LEN_MEM_BANK0_COR_ERR] = CNTR_ELEM("PioVlLenMemBank0CorErr", 0, 0,
4718 			CNTR_NORMAL,
4719 			access_pio_v1_len_mem_bank0_cor_err_cnt),
4720 [C_PIO_V1_LEN_MEM_BANK1_UNC_ERR] = CNTR_ELEM("PioVlLenMemBank1UncErr", 0, 0,
4721 			CNTR_NORMAL,
4722 			access_pio_v1_len_mem_bank1_unc_err_cnt),
4723 [C_PIO_V1_LEN_MEM_BANK0_UNC_ERR] = CNTR_ELEM("PioVlLenMemBank0UncErr", 0, 0,
4724 			CNTR_NORMAL,
4725 			access_pio_v1_len_mem_bank0_unc_err_cnt),
4726 [C_PIO_SM_PKT_RESET_PARITY_ERR] = CNTR_ELEM("PioSmPktResetParityErr", 0, 0,
4727 			CNTR_NORMAL,
4728 			access_pio_sm_pkt_reset_parity_err_cnt),
4729 [C_PIO_PKT_EVICT_FIFO_PARITY_ERR] = CNTR_ELEM("PioPktEvictFifoParityErr", 0, 0,
4730 			CNTR_NORMAL,
4731 			access_pio_pkt_evict_fifo_parity_err_cnt),
4732 [C_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR] = CNTR_ELEM(
4733 			"PioSbrdctrlCrrelFifoParityErr", 0, 0,
4734 			CNTR_NORMAL,
4735 			access_pio_sbrdctrl_crrel_fifo_parity_err_cnt),
4736 [C_PIO_SBRDCTL_CRREL_PARITY_ERR] = CNTR_ELEM("PioSbrdctlCrrelParityErr", 0, 0,
4737 			CNTR_NORMAL,
4738 			access_pio_sbrdctl_crrel_parity_err_cnt),
4739 [C_PIO_PEC_FIFO_PARITY_ERR] = CNTR_ELEM("PioPecFifoParityErr", 0, 0,
4740 			CNTR_NORMAL,
4741 			access_pio_pec_fifo_parity_err_cnt),
4742 [C_PIO_PCC_FIFO_PARITY_ERR] = CNTR_ELEM("PioPccFifoParityErr", 0, 0,
4743 			CNTR_NORMAL,
4744 			access_pio_pcc_fifo_parity_err_cnt),
4745 [C_PIO_SB_MEM_FIFO1_ERR] = CNTR_ELEM("PioSbMemFifo1Err", 0, 0,
4746 			CNTR_NORMAL,
4747 			access_pio_sb_mem_fifo1_err_cnt),
4748 [C_PIO_SB_MEM_FIFO0_ERR] = CNTR_ELEM("PioSbMemFifo0Err", 0, 0,
4749 			CNTR_NORMAL,
4750 			access_pio_sb_mem_fifo0_err_cnt),
4751 [C_PIO_CSR_PARITY_ERR] = CNTR_ELEM("PioCsrParityErr", 0, 0,
4752 			CNTR_NORMAL,
4753 			access_pio_csr_parity_err_cnt),
4754 [C_PIO_WRITE_ADDR_PARITY_ERR] = CNTR_ELEM("PioWriteAddrParityErr", 0, 0,
4755 			CNTR_NORMAL,
4756 			access_pio_write_addr_parity_err_cnt),
4757 [C_PIO_WRITE_BAD_CTXT_ERR] = CNTR_ELEM("PioWriteBadCtxtErr", 0, 0,
4758 			CNTR_NORMAL,
4759 			access_pio_write_bad_ctxt_err_cnt),
4760 /* SendDmaErrStatus */
4761 [C_SDMA_PCIE_REQ_TRACKING_COR_ERR] = CNTR_ELEM("SDmaPcieReqTrackingCorErr", 0,
4762 			0, CNTR_NORMAL,
4763 			access_sdma_pcie_req_tracking_cor_err_cnt),
4764 [C_SDMA_PCIE_REQ_TRACKING_UNC_ERR] = CNTR_ELEM("SDmaPcieReqTrackingUncErr", 0,
4765 			0, CNTR_NORMAL,
4766 			access_sdma_pcie_req_tracking_unc_err_cnt),
4767 [C_SDMA_CSR_PARITY_ERR] = CNTR_ELEM("SDmaCsrParityErr", 0, 0,
4768 			CNTR_NORMAL,
4769 			access_sdma_csr_parity_err_cnt),
4770 [C_SDMA_RPY_TAG_ERR] = CNTR_ELEM("SDmaRpyTagErr", 0, 0,
4771 			CNTR_NORMAL,
4772 			access_sdma_rpy_tag_err_cnt),
4773 /* SendEgressErrStatus */
4774 [C_TX_READ_PIO_MEMORY_CSR_UNC_ERR] = CNTR_ELEM("TxReadPioMemoryCsrUncErr", 0, 0,
4775 			CNTR_NORMAL,
4776 			access_tx_read_pio_memory_csr_unc_err_cnt),
4777 [C_TX_READ_SDMA_MEMORY_CSR_UNC_ERR] = CNTR_ELEM("TxReadSdmaMemoryCsrUncErr", 0,
4778 			0, CNTR_NORMAL,
4779 			access_tx_read_sdma_memory_csr_err_cnt),
4780 [C_TX_EGRESS_FIFO_COR_ERR] = CNTR_ELEM("TxEgressFifoCorErr", 0, 0,
4781 			CNTR_NORMAL,
4782 			access_tx_egress_fifo_cor_err_cnt),
4783 [C_TX_READ_PIO_MEMORY_COR_ERR] = CNTR_ELEM("TxReadPioMemoryCorErr", 0, 0,
4784 			CNTR_NORMAL,
4785 			access_tx_read_pio_memory_cor_err_cnt),
4786 [C_TX_READ_SDMA_MEMORY_COR_ERR] = CNTR_ELEM("TxReadSdmaMemoryCorErr", 0, 0,
4787 			CNTR_NORMAL,
4788 			access_tx_read_sdma_memory_cor_err_cnt),
4789 [C_TX_SB_HDR_COR_ERR] = CNTR_ELEM("TxSbHdrCorErr", 0, 0,
4790 			CNTR_NORMAL,
4791 			access_tx_sb_hdr_cor_err_cnt),
4792 [C_TX_CREDIT_OVERRUN_ERR] = CNTR_ELEM("TxCreditOverrunErr", 0, 0,
4793 			CNTR_NORMAL,
4794 			access_tx_credit_overrun_err_cnt),
4795 [C_TX_LAUNCH_FIFO8_COR_ERR] = CNTR_ELEM("TxLaunchFifo8CorErr", 0, 0,
4796 			CNTR_NORMAL,
4797 			access_tx_launch_fifo8_cor_err_cnt),
4798 [C_TX_LAUNCH_FIFO7_COR_ERR] = CNTR_ELEM("TxLaunchFifo7CorErr", 0, 0,
4799 			CNTR_NORMAL,
4800 			access_tx_launch_fifo7_cor_err_cnt),
4801 [C_TX_LAUNCH_FIFO6_COR_ERR] = CNTR_ELEM("TxLaunchFifo6CorErr", 0, 0,
4802 			CNTR_NORMAL,
4803 			access_tx_launch_fifo6_cor_err_cnt),
4804 [C_TX_LAUNCH_FIFO5_COR_ERR] = CNTR_ELEM("TxLaunchFifo5CorErr", 0, 0,
4805 			CNTR_NORMAL,
4806 			access_tx_launch_fifo5_cor_err_cnt),
4807 [C_TX_LAUNCH_FIFO4_COR_ERR] = CNTR_ELEM("TxLaunchFifo4CorErr", 0, 0,
4808 			CNTR_NORMAL,
4809 			access_tx_launch_fifo4_cor_err_cnt),
4810 [C_TX_LAUNCH_FIFO3_COR_ERR] = CNTR_ELEM("TxLaunchFifo3CorErr", 0, 0,
4811 			CNTR_NORMAL,
4812 			access_tx_launch_fifo3_cor_err_cnt),
4813 [C_TX_LAUNCH_FIFO2_COR_ERR] = CNTR_ELEM("TxLaunchFifo2CorErr", 0, 0,
4814 			CNTR_NORMAL,
4815 			access_tx_launch_fifo2_cor_err_cnt),
4816 [C_TX_LAUNCH_FIFO1_COR_ERR] = CNTR_ELEM("TxLaunchFifo1CorErr", 0, 0,
4817 			CNTR_NORMAL,
4818 			access_tx_launch_fifo1_cor_err_cnt),
4819 [C_TX_LAUNCH_FIFO0_COR_ERR] = CNTR_ELEM("TxLaunchFifo0CorErr", 0, 0,
4820 			CNTR_NORMAL,
4821 			access_tx_launch_fifo0_cor_err_cnt),
4822 [C_TX_CREDIT_RETURN_VL_ERR] = CNTR_ELEM("TxCreditReturnVLErr", 0, 0,
4823 			CNTR_NORMAL,
4824 			access_tx_credit_return_vl_err_cnt),
4825 [C_TX_HCRC_INSERTION_ERR] = CNTR_ELEM("TxHcrcInsertionErr", 0, 0,
4826 			CNTR_NORMAL,
4827 			access_tx_hcrc_insertion_err_cnt),
4828 [C_TX_EGRESS_FIFI_UNC_ERR] = CNTR_ELEM("TxEgressFifoUncErr", 0, 0,
4829 			CNTR_NORMAL,
4830 			access_tx_egress_fifo_unc_err_cnt),
4831 [C_TX_READ_PIO_MEMORY_UNC_ERR] = CNTR_ELEM("TxReadPioMemoryUncErr", 0, 0,
4832 			CNTR_NORMAL,
4833 			access_tx_read_pio_memory_unc_err_cnt),
4834 [C_TX_READ_SDMA_MEMORY_UNC_ERR] = CNTR_ELEM("TxReadSdmaMemoryUncErr", 0, 0,
4835 			CNTR_NORMAL,
4836 			access_tx_read_sdma_memory_unc_err_cnt),
4837 [C_TX_SB_HDR_UNC_ERR] = CNTR_ELEM("TxSbHdrUncErr", 0, 0,
4838 			CNTR_NORMAL,
4839 			access_tx_sb_hdr_unc_err_cnt),
4840 [C_TX_CREDIT_RETURN_PARITY_ERR] = CNTR_ELEM("TxCreditReturnParityErr", 0, 0,
4841 			CNTR_NORMAL,
4842 			access_tx_credit_return_partiy_err_cnt),
4843 [C_TX_LAUNCH_FIFO8_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo8UncOrParityErr",
4844 			0, 0, CNTR_NORMAL,
4845 			access_tx_launch_fifo8_unc_or_parity_err_cnt),
4846 [C_TX_LAUNCH_FIFO7_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo7UncOrParityErr",
4847 			0, 0, CNTR_NORMAL,
4848 			access_tx_launch_fifo7_unc_or_parity_err_cnt),
4849 [C_TX_LAUNCH_FIFO6_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo6UncOrParityErr",
4850 			0, 0, CNTR_NORMAL,
4851 			access_tx_launch_fifo6_unc_or_parity_err_cnt),
4852 [C_TX_LAUNCH_FIFO5_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo5UncOrParityErr",
4853 			0, 0, CNTR_NORMAL,
4854 			access_tx_launch_fifo5_unc_or_parity_err_cnt),
4855 [C_TX_LAUNCH_FIFO4_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo4UncOrParityErr",
4856 			0, 0, CNTR_NORMAL,
4857 			access_tx_launch_fifo4_unc_or_parity_err_cnt),
4858 [C_TX_LAUNCH_FIFO3_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo3UncOrParityErr",
4859 			0, 0, CNTR_NORMAL,
4860 			access_tx_launch_fifo3_unc_or_parity_err_cnt),
4861 [C_TX_LAUNCH_FIFO2_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo2UncOrParityErr",
4862 			0, 0, CNTR_NORMAL,
4863 			access_tx_launch_fifo2_unc_or_parity_err_cnt),
4864 [C_TX_LAUNCH_FIFO1_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo1UncOrParityErr",
4865 			0, 0, CNTR_NORMAL,
4866 			access_tx_launch_fifo1_unc_or_parity_err_cnt),
4867 [C_TX_LAUNCH_FIFO0_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo0UncOrParityErr",
4868 			0, 0, CNTR_NORMAL,
4869 			access_tx_launch_fifo0_unc_or_parity_err_cnt),
4870 [C_TX_SDMA15_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma15DisallowedPacketErr",
4871 			0, 0, CNTR_NORMAL,
4872 			access_tx_sdma15_disallowed_packet_err_cnt),
4873 [C_TX_SDMA14_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma14DisallowedPacketErr",
4874 			0, 0, CNTR_NORMAL,
4875 			access_tx_sdma14_disallowed_packet_err_cnt),
4876 [C_TX_SDMA13_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma13DisallowedPacketErr",
4877 			0, 0, CNTR_NORMAL,
4878 			access_tx_sdma13_disallowed_packet_err_cnt),
4879 [C_TX_SDMA12_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma12DisallowedPacketErr",
4880 			0, 0, CNTR_NORMAL,
4881 			access_tx_sdma12_disallowed_packet_err_cnt),
4882 [C_TX_SDMA11_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma11DisallowedPacketErr",
4883 			0, 0, CNTR_NORMAL,
4884 			access_tx_sdma11_disallowed_packet_err_cnt),
4885 [C_TX_SDMA10_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma10DisallowedPacketErr",
4886 			0, 0, CNTR_NORMAL,
4887 			access_tx_sdma10_disallowed_packet_err_cnt),
4888 [C_TX_SDMA9_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma9DisallowedPacketErr",
4889 			0, 0, CNTR_NORMAL,
4890 			access_tx_sdma9_disallowed_packet_err_cnt),
4891 [C_TX_SDMA8_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma8DisallowedPacketErr",
4892 			0, 0, CNTR_NORMAL,
4893 			access_tx_sdma8_disallowed_packet_err_cnt),
4894 [C_TX_SDMA7_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma7DisallowedPacketErr",
4895 			0, 0, CNTR_NORMAL,
4896 			access_tx_sdma7_disallowed_packet_err_cnt),
4897 [C_TX_SDMA6_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma6DisallowedPacketErr",
4898 			0, 0, CNTR_NORMAL,
4899 			access_tx_sdma6_disallowed_packet_err_cnt),
4900 [C_TX_SDMA5_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma5DisallowedPacketErr",
4901 			0, 0, CNTR_NORMAL,
4902 			access_tx_sdma5_disallowed_packet_err_cnt),
4903 [C_TX_SDMA4_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma4DisallowedPacketErr",
4904 			0, 0, CNTR_NORMAL,
4905 			access_tx_sdma4_disallowed_packet_err_cnt),
4906 [C_TX_SDMA3_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma3DisallowedPacketErr",
4907 			0, 0, CNTR_NORMAL,
4908 			access_tx_sdma3_disallowed_packet_err_cnt),
4909 [C_TX_SDMA2_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma2DisallowedPacketErr",
4910 			0, 0, CNTR_NORMAL,
4911 			access_tx_sdma2_disallowed_packet_err_cnt),
4912 [C_TX_SDMA1_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma1DisallowedPacketErr",
4913 			0, 0, CNTR_NORMAL,
4914 			access_tx_sdma1_disallowed_packet_err_cnt),
4915 [C_TX_SDMA0_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma0DisallowedPacketErr",
4916 			0, 0, CNTR_NORMAL,
4917 			access_tx_sdma0_disallowed_packet_err_cnt),
4918 [C_TX_CONFIG_PARITY_ERR] = CNTR_ELEM("TxConfigParityErr", 0, 0,
4919 			CNTR_NORMAL,
4920 			access_tx_config_parity_err_cnt),
4921 [C_TX_SBRD_CTL_CSR_PARITY_ERR] = CNTR_ELEM("TxSbrdCtlCsrParityErr", 0, 0,
4922 			CNTR_NORMAL,
4923 			access_tx_sbrd_ctl_csr_parity_err_cnt),
4924 [C_TX_LAUNCH_CSR_PARITY_ERR] = CNTR_ELEM("TxLaunchCsrParityErr", 0, 0,
4925 			CNTR_NORMAL,
4926 			access_tx_launch_csr_parity_err_cnt),
4927 [C_TX_ILLEGAL_CL_ERR] = CNTR_ELEM("TxIllegalVLErr", 0, 0,
4928 			CNTR_NORMAL,
4929 			access_tx_illegal_vl_err_cnt),
4930 [C_TX_SBRD_CTL_STATE_MACHINE_PARITY_ERR] = CNTR_ELEM(
4931 			"TxSbrdCtlStateMachineParityErr", 0, 0,
4932 			CNTR_NORMAL,
4933 			access_tx_sbrd_ctl_state_machine_parity_err_cnt),
4934 [C_TX_RESERVED_10] = CNTR_ELEM("Tx Egress Reserved 10", 0, 0,
4935 			CNTR_NORMAL,
4936 			access_egress_reserved_10_err_cnt),
4937 [C_TX_RESERVED_9] = CNTR_ELEM("Tx Egress Reserved 9", 0, 0,
4938 			CNTR_NORMAL,
4939 			access_egress_reserved_9_err_cnt),
4940 [C_TX_SDMA_LAUNCH_INTF_PARITY_ERR] = CNTR_ELEM("TxSdmaLaunchIntfParityErr",
4941 			0, 0, CNTR_NORMAL,
4942 			access_tx_sdma_launch_intf_parity_err_cnt),
4943 [C_TX_PIO_LAUNCH_INTF_PARITY_ERR] = CNTR_ELEM("TxPioLaunchIntfParityErr", 0, 0,
4944 			CNTR_NORMAL,
4945 			access_tx_pio_launch_intf_parity_err_cnt),
4946 [C_TX_RESERVED_6] = CNTR_ELEM("Tx Egress Reserved 6", 0, 0,
4947 			CNTR_NORMAL,
4948 			access_egress_reserved_6_err_cnt),
4949 [C_TX_INCORRECT_LINK_STATE_ERR] = CNTR_ELEM("TxIncorrectLinkStateErr", 0, 0,
4950 			CNTR_NORMAL,
4951 			access_tx_incorrect_link_state_err_cnt),
4952 [C_TX_LINK_DOWN_ERR] = CNTR_ELEM("TxLinkdownErr", 0, 0,
4953 			CNTR_NORMAL,
4954 			access_tx_linkdown_err_cnt),
4955 [C_TX_EGRESS_FIFO_UNDERRUN_OR_PARITY_ERR] = CNTR_ELEM(
4956 			"EgressFifoUnderrunOrParityErr", 0, 0,
4957 			CNTR_NORMAL,
4958 			access_tx_egress_fifi_underrun_or_parity_err_cnt),
4959 [C_TX_RESERVED_2] = CNTR_ELEM("Tx Egress Reserved 2", 0, 0,
4960 			CNTR_NORMAL,
4961 			access_egress_reserved_2_err_cnt),
4962 [C_TX_PKT_INTEGRITY_MEM_UNC_ERR] = CNTR_ELEM("TxPktIntegrityMemUncErr", 0, 0,
4963 			CNTR_NORMAL,
4964 			access_tx_pkt_integrity_mem_unc_err_cnt),
4965 [C_TX_PKT_INTEGRITY_MEM_COR_ERR] = CNTR_ELEM("TxPktIntegrityMemCorErr", 0, 0,
4966 			CNTR_NORMAL,
4967 			access_tx_pkt_integrity_mem_cor_err_cnt),
4968 /* SendErrStatus */
4969 [C_SEND_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("SendCsrWriteBadAddrErr", 0, 0,
4970 			CNTR_NORMAL,
4971 			access_send_csr_write_bad_addr_err_cnt),
4972 [C_SEND_CSR_READ_BAD_ADD_ERR] = CNTR_ELEM("SendCsrReadBadAddrErr", 0, 0,
4973 			CNTR_NORMAL,
4974 			access_send_csr_read_bad_addr_err_cnt),
4975 [C_SEND_CSR_PARITY_ERR] = CNTR_ELEM("SendCsrParityErr", 0, 0,
4976 			CNTR_NORMAL,
4977 			access_send_csr_parity_cnt),
4978 /* SendCtxtErrStatus */
4979 [C_PIO_WRITE_OUT_OF_BOUNDS_ERR] = CNTR_ELEM("PioWriteOutOfBoundsErr", 0, 0,
4980 			CNTR_NORMAL,
4981 			access_pio_write_out_of_bounds_err_cnt),
4982 [C_PIO_WRITE_OVERFLOW_ERR] = CNTR_ELEM("PioWriteOverflowErr", 0, 0,
4983 			CNTR_NORMAL,
4984 			access_pio_write_overflow_err_cnt),
4985 [C_PIO_WRITE_CROSSES_BOUNDARY_ERR] = CNTR_ELEM("PioWriteCrossesBoundaryErr",
4986 			0, 0, CNTR_NORMAL,
4987 			access_pio_write_crosses_boundary_err_cnt),
4988 [C_PIO_DISALLOWED_PACKET_ERR] = CNTR_ELEM("PioDisallowedPacketErr", 0, 0,
4989 			CNTR_NORMAL,
4990 			access_pio_disallowed_packet_err_cnt),
4991 [C_PIO_INCONSISTENT_SOP_ERR] = CNTR_ELEM("PioInconsistentSopErr", 0, 0,
4992 			CNTR_NORMAL,
4993 			access_pio_inconsistent_sop_err_cnt),
4994 /* SendDmaEngErrStatus */
4995 [C_SDMA_HEADER_REQUEST_FIFO_COR_ERR] = CNTR_ELEM("SDmaHeaderRequestFifoCorErr",
4996 			0, 0, CNTR_NORMAL,
4997 			access_sdma_header_request_fifo_cor_err_cnt),
4998 [C_SDMA_HEADER_STORAGE_COR_ERR] = CNTR_ELEM("SDmaHeaderStorageCorErr", 0, 0,
4999 			CNTR_NORMAL,
5000 			access_sdma_header_storage_cor_err_cnt),
5001 [C_SDMA_PACKET_TRACKING_COR_ERR] = CNTR_ELEM("SDmaPacketTrackingCorErr", 0, 0,
5002 			CNTR_NORMAL,
5003 			access_sdma_packet_tracking_cor_err_cnt),
5004 [C_SDMA_ASSEMBLY_COR_ERR] = CNTR_ELEM("SDmaAssemblyCorErr", 0, 0,
5005 			CNTR_NORMAL,
5006 			access_sdma_assembly_cor_err_cnt),
5007 [C_SDMA_DESC_TABLE_COR_ERR] = CNTR_ELEM("SDmaDescTableCorErr", 0, 0,
5008 			CNTR_NORMAL,
5009 			access_sdma_desc_table_cor_err_cnt),
5010 [C_SDMA_HEADER_REQUEST_FIFO_UNC_ERR] = CNTR_ELEM("SDmaHeaderRequestFifoUncErr",
5011 			0, 0, CNTR_NORMAL,
5012 			access_sdma_header_request_fifo_unc_err_cnt),
5013 [C_SDMA_HEADER_STORAGE_UNC_ERR] = CNTR_ELEM("SDmaHeaderStorageUncErr", 0, 0,
5014 			CNTR_NORMAL,
5015 			access_sdma_header_storage_unc_err_cnt),
5016 [C_SDMA_PACKET_TRACKING_UNC_ERR] = CNTR_ELEM("SDmaPacketTrackingUncErr", 0, 0,
5017 			CNTR_NORMAL,
5018 			access_sdma_packet_tracking_unc_err_cnt),
5019 [C_SDMA_ASSEMBLY_UNC_ERR] = CNTR_ELEM("SDmaAssemblyUncErr", 0, 0,
5020 			CNTR_NORMAL,
5021 			access_sdma_assembly_unc_err_cnt),
5022 [C_SDMA_DESC_TABLE_UNC_ERR] = CNTR_ELEM("SDmaDescTableUncErr", 0, 0,
5023 			CNTR_NORMAL,
5024 			access_sdma_desc_table_unc_err_cnt),
5025 [C_SDMA_TIMEOUT_ERR] = CNTR_ELEM("SDmaTimeoutErr", 0, 0,
5026 			CNTR_NORMAL,
5027 			access_sdma_timeout_err_cnt),
5028 [C_SDMA_HEADER_LENGTH_ERR] = CNTR_ELEM("SDmaHeaderLengthErr", 0, 0,
5029 			CNTR_NORMAL,
5030 			access_sdma_header_length_err_cnt),
5031 [C_SDMA_HEADER_ADDRESS_ERR] = CNTR_ELEM("SDmaHeaderAddressErr", 0, 0,
5032 			CNTR_NORMAL,
5033 			access_sdma_header_address_err_cnt),
5034 [C_SDMA_HEADER_SELECT_ERR] = CNTR_ELEM("SDmaHeaderSelectErr", 0, 0,
5035 			CNTR_NORMAL,
5036 			access_sdma_header_select_err_cnt),
5037 [C_SMDA_RESERVED_9] = CNTR_ELEM("SDma Reserved 9", 0, 0,
5038 			CNTR_NORMAL,
5039 			access_sdma_reserved_9_err_cnt),
5040 [C_SDMA_PACKET_DESC_OVERFLOW_ERR] = CNTR_ELEM("SDmaPacketDescOverflowErr", 0, 0,
5041 			CNTR_NORMAL,
5042 			access_sdma_packet_desc_overflow_err_cnt),
5043 [C_SDMA_LENGTH_MISMATCH_ERR] = CNTR_ELEM("SDmaLengthMismatchErr", 0, 0,
5044 			CNTR_NORMAL,
5045 			access_sdma_length_mismatch_err_cnt),
5046 [C_SDMA_HALT_ERR] = CNTR_ELEM("SDmaHaltErr", 0, 0,
5047 			CNTR_NORMAL,
5048 			access_sdma_halt_err_cnt),
5049 [C_SDMA_MEM_READ_ERR] = CNTR_ELEM("SDmaMemReadErr", 0, 0,
5050 			CNTR_NORMAL,
5051 			access_sdma_mem_read_err_cnt),
5052 [C_SDMA_FIRST_DESC_ERR] = CNTR_ELEM("SDmaFirstDescErr", 0, 0,
5053 			CNTR_NORMAL,
5054 			access_sdma_first_desc_err_cnt),
5055 [C_SDMA_TAIL_OUT_OF_BOUNDS_ERR] = CNTR_ELEM("SDmaTailOutOfBoundsErr", 0, 0,
5056 			CNTR_NORMAL,
5057 			access_sdma_tail_out_of_bounds_err_cnt),
5058 [C_SDMA_TOO_LONG_ERR] = CNTR_ELEM("SDmaTooLongErr", 0, 0,
5059 			CNTR_NORMAL,
5060 			access_sdma_too_long_err_cnt),
5061 [C_SDMA_GEN_MISMATCH_ERR] = CNTR_ELEM("SDmaGenMismatchErr", 0, 0,
5062 			CNTR_NORMAL,
5063 			access_sdma_gen_mismatch_err_cnt),
5064 [C_SDMA_WRONG_DW_ERR] = CNTR_ELEM("SDmaWrongDwErr", 0, 0,
5065 			CNTR_NORMAL,
5066 			access_sdma_wrong_dw_err_cnt),
5067 };
5068 
5069 static struct cntr_entry port_cntrs[PORT_CNTR_LAST] = {
5070 [C_TX_UNSUP_VL] = TXE32_PORT_CNTR_ELEM(TxUnVLErr, SEND_UNSUP_VL_ERR_CNT,
5071 			CNTR_NORMAL),
5072 [C_TX_INVAL_LEN] = TXE32_PORT_CNTR_ELEM(TxInvalLen, SEND_LEN_ERR_CNT,
5073 			CNTR_NORMAL),
5074 [C_TX_MM_LEN_ERR] = TXE32_PORT_CNTR_ELEM(TxMMLenErr, SEND_MAX_MIN_LEN_ERR_CNT,
5075 			CNTR_NORMAL),
5076 [C_TX_UNDERRUN] = TXE32_PORT_CNTR_ELEM(TxUnderrun, SEND_UNDERRUN_CNT,
5077 			CNTR_NORMAL),
5078 [C_TX_FLOW_STALL] = TXE32_PORT_CNTR_ELEM(TxFlowStall, SEND_FLOW_STALL_CNT,
5079 			CNTR_NORMAL),
5080 [C_TX_DROPPED] = TXE32_PORT_CNTR_ELEM(TxDropped, SEND_DROPPED_PKT_CNT,
5081 			CNTR_NORMAL),
5082 [C_TX_HDR_ERR] = TXE32_PORT_CNTR_ELEM(TxHdrErr, SEND_HEADERS_ERR_CNT,
5083 			CNTR_NORMAL),
5084 [C_TX_PKT] = TXE64_PORT_CNTR_ELEM(TxPkt, SEND_DATA_PKT_CNT, CNTR_NORMAL),
5085 [C_TX_WORDS] = TXE64_PORT_CNTR_ELEM(TxWords, SEND_DWORD_CNT, CNTR_NORMAL),
5086 [C_TX_WAIT] = TXE64_PORT_CNTR_ELEM(TxWait, SEND_WAIT_CNT, CNTR_SYNTH),
5087 [C_TX_FLIT_VL] = TXE64_PORT_CNTR_ELEM(TxFlitVL, SEND_DATA_VL0_CNT,
5088 				      CNTR_SYNTH | CNTR_VL),
5089 [C_TX_PKT_VL] = TXE64_PORT_CNTR_ELEM(TxPktVL, SEND_DATA_PKT_VL0_CNT,
5090 				     CNTR_SYNTH | CNTR_VL),
5091 [C_TX_WAIT_VL] = TXE64_PORT_CNTR_ELEM(TxWaitVL, SEND_WAIT_VL0_CNT,
5092 				      CNTR_SYNTH | CNTR_VL),
5093 [C_RX_PKT] = RXE64_PORT_CNTR_ELEM(RxPkt, RCV_DATA_PKT_CNT, CNTR_NORMAL),
5094 [C_RX_WORDS] = RXE64_PORT_CNTR_ELEM(RxWords, RCV_DWORD_CNT, CNTR_NORMAL),
5095 [C_SW_LINK_DOWN] = CNTR_ELEM("SwLinkDown", 0, 0, CNTR_SYNTH | CNTR_32BIT,
5096 			     access_sw_link_dn_cnt),
5097 [C_SW_LINK_UP] = CNTR_ELEM("SwLinkUp", 0, 0, CNTR_SYNTH | CNTR_32BIT,
5098 			   access_sw_link_up_cnt),
5099 [C_SW_UNKNOWN_FRAME] = CNTR_ELEM("UnknownFrame", 0, 0, CNTR_NORMAL,
5100 				 access_sw_unknown_frame_cnt),
5101 [C_SW_XMIT_DSCD] = CNTR_ELEM("XmitDscd", 0, 0, CNTR_SYNTH | CNTR_32BIT,
5102 			     access_sw_xmit_discards),
5103 [C_SW_XMIT_DSCD_VL] = CNTR_ELEM("XmitDscdVl", 0, 0,
5104 				CNTR_SYNTH | CNTR_32BIT | CNTR_VL,
5105 				access_sw_xmit_discards),
5106 [C_SW_XMIT_CSTR_ERR] = CNTR_ELEM("XmitCstrErr", 0, 0, CNTR_SYNTH,
5107 				 access_xmit_constraint_errs),
5108 [C_SW_RCV_CSTR_ERR] = CNTR_ELEM("RcvCstrErr", 0, 0, CNTR_SYNTH,
5109 				access_rcv_constraint_errs),
5110 [C_SW_IBP_LOOP_PKTS] = SW_IBP_CNTR(LoopPkts, loop_pkts),
5111 [C_SW_IBP_RC_RESENDS] = SW_IBP_CNTR(RcResend, rc_resends),
5112 [C_SW_IBP_RNR_NAKS] = SW_IBP_CNTR(RnrNak, rnr_naks),
5113 [C_SW_IBP_OTHER_NAKS] = SW_IBP_CNTR(OtherNak, other_naks),
5114 [C_SW_IBP_RC_TIMEOUTS] = SW_IBP_CNTR(RcTimeOut, rc_timeouts),
5115 [C_SW_IBP_PKT_DROPS] = SW_IBP_CNTR(PktDrop, pkt_drops),
5116 [C_SW_IBP_DMA_WAIT] = SW_IBP_CNTR(DmaWait, dmawait),
5117 [C_SW_IBP_RC_SEQNAK] = SW_IBP_CNTR(RcSeqNak, rc_seqnak),
5118 [C_SW_IBP_RC_DUPREQ] = SW_IBP_CNTR(RcDupRew, rc_dupreq),
5119 [C_SW_IBP_RDMA_SEQ] = SW_IBP_CNTR(RdmaSeq, rdma_seq),
5120 [C_SW_IBP_UNALIGNED] = SW_IBP_CNTR(Unaligned, unaligned),
5121 [C_SW_IBP_SEQ_NAK] = SW_IBP_CNTR(SeqNak, seq_naks),
5122 [C_SW_CPU_RC_ACKS] = CNTR_ELEM("RcAcks", 0, 0, CNTR_NORMAL,
5123 			       access_sw_cpu_rc_acks),
5124 [C_SW_CPU_RC_QACKS] = CNTR_ELEM("RcQacks", 0, 0, CNTR_NORMAL,
5125 				access_sw_cpu_rc_qacks),
5126 [C_SW_CPU_RC_DELAYED_COMP] = CNTR_ELEM("RcDelayComp", 0, 0, CNTR_NORMAL,
5127 				       access_sw_cpu_rc_delayed_comp),
5128 [OVR_LBL(0)] = OVR_ELM(0), [OVR_LBL(1)] = OVR_ELM(1),
5129 [OVR_LBL(2)] = OVR_ELM(2), [OVR_LBL(3)] = OVR_ELM(3),
5130 [OVR_LBL(4)] = OVR_ELM(4), [OVR_LBL(5)] = OVR_ELM(5),
5131 [OVR_LBL(6)] = OVR_ELM(6), [OVR_LBL(7)] = OVR_ELM(7),
5132 [OVR_LBL(8)] = OVR_ELM(8), [OVR_LBL(9)] = OVR_ELM(9),
5133 [OVR_LBL(10)] = OVR_ELM(10), [OVR_LBL(11)] = OVR_ELM(11),
5134 [OVR_LBL(12)] = OVR_ELM(12), [OVR_LBL(13)] = OVR_ELM(13),
5135 [OVR_LBL(14)] = OVR_ELM(14), [OVR_LBL(15)] = OVR_ELM(15),
5136 [OVR_LBL(16)] = OVR_ELM(16), [OVR_LBL(17)] = OVR_ELM(17),
5137 [OVR_LBL(18)] = OVR_ELM(18), [OVR_LBL(19)] = OVR_ELM(19),
5138 [OVR_LBL(20)] = OVR_ELM(20), [OVR_LBL(21)] = OVR_ELM(21),
5139 [OVR_LBL(22)] = OVR_ELM(22), [OVR_LBL(23)] = OVR_ELM(23),
5140 [OVR_LBL(24)] = OVR_ELM(24), [OVR_LBL(25)] = OVR_ELM(25),
5141 [OVR_LBL(26)] = OVR_ELM(26), [OVR_LBL(27)] = OVR_ELM(27),
5142 [OVR_LBL(28)] = OVR_ELM(28), [OVR_LBL(29)] = OVR_ELM(29),
5143 [OVR_LBL(30)] = OVR_ELM(30), [OVR_LBL(31)] = OVR_ELM(31),
5144 [OVR_LBL(32)] = OVR_ELM(32), [OVR_LBL(33)] = OVR_ELM(33),
5145 [OVR_LBL(34)] = OVR_ELM(34), [OVR_LBL(35)] = OVR_ELM(35),
5146 [OVR_LBL(36)] = OVR_ELM(36), [OVR_LBL(37)] = OVR_ELM(37),
5147 [OVR_LBL(38)] = OVR_ELM(38), [OVR_LBL(39)] = OVR_ELM(39),
5148 [OVR_LBL(40)] = OVR_ELM(40), [OVR_LBL(41)] = OVR_ELM(41),
5149 [OVR_LBL(42)] = OVR_ELM(42), [OVR_LBL(43)] = OVR_ELM(43),
5150 [OVR_LBL(44)] = OVR_ELM(44), [OVR_LBL(45)] = OVR_ELM(45),
5151 [OVR_LBL(46)] = OVR_ELM(46), [OVR_LBL(47)] = OVR_ELM(47),
5152 [OVR_LBL(48)] = OVR_ELM(48), [OVR_LBL(49)] = OVR_ELM(49),
5153 [OVR_LBL(50)] = OVR_ELM(50), [OVR_LBL(51)] = OVR_ELM(51),
5154 [OVR_LBL(52)] = OVR_ELM(52), [OVR_LBL(53)] = OVR_ELM(53),
5155 [OVR_LBL(54)] = OVR_ELM(54), [OVR_LBL(55)] = OVR_ELM(55),
5156 [OVR_LBL(56)] = OVR_ELM(56), [OVR_LBL(57)] = OVR_ELM(57),
5157 [OVR_LBL(58)] = OVR_ELM(58), [OVR_LBL(59)] = OVR_ELM(59),
5158 [OVR_LBL(60)] = OVR_ELM(60), [OVR_LBL(61)] = OVR_ELM(61),
5159 [OVR_LBL(62)] = OVR_ELM(62), [OVR_LBL(63)] = OVR_ELM(63),
5160 [OVR_LBL(64)] = OVR_ELM(64), [OVR_LBL(65)] = OVR_ELM(65),
5161 [OVR_LBL(66)] = OVR_ELM(66), [OVR_LBL(67)] = OVR_ELM(67),
5162 [OVR_LBL(68)] = OVR_ELM(68), [OVR_LBL(69)] = OVR_ELM(69),
5163 [OVR_LBL(70)] = OVR_ELM(70), [OVR_LBL(71)] = OVR_ELM(71),
5164 [OVR_LBL(72)] = OVR_ELM(72), [OVR_LBL(73)] = OVR_ELM(73),
5165 [OVR_LBL(74)] = OVR_ELM(74), [OVR_LBL(75)] = OVR_ELM(75),
5166 [OVR_LBL(76)] = OVR_ELM(76), [OVR_LBL(77)] = OVR_ELM(77),
5167 [OVR_LBL(78)] = OVR_ELM(78), [OVR_LBL(79)] = OVR_ELM(79),
5168 [OVR_LBL(80)] = OVR_ELM(80), [OVR_LBL(81)] = OVR_ELM(81),
5169 [OVR_LBL(82)] = OVR_ELM(82), [OVR_LBL(83)] = OVR_ELM(83),
5170 [OVR_LBL(84)] = OVR_ELM(84), [OVR_LBL(85)] = OVR_ELM(85),
5171 [OVR_LBL(86)] = OVR_ELM(86), [OVR_LBL(87)] = OVR_ELM(87),
5172 [OVR_LBL(88)] = OVR_ELM(88), [OVR_LBL(89)] = OVR_ELM(89),
5173 [OVR_LBL(90)] = OVR_ELM(90), [OVR_LBL(91)] = OVR_ELM(91),
5174 [OVR_LBL(92)] = OVR_ELM(92), [OVR_LBL(93)] = OVR_ELM(93),
5175 [OVR_LBL(94)] = OVR_ELM(94), [OVR_LBL(95)] = OVR_ELM(95),
5176 [OVR_LBL(96)] = OVR_ELM(96), [OVR_LBL(97)] = OVR_ELM(97),
5177 [OVR_LBL(98)] = OVR_ELM(98), [OVR_LBL(99)] = OVR_ELM(99),
5178 [OVR_LBL(100)] = OVR_ELM(100), [OVR_LBL(101)] = OVR_ELM(101),
5179 [OVR_LBL(102)] = OVR_ELM(102), [OVR_LBL(103)] = OVR_ELM(103),
5180 [OVR_LBL(104)] = OVR_ELM(104), [OVR_LBL(105)] = OVR_ELM(105),
5181 [OVR_LBL(106)] = OVR_ELM(106), [OVR_LBL(107)] = OVR_ELM(107),
5182 [OVR_LBL(108)] = OVR_ELM(108), [OVR_LBL(109)] = OVR_ELM(109),
5183 [OVR_LBL(110)] = OVR_ELM(110), [OVR_LBL(111)] = OVR_ELM(111),
5184 [OVR_LBL(112)] = OVR_ELM(112), [OVR_LBL(113)] = OVR_ELM(113),
5185 [OVR_LBL(114)] = OVR_ELM(114), [OVR_LBL(115)] = OVR_ELM(115),
5186 [OVR_LBL(116)] = OVR_ELM(116), [OVR_LBL(117)] = OVR_ELM(117),
5187 [OVR_LBL(118)] = OVR_ELM(118), [OVR_LBL(119)] = OVR_ELM(119),
5188 [OVR_LBL(120)] = OVR_ELM(120), [OVR_LBL(121)] = OVR_ELM(121),
5189 [OVR_LBL(122)] = OVR_ELM(122), [OVR_LBL(123)] = OVR_ELM(123),
5190 [OVR_LBL(124)] = OVR_ELM(124), [OVR_LBL(125)] = OVR_ELM(125),
5191 [OVR_LBL(126)] = OVR_ELM(126), [OVR_LBL(127)] = OVR_ELM(127),
5192 [OVR_LBL(128)] = OVR_ELM(128), [OVR_LBL(129)] = OVR_ELM(129),
5193 [OVR_LBL(130)] = OVR_ELM(130), [OVR_LBL(131)] = OVR_ELM(131),
5194 [OVR_LBL(132)] = OVR_ELM(132), [OVR_LBL(133)] = OVR_ELM(133),
5195 [OVR_LBL(134)] = OVR_ELM(134), [OVR_LBL(135)] = OVR_ELM(135),
5196 [OVR_LBL(136)] = OVR_ELM(136), [OVR_LBL(137)] = OVR_ELM(137),
5197 [OVR_LBL(138)] = OVR_ELM(138), [OVR_LBL(139)] = OVR_ELM(139),
5198 [OVR_LBL(140)] = OVR_ELM(140), [OVR_LBL(141)] = OVR_ELM(141),
5199 [OVR_LBL(142)] = OVR_ELM(142), [OVR_LBL(143)] = OVR_ELM(143),
5200 [OVR_LBL(144)] = OVR_ELM(144), [OVR_LBL(145)] = OVR_ELM(145),
5201 [OVR_LBL(146)] = OVR_ELM(146), [OVR_LBL(147)] = OVR_ELM(147),
5202 [OVR_LBL(148)] = OVR_ELM(148), [OVR_LBL(149)] = OVR_ELM(149),
5203 [OVR_LBL(150)] = OVR_ELM(150), [OVR_LBL(151)] = OVR_ELM(151),
5204 [OVR_LBL(152)] = OVR_ELM(152), [OVR_LBL(153)] = OVR_ELM(153),
5205 [OVR_LBL(154)] = OVR_ELM(154), [OVR_LBL(155)] = OVR_ELM(155),
5206 [OVR_LBL(156)] = OVR_ELM(156), [OVR_LBL(157)] = OVR_ELM(157),
5207 [OVR_LBL(158)] = OVR_ELM(158), [OVR_LBL(159)] = OVR_ELM(159),
5208 };
5209 
5210 /* ======================================================================== */
5211 
5212 /* return true if this is chip revision revision a */
5213 int is_ax(struct hfi1_devdata *dd)
5214 {
5215 	u8 chip_rev_minor =
5216 		dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT
5217 			& CCE_REVISION_CHIP_REV_MINOR_MASK;
5218 	return (chip_rev_minor & 0xf0) == 0;
5219 }
5220 
5221 /* return true if this is chip revision revision b */
5222 int is_bx(struct hfi1_devdata *dd)
5223 {
5224 	u8 chip_rev_minor =
5225 		dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT
5226 			& CCE_REVISION_CHIP_REV_MINOR_MASK;
5227 	return (chip_rev_minor & 0xF0) == 0x10;
5228 }
5229 
5230 /* return true is kernel urg disabled for rcd */
5231 bool is_urg_masked(struct hfi1_ctxtdata *rcd)
5232 {
5233 	u64 mask;
5234 	u32 is = IS_RCVURGENT_START + rcd->ctxt;
5235 	u8 bit = is % 64;
5236 
5237 	mask = read_csr(rcd->dd, CCE_INT_MASK + (8 * (is / 64)));
5238 	return !(mask & BIT_ULL(bit));
5239 }
5240 
5241 /*
5242  * Append string s to buffer buf.  Arguments curp and len are the current
5243  * position and remaining length, respectively.
5244  *
5245  * return 0 on success, 1 on out of room
5246  */
5247 static int append_str(char *buf, char **curp, int *lenp, const char *s)
5248 {
5249 	char *p = *curp;
5250 	int len = *lenp;
5251 	int result = 0; /* success */
5252 	char c;
5253 
5254 	/* add a comma, if first in the buffer */
5255 	if (p != buf) {
5256 		if (len == 0) {
5257 			result = 1; /* out of room */
5258 			goto done;
5259 		}
5260 		*p++ = ',';
5261 		len--;
5262 	}
5263 
5264 	/* copy the string */
5265 	while ((c = *s++) != 0) {
5266 		if (len == 0) {
5267 			result = 1; /* out of room */
5268 			goto done;
5269 		}
5270 		*p++ = c;
5271 		len--;
5272 	}
5273 
5274 done:
5275 	/* write return values */
5276 	*curp = p;
5277 	*lenp = len;
5278 
5279 	return result;
5280 }
5281 
5282 /*
5283  * Using the given flag table, print a comma separated string into
5284  * the buffer.  End in '*' if the buffer is too short.
5285  */
5286 static char *flag_string(char *buf, int buf_len, u64 flags,
5287 			 struct flag_table *table, int table_size)
5288 {
5289 	char extra[32];
5290 	char *p = buf;
5291 	int len = buf_len;
5292 	int no_room = 0;
5293 	int i;
5294 
5295 	/* make sure there is at least 2 so we can form "*" */
5296 	if (len < 2)
5297 		return "";
5298 
5299 	len--;	/* leave room for a nul */
5300 	for (i = 0; i < table_size; i++) {
5301 		if (flags & table[i].flag) {
5302 			no_room = append_str(buf, &p, &len, table[i].str);
5303 			if (no_room)
5304 				break;
5305 			flags &= ~table[i].flag;
5306 		}
5307 	}
5308 
5309 	/* any undocumented bits left? */
5310 	if (!no_room && flags) {
5311 		snprintf(extra, sizeof(extra), "bits 0x%llx", flags);
5312 		no_room = append_str(buf, &p, &len, extra);
5313 	}
5314 
5315 	/* add * if ran out of room */
5316 	if (no_room) {
5317 		/* may need to back up to add space for a '*' */
5318 		if (len == 0)
5319 			--p;
5320 		*p++ = '*';
5321 	}
5322 
5323 	/* add final nul - space already allocated above */
5324 	*p = 0;
5325 	return buf;
5326 }
5327 
5328 /* first 8 CCE error interrupt source names */
5329 static const char * const cce_misc_names[] = {
5330 	"CceErrInt",		/* 0 */
5331 	"RxeErrInt",		/* 1 */
5332 	"MiscErrInt",		/* 2 */
5333 	"Reserved3",		/* 3 */
5334 	"PioErrInt",		/* 4 */
5335 	"SDmaErrInt",		/* 5 */
5336 	"EgressErrInt",		/* 6 */
5337 	"TxeErrInt"		/* 7 */
5338 };
5339 
5340 /*
5341  * Return the miscellaneous error interrupt name.
5342  */
5343 static char *is_misc_err_name(char *buf, size_t bsize, unsigned int source)
5344 {
5345 	if (source < ARRAY_SIZE(cce_misc_names))
5346 		strncpy(buf, cce_misc_names[source], bsize);
5347 	else
5348 		snprintf(buf, bsize, "Reserved%u",
5349 			 source + IS_GENERAL_ERR_START);
5350 
5351 	return buf;
5352 }
5353 
5354 /*
5355  * Return the SDMA engine error interrupt name.
5356  */
5357 static char *is_sdma_eng_err_name(char *buf, size_t bsize, unsigned int source)
5358 {
5359 	snprintf(buf, bsize, "SDmaEngErrInt%u", source);
5360 	return buf;
5361 }
5362 
5363 /*
5364  * Return the send context error interrupt name.
5365  */
5366 static char *is_sendctxt_err_name(char *buf, size_t bsize, unsigned int source)
5367 {
5368 	snprintf(buf, bsize, "SendCtxtErrInt%u", source);
5369 	return buf;
5370 }
5371 
5372 static const char * const various_names[] = {
5373 	"PbcInt",
5374 	"GpioAssertInt",
5375 	"Qsfp1Int",
5376 	"Qsfp2Int",
5377 	"TCritInt"
5378 };
5379 
5380 /*
5381  * Return the various interrupt name.
5382  */
5383 static char *is_various_name(char *buf, size_t bsize, unsigned int source)
5384 {
5385 	if (source < ARRAY_SIZE(various_names))
5386 		strncpy(buf, various_names[source], bsize);
5387 	else
5388 		snprintf(buf, bsize, "Reserved%u", source + IS_VARIOUS_START);
5389 	return buf;
5390 }
5391 
5392 /*
5393  * Return the DC interrupt name.
5394  */
5395 static char *is_dc_name(char *buf, size_t bsize, unsigned int source)
5396 {
5397 	static const char * const dc_int_names[] = {
5398 		"common",
5399 		"lcb",
5400 		"8051",
5401 		"lbm"	/* local block merge */
5402 	};
5403 
5404 	if (source < ARRAY_SIZE(dc_int_names))
5405 		snprintf(buf, bsize, "dc_%s_int", dc_int_names[source]);
5406 	else
5407 		snprintf(buf, bsize, "DCInt%u", source);
5408 	return buf;
5409 }
5410 
5411 static const char * const sdma_int_names[] = {
5412 	"SDmaInt",
5413 	"SdmaIdleInt",
5414 	"SdmaProgressInt",
5415 };
5416 
5417 /*
5418  * Return the SDMA engine interrupt name.
5419  */
5420 static char *is_sdma_eng_name(char *buf, size_t bsize, unsigned int source)
5421 {
5422 	/* what interrupt */
5423 	unsigned int what  = source / TXE_NUM_SDMA_ENGINES;
5424 	/* which engine */
5425 	unsigned int which = source % TXE_NUM_SDMA_ENGINES;
5426 
5427 	if (likely(what < 3))
5428 		snprintf(buf, bsize, "%s%u", sdma_int_names[what], which);
5429 	else
5430 		snprintf(buf, bsize, "Invalid SDMA interrupt %u", source);
5431 	return buf;
5432 }
5433 
5434 /*
5435  * Return the receive available interrupt name.
5436  */
5437 static char *is_rcv_avail_name(char *buf, size_t bsize, unsigned int source)
5438 {
5439 	snprintf(buf, bsize, "RcvAvailInt%u", source);
5440 	return buf;
5441 }
5442 
5443 /*
5444  * Return the receive urgent interrupt name.
5445  */
5446 static char *is_rcv_urgent_name(char *buf, size_t bsize, unsigned int source)
5447 {
5448 	snprintf(buf, bsize, "RcvUrgentInt%u", source);
5449 	return buf;
5450 }
5451 
5452 /*
5453  * Return the send credit interrupt name.
5454  */
5455 static char *is_send_credit_name(char *buf, size_t bsize, unsigned int source)
5456 {
5457 	snprintf(buf, bsize, "SendCreditInt%u", source);
5458 	return buf;
5459 }
5460 
5461 /*
5462  * Return the reserved interrupt name.
5463  */
5464 static char *is_reserved_name(char *buf, size_t bsize, unsigned int source)
5465 {
5466 	snprintf(buf, bsize, "Reserved%u", source + IS_RESERVED_START);
5467 	return buf;
5468 }
5469 
5470 static char *cce_err_status_string(char *buf, int buf_len, u64 flags)
5471 {
5472 	return flag_string(buf, buf_len, flags,
5473 			   cce_err_status_flags,
5474 			   ARRAY_SIZE(cce_err_status_flags));
5475 }
5476 
5477 static char *rxe_err_status_string(char *buf, int buf_len, u64 flags)
5478 {
5479 	return flag_string(buf, buf_len, flags,
5480 			   rxe_err_status_flags,
5481 			   ARRAY_SIZE(rxe_err_status_flags));
5482 }
5483 
5484 static char *misc_err_status_string(char *buf, int buf_len, u64 flags)
5485 {
5486 	return flag_string(buf, buf_len, flags, misc_err_status_flags,
5487 			   ARRAY_SIZE(misc_err_status_flags));
5488 }
5489 
5490 static char *pio_err_status_string(char *buf, int buf_len, u64 flags)
5491 {
5492 	return flag_string(buf, buf_len, flags,
5493 			   pio_err_status_flags,
5494 			   ARRAY_SIZE(pio_err_status_flags));
5495 }
5496 
5497 static char *sdma_err_status_string(char *buf, int buf_len, u64 flags)
5498 {
5499 	return flag_string(buf, buf_len, flags,
5500 			   sdma_err_status_flags,
5501 			   ARRAY_SIZE(sdma_err_status_flags));
5502 }
5503 
5504 static char *egress_err_status_string(char *buf, int buf_len, u64 flags)
5505 {
5506 	return flag_string(buf, buf_len, flags,
5507 			   egress_err_status_flags,
5508 			   ARRAY_SIZE(egress_err_status_flags));
5509 }
5510 
5511 static char *egress_err_info_string(char *buf, int buf_len, u64 flags)
5512 {
5513 	return flag_string(buf, buf_len, flags,
5514 			   egress_err_info_flags,
5515 			   ARRAY_SIZE(egress_err_info_flags));
5516 }
5517 
5518 static char *send_err_status_string(char *buf, int buf_len, u64 flags)
5519 {
5520 	return flag_string(buf, buf_len, flags,
5521 			   send_err_status_flags,
5522 			   ARRAY_SIZE(send_err_status_flags));
5523 }
5524 
5525 static void handle_cce_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5526 {
5527 	char buf[96];
5528 	int i = 0;
5529 
5530 	/*
5531 	 * For most these errors, there is nothing that can be done except
5532 	 * report or record it.
5533 	 */
5534 	dd_dev_info(dd, "CCE Error: %s\n",
5535 		    cce_err_status_string(buf, sizeof(buf), reg));
5536 
5537 	if ((reg & CCE_ERR_STATUS_CCE_CLI2_ASYNC_FIFO_PARITY_ERR_SMASK) &&
5538 	    is_ax(dd) && (dd->icode != ICODE_FUNCTIONAL_SIMULATOR)) {
5539 		/* this error requires a manual drop into SPC freeze mode */
5540 		/* then a fix up */
5541 		start_freeze_handling(dd->pport, FREEZE_SELF);
5542 	}
5543 
5544 	for (i = 0; i < NUM_CCE_ERR_STATUS_COUNTERS; i++) {
5545 		if (reg & (1ull << i)) {
5546 			incr_cntr64(&dd->cce_err_status_cnt[i]);
5547 			/* maintain a counter over all cce_err_status errors */
5548 			incr_cntr64(&dd->sw_cce_err_status_aggregate);
5549 		}
5550 	}
5551 }
5552 
5553 /*
5554  * Check counters for receive errors that do not have an interrupt
5555  * associated with them.
5556  */
5557 #define RCVERR_CHECK_TIME 10
5558 static void update_rcverr_timer(struct timer_list *t)
5559 {
5560 	struct hfi1_devdata *dd = from_timer(dd, t, rcverr_timer);
5561 	struct hfi1_pportdata *ppd = dd->pport;
5562 	u32 cur_ovfl_cnt = read_dev_cntr(dd, C_RCV_OVF, CNTR_INVALID_VL);
5563 
5564 	if (dd->rcv_ovfl_cnt < cur_ovfl_cnt &&
5565 	    ppd->port_error_action & OPA_PI_MASK_EX_BUFFER_OVERRUN) {
5566 		dd_dev_info(dd, "%s: PortErrorAction bounce\n", __func__);
5567 		set_link_down_reason(
5568 		ppd, OPA_LINKDOWN_REASON_EXCESSIVE_BUFFER_OVERRUN, 0,
5569 		OPA_LINKDOWN_REASON_EXCESSIVE_BUFFER_OVERRUN);
5570 		queue_work(ppd->link_wq, &ppd->link_bounce_work);
5571 	}
5572 	dd->rcv_ovfl_cnt = (u32)cur_ovfl_cnt;
5573 
5574 	mod_timer(&dd->rcverr_timer, jiffies + HZ * RCVERR_CHECK_TIME);
5575 }
5576 
5577 static int init_rcverr(struct hfi1_devdata *dd)
5578 {
5579 	timer_setup(&dd->rcverr_timer, update_rcverr_timer, 0);
5580 	/* Assume the hardware counter has been reset */
5581 	dd->rcv_ovfl_cnt = 0;
5582 	return mod_timer(&dd->rcverr_timer, jiffies + HZ * RCVERR_CHECK_TIME);
5583 }
5584 
5585 static void free_rcverr(struct hfi1_devdata *dd)
5586 {
5587 	if (dd->rcverr_timer.function)
5588 		del_timer_sync(&dd->rcverr_timer);
5589 }
5590 
5591 static void handle_rxe_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5592 {
5593 	char buf[96];
5594 	int i = 0;
5595 
5596 	dd_dev_info(dd, "Receive Error: %s\n",
5597 		    rxe_err_status_string(buf, sizeof(buf), reg));
5598 
5599 	if (reg & ALL_RXE_FREEZE_ERR) {
5600 		int flags = 0;
5601 
5602 		/*
5603 		 * Freeze mode recovery is disabled for the errors
5604 		 * in RXE_FREEZE_ABORT_MASK
5605 		 */
5606 		if (is_ax(dd) && (reg & RXE_FREEZE_ABORT_MASK))
5607 			flags = FREEZE_ABORT;
5608 
5609 		start_freeze_handling(dd->pport, flags);
5610 	}
5611 
5612 	for (i = 0; i < NUM_RCV_ERR_STATUS_COUNTERS; i++) {
5613 		if (reg & (1ull << i))
5614 			incr_cntr64(&dd->rcv_err_status_cnt[i]);
5615 	}
5616 }
5617 
5618 static void handle_misc_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5619 {
5620 	char buf[96];
5621 	int i = 0;
5622 
5623 	dd_dev_info(dd, "Misc Error: %s",
5624 		    misc_err_status_string(buf, sizeof(buf), reg));
5625 	for (i = 0; i < NUM_MISC_ERR_STATUS_COUNTERS; i++) {
5626 		if (reg & (1ull << i))
5627 			incr_cntr64(&dd->misc_err_status_cnt[i]);
5628 	}
5629 }
5630 
5631 static void handle_pio_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5632 {
5633 	char buf[96];
5634 	int i = 0;
5635 
5636 	dd_dev_info(dd, "PIO Error: %s\n",
5637 		    pio_err_status_string(buf, sizeof(buf), reg));
5638 
5639 	if (reg & ALL_PIO_FREEZE_ERR)
5640 		start_freeze_handling(dd->pport, 0);
5641 
5642 	for (i = 0; i < NUM_SEND_PIO_ERR_STATUS_COUNTERS; i++) {
5643 		if (reg & (1ull << i))
5644 			incr_cntr64(&dd->send_pio_err_status_cnt[i]);
5645 	}
5646 }
5647 
5648 static void handle_sdma_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5649 {
5650 	char buf[96];
5651 	int i = 0;
5652 
5653 	dd_dev_info(dd, "SDMA Error: %s\n",
5654 		    sdma_err_status_string(buf, sizeof(buf), reg));
5655 
5656 	if (reg & ALL_SDMA_FREEZE_ERR)
5657 		start_freeze_handling(dd->pport, 0);
5658 
5659 	for (i = 0; i < NUM_SEND_DMA_ERR_STATUS_COUNTERS; i++) {
5660 		if (reg & (1ull << i))
5661 			incr_cntr64(&dd->send_dma_err_status_cnt[i]);
5662 	}
5663 }
5664 
5665 static inline void __count_port_discards(struct hfi1_pportdata *ppd)
5666 {
5667 	incr_cntr64(&ppd->port_xmit_discards);
5668 }
5669 
5670 static void count_port_inactive(struct hfi1_devdata *dd)
5671 {
5672 	__count_port_discards(dd->pport);
5673 }
5674 
5675 /*
5676  * We have had a "disallowed packet" error during egress. Determine the
5677  * integrity check which failed, and update relevant error counter, etc.
5678  *
5679  * Note that the SEND_EGRESS_ERR_INFO register has only a single
5680  * bit of state per integrity check, and so we can miss the reason for an
5681  * egress error if more than one packet fails the same integrity check
5682  * since we cleared the corresponding bit in SEND_EGRESS_ERR_INFO.
5683  */
5684 static void handle_send_egress_err_info(struct hfi1_devdata *dd,
5685 					int vl)
5686 {
5687 	struct hfi1_pportdata *ppd = dd->pport;
5688 	u64 src = read_csr(dd, SEND_EGRESS_ERR_SOURCE); /* read first */
5689 	u64 info = read_csr(dd, SEND_EGRESS_ERR_INFO);
5690 	char buf[96];
5691 
5692 	/* clear down all observed info as quickly as possible after read */
5693 	write_csr(dd, SEND_EGRESS_ERR_INFO, info);
5694 
5695 	dd_dev_info(dd,
5696 		    "Egress Error Info: 0x%llx, %s Egress Error Src 0x%llx\n",
5697 		    info, egress_err_info_string(buf, sizeof(buf), info), src);
5698 
5699 	/* Eventually add other counters for each bit */
5700 	if (info & PORT_DISCARD_EGRESS_ERRS) {
5701 		int weight, i;
5702 
5703 		/*
5704 		 * Count all applicable bits as individual errors and
5705 		 * attribute them to the packet that triggered this handler.
5706 		 * This may not be completely accurate due to limitations
5707 		 * on the available hardware error information.  There is
5708 		 * a single information register and any number of error
5709 		 * packets may have occurred and contributed to it before
5710 		 * this routine is called.  This means that:
5711 		 * a) If multiple packets with the same error occur before
5712 		 *    this routine is called, earlier packets are missed.
5713 		 *    There is only a single bit for each error type.
5714 		 * b) Errors may not be attributed to the correct VL.
5715 		 *    The driver is attributing all bits in the info register
5716 		 *    to the packet that triggered this call, but bits
5717 		 *    could be an accumulation of different packets with
5718 		 *    different VLs.
5719 		 * c) A single error packet may have multiple counts attached
5720 		 *    to it.  There is no way for the driver to know if
5721 		 *    multiple bits set in the info register are due to a
5722 		 *    single packet or multiple packets.  The driver assumes
5723 		 *    multiple packets.
5724 		 */
5725 		weight = hweight64(info & PORT_DISCARD_EGRESS_ERRS);
5726 		for (i = 0; i < weight; i++) {
5727 			__count_port_discards(ppd);
5728 			if (vl >= 0 && vl < TXE_NUM_DATA_VL)
5729 				incr_cntr64(&ppd->port_xmit_discards_vl[vl]);
5730 			else if (vl == 15)
5731 				incr_cntr64(&ppd->port_xmit_discards_vl
5732 					    [C_VL_15]);
5733 		}
5734 	}
5735 }
5736 
5737 /*
5738  * Input value is a bit position within the SEND_EGRESS_ERR_STATUS
5739  * register. Does it represent a 'port inactive' error?
5740  */
5741 static inline int port_inactive_err(u64 posn)
5742 {
5743 	return (posn >= SEES(TX_LINKDOWN) &&
5744 		posn <= SEES(TX_INCORRECT_LINK_STATE));
5745 }
5746 
5747 /*
5748  * Input value is a bit position within the SEND_EGRESS_ERR_STATUS
5749  * register. Does it represent a 'disallowed packet' error?
5750  */
5751 static inline int disallowed_pkt_err(int posn)
5752 {
5753 	return (posn >= SEES(TX_SDMA0_DISALLOWED_PACKET) &&
5754 		posn <= SEES(TX_SDMA15_DISALLOWED_PACKET));
5755 }
5756 
5757 /*
5758  * Input value is a bit position of one of the SDMA engine disallowed
5759  * packet errors.  Return which engine.  Use of this must be guarded by
5760  * disallowed_pkt_err().
5761  */
5762 static inline int disallowed_pkt_engine(int posn)
5763 {
5764 	return posn - SEES(TX_SDMA0_DISALLOWED_PACKET);
5765 }
5766 
5767 /*
5768  * Translate an SDMA engine to a VL.  Return -1 if the tranlation cannot
5769  * be done.
5770  */
5771 static int engine_to_vl(struct hfi1_devdata *dd, int engine)
5772 {
5773 	struct sdma_vl_map *m;
5774 	int vl;
5775 
5776 	/* range check */
5777 	if (engine < 0 || engine >= TXE_NUM_SDMA_ENGINES)
5778 		return -1;
5779 
5780 	rcu_read_lock();
5781 	m = rcu_dereference(dd->sdma_map);
5782 	vl = m->engine_to_vl[engine];
5783 	rcu_read_unlock();
5784 
5785 	return vl;
5786 }
5787 
5788 /*
5789  * Translate the send context (sofware index) into a VL.  Return -1 if the
5790  * translation cannot be done.
5791  */
5792 static int sc_to_vl(struct hfi1_devdata *dd, int sw_index)
5793 {
5794 	struct send_context_info *sci;
5795 	struct send_context *sc;
5796 	int i;
5797 
5798 	sci = &dd->send_contexts[sw_index];
5799 
5800 	/* there is no information for user (PSM) and ack contexts */
5801 	if ((sci->type != SC_KERNEL) && (sci->type != SC_VL15))
5802 		return -1;
5803 
5804 	sc = sci->sc;
5805 	if (!sc)
5806 		return -1;
5807 	if (dd->vld[15].sc == sc)
5808 		return 15;
5809 	for (i = 0; i < num_vls; i++)
5810 		if (dd->vld[i].sc == sc)
5811 			return i;
5812 
5813 	return -1;
5814 }
5815 
5816 static void handle_egress_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5817 {
5818 	u64 reg_copy = reg, handled = 0;
5819 	char buf[96];
5820 	int i = 0;
5821 
5822 	if (reg & ALL_TXE_EGRESS_FREEZE_ERR)
5823 		start_freeze_handling(dd->pport, 0);
5824 	else if (is_ax(dd) &&
5825 		 (reg & SEND_EGRESS_ERR_STATUS_TX_CREDIT_RETURN_VL_ERR_SMASK) &&
5826 		 (dd->icode != ICODE_FUNCTIONAL_SIMULATOR))
5827 		start_freeze_handling(dd->pport, 0);
5828 
5829 	while (reg_copy) {
5830 		int posn = fls64(reg_copy);
5831 		/* fls64() returns a 1-based offset, we want it zero based */
5832 		int shift = posn - 1;
5833 		u64 mask = 1ULL << shift;
5834 
5835 		if (port_inactive_err(shift)) {
5836 			count_port_inactive(dd);
5837 			handled |= mask;
5838 		} else if (disallowed_pkt_err(shift)) {
5839 			int vl = engine_to_vl(dd, disallowed_pkt_engine(shift));
5840 
5841 			handle_send_egress_err_info(dd, vl);
5842 			handled |= mask;
5843 		}
5844 		reg_copy &= ~mask;
5845 	}
5846 
5847 	reg &= ~handled;
5848 
5849 	if (reg)
5850 		dd_dev_info(dd, "Egress Error: %s\n",
5851 			    egress_err_status_string(buf, sizeof(buf), reg));
5852 
5853 	for (i = 0; i < NUM_SEND_EGRESS_ERR_STATUS_COUNTERS; i++) {
5854 		if (reg & (1ull << i))
5855 			incr_cntr64(&dd->send_egress_err_status_cnt[i]);
5856 	}
5857 }
5858 
5859 static void handle_txe_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5860 {
5861 	char buf[96];
5862 	int i = 0;
5863 
5864 	dd_dev_info(dd, "Send Error: %s\n",
5865 		    send_err_status_string(buf, sizeof(buf), reg));
5866 
5867 	for (i = 0; i < NUM_SEND_ERR_STATUS_COUNTERS; i++) {
5868 		if (reg & (1ull << i))
5869 			incr_cntr64(&dd->send_err_status_cnt[i]);
5870 	}
5871 }
5872 
5873 /*
5874  * The maximum number of times the error clear down will loop before
5875  * blocking a repeating error.  This value is arbitrary.
5876  */
5877 #define MAX_CLEAR_COUNT 20
5878 
5879 /*
5880  * Clear and handle an error register.  All error interrupts are funneled
5881  * through here to have a central location to correctly handle single-
5882  * or multi-shot errors.
5883  *
5884  * For non per-context registers, call this routine with a context value
5885  * of 0 so the per-context offset is zero.
5886  *
5887  * If the handler loops too many times, assume that something is wrong
5888  * and can't be fixed, so mask the error bits.
5889  */
5890 static void interrupt_clear_down(struct hfi1_devdata *dd,
5891 				 u32 context,
5892 				 const struct err_reg_info *eri)
5893 {
5894 	u64 reg;
5895 	u32 count;
5896 
5897 	/* read in a loop until no more errors are seen */
5898 	count = 0;
5899 	while (1) {
5900 		reg = read_kctxt_csr(dd, context, eri->status);
5901 		if (reg == 0)
5902 			break;
5903 		write_kctxt_csr(dd, context, eri->clear, reg);
5904 		if (likely(eri->handler))
5905 			eri->handler(dd, context, reg);
5906 		count++;
5907 		if (count > MAX_CLEAR_COUNT) {
5908 			u64 mask;
5909 
5910 			dd_dev_err(dd, "Repeating %s bits 0x%llx - masking\n",
5911 				   eri->desc, reg);
5912 			/*
5913 			 * Read-modify-write so any other masked bits
5914 			 * remain masked.
5915 			 */
5916 			mask = read_kctxt_csr(dd, context, eri->mask);
5917 			mask &= ~reg;
5918 			write_kctxt_csr(dd, context, eri->mask, mask);
5919 			break;
5920 		}
5921 	}
5922 }
5923 
5924 /*
5925  * CCE block "misc" interrupt.  Source is < 16.
5926  */
5927 static void is_misc_err_int(struct hfi1_devdata *dd, unsigned int source)
5928 {
5929 	const struct err_reg_info *eri = &misc_errs[source];
5930 
5931 	if (eri->handler) {
5932 		interrupt_clear_down(dd, 0, eri);
5933 	} else {
5934 		dd_dev_err(dd, "Unexpected misc interrupt (%u) - reserved\n",
5935 			   source);
5936 	}
5937 }
5938 
5939 static char *send_context_err_status_string(char *buf, int buf_len, u64 flags)
5940 {
5941 	return flag_string(buf, buf_len, flags,
5942 			   sc_err_status_flags,
5943 			   ARRAY_SIZE(sc_err_status_flags));
5944 }
5945 
5946 /*
5947  * Send context error interrupt.  Source (hw_context) is < 160.
5948  *
5949  * All send context errors cause the send context to halt.  The normal
5950  * clear-down mechanism cannot be used because we cannot clear the
5951  * error bits until several other long-running items are done first.
5952  * This is OK because with the context halted, nothing else is going
5953  * to happen on it anyway.
5954  */
5955 static void is_sendctxt_err_int(struct hfi1_devdata *dd,
5956 				unsigned int hw_context)
5957 {
5958 	struct send_context_info *sci;
5959 	struct send_context *sc;
5960 	char flags[96];
5961 	u64 status;
5962 	u32 sw_index;
5963 	int i = 0;
5964 	unsigned long irq_flags;
5965 
5966 	sw_index = dd->hw_to_sw[hw_context];
5967 	if (sw_index >= dd->num_send_contexts) {
5968 		dd_dev_err(dd,
5969 			   "out of range sw index %u for send context %u\n",
5970 			   sw_index, hw_context);
5971 		return;
5972 	}
5973 	sci = &dd->send_contexts[sw_index];
5974 	spin_lock_irqsave(&dd->sc_lock, irq_flags);
5975 	sc = sci->sc;
5976 	if (!sc) {
5977 		dd_dev_err(dd, "%s: context %u(%u): no sc?\n", __func__,
5978 			   sw_index, hw_context);
5979 		spin_unlock_irqrestore(&dd->sc_lock, irq_flags);
5980 		return;
5981 	}
5982 
5983 	/* tell the software that a halt has begun */
5984 	sc_stop(sc, SCF_HALTED);
5985 
5986 	status = read_kctxt_csr(dd, hw_context, SEND_CTXT_ERR_STATUS);
5987 
5988 	dd_dev_info(dd, "Send Context %u(%u) Error: %s\n", sw_index, hw_context,
5989 		    send_context_err_status_string(flags, sizeof(flags),
5990 						   status));
5991 
5992 	if (status & SEND_CTXT_ERR_STATUS_PIO_DISALLOWED_PACKET_ERR_SMASK)
5993 		handle_send_egress_err_info(dd, sc_to_vl(dd, sw_index));
5994 
5995 	/*
5996 	 * Automatically restart halted kernel contexts out of interrupt
5997 	 * context.  User contexts must ask the driver to restart the context.
5998 	 */
5999 	if (sc->type != SC_USER)
6000 		queue_work(dd->pport->hfi1_wq, &sc->halt_work);
6001 	spin_unlock_irqrestore(&dd->sc_lock, irq_flags);
6002 
6003 	/*
6004 	 * Update the counters for the corresponding status bits.
6005 	 * Note that these particular counters are aggregated over all
6006 	 * 160 contexts.
6007 	 */
6008 	for (i = 0; i < NUM_SEND_CTXT_ERR_STATUS_COUNTERS; i++) {
6009 		if (status & (1ull << i))
6010 			incr_cntr64(&dd->sw_ctxt_err_status_cnt[i]);
6011 	}
6012 }
6013 
6014 static void handle_sdma_eng_err(struct hfi1_devdata *dd,
6015 				unsigned int source, u64 status)
6016 {
6017 	struct sdma_engine *sde;
6018 	int i = 0;
6019 
6020 	sde = &dd->per_sdma[source];
6021 #ifdef CONFIG_SDMA_VERBOSITY
6022 	dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
6023 		   slashstrip(__FILE__), __LINE__, __func__);
6024 	dd_dev_err(sde->dd, "CONFIG SDMA(%u) source: %u status 0x%llx\n",
6025 		   sde->this_idx, source, (unsigned long long)status);
6026 #endif
6027 	sde->err_cnt++;
6028 	sdma_engine_error(sde, status);
6029 
6030 	/*
6031 	* Update the counters for the corresponding status bits.
6032 	* Note that these particular counters are aggregated over
6033 	* all 16 DMA engines.
6034 	*/
6035 	for (i = 0; i < NUM_SEND_DMA_ENG_ERR_STATUS_COUNTERS; i++) {
6036 		if (status & (1ull << i))
6037 			incr_cntr64(&dd->sw_send_dma_eng_err_status_cnt[i]);
6038 	}
6039 }
6040 
6041 /*
6042  * CCE block SDMA error interrupt.  Source is < 16.
6043  */
6044 static void is_sdma_eng_err_int(struct hfi1_devdata *dd, unsigned int source)
6045 {
6046 #ifdef CONFIG_SDMA_VERBOSITY
6047 	struct sdma_engine *sde = &dd->per_sdma[source];
6048 
6049 	dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
6050 		   slashstrip(__FILE__), __LINE__, __func__);
6051 	dd_dev_err(dd, "CONFIG SDMA(%u) source: %u\n", sde->this_idx,
6052 		   source);
6053 	sdma_dumpstate(sde);
6054 #endif
6055 	interrupt_clear_down(dd, source, &sdma_eng_err);
6056 }
6057 
6058 /*
6059  * CCE block "various" interrupt.  Source is < 8.
6060  */
6061 static void is_various_int(struct hfi1_devdata *dd, unsigned int source)
6062 {
6063 	const struct err_reg_info *eri = &various_err[source];
6064 
6065 	/*
6066 	 * TCritInt cannot go through interrupt_clear_down()
6067 	 * because it is not a second tier interrupt. The handler
6068 	 * should be called directly.
6069 	 */
6070 	if (source == TCRIT_INT_SOURCE)
6071 		handle_temp_err(dd);
6072 	else if (eri->handler)
6073 		interrupt_clear_down(dd, 0, eri);
6074 	else
6075 		dd_dev_info(dd,
6076 			    "%s: Unimplemented/reserved interrupt %d\n",
6077 			    __func__, source);
6078 }
6079 
6080 static void handle_qsfp_int(struct hfi1_devdata *dd, u32 src_ctx, u64 reg)
6081 {
6082 	/* src_ctx is always zero */
6083 	struct hfi1_pportdata *ppd = dd->pport;
6084 	unsigned long flags;
6085 	u64 qsfp_int_mgmt = (u64)(QSFP_HFI0_INT_N | QSFP_HFI0_MODPRST_N);
6086 
6087 	if (reg & QSFP_HFI0_MODPRST_N) {
6088 		if (!qsfp_mod_present(ppd)) {
6089 			dd_dev_info(dd, "%s: QSFP module removed\n",
6090 				    __func__);
6091 
6092 			ppd->driver_link_ready = 0;
6093 			/*
6094 			 * Cable removed, reset all our information about the
6095 			 * cache and cable capabilities
6096 			 */
6097 
6098 			spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
6099 			/*
6100 			 * We don't set cache_refresh_required here as we expect
6101 			 * an interrupt when a cable is inserted
6102 			 */
6103 			ppd->qsfp_info.cache_valid = 0;
6104 			ppd->qsfp_info.reset_needed = 0;
6105 			ppd->qsfp_info.limiting_active = 0;
6106 			spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock,
6107 					       flags);
6108 			/* Invert the ModPresent pin now to detect plug-in */
6109 			write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_INVERT :
6110 				  ASIC_QSFP1_INVERT, qsfp_int_mgmt);
6111 
6112 			if ((ppd->offline_disabled_reason >
6113 			  HFI1_ODR_MASK(
6114 			  OPA_LINKDOWN_REASON_LOCAL_MEDIA_NOT_INSTALLED)) ||
6115 			  (ppd->offline_disabled_reason ==
6116 			  HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE)))
6117 				ppd->offline_disabled_reason =
6118 				HFI1_ODR_MASK(
6119 				OPA_LINKDOWN_REASON_LOCAL_MEDIA_NOT_INSTALLED);
6120 
6121 			if (ppd->host_link_state == HLS_DN_POLL) {
6122 				/*
6123 				 * The link is still in POLL. This means
6124 				 * that the normal link down processing
6125 				 * will not happen. We have to do it here
6126 				 * before turning the DC off.
6127 				 */
6128 				queue_work(ppd->link_wq, &ppd->link_down_work);
6129 			}
6130 		} else {
6131 			dd_dev_info(dd, "%s: QSFP module inserted\n",
6132 				    __func__);
6133 
6134 			spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
6135 			ppd->qsfp_info.cache_valid = 0;
6136 			ppd->qsfp_info.cache_refresh_required = 1;
6137 			spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock,
6138 					       flags);
6139 
6140 			/*
6141 			 * Stop inversion of ModPresent pin to detect
6142 			 * removal of the cable
6143 			 */
6144 			qsfp_int_mgmt &= ~(u64)QSFP_HFI0_MODPRST_N;
6145 			write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_INVERT :
6146 				  ASIC_QSFP1_INVERT, qsfp_int_mgmt);
6147 
6148 			ppd->offline_disabled_reason =
6149 				HFI1_ODR_MASK(OPA_LINKDOWN_REASON_TRANSIENT);
6150 		}
6151 	}
6152 
6153 	if (reg & QSFP_HFI0_INT_N) {
6154 		dd_dev_info(dd, "%s: Interrupt received from QSFP module\n",
6155 			    __func__);
6156 		spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
6157 		ppd->qsfp_info.check_interrupt_flags = 1;
6158 		spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock, flags);
6159 	}
6160 
6161 	/* Schedule the QSFP work only if there is a cable attached. */
6162 	if (qsfp_mod_present(ppd))
6163 		queue_work(ppd->link_wq, &ppd->qsfp_info.qsfp_work);
6164 }
6165 
6166 static int request_host_lcb_access(struct hfi1_devdata *dd)
6167 {
6168 	int ret;
6169 
6170 	ret = do_8051_command(dd, HCMD_MISC,
6171 			      (u64)HCMD_MISC_REQUEST_LCB_ACCESS <<
6172 			      LOAD_DATA_FIELD_ID_SHIFT, NULL);
6173 	if (ret != HCMD_SUCCESS) {
6174 		dd_dev_err(dd, "%s: command failed with error %d\n",
6175 			   __func__, ret);
6176 	}
6177 	return ret == HCMD_SUCCESS ? 0 : -EBUSY;
6178 }
6179 
6180 static int request_8051_lcb_access(struct hfi1_devdata *dd)
6181 {
6182 	int ret;
6183 
6184 	ret = do_8051_command(dd, HCMD_MISC,
6185 			      (u64)HCMD_MISC_GRANT_LCB_ACCESS <<
6186 			      LOAD_DATA_FIELD_ID_SHIFT, NULL);
6187 	if (ret != HCMD_SUCCESS) {
6188 		dd_dev_err(dd, "%s: command failed with error %d\n",
6189 			   __func__, ret);
6190 	}
6191 	return ret == HCMD_SUCCESS ? 0 : -EBUSY;
6192 }
6193 
6194 /*
6195  * Set the LCB selector - allow host access.  The DCC selector always
6196  * points to the host.
6197  */
6198 static inline void set_host_lcb_access(struct hfi1_devdata *dd)
6199 {
6200 	write_csr(dd, DC_DC8051_CFG_CSR_ACCESS_SEL,
6201 		  DC_DC8051_CFG_CSR_ACCESS_SEL_DCC_SMASK |
6202 		  DC_DC8051_CFG_CSR_ACCESS_SEL_LCB_SMASK);
6203 }
6204 
6205 /*
6206  * Clear the LCB selector - allow 8051 access.  The DCC selector always
6207  * points to the host.
6208  */
6209 static inline void set_8051_lcb_access(struct hfi1_devdata *dd)
6210 {
6211 	write_csr(dd, DC_DC8051_CFG_CSR_ACCESS_SEL,
6212 		  DC_DC8051_CFG_CSR_ACCESS_SEL_DCC_SMASK);
6213 }
6214 
6215 /*
6216  * Acquire LCB access from the 8051.  If the host already has access,
6217  * just increment a counter.  Otherwise, inform the 8051 that the
6218  * host is taking access.
6219  *
6220  * Returns:
6221  *	0 on success
6222  *	-EBUSY if the 8051 has control and cannot be disturbed
6223  *	-errno if unable to acquire access from the 8051
6224  */
6225 int acquire_lcb_access(struct hfi1_devdata *dd, int sleep_ok)
6226 {
6227 	struct hfi1_pportdata *ppd = dd->pport;
6228 	int ret = 0;
6229 
6230 	/*
6231 	 * Use the host link state lock so the operation of this routine
6232 	 * { link state check, selector change, count increment } can occur
6233 	 * as a unit against a link state change.  Otherwise there is a
6234 	 * race between the state change and the count increment.
6235 	 */
6236 	if (sleep_ok) {
6237 		mutex_lock(&ppd->hls_lock);
6238 	} else {
6239 		while (!mutex_trylock(&ppd->hls_lock))
6240 			udelay(1);
6241 	}
6242 
6243 	/* this access is valid only when the link is up */
6244 	if (ppd->host_link_state & HLS_DOWN) {
6245 		dd_dev_info(dd, "%s: link state %s not up\n",
6246 			    __func__, link_state_name(ppd->host_link_state));
6247 		ret = -EBUSY;
6248 		goto done;
6249 	}
6250 
6251 	if (dd->lcb_access_count == 0) {
6252 		ret = request_host_lcb_access(dd);
6253 		if (ret) {
6254 			dd_dev_err(dd,
6255 				   "%s: unable to acquire LCB access, err %d\n",
6256 				   __func__, ret);
6257 			goto done;
6258 		}
6259 		set_host_lcb_access(dd);
6260 	}
6261 	dd->lcb_access_count++;
6262 done:
6263 	mutex_unlock(&ppd->hls_lock);
6264 	return ret;
6265 }
6266 
6267 /*
6268  * Release LCB access by decrementing the use count.  If the count is moving
6269  * from 1 to 0, inform 8051 that it has control back.
6270  *
6271  * Returns:
6272  *	0 on success
6273  *	-errno if unable to release access to the 8051
6274  */
6275 int release_lcb_access(struct hfi1_devdata *dd, int sleep_ok)
6276 {
6277 	int ret = 0;
6278 
6279 	/*
6280 	 * Use the host link state lock because the acquire needed it.
6281 	 * Here, we only need to keep { selector change, count decrement }
6282 	 * as a unit.
6283 	 */
6284 	if (sleep_ok) {
6285 		mutex_lock(&dd->pport->hls_lock);
6286 	} else {
6287 		while (!mutex_trylock(&dd->pport->hls_lock))
6288 			udelay(1);
6289 	}
6290 
6291 	if (dd->lcb_access_count == 0) {
6292 		dd_dev_err(dd, "%s: LCB access count is zero.  Skipping.\n",
6293 			   __func__);
6294 		goto done;
6295 	}
6296 
6297 	if (dd->lcb_access_count == 1) {
6298 		set_8051_lcb_access(dd);
6299 		ret = request_8051_lcb_access(dd);
6300 		if (ret) {
6301 			dd_dev_err(dd,
6302 				   "%s: unable to release LCB access, err %d\n",
6303 				   __func__, ret);
6304 			/* restore host access if the grant didn't work */
6305 			set_host_lcb_access(dd);
6306 			goto done;
6307 		}
6308 	}
6309 	dd->lcb_access_count--;
6310 done:
6311 	mutex_unlock(&dd->pport->hls_lock);
6312 	return ret;
6313 }
6314 
6315 /*
6316  * Initialize LCB access variables and state.  Called during driver load,
6317  * after most of the initialization is finished.
6318  *
6319  * The DC default is LCB access on for the host.  The driver defaults to
6320  * leaving access to the 8051.  Assign access now - this constrains the call
6321  * to this routine to be after all LCB set-up is done.  In particular, after
6322  * hf1_init_dd() -> set_up_interrupts() -> clear_all_interrupts()
6323  */
6324 static void init_lcb_access(struct hfi1_devdata *dd)
6325 {
6326 	dd->lcb_access_count = 0;
6327 }
6328 
6329 /*
6330  * Write a response back to a 8051 request.
6331  */
6332 static void hreq_response(struct hfi1_devdata *dd, u8 return_code, u16 rsp_data)
6333 {
6334 	write_csr(dd, DC_DC8051_CFG_EXT_DEV_0,
6335 		  DC_DC8051_CFG_EXT_DEV_0_COMPLETED_SMASK |
6336 		  (u64)return_code <<
6337 		  DC_DC8051_CFG_EXT_DEV_0_RETURN_CODE_SHIFT |
6338 		  (u64)rsp_data << DC_DC8051_CFG_EXT_DEV_0_RSP_DATA_SHIFT);
6339 }
6340 
6341 /*
6342  * Handle host requests from the 8051.
6343  */
6344 static void handle_8051_request(struct hfi1_pportdata *ppd)
6345 {
6346 	struct hfi1_devdata *dd = ppd->dd;
6347 	u64 reg;
6348 	u16 data = 0;
6349 	u8 type;
6350 
6351 	reg = read_csr(dd, DC_DC8051_CFG_EXT_DEV_1);
6352 	if ((reg & DC_DC8051_CFG_EXT_DEV_1_REQ_NEW_SMASK) == 0)
6353 		return;	/* no request */
6354 
6355 	/* zero out COMPLETED so the response is seen */
6356 	write_csr(dd, DC_DC8051_CFG_EXT_DEV_0, 0);
6357 
6358 	/* extract request details */
6359 	type = (reg >> DC_DC8051_CFG_EXT_DEV_1_REQ_TYPE_SHIFT)
6360 			& DC_DC8051_CFG_EXT_DEV_1_REQ_TYPE_MASK;
6361 	data = (reg >> DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SHIFT)
6362 			& DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_MASK;
6363 
6364 	switch (type) {
6365 	case HREQ_LOAD_CONFIG:
6366 	case HREQ_SAVE_CONFIG:
6367 	case HREQ_READ_CONFIG:
6368 	case HREQ_SET_TX_EQ_ABS:
6369 	case HREQ_SET_TX_EQ_REL:
6370 	case HREQ_ENABLE:
6371 		dd_dev_info(dd, "8051 request: request 0x%x not supported\n",
6372 			    type);
6373 		hreq_response(dd, HREQ_NOT_SUPPORTED, 0);
6374 		break;
6375 	case HREQ_LCB_RESET:
6376 		/* Put the LCB, RX FPE and TX FPE into reset */
6377 		write_csr(dd, DCC_CFG_RESET, LCB_RX_FPE_TX_FPE_INTO_RESET);
6378 		/* Make sure the write completed */
6379 		(void)read_csr(dd, DCC_CFG_RESET);
6380 		/* Hold the reset long enough to take effect */
6381 		udelay(1);
6382 		/* Take the LCB, RX FPE and TX FPE out of reset */
6383 		write_csr(dd, DCC_CFG_RESET, LCB_RX_FPE_TX_FPE_OUT_OF_RESET);
6384 		hreq_response(dd, HREQ_SUCCESS, 0);
6385 
6386 		break;
6387 	case HREQ_CONFIG_DONE:
6388 		hreq_response(dd, HREQ_SUCCESS, 0);
6389 		break;
6390 
6391 	case HREQ_INTERFACE_TEST:
6392 		hreq_response(dd, HREQ_SUCCESS, data);
6393 		break;
6394 	default:
6395 		dd_dev_err(dd, "8051 request: unknown request 0x%x\n", type);
6396 		hreq_response(dd, HREQ_NOT_SUPPORTED, 0);
6397 		break;
6398 	}
6399 }
6400 
6401 /*
6402  * Set up allocation unit vaulue.
6403  */
6404 void set_up_vau(struct hfi1_devdata *dd, u8 vau)
6405 {
6406 	u64 reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
6407 
6408 	/* do not modify other values in the register */
6409 	reg &= ~SEND_CM_GLOBAL_CREDIT_AU_SMASK;
6410 	reg |= (u64)vau << SEND_CM_GLOBAL_CREDIT_AU_SHIFT;
6411 	write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg);
6412 }
6413 
6414 /*
6415  * Set up initial VL15 credits of the remote.  Assumes the rest of
6416  * the CM credit registers are zero from a previous global or credit reset.
6417  * Shared limit for VL15 will always be 0.
6418  */
6419 void set_up_vl15(struct hfi1_devdata *dd, u16 vl15buf)
6420 {
6421 	u64 reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
6422 
6423 	/* set initial values for total and shared credit limit */
6424 	reg &= ~(SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SMASK |
6425 		 SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SMASK);
6426 
6427 	/*
6428 	 * Set total limit to be equal to VL15 credits.
6429 	 * Leave shared limit at 0.
6430 	 */
6431 	reg |= (u64)vl15buf << SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT;
6432 	write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg);
6433 
6434 	write_csr(dd, SEND_CM_CREDIT_VL15, (u64)vl15buf
6435 		  << SEND_CM_CREDIT_VL15_DEDICATED_LIMIT_VL_SHIFT);
6436 }
6437 
6438 /*
6439  * Zero all credit details from the previous connection and
6440  * reset the CM manager's internal counters.
6441  */
6442 void reset_link_credits(struct hfi1_devdata *dd)
6443 {
6444 	int i;
6445 
6446 	/* remove all previous VL credit limits */
6447 	for (i = 0; i < TXE_NUM_DATA_VL; i++)
6448 		write_csr(dd, SEND_CM_CREDIT_VL + (8 * i), 0);
6449 	write_csr(dd, SEND_CM_CREDIT_VL15, 0);
6450 	write_csr(dd, SEND_CM_GLOBAL_CREDIT, 0);
6451 	/* reset the CM block */
6452 	pio_send_control(dd, PSC_CM_RESET);
6453 	/* reset cached value */
6454 	dd->vl15buf_cached = 0;
6455 }
6456 
6457 /* convert a vCU to a CU */
6458 static u32 vcu_to_cu(u8 vcu)
6459 {
6460 	return 1 << vcu;
6461 }
6462 
6463 /* convert a CU to a vCU */
6464 static u8 cu_to_vcu(u32 cu)
6465 {
6466 	return ilog2(cu);
6467 }
6468 
6469 /* convert a vAU to an AU */
6470 static u32 vau_to_au(u8 vau)
6471 {
6472 	return 8 * (1 << vau);
6473 }
6474 
6475 static void set_linkup_defaults(struct hfi1_pportdata *ppd)
6476 {
6477 	ppd->sm_trap_qp = 0x0;
6478 	ppd->sa_qp = 0x1;
6479 }
6480 
6481 /*
6482  * Graceful LCB shutdown.  This leaves the LCB FIFOs in reset.
6483  */
6484 static void lcb_shutdown(struct hfi1_devdata *dd, int abort)
6485 {
6486 	u64 reg;
6487 
6488 	/* clear lcb run: LCB_CFG_RUN.EN = 0 */
6489 	write_csr(dd, DC_LCB_CFG_RUN, 0);
6490 	/* set tx fifo reset: LCB_CFG_TX_FIFOS_RESET.VAL = 1 */
6491 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET,
6492 		  1ull << DC_LCB_CFG_TX_FIFOS_RESET_VAL_SHIFT);
6493 	/* set dcc reset csr: DCC_CFG_RESET.{reset_lcb,reset_rx_fpe} = 1 */
6494 	dd->lcb_err_en = read_csr(dd, DC_LCB_ERR_EN);
6495 	reg = read_csr(dd, DCC_CFG_RESET);
6496 	write_csr(dd, DCC_CFG_RESET, reg |
6497 		  DCC_CFG_RESET_RESET_LCB | DCC_CFG_RESET_RESET_RX_FPE);
6498 	(void)read_csr(dd, DCC_CFG_RESET); /* make sure the write completed */
6499 	if (!abort) {
6500 		udelay(1);    /* must hold for the longer of 16cclks or 20ns */
6501 		write_csr(dd, DCC_CFG_RESET, reg);
6502 		write_csr(dd, DC_LCB_ERR_EN, dd->lcb_err_en);
6503 	}
6504 }
6505 
6506 /*
6507  * This routine should be called after the link has been transitioned to
6508  * OFFLINE (OFFLINE state has the side effect of putting the SerDes into
6509  * reset).
6510  *
6511  * The expectation is that the caller of this routine would have taken
6512  * care of properly transitioning the link into the correct state.
6513  * NOTE: the caller needs to acquire the dd->dc8051_lock lock
6514  *       before calling this function.
6515  */
6516 static void _dc_shutdown(struct hfi1_devdata *dd)
6517 {
6518 	lockdep_assert_held(&dd->dc8051_lock);
6519 
6520 	if (dd->dc_shutdown)
6521 		return;
6522 
6523 	dd->dc_shutdown = 1;
6524 	/* Shutdown the LCB */
6525 	lcb_shutdown(dd, 1);
6526 	/*
6527 	 * Going to OFFLINE would have causes the 8051 to put the
6528 	 * SerDes into reset already. Just need to shut down the 8051,
6529 	 * itself.
6530 	 */
6531 	write_csr(dd, DC_DC8051_CFG_RST, 0x1);
6532 }
6533 
6534 static void dc_shutdown(struct hfi1_devdata *dd)
6535 {
6536 	mutex_lock(&dd->dc8051_lock);
6537 	_dc_shutdown(dd);
6538 	mutex_unlock(&dd->dc8051_lock);
6539 }
6540 
6541 /*
6542  * Calling this after the DC has been brought out of reset should not
6543  * do any damage.
6544  * NOTE: the caller needs to acquire the dd->dc8051_lock lock
6545  *       before calling this function.
6546  */
6547 static void _dc_start(struct hfi1_devdata *dd)
6548 {
6549 	lockdep_assert_held(&dd->dc8051_lock);
6550 
6551 	if (!dd->dc_shutdown)
6552 		return;
6553 
6554 	/* Take the 8051 out of reset */
6555 	write_csr(dd, DC_DC8051_CFG_RST, 0ull);
6556 	/* Wait until 8051 is ready */
6557 	if (wait_fm_ready(dd, TIMEOUT_8051_START))
6558 		dd_dev_err(dd, "%s: timeout starting 8051 firmware\n",
6559 			   __func__);
6560 
6561 	/* Take away reset for LCB and RX FPE (set in lcb_shutdown). */
6562 	write_csr(dd, DCC_CFG_RESET, LCB_RX_FPE_TX_FPE_OUT_OF_RESET);
6563 	/* lcb_shutdown() with abort=1 does not restore these */
6564 	write_csr(dd, DC_LCB_ERR_EN, dd->lcb_err_en);
6565 	dd->dc_shutdown = 0;
6566 }
6567 
6568 static void dc_start(struct hfi1_devdata *dd)
6569 {
6570 	mutex_lock(&dd->dc8051_lock);
6571 	_dc_start(dd);
6572 	mutex_unlock(&dd->dc8051_lock);
6573 }
6574 
6575 /*
6576  * These LCB adjustments are for the Aurora SerDes core in the FPGA.
6577  */
6578 static void adjust_lcb_for_fpga_serdes(struct hfi1_devdata *dd)
6579 {
6580 	u64 rx_radr, tx_radr;
6581 	u32 version;
6582 
6583 	if (dd->icode != ICODE_FPGA_EMULATION)
6584 		return;
6585 
6586 	/*
6587 	 * These LCB defaults on emulator _s are good, nothing to do here:
6588 	 *	LCB_CFG_TX_FIFOS_RADR
6589 	 *	LCB_CFG_RX_FIFOS_RADR
6590 	 *	LCB_CFG_LN_DCLK
6591 	 *	LCB_CFG_IGNORE_LOST_RCLK
6592 	 */
6593 	if (is_emulator_s(dd))
6594 		return;
6595 	/* else this is _p */
6596 
6597 	version = emulator_rev(dd);
6598 	if (!is_ax(dd))
6599 		version = 0x2d;	/* all B0 use 0x2d or higher settings */
6600 
6601 	if (version <= 0x12) {
6602 		/* release 0x12 and below */
6603 
6604 		/*
6605 		 * LCB_CFG_RX_FIFOS_RADR.RST_VAL = 0x9
6606 		 * LCB_CFG_RX_FIFOS_RADR.OK_TO_JUMP_VAL = 0x9
6607 		 * LCB_CFG_RX_FIFOS_RADR.DO_NOT_JUMP_VAL = 0xa
6608 		 */
6609 		rx_radr =
6610 		      0xaull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6611 		    | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6612 		    | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6613 		/*
6614 		 * LCB_CFG_TX_FIFOS_RADR.ON_REINIT = 0 (default)
6615 		 * LCB_CFG_TX_FIFOS_RADR.RST_VAL = 6
6616 		 */
6617 		tx_radr = 6ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6618 	} else if (version <= 0x18) {
6619 		/* release 0x13 up to 0x18 */
6620 		/* LCB_CFG_RX_FIFOS_RADR = 0x988 */
6621 		rx_radr =
6622 		      0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6623 		    | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6624 		    | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6625 		tx_radr = 7ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6626 	} else if (version == 0x19) {
6627 		/* release 0x19 */
6628 		/* LCB_CFG_RX_FIFOS_RADR = 0xa99 */
6629 		rx_radr =
6630 		      0xAull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6631 		    | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6632 		    | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6633 		tx_radr = 3ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6634 	} else if (version == 0x1a) {
6635 		/* release 0x1a */
6636 		/* LCB_CFG_RX_FIFOS_RADR = 0x988 */
6637 		rx_radr =
6638 		      0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6639 		    | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6640 		    | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6641 		tx_radr = 7ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6642 		write_csr(dd, DC_LCB_CFG_LN_DCLK, 1ull);
6643 	} else {
6644 		/* release 0x1b and higher */
6645 		/* LCB_CFG_RX_FIFOS_RADR = 0x877 */
6646 		rx_radr =
6647 		      0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6648 		    | 0x7ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6649 		    | 0x7ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6650 		tx_radr = 3ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6651 	}
6652 
6653 	write_csr(dd, DC_LCB_CFG_RX_FIFOS_RADR, rx_radr);
6654 	/* LCB_CFG_IGNORE_LOST_RCLK.EN = 1 */
6655 	write_csr(dd, DC_LCB_CFG_IGNORE_LOST_RCLK,
6656 		  DC_LCB_CFG_IGNORE_LOST_RCLK_EN_SMASK);
6657 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RADR, tx_radr);
6658 }
6659 
6660 /*
6661  * Handle a SMA idle message
6662  *
6663  * This is a work-queue function outside of the interrupt.
6664  */
6665 void handle_sma_message(struct work_struct *work)
6666 {
6667 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
6668 							sma_message_work);
6669 	struct hfi1_devdata *dd = ppd->dd;
6670 	u64 msg;
6671 	int ret;
6672 
6673 	/*
6674 	 * msg is bytes 1-4 of the 40-bit idle message - the command code
6675 	 * is stripped off
6676 	 */
6677 	ret = read_idle_sma(dd, &msg);
6678 	if (ret)
6679 		return;
6680 	dd_dev_info(dd, "%s: SMA message 0x%llx\n", __func__, msg);
6681 	/*
6682 	 * React to the SMA message.  Byte[1] (0 for us) is the command.
6683 	 */
6684 	switch (msg & 0xff) {
6685 	case SMA_IDLE_ARM:
6686 		/*
6687 		 * See OPAv1 table 9-14 - HFI and External Switch Ports Key
6688 		 * State Transitions
6689 		 *
6690 		 * Only expected in INIT or ARMED, discard otherwise.
6691 		 */
6692 		if (ppd->host_link_state & (HLS_UP_INIT | HLS_UP_ARMED))
6693 			ppd->neighbor_normal = 1;
6694 		break;
6695 	case SMA_IDLE_ACTIVE:
6696 		/*
6697 		 * See OPAv1 table 9-14 - HFI and External Switch Ports Key
6698 		 * State Transitions
6699 		 *
6700 		 * Can activate the node.  Discard otherwise.
6701 		 */
6702 		if (ppd->host_link_state == HLS_UP_ARMED &&
6703 		    ppd->is_active_optimize_enabled) {
6704 			ppd->neighbor_normal = 1;
6705 			ret = set_link_state(ppd, HLS_UP_ACTIVE);
6706 			if (ret)
6707 				dd_dev_err(
6708 					dd,
6709 					"%s: received Active SMA idle message, couldn't set link to Active\n",
6710 					__func__);
6711 		}
6712 		break;
6713 	default:
6714 		dd_dev_err(dd,
6715 			   "%s: received unexpected SMA idle message 0x%llx\n",
6716 			   __func__, msg);
6717 		break;
6718 	}
6719 }
6720 
6721 static void adjust_rcvctrl(struct hfi1_devdata *dd, u64 add, u64 clear)
6722 {
6723 	u64 rcvctrl;
6724 	unsigned long flags;
6725 
6726 	spin_lock_irqsave(&dd->rcvctrl_lock, flags);
6727 	rcvctrl = read_csr(dd, RCV_CTRL);
6728 	rcvctrl |= add;
6729 	rcvctrl &= ~clear;
6730 	write_csr(dd, RCV_CTRL, rcvctrl);
6731 	spin_unlock_irqrestore(&dd->rcvctrl_lock, flags);
6732 }
6733 
6734 static inline void add_rcvctrl(struct hfi1_devdata *dd, u64 add)
6735 {
6736 	adjust_rcvctrl(dd, add, 0);
6737 }
6738 
6739 static inline void clear_rcvctrl(struct hfi1_devdata *dd, u64 clear)
6740 {
6741 	adjust_rcvctrl(dd, 0, clear);
6742 }
6743 
6744 /*
6745  * Called from all interrupt handlers to start handling an SPC freeze.
6746  */
6747 void start_freeze_handling(struct hfi1_pportdata *ppd, int flags)
6748 {
6749 	struct hfi1_devdata *dd = ppd->dd;
6750 	struct send_context *sc;
6751 	int i;
6752 	int sc_flags;
6753 
6754 	if (flags & FREEZE_SELF)
6755 		write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_FREEZE_SMASK);
6756 
6757 	/* enter frozen mode */
6758 	dd->flags |= HFI1_FROZEN;
6759 
6760 	/* notify all SDMA engines that they are going into a freeze */
6761 	sdma_freeze_notify(dd, !!(flags & FREEZE_LINK_DOWN));
6762 
6763 	sc_flags = SCF_FROZEN | SCF_HALTED | (flags & FREEZE_LINK_DOWN ?
6764 					      SCF_LINK_DOWN : 0);
6765 	/* do halt pre-handling on all enabled send contexts */
6766 	for (i = 0; i < dd->num_send_contexts; i++) {
6767 		sc = dd->send_contexts[i].sc;
6768 		if (sc && (sc->flags & SCF_ENABLED))
6769 			sc_stop(sc, sc_flags);
6770 	}
6771 
6772 	/* Send context are frozen. Notify user space */
6773 	hfi1_set_uevent_bits(ppd, _HFI1_EVENT_FROZEN_BIT);
6774 
6775 	if (flags & FREEZE_ABORT) {
6776 		dd_dev_err(dd,
6777 			   "Aborted freeze recovery. Please REBOOT system\n");
6778 		return;
6779 	}
6780 	/* queue non-interrupt handler */
6781 	queue_work(ppd->hfi1_wq, &ppd->freeze_work);
6782 }
6783 
6784 /*
6785  * Wait until all 4 sub-blocks indicate that they have frozen or unfrozen,
6786  * depending on the "freeze" parameter.
6787  *
6788  * No need to return an error if it times out, our only option
6789  * is to proceed anyway.
6790  */
6791 static void wait_for_freeze_status(struct hfi1_devdata *dd, int freeze)
6792 {
6793 	unsigned long timeout;
6794 	u64 reg;
6795 
6796 	timeout = jiffies + msecs_to_jiffies(FREEZE_STATUS_TIMEOUT);
6797 	while (1) {
6798 		reg = read_csr(dd, CCE_STATUS);
6799 		if (freeze) {
6800 			/* waiting until all indicators are set */
6801 			if ((reg & ALL_FROZE) == ALL_FROZE)
6802 				return;	/* all done */
6803 		} else {
6804 			/* waiting until all indicators are clear */
6805 			if ((reg & ALL_FROZE) == 0)
6806 				return; /* all done */
6807 		}
6808 
6809 		if (time_after(jiffies, timeout)) {
6810 			dd_dev_err(dd,
6811 				   "Time out waiting for SPC %sfreeze, bits 0x%llx, expecting 0x%llx, continuing",
6812 				   freeze ? "" : "un", reg & ALL_FROZE,
6813 				   freeze ? ALL_FROZE : 0ull);
6814 			return;
6815 		}
6816 		usleep_range(80, 120);
6817 	}
6818 }
6819 
6820 /*
6821  * Do all freeze handling for the RXE block.
6822  */
6823 static void rxe_freeze(struct hfi1_devdata *dd)
6824 {
6825 	int i;
6826 	struct hfi1_ctxtdata *rcd;
6827 
6828 	/* disable port */
6829 	clear_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
6830 
6831 	/* disable all receive contexts */
6832 	for (i = 0; i < dd->num_rcv_contexts; i++) {
6833 		rcd = hfi1_rcd_get_by_index(dd, i);
6834 		hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_DIS, rcd);
6835 		hfi1_rcd_put(rcd);
6836 	}
6837 }
6838 
6839 /*
6840  * Unfreeze handling for the RXE block - kernel contexts only.
6841  * This will also enable the port.  User contexts will do unfreeze
6842  * handling on a per-context basis as they call into the driver.
6843  *
6844  */
6845 static void rxe_kernel_unfreeze(struct hfi1_devdata *dd)
6846 {
6847 	u32 rcvmask;
6848 	u16 i;
6849 	struct hfi1_ctxtdata *rcd;
6850 
6851 	/* enable all kernel contexts */
6852 	for (i = 0; i < dd->num_rcv_contexts; i++) {
6853 		rcd = hfi1_rcd_get_by_index(dd, i);
6854 
6855 		/* Ensure all non-user contexts(including vnic) are enabled */
6856 		if (!rcd ||
6857 		    (i >= dd->first_dyn_alloc_ctxt && !rcd->is_vnic)) {
6858 			hfi1_rcd_put(rcd);
6859 			continue;
6860 		}
6861 		rcvmask = HFI1_RCVCTRL_CTXT_ENB;
6862 		/* HFI1_RCVCTRL_TAILUPD_[ENB|DIS] needs to be set explicitly */
6863 		rcvmask |= rcd->rcvhdrtail_kvaddr ?
6864 			HFI1_RCVCTRL_TAILUPD_ENB : HFI1_RCVCTRL_TAILUPD_DIS;
6865 		hfi1_rcvctrl(dd, rcvmask, rcd);
6866 		hfi1_rcd_put(rcd);
6867 	}
6868 
6869 	/* enable port */
6870 	add_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
6871 }
6872 
6873 /*
6874  * Non-interrupt SPC freeze handling.
6875  *
6876  * This is a work-queue function outside of the triggering interrupt.
6877  */
6878 void handle_freeze(struct work_struct *work)
6879 {
6880 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
6881 								freeze_work);
6882 	struct hfi1_devdata *dd = ppd->dd;
6883 
6884 	/* wait for freeze indicators on all affected blocks */
6885 	wait_for_freeze_status(dd, 1);
6886 
6887 	/* SPC is now frozen */
6888 
6889 	/* do send PIO freeze steps */
6890 	pio_freeze(dd);
6891 
6892 	/* do send DMA freeze steps */
6893 	sdma_freeze(dd);
6894 
6895 	/* do send egress freeze steps - nothing to do */
6896 
6897 	/* do receive freeze steps */
6898 	rxe_freeze(dd);
6899 
6900 	/*
6901 	 * Unfreeze the hardware - clear the freeze, wait for each
6902 	 * block's frozen bit to clear, then clear the frozen flag.
6903 	 */
6904 	write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_UNFREEZE_SMASK);
6905 	wait_for_freeze_status(dd, 0);
6906 
6907 	if (is_ax(dd)) {
6908 		write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_FREEZE_SMASK);
6909 		wait_for_freeze_status(dd, 1);
6910 		write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_UNFREEZE_SMASK);
6911 		wait_for_freeze_status(dd, 0);
6912 	}
6913 
6914 	/* do send PIO unfreeze steps for kernel contexts */
6915 	pio_kernel_unfreeze(dd);
6916 
6917 	/* do send DMA unfreeze steps */
6918 	sdma_unfreeze(dd);
6919 
6920 	/* do send egress unfreeze steps - nothing to do */
6921 
6922 	/* do receive unfreeze steps for kernel contexts */
6923 	rxe_kernel_unfreeze(dd);
6924 
6925 	/*
6926 	 * The unfreeze procedure touches global device registers when
6927 	 * it disables and re-enables RXE. Mark the device unfrozen
6928 	 * after all that is done so other parts of the driver waiting
6929 	 * for the device to unfreeze don't do things out of order.
6930 	 *
6931 	 * The above implies that the meaning of HFI1_FROZEN flag is
6932 	 * "Device has gone into freeze mode and freeze mode handling
6933 	 * is still in progress."
6934 	 *
6935 	 * The flag will be removed when freeze mode processing has
6936 	 * completed.
6937 	 */
6938 	dd->flags &= ~HFI1_FROZEN;
6939 	wake_up(&dd->event_queue);
6940 
6941 	/* no longer frozen */
6942 }
6943 
6944 /**
6945  * update_xmit_counters - update PortXmitWait/PortVlXmitWait
6946  * counters.
6947  * @ppd: info of physical Hfi port
6948  * @link_width: new link width after link up or downgrade
6949  *
6950  * Update the PortXmitWait and PortVlXmitWait counters after
6951  * a link up or downgrade event to reflect a link width change.
6952  */
6953 static void update_xmit_counters(struct hfi1_pportdata *ppd, u16 link_width)
6954 {
6955 	int i;
6956 	u16 tx_width;
6957 	u16 link_speed;
6958 
6959 	tx_width = tx_link_width(link_width);
6960 	link_speed = get_link_speed(ppd->link_speed_active);
6961 
6962 	/*
6963 	 * There are C_VL_COUNT number of PortVLXmitWait counters.
6964 	 * Adding 1 to C_VL_COUNT to include the PortXmitWait counter.
6965 	 */
6966 	for (i = 0; i < C_VL_COUNT + 1; i++)
6967 		get_xmit_wait_counters(ppd, tx_width, link_speed, i);
6968 }
6969 
6970 /*
6971  * Handle a link up interrupt from the 8051.
6972  *
6973  * This is a work-queue function outside of the interrupt.
6974  */
6975 void handle_link_up(struct work_struct *work)
6976 {
6977 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
6978 						  link_up_work);
6979 	struct hfi1_devdata *dd = ppd->dd;
6980 
6981 	set_link_state(ppd, HLS_UP_INIT);
6982 
6983 	/* cache the read of DC_LCB_STS_ROUND_TRIP_LTP_CNT */
6984 	read_ltp_rtt(dd);
6985 	/*
6986 	 * OPA specifies that certain counters are cleared on a transition
6987 	 * to link up, so do that.
6988 	 */
6989 	clear_linkup_counters(dd);
6990 	/*
6991 	 * And (re)set link up default values.
6992 	 */
6993 	set_linkup_defaults(ppd);
6994 
6995 	/*
6996 	 * Set VL15 credits. Use cached value from verify cap interrupt.
6997 	 * In case of quick linkup or simulator, vl15 value will be set by
6998 	 * handle_linkup_change. VerifyCap interrupt handler will not be
6999 	 * called in those scenarios.
7000 	 */
7001 	if (!(quick_linkup || dd->icode == ICODE_FUNCTIONAL_SIMULATOR))
7002 		set_up_vl15(dd, dd->vl15buf_cached);
7003 
7004 	/* enforce link speed enabled */
7005 	if ((ppd->link_speed_active & ppd->link_speed_enabled) == 0) {
7006 		/* oops - current speed is not enabled, bounce */
7007 		dd_dev_err(dd,
7008 			   "Link speed active 0x%x is outside enabled 0x%x, downing link\n",
7009 			   ppd->link_speed_active, ppd->link_speed_enabled);
7010 		set_link_down_reason(ppd, OPA_LINKDOWN_REASON_SPEED_POLICY, 0,
7011 				     OPA_LINKDOWN_REASON_SPEED_POLICY);
7012 		set_link_state(ppd, HLS_DN_OFFLINE);
7013 		start_link(ppd);
7014 	}
7015 }
7016 
7017 /*
7018  * Several pieces of LNI information were cached for SMA in ppd.
7019  * Reset these on link down
7020  */
7021 static void reset_neighbor_info(struct hfi1_pportdata *ppd)
7022 {
7023 	ppd->neighbor_guid = 0;
7024 	ppd->neighbor_port_number = 0;
7025 	ppd->neighbor_type = 0;
7026 	ppd->neighbor_fm_security = 0;
7027 }
7028 
7029 static const char * const link_down_reason_strs[] = {
7030 	[OPA_LINKDOWN_REASON_NONE] = "None",
7031 	[OPA_LINKDOWN_REASON_RCV_ERROR_0] = "Receive error 0",
7032 	[OPA_LINKDOWN_REASON_BAD_PKT_LEN] = "Bad packet length",
7033 	[OPA_LINKDOWN_REASON_PKT_TOO_LONG] = "Packet too long",
7034 	[OPA_LINKDOWN_REASON_PKT_TOO_SHORT] = "Packet too short",
7035 	[OPA_LINKDOWN_REASON_BAD_SLID] = "Bad SLID",
7036 	[OPA_LINKDOWN_REASON_BAD_DLID] = "Bad DLID",
7037 	[OPA_LINKDOWN_REASON_BAD_L2] = "Bad L2",
7038 	[OPA_LINKDOWN_REASON_BAD_SC] = "Bad SC",
7039 	[OPA_LINKDOWN_REASON_RCV_ERROR_8] = "Receive error 8",
7040 	[OPA_LINKDOWN_REASON_BAD_MID_TAIL] = "Bad mid tail",
7041 	[OPA_LINKDOWN_REASON_RCV_ERROR_10] = "Receive error 10",
7042 	[OPA_LINKDOWN_REASON_PREEMPT_ERROR] = "Preempt error",
7043 	[OPA_LINKDOWN_REASON_PREEMPT_VL15] = "Preempt vl15",
7044 	[OPA_LINKDOWN_REASON_BAD_VL_MARKER] = "Bad VL marker",
7045 	[OPA_LINKDOWN_REASON_RCV_ERROR_14] = "Receive error 14",
7046 	[OPA_LINKDOWN_REASON_RCV_ERROR_15] = "Receive error 15",
7047 	[OPA_LINKDOWN_REASON_BAD_HEAD_DIST] = "Bad head distance",
7048 	[OPA_LINKDOWN_REASON_BAD_TAIL_DIST] = "Bad tail distance",
7049 	[OPA_LINKDOWN_REASON_BAD_CTRL_DIST] = "Bad control distance",
7050 	[OPA_LINKDOWN_REASON_BAD_CREDIT_ACK] = "Bad credit ack",
7051 	[OPA_LINKDOWN_REASON_UNSUPPORTED_VL_MARKER] = "Unsupported VL marker",
7052 	[OPA_LINKDOWN_REASON_BAD_PREEMPT] = "Bad preempt",
7053 	[OPA_LINKDOWN_REASON_BAD_CONTROL_FLIT] = "Bad control flit",
7054 	[OPA_LINKDOWN_REASON_EXCEED_MULTICAST_LIMIT] = "Exceed multicast limit",
7055 	[OPA_LINKDOWN_REASON_RCV_ERROR_24] = "Receive error 24",
7056 	[OPA_LINKDOWN_REASON_RCV_ERROR_25] = "Receive error 25",
7057 	[OPA_LINKDOWN_REASON_RCV_ERROR_26] = "Receive error 26",
7058 	[OPA_LINKDOWN_REASON_RCV_ERROR_27] = "Receive error 27",
7059 	[OPA_LINKDOWN_REASON_RCV_ERROR_28] = "Receive error 28",
7060 	[OPA_LINKDOWN_REASON_RCV_ERROR_29] = "Receive error 29",
7061 	[OPA_LINKDOWN_REASON_RCV_ERROR_30] = "Receive error 30",
7062 	[OPA_LINKDOWN_REASON_EXCESSIVE_BUFFER_OVERRUN] =
7063 					"Excessive buffer overrun",
7064 	[OPA_LINKDOWN_REASON_UNKNOWN] = "Unknown",
7065 	[OPA_LINKDOWN_REASON_REBOOT] = "Reboot",
7066 	[OPA_LINKDOWN_REASON_NEIGHBOR_UNKNOWN] = "Neighbor unknown",
7067 	[OPA_LINKDOWN_REASON_FM_BOUNCE] = "FM bounce",
7068 	[OPA_LINKDOWN_REASON_SPEED_POLICY] = "Speed policy",
7069 	[OPA_LINKDOWN_REASON_WIDTH_POLICY] = "Width policy",
7070 	[OPA_LINKDOWN_REASON_DISCONNECTED] = "Disconnected",
7071 	[OPA_LINKDOWN_REASON_LOCAL_MEDIA_NOT_INSTALLED] =
7072 					"Local media not installed",
7073 	[OPA_LINKDOWN_REASON_NOT_INSTALLED] = "Not installed",
7074 	[OPA_LINKDOWN_REASON_CHASSIS_CONFIG] = "Chassis config",
7075 	[OPA_LINKDOWN_REASON_END_TO_END_NOT_INSTALLED] =
7076 					"End to end not installed",
7077 	[OPA_LINKDOWN_REASON_POWER_POLICY] = "Power policy",
7078 	[OPA_LINKDOWN_REASON_LINKSPEED_POLICY] = "Link speed policy",
7079 	[OPA_LINKDOWN_REASON_LINKWIDTH_POLICY] = "Link width policy",
7080 	[OPA_LINKDOWN_REASON_SWITCH_MGMT] = "Switch management",
7081 	[OPA_LINKDOWN_REASON_SMA_DISABLED] = "SMA disabled",
7082 	[OPA_LINKDOWN_REASON_TRANSIENT] = "Transient"
7083 };
7084 
7085 /* return the neighbor link down reason string */
7086 static const char *link_down_reason_str(u8 reason)
7087 {
7088 	const char *str = NULL;
7089 
7090 	if (reason < ARRAY_SIZE(link_down_reason_strs))
7091 		str = link_down_reason_strs[reason];
7092 	if (!str)
7093 		str = "(invalid)";
7094 
7095 	return str;
7096 }
7097 
7098 /*
7099  * Handle a link down interrupt from the 8051.
7100  *
7101  * This is a work-queue function outside of the interrupt.
7102  */
7103 void handle_link_down(struct work_struct *work)
7104 {
7105 	u8 lcl_reason, neigh_reason = 0;
7106 	u8 link_down_reason;
7107 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
7108 						  link_down_work);
7109 	int was_up;
7110 	static const char ldr_str[] = "Link down reason: ";
7111 
7112 	if ((ppd->host_link_state &
7113 	     (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) &&
7114 	     ppd->port_type == PORT_TYPE_FIXED)
7115 		ppd->offline_disabled_reason =
7116 			HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NOT_INSTALLED);
7117 
7118 	/* Go offline first, then deal with reading/writing through 8051 */
7119 	was_up = !!(ppd->host_link_state & HLS_UP);
7120 	set_link_state(ppd, HLS_DN_OFFLINE);
7121 	xchg(&ppd->is_link_down_queued, 0);
7122 
7123 	if (was_up) {
7124 		lcl_reason = 0;
7125 		/* link down reason is only valid if the link was up */
7126 		read_link_down_reason(ppd->dd, &link_down_reason);
7127 		switch (link_down_reason) {
7128 		case LDR_LINK_TRANSFER_ACTIVE_LOW:
7129 			/* the link went down, no idle message reason */
7130 			dd_dev_info(ppd->dd, "%sUnexpected link down\n",
7131 				    ldr_str);
7132 			break;
7133 		case LDR_RECEIVED_LINKDOWN_IDLE_MSG:
7134 			/*
7135 			 * The neighbor reason is only valid if an idle message
7136 			 * was received for it.
7137 			 */
7138 			read_planned_down_reason_code(ppd->dd, &neigh_reason);
7139 			dd_dev_info(ppd->dd,
7140 				    "%sNeighbor link down message %d, %s\n",
7141 				    ldr_str, neigh_reason,
7142 				    link_down_reason_str(neigh_reason));
7143 			break;
7144 		case LDR_RECEIVED_HOST_OFFLINE_REQ:
7145 			dd_dev_info(ppd->dd,
7146 				    "%sHost requested link to go offline\n",
7147 				    ldr_str);
7148 			break;
7149 		default:
7150 			dd_dev_info(ppd->dd, "%sUnknown reason 0x%x\n",
7151 				    ldr_str, link_down_reason);
7152 			break;
7153 		}
7154 
7155 		/*
7156 		 * If no reason, assume peer-initiated but missed
7157 		 * LinkGoingDown idle flits.
7158 		 */
7159 		if (neigh_reason == 0)
7160 			lcl_reason = OPA_LINKDOWN_REASON_NEIGHBOR_UNKNOWN;
7161 	} else {
7162 		/* went down while polling or going up */
7163 		lcl_reason = OPA_LINKDOWN_REASON_TRANSIENT;
7164 	}
7165 
7166 	set_link_down_reason(ppd, lcl_reason, neigh_reason, 0);
7167 
7168 	/* inform the SMA when the link transitions from up to down */
7169 	if (was_up && ppd->local_link_down_reason.sma == 0 &&
7170 	    ppd->neigh_link_down_reason.sma == 0) {
7171 		ppd->local_link_down_reason.sma =
7172 					ppd->local_link_down_reason.latest;
7173 		ppd->neigh_link_down_reason.sma =
7174 					ppd->neigh_link_down_reason.latest;
7175 	}
7176 
7177 	reset_neighbor_info(ppd);
7178 
7179 	/* disable the port */
7180 	clear_rcvctrl(ppd->dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
7181 
7182 	/*
7183 	 * If there is no cable attached, turn the DC off. Otherwise,
7184 	 * start the link bring up.
7185 	 */
7186 	if (ppd->port_type == PORT_TYPE_QSFP && !qsfp_mod_present(ppd))
7187 		dc_shutdown(ppd->dd);
7188 	else
7189 		start_link(ppd);
7190 }
7191 
7192 void handle_link_bounce(struct work_struct *work)
7193 {
7194 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
7195 							link_bounce_work);
7196 
7197 	/*
7198 	 * Only do something if the link is currently up.
7199 	 */
7200 	if (ppd->host_link_state & HLS_UP) {
7201 		set_link_state(ppd, HLS_DN_OFFLINE);
7202 		start_link(ppd);
7203 	} else {
7204 		dd_dev_info(ppd->dd, "%s: link not up (%s), nothing to do\n",
7205 			    __func__, link_state_name(ppd->host_link_state));
7206 	}
7207 }
7208 
7209 /*
7210  * Mask conversion: Capability exchange to Port LTP.  The capability
7211  * exchange has an implicit 16b CRC that is mandatory.
7212  */
7213 static int cap_to_port_ltp(int cap)
7214 {
7215 	int port_ltp = PORT_LTP_CRC_MODE_16; /* this mode is mandatory */
7216 
7217 	if (cap & CAP_CRC_14B)
7218 		port_ltp |= PORT_LTP_CRC_MODE_14;
7219 	if (cap & CAP_CRC_48B)
7220 		port_ltp |= PORT_LTP_CRC_MODE_48;
7221 	if (cap & CAP_CRC_12B_16B_PER_LANE)
7222 		port_ltp |= PORT_LTP_CRC_MODE_PER_LANE;
7223 
7224 	return port_ltp;
7225 }
7226 
7227 /*
7228  * Convert an OPA Port LTP mask to capability mask
7229  */
7230 int port_ltp_to_cap(int port_ltp)
7231 {
7232 	int cap_mask = 0;
7233 
7234 	if (port_ltp & PORT_LTP_CRC_MODE_14)
7235 		cap_mask |= CAP_CRC_14B;
7236 	if (port_ltp & PORT_LTP_CRC_MODE_48)
7237 		cap_mask |= CAP_CRC_48B;
7238 	if (port_ltp & PORT_LTP_CRC_MODE_PER_LANE)
7239 		cap_mask |= CAP_CRC_12B_16B_PER_LANE;
7240 
7241 	return cap_mask;
7242 }
7243 
7244 /*
7245  * Convert a single DC LCB CRC mode to an OPA Port LTP mask.
7246  */
7247 static int lcb_to_port_ltp(int lcb_crc)
7248 {
7249 	int port_ltp = 0;
7250 
7251 	if (lcb_crc == LCB_CRC_12B_16B_PER_LANE)
7252 		port_ltp = PORT_LTP_CRC_MODE_PER_LANE;
7253 	else if (lcb_crc == LCB_CRC_48B)
7254 		port_ltp = PORT_LTP_CRC_MODE_48;
7255 	else if (lcb_crc == LCB_CRC_14B)
7256 		port_ltp = PORT_LTP_CRC_MODE_14;
7257 	else
7258 		port_ltp = PORT_LTP_CRC_MODE_16;
7259 
7260 	return port_ltp;
7261 }
7262 
7263 static void clear_full_mgmt_pkey(struct hfi1_pportdata *ppd)
7264 {
7265 	if (ppd->pkeys[2] != 0) {
7266 		ppd->pkeys[2] = 0;
7267 		(void)hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_PKEYS, 0);
7268 		hfi1_event_pkey_change(ppd->dd, ppd->port);
7269 	}
7270 }
7271 
7272 /*
7273  * Convert the given link width to the OPA link width bitmask.
7274  */
7275 static u16 link_width_to_bits(struct hfi1_devdata *dd, u16 width)
7276 {
7277 	switch (width) {
7278 	case 0:
7279 		/*
7280 		 * Simulator and quick linkup do not set the width.
7281 		 * Just set it to 4x without complaint.
7282 		 */
7283 		if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR || quick_linkup)
7284 			return OPA_LINK_WIDTH_4X;
7285 		return 0; /* no lanes up */
7286 	case 1: return OPA_LINK_WIDTH_1X;
7287 	case 2: return OPA_LINK_WIDTH_2X;
7288 	case 3: return OPA_LINK_WIDTH_3X;
7289 	default:
7290 		dd_dev_info(dd, "%s: invalid width %d, using 4\n",
7291 			    __func__, width);
7292 		/* fall through */
7293 	case 4: return OPA_LINK_WIDTH_4X;
7294 	}
7295 }
7296 
7297 /*
7298  * Do a population count on the bottom nibble.
7299  */
7300 static const u8 bit_counts[16] = {
7301 	0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4
7302 };
7303 
7304 static inline u8 nibble_to_count(u8 nibble)
7305 {
7306 	return bit_counts[nibble & 0xf];
7307 }
7308 
7309 /*
7310  * Read the active lane information from the 8051 registers and return
7311  * their widths.
7312  *
7313  * Active lane information is found in these 8051 registers:
7314  *	enable_lane_tx
7315  *	enable_lane_rx
7316  */
7317 static void get_link_widths(struct hfi1_devdata *dd, u16 *tx_width,
7318 			    u16 *rx_width)
7319 {
7320 	u16 tx, rx;
7321 	u8 enable_lane_rx;
7322 	u8 enable_lane_tx;
7323 	u8 tx_polarity_inversion;
7324 	u8 rx_polarity_inversion;
7325 	u8 max_rate;
7326 
7327 	/* read the active lanes */
7328 	read_tx_settings(dd, &enable_lane_tx, &tx_polarity_inversion,
7329 			 &rx_polarity_inversion, &max_rate);
7330 	read_local_lni(dd, &enable_lane_rx);
7331 
7332 	/* convert to counts */
7333 	tx = nibble_to_count(enable_lane_tx);
7334 	rx = nibble_to_count(enable_lane_rx);
7335 
7336 	/*
7337 	 * Set link_speed_active here, overriding what was set in
7338 	 * handle_verify_cap().  The ASIC 8051 firmware does not correctly
7339 	 * set the max_rate field in handle_verify_cap until v0.19.
7340 	 */
7341 	if ((dd->icode == ICODE_RTL_SILICON) &&
7342 	    (dd->dc8051_ver < dc8051_ver(0, 19, 0))) {
7343 		/* max_rate: 0 = 12.5G, 1 = 25G */
7344 		switch (max_rate) {
7345 		case 0:
7346 			dd->pport[0].link_speed_active = OPA_LINK_SPEED_12_5G;
7347 			break;
7348 		default:
7349 			dd_dev_err(dd,
7350 				   "%s: unexpected max rate %d, using 25Gb\n",
7351 				   __func__, (int)max_rate);
7352 			/* fall through */
7353 		case 1:
7354 			dd->pport[0].link_speed_active = OPA_LINK_SPEED_25G;
7355 			break;
7356 		}
7357 	}
7358 
7359 	dd_dev_info(dd,
7360 		    "Fabric active lanes (width): tx 0x%x (%d), rx 0x%x (%d)\n",
7361 		    enable_lane_tx, tx, enable_lane_rx, rx);
7362 	*tx_width = link_width_to_bits(dd, tx);
7363 	*rx_width = link_width_to_bits(dd, rx);
7364 }
7365 
7366 /*
7367  * Read verify_cap_local_fm_link_width[1] to obtain the link widths.
7368  * Valid after the end of VerifyCap and during LinkUp.  Does not change
7369  * after link up.  I.e. look elsewhere for downgrade information.
7370  *
7371  * Bits are:
7372  *	+ bits [7:4] contain the number of active transmitters
7373  *	+ bits [3:0] contain the number of active receivers
7374  * These are numbers 1 through 4 and can be different values if the
7375  * link is asymmetric.
7376  *
7377  * verify_cap_local_fm_link_width[0] retains its original value.
7378  */
7379 static void get_linkup_widths(struct hfi1_devdata *dd, u16 *tx_width,
7380 			      u16 *rx_width)
7381 {
7382 	u16 widths, tx, rx;
7383 	u8 misc_bits, local_flags;
7384 	u16 active_tx, active_rx;
7385 
7386 	read_vc_local_link_mode(dd, &misc_bits, &local_flags, &widths);
7387 	tx = widths >> 12;
7388 	rx = (widths >> 8) & 0xf;
7389 
7390 	*tx_width = link_width_to_bits(dd, tx);
7391 	*rx_width = link_width_to_bits(dd, rx);
7392 
7393 	/* print the active widths */
7394 	get_link_widths(dd, &active_tx, &active_rx);
7395 }
7396 
7397 /*
7398  * Set ppd->link_width_active and ppd->link_width_downgrade_active using
7399  * hardware information when the link first comes up.
7400  *
7401  * The link width is not available until after VerifyCap.AllFramesReceived
7402  * (the trigger for handle_verify_cap), so this is outside that routine
7403  * and should be called when the 8051 signals linkup.
7404  */
7405 void get_linkup_link_widths(struct hfi1_pportdata *ppd)
7406 {
7407 	u16 tx_width, rx_width;
7408 
7409 	/* get end-of-LNI link widths */
7410 	get_linkup_widths(ppd->dd, &tx_width, &rx_width);
7411 
7412 	/* use tx_width as the link is supposed to be symmetric on link up */
7413 	ppd->link_width_active = tx_width;
7414 	/* link width downgrade active (LWD.A) starts out matching LW.A */
7415 	ppd->link_width_downgrade_tx_active = ppd->link_width_active;
7416 	ppd->link_width_downgrade_rx_active = ppd->link_width_active;
7417 	/* per OPA spec, on link up LWD.E resets to LWD.S */
7418 	ppd->link_width_downgrade_enabled = ppd->link_width_downgrade_supported;
7419 	/* cache the active egress rate (units {10^6 bits/sec]) */
7420 	ppd->current_egress_rate = active_egress_rate(ppd);
7421 }
7422 
7423 /*
7424  * Handle a verify capabilities interrupt from the 8051.
7425  *
7426  * This is a work-queue function outside of the interrupt.
7427  */
7428 void handle_verify_cap(struct work_struct *work)
7429 {
7430 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
7431 								link_vc_work);
7432 	struct hfi1_devdata *dd = ppd->dd;
7433 	u64 reg;
7434 	u8 power_management;
7435 	u8 continuous;
7436 	u8 vcu;
7437 	u8 vau;
7438 	u8 z;
7439 	u16 vl15buf;
7440 	u16 link_widths;
7441 	u16 crc_mask;
7442 	u16 crc_val;
7443 	u16 device_id;
7444 	u16 active_tx, active_rx;
7445 	u8 partner_supported_crc;
7446 	u8 remote_tx_rate;
7447 	u8 device_rev;
7448 
7449 	set_link_state(ppd, HLS_VERIFY_CAP);
7450 
7451 	lcb_shutdown(dd, 0);
7452 	adjust_lcb_for_fpga_serdes(dd);
7453 
7454 	read_vc_remote_phy(dd, &power_management, &continuous);
7455 	read_vc_remote_fabric(dd, &vau, &z, &vcu, &vl15buf,
7456 			      &partner_supported_crc);
7457 	read_vc_remote_link_width(dd, &remote_tx_rate, &link_widths);
7458 	read_remote_device_id(dd, &device_id, &device_rev);
7459 
7460 	/* print the active widths */
7461 	get_link_widths(dd, &active_tx, &active_rx);
7462 	dd_dev_info(dd,
7463 		    "Peer PHY: power management 0x%x, continuous updates 0x%x\n",
7464 		    (int)power_management, (int)continuous);
7465 	dd_dev_info(dd,
7466 		    "Peer Fabric: vAU %d, Z %d, vCU %d, vl15 credits 0x%x, CRC sizes 0x%x\n",
7467 		    (int)vau, (int)z, (int)vcu, (int)vl15buf,
7468 		    (int)partner_supported_crc);
7469 	dd_dev_info(dd, "Peer Link Width: tx rate 0x%x, widths 0x%x\n",
7470 		    (u32)remote_tx_rate, (u32)link_widths);
7471 	dd_dev_info(dd, "Peer Device ID: 0x%04x, Revision 0x%02x\n",
7472 		    (u32)device_id, (u32)device_rev);
7473 	/*
7474 	 * The peer vAU value just read is the peer receiver value.  HFI does
7475 	 * not support a transmit vAU of 0 (AU == 8).  We advertised that
7476 	 * with Z=1 in the fabric capabilities sent to the peer.  The peer
7477 	 * will see our Z=1, and, if it advertised a vAU of 0, will move its
7478 	 * receive to vAU of 1 (AU == 16).  Do the same here.  We do not care
7479 	 * about the peer Z value - our sent vAU is 3 (hardwired) and is not
7480 	 * subject to the Z value exception.
7481 	 */
7482 	if (vau == 0)
7483 		vau = 1;
7484 	set_up_vau(dd, vau);
7485 
7486 	/*
7487 	 * Set VL15 credits to 0 in global credit register. Cache remote VL15
7488 	 * credits value and wait for link-up interrupt ot set it.
7489 	 */
7490 	set_up_vl15(dd, 0);
7491 	dd->vl15buf_cached = vl15buf;
7492 
7493 	/* set up the LCB CRC mode */
7494 	crc_mask = ppd->port_crc_mode_enabled & partner_supported_crc;
7495 
7496 	/* order is important: use the lowest bit in common */
7497 	if (crc_mask & CAP_CRC_14B)
7498 		crc_val = LCB_CRC_14B;
7499 	else if (crc_mask & CAP_CRC_48B)
7500 		crc_val = LCB_CRC_48B;
7501 	else if (crc_mask & CAP_CRC_12B_16B_PER_LANE)
7502 		crc_val = LCB_CRC_12B_16B_PER_LANE;
7503 	else
7504 		crc_val = LCB_CRC_16B;
7505 
7506 	dd_dev_info(dd, "Final LCB CRC mode: %d\n", (int)crc_val);
7507 	write_csr(dd, DC_LCB_CFG_CRC_MODE,
7508 		  (u64)crc_val << DC_LCB_CFG_CRC_MODE_TX_VAL_SHIFT);
7509 
7510 	/* set (14b only) or clear sideband credit */
7511 	reg = read_csr(dd, SEND_CM_CTRL);
7512 	if (crc_val == LCB_CRC_14B && crc_14b_sideband) {
7513 		write_csr(dd, SEND_CM_CTRL,
7514 			  reg | SEND_CM_CTRL_FORCE_CREDIT_MODE_SMASK);
7515 	} else {
7516 		write_csr(dd, SEND_CM_CTRL,
7517 			  reg & ~SEND_CM_CTRL_FORCE_CREDIT_MODE_SMASK);
7518 	}
7519 
7520 	ppd->link_speed_active = 0;	/* invalid value */
7521 	if (dd->dc8051_ver < dc8051_ver(0, 20, 0)) {
7522 		/* remote_tx_rate: 0 = 12.5G, 1 = 25G */
7523 		switch (remote_tx_rate) {
7524 		case 0:
7525 			ppd->link_speed_active = OPA_LINK_SPEED_12_5G;
7526 			break;
7527 		case 1:
7528 			ppd->link_speed_active = OPA_LINK_SPEED_25G;
7529 			break;
7530 		}
7531 	} else {
7532 		/* actual rate is highest bit of the ANDed rates */
7533 		u8 rate = remote_tx_rate & ppd->local_tx_rate;
7534 
7535 		if (rate & 2)
7536 			ppd->link_speed_active = OPA_LINK_SPEED_25G;
7537 		else if (rate & 1)
7538 			ppd->link_speed_active = OPA_LINK_SPEED_12_5G;
7539 	}
7540 	if (ppd->link_speed_active == 0) {
7541 		dd_dev_err(dd, "%s: unexpected remote tx rate %d, using 25Gb\n",
7542 			   __func__, (int)remote_tx_rate);
7543 		ppd->link_speed_active = OPA_LINK_SPEED_25G;
7544 	}
7545 
7546 	/*
7547 	 * Cache the values of the supported, enabled, and active
7548 	 * LTP CRC modes to return in 'portinfo' queries. But the bit
7549 	 * flags that are returned in the portinfo query differ from
7550 	 * what's in the link_crc_mask, crc_sizes, and crc_val
7551 	 * variables. Convert these here.
7552 	 */
7553 	ppd->port_ltp_crc_mode = cap_to_port_ltp(link_crc_mask) << 8;
7554 		/* supported crc modes */
7555 	ppd->port_ltp_crc_mode |=
7556 		cap_to_port_ltp(ppd->port_crc_mode_enabled) << 4;
7557 		/* enabled crc modes */
7558 	ppd->port_ltp_crc_mode |= lcb_to_port_ltp(crc_val);
7559 		/* active crc mode */
7560 
7561 	/* set up the remote credit return table */
7562 	assign_remote_cm_au_table(dd, vcu);
7563 
7564 	/*
7565 	 * The LCB is reset on entry to handle_verify_cap(), so this must
7566 	 * be applied on every link up.
7567 	 *
7568 	 * Adjust LCB error kill enable to kill the link if
7569 	 * these RBUF errors are seen:
7570 	 *	REPLAY_BUF_MBE_SMASK
7571 	 *	FLIT_INPUT_BUF_MBE_SMASK
7572 	 */
7573 	if (is_ax(dd)) {			/* fixed in B0 */
7574 		reg = read_csr(dd, DC_LCB_CFG_LINK_KILL_EN);
7575 		reg |= DC_LCB_CFG_LINK_KILL_EN_REPLAY_BUF_MBE_SMASK
7576 			| DC_LCB_CFG_LINK_KILL_EN_FLIT_INPUT_BUF_MBE_SMASK;
7577 		write_csr(dd, DC_LCB_CFG_LINK_KILL_EN, reg);
7578 	}
7579 
7580 	/* pull LCB fifos out of reset - all fifo clocks must be stable */
7581 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0);
7582 
7583 	/* give 8051 access to the LCB CSRs */
7584 	write_csr(dd, DC_LCB_ERR_EN, 0); /* mask LCB errors */
7585 	set_8051_lcb_access(dd);
7586 
7587 	/* tell the 8051 to go to LinkUp */
7588 	set_link_state(ppd, HLS_GOING_UP);
7589 }
7590 
7591 /**
7592  * apply_link_downgrade_policy - Apply the link width downgrade enabled
7593  * policy against the current active link widths.
7594  * @ppd: info of physical Hfi port
7595  * @refresh_widths: True indicates link downgrade event
7596  * @return: True indicates a successful link downgrade. False indicates
7597  *	    link downgrade event failed and the link will bounce back to
7598  *	    default link width.
7599  *
7600  * Called when the enabled policy changes or the active link widths
7601  * change.
7602  * Refresh_widths indicates that a link downgrade occurred. The
7603  * link_downgraded variable is set by refresh_widths and
7604  * determines the success/failure of the policy application.
7605  */
7606 bool apply_link_downgrade_policy(struct hfi1_pportdata *ppd,
7607 				 bool refresh_widths)
7608 {
7609 	int do_bounce = 0;
7610 	int tries;
7611 	u16 lwde;
7612 	u16 tx, rx;
7613 	bool link_downgraded = refresh_widths;
7614 
7615 	/* use the hls lock to avoid a race with actual link up */
7616 	tries = 0;
7617 retry:
7618 	mutex_lock(&ppd->hls_lock);
7619 	/* only apply if the link is up */
7620 	if (ppd->host_link_state & HLS_DOWN) {
7621 		/* still going up..wait and retry */
7622 		if (ppd->host_link_state & HLS_GOING_UP) {
7623 			if (++tries < 1000) {
7624 				mutex_unlock(&ppd->hls_lock);
7625 				usleep_range(100, 120); /* arbitrary */
7626 				goto retry;
7627 			}
7628 			dd_dev_err(ppd->dd,
7629 				   "%s: giving up waiting for link state change\n",
7630 				   __func__);
7631 		}
7632 		goto done;
7633 	}
7634 
7635 	lwde = ppd->link_width_downgrade_enabled;
7636 
7637 	if (refresh_widths) {
7638 		get_link_widths(ppd->dd, &tx, &rx);
7639 		ppd->link_width_downgrade_tx_active = tx;
7640 		ppd->link_width_downgrade_rx_active = rx;
7641 	}
7642 
7643 	if (ppd->link_width_downgrade_tx_active == 0 ||
7644 	    ppd->link_width_downgrade_rx_active == 0) {
7645 		/* the 8051 reported a dead link as a downgrade */
7646 		dd_dev_err(ppd->dd, "Link downgrade is really a link down, ignoring\n");
7647 		link_downgraded = false;
7648 	} else if (lwde == 0) {
7649 		/* downgrade is disabled */
7650 
7651 		/* bounce if not at starting active width */
7652 		if ((ppd->link_width_active !=
7653 		     ppd->link_width_downgrade_tx_active) ||
7654 		    (ppd->link_width_active !=
7655 		     ppd->link_width_downgrade_rx_active)) {
7656 			dd_dev_err(ppd->dd,
7657 				   "Link downgrade is disabled and link has downgraded, downing link\n");
7658 			dd_dev_err(ppd->dd,
7659 				   "  original 0x%x, tx active 0x%x, rx active 0x%x\n",
7660 				   ppd->link_width_active,
7661 				   ppd->link_width_downgrade_tx_active,
7662 				   ppd->link_width_downgrade_rx_active);
7663 			do_bounce = 1;
7664 			link_downgraded = false;
7665 		}
7666 	} else if ((lwde & ppd->link_width_downgrade_tx_active) == 0 ||
7667 		   (lwde & ppd->link_width_downgrade_rx_active) == 0) {
7668 		/* Tx or Rx is outside the enabled policy */
7669 		dd_dev_err(ppd->dd,
7670 			   "Link is outside of downgrade allowed, downing link\n");
7671 		dd_dev_err(ppd->dd,
7672 			   "  enabled 0x%x, tx active 0x%x, rx active 0x%x\n",
7673 			   lwde, ppd->link_width_downgrade_tx_active,
7674 			   ppd->link_width_downgrade_rx_active);
7675 		do_bounce = 1;
7676 		link_downgraded = false;
7677 	}
7678 
7679 done:
7680 	mutex_unlock(&ppd->hls_lock);
7681 
7682 	if (do_bounce) {
7683 		set_link_down_reason(ppd, OPA_LINKDOWN_REASON_WIDTH_POLICY, 0,
7684 				     OPA_LINKDOWN_REASON_WIDTH_POLICY);
7685 		set_link_state(ppd, HLS_DN_OFFLINE);
7686 		start_link(ppd);
7687 	}
7688 
7689 	return link_downgraded;
7690 }
7691 
7692 /*
7693  * Handle a link downgrade interrupt from the 8051.
7694  *
7695  * This is a work-queue function outside of the interrupt.
7696  */
7697 void handle_link_downgrade(struct work_struct *work)
7698 {
7699 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
7700 							link_downgrade_work);
7701 
7702 	dd_dev_info(ppd->dd, "8051: Link width downgrade\n");
7703 	if (apply_link_downgrade_policy(ppd, true))
7704 		update_xmit_counters(ppd, ppd->link_width_downgrade_tx_active);
7705 }
7706 
7707 static char *dcc_err_string(char *buf, int buf_len, u64 flags)
7708 {
7709 	return flag_string(buf, buf_len, flags, dcc_err_flags,
7710 		ARRAY_SIZE(dcc_err_flags));
7711 }
7712 
7713 static char *lcb_err_string(char *buf, int buf_len, u64 flags)
7714 {
7715 	return flag_string(buf, buf_len, flags, lcb_err_flags,
7716 		ARRAY_SIZE(lcb_err_flags));
7717 }
7718 
7719 static char *dc8051_err_string(char *buf, int buf_len, u64 flags)
7720 {
7721 	return flag_string(buf, buf_len, flags, dc8051_err_flags,
7722 		ARRAY_SIZE(dc8051_err_flags));
7723 }
7724 
7725 static char *dc8051_info_err_string(char *buf, int buf_len, u64 flags)
7726 {
7727 	return flag_string(buf, buf_len, flags, dc8051_info_err_flags,
7728 		ARRAY_SIZE(dc8051_info_err_flags));
7729 }
7730 
7731 static char *dc8051_info_host_msg_string(char *buf, int buf_len, u64 flags)
7732 {
7733 	return flag_string(buf, buf_len, flags, dc8051_info_host_msg_flags,
7734 		ARRAY_SIZE(dc8051_info_host_msg_flags));
7735 }
7736 
7737 static void handle_8051_interrupt(struct hfi1_devdata *dd, u32 unused, u64 reg)
7738 {
7739 	struct hfi1_pportdata *ppd = dd->pport;
7740 	u64 info, err, host_msg;
7741 	int queue_link_down = 0;
7742 	char buf[96];
7743 
7744 	/* look at the flags */
7745 	if (reg & DC_DC8051_ERR_FLG_SET_BY_8051_SMASK) {
7746 		/* 8051 information set by firmware */
7747 		/* read DC8051_DBG_ERR_INFO_SET_BY_8051 for details */
7748 		info = read_csr(dd, DC_DC8051_DBG_ERR_INFO_SET_BY_8051);
7749 		err = (info >> DC_DC8051_DBG_ERR_INFO_SET_BY_8051_ERROR_SHIFT)
7750 			& DC_DC8051_DBG_ERR_INFO_SET_BY_8051_ERROR_MASK;
7751 		host_msg = (info >>
7752 			DC_DC8051_DBG_ERR_INFO_SET_BY_8051_HOST_MSG_SHIFT)
7753 			& DC_DC8051_DBG_ERR_INFO_SET_BY_8051_HOST_MSG_MASK;
7754 
7755 		/*
7756 		 * Handle error flags.
7757 		 */
7758 		if (err & FAILED_LNI) {
7759 			/*
7760 			 * LNI error indications are cleared by the 8051
7761 			 * only when starting polling.  Only pay attention
7762 			 * to them when in the states that occur during
7763 			 * LNI.
7764 			 */
7765 			if (ppd->host_link_state
7766 			    & (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) {
7767 				queue_link_down = 1;
7768 				dd_dev_info(dd, "Link error: %s\n",
7769 					    dc8051_info_err_string(buf,
7770 								   sizeof(buf),
7771 								   err &
7772 								   FAILED_LNI));
7773 			}
7774 			err &= ~(u64)FAILED_LNI;
7775 		}
7776 		/* unknown frames can happen durning LNI, just count */
7777 		if (err & UNKNOWN_FRAME) {
7778 			ppd->unknown_frame_count++;
7779 			err &= ~(u64)UNKNOWN_FRAME;
7780 		}
7781 		if (err) {
7782 			/* report remaining errors, but do not do anything */
7783 			dd_dev_err(dd, "8051 info error: %s\n",
7784 				   dc8051_info_err_string(buf, sizeof(buf),
7785 							  err));
7786 		}
7787 
7788 		/*
7789 		 * Handle host message flags.
7790 		 */
7791 		if (host_msg & HOST_REQ_DONE) {
7792 			/*
7793 			 * Presently, the driver does a busy wait for
7794 			 * host requests to complete.  This is only an
7795 			 * informational message.
7796 			 * NOTE: The 8051 clears the host message
7797 			 * information *on the next 8051 command*.
7798 			 * Therefore, when linkup is achieved,
7799 			 * this flag will still be set.
7800 			 */
7801 			host_msg &= ~(u64)HOST_REQ_DONE;
7802 		}
7803 		if (host_msg & BC_SMA_MSG) {
7804 			queue_work(ppd->link_wq, &ppd->sma_message_work);
7805 			host_msg &= ~(u64)BC_SMA_MSG;
7806 		}
7807 		if (host_msg & LINKUP_ACHIEVED) {
7808 			dd_dev_info(dd, "8051: Link up\n");
7809 			queue_work(ppd->link_wq, &ppd->link_up_work);
7810 			host_msg &= ~(u64)LINKUP_ACHIEVED;
7811 		}
7812 		if (host_msg & EXT_DEVICE_CFG_REQ) {
7813 			handle_8051_request(ppd);
7814 			host_msg &= ~(u64)EXT_DEVICE_CFG_REQ;
7815 		}
7816 		if (host_msg & VERIFY_CAP_FRAME) {
7817 			queue_work(ppd->link_wq, &ppd->link_vc_work);
7818 			host_msg &= ~(u64)VERIFY_CAP_FRAME;
7819 		}
7820 		if (host_msg & LINK_GOING_DOWN) {
7821 			const char *extra = "";
7822 			/* no downgrade action needed if going down */
7823 			if (host_msg & LINK_WIDTH_DOWNGRADED) {
7824 				host_msg &= ~(u64)LINK_WIDTH_DOWNGRADED;
7825 				extra = " (ignoring downgrade)";
7826 			}
7827 			dd_dev_info(dd, "8051: Link down%s\n", extra);
7828 			queue_link_down = 1;
7829 			host_msg &= ~(u64)LINK_GOING_DOWN;
7830 		}
7831 		if (host_msg & LINK_WIDTH_DOWNGRADED) {
7832 			queue_work(ppd->link_wq, &ppd->link_downgrade_work);
7833 			host_msg &= ~(u64)LINK_WIDTH_DOWNGRADED;
7834 		}
7835 		if (host_msg) {
7836 			/* report remaining messages, but do not do anything */
7837 			dd_dev_info(dd, "8051 info host message: %s\n",
7838 				    dc8051_info_host_msg_string(buf,
7839 								sizeof(buf),
7840 								host_msg));
7841 		}
7842 
7843 		reg &= ~DC_DC8051_ERR_FLG_SET_BY_8051_SMASK;
7844 	}
7845 	if (reg & DC_DC8051_ERR_FLG_LOST_8051_HEART_BEAT_SMASK) {
7846 		/*
7847 		 * Lost the 8051 heartbeat.  If this happens, we
7848 		 * receive constant interrupts about it.  Disable
7849 		 * the interrupt after the first.
7850 		 */
7851 		dd_dev_err(dd, "Lost 8051 heartbeat\n");
7852 		write_csr(dd, DC_DC8051_ERR_EN,
7853 			  read_csr(dd, DC_DC8051_ERR_EN) &
7854 			  ~DC_DC8051_ERR_EN_LOST_8051_HEART_BEAT_SMASK);
7855 
7856 		reg &= ~DC_DC8051_ERR_FLG_LOST_8051_HEART_BEAT_SMASK;
7857 	}
7858 	if (reg) {
7859 		/* report the error, but do not do anything */
7860 		dd_dev_err(dd, "8051 error: %s\n",
7861 			   dc8051_err_string(buf, sizeof(buf), reg));
7862 	}
7863 
7864 	if (queue_link_down) {
7865 		/*
7866 		 * if the link is already going down or disabled, do not
7867 		 * queue another. If there's a link down entry already
7868 		 * queued, don't queue another one.
7869 		 */
7870 		if ((ppd->host_link_state &
7871 		    (HLS_GOING_OFFLINE | HLS_LINK_COOLDOWN)) ||
7872 		    ppd->link_enabled == 0) {
7873 			dd_dev_info(dd, "%s: not queuing link down. host_link_state %x, link_enabled %x\n",
7874 				    __func__, ppd->host_link_state,
7875 				    ppd->link_enabled);
7876 		} else {
7877 			if (xchg(&ppd->is_link_down_queued, 1) == 1)
7878 				dd_dev_info(dd,
7879 					    "%s: link down request already queued\n",
7880 					    __func__);
7881 			else
7882 				queue_work(ppd->link_wq, &ppd->link_down_work);
7883 		}
7884 	}
7885 }
7886 
7887 static const char * const fm_config_txt[] = {
7888 [0] =
7889 	"BadHeadDist: Distance violation between two head flits",
7890 [1] =
7891 	"BadTailDist: Distance violation between two tail flits",
7892 [2] =
7893 	"BadCtrlDist: Distance violation between two credit control flits",
7894 [3] =
7895 	"BadCrdAck: Credits return for unsupported VL",
7896 [4] =
7897 	"UnsupportedVLMarker: Received VL Marker",
7898 [5] =
7899 	"BadPreempt: Exceeded the preemption nesting level",
7900 [6] =
7901 	"BadControlFlit: Received unsupported control flit",
7902 /* no 7 */
7903 [8] =
7904 	"UnsupportedVLMarker: Received VL Marker for unconfigured or disabled VL",
7905 };
7906 
7907 static const char * const port_rcv_txt[] = {
7908 [1] =
7909 	"BadPktLen: Illegal PktLen",
7910 [2] =
7911 	"PktLenTooLong: Packet longer than PktLen",
7912 [3] =
7913 	"PktLenTooShort: Packet shorter than PktLen",
7914 [4] =
7915 	"BadSLID: Illegal SLID (0, using multicast as SLID, does not include security validation of SLID)",
7916 [5] =
7917 	"BadDLID: Illegal DLID (0, doesn't match HFI)",
7918 [6] =
7919 	"BadL2: Illegal L2 opcode",
7920 [7] =
7921 	"BadSC: Unsupported SC",
7922 [9] =
7923 	"BadRC: Illegal RC",
7924 [11] =
7925 	"PreemptError: Preempting with same VL",
7926 [12] =
7927 	"PreemptVL15: Preempting a VL15 packet",
7928 };
7929 
7930 #define OPA_LDR_FMCONFIG_OFFSET 16
7931 #define OPA_LDR_PORTRCV_OFFSET 0
7932 static void handle_dcc_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
7933 {
7934 	u64 info, hdr0, hdr1;
7935 	const char *extra;
7936 	char buf[96];
7937 	struct hfi1_pportdata *ppd = dd->pport;
7938 	u8 lcl_reason = 0;
7939 	int do_bounce = 0;
7940 
7941 	if (reg & DCC_ERR_FLG_UNCORRECTABLE_ERR_SMASK) {
7942 		if (!(dd->err_info_uncorrectable & OPA_EI_STATUS_SMASK)) {
7943 			info = read_csr(dd, DCC_ERR_INFO_UNCORRECTABLE);
7944 			dd->err_info_uncorrectable = info & OPA_EI_CODE_SMASK;
7945 			/* set status bit */
7946 			dd->err_info_uncorrectable |= OPA_EI_STATUS_SMASK;
7947 		}
7948 		reg &= ~DCC_ERR_FLG_UNCORRECTABLE_ERR_SMASK;
7949 	}
7950 
7951 	if (reg & DCC_ERR_FLG_LINK_ERR_SMASK) {
7952 		struct hfi1_pportdata *ppd = dd->pport;
7953 		/* this counter saturates at (2^32) - 1 */
7954 		if (ppd->link_downed < (u32)UINT_MAX)
7955 			ppd->link_downed++;
7956 		reg &= ~DCC_ERR_FLG_LINK_ERR_SMASK;
7957 	}
7958 
7959 	if (reg & DCC_ERR_FLG_FMCONFIG_ERR_SMASK) {
7960 		u8 reason_valid = 1;
7961 
7962 		info = read_csr(dd, DCC_ERR_INFO_FMCONFIG);
7963 		if (!(dd->err_info_fmconfig & OPA_EI_STATUS_SMASK)) {
7964 			dd->err_info_fmconfig = info & OPA_EI_CODE_SMASK;
7965 			/* set status bit */
7966 			dd->err_info_fmconfig |= OPA_EI_STATUS_SMASK;
7967 		}
7968 		switch (info) {
7969 		case 0:
7970 		case 1:
7971 		case 2:
7972 		case 3:
7973 		case 4:
7974 		case 5:
7975 		case 6:
7976 			extra = fm_config_txt[info];
7977 			break;
7978 		case 8:
7979 			extra = fm_config_txt[info];
7980 			if (ppd->port_error_action &
7981 			    OPA_PI_MASK_FM_CFG_UNSUPPORTED_VL_MARKER) {
7982 				do_bounce = 1;
7983 				/*
7984 				 * lcl_reason cannot be derived from info
7985 				 * for this error
7986 				 */
7987 				lcl_reason =
7988 				  OPA_LINKDOWN_REASON_UNSUPPORTED_VL_MARKER;
7989 			}
7990 			break;
7991 		default:
7992 			reason_valid = 0;
7993 			snprintf(buf, sizeof(buf), "reserved%lld", info);
7994 			extra = buf;
7995 			break;
7996 		}
7997 
7998 		if (reason_valid && !do_bounce) {
7999 			do_bounce = ppd->port_error_action &
8000 					(1 << (OPA_LDR_FMCONFIG_OFFSET + info));
8001 			lcl_reason = info + OPA_LINKDOWN_REASON_BAD_HEAD_DIST;
8002 		}
8003 
8004 		/* just report this */
8005 		dd_dev_info_ratelimited(dd, "DCC Error: fmconfig error: %s\n",
8006 					extra);
8007 		reg &= ~DCC_ERR_FLG_FMCONFIG_ERR_SMASK;
8008 	}
8009 
8010 	if (reg & DCC_ERR_FLG_RCVPORT_ERR_SMASK) {
8011 		u8 reason_valid = 1;
8012 
8013 		info = read_csr(dd, DCC_ERR_INFO_PORTRCV);
8014 		hdr0 = read_csr(dd, DCC_ERR_INFO_PORTRCV_HDR0);
8015 		hdr1 = read_csr(dd, DCC_ERR_INFO_PORTRCV_HDR1);
8016 		if (!(dd->err_info_rcvport.status_and_code &
8017 		      OPA_EI_STATUS_SMASK)) {
8018 			dd->err_info_rcvport.status_and_code =
8019 				info & OPA_EI_CODE_SMASK;
8020 			/* set status bit */
8021 			dd->err_info_rcvport.status_and_code |=
8022 				OPA_EI_STATUS_SMASK;
8023 			/*
8024 			 * save first 2 flits in the packet that caused
8025 			 * the error
8026 			 */
8027 			dd->err_info_rcvport.packet_flit1 = hdr0;
8028 			dd->err_info_rcvport.packet_flit2 = hdr1;
8029 		}
8030 		switch (info) {
8031 		case 1:
8032 		case 2:
8033 		case 3:
8034 		case 4:
8035 		case 5:
8036 		case 6:
8037 		case 7:
8038 		case 9:
8039 		case 11:
8040 		case 12:
8041 			extra = port_rcv_txt[info];
8042 			break;
8043 		default:
8044 			reason_valid = 0;
8045 			snprintf(buf, sizeof(buf), "reserved%lld", info);
8046 			extra = buf;
8047 			break;
8048 		}
8049 
8050 		if (reason_valid && !do_bounce) {
8051 			do_bounce = ppd->port_error_action &
8052 					(1 << (OPA_LDR_PORTRCV_OFFSET + info));
8053 			lcl_reason = info + OPA_LINKDOWN_REASON_RCV_ERROR_0;
8054 		}
8055 
8056 		/* just report this */
8057 		dd_dev_info_ratelimited(dd, "DCC Error: PortRcv error: %s\n"
8058 					"               hdr0 0x%llx, hdr1 0x%llx\n",
8059 					extra, hdr0, hdr1);
8060 
8061 		reg &= ~DCC_ERR_FLG_RCVPORT_ERR_SMASK;
8062 	}
8063 
8064 	if (reg & DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_UC_SMASK) {
8065 		/* informative only */
8066 		dd_dev_info_ratelimited(dd, "8051 access to LCB blocked\n");
8067 		reg &= ~DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_UC_SMASK;
8068 	}
8069 	if (reg & DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_HOST_SMASK) {
8070 		/* informative only */
8071 		dd_dev_info_ratelimited(dd, "host access to LCB blocked\n");
8072 		reg &= ~DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_HOST_SMASK;
8073 	}
8074 
8075 	if (unlikely(hfi1_dbg_fault_suppress_err(&dd->verbs_dev)))
8076 		reg &= ~DCC_ERR_FLG_LATE_EBP_ERR_SMASK;
8077 
8078 	/* report any remaining errors */
8079 	if (reg)
8080 		dd_dev_info_ratelimited(dd, "DCC Error: %s\n",
8081 					dcc_err_string(buf, sizeof(buf), reg));
8082 
8083 	if (lcl_reason == 0)
8084 		lcl_reason = OPA_LINKDOWN_REASON_UNKNOWN;
8085 
8086 	if (do_bounce) {
8087 		dd_dev_info_ratelimited(dd, "%s: PortErrorAction bounce\n",
8088 					__func__);
8089 		set_link_down_reason(ppd, lcl_reason, 0, lcl_reason);
8090 		queue_work(ppd->link_wq, &ppd->link_bounce_work);
8091 	}
8092 }
8093 
8094 static void handle_lcb_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
8095 {
8096 	char buf[96];
8097 
8098 	dd_dev_info(dd, "LCB Error: %s\n",
8099 		    lcb_err_string(buf, sizeof(buf), reg));
8100 }
8101 
8102 /*
8103  * CCE block DC interrupt.  Source is < 8.
8104  */
8105 static void is_dc_int(struct hfi1_devdata *dd, unsigned int source)
8106 {
8107 	const struct err_reg_info *eri = &dc_errs[source];
8108 
8109 	if (eri->handler) {
8110 		interrupt_clear_down(dd, 0, eri);
8111 	} else if (source == 3 /* dc_lbm_int */) {
8112 		/*
8113 		 * This indicates that a parity error has occurred on the
8114 		 * address/control lines presented to the LBM.  The error
8115 		 * is a single pulse, there is no associated error flag,
8116 		 * and it is non-maskable.  This is because if a parity
8117 		 * error occurs on the request the request is dropped.
8118 		 * This should never occur, but it is nice to know if it
8119 		 * ever does.
8120 		 */
8121 		dd_dev_err(dd, "Parity error in DC LBM block\n");
8122 	} else {
8123 		dd_dev_err(dd, "Invalid DC interrupt %u\n", source);
8124 	}
8125 }
8126 
8127 /*
8128  * TX block send credit interrupt.  Source is < 160.
8129  */
8130 static void is_send_credit_int(struct hfi1_devdata *dd, unsigned int source)
8131 {
8132 	sc_group_release_update(dd, source);
8133 }
8134 
8135 /*
8136  * TX block SDMA interrupt.  Source is < 48.
8137  *
8138  * SDMA interrupts are grouped by type:
8139  *
8140  *	 0 -  N-1 = SDma
8141  *	 N - 2N-1 = SDmaProgress
8142  *	2N - 3N-1 = SDmaIdle
8143  */
8144 static void is_sdma_eng_int(struct hfi1_devdata *dd, unsigned int source)
8145 {
8146 	/* what interrupt */
8147 	unsigned int what  = source / TXE_NUM_SDMA_ENGINES;
8148 	/* which engine */
8149 	unsigned int which = source % TXE_NUM_SDMA_ENGINES;
8150 
8151 #ifdef CONFIG_SDMA_VERBOSITY
8152 	dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", which,
8153 		   slashstrip(__FILE__), __LINE__, __func__);
8154 	sdma_dumpstate(&dd->per_sdma[which]);
8155 #endif
8156 
8157 	if (likely(what < 3 && which < dd->num_sdma)) {
8158 		sdma_engine_interrupt(&dd->per_sdma[which], 1ull << source);
8159 	} else {
8160 		/* should not happen */
8161 		dd_dev_err(dd, "Invalid SDMA interrupt 0x%x\n", source);
8162 	}
8163 }
8164 
8165 /**
8166  * is_rcv_avail_int() - User receive context available IRQ handler
8167  * @dd: valid dd
8168  * @source: logical IRQ source (offset from IS_RCVAVAIL_START)
8169  *
8170  * RX block receive available interrupt.  Source is < 160.
8171  *
8172  * This is the general interrupt handler for user (PSM) receive contexts,
8173  * and can only be used for non-threaded IRQs.
8174  */
8175 static void is_rcv_avail_int(struct hfi1_devdata *dd, unsigned int source)
8176 {
8177 	struct hfi1_ctxtdata *rcd;
8178 	char *err_detail;
8179 
8180 	if (likely(source < dd->num_rcv_contexts)) {
8181 		rcd = hfi1_rcd_get_by_index(dd, source);
8182 		if (rcd) {
8183 			handle_user_interrupt(rcd);
8184 			hfi1_rcd_put(rcd);
8185 			return;	/* OK */
8186 		}
8187 		/* received an interrupt, but no rcd */
8188 		err_detail = "dataless";
8189 	} else {
8190 		/* received an interrupt, but are not using that context */
8191 		err_detail = "out of range";
8192 	}
8193 	dd_dev_err(dd, "unexpected %s receive available context interrupt %u\n",
8194 		   err_detail, source);
8195 }
8196 
8197 /**
8198  * is_rcv_urgent_int() - User receive context urgent IRQ handler
8199  * @dd: valid dd
8200  * @source: logical IRQ source (offset from IS_RCVURGENT_START)
8201  *
8202  * RX block receive urgent interrupt.  Source is < 160.
8203  *
8204  * NOTE: kernel receive contexts specifically do NOT enable this IRQ.
8205  */
8206 static void is_rcv_urgent_int(struct hfi1_devdata *dd, unsigned int source)
8207 {
8208 	struct hfi1_ctxtdata *rcd;
8209 	char *err_detail;
8210 
8211 	if (likely(source < dd->num_rcv_contexts)) {
8212 		rcd = hfi1_rcd_get_by_index(dd, source);
8213 		if (rcd) {
8214 			handle_user_interrupt(rcd);
8215 			hfi1_rcd_put(rcd);
8216 			return;	/* OK */
8217 		}
8218 		/* received an interrupt, but no rcd */
8219 		err_detail = "dataless";
8220 	} else {
8221 		/* received an interrupt, but are not using that context */
8222 		err_detail = "out of range";
8223 	}
8224 	dd_dev_err(dd, "unexpected %s receive urgent context interrupt %u\n",
8225 		   err_detail, source);
8226 }
8227 
8228 /*
8229  * Reserved range interrupt.  Should not be called in normal operation.
8230  */
8231 static void is_reserved_int(struct hfi1_devdata *dd, unsigned int source)
8232 {
8233 	char name[64];
8234 
8235 	dd_dev_err(dd, "unexpected %s interrupt\n",
8236 		   is_reserved_name(name, sizeof(name), source));
8237 }
8238 
8239 static const struct is_table is_table[] = {
8240 /*
8241  * start		 end
8242  *				name func		interrupt func
8243  */
8244 { IS_GENERAL_ERR_START,  IS_GENERAL_ERR_END,
8245 				is_misc_err_name,	is_misc_err_int },
8246 { IS_SDMAENG_ERR_START,  IS_SDMAENG_ERR_END,
8247 				is_sdma_eng_err_name,	is_sdma_eng_err_int },
8248 { IS_SENDCTXT_ERR_START, IS_SENDCTXT_ERR_END,
8249 				is_sendctxt_err_name,	is_sendctxt_err_int },
8250 { IS_SDMA_START,	     IS_SDMA_IDLE_END,
8251 				is_sdma_eng_name,	is_sdma_eng_int },
8252 { IS_VARIOUS_START,	     IS_VARIOUS_END,
8253 				is_various_name,	is_various_int },
8254 { IS_DC_START,	     IS_DC_END,
8255 				is_dc_name,		is_dc_int },
8256 { IS_RCVAVAIL_START,     IS_RCVAVAIL_END,
8257 				is_rcv_avail_name,	is_rcv_avail_int },
8258 { IS_RCVURGENT_START,    IS_RCVURGENT_END,
8259 				is_rcv_urgent_name,	is_rcv_urgent_int },
8260 { IS_SENDCREDIT_START,   IS_SENDCREDIT_END,
8261 				is_send_credit_name,	is_send_credit_int},
8262 { IS_RESERVED_START,     IS_RESERVED_END,
8263 				is_reserved_name,	is_reserved_int},
8264 };
8265 
8266 /*
8267  * Interrupt source interrupt - called when the given source has an interrupt.
8268  * Source is a bit index into an array of 64-bit integers.
8269  */
8270 static void is_interrupt(struct hfi1_devdata *dd, unsigned int source)
8271 {
8272 	const struct is_table *entry;
8273 
8274 	/* avoids a double compare by walking the table in-order */
8275 	for (entry = &is_table[0]; entry->is_name; entry++) {
8276 		if (source <= entry->end) {
8277 			trace_hfi1_interrupt(dd, entry, source);
8278 			entry->is_int(dd, source - entry->start);
8279 			return;
8280 		}
8281 	}
8282 	/* fell off the end */
8283 	dd_dev_err(dd, "invalid interrupt source %u\n", source);
8284 }
8285 
8286 /**
8287  * gerneral_interrupt() -  General interrupt handler
8288  * @irq: MSIx IRQ vector
8289  * @data: hfi1 devdata
8290  *
8291  * This is able to correctly handle all non-threaded interrupts.  Receive
8292  * context DATA IRQs are threaded and are not supported by this handler.
8293  *
8294  */
8295 irqreturn_t general_interrupt(int irq, void *data)
8296 {
8297 	struct hfi1_devdata *dd = data;
8298 	u64 regs[CCE_NUM_INT_CSRS];
8299 	u32 bit;
8300 	int i;
8301 	irqreturn_t handled = IRQ_NONE;
8302 
8303 	this_cpu_inc(*dd->int_counter);
8304 
8305 	/* phase 1: scan and clear all handled interrupts */
8306 	for (i = 0; i < CCE_NUM_INT_CSRS; i++) {
8307 		if (dd->gi_mask[i] == 0) {
8308 			regs[i] = 0;	/* used later */
8309 			continue;
8310 		}
8311 		regs[i] = read_csr(dd, CCE_INT_STATUS + (8 * i)) &
8312 				dd->gi_mask[i];
8313 		/* only clear if anything is set */
8314 		if (regs[i])
8315 			write_csr(dd, CCE_INT_CLEAR + (8 * i), regs[i]);
8316 	}
8317 
8318 	/* phase 2: call the appropriate handler */
8319 	for_each_set_bit(bit, (unsigned long *)&regs[0],
8320 			 CCE_NUM_INT_CSRS * 64) {
8321 		is_interrupt(dd, bit);
8322 		handled = IRQ_HANDLED;
8323 	}
8324 
8325 	return handled;
8326 }
8327 
8328 irqreturn_t sdma_interrupt(int irq, void *data)
8329 {
8330 	struct sdma_engine *sde = data;
8331 	struct hfi1_devdata *dd = sde->dd;
8332 	u64 status;
8333 
8334 #ifdef CONFIG_SDMA_VERBOSITY
8335 	dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
8336 		   slashstrip(__FILE__), __LINE__, __func__);
8337 	sdma_dumpstate(sde);
8338 #endif
8339 
8340 	this_cpu_inc(*dd->int_counter);
8341 
8342 	/* This read_csr is really bad in the hot path */
8343 	status = read_csr(dd,
8344 			  CCE_INT_STATUS + (8 * (IS_SDMA_START / 64)))
8345 			  & sde->imask;
8346 	if (likely(status)) {
8347 		/* clear the interrupt(s) */
8348 		write_csr(dd,
8349 			  CCE_INT_CLEAR + (8 * (IS_SDMA_START / 64)),
8350 			  status);
8351 
8352 		/* handle the interrupt(s) */
8353 		sdma_engine_interrupt(sde, status);
8354 	} else {
8355 		dd_dev_info_ratelimited(dd, "SDMA engine %u interrupt, but no status bits set\n",
8356 					sde->this_idx);
8357 	}
8358 	return IRQ_HANDLED;
8359 }
8360 
8361 /*
8362  * Clear the receive interrupt.  Use a read of the interrupt clear CSR
8363  * to insure that the write completed.  This does NOT guarantee that
8364  * queued DMA writes to memory from the chip are pushed.
8365  */
8366 static inline void clear_recv_intr(struct hfi1_ctxtdata *rcd)
8367 {
8368 	struct hfi1_devdata *dd = rcd->dd;
8369 	u32 addr = CCE_INT_CLEAR + (8 * rcd->ireg);
8370 
8371 	write_csr(dd, addr, rcd->imask);
8372 	/* force the above write on the chip and get a value back */
8373 	(void)read_csr(dd, addr);
8374 }
8375 
8376 /* force the receive interrupt */
8377 void force_recv_intr(struct hfi1_ctxtdata *rcd)
8378 {
8379 	write_csr(rcd->dd, CCE_INT_FORCE + (8 * rcd->ireg), rcd->imask);
8380 }
8381 
8382 /*
8383  * Return non-zero if a packet is present.
8384  *
8385  * This routine is called when rechecking for packets after the RcvAvail
8386  * interrupt has been cleared down.  First, do a quick check of memory for
8387  * a packet present.  If not found, use an expensive CSR read of the context
8388  * tail to determine the actual tail.  The CSR read is necessary because there
8389  * is no method to push pending DMAs to memory other than an interrupt and we
8390  * are trying to determine if we need to force an interrupt.
8391  */
8392 static inline int check_packet_present(struct hfi1_ctxtdata *rcd)
8393 {
8394 	u32 tail;
8395 	int present;
8396 
8397 	if (!rcd->rcvhdrtail_kvaddr)
8398 		present = (rcd->seq_cnt ==
8399 				rhf_rcv_seq(rhf_to_cpu(get_rhf_addr(rcd))));
8400 	else /* is RDMA rtail */
8401 		present = (rcd->head != get_rcvhdrtail(rcd));
8402 
8403 	if (present)
8404 		return 1;
8405 
8406 	/* fall back to a CSR read, correct indpendent of DMA_RTAIL */
8407 	tail = (u32)read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_TAIL);
8408 	return rcd->head != tail;
8409 }
8410 
8411 /*
8412  * Receive packet IRQ handler.  This routine expects to be on its own IRQ.
8413  * This routine will try to handle packets immediately (latency), but if
8414  * it finds too many, it will invoke the thread handler (bandwitdh).  The
8415  * chip receive interrupt is *not* cleared down until this or the thread (if
8416  * invoked) is finished.  The intent is to avoid extra interrupts while we
8417  * are processing packets anyway.
8418  */
8419 irqreturn_t receive_context_interrupt(int irq, void *data)
8420 {
8421 	struct hfi1_ctxtdata *rcd = data;
8422 	struct hfi1_devdata *dd = rcd->dd;
8423 	int disposition;
8424 	int present;
8425 
8426 	trace_hfi1_receive_interrupt(dd, rcd);
8427 	this_cpu_inc(*dd->int_counter);
8428 	aspm_ctx_disable(rcd);
8429 
8430 	/* receive interrupt remains blocked while processing packets */
8431 	disposition = rcd->do_interrupt(rcd, 0);
8432 
8433 	/*
8434 	 * Too many packets were seen while processing packets in this
8435 	 * IRQ handler.  Invoke the handler thread.  The receive interrupt
8436 	 * remains blocked.
8437 	 */
8438 	if (disposition == RCV_PKT_LIMIT)
8439 		return IRQ_WAKE_THREAD;
8440 
8441 	/*
8442 	 * The packet processor detected no more packets.  Clear the receive
8443 	 * interrupt and recheck for a packet packet that may have arrived
8444 	 * after the previous check and interrupt clear.  If a packet arrived,
8445 	 * force another interrupt.
8446 	 */
8447 	clear_recv_intr(rcd);
8448 	present = check_packet_present(rcd);
8449 	if (present)
8450 		force_recv_intr(rcd);
8451 
8452 	return IRQ_HANDLED;
8453 }
8454 
8455 /*
8456  * Receive packet thread handler.  This expects to be invoked with the
8457  * receive interrupt still blocked.
8458  */
8459 irqreturn_t receive_context_thread(int irq, void *data)
8460 {
8461 	struct hfi1_ctxtdata *rcd = data;
8462 	int present;
8463 
8464 	/* receive interrupt is still blocked from the IRQ handler */
8465 	(void)rcd->do_interrupt(rcd, 1);
8466 
8467 	/*
8468 	 * The packet processor will only return if it detected no more
8469 	 * packets.  Hold IRQs here so we can safely clear the interrupt and
8470 	 * recheck for a packet that may have arrived after the previous
8471 	 * check and the interrupt clear.  If a packet arrived, force another
8472 	 * interrupt.
8473 	 */
8474 	local_irq_disable();
8475 	clear_recv_intr(rcd);
8476 	present = check_packet_present(rcd);
8477 	if (present)
8478 		force_recv_intr(rcd);
8479 	local_irq_enable();
8480 
8481 	return IRQ_HANDLED;
8482 }
8483 
8484 /* ========================================================================= */
8485 
8486 u32 read_physical_state(struct hfi1_devdata *dd)
8487 {
8488 	u64 reg;
8489 
8490 	reg = read_csr(dd, DC_DC8051_STS_CUR_STATE);
8491 	return (reg >> DC_DC8051_STS_CUR_STATE_PORT_SHIFT)
8492 				& DC_DC8051_STS_CUR_STATE_PORT_MASK;
8493 }
8494 
8495 u32 read_logical_state(struct hfi1_devdata *dd)
8496 {
8497 	u64 reg;
8498 
8499 	reg = read_csr(dd, DCC_CFG_PORT_CONFIG);
8500 	return (reg >> DCC_CFG_PORT_CONFIG_LINK_STATE_SHIFT)
8501 				& DCC_CFG_PORT_CONFIG_LINK_STATE_MASK;
8502 }
8503 
8504 static void set_logical_state(struct hfi1_devdata *dd, u32 chip_lstate)
8505 {
8506 	u64 reg;
8507 
8508 	reg = read_csr(dd, DCC_CFG_PORT_CONFIG);
8509 	/* clear current state, set new state */
8510 	reg &= ~DCC_CFG_PORT_CONFIG_LINK_STATE_SMASK;
8511 	reg |= (u64)chip_lstate << DCC_CFG_PORT_CONFIG_LINK_STATE_SHIFT;
8512 	write_csr(dd, DCC_CFG_PORT_CONFIG, reg);
8513 }
8514 
8515 /*
8516  * Use the 8051 to read a LCB CSR.
8517  */
8518 static int read_lcb_via_8051(struct hfi1_devdata *dd, u32 addr, u64 *data)
8519 {
8520 	u32 regno;
8521 	int ret;
8522 
8523 	if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR) {
8524 		if (acquire_lcb_access(dd, 0) == 0) {
8525 			*data = read_csr(dd, addr);
8526 			release_lcb_access(dd, 0);
8527 			return 0;
8528 		}
8529 		return -EBUSY;
8530 	}
8531 
8532 	/* register is an index of LCB registers: (offset - base) / 8 */
8533 	regno = (addr - DC_LCB_CFG_RUN) >> 3;
8534 	ret = do_8051_command(dd, HCMD_READ_LCB_CSR, regno, data);
8535 	if (ret != HCMD_SUCCESS)
8536 		return -EBUSY;
8537 	return 0;
8538 }
8539 
8540 /*
8541  * Provide a cache for some of the LCB registers in case the LCB is
8542  * unavailable.
8543  * (The LCB is unavailable in certain link states, for example.)
8544  */
8545 struct lcb_datum {
8546 	u32 off;
8547 	u64 val;
8548 };
8549 
8550 static struct lcb_datum lcb_cache[] = {
8551 	{ DC_LCB_ERR_INFO_RX_REPLAY_CNT, 0},
8552 	{ DC_LCB_ERR_INFO_SEQ_CRC_CNT, 0 },
8553 	{ DC_LCB_ERR_INFO_REINIT_FROM_PEER_CNT, 0 },
8554 };
8555 
8556 static void update_lcb_cache(struct hfi1_devdata *dd)
8557 {
8558 	int i;
8559 	int ret;
8560 	u64 val;
8561 
8562 	for (i = 0; i < ARRAY_SIZE(lcb_cache); i++) {
8563 		ret = read_lcb_csr(dd, lcb_cache[i].off, &val);
8564 
8565 		/* Update if we get good data */
8566 		if (likely(ret != -EBUSY))
8567 			lcb_cache[i].val = val;
8568 	}
8569 }
8570 
8571 static int read_lcb_cache(u32 off, u64 *val)
8572 {
8573 	int i;
8574 
8575 	for (i = 0; i < ARRAY_SIZE(lcb_cache); i++) {
8576 		if (lcb_cache[i].off == off) {
8577 			*val = lcb_cache[i].val;
8578 			return 0;
8579 		}
8580 	}
8581 
8582 	pr_warn("%s bad offset 0x%x\n", __func__, off);
8583 	return -1;
8584 }
8585 
8586 /*
8587  * Read an LCB CSR.  Access may not be in host control, so check.
8588  * Return 0 on success, -EBUSY on failure.
8589  */
8590 int read_lcb_csr(struct hfi1_devdata *dd, u32 addr, u64 *data)
8591 {
8592 	struct hfi1_pportdata *ppd = dd->pport;
8593 
8594 	/* if up, go through the 8051 for the value */
8595 	if (ppd->host_link_state & HLS_UP)
8596 		return read_lcb_via_8051(dd, addr, data);
8597 	/* if going up or down, check the cache, otherwise, no access */
8598 	if (ppd->host_link_state & (HLS_GOING_UP | HLS_GOING_OFFLINE)) {
8599 		if (read_lcb_cache(addr, data))
8600 			return -EBUSY;
8601 		return 0;
8602 	}
8603 
8604 	/* otherwise, host has access */
8605 	*data = read_csr(dd, addr);
8606 	return 0;
8607 }
8608 
8609 /*
8610  * Use the 8051 to write a LCB CSR.
8611  */
8612 static int write_lcb_via_8051(struct hfi1_devdata *dd, u32 addr, u64 data)
8613 {
8614 	u32 regno;
8615 	int ret;
8616 
8617 	if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR ||
8618 	    (dd->dc8051_ver < dc8051_ver(0, 20, 0))) {
8619 		if (acquire_lcb_access(dd, 0) == 0) {
8620 			write_csr(dd, addr, data);
8621 			release_lcb_access(dd, 0);
8622 			return 0;
8623 		}
8624 		return -EBUSY;
8625 	}
8626 
8627 	/* register is an index of LCB registers: (offset - base) / 8 */
8628 	regno = (addr - DC_LCB_CFG_RUN) >> 3;
8629 	ret = do_8051_command(dd, HCMD_WRITE_LCB_CSR, regno, &data);
8630 	if (ret != HCMD_SUCCESS)
8631 		return -EBUSY;
8632 	return 0;
8633 }
8634 
8635 /*
8636  * Write an LCB CSR.  Access may not be in host control, so check.
8637  * Return 0 on success, -EBUSY on failure.
8638  */
8639 int write_lcb_csr(struct hfi1_devdata *dd, u32 addr, u64 data)
8640 {
8641 	struct hfi1_pportdata *ppd = dd->pport;
8642 
8643 	/* if up, go through the 8051 for the value */
8644 	if (ppd->host_link_state & HLS_UP)
8645 		return write_lcb_via_8051(dd, addr, data);
8646 	/* if going up or down, no access */
8647 	if (ppd->host_link_state & (HLS_GOING_UP | HLS_GOING_OFFLINE))
8648 		return -EBUSY;
8649 	/* otherwise, host has access */
8650 	write_csr(dd, addr, data);
8651 	return 0;
8652 }
8653 
8654 /*
8655  * Returns:
8656  *	< 0 = Linux error, not able to get access
8657  *	> 0 = 8051 command RETURN_CODE
8658  */
8659 static int do_8051_command(struct hfi1_devdata *dd, u32 type, u64 in_data,
8660 			   u64 *out_data)
8661 {
8662 	u64 reg, completed;
8663 	int return_code;
8664 	unsigned long timeout;
8665 
8666 	hfi1_cdbg(DC8051, "type %d, data 0x%012llx", type, in_data);
8667 
8668 	mutex_lock(&dd->dc8051_lock);
8669 
8670 	/* We can't send any commands to the 8051 if it's in reset */
8671 	if (dd->dc_shutdown) {
8672 		return_code = -ENODEV;
8673 		goto fail;
8674 	}
8675 
8676 	/*
8677 	 * If an 8051 host command timed out previously, then the 8051 is
8678 	 * stuck.
8679 	 *
8680 	 * On first timeout, attempt to reset and restart the entire DC
8681 	 * block (including 8051). (Is this too big of a hammer?)
8682 	 *
8683 	 * If the 8051 times out a second time, the reset did not bring it
8684 	 * back to healthy life. In that case, fail any subsequent commands.
8685 	 */
8686 	if (dd->dc8051_timed_out) {
8687 		if (dd->dc8051_timed_out > 1) {
8688 			dd_dev_err(dd,
8689 				   "Previous 8051 host command timed out, skipping command %u\n",
8690 				   type);
8691 			return_code = -ENXIO;
8692 			goto fail;
8693 		}
8694 		_dc_shutdown(dd);
8695 		_dc_start(dd);
8696 	}
8697 
8698 	/*
8699 	 * If there is no timeout, then the 8051 command interface is
8700 	 * waiting for a command.
8701 	 */
8702 
8703 	/*
8704 	 * When writing a LCB CSR, out_data contains the full value to
8705 	 * to be written, while in_data contains the relative LCB
8706 	 * address in 7:0.  Do the work here, rather than the caller,
8707 	 * of distrubting the write data to where it needs to go:
8708 	 *
8709 	 * Write data
8710 	 *   39:00 -> in_data[47:8]
8711 	 *   47:40 -> DC8051_CFG_EXT_DEV_0.RETURN_CODE
8712 	 *   63:48 -> DC8051_CFG_EXT_DEV_0.RSP_DATA
8713 	 */
8714 	if (type == HCMD_WRITE_LCB_CSR) {
8715 		in_data |= ((*out_data) & 0xffffffffffull) << 8;
8716 		/* must preserve COMPLETED - it is tied to hardware */
8717 		reg = read_csr(dd, DC_DC8051_CFG_EXT_DEV_0);
8718 		reg &= DC_DC8051_CFG_EXT_DEV_0_COMPLETED_SMASK;
8719 		reg |= ((((*out_data) >> 40) & 0xff) <<
8720 				DC_DC8051_CFG_EXT_DEV_0_RETURN_CODE_SHIFT)
8721 		      | ((((*out_data) >> 48) & 0xffff) <<
8722 				DC_DC8051_CFG_EXT_DEV_0_RSP_DATA_SHIFT);
8723 		write_csr(dd, DC_DC8051_CFG_EXT_DEV_0, reg);
8724 	}
8725 
8726 	/*
8727 	 * Do two writes: the first to stabilize the type and req_data, the
8728 	 * second to activate.
8729 	 */
8730 	reg = ((u64)type & DC_DC8051_CFG_HOST_CMD_0_REQ_TYPE_MASK)
8731 			<< DC_DC8051_CFG_HOST_CMD_0_REQ_TYPE_SHIFT
8732 		| (in_data & DC_DC8051_CFG_HOST_CMD_0_REQ_DATA_MASK)
8733 			<< DC_DC8051_CFG_HOST_CMD_0_REQ_DATA_SHIFT;
8734 	write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, reg);
8735 	reg |= DC_DC8051_CFG_HOST_CMD_0_REQ_NEW_SMASK;
8736 	write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, reg);
8737 
8738 	/* wait for completion, alternate: interrupt */
8739 	timeout = jiffies + msecs_to_jiffies(DC8051_COMMAND_TIMEOUT);
8740 	while (1) {
8741 		reg = read_csr(dd, DC_DC8051_CFG_HOST_CMD_1);
8742 		completed = reg & DC_DC8051_CFG_HOST_CMD_1_COMPLETED_SMASK;
8743 		if (completed)
8744 			break;
8745 		if (time_after(jiffies, timeout)) {
8746 			dd->dc8051_timed_out++;
8747 			dd_dev_err(dd, "8051 host command %u timeout\n", type);
8748 			if (out_data)
8749 				*out_data = 0;
8750 			return_code = -ETIMEDOUT;
8751 			goto fail;
8752 		}
8753 		udelay(2);
8754 	}
8755 
8756 	if (out_data) {
8757 		*out_data = (reg >> DC_DC8051_CFG_HOST_CMD_1_RSP_DATA_SHIFT)
8758 				& DC_DC8051_CFG_HOST_CMD_1_RSP_DATA_MASK;
8759 		if (type == HCMD_READ_LCB_CSR) {
8760 			/* top 16 bits are in a different register */
8761 			*out_data |= (read_csr(dd, DC_DC8051_CFG_EXT_DEV_1)
8762 				& DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SMASK)
8763 				<< (48
8764 				    - DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SHIFT);
8765 		}
8766 	}
8767 	return_code = (reg >> DC_DC8051_CFG_HOST_CMD_1_RETURN_CODE_SHIFT)
8768 				& DC_DC8051_CFG_HOST_CMD_1_RETURN_CODE_MASK;
8769 	dd->dc8051_timed_out = 0;
8770 	/*
8771 	 * Clear command for next user.
8772 	 */
8773 	write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, 0);
8774 
8775 fail:
8776 	mutex_unlock(&dd->dc8051_lock);
8777 	return return_code;
8778 }
8779 
8780 static int set_physical_link_state(struct hfi1_devdata *dd, u64 state)
8781 {
8782 	return do_8051_command(dd, HCMD_CHANGE_PHY_STATE, state, NULL);
8783 }
8784 
8785 int load_8051_config(struct hfi1_devdata *dd, u8 field_id,
8786 		     u8 lane_id, u32 config_data)
8787 {
8788 	u64 data;
8789 	int ret;
8790 
8791 	data = (u64)field_id << LOAD_DATA_FIELD_ID_SHIFT
8792 		| (u64)lane_id << LOAD_DATA_LANE_ID_SHIFT
8793 		| (u64)config_data << LOAD_DATA_DATA_SHIFT;
8794 	ret = do_8051_command(dd, HCMD_LOAD_CONFIG_DATA, data, NULL);
8795 	if (ret != HCMD_SUCCESS) {
8796 		dd_dev_err(dd,
8797 			   "load 8051 config: field id %d, lane %d, err %d\n",
8798 			   (int)field_id, (int)lane_id, ret);
8799 	}
8800 	return ret;
8801 }
8802 
8803 /*
8804  * Read the 8051 firmware "registers".  Use the RAM directly.  Always
8805  * set the result, even on error.
8806  * Return 0 on success, -errno on failure
8807  */
8808 int read_8051_config(struct hfi1_devdata *dd, u8 field_id, u8 lane_id,
8809 		     u32 *result)
8810 {
8811 	u64 big_data;
8812 	u32 addr;
8813 	int ret;
8814 
8815 	/* address start depends on the lane_id */
8816 	if (lane_id < 4)
8817 		addr = (4 * NUM_GENERAL_FIELDS)
8818 			+ (lane_id * 4 * NUM_LANE_FIELDS);
8819 	else
8820 		addr = 0;
8821 	addr += field_id * 4;
8822 
8823 	/* read is in 8-byte chunks, hardware will truncate the address down */
8824 	ret = read_8051_data(dd, addr, 8, &big_data);
8825 
8826 	if (ret == 0) {
8827 		/* extract the 4 bytes we want */
8828 		if (addr & 0x4)
8829 			*result = (u32)(big_data >> 32);
8830 		else
8831 			*result = (u32)big_data;
8832 	} else {
8833 		*result = 0;
8834 		dd_dev_err(dd, "%s: direct read failed, lane %d, field %d!\n",
8835 			   __func__, lane_id, field_id);
8836 	}
8837 
8838 	return ret;
8839 }
8840 
8841 static int write_vc_local_phy(struct hfi1_devdata *dd, u8 power_management,
8842 			      u8 continuous)
8843 {
8844 	u32 frame;
8845 
8846 	frame = continuous << CONTINIOUS_REMOTE_UPDATE_SUPPORT_SHIFT
8847 		| power_management << POWER_MANAGEMENT_SHIFT;
8848 	return load_8051_config(dd, VERIFY_CAP_LOCAL_PHY,
8849 				GENERAL_CONFIG, frame);
8850 }
8851 
8852 static int write_vc_local_fabric(struct hfi1_devdata *dd, u8 vau, u8 z, u8 vcu,
8853 				 u16 vl15buf, u8 crc_sizes)
8854 {
8855 	u32 frame;
8856 
8857 	frame = (u32)vau << VAU_SHIFT
8858 		| (u32)z << Z_SHIFT
8859 		| (u32)vcu << VCU_SHIFT
8860 		| (u32)vl15buf << VL15BUF_SHIFT
8861 		| (u32)crc_sizes << CRC_SIZES_SHIFT;
8862 	return load_8051_config(dd, VERIFY_CAP_LOCAL_FABRIC,
8863 				GENERAL_CONFIG, frame);
8864 }
8865 
8866 static void read_vc_local_link_mode(struct hfi1_devdata *dd, u8 *misc_bits,
8867 				    u8 *flag_bits, u16 *link_widths)
8868 {
8869 	u32 frame;
8870 
8871 	read_8051_config(dd, VERIFY_CAP_LOCAL_LINK_MODE, GENERAL_CONFIG,
8872 			 &frame);
8873 	*misc_bits = (frame >> MISC_CONFIG_BITS_SHIFT) & MISC_CONFIG_BITS_MASK;
8874 	*flag_bits = (frame >> LOCAL_FLAG_BITS_SHIFT) & LOCAL_FLAG_BITS_MASK;
8875 	*link_widths = (frame >> LINK_WIDTH_SHIFT) & LINK_WIDTH_MASK;
8876 }
8877 
8878 static int write_vc_local_link_mode(struct hfi1_devdata *dd,
8879 				    u8 misc_bits,
8880 				    u8 flag_bits,
8881 				    u16 link_widths)
8882 {
8883 	u32 frame;
8884 
8885 	frame = (u32)misc_bits << MISC_CONFIG_BITS_SHIFT
8886 		| (u32)flag_bits << LOCAL_FLAG_BITS_SHIFT
8887 		| (u32)link_widths << LINK_WIDTH_SHIFT;
8888 	return load_8051_config(dd, VERIFY_CAP_LOCAL_LINK_MODE, GENERAL_CONFIG,
8889 		     frame);
8890 }
8891 
8892 static int write_local_device_id(struct hfi1_devdata *dd, u16 device_id,
8893 				 u8 device_rev)
8894 {
8895 	u32 frame;
8896 
8897 	frame = ((u32)device_id << LOCAL_DEVICE_ID_SHIFT)
8898 		| ((u32)device_rev << LOCAL_DEVICE_REV_SHIFT);
8899 	return load_8051_config(dd, LOCAL_DEVICE_ID, GENERAL_CONFIG, frame);
8900 }
8901 
8902 static void read_remote_device_id(struct hfi1_devdata *dd, u16 *device_id,
8903 				  u8 *device_rev)
8904 {
8905 	u32 frame;
8906 
8907 	read_8051_config(dd, REMOTE_DEVICE_ID, GENERAL_CONFIG, &frame);
8908 	*device_id = (frame >> REMOTE_DEVICE_ID_SHIFT) & REMOTE_DEVICE_ID_MASK;
8909 	*device_rev = (frame >> REMOTE_DEVICE_REV_SHIFT)
8910 			& REMOTE_DEVICE_REV_MASK;
8911 }
8912 
8913 int write_host_interface_version(struct hfi1_devdata *dd, u8 version)
8914 {
8915 	u32 frame;
8916 	u32 mask;
8917 
8918 	mask = (HOST_INTERFACE_VERSION_MASK << HOST_INTERFACE_VERSION_SHIFT);
8919 	read_8051_config(dd, RESERVED_REGISTERS, GENERAL_CONFIG, &frame);
8920 	/* Clear, then set field */
8921 	frame &= ~mask;
8922 	frame |= ((u32)version << HOST_INTERFACE_VERSION_SHIFT);
8923 	return load_8051_config(dd, RESERVED_REGISTERS, GENERAL_CONFIG,
8924 				frame);
8925 }
8926 
8927 void read_misc_status(struct hfi1_devdata *dd, u8 *ver_major, u8 *ver_minor,
8928 		      u8 *ver_patch)
8929 {
8930 	u32 frame;
8931 
8932 	read_8051_config(dd, MISC_STATUS, GENERAL_CONFIG, &frame);
8933 	*ver_major = (frame >> STS_FM_VERSION_MAJOR_SHIFT) &
8934 		STS_FM_VERSION_MAJOR_MASK;
8935 	*ver_minor = (frame >> STS_FM_VERSION_MINOR_SHIFT) &
8936 		STS_FM_VERSION_MINOR_MASK;
8937 
8938 	read_8051_config(dd, VERSION_PATCH, GENERAL_CONFIG, &frame);
8939 	*ver_patch = (frame >> STS_FM_VERSION_PATCH_SHIFT) &
8940 		STS_FM_VERSION_PATCH_MASK;
8941 }
8942 
8943 static void read_vc_remote_phy(struct hfi1_devdata *dd, u8 *power_management,
8944 			       u8 *continuous)
8945 {
8946 	u32 frame;
8947 
8948 	read_8051_config(dd, VERIFY_CAP_REMOTE_PHY, GENERAL_CONFIG, &frame);
8949 	*power_management = (frame >> POWER_MANAGEMENT_SHIFT)
8950 					& POWER_MANAGEMENT_MASK;
8951 	*continuous = (frame >> CONTINIOUS_REMOTE_UPDATE_SUPPORT_SHIFT)
8952 					& CONTINIOUS_REMOTE_UPDATE_SUPPORT_MASK;
8953 }
8954 
8955 static void read_vc_remote_fabric(struct hfi1_devdata *dd, u8 *vau, u8 *z,
8956 				  u8 *vcu, u16 *vl15buf, u8 *crc_sizes)
8957 {
8958 	u32 frame;
8959 
8960 	read_8051_config(dd, VERIFY_CAP_REMOTE_FABRIC, GENERAL_CONFIG, &frame);
8961 	*vau = (frame >> VAU_SHIFT) & VAU_MASK;
8962 	*z = (frame >> Z_SHIFT) & Z_MASK;
8963 	*vcu = (frame >> VCU_SHIFT) & VCU_MASK;
8964 	*vl15buf = (frame >> VL15BUF_SHIFT) & VL15BUF_MASK;
8965 	*crc_sizes = (frame >> CRC_SIZES_SHIFT) & CRC_SIZES_MASK;
8966 }
8967 
8968 static void read_vc_remote_link_width(struct hfi1_devdata *dd,
8969 				      u8 *remote_tx_rate,
8970 				      u16 *link_widths)
8971 {
8972 	u32 frame;
8973 
8974 	read_8051_config(dd, VERIFY_CAP_REMOTE_LINK_WIDTH, GENERAL_CONFIG,
8975 			 &frame);
8976 	*remote_tx_rate = (frame >> REMOTE_TX_RATE_SHIFT)
8977 				& REMOTE_TX_RATE_MASK;
8978 	*link_widths = (frame >> LINK_WIDTH_SHIFT) & LINK_WIDTH_MASK;
8979 }
8980 
8981 static void read_local_lni(struct hfi1_devdata *dd, u8 *enable_lane_rx)
8982 {
8983 	u32 frame;
8984 
8985 	read_8051_config(dd, LOCAL_LNI_INFO, GENERAL_CONFIG, &frame);
8986 	*enable_lane_rx = (frame >> ENABLE_LANE_RX_SHIFT) & ENABLE_LANE_RX_MASK;
8987 }
8988 
8989 static void read_last_local_state(struct hfi1_devdata *dd, u32 *lls)
8990 {
8991 	read_8051_config(dd, LAST_LOCAL_STATE_COMPLETE, GENERAL_CONFIG, lls);
8992 }
8993 
8994 static void read_last_remote_state(struct hfi1_devdata *dd, u32 *lrs)
8995 {
8996 	read_8051_config(dd, LAST_REMOTE_STATE_COMPLETE, GENERAL_CONFIG, lrs);
8997 }
8998 
8999 void hfi1_read_link_quality(struct hfi1_devdata *dd, u8 *link_quality)
9000 {
9001 	u32 frame;
9002 	int ret;
9003 
9004 	*link_quality = 0;
9005 	if (dd->pport->host_link_state & HLS_UP) {
9006 		ret = read_8051_config(dd, LINK_QUALITY_INFO, GENERAL_CONFIG,
9007 				       &frame);
9008 		if (ret == 0)
9009 			*link_quality = (frame >> LINK_QUALITY_SHIFT)
9010 						& LINK_QUALITY_MASK;
9011 	}
9012 }
9013 
9014 static void read_planned_down_reason_code(struct hfi1_devdata *dd, u8 *pdrrc)
9015 {
9016 	u32 frame;
9017 
9018 	read_8051_config(dd, LINK_QUALITY_INFO, GENERAL_CONFIG, &frame);
9019 	*pdrrc = (frame >> DOWN_REMOTE_REASON_SHIFT) & DOWN_REMOTE_REASON_MASK;
9020 }
9021 
9022 static void read_link_down_reason(struct hfi1_devdata *dd, u8 *ldr)
9023 {
9024 	u32 frame;
9025 
9026 	read_8051_config(dd, LINK_DOWN_REASON, GENERAL_CONFIG, &frame);
9027 	*ldr = (frame & 0xff);
9028 }
9029 
9030 static int read_tx_settings(struct hfi1_devdata *dd,
9031 			    u8 *enable_lane_tx,
9032 			    u8 *tx_polarity_inversion,
9033 			    u8 *rx_polarity_inversion,
9034 			    u8 *max_rate)
9035 {
9036 	u32 frame;
9037 	int ret;
9038 
9039 	ret = read_8051_config(dd, TX_SETTINGS, GENERAL_CONFIG, &frame);
9040 	*enable_lane_tx = (frame >> ENABLE_LANE_TX_SHIFT)
9041 				& ENABLE_LANE_TX_MASK;
9042 	*tx_polarity_inversion = (frame >> TX_POLARITY_INVERSION_SHIFT)
9043 				& TX_POLARITY_INVERSION_MASK;
9044 	*rx_polarity_inversion = (frame >> RX_POLARITY_INVERSION_SHIFT)
9045 				& RX_POLARITY_INVERSION_MASK;
9046 	*max_rate = (frame >> MAX_RATE_SHIFT) & MAX_RATE_MASK;
9047 	return ret;
9048 }
9049 
9050 static int write_tx_settings(struct hfi1_devdata *dd,
9051 			     u8 enable_lane_tx,
9052 			     u8 tx_polarity_inversion,
9053 			     u8 rx_polarity_inversion,
9054 			     u8 max_rate)
9055 {
9056 	u32 frame;
9057 
9058 	/* no need to mask, all variable sizes match field widths */
9059 	frame = enable_lane_tx << ENABLE_LANE_TX_SHIFT
9060 		| tx_polarity_inversion << TX_POLARITY_INVERSION_SHIFT
9061 		| rx_polarity_inversion << RX_POLARITY_INVERSION_SHIFT
9062 		| max_rate << MAX_RATE_SHIFT;
9063 	return load_8051_config(dd, TX_SETTINGS, GENERAL_CONFIG, frame);
9064 }
9065 
9066 /*
9067  * Read an idle LCB message.
9068  *
9069  * Returns 0 on success, -EINVAL on error
9070  */
9071 static int read_idle_message(struct hfi1_devdata *dd, u64 type, u64 *data_out)
9072 {
9073 	int ret;
9074 
9075 	ret = do_8051_command(dd, HCMD_READ_LCB_IDLE_MSG, type, data_out);
9076 	if (ret != HCMD_SUCCESS) {
9077 		dd_dev_err(dd, "read idle message: type %d, err %d\n",
9078 			   (u32)type, ret);
9079 		return -EINVAL;
9080 	}
9081 	dd_dev_info(dd, "%s: read idle message 0x%llx\n", __func__, *data_out);
9082 	/* return only the payload as we already know the type */
9083 	*data_out >>= IDLE_PAYLOAD_SHIFT;
9084 	return 0;
9085 }
9086 
9087 /*
9088  * Read an idle SMA message.  To be done in response to a notification from
9089  * the 8051.
9090  *
9091  * Returns 0 on success, -EINVAL on error
9092  */
9093 static int read_idle_sma(struct hfi1_devdata *dd, u64 *data)
9094 {
9095 	return read_idle_message(dd, (u64)IDLE_SMA << IDLE_MSG_TYPE_SHIFT,
9096 				 data);
9097 }
9098 
9099 /*
9100  * Send an idle LCB message.
9101  *
9102  * Returns 0 on success, -EINVAL on error
9103  */
9104 static int send_idle_message(struct hfi1_devdata *dd, u64 data)
9105 {
9106 	int ret;
9107 
9108 	dd_dev_info(dd, "%s: sending idle message 0x%llx\n", __func__, data);
9109 	ret = do_8051_command(dd, HCMD_SEND_LCB_IDLE_MSG, data, NULL);
9110 	if (ret != HCMD_SUCCESS) {
9111 		dd_dev_err(dd, "send idle message: data 0x%llx, err %d\n",
9112 			   data, ret);
9113 		return -EINVAL;
9114 	}
9115 	return 0;
9116 }
9117 
9118 /*
9119  * Send an idle SMA message.
9120  *
9121  * Returns 0 on success, -EINVAL on error
9122  */
9123 int send_idle_sma(struct hfi1_devdata *dd, u64 message)
9124 {
9125 	u64 data;
9126 
9127 	data = ((message & IDLE_PAYLOAD_MASK) << IDLE_PAYLOAD_SHIFT) |
9128 		((u64)IDLE_SMA << IDLE_MSG_TYPE_SHIFT);
9129 	return send_idle_message(dd, data);
9130 }
9131 
9132 /*
9133  * Initialize the LCB then do a quick link up.  This may or may not be
9134  * in loopback.
9135  *
9136  * return 0 on success, -errno on error
9137  */
9138 static int do_quick_linkup(struct hfi1_devdata *dd)
9139 {
9140 	int ret;
9141 
9142 	lcb_shutdown(dd, 0);
9143 
9144 	if (loopback) {
9145 		/* LCB_CFG_LOOPBACK.VAL = 2 */
9146 		/* LCB_CFG_LANE_WIDTH.VAL = 0 */
9147 		write_csr(dd, DC_LCB_CFG_LOOPBACK,
9148 			  IB_PACKET_TYPE << DC_LCB_CFG_LOOPBACK_VAL_SHIFT);
9149 		write_csr(dd, DC_LCB_CFG_LANE_WIDTH, 0);
9150 	}
9151 
9152 	/* start the LCBs */
9153 	/* LCB_CFG_TX_FIFOS_RESET.VAL = 0 */
9154 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0);
9155 
9156 	/* simulator only loopback steps */
9157 	if (loopback && dd->icode == ICODE_FUNCTIONAL_SIMULATOR) {
9158 		/* LCB_CFG_RUN.EN = 1 */
9159 		write_csr(dd, DC_LCB_CFG_RUN,
9160 			  1ull << DC_LCB_CFG_RUN_EN_SHIFT);
9161 
9162 		ret = wait_link_transfer_active(dd, 10);
9163 		if (ret)
9164 			return ret;
9165 
9166 		write_csr(dd, DC_LCB_CFG_ALLOW_LINK_UP,
9167 			  1ull << DC_LCB_CFG_ALLOW_LINK_UP_VAL_SHIFT);
9168 	}
9169 
9170 	if (!loopback) {
9171 		/*
9172 		 * When doing quick linkup and not in loopback, both
9173 		 * sides must be done with LCB set-up before either
9174 		 * starts the quick linkup.  Put a delay here so that
9175 		 * both sides can be started and have a chance to be
9176 		 * done with LCB set up before resuming.
9177 		 */
9178 		dd_dev_err(dd,
9179 			   "Pausing for peer to be finished with LCB set up\n");
9180 		msleep(5000);
9181 		dd_dev_err(dd, "Continuing with quick linkup\n");
9182 	}
9183 
9184 	write_csr(dd, DC_LCB_ERR_EN, 0); /* mask LCB errors */
9185 	set_8051_lcb_access(dd);
9186 
9187 	/*
9188 	 * State "quick" LinkUp request sets the physical link state to
9189 	 * LinkUp without a verify capability sequence.
9190 	 * This state is in simulator v37 and later.
9191 	 */
9192 	ret = set_physical_link_state(dd, PLS_QUICK_LINKUP);
9193 	if (ret != HCMD_SUCCESS) {
9194 		dd_dev_err(dd,
9195 			   "%s: set physical link state to quick LinkUp failed with return %d\n",
9196 			   __func__, ret);
9197 
9198 		set_host_lcb_access(dd);
9199 		write_csr(dd, DC_LCB_ERR_EN, ~0ull); /* watch LCB errors */
9200 
9201 		if (ret >= 0)
9202 			ret = -EINVAL;
9203 		return ret;
9204 	}
9205 
9206 	return 0; /* success */
9207 }
9208 
9209 /*
9210  * Do all special steps to set up loopback.
9211  */
9212 static int init_loopback(struct hfi1_devdata *dd)
9213 {
9214 	dd_dev_info(dd, "Entering loopback mode\n");
9215 
9216 	/* all loopbacks should disable self GUID check */
9217 	write_csr(dd, DC_DC8051_CFG_MODE,
9218 		  (read_csr(dd, DC_DC8051_CFG_MODE) | DISABLE_SELF_GUID_CHECK));
9219 
9220 	/*
9221 	 * The simulator has only one loopback option - LCB.  Switch
9222 	 * to that option, which includes quick link up.
9223 	 *
9224 	 * Accept all valid loopback values.
9225 	 */
9226 	if ((dd->icode == ICODE_FUNCTIONAL_SIMULATOR) &&
9227 	    (loopback == LOOPBACK_SERDES || loopback == LOOPBACK_LCB ||
9228 	     loopback == LOOPBACK_CABLE)) {
9229 		loopback = LOOPBACK_LCB;
9230 		quick_linkup = 1;
9231 		return 0;
9232 	}
9233 
9234 	/*
9235 	 * SerDes loopback init sequence is handled in set_local_link_attributes
9236 	 */
9237 	if (loopback == LOOPBACK_SERDES)
9238 		return 0;
9239 
9240 	/* LCB loopback - handled at poll time */
9241 	if (loopback == LOOPBACK_LCB) {
9242 		quick_linkup = 1; /* LCB is always quick linkup */
9243 
9244 		/* not supported in emulation due to emulation RTL changes */
9245 		if (dd->icode == ICODE_FPGA_EMULATION) {
9246 			dd_dev_err(dd,
9247 				   "LCB loopback not supported in emulation\n");
9248 			return -EINVAL;
9249 		}
9250 		return 0;
9251 	}
9252 
9253 	/* external cable loopback requires no extra steps */
9254 	if (loopback == LOOPBACK_CABLE)
9255 		return 0;
9256 
9257 	dd_dev_err(dd, "Invalid loopback mode %d\n", loopback);
9258 	return -EINVAL;
9259 }
9260 
9261 /*
9262  * Translate from the OPA_LINK_WIDTH handed to us by the FM to bits
9263  * used in the Verify Capability link width attribute.
9264  */
9265 static u16 opa_to_vc_link_widths(u16 opa_widths)
9266 {
9267 	int i;
9268 	u16 result = 0;
9269 
9270 	static const struct link_bits {
9271 		u16 from;
9272 		u16 to;
9273 	} opa_link_xlate[] = {
9274 		{ OPA_LINK_WIDTH_1X, 1 << (1 - 1)  },
9275 		{ OPA_LINK_WIDTH_2X, 1 << (2 - 1)  },
9276 		{ OPA_LINK_WIDTH_3X, 1 << (3 - 1)  },
9277 		{ OPA_LINK_WIDTH_4X, 1 << (4 - 1)  },
9278 	};
9279 
9280 	for (i = 0; i < ARRAY_SIZE(opa_link_xlate); i++) {
9281 		if (opa_widths & opa_link_xlate[i].from)
9282 			result |= opa_link_xlate[i].to;
9283 	}
9284 	return result;
9285 }
9286 
9287 /*
9288  * Set link attributes before moving to polling.
9289  */
9290 static int set_local_link_attributes(struct hfi1_pportdata *ppd)
9291 {
9292 	struct hfi1_devdata *dd = ppd->dd;
9293 	u8 enable_lane_tx;
9294 	u8 tx_polarity_inversion;
9295 	u8 rx_polarity_inversion;
9296 	int ret;
9297 	u32 misc_bits = 0;
9298 	/* reset our fabric serdes to clear any lingering problems */
9299 	fabric_serdes_reset(dd);
9300 
9301 	/* set the local tx rate - need to read-modify-write */
9302 	ret = read_tx_settings(dd, &enable_lane_tx, &tx_polarity_inversion,
9303 			       &rx_polarity_inversion, &ppd->local_tx_rate);
9304 	if (ret)
9305 		goto set_local_link_attributes_fail;
9306 
9307 	if (dd->dc8051_ver < dc8051_ver(0, 20, 0)) {
9308 		/* set the tx rate to the fastest enabled */
9309 		if (ppd->link_speed_enabled & OPA_LINK_SPEED_25G)
9310 			ppd->local_tx_rate = 1;
9311 		else
9312 			ppd->local_tx_rate = 0;
9313 	} else {
9314 		/* set the tx rate to all enabled */
9315 		ppd->local_tx_rate = 0;
9316 		if (ppd->link_speed_enabled & OPA_LINK_SPEED_25G)
9317 			ppd->local_tx_rate |= 2;
9318 		if (ppd->link_speed_enabled & OPA_LINK_SPEED_12_5G)
9319 			ppd->local_tx_rate |= 1;
9320 	}
9321 
9322 	enable_lane_tx = 0xF; /* enable all four lanes */
9323 	ret = write_tx_settings(dd, enable_lane_tx, tx_polarity_inversion,
9324 				rx_polarity_inversion, ppd->local_tx_rate);
9325 	if (ret != HCMD_SUCCESS)
9326 		goto set_local_link_attributes_fail;
9327 
9328 	ret = write_host_interface_version(dd, HOST_INTERFACE_VERSION);
9329 	if (ret != HCMD_SUCCESS) {
9330 		dd_dev_err(dd,
9331 			   "Failed to set host interface version, return 0x%x\n",
9332 			   ret);
9333 		goto set_local_link_attributes_fail;
9334 	}
9335 
9336 	/*
9337 	 * DC supports continuous updates.
9338 	 */
9339 	ret = write_vc_local_phy(dd,
9340 				 0 /* no power management */,
9341 				 1 /* continuous updates */);
9342 	if (ret != HCMD_SUCCESS)
9343 		goto set_local_link_attributes_fail;
9344 
9345 	/* z=1 in the next call: AU of 0 is not supported by the hardware */
9346 	ret = write_vc_local_fabric(dd, dd->vau, 1, dd->vcu, dd->vl15_init,
9347 				    ppd->port_crc_mode_enabled);
9348 	if (ret != HCMD_SUCCESS)
9349 		goto set_local_link_attributes_fail;
9350 
9351 	/*
9352 	 * SerDes loopback init sequence requires
9353 	 * setting bit 0 of MISC_CONFIG_BITS
9354 	 */
9355 	if (loopback == LOOPBACK_SERDES)
9356 		misc_bits |= 1 << LOOPBACK_SERDES_CONFIG_BIT_MASK_SHIFT;
9357 
9358 	/*
9359 	 * An external device configuration request is used to reset the LCB
9360 	 * to retry to obtain operational lanes when the first attempt is
9361 	 * unsuccesful.
9362 	 */
9363 	if (dd->dc8051_ver >= dc8051_ver(1, 25, 0))
9364 		misc_bits |= 1 << EXT_CFG_LCB_RESET_SUPPORTED_SHIFT;
9365 
9366 	ret = write_vc_local_link_mode(dd, misc_bits, 0,
9367 				       opa_to_vc_link_widths(
9368 						ppd->link_width_enabled));
9369 	if (ret != HCMD_SUCCESS)
9370 		goto set_local_link_attributes_fail;
9371 
9372 	/* let peer know who we are */
9373 	ret = write_local_device_id(dd, dd->pcidev->device, dd->minrev);
9374 	if (ret == HCMD_SUCCESS)
9375 		return 0;
9376 
9377 set_local_link_attributes_fail:
9378 	dd_dev_err(dd,
9379 		   "Failed to set local link attributes, return 0x%x\n",
9380 		   ret);
9381 	return ret;
9382 }
9383 
9384 /*
9385  * Call this to start the link.
9386  * Do not do anything if the link is disabled.
9387  * Returns 0 if link is disabled, moved to polling, or the driver is not ready.
9388  */
9389 int start_link(struct hfi1_pportdata *ppd)
9390 {
9391 	/*
9392 	 * Tune the SerDes to a ballpark setting for optimal signal and bit
9393 	 * error rate.  Needs to be done before starting the link.
9394 	 */
9395 	tune_serdes(ppd);
9396 
9397 	if (!ppd->driver_link_ready) {
9398 		dd_dev_info(ppd->dd,
9399 			    "%s: stopping link start because driver is not ready\n",
9400 			    __func__);
9401 		return 0;
9402 	}
9403 
9404 	/*
9405 	 * FULL_MGMT_P_KEY is cleared from the pkey table, so that the
9406 	 * pkey table can be configured properly if the HFI unit is connected
9407 	 * to switch port with MgmtAllowed=NO
9408 	 */
9409 	clear_full_mgmt_pkey(ppd);
9410 
9411 	return set_link_state(ppd, HLS_DN_POLL);
9412 }
9413 
9414 static void wait_for_qsfp_init(struct hfi1_pportdata *ppd)
9415 {
9416 	struct hfi1_devdata *dd = ppd->dd;
9417 	u64 mask;
9418 	unsigned long timeout;
9419 
9420 	/*
9421 	 * Some QSFP cables have a quirk that asserts the IntN line as a side
9422 	 * effect of power up on plug-in. We ignore this false positive
9423 	 * interrupt until the module has finished powering up by waiting for
9424 	 * a minimum timeout of the module inrush initialization time of
9425 	 * 500 ms (SFF 8679 Table 5-6) to ensure the voltage rails in the
9426 	 * module have stabilized.
9427 	 */
9428 	msleep(500);
9429 
9430 	/*
9431 	 * Check for QSFP interrupt for t_init (SFF 8679 Table 8-1)
9432 	 */
9433 	timeout = jiffies + msecs_to_jiffies(2000);
9434 	while (1) {
9435 		mask = read_csr(dd, dd->hfi1_id ?
9436 				ASIC_QSFP2_IN : ASIC_QSFP1_IN);
9437 		if (!(mask & QSFP_HFI0_INT_N))
9438 			break;
9439 		if (time_after(jiffies, timeout)) {
9440 			dd_dev_info(dd, "%s: No IntN detected, reset complete\n",
9441 				    __func__);
9442 			break;
9443 		}
9444 		udelay(2);
9445 	}
9446 }
9447 
9448 static void set_qsfp_int_n(struct hfi1_pportdata *ppd, u8 enable)
9449 {
9450 	struct hfi1_devdata *dd = ppd->dd;
9451 	u64 mask;
9452 
9453 	mask = read_csr(dd, dd->hfi1_id ? ASIC_QSFP2_MASK : ASIC_QSFP1_MASK);
9454 	if (enable) {
9455 		/*
9456 		 * Clear the status register to avoid an immediate interrupt
9457 		 * when we re-enable the IntN pin
9458 		 */
9459 		write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_CLEAR : ASIC_QSFP1_CLEAR,
9460 			  QSFP_HFI0_INT_N);
9461 		mask |= (u64)QSFP_HFI0_INT_N;
9462 	} else {
9463 		mask &= ~(u64)QSFP_HFI0_INT_N;
9464 	}
9465 	write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_MASK : ASIC_QSFP1_MASK, mask);
9466 }
9467 
9468 int reset_qsfp(struct hfi1_pportdata *ppd)
9469 {
9470 	struct hfi1_devdata *dd = ppd->dd;
9471 	u64 mask, qsfp_mask;
9472 
9473 	/* Disable INT_N from triggering QSFP interrupts */
9474 	set_qsfp_int_n(ppd, 0);
9475 
9476 	/* Reset the QSFP */
9477 	mask = (u64)QSFP_HFI0_RESET_N;
9478 
9479 	qsfp_mask = read_csr(dd,
9480 			     dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT);
9481 	qsfp_mask &= ~mask;
9482 	write_csr(dd,
9483 		  dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT, qsfp_mask);
9484 
9485 	udelay(10);
9486 
9487 	qsfp_mask |= mask;
9488 	write_csr(dd,
9489 		  dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT, qsfp_mask);
9490 
9491 	wait_for_qsfp_init(ppd);
9492 
9493 	/*
9494 	 * Allow INT_N to trigger the QSFP interrupt to watch
9495 	 * for alarms and warnings
9496 	 */
9497 	set_qsfp_int_n(ppd, 1);
9498 
9499 	/*
9500 	 * After the reset, AOC transmitters are enabled by default. They need
9501 	 * to be turned off to complete the QSFP setup before they can be
9502 	 * enabled again.
9503 	 */
9504 	return set_qsfp_tx(ppd, 0);
9505 }
9506 
9507 static int handle_qsfp_error_conditions(struct hfi1_pportdata *ppd,
9508 					u8 *qsfp_interrupt_status)
9509 {
9510 	struct hfi1_devdata *dd = ppd->dd;
9511 
9512 	if ((qsfp_interrupt_status[0] & QSFP_HIGH_TEMP_ALARM) ||
9513 	    (qsfp_interrupt_status[0] & QSFP_HIGH_TEMP_WARNING))
9514 		dd_dev_err(dd, "%s: QSFP cable temperature too high\n",
9515 			   __func__);
9516 
9517 	if ((qsfp_interrupt_status[0] & QSFP_LOW_TEMP_ALARM) ||
9518 	    (qsfp_interrupt_status[0] & QSFP_LOW_TEMP_WARNING))
9519 		dd_dev_err(dd, "%s: QSFP cable temperature too low\n",
9520 			   __func__);
9521 
9522 	/*
9523 	 * The remaining alarms/warnings don't matter if the link is down.
9524 	 */
9525 	if (ppd->host_link_state & HLS_DOWN)
9526 		return 0;
9527 
9528 	if ((qsfp_interrupt_status[1] & QSFP_HIGH_VCC_ALARM) ||
9529 	    (qsfp_interrupt_status[1] & QSFP_HIGH_VCC_WARNING))
9530 		dd_dev_err(dd, "%s: QSFP supply voltage too high\n",
9531 			   __func__);
9532 
9533 	if ((qsfp_interrupt_status[1] & QSFP_LOW_VCC_ALARM) ||
9534 	    (qsfp_interrupt_status[1] & QSFP_LOW_VCC_WARNING))
9535 		dd_dev_err(dd, "%s: QSFP supply voltage too low\n",
9536 			   __func__);
9537 
9538 	/* Byte 2 is vendor specific */
9539 
9540 	if ((qsfp_interrupt_status[3] & QSFP_HIGH_POWER_ALARM) ||
9541 	    (qsfp_interrupt_status[3] & QSFP_HIGH_POWER_WARNING))
9542 		dd_dev_err(dd, "%s: Cable RX channel 1/2 power too high\n",
9543 			   __func__);
9544 
9545 	if ((qsfp_interrupt_status[3] & QSFP_LOW_POWER_ALARM) ||
9546 	    (qsfp_interrupt_status[3] & QSFP_LOW_POWER_WARNING))
9547 		dd_dev_err(dd, "%s: Cable RX channel 1/2 power too low\n",
9548 			   __func__);
9549 
9550 	if ((qsfp_interrupt_status[4] & QSFP_HIGH_POWER_ALARM) ||
9551 	    (qsfp_interrupt_status[4] & QSFP_HIGH_POWER_WARNING))
9552 		dd_dev_err(dd, "%s: Cable RX channel 3/4 power too high\n",
9553 			   __func__);
9554 
9555 	if ((qsfp_interrupt_status[4] & QSFP_LOW_POWER_ALARM) ||
9556 	    (qsfp_interrupt_status[4] & QSFP_LOW_POWER_WARNING))
9557 		dd_dev_err(dd, "%s: Cable RX channel 3/4 power too low\n",
9558 			   __func__);
9559 
9560 	if ((qsfp_interrupt_status[5] & QSFP_HIGH_BIAS_ALARM) ||
9561 	    (qsfp_interrupt_status[5] & QSFP_HIGH_BIAS_WARNING))
9562 		dd_dev_err(dd, "%s: Cable TX channel 1/2 bias too high\n",
9563 			   __func__);
9564 
9565 	if ((qsfp_interrupt_status[5] & QSFP_LOW_BIAS_ALARM) ||
9566 	    (qsfp_interrupt_status[5] & QSFP_LOW_BIAS_WARNING))
9567 		dd_dev_err(dd, "%s: Cable TX channel 1/2 bias too low\n",
9568 			   __func__);
9569 
9570 	if ((qsfp_interrupt_status[6] & QSFP_HIGH_BIAS_ALARM) ||
9571 	    (qsfp_interrupt_status[6] & QSFP_HIGH_BIAS_WARNING))
9572 		dd_dev_err(dd, "%s: Cable TX channel 3/4 bias too high\n",
9573 			   __func__);
9574 
9575 	if ((qsfp_interrupt_status[6] & QSFP_LOW_BIAS_ALARM) ||
9576 	    (qsfp_interrupt_status[6] & QSFP_LOW_BIAS_WARNING))
9577 		dd_dev_err(dd, "%s: Cable TX channel 3/4 bias too low\n",
9578 			   __func__);
9579 
9580 	if ((qsfp_interrupt_status[7] & QSFP_HIGH_POWER_ALARM) ||
9581 	    (qsfp_interrupt_status[7] & QSFP_HIGH_POWER_WARNING))
9582 		dd_dev_err(dd, "%s: Cable TX channel 1/2 power too high\n",
9583 			   __func__);
9584 
9585 	if ((qsfp_interrupt_status[7] & QSFP_LOW_POWER_ALARM) ||
9586 	    (qsfp_interrupt_status[7] & QSFP_LOW_POWER_WARNING))
9587 		dd_dev_err(dd, "%s: Cable TX channel 1/2 power too low\n",
9588 			   __func__);
9589 
9590 	if ((qsfp_interrupt_status[8] & QSFP_HIGH_POWER_ALARM) ||
9591 	    (qsfp_interrupt_status[8] & QSFP_HIGH_POWER_WARNING))
9592 		dd_dev_err(dd, "%s: Cable TX channel 3/4 power too high\n",
9593 			   __func__);
9594 
9595 	if ((qsfp_interrupt_status[8] & QSFP_LOW_POWER_ALARM) ||
9596 	    (qsfp_interrupt_status[8] & QSFP_LOW_POWER_WARNING))
9597 		dd_dev_err(dd, "%s: Cable TX channel 3/4 power too low\n",
9598 			   __func__);
9599 
9600 	/* Bytes 9-10 and 11-12 are reserved */
9601 	/* Bytes 13-15 are vendor specific */
9602 
9603 	return 0;
9604 }
9605 
9606 /* This routine will only be scheduled if the QSFP module present is asserted */
9607 void qsfp_event(struct work_struct *work)
9608 {
9609 	struct qsfp_data *qd;
9610 	struct hfi1_pportdata *ppd;
9611 	struct hfi1_devdata *dd;
9612 
9613 	qd = container_of(work, struct qsfp_data, qsfp_work);
9614 	ppd = qd->ppd;
9615 	dd = ppd->dd;
9616 
9617 	/* Sanity check */
9618 	if (!qsfp_mod_present(ppd))
9619 		return;
9620 
9621 	if (ppd->host_link_state == HLS_DN_DISABLE) {
9622 		dd_dev_info(ppd->dd,
9623 			    "%s: stopping link start because link is disabled\n",
9624 			    __func__);
9625 		return;
9626 	}
9627 
9628 	/*
9629 	 * Turn DC back on after cable has been re-inserted. Up until
9630 	 * now, the DC has been in reset to save power.
9631 	 */
9632 	dc_start(dd);
9633 
9634 	if (qd->cache_refresh_required) {
9635 		set_qsfp_int_n(ppd, 0);
9636 
9637 		wait_for_qsfp_init(ppd);
9638 
9639 		/*
9640 		 * Allow INT_N to trigger the QSFP interrupt to watch
9641 		 * for alarms and warnings
9642 		 */
9643 		set_qsfp_int_n(ppd, 1);
9644 
9645 		start_link(ppd);
9646 	}
9647 
9648 	if (qd->check_interrupt_flags) {
9649 		u8 qsfp_interrupt_status[16] = {0,};
9650 
9651 		if (one_qsfp_read(ppd, dd->hfi1_id, 6,
9652 				  &qsfp_interrupt_status[0], 16) != 16) {
9653 			dd_dev_info(dd,
9654 				    "%s: Failed to read status of QSFP module\n",
9655 				    __func__);
9656 		} else {
9657 			unsigned long flags;
9658 
9659 			handle_qsfp_error_conditions(
9660 					ppd, qsfp_interrupt_status);
9661 			spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
9662 			ppd->qsfp_info.check_interrupt_flags = 0;
9663 			spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock,
9664 					       flags);
9665 		}
9666 	}
9667 }
9668 
9669 void init_qsfp_int(struct hfi1_devdata *dd)
9670 {
9671 	struct hfi1_pportdata *ppd = dd->pport;
9672 	u64 qsfp_mask;
9673 
9674 	qsfp_mask = (u64)(QSFP_HFI0_INT_N | QSFP_HFI0_MODPRST_N);
9675 	/* Clear current status to avoid spurious interrupts */
9676 	write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_CLEAR : ASIC_QSFP1_CLEAR,
9677 		  qsfp_mask);
9678 	write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_MASK : ASIC_QSFP1_MASK,
9679 		  qsfp_mask);
9680 
9681 	set_qsfp_int_n(ppd, 0);
9682 
9683 	/* Handle active low nature of INT_N and MODPRST_N pins */
9684 	if (qsfp_mod_present(ppd))
9685 		qsfp_mask &= ~(u64)QSFP_HFI0_MODPRST_N;
9686 	write_csr(dd,
9687 		  dd->hfi1_id ? ASIC_QSFP2_INVERT : ASIC_QSFP1_INVERT,
9688 		  qsfp_mask);
9689 
9690 	/* Enable the appropriate QSFP IRQ source */
9691 	if (!dd->hfi1_id)
9692 		set_intr_bits(dd, QSFP1_INT, QSFP1_INT, true);
9693 	else
9694 		set_intr_bits(dd, QSFP2_INT, QSFP2_INT, true);
9695 }
9696 
9697 /*
9698  * Do a one-time initialize of the LCB block.
9699  */
9700 static void init_lcb(struct hfi1_devdata *dd)
9701 {
9702 	/* simulator does not correctly handle LCB cclk loopback, skip */
9703 	if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR)
9704 		return;
9705 
9706 	/* the DC has been reset earlier in the driver load */
9707 
9708 	/* set LCB for cclk loopback on the port */
9709 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0x01);
9710 	write_csr(dd, DC_LCB_CFG_LANE_WIDTH, 0x00);
9711 	write_csr(dd, DC_LCB_CFG_REINIT_AS_SLAVE, 0x00);
9712 	write_csr(dd, DC_LCB_CFG_CNT_FOR_SKIP_STALL, 0x110);
9713 	write_csr(dd, DC_LCB_CFG_CLK_CNTR, 0x08);
9714 	write_csr(dd, DC_LCB_CFG_LOOPBACK, 0x02);
9715 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0x00);
9716 }
9717 
9718 /*
9719  * Perform a test read on the QSFP.  Return 0 on success, -ERRNO
9720  * on error.
9721  */
9722 static int test_qsfp_read(struct hfi1_pportdata *ppd)
9723 {
9724 	int ret;
9725 	u8 status;
9726 
9727 	/*
9728 	 * Report success if not a QSFP or, if it is a QSFP, but the cable is
9729 	 * not present
9730 	 */
9731 	if (ppd->port_type != PORT_TYPE_QSFP || !qsfp_mod_present(ppd))
9732 		return 0;
9733 
9734 	/* read byte 2, the status byte */
9735 	ret = one_qsfp_read(ppd, ppd->dd->hfi1_id, 2, &status, 1);
9736 	if (ret < 0)
9737 		return ret;
9738 	if (ret != 1)
9739 		return -EIO;
9740 
9741 	return 0; /* success */
9742 }
9743 
9744 /*
9745  * Values for QSFP retry.
9746  *
9747  * Give up after 10s (20 x 500ms).  The overall timeout was empirically
9748  * arrived at from experience on a large cluster.
9749  */
9750 #define MAX_QSFP_RETRIES 20
9751 #define QSFP_RETRY_WAIT 500 /* msec */
9752 
9753 /*
9754  * Try a QSFP read.  If it fails, schedule a retry for later.
9755  * Called on first link activation after driver load.
9756  */
9757 static void try_start_link(struct hfi1_pportdata *ppd)
9758 {
9759 	if (test_qsfp_read(ppd)) {
9760 		/* read failed */
9761 		if (ppd->qsfp_retry_count >= MAX_QSFP_RETRIES) {
9762 			dd_dev_err(ppd->dd, "QSFP not responding, giving up\n");
9763 			return;
9764 		}
9765 		dd_dev_info(ppd->dd,
9766 			    "QSFP not responding, waiting and retrying %d\n",
9767 			    (int)ppd->qsfp_retry_count);
9768 		ppd->qsfp_retry_count++;
9769 		queue_delayed_work(ppd->link_wq, &ppd->start_link_work,
9770 				   msecs_to_jiffies(QSFP_RETRY_WAIT));
9771 		return;
9772 	}
9773 	ppd->qsfp_retry_count = 0;
9774 
9775 	start_link(ppd);
9776 }
9777 
9778 /*
9779  * Workqueue function to start the link after a delay.
9780  */
9781 void handle_start_link(struct work_struct *work)
9782 {
9783 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
9784 						  start_link_work.work);
9785 	try_start_link(ppd);
9786 }
9787 
9788 int bringup_serdes(struct hfi1_pportdata *ppd)
9789 {
9790 	struct hfi1_devdata *dd = ppd->dd;
9791 	u64 guid;
9792 	int ret;
9793 
9794 	if (HFI1_CAP_IS_KSET(EXTENDED_PSN))
9795 		add_rcvctrl(dd, RCV_CTRL_RCV_EXTENDED_PSN_ENABLE_SMASK);
9796 
9797 	guid = ppd->guids[HFI1_PORT_GUID_INDEX];
9798 	if (!guid) {
9799 		if (dd->base_guid)
9800 			guid = dd->base_guid + ppd->port - 1;
9801 		ppd->guids[HFI1_PORT_GUID_INDEX] = guid;
9802 	}
9803 
9804 	/* Set linkinit_reason on power up per OPA spec */
9805 	ppd->linkinit_reason = OPA_LINKINIT_REASON_LINKUP;
9806 
9807 	/* one-time init of the LCB */
9808 	init_lcb(dd);
9809 
9810 	if (loopback) {
9811 		ret = init_loopback(dd);
9812 		if (ret < 0)
9813 			return ret;
9814 	}
9815 
9816 	get_port_type(ppd);
9817 	if (ppd->port_type == PORT_TYPE_QSFP) {
9818 		set_qsfp_int_n(ppd, 0);
9819 		wait_for_qsfp_init(ppd);
9820 		set_qsfp_int_n(ppd, 1);
9821 	}
9822 
9823 	try_start_link(ppd);
9824 	return 0;
9825 }
9826 
9827 void hfi1_quiet_serdes(struct hfi1_pportdata *ppd)
9828 {
9829 	struct hfi1_devdata *dd = ppd->dd;
9830 
9831 	/*
9832 	 * Shut down the link and keep it down.   First turn off that the
9833 	 * driver wants to allow the link to be up (driver_link_ready).
9834 	 * Then make sure the link is not automatically restarted
9835 	 * (link_enabled).  Cancel any pending restart.  And finally
9836 	 * go offline.
9837 	 */
9838 	ppd->driver_link_ready = 0;
9839 	ppd->link_enabled = 0;
9840 
9841 	ppd->qsfp_retry_count = MAX_QSFP_RETRIES; /* prevent more retries */
9842 	flush_delayed_work(&ppd->start_link_work);
9843 	cancel_delayed_work_sync(&ppd->start_link_work);
9844 
9845 	ppd->offline_disabled_reason =
9846 			HFI1_ODR_MASK(OPA_LINKDOWN_REASON_REBOOT);
9847 	set_link_down_reason(ppd, OPA_LINKDOWN_REASON_REBOOT, 0,
9848 			     OPA_LINKDOWN_REASON_REBOOT);
9849 	set_link_state(ppd, HLS_DN_OFFLINE);
9850 
9851 	/* disable the port */
9852 	clear_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
9853 	cancel_work_sync(&ppd->freeze_work);
9854 }
9855 
9856 static inline int init_cpu_counters(struct hfi1_devdata *dd)
9857 {
9858 	struct hfi1_pportdata *ppd;
9859 	int i;
9860 
9861 	ppd = (struct hfi1_pportdata *)(dd + 1);
9862 	for (i = 0; i < dd->num_pports; i++, ppd++) {
9863 		ppd->ibport_data.rvp.rc_acks = NULL;
9864 		ppd->ibport_data.rvp.rc_qacks = NULL;
9865 		ppd->ibport_data.rvp.rc_acks = alloc_percpu(u64);
9866 		ppd->ibport_data.rvp.rc_qacks = alloc_percpu(u64);
9867 		ppd->ibport_data.rvp.rc_delayed_comp = alloc_percpu(u64);
9868 		if (!ppd->ibport_data.rvp.rc_acks ||
9869 		    !ppd->ibport_data.rvp.rc_delayed_comp ||
9870 		    !ppd->ibport_data.rvp.rc_qacks)
9871 			return -ENOMEM;
9872 	}
9873 
9874 	return 0;
9875 }
9876 
9877 /*
9878  * index is the index into the receive array
9879  */
9880 void hfi1_put_tid(struct hfi1_devdata *dd, u32 index,
9881 		  u32 type, unsigned long pa, u16 order)
9882 {
9883 	u64 reg;
9884 
9885 	if (!(dd->flags & HFI1_PRESENT))
9886 		goto done;
9887 
9888 	if (type == PT_INVALID || type == PT_INVALID_FLUSH) {
9889 		pa = 0;
9890 		order = 0;
9891 	} else if (type > PT_INVALID) {
9892 		dd_dev_err(dd,
9893 			   "unexpected receive array type %u for index %u, not handled\n",
9894 			   type, index);
9895 		goto done;
9896 	}
9897 	trace_hfi1_put_tid(dd, index, type, pa, order);
9898 
9899 #define RT_ADDR_SHIFT 12	/* 4KB kernel address boundary */
9900 	reg = RCV_ARRAY_RT_WRITE_ENABLE_SMASK
9901 		| (u64)order << RCV_ARRAY_RT_BUF_SIZE_SHIFT
9902 		| ((pa >> RT_ADDR_SHIFT) & RCV_ARRAY_RT_ADDR_MASK)
9903 					<< RCV_ARRAY_RT_ADDR_SHIFT;
9904 	trace_hfi1_write_rcvarray(dd->rcvarray_wc + (index * 8), reg);
9905 	writeq(reg, dd->rcvarray_wc + (index * 8));
9906 
9907 	if (type == PT_EAGER || type == PT_INVALID_FLUSH || (index & 3) == 3)
9908 		/*
9909 		 * Eager entries are written and flushed
9910 		 *
9911 		 * Expected entries are flushed every 4 writes
9912 		 */
9913 		flush_wc();
9914 done:
9915 	return;
9916 }
9917 
9918 void hfi1_clear_tids(struct hfi1_ctxtdata *rcd)
9919 {
9920 	struct hfi1_devdata *dd = rcd->dd;
9921 	u32 i;
9922 
9923 	/* this could be optimized */
9924 	for (i = rcd->eager_base; i < rcd->eager_base +
9925 		     rcd->egrbufs.alloced; i++)
9926 		hfi1_put_tid(dd, i, PT_INVALID, 0, 0);
9927 
9928 	for (i = rcd->expected_base;
9929 			i < rcd->expected_base + rcd->expected_count; i++)
9930 		hfi1_put_tid(dd, i, PT_INVALID, 0, 0);
9931 }
9932 
9933 static const char * const ib_cfg_name_strings[] = {
9934 	"HFI1_IB_CFG_LIDLMC",
9935 	"HFI1_IB_CFG_LWID_DG_ENB",
9936 	"HFI1_IB_CFG_LWID_ENB",
9937 	"HFI1_IB_CFG_LWID",
9938 	"HFI1_IB_CFG_SPD_ENB",
9939 	"HFI1_IB_CFG_SPD",
9940 	"HFI1_IB_CFG_RXPOL_ENB",
9941 	"HFI1_IB_CFG_LREV_ENB",
9942 	"HFI1_IB_CFG_LINKLATENCY",
9943 	"HFI1_IB_CFG_HRTBT",
9944 	"HFI1_IB_CFG_OP_VLS",
9945 	"HFI1_IB_CFG_VL_HIGH_CAP",
9946 	"HFI1_IB_CFG_VL_LOW_CAP",
9947 	"HFI1_IB_CFG_OVERRUN_THRESH",
9948 	"HFI1_IB_CFG_PHYERR_THRESH",
9949 	"HFI1_IB_CFG_LINKDEFAULT",
9950 	"HFI1_IB_CFG_PKEYS",
9951 	"HFI1_IB_CFG_MTU",
9952 	"HFI1_IB_CFG_LSTATE",
9953 	"HFI1_IB_CFG_VL_HIGH_LIMIT",
9954 	"HFI1_IB_CFG_PMA_TICKS",
9955 	"HFI1_IB_CFG_PORT"
9956 };
9957 
9958 static const char *ib_cfg_name(int which)
9959 {
9960 	if (which < 0 || which >= ARRAY_SIZE(ib_cfg_name_strings))
9961 		return "invalid";
9962 	return ib_cfg_name_strings[which];
9963 }
9964 
9965 int hfi1_get_ib_cfg(struct hfi1_pportdata *ppd, int which)
9966 {
9967 	struct hfi1_devdata *dd = ppd->dd;
9968 	int val = 0;
9969 
9970 	switch (which) {
9971 	case HFI1_IB_CFG_LWID_ENB: /* allowed Link-width */
9972 		val = ppd->link_width_enabled;
9973 		break;
9974 	case HFI1_IB_CFG_LWID: /* currently active Link-width */
9975 		val = ppd->link_width_active;
9976 		break;
9977 	case HFI1_IB_CFG_SPD_ENB: /* allowed Link speeds */
9978 		val = ppd->link_speed_enabled;
9979 		break;
9980 	case HFI1_IB_CFG_SPD: /* current Link speed */
9981 		val = ppd->link_speed_active;
9982 		break;
9983 
9984 	case HFI1_IB_CFG_RXPOL_ENB: /* Auto-RX-polarity enable */
9985 	case HFI1_IB_CFG_LREV_ENB: /* Auto-Lane-reversal enable */
9986 	case HFI1_IB_CFG_LINKLATENCY:
9987 		goto unimplemented;
9988 
9989 	case HFI1_IB_CFG_OP_VLS:
9990 		val = ppd->actual_vls_operational;
9991 		break;
9992 	case HFI1_IB_CFG_VL_HIGH_CAP: /* VL arb high priority table size */
9993 		val = VL_ARB_HIGH_PRIO_TABLE_SIZE;
9994 		break;
9995 	case HFI1_IB_CFG_VL_LOW_CAP: /* VL arb low priority table size */
9996 		val = VL_ARB_LOW_PRIO_TABLE_SIZE;
9997 		break;
9998 	case HFI1_IB_CFG_OVERRUN_THRESH: /* IB overrun threshold */
9999 		val = ppd->overrun_threshold;
10000 		break;
10001 	case HFI1_IB_CFG_PHYERR_THRESH: /* IB PHY error threshold */
10002 		val = ppd->phy_error_threshold;
10003 		break;
10004 	case HFI1_IB_CFG_LINKDEFAULT: /* IB link default (sleep/poll) */
10005 		val = HLS_DEFAULT;
10006 		break;
10007 
10008 	case HFI1_IB_CFG_HRTBT: /* Heartbeat off/enable/auto */
10009 	case HFI1_IB_CFG_PMA_TICKS:
10010 	default:
10011 unimplemented:
10012 		if (HFI1_CAP_IS_KSET(PRINT_UNIMPL))
10013 			dd_dev_info(
10014 				dd,
10015 				"%s: which %s: not implemented\n",
10016 				__func__,
10017 				ib_cfg_name(which));
10018 		break;
10019 	}
10020 
10021 	return val;
10022 }
10023 
10024 /*
10025  * The largest MAD packet size.
10026  */
10027 #define MAX_MAD_PACKET 2048
10028 
10029 /*
10030  * Return the maximum header bytes that can go on the _wire_
10031  * for this device. This count includes the ICRC which is
10032  * not part of the packet held in memory but it is appended
10033  * by the HW.
10034  * This is dependent on the device's receive header entry size.
10035  * HFI allows this to be set per-receive context, but the
10036  * driver presently enforces a global value.
10037  */
10038 u32 lrh_max_header_bytes(struct hfi1_devdata *dd)
10039 {
10040 	/*
10041 	 * The maximum non-payload (MTU) bytes in LRH.PktLen are
10042 	 * the Receive Header Entry Size minus the PBC (or RHF) size
10043 	 * plus one DW for the ICRC appended by HW.
10044 	 *
10045 	 * dd->rcd[0].rcvhdrqentsize is in DW.
10046 	 * We use rcd[0] as all context will have the same value. Also,
10047 	 * the first kernel context would have been allocated by now so
10048 	 * we are guaranteed a valid value.
10049 	 */
10050 	return (dd->rcd[0]->rcvhdrqentsize - 2/*PBC/RHF*/ + 1/*ICRC*/) << 2;
10051 }
10052 
10053 /*
10054  * Set Send Length
10055  * @ppd - per port data
10056  *
10057  * Set the MTU by limiting how many DWs may be sent.  The SendLenCheck*
10058  * registers compare against LRH.PktLen, so use the max bytes included
10059  * in the LRH.
10060  *
10061  * This routine changes all VL values except VL15, which it maintains at
10062  * the same value.
10063  */
10064 static void set_send_length(struct hfi1_pportdata *ppd)
10065 {
10066 	struct hfi1_devdata *dd = ppd->dd;
10067 	u32 max_hb = lrh_max_header_bytes(dd), dcmtu;
10068 	u32 maxvlmtu = dd->vld[15].mtu;
10069 	u64 len1 = 0, len2 = (((dd->vld[15].mtu + max_hb) >> 2)
10070 			      & SEND_LEN_CHECK1_LEN_VL15_MASK) <<
10071 		SEND_LEN_CHECK1_LEN_VL15_SHIFT;
10072 	int i, j;
10073 	u32 thres;
10074 
10075 	for (i = 0; i < ppd->vls_supported; i++) {
10076 		if (dd->vld[i].mtu > maxvlmtu)
10077 			maxvlmtu = dd->vld[i].mtu;
10078 		if (i <= 3)
10079 			len1 |= (((dd->vld[i].mtu + max_hb) >> 2)
10080 				 & SEND_LEN_CHECK0_LEN_VL0_MASK) <<
10081 				((i % 4) * SEND_LEN_CHECK0_LEN_VL1_SHIFT);
10082 		else
10083 			len2 |= (((dd->vld[i].mtu + max_hb) >> 2)
10084 				 & SEND_LEN_CHECK1_LEN_VL4_MASK) <<
10085 				((i % 4) * SEND_LEN_CHECK1_LEN_VL5_SHIFT);
10086 	}
10087 	write_csr(dd, SEND_LEN_CHECK0, len1);
10088 	write_csr(dd, SEND_LEN_CHECK1, len2);
10089 	/* adjust kernel credit return thresholds based on new MTUs */
10090 	/* all kernel receive contexts have the same hdrqentsize */
10091 	for (i = 0; i < ppd->vls_supported; i++) {
10092 		thres = min(sc_percent_to_threshold(dd->vld[i].sc, 50),
10093 			    sc_mtu_to_threshold(dd->vld[i].sc,
10094 						dd->vld[i].mtu,
10095 						dd->rcd[0]->rcvhdrqentsize));
10096 		for (j = 0; j < INIT_SC_PER_VL; j++)
10097 			sc_set_cr_threshold(
10098 					pio_select_send_context_vl(dd, j, i),
10099 					    thres);
10100 	}
10101 	thres = min(sc_percent_to_threshold(dd->vld[15].sc, 50),
10102 		    sc_mtu_to_threshold(dd->vld[15].sc,
10103 					dd->vld[15].mtu,
10104 					dd->rcd[0]->rcvhdrqentsize));
10105 	sc_set_cr_threshold(dd->vld[15].sc, thres);
10106 
10107 	/* Adjust maximum MTU for the port in DC */
10108 	dcmtu = maxvlmtu == 10240 ? DCC_CFG_PORT_MTU_CAP_10240 :
10109 		(ilog2(maxvlmtu >> 8) + 1);
10110 	len1 = read_csr(ppd->dd, DCC_CFG_PORT_CONFIG);
10111 	len1 &= ~DCC_CFG_PORT_CONFIG_MTU_CAP_SMASK;
10112 	len1 |= ((u64)dcmtu & DCC_CFG_PORT_CONFIG_MTU_CAP_MASK) <<
10113 		DCC_CFG_PORT_CONFIG_MTU_CAP_SHIFT;
10114 	write_csr(ppd->dd, DCC_CFG_PORT_CONFIG, len1);
10115 }
10116 
10117 static void set_lidlmc(struct hfi1_pportdata *ppd)
10118 {
10119 	int i;
10120 	u64 sreg = 0;
10121 	struct hfi1_devdata *dd = ppd->dd;
10122 	u32 mask = ~((1U << ppd->lmc) - 1);
10123 	u64 c1 = read_csr(ppd->dd, DCC_CFG_PORT_CONFIG1);
10124 	u32 lid;
10125 
10126 	/*
10127 	 * Program 0 in CSR if port lid is extended. This prevents
10128 	 * 9B packets being sent out for large lids.
10129 	 */
10130 	lid = (ppd->lid >= be16_to_cpu(IB_MULTICAST_LID_BASE)) ? 0 : ppd->lid;
10131 	c1 &= ~(DCC_CFG_PORT_CONFIG1_TARGET_DLID_SMASK
10132 		| DCC_CFG_PORT_CONFIG1_DLID_MASK_SMASK);
10133 	c1 |= ((lid & DCC_CFG_PORT_CONFIG1_TARGET_DLID_MASK)
10134 			<< DCC_CFG_PORT_CONFIG1_TARGET_DLID_SHIFT) |
10135 	      ((mask & DCC_CFG_PORT_CONFIG1_DLID_MASK_MASK)
10136 			<< DCC_CFG_PORT_CONFIG1_DLID_MASK_SHIFT);
10137 	write_csr(ppd->dd, DCC_CFG_PORT_CONFIG1, c1);
10138 
10139 	/*
10140 	 * Iterate over all the send contexts and set their SLID check
10141 	 */
10142 	sreg = ((mask & SEND_CTXT_CHECK_SLID_MASK_MASK) <<
10143 			SEND_CTXT_CHECK_SLID_MASK_SHIFT) |
10144 	       (((lid & mask) & SEND_CTXT_CHECK_SLID_VALUE_MASK) <<
10145 			SEND_CTXT_CHECK_SLID_VALUE_SHIFT);
10146 
10147 	for (i = 0; i < chip_send_contexts(dd); i++) {
10148 		hfi1_cdbg(LINKVERB, "SendContext[%d].SLID_CHECK = 0x%x",
10149 			  i, (u32)sreg);
10150 		write_kctxt_csr(dd, i, SEND_CTXT_CHECK_SLID, sreg);
10151 	}
10152 
10153 	/* Now we have to do the same thing for the sdma engines */
10154 	sdma_update_lmc(dd, mask, lid);
10155 }
10156 
10157 static const char *state_completed_string(u32 completed)
10158 {
10159 	static const char * const state_completed[] = {
10160 		"EstablishComm",
10161 		"OptimizeEQ",
10162 		"VerifyCap"
10163 	};
10164 
10165 	if (completed < ARRAY_SIZE(state_completed))
10166 		return state_completed[completed];
10167 
10168 	return "unknown";
10169 }
10170 
10171 static const char all_lanes_dead_timeout_expired[] =
10172 	"All lanes were inactive – was the interconnect media removed?";
10173 static const char tx_out_of_policy[] =
10174 	"Passing lanes on local port do not meet the local link width policy";
10175 static const char no_state_complete[] =
10176 	"State timeout occurred before link partner completed the state";
10177 static const char * const state_complete_reasons[] = {
10178 	[0x00] = "Reason unknown",
10179 	[0x01] = "Link was halted by driver, refer to LinkDownReason",
10180 	[0x02] = "Link partner reported failure",
10181 	[0x10] = "Unable to achieve frame sync on any lane",
10182 	[0x11] =
10183 	  "Unable to find a common bit rate with the link partner",
10184 	[0x12] =
10185 	  "Unable to achieve frame sync on sufficient lanes to meet the local link width policy",
10186 	[0x13] =
10187 	  "Unable to identify preset equalization on sufficient lanes to meet the local link width policy",
10188 	[0x14] = no_state_complete,
10189 	[0x15] =
10190 	  "State timeout occurred before link partner identified equalization presets",
10191 	[0x16] =
10192 	  "Link partner completed the EstablishComm state, but the passing lanes do not meet the local link width policy",
10193 	[0x17] = tx_out_of_policy,
10194 	[0x20] = all_lanes_dead_timeout_expired,
10195 	[0x21] =
10196 	  "Unable to achieve acceptable BER on sufficient lanes to meet the local link width policy",
10197 	[0x22] = no_state_complete,
10198 	[0x23] =
10199 	  "Link partner completed the OptimizeEq state, but the passing lanes do not meet the local link width policy",
10200 	[0x24] = tx_out_of_policy,
10201 	[0x30] = all_lanes_dead_timeout_expired,
10202 	[0x31] =
10203 	  "State timeout occurred waiting for host to process received frames",
10204 	[0x32] = no_state_complete,
10205 	[0x33] =
10206 	  "Link partner completed the VerifyCap state, but the passing lanes do not meet the local link width policy",
10207 	[0x34] = tx_out_of_policy,
10208 	[0x35] = "Negotiated link width is mutually exclusive",
10209 	[0x36] =
10210 	  "Timed out before receiving verifycap frames in VerifyCap.Exchange",
10211 	[0x37] = "Unable to resolve secure data exchange",
10212 };
10213 
10214 static const char *state_complete_reason_code_string(struct hfi1_pportdata *ppd,
10215 						     u32 code)
10216 {
10217 	const char *str = NULL;
10218 
10219 	if (code < ARRAY_SIZE(state_complete_reasons))
10220 		str = state_complete_reasons[code];
10221 
10222 	if (str)
10223 		return str;
10224 	return "Reserved";
10225 }
10226 
10227 /* describe the given last state complete frame */
10228 static void decode_state_complete(struct hfi1_pportdata *ppd, u32 frame,
10229 				  const char *prefix)
10230 {
10231 	struct hfi1_devdata *dd = ppd->dd;
10232 	u32 success;
10233 	u32 state;
10234 	u32 reason;
10235 	u32 lanes;
10236 
10237 	/*
10238 	 * Decode frame:
10239 	 *  [ 0: 0] - success
10240 	 *  [ 3: 1] - state
10241 	 *  [ 7: 4] - next state timeout
10242 	 *  [15: 8] - reason code
10243 	 *  [31:16] - lanes
10244 	 */
10245 	success = frame & 0x1;
10246 	state = (frame >> 1) & 0x7;
10247 	reason = (frame >> 8) & 0xff;
10248 	lanes = (frame >> 16) & 0xffff;
10249 
10250 	dd_dev_err(dd, "Last %s LNI state complete frame 0x%08x:\n",
10251 		   prefix, frame);
10252 	dd_dev_err(dd, "    last reported state state: %s (0x%x)\n",
10253 		   state_completed_string(state), state);
10254 	dd_dev_err(dd, "    state successfully completed: %s\n",
10255 		   success ? "yes" : "no");
10256 	dd_dev_err(dd, "    fail reason 0x%x: %s\n",
10257 		   reason, state_complete_reason_code_string(ppd, reason));
10258 	dd_dev_err(dd, "    passing lane mask: 0x%x", lanes);
10259 }
10260 
10261 /*
10262  * Read the last state complete frames and explain them.  This routine
10263  * expects to be called if the link went down during link negotiation
10264  * and initialization (LNI).  That is, anywhere between polling and link up.
10265  */
10266 static void check_lni_states(struct hfi1_pportdata *ppd)
10267 {
10268 	u32 last_local_state;
10269 	u32 last_remote_state;
10270 
10271 	read_last_local_state(ppd->dd, &last_local_state);
10272 	read_last_remote_state(ppd->dd, &last_remote_state);
10273 
10274 	/*
10275 	 * Don't report anything if there is nothing to report.  A value of
10276 	 * 0 means the link was taken down while polling and there was no
10277 	 * training in-process.
10278 	 */
10279 	if (last_local_state == 0 && last_remote_state == 0)
10280 		return;
10281 
10282 	decode_state_complete(ppd, last_local_state, "transmitted");
10283 	decode_state_complete(ppd, last_remote_state, "received");
10284 }
10285 
10286 /* wait for wait_ms for LINK_TRANSFER_ACTIVE to go to 1 */
10287 static int wait_link_transfer_active(struct hfi1_devdata *dd, int wait_ms)
10288 {
10289 	u64 reg;
10290 	unsigned long timeout;
10291 
10292 	/* watch LCB_STS_LINK_TRANSFER_ACTIVE */
10293 	timeout = jiffies + msecs_to_jiffies(wait_ms);
10294 	while (1) {
10295 		reg = read_csr(dd, DC_LCB_STS_LINK_TRANSFER_ACTIVE);
10296 		if (reg)
10297 			break;
10298 		if (time_after(jiffies, timeout)) {
10299 			dd_dev_err(dd,
10300 				   "timeout waiting for LINK_TRANSFER_ACTIVE\n");
10301 			return -ETIMEDOUT;
10302 		}
10303 		udelay(2);
10304 	}
10305 	return 0;
10306 }
10307 
10308 /* called when the logical link state is not down as it should be */
10309 static void force_logical_link_state_down(struct hfi1_pportdata *ppd)
10310 {
10311 	struct hfi1_devdata *dd = ppd->dd;
10312 
10313 	/*
10314 	 * Bring link up in LCB loopback
10315 	 */
10316 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 1);
10317 	write_csr(dd, DC_LCB_CFG_IGNORE_LOST_RCLK,
10318 		  DC_LCB_CFG_IGNORE_LOST_RCLK_EN_SMASK);
10319 
10320 	write_csr(dd, DC_LCB_CFG_LANE_WIDTH, 0);
10321 	write_csr(dd, DC_LCB_CFG_REINIT_AS_SLAVE, 0);
10322 	write_csr(dd, DC_LCB_CFG_CNT_FOR_SKIP_STALL, 0x110);
10323 	write_csr(dd, DC_LCB_CFG_LOOPBACK, 0x2);
10324 
10325 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0);
10326 	(void)read_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET);
10327 	udelay(3);
10328 	write_csr(dd, DC_LCB_CFG_ALLOW_LINK_UP, 1);
10329 	write_csr(dd, DC_LCB_CFG_RUN, 1ull << DC_LCB_CFG_RUN_EN_SHIFT);
10330 
10331 	wait_link_transfer_active(dd, 100);
10332 
10333 	/*
10334 	 * Bring the link down again.
10335 	 */
10336 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 1);
10337 	write_csr(dd, DC_LCB_CFG_ALLOW_LINK_UP, 0);
10338 	write_csr(dd, DC_LCB_CFG_IGNORE_LOST_RCLK, 0);
10339 
10340 	dd_dev_info(ppd->dd, "logical state forced to LINK_DOWN\n");
10341 }
10342 
10343 /*
10344  * Helper for set_link_state().  Do not call except from that routine.
10345  * Expects ppd->hls_mutex to be held.
10346  *
10347  * @rem_reason value to be sent to the neighbor
10348  *
10349  * LinkDownReasons only set if transition succeeds.
10350  */
10351 static int goto_offline(struct hfi1_pportdata *ppd, u8 rem_reason)
10352 {
10353 	struct hfi1_devdata *dd = ppd->dd;
10354 	u32 previous_state;
10355 	int offline_state_ret;
10356 	int ret;
10357 
10358 	update_lcb_cache(dd);
10359 
10360 	previous_state = ppd->host_link_state;
10361 	ppd->host_link_state = HLS_GOING_OFFLINE;
10362 
10363 	/* start offline transition */
10364 	ret = set_physical_link_state(dd, (rem_reason << 8) | PLS_OFFLINE);
10365 
10366 	if (ret != HCMD_SUCCESS) {
10367 		dd_dev_err(dd,
10368 			   "Failed to transition to Offline link state, return %d\n",
10369 			   ret);
10370 		return -EINVAL;
10371 	}
10372 	if (ppd->offline_disabled_reason ==
10373 			HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE))
10374 		ppd->offline_disabled_reason =
10375 		HFI1_ODR_MASK(OPA_LINKDOWN_REASON_TRANSIENT);
10376 
10377 	offline_state_ret = wait_phys_link_offline_substates(ppd, 10000);
10378 	if (offline_state_ret < 0)
10379 		return offline_state_ret;
10380 
10381 	/* Disabling AOC transmitters */
10382 	if (ppd->port_type == PORT_TYPE_QSFP &&
10383 	    ppd->qsfp_info.limiting_active &&
10384 	    qsfp_mod_present(ppd)) {
10385 		int ret;
10386 
10387 		ret = acquire_chip_resource(dd, qsfp_resource(dd), QSFP_WAIT);
10388 		if (ret == 0) {
10389 			set_qsfp_tx(ppd, 0);
10390 			release_chip_resource(dd, qsfp_resource(dd));
10391 		} else {
10392 			/* not fatal, but should warn */
10393 			dd_dev_err(dd,
10394 				   "Unable to acquire lock to turn off QSFP TX\n");
10395 		}
10396 	}
10397 
10398 	/*
10399 	 * Wait for the offline.Quiet transition if it hasn't happened yet. It
10400 	 * can take a while for the link to go down.
10401 	 */
10402 	if (offline_state_ret != PLS_OFFLINE_QUIET) {
10403 		ret = wait_physical_linkstate(ppd, PLS_OFFLINE, 30000);
10404 		if (ret < 0)
10405 			return ret;
10406 	}
10407 
10408 	/*
10409 	 * Now in charge of LCB - must be after the physical state is
10410 	 * offline.quiet and before host_link_state is changed.
10411 	 */
10412 	set_host_lcb_access(dd);
10413 	write_csr(dd, DC_LCB_ERR_EN, ~0ull); /* watch LCB errors */
10414 
10415 	/* make sure the logical state is also down */
10416 	ret = wait_logical_linkstate(ppd, IB_PORT_DOWN, 1000);
10417 	if (ret)
10418 		force_logical_link_state_down(ppd);
10419 
10420 	ppd->host_link_state = HLS_LINK_COOLDOWN; /* LCB access allowed */
10421 	update_statusp(ppd, IB_PORT_DOWN);
10422 
10423 	/*
10424 	 * The LNI has a mandatory wait time after the physical state
10425 	 * moves to Offline.Quiet.  The wait time may be different
10426 	 * depending on how the link went down.  The 8051 firmware
10427 	 * will observe the needed wait time and only move to ready
10428 	 * when that is completed.  The largest of the quiet timeouts
10429 	 * is 6s, so wait that long and then at least 0.5s more for
10430 	 * other transitions, and another 0.5s for a buffer.
10431 	 */
10432 	ret = wait_fm_ready(dd, 7000);
10433 	if (ret) {
10434 		dd_dev_err(dd,
10435 			   "After going offline, timed out waiting for the 8051 to become ready to accept host requests\n");
10436 		/* state is really offline, so make it so */
10437 		ppd->host_link_state = HLS_DN_OFFLINE;
10438 		return ret;
10439 	}
10440 
10441 	/*
10442 	 * The state is now offline and the 8051 is ready to accept host
10443 	 * requests.
10444 	 *	- change our state
10445 	 *	- notify others if we were previously in a linkup state
10446 	 */
10447 	ppd->host_link_state = HLS_DN_OFFLINE;
10448 	if (previous_state & HLS_UP) {
10449 		/* went down while link was up */
10450 		handle_linkup_change(dd, 0);
10451 	} else if (previous_state
10452 			& (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) {
10453 		/* went down while attempting link up */
10454 		check_lni_states(ppd);
10455 
10456 		/* The QSFP doesn't need to be reset on LNI failure */
10457 		ppd->qsfp_info.reset_needed = 0;
10458 	}
10459 
10460 	/* the active link width (downgrade) is 0 on link down */
10461 	ppd->link_width_active = 0;
10462 	ppd->link_width_downgrade_tx_active = 0;
10463 	ppd->link_width_downgrade_rx_active = 0;
10464 	ppd->current_egress_rate = 0;
10465 	return 0;
10466 }
10467 
10468 /* return the link state name */
10469 static const char *link_state_name(u32 state)
10470 {
10471 	const char *name;
10472 	int n = ilog2(state);
10473 	static const char * const names[] = {
10474 		[__HLS_UP_INIT_BP]	 = "INIT",
10475 		[__HLS_UP_ARMED_BP]	 = "ARMED",
10476 		[__HLS_UP_ACTIVE_BP]	 = "ACTIVE",
10477 		[__HLS_DN_DOWNDEF_BP]	 = "DOWNDEF",
10478 		[__HLS_DN_POLL_BP]	 = "POLL",
10479 		[__HLS_DN_DISABLE_BP]	 = "DISABLE",
10480 		[__HLS_DN_OFFLINE_BP]	 = "OFFLINE",
10481 		[__HLS_VERIFY_CAP_BP]	 = "VERIFY_CAP",
10482 		[__HLS_GOING_UP_BP]	 = "GOING_UP",
10483 		[__HLS_GOING_OFFLINE_BP] = "GOING_OFFLINE",
10484 		[__HLS_LINK_COOLDOWN_BP] = "LINK_COOLDOWN"
10485 	};
10486 
10487 	name = n < ARRAY_SIZE(names) ? names[n] : NULL;
10488 	return name ? name : "unknown";
10489 }
10490 
10491 /* return the link state reason name */
10492 static const char *link_state_reason_name(struct hfi1_pportdata *ppd, u32 state)
10493 {
10494 	if (state == HLS_UP_INIT) {
10495 		switch (ppd->linkinit_reason) {
10496 		case OPA_LINKINIT_REASON_LINKUP:
10497 			return "(LINKUP)";
10498 		case OPA_LINKINIT_REASON_FLAPPING:
10499 			return "(FLAPPING)";
10500 		case OPA_LINKINIT_OUTSIDE_POLICY:
10501 			return "(OUTSIDE_POLICY)";
10502 		case OPA_LINKINIT_QUARANTINED:
10503 			return "(QUARANTINED)";
10504 		case OPA_LINKINIT_INSUFIC_CAPABILITY:
10505 			return "(INSUFIC_CAPABILITY)";
10506 		default:
10507 			break;
10508 		}
10509 	}
10510 	return "";
10511 }
10512 
10513 /*
10514  * driver_pstate - convert the driver's notion of a port's
10515  * state (an HLS_*) into a physical state (a {IB,OPA}_PORTPHYSSTATE_*).
10516  * Return -1 (converted to a u32) to indicate error.
10517  */
10518 u32 driver_pstate(struct hfi1_pportdata *ppd)
10519 {
10520 	switch (ppd->host_link_state) {
10521 	case HLS_UP_INIT:
10522 	case HLS_UP_ARMED:
10523 	case HLS_UP_ACTIVE:
10524 		return IB_PORTPHYSSTATE_LINKUP;
10525 	case HLS_DN_POLL:
10526 		return IB_PORTPHYSSTATE_POLLING;
10527 	case HLS_DN_DISABLE:
10528 		return IB_PORTPHYSSTATE_DISABLED;
10529 	case HLS_DN_OFFLINE:
10530 		return OPA_PORTPHYSSTATE_OFFLINE;
10531 	case HLS_VERIFY_CAP:
10532 		return IB_PORTPHYSSTATE_TRAINING;
10533 	case HLS_GOING_UP:
10534 		return IB_PORTPHYSSTATE_TRAINING;
10535 	case HLS_GOING_OFFLINE:
10536 		return OPA_PORTPHYSSTATE_OFFLINE;
10537 	case HLS_LINK_COOLDOWN:
10538 		return OPA_PORTPHYSSTATE_OFFLINE;
10539 	case HLS_DN_DOWNDEF:
10540 	default:
10541 		dd_dev_err(ppd->dd, "invalid host_link_state 0x%x\n",
10542 			   ppd->host_link_state);
10543 		return  -1;
10544 	}
10545 }
10546 
10547 /*
10548  * driver_lstate - convert the driver's notion of a port's
10549  * state (an HLS_*) into a logical state (a IB_PORT_*). Return -1
10550  * (converted to a u32) to indicate error.
10551  */
10552 u32 driver_lstate(struct hfi1_pportdata *ppd)
10553 {
10554 	if (ppd->host_link_state && (ppd->host_link_state & HLS_DOWN))
10555 		return IB_PORT_DOWN;
10556 
10557 	switch (ppd->host_link_state & HLS_UP) {
10558 	case HLS_UP_INIT:
10559 		return IB_PORT_INIT;
10560 	case HLS_UP_ARMED:
10561 		return IB_PORT_ARMED;
10562 	case HLS_UP_ACTIVE:
10563 		return IB_PORT_ACTIVE;
10564 	default:
10565 		dd_dev_err(ppd->dd, "invalid host_link_state 0x%x\n",
10566 			   ppd->host_link_state);
10567 	return -1;
10568 	}
10569 }
10570 
10571 void set_link_down_reason(struct hfi1_pportdata *ppd, u8 lcl_reason,
10572 			  u8 neigh_reason, u8 rem_reason)
10573 {
10574 	if (ppd->local_link_down_reason.latest == 0 &&
10575 	    ppd->neigh_link_down_reason.latest == 0) {
10576 		ppd->local_link_down_reason.latest = lcl_reason;
10577 		ppd->neigh_link_down_reason.latest = neigh_reason;
10578 		ppd->remote_link_down_reason = rem_reason;
10579 	}
10580 }
10581 
10582 /**
10583  * data_vls_operational() - Verify if data VL BCT credits and MTU
10584  *			    are both set.
10585  * @ppd: pointer to hfi1_pportdata structure
10586  *
10587  * Return: true - Ok, false -otherwise.
10588  */
10589 static inline bool data_vls_operational(struct hfi1_pportdata *ppd)
10590 {
10591 	int i;
10592 	u64 reg;
10593 
10594 	if (!ppd->actual_vls_operational)
10595 		return false;
10596 
10597 	for (i = 0; i < ppd->vls_supported; i++) {
10598 		reg = read_csr(ppd->dd, SEND_CM_CREDIT_VL + (8 * i));
10599 		if ((reg && !ppd->dd->vld[i].mtu) ||
10600 		    (!reg && ppd->dd->vld[i].mtu))
10601 			return false;
10602 	}
10603 
10604 	return true;
10605 }
10606 
10607 /*
10608  * Change the physical and/or logical link state.
10609  *
10610  * Do not call this routine while inside an interrupt.  It contains
10611  * calls to routines that can take multiple seconds to finish.
10612  *
10613  * Returns 0 on success, -errno on failure.
10614  */
10615 int set_link_state(struct hfi1_pportdata *ppd, u32 state)
10616 {
10617 	struct hfi1_devdata *dd = ppd->dd;
10618 	struct ib_event event = {.device = NULL};
10619 	int ret1, ret = 0;
10620 	int orig_new_state, poll_bounce;
10621 
10622 	mutex_lock(&ppd->hls_lock);
10623 
10624 	orig_new_state = state;
10625 	if (state == HLS_DN_DOWNDEF)
10626 		state = HLS_DEFAULT;
10627 
10628 	/* interpret poll -> poll as a link bounce */
10629 	poll_bounce = ppd->host_link_state == HLS_DN_POLL &&
10630 		      state == HLS_DN_POLL;
10631 
10632 	dd_dev_info(dd, "%s: current %s, new %s %s%s\n", __func__,
10633 		    link_state_name(ppd->host_link_state),
10634 		    link_state_name(orig_new_state),
10635 		    poll_bounce ? "(bounce) " : "",
10636 		    link_state_reason_name(ppd, state));
10637 
10638 	/*
10639 	 * If we're going to a (HLS_*) link state that implies the logical
10640 	 * link state is neither of (IB_PORT_ARMED, IB_PORT_ACTIVE), then
10641 	 * reset is_sm_config_started to 0.
10642 	 */
10643 	if (!(state & (HLS_UP_ARMED | HLS_UP_ACTIVE)))
10644 		ppd->is_sm_config_started = 0;
10645 
10646 	/*
10647 	 * Do nothing if the states match.  Let a poll to poll link bounce
10648 	 * go through.
10649 	 */
10650 	if (ppd->host_link_state == state && !poll_bounce)
10651 		goto done;
10652 
10653 	switch (state) {
10654 	case HLS_UP_INIT:
10655 		if (ppd->host_link_state == HLS_DN_POLL &&
10656 		    (quick_linkup || dd->icode == ICODE_FUNCTIONAL_SIMULATOR)) {
10657 			/*
10658 			 * Quick link up jumps from polling to here.
10659 			 *
10660 			 * Whether in normal or loopback mode, the
10661 			 * simulator jumps from polling to link up.
10662 			 * Accept that here.
10663 			 */
10664 			/* OK */
10665 		} else if (ppd->host_link_state != HLS_GOING_UP) {
10666 			goto unexpected;
10667 		}
10668 
10669 		/*
10670 		 * Wait for Link_Up physical state.
10671 		 * Physical and Logical states should already be
10672 		 * be transitioned to LinkUp and LinkInit respectively.
10673 		 */
10674 		ret = wait_physical_linkstate(ppd, PLS_LINKUP, 1000);
10675 		if (ret) {
10676 			dd_dev_err(dd,
10677 				   "%s: physical state did not change to LINK-UP\n",
10678 				   __func__);
10679 			break;
10680 		}
10681 
10682 		ret = wait_logical_linkstate(ppd, IB_PORT_INIT, 1000);
10683 		if (ret) {
10684 			dd_dev_err(dd,
10685 				   "%s: logical state did not change to INIT\n",
10686 				   __func__);
10687 			break;
10688 		}
10689 
10690 		/* clear old transient LINKINIT_REASON code */
10691 		if (ppd->linkinit_reason >= OPA_LINKINIT_REASON_CLEAR)
10692 			ppd->linkinit_reason =
10693 				OPA_LINKINIT_REASON_LINKUP;
10694 
10695 		/* enable the port */
10696 		add_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
10697 
10698 		handle_linkup_change(dd, 1);
10699 		pio_kernel_linkup(dd);
10700 
10701 		/*
10702 		 * After link up, a new link width will have been set.
10703 		 * Update the xmit counters with regards to the new
10704 		 * link width.
10705 		 */
10706 		update_xmit_counters(ppd, ppd->link_width_active);
10707 
10708 		ppd->host_link_state = HLS_UP_INIT;
10709 		update_statusp(ppd, IB_PORT_INIT);
10710 		break;
10711 	case HLS_UP_ARMED:
10712 		if (ppd->host_link_state != HLS_UP_INIT)
10713 			goto unexpected;
10714 
10715 		if (!data_vls_operational(ppd)) {
10716 			dd_dev_err(dd,
10717 				   "%s: Invalid data VL credits or mtu\n",
10718 				   __func__);
10719 			ret = -EINVAL;
10720 			break;
10721 		}
10722 
10723 		set_logical_state(dd, LSTATE_ARMED);
10724 		ret = wait_logical_linkstate(ppd, IB_PORT_ARMED, 1000);
10725 		if (ret) {
10726 			dd_dev_err(dd,
10727 				   "%s: logical state did not change to ARMED\n",
10728 				   __func__);
10729 			break;
10730 		}
10731 		ppd->host_link_state = HLS_UP_ARMED;
10732 		update_statusp(ppd, IB_PORT_ARMED);
10733 		/*
10734 		 * The simulator does not currently implement SMA messages,
10735 		 * so neighbor_normal is not set.  Set it here when we first
10736 		 * move to Armed.
10737 		 */
10738 		if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR)
10739 			ppd->neighbor_normal = 1;
10740 		break;
10741 	case HLS_UP_ACTIVE:
10742 		if (ppd->host_link_state != HLS_UP_ARMED)
10743 			goto unexpected;
10744 
10745 		set_logical_state(dd, LSTATE_ACTIVE);
10746 		ret = wait_logical_linkstate(ppd, IB_PORT_ACTIVE, 1000);
10747 		if (ret) {
10748 			dd_dev_err(dd,
10749 				   "%s: logical state did not change to ACTIVE\n",
10750 				   __func__);
10751 		} else {
10752 			/* tell all engines to go running */
10753 			sdma_all_running(dd);
10754 			ppd->host_link_state = HLS_UP_ACTIVE;
10755 			update_statusp(ppd, IB_PORT_ACTIVE);
10756 
10757 			/* Signal the IB layer that the port has went active */
10758 			event.device = &dd->verbs_dev.rdi.ibdev;
10759 			event.element.port_num = ppd->port;
10760 			event.event = IB_EVENT_PORT_ACTIVE;
10761 		}
10762 		break;
10763 	case HLS_DN_POLL:
10764 		if ((ppd->host_link_state == HLS_DN_DISABLE ||
10765 		     ppd->host_link_state == HLS_DN_OFFLINE) &&
10766 		    dd->dc_shutdown)
10767 			dc_start(dd);
10768 		/* Hand LED control to the DC */
10769 		write_csr(dd, DCC_CFG_LED_CNTRL, 0);
10770 
10771 		if (ppd->host_link_state != HLS_DN_OFFLINE) {
10772 			u8 tmp = ppd->link_enabled;
10773 
10774 			ret = goto_offline(ppd, ppd->remote_link_down_reason);
10775 			if (ret) {
10776 				ppd->link_enabled = tmp;
10777 				break;
10778 			}
10779 			ppd->remote_link_down_reason = 0;
10780 
10781 			if (ppd->driver_link_ready)
10782 				ppd->link_enabled = 1;
10783 		}
10784 
10785 		set_all_slowpath(ppd->dd);
10786 		ret = set_local_link_attributes(ppd);
10787 		if (ret)
10788 			break;
10789 
10790 		ppd->port_error_action = 0;
10791 
10792 		if (quick_linkup) {
10793 			/* quick linkup does not go into polling */
10794 			ret = do_quick_linkup(dd);
10795 		} else {
10796 			ret1 = set_physical_link_state(dd, PLS_POLLING);
10797 			if (!ret1)
10798 				ret1 = wait_phys_link_out_of_offline(ppd,
10799 								     3000);
10800 			if (ret1 != HCMD_SUCCESS) {
10801 				dd_dev_err(dd,
10802 					   "Failed to transition to Polling link state, return 0x%x\n",
10803 					   ret1);
10804 				ret = -EINVAL;
10805 			}
10806 		}
10807 
10808 		/*
10809 		 * Change the host link state after requesting DC8051 to
10810 		 * change its physical state so that we can ignore any
10811 		 * interrupt with stale LNI(XX) error, which will not be
10812 		 * cleared until DC8051 transitions to Polling state.
10813 		 */
10814 		ppd->host_link_state = HLS_DN_POLL;
10815 		ppd->offline_disabled_reason =
10816 			HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE);
10817 		/*
10818 		 * If an error occurred above, go back to offline.  The
10819 		 * caller may reschedule another attempt.
10820 		 */
10821 		if (ret)
10822 			goto_offline(ppd, 0);
10823 		else
10824 			log_physical_state(ppd, PLS_POLLING);
10825 		break;
10826 	case HLS_DN_DISABLE:
10827 		/* link is disabled */
10828 		ppd->link_enabled = 0;
10829 
10830 		/* allow any state to transition to disabled */
10831 
10832 		/* must transition to offline first */
10833 		if (ppd->host_link_state != HLS_DN_OFFLINE) {
10834 			ret = goto_offline(ppd, ppd->remote_link_down_reason);
10835 			if (ret)
10836 				break;
10837 			ppd->remote_link_down_reason = 0;
10838 		}
10839 
10840 		if (!dd->dc_shutdown) {
10841 			ret1 = set_physical_link_state(dd, PLS_DISABLED);
10842 			if (ret1 != HCMD_SUCCESS) {
10843 				dd_dev_err(dd,
10844 					   "Failed to transition to Disabled link state, return 0x%x\n",
10845 					   ret1);
10846 				ret = -EINVAL;
10847 				break;
10848 			}
10849 			ret = wait_physical_linkstate(ppd, PLS_DISABLED, 10000);
10850 			if (ret) {
10851 				dd_dev_err(dd,
10852 					   "%s: physical state did not change to DISABLED\n",
10853 					   __func__);
10854 				break;
10855 			}
10856 			dc_shutdown(dd);
10857 		}
10858 		ppd->host_link_state = HLS_DN_DISABLE;
10859 		break;
10860 	case HLS_DN_OFFLINE:
10861 		if (ppd->host_link_state == HLS_DN_DISABLE)
10862 			dc_start(dd);
10863 
10864 		/* allow any state to transition to offline */
10865 		ret = goto_offline(ppd, ppd->remote_link_down_reason);
10866 		if (!ret)
10867 			ppd->remote_link_down_reason = 0;
10868 		break;
10869 	case HLS_VERIFY_CAP:
10870 		if (ppd->host_link_state != HLS_DN_POLL)
10871 			goto unexpected;
10872 		ppd->host_link_state = HLS_VERIFY_CAP;
10873 		log_physical_state(ppd, PLS_CONFIGPHY_VERIFYCAP);
10874 		break;
10875 	case HLS_GOING_UP:
10876 		if (ppd->host_link_state != HLS_VERIFY_CAP)
10877 			goto unexpected;
10878 
10879 		ret1 = set_physical_link_state(dd, PLS_LINKUP);
10880 		if (ret1 != HCMD_SUCCESS) {
10881 			dd_dev_err(dd,
10882 				   "Failed to transition to link up state, return 0x%x\n",
10883 				   ret1);
10884 			ret = -EINVAL;
10885 			break;
10886 		}
10887 		ppd->host_link_state = HLS_GOING_UP;
10888 		break;
10889 
10890 	case HLS_GOING_OFFLINE:		/* transient within goto_offline() */
10891 	case HLS_LINK_COOLDOWN:		/* transient within goto_offline() */
10892 	default:
10893 		dd_dev_info(dd, "%s: state 0x%x: not supported\n",
10894 			    __func__, state);
10895 		ret = -EINVAL;
10896 		break;
10897 	}
10898 
10899 	goto done;
10900 
10901 unexpected:
10902 	dd_dev_err(dd, "%s: unexpected state transition from %s to %s\n",
10903 		   __func__, link_state_name(ppd->host_link_state),
10904 		   link_state_name(state));
10905 	ret = -EINVAL;
10906 
10907 done:
10908 	mutex_unlock(&ppd->hls_lock);
10909 
10910 	if (event.device)
10911 		ib_dispatch_event(&event);
10912 
10913 	return ret;
10914 }
10915 
10916 int hfi1_set_ib_cfg(struct hfi1_pportdata *ppd, int which, u32 val)
10917 {
10918 	u64 reg;
10919 	int ret = 0;
10920 
10921 	switch (which) {
10922 	case HFI1_IB_CFG_LIDLMC:
10923 		set_lidlmc(ppd);
10924 		break;
10925 	case HFI1_IB_CFG_VL_HIGH_LIMIT:
10926 		/*
10927 		 * The VL Arbitrator high limit is sent in units of 4k
10928 		 * bytes, while HFI stores it in units of 64 bytes.
10929 		 */
10930 		val *= 4096 / 64;
10931 		reg = ((u64)val & SEND_HIGH_PRIORITY_LIMIT_LIMIT_MASK)
10932 			<< SEND_HIGH_PRIORITY_LIMIT_LIMIT_SHIFT;
10933 		write_csr(ppd->dd, SEND_HIGH_PRIORITY_LIMIT, reg);
10934 		break;
10935 	case HFI1_IB_CFG_LINKDEFAULT: /* IB link default (sleep/poll) */
10936 		/* HFI only supports POLL as the default link down state */
10937 		if (val != HLS_DN_POLL)
10938 			ret = -EINVAL;
10939 		break;
10940 	case HFI1_IB_CFG_OP_VLS:
10941 		if (ppd->vls_operational != val) {
10942 			ppd->vls_operational = val;
10943 			if (!ppd->port)
10944 				ret = -EINVAL;
10945 		}
10946 		break;
10947 	/*
10948 	 * For link width, link width downgrade, and speed enable, always AND
10949 	 * the setting with what is actually supported.  This has two benefits.
10950 	 * First, enabled can't have unsupported values, no matter what the
10951 	 * SM or FM might want.  Second, the ALL_SUPPORTED wildcards that mean
10952 	 * "fill in with your supported value" have all the bits in the
10953 	 * field set, so simply ANDing with supported has the desired result.
10954 	 */
10955 	case HFI1_IB_CFG_LWID_ENB: /* set allowed Link-width */
10956 		ppd->link_width_enabled = val & ppd->link_width_supported;
10957 		break;
10958 	case HFI1_IB_CFG_LWID_DG_ENB: /* set allowed link width downgrade */
10959 		ppd->link_width_downgrade_enabled =
10960 				val & ppd->link_width_downgrade_supported;
10961 		break;
10962 	case HFI1_IB_CFG_SPD_ENB: /* allowed Link speeds */
10963 		ppd->link_speed_enabled = val & ppd->link_speed_supported;
10964 		break;
10965 	case HFI1_IB_CFG_OVERRUN_THRESH: /* IB overrun threshold */
10966 		/*
10967 		 * HFI does not follow IB specs, save this value
10968 		 * so we can report it, if asked.
10969 		 */
10970 		ppd->overrun_threshold = val;
10971 		break;
10972 	case HFI1_IB_CFG_PHYERR_THRESH: /* IB PHY error threshold */
10973 		/*
10974 		 * HFI does not follow IB specs, save this value
10975 		 * so we can report it, if asked.
10976 		 */
10977 		ppd->phy_error_threshold = val;
10978 		break;
10979 
10980 	case HFI1_IB_CFG_MTU:
10981 		set_send_length(ppd);
10982 		break;
10983 
10984 	case HFI1_IB_CFG_PKEYS:
10985 		if (HFI1_CAP_IS_KSET(PKEY_CHECK))
10986 			set_partition_keys(ppd);
10987 		break;
10988 
10989 	default:
10990 		if (HFI1_CAP_IS_KSET(PRINT_UNIMPL))
10991 			dd_dev_info(ppd->dd,
10992 				    "%s: which %s, val 0x%x: not implemented\n",
10993 				    __func__, ib_cfg_name(which), val);
10994 		break;
10995 	}
10996 	return ret;
10997 }
10998 
10999 /* begin functions related to vl arbitration table caching */
11000 static void init_vl_arb_caches(struct hfi1_pportdata *ppd)
11001 {
11002 	int i;
11003 
11004 	BUILD_BUG_ON(VL_ARB_TABLE_SIZE !=
11005 			VL_ARB_LOW_PRIO_TABLE_SIZE);
11006 	BUILD_BUG_ON(VL_ARB_TABLE_SIZE !=
11007 			VL_ARB_HIGH_PRIO_TABLE_SIZE);
11008 
11009 	/*
11010 	 * Note that we always return values directly from the
11011 	 * 'vl_arb_cache' (and do no CSR reads) in response to a
11012 	 * 'Get(VLArbTable)'. This is obviously correct after a
11013 	 * 'Set(VLArbTable)', since the cache will then be up to
11014 	 * date. But it's also correct prior to any 'Set(VLArbTable)'
11015 	 * since then both the cache, and the relevant h/w registers
11016 	 * will be zeroed.
11017 	 */
11018 
11019 	for (i = 0; i < MAX_PRIO_TABLE; i++)
11020 		spin_lock_init(&ppd->vl_arb_cache[i].lock);
11021 }
11022 
11023 /*
11024  * vl_arb_lock_cache
11025  *
11026  * All other vl_arb_* functions should be called only after locking
11027  * the cache.
11028  */
11029 static inline struct vl_arb_cache *
11030 vl_arb_lock_cache(struct hfi1_pportdata *ppd, int idx)
11031 {
11032 	if (idx != LO_PRIO_TABLE && idx != HI_PRIO_TABLE)
11033 		return NULL;
11034 	spin_lock(&ppd->vl_arb_cache[idx].lock);
11035 	return &ppd->vl_arb_cache[idx];
11036 }
11037 
11038 static inline void vl_arb_unlock_cache(struct hfi1_pportdata *ppd, int idx)
11039 {
11040 	spin_unlock(&ppd->vl_arb_cache[idx].lock);
11041 }
11042 
11043 static void vl_arb_get_cache(struct vl_arb_cache *cache,
11044 			     struct ib_vl_weight_elem *vl)
11045 {
11046 	memcpy(vl, cache->table, VL_ARB_TABLE_SIZE * sizeof(*vl));
11047 }
11048 
11049 static void vl_arb_set_cache(struct vl_arb_cache *cache,
11050 			     struct ib_vl_weight_elem *vl)
11051 {
11052 	memcpy(cache->table, vl, VL_ARB_TABLE_SIZE * sizeof(*vl));
11053 }
11054 
11055 static int vl_arb_match_cache(struct vl_arb_cache *cache,
11056 			      struct ib_vl_weight_elem *vl)
11057 {
11058 	return !memcmp(cache->table, vl, VL_ARB_TABLE_SIZE * sizeof(*vl));
11059 }
11060 
11061 /* end functions related to vl arbitration table caching */
11062 
11063 static int set_vl_weights(struct hfi1_pportdata *ppd, u32 target,
11064 			  u32 size, struct ib_vl_weight_elem *vl)
11065 {
11066 	struct hfi1_devdata *dd = ppd->dd;
11067 	u64 reg;
11068 	unsigned int i, is_up = 0;
11069 	int drain, ret = 0;
11070 
11071 	mutex_lock(&ppd->hls_lock);
11072 
11073 	if (ppd->host_link_state & HLS_UP)
11074 		is_up = 1;
11075 
11076 	drain = !is_ax(dd) && is_up;
11077 
11078 	if (drain)
11079 		/*
11080 		 * Before adjusting VL arbitration weights, empty per-VL
11081 		 * FIFOs, otherwise a packet whose VL weight is being
11082 		 * set to 0 could get stuck in a FIFO with no chance to
11083 		 * egress.
11084 		 */
11085 		ret = stop_drain_data_vls(dd);
11086 
11087 	if (ret) {
11088 		dd_dev_err(
11089 			dd,
11090 			"%s: cannot stop/drain VLs - refusing to change VL arbitration weights\n",
11091 			__func__);
11092 		goto err;
11093 	}
11094 
11095 	for (i = 0; i < size; i++, vl++) {
11096 		/*
11097 		 * NOTE: The low priority shift and mask are used here, but
11098 		 * they are the same for both the low and high registers.
11099 		 */
11100 		reg = (((u64)vl->vl & SEND_LOW_PRIORITY_LIST_VL_MASK)
11101 				<< SEND_LOW_PRIORITY_LIST_VL_SHIFT)
11102 		      | (((u64)vl->weight
11103 				& SEND_LOW_PRIORITY_LIST_WEIGHT_MASK)
11104 				<< SEND_LOW_PRIORITY_LIST_WEIGHT_SHIFT);
11105 		write_csr(dd, target + (i * 8), reg);
11106 	}
11107 	pio_send_control(dd, PSC_GLOBAL_VLARB_ENABLE);
11108 
11109 	if (drain)
11110 		open_fill_data_vls(dd); /* reopen all VLs */
11111 
11112 err:
11113 	mutex_unlock(&ppd->hls_lock);
11114 
11115 	return ret;
11116 }
11117 
11118 /*
11119  * Read one credit merge VL register.
11120  */
11121 static void read_one_cm_vl(struct hfi1_devdata *dd, u32 csr,
11122 			   struct vl_limit *vll)
11123 {
11124 	u64 reg = read_csr(dd, csr);
11125 
11126 	vll->dedicated = cpu_to_be16(
11127 		(reg >> SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SHIFT)
11128 		& SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_MASK);
11129 	vll->shared = cpu_to_be16(
11130 		(reg >> SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SHIFT)
11131 		& SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_MASK);
11132 }
11133 
11134 /*
11135  * Read the current credit merge limits.
11136  */
11137 static int get_buffer_control(struct hfi1_devdata *dd,
11138 			      struct buffer_control *bc, u16 *overall_limit)
11139 {
11140 	u64 reg;
11141 	int i;
11142 
11143 	/* not all entries are filled in */
11144 	memset(bc, 0, sizeof(*bc));
11145 
11146 	/* OPA and HFI have a 1-1 mapping */
11147 	for (i = 0; i < TXE_NUM_DATA_VL; i++)
11148 		read_one_cm_vl(dd, SEND_CM_CREDIT_VL + (8 * i), &bc->vl[i]);
11149 
11150 	/* NOTE: assumes that VL* and VL15 CSRs are bit-wise identical */
11151 	read_one_cm_vl(dd, SEND_CM_CREDIT_VL15, &bc->vl[15]);
11152 
11153 	reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
11154 	bc->overall_shared_limit = cpu_to_be16(
11155 		(reg >> SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SHIFT)
11156 		& SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_MASK);
11157 	if (overall_limit)
11158 		*overall_limit = (reg
11159 			>> SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT)
11160 			& SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_MASK;
11161 	return sizeof(struct buffer_control);
11162 }
11163 
11164 static int get_sc2vlnt(struct hfi1_devdata *dd, struct sc2vlnt *dp)
11165 {
11166 	u64 reg;
11167 	int i;
11168 
11169 	/* each register contains 16 SC->VLnt mappings, 4 bits each */
11170 	reg = read_csr(dd, DCC_CFG_SC_VL_TABLE_15_0);
11171 	for (i = 0; i < sizeof(u64); i++) {
11172 		u8 byte = *(((u8 *)&reg) + i);
11173 
11174 		dp->vlnt[2 * i] = byte & 0xf;
11175 		dp->vlnt[(2 * i) + 1] = (byte & 0xf0) >> 4;
11176 	}
11177 
11178 	reg = read_csr(dd, DCC_CFG_SC_VL_TABLE_31_16);
11179 	for (i = 0; i < sizeof(u64); i++) {
11180 		u8 byte = *(((u8 *)&reg) + i);
11181 
11182 		dp->vlnt[16 + (2 * i)] = byte & 0xf;
11183 		dp->vlnt[16 + (2 * i) + 1] = (byte & 0xf0) >> 4;
11184 	}
11185 	return sizeof(struct sc2vlnt);
11186 }
11187 
11188 static void get_vlarb_preempt(struct hfi1_devdata *dd, u32 nelems,
11189 			      struct ib_vl_weight_elem *vl)
11190 {
11191 	unsigned int i;
11192 
11193 	for (i = 0; i < nelems; i++, vl++) {
11194 		vl->vl = 0xf;
11195 		vl->weight = 0;
11196 	}
11197 }
11198 
11199 static void set_sc2vlnt(struct hfi1_devdata *dd, struct sc2vlnt *dp)
11200 {
11201 	write_csr(dd, DCC_CFG_SC_VL_TABLE_15_0,
11202 		  DC_SC_VL_VAL(15_0,
11203 			       0, dp->vlnt[0] & 0xf,
11204 			       1, dp->vlnt[1] & 0xf,
11205 			       2, dp->vlnt[2] & 0xf,
11206 			       3, dp->vlnt[3] & 0xf,
11207 			       4, dp->vlnt[4] & 0xf,
11208 			       5, dp->vlnt[5] & 0xf,
11209 			       6, dp->vlnt[6] & 0xf,
11210 			       7, dp->vlnt[7] & 0xf,
11211 			       8, dp->vlnt[8] & 0xf,
11212 			       9, dp->vlnt[9] & 0xf,
11213 			       10, dp->vlnt[10] & 0xf,
11214 			       11, dp->vlnt[11] & 0xf,
11215 			       12, dp->vlnt[12] & 0xf,
11216 			       13, dp->vlnt[13] & 0xf,
11217 			       14, dp->vlnt[14] & 0xf,
11218 			       15, dp->vlnt[15] & 0xf));
11219 	write_csr(dd, DCC_CFG_SC_VL_TABLE_31_16,
11220 		  DC_SC_VL_VAL(31_16,
11221 			       16, dp->vlnt[16] & 0xf,
11222 			       17, dp->vlnt[17] & 0xf,
11223 			       18, dp->vlnt[18] & 0xf,
11224 			       19, dp->vlnt[19] & 0xf,
11225 			       20, dp->vlnt[20] & 0xf,
11226 			       21, dp->vlnt[21] & 0xf,
11227 			       22, dp->vlnt[22] & 0xf,
11228 			       23, dp->vlnt[23] & 0xf,
11229 			       24, dp->vlnt[24] & 0xf,
11230 			       25, dp->vlnt[25] & 0xf,
11231 			       26, dp->vlnt[26] & 0xf,
11232 			       27, dp->vlnt[27] & 0xf,
11233 			       28, dp->vlnt[28] & 0xf,
11234 			       29, dp->vlnt[29] & 0xf,
11235 			       30, dp->vlnt[30] & 0xf,
11236 			       31, dp->vlnt[31] & 0xf));
11237 }
11238 
11239 static void nonzero_msg(struct hfi1_devdata *dd, int idx, const char *what,
11240 			u16 limit)
11241 {
11242 	if (limit != 0)
11243 		dd_dev_info(dd, "Invalid %s limit %d on VL %d, ignoring\n",
11244 			    what, (int)limit, idx);
11245 }
11246 
11247 /* change only the shared limit portion of SendCmGLobalCredit */
11248 static void set_global_shared(struct hfi1_devdata *dd, u16 limit)
11249 {
11250 	u64 reg;
11251 
11252 	reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
11253 	reg &= ~SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SMASK;
11254 	reg |= (u64)limit << SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SHIFT;
11255 	write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg);
11256 }
11257 
11258 /* change only the total credit limit portion of SendCmGLobalCredit */
11259 static void set_global_limit(struct hfi1_devdata *dd, u16 limit)
11260 {
11261 	u64 reg;
11262 
11263 	reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
11264 	reg &= ~SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SMASK;
11265 	reg |= (u64)limit << SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT;
11266 	write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg);
11267 }
11268 
11269 /* set the given per-VL shared limit */
11270 static void set_vl_shared(struct hfi1_devdata *dd, int vl, u16 limit)
11271 {
11272 	u64 reg;
11273 	u32 addr;
11274 
11275 	if (vl < TXE_NUM_DATA_VL)
11276 		addr = SEND_CM_CREDIT_VL + (8 * vl);
11277 	else
11278 		addr = SEND_CM_CREDIT_VL15;
11279 
11280 	reg = read_csr(dd, addr);
11281 	reg &= ~SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SMASK;
11282 	reg |= (u64)limit << SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SHIFT;
11283 	write_csr(dd, addr, reg);
11284 }
11285 
11286 /* set the given per-VL dedicated limit */
11287 static void set_vl_dedicated(struct hfi1_devdata *dd, int vl, u16 limit)
11288 {
11289 	u64 reg;
11290 	u32 addr;
11291 
11292 	if (vl < TXE_NUM_DATA_VL)
11293 		addr = SEND_CM_CREDIT_VL + (8 * vl);
11294 	else
11295 		addr = SEND_CM_CREDIT_VL15;
11296 
11297 	reg = read_csr(dd, addr);
11298 	reg &= ~SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SMASK;
11299 	reg |= (u64)limit << SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SHIFT;
11300 	write_csr(dd, addr, reg);
11301 }
11302 
11303 /* spin until the given per-VL status mask bits clear */
11304 static void wait_for_vl_status_clear(struct hfi1_devdata *dd, u64 mask,
11305 				     const char *which)
11306 {
11307 	unsigned long timeout;
11308 	u64 reg;
11309 
11310 	timeout = jiffies + msecs_to_jiffies(VL_STATUS_CLEAR_TIMEOUT);
11311 	while (1) {
11312 		reg = read_csr(dd, SEND_CM_CREDIT_USED_STATUS) & mask;
11313 
11314 		if (reg == 0)
11315 			return;	/* success */
11316 		if (time_after(jiffies, timeout))
11317 			break;		/* timed out */
11318 		udelay(1);
11319 	}
11320 
11321 	dd_dev_err(dd,
11322 		   "%s credit change status not clearing after %dms, mask 0x%llx, not clear 0x%llx\n",
11323 		   which, VL_STATUS_CLEAR_TIMEOUT, mask, reg);
11324 	/*
11325 	 * If this occurs, it is likely there was a credit loss on the link.
11326 	 * The only recovery from that is a link bounce.
11327 	 */
11328 	dd_dev_err(dd,
11329 		   "Continuing anyway.  A credit loss may occur.  Suggest a link bounce\n");
11330 }
11331 
11332 /*
11333  * The number of credits on the VLs may be changed while everything
11334  * is "live", but the following algorithm must be followed due to
11335  * how the hardware is actually implemented.  In particular,
11336  * Return_Credit_Status[] is the only correct status check.
11337  *
11338  * if (reducing Global_Shared_Credit_Limit or any shared limit changing)
11339  *     set Global_Shared_Credit_Limit = 0
11340  *     use_all_vl = 1
11341  * mask0 = all VLs that are changing either dedicated or shared limits
11342  * set Shared_Limit[mask0] = 0
11343  * spin until Return_Credit_Status[use_all_vl ? all VL : mask0] == 0
11344  * if (changing any dedicated limit)
11345  *     mask1 = all VLs that are lowering dedicated limits
11346  *     lower Dedicated_Limit[mask1]
11347  *     spin until Return_Credit_Status[mask1] == 0
11348  *     raise Dedicated_Limits
11349  * raise Shared_Limits
11350  * raise Global_Shared_Credit_Limit
11351  *
11352  * lower = if the new limit is lower, set the limit to the new value
11353  * raise = if the new limit is higher than the current value (may be changed
11354  *	earlier in the algorithm), set the new limit to the new value
11355  */
11356 int set_buffer_control(struct hfi1_pportdata *ppd,
11357 		       struct buffer_control *new_bc)
11358 {
11359 	struct hfi1_devdata *dd = ppd->dd;
11360 	u64 changing_mask, ld_mask, stat_mask;
11361 	int change_count;
11362 	int i, use_all_mask;
11363 	int this_shared_changing;
11364 	int vl_count = 0, ret;
11365 	/*
11366 	 * A0: add the variable any_shared_limit_changing below and in the
11367 	 * algorithm above.  If removing A0 support, it can be removed.
11368 	 */
11369 	int any_shared_limit_changing;
11370 	struct buffer_control cur_bc;
11371 	u8 changing[OPA_MAX_VLS];
11372 	u8 lowering_dedicated[OPA_MAX_VLS];
11373 	u16 cur_total;
11374 	u32 new_total = 0;
11375 	const u64 all_mask =
11376 	SEND_CM_CREDIT_USED_STATUS_VL0_RETURN_CREDIT_STATUS_SMASK
11377 	 | SEND_CM_CREDIT_USED_STATUS_VL1_RETURN_CREDIT_STATUS_SMASK
11378 	 | SEND_CM_CREDIT_USED_STATUS_VL2_RETURN_CREDIT_STATUS_SMASK
11379 	 | SEND_CM_CREDIT_USED_STATUS_VL3_RETURN_CREDIT_STATUS_SMASK
11380 	 | SEND_CM_CREDIT_USED_STATUS_VL4_RETURN_CREDIT_STATUS_SMASK
11381 	 | SEND_CM_CREDIT_USED_STATUS_VL5_RETURN_CREDIT_STATUS_SMASK
11382 	 | SEND_CM_CREDIT_USED_STATUS_VL6_RETURN_CREDIT_STATUS_SMASK
11383 	 | SEND_CM_CREDIT_USED_STATUS_VL7_RETURN_CREDIT_STATUS_SMASK
11384 	 | SEND_CM_CREDIT_USED_STATUS_VL15_RETURN_CREDIT_STATUS_SMASK;
11385 
11386 #define valid_vl(idx) ((idx) < TXE_NUM_DATA_VL || (idx) == 15)
11387 #define NUM_USABLE_VLS 16	/* look at VL15 and less */
11388 
11389 	/* find the new total credits, do sanity check on unused VLs */
11390 	for (i = 0; i < OPA_MAX_VLS; i++) {
11391 		if (valid_vl(i)) {
11392 			new_total += be16_to_cpu(new_bc->vl[i].dedicated);
11393 			continue;
11394 		}
11395 		nonzero_msg(dd, i, "dedicated",
11396 			    be16_to_cpu(new_bc->vl[i].dedicated));
11397 		nonzero_msg(dd, i, "shared",
11398 			    be16_to_cpu(new_bc->vl[i].shared));
11399 		new_bc->vl[i].dedicated = 0;
11400 		new_bc->vl[i].shared = 0;
11401 	}
11402 	new_total += be16_to_cpu(new_bc->overall_shared_limit);
11403 
11404 	/* fetch the current values */
11405 	get_buffer_control(dd, &cur_bc, &cur_total);
11406 
11407 	/*
11408 	 * Create the masks we will use.
11409 	 */
11410 	memset(changing, 0, sizeof(changing));
11411 	memset(lowering_dedicated, 0, sizeof(lowering_dedicated));
11412 	/*
11413 	 * NOTE: Assumes that the individual VL bits are adjacent and in
11414 	 * increasing order
11415 	 */
11416 	stat_mask =
11417 		SEND_CM_CREDIT_USED_STATUS_VL0_RETURN_CREDIT_STATUS_SMASK;
11418 	changing_mask = 0;
11419 	ld_mask = 0;
11420 	change_count = 0;
11421 	any_shared_limit_changing = 0;
11422 	for (i = 0; i < NUM_USABLE_VLS; i++, stat_mask <<= 1) {
11423 		if (!valid_vl(i))
11424 			continue;
11425 		this_shared_changing = new_bc->vl[i].shared
11426 						!= cur_bc.vl[i].shared;
11427 		if (this_shared_changing)
11428 			any_shared_limit_changing = 1;
11429 		if (new_bc->vl[i].dedicated != cur_bc.vl[i].dedicated ||
11430 		    this_shared_changing) {
11431 			changing[i] = 1;
11432 			changing_mask |= stat_mask;
11433 			change_count++;
11434 		}
11435 		if (be16_to_cpu(new_bc->vl[i].dedicated) <
11436 					be16_to_cpu(cur_bc.vl[i].dedicated)) {
11437 			lowering_dedicated[i] = 1;
11438 			ld_mask |= stat_mask;
11439 		}
11440 	}
11441 
11442 	/* bracket the credit change with a total adjustment */
11443 	if (new_total > cur_total)
11444 		set_global_limit(dd, new_total);
11445 
11446 	/*
11447 	 * Start the credit change algorithm.
11448 	 */
11449 	use_all_mask = 0;
11450 	if ((be16_to_cpu(new_bc->overall_shared_limit) <
11451 	     be16_to_cpu(cur_bc.overall_shared_limit)) ||
11452 	    (is_ax(dd) && any_shared_limit_changing)) {
11453 		set_global_shared(dd, 0);
11454 		cur_bc.overall_shared_limit = 0;
11455 		use_all_mask = 1;
11456 	}
11457 
11458 	for (i = 0; i < NUM_USABLE_VLS; i++) {
11459 		if (!valid_vl(i))
11460 			continue;
11461 
11462 		if (changing[i]) {
11463 			set_vl_shared(dd, i, 0);
11464 			cur_bc.vl[i].shared = 0;
11465 		}
11466 	}
11467 
11468 	wait_for_vl_status_clear(dd, use_all_mask ? all_mask : changing_mask,
11469 				 "shared");
11470 
11471 	if (change_count > 0) {
11472 		for (i = 0; i < NUM_USABLE_VLS; i++) {
11473 			if (!valid_vl(i))
11474 				continue;
11475 
11476 			if (lowering_dedicated[i]) {
11477 				set_vl_dedicated(dd, i,
11478 						 be16_to_cpu(new_bc->
11479 							     vl[i].dedicated));
11480 				cur_bc.vl[i].dedicated =
11481 						new_bc->vl[i].dedicated;
11482 			}
11483 		}
11484 
11485 		wait_for_vl_status_clear(dd, ld_mask, "dedicated");
11486 
11487 		/* now raise all dedicated that are going up */
11488 		for (i = 0; i < NUM_USABLE_VLS; i++) {
11489 			if (!valid_vl(i))
11490 				continue;
11491 
11492 			if (be16_to_cpu(new_bc->vl[i].dedicated) >
11493 					be16_to_cpu(cur_bc.vl[i].dedicated))
11494 				set_vl_dedicated(dd, i,
11495 						 be16_to_cpu(new_bc->
11496 							     vl[i].dedicated));
11497 		}
11498 	}
11499 
11500 	/* next raise all shared that are going up */
11501 	for (i = 0; i < NUM_USABLE_VLS; i++) {
11502 		if (!valid_vl(i))
11503 			continue;
11504 
11505 		if (be16_to_cpu(new_bc->vl[i].shared) >
11506 				be16_to_cpu(cur_bc.vl[i].shared))
11507 			set_vl_shared(dd, i, be16_to_cpu(new_bc->vl[i].shared));
11508 	}
11509 
11510 	/* finally raise the global shared */
11511 	if (be16_to_cpu(new_bc->overall_shared_limit) >
11512 	    be16_to_cpu(cur_bc.overall_shared_limit))
11513 		set_global_shared(dd,
11514 				  be16_to_cpu(new_bc->overall_shared_limit));
11515 
11516 	/* bracket the credit change with a total adjustment */
11517 	if (new_total < cur_total)
11518 		set_global_limit(dd, new_total);
11519 
11520 	/*
11521 	 * Determine the actual number of operational VLS using the number of
11522 	 * dedicated and shared credits for each VL.
11523 	 */
11524 	if (change_count > 0) {
11525 		for (i = 0; i < TXE_NUM_DATA_VL; i++)
11526 			if (be16_to_cpu(new_bc->vl[i].dedicated) > 0 ||
11527 			    be16_to_cpu(new_bc->vl[i].shared) > 0)
11528 				vl_count++;
11529 		ppd->actual_vls_operational = vl_count;
11530 		ret = sdma_map_init(dd, ppd->port - 1, vl_count ?
11531 				    ppd->actual_vls_operational :
11532 				    ppd->vls_operational,
11533 				    NULL);
11534 		if (ret == 0)
11535 			ret = pio_map_init(dd, ppd->port - 1, vl_count ?
11536 					   ppd->actual_vls_operational :
11537 					   ppd->vls_operational, NULL);
11538 		if (ret)
11539 			return ret;
11540 	}
11541 	return 0;
11542 }
11543 
11544 /*
11545  * Read the given fabric manager table. Return the size of the
11546  * table (in bytes) on success, and a negative error code on
11547  * failure.
11548  */
11549 int fm_get_table(struct hfi1_pportdata *ppd, int which, void *t)
11550 
11551 {
11552 	int size;
11553 	struct vl_arb_cache *vlc;
11554 
11555 	switch (which) {
11556 	case FM_TBL_VL_HIGH_ARB:
11557 		size = 256;
11558 		/*
11559 		 * OPA specifies 128 elements (of 2 bytes each), though
11560 		 * HFI supports only 16 elements in h/w.
11561 		 */
11562 		vlc = vl_arb_lock_cache(ppd, HI_PRIO_TABLE);
11563 		vl_arb_get_cache(vlc, t);
11564 		vl_arb_unlock_cache(ppd, HI_PRIO_TABLE);
11565 		break;
11566 	case FM_TBL_VL_LOW_ARB:
11567 		size = 256;
11568 		/*
11569 		 * OPA specifies 128 elements (of 2 bytes each), though
11570 		 * HFI supports only 16 elements in h/w.
11571 		 */
11572 		vlc = vl_arb_lock_cache(ppd, LO_PRIO_TABLE);
11573 		vl_arb_get_cache(vlc, t);
11574 		vl_arb_unlock_cache(ppd, LO_PRIO_TABLE);
11575 		break;
11576 	case FM_TBL_BUFFER_CONTROL:
11577 		size = get_buffer_control(ppd->dd, t, NULL);
11578 		break;
11579 	case FM_TBL_SC2VLNT:
11580 		size = get_sc2vlnt(ppd->dd, t);
11581 		break;
11582 	case FM_TBL_VL_PREEMPT_ELEMS:
11583 		size = 256;
11584 		/* OPA specifies 128 elements, of 2 bytes each */
11585 		get_vlarb_preempt(ppd->dd, OPA_MAX_VLS, t);
11586 		break;
11587 	case FM_TBL_VL_PREEMPT_MATRIX:
11588 		size = 256;
11589 		/*
11590 		 * OPA specifies that this is the same size as the VL
11591 		 * arbitration tables (i.e., 256 bytes).
11592 		 */
11593 		break;
11594 	default:
11595 		return -EINVAL;
11596 	}
11597 	return size;
11598 }
11599 
11600 /*
11601  * Write the given fabric manager table.
11602  */
11603 int fm_set_table(struct hfi1_pportdata *ppd, int which, void *t)
11604 {
11605 	int ret = 0;
11606 	struct vl_arb_cache *vlc;
11607 
11608 	switch (which) {
11609 	case FM_TBL_VL_HIGH_ARB:
11610 		vlc = vl_arb_lock_cache(ppd, HI_PRIO_TABLE);
11611 		if (vl_arb_match_cache(vlc, t)) {
11612 			vl_arb_unlock_cache(ppd, HI_PRIO_TABLE);
11613 			break;
11614 		}
11615 		vl_arb_set_cache(vlc, t);
11616 		vl_arb_unlock_cache(ppd, HI_PRIO_TABLE);
11617 		ret = set_vl_weights(ppd, SEND_HIGH_PRIORITY_LIST,
11618 				     VL_ARB_HIGH_PRIO_TABLE_SIZE, t);
11619 		break;
11620 	case FM_TBL_VL_LOW_ARB:
11621 		vlc = vl_arb_lock_cache(ppd, LO_PRIO_TABLE);
11622 		if (vl_arb_match_cache(vlc, t)) {
11623 			vl_arb_unlock_cache(ppd, LO_PRIO_TABLE);
11624 			break;
11625 		}
11626 		vl_arb_set_cache(vlc, t);
11627 		vl_arb_unlock_cache(ppd, LO_PRIO_TABLE);
11628 		ret = set_vl_weights(ppd, SEND_LOW_PRIORITY_LIST,
11629 				     VL_ARB_LOW_PRIO_TABLE_SIZE, t);
11630 		break;
11631 	case FM_TBL_BUFFER_CONTROL:
11632 		ret = set_buffer_control(ppd, t);
11633 		break;
11634 	case FM_TBL_SC2VLNT:
11635 		set_sc2vlnt(ppd->dd, t);
11636 		break;
11637 	default:
11638 		ret = -EINVAL;
11639 	}
11640 	return ret;
11641 }
11642 
11643 /*
11644  * Disable all data VLs.
11645  *
11646  * Return 0 if disabled, non-zero if the VLs cannot be disabled.
11647  */
11648 static int disable_data_vls(struct hfi1_devdata *dd)
11649 {
11650 	if (is_ax(dd))
11651 		return 1;
11652 
11653 	pio_send_control(dd, PSC_DATA_VL_DISABLE);
11654 
11655 	return 0;
11656 }
11657 
11658 /*
11659  * open_fill_data_vls() - the counterpart to stop_drain_data_vls().
11660  * Just re-enables all data VLs (the "fill" part happens
11661  * automatically - the name was chosen for symmetry with
11662  * stop_drain_data_vls()).
11663  *
11664  * Return 0 if successful, non-zero if the VLs cannot be enabled.
11665  */
11666 int open_fill_data_vls(struct hfi1_devdata *dd)
11667 {
11668 	if (is_ax(dd))
11669 		return 1;
11670 
11671 	pio_send_control(dd, PSC_DATA_VL_ENABLE);
11672 
11673 	return 0;
11674 }
11675 
11676 /*
11677  * drain_data_vls() - assumes that disable_data_vls() has been called,
11678  * wait for occupancy (of per-VL FIFOs) for all contexts, and SDMA
11679  * engines to drop to 0.
11680  */
11681 static void drain_data_vls(struct hfi1_devdata *dd)
11682 {
11683 	sc_wait(dd);
11684 	sdma_wait(dd);
11685 	pause_for_credit_return(dd);
11686 }
11687 
11688 /*
11689  * stop_drain_data_vls() - disable, then drain all per-VL fifos.
11690  *
11691  * Use open_fill_data_vls() to resume using data VLs.  This pair is
11692  * meant to be used like this:
11693  *
11694  * stop_drain_data_vls(dd);
11695  * // do things with per-VL resources
11696  * open_fill_data_vls(dd);
11697  */
11698 int stop_drain_data_vls(struct hfi1_devdata *dd)
11699 {
11700 	int ret;
11701 
11702 	ret = disable_data_vls(dd);
11703 	if (ret == 0)
11704 		drain_data_vls(dd);
11705 
11706 	return ret;
11707 }
11708 
11709 /*
11710  * Convert a nanosecond time to a cclock count.  No matter how slow
11711  * the cclock, a non-zero ns will always have a non-zero result.
11712  */
11713 u32 ns_to_cclock(struct hfi1_devdata *dd, u32 ns)
11714 {
11715 	u32 cclocks;
11716 
11717 	if (dd->icode == ICODE_FPGA_EMULATION)
11718 		cclocks = (ns * 1000) / FPGA_CCLOCK_PS;
11719 	else  /* simulation pretends to be ASIC */
11720 		cclocks = (ns * 1000) / ASIC_CCLOCK_PS;
11721 	if (ns && !cclocks)	/* if ns nonzero, must be at least 1 */
11722 		cclocks = 1;
11723 	return cclocks;
11724 }
11725 
11726 /*
11727  * Convert a cclock count to nanoseconds. Not matter how slow
11728  * the cclock, a non-zero cclocks will always have a non-zero result.
11729  */
11730 u32 cclock_to_ns(struct hfi1_devdata *dd, u32 cclocks)
11731 {
11732 	u32 ns;
11733 
11734 	if (dd->icode == ICODE_FPGA_EMULATION)
11735 		ns = (cclocks * FPGA_CCLOCK_PS) / 1000;
11736 	else  /* simulation pretends to be ASIC */
11737 		ns = (cclocks * ASIC_CCLOCK_PS) / 1000;
11738 	if (cclocks && !ns)
11739 		ns = 1;
11740 	return ns;
11741 }
11742 
11743 /*
11744  * Dynamically adjust the receive interrupt timeout for a context based on
11745  * incoming packet rate.
11746  *
11747  * NOTE: Dynamic adjustment does not allow rcv_intr_count to be zero.
11748  */
11749 static void adjust_rcv_timeout(struct hfi1_ctxtdata *rcd, u32 npkts)
11750 {
11751 	struct hfi1_devdata *dd = rcd->dd;
11752 	u32 timeout = rcd->rcvavail_timeout;
11753 
11754 	/*
11755 	 * This algorithm doubles or halves the timeout depending on whether
11756 	 * the number of packets received in this interrupt were less than or
11757 	 * greater equal the interrupt count.
11758 	 *
11759 	 * The calculations below do not allow a steady state to be achieved.
11760 	 * Only at the endpoints it is possible to have an unchanging
11761 	 * timeout.
11762 	 */
11763 	if (npkts < rcv_intr_count) {
11764 		/*
11765 		 * Not enough packets arrived before the timeout, adjust
11766 		 * timeout downward.
11767 		 */
11768 		if (timeout < 2) /* already at minimum? */
11769 			return;
11770 		timeout >>= 1;
11771 	} else {
11772 		/*
11773 		 * More than enough packets arrived before the timeout, adjust
11774 		 * timeout upward.
11775 		 */
11776 		if (timeout >= dd->rcv_intr_timeout_csr) /* already at max? */
11777 			return;
11778 		timeout = min(timeout << 1, dd->rcv_intr_timeout_csr);
11779 	}
11780 
11781 	rcd->rcvavail_timeout = timeout;
11782 	/*
11783 	 * timeout cannot be larger than rcv_intr_timeout_csr which has already
11784 	 * been verified to be in range
11785 	 */
11786 	write_kctxt_csr(dd, rcd->ctxt, RCV_AVAIL_TIME_OUT,
11787 			(u64)timeout <<
11788 			RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_SHIFT);
11789 }
11790 
11791 void update_usrhead(struct hfi1_ctxtdata *rcd, u32 hd, u32 updegr, u32 egrhd,
11792 		    u32 intr_adjust, u32 npkts)
11793 {
11794 	struct hfi1_devdata *dd = rcd->dd;
11795 	u64 reg;
11796 	u32 ctxt = rcd->ctxt;
11797 
11798 	/*
11799 	 * Need to write timeout register before updating RcvHdrHead to ensure
11800 	 * that a new value is used when the HW decides to restart counting.
11801 	 */
11802 	if (intr_adjust)
11803 		adjust_rcv_timeout(rcd, npkts);
11804 	if (updegr) {
11805 		reg = (egrhd & RCV_EGR_INDEX_HEAD_HEAD_MASK)
11806 			<< RCV_EGR_INDEX_HEAD_HEAD_SHIFT;
11807 		write_uctxt_csr(dd, ctxt, RCV_EGR_INDEX_HEAD, reg);
11808 	}
11809 	reg = ((u64)rcv_intr_count << RCV_HDR_HEAD_COUNTER_SHIFT) |
11810 		(((u64)hd & RCV_HDR_HEAD_HEAD_MASK)
11811 			<< RCV_HDR_HEAD_HEAD_SHIFT);
11812 	write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, reg);
11813 }
11814 
11815 u32 hdrqempty(struct hfi1_ctxtdata *rcd)
11816 {
11817 	u32 head, tail;
11818 
11819 	head = (read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_HEAD)
11820 		& RCV_HDR_HEAD_HEAD_SMASK) >> RCV_HDR_HEAD_HEAD_SHIFT;
11821 
11822 	if (rcd->rcvhdrtail_kvaddr)
11823 		tail = get_rcvhdrtail(rcd);
11824 	else
11825 		tail = read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_TAIL);
11826 
11827 	return head == tail;
11828 }
11829 
11830 /*
11831  * Context Control and Receive Array encoding for buffer size:
11832  *	0x0 invalid
11833  *	0x1   4 KB
11834  *	0x2   8 KB
11835  *	0x3  16 KB
11836  *	0x4  32 KB
11837  *	0x5  64 KB
11838  *	0x6 128 KB
11839  *	0x7 256 KB
11840  *	0x8 512 KB (Receive Array only)
11841  *	0x9   1 MB (Receive Array only)
11842  *	0xa   2 MB (Receive Array only)
11843  *
11844  *	0xB-0xF - reserved (Receive Array only)
11845  *
11846  *
11847  * This routine assumes that the value has already been sanity checked.
11848  */
11849 static u32 encoded_size(u32 size)
11850 {
11851 	switch (size) {
11852 	case   4 * 1024: return 0x1;
11853 	case   8 * 1024: return 0x2;
11854 	case  16 * 1024: return 0x3;
11855 	case  32 * 1024: return 0x4;
11856 	case  64 * 1024: return 0x5;
11857 	case 128 * 1024: return 0x6;
11858 	case 256 * 1024: return 0x7;
11859 	case 512 * 1024: return 0x8;
11860 	case   1 * 1024 * 1024: return 0x9;
11861 	case   2 * 1024 * 1024: return 0xa;
11862 	}
11863 	return 0x1;	/* if invalid, go with the minimum size */
11864 }
11865 
11866 void hfi1_rcvctrl(struct hfi1_devdata *dd, unsigned int op,
11867 		  struct hfi1_ctxtdata *rcd)
11868 {
11869 	u64 rcvctrl, reg;
11870 	int did_enable = 0;
11871 	u16 ctxt;
11872 
11873 	if (!rcd)
11874 		return;
11875 
11876 	ctxt = rcd->ctxt;
11877 
11878 	hfi1_cdbg(RCVCTRL, "ctxt %d op 0x%x", ctxt, op);
11879 
11880 	rcvctrl = read_kctxt_csr(dd, ctxt, RCV_CTXT_CTRL);
11881 	/* if the context already enabled, don't do the extra steps */
11882 	if ((op & HFI1_RCVCTRL_CTXT_ENB) &&
11883 	    !(rcvctrl & RCV_CTXT_CTRL_ENABLE_SMASK)) {
11884 		/* reset the tail and hdr addresses, and sequence count */
11885 		write_kctxt_csr(dd, ctxt, RCV_HDR_ADDR,
11886 				rcd->rcvhdrq_dma);
11887 		if (rcd->rcvhdrtail_kvaddr)
11888 			write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR,
11889 					rcd->rcvhdrqtailaddr_dma);
11890 		rcd->seq_cnt = 1;
11891 
11892 		/* reset the cached receive header queue head value */
11893 		rcd->head = 0;
11894 
11895 		/*
11896 		 * Zero the receive header queue so we don't get false
11897 		 * positives when checking the sequence number.  The
11898 		 * sequence numbers could land exactly on the same spot.
11899 		 * E.g. a rcd restart before the receive header wrapped.
11900 		 */
11901 		memset(rcd->rcvhdrq, 0, rcvhdrq_size(rcd));
11902 
11903 		/* starting timeout */
11904 		rcd->rcvavail_timeout = dd->rcv_intr_timeout_csr;
11905 
11906 		/* enable the context */
11907 		rcvctrl |= RCV_CTXT_CTRL_ENABLE_SMASK;
11908 
11909 		/* clean the egr buffer size first */
11910 		rcvctrl &= ~RCV_CTXT_CTRL_EGR_BUF_SIZE_SMASK;
11911 		rcvctrl |= ((u64)encoded_size(rcd->egrbufs.rcvtid_size)
11912 				& RCV_CTXT_CTRL_EGR_BUF_SIZE_MASK)
11913 					<< RCV_CTXT_CTRL_EGR_BUF_SIZE_SHIFT;
11914 
11915 		/* zero RcvHdrHead - set RcvHdrHead.Counter after enable */
11916 		write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0);
11917 		did_enable = 1;
11918 
11919 		/* zero RcvEgrIndexHead */
11920 		write_uctxt_csr(dd, ctxt, RCV_EGR_INDEX_HEAD, 0);
11921 
11922 		/* set eager count and base index */
11923 		reg = (((u64)(rcd->egrbufs.alloced >> RCV_SHIFT)
11924 			& RCV_EGR_CTRL_EGR_CNT_MASK)
11925 		       << RCV_EGR_CTRL_EGR_CNT_SHIFT) |
11926 			(((rcd->eager_base >> RCV_SHIFT)
11927 			  & RCV_EGR_CTRL_EGR_BASE_INDEX_MASK)
11928 			 << RCV_EGR_CTRL_EGR_BASE_INDEX_SHIFT);
11929 		write_kctxt_csr(dd, ctxt, RCV_EGR_CTRL, reg);
11930 
11931 		/*
11932 		 * Set TID (expected) count and base index.
11933 		 * rcd->expected_count is set to individual RcvArray entries,
11934 		 * not pairs, and the CSR takes a pair-count in groups of
11935 		 * four, so divide by 8.
11936 		 */
11937 		reg = (((rcd->expected_count >> RCV_SHIFT)
11938 					& RCV_TID_CTRL_TID_PAIR_CNT_MASK)
11939 				<< RCV_TID_CTRL_TID_PAIR_CNT_SHIFT) |
11940 		      (((rcd->expected_base >> RCV_SHIFT)
11941 					& RCV_TID_CTRL_TID_BASE_INDEX_MASK)
11942 				<< RCV_TID_CTRL_TID_BASE_INDEX_SHIFT);
11943 		write_kctxt_csr(dd, ctxt, RCV_TID_CTRL, reg);
11944 		if (ctxt == HFI1_CTRL_CTXT)
11945 			write_csr(dd, RCV_VL15, HFI1_CTRL_CTXT);
11946 	}
11947 	if (op & HFI1_RCVCTRL_CTXT_DIS) {
11948 		write_csr(dd, RCV_VL15, 0);
11949 		/*
11950 		 * When receive context is being disabled turn on tail
11951 		 * update with a dummy tail address and then disable
11952 		 * receive context.
11953 		 */
11954 		if (dd->rcvhdrtail_dummy_dma) {
11955 			write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR,
11956 					dd->rcvhdrtail_dummy_dma);
11957 			/* Enabling RcvCtxtCtrl.TailUpd is intentional. */
11958 			rcvctrl |= RCV_CTXT_CTRL_TAIL_UPD_SMASK;
11959 		}
11960 
11961 		rcvctrl &= ~RCV_CTXT_CTRL_ENABLE_SMASK;
11962 	}
11963 	if (op & HFI1_RCVCTRL_INTRAVAIL_ENB) {
11964 		set_intr_bits(dd, IS_RCVAVAIL_START + rcd->ctxt,
11965 			      IS_RCVAVAIL_START + rcd->ctxt, true);
11966 		rcvctrl |= RCV_CTXT_CTRL_INTR_AVAIL_SMASK;
11967 	}
11968 	if (op & HFI1_RCVCTRL_INTRAVAIL_DIS) {
11969 		set_intr_bits(dd, IS_RCVAVAIL_START + rcd->ctxt,
11970 			      IS_RCVAVAIL_START + rcd->ctxt, false);
11971 		rcvctrl &= ~RCV_CTXT_CTRL_INTR_AVAIL_SMASK;
11972 	}
11973 	if ((op & HFI1_RCVCTRL_TAILUPD_ENB) && rcd->rcvhdrtail_kvaddr)
11974 		rcvctrl |= RCV_CTXT_CTRL_TAIL_UPD_SMASK;
11975 	if (op & HFI1_RCVCTRL_TAILUPD_DIS) {
11976 		/* See comment on RcvCtxtCtrl.TailUpd above */
11977 		if (!(op & HFI1_RCVCTRL_CTXT_DIS))
11978 			rcvctrl &= ~RCV_CTXT_CTRL_TAIL_UPD_SMASK;
11979 	}
11980 	if (op & HFI1_RCVCTRL_TIDFLOW_ENB)
11981 		rcvctrl |= RCV_CTXT_CTRL_TID_FLOW_ENABLE_SMASK;
11982 	if (op & HFI1_RCVCTRL_TIDFLOW_DIS)
11983 		rcvctrl &= ~RCV_CTXT_CTRL_TID_FLOW_ENABLE_SMASK;
11984 	if (op & HFI1_RCVCTRL_ONE_PKT_EGR_ENB) {
11985 		/*
11986 		 * In one-packet-per-eager mode, the size comes from
11987 		 * the RcvArray entry.
11988 		 */
11989 		rcvctrl &= ~RCV_CTXT_CTRL_EGR_BUF_SIZE_SMASK;
11990 		rcvctrl |= RCV_CTXT_CTRL_ONE_PACKET_PER_EGR_BUFFER_SMASK;
11991 	}
11992 	if (op & HFI1_RCVCTRL_ONE_PKT_EGR_DIS)
11993 		rcvctrl &= ~RCV_CTXT_CTRL_ONE_PACKET_PER_EGR_BUFFER_SMASK;
11994 	if (op & HFI1_RCVCTRL_NO_RHQ_DROP_ENB)
11995 		rcvctrl |= RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK;
11996 	if (op & HFI1_RCVCTRL_NO_RHQ_DROP_DIS)
11997 		rcvctrl &= ~RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK;
11998 	if (op & HFI1_RCVCTRL_NO_EGR_DROP_ENB)
11999 		rcvctrl |= RCV_CTXT_CTRL_DONT_DROP_EGR_FULL_SMASK;
12000 	if (op & HFI1_RCVCTRL_NO_EGR_DROP_DIS)
12001 		rcvctrl &= ~RCV_CTXT_CTRL_DONT_DROP_EGR_FULL_SMASK;
12002 	if (op & HFI1_RCVCTRL_URGENT_ENB)
12003 		set_intr_bits(dd, IS_RCVURGENT_START + rcd->ctxt,
12004 			      IS_RCVURGENT_START + rcd->ctxt, true);
12005 	if (op & HFI1_RCVCTRL_URGENT_DIS)
12006 		set_intr_bits(dd, IS_RCVURGENT_START + rcd->ctxt,
12007 			      IS_RCVURGENT_START + rcd->ctxt, false);
12008 
12009 	hfi1_cdbg(RCVCTRL, "ctxt %d rcvctrl 0x%llx\n", ctxt, rcvctrl);
12010 	write_kctxt_csr(dd, ctxt, RCV_CTXT_CTRL, rcvctrl);
12011 
12012 	/* work around sticky RcvCtxtStatus.BlockedRHQFull */
12013 	if (did_enable &&
12014 	    (rcvctrl & RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK)) {
12015 		reg = read_kctxt_csr(dd, ctxt, RCV_CTXT_STATUS);
12016 		if (reg != 0) {
12017 			dd_dev_info(dd, "ctxt %d status %lld (blocked)\n",
12018 				    ctxt, reg);
12019 			read_uctxt_csr(dd, ctxt, RCV_HDR_HEAD);
12020 			write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0x10);
12021 			write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0x00);
12022 			read_uctxt_csr(dd, ctxt, RCV_HDR_HEAD);
12023 			reg = read_kctxt_csr(dd, ctxt, RCV_CTXT_STATUS);
12024 			dd_dev_info(dd, "ctxt %d status %lld (%s blocked)\n",
12025 				    ctxt, reg, reg == 0 ? "not" : "still");
12026 		}
12027 	}
12028 
12029 	if (did_enable) {
12030 		/*
12031 		 * The interrupt timeout and count must be set after
12032 		 * the context is enabled to take effect.
12033 		 */
12034 		/* set interrupt timeout */
12035 		write_kctxt_csr(dd, ctxt, RCV_AVAIL_TIME_OUT,
12036 				(u64)rcd->rcvavail_timeout <<
12037 				RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_SHIFT);
12038 
12039 		/* set RcvHdrHead.Counter, zero RcvHdrHead.Head (again) */
12040 		reg = (u64)rcv_intr_count << RCV_HDR_HEAD_COUNTER_SHIFT;
12041 		write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, reg);
12042 	}
12043 
12044 	if (op & (HFI1_RCVCTRL_TAILUPD_DIS | HFI1_RCVCTRL_CTXT_DIS))
12045 		/*
12046 		 * If the context has been disabled and the Tail Update has
12047 		 * been cleared, set the RCV_HDR_TAIL_ADDR CSR to dummy address
12048 		 * so it doesn't contain an address that is invalid.
12049 		 */
12050 		write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR,
12051 				dd->rcvhdrtail_dummy_dma);
12052 }
12053 
12054 u32 hfi1_read_cntrs(struct hfi1_devdata *dd, char **namep, u64 **cntrp)
12055 {
12056 	int ret;
12057 	u64 val = 0;
12058 
12059 	if (namep) {
12060 		ret = dd->cntrnameslen;
12061 		*namep = dd->cntrnames;
12062 	} else {
12063 		const struct cntr_entry *entry;
12064 		int i, j;
12065 
12066 		ret = (dd->ndevcntrs) * sizeof(u64);
12067 
12068 		/* Get the start of the block of counters */
12069 		*cntrp = dd->cntrs;
12070 
12071 		/*
12072 		 * Now go and fill in each counter in the block.
12073 		 */
12074 		for (i = 0; i < DEV_CNTR_LAST; i++) {
12075 			entry = &dev_cntrs[i];
12076 			hfi1_cdbg(CNTR, "reading %s", entry->name);
12077 			if (entry->flags & CNTR_DISABLED) {
12078 				/* Nothing */
12079 				hfi1_cdbg(CNTR, "\tDisabled\n");
12080 			} else {
12081 				if (entry->flags & CNTR_VL) {
12082 					hfi1_cdbg(CNTR, "\tPer VL\n");
12083 					for (j = 0; j < C_VL_COUNT; j++) {
12084 						val = entry->rw_cntr(entry,
12085 								  dd, j,
12086 								  CNTR_MODE_R,
12087 								  0);
12088 						hfi1_cdbg(
12089 						   CNTR,
12090 						   "\t\tRead 0x%llx for %d\n",
12091 						   val, j);
12092 						dd->cntrs[entry->offset + j] =
12093 									    val;
12094 					}
12095 				} else if (entry->flags & CNTR_SDMA) {
12096 					hfi1_cdbg(CNTR,
12097 						  "\t Per SDMA Engine\n");
12098 					for (j = 0; j < chip_sdma_engines(dd);
12099 					     j++) {
12100 						val =
12101 						entry->rw_cntr(entry, dd, j,
12102 							       CNTR_MODE_R, 0);
12103 						hfi1_cdbg(CNTR,
12104 							  "\t\tRead 0x%llx for %d\n",
12105 							  val, j);
12106 						dd->cntrs[entry->offset + j] =
12107 									val;
12108 					}
12109 				} else {
12110 					val = entry->rw_cntr(entry, dd,
12111 							CNTR_INVALID_VL,
12112 							CNTR_MODE_R, 0);
12113 					dd->cntrs[entry->offset] = val;
12114 					hfi1_cdbg(CNTR, "\tRead 0x%llx", val);
12115 				}
12116 			}
12117 		}
12118 	}
12119 	return ret;
12120 }
12121 
12122 /*
12123  * Used by sysfs to create files for hfi stats to read
12124  */
12125 u32 hfi1_read_portcntrs(struct hfi1_pportdata *ppd, char **namep, u64 **cntrp)
12126 {
12127 	int ret;
12128 	u64 val = 0;
12129 
12130 	if (namep) {
12131 		ret = ppd->dd->portcntrnameslen;
12132 		*namep = ppd->dd->portcntrnames;
12133 	} else {
12134 		const struct cntr_entry *entry;
12135 		int i, j;
12136 
12137 		ret = ppd->dd->nportcntrs * sizeof(u64);
12138 		*cntrp = ppd->cntrs;
12139 
12140 		for (i = 0; i < PORT_CNTR_LAST; i++) {
12141 			entry = &port_cntrs[i];
12142 			hfi1_cdbg(CNTR, "reading %s", entry->name);
12143 			if (entry->flags & CNTR_DISABLED) {
12144 				/* Nothing */
12145 				hfi1_cdbg(CNTR, "\tDisabled\n");
12146 				continue;
12147 			}
12148 
12149 			if (entry->flags & CNTR_VL) {
12150 				hfi1_cdbg(CNTR, "\tPer VL");
12151 				for (j = 0; j < C_VL_COUNT; j++) {
12152 					val = entry->rw_cntr(entry, ppd, j,
12153 							       CNTR_MODE_R,
12154 							       0);
12155 					hfi1_cdbg(
12156 					   CNTR,
12157 					   "\t\tRead 0x%llx for %d",
12158 					   val, j);
12159 					ppd->cntrs[entry->offset + j] = val;
12160 				}
12161 			} else {
12162 				val = entry->rw_cntr(entry, ppd,
12163 						       CNTR_INVALID_VL,
12164 						       CNTR_MODE_R,
12165 						       0);
12166 				ppd->cntrs[entry->offset] = val;
12167 				hfi1_cdbg(CNTR, "\tRead 0x%llx", val);
12168 			}
12169 		}
12170 	}
12171 	return ret;
12172 }
12173 
12174 static void free_cntrs(struct hfi1_devdata *dd)
12175 {
12176 	struct hfi1_pportdata *ppd;
12177 	int i;
12178 
12179 	if (dd->synth_stats_timer.function)
12180 		del_timer_sync(&dd->synth_stats_timer);
12181 	ppd = (struct hfi1_pportdata *)(dd + 1);
12182 	for (i = 0; i < dd->num_pports; i++, ppd++) {
12183 		kfree(ppd->cntrs);
12184 		kfree(ppd->scntrs);
12185 		free_percpu(ppd->ibport_data.rvp.rc_acks);
12186 		free_percpu(ppd->ibport_data.rvp.rc_qacks);
12187 		free_percpu(ppd->ibport_data.rvp.rc_delayed_comp);
12188 		ppd->cntrs = NULL;
12189 		ppd->scntrs = NULL;
12190 		ppd->ibport_data.rvp.rc_acks = NULL;
12191 		ppd->ibport_data.rvp.rc_qacks = NULL;
12192 		ppd->ibport_data.rvp.rc_delayed_comp = NULL;
12193 	}
12194 	kfree(dd->portcntrnames);
12195 	dd->portcntrnames = NULL;
12196 	kfree(dd->cntrs);
12197 	dd->cntrs = NULL;
12198 	kfree(dd->scntrs);
12199 	dd->scntrs = NULL;
12200 	kfree(dd->cntrnames);
12201 	dd->cntrnames = NULL;
12202 	if (dd->update_cntr_wq) {
12203 		destroy_workqueue(dd->update_cntr_wq);
12204 		dd->update_cntr_wq = NULL;
12205 	}
12206 }
12207 
12208 static u64 read_dev_port_cntr(struct hfi1_devdata *dd, struct cntr_entry *entry,
12209 			      u64 *psval, void *context, int vl)
12210 {
12211 	u64 val;
12212 	u64 sval = *psval;
12213 
12214 	if (entry->flags & CNTR_DISABLED) {
12215 		dd_dev_err(dd, "Counter %s not enabled", entry->name);
12216 		return 0;
12217 	}
12218 
12219 	hfi1_cdbg(CNTR, "cntr: %s vl %d psval 0x%llx", entry->name, vl, *psval);
12220 
12221 	val = entry->rw_cntr(entry, context, vl, CNTR_MODE_R, 0);
12222 
12223 	/* If its a synthetic counter there is more work we need to do */
12224 	if (entry->flags & CNTR_SYNTH) {
12225 		if (sval == CNTR_MAX) {
12226 			/* No need to read already saturated */
12227 			return CNTR_MAX;
12228 		}
12229 
12230 		if (entry->flags & CNTR_32BIT) {
12231 			/* 32bit counters can wrap multiple times */
12232 			u64 upper = sval >> 32;
12233 			u64 lower = (sval << 32) >> 32;
12234 
12235 			if (lower > val) { /* hw wrapped */
12236 				if (upper == CNTR_32BIT_MAX)
12237 					val = CNTR_MAX;
12238 				else
12239 					upper++;
12240 			}
12241 
12242 			if (val != CNTR_MAX)
12243 				val = (upper << 32) | val;
12244 
12245 		} else {
12246 			/* If we rolled we are saturated */
12247 			if ((val < sval) || (val > CNTR_MAX))
12248 				val = CNTR_MAX;
12249 		}
12250 	}
12251 
12252 	*psval = val;
12253 
12254 	hfi1_cdbg(CNTR, "\tNew val=0x%llx", val);
12255 
12256 	return val;
12257 }
12258 
12259 static u64 write_dev_port_cntr(struct hfi1_devdata *dd,
12260 			       struct cntr_entry *entry,
12261 			       u64 *psval, void *context, int vl, u64 data)
12262 {
12263 	u64 val;
12264 
12265 	if (entry->flags & CNTR_DISABLED) {
12266 		dd_dev_err(dd, "Counter %s not enabled", entry->name);
12267 		return 0;
12268 	}
12269 
12270 	hfi1_cdbg(CNTR, "cntr: %s vl %d psval 0x%llx", entry->name, vl, *psval);
12271 
12272 	if (entry->flags & CNTR_SYNTH) {
12273 		*psval = data;
12274 		if (entry->flags & CNTR_32BIT) {
12275 			val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W,
12276 					     (data << 32) >> 32);
12277 			val = data; /* return the full 64bit value */
12278 		} else {
12279 			val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W,
12280 					     data);
12281 		}
12282 	} else {
12283 		val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W, data);
12284 	}
12285 
12286 	*psval = val;
12287 
12288 	hfi1_cdbg(CNTR, "\tNew val=0x%llx", val);
12289 
12290 	return val;
12291 }
12292 
12293 u64 read_dev_cntr(struct hfi1_devdata *dd, int index, int vl)
12294 {
12295 	struct cntr_entry *entry;
12296 	u64 *sval;
12297 
12298 	entry = &dev_cntrs[index];
12299 	sval = dd->scntrs + entry->offset;
12300 
12301 	if (vl != CNTR_INVALID_VL)
12302 		sval += vl;
12303 
12304 	return read_dev_port_cntr(dd, entry, sval, dd, vl);
12305 }
12306 
12307 u64 write_dev_cntr(struct hfi1_devdata *dd, int index, int vl, u64 data)
12308 {
12309 	struct cntr_entry *entry;
12310 	u64 *sval;
12311 
12312 	entry = &dev_cntrs[index];
12313 	sval = dd->scntrs + entry->offset;
12314 
12315 	if (vl != CNTR_INVALID_VL)
12316 		sval += vl;
12317 
12318 	return write_dev_port_cntr(dd, entry, sval, dd, vl, data);
12319 }
12320 
12321 u64 read_port_cntr(struct hfi1_pportdata *ppd, int index, int vl)
12322 {
12323 	struct cntr_entry *entry;
12324 	u64 *sval;
12325 
12326 	entry = &port_cntrs[index];
12327 	sval = ppd->scntrs + entry->offset;
12328 
12329 	if (vl != CNTR_INVALID_VL)
12330 		sval += vl;
12331 
12332 	if ((index >= C_RCV_HDR_OVF_FIRST + ppd->dd->num_rcv_contexts) &&
12333 	    (index <= C_RCV_HDR_OVF_LAST)) {
12334 		/* We do not want to bother for disabled contexts */
12335 		return 0;
12336 	}
12337 
12338 	return read_dev_port_cntr(ppd->dd, entry, sval, ppd, vl);
12339 }
12340 
12341 u64 write_port_cntr(struct hfi1_pportdata *ppd, int index, int vl, u64 data)
12342 {
12343 	struct cntr_entry *entry;
12344 	u64 *sval;
12345 
12346 	entry = &port_cntrs[index];
12347 	sval = ppd->scntrs + entry->offset;
12348 
12349 	if (vl != CNTR_INVALID_VL)
12350 		sval += vl;
12351 
12352 	if ((index >= C_RCV_HDR_OVF_FIRST + ppd->dd->num_rcv_contexts) &&
12353 	    (index <= C_RCV_HDR_OVF_LAST)) {
12354 		/* We do not want to bother for disabled contexts */
12355 		return 0;
12356 	}
12357 
12358 	return write_dev_port_cntr(ppd->dd, entry, sval, ppd, vl, data);
12359 }
12360 
12361 static void do_update_synth_timer(struct work_struct *work)
12362 {
12363 	u64 cur_tx;
12364 	u64 cur_rx;
12365 	u64 total_flits;
12366 	u8 update = 0;
12367 	int i, j, vl;
12368 	struct hfi1_pportdata *ppd;
12369 	struct cntr_entry *entry;
12370 	struct hfi1_devdata *dd = container_of(work, struct hfi1_devdata,
12371 					       update_cntr_work);
12372 
12373 	/*
12374 	 * Rather than keep beating on the CSRs pick a minimal set that we can
12375 	 * check to watch for potential roll over. We can do this by looking at
12376 	 * the number of flits sent/recv. If the total flits exceeds 32bits then
12377 	 * we have to iterate all the counters and update.
12378 	 */
12379 	entry = &dev_cntrs[C_DC_RCV_FLITS];
12380 	cur_rx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL, CNTR_MODE_R, 0);
12381 
12382 	entry = &dev_cntrs[C_DC_XMIT_FLITS];
12383 	cur_tx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL, CNTR_MODE_R, 0);
12384 
12385 	hfi1_cdbg(
12386 	    CNTR,
12387 	    "[%d] curr tx=0x%llx rx=0x%llx :: last tx=0x%llx rx=0x%llx\n",
12388 	    dd->unit, cur_tx, cur_rx, dd->last_tx, dd->last_rx);
12389 
12390 	if ((cur_tx < dd->last_tx) || (cur_rx < dd->last_rx)) {
12391 		/*
12392 		 * May not be strictly necessary to update but it won't hurt and
12393 		 * simplifies the logic here.
12394 		 */
12395 		update = 1;
12396 		hfi1_cdbg(CNTR, "[%d] Tripwire counter rolled, updating",
12397 			  dd->unit);
12398 	} else {
12399 		total_flits = (cur_tx - dd->last_tx) + (cur_rx - dd->last_rx);
12400 		hfi1_cdbg(CNTR,
12401 			  "[%d] total flits 0x%llx limit 0x%llx\n", dd->unit,
12402 			  total_flits, (u64)CNTR_32BIT_MAX);
12403 		if (total_flits >= CNTR_32BIT_MAX) {
12404 			hfi1_cdbg(CNTR, "[%d] 32bit limit hit, updating",
12405 				  dd->unit);
12406 			update = 1;
12407 		}
12408 	}
12409 
12410 	if (update) {
12411 		hfi1_cdbg(CNTR, "[%d] Updating dd and ppd counters", dd->unit);
12412 		for (i = 0; i < DEV_CNTR_LAST; i++) {
12413 			entry = &dev_cntrs[i];
12414 			if (entry->flags & CNTR_VL) {
12415 				for (vl = 0; vl < C_VL_COUNT; vl++)
12416 					read_dev_cntr(dd, i, vl);
12417 			} else {
12418 				read_dev_cntr(dd, i, CNTR_INVALID_VL);
12419 			}
12420 		}
12421 		ppd = (struct hfi1_pportdata *)(dd + 1);
12422 		for (i = 0; i < dd->num_pports; i++, ppd++) {
12423 			for (j = 0; j < PORT_CNTR_LAST; j++) {
12424 				entry = &port_cntrs[j];
12425 				if (entry->flags & CNTR_VL) {
12426 					for (vl = 0; vl < C_VL_COUNT; vl++)
12427 						read_port_cntr(ppd, j, vl);
12428 				} else {
12429 					read_port_cntr(ppd, j, CNTR_INVALID_VL);
12430 				}
12431 			}
12432 		}
12433 
12434 		/*
12435 		 * We want the value in the register. The goal is to keep track
12436 		 * of the number of "ticks" not the counter value. In other
12437 		 * words if the register rolls we want to notice it and go ahead
12438 		 * and force an update.
12439 		 */
12440 		entry = &dev_cntrs[C_DC_XMIT_FLITS];
12441 		dd->last_tx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL,
12442 						CNTR_MODE_R, 0);
12443 
12444 		entry = &dev_cntrs[C_DC_RCV_FLITS];
12445 		dd->last_rx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL,
12446 						CNTR_MODE_R, 0);
12447 
12448 		hfi1_cdbg(CNTR, "[%d] setting last tx/rx to 0x%llx 0x%llx",
12449 			  dd->unit, dd->last_tx, dd->last_rx);
12450 
12451 	} else {
12452 		hfi1_cdbg(CNTR, "[%d] No update necessary", dd->unit);
12453 	}
12454 }
12455 
12456 static void update_synth_timer(struct timer_list *t)
12457 {
12458 	struct hfi1_devdata *dd = from_timer(dd, t, synth_stats_timer);
12459 
12460 	queue_work(dd->update_cntr_wq, &dd->update_cntr_work);
12461 	mod_timer(&dd->synth_stats_timer, jiffies + HZ * SYNTH_CNT_TIME);
12462 }
12463 
12464 #define C_MAX_NAME 16 /* 15 chars + one for /0 */
12465 static int init_cntrs(struct hfi1_devdata *dd)
12466 {
12467 	int i, rcv_ctxts, j;
12468 	size_t sz;
12469 	char *p;
12470 	char name[C_MAX_NAME];
12471 	struct hfi1_pportdata *ppd;
12472 	const char *bit_type_32 = ",32";
12473 	const int bit_type_32_sz = strlen(bit_type_32);
12474 	u32 sdma_engines = chip_sdma_engines(dd);
12475 
12476 	/* set up the stats timer; the add_timer is done at the end */
12477 	timer_setup(&dd->synth_stats_timer, update_synth_timer, 0);
12478 
12479 	/***********************/
12480 	/* per device counters */
12481 	/***********************/
12482 
12483 	/* size names and determine how many we have*/
12484 	dd->ndevcntrs = 0;
12485 	sz = 0;
12486 
12487 	for (i = 0; i < DEV_CNTR_LAST; i++) {
12488 		if (dev_cntrs[i].flags & CNTR_DISABLED) {
12489 			hfi1_dbg_early("\tSkipping %s\n", dev_cntrs[i].name);
12490 			continue;
12491 		}
12492 
12493 		if (dev_cntrs[i].flags & CNTR_VL) {
12494 			dev_cntrs[i].offset = dd->ndevcntrs;
12495 			for (j = 0; j < C_VL_COUNT; j++) {
12496 				snprintf(name, C_MAX_NAME, "%s%d",
12497 					 dev_cntrs[i].name, vl_from_idx(j));
12498 				sz += strlen(name);
12499 				/* Add ",32" for 32-bit counters */
12500 				if (dev_cntrs[i].flags & CNTR_32BIT)
12501 					sz += bit_type_32_sz;
12502 				sz++;
12503 				dd->ndevcntrs++;
12504 			}
12505 		} else if (dev_cntrs[i].flags & CNTR_SDMA) {
12506 			dev_cntrs[i].offset = dd->ndevcntrs;
12507 			for (j = 0; j < sdma_engines; j++) {
12508 				snprintf(name, C_MAX_NAME, "%s%d",
12509 					 dev_cntrs[i].name, j);
12510 				sz += strlen(name);
12511 				/* Add ",32" for 32-bit counters */
12512 				if (dev_cntrs[i].flags & CNTR_32BIT)
12513 					sz += bit_type_32_sz;
12514 				sz++;
12515 				dd->ndevcntrs++;
12516 			}
12517 		} else {
12518 			/* +1 for newline. */
12519 			sz += strlen(dev_cntrs[i].name) + 1;
12520 			/* Add ",32" for 32-bit counters */
12521 			if (dev_cntrs[i].flags & CNTR_32BIT)
12522 				sz += bit_type_32_sz;
12523 			dev_cntrs[i].offset = dd->ndevcntrs;
12524 			dd->ndevcntrs++;
12525 		}
12526 	}
12527 
12528 	/* allocate space for the counter values */
12529 	dd->cntrs = kcalloc(dd->ndevcntrs + num_driver_cntrs, sizeof(u64),
12530 			    GFP_KERNEL);
12531 	if (!dd->cntrs)
12532 		goto bail;
12533 
12534 	dd->scntrs = kcalloc(dd->ndevcntrs, sizeof(u64), GFP_KERNEL);
12535 	if (!dd->scntrs)
12536 		goto bail;
12537 
12538 	/* allocate space for the counter names */
12539 	dd->cntrnameslen = sz;
12540 	dd->cntrnames = kmalloc(sz, GFP_KERNEL);
12541 	if (!dd->cntrnames)
12542 		goto bail;
12543 
12544 	/* fill in the names */
12545 	for (p = dd->cntrnames, i = 0; i < DEV_CNTR_LAST; i++) {
12546 		if (dev_cntrs[i].flags & CNTR_DISABLED) {
12547 			/* Nothing */
12548 		} else if (dev_cntrs[i].flags & CNTR_VL) {
12549 			for (j = 0; j < C_VL_COUNT; j++) {
12550 				snprintf(name, C_MAX_NAME, "%s%d",
12551 					 dev_cntrs[i].name,
12552 					 vl_from_idx(j));
12553 				memcpy(p, name, strlen(name));
12554 				p += strlen(name);
12555 
12556 				/* Counter is 32 bits */
12557 				if (dev_cntrs[i].flags & CNTR_32BIT) {
12558 					memcpy(p, bit_type_32, bit_type_32_sz);
12559 					p += bit_type_32_sz;
12560 				}
12561 
12562 				*p++ = '\n';
12563 			}
12564 		} else if (dev_cntrs[i].flags & CNTR_SDMA) {
12565 			for (j = 0; j < sdma_engines; j++) {
12566 				snprintf(name, C_MAX_NAME, "%s%d",
12567 					 dev_cntrs[i].name, j);
12568 				memcpy(p, name, strlen(name));
12569 				p += strlen(name);
12570 
12571 				/* Counter is 32 bits */
12572 				if (dev_cntrs[i].flags & CNTR_32BIT) {
12573 					memcpy(p, bit_type_32, bit_type_32_sz);
12574 					p += bit_type_32_sz;
12575 				}
12576 
12577 				*p++ = '\n';
12578 			}
12579 		} else {
12580 			memcpy(p, dev_cntrs[i].name, strlen(dev_cntrs[i].name));
12581 			p += strlen(dev_cntrs[i].name);
12582 
12583 			/* Counter is 32 bits */
12584 			if (dev_cntrs[i].flags & CNTR_32BIT) {
12585 				memcpy(p, bit_type_32, bit_type_32_sz);
12586 				p += bit_type_32_sz;
12587 			}
12588 
12589 			*p++ = '\n';
12590 		}
12591 	}
12592 
12593 	/*********************/
12594 	/* per port counters */
12595 	/*********************/
12596 
12597 	/*
12598 	 * Go through the counters for the overflows and disable the ones we
12599 	 * don't need. This varies based on platform so we need to do it
12600 	 * dynamically here.
12601 	 */
12602 	rcv_ctxts = dd->num_rcv_contexts;
12603 	for (i = C_RCV_HDR_OVF_FIRST + rcv_ctxts;
12604 	     i <= C_RCV_HDR_OVF_LAST; i++) {
12605 		port_cntrs[i].flags |= CNTR_DISABLED;
12606 	}
12607 
12608 	/* size port counter names and determine how many we have*/
12609 	sz = 0;
12610 	dd->nportcntrs = 0;
12611 	for (i = 0; i < PORT_CNTR_LAST; i++) {
12612 		if (port_cntrs[i].flags & CNTR_DISABLED) {
12613 			hfi1_dbg_early("\tSkipping %s\n", port_cntrs[i].name);
12614 			continue;
12615 		}
12616 
12617 		if (port_cntrs[i].flags & CNTR_VL) {
12618 			port_cntrs[i].offset = dd->nportcntrs;
12619 			for (j = 0; j < C_VL_COUNT; j++) {
12620 				snprintf(name, C_MAX_NAME, "%s%d",
12621 					 port_cntrs[i].name, vl_from_idx(j));
12622 				sz += strlen(name);
12623 				/* Add ",32" for 32-bit counters */
12624 				if (port_cntrs[i].flags & CNTR_32BIT)
12625 					sz += bit_type_32_sz;
12626 				sz++;
12627 				dd->nportcntrs++;
12628 			}
12629 		} else {
12630 			/* +1 for newline */
12631 			sz += strlen(port_cntrs[i].name) + 1;
12632 			/* Add ",32" for 32-bit counters */
12633 			if (port_cntrs[i].flags & CNTR_32BIT)
12634 				sz += bit_type_32_sz;
12635 			port_cntrs[i].offset = dd->nportcntrs;
12636 			dd->nportcntrs++;
12637 		}
12638 	}
12639 
12640 	/* allocate space for the counter names */
12641 	dd->portcntrnameslen = sz;
12642 	dd->portcntrnames = kmalloc(sz, GFP_KERNEL);
12643 	if (!dd->portcntrnames)
12644 		goto bail;
12645 
12646 	/* fill in port cntr names */
12647 	for (p = dd->portcntrnames, i = 0; i < PORT_CNTR_LAST; i++) {
12648 		if (port_cntrs[i].flags & CNTR_DISABLED)
12649 			continue;
12650 
12651 		if (port_cntrs[i].flags & CNTR_VL) {
12652 			for (j = 0; j < C_VL_COUNT; j++) {
12653 				snprintf(name, C_MAX_NAME, "%s%d",
12654 					 port_cntrs[i].name, vl_from_idx(j));
12655 				memcpy(p, name, strlen(name));
12656 				p += strlen(name);
12657 
12658 				/* Counter is 32 bits */
12659 				if (port_cntrs[i].flags & CNTR_32BIT) {
12660 					memcpy(p, bit_type_32, bit_type_32_sz);
12661 					p += bit_type_32_sz;
12662 				}
12663 
12664 				*p++ = '\n';
12665 			}
12666 		} else {
12667 			memcpy(p, port_cntrs[i].name,
12668 			       strlen(port_cntrs[i].name));
12669 			p += strlen(port_cntrs[i].name);
12670 
12671 			/* Counter is 32 bits */
12672 			if (port_cntrs[i].flags & CNTR_32BIT) {
12673 				memcpy(p, bit_type_32, bit_type_32_sz);
12674 				p += bit_type_32_sz;
12675 			}
12676 
12677 			*p++ = '\n';
12678 		}
12679 	}
12680 
12681 	/* allocate per port storage for counter values */
12682 	ppd = (struct hfi1_pportdata *)(dd + 1);
12683 	for (i = 0; i < dd->num_pports; i++, ppd++) {
12684 		ppd->cntrs = kcalloc(dd->nportcntrs, sizeof(u64), GFP_KERNEL);
12685 		if (!ppd->cntrs)
12686 			goto bail;
12687 
12688 		ppd->scntrs = kcalloc(dd->nportcntrs, sizeof(u64), GFP_KERNEL);
12689 		if (!ppd->scntrs)
12690 			goto bail;
12691 	}
12692 
12693 	/* CPU counters need to be allocated and zeroed */
12694 	if (init_cpu_counters(dd))
12695 		goto bail;
12696 
12697 	dd->update_cntr_wq = alloc_ordered_workqueue("hfi1_update_cntr_%d",
12698 						     WQ_MEM_RECLAIM, dd->unit);
12699 	if (!dd->update_cntr_wq)
12700 		goto bail;
12701 
12702 	INIT_WORK(&dd->update_cntr_work, do_update_synth_timer);
12703 
12704 	mod_timer(&dd->synth_stats_timer, jiffies + HZ * SYNTH_CNT_TIME);
12705 	return 0;
12706 bail:
12707 	free_cntrs(dd);
12708 	return -ENOMEM;
12709 }
12710 
12711 static u32 chip_to_opa_lstate(struct hfi1_devdata *dd, u32 chip_lstate)
12712 {
12713 	switch (chip_lstate) {
12714 	default:
12715 		dd_dev_err(dd,
12716 			   "Unknown logical state 0x%x, reporting IB_PORT_DOWN\n",
12717 			   chip_lstate);
12718 		/* fall through */
12719 	case LSTATE_DOWN:
12720 		return IB_PORT_DOWN;
12721 	case LSTATE_INIT:
12722 		return IB_PORT_INIT;
12723 	case LSTATE_ARMED:
12724 		return IB_PORT_ARMED;
12725 	case LSTATE_ACTIVE:
12726 		return IB_PORT_ACTIVE;
12727 	}
12728 }
12729 
12730 u32 chip_to_opa_pstate(struct hfi1_devdata *dd, u32 chip_pstate)
12731 {
12732 	/* look at the HFI meta-states only */
12733 	switch (chip_pstate & 0xf0) {
12734 	default:
12735 		dd_dev_err(dd, "Unexpected chip physical state of 0x%x\n",
12736 			   chip_pstate);
12737 		/* fall through */
12738 	case PLS_DISABLED:
12739 		return IB_PORTPHYSSTATE_DISABLED;
12740 	case PLS_OFFLINE:
12741 		return OPA_PORTPHYSSTATE_OFFLINE;
12742 	case PLS_POLLING:
12743 		return IB_PORTPHYSSTATE_POLLING;
12744 	case PLS_CONFIGPHY:
12745 		return IB_PORTPHYSSTATE_TRAINING;
12746 	case PLS_LINKUP:
12747 		return IB_PORTPHYSSTATE_LINKUP;
12748 	case PLS_PHYTEST:
12749 		return IB_PORTPHYSSTATE_PHY_TEST;
12750 	}
12751 }
12752 
12753 /* return the OPA port logical state name */
12754 const char *opa_lstate_name(u32 lstate)
12755 {
12756 	static const char * const port_logical_names[] = {
12757 		"PORT_NOP",
12758 		"PORT_DOWN",
12759 		"PORT_INIT",
12760 		"PORT_ARMED",
12761 		"PORT_ACTIVE",
12762 		"PORT_ACTIVE_DEFER",
12763 	};
12764 	if (lstate < ARRAY_SIZE(port_logical_names))
12765 		return port_logical_names[lstate];
12766 	return "unknown";
12767 }
12768 
12769 /* return the OPA port physical state name */
12770 const char *opa_pstate_name(u32 pstate)
12771 {
12772 	static const char * const port_physical_names[] = {
12773 		"PHYS_NOP",
12774 		"reserved1",
12775 		"PHYS_POLL",
12776 		"PHYS_DISABLED",
12777 		"PHYS_TRAINING",
12778 		"PHYS_LINKUP",
12779 		"PHYS_LINK_ERR_RECOVER",
12780 		"PHYS_PHY_TEST",
12781 		"reserved8",
12782 		"PHYS_OFFLINE",
12783 		"PHYS_GANGED",
12784 		"PHYS_TEST",
12785 	};
12786 	if (pstate < ARRAY_SIZE(port_physical_names))
12787 		return port_physical_names[pstate];
12788 	return "unknown";
12789 }
12790 
12791 /**
12792  * update_statusp - Update userspace status flag
12793  * @ppd: Port data structure
12794  * @state: port state information
12795  *
12796  * Actual port status is determined by the host_link_state value
12797  * in the ppd.
12798  *
12799  * host_link_state MUST be updated before updating the user space
12800  * statusp.
12801  */
12802 static void update_statusp(struct hfi1_pportdata *ppd, u32 state)
12803 {
12804 	/*
12805 	 * Set port status flags in the page mapped into userspace
12806 	 * memory. Do it here to ensure a reliable state - this is
12807 	 * the only function called by all state handling code.
12808 	 * Always set the flags due to the fact that the cache value
12809 	 * might have been changed explicitly outside of this
12810 	 * function.
12811 	 */
12812 	if (ppd->statusp) {
12813 		switch (state) {
12814 		case IB_PORT_DOWN:
12815 		case IB_PORT_INIT:
12816 			*ppd->statusp &= ~(HFI1_STATUS_IB_CONF |
12817 					   HFI1_STATUS_IB_READY);
12818 			break;
12819 		case IB_PORT_ARMED:
12820 			*ppd->statusp |= HFI1_STATUS_IB_CONF;
12821 			break;
12822 		case IB_PORT_ACTIVE:
12823 			*ppd->statusp |= HFI1_STATUS_IB_READY;
12824 			break;
12825 		}
12826 	}
12827 	dd_dev_info(ppd->dd, "logical state changed to %s (0x%x)\n",
12828 		    opa_lstate_name(state), state);
12829 }
12830 
12831 /**
12832  * wait_logical_linkstate - wait for an IB link state change to occur
12833  * @ppd: port device
12834  * @state: the state to wait for
12835  * @msecs: the number of milliseconds to wait
12836  *
12837  * Wait up to msecs milliseconds for IB link state change to occur.
12838  * For now, take the easy polling route.
12839  * Returns 0 if state reached, otherwise -ETIMEDOUT.
12840  */
12841 static int wait_logical_linkstate(struct hfi1_pportdata *ppd, u32 state,
12842 				  int msecs)
12843 {
12844 	unsigned long timeout;
12845 	u32 new_state;
12846 
12847 	timeout = jiffies + msecs_to_jiffies(msecs);
12848 	while (1) {
12849 		new_state = chip_to_opa_lstate(ppd->dd,
12850 					       read_logical_state(ppd->dd));
12851 		if (new_state == state)
12852 			break;
12853 		if (time_after(jiffies, timeout)) {
12854 			dd_dev_err(ppd->dd,
12855 				   "timeout waiting for link state 0x%x\n",
12856 				   state);
12857 			return -ETIMEDOUT;
12858 		}
12859 		msleep(20);
12860 	}
12861 
12862 	return 0;
12863 }
12864 
12865 static void log_state_transition(struct hfi1_pportdata *ppd, u32 state)
12866 {
12867 	u32 ib_pstate = chip_to_opa_pstate(ppd->dd, state);
12868 
12869 	dd_dev_info(ppd->dd,
12870 		    "physical state changed to %s (0x%x), phy 0x%x\n",
12871 		    opa_pstate_name(ib_pstate), ib_pstate, state);
12872 }
12873 
12874 /*
12875  * Read the physical hardware link state and check if it matches host
12876  * drivers anticipated state.
12877  */
12878 static void log_physical_state(struct hfi1_pportdata *ppd, u32 state)
12879 {
12880 	u32 read_state = read_physical_state(ppd->dd);
12881 
12882 	if (read_state == state) {
12883 		log_state_transition(ppd, state);
12884 	} else {
12885 		dd_dev_err(ppd->dd,
12886 			   "anticipated phy link state 0x%x, read 0x%x\n",
12887 			   state, read_state);
12888 	}
12889 }
12890 
12891 /*
12892  * wait_physical_linkstate - wait for an physical link state change to occur
12893  * @ppd: port device
12894  * @state: the state to wait for
12895  * @msecs: the number of milliseconds to wait
12896  *
12897  * Wait up to msecs milliseconds for physical link state change to occur.
12898  * Returns 0 if state reached, otherwise -ETIMEDOUT.
12899  */
12900 static int wait_physical_linkstate(struct hfi1_pportdata *ppd, u32 state,
12901 				   int msecs)
12902 {
12903 	u32 read_state;
12904 	unsigned long timeout;
12905 
12906 	timeout = jiffies + msecs_to_jiffies(msecs);
12907 	while (1) {
12908 		read_state = read_physical_state(ppd->dd);
12909 		if (read_state == state)
12910 			break;
12911 		if (time_after(jiffies, timeout)) {
12912 			dd_dev_err(ppd->dd,
12913 				   "timeout waiting for phy link state 0x%x\n",
12914 				   state);
12915 			return -ETIMEDOUT;
12916 		}
12917 		usleep_range(1950, 2050); /* sleep 2ms-ish */
12918 	}
12919 
12920 	log_state_transition(ppd, state);
12921 	return 0;
12922 }
12923 
12924 /*
12925  * wait_phys_link_offline_quiet_substates - wait for any offline substate
12926  * @ppd: port device
12927  * @msecs: the number of milliseconds to wait
12928  *
12929  * Wait up to msecs milliseconds for any offline physical link
12930  * state change to occur.
12931  * Returns 0 if at least one state is reached, otherwise -ETIMEDOUT.
12932  */
12933 static int wait_phys_link_offline_substates(struct hfi1_pportdata *ppd,
12934 					    int msecs)
12935 {
12936 	u32 read_state;
12937 	unsigned long timeout;
12938 
12939 	timeout = jiffies + msecs_to_jiffies(msecs);
12940 	while (1) {
12941 		read_state = read_physical_state(ppd->dd);
12942 		if ((read_state & 0xF0) == PLS_OFFLINE)
12943 			break;
12944 		if (time_after(jiffies, timeout)) {
12945 			dd_dev_err(ppd->dd,
12946 				   "timeout waiting for phy link offline.quiet substates. Read state 0x%x, %dms\n",
12947 				   read_state, msecs);
12948 			return -ETIMEDOUT;
12949 		}
12950 		usleep_range(1950, 2050); /* sleep 2ms-ish */
12951 	}
12952 
12953 	log_state_transition(ppd, read_state);
12954 	return read_state;
12955 }
12956 
12957 /*
12958  * wait_phys_link_out_of_offline - wait for any out of offline state
12959  * @ppd: port device
12960  * @msecs: the number of milliseconds to wait
12961  *
12962  * Wait up to msecs milliseconds for any out of offline physical link
12963  * state change to occur.
12964  * Returns 0 if at least one state is reached, otherwise -ETIMEDOUT.
12965  */
12966 static int wait_phys_link_out_of_offline(struct hfi1_pportdata *ppd,
12967 					 int msecs)
12968 {
12969 	u32 read_state;
12970 	unsigned long timeout;
12971 
12972 	timeout = jiffies + msecs_to_jiffies(msecs);
12973 	while (1) {
12974 		read_state = read_physical_state(ppd->dd);
12975 		if ((read_state & 0xF0) != PLS_OFFLINE)
12976 			break;
12977 		if (time_after(jiffies, timeout)) {
12978 			dd_dev_err(ppd->dd,
12979 				   "timeout waiting for phy link out of offline. Read state 0x%x, %dms\n",
12980 				   read_state, msecs);
12981 			return -ETIMEDOUT;
12982 		}
12983 		usleep_range(1950, 2050); /* sleep 2ms-ish */
12984 	}
12985 
12986 	log_state_transition(ppd, read_state);
12987 	return read_state;
12988 }
12989 
12990 #define CLEAR_STATIC_RATE_CONTROL_SMASK(r) \
12991 (r &= ~SEND_CTXT_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK)
12992 
12993 #define SET_STATIC_RATE_CONTROL_SMASK(r) \
12994 (r |= SEND_CTXT_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK)
12995 
12996 void hfi1_init_ctxt(struct send_context *sc)
12997 {
12998 	if (sc) {
12999 		struct hfi1_devdata *dd = sc->dd;
13000 		u64 reg;
13001 		u8 set = (sc->type == SC_USER ?
13002 			  HFI1_CAP_IS_USET(STATIC_RATE_CTRL) :
13003 			  HFI1_CAP_IS_KSET(STATIC_RATE_CTRL));
13004 		reg = read_kctxt_csr(dd, sc->hw_context,
13005 				     SEND_CTXT_CHECK_ENABLE);
13006 		if (set)
13007 			CLEAR_STATIC_RATE_CONTROL_SMASK(reg);
13008 		else
13009 			SET_STATIC_RATE_CONTROL_SMASK(reg);
13010 		write_kctxt_csr(dd, sc->hw_context,
13011 				SEND_CTXT_CHECK_ENABLE, reg);
13012 	}
13013 }
13014 
13015 int hfi1_tempsense_rd(struct hfi1_devdata *dd, struct hfi1_temp *temp)
13016 {
13017 	int ret = 0;
13018 	u64 reg;
13019 
13020 	if (dd->icode != ICODE_RTL_SILICON) {
13021 		if (HFI1_CAP_IS_KSET(PRINT_UNIMPL))
13022 			dd_dev_info(dd, "%s: tempsense not supported by HW\n",
13023 				    __func__);
13024 		return -EINVAL;
13025 	}
13026 	reg = read_csr(dd, ASIC_STS_THERM);
13027 	temp->curr = ((reg >> ASIC_STS_THERM_CURR_TEMP_SHIFT) &
13028 		      ASIC_STS_THERM_CURR_TEMP_MASK);
13029 	temp->lo_lim = ((reg >> ASIC_STS_THERM_LO_TEMP_SHIFT) &
13030 			ASIC_STS_THERM_LO_TEMP_MASK);
13031 	temp->hi_lim = ((reg >> ASIC_STS_THERM_HI_TEMP_SHIFT) &
13032 			ASIC_STS_THERM_HI_TEMP_MASK);
13033 	temp->crit_lim = ((reg >> ASIC_STS_THERM_CRIT_TEMP_SHIFT) &
13034 			  ASIC_STS_THERM_CRIT_TEMP_MASK);
13035 	/* triggers is a 3-bit value - 1 bit per trigger. */
13036 	temp->triggers = (u8)((reg >> ASIC_STS_THERM_LOW_SHIFT) & 0x7);
13037 
13038 	return ret;
13039 }
13040 
13041 /* ========================================================================= */
13042 
13043 /**
13044  * read_mod_write() - Calculate the IRQ register index and set/clear the bits
13045  * @dd: valid devdata
13046  * @src: IRQ source to determine register index from
13047  * @bits: the bits to set or clear
13048  * @set: true == set the bits, false == clear the bits
13049  *
13050  */
13051 static void read_mod_write(struct hfi1_devdata *dd, u16 src, u64 bits,
13052 			   bool set)
13053 {
13054 	u64 reg;
13055 	u16 idx = src / BITS_PER_REGISTER;
13056 
13057 	spin_lock(&dd->irq_src_lock);
13058 	reg = read_csr(dd, CCE_INT_MASK + (8 * idx));
13059 	if (set)
13060 		reg |= bits;
13061 	else
13062 		reg &= ~bits;
13063 	write_csr(dd, CCE_INT_MASK + (8 * idx), reg);
13064 	spin_unlock(&dd->irq_src_lock);
13065 }
13066 
13067 /**
13068  * set_intr_bits() - Enable/disable a range (one or more) IRQ sources
13069  * @dd: valid devdata
13070  * @first: first IRQ source to set/clear
13071  * @last: last IRQ source (inclusive) to set/clear
13072  * @set: true == set the bits, false == clear the bits
13073  *
13074  * If first == last, set the exact source.
13075  */
13076 int set_intr_bits(struct hfi1_devdata *dd, u16 first, u16 last, bool set)
13077 {
13078 	u64 bits = 0;
13079 	u64 bit;
13080 	u16 src;
13081 
13082 	if (first > NUM_INTERRUPT_SOURCES || last > NUM_INTERRUPT_SOURCES)
13083 		return -EINVAL;
13084 
13085 	if (last < first)
13086 		return -ERANGE;
13087 
13088 	for (src = first; src <= last; src++) {
13089 		bit = src % BITS_PER_REGISTER;
13090 		/* wrapped to next register? */
13091 		if (!bit && bits) {
13092 			read_mod_write(dd, src - 1, bits, set);
13093 			bits = 0;
13094 		}
13095 		bits |= BIT_ULL(bit);
13096 	}
13097 	read_mod_write(dd, last, bits, set);
13098 
13099 	return 0;
13100 }
13101 
13102 /*
13103  * Clear all interrupt sources on the chip.
13104  */
13105 void clear_all_interrupts(struct hfi1_devdata *dd)
13106 {
13107 	int i;
13108 
13109 	for (i = 0; i < CCE_NUM_INT_CSRS; i++)
13110 		write_csr(dd, CCE_INT_CLEAR + (8 * i), ~(u64)0);
13111 
13112 	write_csr(dd, CCE_ERR_CLEAR, ~(u64)0);
13113 	write_csr(dd, MISC_ERR_CLEAR, ~(u64)0);
13114 	write_csr(dd, RCV_ERR_CLEAR, ~(u64)0);
13115 	write_csr(dd, SEND_ERR_CLEAR, ~(u64)0);
13116 	write_csr(dd, SEND_PIO_ERR_CLEAR, ~(u64)0);
13117 	write_csr(dd, SEND_DMA_ERR_CLEAR, ~(u64)0);
13118 	write_csr(dd, SEND_EGRESS_ERR_CLEAR, ~(u64)0);
13119 	for (i = 0; i < chip_send_contexts(dd); i++)
13120 		write_kctxt_csr(dd, i, SEND_CTXT_ERR_CLEAR, ~(u64)0);
13121 	for (i = 0; i < chip_sdma_engines(dd); i++)
13122 		write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_CLEAR, ~(u64)0);
13123 
13124 	write_csr(dd, DCC_ERR_FLG_CLR, ~(u64)0);
13125 	write_csr(dd, DC_LCB_ERR_CLR, ~(u64)0);
13126 	write_csr(dd, DC_DC8051_ERR_CLR, ~(u64)0);
13127 }
13128 
13129 /*
13130  * Remap the interrupt source from the general handler to the given MSI-X
13131  * interrupt.
13132  */
13133 void remap_intr(struct hfi1_devdata *dd, int isrc, int msix_intr)
13134 {
13135 	u64 reg;
13136 	int m, n;
13137 
13138 	/* clear from the handled mask of the general interrupt */
13139 	m = isrc / 64;
13140 	n = isrc % 64;
13141 	if (likely(m < CCE_NUM_INT_CSRS)) {
13142 		dd->gi_mask[m] &= ~((u64)1 << n);
13143 	} else {
13144 		dd_dev_err(dd, "remap interrupt err\n");
13145 		return;
13146 	}
13147 
13148 	/* direct the chip source to the given MSI-X interrupt */
13149 	m = isrc / 8;
13150 	n = isrc % 8;
13151 	reg = read_csr(dd, CCE_INT_MAP + (8 * m));
13152 	reg &= ~((u64)0xff << (8 * n));
13153 	reg |= ((u64)msix_intr & 0xff) << (8 * n);
13154 	write_csr(dd, CCE_INT_MAP + (8 * m), reg);
13155 }
13156 
13157 void remap_sdma_interrupts(struct hfi1_devdata *dd, int engine, int msix_intr)
13158 {
13159 	/*
13160 	 * SDMA engine interrupt sources grouped by type, rather than
13161 	 * engine.  Per-engine interrupts are as follows:
13162 	 *	SDMA
13163 	 *	SDMAProgress
13164 	 *	SDMAIdle
13165 	 */
13166 	remap_intr(dd, IS_SDMA_START + engine, msix_intr);
13167 	remap_intr(dd, IS_SDMA_PROGRESS_START + engine, msix_intr);
13168 	remap_intr(dd, IS_SDMA_IDLE_START + engine, msix_intr);
13169 }
13170 
13171 /*
13172  * Set the general handler to accept all interrupts, remap all
13173  * chip interrupts back to MSI-X 0.
13174  */
13175 void reset_interrupts(struct hfi1_devdata *dd)
13176 {
13177 	int i;
13178 
13179 	/* all interrupts handled by the general handler */
13180 	for (i = 0; i < CCE_NUM_INT_CSRS; i++)
13181 		dd->gi_mask[i] = ~(u64)0;
13182 
13183 	/* all chip interrupts map to MSI-X 0 */
13184 	for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++)
13185 		write_csr(dd, CCE_INT_MAP + (8 * i), 0);
13186 }
13187 
13188 /**
13189  * set_up_interrupts() - Initialize the IRQ resources and state
13190  * @dd: valid devdata
13191  *
13192  */
13193 static int set_up_interrupts(struct hfi1_devdata *dd)
13194 {
13195 	int ret;
13196 
13197 	/* mask all interrupts */
13198 	set_intr_bits(dd, IS_FIRST_SOURCE, IS_LAST_SOURCE, false);
13199 
13200 	/* clear all pending interrupts */
13201 	clear_all_interrupts(dd);
13202 
13203 	/* reset general handler mask, chip MSI-X mappings */
13204 	reset_interrupts(dd);
13205 
13206 	/* ask for MSI-X interrupts */
13207 	ret = msix_initialize(dd);
13208 	if (ret)
13209 		return ret;
13210 
13211 	ret = msix_request_irqs(dd);
13212 	if (ret)
13213 		msix_clean_up_interrupts(dd);
13214 
13215 	return ret;
13216 }
13217 
13218 /*
13219  * Set up context values in dd.  Sets:
13220  *
13221  *	num_rcv_contexts - number of contexts being used
13222  *	n_krcv_queues - number of kernel contexts
13223  *	first_dyn_alloc_ctxt - first dynamically allocated context
13224  *                             in array of contexts
13225  *	freectxts  - number of free user contexts
13226  *	num_send_contexts - number of PIO send contexts being used
13227  *	num_vnic_contexts - number of contexts reserved for VNIC
13228  */
13229 static int set_up_context_variables(struct hfi1_devdata *dd)
13230 {
13231 	unsigned long num_kernel_contexts;
13232 	u16 num_vnic_contexts = HFI1_NUM_VNIC_CTXT;
13233 	int total_contexts;
13234 	int ret;
13235 	unsigned ngroups;
13236 	int rmt_count;
13237 	int user_rmt_reduced;
13238 	u32 n_usr_ctxts;
13239 	u32 send_contexts = chip_send_contexts(dd);
13240 	u32 rcv_contexts = chip_rcv_contexts(dd);
13241 
13242 	/*
13243 	 * Kernel receive contexts:
13244 	 * - Context 0 - control context (VL15/multicast/error)
13245 	 * - Context 1 - first kernel context
13246 	 * - Context 2 - second kernel context
13247 	 * ...
13248 	 */
13249 	if (n_krcvqs)
13250 		/*
13251 		 * n_krcvqs is the sum of module parameter kernel receive
13252 		 * contexts, krcvqs[].  It does not include the control
13253 		 * context, so add that.
13254 		 */
13255 		num_kernel_contexts = n_krcvqs + 1;
13256 	else
13257 		num_kernel_contexts = DEFAULT_KRCVQS + 1;
13258 	/*
13259 	 * Every kernel receive context needs an ACK send context.
13260 	 * one send context is allocated for each VL{0-7} and VL15
13261 	 */
13262 	if (num_kernel_contexts > (send_contexts - num_vls - 1)) {
13263 		dd_dev_err(dd,
13264 			   "Reducing # kernel rcv contexts to: %d, from %lu\n",
13265 			   send_contexts - num_vls - 1,
13266 			   num_kernel_contexts);
13267 		num_kernel_contexts = send_contexts - num_vls - 1;
13268 	}
13269 
13270 	/* Accommodate VNIC contexts if possible */
13271 	if ((num_kernel_contexts + num_vnic_contexts) > rcv_contexts) {
13272 		dd_dev_err(dd, "No receive contexts available for VNIC\n");
13273 		num_vnic_contexts = 0;
13274 	}
13275 	total_contexts = num_kernel_contexts + num_vnic_contexts;
13276 
13277 	/*
13278 	 * User contexts:
13279 	 *	- default to 1 user context per real (non-HT) CPU core if
13280 	 *	  num_user_contexts is negative
13281 	 */
13282 	if (num_user_contexts < 0)
13283 		n_usr_ctxts = cpumask_weight(&node_affinity.real_cpu_mask);
13284 	else
13285 		n_usr_ctxts = num_user_contexts;
13286 	/*
13287 	 * Adjust the counts given a global max.
13288 	 */
13289 	if (total_contexts + n_usr_ctxts > rcv_contexts) {
13290 		dd_dev_err(dd,
13291 			   "Reducing # user receive contexts to: %d, from %u\n",
13292 			   rcv_contexts - total_contexts,
13293 			   n_usr_ctxts);
13294 		/* recalculate */
13295 		n_usr_ctxts = rcv_contexts - total_contexts;
13296 	}
13297 
13298 	/*
13299 	 * The RMT entries are currently allocated as shown below:
13300 	 * 1. QOS (0 to 128 entries);
13301 	 * 2. FECN (num_kernel_context - 1 + num_user_contexts +
13302 	 *    num_vnic_contexts);
13303 	 * 3. VNIC (num_vnic_contexts).
13304 	 * It should be noted that FECN oversubscribe num_vnic_contexts
13305 	 * entries of RMT because both VNIC and PSM could allocate any receive
13306 	 * context between dd->first_dyn_alloc_text and dd->num_rcv_contexts,
13307 	 * and PSM FECN must reserve an RMT entry for each possible PSM receive
13308 	 * context.
13309 	 */
13310 	rmt_count = qos_rmt_entries(dd, NULL, NULL) + (num_vnic_contexts * 2);
13311 	if (HFI1_CAP_IS_KSET(TID_RDMA))
13312 		rmt_count += num_kernel_contexts - 1;
13313 	if (rmt_count + n_usr_ctxts > NUM_MAP_ENTRIES) {
13314 		user_rmt_reduced = NUM_MAP_ENTRIES - rmt_count;
13315 		dd_dev_err(dd,
13316 			   "RMT size is reducing the number of user receive contexts from %u to %d\n",
13317 			   n_usr_ctxts,
13318 			   user_rmt_reduced);
13319 		/* recalculate */
13320 		n_usr_ctxts = user_rmt_reduced;
13321 	}
13322 
13323 	total_contexts += n_usr_ctxts;
13324 
13325 	/* the first N are kernel contexts, the rest are user/vnic contexts */
13326 	dd->num_rcv_contexts = total_contexts;
13327 	dd->n_krcv_queues = num_kernel_contexts;
13328 	dd->first_dyn_alloc_ctxt = num_kernel_contexts;
13329 	dd->num_vnic_contexts = num_vnic_contexts;
13330 	dd->num_user_contexts = n_usr_ctxts;
13331 	dd->freectxts = n_usr_ctxts;
13332 	dd_dev_info(dd,
13333 		    "rcv contexts: chip %d, used %d (kernel %d, vnic %u, user %u)\n",
13334 		    rcv_contexts,
13335 		    (int)dd->num_rcv_contexts,
13336 		    (int)dd->n_krcv_queues,
13337 		    dd->num_vnic_contexts,
13338 		    dd->num_user_contexts);
13339 
13340 	/*
13341 	 * Receive array allocation:
13342 	 *   All RcvArray entries are divided into groups of 8. This
13343 	 *   is required by the hardware and will speed up writes to
13344 	 *   consecutive entries by using write-combining of the entire
13345 	 *   cacheline.
13346 	 *
13347 	 *   The number of groups are evenly divided among all contexts.
13348 	 *   any left over groups will be given to the first N user
13349 	 *   contexts.
13350 	 */
13351 	dd->rcv_entries.group_size = RCV_INCREMENT;
13352 	ngroups = chip_rcv_array_count(dd) / dd->rcv_entries.group_size;
13353 	dd->rcv_entries.ngroups = ngroups / dd->num_rcv_contexts;
13354 	dd->rcv_entries.nctxt_extra = ngroups -
13355 		(dd->num_rcv_contexts * dd->rcv_entries.ngroups);
13356 	dd_dev_info(dd, "RcvArray groups %u, ctxts extra %u\n",
13357 		    dd->rcv_entries.ngroups,
13358 		    dd->rcv_entries.nctxt_extra);
13359 	if (dd->rcv_entries.ngroups * dd->rcv_entries.group_size >
13360 	    MAX_EAGER_ENTRIES * 2) {
13361 		dd->rcv_entries.ngroups = (MAX_EAGER_ENTRIES * 2) /
13362 			dd->rcv_entries.group_size;
13363 		dd_dev_info(dd,
13364 			    "RcvArray group count too high, change to %u\n",
13365 			    dd->rcv_entries.ngroups);
13366 		dd->rcv_entries.nctxt_extra = 0;
13367 	}
13368 	/*
13369 	 * PIO send contexts
13370 	 */
13371 	ret = init_sc_pools_and_sizes(dd);
13372 	if (ret >= 0) {	/* success */
13373 		dd->num_send_contexts = ret;
13374 		dd_dev_info(
13375 			dd,
13376 			"send contexts: chip %d, used %d (kernel %d, ack %d, user %d, vl15 %d)\n",
13377 			send_contexts,
13378 			dd->num_send_contexts,
13379 			dd->sc_sizes[SC_KERNEL].count,
13380 			dd->sc_sizes[SC_ACK].count,
13381 			dd->sc_sizes[SC_USER].count,
13382 			dd->sc_sizes[SC_VL15].count);
13383 		ret = 0;	/* success */
13384 	}
13385 
13386 	return ret;
13387 }
13388 
13389 /*
13390  * Set the device/port partition key table. The MAD code
13391  * will ensure that, at least, the partial management
13392  * partition key is present in the table.
13393  */
13394 static void set_partition_keys(struct hfi1_pportdata *ppd)
13395 {
13396 	struct hfi1_devdata *dd = ppd->dd;
13397 	u64 reg = 0;
13398 	int i;
13399 
13400 	dd_dev_info(dd, "Setting partition keys\n");
13401 	for (i = 0; i < hfi1_get_npkeys(dd); i++) {
13402 		reg |= (ppd->pkeys[i] &
13403 			RCV_PARTITION_KEY_PARTITION_KEY_A_MASK) <<
13404 			((i % 4) *
13405 			 RCV_PARTITION_KEY_PARTITION_KEY_B_SHIFT);
13406 		/* Each register holds 4 PKey values. */
13407 		if ((i % 4) == 3) {
13408 			write_csr(dd, RCV_PARTITION_KEY +
13409 				  ((i - 3) * 2), reg);
13410 			reg = 0;
13411 		}
13412 	}
13413 
13414 	/* Always enable HW pkeys check when pkeys table is set */
13415 	add_rcvctrl(dd, RCV_CTRL_RCV_PARTITION_KEY_ENABLE_SMASK);
13416 }
13417 
13418 /*
13419  * These CSRs and memories are uninitialized on reset and must be
13420  * written before reading to set the ECC/parity bits.
13421  *
13422  * NOTE: All user context CSRs that are not mmaped write-only
13423  * (e.g. the TID flows) must be initialized even if the driver never
13424  * reads them.
13425  */
13426 static void write_uninitialized_csrs_and_memories(struct hfi1_devdata *dd)
13427 {
13428 	int i, j;
13429 
13430 	/* CceIntMap */
13431 	for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++)
13432 		write_csr(dd, CCE_INT_MAP + (8 * i), 0);
13433 
13434 	/* SendCtxtCreditReturnAddr */
13435 	for (i = 0; i < chip_send_contexts(dd); i++)
13436 		write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_RETURN_ADDR, 0);
13437 
13438 	/* PIO Send buffers */
13439 	/* SDMA Send buffers */
13440 	/*
13441 	 * These are not normally read, and (presently) have no method
13442 	 * to be read, so are not pre-initialized
13443 	 */
13444 
13445 	/* RcvHdrAddr */
13446 	/* RcvHdrTailAddr */
13447 	/* RcvTidFlowTable */
13448 	for (i = 0; i < chip_rcv_contexts(dd); i++) {
13449 		write_kctxt_csr(dd, i, RCV_HDR_ADDR, 0);
13450 		write_kctxt_csr(dd, i, RCV_HDR_TAIL_ADDR, 0);
13451 		for (j = 0; j < RXE_NUM_TID_FLOWS; j++)
13452 			write_uctxt_csr(dd, i, RCV_TID_FLOW_TABLE + (8 * j), 0);
13453 	}
13454 
13455 	/* RcvArray */
13456 	for (i = 0; i < chip_rcv_array_count(dd); i++)
13457 		hfi1_put_tid(dd, i, PT_INVALID_FLUSH, 0, 0);
13458 
13459 	/* RcvQPMapTable */
13460 	for (i = 0; i < 32; i++)
13461 		write_csr(dd, RCV_QP_MAP_TABLE + (8 * i), 0);
13462 }
13463 
13464 /*
13465  * Use the ctrl_bits in CceCtrl to clear the status_bits in CceStatus.
13466  */
13467 static void clear_cce_status(struct hfi1_devdata *dd, u64 status_bits,
13468 			     u64 ctrl_bits)
13469 {
13470 	unsigned long timeout;
13471 	u64 reg;
13472 
13473 	/* is the condition present? */
13474 	reg = read_csr(dd, CCE_STATUS);
13475 	if ((reg & status_bits) == 0)
13476 		return;
13477 
13478 	/* clear the condition */
13479 	write_csr(dd, CCE_CTRL, ctrl_bits);
13480 
13481 	/* wait for the condition to clear */
13482 	timeout = jiffies + msecs_to_jiffies(CCE_STATUS_TIMEOUT);
13483 	while (1) {
13484 		reg = read_csr(dd, CCE_STATUS);
13485 		if ((reg & status_bits) == 0)
13486 			return;
13487 		if (time_after(jiffies, timeout)) {
13488 			dd_dev_err(dd,
13489 				   "Timeout waiting for CceStatus to clear bits 0x%llx, remaining 0x%llx\n",
13490 				   status_bits, reg & status_bits);
13491 			return;
13492 		}
13493 		udelay(1);
13494 	}
13495 }
13496 
13497 /* set CCE CSRs to chip reset defaults */
13498 static void reset_cce_csrs(struct hfi1_devdata *dd)
13499 {
13500 	int i;
13501 
13502 	/* CCE_REVISION read-only */
13503 	/* CCE_REVISION2 read-only */
13504 	/* CCE_CTRL - bits clear automatically */
13505 	/* CCE_STATUS read-only, use CceCtrl to clear */
13506 	clear_cce_status(dd, ALL_FROZE, CCE_CTRL_SPC_UNFREEZE_SMASK);
13507 	clear_cce_status(dd, ALL_TXE_PAUSE, CCE_CTRL_TXE_RESUME_SMASK);
13508 	clear_cce_status(dd, ALL_RXE_PAUSE, CCE_CTRL_RXE_RESUME_SMASK);
13509 	for (i = 0; i < CCE_NUM_SCRATCH; i++)
13510 		write_csr(dd, CCE_SCRATCH + (8 * i), 0);
13511 	/* CCE_ERR_STATUS read-only */
13512 	write_csr(dd, CCE_ERR_MASK, 0);
13513 	write_csr(dd, CCE_ERR_CLEAR, ~0ull);
13514 	/* CCE_ERR_FORCE leave alone */
13515 	for (i = 0; i < CCE_NUM_32_BIT_COUNTERS; i++)
13516 		write_csr(dd, CCE_COUNTER_ARRAY32 + (8 * i), 0);
13517 	write_csr(dd, CCE_DC_CTRL, CCE_DC_CTRL_RESETCSR);
13518 	/* CCE_PCIE_CTRL leave alone */
13519 	for (i = 0; i < CCE_NUM_MSIX_VECTORS; i++) {
13520 		write_csr(dd, CCE_MSIX_TABLE_LOWER + (8 * i), 0);
13521 		write_csr(dd, CCE_MSIX_TABLE_UPPER + (8 * i),
13522 			  CCE_MSIX_TABLE_UPPER_RESETCSR);
13523 	}
13524 	for (i = 0; i < CCE_NUM_MSIX_PBAS; i++) {
13525 		/* CCE_MSIX_PBA read-only */
13526 		write_csr(dd, CCE_MSIX_INT_GRANTED, ~0ull);
13527 		write_csr(dd, CCE_MSIX_VEC_CLR_WITHOUT_INT, ~0ull);
13528 	}
13529 	for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++)
13530 		write_csr(dd, CCE_INT_MAP, 0);
13531 	for (i = 0; i < CCE_NUM_INT_CSRS; i++) {
13532 		/* CCE_INT_STATUS read-only */
13533 		write_csr(dd, CCE_INT_MASK + (8 * i), 0);
13534 		write_csr(dd, CCE_INT_CLEAR + (8 * i), ~0ull);
13535 		/* CCE_INT_FORCE leave alone */
13536 		/* CCE_INT_BLOCKED read-only */
13537 	}
13538 	for (i = 0; i < CCE_NUM_32_BIT_INT_COUNTERS; i++)
13539 		write_csr(dd, CCE_INT_COUNTER_ARRAY32 + (8 * i), 0);
13540 }
13541 
13542 /* set MISC CSRs to chip reset defaults */
13543 static void reset_misc_csrs(struct hfi1_devdata *dd)
13544 {
13545 	int i;
13546 
13547 	for (i = 0; i < 32; i++) {
13548 		write_csr(dd, MISC_CFG_RSA_R2 + (8 * i), 0);
13549 		write_csr(dd, MISC_CFG_RSA_SIGNATURE + (8 * i), 0);
13550 		write_csr(dd, MISC_CFG_RSA_MODULUS + (8 * i), 0);
13551 	}
13552 	/*
13553 	 * MISC_CFG_SHA_PRELOAD leave alone - always reads 0 and can
13554 	 * only be written 128-byte chunks
13555 	 */
13556 	/* init RSA engine to clear lingering errors */
13557 	write_csr(dd, MISC_CFG_RSA_CMD, 1);
13558 	write_csr(dd, MISC_CFG_RSA_MU, 0);
13559 	write_csr(dd, MISC_CFG_FW_CTRL, 0);
13560 	/* MISC_STS_8051_DIGEST read-only */
13561 	/* MISC_STS_SBM_DIGEST read-only */
13562 	/* MISC_STS_PCIE_DIGEST read-only */
13563 	/* MISC_STS_FAB_DIGEST read-only */
13564 	/* MISC_ERR_STATUS read-only */
13565 	write_csr(dd, MISC_ERR_MASK, 0);
13566 	write_csr(dd, MISC_ERR_CLEAR, ~0ull);
13567 	/* MISC_ERR_FORCE leave alone */
13568 }
13569 
13570 /* set TXE CSRs to chip reset defaults */
13571 static void reset_txe_csrs(struct hfi1_devdata *dd)
13572 {
13573 	int i;
13574 
13575 	/*
13576 	 * TXE Kernel CSRs
13577 	 */
13578 	write_csr(dd, SEND_CTRL, 0);
13579 	__cm_reset(dd, 0);	/* reset CM internal state */
13580 	/* SEND_CONTEXTS read-only */
13581 	/* SEND_DMA_ENGINES read-only */
13582 	/* SEND_PIO_MEM_SIZE read-only */
13583 	/* SEND_DMA_MEM_SIZE read-only */
13584 	write_csr(dd, SEND_HIGH_PRIORITY_LIMIT, 0);
13585 	pio_reset_all(dd);	/* SEND_PIO_INIT_CTXT */
13586 	/* SEND_PIO_ERR_STATUS read-only */
13587 	write_csr(dd, SEND_PIO_ERR_MASK, 0);
13588 	write_csr(dd, SEND_PIO_ERR_CLEAR, ~0ull);
13589 	/* SEND_PIO_ERR_FORCE leave alone */
13590 	/* SEND_DMA_ERR_STATUS read-only */
13591 	write_csr(dd, SEND_DMA_ERR_MASK, 0);
13592 	write_csr(dd, SEND_DMA_ERR_CLEAR, ~0ull);
13593 	/* SEND_DMA_ERR_FORCE leave alone */
13594 	/* SEND_EGRESS_ERR_STATUS read-only */
13595 	write_csr(dd, SEND_EGRESS_ERR_MASK, 0);
13596 	write_csr(dd, SEND_EGRESS_ERR_CLEAR, ~0ull);
13597 	/* SEND_EGRESS_ERR_FORCE leave alone */
13598 	write_csr(dd, SEND_BTH_QP, 0);
13599 	write_csr(dd, SEND_STATIC_RATE_CONTROL, 0);
13600 	write_csr(dd, SEND_SC2VLT0, 0);
13601 	write_csr(dd, SEND_SC2VLT1, 0);
13602 	write_csr(dd, SEND_SC2VLT2, 0);
13603 	write_csr(dd, SEND_SC2VLT3, 0);
13604 	write_csr(dd, SEND_LEN_CHECK0, 0);
13605 	write_csr(dd, SEND_LEN_CHECK1, 0);
13606 	/* SEND_ERR_STATUS read-only */
13607 	write_csr(dd, SEND_ERR_MASK, 0);
13608 	write_csr(dd, SEND_ERR_CLEAR, ~0ull);
13609 	/* SEND_ERR_FORCE read-only */
13610 	for (i = 0; i < VL_ARB_LOW_PRIO_TABLE_SIZE; i++)
13611 		write_csr(dd, SEND_LOW_PRIORITY_LIST + (8 * i), 0);
13612 	for (i = 0; i < VL_ARB_HIGH_PRIO_TABLE_SIZE; i++)
13613 		write_csr(dd, SEND_HIGH_PRIORITY_LIST + (8 * i), 0);
13614 	for (i = 0; i < chip_send_contexts(dd) / NUM_CONTEXTS_PER_SET; i++)
13615 		write_csr(dd, SEND_CONTEXT_SET_CTRL + (8 * i), 0);
13616 	for (i = 0; i < TXE_NUM_32_BIT_COUNTER; i++)
13617 		write_csr(dd, SEND_COUNTER_ARRAY32 + (8 * i), 0);
13618 	for (i = 0; i < TXE_NUM_64_BIT_COUNTER; i++)
13619 		write_csr(dd, SEND_COUNTER_ARRAY64 + (8 * i), 0);
13620 	write_csr(dd, SEND_CM_CTRL, SEND_CM_CTRL_RESETCSR);
13621 	write_csr(dd, SEND_CM_GLOBAL_CREDIT, SEND_CM_GLOBAL_CREDIT_RESETCSR);
13622 	/* SEND_CM_CREDIT_USED_STATUS read-only */
13623 	write_csr(dd, SEND_CM_TIMER_CTRL, 0);
13624 	write_csr(dd, SEND_CM_LOCAL_AU_TABLE0_TO3, 0);
13625 	write_csr(dd, SEND_CM_LOCAL_AU_TABLE4_TO7, 0);
13626 	write_csr(dd, SEND_CM_REMOTE_AU_TABLE0_TO3, 0);
13627 	write_csr(dd, SEND_CM_REMOTE_AU_TABLE4_TO7, 0);
13628 	for (i = 0; i < TXE_NUM_DATA_VL; i++)
13629 		write_csr(dd, SEND_CM_CREDIT_VL + (8 * i), 0);
13630 	write_csr(dd, SEND_CM_CREDIT_VL15, 0);
13631 	/* SEND_CM_CREDIT_USED_VL read-only */
13632 	/* SEND_CM_CREDIT_USED_VL15 read-only */
13633 	/* SEND_EGRESS_CTXT_STATUS read-only */
13634 	/* SEND_EGRESS_SEND_DMA_STATUS read-only */
13635 	write_csr(dd, SEND_EGRESS_ERR_INFO, ~0ull);
13636 	/* SEND_EGRESS_ERR_INFO read-only */
13637 	/* SEND_EGRESS_ERR_SOURCE read-only */
13638 
13639 	/*
13640 	 * TXE Per-Context CSRs
13641 	 */
13642 	for (i = 0; i < chip_send_contexts(dd); i++) {
13643 		write_kctxt_csr(dd, i, SEND_CTXT_CTRL, 0);
13644 		write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_CTRL, 0);
13645 		write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_RETURN_ADDR, 0);
13646 		write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_FORCE, 0);
13647 		write_kctxt_csr(dd, i, SEND_CTXT_ERR_MASK, 0);
13648 		write_kctxt_csr(dd, i, SEND_CTXT_ERR_CLEAR, ~0ull);
13649 		write_kctxt_csr(dd, i, SEND_CTXT_CHECK_ENABLE, 0);
13650 		write_kctxt_csr(dd, i, SEND_CTXT_CHECK_VL, 0);
13651 		write_kctxt_csr(dd, i, SEND_CTXT_CHECK_JOB_KEY, 0);
13652 		write_kctxt_csr(dd, i, SEND_CTXT_CHECK_PARTITION_KEY, 0);
13653 		write_kctxt_csr(dd, i, SEND_CTXT_CHECK_SLID, 0);
13654 		write_kctxt_csr(dd, i, SEND_CTXT_CHECK_OPCODE, 0);
13655 	}
13656 
13657 	/*
13658 	 * TXE Per-SDMA CSRs
13659 	 */
13660 	for (i = 0; i < chip_sdma_engines(dd); i++) {
13661 		write_kctxt_csr(dd, i, SEND_DMA_CTRL, 0);
13662 		/* SEND_DMA_STATUS read-only */
13663 		write_kctxt_csr(dd, i, SEND_DMA_BASE_ADDR, 0);
13664 		write_kctxt_csr(dd, i, SEND_DMA_LEN_GEN, 0);
13665 		write_kctxt_csr(dd, i, SEND_DMA_TAIL, 0);
13666 		/* SEND_DMA_HEAD read-only */
13667 		write_kctxt_csr(dd, i, SEND_DMA_HEAD_ADDR, 0);
13668 		write_kctxt_csr(dd, i, SEND_DMA_PRIORITY_THLD, 0);
13669 		/* SEND_DMA_IDLE_CNT read-only */
13670 		write_kctxt_csr(dd, i, SEND_DMA_RELOAD_CNT, 0);
13671 		write_kctxt_csr(dd, i, SEND_DMA_DESC_CNT, 0);
13672 		/* SEND_DMA_DESC_FETCHED_CNT read-only */
13673 		/* SEND_DMA_ENG_ERR_STATUS read-only */
13674 		write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_MASK, 0);
13675 		write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_CLEAR, ~0ull);
13676 		/* SEND_DMA_ENG_ERR_FORCE leave alone */
13677 		write_kctxt_csr(dd, i, SEND_DMA_CHECK_ENABLE, 0);
13678 		write_kctxt_csr(dd, i, SEND_DMA_CHECK_VL, 0);
13679 		write_kctxt_csr(dd, i, SEND_DMA_CHECK_JOB_KEY, 0);
13680 		write_kctxt_csr(dd, i, SEND_DMA_CHECK_PARTITION_KEY, 0);
13681 		write_kctxt_csr(dd, i, SEND_DMA_CHECK_SLID, 0);
13682 		write_kctxt_csr(dd, i, SEND_DMA_CHECK_OPCODE, 0);
13683 		write_kctxt_csr(dd, i, SEND_DMA_MEMORY, 0);
13684 	}
13685 }
13686 
13687 /*
13688  * Expect on entry:
13689  * o Packet ingress is disabled, i.e. RcvCtrl.RcvPortEnable == 0
13690  */
13691 static void init_rbufs(struct hfi1_devdata *dd)
13692 {
13693 	u64 reg;
13694 	int count;
13695 
13696 	/*
13697 	 * Wait for DMA to stop: RxRbufPktPending and RxPktInProgress are
13698 	 * clear.
13699 	 */
13700 	count = 0;
13701 	while (1) {
13702 		reg = read_csr(dd, RCV_STATUS);
13703 		if ((reg & (RCV_STATUS_RX_RBUF_PKT_PENDING_SMASK
13704 			    | RCV_STATUS_RX_PKT_IN_PROGRESS_SMASK)) == 0)
13705 			break;
13706 		/*
13707 		 * Give up after 1ms - maximum wait time.
13708 		 *
13709 		 * RBuf size is 136KiB.  Slowest possible is PCIe Gen1 x1 at
13710 		 * 250MB/s bandwidth.  Lower rate to 66% for overhead to get:
13711 		 *	136 KB / (66% * 250MB/s) = 844us
13712 		 */
13713 		if (count++ > 500) {
13714 			dd_dev_err(dd,
13715 				   "%s: in-progress DMA not clearing: RcvStatus 0x%llx, continuing\n",
13716 				   __func__, reg);
13717 			break;
13718 		}
13719 		udelay(2); /* do not busy-wait the CSR */
13720 	}
13721 
13722 	/* start the init - expect RcvCtrl to be 0 */
13723 	write_csr(dd, RCV_CTRL, RCV_CTRL_RX_RBUF_INIT_SMASK);
13724 
13725 	/*
13726 	 * Read to force the write of Rcvtrl.RxRbufInit.  There is a brief
13727 	 * period after the write before RcvStatus.RxRbufInitDone is valid.
13728 	 * The delay in the first run through the loop below is sufficient and
13729 	 * required before the first read of RcvStatus.RxRbufInintDone.
13730 	 */
13731 	read_csr(dd, RCV_CTRL);
13732 
13733 	/* wait for the init to finish */
13734 	count = 0;
13735 	while (1) {
13736 		/* delay is required first time through - see above */
13737 		udelay(2); /* do not busy-wait the CSR */
13738 		reg = read_csr(dd, RCV_STATUS);
13739 		if (reg & (RCV_STATUS_RX_RBUF_INIT_DONE_SMASK))
13740 			break;
13741 
13742 		/* give up after 100us - slowest possible at 33MHz is 73us */
13743 		if (count++ > 50) {
13744 			dd_dev_err(dd,
13745 				   "%s: RcvStatus.RxRbufInit not set, continuing\n",
13746 				   __func__);
13747 			break;
13748 		}
13749 	}
13750 }
13751 
13752 /* set RXE CSRs to chip reset defaults */
13753 static void reset_rxe_csrs(struct hfi1_devdata *dd)
13754 {
13755 	int i, j;
13756 
13757 	/*
13758 	 * RXE Kernel CSRs
13759 	 */
13760 	write_csr(dd, RCV_CTRL, 0);
13761 	init_rbufs(dd);
13762 	/* RCV_STATUS read-only */
13763 	/* RCV_CONTEXTS read-only */
13764 	/* RCV_ARRAY_CNT read-only */
13765 	/* RCV_BUF_SIZE read-only */
13766 	write_csr(dd, RCV_BTH_QP, 0);
13767 	write_csr(dd, RCV_MULTICAST, 0);
13768 	write_csr(dd, RCV_BYPASS, 0);
13769 	write_csr(dd, RCV_VL15, 0);
13770 	/* this is a clear-down */
13771 	write_csr(dd, RCV_ERR_INFO,
13772 		  RCV_ERR_INFO_RCV_EXCESS_BUFFER_OVERRUN_SMASK);
13773 	/* RCV_ERR_STATUS read-only */
13774 	write_csr(dd, RCV_ERR_MASK, 0);
13775 	write_csr(dd, RCV_ERR_CLEAR, ~0ull);
13776 	/* RCV_ERR_FORCE leave alone */
13777 	for (i = 0; i < 32; i++)
13778 		write_csr(dd, RCV_QP_MAP_TABLE + (8 * i), 0);
13779 	for (i = 0; i < 4; i++)
13780 		write_csr(dd, RCV_PARTITION_KEY + (8 * i), 0);
13781 	for (i = 0; i < RXE_NUM_32_BIT_COUNTERS; i++)
13782 		write_csr(dd, RCV_COUNTER_ARRAY32 + (8 * i), 0);
13783 	for (i = 0; i < RXE_NUM_64_BIT_COUNTERS; i++)
13784 		write_csr(dd, RCV_COUNTER_ARRAY64 + (8 * i), 0);
13785 	for (i = 0; i < RXE_NUM_RSM_INSTANCES; i++)
13786 		clear_rsm_rule(dd, i);
13787 	for (i = 0; i < 32; i++)
13788 		write_csr(dd, RCV_RSM_MAP_TABLE + (8 * i), 0);
13789 
13790 	/*
13791 	 * RXE Kernel and User Per-Context CSRs
13792 	 */
13793 	for (i = 0; i < chip_rcv_contexts(dd); i++) {
13794 		/* kernel */
13795 		write_kctxt_csr(dd, i, RCV_CTXT_CTRL, 0);
13796 		/* RCV_CTXT_STATUS read-only */
13797 		write_kctxt_csr(dd, i, RCV_EGR_CTRL, 0);
13798 		write_kctxt_csr(dd, i, RCV_TID_CTRL, 0);
13799 		write_kctxt_csr(dd, i, RCV_KEY_CTRL, 0);
13800 		write_kctxt_csr(dd, i, RCV_HDR_ADDR, 0);
13801 		write_kctxt_csr(dd, i, RCV_HDR_CNT, 0);
13802 		write_kctxt_csr(dd, i, RCV_HDR_ENT_SIZE, 0);
13803 		write_kctxt_csr(dd, i, RCV_HDR_SIZE, 0);
13804 		write_kctxt_csr(dd, i, RCV_HDR_TAIL_ADDR, 0);
13805 		write_kctxt_csr(dd, i, RCV_AVAIL_TIME_OUT, 0);
13806 		write_kctxt_csr(dd, i, RCV_HDR_OVFL_CNT, 0);
13807 
13808 		/* user */
13809 		/* RCV_HDR_TAIL read-only */
13810 		write_uctxt_csr(dd, i, RCV_HDR_HEAD, 0);
13811 		/* RCV_EGR_INDEX_TAIL read-only */
13812 		write_uctxt_csr(dd, i, RCV_EGR_INDEX_HEAD, 0);
13813 		/* RCV_EGR_OFFSET_TAIL read-only */
13814 		for (j = 0; j < RXE_NUM_TID_FLOWS; j++) {
13815 			write_uctxt_csr(dd, i,
13816 					RCV_TID_FLOW_TABLE + (8 * j), 0);
13817 		}
13818 	}
13819 }
13820 
13821 /*
13822  * Set sc2vl tables.
13823  *
13824  * They power on to zeros, so to avoid send context errors
13825  * they need to be set:
13826  *
13827  * SC 0-7 -> VL 0-7 (respectively)
13828  * SC 15  -> VL 15
13829  * otherwise
13830  *        -> VL 0
13831  */
13832 static void init_sc2vl_tables(struct hfi1_devdata *dd)
13833 {
13834 	int i;
13835 	/* init per architecture spec, constrained by hardware capability */
13836 
13837 	/* HFI maps sent packets */
13838 	write_csr(dd, SEND_SC2VLT0, SC2VL_VAL(
13839 		0,
13840 		0, 0, 1, 1,
13841 		2, 2, 3, 3,
13842 		4, 4, 5, 5,
13843 		6, 6, 7, 7));
13844 	write_csr(dd, SEND_SC2VLT1, SC2VL_VAL(
13845 		1,
13846 		8, 0, 9, 0,
13847 		10, 0, 11, 0,
13848 		12, 0, 13, 0,
13849 		14, 0, 15, 15));
13850 	write_csr(dd, SEND_SC2VLT2, SC2VL_VAL(
13851 		2,
13852 		16, 0, 17, 0,
13853 		18, 0, 19, 0,
13854 		20, 0, 21, 0,
13855 		22, 0, 23, 0));
13856 	write_csr(dd, SEND_SC2VLT3, SC2VL_VAL(
13857 		3,
13858 		24, 0, 25, 0,
13859 		26, 0, 27, 0,
13860 		28, 0, 29, 0,
13861 		30, 0, 31, 0));
13862 
13863 	/* DC maps received packets */
13864 	write_csr(dd, DCC_CFG_SC_VL_TABLE_15_0, DC_SC_VL_VAL(
13865 		15_0,
13866 		0, 0, 1, 1,  2, 2,  3, 3,  4, 4,  5, 5,  6, 6,  7,  7,
13867 		8, 0, 9, 0, 10, 0, 11, 0, 12, 0, 13, 0, 14, 0, 15, 15));
13868 	write_csr(dd, DCC_CFG_SC_VL_TABLE_31_16, DC_SC_VL_VAL(
13869 		31_16,
13870 		16, 0, 17, 0, 18, 0, 19, 0, 20, 0, 21, 0, 22, 0, 23, 0,
13871 		24, 0, 25, 0, 26, 0, 27, 0, 28, 0, 29, 0, 30, 0, 31, 0));
13872 
13873 	/* initialize the cached sc2vl values consistently with h/w */
13874 	for (i = 0; i < 32; i++) {
13875 		if (i < 8 || i == 15)
13876 			*((u8 *)(dd->sc2vl) + i) = (u8)i;
13877 		else
13878 			*((u8 *)(dd->sc2vl) + i) = 0;
13879 	}
13880 }
13881 
13882 /*
13883  * Read chip sizes and then reset parts to sane, disabled, values.  We cannot
13884  * depend on the chip going through a power-on reset - a driver may be loaded
13885  * and unloaded many times.
13886  *
13887  * Do not write any CSR values to the chip in this routine - there may be
13888  * a reset following the (possible) FLR in this routine.
13889  *
13890  */
13891 static int init_chip(struct hfi1_devdata *dd)
13892 {
13893 	int i;
13894 	int ret = 0;
13895 
13896 	/*
13897 	 * Put the HFI CSRs in a known state.
13898 	 * Combine this with a DC reset.
13899 	 *
13900 	 * Stop the device from doing anything while we do a
13901 	 * reset.  We know there are no other active users of
13902 	 * the device since we are now in charge.  Turn off
13903 	 * off all outbound and inbound traffic and make sure
13904 	 * the device does not generate any interrupts.
13905 	 */
13906 
13907 	/* disable send contexts and SDMA engines */
13908 	write_csr(dd, SEND_CTRL, 0);
13909 	for (i = 0; i < chip_send_contexts(dd); i++)
13910 		write_kctxt_csr(dd, i, SEND_CTXT_CTRL, 0);
13911 	for (i = 0; i < chip_sdma_engines(dd); i++)
13912 		write_kctxt_csr(dd, i, SEND_DMA_CTRL, 0);
13913 	/* disable port (turn off RXE inbound traffic) and contexts */
13914 	write_csr(dd, RCV_CTRL, 0);
13915 	for (i = 0; i < chip_rcv_contexts(dd); i++)
13916 		write_csr(dd, RCV_CTXT_CTRL, 0);
13917 	/* mask all interrupt sources */
13918 	for (i = 0; i < CCE_NUM_INT_CSRS; i++)
13919 		write_csr(dd, CCE_INT_MASK + (8 * i), 0ull);
13920 
13921 	/*
13922 	 * DC Reset: do a full DC reset before the register clear.
13923 	 * A recommended length of time to hold is one CSR read,
13924 	 * so reread the CceDcCtrl.  Then, hold the DC in reset
13925 	 * across the clear.
13926 	 */
13927 	write_csr(dd, CCE_DC_CTRL, CCE_DC_CTRL_DC_RESET_SMASK);
13928 	(void)read_csr(dd, CCE_DC_CTRL);
13929 
13930 	if (use_flr) {
13931 		/*
13932 		 * A FLR will reset the SPC core and part of the PCIe.
13933 		 * The parts that need to be restored have already been
13934 		 * saved.
13935 		 */
13936 		dd_dev_info(dd, "Resetting CSRs with FLR\n");
13937 
13938 		/* do the FLR, the DC reset will remain */
13939 		pcie_flr(dd->pcidev);
13940 
13941 		/* restore command and BARs */
13942 		ret = restore_pci_variables(dd);
13943 		if (ret) {
13944 			dd_dev_err(dd, "%s: Could not restore PCI variables\n",
13945 				   __func__);
13946 			return ret;
13947 		}
13948 
13949 		if (is_ax(dd)) {
13950 			dd_dev_info(dd, "Resetting CSRs with FLR\n");
13951 			pcie_flr(dd->pcidev);
13952 			ret = restore_pci_variables(dd);
13953 			if (ret) {
13954 				dd_dev_err(dd, "%s: Could not restore PCI variables\n",
13955 					   __func__);
13956 				return ret;
13957 			}
13958 		}
13959 	} else {
13960 		dd_dev_info(dd, "Resetting CSRs with writes\n");
13961 		reset_cce_csrs(dd);
13962 		reset_txe_csrs(dd);
13963 		reset_rxe_csrs(dd);
13964 		reset_misc_csrs(dd);
13965 	}
13966 	/* clear the DC reset */
13967 	write_csr(dd, CCE_DC_CTRL, 0);
13968 
13969 	/* Set the LED off */
13970 	setextled(dd, 0);
13971 
13972 	/*
13973 	 * Clear the QSFP reset.
13974 	 * An FLR enforces a 0 on all out pins. The driver does not touch
13975 	 * ASIC_QSFPn_OUT otherwise.  This leaves RESET_N low and
13976 	 * anything plugged constantly in reset, if it pays attention
13977 	 * to RESET_N.
13978 	 * Prime examples of this are optical cables. Set all pins high.
13979 	 * I2CCLK and I2CDAT will change per direction, and INT_N and
13980 	 * MODPRS_N are input only and their value is ignored.
13981 	 */
13982 	write_csr(dd, ASIC_QSFP1_OUT, 0x1f);
13983 	write_csr(dd, ASIC_QSFP2_OUT, 0x1f);
13984 	init_chip_resources(dd);
13985 	return ret;
13986 }
13987 
13988 static void init_early_variables(struct hfi1_devdata *dd)
13989 {
13990 	int i;
13991 
13992 	/* assign link credit variables */
13993 	dd->vau = CM_VAU;
13994 	dd->link_credits = CM_GLOBAL_CREDITS;
13995 	if (is_ax(dd))
13996 		dd->link_credits--;
13997 	dd->vcu = cu_to_vcu(hfi1_cu);
13998 	/* enough room for 8 MAD packets plus header - 17K */
13999 	dd->vl15_init = (8 * (2048 + 128)) / vau_to_au(dd->vau);
14000 	if (dd->vl15_init > dd->link_credits)
14001 		dd->vl15_init = dd->link_credits;
14002 
14003 	write_uninitialized_csrs_and_memories(dd);
14004 
14005 	if (HFI1_CAP_IS_KSET(PKEY_CHECK))
14006 		for (i = 0; i < dd->num_pports; i++) {
14007 			struct hfi1_pportdata *ppd = &dd->pport[i];
14008 
14009 			set_partition_keys(ppd);
14010 		}
14011 	init_sc2vl_tables(dd);
14012 }
14013 
14014 static void init_kdeth_qp(struct hfi1_devdata *dd)
14015 {
14016 	/* user changed the KDETH_QP */
14017 	if (kdeth_qp != 0 && kdeth_qp >= 0xff) {
14018 		/* out of range or illegal value */
14019 		dd_dev_err(dd, "Invalid KDETH queue pair prefix, ignoring");
14020 		kdeth_qp = 0;
14021 	}
14022 	if (kdeth_qp == 0)	/* not set, or failed range check */
14023 		kdeth_qp = DEFAULT_KDETH_QP;
14024 
14025 	write_csr(dd, SEND_BTH_QP,
14026 		  (kdeth_qp & SEND_BTH_QP_KDETH_QP_MASK) <<
14027 		  SEND_BTH_QP_KDETH_QP_SHIFT);
14028 
14029 	write_csr(dd, RCV_BTH_QP,
14030 		  (kdeth_qp & RCV_BTH_QP_KDETH_QP_MASK) <<
14031 		  RCV_BTH_QP_KDETH_QP_SHIFT);
14032 }
14033 
14034 /**
14035  * hfi1_get_qp_map
14036  * @dd: device data
14037  * @idx: index to read
14038  */
14039 u8 hfi1_get_qp_map(struct hfi1_devdata *dd, u8 idx)
14040 {
14041 	u64 reg = read_csr(dd, RCV_QP_MAP_TABLE + (idx / 8) * 8);
14042 
14043 	reg >>= (idx % 8) * 8;
14044 	return reg;
14045 }
14046 
14047 /**
14048  * init_qpmap_table
14049  * @dd - device data
14050  * @first_ctxt - first context
14051  * @last_ctxt - first context
14052  *
14053  * This return sets the qpn mapping table that
14054  * is indexed by qpn[8:1].
14055  *
14056  * The routine will round robin the 256 settings
14057  * from first_ctxt to last_ctxt.
14058  *
14059  * The first/last looks ahead to having specialized
14060  * receive contexts for mgmt and bypass.  Normal
14061  * verbs traffic will assumed to be on a range
14062  * of receive contexts.
14063  */
14064 static void init_qpmap_table(struct hfi1_devdata *dd,
14065 			     u32 first_ctxt,
14066 			     u32 last_ctxt)
14067 {
14068 	u64 reg = 0;
14069 	u64 regno = RCV_QP_MAP_TABLE;
14070 	int i;
14071 	u64 ctxt = first_ctxt;
14072 
14073 	for (i = 0; i < 256; i++) {
14074 		reg |= ctxt << (8 * (i % 8));
14075 		ctxt++;
14076 		if (ctxt > last_ctxt)
14077 			ctxt = first_ctxt;
14078 		if (i % 8 == 7) {
14079 			write_csr(dd, regno, reg);
14080 			reg = 0;
14081 			regno += 8;
14082 		}
14083 	}
14084 
14085 	add_rcvctrl(dd, RCV_CTRL_RCV_QP_MAP_ENABLE_SMASK
14086 			| RCV_CTRL_RCV_BYPASS_ENABLE_SMASK);
14087 }
14088 
14089 struct rsm_map_table {
14090 	u64 map[NUM_MAP_REGS];
14091 	unsigned int used;
14092 };
14093 
14094 struct rsm_rule_data {
14095 	u8 offset;
14096 	u8 pkt_type;
14097 	u32 field1_off;
14098 	u32 field2_off;
14099 	u32 index1_off;
14100 	u32 index1_width;
14101 	u32 index2_off;
14102 	u32 index2_width;
14103 	u32 mask1;
14104 	u32 value1;
14105 	u32 mask2;
14106 	u32 value2;
14107 };
14108 
14109 /*
14110  * Return an initialized RMT map table for users to fill in.  OK if it
14111  * returns NULL, indicating no table.
14112  */
14113 static struct rsm_map_table *alloc_rsm_map_table(struct hfi1_devdata *dd)
14114 {
14115 	struct rsm_map_table *rmt;
14116 	u8 rxcontext = is_ax(dd) ? 0 : 0xff;  /* 0 is default if a0 ver. */
14117 
14118 	rmt = kmalloc(sizeof(*rmt), GFP_KERNEL);
14119 	if (rmt) {
14120 		memset(rmt->map, rxcontext, sizeof(rmt->map));
14121 		rmt->used = 0;
14122 	}
14123 
14124 	return rmt;
14125 }
14126 
14127 /*
14128  * Write the final RMT map table to the chip and free the table.  OK if
14129  * table is NULL.
14130  */
14131 static void complete_rsm_map_table(struct hfi1_devdata *dd,
14132 				   struct rsm_map_table *rmt)
14133 {
14134 	int i;
14135 
14136 	if (rmt) {
14137 		/* write table to chip */
14138 		for (i = 0; i < NUM_MAP_REGS; i++)
14139 			write_csr(dd, RCV_RSM_MAP_TABLE + (8 * i), rmt->map[i]);
14140 
14141 		/* enable RSM */
14142 		add_rcvctrl(dd, RCV_CTRL_RCV_RSM_ENABLE_SMASK);
14143 	}
14144 }
14145 
14146 /*
14147  * Add a receive side mapping rule.
14148  */
14149 static void add_rsm_rule(struct hfi1_devdata *dd, u8 rule_index,
14150 			 struct rsm_rule_data *rrd)
14151 {
14152 	write_csr(dd, RCV_RSM_CFG + (8 * rule_index),
14153 		  (u64)rrd->offset << RCV_RSM_CFG_OFFSET_SHIFT |
14154 		  1ull << rule_index | /* enable bit */
14155 		  (u64)rrd->pkt_type << RCV_RSM_CFG_PACKET_TYPE_SHIFT);
14156 	write_csr(dd, RCV_RSM_SELECT + (8 * rule_index),
14157 		  (u64)rrd->field1_off << RCV_RSM_SELECT_FIELD1_OFFSET_SHIFT |
14158 		  (u64)rrd->field2_off << RCV_RSM_SELECT_FIELD2_OFFSET_SHIFT |
14159 		  (u64)rrd->index1_off << RCV_RSM_SELECT_INDEX1_OFFSET_SHIFT |
14160 		  (u64)rrd->index1_width << RCV_RSM_SELECT_INDEX1_WIDTH_SHIFT |
14161 		  (u64)rrd->index2_off << RCV_RSM_SELECT_INDEX2_OFFSET_SHIFT |
14162 		  (u64)rrd->index2_width << RCV_RSM_SELECT_INDEX2_WIDTH_SHIFT);
14163 	write_csr(dd, RCV_RSM_MATCH + (8 * rule_index),
14164 		  (u64)rrd->mask1 << RCV_RSM_MATCH_MASK1_SHIFT |
14165 		  (u64)rrd->value1 << RCV_RSM_MATCH_VALUE1_SHIFT |
14166 		  (u64)rrd->mask2 << RCV_RSM_MATCH_MASK2_SHIFT |
14167 		  (u64)rrd->value2 << RCV_RSM_MATCH_VALUE2_SHIFT);
14168 }
14169 
14170 /*
14171  * Clear a receive side mapping rule.
14172  */
14173 static void clear_rsm_rule(struct hfi1_devdata *dd, u8 rule_index)
14174 {
14175 	write_csr(dd, RCV_RSM_CFG + (8 * rule_index), 0);
14176 	write_csr(dd, RCV_RSM_SELECT + (8 * rule_index), 0);
14177 	write_csr(dd, RCV_RSM_MATCH + (8 * rule_index), 0);
14178 }
14179 
14180 /* return the number of RSM map table entries that will be used for QOS */
14181 static int qos_rmt_entries(struct hfi1_devdata *dd, unsigned int *mp,
14182 			   unsigned int *np)
14183 {
14184 	int i;
14185 	unsigned int m, n;
14186 	u8 max_by_vl = 0;
14187 
14188 	/* is QOS active at all? */
14189 	if (dd->n_krcv_queues <= MIN_KERNEL_KCTXTS ||
14190 	    num_vls == 1 ||
14191 	    krcvqsset <= 1)
14192 		goto no_qos;
14193 
14194 	/* determine bits for qpn */
14195 	for (i = 0; i < min_t(unsigned int, num_vls, krcvqsset); i++)
14196 		if (krcvqs[i] > max_by_vl)
14197 			max_by_vl = krcvqs[i];
14198 	if (max_by_vl > 32)
14199 		goto no_qos;
14200 	m = ilog2(__roundup_pow_of_two(max_by_vl));
14201 
14202 	/* determine bits for vl */
14203 	n = ilog2(__roundup_pow_of_two(num_vls));
14204 
14205 	/* reject if too much is used */
14206 	if ((m + n) > 7)
14207 		goto no_qos;
14208 
14209 	if (mp)
14210 		*mp = m;
14211 	if (np)
14212 		*np = n;
14213 
14214 	return 1 << (m + n);
14215 
14216 no_qos:
14217 	if (mp)
14218 		*mp = 0;
14219 	if (np)
14220 		*np = 0;
14221 	return 0;
14222 }
14223 
14224 /**
14225  * init_qos - init RX qos
14226  * @dd - device data
14227  * @rmt - RSM map table
14228  *
14229  * This routine initializes Rule 0 and the RSM map table to implement
14230  * quality of service (qos).
14231  *
14232  * If all of the limit tests succeed, qos is applied based on the array
14233  * interpretation of krcvqs where entry 0 is VL0.
14234  *
14235  * The number of vl bits (n) and the number of qpn bits (m) are computed to
14236  * feed both the RSM map table and the single rule.
14237  */
14238 static void init_qos(struct hfi1_devdata *dd, struct rsm_map_table *rmt)
14239 {
14240 	struct rsm_rule_data rrd;
14241 	unsigned qpns_per_vl, ctxt, i, qpn, n = 1, m;
14242 	unsigned int rmt_entries;
14243 	u64 reg;
14244 
14245 	if (!rmt)
14246 		goto bail;
14247 	rmt_entries = qos_rmt_entries(dd, &m, &n);
14248 	if (rmt_entries == 0)
14249 		goto bail;
14250 	qpns_per_vl = 1 << m;
14251 
14252 	/* enough room in the map table? */
14253 	rmt_entries = 1 << (m + n);
14254 	if (rmt->used + rmt_entries >= NUM_MAP_ENTRIES)
14255 		goto bail;
14256 
14257 	/* add qos entries to the the RSM map table */
14258 	for (i = 0, ctxt = FIRST_KERNEL_KCTXT; i < num_vls; i++) {
14259 		unsigned tctxt;
14260 
14261 		for (qpn = 0, tctxt = ctxt;
14262 		     krcvqs[i] && qpn < qpns_per_vl; qpn++) {
14263 			unsigned idx, regoff, regidx;
14264 
14265 			/* generate the index the hardware will produce */
14266 			idx = rmt->used + ((qpn << n) ^ i);
14267 			regoff = (idx % 8) * 8;
14268 			regidx = idx / 8;
14269 			/* replace default with context number */
14270 			reg = rmt->map[regidx];
14271 			reg &= ~(RCV_RSM_MAP_TABLE_RCV_CONTEXT_A_MASK
14272 				<< regoff);
14273 			reg |= (u64)(tctxt++) << regoff;
14274 			rmt->map[regidx] = reg;
14275 			if (tctxt == ctxt + krcvqs[i])
14276 				tctxt = ctxt;
14277 		}
14278 		ctxt += krcvqs[i];
14279 	}
14280 
14281 	rrd.offset = rmt->used;
14282 	rrd.pkt_type = 2;
14283 	rrd.field1_off = LRH_BTH_MATCH_OFFSET;
14284 	rrd.field2_off = LRH_SC_MATCH_OFFSET;
14285 	rrd.index1_off = LRH_SC_SELECT_OFFSET;
14286 	rrd.index1_width = n;
14287 	rrd.index2_off = QPN_SELECT_OFFSET;
14288 	rrd.index2_width = m + n;
14289 	rrd.mask1 = LRH_BTH_MASK;
14290 	rrd.value1 = LRH_BTH_VALUE;
14291 	rrd.mask2 = LRH_SC_MASK;
14292 	rrd.value2 = LRH_SC_VALUE;
14293 
14294 	/* add rule 0 */
14295 	add_rsm_rule(dd, RSM_INS_VERBS, &rrd);
14296 
14297 	/* mark RSM map entries as used */
14298 	rmt->used += rmt_entries;
14299 	/* map everything else to the mcast/err/vl15 context */
14300 	init_qpmap_table(dd, HFI1_CTRL_CTXT, HFI1_CTRL_CTXT);
14301 	dd->qos_shift = n + 1;
14302 	return;
14303 bail:
14304 	dd->qos_shift = 1;
14305 	init_qpmap_table(dd, FIRST_KERNEL_KCTXT, dd->n_krcv_queues - 1);
14306 }
14307 
14308 static void init_fecn_handling(struct hfi1_devdata *dd,
14309 			       struct rsm_map_table *rmt)
14310 {
14311 	struct rsm_rule_data rrd;
14312 	u64 reg;
14313 	int i, idx, regoff, regidx, start;
14314 	u8 offset;
14315 	u32 total_cnt;
14316 
14317 	if (HFI1_CAP_IS_KSET(TID_RDMA))
14318 		/* Exclude context 0 */
14319 		start = 1;
14320 	else
14321 		start = dd->first_dyn_alloc_ctxt;
14322 
14323 	total_cnt = dd->num_rcv_contexts - start;
14324 
14325 	/* there needs to be enough room in the map table */
14326 	if (rmt->used + total_cnt >= NUM_MAP_ENTRIES) {
14327 		dd_dev_err(dd, "FECN handling disabled - too many contexts allocated\n");
14328 		return;
14329 	}
14330 
14331 	/*
14332 	 * RSM will extract the destination context as an index into the
14333 	 * map table.  The destination contexts are a sequential block
14334 	 * in the range start...num_rcv_contexts-1 (inclusive).
14335 	 * Map entries are accessed as offset + extracted value.  Adjust
14336 	 * the added offset so this sequence can be placed anywhere in
14337 	 * the table - as long as the entries themselves do not wrap.
14338 	 * There are only enough bits in offset for the table size, so
14339 	 * start with that to allow for a "negative" offset.
14340 	 */
14341 	offset = (u8)(NUM_MAP_ENTRIES + rmt->used - start);
14342 
14343 	for (i = start, idx = rmt->used; i < dd->num_rcv_contexts;
14344 	     i++, idx++) {
14345 		/* replace with identity mapping */
14346 		regoff = (idx % 8) * 8;
14347 		regidx = idx / 8;
14348 		reg = rmt->map[regidx];
14349 		reg &= ~(RCV_RSM_MAP_TABLE_RCV_CONTEXT_A_MASK << regoff);
14350 		reg |= (u64)i << regoff;
14351 		rmt->map[regidx] = reg;
14352 	}
14353 
14354 	/*
14355 	 * For RSM intercept of Expected FECN packets:
14356 	 * o packet type 0 - expected
14357 	 * o match on F (bit 95), using select/match 1, and
14358 	 * o match on SH (bit 133), using select/match 2.
14359 	 *
14360 	 * Use index 1 to extract the 8-bit receive context from DestQP
14361 	 * (start at bit 64).  Use that as the RSM map table index.
14362 	 */
14363 	rrd.offset = offset;
14364 	rrd.pkt_type = 0;
14365 	rrd.field1_off = 95;
14366 	rrd.field2_off = 133;
14367 	rrd.index1_off = 64;
14368 	rrd.index1_width = 8;
14369 	rrd.index2_off = 0;
14370 	rrd.index2_width = 0;
14371 	rrd.mask1 = 1;
14372 	rrd.value1 = 1;
14373 	rrd.mask2 = 1;
14374 	rrd.value2 = 1;
14375 
14376 	/* add rule 1 */
14377 	add_rsm_rule(dd, RSM_INS_FECN, &rrd);
14378 
14379 	rmt->used += total_cnt;
14380 }
14381 
14382 /* Initialize RSM for VNIC */
14383 void hfi1_init_vnic_rsm(struct hfi1_devdata *dd)
14384 {
14385 	u8 i, j;
14386 	u8 ctx_id = 0;
14387 	u64 reg;
14388 	u32 regoff;
14389 	struct rsm_rule_data rrd;
14390 
14391 	if (hfi1_vnic_is_rsm_full(dd, NUM_VNIC_MAP_ENTRIES)) {
14392 		dd_dev_err(dd, "Vnic RSM disabled, rmt entries used = %d\n",
14393 			   dd->vnic.rmt_start);
14394 		return;
14395 	}
14396 
14397 	dev_dbg(&(dd)->pcidev->dev, "Vnic rsm start = %d, end %d\n",
14398 		dd->vnic.rmt_start,
14399 		dd->vnic.rmt_start + NUM_VNIC_MAP_ENTRIES);
14400 
14401 	/* Update RSM mapping table, 32 regs, 256 entries - 1 ctx per byte */
14402 	regoff = RCV_RSM_MAP_TABLE + (dd->vnic.rmt_start / 8) * 8;
14403 	reg = read_csr(dd, regoff);
14404 	for (i = 0; i < NUM_VNIC_MAP_ENTRIES; i++) {
14405 		/* Update map register with vnic context */
14406 		j = (dd->vnic.rmt_start + i) % 8;
14407 		reg &= ~(0xffllu << (j * 8));
14408 		reg |= (u64)dd->vnic.ctxt[ctx_id++]->ctxt << (j * 8);
14409 		/* Wrap up vnic ctx index */
14410 		ctx_id %= dd->vnic.num_ctxt;
14411 		/* Write back map register */
14412 		if (j == 7 || ((i + 1) == NUM_VNIC_MAP_ENTRIES)) {
14413 			dev_dbg(&(dd)->pcidev->dev,
14414 				"Vnic rsm map reg[%d] =0x%llx\n",
14415 				regoff - RCV_RSM_MAP_TABLE, reg);
14416 
14417 			write_csr(dd, regoff, reg);
14418 			regoff += 8;
14419 			if (i < (NUM_VNIC_MAP_ENTRIES - 1))
14420 				reg = read_csr(dd, regoff);
14421 		}
14422 	}
14423 
14424 	/* Add rule for vnic */
14425 	rrd.offset = dd->vnic.rmt_start;
14426 	rrd.pkt_type = 4;
14427 	/* Match 16B packets */
14428 	rrd.field1_off = L2_TYPE_MATCH_OFFSET;
14429 	rrd.mask1 = L2_TYPE_MASK;
14430 	rrd.value1 = L2_16B_VALUE;
14431 	/* Match ETH L4 packets */
14432 	rrd.field2_off = L4_TYPE_MATCH_OFFSET;
14433 	rrd.mask2 = L4_16B_TYPE_MASK;
14434 	rrd.value2 = L4_16B_ETH_VALUE;
14435 	/* Calc context from veswid and entropy */
14436 	rrd.index1_off = L4_16B_HDR_VESWID_OFFSET;
14437 	rrd.index1_width = ilog2(NUM_VNIC_MAP_ENTRIES);
14438 	rrd.index2_off = L2_16B_ENTROPY_OFFSET;
14439 	rrd.index2_width = ilog2(NUM_VNIC_MAP_ENTRIES);
14440 	add_rsm_rule(dd, RSM_INS_VNIC, &rrd);
14441 
14442 	/* Enable RSM if not already enabled */
14443 	add_rcvctrl(dd, RCV_CTRL_RCV_RSM_ENABLE_SMASK);
14444 }
14445 
14446 void hfi1_deinit_vnic_rsm(struct hfi1_devdata *dd)
14447 {
14448 	clear_rsm_rule(dd, RSM_INS_VNIC);
14449 
14450 	/* Disable RSM if used only by vnic */
14451 	if (dd->vnic.rmt_start == 0)
14452 		clear_rcvctrl(dd, RCV_CTRL_RCV_RSM_ENABLE_SMASK);
14453 }
14454 
14455 static void init_rxe(struct hfi1_devdata *dd)
14456 {
14457 	struct rsm_map_table *rmt;
14458 	u64 val;
14459 
14460 	/* enable all receive errors */
14461 	write_csr(dd, RCV_ERR_MASK, ~0ull);
14462 
14463 	rmt = alloc_rsm_map_table(dd);
14464 	/* set up QOS, including the QPN map table */
14465 	init_qos(dd, rmt);
14466 	init_fecn_handling(dd, rmt);
14467 	complete_rsm_map_table(dd, rmt);
14468 	/* record number of used rsm map entries for vnic */
14469 	dd->vnic.rmt_start = rmt->used;
14470 	kfree(rmt);
14471 
14472 	/*
14473 	 * make sure RcvCtrl.RcvWcb <= PCIe Device Control
14474 	 * Register Max_Payload_Size (PCI_EXP_DEVCTL in Linux PCIe config
14475 	 * space, PciCfgCap2.MaxPayloadSize in HFI).  There is only one
14476 	 * invalid configuration: RcvCtrl.RcvWcb set to its max of 256 and
14477 	 * Max_PayLoad_Size set to its minimum of 128.
14478 	 *
14479 	 * Presently, RcvCtrl.RcvWcb is not modified from its default of 0
14480 	 * (64 bytes).  Max_Payload_Size is possibly modified upward in
14481 	 * tune_pcie_caps() which is called after this routine.
14482 	 */
14483 
14484 	/* Have 16 bytes (4DW) of bypass header available in header queue */
14485 	val = read_csr(dd, RCV_BYPASS);
14486 	val &= ~RCV_BYPASS_HDR_SIZE_SMASK;
14487 	val |= ((4ull & RCV_BYPASS_HDR_SIZE_MASK) <<
14488 		RCV_BYPASS_HDR_SIZE_SHIFT);
14489 	write_csr(dd, RCV_BYPASS, val);
14490 }
14491 
14492 static void init_other(struct hfi1_devdata *dd)
14493 {
14494 	/* enable all CCE errors */
14495 	write_csr(dd, CCE_ERR_MASK, ~0ull);
14496 	/* enable *some* Misc errors */
14497 	write_csr(dd, MISC_ERR_MASK, DRIVER_MISC_MASK);
14498 	/* enable all DC errors, except LCB */
14499 	write_csr(dd, DCC_ERR_FLG_EN, ~0ull);
14500 	write_csr(dd, DC_DC8051_ERR_EN, ~0ull);
14501 }
14502 
14503 /*
14504  * Fill out the given AU table using the given CU.  A CU is defined in terms
14505  * AUs.  The table is a an encoding: given the index, how many AUs does that
14506  * represent?
14507  *
14508  * NOTE: Assumes that the register layout is the same for the
14509  * local and remote tables.
14510  */
14511 static void assign_cm_au_table(struct hfi1_devdata *dd, u32 cu,
14512 			       u32 csr0to3, u32 csr4to7)
14513 {
14514 	write_csr(dd, csr0to3,
14515 		  0ull << SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE0_SHIFT |
14516 		  1ull << SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE1_SHIFT |
14517 		  2ull * cu <<
14518 		  SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE2_SHIFT |
14519 		  4ull * cu <<
14520 		  SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE3_SHIFT);
14521 	write_csr(dd, csr4to7,
14522 		  8ull * cu <<
14523 		  SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE4_SHIFT |
14524 		  16ull * cu <<
14525 		  SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE5_SHIFT |
14526 		  32ull * cu <<
14527 		  SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE6_SHIFT |
14528 		  64ull * cu <<
14529 		  SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE7_SHIFT);
14530 }
14531 
14532 static void assign_local_cm_au_table(struct hfi1_devdata *dd, u8 vcu)
14533 {
14534 	assign_cm_au_table(dd, vcu_to_cu(vcu), SEND_CM_LOCAL_AU_TABLE0_TO3,
14535 			   SEND_CM_LOCAL_AU_TABLE4_TO7);
14536 }
14537 
14538 void assign_remote_cm_au_table(struct hfi1_devdata *dd, u8 vcu)
14539 {
14540 	assign_cm_au_table(dd, vcu_to_cu(vcu), SEND_CM_REMOTE_AU_TABLE0_TO3,
14541 			   SEND_CM_REMOTE_AU_TABLE4_TO7);
14542 }
14543 
14544 static void init_txe(struct hfi1_devdata *dd)
14545 {
14546 	int i;
14547 
14548 	/* enable all PIO, SDMA, general, and Egress errors */
14549 	write_csr(dd, SEND_PIO_ERR_MASK, ~0ull);
14550 	write_csr(dd, SEND_DMA_ERR_MASK, ~0ull);
14551 	write_csr(dd, SEND_ERR_MASK, ~0ull);
14552 	write_csr(dd, SEND_EGRESS_ERR_MASK, ~0ull);
14553 
14554 	/* enable all per-context and per-SDMA engine errors */
14555 	for (i = 0; i < chip_send_contexts(dd); i++)
14556 		write_kctxt_csr(dd, i, SEND_CTXT_ERR_MASK, ~0ull);
14557 	for (i = 0; i < chip_sdma_engines(dd); i++)
14558 		write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_MASK, ~0ull);
14559 
14560 	/* set the local CU to AU mapping */
14561 	assign_local_cm_au_table(dd, dd->vcu);
14562 
14563 	/*
14564 	 * Set reasonable default for Credit Return Timer
14565 	 * Don't set on Simulator - causes it to choke.
14566 	 */
14567 	if (dd->icode != ICODE_FUNCTIONAL_SIMULATOR)
14568 		write_csr(dd, SEND_CM_TIMER_CTRL, HFI1_CREDIT_RETURN_RATE);
14569 }
14570 
14571 int hfi1_set_ctxt_jkey(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd,
14572 		       u16 jkey)
14573 {
14574 	u8 hw_ctxt;
14575 	u64 reg;
14576 
14577 	if (!rcd || !rcd->sc)
14578 		return -EINVAL;
14579 
14580 	hw_ctxt = rcd->sc->hw_context;
14581 	reg = SEND_CTXT_CHECK_JOB_KEY_MASK_SMASK | /* mask is always 1's */
14582 		((jkey & SEND_CTXT_CHECK_JOB_KEY_VALUE_MASK) <<
14583 		 SEND_CTXT_CHECK_JOB_KEY_VALUE_SHIFT);
14584 	/* JOB_KEY_ALLOW_PERMISSIVE is not allowed by default */
14585 	if (HFI1_CAP_KGET_MASK(rcd->flags, ALLOW_PERM_JKEY))
14586 		reg |= SEND_CTXT_CHECK_JOB_KEY_ALLOW_PERMISSIVE_SMASK;
14587 	write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_JOB_KEY, reg);
14588 	/*
14589 	 * Enable send-side J_KEY integrity check, unless this is A0 h/w
14590 	 */
14591 	if (!is_ax(dd)) {
14592 		reg = read_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE);
14593 		reg |= SEND_CTXT_CHECK_ENABLE_CHECK_JOB_KEY_SMASK;
14594 		write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE, reg);
14595 	}
14596 
14597 	/* Enable J_KEY check on receive context. */
14598 	reg = RCV_KEY_CTRL_JOB_KEY_ENABLE_SMASK |
14599 		((jkey & RCV_KEY_CTRL_JOB_KEY_VALUE_MASK) <<
14600 		 RCV_KEY_CTRL_JOB_KEY_VALUE_SHIFT);
14601 	write_kctxt_csr(dd, rcd->ctxt, RCV_KEY_CTRL, reg);
14602 
14603 	return 0;
14604 }
14605 
14606 int hfi1_clear_ctxt_jkey(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd)
14607 {
14608 	u8 hw_ctxt;
14609 	u64 reg;
14610 
14611 	if (!rcd || !rcd->sc)
14612 		return -EINVAL;
14613 
14614 	hw_ctxt = rcd->sc->hw_context;
14615 	write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_JOB_KEY, 0);
14616 	/*
14617 	 * Disable send-side J_KEY integrity check, unless this is A0 h/w.
14618 	 * This check would not have been enabled for A0 h/w, see
14619 	 * set_ctxt_jkey().
14620 	 */
14621 	if (!is_ax(dd)) {
14622 		reg = read_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE);
14623 		reg &= ~SEND_CTXT_CHECK_ENABLE_CHECK_JOB_KEY_SMASK;
14624 		write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE, reg);
14625 	}
14626 	/* Turn off the J_KEY on the receive side */
14627 	write_kctxt_csr(dd, rcd->ctxt, RCV_KEY_CTRL, 0);
14628 
14629 	return 0;
14630 }
14631 
14632 int hfi1_set_ctxt_pkey(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd,
14633 		       u16 pkey)
14634 {
14635 	u8 hw_ctxt;
14636 	u64 reg;
14637 
14638 	if (!rcd || !rcd->sc)
14639 		return -EINVAL;
14640 
14641 	hw_ctxt = rcd->sc->hw_context;
14642 	reg = ((u64)pkey & SEND_CTXT_CHECK_PARTITION_KEY_VALUE_MASK) <<
14643 		SEND_CTXT_CHECK_PARTITION_KEY_VALUE_SHIFT;
14644 	write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_PARTITION_KEY, reg);
14645 	reg = read_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE);
14646 	reg |= SEND_CTXT_CHECK_ENABLE_CHECK_PARTITION_KEY_SMASK;
14647 	reg &= ~SEND_CTXT_CHECK_ENABLE_DISALLOW_KDETH_PACKETS_SMASK;
14648 	write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE, reg);
14649 
14650 	return 0;
14651 }
14652 
14653 int hfi1_clear_ctxt_pkey(struct hfi1_devdata *dd, struct hfi1_ctxtdata *ctxt)
14654 {
14655 	u8 hw_ctxt;
14656 	u64 reg;
14657 
14658 	if (!ctxt || !ctxt->sc)
14659 		return -EINVAL;
14660 
14661 	hw_ctxt = ctxt->sc->hw_context;
14662 	reg = read_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE);
14663 	reg &= ~SEND_CTXT_CHECK_ENABLE_CHECK_PARTITION_KEY_SMASK;
14664 	write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE, reg);
14665 	write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_PARTITION_KEY, 0);
14666 
14667 	return 0;
14668 }
14669 
14670 /*
14671  * Start doing the clean up the the chip. Our clean up happens in multiple
14672  * stages and this is just the first.
14673  */
14674 void hfi1_start_cleanup(struct hfi1_devdata *dd)
14675 {
14676 	aspm_exit(dd);
14677 	free_cntrs(dd);
14678 	free_rcverr(dd);
14679 	finish_chip_resources(dd);
14680 }
14681 
14682 #define HFI_BASE_GUID(dev) \
14683 	((dev)->base_guid & ~(1ULL << GUID_HFI_INDEX_SHIFT))
14684 
14685 /*
14686  * Information can be shared between the two HFIs on the same ASIC
14687  * in the same OS.  This function finds the peer device and sets
14688  * up a shared structure.
14689  */
14690 static int init_asic_data(struct hfi1_devdata *dd)
14691 {
14692 	unsigned long index;
14693 	struct hfi1_devdata *peer;
14694 	struct hfi1_asic_data *asic_data;
14695 	int ret = 0;
14696 
14697 	/* pre-allocate the asic structure in case we are the first device */
14698 	asic_data = kzalloc(sizeof(*dd->asic_data), GFP_KERNEL);
14699 	if (!asic_data)
14700 		return -ENOMEM;
14701 
14702 	xa_lock_irq(&hfi1_dev_table);
14703 	/* Find our peer device */
14704 	xa_for_each(&hfi1_dev_table, index, peer) {
14705 		if ((HFI_BASE_GUID(dd) == HFI_BASE_GUID(peer)) &&
14706 		    dd->unit != peer->unit)
14707 			break;
14708 	}
14709 
14710 	if (peer) {
14711 		/* use already allocated structure */
14712 		dd->asic_data = peer->asic_data;
14713 		kfree(asic_data);
14714 	} else {
14715 		dd->asic_data = asic_data;
14716 		mutex_init(&dd->asic_data->asic_resource_mutex);
14717 	}
14718 	dd->asic_data->dds[dd->hfi1_id] = dd; /* self back-pointer */
14719 	xa_unlock_irq(&hfi1_dev_table);
14720 
14721 	/* first one through - set up i2c devices */
14722 	if (!peer)
14723 		ret = set_up_i2c(dd, dd->asic_data);
14724 
14725 	return ret;
14726 }
14727 
14728 /*
14729  * Set dd->boardname.  Use a generic name if a name is not returned from
14730  * EFI variable space.
14731  *
14732  * Return 0 on success, -ENOMEM if space could not be allocated.
14733  */
14734 static int obtain_boardname(struct hfi1_devdata *dd)
14735 {
14736 	/* generic board description */
14737 	const char generic[] =
14738 		"Intel Omni-Path Host Fabric Interface Adapter 100 Series";
14739 	unsigned long size;
14740 	int ret;
14741 
14742 	ret = read_hfi1_efi_var(dd, "description", &size,
14743 				(void **)&dd->boardname);
14744 	if (ret) {
14745 		dd_dev_info(dd, "Board description not found\n");
14746 		/* use generic description */
14747 		dd->boardname = kstrdup(generic, GFP_KERNEL);
14748 		if (!dd->boardname)
14749 			return -ENOMEM;
14750 	}
14751 	return 0;
14752 }
14753 
14754 /*
14755  * Check the interrupt registers to make sure that they are mapped correctly.
14756  * It is intended to help user identify any mismapping by VMM when the driver
14757  * is running in a VM. This function should only be called before interrupt
14758  * is set up properly.
14759  *
14760  * Return 0 on success, -EINVAL on failure.
14761  */
14762 static int check_int_registers(struct hfi1_devdata *dd)
14763 {
14764 	u64 reg;
14765 	u64 all_bits = ~(u64)0;
14766 	u64 mask;
14767 
14768 	/* Clear CceIntMask[0] to avoid raising any interrupts */
14769 	mask = read_csr(dd, CCE_INT_MASK);
14770 	write_csr(dd, CCE_INT_MASK, 0ull);
14771 	reg = read_csr(dd, CCE_INT_MASK);
14772 	if (reg)
14773 		goto err_exit;
14774 
14775 	/* Clear all interrupt status bits */
14776 	write_csr(dd, CCE_INT_CLEAR, all_bits);
14777 	reg = read_csr(dd, CCE_INT_STATUS);
14778 	if (reg)
14779 		goto err_exit;
14780 
14781 	/* Set all interrupt status bits */
14782 	write_csr(dd, CCE_INT_FORCE, all_bits);
14783 	reg = read_csr(dd, CCE_INT_STATUS);
14784 	if (reg != all_bits)
14785 		goto err_exit;
14786 
14787 	/* Restore the interrupt mask */
14788 	write_csr(dd, CCE_INT_CLEAR, all_bits);
14789 	write_csr(dd, CCE_INT_MASK, mask);
14790 
14791 	return 0;
14792 err_exit:
14793 	write_csr(dd, CCE_INT_MASK, mask);
14794 	dd_dev_err(dd, "Interrupt registers not properly mapped by VMM\n");
14795 	return -EINVAL;
14796 }
14797 
14798 /**
14799  * hfi1_init_dd() - Initialize most of the dd structure.
14800  * @dev: the pci_dev for hfi1_ib device
14801  * @ent: pci_device_id struct for this dev
14802  *
14803  * This is global, and is called directly at init to set up the
14804  * chip-specific function pointers for later use.
14805  */
14806 int hfi1_init_dd(struct hfi1_devdata *dd)
14807 {
14808 	struct pci_dev *pdev = dd->pcidev;
14809 	struct hfi1_pportdata *ppd;
14810 	u64 reg;
14811 	int i, ret;
14812 	static const char * const inames[] = { /* implementation names */
14813 		"RTL silicon",
14814 		"RTL VCS simulation",
14815 		"RTL FPGA emulation",
14816 		"Functional simulator"
14817 	};
14818 	struct pci_dev *parent = pdev->bus->self;
14819 	u32 sdma_engines = chip_sdma_engines(dd);
14820 
14821 	ppd = dd->pport;
14822 	for (i = 0; i < dd->num_pports; i++, ppd++) {
14823 		int vl;
14824 		/* init common fields */
14825 		hfi1_init_pportdata(pdev, ppd, dd, 0, 1);
14826 		/* DC supports 4 link widths */
14827 		ppd->link_width_supported =
14828 			OPA_LINK_WIDTH_1X | OPA_LINK_WIDTH_2X |
14829 			OPA_LINK_WIDTH_3X | OPA_LINK_WIDTH_4X;
14830 		ppd->link_width_downgrade_supported =
14831 			ppd->link_width_supported;
14832 		/* start out enabling only 4X */
14833 		ppd->link_width_enabled = OPA_LINK_WIDTH_4X;
14834 		ppd->link_width_downgrade_enabled =
14835 					ppd->link_width_downgrade_supported;
14836 		/* link width active is 0 when link is down */
14837 		/* link width downgrade active is 0 when link is down */
14838 
14839 		if (num_vls < HFI1_MIN_VLS_SUPPORTED ||
14840 		    num_vls > HFI1_MAX_VLS_SUPPORTED) {
14841 			dd_dev_err(dd, "Invalid num_vls %u, using %u VLs\n",
14842 				   num_vls, HFI1_MAX_VLS_SUPPORTED);
14843 			num_vls = HFI1_MAX_VLS_SUPPORTED;
14844 		}
14845 		ppd->vls_supported = num_vls;
14846 		ppd->vls_operational = ppd->vls_supported;
14847 		/* Set the default MTU. */
14848 		for (vl = 0; vl < num_vls; vl++)
14849 			dd->vld[vl].mtu = hfi1_max_mtu;
14850 		dd->vld[15].mtu = MAX_MAD_PACKET;
14851 		/*
14852 		 * Set the initial values to reasonable default, will be set
14853 		 * for real when link is up.
14854 		 */
14855 		ppd->overrun_threshold = 0x4;
14856 		ppd->phy_error_threshold = 0xf;
14857 		ppd->port_crc_mode_enabled = link_crc_mask;
14858 		/* initialize supported LTP CRC mode */
14859 		ppd->port_ltp_crc_mode = cap_to_port_ltp(link_crc_mask) << 8;
14860 		/* initialize enabled LTP CRC mode */
14861 		ppd->port_ltp_crc_mode |= cap_to_port_ltp(link_crc_mask) << 4;
14862 		/* start in offline */
14863 		ppd->host_link_state = HLS_DN_OFFLINE;
14864 		init_vl_arb_caches(ppd);
14865 	}
14866 
14867 	/*
14868 	 * Do remaining PCIe setup and save PCIe values in dd.
14869 	 * Any error printing is already done by the init code.
14870 	 * On return, we have the chip mapped.
14871 	 */
14872 	ret = hfi1_pcie_ddinit(dd, pdev);
14873 	if (ret < 0)
14874 		goto bail_free;
14875 
14876 	/* Save PCI space registers to rewrite after device reset */
14877 	ret = save_pci_variables(dd);
14878 	if (ret < 0)
14879 		goto bail_cleanup;
14880 
14881 	dd->majrev = (dd->revision >> CCE_REVISION_CHIP_REV_MAJOR_SHIFT)
14882 			& CCE_REVISION_CHIP_REV_MAJOR_MASK;
14883 	dd->minrev = (dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT)
14884 			& CCE_REVISION_CHIP_REV_MINOR_MASK;
14885 
14886 	/*
14887 	 * Check interrupt registers mapping if the driver has no access to
14888 	 * the upstream component. In this case, it is likely that the driver
14889 	 * is running in a VM.
14890 	 */
14891 	if (!parent) {
14892 		ret = check_int_registers(dd);
14893 		if (ret)
14894 			goto bail_cleanup;
14895 	}
14896 
14897 	/*
14898 	 * obtain the hardware ID - NOT related to unit, which is a
14899 	 * software enumeration
14900 	 */
14901 	reg = read_csr(dd, CCE_REVISION2);
14902 	dd->hfi1_id = (reg >> CCE_REVISION2_HFI_ID_SHIFT)
14903 					& CCE_REVISION2_HFI_ID_MASK;
14904 	/* the variable size will remove unwanted bits */
14905 	dd->icode = reg >> CCE_REVISION2_IMPL_CODE_SHIFT;
14906 	dd->irev = reg >> CCE_REVISION2_IMPL_REVISION_SHIFT;
14907 	dd_dev_info(dd, "Implementation: %s, revision 0x%x\n",
14908 		    dd->icode < ARRAY_SIZE(inames) ?
14909 		    inames[dd->icode] : "unknown", (int)dd->irev);
14910 
14911 	/* speeds the hardware can support */
14912 	dd->pport->link_speed_supported = OPA_LINK_SPEED_25G;
14913 	/* speeds allowed to run at */
14914 	dd->pport->link_speed_enabled = dd->pport->link_speed_supported;
14915 	/* give a reasonable active value, will be set on link up */
14916 	dd->pport->link_speed_active = OPA_LINK_SPEED_25G;
14917 
14918 	/* fix up link widths for emulation _p */
14919 	ppd = dd->pport;
14920 	if (dd->icode == ICODE_FPGA_EMULATION && is_emulator_p(dd)) {
14921 		ppd->link_width_supported =
14922 			ppd->link_width_enabled =
14923 			ppd->link_width_downgrade_supported =
14924 			ppd->link_width_downgrade_enabled =
14925 				OPA_LINK_WIDTH_1X;
14926 	}
14927 	/* insure num_vls isn't larger than number of sdma engines */
14928 	if (HFI1_CAP_IS_KSET(SDMA) && num_vls > sdma_engines) {
14929 		dd_dev_err(dd, "num_vls %u too large, using %u VLs\n",
14930 			   num_vls, sdma_engines);
14931 		num_vls = sdma_engines;
14932 		ppd->vls_supported = sdma_engines;
14933 		ppd->vls_operational = ppd->vls_supported;
14934 	}
14935 
14936 	/*
14937 	 * Convert the ns parameter to the 64 * cclocks used in the CSR.
14938 	 * Limit the max if larger than the field holds.  If timeout is
14939 	 * non-zero, then the calculated field will be at least 1.
14940 	 *
14941 	 * Must be after icode is set up - the cclock rate depends
14942 	 * on knowing the hardware being used.
14943 	 */
14944 	dd->rcv_intr_timeout_csr = ns_to_cclock(dd, rcv_intr_timeout) / 64;
14945 	if (dd->rcv_intr_timeout_csr >
14946 			RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_MASK)
14947 		dd->rcv_intr_timeout_csr =
14948 			RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_MASK;
14949 	else if (dd->rcv_intr_timeout_csr == 0 && rcv_intr_timeout)
14950 		dd->rcv_intr_timeout_csr = 1;
14951 
14952 	/* needs to be done before we look for the peer device */
14953 	read_guid(dd);
14954 
14955 	/* set up shared ASIC data with peer device */
14956 	ret = init_asic_data(dd);
14957 	if (ret)
14958 		goto bail_cleanup;
14959 
14960 	/* obtain chip sizes, reset chip CSRs */
14961 	ret = init_chip(dd);
14962 	if (ret)
14963 		goto bail_cleanup;
14964 
14965 	/* read in the PCIe link speed information */
14966 	ret = pcie_speeds(dd);
14967 	if (ret)
14968 		goto bail_cleanup;
14969 
14970 	/* call before get_platform_config(), after init_chip_resources() */
14971 	ret = eprom_init(dd);
14972 	if (ret)
14973 		goto bail_free_rcverr;
14974 
14975 	/* Needs to be called before hfi1_firmware_init */
14976 	get_platform_config(dd);
14977 
14978 	/* read in firmware */
14979 	ret = hfi1_firmware_init(dd);
14980 	if (ret)
14981 		goto bail_cleanup;
14982 
14983 	/*
14984 	 * In general, the PCIe Gen3 transition must occur after the
14985 	 * chip has been idled (so it won't initiate any PCIe transactions
14986 	 * e.g. an interrupt) and before the driver changes any registers
14987 	 * (the transition will reset the registers).
14988 	 *
14989 	 * In particular, place this call after:
14990 	 * - init_chip()     - the chip will not initiate any PCIe transactions
14991 	 * - pcie_speeds()   - reads the current link speed
14992 	 * - hfi1_firmware_init() - the needed firmware is ready to be
14993 	 *			    downloaded
14994 	 */
14995 	ret = do_pcie_gen3_transition(dd);
14996 	if (ret)
14997 		goto bail_cleanup;
14998 
14999 	/*
15000 	 * This should probably occur in hfi1_pcie_init(), but historically
15001 	 * occurs after the do_pcie_gen3_transition() code.
15002 	 */
15003 	tune_pcie_caps(dd);
15004 
15005 	/* start setting dd values and adjusting CSRs */
15006 	init_early_variables(dd);
15007 
15008 	parse_platform_config(dd);
15009 
15010 	ret = obtain_boardname(dd);
15011 	if (ret)
15012 		goto bail_cleanup;
15013 
15014 	snprintf(dd->boardversion, BOARD_VERS_MAX,
15015 		 "ChipABI %u.%u, ChipRev %u.%u, SW Compat %llu\n",
15016 		 HFI1_CHIP_VERS_MAJ, HFI1_CHIP_VERS_MIN,
15017 		 (u32)dd->majrev,
15018 		 (u32)dd->minrev,
15019 		 (dd->revision >> CCE_REVISION_SW_SHIFT)
15020 		    & CCE_REVISION_SW_MASK);
15021 
15022 	ret = set_up_context_variables(dd);
15023 	if (ret)
15024 		goto bail_cleanup;
15025 
15026 	/* set initial RXE CSRs */
15027 	init_rxe(dd);
15028 	/* set initial TXE CSRs */
15029 	init_txe(dd);
15030 	/* set initial non-RXE, non-TXE CSRs */
15031 	init_other(dd);
15032 	/* set up KDETH QP prefix in both RX and TX CSRs */
15033 	init_kdeth_qp(dd);
15034 
15035 	ret = hfi1_dev_affinity_init(dd);
15036 	if (ret)
15037 		goto bail_cleanup;
15038 
15039 	/* send contexts must be set up before receive contexts */
15040 	ret = init_send_contexts(dd);
15041 	if (ret)
15042 		goto bail_cleanup;
15043 
15044 	ret = hfi1_create_kctxts(dd);
15045 	if (ret)
15046 		goto bail_cleanup;
15047 
15048 	/*
15049 	 * Initialize aspm, to be done after gen3 transition and setting up
15050 	 * contexts and before enabling interrupts
15051 	 */
15052 	aspm_init(dd);
15053 
15054 	ret = init_pervl_scs(dd);
15055 	if (ret)
15056 		goto bail_cleanup;
15057 
15058 	/* sdma init */
15059 	for (i = 0; i < dd->num_pports; ++i) {
15060 		ret = sdma_init(dd, i);
15061 		if (ret)
15062 			goto bail_cleanup;
15063 	}
15064 
15065 	/* use contexts created by hfi1_create_kctxts */
15066 	ret = set_up_interrupts(dd);
15067 	if (ret)
15068 		goto bail_cleanup;
15069 
15070 	ret = hfi1_comp_vectors_set_up(dd);
15071 	if (ret)
15072 		goto bail_clear_intr;
15073 
15074 	/* set up LCB access - must be after set_up_interrupts() */
15075 	init_lcb_access(dd);
15076 
15077 	/*
15078 	 * Serial number is created from the base guid:
15079 	 * [27:24] = base guid [38:35]
15080 	 * [23: 0] = base guid [23: 0]
15081 	 */
15082 	snprintf(dd->serial, SERIAL_MAX, "0x%08llx\n",
15083 		 (dd->base_guid & 0xFFFFFF) |
15084 		     ((dd->base_guid >> 11) & 0xF000000));
15085 
15086 	dd->oui1 = dd->base_guid >> 56 & 0xFF;
15087 	dd->oui2 = dd->base_guid >> 48 & 0xFF;
15088 	dd->oui3 = dd->base_guid >> 40 & 0xFF;
15089 
15090 	ret = load_firmware(dd); /* asymmetric with dispose_firmware() */
15091 	if (ret)
15092 		goto bail_clear_intr;
15093 
15094 	thermal_init(dd);
15095 
15096 	ret = init_cntrs(dd);
15097 	if (ret)
15098 		goto bail_clear_intr;
15099 
15100 	ret = init_rcverr(dd);
15101 	if (ret)
15102 		goto bail_free_cntrs;
15103 
15104 	init_completion(&dd->user_comp);
15105 
15106 	/* The user refcount starts with one to inidicate an active device */
15107 	atomic_set(&dd->user_refcount, 1);
15108 
15109 	goto bail;
15110 
15111 bail_free_rcverr:
15112 	free_rcverr(dd);
15113 bail_free_cntrs:
15114 	free_cntrs(dd);
15115 bail_clear_intr:
15116 	hfi1_comp_vectors_clean_up(dd);
15117 	msix_clean_up_interrupts(dd);
15118 bail_cleanup:
15119 	hfi1_pcie_ddcleanup(dd);
15120 bail_free:
15121 	hfi1_free_devdata(dd);
15122 bail:
15123 	return ret;
15124 }
15125 
15126 static u16 delay_cycles(struct hfi1_pportdata *ppd, u32 desired_egress_rate,
15127 			u32 dw_len)
15128 {
15129 	u32 delta_cycles;
15130 	u32 current_egress_rate = ppd->current_egress_rate;
15131 	/* rates here are in units of 10^6 bits/sec */
15132 
15133 	if (desired_egress_rate == -1)
15134 		return 0; /* shouldn't happen */
15135 
15136 	if (desired_egress_rate >= current_egress_rate)
15137 		return 0; /* we can't help go faster, only slower */
15138 
15139 	delta_cycles = egress_cycles(dw_len * 4, desired_egress_rate) -
15140 			egress_cycles(dw_len * 4, current_egress_rate);
15141 
15142 	return (u16)delta_cycles;
15143 }
15144 
15145 /**
15146  * create_pbc - build a pbc for transmission
15147  * @flags: special case flags or-ed in built pbc
15148  * @srate: static rate
15149  * @vl: vl
15150  * @dwlen: dword length (header words + data words + pbc words)
15151  *
15152  * Create a PBC with the given flags, rate, VL, and length.
15153  *
15154  * NOTE: The PBC created will not insert any HCRC - all callers but one are
15155  * for verbs, which does not use this PSM feature.  The lone other caller
15156  * is for the diagnostic interface which calls this if the user does not
15157  * supply their own PBC.
15158  */
15159 u64 create_pbc(struct hfi1_pportdata *ppd, u64 flags, int srate_mbs, u32 vl,
15160 	       u32 dw_len)
15161 {
15162 	u64 pbc, delay = 0;
15163 
15164 	if (unlikely(srate_mbs))
15165 		delay = delay_cycles(ppd, srate_mbs, dw_len);
15166 
15167 	pbc = flags
15168 		| (delay << PBC_STATIC_RATE_CONTROL_COUNT_SHIFT)
15169 		| ((u64)PBC_IHCRC_NONE << PBC_INSERT_HCRC_SHIFT)
15170 		| (vl & PBC_VL_MASK) << PBC_VL_SHIFT
15171 		| (dw_len & PBC_LENGTH_DWS_MASK)
15172 			<< PBC_LENGTH_DWS_SHIFT;
15173 
15174 	return pbc;
15175 }
15176 
15177 #define SBUS_THERMAL    0x4f
15178 #define SBUS_THERM_MONITOR_MODE 0x1
15179 
15180 #define THERM_FAILURE(dev, ret, reason) \
15181 	dd_dev_err((dd),						\
15182 		   "Thermal sensor initialization failed: %s (%d)\n",	\
15183 		   (reason), (ret))
15184 
15185 /*
15186  * Initialize the thermal sensor.
15187  *
15188  * After initialization, enable polling of thermal sensor through
15189  * SBus interface. In order for this to work, the SBus Master
15190  * firmware has to be loaded due to the fact that the HW polling
15191  * logic uses SBus interrupts, which are not supported with
15192  * default firmware. Otherwise, no data will be returned through
15193  * the ASIC_STS_THERM CSR.
15194  */
15195 static int thermal_init(struct hfi1_devdata *dd)
15196 {
15197 	int ret = 0;
15198 
15199 	if (dd->icode != ICODE_RTL_SILICON ||
15200 	    check_chip_resource(dd, CR_THERM_INIT, NULL))
15201 		return ret;
15202 
15203 	ret = acquire_chip_resource(dd, CR_SBUS, SBUS_TIMEOUT);
15204 	if (ret) {
15205 		THERM_FAILURE(dd, ret, "Acquire SBus");
15206 		return ret;
15207 	}
15208 
15209 	dd_dev_info(dd, "Initializing thermal sensor\n");
15210 	/* Disable polling of thermal readings */
15211 	write_csr(dd, ASIC_CFG_THERM_POLL_EN, 0x0);
15212 	msleep(100);
15213 	/* Thermal Sensor Initialization */
15214 	/*    Step 1: Reset the Thermal SBus Receiver */
15215 	ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0,
15216 				RESET_SBUS_RECEIVER, 0);
15217 	if (ret) {
15218 		THERM_FAILURE(dd, ret, "Bus Reset");
15219 		goto done;
15220 	}
15221 	/*    Step 2: Set Reset bit in Thermal block */
15222 	ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0,
15223 				WRITE_SBUS_RECEIVER, 0x1);
15224 	if (ret) {
15225 		THERM_FAILURE(dd, ret, "Therm Block Reset");
15226 		goto done;
15227 	}
15228 	/*    Step 3: Write clock divider value (100MHz -> 2MHz) */
15229 	ret = sbus_request_slow(dd, SBUS_THERMAL, 0x1,
15230 				WRITE_SBUS_RECEIVER, 0x32);
15231 	if (ret) {
15232 		THERM_FAILURE(dd, ret, "Write Clock Div");
15233 		goto done;
15234 	}
15235 	/*    Step 4: Select temperature mode */
15236 	ret = sbus_request_slow(dd, SBUS_THERMAL, 0x3,
15237 				WRITE_SBUS_RECEIVER,
15238 				SBUS_THERM_MONITOR_MODE);
15239 	if (ret) {
15240 		THERM_FAILURE(dd, ret, "Write Mode Sel");
15241 		goto done;
15242 	}
15243 	/*    Step 5: De-assert block reset and start conversion */
15244 	ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0,
15245 				WRITE_SBUS_RECEIVER, 0x2);
15246 	if (ret) {
15247 		THERM_FAILURE(dd, ret, "Write Reset Deassert");
15248 		goto done;
15249 	}
15250 	/*    Step 5.1: Wait for first conversion (21.5ms per spec) */
15251 	msleep(22);
15252 
15253 	/* Enable polling of thermal readings */
15254 	write_csr(dd, ASIC_CFG_THERM_POLL_EN, 0x1);
15255 
15256 	/* Set initialized flag */
15257 	ret = acquire_chip_resource(dd, CR_THERM_INIT, 0);
15258 	if (ret)
15259 		THERM_FAILURE(dd, ret, "Unable to set thermal init flag");
15260 
15261 done:
15262 	release_chip_resource(dd, CR_SBUS);
15263 	return ret;
15264 }
15265 
15266 static void handle_temp_err(struct hfi1_devdata *dd)
15267 {
15268 	struct hfi1_pportdata *ppd = &dd->pport[0];
15269 	/*
15270 	 * Thermal Critical Interrupt
15271 	 * Put the device into forced freeze mode, take link down to
15272 	 * offline, and put DC into reset.
15273 	 */
15274 	dd_dev_emerg(dd,
15275 		     "Critical temperature reached! Forcing device into freeze mode!\n");
15276 	dd->flags |= HFI1_FORCED_FREEZE;
15277 	start_freeze_handling(ppd, FREEZE_SELF | FREEZE_ABORT);
15278 	/*
15279 	 * Shut DC down as much and as quickly as possible.
15280 	 *
15281 	 * Step 1: Take the link down to OFFLINE. This will cause the
15282 	 *         8051 to put the Serdes in reset. However, we don't want to
15283 	 *         go through the entire link state machine since we want to
15284 	 *         shutdown ASAP. Furthermore, this is not a graceful shutdown
15285 	 *         but rather an attempt to save the chip.
15286 	 *         Code below is almost the same as quiet_serdes() but avoids
15287 	 *         all the extra work and the sleeps.
15288 	 */
15289 	ppd->driver_link_ready = 0;
15290 	ppd->link_enabled = 0;
15291 	set_physical_link_state(dd, (OPA_LINKDOWN_REASON_SMA_DISABLED << 8) |
15292 				PLS_OFFLINE);
15293 	/*
15294 	 * Step 2: Shutdown LCB and 8051
15295 	 *         After shutdown, do not restore DC_CFG_RESET value.
15296 	 */
15297 	dc_shutdown(dd);
15298 }
15299